Search is not available for this dataset
text
string | meta
dict |
---|---|
open import Nat
open import Prelude
open import core
open import contexts
open import lemmas-disjointness
open import exchange
-- this module contains all the proofs of different weakening structural
-- properties that we use for the hypothetical judgements
module weakening where
mutual
weaken-subst-Δ : ∀{Δ1 Δ2 Γ σ Γ'} → Δ1 ## Δ2
→ Δ1 , Γ ⊢ σ :s: Γ'
→ (Δ1 ∪ Δ2) , Γ ⊢ σ :s: Γ'
weaken-subst-Δ disj (STAId x) = STAId x
weaken-subst-Δ disj (STASubst subst x) = STASubst (weaken-subst-Δ disj subst) (weaken-ta-Δ1 disj x)
weaken-ta-Δ1 : ∀{Δ1 Δ2 Γ d τ} → Δ1 ## Δ2
→ Δ1 , Γ ⊢ d :: τ
→ (Δ1 ∪ Δ2) , Γ ⊢ d :: τ
weaken-ta-Δ1 disj TAConst = TAConst
weaken-ta-Δ1 disj (TAVar x₁) = TAVar x₁
weaken-ta-Δ1 disj (TALam x₁ wt) = TALam x₁ (weaken-ta-Δ1 disj wt)
weaken-ta-Δ1 disj (TAAp wt wt₁) = TAAp (weaken-ta-Δ1 disj wt) (weaken-ta-Δ1 disj wt₁)
weaken-ta-Δ1 {Δ1} {Δ2} {Γ} disj (TAEHole {u = u} {Γ' = Γ'} x x₁) = TAEHole (x∈∪l Δ1 Δ2 u _ x ) (weaken-subst-Δ disj x₁)
weaken-ta-Δ1 {Δ1} {Δ2} {Γ} disj (TANEHole {Γ' = Γ'} {u = u} x wt x₁) = TANEHole (x∈∪l Δ1 Δ2 u _ x) (weaken-ta-Δ1 disj wt) (weaken-subst-Δ disj x₁)
weaken-ta-Δ1 disj (TACast wt x) = TACast (weaken-ta-Δ1 disj wt) x
weaken-ta-Δ1 disj (TAFailedCast wt x x₁ x₂) = TAFailedCast (weaken-ta-Δ1 disj wt) x x₁ x₂
-- this is a little bit of a time saver. since ∪ is commutative on
-- disjoint contexts, and we need that premise anyway in both positions,
-- there's no real reason to repeat the inductive argument above
weaken-ta-Δ2 : ∀{Δ1 Δ2 Γ d τ} → Δ1 ## Δ2
→ Δ2 , Γ ⊢ d :: τ
→ (Δ1 ∪ Δ2) , Γ ⊢ d :: τ
weaken-ta-Δ2 {Δ1} {Δ2} {Γ} {d} {τ} disj D = tr (λ q → q , Γ ⊢ d :: τ) (∪comm Δ2 Δ1 (##-comm disj)) (weaken-ta-Δ1 (##-comm disj) D)
-- note that these statements are somewhat stronger than usual. this is
-- because we don't have implcit α-conversion. this reifies the
-- often-silent on paper assumption that if you collide with a bound
-- variable you can just α-convert it away and not worry.
mutual
weaken-synth : ∀{ x Γ e τ τ'} → freshh x e
→ Γ ⊢ e => τ
→ (Γ ,, (x , τ')) ⊢ e => τ
weaken-synth FRHConst SConst = SConst
weaken-synth (FRHAsc frsh) (SAsc x₁) = SAsc (weaken-ana frsh x₁)
weaken-synth {Γ = Γ} (FRHVar {x = x} x₁) (SVar {x = y} x₂) = SVar (x∈∪l Γ (■(x , _)) y _ x₂)
weaken-synth {Γ = Γ} (FRHLam2 x₁ frsh) (SLam x₂ wt) =
SLam (apart-extend1 Γ (flip x₁) x₂)
(exchange-synth {Γ = Γ} (flip x₁) ((weaken-synth frsh wt)))
weaken-synth FRHEHole SEHole = SEHole
weaken-synth (FRHNEHole frsh) (SNEHole x₁ wt) = SNEHole x₁ (weaken-synth frsh wt)
weaken-synth (FRHAp frsh frsh₁) (SAp x₁ wt x₂ x₃) = SAp x₁ (weaken-synth frsh wt) x₂ (weaken-ana frsh₁ x₃)
weaken-ana : ∀{x Γ e τ τ'} → freshh x e
→ Γ ⊢ e <= τ
→ (Γ ,, (x , τ')) ⊢ e <= τ
weaken-ana frsh (ASubsume x₁ x₂) = ASubsume (weaken-synth frsh x₁) x₂
weaken-ana {Γ = Γ} (FRHLam1 neq frsh) (ALam x₂ x₃ wt) =
ALam (apart-extend1 Γ (flip neq) x₂)
x₃
(exchange-ana {Γ = Γ} (flip neq) (weaken-ana frsh wt))
mutual
weaken-subst-Γ : ∀{ x Γ Δ σ Γ' τ} →
envfresh x σ →
Δ , Γ ⊢ σ :s: Γ' →
Δ , (Γ ,, (x , τ)) ⊢ σ :s: Γ'
weaken-subst-Γ {Γ = Γ} (EFId x₁) (STAId x₂) = STAId (λ x τ x₃ → x∈∪l Γ _ x τ (x₂ x τ x₃) )
weaken-subst-Γ {x = x} {Γ = Γ} (EFSubst x₁ efrsh x₂) (STASubst {y = y} {τ = τ'} subst x₃) =
STASubst (exchange-subst-Γ {Γ = Γ} (flip x₂) (weaken-subst-Γ {Γ = Γ ,, (y , τ')} efrsh subst))
(weaken-ta x₁ x₃)
weaken-ta : ∀{x Γ Δ d τ τ'} →
fresh x d →
Δ , Γ ⊢ d :: τ →
Δ , Γ ,, (x , τ') ⊢ d :: τ
weaken-ta _ TAConst = TAConst
weaken-ta {x} {Γ} {_} {_} {τ} {τ'} (FVar x₂) (TAVar x₃) = TAVar (x∈∪l Γ (■ (x , τ')) _ _ x₃)
weaken-ta {x = x} frsh (TALam {x = y} x₂ wt) with natEQ x y
weaken-ta (FLam x₁ x₂) (TALam x₃ wt) | Inl refl = abort (x₁ refl)
weaken-ta {Γ = Γ} {τ' = τ'} (FLam x₁ x₃) (TALam {x = y} x₄ wt) | Inr x₂ = TALam (apart-extend1 Γ (flip x₁) x₄) (exchange-ta-Γ {Γ = Γ} (flip x₁) (weaken-ta x₃ wt))
weaken-ta (FAp frsh frsh₁) (TAAp wt wt₁) = TAAp (weaken-ta frsh wt) (weaken-ta frsh₁ wt₁)
weaken-ta (FHole x₁) (TAEHole x₂ x₃) = TAEHole x₂ (weaken-subst-Γ x₁ x₃)
weaken-ta (FNEHole x₁ frsh) (TANEHole x₂ wt x₃) = TANEHole x₂ (weaken-ta frsh wt) (weaken-subst-Γ x₁ x₃)
weaken-ta (FCast frsh) (TACast wt x₁) = TACast (weaken-ta frsh wt) x₁
weaken-ta (FFailedCast frsh) (TAFailedCast wt x₁ x₂ x₃) = TAFailedCast (weaken-ta frsh wt) x₁ x₂ x₃
| {
"alphanum_fraction": 0.5384461754,
"avg_line_length": 55.6333333333,
"ext": "agda",
"hexsha": "e7c275afb89e011da718866d3c3e5a600a3ce7e2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z",
"max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_forks_repo_path": "weakening.agda",
"max_issues_count": 54,
"max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_issues_repo_path": "weakening.agda",
"max_line_length": 166,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda",
"max_stars_repo_path": "weakening.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z",
"num_tokens": 2079,
"size": 5007
} |
{-# OPTIONS --without-K --rewriting #-}
module lib.Basics where
open import lib.Base public
open import lib.Equivalence public
open import lib.Function public
open import lib.Funext public
open import lib.NType public
open import lib.PathFunctor public
open import lib.PathGroupoid public
open import lib.PathOver public
open import lib.Relation public
open import lib.Univalence public
| {
"alphanum_fraction": 0.8128205128,
"avg_line_length": 24.375,
"ext": "agda",
"hexsha": "fa3f942898a3e236a452bec07c6b290841e27f60",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/Basics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/Basics.agda",
"max_line_length": 39,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/Basics.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 87,
"size": 390
} |
open import Data.Product using ( ∃ ; _×_ ; _,_ ; proj₁ ; proj₂ )
open import Relation.Unary using ( _∈_ )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; cong )
open import Web.Semantic.DL.ABox.Interp using ( Interp ; _,_ ; ⌊_⌋ ; ind ; _*_ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox.Interp using
( Δ ; _⊨_≈_ ; ≈-refl ; ≈-sym ; ≈-trans ) renaming
( Interp to Interp′ )
open import Web.Semantic.DL.TBox.Interp.Morphism using
( ≲-image ; ≃-image ; ≃-image⁻¹ ; ≲-resp-≈ ; ≃-resp-≈ ; ≃-iso ) renaming
( _≲_ to _≲′_ ; _≃_ to _≃′_
; ≲-refl to ≲′-refl ; ≲-trans to ≲′-trans
; ≃-refl to ≃′-refl ; ≃-sym to ≃′-sym ; ≃-trans to ≃′-trans
; ≃-impl-≲ to ≃-impl-≲′ )
open import Web.Semantic.Util using
( _∘_ ; _⊕_⊕_ ; inode ; bnode ; enode ; →-dist-⊕ )
module Web.Semantic.DL.ABox.Interp.Morphism {Σ : Signature} where
infix 2 _≲_ _≃_ _≋_
infixr 4 _,_
infix 5 _**_
data _≲_ {X} (I J : Interp Σ X) : Set where
_,_ : ∀ (I≲J : ⌊ I ⌋ ≲′ ⌊ J ⌋) →
(i≲j : ∀ x → (⌊ J ⌋ ⊨ ≲-image I≲J (ind I x) ≈ ind J x)) →
(I ≲ J)
≲⌊_⌋ : ∀ {X} {I J : Interp Σ X} → (I ≲ J) → (⌊ I ⌋ ≲′ ⌊ J ⌋)
≲⌊_⌋ (I≲J , i≲j) = I≲J
≲-resp-ind : ∀ {X} {I J : Interp Σ X} → (I≲J : I ≲ J) →
∀ x → (⌊ J ⌋ ⊨ ≲-image ≲⌊ I≲J ⌋ (ind I x) ≈ ind J x)
≲-resp-ind (I≲J , i≲j) = i≲j
≲-refl : ∀ {X} (I : Interp Σ X) → (I ≲ I)
≲-refl I = (≲′-refl ⌊ I ⌋ , λ x → ≈-refl ⌊ I ⌋)
≲-trans : ∀ {X} {I J K : Interp Σ X} → (I ≲ J) → (J ≲ K) → (I ≲ K)
≲-trans {X} {I} {J} {K} I≲J J≲K =
(≲′-trans ≲⌊ I≲J ⌋ ≲⌊ J≲K ⌋ , λ x → ≈-trans ⌊ K ⌋ (≲-resp-≈ ≲⌊ J≲K ⌋ (≲-resp-ind I≲J x)) (≲-resp-ind J≲K x))
≡-impl-≈ : ∀ {X : Set} (I : Interp′ Σ) {i j : X → Δ I} →
(i ≡ j) → (∀ x → I ⊨ i x ≈ j x)
≡-impl-≈ I refl x = ≈-refl I
≡³-impl-≈ : ∀ {V X Y : Set} (I : Interp′ Σ) (i j : (X ⊕ V ⊕ Y) → Δ I) →
(→-dist-⊕ i ≡ →-dist-⊕ j) → (∀ x → I ⊨ i x ≈ j x)
≡³-impl-≈ I i j i≡j (inode x) = ≡-impl-≈ I (cong proj₁ i≡j) x
≡³-impl-≈ I i j i≡j (bnode v) = ≡-impl-≈ I (cong proj₁ (cong proj₂ i≡j)) v
≡³-impl-≈ I i j i≡j (enode y) = ≡-impl-≈ I (cong proj₂ (cong proj₂ i≡j)) y
≡-impl-≲ : ∀ {X : Set} (I : Interp Σ X) j →
(ind I ≡ j) → (I ≲ (⌊ I ⌋ , j))
≡-impl-≲ (I , i) .i refl = ≲-refl (I , i)
≡³-impl-≲ : ∀ {V X Y : Set} (I : Interp Σ (X ⊕ V ⊕ Y)) j →
(→-dist-⊕ (ind I) ≡ →-dist-⊕ j) → (I ≲ (⌊ I ⌋ , j))
≡³-impl-≲ (I , i) j i≡j = (≲′-refl I , ≡³-impl-≈ I i j i≡j)
_**_ : ∀ {X Y I J} (f : Y → X) → (I ≲ J) → (f * I ≲ f * J)
f ** I≲J = (≲⌊ I≲J ⌋ , λ x → ≲-resp-ind I≲J (f x))
_≋_ : ∀ {X} {I J : Interp Σ X} → (I ≲ J) → (I ≲ J) → Set
_≋_ {X} {I} {J} I≲₁J I≲₂J = ∀ x → (⌊ J ⌋ ⊨ ≲-image ≲⌊ I≲₁J ⌋ x ≈ ≲-image ≲⌊ I≲₂J ⌋ x)
data _≃_ {X} (I J : Interp Σ X) : Set₁ where
_,_ : (I≃J : ⌊ I ⌋ ≃′ ⌊ J ⌋) →
(∀ x → (⌊ J ⌋ ⊨ ≃-image I≃J (ind I x) ≈ ind J x)) →
(I ≃ J)
≃⌊_⌋ : ∀ {X} {I J : Interp Σ X} → (I ≃ J) → (⌊ I ⌋ ≃′ ⌊ J ⌋)
≃⌊_⌋ (I≃J , i≃j) = I≃J
≃-impl-≲ : ∀ {X} {I J : Interp Σ X} → (I ≃ J) → (I ≲ J)
≃-impl-≲ (I≃J , i≃j) = (≃-impl-≲′ I≃J , i≃j)
≃-resp-ind : ∀ {X} {I J : Interp Σ X} → (I≃J : I ≃ J) →
∀ x → (⌊ J ⌋ ⊨ ≃-image ≃⌊ I≃J ⌋ (ind I x) ≈ ind J x)
≃-resp-ind (I≃J , i≃j) = i≃j
≃-resp-ind⁻¹ : ∀ {X} {I J : Interp Σ X} → (I≃J : I ≃ J) →
∀ x → (⌊ I ⌋ ⊨ ≃-image⁻¹ ≃⌊ I≃J ⌋ (ind J x) ≈ ind I x)
≃-resp-ind⁻¹ {X} {I , i} {J , j} (I≃J , i≃j) x =
≈-trans I (≃-resp-≈ (≃′-sym I≃J) (≈-sym J (i≃j x))) (≃-iso I≃J (i x))
≃-refl : ∀ {X} (I : Interp Σ X) → (I ≃ I)
≃-refl (I , i) = (≃′-refl I , λ x → ≈-refl I)
≃-symm : ∀ {X} {I J : Interp Σ X} → (I ≃ J) → (J ≃ I)
≃-symm {X} {I , i} {J , j} (I≃J , i≃j) =
(≃′-sym I≃J , ≃-resp-ind⁻¹ {X} {I , i} {J , j} (I≃J , i≃j))
≃-trans : ∀ {X} {I J K : Interp Σ X} → (I ≃ J) → (J ≃ K) → (I ≃ K)
≃-trans {X} {I , i} {J , j} {K , k} (I≃J , i≃j) (J≃K , j≃k) =
(≃′-trans I≃J J≃K , λ x → ≈-trans K (≃-resp-≈ J≃K (i≃j x)) (j≃k x))
| {
"alphanum_fraction": 0.4321344185,
"avg_line_length": 38.8673469388,
"ext": "agda",
"hexsha": "945bf224457e61c63382c05e77bd57b72866e583",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/ABox/Interp/Morphism.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/ABox/Interp/Morphism.agda",
"max_line_length": 110,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/ABox/Interp/Morphism.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 2387,
"size": 3809
} |
module _ where
record R : Set₁ where
field
overlap A : Set
| {
"alphanum_fraction": 0.6470588235,
"avg_line_length": 9.7142857143,
"ext": "agda",
"hexsha": "fa638016c4e6f5109b8377ad329c18f2dd246cec",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/UselessOverlap.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/UselessOverlap.agda",
"max_line_length": 21,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/UselessOverlap.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 22,
"size": 68
} |
{-# OPTIONS --without-K #-}
open import HoTT.Base
open import HoTT.Identity
open import HoTT.Equivalence
module HoTT.Identity.Sigma where
open variables
_=Σ_ : Σ A P → Σ A P → 𝒰 _
_=Σ_ {P = P} x y = Σ[ p ∶ x₁ == y₁ ] transport P p x₂ == y₂
where
open Σ x renaming (pr₁ to x₁ ; pr₂ to x₂)
open Σ y renaming (pr₁ to y₁ ; pr₂ to y₂)
pair⁼' : {x y : Σ A P} → Σ[ p ∶ pr₁ x == pr₁ y ] pr₂ x == transport P (p ⁻¹) (pr₂ y) → x == y
pair⁼' {x = _ , _} {y = _ , _} (refl , refl) = refl
=Σ-equiv : {x y : Σ A P} → (x == y) ≃ x =Σ y
=Σ-equiv {x = _ , _} {y = _ , _} = let open Iso in iso→eqv λ where
.f refl → (refl , refl)
.g (refl , refl) → refl
.η refl → refl
.ε (refl , refl) → refl
pair⁼ : {x y : Σ A P} → x =Σ y → x == y
pair⁼ = Iso.g (eqv→iso =Σ-equiv)
| {
"alphanum_fraction": 0.5442708333,
"avg_line_length": 27.4285714286,
"ext": "agda",
"hexsha": "fa846ccae39d8e1f30317c527659a4c6fe0d959d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "michaelforney/hott",
"max_forks_repo_path": "HoTT/Identity/Sigma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "michaelforney/hott",
"max_issues_repo_path": "HoTT/Identity/Sigma.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "michaelforney/hott",
"max_stars_repo_path": "HoTT/Identity/Sigma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 348,
"size": 768
} |
{-# OPTIONS --without-K #-}
-- Some basic theorems on paths and path compositions.
module hott.core.equality.theorems where
open import hott.core
-- The path refl is the left identity under path concatnation.
refl∙p≡p : ∀ {ℓ} {A : Type ℓ} {x y : A}
→ ∀ (p : x ≡ y)
→ refl ∙ p ≡ p
refl∙p≡p refl = refl
-- Alternate form of refl being left identity.
p≡refl∙p : ∀ {ℓ} {A : Type ℓ} {x y : A}
→ ∀ (p : x ≡ y)
→ p ≡ refl ∙ p
p≡refl∙p p = refl∙p≡p p ⁻¹
-- The path refl is the right identity under path concatnation.
p∙refl≡p : ∀ {ℓ} {A : Type ℓ} {x y : A}
→ ∀ (p : x ≡ y)
→ p ∙ refl ≡ p
p∙refl≡p refl = refl
-- Alternate form of refl being the right identity.
p≡p∙refl : ∀ {ℓ} {A : Type ℓ} {x y : A}
→ ∀ (p : x ≡ y)
→ p ≡ p ∙ refl
p≡p∙refl p = p∙refl≡p p ⁻¹
-- The inverse of inverse is identity
p⁻¹⁻¹≡p : ∀ {ℓ} {A : Type ℓ} {x y : A}
→ ∀ (p : x ≡ y)
→ (p ⁻¹)⁻¹ ≡ p
p⁻¹⁻¹≡p refl = refl
-- Alternate form of the theorem inverse of inverse is identity.
p≡p⁻¹⁻¹ : ∀ {ℓ} {A : Type ℓ} {x y : A}
→ ∀ (p : x ≡ y)
→ p ≡ (p ⁻¹)⁻¹
p≡p⁻¹⁻¹ p = p⁻¹⁻¹≡p p ⁻¹
-- Inverse is actually right inverse.
p∙p⁻¹≡refl : ∀ {ℓ} {A : Type ℓ} {x y : A}
→ ∀ (p : x ≡ y)
→ p ∙ p ⁻¹ ≡ refl
p∙p⁻¹≡refl refl = refl
-- Inverse is actually left inverse.
p⁻¹∙p≡refl : ∀ {ℓ} {A : Type ℓ} {x y : A}
→ ∀ (p : x ≡ y)
→ p ⁻¹ ∙ p ≡ refl
p⁻¹∙p≡refl refl = refl
-- The associativity of path composition.
assoc : ∀ {ℓ} {A : Type ℓ} {u v w x : A}
→ (p : u ≡ v)
→ (q : v ≡ w)
→ (r : w ≡ x)
→ (p ∙ q) ∙ r ≡ p ∙ (q ∙ r)
assoc refl refl refl = refl
| {
"alphanum_fraction": 0.4746945899,
"avg_line_length": 25.6567164179,
"ext": "agda",
"hexsha": "7a344dbf4100d13bd6c123057b33945d4cd1e0a4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "piyush-kurur/hott",
"max_forks_repo_path": "agda/hott/core/equality/theorems.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "piyush-kurur/hott",
"max_issues_repo_path": "agda/hott/core/equality/theorems.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "piyush-kurur/hott",
"max_stars_repo_path": "agda/hott/core/equality/theorems.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 765,
"size": 1719
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Abstract.Types
open import LibraBFT.Impl.NetworkMsg
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.Yasm.System ConcSysParms
open import LibraBFT.Yasm.Properties ConcSysParms
-- This module collects the implementation obligations for our (fake/simple, for now)
-- "implementation" into the structure required by Concrete.Properties.
open import LibraBFT.Concrete.Obligations
module LibraBFT.Impl.Properties where
open import LibraBFT.Impl.Properties.Aux
open import LibraBFT.Concrete.System impl-sps-avp
import LibraBFT.Impl.Properties.VotesOnce as VO
import LibraBFT.Impl.Properties.LockedRound as LR
theImplObligations : ImplObligations
theImplObligations = record { sps-cor = impl-sps-avp
; vo₁ = VO.vo₁
; vo₂ = VO.vo₂
; lr₁ = LR.lr₁ }
| {
"alphanum_fraction": 0.7192242833,
"avg_line_length": 39.5333333333,
"ext": "agda",
"hexsha": "8e04932f85221fc68649449c98f98b321e54ac91",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "lisandrasilva/bft-consensus-agda-1",
"max_forks_repo_path": "LibraBFT/Impl/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "lisandrasilva/bft-consensus-agda-1",
"max_issues_repo_path": "LibraBFT/Impl/Properties.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "lisandrasilva/bft-consensus-agda-1",
"max_stars_repo_path": "LibraBFT/Impl/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 307,
"size": 1186
} |
module LC.Subst where
open import LC.Base
open import LC.Subst.Var
open import LC.Subst.Term
open import LC.Subst.Term public using (lift)
open import Data.Nat
open import Data.Nat.Properties
open import Relation.Nullary
--------------------------------------------------------------------------------
-- substitution
infixl 10 _[_/_]
_[_/_] : Term → Term → ℕ → Term
(var x) [ N / i ] = subst-var (match x i) N
(ƛ M) [ N / i ] = ƛ (M [ N / suc i ])
(L ∙ M) [ N / i ] = L [ N / i ] ∙ M [ N / i ]
-- substitute the 0th var in M for N
infixl 10 _[_]
_[_] : Term → Term → Term
M [ N ] = M [ N / 0 ]
--------------------------------------------------------------------------------
-- properties regarding substitution
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Nullary.Negation using (contradiction)
open ≡-Reasoning
subst-< : ∀ x i N → x < i → (var x) [ N / i ] ≡ var x
subst-< x i N x<i with match x i
... | Under x<i' = refl
... | Exact x≡i = contradiction x≡i (<⇒≢ x<i)
... | Above v x≥i = contradiction (≤-step (≤-pred x≥i)) (<⇒≱ x<i)
subst-≡ : ∀ x i N → x ≡ i → (var x) [ N / i ] ≡ lift 0 i N
subst-≡ x i N x≡i with match x i
... | Under x<i = contradiction x≡i (<⇒≢ x<i)
... | Exact x≡i' = refl
... | Above v x≥i = contradiction (sym x≡i) (<⇒≢ x≥i)
subst-> : ∀ x i N → suc x > i → (var suc x) [ N / i ] ≡ var x
subst-> x i N x≥i with match (suc x) i
... | Under x<i = contradiction (≤-pred (≤-step x<i)) (<⇒≱ x≥i)
... | Exact x≡i = contradiction (sym x≡i) (<⇒≢ x≥i)
... | Above v x≥i' = refl
subst-[]-var : ∀ m n i x N
→ subst-var (match (lift-var n m x) (n + m + i)) N
≡ lift n m (subst-var (match x (n + i)) N)
subst-[]-var m n i x N with inspectBinding n x
subst-[]-var m n i x N | Free n≤x with match x (n + i)
subst-[]-var m n i x N | Free n≤x | Under x<n+i =
begin
subst-var (match (m + x) (n + m + i)) N
≡⟨ subst-var-match-< {m + x} {n + m + i} N (LC.Subst.Var.INEQ.l+m+n>m+x n m i x x<n+i) ⟩
var (m + x)
≡⟨ cong var_ (sym (LC.Subst.Var.lift-var-≤ n≤x)) ⟩
var lift-var n m x
∎
subst-[]-var m n i x N | Free n≤x | Exact x≡n+i =
begin
subst-var (match (m + x) (n + m + i)) N
≡⟨ subst-var-match-≡ {m + x} {n + m + i} N (sym (LC.Subst.Var.EQ.l+m+n≡m+x n m i x (sym x≡n+i))) ⟩
lift 0 (n + m + i) N
≡⟨ lift-lemma 0 m n i N ⟩
lift n m (lift 0 (n + i) N)
∎
subst-[]-var m n i .(suc v) N | Free n≤x | Above v x≥n+i =
begin
subst-var (match (m + suc v) (n + m + i)) N
≡⟨ cong (λ w → subst-var (match w (n + m + i)) N) (+-suc m v) ⟩
subst-var (match (suc m + v) (n + m + i)) N
≡⟨ subst-var-match-> {m + v} {n + m + i} N (s≤s (LC.Subst.Var.INEQ.l+m+n≤m+x n m i v (≤-pred x≥n+i))) ⟩
var (m + v)
≡⟨ cong var_ (sym (LC.Subst.Var.lift-var-≤ {n} {m} {v} (≤-trans (m≤m+n n i) (≤-pred x≥n+i)))) ⟩
var lift-var n m v
∎
subst-[]-var m n i x N | Bound n>x =
begin
subst-var (match x (n + m + i)) N
≡⟨ subst-var-match-< N (≤-trans n>x (≤-trans (m≤m+n n m) (m≤m+n (n + m) i))) ⟩
var x
≡⟨ cong var_ (sym (LC.Subst.Var.lift-var-> n>x)) ⟩
var lift-var n m x
≡⟨⟩
lift n m (var x)
≡⟨ cong (lift n m) (sym (subst-var-match-< N (≤-trans n>x (m≤m+n n i)))) ⟩
lift n m (subst-var (match x (n + i)) N)
∎
lemma : ∀ {m n i} M N
→ lift (suc ((m + n))) i M [ lift n i N / m ]
≡ lift (m + n) i (M [ N / m ])
lemma {m} {n} {i} (var x) N = LC.Subst.Term.subst-var-lift _ _ _ x N
lemma (ƛ M) N = cong ƛ_ (lemma M N)
lemma (K ∙ M) N = cong₂ _∙_ (lemma K N) (lemma M N)
lift-[] : ∀ n m i M N → lift n m (M [ N / n + i ]) ≡ lift n m M [ N / n + m + i ]
lift-[] n m i (var x) N = sym (subst-[]-var m n i x N)
lift-[] n m i (ƛ M) N = cong ƛ_ (lift-[] (suc n) m i M N)
lift-[] n m i (M ∙ M') N = cong₂ _∙_ (lift-[] n m i M N) (lift-[] n m i M' N)
lift-subst-var : ∀ l m n i x N → n ≥ i → i ≥ m → lift (l + m) (suc n) (var x) [ N / l + i ] ≡ lift (l + m) n (var x)
lift-subst-var l m n i x N n≥i i≥m with inspectBinding (l + m) x
... | Free l+m≤x =
begin
subst-var (match (suc (n + x)) (l + i)) N
≡⟨ subst-var-match-> {n + x} {l + i} N (s≤s prop) ⟩
var (n + x)
∎
where
prop : l + i ≤ n + x
prop = ≤-trans (≤-reflexive (+-comm l i)) (+-mono-≤ n≥i (≤-trans (m≤m+n l m) l+m≤x))
... | Bound l+m>x =
begin
subst-var (match x (l + i)) N
≡⟨ subst-var-match-< {x} {l + i} N prop ⟩
var x
∎
where
prop : x < l + i
prop = ≤-trans l+m>x (+-monoʳ-≤ l i≥m)
lift-subst : ∀ l m n i M N → n ≥ i → i ≥ m → lift (l + m) (suc n) M [ N / l + i ] ≡ lift (l + m) n M
lift-subst l m n i (var x) N n≥i i≥m = lift-subst-var l m n i x N n≥i i≥m
lift-subst l m n i (ƛ M) N n≥i i≥m = cong ƛ_ (lift-subst (suc l) m n i M N n≥i i≥m)
lift-subst l m n i (L ∙ M) N n≥i i≥m = cong₂ _∙_ (lift-subst l m n i L N n≥i i≥m) (lift-subst l m n i M N n≥i i≥m)
subst-var-match-[] : ∀ {m i} x M N
→ subst-var (match x (suc (m + i))) N [ M [ N / i ] / m ]
≡ subst-var (match x m ) M [ N / m + i ]
subst-var-match-[] {m} {i} x M N with match x m
... | Under x<m =
begin
subst-var (match x (suc (m + i))) N [ M [ N / i ] / m ]
≡⟨ (cong (_[ M [ N / i ] / m ])) (LC.Subst.Term.subst-var-match-< N (≤-trans x<m (≤-step (m≤m+n m i)))) ⟩
(var x) [ M [ N / i ] / m ]
≡⟨ subst-< x m (M [ N / i ]) x<m ⟩
var x
≡⟨ sym (LC.Subst.Term.subst-var-match-< N (≤-trans x<m (m≤m+n m i))) ⟩
subst-var (match x (m + i)) N
∎
... | Exact x≡m =
begin
subst-var (match x (suc (m + i))) N [ M [ N / i ] / m ]
≡⟨ cong (_[ M [ N / i ] / m ]) (LC.Subst.Term.subst-var-match-< N (≤-trans (s≤s (≤-reflexive x≡m)) (s≤s (m≤m+n m i)))) ⟩
(var x) [ M [ N / i ] / m ]
≡⟨ subst-≡ x m (M [ N / i ]) x≡m ⟩
lift 0 m (M [ N / i ])
≡⟨ lift-[] 0 m i M N ⟩
lift 0 m M [ N / m + i ]
∎
... | Above v v≥m with match v (m + i)
... | Under v<m+i =
begin
subst-var (match (suc v) (suc (m + i))) N [ M [ N / i ] / m ]
≡⟨ cong (_[ M [ N / i ] / m ]) (LC.Subst.Term.subst-var-match-< {suc v} {suc m + i} N (s≤s v<m+i)) ⟩
(var suc v) [ M [ N / i ] / m ]
≡⟨ subst-> v m (M [ N / i ]) v≥m ⟩
var v
∎
... | Exact v≡m+i =
begin
subst-var (match (suc v) (suc (m + i))) N [ M [ N / i ] / m ]
≡⟨ cong (_[ M [ N / i ] / m ]) (LC.Subst.Term.subst-var-match-≡ {suc v} {suc m + i} N (cong suc v≡m+i)) ⟩
lift 0 (suc m + i) N [ M [ N / i ] / m ]
≡⟨ lift-subst 0 0 (m + i) m N (M [ N / i ]) (m≤m+n m i) z≤n ⟩
lift 0 (m + i) N
∎
... | Above v' v>m+i =
begin
subst-var (match (suc (suc v')) (suc (m + i))) N [ M [ N / i ] / m ]
≡⟨ cong (_[ M [ N / i ] / m ]) (LC.Subst.Term.subst-var-match-> {suc v'} {suc m + i} N (s≤s v>m+i)) ⟩
(var (suc v')) [ M [ N / i ] / m ]
≡⟨ subst-> v' m (M [ N / i ]) (≤-trans (s≤s (m≤m+n m i)) v>m+i) ⟩
var v'
∎
subst-lemma : ∀ {m i} M N O
→ M [ O / suc m + i ] [ N [ O / i ] / m ]
≡ M [ N / m ] [ O / m + i ]
subst-lemma (var x) N O = subst-var-match-[] x N O
subst-lemma (ƛ M) N O = cong ƛ_ (subst-lemma M N O)
subst-lemma (M ∙ L) N O = cong₂ _∙_ (subst-lemma M N O) (subst-lemma L N O) | {
"alphanum_fraction": 0.451014885,
"avg_line_length": 36.95,
"ext": "agda",
"hexsha": "e6ebf91cb04afeb079360bf27ffdae1ed5d59adc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/bidirectional",
"max_forks_repo_path": "LC/Subst.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/bidirectional",
"max_issues_repo_path": "LC/Subst.agda",
"max_line_length": 125,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/bidirectional",
"max_stars_repo_path": "LC/Subst.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z",
"num_tokens": 3253,
"size": 7390
} |
open import Level hiding ( suc ; zero )
open import Algebra
module Solvable {n m : Level} (G : Group n m ) where
open import Data.Unit
open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
open import Function
open import Data.Nat hiding (_⊔_) -- using (ℕ; suc; zero)
open import Relation.Nullary
open import Data.Empty
open import Data.Product
open import Relation.Binary.PropositionalEquality hiding ( [_] ; sym )
open Group G
open import Gutil G
[_,_] : Carrier → Carrier → Carrier
[ g , h ] = g ⁻¹ ∙ h ⁻¹ ∙ g ∙ h
data Commutator (P : Carrier → Set (Level.suc n ⊔ m)) : (f : Carrier) → Set (Level.suc n ⊔ m) where
comm : {g h : Carrier} → P g → P h → Commutator P [ g , h ]
ccong : {f g : Carrier} → f ≈ g → Commutator P f → Commutator P g
deriving : ( i : ℕ ) → Carrier → Set (Level.suc n ⊔ m)
deriving 0 x = Lift (Level.suc n ⊔ m) ⊤
deriving (suc i) x = Commutator (deriving i) x
open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
deriving-subst : { i : ℕ } → {x y : Carrier } → x ≈ y → (dx : deriving i x ) → deriving i y
deriving-subst {zero} {x} {y} x=y dx = lift tt
deriving-subst {suc i} {x} {y} x=y dx = ccong x=y dx
record solvable : Set (Level.suc n ⊔ m) where
field
dervied-length : ℕ
end : (x : Carrier ) → deriving dervied-length x → x ≈ ε
-- deriving stage is closed on multiplication and inversion
import Relation.Binary.Reasoning.Setoid as EqReasoning
open EqReasoning (Algebra.Group.setoid G)
lemma4 : (g h : Carrier ) → [ h , g ] ≈ [ g , h ] ⁻¹
lemma4 g h = begin
[ h , g ] ≈⟨ grefl ⟩
(h ⁻¹ ∙ g ⁻¹ ∙ h ) ∙ g ≈⟨ assoc _ _ _ ⟩
h ⁻¹ ∙ g ⁻¹ ∙ (h ∙ g) ≈⟨ ∙-cong grefl (gsym (∙-cong lemma6 lemma6)) ⟩
h ⁻¹ ∙ g ⁻¹ ∙ ((h ⁻¹) ⁻¹ ∙ (g ⁻¹) ⁻¹) ≈⟨ ∙-cong grefl (lemma5 _ _ ) ⟩
h ⁻¹ ∙ g ⁻¹ ∙ (g ⁻¹ ∙ h ⁻¹) ⁻¹ ≈⟨ assoc _ _ _ ⟩
h ⁻¹ ∙ (g ⁻¹ ∙ (g ⁻¹ ∙ h ⁻¹) ⁻¹) ≈⟨ ∙-cong grefl (lemma5 (g ⁻¹ ∙ h ⁻¹ ) g ) ⟩
h ⁻¹ ∙ (g ⁻¹ ∙ h ⁻¹ ∙ g) ⁻¹ ≈⟨ lemma5 (g ⁻¹ ∙ h ⁻¹ ∙ g) h ⟩
(g ⁻¹ ∙ h ⁻¹ ∙ g ∙ h) ⁻¹ ≈⟨ grefl ⟩
[ g , h ] ⁻¹
∎
deriving-inv : { i : ℕ } → { x : Carrier } → deriving i x → deriving i ( x ⁻¹ )
deriving-inv {zero} {x} (lift tt) = lift tt
deriving-inv {suc i} {_} (comm x x₁ ) = ccong (lemma4 _ _) (comm x₁ x)
deriving-inv {suc i} {x} (ccong eq ix ) = ccong (⁻¹-cong eq) ( deriving-inv ix )
idcomtr : (g : Carrier ) → [ g , ε ] ≈ ε
idcomtr g = begin
(g ⁻¹ ∙ ε ⁻¹ ∙ g ∙ ε ) ≈⟨ ∙-cong (∙-cong (∙-cong grefl (sym lemma3 )) grefl ) grefl ⟩
(g ⁻¹ ∙ ε ∙ g ∙ ε ) ≈⟨ ∙-cong (∙-cong (proj₂ identity _) grefl) grefl ⟩
(g ⁻¹ ∙ g ∙ ε ) ≈⟨ ∙-cong (proj₁ inverse _ ) grefl ⟩
( ε ∙ ε ) ≈⟨ proj₂ identity _ ⟩
ε
∎
idcomtl : (g : Carrier ) → [ ε , g ] ≈ ε
idcomtl g = begin
(ε ⁻¹ ∙ g ⁻¹ ∙ ε ∙ g ) ≈⟨ ∙-cong (proj₂ identity _) grefl ⟩
(ε ⁻¹ ∙ g ⁻¹ ∙ g ) ≈⟨ ∙-cong (∙-cong (sym lemma3 ) grefl ) grefl ⟩
(ε ∙ g ⁻¹ ∙ g ) ≈⟨ ∙-cong (proj₁ identity _) grefl ⟩
(g ⁻¹ ∙ g ) ≈⟨ proj₁ inverse _ ⟩
ε
∎
deriving-ε : { i : ℕ } → deriving i ε
deriving-ε {zero} = lift tt
deriving-ε {suc i} = ccong (idcomtr ε) (comm deriving-ε deriving-ε)
comm-refl : {f g : Carrier } → f ≈ g → [ f , g ] ≈ ε
comm-refl {f} {g} f=g = begin
f ⁻¹ ∙ g ⁻¹ ∙ f ∙ g
≈⟨ ∙-cong (∙-cong (∙-cong (⁻¹-cong f=g ) grefl ) f=g ) grefl ⟩
g ⁻¹ ∙ g ⁻¹ ∙ g ∙ g
≈⟨ ∙-cong (assoc _ _ _ ) grefl ⟩
g ⁻¹ ∙ (g ⁻¹ ∙ g ) ∙ g
≈⟨ ∙-cong (∙-cong grefl (proj₁ inverse _) ) grefl ⟩
g ⁻¹ ∙ ε ∙ g
≈⟨ ∙-cong (proj₂ identity _) grefl ⟩
g ⁻¹ ∙ g
≈⟨ proj₁ inverse _ ⟩
ε
∎
comm-resp : {g h g1 h1 : Carrier } → g ≈ g1 → h ≈ h1 → [ g , h ] ≈ [ g1 , h1 ]
comm-resp {g} {h} {g1} {h1} g=g1 h=h1 = ∙-cong (∙-cong (∙-cong (⁻¹-cong g=g1 ) (⁻¹-cong h=h1 )) g=g1 ) h=h1
| {
"alphanum_fraction": 0.4816336394,
"avg_line_length": 39.7884615385,
"ext": "agda",
"hexsha": "5b9674984714099e5fb51496774e8f6a0824684f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/Galois",
"max_forks_repo_path": "src/Solvable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/Galois",
"max_issues_repo_path": "src/Solvable.agda",
"max_line_length": 109,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "bf000643c139f40d5783e962bb3b63353ba3d6e4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/Galois",
"max_stars_repo_path": "src/Solvable.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-16T03:37:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-16T03:37:05.000Z",
"num_tokens": 1830,
"size": 4138
} |
{-
This file contains:
- The equivalence "James X ≃ Ω Σ X" for any connected pointed type X.
(KANG Rongji, Feb. 2022)
-}
{-# OPTIONS --safe #-}
module Cubical.HITs.James.LoopSuspEquiv where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.Fiberwise
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Pointed
open import Cubical.Data.Unit
open import Cubical.Data.Sigma
open import Cubical.HITs.Pushout
open import Cubical.HITs.Pushout.Flattening
open import Cubical.HITs.Susp
open import Cubical.HITs.James.Base
renaming (James to JamesContruction ; James∙ to JamesContruction∙)
open import Cubical.HITs.Truncation
open import Cubical.Homotopy.Connected
open import Cubical.Homotopy.Loopspace
private
variable
ℓ : Level
module _
((X , x₀) : Pointed ℓ) where
private
James = JamesContruction (X , x₀)
James∙ = JamesContruction∙ (X , x₀)
Total : Type ℓ
Total = Pushout {A = X × James} snd (λ (x , xs) → x ∷ xs)
private
flipSquare : (xs : James)(i j : I) → James
flipSquare xs i j =
hcomp (λ k → λ
{ (i = i0) → unit xs (j ∨ k)
; (i = i1) → unit (x₀ ∷ xs) j
; (j = i0) → unit xs (i ∨ k)
; (j = i1) → x₀ ∷ (unit xs i) })
(unit (unit xs i) j)
square1 : (x : X)(xs : James)(i j : I) → Total
square1 x xs i j =
hfill (λ j → λ
{ (i = i0) → push (x , xs) (~ j)
; (i = i1) → push (x₀ , x ∷ xs) (~ j) })
(inS (inr (unit (x ∷ xs) i))) j
square2 : (xs : James)(i j : I) → Total
square2 xs i j =
hcomp (λ k → λ
{ (i = i0) → push (x₀ , xs) (~ k)
; (i = i1) → square1 x₀ xs j k
; (j = i0) → push (x₀ , xs) (~ k)
; (j = i1) → push (x₀ , unit xs i) (~ k) })
(inr (flipSquare xs i j))
center : Total
center = inl []
pathL : (xs : James) → center ≡ inl xs
pathL [] = refl
pathL (x ∷ xs) = pathL xs ∙ (λ i → square1 x xs i i1)
pathL (unit xs i) j =
hcomp (λ k → λ
{ (i = i0) → pathL xs j
; (i = i1) → compPath-filler (pathL xs) (λ i → square1 x₀ xs i i1) k j
; (j = i0) → inl []
; (j = i1) → square2 xs i k })
(pathL xs j)
isContrTotal : isContr Total
isContrTotal .fst = center
isContrTotal .snd (inl xs) = pathL xs
isContrTotal .snd (inr xs) = pathL xs ∙∙ push (x₀ , xs) ∙∙ (λ i → inr (unit xs (~ i)))
isContrTotal .snd (push (x , xs) i) j =
hcomp (λ k → λ
{ (i = i0) → compPath-filler' (pathL xs) (λ i → square1 x xs i i1) (~ j) (~ k)
; (i = i1) → doubleCompPath-filler (pathL (x ∷ xs)) (push (x₀ , x ∷ xs)) (λ i → inr (unit (x ∷ xs) (~ i))) k j
; (j = i0) → pathL (x ∷ xs) (~ k)
; (j = i1) → square1 x xs (~ k) (~ i) })
(push (x₀ , x ∷ xs) (i ∧ j))
module _
(conn : isConnected 2 X) where
private
isEquivx₀∷ : isEquiv {A = James} (x₀ ∷_)
isEquivx₀∷ = subst isEquiv (λ i xs → unit xs i) (idIsEquiv _)
∣isEquiv∣ : hLevelTrunc 2 X → Type ℓ
∣isEquiv∣ x = rec isSetHProp (λ x → isEquiv {A = James} (x ∷_) , isPropIsEquiv _) x .fst
isEquiv∷ : (x : X) → isEquiv {A = James} (x ∷_)
isEquiv∷ x = subst ∣isEquiv∣ (sym (conn .snd ∣ x₀ ∣) ∙ (conn .snd ∣ x ∣)) isEquivx₀∷
Code : Susp X → Type ℓ
Code north = James
Code south = James
Code (merid x i) = ua (_ , isEquiv∷ x) i
private
open FlatteningLemma (λ _ → tt) (λ _ → tt) (λ tt → James) (λ tt → James) (λ x → _ , isEquiv∷ x)
Total≃ : Pushout Σf Σg ≃ Total
Total≃ = pushoutEquiv _ _ _ _ (idEquiv _) (ΣUnit _) (ΣUnit _) refl refl
PushoutSuspCode : (x : PushoutSusp X) → E x ≃ Code (PushoutSusp→Susp x)
PushoutSuspCode (inl tt) = idEquiv _
PushoutSuspCode (inr tt) = idEquiv _
PushoutSuspCode (push x i) = idEquiv _
ΣCode≃' : _ ≃ Σ _ Code
ΣCode≃' = Σ-cong-equiv PushoutSusp≃Susp PushoutSuspCode
ΣCode≃ : Total ≃ Σ _ Code
ΣCode≃ = compEquiv (invEquiv Total≃) (compEquiv (invEquiv flatten) ΣCode≃')
isContrΣCode : isContr (Σ _ Code)
isContrΣCode = isOfHLevelRespectEquiv _ ΣCode≃ isContrTotal
ΩΣ≃J : Ω (Susp∙ X) .fst ≃ James
ΩΣ≃J = recognizeId Code [] isContrΣCode _
ΩΣ≃∙J : Ω (Susp∙ X) ≃∙ James∙
ΩΣ≃∙J = ΩΣ≃J , refl
J≃ΩΣ : James ≃ Ω (Susp∙ X) .fst
J≃ΩΣ = invEquiv ΩΣ≃J
J≃∙ΩΣ : James∙ ≃∙ Ω (Susp∙ X)
J≃∙ΩΣ = invEquiv∙ ΩΣ≃∙J
| {
"alphanum_fraction": 0.5690460307,
"avg_line_length": 30.801369863,
"ext": "agda",
"hexsha": "e2b6ea08f720fd11210e03891507d904ebb3b76a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/James/LoopSuspEquiv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/James/LoopSuspEquiv.agda",
"max_line_length": 116,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/James/LoopSuspEquiv.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1829,
"size": 4497
} |
module _ (P : Set) where
data ⊤ : Set where tt : ⊤
foo : ⊤ → Set
foo tt = ⊤
bar : {{_ : ⊤}} → ⊤
bar {{tt}} = tt
error : foo bar → ⊤
error tt = tt
| {
"alphanum_fraction": 0.4768211921,
"avg_line_length": 10.7857142857,
"ext": "agda",
"hexsha": "51f1c0c9555ed4c716141db92d56734e5ac181d4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue999.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue999.agda",
"max_line_length": 25,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/Issue999.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 66,
"size": 151
} |
{-# OPTIONS --sized-types --show-implicit #-}
module SizedNat where
open import Size
data Nat : {size : Size} -> Set where
zero : {size : Size} -> Nat {↑ size}
suc : {size : Size} -> Nat {size} -> Nat {↑ size}
-- subtraction is non size increasing
sub : {size : Size} -> Nat {size} -> Nat {∞} -> Nat {size}
sub zero n = zero
sub (suc m) zero = suc m
sub (suc m) (suc n) = sub m n
-- div' m n computes ceiling(m/(n+1))
div' : {size : Size} -> Nat {size} -> Nat -> Nat {size}
div' zero n = zero
div' (suc m) n = suc (div' (sub m n) n)
-- one can use sized types as if they were not sized
-- sizes default to ∞
add : Nat -> Nat -> Nat
add (zero ) n = n
add (suc m) n = suc (add m n)
nisse : {i : Size} -> Nat {i} -> Nat {i}
nisse zero = zero
nisse (suc zero) = suc zero
nisse (suc (suc n)) = suc zero
{- Agda complains about duplicate binding
NatInfty = Nat {∞}
{-# BUILTIN NATURAL NatInfty #-}
{-# BUILTIN PLUS add #-}
-}
| {
"alphanum_fraction": 0.5784518828,
"avg_line_length": 22.2325581395,
"ext": "agda",
"hexsha": "a97d74cbb50d2bad6a114183838aa4c3f5549b4d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "examples/Termination/Sized/SizedNat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "examples/Termination/Sized/SizedNat.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "examples/Termination/Sized/SizedNat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 330,
"size": 956
} |
module _ where
open import Common.Prelude
open import Common.Equality
primitive
primForce : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) → (∀ x → B x) → B x
primForceLemma : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) (f : ∀ x → B x) → primForce x f ≡ f x
force = primForce
forceLemma = primForceLemma
seq : ∀ {a b} {A : Set a} {B : Set b} → A → B → B
seq x y = force x λ _ → y
foo : (a b : Nat) → seq a b ≡ b
foo zero _ = refl
foo (suc n) _ = refl
seqLit : (n : Nat) → seq "literal" n ≡ n
seqLit n = refl
seqType : (n : Nat) → seq Nat n ≡ n
seqType n = refl
seqPi : {A B : Set} {n : Nat} → seq (A → B) n ≡ n
seqPi = refl
seqLam : {n : Nat} → seq (λ (x : Nat) → x) n ≡ n
seqLam = refl
seqLemma : (a b : Nat) → seq a b ≡ b
seqLemma a b = forceLemma a _
evalLemma : (n : Nat) → seqLemma (suc n) n ≡ refl
evalLemma n = refl
infixr 0 _$!_
_$!_ : ∀ {a b} {A : Set a} {B : A → Set b} → (∀ x → B x) → ∀ x → B x
f $! x = force x f
-- Without seq, this would be exponential --
pow2 : Nat → Nat → Nat
pow2 zero acc = acc
pow2 (suc n) acc = pow2 n $! acc + acc
lem : pow2 32 1 ≡ 4294967296
lem = refl
| {
"alphanum_fraction": 0.5428571429,
"avg_line_length": 21.9607843137,
"ext": "agda",
"hexsha": "bba4b1f53fa855390e5d38ed47e35203dccf52ef",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/PrimSeq.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/PrimSeq.agda",
"max_line_length": 100,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/PrimSeq.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 471,
"size": 1120
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Foundations.HLevels
module Cubical.Algebra.Semigroup.Construct.Right {ℓ} (Aˢ : hSet ℓ) where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Semigroup
import Cubical.Algebra.Magma.Construct.Right Aˢ as RMagma
open RMagma public hiding (Right-isMagma; RightMagma)
private
A = ⟨ Aˢ ⟩
isSetA = Aˢ .snd
▸-assoc : Associative _▸_
▸-assoc _ _ _ = refl
Right-isSemigroup : IsSemigroup A _▸_
Right-isSemigroup = record
{ isMagma = RMagma.Right-isMagma
; assoc = ▸-assoc
}
RightSemigroup : Semigroup ℓ
RightSemigroup = record { isSemigroup = Right-isSemigroup }
| {
"alphanum_fraction": 0.7460770328,
"avg_line_length": 23.3666666667,
"ext": "agda",
"hexsha": "a311c5662eabed22b2e8d086eb330c589c7e5dee",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Semigroup/Construct/Right.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Semigroup/Construct/Right.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Semigroup/Construct/Right.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 225,
"size": 701
} |
module _ where
abstract
data Nat : Set where
Zero : Nat
Succ : Nat → Nat
countDown : Nat → Nat
countDown x with x
... | Zero = Zero
... | Succ n = countDown n
| {
"alphanum_fraction": 0.5801104972,
"avg_line_length": 15.0833333333,
"ext": "agda",
"hexsha": "30ed477ee6026383b9a780150bb09e59ed98b025",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4833.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4833.agda",
"max_line_length": 28,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4833.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 58,
"size": 181
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Sigma
open import lib.types.Group
open import lib.types.CommutingSquare
open import lib.groups.Homomorphism
open import lib.groups.Isomorphism
module lib.groups.CommutingSquare where
-- A new type to keep the parameters.
record CommSquareᴳ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
(φ₀ : G₀ →ᴳ H₀) (φ₁ : G₁ →ᴳ H₁) (ξG : G₀ →ᴳ G₁) (ξH : H₀ →ᴳ H₁)
: Type (lmax (lmax i₀ i₁) (lmax j₀ j₁)) where
constructor comm-sqrᴳ
field
commutesᴳ : ∀ g₀ → GroupHom.f (ξH ∘ᴳ φ₀) g₀ == GroupHom.f (φ₁ ∘ᴳ ξG) g₀
infixr 0 _□$ᴳ_
_□$ᴳ_ = CommSquareᴳ.commutesᴳ
is-csᴳ-equiv : ∀ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
{φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁}
→ CommSquareᴳ φ₀ φ₁ ξG ξH → Type (lmax (lmax i₀ i₁) (lmax j₀ j₁))
is-csᴳ-equiv {ξG = ξG} {ξH} _ = is-equiv (GroupHom.f ξG) × is-equiv (GroupHom.f ξH)
CommSquareEquivᴳ : ∀ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
(φ₀ : G₀ →ᴳ H₀) (φ₁ : G₁ →ᴳ H₁) (ξG : G₀ →ᴳ G₁) (ξH : H₀ →ᴳ H₁)
→ Type (lmax (lmax i₀ i₁) (lmax j₀ j₁))
CommSquareEquivᴳ φ₀ φ₁ ξG ξH = Σ (CommSquareᴳ φ₀ φ₁ ξG ξH) is-csᴳ-equiv
abstract
CommSquareᴳ-∘v : ∀ {i₀ i₁ i₂ j₀ j₁ j₂}
{G₀ : Group i₀} {G₁ : Group i₁} {G₂ : Group i₂}
{H₀ : Group j₀} {H₁ : Group j₁} {H₂ : Group j₂}
{φ : G₀ →ᴳ H₀} {ψ : G₁ →ᴳ H₁} {χ : G₂ →ᴳ H₂}
{ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁}
{μA : G₁ →ᴳ G₂} {μB : H₁ →ᴳ H₂}
→ CommSquareᴳ ψ χ μA μB
→ CommSquareᴳ φ ψ ξG ξH
→ CommSquareᴳ φ χ (μA ∘ᴳ ξG) (μB ∘ᴳ ξH)
CommSquareᴳ-∘v {ξG = ξG} {μB = μB} (comm-sqrᴳ □₁₂) (comm-sqrᴳ □₀₁) =
comm-sqrᴳ λ g₀ → ap (GroupHom.f μB) (□₀₁ g₀) ∙ □₁₂ (GroupHom.f ξG g₀)
CommSquareEquivᴳ-inverse-v : ∀ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
{φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁}
→ (cse : CommSquareEquivᴳ φ₀ φ₁ ξG ξH)
→ CommSquareEquivᴳ φ₁ φ₀ (GroupIso.g-hom (ξG , fst (snd cse))) (GroupIso.g-hom (ξH , snd (snd cse)))
CommSquareEquivᴳ-inverse-v (comm-sqrᴳ cs , ise)
with CommSquareEquiv-inverse-v (comm-sqr cs , ise)
... | (comm-sqr cs' , ise') = cs'' , ise' where abstract cs'' = comm-sqrᴳ cs'
CommSquareᴳ-inverse-v : ∀ {i₀ i₁ j₀ j₁}
{G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁}
{φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁}
→ CommSquareᴳ φ₀ φ₁ ξG ξH
→ (ξG-ise : is-equiv (GroupHom.f ξG)) (ξH-ise : is-equiv (GroupHom.f ξH))
→ CommSquareᴳ φ₁ φ₀ (GroupIso.g-hom (ξG , ξG-ise)) (GroupIso.g-hom (ξH , ξH-ise))
CommSquareᴳ-inverse-v cs ξG-ise ξH-ise = fst (CommSquareEquivᴳ-inverse-v (cs , ξG-ise , ξH-ise))
-- basic facts nicely represented in commuting squares
inv-hom-natural-comm-sqr : ∀ {i j} (G : AbGroup i) (H : AbGroup j)
(φ : AbGroup.grp G →ᴳ AbGroup.grp H)
→ CommSquareᴳ φ φ (inv-hom G) (inv-hom H)
inv-hom-natural-comm-sqr _ _ φ = comm-sqrᴳ λ g → ! (GroupHom.pres-inv φ g)
| {
"alphanum_fraction": 0.6094830425,
"avg_line_length": 42.1805555556,
"ext": "agda",
"hexsha": "5ea33d09d727cb53460e9178794fe92df7e84cce",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/CommutingSquare.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/CommutingSquare.agda",
"max_line_length": 102,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/CommutingSquare.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 1591,
"size": 3037
} |
-- this is effectively a CM make file. it just includes all the files that
-- exist in the directory in the right order so that one can check that
-- everything compiles cleanly and has no unfilled holes
-- data structures
open import List
open import Nat
open import Prelude
-- basic stuff: core definitions, etc
open import core
open import checks
open import judgemental-erase
open import judgemental-inconsistency
open import moveerase
open import examples
open import structural
-- first wave theorems
open import sensibility
open import aasubsume-min
open import determinism
-- second wave theorems (checksums)
open import reachability
open import constructability
| {
"alphanum_fraction": 0.8103703704,
"avg_line_length": 25,
"ext": "agda",
"hexsha": "2a0155229cb5bc93189eb0ad16b24d6c815fc662",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-07-03T03:45:07.000Z",
"max_forks_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/agda-popl17",
"max_forks_repo_path": "all.agda",
"max_issues_count": 37,
"max_issues_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_issues_repo_issues_event_max_datetime": "2016-11-09T18:13:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-07-07T16:23:11.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/agda-popl17",
"max_issues_repo_path": "all.agda",
"max_line_length": 74,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/agda-popl17",
"max_stars_repo_path": "all.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-11T12:30:50.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-01T22:44:11.000Z",
"num_tokens": 151,
"size": 675
} |
module consoleExamples.passwordCheckSimple where
open import ConsoleLib
open import Data.Bool.Base
open import Data.Bool
open import Data.String renaming (_==_ to _==str_)
open import SizedIO.Base
main : ConsoleProg
main = run (GetLine >>= λ s →
if s ==str "passwd"
then WriteString "Success"
else WriteString "Error")
| {
"alphanum_fraction": 0.6888888889,
"avg_line_length": 25.7142857143,
"ext": "agda",
"hexsha": "56cadb31d9b46cccf34c8043eb232ea6625bd3bf",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/consoleExamples/passwordCheckSimple.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/consoleExamples/passwordCheckSimple.agda",
"max_line_length": 50,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/consoleExamples/passwordCheckSimple.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 84,
"size": 360
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Universe where
open import Cubical.Data.Universe.Base public
open import Cubical.Data.Universe.Properties public
| {
"alphanum_fraction": 0.7857142857,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "185cd6517d16c95343a080b3b4818b9a86429c7d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/Universe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/Universe.agda",
"max_line_length": 51,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/Universe.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 37,
"size": 168
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Bicategory using (Bicategory)
-- A Pseudofunctor is a homomorphism of Bicategories
-- Follow Bénabou's definition, which is basically that of a Functor
-- Note that what is in nLab is an "exploded" version of the simpler version below
module Categories.Pseudofunctor where
open import Level
open import Data.Product using (_,_)
import Categories.Category as Category
open Category.Category using (Obj; module Commutation)
open Category using (Category; _[_,_])
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Category.Product using (_⁂_)
open import Categories.NaturalTransformation using (NaturalTransformation)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism; _≃_)
open import Categories.Category.Instance.One using (shift)
open NaturalIsomorphism using (F⇒G; F⇐G)
record Pseudofunctor {o ℓ e t o′ ℓ′ e′ t′ : Level} (C : Bicategory o ℓ e t) (D : Bicategory o′ ℓ′ e′ t′)
: Set (o ⊔ ℓ ⊔ e ⊔ t ⊔ o′ ⊔ ℓ′ ⊔ e′ ⊔ t′) where
private
module C = Bicategory C
module D = Bicategory D
field
P₀ : C.Obj → D.Obj
P₁ : {x y : C.Obj} → Functor (C.hom x y) (D.hom (P₀ x) (P₀ y))
-- For maximal generality, shift the levels of One. P preserves id
P-identity : {A : C.Obj} → D.id {P₀ A} ∘F shift o′ ℓ′ e′ ≃ P₁ ∘F (C.id {A})
-- P preserves composition
P-homomorphism : {x y z : C.Obj} → D.⊚ ∘F (P₁ ⁂ P₁) ≃ P₁ ∘F C.⊚ {x} {y} {z}
-- P preserves ≃
module unitˡ {A} = NaturalTransformation (F⇒G (P-identity {A}))
module unitʳ {A} = NaturalTransformation (F⇐G (P-identity {A}))
module Hom {x} {y} {z} = NaturalTransformation (F⇒G (P-homomorphism {x} {y} {z}))
-- For notational convenience, shorten some functor applications
private
F₀ = λ {x y} X → Functor.F₀ (P₁ {x} {y}) X
field
unitaryˡ : {x y : C.Obj} →
let open Commutation (D.hom (P₀ x) (P₀ y)) in
{f : Obj (C.hom x y)} →
[ D.id₁ D.⊚₀ (F₀ f) ⇒ F₀ f ]⟨
unitˡ.η _ D.⊚₁ D.id₂ ⇒⟨ F₀ C.id₁ D.⊚₀ F₀ f ⟩
Hom.η ( C.id₁ , f) ⇒⟨ F₀ (C.id₁ C.⊚₀ f) ⟩
Functor.F₁ P₁ C.unitorˡ.from
≈ D.unitorˡ.from
⟩
unitaryʳ : {x y : C.Obj} →
let open Commutation (D.hom (P₀ x) (P₀ y)) in
{f : Obj (C.hom x y)} →
[ (F₀ f) D.⊚₀ D.id₁ ⇒ F₀ f ]⟨
D.id₂ D.⊚₁ unitˡ.η _ ⇒⟨ F₀ f D.⊚₀ F₀ C.id₁ ⟩
Hom.η ( f , C.id₁ ) ⇒⟨ F₀ (f C.⊚₀ C.id₁) ⟩
Functor.F₁ P₁ (C.unitorʳ.from)
≈ D.unitorʳ.from
⟩
assoc : {x y z w : C.Obj} →
let open Commutation (D.hom (P₀ x) (P₀ w)) in
{f : Obj (C.hom x y)} {g : Obj (C.hom y z)} {h : Obj (C.hom z w)} →
[ (F₀ h D.⊚₀ F₀ g) D.⊚₀ F₀ f ⇒ F₀ (h C.⊚₀ (g C.⊚₀ f)) ]⟨
Hom.η (h , g) D.⊚₁ D.id₂ ⇒⟨ F₀ (h C.⊚₀ g) D.⊚₀ F₀ f ⟩
Hom.η (_ , f) ⇒⟨ F₀ ((h C.⊚₀ g) C.⊚₀ f) ⟩
Functor.F₁ P₁ C.associator.from
≈ D.associator.from ⇒⟨ F₀ h D.⊚₀ (F₀ g D.⊚₀ F₀ f) ⟩
D.id₂ D.⊚₁ Hom.η (g , f) ⇒⟨ F₀ h D.⊚₀ F₀ (g C.⊚₀ f) ⟩
Hom.η (h , _)
⟩
| {
"alphanum_fraction": 0.53125,
"avg_line_length": 43.0769230769,
"ext": "agda",
"hexsha": "69b7e3e08a571be3889966c84b089a65ce9ea403",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Pseudofunctor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Pseudofunctor.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Pseudofunctor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1274,
"size": 3360
} |
module Tactic.Reflection.Replace where
open import Prelude
open import Container.Traversable
open import Tactic.Reflection
open import Tactic.Reflection.Equality
{-# TERMINATING #-}
_r[_/_] : Term → Term → Term → Term
p r[ r / l ] =
ifYes p == l
then r
else case p of λ
{ (var x args) → var x $ args r₂[ r / l ]
; (con c args) → con c $ args r₂[ r / l ]
; (def f args) → def f $ args r₂[ r / l ]
; (lam v t) → lam v $ t r₁[ weaken 1 r / weaken 1 l ] -- lam v <$> t r₁[ weaken 1 r / weaken 1 l ]
; (pat-lam cs args) →
let w = length args in
pat-lam (replaceClause (weaken w l) (weaken w r) <$> cs) $ args r₂[ r / l ]
; (pi a b) → pi (a r₁[ r / l ]) (b r₁[ weaken 1 r / weaken 1 l ])
; (agda-sort s) → agda-sort $ replaceSort l r s
; (lit l) → lit l
; (meta x args) → meta x $ args r₂[ r / l ]
; unknown → unknown
}
where
replaceClause : Term → Term → Clause → Clause
replaceClause l r (clause pats x) = clause pats $ x r[ r / l ]
replaceClause l r (absurd-clause pats) = absurd-clause pats
replaceSort : Term → Term → Sort → Sort
replaceSort l r (set t) = set $ t r[ r / l ]
replaceSort l r (lit n) = lit n
replaceSort l r unknown = unknown
_r₁[_/_] : {T₀ : Set → Set} {{_ : Traversable T₀}} → T₀ Term → Term → Term → T₀ Term
p r₁[ r / l ] = _r[ r / l ] <$> p
_r₂[_/_] : {T₀ T₁ : Set → Set} {{_ : Traversable T₀}} {{_ : Traversable T₁}} →
T₁ (T₀ Term) → Term → Term → T₁ (T₀ Term)
p r₂[ r / l ] = fmap _r[ r / l ] <$> p
_R[_/_] : List (Arg Type) → Type → Type → List (Arg Type)
Γ R[ L / R ] = go Γ (strengthen 1 L) (strengthen 1 R) where
go : List (Arg Type) → Maybe Term → Maybe Term → List (Arg Type)
go (γ ∷ Γ) (just L) (just R) = (caseF γ of _r[ L / R ]) ∷ go Γ (strengthen 1 L) (strengthen 1 R)
go Γ _ _ = Γ
| {
"alphanum_fraction": 0.5195729537,
"avg_line_length": 38.568627451,
"ext": "agda",
"hexsha": "8f341a3b2856765eedd7c53478aef2eeb5478440",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Tactic/Reflection/Replace.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Tactic/Reflection/Replace.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Tactic/Reflection/Replace.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 691,
"size": 1967
} |
module Numeral.Natural.Relation.Order.Decidable where
open import Functional
open import Logic.IntroInstances
open import Logic.Propositional.Theorems
open import Numeral.Natural
open import Numeral.Natural.Oper.Comparisons
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Function.Domain
open import Type.Properties.Decidable
instance
[≡]-decider : Decider(2)(_≡_)(_≡?_)
[≡]-decider {𝟎} {𝟎} = true [≡]-intro
[≡]-decider {𝟎} {𝐒 y} = false \()
[≡]-decider {𝐒 x}{𝟎} = false \()
[≡]-decider {𝐒 x}{𝐒 y} = step{f = id} (true ∘ [≡]-with(𝐒)) (false ∘ contrapositiveᵣ (injective(𝐒))) ([≡]-decider {x}{y})
instance
[≤]-decider : Decider(2)(_≤_)(_≤?_)
[≤]-decider {𝟎} {𝟎} = true [≤]-minimum
[≤]-decider {𝟎} {𝐒 y} = true [≤]-minimum
[≤]-decider {𝐒 x} {𝟎} = false \()
[≤]-decider {𝐒 x} {𝐒 y} = step{f = id} (true ∘ \p → [≤]-with-[𝐒] ⦃ p ⦄) (false ∘ contrapositiveᵣ [≤]-without-[𝐒]) ([≤]-decider {x}{y})
[<]-decider : Decider(2)(_<_)(_<?_)
[<]-decider {𝟎} {𝟎} = false (λ ())
[<]-decider {𝟎} {𝐒 y} = true (succ min)
[<]-decider {𝐒 x} {𝟎} = false (λ ())
[<]-decider {𝐒 x} {𝐒 y} = step{f = id} (true ∘ succ) (false ∘ contrapositiveᵣ [≤]-without-[𝐒]) ([<]-decider {x} {y})
| {
"alphanum_fraction": 0.6289726534,
"avg_line_length": 38.6571428571,
"ext": "agda",
"hexsha": "84dadb439550be5567f1b183706c0bf244ad5d0a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Relation/Order/Decidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Relation/Order/Decidable.agda",
"max_line_length": 136,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Relation/Order/Decidable.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 592,
"size": 1353
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Numbers.Naturals.Order.WellFounded
open import Numbers.Naturals.Order.Lemmas
open import Numbers.Integers.Definition
open import Numbers.Integers.Integers
open import Numbers.Integers.Order
open import Groups.Groups
open import Groups.Definition
open import Rings.Definition
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Fields.Fields
open import Numbers.Primes.PrimeNumbers
open import Setoids.Setoids
open import Functions.Definition
open import Sets.EquivalenceRelations
open import Numbers.Rationals.Definition
open import Semirings.Definition
open import Orders.Total.Definition
open import Orders.WellFounded.Induction
open import Setoids.Orders.Total.Definition
module Numbers.Rationals.Lemmas where
open import Semirings.Lemmas ℕSemiring
open PartiallyOrderedRing ℤPOrderedRing
open import Rings.Orders.Total.Lemmas ℤOrderedRing
open import Rings.Orders.Total.AbsoluteValue ℤOrderedRing
open SetoidTotalOrder (totalOrderToSetoidTotalOrder ℤOrder)
evenOrOdd : (a : ℕ) → (Sg ℕ (λ i → i *N 2 ≡ a)) || (Sg ℕ (λ i → succ (i *N 2) ≡ a))
evenOrOdd zero = inl (zero , refl)
evenOrOdd (succ zero) = inr (zero , refl)
evenOrOdd (succ (succ a)) with evenOrOdd a
evenOrOdd (succ (succ a)) | inl (a/2 , even) = inl (succ a/2 , applyEquality (λ i → succ (succ i)) even)
evenOrOdd (succ (succ a)) | inr (a/2-1 , odd) = inr (succ a/2-1 , applyEquality (λ i → succ (succ i)) odd)
parity : (a b : ℕ) → succ (2 *N a) ≡ 2 *N b → False
parity zero (succ b) pr rewrite Semiring.commutative ℕSemiring b (succ (b +N 0)) = bad pr
where
bad : (1 ≡ succ (succ ((b +N 0) +N b))) → False
bad ()
parity (succ a) (succ b) pr rewrite Semiring.commutative ℕSemiring b (succ (b +N 0)) | Semiring.commutative ℕSemiring a (succ (a +N 0)) | Semiring.commutative ℕSemiring (a +N 0) a | Semiring.commutative ℕSemiring (b +N 0) b = parity a b (succInjective (succInjective pr))
sqrt0 : (p : ℕ) → p *N p ≡ 0 → p ≡ 0
sqrt0 zero pr = refl
sqrt0 (succ p) ()
-- So as to give us something easy to induct down, introduce a silly extra variable
evil' : (k : ℕ) → ((a b : ℕ) → (0 <N a) → (pr : k ≡ a +N b) → a *N a ≡ (b *N b) *N 2 → False)
evil' = rec <NWellfounded (λ z → (x x₁ : ℕ) (pr' : 0 <N x) (x₂ : z ≡ x +N x₁) (x₃ : x *N x ≡ (x₁ *N x₁) *N 2) → False) go
where
go : (k : ℕ) (indHyp : (k' : ℕ) (k'<k : k' <N k) (r s : ℕ) (0<r : 0 <N r) (r+s : k' ≡ r +N s) (x₇ : r *N r ≡ (s *N s) *N 2) → False) (a b : ℕ) (0<a : 0 <N a) (a+b : k ≡ a +N b) (pr : a *N a ≡ (b *N b) *N 2) → False
go k indHyp a b 0<a a+b pr = contr
where
open import Semirings.Solver ℕSemiring multiplicationNIsCommutative
aEven : Sg ℕ (λ i → i *N 2 ≡ a)
aEven with evenOrOdd a
aEven | inl x = x
aEven | inr (a/2-1 , odd) rewrite equalityCommutative odd =
-- Derive a pretty mechanical contradiction using the automatic solver.
-- This line looks hellish, but it was almost completely mechanical.
exFalso (parity (a/2-1 +N (a/2-1 *N succ (a/2-1 *N 2))) (b *N b) (transitivity (
-- truly mechanical bit starts here
from (succ (plus (plus (const a/2-1) (times (const a/2-1) (succ (times (const a/2-1) (succ (succ zero)))))) (plus (plus (const a/2-1) (times (const a/2-1) (succ (times (const a/2-1) (succ (succ zero)))))) (times zero (plus (const a/2-1) (times (const a/2-1) (succ (times (const a/2-1) (succ (succ zero))))))))))
to succ (plus (times (const a/2-1) (succ (succ zero))) (times (times (const a/2-1) (succ (succ zero))) (succ (times (const a/2-1) (succ (succ zero))))))
-- truly mechanical bit ends here
by applyEquality (λ i → succ (a/2-1 +N i)) (
-- Grinding out some manipulations
transitivity (equalityCommutative (Semiring.+Associative ℕSemiring a/2-1 _ _)) (applyEquality (a/2-1 +N_) (transitivity (Semiring.commutative ℕSemiring (a/2-1 *N (a/2-1 +N a/2-1)) _) (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring a/2-1 _ _)) (applyEquality (a/2-1 +N_) (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring a/2-1 _ _)) (applyEquality (a/2-1 +N_) (transitivity (equalityCommutative (Semiring.+DistributesOver* ℕSemiring a/2-1 _ _)) (applyEquality (a/2-1 *N_) (equalityCommutative (Semiring.+Associative ℕSemiring a/2-1 _ _))))))))))
)) (transitivity pr (multiplicationNIsCommutative (b *N b) 2))))
next : (underlying aEven *N 2) *N (underlying aEven *N 2) ≡ (b *N b) *N 2
next with aEven
... | a/2 , even rewrite even = pr
next2 : (underlying aEven *N 2) *N underlying aEven ≡ b *N b
next2 = productCancelsRight 2 _ _ (le 1 refl) (transitivity (equalityCommutative (Semiring.*Associative ℕSemiring (underlying aEven *N 2) _ _)) next)
next3 : b *N b ≡ (underlying aEven *N underlying aEven) *N 2
next3 = equalityCommutative (transitivity (transitivity (equalityCommutative (Semiring.*Associative ℕSemiring (underlying aEven) _ _)) (multiplicationNIsCommutative (underlying aEven) _)) next2)
halveDecreased : underlying aEven <N a
halveDecreased with aEven
halveDecreased | zero , even rewrite equalityCommutative even = exFalso (TotalOrder.irreflexive ℕTotalOrder 0<a)
halveDecreased | succ a/2 , even = le a/2 (transitivity (applyEquality succ (transitivity (Semiring.commutative ℕSemiring a/2 _) (applyEquality succ (transitivity (doubleIsAddTwo a/2) (multiplicationNIsCommutative 2 a/2))))) even)
reduced : b +N underlying aEven <N k
reduced with lessRespectsAddition b halveDecreased
... | bl rewrite a+b = identityOfIndiscernablesLeft _<N_ bl (Semiring.commutative ℕSemiring _ b)
0<b : 0 <N b
0<b with TotalOrder.totality ℕTotalOrder 0 b
0<b | inl (inl 0<b) = 0<b
0<b | inl (inr ())
0<b | inr 0=b rewrite equalityCommutative 0=b = exFalso (TotalOrder.irreflexive ℕTotalOrder {0} (identityOfIndiscernablesRight _<N_ 0<a (sqrt0 a pr)))
contr : False
contr = indHyp (b +N underlying aEven) reduced b (underlying aEven) 0<b refl next3
evil : (a b : ℕ) → (0 <N a) → a *N a ≡ (b *N b) *N 2 → False
evil a b 0<a = evil' (a +N b) a b 0<a refl
absNonneg : (x : ℕ) → abs (nonneg x) ≡ nonneg x
absNonneg x with totality (nonneg 0) (nonneg x)
absNonneg x | inl (inl 0<x) = refl
absNonneg x | inr 0=x = refl
absNegsucc : (x : ℕ) → abs (negSucc x) ≡ nonneg (succ x)
absNegsucc x with totality (nonneg 0) (negSucc x)
absNegsucc x | inl (inr _) = refl
toNats : (numerator denominator : ℤ) → .(denominator ≡ nonneg 0 → False) → (abs numerator) *Z (abs numerator) ≡ ((abs denominator) *Z (abs denominator)) *Z nonneg 2 → Sg (ℕ && ℕ) (λ nats → ((_&&_.fst nats *N _&&_.fst nats) ≡ (_&&_.snd nats *N _&&_.snd nats) *N 2) && (_&&_.snd nats ≡ 0 → False))
toNats (nonneg num) (nonneg 0) pr _ = exFalso (pr refl)
toNats (nonneg num) (nonneg (succ denom)) _ pr = (num ,, (succ denom)) , (nonnegInjective (transitivity (transitivity (equalityCommutative (absNonneg (num *N num))) (absRespectsTimes (nonneg num) (nonneg num))) pr) ,, λ ())
toNats (nonneg num) (negSucc denom) _ pr = (num ,, succ denom) , (nonnegInjective (transitivity (transitivity (equalityCommutative (absNonneg (num *N num))) (absRespectsTimes (nonneg num) (nonneg num))) pr) ,, λ ())
toNats (negSucc num) (nonneg (succ denom)) _ pr = (succ num ,, succ denom) , (nonnegInjective pr ,, λ ())
toNats (negSucc num) (negSucc denom) _ pr = (succ num ,, succ denom) , (nonnegInjective pr ,, λ ())
sqrt2Irrational : (a : ℚ) → (a *Q a) =Q (injectionQ (nonneg 2)) → False
sqrt2Irrational (record { num = numerator ; denom = denominator ; denomNonzero = denom!=0 }) pr = bad
where
-- We have in hand `pr`, which is the following (almost by definition):
pr' : (numerator *Z numerator) ≡ (denominator *Z denominator) *Z nonneg 2
pr' = transitivity (equalityCommutative (transitivity (Ring.*Commutative ℤRing) (Ring.identIsIdent ℤRing))) pr
-- Move into the naturals so that we can do nice divisibility things.
lemma1 : abs ((denominator *Z denominator) *Z nonneg 2) ≡ (abs denominator *Z abs denominator) *Z nonneg 2
lemma1 = transitivity (absRespectsTimes (denominator *Z denominator) (nonneg 2)) (applyEquality (_*Z nonneg 2) (absRespectsTimes denominator denominator))
amenableToNaturals : (abs numerator) *Z (abs numerator) ≡ ((abs denominator) *Z (abs denominator)) *Z nonneg 2
amenableToNaturals = transitivity (equalityCommutative (absRespectsTimes numerator numerator)) (transitivity (applyEquality abs pr') lemma1)
naturalsStatement : Sg (ℕ && ℕ) (λ nats → ((_&&_.fst nats *N _&&_.fst nats) ≡ (_&&_.snd nats *N _&&_.snd nats) *N 2) && (_&&_.snd nats ≡ 0 → False))
naturalsStatement = toNats numerator denominator denom!=0 amenableToNaturals
bad : False
bad with naturalsStatement
bad | (num ,, 0) , (pr1 ,, pr2) = exFalso (pr2 refl)
bad | (num ,, succ denom) , (pr1 ,, pr2) = evil num (succ denom) 0<num pr1
where
0<num : 0 <N num
0<num with TotalOrder.totality ℕTotalOrder 0 num
0<num | inl (inl 0<num) = 0<num
0<num | inr 0=num rewrite equalityCommutative 0=num = exFalso (naughtE pr1)
| {
"alphanum_fraction": 0.6646814846,
"avg_line_length": 62.6866666667,
"ext": "agda",
"hexsha": "cb2c43edbf53a1d31ee371a030fefb8b7d1a5f7e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/Rationals/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/Rationals/Lemmas.agda",
"max_line_length": 596,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/Rationals/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 3225,
"size": 9403
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.DStructures.Equivalences.PeifferGraphS2G where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Function
open import Cubical.Foundations.Structure
open import Cubical.Functions.FunExtEquiv
open import Cubical.Homotopy.Base
open import Cubical.Data.Sigma
open import Cubical.Data.Unit
open import Cubical.Relation.Binary
open import Cubical.Structures.Subtype
open import Cubical.Algebra.Group
open import Cubical.Structures.LeftAction
open import Cubical.Algebra.Group.Semidirect
open import Cubical.DStructures.Base
open import Cubical.DStructures.Meta.Properties
open import Cubical.DStructures.Meta.Isomorphism
open import Cubical.DStructures.Structures.Constant
open import Cubical.DStructures.Structures.Type
open import Cubical.DStructures.Structures.Group
open import Cubical.DStructures.Structures.Action
open import Cubical.DStructures.Structures.XModule
open import Cubical.DStructures.Structures.ReflGraph
open import Cubical.DStructures.Structures.VertComp
open import Cubical.DStructures.Structures.PeifferGraph
open import Cubical.DStructures.Structures.Strict2Group
open import Cubical.DStructures.Equivalences.GroupSplitEpiAction
open import Cubical.DStructures.Equivalences.PreXModReflGraph
private
variable
ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓA' ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓC ℓ≅C ℓ≅ᴰ ℓ≅ᴰ' ℓ≅B' : Level
open Kernel
open GroupHom -- such .fun!
open GroupLemmas
open MorphismLemmas
open ActionLemmas
module _ (ℓ ℓ' : Level) where
ℓℓ' = ℓ-max ℓ ℓ'
𝒮ᴰ-♭PIso-PeifferGraph-Strict2Group : 𝒮ᴰ-♭PIso (idfun (ReflGraph ℓ ℓℓ')) (𝒮ᴰ-ReflGraph\Peiffer ℓ ℓℓ') (𝒮ᴰ-Strict2Group ℓ ℓℓ')
RelIso.fun (𝒮ᴰ-♭PIso-PeifferGraph-Strict2Group 𝒢) isPeifferGraph = 𝒱
where
open ReflGraphNotation 𝒢
open ReflGraphLemmas 𝒢
open VertComp
_⊙_ = λ (g f : ⟨ G₁ ⟩) → (g -₁ (𝒾s g)) +₁ f
𝒱 : VertComp 𝒢
vcomp 𝒱 g f _ = g ⊙ f
σ-∘ 𝒱 g f c = r
where
isg = 𝒾s g
abstract
r = s ((g -₁ isg) +₁ f)
≡⟨ (σ .isHom (g -₁ isg) f) ⟩
s (g -₁ isg) +₀ s f
≡⟨ cong (_+₀ s f) (σ-g--isg g) ⟩
0₀ +₀ s f
≡⟨ lId₀ (s f) ⟩
s f ∎
τ-∘ 𝒱 g f c = r
where
isg = 𝒾s g
-isg = -₁ (𝒾s g)
abstract
r = t ((g -₁ isg) +₁ f)
≡⟨ τ .isHom (g -₁ isg) f ⟩
t (g -₁ isg) +₀ t f
≡⟨ cong (_+₀ t f)
(τ .isHom g (-₁ isg)) ⟩
(t g +₀ t -isg) +₀ t f
≡⟨ cong ((t g +₀ t -isg) +₀_)
(sym c) ⟩
(t g +₀ t -isg) +₀ s g
≡⟨ cong (λ z → (t g +₀ z) +₀ s g)
(mapInv τ isg) ⟩
(t g -₀ (t isg)) +₀ s g
≡⟨ cong (λ z → (t g -₀ z) +₀ s g)
(τι-≡-fun (s g)) ⟩
(t g -₀ (s g)) +₀ s g
≡⟨ (sym (assoc₀ (t g) (-₀ s g) (s g))) ∙ (cong (t g +₀_) (lCancel₀ (s g))) ⟩
t g +₀ 0₀
≡⟨ rId₀ (t g) ⟩
t g ∎
isHom-∘ 𝒱 g f c-gf g' f' _ _ = r
where
isg = 𝒾s g
-isg = -₁ (𝒾s g)
isg' = 𝒾s g'
-isg' = -₁ (𝒾s g')
itf = 𝒾t f
-itf = -₁ (𝒾t f)
abstract
r = (g +₁ g') ⊙ (f +₁ f')
≡⟨ assoc₁ ((g +₁ g') -₁ 𝒾s (g +₁ g')) f f' ⟩
(((g +₁ g') -₁ 𝒾s (g +₁ g')) +₁ f) +₁ f'
≡⟨ cong (λ z → (z +₁ f) +₁ f')
(sym (assoc₁ g g' (-₁ (𝒾s (g +₁ g'))))) ⟩
((g +₁ (g' -₁ (𝒾s (g +₁ g')))) +₁ f) +₁ f'
≡⟨ cong (_+₁ f')
(sym (assoc₁ g (g' -₁ (𝒾s (g +₁ g'))) f)) ⟩
(g +₁ ((g' -₁ (𝒾s (g +₁ g'))) +₁ f)) +₁ f'
≡⟨ cong (λ z → (g +₁ z) +₁ f')
((g' -₁ (𝒾s (g +₁ g'))) +₁ f
≡⟨ cong (λ z → (g' -₁ z) +₁ f)
(ι∘σ .isHom g g') ⟩
(g' -₁ (isg +₁ isg')) +₁ f
≡⟨ cong (λ z → (g' +₁ z) +₁ f)
(invDistr G₁ isg isg') ⟩
(g' +₁ (-isg' +₁ -isg)) +₁ f
≡⟨ assoc-c--r- G₁ g' -isg' -isg f ⟩
g' +₁ (-isg' +₁ (-isg +₁ f))
≡⟨ cong (λ z → g' +₁ (-isg' +₁ ((-₁ (𝒾 z)) +₁ f)))
c-gf ⟩
g' +₁ (-isg' +₁ (-itf +₁ f))
≡⟨ isPeifferGraph4 𝒢 isPeifferGraph f g' ⟩
-itf +₁ (f +₁ (g' +₁ -isg'))
≡⟨ cong (λ z → (-₁ (𝒾 z)) +₁ (f +₁ (g' +₁ -isg')))
(sym c-gf) ⟩
-isg +₁ (f +₁ (g' +₁ -isg')) ∎) ⟩
(g +₁ (-isg +₁ (f +₁ (g' +₁ -isg')))) +₁ f'
≡⟨ cong (_+₁ f')
(assoc₁ g -isg (f +₁ (g' -₁ isg'))) ⟩
((g +₁ -isg) +₁ (f +₁ (g' +₁ -isg'))) +₁ f'
≡⟨ cong (_+₁ f') (assoc₁ (g -₁ isg) f (g' -₁ isg')) ⟩
(((g -₁ isg) +₁ f) +₁ (g' -₁ isg')) +₁ f'
≡⟨ sym (assoc₁ ((g -₁ isg) +₁ f) (g' -₁ isg') f') ⟩
((g -₁ isg) +₁ f) +₁ ((g' -₁ isg') +₁ f')
≡⟨ refl ⟩
(g ⊙ f) +₁ (g' ⊙ f') ∎
-- behold! use of symmetry is lurking around the corner
-- (in stark contrast to composability proofs)
assoc-∘ 𝒱 h g f _ _ _ _ = sym r
where
isg = 𝒾s g
ish = 𝒾s h
-ish = -₁ 𝒾s h
abstract
r = (h ⊙ g) ⊙ f
≡⟨ cong (λ z → (((h -₁ ish) +₁ g) -₁ z) +₁ f)
(ι∘σ .isHom (h -₁ ish) g) ⟩
(((h -₁ ish) +₁ g) -₁ (𝒾s (h -₁ ish) +₁ 𝒾s g)) +₁ f
≡⟨ cong (λ z → (((h -₁ ish) +₁ g) -₁ (z +₁ 𝒾s g)) +₁ f)
(ι∘σ .isHom h (-₁ ish)) ⟩
(((h -₁ ish) +₁ g) -₁ ((𝒾s h +₁ (𝒾s -ish)) +₁ 𝒾s g)) +₁ f
≡⟨ cong (λ z → (((h -₁ ish) +₁ g) -₁ ((𝒾s h +₁ z) +₁ 𝒾s g)) +₁ f)
(ισ-ι (s h)) ⟩
(((h -₁ ish) +₁ g) -₁ ((ish -₁ ish) +₁ isg)) +₁ f
≡⟨ cong (λ z → (((h -₁ ish) +₁ g) -₁ z) +₁ f)
(rCancel-lId G₁ ish isg) ⟩
(((h -₁ ish) +₁ g) -₁ isg) +₁ f
≡⟨ (cong (_+₁ f) (sym (assoc₁ (h -₁ ish) g (-₁ isg)))) ∙ (sym (assoc₁ (h -₁ ish) (g -₁ isg) f)) ⟩
h ⊙ (g ⊙ f) ∎
lid-∘ 𝒱 f _ = r
where
itf = 𝒾t f
abstract
r = itf ⊙ f
≡⟨ cong (λ z → (itf -₁ (𝒾 z)) +₁ f) (σι-≡-fun (t f)) ⟩
(itf -₁ itf) +₁ f
≡⟨ rCancel-lId G₁ itf f ⟩
f ∎
rid-∘ 𝒱 g _ = r
where
isg = 𝒾s g
-isg = -₁ (𝒾s g)
abstract
r = g ⊙ isg
≡⟨ sym (assoc₁ g -isg isg) ⟩
g +₁ (-isg +₁ isg)
≡⟨ lCancel-rId G₁ g isg ⟩
g ∎
RelIso.inv (𝒮ᴰ-♭PIso-PeifferGraph-Strict2Group 𝒢) 𝒞 = isPf
where
open ReflGraphNotation 𝒢
open VertComp 𝒞
abstract
isPf : isPeifferGraph 𝒢
isPf f g = ((isg +₁ (f -₁ itf)) +₁ (-isg +₁ g)) +₁ itf
≡⟨ cong (_+₁ itf)
(sym (assoc₁ isg (f -₁ itf) (-isg +₁ g))) ⟩
(isg +₁ ((f -₁ itf) +₁ (-isg +₁ g))) +₁ itf
≡⟨ cong (λ z → (isg +₁ z) +₁ itf)
(sym (assoc₁ f -itf (-isg +₁ g))) ⟩
(isg +₁ (f +₁ (-itf +₁ (-isg +₁ g)))) +₁ itf
≡⟨ cong (λ z → (isg +₁ (f +₁ z)) +₁ itf)
(assoc₁ -itf -isg g) ⟩
(isg +₁ (f +₁ ((-itf -₁ isg) +₁ g))) +₁ itf
≡⟨ cong (λ z → (isg +₁ z) +₁ itf)
(IC5 𝒞 g f) ⟩
(isg +₁ ((-isg +₁ g) +₁ (f -₁ itf))) +₁ itf
≡⟨ cong (_+₁ itf)
(assoc₁ isg (-isg +₁ g) (f -₁ itf)) ⟩
((isg +₁ (-isg +₁ g)) +₁ (f -₁ itf)) +₁ itf
≡⟨ cong (λ z → (z +₁ (f -₁ itf)) +₁ itf)
(assoc₁ isg -isg g ∙ rCancel-lId G₁ isg g) ⟩
(g +₁ (f -₁ itf)) +₁ itf
≡⟨ sym (assoc₁ g (f -₁ itf) itf) ⟩
g +₁ ((f -₁ itf) +₁ itf)
≡⟨ cong (g +₁_) ((sym (assoc₁ _ _ _)) ∙ (lCancel-rId G₁ f itf)) ⟩
g +₁ f ∎
where
isg = 𝒾s g
-isg = -₁ (𝒾s g)
itf = 𝒾t f
-itf = -it f
RelIso.leftInv (𝒮ᴰ-♭PIso-PeifferGraph-Strict2Group _) _ = tt
RelIso.rightInv (𝒮ᴰ-♭PIso-PeifferGraph-Strict2Group _) _ = tt
Iso-PeifferGraph-Strict2Group : Iso (PeifferGraph ℓ ℓℓ') (Strict2Group ℓ ℓℓ')
Iso-PeifferGraph-Strict2Group = 𝒮ᴰ-♭PIso-Over→TotalIso idIso (𝒮ᴰ-ReflGraph\Peiffer ℓ ℓℓ') (𝒮ᴰ-Strict2Group ℓ ℓℓ') 𝒮ᴰ-♭PIso-PeifferGraph-Strict2Group
open import Cubical.DStructures.Equivalences.XModPeifferGraph
Iso-XModule-Strict2Group : Iso (XModule ℓ ℓℓ') (Strict2Group ℓ ℓℓ')
Iso-XModule-Strict2Group = compIso (Iso-XModule-PeifferGraph ℓ ℓℓ') Iso-PeifferGraph-Strict2Group
| {
"alphanum_fraction": 0.4261882279,
"avg_line_length": 40.0462184874,
"ext": "agda",
"hexsha": "f3f08f6b0739a9d8f1583d2f051c0756962de629",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/DStructures/Equivalences/PeifferGraphS2G.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/DStructures/Equivalences/PeifferGraphS2G.agda",
"max_line_length": 150,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/DStructures/Equivalences/PeifferGraphS2G.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3748,
"size": 9531
} |
------------------------------------------------------------------------------
-- Arithmetic properties (added for the Collatz function example)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Collatz.Data.Nat.PropertiesATP where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.Inequalities.PropertiesATP
using ( x≤x
; 2*SSx≥2
)
open import FOTC.Data.Nat.PropertiesATP
using ( *-N
; *-rightZero
; *-rightIdentity
; x∸x≡0
; +-rightIdentity
; +-comm
; +-N
; xy≡0→x≡0∨y≡0
; Sx≢x
; xy≡1→x≡1
; 0∸x
; S∸S
)
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Program.Collatz.Data.Nat
------------------------------------------------------------------------------
^-N : ∀ {m n} → N m → N n → N (m ^ n)
^-N {m} Nm nzero = prf
where postulate prf : N (m ^ zero)
{-# ATP prove prf #-}
^-N {m} Nm (nsucc {n} Nn) = prf (^-N Nm Nn)
where postulate prf : N (m ^ n) → N (m ^ succ₁ n)
{-# ATP prove prf *-N #-}
div-2x-2≡x : ∀ {n} → N n → div (2' * n) 2' ≡ n
div-2x-2≡x nzero = prf
where postulate prf : div (2' * zero) 2' ≡ zero
{-# ATP prove prf *-rightZero #-}
div-2x-2≡x (nsucc nzero) = prf
where postulate prf : div (2' * (succ₁ zero)) 2' ≡ succ₁ zero
{-# ATP prove prf *-rightIdentity x≤x x∸x≡0 #-}
div-2x-2≡x (nsucc (nsucc {n} Nn)) = prf (div-2x-2≡x (nsucc Nn))
where postulate prf : div (2' * succ₁ n) 2' ≡ succ₁ n →
div (2' * (succ₁ (succ₁ n))) 2' ≡ succ₁ (succ₁ n)
{-# ATP prove prf 2*SSx≥2 +-rightIdentity +-comm +-N #-}
postulate div-2^[x+1]-2≡2^x : ∀ {n} → N n → div (2' ^ succ₁ n) 2' ≡ 2' ^ n
{-# ATP prove div-2^[x+1]-2≡2^x ^-N div-2x-2≡x #-}
+∸2 : ∀ {n} → N n → n ≢ zero → n ≢ 1' → n ≡ succ₁ (succ₁ (n ∸ 2'))
+∸2 nzero n≢0 n≢1 = ⊥-elim (n≢0 refl)
+∸2 (nsucc nzero) n≢0 n≢1 = ⊥-elim (n≢1 refl)
+∸2 (nsucc (nsucc {n} Nn)) n≢0 n≢1 = prf
where
-- TODO (06 December 2012). We do not use the ATPs because we do not
-- how to erase a term.
--
-- See the interactive proof.
postulate prf : succ₁ (succ₁ n) ≡ succ₁ (succ₁ (succ₁ (succ₁ n) ∸ 2'))
-- {-# ATP prove prf S∸S #-}
2^x≢0 : ∀ {n} → N n → 2' ^ n ≢ zero
2^x≢0 nzero h = ⊥-elim (0≢S (trans (sym h) (^-0 2')))
2^x≢0 (nsucc {n} Nn) h = prf (2^x≢0 Nn)
where postulate prf : 2' ^ n ≢ zero → ⊥
{-# ATP prove prf xy≡0→x≡0∨y≡0 ^-N #-}
postulate 2^[x+1]≢1 : ∀ {n} → N n → 2' ^ succ₁ n ≢ 1'
{-# ATP prove 2^[x+1]≢1 Sx≢x xy≡1→x≡1 ^-N #-}
Sx-Even→x-Odd : ∀ {n} → N n → Even (succ₁ n) → Odd n
Sx-Even→x-Odd nzero h = ⊥-elim prf
where postulate prf : ⊥
{-# ATP prove prf #-}
Sx-Even→x-Odd (nsucc {n} Nn) h = prf
where postulate prf : odd (succ₁ n) ≡ true
{-# ATP prove prf #-}
Sx-Odd→x-Even : ∀ {n} → N n → Odd (succ₁ n) → Even n
Sx-Odd→x-Even nzero _ = even-0
Sx-Odd→x-Even (nsucc {n} Nn) h = trans (sym (odd-S (succ₁ n))) h
postulate 2-Even : Even 2'
{-# ATP prove 2-Even #-}
∸-Even : ∀ {m n} → N m → N n → Even m → Even n → Even (m ∸ n)
∸-Odd : ∀ {m n} → N m → N n → Odd m → Odd n → Even (m ∸ n)
∸-Even {m} Nm nzero h₁ _ = subst Even (sym (∸-x0 m)) h₁
∸-Even nzero (nsucc {n} Nn) h₁ _ = subst Even (sym (0∸x (nsucc Nn))) h₁
∸-Even (nsucc {m} Nm) (nsucc {n} Nn) h₁ h₂ = prf
where postulate prf : Even (succ₁ m ∸ succ₁ n)
{-# ATP prove prf ∸-Odd Sx-Even→x-Odd S∸S #-}
∸-Odd nzero Nn h₁ _ = ⊥-elim (t≢f (trans (sym h₁) odd-0))
∸-Odd (nsucc Nm) nzero _ h₂ = ⊥-elim (t≢f (trans (sym h₂) odd-0))
∸-Odd (nsucc {m} Nm) (nsucc {n} Nn) h₁ h₂ = prf
where postulate prf : Even (succ₁ m ∸ succ₁ n)
{-# ATP prove prf ∸-Even Sx-Odd→x-Even S∸S #-}
x-Even→SSx-Even : ∀ {n} → N n → Even n → Even (succ₁ (succ₁ n))
x-Even→SSx-Even nzero h = prf
where postulate prf : Even (succ₁ (succ₁ zero))
{-# ATP prove prf #-}
x-Even→SSx-Even (nsucc {n} Nn) h = prf
where postulate prf : Even (succ₁ (succ₁ (succ₁ n)))
{-# ATP prove prf #-}
x+x-Even : ∀ {n} → N n → Even (n + n)
x+x-Even nzero = prf
where postulate prf : even (zero + zero) ≡ true
{-# ATP prove prf #-}
x+x-Even (nsucc {n} Nn) = prf (x+x-Even Nn)
where postulate prf : Even (n + n) → Even (succ₁ n + succ₁ n)
{-# ATP prove prf x-Even→SSx-Even +-N +-comm #-}
2x-Even : ∀ {n} → N n → Even (2' * n)
2x-Even nzero = prf
where postulate prf : Even (2' * zero)
{-# ATP prove prf #-}
2x-Even (nsucc {n} Nn) = prf
where
postulate prf : Even (2' * succ₁ n)
{-# ATP prove prf x-Even→SSx-Even x+x-Even +-N +-comm +-rightIdentity #-}
postulate 2^[x+1]-Even : ∀ {n} → N n → Even (2' ^ succ₁ n)
{-# ATP prove 2^[x+1]-Even ^-N 2x-Even #-}
| {
"alphanum_fraction": 0.49970244,
"avg_line_length": 36.0071428571,
"ext": "agda",
"hexsha": "e59ef4c782b8ba4630a2400979a27c16e89b8aa4",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/Collatz/Data/Nat/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/Collatz/Data/Nat/PropertiesATP.agda",
"max_line_length": 85,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/Collatz/Data/Nat/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 2089,
"size": 5041
} |
module OlderBasicILP.Direct.Translation where
open import Common.Context public
-- import OlderBasicILP.Direct.Hilbert.Sequential as HS
import OlderBasicILP.Direct.Hilbert.Nested as HN
import OlderBasicILP.Direct.Gentzen as G
-- open HS using () renaming (_⊢×_ to HS⟨_⊢×_⟩ ; _⊢_ to HS⟨_⊢_⟩) public
open HN using () renaming (_⊢_ to HN⟨_⊢_⟩ ; _⊢⋆_ to HN⟨_⊢⋆_⟩) public
open G using () renaming (_⊢_ to G⟨_⊢_⟩ ; _⊢⋆_ to G⟨_⊢⋆_⟩) public
-- Translation from sequential Hilbert-style to nested.
-- hs→hn : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → HN⟨ Γ ⊢ A ⟩
-- hs→hn = ?
-- Translation from nested Hilbert-style to sequential.
-- hn→hs : ∀ {A Γ} → HN⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩
-- hn→hs = ?
-- Deduction theorem for sequential Hilbert-style.
-- hs-lam : ∀ {A B Γ} → HS⟨ Γ , A ⊢ B ⟩ → HS⟨ Γ ⊢ A ▻ B ⟩
-- hs-lam = hn→hs ∘ HN.lam ∘ hs→hn
-- Translation from Hilbert-style to Gentzen-style.
mutual
hn→gᵇᵒˣ : HN.Box → G.Box
hn→gᵇᵒˣ HN.[ t ] = {!G.[ hn→g t ]!}
hn→gᵀ : HN.Ty → G.Ty
hn→gᵀ (HN.α P) = G.α P
hn→gᵀ (A HN.▻ B) = hn→gᵀ A G.▻ hn→gᵀ B
hn→gᵀ (T HN.⦂ A) = hn→gᵇᵒˣ T G.⦂ hn→gᵀ A
hn→gᵀ (A HN.∧ B) = hn→gᵀ A G.∧ hn→gᵀ B
hn→gᵀ HN.⊤ = G.⊤
hn→gᵀ⋆ : Cx HN.Ty → Cx G.Ty
hn→gᵀ⋆ ∅ = ∅
hn→gᵀ⋆ (Γ , A) = hn→gᵀ⋆ Γ , hn→gᵀ A
hn→gⁱ : ∀ {A Γ} → A ∈ Γ → hn→gᵀ A ∈ hn→gᵀ⋆ Γ
hn→gⁱ top = top
hn→gⁱ (pop i) = pop (hn→gⁱ i)
hn→g : ∀ {A Γ} → HN⟨ Γ ⊢ A ⟩ → G⟨ hn→gᵀ⋆ Γ ⊢ hn→gᵀ A ⟩
hn→g (HN.var i) = G.var (hn→gⁱ i)
hn→g (HN.app t u) = G.app (hn→g t) (hn→g u)
hn→g HN.ci = G.ci
hn→g HN.ck = G.ck
hn→g HN.cs = G.cs
hn→g (HN.box t) = {!G.box (hn→g t)!}
hn→g HN.cdist = {!G.cdist!}
hn→g HN.cup = {!G.cup!}
hn→g HN.cdown = G.cdown
hn→g HN.cpair = G.cpair
hn→g HN.cfst = G.cfst
hn→g HN.csnd = G.csnd
hn→g HN.unit = G.unit
-- hs→g : ∀ {A Γ} → HS⟨ Γ ⊢ A ⟩ → G⟨ Γ ⊢ A ⟩
-- hs→g = hn→g ∘ hs→hn
-- Translation from Gentzen-style to Hilbert-style.
mutual
g→hnᵇᵒˣ : G.Box → HN.Box
g→hnᵇᵒˣ G.[ t ] = {!HN.[ g→hn t ]!}
g→hnᵀ : G.Ty → HN.Ty
g→hnᵀ (G.α P) = HN.α P
g→hnᵀ (A G.▻ B) = g→hnᵀ A HN.▻ g→hnᵀ B
g→hnᵀ (T G.⦂ A) = g→hnᵇᵒˣ T HN.⦂ g→hnᵀ A
g→hnᵀ (A G.∧ B) = g→hnᵀ A HN.∧ g→hnᵀ B
g→hnᵀ G.⊤ = HN.⊤
g→hnᵀ⋆ : Cx G.Ty → Cx HN.Ty
g→hnᵀ⋆ ∅ = ∅
g→hnᵀ⋆ (Γ , A) = g→hnᵀ⋆ Γ , g→hnᵀ A
g→hnⁱ : ∀ {A Γ} → A ∈ Γ → g→hnᵀ A ∈ g→hnᵀ⋆ Γ
g→hnⁱ top = top
g→hnⁱ (pop i) = pop (g→hnⁱ i)
g→hn : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → HN⟨ g→hnᵀ⋆ Γ ⊢ g→hnᵀ A ⟩
g→hn (G.var i) = HN.var (g→hnⁱ i)
g→hn (G.lam t) = HN.lam (g→hn t)
g→hn (G.app t u) = HN.app (g→hn t) (g→hn u)
-- g→hn (G.multibox ts u) = {!HN.multibox (g→hn⋆ ts) (g→hn u)!}
g→hn (G.down t) = HN.down (g→hn t)
g→hn (G.pair t u) = HN.pair (g→hn t) (g→hn u)
g→hn (G.fst t) = HN.fst (g→hn t)
g→hn (G.snd t) = HN.snd (g→hn t)
g→hn G.unit = HN.unit
g→hn⋆ : ∀ {Ξ Γ} → G⟨ Γ ⊢⋆ Ξ ⟩ → HN⟨ g→hnᵀ⋆ Γ ⊢⋆ g→hnᵀ⋆ Ξ ⟩
g→hn⋆ {∅} ∙ = ∙
g→hn⋆ {Ξ , A} (ts , t) = g→hn⋆ ts , g→hn t
-- g→hs : ∀ {A Γ} → G⟨ Γ ⊢ A ⟩ → HS⟨ Γ ⊢ A ⟩
-- g→hs = hn→hs ∘ g→hn
| {
"alphanum_fraction": 0.484309285,
"avg_line_length": 28.1,
"ext": "agda",
"hexsha": "18edd7f3f8de07c4efdcd52c84f3356c105cfafa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "OlderBasicILP/Direct/Translation.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "OlderBasicILP/Direct/Translation.agda",
"max_line_length": 71,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "OlderBasicILP/Direct/Translation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 1821,
"size": 3091
} |
module Oscar.Class.Semifunctor where
open import Oscar.Class.Semigroup
open import Oscar.Class.Extensionality
open import Oscar.Class.Preservativity
open import Oscar.Function
open import Oscar.Level
open import Oscar.Relation
record Semifunctor
{𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} {_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁}
(_◅₁_ : ∀ {m n} → m ►₁ n → ∀ {l} → m ⟨ l ►₁_ ⟩→ n)
{ℓ₁}
(_≋₁_ : ∀ {m n} → m ►₁ n → m ►₁ n → Set ℓ₁)
{𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} {_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂}
(_◅₂_ : ∀ {m n} → m ►₂ n → ∀ {l} → m ⟨ l ►₂_ ⟩→ n)
{ℓ₂}
(_≋₂_ : ∀ {m n} → m ►₂ n → m ►₂ n → Set ℓ₂)
(μ : 𝔄₁ → 𝔄₂)
(□ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n)
: Set (𝔞₁ ⊔ 𝔰₁ ⊔ ℓ₁ ⊔ 𝔞₂ ⊔ 𝔰₂ ⊔ ℓ₂) where
field
⦃ ′semigroup₁ ⦄ : Semigroup _◅₁_ _≋₁_
⦃ ′semigroup₂ ⦄ : Semigroup _◅₂_ _≋₂_
⦃ ′extensionality ⦄ : ∀ {m n} → Extensionality (_≋₁_ {m} {n}) (λ ⋆ → _≋₂_ {μ m} {μ n} ⋆) □ □
⦃ ′preservativity ⦄ : ∀ {l m n} → Preservativity (λ ⋆ → _◅₁_ {m = m} {n = n} ⋆ {l = l}) (λ ⋆ → _◅₂_ ⋆) _≋₂_ □ □ □
instance
Semifunctor⋆ : ∀
{𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} {_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁}
{_◅₁_ : ∀ {m n} → m ►₁ n → ∀ {l} → m ⟨ l ►₁_ ⟩→ n}
{ℓ₁}
{_≋₁_ : ∀ {m n} → m ►₁ n → m ►₁ n → Set ℓ₁}
{𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} {_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂}
{_◅₂_ : ∀ {m n} → m ►₂ n → ∀ {l} → m ⟨ l ►₂_ ⟩→ n}
{ℓ₂}
{_≋₂_ : ∀ {m n} → m ►₂ n → m ►₂ n → Set ℓ₂}
{μ : 𝔄₁ → 𝔄₂}
{□ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n}
⦃ _ : Semigroup _◅₁_ _≋₁_ ⦄
⦃ _ : Semigroup _◅₂_ _≋₂_ ⦄
⦃ _ : ∀ {m n} → Extensionality (_≋₁_ {m} {n}) (λ ⋆ → _≋₂_ {μ m} {μ n} ⋆) □ □ ⦄
⦃ _ : ∀ {l m n} → Preservativity (λ ⋆ → _◅₁_ {m = m} {n = n} ⋆ {l = l}) (λ ⋆ → _◅₂_ ⋆) _≋₂_ □ □ □ ⦄
→ Semifunctor _◅₁_ _≋₁_ _◅₂_ _≋₂_ μ □
Semifunctor.′semigroup₁ Semifunctor⋆ = it
Semifunctor.′semigroup₂ Semifunctor⋆ = it
Semifunctor.′extensionality Semifunctor⋆ = it
Semifunctor.′preservativity Semifunctor⋆ = it
-- record Semifunctor'
-- {𝔞} {𝔄 : Set 𝔞} {𝔰} {_►_ : 𝔄 → 𝔄 → Set 𝔰}
-- (_◅_ : ∀ {m n} → m ► n → ∀ {l} → m ⟨ l ►_ ⟩→ n)
-- {ℓ₁}
-- (_≋₁_ : ∀ {m n} → m ► n → m ► n → Set ℓ₁)
-- {𝔱} {▸ : 𝔄 → Set 𝔱}
-- (_◃_ : ∀ {m n} → m ► n → m ⟨ ▸ ⟩→ n)
-- {ℓ₂}
-- (_≋₂_ : ∀ {n} → ▸ n → ▸ n → Set ℓ₂)
-- (□ : ∀ {m n} → m ► n → m ► n)
-- : Set (𝔞 ⊔ 𝔰 ⊔ ℓ₁ ⊔ 𝔱 ⊔ ℓ₂) where
-- field
-- ⦃ ′semigroup₁ ⦄ : Semigroup _◅_ (λ ⋆ → _◅_ ⋆) _≋₁_
-- ⦃ ′semigroup₂ ⦄ : Semigroup _◅_ _◃_ _≋₂_
-- ⦃ ′extensionality ⦄ : ∀ {m} {t : ▸ m} {n} → Extensionality (_≋₁_ {m} {n}) (λ ⋆ → _≋₂_ {n} ⋆) (_◃ t) (_◃ t)
-- ⦃ ′preservativity ⦄ : Preservativity _►₁_ _◃₁_ _►₂_ _◃₂_ _≋₂_ ◽ □
-- record Semifunctor
-- {𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} {_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁}
-- (_◅₁_ : ∀ {m n} → m ►₁ n → ∀ {l} → m ⟨ l ►₁_ ⟩→ n)
-- {𝔱₁} {▸₁ : 𝔄₁ → Set 𝔱₁}
-- (_◃₁_ : ∀ {m n} → m ►₁ n → m ⟨ ▸₁ ⟩→ n)
-- {ℓ₁}
-- (_≋₁_ : ∀ {n} → ▸₁ n → ▸₁ n → Set ℓ₁)
-- {𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} {_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂}
-- (_◅₂_ : ∀ {m n} → m ►₂ n → ∀ {l} → m ⟨ l ►₂_ ⟩→ n)
-- {𝔱₂} {▸₂ : 𝔄₂ → Set 𝔱₂}
-- (_◃₂_ : ∀ {m n} → m ►₂ n → m ⟨ ▸₂ ⟩→ n)
-- {ℓ₂}
-- (_≋₂_ : ∀ {n} → ▸₂ n → ▸₂ n → Set ℓ₂)
-- (μ : 𝔄₁ → 𝔄₂)
-- (◽ : ∀ {n} → ▸₁ n → ▸₂ (μ n))
-- (□ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n)
-- : Set (𝔞₁ ⊔ 𝔰₁ ⊔ 𝔱₁ ⊔ ℓ₁ ⊔ 𝔞₂ ⊔ 𝔰₂ ⊔ 𝔱₂ ⊔ ℓ₂) where
-- field
-- ⦃ ′semigroup₁ ⦄ : Semigroup _◅₁_ _◃₁_ _≋₁_
-- ⦃ ′semigroup₂ ⦄ : Semigroup _◅₂_ _◃₂_ _≋₂_
-- ⦃ ′extensionality ⦄ : ∀ {n} → Extensionality (_≋₁_ {n}) (λ ⋆ → _≋₂_ {μ n} ⋆) ◽ ◽
-- ⦃ ′preservativity ⦄ : Preservativity _►₁_ _◃₁_ _►₂_ _◃₂_ _≋₂_ ◽ □
-- open Semifunctor ⦃ … ⦄ public hiding (′semigroup₁; ′semigroup₂; ′extensionality; ′preservativity)
-- instance
-- Semifunctor⋆ : ∀
-- {𝔞₁} {𝔄₁ : Set 𝔞₁} {𝔰₁} {_►₁_ : 𝔄₁ → 𝔄₁ → Set 𝔰₁}
-- {_◅₁_ : ∀ {m n} → m ►₁ n → ∀ {l} → m ⟨ l ►₁_ ⟩→ n}
-- {𝔱₁} {▸₁ : 𝔄₁ → Set 𝔱₁}
-- {_◃₁_ : ∀ {m n} → m ►₁ n → m ⟨ ▸₁ ⟩→ n}
-- {ℓ₁}
-- {_≋₁_ : ∀ {n} → ▸₁ n → ▸₁ n → Set ℓ₁}
-- {𝔞₂} {𝔄₂ : Set 𝔞₂} {𝔰₂} {_►₂_ : 𝔄₂ → 𝔄₂ → Set 𝔰₂}
-- {_◅₂_ : ∀ {m n} → m ►₂ n → ∀ {l} → m ⟨ l ►₂_ ⟩→ n}
-- {𝔱₂} {▸₂ : 𝔄₂ → Set 𝔱₂}
-- {_◃₂_ : ∀ {m n} → m ►₂ n → m ⟨ ▸₂ ⟩→ n}
-- {ℓ₂}
-- {_≋₂_ : ∀ {n} → ▸₂ n → ▸₂ n → Set ℓ₂}
-- {μ : 𝔄₁ → 𝔄₂}
-- {◽ : ∀ {n} → ▸₁ n → ▸₂ (μ n)}
-- {□ : ∀ {m n} → m ►₁ n → μ m ►₂ μ n}
-- ⦃ _ : Semigroup _◅₁_ _◃₁_ _≋₁_ ⦄
-- ⦃ _ : Semigroup _◅₂_ _◃₂_ _≋₂_ ⦄
-- ⦃ _ : ∀ {n} → Extensionality (_≋₁_ {n}) (λ ⋆ → _≋₂_ {μ n} ⋆) ◽ ◽ ⦄
-- ⦃ _ : Preservativity _►₁_ _◃₁_ _►₂_ _◃₂_ _≋₂_ ◽ □ ⦄
-- → Semifunctor _◅₁_ _◃₁_ _≋₁_ _◅₂_ _◃₂_ _≋₂_ μ ◽ □
-- Semifunctor.′semigroup₁ Semifunctor⋆ = it
-- Semifunctor.′semigroup₂ Semifunctor⋆ = it
-- Semifunctor.′extensionality Semifunctor⋆ = it
-- Semifunctor.′preservativity Semifunctor⋆ = it
| {
"alphanum_fraction": 0.4334745763,
"avg_line_length": 39.0082644628,
"ext": "agda",
"hexsha": "e2b065812c3008a1d4a18733e1979bdce0dc0558",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Class/Semifunctor.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Class/Semifunctor.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Class/Semifunctor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2853,
"size": 4720
} |
module nform where
open import Data.PropFormula (3) public
open import Data.PropFormula.NormalForms 3 public
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
p : PropFormula
p = Var (# 0)
q : PropFormula
q = Var (# 1)
r : PropFormula
r = Var (# 2)
φ : PropFormula
φ = ¬ ((p ∧ (p ⊃ q)) ⊃ q) -- (p ∧ q) ∨ (¬ r)
cnfφ : PropFormula
cnfφ = ¬ q ∧ (p ∧ (¬ p ∨ q))
postulate
p1 : ∅ ⊢ φ
p2 : ∅ ⊢ cnfφ
p2 = cnf-lem p1 -- thm-cnf p1
{-
p3 : cnf φ ≡ cnfφ
p3 = refl
ψ : PropFormula
ψ = (¬ r) ∨ (p ∧ q)
cnfψ : PropFormula
cnfψ = (¬ r ∨ p) ∧ (¬ r ∨ q)
p5 : cnf ψ ≡ cnfψ
p5 = refl
-}
to5 = (¬ p) ∨ ((¬ q) ∨ r)
from5 = (¬ p) ∨ (r ∨ ((¬ q) ∧ p))
test : ⌊ eq (cnf from5) to5 ⌋ ≡ false
test = refl
| {
"alphanum_fraction": 0.5504201681,
"avg_line_length": 15.1914893617,
"ext": "agda",
"hexsha": "582f6bf57d952459dfd8f960179e9cd8962eddbc",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z",
"max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jonaprieto/agda-prop",
"max_forks_repo_path": "test/nform.agda",
"max_issues_count": 18,
"max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jonaprieto/agda-prop",
"max_issues_repo_path": "test/nform.agda",
"max_line_length": 67,
"max_stars_count": 13,
"max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jonaprieto/agda-prop",
"max_stars_repo_path": "test/nform.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z",
"num_tokens": 325,
"size": 714
} |
{-# OPTIONS --universe-polymorphism #-}
open import Categories.Category hiding (module Heterogeneous)
open import Categories.Congruence
module Categories.Arrow {o ℓ e} (C : Category o ℓ e) where
open import Level
open import Relation.Binary using (Rel)
open import Data.Product using (_×_; _,_; map; zip)
open Category C
open Category.Equiv C
record ArrowObj : Set (o ⊔ ℓ) where
constructor arrobj
field
{A} : Obj
{B} : Obj
arr : A ⇒ B
record Arrow⇒ (X Y : ArrowObj) : Set (ℓ ⊔ e) where
constructor arrarr
module X = ArrowObj X
module Y = ArrowObj Y
field
{f} : X.A ⇒ Y.A
{g} : X.B ⇒ Y.B
.square : CommutativeSquare X.arr f g Y.arr
arrow : Category _ _ _
arrow = record
{ Obj = Obj′
; _⇒_ = _⇒′_
; _≡_ = _≡′_
; _∘_ = _∘′_
; id = id′
; assoc = λ {_} {_} {_} {_} {f} {g} {h} → assoc′ {f = f} {g} {h}
; identityˡ = identityˡ , identityˡ
; identityʳ = identityʳ , identityʳ
; equiv = record
{ refl = refl , refl
; sym = map sym sym
; trans = zip trans trans
}
; ∘-resp-≡ = zip ∘-resp-≡ ∘-resp-≡
}
where
Obj′ = ArrowObj
_⇒′_ : Rel Obj′ _
_⇒′_ = Arrow⇒
infixr 9 _∘′_
infix 4 _≡′_
_≡′_ : ∀ {A B} → (f g : A ⇒′ B) → Set _
(arrarr {f} {h} _) ≡′ (arrarr {i} {g} _) = f ≡ i × h ≡ g
_∘′_ : ∀ {A B C} → (B ⇒′ C) → (A ⇒′ B) → (A ⇒′ C)
_∘′_ {arrobj x} {arrobj y} {arrobj z} (arrarr {f} {h} pf₁) (arrarr {i} {g} pf₂) = arrarr pf
where
.pf : (h ∘ g) ∘ x ≡ z ∘ (f ∘ i)
pf = begin
(h ∘ g) ∘ x
↓⟨ assoc ⟩
h ∘ (g ∘ x)
↓⟨ ∘-resp-≡ʳ pf₂ ⟩
h ∘ (y ∘ i)
↑⟨ assoc ⟩
(h ∘ y) ∘ i
↓⟨ ∘-resp-≡ˡ pf₁ ⟩
(z ∘ f) ∘ i
↓⟨ assoc ⟩
z ∘ (f ∘ i)
∎
where
open HomReasoning
id′ : ∀ {A} → A ⇒′ A
id′ = arrarr (sym id-comm)
.assoc′ : ∀ {A B C D} {f : A ⇒′ B} {g : B ⇒′ C} {h : C ⇒′ D} → (h ∘′ g) ∘′ f ≡′ h ∘′ (g ∘′ f)
assoc′ = assoc , assoc
module Congruent {q} (Q : Congruence C q) where
open Congruence Q
open Heterogeneous Q renaming (refl to ⇉-refl; sym to ⇉-sym; trans to ⇉-trans)
ArrowEq : Rel ArrowObj _
ArrowEq (arrobj f) (arrobj g) = f ∼ g
private
_⇉_ : Rel ArrowObj _
_⇉_ = ArrowEq
open Category arrow using () renaming (_≡_ to _≡′_; _∘_ to _∘′_)
force : ∀ {X₁ X₂ Y₁ Y₂} (pfX : X₁ ⇉ X₂) (pfY : Y₁ ⇉ Y₂)
→ (f : Arrow⇒ X₁ Y₁) → Arrow⇒ X₂ Y₂
force {arrobj h₁} {arrobj h₂} {arrobj k₁} {arrobj k₂}
(≡⇒∼ sh th ah) (≡⇒∼ sk tk ak) (arrarr {f} {g} square) = arrarr (
begin
coerce th tk g ∘ h₂
↑⟨ ∘-resp-≡ʳ ah ⟩
coerce th tk g ∘ coerce sh th h₁
↑⟨ coerce-∘ _ _ _ _ _ ⟩
coerce sh tk (g ∘ h₁)
↓⟨ coerce-resp-≡ _ _ square ⟩
coerce sh tk (k₁ ∘ f)
↓⟨ coerce-∘ _ _ _ _ _ ⟩
coerce sk tk k₁ ∘ coerce sh sk f
↓⟨ ∘-resp-≡ˡ ak ⟩
k₂ ∘ coerce sh sk f
∎)
where open HomReasoning
.force-resp-≡′ : ∀ {X₁ X₂ Y₁ Y₂} (pfX : X₁ ⇉ X₂) (pfY : Y₁ ⇉ Y₂)
→ {f₁ f₂ : Arrow⇒ X₁ Y₁}
→ f₁ ≡′ f₂ → force pfX pfY f₁ ≡′ force pfX pfY f₂
force-resp-≡′ (≡⇒∼ _ _ _) (≡⇒∼ _ _ _) (eq₁ , eq₂)
= coerce-resp-≡ _ _ eq₁ , coerce-resp-≡ _ _ eq₂
.force-refl : ∀ {X Y} (f : Arrow⇒ X Y) → force ⇉-refl ⇉-refl f ≡′ f
force-refl f = coerce-refl _ , coerce-refl _
.force-inv : ∀ {X₁ X₂ Y₁ Y₂} (pfX₁ pfX₂ : X₁ ⇉ X₂) (pfY₁ pfY₂ : Y₁ ⇉ Y₂)
→ (f : Arrow⇒ X₁ Y₁) → force pfX₁ pfY₁ f ≡′ force pfX₂ pfY₂ f
force-inv (≡⇒∼ _ _ _) (≡⇒∼ _ _ _) (≡⇒∼ _ _ _) (≡⇒∼ _ _ _) f
= coerce-invariant _ _ _ _ _ , coerce-invariant _ _ _ _ _
.force-trans : ∀ {X₁ X₂ X₃ Y₁ Y₂ Y₃} (pfX₁ : X₁ ⇉ X₂) (pfX₂ : X₂ ⇉ X₃)
(pfY₁ : Y₁ ⇉ Y₂) (pfY₂ : Y₂ ⇉ Y₃)
→ (f : Arrow⇒ X₁ Y₁)
→ force (⇉-trans pfX₁ pfX₂) (⇉-trans pfY₁ pfY₂) f
≡′ force pfX₂ pfY₂ (force pfX₁ pfY₁ f)
force-trans (≡⇒∼ _ _ _) (≡⇒∼ _ _ _) (≡⇒∼ _ _ _) (≡⇒∼ _ _ _) f
= coerce-trans _ _ _ _ _ , coerce-trans _ _ _ _ _
.force-∘′ : ∀ {X₁ X₂ Y₁ Y₂ Z₁ Z₂}
→ (pfX : X₁ ⇉ X₂) (pfY : Y₁ ⇉ Y₂) (pfZ : Z₁ ⇉ Z₂)
→ (g : Arrow⇒ Y₁ Z₁) (f : Arrow⇒ X₁ Y₁)
→ force pfX pfZ (g ∘′ f) ≡′ force pfY pfZ g ∘′ force pfX pfY f
force-∘′ (≡⇒∼ _ _ _) (≡⇒∼ _ _ _) (≡⇒∼ _ _ _) g f
= coerce-∘ _ _ _ _ _ , coerce-∘ _ _ _ _ _
arrowQ : Congruence arrow _
arrowQ = record
{ _≡₀_ = ArrowEq
; equiv₀ = record
{ refl = ⇉-refl
; sym = ⇉-sym
; trans = ⇉-trans
}
; coerce = force
; coerce-resp-≡ = force-resp-≡′
; coerce-refl = force-refl
; coerce-invariant = force-inv
; coerce-trans = force-trans
; coerce-∘ = force-∘′
}
open Congruent (TrivialCongruence C) public using () renaming (arrowQ to arrow∼)
| {
"alphanum_fraction": 0.4826946848,
"avg_line_length": 29.5975609756,
"ext": "agda",
"hexsha": "f5c46dd1728fce670efa17c9956943b58b32dca5",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Arrow.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Arrow.agda",
"max_line_length": 95,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Arrow.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 2185,
"size": 4854
} |
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Indexed.Base where
open import Data.Nat using (ℕ; suc; zero)
open import Agda.Builtin.Nat using (_<_)
open import Level
open import Data.Bool.Truth
private variable n m : ℕ
-- This is the more traditional definition of Fin,
-- that you would usually find in Agda code.
-- I tend to use the other one because cubical
-- Agda doesn't yet support transport along
-- equalities of indexed types.
data Fin : ℕ → Type where
f0 : Fin (suc n)
fs : Fin n → Fin (suc n)
FinToℕ : Fin n → ℕ
FinToℕ f0 = zero
FinToℕ (fs i) = suc (FinToℕ i)
{-# DISPLAY f0 = zero #-}
{-# DISPLAY fs n = suc n #-}
FinFromℕ : ∀ {m} → (n : ℕ) → T (n < m) → Fin m
FinFromℕ {m = suc m} zero p = f0
FinFromℕ {m = suc m} (suc n) p = fs (FinFromℕ n p)
| {
"alphanum_fraction": 0.6503856041,
"avg_line_length": 25.0967741935,
"ext": "agda",
"hexsha": "404e15c458d8ef1cd89b0b7d71efbad39eb3db93",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Fin/Indexed/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Fin/Indexed/Base.agda",
"max_line_length": 50,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Fin/Indexed/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 261,
"size": 778
} |
module Data.Fin.Instance where
open import Class.Equality
open import Class.Traversable
open import Data.Fin renaming (_≟_ to _≟F_)
open import Data.Fin.Map
instance
Eq-Fin : ∀ {n} -> Eq (Fin n)
Eq-Fin = record { _≟_ = _≟F_ }
Traversable-Fin-Map : ∀ {a} {n} -> Traversable {a} (FinMap n)
Traversable-Fin-Map = record { sequence = sequenceDepFinMap }
| {
"alphanum_fraction": 0.6897506925,
"avg_line_length": 25.7857142857,
"ext": "agda",
"hexsha": "27f117138dc09a73c51d36d97786418973e36d49",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "stdlib-exts/Data/Fin/Instance.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "stdlib-exts/Data/Fin/Instance.agda",
"max_line_length": 63,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "stdlib-exts/Data/Fin/Instance.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 120,
"size": 361
} |
------------------------------------------------------------------------
-- Various properties
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
module Delay-monad.Alternative.Properties where
open import Equality.Propositional.Cubical
open import Logical-equivalence using (_⇔_)
open import Prelude hiding (↑)
open import Bijection equality-with-J as Bijection using (_↔_)
open import Embedding equality-with-J as Embedding using (Embedding)
open import Equality.Decision-procedures equality-with-J
import Equality.Groupoid equality-with-J as EG
open import Equivalence equality-with-J as Eq using (_≃_)
open import Function-universe equality-with-J hiding (id; _∘_)
open import Groupoid equality-with-J
open import H-level equality-with-J as H-level
open import H-level.Closure equality-with-J
open import Injection equality-with-J using (Injective)
import Nat equality-with-J as N
open import Delay-monad.Alternative
------------------------------------------------------------------------
-- Lemmas related to h-levels
module _ {a} {A : Type a} where
-- _↑ is a family of propositions.
↑-propositional : (x : Maybe A) → Is-proposition (x ↑)
↑-propositional nothing =
$⟨ mono (N.zero≤ 2) ⊤-contractible ⟩
Is-proposition (tt ≡ tt) ↝⟨ H-level.respects-surjection (_↔_.surjection Bijection.≡↔inj₁≡inj₁) 1 ⟩□
Is-proposition (nothing ≡ nothing) □
↑-propositional (just x) = [inhabited⇒+]⇒+ 0 (
just x ≡ nothing ↝⟨ ⊎.inj₁≢inj₂ ∘ sym ⟩
⊥₀ ↝⟨ ⊥-elim ⟩□
Is-proposition (just x ↑) □)
-- LE nothing is a family of contractible types.
LE-nothing-contractible :
{x : Maybe A} → Contractible (LE nothing x)
LE-nothing-contractible {x = x} =
propositional⇒inhabited⇒contractible
(λ where
(inj₁ x↑) (inj₂ (_ , ¬x↑)) → ⊥-elim (¬x↑ (sym x↑))
(inj₂ (_ , ¬x↑)) (inj₁ x↑) → ⊥-elim (¬x↑ (sym x↑))
(inj₁ p) (inj₁ q) →
$⟨ ↑-propositional _ ⟩
Is-proposition (x ↑) ↝⟨ (λ hyp → hyp _ _) ⦂ (_ → _) ⟩
sym p ≡ sym q ↔⟨ Eq.≃-≡ $ from-bijection $ Groupoid.⁻¹-bijection (EG.groupoid _) ⟩
p ≡ q ↔⟨ Bijection.≡↔inj₁≡inj₁ ⟩□
inj₁ p ≡ inj₁ q □
(inj₂ p) (inj₂ q) →
$⟨ ×-closure 1 (↑-propositional _) (¬-propositional ext) ⟩
Is-proposition (nothing ↑ × ¬ x ↑) ↝⟨ (λ hyp → hyp _ _) ⦂ (_ → _) ⟩
p ≡ q ↔⟨ Bijection.≡↔inj₂≡inj₂ ⟩□
inj₂ p ≡ inj₂ q □)
(case x return LE nothing of λ where
nothing → inj₁ refl
(just x) → inj₂ (refl , ⊎.inj₁≢inj₂ ∘ sym))
-- If A is a set, then LE is a family of propositions.
LE-propositional :
Is-set A → {x y : Maybe A} → Is-proposition (LE x y)
LE-propositional A-set = irr _ _
where
irr : ∀ x y → Is-proposition (LE x y)
irr nothing _ = mono₁ 0 LE-nothing-contractible
irr (just x) (just y) (inj₁ p) (inj₁ q) =
cong inj₁ $ Maybe-closure 0 A-set p q
irr (just _) (just _) (inj₂ (() , _))
irr (just _) (just _) _ (inj₂ (() , _))
irr (just _) nothing (inj₁ ())
irr (just _) nothing (inj₂ (() , _))
-- If A is a set, then Increasing is a family of propositions.
Increasing-propositional :
Is-set A → {f : ℕ → Maybe A} → Is-proposition (Increasing f)
Increasing-propositional A-set =
Π-closure ext 1 λ _ →
LE-propositional A-set
-- An equality characterisation lemma which applies when A is a set.
equality-characterisation :
Is-set A →
{x y : Delay A} → proj₁ x ≡ proj₁ y ↔ x ≡ y
equality-characterisation A-set =
ignore-propositional-component (Increasing-propositional A-set)
-- If A has h-level 2 + n, then LE {A = A} x y has h-level 2 + n.
LE-closure :
∀ {x y} n → H-level (2 + n) A → H-level (2 + n) (LE x y)
LE-closure n h =
⊎-closure n
(mono₁ (1 + n) (Maybe-closure n h))
(mono (N.suc≤suc (N.zero≤ (1 + n)))
(×-closure 1 (↑-propositional _)
(¬-propositional ext)))
-- If A has h-level 2 + n, then Increasing {A = A} f has h-level
-- 2 + n.
Increasing-closure :
∀ {f} n → H-level (2 + n) A → H-level (2 + n) (Increasing f)
Increasing-closure n h =
Π-closure ext (2 + n) λ _ →
LE-closure n h
-- If A has h-level 2 + n, then Delay A has h-level 2 + n.
Delay-closure :
∀ n → H-level (2 + n) A → H-level (2 + n) (Delay A)
Delay-closure n h =
Σ-closure (2 + n)
(Π-closure ext (2 + n) λ _ →
Maybe-closure n h)
(λ _ → Increasing-closure n h)
------------------------------------------------------------------------
-- Various properties relating _↓_, _↑ and the usual ordering of the
-- natural numbers
module _ {a} {A : Type a} where
-- If f is increasing and f n has a value, then f (suc n) has the
-- same value.
↓-step : ∀ {f} {x : A} {n} →
Increasing f → f n ↓ x → f (suc n) ↓ x
↓-step {f = f} {x} {n} inc fn↓x = step (inc n)
module ↓ where
step : LE (f n) (f (suc n)) → f (suc n) ↓ x
step (inj₁ fn≡f1+n) =
f (suc n) ≡⟨ sym fn≡f1+n ⟩
f n ≡⟨ fn↓x ⟩∎
just x ∎
step (inj₂ (fn↑ , _)) =
⊥-elim $ ⊎.inj₁≢inj₂ (
nothing ≡⟨ sym fn↑ ⟩
f n ≡⟨ fn↓x ⟩∎
just x ∎)
-- If f is increasing and f (suc n) does not have a value, then
-- f n does not have a value.
↑-step : ∀ {f : ℕ → Maybe A} {n} →
Increasing f → f (suc n) ↑ → f n ↑
↑-step {f} {n} inc f1+n↑ with inc n
... | inj₁ fn≡f1+n = f n ≡⟨ fn≡f1+n ⟩
f (suc n) ≡⟨ f1+n↑ ⟩∎
nothing ∎
... | inj₂ (fn↑ , _) = fn↑
-- If f is increasing and f 0 has a value, then f n has the same
-- value.
↓-upwards-closed₀ : ∀ {f} {x : A} →
Increasing f → f 0 ↓ x → ∀ n → f n ↓ x
↓-upwards-closed₀ _ f0↓ zero = f0↓
↓-upwards-closed₀ inc f0↓ (suc n) =
↓-upwards-closed₀ (inc ∘ suc) (↓-step inc f0↓) n
-- If f is increasing, then (λ n → f n ↓ x) is upwards closed.
↓-upwards-closed :
∀ {f : ℕ → Maybe A} {m n x} →
Increasing f → m N.≤ n → f m ↓ x → f n ↓ x
↓-upwards-closed _ (N.≤-refl′ refl) = id
↓-upwards-closed inc (N.≤-step′ m≤n refl) =
↓-step inc ∘ ↓-upwards-closed inc m≤n
-- If f is increasing, then (λ n → f n ↑) is downwards closed.
↑-downwards-closed : ∀ {f : ℕ → Maybe A} {m n} →
Increasing f → m N.≤ n → f n ↑ → f m ↑
↑-downwards-closed inc (N.≤-refl′ refl) = id
↑-downwards-closed inc (N.≤-step′ m≤n refl) =
↑-downwards-closed inc m≤n ∘ ↑-step inc
-- If f is increasing and f m does not have a value, but f n does
-- have a value, then m < n.
↑<↓ : ∀ {f : ℕ → Maybe A} {x m n} →
Increasing f → f m ↑ → f n ↓ x → m N.< n
↑<↓ {f} {x} {m} {n} inc fm↑ fn↓x with n N.≤⊎> m
... | inj₂ m<n = m<n
... | inj₁ n≤m =
⊥-elim $ ⊎.inj₁≢inj₂
(nothing ≡⟨ sym $ ↑-downwards-closed inc n≤m fm↑ ⟩
f n ≡⟨ fn↓x ⟩∎
just x ∎)
------------------------------------------------------------------------
-- An unused lemma
private
-- If the embedding g maps nothing to nothing and just to just, then
-- there is an isomorphism between Increasing f and
-- Increasing (g ∘ f).
Increasing-∘ :
∀ {a b} {A : Type a} {B : Type b} {f : ℕ → Maybe A} →
(g : Embedding (Maybe A) (Maybe B)) →
Embedding.to g nothing ≡ nothing →
(∀ {x} → Embedding.to g (just x) ≢ nothing) →
Increasing f ↔ Increasing (Embedding.to g ∘ f)
Increasing-∘ {A = A} {B} {f} g g↑ g↓ = record
{ surjection = record
{ logical-equivalence = record
{ to = to ∘_
; from = from ∘_
}
; right-inverse-of = ⟨ext⟩ ∘ (to∘from ∘_)
}
; left-inverse-of = ⟨ext⟩ ∘ (from∘to ∘_)
}
where
g′ : Maybe A → Maybe B
g′ = Embedding.to g
g-injective : Injective g′
g-injective = Embedding.injective (Embedding.is-embedding g)
lemma₁ : ∀ {x} → x ↑ → g′ x ↑
lemma₁ refl = g↑
lemma₂ : ∀ x → ¬ x ↑ → ¬ g′ x ↑
lemma₂ nothing x↓ _ = x↓ refl
lemma₂ (just _) _ = g↓
lemma₃ : ∀ x → g′ x ↑ → x ↑
lemma₃ nothing _ = refl
lemma₃ (just _) g↓↑ = ⊥-elim (lemma₂ _ (λ ()) g↓↑)
lemma₄ : ∀ x → g′ x ≢ nothing → x ≢ nothing
lemma₄ nothing g↑↓ _ = g↑↓ g↑
lemma₄ (just _) _ ()
to : ∀ {n} → Increasing-at n f → Increasing-at n (g′ ∘ f)
to = ⊎-map (cong g′) (Σ-map lemma₁ (lemma₂ _))
from : ∀ {n} → Increasing-at n (g′ ∘ f) → Increasing-at n f
from = ⊎-map g-injective (Σ-map (lemma₃ _) (lemma₄ _))
to∘from : ∀ {n} (x : Increasing-at n (g′ ∘ f)) → to (from x) ≡ x
to∘from (inj₁ p) = cong inj₁ (
cong g′ (g-injective p) ≡⟨ _≃_.right-inverse-of (Embedding.equivalence g) _ ⟩∎
p ∎)
to∘from (inj₂ _) = cong inj₂ $
×-closure 1 (↑-propositional _) (¬-propositional ext) _ _
from∘to : ∀ {n} (x : Increasing-at n f) → from (to x) ≡ x
from∘to (inj₁ p) = cong inj₁ (
g-injective (cong g′ p) ≡⟨ _≃_.left-inverse-of (Embedding.equivalence g) _ ⟩∎
p ∎)
from∘to (inj₂ _) = cong inj₂ $
×-closure 1 (↑-propositional _) (¬-propositional ext) _ _
| {
"alphanum_fraction": 0.5089871009,
"avg_line_length": 34.0215827338,
"ext": "agda",
"hexsha": "4e53a8ec6197e7e3b5da38f921337d79ede42592",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Delay-monad/Alternative/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Delay-monad/Alternative/Properties.agda",
"max_line_length": 114,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Delay-monad/Alternative/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 3395,
"size": 9458
} |
module BasicIPC.Metatheory.Hilbert-KripkeConcreteGluedImplicit where
open import BasicIPC.Syntax.Hilbert public
open import BasicIPC.Semantics.KripkeConcreteGluedImplicit public
open ImplicitSyntax (_⊢_) (mono⊢) public
-- Completeness with respect to a particular model.
module _ {{_ : Model}} where
reify : ∀ {A w} → w ⊩ A → unwrap w ⊢ A
reify {α P} s = syn s
reify {A ▻ B} s = syn s
reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s))
reify {⊤} s = unit
reify⋆ : ∀ {Ξ w} → w ⊩⋆ Ξ → unwrap w ⊢⋆ Ξ
reify⋆ {∅} ∙ = ∙
reify⋆ {Ξ , A} (ts , t) = reify⋆ ts , reify t
-- Additional useful equipment.
module _ {{_ : Model}} where
⟪K⟫ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A
⟪K⟫ {A} a = app ck (reify a) ⅋ λ ξ →
K (mono⊩ {A} ξ a)
⟪S⟫′ : ∀ {A B C w} → w ⊩ A ▻ B ▻ C → w ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ {A} {B} {C} s₁ = app cs (syn s₁) ⅋ λ ξ s₂ →
app (app cs (mono⊢ (unwrap≤ ξ) (syn s₁))) (syn s₂) ⅋ λ ξ′ →
⟪S⟫ (mono⊩ {A ▻ B ▻ C} (trans≤ ξ ξ′) s₁) (mono⊩ {A ▻ B} ξ′ s₂)
_⟪,⟫′_ : ∀ {A B w} → w ⊩ A → w ⊩ B ▻ A ∧ B
_⟪,⟫′_ {A} a = app cpair (reify a) ⅋ λ ξ →
_,_ (mono⊩ {A} ξ a)
-- Soundness with respect to all models, or evaluation.
eval : ∀ {A Γ} → Γ ⊢ A → Γ ⊨ A
eval (var i) γ = lookup i γ
eval (app t u) γ = eval t γ ⟪$⟫ eval u γ
eval ci γ = ci ⅋ K I
eval ck γ = ck ⅋ K ⟪K⟫
eval cs γ = cs ⅋ K ⟪S⟫′
eval cpair γ = cpair ⅋ K _⟪,⟫′_
eval cfst γ = cfst ⅋ K π₁
eval csnd γ = csnd ⅋ K π₂
eval unit γ = ∙
-- TODO: Correctness of evaluation with respect to conversion.
-- The canonical model.
private
instance
canon : Model
canon = record
{ _⊩ᵅ_ = λ w P → unwrap w ⊢ α P
; mono⊩ᵅ = λ ξ t → mono⊢ (unwrap≤ ξ) t
}
-- Soundness with respect to the canonical model.
reflectᶜ : ∀ {A w} → unwrap w ⊢ A → w ⊩ A
reflectᶜ {α P} t = t ⅋ t
reflectᶜ {A ▻ B} t = t ⅋ λ ξ a → reflectᶜ (app (mono⊢ (unwrap≤ ξ) t) (reify a))
reflectᶜ {A ∧ B} t = reflectᶜ (fst t) , reflectᶜ (snd t)
reflectᶜ {⊤} t = ∙
reflectᶜ⋆ : ∀ {Ξ w} → unwrap w ⊢⋆ Ξ → w ⊩⋆ Ξ
reflectᶜ⋆ {∅} ∙ = ∙
reflectᶜ⋆ {Ξ , A} (ts , t) = reflectᶜ⋆ ts , reflectᶜ t
-- Reflexivity and transitivity.
refl⊩⋆ : ∀ {w} → w ⊩⋆ unwrap w
refl⊩⋆ = reflectᶜ⋆ refl⊢⋆
trans⊩⋆ : ∀ {w w′ w″} → w ⊩⋆ unwrap w′ → w′ ⊩⋆ unwrap w″ → w ⊩⋆ unwrap w″
trans⊩⋆ ts us = reflectᶜ⋆ (trans⊢⋆ (reify⋆ ts) (reify⋆ us))
-- Completeness with respect to all models, or quotation.
quot : ∀ {A Γ} → Γ ⊨ A → Γ ⊢ A
quot s = reify (s refl⊩⋆)
-- Normalisation by evaluation.
norm : ∀ {A Γ} → Γ ⊢ A → Γ ⊢ A
norm = quot ∘ eval
-- TODO: Correctness of normalisation with respect to conversion.
| {
"alphanum_fraction": 0.5211786372,
"avg_line_length": 26.359223301,
"ext": "agda",
"hexsha": "adb0e29f937233230ff084f035e0edc607cd0007",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIPC/Metatheory/Hilbert-KripkeConcreteGluedImplicit.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIPC/Metatheory/Hilbert-KripkeConcreteGluedImplicit.agda",
"max_line_length": 90,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIPC/Metatheory/Hilbert-KripkeConcreteGluedImplicit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 1278,
"size": 2715
} |
{-# OPTIONS --allow-unsolved-metas #-}
{- This is a copy of Sane, but building upon a rather different notion of permutation -}
module Sane2 where
import Data.Fin as F
--
open import Data.Unit
open import Data.Nat using (ℕ ; zero ; suc ; _+_ ; _>_ )
open import Data.Sum using (inj₁ ; inj₂ ; _⊎_)
open import Data.Vec
open import Function using ( id ) renaming (_∘_ to _○_)
open import Relation.Binary -- to make certain goals look nicer
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; cong ; trans ; subst ; module ≡-Reasoning )
open ≡-Reasoning
-- start re-splitting things up, as this is getting out of hand
open import FT -- Finite Types
open import VecHelpers
open import NatSimple
open import Eval
open import Permutations
open import CombPerm
-- Suppose we have some combinator c, its output vector v, and the corresponding
-- permutation p. We construct p by looking at how many places each element is
-- displaced from its index in v *to the right* (if it's where it "should" be or
-- to the left, just return 0).
-- In other words, if v[i] = j, then p[j] = j - i. That is, if j is in location
-- i, j - i is how many spaces to the right (if any) j appears from its own
-- index. Note that if v[i] = j, then c(i) = j, and inv(c)(j) = i. This suggests
-- that if I can write a tabulate function for permutations, the permutation for
-- a combinator c will be "tabulate (∩ -> i - (evalCombB c i))", modulo type
-- coercions.
--
-- JC: I think an even easier way is to use LeftCancellation and build it
-- recursively! By this I mean something which gives a
-- (fromℕ n ⇛ fromℕ n) given a (fromℕ (suc n) ⇛ fromℕ (suc n))
combToPerm : {n : ℕ} → (fromℕ n ⇛ fromℕ n) → Permutation n
combToPerm {zero} c = []
combToPerm {suc n} c = valToFin (evalComb c (inj₁ tt)) ∷ {!!}
-- This is just nasty, prove it 'directly'
key-lemma : {n : ℕ} (i : F.Fin (suc n)) (j : F.Fin (suc (suc n))) →
(lookup
(lookup
((F.inject₁ i ∷ remove (F.inject₁ i) vId) !! j)
(insert (remove (F.inject₁ i) vId) (F.suc i) (F.inject₁ i)))
(insert vS (F.inject₁ i) F.zero))
≡
(F.suc i ∷ insert (remove i vS) i F.zero) !! j
key-lemma {zero} F.zero F.zero = refl
key-lemma {zero} F.zero (F.suc F.zero) = refl
key-lemma {zero} F.zero (F.suc (F.suc ()))
key-lemma {zero} (F.suc ()) j
key-lemma {suc n} F.zero F.zero = refl
key-lemma {suc n} F.zero (F.suc j) =
begin
lookup (lookup (vS !! j) swap01vec) vId
≡⟨ lookupTab {f = id} (lookup (vS !! j) swap01vec) ⟩
lookup (vS !! j) swap01vec
≡⟨ cong (λ z → lookup z swap01vec) (lookupTab {f = F.suc} j) ⟩
lookup (F.suc j) swap01vec
≡⟨ refl ⟩
lookup j (F.zero ∷ vSS)
∎
key-lemma {suc n} (F.suc i) F.zero =
begin
lookup
(lookup (F.inject₁ i)
(insert (remove (F.inject₁ i) (tabulate F.suc)) (F.suc i) (F.suc (F.inject₁ i))))
(F.suc F.zero ∷
insert (tabulate (F.suc ○ F.suc)) (F.inject₁ i) F.zero)
≡⟨ cong (λ z → lookup z (F.suc F.zero ∷ insert (tabulate (F.suc ○ F.suc)) (F.inject₁ i) F.zero)) (lookup+1-insert-remove i (tabulate F.suc)) ⟩
lookup (lookup (F.suc i) (tabulate F.suc)) (F.suc F.zero ∷ insert (tabulate (F.suc ○ F.suc)) (F.inject₁ i) F.zero)
≡⟨ cong (λ z → lookup z (F.suc F.zero ∷ insert (tabulate (F.suc ○ F.suc)) (F.inject₁ i) F.zero)) (lookupTab {f = F.suc} (F.suc i)) ⟩
lookup (F.suc (F.suc i)) (F.suc F.zero ∷ insert (tabulate (F.suc ○ F.suc)) (F.inject₁ i) F.zero)
≡⟨ refl ⟩
lookup (F.suc i) (insert (tabulate (F.suc ○ F.suc)) (F.inject₁ i) F.zero)
≡⟨ sym (lookup-insert3 i (tabulate (F.suc ○ F.suc))) ⟩
lookup i (tabulate (F.suc ○ F.suc))
≡⟨ lookupTab {f = F.suc ○ F.suc} i ⟩
F.suc (F.suc i)
∎
key-lemma {suc n} (F.suc i) (F.suc j) =
begin
(lookup
(lookup
(lookup j
(remove (F.inject₁ (F.suc i)) vId))
(insert
(remove (F.inject₁ (F.suc i)) vId)
(F.suc (F.suc i)) (F.inject₁ (F.suc i))))
(insert vS (F.inject₁ (F.suc i)) F.zero))
≡⟨ refl ⟩ -- lots of β
(lookup
(lookup
((F.zero ∷ remove (F.inject₁ i) vS) !! j)
(F.zero ∷ insert (remove (F.inject₁ i) vS) (F.suc i) (F.inject₁ (F.suc i))))
(F.suc F.zero ∷ insert vSS (F.inject₁ i) F.zero))
≡⟨ {!!} ⟩
(F.suc F.zero ∷ insert (remove i vSS) i F.zero) !! j
≡⟨ refl ⟩
(insert (remove (F.suc i) vS) (F.suc i) F.zero) !! j
∎
{- (lookup
(lookup
((F.inject₁ i ∷ remove (F.inject₁ i) vId) !! j)
(insert (remove (F.inject₁ i) vId) (F.suc i) (F.inject₁ i)))
(insert vS (F.inject₁ i) F.zero))
≡
(F.suc i ∷ insert (remove i vS) i F.zero) !! j -}
--------------------------------------------------------------------------------------------------------------
-- shuffle is like permute, but takes a combinator rather than a permutation as input
shuffle : {n : ℕ} {A : Set} → (fromℕ n ⇛ fromℕ n) → Vec A n → Vec A n
shuffle c v = tabulate (λ x → v !! valToFin (evalComb c (finToVal x)))
--------------------------------------------------------------------------------------------------------------
swapUpCorrect : {n : ℕ} → (i : F.Fin n) → (j : F.Fin (1 + n)) →
evalComb (swapUpTo i) (finToVal j) ≡ finToVal (evalPerm (swapUpToPerm i) j)
swapUpCorrect {zero} () j
swapUpCorrect {suc zero} F.zero F.zero = refl
swapUpCorrect {suc zero} F.zero (F.suc F.zero) = refl
swapUpCorrect {suc zero} F.zero (F.suc (F.suc ()))
swapUpCorrect {suc zero} (F.suc ()) j
swapUpCorrect {suc (suc n)} F.zero j = cong finToVal (
begin
j ≡⟨ sym (lookupTab {f = id} j) ⟩
lookup j (tabulate id) ≡⟨ cong (λ x → lookup j (F.zero ∷ F.suc F.zero ∷ F.suc (F.suc F.zero) ∷ x)) (sym (idP-id (tabulate (F.suc ○ F.suc ○ F.suc)))) ⟩
evalPerm (swapUpToPerm F.zero) j ∎ )
swapUpCorrect {suc (suc n)} (F.suc i) F.zero = refl
swapUpCorrect {suc (suc n)} (F.suc i) (F.suc j) =
begin
evalComb (assocl₊⇛ ◎ (swap₊⇛ ⊕ id⇛) ◎ assocr₊⇛) (inj₂ (evalComb (swapUpTo i) (finToVal j)))
≡⟨ cong (λ x → evalComb (assocl₊⇛ ◎ (swap₊⇛ ⊕ id⇛) ◎ assocr₊⇛) (inj₂ x)) (swapUpCorrect i j) ⟩
evalComb (assocl₊⇛ ◎ (swap₊⇛ ⊕ id⇛) ◎ assocr₊⇛) (inj₂ (finToVal (evalPerm (swapUpToPerm i) j)))
≡⟨ swapi≡swap01 (F.suc (evalPerm (swapUpToPerm i) j)) ⟩
finToVal (evalPerm (swap01 (suc (suc (suc n)))) (F.suc (evalPerm (swapUpToPerm i) j)))
≡⟨ cong finToVal ( begin
evalPerm (swap01 (suc (suc (suc n)))) (F.suc (evalPerm (swapUpToPerm i) j))
≡⟨ cong (λ x → evalPerm (swap01 (suc (suc (suc n)))) (F.suc (lookup j x))) (swapUpToAct i (tabulate id)) ⟩
lookup
(F.suc (lookup j (insert (tabulate (λ z → F.suc z)) (F.inject₁ i) F.zero)))
(F.suc F.zero ∷ F.zero ∷ F.suc (F.suc F.zero) ∷ permute idP (tabulate (λ z → F.suc (F.suc (F.suc z)))))
≡⟨ cong (λ x → (lookup
(F.suc
(lookup j
(insert (tabulate F.suc) (F.inject₁ i) F.zero)))
(F.suc F.zero ∷ F.zero ∷ F.suc (F.suc F.zero) ∷ x)))
(idP-id _) ⟩
(swap01vec !!
(F.suc ((insert (tabulate F.suc) (F.inject₁ i) F.zero) !! j)))
≡⟨ cong (λ x → swap01vec !! x) (sym (map!! F.suc _ j)) ⟩
(swap01vec !!
(vmap F.suc (insert (tabulate F.suc) (F.inject₁ i) F.zero) !! j))
≡⟨ sym (lookupTab {f = (λ j →
(swap01vec !!
(vmap F.suc (insert (tabulate F.suc) (F.inject₁ i) F.zero) !! j)))} j) ⟩
(tabulate (λ k → (swap01vec !!
(vmap F.suc (insert (tabulate F.suc) (F.inject₁ i) F.zero) !! k))) !! j)
≡⟨ refl ⟩
(((vmap F.suc (insert (tabulate F.suc) (F.inject₁ i) F.zero)) ∘̬ swap01vec) !! j)
≡⟨ cong (λ x → x !! j) (∘̬≡∘̬′ _ _) ⟩
(((vmap F.suc (insert (tabulate F.suc) (F.inject₁ i) F.zero)) ∘̬′ swap01vec) !! j)
≡⟨ cong (λ x →
((vmap F.suc (insert x (F.inject₁ i) F.zero) ∘̬′ swap01vec) !! j))
(sym (mapTab F.suc id)) ⟩
{-- For reference:
newlemma6 : {m n : ℕ} → (i : F.Fin n) → (v : Vec (F.Fin m) n) →
(vmap F.suc (insert (vmap F.suc v) (F.inject₁ i) F.zero)) ∘̬′ swap01vec
≡ insert (vmap F.suc (vmap F.suc v)) (F.inject₁ i) F.zero
--}
(((vmap F.suc (insert (vmap F.suc (tabulate id)) (F.inject₁ i) F.zero)) ∘̬′ swap01vec) !! j)
≡⟨ cong (λ x → x !! j) (newlemma6 i (tabulate id)) ⟩
(insert (vmap F.suc (vmap F.suc (tabulate id))) (F.inject₁ i) F.zero !! j)
≡⟨ cong (λ x → insert (vmap F.suc x) (F.inject₁ i) F.zero !! j)
(mapTab F.suc id) ⟩
(insert (vmap F.suc (tabulate F.suc)) (F.inject₁ i) F.zero !! j)
≡⟨ cong (λ x → insert x (F.inject₁ i) F.zero !! j)
(mapTab F.suc F.suc) ⟩
(insert (tabulate (λ x → F.suc (F.suc x))) (F.inject₁ i) F.zero !! j)
≡⟨ cong (λ x → lookup j (insert x (F.inject₁ i) F.zero))
(sym (idP-id _)) ⟩
(lookup j
(insert (permute idP (tabulate (λ x → F.suc (F.suc x)))) (F.inject₁ i) F.zero))
≡⟨ refl ⟩
evalPerm (swapUpToPerm (F.suc i)) (F.suc j)
∎ ) ⟩
finToVal (evalPerm (swapUpToPerm (F.suc i)) (F.suc j))
∎
swapDownCorrect : {n : ℕ} → (i : F.Fin n) → (j : F.Fin (1 + n)) →
evalComb (swapDownFrom i) (finToVal j) ≡
finToVal (evalPerm (swapDownFromPerm i) j)
swapDownCorrect F.zero j =
begin
evalComb (swapDownFrom F.zero) (finToVal j)
≡⟨ refl ⟩
finToVal j
≡⟨ cong finToVal (sym (lookupTab {f = id} j)) ⟩
finToVal ((tabulate id) !! j)
≡⟨ cong (λ x → finToVal (x !! j)) (sym (idP-id (tabulate id))) ⟩
finToVal (permute idP (tabulate id) !! j)
≡⟨ refl ⟩
finToVal (evalPerm (swapDownFromPerm F.zero) j) ∎
swapDownCorrect (F.suc i) F.zero =
begin
evalComb (swapDownFrom (F.suc i)) (finToVal F.zero)
≡⟨ refl ⟩
evalComb (swapi F.zero ◎ (id⇛ ⊕ swapDownFrom i)) (finToVal F.zero)
≡⟨ refl ⟩
evalComb (id⇛ ⊕ swapDownFrom i) (evalComb (swapi F.zero) (finToVal F.zero))
≡⟨ refl ⟩
evalComb (id⇛ ⊕ swapDownFrom i) (finToVal (F.suc F.zero))
≡⟨ refl ⟩
inj₂ (evalComb (swapDownFrom i) (finToVal F.zero))
≡⟨ cong inj₂ (swapDownCorrect i F.zero) ⟩
inj₂ (finToVal (evalPerm (swapDownFromPerm i) F.zero))
≡⟨ refl ⟩
finToVal (F.suc (evalPerm (swapDownFromPerm i) F.zero))
≡⟨ refl ⟩ -- beta
finToVal (F.suc (permute (swapDownFromPerm i) (tabulate id) !! F.zero))
≡⟨ cong finToVal (push-f-through F.suc F.zero (swapDownFromPerm i) id ) ⟩
finToVal (lookup F.zero (permute (swapDownFromPerm i) (tabulate F.suc)))
≡⟨ cong finToVal (sym (lookup-insert (permute (swapDownFromPerm i) (tabulate F.suc)))) ⟩
finToVal (evalPerm (swapDownFromPerm (F.suc i)) F.zero) ∎
swapDownCorrect (F.suc i) (F.suc F.zero) =
begin
evalComb (swapDownFrom (F.suc i)) (finToVal (F.suc F.zero))
≡⟨ refl ⟩
evalComb (swapi F.zero ◎ (id⇛ ⊕ swapDownFrom i)) (finToVal (F.suc F.zero))
≡⟨ refl ⟩
evalComb (id⇛ ⊕ swapDownFrom i) (evalComb (swapi F.zero) (finToVal (F.suc F.zero)))
≡⟨ refl ⟩
evalComb (id⇛ ⊕ swapDownFrom i) (inj₁ tt)
≡⟨ refl ⟩
inj₁ tt
≡⟨ refl ⟩
finToVal (F.zero)
≡⟨ cong finToVal (sym (lookup-insert′ (F.suc F.zero) (permute (swapDownFromPerm i) (tabulate F.suc)))) ⟩
finToVal (evalPerm (swapDownFromPerm (F.suc i)) (F.suc F.zero)) ∎
swapDownCorrect (F.suc i) (F.suc (F.suc j)) =
begin
evalComb (swapDownFrom (F.suc i)) (finToVal (F.suc (F.suc j)))
≡⟨ refl ⟩
evalComb (swapi F.zero ◎ (id⇛ ⊕ swapDownFrom i)) (finToVal (F.suc (F.suc j)))
≡⟨ refl ⟩
evalComb (id⇛ ⊕ swapDownFrom i) (evalComb (swapi F.zero) (finToVal (F.suc (F.suc j))))
≡⟨ refl ⟩
evalComb (id⇛ ⊕ swapDownFrom i) (finToVal (F.suc (F.suc j)))
≡⟨ refl ⟩
evalComb (id⇛ ⊕ swapDownFrom i) (inj₂ (finToVal (F.suc j)))
≡⟨ refl ⟩
inj₂ (evalComb (swapDownFrom i) (finToVal (F.suc j)))
≡⟨ cong inj₂ (swapDownCorrect i (F.suc j)) ⟩
inj₂ (finToVal (evalPerm (swapDownFromPerm i) (F.suc j)))
≡⟨ refl ⟩
finToVal (F.suc (evalPerm (swapDownFromPerm i) (F.suc j)))
≡⟨ cong finToVal (push-f-through F.suc (F.suc j) (swapDownFromPerm i) id) ⟩
-- need to do a little β-expansion to see this
finToVal (lookup (F.suc j) (permute (1iP i) (tabulate F.suc)))
≡⟨ cong finToVal (lookup-insert′′ j (permute (1iP i) (tabulate F.suc))) ⟩
finToVal (evalPerm (swapDownFromPerm (F.suc i)) (F.suc (F.suc j))) ∎
swapmCorrect : {n : ℕ} → (i j : F.Fin n) → evalComb (swapm i) (finToVal j) ≡ finToVal (evalPerm (swapmPerm i) j)
swapmCorrect {zero} () _
swapmCorrect {suc n} F.zero j =
begin
finToVal j
≡⟨ cong finToVal (sym (lookupTab {f = id} j)) ⟩
finToVal (lookup j (tabulate id))
≡⟨ cong (λ x → finToVal (lookup j x)) (sym (idP-id (tabulate id))) ⟩
finToVal (lookup j (permute idP (tabulate id))) ∎
swapmCorrect {suc zero} (F.suc ()) _
swapmCorrect {suc (suc n)} (F.suc i) j = -- requires the breakdown of swapm ?
begin
evalComb (swapm (F.suc i)) (finToVal j)
≡⟨ refl ⟩
evalComb (swapDownFrom i ◎ swapi i ◎ swapUpTo i) (finToVal j)
≡⟨ refl ⟩
evalComb (swapUpTo i)
(evalComb (swapi i)
(evalComb (swapDownFrom i) (finToVal j)))
≡⟨ cong (λ x → evalComb (swapUpTo i) (evalComb (swapi i) x))
(swapDownCorrect i j) ⟩
evalComb (swapUpTo i)
(evalComb (swapi i)
(finToVal (permute (swapDownFromPerm i) (tabulate id) !! j)))
≡⟨ cong (λ x → evalComb (swapUpTo i) x)
(swapiCorrect i (permute (swapDownFromPerm i) (tabulate id) !! j)) ⟩
evalComb (swapUpTo i)
(finToVal
(permute (swapiPerm i) (tabulate id) !!
(permute (swapDownFromPerm i) (tabulate id) !! j)))
≡⟨ (swapUpCorrect i )
(permute (swapiPerm i) (tabulate id) !!
(permute (swapDownFromPerm i) (tabulate id) !! j))⟩
finToVal
(permute (swapUpToPerm i) (tabulate id) !!
(permute (swapiPerm i) (tabulate id) !!
(permute (swapDownFromPerm i) (tabulate id) !! j)))
≡⟨ cong (λ x → finToVal (x !! (permute (swapiPerm i) (tabulate id) !! (permute (swapDownFromPerm i) (tabulate id) !! j)))) (swapUpToAct i (tabulate id)) ⟩
finToVal
(insert (tabulate F.suc) (F.inject₁ i) F.zero !!
(permute (swapiPerm i) (tabulate id) !!
(permute (swapDownFromPerm i) (tabulate id) !! j)))
≡⟨ cong (λ z → finToVal (insert (tabulate F.suc) (F.inject₁ i) F.zero !! (z !! (permute (swapDownFromPerm i) (tabulate id) !! j)))) (swapiAct i (tabulate id)) ⟩
finToVal
(insert (tabulate F.suc) (F.inject₁ i) F.zero !!
(insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) ((tabulate id) !! (F.inject₁ i)) !!
(permute (swapDownFromPerm i) (tabulate id) !! j)))
≡⟨ cong (λ z → finToVal (insert (tabulate F.suc) (F.inject₁ i) F.zero !!
(insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) ((tabulate id) !! (F.inject₁ i)) !!
(z !! j)))) (swapDownFromAct i (tabulate id)) ⟩
finToVal
(insert (tabulate F.suc) (F.inject₁ i) F.zero !!
(insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) ((tabulate id) !! (F.inject₁ i)) !!
( swapDownFromVec (F.inject₁ i) (tabulate id) !! j)))
≡⟨ cong (λ z → finToVal
(insert (tabulate F.suc) (F.inject₁ i) F.zero !!
(insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) z !!
( swapDownFromVec (F.inject₁ i) (tabulate id) !! j)))) (lookupTab {f = id} (F.inject₁ i)) ⟩
finToVal
(insert (tabulate F.suc) (F.inject₁ i) F.zero !!
(insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) (F.inject₁ i) !!
( swapDownFromVec (F.inject₁ i) (tabulate id) !! j)))
≡⟨ refl ⟩
finToVal
(insert (tabulate F.suc) (F.inject₁ i) F.zero !!
(insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) (F.inject₁ i) !!
( (((tabulate id) !! (F.inject₁ i)) ∷ (remove (F.inject₁ i) (tabulate id))) !! j)))
≡⟨ cong (λ z → finToVal
(insert (tabulate F.suc) (F.inject₁ i) F.zero !!
(insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) (F.inject₁ i) !!
( (z ∷ (remove (F.inject₁ i) (tabulate id))) !! j)))) (lookupTab {f = id} (F.inject₁ i)) ⟩
finToVal
(insert (tabulate F.suc) (F.inject₁ i) F.zero !!
(insert (remove (F.inject₁ i) (tabulate id)) (F.suc i) (F.inject₁ i) !!
( ((F.inject₁ i) ∷ (remove (F.inject₁ i) (tabulate id))) !! j)))
≡⟨ cong finToVal (key-lemma i j) ⟩
finToVal ( ((F.suc i) ∷ (insert (remove i (tabulate F.suc)) i F.zero)) !! j)
≡⟨ cong (λ z → finToVal ((z ∷ (insert (remove i (tabulate F.suc)) i F.zero)) !! j)) (sym (lookupTab {f = F.suc} i)) ⟩
finToVal ( (((tabulate F.suc) !! i) ∷ (insert (remove i (tabulate F.suc)) i F.zero)) !! j)
≡⟨ refl ⟩
finToVal (swapmVec (F.suc i) (tabulate id) !! j)
≡⟨ cong (λ z → finToVal (z !! j)) (sym (swapmAct (F.suc i) (tabulate id))) ⟩
finToVal (permute (swapmPerm (F.suc i)) (tabulate id) !! j)
≡⟨ refl ⟩
finToVal (evalPerm (swapmPerm (F.suc i)) j) ∎
lemma1 : {n : ℕ} (p : Permutation n) → (i : F.Fin n) →
evalComb (permToComb p) (finToVal i) ≡ finToVal (evalPerm p i)
lemma1 {zero} [] ()
lemma1 {suc n} (F.zero ∷ p) F.zero = refl
lemma1 {suc zero} (F.zero ∷ p) (F.suc ())
lemma1 {suc (suc n)} (F.zero ∷ p) (F.suc i) = begin
inj₂ (evalComb (permToComb p) (finToVal i))
≡⟨ cong inj₂ (lemma1 p i) ⟩
inj₂ (finToVal (evalPerm p i))
≡⟨ refl ⟩
finToVal (F.suc (evalPerm p i))
≡⟨ cong finToVal (push-f-through F.suc i p id) ⟩
finToVal (evalPerm (F.zero ∷ p) (F.suc i)) ∎
lemma1 {suc n} (F.suc j ∷ p) i = {!!} -- needs all the previous ones first.
{- This is cleaner as a proof, but is not headed the right way as the cases are not the 'right' ones
swapmCorrect2 : {n : ℕ} → (i j : F.Fin n) → evalComb (swapm i) (finToVal j) ≡ finToVal (evalPerm (swapmPerm i) j)
swapmCorrect2 {zero} () _
swapmCorrect2 {suc zero} F.zero F.zero = refl
swapmCorrect2 {suc zero} F.zero (F.suc ())
swapmCorrect2 {suc zero} (F.suc ()) _
swapmCorrect2 {suc (suc n)} F.zero j = sym (
trans (cong (λ x → finToVal (lookup j (F.zero ∷ F.suc F.zero ∷ x))) (idP-id (tabulate (F.suc ○ F.suc))))
(cong finToVal (lookupTab {f = id} j)))
swapmCorrect2 {suc (suc n)} (F.suc F.zero) F.zero = refl
swapmCorrect2 {suc (suc n)} (F.suc (F.suc i)) F.zero =
let up = λ x → evalComb (swapUpTo (F.suc i)) x
swap = λ x → evalComb (swapi (F.suc i)) x
down = λ x → evalComb (swapDownFrom (F.suc i)) x in
begin
evalComb (swapm (F.suc (F.suc i))) (inj₁ tt)
≡⟨ refl ⟩
evalComb (swapDownFrom (F.suc i) ◎ swapi (F.suc i) ◎ swapUpTo (F.suc i)) (inj₁ tt)
≡⟨ refl ⟩
up (swap (down (inj₁ tt)))
≡⟨ cong (up ○ swap) (swapDownCorrect (F.suc i) F.zero) ⟩
up (swap ( finToVal (evalPerm (swapDownFromPerm (F.suc i)) F.zero) ))
≡⟨ refl ⟩
up (swap (finToVal (permute (swapDownFromPerm (F.suc i)) (tabulate id) !! F.zero)))
≡⟨ cong (λ x → up (swap (finToVal (x !! F.zero )))) (swapDownFromAct (F.suc i) (tabulate id)) ⟩
up (swap (finToVal (swapDownFromVec (F.inject₁ (F.suc i)) (tabulate id) !! F.zero)))
≡⟨ refl ⟩
up (swap (finToVal ( (((tabulate id) !! (F.inject₁ (F.suc i))) ∷ remove (F.inject₁ (F.suc i)) (tabulate id)) !! F.zero )))
≡⟨ refl ⟩
up (swap (finToVal ((tabulate id) !! (F.inject₁ (F.suc i)))))
≡⟨ cong (up ○ swap ○ finToVal) (lookupTab {f = id} (F.inject₁ (F.suc i))) ⟩
up (swap (finToVal (F.inject₁ (F.suc i))))
≡⟨ cong up (swapiCorrect (F.suc i) (F.inject₁ (F.suc i))) ⟩
up (finToVal (evalPerm (swapiPerm (F.suc i)) (F.inject₁ (F.suc i))))
≡⟨ refl ⟩
up (finToVal (permute (swapiPerm (F.suc i)) (tabulate id) !! (F.inject₁ (F.suc i))))
≡⟨ cong (λ x → up (finToVal( x !! (F.inject₁ (F.suc i))))) (swapiAct (F.suc i) (tabulate id)) ⟩
up (finToVal (insert (remove (F.inject₁ (F.suc i)) (tabulate id)) (F.suc (F.suc i)) ((tabulate id) !! (F.inject₁ (F.suc i))) !! (F.inject₁ (F.suc i))))
≡⟨ cong (λ x → up (finToVal (insert (remove (F.inject₁ (F.suc i)) (tabulate id)) (F.suc (F.suc i)) x !! (F.inject₁ (F.suc i))))) (lookupTab {f = id} (F.inject₁ (F.suc i))) ⟩
up (finToVal (insert (remove (F.inject₁ (F.suc i)) (tabulate id)) (F.suc (F.suc i)) (F.inject₁ (F.suc i)) !! (F.inject₁ (F.suc i))))
≡⟨ cong (up ○ finToVal) (lookup+1-insert-remove (F.suc i) (tabulate id)) ⟩
up (finToVal (lookup (F.suc (F.suc i)) (tabulate id)))
≡⟨ cong (up ○ finToVal) (lookupTab {f = id} (F.suc (F.suc i))) ⟩
up (finToVal (F.suc (F.suc i)))
≡⟨ swapUpCorrect (F.suc i) (F.suc (F.suc i)) ⟩
finToVal (evalPerm (swapUpToPerm (F.suc i)) (F.suc (F.suc i)))
≡⟨ cong (λ x → finToVal (x !! (F.suc (F.suc i)))) (swapUpToAct (F.suc i) (tabulate id)) ⟩
finToVal ( insert (tabulate F.suc) (F.inject₁ (F.suc i)) (F.zero) !! (F.suc (F.suc i)))
≡⟨ cong finToVal (sym (lookup-insert3 (F.suc i) (tabulate F.suc))) ⟩
finToVal ((tabulate F.suc) !! (F.suc i))
≡⟨ cong finToVal (lookupTab {f = F.suc} (F.suc i)) ⟩
finToVal (F.suc (F.suc i))
≡⟨ cong finToVal (sym (lookupTab {f = F.suc ○ F.suc} i)) ⟩
finToVal (lookup i (tabulate (F.suc ○ F.suc)))
≡⟨ refl ⟩
finToVal (lookup F.zero (swapmVec (F.suc (F.suc i)) (tabulate id)))
≡⟨ cong (λ x → finToVal (x !! F.zero)) (sym (swapmAct (F.suc (F.suc i)) (tabulate id))) ⟩
finToVal (evalPerm (swapmPerm (F.suc (F.suc i))) F.zero)
∎
swapmCorrect2 {suc (suc n)} (F.suc F.zero) (F.suc j) =
begin
evalComb (swapi F.zero) (inj₂ (finToVal j))
≡⟨ swapi≡swap01 (F.suc j) ⟩
finToVal
(lookup j
(F.zero ∷ permute idP (tabulate (λ z → F.suc (F.suc z)))))
≡⟨ refl ⟩
finToVal (permute (F.suc F.zero ∷ idP) (tabulate id) !! (F.suc j))
∎
swapmCorrect2 {suc (suc n)} (F.suc (F.suc i)) (F.suc j) = {!!}
-}
{-
-- this alternate version of lemma1 might, in the long term, but a better
-- way to go?
lemma1′ : {n : ℕ} → (i : F.Fin n) → vmap (evalComb (swapm i)) (tabulate finToVal) ≡ vmap finToVal (permute (swapmPerm i) (tabulate id))
lemma1′ {zero} ()
lemma1′ {suc n} F.zero = cong (_∷_ (inj₁ tt)) (
begin
vmap id (tabulate (inj₂ ○ finToVal))
≡⟨ mapTab id (inj₂ ○ finToVal) ⟩
tabulate (inj₂ ○ finToVal)
≡⟨ cong tabulate refl ⟩
tabulate (finToVal ○ F.suc)
≡⟨ sym (mapTab finToVal F.suc) ⟩
vmap finToVal (tabulate F.suc)
≡⟨ cong (vmap finToVal) (sym (idP-id _)) ⟩
vmap finToVal (permute idP (tabulate F.suc))
∎ )
lemma1′ {suc n} (F.suc i) =
begin
vmap (evalComb (swapm (F.suc i))) (tabulate finToVal)
≡⟨ refl ⟩
evalComb (swapm (F.suc i)) (inj₁ tt) ∷ vmap (evalComb (swapm (F.suc i))) (tabulate (inj₂ ○ finToVal))
≡⟨ cong (λ x → x ∷ vmap (evalComb (swapm (F.suc i))) (tabulate (inj₂ ○ finToVal))) (swapmCorrect {suc n} (F.suc i) F.zero) ⟩
(finToVal (evalPerm (swapmPerm (F.suc i)) F.zero)) ∷ vmap (evalComb (swapm (F.suc i))) (tabulate (inj₂ ○ finToVal))
≡⟨ cong (λ x → (finToVal (evalPerm (swapmPerm (F.suc i)) F.zero)) ∷ x ) {!!} ⟩ -- need to generalize the inductive hyp. for this to work
{!!}
≡⟨ {!!} ⟩
vmap finToVal (insert (permute (swapOne i) (tabulate F.suc)) (F.suc i) F.zero)
∎
lemma2 : {n : ℕ} (c : (fromℕ n) ⇛ (fromℕ n)) → (i : F.Fin n) →
(evalComb c (finToVal i)) ≡ finToVal (evalPerm (combToPerm c) i)
lemma2 c i = {!!}
-}
| {
"alphanum_fraction": 0.5536873647,
"avg_line_length": 50.4789915966,
"ext": "agda",
"hexsha": "b0b927770562b4d8fca21f21c1d45443575faf8a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/OldUnivalence/Sane2.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/OldUnivalence/Sane2.agda",
"max_line_length": 182,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/OldUnivalence/Sane2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 9251,
"size": 24028
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Functor.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function renaming (_∘_ to _◍_)
open import Cubical.Foundations.GroupoidLaws using (lUnit; rUnit; assoc; cong-∙)
open import Cubical.Categories.Category
open import Cubical.Categories.Functor.Base
private
variable
ℓ ℓ' ℓ'' : Level
B C D E : Precategory ℓ ℓ'
open Precategory
open Functor
{-
x ---p--- x'
⇓ᵍ
g x' ---q--- y
⇓ʰ
h y ---r--- z
The path from `h (g x) ≡ z` obtained by
1. first applying cong to p and composing with q; then applying cong again and composing with r
2. first applying cong to q and composing with r; then applying a double cong to p and precomposing
are path equal.
-}
congAssoc : ∀ {X : Type ℓ} {Y : Type ℓ'} {Z : Type ℓ''} (g : X → Y) (h : Y → Z) {x x' : X} {y : Y} {z : Z}
→ (p : x ≡ x') (q : g x' ≡ y) (r : h y ≡ z)
→ cong (h ◍ g) p ∙ (cong h q ∙ r) ≡ cong h (cong g p ∙ q) ∙ r
congAssoc g h p q r
= cong (h ◍ g) p ∙ (cong h q ∙ r)
≡⟨ assoc _ _ _ ⟩
((cong (h ◍ g) p) ∙ (cong h q)) ∙ r
≡⟨ refl ⟩
(cong h (cong g p) ∙ (cong h q)) ∙ r
≡⟨ cong (_∙ r) (sym (cong-∙ h _ _)) ⟩
cong h (cong g p ∙ q) ∙ r
∎
-- composition is associative
F-assoc : {F : Functor B C} {G : Functor C D} {H : Functor D E}
→ H ∘F (G ∘F F) ≡ (H ∘F G) ∘F F
F-assoc {F = F} {G} {H} i .F-ob x = H ⟅ G ⟅ F ⟅ x ⟆ ⟆ ⟆
F-assoc {F = F} {G} {H} i .F-hom f = H ⟪ G ⟪ F ⟪ f ⟫ ⟫ ⟫
F-assoc {F = F} {G} {H} i .F-id {x} = congAssoc (G ⟪_⟫) (H ⟪_⟫) (F .F-id {x}) (G .F-id {F ⟅ x ⟆}) (H .F-id) (~ i)
F-assoc {F = F} {G} {H} i .F-seq f g = congAssoc (G ⟪_⟫) (H ⟪_⟫) (F .F-seq f g) (G .F-seq _ _) (H .F-seq _ _) (~ i)
-- Results about functors
module _ {F : Functor C D} where
-- the identity is the identity
F-lUnit : F ∘F 𝟙⟨ C ⟩ ≡ F
F-lUnit i .F-ob x = F ⟅ x ⟆
F-lUnit i .F-hom f = F ⟪ f ⟫
F-lUnit i .F-id {x} = lUnit (F .F-id) (~ i)
F-lUnit i .F-seq f g = lUnit (F .F-seq f g) (~ i)
F-rUnit : 𝟙⟨ D ⟩ ∘F F ≡ F
F-rUnit i .F-ob x = F ⟅ x ⟆
F-rUnit i .F-hom f = F ⟪ f ⟫
F-rUnit i .F-id {x} = rUnit (F .F-id) (~ i)
F-rUnit i .F-seq f g = rUnit (F .F-seq f g) (~ i)
-- functors preserve commutative diagrams (specificallysqures here)
preserveCommF : ∀ {x y z w} {f : C [ x , y ]} {g : C [ y , w ]} {h : C [ x , z ]} {k : C [ z , w ]}
→ f ⋆⟨ C ⟩ g ≡ h ⋆⟨ C ⟩ k
→ (F ⟪ f ⟫) ⋆⟨ D ⟩ (F ⟪ g ⟫) ≡ (F ⟪ h ⟫) ⋆⟨ D ⟩ (F ⟪ k ⟫)
preserveCommF {f = f} {g = g} {h = h} {k = k} eq
= (F ⟪ f ⟫) ⋆⟨ D ⟩ (F ⟪ g ⟫)
≡⟨ sym (F .F-seq _ _) ⟩
F ⟪ f ⋆⟨ C ⟩ g ⟫
≡⟨ cong (F ⟪_⟫) eq ⟩
F ⟪ h ⋆⟨ C ⟩ k ⟫
≡⟨ F .F-seq _ _ ⟩
(F ⟪ h ⟫) ⋆⟨ D ⟩ (F ⟪ k ⟫)
∎
-- functors preserve isomorphisms
preserveIsosF : ∀ {x y} → CatIso {C = C} x y → CatIso {C = D} (F ⟅ x ⟆) (F ⟅ y ⟆)
preserveIsosF {x} {y} (catiso f f⁻¹ sec' ret') =
catiso
g g⁻¹
-- sec
( (g⁻¹ ⋆⟨ D ⟩ g)
≡⟨ sym (F .F-seq f⁻¹ f) ⟩
F ⟪ f⁻¹ ⋆⟨ C ⟩ f ⟫
≡⟨ cong (F .F-hom) sec' ⟩
F ⟪ C .id y ⟫
≡⟨ F .F-id ⟩
D .id y'
∎ )
-- ret
( (g ⋆⟨ D ⟩ g⁻¹)
≡⟨ sym (F .F-seq f f⁻¹) ⟩
F ⟪ f ⋆⟨ C ⟩ f⁻¹ ⟫
≡⟨ cong (F .F-hom) ret' ⟩
F ⟪ C .id x ⟫
≡⟨ F .F-id ⟩
D .id x'
∎ )
where
x' : D .ob
x' = F ⟅ x ⟆
y' : D .ob
y' = F ⟅ y ⟆
g : D [ x' , y' ]
g = F ⟪ f ⟫
g⁻¹ : D [ y' , x' ]
g⁻¹ = F ⟪ f⁻¹ ⟫
| {
"alphanum_fraction": 0.4465883669,
"avg_line_length": 30.5641025641,
"ext": "agda",
"hexsha": "5a29f4307a830e2bca5ca96ad36780bfe511b8c0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Categories/Functor/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Categories/Functor/Properties.agda",
"max_line_length": 116,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Categories/Functor/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1739,
"size": 3576
} |
------------------------------------------------------------------------
-- A comparison of the two alternative definitions of weak
-- bisimilarity
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
module Bisimilarity.Weak.Alternative.Comparison where
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude
open import H-level equality-with-J
open import Surjection equality-with-J using (_↠_)
open import Univalence-axiom equality-with-J
import Bisimilarity
import Bisimilarity.Classical
import Bisimilarity.Comparison as Comp
import Bisimilarity.Weak.Alternative
import Bisimilarity.Weak.Alternative.Classical
open import Labelled-transition-system
module _ {ℓ} {lts : LTS ℓ} where
open LTS lts
private
module Co = Bisimilarity.Weak.Alternative lts
module Cl = Bisimilarity.Weak.Alternative.Classical lts
-- Classically weakly bisimilar processes are coinductively weakly
-- bisimilar.
cl⇒co : ∀ {i p q} → p Cl.≈ q → Co.[ i ] p ≈ q
cl⇒co = Comp.cl⇒co
-- Coinductively weakly bisimilar processes are classically weakly
-- bisimilar.
co⇒cl : ∀ {p q} → p Co.≈ q → p Cl.≈ q
co⇒cl = Comp.co⇒cl
-- The function cl⇒co is a left inverse of co⇒cl (up to pointwise
-- bisimilarity).
cl⇒co∘co⇒cl : ∀ {i p q}
(p≈q : p Co.≈ q) →
Co.[ i ] cl⇒co (co⇒cl p≈q) ≡ p≈q
cl⇒co∘co⇒cl = Comp.cl⇒co∘co⇒cl
-- If there are two processes that are not equal, but weakly
-- bisimilar, then co⇒cl is not a left inverse of cl⇒co.
co⇒cl∘cl⇒co : ∀ {p q} →
p ≢ q → p Co.≈ q →
∃ λ (p≈p : p Cl.≈ p) → co⇒cl (cl⇒co p≈p) ≢ p≈p
co⇒cl∘cl⇒co = Comp.co⇒cl∘cl⇒co
-- The two definitions of weak bisimilarity are logically
-- equivalent.
classical⇔coinductive : ∀ {p q} → p Cl.≈ q ⇔ p Co.≈ q
classical⇔coinductive = Comp.classical⇔coinductive
-- There is a split surjection from the classical definition of
-- bisimilarity to the coinductive one (assuming two kinds of
-- extensionality).
classical↠coinductive :
Extensionality ℓ ℓ →
Co.Extensionality →
∀ {p q} → p Cl.≈ q ↠ p Co.≈ q
classical↠coinductive = Comp.classical↠coinductive
-- There is at least one LTS for which there is a split surjection
-- from the coinductive definition of weak bisimilarity to the
-- classical one.
coinductive↠classical :
∀ {p q} →
Bisimilarity.Weak.Alternative._≈_ empty p q ↠
Bisimilarity.Weak.Alternative.Classical._≈_ empty p q
coinductive↠classical {p = ()}
-- There is an LTS for which coinductive weak bisimilarity is
-- pointwise propositional (assuming two kinds of extensionality and
-- univalence).
coinductive-weak-bisimilarity-is-sometimes-propositional :
Extensionality lzero (lsuc lzero) →
Univalence lzero →
let module Co = Bisimilarity.Weak.Alternative one-loop in
Co.Extensionality → Is-proposition (tt Co.≈ tt)
coinductive-weak-bisimilarity-is-sometimes-propositional ext univ =
subst (λ lts → let module Co = Bisimilarity lts in
∀ p → Co.Extensionality → Is-proposition (p Co.∼ p))
(sym $ weak≡id ext univ one-loop (λ _ ()))
(λ _ → Comp.coinductive-bisimilarity-is-sometimes-propositional
(lower-extensionality _ _ ext))
_
-- However, classical weak bisimilarity (of any size) is, for the same
-- LTS, not pointwise propositional (assuming extensionality and
-- univalence).
classical-weak-bisimilarity-is-not-propositional :
Extensionality lzero (lsuc lzero) →
Univalence lzero →
let module Cl = Bisimilarity.Weak.Alternative.Classical one-loop in
∀ {ℓ} → ¬ Is-proposition (Cl.Weak-bisimilarity′ ℓ (tt , tt))
classical-weak-bisimilarity-is-not-propositional ext univ {ℓ} =
subst (λ lts → let module Cl = Bisimilarity.Classical lts in
∀ p → ¬ Is-proposition (Cl.Bisimilarity′ ℓ (p , p)))
(sym $ weak≡id ext univ one-loop (λ _ ()))
(λ _ → Comp.classical-bisimilarity-is-not-propositional)
_
-- Thus, assuming two kinds of extensionality and univalence, there is
-- in general no split surjection from the coinductive definition of
-- weak bisimilarity to the classical one (of any size).
¬coinductive↠classical :
Extensionality lzero (lsuc lzero) →
Univalence lzero →
Bisimilarity.Weak.Alternative.Extensionality one-loop →
∀ {ℓ} →
¬ (∀ {p q} →
Bisimilarity.Weak.Alternative._≈_ one-loop p q ↠
Bisimilarity.Weak.Alternative.Classical.Weak-bisimilarity′
one-loop ℓ (p , q))
¬coinductive↠classical ext univ ext′ {ℓ} =
subst (λ lts → Bisimilarity.Extensionality lts →
¬ (∀ {p q} → Bisimilarity._∼_ lts p q ↠
Bisimilarity.Classical.Bisimilarity′
lts ℓ (p , q)))
(sym $ weak≡id ext univ one-loop (λ _ ()))
(λ ext′ → Comp.¬coinductive↠classical
(lower-extensionality _ _ ext) ext′)
ext′
-- Note also that coinductive weak bisimilarity is not always
-- propositional (assuming extensionality and univalence).
coinductive-weak-bisimilarity-is-not-propositional :
Extensionality lzero (lsuc lzero) →
Univalence lzero →
let open Bisimilarity.Weak.Alternative two-bisimilar-processes in
¬ (∀ {p q} → Is-proposition (p ≈ q))
coinductive-weak-bisimilarity-is-not-propositional ext univ =
subst (λ lts → let open Bisimilarity lts in
¬ (∀ {p q} → Is-proposition (p ∼ q)))
(sym $ weak≡id ext univ two-bisimilar-processes (λ _ ()))
Comp.coinductive-bisimilarity-is-not-propositional
-- In fact, for every type A there is a pointwise split surjection
-- from a certain instance of weak bisimilarity to equality on A
-- (assuming extensionality and univalence).
weak-bisimilarity↠equality :
∀ {a} →
Extensionality a (lsuc a) →
Univalence a →
{A : Type a} →
let open Bisimilarity.Weak.Alternative (bisimilarity⇔equality A) in
{p q : A} → p ≈ q ↠ p ≡ q
weak-bisimilarity↠equality ext univ {A} =
subst (λ lts → let open Bisimilarity lts in
∀ {p q} → p ∼ q ↠ p ≡ q)
(sym $ weak≡id ext univ (bisimilarity⇔equality A) (λ _ ()))
(Comp.bisimilarity↠equality {A = A})
| {
"alphanum_fraction": 0.654676259,
"avg_line_length": 36.1560693642,
"ext": "agda",
"hexsha": "5b0d29367a38dd9d95d4cc31d93fbb9332d74f4a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/Weak/Alternative/Comparison.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/Weak/Alternative/Comparison.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/Weak/Alternative/Comparison.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1976,
"size": 6255
} |
module Examples.Type where
open import Agda.Builtin.Equality using (_≡_; refl)
open import FFI.Data.String using (_++_)
open import Luau.Type using (nil; _∪_; _∩_; _⇒_)
open import Luau.Type.ToString using (typeToString)
ex1 : typeToString(nil) ≡ "nil"
ex1 = refl
ex2 : typeToString(nil ⇒ nil) ≡ "(nil) -> nil"
ex2 = refl
ex3 : typeToString(nil ⇒ (nil ⇒ nil)) ≡ "(nil) -> (nil) -> nil"
ex3 = refl
ex4 : typeToString(nil ∪ (nil ⇒ (nil ⇒ nil))) ≡ "((nil) -> (nil) -> nil)?"
ex4 = refl
ex5 : typeToString(nil ⇒ ((nil ⇒ nil) ∪ nil)) ≡ "(nil) -> ((nil) -> nil)?"
ex5 = refl
ex6 : typeToString((nil ⇒ nil) ∪ (nil ⇒ (nil ⇒ nil))) ≡ "((nil) -> nil | (nil) -> (nil) -> nil)"
ex6 = refl
ex7 : typeToString((nil ⇒ nil) ∪ ((nil ⇒ (nil ⇒ nil)) ∪ nil)) ≡ "((nil) -> nil | (nil) -> (nil) -> nil)?"
ex7 = refl
| {
"alphanum_fraction": 0.5773067332,
"avg_line_length": 28.6428571429,
"ext": "agda",
"hexsha": "859227ee3eb5a27da044abcf3d2154591fed7b48",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Examples/Type.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Examples/Type.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Examples/Type.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 293,
"size": 802
} |
module Sets.BoolSet {ℓ ℓₑ} where
import Lvl
open import Data.Boolean
import Data.Boolean.Operators
open Data.Boolean.Operators.Logic using (_⟶_ ; _⟵_)
open Data.Boolean.Operators.Programming hiding (_==_)
open import Data.Boolean.Stmt
open import Data.Boolean.Proofs
import Data.List as List
import Data.List.Functions as List
open import Logic
open import Functional
open import Operator.Equals
open import Structure.Setoid
open import Type
-- A function from a type T to a boolean value.
-- This can be interpreted as a computable set over T (a set with a computable containment relation).
BoolSet : ∀{ℓ} → Type{ℓ} → Type{ℓ}
BoolSet(T) = (T → Bool)
module _ {T : Type{ℓ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
𝐔 : BoolSet(T)
𝐔 = const(𝑇)
∅ : BoolSet(T)
∅ = const(𝐹)
singleton : ⦃ _ : DecidableEquiv(T) ⦄ → T → BoolSet(T)
singleton(t) = (_== t)
enumeration : ⦃ _ : DecidableEquiv(T) ⦄ → List.List(T) → BoolSet(T)
enumeration(l) = (x ↦ List.satisfiesAny(_== x)(l))
_∈?_ : T → BoolSet(T) → Bool
_∈?_ = apply
_∉?_ : T → BoolSet(T) → Bool
_∉?_ a set = !(a ∈? set)
{- TODO: Define a FinitelyEnumerable relation
_⊆?_ : BoolSet(T) → BoolSet(T) → Bool
_⊆?_ A B = all(elem ↦ (elem ∈? A) ⟶ (elem ∈? B))
_⊇?_ : BoolSet(T) → BoolSet(T) → Bool
_⊇?_ A B = all(elem ↦ (elem ∈? A) ⟵ (elem ∈? B))
-}
_∈_ : T → BoolSet(T) → Stmt
_∈_ a set = IsTrue(a ∈? set)
_∉_ : T → BoolSet(T) → Stmt
_∉_ a set = IsTrue(a ∉? set)
_⊆_ : BoolSet(T) → BoolSet(T) → Stmt
_⊆_ set₁ set₂ = (∀{a} → (a ∈ set₁) → (a ∈ set₂))
_⊇_ : BoolSet(T) → BoolSet(T) → Stmt
_⊇_ set₁ set₂ = _⊆_ set₂ set₁
_∪_ : BoolSet(T) → BoolSet(T) → BoolSet(T)
_∪_ A B = (elem ↦ (elem ∈? A) || (elem ∈? B))
_∩_ : BoolSet(T) → BoolSet(T) → BoolSet(T)
_∩_ A B = (elem ↦ (elem ∈? A) && (elem ∈? B))
_∖_ : BoolSet(T) → BoolSet(T) → BoolSet(T)
_∖_ A B = (elem ↦ (elem ∈? A) && !(elem ∈? B))
∁_ : BoolSet(T) → BoolSet(T)
∁_ A = (elem ↦ !(elem ∈? A))
℘_ : BoolSet(T) → BoolSet(BoolSet(T))
℘_ _ = const(𝑇)
| {
"alphanum_fraction": 0.5841874085,
"avg_line_length": 26.9605263158,
"ext": "agda",
"hexsha": "48dc10f924a3865e7d116b2f1deed6e15870f068",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Sets/BoolSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Sets/BoolSet.agda",
"max_line_length": 101,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Sets/BoolSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 835,
"size": 2049
} |
-- MIT License
-- Copyright (c) 2021 Luca Ciccone and Luca Padovani
-- Permission is hereby granted, free of charge, to any person
-- obtaining a copy of this software and associated documentation
-- files (the "Software"), to deal in the Software without
-- restriction, including without limitation the rights to use,
-- copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the
-- Software is furnished to do so, subject to the following
-- conditions:
-- The above copyright notice and this permission notice shall be
-- included in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-- OTHER DEALINGS IN THE SOFTWARE.
{-# OPTIONS --guardedness #-}
open import Data.Empty
open import Data.Maybe
open import Data.Product
open import Data.Sum
open import Data.List using ([]; _∷_; _++_)
open import Relation.Nullary
open import Relation.Unary using (_∪_; _∩_; Satisfiable)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (Star; ε; _◅_)
open import Common
module Session {ℙ : Set} (message : Message ℙ)
where
open import Trace message
open import SessionType message
open import Transitions message
open import HasTrace message
data Session : Set where
_#_ : (T : SessionType) (S : SessionType) -> Session
data Reduction : Session -> Session -> Set where
sync : ∀{α R R' T T'} (r : Transition R (co-action α) R') (t : Transition T α T') -> Reduction (R # T) (R' # T')
Reductions : Session -> Session -> Set
Reductions = Star Reduction
Reduce : Session -> Set
Reduce S = Satisfiable (Reduction S)
data Success : Session -> Set where
win#def : ∀{T S} (w : Win T) (def : Defined S) -> Success (T # S)
ProgressS : Session -> Set
ProgressS = Success ∪ Reduce
MaySucceed : Session -> Set
MaySucceed S = Satisfiable (Reductions S ∩ Success)
InvariantS : (Session -> Set) -> Session -> Set
InvariantS P S = ∀{S'} -> Reductions S S' -> P S'
ImplyS : (Session -> Set) -> SessionType -> SessionType -> Set
ImplyS P T S = ∀{R} -> P (R # T) -> P (R # S)
ComplianceS : Session -> Set
ComplianceS = InvariantS ProgressS
FairComplianceS : Session -> Set
FairComplianceS = InvariantS MaySucceed
SubtypingS : SessionType -> SessionType -> Set
SubtypingS = ImplyS ComplianceS
FairSubtypingS : SessionType -> SessionType -> Set
FairSubtypingS = ImplyS FairComplianceS
ConvergenceS : SessionType -> SessionType -> Set
ConvergenceS T S = ∀{R} -> FairComplianceS (R # T) -> MaySucceed (R # S)
unzip-red* : ∀{T T' S S'} -> Reductions (T # S) (T' # S') ->
∃[ φ ] (Transitions T (co-trace φ) T' × Transitions S φ S')
unzip-red* ε = _ , refl , refl
unzip-red* (sync r t ◅ reds) =
let _ , tr , sr = unzip-red* reds in
_ , step r tr , step t sr
zip-red* : ∀{φ T T' S S'} ->
Transitions T (co-trace φ) T' ->
Transitions S φ S' ->
Reductions (T # S) (T' # S')
zip-red* refl refl = ε
zip-red* (step t tr) (step s sr) = sync t s ◅ zip-red* tr sr
zip-traces :
∀{R T φ}
(rφ : R HasTrace (co-trace φ))
(tφ : T HasTrace φ) ->
Reductions (R # T) (after rφ # after tφ)
zip-traces (_ , _ , rr) (_ , _ , tr) = zip-red* rr tr
success-not-reduce : ∀{S S'} → Success S → ¬ (Reduction S S')
success-not-reduce (win#def win _) (sync r _) = win-reduces-⊥ win r
| {
"alphanum_fraction": 0.6814064997,
"avg_line_length": 33.2212389381,
"ext": "agda",
"hexsha": "eb503688e7ac1a368409563724bf91e8b5a25f8f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/Session.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/Session.agda",
"max_line_length": 114,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/Session.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 1079,
"size": 3754
} |
module _ where
open import Prelude
open import Numeric.Nat.Prime
2^44+7 2^46+15 2^48+21 : Nat
2^44+7 = 17592186044423
2^46+15 = 70368744177679
2^48+21 = 281474976710677
main : IO ⊤
main = print $ isPrime! 2^48+21
| {
"alphanum_fraction": 0.7045454545,
"avg_line_length": 15.7142857143,
"ext": "agda",
"hexsha": "f4bb1dab67679f8d041955340081ef027db26612",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "test/PrimeTest.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "test/PrimeTest.agda",
"max_line_length": 31,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "test/PrimeTest.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 99,
"size": 220
} |
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid)
-- Lifts a setoid into a 1-groupoid
module Categories.Category.Construction.0-Groupoid
{c ℓ} e (S : Setoid c ℓ) where
open import Level using (Lift)
open import Data.Unit using (⊤)
open import Function using (flip)
open import Categories.Category.Groupoid using (Groupoid)
open Setoid S
0-Groupoid : Groupoid c ℓ e
0-Groupoid = record
{ category = record
{ Obj = Carrier
; _⇒_ = _≈_
; _≈_ = λ _ _ → Lift e ⊤
; id = refl
; _∘_ = flip trans
}
; isGroupoid = record { _⁻¹ = sym }
}
| {
"alphanum_fraction": 0.648241206,
"avg_line_length": 20.5862068966,
"ext": "agda",
"hexsha": "d9ccfab7af85fc286763cf8d0ed4123d2b12621d",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/0-Groupoid.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/0-Groupoid.agda",
"max_line_length": 57,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/0-Groupoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 195,
"size": 597
} |
module MapTm where
open import Prelude
open import Star
open import Modal
open import Examples
open import Lambda
open Term
eq⟶ : {ty : Set}(T : TyAlg ty){σ₁ σ₂ τ₁ τ₂ : ty} ->
σ₁ == σ₂ -> τ₁ == τ₂ -> TyAlg._⟶_ T σ₁ τ₁ == TyAlg._⟶_ T σ₂ τ₂
eq⟶ T refl refl = refl
mapTm : {ty₁ ty₂ : Set}{T₁ : TyAlg ty₁}{T₂ : TyAlg ty₂}
{Γ : List ty₁}{τ : ty₁}(F : T₁ =Ty=> T₂) ->
Tm T₁ Γ τ -> Tm T₂ (map _ (TyArrow.apply F) Γ) (TyArrow.apply F τ)
mapTm {T₁ = T₁}{T₂}{Γ} F (var x) =
var (mapAny (cong (TyArrow.apply F)) x)
mapTm {T₁ = T₁}{T₂}{Γ} F zz =
subst (\τ -> Tm T₂ (map _ (TyArrow.apply F) Γ) τ)
(TyArrow.respNat F) zz
mapTm {T₁ = T₁}{T₂}{Γ} F ss =
subst Tm₂ (trans (TyArrow.resp⟶ F)
(TyArrow.respNat F -eq⟶ TyArrow.respNat F))
ss
where
_-eq⟶_ = eq⟶ T₂
Tm₂ = Tm T₂ (map _ (TyArrow.apply F) Γ)
mapTm {T₂ = T₂}{Γ} F (ƛ t) =
subst Tm₂ (TyArrow.resp⟶ F)
(ƛ (mapTm F t))
where Tm₂ = Tm T₂ (map _ (TyArrow.apply F) Γ)
mapTm {T₂ = T₂}{Γ} F (s $ t) =
subst Tm₂ (sym (TyArrow.resp⟶ F)) (mapTm F s)
$ mapTm F t
where
Tm₂ = Tm T₂ (map _ (TyArrow.apply F) Γ)
| {
"alphanum_fraction": 0.5605263158,
"avg_line_length": 28.5,
"ext": "agda",
"hexsha": "94abffa8fa5fd849fb1ec2b11750be051bbc91b7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/AIM6/Path/MapTm.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/AIM6/Path/MapTm.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/AIM6/Path/MapTm.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 505,
"size": 1140
} |
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_)
open import Agda.Builtin.Sigma
open import Agda.Builtin.List
open import Agda.Builtin.Unit
open import Agda.Builtin.Nat
map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
reverseAcc : {A : Set} → List A → List A → List A
reverseAcc [] ys = ys
reverseAcc (x ∷ xs) ys = reverseAcc xs (x ∷ ys)
reverse : {A : Set} → List A → List A
reverse xs = reverseAcc xs []
data Vec (A : Set) : Nat → Set where
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
postulate
replicate : ∀ {A : Set} {n} → A → Vec A n
zipWith : ∀ {A B C : Set} {n} → (A → B → C) → Vec A n → Vec B n → Vec C n
macro
rtest : Name → Term → TC ⊤
rtest f a = do
(function (clause tel _ t ∷ [])) ← withReconstructed (getDefinition f) where
_ → typeError (strErr "ERROR" ∷ [])
t ← inContext (reverse tel) (normalise t)
quoteTC t >>= unify a
transp : ∀ m n → Vec (Vec Nat n) m → Vec (Vec Nat m) n
transp .(suc m) n (_∷_ {m} x xs) = zipWith {Nat} {Vec Nat m} {Vec Nat (suc m)} {n} (_∷_ {Nat} {m}) x (transp _ n xs)
test : Term
test = rtest transp
| {
"alphanum_fraction": 0.5841325196,
"avg_line_length": 30.1842105263,
"ext": "agda",
"hexsha": "063fc54551fc842bfb86123ee862607ad8fa9b10",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "Seanpm2001-Agda-lang/agda",
"max_forks_repo_path": "test/Succeed/Issue5075.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "Seanpm2001-Agda-lang/agda",
"max_issues_repo_path": "test/Succeed/Issue5075.agda",
"max_line_length": 116,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "sseefried/agda",
"max_stars_repo_path": "test/Succeed/Issue5075.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z",
"num_tokens": 433,
"size": 1147
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Optics.All
open import LibraBFT.Prelude
open import LibraBFT.Hash
open import LibraBFT.Lemmas
open import LibraBFT.Base.KVMap
open import LibraBFT.Base.PKCS
open import LibraBFT.Abstract.Types
open EpochConfig
open import LibraBFT.Impl.NetworkMsg
open import LibraBFT.Impl.Consensus.Types
open import LibraBFT.Impl.Util.Crypto
open import LibraBFT.Impl.Handle sha256 sha256-cr
open import LibraBFT.Concrete.System.Parameters
open import LibraBFT.Yasm.Base
open import LibraBFT.Yasm.AvailableEpochs using (AvailableEpochs ; lookup'; lookup'')
open import LibraBFT.Yasm.System ConcSysParms
open import LibraBFT.Yasm.Properties ConcSysParms
-- This module contains placeholders for the future analog of the
-- corresponding VotesOnce property. Defining the implementation
-- obligation and proving that it is an invariant of an implementation
-- is a substantial undertaking. We are working first on proving the
-- simpler VotesOnce property to settle down the structural aspects
-- before tackling the harder semantic issues.
module LibraBFT.Concrete.Properties.LockedRound where
-- TODO-3: define the implementation obligation
ImplObligation₁ : Set
ImplObligation₁ = Unit
-- Next, we prove that given the necessary obligations,
module Proof
(sps-corr : StepPeerState-AllValidParts)
(Impl-LR1 : ImplObligation₁)
where
-- Any reachable state satisfies the LR rule for any epoch in the system.
module _ {e}(st : SystemState e)(r : ReachableSystemState st)(eid : Fin e) where
-- Bring in 'unwind', 'ext-unforgeability' and friends
open Structural sps-corr
-- Bring in ConcSystemState
open import LibraBFT.Concrete.System sps-corr
open PerState st r
open PerEpoch eid
open import LibraBFT.Abstract.Obligations.LockedRound 𝓔 Hash _≟Hash_ (ConcreteVoteEvidence 𝓔) as LR
postulate -- TODO-3: prove it
lrr : LR.Type ConcSystemState
| {
"alphanum_fraction": 0.7855140187,
"avg_line_length": 35.6666666667,
"ext": "agda",
"hexsha": "e70d4cd491ba17775af72f56e051adbbc9aee122",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "lisandrasilva/bft-consensus-agda-1",
"max_forks_repo_path": "LibraBFT/Concrete/Properties/LockedRound.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "lisandrasilva/bft-consensus-agda-1",
"max_issues_repo_path": "LibraBFT/Concrete/Properties/LockedRound.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7dd98dd90d98fbb934ef8cb4f3314940986790d",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "lisandrasilva/bft-consensus-agda-1",
"max_stars_repo_path": "LibraBFT/Concrete/Properties/LockedRound.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 567,
"size": 2140
} |
module Cats.Trans.Iso where
open import Level using (_⊔_)
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl)
open import Cats.Category.Base
open import Cats.Functor using (Functor)
open import Cats.Util.Simp using (simp!)
open import Cats.Trans using (Trans ; component ; natural)
import Cats.Category.Constructions.Iso as Iso
open Functor
open Iso.Build._≅_
module _ {lo la l≈ lo′ la′ l≈′}
{C : Category lo la l≈} {D : Category lo′ la′ l≈′}
where
private
module C = Category C
module D = Category D
open module D≅ = Iso.Build D using (_≅_)
module ≅ = D≅.≅
open D.≈-Reasoning
record NatIso (F G : Functor C D) : Set (lo ⊔ la ⊔ lo′ ⊔ la′ ⊔ l≈′)
where
field
iso : ∀ {c} → fobj F c ≅ fobj G c
forth-natural : ∀ {c d} {f : c C.⇒ d}
→ forth iso D.∘ fmap F f D.≈ fmap G f D.∘ forth iso
back-natural : ∀ {c d} {f : c C.⇒ d}
→ back iso D.∘ fmap G f D.≈ fmap F f D.∘ back iso
back-natural {f = f} =
begin
back iso D.∘ fmap G f
≈⟨ D.∘-resp-r (D.≈.sym D.id-r) ⟩
back iso D.∘ fmap G f D.∘ D.id
≈⟨ D.∘-resp-r (D.∘-resp-r (D.≈.sym (forth-back iso))) ⟩
back iso D.∘ fmap G f D.∘ forth iso D.∘ back iso
≈⟨ simp! D ⟩
back iso D.∘ (fmap G f D.∘ forth iso) D.∘ back iso
≈⟨ D.∘-resp-r (D.∘-resp-l (D.≈.sym forth-natural)) ⟩
back iso D.∘ (forth iso D.∘ fmap F f) D.∘ back iso
≈⟨ simp! D ⟩
(back iso D.∘ (forth iso)) D.∘ fmap F f D.∘ back iso
≈⟨ D.∘-resp-l (back-forth iso) ⟩
D.id D.∘ fmap F f D.∘ back iso
≈⟨ D.id-l ⟩
fmap F f D.∘ back iso
∎
Forth : Trans F G
Forth = record
{ component = λ _ → forth iso
; natural = forth-natural
}
Back : Trans G F
Back = record
{ component = λ _ → back iso
; natural = back-natural
}
open NatIso public
id : ∀ {F} → NatIso F F
id = record
{ iso = ≅.refl
; forth-natural = D.≈.trans D.id-l (D.≈.sym D.id-r)
}
sym : ∀ {F G} → NatIso F G → NatIso G F
sym θ = record
{ iso = ≅.sym (iso θ)
; forth-natural = back-natural θ
}
_∘_ : ∀ {F G H} → NatIso G H → NatIso F G → NatIso F H
_∘_ {F} {G} {H} θ ι = record
{ iso = ≅.trans (iso ι) (iso θ)
; forth-natural = λ {_} {_} {f} →
begin
(forth (iso θ) D.∘ forth (iso ι)) D.∘ fmap F f
≈⟨ D.assoc ⟩
forth (iso θ) D.∘ forth (iso ι) D.∘ fmap F f
≈⟨ D.∘-resp-r (forth-natural ι) ⟩
forth (iso θ) D.∘ fmap G f D.∘ forth (iso ι)
≈⟨ D.unassoc ⟩
(forth (iso θ) D.∘ fmap G f) D.∘ forth (iso ι)
≈⟨ D.∘-resp-l (forth-natural θ) ⟩
(fmap H f D.∘ forth (iso θ)) D.∘ forth (iso ι)
≈⟨ D.assoc ⟩
fmap H f D.∘ forth (iso θ) D.∘ forth (iso ι)
∎
}
| {
"alphanum_fraction": 0.4965729952,
"avg_line_length": 26.7706422018,
"ext": "agda",
"hexsha": "43469d92f69a739af0d76a327909961e445ffa7a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Trans/Iso.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Trans/Iso.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Trans/Iso.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1164,
"size": 2918
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Sums (disjoint unions)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Sum.Base where
open import Function using (_∘_; _-[_]-_ ; id)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Level using (_⊔_)
------------------------------------------------------------------------
-- Definition
infixr 1 _⊎_
data _⊎_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where
inj₁ : (x : A) → A ⊎ B
inj₂ : (y : B) → A ⊎ B
------------------------------------------------------------------------
-- Functions
[_,_] : ∀ {a b c} {A : Set a} {B : Set b} {C : A ⊎ B → Set c} →
((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) →
((x : A ⊎ B) → C x)
[ f , g ] (inj₁ x) = f x
[ f , g ] (inj₂ y) = g y
[_,_]′ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
(A → C) → (B → C) → (A ⊎ B → C)
[_,_]′ = [_,_]
swap : ∀ {a b} {A : Set a} {B : Set b} → A ⊎ B → B ⊎ A
swap (inj₁ x) = inj₂ x
swap (inj₂ x) = inj₁ x
map : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} →
(A → C) → (B → D) → (A ⊎ B → C ⊎ D)
map f g = [ inj₁ ∘ f , inj₂ ∘ g ]
map₁ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c}→
(A → C) → (A ⊎ B → C ⊎ B)
map₁ f = map f id
map₂ : ∀ {a b d} {A : Set a} {B : Set b} {D : Set d} →
(B → D) → (A ⊎ B → A ⊎ D)
map₂ = map id
infixr 1 _-⊎-_
_-⊎-_ : ∀ {a b c d} {A : Set a} {B : Set b} →
(A → B → Set c) → (A → B → Set d) → (A → B → Set (c ⊔ d))
f -⊎- g = f -[ _⊎_ ]- g
module _ {p} {P : Set p} where
-- Conversion back and forth with Dec
fromDec : Dec P → P ⊎ ¬ P
fromDec (yes p) = inj₁ p
fromDec (no ¬p) = inj₂ ¬p
toDec : P ⊎ ¬ P → Dec P
toDec (inj₁ p) = yes p
toDec (inj₂ ¬p) = no ¬p
| {
"alphanum_fraction": 0.3712284483,
"avg_line_length": 26.8985507246,
"ext": "agda",
"hexsha": "ee1dbc118d8ca55f2ade33df436a39e06bf21b69",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Base.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 756,
"size": 1856
} |
------------------------------------------------------------------------------
-- Common FOL definitions
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Common.FOL where
infix 6 ∃
infix 4 _≡_
infixr 4 _,_
postulate D : Set
-- The existential quantifier type on D.
data ∃ (A : D → Set) : Set where
_,_ : (t : D) → A t → ∃ A
-- The identity type on D.
data _≡_ (x : D) : D → Set where
refl : x ≡ x
| {
"alphanum_fraction": 0.4077669903,
"avg_line_length": 24.72,
"ext": "agda",
"hexsha": "a42995b7c3e24575eb84a22e50ad2dbe4858087a",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Common/FOL.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Common/FOL.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Common/FOL.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 149,
"size": 618
} |
------------------------------------------------------------------------
-- "Equational" reasoning combinator setup
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude.Size
open import Labelled-transition-system
module Similarity.Equational-reasoning-instances
{ℓ} {lts : LTS ℓ} {i : Size} where
open import Prelude
open import Bisimilarity lts
open import Equational-reasoning
open import Similarity lts
instance
reflexive≤ : Reflexive [ i ]_≤_
reflexive≤ = is-reflexive reflexive-≤
reflexive≤′ : Reflexive [ i ]_≤′_
reflexive≤′ = is-reflexive reflexive-≤′
convert≤≤ : Convertible [ i ]_≤_ [ i ]_≤_
convert≤≤ = is-convertible id
convert≤′≤ : Convertible _≤′_ [ i ]_≤_
convert≤′≤ = is-convertible λ p≤′q → force p≤′q
convert≤≤′ : Convertible [ i ]_≤_ [ i ]_≤′_
convert≤≤′ = is-convertible lemma
where
lemma : ∀ {p q} → [ i ] p ≤ q → [ i ] p ≤′ q
force (lemma p≤q) = p≤q
convert≤′≤′ : Convertible [ i ]_≤′_ [ i ]_≤′_
convert≤′≤′ = is-convertible id
convert∼≤ : Convertible [ i ]_∼_ [ i ]_≤_
convert∼≤ = is-convertible ∼⇒≤
convert∼′≤ : Convertible _∼′_ [ i ]_≤_
convert∼′≤ = is-convertible (convert ∘ ∼⇒≤′)
convert∼≤′ : ∀ {i} → Convertible [ i ]_∼_ [ i ]_≤′_
convert∼≤′ {i} = is-convertible lemma
where
lemma : ∀ {p q} → [ i ] p ∼ q → [ i ] p ≤′ q
force (lemma p∼q) = ∼⇒≤ p∼q
convert∼′≤′ : ∀ {i} → Convertible [ i ]_∼′_ [ i ]_≤′_
convert∼′≤′ = is-convertible ∼⇒≤′
trans≤≤ : Transitive [ i ]_≤_ [ i ]_≤_
trans≤≤ = is-transitive transitive-≤
trans≤′≤ : Transitive _≤′_ [ i ]_≤_
trans≤′≤ = is-transitive λ p≤′q → transitive (force p≤′q)
trans≤′≤′ : Transitive [ i ]_≤′_ [ i ]_≤′_
trans≤′≤′ = is-transitive transitive-≤′
trans≤≤′ : Transitive [ i ]_≤_ [ i ]_≤′_
trans≤≤′ = is-transitive lemma
where
lemma : ∀ {p q r} → [ i ] p ≤ q → [ i ] q ≤′ r → [ i ] p ≤′ r
force (lemma p≤q q≤′r) = transitive-≤ p≤q (force q≤′r)
| {
"alphanum_fraction": 0.5336994508,
"avg_line_length": 27.8194444444,
"ext": "agda",
"hexsha": "dcb7eaaa01f5b2e84e78ec50127ee0b84bc04f30",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Similarity/Equational-reasoning-instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Similarity/Equational-reasoning-instances.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Similarity/Equational-reasoning-instances.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 848,
"size": 2003
} |
{-# OPTIONS --without-K --safe #-}
module Dodo.Binary.Precedes where
-- Stdlib imports
open import Level using (Level; _⊔_)
open import Data.Product using (_×_; _,_)
open import Relation.Nullary using (¬_)
open import Relation.Unary using (Pred)
open import Relation.Binary using (REL; Rel)
open import Relation.Binary.Construct.Closure.Transitive using (TransClosure; [_]; _∷_)
-- Local imports
open import Dodo.Binary.Transitive
open import Dodo.Binary.Immediate
-- # Definitions #
-- `¬ P x` before `¬ P y`
-- `P x` before `¬ P y`
-- `P x` before `P y`
⊤-Precedes-⊥ : {a ℓ₁ ℓ₂ : Level} {A : Set a} → Pred A ℓ₁ → Rel A ℓ₂ → Set _
⊤-Precedes-⊥ P R = ∀ {x y} → R x y → (P y → P x)
-- We could generalize `⊤-Precedes-⊥` to `Precedes` below:
--
-- Precedes : {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} → Pred A ℓ₁ → Pred A ℓ₂ → Rel A ℓ₃ → Set _
-- Precedes P Q R = ∀ {x y} → R x y → (P y → P x) × (Q x → Q y)
--
-- However, this is semantically a bit cumbersome, as P and Q are /not/ mutually exclusive.
-- Which means both P and Q may hold for an element.
-- # Helpers #
private
identity : {a : Level} → {A : Set a} → A → A
identity x = x
contrapositive : ∀ {a b : Level} {A : Set a} {B : Set b}
→ ( A → B ) → ( ¬ B → ¬ A )
contrapositive f ¬b a = ¬b (f a)
-- # Operations #
module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} (R : Rel A ℓ₂) where
⊤prec⊥-invert : ⊤-Precedes-⊥ P R → {x y : A} → R x y → ¬ P x → ¬ P y
⊤prec⊥-invert ⊤prec⊥ Rxy ¬Px Py = contrapositive ¬Px identity (⊤prec⊥ Rxy Py)
-- # Properties #
module _ {a ℓ₁ ℓ₂ : Level} {A : Set a} {P : Pred A ℓ₁} {R : Rel A ℓ₂} where
⊤prec⊥-⁺ : ⊤-Precedes-⊥ P R → ⊤-Precedes-⊥ P (TransClosure R)
⊤prec⊥-⁺ Pprec¬P [ x∼y ] Py = Pprec¬P x∼y Py
⊤prec⊥-⁺ Pprec¬P (x∼y ∷ y~⁺z) Py = Pprec¬P x∼y (⊤prec⊥-⁺ Pprec¬P y~⁺z Py)
⊤prec⊥-imm : ⊤-Precedes-⊥ P R → ⊤-Precedes-⊥ P (immediate R)
⊤prec⊥-imm Pprec¬P (x~y , ¬∃z) Py = Pprec¬P x~y Py
| {
"alphanum_fraction": 0.5839378238,
"avg_line_length": 30.6349206349,
"ext": "agda",
"hexsha": "b23413a03f9ce64dde75222d6b2ef2b5f6e83ca1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "sourcedennis/agda-dodo",
"max_forks_repo_path": "src/Dodo/Binary/Precedes.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "sourcedennis/agda-dodo",
"max_issues_repo_path": "src/Dodo/Binary/Precedes.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "sourcedennis/agda-dodo",
"max_stars_repo_path": "src/Dodo/Binary/Precedes.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 816,
"size": 1930
} |
-- Copyright 2020 Frederik Zipp. All rights reserved.
-- Use of this source code is governed by a BSD-style
-- license that can be found in the LICENSE file.
module GameOfLife where
open import Data.Bool using (Bool; _∨_; if_then_else_)
open import Data.Nat using (ℕ; suc; _+_; _<ᵇ_; _≡ᵇ_)
open import Data.List using (List; []; _∷_; length; zipWith; upTo; sum; map)
open import Data.Maybe using (Maybe; just; nothing; fromMaybe)
open import Data.String using (String; intersperse)
open import Function using (_∘_; id; _$_)
open import IO using (run; putStrLn)
---- Utility functions ----
mapWithIndex : ∀ {A B : Set} → (ℕ → A → B) → List A → List B
mapWithIndex f xs = zipWith f (upTo (length xs)) xs
_element_ : ∀ {A : Set} → List A → ℕ → Maybe A
[] element n = nothing
(x ∷ xs) element 0 = just x
(x ∷ xs) element suc n = xs element n
_-_ : ℕ → ℕ → Maybe ℕ
m - 0 = just m
0 - (suc n) = nothing
suc m - suc n = m - n
catMaybes : ∀ {A : Set} → List (Maybe A) → List A
catMaybes [] = []
catMaybes (nothing ∷ xs) = catMaybes xs
catMaybes (just x ∷ xs) = x ∷ catMaybes xs
---- Domain ----
data Cell : Set where
□ : Cell
■ : Cell
aliveCount : Cell → ℕ
aliveCount □ = 0
aliveCount ■ = 1
Row : Set
Row = List Cell
Board : Set
Board = List Row
data Pos : Set where
⟨_,_⟩ : ℕ → ℕ → Pos
⟨_,_⟩? : Maybe ℕ → Maybe ℕ → Maybe Pos
⟨ just colᵢ , just rowᵢ ⟩? = just ⟨ colᵢ , rowᵢ ⟩
⟨ just colᵢ , nothing ⟩? = nothing
⟨ nothing , just rowᵢ ⟩? = nothing
⟨ nothing , nothing ⟩? = nothing
neighbourPositions : Pos → List Pos
neighbourPositions ⟨ colᵢ , rowᵢ ⟩ = catMaybes (
⟨ (colᵢ - 1) , (rowᵢ - 1) ⟩? ∷
⟨ (colᵢ - 1) , just (rowᵢ + 0) ⟩? ∷
⟨ (colᵢ - 1) , just (rowᵢ + 1) ⟩? ∷
⟨ just (colᵢ + 0) , (rowᵢ - 1) ⟩? ∷
⟨ just (colᵢ + 0) , just (rowᵢ + 1) ⟩? ∷
⟨ just (colᵢ + 1) , (rowᵢ - 1) ⟩? ∷
⟨ just (colᵢ + 1) , just (rowᵢ + 0) ⟩? ∷
⟨ just (colᵢ + 1) , just (rowᵢ + 1) ⟩? ∷
[])
cellAt : Board → Pos → Cell
cellAt board ⟨ colᵢ , rowᵢ ⟩ = fromMaybe □ ((fromMaybe [] (board element rowᵢ)) element colᵢ)
aliveCountAt : Board → Pos → ℕ
aliveCountAt board = aliveCount ∘ cellAt board
neighbourCount : Board → Pos → ℕ
neighbourCount board pos = sum $ map (aliveCountAt board) (neighbourPositions pos)
nextCell : Cell → ℕ → Cell
nextCell ■ neighbours = if (neighbours <ᵇ 2) ∨ (3 <ᵇ neighbours) then □ else ■
nextCell □ neighbours = if (neighbours ≡ᵇ 3) then ■ else □
nextRow : Board → ℕ → Row → Row
nextRow board rowᵢ = mapWithIndex (λ colᵢ cell → nextCell cell (neighbourCount board ⟨ colᵢ , rowᵢ ⟩))
nextGen : Board → Board
nextGen board = mapWithIndex (nextRow board) board
nthGen : ℕ → Board → Board
nthGen 0 = id
nthGen (suc n) = nextGen ∘ nthGen n
---- "Tests" ----
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
-- Glider
gliderBoard : Board
gliderBoard = (
(□ ∷ ■ ∷ □ ∷ □ ∷ []) ∷
(□ ∷ □ ∷ ■ ∷ □ ∷ []) ∷
(■ ∷ ■ ∷ ■ ∷ □ ∷ []) ∷
(□ ∷ □ ∷ □ ∷ □ ∷ []) ∷
(□ ∷ □ ∷ □ ∷ □ ∷ []) ∷
[])
assertGliderGen4 : nthGen 4 gliderBoard ≡ (
(□ ∷ □ ∷ □ ∷ □ ∷ []) ∷
(□ ∷ □ ∷ ■ ∷ □ ∷ []) ∷
(□ ∷ □ ∷ □ ∷ ■ ∷ []) ∷
(□ ∷ ■ ∷ ■ ∷ ■ ∷ []) ∷
(□ ∷ □ ∷ □ ∷ □ ∷ []) ∷
[])
assertGliderGen4 = refl
-- Blinker
blinker_v : Board
blinker_v = (
(□ ∷ ■ ∷ □ ∷ []) ∷
(□ ∷ ■ ∷ □ ∷ []) ∷
(□ ∷ ■ ∷ □ ∷ []) ∷
[])
blinker_h : Board
blinker_h = (
(□ ∷ □ ∷ □ ∷ []) ∷
(■ ∷ ■ ∷ ■ ∷ []) ∷
(□ ∷ □ ∷ □ ∷ []) ∷
[])
assertBlinkerGen0 : nthGen 0 blinker_v ≡ blinker_v
assertBlinkerGen0 = refl
assertBlinkerGen1 : nthGen 1 blinker_v ≡ blinker_h
assertBlinkerGen1 = refl
assertBlinkerGen2 : nthGen 2 blinker_v ≡ blinker_v
assertBlinkerGen2 = refl
assertBlinkerGen3 : nthGen 3 blinker_v ≡ blinker_h
assertBlinkerGen3 = refl
gen0-ident : ∀ {b : Board} → nthGen 0 b ≡ b
gen0-ident = refl
---- Main ----
showCell : Cell → String
showCell □ = "□"
showCell ■ = "■"
showRow : Row → String
showRow = intersperse " " ∘ map showCell
showBoard : Board → String
showBoard = intersperse "\n" ∘ map showRow
main = run $ putStrLn ∘ showBoard ∘ nthGen 3 $ blinker_h
| {
"alphanum_fraction": 0.5806132542,
"avg_line_length": 24.6585365854,
"ext": "agda",
"hexsha": "ce7fabea57e2c93b062e5b9d5668082fb0080fe6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "18dda7f45541d2e8f47c351d72a20a25d3bfb4be",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "fzipp/agda-life",
"max_forks_repo_path": "GameOfLife.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "18dda7f45541d2e8f47c351d72a20a25d3bfb4be",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "fzipp/agda-life",
"max_issues_repo_path": "GameOfLife.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "18dda7f45541d2e8f47c351d72a20a25d3bfb4be",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "fzipp/agda-life",
"max_stars_repo_path": "GameOfLife.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1705,
"size": 4044
} |
module Structure.Function.Names where
open import Function.Names
open import Functional
open import Logic
open import Logic.Propositional
open import Logic.Predicate
import Lvl
open import Structure.Setoid.Uniqueness
open import Structure.Setoid
open import Type
private variable ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₒ₄ ℓₗ ℓₗ₁ ℓₗ₂ ℓₗ₃ ℓₗ₄ : Lvl.Level
module _ {A : Type{ℓₒ₁}} ⦃ equiv-A : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₗ₂}(B) ⦄ where
Injective : (A → B) → Stmt
Injective(f) = (∀{x y : A} → (f(x) ≡ f(y)) → (x ≡ y))
module _ {A : Type{ℓₒ₁}} {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₗ₂}(B) ⦄ where
Surjective : (A → B) → Stmt
Surjective(f) = (∀{y : B} → ∃(x ↦ f(x) ≡ y))
module _ {A : Type{ℓₒ₁}} ⦃ equiv-A : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₗ₂}(B) ⦄ where
Bijective : (A → B) → Stmt
Bijective(f) = (∀{y : B} → ∃!(x ↦ f(x) ≡ y))
module _ {A : Type{ℓₒ₁}} {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₗ₂}(B) ⦄ where
InversesOn : (A → B) → (B → A) → B → Stmt
InversesOn f g x = ((f ∘ g)(x) ≡ x)
Inverses : (A → B) → (B → A) → Stmt
Inverses f g = ∀¹(InversesOn f g)
Constant : (A → B) → Stmt
Constant(f) = (∀{x y : A} → (f(x) ≡ f(y)))
module _ {A : Type{ℓₒ}} ⦃ equiv : Equiv{ℓₗ}(A) ⦄ where
Fixpoint : (A → A) → A → Stmt
Fixpoint f(x) = (f(x) ≡ x)
InvolutionOn : (A → A) → A → Stmt
InvolutionOn f(x) = InversesOn f f x
-- (f ∘ f)(x) ≡ x
-- f(f(x)) ≡ x
Involution : (A → A) → Stmt
Involution(f) = Inverses f f
IdempotentOn : (A → A) → A → Stmt
IdempotentOn f(x) = Fixpoint f(f(x))
-- (f ∘ f)(x) ≡ f(x)
-- f(f(x)) ≡ f(x)
Idempotent : (A → A) → Stmt
Idempotent(f) = ∀ₗ(IdempotentOn f)
module _ {A : Type{ℓₒ₁}} ⦃ equiv-A : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ equiv-B : Equiv{ℓₗ₂}(B) ⦄ where
Congruence₁ : (A → B) → Stmt
Congruence₁(f) = (∀{x y : A} → (x ≡ y) → (f(x) ≡ f(y)))
module _ {C : Type{ℓₒ₃}} ⦃ _ : Equiv{ℓₗ₃}(C) ⦄ where
Congruence₂ : (A → B → C) → Stmt
Congruence₂(f) = (∀{x₁ y₁ : A}{x₂ y₂ : B} → (x₁ ≡ y₁) → (x₂ ≡ y₂) → (f x₁ x₂ ≡ f y₁ y₂))
module _ {D : Type{ℓₒ₄}} ⦃ _ : Equiv{ℓₗ₄}(D) ⦄ where
Congruence₃ : (A → B → C → D) → Stmt
Congruence₃(f) = (∀{x₁ y₁ : A}{x₂ y₂ : B}{x₃ y₃ : C} → (x₁ ≡ y₁) → (x₂ ≡ y₂) → (x₃ ≡ y₃) → (f x₁ x₂ x₃ ≡ f y₁ y₂ y₃))
module _ {A : Type{ℓₒ₁}} {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ ⦃ _ : Equiv{ℓₗ₃}(A → B) ⦄ where
FunctionExtensionalityOn : (A → B) → (A → B) → Stmt
FunctionExtensionalityOn(f)(g) = ((f ⊜ g) → (f ≡ g))
FunctionApplicationOn : (A → B) → (A → B) → Stmt
FunctionApplicationOn(f)(g) = ((f ≡ g) → (f ⊜ g))
module _ (A : Type{ℓₒ₁}) (B : Type{ℓₒ₂}) ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ ⦃ _ : Equiv{ℓₗ₃}(A → B) ⦄ where
FunctionExtensionality : Stmt
FunctionExtensionality = ∀²(FunctionExtensionalityOn{ℓₒ₁}{ℓₒ₂}{ℓₗ₂}{ℓₗ₃}{A}{B})
FunctionApplication : Stmt
FunctionApplication = ∀²(FunctionApplicationOn{ℓₒ₁}{ℓₒ₂}{ℓₗ₂}{ℓₗ₃}{A}{B})
module _ {A : Type{ℓₒ₁}} {B : A → Type{ℓₒ₂}} ⦃ _ : ∀{a} → Equiv{ℓₗ₂}(B(a)) ⦄ ⦃ _ : Equiv{ℓₗ₃}((a : A) → B(a)) ⦄ where
DependentFunctionExtensionalityOn : ((a : A) → B(a)) → ((a : A) → B(a)) → Stmt
DependentFunctionExtensionalityOn(f)(g) = ((f ⊜ g) → (f ≡ g))
module _ (A : Type{ℓₒ₁}) (B : A → Type{ℓₒ₂}) ⦃ _ : ∀{a} → Equiv{ℓₗ₂}(B(a)) ⦄ ⦃ _ : Equiv{ℓₗ₃}((a : A) → B(a)) ⦄ where
DependentFunctionExtensionality : Stmt
DependentFunctionExtensionality = ∀²(DependentFunctionExtensionalityOn{ℓₒ₁}{ℓₒ₂}{ℓₗ₂}{ℓₗ₃}{A}{B})
module _ {A : Type{ℓₒ₁}} {B : A → Type{ℓₒ₂}} ⦃ _ : ∀{a} → Equiv{ℓₗ₂}(B(a)) ⦄ ⦃ _ : Equiv{ℓₗ₃}({a : A} → B(a)) ⦄ where
DependentImplicitFunctionExtensionalityOn : ({a : A} → B(a)) → ({a : A} → B(a)) → Stmt
DependentImplicitFunctionExtensionalityOn(f)(g) = (((\{a} → f{a}) ⊜ᵢ (\{a} → g{a})) → ((\{a} → f{a}) ≡ (\{a} → g{a})))
module _ (A : Type{ℓₒ₁}) (B : A → Type{ℓₒ₂}) ⦃ _ : ∀{a} → Equiv{ℓₗ₂}(B(a)) ⦄ ⦃ _ : Equiv{ℓₗ₃}({a : A} → B(a)) ⦄ where
DependentImplicitFunctionExtensionality : Stmt
DependentImplicitFunctionExtensionality = ∀²(DependentImplicitFunctionExtensionalityOn{ℓₒ₁}{ℓₒ₂}{ℓₗ₂}{ℓₗ₃}{A}{B})
module _ {A : Type{ℓₒ₁}} {B : A → Type{ℓₒ₂}} ⦃ _ : ∀{a} → Equiv{ℓₗ₂}(B(a)) ⦄ ⦃ _ : Equiv{ℓₗ₃}(⦃ a : A ⦄ → B(a)) ⦄ where
DependentInstanceFunctionExtensionalityOn : (⦃ a : A ⦄ → B(a)) → (⦃ a : A ⦄ → B(a)) → Stmt
DependentInstanceFunctionExtensionalityOn(f)(g) = (((\ ⦃ a ⦄ → f ⦃ a ⦄) ⦃⊜⦄ (\ ⦃ a ⦄ → g ⦃ a ⦄)) → ((\ ⦃ a ⦄ → f ⦃ a ⦄) ≡ (\ ⦃ a ⦄ → g ⦃ a ⦄)))
module _ (A : Type{ℓₒ₁}) (B : A → Type{ℓₒ₂}) ⦃ _ : ∀{a} → Equiv{ℓₗ₂}(B(a)) ⦄ ⦃ _ : Equiv{ℓₗ₃}(⦃ a : A ⦄ → B(a)) ⦄ where
DependentInstanceFunctionExtensionality : Stmt
DependentInstanceFunctionExtensionality = ∀²(DependentInstanceFunctionExtensionalityOn{ℓₒ₁}{ℓₒ₂}{ℓₗ₂}{ℓₗ₃}{A}{B})
| {
"alphanum_fraction": 0.5604466395,
"avg_line_length": 43.9339622642,
"ext": "agda",
"hexsha": "5a4eeeb7d778f4f64a21868b1bf9a0652b2f9e68",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Function/Names.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Function/Names.agda",
"max_line_length": 145,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Function/Names.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2418,
"size": 4657
} |
module Acc where
data Acc ( A : Set ) ( Lt : A -> A -> Set) : A -> Set where
acc : ( b : A )
-> ( ( a : A ) -> Lt a b -> Acc A Lt a )
-> ( Acc A Lt b )
data Nat : Set where
zero : Nat
succ : Nat -> Nat
data Lt : Nat -> Nat -> Set where
ltzero : ( x : Nat ) -> Lt zero (succ x)
ltsucc : ( x : Nat ) -> (y : Nat) -> Lt x y -> Lt (succ x) (succ y)
notLt0 : ( x : Nat ) -> Lt x zero -> (C : Set) -> C
notLt0 x ()
accLt : ( x : Nat ) -> Acc Nat Lt x
accLt zero = acc zero (\a -> \p -> notLt0 a p (Acc Nat Lt a) )
accLt (succ x) = acc (succ x) (\a -> \p -> (accLt a))
----
data WO ( A : Set ) ( Lt : A -> A -> Set ) : Set where
wo : ((x : A) -> Acc A Lt x) -> WO A Lt
woLt : WO Nat Lt
woLt = wo accLt
| {
"alphanum_fraction": 0.4582210243,
"avg_line_length": 23.1875,
"ext": "agda",
"hexsha": "827eda55bd346aec632b568f53796256aa2394ce",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2021-08-16T07:47:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-30T00:17:04.000Z",
"max_forks_repo_head_hexsha": "4a674eddcc8950f37fcc723b26f81d5164b05f08",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/miniagda",
"max_forks_repo_path": "examples/Acc.agda",
"max_issues_count": 7,
"max_issues_repo_head_hexsha": "4a674eddcc8950f37fcc723b26f81d5164b05f08",
"max_issues_repo_issues_event_max_datetime": "2020-03-17T08:09:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-12-16T15:48:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/miniagda",
"max_issues_repo_path": "examples/Acc.agda",
"max_line_length": 69,
"max_stars_count": 85,
"max_stars_repo_head_hexsha": "4a674eddcc8950f37fcc723b26f81d5164b05f08",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/miniagda",
"max_stars_repo_path": "examples/Acc.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-12T16:54:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-16T15:53:24.000Z",
"num_tokens": 284,
"size": 742
} |
{-# OPTIONS --safe #-}
module JVM.Printer.Jasmin where
open import Function
open import Data.Nat
open import Data.Integer
open import Data.Nat.Show as NatShow
open import Data.String as S using (String)
open import Data.List as List
open import JVM.Types
open import JVM.Builtins
sep : List (List String) → List String
sep = List.concat ∘ List.intersperse [ " " ]
Words = List String
abstract
Line = String
Lines = List String
unwords : Words → Line
unwords = S.unwords
line : String → Line
line = id
lines : List Line → Lines
lines = id
unlines : Lines → String
unlines = S.unlines
infixr 4 _<+_
_<+_ : Line → Lines → Lines
l <+ ls = l ∷ ls
infixl 6 _+>_
_+>_ : Lines → Line → Lines
ls +> l = ls ∷ʳ l
infixl 4 _<>_
_<>_ : Lines → Lines → Lines
ls <> js = ls ++ js
pars : List Lines → Lines
pars = concat
ident : Line → Line
ident = "\t" S.++_
indent : Lines → Lines
indent = List.map ident
record ClassSpec : Set where
constructor class
field
class_name : String
out : Line
out = unwords $ ".class" ∷ "public" ∷ class_name ∷ []
record SuperSpec : Set where
constructor super
field
class_name : String
out : Line
out = unwords $ ".super" ∷ class_name ∷ []
record Header : Set where
field
class_spec : ClassSpec
super_spec : SuperSpec
out : Lines
out = lines $ ClassSpec.out class_spec
∷ SuperSpec.out super_spec
∷ []
module Descriptor where
type-desc : Ty → String
type-desc boolean = "Z"
type-desc byte = "B"
type-desc short = "S"
type-desc int = "I"
type-desc long = "J"
type-desc char = "C"
type-desc (array t) = "[" S.++ type-desc t
type-desc (ref cls) = S.concat $ "L" ∷ cls ∷ ";" ∷ []
ret-desc : Ret → String
ret-desc void = "V"
ret-desc (ty t) = type-desc t
out : List Ty → Ret → String
out as r = args as S.++ ret-desc r
where
args : List Ty → String
args d = "(" S.++ (S.intersperse ";" (List.map type-desc d)) S.++ ")"
data Comparator : Set where
eq ne lt ge gt le : Comparator
icmpge icmpgt icmpeq icmpne icmplt icmple : Comparator
open import JVM.Types using (Fun)
module Comp where
out : Comparator → String
out eq = "eq"
out ne = "ne"
out lt = "lt"
out ge = "ge"
out gt = "gt"
out le = "le"
out icmpge = "_icmpge"
out icmpgt = "_icmpgt"
out icmpeq = "_icmpeq"
out icmpne = "_icmpne"
out icmplt = "_icmplt"
out icmple = "_icmple"
data Instr : Set where
nop pop dup swap ret : Instr
aconst_null : Instr
bipush sipush : ℤ → Instr
iconstm1 iconst0 iconst1 iconst2 : Instr
aaload aload iload : ℕ → Instr
aastore astore istore : ℕ → Instr
new : String → Instr
goto : String → Instr
if : Comparator → String → Instr
iadd isub imul idiv ixor : Instr
invokevirtual invokespecial invokestatic : Fun → Instr
module Funs where
out : Fun → String
out (c / m :⟨ as ⟩ r) = c S.++ "/" S.++ m S.++ Descriptor.out as r
module Instruction where
lbl : String → String
lbl x = "label_" S.++ x
showInt : ℤ → String
showInt (+ n) = NatShow.show n
showInt (-[1+ n ]) = "-" S.++ NatShow.show (ℕ.suc n)
out : Instr → Line
out nop = line "nop"
out pop = line "pop"
out dup = line "dup"
out swap = line "swap"
out ret = line "return"
out aconst_null = line "aconst_null"
out (bipush n) = unwords $ "sipush" ∷ showInt n ∷ []
out (sipush n) = unwords $ "bipush" ∷ showInt n ∷ []
out (aload n) = unwords $ "aload" ∷ NatShow.show n ∷ []
out (astore n) = unwords $ "astore" ∷ NatShow.show n ∷ []
out (iload n) = unwords $ "iload" ∷ NatShow.show n ∷ []
out (istore n) = unwords $ "istore" ∷ NatShow.show n ∷ []
out (aaload n) = unwords $ "aaload" ∷ NatShow.show n ∷ []
out (aastore n) = unwords $ "astore" ∷ NatShow.show n ∷ []
out iconstm1 = line "iconstm1"
out iconst0 = line "iconst_0"
out iconst1 = line "iconst_1"
out iconst2 = line "iconst_2"
out (goto l) = unwords $ "goto" ∷ lbl l ∷ []
out (if c l) = unwords $ ("if" S.++ Comp.out c) ∷ lbl l ∷ []
out iadd = line "iadd"
out isub = line "isub"
out imul = line "imul"
out idiv = line "idiv"
out ixor = line "ixor"
out (new c) = unwords $ "new" ∷ c ∷ []
out (invokespecial sf) = unwords $ "invokespecial" ∷ Funs.out sf ∷ []
out (invokestatic sf) = unwords $ "invokestatic" ∷ Funs.out sf ∷ []
out (invokevirtual sf) = unwords $ "invokevirtual" ∷ Funs.out sf ∷ []
data Stat : Set where
label : String → Stat
instr : Instr → Stat
module Statement where
out : Stat → Line
out (label x) = line $ Instruction.lbl x S.++ ":"
out (instr x) = Instruction.out x
record ClassField : Set where
constructor clsfield
field
name : String
access : List String
f_ty : Ty
out : Line
out = unwords
$ ".field"
∷ access
++ name
∷ Descriptor.type-desc f_ty
∷ []
record Method : Set where
constructor method
field
name : String
access : List String
locals : ℕ
stacksize : ℕ
m_args : List Ty
m_ret : Ret
body : List Stat
out : Lines
out = (unwords $ ".method" ∷ (S.unwords access) ∷ (name S.++ Descriptor.out m_args m_ret) ∷ [])
<+ (ident $ unwords $ ".limit locals" ∷ NatShow.show locals ∷ [])
<+ (ident $ unwords $ ".limit stack" ∷ NatShow.show stacksize ∷ [])
<+ (lines $ List.map (ident ∘ Statement.out) body)
+> (line $ ".end method")
record Jasmin : Set where
constructor jasmin
field
header : Header
fields : List ClassField
methods : List Method
out : Lines
out = Header.out header
<> lines (List.map ClassField.out fields)
<> pars (List.map Method.out methods)
module _ where
defaultInit : Method
defaultInit = method "<init>" [ "public" ] 1 1 [] void
( instr (aload 0)
∷ instr (invokespecial (Object / "<init>" :⟨ [] ⟩ void))
∷ instr ret
∷ []
)
procedure : (name : String) → ℕ → ℕ → List Stat → Jasmin
procedure name locals stack st =
jasmin
(record { class_spec = class name ; super_spec = super Object })
[]
( method "apply" ("public" ∷ "static" ∷ []) locals stack [] void (st ∷ʳ instr ret)
∷ defaultInit
∷ method "main" ("public" ∷ "static" ∷ []) 1 0 [ array (ref "java/lang/String") ] void
( instr (invokestatic (name / "apply" :⟨ [] ⟩ void))
∷ instr ret
∷ []
)
∷ []
)
| {
"alphanum_fraction": 0.5655182568,
"avg_line_length": 24.6981818182,
"ext": "agda",
"hexsha": "205707c4e9d237fa6a7cf17eba9555f550c3eb47",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/JVM/Printer/Jasmin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/JVM/Printer/Jasmin.agda",
"max_line_length": 98,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/JVM/Printer/Jasmin.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 2185,
"size": 6792
} |
{-# OPTIONS --safe --no-guardedness #-}
record Stream (A : Set) : Set where
coinductive
field
head : A
tail : Stream A
open Stream
repeat : ∀ {A} → A → Stream A
repeat x .head = x
repeat x .tail = repeat x
| {
"alphanum_fraction": 0.6108597285,
"avg_line_length": 15.7857142857,
"ext": "agda",
"hexsha": "4d99231a09ca9b1ac7cca718167da4f36010ede5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1209-5.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1209-5.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1209-5.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 70,
"size": 221
} |
------------------------------------------------------------------------
-- An alternative backend
------------------------------------------------------------------------
-- Acknowledgements:
--
-- • The use of parsing "processes" is based on implementation C from
-- Koen Claessen's paper Parallel parsing processes.
--
-- • The idea to use toProc is due to Jean-Philippe Bernardy.
-- It is not obvious how to adapt this backend so that it can handle
-- parsers which are simultaneously left and right recursive, like
-- TotalRecognisers.LeftRecursion.leftRight.
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
module TotalRecognisers.Simple.AlternativeBackend
(Tok : Set)
(_≟_ : Decidable (_≡_ {A = Tok}))
-- The tokens must come with decidable equality.
where
open import Codata.Musical.Notation
open import Data.Bool hiding (_≟_)
open import Data.List
open import Relation.Nullary.Decidable
import TotalRecognisers.Simple as S
open S Tok _≟_ hiding (_∈?_)
------------------------------------------------------------------------
-- Parsing "processes"
data Proc : Set where
tokenBind : (p : Tok → ∞ Proc) → Proc
emptyOr : (p : Proc) → Proc
fail : Proc
-- The semantics of Proc is given by run: run p s is true iff s is a
-- member of the language defined by p.
run : Proc → List Tok → Bool
run (tokenBind p) (c ∷ s) = run (♭ (p c)) s
run (emptyOr p) s = null s ∨ run p s
run _ _ = false
------------------------------------------------------------------------
-- Parsers can be turned into processes
-- Here I use my technique for "beating the productivity checker".
-- Process "programs".
infixl 5 _∣_
data ProcP : Set where
-- Process primitives.
tokenBind : (p : Tok → ∞ ProcP) → ProcP
emptyOr : (p : ProcP) → ProcP
fail : ProcP
-- Symmetric choice.
_∣_ : (p₁ p₂ : ProcP) → ProcP
-- Embedding of parsers.
toProc : ∀ {n} (p : P n) (κ : ProcP) → ProcP
-- WHNFs.
data ProcW : Set where
tokenBind : (p : Tok → ∞ ProcP) → ProcW
emptyOr : (p : ProcW) → ProcW
fail : ProcW
-- WHNFs can be turned into programs.
program : ProcW → ProcP
program (tokenBind p) = tokenBind p
program (emptyOr p) = emptyOr (program p)
program fail = fail
-- Symmetric choice for WHNFs.
_∣W_ : ProcW → ProcW → ProcW
tokenBind p₁ ∣W tokenBind p₂ = tokenBind (λ c → ♯ (♭ (p₁ c) ∣ ♭ (p₂ c)))
emptyOr p₁ ∣W emptyOr p₂ = emptyOr (p₁ ∣W p₂)
emptyOr p₁ ∣W p₂ = emptyOr (p₁ ∣W p₂)
p₁ ∣W emptyOr p₂ = emptyOr (p₁ ∣W p₂)
fail ∣W p₂ = p₂
p₁ ∣W fail = p₁
-- Interpretation of toProc.
mutual
toProcW′ : ∀ {n} → P n → if n then ProcW else ProcP → ProcW
toProcW′ fail κ = fail
toProcW′ empty κ = κ
toProcW′ (tok t) κ = tokenBind (λ t′ →
if ⌊ t ≟ t′ ⌋ then ♯ κ else ♯ fail)
toProcW′ (_∣_ {n₁ = true } {n₂ = true } p₁ p₂) κ = toProcW′ p₁ κ ∣W toProcW′ p₂ κ
toProcW′ (_∣_ {n₁ = true } {n₂ = false} p₁ p₂) κ = toProcW′ p₁ κ ∣W toProcW p₂ κ
toProcW′ (_∣_ {n₁ = false} {n₂ = true } p₁ p₂) κ = toProcW p₁ κ ∣W toProcW′ p₂ κ
toProcW′ (_∣_ {n₁ = false} {n₂ = false} p₁ p₂) κ = toProcW′ p₁ κ ∣W toProcW′ p₂ κ
toProcW′ (_·_ {n₁ = true } p₁ p₂) κ = toProcW′ p₁ (toProcW′ p₂ κ)
toProcW′ (_·_ {n₁ = false} p₁ p₂) κ = toProcW′ p₁ (toProc (♭ p₂) κ)
toProcW : ∀ {n} → P n → ProcW → ProcW
toProcW {true } p κ = toProcW′ p κ
toProcW {false} p κ = toProcW′ p (program κ)
-- Programs can be turned into WHNFs.
whnf : ProcP → ProcW
whnf (tokenBind p) = tokenBind p
whnf (emptyOr p) = emptyOr (whnf p)
whnf fail = fail
whnf (p₁ ∣ p₂) = whnf p₁ ∣W whnf p₂
whnf (toProc p κ) = toProcW p (whnf κ)
-- Programs can be turned into processes.
mutual
⟦_⟧W : ProcW → Proc
⟦ tokenBind p ⟧W = tokenBind (λ c → ♯ ⟦ ♭ (p c) ⟧P)
⟦ emptyOr p ⟧W = emptyOr ⟦ p ⟧W
⟦ fail ⟧W = fail
⟦_⟧P : ProcP → Proc
⟦ p ⟧P = ⟦ whnf p ⟧W
------------------------------------------------------------------------
-- Alternative backend
-- I have not proved that this implementation is correct.
infix 4 _∈?_
_∈?_ : ∀ {n} → List Tok → P n → Bool
s ∈? p = run ⟦ toProc p (emptyOr fail) ⟧P s
| {
"alphanum_fraction": 0.5371169126,
"avg_line_length": 30.5902777778,
"ext": "agda",
"hexsha": "ce18b5fd012f3a89ed785f601bfcb34f3c179a33",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalRecognisers/Simple/AlternativeBackend.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalRecognisers/Simple/AlternativeBackend.agda",
"max_line_length": 90,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalRecognisers/Simple/AlternativeBackend.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 1456,
"size": 4405
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.Hash
open import LibraBFT.Base.PKCS
open import LibraBFT.Base.Encode
-- The ground types that are common across Abstract, Concrete and Impl
-- and some utility types
module LibraBFT.Base.Types where
Epoch : Set
Epoch = ℕ
Round : Set
Round = ℕ
-- This was intended to be a simple way to flag meta-information without having it
-- getting in the way. It's important to ensure that an implementation does not
-- use various information, such as who is honest. However, we found this got in
-- the way too much during development, so for now we get a similar effect by using
-- a naming convention and enforcement via grep and eyeballs. Maybe one day...
Meta : ∀{ℓ} → Set ℓ → Set ℓ
Meta x = x
-- An EPRound is a 'compound round'; that is,
-- is a round coupled with an epoch id. As most of our
-- proofs are per-epoch so far, these are not used, but
-- they may be in future.
EpRound : Set
EpRound = Epoch × Round
sucr : EpRound → EpRound
sucr (e , r) = (e , suc r)
epr-epoch : EpRound → Epoch
epr-epoch = proj₁
epr-round : EpRound → Round
epr-round = proj₂
epr₀ : EpRound
epr₀ = (0 , 0)
-- Compound rounds admit a total order
data _<ER_ : EpRound → EpRound → Set where
ince : ∀{e₀ e₁ r₀ r₁} → e₀ < e₁ → (e₀ , r₀) <ER (e₁ , r₁)
incr : ∀{e r₀ r₁} → r₀ < r₁ → (e , r₀) <ER (e , r₁)
<ER-irrelevant : Irrelevant _<ER_
<ER-irrelevant (ince x) (ince x₁) = cong ince (<-irrelevant x x₁)
<ER-irrelevant (ince x) (incr x₁) = ⊥-elim (<-irrefl refl x)
<ER-irrelevant (incr x) (ince x₁) = ⊥-elim (<-irrefl refl x₁)
<ER-irrelevant (incr x) (incr x₁) = cong incr (<-irrelevant x x₁)
<ER-asym : Asymmetric _<ER_
<ER-asym (ince x) (ince x₁) = <-asym x x₁
<ER-asym (ince x) (incr x₁) = <-irrefl refl x
<ER-asym (incr x) (ince x₁) = <-irrefl refl x₁
<ER-asym (incr x) (incr x₁) = <-asym x x₁
<ER-trans : Transitive _<ER_
<ER-trans (ince x) (ince x₁) = ince (<-trans x x₁)
<ER-trans (ince x) (incr x₁) = ince x
<ER-trans (incr x) (ince x₁) = ince x₁
<ER-trans (incr x) (incr x₁) = incr (<-trans x x₁)
<ER-irrefl : Irreflexive _≡_ _<ER_
<ER-irrefl refl (ince x) = <-irrefl refl x
<ER-irrefl refl (incr x) = <-irrefl refl x
postulate -- prove, if needed/used
<ER-cmp : Trichotomous _≡_ _<ER_
{- This <ER relation is not currently used. If it turns out to be
used: TODO-1: finish this proof
<ER-cmp (e₀ , r₀) (e₁ , r₁) with <-cmp e₀ e₁
...| tri≈ e₀≮e₁ refl e₁≮e₀ = {!!} {!!} {!!}
...| tri< e₀<e₁ e₀≢e₁ e₁≮e₀ = tri< (ince e₀<e₁) {!!} {!!}
...| tri> e₀≮e₁ e₀≢e₁ e₁<e₀ = {!!}
-}
ep≮epr₀ : ∀{ep} → ¬ (ep <ER epr₀)
ep≮epr₀ (ince ())
ep≮epr₀ (incr ())
_≤ER_ : EpRound → EpRound → Set
er₀ ≤ER er₁ = er₀ ≡ er₁ ⊎ er₀ <ER er₁
≤ER⇒epoch≤ : ∀{er₀ er₁} → er₀ ≤ER er₁ → epr-epoch er₀ ≤ epr-epoch er₁
≤ER⇒epoch≤ (inj₁ refl) = ≤-refl
≤ER⇒epoch≤ (inj₂ (ince x)) = <⇒≤ x
≤ER⇒epoch≤ (inj₂ (incr x)) = ≤-refl
≤ER⇒round≤ : ∀{er₀ er₁} → er₀ ≤ER er₁ → epr-epoch er₀ ≡ epr-epoch er₁ → epr-round er₀ ≤ epr-round er₁
≤ER⇒round≤ (inj₁ refl) hyp1 = ≤-refl
≤ER⇒round≤ (inj₂ (ince x)) refl = ⊥-elim (<-irrefl refl x)
≤ER⇒round≤ (inj₂ (incr x)) hyp1 = <⇒≤ x
≤ER-intro : ∀{e₀ e₁ r₀ r₁} → e₀ ≤ e₁ → r₀ ≤ r₁ → (e₀ , r₀) ≤ER (e₁ , r₁)
≤ER-intro {e0} {e1} {r0} {r1} e r
with e0 ≟ℕ e1
...| no le = inj₂ (ince (≤∧≢⇒< e le))
...| yes refl
with r0 ≟ℕ r1
...| no le = inj₂ (incr (≤∧≢⇒< r le))
...| yes refl = inj₁ refl
er≤0⇒er≡0 : ∀{er} → er ≤ER epr₀ → er ≡ epr₀
er≤0⇒er≡0 (inj₁ x) = x
er≤0⇒er≡0 (inj₂ (ince ()))
er≤0⇒er≡0 (inj₂ (incr ()))
<⇒≤ER : ∀{er₀ er₁} → er₀ <ER er₁ → er₀ ≤ER er₁
<⇒≤ER = inj₂
≤ER-refl : Reflexive _≤ER_
≤ER-refl = inj₁ refl
postulate -- prove, if needed/used
≤ER-trans : Transitive _≤ER_
| {
"alphanum_fraction": 0.6049079755,
"avg_line_length": 32.8629032258,
"ext": "agda",
"hexsha": "f71443caceb51b124c1a77a7ebfc8627a44bcf49",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/Base/Types.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/Base/Types.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/Base/Types.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1739,
"size": 4075
} |
{-# OPTIONS --without-K --exact-split #-}
module free-group where
import 15-groups
open 15-groups public
{- We state the universal property of the free group on a set X -}
precomp-universal-property-free-group :
{l1 l2 l3 : Level} (X : UU-Set l1) (F : Group l2) (G : Group l3)
(f : type-hom-Set X (set-Group F)) →
hom-Group F G → type-hom-Set X (set-Group G)
precomp-universal-property-free-group X F G f g = (map-hom-Group F G g) ∘ f
universal-property-free-group :
(l : Level) {l1 l2 : Level} (X : UU-Set l1) (F : Group l2)
(f : type-hom-Set X (set-Group F)) → UU (lsuc l ⊔ l1 ⊔ l2)
universal-property-free-group l X F f =
(G : Group l) → is-equiv (precomp-universal-property-free-group X F G f)
{- We state the universal property of the initial set equipped with a point
and an automorphism for each x : X. -}
universal-property-initial-pset-with-automorphisms :
(l : Level) {l1 l2 : Level} (X : UU-Set l1) (Y : UU-Set l2)
(pt-Y : type-Set Y) (f : type-Set X → (type-Set Y ≃ type-Set Y)) →
UU (lsuc l ⊔ l1 ⊔ l2)
universal-property-initial-pset-with-automorphisms l X Y pt-Y f =
(Z : UU-Set l) (pt-Z : type-Set Z) (g : type-Set X → (type-Set Z ≃ type-Set Z)) →
is-contr
( Σ ( type-hom-Set Y Z)
( λ h →
( Id (h pt-Y) pt-Z) ×
( (x : type-Set X) (y : type-Set Y) →
Id (h (map-equiv (f x) y)) (map-equiv (g x) (h y)))))
map-initial-pset-with-automorphisms :
{ l1 l2 l3 : Level} (X : UU-Set l1) (Y : UU-Set l2) (pt-Y : type-Set Y)
( f : type-Set X → (type-Set Y ≃ type-Set Y)) →
( {l : Level} →
universal-property-initial-pset-with-automorphisms l X Y pt-Y f) →
( Z : UU-Set l3) (pt-Z : type-Set Z)
( g : type-Set X → (type-Set Z ≃ type-Set Z)) →
type-hom-Set Y Z
map-initial-pset-with-automorphisms
X Y pt-Y f up-Y Z pt-Z g = pr1 (center (up-Y Z pt-Z g))
preserves-point-map-initial-pset-with-automorphisms :
{ l1 l2 l3 : Level} (X : UU-Set l1) (Y : UU-Set l2) (pt-Y : type-Set Y)
( f : type-Set X → (type-Set Y ≃ type-Set Y)) →
( up-Y : {l : Level} →
universal-property-initial-pset-with-automorphisms l X Y pt-Y f) →
( Z : UU-Set l3) (pt-Z : type-Set Z)
( g : type-Set X → (type-Set Z ≃ type-Set Z)) →
Id (map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g pt-Y) pt-Z
preserves-point-map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g =
pr1 (pr2 (center (up-Y Z pt-Z g)))
htpy-map-initial-pset-with-automorphisms :
{ l1 l2 l3 : Level} (X : UU-Set l1) (Y : UU-Set l2) (pt-Y : type-Set Y)
( f : type-Set X → (type-Set Y ≃ type-Set Y)) →
( up-Y : {l : Level} →
universal-property-initial-pset-with-automorphisms l X Y pt-Y f) →
( Z : UU-Set l3) (pt-Z : type-Set Z)
( g : type-Set X → (type-Set Z ≃ type-Set Z)) →
( x : type-Set X) (y : type-Set Y) →
Id ( map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g
( map-equiv (f x) y))
( map-equiv (g x)
( map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g y))
htpy-map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g =
pr2 (pr2 (center (up-Y Z pt-Z g)))
{- We show a dependent elimination property for the initial pointed set with
an automorphism for each x : X. -}
dependent-up-initial-pset-with-automorphisms :
{ l1 l2 l3 l4 : Level} (X : UU-Set l1) (Y : UU-Set l2) (pt-Y : type-Set Y)
( f : type-Set X → (type-Set Y ≃ type-Set Y)) →
( up-Y : {l : Level} →
universal-property-initial-pset-with-automorphisms l X Y pt-Y f) →
( Z : UU-Set l3) (pt-Z : type-Set Z)
( g : type-Set X → (type-Set Z ≃ type-Set Z)) →
( P : type-Set Z → UU-Set l4)
( p : type-Set (P pt-Z))
( e : (x : type-Set X) (z : type-Set Z) →
type-Set (P z) ≃ type-Set (P (map-equiv (g x) z))) →
( y : type-Set Y) →
type-Set (P (map-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g y))
dependent-up-initial-pset-with-automorphisms X Y pt-Y f up-Y Z pt-Z g P p e =
{!!}
{- We show that the initial set equipped with a point and an automorphism for
each x : X is a group. -}
mul-initial-pset-with-automorphisms :
{l1 l2 : Level} (X : UU-Set l1) (Y : UU-Set l2)
(pt-Y : type-Set Y) (f : type-Set X → (type-Set Y ≃ type-Set Y)) →
( {l : Level} →
universal-property-initial-pset-with-automorphisms l X Y pt-Y f) →
type-Set Y → type-Set Y → type-Set Y
mul-initial-pset-with-automorphisms {l1} {l2} X Y pt-Y f up-Y =
map-initial-pset-with-automorphisms
X Y pt-Y f up-Y (hom-Set Y Y) id
( λ x → equiv-postcomp (type-Set Y) (f x))
associative-mul-initial-pset-with-automorphisms :
{l1 l2 : Level} (X : UU-Set l1) (Y : UU-Set l2)
(pt-Y : type-Set Y) (f : type-Set X → (type-Set Y ≃ type-Set Y)) →
( up-Y : {l : Level} →
universal-property-initial-pset-with-automorphisms l X Y pt-Y f) →
( x y z : type-Set Y) →
Id ( mul-initial-pset-with-automorphisms X Y pt-Y f up-Y
( mul-initial-pset-with-automorphisms X Y pt-Y f up-Y x y) z)
( mul-initial-pset-with-automorphisms X Y pt-Y f up-Y x
( mul-initial-pset-with-automorphisms X Y pt-Y f up-Y y z))
associative-mul-initial-pset-with-automorphisms X Y pt-Y f up-Y x y z = {!refl!}
| {
"alphanum_fraction": 0.6069206843,
"avg_line_length": 42.8666666667,
"ext": "agda",
"hexsha": "1d3b53b038626f851b43c2dbbd8b2c21db6764af",
"lang": "Agda",
"max_forks_count": 30,
"max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z",
"max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_forks_repo_path": "Agda/free-group.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_issues_repo_path": "Agda/free-group.agda",
"max_line_length": 83,
"max_stars_count": 333,
"max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_stars_repo_path": "Agda/free-group.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z",
"num_tokens": 1961,
"size": 5144
} |
------------------------------------------------------------------------------
-- Propositional logic theorems
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- This module contains some examples showing the use of the ATPs to
-- prove theorems from propositional logic.
module FOL.PropositionalLogic.TheoremsATP where
open import FOL.Base
------------------------------------------------------------------------------
-- We postulate some propositional formulae (which are translated as
-- 0-ary predicates).
postulate P Q R : Set
------------------------------------------------------------------------------
-- The introduction and elimination rules for the intuitionist
-- propositional connectives are theorems.
postulate
→I : (P → Q) → P → Q
→E : (P → Q) → P → Q
→I' : (P → Q) → P → Q
→E' : (P ⇒ Q) ⇒ P ⇒ Q
{-# ATP prove →I #-}
{-# ATP prove →E #-}
{-# ATP prove →I' #-}
{-# ATP prove →E' #-}
postulate
∧I : P → Q → P ∧ Q
∧E₁ : P ∧ Q → P
∧E₂ : P ∧ Q → Q
∧I' : P ⇒ Q ⇒ P ∧ Q
∧E₂' : P ∧ Q ⇒ Q
∧E₁' : P ∧ Q ⇒ P
{-# ATP prove ∧I #-}
{-# ATP prove ∧E₁ #-}
{-# ATP prove ∧E₂ #-}
{-# ATP prove ∧I' #-}
{-# ATP prove ∧E₁' #-}
{-# ATP prove ∧E₂' #-}
postulate
∨I₁ : P → P ∨ Q
∨I₂ : Q → P ∨ Q
∨E : (P → R) → (Q → R) → P ∨ Q → R
∨I₁' : P ⇒ P ∨ Q
∨I₂' : Q ⇒ P ∨ Q
∨E' : (P ⇒ R) ⇒ (Q ⇒ R) ⇒ P ∨ Q ⇒ R
{-# ATP prove ∨I₁ #-}
{-# ATP prove ∨I₂ #-}
{-# ATP prove ∨E #-}
{-# ATP prove ∨I₁' #-}
{-# ATP prove ∨I₂' #-}
{-# ATP prove ∨E' #-}
postulate
⊥E : ⊥ → P
⊥E' : ⊥ ⇒ P
{-# ATP prove ⊥E #-}
{-# ATP prove ⊥E' #-}
------------------------------------------------------------------------------
-- Boolean laws (there are some non-intuitionistic laws)
postulate
∧-ident : P ∧ ⊤ ↔ P
∨-ident : P ∨ ⊥ ↔ P
∧-dom : P ∧ ⊥ ↔ ⊥
∨-dom : P ∨ ⊤ ↔ ⊤
∧-idemp : P ∧ P ↔ P
∨-idemp : P ∨ P ↔ P
dn : ¬ ¬ P ↔ P
∧-comm : P ∧ Q → Q ∧ P
∨-comm : P ∨ Q → Q ∨ P
∧-assoc : (P ∧ Q) ∧ R ↔ P ∧ Q ∧ R
∨-assoc : (P ∨ Q) ∨ R ↔ P ∨ Q ∨ R
∧∨-dist : P ∧ (Q ∨ R) ↔ P ∧ Q ∨ P ∧ R
∨∧-dist : P ∨ Q ∧ R ↔ (P ∨ Q) ∧ (P ∨ R)
DM₁ : ¬ (P ∨ Q) ↔ ¬ P ∧ ¬ Q
DM₂ : ¬ (P ∧ Q) ↔ ¬ P ∨ ¬ Q
abs₁ : P ∨ P ∧ Q ↔ P
abs₂ : P ∧ (P ∨ Q) ↔ P
∧-neg : P ∧ ¬ P ↔ ⊥
∨-neg : P ∨ ¬ P ↔ ⊤
{-# ATP prove ∧-ident #-}
{-# ATP prove ∨-ident #-}
{-# ATP prove ∧-dom #-}
{-# ATP prove ∨-dom #-}
{-# ATP prove ∧-idemp #-}
{-# ATP prove ∨-idemp #-}
{-# ATP prove dn #-}
{-# ATP prove ∧-comm #-}
{-# ATP prove ∨-comm #-}
{-# ATP prove ∧-assoc #-}
{-# ATP prove ∨-assoc #-}
{-# ATP prove ∧∨-dist #-}
{-# ATP prove ∨∧-dist #-}
{-# ATP prove DM₁ #-}
{-# ATP prove DM₂ #-}
{-# ATP prove abs₁ #-}
{-# ATP prove abs₂ #-}
{-# ATP prove ∧-neg #-}
{-# ATP prove ∨-neg #-}
------------------------------------------------------------------------------
-- Theorems related with the definition of logical connectives in
-- terms of others
postulate
↔-def : (P ↔ Q) ↔ (P → Q) ∧ (Q → P)
→-def : P → Q ↔ ¬ P ∨ Q
∨₁-def : P ∨ Q ↔ ¬ P → Q
∨₂-def : P ∨ Q ↔ ¬ (¬ P ∧ ¬ Q)
∧-def : P ∧ Q ↔ ¬ (¬ P ∨ ¬ Q)
¬-def : ¬ P ↔ P → ⊥
⊥-def : ⊥ ↔ P ∧ ¬ P
⊤-def : ⊤ ↔ ¬ ⊥
{-# ATP prove ↔-def #-}
{-# ATP prove →-def #-}
{-# ATP prove ∨₁-def #-}
{-# ATP prove ∨₂-def #-}
{-# ATP prove ∧-def #-}
{-# ATP prove ¬-def #-}
{-# ATP prove ⊥-def #-}
{-# ATP prove ⊤-def #-}
------------------------------------------------------------------------------
-- Some intuitionistic theorems
postulate →-transposition : (P → Q) → ¬ Q → ¬ P
{-# ATP prove →-transposition #-}
postulate
i₁ : P → Q → P
i₂ : (P → Q → R) → (P → Q) → P → R
i₃ : P → ¬ ¬ P
i₄ : ¬ ¬ ¬ P → ¬ P
i₅ : ((P ∧ Q) → R) ↔ (P → (Q → R))
i₆ : ¬ ¬ (P ∨ ¬ P)
i₇ : (P ∨ ¬ P) → ¬ ¬ P → P
{-# ATP prove i₁ #-}
{-# ATP prove i₂ #-}
{-# ATP prove i₃ #-}
{-# ATP prove i₄ #-}
{-# ATP prove i₅ #-}
{-# ATP prove i₆ #-}
{-# ATP prove i₇ #-}
------------------------------------------------------------------------------
-- Some non-intuitionistic theorems
postulate ←-transposition : (¬ Q → ¬ P) → P → Q
{-# ATP prove ←-transposition #-}
postulate
ni₁ : ((P → Q) → P) → P
ni₂ : P ∨ ¬ P
ni₃ : ¬ ¬ P → P
ni₄ : (P → Q) → (¬ P → Q) → Q
ni₅ : (P ∨ Q → P) ∨ (P ∨ Q → Q)
ni₆ : (¬ ¬ P → P) → P ∨ ¬ P
{-# ATP prove ni₁ #-}
{-# ATP prove ni₂ #-}
{-# ATP prove ni₃ #-}
{-# ATP prove ni₄ #-}
{-# ATP prove ni₅ #-}
{-# ATP prove ni₆ #-}
------------------------------------------------------------------------------
-- The principle of the excluded middle implies the double negation
-- elimination
postulate
pem→¬¬-elim : (P ∨ ¬ P) → ¬ ¬ P → P
{-# ATP prove pem→¬¬-elim #-}
| {
"alphanum_fraction": 0.3794165982,
"avg_line_length": 26.6010928962,
"ext": "agda",
"hexsha": "44f95c46db93a39b6cc2d2dfadb618cb7cc190da",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOL/PropositionalLogic/TheoremsATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOL/PropositionalLogic/TheoremsATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOL/PropositionalLogic/TheoremsATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1701,
"size": 4868
} |
module Product where
open import Base
open import Category
open import Unique
open import Dual
module Prod (ℂ : Cat) where
private
ℂ' = η-Cat ℂ
open module C = Cat ℂ'
open module U = Uniq ℂ'
data _×_ (A B : Obj) : Set1 where
prod : (AB : Obj)
(π₀ : AB ─→ A)
(π₁ : AB ─→ B) ->
((X : Obj)(f : X ─→ A)(g : X ─→ B) ->
∃! \(h : X ─→ AB) -> π₀ ∘ h == f /\ π₁ ∘ h == g
) -> A × B
Product : {A B : Obj} -> A × B -> Obj
Product (prod AB _ _ _) = AB
π₀ : {A B : Obj}(p : A × B) -> Product p ─→ A
π₀ (prod _ p _ _) = p
π₁ : {A B : Obj}(p : A × B) -> Product p ─→ B
π₁ (prod _ _ q _) = q
module Sum (ℂ : Cat) = Prod (η-Cat ℂ op)
renaming ( _×_ to _+_
; prod to sum
; Product to Sum
; π₀ to inl
; π₁ to inr
)
| {
"alphanum_fraction": 0.4617283951,
"avg_line_length": 19.756097561,
"ext": "agda",
"hexsha": "216685119fee4c540020c7a8da72d038c0e51e15",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/cat/Product.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/cat/Product.agda",
"max_line_length": 52,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/cat/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 333,
"size": 810
} |
{-# OPTIONS --without-K #-}
module FinEquivPlusTimes where
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Unit using (⊤; tt)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_,_; _×_; proj₁; proj₂)
open import Data.Nat
using (ℕ; zero; suc; _+_; _*_; _<_; _≤_; ≤-pred; _≥_; _≤?_;
module ≤-Reasoning)
open import Data.Nat.DivMod using (_divMod_; result)
open import Data.Nat.Properties using (≰⇒>; 1+n≰n; m≤m+n; ¬i+1+j≤i)
open import Data.Nat.Properties.Simple
using (+-assoc; +-suc; +-comm; *-right-zero)
open import Data.Fin
using (Fin; zero; suc; inject+; raise; toℕ; fromℕ≤; reduce≥)
open import Data.Fin.Properties
using (bounded; inject+-lemma; toℕ-raise; toℕ-injective; toℕ-fromℕ≤)
open import Function using (_∘_; id; case_of_)
open import Relation.Nullary using (yes; no)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; cong; cong₂; subst;
module ≡-Reasoning; inspect; [_])
--
open import Equiv using (_∼_; _≃_; qinv; id≃; sym≃; _●_; _⊎≃_)
open import Proofs using (
-- LeqLemmas
_<?_; cong+r≤; cong+l≤; cong*r≤;
-- FinNatLemmas
inj₁-≡; inj₂-≡; inject+-injective; raise-injective; addMul-lemma
)
------------------------------------------------------------------------------
-- Additive unit and multiplicative unit are Fin 0 and Fin 1 which are
-- equivalent to ⊥ and ⊤
abstract
Fin0-⊥ : Fin 0 → ⊥
Fin0-⊥ ()
F0≃⊥ : Fin 0 ≃ ⊥
F0≃⊥ = f , qinv g α β
where
f : Fin 0 → ⊥
f ()
g : ⊥ → Fin 0
g ()
α : f ∘ g ∼ id
α ()
β : g ∘ f ∼ id
β ()
Fin1≃⊤ : Fin 1 ≃ ⊤
Fin1≃⊤ = f , qinv g α β
where
f : Fin 1 → ⊤
f zero = tt
f (suc ())
g : ⊤ → Fin 1
g tt = zero
α : f ∘ g ∼ id
α tt = refl
β : g ∘ f ∼ id
β zero = refl
β (suc ())
------------------------------------------------------------------------------
-- Additive monoid
module Plus where
-- Main goal is to show (Fin m ⊎ Fin n) ≃ Fin (m + n) It is then
-- fairly easy to show that ⊎ satisfies the commutative monoid
-- axioms
private
fwd : {m n : ℕ} → (Fin m ⊎ Fin n) → Fin (m + n)
fwd {m} {n} (inj₁ x) = inject+ n x
fwd {m} {n} (inj₂ y) = raise m y
bwd : {m n : ℕ} → Fin (m + n) → (Fin m ⊎ Fin n)
bwd {m} {n} = λ i → case (toℕ i <? m) of λ
{ (yes p) → inj₁ (fromℕ≤ p)
; (no ¬p) → inj₂ (reduce≥ i (≤-pred (≰⇒> ¬p)))
}
fwd∘bwd~id : {m n : ℕ} → fwd {m} {n} ∘ bwd ∼ id
fwd∘bwd~id {m} i with toℕ i <? m
fwd∘bwd~id i | yes p = sym (inj₁-≡ i p)
fwd∘bwd~id i | no ¬p = sym (inj₂-≡ i (≤-pred (≰⇒> ¬p)))
bwd∘fwd~id : {m n : ℕ} → bwd {m} {n} ∘ fwd ∼ id
bwd∘fwd~id {m} {n} (inj₁ x) with toℕ (inject+ n x) <? m
bwd∘fwd~id {n = n} (inj₁ x) | yes p =
cong inj₁
(inject+-injective (fromℕ≤ p) x (sym (inj₁-≡ (inject+ n x) p)))
bwd∘fwd~id {m} {n} (inj₁ x) | no ¬p = ⊥-elim (1+n≰n pf)
where
open ≤-Reasoning
pf : suc (toℕ x) ≤ toℕ x
pf = let q = (≤-pred (≰⇒> ¬p)) in
begin (
suc (toℕ x)
≤⟨ bounded x ⟩
m
≤⟨ q ⟩
toℕ (inject+ n x)
≡⟨ sym (inject+-lemma n x) ⟩
toℕ x ∎ )
bwd∘fwd~id {m} {n} (inj₂ y) with toℕ (raise m y) <? m
bwd∘fwd~id {m} {n} (inj₂ y) | yes p = ⊥-elim (1+n≰n pf)
where
open ≤-Reasoning
pf : suc m ≤ m
pf = begin (
suc m
≤⟨ m≤m+n (suc m) (toℕ y) ⟩
suc (m + toℕ y)
≡⟨ cong suc (sym (toℕ-raise m y)) ⟩
suc (toℕ (raise m y))
≤⟨ p ⟩
m ∎)
bwd∘fwd~id {m} {n} (inj₂ y) | no ¬p =
cong inj₂
(raise-injective {m}
(reduce≥ (raise m y) (≤-pred (≰⇒> ¬p)))
y
(sym (inj₂-≡ (raise m y) (≤-pred (≰⇒> ¬p)))))
-- the main equivalence
abstract
fwd-iso : {m n : ℕ} → (Fin m ⊎ Fin n) ≃ Fin (m + n)
fwd-iso {m} {n} = fwd , qinv bwd (fwd∘bwd~id {m}) (bwd∘fwd~id {m})
-- aliases for the above which are more convenient
⊎≃+ : {m n : ℕ} → (Fin m ⊎ Fin n) ≃ Fin (m + n)
⊎≃+ = fwd-iso
+≃⊎ : {m n : ℕ} → Fin (m + n) ≃ (Fin m ⊎ Fin n)
+≃⊎ = sym≃ fwd-iso
-----------------------------------------------------------------------------
-- Multiplicative monoid
module Times where
-- main goal is to show (Fin m × Fin n) ≃ Fin (m * n) It is then
-- fairly easy to show that × satisfies the commutative monoid
-- axioms
private
fwd : {m n : ℕ} → (Fin m × Fin n) → Fin (m * n)
fwd {suc m} {n} (zero , k) = inject+ (m * n) k
fwd {n = n} (suc i , k) = raise n (fwd (i , k))
soundness : ∀ {m n} (i : Fin m) (j : Fin n) →
toℕ (fwd (i , j)) ≡ toℕ i * n + toℕ j
soundness {suc m} {n} zero j = sym (inject+-lemma (m * n) j)
soundness {n = n} (suc i) j
rewrite toℕ-raise n (fwd (i , j)) | soundness i j
= sym (+-assoc n (toℕ i * n) (toℕ j))
absurd-quotient : (m n q : ℕ) (r : Fin (suc n)) (k : Fin (m * suc n))
(k≡r+q*sn : toℕ k ≡ toℕ r + q * suc n) (p : m ≤ q) → ⊥
absurd-quotient m n q r k k≡r+q*sn p = ¬i+1+j≤i (toℕ k) {toℕ r} k≥k+sr
where k≥k+sr : toℕ k ≥ toℕ k + suc (toℕ r)
k≥k+sr = begin (toℕ k + suc (toℕ r)
≡⟨ +-suc (toℕ k) (toℕ r) ⟩
suc (toℕ k) + toℕ r
≤⟨ cong+r≤ (bounded k) (toℕ r) ⟩
(m * suc n) + toℕ r
≡⟨ +-comm (m * suc n) (toℕ r) ⟩
toℕ r + (m * suc n)
≡⟨ refl ⟩
toℕ r + m * suc n
≤⟨ cong+l≤ (cong*r≤ p (suc n)) (toℕ r) ⟩
toℕ r + q * suc n
≡⟨ sym k≡r+q*sn ⟩
toℕ k ∎)
where open ≤-Reasoning
elim-right-zero : ∀ {ℓ} {Whatever : Set ℓ}
(m : ℕ) → Fin (m * 0) → Whatever
elim-right-zero m i = ⊥-elim (Fin0-⊥ (subst Fin (*-right-zero m) i))
bwd : {m n : ℕ} → Fin (m * n) → (Fin m × Fin n)
bwd {m} {0} k = elim-right-zero m k
bwd {m} {suc n} k with toℕ k | inspect toℕ k | (toℕ k) divMod (suc n)
bwd {m} {suc n} k | .(toℕ r + q * suc n) | [ pf ] | result q r refl =
(fromℕ≤ {q} {m} q<m , r)
where q<m : q < m
q<m with suc q ≤? m
... | no ¬p = ⊥-elim (absurd-quotient m n q r k pf (≤-pred (≰⇒> ¬p)))
... | yes p = p
fwd∘bwd~id : {m n : ℕ} → fwd {m} {n} ∘ bwd ∼ id
fwd∘bwd~id {m} {zero} i = elim-right-zero m i
fwd∘bwd~id {m} {suc n} i with toℕ i | inspect toℕ i | (toℕ i) divMod (suc n)
fwd∘bwd~id {m} {suc n} i | .(toℕ r + q * suc n) | [ eq ] | result q r refl
with suc q ≤? m
... | no ¬p = ⊥-elim (absurd-quotient m n q r i eq (≤-pred (≰⇒> ¬p)))
... | yes p = toℕ-injective (
begin (
toℕ (fwd (fromℕ≤ {q} {m} p , r))
≡⟨ soundness (fromℕ≤ p) r ⟩
toℕ (fromℕ≤ p) * (suc n) + toℕ r
≡⟨ cong (λ x → x * (suc n) + toℕ r) (toℕ-fromℕ≤ p) ⟩
q * (suc n) + toℕ r
≡⟨ +-comm _ (toℕ r) ⟩
toℕ r + q * (suc n)
≡⟨ sym eq ⟩
toℕ i ∎))
where open ≡-Reasoning
bwd∘fwd~id : {m n : ℕ} → (x : Fin m × Fin n) →
bwd {m} {n} (fwd x) ≡ id x
bwd∘fwd~id {m} {zero} (b , ())
bwd∘fwd~id {m} {suc n} (b , d) with toℕ (fwd (b , d)) | inspect toℕ (fwd (b , d)) | (toℕ (fwd (b , d)) divMod (suc n))
bwd∘fwd~id {m} {suc n} (b , d) | .(toℕ r + q * suc n) | [ eqk ] | result q r refl with q <? m
... | no ¬p = ⊥-elim (absurd-quotient m n q r (fwd (b , d)) eqk (≤-pred (≰⇒> ¬p)))
... | yes p =
begin (
(fromℕ≤ {q} {m} p , r)
≡⟨ cong₂ _,_ pf₁ (proj₁ same-quot) ⟩
(b , d) ∎)
where
open ≡-Reasoning
eq' : toℕ d + toℕ b * suc n ≡ toℕ r + q * suc n
eq' = begin (
toℕ d + toℕ b * suc n
≡⟨ +-comm (toℕ d) _ ⟩
toℕ b * suc n + toℕ d
≡⟨ sym (soundness b d) ⟩
toℕ (fwd (b , d))
≡⟨ eqk ⟩
toℕ r + q * suc n ∎ )
same-quot : (r ≡ d) × (q ≡ toℕ b)
same-quot = addMul-lemma q (toℕ b) n r d ( sym eq' )
pf₁ = toℕ-injective (trans (toℕ-fromℕ≤ p) (proj₂ same-quot))
abstract
fwd-iso : {m n : ℕ} → (Fin m × Fin n) ≃ Fin (m * n)
fwd-iso {m} {n} = fwd , qinv bwd (fwd∘bwd~id {m}) (bwd∘fwd~id {m})
-- convenient aliases
×≃* : {m n : ℕ} → (Fin m × Fin n) ≃ Fin (m * n)
×≃* = fwd-iso
*≃× : {m n : ℕ} → Fin (m * n) ≃ (Fin m × Fin n)
*≃× = sym≃ ×≃*
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.4305208096,
"avg_line_length": 33.4372623574,
"ext": "agda",
"hexsha": "f7cba1d8c682c0a8ba8d0533c9a6d0488e1b566d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/FinEquivPlusTimes.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/FinEquivPlusTimes.agda",
"max_line_length": 123,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/FinEquivPlusTimes.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3701,
"size": 8794
} |
open import Data.Product using ( _×_ ; _,_ ; swap )
open import Relation.Nullary using ( ¬_ )
open import Web.Semantic.DL.ABox using ( ABox ; ε ; _,_ ; _∼_ ; _∈₁_ ; _∈₂_ )
open import Web.Semantic.DL.ABox.Model using ( _⊨a_ )
open import Web.Semantic.DL.Concept using
( Concept ; ⟨_⟩ ; ¬⟨_⟩ ; ⊤ ; ⊥ ; _⊔_ ; _⊓_ ; ∀[_]_ ; ∃⟨_⟩_ ; ≤1 ; >1 ; neg )
open import Web.Semantic.DL.KB using ( KB ; tbox ; abox )
open import Web.Semantic.DL.KB.Model using ( _⊨_ )
open import Web.Semantic.DL.Role using ( Role ; ⟨_⟩ ; ⟨_⟩⁻¹ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using
( TBox ; ε ; _,_ ; _⊑₁_ ; _⊑₂_ ; Dis ; Ref ; Irr ; Tra )
module Web.Semantic.DL.Integrity.Closed.Alternate
{Σ : Signature} {X : Set} where
-- An alternate definition of closed-world integrity.
infixr 4 _,_
infix 2 _⊫_∈₂_ _⊫_∈₁_ _⊫a_ _⊫t_
data _⊫_∼_ (K : KB Σ X) (x y : X) : Set₁ where
eq : (∀ I → (I ⊨ K) → (I ⊨a x ∼ y)) → (K ⊫ x ∼ y)
data _⊫_∈₂_ (K : KB Σ X) (xy : X × X) : Role Σ → Set₁ where
rel : ∀ {r} → (∀ I → (I ⊨ K) → (I ⊨a xy ∈₂ r)) → (K ⊫ xy ∈₂ ⟨ r ⟩)
rev : ∀ {r} → (∀ I → (I ⊨ K) → (I ⊨a swap xy ∈₂ r)) → (K ⊫ xy ∈₂ ⟨ r ⟩⁻¹)
data _⊫_∈₁_ (K : KB Σ X) (x : X) : Concept Σ → Set₁ where
+atom : ∀ {c} → (∀ I → (I ⊨ K) → (I ⊨a x ∈₁ c)) → (K ⊫ x ∈₁ ⟨ c ⟩)
-atom : ∀ {c} → ¬(∀ I → (I ⊨ K) → (I ⊨a x ∈₁ c)) → (K ⊫ x ∈₁ ¬⟨ c ⟩)
top : (K ⊫ x ∈₁ ⊤)
inj₁ : ∀ {C D} → (K ⊫ x ∈₁ C) → (K ⊫ x ∈₁ C ⊔ D)
inj₂ : ∀ {C D} → (K ⊫ x ∈₁ D) → (K ⊫ x ∈₁ C ⊔ D)
_,_ : ∀ {C D} → (K ⊫ x ∈₁ C) → (K ⊫ x ∈₁ D) → (K ⊫ x ∈₁ C ⊓ D)
all : ∀ {R C} → (∀ y → (K ⊫ (x , y) ∈₂ R) → (K ⊫ y ∈₁ C)) → (K ⊫ x ∈₁ ∀[ R ] C)
ex : ∀ {R C} y → (K ⊫ (x , y) ∈₂ R) → (K ⊫ y ∈₁ C) → (K ⊫ x ∈₁ ∃⟨ R ⟩ C)
uniq : ∀ {R} → (∀ y z → (K ⊫ (x , y) ∈₂ R) → (K ⊫ (x , z) ∈₂ R) → (K ⊫ y ∼ z)) → (K ⊫ x ∈₁ ≤1 R)
¬uniq : ∀ {R} y z → (K ⊫ (x , y) ∈₂ R) → (K ⊫ (x , z) ∈₂ R) → ¬(K ⊫ y ∼ z) → (K ⊫ x ∈₁ >1 R)
data _⊫a_ (K : KB Σ X) : ABox Σ X → Set₁ where
ε : (K ⊫a ε)
_,_ : ∀ {A B} → (K ⊫a A) → (K ⊫a B) → (K ⊫a A , B)
eq : ∀ x y → (K ⊫ x ∼ y) → (K ⊫a x ∼ y)
rl : ∀ xy r → (K ⊫ xy ∈₂ ⟨ r ⟩) → (K ⊫a xy ∈₂ r)
cn : ∀ x c → (K ⊫ x ∈₁ ⟨ c ⟩) → (K ⊫a x ∈₁ c)
data _⊫t_ (K : KB Σ X) : TBox Σ → Set₁ where
ε : (K ⊫t ε)
_,_ : ∀ {T U} → (K ⊫t T) → (K ⊫t U) → (K ⊫t T , U)
rl : ∀ Q R → (∀ xy → (K ⊫ xy ∈₂ Q) → (K ⊫ xy ∈₂ R)) → (K ⊫t Q ⊑₂ R)
cn : ∀ C D → (∀ x → (K ⊫ x ∈₁ neg C ⊔ D)) → (K ⊫t C ⊑₁ D)
dis : ∀ Q R → (∀ xy → (K ⊫ xy ∈₂ Q) → ¬(K ⊫ xy ∈₂ R)) → (K ⊫t Dis Q R)
ref : ∀ R → (∀ x → (K ⊫ (x , x) ∈₂ R)) → (K ⊫t Ref R)
irr : ∀ R → (∀ x → ¬(K ⊫ (x , x) ∈₂ R)) → (K ⊫t Irr R)
tra : ∀ R → (∀ x y z → (K ⊫ (x , y) ∈₂ R) → (K ⊫ (y , z) ∈₂ R) → (K ⊫ (x , z) ∈₂ R)) → (K ⊫t Tra R)
data _⊫k_ (K L : KB Σ X) : Set₁ where
_,_ : (K ⊫t tbox L) → (K ⊫a abox L) → (K ⊫k L)
| {
"alphanum_fraction": 0.4209202013,
"avg_line_length": 46.3666666667,
"ext": "agda",
"hexsha": "b17bb570687e742ab8987e86d784a27c7240c2e9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Integrity/Closed/Alternate.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Integrity/Closed/Alternate.agda",
"max_line_length": 101,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Integrity/Closed/Alternate.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1520,
"size": 2782
} |
module Ag02 where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; sym)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡⟨_⟩_; _∎)
open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _^_)
+-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p)
+-assoc zero n p =
begin
(zero + n) + p
≡⟨⟩
n + p
≡⟨⟩
zero + (n + p)
∎
+-assoc (suc m) n p =
begin
(suc m + n) + p
≡⟨⟩
suc (m + n) + p
≡⟨⟩
suc ((m + n) + p)
≡⟨ cong suc (+-assoc m n p) ⟩
suc (m + (n + p))
≡⟨⟩
suc m + (n + p)
∎
+-identityʳ : ∀ (m : ℕ) → m + 0 ≡ m
+-identityʳ zero =
begin
zero + 0
≡⟨⟩
zero
∎
+-identityʳ (suc m) =
begin
suc m + zero
≡⟨⟩
suc (m + zero)
≡⟨ cong suc (+-identityʳ m) ⟩
suc m
∎
+-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n)
+-suc zero n =
begin
zero + suc n
≡⟨⟩
suc n
≡⟨⟩
suc (zero + n)
∎
+-suc (suc m) n =
begin
suc m + suc n
≡⟨⟩
suc (m + suc n)
≡⟨ cong suc (+-suc m n) ⟩
suc (suc (m + n))
≡⟨⟩
suc (suc m + n)
∎
+-comm : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm m zero =
begin
m + zero
≡⟨ +-identityʳ m ⟩
m
≡⟨⟩
zero + m
∎
+-comm m (suc n) =
begin
m + suc n
≡⟨ +-suc m n ⟩
suc (m + n)
≡⟨ cong suc (+-comm m n) ⟩
suc (n + m)
≡⟨⟩
suc n + m
∎
+-rearrange : ∀ (m n p q : ℕ) → (m + n) + (p + q) ≡ m + (n + p) + q
+-rearrange m n p q =
begin
(m + n) + (p + q)
≡⟨ +-assoc m n (p + q) ⟩
m + (n + (p + q))
≡⟨ cong (m +_) (sym (+-assoc n p q)) ⟩
m + ((n + p) + q)
≡⟨ sym (+-assoc m (n + p) q) ⟩
m + (n + p) + q
∎
+-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p)
+-assoc′ zero n p = refl
+-assoc′ (suc m) n p rewrite +-assoc′ m n p = refl
+-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p)
+-swap m n p rewrite sym (+-assoc m n p) | +-comm m n | +-assoc n m p = refl
*-distrib-+ : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p
*-distrib-+ 0 n p = refl
*-distrib-+ (suc m) n p rewrite *-distrib-+ m n p | +-assoc p (m * p) (n * p) = refl
*-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p)
*-assoc 0 n p = refl
*-assoc (suc m) n p rewrite *-distrib-+ n (m * n) p | *-assoc m n p = refl
*-identityʳ : ∀ (n : ℕ) → n * 0 ≡ 0
*-identityʳ 0 = refl
*-identityʳ (suc n) rewrite *-identityʳ n = refl
*-suc : ∀ (m n : ℕ) → m * (suc n) ≡ m + m * n
*-suc 0 n = refl
*-suc (suc m) n rewrite *-suc m n | +-swap n m (m * n) = refl
*-comm : ∀ (m n : ℕ) → m * n ≡ n * m
*-comm 0 n rewrite *-identityʳ n = refl
*-comm (suc m) n rewrite *-comm m n | *-suc n m = refl
∸-n : ∀ (n : ℕ) → 0 ∸ n ≡ 0
∸-n zero = refl
∸-n (suc n) = refl
∸-+-assoc : ∀ (m n p : ℕ) → m ∸ n ∸ p ≡ m ∸ (n + p)
∸-+-assoc zero n p rewrite ∸-n n | ∸-n p | ∸-n (n + p) = refl
∸-+-assoc (suc m) zero p = refl
∸-+-assoc (suc m) (suc n) p rewrite ∸-+-assoc m n p = refl
^-distrib-+ : ∀ (m n p : ℕ) → m ^ (n + p) ≡ (m ^ n) * (m ^ p)
^-distrib-+ m 0 p rewrite +-identityʳ (m ^ p) = refl
^-distrib-+ m (suc n) p rewrite ^-distrib-+ m n p | *-assoc m (m ^ n) (m ^ p) = refl
^-distrib-* : ∀ (m n p : ℕ) → (m * n) ^ p ≡ (m ^ p) * (n ^ p)
^-distrib-* m n zero = refl
^-distrib-* m n (suc p) rewrite ^-distrib-* m n p | sym (*-assoc (m * n) (m ^ p) (n ^ p))
| *-assoc m n (m ^ p) | *-comm n (m ^ p) | *-assoc m ((m ^ p) * n) (n ^ p) | *-assoc (m ^ p) n (n ^ p)
| *-assoc m (m ^ p) (n * (n ^ p)) = refl
^-identity : ∀ (p : ℕ) → 1 ^ p ≡ 1
^-identity zero = refl
^-identity (suc p) rewrite ^-identity p = refl
^-*-plus : ∀ (m n p : ℕ) → m ^ (n * p) ≡ (m ^ n) ^ p
^-*-plus m zero p rewrite ^-identity p = refl
^-*-plus m (suc n) p rewrite ^-distrib-+ m p (n * p) | ^-*-plus m n p | sym (^-distrib-* m (m ^ n) p) = refl
data Bin : Set where
nil : Bin
x0_ : Bin → Bin
x1_ : Bin → Bin
inc : Bin → Bin
inc nil = x1 nil
inc (x1 b) = x0 (inc b)
inc (x0 b) = x1 b
to : ℕ → Bin
to zero = nil
to (suc m) = inc (to m)
from : Bin → ℕ
from nil = zero
from (x1 b) = suc (2 * (from b))
from (x0 b) = 2 * (from b)
inc-suc : ∀ (x : Bin) → from (inc x) ≡ suc (from x)
inc-suc nil = refl
inc-suc (x0 x) = refl
inc-suc (x1 x) rewrite inc-suc x | +-suc (from x) (from x + 0) = refl
| {
"alphanum_fraction": 0.4446312755,
"avg_line_length": 23.3876404494,
"ext": "agda",
"hexsha": "72824ed3012a9753c24b91c107f5d6cf498905b1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/Ag02.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/Ag02.agda",
"max_line_length": 108,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/Ag02.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 2015,
"size": 4163
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core
-- Kernel Pair - a Pullback of a morphism along itself
-- https://ncatlab.org/nlab/show/kernel+pair
module Categories.Diagram.KernelPair {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Categories.Diagram.Pullback 𝒞
open Category 𝒞
private
variable
A B : Obj
-- Make it a pure synonym
KernelPair : (f : A ⇒ B) → Set (o ⊔ ℓ ⊔ e)
KernelPair f = Pullback f f
| {
"alphanum_fraction": 0.7002188184,
"avg_line_length": 20.7727272727,
"ext": "agda",
"hexsha": "5fa4d7daf103f72d4ffa6edc35763566ac6bab91",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/KernelPair.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/KernelPair.agda",
"max_line_length": 71,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/KernelPair.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 138,
"size": 457
} |
------------------------------------------------------------------------
-- Total recognisers based on the same principles as the parsers in
-- TotalParserCombinators.Parser
--
-- Nils Anders Danielsson
------------------------------------------------------------------------
-- Recognisers are less complicated than parsers, and the following
-- code should (generally) be easier to follow than the code under
-- TotalParserCombinators.
module TotalRecognisers where
------------------------------------------------------------------------
-- Recognisers which do not support left recursion
-- Very simple recognisers, including a formal semantics and a proof
-- of decidability.
import TotalRecognisers.Simple
-- Proof showing that the set of languages accepted by these
-- recognisers is exactly the set of languages which can be decided by
-- Agda programs (when the alphabet is {true, false}).
import TotalRecognisers.Simple.ExpressiveStrength
-- An example: a right recursive expression grammar.
import TotalRecognisers.Simple.Expression
-- An alternative backend (without correctness proof).
import TotalRecognisers.Simple.AlternativeBackend
------------------------------------------------------------------------
-- Recognisers which do support left recursion
-- More complicated recognisers, which can handle left recursion. (The
-- set of basic combinators is also different: tok has been replaced
-- by sat, and nonempty and cast have been added.)
import TotalRecognisers.LeftRecursion
-- These recognisers have the same (maximal) expressive strength as
-- the simple ones, as long as the alphabet is finite. For infinite
-- alphabets it is shown that the expressive strength is not maximal.
import TotalRecognisers.LeftRecursion.ExpressiveStrength
-- A tiny library of derived combinators.
import TotalRecognisers.LeftRecursion.Lib
-- An example: a left recursive expression grammar.
import TotalRecognisers.LeftRecursion.Expression
-- An example of how nonempty can be used: parsing of matching
-- parentheses, along with a correctness proof.
import TotalRecognisers.LeftRecursion.MatchingParentheses
-- The recognisers form a *-continuous Kleene algebra.
import TotalRecognisers.LeftRecursion.KleeneAlgebra
-- A direct proof which shows that the context-sensitive language
-- { aⁿbⁿcⁿ | n ∈ ℕ } can be decided.
import TotalRecognisers.LeftRecursion.NotOnlyContextFree
| {
"alphanum_fraction": 0.702781237,
"avg_line_length": 33.4583333333,
"ext": "agda",
"hexsha": "ba6f5ac25a19f10600d0075f5bf010098e1bbe6b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalRecognisers.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalRecognisers.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "TotalRecognisers.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 471,
"size": 2409
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Concrete.Records
open import LibraBFT.Concrete.System
open import LibraBFT.Concrete.System.Parameters
import LibraBFT.Concrete.Properties.Common as Common
import LibraBFT.Concrete.Properties.VotesOnce as VO
open import LibraBFT.Impl.Consensus.Network as Network
open import LibraBFT.Impl.Consensus.Network.Properties as NetworkProps
open import LibraBFT.Impl.Consensus.RoundManager
import LibraBFT.Impl.Handle as Handle
open import LibraBFT.Impl.Handle.Properties
open import LibraBFT.Impl.IO.OBM.InputOutputHandlers
open import LibraBFT.Impl.IO.OBM.Properties.InputOutputHandlers
open import LibraBFT.Impl.Properties.Common
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Consensus.Types.EpochDep
open import LibraBFT.ImplShared.Interface.Output
open import LibraBFT.ImplShared.Util.Crypto
open import LibraBFT.ImplShared.Util.Dijkstra.All
open ReachableSystemStateProps
open import LibraBFT.Impl.Properties.Util
open import Optics.All
open import Util.Lemmas
open import Util.PKCS
open import Util.Prelude
open Invariants
open RoundManagerTransProps
open import LibraBFT.Abstract.Types.EpochConfig UID NodeId
open ParamsWithInitAndHandlers Handle.InitHandler.initAndHandlers
open import LibraBFT.ImplShared.Util.HashCollisions Handle.InitHandler.initAndHandlers
open import Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms
Handle.InitHandler.initAndHandlers
PeerCanSignForPK PeerCanSignForPK-stable
open Structural impl-sps-avp
open import LibraBFT.Impl.Handle.InitProperties
open initHandlerSpec
-- This module proves the two "VotesOnce" proof obligations for our handler.
module LibraBFT.Impl.Properties.VotesOnce (𝓔 : EpochConfig) where
------------------------------------------------------------------------------
newVote⇒lv≡
: ∀ {pre : SystemState}{pid s' acts v m pk}
→ ReachableSystemState pre
→ StepPeerState pid (msgPool pre) (initialised pre) (peerStates pre pid) (s' , acts)
→ v ⊂Msg m
→ send m ∈ acts
→ (sig : WithVerSig pk v)
→ Meta-Honest-PK pk
→ ¬ (∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature sig))
→ ¬ MsgWithSig∈ pk (ver-signature sig) (msgPool pre)
→ LastVoteIs s' v
newVote⇒lv≡ {pid = pid} preach (step-init rm×acts uni) v⊂m send∈acts sig hpk ¬bootstrap ¬mws∈pool
with initHandlerSpec.contract pid fakeBootstrapInfo rm×acts
...| init-contract
with initHandlerSpec.ContractOk.isInitPM init-contract send∈acts
...| (_ , refl , noSigs)
with v⊂m
...| vote∈qc vs∈qc v≈rbld qc∈pm = ⊥-elim (noSigs vs∈qc qc∈pm)
newVote⇒lv≡{pre}{pid}{s'}{v = v}{m}{pk} preach sps@(step-msg{sndr , nm} m∈pool ini) (vote∈qc{vs}{qc} vs∈qc v≈rbld qc∈m) m∈acts sig hpk ¬bootstrap ¬msb4
with cong _vSignature v≈rbld
...| refl = ⊥-elim ∘′ ¬msb4 $ qcVoteSigsSentB4-handle pid preach sps m∈acts qc∈m sig vs∈qc v≈rbld ¬bootstrap
newVote⇒lv≡{pre}{pid}{v = v} preach (step-msg{sndr , P pm} m∈pool ini) vote∈vm m∈acts sig hpk ¬bootstrap ¬msb4
with handleProposalSpec.contract! 0 pm (msgPool pre) (peerStates pre pid)
...| handleProposalSpec.mkContract _ invalidProposal _ vac _ _
-- TODO-2: DRY fail. This pattern arises several times in this file, where we need to know that
-- the proposal being processed is valid, and to use handleProposalSpec to derive a contradiction
-- if is not. Some are identical, some are not.
with BlockId-correct? (pm ^∙ pmProposal)
...| no ¬validProposal = ⊥-elim (sendVote∉actions {outs = handleOuts} {st = handlePre}
(sym (proj₂ $ invalidProposal ¬validProposal)) m∈acts)
where
handlePre = peerStates pre pid
handleOuts = LBFT-outs (handle pid (P pm) 0) (peerStates pre pid)
...| yes refl
with vac refl (nohc preach m∈pool pid ini (invariantsCorrect pid pre ini preach) refl refl)
...| Voting.mkVoteAttemptCorrectWithEpochReq (inj₁ (_ , voteUnsent)) sdEpoch≡? =
⊥-elim (¬voteUnsent voteUnsent)
where
handleOuts = LBFT-outs (handle pid (P pm) 0) (peerStates pre pid)
¬voteUnsent : ¬ Voting.VoteUnsentCorrect (peerStates pre pid) _ _ _ _
¬voteUnsent (Voting.mkVoteUnsentCorrect noVoteMsgOuts _) =
sendVote∉actions{outs = handleOuts}{st = peerStates pre pid}
(sym noVoteMsgOuts) m∈acts
...| Voting.mkVoteAttemptCorrectWithEpochReq (inj₂ (Voting.mkVoteSentCorrect (VoteMsg∙new v' _) rcvr voteMsgOuts vgCorrect)) sdEpoch≡? =
sentVoteIsPostLV
where
handlePost = LBFT-post (handle pid (P pm) 0) (peerStates pre pid)
handleOuts = LBFT-outs (handle pid (P pm) 0) (peerStates pre pid)
sentVoteIsPostLV : LastVoteIs handlePost v
sentVoteIsPostLV
with Voting.VoteGeneratedCorrect.state vgCorrect
...| RoundManagerTransProps.mkVoteGenerated lv≡v _
rewrite sym lv≡v
= cong (just ∘ _^∙ vmVote) (sendVote∈actions{outs = handleOuts}{st = peerStates pre pid} (sym voteMsgOuts) m∈acts)
newVote⇒lv≡{pre}{pid}{s' = s'}{v = v} preach (step-msg{sndr , V vm} m∈pool ini) vote∈vm m∈outs sig hpk ¬bootstrap ¬msb4 =
⊥-elim (sendVote∉actions{outs = hvOut}{st = hvPre} (sym noVotes) m∈outs)
where
hvPre = peerStates pre pid
hvOut = LBFT-outs (handleVote 0 vm) hvPre
open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm (msgPool pre) hvPre)
------------------------------------------------------------------------------
oldVoteRound≤lvr
: ∀ {pid pk v}{pre : SystemState}
→ (r : ReachableSystemState pre)
→ Meta-Honest-PK pk
→ (sig : WithVerSig pk v)
→ ¬ (∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature sig))
→ MsgWithSig∈ pk (ver-signature sig) (msgPool pre)
→ PeerCanSignForPK pre v pid pk
→ (peerStates pre pid) ^∙ rmEpoch ≡ (v ^∙ vEpoch)
→ v ^∙ vRound ≤ Meta.getLastVoteRound ((peerStates pre pid) ^∙ pssSafetyData-rm)
oldVoteRound≤lvr{pid} (step-s preach step@(step-peer{pid'} sp@(step-cheat cmc))) hpk sig ¬bootstrap mws∈pool pcsfpk epoch≡
-- `pid`'s state is untouched by this step
rewrite cheatStepDNMPeerStates₁{pid = pid'}{pid' = pid} sp unit
= oldVoteRound≤lvr preach hpk sig ¬bootstrap mws∈prePool pcsfpkPre epoch≡
where
-- The cheat step could not have been where the signed message was introduced,
-- so there must be a signed message in the pool prior to this
mws∈prePool = ¬cheatForgeNew sp refl unit hpk mws∈pool (¬subst ¬bootstrap (msgSameSig mws∈pool))
-- `pid` can sign for the message in the previous system state
pcsfpkPre = PeerCanSignForPKProps.msb4 preach step pcsfpk hpk sig mws∈prePool
oldVoteRound≤lvr{pid}{v = v} step*@(step-s{pre = pre}{post = post@._} preach step@(step-peer{pid'} sp@(step-honest{st = ppost}{outs} sps))) hpk sig ¬bootstrap mws∈pool pcsfpk epoch≡
with msgSameSig mws∈pool
...| refl
with newMsg⊎msgSentB4 preach sps hpk (msgSigned mws∈pool) ¬bootstrap (msg⊆ mws∈pool) (msg∈pool mws∈pool)
...| Right msb4 = helpSentB4
where
pcsfpkPre : PeerCanSignForPK pre v pid _
pcsfpkPre = PeerCanSignForPKProps.msb4 preach step pcsfpk hpk sig msb4
ovrHyp : peerStates pre pid ^∙ rmEpoch ≡ v ^∙ vEpoch → v ^∙ vRound ≤ Meta.getLastVoteRound ((peerStates pre pid) ^∙ pssSafetyData-rm)
ovrHyp ep≡ = oldVoteRound≤lvr{pre = pre} preach hpk sig ¬bootstrap msb4 pcsfpkPre ep≡
helpSentB4 : v ^∙ vRound ≤ Meta.getLastVoteRound ((peerStates post pid) ^∙ pssSafetyData-rm)
helpSentB4
with pid ≟ pid'
-- A step by `pid'` step cannot affect `pid`'s state
...| no pid≢
rewrite sym (pids≢StepDNMPeerStates{pre = pre} sps pid≢)
= ovrHyp epoch≡
...| yes refl = ≤-trans (ovrHyp epochPre≡) lvr≤
where
-- If a vote signed by a peer exists in the past, and that vote has an
-- epoch id associated to it that is the same as the peer's post-state
-- epoch, then the peer has that same epoch id in its immediately preceding
-- pre-state.
epochPre≡ : peerStates pre pid ^∙ rmEpoch ≡ v ^∙ vEpoch
epochPre≡ =
ReachableSystemStateProps.mws∈pool⇒epoch≡{v = v}{ppost}{outs} preach sps
pcsfpkPre hpk sig ¬bootstrap msb4 epoch≡'
where
open ≡-Reasoning
epoch≡' : ppost ^∙ rmEpoch ≡ v ^∙ vEpoch
epoch≡' = begin
ppost ^∙ rmEpoch ≡⟨ cong (_^∙ rmEpoch) (StepPeer-post-lemma sp) ⟩
peerStates (StepPeer-post{pre = pre} sp) pid' ^∙ rmEpoch ≡⟨ epoch≡ ⟩
v ^∙ vEpoch ∎
ini : initialised pre pid' ≡ initd
ini = ReachableSystemStateProps.mws∈pool⇒initd preach pcsfpkPre hpk sig ¬bootstrap msb4
lvr≤ : Meta.getLastVoteRound ((peerStates pre pid) ^∙ pssSafetyData-rm) ≤ Meta.getLastVoteRound ((peerStates post pid) ^∙ pssSafetyData-rm)
lvr≤
rewrite sym (StepPeer-post-lemma{pre = pre} sp)
= lastVotedRound-mono pid' pre preach ini sps
(trans epochPre≡ (sym epoch≡))
-- The vote was newly sent this round
...| Left (m∈outs , pcsfpkPost , ¬msb4)
-- ... and it really is the same vote, because there has not been a hash collision
with sameSig⇒sameVoteData (msgSigned mws∈pool) sig (msgSameSig mws∈pool)
...| Left nonInjSHA256 = ⊥-elim (PerReachableState.meta-no-collision step* nonInjSHA256)
...| Right refl
with PeerCanSignForPKProps.pidInjective pcsfpk pcsfpkPost refl
...| refl = ≡⇒≤ vr≡lvrPost
where
vr≡lvrPost : v ^∙ vRound ≡ Meta.getLastVoteRound ((peerStates (StepPeer-post sp) pid) ^∙ pssSafetyData-rm)
vr≡lvrPost
rewrite sym (StepPeer-post-lemma sp)
with newVote⇒lv≡{pre = pre}{pid = pid} preach sps (msg⊆ mws∈pool) m∈outs (msgSigned mws∈pool) hpk ¬bootstrap ¬msb4
...| lastVoteIsJust
with ppost ^∙ pssSafetyData-rm ∙ sdLastVote
...| nothing = absurd (just _ ≡ nothing) case lastVoteIsJust of λ ()
...| just _ rewrite just-injective (sym lastVoteIsJust) = refl
------------------------------------------------------------------------------
sameERasLV⇒sameId-lem₁ :
∀ {pid pid' pk s acts}{pre : SystemState}
→ ReachableSystemState pre
→ (sp : StepPeer pre pid' s acts)
→ ∀ {v v'} → Meta-Honest-PK pk
→ PeerCanSignForPK (StepPeer-post sp) v pid pk
→ (sig' : WithVerSig pk v') → ¬ (∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature sig'))
→ (mws : MsgWithSig∈ pk (ver-signature sig') (msgPool pre))
→ v ≡L v' at vEpoch → v ≡L v' at vRound
→ Σ[ mws ∈ MsgWithSig∈ pk (ver-signature sig') (msgPool pre) ]
(¬ ∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature ∘ msgSigned $ mws)
× PeerCanSignForPK pre v pid pk
× v ≡L msgPart mws at vEpoch
× v ≡L msgPart mws at vRound
× msgPart mws ≡L v' at vProposedId)
sameERasLV⇒sameId-lem₁{pid}{pid'}{pk}{pre = pre} rss sp {v}{v'} hpk pcsfpk sig' ¬bootstrap mws ≡epoch ≡round =
mws , ¬bootstrap' , pcsfpkPre
, trans ≡epoch (cong (_^∙ vdProposed ∙ biEpoch) (sym ≡voteData))
, trans ≡round (cong (_^∙ vdProposed ∙ biRound) (sym ≡voteData))
, cong (_^∙ vdProposed ∙ biId) ( ≡voteData)
where
-- That message has the same signature as `v'`, so it has the same vote data
-- (unless there was a collision, which we currently assume does not occur).
≡voteData : msgPart mws ≡L v' at vVoteData
≡voteData = ⊎-elimˡ (PerReachableState.meta-no-collision rss) (sameSig⇒sameVoteData sig' (msgSigned mws) (sym ∘ msgSameSig $ mws))
¬bootstrap' : ¬ ∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature ∘ msgSigned $ mws)
¬bootstrap' rewrite msgSameSig mws = ¬bootstrap
-- The peer can sign for `v` now, so it can sign for `v` in the preceeding
-- step, because there is an honestly signed message part for the peer's pubkey in the
-- current epoch already in the pool.
pcsfpkPre : PeerCanSignForPK pre v pid pk
pcsfpkPre = PeerCanSignForPKProps.msb4-eid≡ rss (step-peer sp) hpk pcsfpk ≡epoch sig' mws
sameERasLV⇒sameId
: ∀ {pid pid' pk}{st : SystemState}
→ ReachableSystemState st
→ ∀{v v' m'} → Meta-Honest-PK pk
→ just v ≡ peerStates st pid ^∙ pssSafetyData-rm ∙ sdLastVote
→ PeerCanSignForPK st v pid pk
→ v' ⊂Msg m' → (pid' , m') ∈ (msgPool st)
→ (sig' : WithVerSig pk v') → ¬ (∈BootstrapInfo-impl fakeBootstrapInfo (ver-signature sig'))
→ v ≡L v' at vEpoch → v ≡L v' at vRound
→ v ≡L v' at vProposedId
-- Cheat steps cannot be where an honestly signed message originated.
sameERasLV⇒sameId{pid}{pid'}{pk} (step-s{pre = pre} rss (step-peer sp@(step-cheat cmc))) {v}{v'}{m'} hpk ≡pidLV pcsfpk v'⊂m' m'∈pool sig' ¬bootstrap ≡epoch ≡round
with sameERasLV⇒sameId-lem₁ rss sp hpk pcsfpk sig' ¬bootstrap mws ≡epoch ≡round
where
-- Track down the honestly signed message which existed before.
mws : MsgWithSig∈ pk (ver-signature sig') (msgPool pre)
mws = ¬cheatForgeNew sp refl unit hpk (mkMsgWithSig∈ m' v' v'⊂m' pid' m'∈pool sig' refl) ¬bootstrap
...| mws , ¬bootstrap' , pcsfpkPre , ≡epoch' , ≡round' , v'id≡ =
trans (sameERasLV⇒sameId rss hpk ≡pidLVPre pcsfpkPre (msg⊆ mws) (msg∈pool mws) (msgSigned mws) ¬bootstrap' ≡epoch' ≡round') v'id≡
where
-- The state of `pid` is unchanged
≡pidLVPre : just v ≡ peerStates pre pid ^∙ pssSafetyData-rm ∙ sdLastVote
≡pidLVPre = trans ≡pidLV (cong (_^∙ pssSafetyData-rm ∙ sdLastVote) (cheatStepDNMPeerStates₁ sp unit))
-- Initialization steps cannot be where an honestly signed message originated
sameERasLV⇒sameId {pid} {pid'} {pk}
(step-s rss step@(step-peer{pre = pre} sp@(step-honest{pid“} sps@(step-init {rm} rm×acts uni))))
{v} {v'} {m'} hpk ≡pidLV pcsfpk v'⊂m' m'∈pool sig' ¬bootstrap ≡epoch ≡round
with pid ≟ pid“
-- If this isn't `pid`, the step does not affect `pid`'s state
...| no pid≢
rewrite sym $ pids≢StepDNMPeerStates{pre = pre} sps pid≢
= sameERasLV⇒sameId rss hpk ≡pidLV pcsfpkPre v'⊂m' (m'∈poolb4 v'⊂m') sig' ¬bootstrap ≡epoch ≡round
where
m'∈poolb4 : v' ⊂Msg m' → (pid' , m') ∈ (msgPool pre)
m'∈poolb4 v'⊂m'
with Any-++⁻ _ m'∈pool
...| inj₂ x = x
...| inj₁ x
with initHandlerSpec.contract pid“ fakeBootstrapInfo rm×acts
...| init-contract
with initHandlerSpec.ContractOk.isInitPM init-contract (proj₁ (senderMsgPair∈⇒send∈ _ x))
...| (pm , refl , noSigs)
with v'⊂m'
...| vote∈qc vs∈qc v≈rbld qc∈nm
= ⊥-elim (noSigs vs∈qc qc∈nm)
mws : MsgWithSig∈ pk (ver-signature sig') (msgPool pre)
mws = mkMsgWithSig∈ _ _ v'⊂m' _ (m'∈poolb4 v'⊂m') sig' refl
pcsfpkPre : PeerCanSignForPK pre v pid pk
pcsfpkPre = PeerCanSignForPKProps.msb4-eid≡ rss step hpk pcsfpk ≡epoch sig' mws
-- If this is `pid`, the last vote cannot be a `just`!
...| yes refl
rewrite sym (StepPeer-post-lemma sp)
with initHandlerSpec.contract pid fakeBootstrapInfo rm×acts
...| init-contract
with initHandlerSpec.ContractOk.sdLVnothing init-contract
...| lv≡nothing
= absurd just v ≡ nothing case trans ≡pidLV lv≡nothing of λ ()
sameERasLV⇒sameId{pid}{pid'}{pk} (step-s rss (step-peer{pre = pre} sp@(step-honest{pid“} sps@(step-msg{sndr , m} m∈pool ini)))) {v}{v'} hpk ≡pidLV pcsfpk v'⊂m' m'∈pool sig' ¬bootstrap ≡epoch ≡round
with newMsg⊎msgSentB4 rss sps hpk sig' ¬bootstrap v'⊂m' m'∈pool
-- The message has been sent before
...| Right mws'
with sameERasLV⇒sameId-lem₁ rss sp hpk pcsfpk sig' ¬bootstrap mws' ≡epoch ≡round
...| mws , ¬bootstrap' , pcsfpkPre , ≡epoch' , ≡round' , v'id≡
with pid ≟ pid“
-- If this isn't `pid`, the step does not affect `pid`'s state
...| no pid≢
rewrite sym $ pids≢StepDNMPeerStates{pre = pre} sps pid≢
= trans (sameERasLV⇒sameId rss hpk ≡pidLV pcsfpkPre (msg⊆ mws) (msg∈pool mws) (msgSigned mws) ¬bootstrap' ≡epoch' ≡round') v'id≡
-- This is `pid`, so we need to know what message it was processing
...| yes refl
rewrite sym $ StepPeer-post-lemma{pre = pre} sp
= trans (sameERasLV⇒sameId rss hpk (≡pidLVPre m m∈pool ≡pidLV) pcsfpkPre (msg⊆ mws) (msg∈pool mws) (msgSigned mws) ¬bootstrap' ≡epoch' ≡round') v'id≡
where
≡pidLVPre : (m : NetworkMsg) → (sndr , m) ∈ msgPool pre → just v ≡ LBFT-post (handle pid m 0) (peerStates pre pid) ^∙ pssSafetyData-rm ∙ sdLastVote → just v ≡ peerStates pre pid ^∙ pssSafetyData-rm ∙ sdLastVote
-- Last vote doesn't change when processing a vote message
≡pidLVPre (V vm) m∈pool ≡pidLV = begin
just v ≡⟨ ≡pidLV ⟩
hvPos ^∙ pssSafetyData-rm ∙ sdLastVote ≡⟨ cong (_^∙ sdLastVote) (sym noSDChange) ⟩
hvPre ^∙ pssSafetyData-rm ∙ sdLastVote ∎
where
open ≡-Reasoning
hvPre = peerStates pre pid
hvPos = LBFT-post (handleVote 0 vm) hvPre
hvOut = LBFT-outs (handleVote 0 vm) hvPre
open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm (msgPool pre) hvPre)
-- Commit messages are only for reasoning about correctness
≡pidLVPre (C cm) m∈pool ≡pidLV = ≡pidLV
≡pidLVPre (P pm) m∈pool ≡pidLV = analyzeVoteAttempt
where
hpPre = peerStates pre pid“
hpPos = LBFT-post (handleProposal 0 pm) hpPre
open handleProposalSpec.Contract (handleProposalSpec.contract! 0 pm (msgPool pre) hpPre)
renaming (rmInv to rmInvP)
open Invariants.RoundManagerInv (invariantsCorrect pid“ pre ini rss)
-- when the last vote is the same in pre and post states
module OldVote (lv≡ : hpPre ≡L hpPos at pssSafetyData-rm ∙ sdLastVote) where
open ≡-Reasoning
≡pidLVPre₁ : just v ≡ hpPre ^∙ pssSafetyData-rm ∙ sdLastVote
≡pidLVPre₁ = begin
just v ≡⟨ ≡pidLV ⟩
hpPos ^∙ pssSafetyData-rm ∙ sdLastVote ≡⟨ sym lv≡ ⟩
hpPre ^∙ pssSafetyData-rm ∙ sdLastVote ∎
-- When a new vote is generated, its round is strictly greater than that of the previous vote we attempted to send.
module NewVote
(vote : Vote) (lv≡v : just vote ≡ hpPos ^∙ pssSafetyData-rm ∙ sdLastVote)
(lvr< : hpPre [ _<_ ]L hpPos at pssSafetyData-rm ∙ sdLastVotedRound)
(lvr≡ : vote ^∙ vRound ≡ hpPos ^∙ pssSafetyData-rm ∙ sdLastVotedRound)
(sdEpoch≡ : hpPre ^∙ pssSafetyData-rm ∙ sdEpoch ≡ pm ^∙ pmProposal ∙ bEpoch)
(blockTriggered : Voting.VoteMadeFromBlock vote (pm ^∙ pmProposal))
where
-- `vote` comes from the peer handler contract
v≡vote : v ≡ vote
v≡vote = just-injective $ begin
just v ≡⟨ ≡pidLV ⟩
hpPos ^∙ pssSafetyData-rm ∙ sdLastVote ≡⟨ sym lv≡v ⟩
just vote ∎
where open ≡-Reasoning
-- The round of `v'` must be less than the round of the vote stored in `sdLastVote`
rv'≤lvrPre : v' ^∙ vRound ≤ Meta.getLastVoteRound (hpPre ^∙ pssSafetyData-rm)
rv'≤lvrPre = oldVoteRound≤lvr rss hpk sig' ¬bootstrap mws pcsfpkPre'
(ReachableSystemStateProps.mws∈pool⇒epoch≡ rss (step-msg m∈pool ini)
pcsfpkPre' hpk sig' ¬bootstrap mws ≡epoch“)
where
pcsfpkPre' = peerCanSignEp≡ pcsfpkPre ≡epoch
open ≡-Reasoning
≡epoch“ : hpPos ^∙ rmEpoch ≡ v' ^∙ vEpoch
≡epoch“ = begin
hpPos ^∙ rmEpoch ≡⟨ sym noEpochChange ⟩
hpPre ^∙ rmEpoch ≡⟨ rmEpochsMatch ⟩
hpPre ^∙ pssSafetyData-rm ∙ sdEpoch ≡⟨ sdEpoch≡ ⟩
pm ^∙ pmProposal ∙ bEpoch ≡⟨ sym $ Voting.VoteMadeFromBlock.epoch≡ blockTriggered ⟩
vote ^∙ vEpoch ≡⟨ cong (_^∙ vEpoch) (sym v≡vote) ⟩
v ^∙ vEpoch ≡⟨ ≡epoch ⟩
v' ^∙ vEpoch ∎
rv'<rv : v' [ _<_ ]L v at vRound
rv'<rv = begin
(suc $ v' ^∙ vRound) ≤⟨ s≤s rv'≤lvrPre ⟩
(suc $ Meta.getLastVoteRound (hpPre ^∙ pssSafetyData-rm)) ≤⟨ s≤s lvRound≤ ⟩
(suc $ hpPre ^∙ pssSafetyData-rm ∙ sdLastVotedRound) ≤⟨ lvr< ⟩
hpPos ^∙ pssSafetyData-rm ∙ sdLastVotedRound ≡⟨ sym lvr≡ ⟩
vote ^∙ vRound ≡⟨ sym (cong (_^∙ vRound) v≡vote) ⟩
v ^∙ vRound ∎
where
open ≤-Reasoning
open SafetyDataInv (SafetyRulesInv.sdInv rmSafetyRulesInv)
analyzeVoteAttempt : just v ≡ peerStates pre pid ^∙ pssSafetyData-rm ∙ sdLastVote
analyzeVoteAttempt
with BlockId-correct? (pm ^∙ pmProposal)
...| no ¬validProposal rewrite sym (proj₁ (invalidProposal ¬validProposal)) = ≡pidLV
...| yes refl
with voteAttemptCorrect refl (nohc rss m∈pool pid ini (invariantsCorrect pid pre ini rss) refl refl)
...| Voting.mkVoteAttemptCorrectWithEpochReq (Left (_ , Voting.mkVoteUnsentCorrect noVoteMsgOuts nvg⊎vgusc)) sdEpoch≡?
with nvg⊎vgusc
...| Left (mkVoteNotGenerated lv≡ lvr≤) = OldVote.≡pidLVPre₁ lv≡
...| Right (Voting.mkVoteGeneratedUnsavedCorrect vote (Voting.mkVoteGeneratedCorrect (mkVoteGenerated lv≡v voteSrc) blockTriggered))
with voteSrc
...| Left (mkVoteOldGenerated lvr≡ lv≡) = OldVote.≡pidLVPre₁ lv≡
...| Right (mkVoteNewGenerated lvr< lvr≡) =
⊥-elim (<⇒≢ (NewVote.rv'<rv vote lv≡v lvr< lvr≡ sdEpoch≡? blockTriggered) (sym ≡round))
analyzeVoteAttempt | yes refl | Voting.mkVoteAttemptCorrectWithEpochReq (Right (Voting.mkVoteSentCorrect vm pid voteMsgOuts vgCorrect)) sdEpoch≡?
with vgCorrect
...| Voting.mkVoteGeneratedCorrect (mkVoteGenerated lv≡v voteSrc) blockTriggered
with voteSrc
...| Left (mkVoteOldGenerated lvr≡ lv≡) = OldVote.≡pidLVPre₁ lv≡
...| Right (mkVoteNewGenerated lvr< lvr≡) =
⊥-elim (<⇒≢ (NewVote.rv'<rv (vm ^∙ vmVote) lv≡v lvr< lvr≡ sdEpoch≡? blockTriggered) (sym ≡round))
-- This is the origin of the message
sameERasLV⇒sameId{pid}{pid'}{pk} (step-s rss (step-peer{pre = pre} sp@(step-honest{pid“} sps@(step-msg{sndr , m} m∈pool ini)))) {v}{v'} hpk ≡pidLV pcsfpk v'⊂m' m'∈pool sig' ¬bootstrap ≡epoch ≡round
| Left (m'∈acts , pcsfpk' , ¬msb4)
-- So `pid“` must be `pid`
with PeerCanSignForPKProps.pidInjective pcsfpk pcsfpk' ≡epoch
...| refl
with v'⊂m'
-- QC vote signatures have been sent before
...| vote∈qc{qc = qc} vs∈qc v≈ qc∈m'
rewrite cong _vSignature v≈
= ⊥-elim ∘′ ¬msb4 $ qcVoteSigsSentB4-handle pid rss sps m'∈acts qc∈m' sig' vs∈qc v≈ ¬bootstrap
...| vote∈vm
rewrite sym $ StepPeer-post-lemma{pre = pre} sp
= sameId m m∈pool m'∈acts ≡pidLV
where
handlePre = peerStates pre pid
handleOuts : NetworkMsg → List Output
handleOuts m = LBFT-outs (handle sndr m 0) handlePre
handlePst : NetworkMsg → RoundManager
handlePst m = LBFT-post (handle sndr m 0) handlePre
sameId : ∀ {sndr} m → (sndr , m) ∈ msgPool pre
→ send (V (VoteMsg∙new v' _)) ∈ outputsToActions{State = handlePre} (handleOuts m)
→ just v ≡ handlePst m ^∙ pssSafetyData-rm ∙ sdLastVote → v ≡L v' at vProposedId
sameId (P pm) m∈pool m'∈acts ≡pidLV = analyzeVoteAttempt
where
open handleProposalSpec.Contract (handleProposalSpec.contract! 0 pm (msgPool pre) handlePre)
analyzeVoteAttempt : v ≡L v' at vProposedId
analyzeVoteAttempt
with BlockId-correct? (pm ^∙ pmProposal)
...| no ¬validProposal = ⊥-elim (sendVote∉actions {outs = handleOuts (P pm)} {st = handlePre}
(sym (proj₂ $ invalidProposal ¬validProposal)) m'∈acts)
...| yes refl
with voteAttemptCorrect refl (nohc rss m∈pool pid ini (invariantsCorrect pid pre ini rss) refl refl)
...| Voting.mkVoteAttemptCorrectWithEpochReq (Left (_ , vuc)) sdEpoch≡? =
⊥-elim (sendVote∉actions {outs = handleOuts (P pm)} {st = handlePre} (sym $ Voting.VoteUnsentCorrect.noVoteMsgOuts vuc) m'∈acts)
...| Voting.mkVoteAttemptCorrectWithEpochReq (Right (Voting.mkVoteSentCorrect vm pid voteMsgOuts vgCorrect)) sdEpoch≡?
with vgCorrect
...| Voting.mkVoteGeneratedCorrect (mkVoteGenerated lv≡v voteSrc) blockTriggered = cong (_^∙ vProposedId) v≡v'
where
open ≡-Reasoning
v≡v' : v ≡ v'
v≡v' = just-injective $ begin
just v
≡⟨ ≡pidLV ⟩
(handlePst (P pm) ^∙ pssSafetyData-rm ∙ sdLastVote)
≡⟨ sym lv≡v ⟩
just (vm ^∙ vmVote)
≡⟨ cong (just ∘ _^∙ vmVote) (sym $ sendVote∈actions{outs = handleOuts (P pm)}{st = handlePre} (sym voteMsgOuts) m'∈acts) ⟩
just v' ∎
sameId (V vm) _ m'∈acts ≡pidLV =
⊥-elim (sendVote∉actions {outs = hvOuts} {st = peerStates pre pid} (sym noVotes) m'∈acts)
where
hvOuts = LBFT-outs (handleVote 0 vm) (peerStates pre pid)
open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm (msgPool pre) handlePre)
sameId (C x) _ ()
------------------------------------------------------------------------------
votesOnce₁ : Common.IncreasingRoundObligation Handle.InitHandler.initAndHandlers 𝓔
votesOnce₁ {pid = pid} {pid'} {pk = pk} {pre = pre} preach
(step-init {rm} rm×acts uni)
{v} {m} {v'} {m'} hpk v⊂MsgPpm m∈acts sig ¬bootstrap ¬msb pcspkv v'⊂m' m'∈pool sig' ¬bootstrap' eid≡
with initHandlerSpec.contract pid fakeBootstrapInfo rm×acts
...| init-contract
with initHandlerSpec.ContractOk.isInitPM init-contract m∈acts
...| (_ , _ , noSigs)
with v⊂MsgPpm
...| vote∈qc vs∈qc v≈rbld qc∈nm
= ⊥-elim (noSigs vs∈qc qc∈nm)
votesOnce₁ {pid = pid} {pid'} {pk = pk} {pre = pre} preach sps@(step-msg {sndr , P pm} m∈pool ini) {v} {m} {v'} {m'} hpk (vote∈qc {vs} {qc} vs∈qc v≈rbld qc∈m) m∈acts sig ¬bootstrap ¬msb pcspkv v'⊂m' m'∈pool sig' ¬bootstrap' eid≡
with cong _vSignature v≈rbld
...| refl = ⊥-elim ∘′ ¬msb $ qcVoteSigsSentB4-handle pid preach sps m∈acts qc∈m sig vs∈qc v≈rbld ¬bootstrap
votesOnce₁ {pid = pid} {pid'} {pk = pk} {pre = pre} preach sps@(step-msg {sndr , P pm} m∈pool ini) {v} {.(V (VoteMsg∙new v _))} {v'} {m'} hpk vote∈vm m∈acts sig ¬bootstrap ¬msb pcspkv v'⊂m' m'∈pool sig' ¬bootstrap' eid≡
with handleProposalSpec.contract! 0 pm (msgPool pre) (peerStates pre pid)
...| handleProposalSpec.mkContract _ invProp noEpochChange vac _ _
with BlockId-correct? (pm ^∙ pmProposal)
...| no ¬validProposal = ⊥-elim (sendVote∉actions {outs = hpOut} {st = hpPre} (sym (proj₂ $ invProp ¬validProposal)) m∈acts )
where
hpPre = peerStates pre pid
hpOut = LBFT-outs (handleProposal 0 pm) hpPre
...| yes refl
with vac refl (nohc preach m∈pool pid ini (invariantsCorrect pid pre ini preach) refl refl)
...| Voting.mkVoteAttemptCorrectWithEpochReq (inj₁ (_ , Voting.mkVoteUnsentCorrect noVoteMsgOuts nvg⊎vgusc)) sdEpoch≡? =
⊥-elim (sendVote∉actions{outs = LBFT-outs (handleProposal 0 pm) (peerStates pre pid)}{st = peerStates pre pid} (sym noVoteMsgOuts) m∈acts)
...| Voting.mkVoteAttemptCorrectWithEpochReq (inj₂ (Voting.mkVoteSentCorrect vm pid₁ voteMsgOuts vgCorrect)) sdEpoch≡?
with sendVote∈actions{outs = LBFT-outs (handleProposal 0 pm) (peerStates pre pid)}{st = peerStates pre pid} (sym voteMsgOuts) m∈acts
...| refl = ret
where
-- Some definitions
step = step-peer (step-honest sps)
rmPre = peerStates pre pid
rmPost = peerStates (StepPeer-post{pre = pre} (step-honest sps)) pid
-- State invariants
rmInvs = invariantsCorrect pid pre ini preach
open RoundManagerInv rmInvs
-- Properties of `handleProposal`
postLV≡ : just v ≡ (rmPost ^∙ pssSafetyData-rm ∙ sdLastVote)
postLV≡ =
trans (RoundManagerTransProps.VoteGenerated.lv≡v ∘ Voting.VoteGeneratedCorrect.state $ vgCorrect)
(cong (_^∙ pssSafetyData-rm ∙ sdLastVote) (StepPeer-post-lemma (step-honest sps)))
-- The proof
m'mwsb : MsgWithSig∈ pk (ver-signature sig') (msgPool pre)
m'mwsb = mkMsgWithSig∈ m' v' v'⊂m' pid' m'∈pool sig' refl
pcspkv'-pre : PeerCanSignForPK pre v' pid pk
pcspkv'-pre = PeerCanSignForPKProps.msb4 preach step (peerCanSignEp≡{v' = v'} pcspkv eid≡) hpk sig' m'mwsb
rv'≤rv : v' ^∙ vRound ≤ v ^∙ vRound
rv'≤rv =
≤-trans
(oldVoteRound≤lvr preach hpk sig' ¬bootstrap' m'mwsb pcspkv'-pre (trans rmPreEsEpoch≡ eid≡))
realLVR≤rv
where
open ≡-Reasoning
-- TODO-1 : `rmPreSdEpoch≡` can be factored out into a lemma.
-- Something like: for any reachable state where a peer sends a vote, the
-- epoch for that vote is the peer's sdEpoch / esEpoch.
rmPreSdEpoch≡ : rmPre ^∙ pssSafetyData-rm ∙ sdEpoch ≡ v ^∙ vEpoch
rmPreSdEpoch≡
with Voting.VoteGeneratedCorrect.state vgCorrect
| Voting.VoteGeneratedCorrect.blockTriggered vgCorrect
...| RoundManagerTransProps.mkVoteGenerated lv≡v (Left (RoundManagerTransProps.mkVoteOldGenerated lvr≡ lv≡)) | _
with SafetyDataInv.lvEpoch≡ ∘ SafetyRulesInv.sdInv $ rmSafetyRulesInv
...| sdEpochInv rewrite trans lv≡ (sym lv≡v) = sym sdEpochInv
rmPreSdEpoch≡
| RoundManagerTransProps.mkVoteGenerated lv≡v (Right (RoundManagerTransProps.mkVoteNewGenerated lvr< lvr≡)) | bt =
trans sdEpoch≡? (sym ∘ proj₁ ∘ Voting.VoteMadeFromBlock⇒VoteEpochRoundIs $ bt)
rmPreEsEpoch≡ : rmPre ^∙ rmEpochState ∙ esEpoch ≡ v ^∙ vEpoch
rmPreEsEpoch≡ =
begin rmPre ^∙ rmEpochState ∙ esEpoch ≡⟨ rmEpochsMatch ⟩
rmPre ^∙ pssSafetyData-rm ∙ sdEpoch ≡⟨ rmPreSdEpoch≡ ⟩
v ^∙ vEpoch ∎
realLVR≤rv : Meta.getLastVoteRound (rmPre ^∙ pssSafetyData-rm) ≤ v ^∙ vRound
realLVR≤rv
with Voting.VoteGeneratedCorrect.state vgCorrect
...| RoundManagerTransProps.mkVoteGenerated lv≡v (inj₁ (RoundManagerTransProps.mkVoteOldGenerated lvr≡ lv≡))
rewrite trans lv≡ (sym lv≡v)
= ≤-refl
...| RoundManagerTransProps.mkVoteGenerated lv≡v (inj₂ (RoundManagerTransProps.mkVoteNewGenerated lvr< lvr≡))
with rmPre ^∙ pssSafetyData-rm ∙ sdLastVote
| SafetyDataInv.lvRound≤ ∘ SafetyRulesInv.sdInv $ rmSafetyRulesInv
...| nothing | _ = z≤n
...| just lv | round≤ = ≤-trans (≤-trans round≤ (<⇒≤ lvr<)) (≡⇒≤ (sym lvr≡))
ret : v' [ _<_ ]L v at vRound ⊎ Common.VoteForRound∈ Handle.InitHandler.initAndHandlers 𝓔 pk (v ^∙ vRound) (v ^∙ vEpoch) (v ^∙ vProposedId) (msgPool pre)
ret
with <-cmp (v' ^∙ vRound) (v ^∙ vRound)
...| tri< rv'<rv _ _ = Left rv'<rv
...| tri≈ _ rv'≡rv _
= Right (Common.mkVoteForRound∈ _ v' v'⊂m' pid' m'∈pool sig' (sym eid≡) rv'≡rv
(sym (sameERasLV⇒sameId (step-s preach step) hpk postLV≡ pcspkv v'⊂m' (Any-++ʳ _ m'∈pool) sig' ¬bootstrap' eid≡ (sym rv'≡rv) )))
...| tri> _ _ rv'>rv = ⊥-elim (≤⇒≯ rv'≤rv rv'>rv)
votesOnce₁{pid = pid}{pid'}{pk = pk}{pre = pre} preach sps@(step-msg{sndr , V vm} m∈pool ini){v}{m}{v'}{m'} hpk v⊂m m∈acts sig ¬bootstrap ¬msb vspk v'⊂m' m'∈pool sig' ¬bootstrap' eid≡
with v⊂m
...| vote∈qc vs∈qc v≈rbld qc∈m rewrite cong _vSignature v≈rbld =
⊥-elim ∘′ ¬msb $ qcVoteSigsSentB4-handle pid preach sps m∈acts qc∈m sig vs∈qc v≈rbld ¬bootstrap
...| vote∈vm =
⊥-elim (sendVote∉actions{outs = hvOut}{st = hvPre} (sym noVotes) m∈acts)
where
hvPre = peerStates pre pid
hvOut = LBFT-outs (handleVote 0 vm) hvPre
open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm (msgPool pre) hvPre)
------------------------------------------------------------------------------
votesOnce₂ : VO.ImplObligation₂ Handle.InitHandler.initAndHandlers 𝓔
votesOnce₂ {pid} {pk = pk} {pre} rss
(step-init {rm} rm×acts uni)
hpk v⊂m m∈acts sig ¬bootstrap ¬msb4 pcsfpk v'⊂m' m'∈acts sig' ¬bootstrap' ¬msb4' pcsfpk' ≡epoch ≡round
with initHandlerSpec.contract pid fakeBootstrapInfo rm×acts
...| init-contract
with initHandlerSpec.ContractOk.isInitPM init-contract m∈acts
...| (_ , refl , noSigs)
with v⊂m
...| vote∈qc vs∈qc v≈rbld qc∈pm = ⊥-elim (noSigs vs∈qc qc∈pm)
votesOnce₂{pid}{pk = pk}{pre} rss (step-msg{sndr , m“} m“∈pool ini){v}{v' = v'} hpk v⊂m m∈acts sig ¬bootstrap ¬msb4 pcsfpk v'⊂m' m'∈acts sig' ¬bootstrap' ¬msb4' pcsfpk' ≡epoch ≡round
with v⊂m
...| vote∈qc vs∈qc v≈rbld qc∈m rewrite cong _vSignature v≈rbld =
⊥-elim ∘′ ¬msb4 $ qcVoteSigsSentB4-handle pid rss (step-msg m“∈pool ini) m∈acts qc∈m sig vs∈qc v≈rbld ¬bootstrap
...| vote∈vm
with v'⊂m'
...| vote∈qc vs∈qc' v≈rbld' qc∈m' rewrite cong _vSignature v≈rbld' =
⊥-elim ∘′ ¬msb4' $ qcVoteSigsSentB4-handle pid rss (step-msg m“∈pool ini) m'∈acts qc∈m' sig' vs∈qc' v≈rbld' ¬bootstrap'
...| vote∈vm
with m“
...| P pm = cong (_^∙ vProposedId) v≡v'
where
hpPool = msgPool pre
hpPre = peerStates pre pid
hpOut = LBFT-outs (handleProposal 0 pm) hpPre
open handleProposalSpec.Contract (handleProposalSpec.contract! 0 pm hpPool hpPre)
v≡v' : v ≡ v'
v≡v'
with BlockId-correct? (pm ^∙ pmProposal)
...| no ¬validProposal = ⊥-elim (sendVote∉actions {outs = hpOut} {st = hpPre} (sym (proj₂ $ invalidProposal ¬validProposal)) m∈acts)
...| yes refl
with voteAttemptCorrect refl (nohc rss m“∈pool pid ini (invariantsCorrect pid pre ini rss) refl refl )
...| Voting.mkVoteAttemptCorrectWithEpochReq (Left (_ , Voting.mkVoteUnsentCorrect noVoteMsgOuts _)) _ =
⊥-elim (sendVote∉actions{outs = hpOut}{st = hpPre} (sym noVoteMsgOuts) m∈acts)
...| Voting.mkVoteAttemptCorrectWithEpochReq (Right (Voting.mkVoteSentCorrect vm pid voteMsgOuts _)) _ = begin
v ≡⟨ cong (_^∙ vmVote) (sendVote∈actions{outs = hpOut}{st = hpPre} (sym voteMsgOuts) m∈acts) ⟩
vm ^∙ vmVote ≡⟨ (sym $ cong (_^∙ vmVote) (sendVote∈actions{outs = hpOut}{st = hpPre} (sym voteMsgOuts) m'∈acts)) ⟩
v' ∎
where
open ≡-Reasoning
...| V vm = ⊥-elim (sendVote∉actions{outs = hvOut}{st = hvPre} (sym noVotes) m∈acts)
where
hvPre = peerStates pre pid
hvOut = LBFT-outs (handle pid (V vm) 0) hvPre
open handleVoteSpec.Contract (handleVoteSpec.contract! 0 vm (msgPool pre) hvPre)
| {
"alphanum_fraction": 0.6522072484,
"avg_line_length": 51.3803030303,
"ext": "agda",
"hexsha": "8e071ba4b8532447d7491e3c8f57d7223e714738",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Properties/VotesOnce.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Properties/VotesOnce.agda",
"max_line_length": 228,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Properties/VotesOnce.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11909,
"size": 33911
} |
-- Andreas, 2016-07-28, issue #779
record R : Set1 where
Bla : Set1
Bla with Set
... | _ = Set
field
F : Set
-- Current error:
-- Missing definition for Bla
-- Expected:
-- Success, or error outlawing pattern matching definition before last field.
| {
"alphanum_fraction": 0.6603773585,
"avg_line_length": 15.5882352941,
"ext": "agda",
"hexsha": "2612ac5caae0a1815b6b350dd75c4a5d10941fd7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue779with.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue779with.agda",
"max_line_length": 77,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue779with.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 78,
"size": 265
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Unary.All.Properties directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.All.Properties where
open import Data.Vec.Relation.Unary.All.Properties public
{-# WARNING_ON_IMPORT
"Data.Vec.All.Properties was deprecated in v1.0.
Use Data.Vec.Relation.Unary.All.Properties instead."
#-}
| {
"alphanum_fraction": 0.5459662289,
"avg_line_length": 29.6111111111,
"ext": "agda",
"hexsha": "04e6bbd610bb29a7d72dda52fb06c38ec16bac54",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Vec/All/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Vec/All/Properties.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Vec/All/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 97,
"size": 533
} |
{-# OPTIONS --prop --without-K --rewriting #-}
-- Theorems about noninterference.
open import Calf.CostMonoid
module Calf.Noninterference (costMonoid : CostMonoid) where
open import Calf.Prelude
open import Calf.Metalanguage
open import Calf.Step costMonoid
open import Calf.PhaseDistinction
open import Calf.Types.Eq
open import Data.Product
open import Relation.Binary.PropositionalEquality as P
oblivious : ∀ {A B} (f : cmp (F A) → val (◯⁺ B)) →
∀ c e → f (step (F A) c e) ≡ f e
oblivious {A} {B} f c e = funext/Ω (λ u →
begin
f (step (F A) c e) u ≡⟨ cong (λ e → f e u) (step/ext (F A) e c u) ⟩
f e u
∎
)
where open ≡-Reasoning
unique : ∀ {A} → (a : val (● A)) → (u : ext) → a ≡ ∗ u
unique {A} a u =
eq/ref
(●/ind {A} a (λ a → F (eq (● A) a (∗ u)))
(λ a → ret (eq/intro (η≡∗ a u)))
(λ u → ret (eq/intro refl))
(λ a u → eq/uni _ _ u))
constant : ∀ {A B} (f : val (● A) → val (◯⁺ B)) →
Σ (val (◯⁺ B)) λ b → f ≡ λ _ → b
constant f =
(λ u → f (∗ u) u) , funext (λ a → funext/Ω (λ u →
P.cong (λ a → f a u) (unique a u)))
optimization : ∀ {C B : tp pos} {A : val C → tp pos}
(f : val (Σ++ C λ c → ● (A c)) → val (◯⁺ B)) →
Σ (val C → val (◯⁺ B)) λ f' → ∀ c a → f (c , a) ≡ f' c
optimization {C} {B} {A} f =
(λ c →
let g : val (● (A c)) → val (◯⁺ B)
g a = f (c , a) in
let (b , h) = constant {A c} {B} g in
b) ,
λ c a →
let g : val (● (A c)) → val (◯⁺ B)
g a = f (c , a) in
let (b , h) = constant {A c} {B} g in
P.cong-app h a
| {
"alphanum_fraction": 0.5115359262,
"avg_line_length": 27.0892857143,
"ext": "agda",
"hexsha": "a74bc2eb6f68f24c4b69a9f5e724f35193b5a787",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-01-29T08:12:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-10-06T10:28:24.000Z",
"max_forks_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "jonsterling/agda-calf",
"max_forks_repo_path": "src/Calf/Noninterference.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "jonsterling/agda-calf",
"max_issues_repo_path": "src/Calf/Noninterference.agda",
"max_line_length": 69,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "e51606f9ca18d8b4cf9a63c2d6caa2efc5516146",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "jonsterling/agda-calf",
"max_stars_repo_path": "src/Calf/Noninterference.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T20:35:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-14T03:18:28.000Z",
"num_tokens": 666,
"size": 1517
} |
module Punctaffy.Hypersnippet.Hyperstack where
open import Level using (Level; _⊔_)
open import Punctaffy.Hypersnippet.Dim using (DimSys; dimLte)
data DimList {n l : Level} : DimSys {n} {l} → Set (n ⊔ l) → Set (n ⊔ l) where
makeDimList : {ds : DimSys} → {a : Set (n ⊔ l)} → (len : DimSys.Carrier ds) → ((i : DimSys.Carrier ds) → dimLte {n} {l} {ds} i len → a) → DimList ds a
| {
"alphanum_fraction": 0.6447368421,
"avg_line_length": 42.2222222222,
"ext": "agda",
"hexsha": "609c5773468702a39730fae1e698c712c0da4969",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b5a981ce0158c3c8e1296da4a71e83de23ed52ef",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "lathe/punctaffy-for-racket",
"max_forks_repo_path": "notes/code-sketches/agda/src/Punctaffy/Hypersnippet/Hyperstack.agda",
"max_issues_count": 13,
"max_issues_repo_head_hexsha": "2a958bf3987459e9197eb5963fe5107ea2e2e912",
"max_issues_repo_issues_event_max_datetime": "2022-03-06T14:40:21.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-03-12T03:11:01.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "rocketnia/lexmeta",
"max_issues_repo_path": "notes/code-sketches/agda/src/Punctaffy/Hypersnippet/Hyperstack.agda",
"max_line_length": 152,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "2a958bf3987459e9197eb5963fe5107ea2e2e912",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "rocketnia/lexmeta",
"max_stars_repo_path": "notes/code-sketches/agda/src/Punctaffy/Hypersnippet/Hyperstack.agda",
"max_stars_repo_stars_event_max_datetime": "2020-02-03T21:26:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T21:26:07.000Z",
"num_tokens": 152,
"size": 380
} |
module Tests where
open import BasicFunctions
open import TransportLemmas
open import EquivalenceType
open import QuasiinverseType
open import QuasiinverseLemmas
open import HLevelTypes
open import HLevelLemmas
open import UnivalenceAxiom
open import CoproductIdentities
equiv-is-inj
: {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : Type ℓ₂}
→ (f : A → B) → isEquiv f
→ ∀ {x y : A} → (f x ≡ f y) → x ≡ y
equiv-is-inj {A = A}{B} f f-is-equiv fx≡fy = ! cr · (ap f^-1 fx≡fy · cr)
where
f^-1 : B → A
f^-1 = remap (f , f-is-equiv)
cr : ∀ {x : A} → f^-1 (f x) ≡ x
cr = rlmap-inverse (f , f-is-equiv)
module _ {ℓ : Level} {A : Type ℓ} where
equiv-induction
: (P : (C : Type ℓ) → (A ≃ C) → Type ℓ)
→ P A idEqv
→ (C : Type ℓ)
→ (e : A ≃ C)
-----------------------------
→ P C e
equiv-induction P p-refl C e = tr (P C) (ua-β e) g
where
open import HLevelLemmas
P' : (C : Type ℓ) → A ≡ C → Type ℓ
P' C p = P C (idtoeqv p)
b' : P A (idtoeqv idp)
b' = tr (P A) (sameEqv idp) p-refl
f' : (C : Type ℓ) → (p : A ≡ C) → P C (idtoeqv p)
f' C idp = b'
g : P C (idtoeqv (ua e))
g = f' C (ua e)
postcomp-is-equiv
: (B : Type ℓ)
→ (e : A ≃ B)
→ ∀ {C : Type ℓ}
→ isEquiv {A = C → A} {B = C → B} (_:> (e ∙→))
postcomp-is-equiv B e
= equiv-induction (λ C A≃C → isEquiv (_:> (A≃C ∙→) )) base-case B e
where
base-case : isEquiv (λ f x → π₁ idEqv (f x))
base-case = π₂ idEqv
postcomp-≃
: (B : Type ℓ)
→ (e : A ≃ B)
→ (X : Type ℓ)
→ (X → A) ≃ (X → B)
postcomp-≃ B e X = (_:> (e ∙→)) , postcomp-is-equiv B e
postcomp-is-inj
: (B : Type ℓ)
→ (e : A ≃ B)
→ {C : Type ℓ}
→ (f g : C → A)
→ f :> (e ∙→) ≡ g :> (e ∙→)
→ f ≡ g
postcomp-is-inj B e f g p =
equiv-is-inj (_:> (e ∙→)) (postcomp-is-equiv B e) p
-- The naive non-dependent function extensionality axiom
funext'
: {ℓ : Level} {A : Type ℓ}{B : Type ℓ}
→ (f g : A → B)
→ (h : ∏[ x ∶ A ] (f x ≡ g x))
→ f ≡ g
funext' {A = A}{B} f g h = ap (_:> p₁) d≡e
where
d e : A → ∑[ (x , y ) ∶ (B × B) ] (x ≡ y)
d = λ x → ((f x , f x)) , refl (f x)
e = λ x → ((f x , g x)) , h x
p₀ : ∑[ (x , y ) ∶ (B × B) ] (x ≡ y) → B
p₀ ((x , y) , p) = x
p₁ : ∑[ (x , y ) ∶ (B × B) ] (x ≡ y) → B
p₁ ((x , y) , p) = y
p₀-is-equiv : isEquiv p₀
p₀-is-equiv
= π₂ (qinv-≃ p₀ ((λ x → ((x , x) , (refl x) )) ,
(λ {p → idp}) , (λ {((x , .x) , idp) → idp})))
d:>p₀≡e:>p₀ : (d :> p₀) ≡ (e :> p₀)
d:>p₀≡e:>p₀ = idp
d≡e : d ≡ e
d≡e = postcomp-is-inj B (p₀ , p₀-is-equiv) d e d:>p₀≡e:>p₀
-- naive-funext implies weak extensionality:
open import FibreType
open import EquivalenceReasoning
left-universal-property-of-idenity-type
: {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : A → Type ℓ₂}
→ (a x : A)
→ (∑[ p ∶ a ≡ x ] B a) ≃ (∑[ b ∶ B a ] a ≡ x)
left-universal-property-of-idenity-type a x
= qinv-≃ f (g , ((λ {(_ , idp) → idp}) , λ { (idp , π₄) → idp}))
where
f = λ {(idp , b) → (b , idp)}
g = λ {(b , p) → (p , b)}
universal-property-of-identity-type
: {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : A → Type ℓ₂}
→ (x : A)
→ B x ≃ (∑[ a ∶ A ] ∑[ p ∶ a ≡ x ] B a)
universal-property-of-identity-type x = qinv-≃ f (g , (λ { (a , idp , π₄) → idp}) , λ {p → idp})
where
f = λ b → (x , (refl x , b))
g = λ {(a , (idp , b)) → b}
contr-fibers-gives-pr₁-equiv
: {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : A → Type ℓ₂}
→ ((x : A) → isContr (B x)) → (pr₁ {A = A}{B}) is-equiv
contr-fibers-gives-pr₁-equiv {A = A}{B} Bx-is-contr
= λ x → equiv-preserves-contr (calculation x) (Bx-is-contr x)
where
open import SigmaEquivalence
open import SigmaPreserves
open import HLevelLemmas
calculation : (x : A) → (B x) ≃ fib (pr₁ {A = A}{B}) x
calculation x =
begin≃
B x
≃⟨ universal-property-of-identity-type {A = A}{B} x ⟩
∑[ a ∶ A ] (∑[ p ∶ a ≡ x ] B a)
≃⟨ sigma-preserves (λ a → left-universal-property-of-idenity-type {A = A}{B} a x) ⟩
∑[ a ∶ A ] (∑[ b ∶ B a ] a ≡ x)
≃⟨⟩
∑[ a ∶ A ] (∑[ b ∶ B a ] (pr₁ {A = A}{B} (a , b) ≡ x) )
≃⟨ ∑-assoc ⟩
(∑[ p ∶ ∑ A B ] (pr₁ p ≡ x))
≃⟨⟩
fib (pr₁ {A = A}{B}) x
≃∎
happly : ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : A → Type ℓ₂}
→ {f g : ∏ A B}
→ (f ≡ g)
→ (x : A) → (f x ≡ g x)
happly idp x = idp
weak-extensionality pi-is-contr
: {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : A → Type ℓ₂}
→ ((x : A) → isContr (B x)) → isContr (Π A B)
weak-extensionality {ℓ₁}{ℓ₂}{A}{B} Bx-is-contr
= retract-of-singleton Π-is-retract fib-α-id-is-contr
where
open import SectionsAndRetractions
α≃ : ((↑ ℓ₂ A) → ∑ (↑ ℓ₂ A) λ { (Lift a) → B a}) ≃ ((↑ ℓ₂ A) → ↑ ℓ₂ A)
α≃ = postcomp-≃ (↑ ℓ₂ A)
(pr₁ , contr-fibers-gives-pr₁-equiv
(λ { (Lift a) → Bx-is-contr a})) (↑ ℓ₂ A)
α = α≃ ∙→
fib-α-id = fib α (id-on (↑ ℓ₂ A))
fib-α-id-is-contr : isContr (fib-α-id)
fib-α-id-is-contr = pr₂ α≃ (id-on (↑ ℓ₂ A))
φ : fib-α-id → Π A B
φ (g , p) = λ x → tr (λ { (Lift a) → B a}) (happly p (Lift x)) (pr₂ (g (Lift x)))
ψ : (f : Π A B) → fib-α-id
ψ f = ((λ {(Lift a) → (Lift a) , f a}) , refl (id-on (↑ ℓ₂ A)))
Π-is-retract : retract (Π A B) of fib-α-id
Π-is-retract = (φ , (ψ , λ f → idp))
pi-is-contr = weak-extensionality
funext
: {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : A → Type ℓ₂}
→ (f g : ∏ A B)
→ (h : ∏[ x ∶ A ] (f x ≡ g x))
→ f ≡ g
funext {ℓ₁}{ℓ₂}{A}{B} f g h = ap (_!-inv) p
where
hat : (∏ A B) → (↑ ℓ₂ A) → ∑ A B
hat f (Lift a) = (a , f a)
hat-f≡hat-g : (hat f) ≡ (hat g)
hat-f≡hat-g = funext' (hat f) (hat g) (λ { (Lift a) → pair= (idp , h a)})
_! : ∏ A B → ∑[ h ∶ ((↑ ℓ₂ A) → ∑ A B) ] (∏[ x ∶ (↑ ℓ₂ A) ] (π₁ (h x) ≡ lower x) )
f ! = ( hat f , λ { (Lift a) → refl a})
_!-inv : ∑[ h ∶ ((↑ ℓ₂ A) → ∑ A B) ] (∏[ x ∶ (↑ ℓ₂ A) ] (π₁ (h x) ≡ (lower x)) ) → ∏ A B
_!-inv (h , p) = λ x → tr B (p (Lift x)) (π₂ (h (Lift x)))
-- see that, the round trip gives.
_ : ((f !) !-inv) ≡ f
_ = idp
p : (f !) ≡ (g !)
p = pair= (hat-f≡hat-g , q)
where
open import HLevelLemmas
q : PathOver (λ h₁ → ∏ (↑ ℓ₂ A) (λ x → π₁ (h₁ x) ≡ lower x))
(π₂ (f !)) hat-f≡hat-g (π₂ (g !))
q = contr-is-prop (weak-extensionality (λ {(Lift a) → idp , λ { idp → idp}}))
(tr (λ h → ∏ (↑ ℓ₂ A) λ x → π₁ (h x) ≡ lower x) hat-f≡hat-g (π₂ (f !))) (π₂ (g !))
fiberwise-transformation fiberwise-map-from_to_
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}
→ (P Q : A → Type ℓ₂)
→ Type (ℓ₁ ⊔ ℓ₂)
fiberwise-transformation P Q = ∏[ x ] (P x → Q x)
fiberwise-map-from_to_ = fiberwise-transformation
total
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{P Q : A → Type ℓ₂}
→ (f : fiberwise-map-from P to Q)
→ ((∑ A P) → (∑ A Q))
total f (a , p) = ( a , f a p)
fib-total-≃fib-fiberwise
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{P Q : A → Type ℓ₂}
→ (f : fiberwise-map-from P to Q)
→ (x : A) (v : Q x)
→ fib (total f) (( x , v)) ≃ fib (f x) v
fib-total-≃fib-fiberwise {P = P}{Q} f x v =
qinv-≃ f' (g' , (λ {(p , idp) → idp}) , λ { (a , idp) → idp})
where
private
f' = λ { ((a , p) , idp) → (p , idp)}
g' = λ { (p , idp) → ( (x , p) , idp)}
fib-total-equiv-from-fiberwise-equiv
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{P Q : A → Type ℓ₂}
→ (f : fiberwise-map-from P to Q)
→ ((x : A) → (f x) is-equiv) -- this says f is fiberwise equivalence.
→ ((total f) is-equiv)
fib-total-equiv-from-fiberwise-equiv f f-fiberwise-equiv
= λ x → equiv-preserves-contr
(≃-sym (fib-total-≃fib-fiberwise f (π₁ x) (π₂ x)))
(f-fiberwise-equiv (π₁ x) (π₂ x))
fib-total-equiv-to-fiberwise-equiv
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{P Q : A → Type ℓ₂}
→ (f : fiberwise-map-from P to Q)
→ ((total f) is-equiv)
→ ((x : A) → (f x) is-equiv)
fib-total-equiv-to-fiberwise-equiv f total-is-equiv
= λ x → λ p → equiv-preserves-contr (fib-total-≃fib-fiberwise f x p) (total-is-equiv ((x , p)))
happly-is-equiv
: ∀ {ℓ₁ ℓ₂ : Level} {A : Type ℓ₁}{B : A → Type ℓ₂}
→ {f g : ∏ A B}
→ (happly {f = f} {g}) is-equiv
happly-is-equiv {A = A}{B}{f = f}{g} h
= fib-total-equiv-to-fiberwise-equiv s total-happly-is-equiv g h
where
open import SigmaEquivalence
calculation
: (∏[ x ∶ A ] (∑[ u ∶ B x ] (f x ≡ u)))
≃ (∑[ g ∶ ∏ A B ] (∏[ x ∶ A ] (f x ≡ g x)))
calculation = choice
α-codomain-is-contr : isContr ((∑[ g ∶ ∏ A B ] (∏[ x ∶ A ] (f x ≡ g x))))
α-codomain-is-contr
= equiv-preserves-contr
choice
(pi-is-contr (λ x → pathfrom-is-contr _ _))
s : (g : (∏ A B)) → (f ≡ g) → (∏[ x ∶ A ] (f x ≡ g x))
s g p = happly p
α : (∑[ g ∶ (∏ A B) ] (f ≡ g)) → (∑[ g ∶ ∏ A B ] ∏[ x ∶ A ] (f x ≡ g x))
α (g , p) = (g , happly p)
total-happly-is-equiv : α is-equiv
total-happly-is-equiv (g , p) =
map-domain-and-codomain-contr-is-equiv
α-domain-is-contr
α-codomain-is-contr _ _
where
open import SectionsAndRetractions
α-domain-is-contr : isContr (domain α)
α-domain-is-contr = pathfrom-is-contr _ _
map-domain-and-codomain-contr-is-equiv : ∀ {ℓ₁ ℓ₂ : Level}{X : Type ℓ₁}{Y : Type ℓ₂}
→ X is-contr
→ Y is-contr
→ (f : X → Y)
→ f is-equiv
map-domain-and-codomain-contr-is-equiv {X = X}{Y} X-is-contr Y-is-contr f
= λ y → ((center-of X-is-contr , contr-is-prop Y-is-contr _ _))
, λ x → pair= (contr-is-prop X-is-contr _ _ ,
prop-is-set (contr-is-prop Y-is-contr) _ _ _ _)
| {
"alphanum_fraction": 0.4624987416,
"avg_line_length": 31.2358490566,
"ext": "agda",
"hexsha": "f4780ed739f285494ada6f27c340d4e00bfa8dd3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-26T15:16:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-26T15:16:01.000Z",
"max_forks_repo_head_hexsha": "9e81415f0276ee42b4a57816c1dcd3aaa6d9ea60",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "jonaprieto/mini-hott",
"max_forks_repo_path": "src/Tests.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9e81415f0276ee42b4a57816c1dcd3aaa6d9ea60",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "jonaprieto/mini-hott",
"max_issues_repo_path": "src/Tests.agda",
"max_line_length": 99,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "9e81415f0276ee42b4a57816c1dcd3aaa6d9ea60",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "jonaprieto/mini-hott",
"max_stars_repo_path": "src/Tests.agda",
"max_stars_repo_stars_event_max_datetime": "2019-08-17T10:28:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-12T14:19:04.000Z",
"num_tokens": 4336,
"size": 9933
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Library.Relation.Decidable where
open import Light.Level using (Setω ; Level)
open import Light.Variable.Levels
open import Light.Variable.Sets
open import Light.Library.Relation using (Base ; Kind ; Style)
open import Light.Indexed using (Indexed ; thing ; indexed)
open import Light.Package using (Package)
record Dependencies : Setω where
record Library (dependencies : Dependencies) : Setω where
field base : Base
open Style (base .Base.style) using (True ; False)
open Kind (base .Base.kind) using (Index ; Proposition)
field
ℓf : Index → Level
Decidable : ∀ {i} → Proposition i → Set (ℓf i)
kind : Kind
kind = record { Index = Indexed Index Proposition ; Proposition = λ i → Decidable (thing i) }
field
instance style : Style kind
if′_then_else_ : ∀ {i} {𝕒 : Proposition i} → Decidable 𝕒 → 𝕓 → 𝕓 → 𝕓
if_then_else_ :
∀ {i} {𝕒 : Proposition i}
→ Decidable 𝕒
→ (∀ ⦃ witness : True 𝕒 ⦄ → 𝕓)
→ (∀ ⦃ witness : False 𝕒 ⦄ → 𝕓)
→ 𝕓
to‐witness : ∀ {i} {𝕒 : Proposition i} {a? : Decidable 𝕒} ⦃ truth : Style.True style a? ⦄ → True 𝕒
to‐false‐witness : ∀ {i} {𝕒 : Proposition i} {a? : Decidable 𝕒} ⦃ falsehood : Style.False style a? ⦄ → False 𝕒
⦃ from‐witness ⦄ : ∀ {i} {𝕒 : Proposition i} {a? : Decidable 𝕒} ⦃ witness : True 𝕒 ⦄ → Style.True style a?
⦃ from‐false‐witness ⦄ : ∀ {i} {𝕒 : Proposition i} {a? : Decidable 𝕒} ⦃ witness : False 𝕒 ⦄ → Style.False style a?
yes : ∀ {i} {𝕒 : Proposition i} → True 𝕒 → Decidable 𝕒
no : ∀ {i} {𝕒 : Proposition i} → False 𝕒 → Decidable 𝕒
instance base′ = record { kind = kind ; style = style }
open Library ⦃ ... ⦄ public
| {
"alphanum_fraction": 0.5607287449,
"avg_line_length": 42.9565217391,
"ext": "agda",
"hexsha": "a86e59a44bf546d17b37c2c7aa4975f159dfa7f1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Library/Relation/Decidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Library/Relation/Decidable.agda",
"max_line_length": 126,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Library/Relation/Decidable.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 609,
"size": 1976
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Util.Dijkstra.All
open import Optics.All
open import Util.Prelude
module LibraBFT.Impl.Consensus.Liveness.ProposerElection where
postulate -- TODO-1: Implement getValidProposer
getValidProposer : ProposerElection → Round → Author
isValidProposerM : Author → Round → LBFT Bool
isValidProposer : ProposerElection → Author → Round → Bool
isValidProposalM : Block → LBFT (Either ObmNotValidProposerReason Unit)
isValidProposalM b =
maybeSD (b ^∙ bAuthor) (bail ProposalDoesNotHaveAnAuthor) $ λ a → do
-- IMPL-DIFF: `ifM` in Haskell means something else
vp ← isValidProposerM a (b ^∙ bRound)
ifD vp
then ok unit
else bail ProposerForBlockIsNotValidForThisRound
isValidProposerM a r = isValidProposer <$> use lProposerElection <*> pure a <*> pure r
isValidProposer pe a r = getValidProposer pe r == a
| {
"alphanum_fraction": 0.771801141,
"avg_line_length": 36.0882352941,
"ext": "agda",
"hexsha": "1148f9f1cd02769333469ca43e7959c79d134c0c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Consensus/Liveness/ProposerElection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Consensus/Liveness/ProposerElection.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Consensus/Liveness/ProposerElection.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 343,
"size": 1227
} |
{-# OPTIONS --without-K #-}
module Pi0Cat where
-- Proving that Pi at level 0 symmetric rig groupoid
open import Level using () renaming (zero to lzero)
open import Data.Unit using (tt)
open import Data.Product using (_,_)
open import Categories.Category using (Category)
open import Categories.Groupoid using (Groupoid)
open import Categories.Monoidal using (Monoidal)
open import Categories.Monoidal.Helpers using (module MonoidalHelperFunctors)
open import Categories.Bifunctor using (Bifunctor)
open import Categories.NaturalIsomorphism using (NaturalIsomorphism)
open import Categories.Monoidal.Braided using (Braided)
open import Categories.Monoidal.Symmetric using (Symmetric)
open import Categories.RigCategory
using (RigCategory; module BimonoidalHelperFunctors)
open import PiU using (U; PLUS; ZERO; TIMES; ONE)
open import PiLevel0 using (_⟷_; !; triv≡; triv≡Equiv;
id⟷; _◎_;
_⊕_; unite₊l; uniti₊l; unite₊r; uniti₊r; swap₊; assocr₊; assocl₊;
_⊗_; unite⋆l; uniti⋆l; unite⋆r; uniti⋆r; swap⋆; assocr⋆; assocl⋆;
absorbl; absorbr; factorzl; factorzr;
dist; factor; distl; factorl)
------------------------------------------------------------------------------
-- It is a category...
PiCat : Category lzero lzero lzero
PiCat = record
{ Obj = U
; _⇒_ = _⟷_
; _≡_ = triv≡
; id = id⟷
; _∘_ = λ y⟷z x⟷y → x⟷y ◎ y⟷z
; assoc = tt
; identityˡ = tt
; identityʳ = tt
; equiv = triv≡Equiv
; ∘-resp-≡ = λ _ _ → tt
}
-- and a groupoid
PiGroupoid : Groupoid PiCat
PiGroupoid = record
{ _⁻¹ = !
; iso = record { isoˡ = tt ; isoʳ = tt }
}
-- additive bifunctor and monoidal structure
⊕-bifunctor : Bifunctor PiCat PiCat PiCat
⊕-bifunctor = record
{ F₀ = λ {(u , v) → PLUS u v}
; F₁ = λ {(x⟷y , z⟷w) → x⟷y ⊕ z⟷w }
; identity = tt
; homomorphism = tt
; F-resp-≡ = λ _ → tt
}
module ⊎h = MonoidalHelperFunctors PiCat ⊕-bifunctor ZERO
0⊕x≡x : NaturalIsomorphism ⊎h.id⊗x ⊎h.x
0⊕x≡x = record
{ F⇒G = record
{ η = λ X → unite₊l
; commute = λ _ → tt }
; F⇐G = record
{ η = λ X → uniti₊l
; commute = λ _ → tt }
; iso = λ X → record { isoˡ = tt; isoʳ = tt }
}
x⊕0≡x : NaturalIsomorphism ⊎h.x⊗id ⊎h.x
x⊕0≡x = record
{ F⇒G = record
{ η = λ X → unite₊r
; commute = λ _ → tt
}
; F⇐G = record
{ η = λ X → uniti₊r
; commute = λ _ → tt
}
; iso = λ X → record
{ isoˡ = tt
; isoʳ = tt
}
}
[x⊕y]⊕z≡x⊕[y⊕z] : NaturalIsomorphism ⊎h.[x⊗y]⊗z ⊎h.x⊗[y⊗z]
[x⊕y]⊕z≡x⊕[y⊕z] = record
{ F⇒G = record
{ η = λ X → assocr₊
; commute = λ f → tt
}
; F⇐G = record
{ η = λ X → assocl₊
; commute = λ _ → tt
}
; iso = λ X → record
{ isoˡ = tt
; isoʳ = tt
}
}
M⊕ : Monoidal PiCat
M⊕ = record
{ ⊗ = ⊕-bifunctor
; id = ZERO
; identityˡ = 0⊕x≡x
; identityʳ = x⊕0≡x
; assoc = [x⊕y]⊕z≡x⊕[y⊕z]
; triangle = tt
; pentagon = tt
}
-- multiplicative bifunctor and monoidal structure
⊗-bifunctor : Bifunctor PiCat PiCat PiCat
⊗-bifunctor = record
{ F₀ = λ {(u , v) → TIMES u v}
; F₁ = λ {(x⟷y , z⟷w) → x⟷y ⊗ z⟷w }
; identity = tt
; homomorphism = tt
; F-resp-≡ = λ _ → tt
}
module ⊗h = MonoidalHelperFunctors PiCat ⊗-bifunctor ONE
1⊗x≡x : NaturalIsomorphism ⊗h.id⊗x ⊗h.x
1⊗x≡x = record
{ F⇒G = record
{ η = λ X → unite⋆l
; commute = λ _ → tt }
; F⇐G = record
{ η = λ X → uniti⋆l
; commute = λ _ → tt }
; iso = λ X → record { isoˡ = tt; isoʳ = tt }
}
x⊗1≡x : NaturalIsomorphism ⊗h.x⊗id ⊗h.x
x⊗1≡x = record
{ F⇒G = record
{ η = λ X → unite⋆r
; commute = λ _ → tt
}
; F⇐G = record
{ η = λ X → uniti⋆r
; commute = λ _ → tt
}
; iso = λ X → record
{ isoˡ = tt
; isoʳ = tt
}
}
[x⊗y]⊗z≡x⊗[y⊗z] : NaturalIsomorphism ⊗h.[x⊗y]⊗z ⊗h.x⊗[y⊗z]
[x⊗y]⊗z≡x⊗[y⊗z] = record
{ F⇒G = record
{ η = λ X → assocr⋆
; commute = λ f → tt
}
; F⇐G = record
{ η = λ X → assocl⋆
; commute = λ _ → tt
}
; iso = λ X → record
{ isoˡ = tt
; isoʳ = tt
}
}
M⊗ : Monoidal PiCat
M⊗ = record
{ ⊗ = ⊗-bifunctor
; id = ONE
; identityˡ = 1⊗x≡x
; identityʳ = x⊗1≡x
; assoc = [x⊗y]⊗z≡x⊗[y⊗z]
; triangle = tt
; pentagon = tt
}
x⊕y≡y⊕x : NaturalIsomorphism ⊎h.x⊗y ⊎h.y⊗x
x⊕y≡y⊕x = record
{ F⇒G = record { η = λ X → swap₊ ; commute = λ f → tt }
; F⇐G = record { η = λ X → swap₊ ; commute = λ f → tt }
; iso = λ X → record { isoˡ = tt ; isoʳ = tt } }
BM⊕ : Braided M⊕
BM⊕ = record { braid = x⊕y≡y⊕x ; unit-coh = tt; hexagon₁ = tt ; hexagon₂ = tt }
x⊗y≡y⊗x : NaturalIsomorphism ⊗h.x⊗y ⊗h.y⊗x
x⊗y≡y⊗x = record
{ F⇒G = record { η = λ X → swap⋆ ; commute = λ f → tt }
; F⇐G = record { η = λ X → swap⋆ ; commute = λ f → tt }
; iso = λ X → record { isoˡ = tt ; isoʳ = tt } }
BM⊗ : Braided M⊗
BM⊗ = record { braid = x⊗y≡y⊗x ; unit-coh = tt; hexagon₁ = tt ; hexagon₂ = tt }
SBM⊕ : Symmetric BM⊕
SBM⊕ = record { symmetry = tt }
SBM⊗ : Symmetric BM⊗
SBM⊗ = record { symmetry = tt }
module r = BimonoidalHelperFunctors BM⊕ BM⊗
x⊗0≡0 : NaturalIsomorphism r.x⊗0 r.0↑
x⊗0≡0 = record
{ F⇒G = record { η = λ X → absorbl ; commute = λ f → tt }
; F⇐G = record { η = λ X → factorzr ; commute = λ f → tt }
; iso = λ X → record { isoˡ = tt ; isoʳ = tt }
}
0⊗x≡0 : NaturalIsomorphism r.0⊗x r.0↑
0⊗x≡0 = record
{ F⇒G = record { η = λ X → absorbr ; commute = λ f → tt }
; F⇐G = record { η = λ X → factorzl ; commute = λ f → tt }
; iso = λ X → record { isoˡ = tt ; isoʳ = tt }
}
x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] : NaturalIsomorphism r.x⊗[y⊕z] r.[x⊗y]⊕[x⊗z]
x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] = record -- this probably says we need distl/distr
{ F⇒G = record { η = λ X → distl ; commute = λ f → tt }
; F⇐G = record { η = λ X → factorl ; commute = λ f → tt }
; iso = λ X → record { isoˡ = tt ; isoʳ = tt }
}
[x⊕y]⊗z≡[x⊗z]⊕[y⊗z] : NaturalIsomorphism r.[x⊕y]⊗z r.[x⊗z]⊕[y⊗z]
[x⊕y]⊗z≡[x⊗z]⊕[y⊗z] = record
{ F⇒G = record { η = λ X → dist ; commute = λ f → tt }
; F⇐G = record { η = λ X → factor ; commute = λ f → tt }
; iso = λ X → record { isoˡ = tt ; isoʳ = tt }
}
Pi0Rig : RigCategory SBM⊕ SBM⊗
Pi0Rig = record
{ distribₗ = x⊗[y⊕z]≡[x⊗y]⊕[x⊗z]
; distribᵣ = [x⊕y]⊗z≡[x⊗z]⊕[y⊗z]
; annₗ = 0⊗x≡0
; annᵣ = x⊗0≡0
; laplazaI = tt
; laplazaII = tt
; laplazaIV = tt
; laplazaVI = tt
; laplazaIX = tt
; laplazaX = tt
; laplazaXI = tt
; laplazaXIII = tt
; laplazaXV = tt
; laplazaXVI = tt
; laplazaXVII = tt
; laplazaXIX = tt
; laplazaXXIII = tt
}
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.5378950598,
"avg_line_length": 24.5037593985,
"ext": "agda",
"hexsha": "c18fbe2bdaacf818fcf7696b83b84f74beae1df0",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/Pi0Cat.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/Pi0Cat.agda",
"max_line_length": 79,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/Pi0Cat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3182,
"size": 6518
} |
open import Coinduction using ( ∞ ; ♭ ; ♯_ )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; _≢_ ; refl )
open import Relation.Nullary using ( Dec ; yes ; no )
open import System.IO.Transducers.Session using ( Session ; I ; Σ ; Γ ; _/_ ; IsI )
module System.IO.Transducers.Trace where
infixr 4 _≤_ _⊑_ _⊨_⊑_ _⊨_✓ _✓
infixr 5 _∷_ _++_
-- The semantics of a session is its set of traces.
-- The name "trace" comes from process algebra,
-- it's called a play in games semantics, or a word of an automaton.
data Trace (S : Session) : Set where
[] : Trace S
_∷_ : (a : Γ S) (as : Trace (S / a)) → (Trace S)
-- Traces ending in [] at type I are completed traces
data _⊨_✓ : ∀ S → (Trace S) → Set₁ where
[] : I ⊨ [] ✓
_∷_ : ∀ {S} a {as} → (S / a ⊨ as ✓) → (S ⊨ a ∷ as ✓)
_✓ : ∀ {S} → (Trace S) → Set₁
_✓ {S} as = S ⊨ as ✓
-- Prefix order on traces
data _⊨_⊑_ : ∀ S → (Trace S) → (Trace S) → Set₁ where
[] : ∀ {S as} → (S ⊨ [] ⊑ as)
_∷_ : ∀ {S} a {as bs} → (S / a ⊨ as ⊑ bs) → (S ⊨ a ∷ as ⊑ a ∷ bs)
_⊑_ : ∀ {S} → (Trace S) → (Trace S) → Set₁
_⊑_ {S} as bs = S ⊨ as ⊑ bs
-- For building buffers, it is useful to provide
-- snoc traces as well as cons traces.
data _≤_ : Session → Session → Set₁ where
[] : ∀ {S} → (S ≤ S)
_∷_ : ∀ {S T} a (as : S ≤ T) → (S / a ≤ T)
-- Snoc traces form categories, where composition is concatenation.
_++_ : ∀ {S T U} → (S ≤ T) → (T ≤ U) → (S ≤ U)
[] ++ bs = bs
(a ∷ as) ++ bs = a ∷ (as ++ bs)
-- snoc traces can be reversed to form cons traces
revApp : ∀ {S T} → (S ≤ T) → (Trace S) → (Trace T)
revApp [] bs = bs
revApp (a ∷ as) bs = revApp as (a ∷ bs)
reverse : ∀ {S T} → (S ≤ T) → (Trace T)
reverse as = revApp as []
| {
"alphanum_fraction": 0.5475352113,
"avg_line_length": 29.3793103448,
"ext": "agda",
"hexsha": "d9ca88d7774b376fe95030c25b8ea76d859a0bc6",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Transducers/Trace.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Transducers/Trace.agda",
"max_line_length": 83,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Transducers/Trace.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 688,
"size": 1704
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
{- Definition of SubCategory of a given Category C.
Here a SubCategory is defined via
- an index set I
- a mapping I → Obj (not necessarily injective)
- a proof (as a unary relation) that for all a, b : A, all arrows U a ⇒ U b belong to the SubCategory
(note that this is 'backwards' from SubCategory at https://ncatlab.org/nlab/show/subcategory
which would be
(∀ {x y : Obj} (f : x ⇒ y) → R f → ∃ (A × B) (λ (a , b) → U a × U b))
and that would be awkward to work with.
- a proof that all objects pointed to by I have identity arrows that belong
- a proof that composable arrows in the SubCategory are closed under composition
It is simpler to package up all of that into a single record.
-}
module Categories.Category.SubCategory {o ℓ e} (C : Category o ℓ e) where
open Category C
open HomReasoning using (refl; sym; trans)
open import Level
open import Data.Product
private
variable
i : Level
record SubCat {ℓ′} (I : Set i) : Set (o ⊔ ℓ ⊔ i ⊔ suc ℓ′) where
field
U : I → Obj
R : {a b : I} → U a ⇒ U b → Set ℓ′
Rid : {a : I} → R (id {U a})
_∘R_ : {a b c : I} {f : U b ⇒ U c} {g : U a ⇒ U b} → R f → R g → R (f ∘ g)
SubCategory : {ℓ′ : Level} {I : Set i} → SubCat {ℓ′ = ℓ′} I → Category _ _ _
SubCategory {I = I} sc = let open SubCat sc in record
{ Obj = I
; _⇒_ = λ a b → Σ (U a ⇒ U b) R
; _≈_ = λ f g → proj₁ f ≈ proj₁ g
; id = id , Rid
; _∘_ = zip _∘_ _∘R_
; assoc = assoc
; sym-assoc = sym-assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; equiv = record -- need to expand this out, else the levels don't work out
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = ∘-resp-≈
}
FullSubCategory : ∀ {I : Set i} → (U : I → Obj) → Category _ _ _
FullSubCategory {I = I} U = record
{ Obj = I
; _⇒_ = λ x y → U x ⇒ U y
; _≈_ = _≈_
; id = id
; _∘_ = _∘_
; assoc = assoc
; sym-assoc = sym-assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; equiv = equiv
; ∘-resp-≈ = ∘-resp-≈
}
| {
"alphanum_fraction": 0.5699505173,
"avg_line_length": 30.4520547945,
"ext": "agda",
"hexsha": "b858415acc2f9856d966a3d1cc9d45bc5930e148",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/SubCategory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/SubCategory.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/SubCategory.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 808,
"size": 2223
} |
import Structure.Logic.Classical.NaturalDeduction
module Structure.Logic.Classical.SetTheory.Relation {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic : _ ⦄ (_∈_ : Domain → Domain → Formula) where
open Structure.Logic.Classical.NaturalDeduction.ClassicalLogic {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} (classicLogic)
open import Syntax.Function
open import Structure.Logic.Classical.SetTheory.SetBoundedQuantification {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic ⦄ (_∈_)
UnaryRelator : Set(_)
UnaryRelator = (Domain → Formula)
BinaryRelator : Set(_)
BinaryRelator = (Domain → Domain → Formula)
-- Containment
-- (a ∋ x) means that the set a contains the set x.
_∋_ : BinaryRelator
_∋_ a x = (x ∈ a)
-- Non-containment
_∌_ : BinaryRelator
_∌_ a x = ¬(x ∈ a)
-- Not element of
_∉_ : BinaryRelator
_∉_ x a = ¬(x ∈ a)
-- Subset of
_⊆_ : BinaryRelator
_⊆_ a b = ∀ₗ(x ↦ (x ∈ a) ⟶ (x ∈ b))
-- Superset of
_⊇_ : BinaryRelator
_⊇_ a b = ∀ₗ(x ↦ (x ∈ a) ⟵ (x ∈ b))
-- Equality of
_≡ₛ_ : BinaryRelator
_≡ₛ_ a b = ∀ₗ(x ↦ (x ∈ a) ⟷ (x ∈ b))
-- The statement that the set s is empty
Empty : UnaryRelator
Empty(s) = ∀ₗ(x ↦ ¬(x ∈ s))
-- The statement that the set s is non-empty
NonEmpty : UnaryRelator
NonEmpty(s) = ∃ₗ(x ↦ (x ∈ s))
-- The statement that the set s is a set that contains all sets
Universal : UnaryRelator
Universal(s) = ∀ₗ(x ↦ (x ∈ s))
-- The statement that the sets s₁ and s₂ are disjoint
Disjoint : BinaryRelator
Disjoint(s₁)(s₂) = ∀ₗ(x ↦ ¬((x ∈ s₁)∧(x ∈ s₂)))
-- ¬ ∃ₗ(x ↦ (x ∈ s₁)∧(x ∈ s₂))
-- The statement that the sets in ss are all pairwise disjoint
PairwiseDisjoint : UnaryRelator
PairwiseDisjoint(ss) = ∀ₛ(ss)(s₁ ↦ ∀ₛ(ss)(s₂ ↦ ∀ₗ(x ↦ (x ∈ s₁)∧(x ∈ s₂) ⟶ (s₁ ≡ s₂))))
-- ∀ₛ(ss)(s₁ ↦ ∀ₛ(ss)(s₂ ↦ (s₁ ≢ s₂) → Disjoint(s₁)(s₂)))
-- The statement that the relation predicate F can be interpreted as a partial function
PartialFunction : BinaryRelator → Domain → Formula
PartialFunction(F) (dom) = ∀ₛ(dom)(x ↦ Unique(y ↦ F(x)(y)))
-- The statement that the relation predicate F can be interpreted as a total function
TotalFunction : BinaryRelator → Domain → Formula
TotalFunction(F) (dom) = ∀ₛ(dom)(x ↦ ∃ₗ!(y ↦ F(x)(y)))
-- A binary relator modifier which makes the binary relator to a statement about all distinct pairs in a set.
-- Note: This is specifically for irreflexive binary relations.
Pairwise : BinaryRelator → UnaryRelator
Pairwise Related (S) = ∀ₛ(S)(a ↦ ∀ₛ(S)(b ↦ (a ≢ b) ⟶ Related(a)(b)))
| {
"alphanum_fraction": 0.6661217818,
"avg_line_length": 33.0675675676,
"ext": "agda",
"hexsha": "b0411cc9668ffebe977f8eb676103db6e0bde7c7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Structure/Logic/Classical/SetTheory/Relation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Structure/Logic/Classical/SetTheory/Relation.agda",
"max_line_length": 155,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Structure/Logic/Classical/SetTheory/Relation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 913,
"size": 2447
} |
{-# OPTIONS --sized-types #-}
module FormalLanguage.Equals{ℓ} where
import Lvl
open import FormalLanguage
open import Lang.Size
open import Logic.Propositional
open import Relator.Equals using ([≡]-intro) renaming (_≡_ to _≡ₑ_)
open import Relator.Equals.Proofs
import Structure.Relator.Names as Names
open import Structure.Setoid
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Type
private variable s : Size
module _ {Σ : Alphabet{ℓ}} where
record _≅[_]≅_ (A : Language(Σ){∞ˢⁱᶻᵉ}) (s : Size) (B : Language(Σ){∞ˢⁱᶻᵉ}) : Type{ℓ} where
constructor intro
coinductive
field
accepts-ε : Language.accepts-ε(A) ≡ₑ Language.accepts-ε(B)
suffix-lang : ∀{c : Σ}{sₛ : <ˢⁱᶻᵉ s} → (Language.suffix-lang A c ≅[ sₛ ]≅ Language.suffix-lang B c)
_≅_ : ∀{s : Size} → Language(Σ){∞ˢⁱᶻᵉ} → Language(Σ){∞ˢⁱᶻᵉ} → Type
_≅_ {s} = _≅[ s ]≅_
[≅]-reflexivity-raw : Names.Reflexivity(_≅[ s ]≅_)
_≅[_]≅_.accepts-ε ([≅]-reflexivity-raw) = [≡]-intro
_≅[_]≅_.suffix-lang ([≅]-reflexivity-raw) = [≅]-reflexivity-raw
[≅]-symmetry-raw : Names.Symmetry(_≅[ s ]≅_)
_≅[_]≅_.accepts-ε ([≅]-symmetry-raw ab) = symmetry(_≡ₑ_) (_≅[_]≅_.accepts-ε ab)
_≅[_]≅_.suffix-lang ([≅]-symmetry-raw ab) = [≅]-symmetry-raw (_≅[_]≅_.suffix-lang ab)
[≅]-transitivity-raw : Names.Transitivity(_≅[ s ]≅_)
_≅[_]≅_.accepts-ε ([≅]-transitivity-raw ab bc) = transitivity(_≡ₑ_) (_≅[_]≅_.accepts-ε ab) (_≅[_]≅_.accepts-ε bc)
_≅[_]≅_.suffix-lang ([≅]-transitivity-raw ab bc) = [≅]-transitivity-raw (_≅[_]≅_.suffix-lang ab) (_≅[_]≅_.suffix-lang bc)
instance
[≅]-reflexivity : Reflexivity(_≅[ s ]≅_)
Reflexivity.proof([≅]-reflexivity) = [≅]-reflexivity-raw
instance
[≅]-symmetry : Symmetry(_≅[ s ]≅_)
Symmetry.proof([≅]-symmetry) = [≅]-symmetry-raw
instance
[≅]-transitivity : Transitivity(_≅[ s ]≅_)
Transitivity.proof([≅]-transitivity) = [≅]-transitivity-raw
instance
[≅]-equivalence : Equivalence(_≅[ s ]≅_)
[≅]-equivalence = record{}
instance
[≅]-equiv : let _ = s in Equiv(Language(Σ))
[≅]-equiv {s = s} = intro(_≅[ s ]≅_) ⦃ [≅]-equivalence ⦄
| {
"alphanum_fraction": 0.6302131603,
"avg_line_length": 35.3770491803,
"ext": "agda",
"hexsha": "1635b8e1eb82ecd438b7b60392ec71717d7ee38f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "FormalLanguage/Equals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "FormalLanguage/Equals.agda",
"max_line_length": 123,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "FormalLanguage/Equals.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 910,
"size": 2158
} |
open import Agda.Primitive
module Experimental.Equality where
data _≡_ {ℓ} {A : Set ℓ} : A → A → Set ℓ where
refl : ∀ {x : A} → x ≡ x
sym : ∀ {ℓ} {A : Set ℓ} {x y : A} → x ≡ y → y ≡ x
sym refl = refl
tran : ∀ {ℓ} {A : Set ℓ} {x y z : A} → x ≡ y → y ≡ z → x ≡ z
tran refl q = q
ap : ∀ {ℓ k} {A : Set ℓ} {B : Set k} {x y : A} {f : A → B} → x ≡ y → f x ≡ f y
ap refl = refl
transport : ∀ {ℓ k} {A : Set ℓ} (B : A → Set k) {x y : A} → x ≡ y → B x → B y
transport _ refl u = u
| {
"alphanum_fraction": 0.45,
"avg_line_length": 26.3157894737,
"ext": "agda",
"hexsha": "a3c8de24b935ed91a7b6fa65d7a526c956adf58b",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/Experimental/Equality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/Experimental/Equality.agda",
"max_line_length": 80,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/Experimental/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 242,
"size": 500
} |
module Generic.Test.Data.Maybe where
open import Generic.Main as Main hiding (Maybe; just; nothing)
Maybe : ∀ {α} -> Set α -> Set α
Maybe = readData Main.Maybe
pattern nothing = #₀ lrefl
pattern just x = !#₁ (relv x , lrefl)
just′ : ∀ {α} {A : Set α} -> A -> Maybe A
just′ = just
nothing′ : ∀ {α} {A : Set α} -> Maybe A
nothing′ = nothing
| {
"alphanum_fraction": 0.6289855072,
"avg_line_length": 21.5625,
"ext": "agda",
"hexsha": "707c47d2fbbd8fc0c239a2139be051b29ea5312f",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Test/Data/Maybe.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Test/Data/Maybe.agda",
"max_line_length": 62,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Test/Data/Maybe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 113,
"size": 345
} |
--
-- Formalize correctness of differentiation for the source calculus in the
-- static caching paper (typed version).
--
module Thesis.ANormal where
open import Thesis.Types public
open import Thesis.Contexts public
open import Relation.Binary.PropositionalEquality
data Term (Γ : Context) (τ : Type) : Set where
var : (x : Var Γ τ) →
Term Γ τ
lett : ∀ {σ τ₁} → (f : Var Γ (σ ⇒ τ₁)) → (x : Var Γ σ) → Term (τ₁ • Γ) τ → Term Γ τ
-- Also represent top-level definitions, so that we can somehow create functions
-- via syntax. Made up on the moment.
-- WARNING: this allows nested lambdas. That's more powerful than allowing only
-- closures whose bodies can't contain lambdas, like in the paper.
data Fun (Γ : Context) : (τ : Type) → Set where
term : ∀ {τ} → Term Γ τ → Fun Γ τ
abs : ∀ {σ τ} → Fun (σ • Γ) τ → Fun Γ (σ ⇒ τ)
-- Indeed, caching doesn't work there with Fun. It works on FunR. Eventually
-- should adapt definitions to FunR.
data FunR (Γ : Context) : (τ : Type) → Set where
cabsterm : ∀ {σ τ} → Term (σ • Γ) τ → FunR Γ (σ ⇒ τ)
open import Thesis.Environments public
⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type
⟦ var x ⟧Term ρ = ⟦ x ⟧Var ρ
⟦ lett f x t ⟧Term ρ = ⟦ t ⟧Term (⟦ f ⟧Var ρ (⟦ x ⟧Var ρ) • ρ)
⟦_⟧Fun : ∀ {Γ τ} → Fun Γ τ → ⟦ Γ ⟧Context → ⟦ τ ⟧Type
⟦ term t ⟧Fun ρ = ⟦ t ⟧Term ρ
⟦ abs f ⟧Fun ρ = λ v → ⟦ f ⟧Fun (v • ρ)
-- Next steps:
-- 1. Add a functional big-step semantics for this language: DONE.
-- 2. Prove it sound wrt. the denotational semantics: DONE.
-- 3. Add an erasure to a uni-typed language. DONE.
-- 4. Redo 1 with an *untyped* functional big-step semantics.
-- 5. Prove that evaluation and erasure commute:
-- -- erasure-commute-term : ∀ {Γ τ} (t : T.Term Γ τ) ρ n →
-- -- erase-errVal (T.eval-term t ρ n) ≡ eval-term (erase-term t) (erase-env ρ) n
-- 6. Define new caching transformation into untyped language.
--
-- 7. Prove the new transformation correct in the untyped language, by reusing
-- evaluation on the source language.
| {
"alphanum_fraction": 0.6487294469,
"avg_line_length": 37.1666666667,
"ext": "agda",
"hexsha": "043ec2ef579250c549da632cc6386d4815276228",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/ANormal.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/ANormal.agda",
"max_line_length": 85,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/ANormal.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 680,
"size": 2007
} |
{-# OPTIONS --safe --without-K #-}
-- The category of group objects with a cartesian category
open import Categories.Category
open import Categories.Category.Cartesian
module Categories.Category.Construction.Groups {o ℓ e} {𝒞 : Category o ℓ e} (C : Cartesian 𝒞) where
open import Level
open import Categories.Category.BinaryProducts 𝒞
open import Categories.Morphism.Reasoning 𝒞
open import Categories.Object.Group C
open import Categories.Object.Product.Morphisms 𝒞
open Category 𝒞
open Cartesian C
open BinaryProducts products
open Equiv
open HomReasoning
open Group using (μ)
open Group⇒
Groups : Category (o ⊔ ℓ ⊔ e) (ℓ ⊔ e) e
Groups = record
{ Obj = Group
; _⇒_ = Group⇒
; _≈_ = λ f g → arr f ≈ arr g
; id = record
{ arr = id
; preserves-μ = identityˡ ○ introʳ (id×id product)
; preserves-η = identityˡ
; preserves-ι = id-comm-sym
}
; _∘_ = λ f g → record
{ arr = arr f ∘ arr g
; preserves-μ = glue (preserves-μ f) (preserves-μ g) ○ ∘-resp-≈ʳ ⁂∘⁂
; preserves-η = glueTrianglesˡ (preserves-η f) (preserves-η g)
; preserves-ι = glue (preserves-ι f) (preserves-ι g)
}
; assoc = assoc
; sym-assoc = sym-assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; identity² = identity²
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≈ = ∘-resp-≈
}
| {
"alphanum_fraction": 0.6578171091,
"avg_line_length": 25.1111111111,
"ext": "agda",
"hexsha": "a58e281c7ab43ddfdb9d885984eebb79ff37e30a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/Groups.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/Groups.agda",
"max_line_length": 99,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/Groups.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z",
"num_tokens": 463,
"size": 1356
} |
------------------------------------------------------------------------
-- Parallel reduction in pure type systems (PTS)
------------------------------------------------------------------------
module Pts.Reduction.Parallel where
open import Data.Fin using (Fin)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Fin.Substitution.Relation
open import Data.Star using (Star; ε; _◅_; _◅◅_)
open import Data.Product using (_,_; ∃; _×_)
open import Data.Nat using (ℕ; _+_)
open import Data.Vec.All using (lookup₂)
import Function as Fun
open import Relation.Binary
open import Relation.Binary.EquivalenceClosure using (EqClosure)
open import Relation.Binary.SymmetricClosure using (fwd; bwd)
open import Relation.Binary.Reduction
import Relation.Binary.PropositionalEquality as P
open import Pts.Syntax
-- All remaining submodules are parametrized by a given set of sorts.
module _ {Sort : Set} where
open Syntax Sort
open Substitution Sort using (_[_])
----------------------------------------------------------------------
-- Parallel reduction
infixl 9 _·_
infix 5 _⇛_
-- One-step parallel reduction.
data _⇛_ {n : ℕ} : Term n → Term n → Set where
refl : ∀ {a} → a ⇛ a
Π : ∀ {a₁ a₂ b₁ b₂} → a₁ ⇛ a₂ → b₁ ⇛ b₂ → Π a₁ b₁ ⇛ Π a₂ b₂
ƛ : ∀ {a₁ a₂ b₁ b₂} → a₁ ⇛ a₂ → b₁ ⇛ b₂ → ƛ a₁ b₁ ⇛ ƛ a₂ b₂
_·_ : ∀ {a₁ a₂ b₁ b₂} → a₁ ⇛ a₂ → b₁ ⇛ b₂ → a₁ · b₁ ⇛ a₂ · b₂
cont : ∀ {a b₁ b₂ c₁ c₂} → b₁ ⇛ b₂ → c₁ ⇛ c₂ →
(ƛ a b₁) · c₁ ⇛ b₂ [ c₂ ]
reduction : Reduction Term
reduction = record { _→1_ = _⇛_ }
-- Parallel reduction and equivalence.
open Reduction reduction public renaming (_→*_ to _⇛*_; _↔_ to _≡p_)
----------------------------------------------------------------------
-- Simple properties of parallel reduction
-- Inclusions.
⇛⇒⇛* = →1⇒→* reduction
⇛*⇒≡p = →*⇒↔ reduction
⇛⇒≡p = →1⇒↔ reduction
-- parallel reduction is a preorder.
⇛*-predorder = →*-predorder reduction
-- Terms together with parallel equivalence form a setoid.
≡p-setoid = ↔-setoid reduction
open P using (_≡_)
-- Shapes are preserved by one-step parallel reduction.
sort-⇛ : ∀ {n s} {a : Term n} → sort s ⇛ a → sort s ≡ a
sort-⇛ refl = P.refl
ƛ-⇛ : ∀ {n} {a : Term n} {b c} → ƛ a b ⇛ c →
∃ λ a′ → ∃ λ b′ → a ⇛ a′ × b ⇛ b′ × ƛ a′ b′ ≡ c
ƛ-⇛ refl = _ , _ , refl , refl , P.refl
ƛ-⇛ (ƛ a⇛a′ b⇛b′) = _ , _ , a⇛a′ , b⇛b′ , P.refl
Π-⇛ : ∀ {n} {a : Term n} {b c} → Π a b ⇛ c →
∃ λ a′ → ∃ λ b′ → a ⇛ a′ × b ⇛ b′ × Π a′ b′ ≡ c
Π-⇛ refl = _ , _ , refl , refl , P.refl
Π-⇛ (Π a⇛a′ b⇛b′) = _ , _ , a⇛a′ , b⇛b′ , P.refl
-- Shapes are preserved by parallel reduction.
sort-⇛* : ∀ {n s} {a : Term n} → sort s ⇛* a → sort s ≡ a
sort-⇛* ε = P.refl
sort-⇛* (refl ◅ s⇛*b) = sort-⇛* s⇛*b
ƛ-⇛* : ∀ {n} {a : Term n} {b c} → ƛ a b ⇛* c →
∃ λ a′ → ∃ λ b′ → a ⇛* a′ × b ⇛* b′ × ƛ a′ b′ ≡ c
ƛ-⇛* ε = _ , _ , ε , ε , P.refl
ƛ-⇛* (refl ◅ λab⇛*d) = ƛ-⇛* λab⇛*d
ƛ-⇛* (ƛ a⇛a₁ b⇛b₁ ◅ λa₁b₁⇛*d) =
let a₂ , b₂ , a₁⇛*a₂ , b₁⇛*b₂ , λa₂b₂≡d = ƛ-⇛* λa₁b₁⇛*d
in a₂ , b₂ , a⇛a₁ ◅ a₁⇛*a₂ , b⇛b₁ ◅ b₁⇛*b₂ , λa₂b₂≡d
Π-⇛* : ∀ {n} {a : Term n} {b c} → Π a b ⇛* c →
∃ λ a′ → ∃ λ b′ → a ⇛* a′ × b ⇛* b′ × Π a′ b′ ≡ c
Π-⇛* ε = _ , _ , ε , ε , P.refl
Π-⇛* (refl ◅ Πab⇛*d) = Π-⇛* Πab⇛*d
Π-⇛* (Π a⇛a₁ b⇛b₁ ◅ Πa₁b₁⇛*d) =
let a₂ , b₂ , a₁⇛*a₂ , b₁⇛*b₂ , Πa₂b₂≡d = Π-⇛* Πa₁b₁⇛*d
in a₂ , b₂ , a⇛a₁ ◅ a₁⇛*a₂ , b⇛b₁ ◅ b₁⇛*b₂ , Πa₂b₂≡d
----------------------------------------------------------------------
-- Substitutions lifted to parallel reduction
--
-- The application _/⇛_ below may be considered a substitution
-- lemma, i.e. it establishes that substitutions of terms preserve
-- parallel reduction:
--
-- ⇛
-- a ------→ b
-- | |
-- -/σ | | -/σ
-- ↓ ⇛ ↓
-- a/σ ····→ b/σ
--
-- ∀ (a b : Term n) (σ : Sub Term m n).
-- Application of generic substitutions lifted to reduction.
record ParSubstApp {T₁ T₂} (R : TermRel T₁ T₂)
(l₁ : Lift T₁ Term) (l₂ : Lift T₂ Term)
(rl : RelLift R _⇛_ l₁ l₂) : Set where
infix 10 _↑₂
infixl 8 _/₁_ _/₂_ _/_ _/⇛_
open Substitution Sort using (termSubst)
private
_/₁_ = TermSubst.app termSubst l₁
_/₂_ = TermSubst.app termSubst l₂
_↑₂ = Lift._↑ l₂
open LiftTermRel T₁ T₂ using (_⟨_⟩_)
open RelLift rl
open P using (sym; subst)
-- T₂-substitutions commute.
field /₂-sub-↑ : ∀ {m n b} {σ : Sub T₂ m n} a →
(a [ b ]) /₂ σ ≡ (a /₂ (σ ↑₂)) [ b /₂ σ ]
_/_ : ∀ {m n} {σ₁ : Sub T₁ m n} {σ₂ : Sub T₂ m n} →
∀ a → σ₁ ⟨ R ⟩ σ₂ → a /₁ σ₁ ⇛ a /₂ σ₂
var x / σ₁∼σ₂ = lift (lookup₂ x σ₁∼σ₂)
sort s / σ₁∼σ₂ = refl
Π a b / σ₁∼σ₂ = Π (a / σ₁∼σ₂) (b / σ₁∼σ₂ ↑)
ƛ a b / σ₁∼σ₂ = ƛ (a / σ₁∼σ₂) (b / σ₁∼σ₂ ↑)
(a · b) / σ₁∼σ₂ = (a / σ₁∼σ₂) · (b / σ₁∼σ₂)
_/⇛_ : ∀ {m n a₁ a₂} {σ₁ : Sub T₁ m n} {σ₂ : Sub T₂ m n} →
a₁ ⇛ a₂ → σ₁ ⟨ R ⟩ σ₂ → a₁ /₁ σ₁ ⇛ a₂ /₂ σ₂
refl {a} /⇛ σ₁∼σ₂ = a / σ₁∼σ₂
Π a₁⇛a₂ b₁⇛b₂ /⇛ σ₁∼σ₂ = Π (a₁⇛a₂ /⇛ σ₁∼σ₂) (b₁⇛b₂ /⇛ σ₁∼σ₂ ↑)
ƛ a₁⇛a₂ b₁⇛b₂ /⇛ σ₁∼σ₂ = ƛ (a₁⇛a₂ /⇛ σ₁∼σ₂) (b₁⇛b₂ /⇛ σ₁∼σ₂ ↑)
a₁⇛a₂ · b₁⇛b₂ /⇛ σ₁∼σ₂ = (a₁⇛a₂ /⇛ σ₁∼σ₂) · (b₁⇛b₂ /⇛ σ₁∼σ₂)
cont {b₂ = b₂} a₁⇛a₂ b₁⇛b₂ /⇛ σ₁∼σ₂ =
P.subst (_⇛_ _) (sym (/₂-sub-↑ b₂))
(cont (a₁⇛a₂ /⇛ σ₁∼σ₂ ↑) (b₁⇛b₂ /⇛ σ₁∼σ₂))
-- Term substitutions lifted to parallel reduction.
module ParSubstitution where
open Substitution Sort using (termSubst; sub-commutes; varLiftSubLemmas)
open P using (_≡_; refl)
private
module S = TermSubst termSubst
module V = VarEqSubst
varLift : RelLift _≡_ _⇛_ S.varLift S.varLift
varLift = record { simple = V.simple; lift = lift }
where
lift : ∀ {n} {x₁ x₂ : Fin n} → x₁ ≡ x₂ → S.var x₁ ⇛ S.var x₂
lift {x₁ = x} refl = refl
varSubstApp : ParSubstApp _≡_ S.varLift S.varLift varLift
varSubstApp = record { /₂-sub-↑ = λ a → /-sub-↑ a _ _ }
where open LiftSubLemmas varLiftSubLemmas
infix 8 _/Var-⇛_
_/Var-⇛_ : ∀ {m n a₁ a₂} {σ₁ σ₂ : Sub Fin m n} →
a₁ ⇛ a₂ → σ₁ V.⟨≡⟩ σ₂ → (a₁ S./Var σ₁) ⇛ (a₂ S./Var σ₂)
_/Var-⇛_ = ParSubstApp._/⇛_ varSubstApp
simple : RelSimple _⇛_ S.simple S.simple
simple = record
{ extension = record { weaken = λ t₁⇛t₂ → t₁⇛t₂ /Var-⇛ V.wk }
; var = λ x → refl {a = var x}
}
termLift : RelLift _⇛_ _⇛_ S.termLift S.termLift
termLift = record { simple = simple; lift = Fun.id }
termSubstApp : ParSubstApp _⇛_ S.termLift S.termLift termLift
termSubstApp = record { /₂-sub-↑ = sub-commutes }
open ParSubstApp termSubstApp public
subst : RelSubst _⇛_ S.subst S.subst
subst = record
{ simple = simple
; application = record { _/_ = _/⇛_ }
}
open LiftTermRel Term Term public using (_⟨_⟩_)
open RelSubst subst public hiding (var; simple; _/_)
infix 10 _[⇛_]
-- Shorthand for single-variable substitutions lifted to redcution.
_[⇛_] : ∀ {n} {a₁ : Term (1 + n)} {a₂} {b₁ : Term n} {b₂} →
a₁ ⇛ a₂ → b₁ ⇛ b₂ → a₁ S./ S.sub b₁ ⇛ a₂ S./ S.sub b₂
a₁⇛a₂ [⇛ b₁⇛b₂ ] = a₁⇛a₂ /⇛ sub b₁⇛b₂
open ParSubstitution
----------------------------------------------------------------------
-- Confluence of parallel reduction
--
-- Parallel reduction enjoys the single-step diamond property,
-- i.e. for any pair a ⇛ b₁, a ⇛ b₂ of parallel reductions, there is
-- a term c, such that
--
-- ⇛
-- a ------→ b₂
-- | :
-- ⇛ | : ⇛
-- ↓ ⇛ ↓
-- b₁ ·····→ c
--
-- commutes. Confluence (aka the Church-Rosser property) then
-- follows by pasting of diagrams.
infixl 4 _⋄_
-- Diamond property of one-step reduction.
_⋄_ : ∀ {n} {a b₁ b₂ : Term n} → a ⇛ b₁ → a ⇛ b₂ → ∃ λ c → b₁ ⇛ c × b₂ ⇛ c
refl ⋄ a⇛b = _ , a⇛b , refl
a⇛b ⋄ refl = _ , refl , a⇛b
Π a₁⇛b₁₁ a₂⇛b₁₂ ⋄ Π a₁⇛b₂₁ a₂⇛b₂₂ =
let c₁ , b₁₁⇛c₁ , b₂₁⇛c₁ = a₁⇛b₁₁ ⋄ a₁⇛b₂₁
c₂ , b₁₂⇛c₂ , b₂₂⇛c₂ = a₂⇛b₁₂ ⋄ a₂⇛b₂₂
in Π c₁ c₂ , Π b₁₁⇛c₁ b₁₂⇛c₂ , Π b₂₁⇛c₁ b₂₂⇛c₂
ƛ a₁⇛b₁₁ a₂⇛b₁₂ ⋄ ƛ a₁⇛b₂₁ a₂⇛b₂₂ =
let c₁ , b₁₁⇛c₁ , b₂₁⇛c₁ = a₁⇛b₁₁ ⋄ a₁⇛b₂₁
c₂ , b₁₂⇛c₂ , b₂₂⇛c₂ = a₂⇛b₁₂ ⋄ a₂⇛b₂₂
in ƛ c₁ c₂ , ƛ b₁₁⇛c₁ b₁₂⇛c₂ , ƛ b₂₁⇛c₁ b₂₂⇛c₂
a₁⇛b₁₁ · a₂⇛b₁₂ ⋄ a₁⇛b₂₁ · a₂⇛b₂₂ =
let c₁ , b₁₁⇛c₁ , b₂₁⇛c₁ = a₁⇛b₁₁ ⋄ a₁⇛b₂₁
c₂ , b₁₂⇛c₂ , b₂₂⇛c₂ = a₂⇛b₁₂ ⋄ a₂⇛b₂₂
in c₁ · c₂ , b₁₁⇛c₁ · b₁₂⇛c₂ , b₂₁⇛c₁ · b₂₂⇛c₂
refl · a₂⇛b₁₂ ⋄ cont {b₂ = b₂₁} a₁⇛b₂₁ a₂⇛b₂₂ =
let c₂ , b₁₂⇛c₂ , b₂₂⇛c₂ = a₂⇛b₁₂ ⋄ a₂⇛b₂₂
in b₂₁ [ c₂ ] , cont a₁⇛b₂₁ b₁₂⇛c₂ , refl {a = b₂₁} [⇛ b₂₂⇛c₂ ]
ƛ _ a₁⇛b₁₁ · a₂⇛b₁₂ ⋄ cont a₁⇛b₂₁ a₂⇛b₂₂ =
let c₁ , b₁₁⇛c₁ , b₂₁⇛c₁ = a₁⇛b₁₁ ⋄ a₁⇛b₂₁
c₂ , b₁₂⇛c₂ , b₂₂⇛c₂ = a₂⇛b₁₂ ⋄ a₂⇛b₂₂
in c₁ [ c₂ ] , cont b₁₁⇛c₁ b₁₂⇛c₂ , b₂₁⇛c₁ [⇛ b₂₂⇛c₂ ]
cont {b₂ = b₁₁} a₁⇛b₁₁ a₂⇛b₁₂ ⋄ refl · a₂⇛b₂₂ =
let c₂ , b₁₂⇛c₂ , b₂₂⇛c₂ = a₂⇛b₁₂ ⋄ a₂⇛b₂₂
in b₁₁ [ c₂ ] , refl {a = b₁₁} [⇛ b₁₂⇛c₂ ] , cont a₁⇛b₁₁ b₂₂⇛c₂
cont a₁⇛b₁₁ a₂⇛b₁₂ ⋄ ƛ _ a₁⇛b₂₁ · a₂⇛b₂₂ =
let c₁ , b₁₁⇛c₁ , b₂₁⇛c₁ = a₁⇛b₁₁ ⋄ a₁⇛b₂₁
c₂ , b₁₂⇛c₂ , b₂₂⇛c₂ = a₂⇛b₁₂ ⋄ a₂⇛b₂₂
in c₁ [ c₂ ] , b₁₁⇛c₁ [⇛ b₁₂⇛c₂ ] , cont b₂₁⇛c₁ b₂₂⇛c₂
cont a₁⇛b₁₁ a₂⇛b₁₂ ⋄ cont a₁⇛b₂₁ a₂⇛b₂₂ =
let c₁ , b₁₁⇛c₁ , b₂₁⇛c₁ = a₁⇛b₁₁ ⋄ a₁⇛b₂₁
c₂ , b₁₂⇛c₂ , b₂₂⇛c₂ = a₂⇛b₁₂ ⋄ a₂⇛b₂₂
in c₁ [ c₂ ] , b₁₁⇛c₁ [⇛ b₁₂⇛c₂ ] , b₂₁⇛c₁ [⇛ b₂₂⇛c₂ ]
-- A strip lemma.
_⋄′_ : ∀ {n} {a b₁ b₂ : Term n} →
a ⇛ b₁ → a ⇛* b₂ → ∃ λ c → b₁ ⇛* c × b₂ ⇛ c
a⇛b ⋄′ ε = _ , ε , a⇛b
a⇛b₁ ⋄′ (a⇛b₂ ◅ b₂⇛*c₂) =
let c₁ , b₁⇛c₁ , b₂⇛c₁ = a⇛b₁ ⋄ a⇛b₂
d , c₁⇛*d , c₂⇛d = b₂⇛c₁ ⋄′ b₂⇛*c₂
in d , b₁⇛c₁ ◅ c₁⇛*d , c₂⇛d
-- Confluence (aka the Church-Rosser property) of _⇛*_
_⋄*_ : ∀ {n} {a b₁ b₂ : Term n} →
a ⇛* b₁ → a ⇛* b₂ → ∃ λ c → b₁ ⇛* c × b₂ ⇛* c
ε ⋄* a⇛*b = _ , a⇛*b , ε
(a⇛b₁ ◅ b₁⇛*c₁) ⋄* a⇛*b₂ =
let c₂ , b₁⇛*c₂ , b₂⇛c₂ = a⇛b₁ ⋄′ a⇛*b₂
d , c₁⇛*d , c₂⇛*d = b₁⇛*c₁ ⋄* b₁⇛*c₂
in d , c₁⇛*d , b₂⇛c₂ ◅ c₂⇛*d
-- Factorization of equivalence into parallel reductions.
≡p⇒⇛* : ∀ {n} {a b : Term n} → a ≡p b → ∃ λ c → a ⇛* c × b ⇛* c
≡p⇒⇛* ε = _ , ε , ε
≡p⇒⇛* (fwd a⇛b ◅ b≡c) =
let d , b⇛*d , c⇛*d = ≡p⇒⇛* b≡c in d , a⇛b ◅ b⇛*d , c⇛*d
≡p⇒⇛* (bwd a⇚b ◅ b≡c) =
let d , b⇛*d , c⇛*d = ≡p⇒⇛* b≡c
e , a⇛*e , d⇛e = a⇚b ⋄′ b⇛*d
in e , a⇛*e , c⇛*d ◅◅ (d⇛e ◅ ε)
-- Π-injectivity (with respect to ≡p).
Π-inj : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} → Π a₁ b₁ ≡p Π a₂ b₂ →
a₁ ≡p a₂ × b₁ ≡p b₂
Π-inj Πa₁b₁≡Πa₂b₂ with ≡p⇒⇛* Πa₁b₁≡Πa₂b₂
Π-inj Πa₁b₁≡Πa₂b₂ | c , Πa₁b₁⇛*c , Πa₂b₂⇛*c with
Π-⇛* Πa₁b₁⇛*c | Π-⇛* Πa₂b₂⇛*c
Π-inj Πa₁b₁≡Πa₂b₂ | Π a₃ b₃ , Πa₁b₁⇛*c , Πa₂b₂⇛*c |
._ , ._ , a₁⇛*a₃ , b₁⇛*b₃ , P.refl | ._ , ._ , a₂⇛*a₃ , b₂⇛*b₃ , P.refl =
⇛*⇒≡p a₁⇛*a₃ ◅◅ sym (⇛*⇒≡p a₂⇛*a₃) , ⇛*⇒≡p b₁⇛*b₃ ◅◅ sym (⇛*⇒≡p b₂⇛*b₃)
where
module ParSetoid {n} where
open Setoid (≡p-setoid {n}) public
open ParSetoid
-- Parallel equivalence on sorts implies syntactic equivalence.
sort-≡p : ∀ {n s₁ s₂} → sort {n} s₁ ≡p sort s₂ → s₁ ≡ s₂
sort-≡p s₁≡s₂ with ≡p⇒⇛* s₁≡s₂
sort-≡p s₁≡s₂ | c , s₁⇛*c , s₂⇛*c with sort-⇛* s₁⇛*c | sort-⇛* s₂⇛*c
sort-≡p s₁≡s₂ | ._ , s₁⇛*c , s₂⇛*c | P.refl | P.refl = P.refl
| {
"alphanum_fraction": 0.4762307562,
"avg_line_length": 37.2933753943,
"ext": "agda",
"hexsha": "05bad7dfe5d7b612e8f9299dd6c67307c2d78f73",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-08-11T23:28:33.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-20T10:29:44.000Z",
"max_forks_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/pts-agda",
"max_forks_repo_path": "src/Pts/Reduction/Parallel.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_issues_repo_issues_event_max_datetime": "2017-08-21T16:01:50.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-08-21T14:48:09.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/pts-agda",
"max_issues_repo_path": "src/Pts/Reduction/Parallel.agda",
"max_line_length": 77,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/pts-agda",
"max_stars_repo_path": "src/Pts/Reduction/Parallel.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-31T10:47:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-05-13T12:11:10.000Z",
"num_tokens": 6318,
"size": 11822
} |
------------------------------------------------------------------------
-- Safe modules that use --with-K
------------------------------------------------------------------------
{-# OPTIONS --safe --with-K #-}
module README.Safe.With-K where
-- Some theory of Erased, developed using the K rule and propositional
-- equality.
import Erased.With-K
| {
"alphanum_fraction": 0.4135977337,
"avg_line_length": 27.1538461538,
"ext": "agda",
"hexsha": "5b2b97b47cb83df78a5fc49851bc8edb16d5916e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "README/Safe/With-K.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "README/Safe/With-K.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "README/Safe/With-K.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 53,
"size": 353
} |
------------------------------------------------------------------------
-- Full β-reduction in pure type systems (PTS)
------------------------------------------------------------------------
module Pts.Reduction.Full where
open import Data.Fin.Substitution
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Star using (ε; _◅_; map; gmap; _⋆)
open import Data.Sum using ([_,_])
open import Data.Product using (_,_; ∃; _×_)
open import Function using (_∘_)
open import Relation.Binary
import Relation.Binary.EquivalenceClosure as EqClos
import Relation.Binary.PropositionalEquality as P
import Relation.Binary.SymmetricClosure as SymClos
open import Relation.Binary.Reduction
import Function.Equivalence as Equiv
open import Pts.Syntax
open import Pts.Reduction.Parallel as Par hiding (reduction; _⋄*_; Π-inj)
-- All remaining submodules are parametrized by a given set of sorts.
module _ {Sort : Set} where
open Syntax Sort
open Substitution Sort using (_[_])
----------------------------------------------------------------------
-- Full β-reduction and equivalence relations
infixl 9 _·₁_ _·₂_
infix 5 _→β_
-- One-step β-reduction.
data _→β_ {n} : Term n → Term n → Set where
cont : ∀ a b c → (ƛ a b) · c →β b [ c ]
Π₁ : ∀ {a₁ a₂} → a₁ →β a₂ → ∀ b → Π a₁ b →β Π a₂ b
Π₂ : ∀ {b₁ b₂} a → b₁ →β b₂ → Π a b₁ →β Π a b₂
ƛ₁ : ∀ {a₁ a₂} → a₁ →β a₂ → ∀ b → ƛ a₁ b →β ƛ a₂ b
ƛ₂ : ∀ {b₁ b₂} a → b₁ →β b₂ → ƛ a b₁ →β ƛ a b₂
_·₁_ : ∀ {a₁ a₂} → a₁ →β a₂ → ∀ b → a₁ · b →β a₂ · b
_·₂_ : ∀ {b₁ b₂} a → b₁ →β b₂ → a · b₁ →β a · b₂
reduction : Reduction Term
reduction = record { _→1_ = _→β_ }
-- Full beta reduction and equivalence.
open Reduction reduction public renaming (_→*_ to _→β*_; _↔_ to _≡β_)
----------------------------------------------------------------------
-- Substitutions in full β-reductions/equivalence
--
-- The applications _/→β_, _/→β*_ and _/≡β_ below may be considered
-- substitution lemmas, i.e. they establish the commutativity of the
-- respective reductions/equivalence with substitutions.
-- Application of generic substitutions to the
-- reductions/equivalence.
record BetaSubstApp {T} (l : Lift T Term) : Set where
open Lift l
open SubstApp Sort l
open P hiding ([_])
-- Substitutions commute.
field /-sub-↑ : ∀ {m n} a b (σ : Sub T m n) →
a [ b ] / σ ≡ (a / σ ↑) [ b / σ ]
infixl 8 _/→β_
-- Substitution commutes with one-step β-reduction.
_/→β_ : ∀ {m n a b} → a →β b → (σ : Sub T m n) → a / σ →β b / σ
cont a b c /→β σ =
subst (_→β_ _) (sym (/-sub-↑ b c σ)) (cont (a / σ) (b / σ ↑) (c / σ))
Π₁ a₁→a₂ b /→β σ = Π₁ (a₁→a₂ /→β σ) (b / σ ↑)
Π₂ a b₁→b₂ /→β σ = Π₂ (a / σ) (b₁→b₂ /→β σ ↑)
ƛ₁ a₁→a₂ b /→β σ = ƛ₁ (a₁→a₂ /→β σ) (b / σ ↑)
ƛ₂ a b₁→b₂ /→β σ = ƛ₂ (a / σ) (b₁→b₂ /→β σ ↑)
a₁→a₂ ·₁ b /→β σ = (a₁→a₂ /→β σ) ·₁ (b / σ)
a ·₂ b₁→b₂ /→β σ = (a / σ) ·₂ (b₁→b₂ /→β σ)
redSubstApp : RedSubstApp reduction (record { _/_ = _/_ })
redSubstApp = record { _/→1_ = _/→β_ }
open RedSubstApp redSubstApp public
hiding (_/→1_) renaming (_/→*_ to _/→β*_; _/↔_ to _/≡β_)
-- Term substitutions in reductions/equivalences.
module BetaSubstitution where
open Substitution Sort
using (termSubst; weaken; sub-commutes; varLiftSubLemmas)
-- Application of renamings to reductions/equivalences.
varSubstApp : BetaSubstApp (TermSubst.varLift termSubst)
varSubstApp = record { /-sub-↑ = /-sub-↑ }
where open LiftSubLemmas varLiftSubLemmas
private module V = BetaSubstApp varSubstApp
-- Weakening of one-step β-reductions.
weaken-→β : ∀ {n} {a b : Term n} → a →β b → weaken a →β weaken b
weaken-→β a→b = a→b V./→β VarSubst.wk
-- Weakening of β-reductions.
weaken-→β* : ∀ {n} {a b : Term n} → a →β* b → weaken a →β* weaken b
weaken-→β* = gmap weaken weaken-→β
-- Weakening of β-equivalences.
weaken-≡β : ∀ {n} {a b : Term n} → a ≡β b → weaken a ≡β weaken b
weaken-≡β = EqClos.gmap weaken weaken-→β
-- Application of term substitutions to reductions/equivalences.
termSubstApp : BetaSubstApp (TermSubst.termLift termSubst)
termSubstApp = record { /-sub-↑ = λ a _ _ → sub-commutes a }
open BetaSubstApp termSubstApp public
----------------------------------------------------------------------
-- Simple properties of the β-reductions/equivalence
-- Inclusions.
→β⇒→β* = →1⇒→* reduction
→β*⇒≡β = →*⇒↔ reduction
→β⇒≡β = →1⇒↔ reduction
-- β-reduction is a preorder.
→β*-predorder = →*-predorder reduction
-- Preorder reasoning for β-reduction.
module →β*-Reasoning = →*-Reasoning reduction
-- Terms together with β-equivalence form a setoid.
≡β-setoid = ↔-setoid reduction
-- Equational reasoning for β-equivalence.
module ≡β-Reasoning = ↔-Reasoning reduction
----------------------------------------------------------------------
-- Relationships between β-reduction and parallel reduction
-- One-step β-reduction implies one-step parallel reduction.
→β⇒⇛ : ∀ {n} {a b : Term n} → a →β b → a ⇛ b
→β⇒⇛ (cont a b c) = cont refl refl
→β⇒⇛ (Π₁ a₁→a₂ b) = Π (→β⇒⇛ a₁→a₂) refl
→β⇒⇛ (Π₂ a b₁→b₂) = Π refl (→β⇒⇛ b₁→b₂)
→β⇒⇛ (ƛ₁ a₁→a₂ b) = ƛ (→β⇒⇛ a₁→a₂) refl
→β⇒⇛ (ƛ₂ a b₁→b₂) = ƛ refl (→β⇒⇛ b₁→b₂)
→β⇒⇛ (a₁→a₂ ·₁ b) = →β⇒⇛ a₁→a₂ · refl
→β⇒⇛ (a ·₂ b₁→b₂) = refl · →β⇒⇛ b₁→b₂
-- β-reduction implies parallel reduction.
→β*⇒⇛* : ∀ {n} {a b : Term n} → a →β* b → a ⇛* b
→β*⇒⇛* = map →β⇒⇛
-- β-equivalence implies parallel equivalence.
≡β⇒≡p : ∀ {n} {a b : Term n} → a ≡β b → a ≡p b
≡β⇒≡p = EqClos.map →β⇒⇛
open →*-Reasoning reduction
-- One-step parallel reduction implies β-reduction.
⇛⇒→β* : ∀ {n} {a b : Term n} → a ⇛ b → a →β* b
⇛⇒→β* refl = ε
⇛⇒→β* (Π {a₁} {a₂} {b₁} {b₂} a₁⇛a₂ b₁⇛b₂) = begin
Π a₁ b₁ ⟶⋆⟨ gmap (λ a → Π a _) (λ a₁→a₂ → Π₁ a₁→a₂ _) (⇛⇒→β* a₁⇛a₂) ⟩
Π a₂ b₁ ⟶⋆⟨ gmap (Π _) (Π₂ _) (⇛⇒→β* b₁⇛b₂) ⟩
Π a₂ b₂ ∎
⇛⇒→β* (ƛ {a₁} {a₂} {b₁} {b₂} a₁⇛a₂ b₁⇛b₂) = begin
ƛ a₁ b₁ ⟶⋆⟨ gmap (λ a → ƛ a _) (λ a₁→a₂ → ƛ₁ a₁→a₂ _) (⇛⇒→β* a₁⇛a₂) ⟩
ƛ a₂ b₁ ⟶⋆⟨ gmap (ƛ _) (ƛ₂ _) (⇛⇒→β* b₁⇛b₂) ⟩
ƛ a₂ b₂ ∎
⇛⇒→β* (_·_ {a₁} {a₂} {b₁} {b₂} a₁⇛a₂ b₁⇛b₂) = begin
a₁ · b₁ ⟶⋆⟨ gmap (λ a → a · _) (λ a₁→a₂ → a₁→a₂ ·₁ _) (⇛⇒→β* a₁⇛a₂) ⟩
a₂ · b₁ ⟶⋆⟨ gmap (_·_ _) (_·₂_ _) (⇛⇒→β* b₁⇛b₂) ⟩
a₂ · b₂ ∎
⇛⇒→β* (cont {a} {b₁} {b₂} {c₁} {c₂} b₁⇛b₂ c₁⇛c₂) = begin
(ƛ a b₁) · c₁ ⟶⋆⟨ gmap (λ b → (ƛ _ b) · _)
(λ b₁→b₂ → (ƛ₂ _ b₁→b₂) ·₁ _) (⇛⇒→β* b₁⇛b₂) ⟩
(ƛ a b₂) · c₁ ⟶⋆⟨ gmap (_·_ _) (_·₂_ _) (⇛⇒→β* c₁⇛c₂) ⟩
(ƛ a b₂) · c₂ ⟶⟨ cont a b₂ c₂ ⟩
b₂ [ c₂ ] ∎
-- Parallel reduction implies β-reduction.
⇛*⇒→β* : ∀ {n} {a b : Term n} → a ⇛* b → a →β* b
⇛*⇒→β* a⇛*b = (⇛⇒→β* ⋆) a⇛*b
-- Parallel equivalence implies β-equivalence.
≡p⇒≡β : ∀ {n} {a b : Term n} → a ≡p b → a ≡β b
≡p⇒≡β a≡b = ([ ⇛⇒≡β , sym ∘ ⇛⇒≡β ] ⋆) a≡b
where
open Setoid ≡β-setoid using (sym)
⇛⇒≡β : ∀ {n} {a b : Term n} → a ⇛ b → a ≡β b
⇛⇒≡β = →*⇒↔ reduction ∘ ⇛⇒→β*
open Equiv using (_⇔_; equivalence)
-- Full β-reduction is equivalent to parallel reduction.
→β*-⇛*-equivalence : ∀ {n} {a b : Term n} → a →β* b ⇔ a ⇛* b
→β*-⇛*-equivalence = equivalence →β*⇒⇛* ⇛*⇒→β*
-- β-equivalence is equivalent to parallel equivalence.
≡β-≡p-equivalence : ∀ {n} {a b : Term n} → a ≡β b ⇔ a ≡p b
≡β-≡p-equivalence = equivalence ≡β⇒≡p ≡p⇒≡β
-- Shorthand for single-variable substitutions lifted to β-redcution.
_[→β_] : ∀ {n} a {b₁ b₂ : Term n} → b₁ →β b₂ → a [ b₁ ] →β* a [ b₂ ]
a [→β b₁→b₂ ] = ⇛⇒→β* (a / sub (→β⇒⇛ b₁→b₂))
where open ParSubstitution using (_/_; sub)
open P using (_≡_)
-- Shapes are preserved by full β-reduction.
sort-→β* : ∀ {n s} {a : Term n} → sort s →β* a → sort s ≡ a
sort-→β* ε = P.refl
sort-→β* (() ◅ _)
ƛ-→β* : ∀ {n} {a : Term n} {b c} → ƛ a b →β* c →
∃ λ a′ → ∃ λ b′ → a →β* a′ × b →β* b′ × ƛ a′ b′ ≡ c
ƛ-→β* λab→*c =
let a′ , b′ , a⇛a′ , b⇛b′ , λa′b′≡c = ƛ-⇛* (→β*⇒⇛* λab→*c)
in a′ , b′ , ⇛*⇒→β* a⇛a′ , ⇛*⇒→β* b⇛b′ , λa′b′≡c
Π-→β* : ∀ {n} {a : Term n} {b c} → Π a b →β* c →
∃ λ a′ → ∃ λ b′ → a →β* a′ × b →β* b′ × Π a′ b′ ≡ c
Π-→β* Πab→*c =
let a′ , b′ , a⇛a′ , b⇛b′ , Πa′b′≡c = Π-⇛* (→β*⇒⇛* Πab→*c)
in a′ , b′ , ⇛*⇒→β* a⇛a′ , ⇛*⇒→β* b⇛b′ , Πa′b′≡c
----------------------------------------------------------------------
-- Confluence (aka the Church-Rosser property) of full β-reduction
--
-- Full β-reduction is confluent, i.e. i.e. for any pair a →β* b₁,
-- a →β* b₂ of parallel reductions, there is a term c, such that
--
-- →β*
-- a ------→ b₂
-- | :
-- →β* | : →β*
-- ↓ →β* ↓
-- b₁ ·····→ c
--
-- commutes.
-- Confluence of _→β*_ (aka the Church-Rosser property).
_⋄*_ : ∀ {n} {a b₁ b₂ : Term n} →
a →β* b₁ → a →β* b₂ → ∃ λ c → b₁ →β* c × b₂ →β* c
a→*b₁ ⋄* a→*b₂ =
let c , b₁⇛*c , b₂⇛*c = (→β*⇒⇛* a→*b₁) Par.⋄* (→β*⇒⇛* a→*b₂)
in c , ⇛*⇒→β* b₁⇛*c , ⇛*⇒→β* b₂⇛*c
-- Factorization of β-equivalence into β-reductions.
≡β⇒→β* : ∀ {n} {a b : Term n} → a ≡β b → ∃ λ c → a →β* c × b →β* c
≡β⇒→β* a≡b =
let c , a⇛*c , b⇛*c = ≡p⇒⇛* (≡β⇒≡p a≡b)
in c , ⇛*⇒→β* a⇛*c , ⇛*⇒→β* b⇛*c
-- Π-injectivity (with respect to ≡β).
Π-inj : ∀ {n} {a₁ a₂ : Term n} {b₁ b₂} → Π a₁ b₁ ≡β Π a₂ b₂ →
a₁ ≡β a₂ × b₁ ≡β b₂
Π-inj Πa₁b₁≡Πa₂b₂ =
let a₁≡a₂ , b₁≡b₂ = Par.Π-inj (≡β⇒≡p Πa₁b₁≡Πa₂b₂)
in ≡p⇒≡β a₁≡a₂ , ≡p⇒≡β b₁≡b₂
-- β-equivalence on sorts implies syntactic equivalence.
sort-≡β : ∀ {n s₁ s₂} → sort {n} s₁ ≡β sort s₂ → s₁ ≡ s₂
sort-≡β s₁≡βs₂ = Par.sort-≡p (≡β⇒≡p s₁≡βs₂)
| {
"alphanum_fraction": 0.494136514,
"avg_line_length": 36.6801470588,
"ext": "agda",
"hexsha": "577fa5e17342743a2c8ea3007964bb9f217b7c56",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-08-11T23:28:33.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-20T10:29:44.000Z",
"max_forks_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "asr/pts-agda",
"max_forks_repo_path": "src/Pts/Reduction/Full.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_issues_repo_issues_event_max_datetime": "2017-08-21T16:01:50.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-08-21T14:48:09.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "asr/pts-agda",
"max_issues_repo_path": "src/Pts/Reduction/Full.agda",
"max_line_length": 75,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "d701c2688e4a88eb81bdd9d458f9a2fcf81d5a43",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "asr/pts-agda",
"max_stars_repo_path": "src/Pts/Reduction/Full.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-31T10:47:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-05-13T12:11:10.000Z",
"num_tokens": 4682,
"size": 9977
} |
module Issue2447.Operator-error where
import Issue2447.M
_+_ : Set → Set → Set
A + _ = A
F : Set → Set
F A = A + A + A
| {
"alphanum_fraction": 0.6147540984,
"avg_line_length": 12.2,
"ext": "agda",
"hexsha": "1a1710042ed4982d3fa3dc25a8ca41a4a42fde6a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2447/Operator-error.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2447/Operator-error.agda",
"max_line_length": 37,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2447/Operator-error.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 44,
"size": 122
} |
open import Agda.Builtin.Unit
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat renaming (_<_ to natLessThan)
open import Agda.Builtin.Int
_<_ : Int -> Int -> Bool
_<_ = \ where
(pos m) (pos n) -> natLessThan m n
(negsuc m) (negsuc n) -> natLessThan n m
(negsuc _) (pos _) -> true
(pos _) (negsuc _) -> false
{-# INLINE _<_ #-}
check : Int -> Bool
check n = pos 0 < n
| {
"alphanum_fraction": 0.6443298969,
"avg_line_length": 22.8235294118,
"ext": "agda",
"hexsha": "cda1131a5087033cc6e4f084421d6cd144a46ec7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue4967.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue4967.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue4967.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 136,
"size": 388
} |
-- Verify that issue 3415 has been fixed by checking that the
-- computation rule for univalence holds up to a trivial transport (it
-- used to only hold up to a more complicated argument).
{-# OPTIONS --cubical #-}
module Issue3415 where
open import Agda.Primitive.Cubical public
open import Agda.Builtin.Cubical.Path public
open import Agda.Builtin.Cubical.Glue public
open import Agda.Builtin.Sigma public
idIsEquiv : ∀ {ℓ} (A : Set ℓ) → isEquiv (λ (x : A) → x)
equiv-proof (idIsEquiv A) y =
((y , λ _ → y) , λ z i → z .snd (primINeg i)
, λ j → z .snd (primIMax (primINeg i) j))
idEquiv : ∀ {ℓ} (A : Set ℓ) → A ≃ A
idEquiv A = ((λ x → x) , idIsEquiv A)
ua : ∀ {ℓ} {A B : Set ℓ} → A ≃ B → A ≡ B
ua {A = A} {B = B} e i =
primGlue B (λ { (i = i0) → A ; (i = i1) → B })
(λ { (i = i0) → e ; (i = i1) → (idEquiv B) })
transport : ∀ {ℓ} {A B : Set ℓ} → A ≡ B → A → B
transport p a = primTransp (λ i → p i) i0 a
transportRefl : ∀ {ℓ} {A : Set ℓ} → (x : A) → transport (λ _ → A) x ≡ x
transportRefl {A = A} x i = primTransp (λ _ → A) i x
uaβ : ∀ {ℓ} {A B : Set ℓ} (e : A ≃ B) (x : A) → transport (ua e) x ≡ e .fst x
uaβ e x = transportRefl (e .fst x)
| {
"alphanum_fraction": 0.5776450512,
"avg_line_length": 35.5151515152,
"ext": "agda",
"hexsha": "3ca0a7a8825bb474bb61d74c9026ef4bbfa70608",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3415.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3415.agda",
"max_line_length": 77,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3415.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 479,
"size": 1172
} |
module BasicIS4.Metatheory.ClosedHilbert-TarskiClosedOvergluedImplicit where
open import BasicIS4.Syntax.ClosedHilbert public
open import BasicIS4.Semantics.TarskiClosedOvergluedImplicit public
open ImplicitSyntax (⊢_) public
-- Completeness with respect to a particular model.
module _ {{_ : Model}} where
reify : ∀ {A} → ⊩ A → ⊢ A
reify {α P} s = syn s
reify {A ▻ B} s = syn s
reify {□ A} s = syn s
reify {A ∧ B} s = pair (reify (π₁ s)) (reify (π₂ s))
reify {⊤} s = unit
-- Additional useful equipment.
module _ {{_ : Model}} where
⟪K⟫ : ∀ {A B} → ⊩ A → ⊩ B ▻ A
⟪K⟫ a = app ck (reify a) ⅋ K a
⟪S⟫′ : ∀ {A B C} → ⊩ A ▻ B ▻ C → ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ s₁ = app cs (reify s₁) ⅋ λ s₂ →
app (app cs (reify s₁)) (reify s₂) ⅋ ⟪S⟫ s₁ s₂
_⟪D⟫_ : ∀ {A B} → ⊩ □ (A ▻ B) → ⊩ □ A → ⊩ □ B
(t ⅋ s) ⟪D⟫ (u ⅋ a) = app (app cdist t) u ⅋ s ⟪$⟫ a
_⟪D⟫′_ : ∀ {A B} → ⊩ □ (A ▻ B) → ⊩ □ A ▻ □ B
_⟪D⟫′_ s = app cdist (reify s) ⅋ _⟪D⟫_ s
⟪↑⟫ : ∀ {A} → ⊩ □ A → ⊩ □ □ A
⟪↑⟫ s = box (syn s) ⅋ s
_⟪,⟫′_ : ∀ {A B} → ⊩ A → ⊩ B ▻ A ∧ B
_⟪,⟫′_ a = app cpair (reify a) ⅋ _,_ a
-- Soundness with respect to all models, or evaluation, for closed terms only.
eval₀ : ∀ {A} → ⊢ A → ⊨ A
eval₀ (app t u) = eval₀ t ⟪$⟫ eval₀ u
eval₀ ci = ci ⅋ I
eval₀ ck = ck ⅋ ⟪K⟫
eval₀ cs = cs ⅋ ⟪S⟫′
eval₀ (box t) = box t ⅋ eval₀ t
eval₀ cdist = cdist ⅋ _⟪D⟫′_
eval₀ cup = cup ⅋ ⟪↑⟫
eval₀ cdown = cdown ⅋ ⟪↓⟫
eval₀ cpair = cpair ⅋ _⟪,⟫′_
eval₀ cfst = cfst ⅋ π₁
eval₀ csnd = csnd ⅋ π₂
eval₀ unit = ∙
-- Correctness of evaluation with respect to conversion.
eval₀✓ : ∀ {{_ : Model}} {A} {t t′ : ⊢ A} → t ⋙ t′ → eval₀ t ≡ eval₀ t′
eval₀✓ refl⋙ = refl
eval₀✓ (trans⋙ p q) = trans (eval₀✓ p) (eval₀✓ q)
eval₀✓ (sym⋙ p) = sym (eval₀✓ p)
eval₀✓ (congapp⋙ p q) = cong² _⟪$⟫_ (eval₀✓ p) (eval₀✓ q)
eval₀✓ (congi⋙ p) = cong I (eval₀✓ p)
eval₀✓ (congk⋙ p q) = cong² K (eval₀✓ p) (eval₀✓ q)
eval₀✓ (congs⋙ p q r) = cong³ ⟪S⟫ (eval₀✓ p) (eval₀✓ q) (eval₀✓ r)
eval₀✓ (congdist⋙ p q) = cong² _⟪D⟫_ (eval₀✓ p) (eval₀✓ q)
eval₀✓ (congup⋙ p) = cong ⟪↑⟫ (eval₀✓ p)
eval₀✓ (congdown⋙ p) = cong ⟪↓⟫ (eval₀✓ p)
eval₀✓ (congpair⋙ p q) = cong² _,_ (eval₀✓ p) (eval₀✓ q)
eval₀✓ (congfst⋙ p) = cong π₁ (eval₀✓ p)
eval₀✓ (congsnd⋙ p) = cong π₂ (eval₀✓ p)
eval₀✓ beta▻ₖ⋙ = refl
eval₀✓ beta▻ₛ⋙ = refl
eval₀✓ beta□⋙ = refl
eval₀✓ eta□⋙ = refl
eval₀✓ beta∧₁⋙ = refl
eval₀✓ beta∧₂⋙ = refl
eval₀✓ eta∧⋙ = refl
eval₀✓ eta⊤⋙ = refl
-- The canonical model.
private
instance
canon : Model
canon = record
{ ⊩ᵅ_ = λ P → ⊢ α P
}
-- Completeness with respect to all models, or quotation, for closed terms only.
quot₀ : ∀ {A} → ⊨ A → ⊢ A
quot₀ s = reify s
-- Normalisation by evaluation, for closed terms only.
norm₀ : ∀ {A} → ⊢ A → ⊢ A
norm₀ = quot₀ ∘ eval₀
-- Correctness of normalisation with respect to conversion.
norm₀✓ : ∀ {{_ : Model}} {A} {t t′ : ⊢ A} → t ⋙ t′ → norm₀ t ≡ norm₀ t′
norm₀✓ p = cong reify (eval₀✓ p)
| {
"alphanum_fraction": 0.5264005151,
"avg_line_length": 27.7321428571,
"ext": "agda",
"hexsha": "f50066da791efc2f525d2546043f4286ca6a98ad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Metatheory/ClosedHilbert-TarskiClosedOvergluedImplicit.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Metatheory/ClosedHilbert-TarskiClosedOvergluedImplicit.agda",
"max_line_length": 80,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Metatheory/ClosedHilbert-TarskiClosedOvergluedImplicit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 1531,
"size": 3106
} |
module MonoidTactic where
open import Prelude
open import Container.Traversable
open import Tactic.Monoid
open import Tactic.Reflection
SemigroupAnd : Semigroup Bool
_<>_ {{SemigroupAnd}} = _&&_
MonoidAnd : Monoid Bool
Monoid.super MonoidAnd = SemigroupAnd
mempty {{MonoidAnd}} = true
Monoid/LawsAnd : Monoid/Laws Bool
Monoid/Laws.super Monoid/LawsAnd = MonoidAnd
left-identity {{Monoid/LawsAnd}} x = refl
right-identity {{Monoid/LawsAnd}} true = refl
right-identity {{Monoid/LawsAnd}} false = refl
monoid-assoc {{Monoid/LawsAnd}} true y z = refl
monoid-assoc {{Monoid/LawsAnd}} false y z = refl
test₁ : (a b : Bool) → (a && (b && a && true)) ≡ ((a && b) && a)
test₁ a b = auto-monoid {{Laws = Monoid/LawsAnd}}
test₂ : ∀ {a} {A : Set a} {{Laws : Monoid/Laws A}} →
(x y : A) → x <> (y <> x <> mempty) ≡ (x <> y) <> x
test₂ x y = auto-monoid
test₃ : ∀ {a} {A : Set a} (xs ys zs : List A) → xs ++ ys ++ zs ≡ (xs ++ []) ++ (ys ++ []) ++ zs
test₃ xs ys zs = runT monoidTactic
| {
"alphanum_fraction": 0.6401209677,
"avg_line_length": 29.1764705882,
"ext": "agda",
"hexsha": "1161ebdaaa9fdb3e6f69eded7239020b70ff615c",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "test/MonoidTactic.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "test/MonoidTactic.agda",
"max_line_length": 95,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "test/MonoidTactic.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 349,
"size": 992
} |
-- The type checker was a little too eager to prune metavariables in
-- order to get the occurs check to pass. In this particular case it
-- got the constraint
-- _41 A B x == B (_42 A B (x , y))
-- and tried to make it work by pruning the third argument to _42. The
-- correct solution _42 A B p := fst p was thus lost.
module Issue458 where
data Σ (A : Set) (B : A -> Set) : Set where
_,_ : (x : A) (y : B x) → Σ A B
uncurry : {A : Set} {B : A → Set} {P : Σ A B → Set} →
((x : A) (y : B x) → P (x , y)) →
(p : Σ A B) → P p
uncurry f (x , y) = f x y
fst : {A : Set} {B : A → Set} → Σ A B → A
fst = uncurry λ x y → x
snd : {A : Set} {B : A → Set} (p : Σ A B) → B (fst p)
snd = uncurry λ x y → y
-- Bug.agda:15,7-24
-- Cannot instantiate the metavariable _50 to .B x since it contains
-- the variable x which is not in scope of the metavariable
-- when checking that the expression uncurry (λ x y → y) has type
-- (p : Σ .A .B) → .B (fst p) | {
"alphanum_fraction": 0.5774793388,
"avg_line_length": 35.8518518519,
"ext": "agda",
"hexsha": "a1d38ed5eaba6fbfdc5770f9b843ddcaafa424ce",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue458.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue458.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue458.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 357,
"size": 968
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The state monad
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Category.Monad.State where
open import Category.Applicative.Indexed
open import Category.Monad
open import Function.Identity.Categorical as Id using (Identity)
open import Category.Monad.Indexed
open import Data.Product
open import Data.Unit
open import Function
open import Level
------------------------------------------------------------------------
-- Indexed state
IStateT : ∀ {i f} {I : Set i} → (I → Set f) → (Set f → Set f) → IFun I f
IStateT S M i j A = S i → M (A × S j)
------------------------------------------------------------------------
-- Indexed state applicative
StateTIApplicative : ∀ {i f} {I : Set i} (S : I → Set f) {M} →
RawMonad M → RawIApplicative (IStateT S M)
StateTIApplicative S Mon = record
{ pure = λ a s → return (a , s)
; _⊛_ = λ f t s → do
(f′ , s′) ← f s
(t′ , s′′) ← t s′
return (f′ t′ , s′′)
} where open RawMonad Mon
StateTIApplicativeZero : ∀ {i f} {I : Set i} (S : I → Set f) {M} →
RawMonadZero M → RawIApplicativeZero (IStateT S M)
StateTIApplicativeZero S Mon = record
{ applicative = StateTIApplicative S monad
; ∅ = const ∅
} where open RawMonadZero Mon
StateTIAlternative : ∀ {i f} {I : Set i} (S : I → Set f) {M} →
RawMonadPlus M → RawIAlternative (IStateT S M)
StateTIAlternative S Mon = record
{ applicativeZero = StateTIApplicativeZero S monadZero
; _∣_ = λ m n s → m s ∣ n s
} where open RawMonadPlus Mon
------------------------------------------------------------------------
-- Indexed state monad
StateTIMonad : ∀ {i f} {I : Set i} (S : I → Set f) {M} →
RawMonad M → RawIMonad (IStateT S M)
StateTIMonad S Mon = record
{ return = λ x s → return (x , s)
; _>>=_ = λ m f s → m s >>= uncurry f
} where open RawMonad Mon
StateTIMonadZero : ∀ {i f} {I : Set i} (S : I → Set f) {M} →
RawMonadZero M → RawIMonadZero (IStateT S M)
StateTIMonadZero S Mon = record
{ monad = StateTIMonad S (RawMonadZero.monad Mon)
; applicativeZero = StateTIApplicativeZero S Mon
} where open RawMonadZero Mon
StateTIMonadPlus : ∀ {i f} {I : Set i} (S : I → Set f) {M} →
RawMonadPlus M → RawIMonadPlus (IStateT S M)
StateTIMonadPlus S Mon = record
{ monad = StateTIMonad S monad
; alternative = StateTIAlternative S Mon
} where open RawMonadPlus Mon
------------------------------------------------------------------------
-- State monad operations
record RawIMonadState {i f} {I : Set i} (S : I → Set f)
(M : IFun I f) : Set (i ⊔ suc f) where
field
monad : RawIMonad M
get : ∀ {i} → M i i (S i)
put : ∀ {i j} → S j → M i j (Lift f ⊤)
open RawIMonad monad public
modify : ∀ {i j} → (S i → S j) → M i j (Lift f ⊤)
modify f = get >>= put ∘ f
StateTIMonadState : ∀ {i f} {I : Set i} (S : I → Set f) {M} →
RawMonad M → RawIMonadState S (IStateT S M)
StateTIMonadState S Mon = record
{ monad = StateTIMonad S Mon
; get = λ s → return (s , s)
; put = λ s _ → return (_ , s)
}
where open RawIMonad Mon
------------------------------------------------------------------------
-- Ordinary state monads
RawMonadState : ∀ {f} → Set f → (Set f → Set f) → Set _
RawMonadState S M = RawIMonadState {I = ⊤} (λ _ → S) (λ _ _ → M)
module RawMonadState {f} {S : Set f} {M : Set f → Set f}
(Mon : RawMonadState S M) where
open RawIMonadState Mon public
StateT : ∀ {f} → Set f → (Set f → Set f) → Set f → Set f
StateT S M = IStateT {I = ⊤} (λ _ → S) M _ _
StateTMonad : ∀ {f} (S : Set f) {M} → RawMonad M → RawMonad (StateT S M)
StateTMonad S = StateTIMonad (λ _ → S)
StateTMonadZero : ∀ {f} (S : Set f) {M} →
RawMonadZero M → RawMonadZero (StateT S M)
StateTMonadZero S = StateTIMonadZero (λ _ → S)
StateTMonadPlus : ∀ {f} (S : Set f) {M} →
RawMonadPlus M → RawMonadPlus (StateT S M)
StateTMonadPlus S = StateTIMonadPlus (λ _ → S)
StateTMonadState : ∀ {f} (S : Set f) {M} →
RawMonad M → RawMonadState S (StateT S M)
StateTMonadState S = StateTIMonadState (λ _ → S)
State : ∀ {f} → Set f → Set f → Set f
State S = StateT S Identity
StateMonad : ∀ {f} (S : Set f) → RawMonad (State S)
StateMonad S = StateTMonad S Id.monad
StateMonadState : ∀ {f} (S : Set f) → RawMonadState S (State S)
StateMonadState S = StateTMonadState S Id.monad
LiftMonadState : ∀ {f S₁} (S₂ : Set f) {M} →
RawMonadState S₁ M →
RawMonadState S₁ (StateT S₂ M)
LiftMonadState S₂ Mon = record
{ monad = StateTIMonad (λ _ → S₂) monad
; get = λ s → get >>= λ x → return (x , s)
; put = λ s′ s → put s′ >> return (_ , s)
}
where open RawIMonadState Mon
| {
"alphanum_fraction": 0.5279936242,
"avg_line_length": 34.1428571429,
"ext": "agda",
"hexsha": "c0035b1cd3c1400a668ff2266729a82d4fbadefd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/State.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/State.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Category/Monad/State.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1596,
"size": 5019
} |
{-# OPTIONS --without-K --safe #-}
module Experiment.EvenOdd where
open import Data.List
open import Data.List.Relation.Unary.All
open import Data.Product hiding (map)
open import Data.Sum as Sum hiding (map)
open import Data.Nat
open import Data.Nat.GeneralisedArithmetic
import Data.Nat.Properties as ℕₚ
open import Function.Base
open import Relation.Binary.PropositionalEquality
data RoseTree {a} (A : Set a) : Set a where
node : A → List (RoseTree A) → RoseTree A
unnode : ∀ {a} {A : Set a} → RoseTree A → A × List (RoseTree A)
unnode (node x rs) = x , rs
foldRoseTree : ∀ {a b} {A : Set a} {B : Set b} →
(A → List B → B) → RoseTree A → B
foldRoseTrees : ∀ {a b} {A : Set a} {B : Set b} →
(A → List B → B) → List (RoseTree A) → List B
foldRoseTree f (node x rs) = f x (foldRoseTrees f rs)
foldRoseTrees f [] = []
foldRoseTrees f (x ∷ rs) = foldRoseTree f x ∷ foldRoseTrees f rs
mapRoseTree : ∀ {a b} {A : Set a} {B : Set b} →
(A → B) → RoseTree A → RoseTree B
mapRoseTree f r = foldRoseTree (λ x rs → node (f x) rs) r
data Parity : Set where
even odd : Parity
data Pos : Set where
one : Pos
node : Parity → Pos → List Pos → Pos
op : Parity → Parity
op even = odd
op odd = even
induction : ∀ {p} {P : Pos → Set p} →
P one →
(∀ pa x xs → P x → All P xs → P (node pa x xs)) →
∀ n → P n
induction-node : ∀ {p} {P : Pos → Set p} →
P one →
(∀ pa x xs → P x → All P xs → P (node pa x xs)) →
∀ ns → All P ns
induction P1 Pn one = P1
induction P1 Pn (node pa n ns) = Pn pa n ns (induction P1 Pn n) (induction-node P1 Pn ns)
induction-node P1 Pn [] = []
induction-node P1 Pn (x ∷ ns) = induction P1 Pn x ∷ induction-node P1 Pn ns
recursion : ∀ {a} {A : Set a} → A → (Parity → A → List A → A) → Pos → A
recursion o n p = induction o (λ pa _ _ x AllAxs → n pa x (reduce id AllAxs)) p
ℕ⁺ : Set
ℕ⁺ = Σ ℕ (λ n → n ≢ 0)
1ℕ⁺ : ℕ⁺
1ℕ⁺ = 1 , (λ ())
2ℕ⁺ : ℕ⁺
2ℕ⁺ = 2 , (λ ())
sucℕ⁺ : ℕ⁺ → ℕ⁺
sucℕ⁺ (n , _) = suc n , λ ()
_+ℕ⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺
(m , m≢0) +ℕ⁺ (n , n≢0) = (m + n) , (λ m+n≡0 → m≢0 (ℕₚ.m+n≡0⇒m≡0 m m+n≡0) )
private
m*n≡0⇒m≡0∨n≡0 : ∀ m {n} → m * n ≡ 0 → m ≡ 0 ⊎ n ≡ 0
m*n≡0⇒m≡0∨n≡0 zero {zero} m+n≡0 = inj₁ refl
m*n≡0⇒m≡0∨n≡0 zero {suc n} m+n≡0 = inj₁ refl
m*n≡0⇒m≡0∨n≡0 (suc m) {zero} m+n≡0 = inj₂ refl
_*ℕ⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺
(m , m≢0) *ℕ⁺ (n , n≢0) =
(m * n) , λ m*n≡0 → Sum.[ m≢0 , n≢0 ] (m*n≡0⇒m≡0∨n≡0 m m*n≡0)
private
m^n≡0⇒m≡0 : ∀ m n → m ^ n ≡ 0 → m ≡ 0
m^n≡0⇒m≡0 zero (suc n) m^n≡0 = refl
m^n≡0⇒m≡0 (suc m) (suc n) m^n≡0 with m*n≡0⇒m≡0∨n≡0 (suc m) m^n≡0
... | inj₂ sm^n≡0 = m^n≡0⇒m≡0 (suc m) n sm^n≡0
_^ℕ⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺
(m , m≢0) ^ℕ⁺ (n , n≢0) = (m ^ n) , λ m^n≡0 → m≢0 (m^n≡0⇒m≡0 m n m^n≡0)
_⊓ℕ⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺
(m , m≢0) ⊓ℕ⁺ (n , n≢0) = (m ⊓ n) , {! !}
oℕ : ℕ → ℕ
oℕ n = 2 * n
iℕ : ℕ → ℕ
iℕ n = 1 + 2 * n
oℕ⁺ : ℕ⁺ → ℕ⁺
oℕ⁺ n = 2ℕ⁺ *ℕ⁺ n
iℕ⁺ : ℕ⁺ → ℕ⁺
iℕ⁺ n = sucℕ⁺ (2ℕ⁺ *ℕ⁺ n)
o^ℕ⁺ : ℕ⁺ → ℕ⁺ → ℕ⁺
o^ℕ⁺ (m , _) x = fold x oℕ⁺ m
i^ℕ⁺ : ℕ⁺ → ℕ⁺ → ℕ⁺
i^ℕ⁺ (m , _) x = fold x iℕ⁺ m
toℕ⁺ : Pos → ℕ⁺
toℕ⁺ = recursion 1ℕ⁺ f
where
f : Parity → ℕ⁺ → List ℕ⁺ → ℕ⁺
f even x [] = o^ℕ⁺ x 1ℕ⁺
f even x (y ∷ xs) = o^ℕ⁺ x (f odd y xs)
f odd x [] = i^ℕ⁺ x 1ℕ⁺
f odd x (y ∷ xs) = i^ℕ⁺ x (f even y xs)
| {
"alphanum_fraction": 0.499850075,
"avg_line_length": 27.3360655738,
"ext": "agda",
"hexsha": "798947264d2ddf7329ba02b96ce814b250b2b5c9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/EvenOdd.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/EvenOdd.agda",
"max_line_length": 89,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/EvenOdd.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 1726,
"size": 3335
} |
module BBHeap.Compound {A : Set}(_≤_ : A → A → Set) where
open import BBHeap _≤_
open import Bound.Lower A
open import Bound.Lower.Order _≤_
data Compound {b : Bound} : BBHeap b → Set where
cl : {x : A}{l r : BBHeap (val x)}(b≤x : LeB b (val x))(l⋘r : l ⋘ r) → Compound (left b≤x l⋘r)
cr : {x : A}{l r : BBHeap (val x)}(b≤x : LeB b (val x))(l⋙r : l ⋙ r) → Compound (right b≤x l⋙r)
| {
"alphanum_fraction": 0.587628866,
"avg_line_length": 38.8,
"ext": "agda",
"hexsha": "f431d5663863555cda476ab5049825188513dc6e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BBHeap/Compound.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BBHeap/Compound.agda",
"max_line_length": 97,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BBHeap/Compound.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 175,
"size": 388
} |
module Test where
import Data.Bits
import Data.Bool
import Data.Char
import Data.Fin
import Data.Integer
import Data.Interval
import Data.List
import Data.Map
import Data.Maybe
import Data.Nat
import Data.Nat.Properties
import Data.Permutation
import Data.PigeonHole
import Data.Rational
import Data.Real.Base
import Data.Real.CReal
import Data.Real.Complete
import Data.Real.Gauge
import Data.Show
import Data.String
import Data.Tuple
import Data.Vec
import Logic.Base
import Logic.ChainReasoning
import Logic.Congruence
import Logic.Equivalence
import Logic.Identity
import Logic.Leibniz
import Logic.Operations
import Logic.Relations
import Logic.Structure.Applicative
import Logic.Structure.Monoid
import Prelude
| {
"alphanum_fraction": 0.8458333333,
"avg_line_length": 18.9473684211,
"ext": "agda",
"hexsha": "ca8e05cbfc822b0420c3fa8702bf40f8677da087",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/lib/Test.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/lib/Test.agda",
"max_line_length": 34,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/lib/Test.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 174,
"size": 720
} |
{-
Please do not move this file. Changes should only be made if
necessary.
This file contains pointers to the code examples and main results from
the paper:
Synthetic Cohomology Theory in Cubical Agda
-}
-- The "--safe" flag ensures that there are no postulates or
-- unfinished goals
{-# OPTIONS --safe #-}
module Cubical.Papers.ZCohomology where
-- Misc.
open import Cubical.Data.Int hiding (_+_)
open import Cubical.Data.Nat
open import Cubical.Foundations.Everything
open import Cubical.HITs.S1
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
-- 2
open import Cubical.Core.Glue as Glue
import Cubical.Foundations.Prelude as Prelude
import Cubical.Foundations.GroupoidLaws as GroupoidLaws
import Cubical.Foundations.Path as Path
import Cubical.Foundations.Pointed as Pointed
renaming (Pointed to Type∙)
open import Cubical.HITs.S1 as S1
open import Cubical.HITs.Susp as Suspension
open import Cubical.HITs.Sn as Sn
open import Cubical.Homotopy.Loopspace as Loop
open import Cubical.Foundations.HLevels as n-types
open import Cubical.HITs.Truncation as Trunc
open import Cubical.Homotopy.Connected as Connected
import Cubical.HITs.Pushout as Push
import Cubical.HITs.Wedge as ⋁
import Cubical.Foundations.Univalence as Unival
import Cubical.Foundations.SIP as StructIdPrinc
import Cubical.Algebra.Group as Gr
import Cubical.Algebra.Group.GroupPath as GrPath
-- 3
import Cubical.ZCohomology.Base as coHom
renaming (coHomK to K ; coHomK-ptd to K∙)
import Cubical.HITs.Sn.Properties as S
import Cubical.ZCohomology.GroupStructure as GroupStructure
import Cubical.ZCohomology.Properties as Properties
renaming (Kn→ΩKn+1 to σ ; ΩKn+1→Kn to σ⁻¹)
import Cubical.Experiments.ZCohomologyOld.Properties as oldCohom
-- 4
import Cubical.ZCohomology.RingStructure.CupProduct as Cup
import Cubical.ZCohomology.RingStructure.RingLaws as ⌣Ring
import Cubical.ZCohomology.RingStructure.GradedCommutativity as ⌣Comm
import Cubical.Foundations.Pointed.Homogeneous as Homogen
-- 5
import Cubical.HITs.Torus as 𝕋²
renaming (Torus to 𝕋²)
import Cubical.HITs.KleinBottle as 𝕂²
renaming (KleinBottle to 𝕂²)
import Cubical.HITs.RPn as ℝP
renaming (RP² to ℝP²)
import Cubical.ZCohomology.Groups.Sn as HⁿSⁿ
renaming (Hⁿ-Sᵐ≅0 to Hⁿ-Sᵐ≅1)
import Cubical.ZCohomology.Groups.Torus as HⁿT²
import Cubical.ZCohomology.Groups.Wedge as Hⁿ-wedge
import Cubical.ZCohomology.Groups.KleinBottle as Hⁿ𝕂²
import Cubical.ZCohomology.Groups.RP2 as HⁿℝP²
renaming (H¹-RP²≅0 to H¹-RP²≅1)
import Cubical.ZCohomology.Groups.CP2 as HⁿℂP²
renaming (CP² to ℂP² ; ℤ→HⁿCP²→ℤ to g)
{- Remark: ℂP² is defined as the pushout S² ← TotalHopf → 1 in
the formalisation. TotalHopf is just the total space from the Hopf
fibration. We have TotalHopf ≃ S³, and the map TotalHopf → S²
is given by taking the first projection. This is equivalent to the
description given in the paper, since h : S³ → S² is given by
S³ ≃ TotalHopf → S² -}
-- Appendix
import Cubical.Homotopy.EilenbergSteenrod as ES-axioms
import Cubical.ZCohomology.EilenbergSteenrodZ as satisfies-ES-axioms
renaming (coHomFunctor to H^~ ; coHomFunctor' to Ĥ)
import Cubical.ZCohomology.MayerVietorisUnreduced as MayerVietoris
----- 2. HOMOTOPY TYPE THEORY IN CUBICAL AGDA -----
-- 2.1 Important notions in Cubical Agda
open Prelude using ( PathP
; _≡_
; refl
; cong
; cong₂
; funExt)
open GroupoidLaws using (_⁻¹)
open Prelude using ( transport
; subst
; hcomp)
--- 2.2 Important concepts from HoTT/UF in Cubical Agda
-- Pointed Types
open Pointed using (Type∙)
-- The circle, 𝕊¹
open S1 using (S¹)
-- Suspensions
open Suspension using (Susp)
-- (Pointed) n-spheres, 𝕊ⁿ
open Sn using (S₊∙)
-- Loop spaces
open Loop using (Ω^_)
-- Eckmann-Hilton argument
open Loop using (Eckmann-Hilton)
-- n-types Note that we start indexing from 0 in the Cubical Library
-- (so (-2)-types as referred to as 0-types, (-1) as 1-types, and so
-- on)
open n-types using (isOfHLevel)
-- truncations
open Trunc using (hLevelTrunc)
-- elimination principle
open Trunc using (elim)
-- elimination principle for paths
truncPathElim : ∀ {ℓ ℓ'} {A : Type ℓ} {x y : A} (n : ℕ)
→ {B : Path (hLevelTrunc (suc n) A) ∣ x ∣ ∣ y ∣ → Type ℓ'}
→ ((q : _) → isOfHLevel n (B q))
→ ((p : x ≡ y) → B (cong ∣_∣ p))
→ (q : _) → B q
truncPathElim zero hlev ind q = hlev q .fst
truncPathElim (suc n) {B = B} hlev ind q =
subst B (Iso.leftInv (Trunc.PathIdTruncIso _) q)
(help (ΩTrunc.encode-fun ∣ _ ∣ ∣ _ ∣ q))
where
help : (q : _) → B (ΩTrunc.decode-fun ∣ _ ∣ ∣ _ ∣ q)
help = Trunc.elim (λ _ → hlev _) ind
-- Connectedness
open Connected using (isConnected)
-- Pushouts
open Push using (Pushout)
-- Wedge sum
open ⋁ using (_⋁_)
-- 2.3 Univalence
-- Univalence and the ua function respectively
open Unival using (univalence ; ua)
-- Glue types
open Glue using (Glue)
-- The structure identity principle and the sip function
-- respectively
open StructIdPrinc using (SIP ; sip)
-- Groups
open Gr using (Group)
-- Isomorphic groups are path equal
open GrPath using (GroupPath)
----- 3. ℤ-COHOMOLOGY IN CUBICAL AGDA -----
-- 3.1 Eilenberg-MacLane spaces
-- Eilenberg-MacLane spaces Kₙ (unpointed and pointed respectively)
open coHom using (K ; K∙)
-- Proposition 7
open S using (sphereConnected)
-- Lemma 8
open S using (wedgeconFun; wedgeconLeft ; wedgeconRight)
-- restated to match the formulation in the paper
wedgeConSn' : ∀ {ℓ} (n m : ℕ) {A : (S₊ (suc n)) → (S₊ (suc m)) → Type ℓ}
→ ((x : S₊ (suc n)) (y : S₊ (suc m)) → isOfHLevel ((suc n) + (suc m)) (A x y))
→ (fₗ : (x : _) → A x (ptSn (suc m)))
→ (fᵣ : (x : _) → A (ptSn (suc n)) x)
→ (p : fₗ (ptSn (suc n)) ≡ fᵣ (ptSn (suc m)))
→ Σ[ F ∈ ((x : S₊ (suc n)) (y : S₊ (suc m)) → A x y) ]
(Σ[ (left , right) ∈ ((x : S₊ (suc n)) → fₗ x ≡ F x (ptSn (suc m)))
× ((x : S₊ (suc m)) → fᵣ x ≡ F (ptSn (suc n)) x) ]
p ≡ left (ptSn (suc n)) ∙ (right (ptSn (suc m))) ⁻¹)
wedgeConSn' zero zero hlev fₗ fᵣ p =
(wedgeconFun 0 0 hlev fᵣ fₗ p)
, ((λ x → sym (wedgeconRight 0 0 hlev fᵣ fₗ p x))
, λ _ → refl) -- right holds by refl
, rUnit _
wedgeConSn' zero (suc m) hlev fₗ fᵣ p =
(wedgeconFun 0 (suc m) hlev fᵣ fₗ p)
, ((λ _ → refl) -- left holds by refl
, (λ x → sym (wedgeconLeft 0 (suc m) hlev fᵣ fₗ p x)))
, lUnit _
wedgeConSn' (suc n) m hlev fₗ fᵣ p =
(wedgeconFun (suc n) m hlev fᵣ fₗ p)
, ((λ x → sym (wedgeconRight (suc n) m hlev fᵣ fₗ p x))
, λ _ → refl) -- right holds by refl
, rUnit _
-- +ₖ (addition) and 0ₖ
open GroupStructure using (_+ₖ_ ; 0ₖ)
-- The function σ : Kₙ → ΩKₙ₊₁
open Properties using (σ)
-- -ₖ (subtraction)
open GroupStructure using (-ₖ_)
-- Group laws for +ₖ
open GroupStructure using ( rUnitₖ ; lUnitₖ
; rCancelₖ ; lCancelₖ
; commₖ
; assocₖ)
-- All group laws are equal to refl at 0ₖ
-- rUnitₖ (definitional)
0-rUnit≡refl : rUnitₖ 0 (0ₖ 0) ≡ refl
1-rUnit≡refl : rUnitₖ 1 (0ₖ 1) ≡ refl
0-rUnit≡refl = refl
1-rUnit≡refl = refl
n≥2-rUnit≡refl : {n : ℕ} → rUnitₖ (2 + n) (0ₖ (2 + n)) ≡ refl
n≥2-rUnit≡refl = refl
-- lUnitₖ (definitional)
0-lUnit≡refl : lUnitₖ 0 (0ₖ 0) ≡ refl
1-lUnit≡refl : lUnitₖ 1 (0ₖ 1) ≡ refl
n≥2-lUnit≡refl : {n : ℕ} → lUnitₖ (2 + n) (0ₖ (2 + n)) ≡ refl
0-lUnit≡refl = refl
1-lUnit≡refl = refl
n≥2-lUnit≡refl = refl
-- assocₖ (definitional)
0-assoc≡refl : assocₖ 0 (0ₖ 0) (0ₖ 0) (0ₖ 0) ≡ refl
1-assoc≡refl : assocₖ 1 (0ₖ 1) (0ₖ 1) (0ₖ 1) ≡ refl
n≥2-assoc≡refl : {n : ℕ} → assocₖ (2 + n) (0ₖ (2 + n)) (0ₖ (2 + n)) (0ₖ (2 + n)) ≡ refl
0-assoc≡refl = refl
1-assoc≡refl = refl
n≥2-assoc≡refl = refl
-- commₖ (≡ refl ∙ refl for n ≥ 2)
0-comm≡refl : commₖ 0 (0ₖ 0) (0ₖ 0) ≡ refl
1-comm≡refl : commₖ 1 (0ₖ 1) (0ₖ 1) ≡ refl
n≥2-comm≡refl : {n : ℕ} → commₖ (2 + n) (0ₖ (2 + n)) (0ₖ (2 + n)) ≡ refl
0-comm≡refl = refl
1-comm≡refl = refl
n≥2-comm≡refl = sym (rUnit refl)
-- lCancelₖ (definitional)
0-lCancel≡refl : lCancelₖ 0 (0ₖ 0) ≡ refl
1-lCancel≡refl : lCancelₖ 1 (0ₖ 1) ≡ refl
n≥2-lCancel≡refl : {n : ℕ} → lCancelₖ (2 + n) (0ₖ (2 + n)) ≡ refl
0-lCancel≡refl = refl
1-lCancel≡refl = refl
n≥2-lCancel≡refl = refl
-- rCancelₖ (≡ (refl ∙ refl) ∙ refl for n ≥ 1)
0-rCancel≡refl : rCancelₖ 0 (0ₖ 0) ≡ refl
1-rCancel≡refl : rCancelₖ 1 (0ₖ 1) ≡ refl
n≥2-rCancel≡refl : {n : ℕ} → rCancelₖ (2 + n) (0ₖ (2 + n)) ≡ refl
0-rCancel≡refl = refl
1-rCancel≡refl = refl
n≥2-rCancel≡refl i = rUnit (rUnit refl (~ i)) (~ i)
-- Proof that there is a unique h-structure on Kₙ
-- +ₖ defines an h-Structure on Kₙ
open GroupStructure using (_+ₖ_ ; 0ₖ ; rUnitₖ ; lUnitₖ ; lUnitₖ≡rUnitₖ)
-- and so does Brunerie's addition
open oldCohom using (_+ₖ_ ; 0ₖ ; rUnitₖ ; lUnitₖ ; rUnitlUnit0)
-- consequently both additions agree
open GroupStructure using (+ₖ-unique)
open oldCohom using (addLemma)
additionsAgree : (n : ℕ) → GroupStructure._+ₖ_ {n = n} ≡ oldCohom._+ₖ_ {n = n}
additionsAgree zero i x y = oldCohom.addLemma x y (~ i)
additionsAgree (suc n) i x y =
+ₖ-unique n (GroupStructure._+ₖ_) (oldCohom._+ₖ_)
(GroupStructure.rUnitₖ (suc n)) (GroupStructure.lUnitₖ (suc n))
(oldCohom.rUnitₖ (suc n)) (oldCohom.lUnitₖ (suc n))
(sym (lUnitₖ≡rUnitₖ (suc n)))
(rUnitlUnit0 (suc n)) x y i
-- Theorem 9 (Kₙ ≃ ΩKₙ₊₁)
open Properties using (Kn≃ΩKn+1)
-- σ and σ⁻¹ are morphisms
-- (for σ⁻¹ this is proved directly without using the fact that σ is a morphism)
open Properties using (Kn→ΩKn+1-hom ; ΩKn+1→Kn-hom)
-- Lemma 10 (p ∙ q ≡ cong²₊(p,q)) for n = 1 and n ≥ 2 respectively
open GroupStructure using (∙≡+₁ ; ∙≡+₂)
-- Lemma 11 (cong²₊ is commutative) and Theorem 12 respectively
open GroupStructure using (cong+ₖ-comm ; isCommΩK)
-- 3.2 Group structure on Hⁿ(A)
-- +ₕ (addition), -ₕ and 0ₕ
open GroupStructure using (_+ₕ_ ; -ₕ_ ; 0ₕ)
-- Cohomology group structure
open GroupStructure using ( rUnitₕ ; lUnitₕ
; rCancelₕ ; lCancelₕ
; commₕ
; assocₕ)
-------------------------------------------------------------------- MOVE?
-- Reduced cohomology, group structure
open GroupStructure using (coHomRedGroupDir)
-- Equality of unreduced and reduced cohmology
open Properties using (coHomGroup≡coHomRedGroup)
--------------------------------------------------------------------
----- 4. The Cup Product and Cohomology Ring -----
-- 4.1
-- Lemma 13
open Properties using (isOfHLevel↑∙)
-- ⌣ₖ
open Cup using (_⌣ₖ_)
-- ⌣ₖ is pointed in both arguments
open ⌣Ring using (0ₖ-⌣ₖ ; ⌣ₖ-0ₖ)
-- The cup product
open Cup using (_⌣_)
-- 4.2
-- Lemma 14
Lem14 : ∀ {ℓ} {A : Type∙ ℓ} (n : ℕ) (f g : A →∙ K∙ n) → fst f ≡ fst g → f ≡ g
Lem14 n f g p = Homogen.→∙Homogeneous≡ (Properties.isHomogeneousKn n) p
-- Proposition 15
open ⌣Ring using (leftDistr-⌣ₖ ; rightDistr-⌣ₖ)
-- Lemma 16
open ⌣Ring using (assocer-helpFun≡)
-- Proposition 17
open ⌣Ring using (assoc-⌣ₖ)
-- Proposition 18
open ⌣Comm using (gradedComm-⌣ₖ)
-- Ring structure on ⌣
open ⌣Ring using (leftDistr-⌣ ; rightDistr-⌣
; assoc-⌣ ; 1⌣
; rUnit⌣ ; lUnit⌣
; ⌣0 ; 0⌣)
open ⌣Comm using (gradedComm-⌣)
----- 5. CHARACTERIZING ℤ-COHOMOLOGY GROUPS -----
-- 5.1
-- Proposition 19
open HⁿSⁿ using (Hⁿ-Sⁿ≅ℤ)
-- 5.2
-- The torus
open 𝕋² using (𝕋²)
-- Propositions 20 and 21 respectively
open HⁿT² using (H¹-T²≅ℤ×ℤ ; H²-T²≅ℤ)
-- 5.3
-- The Klein bottle
open 𝕂² using (𝕂²)
-- The real projective plane
open ℝP using (ℝP²)
-- Proposition 22 and 23 respectively
-- ℤ/2ℤ is represented by Bool with the unique group structure
-- Lemma 23 is used implicitly in H²-𝕂²≅Bool
open Hⁿ𝕂² using (H¹-𝕂²≅ℤ ; H²-𝕂²≅Bool)
-- First and second cohomology groups of ℝP² respectively
open HⁿℝP² using (H¹-RP²≅1 ; H²-RP²≅Bool)
-- 5.4
-- The complex projective plane
open HⁿℂP² using (ℂP²)
-- Second and fourth cohomology groups ℂP² respectively
open HⁿℂP² using (H²CP²≅ℤ ; H⁴CP²≅ℤ)
-- 6 Proving by computations in Cubical Agda
-- Proof of m = n = 1 case of graded commutativity (post truncation elimination):
-- Uncomment and give it a minute. The proof is currently not running very fast.
{-
open ⌣Comm using (-ₖ^_·_ )
n=m=1 : (a b : S¹)
→ _⌣ₖ_ {n = 1} {m = 1} ∣ a ∣ ∣ b ∣
≡ (-ₖ (_⌣ₖ_ {n = 1} {m = 1} ∣ b ∣ ∣ a ∣))
n=m=1 base base = refl
n=m=1 base (loop i) k = -ₖ (Properties.Kn→ΩKn+10ₖ _ (~ k) i)
n=m=1 (loop i) base k = Properties.Kn→ΩKn+10ₖ _ k i
n=m=1 (loop i) (loop j) k = -- This hcomp is just a simple rewriting to get paths in Ω²K₂
hcomp (λ r → λ { (i = i0) → -ₖ Properties.Kn→ΩKn+10ₖ _ (~ k ∨ ~ r) j
; (i = i1) → -ₖ Properties.Kn→ΩKn+10ₖ _ (~ k ∨ ~ r) j
; (j = i0) → Properties.Kn→ΩKn+10ₖ _ (k ∨ ~ r) i
; (j = i1) → Properties.Kn→ΩKn+10ₖ _ (k ∨ ~ r) i
; (k = i0) →
doubleCompPath-filler
(sym (Properties.Kn→ΩKn+10ₖ _))
(λ j i → _⌣ₖ_ {n = 1} {m = 1} ∣ loop i ∣ ∣ loop j ∣)
(Properties.Kn→ΩKn+10ₖ _)
(~ r) j i
; (k = i1) →
-ₖ doubleCompPath-filler
(sym (Properties.Kn→ΩKn+10ₖ _))
(λ j i → _⌣ₖ_ {n = 1} {m = 1} ∣ loop i ∣ ∣ loop j ∣)
(Properties.Kn→ΩKn+10ₖ _)
(~ r) i j})
((main
∙ sym (cong-∙∙ (cong (-ₖ_)) (sym (Properties.Kn→ΩKn+10ₖ _))
(λ j i → (_⌣ₖ_ {n = 1} {m = 1} ∣ loop i ∣ ∣ loop j ∣))
(Properties.Kn→ΩKn+10ₖ _))) k i j)
where
open import Cubical.Foundations.Equiv.HalfAdjoint
t : Iso (typ ((Ω^ 2) (K∙ 2))) ℤ
t = compIso (congIso (invIso (Properties.Iso-Kn-ΩKn+1 1)))
(invIso (Properties.Iso-Kn-ΩKn+1 0))
p₁ = flipSquare ((sym (Properties.Kn→ΩKn+10ₖ _))
∙∙ (λ j i → _⌣ₖ_ {n = 1} {m = 1} ∣ loop i ∣ ∣ loop j ∣)
∙∙ (Properties.Kn→ΩKn+10ₖ _))
p₂ = (cong (cong (-ₖ_))
((sym (Properties.Kn→ΩKn+10ₖ _))))
∙∙ (λ j i → -ₖ (_⌣ₖ_ {n = 1} {m = 1} ∣ loop i ∣ ∣ loop j ∣))
∙∙ (cong (cong (-ₖ_)) (Properties.Kn→ΩKn+10ₖ _))
computation : Iso.fun t p₁ ≡ Iso.fun t p₂
computation = refl
main : p₁ ≡ p₂
main = p₁ ≡⟨ sym (Iso.leftInv t p₁) ⟩
(Iso.inv t (Iso.fun t p₁)) ≡⟨ cong (Iso.inv t) computation ⟩
Iso.inv t (Iso.fun t p₂) ≡⟨ Iso.leftInv t p₂ ⟩
p₂ ∎
-}
-- 𝕋² ≠ S² ∨ S¹ ∨ S¹
open HⁿT² using (T²≠S²⋁S¹⋁S¹)
-- Second "Brunerie number"
open HⁿℂP² using (g)
brunerie2 : ℤ
brunerie2 = g 1
----- A. Proofs -----
-- A.2 Proofs for Section 4
-- Lemma 27
open Homogen using (→∙Homogeneous≡)
-- Lemma 28
open Homogen using (isHomogeneous→∙)
-- Lemma 29
open Properties using (isHomogeneousKn)
-- Lemma 30, parts 1-3 respectively
open Path using (sym≡flipSquare ; sym-cong-sym≡id ; sym≡cong-sym)
-- Lemma 31
open ⌣Comm using (cong-ₖ-gen-inr)
-- A.3 Proofs for Section 5
-- Proposition 32
open HⁿSⁿ using (Hⁿ-Sᵐ≅1)
----- B. THE EILENBERG-STEENROD AXIOMS -----
-- B.1 The axioms in HoTT/UF
-- The axioms are defined as a record type
open ES-axioms.coHomTheory
-- Proof of the claim that the alternative reduced cohomology functor
-- Ĥ is the same as the usual reduced cohomology functor
_ : ∀ {ℓ} → satisfies-ES-axioms.H^~ {ℓ} ≡ satisfies-ES-axioms.Ĥ
_ = satisfies-ES-axioms.coHomFunctor≡coHomFunctor'
-- B.2 Verifying the axioms
-- Propositions 35 and 36.
_ : ∀ {ℓ} → ES-axioms.coHomTheory {ℓ} satisfies-ES-axioms.H^~
_ = satisfies-ES-axioms.isCohomTheoryZ
-- B.3 Characterizing Z-cohomology groups using the axioms
-- Theorem 37
open MayerVietoris.MV using ( Ker-i⊂Im-d ; Im-d⊂Ker-i
; Ker-Δ⊂Im-i ; Im-i⊂Ker-Δ
; Ker-d⊂Im-Δ ; Im-Δ⊂Ker-d)
----- C. BENCHMARKING COMPUTATIONS WITH THE COHOMOLOGY GROUPS -----
import Cubical.Experiments.ZCohomology.Benchmarks
| {
"alphanum_fraction": 0.5860713448,
"avg_line_length": 32.2192816635,
"ext": "agda",
"hexsha": "89b7c43c8fd6a1d23bf6a17921fd46867274339c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "707825882556937ebcf15a53eac63f0afc4d0cfe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XiaohuWang0921/cubical",
"max_forks_repo_path": "Cubical/Papers/ZCohomology.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "707825882556937ebcf15a53eac63f0afc4d0cfe",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XiaohuWang0921/cubical",
"max_issues_repo_path": "Cubical/Papers/ZCohomology.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "707825882556937ebcf15a53eac63f0afc4d0cfe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "XiaohuWang0921/cubical",
"max_stars_repo_path": "Cubical/Papers/ZCohomology.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6419,
"size": 17044
} |
{-# OPTIONS --without-K #-}
module tests.compileCoreLibrary where
open import hott.core
open import hott.core.theorems
open import hott.topology
open import hott.topology.theorems
open import io.placeholder
main : IO Unit
main = dummyMain
| {
"alphanum_fraction": 0.7925311203,
"avg_line_length": 20.0833333333,
"ext": "agda",
"hexsha": "4c5344dbadfe36e3692eb31f322955cfceed4d77",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "piyush-kurur/hott",
"max_forks_repo_path": "agda/tests/compileCoreLibrary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "piyush-kurur/hott",
"max_issues_repo_path": "agda/tests/compileCoreLibrary.agda",
"max_line_length": 37,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "piyush-kurur/hott",
"max_stars_repo_path": "agda/tests/compileCoreLibrary.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 56,
"size": 241
} |
-- NBE for Gödel System T
module NBE where
module Prelude where
-- Zero and One -----------------------------------------------------------
data Zero : Set where
data One : Set where
unit : One
-- Natural numbers --------------------------------------------------------
data Nat : Set where
zero : Nat
suc : Nat -> Nat
(+) : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
-- Props ------------------------------------------------------------------
data True : Prop where
tt : True
data False : Prop where
postulate
falseE : (A:Set) -> False -> A
infix 3 /\
data (/\)(P Q:Prop) : Prop where
andI : P -> Q -> P /\ Q
module Fin where
open Prelude
-- Finite sets ------------------------------------------------------------
data Suc (A:Set) : Set where
fzero_ : Suc A
fsuc_ : A -> Suc A
mutual
data Fin (n:Nat) : Set where
finI : Fin_ n -> Fin n
Fin_ : Nat -> Set
Fin_ zero = Zero
Fin_ (suc n) = Suc (Fin n)
fzero : {n:Nat} -> Fin (suc n)
fzero = finI fzero_
fsuc : {n:Nat} -> Fin n -> Fin (suc n)
fsuc i = finI (fsuc_ i)
finE : {n:Nat} -> Fin n -> Fin_ n
finE (finI i) = i
module Vec where
open Prelude
open Fin
infixr 15 ::
-- Vectors ----------------------------------------------------------------
data Nil : Set where
nil_ : Nil
data Cons (A As:Set) : Set where
cons_ : A -> As -> Cons A As
mutual
data Vec (A:Set)(n:Nat) : Set where
vecI : Vec_ A n -> Vec A n
Vec_ : Set -> Nat -> Set
Vec_ A zero = Nil
Vec_ A (suc n) = Cons A (Vec A n)
nil : {A:Set} -> Vec A zero
nil = vecI nil_
(::) : {A:Set} -> {n:Nat} -> A -> Vec A n -> Vec A (suc n)
x :: xs = vecI (cons_ x xs)
vecE : {A:Set} -> {n:Nat} -> Vec A n -> Vec_ A n
vecE (vecI xs) = xs
vec : {A:Set} -> (n:Nat) -> A -> Vec A n
vec zero _ = nil
vec (suc n) x = x :: vec n x
map : {n:Nat} -> {A B:Set} -> (A -> B) -> Vec A n -> Vec B n
map {zero} f (vecI nil_) = nil
map {suc n} f (vecI (cons_ x xs)) = f x :: map f xs
(!) : {n:Nat} -> {A:Set} -> Vec A n -> Fin n -> A
(!) {suc n} (vecI (cons_ x _ )) (finI fzero_) = x
(!) {suc n} (vecI (cons_ _ xs)) (finI (fsuc_ i)) = xs ! i
tabulate : {n:Nat} -> {A:Set} -> (Fin n -> A) -> Vec A n
tabulate {zero} f = nil
tabulate {suc n} f = f fzero :: tabulate (\x -> f (fsuc x))
module Syntax where
open Prelude
open Fin
-- Types ------------------------------------------------------------------
infixr 8 =>
data Type : Set where
nat : Type
(=>) : Type -> Type -> Type
-- Terms ------------------------------------------------------------------
data Term (n:Nat) : Set where
eZero : Term n
eSuc : Term n
eApp : Term n -> Term n -> Term n
eLam : Term (suc n) -> Term n
eVar : Fin n -> Term n
module NormalForms where
open Prelude
open Syntax
open Fin
mutual
-- Normal terms -----------------------------------------------------------
data Normal (n:Nat) : Set where
nZero : Normal n
nSuc : Normal n -> Normal n
nLam : Normal (suc n) -> Normal n
nNeutral : Neutral n -> Normal n
nStuck : Normal n -- type error
-- Neutral terms ----------------------------------------------------------
data Neutral (n:Nat) : Set where
uVar : Fin n -> Neutral n
uApp : Neutral n -> Normal n -> Neutral n
nVar : {n:Nat} -> Fin n -> Normal n
nVar i = nNeutral (uVar i)
nApp : {n:Nat} -> Neutral n -> Normal n -> Normal n
nApp u n = nNeutral (uApp u n)
module Rename where
open Prelude
open Fin
open Vec
open NormalForms
-- Renamings --------------------------------------------------------------
Ren : Nat -> Nat -> Set
Ren m n = Vec (Fin n) m
id : {n:Nat} -> Ren n n
id = tabulate (\i -> i)
compose : {l m n:Nat} -> Ren m n -> Ren l m -> Ren l n
compose {l}{m}{n} ρ γ = map (\i -> ρ ! i) γ
lift : {m n:Nat} -> Ren m n -> Ren (suc m) (suc n)
lift ρ = fzero :: map fsuc ρ
mutual
rename : {m n:Nat} -> Ren m n -> Normal m -> Normal n
rename ρ nZero = nZero
rename ρ (nSuc n) = nSuc (rename ρ n)
rename ρ (nLam n) = nLam (rename (lift ρ) n)
rename ρ (nNeutral u) = nNeutral (renameNe ρ u)
rename ρ nStuck = nStuck
renameNe : {m n:Nat} -> Ren m n -> Neutral m -> Neutral n
renameNe ρ (uVar i) = uVar (ρ ! i)
renameNe ρ (uApp u n) = uApp (renameNe ρ u) (rename ρ n)
up : {n:Nat} -> Ren n (suc n)
up = map fsuc id
module Subst where
open Prelude
open Fin
open Vec
open NormalForms
open Rename using (Ren; rename; up)
-- Substitutions ----------------------------------------------------------
Sub : Nat -> Nat -> Set
Sub m n = Vec (Normal n) m
id : {n:Nat} -> Sub n n
id = tabulate nVar
ren2sub : {m n:Nat} -> Ren m n -> Sub m n
ren2sub ρ = map nVar ρ
lift : {m n:Nat} -> Sub m n -> Sub (suc m) (suc n)
lift σ = nVar fzero :: map (rename up) σ
mutual
app : {n:Nat} -> Normal n -> Normal n -> Normal n
app nZero _ = nStuck
app (nSuc _) _ = nStuck
app nStuck _ = nStuck
app (nLam u) v = subst (v :: id) u
app (nNeutral n) v = nApp n v
subst : {m n:Nat} -> Sub m n -> Normal m -> Normal n
subst σ nZero = nZero
subst σ (nSuc v) = nSuc (subst σ v)
subst σ (nLam v) = nLam (subst (lift σ) v)
subst σ (nNeutral n) = substNe σ n
subst σ nStuck = nStuck
substNe : {m n:Nat} -> Sub m n -> Neutral m -> Normal n
substNe σ (uVar i) = σ ! i
substNe σ (uApp n v) = substNe σ n `app` subst σ v
compose : {l m n:Nat} -> Sub m n -> Sub l m -> Sub l n
compose σ δ = map (subst σ) δ
module TypeSystem where
open Prelude
open Fin
open Vec
open Syntax
mutual
EqType : Type -> Type -> Prop
EqType nat nat = True
EqType (τ => τ') (σ => σ') = τ == σ /\ τ' == σ'
EqType _ _ = False
infix 5 ==
data (==) (τ0 τ1:Type) : Prop where
eqTypeI : EqType τ0 τ1 -> τ0 == τ1
eqSubst : {σ τ:Type} -> (C:Type -> Set) -> σ == τ -> C τ -> C σ
eqSubst {nat}{nat} C _ x = x
eqSubst {σ => τ}{σ' => τ'} C (eqTypeI (andI eqσ eqτ)) x =
eqSubst (\μ -> C (μ => τ)) eqσ (
eqSubst (\η -> C (σ' => η)) eqτ x
)
Context : Nat -> Set
Context n = Vec Type n
mutual
HasType : {n:Nat} -> Context n -> Term n -> Type -> Set
HasType Γ eZero τ = ZeroType Γ τ
HasType Γ eSuc τ = SucType Γ τ
HasType Γ (eVar i) τ = VarType Γ i τ
HasType Γ (eApp e1 e2) τ = AppType Γ e1 e2 τ
HasType Γ (eLam e) τ = LamType Γ e τ
data ZeroType {n:Nat}(Γ:Context n)(τ:Type) : Set where
zeroType : τ == nat -> HasType Γ eZero τ
data SucType {n:Nat}(Γ:Context n)(τ:Type) : Set where
sucType : τ == (nat => nat) -> HasType Γ eSuc τ
data VarType {n:Nat}(Γ:Context n)(i:Fin n)(τ:Type) : Set where
varType : τ == (Γ ! i) -> HasType Γ (eVar i) τ
data AppType {n:Nat}(Γ:Context n)(e1 e2:Term n)(τ:Type) : Set where
appType : (σ:Type) -> HasType Γ e1 (σ => τ) -> HasType Γ e2 σ -> HasType Γ (eApp e1 e2) τ
data LamType {n:Nat}(Γ:Context n)(e:Term (suc n))(τ:Type) : Set where
lamType : (τ0 τ1:Type) -> τ == (τ0 => τ1) -> HasType (τ0 :: Γ) e τ1 -> HasType Γ (eLam e) τ
module NBE where
open Prelude
open Syntax
open Fin
open Vec
open TypeSystem
mutual
D_ : Nat -> Type -> Set
D_ n nat = NatD n
D_ n (σ => τ) = FunD n σ τ
data D (n:Nat)(τ:Type) : Set where
dI : D_ n τ -> D n τ
data NatD (n:Nat) : Set where
zeroD_ : D_ n nat
sucD_ : D n nat -> D_ n nat
neD_ : Term n -> D_ n nat
-- Will this pass the positivity check?
data FunD (n:Nat)(σ τ:Type) : Set where
lamD_ : (D n σ -> D n τ) -> D_ n (σ => τ)
zeroD : {n:Nat} -> D n nat
zeroD = dI zeroD_
sucD : {n:Nat} -> D n nat -> D n nat
sucD d = dI (sucD_ d)
neD : {n:Nat} -> Term n -> D n nat
neD t = dI (neD_ t)
lamD : {n:Nat} -> {σ τ:Type} -> (D n σ -> D n τ) -> D n (σ => τ)
lamD f = dI (lamD_ f)
coerce : {n:Nat} -> {τ0 τ1:Type} -> τ0 == τ1 -> D n τ1 -> D n τ0
coerce {n} = eqSubst (D n)
mutual
down : {τ:Type} -> {n:Nat} -> D n τ -> Term n
down {σ => τ} (dI (lamD_ f)) = eLam (down {τ} ?) -- doesn't work!
down {nat} (dI zeroD_) = eZero
down {nat} (dI (sucD_ d)) = eSuc `eApp` down d
down {nat} (dI (neD_ t)) = t
up : {n:Nat} -> (τ:Type) -> Term n -> D n τ
up (σ => τ) t = lamD (\d -> up τ (t `eApp` down d))
up nat t = neD t
Valuation : {m:Nat} -> Nat -> Context m -> Set
Valuation {zero} n _ = Nil
Valuation {suc m} n (vecI (cons_ τ Γ)) = Cons (D n τ) (Valuation n Γ)
(!!) : {m n:Nat} -> {Γ:Context m} -> Valuation n Γ -> (i:Fin m) -> D n (Γ ! i)
(!!) {suc _} {_} {vecI (cons_ _ _)} (cons_ v ξ) (finI fzero_) = v
(!!) {suc _} {_} {vecI (cons_ _ _)} (cons_ v ξ) (finI (fsuc_ i)) = ξ !! i
ext : {m n:Nat} -> {τ:Type} -> {Γ:Context m} -> Valuation n Γ -> D n τ -> Valuation n (τ :: Γ)
ext ξ v = cons_ v ξ
app : {σ τ:Type} -> {n:Nat} -> D n (σ => τ) -> D n σ -> D n τ
--app (dI (lamD_ f)) d = f d
app (lamD f) d = f d
eval : {n:Nat} -> {Γ:Context n} -> (e:Term n) -> (τ:Type) -> HasType Γ e τ -> Valuation n Γ -> D n τ
eval (eVar i) τ (varType eq) ξ = coerce eq (ξ !! i)
eval (eApp r s) τ (appType σ dr ds) ξ = eval r (σ => τ) dr ξ `app` eval s σ ds ξ
eval (eLam r) τ (lamType τ0 τ1 eq dr) ξ = coerce eq (lamD (\d -> ?)) -- doesn't work either
eval eZero τ (zeroType eq) ξ = coerce eq zeroD
eval eSuc τ (sucType eq) ξ = coerce eq (lamD sucD)
module Eval where
open Prelude
open Fin
open Vec
open Syntax
open NormalForms
open Rename using (up; rename)
open Subst
open TypeSystem
eval : {n:Nat} -> (Γ:Context n) -> (e:Term n) -> (τ:Type) -> HasType Γ e τ -> Normal n
eval Γ eZero τ _ = nZero
eval Γ eSuc τ _ = nLam (nSuc (nVar fzero))
eval Γ (eVar i) τ _ = nVar i
eval Γ (eApp e1 e2) τ (appType σ d1 d2) = eval Γ e1 (σ => τ) d1 `app` eval Γ e2 σ d2
eval Γ (eLam e) τ (lamType τ0 τ1 _ d) = nLam (eval (τ0 :: Γ) e τ1 d)
open Prelude
open Fin
open Vec
open Syntax
| {
"alphanum_fraction": 0.4896096329,
"avg_line_length": 25.8743718593,
"ext": "agda",
"hexsha": "7f2012cdca2b7882dc725d0624648ccf4e2908db",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/NBE.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/NBE.agda",
"max_line_length": 102,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/NBE.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 3875,
"size": 10298
} |
{-# OPTIONS --without-K #-}
open import M-types.Base.Core
open import M-types.Base.Sum
open import M-types.Base.Prod
open import M-types.Base.Eq
module M-types.Base.Equi where
Qinv : {X : Ty ℓ₀} {Y : Ty ℓ₁} →
∏[ f ∈ (X → Y)] Ty (ℓ-max ℓ₀ ℓ₁)
Qinv {_} {_} {X} {Y} f = ∑[ g ∈ (Y → X) ]
(∏[ x ∈ X ] g (f x) ≡ x) ×
(∏[ y ∈ Y ] f (g y) ≡ y)
IsEqui : {X : Ty ℓ₀} {Y : Ty ℓ₁} →
∏[ f ∈ (X → Y) ] Ty (ℓ-max ℓ₀ ℓ₁)
IsEqui {_} {_} {X} {Y} f =
(∑[ g ∈ (Y → X) ] ∏[ x ∈ X ] g (f x) ≡ x) ×
(∑[ g ∈ (Y → X) ] ∏[ y ∈ Y ] f (g y) ≡ y)
infixr 8 _≃_
_≃_ : ∏[ X ∈ Ty ℓ₀ ] ∏[ Y ∈ Ty ℓ₁ ] Ty (ℓ-max ℓ₀ ℓ₁)
X ≃ Y = ∑[ f ∈ (X → Y) ] IsEqui f
Qinv→IsEqui : {X : Ty ℓ₀} {Y : Ty ℓ₁} {f : X → Y} →
Qinv f → IsEqui f
Qinv→IsEqui (g , hom₀ , hom₁) = ((g , hom₀) , (g , hom₁))
IsEqui→Qinv : {X : Ty ℓ₀} {Y : Ty ℓ₁} {f : X → Y} →
IsEqui f → Qinv f
IsEqui→Qinv {_} {_} {_} {_} {f} ((g₀ , hom₀) , (g₁ , hom₁)) =
(
g₀ ,
hom₀ ,
λ y → ap f (ap g₀ (hom₁ y)⁻¹ · hom₀ (g₁ y)) · hom₁ y
)
inv : {X : Ty ℓ₀} {Y : Ty ℓ₁} →
∏[ equi ∈ X ≃ Y ] (Y → X)
inv (fun , isEqui) = pr₀ (IsEqui→Qinv isEqui)
hom₀ : {X : Ty ℓ₀} {Y : Ty ℓ₁} →
∏[ equi ∈ X ≃ Y ] ∏[ x ∈ X ] inv equi (fun equi x) ≡ x
hom₀ (fun , isEqui) = pr₀ (pr₁ (IsEqui→Qinv isEqui))
hom₁ : {X : Ty ℓ₀} {Y : Ty ℓ₁} →
∏[ equi ∈ X ≃ Y ] ∏[ y ∈ Y ] fun equi (inv equi y) ≡ y
hom₁ (fun , isEqui) = pr₁ (pr₁ (IsEqui→Qinv isEqui))
| {
"alphanum_fraction": 0.4131274131,
"avg_line_length": 29.320754717,
"ext": "agda",
"hexsha": "2e43e1a375be7de453cce857b8f8936ce2732597",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DDOtten/M-types",
"max_forks_repo_path": "Base/Equi.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DDOtten/M-types",
"max_issues_repo_path": "Base/Equi.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "5b70f4b3dc3e50365ad7a3a80b0cd14efbfa4369",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DDOtten/M-types",
"max_stars_repo_path": "Base/Equi.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 758,
"size": 1554
} |
{-# OPTIONS --safe #-}
module Cubical.HITs.James where
open import Cubical.HITs.James.Base public
open import Cubical.HITs.James.Properties public
| {
"alphanum_fraction": 0.7837837838,
"avg_line_length": 24.6666666667,
"ext": "agda",
"hexsha": "1722cf49261ac98ef2b56048ab10d5a71bf03ba3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/James.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/James.agda",
"max_line_length": 48,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/James.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 39,
"size": 148
} |
{-# OPTIONS --allow-unsolved-metas #-}
module _ where
open import Agda.Primitive
open import Agda.Builtin.Nat
module Test₁ where
record ⊤ {a} : Set a where
constructor tt
data G : (A : Set) → ⊤ {_} → Set where
d : (x : ⊤) → G ⊤ x
test : (g : G ⊤ tt) → Set
test (d x) = ⊤
module Test₂ where
postulate A : Set
a : A
record R {a} : Set a where
constructor mkR
field x : A
data G : (A : Set) → R {_} → Set where
d : (x : R) → G R x
test : (g : G R (mkR a)) → R
test (d x) = x
module Test₃ where
postulate A : Set
a : A
record R {a} : Set a where
constructor mkR
field x y : A
data G : (A : Set) → R {_} → Set where
d : (x : R) → G R x
-- Forced: mkR x y
test₁ : ∀ x y → (g : G R (mkR x y)) → Set
test₁ x y (d (mkR x y)) = A
-- .(mkR x y) turns into z with x = .(R.x z) and y = .(R.y z)
test₂ : ∀ x y → (g : G R (mkR x y)) → Set
test₂ x y (d .(mkR x y)) = A
test₃ : ∀ x y → (g : G R (mkR x y)) → Set
test₃ .(R.x z) .(R.y z) (d z) = A
| {
"alphanum_fraction": 0.4923224568,
"avg_line_length": 18.9454545455,
"ext": "agda",
"hexsha": "ce675b80ccbcb81ecafd50282e61d10f9c08f463",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2888.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2888.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2888.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 435,
"size": 1042
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.