Search is not available for this dataset
text
string
meta
dict
module MetaOccursInItself where data List (A : Set) : Set where nil : List A _::_ : A -> List A -> List A data One : Set where one : One postulate f : (A : Set) -> (A -> List A) -> One err : One err = f _ (\x -> x)
{ "alphanum_fraction": 0.5570175439, "avg_line_length": 14.25, "ext": "agda", "hexsha": "d592574cf661cd276eecf1af1b94bbe5c861b63b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/fail/MetaOccursInItself.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/fail/MetaOccursInItself.agda", "max_line_length": 39, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/MetaOccursInItself.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 82, "size": 228 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Implementation.Data.Boolean where open import Light.Library.Data.Boolean using (Library ; Dependencies) open import Light.Variable.Sets open import Light.Library.Data.Unit as Unit using (Unit ; unit) open import Light.Level using (lift) open import Light.Library.Relation.Decidable using (Decidable ; yes ; no) open import Light.Library.Relation.Binary.Equality using (_≈_ ; wrap) open import Light.Library.Relation.Binary using (reflexivity) import Light.Implementation.Relation.Binary.Equality.Propositional import Light.Implementation.Relation.Decidable import Light.Package import Light.Implementation.Relation.Binary.Equality.Propositional.Decidable as DecidablePropositional import Light.Implementation.Data.Empty import Light.Implementation.Data.Unit instance dependencies : Dependencies dependencies = record {} instance library : Library dependencies library = record { Implementation } where module Implementation where data Boolean : Set where true false : Boolean {-# COMPILE JS Boolean = (a, cons) => a ? cons.true() : cons.false() #-} {-# COMPILE JS true = !0 #-} {-# COMPILE JS false = !1 #-} -- TODO: Optimize operations using JS operators. if_then_else_ : Boolean → 𝕒 → 𝕒 → 𝕒 if true then a else _ = a if false then _ else a = a postulate ¬_ : Boolean → Boolean postulate _∧_ _∨_ _⇢_ : Boolean → Boolean → Boolean true‐is‐true = lift unit false‐is‐false = lift unit private _≈?_ : ∀ (a b : Boolean) → Decidable (a ≈ b) false ≈? false = yes reflexivity false ≈? true = no λ () true ≈? false = no λ () true ≈? true = yes reflexivity equals = record { equals = wrap (record { are = λ a b → a ≈? b }) } module EqualityProperties = DecidablePropositional.Main _≈?_
{ "alphanum_fraction": 0.6188925081, "avg_line_length": 38.375, "ext": "agda", "hexsha": "3abeb1808ef7ee5bdebf8576ad35bf332c851d08", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Implementation/Data/Boolean.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Implementation/Data/Boolean.agda", "max_line_length": 102, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Implementation/Data/Boolean.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 476, "size": 2149 }
{-# OPTIONS --without-K --rewriting #-} {- favonia: On 2017/05/08, I further partition the results into multiple independent index[n].agda files because the garbage collection is not really working. -} module index3 where {- van kampen -} import homotopy.VanKampen {- blakers massey -} import homotopy.BlakersMassey {- cogroups and suspensions -} import homotopy.Cogroup {- modalities -} import homotopy.ModalWedgeExtension {- conjecture 3.5.3 in favonia's thesis -} import groups.Int
{ "alphanum_fraction": 0.74, "avg_line_length": 19.2307692308, "ext": "agda", "hexsha": "fcd56470d8f47aee9126bf3814460d24fe0c5526", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/index3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/index3.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/index3.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 143, "size": 500 }
module System.Directory where open import System.FilePath open import Prelude open import Container.Traversable {-# FOREIGN GHC import System.Directory #-} private module Internal where postulate listContents : String → IO (List String) doesFileExist : String → IO Bool {-# COMPILE GHC listContents = getDirectoryContents #-} {-# COMPILE GHC doesFileExist = doesFileExist #-} abstract listContents : ∀ {k} → Path k → IO (List (Path k)) listContents p = fmap (p //_ ∘ relative) <$> Internal.listContents (toString p)
{ "alphanum_fraction": 0.702166065, "avg_line_length": 24.0869565217, "ext": "agda", "hexsha": "420b1348d161a3df7c53da03ca8749a39230e215", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/System/Directory.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/System/Directory.agda", "max_line_length": 81, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/System/Directory.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 132, "size": 554 }
open import Algebra.Bundles using (CommutativeRing) module Algebra.Module.Diff {r ℓr} {CR : CommutativeRing r ℓr} where open import Assume using (assume) import Data.Nat as ℕ open ℕ using (ℕ; zero; suc) open import Relation.Binary using (Rel) open import Algebra.Module using (Module) open Module open import Function using (_∘_) open import Data.Product using (proj₁; proj₂; _,_) open import Algebra.Module.Morphism.Module using (→-module'; →-module; ⊸-module; _⊸_) open import Algebra.Module.Construct.DirectProduct using () renaming (⟨module⟩ to ×-module) open import Level using (_⊔_; Level) private variable ma mℓa mb mℓb mc mℓc : Level D-module : (MA : Module CR ma mℓa) (MB : Module CR mb mℓb) → Module CR _ _ D-module MA MB = →-module' MA (×-module MB (⊸-module MA MB)) instance D-module' : {MA : Module CR ma mℓa} {MB : Module CR mb mℓb} → Module CR _ _ D-module' {MA = MA} {MB = MB} = →-module' MA (×-module MB (⊸-module MA MB)) D : (MA : Module CR ma mℓa) (MB : Module CR mb mℓb) → Set (r ⊔ ma ⊔ mℓa ⊔ mb ⊔ mℓb) D MA MB = Carrierᴹ (→-module' MA (×-module MB (⊸-module MA MB))) compose : {MA : Module CR ma mℓa} {MB : Module CR mb mℓb} {MC : Module CR mc mℓc} → D MB MC → D MA MB → D MA MC compose {MA = MA} {MB = MB} {MC = MC} dbc dab a = let (b , a⊸b) = dab a (c , b⊸c) = dbc b in c , ⊸-compose b⊸c a⊸b where ⊸-compose : MB ⊸ MC → MA ⊸ MB → MA ⊸ MC ⊸-compose (b→c , b→c-ishom) (a→b , a→b-ishom) = b→c ∘ a→b , assume run : ∀ {ma mℓa mb mℓb} {MA : Module CR ma mℓa} {MB : Module CR mb mℓb} → D MA MB → Carrierᴹ MA → Carrierᴹ MB run f = proj₁ ∘ f ∇_[_]∙_ : ∀ {ma mℓa mb mℓb} {MA : Module CR ma mℓa} {MB : Module CR mb mℓb} → D MA MB → Carrierᴹ MA → Carrierᴹ MA → Carrierᴹ MB ∇_[_]∙_ f = proj₁ ∘ proj₂ ∘ f grad : ∀ {ma mℓa mb mℓb} {MA : Module CR ma mℓa} {MB : Module CR mb mℓb} → D MA MB → Carrierᴹ MA → Carrierᴹ MA → Carrierᴹ MB grad f = proj₁ ∘ proj₂ ∘ f
{ "alphanum_fraction": 0.6225439504, "avg_line_length": 29.7538461538, "ext": "agda", "hexsha": "6d26a0fbc272c744a994f07e1df625f28092dfde", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "cspollard/diff", "max_forks_repo_path": "src/Algebra/Module/Diff.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "cspollard/diff", "max_issues_repo_path": "src/Algebra/Module/Diff.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "cspollard/diff", "max_stars_repo_path": "src/Algebra/Module/Diff.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 797, "size": 1934 }
-- 2014-01-15 Andreas, reported by fredrik.forsberg data Unit : Set where tt : Unit foo : Unit foo = {!!} -- Refine here should give tt
{ "alphanum_fraction": 0.6714285714, "avg_line_length": 15.5555555556, "ext": "agda", "hexsha": "74828d72f210bec48246eabc5f7487d067e68730", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1020a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1020a.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1020a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 45, "size": 140 }
module Conversion where open import Agda.Builtin.Nat nonDependent : Nat -> Nat -> Nat nonDependent a b = a dependent : {A : Set} -> A -> A dependent a = a stuff : {A : Set} -> {B : Nat} -> Nat -> Nat stuff zero = zero stuff (suc c) = dependent c
{ "alphanum_fraction": 0.6345381526, "avg_line_length": 19.1538461538, "ext": "agda", "hexsha": "4cc387a4f004e7d3250d0cb9cd6449d7d12c4f80", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/input/Conversion.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/input/Conversion.agda", "max_line_length": 44, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/input/Conversion.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 81, "size": 249 }
module Cats.Category.Setoids.Facts.Products where open import Data.Product as P using (_,_ ; <_,_>) open import Relation.Binary using (Setoid) open import Relation.Binary.Product.Pointwise using (×-setoid) open import Cats.Category open import Cats.Category.Setoids as Setoids using (Setoids ; ≈-intro ; ≈-elim) open import Cats.Util.Conv open Setoid using (Carrier ; refl ; sym ; trans) renaming (_≈_ to _≣_) -- The existence of binary products, proven below, already follows from the -- existence of general products, proven further below. We still construct them -- explicitly because the definitions in this module are much easier to work -- with. module BuildBinary l l≈ where infixr 2 _×_ open Category (Setoids l l≈) open Setoids._⇒_ using (resp) _×_ : Obj → Obj → Obj _×_ = ×-setoid projl : ∀ {A B} → A × B ⇒ A projl {A} {B} = record { arr = P.proj₁ ; resp = λ { (eq₁ , eq₂) → eq₁ } } projr : ∀ {A B} → A × B ⇒ B projr {A} {B} = record { arr = P.proj₂ ; resp = λ { (eq₁ , eq₂) → eq₂ } } ⟨_,_⟩ : ∀ {X A B} → X ⇒ A → X ⇒ B → X ⇒ A × B ⟨_,_⟩ {A = A} {B} xl xr = record { arr = < xl ⃗ , xr ⃗ > ; resp = λ eq → resp xl eq , resp xr eq } isBinaryProduct : ∀ {A B} → IsBinaryProduct (A × B) projl projr isBinaryProduct xl xr = record { arr = ⟨ xl , xr ⟩ ; prop = (≈-intro λ eq → resp xl eq) , (≈-intro λ eq → resp xr eq) ; unique = λ { (eq₁ , eq₂) → ≈-intro λ x≈y → ≈-elim eq₁ x≈y , ≈-elim eq₂ x≈y } } _×′_ : ∀ A B → BinaryProduct A B A ×′ B = mkBinaryProduct projl projr isBinaryProduct instance hasBinaryProducts : ∀ l l≈ → HasBinaryProducts (Setoids l l≈) hasBinaryProducts l l≈ .HasBinaryProducts._×′_ = BuildBinary._×′_ l l≈ module Build l {I : Set l} where open Category (Setoids l l) open Setoids._⇒_ using (resp) Π : (O : I → Obj) → Obj Π O = record { Carrier = ∀ i → Carrier (O i) ; _≈_ = λ f g → ∀ i → _≣_ (O i) (f i) (g i) ; isEquivalence = record { refl = λ i → refl (O i) ; sym = λ eq i → sym (O i) (eq i) ; trans = λ eq₁ eq₂ i → trans (O i) (eq₁ i) (eq₂ i) } } proj : ∀ {O : I → Obj} i → Π O ⇒ O i proj i = record { arr = λ f → f i ; resp = λ eq → eq i } isProduct : ∀ {O : I → Obj} → IsProduct O (Π O) proj isProduct x = record { arr = record { arr = λ a i → (x i ⃗) a ; resp = λ eq i → resp (x i) eq } ; prop = λ i → ≈-intro λ eq → resp (x i) eq ; unique = λ x-candidate → ≈-intro λ eq i → ≈-elim (x-candidate i) eq } Π′ : (O : I → Obj) → Product O Π′ O = record { prod = Π O ; proj = proj ; isProduct = isProduct } instance hasProducts : ∀ l → HasProducts l (Setoids l l) hasProducts l = record { Π′ = Build.Π′ l }
{ "alphanum_fraction": 0.5508474576, "avg_line_length": 25.2857142857, "ext": "agda", "hexsha": "dc8cd2fb2f65dab5377307fbe9196079bc72d32d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Setoids/Facts/Products.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Setoids/Facts/Products.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Setoids/Facts/Products.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1017, "size": 2832 }
data Id (A : Set) : Set where wrap : A → Id A data Maybe (A : Set) : Set where nothing : Maybe A just : A → Maybe A maybe : {A : Set} {B : Maybe A → Set} → ((x : A) → B (just x)) → B nothing → (x : Maybe A) → B x maybe j n (just x) = j x maybe j n nothing = n record MaybeT (M : Set → Set) (A : Set) : Set where constructor wrap field run : M (Maybe A) open MaybeT public postulate R : Set r : R module M (_ : R) where record Monad (M : Set → Set) : Set₁ where field return : ∀ {A} → A → M A _>>=_ : ∀ {A B} → M A → (A → M B) → M B open Monad ⦃ … ⦄ public instance transform : {M : Set → Set} ⦃ is-raw-monad : Monad M ⦄ → Monad (MaybeT M) run (Monad.return transform x) = return (just x) run (Monad._>>=_ transform x f) = run x >>= maybe (λ x → run (f x)) (return nothing) open M r instance id-raw-monad : Monad Id Monad.return id-raw-monad = wrap Monad._>>=_ id-raw-monad (wrap x) f = f x postulate _∼_ : {A : Set} → Id A → Id A → Set refl : {A : Set} (x : Id A) → x ∼ x trans : {A : Set} {x y z : Id A} → x ∼ y → y ∼ z → x ∼ z id : {A : Set} {x : Id A} (y : Id A) → x ∼ y → x ∼ y >>=-cong : {A : Set} (x : Id A) {f g : A → Id A} → (∀ z → f z ∼ g z) → (x >>= f) ∼ (x >>= g) assoc : {A : Set} (x : Id A) (f : A → Id A) (g : A → Id A) → (x >>= (λ x → f x >>= g)) ∼ ((x >>= f) >>= g) fails : {A : Set} (x : MaybeT Id A) (f : A → MaybeT Id A) (g : A → MaybeT Id A) → run (x >>= λ x → f x >>= g) ∼ run ((x >>= f) >>= g) fails x f g = trans (>>=-cong (run x) (maybe (λ _ → refl _) (refl _))) (id (run ((x >>= f) >>= g)) (assoc (run x) _ _))
{ "alphanum_fraction": 0.4493417287, "avg_line_length": 25.6911764706, "ext": "agda", "hexsha": "4483e902d29b3b0214313186c81917c9b316e040", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2296c.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2296c.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2296c.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 700, "size": 1747 }
module ZisRing where open import Data.Product using (_×_; _,_) open import Function using (_∘_) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; cong; sym) open import Integer10 -- 整数の定義 -- ---------- record ---------- record IsSemiGroup (A : Set) (_∙_ : A → A → A) : Set where field assoc : ∀ x y z → (x ∙ y) ∙ z ≡ x ∙ (y ∙ z) record IsMonoid (A : Set) (_∙_ : A → A → A) (e : A) : Set where field isSemiGroup : IsSemiGroup A _∙_ identity : (∀ x → e ∙ x ≡ x) × (∀ x → x ∙ e ≡ x) record IsGroup (A : Set) (_∙_ : A → A → A) (e : A) (iF : A → A) : Set where field isMonoid : IsMonoid A _∙_ e inv : (∀ x → (iF x) ∙ x ≡ e) × (∀ x → x ∙ (iF x) ≡ e) record IsAbelianGroup (A : Set) (_∙_ : A → A → A) (e : A) (iF : A → A) : Set where field isGroup : IsGroup A _∙_ e iF comm : ∀ x y → x ∙ y ≡ y ∙ x record IsRing (A : Set) (_⊕_ _⊗_ : A → A → A) (eP eT : A) (iF : A → A) : Set where field ⊕isAbelianGroup : IsAbelianGroup A _⊕_ eP iF ⊗isMonoid : IsMonoid A _⊗_ eT isDistR : (x y z : A) → (x ⊕ y) ⊗ z ≡ (x ⊗ z) ⊕ (y ⊗ z) isDistL : (x y z : A) → x ⊗ (y ⊕ z) ≡ (x ⊗ y) ⊕ (x ⊗ z) -- ---------------------------- -- Z,+が半群であること lemma5 : (x : ℤ) → x + zero ≡ x lemma5 zero = refl lemma5 (succ _) = refl lemma5 (pred _) = refl postulate -- ここだけ succPred : (x : ℤ) → succ (pred x) ≡ x predSucc : (x : ℤ) → pred (succ x) ≡ x mutual succOut1 : (x y : ℤ) → succ x + y ≡ succ (x + y) succOut1 x zero = cong succ (sym (lemma5 x)) succOut1 x (succ y) rewrite succOut1 x y | succOut2 x y = refl succOut1 x (pred y) rewrite predOut2 x y | succPred (x + y) = refl succOut2 : (x y : ℤ) → x + succ y ≡ succ (x + y) succOut2 zero y = refl succOut2 (succ x) y = refl succOut2 (pred x) y rewrite predOut1 x y | succPred (x + y) = refl predOut1 : (x y : ℤ) → pred x + y ≡ pred (x + y) predOut1 x zero = cong pred (sym (lemma5 x)) predOut1 x (succ y) rewrite succOut2 x y | predSucc (x + y) = refl predOut1 x (pred y) rewrite predOut1 x y | predOut2 x y = refl predOut2 : (x y : ℤ) → x + pred y ≡ pred (x + y) predOut2 zero y = refl predOut2 (succ x) y rewrite succOut1 x y | predSucc (x + y) = refl predOut2 (pred x) y = refl ℤ+-assoc : ∀ x y z → (x + y) + z ≡ x + (y + z) ℤ+-assoc zero y z = refl ℤ+-assoc (succ x) y z rewrite succOut1 x y | succOut1 (x + y) z | succOut1 x (y + z) = cong succ (ℤ+-assoc x y z) ℤ+-assoc (pred x) y z rewrite predOut1 x y | predOut1 (x + y) z | predOut1 x (y + z) = cong pred (ℤ+-assoc x y z) ℤ+-isSemiGroup : IsSemiGroup ℤ _+_ ℤ+-isSemiGroup = record { assoc = ℤ+-assoc } -- Z,+がモノイドであること ℤ+Zero-isMonoid : IsMonoid ℤ _+_ zero ℤ+Zero-isMonoid = record { isSemiGroup = ℤ+-isSemiGroup ; identity = (zero+x≡x , x+zero≡x) } where zero+x≡x : ∀ x → zero + x ≡ x zero+x≡x _ = refl x+zero≡x : ∀ x → x + zero ≡ x x+zero≡x = lemma5 -- Z,+が群であること leftInv : ∀ x → (opposite x + x) ≡ zero leftInv zero = refl leftInv (succ x) = leftInv x leftInv (pred x) = leftInv x rightInv : ∀ x → (x + opposite x) ≡ zero rightInv zero = refl rightInv (succ x) = rightInv x rightInv (pred x) = rightInv x ℤ+ZeroOpposite-isGroup : IsGroup ℤ _+_ zero opposite ℤ+ZeroOpposite-isGroup = record { isMonoid = ℤ+Zero-isMonoid ; inv = (leftInv , rightInv) } -- Z,+がアーベル群であること ℤ+ZeroOpposite-Comm : ∀ x y → (x + y) ≡ (y + x) ℤ+ZeroOpposite-Comm zero y = sym (lemma5 y) ℤ+ZeroOpposite-Comm (succ x) y rewrite succOut1 x y | succOut2 y x = cong succ (ℤ+ZeroOpposite-Comm x y) ℤ+ZeroOpposite-Comm (pred x) y rewrite predOut1 x y | predOut2 y x = cong pred (ℤ+ZeroOpposite-Comm x y) ℤ+ZeroOpposite-isAbelianGroup : IsAbelianGroup ℤ _+_ zero opposite ℤ+ZeroOpposite-isAbelianGroup = record { isGroup = ℤ+ZeroOpposite-isGroup ; comm = ℤ+ZeroOpposite-Comm } -- Z,*が半群であること lemma7 : (x y z : ℤ) → x * (y + z) ≡ (x * y) + (x * z) lemma7 x y zero rewrite lemma5 y | lemma5 (x * y) = refl lemma7 x y (succ z) rewrite succOut2 y z | lemma7 x y z = ℤ+-assoc (x * y) (x * z) x lemma7 x y (pred z) rewrite predOut2 y z | lemma7 x y z = ℤ+-assoc (x * y) (x * z) (opposite x) lemma8-3 : (x y : ℤ) → opposite x + opposite y ≡ opposite (x + y) lemma8-3 x zero rewrite lemma5 (opposite x) | lemma5 x = refl lemma8-3 x (succ y) rewrite predOut2 (opposite x) (opposite y) | succOut2 x y = cong pred (lemma8-3 x y) lemma8-3 x (pred y) rewrite succOut2 (opposite x) (opposite y) | predOut2 x y = cong succ (lemma8-3 x y) lemma8-5 : (x y : ℤ) → opposite x + y ≡ opposite (x + (opposite y)) lemma8-5 x zero rewrite lemma5 (opposite x) | lemma5 x = refl lemma8-5 x (succ y) rewrite succOut2 (opposite x) y | predOut2 x (opposite y) = cong succ (lemma8-5 x y) lemma8-5 x (pred y) rewrite predOut2 (opposite x) y | succOut2 x (opposite y) = cong pred (lemma8-5 x y) lemma8-2 : (x y : ℤ) → x * opposite y ≡ opposite (x * y) lemma8-2 x zero = refl lemma8-2 x (succ y) rewrite lemma8-2 x y | lemma8-3 (x * y) x = refl lemma8-2 x (pred y) rewrite lemma8-2 x y | lemma8-5 (x * y) x = refl ℤ*-isSemiGroup : IsSemiGroup ℤ _*_ ℤ*-isSemiGroup = record { assoc = ℤ*-assoc } where ℤ*-assoc : ∀ x y z → ((x * y) * z) ≡ (x * (y * z)) ℤ*-assoc x y zero = refl ℤ*-assoc x y (succ z) rewrite lemma7 x (y * z) y = cong (_+ (x * y)) (ℤ*-assoc x y z) ℤ*-assoc x y (pred z) rewrite lemma7 x (y * z) (opposite y) | lemma8-2 x y = cong (_+ opposite (x * y)) (ℤ*-assoc x y z) -- Z,*がモノイドであること one = succ zero ℤ*One-isMonoid : IsMonoid ℤ _*_ one ℤ*One-isMonoid = record { isSemiGroup = ℤ*-isSemiGroup ; identity = (one*x≡x , x*one≡x) } where one*x≡x : ∀ x → (succ zero) * x ≡ x one*x≡x zero = refl one*x≡x (succ x) rewrite succOut2 (succ zero * x) zero | lemma5 (succ zero * x) = cong succ (one*x≡x x) one*x≡x (pred x) rewrite predOut2 (succ zero * x) zero | lemma5 (succ zero * x) = cong pred (one*x≡x x) x*one≡x : ∀ x → x * one ≡ x x*one≡x _ = refl -- Zが環であること ℤ+ZeroOppo-*One-isRing : IsRing ℤ _+_ _*_ zero one opposite ℤ+ZeroOppo-*One-isRing = record { ⊕isAbelianGroup = ℤ+ZeroOpposite-isAbelianGroup ; ⊗isMonoid = ℤ*One-isMonoid ; isDistR = isDistR-Z ; isDistL = lemma7 } where lemma9 : ∀ a b c d → ((a + b) + (c + d)) ≡ ((a + c) + (b + d)) lemma9 zero b c d rewrite sym (ℤ+-assoc b c d) | ℤ+ZeroOpposite-Comm b c = ℤ+-assoc c b d lemma9 (succ a) b c d rewrite succOut1 a b | succOut1 (a + b) (c + d) | succOut1 a c | succOut1 (a + c) (b + d) = cong succ (lemma9 a b c d) lemma9 (pred a) b c d rewrite predOut1 a b | predOut1 (a + b) (c + d) | predOut1 a c | predOut1 (a + c) (b + d) = cong pred (lemma9 a b c d) isDistR-Z : ∀ x y z → ((x + y) * z) ≡ ((x * z) + (y * z)) isDistR-Z x y zero = refl isDistR-Z x y (succ z) rewrite isDistR-Z x y z = lemma9 (x * z) (y * z) x y isDistR-Z x y (pred z) rewrite sym (lemma8-3 x y) | isDistR-Z x y z = lemma9 (x * z) (y * z) (opposite x) (opposite y) -- (-1) * (-1) = (+1) その2 -- 「反数の反数」を使ってはいけないらしい -- (-1) * 0 ≡ (-1) * (-1) + (-1) -- rewrite x * 0 ≡ 0 -- x ≡ y → x + 1 ≡ y + 1 -- rewrite 0 + 1 ≡ 1 -- 結合法則 rewrite (x + y) + z ≡ x + (y + z) -- rewrite (-1) + 1 ≡ 0 -- rewrite x + 0 ≡ x -- 左辺と右辺を入れ替える -₁ = pred zero seed2 : (x : ℤ) → x * zero ≡ x * -₁ + x seed2 x rewrite leftInv x = refl lemma1 : (-₁ * zero ≡ -₁ * -₁ + -₁) → (zero ≡ -₁ * -₁ + -₁) lemma1 prf = prf lemma2 : (zero ≡ -₁ * -₁ + -₁) → (zero + one ≡ -₁ * -₁ + -₁ + one) lemma2 prf = cong (_+ one) prf lemma3 : (zero + one ≡ -₁ * -₁ + -₁ + one) → (one ≡ -₁ * -₁) lemma3 prf = prf lemma4 : (one ≡ -₁ * -₁) → (-₁ * -₁ ≡ one) lemma4 p = sym p theorem2 : pred zero * pred zero ≡ succ zero theorem2 = (lemma4 ∘ lemma3 ∘ lemma2 ∘ lemma1) (seed2 -₁)
{ "alphanum_fraction": 0.4728127337, "avg_line_length": 41.2378854626, "ext": "agda", "hexsha": "90aa3013ba1ffe7938dca4e49c3d7c2cc46beb20", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "righ1113/Agda", "max_forks_repo_path": "ZisRing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "righ1113/Agda", "max_issues_repo_path": "ZisRing.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "righ1113/Agda", "max_stars_repo_path": "ZisRing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3388, "size": 9361 }
{- This file contains: - Definition of the Bouquet of circles of a type aka wedge of A circles -} {-# OPTIONS --safe #-} module Cubical.HITs.Bouquet.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed private variable ℓ : Level data Bouquet (A : Type ℓ) : Type ℓ where base : Bouquet A loop : A → base ≡ base Bouquet∙ : Type ℓ → Pointed ℓ Bouquet∙ A = Bouquet A , base
{ "alphanum_fraction": 0.7018779343, "avg_line_length": 17.04, "ext": "agda", "hexsha": "cb73f68544d248bf985f88687cf4cd5684272c6d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/Bouquet/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/Bouquet/Base.agda", "max_line_length": 71, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/Bouquet/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 134, "size": 426 }
-- Only forced indices can be large. data Img {a b} {A : Set a} {B : Set b} (f : A → B) : B → Set where inv : ∀ x → Img f (f x)
{ "alphanum_fraction": 0.5151515152, "avg_line_length": 22, "ext": "agda", "hexsha": "7c9be052189a9d2a32c21df1cea866de2c64b34f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/LargeIndices.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/LargeIndices.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/LargeIndices.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 52, "size": 132 }
module Proof where open import Agda.Primitive hiding (_⊔_) open import Reflection open import Data.Fin hiding (_+_) open import Data.Fin.Properties using (eq? ; _≟_ ) open import Data.Nat hiding (eq? ; _⊔_) open import Data.Nat.Properties open import Data.List open import Data.String hiding (setoid) open import Data.Bool open import Data.Vec open import Relation.Binary open import Relation.Binary.EqReasoning open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong ; setoid ) import Relation.Binary.Indexed as I open import Function using (_∘_ ; _$_ ; _∋_ ; id ; const) open import Function.Equality using (_⟶_ ; _⟨$⟩_ ; Π ) open import Function.LeftInverse hiding (_∘_) open import Function.Injection using (_↣_ ; Injective ; Injection ) open import Function.Surjection using (_↠_ ; Surjective ; Surjection) open import Function.Bijection using (Bijection ; Bijective ; id ) open import Relation.Nullary open import Relation.Nullary.Negation open import Helper.Fin open import Serializer open import Serializer.Fin open import Serializer.Bool data Test : Set where A : Bool -> Test B : Fin 2 -> Bool -> Test C : Fin 2 -> Test open Serializer.Serializer {{...}} fromTest : Test -> Fin 8 fromTest (A x) = +₁ 6 2 (+₁ 2 4 (from x)) fromTest (B x x₁) = +₁ 6 2 (+₂ 2 4 (× 2 2 (from x) (from x₁))) fromTest (C x) = +₂ 6 2 (from x) test : Fin 4 -> Test test x with ⨂ 2 2 x test .(× 2 2 i j) | is× i j = B (to i) (to j) toTest : Fin 8 -> Test toTest x = [ (\y -> [ (\z -> A $ to z) , test ] (⨁ 2 4 y) ) , (\y -> C $ to y) ] (⨁ 6 2 x) --from-cong : Setoid._≈_ (setoid Test) I.=[ fromTest ]⇒ Setoid._≈_ (setoid (Fin 8)) --from-cong refl = refl from-preserves-eq : setoid Test ⟶ setoid (Fin 8) from-preserves-eq = record { _⟨$⟩_ = fromTest ; cong = (\{ {i} {.i} refl → refl }) } from-injective : Injective from-preserves-eq from-injective {A x} {A x₁} p with from-bool-injective ∘ +-eq₁ ∘ +-eq₁ $ p from-injective {A x} {A .x} p | refl = refl from-injective {A x} {B x₁ x₂} p = contradiction (+-eq₁ p) ¬+-eq₁ from-injective {A x} {C x₁} p = contradiction p ¬+-eq₁ from-injective {B x x₁} {A x₂} p = contradiction (+-eq₁ p) ¬+-eq₂ from-injective {B x x₁} {B y y₁} p with +-eq₂ {2} {4} ∘ +-eq₁ $ p ... | p2 with from-bool-injective (×-equal₁ {x₁ = x} {x₂ = y} p2) | ×-equal₂ {x₁ = x} {x₂ = y} p2 from-injective {B x x₁} {B .x .x₁} p | p2 | refl | refl = refl from-injective {B x x₁} {C x₂} p = contradiction p ¬+-eq₁ from-injective {C x} {A x₁} p = contradiction p ¬+-eq₂ from-injective {C x} {B x₁ x₂} p = contradiction p ¬+-eq₂ from-injective {C x} {C .x} refl = refl from-surjective : Surjective from-preserves-eq from-surjective = record { from = preserves-eq-inv ; right-inverse-of = inv } where -- cong-inverse : Setoid._≈_ (setoid (Fin 8)) I.=[ toTest ]⇒ Setoid._≈_ (setoid Test) -- cong-inverse refl = refl preserves-eq-inv : setoid (Fin 8) ⟶ setoid Test preserves-eq-inv = record { _⟨$⟩_ = toTest ; cong = (\{ {i} {.i} refl → refl }) } inv : preserves-eq-inv RightInverseOf from-preserves-eq inv x with ⨁ 6 2 x inv .(+₁ 6 2 i) | is+₁ i with ⨁ 2 4 i inv ._ | is+₁ ._ | is+₁ i rewrite (Surjective.right-inverse-of (Bijective.surjective (Bijection.bijective (bijection {Bool})))) i = refl inv ._ | is+₁ ._ | is+₂ j with ⨂ 2 2 j inv ._ | is+₁ ._ | is+₂ ._ | is× i j rewrite (Surjective.right-inverse-of (Bijective.surjective (Bijection.bijective (bijection {Fin 2})))) i | (Surjective.right-inverse-of (Bijective.surjective (Bijection.bijective (bijection {Bool})))) j = refl inv ._ | is+₂ j = refl from-injection : Test ↣ Fin 8 from-injection = record { to = from-preserves-eq ; injective = from-injective } from-surjection : Test ↠ Fin 8 from-surjection = record { to = from-preserves-eq ; surjective = from-surjective } from-bijection : Bijection (setoid Test) (setoid (Fin 8)) from-bijection = record { to = from-preserves-eq ; bijective = record { injective = from-injective ; surjective = from-surjective } } instance serializerTest : Serializer Test serializerTest = record { size = 8 ; from = fromTest ; to = toTest ; bijection = from-bijection }
{ "alphanum_fraction": 0.6543504172, "avg_line_length": 39.2056074766, "ext": "agda", "hexsha": "2a0fd32758d873992854ecc0fb0f10eb8eaf1afa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mathijsb/generic-in-agda", "max_forks_repo_path": "Proof.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mathijsb/generic-in-agda", "max_issues_repo_path": "Proof.agda", "max_line_length": 133, "max_stars_count": 6, "max_stars_repo_head_hexsha": "cb95986b772b7a01195619be5e8e590f2429c759", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mathijsb/generic-in-agda", "max_stars_repo_path": "Proof.agda", "max_stars_repo_stars_event_max_datetime": "2016-08-04T16:05:24.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-09T09:59:27.000Z", "num_tokens": 1449, "size": 4195 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} {-# OPTIONS --allow-unsolved-metas #-} open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Base.PKCS open import LibraBFT.Base.Encode open import LibraBFT.Base.KVMap as KVMap open import LibraBFT.Base.Types open import Data.String using (String) -- This module defines types for an out-of-date implementation, based -- on a previous version of LibraBFT. It will be updated to model a -- more recent version in future. -- -- One important trick here is that the EventProcessor type separayes -- types that /define/ the EpochConfig and types that /use/ the -- /EpochConfig/. The advantage of doing this separation can be seen -- in Util.Util.liftEC, where we define a lifting of a function that -- does not change the bits that define the EpochConfig into the whole -- state. This enables a more elegant approach for reasoning about -- functions that do not change parts of the state responsible for -- defining the epoch config. However, the separation is not perfect, -- so sometimes fields may be modified in EpochIndep even though there -- is no epoch change. module LibraBFT.Impl.Consensus.Types where open import LibraBFT.Impl.Base.Types public open import LibraBFT.Impl.NetworkMsg public open import LibraBFT.Abstract.Types.EpochConfig UID NodeId public open import LibraBFT.Impl.Consensus.Types.EpochIndep public open import LibraBFT.Impl.Consensus.Types.EpochDep public -- The parts of the state of a peer that are used to -- define the EpochConfig are the SafetyRules and ValidatorVerifier: record EventProcessorEC : Set where constructor mkEventProcessorPreEC field ₋epSafetyRules : SafetyRules ₋epValidators : ValidatorVerifier open EventProcessorEC public unquoteDecl epSafetyRules epValidators = mkLens (quote EventProcessorEC) (epSafetyRules ∷ epValidators ∷ []) epEpoch : Lens EventProcessorEC EpochId epEpoch = epSafetyRules ∙ srPersistentStorage ∙ psEpoch epLastVotedRound : Lens EventProcessorEC Round epLastVotedRound = epSafetyRules ∙ srPersistentStorage ∙ psLastVotedRound -- We need enough authors to withstand the desired number of -- byzantine failures. We enforce this with a predicate over -- 'EventProcessorEC'. EventProcessorEC-correct : EventProcessorEC → Set EventProcessorEC-correct epec = let numAuthors = kvm-size (epec ^∙ epValidators ∙ vvAddressToValidatorInfo) qsize = epec ^∙ epValidators ∙ vvQuorumVotingPower bizF = numAuthors ∸ qsize in suc (3 * bizF) ≤ numAuthors EventProcessorEC-correct-≡ : (epec1 : EventProcessorEC) → (epec2 : EventProcessorEC) → (epec1 ^∙ epValidators) ≡ (epec2 ^∙ epValidators) → EventProcessorEC-correct epec1 → EventProcessorEC-correct epec2 EventProcessorEC-correct-≡ epec1 epec2 refl = id -- Given a well-formed set of definitions that defines an EpochConfig, -- α-EC will compute this EpochConfig by abstracting away the unecessary -- pieces from EventProcessorEC. -- TODO-2: update and complete when definitions are updated to more recent version α-EC : Σ EventProcessorEC EventProcessorEC-correct → EpochConfig α-EC (epec , ok) = let numAuthors = kvm-size (epec ^∙ epValidators ∙ vvAddressToValidatorInfo) qsize = epec ^∙ epValidators ∙ vvQuorumVotingPower bizF = numAuthors ∸ qsize in (mkEpochConfig {! someHash?!} (epec ^∙ epEpoch) numAuthors {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!}) postulate α-EC-≡ : (epec1 : EventProcessorEC) → (epec2 : EventProcessorEC) → (vals≡ : (epec1 ^∙ epValidators) ≡ (epec2 ^∙ epValidators)) → (epoch≡ : (epec1 ^∙ epEpoch) ≡ (epec2 ^∙ epEpoch)) → (epec1-corr : EventProcessorEC-correct epec1) → α-EC (epec1 , epec1-corr) ≡ α-EC (epec2 , EventProcessorEC-correct-≡ epec1 epec2 vals≡ epec1-corr) {- α-EC-≡ epec1 epec2 refl refl epec1-corr = refl -} -- Finally, the EventProcessor is split in two pieces: those -- that are used to make an EpochConfig versus those that -- use an EpochConfig. record EventProcessor : Set where constructor mkEventProcessor field ₋epEC : EventProcessorEC ₋epEC-correct : EventProcessorEC-correct ₋epEC ₋epWithEC : EventProcessorWithEC (α-EC (₋epEC , ₋epEC-correct)) -- If we want to add pieces that neither contribute to the -- construction of the EC nor need one, they should be defined in -- EventProcessor directly open EventProcessor public α-EC-EP : EventProcessor → EpochConfig α-EC-EP ep = α-EC ((₋epEC ep) , (₋epEC-correct ep)) ₋epHighestQC : (ep : EventProcessor) → QuorumCert ₋epHighestQC ep = ₋btHighestQuorumCert ((₋epWithEC ep) ^∙ (lBlockTree (α-EC-EP ep))) epHighestQC : Lens EventProcessor QuorumCert epHighestQC = mkLens' ₋epHighestQC (λ (mkEventProcessor ec ecc (mkEventProcessorWithEC (mkBlockStore bsInner))) qc → mkEventProcessor ec ecc (mkEventProcessorWithEC (mkBlockStore (record bsInner {₋btHighestQuorumCert = qc})))) ₋epHighestCommitQC : (ep : EventProcessor) → QuorumCert ₋epHighestCommitQC ep = ₋btHighestCommitCert ((₋epWithEC ep) ^∙ (lBlockTree (α-EC-EP ep))) epHighestCommitQC : Lens EventProcessor QuorumCert epHighestCommitQC = mkLens' ₋epHighestCommitQC (λ (mkEventProcessor ec ecc (mkEventProcessorWithEC (mkBlockStore bsInner))) qc → mkEventProcessor ec ecc (mkEventProcessorWithEC (mkBlockStore (record bsInner {₋btHighestCommitCert = qc}))))
{ "alphanum_fraction": 0.6933710859, "avg_line_length": 47.6507936508, "ext": "agda", "hexsha": "9c2e720c231601d4999dbea601d6e63df4bae96d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "haroldcarr/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Consensus/Types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "haroldcarr/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Consensus/Types.agda", "max_line_length": 137, "max_stars_count": null, "max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "haroldcarr/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Consensus/Types.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1681, "size": 6004 }
module InstanceArguments where postulate A₁ A₂ B : Set f₁ : {{a : A₁}} → B f₂ : {{a : A₂}} → B a₁ : A₁ -- resolve from signature test₁ : B test₁ = f₁ -- resolve from context test₂ : {{a : A₂}} → B test₂ = f₂ postulate F : Set → Set fA₁ : F A₁ fA₂ : F A₂ f₃ : {A : Set} → {{fA : F A}} → A → B test₃ : B test₃ = f₃ a₁ record Rec (t : Set) : Set₁ where field v : t open module RecWI {t : Set} {{r : Rec t}} = Rec r postulate testT₁ : Set testV₁ : testT₁ testT₂ : Set testV₂ : testT₂ testRec₁ : Rec testT₁ testRec₁ = record { v = testV₁ } testRec₂ : Rec testT₂ testRec₂ = record { v = testV₂ } -- needs constraint checking in instance argument resolution test : testT₂ test = v
{ "alphanum_fraction": 0.5481012658, "avg_line_length": 18.3720930233, "ext": "agda", "hexsha": "6aad0aa53df4a68439d0f2f5a29d8e120a32a1b2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "test/succeed/InstanceArguments.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "test/succeed/InstanceArguments.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/InstanceArguments.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 285, "size": 790 }
-- Andreas, 2015-06-11 -- testing with in copattern matching with dependent record -- {-# OPTIONS -v tc.with:20 #-} open import Common.Prelude open import Common.Equality data Dec P : Set where yes : (p : P) → Dec P no : (¬p : P → ⊥) → Dec P postulate _≟_ : (n m : Nat) → Dec (n ≡ m) boring : {A : Set} → A record R : Set₁ where field Car : Set el : Car same : (x : Car) → Dec (x ≡ el) test : (n : Nat) → R R.Car (test n) = Nat R.el (test n) = n R.same (test zero) zero = yes refl R.same (test zero) (suc x) = no λ() R.same (test (suc n)) zero = no λ() R.same (test (suc n)) (suc x) with n ≟ x R.same (test (suc n)) (suc .n) | yes refl = yes refl R.same (test (suc n)) (suc x) | no ¬p = no boring
{ "alphanum_fraction": 0.5655737705, "avg_line_length": 22.875, "ext": "agda", "hexsha": "0d64c5b9a927cb64b712ba20d655f99b2a55407f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/Issue1546.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/Issue1546.agda", "max_line_length": 59, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/Issue1546.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 287, "size": 732 }
module Prelude.Monad.Indexed {i} {I : Set i} where open import Agda.Primitive open import Prelude.Function open import Prelude.Functor open import Prelude.Applicative.Indexed {I = I} record IMonad {a b} (M : I → I → Set a → Set b) : Set (i ⊔ lsuc a ⊔ b) where infixr 1 _=<<_ infixl 1 _>>=_ _>>_ field _>>=_ : ∀ {A B i j k} → M i j A → (A → M j k B) → M i k B overlap {{super}} : IApplicative M _>>_ : ∀ {A B i j k} → M i j A → M j k B → M i k B m₁ >> m₂ = m₁ >>= λ _ → m₂ _=<<_ : ∀ {A B i j k} → (A → M j k B) → M i j A → M i k B _=<<_ = flip _>>=_ return : ∀ {a b} {A : Set a} {M : I → I → Set a → Set b} {{_ : IMonad M}} {i : I} → A → M i i A return = pure open IMonad {{...}} public {-# DISPLAY IMonad._>>=_ _ = _>>=_ #-} {-# DISPLAY IMonad._=<<_ _ = _=<<_ #-} {-# DISPLAY IMonad._>>_ _ = _>>_ #-} join : ∀ {a} {M : I → I → Set a → Set a} {{_ : IMonad M}} {A : Set a} {i j k} → M i j (M j k A) → M i k A join = _=<<_ id -- Level polymorphic monads record IMonad′ {a b} (M : ∀ {a} → I → I → Set a → Set a) : Set (i ⊔ lsuc (a ⊔ b)) where field _>>=′_ : {A : Set a} {B : Set b} {i j k : I} → M i j A → (A → M j k B) → M i k B overlap {{super}} : IApplicative′ {a} {b} M _>>′_ : {A : Set a} {B : Set b} {i j k : I} → M i j A → M j k B → M i k B m >>′ m′ = m >>=′ λ _ → m′ open IMonad′ {{...}} public
{ "alphanum_fraction": 0.4784828592, "avg_line_length": 29.8043478261, "ext": "agda", "hexsha": "7c7cb96c2924fd820fd9922937398180d9722527", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Monad/Indexed.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Monad/Indexed.agda", "max_line_length": 87, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Monad/Indexed.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 599, "size": 1371 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Rings.Definition open import Rings.IntegralDomains.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Irreducibles.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where open Setoid S open Ring R open import Rings.Units.Definition R record Irreducible (r : A) : Set (a ⊔ b) where field nonzero : (r ∼ 0R) → False nonunit : (Unit r) → False irreducible : (x y : A) → (x * y) ∼ r → (Unit x → False) → Unit y
{ "alphanum_fraction": 0.6605504587, "avg_line_length": 31.1428571429, "ext": "agda", "hexsha": "8d12160ad7d2b06323d47bd51bbd6fbf2f4caf57", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Irreducibles/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Irreducibles/Definition.agda", "max_line_length": 158, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Irreducibles/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 222, "size": 654 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module groups.ReducedWord {i} {A : Type i} (dec : has-dec-eq A) where is-reduced : Word A → Type i is-reduced nil = Lift ⊤ is-reduced (_ :: nil) = Lift ⊤ is-reduced (inl x :: inl y :: w) = is-reduced (inl y :: w) is-reduced (inl x :: inr y :: w) = (x ≠ y) × is-reduced (inr y :: w) is-reduced (inr x :: inl y :: w) = (x ≠ y) × is-reduced (inl y :: w) is-reduced (inr x :: inr y :: w) = is-reduced (inr y :: w) -- Everything is a set. A-is-set : is-set A A-is-set = dec-eq-is-set dec PlusMinus-has-dec-eq : has-dec-eq (PlusMinus A) PlusMinus-has-dec-eq (inl x) (inl y) with dec x y PlusMinus-has-dec-eq (inl x) (inl y) | inl p = inl $ ap inl p PlusMinus-has-dec-eq (inl x) (inl y) | inr ¬p = inr $ ¬p ∘ lower ∘ Coprod=-in PlusMinus-has-dec-eq (inl x) (inr y) = inr $ lower ∘ Coprod=-in PlusMinus-has-dec-eq (inr x) (inl y) = inr $ lower ∘ Coprod=-in PlusMinus-has-dec-eq (inr x) (inr y) with dec x y PlusMinus-has-dec-eq (inr x) (inr y) | inl p = inl $ ap inr p PlusMinus-has-dec-eq (inr x) (inr y) | inr ¬p = inr $ ¬p ∘ lower ∘ Coprod=-in Word-has-dec-eq : has-dec-eq (Word A) Word-has-dec-eq nil nil = inl idp Word-has-dec-eq nil (_ :: w) = inr $ lower ∘ List=-in Word-has-dec-eq (_ :: v) nil = inr $ lower ∘ List=-in Word-has-dec-eq (x :: v) (y :: w) with PlusMinus-has-dec-eq x y Word-has-dec-eq (x :: v) (y :: w) | inl x=y with Word-has-dec-eq v w Word-has-dec-eq (x :: v) (y :: w) | inl x=y | inl v=w = inl $ List=-out (x=y , v=w) Word-has-dec-eq (x :: v) (y :: w) | inl x=y | inr v≠w = inr $ v≠w ∘ snd ∘ List=-in Word-has-dec-eq (x :: v) (y :: w) | inr x≠y = inr $ x≠y ∘ fst ∘ List=-in instance Word-is-set : is-set (Word A) Word-is-set = dec-eq-is-set Word-has-dec-eq is-reduced-is-prop : {w : Word A} → is-prop (is-reduced w) is-reduced-is-prop {nil} = ⟨⟩ is-reduced-is-prop {x :: nil} = ⟨⟩ is-reduced-is-prop {inl x :: inl y :: l} = is-reduced-is-prop {inl y :: l} is-reduced-is-prop {inl x :: inr y :: l} = ⟨⟩ where instance _ = is-reduced-is-prop {inr y :: l} is-reduced-is-prop {inr x :: inl y :: l} = ⟨⟩ where instance _ = is-reduced-is-prop {inl y :: l} is-reduced-is-prop {inr x :: inr y :: l} = is-reduced-is-prop {inr y :: l} is-reduced-prop : SubtypeProp (Word A) i is-reduced-prop = is-reduced , λ w → is-reduced-is-prop {w} -- The subtype ReducedWord : Type i ReducedWord = Subtype is-reduced-prop instance ReducedWord-is-set : is-set ReducedWord ReducedWord-is-set = Subtype-level is-reduced-prop where instance _ = is-reduced-is-prop -- Identifications in [ReducedWord]. ReducedWord= : ReducedWord → ReducedWord → Type i ReducedWord= = Subtype= is-reduced-prop ReducedWord=-out : {x y : ReducedWord} → ReducedWord= x y → x == y ReducedWord=-out = Subtype=-out is-reduced-prop -- The group structure of reduced words private rw-unit : ReducedWord rw-unit = nil , lift tt abstract tail-is-reduced : ∀ x w → is-reduced (x :: w) → is-reduced w tail-is-reduced x nil red = lift tt tail-is-reduced (inl x) (inl y :: w) red = red tail-is-reduced (inl x) (inr y :: w) red = snd red tail-is-reduced (inr x) (inl y :: w) red = snd red tail-is-reduced (inr x) (inr y :: w) red = red rw-cons : PlusMinus A → ReducedWord → ReducedWord rw-cons x (nil , _) = (x :: nil) , lift tt rw-cons (inl x) ((inl y :: l) , red) = (inl x :: inl y :: l) , red rw-cons (inl x) ((inr y :: l) , red) with dec x y rw-cons (inl x) ((inr y :: l) , red) | inl p = l , tail-is-reduced (inr y) l red rw-cons (inl x) ((inr y :: l) , red) | inr ¬p = (inl x :: inr y :: l) , (¬p , red) rw-cons (inr x) ((inl y :: l) , red) with dec x y rw-cons (inr x) ((inl y :: l) , red) | inl p = l , tail-is-reduced (inl y) l red rw-cons (inr x) ((inl y :: l) , red) | inr ¬p = (inr x :: inl y :: l) , (¬p , red) rw-cons (inr x) ((inr y :: l) , red) = (inr x :: inr y :: l) , red rw-++' : Word A → ReducedWord → ReducedWord rw-++' w₁ rw₂ = foldr rw-cons rw₂ w₁ reduce : Word A → ReducedWord reduce w = rw-++' w rw-unit rw-++ : ReducedWord → ReducedWord → ReducedWord rw-++ rw₁ rw₂ = rw-++' (fst rw₁) rw₂ abstract -- assoc rw-cons-reduced : ∀ x w → (red : is-reduced w) → (red' : is-reduced (x :: w)) → rw-cons x (w , red) == (x :: w) , red' rw-cons-reduced x nil _ _ = ReducedWord=-out idp rw-cons-reduced (inl x) (inl y :: w) _ red' = ReducedWord=-out idp rw-cons-reduced (inl x) (inr y :: w) _ red' with dec x y rw-cons-reduced (inl x) (inr y :: w) _ red' | inl p = ⊥-rec $ fst red' $ p rw-cons-reduced (inl x) (inr y :: w) _ red' | inr ¬p = ReducedWord=-out idp rw-cons-reduced (inr x) (inl y :: w) _ red' with dec x y rw-cons-reduced (inr x) (inl y :: w) _ red' | inl p = ⊥-rec $ fst red' $ p rw-cons-reduced (inr x) (inl y :: w) _ red' | inr ¬p = ReducedWord=-out idp rw-cons-reduced (inr x) (inr y :: w) _ red' = ReducedWord=-out idp rw-cons-flip : ∀ x w red red' → rw-cons x ((flip x :: w) , red) == w , red' rw-cons-flip (inl x) w _ _ with dec x x rw-cons-flip (inl x) w _ _ | inl x=x = ReducedWord=-out idp rw-cons-flip (inl x) w _ _ | inr x≠x = ⊥-rec (x≠x idp) rw-cons-flip (inr x) w _ _ with dec x x rw-cons-flip (inr x) w _ _ | inl x=x = ReducedWord=-out idp rw-cons-flip (inr x) w _ _ | inr x≠x = ⊥-rec (x≠x idp) rw-cons-cons-flip : ∀ x rw → rw-cons x (rw-cons (flip x) rw) == rw rw-cons-cons-flip x (nil , red) = rw-cons-flip x nil _ red rw-cons-cons-flip (inl x) ((inl y :: w) , red) with dec x y rw-cons-cons-flip (inl x) ((inl y :: w) , red) | inl x=y = rw-cons-reduced (inl x) w _ (transport! (λ z → is-reduced (inl z :: w)) x=y red) ∙ ReducedWord=-out (ap (λ z → inl z :: w) x=y) rw-cons-cons-flip (inl x) ((inl y :: w) , red) | inr x≠y = rw-cons-flip (inl x) (inl y :: w) (x≠y , red) red rw-cons-cons-flip (inl x) ((inr y :: w) , red) = rw-cons-flip (inl x) (inr y :: w) red red rw-cons-cons-flip (inr x) ((inl y :: w) , red) = rw-cons-flip (inr x) (inl y :: w) red red rw-cons-cons-flip (inr x) ((inr y :: w) , red) with dec x y rw-cons-cons-flip (inr x) ((inr y :: w) , red) | inl x=y = rw-cons-reduced (inr x) w _ (transport! (λ z → is-reduced (inr z :: w)) x=y red) ∙ ReducedWord=-out (ap (λ z → inr z :: w) x=y) rw-cons-cons-flip (inr x) ((inr y :: w) , red) | inr x≠y = rw-cons-flip (inr x) (inr y :: w) (x≠y , red) red rw-++-cons : ∀ x rw₁ rw₂ → rw-++ (rw-cons x rw₁) rw₂ == rw-cons x (rw-++ rw₁ rw₂) rw-++-cons x (nil , _) rw₂ = idp rw-++-cons (inl x) ((inl y :: w₁) , _) rw₂ = idp rw-++-cons (inl x) ((inr y :: w₁) , _) rw₂ with dec x y rw-++-cons (inl x) ((inr y :: w₁) , _) rw₂ | inl p rewrite p = ! (rw-cons-cons-flip (inl y) (rw-++' w₁ rw₂)) rw-++-cons (inl x) ((inr y :: w₁) , _) rw₂ | inr ¬p = idp rw-++-cons (inr x) ((inl y :: w₁) , _) rw₂ with dec x y rw-++-cons (inr x) ((inl y :: w₁) , _) rw₂ | inl p rewrite p = ! (rw-cons-cons-flip (inr y) (rw-++' w₁ rw₂)) rw-++-cons (inr x) ((inl y :: w₁) , _) rw₂ | inr ¬p = idp rw-++-cons (inr x) ((inr y :: w₁) , _) rw₂ = idp rw-++-assoc' : ∀ w₁ rw₂ rw₃ → rw-++ (rw-++' w₁ rw₂) rw₃ == rw-++' w₁ (rw-++' (fst rw₂) rw₃) rw-++-assoc' nil rw₂ rw = idp rw-++-assoc' (x :: w₁) rw₂ rw₃ = rw-++-cons x (rw-++' w₁ rw₂) rw₃ ∙ ap (rw-cons x) (rw-++-assoc' w₁ rw₂ rw₃) -- inv abstract head2-is-reduced : ∀ x y w → is-reduced (x :: y :: w) → is-reduced (x :: y :: nil) head2-is-reduced (inl x) (inl y) w red = lift tt head2-is-reduced (inl x) (inr y) w red = fst red , lift tt head2-is-reduced (inr x) (inl y) w red = fst red , lift tt head2-is-reduced (inr x) (inr y) w red = lift tt cons-is-reduced : ∀ x y w → is-reduced (x :: y :: nil) → is-reduced (y :: w) → is-reduced (x :: y :: w) cons-is-reduced (inl x) (inl y) _ _ red₂ = red₂ cons-is-reduced (inl x) (inr y) _ red₁ red₂ = fst red₁ , red₂ cons-is-reduced (inr x) (inl y) _ red₁ red₂ = fst red₁ , red₂ cons-is-reduced (inr x) (inr y) _ _ red₂ = red₂ ++-is-reduced : ∀ w₁ x w₂ → is-reduced (w₁ ++ (x :: nil)) → is-reduced (x :: w₂) → is-reduced ((w₁ ++ (x :: nil)) ++ w₂) ++-is-reduced nil _ _ _ red₂ = red₂ ++-is-reduced (x :: nil) y w₂ red₁ red₂ = cons-is-reduced x y w₂ red₁ red₂ ++-is-reduced (x :: y :: w₁) z w₂ red₁ red₂ = cons-is-reduced x y ((w₁ ++ (z :: nil)) ++ w₂) (head2-is-reduced x y (w₁ ++ (z :: nil)) red₁) (++-is-reduced (y :: w₁) z w₂ (tail-is-reduced x (y :: w₁ ++ (z :: nil)) red₁) red₂) swap2-is-reduced : ∀ x y → is-reduced (x :: y :: nil) → is-reduced (y :: x :: nil) swap2-is-reduced (inl x) (inl y) red = lift tt swap2-is-reduced (inl x) (inr y) red = fst red ∘ ! , lift tt swap2-is-reduced (inr x) (inl y) red = fst red ∘ ! , lift tt swap2-is-reduced (inr x) (inr y) red = lift tt reverse-is-reduced : ∀ w → is-reduced w → is-reduced (reverse w) reverse-is-reduced nil red = red reverse-is-reduced (x :: nil) red = red reverse-is-reduced (x :: y :: w) red = ++-is-reduced (reverse w) y (x :: nil) (reverse-is-reduced (y :: w) (tail-is-reduced x (y :: w) red)) (swap2-is-reduced x y (head2-is-reduced x y w red)) flip2-is-reduced : ∀ x y → is-reduced (x :: y :: nil) → is-reduced (flip x :: flip y :: nil) flip2-is-reduced (inl x) (inl y) red = red flip2-is-reduced (inl x) (inr y) red = red flip2-is-reduced (inr x) (inl y) red = red flip2-is-reduced (inr x) (inr y) red = red Word-flip-is-reduced : ∀ w → is-reduced w → is-reduced (Word-flip w) Word-flip-is-reduced nil red = red Word-flip-is-reduced (x :: nil) red = red Word-flip-is-reduced (x :: y :: w) red = cons-is-reduced (flip x) (flip y) (Word-flip w) (flip2-is-reduced x y (head2-is-reduced x y w red)) (Word-flip-is-reduced (y :: w) (tail-is-reduced x (y :: w) red)) rw-inv : ReducedWord → ReducedWord rw-inv (w , red) = reverse (Word-flip w) , reverse-is-reduced (Word-flip w) (Word-flip-is-reduced w red) abstract rw-inv-l-lemma : ∀ w₁ x w₂ (red₂ : is-reduced (x :: w₂)) (red₂' : is-reduced w₂) → rw-++' (w₁ ++ (flip x :: nil)) ((x :: w₂) , red₂) == rw-++' w₁ (w₂ , red₂') rw-inv-l-lemma nil (inl x) w₂ _ _ with dec x x rw-inv-l-lemma nil (inl x) w₂ _ _ | inl p = ReducedWord=-out idp rw-inv-l-lemma nil (inl x) w₂ _ _ | inr ¬p = ⊥-rec (¬p idp) rw-inv-l-lemma nil (inr x) w₂ _ _ with dec x x rw-inv-l-lemma nil (inr x) w₂ _ _ | inl p = ReducedWord=-out idp rw-inv-l-lemma nil (inr x) w₂ _ _ | inr ¬p = ⊥-rec (¬p idp) rw-inv-l-lemma (x :: w₁) y w₂ red₂ red₂' = ap (rw-cons x) (rw-inv-l-lemma w₁ y w₂ red₂ red₂') rw-inv-l' : ∀ w (red : is-reduced w) → rw-++' (reverse (Word-flip w)) (w , red) == nil , lift tt rw-inv-l' nil _ = idp rw-inv-l' (x :: w) red = rw-inv-l-lemma (reverse (Word-flip w)) x w red (tail-is-reduced x w red) ∙ rw-inv-l' w (tail-is-reduced x w red) suffix-is-reduced : ∀ w₁ w₂ → is-reduced (w₁ ++ w₂) → is-reduced w₂ suffix-is-reduced nil w₂ red = red suffix-is-reduced (x :: w₁) w₂ red = suffix-is-reduced w₁ w₂ $ tail-is-reduced x (w₁ ++ w₂) red ReducedWord-group-struct : GroupStructure ReducedWord ReducedWord-group-struct = record { ident = nil , lift tt ; inv = rw-inv ; comp = rw-++ ; unit-l = λ _ → idp ; assoc = λ rw → rw-++-assoc' (fst rw) ; inv-l = uncurry rw-inv-l' } ReducedWord-group : Group i ReducedWord-group = group _ ReducedWord-group-struct private abstract QuotWordRel-cons : ∀ x w₂ (red₂ : is-reduced w₂) → QuotWordRel (x :: w₂) (fst (rw-cons x (w₂ , red₂))) QuotWordRel-cons x nil _ = qwr-refl idp QuotWordRel-cons (inl x) (inl y :: w) _ = qwr-refl idp QuotWordRel-cons (inl x) (inr y :: w) _ with dec x y QuotWordRel-cons (inl x) (inr y :: w) _ | inl x=y rewrite x=y = qwr-flip (inl y) w QuotWordRel-cons (inl x) (inr y :: w) _ | inr x≠y = qwr-refl idp QuotWordRel-cons (inr x) (inl y :: w) _ with dec x y QuotWordRel-cons (inr x) (inl y :: w) _ | inl x=y rewrite x=y = qwr-flip (inr y) w QuotWordRel-cons (inr x) (inl y :: w) _ | inr x≠y = qwr-refl idp QuotWordRel-cons (inr x) (inr y :: w) _ = qwr-refl idp QuotWordRel-++ : ∀ w₁ rw₂ → QuotWordRel (w₁ ++ fst rw₂) (fst (rw-++' w₁ rw₂)) QuotWordRel-++ nil _ = qwr-refl idp QuotWordRel-++ (x :: w₁) rw₂ = qwr-trans (qwr-cons x (QuotWordRel-++ w₁ rw₂)) $ uncurry (QuotWordRel-cons x) (rw-++' w₁ rw₂) -- freeness ReducedWord-to-FreeGroup : ReducedWord-group →ᴳ FreeGroup A ReducedWord-to-FreeGroup = group-hom (λ rw → qw[ fst rw ]) (λ rw₁ rw₂ → ! $ quot-rel $ QuotWordRel-++ (fst rw₁) rw₂) private abstract reduce-emap : ∀ {w₁ w₂} → QuotWordRel w₁ w₂ → reduce w₁ == reduce w₂ reduce-emap (qwr-refl p) = ap reduce p reduce-emap (qwr-trans qwr₁ qwr₂) = reduce-emap qwr₁ ∙ reduce-emap qwr₂ reduce-emap (qwr-sym qwr) = ! (reduce-emap qwr) reduce-emap (qwr-cons x qwr) = ap (rw-cons x) (reduce-emap qwr) reduce-emap (qwr-flip x w) = rw-cons-cons-flip x (reduce w) to = GroupHom.f ReducedWord-to-FreeGroup from : QuotWord A → ReducedWord from = QuotWord-rec reduce reduce-emap abstract QuotWordRel-reduce : ∀ w → QuotWordRel w (fst (reduce w)) QuotWordRel-reduce nil = qwr-refl idp QuotWordRel-reduce (x :: w) = qwr-trans (qwr-cons x (QuotWordRel-reduce w)) $ uncurry (QuotWordRel-cons x) (reduce w) to-from : ∀ qw → to (from qw) == qw to-from = QuotWord-elim (λ w → ! $ quot-rel $ QuotWordRel-reduce w) (λ _ → prop-has-all-paths-↓) from-to : ∀ rw → from (to rw) == rw from-to = Group.unit-r ReducedWord-group ReducedWord-iso-FreeGroup : ReducedWord-group ≃ᴳ FreeGroup A ReducedWord-iso-FreeGroup = ReducedWord-to-FreeGroup , is-eq to from to-from from-to
{ "alphanum_fraction": 0.5450075126, "avg_line_length": 45.3312693498, "ext": "agda", "hexsha": "34b56baaef5ce138bd972500b039348ed916f7a1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/groups/ReducedWord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/groups/ReducedWord.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/groups/ReducedWord.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5656, "size": 14642 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Base definitions for the left-biased universe-sensitive functor and -- monad instances for the Product type. -- -- To minimize the universe level of the RawFunctor, we require that -- elements of B are "lifted" to a copy of B at a higher universe level -- (a ⊔ b). See the Data.Product.Categorical.Examples for how this is -- done. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Level module Data.Product.Categorical.Left.Base {a} (A : Set a) (b : Level) where open import Data.Product using (_×_; map₂; proj₁; proj₂; <_,_>) open import Category.Functor using (RawFunctor) open import Category.Comonad using (RawComonad) ------------------------------------------------------------------------ -- Definitions Productₗ : Set (a ⊔ b) → Set (a ⊔ b) Productₗ B = A × B functor : RawFunctor Productₗ functor = record { _<$>_ = λ f → map₂ f } comonad : RawComonad Productₗ comonad = record { extract = proj₂ ; extend = < proj₁ ,_> }
{ "alphanum_fraction": 0.5608888889, "avg_line_length": 29.6052631579, "ext": "agda", "hexsha": "c7465d4d443ddad1a65d0f35edd711be31d52dae", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Categorical/Left/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Categorical/Left/Base.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Product/Categorical/Left/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 275, "size": 1125 }
module Data.Maybe.Instance where open import Category.FAM open import Data.Maybe open import Function using (_∘_; id) open import Relation.Binary.PropositionalEquality instance MaybeFunctor : ∀ {ℓ} → Functor {ℓ} Maybe MaybeFunctor {ℓ} = record { _<$>_ = map ; isFunctor = record { identity = identity ; homo = homo } } where identity : ∀ {A : Set ℓ} (a : Maybe A) → map id a ≡ a identity (just x) = refl identity nothing = refl homo : ∀ {A B C : Set ℓ} (f : B → C) (g : A → B) (a : Maybe A) → map (f ∘ g) a ≡ map f (map g a) homo _ _ (just x) = refl homo _ _ nothing = refl MaybeApplicative : ∀ {ℓ} → Applicative {ℓ} Maybe MaybeApplicative {ℓ} = record { pure = just ; _⊛_ = ap ; isApplicative = record { identity = identity ; compose = compose ; homo = λ _ _ → refl ; interchange = interchange } } where open ≡-Reasoning open import Function ap : {A B : Set ℓ} → Maybe (A → B) → Maybe A → Maybe B ap (just f) x = map f x ap nothing x = nothing identity : {A : Set ℓ} (x : Maybe A) → map id x ≡ x identity (just x) = refl identity nothing = refl compose : {A B C : Set ℓ} (fs : Maybe (B → C)) (gs : Maybe (A → B)) → (xs : Maybe A) → ap (ap (map _∘′_ fs) gs) xs ≡ ap fs (ap gs xs) compose {A} {B} {C} (just fs) (just gs) (just xs) = refl compose {A} {B} {C} (just fs) (just gs) nothing = refl compose {A} {B} {C} (just fs) nothing (just xs) = refl compose {A} {B} {C} (just fs) nothing nothing = refl compose {A} {B} {C} nothing (just gs) (just xs) = refl compose {A} {B} {C} nothing (just gs) nothing = refl compose {A} {B} {C} nothing nothing (just xs) = refl compose {A} {B} {C} nothing nothing nothing = refl interchange : {A B : Set ℓ} (fs : Maybe (A → B)) (x : A) → ap fs (just x) ≡ ap (just (λ f → f x)) fs interchange {A} {B} (just f) x = refl interchange {A} {B} nothing x = refl
{ "alphanum_fraction": 0.4704142012, "avg_line_length": 35.8484848485, "ext": "agda", "hexsha": "ccac0d822a4460c969100d433711a4f3d659f49b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e5e562e4cde2face1f3f5b6d0486c8c56a47b435", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/FAM", "max_forks_repo_path": "src/Data/Maybe/Instance.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e5e562e4cde2face1f3f5b6d0486c8c56a47b435", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/FAM", "max_issues_repo_path": "src/Data/Maybe/Instance.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "e5e562e4cde2face1f3f5b6d0486c8c56a47b435", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/FAM", "max_stars_repo_path": "src/Data/Maybe/Instance.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 722, "size": 2366 }
open import Coinduction using ( ♭ ) open import Data.Product using ( _,_ ) open import Relation.Binary using ( Poset ) open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; trans ; cong ; subst₂ ) renaming ( setoid to ≡-setoid ) open import System.IO.Transducers using ( _⇒_ ; inp ; out ; done ; ⟦_⟧ ; _≃_ ; _≲_ ; _⟫_ ) open import System.IO.Transducers.Session using ( Session ) open import System.IO.Transducers.Trace using ( Trace ; [] ; _∷_ ; _⊑_ ) open import System.IO.Transducers.Properties.Category using ( ⟫-semantics ) import Relation.Binary.PartialOrderReasoning module System.IO.Transducers.Properties.TwoCategory where -- The category is poset-enriched, with order inherited from prefix order on traces. -- Reflexivity ⊑-refl : ∀ {S} (as : Trace S) → (as ⊑ as) ⊑-refl [] = [] ⊑-refl (a ∷ as) = (a ∷ ⊑-refl as) ≡-impl-⊑ : ∀ {S} {as bs : Trace S} → (as ≡ bs) → (as ⊑ bs) ≡-impl-⊑ refl = ⊑-refl _ ≲-refl : ∀ {S T} (f : Trace S → Trace T) → (f ≲ f) ≲-refl f as = ⊑-refl (f as) ≃-impl-≲ : ∀ {S T} {f g : Trace S → Trace T} → (f ≃ g) → (f ≲ g) ≃-impl-≲ f≃g as = ≡-impl-⊑ (f≃g as) -- Transitivity ⊑-trans : ∀ {S} {as bs cs : Trace S} → (as ⊑ bs) → (bs ⊑ cs) → (as ⊑ cs) ⊑-trans [] bs = [] ⊑-trans (a ∷ as) (.a ∷ bs) = (a ∷ ⊑-trans as bs) ≲-trans : ∀ {S T} {f g h : Trace S → Trace T} → (f ≲ g) → (g ≲ h) → (f ≲ h) ≲-trans f≲g g≲h as = ⊑-trans (f≲g as) (g≲h as) -- Antisymmetry ⊑-antisym : ∀ {S} {as bs : Trace S} → (as ⊑ bs) → (bs ⊑ as) → (as ≡ bs) ⊑-antisym [] [] = refl ⊑-antisym (a ∷ as) (.a ∷ bs) = cong (_∷_ a) (⊑-antisym as bs) ≲-antisym : ∀ {S T} {f g : Trace S → Trace T} → (f ≲ g) → (g ≲ f) → (f ≃ g) ≲-antisym f≲g g≲f as = ⊑-antisym (f≲g as) (g≲f as) -- ⊑ and ≲ form posets ⊑-poset : Session → Poset _ _ _ ⊑-poset S = record { Carrier = Trace S ; _≈_ = _≡_ ; _≤_ = _⊑_ ; isPartialOrder = record { antisym = ⊑-antisym ; isPreorder = record { reflexive = ≡-impl-⊑ ; trans = ⊑-trans ; ∼-resp-≈ = ((λ bs≡cs → subst₂ _⊑_ refl bs≡cs) , (λ as≡bs → subst₂ _⊑_ as≡bs refl)) ; isEquivalence = Relation.Binary.Setoid.isEquivalence (≡-setoid (Trace S)) } } } ≲-poset : Session → Session → Poset _ _ _ ≲-poset S T = record { Carrier = (Trace S → Trace T) ; _≈_ = _≃_ ; _≤_ = _≲_ ; isPartialOrder = record { antisym = ≲-antisym ; isPreorder = record { reflexive = ≃-impl-≲ ; trans = ≲-trans ; ∼-resp-≈ = (λ P≃Q P≲R as → subst₂ _⊑_ refl (P≃Q as) (P≲R as)) , λ Q≃R Q≲P as → subst₂ _⊑_ (Q≃R as) refl (Q≲P as) ; isEquivalence = record { refl = λ as → refl ; sym = λ P≃Q as → sym (P≃Q as) ; trans = λ P≃Q Q≃R as → trans (P≃Q as) (Q≃R as) } } } } -- Inequational reasoning module ⊑-Reasoning {S} where open Relation.Binary.PartialOrderReasoning (⊑-poset S) public renaming ( _≤⟨_⟩_ to _⊑⟨_⟩_ ; _≈⟨_⟩_ to _≡⟨_⟩_ ) module ≲-Reasoning {S T} where open Relation.Binary.PartialOrderReasoning (≲-poset S T) public renaming ( _≤⟨_⟩_ to _≲⟨_⟩_ ; _≈⟨_⟩_ to _≃⟨_⟩_ ) open ⊑-Reasoning -- Processes are ⊑-monotone P-monotone : ∀ {S T as bs} → (P : S ⇒ T) → (as ⊑ bs) → (⟦ P ⟧ as ⊑ ⟦ P ⟧ bs) P-monotone (inp F) [] = [] P-monotone (inp F) (a ∷ as⊑bs) = P-monotone (♭ F a) as⊑bs P-monotone (out b P) as⊑bs = b ∷ P-monotone P as⊑bs P-monotone done as⊑bs = as⊑bs -- Composition is ≲-monotone ⟫-monotone : ∀ {S T U} (P₁ P₂ : S ⇒ T) (Q₁ Q₂ : T ⇒ U) → (⟦ P₁ ⟧ ≲ ⟦ P₂ ⟧) → (⟦ Q₁ ⟧ ≲ ⟦ Q₂ ⟧) → (⟦ P₁ ⟫ Q₁ ⟧ ≲ ⟦ P₂ ⟫ Q₂ ⟧) ⟫-monotone P₁ P₂ Q₁ Q₂ P₁≲P₂ Q₁≲Q₂ as = begin ⟦ P₁ ⟫ Q₁ ⟧ as ≡⟨ ⟫-semantics P₁ Q₁ as ⟩ ⟦ Q₁ ⟧ (⟦ P₁ ⟧ as) ⊑⟨ P-monotone Q₁ (P₁≲P₂ as) ⟩ ⟦ Q₁ ⟧ (⟦ P₂ ⟧ as) ⊑⟨ Q₁≲Q₂ (⟦ P₂ ⟧ as) ⟩ ⟦ Q₂ ⟧ (⟦ P₂ ⟧ as) ≡⟨ sym (⟫-semantics P₂ Q₂ as) ⟩ ⟦ P₂ ⟫ Q₂ ⟧ as ∎
{ "alphanum_fraction": 0.5341891538, "avg_line_length": 31.5454545455, "ext": "agda", "hexsha": "183e8c3791a8f12458e4a0a003ea28dccd84914e", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/System/IO/Transducers/Properties/TwoCategory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/System/IO/Transducers/Properties/TwoCategory.agda", "max_line_length": 132, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/System/IO/Transducers/Properties/TwoCategory.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 1799, "size": 3817 }
{-# OPTIONS --without-K --safe #-} module Source.Size where open import Util.HoTT.HLevel.Core open import Util.Prelude infix 4 _<_ infixl 4 _∙_ mutual data Ctx : Set where [] : Ctx _∙_ : (Δ : Ctx) (n : Size Δ) → Ctx data Var : (Δ : Ctx) → Set where zero : ∀ {Δ n} → Var (Δ ∙ n) suc : ∀ {Δ n} (x : Var Δ) → Var (Δ ∙ n) data Size : (Δ : Ctx) → Set where var : ∀ {Δ} (x : Var Δ) → Size Δ ∞ zero : ∀ {Δ} → Size Δ suc : ∀ {Δ} (n : Size Δ) → Size Δ pattern ⋆ = suc ∞ variable Δ Ω Δ′ Ω′ Δ″ Ω″ : Ctx x y z : Var Δ n m o p b n′ m′ o′ p′ b′ : Size Δ wk : Size Δ → Size (Δ ∙ n) wk (var x) = var (suc x) wk ∞ = ∞ wk zero = zero wk (suc m) = suc (wk m) bound : Var Δ → Size Δ bound (zero {Δ} {n}) = wk n bound (suc x) = wk (bound x) data _<_ {Δ} : (n m : Size Δ) → Set where var : n ≡ bound x → var x < n zero<suc : zero < suc n zero<∞ : zero < ∞ suc<suc : (n<m : n < m) → suc n < suc m suc<∞ : (n<∞ : n < ∞) → suc n < ∞ <-trans : n < m → m < o → n < o <suc : n < suc n data _≤_ {Δ} : (n m : Size Δ) → Set where reflexive : n ≡ m → n ≤ m <→≤ : n < m → n ≤ m pattern ≤-refl = reflexive refl pattern v0 = var zero pattern v1 = var (suc zero) pattern v2 = var (suc (suc zero)) abstract n<m→n<Sm : n < m → n < suc m n<m→n<Sm n<m = <-trans n<m <suc n≤m→n<Sm : n ≤ m → n < suc m n≤m→n<Sm ≤-refl = <suc n≤m→n<Sm (<→≤ n<m) = n<m→n<Sm n<m var<suc : var x ≤ n → var x < suc n var<suc = n≤m→n<Sm ∞<suc : ∞ ≤ n → ∞ < suc n ∞<suc = n≤m→n<Sm Sn<m→n<m : suc n < m → n < m Sn<m→n<m (suc<suc n<m) = <-trans n<m <suc Sn<m→n<m (suc<∞ n<∞) = n<∞ Sn<m→n<m (<-trans Sn<o o<m) = <-trans (Sn<m→n<m Sn<o) o<m Sn<m→n<m <suc = <-trans <suc (suc<suc <suc) suc-inj-Var : Var.suc {n = n} x ≡ suc y → x ≡ y suc-inj-Var refl = refl suc≡-prop-Var : (p : Var.suc {n = n} x ≡ suc y) → p ≡ cong suc (suc-inj-Var p) suc≡-prop-Var refl = refl Var-IsSet : (p q : x ≡ y) → p ≡ q Var-IsSet {x = zero} {zero} refl refl = refl Var-IsSet {x = suc x} {suc .x} p refl = trans (suc≡-prop-Var p) (cong (cong suc) (Var-IsSet _ _)) suc-inj-Size : Size.suc n ≡ suc m → n ≡ m suc-inj-Size refl = refl suc≡-prop-Size : (p : Size.suc n ≡ suc m) → p ≡ cong suc (suc-inj-Size p) suc≡-prop-Size refl = refl var-inj-Size : Size.var x ≡ var y → x ≡ y var-inj-Size refl = refl var≡-prop-Size : (p : Size.var x ≡ var y) → p ≡ cong var (var-inj-Size p) var≡-prop-Size refl = refl Size-IsSet : (p q : n ≡ m) → p ≡ q Size-IsSet {n = var x} {var .x} p refl = trans (var≡-prop-Size p) (cong (cong var) (Var-IsSet _ _)) Size-IsSet {n = ∞} {∞} refl refl = refl Size-IsSet {n = zero} {zero} refl refl = refl Size-IsSet {n = suc n} {suc .n} p refl = trans (suc≡-prop-Size p) (cong (cong suc) (Size-IsSet _ _)) wk-resp-< : n < m → wk {n = o} n < wk m wk-resp-< (var p) = var (cong wk p) wk-resp-< zero<suc = zero<suc wk-resp-< zero<∞ = zero<∞ wk-resp-< (suc<suc n<m) = suc<suc (wk-resp-< n<m) wk-resp-< (suc<∞ n<∞) = suc<∞ (wk-resp-< n<∞) wk-resp-< (<-trans n<o o<m) = <-trans (wk-resp-< n<o) (wk-resp-< o<m) wk-resp-< <suc = <suc
{ "alphanum_fraction": 0.5095117311, "avg_line_length": 21.9027777778, "ext": "agda", "hexsha": "97ae124dfa8cd9156e4ff165caec24cbc09e1641", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Source/Size.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Source/Size.agda", "max_line_length": 80, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Source/Size.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 1513, "size": 3154 }
module Prelude where open import Agda.Primitive using (Level; lzero; lsuc) renaming (_⊔_ to lmax) -- empty type data ⊥ : Set where -- from false, derive whatever abort : ∀ {C : Set} → ⊥ → C abort () -- unit data ⊤ : Set where <> : ⊤ -- sums data _+_ (A B : Set) : Set where Inl : A → A + B Inr : B → A + B -- pairs infixr 1 _,_ record Σ {l1 l2 : Level} (A : Set l1) (B : A → Set l2) : Set (lmax l1 l2) where constructor _,_ field π1 : A π2 : B π1 open Σ public syntax Σ A (\ x -> B) = Σ[ x ∈ A ] B _×_ : {l1 : Level} {l2 : Level} → (Set l1) → (Set l2) → Set (lmax l1 l2) A × B = Σ A λ _ → B infixr 1 _×_ -- equality data _==_ {l : Level} {A : Set l} (M : A) : A → Set l where refl : M == M infixr 9 _==_ {-# BUILTIN EQUALITY _==_ #-} {-# BUILTIN REFL refl #-} _·_ : {l : Level} {α : Set l} {x y z : α} → x == y → y == z → x == z refl · refl = refl -- β: ! (refl m) == refl m ! : {l : Level} {α : Set l} {x y : α} → x == y → y == x ! refl = refl -- β: (ap f (refl m)) == refl (f m) ap1 : {l1 l2 : Level} {α : Set l1} {β : Set l2} {x y : α} (F : α → β) → x == y → F x == F y ap1 F refl = refl -- β? : tr β (refl x) y == y tr : {l1 l2 : Level} {α : Set l1} {x y : α} (B : α → Set l2) → x == y → B x → B y tr B refl x₁ = x₁ ap2 : {l1 l2 l3 : Level} {A : Set l1} {B : Set l2} {C : Set l3} {M N : A} {M' N' : B} (f : A -> B -> C) -> M == N -> M' == N' -> (f M M') == (f N N') ap2 f refl refl = refl infix 2 _■ infixr 2 _=<_>_ _=<_>_ : {l : Level} {A : Set l} (x : A) {y z : A} → x == y → y == z → x == z _ =< p1 > p2 = p1 · p2 _■ : {l : Level} {A : Set l} (x : A) → x == x _■ _ = refl -- options data Maybe (A : Set) : Set where Some : A → Maybe A None : Maybe A -- the some constructor is injective. perhaps unsurprisingly. someinj : {A : Set} {x y : A} → Some x == Some y → x == y someinj refl = refl -- order data Order : Set where Less : Order Equal : Order Greater : Order -- function extensionality postulate funext : {A : Set} {B : A → Set} {f g : (x : A) → (B x)} → ((x : A) → f x == g x) → f == g
{ "alphanum_fraction": 0.439119171, "avg_line_length": 23.3939393939, "ext": "agda", "hexsha": "5abd644c2f7c6271978f3ee85febab6fef311341", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ivoysey/agda-tfp16", "max_forks_repo_path": "Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ivoysey/agda-tfp16", "max_issues_repo_path": "Prelude.agda", "max_line_length": 81, "max_stars_count": 2, "max_stars_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ivoysey/agda-tfp16", "max_stars_repo_path": "Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2016-04-14T02:19:58.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-09T13:35:22.000Z", "num_tokens": 960, "size": 2316 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Monoidal.Cartesian.Pentagon where open import Categories.Support.PropositionalEquality using (_≣_; ≣-refl) open import Categories.Category using (Category; module Category) open import Categories.Object.BinaryProducts open import Categories.Square module Law {o ℓ e} (C : Category o ℓ e) (P : BinaryProducts C) where open Category C open BinaryProducts P shave3ˡ : ∀ {A B C} → ((A × B) × C) ⇒ (B × C) shave3ˡ = ⟨ π₂ ∘ π₁ , π₂ ⟩ -- in real life, 'first π₂' shave4ˡʳ : ∀ {A B C D} → (((A × B) × C) × D) ⇒ (B × C) shave4ˡʳ = ⟨ (π₂ ∘ π₁) ∘ π₁ , π₂ ∘ π₁ ⟩ shave4ˡ : ∀ {A B C D} → (((A × B) × C) × D) ⇒ ((B × C) × D) shave4ˡ = ⟨ shave4ˡʳ , π₂ ⟩ .π₁∘assocˡ : ∀ {X Y Z} → π₁ ∘ assocˡ {X} {Y} {Z} ≡ π₁ ∘ π₁ π₁∘assocˡ = commute₁ .π₂∘assocˡ : ∀ {X Y Z} → π₂ ∘ assocˡ {X} {Y} {Z} ≡ shave3ˡ π₂∘assocˡ = commute₂ .π₂₁-assocˡ : ∀ {X Y Z W} → (π₂ ∘ π₁) ∘ assocˡ {X × Y} {Z} {W} ≡ (π₂ ∘ π₁) ∘ π₁ π₂₁-assocˡ = begin (π₂ ∘ π₁) ∘ assocˡ ↓⟨ assoc ⟩ π₂ ∘ (π₁ ∘ assocˡ) ↓⟨ ∘-resp-≡ʳ π₁∘assocˡ ⟩ π₂ ∘ (π₁ ∘ π₁) ↑⟨ assoc ⟩ (π₂ ∘ π₁) ∘ π₁ ∎ where open HomReasoning .π₁₁-assocˡ : ∀ {X Y Z W} → (π₁ ∘ π₁) ∘ assocˡ {_} {Z} {W} ≡ (π₁ ∘ π₁) ∘ first (assocˡ {X} {Y} {Z}) π₁₁-assocˡ = begin (π₁ ∘ π₁) ∘ assocˡ ↓⟨ glue (sym π₁∘assocˡ) π₁∘assocˡ ⟩ π₁ ∘ (assocˡ ∘ π₁) ↑⟨ ∘-resp-≡ʳ π₁∘⁂ ⟩ π₁ ∘ (π₁ ∘ first assocˡ) ↑⟨ assoc ⟩ (π₁ ∘ π₁) ∘ first assocˡ ∎ where open HomReasoning {_} {_} open Equiv open GlueSquares C .π₁∘shave4ˡʳ : ∀ {A B C D} → π₁ ∘ shave4ˡʳ {A} {B} {C} {D} ≡ (π₂ ∘ π₁) ∘ π₁ π₁∘shave4ˡʳ = commute₁ .π₂∘shave4ˡʳ : ∀ {A B C D} → π₂ ∘ shave4ˡʳ {A} {B} {C} {D} ≡ π₂ ∘ π₁ π₂∘shave4ˡʳ = commute₂ .shave3ˡ∘π₁ : ∀ {A B C D} → shave3ˡ ∘ π₁ ≡ shave4ˡʳ {A} {B} {C} {D} shave3ˡ∘π₁ = ⟨⟩∘ .π₁∘shave4ˡ : ∀ {A B C D} → π₁ ∘ shave4ˡ ≡ shave4ˡʳ {A} {B} {C} {D} π₁∘shave4ˡ = commute₁ .π₂∘shave4ˡ : ∀ {A B C D} → π₂ ∘ shave4ˡ {A} {B} {C} {D} ≡ π₂ π₂∘shave4ˡ = commute₂ private infix 3 ⟨_⟩,⟨_⟩ .⟨_⟩,⟨_⟩ : ∀ {A B C} → {f f′ : A ⇒ B} {g g′ : A ⇒ C} → f ≡ f′ → g ≡ g′ → ⟨ f , g ⟩ ≡ ⟨ f′ , g′ ⟩ ⟨_⟩,⟨_⟩ x y = ⟨⟩-cong₂ x y .shave3ˡ∘assocˡ : ∀ {X Y Z W} → shave3ˡ ∘ assocˡ ≡ assocˡ ∘ shave4ˡ {X} {Y} {Z} {W} shave3ˡ∘assocˡ = begin shave3ˡ ∘ assocˡ ↓⟨ ⟨⟩∘ ⟩ ⟨ (π₂ ∘ π₁) ∘ assocˡ , π₂ ∘ assocˡ ⟩ ↓⟨ ⟨ π₂₁-assocˡ ⟩,⟨ π₂∘assocˡ ⟩ ⟩ ⟨ (π₂ ∘ π₁) ∘ π₁ , shave3ˡ ⟩ ↑⟨ ⟨ π₁∘shave4ˡʳ ⟩,⟨ ⟨⟩-congˡ π₂∘shave4ˡʳ ⟩ ⟩ ⟨ π₁ ∘ shave4ˡʳ , ⟨ π₂ ∘ shave4ˡʳ , π₂ ⟩ ⟩ ↑⟨ ⟨ ∘-resp-≡ʳ π₁∘shave4ˡ ⟩,⟨ ⟨ ∘-resp-≡ʳ π₁∘shave4ˡ ⟩,⟨ π₂∘shave4ˡ ⟩ ⟩ ⟩ ⟨ π₁ ∘ (π₁ ∘ shave4ˡ) , ⟨ π₂ ∘ (π₁ ∘ shave4ˡ) , π₂ ∘ shave4ˡ ⟩ ⟩ ↑⟨ ⟨ assoc ⟩,⟨ ⟨⟩-congˡ assoc ⟩ ⟩ ⟨ (π₁ ∘ π₁) ∘ shave4ˡ , ⟨ (π₂ ∘ π₁) ∘ shave4ˡ , π₂ ∘ shave4ˡ ⟩ ⟩ ↑⟨ ⟨⟩-congʳ ⟨⟩∘ ⟩ ⟨ (π₁ ∘ π₁) ∘ shave4ˡ , ⟨ π₂ ∘ π₁ , π₂ ⟩ ∘ shave4ˡ ⟩ ↑⟨ ⟨⟩∘ ⟩ assocˡ ∘ shave4ˡ ∎ where open HomReasoning open Equiv .shave3ˡ∘first-assocˡ : ∀ {X Y Z W} → shave3ˡ ∘ first assocˡ ≡ shave4ˡ {X} {Y} {Z} {W} shave3ˡ∘first-assocˡ = begin shave3ˡ ∘ first assocˡ ↓⟨ ⟨⟩∘ ⟩ ⟨ (π₂ ∘ π₁) ∘ first assocˡ , π₂ ∘ first assocˡ ⟩ ↓⟨ ⟨ glue◃◽ π₂∘assocˡ π₁∘⁂ ⟩,⟨ π₂∘⁂ ⟩ ⟩ ⟨ shave3ˡ ∘ π₁ , id ∘ π₂ ⟩ ↓⟨ ⟨ shave3ˡ∘π₁ ⟩,⟨ identityˡ ⟩ ⟩ shave4ˡ ∎ where open HomReasoning open Equiv open GlueSquares C .pentagon : ∀ {X Y Z W} → assocˡ {X} {Y} ∘ assocˡ ≡ second (assocˡ {Y} {Z} {W}) ∘ (assocˡ ∘ first (assocˡ {X})) pentagon = begin assocˡ ∘ assocˡ ↓⟨ ⟨⟩∘ ⟩ ⟨ (π₁ ∘ π₁) ∘ assocˡ , shave3ˡ ∘ assocˡ ⟩ ↓⟨ ⟨⟩-congʳ shave3ˡ∘assocˡ ⟩ ⟨ (π₁ ∘ π₁) ∘ assocˡ , assocˡ ∘ shave4ˡ ⟩ ↑⟨ ⟨ sym π₁₁-assocˡ ⟩,⟨ ∘-resp-≡ʳ shave3ˡ∘first-assocˡ ⟩ ⟩ ⟨ (π₁ ∘ π₁) ∘ first assocˡ , assocˡ ∘ (shave3ˡ ∘ first assocˡ) ⟩ ↑⟨ ⟨ ∘-resp-≡ˡ identityˡ ⟩,⟨ assoc ⟩ ⟩ ⟨ (id ∘ (π₁ ∘ π₁)) ∘ first assocˡ , (assocˡ ∘ shave3ˡ) ∘ first assocˡ ⟩ ↑⟨ ⟨⟩∘ ⟩ ⟨ id ∘ (π₁ ∘ π₁) , assocˡ ∘ shave3ˡ ⟩ ∘ first assocˡ ↑⟨ ∘-resp-≡ˡ ⁂∘⟨⟩ ⟩ (second assocˡ ∘ assocˡ) ∘ first assocˡ ↓⟨ assoc ⟩ second assocˡ ∘ (assocˡ ∘ first assocˡ) ∎ where open HomReasoning open Equiv
{ "alphanum_fraction": 0.4962616822, "avg_line_length": 30.7913669065, "ext": "agda", "hexsha": "5f42810b097fd46bde3c8bcbbbc47b48a089a10c", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Monoidal/Cartesian/Pentagon.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Monoidal/Cartesian/Pentagon.agda", "max_line_length": 113, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Monoidal/Cartesian/Pentagon.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2411, "size": 4280 }
module Data.Vec.Membership.Propositional.Disjoint where open import Data.Vec open import Data.Vec.Membership.Propositional open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_) open import Data.Empty using (⊥; ⊥-elim) open import Function using (flip) Disjoint : ∀ {a} {A : Set a} {n m} → Vec A n → Vec A m → Set a Disjoint xs ys = ∀ {x} → x ∈ xs → x ∈ ys → ⊥ disjoint-sim : ∀ {a} {A : Set a} {n m} {xs : Vec A n}{ys : Vec A m} → Disjoint xs ys → Disjoint ys xs disjoint-sim dis = flip dis disjoint-[]ˡ : ∀ {a} {A : Set a} {n} {xs : Vec A n} → Disjoint [] xs disjoint-[]ˡ () disjoint-[]ʳ : ∀ {a} {A : Set a} {n} {xs : Vec A n} → Disjoint xs [] disjoint-[]ʳ = disjoint-sim disjoint-[]ˡ disjointness : ∀ {a} {A : Set a} {n m} {xs : Vec A n}{ys : Vec A m} → Disjoint xs ys → ∀ {x y} → x ∈ xs → y ∈ ys → x ≢ y disjointness dis x∈xs y∈ys x≡y rewrite x≡y = dis x∈xs y∈ys
{ "alphanum_fraction": 0.6013215859, "avg_line_length": 39.4782608696, "ext": "agda", "hexsha": "490cc02b8056f4ea15a45c350da21c292fecf23c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tizmd/agda-distinct-disjoint", "max_forks_repo_path": "src/Data/Vec/Membership/Propositional/Disjoint.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tizmd/agda-distinct-disjoint", "max_issues_repo_path": "src/Data/Vec/Membership/Propositional/Disjoint.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "d4cd2a3442a9b58e6139499d16a2b31268f27f80", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tizmd/agda-distinct-disjoint", "max_stars_repo_path": "src/Data/Vec/Membership/Propositional/Disjoint.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 355, "size": 908 }
module Formalization.SimplyTypedLambdaCalculus where import Lvl open import Numeral.Natural open import Type as _ using (TYPE) data Type (B : TYPE) : TYPE₁ where Base : B → Type(B) Function : Type(B) → Type(B) → Type(B) data Term (B : TYPE) : TYPE₁ where Apply : Term(B) → Term(B) → Term(B) Abstract : Type(B) → Term(B) → Term(B) Var : ℕ → Term(B) Const : B → Term(B) module _ {B} where data _⊢_::_ (Γ : Term(B) → Type(B) → TYPE) : Term(B) → Type(B) → TYPE₁ where intro : ∀{a}{T} → Γ(a)(T) → (Γ ⊢ a :: T) -- const : ∀{a}{T} → Γ(a)(T) → (Γ ⊢ a :: T) abstr : ∀{body}{A B} → (Γ ⊢ body :: B) → (Γ ⊢ Abstract A body :: Function A B) apply : ∀{f x}{A B} → (Γ ⊢ f :: Function A B) → (Γ ⊢ x :: A) → (Γ ⊢ Apply f x :: B) {- A,B ::= Base | A ⟶ B t ::= k | t t | λ t | Const b b = true | false Γ ⊢ Const b : Base v ::= Const b | λ t (⊢ t : Base) → ∃ v t ⟶* v (⊢ t : A) → ∃ v t ⟶* v Red(A)(t) definition "to be reducible" Red(Base)(t) = ∃v(t ⟶* v) Red(A→B)(t) = ∀u. Red(A)(u) → Red(B)(t u) (t ⟶ t') → Red(A)(t') → Red(A)(t) • A = Base: ∃v(t* ⟶* v) → ∃v(t ⟶* v) t → t' ⟶* v • A = B→C: ∀u. Red(B)(u) → Red(C)(t' u) to show ∀u. Red(B)(u) → Red(C)(t u) and just use induction on the first thing mentioned Red(C)(t' u) to get Red(C)(t u) data ⟶β : Set where red1 : t ⟶β u red2 : (λ t) u ⟶β substitute t u red3 : (t ⟶β t') → ((t u) ⟶β (t' u)) red4 : (u ⟶β u') → (t u ⟶β t u') ⟶β-confluent : Confluent (_⟶β_) module CallByName where data ⟶β : Set where red2 : (λ t) u ⟶β substitute t u red3 : (t ⟶β t') → ((t u) ⟶β (t' u)) substitute-preservation : (Γ ⊢ ((λ u) u' : A)) → (Γ ⊢ (substitute u u' : A)) β⟶-preservation : (Γ ⊢ (t : A)) → (t ⟶β t') → (Γ ⊢ (t' : A)) Red(Γ)(σ) Γ = () | Γ.A -- context σ : ℕ → Term ∀k. Γ ⊢ k : A Represent variable as a context σ is a formal definition of "reducible" substitution Example: Γ.A ⊢ 0 : A Γ.A.B ⊢ 1 : A σ-substitution?: Red(Γ)(σ) ∧ (Γ ⊢ t:A) → Red(A)(t σ) Proof by induction on t • t = Ref k Red(A)(k σ) = Red(A)(σ(k)) • t = t₀ t₁ t_σ = (t₀ σ) (t₁ σ) Γ ⊢ t₀ : B → A Γ ⊢ t₁ : B by induction hypothesis: Red(B→A)(t₀ σ) Red(B)(t₁ σ) so Red(A)(t₀ σ)(t₁ σ) • t = λ u A = B → C Γ.B ⊢ u : C To show: Red(B→C)((λ u) σ) it means: ∀ u',Red(B)(u'), show Red(C)((λv) σ u') Define: (_,_) : (σ : ℕ → Term) (u' : Term) : ℕ → Term (σ,u')(0) = u' (σ,u')(𝐒 n) = σ(n) Claim: (λu) σ u' ⟶ u(σ,u') Γ.B ⊢ (k : T) → Red(T)((σ,u') k) k=0: Γ.B ⊢ 0 k=n+1 (Γ ⊢ u : T) → (Γ ,B ⊢ n+1 : T) Summary: This is all to prove ∃v(t ⟶* v) if ⊢ t : Base, which is Red(A)(t)? Direct proof for application. Generalize the statement to: (⊢ t : A) → Red(A)(t) and then to: (Γ ⊢ t:A) → Red(Γ)(σ) → Red(A)(t σ) Something else: Krivine abstract machine How to evaluate λ-terms without substitution (defined before LISP eval with substitution) Term: k | tt | λ t Closure: t, ρ -- note: first mention of closure in this field? (denoted u v,‥) Environment: list of closures Stack: list of closures in stack order (denoted S) 3 components: Term t,ENv ρ, Stack S → Term Env STack t₁ | ρ₁ | S₁ | t₂ | ρ₂ | S₂ λ t | ρ | u : S | t | (ρ,u) | S t₀t1 | ρ | S | t₀ | ρ | (t₁,ρ) : S 0 | ρ,(t,ρ') | S | t | ρ' | S k+1 | ρ,(t,p') | S | k | ρ | S Those are the transformations/reductions of the machine. Simplified description of how functional programs are evaluated. -}
{ "alphanum_fraction": 0.5095906098, "avg_line_length": 27.5039370079, "ext": "agda", "hexsha": "d51a284b105d72f00f8ef0bf00f18cfe26986a7a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/SimplyTypedLambdaCalculus.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/SimplyTypedLambdaCalculus.agda", "max_line_length": 91, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/SimplyTypedLambdaCalculus.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1503, "size": 3493 }
module _ where open import Common.Prelude open import Common.Equality primitive primForce : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) → (∀ x → B x) → B x force = primForce not-stuck : (b : Bool) → force b not ≡ not b not-stuck true = refl not-stuck false = refl stuck : (b : Bool) → force b not ≡ not b stuck b = refl
{ "alphanum_fraction": 0.6226993865, "avg_line_length": 19.1764705882, "ext": "agda", "hexsha": "5d57efd570aec5e81f3887db8ce892d1cefbab93", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/PrimSeq.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/PrimSeq.agda", "max_line_length": 85, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/PrimSeq.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 117, "size": 326 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT {- Useful lemmas for computing the effect of transporting a function - across an equivalence in the domain or codomain. - TODO move these lemmas into lib.types.Pi or lib.types.PointedPi -} -- XXX Naming convensions? module stash.homotopy.FunctionOver where {- transporting a ptd function along a equivalence or path in the domain -} module _ {i} {j} {Y : Ptd i} {Z : Ptd j} (g : Y ⊙→ Z) where domain-over-⊙path : {X : Ptd i} (p : de⊙ X == de⊙ Y) (q : coe p (pt X) == pt Y) → g ⊙∘ (coe p , q) == g [ (λ W → W ⊙→ Z) ↓ ptd= p (↓-idf-in p q) ] domain-over-⊙path idp idp = idp domain-over-⊙equiv : {X : Ptd i} (e : X ⊙≃ Y) → g ⊙∘ ⊙–> e == g [ (λ W → W ⊙→ Z) ↓ ⊙ua e ] domain-over-⊙equiv {X = X} e = ap (λ w → g ⊙∘ w) (! $ ⊙λ= (coe-β (⊙≃-to-≃ e)) (↓-idf=cst-in idp)) ◃ domain-over-⊙path (ua (⊙≃-to-≃ e)) (coe-β (⊙≃-to-≃ e) (pt X) ∙ snd (⊙–> e)) module _ {i} {j} {X : Ptd i} {Z : Ptd j} (f : X ⊙→ Z) where domain!-over-⊙path : {Y : Ptd i} (p : de⊙ X == de⊙ Y) (q : coe p (pt X) == pt Y) → f == f ⊙∘ (coe! p , ap (coe! p) (! q) ∙ coe!-inv-l p (pt X)) [ (λ W → W ⊙→ Z) ↓ ptd= p (↓-idf-in p q) ] domain!-over-⊙path idp idp = idp domain!-over-⊙equiv : {Y : Ptd i} (e : X ⊙≃ Y) → f == f ⊙∘ (⊙<– e) [ (λ W → W ⊙→ Z) ↓ ⊙ua e ] domain!-over-⊙equiv {Y = Y} e = (! (ap (λ w → f ⊙∘ w) (⊙<–-inv-l e)) ∙ ! (⊙∘-assoc f _ (⊙–> e))) ◃ domain-over-⊙equiv (f ⊙∘ (⊙<– e)) e {- transporting a ptd function along a equivalence or path in the codomain -} module _ {i} {j} {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y) where codomain-over-⊙path : {Z : Ptd j} (p : de⊙ Y == de⊙ Z) (q : coe p (pt Y) == pt Z) → f == (coe p , q) ⊙∘ f [ (λ W → X ⊙→ W) ↓ ptd= p (↓-idf-in p q) ] codomain-over-⊙path idp idp = pair= idp (! (∙-unit-r _ ∙ ap-idf (snd f))) codomain-over-⊙equiv : {Z : Ptd j} (e : Y ⊙≃ Z) → f == (⊙–> e) ⊙∘ f [ (λ W → X ⊙→ W) ↓ ⊙ua e ] codomain-over-⊙equiv {Z = Z} e = codomain-over-⊙path (ua (⊙≃-to-≃ e)) (coe-β (⊙≃-to-≃ e) (pt Y) ∙ snd (⊙–> e)) ▹ ap (λ w → w ⊙∘ f) (⊙λ= (coe-β (⊙≃-to-≃ e)) (↓-idf=cst-in idp)) module _ {i} {j} {X : Ptd i} {Z : Ptd j} (g : X ⊙→ Z) where codomain!-over-⊙path : {Y : Ptd j} (p : de⊙ Y == de⊙ Z) (q : coe p (pt Y) == pt Z) → (coe! p , ap (coe! p) (! q) ∙ coe!-inv-l p (pt Y)) ⊙∘ g == g [ (λ W → X ⊙→ W) ↓ ptd= p (↓-idf-in p q) ] codomain!-over-⊙path idp idp = pair= idp (∙-unit-r _ ∙ ap-idf (snd g)) codomain!-over-⊙equiv : {Y : Ptd j} (e : Y ⊙≃ Z) → (⊙<– e) ⊙∘ g == g [ (λ W → X ⊙→ W) ↓ ⊙ua e ] codomain!-over-⊙equiv {Y = Y} e = codomain-over-⊙equiv (⊙<– e ⊙∘ g) e ▹ ! (⊙∘-assoc (⊙–> e) _ g) ∙ ap (λ w → w ⊙∘ g) (⊙<–-inv-r e) ∙ ⊙∘-unit-l g {- transporting a group homomorphism along an isomorphism -} domain-over-iso : ∀ {i j} {G H : Group i} {K : Group j} {φ : G →ᴳ H} {ie : is-equiv (GroupHom.f φ)} {ψ : G →ᴳ K} {χ : H →ᴳ K} → GroupHom.f ψ == GroupHom.f χ [ (λ A → A → Group.El K) ↓ ua (GroupHom.f φ , ie) ] → ψ == χ [ (λ J → J →ᴳ K) ↓ uaᴳ (φ , ie) ] domain-over-iso {K = K} {φ = φ} {ie} {ψ} {χ} p = group-hom=-↓ $ ↓-ap-out _ Group.El _ $ transport (λ q → GroupHom.f ψ == GroupHom.f χ [ (λ A → A → Group.El K) ↓ q ]) (! (El=-β (φ , ie))) p codomain-over-iso : ∀ {i j} {G : Group i} {H K : Group j} {φ : H →ᴳ K} {ie : is-equiv (GroupHom.f φ)} {ψ : G →ᴳ H} {χ : G →ᴳ K} → GroupHom.f ψ == GroupHom.f χ [ (λ A → Group.El G → A) ↓ ua (GroupHom.f φ , ie) ] → ψ == χ [ (λ J → G →ᴳ J) ↓ uaᴳ (φ , ie) ] codomain-over-iso {G = G} {φ = φ} {ie} {ψ} {χ} p = group-hom=-↓ $ ↓-ap-out _ Group.El _ $ transport (λ q → GroupHom.f ψ == GroupHom.f χ [ (λ A → Group.El G → A) ↓ q ]) (! (El=-β (φ , ie))) p
{ "alphanum_fraction": 0.4662090813, "avg_line_length": 39.4583333333, "ext": "agda", "hexsha": "3cb460e53fc8f712970094746760d6121d2f75b5", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/homotopy/FunctionOver.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/homotopy/FunctionOver.agda", "max_line_length": 78, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/homotopy/FunctionOver.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1869, "size": 3788 }
-- Example by Simon Huber {-# OPTIONS --cubical-compatible #-} data _≡_ {A : Set} (a : A) : A → Set where refl : a ≡ a ap : {A B : Set} (f : A → B) {a b : A} (p : a ≡ b) → f a ≡ f b ap f refl = refl -- \bub _•_ : {A : Set} {a b c : A} → a ≡ b → b ≡ c → a ≡ c p • refl = p infixr 30 _•_ ! : {A : Set} {a b : A} → a ≡ b → b ≡ a ! refl = refl -- \. (NB: not • aka \bub) _∙_ : {A : Set} {B : A → Set} {f g : (a : A) → B a} → f ≡ g → (x : A) → f x ≡ g x refl ∙ x = refl infix 30 _∙_ dotap : {A B : Set} {f g : A → B} (p : f ≡ g) (x : A) → p  ∙ x ≡ ap (λ F → F x) p dotap refl x = refl apcomp : {A B C : Set} (f : B → C) (g : A → B) {x y : A} (p : x ≡ y) → ap (λ a → f (g a)) p ≡ ap f (ap g p) apcomp f g refl = refl -- combinators for equality reasoning _≡⟨_⟩_ : {A : Set} (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z x ≡⟨ p ⟩ q = p • q infixr 2 _≡⟨_⟩_ _□ : {A : Set} (x : A) → x ≡ x x □ = refl module Wrong (A B : Set) (a0 : A) where const : B → (A → B) const = λ x _ → x to : {x y : B} → x ≡ y → const x ≡ const y to = ap const from : {x y : B} → const x ≡ const y → x ≡ y from = ap (λ F → F a0) -- This lemma should not typecheck: lem : {x y : B} (p : const x ≡ const y) (a : A) → p ∙ a ≡ to (from p) ∙ a lem p a = p ∙ a ≡⟨ dotap p a ⟩ ap (λ F → F a) p ≡⟨ refl ⟩ ap (λ F → const (F a) a) p ≡⟨ apcomp _ _ p ⟩ ap (λ G → G a) (ap (λ F → const (F a)) p) ≡⟨ ap (ap (λ G → G a)) (apcomp const (λ F → F a) p) ⟩ ap(λ G → G a) (ap const (ap (λ (F : A → B) → F a) p)) ≡⟨ ! (dotap (ap const (ap (λ F → F a) p)) a) ⟩ (to (from p) ∙ a) □
{ "alphanum_fraction": 0.3937644342, "avg_line_length": 24.0555555556, "ext": "agda", "hexsha": "17431420bf8f568fa5243e34d5552f66f4f8c9a3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue2480.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue2480.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue2480.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 821, "size": 1732 }
-- Andreas, 2016-01-22 -- special size checking j : Size< i |- j : Size< ↑ j -- was missing from checkInternal -- {-# OPTIONS -v tc.polarity:10 #-} -- {-# OPTIONS -v tc.with.type:50 #-} -- {-# OPTIONS -v tc.check.internal:30 -v tc.infer.internal:30 #-} open import Common.Unit open import Common.Size postulate axiom : Unit anything : ∀{A : Set} → A -- An inductive-coinductive unit type. mutual record IC i : Set where coinductive field force : ∀(j : Size< i) → IC' j data IC' i : Set where cons : (xs : IC i) → IC' i -- necessary -- The recursive identity on IC. mutual idIC : ∀ i (p : IC i) → IC i IC.force (idIC i p) j = idIC' (↑ j) j (IC.force p j) -- (↑ j) is triggering the error -- if we write i here, things work idIC' : ∀ i (j : Size< i) (p : IC' j) → IC' j idIC' i j (cons p) = cons (idIC j p) -- An inhabitant defined using with. -- some : ∀ i → IC i -- IC.force (some i) j with axiom -- with is necessary here! -- ... | unit = cons (some j) some : ∀ i → IC i some' : ∀ i (j : Size< i) (u : Unit) → IC' j IC.force (some i) j = some' i j axiom some' i j unit = cons (some j) -- A coindutive predicate with non-linear use of size i. mutual -- use of i in IC i is necessary, works with IC ∞ record All i (s : IC i) : Set where coinductive field force : ∀(j : Size< i) → All' j (IC.force s j) data All' i : (s : IC' i) → Set where -- With abstracted type is well-formed. -- This means the type-checker can deal with it. Test : Set₄ Test = (w : Set₃) (i : Size) (j : Size< i) → All' j (idIC' (↑ j) j (some' i j axiom)) -- Agda claims: With abstracted type is ill-formed. -- This means that checkInternal cannot deal with it. test : ∀ i → All i (idIC i (some i)) All.force (test i) j with Set₂ -- any with expression does it here ... | w = anything -- i !=< ↑ j of type Size -- when checking that the type -- (w : Set₃) (i : Size) (j : Size< i) → -- All' j (idIC' (↑ j) j (some' i j axiom)) -- of the generated with function is well-formed {- candidate type: (w : Set₃) (i : Size) (j : Size< i) → All' j (idIC' (↑ j) j (some' i j axiom)) candidate type: El {_getSort = Type (Max [ClosedLevel 4]), unEl = Pi []r(El {_getSort = Type (Max [ClosedLevel 4]), unEl = Sort (Type (Max [ClosedLevel 3]))}) (Abs "w" El {_getSort = Type (Max []), unEl = Pi []r(El {_getSort = SizeUniv, unEl = Def Common.Size.Size []}) (Abs "i" El {_getSort = Type (Max []), unEl = Pi []r(El {_getSort = SizeUniv, unEl = Def Common.Size.Size<_ [Apply []?(Var 0 [])]}) (Abs "j" El {_getSort = Type (Max []), unEl = Def Issue1795.All' [Apply []r(Var 0 []),Apply []r( Def Issue1795.idIC' [Apply []r(Def Common.Size.↑_ [Apply []r(Var 0 [])]),Apply []r(Var 0 []),Apply []r( Def Issue1795.some' [Apply []r(Var 1 []),Apply []r(Var 0 []),Apply []r( Def Issue1795.axiom [])])])]})})})} Last words: type t = (j : Size< (↑ j)) → IC' j → IC' j self = idIC' (↑ j) eliminated by e = $ j checking internal j : Size< (↑ j) checking spine ( j : Size< i ) [] : Size< (↑ j) -}
{ "alphanum_fraction": 0.5757281553, "avg_line_length": 28.3486238532, "ext": "agda", "hexsha": "b6c768e9116a116ca072ebba9ed3dc84b83891c6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1795.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1795.agda", "max_line_length": 107, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1795.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 1100, "size": 3090 }
{-# OPTIONS --without-K --safe #-} -- There are really all 'private' sub-pieces of -- Categories.Category.Monoidal.Closed.IsClosed, but that is taking -- forever to typecheck, so the idea is to split things into pieces and -- hope that that will help. open import Categories.Category using (Category) open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Closed using (Closed) module Categories.Category.Monoidal.Closed.IsClosed.Identity {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (Cl : Closed M) where open import Function using (_$_) renaming (_∘_ to _∙_) open import Categories.Category.Monoidal.Utilities M open import Categories.Morphism C using (Iso) open import Categories.Morphism.Properties C using (Iso-resp-≈) open import Categories.Morphism.Reasoning C using (pullʳ; pullˡ; pushˡ; cancelʳ) open import Categories.Functor using (Functor) renaming (id to idF) open import Categories.Functor.Bifunctor open import Categories.Functor.Bifunctor.Properties open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.Dinatural using (Extranaturalʳ; extranaturalʳ; DinaturalTransformation) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) import Categories.Category.Closed as Cls open Closed Cl open Category C -- most of it is used open HomReasoning open adjoint renaming (unit to η; counit to ε; Ladjunct to 𝕃) private λ⇒ = unitorˡ.from λ⇐ = unitorˡ.to ρ⇒ = unitorʳ.from ρ⇐ = unitorʳ.to identity : NaturalIsomorphism idF [ unit ,-] identity = record { F⇒G = F∘id⇒F ∘ᵥ ([ unit ,-] ∘ˡ (unitorʳ-natural.F⇒G)) ∘ᵥ η ; F⇐G = ε ∘ᵥ (unitorʳ-natural.F⇐G ∘ʳ [ unit ,-]) ∘ᵥ F⇒id∘F ; iso = λ X → Iso-resp-≈ (iso X) (⟺ identityˡ) (⟺ (∘-resp-≈ʳ identityʳ)) } where open Functor iso : ∀ X → Iso (𝕃 unitorʳ.from) (ε.η X ∘ unitorʳ.to) iso X = record { isoˡ = begin (ε.η X ∘ ρ⇐) ∘ 𝕃 ρ⇒ ≈⟨ pullʳ unitorʳ-commute-to ⟩ ε.η X ∘ 𝕃 ρ⇒ ⊗₁ id ∘ ρ⇐ ≈˘⟨ assoc ⟩ Radjunct (𝕃 ρ⇒) ∘ ρ⇐ ≈⟨ RLadjunct≈id ⟩∘⟨refl ⟩ ρ⇒ ∘ ρ⇐ ≈⟨ unitorʳ.isoʳ ⟩ id ∎ ; isoʳ = begin 𝕃 ρ⇒ ∘ ε.η X ∘ ρ⇐ ≈⟨ pullʳ (η.commute _) ⟩ [ id , ρ⇒ ]₁ ∘ 𝕃 ((ε.η X ∘ ρ⇐) ⊗₁ id) ≈˘⟨ pushˡ (homomorphism [ unit ,-]) ⟩ 𝕃 (ρ⇒ ∘ (ε.η X ∘ ρ⇐) ⊗₁ id) ≈⟨ F-resp-≈ [ unit ,-] unitorʳ-commute-from ⟩∘⟨refl ⟩ 𝕃 ((ε.η X ∘ ρ⇐) ∘ ρ⇒) ≈⟨ F-resp-≈ [ unit ,-] (cancelʳ unitorʳ.isoˡ) ⟩∘⟨refl ⟩ 𝕃 (ε.η X) ≈⟨ zag ⟩ id ∎ } module identity = NaturalIsomorphism identity diagonal : Extranaturalʳ unit [-,-] diagonal = extranaturalʳ (λ X → 𝕃 λ⇒) $ λ {X Y f} → begin [ id , f ]₁ ∘ 𝕃 λ⇒ ≈˘⟨ pushˡ (homomorphism [ X ,-]) ⟩ [ id , f ∘ λ⇒ ]₁ ∘ η.η unit ≈˘⟨ F-resp-≈ [ X ,-] unitorˡ-commute-from ⟩∘⟨refl ⟩ [ id , λ⇒ ∘ id ⊗₁ f ]₁ ∘ η.η unit ≈⟨ homomorphism [ X ,-] ⟩∘⟨refl ⟩ ([ id , λ⇒ ]₁ ∘ [ id , id ⊗₁ f ]₁) ∘ η.η unit ≈⟨ pullʳ (mate.commute₁ f) ⟩ [ id , λ⇒ ]₁ ∘ [ f , id ]₁ ∘ η.η unit ≈⟨ pullˡ [ [-,-] ]-commute ⟩ ([ f , id ]₁ ∘ [ id , λ⇒ ]₁) ∘ η.η unit ≈⟨ assoc ⟩ [ f , id ]₁ ∘ 𝕃 λ⇒ ∎ where open Functor module diagonal = DinaturalTransformation diagonal
{ "alphanum_fraction": 0.5831374853, "avg_line_length": 41.0120481928, "ext": "agda", "hexsha": "f54cf258182f14fc664bba242ee2fbc6a213f34e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/Monoidal/Closed/IsClosed/Identity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/Monoidal/Closed/IsClosed/Identity.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/Monoidal/Closed/IsClosed/Identity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1376, "size": 3404 }
{-# OPTIONS --without-K #-} module H where open import Data.Product using (_×_; _,_) import Relation.Binary.Core as C import Relation.Binary.PropositionalEquality as P open P.≡-Reasoning ------------------------------------------------------------------------------ -- Some abbreviations and lemmas about paths infix 4 _≡_ _≡_ : ∀ {ℓ} {A : Set ℓ} → (x y : A) → Set ℓ _≡_ {ℓ} {A} x y = C._≡_ {ℓ} {A} x y refl : ∀ {ℓ} {A} → (x : A) → x ≡ x refl {ℓ} {A} x = C.refl {ℓ} {A} {x} infixr 8 _•_ _•_ : ∀ {ℓ} {A : Set ℓ} {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z) _•_ = P.trans unitTransR : ∀ {ℓ} {A : Set ℓ} {x y : A} → (p : x ≡ y) → (p ≡ p • refl y) unitTransR {x = x} C.refl = refl (refl x) unitTransL : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ refl x • p) unitTransL {x = x} C.refl = refl (refl x) -- ap, transport, apd at level 1 ap : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {B : Set ℓ₂} → (f : A → B) → {x y : A} → (x ≡ y) → (f x ≡ f y) ap = P.cong transport : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} (B : A → Set ℓ₂) → {x y : A} → (x ≡ y) → B x → B y transport = P.subst -- binary version transport₂ : ∀ {ℓ₁ ℓ₂ ℓ₃} {A : Set ℓ₁} {B : Set ℓ₂} (P : A → B → Set ℓ₃) → {x₁ x₂ : A} {y₁ y₂ : B} → (x₁ ≡ x₂) → (y₁ ≡ y₂) → P x₁ y₁ → P x₂ y₂ transport₂ = P.subst₂ apd : ∀ {ℓ₁ ℓ₂} → {A : Set ℓ₁} {B : A → Set ℓ₂} → (f : (x : A) → B x) → {x y : A} → (p : x ≡ y) → transport B p (f x) ≡ f y apd f C.refl = C.refl -- ap, transport, apd at level 2 ap² : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} {B : Set ℓ₂} → (f : A → B) → {x y : A} {p q : x ≡ y} → (r : p ≡ q) → (ap f p ≡ ap f q) ap² f C.refl = C.refl transport² : ∀ {ℓ₁ ℓ₂} {A : Set ℓ₁} (P : A → Set ℓ₂) → {x y : A} {p q : x ≡ y} → (r : p ≡ q) → (u : P x) → (transport P p u ≡ transport P q u) transport² P {p = C.refl} C.refl u = refl u apd² : ∀ {ℓ₁ ℓ₂} → {A : Set ℓ₁} {B : A → Set ℓ₂} → (f : (x : A) → B x) → {x y : A} {p q : x ≡ y} → (r : p ≡ q) → apd f p ≡ (transport² B r (f x)) • (apd f q) apd² f {p = C.refl} C.refl = C.refl ------------------------------------------------------------------------------ -- Some higher-inductive types from Ch. 6 module S¹ where postulate S¹ : Set base : S¹ loop : base ≡ base record rec (B : Set) (b : B) (p : b ≡ b) : Set₁ where field f : S¹ → B α : f base ≡ b β : transport (λ x → x ≡ x) α (ap f loop) ≡ p record ind (P : S¹ → Set) (b : P base) (p : transport P loop b ≡ b) : Set₁ where field f : (x : S¹) → P x α : f base ≡ b β : transport (λ x → transport P loop x ≡ x) α (apd f loop) ≡ p ------------------------------------------------------------------------------ -- Interval module I where postulate I : Set 𝟘 : I 𝟙 : I seg : 𝟘 ≡ 𝟙 record rec (B : Set) (b₀ b₁ : B) (s : b₀ ≡ b₁) : Set₁ where postulate f : I → B α₀ : f 𝟘 ≡ b₀ α₁ : f 𝟙 ≡ b₁ β : transport₂ (λ x y → x ≡ y) α₀ α₁ (ap f seg) ≡ s record ind (P : I → Set) (b₀ : P 𝟘) (b₁ : P 𝟙) (s : transport P seg b₀ ≡ b₁) : Set₁ where postulate f : (x : I) → P x α₀ : f 𝟘 ≡ b₀ α₁ : f 𝟙 ≡ b₁ β : transport₂ (λ x y → transport P seg x ≡ y) α₀ α₁ (apd f seg) ≡ s ------------------------------------------------------------------------------ -- S² module S² where postulate S² : Set base : S² surf : refl base ≡ refl base record rec (B : Set) (b : B) (s : refl b ≡ refl b) : Set₁ where postulate f : S² → B α : f base ≡ b β : transport (λ p → refl p ≡ refl p) α (ap² f surf) ≡ s record ind (P : S² → Set) (b : P base) (s : refl b ≡ transport² P surf b • (refl b)) : Set₁ where postulate f : (x : S²) → P x α : f base ≡ b β : transport (λ p → refl p ≡ transport² P surf p • refl p) α (apd² f surf) ≡ s ------------------------------------------------------------------------------ -- Suspensions module Susp (A : Set) where postulate Σ : Set → Set₁ N : Σ A S : Σ A merid : A → (N ≡ S) ------------------------------------------------------------------------------ -- Torus module T² where postulate T² : Set b : T² p : b ≡ b q : b ≡ b t : p • q ≡ q • p ------------------------------------------------------------------------------ -- Torus (alternative definition) module T²' where open S¹ T² : Set T² = S¹ × S¹ ------------------------------------------------------------------------------ -- Torus (second alternative definition) module T²'' where open S¹ postulate T² : Set b : T² p : b ≡ b q : b ≡ b h : T² f : S¹ → T² fb : f base ≡ b floop : transport (λ x → x ≡ x) fb (ap f loop) ≡ p • q • P.sym p • P.sym q s : (x : S¹) → f x ≡ h ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.3968641824, "avg_line_length": 25.056122449, "ext": "agda", "hexsha": "0bde5aa2155ff924acd6b3f1e5d59974c6af5189", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andmkent/misc-HoTT", "max_forks_repo_path": "H-1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andmkent/misc-HoTT", "max_issues_repo_path": "H-1.agda", "max_line_length": 82, "max_stars_count": 1, "max_stars_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andmkent/misc-HoTT", "max_stars_repo_path": "H-1.agda", "max_stars_repo_stars_event_max_datetime": "2016-01-26T18:17:16.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-26T18:17:16.000Z", "num_tokens": 1956, "size": 4911 }
module helloworld where open import IO main = run (putStrLn "Hello, World!")
{ "alphanum_fraction": 0.7160493827, "avg_line_length": 20.25, "ext": "agda", "hexsha": "fff21fdc0caa7402a852794895e111c69a1953f7", "lang": "Agda", "max_forks_count": 713, "max_forks_repo_forks_event_max_datetime": "2022-03-02T22:57:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-08-12T21:37:49.000Z", "max_forks_repo_head_hexsha": "827d8961d3a548daf8fe3b674642a1562daaa5c4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Ayush7-BIT/sample-programs", "max_forks_repo_path": "archive/a/agda/HelloWorld.agda", "max_issues_count": 1498, "max_issues_repo_head_hexsha": "827d8961d3a548daf8fe3b674642a1562daaa5c4", "max_issues_repo_issues_event_max_datetime": "2021-12-14T03:02:00.000Z", "max_issues_repo_issues_event_min_datetime": "2018-08-10T19:18:52.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Ayush7-BIT/sample-programs", "max_issues_repo_path": "archive/a/agda/HelloWorld.agda", "max_line_length": 39, "max_stars_count": 422, "max_stars_repo_head_hexsha": "827d8961d3a548daf8fe3b674642a1562daaa5c4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Ayush7-BIT/sample-programs", "max_stars_repo_path": "archive/a/agda/HelloWorld.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-07T23:54:34.000Z", "max_stars_repo_stars_event_min_datetime": "2018-08-14T11:57:47.000Z", "num_tokens": 22, "size": 81 }
module FairStream where open import Level as Level using (zero) open import Size open import Function open import Relation.Binary open import Relation.Binary.PropositionalEquality as P open ≡-Reasoning -- open import Data.List using (List; module List; []; _∷_; _++_; length) open import Data.Nat using (ℕ; zero; suc) open import Data.Product renaming (map to pmap) open import Stream data List⁺ (A : Set) : Set where one : A → List⁺ A _∷_ : A → List⁺ A → List⁺ A mutual data LFin (A B : Set) : Set where lin : A × LFin A B → LFin A B rinl : RFin A B → LFin A B data RFin (A B : Set) : Set where rin : B × RFin A B → RFin A B linr : LFin A B → RFin A B Fair Fair' : Set → Set → Set Fair A B = Stream (LFin A B) Fair' A B = Stream (List⁺ A × List⁺ B) α : ∀{A B} → Fair A B → Fair' A B hd (α {A} {B} u) = (f₁ (hd u) , g (hd u)) where f₁ : LFin A B → List⁺ A f₂ : RFin A B → List⁺ A f₁ (lin (a , x)) = a ∷ f₁ x f₁ (rinl x) = f₂ x f₂ (rin (b , y)) = f₂ y f₂ (linr x) = f₁ x g : LFin A B → List⁺ B g (lin x) = {![]!} g (rinl x) = {!!} tl (α u) = {!!}
{ "alphanum_fraction": 0.5704099822, "avg_line_length": 21.5769230769, "ext": "agda", "hexsha": "4f7515128cc4bef20f459e5efb59f3d90fc497dd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "Languages/FairStream.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "Languages/FairStream.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "Languages/FairStream.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 438, "size": 1122 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NType2 open import lib.PathGroupoid open import lib.types.Bool open import lib.types.IteratedSuspension open import lib.types.Lift open import lib.types.LoopSpace open import lib.types.Nat open import lib.types.Paths open import lib.types.Pi open import lib.types.Pointed open import lib.types.Sigma open import lib.types.Suspension open import lib.types.TLevel open import lib.types.Unit open SuspensionRec public using () renaming (f to Susp-rec) open import nicolai.pseudotruncations.Preliminary-definitions open import nicolai.pseudotruncations.Liblemmas open import nicolai.pseudotruncations.pointed-O-Sphere module nicolai.pseudotruncations.LoopsAndSpheres where {- We greatly benefit from Evan Cavallo's code - thank you! -} open import homotopy.PtdAdjoint open import homotopy.SuspAdjointLoop isNull : ∀ {i j} {A : Type i} {B : Type j} (b : B) (f : A → B) → Type _ isNull {A = A} b f = (a : A) → f a == b module null {i} {j} { : Ptd i} {B̂ : Ptd j} (ĝ :  →̇ B̂) where A = fst  a₀ = snd  B = fst B̂ b₀ = snd B̂ g = fst ĝ p = snd ĝ -- derived isNull isNulld = (a : fst Â) → g a == b₀ -- pointed isNull; we state it in the equivalence form (slightly easier to handle) isNull∙' = Σ ((a : A) → g a == b₀) λ pr → pr a₀ == p -- the 'real' pointed isNull isNull∙ = ĝ == ((λ _ → b₀) , idp) {- The two versions are equivalent -} isNull-equiv : isNull∙ ≃ isNull∙' isNull-equiv = ĝ == ((λ _ → b₀) , idp) ≃⟨ (=Σ-eqv _ _) ⁻¹ ⟩ =Σ ĝ ((λ _ → b₀) , idp) ≃⟨ equiv-Σ' {A₀ = g == λ _ → b₀} app=-equiv (λ h → (p == idp [ (λ f → f a₀ == b₀) ↓ h ]) ≃⟨ to-transp-equiv _ _ ⟩ (transport (λ f → f a₀ == b₀) h p) == idp ≃⟨ coe-equiv (ap (λ x → x == idp) (trans-ap₁ (λ f → f a₀) b₀ h p)) ⟩ (! (app= h a₀) ∙ p) == idp ≃⟨ adhoc-=-eqv (app= h a₀) p ⟩ (app= h a₀ == p) ≃∎) ⟩ (Σ ((a : A) → g a == b₀) λ pr → pr a₀ == p) ≃∎ -- Lemma 4.4: pointed and non-pointed 'nullness' are logically equivalent; -- First, one direction: null-lequiv : isNulld → isNull∙' null-lequiv isnull = (λ a → isnull a ∙ ! (isnull a₀) ∙ p) , ( isnull a₀ ∙ ! (isnull a₀) ∙ p =⟨ ! (∙-assoc (isnull a₀) _ _) ⟩ (isnull a₀ ∙ ! (isnull a₀)) ∙ p =⟨ ap (λ t → t ∙ p) (!-inv-r (isnull a₀)) ⟩ p ∎) -- The other direction is very easy; we do it using the non-prime variant: null-lequiv-easy : isNull∙ → isNulld null-lequiv-easy isn = app= (ap fst isn) -- uncomment this if you want to wait forever for typechecking... -- Σ⊣Ω-unitCounit : CounitUnitAdjoint Σ⊣Ω.SuspFunctor Σ⊣Ω.LoopFunctor Σ⊣Ω-unitCounit = Σ⊣Ω.adj Σ⊣Ω-homset : ∀ {i} → HomAdjoint {i} {i} Σ⊣Ω.SuspFunctor Σ⊣Ω.LoopFunctor Σ⊣Ω-homset = counit-unit-to-hom Σ⊣Ω-unitCounit module hom-adjoint {i} ( : Ptd i) (B̂ : Ptd i) where A = fst  B = fst B̂ a₀ = snd  b₀ = snd B̂ Φeq : (⊙Susp  →̇ B̂) ≃ ( →̇ ⊙Ω B̂) Φeq = HomAdjoint.eq Σ⊣Ω-homset  B̂ {- This is Lemma 4.1 -} Φ : (⊙Susp  →̇ B̂) → ( →̇ ⊙Ω B̂) Φ = –> Φeq Φ⁻¹ : ( →̇ ⊙Ω B̂) → (⊙Susp  →̇ B̂) Φ⁻¹ = <– Φeq open PtdFunctor open Σ⊣Ω open CounitUnitAdjoint {- Some lemmas which are easy on paper and thus not explicitly mentioned in the paper. It still takes some effort to formalize them. -} module simplify where simpl-⊙ap : (⊙ap {X = obj SuspFunctor Â} ((λ _ → b₀) , idp)) == ((λ _ → idp) , idp) simpl-⊙ap = →̇-maps-to ⊙ap ((λ _ → b₀) , idp) ((λ _ → idp) , idp) (λ= (λ _ → ap-cst b₀ _)) ((app= (λ= (λ _ → ap-cst b₀ _)) _) ∙ idp =⟨ ∙-unit-r _ ⟩ app= (λ= (λ _ → ap-cst b₀ _)) _ =⟨ app=-β _ _ ⟩ ap-cst b₀ (idp {a = snd B̂}) =⟨ idp ⟩ -- ! idp =⟨ idp ⟩ -- ! snd (⊙ap {X = obj SuspFunctor Â} ((λ _ → b₀) , idp)) ∎ ) simpl-comp : ((λ (_ : Ω (⊙Susp Â)) → idp {a = b₀}) , idp) ⊙∘ (⊙η Â) == (λ _ → idp) , idp simpl-comp = pair= idp ((ap-cst idp (snd (⊙η Â))) ∙ᵣ idp) open simplify {- Lemma 4.2 -} Φ-is-pointed-map : Φ ((λ _ → b₀) , idp) == ((λ _ → idp) , idp) Φ-is-pointed-map = Φ ((λ _ → b₀) , idp) =⟨ idp ⟩ ( arr LoopFunctor ((λ _ → b₀) , idp) ⊙∘ (CounitUnitAdjoint.η adj Â)) =⟨ idp ⟩ ( (⊙ap {X = obj SuspFunctor Â} ((λ _ → b₀) , idp) ⊙∘ (⊙η Â))) =⟨ ap (λ f → f ⊙∘ (⊙η Â)) simpl-⊙ap ⟩ ((λ _ → idp) , idp) ⊙∘ (⊙η Â) =⟨ simpl-comp ⟩ (λ _ → idp) , idp ∎ -- fix i module _ {i} where open hom-adjoint open HomAdjoint open null -- Lemma 4.3 Φ-snd-nat : { B̂ Ĉ : Ptd i} (f : ⊙Susp  →̇ B̂) (g : B̂ →̇ Ĉ) → Φ Â Ĉ (g ⊙∘ f) == ⊙ap g ⊙∘ Φ Â B̂ f Φ-snd-nat {Â} {B̂} {Ĉ} f g = ! (nat-cod Σ⊣Ω-homset  {B̂} {Ĉ} g f) -- Lemma 4.4 is above (before 4.2). -- Lemma 4.5 isnull-Φ : { B̂ : Ptd i} (g : ⊙Susp  →̇ B̂) → (isNull∙ g) ≃ isNull∙ (Φ Â B̂ g) isnull-Φ {Â} {B̂} g = isNull∙ g ≃⟨ equiv-ap (Φeq  B̂) _ _ ⟩ (Φ Â B̂ g) == Φ Â B̂ ((λ _ → snd B̂) , idp) ≃⟨ coe-equiv {A = (Φ Â B̂ g) == Φ Â B̂ ((λ _ → snd B̂) , idp)} {B = (Φ Â B̂ g) == (λ _ → idp) , idp} (ap (λ q → (Φ Â B̂ g == q)) (Φ-is-pointed-map _ _ )) ⟩ (Φ Â B̂ g) == (λ _ → idp) , idp ≃∎ -- combination of 4.3 and 4.5 combine-isnull-nat : { B̂ Ĉ : Ptd i} (f : ⊙Susp  →̇ B̂) (g : B̂ →̇ Ĉ) → (isNull∙ (g ⊙∘ f)) ≃ (isNull∙ (⊙ap g ⊙∘ Φ Â B̂ f)) -- combine-isnull-nat {Â} {B̂} {Ĉ} f g = isNull∙ (g ⊙∘ f) ≃⟨ isnull-Φ _ ⟩ isNull∙ (Φ Â Ĉ (g ⊙∘ f)) ≃⟨ coe-equiv (ap (λ q → isNull∙ q) (Φ-snd-nat f g)) ⟩ isNull∙ (⊙ap g ⊙∘ Φ Â B̂ f) ≃∎ combine-isnull-nat' : { B̂ Ĉ : Ptd i} (f :  →̇ ⊙Ω B̂) (g : B̂ →̇ Ĉ) → (isNull∙ (g ⊙∘ (Φ⁻¹  B̂ f))) ≃ (isNull∙ (⊙ap g ⊙∘ f)) combine-isnull-nat' {Â} {B̂} {Ĉ} f g = isNull∙ (g ⊙∘ (Φ⁻¹  B̂ f)) ≃⟨ combine-isnull-nat (Φ⁻¹  B̂ f) g ⟩ isNull∙ (⊙ap g ⊙∘ (Φ Â B̂ (Φ⁻¹  B̂ f))) ≃⟨ coe-equiv (ap (λ h → isNull∙ (⊙ap g ⊙∘ h)) (<–-inv-r (Φeq  B̂) f)) ⟩ isNull∙ (⊙ap g ⊙∘ f) ≃∎ module _ {i} where open hom-adjoint -- This was tricky (todo: could explain why) Φ-iter : ( B̂ : Ptd i) (n : Nat) → ((⊙Susp-iter' n Â) →̇ B̂) → ( →̇ (⊙Ω^ n B̂)) Φ-iter  B̂ O f = f Φ-iter  B̂ (S n) f = Φ Â (⊙Ω^ n B̂) (Φ-iter (⊙Susp Â) B̂ n f) Φ-iter-equiv : ( B̂ : Ptd i) (n : Nat) → is-equiv (Φ-iter  B̂ n) Φ-iter-equiv  B̂ O = snd (ide _) Φ-iter-equiv  B̂ (S n) = snd ((Φeq  (⊙Ω^ n B̂)) ∘e ((Φ-iter (⊙Susp Â) B̂ n) , Φ-iter-equiv (⊙Susp Â) B̂ n) ) module _ {i} where open null open hom-adjoint -- Lemma 4.7 -- generalized, because we need to do it for Susp first before it works for Sphere! isNull-Φ-many : (m : Nat) → ( B̂ Ĉ : Ptd i) → (f : ⊙Susp-iter' m  →̇ B̂) (g : B̂ →̇ Ĉ) → isNull∙ (g ⊙∘ f) ≃ isNull∙ ((ap^ m g) ⊙∘ Φ-iter  B̂ m f) isNull-Φ-many O  B̂ Ĉ f g = ide _ isNull-Φ-many (S m)  B̂ Ĉ f g = isNull∙ (g ⊙∘ f) ≃⟨ isNull-Φ-many m (⊙Susp Â) B̂ Ĉ f g ⟩ isNull∙ ((ap^ m g) ⊙∘ Φ-iter (⊙Susp Â) B̂ m f) ≃⟨ combine-isnull-nat (Φ-iter (⊙Susp Â) B̂ m f) (ap^ m g) ⟩ (isNull∙ (⊙ap (ap^ m g) ⊙∘ Φ Â (⊙Ω^ m B̂) (Φ-iter (⊙Susp Â) B̂ m f))) ≃∎ -- Lemma 4.7 (special with k = 0) module _ {B̂ Ĉ : Ptd i} (m : Nat) (f : ⊙Sphere' {i} m →̇ B̂) (g : B̂ →̇ Ĉ) where isNull-Φ-Sphere : isNull∙ (g ⊙∘ f) ≃ isNull∙ ((ap^ m g) ⊙∘ Φ-iter (⊙Sphere' {i} O) B̂ m f) isNull-Φ-Sphere = isNull-Φ-many m _ _ _ f g open bool-neutral module _ {B̂ Ĉ : Ptd i} (m : Nat) (g : B̂ →̇ Ĉ) where c₀ = snd (⊙Ω^ m Ĉ) {- Lemma 4.8 -} null-on-pspaces : ((f : (⊙Sphere' {i} m) →̇ B̂) → isNull∙ (g ⊙∘ f)) ≃ isNulld (ap^ m g) null-on-pspaces = -- {!equiv-Π-l!} ((f : (⊙Sphere' {i} m) →̇ B̂) → isNull∙ (g ⊙∘ f)) ≃⟨ equiv-Π-r (λ f → isNull-Φ-Sphere m f g) ⟩ ((f : (⊙Sphere' {i} m) →̇ B̂) → isNull∙ ((ap^ m g) ⊙∘ Φ-iter (⊙Sphere' {i} O) B̂ m f)) ≃⟨ equiv-Π-l {A = (⊙Sphere' {i} m) →̇ B̂} {B = (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)} (λ f' → isNull∙ ((ap^ m g) ⊙∘ f')) {h = Φ-iter (⊙Sphere' {i} O) B̂ m} (Φ-iter-equiv _ _ m) ⟩ ((f' : (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)) → isNull∙ ((ap^ m g) ⊙∘ f')) ≃⟨ equiv-Π-r {A = ⊙Sphere' {i} O →̇ (⊙Ω^ m B̂)} (λ _ → isNull-equiv _) ⟩ ((f' : (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)) → isNull∙' ((ap^ m g) ⊙∘ f')) ≃⟨ ide _ ⟩ ((f' : (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)) → Σ ((x : bool) → fst ((ap^ m g) ⊙∘ f') x == _) λ h → h tt₀ == _) ≃⟨ equiv-Π-r {A = ⊙Sphere' {i} O →̇ (⊙Ω^ m B̂)} (λ fp → reduction (λ b → fst (ap^ m g ⊙∘ fp) b == null.b₀ (ap^ m g ⊙∘ fp)) _) ⟩ ((f' : (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)) → fst ((ap^ m g) ⊙∘ f') ff₀ == _) ≃⟨ ide _ ⟩ ((f' : (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)) → fst (ap^ m g) (fst f' ff₀) == _) ≃⟨ equiv-Π-l {A = (⊙Sphere' {i} O) →̇ (⊙Ω^ m B̂)} {B = fst (⊙Ω^ m B̂)} _ (snd (reduction (λ _ → fst (⊙Ω^ m B̂)) _)) ⟩ ((x : fst (⊙Ω^ m B̂)) → fst (ap^ m g) x == c₀) ≃⟨ ide _ ⟩ isNulld (ap^ m g) ≃∎
{ "alphanum_fraction": 0.4069518218, "avg_line_length": 31.2857142857, "ext": "agda", "hexsha": "2e9bb0b89120a95609ce5cacc69f08263c93b676", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/pseudotruncations/LoopsAndSpheres.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/pseudotruncations/LoopsAndSpheres.agda", "max_line_length": 110, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/pseudotruncations/LoopsAndSpheres.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 4826, "size": 10731 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.CommRing.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Reflection.StrictEquiv open import Cubical.Structures.Axioms open import Cubical.Algebra.Semigroup open import Cubical.Algebra.Monoid open import Cubical.Algebra.AbGroup open import Cubical.Algebra.Ring.Base open Iso private variable ℓ : Level record IsCommRing {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) : Type ℓ where constructor iscommring field isRing : IsRing 0r 1r _+_ _·_ -_ ·-comm : (x y : R) → x · y ≡ y · x open IsRing isRing public record CommRingStr (A : Type ℓ) : Type (ℓ-suc ℓ) where constructor commringstr field 0r : A 1r : A _+_ : A → A → A _·_ : A → A → A -_ : A → A isCommRing : IsCommRing 0r 1r _+_ _·_ -_ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsCommRing isCommRing public CommRing : Type (ℓ-suc ℓ) CommRing = TypeWithStr _ CommRingStr makeIsCommRing : {R : Type ℓ} {0r 1r : R} {_+_ _·_ : R → R → R} { -_ : R → R} (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-comm : (x y : R) → x · y ≡ y · x) → IsCommRing 0r 1r _+_ _·_ -_ makeIsCommRing {_+_ = _+_} is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm = iscommring (makeIsRing is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid (λ x → ·-comm _ _ ∙ ·-rid x) ·-rdist-+ (λ x y z → ·-comm _ _ ∙∙ ·-rdist-+ z x y ∙∙ λ i → (·-comm z x i) + (·-comm z y i))) ·-comm makeCommRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) (is-setR : isSet R) (+-assoc : (x y z : R) → x + (y + z) ≡ (x + y) + z) (+-rid : (x : R) → x + 0r ≡ x) (+-rinv : (x : R) → x + (- x) ≡ 0r) (+-comm : (x y : R) → x + y ≡ y + x) (·-assoc : (x y z : R) → x · (y · z) ≡ (x · y) · z) (·-rid : (x : R) → x · 1r ≡ x) (·-rdist-+ : (x y z : R) → x · (y + z) ≡ (x · y) + (x · z)) (·-comm : (x y : R) → x · y ≡ y · x) → CommRing makeCommRing 0r 1r _+_ _·_ -_ is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm = _ , commringstr _ _ _ _ _ (makeIsCommRing is-setR +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-rdist-+ ·-comm) CommRing→Ring : CommRing {ℓ} → Ring CommRing→Ring (_ , commringstr _ _ _ _ _ H) = _ , ringstr _ _ _ _ _ (IsCommRing.isRing H) CommRingEquiv : (R S : CommRing) (e : ⟨ R ⟩ ≃ ⟨ S ⟩) → Type ℓ CommRingEquiv R S e = RingEquiv (CommRing→Ring R) (CommRing→Ring S) e CommRingHom : (R S : CommRing) → Type ℓ CommRingHom R S = RingHom (CommRing→Ring R) (CommRing→Ring S) module CommRingΣTheory {ℓ} where open RingΣTheory CommRingAxioms : (R : Type ℓ) (s : RawRingStructure R) → Type ℓ CommRingAxioms R (_+_ , 1r , _·_) = RingAxioms R (_+_ , 1r , _·_) × ((x y : R) → x · y ≡ y · x) CommRingStructure : Type ℓ → Type ℓ CommRingStructure = AxiomsStructure RawRingStructure CommRingAxioms CommRingΣ : Type (ℓ-suc ℓ) CommRingΣ = TypeWithStr ℓ CommRingStructure CommRingEquivStr : StrEquiv CommRingStructure ℓ CommRingEquivStr = AxiomsEquivStr RawRingEquivStr CommRingAxioms isPropCommRingAxioms : (R : Type ℓ) (s : RawRingStructure R) → isProp (CommRingAxioms R s) isPropCommRingAxioms R (_·_ , 0r , _+_) = isPropΣ (isPropRingAxioms R (_·_ , 0r , _+_)) λ { (_ , x , _) → isPropΠ2 λ _ _ → x .IsMonoid.isSemigroup .IsSemigroup.is-set _ _} CommRing→CommRingΣ : CommRing → CommRingΣ CommRing→CommRingΣ (_ , commringstr _ _ _ _ _ (iscommring G C)) = _ , _ , Ring→RingΣ (_ , ringstr _ _ _ _ _ G) .snd .snd , C CommRingΣ→CommRing : CommRingΣ → CommRing CommRingΣ→CommRing (_ , _ , G , C) = _ , commringstr _ _ _ _ _ (iscommring (RingΣ→Ring (_ , _ , G) .snd .RingStr.isRing) C) CommRingIsoCommRingΣ : Iso CommRing CommRingΣ CommRingIsoCommRingΣ = iso CommRing→CommRingΣ CommRingΣ→CommRing (λ _ → refl) (λ _ → refl) commRingUnivalentStr : UnivalentStr CommRingStructure CommRingEquivStr commRingUnivalentStr = axiomsUnivalentStr _ isPropCommRingAxioms rawRingUnivalentStr CommRingΣPath : (R S : CommRingΣ) → (R ≃[ CommRingEquivStr ] S) ≃ (R ≡ S) CommRingΣPath = SIP commRingUnivalentStr CommRingEquivΣ : (R S : CommRing) → Type ℓ CommRingEquivΣ R S = CommRing→CommRingΣ R ≃[ CommRingEquivStr ] CommRing→CommRingΣ S CommRingPath : (R S : CommRing) → (Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] CommRingEquiv R S e) ≃ (R ≡ S) CommRingPath R S = Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] CommRingEquiv R S e ≃⟨ strictIsoToEquiv RingIsoΣPath ⟩ CommRingEquivΣ R S ≃⟨ CommRingΣPath _ _ ⟩ CommRing→CommRingΣ R ≡ CommRing→CommRingΣ S ≃⟨ isoToEquiv (invIso (congIso CommRingIsoCommRingΣ)) ⟩ R ≡ S ■ CommRingPath : (R S : CommRing {ℓ}) → (Σ[ e ∈ ⟨ R ⟩ ≃ ⟨ S ⟩ ] CommRingEquiv R S e) ≃ (R ≡ S) CommRingPath = CommRingΣTheory.CommRingPath isSetCommRing : ((R , str) : CommRing {ℓ}) → isSet R isSetCommRing (R , str) = str .CommRingStr.is-set isPropIsCommRing : {R : Type ℓ} (0r 1r : R) (_+_ _·_ : R → R → R) (-_ : R → R) → isProp (IsCommRing 0r 1r _+_ _·_ -_) isPropIsCommRing 0r 1r _+_ _·_ -_ (iscommring RR RC) (iscommring SR SC) = λ i → iscommring (isPropIsRing _ _ _ _ _ RR SR i) (isPropComm RC SC i) where isSetR : isSet _ isSetR = RR .IsRing.·IsMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set isPropComm : isProp ((x y : _) → x · y ≡ y · x) isPropComm = isPropΠ2 λ _ _ → isSetR _ _
{ "alphanum_fraction": 0.5693839452, "avg_line_length": 37.8117647059, "ext": "agda", "hexsha": "d0020d59f1bc08d0be7bfc459c5e8a2a46d6586e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Algebra/CommRing/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Algebra/CommRing/Base.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Algebra/CommRing/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2497, "size": 6428 }
postulate S : Set id : S comp : S → S → S module C where _∘_ = comp postulate R : (S → S) → Set T : R (C._∘ id) → R (id C.∘_) → Set t : Set t = T {!!} {!!}
{ "alphanum_fraction": 0.4418604651, "avg_line_length": 10.75, "ext": "agda", "hexsha": "5e1a1ac3f29b9b5db674bddadcd8f4e41ef3f41d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue3072.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue3072.agda", "max_line_length": 37, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue3072.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 83, "size": 172 }
module Issue124 where module A where data A : Set where c : A module B where data B : Set where c : B module C where open A public open B public open C f : B → B f c = c
{ "alphanum_fraction": 0.6178010471, "avg_line_length": 10.0526315789, "ext": "agda", "hexsha": "affaf8821285da98a4be7abdf94d55ae5c19b8e5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue124.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue124.agda", "max_line_length": 21, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue124.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 65, "size": 191 }
module Linear where open import Data.Product open import Data.Sum open import Data.Empty -- 1. PROPOSITIONAL FRAGMENT infixr 0 _⊸_ infixr 1 _⊕_ _⅋_ infixr 2 _&_ _⊗_ -- Linear propositions consist of a positive part (affirmation, φ₊) and a negative -- part (refutation, φ₋). We prove a linear proposition by proving its affirmation. -- If we have a refutation then we cannot have an affirmation, on pain of contra- -- diction. data LProp : Set₁ where lprop : (φ₊ : Set) → (φ₋ : Set) → (φ₋ → φ₊ → ⊥) → LProp -- Linear negation exchanges affirmations and refutations. ~ : LProp → LProp ~ (lprop φ₊ φ₋ p) = lprop φ₋ φ₊ (λ a b → p b a) -- Additive conjunction _&_ : LProp → LProp → LProp (lprop φ₊ φ₋ p) & (lprop ψ₊ ψ₋ q) = lprop (φ₊ × ψ₊) (φ₋ ⊎ ψ₋) pq where pq : (φ₋ ⊎ ψ₋) → (φ₊ × ψ₊) → ⊥ pq (inj₁ ~a) (a , b) = p ~a a pq (inj₂ ~b) (a , b) = q ~b b -- Additive disjunction: notice the symmetry between the proofs `pq` between -- additive conjunctions and additive disjunctions. _⊕_ : LProp → LProp → LProp (lprop φ₊ φ₋ p) ⊕ (lprop ψ₊ ψ₋ q) = lprop (φ₋ ⊎ ψ₋) (φ₊ × ψ₊) pq where pq : (φ₊ × ψ₊) → (φ₋ ⊎ ψ₋) → ⊥ pq (a , b) (inj₁ ~a) = p ~a a pq (a , b) (inj₂ ~b) = q ~b b -- Multiplicative conjunction _⊗_ : LProp → LProp → LProp (lprop φ₊ φ₋ p) ⊗ (lprop ψ₊ ψ₋ q) = lprop (φ₊ × ψ₊) ((φ₊ → ψ₋) × (ψ₊ → φ₋)) pq where pq : ((φ₊ → ψ₋) × (ψ₊ → φ₋)) → (φ₊ × ψ₊) → ⊥ pq (f , g) (a , b) = q (f a) b -- Multiplicative disjunction _⅋_ : LProp → LProp → LProp (lprop φ₊ φ₋ p) ⅋ (lprop ψ₊ ψ₋ q) = lprop ((ψ₋ → φ₊) × (φ₋ → ψ₊)) (φ₋ × ψ₋) pq where pq : (φ₋ × ψ₋) → ((ψ₋ → φ₊) × (φ₋ → ψ₊)) → ⊥ pq (~a , ~b) (f , g) = q ~b (g ~a) -- Linear implication _⊸_ : LProp → LProp → LProp p ⊸ q = (~ p) ⅋ q ⟦_⟧ : LProp → Set ⟦ lprop φ₊ _ _ ⟧ = φ₊ _⊢_ : LProp → LProp → Set Γ ⊢ P = ⟦ Γ ⊸ P ⟧ ---------- -- Here we prove that these connectives satisfy Hesselink's axioms and rules -- for the multiplicative fragment of linear logic. See also: -- W. H. Hesselink: Axioms and models of linear logic, in Formal Aspects of Computing, 1990) -- Identity axiom. axiom-1 : (P : LProp) → ⟦ P ⊸ P ⟧ axiom-1 (lprop φ₊ φ₋ p) = (λ x → x) , (λ x → x) -- Commutativity of ⅋. axiom-2 : (P Q : LProp) → ⟦ (P ⅋ Q) ⊸ (Q ⅋ P) ⟧ axiom-2 (lprop φ₊ φ₋ p) (lprop ψ₊ ψ₋ q) = (λ x → proj₂ x , proj₁ x) , (λ x → proj₂ x , proj₁ x) -- Associativity of ⅋: the proof looks ugly, but we really just re-associate ×. axiom-3 : (P Q R : LProp) → ⟦ ((P ⅋ Q) ⅋ R) ⊸ (P ⅋ (Q ⅋ R)) ⟧ axiom-3 (lprop φ₊ φ₋ p) (lprop ψ₊ ψ₋ q) (lprop ρ₊ ρ₋ r) = (λ x → (proj₁ x , proj₁ (proj₂ x)) , proj₂ (proj₂ x)) , (λ x → (λ y → proj₁ (proj₁ x (proj₂ y)) (proj₁ y)) , (λ y → (λ (z : ρ₋) → proj₂ (proj₁ x z) y) , (λ z → proj₂ x (y , z)))) -- Finally, the analogues of the rules of inferece work as expected. mp-rule : (P Q : LProp) → ⟦ P ⟧ → ⟦ P ⊸ Q ⟧ → ⟦ Q ⟧ mp-rule (lprop φ₊ φ₋ p) (lprop ψ₊ ψ₋ q) a ab = proj₂ ab a mp-rule-ctx : (Γ P Q : LProp) → ⟦ Γ ⅋ P ⟧ → ⟦ P ⊸ Q ⟧ → ⟦ Γ ⅋ Q ⟧ mp-rule-ctx (lprop γ₊ γ₋ g) (lprop φ₊ φ₋ p) (lprop ψ₊ ψ₋ q) a ab = (λ x → proj₁ a (proj₁ ab x)) , (λ x → proj₂ ab (proj₂ a x)) -- A deduction-like variant of the same result. deduction : (Γ P Q : LProp) → (Γ ⅋ P) ⊢ Q → Γ ⊢ (P ⊸ Q) deduction (lprop γ₊ γ₋ _) (lprop φ₊ φ₋ _) (lprop ψ₊ ψ₋ _) gpq = (λ pq → helper1 (proj₂ pq)) , (λ g → helper2 , (λ p → helper3 (λ _ → g) (λ _ → p))) where helper1 : ψ₋ → γ₋ helper1 x = proj₁ (proj₁ gpq x) helper2 : ψ₋ → φ₋ helper2 x = proj₂ (proj₁ gpq x) helper3 : (φ₋ → γ₊) → (γ₋ → φ₊) → ψ₊ helper3 x y = proj₂ gpq (x , y) ---------- -- Here we prove the involutive property of negation. open import Relation.Binary.PropositionalEquality theorem : (P : LProp) → ~ (~ P) ≡ P theorem (lprop φ₊ φ₋ x) = refl -- 2. PROPOSITIONAL-EXPONENTIAL FRAGMENT -- The "of course!" modality ! : LProp → LProp ! (lprop φ₊ φ₋ _) = lprop φ₊ (φ₊ → ⊥) λ z → z -- The "why not?" modality ⁇ : LProp → LProp ⁇ (lprop φ₊ φ₋ _) = lprop (φ₋ → ⊥) φ₋ λ x y → y x ---------- -- Here we verify that the H-CLL axioms hold for the modalities. -- A weakening axiom axiom-1! : (P Q : LProp) → ⟦ P ⊸ (! Q ⊸ P) ⟧ axiom-1! (lprop φ₊ φ₋ p) (lprop ψ₊ ψ₋ q) = proj₂ , λ y → (λ x _ → p x y) , (λ _ → y) axiom-2! : (P Q : LProp) → ⟦ ! (P ⊸ Q) ⊸ (! P ⊸ ! Q) ⟧ axiom-2! (lprop φ₊ φ₋ p) (lprop ψ₊ ψ₋ q) = (λ x y → proj₂ x (proj₂ y (proj₁ x))) , (λ x → (λ y z → y (proj₂ x z)) , proj₂ x) axiom-3! : (P : LProp) → ⟦ ! P ⊸ P ⟧ axiom-3! (lprop φ₊ φ₋ p) = p , (λ x → x) axiom-4! : (P : LProp) → ⟦ ! P ⊸ ! (! P) ⟧ axiom-4! (lprop φ₊ φ₋ p) = (λ x → x) , (λ x → x) -- A contraction axiom axiom-5! : (P Q : LProp) → ⟦ (! P ⊸ (! P ⊸ Q)) ⊸ (! P ⊸ Q) ⟧ axiom-5! (lprop φ₊ φ₋ p) (lprop ψ₊ ψ₋ q) = (λ pq → proj₁ pq , proj₁ pq , proj₂ pq) , (λ x → (λ y z → proj₁ x (z , y) z) , (λ y → proj₂ (proj₂ x y) y)) -- Fortunately, the modal inference rule is trivially verified. modal-rule : (P : LProp) → ⟦ P ⟧ → ⟦ ! P ⟧ modal-rule (lprop φ₊ φ₋ p) x = x
{ "alphanum_fraction": 0.5219988055, "avg_line_length": 26.1614583333, "ext": "agda", "hexsha": "2d08d17d16f985408819b542f975fa6e8edc9f56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2768afc74841e49cfdb328fc2ff4123b1a008c54", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "guoshimin/linear-constructive", "max_forks_repo_path": "src/Linear.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2768afc74841e49cfdb328fc2ff4123b1a008c54", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "guoshimin/linear-constructive", "max_issues_repo_path": "src/Linear.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "2768afc74841e49cfdb328fc2ff4123b1a008c54", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "guoshimin/linear-constructive", "max_stars_repo_path": "src/Linear.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2417, "size": 5023 }
module Data.Show where import Prelude import Data.Nat import Data.Integer import Data.String import Data.List open Prelude open Data.Nat open Data.Integer using (Int; pos; neg) open Data.String open Data.List hiding (_++_) showNat : Nat -> String showNat zero = "0" showNat n = fromList $ reverse $ toList $ show n where digit : Nat -> String digit 0 = "0" digit 1 = "1" digit 2 = "2" digit 3 = "3" digit 4 = "4" digit 5 = "5" digit 6 = "6" digit 7 = "7" digit 8 = "8" digit 9 = "9" digit _ = "?" show : Nat -> String show zero = "" show n = digit (mod n 10) ++ show (div n 10) showInt : Int -> String showInt (pos n) = showNat n showInt (neg n) = "-" ++ showNat (suc n)
{ "alphanum_fraction": 0.5871313673, "avg_line_length": 18.1951219512, "ext": "agda", "hexsha": "cfc3ec30d57c1e585aaa3c7440ab563d4e9e4090", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Show.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Show.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Show.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 249, "size": 746 }
{-# OPTIONS --cubical --no-import-sorts #-} open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero) module Number.Postulates where private variable ℓ ℓ' ℓ'' : Level open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc) open import Cubical.Relation.Nullary.Base -- ¬_ open import Cubical.Relation.Binary.Base -- Rel open import Function.Base using (_∋_) ℕℓ = ℓ-zero ℕℓ' = ℓ-zero postulate ℤℓ ℤℓ' : Level ℚℓ ℚℓ' : Level ℝℓ ℝℓ' : Level ℂℓ ℂℓ' : Level open import Number.Structures open import Number.Bundles import Number.Inclusions import MoreAlgebra module ℕ* where import Cubical.Data.Nat as Nat import Cubical.Data.Nat.Order as Order open import Agda.Builtin.Nat using () renaming (Nat to ℕ) public module Postulates where postulate min max : ℕ → ℕ → ℕ isROrderedCommSemiring : IsROrderedCommSemiring (Order._<_) (Order._≤_) ((MoreAlgebra.Definitions._#'_ {_<_ = Order._<_})) (min) (max) (Nat.zero) (1) (Nat._+_) (Nat._*_) module Bundle = ROrderedCommSemiring {ℕℓ} {ℕℓ'} Bundle = ROrderedCommSemiring {ℕℓ} {ℕℓ'} Carrier = ℕ bundle : Bundle bundle = (record { Carrier = ℕ ; _<_ = Order._<_ ; _≤_ = Order._≤_ ; _#_ = (MoreAlgebra.Definitions._#'_ { _<_ = Order._<_ }) ; min = Postulates.min ; max = Postulates.max ; 0f = Nat.zero ; 1f = (Nat.suc Nat.zero) ; _+_ = Nat._+_ ; _·_ = Nat._*_ ; isROrderedCommSemiring = Postulates.isROrderedCommSemiring }) open import Cubical.Data.Nat.Order using (_≤_; _<_) public import MoreAlgebra open MoreAlgebra.Definitions using (_#'_) public open import Agda.Builtin.Nat using () renaming (zero to 0f) public -- _<_ = Bundle._<_ bundle -- _≤_ = Bundle._≤_ bundle _#_ = Bundle._#_ bundle min = Bundle.min bundle max = Bundle.max bundle -- 0f = Bundle.0f bundle 1f = Bundle.1f bundle _+_ = Bundle._+_ bundle _·_ = Bundle._·_ bundle isROrderedCommSemiring = Bundle.isROrderedCommSemiring bundle abs : ℕ → ℕ abs x = x open IsROrderedCommSemiring isROrderedCommSemiring public module ℕ = ℕ* hiding (ℕ) module ℕⁿ = ℕ* renaming ( Carrier to Carrierⁿ ; _<_ to _<ⁿ_ ; _≤_ to _≤ⁿ_ ; _#_ to _#ⁿ_ ; min to minⁿ ; max to maxⁿ ; 0f to 0ⁿ ; 1f to 1ⁿ ; _+_ to _+ⁿ_ ; _·_ to _·ⁿ_ ; isROrderedCommSemiring to isROrderedCommSemiringⁿ ; abs to absⁿ ) module ℤ* where module Postulates where postulate ℤ : Type ℤℓ _<_ _≤_ _#_ : Rel ℤ ℤ ℤℓ' min max : ℤ → ℤ → ℤ 0f 1f : ℤ _+_ _·_ : ℤ → ℤ → ℤ -_ : ℤ → ℤ abs : ℤ → ℤ abs x = max x (- x) postulate isROrderedCommRing : IsROrderedCommRing _<_ _≤_ _#_ min max 0f 1f _+_ _·_ -_ isAbsOrderedCommRing : IsAbsOrderedCommRing _<_ _≤_ _#_ min max 0f 1f _+_ _·_ -_ abs module Bundle = ROrderedCommRing {ℤℓ} {ℤℓ'} Bundle = ROrderedCommRing {ℤℓ} {ℤℓ'} open Postulates public Carrier = ℤ bundle : Bundle bundle = (record { Carrier = ℤ ; _<_ = _<_ ; _≤_ = _≤_ ; _#_ = _#_ ; min = min ; max = max ; 0f = 0f ; 1f = 1f ; _+_ = _+_ ; _·_ = _·_ ; -_ = -_ ; isROrderedCommRing = isROrderedCommRing ; isAbsOrderedCommRing = isAbsOrderedCommRing }) open IsROrderedCommRing isROrderedCommRing public -- abs : ℤ → ℤ -- abs x = max x (- x) module ℤ = ℤ* hiding (ℤ) module ℤᶻ = ℤ* renaming ( Carrier to Carrierᶻ ; _<_ to _<ᶻ_ ; _≤_ to _≤ᶻ_ ; _#_ to _#ᶻ_ ; min to minᶻ ; max to maxᶻ ; 0f to 0ᶻ ; 1f to 1ᶻ ; _+_ to _+ᶻ_ ; _·_ to _·ᶻ_ ; -_ to -ᶻ_ ; isROrderedCommRing to isROrderedCommRingᶻ ; abs to absᶻ ) module ℚ* where module Postulates where postulate ℚ : Type ℚℓ _<_ _≤_ _#_ : Rel ℚ ℚ ℚℓ' min max : ℚ → ℚ → ℚ 0f 1f : ℚ _+_ _·_ : ℚ → ℚ → ℚ -_ : ℚ → ℚ _⁻¹ : (x : ℚ) → {{ x # 0f }} → ℚ abs : ℚ → ℚ abs x = max x (- x) postulate isROrderedField : IsROrderedField _<_ _≤_ _#_ min max 0f 1f _+_ _·_ -_ _⁻¹ isAbsOrderedCommRing : IsAbsOrderedCommRing _<_ _≤_ _#_ min max 0f 1f _+_ _·_ -_ abs module Bundle = ROrderedField {ℚℓ} {ℚℓ'} Bundle = ROrderedField {ℚℓ} {ℚℓ'} open Postulates public Carrier = ℚ bundle : Bundle bundle = (record { Carrier = ℚ ; _<_ = _<_ ; _≤_ = _≤_ ; _#_ = _#_ ; min = min ; max = max ; 0f = 0f ; 1f = 1f ; _+_ = _+_ ; _·_ = _·_ ; -_ = -_ ; _⁻¹ = _⁻¹ ; isROrderedField = isROrderedField ; isAbsOrderedCommRing = isAbsOrderedCommRing }) -- abs : ℚ → ℚ -- abs x = max x (- x) open IsROrderedField isROrderedField public module ℚ = ℚ* hiding (ℚ) module ℚᶠ = ℚ* renaming ( Carrier to Carrierᶠ ; _<_ to _<ᶠ_ ; _≤_ to _≤ᶠ_ ; _#_ to _#ᶠ_ ; min to minᶠ ; max to maxᶠ ; 0f to 0ᶠ ; 1f to 1ᶠ ; _+_ to _+ᶠ_ ; _·_ to _·ᶠ_ ; -_ to -ᶠ_ ; _⁻¹ to _⁻¹ᶠ ; isROrderedField to isROrderedFieldᶠ ; abs to absᶠ ) module ℝ* where private module Postulates where postulate ℝ : Type ℝℓ _<_ _≤_ _#_ : Rel ℝ ℝ ℝℓ' min max : ℝ → ℝ → ℝ 0f 1f : ℝ _+_ _·_ : ℝ → ℝ → ℝ -_ : ℝ → ℝ _⁻¹ : (x : ℝ) → {{ x # 0f }} → ℝ abs : ℝ → ℝ abs x = max x (- x) postulate isROrderedField : IsROrderedField _<_ _≤_ _#_ min max 0f 1f _+_ _·_ -_ _⁻¹ isAbsOrderedCommRing : IsAbsOrderedCommRing _<_ _≤_ _#_ min max 0f 1f _+_ _·_ -_ abs -- square root on ℝ₀⁺ sqrt : (x : ℝ) → {{0f ≤ x}} → ℝ 0≤sqrt : ∀ x → {{p : 0f ≤ x}} → 0f ≤ sqrt x {{p}} sqrt-reflects-≡ : ∀ x y → {{px : 0f ≤ x}} → {{py : 0f ≤ y}} → sqrt x {{px}} ≡ sqrt y {{py}} → x ≡ y sqrt-inv : ∀ x → {{p : 0f ≤ x}} → {{q : 0f ≤ (x · x)}}→ sqrt (x · x) {{q}} ≡ x sqrt²-id : ∀ x → {{p : 0f ≤ x}} → sqrt x {{p}} · sqrt x {{p}} ≡ x module Bundle = ROrderedField {ℝℓ} {ℝℓ'} Bundle = ROrderedField {ℝℓ} {ℝℓ'} open Postulates public Carrier = ℝ bundle : Bundle bundle = (record { Carrier = ℝ ; _<_ = _<_ ; _≤_ = _≤_ ; _#_ = _#_ ; min = min ; max = max ; 0f = 0f ; 1f = 1f ; _+_ = _+_ ; _·_ = _·_ ; -_ = -_ ; _⁻¹ = _⁻¹ ; isROrderedField = isROrderedField ; isAbsOrderedCommRing = isAbsOrderedCommRing }) -- abs : ℝ → ℝ -- abs x = max x (- x) open IsROrderedField isROrderedField public module ℝ = ℝ* hiding (ℝ) module ℝʳ = ℝ* renaming ( Carrier to Carrierʳ ; _<_ to _<ʳ_ ; _≤_ to _≤ʳ_ ; _#_ to _#ʳ_ ; min to minʳ ; max to maxʳ ; 0f to 0ʳ ; 1f to 1ʳ ; _+_ to _+ʳ_ ; _·_ to _·ʳ_ ; -_ to -ʳ_ ; _⁻¹ to _⁻¹ʳ ; isROrderedField to isROrderedFieldʳ ; isRField to isRFieldʳ ; Bundle to Bundleʳ ; bundle to bundleʳ ; abs to absʳ ) module ℂ* where open ℝʳ module Postulates where postulate ℂ : Type ℂℓ _#_ : Rel ℂ ℂ ℂℓ' 0f 1f : ℂ _+_ _·_ : ℂ → ℂ → ℂ -_ : ℂ → ℂ _⁻¹ : (x : ℂ) → {{ x # 0f }} → ℂ isRField : IsRField _#_ 0f 1f _+_ _·_ -_ _⁻¹ abs : ℂ → ℝ 0≤abs : ∀ x → 0ʳ ≤ʳ abs x abs-preserves-0 : ∀ x → x ≡ 0f → abs x ≡ 0ʳ abs-reflects-0 : ∀ x → abs x ≡ 0ʳ → x ≡ 0f abs-preserves-· : ∀ x y → abs (x · y) ≡ (abs x) ·ʳ (abs y) abs-preserves-#0 : ∀ x → x # 0f → abs x #ʳ 0ʳ abs-reflects-#0 : ∀ x → abs x #ʳ 0ʳ → x # 0f module Bundle = RField {ℂℓ} {ℂℓ'} Bundle = RField {ℂℓ} {ℂℓ'} open Postulates public Carrier = ℂ bundle : Bundle bundle = (record { Carrier = ℂ ; _#_ = _#_ ; 0f = 0f ; 1f = 1f ; _+_ = _+_ ; _·_ = _·_ ; -_ = -_ ; _⁻¹ = _⁻¹ ; isRField = isRField }) open IsRField isRField public module ℂ = ℂ* hiding (ℂ) module ℂᶜ = ℂ* renaming ( Carrier to Carrierᶜ ; _#_ to _#ᶜ_ ; 0f to 0ᶜ ; 1f to 1ᶜ ; _+_ to _+ᶜ_ ; _·_ to _·ᶜ_ ; -_ to -ᶜ_ ; _⁻¹ to _⁻¹ᶜ ; isRField to isRFieldᶜ ; abs to absᶜ ) Isℕ↪ℤ = Number.Inclusions.IsROrderedCommSemiringInclusion Isℕ↪ℚ = Number.Inclusions.IsROrderedCommSemiringInclusion Isℕ↪ℂ = Number.Inclusions.IsRCommSemiringInclusion Isℕ↪ℝ = Number.Inclusions.IsROrderedCommSemiringInclusion Isℤ↪ℚ = Number.Inclusions.IsROrderedCommRingInclusion Isℤ↪ℝ = Number.Inclusions.IsROrderedCommRingInclusion Isℤ↪ℂ = Number.Inclusions.IsRCommRingInclusion Isℚ↪ℝ = Number.Inclusions.IsROrderedFieldInclusion Isℚ↪ℂ = Number.Inclusions.IsRFieldInclusion Isℝ↪ℂ = Number.Inclusions.IsRFieldInclusion module Isℕ↪ℤ = Number.Inclusions.IsROrderedCommSemiringInclusion module Isℕ↪ℚ = Number.Inclusions.IsROrderedCommSemiringInclusion module Isℕ↪ℂ = Number.Inclusions.IsRCommSemiringInclusion module Isℕ↪ℝ = Number.Inclusions.IsROrderedCommSemiringInclusion module Isℤ↪ℚ = Number.Inclusions.IsROrderedCommRingInclusion module Isℤ↪ℝ = Number.Inclusions.IsROrderedCommRingInclusion module Isℤ↪ℂ = Number.Inclusions.IsRCommRingInclusion module Isℚ↪ℝ = Number.Inclusions.IsROrderedFieldInclusion module Isℚ↪ℂ = Number.Inclusions.IsRFieldInclusion module Isℝ↪ℂ = Number.Inclusions.IsRFieldInclusion module _ where open ℕ* using (ℕ) open ℤ* using (ℤ) open ℚ* using (ℚ) open ℝ* using (ℝ) open ℂ* using (ℂ) postulate ℕ↪ℤ : ℕ → ℤ ℕ↪ℚ : ℕ → ℚ ℕ↪ℂ : ℕ → ℂ ℕ↪ℝ : ℕ → ℝ ℤ↪ℚ : ℤ → ℚ ℤ↪ℝ : ℤ → ℝ ℤ↪ℂ : ℤ → ℂ ℚ↪ℝ : ℚ → ℝ ℚ↪ℂ : ℚ → ℂ ℝ↪ℂ : ℝ → ℂ ℕ↪ℤinc : Isℕ↪ℤ (record {ℕ*}) (record {ℤ*}) ℕ↪ℤ ℕ↪ℚinc : Isℕ↪ℚ (record {ℕ*}) (record {ℚ*}) ℕ↪ℚ ℕ↪ℂinc : Isℕ↪ℂ (record {ℕ*}) (record {ℂ*}) ℕ↪ℂ ℕ↪ℝinc : Isℕ↪ℝ (record {ℕ*}) (record {ℝ*}) ℕ↪ℝ ℤ↪ℚinc : Isℤ↪ℚ (record {ℤ*}) (record {ℚ*}) ℤ↪ℚ ℤ↪ℝinc : Isℤ↪ℝ (record {ℤ*}) (record {ℝ*}) ℤ↪ℝ ℤ↪ℂinc : Isℤ↪ℂ (record {ℤ*}) (record {ℂ*}) ℤ↪ℂ ℚ↪ℝinc : Isℚ↪ℝ (record {ℚ*}) (record {ℝ*}) ℚ↪ℝ ℚ↪ℂinc : Isℚ↪ℂ (record {ℚ*}) (record {ℂ*}) ℚ↪ℂ ℝ↪ℂinc : Isℝ↪ℂ (record {ℝ*}) (record {ℂ*}) ℝ↪ℂ {- ℕ↪ℤinc : Isℕ↪ℤ ℕ.bundle (record { ℤ.Bundle ℤ.bundle }) ℕ↪ℤ ℕ↪ℚinc : Isℕ↪ℚ ℕ.bundle (record { ℚ.Bundle ℚ.bundle }) ℕ↪ℚ ℕ↪ℂinc : Isℕ↪ℂ ℕ.bundle ℂ.bundle ℕ↪ℂ ℕ↪ℝinc : Isℕ↪ℝ ℕ.bundle (record { ℝ.Bundle ℝ.bundle }) ℕ↪ℝ ℤ↪ℚinc : Isℤ↪ℚ ℤ.bundle (record { ℚ.Bundle ℚ.bundle }) ℤ↪ℚ ℤ↪ℝinc : Isℤ↪ℝ ℤ.bundle (record { ℝ.Bundle ℝ.bundle }) ℤ↪ℝ ℤ↪ℂinc : Isℤ↪ℂ ℤ.bundle ℂ.bundle ℤ↪ℂ ℚ↪ℝinc : Isℚ↪ℝ ℚ.bundle (record { ℝ.Bundle ℝ.bundle }) ℚ↪ℝ ℚ↪ℂinc : Isℚ↪ℂ (record { ℚ.Bundle ℚ.bundle }) (record { ℂ.Bundle ℂ.bundle }) ℚ↪ℂ ℝ↪ℂinc : Isℝ↪ℂ (record { ℝ.Bundle ℝ.bundle }) (record { ℂ.Bundle ℂ.bundle }) ℝ↪ℂ -}
{ "alphanum_fraction": 0.5458781362, "avg_line_length": 25.4794520548, "ext": "agda", "hexsha": "bcba043e72bc68cb9fb6467a96ffa03a894526ec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "agda/Number/Postulates.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "agda/Number/Postulates.agda", "max_line_length": 107, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "agda/Number/Postulates.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 4969, "size": 11160 }
{-# OPTIONS --rewriting --confluence-check #-} open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Rewrite postulate A : Set a b : A f : A → A rew₁ : f a ≡ b rew₂ : f ≡ λ _ → a {-# REWRITE rew₁ #-} {-# REWRITE rew₂ #-}
{ "alphanum_fraction": 0.6129032258, "avg_line_length": 16.5333333333, "ext": "agda", "hexsha": "345e1cf559045dd78cfed971f643962d3afdde6a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3810a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3810a.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3810a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 86, "size": 248 }
{-# OPTIONS --no-termination-check #-} module qsort where _o_ : {a : Set} -> {b : Set} -> {c : Set} -> (b -> c) -> (a -> b) -> a -> c f o g = \x -> f (g x) data Bool : Set where true : Bool false : Bool not : Bool -> Bool not true = false not false = true if_then_else_ : {a : Set} -> Bool -> a -> a -> a if true then x else _ = x if false then _ else y = y data List (a : Set) : Set where nil : List a _::_ : a -> List a -> List a listrec : {a : Set} -> List a -> (a -> List a -> List a) -> List a -> List a listrec e _ nil = e listrec e b (x :: xs) = b x (listrec e b xs) filter : {a : Set} -> (a -> Bool) -> List a -> List a filter f = listrec nil (\x ih -> if (f x) then (x :: ih) else ih) _++_ : {a : Set} -> List a -> List a -> List a nil ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) data Nat : Set where zero : Nat succ : Nat -> Nat _+_ : Nat -> Nat -> Nat zero + m = m succ n + m = succ (n + m) _*_ : Nat -> Nat -> Nat zero * m = zero succ n * m = m + (n * m) one : Nat one = succ zero fact : Nat -> Nat fact zero = one fact (succ n) = succ n * fact n _<_ : Nat -> Nat -> Bool zero < zero = false zero < n = true n < zero = false (succ n) < (succ m) = n < m -- qsort : {a : Set} -> (a -> a -> Bool) -> List a -> List a qsort f nil = nil qsort f (x :: xs) = (qsort f (filter (not o (f x)) xs)) ++ (x :: (qsort f (filter (f x) xs)))
{ "alphanum_fraction": 0.4559111692, "avg_line_length": 23.196969697, "ext": "agda", "hexsha": "ddefe0dc05e540b6552a3d70c5dcfe50a4e3019e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/qsort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/qsort.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/qsort.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 572, "size": 1531 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Polynomials.Multivariate.EquivCarac.A[X]X-A where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat open import Cubical.Data.Vec open import Cubical.Data.Sigma open import Cubical.Data.FinData open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.CommRing.FGIdeal open import Cubical.Algebra.CommRing.QuotientRing open import Cubical.Algebra.Polynomials.Multivariate.Base open import Cubical.Algebra.CommRing.Instances.Int renaming (ℤCommRing to ℤCR) open import Cubical.Algebra.CommRing.Instances.MultivariatePoly open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-Quotient open import Cubical.Algebra.CommRing.Instances.MultivariatePoly-notationZ open import Cubical.Relation.Nullary open import Cubical.HITs.SetQuotients as SQ open import Cubical.HITs.PropositionalTruncation as PT private variable ℓ : Level ----------------------------------------------------------------------------- -- Functions module Properties-Equiv-QuotientXn-A (Ar@(A , Astr) : CommRing ℓ) where private A[X] : CommRing ℓ A[X] = A[X1,···,Xn] Ar 1 A[x] : Type ℓ A[x] = A[x1,···,xn] Ar 1 A[X]/X : CommRing ℓ A[X]/X = A[X1,···,Xn]/<Xkʲ> Ar 1 0 1 A[x]/x : Type ℓ A[x]/x = A[x1,···,xn]/<xkʲ> Ar 1 0 1 open CommRingStr Astr using () renaming ( 0r to 0A ; 1r to 1A ; _+_ to _+A_ ; -_ to -A_ ; _·_ to _·A_ ; +Assoc to +AAssoc ; +Identity to +AIdentity ; +Lid to +ALid ; +Rid to +ARid ; +Inv to +AInv ; +Linv to +ALinv ; +Rinv to +ARinv ; +Comm to +AComm ; ·Assoc to ·AAssoc ; ·Identity to ·AIdentity ; ·Lid to ·ALid ; ·Rid to ·ARid ; ·Rdist+ to ·ARdist+ ; ·Ldist+ to ·ALdist+ ; is-set to isSetA ) open CommRingStr (snd A[X] ) using () renaming ( 0r to 0PA ; 1r to 1PA ; _+_ to _+PA_ ; -_ to -PA_ ; _·_ to _·PA_ ; +Assoc to +PAAssoc ; +Identity to +PAIdentity ; +Lid to +PALid ; +Rid to +PARid ; +Inv to +PAInv ; +Linv to +PALinv ; +Rinv to +PARinv ; +Comm to +PAComm ; ·Assoc to ·PAAssoc ; ·Identity to ·PAIdentity ; ·Lid to ·PALid ; ·Rid to ·PARid ; ·Comm to ·PAComm ; ·Rdist+ to ·PARdist+ ; ·Ldist+ to ·PALdist+ ; is-set to isSetPA ) open CommRingStr (snd A[X]/X) using () renaming ( 0r to 0PAI ; 1r to 1PAI ; _+_ to _+PAI_ ; -_ to -PAI_ ; _·_ to _·PAI_ ; +Assoc to +PAIAssoc ; +Identity to +PAIIdentity ; +Lid to +PAILid ; +Rid to +PAIRid ; +Inv to +PAIInv ; +Linv to +PAILinv ; +Rinv to +PAIRinv ; +Comm to +PAIComm ; ·Assoc to ·PAIAssoc ; ·Identity to ·PAIIdentity ; ·Lid to ·PAILid ; ·Rid to ·PAIRid ; ·Rdist+ to ·PAIRdist+ ; ·Ldist+ to ·PAILdist+ ; is-set to isSetPAI ) open RingTheory ----------------------------------------------------------------------------- -- Direct sens A[x]→A : A[x] → A A[x]→A = Poly-Rec-Set.f _ _ _ isSetA 0A base-trad _+A_ +AAssoc +ARid +AComm base-neutral-eq base-add-eq where base-trad : _ base-trad (zero ∷ []) a = a base-trad (suc k ∷ []) a = 0A base-neutral-eq : _ base-neutral-eq (zero ∷ []) = refl base-neutral-eq (suc k ∷ []) = refl base-add-eq : _ base-add-eq (zero ∷ []) a b = refl base-add-eq (suc k ∷ []) a b = +ARid _ A[x]→A-pres1 : A[x]→A 1PA ≡ 1A A[x]→A-pres1 = refl A[x]→A-pres+ : (x y : A[x]) → (A[x]→A (x +PA y)) ≡ A[x]→A x +A A[x]→A y A[x]→A-pres+ x y = refl A[x]→A-pres· : (x y : A[x]) → (A[x]→A (x ·PA y)) ≡ A[x]→A x ·A A[x]→A y A[x]→A-pres· = Poly-Ind-Prop.f _ _ _ (λ x u v i y → isSetA _ _ (u y) (v y) i) (λ y → sym (0LeftAnnihilates (CommRing→Ring Ar) _)) (λ v a → Poly-Ind-Prop.f _ _ _ (λ _ → isSetA _ _) (sym (0RightAnnihilates (CommRing→Ring Ar) _)) (λ v' a' → base-eq a a' v v') (λ {U V} ind-U ind-V → cong₂ _+A_ ind-U ind-V ∙ sym (·ARdist+ _ _ _))) λ {U V} ind-U ind-V y → cong₂ _+A_ (ind-U y) (ind-V y) ∙ sym (·ALdist+ _ _ _) where base-eq : (a a' : A) → (v v' : Vec ℕ 1) → (A[x]→A (base v a ·PA base v' a')) ≡ A[x]→A (base v a) ·A A[x]→A (base v' a') base-eq a a' (zero ∷ []) (zero ∷ []) = refl base-eq a a' (zero ∷ []) (suc k' ∷ []) = sym (0RightAnnihilates (CommRing→Ring Ar) _) base-eq a a' (suc k ∷ []) (k' ∷ []) = sym (0LeftAnnihilates (CommRing→Ring Ar) _) A[X]→A : CommRingHom A[X] Ar fst A[X]→A = A[x]→A snd A[X]→A = makeIsRingHom A[x]→A-pres1 A[x]→A-pres+ A[x]→A-pres· A[x]→A-cancel : (k : Fin 1) → A[x]→A (<Xkʲ> Ar 1 0 1 k) ≡ 0A A[x]→A-cancel zero = refl A[X]/X→A : CommRingHom A[X]/X Ar A[X]/X→A = Quotient-FGideal-CommRing-CommRing.f A[X] Ar A[X]→A (<Xkʲ> Ar 1 0 1) A[x]→A-cancel A[x]/x→A : A[x]/x → A A[x]/x→A = fst A[X]/X→A ----------------------------------------------------------------------------- -- Converse sens A→A[x] : A → A[x] A→A[x] a = base (0 ∷ []) a A→A[x]-pres+ : (a a' : A) → A→A[x] (a +A a') ≡ A→A[x] a +PA A→A[x] a' A→A[x]-pres+ a a' = sym (base-poly+ (0 ∷ []) a a') A→A[x]/x : A → A[x]/x A→A[x]/x = [_] ∘ A→A[x] A→A[x]/x-pres+ : (a a' : A) → A→A[x]/x (a +A a') ≡ A→A[x]/x a +PAI A→A[x]/x a' A→A[x]/x-pres+ a a' = cong [_] (A→A[x]-pres+ a a') ----------------------------------------------------------------------------- -- Section sens e-sect : (a : A) → A[x]→A (A→A[x] a) ≡ a e-sect a = refl ----------------------------------------------------------------------------- -- Retraction sens open IsRing e-retr : (x : A[x]/x) → A→A[x]/x (A[x]/x→A x) ≡ x e-retr = SQ.elimProp (λ x → isSetPAI _ _) (Poly-Ind-Prop.f _ _ _ (λ x → isSetPAI _ _) (cong [_] (base-0P _)) (λ v a → base-eq a v) λ {U V} ind-U ind-V → cong [_] ((A→A[x]-pres+ _ _)) ∙ cong₂ _+PAI_ ind-U ind-V) where base-eq : (a : A) → (v : Vec ℕ 1) → A→A[x]/x (A[x]/x→A [ (base v a) ]) ≡ [ (base v a) ] base-eq a (zero ∷ []) = cong [_] refl base-eq a (suc k ∷ []) = eq/ (base (0 ∷ []) 0A) (base (suc k ∷ []) a) ∣ ((λ x → base (k ∷ []) (-A a)) , helper) ∣₁ where helper : _ helper = cong (λ X → X poly+ base (suc k ∷ []) (-A a)) (base-0P _) ∙ +PALid _ ∙ sym (+PARid _ ∙ cong₂ base (cong (λ X → X ∷ []) (+-suc _ _ ∙ +-zero _)) (·ARid _)) module _ (Ar@(A , Astr) : CommRing ℓ) where open Iso open Properties-Equiv-QuotientXn-A Ar Equiv-A[X]/X-A : CommRingEquiv (A[X1,···,Xn]/<Xkʲ> Ar 1 0 1) Ar fst Equiv-A[X]/X-A = isoToEquiv is where is : Iso (A[x1,···,xn]/<xkʲ> Ar 1 0 1) A fun is = A[x]/x→A inv is = A→A[x]/x rightInv is = e-sect leftInv is = e-retr snd Equiv-A[X]/X-A = snd A[X]/X→A Equiv-ℤ[X]/X-ℤ : RingEquiv (CommRing→Ring ℤ[X]/X) (CommRing→Ring ℤCR) Equiv-ℤ[X]/X-ℤ = Equiv-A[X]/X-A ℤCR
{ "alphanum_fraction": 0.479185579, "avg_line_length": 29.8875968992, "ext": "agda", "hexsha": "9b735697145b96f907745fad55b89cd137befa43", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xekoukou/cubical", "max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/A[X]X-A.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xekoukou/cubical", "max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/A[X]X-A.agda", "max_line_length": 131, "max_stars_count": null, "max_stars_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xekoukou/cubical", "max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/A[X]X-A.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2939, "size": 7711 }
module builtinInModule where module Str where {-# BUILTIN STRING S #-} primitive primStringAppend : S → S → S
{ "alphanum_fraction": 0.6949152542, "avg_line_length": 13.1111111111, "ext": "agda", "hexsha": "9fc2efa35794812076d5f4580281a1cc0b071efc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/builtinInModule.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/builtinInModule.agda", "max_line_length": 40, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/builtinInModule.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z", "num_tokens": 31, "size": 118 }
{-# OPTIONS --without-K #-} {- In this module, we derive the truncations of * a truncated type, * the unit type, * dependent sums (and product types), * path spaces given truncations of their components. More commonly later on, we will be given a truncation operator Tr that returns a truncation for any given input type (at a fixed level). Instead of trying to show, say, Tr (Σ A (B ∘ cons (Tr A))) ≃ Σ (Tr A) (Tr ∘ B), directly, it turns out to be much easier to just *derive* the truncation on the left-hand side from Tr A and Tr ∘ B and then use unicity of truncation to deduce the above equivalence. Significant parts of the unicity proof would be duplicated in any direct proof of equivalence, while this approach allows us to avoid a number of manual elimination and propositional reduction steps. -} module Universe.Trunc.TypeConstructors where open import lib.Basics open import lib.NType2 open import lib.Equivalences2 open import lib.types.Unit open import lib.types.Nat hiding (_+_) open import lib.types.Pi open import lib.types.Sigma open import lib.types.Paths open import Universe.Utility.General open import Universe.Utility.TruncUniverse open import Universe.Trunc.Universal open import Universe.Trunc.Basics open trunc-ty open trunc-props module trunc-self {i} {n : ℕ₋₂} (A : n -Type i) where trunc : ∀ {j} → trunc-ty n ⟦ A ⟧ j trunc = record { type = A ; cons = idf _ ; univ = λ _ → snd (ide _) } module trunc-⊤ {n : ℕ₋₂} = trunc-self {n = n} ⊤-≤ -- *** Lemma 6.9 *** {- The truncation of a dependent sum type (where the family depends only on the truncation of the first component) is the dependent sums of the truncations. -} module trunc-Σ {ia ib j} {n : ℕ₋₂} {A : Type ia} (TrA : trunc-ty n A (ia ⊔ ib ⊔ j)) {B : ⟦ type TrA ⟧ → Type ib} (TrB : (ta : ⟦ type TrA ⟧) → trunc-ty n (B ta) (ib ⊔ j)) where trunc : trunc-ty n (Σ A (B ∘ cons TrA)) (ib ⊔ j) trunc = record { type = Σ-≤ (type TrA) (type ∘ TrB) ; cons = λ {(a , b) → (cons TrA a , cons (TrB (cons TrA a)) b)} ; univ = snd ∘ e } where e : (U : n -Type _) → _ e U = (⟦ Σ-≤ (type TrA) (type ∘ TrB) ⟧ → ⟦ U ⟧) ≃⟨ curry-equiv ⟩ ((ta : ⟦ type TrA ⟧) → ⟦ type (TrB ta) ⟧ → ⟦ U ⟧) ≃⟨ equiv-Π-r eb ⟩ ((ta : ⟦ type TrA ⟧) → B ta → ⟦ U ⟧) ≃⟨ ea ⟩ ((a : A) → B (cons TrA a) → ⟦ U ⟧) ≃⟨ curry-equiv ⁻¹ ⟩ (Σ A (B ∘ cons TrA) → ⟦ U ⟧) ≃∎ where ea = dup {j = ib ⊔ j} TrA (λ ta → B ta →-≤ U) eb = λ ta → up {j = ib ⊔ j} (TrB ta) U -- Products are a special case of dependent sums. module trunc-× {ia ib j} {n : ℕ₋₂} {A : Type ia} {B : Type ib} (TrA : trunc-ty n A (ia ⊔ ib ⊔ j)) (TrB : trunc-ty n B (ib ⊔ j)) = trunc-Σ {j = j} TrA (λ _ → TrB) -- *** Lemma 6.10 *** {- The n-truncation of a path space is the path space of the (n+1)-truncation. The use of the encode-decode method is the reason why we have to assume elimination into Type (lsucc i): large recursion is used to define the type of codes. -} module trunc-path {i j} {n : ℕ₋₂} {A : Type i} (TrA : trunc-ty (S n) A (lsucc (i ⊔ j))) where private l : ULevel l = i ⊔ j TrAA : trunc-ty (S n) (A × A) (lsucc l) TrAA = trunc-×.trunc {j = lsucc l} TrA TrA module MA = trunc-props {j = lsucc l} {k = l} TrA module MAA = trunc-props {j = lsucc l} {k = l} TrAA -- module MAL = trunc-elim {j = _} TrAA {- There is some Yoneda hidden here that would enable us to express the final equivalence e neatly as a sequence of trivial steps like in trunc-Σ; unfortunately we lack the necessary category theoretic framework in this code base. -} module code (U : n -Type l) where abstract {- Large recursion used here. Since we cannot talk about the truncation of a₀ == a₁ yet, we instead talk about the continuation type (a₀ == a₁ → U) → U for any n-type U instead. -} code : ⟦ type TrAA ⟧ → n -Type l code = rec {j = lsucc l} TrAA (n -Type-≤ l) (λ {(a₀ , a₁) → (a₀ == a₁ → ⟦ U ⟧) →-≤ U}) code-β : {a₀ a₁ : A} → ⟦ code (cons TrAA (a₀ , a₁)) ⟧ ≃ ((a₀ == a₁ → ⟦ U ⟧) → ⟦ U ⟧) code-β = coe-equiv (ap ⟦_⟧ (rec-β TrAA _)) -- We can encode a path in the truncation, ... encode : {ta₀ ta₁ : ⟦ type TrA ⟧} → ta₀ == ta₁ → ⟦ code (ta₀ , ta₁) ⟧ encode idp = MA.elim (λ ta → raise (code (ta , ta))) (λ _ → <– code-β (λ f → f idp)) _ --- ...reducing when coming from a path in the original type. encode-β : {a₀ a₁ : A} (p : a₀ == a₁) (f : a₀ == a₁ → ⟦ U ⟧) → –> code-β (encode (ap (cons TrA) p)) f == f p encode-β idp = app= (ap (–> code-β) (MA.elim-β _) ∙ <–-inv-r code-β _) -- We can decode into the U-continuation of a path in the truncation, ... decode : {ta₀ ta₁ : ⟦ type TrA ⟧} → ⟦ code (ta₀ , ta₁) ⟧ → (ta₀ == ta₁ → ⟦ U ⟧) → ⟦ U ⟧ decode = MAA.elim (λ {(ta₀ , ta₁) → _ →-≤ (ta₀ == ta₁ → ⟦ U ⟧) →-≤ raise U}) (λ _ c g → –> code-β c (g ∘ ap (cons TrA))) _ where -- ...reducing decode-β : {a₀ a₁ : A} (c : ⟦ code (cons TrAA (a₀ , a₁)) ⟧) (g : cons TrA a₀ == cons TrA a₁ → ⟦ U ⟧) → decode c g == –> code-β c (g ∘ ap (cons TrA)) decode-β = app= ∘ app= (MAA.elim-β _) -- encoding followed by decoding produces the expected continuation decode-encode : {ta₀ ta₁ : ⟦ type TrA ⟧} (q : ta₀ == ta₁) (g : ta₀ == ta₁ → ⟦ U ⟧) → decode (encode q) g == g q decode-encode idp = MA.elim (λ ta → Π-≤ (ta == ta → ⟦ U ⟧) (λ g → Path-≤ (raise U) (decode (encode idp) g) (g idp))) (λ _ g → decode-β (encode idp) g ∙ encode-β idp (g ∘ ap (cons TrA))) _ trunc : (a₀ a₁ : A) → trunc-ty n (a₀ == a₁) l trunc a₀ a₁ = record { type = Path-< (type TrA) (cons TrA a₀) (cons TrA a₁) ; cons = ap (cons TrA) ; univ = snd ∘ e } where e : (U : _) → (cons TrA a₀ == cons TrA a₁ → ⟦ U ⟧) ≃ (a₀ == a₁ → ⟦ U ⟧) e U = equiv u v u-v v-u where open code U u : (cons TrA a₀ == cons TrA a₁ → ⟦ U ⟧) → a₀ == a₁ → ⟦ U ⟧ u g = g ∘ ap (cons TrA) v : (a₀ == a₁ → ⟦ U ⟧) → cons TrA a₀ == cons TrA a₁ → ⟦ U ⟧ v f q = –> code-β (encode q) f u-v : (f : a₀ == a₁ → ⟦ U ⟧) → u (v f) == f u-v f = λ= (λ p → encode-β p f) v-u : (g : cons TrA a₀ == cons TrA a₁ → ⟦ U ⟧) → v (u g) == g v-u g = λ= (λ q → ! (decode-β (encode q) g) ∙ decode-encode q g)
{ "alphanum_fraction": 0.537509434, "avg_line_length": 38.9705882353, "ext": "agda", "hexsha": "dd2d0128fdace5d3dfa9c4d8b783b23147d4a71f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sattlerc/HoTT-Agda", "max_forks_repo_path": "Universe/Trunc/TypeConstructors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sattlerc/HoTT-Agda", "max_issues_repo_path": "Universe/Trunc/TypeConstructors.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sattlerc/HoTT-Agda", "max_stars_repo_path": "Universe/Trunc/TypeConstructors.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2461, "size": 6625 }
-- Categories with objects parameterised by a sort module SOAS.Sorting {T : Set} where open import SOAS.Common import Categories.Category.CartesianClosed.Canonical as Canonical import Categories.Category.CartesianClosed as CCC open import Categories.Category.Cocartesian open import Categories.Category.BicartesianClosed import Categories.Category.Monoidal as Monoidal import Categories.Category.Monoidal.Closed as MonClosed open import Categories.Object.Product open import Categories.Functor.Bifunctor -- Add sorting to a set Sorted : Set₁ → Set₁ Sorted Obj = T → Obj -- Lift a function on Obj to one on sorted Obj sorted : {O₁ O₂ : Set₁} → (O₁ → O₂) → Sorted O₁ → Sorted O₂ sorted f 𝒳 τ = f (𝒳 τ) -- Lift a binary operation on Obj to one on sorted Obj sorted₂ : {O₁ O₂ O₃ : Set₁} → (O₁ → O₂ → O₃) → Sorted O₁ → Sorted O₂ → Sorted O₃ sorted₂ op 𝒳 𝒴 τ = op (𝒳 τ) (𝒴 τ) sortedᵣ : {O₁ O₂ O₃ : Set₁} → (O₁ → O₂ → O₃) → O₁ → Sorted O₂ → Sorted O₃ sortedᵣ op X 𝒴 τ = op X (𝒴 τ) sortedₗ : {O₁ O₂ O₃ : Set₁} → (O₁ → O₂ → O₃) → Sorted O₁ → O₂ → Sorted O₃ sortedₗ op 𝒳 Y τ = op (𝒳 τ) Y -- Turn a category into a sorted category 𝕊orted : Category 1ℓ 0ℓ 0ℓ → Category 1ℓ 0ℓ 0ℓ 𝕊orted Cat = categoryHelper (record { Obj = Sorted Obj ; _⇒_ = λ A B → ∀{τ : T} → A τ ⇒ B τ ; _≈_ = λ f g → ∀{α : T} → f {α} ≈ g {α} ; id = id Cat ; _∘_ = λ g f → Category._∘_ Cat g f ; assoc = assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; equiv = record { refl = E.refl equiv ; sym = λ p → E.sym equiv p ; trans = λ p q → E.trans equiv p q } ; ∘-resp-≈ = λ p q → ∘-resp-≈ p q }) where open Category Cat open import Relation.Binary.Structures renaming (IsEquivalence to E) -- Lift functors to functors between sorted categories 𝕊orted-Functor : {ℂ 𝔻 : Category 1ℓ 0ℓ 0ℓ} → Functor ℂ 𝔻 → Functor (𝕊orted ℂ) (𝕊orted 𝔻) 𝕊orted-Functor F = record { F₀ = λ X τ → Functor.₀ F (X τ) ; F₁ = λ f → Functor.₁ F f ; identity = Functor.identity F ; homomorphism = Functor.homomorphism F ; F-resp-≈ = λ z → Functor.F-resp-≈ F z } -- Lift bifunctors to bifunctors between sorted categories 𝕊orted-Bifunctor : {ℂ 𝔻 𝔼 : Category 1ℓ 0ℓ 0ℓ} → Bifunctor ℂ 𝔻 𝔼 → Bifunctor (𝕊orted ℂ) (𝕊orted 𝔻) (𝕊orted 𝔼) 𝕊orted-Bifunctor F = record { F₀ = λ{ (X , Y) τ → Functor.₀ F (X τ , Y τ)} ; F₁ = λ{ (f , g) → Functor.₁ F (f , g)} ; identity = Functor.identity F ; homomorphism = Functor.homomorphism F ; F-resp-≈ = λ{ (p , q) → Functor.F-resp-≈ F (p , q)} } private variable C : Category 1ℓ 0ℓ 0ℓ -- A sorted CCC is itself a CCC 𝕊orted-CanCCC : Canonical.CartesianClosed C → Canonical.CartesianClosed (𝕊orted C) 𝕊orted-CanCCC CCC = record { ⊤ = λ τ → 𝓒.terminal.⊤ ; _×_ = λ A B τ → (A τ) 𝓒.× (B τ) ; ! = 𝓒.terminal.! ; π₁ = 𝓒.π₁ ; π₂ = 𝓒.π₂ ; ⟨_,_⟩ = λ f g → 𝓒.⟨ f , g ⟩ ; !-unique = λ f → 𝓒.terminal.!-unique f ; π₁-comp = 𝓒.π₁-comp ; π₂-comp = 𝓒.π₂-comp ; ⟨,⟩-unique = λ p₁ p₂ → 𝓒.⟨,⟩-unique p₁ p₂ ; _^_ = λ B A τ → B τ 𝓒.^ A τ ; eval = 𝓒.eval ; curry = λ f → 𝓒.curry f ; eval-comp = 𝓒.eval-comp ; curry-resp-≈ = λ p → 𝓒.curry-resp-≈ p ; curry-unique = λ p → 𝓒.curry-unique p } where private module 𝓒 = Canonical.CartesianClosed CCC -- A sorted co-Cartesian category is co-Cartesian 𝕊orted-Cocartesian : Cocartesian C → Cocartesian (𝕊orted C) 𝕊orted-Cocartesian Cocart = record { initial = record { ⊥ = λ τ → 𝓒.⊥ ; ⊥-is-initial = record { ! = 𝓒.initial.! ; !-unique = λ f → 𝓒.initial.!-unique f } } ; coproducts = record { coproduct = λ {A}{B} → record { A+B = λ τ → 𝓒.coproduct.A+B {A τ}{B τ} ; i₁ = 𝓒.i₁ ; i₂ = 𝓒.i₂ ; [_,_] = λ f g → 𝓒.[ f , g ] ; inject₁ = 𝓒.inject₁ ; inject₂ = 𝓒.inject₂ ; unique = λ p₁ p₂ → 𝓒.coproduct.unique p₁ p₂ } } } where private module 𝓒 = Cocartesian Cocart -- A sorted bi-Cartesian closed category is itself bi-Cartesian closed 𝕊orted-BCCC : BicartesianClosed C → BicartesianClosed (𝕊orted C) 𝕊orted-BCCC BCCC = record { cartesianClosed = fromCanonical _ (𝕊orted-CanCCC (toCanonical _ cartesianClosed)) ; cocartesian = 𝕊orted-Cocartesian cocartesian } where open BicartesianClosed BCCC open Canonical.Equivalence -- A sorted monoidal category is itself monoidal 𝕊orted-Monoidal : Monoidal.Monoidal C → Monoidal.Monoidal (𝕊orted C) 𝕊orted-Monoidal {C} Mon = record { ⊗ = record { F₀ = λ{ (X , Y) τ → X τ 𝓒.⊗₀ Y τ } ; F₁ = λ{ (f , g) → f 𝓒.⊗₁ g} ; identity = Functor.identity 𝓒.⊗ ; homomorphism = Functor.homomorphism 𝓒.⊗ ; F-resp-≈ = λ{ (p₁ , p₂) {α} → Functor.F-resp-≈ 𝓒.⊗ (p₁ , p₂) } } ; unit = λ τ → 𝓒.unit ; unitorˡ = record { from = λ {τ} → 𝓒.unitorˡ.from ; to = 𝓒.unitorˡ.to ; iso = record { isoˡ = Iso.isoˡ 𝓒.unitorˡ.iso ; isoʳ = Iso.isoʳ 𝓒.unitorˡ.iso } } ; unitorʳ = record { from = λ {τ} → 𝓒.unitorʳ.from ; to = 𝓒.unitorʳ.to ; iso = record { isoˡ = Iso.isoˡ 𝓒.unitorʳ.iso ; isoʳ = Iso.isoʳ 𝓒.unitorʳ.iso } } ; associator = record { from = λ {τ} → 𝓒.associator.from ; to = 𝓒.associator.to ; iso = record { isoˡ = Iso.isoˡ 𝓒.associator.iso ; isoʳ = Iso.isoʳ 𝓒.associator.iso } } ; unitorˡ-commute-from = 𝓒.unitorˡ-commute-from ; unitorˡ-commute-to = 𝓒.unitorˡ-commute-to ; unitorʳ-commute-from = 𝓒.unitorʳ-commute-from ; unitorʳ-commute-to = 𝓒.unitorʳ-commute-to ; assoc-commute-from = 𝓒.assoc-commute-from ; assoc-commute-to = 𝓒.assoc-commute-to ; triangle = 𝓒.triangle ; pentagon = 𝓒.pentagon } where private module 𝓒 = Monoidal.Monoidal Mon open import Categories.Morphism C -- A sorted monoidal closed category is itself monoidal closed 𝕊orted-MonClosed : {Mon : Monoidal.Monoidal C} → MonClosed.Closed Mon → MonClosed.Closed (𝕊orted-Monoidal Mon) 𝕊orted-MonClosed {Mon} Cl = record { [-,-] = record { F₀ = λ (X , Y) τ → 𝓒.[ X τ , Y τ ]₀ ; F₁ = λ (f , g) → 𝓒.[ f , g ]₁ ; identity = λ {A} {α} → Functor.identity 𝓒.[-,-] ; homomorphism = Functor.homomorphism 𝓒.[-,-] ; F-resp-≈ = λ{ (p₁ , p₂) {α} → Functor.F-resp-≈ 𝓒.[-,-] (p₁ , p₂) } } ; adjoint = record { unit = ntHelper record { η = λ X {τ} → NT.η 𝓒.adjoint.unit (X τ) ; commute = λ f → NT.commute 𝓒.adjoint.unit f } ; counit = ntHelper record { η = λ X {τ} → NT.η 𝓒.adjoint.counit (X τ) ; commute = λ f → NT.commute 𝓒.adjoint.counit f } ; zig = 𝓒.adjoint.zig ; zag = 𝓒.adjoint.zag } ; mate = λ f → record { commute₁ = 𝓒.mate.commute₁ f ; commute₂ = 𝓒.mate.commute₂ f } } where private module 𝓒 = MonClosed.Closed Cl
{ "alphanum_fraction": 0.603264095, "avg_line_length": 35.6613756614, "ext": "agda", "hexsha": "11e0c4dcd373f042712c98b51519fcd8816ce386", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Sorting.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Sorting.agda", "max_line_length": 112, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Sorting.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 2702, "size": 6740 }
------------------------------------------------------------------------------ -- Conversion rules for the division ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.Division.ConversionRulesI where open import Common.FOL.Relation.Binary.EqReasoning open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Program.Division.Division ------------------------------------------------------------------------------ -- Division properties private -- Before to prove some properties for div it is convenient -- to have a proof for each possible execution step. -- Initially, we define the possible states (div-s₁, div-s₂, ...) -- and after that, we write down the proof for the execution step -- from the state p to the state q, e.g. -- -- proof₂₋₃ : ∀ i j → div-s₂ i j ≡ div-s₃ i j. -- Initially, the conversion rule div-eq is applied. div-s₁ : D → D → D div-s₁ i j = if (lt i j) then zero else succ₁ (div (i ∸ j) j) -- lt i j ≡ true. div-s₂ : D → D → D div-s₂ i j = if true then zero else succ₁ (div (i ∸ j) j) -- lt i j ≡ false. div-s₃ : D → D → D div-s₃ i j = if false then zero else succ₁ (div (i ∸ j) j) -- The conditional is true. div-s₄ : D div-s₄ = zero -- The conditional is false. div-s₅ : D → D → D div-s₅ i j = succ₁ (div (i ∸ j) j) {- To prove the execution steps, e.g. proof₃₋₄ : ∀ i j → div-s₃ i j → divh_s₄ i j, we usually need to prove that ... m ... ≡ ... n ... (1) given that m ≡ n, (2) where (2) is a conversion rule usually. We prove (1) using subst : ∀ {x y} (A : D → Set) → x ≡ y → A x → A y where • P is given by \m → ... m ... ≡ ... n ..., • x ≡ y is given n ≡ m (actually, we use ≡-sym (m ≡ n)) and • P x is given by ... n ... ≡ ... n ... (i.e. ≡-refl) -} -- From div i j to div-s₁ using the equation div-eq. proof₀₋₁ : ∀ i j → div i j ≡ div-s₁ i j proof₀₋₁ i j = div-eq i j -- From div-s₁ to div-s₂ using the proof i<j. proof₁₋₂ : ∀ i j → i < j → div-s₁ i j ≡ div-s₂ i j proof₁₋₂ i j i<j = subst (λ t → (if t then zero else succ₁ (div (i ∸ j) j)) ≡ (if true then zero else succ₁ (div (i ∸ j) j)) ) (sym i<j) refl -- From div-s₁ to div-s₃ using the proof i≮j. proof₁₋₃ : ∀ i j → i ≮ j → div-s₁ i j ≡ div-s₃ i j proof₁₋₃ i j i≮j = subst (λ t → (if t then zero else succ₁ (div (i ∸ j) j)) ≡ (if false then zero else succ₁ (div (i ∸ j) j)) ) (sym i≮j) refl -- From div-s₂ to div-s₄ using the conversion rule if-true. proof₂₋₄ : ∀ i j → div-s₂ i j ≡ div-s₄ proof₂₋₄ i j = if-true zero -- From div-s₃ to div-s₅ using the conversion rule if-false. proof₃₋₅ : ∀ i j → div-s₃ i j ≡ div-s₅ i j proof₃₋₅ i j = if-false (succ₁ (div (i ∸ j) j)) ---------------------------------------------------------------------- -- The division result when the dividend is minor than the -- the divisor. div-x<y : ∀ {i j} → i < j → div i j ≡ zero div-x<y {i} {j} i<j = div i j ≡⟨ proof₀₋₁ i j ⟩ div-s₁ i j ≡⟨ proof₁₋₂ i j i<j ⟩ div-s₂ i j ≡⟨ proof₂₋₄ i j ⟩ div-s₄ ∎ ---------------------------------------------------------------------- -- The division result when the dividend is greater or equal than the -- the divisor. div-x≮y : ∀ {i j} → i ≮ j → div i j ≡ succ₁ (div (i ∸ j) j) div-x≮y {i} {j} i≮j = div i j ≡⟨ proof₀₋₁ i j ⟩ div-s₁ i j ≡⟨ proof₁₋₃ i j i≮j ⟩ div-s₃ i j ≡⟨ proof₃₋₅ i j ⟩ div-s₅ i j ∎
{ "alphanum_fraction": 0.4439971584, "avg_line_length": 29.9503546099, "ext": "agda", "hexsha": "1a4e1ff86a1cdf6c44d6905aeae83f2e19fbe157", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Division/ConversionRulesI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Division/ConversionRulesI.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Division/ConversionRulesI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1338, "size": 4223 }
-- Imports from the standard library module Library where -- open import Level using () renaming (suc to lsuc) public open import Data.Fin using (Fin; zero; suc) public open import Data.List using (List; []; _∷_; map) public open import Data.Nat using (ℕ; zero; suc; z≤n; s≤s; pred; _≤′_; ≤′-refl; ≤′-step ) renaming (_≤_ to _≤ℕ_; _⊔_ to max) public open import Data.Nat.Properties using (_+-mono_; ≤⇒≤′) renaming (≤-decTotalOrder to decTotalOrderℕ) public open import Data.Product using (Σ; ∃; _×_; _,_; proj₁; proj₂) renaming (map to map×) public open import Function using (id; _∘_) public open import Induction.WellFounded using (Acc; acc) public open import Relation.Binary using (module DecTotalOrder) open import Relation.Binary.List.Pointwise as ListEq using ([]; _∷_) renaming (Rel to ≅L) hiding (module Rel) public module ≅L = ListEq open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; module ≡-Reasoning) public module ≡ = PropEq open import Size public module DecTotalOrderℕ = DecTotalOrder decTotalOrderℕ module ≤ℕ = DecTotalOrderℕ caseMax : ∀{m n} (P : ℕ → Set) → (pn : (m≤n : m ≤ℕ n) → P n) → (pm : (n≤m : n ≤ℕ m) → P m) → P (max m n) caseMax {zero } {n } P pn pm = pn z≤n caseMax {suc m} {zero } P pn pm = pm z≤n caseMax {suc m} {suc n} P pn pm = caseMax (P ∘ suc) (pn ∘ s≤s) (pm ∘ s≤s) n≤sn : ∀{n} → n ≤ℕ suc n n≤sn = (z≤n {1}) +-mono DecTotalOrderℕ.refl pred≤ℕ : ∀{n m} → suc n ≤ℕ suc m → n ≤ℕ m pred≤ℕ (s≤s p) = p record ⊤ {a} : Set a where -- TODOs postulate TODO : ∀ {a}{A : Set a} → A -- -}
{ "alphanum_fraction": 0.6404002502, "avg_line_length": 28.5535714286, "ext": "agda", "hexsha": "cf18b72e606cba1c01881b386572486210208282", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z", "max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ryanakca/strong-normalization", "max_forks_repo_path": "agda-aplas14/Library.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ryanakca/strong-normalization", "max_issues_repo_path": "agda-aplas14/Library.agda", "max_line_length": 116, "max_stars_count": 32, "max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ryanakca/strong-normalization", "max_stars_repo_path": "agda-aplas14/Library.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z", "num_tokens": 607, "size": 1599 }
{-# OPTIONS --without-K #-} module F0 where import Level as L open import Data.Unit open import Data.Sum open import Data.Product open import Function using (id ; _$_ ) infixr 90 _⊗_ infixr 80 _⊕_ infixr 60 _∘_ infix 30 _⟷_ --------------------------------------------------------------------------- -- Our own version of refl that makes 'a' explicit data _≡_ {u} {A : Set u} : (a b : A) → Set u where refl : (a : A) → (a ≡ a) -- if we have no occurrences of reciprocals then we can use plain sets; for -- consistency with the rest of the story we will explicitly add refl paths -- pi types with no reciprocals data B : Set where ONE : B PLUS : B → B → B TIMES : B → B → B -- discrete groupoids record 0-type : Set₁ where constructor G₀ field ∣_∣ : Set paths : {a : ∣_∣} → (a ≡ a) paths {a} = refl a open 0-type public plus : 0-type → 0-type → 0-type plus t₁ t₂ = G₀ (∣ t₁ ∣ ⊎ ∣ t₂ ∣) times : 0-type → 0-type → 0-type times t₁ t₂ = G₀ (∣ t₁ ∣ × ∣ t₂ ∣) -- We interpret types as discrete groupoids ⟦_⟧ : B → 0-type ⟦ ONE ⟧ = G₀ ⊤ ⟦ PLUS b₁ b₂ ⟧ = plus ⟦ b₁ ⟧ ⟦ b₂ ⟧ ⟦ TIMES b₁ b₂ ⟧ = times ⟦ b₁ ⟧ ⟦ b₂ ⟧ -- isos data _⟷_ : B → B → Set where -- + swap₊ : { b₁ b₂ : B } → PLUS b₁ b₂ ⟷ PLUS b₂ b₁ assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃ assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃) -- * unite⋆ : { b : B } → TIMES ONE b ⟷ b uniti⋆ : { b : B } → b ⟷ TIMES ONE b swap⋆ : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷ TIMES b₂ b₁ assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃ assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃) -- * distributes over + dist : { b₁ b₂ b₃ : B } → TIMES (PLUS b₁ b₂) b₃ ⟷ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) factor : { b₁ b₂ b₃ : B } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷ TIMES (PLUS b₁ b₂) b₃ -- congruence id⟷ : { b : B } → b ⟷ b sym : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁) _∘_ : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃) _⊕_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄) _⊗_ : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄) -- interpret isos as functors record 0-functor (A B : 0-type) : Set where constructor F₀ field fobj : ∣ A ∣ → ∣ B ∣ fmor : {a b : ∣ A ∣} → (a ≡ b) → (fobj a ≡ fobj b) fmor {a} {.a} (refl .a) = refl (fobj a) open 0-functor public swap⊎ : {A B : Set} → A ⊎ B → B ⊎ A swap⊎ (inj₁ a) = inj₂ a swap⊎ (inj₂ b) = inj₁ b assocl⊎ : {A B C : Set} → A ⊎ (B ⊎ C) → (A ⊎ B) ⊎ C assocl⊎ (inj₁ x) = inj₁ (inj₁ x) assocl⊎ (inj₂ (inj₁ x)) = inj₁ (inj₂ x) assocl⊎ (inj₂ (inj₂ y)) = inj₂ y assocr⊎ : {A B C : Set} → (A ⊎ B) ⊎ C → A ⊎ (B ⊎ C) assocr⊎ (inj₁ (inj₁ x)) = inj₁ x assocr⊎ (inj₁ (inj₂ x)) = inj₂ (inj₁ x) assocr⊎ (inj₂ y) = inj₂ (inj₂ y) unite× : {A : Set} → ⊤ × A → A unite× (tt , x) = x uniti× : {A : Set} → A → ⊤ × A uniti× x = (tt , x) swap× : {A B : Set} → A × B → B × A swap× (a , b) = (b , a) assocl× : {A B C : Set} → A × (B × C) → (A × B) × C assocl× (x , (y , z)) = (x , y) , z assocr× : {A B C : Set} → (A × B) × C → A × (B × C) assocr× ((x , y) , z) = x , (y , z) dist×⊎ : {A B C : Set} → (A ⊎ B) × C → (A × C) ⊎ (B × C) dist×⊎ (inj₁ a , c) = inj₁ (a , c) dist×⊎ (inj₂ b , c) = inj₂ (b , c) factor⊎× : {A B C : Set} → (A × C) ⊎ (B × C) → (A ⊎ B) × C factor⊎× (inj₁ (a , c)) = (inj₁ a , c) factor⊎× (inj₂ (b , c)) = (inj₂ b , c) ev⊎ : {A B C D : Set} → (A → C) → (B → D) → A ⊎ B → C ⊎ D ev⊎ f _ (inj₁ a) = inj₁ (f a) ev⊎ _ g (inj₂ b) = inj₂ (g b) ev× : {A B C D : Set} → (A → C) → (B → D) → A × B → C × D ev× f g (a , b) = (f a , g b) mutual eval : {b₁ b₂ : B} → (b₁ ⟷ b₂) → 0-functor ⟦ b₁ ⟧ ⟦ b₂ ⟧ eval swap₊ = F₀ swap⊎ eval assocl₊ = F₀ assocl⊎ eval assocr₊ = F₀ assocr⊎ eval unite⋆ = F₀ unite× eval uniti⋆ = F₀ uniti× eval swap⋆ = F₀ swap× eval assocl⋆ = F₀ assocl× eval assocr⋆ = F₀ assocr× eval dist = F₀ dist×⊎ eval factor = F₀ factor⊎× eval id⟷ = F₀ id eval (sym c) = evalB c eval (c₁ ∘ c₂) = F₀ (λ x → fobj (eval c₂) (fobj (eval c₁) x)) eval (c₁ ⊕ c₂) = F₀ (ev⊎ (fobj $ eval c₁) (fobj $ eval c₂)) eval (c₁ ⊗ c₂) = F₀ (ev× (fobj $ eval c₁) (fobj $ eval c₂)) evalB : {b₁ b₂ : B} → (b₁ ⟷ b₂) → 0-functor ⟦ b₂ ⟧ ⟦ b₁ ⟧ evalB swap₊ = F₀ swap⊎ evalB assocl₊ = F₀ assocr⊎ evalB assocr₊ = F₀ assocl⊎ evalB unite⋆ = F₀ uniti× evalB uniti⋆ = F₀ unite× evalB swap⋆ = F₀ swap× evalB assocl⋆ = F₀ assocr× evalB assocr⋆ = F₀ assocl× evalB dist = F₀ factor⊎× evalB factor = F₀ dist×⊎ evalB id⟷ = F₀ id evalB (sym c) = eval c evalB (c₁ ∘ c₂) = F₀ (λ x → fobj (evalB c₁) (fobj (evalB c₂) x)) evalB (c₁ ⊕ c₂) = F₀ (ev⊎ (fobj $ evalB c₁) (fobj $ evalB c₂)) evalB (c₁ ⊗ c₂) = F₀ (ev× (fobj $ evalB c₁) (fobj $ evalB c₂)) ---------------------------------------------------------------------------
{ "alphanum_fraction": 0.4793582469, "avg_line_length": 29.3735632184, "ext": "agda", "hexsha": "1fd3e9fede2dc438bdc575af5d9752c77db6dbe5", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "F0.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "F0.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "F0.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 2491, "size": 5111 }
open import Agda.Primitive record Order {ℓ} ℓ' (A : Set ℓ) : Set (ℓ ⊔ lsuc ℓ') where field _≤_ : A → A → Set ℓ' open Order {{...}} public data ℕ : Set where Zero : ℕ Succ : ℕ → ℕ data _≤ⁿ_ : ℕ → ℕ → Set where Zero : ∀ {n} → Zero ≤ⁿ n Succ : ∀ {n₁ n₂} → n₁ ≤ⁿ n₂ → Succ n₁ ≤ⁿ Succ n₂ instance Order[ℕ] : Order lzero ℕ Order[ℕ] = record { _≤_ = _≤ⁿ_ } subtract : ∀ (n₁ n₂ : ℕ) → n₂ ≤ n₁ → ℕ subtract n₁ .Zero Zero = n₁ subtract .(Succ _) .(Succ _) (Succ P) = subtract _ _ P
{ "alphanum_fraction": 0.537109375, "avg_line_length": 20.48, "ext": "agda", "hexsha": "c1fdccb9debb8272c75f8a1213b2494934c45062", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1865.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1865.agda", "max_line_length": 57, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1865.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 229, "size": 512 }
{-# OPTIONS --without-K --safe #-} -- Monoidal natural isomorphisms between lax and strong symmetric -- monoidal functors. -- -- NOTE. Symmetric monoidal natural isomorphisms are really just -- monoidal natural isomorphisms that happen to go between symmetric -- monoidal functors. No additional conditions are necessary. -- Nevertheless, the definitions in this module are useful when one is -- working in a symmetric monoidal setting. They also help Agda's -- type checker by bundling the (symmetric monoidal) categories and -- functors involved. module Categories.NaturalTransformation.NaturalIsomorphism.Monoidal.Symmetric where open import Level open import Relation.Binary using (IsEquivalence) open import Categories.Category.Monoidal using (SymmetricMonoidalCategory) import Categories.Functor.Monoidal.Symmetric as BMF open import Categories.Functor.Monoidal.Properties using () renaming ( idF-SymmetricMonoidal to idFˡ ; idF-StrongSymmetricMonoidal to idFˢ ; ∘-SymmetricMonoidal to _∘Fˡ_ ; ∘-StrongSymmetricMonoidal to _∘Fˢ_ ) open import Categories.NaturalTransformation.NaturalIsomorphism as NI using (NaturalIsomorphism) import Categories.NaturalTransformation.NaturalIsomorphism.Monoidal as MNI module Lax where open BMF.Lax using (SymmetricMonoidalFunctor) open MNI.Lax using (IsMonoidalNaturalIsomorphism) open SymmetricMonoidalFunctor using () renaming (F to UF; monoidalFunctor to MF) private module U = MNI.Lax module _ {o ℓ e o′ ℓ′ e′} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} where -- Monoidal natural isomorphisms between lax symmetric monoidal functors. record SymmetricMonoidalNaturalIsomorphism (F G : SymmetricMonoidalFunctor C D) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where field U : NaturalIsomorphism (UF F) (UF G) F⇒G-isMonoidal : IsMonoidalNaturalIsomorphism (MF F) (MF G) U ⌊_⌋ : U.MonoidalNaturalIsomorphism (MF F) (MF G) ⌊_⌋ = record { U = U ; F⇒G-isMonoidal = F⇒G-isMonoidal } open U.MonoidalNaturalIsomorphism ⌊_⌋ public hiding (U; F⇒G-isMonoidal) infix 4 _≃_ _≃_ = SymmetricMonoidalNaturalIsomorphism -- "Strengthening" ⌈_⌉ : {F G : SymmetricMonoidalFunctor C D} → U.MonoidalNaturalIsomorphism (MF F) (MF G) → F ≃ G ⌈ α ⌉ = record { U = U ; F⇒G-isMonoidal = F⇒G-isMonoidal } where open U.MonoidalNaturalIsomorphism α open SymmetricMonoidalNaturalIsomorphism -- Identity and compositions infixr 9 _ⓘᵥ_ id : {F : SymmetricMonoidalFunctor C D} → F ≃ F id = ⌈ U.id ⌉ _ⓘᵥ_ : {F G H : SymmetricMonoidalFunctor C D} → G ≃ H → F ≃ G → F ≃ H α ⓘᵥ β = ⌈ ⌊ α ⌋ U.ⓘᵥ ⌊ β ⌋ ⌉ isEquivalence : IsEquivalence _≃_ isEquivalence = record { refl = id ; sym = λ α → record { U = NI.sym (U α) ; F⇒G-isMonoidal = F⇐G-isMonoidal α } ; trans = λ α β → β ⓘᵥ α } where open SymmetricMonoidalNaturalIsomorphism module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} {E : SymmetricMonoidalCategory o″ ℓ″ e″} where infixr 9 _ⓘₕ_ _ⓘˡ_ _ⓘʳ_ _ⓘₕ_ : {F G : SymmetricMonoidalFunctor C D} {H I : SymmetricMonoidalFunctor D E} → H ≃ I → F ≃ G → (H ∘Fˡ F) ≃ (I ∘Fˡ G) -- NOTE: this definition is clearly equivalent to -- -- α ⓘₕ β = ⌈ ⌊ α ⌋ U.ⓘₕ ⌊ β ⌋ ⌉ -- -- but the latter takes an unreasonably long time to typecheck, -- while the unfolded version typechecks almost immediately. α ⓘₕ β = record { U = C.U ; F⇒G-isMonoidal = record { ε-compat = C.ε-compat ; ⊗-homo-compat = C.⊗-homo-compat } } where module C = U.MonoidalNaturalIsomorphism (⌊ α ⌋ U.ⓘₕ ⌊ β ⌋) _ⓘˡ_ : {F G : SymmetricMonoidalFunctor C D} (H : SymmetricMonoidalFunctor D E) → F ≃ G → (H ∘Fˡ F) ≃ (H ∘Fˡ G) H ⓘˡ α = id {F = H} ⓘₕ α _ⓘʳ_ : {G H : SymmetricMonoidalFunctor D E} → G ≃ H → (F : SymmetricMonoidalFunctor C D) → (G ∘Fˡ F) ≃ (H ∘Fˡ F) α ⓘʳ F = α ⓘₕ id {F = F} -- Left and right unitors. module _ {o ℓ e o′ ℓ′ e′} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} {F : SymmetricMonoidalFunctor C D} where -- NOTE: Again, manual expansion seems necessary to type check in -- reasonable time. unitorˡ : idFˡ D ∘Fˡ F ≃ F unitorˡ = record { U = LU.U ; F⇒G-isMonoidal = record { ε-compat = LU.ε-compat ; ⊗-homo-compat = LU.⊗-homo-compat } } where module LU = U.MonoidalNaturalIsomorphism (U.unitorˡ {F = MF F}) unitorʳ : F ∘Fˡ idFˡ C ≃ F unitorʳ = record { U = RU.U ; F⇒G-isMonoidal = record { ε-compat = RU.ε-compat ; ⊗-homo-compat = RU.⊗-homo-compat } } where module RU = U.MonoidalNaturalIsomorphism (U.unitorʳ {F = MF F}) -- Associator. module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ o‴ ℓ‴ e‴} {B : SymmetricMonoidalCategory o ℓ e} {C : SymmetricMonoidalCategory o′ ℓ′ e′} {D : SymmetricMonoidalCategory o″ ℓ″ e″} {E : SymmetricMonoidalCategory o‴ ℓ‴ e‴} {F : SymmetricMonoidalFunctor B C} {G : SymmetricMonoidalFunctor C D} {H : SymmetricMonoidalFunctor D E} where -- NOTE: Again, manual expansion seems necessary to type check in -- reasonable time. associator : (H ∘Fˡ G) ∘Fˡ F ≃ H ∘Fˡ (G ∘Fˡ F) associator = record { U = AU.U ; F⇒G-isMonoidal = record { ε-compat = AU.ε-compat ; ⊗-homo-compat = AU.⊗-homo-compat } } where module AU = U.MonoidalNaturalIsomorphism (U.associator {F = MF F} {MF G} {MF H}) module Strong where open BMF.Strong using (SymmetricMonoidalFunctor) open MNI.Strong using (IsMonoidalNaturalIsomorphism) open SymmetricMonoidalFunctor using () renaming ( F to UF ; monoidalFunctor to MF ; laxSymmetricMonoidalFunctor to laxBMF ) private module U = MNI.Strong module _ {o ℓ e o′ ℓ′ e′} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} where -- Monoidal natural isomorphisms between strong symmetric monoidal functors. record SymmetricMonoidalNaturalIsomorphism (F G : SymmetricMonoidalFunctor C D) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where field U : NaturalIsomorphism (UF F) (UF G) F⇒G-isMonoidal : IsMonoidalNaturalIsomorphism (MF F) (MF G) U ⌊_⌋ : U.MonoidalNaturalIsomorphism (MF F) (MF G) ⌊_⌋ = record { U = U ; F⇒G-isMonoidal = F⇒G-isMonoidal } laxBNI : Lax.SymmetricMonoidalNaturalIsomorphism (laxBMF F) (laxBMF G) laxBNI = record { U = U ; F⇒G-isMonoidal = F⇒G-isMonoidal } open Lax.SymmetricMonoidalNaturalIsomorphism laxBNI public hiding (U; F⇒G-isMonoidal; ⌊_⌋) infix 4 _≃_ _≃_ = SymmetricMonoidalNaturalIsomorphism -- "Strengthening" ⌈_⌉ : {F G : SymmetricMonoidalFunctor C D} → U.MonoidalNaturalIsomorphism (MF F) (MF G) → F ≃ G ⌈ α ⌉ = record { U = U ; F⇒G-isMonoidal = F⇒G-isMonoidal } where open U.MonoidalNaturalIsomorphism α open SymmetricMonoidalNaturalIsomorphism -- Identity and compositions infixr 9 _ⓘᵥ_ id : {F : SymmetricMonoidalFunctor C D} → F ≃ F id = ⌈ U.id ⌉ _ⓘᵥ_ : {F G H : SymmetricMonoidalFunctor C D} → G ≃ H → F ≃ G → F ≃ H α ⓘᵥ β = ⌈ ⌊ α ⌋ U.ⓘᵥ ⌊ β ⌋ ⌉ isEquivalence : IsEquivalence _≃_ isEquivalence = record { refl = id ; sym = λ α → record { U = NI.sym (U α) ; F⇒G-isMonoidal = F⇐G-isMonoidal α } ; trans = λ α β → β ⓘᵥ α } where open SymmetricMonoidalNaturalIsomorphism module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} {E : SymmetricMonoidalCategory o″ ℓ″ e″} where infixr 9 _ⓘₕ_ _ⓘˡ_ _ⓘʳ_ _ⓘₕ_ : {F G : SymmetricMonoidalFunctor C D} {H I : SymmetricMonoidalFunctor D E} → H ≃ I → F ≃ G → (H ∘Fˢ F) ≃ (I ∘Fˢ G) -- NOTE: this definition is clearly equivalent to -- -- α ⓘₕ β = ⌈ ⌊ α ⌋ U.ⓘₕ ⌊ β ⌋ ⌉ -- -- but the latter takes an unreasonably long time to typecheck, -- while the unfolded version typechecks almost immediately. α ⓘₕ β = record { U = C.U ; F⇒G-isMonoidal = record { ε-compat = C.ε-compat ; ⊗-homo-compat = C.⊗-homo-compat } } where module C = U.MonoidalNaturalIsomorphism (⌊ α ⌋ U.ⓘₕ ⌊ β ⌋) _ⓘˡ_ : {F G : SymmetricMonoidalFunctor C D} (H : SymmetricMonoidalFunctor D E) → F ≃ G → (H ∘Fˢ F) ≃ (H ∘Fˢ G) H ⓘˡ α = id {F = H} ⓘₕ α _ⓘʳ_ : {G H : SymmetricMonoidalFunctor D E} → G ≃ H → (F : SymmetricMonoidalFunctor C D) → (G ∘Fˢ F) ≃ (H ∘Fˢ F) α ⓘʳ F = α ⓘₕ id {F = F} -- Left and right unitors. module _ {o ℓ e o′ ℓ′ e′} {C : SymmetricMonoidalCategory o ℓ e} {D : SymmetricMonoidalCategory o′ ℓ′ e′} {F : SymmetricMonoidalFunctor C D} where -- NOTE: Again, manual expansion seems necessary to type check in -- reasonable time. unitorˡ : idFˢ D ∘Fˢ F ≃ F unitorˡ = record { U = LU.U ; F⇒G-isMonoidal = record { ε-compat = LU.ε-compat ; ⊗-homo-compat = LU.⊗-homo-compat } } where module LU = U.MonoidalNaturalIsomorphism (U.unitorˡ {F = MF F}) unitorʳ : F ∘Fˢ idFˢ C ≃ F unitorʳ = record { U = RU.U ; F⇒G-isMonoidal = record { ε-compat = RU.ε-compat ; ⊗-homo-compat = RU.⊗-homo-compat } } where module RU = U.MonoidalNaturalIsomorphism (U.unitorʳ {F = MF F}) -- Associator. module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ o‴ ℓ‴ e‴} {B : SymmetricMonoidalCategory o ℓ e} {C : SymmetricMonoidalCategory o′ ℓ′ e′} {D : SymmetricMonoidalCategory o″ ℓ″ e″} {E : SymmetricMonoidalCategory o‴ ℓ‴ e‴} {F : SymmetricMonoidalFunctor B C} {G : SymmetricMonoidalFunctor C D} {H : SymmetricMonoidalFunctor D E} where -- NOTE: Again, manual expansion seems necessary to type check in -- reasonable time. associator : (H ∘Fˢ G) ∘Fˢ F ≃ H ∘Fˢ (G ∘Fˢ F) associator = record { U = AU.U ; F⇒G-isMonoidal = record { ε-compat = AU.ε-compat ; ⊗-homo-compat = AU.⊗-homo-compat } } where module AU = U.MonoidalNaturalIsomorphism (U.associator {F = MF F} {MF G} {MF H})
{ "alphanum_fraction": 0.5847542628, "avg_line_length": 32.8353293413, "ext": "agda", "hexsha": "09efaef3d7786e89ccd5a99214328413776cb166", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5fc007768264a270b8ff319570225986773da601", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "o1lo01ol1o/agda-categories", "max_forks_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Monoidal/Symmetric.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5fc007768264a270b8ff319570225986773da601", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "o1lo01ol1o/agda-categories", "max_issues_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Monoidal/Symmetric.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "5fc007768264a270b8ff319570225986773da601", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "o1lo01ol1o/agda-categories", "max_stars_repo_path": "src/Categories/NaturalTransformation/NaturalIsomorphism/Monoidal/Symmetric.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3977, "size": 10967 }
{-# OPTIONS --without-K #-} open import HoTT module homotopy.S1SuspensionS0 where {- To -} module To = S¹Rec (north Bool) (merid _ true ∙ ! (merid _ false)) to : S¹ → Suspension Bool to = To.f {- From -} from-merid : Bool → base == base from-merid true = loop from-merid false = idp module From = SuspensionRec Bool base base from-merid from : Suspension Bool → S¹ from = From.f {- ToFrom and FromTo -} module _ {i} {A : Type i} where ∙idp∙ : {x y z : A} (p : x == y) (q : y == z) → p ∙ idp ∙ q == p ∙ q ∙idp∙ idp idp = idp p∙!q∙q : {x y z : A} (p : x == y) (q : z == y) → p ∙ ( ! q ∙ q) == p p∙!q∙q idp idp = idp !-∙∙ : {x y z w : A} (p : x == y) (q : y == z) (r : x == w) → ! (p ∙ q) ∙ r == (! q ∙ ! p ) ∙ r !-∙∙ idp idp idp = idp !-coh : {x y : A} {p p' : x == y} → p == p' → ! p == ! p' !-coh idp = idp add-idp-r : {x y : A} → (p : x == y) → p == p ∙ idp add-idp-r idp = idp ap-coh : ∀ {i j} {A : Type i} {B : Type j} {x y : A} → (f : A → B) → {p p' : x == y} → p == p' → ap f p == ap f p' ap-coh f idp = idp _∋_ : ∀ {i} (A : Type i) → A → A A ∋ x = x mt : north Bool == south Bool mt = merid Bool true mf : north Bool == south Bool mf = merid Bool false to-from-merid-t' : ( ! (ap to (ap from mt))) ∙ idp ∙ mt == mf to-from-merid-t' = ! (ap to (ap from mt)) ∙ idp ∙ mt =⟨ ∙idp∙ ( ! (ap to (ap from mt))) mt ⟩ ! (ap to (ap from mt)) ∙ mt =⟨ (!-coh (ap-coh to (From.glue-β true))) ∙ᵣ mt ⟩ ! (ap to loop) ∙ mt =⟨ (!-coh (To.loop-β)) ∙ᵣ mt ⟩ (! (mt ∙ ! mf)) ∙ mt =⟨ !-∙∙ mt (! mf) mt ⟩ ((! (! mf)) ∙ ! mt) ∙ mt =⟨ ((!-! mf) ∙ᵣ (! mt)) ∙ᵣ mt ⟩ (mf ∙ ! mt) ∙ mt =⟨ ∙-assoc mf (! mt) mt ⟩ mf ∙ (! mt ∙ mt) =⟨ p∙!q∙q mf mt ⟩ mf ∎ to-from-merid-f' : ( ! (ap to (ap from mf))) ∙ idp ∙ mf == mf to-from-merid-f' = ! (ap to (ap from mf)) ∙ idp ∙ mf =⟨ ∙idp∙ ( ! (ap to (ap from mf))) mf ⟩ ! (ap to (ap from mf)) ∙ mf =⟨ (!-coh (ap-coh to (From.glue-β false))) ∙ᵣ mf ⟩ mf ∎ -- to-from-merid' : (b : Bool) → ( ! (ap to (ap from (merid Bool b)))) ∙ idp ∙ mf == (merid Bool b) -- to-from-merid' false = to-from-merid-f' -- to-from-merid' true = to-from-merid-t' to-from : (x : Suspension Bool) → to (from x) == x to-from = ToFrom.f where Q : Suspension Bool → Set lzero Q x = to (from x) == x n : to (from (north Bool)) == north Bool n = idp s : to (from (south Bool)) == south Bool s = mf lemma : {x y : Suspension Bool} → (q : x == y) → (α : to (from x) == x) → transport Q q α == (! (ap to (ap from q))) ∙ α ∙ q lemma idp α = add-idp-r α p : (b : Bool) → n == s [ Q ↓ merid Bool b ] p true = from-transp Q mt ((lemma mt n) ∙ to-from-merid-t') p false = from-transp Q mf ((lemma mf n) ∙ to-from-merid-f') module ToFrom = SuspensionElim Bool {P = Q} n s p from-to-loop' : (! (ap from (ap to loop))) ∙ idp ∙ loop == idp from-to-loop' = ! (ap from (ap to loop)) ∙ idp ∙ loop =⟨ ∙idp∙ (! (ap from (ap to loop))) loop ⟩ ! (ap from (ap to loop)) ∙ loop =⟨ (!-coh (ap-coh from To.loop-β)) ∙ᵣ loop ⟩ ! (ap from (mt ∙ ! mf)) ∙ loop =⟨ (!-coh (ap-∙ from mt (! mf))) ∙ᵣ loop ⟩ (! ((ap from mt) ∙ (ap from (! mf)))) ∙ loop =⟨ (!-coh ( (From.glue-β true) ∙ᵣ (ap from (! mf)))) ∙ᵣ loop ⟩ ! (loop ∙ (ap from (! mf))) ∙ loop =⟨ !-coh (loop ∙ₗ ap-! from mf) ∙ᵣ loop ⟩ ! (loop ∙ ! (ap from mf)) ∙ loop =⟨ !-coh (loop ∙ₗ (!-coh (From.glue-β false))) ∙ᵣ loop ⟩ ! (loop ∙ ! idp) ∙ loop =⟨ !-∙∙ loop (! idp) loop ⟩ (! loop) ∙ loop =⟨ !-inv-l loop ⟩ idp ∎ from-to : (x : S¹) → from (to x) == x from-to = FromTo.f where Q : S¹ → Type lzero Q x = from (to x) == x b : Q base b = idp lemma : {x y : S¹} → (q : x == y) → (α : from (to x) == x) → transport Q q α == (! (ap from (ap to q))) ∙ α ∙ q lemma idp α = add-idp-r α l : b == b [ Q ↓ loop ] l = from-transp Q loop ((lemma loop b) ∙ from-to-loop') module FromTo = S¹Elim {P = Q} b l e : S¹ ≃ Suspension Bool e = equiv to from to-from from-to
{ "alphanum_fraction": 0.4239274657, "avg_line_length": 36.7642276423, "ext": "agda", "hexsha": "f3e46ffe5a0e632619dc3e877188a8828e2bbbdf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_forks_repo_path": "homotopy/S1SuspensionS0.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_issues_repo_path": "homotopy/S1SuspensionS0.agda", "max_line_length": 128, "max_stars_count": null, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/S1SuspensionS0.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1824, "size": 4522 }
module Prelude.Bytes where open import Prelude.Bool open import Prelude.Decidable open import Prelude.Equality open import Prelude.Equality.Unsafe {-# FOREIGN GHC import qualified Data.ByteString as B #-} postulate Bytes : Set {-# COMPILE GHC Bytes = type B.ByteString #-} private module Internal where postulate empty : Bytes append : Bytes → Bytes → Bytes {-# COMPILE GHC empty = B.empty #-} {-# COMPILE GHC append = B.append #-} -- Eq -- private postulate eqBytes : Bytes → Bytes → Bool {-# COMPILE GHC eqBytes = (==) #-} instance EqBytes : Eq Bytes _==_ {{EqBytes}} x y with eqBytes x y ... | true = yes unsafeEqual ... | false = no unsafeNotEqual -- Monoid -- instance open import Prelude.Monoid MonoidBytes : Monoid Bytes mempty {{MonoidBytes}} = Internal.empty _<>_ {{MonoidBytes}} = Internal.append
{ "alphanum_fraction": 0.6705069124, "avg_line_length": 20.6666666667, "ext": "agda", "hexsha": "6926947fbcff49f7c48e863a5604276ec9541c51", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Prelude/Bytes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Prelude/Bytes.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Prelude/Bytes.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 229, "size": 868 }
open import Prelude open import Relation.Binary.PropositionalEquality open import RW.Language.RTerm using (Name) open import RW.Strategy.PropEq open import RW.RW (≡-strat ∷ []) open import Data.Nat.Properties.Simple using (+-comm; +-right-identity; +-assoc) module PropEqTest where ++-assoc : ∀{a}{A : Set a}(xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) ++-assoc [] ys zs = refl ++-assoc (x ∷ xs) ys zs = tactic (by (quote ++-assoc)) open ≡-Reasoning ++-assocH : ∀{a}{A : Set a}(xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) ++-assocH [] ys zs = begin ([] ++ ys) ++ zs ≡⟨ refl ⟩ ys ++ zs ≡⟨ refl ⟩ [] ++ (ys ++ zs) ∎ ++-assocH {A = A} (x ∷ xs) ys zs = begin ((x ∷ xs) ++ ys) ++ zs ≡⟨ refl ⟩ x ∷ (xs ++ ys) ++ zs ≡⟨ refl ⟩ x ∷ ((xs ++ ys) ++ zs) ≡⟨ (tactic (by (quote ++-assocH))) ⟩ x ∷ (xs ++ (ys ++ zs)) ≡⟨ refl ⟩ (x ∷ xs) ++ (ys ++ zs) ∎ []-++-neutral : ∀{a}{A : Set a}(xs : List A) → xs ++ [] ≡ xs []-++-neutral [] = refl []-++-neutral (x ∷ xs) = tactic (by (quote []-++-neutral)) test1 : (x y : ℕ) → (x + y) + 0 ≡ y + (x + 0) test1 x y = begin (x + y) + 0 ≡⟨ (tactic (by+ acts)) ⟩ x + y ≡⟨ (tactic (by+ acts)) ⟩ y + x ≡⟨ (tactic (by+ acts)) ⟩ (y + x) + 0 ≡⟨ (tactic (by+ acts)) ⟩ y + (x + 0) ∎ where acts : List Name acts = quote +-right-identity ∷ quote +-assoc ∷ quote +-comm ∷ []
{ "alphanum_fraction": 0.3775055679, "avg_line_length": 28.0625, "ext": "agda", "hexsha": "43f90834621158038b2cdc5be981972a1c81b03a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "VictorCMiraldo/agda-rw", "max_forks_repo_path": "Testing/PropEqTest.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "VictorCMiraldo/agda-rw", "max_issues_repo_path": "Testing/PropEqTest.agda", "max_line_length": 73, "max_stars_count": 16, "max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "VictorCMiraldo/agda-rw", "max_stars_repo_path": "Testing/PropEqTest.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z", "max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z", "num_tokens": 627, "size": 1796 }
module split where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong) open Eq.≡-Reasoning open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; s≤s; z≤n; _≤?_) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Product using (_×_; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Function using (_∘_) open import lists using (List; []; _∷_; [_]; [_,_]; [_,_,_]; [_,_,_,_]; All; Decidable) -- リストのマージ -- xs と ys を使って zs を組み立てる data merge {A : Set} : (xs ys zs : List A) → Set where [] : -------------- merge [] [] [] left-∷ : ∀ {x xs ys zs} → merge xs ys zs -------------------------- → merge (x ∷ xs) ys (x ∷ zs) right-∷ : ∀ {y xs ys zs} → merge xs ys zs -------------------------- → merge xs (y ∷ ys) (y ∷ zs) _ : merge [ 1 , 4 ] [ 2 , 3 ] [ 1 , 2 , 3 , 4 ] _ = left-∷ (right-∷ (right-∷ (left-∷ []))) -- リストの分割 -- 述語Pが成り立つ場合はxs、そうでない場合はysとして分割する (scalaでいうpartition) split : ∀ {A : Set} {P : A → Set} (P? : Decidable P) (zs : List A) → ∃[ xs ] ∃[ ys ] (merge xs ys zs × All P xs × All (¬_ ∘ P) ys) split P? [] = ⟨ [] , ⟨ [] , ⟨ [] , ⟨ [] , [] ⟩ ⟩ ⟩ ⟩ split P? (z ∷ zs) with P? z | split P? zs ... | yes Pz | ⟨ xs , ⟨ ys , ⟨ m , ⟨ Pxs , ¬Pys ⟩ ⟩ ⟩ ⟩ = ⟨ z ∷ xs , ⟨ ys , ⟨ left-∷ m , ⟨ Pz ∷ Pxs , ¬Pys ⟩ ⟩ ⟩ ⟩ ... | no ¬Pz | ⟨ xs , ⟨ ys , ⟨ m , ⟨ Pxs , ¬Pys ⟩ ⟩ ⟩ ⟩ = ⟨ xs , ⟨ z ∷ ys , ⟨ right-∷ m , ⟨ Pxs , ¬Pz ∷ ¬Pys ⟩ ⟩ ⟩ ⟩ -- 0と等しい1以上の自然数は存在しない ¬z≡n : ∀ {n : ℕ} → ¬ (zero ≡ suc n) ¬z≡n () -- m = n が成り立たなければ (m + 1) = (n + 1) も成り立たない ¬s≡s : ∀ {m n : ℕ} → ¬ (m ≡ n) → ¬ (suc m ≡ suc n) ¬s≡s ¬m≡n refl = ¬m≡n refl -- decidableを使った、2つの自然数が等しいかどうか判定する関数 _≡ℕ?_ : ∀ (m n : ℕ) → Dec (m ≡ n) zero ≡ℕ? zero = yes refl zero ≡ℕ? suc n = no ¬z≡n suc m ≡ℕ? zero = no (λ ()) suc m ≡ℕ? suc n with m ≡ℕ? n ... | yes refl = yes refl ... | no ¬m≡n = no (¬s≡s ¬m≡n) -- テスト -- リストの要素を3とそれ以外とに分ける _ : split (_≡ℕ? 3) [ 3 , 0 , 3 , 1 ] ≡ ⟨ [ 3 , 3 ] , ⟨ [ 0 , 1 ] , ⟨ (left-∷ (right-∷ (left-∷ (right-∷ [])))) , ⟨ refl ∷ refl ∷ [] , ¬z≡n ∷ (¬s≡s ¬z≡n) ∷ [] ⟩ ⟩ ⟩ ⟩ _ = refl
{ "alphanum_fraction": 0.4197048611, "avg_line_length": 36, "ext": "agda", "hexsha": "99fcbe483f561df8dc5ed133b3c00baeba1fb4a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/lists/split.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/lists/split.agda", "max_line_length": 145, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/lists/split.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 1079, "size": 2304 }
------------------------------------------------------------------------ -- A proof of univalence for an arbitrary "equality with J" ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} import Equality.Path as P module Equality.Path.Isomorphisms.Univalence {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq import Equality.Path.Univalence as PU open import Prelude open import Equivalence equality-with-J open import Univalence-axiom equality-with-J open import Equality.Path.Isomorphisms eq private variable ℓ : Level -- Univalence. univ : Univalence ℓ univ = _≃_.from Univalence≃Univalence PU.univ -- A variant of univ that does not compute at compile-time. abstract abstract-univ : Univalence ℓ abstract-univ = univ -- Propositional extensionality. prop-ext : Propositional-extensionality ℓ prop-ext = _≃_.from (Propositional-extensionality-is-univalence-for-propositions ext) (λ _ _ → univ)
{ "alphanum_fraction": 0.63996139, "avg_line_length": 23.5454545455, "ext": "agda", "hexsha": "45af587412d49317e3ce2903c3ca609e524e6935", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Equality/Path/Isomorphisms/Univalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Equality/Path/Isomorphisms/Univalence.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Equality/Path/Isomorphisms/Univalence.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 249, "size": 1036 }
{- Types Summer School 2007 Bertinoro Aug 19 - 31, 2007 Agda Ulf Norell -} -- Let's have a closer look at the module system module Modules where {- Importing and opening modules -} -- You can import a module defined in a different file. import Nat -- This will bring the module into scope and allows you to -- access its contents using qualified names. plusTwo : Nat.Nat -> Nat.Nat plusTwo n = Nat._+_ n 2 -- To bring everything from a module into scope you can open -- the module. open Nat z : Nat z = zero -- There's also a short-hand to import and open at the same time open import Bool _&&_ : Bool -> Bool -> Bool x && y = if x then y else false -- Sometimes it's nice to be able to control what is brought -- into scope when you open a module. There are three modifiers -- that affect this: using, hiding and renaming. module DifferentWaysOfOpeningNat where -- nothing but Nat open Nat using (Nat) -- everything but zero open Nat hiding (zero) -- everything, but zero and suc under different names open Nat renaming (zero to ZZ; suc to S_S) two : Nat two = S S zero S S -- you can combine using or hiding with renaming, but not using -- with hiding (for obvious reasons). -- To re-export something opened use the public modifier. module A where open Nat public using (Nat) N = A.Nat -- now Nat is a visible name in module A {- Parameterised modules -} -- A very useful feature is parameterised modules. data Vec (A : Set) : Nat -> Set where [] : Vec A 0 _::_ : {n : Nat} -> A -> Vec A n -> Vec A (suc n) infixr 40 _::_ module Sort {A : Set}(_≤_ : A -> A -> Bool) where insert : {n : Nat} -> A -> Vec A n -> Vec A (suc n) insert x [] = x :: [] insert x (y :: ys) = if x ≤ y then x :: y :: ys else y :: insert x ys sort : {n : Nat} -> Vec A n -> Vec A n sort [] = [] sort (x :: xs) = insert x (sort xs) _≤_ : Nat -> Nat -> Bool zero ≤ m = true suc n ≤ zero = false suc n ≤ suc m = n ≤ m -- When used directly, functions from parameterised modules -- take the parameters as extra arguments. test = Sort.sort _≤_ (6 :: 2 :: 0 :: 4 :: []) -- But, you can also apply the entire module to its arguments. -- Let's open the new module while we're at it. open module SortNat = Sort _≤_ test' = sort (3 :: 2 :: 4 :: 0 :: []) {- Local definitions -} data _==_ {A : Set}(x : A) : A -> Set where refl : x == x subst : {A : Set}(C : A -> Set){x y : A} -> x == y -> C x -> C y subst C refl cx = cx cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl lem₁ : (n : Nat) -> n + 0 == n lem₁ zero = refl lem₁ (suc n) = cong suc (lem₁ n) lem₂ : (n m : Nat) -> n + suc m == suc n + m lem₂ n zero = refl lem₂ n (suc m) = cong suc (lem₂ n m) {- What's next? -} -- The final thing on the agenda is records. -- Move on to: Records.agda
{ "alphanum_fraction": 0.5890823845, "avg_line_length": 20.4520547945, "ext": "agda", "hexsha": "f31e13c81efe58838d4131b447c7e5c196459cb5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/SummerSchool07/Lecture/Modules.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/SummerSchool07/Lecture/Modules.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/SummerSchool07/Lecture/Modules.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 913, "size": 2986 }
-- The point of this test is to check that we don't create needlessly -- large anonymous modules when we open a module application. {-# OPTIONS -vscope.mod.inst:10 -vtc.section.apply:20 #-} module Optimised-open where postulate A : Set module M₁ (A : Set) where postulate P : A → Set X : Set -- There is no point in creating a module containing X here. open M₁ A using (P) postulate a : A p : P a module M₂ where -- Or here. open M₁ A public using () renaming (P to P′) postulate p′ : P′ a open M₂ -- Make sure that we get a type error. postulate x : P P
{ "alphanum_fraction": 0.6621621622, "avg_line_length": 16.9142857143, "ext": "agda", "hexsha": "d9fba35746dad7c6ecebef2fa06ed59c18a2b706", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/Optimised-open.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/Optimised-open.agda", "max_line_length": 69, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Optimised-open.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 178, "size": 592 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Quivers where -- The Category of Quivers open import Level using (Level; suc; _⊔_) open import Relation.Binary.PropositionalEquality.Core using (refl) open import Data.Quiver using (Quiver) open import Data.Quiver.Morphism using (Morphism; id; _∘_; _≃_; ≃-Equivalence; ≃-resp-∘) open import Categories.Category.Core using (Category) private variable o ℓ e o′ ℓ′ e′ : Level Quivers : ∀ o ℓ e → Category (suc (o ⊔ ℓ ⊔ e)) (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e) Quivers o ℓ e = record { Obj = Quiver o ℓ e ; _⇒_ = Morphism ; _≈_ = _≃_ ; id = id ; _∘_ = _∘_ ; assoc = λ {_ _ _ G} → record { F₀≡ = refl ; F₁≡ = Equiv.refl G } ; sym-assoc = λ {_ _ _ G} → record { F₀≡ = refl ; F₁≡ = Equiv.refl G } ; identityˡ = λ {_ G} → record { F₀≡ = refl ; F₁≡ = Equiv.refl G } ; identityʳ = λ {_ G} → record { F₀≡ = refl ; F₁≡ = Equiv.refl G } ; identity² = λ {G} → record { F₀≡ = refl ; F₁≡ = Equiv.refl G } ; equiv = ≃-Equivalence ; ∘-resp-≈ = ≃-resp-∘ } where open Quiver using (module Equiv)
{ "alphanum_fraction": 0.5744680851, "avg_line_length": 33.1764705882, "ext": "agda", "hexsha": "0b98f5c14bd54e1b649e009add08f15a00818196", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Quivers.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Quivers.agda", "max_line_length": 88, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Quivers.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 436, "size": 1128 }
-- Andreas, 2018-10-16, runtime erasure id : (@0 A : Set) (@0 x : A) → A id A x = x -- Expected error: -- -- Variable x is declared erased, so it cannot be used here -- when checking that the expression x has type A
{ "alphanum_fraction": 0.6467889908, "avg_line_length": 21.8, "ext": "agda", "hexsha": "b74c29355d57b868608b8ce27b7280f5c6241dc4", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Erasure-Illegal-Access.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Erasure-Illegal-Access.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Erasure-Illegal-Access.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 68, "size": 218 }
module Numeral.Natural.Induction{ℓ} where open import Logic open import Logic.Propositional open import Functional open import Numeral.Natural -- The induction proof method on natural numbers -- TODO: There seems to be a problem making i implicit with unsolved metas. -- TODO: Maybe rename to elim because this is the elimination rule for ℕ ℕ-elim : ∀{T : ℕ → Stmt{ℓ}} → T(𝟎) → ((i : ℕ) → T(i) → T(𝐒(i))) → ((n : ℕ) → T(n)) ℕ-elim {T} base step 𝟎 = base ℕ-elim {T} base step (𝐒(n)) = step n (ℕ-elim {T} base step n) [ℕ]-induction : ∀{φ : ℕ → Stmt{ℓ}} → φ(𝟎) → (∀(i : ℕ) → φ(i) → φ(𝐒(i))) → (∀{n} → φ(n)) [ℕ]-induction {φ} base step {n} = ℕ-elim {φ} base step n [ℕ]-inductionᵢ : ∀{φ : ℕ → Stmt{ℓ}} → φ(𝟎) → (∀{i : ℕ} → φ(i) → φ(𝐒(i))) → (∀{n} → φ(n)) [ℕ]-inductionᵢ {φ} base step = [ℕ]-induction {φ} base (i ↦ step{i})
{ "alphanum_fraction": 0.592503023, "avg_line_length": 41.35, "ext": "agda", "hexsha": "b5cabb5dcdd4326ab715819f924180132e6ad3e5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Induction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Induction.agda", "max_line_length": 88, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Induction.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 347, "size": 827 }
module Common.PredicateBasedContext where open import Common.Predicate public -- Predicate-based context membership. module _ {U : Set} where infix 3 _∈_ _∈_ : U → Pred (Cx U) A ∈ Γ = Any (_≡ A) Γ infix 3 _∉_ _∉_ : U → Pred (Cx U) A ∉ Γ = Not (A ∈ Γ) lookup : ∀ {Γ P} → All P Γ → (∀ {A} → A ∈ Γ → P A) -- Alternatively: -- lookup : ∀ {Γ P} → All P Γ → (_∈ Γ) ⊆ᴾ P lookup ∅ () lookup (γ , a) (top refl) = a lookup (γ , a) (pop i) = lookup γ i tabulate : ∀ {Γ P} → (∀ {A} → A ∈ Γ → P A) → All P Γ -- Alternatively: -- tabulate : ∀ {Γ P} → (_∈ Γ) ⊆ᴾ P → All P Γ tabulate {∅} f = ∅ tabulate {Γ , A} f = tabulate (f ∘ pop) , f (top refl) bot∈ : ∀ {A} → A ∉ ∅ bot∈ () [_]ᴵˣ : ∀ {A Γ} → A ∈ Γ → ℕ [ top refl ]ᴵˣ = zero [ pop i ]ᴵˣ = suc [ i ]ᴵˣ i₀ : ∀ {A Γ} → A ∈ Γ , A i₀ = top refl i₁ : ∀ {A B Γ} → A ∈ Γ , A , B i₁ = pop i₀ i₂ : ∀ {A B C Γ} → A ∈ Γ , A , B , C i₂ = pop i₁ -- Predicate-based context inclusion. module _ {U : Set} where -- NOTE: This is similar to Ren from Conor’s fish-and-chips development. infix 3 _⊆_ _⊆_ : Cx U → Pred (Cx U) Γ ⊆ Γ′ = ∀ {A} → A ∈ Γ → A ∈ Γ′ -- Alternatively: -- Γ ⊆ Γ′ = (_∈ Γ) ⊆ᴾ (_∈ Γ′) infix 3 _⊈_ _⊈_ : Cx U → Pred (Cx U) Γ ⊈ Γ′ = Not (Γ ⊆ Γ′) skip⊆ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊆ Γ′ , A skip⊆ η = pop ∘ η -- NOTE: This is similar to wkr from Conor’s fish-and-chips development. keep⊆ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ , A ⊆ Γ′ , A keep⊆ η (top refl) = top refl keep⊆ η (pop i) = pop (η i) refl⊆ : ∀ {Γ} → Γ ⊆ Γ refl⊆ {Γ} = refl⊆ᴾ {P = _∈ Γ} trans⊆ : ∀ {Γ Γ′ Γ″} → Γ ⊆ Γ′ → Γ′ ⊆ Γ″ → Γ ⊆ Γ″ trans⊆ {Γ} η η′ = trans⊆ᴾ {P = _∈ Γ} η η′ unskip⊆ : ∀ {A Γ Γ′} → Γ , A ⊆ Γ′ → Γ ⊆ Γ′ unskip⊆ η = η ∘ pop -- NOTE: This doesn’t seem possible. -- unkeep⊆ : ∀ {A Γ Γ′} → Γ , A ⊆ Γ′ , A → Γ ⊆ Γ′ weak⊆ : ∀ {A Γ} → Γ ⊆ Γ , A weak⊆ = pop bot⊆ : ∀ {Γ} → ∅ ⊆ Γ bot⊆ () -- Predicate-based context equality. module _ {U : Set} where infix 3 _⫗_ _⫗_ : Cx U → Pred (Cx U) Γ ⫗ Γ′ = (Γ ⊆ Γ′) × (Γ′ ⊆ Γ) infix 3 _⫘_ _⫘_ : Cx U → Pred (Cx U) Γ ⫘ Γ′ = Not (Γ ⫗ Γ′) refl⫗ : ∀ {Γ} → Γ ⫗ Γ refl⫗ {Γ} = refl⫗ᴾ {P = _∈ Γ} trans⫗ : ∀ {Γ Γ′ Γ″} → Γ ⫗ Γ′ → Γ′ ⫗ Γ″ → Γ ⫗ Γ″ trans⫗ {Γ} σ σ′ = trans⫗ᴾ {P = _∈ Γ} σ σ′ sym⫗ : ∀ {Γ Γ′} → Γ ⫗ Γ′ → Γ′ ⫗ Γ sym⫗ {Γ} σ = sym⫗ᴾ {P = _∈ Γ} σ antisym⊆ : ∀ {Γ Γ′} → ((Γ ⊆ Γ′) × (Γ′ ⊆ Γ)) ≡ (Γ ⫗ Γ′) antisym⊆ {Γ} = antisym⊆ᴾ {P = _∈ Γ} -- Monotonicity with respect to predicate-based context inclusion. module _ {U : Set} where mono∈ : ∀ {A : U} {Γ Γ′} → Γ ⊆ Γ′ → A ∈ Γ → A ∈ Γ′ mono∈ η i = η i reflmono∈ : ∀ {A Γ} → (i : A ∈ Γ) → i ≡ mono∈ refl⊆ i reflmono∈ i = refl transmono∈ : ∀ {A Γ Γ′ Γ″} → (η : Γ ⊆ Γ′) (η′ : Γ′ ⊆ Γ″) (i : A ∈ Γ) → mono∈ η′ (mono∈ η i) ≡ mono∈ (trans⊆ η η′) i transmono∈ η η′ i = refl -- Predicate-based context concatenation. module _ {U : Set} where _⧺_ : Cx U → Cx U → Cx U Γ ⧺ ∅ = Γ Γ ⧺ (Γ′ , A) = (Γ ⧺ Γ′) , A id⧺₁ : ∀ {Γ} → Γ ⧺ ∅ ≡ Γ id⧺₁ = refl id⧺₂ : ∀ {Γ} → ∅ ⧺ Γ ≡ Γ id⧺₂ {∅} = refl id⧺₂ {Γ , A} = cong² _,_ id⧺₂ refl weak⊆⧺₁ : ∀ {Γ} Γ′ → Γ ⊆ Γ ⧺ Γ′ weak⊆⧺₁ ∅ = refl⊆ weak⊆⧺₁ (Γ′ , A) = skip⊆ (weak⊆⧺₁ Γ′) weak⊆⧺₂ : ∀ {Γ Γ′} → Γ′ ⊆ Γ ⧺ Γ′ weak⊆⧺₂ {Γ} {∅} = bot⊆ weak⊆⧺₂ {Γ} {Γ′ , A} = keep⊆ weak⊆⧺₂ -- Predicate-based context thinning. module _ {U : Set} where _-_ : ∀ {A} → (Γ : Cx U) → A ∈ Γ → Cx U ∅ - () (Γ , A) - top refl = Γ (Γ , B) - pop i = (Γ - i) , B thin⊆ : ∀ {A Γ} → (i : A ∈ Γ) → Γ - i ⊆ Γ thin⊆ (top refl) = pop thin⊆ (pop i) = keep⊆ (thin⊆ i) -- Decidable predicate-based context membership equality. module _ {U : Set} where data _=∈_ {A : U} {Γ} (i : A ∈ Γ) : ∀ {C} → Pred (C ∈ Γ) where same : i =∈ i diff : ∀ {C} → (j : C ∈ Γ - i) → i =∈ mono∈ (thin⊆ i) j _≟∈_ : ∀ {A C Γ} → (i : A ∈ Γ) (j : C ∈ Γ) → i =∈ j top refl ≟∈ top refl = same top refl ≟∈ pop j = diff j pop i ≟∈ top refl = diff (top refl) pop i ≟∈ pop j with i ≟∈ j pop i ≟∈ pop .i | same = same pop i ≟∈ pop ._ | diff j = diff (pop j)
{ "alphanum_fraction": 0.4388593523, "avg_line_length": 23.5113636364, "ext": "agda", "hexsha": "9f4c85d381a76f35b05e67f0a0b78da393dd1c9f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "Common/PredicateBasedContext.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "Common/PredicateBasedContext.agda", "max_line_length": 74, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "Common/PredicateBasedContext.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 2217, "size": 4138 }
open import ExtractSac as ES using () open import Extract (ES.kompile-fun) open import Data.Nat as N using (ℕ; zero; suc; _≤_; _≥_; _<_; s≤s; z≤n) import Data.Nat.DivMod as N open import Data.Nat.Properties as N open import Data.List as L using (List; []; _∷_) open import Data.Vec as V using (Vec; []; _∷_) import Data.Vec.Properties as V open import Data.Fin using (Fin; zero; suc; #_) open import Data.Product as Prod using (Σ; _,_; curry; uncurry) renaming (_×_ to _⊗_) open import Relation.Binary.PropositionalEquality open import Reflection open import Structures open import Function open import Array.Base open import Array.Properties open import APL2 open import Agda.Builtin.Float v→a : ∀ {a}{X : Set a}{n} → Vec X n → Ar X 1 (n ∷ []) v→a s = imap (λ iv → V.lookup s $ ix-lookup iv zero ) a→v : ∀ {a}{X : Set a}{s} → Ar X 1 (s ∷ []) → Vec X s a→v (imap x) = V.tabulate λ i → x (i ∷ []) -- blog←{⍺×⍵×1-⍵} blog : ∀ {n s} → Ar Float n s → Ar Float n s → Ar Float n s blog α ω = α ×ᵣ ω ×ᵣ 1.0 -ᵣ ω test-blog = a→v $ blog (v→a $ 3.0 ∷ 4.0 ∷ []) (v→a $ 5.0 ∷ 6.0 ∷ []) kblog = kompile blog [] [] test₃₆ : kblog ≡ ok _ test₃₆ = refl -- backbias←{+/,⍵} backbias : ∀ {n s} → Ar Float n s → Scal Float backbias ω = --(▾_ ∘₂ _+ᵣ_) / , ω _+ᵣ′_ / , ω where --_+ᵣ′_ : Float → Float → Float --a +ᵣ′ b = ▾ (a +ᵣ b) _+ᵣ′_ = primFloatPlus kbackbias = kompile backbias (quote prod ∷ []) (quote prod ∷ quote off→idx ∷ quote reduce-custom.reduce-1d ∷ []) --test₃₇ : kbackbias ≡ ok _ --test₃₇ = refl -- logistic←{÷1+*-⍵} logistic : ∀ {n s} → Ar Float n s → Ar Float n s logistic ω = ÷ᵣ 1.0 +ᵣ *ᵣ -ᵣ ω klogistic = kompile logistic [] [] test₃₈ : klogistic ≡ ok _ test₃₈ = refl -- meansqerr←{÷∘2+/,(⍺-⍵)*2} meansqerr : ∀ {n s} → Ar Float n s → Ar Float n s → Scal Float meansqerr α ω = _÷ᵣ 2.0 $ _+ᵣ′_ / , (α +ᵣ ω) ×ᵣ (α -ᵣ ω) where _+ᵣ′_ = primFloatPlus kmeansqerr = kompile meansqerr (quote prod ∷ []) (quote prod ∷ quote off→idx ∷ quote reduce-custom.reduce-1d ∷ []) test₃₉ : klogistic ≡ ok _ test₃₉ = refl -- backavgpool←{2⌿2/⍵÷4}⍤2 backavgpool : ∀ {s} → Ar Float 2 s → Ar Float 2 $ ▾ (2 × s) backavgpool {s = _ ∷ _ ∷ []} ω = 2 /ᵣ′ 2 ⌿ᵣ ω ×ᵣ 4.0 where infixr 20 _/ᵣ′_ _/ᵣ′_ = _/ᵣ_ {s = _ ∷ []} kbackavgpool = kompile backavgpool [] [] test₄₀ : kbackavgpool ≡ ok _ test₄₀ = refl -- Something that could go in Stdlib. ≡⇒≤ : ∀ {a b} → a ≡ b → a N.≤ b ≡⇒≤ refl = ≤-refl -- This should be perfectly generaliseable --- instead of 2 -- we can use any m>0 a<b⇒k<2⇒a*2+k<b*2 : ∀ {a b k} → a N.< b → k N.< 2 → a N.* 2 N.+ k N.< b N.* 2 a<b⇒k<2⇒a*2+k<b*2 {a} {b} {zero} a<b k<2 rewrite (+-identityʳ (a N.* 2)) | (*-comm a 2) | (*-comm b 2) = *-monoʳ-< 1 a<b a<b⇒k<2⇒a*2+k<b*2 {a} {b} {suc zero} a<b k<2 = ≤-trans (N.s≤s (≡⇒≤ (+-comm _ 1))) (*-monoˡ-≤ 2 a<b) a<b⇒k<2⇒a*2+k<b*2 {a} {b} {suc (suc k)} a<b (N.s≤s (N.s≤s ())) A<B⇒K<2⇒A*2+K<B*2 : ∀ {n s}{a b k : Ar ℕ n s} → a <a b → k <a (cst 2) → ((a × 2) + k) <a (b × 2) A<B⇒K<2⇒A*2+K<B*2 {a = imap a} {imap b} {imap k} a<b k<2 = λ iv → a<b⇒k<2⇒a*2+k<b*2 (a<b iv) (k<2 iv) avgpool : ∀ {s} → Ar Float 2 $ ▾ (s × 2) → Ar Float 2 s avgpool {s} (imap p) = imap body where body : _ → _ body iv = ▾ (_÷ᵣ 4.0 $ _+ᵣ′_ / , f ̈ ι [2,2]) where [2,2] = cst {s = 2 ∷ []} 2 f : _ → _ f (i , pf) = let ix , ix<s = ix→a iv in p $ a→ix ((ix × 2) + i) (s × 2) $ A<B⇒K<2⇒A*2+K<B*2 ix<s pf _+ᵣ′_ = primFloatPlus kavgpool = kompile avgpool [] [] open import ReflHelper fin-id : ∀ {n} → Fin n → Fin n fin-id x = x
{ "alphanum_fraction": 0.5238990333, "avg_line_length": 27.3823529412, "ext": "agda", "hexsha": "df48ebfb6513c4a6460af1fa21e9e1c7eacff68b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "ashinkarov/agda-extractor", "max_forks_repo_path": "Example-03.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "ashinkarov/agda-extractor", "max_issues_repo_path": "Example-03.agda", "max_line_length": 114, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c8954c8acd8089ced82af9e05084fbbc7fedb36c", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "ashinkarov/agda-extractor", "max_stars_repo_path": "Example-03.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-11T14:52:59.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-11T14:52:59.000Z", "num_tokens": 1738, "size": 3724 }
module Structure.Relator.Ordering.Proofs where import Lvl open import Functional open import Lang.Instance open import Logic open import Structure.Relator.Ordering open import Structure.Relator.Properties open import Syntax.Transitivity open import Type private variable ℓ : Lvl.Level private variable A B : Type{ℓ} private variable _≤_ _≤₁_ _≤₂_ : A → A → Stmt{ℓ} private variable f : A → B private variable x : A module _ ⦃ trans : Transitivity{T = B}(_≤_) ⦄ where open Strict.Properties -- TODO: Agda bug 20200523 does not allow instance arg accessibleₗ-image-by-trans : Accessibleₗ{T = B}(_≤_)(f(x)) → Accessibleₗ((_≤_) on₂ f)(x) accessibleₗ-image-by-trans {f = f} {y} (intro ⦃ acc ⦄) = intro ⦃ \{x} ⦃ xy ⦄ → intro ⦃ \{a} ⦃ ax ⦄ → accessibleₗ-image-by-trans (acc {f(a)} ⦃ transitivity(_≤_) ax xy ⦄ ) ⦄ ⦄ wellfounded-image-by-trans : ∀{f : A → B} → ⦃ _ : WellFounded{T = B}(_≤_) ⦄ → WellFounded((_≤_) on₂ f) wellfounded-image-by-trans = accessibleₗ-image-by-trans infer module _ ⦃ refl : Reflexivity{T = B}(_≤_) ⦄ where open Strict.Properties accessibleₗ-image-by-refl : ⦃ _ : Accessibleₗ{T = B}(_≤_)(f(x)) ⦄ → Accessibleₗ((_≤_) on₂ f)(x) accessibleₗ-image-by-refl {f = f} {y} ⦃ intro ⦃ acc ⦄ ⦄ = accessibleₗ-image-by-refl ⦃ acc{f(y)} ⦃ reflexivity(_≤_) ⦄ ⦄ wellfounded-image-by-refl : ∀{f : A → B} → ⦃ _ : WellFounded{T = B}(_≤_) ⦄ → WellFounded((_≤_) on₂ f) wellfounded-image-by-refl = accessibleₗ-image-by-refl module _ ⦃ sub : (_≤₁_) ⊆₂ (_≤₂_) ⦄ where open Strict.Properties accessibleₗ-sub₂ : ⦃ _ : Accessibleₗ(_≤₂_)(x) ⦄ → Accessibleₗ(_≤₁_)(x) accessibleₗ-sub₂ {x = y} ⦃ intro ⦃ acc ⦄ ⦄ = intro ⦃ \{x} ⦃ xy ⦄ → accessibleₗ-sub₂ ⦃ acc{x} ⦃ sub₂(_≤₁_)(_≤₂_) xy ⦄ ⦄ ⦄ wellfounded-sub₂ : ⦃ _ : WellFounded(_≤₂_) ⦄ → WellFounded(_≤₁_) wellfounded-sub₂ = accessibleₗ-sub₂
{ "alphanum_fraction": 0.6577070762, "avg_line_length": 40.5111111111, "ext": "agda", "hexsha": "2df7e6ad1f25a7389e82a84c195d9d3b27e8775e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Relator/Ordering/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Relator/Ordering/Proofs.agda", "max_line_length": 175, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Relator/Ordering/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 741, "size": 1823 }
{-# OPTIONS --safe #-} module Cubical.Algebra.AbGroup.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Transport open import Cubical.Foundations.SIP open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Algebra.Monoid open import Cubical.Algebra.CommMonoid open import Cubical.Algebra.Group open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.DirProd open import Cubical.Displayed.Base open import Cubical.Displayed.Auto open import Cubical.Displayed.Record open import Cubical.Displayed.Universe open import Cubical.Reflection.RecordEquiv open Iso private variable ℓ ℓ' : Level record IsAbGroup {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) : Type ℓ where constructor isabgroup field isGroup : IsGroup 0g _+_ -_ +Comm : (x y : G) → x + y ≡ y + x open IsGroup isGroup public renaming ( ·Assoc to +Assoc ; ·IdL to +IdL ; ·IdR to +IdR ; ·InvL to +InvL ; ·InvR to +InvR) infixl 6 _-_ -- Useful notation for additive groups _-_ : G → G → G x - y = x + (- y) unquoteDecl IsAbGroupIsoΣ = declareRecordIsoΣ IsAbGroupIsoΣ (quote IsAbGroup) record AbGroupStr (A : Type ℓ) : Type (ℓ-suc ℓ) where constructor abgroupstr field 0g : A _+_ : A → A → A -_ : A → A isAbGroup : IsAbGroup 0g _+_ -_ infixr 7 _+_ infix 8 -_ open IsAbGroup isAbGroup public AbGroup : ∀ ℓ → Type (ℓ-suc ℓ) AbGroup ℓ = TypeWithStr ℓ AbGroupStr module _ {G : Type ℓ} {0g : G} {_+_ : G → G → G} { -_ : G → G} (is-setG : isSet G) (+Assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z) (+IdR : (x : G) → x + 0g ≡ x) (+InvR : (x : G) → x + (- x) ≡ 0g) (+Comm : (x y : G) → x + y ≡ y + x) where makeIsAbGroup : IsAbGroup 0g _+_ -_ makeIsAbGroup .IsAbGroup.isGroup = makeIsGroup is-setG +Assoc +IdR (λ x → +Comm _ _ ∙ +IdR x) +InvR (λ x → +Comm _ _ ∙ +InvR x) makeIsAbGroup .IsAbGroup.+Comm = +Comm module _ {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) (is-setG : isSet G) (+Assoc : (x y z : G) → x + (y + z) ≡ (x + y) + z) (+IdR : (x : G) → x + 0g ≡ x) (+InvR : (x : G) → x + (- x) ≡ 0g) (+Comm : (x y : G) → x + y ≡ y + x) where makeAbGroup : AbGroup ℓ makeAbGroup .fst = G makeAbGroup .snd .AbGroupStr.0g = 0g makeAbGroup .snd .AbGroupStr._+_ = _+_ makeAbGroup .snd .AbGroupStr.-_ = -_ makeAbGroup .snd .AbGroupStr.isAbGroup = makeIsAbGroup is-setG +Assoc +IdR +InvR +Comm open GroupStr open AbGroupStr open IsAbGroup AbGroupStr→GroupStr : {G : Type ℓ} → AbGroupStr G → GroupStr G AbGroupStr→GroupStr A .1g = A .0g AbGroupStr→GroupStr A ._·_ = A ._+_ AbGroupStr→GroupStr A .inv = A .-_ AbGroupStr→GroupStr A .isGroup = A .isAbGroup .isGroup AbGroup→Group : AbGroup ℓ → Group ℓ fst (AbGroup→Group A) = fst A snd (AbGroup→Group A) = AbGroupStr→GroupStr (snd A) Group→AbGroup : (G : Group ℓ) → ((x y : fst G) → _·_ (snd G) x y ≡ _·_ (snd G) y x) → AbGroup ℓ fst (Group→AbGroup G +Comm) = fst G AbGroupStr.0g (snd (Group→AbGroup G +Comm)) = 1g (snd G) AbGroupStr._+_ (snd (Group→AbGroup G +Comm)) = _·_ (snd G) AbGroupStr.- snd (Group→AbGroup G +Comm) = inv (snd G) IsAbGroup.isGroup (AbGroupStr.isAbGroup (snd (Group→AbGroup G +Comm))) = isGroup (snd G) IsAbGroup.+Comm (AbGroupStr.isAbGroup (snd (Group→AbGroup G +Comm))) = +Comm module _ ((G , abgroupstr _ _ _ GisGroup) : AbGroup ℓ) where AbGroup→CommMonoid : CommMonoid ℓ AbGroup→CommMonoid .fst = G AbGroup→CommMonoid .snd .CommMonoidStr.ε = _ AbGroup→CommMonoid .snd .CommMonoidStr._·_ = _ AbGroup→CommMonoid .snd .CommMonoidStr.isCommMonoid .IsCommMonoid.isMonoid = IsAbGroup.isMonoid GisGroup AbGroup→CommMonoid .snd .CommMonoidStr.isCommMonoid .IsCommMonoid.·Comm = IsAbGroup.+Comm GisGroup isSetAbGroup : (A : AbGroup ℓ) → isSet ⟨ A ⟩ isSetAbGroup A = isSetGroup (AbGroup→Group A) AbGroupHom : (G : AbGroup ℓ) (H : AbGroup ℓ') → Type (ℓ-max ℓ ℓ') AbGroupHom G H = GroupHom (AbGroup→Group G) (AbGroup→Group H) AbGroupIso : (G : AbGroup ℓ) (H : AbGroup ℓ') → Type (ℓ-max ℓ ℓ') AbGroupIso G H = GroupIso (AbGroup→Group G) (AbGroup→Group H) IsAbGroupEquiv : {A : Type ℓ} {B : Type ℓ'} (G : AbGroupStr A) (e : A ≃ B) (H : AbGroupStr B) → Type (ℓ-max ℓ ℓ') IsAbGroupEquiv G e H = IsGroupHom (AbGroupStr→GroupStr G) (e .fst) (AbGroupStr→GroupStr H) AbGroupEquiv : (G : AbGroup ℓ) (H : AbGroup ℓ') → Type (ℓ-max ℓ ℓ') AbGroupEquiv G H = Σ[ e ∈ (G .fst ≃ H .fst) ] IsAbGroupEquiv (G .snd) e (H .snd) isPropIsAbGroup : {G : Type ℓ} (0g : G) (_+_ : G → G → G) (-_ : G → G) → isProp (IsAbGroup 0g _+_ (-_)) isPropIsAbGroup 0g _+_ -_ = isOfHLevelRetractFromIso 1 IsAbGroupIsoΣ (isPropΣ (isPropIsGroup 0g _+_ (-_)) (λ grp → isPropΠ2 (λ _ _ → grp .is-set _ _))) where open IsGroup 𝒮ᴰ-AbGroup : DUARel (𝒮-Univ ℓ) AbGroupStr ℓ 𝒮ᴰ-AbGroup = 𝒮ᴰ-Record (𝒮-Univ _) IsAbGroupEquiv (fields: data[ _+_ ∣ autoDUARel _ _ ∣ pres· ] data[ 0g ∣ autoDUARel _ _ ∣ pres1 ] data[ -_ ∣ autoDUARel _ _ ∣ presinv ] prop[ isAbGroup ∣ (λ _ _ → isPropIsAbGroup _ _ _) ]) where open AbGroupStr open IsGroupHom -- Extract the characterization of equality of groups AbGroupPath : (G H : AbGroup ℓ) → (AbGroupEquiv G H) ≃ (G ≡ H) AbGroupPath = ∫ 𝒮ᴰ-AbGroup .UARel.ua -- The module below defines an abelian group induced from an -- equivalence between an abelian group G and a type A which preserves -- the full raw group structure from G to A. This version is useful -- when proving that some type equivalent to an abelian group is an -- abelian group while also specifying the binary operation, unit and -- inverse. For an example of this see Algebra.Matrix module _ (G : AbGroup ℓ) {A : Type ℓ} (m : A → A → A) (u : A) (inverse : A → A) (e : ⟨ G ⟩ ≃ A) (p+ : ∀ x y → e .fst (G .snd ._+_ x y) ≡ m (e .fst x) (e .fst y)) (pu : e .fst (G .snd .0g) ≡ u) (pinv : ∀ x → e .fst (G .snd .-_ x) ≡ inverse (e .fst x)) where private module G = AbGroupStr (G .snd) BaseΣ : Type (ℓ-suc ℓ) BaseΣ = Σ[ B ∈ Type ℓ ] (B → B → B) × B × (B → B) FamilyΣ : BaseΣ → Type ℓ FamilyΣ (B , m , u , i) = IsAbGroup u m i inducedΣ : FamilyΣ (A , m , u , inverse) inducedΣ = subst FamilyΣ (UARel.≅→≡ (autoUARel BaseΣ) (e , p+ , pu , pinv)) G.isAbGroup InducedAbGroup : AbGroup ℓ InducedAbGroup .fst = A InducedAbGroup .snd ._+_ = m InducedAbGroup .snd .0g = u InducedAbGroup .snd .-_ = inverse InducedAbGroup .snd .isAbGroup = inducedΣ InducedAbGroupEquiv : AbGroupEquiv G InducedAbGroup fst InducedAbGroupEquiv = e snd InducedAbGroupEquiv = makeIsGroupHom p+ InducedAbGroupPath : G ≡ InducedAbGroup InducedAbGroupPath = AbGroupPath _ _ .fst InducedAbGroupEquiv -- The module below defines an abelian group induced from an -- equivalence which preserves the binary operation (i.e. a group -- isomorphism). This version is useful when proving that some type -- equivalent to an abelian group G is an abelian group when one -- doesn't care about what the unit and inverse are. When using this -- version the unit and inverse will both be defined by transporting -- over the unit and inverse from G to A. module _ (G : AbGroup ℓ) {A : Type ℓ} (m : A → A → A) (e : ⟨ G ⟩ ≃ A) (p· : ∀ x y → e .fst (G .snd ._+_ x y) ≡ m (e .fst x) (e .fst y)) where private module G = AbGroupStr (G .snd) FamilyΣ : Σ[ B ∈ Type ℓ ] (B → B → B) → Type ℓ FamilyΣ (B , n) = Σ[ e ∈ B ] Σ[ i ∈ (B → B) ] IsAbGroup e n i inducedΣ : FamilyΣ (A , m) inducedΣ = subst FamilyΣ (UARel.≅→≡ (autoUARel (Σ[ B ∈ Type ℓ ] (B → B → B))) (e , p·)) (G.0g , G.-_ , G.isAbGroup) InducedAbGroupFromPres· : AbGroup ℓ InducedAbGroupFromPres· .fst = A InducedAbGroupFromPres· .snd ._+_ = m InducedAbGroupFromPres· .snd .0g = inducedΣ .fst InducedAbGroupFromPres· .snd .-_ = inducedΣ .snd .fst InducedAbGroupFromPres· .snd .isAbGroup = inducedΣ .snd .snd InducedAbGroupEquivFromPres· : AbGroupEquiv G InducedAbGroupFromPres· fst InducedAbGroupEquivFromPres· = e snd InducedAbGroupEquivFromPres· = makeIsGroupHom p· InducedAbGroupPathFromPres· : G ≡ InducedAbGroupFromPres· InducedAbGroupPathFromPres· = AbGroupPath _ _ .fst InducedAbGroupEquivFromPres· dirProdAb : AbGroup ℓ → AbGroup ℓ' → AbGroup (ℓ-max ℓ ℓ') dirProdAb A B = Group→AbGroup (DirProd (AbGroup→Group A) (AbGroup→Group B)) λ p q → ΣPathP (+Comm (isAbGroup (snd A)) _ _ , +Comm (isAbGroup (snd B)) _ _) trivialAbGroup : ∀ {ℓ} → AbGroup ℓ fst trivialAbGroup = Unit* 0g (snd trivialAbGroup) = tt* _+_ (snd trivialAbGroup) _ _ = tt* (- snd trivialAbGroup) _ = tt* isAbGroup (snd trivialAbGroup) = makeIsAbGroup (isProp→isSet isPropUnit*) (λ _ _ _ → refl) (λ _ → refl) (λ _ → refl) (λ _ _ → refl) -- useful lemma -- duplicate propeerties => this file should be split ! move4 : ∀ {ℓ} {A : Type ℓ} (x y z w : A) (_+_ : A → A → A) → ((x y z : A) → x + (y + z) ≡ (x + y) + z) → ((x y : A) → x + y ≡ y + x) → (x + y) + (z + w) ≡ ((x + z) + (y + w)) move4 x y z w _+_ assoc +Comm = sym (assoc x y (z + w)) ∙∙ cong (x +_) (assoc y z w ∙∙ cong (_+ w) (+Comm y z) ∙∙ sym (assoc z y w)) ∙∙ assoc x z (y + w) ---- The type of homomorphisms A → B is an AbGroup if B is ----- module _ {ℓ ℓ' : Level} (AGr : Group ℓ) (BGr : AbGroup ℓ') where private strA = snd AGr strB = snd BGr _* = AbGroup→Group A = fst AGr B = fst BGr open IsGroupHom open AbGroupStr strB renaming (_+_ to _+B_ ; -_ to -B_ ; 0g to 0B ; +IdR to +IdRB ; +IdL to +IdLB ; +Assoc to +AssocB ; +Comm to +CommB ; +InvR to +InvRB ; +InvL to +InvLB) open GroupStr strA renaming (_·_ to _∙A_ ; inv to -A_ ; 1g to 1A ; ·IdR to ·IdRA) trivGroupHom : GroupHom AGr (BGr *) fst trivGroupHom x = 0B snd trivGroupHom = makeIsGroupHom λ _ _ → sym (+IdRB 0B) compHom : GroupHom AGr (BGr *) → GroupHom AGr (BGr *) → GroupHom AGr (BGr *) fst (compHom f g) x = fst f x +B fst g x snd (compHom f g) = makeIsGroupHom λ x y → cong₂ _+B_ (pres· (snd f) x y) (pres· (snd g) x y) ∙ move4 (fst f x) (fst f y) (fst g x) (fst g y) _+B_ +AssocB +CommB invHom : GroupHom AGr (BGr *) → GroupHom AGr (BGr *) fst (invHom (f , p)) x = -B f x snd (invHom (f , p)) = makeIsGroupHom λ x y → cong -B_ (pres· p x y) ∙∙ GroupTheory.invDistr (BGr *) (f x) (f y) ∙∙ +CommB _ _ open AbGroupStr HomGroup : AbGroup (ℓ-max ℓ ℓ') fst HomGroup = GroupHom AGr (BGr *) 0g (snd HomGroup) = trivGroupHom _+_ (snd HomGroup) = compHom - snd HomGroup = invHom isAbGroup (snd HomGroup) = makeIsAbGroup isSetGroupHom (λ { (f , p) (g , q) (h , r) → Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ x → +AssocB _ _ _) }) (λ { (f , p) → Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ y → +IdRB _)}) ((λ { (f , p) → Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ y → +InvRB _)})) (λ { (f , p) (g , q) → Σ≡Prop (λ _ → isPropIsGroupHom _ _) (funExt λ x → +CommB _ _)})
{ "alphanum_fraction": 0.601754238, "avg_line_length": 33.3061797753, "ext": "agda", "hexsha": "653714290f7e7236148025f593f96dbc656cb5e8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/AbGroup/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/AbGroup/Base.agda", "max_line_length": 106, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/AbGroup/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4438, "size": 11857 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Dependently typed changes with the Nehemiah plugin. ------------------------------------------------------------------------ module Nehemiah.Change.Validity where open import Nehemiah.Syntax.Type open import Nehemiah.Denotation.Value import Parametric.Change.Validity ⟦_⟧Base as Validity open import Nehemiah.Change.Type open import Nehemiah.Change.Value open import Data.Integer open import Structure.Bag.Nehemiah open import Base.Change.Algebra open import Level change-algebra-base : ∀ ι → ChangeAlgebra ⟦ ι ⟧Base change-algebra-base base-int = GroupChanges.changeAlgebraGroup _ {{abelian-int}} change-algebra-base base-bag = GroupChanges.changeAlgebraGroup _ {{abelian-bag}} instance change-algebra-base-family : ChangeAlgebraFamily ⟦_⟧Base change-algebra-base-family = family change-algebra-base open Validity.Structure {{change-algebra-base-family}} public
{ "alphanum_fraction": 0.6822810591, "avg_line_length": 30.6875, "ext": "agda", "hexsha": "5fc1bf8b827963c9e41f6c42952ecde7ec074d50", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Nehemiah/Change/Validity.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Nehemiah/Change/Validity.agda", "max_line_length": 80, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Nehemiah/Change/Validity.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 213, "size": 982 }
open import Oscar.Prelude open import Oscar.Data.𝟘 module Oscar.Data.Proposequality where module _ where data Proposequality {𝔬} {𝔒 : Ø 𝔬} (𝓞 : 𝔒) : 𝔒 → Ø₀ where instance ∅ : Proposequality 𝓞 𝓞 {-# BUILTIN EQUALITY Proposequality #-} Proposequality⟦_⟧ : ∀ {𝔬} (𝔒 : Ø 𝔬) → 𝔒 → 𝔒 → Ø₀ Proposequality⟦ _ ⟧ = Proposequality [Proposequality] : ∀ {𝔬} {𝔒 : Ø 𝔬} → {x y : 𝔒} → Ø₀ [Proposequality] {x = x} {y = y} = Proposequality x y module _ where infix 4 _≡_ _≡_ = Proposequality -- transport : ∀ {a b} {A : Set a} (B : A → Set b) {x y} → x ≡ y → B x → B y -- transport _ ∅ = ¡ -- transport₂ : ∀ {a b c} {A : Set a} {B : Set b} (C : A → B → Set c) {x₁ x₂ y₁ y₂} → x₁ ≡ x₂ → y₁ ≡ y₂ → C x₁ y₁ → C x₂ y₂ -- transport₂ _ ∅ ∅ = ¡ module _ where Proposantiequality : ∀ {𝔬} {𝔒 : Ø 𝔬} → 𝔒 → 𝔒 → Ø₀ Proposantiequality x y = Proposequality x y → 𝟘 Proposantiequality⟦_⟧ : ∀ {𝔬} (𝔒 : Ø 𝔬) → 𝔒 → 𝔒 → Ø₀ Proposantiequality⟦ _ ⟧ = Proposantiequality infix 4 _≢_ _≢_ = Proposantiequality module _ where Proposextensequality : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} → ((𝓞 : 𝔒) → 𝔓 𝓞) → ((𝓞 : 𝔒) → 𝔓 𝓞) → Ø 𝔬 Proposextensequality 𝓟₁ 𝓟₂ = ∀ 𝓞 → Proposequality (𝓟₁ 𝓞) (𝓟₂ 𝓞) Proposextensequality⟦_⟧ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔭} (𝔓 : 𝔒 → Ø 𝔭) → ((𝓞 : 𝔒) → 𝔓 𝓞) → ((𝓞 : 𝔒) → 𝔓 𝓞) → Ø 𝔬 Proposextensequality⟦ _ ⟧ = Proposextensequality Proposextensequality[_/_] : ∀ {𝔬} (𝔒 : Ø 𝔬) {𝔭} (𝔓 : 𝔒 → Ø 𝔭) → ((𝓞 : 𝔒) → 𝔓 𝓞) → ((𝓞 : 𝔒) → 𝔓 𝓞) → Ø 𝔬 Proposextensequality[ _ / _ ] = Proposextensequality module _ where infix 4 _≡̇_ _≡̇_ = Proposextensequality infix 4 ≡̇⟦⟧-syntax ≡̇⟦⟧-syntax = Proposextensequality⟦_⟧ syntax ≡̇⟦⟧-syntax t x y = x ≡̇⟦ t ⟧ y
{ "alphanum_fraction": 0.5650623886, "avg_line_length": 27.5901639344, "ext": "agda", "hexsha": "252f2a556c699454c40d8fae8063b052cba0279d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Data/Proposequality.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Data/Proposequality.agda", "max_line_length": 123, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Data/Proposequality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 923, "size": 1683 }
-- Andreas, 2016-02-09, should not record sections have all hidden parameters? module _ (A : Set) where record R : Set where postulate P : (a : A) → Set -- Records have some magic to make record parameters hidden -- in record section. -- This leads to an error in @checkInternal@. -- Should the parent parameters alse be hidden in the record section? record Fails (a : A) : Set where T = (w p : R.P _ a) → Set -- well-formed f : R.P _ a → Set f p with p ... | _ = A -- ERROR: -- Expected a hidden argument, but found a visible argument -- when checking that the type (w p : R.P _ a) → Set of the generated -- with function is well-formed -- Should succeed.
{ "alphanum_fraction": 0.6415362731, "avg_line_length": 25.1071428571, "ext": "agda", "hexsha": "d4e571436d143557c113544b76011841189698a6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1759-record.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1759-record.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1759-record.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 198, "size": 703 }
-- Category of sets and functions module Control.Category.SetsAndFunctions where open import Level using (zero; suc; _⊔_) open import Relation.Binary.PropositionalEquality open import Relation.Binary open import Data.Product open import Axiom.FunctionExtensionality open import Control.Category open import Control.Category.Product -- Category SET Functions : Set → Set → Setoid _ _ Functions A B = setoid (A → B) setIsCategory : IsCategory Functions setIsCategory = record { ops = record { id = λ x → x ; _⟫_ = λ f g x → g (f x) } ; laws = record { id-first = refl ; id-last = refl ; ∘-assoc = λ f → refl ; ∘-cong = λ{ refl refl → refl } } } SET : Category _ _ _ SET = record { Hom = Functions; isCategory = setIsCategory } {- timesProductStructure : (A B : Set) → ProductStructure SET A B timesProductStructure A B = record { A×B = A × B ; fst = proj₁ ; snd = proj₂ } ⟨_,_⟩ : {A B C : Set} (f : C → A) (g : C → B) → C → A × B ⟨ f , g ⟩ = λ x → f x , g x pairIsPair : {A B C : Set} (f : C → A) (g : C → B) → IsPair (timesProductStructure A B) f g ⟨ f , g ⟩ pairIsPair f g = record { β-fst = refl ; β-snd = refl } open IsPair pairPair : {A B C : Set} (f : C → A) (g : C → B) → Pair (timesProductStructure A B) f g pairPair f g = record { ⟨f,g⟩ = ⟨ f , g ⟩ ; isPair = pairIsPair f g ; unique = λ p → fun-ext (λ x → cong₂ (λ f g → f x , g x) (β-fst p) (β-snd p)) } timesIsProduct : (A B : Set) → Product SET A B timesIsProduct A B = record { productStructure = timesProductStructure A B ; isProduct = record { pair = pairPair } } -- -}
{ "alphanum_fraction": 0.6078672403, "avg_line_length": 22.5972222222, "ext": "agda", "hexsha": "008d33b7fe83b8144d223849f1cd11825571ab49", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andreasabel/cubical", "max_forks_repo_path": "src/Control/Category/SetsAndFunctions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andreasabel/cubical", "max_issues_repo_path": "src/Control/Category/SetsAndFunctions.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andreasabel/cubical", "max_stars_repo_path": "src/Control/Category/SetsAndFunctions.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 562, "size": 1627 }
------------------------------------------------------------------------ -- A lemma ------------------------------------------------------------------------ open import Mixfix.Expr open import Mixfix.Acyclic.PrecedenceGraph using (acyclic) module Mixfix.Acyclic.Lemma (g : PrecedenceGraphInterface.PrecedenceGraph acyclic) where open import Data.List using ([]; _∷_) open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_; foldl; _⁺∷ʳ_) open import Data.Product using (uncurry) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open PrecedenceCorrect acyclic g open import Mixfix.Fixity -- A generalisation of Mixfix.Acyclic.Grammar.Prec.appˡ. appˡ : ∀ {p} → Outer p left → List⁺ (Outer p left → ExprIn p left) → ExprIn p left appˡ e fs = foldl (λ e f → f (similar e)) (λ f → f e) fs appˡ-∷ʳ : ∀ {p} (e : Outer p left) fs f → appˡ e (fs ⁺∷ʳ f) ≡ f (similar (appˡ e fs)) appˡ-∷ʳ e (f′ ∷ fs) = helper e f′ fs where helper : ∀ {p} (e : Outer p left) f′ fs f → appˡ e ((f′ ∷ fs) ⁺∷ʳ f) ≡ f (similar (appˡ e (f′ ∷ fs))) helper e f′ [] f = refl helper e f′ (f″ ∷ fs) f = helper (similar (f′ e)) f″ fs f
{ "alphanum_fraction": 0.5505050505, "avg_line_length": 33.9428571429, "ext": "agda", "hexsha": "cfbcb8f2f0618e66cd1d5aae94c34b02560c5f1f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "Mixfix/Acyclic/Lemma.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "Mixfix/Acyclic/Lemma.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "Mixfix/Acyclic/Lemma.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 393, "size": 1188 }
{-# OPTIONS --copatterns --sized-types #-} open import Function open import Data.Unit as Unit renaming (tt to ∗) open import Data.List as List TyCtx = List ⊤ data TyVar : (Γ : TyCtx) → Set where zero : ∀{Γ} → TyVar (∗ ∷ Γ) succ : ∀{Γ} → (x : TyVar Γ) → TyVar (∗ ∷ Γ) data Type (Γ : TyCtx) : Set where unit : Type Γ var : (x : TyVar Γ) → Type Γ _⊕_ : (t₁ : Type Γ) (t₂ : Type Γ) → Type Γ μ : (t : Type (_ ∷ Γ)) → Type Γ _⊗_ : (t₁ : Type Γ) (t₂ : Type Γ) → Type Γ _⇒_ : (t₁ : Type []) (t₂ : Type Γ) → Type Γ ν : (t : Type (_ ∷ Γ)) → Type Γ -- | Variable renaming in types _▹_ : (Γ Δ : TyCtx) → Set Γ ▹ Δ = TyVar Γ → TyVar Δ {- rename : {Γ Δ : TyCtx} → (ρ : Γ ▹ Δ) → Type Γ → Type Δ rename ρ unit = unit rename ρ (var x) = var (ρ ∗ x) rename ρ (t₁ ⊕ t₂) = rename ρ t₁ ⊕ rename ρ t₂ rename {Γ} {Δ} ρ (μ t) = μ (rename ρ' t) where ρ' : (∗ ∷ Γ) ▹ (∗ ∷ Δ) ρ' = ? -- ρ' = id {[ ∗ ]} ⧻ ρ rename ρ (t₁ ⊗ t₂) = rename ρ t₁ ⊗ rename ρ t₂ rename ρ (t₁ ⇒ t₂) = t₁ ⇒ rename ρ t₂ rename {Γ} {Δ} ρ (ν t) = ν (rename ρ' t) where ρ' : (∗ ∷ Γ) ▹ (∗ ∷ Δ) ρ' = ? -- ρ' = ctx-id {[ ∗ ]} ⧻ ρ ------------------------- ---- Generating structure on contexts (derived from renaming) weaken : {Γ : TyCtx} (Δ : TyCtx) → Type Γ -> Type (Δ ++ Γ) weaken {Γ} Δ = rename {Γ} {Δ ++ Γ} ? exchange : (Γ Δ : TyCtx) → Type (Γ ++ Δ) -> Type (Δ ++ Γ) exchange Γ Δ = rename [ i₂ {Δ} {Γ} , i₁ {Δ} {Γ} ] contract : {Γ : TyCtx} → Type (Γ ∐ Γ) -> Type Γ contract = rename [ ctx-id , ctx-id ] -} Subst : TyCtx → TyCtx → Set Subst Γ Δ = TyVar Γ → Type Δ update : ∀{Γ Δ : TyCtx} → Subst Γ Δ → Type Δ → (Subst (∗ ∷ Γ) Δ) update σ a zero = a update σ _ (succ x) = σ x lift : ∀{Γ Δ} → Subst Γ Δ → Subst (∗ ∷ Γ) (∗ ∷ Δ) lift σ zero = {!!} lift σ (succ x) = {!!} -- | Simultaneous substitution subst : {Γ Δ : TyCtx} → (σ : Subst Γ Δ) → Type Γ → Type Δ subst σ unit = unit subst σ (var x) = σ x subst σ (t₁ ⊕ t₂) = subst σ t₁ ⊕ subst σ t₂ subst {Γ} {Δ} σ (μ t) = μ (subst (lift σ) t) subst σ (t₁ ⊗ t₂) = subst σ t₁ ⊗ subst σ t₂ subst σ (t₁ ⇒ t₂) = t₁ ⇒ subst σ t₂ subst {Γ} {Δ} σ (ν t) = ν (subst (lift σ) t) data Term : Set where
{ "alphanum_fraction": 0.4578111947, "avg_line_length": 29.1951219512, "ext": "agda", "hexsha": "fbff2710b40d4457aaa2208ac4407eb0e5b6c8e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "ON/ON.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "ON/ON.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "ON/ON.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 997, "size": 2394 }
module Fold where open import Prelude myfold : {ac b : Set} -> (ac -> b -> ac) -> ac -> List b -> ac #ifdef strict myfold = foldl! #else myfold = foldl #endif
{ "alphanum_fraction": 0.6172839506, "avg_line_length": 13.5, "ext": "agda", "hexsha": "3f6bea640cbef2f9937f803ae733c80457e4fde9", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:48.000Z", "max_forks_repo_forks_event_min_datetime": "2018-05-24T10:45:59.000Z", "max_forks_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "xekoukou/agda-ocaml", "max_forks_repo_path": "benchmark/agda-ocaml/Fold0.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "xekoukou/agda-ocaml", "max_issues_repo_path": "benchmark/agda-ocaml/Fold0.agda", "max_line_length": 62, "max_stars_count": 48, "max_stars_repo_head_hexsha": "e38b699870ba638221828b07b12948d70a1bdaec", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-ocaml", "max_stars_repo_path": "benchmark/agda-ocaml/Fold0.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-15T09:08:14.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-29T14:19:31.000Z", "num_tokens": 52, "size": 162 }
------------------------------------------------------------------------ -- The double-negation monad ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Double-negation {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Logical-equivalence using (_⇔_) open import Prelude open import Bijection eq using (_↔_) open Derived-definitions-and-properties eq open import Equivalence eq hiding (id; _∘_) open import Excluded-middle eq open import H-level eq open import H-level.Closure eq open import Monad eq -- The double-negation monad, defined using a wrapper type to make -- instance resolution easier. infix 3 ¬¬_ record ¬¬_ {a} (A : Type a) : Type a where constructor wrap field run : ¬ ¬ A open ¬¬_ public -- An extra universe-polymorphic variant of map. map′ : ∀ {a b} {@0 A : Type a} {@0 B : Type b} → (A → B) → ¬¬ A → ¬¬ B run (map′ f ¬¬a) = λ ¬b → run ¬¬a (λ a → ¬b (f a)) -- Instances. instance double-negation-monad : ∀ {ℓ} → Raw-monad (λ (A : Type ℓ) → ¬¬ A) run (Raw-monad.return double-negation-monad x) = _$ x run (Raw-monad._>>=_ double-negation-monad x f) = join (map′ (run ∘ f) x) where join : ∀ {a} {A : Type a} → ¬¬ ¬ A → ¬ A join ¬¬¬a = λ a → run ¬¬¬a (λ ¬a → ¬a a) private proof-irrelevant : ∀ {a} {A : Type a} {x y : ¬¬ A} → Extensionality a lzero → x ≡ y proof-irrelevant ext = cong wrap $ apply-ext ext λ _ → ⊥-propositional _ _ monad : ∀ {ℓ} → Extensionality ℓ lzero → Monad (λ (A : Type ℓ) → ¬¬ A) Monad.raw-monad (monad _) = double-negation-monad Monad.left-identity (monad ext) _ _ = proof-irrelevant ext Monad.right-identity (monad ext) _ = proof-irrelevant ext Monad.associativity (monad ext) _ _ _ = proof-irrelevant ext -- The following variant of excluded middle is provable. excluded-middle : ∀ {a} {@0 A : Type a} → ¬¬ Dec A run excluded-middle ¬[a⊎¬a] = ¬[a⊎¬a] (no λ a → ¬[a⊎¬a] (yes a)) -- The following variant of Peirce's law is provable. call/cc : ∀ {a w} {@0 A : Type a} {Whatever : Type w} → ((A → Whatever) → ¬¬ A) → ¬¬ A run (call/cc hyp) ¬a = run (hyp (λ a → ⊥-elim (¬a a))) ¬a -- If one can prove that the empty type is inhabited in the -- double-negation monad, then the empty type is inhabited. ¬¬¬⊥ : ∀ {ℓ} → ¬ (¬¬ (⊥ {ℓ = ℓ})) ¬¬¬⊥ ¬¬⊥ = run ¬¬⊥ ⊥-elim -- If the double-negation of a negation can be proved, then the -- negation itself can be proved. ¬¬¬→¬ : ∀ {a} {A : Type a} → ¬¬ ¬ A → ¬ A ¬¬¬→¬ ¬¬¬a = λ a → ¬¬¬⊥ (¬¬¬a >>= λ ¬a → ⊥-elim (¬a a)) ------------------------------------------------------------------------ -- Excluded middle and double-negation elimination -- Double-negation elimination (roughly as stated in the HoTT book). Double-negation-elimination : (ℓ : Level) → Type (lsuc ℓ) Double-negation-elimination p = {P : Type p} → Is-proposition P → ¬¬ P → P -- Double-negation elimination is propositional (assuming -- extensionality). Double-negation-elimination-propositional : ∀ {ℓ} → Extensionality (lsuc ℓ) ℓ → Is-proposition (Double-negation-elimination ℓ) Double-negation-elimination-propositional ext = implicit-Π-closure ext 1 λ _ → Π-closure (lower-extensionality _ lzero ext) 1 λ P-prop → Π-closure (lower-extensionality _ lzero ext) 1 λ _ → P-prop -- Excluded middle implies double-negation elimination. Excluded-middle→Double-negation-elimination : ∀ {ℓ} → Excluded-middle ℓ → Double-negation-elimination ℓ Excluded-middle→Double-negation-elimination em P-prop ¬¬p = [ id , ⊥-elim ∘ run ¬¬p ] (em P-prop) -- Excluded middle is pointwise equivalent to double-negation -- elimination (assuming extensionality). Excluded-middle≃Double-negation-elimination : ∀ {ℓ} → Extensionality (lsuc ℓ) (lsuc ℓ) → Excluded-middle ℓ ≃ Double-negation-elimination ℓ Excluded-middle≃Double-negation-elimination ext = _↔_.to (⇔↔≃ ext (Excluded-middle-propositional (lower-extensionality lzero _ ext)) (Double-negation-elimination-propositional (lower-extensionality lzero _ ext))) (record { to = Excluded-middle→Double-negation-elimination ; from = λ dne P-prop → dne (Dec-closure-propositional (lower-extensionality _ _ ext) P-prop) excluded-middle })
{ "alphanum_fraction": 0.5950134771, "avg_line_length": 31.5744680851, "ext": "agda", "hexsha": "aa787c72f7d63cd1e100f40e05e24fa834f06f6c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Double-negation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Double-negation.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Double-negation.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 1418, "size": 4452 }
-- {-# OPTIONS -v tc.lhs.unify:100 #-} module Issue811 where module ParamIndex where -- Report by stevan: -- When case-splitting, I think dots end up at the wrong places, -- consider: data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x -- If you case-split on p in: dot : ∀ {A}(x : A)(y : A) → x ≡ y → Set dot x y p = {!p!} {- You get: dot′ : ∀ {A}(x y : A) → x ≡ y → Set dot′ .y y refl = {!!} -- This seems the wrong way around to me, because we say that the first -- argument has to be something, namely y, before that something has -- been introduced. -- If I'd do the case-splitting manually, I would write: dot″ : ∀ {A}(x y : A) → x ≡ y → Set dot″ x .x refl = {!!} -} -- Andreas, 2013-03-05 This is indeed what you get now, since -- Agda now prefers the more left variables. -- Unfortunately, this leads to bad behavior in this case: dot1 : ∀ {A}{x : A}(y : A) → x ≡ y → Set dot1 y p = {!p!} -- This one works nicely dot2 : ∀ {A}(x : A){y : A} → x ≡ y → Set dot2 x p = {!p!} module AllIndices where data _≡_ {A : Set} : A → A → Set where refl : ∀ x → x ≡ x dot : ∀ {A}(x : A)(y : A) → x ≡ y → Set dot x y p = {!p!} -- Same problem here: dot1 : ∀ {A}{x : A}(y : A) → x ≡ y → Set dot1 y p = {!p!} dot2 : ∀ {A}(x : A){y : A} → x ≡ y → Set dot2 x p = {!p!}
{ "alphanum_fraction": 0.5307635285, "avg_line_length": 24.9814814815, "ext": "agda", "hexsha": "542f8f88a447621a4bd4197c2f0e7b0838afa833", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/interaction/Issue811.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/interaction/Issue811.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/interaction/Issue811.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 511, "size": 1349 }
module plfa-code.Lists where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; sym; trans; cong) open Eq.≡-Reasoning open import Data.Bool using (Bool; true; false; T; _∧_; _∨_; not) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _≤_; s≤s; z≤n) open import Data.Nat.Properties using (+-assoc; +-identityˡ; +-identityʳ; *-assoc; *-identityˡ; *-identityʳ) open import Relation.Nullary using (¬_; Dec; yes; no) open import Data.Product using (_×_; ∃; ∃-syntax) renaming (_,_ to ⟨_,_⟩) open import Function using (_∘_) open import Level using (Level) open import plfa-code.Isomorphism using (_≃_; _⇔_) data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A infixr 5 _∷_ _ : List ℕ _ = 0 ∷ 1 ∷ 2 ∷ [] data List′ : Set → Set where []′ : ∀ {A : Set} → List′ A _∷′_ : ∀ {A : Set} → A → List′ A → List′ A _ : List ℕ _ = _∷_ {ℕ} 0 (_∷_ {ℕ} 1 (_∷_ {ℕ} 2 ([] {ℕ}))) {-# BUILTIN LIST List #-} pattern [_] z = z ∷ [] pattern [_,_] y z = y ∷ z ∷ [] pattern [_,_,_] x y z = x ∷ y ∷ z ∷ [] pattern [_,_,_,_] w x y z = w ∷ x ∷ y ∷ z ∷ [] pattern [_,_,_,_,_] v w x y z = v ∷ w ∷ x ∷ y ∷ z ∷ [] pattern [_,_,_,_,_,_] u v w x y z = u ∷ v ∷ w ∷ x ∷ y ∷ z ∷ [] infixr 5 _++_ _++_ : ∀ {A : Set} → List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) _ : [ 0 , 1 , 2 ] ++ [ 3 , 4 ] ≡ [ 0 , 1 , 2 , 3 , 4 ] _ = -- refl begin 0 ∷ 1 ∷ 2 ∷ [] ++ 3 ∷ 4 ∷ [] ≡⟨⟩ 0 ∷ (1 ∷ 2 ∷ [] ++ 3 ∷ 4 ∷ []) ≡⟨⟩ 0 ∷ 1 ∷ (2 ∷ [] ++ 3 ∷ 4 ∷ []) ≡⟨⟩ 0 ∷ 1 ∷ 2 ∷ ([] ++ 3 ∷ 4 ∷ []) ≡⟨⟩ 0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ [] ∎ ++-assoc : ∀ {A : Set} (xs ys zs : List A) → (xs ++ ys) ++ zs ≡ xs ++ (ys ++ zs) ++-assoc [] ys zs = -- refl begin ([] ++ ys) ++ zs ≡⟨⟩ ys ++ zs ≡⟨⟩ [] ++ (ys ++ zs) ∎ ++-assoc (x ∷ xs) ys zs = -- cong (_∷_ x) (++-assoc xs ys zs) begin (x ∷ xs ++ ys) ++ zs ≡⟨⟩ x ∷ (xs ++ ys) ++ zs ≡⟨⟩ x ∷ ((xs ++ ys) ++ zs) ≡⟨ cong (x ∷_) (++-assoc xs ys zs) ⟩ x ∷ (xs ++ (ys ++ zs)) ≡⟨⟩ x ∷ xs ++ (ys ++ zs) ∎ ++-identityˡ : ∀ {A : Set} (xs : List A) → [] ++ xs ≡ xs ++-identityˡ xs = -- refl begin [] ++ xs ≡⟨⟩ xs ∎ ++-identityʳ : ∀ {A : Set} (xs : List A) → xs ++ [] ≡ xs ++-identityʳ [] = -- refl begin [] ++ [] ≡⟨⟩ [] ∎ ++-identityʳ (x ∷ xs) = -- cong (_∷_ x) (++-identityʳ xs) begin (x ∷ xs) ++ [] ≡⟨⟩ x ∷ (xs ++ []) ≡⟨ cong (x ∷_) (++-identityʳ xs) ⟩ x ∷ xs ∎ length : ∀ {A : Set} → List A → ℕ length [] = zero length (x ∷ xs) = suc (length xs) _ : length [ 0 , 1 , 2 ] ≡ 3 _ = -- refl begin length (0 ∷ 1 ∷ 2 ∷ []) ≡⟨⟩ suc (length (1 ∷ 2 ∷ [])) ≡⟨⟩ suc (suc (length (2 ∷ []))) ≡⟨⟩ suc (suc (suc (length {ℕ} []))) ≡⟨⟩ suc (suc (suc zero)) ∎ length-++ : ∀ {A : Set} (xs ys : List A) → length (xs ++ ys) ≡ length xs + length ys length-++ {A} [] ys = -- refl begin length ([] ++ ys) ≡⟨⟩ length ys ≡⟨⟩ length {A} [] + length ys ∎ length-++ {A} (x ∷ xs) ys = -- cong suc (length-++ xs ys) begin length ((x ∷ xs) ++ ys) ≡⟨⟩ suc (length (xs ++ ys)) ≡⟨ cong suc (length-++ xs ys) ⟩ suc (length xs + length ys) ≡⟨⟩ length (x ∷ xs) + length ys ∎ reverse : ∀ {A : Set} → List A → List A reverse [] = [] reverse (x ∷ xs) = reverse xs ++ [ x ] _ : reverse [ 0 , 1 , 2 ] ≡ [ 2 , 1 , 0 ] _ = begin reverse (0 ∷ 1 ∷ 2 ∷ []) ≡⟨⟩ reverse (1 ∷ 2 ∷ []) ++ [ 0 ] ≡⟨⟩ (reverse (2 ∷ []) ++ [ 1 ]) ++ [ 0 ] ≡⟨⟩ ((reverse [] ++ [ 2 ]) ++ [ 1 ]) ++ [ 0 ] ≡⟨⟩ (([] ++ [ 2 ]) ++ [ 1 ]) ++ [ 0 ] ≡⟨⟩ (([] ++ 2 ∷ []) ++ 1 ∷ []) ++ 0 ∷ [] ≡⟨⟩ (2 ∷ [] ++ 1 ∷ []) ++ 0 ∷ [] ≡⟨⟩ 2 ∷ ([] ++ 1 ∷ []) ++ 0 ∷ [] ≡⟨⟩ (2 ∷ 1 ∷ []) ++ 0 ∷ [] ≡⟨⟩ 2 ∷ (1 ∷ [] ++ 0 ∷ []) ≡⟨⟩ 2 ∷ 1 ∷ ([] ++ 0 ∷ []) ≡⟨⟩ 2 ∷ 1 ∷ 0 ∷ [] ≡⟨⟩ [ 2 , 1 , 0 ] ∎ ---------- practice ---------- reverse-++-commute : ∀ {A : Set} {xs ys : List A} → reverse (xs ++ ys) ≡ reverse ys ++ reverse xs reverse-++-commute {_} {[]} {[]} = refl reverse-++-commute {_} {[]} {y ∷ ys} = sym (++-identityʳ (reverse ys ++ [ y ])) reverse-++-commute {_} {x ∷ xs} {ys} = begin reverse ((x ∷ xs) ++ ys) ≡⟨⟩ reverse (x ∷ (xs ++ ys)) ≡⟨⟩ reverse (xs ++ ys) ++ [ x ] ≡⟨ cong (_++ [ x ]) (reverse-++-commute {_} {xs} {ys}) ⟩ (reverse ys ++ reverse xs) ++ [ x ] ≡⟨ ++-assoc (reverse ys) (reverse xs) [ x ] ⟩ reverse ys ++ reverse xs ++ [ x ] ≡⟨ cong (reverse ys ++_) (sym refl) ⟩ reverse ys ++ reverse ([ x ] ++ xs) ≡⟨⟩ reverse ys ++ reverse (x ∷ xs) ∎ reverse-involutive : ∀ {A : Set} {xs : List A} → reverse (reverse xs) ≡ xs reverse-involutive {_} {[]} = refl reverse-involutive {_} {x ∷ xs} = begin reverse (reverse (x ∷ xs)) ≡⟨⟩ reverse (reverse xs ++ [ x ]) ≡⟨ reverse-++-commute {_} {reverse xs} {[ x ]} ⟩ reverse [ x ] ++ reverse (reverse xs) ≡⟨ cong (reverse [ x ] ++_) reverse-involutive ⟩ [ x ] ++ xs ≡⟨⟩ x ∷ xs ∎ ------------------------------ shunt : ∀ {A : Set} → List A → List A → List A shunt [] ys = ys shunt (x ∷ xs) ys = shunt xs (x ∷ ys) shunt-reverse : ∀ {A : Set} (xs ys : List A) → shunt xs ys ≡ (reverse xs) ++ ys shunt-reverse [] ys = -- refl begin shunt [] ys ≡⟨⟩ reverse [] ++ ys ∎ shunt-reverse (x ∷ xs) ys = begin shunt (x ∷ xs) ys ≡⟨⟩ shunt xs (x ∷ ys) ≡⟨ shunt-reverse xs (x ∷ ys) ⟩ reverse xs ++ (x ∷ ys) ≡⟨⟩ reverse xs ++ ([ x ] ++ ys) ≡⟨ sym (++-assoc (reverse xs) [ x ] ys) ⟩ (reverse xs ++ [ x ]) ++ ys ≡⟨⟩ reverse (x ∷ xs) ++ ys ∎ reverse′ : ∀ {A : Set} → List A → List A reverse′ xs = shunt xs [] reverses : ∀ {A : Set} (xs : List A) → reverse′ xs ≡ reverse xs reverses xs = begin reverse′ xs ≡⟨⟩ shunt xs [] ≡⟨ shunt-reverse xs [] ⟩ reverse xs ++ [] ≡⟨ ++-identityʳ (reverse xs) ⟩ reverse xs ∎ _ : reverse′ [ 0 , 1 , 2 ] ≡ [ 2 , 1 , 0 ] _ = begin reverse′ (0 ∷ 1 ∷ 2 ∷ []) ≡⟨⟩ shunt (0 ∷ 1 ∷ 2 ∷ []) [] ≡⟨⟩ shunt (1 ∷ 2 ∷ []) (0 ∷ []) ≡⟨⟩ shunt (2 ∷ []) (1 ∷ 0 ∷ []) ≡⟨⟩ shunt [] (2 ∷ 1 ∷ 0 ∷ []) ≡⟨⟩ 2 ∷ 1 ∷ 0 ∷ [] ∎ map : ∀ {A B : Set} → (A → B) → List A → List B map f [] = [] map f (x ∷ xs) = f x ∷ map f xs _ : map suc [ 0 , 1 , 2 ] ≡ [ 1 , 2 , 3 ] _ = begin map suc (0 ∷ 1 ∷ 2 ∷ []) ≡⟨⟩ suc 0 ∷ map suc (1 ∷ 2 ∷ []) ≡⟨⟩ suc 0 ∷ suc 1 ∷ map suc (2 ∷ []) ≡⟨⟩ suc 0 ∷ suc 1 ∷ suc 2 ∷ map suc [] ≡⟨⟩ suc 0 ∷ suc 1 ∷ suc 2 ∷ [] ≡⟨⟩ 1 ∷ 2 ∷ 3 ∷ [] ∎ sucs : List ℕ → List ℕ sucs = map suc _ : sucs [ 0 , 1 , 2 ] ≡ [ 1 , 2 , 3 ] _ = begin sucs [ 0 , 1 , 2 ] ≡⟨⟩ map suc [ 0 , 1 , 2 ] ≡⟨⟩ [ 1 , 2 , 3 ] ∎ ---------- practice ---------- open plfa-code.Isomorphism using (extensionality) map-compose : ∀ {A B C : Set} {f : A → B} {g : B → C} → map (g ∘ f) ≡ map g ∘ map f map-compose {A} {B} {C} {f} {g} = extensionality hf where hf : (xs : List A) → map (g ∘ f) xs ≡ map g (map f xs) hf [] = refl hf (x ∷ xs) = cong ((g (f x)) ∷_) (hf xs) map-++-commute : ∀ {A B : Set} {f : A → B} {xs ys : List A} → map f (xs ++ ys) ≡ map f xs ++ map f ys map-++-commute {A} {B} {f} {[]} {ys} = refl map-++-commute {A} {B} {f} {x ∷ xs} {ys} = cong ((f x) ∷_) (map-++-commute {_} {_} {f} {xs} {ys}) data Tree (A B : Set) : Set where leaf : A → Tree A B node : Tree A B → B → Tree A B → Tree A B map-Tree : ∀ {A B C D : Set} → (A → C) → (B → D) → Tree A B → Tree C D map-Tree f g (leaf a) = leaf (f a) map-Tree f g (node tree b tree₁) = node (map-Tree f g tree) (g b) (map-Tree f g tree₁) ------------------------------ foldr : ∀ {A B : Set} → (A → B → B) → B → List A → B foldr _⊗_ e [] = e foldr _⊗_ e (x ∷ xs) = x ⊗ (foldr _⊗_ e xs) _ : foldr _+_ 0 [ 1 , 2 , 3 , 4 ] ≡ 10 _ = begin foldr _+_ 0 (1 ∷ 2 ∷ 3 ∷ 4 ∷ []) ≡⟨⟩ 1 + foldr _+_ 0 (2 ∷ 3 ∷ 4 ∷ []) ≡⟨⟩ 1 + (2 + foldr _+_ 0 (3 ∷ 4 ∷ [])) ≡⟨⟩ 1 + (2 + (3 + foldr _+_ 0 (4 ∷ []))) ≡⟨⟩ 1 + (2 + (3 + (4 + foldr _+_ 0 []))) ≡⟨⟩ 1 + (2 + (3 + (4 + 0))) ∎ sum : List ℕ → ℕ sum = foldr _+_ 0 _ : sum [ 1 , 2 , 3 , 4 ] ≡ 10 _ = begin sum [ 1 , 2 , 3 , 4 ] ≡⟨⟩ foldr _+_ 0 [ 1 , 2 , 3 , 4 ] ≡⟨⟩ 10 ∎ ---------- practice ---------- product : List ℕ → ℕ product = foldr _*_ 1 _ : product [ 1 , 2 , 3 , 4 ] ≡ 24 _ = refl foldr-++ : ∀ {A B : Set} (_⊗_ : A → B → B) (e : B) (xs ys : List A) → foldr _⊗_ e (xs ++ ys) ≡ foldr _⊗_ (foldr _⊗_ e ys) xs foldr-++ _⊗_ e [] ys = refl foldr-++ _⊗_ e (x ∷ xs) ys = cong (x ⊗_) (foldr-++ _⊗_ e xs ys) map-is-foldr : ∀ {A B : Set} {f : A → B} → map f ≡ foldr (λ x xs → f x ∷ xs) [] map-is-foldr {A} {_} {f} = extensionality hf where hf : (l : List A) → map f l ≡ foldr (λ x xs → f x ∷ xs) [] l hf [] = refl hf (x ∷ xs) = cong (f x ∷_) (hf xs) fold-Tree : ∀ {A B C : Set} → (A → C) → (C → B → C → C) → Tree A B → C fold-Tree f g (leaf a) = f a fold-Tree f g (node tree b tree₁) = g (fold-Tree f g tree) b (fold-Tree f g tree₁) downFrom : ℕ → List ℕ downFrom zero = [] downFrom (suc n) = n ∷ downFrom n _ : downFrom 3 ≡ [ 2 , 1 , 0 ] _ = refl open Data.Nat.Properties using (*-distribʳ-+; *-distribʳ-∸; m∸n+n≡m; m≤m+n; +-comm; *-comm; +-identityʳ; *-identityˡ) open Eq using (cong₂) 2n≡n+n : ∀ n → 2 * n ≡ n + n 2n≡n+n zero = refl 2n≡n+n (suc n) = cong (λ x → suc (n + suc x)) (+-identityʳ n) n≤n*n : ∀ n → n ≤ n * n n≤n*n zero = z≤n n≤n*n (suc n) = s≤s (m≤m+n n (n * suc n)) sum-downFrom : ∀ (n : ℕ) → sum (downFrom n) * 2 ≡ n * (n ∸ 1) sum-downFrom zero = refl sum-downFrom (suc n) = begin sum (downFrom (suc n)) * 2 ≡⟨⟩ (n + sum (downFrom n)) * 2 ≡⟨ *-distribʳ-+ 2 n (sum (downFrom n)) ⟩ n * 2 + sum (downFrom n) * 2 ≡⟨ cong (n * 2 +_) (sum-downFrom n) ⟩ n * 2 + n * (n ∸ 1) ≡⟨ cong₂ _+_ (*-comm n 2) (*-comm n (n ∸ 1)) ⟩ 2 * n + (n ∸ 1) * n ≡⟨ cong (2 * n +_) (*-distribʳ-∸ n n 1) ⟩ 2 * n + (n * n ∸ 1 * n) ≡⟨ cong₂ (λ a b → a + (n * n ∸ b)) (2n≡n+n n) (*-identityˡ n) ⟩ n + n + (n * n ∸ n) ≡⟨ +-comm (n + n) (n * n ∸ n) ⟩ n * n ∸ n + (n + n) ≡⟨ sym (+-assoc (n * n ∸ n) n n) ⟩ n * n ∸ n + n + n ≡⟨ cong (_+ n) (m∸n+n≡m (n≤n*n n)) ⟩ n * n + n ≡⟨ +-comm (n * n) n ⟩ n + n * n ≡⟨⟩ (suc n) * (suc n ∸ 1) ∎ ------------------------------ record IsMonoid {A : Set} (_⊗_ : A → A → A) (e : A) : Set where field assoc : ∀ (x y z : A) → (x ⊗ y) ⊗ z ≡ x ⊗ (y ⊗ z) identityˡ : ∀ (x : A) → e ⊗ x ≡ x identityʳ : ∀ (x : A) → x ⊗ e ≡ x open IsMonoid +-monoid : IsMonoid _+_ 0 +-monoid = record { assoc = +-assoc ; identityˡ = +-identityˡ ; identityʳ = +-identityʳ } *-monoid : IsMonoid _*_ 1 *-monoid = record { assoc = *-assoc ; identityˡ = *-identityˡ ; identityʳ = *-identityʳ } ++-monoid : ∀ {A : Set} → IsMonoid {List A} _++_ [] ++-monoid = record { assoc = ++-assoc ; identityˡ = ++-identityˡ ; identityʳ = ++-identityʳ } foldr-monoid : ∀ {A : Set} (_⊗_ : A → A → A) (e : A) → IsMonoid _⊗_ e → ∀ (xs : List A) (y : A) → foldr _⊗_ y xs ≡ foldr _⊗_ e xs ⊗ y foldr-monoid _⊗_ e ⊗-monoid [] y = -- sym (identityˡ ⊗-monoid y) begin foldr _⊗_ y [] ≡⟨⟩ y ≡⟨ sym (identityˡ ⊗-monoid y) ⟩ (e ⊗ y) ≡⟨⟩ foldr _⊗_ e [] ⊗ y ∎ foldr-monoid _⊗_ e ⊗-monoid (x ∷ xs) y = begin foldr _⊗_ y (x ∷ xs) ≡⟨⟩ x ⊗ (foldr _⊗_ y xs) ≡⟨ cong (x ⊗_) (foldr-monoid _⊗_ e ⊗-monoid xs y) ⟩ x ⊗ ((foldr _⊗_ e xs) ⊗ y) ≡⟨ sym (assoc ⊗-monoid x (foldr _⊗_ e xs) y) ⟩ (x ⊗ (foldr _⊗_ e xs)) ⊗ y ∎ foldr-monoid-++ : ∀ {A : Set} (_⊗_ : A → A → A) (e : A) → IsMonoid _⊗_ e → ∀ (xs ys : List A) → foldr _⊗_ e (xs ++ ys) ≡ foldr _⊗_ e xs ⊗ foldr _⊗_ e ys foldr-monoid-++ _⊗_ e monoid-⊗ xs ys = begin foldr _⊗_ e (xs ++ ys) ≡⟨ foldr-++ _⊗_ e xs ys ⟩ foldr _⊗_ (foldr _⊗_ e ys) xs ≡⟨ foldr-monoid _⊗_ e monoid-⊗ xs (foldr _⊗_ e ys) ⟩ foldr _⊗_ e xs ⊗ foldr _⊗_ e ys ∎ ---------- practice ---------- foldl : ∀ {A B : Set} → (B → A → B) → B → List A → B foldl _⊗_ e [] = e foldl _⊗_ e (x ∷ xs) = foldl _⊗_ (e ⊗ x) xs foldl-monoid : ∀ {A : Set} (_⊗_ : A → A → A) (e : A) → IsMonoid _⊗_ e → ∀ (xs : List A) (y : A) → foldl _⊗_ y xs ≡ y ⊗ foldl _⊗_ e xs foldl-monoid _⊗_ e ⊗-monoid [] y = sym (identityʳ ⊗-monoid y) foldl-monoid _⊗_ e ⊗-monoid (x ∷ xs) y = begin foldl _⊗_ y (x ∷ xs) ≡⟨⟩ foldl _⊗_ (y ⊗ x) xs ≡⟨ foldl-monoid _⊗_ e ⊗-monoid xs (y ⊗ x) ⟩ (y ⊗ x) ⊗ (foldl _⊗_ e xs) ≡⟨ assoc ⊗-monoid y x (foldl _⊗_ e xs) ⟩ y ⊗ (x ⊗ foldl _⊗_ e xs) ≡⟨ sym (cong (y ⊗_) (foldl-monoid _⊗_ e ⊗-monoid xs x)) ⟩ y ⊗ (foldl _⊗_ x xs) ≡⟨ sym (cong (λ z → y ⊗ foldl _⊗_ z xs) (identityˡ ⊗-monoid x)) ⟩ y ⊗ (foldl _⊗_ (e ⊗ x) xs) ≡⟨⟩ y ⊗ foldl _⊗_ e (x ∷ xs) ∎ foldr-monoid-foldl : ∀ {A : Set} (_⊗_ : A → A → A) (e : A) → IsMonoid _⊗_ e → ∀ (xs : List A) → foldr _⊗_ e xs ≡ foldl _⊗_ e xs foldr-monoid-foldl _⊗_ e ⊗-monoid [] = refl foldr-monoid-foldl _⊗_ e ⊗-monoid (x ∷ xs) = begin foldr _⊗_ e (x ∷ xs) ≡⟨⟩ (x ⊗ foldr _⊗_ e xs) ≡⟨ cong (x ⊗_) (foldr-monoid-foldl _⊗_ e ⊗-monoid xs) ⟩ (x ⊗ foldl _⊗_ e xs) ≡⟨ sym (foldl-monoid _⊗_ e ⊗-monoid xs x) ⟩ foldl _⊗_ x xs ≡⟨ cong (λ a → foldl _⊗_ a xs) (sym (identityˡ ⊗-monoid x)) ⟩ foldl _⊗_ (e ⊗ x) xs ≡⟨⟩ foldl _⊗_ e (x ∷ xs) ∎ ------------------------------ data All {A : Set} (P : A → Set) : List A → Set where [] : All P [] _∷_ : ∀ {x : A} {xs : List A} → P x → All P xs → All P (x ∷ xs) _ : All (_≤ 2) [ 0 , 1 , 2 ] _ = z≤n ∷ s≤s z≤n ∷ s≤s (s≤s z≤n) ∷ [] data Any {A : Set} (P : A → Set) : List A → Set where here : ∀ {x : A} {xs : List A} → P x → Any P (x ∷ xs) there : ∀ {x : A} {xs : List A} → Any P xs → Any P (x ∷ xs) _∈_ : ∀ {A : Set} (x : A) (xs : List A) → Set x ∈ xs = Any (x ≡_) xs _∉_ : ∀ {A : Set} (x : A) (xs : List A) → Set x ∉ xs = ¬ (x ∈ xs) _ : 0 ∈ [ 0 , 1 , 0 , 2 ] _ = here refl _ : 0 ∈ [ 0 , 1 , 0 , 2 ] _ = there (there (here refl)) not-in : 3 ∉ [ 0 , 0 , 0 , 2 ] not-in (here ()) not-in (there (here ())) not-in (there (there (here ()))) not-in (there (there (there (here ())))) not-in (there (there (there (there ())))) All-++-⇔ : ∀ {A : Set} {P : A → Set} (xs ys : List A) → All P (xs ++ ys) ⇔ (All P xs × All P ys) All-++-⇔ xs ys = record { to = to xs ys ; from = from xs ys } where to : ∀ {A : Set} {P : A → Set} (xs ys : List A) → All P (xs ++ ys) → (All P xs × All P ys) to [] ys Pys = ⟨ [] , Pys ⟩ to (x ∷ xs) ys (Px ∷ Pxs++ys) with to xs ys Pxs++ys ... | ⟨ Pxs , Pys ⟩ = ⟨ Px ∷ Pxs , Pys ⟩ from : ∀ { A : Set} {P : A → Set} (xs ys : List A) → All P xs × All P ys → All P (xs ++ ys) from [] ys ⟨ [] , Pys ⟩ = Pys from (x ∷ xs) ys ⟨ Px ∷ Pxs , Pys ⟩ = Px ∷ (from xs ys ⟨ Pxs , Pys ⟩) ---------- practice ---------- open import Data.Sum using (_⊎_; inj₁; inj₂) open Data.Product using (proj₁; proj₂) open import Data.Empty using (⊥-elim) Any-++-⇔ : ∀ {A : Set} {P : A → Set} (xs ys : List A) → Any P (xs ++ ys) ⇔ (Any P xs ⊎ Any P ys) Any-++-⇔ {A} {P} xs ys = record { to = to xs ys ; from = from xs ys } where to : ∀ (xs ys : List A) → Any P (xs ++ ys) → Any P xs ⊎ Any P ys to [] ys Pys = inj₂ Pys to (x ∷ xs) ys (here Px) = inj₁ (here Px) to (x ∷ xs) ys (there ∃Pxs++ys) with to xs ys ∃Pxs++ys ... | inj₁ ∃Pxs = inj₁ (there ∃Pxs) ... | inj₂ ∃Pys = inj₂ ∃Pys from : ∀ (xs ys : List A) → Any P xs ⊎ Any P ys → Any P (xs ++ ys) from [] ys (inj₂ ∃Pys) = ∃Pys from (x ∷ xs) ys (inj₁ (here Px)) = here Px from (x ∷ xs) ys (inj₁ (there ∃Pxs)) = there (from xs ys (inj₁ ∃Pxs)) from (x ∷ xs) ys (inj₂ ∃Pys) = there (from xs ys (inj₂ ∃Pys)) All-++-≃ : ∀ {A : Set} {P : A → Set} (xs ys : List A) → All P (xs ++ ys) ≃ (All P xs × All P ys) All-++-≃ {A} {P} xs ys = record { to = to xs ys ; from = from xs ys ; from∘to = from∘to xs ys ; to∘from = to∘from xs ys } where to : ∀ (xs ys : List A) → All P (xs ++ ys) → (All P xs × All P ys) to xs ys = _⇔_.to (All-++-⇔ xs ys) from : ∀ (xs ys : List A) → All P xs × All P ys → All P (xs ++ ys) from xs ys = _⇔_.from (All-++-⇔ xs ys) from∘to : ∀ (xs ys : List A) (Pxs++ys : All P (xs ++ ys)) → from xs ys (to xs ys Pxs++ys) ≡ Pxs++ys from∘to [] ys Pxs++ys = refl from∘to (x ∷ xs) ys (Px ∷ Pxs++ys) = -- cong (Px ∷_) (from∘to xs ys Pxs++ys) begin from (x ∷ xs) ys (to (x ∷ xs) ys (Px ∷ Pxs++ys)) ≡⟨⟩ from (x ∷ xs) ys ⟨ Px ∷ proj₁ t , proj₂ t ⟩ ≡⟨⟩ Px ∷ from xs ys ⟨ proj₁ t , proj₂ t ⟩ ≡⟨⟩ Px ∷ from xs ys (to xs ys Pxs++ys) ≡⟨ cong (Px ∷_) (from∘to xs ys Pxs++ys) ⟩ Px ∷ Pxs++ys ∎ where t = to xs ys Pxs++ys to∘from : ∀ (xs ys : List A) (Pxs×Pys : All P xs × All P ys) → to xs ys (from xs ys Pxs×Pys) ≡ Pxs×Pys to∘from [] ys ⟨ [] , Pys ⟩ = refl to∘from (x ∷ xs) ys ⟨ Px ∷ Pxs , Pys ⟩ = -- cong (λ k → ⟨ Px ∷ (proj₁ k) , proj₂ k ⟩) (to∘from xs ys ⟨ Pxs , Pys ⟩) begin to (x ∷ xs) ys (from (x ∷ xs) ys ⟨ Px ∷ Pxs , Pys ⟩) ≡⟨⟩ to (x ∷ xs) ys (Px ∷ (from xs ys ⟨ Pxs , Pys ⟩)) ≡⟨⟩ ⟨ Px ∷ (proj₁ tf) , (proj₂ tf) ⟩ ≡⟨ cong (λ k → ⟨ Px ∷ (proj₁ k) , proj₂ k ⟩) (to∘from xs ys ⟨ Pxs , Pys ⟩) ⟩ ⟨ Px ∷ (proj₁ ⟨ Pxs , Pys ⟩) , (proj₂ ⟨ Pxs , Pys ⟩) ⟩ ≡⟨⟩ ⟨ Px ∷ Pxs , Pys ⟩ ∎ where tf = (to xs ys (from xs ys ⟨ Pxs , Pys ⟩)) _∘′_ : ∀ {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} {C : Set ℓ₃} → (B → C) → (A → B) → A → C (g ∘′ f) x = g (f x) ¬Any≃All¬ : ∀ {A : Set} (P : A → Set) (xs : List A) → (¬_ ∘′ Any P) xs ≃ All (¬_ ∘′ P) xs ¬Any≃All¬ {A} P xs = record { to = to xs ; from = from xs ; from∘to = from∘to xs ; to∘from = to∘from xs } where to : (xs : List A) → (¬_ ∘′ Any P) xs → All (¬_ ∘′ P) xs to [] ¬Any = [] to (x ∷ xs) ¬Any = (λ Px → ¬Any (here Px)) ∷ to xs (λ Pxs → ¬Any (there Pxs)) from : (xs : List A) → All (¬_ ∘′ P) xs → (¬_ ∘′ Any P) xs from (x ∷ xs) (¬Px ∷ All¬) (here Px) = ¬Px Px from (x ∷ xs) (¬Px ∷ All¬) (there AnyP) = from xs All¬ AnyP from∘to : (xs : List A) → ∀ (¬Any) → from xs (to xs ¬Any) ≡ ¬Any from∘to xs ¬Any = extensionality λ AnyP → ⊥-elim (¬Any AnyP) to∘from : (xs : List A) → ∀ (All¬) → to xs (from xs All¬) ≡ All¬ to∘from [] [] = refl to∘from (x ∷ xs) (¬Px ∷ ¬Pxs) = cong (¬Px ∷_) (to∘from xs ¬Pxs) -- ¬All≃Any¬ : ∀ {A : Set} (P : A → Set) (xs : List A) -- → (¬_ ∘′ All P) xs ≃ Any (¬_ ∘′ P) xs -- doesn't hold, because we couldn't use -- ((¬_ ∘′ All P) xs) to construct a (Any (¬_ ∘′ P) xs) ------------------------------ all : ∀ {A : Set} → (A → Bool) → List A → Bool all p = foldr _∧_ true ∘ map p Decidable : ∀ {A : Set} → (A → Set) → Set Decidable {A} P = ∀ (x : A) → Dec (P x) All? : ∀ {A : Set} {P : A → Set} → Decidable P → Decidable (All P) All? P? [] = yes [] All? P? (x ∷ xs) with P? x | All? P? xs ... | yes Px | yes p₁ = yes (Px ∷ p₁) ... | no ¬Px | _ = no λ{ (Px ∷ Pxs) → ¬Px Px} ... | _ | no ¬Pxs = no λ{ (Px ∷ Pxs) → ¬Pxs Pxs} ---------- practice ---------- any : ∀ {A : Set} → (A → Bool) → List A → Bool any p = foldr _∨_ false ∘ map p Any? : ∀ {A : Set} {P : A → Set} → Decidable P → Decidable (Any P) Any? P? [] = no (λ ()) Any? P? (x ∷ xs) with P? x | Any? P? xs Any? P? (x ∷ xs) | yes Px | _ = yes (here Px) Any? P? (x ∷ xs) | _ | yes ∃Pxs = yes (there ∃Pxs) Any? P? (x ∷ xs) | no ¬Px | no ¬∃Pxs = no λ{ (here Px) → ¬Px Px ; (there ∃Px) → ¬∃Pxs ∃Px } open import plfa-code.Quantifiers using (∀-extensionality) -- the implicit argument x is too difficult to deal with .. -- so I replace it with explicit All-∀ : ∀ {A : Set} {P : A → Set} (xs : List A) → All P xs ≃ (∀ (x) → x ∈ xs → P x) All-∀ {A} {P} xs = record { to = to xs ; from = from xs ; from∘to = from∘to xs ; to∘from = to∘from xs } where to : ∀ (xs : List A) → All P xs → (∀ (x) → x ∈ xs → P x) to (x₁ ∷ xs) (Px₁ ∷ _ ) .x₁ (here refl) = Px₁ to (x₁ ∷ xs) ( _ ∷ Pxs) x (there x∈xs) = to xs Pxs x x∈xs from : ∀ (xs : List A) → (∀ (x) → x ∈ xs → P x) → All P xs from [] f = [] from (x ∷ xs) f = f x (here refl) ∷ from xs (λ x₁ → (f x₁) ∘ there) from∘to : ∀ (xs : List A) → (Pxs : All P xs) → from xs (to xs Pxs) ≡ Pxs from∘to [] [] = refl from∘to (x ∷ xs) (Px ∷ Pxs) = cong (Px ∷_) (from∘to xs Pxs) to∘from : ∀ (xs : List A) → ∀ (f) → to xs (from xs f) ≡ f to∘from [] f = ∀-extensionality (to [] []) f (λ x → ∀-extensionality (to [] [] x) (f x) λ ()) to∘from (x ∷ xs) f = ∀-extensionality (to (x ∷ xs) (from (x ∷ xs) f)) f (λ x₁ → ∀-extensionality (to (x ∷ xs) (from (x ∷ xs) f) x₁) (f x₁) λ{ (here refl) → refl ; (there x₁∈xs) → cong (λ g → g x₁ x₁∈xs) (to∘from xs (λ x₂ → (f x₂) ∘ there)) } ) -- Emmmm..., "∃[ x ∈ xs ] P x" is not a valid type, I guess its real -- meaning is like below Any-∃ : {A : Set} {P : A → Set} (xs : List A) → Any P xs ≃ ∃[ x ] (x ∈ xs × P x) Any-∃ {A} {P} xs = record { to = to xs ; from = from xs ; from∘to = from∘to xs ; to∘from = to∘from xs } where to : ∀ (xs : List A) → Any P xs → ∃[ x ] (x ∈ xs × P x) to (x ∷ xs) (here Px) = ⟨ x , ⟨ here refl , Px ⟩ ⟩ to (x ∷ xs) (there AnyP) with to xs AnyP ... | ⟨ x₁ , ⟨ x₁∈xs , Px ⟩ ⟩ = ⟨ x₁ , ⟨ there x₁∈xs , Px ⟩ ⟩ from : ∀ (xs : List A) → ∃[ x ] (x ∈ xs × P x) → Any P xs from (x ∷ xs) ⟨ .x , ⟨ here refl , Px ⟩ ⟩ = here Px from (x ∷ xs) ⟨ x₁ , ⟨ there x₁∈xs , Px₁ ⟩ ⟩ = there (from xs ⟨ x₁ , ⟨ x₁∈xs , Px₁ ⟩ ⟩) from∘to : ∀ (xs : List A) → (AnyP : Any P xs) → from xs (to xs AnyP) ≡ AnyP from∘to (x ∷ xs) (here x₁) = refl from∘to (x ∷ xs) (there AnyP) = cong there (from∘to xs AnyP) to∘from : ∀ (xs : List A) → ∀ ∃Pxs → to xs (from xs ∃Pxs) ≡ ∃Pxs to∘from (x ∷ xs) ⟨ .x , ⟨ here refl , Px ⟩ ⟩ = refl to∘from (x ∷ xs) ⟨ x₁ , ⟨ there x₁∈xs , Px₁ ⟩ ⟩ = cong (λ a → ⟨ proj₁ a , ⟨ there (proj₁ (proj₂ a)) , proj₂ (proj₂ a) ⟩ ⟩) (to∘from xs ⟨ x₁ , ⟨ x₁∈xs , Px₁ ⟩ ⟩) filter? : ∀ {A : Set} {P : A → Set} → (P? : Decidable P) → List A → ∃[ ys ]( All P ys ) filter? P? [] = ⟨ [] , [] ⟩ filter? P? (x ∷ xs) with P? x | filter? P? xs ... | yes Px | ⟨ ys , Pys ⟩ = ⟨ (x ∷ ys) , (Px ∷ Pys) ⟩ ... | no ¬Px | ∃ys-Pys = ∃ys-Pys
{ "alphanum_fraction": 0.4349940321, "avg_line_length": 27.287092883, "ext": "agda", "hexsha": "b6120138b1e850ac89a729dd56aa2605d0bec3ec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "chirsz-ever/plfa-code", "max_forks_repo_path": "src/plfa-code/Lists.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "chirsz-ever/plfa-code", "max_issues_repo_path": "src/plfa-code/Lists.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "chirsz-ever/plfa-code", "max_stars_repo_path": "src/plfa-code/Lists.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 10922, "size": 22621 }
------------------------------------------------------------------------ -- Code related to the paper "Higher Lenses" -- -- Nils Anders Danielsson -- -- The paper is coauthored with Paolo Capriotti and Andrea Vezzosi. ------------------------------------------------------------------------ -- Most of the code referenced below can be found in modules that are -- parametrised by a notion of equality. One can use them both with -- Cubical Agda paths and with the Cubical Agda identity type family. -- Note that the code does not follow the paper exactly. For instance, -- some definitions use bijections (functions with quasi-inverses) -- instead of equivalences. -- An attempt has also been made to track uses of univalence by -- passing around explicit proofs of the univalence axiom (except in -- certain README modules). However, univalence is provable in Cubical -- Agda, and some library code that is used does not adhere to this -- convention, so perhaps some use of univalence is not tracked in -- this way. On the other hand some library code that is not defined -- in Cubical Agda passes around explicit proofs of function -- extensionality. -- Some other differences are mentioned below. -- Note that there is a known problem with guarded corecursion in -- Agda. Due to "quantifier inversion" (see "Termination Checking in -- the Presence of Nested Inductive and Coinductive Types" by Thorsten -- Altenkirch and myself) certain types may not have the expected -- semantics when the option --guardedness is used. I expect that the -- results would still hold if this bug were fixed, but because I do -- not know what the rules of a fixed version of Agda would be I do -- not know if any changes to the code would be required. {-# OPTIONS --cubical --guardedness #-} module README.Higher-Lenses where import Circle import Coherently-constant import Equality import Equality.Decidable-UIP import Equivalence import Equivalence.Half-adjoint import Function-universe import H-level import H-level.Truncation.Propositional import H-level.Truncation.Propositional.Non-recursive import H-level.Truncation.Propositional.One-step import Preimage import Surjection import Lens.Non-dependent.Bijection as B import Lens.Non-dependent.Equivalent-preimages as EP import Lens.Non-dependent.Higher as E import Lens.Non-dependent.Higher.Capriotti as F import Lens.Non-dependent.Higher.Coinductive as C import Lens.Non-dependent.Higher.Coherently.Coinductive as Coh import Lens.Non-dependent.Higher.Coherently.Not-coinductive as NC import Lens.Non-dependent.Higher.Coinductive.Small as S import Lens.Non-dependent.Higher.Combinators as EC import Lens.Non-dependent.Traditional as T import Lens.Non-dependent.Traditional.Combinators as TC import README.Not-a-set ------------------------------------------------------------------------ -- I: Introduction -- Traditional lenses. Lensᵀ = T.Lens -- The function modify. modify = T.Lens.modify -- The two variants of Tm, and proofs showing that Tm A is not a set -- if A is inhabited. Tm₁ = README.Not-a-set.Tm ¬-Tm₁-set = README.Not-a-set.¬-Tm-set Tm₂ = README.Not-a-set.Tmˢ ¬-Tm₂-set = README.Not-a-set.¬-Tmˢ-set ------------------------------------------------------------------------ -- II: Homotopy type theory -- The cong function. -- -- The axiomatisation of equality that is used makes it possible to -- choose the implementation of cong. However, the implementation is -- required to satisfy a property which implies that the definition is -- unique. cong = Equality.Equality-with-J.cong cong-refl = Equality.Equality-with-J.cong-refl cong-unique = Equality.Derived-definitions-and-properties.monomorphic-cong-canonical -- Is-equivalence and _≃_. -- -- Note that the syntax used for Σ-types in the paper is not valid -- Agda syntax. Furthermore the code defines _≃_ as a record type -- instead of using a Σ-type. Is-equivalence = Equivalence.Half-adjoint.Is-equivalence _≃_ = Equivalence._≃_ -- Lemma 6. lemma-6 = Equivalence._≃_.left-right-lemma -- H-level, Contractible, Is-proposition and Is-set. -- -- Some of the definitions are slightly different from the ones given -- in the paper. H-level = H-level.H-level Contractible = Equality.Reflexive-relation′.Contractible Is-proposition = Equality.Reflexive-relation′.Is-proposition Is-set = Equality.Reflexive-relation′.Is-set -- The circle. 𝕊¹ = Circle.𝕊¹ -- A function that is distinct from refl. not-refl = Circle.not-refl not-refl≢refl = Circle.not-refl≢refl -- The type base ≡ base is equivalent to ℤ. base≡base≃ℤ = Circle.base≡base≃ℤ -- The circle is not a set. circle-not-set = Circle.¬-𝕊¹-set -- The propositional truncation operator. ∥_∥ = H-level.Truncation.Propositional.∥_∥ ------------------------------------------------------------------------ -- III: Traditional lenses -- Lenses with equal setters have equal getters. getters-equal-if-setters-equal = T.getters-equal-if-setters-equal -- The identity lens. id-traditional = TC.id -- The lens used for the counterexamples. -- -- This lens is a little different from the one in the text: the -- source and view types are liftings of the circle instead of the -- circle. This change also affects the proof of Lemma 12. l = T.bad -- Lemmas 12 and 13. lemmas-12-and-13 = T.getter-equivalence-but-not-coherent -- There are lenses with equal setters that are not equal. equal-setters-but-not-equal = TC.equal-setters-and-equivalences-as-getters-but-not-equal -- Lemma 14. lemma-14 = T.lens-to-proposition↔ -- Lensᵀ A ⊤ is not necessarily a proposition (and thus not -- necessarily equivalent to the unit type). Traditional-lens-𝕊¹-⊤-not-propositional = T.¬-lens-to-⊤-propositional -- Fibres. _⁻¹_ = Preimage._⁻¹_ -- Lemmas 16 and 17, and a variant of Lemma 16 for lenses which -- satisfy certain coherence laws. lemma-16 = T.≃get⁻¹× lemma-16-coherent = T.≃get⁻¹×-coherent lemma-17 = T.≃Σ∥set⁻¹∥× -- A variant of Lemma 17 without the requirement that the source type -- is a set does not hold in general. not-lemma-17-without-Is-set = TC.≄Σ∥set⁻¹∥× ------------------------------------------------------------------------ -- IV: Lenses based on bijections -- Lenses based on bijections. Lensᴮ = B.Lens -- Lensᴮ ⊥ ⊥ is equivalent to Type. -- -- Note that the definition of ⊥ that is used in the code can target -- different universes, not just Type. Lensᴮ-⊥-⊥≃Type = B.Lens-⊥-⊥≃Type -- Lensᵀ ⊥ ⊥ is equivalent to ⊤. Lensᵀ-⊥-⊥≃Type = T.lens-from-⊥≃⊤ ------------------------------------------------------------------------ -- V: Higher lenses -- Lensᴱ. -- -- For performance reasons η-equality has been turned off for this -- definition. Lensᴱ = E.Lens -- Lemma 20. lemma-20 = E.isomorphism-to-lens -- The functions get, remainder and set. get = E.Lens.get remainder = E.Lens.remainder set = E.Lens.set -- The inhabited field is equivalent to stating that the remainder -- function is surjective. inhabited≃remainder-surjective = E.inhabited≃remainder-surjective -- Lemmas 24-27. lemma-24 = E.Lens.get-set lemma-25 = E.Lens.remainder-set lemma-26 = E.Lens.set-get lemma-27 = E.Lens.set-set -- Traditional lenses that have stable view types and that satisfy two -- coherence laws can be translated to higher lenses with the same -- getters and setters. coherent-to-higher = EP.coherent↠higher coherent-to-higher-preserves-get-and-set = EP.coherent↠higher-preserves-getters-and-setters ------------------------------------------------------------------------ -- VI: Coherence laws -- Lemmas 28-29. lemma-28 = E.Lens.get-set-get lemma-29 = E.Lens.get-set-set ------------------------------------------------------------------------ -- VII: Some equivalences -- Lemmas 30-37. -- -- Lemmas 31 and 33 are formulated slightly differently. lemma-30 = E.lens-to-proposition↔get lemma-31 = E.lens-to-contractible↔⊤ lemma-32 = E.lens-to-⊥↔¬ lemma-33 = E.lens-from-contractible↔codomain-contractible lemma-34 = E.lens-from-⊥↔⊤ lemma-35 = E.get-equivalence≃inhabited-equivalence lemma-36 = E.≃-≃-Σ-Lens-Is-equivalence-get lemma-37 = E.remainder≃get⁻¹ -- Lemmas 32-34 hold for traditional lenses. lemma-32-for-traditional = T.lens-to-⊥↔ lemma-33-for-traditional = T.lens-from-⊤≃codomain-contractible lemma-34-for-traditional = T.lens-from-⊥≃⊤ -- The right-to-left direction of Lemma 36 returns the lens's getter -- (and some proof). lemma-36-right-to-left = E.to-from-≃-≃-Σ-Lens-Is-equivalence-get≡get -- Lemma 36 does not in general hold for traditional lenses. ¬-lemma-36-traditional = TC.¬Π≃-≃-Σ-Lens-Is-equivalence-get ------------------------------------------------------------------------ -- VIII: Equality of lenses with equal setters -- Lemmas 38-44. lemma-38 = E.equality-characterisation₁ lemma-39 = E.equality-characterisation₄ lemma-40 = E.lenses-with-inhabited-codomains-equal-if-setters-equal lemma-41 = E.lenses-equal-if-setters-equal lemma-42 = E.lenses-equal-if-setters-equal-and-remainder-set lemma-43 = E.¬-lenses-equal-if-setters-equal lemma-44 = E.lenses-equal-if-setters-equal→constant→coherently-constant -- Constant and CC. Constant = Equality.Decidable-UIP.Constant CC = Coherently-constant.Coherently-constant -- Lemma 47. lemma-47 = Coherently-constant.¬-Constant→Coherently-constant ------------------------------------------------------------------------ -- IX: Homotopy levels -- Lemmas 48-54. lemma-48 = E.h-level-respects-lens-from-inhabited lemma-49 = E.contractible-to-contractible lemma-50 = E.no-first-projection-lens lemma-51 = E.remainder-has-same-h-level-as-domain lemma-52 = E.get-equivalence→remainder-propositional lemma-53 = E.Contractible-closed-codomain lemma-54 = E.Is-proposition-closed-codomain -- Lemmas 48-50 for traditional lenses. lemma-48-for-traditional = T.h-level-respects-lens-from-inhabited lemma-49-for-traditional = T.contractible-to-contractible lemma-50-for-traditional = T.no-first-projection-lens ------------------------------------------------------------------------ -- X: Higher and traditional lenses are equivalent for sets -- Split surjections. _↠_ = Surjection._↠_ -- Lemmas 55 and 56. -- -- Lemma 55 takes an extra argument of type Unit, written as -- Block "conversion". Some other definitions below also take such -- arguments. lemma-55 = E.¬Lens↠Traditional-lens lemma-56 = E.Lens↔Traditional-lens -- Lemma 56 preserves getters and setters in both directions. lemma-56-preserves-get-and-set = E.Lens↔Traditional-lens-preserves-getters-and-setters ------------------------------------------------------------------------ -- XI: Identity and composition -- The identity lens. id = EC.id -- Lemma 58. lemma-58 = EC.id-unique -- A composition operator for types in the same universe. ∘-same-universe = EC._∘_ -- A more general composition operator. ∘-more-general = EC.⟨_,_⟩_∘_ -- A lens from a type in a smaller universe to a type in a (possibly) -- larger universe. smaller-to-larger = E.↑-lens -- Composition laws. associativity = EC.associativity left-identity = EC.left-identity right-identity = EC.right-identity -- Composition laws for traditional lenses. associativity-traditional = TC.associativity left-identity-traditional = TC.left-identity right-identity-traditional = TC.right-identity -- Lemma 60. -- -- The lemma is formulated slightly differently. lemma-60 = EC.∘-unique -- The composition operator produces lenses for which the setter -- satisfies certain equations. setter-correct = EC.∘-set -- Is-bi-invertible. Is-bi-invertible = EC.Is-bi-invertible -- Lemmas 62 and 63. lemma-62 = EC.≃≃≊ lemma-63 = EC.Is-bi-invertible≃Is-equivalence-get -- Lemma 62 maps bi-invertible lenses to their getter functions. lemma-62-right-to-left = EC.to-from-≃≃≊≡get -- Lemma 62 does not in general hold for traditional lenses. not-lemma-62-for-traditional = TC.¬Π≃≃≊ -- A variant of Lemma 62 for traditional lenses (a split surjection in -- the other direction). lemma-62-for-traditional = TC.≊↠≃ -- Lemma 63 for traditional lenses. lemma-63-for-traditional = TC.Is-bi-invertible≃Is-equivalence-get -- A category of higher lenses between sets with the same universe -- level. category-higher = EC.category -- A category of traditional lenses between sets with the same -- universe level. category-traditional = TC.category -- The category of higher lenses is equal to the one for traditional -- lenses (lifted, so that the two categories have the same type). category≡category = EC.category≡category -- Naive categories. Naive-category = TC.Naive-category -- A notion of univalence for naive categories. Univalent = TC.Univalent -- A naive category of higher lenses between types with the same -- universe level. naive-category-higher = EC.naive-category -- This category is univalent. naive-category-higher-univalent = EC.univalent -- A naive category of traditional lenses between types with the same -- universe level. naive-category-traditional = TC.naive-category -- This category is not univalent. naive-category-traditional-not-univalent = TC.¬-univalent ------------------------------------------------------------------------ -- XII: Coherently constant families of fibres -- Lens^F. Lens^F = F.Lens -- Lemma 65. lemma-65 = F.Lens.get⁻¹-constant -- A setter. set^F = F.Lens.set -- Lemma 67. -- -- Unlike in the paper this lemma is defined in two steps, using a -- minor variant of Lens^F "in the middle". lemma-67 = F.Lens≃Higher-lens -- Lemma 67 preserves getters and setters in both directions. lemma-67-preserves-get-and-set = F.Lens≃Higher-lens-preserves-getters-and-setters ------------------------------------------------------------------------ -- XIII: Coinductive lenses -- The one-step truncation operator, and its non-dependent eliminator. ∥_∥¹ = H-level.Truncation.Propositional.One-step.∥_∥¹ rec = H-level.Truncation.Propositional.One-step.rec′ -- Lemma 70. lemma-70 = H-level.Truncation.Propositional.Non-recursive.∥∥→≃ -- ∥_∥¹-out, ∥_∥¹-in and ∣_,_∣-in. ∥_∥¹-out = H-level.Truncation.Propositional.One-step.∥_∥¹-out-^ ∥_∥¹-in = H-level.Truncation.Propositional.One-step.∥_∥¹-in-^ ∣_,_∣-in = H-level.Truncation.Propositional.One-step.∣_,_∣-in-^ -- Lemmas 74 and 75. lemma-74 = H-level.Truncation.Propositional.One-step.∥∥¹-out-^≃∥∥¹-in-^ lemma-75 = H-level.Truncation.Propositional.One-step.∣∣≡∣,∣-in-^ -- Coherently and CC^C. Coherently = Coh.Coherently CC^C = C.Coherently-constant -- Coherently can be defined without using coinduction. Coherently-without-coinduction = NC.Coherently Coherently≃Coherently-without-coinduction = Coh.Coherently≃Not-coinductive-coherently -- But then Lens^C would not be small (at least with the definition we -- came up with). Lens^C-without-coinduction = S.Not-coinductive-lens Lens^C-without-coinduction≃Lens^C = S.Not-coinductive-lens≃Lens -- Constant¹ and CC^C1. Constant¹ = C.Constant′ CC^C1 = C.Coherently-constant′ -- Lemmas 80-86. -- -- Lemma 84 is more general than in the paper. lemma-80 = C.Constant≃Constant′ lemma-81 = C.Coherently-constant≃Coherently-constant′ lemma-82 = C.∥∥→≃ lemma-83 = Equivalence.Σ-preserves lemma-84 = Function-universe.Π-cong-contra lemma-85 = C.Coherently-constant′≃ lemma-86 = C.Coherently-constant≃Coherently-constant -- Constant^S and CC^S. Constant^S = S.Constant-≃ CC^S = S.Coherently-constant -- Lemma 89. lemma-89 = S.Coinductive-coherently-constant≃Coherently-constant -- Lens^C. Lens^C = S.Lens -- Lemmas 91-92. lemma-91 = S.Higher-lens≃Lens lemma-92 = S.Lens.get⁻¹-constant -- Lemma 91 preserves getters and setters. lemma-91-preserves-get-and-set = S.Higher-lens≃Lens-preserves-getters-and-setters ------------------------------------------------------------------------ -- XIV: Unrestricted composition -- Lemmas 93 and 94. lemma-93 = S.Coherently-constant-map lemma-94 = S.Coherently-constant-Σ -- Composition. ∘-most-general = S.⟨_,_⟩_∘_ -- Lemma 96. lemma-96 = S.set-∘ -- Composition laws. associativity-stable = S.associativity left-identity-stable = S.left-identity right-identity-stable = S.right-identity -- An unrestricted composition operator for Lensᴱ. ∘-most-general′ = S.⟨_,_,_,_,_,_,_,_⟩_⊚_ -- This operator matches "∘-more-general" when all types have the same -- universe level and the view type of the resulting lens is stable. ∘-more-general-matches-∘-most-general′ = S.⊚≡∘ ------------------------------------------------------------------------ -- XV: Homotopy levels, continued -- Coherently′. Coherently′ = Coh.Coherently-with-restriction -- Lemma 98. lemma-98 = Coh.Coherently≃Coherently-with-restriction -- Coherently′ can be expressed as an indexed M-type for a certain -- indexed container. Coherently′-as-M-type = Coh.Coherently-with-restriction≃Coherently-with-restriction′ -- Lemmas 99-103. lemma-99 = Coh.H-level-Coherently-with-restriction lemma-100 = Coh.H-level-Coherently-→Type lemma-101 = S.H-level-Coherently-constant lemma-102 = S.lens-preserves-h-level lemma-103 = S.h-level-respects-lens-from-inhabited -- Lemma 103 and a variant of Lemma 102 hold for traditional lenses. lemma-102-for-traditional = T.lens-preserves-h-level lemma-103-for-traditional = T.lens-from-⊤≃codomain-contractible ------------------------------------------------------------------------ -- XVI: Related work -- Lemmas 104-106. lemma-104 = E.grenrus-example lemma-105 = E.grenrus-example₁-true lemma-106 = E.grenrus-example₂-false -- The lenses used in Lemmas 105 and 106 are equal. lenses-equal = E.grenrus-example₁≡grenrus-example₂
{ "alphanum_fraction": 0.6828729907, "avg_line_length": 27.056661562, "ext": "agda", "hexsha": "b8e8552b6f4da4d22539367602b4cd51dddb1f1b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_forks_event_min_datetime": "2020-07-01T14:33:26.000Z", "max_forks_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependent-lenses", "max_forks_repo_path": "README/Higher-Lenses.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependent-lenses", "max_issues_repo_path": "README/Higher-Lenses.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "f2da6f7e95b87ca525e8ea43929c6d6163a74811", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependent-lenses", "max_stars_repo_path": "README/Higher-Lenses.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:55:52.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:10:46.000Z", "num_tokens": 4953, "size": 17668 }
module Formalization.Polynomial where import Lvl open import Data.ListSized open import Numeral.Natural as ℕ using (ℕ) open import Type private variable ℓ ℓₑ : Lvl.Level private variable T : Type{ℓ} private variable n n₁ n₂ : ℕ -- TODO: Some of the operations should work with arbitrary Rg structures, not just ℕ, and some other stuff should work with more assumptions. Currently, one of the function that needs to be modified is 𝐷 and normalize for this to work because their implementations depend on ℕ. -- TODO: Composition of polynomials, power operation module _ where -- A polynomial of a finite degree represented as a list of its coefficients. -- Examples: -- (a₀⋅x⁰ + a₁⋅x¹ + a₂⋅x² + a₃⋅x³ + a₄⋅x⁴) of degree 4 is [a₀,a₁,a₂,a₃,a₄] -- (5 + 7⋅x + x³) of maximal degree 3 is [5,7,0,1] Polynomial : ℕ → Type Polynomial(n) = List(ℕ)(ℕ.𝐒(n)) open import Data.ListSized.Functions import Functional as Fn open import Logic.Propositional open import Logic.Predicate import Numeral.Natural.Function as ℕ open import Numeral.Natural.Function.Proofs import Numeral.Natural.Oper as ℕ open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs.Equiv{T = ℕ} -- Constant polynomial. -- Semantically, this corresponds to a constant. const : ℕ → Polynomial(n) const {n} a = a ⊰ repeat ℕ.𝟎 n -- Zero polynomial. -- Semantically, this corresponds to zero. 𝟎 : Polynomial(n) 𝟎 {n} = const{n} ℕ.𝟎 -- Unit polynomial. -- Semantically, this corresponds to one. 𝟏 : Polynomial(n) 𝟏 {n} = const{n}(ℕ.𝐒(ℕ.𝟎)) -- Increases the degree of the polynomial by adding a zero term at the beginning. -- Semantically, this corresponds to multiplying the whole polynomial by the variable. -- Example: (var⋅ [a₀,a₁,a₂] = [0,a₀,a₁,a₂]) -- x ⋅ (a₀⋅x⁰ + a₁⋅x¹ + a₂⋅x²) -- = a₀⋅x¹ + a₁⋅x² + a₂⋅x³ var⋅_ : Polynomial(n) → Polynomial(ℕ.𝐒(n)) var⋅_ = ℕ.𝟎 ⊰_ -- Single variable polynomial. var : Polynomial(ℕ.𝐒(n)) var = var⋅ 𝟏 -- Polynomial addition. -- Adds the powers component-wise. -- Examples: ([a₀,a₁,a₂] + [b₀,b₁,b₂] = [a₀b₀ , a₁+b₁ , a₂+b₂]) -- (a₀⋅x⁰ + a₁⋅x¹ + a₂⋅x²) + (b₀⋅x⁰ + b₁⋅x¹ + b₂⋅x²) -- = (a₀+b₀)⋅x⁰ + (a₁+b₁)⋅x¹ + (a₂+b₂)⋅x² -- of maximal degree 2 is [a₀+b₀ , a₁+b₁ , a₂+b₂] _+_ : Polynomial(n₁) → Polynomial(n₂) → Polynomial(ℕ.max n₁ n₂) _+_ = map₂(ℕ._+_) Fn.id Fn.id -- Polymonial scalar multiplication. -- Multiplies every component by a factor. -- Example: (n ⋅ [a₀,a₁,a₂] = [n⋅a₀ , n⋅a₁ , n⋅a₂]) -- n ⋅ (a₀⋅x⁰ + a₁⋅x¹ + a₂⋅x²) -- = (n⋅a₀)⋅x⁰ + (n⋅a₁)⋅x¹ + (n⋅a₂)⋅x² _⋅_ : ℕ → Polynomial(n) → Polynomial(n) n ⋅ as = map (n ℕ.⋅_) as -- Increases the degree of the polynomial by adding zero terms at the end. -- Semantically, this corresponds to adding terms multiplied by zero. -- Example: (pad [a₀,a₁,a₂] = [a₀,a₁,a₂,0,0]) -- a₀⋅x⁰ + a₁⋅x¹ + a₂⋅x² -- = a₀⋅x⁰ + a₁⋅x¹ + a₂⋅x² + 0⋅x³ + 0⋅x⁴ pad : ⦃ _ : (n₁ ≤ n₂)⦄ → Polynomial(n₁) → Polynomial(n₂) pad {n₁ = ℕ.𝟎} {n₂ = ℕ.𝟎} ⦃ min ⦄ (a ⊰ ∅) = singleton a pad {n₁ = ℕ.𝟎} {n₂ = ℕ.𝐒(n₂)} ⦃ min ⦄ (a ⊰ ∅) = a ⊰ 𝟎 pad {n₁ = ℕ.𝐒(n₁)} {n₂ = ℕ.𝐒(n₂)} ⦃ succ p ⦄ (a ⊰ as) = a ⊰ pad ⦃ p ⦄ as -- Polynomial multiplication. -- Proof of step: -- ∑(0‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ) ⋅ ∑(0‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ) -- = (a + ∑(1‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ)) ⋅ (b + ∑(1‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ)) -- = (a ⋅ b) + (a ⋅ ∑(1‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ)) + (∑(1‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ) ⋅ b) + (∑(1‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ) ⋅ ∑(1‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ)) -- = (a⋅b) + (a ⋅ ∑(1‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ)) + (∑(1‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ) ⋅ b⋅x) + (∑(1‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ) ⋅ ∑(1‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ)) -- = (a⋅b) + (a ⋅ ∑(0‥n₂)(i ↦ bᵢ⋅xⁱ)⋅x) + (∑(0‥n₁)(i ↦ aᵢ⋅xⁱ)⋅x ⋅ b) + (∑(1‥𝐒(n₁))(i ↦ aᵢ⋅xⁱ) ⋅ ∑(1‥𝐒(n₂))(i ↦ bᵢ⋅xⁱ)) -- = (a⋅b) + (a ⋅ ∑(0‥n₂)(i ↦ bᵢ⋅xⁱ))⋅x + (∑(0‥n₁)(i ↦ aᵢ⋅xⁱ) ⋅ b)⋅x + (∑(0‥n₁)(i ↦ aᵢ⋅xⁱ) ⋅ ∑(0‥n₂)(i ↦ bᵢ⋅xⁱ))⋅x² -- = (a⋅b) + ((a ⋅ ∑(0‥n₂)(i ↦ bᵢ⋅xⁱ)) + (∑(0‥n₁)(i ↦ aᵢ⋅xⁱ) ⋅ b) + (∑(0‥n₁)(i ↦ aᵢ⋅xⁱ) ⋅ ∑(0‥n₂)(i ↦ bᵢ⋅xⁱ))⋅x)⋅x -- Also see `eval-preserves-multiplication`. _⨯_ : Polynomial(n₁) → Polynomial(n₂) → Polynomial(n₁ ℕ.+ n₂) _⨯_ as@(_ ⊰ _) (b ⊰ ∅) = b ⋅ as _⨯_ (a ⊰ ∅) bs@(_ ⊰ _ ⊰ _) = a ⋅ bs _⨯_ {ℕ.𝐒 n₁}{ℕ.𝐒 n₂} (a ⊰ as@(_ ⊰ _)) (b ⊰ bs@(_ ⊰ _)) = (a ℕ.⋅ b) ⊰ lr where l : Polynomial(n₁ ℕ.+ n₂) l = pad ⦃ max-order-[+] ⦄ ((b ⋅ as) + (a ⋅ bs)) r : Polynomial(ℕ.𝐒(n₁ ℕ.+ n₂)) r = var⋅ (as ⨯ bs) lr : Polynomial(ℕ.𝐒(n₁ ℕ.+ n₂)) lr = [≡]-substitutionᵣ ([↔]-to-[→] max-defᵣ [≤]-of-[𝐒]) {Polynomial} (l + r) normalize : Polynomial(n) → ∃(Polynomial) normalize {ℕ.𝟎} (x ⊰ ∅) = [∃]-intro ℕ.𝟎 ⦃ x ⊰ ∅ ⦄ normalize {ℕ.𝐒 n} (ℕ.𝟎 ⊰ p) with normalize{n} p ... | [∃]-intro ℕ.𝟎 ⦃ singleton ℕ.𝟎 ⦄ = [∃]-intro ℕ.𝟎 ⦃ singleton ℕ.𝟎 ⦄ {-# CATCHALL #-} ... | [∃]-intro m ⦃ a ⦄ = [∃]-intro (ℕ.𝐒(m)) ⦃ ℕ.𝟎 ⊰ a ⦄ normalize {ℕ.𝐒 n} (ℕ.𝐒(x) ⊰ p) = [∃]-map ℕ.𝐒 (ℕ.𝐒(x) ⊰_) (normalize{n} p) degree : Polynomial(n) → ℕ degree = [∃]-witness Fn.∘ normalize 𝐷 : Polynomial(n) → Polynomial(ℕ.𝐏(n)) 𝐷 {ℕ.𝟎} = Fn.id 𝐷 {ℕ.𝐒 n} = map₂₌(ℕ._⋅_) (accumulateIterate n ℕ.𝐒(ℕ.𝐒(ℕ.𝟎))) Fn.∘ tail import Numeral.Natural.Oper.FlooredDivision as ℕ ∫ : Polynomial(n) → Polynomial(ℕ.𝐒(n)) ∫ {n} p = var⋅(map₂₌(ℕ._⌊/⌋₀_) p (accumulateIterate n ℕ.𝐒(ℕ.𝐒(ℕ.𝟎)))) module Semantics where open import Data.ListSized.Functions open import Logic.Propositional open import Numeral.Finite as 𝕟 using (𝕟) import Numeral.Natural.Oper as ℕ open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Relation.Order open import Relator.Equals.Proofs.Equiv{T = ℕ} open import Structure.Function.Multi open import Structure.Operator open import Structure.Operator.Proofs.Util open import Structure.Operator.Properties open import Structure.Relator.Properties open import Structure.Setoid open import Syntax.Function open import Syntax.Transitivity eval : Polynomial(n) → (ℕ → ℕ) eval (singleton a) _ = a eval (a ⊰ al@(_ ⊰ _)) x = a ℕ.+ (x ℕ.⋅ (eval al x)) module Proofs where eval-of-[⊰] : ∀{x}{a}{al : Polynomial(n)} → (eval (a ⊰ al) x ≡ a ℕ.+ (x ℕ.⋅ (eval al x))) eval-of-[⊰] {ℕ.𝟎} {x} {a} {b ⊰ ∅} = reflexivity(_≡_) eval-of-[⊰] {ℕ.𝐒 n} {x} {a} {b ⊰ c ⊰ al} = reflexivity(_≡_) eval-preserves-var⋅ : ∀{x}{a : Polynomial(n)} → (eval (var⋅ a) x ≡ x ℕ.⋅ (eval a x)) eval-preserves-var⋅ {n}{x}{a} = eval-of-[⊰] {n}{x}{ℕ.𝟎}{a} eval-preserves-zero : ∀{x} → (eval{n} 𝟎 x ≡ ℕ.𝟎) eval-preserves-zero {ℕ.𝟎} {x} = reflexivity(_≡_) eval-preserves-zero {ℕ.𝐒 n} {x} = eval(𝟎 {ℕ.𝐒 n}) x 🝖[ _≡_ ]-[] eval(ℕ.𝟎 ⊰ 𝟎 {n}) x 🝖[ _≡_ ]-[] ℕ.𝟎 ℕ.+ (x ℕ.⋅ eval (𝟎 {n}) x) 🝖[ _≡_ ]-[] x ℕ.⋅ eval (𝟎 {n}) x 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-zero{n}{x}) ] x ℕ.⋅ ℕ.𝟎 🝖[ _≡_ ]-[ absorberᵣ(ℕ._⋅_)(ℕ.𝟎) {x} ] ℕ.𝟎 🝖-end eval-preserves-const : ∀{x}{a} → (eval{n} (const a) x ≡ a) eval-preserves-const {ℕ.𝟎} {x}{a} = reflexivity(_≡_) eval-preserves-const {ℕ.𝐒 n} {x}{a} = eval{ℕ.𝐒 n} (const a) x 🝖[ _≡_ ]-[] eval(a ⊰ repeat ℕ.𝟎 (ℕ.𝐒 n)) x 🝖[ _≡_ ]-[ eval-of-[⊰] {x = x}{a}{repeat ℕ.𝟎 (ℕ.𝐒 n)} ] a ℕ.+ (x ℕ.⋅ eval(repeat ℕ.𝟎 (ℕ.𝐒 n)) x) 🝖[ _≡_ ]-[] a ℕ.+ (x ℕ.⋅ eval{n} 𝟎 x) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a) (eval-preserves-zero{ℕ.𝐒 n}{x = x}) ] a ℕ.+ (x ℕ.⋅ ℕ.𝟎) 🝖[ _≡_ ]-[] a ℕ.+ ℕ.𝟎 🝖[ _≡_ ]-[ identityᵣ(ℕ._+_)(ℕ.𝟎) ] a 🝖-end eval-preserves-one : ∀{x} → (eval{n} 𝟏 x ≡ ℕ.𝐒(ℕ.𝟎)) eval-preserves-one {n}{x} = eval-preserves-const {n}{x}{ℕ.𝐒(ℕ.𝟎)} eval-preserves-var : ∀{x}{a : Polynomial(n)} → (eval (var{n}) x ≡ x) eval-preserves-var {n}{x}{a} = eval (var{n}) x 🝖[ _≡_ ]-[ eval-preserves-var⋅{n}{x}{𝟏} ] x ℕ.⋅ eval (𝟏 {n}) x 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-one {n}{x}) ] x ℕ.⋅ ℕ.𝐒(ℕ.𝟎) 🝖[ _≡_ ]-[ identityᵣ(ℕ._⋅_)(ℕ.𝐒(ℕ.𝟎)) {x} ] x 🝖-end eval-preserves-addition : ∀{x}{a : Polynomial(n₁)}{b : Polynomial(n₂)} → (eval (a + b) x ≡ (eval a x) ℕ.+ (eval b x)) eval-preserves-addition {x = x} {singleton a} {singleton b} = reflexivity(_≡_) eval-preserves-addition {x = x} {singleton a} {b ⊰ bs@(_ ⊰ _)} = associativity(ℕ._+_) {a}{b} eval-preserves-addition {x = x} {a ⊰ as@(_ ⊰ _)} {singleton b} = eval ((a ⊰ as) + (singleton b)) x 🝖[ _≡_ ]-[] (a ℕ.+ b) ℕ.+ (x ℕ.⋅ (eval as x)) 🝖[ _≡_ ]-[ associativity(ℕ._+_) {a}{b} ] a ℕ.+ (b ℕ.+ (x ℕ.⋅ (eval as x))) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a) (commutativity(ℕ._+_) {x = b}) ] a ℕ.+ ((x ℕ.⋅ (eval as x)) ℕ.+ b) 🝖[ _≡_ ]-[ associativity(ℕ._+_) {a}{x ℕ.⋅ eval as x} ]-sym (a ℕ.+ (x ℕ.⋅ (eval as x))) ℕ.+ b 🝖[ _≡_ ]-[] (eval (a ⊰ as) x) ℕ.+ (eval (singleton b) x) 🝖-end eval-preserves-addition {x = x} {a ⊰ as@(_ ⊰ _)} {b ⊰ bs@(_ ⊰ _)} = eval ((a ⊰ as) + (b ⊰ bs)) x 🝖[ _≡_ ]-[] eval ((a ℕ.+ b) ⊰ (as + bs)) x 🝖[ _≡_ ]-[] (a ℕ.+ b) ℕ.+ (x ℕ.⋅ (eval (as + bs) x)) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.+ b) (congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-addition {x = x}{as}{bs})) ] (a ℕ.+ b) ℕ.+ (x ℕ.⋅ ((eval as x) ℕ.+ (eval bs x))) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.+ b) (distributivityₗ(ℕ._⋅_)(ℕ._+_) {x}{eval as x}{eval bs x}) ] (a ℕ.+ b) ℕ.+ ((x ℕ.⋅ (eval as x)) ℕ.+ (x ℕ.⋅ (eval bs x))) 🝖[ _≡_ ]-[ One.associate-commute4 {a = a}{b = b}{c = x ℕ.⋅ (eval as x)}{d = x ℕ.⋅ (eval bs x)} (commutativity(ℕ._+_) {b}) ] (a ℕ.+ (x ℕ.⋅ (eval as x))) ℕ.+ (b ℕ.+ (x ℕ.⋅ (eval bs x))) 🝖[ _≡_ ]-[] (eval (a ⊰ as) x) ℕ.+ (eval (b ⊰ bs) x) 🝖-end eval-preserves-scalar-multiplication : ∀{x}{a}{b : Polynomial(n)} → (eval (a ⋅ b) x ≡ a ℕ.⋅ (eval b x)) eval-preserves-scalar-multiplication {ℕ.𝟎} {x} {a} {b ⊰ ∅} = reflexivity(_≡_) eval-preserves-scalar-multiplication {ℕ.𝐒 n} {x} {a} {b ⊰ bs@(_ ⊰ _)} = eval (a ⋅ (b ⊰ bs)) x 🝖[ _≡_ ]-[] eval ((a ℕ.⋅ b) ⊰ (a ⋅ bs)) x 🝖[ _≡_ ]-[] (a ℕ.⋅ b) ℕ.+ (x ℕ.⋅ (eval (a ⋅ bs) x)) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.⋅ b) (congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-scalar-multiplication {n} {x}{a}{bs})) ] (a ℕ.⋅ b) ℕ.+ (x ℕ.⋅ (a ℕ.⋅ (eval bs x))) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.⋅ b) (One.commuteₗ-assocᵣ {a = x}{b = a}{c = eval bs x}) ] (a ℕ.⋅ b) ℕ.+ (a ℕ.⋅ (x ℕ.⋅ (eval bs x))) 🝖[ _≡_ ]-[ distributivityₗ(ℕ._⋅_)(ℕ._+_) {x = a}{y = b}{z = x ℕ.⋅ (eval bs x)} ]-sym a ℕ.⋅ (b ℕ.+ (x ℕ.⋅ (eval bs x))) 🝖[ _≡_ ]-[] a ℕ.⋅ eval (b ⊰ bs) x 🝖-end eval-preserves-pad : ∀{x}{a : Polynomial(n₁)} ⦃ ord : (n₁ ≤ n₂) ⦄ → (eval (pad ⦃ ord ⦄ a) x ≡ eval a x) eval-preserves-pad {ℕ.𝟎} {ℕ.𝟎} {x} {a ⊰ ∅} ⦃ ord@min ⦄ = reflexivity(_≡_) eval-preserves-pad {ℕ.𝟎} {ℕ.𝐒 n₂} {x} {a ⊰ ∅} ⦃ ord@min ⦄ = eval (pad ⦃ ord ⦄ (a ⊰ ∅)) x 🝖[ _≡_ ]-[] a ℕ.+ (x ℕ.⋅ eval (𝟎 {n₂}) x) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a) (congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-zero{n₂}{x})) ] a ℕ.+ (x ℕ.⋅ ℕ.𝟎) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a) (absorberᵣ(ℕ._⋅_)(ℕ.𝟎) {x}) ] a ℕ.+ ℕ.𝟎 🝖[ _≡_ ]-[ identityᵣ(ℕ._+_)(ℕ.𝟎) ] a 🝖[ _≡_ ]-[] eval (a ⊰ ∅) x 🝖-end eval-preserves-pad {ℕ.𝐒 n₁} {ℕ.𝐒 n₂} {x} {a ⊰ as@(_ ⊰ _)} ⦃ ord@(succ p) ⦄ = eval (pad ⦃ ord ⦄ (a ⊰ as)) x 🝖[ _≡_ ]-[] eval (a ⊰ pad ⦃ _ ⦄ as) x 🝖[ _≡_ ]-[ eval-of-[⊰] {n₂}{x}{a}{pad ⦃ p ⦄ as} ] a ℕ.+ (x ℕ.⋅ eval (pad ⦃ _ ⦄ as) x) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a) (congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-pad {n₁}{n₂}{x}{as} ⦃ p ⦄)) ] a ℕ.+ (x ℕ.⋅ eval as x) 🝖[ _≡_ ]-[ eval-of-[⊰] {n₁}{x}{a}{as} ]-sym eval (a ⊰ as) x 🝖-end eval-preserves-multiplication : ∀{x}{a : Polynomial(n₁)}{b : Polynomial(n₂)} → (eval (a ⨯ b) x ≡ (eval a x) ℕ.⋅ (eval b x)) eval-preserves-multiplication {n₁} {ℕ.𝟎} {x} {a ⊰ as} {b ⊰ ∅} = eval ((a ⊰ as) ⨯ (b ⊰ ∅)) x 🝖[ _≡_ ]-[] eval (b ⋅ (a ⊰ as)) x 🝖[ _≡_ ]-[ eval-preserves-scalar-multiplication {x = x}{b}{a ⊰ as} ] b ℕ.⋅ eval (a ⊰ as) x 🝖[ _≡_ ]-[ commutativity(ℕ._⋅_) {b}{eval(a ⊰ as) x} ] eval (a ⊰ as) x ℕ.⋅ b 🝖[ _≡_ ]-[] (eval (a ⊰ as) x ℕ.⋅ eval (b ⊰ ∅) x) 🝖-end eval-preserves-multiplication {ℕ.𝟎} {ℕ.𝐒 n₂}{x} {a ⊰ ∅} {b ⊰ bs@(_ ⊰ _)} = eval ((a ⊰ ∅) ⨯ (b ⊰ bs)) x 🝖[ _≡_ ]-[] eval (a ⋅ (b ⊰ bs)) x 🝖[ _≡_ ]-[ eval-preserves-scalar-multiplication {x = x}{a}{b ⊰ bs} ] a ℕ.⋅ (b ℕ.+ (x ℕ.⋅ eval bs x)) 🝖[ _≡_ ]-[] eval (a ⊰ ∅) x ℕ.⋅ eval (b ⊰ bs) x 🝖-end eval-preserves-multiplication {ℕ.𝐒 n₁}{ℕ.𝐒 n₂}{x} {a ⊰ as@(_ ⊰ _)} {b ⊰ bs@(_ ⊰ _)} = eval((a ℕ.⋅ b) ⊰ lr) x 🝖[ _≡_ ]-[ eval-of-[⊰] {x = x}{a = a ℕ.⋅ b}{al = lr} ] (a ℕ.⋅ b) ℕ.+ (x ℕ.⋅ eval lr x) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.⋅ b) (congruence₂ᵣ(ℕ._⋅_)(x) eval-lr) ] (a ℕ.⋅ b) ℕ.+ (x ℕ.⋅ (((b ℕ.⋅ eval as x) ℕ.+ (a ℕ.⋅ eval bs x)) ℕ.+ (x ℕ.⋅ (eval as x ℕ.⋅ eval bs x)))) 🝖[ _≡_ ]-[ alg{a}{b}{x}{eval as x}{eval bs x} ] (a ℕ.+ (x ℕ.⋅ eval as x)) ℕ.⋅ (b ℕ.+ (x ℕ.⋅ eval bs x)) 🝖[ _≡_ ]-[ congruence₂(ℕ._⋅_) (eval-of-[⊰] {x = x}{a = a}{al = as}) (eval-of-[⊰] {x = x}{a = b}{al = bs}) ] (eval(a ⊰ as) x ℕ.⋅ eval(b ⊰ bs) x) 🝖-end where open import Numeral.Natural.Function open import Numeral.Natural.Function.Proofs open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals using ([≡]-intro) l : Polynomial(n₁ ℕ.+ n₂) l = pad ⦃ max-order-[+] ⦄ ((b ⋅ as) + (a ⋅ bs)) r : Polynomial(ℕ.𝐒(n₁ ℕ.+ n₂)) r = var⋅ (as ⨯ bs) lr : Polynomial(ℕ.𝐒(n₁ ℕ.+ n₂)) lr = [≡]-substitutionᵣ ([↔]-to-[→] max-defᵣ [≤]-of-[𝐒]) {Polynomial} (l + r) eval-l : (eval l x ≡ (b ℕ.⋅ eval as x) ℕ.+ (a ℕ.⋅ eval bs x)) eval-l = eval l x 🝖[ _≡_ ]-[] eval (pad ⦃ max-order-[+] ⦄ ((b ⋅ as) + (a ⋅ bs))) x 🝖[ _≡_ ]-[ eval-preserves-pad {x = x}{(b ⋅ as) + (a ⋅ bs)} ⦃ max-order-[+] ⦄ ] eval ((b ⋅ as) + (a ⋅ bs)) x 🝖[ _≡_ ]-[ eval-preserves-addition {x = x}{b ⋅ as}{a ⋅ bs} ] eval (b ⋅ as) x ℕ.+ eval (a ⋅ bs) x 🝖[ _≡_ ]-[ congruence₂(ℕ._+_) (eval-preserves-scalar-multiplication {x = x}{b}{as}) (eval-preserves-scalar-multiplication {x = x}{a}{bs}) ] (b ℕ.⋅ eval as x) ℕ.+ (a ℕ.⋅ eval bs x) 🝖-end eval-r : (eval r x ≡ x ℕ.⋅ (eval as x ℕ.⋅ eval bs x)) eval-r = eval r x 🝖[ _≡_ ]-[] eval (var⋅ (as ⨯ bs)) x 🝖[ _≡_ ]-[ eval-preserves-var⋅ {x = x}{as ⨯ bs} ] x ℕ.⋅ eval (as ⨯ bs) x 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._⋅_)(x) (eval-preserves-multiplication {x = x}{as}{bs}) ] x ℕ.⋅ (eval as x ℕ.⋅ eval bs x) 🝖-end eval-substitution : ∀{m n}{a : Polynomial(m)}{eq : (m ≡ n)}{x} → (eval ([≡]-substitutionᵣ eq {Polynomial} a) x ≡ eval a x) eval-substitution {eq = [≡]-intro} = [≡]-intro eval-lr : (eval lr x ≡ ((b ℕ.⋅ eval as x) ℕ.+ (a ℕ.⋅ eval bs x)) ℕ.+ (x ℕ.⋅ (eval as x ℕ.⋅ eval bs x))) eval-lr = eval lr x 🝖[ _≡_ ]-[ eval-substitution{a = l + r}{[↔]-to-[→] max-defᵣ [≤]-of-[𝐒]}{x = x} ] eval (l + r) x 🝖[ _≡_ ]-[ eval-preserves-addition{x = x}{l}{r} ] eval l x ℕ.+ eval r x 🝖[ _≡_ ]-[ congruence₂(ℕ._+_) eval-l eval-r ] ((b ℕ.⋅ eval as x) ℕ.+ (a ℕ.⋅ eval bs x)) ℕ.+ (x ℕ.⋅ (eval as x ℕ.⋅ eval bs x)) 🝖-end alg : ∀{a b x q r} → ((a ℕ.⋅ b) ℕ.+ (x ℕ.⋅ (((b ℕ.⋅ q) ℕ.+ (a ℕ.⋅ r)) ℕ.+ (x ℕ.⋅ (q ℕ.⋅ r)))) ≡ (a ℕ.+ (x ℕ.⋅ q)) ℕ.⋅ (b ℕ.+ (x ℕ.⋅ r))) alg {a}{b}{x}{q}{r} = (a ℕ.⋅ b) ℕ.+ (x ℕ.⋅ (((b ℕ.⋅ q) ℕ.+ (a ℕ.⋅ r)) ℕ.+ (x ℕ.⋅ (q ℕ.⋅ r)))) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.⋅ b) (distributivityₗ(ℕ._⋅_)(ℕ._+_) {x}{(b ℕ.⋅ q) ℕ.+ (a ℕ.⋅ r)}{x ℕ.⋅ (q ℕ.⋅ r)}) ] (a ℕ.⋅ b) ℕ.+ ((x ℕ.⋅ ((b ℕ.⋅ q) ℕ.+ (a ℕ.⋅ r))) ℕ.+ (x ℕ.⋅ (x ℕ.⋅ (q ℕ.⋅ r)))) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.⋅ b) (congruence₂(ℕ._+_) (distributivityₗ(ℕ._⋅_)(ℕ._+_) {x}{b ℕ.⋅ q}{a ℕ.⋅ r}) (symmetry(_≡_) (associativity(ℕ._⋅_) {x}{x}{q ℕ.⋅ r}))) ] (a ℕ.⋅ b) ℕ.+ (((x ℕ.⋅ (b ℕ.⋅ q)) ℕ.+ (x ℕ.⋅ (a ℕ.⋅ r))) ℕ.+ ((x ℕ.⋅ x) ℕ.⋅ (q ℕ.⋅ r))) 🝖[ _≡_ ]-[ congruence₂ᵣ(ℕ._+_)(a ℕ.⋅ b) (congruence₂(ℕ._+_) (congruence₂(ℕ._+_) (One.commuteᵣ-assocᵣ {_▫_ = ℕ._⋅_}{a = x}{b}{q}) (One.commuteₗ-assocᵣ {_▫_ = ℕ._⋅_}{a = x}{a}{r})) (One.associate-commute4-c {_▫_ = ℕ._⋅_}{a = x}{x}{q}{r})) ] (a ℕ.⋅ b) ℕ.+ ((((x ℕ.⋅ q) ℕ.⋅ b) ℕ.+ (a ℕ.⋅ (x ℕ.⋅ r))) ℕ.+ ((x ℕ.⋅ q) ℕ.⋅ (x ℕ.⋅ r))) 🝖[ _≡_ ]-[ One.associate4-231-222 {_▫_ = ℕ._+_} {a = a ℕ.⋅ b}{(x ℕ.⋅ q) ℕ.⋅ b}{a ℕ.⋅ (x ℕ.⋅ r)}{(x ℕ.⋅ q) ℕ.⋅ (x ℕ.⋅ r)} ] ((a ℕ.⋅ b) ℕ.+ ((x ℕ.⋅ q) ℕ.⋅ b)) ℕ.+ ((a ℕ.⋅ (x ℕ.⋅ r)) ℕ.+ ((x ℕ.⋅ q) ℕ.⋅ (x ℕ.⋅ r))) 🝖[ _≡_ ]-[ OneTypeTwoOp.cross-distribute{a = a}{x ℕ.⋅ q}{b}{x ℕ.⋅ r} ]-sym (a ℕ.+ (x ℕ.⋅ q)) ℕ.⋅ (b ℕ.+ (x ℕ.⋅ r)) 🝖-end
{ "alphanum_fraction": 0.4531919569, "avg_line_length": 60.0726072607, "ext": "agda", "hexsha": "0b368956c4f9a2ff926ef1af52856caeea7c34ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Formalization/Polynomial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Formalization/Polynomial.agda", "max_line_length": 338, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Formalization/Polynomial.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 9124, "size": 18202 }
module Text.Greek.SBLGNT.Titus where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΠΡΟΣ-ΤΙΤΟΝ : List (Word) ΠΡΟΣ-ΤΙΤΟΝ = word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Titus.1.1" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Titus.1.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Titus.1.1" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "Titus.1.1" ∷ word (δ ∷ ὲ ∷ []) "Titus.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Titus.1.1" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Titus.1.1" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Titus.1.1" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Titus.1.1" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ῶ ∷ ν ∷ []) "Titus.1.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Titus.1.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.1" ∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Titus.1.1" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Titus.1.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Titus.1.1" ∷ word (κ ∷ α ∷ τ ∷ []) "Titus.1.1" ∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Titus.1.1" ∷ word (ἐ ∷ π ∷ []) "Titus.1.2" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ι ∷ []) "Titus.1.2" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Titus.1.2" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Titus.1.2" ∷ word (ἣ ∷ ν ∷ []) "Titus.1.2" ∷ word (ἐ ∷ π ∷ η ∷ γ ∷ γ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Titus.1.2" ∷ word (ὁ ∷ []) "Titus.1.2" ∷ word (ἀ ∷ ψ ∷ ε ∷ υ ∷ δ ∷ ὴ ∷ ς ∷ []) "Titus.1.2" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Titus.1.2" ∷ word (π ∷ ρ ∷ ὸ ∷ []) "Titus.1.2" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Titus.1.2" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Titus.1.2" ∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ έ ∷ ρ ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Titus.1.3" ∷ word (δ ∷ ὲ ∷ []) "Titus.1.3" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "Titus.1.3" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Titus.1.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Titus.1.3" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Titus.1.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Titus.1.3" ∷ word (ἐ ∷ ν ∷ []) "Titus.1.3" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ γ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Titus.1.3" ∷ word (ὃ ∷ []) "Titus.1.3" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ θ ∷ η ∷ ν ∷ []) "Titus.1.3" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Titus.1.3" ∷ word (κ ∷ α ∷ τ ∷ []) "Titus.1.3" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ α ∷ γ ∷ ὴ ∷ ν ∷ []) "Titus.1.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Titus.1.3" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "Titus.1.3" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Titus.1.3" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Titus.1.3" ∷ word (Τ ∷ ί ∷ τ ∷ ῳ ∷ []) "Titus.1.4" ∷ word (γ ∷ ν ∷ η ∷ σ ∷ ί ∷ ῳ ∷ []) "Titus.1.4" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ῳ ∷ []) "Titus.1.4" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Titus.1.4" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ὴ ∷ ν ∷ []) "Titus.1.4" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Titus.1.4" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Titus.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.4" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "Titus.1.4" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Titus.1.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Titus.1.4" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Titus.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.4" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Titus.1.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Titus.1.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Titus.1.4" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "Titus.1.4" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Titus.1.4" ∷ word (Τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Titus.1.5" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Titus.1.5" ∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ ι ∷ π ∷ ό ∷ ν ∷ []) "Titus.1.5" ∷ word (σ ∷ ε ∷ []) "Titus.1.5" ∷ word (ἐ ∷ ν ∷ []) "Titus.1.5" ∷ word (Κ ∷ ρ ∷ ή ∷ τ ∷ ῃ ∷ []) "Titus.1.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.1.5" ∷ word (τ ∷ ὰ ∷ []) "Titus.1.5" ∷ word (∙λ ∷ ε ∷ ί ∷ π ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Titus.1.5" ∷ word (ἐ ∷ π ∷ ι ∷ δ ∷ ι ∷ ο ∷ ρ ∷ θ ∷ ώ ∷ σ ∷ ῃ ∷ []) "Titus.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.5" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Titus.1.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Titus.1.5" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Titus.1.5" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.1.5" ∷ word (ὡ ∷ ς ∷ []) "Titus.1.5" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Titus.1.5" ∷ word (σ ∷ ο ∷ ι ∷ []) "Titus.1.5" ∷ word (δ ∷ ι ∷ ε ∷ τ ∷ α ∷ ξ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "Titus.1.5" ∷ word (ε ∷ ἴ ∷ []) "Titus.1.6" ∷ word (τ ∷ ί ∷ ς ∷ []) "Titus.1.6" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Titus.1.6" ∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "Titus.1.6" ∷ word (μ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Titus.1.6" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Titus.1.6" ∷ word (ἀ ∷ ν ∷ ή ∷ ρ ∷ []) "Titus.1.6" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Titus.1.6" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Titus.1.6" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ά ∷ []) "Titus.1.6" ∷ word (μ ∷ ὴ ∷ []) "Titus.1.6" ∷ word (ἐ ∷ ν ∷ []) "Titus.1.6" ∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ί ∷ ᾳ ∷ []) "Titus.1.6" ∷ word (ἀ ∷ σ ∷ ω ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Titus.1.6" ∷ word (ἢ ∷ []) "Titus.1.6" ∷ word (ἀ ∷ ν ∷ υ ∷ π ∷ ό ∷ τ ∷ α ∷ κ ∷ τ ∷ α ∷ []) "Titus.1.6" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Titus.1.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Titus.1.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Titus.1.7" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ κ ∷ ο ∷ π ∷ ο ∷ ν ∷ []) "Titus.1.7" ∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Titus.1.7" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Titus.1.7" ∷ word (ὡ ∷ ς ∷ []) "Titus.1.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Titus.1.7" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ν ∷ []) "Titus.1.7" ∷ word (μ ∷ ὴ ∷ []) "Titus.1.7" ∷ word (α ∷ ὐ ∷ θ ∷ ά ∷ δ ∷ η ∷ []) "Titus.1.7" ∷ word (μ ∷ ὴ ∷ []) "Titus.1.7" ∷ word (ὀ ∷ ρ ∷ γ ∷ ί ∷ ∙λ ∷ ο ∷ ν ∷ []) "Titus.1.7" ∷ word (μ ∷ ὴ ∷ []) "Titus.1.7" ∷ word (π ∷ ά ∷ ρ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Titus.1.7" ∷ word (μ ∷ ὴ ∷ []) "Titus.1.7" ∷ word (π ∷ ∙λ ∷ ή ∷ κ ∷ τ ∷ η ∷ ν ∷ []) "Titus.1.7" ∷ word (μ ∷ ὴ ∷ []) "Titus.1.7" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ρ ∷ ο ∷ κ ∷ ε ∷ ρ ∷ δ ∷ ῆ ∷ []) "Titus.1.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Titus.1.8" ∷ word (φ ∷ ι ∷ ∙λ ∷ ό ∷ ξ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Titus.1.8" ∷ word (φ ∷ ι ∷ ∙λ ∷ ά ∷ γ ∷ α ∷ θ ∷ ο ∷ ν ∷ []) "Titus.1.8" ∷ word (σ ∷ ώ ∷ φ ∷ ρ ∷ ο ∷ ν ∷ α ∷ []) "Titus.1.8" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Titus.1.8" ∷ word (ὅ ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Titus.1.8" ∷ word (ἐ ∷ γ ∷ κ ∷ ρ ∷ α ∷ τ ∷ ῆ ∷ []) "Titus.1.8" ∷ word (ἀ ∷ ν ∷ τ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Titus.1.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Titus.1.9" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Titus.1.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Titus.1.9" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ ν ∷ []) "Titus.1.9" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Titus.1.9" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "Titus.1.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.1.9" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὸ ∷ ς ∷ []) "Titus.1.9" ∷ word (ᾖ ∷ []) "Titus.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.9" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Titus.1.9" ∷ word (ἐ ∷ ν ∷ []) "Titus.1.9" ∷ word (τ ∷ ῇ ∷ []) "Titus.1.9" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "Titus.1.9" ∷ word (τ ∷ ῇ ∷ []) "Titus.1.9" ∷ word (ὑ ∷ γ ∷ ι ∷ α ∷ ι ∷ ν ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "Titus.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Titus.1.9" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Titus.1.9" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ γ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Titus.1.9" ∷ word (Ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Titus.1.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Titus.1.10" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Titus.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.10" ∷ word (ἀ ∷ ν ∷ υ ∷ π ∷ ό ∷ τ ∷ α ∷ κ ∷ τ ∷ ο ∷ ι ∷ []) "Titus.1.10" ∷ word (μ ∷ α ∷ τ ∷ α ∷ ι ∷ ο ∷ ∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Titus.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.10" ∷ word (φ ∷ ρ ∷ ε ∷ ν ∷ α ∷ π ∷ ά ∷ τ ∷ α ∷ ι ∷ []) "Titus.1.10" ∷ word (μ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "Titus.1.10" ∷ word (ο ∷ ἱ ∷ []) "Titus.1.10" ∷ word (ἐ ∷ κ ∷ []) "Titus.1.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Titus.1.10" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ο ∷ μ ∷ ῆ ∷ ς ∷ []) "Titus.1.10" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Titus.1.11" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Titus.1.11" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ μ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Titus.1.11" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Titus.1.11" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.1.11" ∷ word (ο ∷ ἴ ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.1.11" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ρ ∷ έ ∷ π ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Titus.1.11" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Titus.1.11" ∷ word (ἃ ∷ []) "Titus.1.11" ∷ word (μ ∷ ὴ ∷ []) "Titus.1.11" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Titus.1.11" ∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Titus.1.11" ∷ word (κ ∷ έ ∷ ρ ∷ δ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.1.11" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "Titus.1.11" ∷ word (ε ∷ ἶ ∷ π ∷ έ ∷ ν ∷ []) "Titus.1.12" ∷ word (τ ∷ ι ∷ ς ∷ []) "Titus.1.12" ∷ word (ἐ ∷ ξ ∷ []) "Titus.1.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Titus.1.12" ∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ς ∷ []) "Titus.1.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Titus.1.12" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Titus.1.12" ∷ word (Κ ∷ ρ ∷ ῆ ∷ τ ∷ ε ∷ ς ∷ []) "Titus.1.12" ∷ word (ἀ ∷ ε ∷ ὶ ∷ []) "Titus.1.12" ∷ word (ψ ∷ ε ∷ ῦ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Titus.1.12" ∷ word (κ ∷ α ∷ κ ∷ ὰ ∷ []) "Titus.1.12" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ α ∷ []) "Titus.1.12" ∷ word (γ ∷ α ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Titus.1.12" ∷ word (ἀ ∷ ρ ∷ γ ∷ α ∷ ί ∷ []) "Titus.1.12" ∷ word (ἡ ∷ []) "Titus.1.13" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "Titus.1.13" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Titus.1.13" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Titus.1.13" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ ς ∷ []) "Titus.1.13" ∷ word (δ ∷ ι ∷ []) "Titus.1.13" ∷ word (ἣ ∷ ν ∷ []) "Titus.1.13" ∷ word (α ∷ ἰ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Titus.1.13" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ χ ∷ ε ∷ []) "Titus.1.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Titus.1.13" ∷ word (ἀ ∷ π ∷ ο ∷ τ ∷ ό ∷ μ ∷ ω ∷ ς ∷ []) "Titus.1.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.1.13" ∷ word (ὑ ∷ γ ∷ ι ∷ α ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Titus.1.13" ∷ word (ἐ ∷ ν ∷ []) "Titus.1.13" ∷ word (τ ∷ ῇ ∷ []) "Titus.1.13" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Titus.1.13" ∷ word (μ ∷ ὴ ∷ []) "Titus.1.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Titus.1.14" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ϊ ∷ κ ∷ ο ∷ ῖ ∷ ς ∷ []) "Titus.1.14" ∷ word (μ ∷ ύ ∷ θ ∷ ο ∷ ι ∷ ς ∷ []) "Titus.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.14" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Titus.1.14" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Titus.1.14" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ρ ∷ ε ∷ φ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Titus.1.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Titus.1.14" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Titus.1.14" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Titus.1.15" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ὰ ∷ []) "Titus.1.15" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Titus.1.15" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "Titus.1.15" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Titus.1.15" ∷ word (δ ∷ ὲ ∷ []) "Titus.1.15" ∷ word (μ ∷ ε ∷ μ ∷ ι ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Titus.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.15" ∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Titus.1.15" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Titus.1.15" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ό ∷ ν ∷ []) "Titus.1.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Titus.1.15" ∷ word (μ ∷ ε ∷ μ ∷ ί ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Titus.1.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Titus.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.15" ∷ word (ὁ ∷ []) "Titus.1.15" ∷ word (ν ∷ ο ∷ ῦ ∷ ς ∷ []) "Titus.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.15" ∷ word (ἡ ∷ []) "Titus.1.15" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ς ∷ []) "Titus.1.15" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Titus.1.16" ∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Titus.1.16" ∷ word (ε ∷ ἰ ∷ δ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Titus.1.16" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Titus.1.16" ∷ word (δ ∷ ὲ ∷ []) "Titus.1.16" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Titus.1.16" ∷ word (ἀ ∷ ρ ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Titus.1.16" ∷ word (β ∷ δ ∷ ε ∷ ∙λ ∷ υ ∷ κ ∷ τ ∷ ο ∷ ὶ ∷ []) "Titus.1.16" ∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Titus.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.16" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ε ∷ ῖ ∷ ς ∷ []) "Titus.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.1.16" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Titus.1.16" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Titus.1.16" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Titus.1.16" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ν ∷ []) "Titus.1.16" ∷ word (ἀ ∷ δ ∷ ό ∷ κ ∷ ι ∷ μ ∷ ο ∷ ι ∷ []) "Titus.1.16" ∷ word (Σ ∷ ὺ ∷ []) "Titus.2.1" ∷ word (δ ∷ ὲ ∷ []) "Titus.2.1" ∷ word (∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Titus.2.1" ∷ word (ἃ ∷ []) "Titus.2.1" ∷ word (π ∷ ρ ∷ έ ∷ π ∷ ε ∷ ι ∷ []) "Titus.2.1" ∷ word (τ ∷ ῇ ∷ []) "Titus.2.1" ∷ word (ὑ ∷ γ ∷ ι ∷ α ∷ ι ∷ ν ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "Titus.2.1" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "Titus.2.1" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ α ∷ ς ∷ []) "Titus.2.2" ∷ word (ν ∷ η ∷ φ ∷ α ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Titus.2.2" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Titus.2.2" ∷ word (σ ∷ ε ∷ μ ∷ ν ∷ ο ∷ ύ ∷ ς ∷ []) "Titus.2.2" ∷ word (σ ∷ ώ ∷ φ ∷ ρ ∷ ο ∷ ν ∷ α ∷ ς ∷ []) "Titus.2.2" ∷ word (ὑ ∷ γ ∷ ι ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Titus.2.2" ∷ word (τ ∷ ῇ ∷ []) "Titus.2.2" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Titus.2.2" ∷ word (τ ∷ ῇ ∷ []) "Titus.2.2" ∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "Titus.2.2" ∷ word (τ ∷ ῇ ∷ []) "Titus.2.2" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ῇ ∷ []) "Titus.2.2" ∷ word (Π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ι ∷ δ ∷ α ∷ ς ∷ []) "Titus.2.3" ∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "Titus.2.3" ∷ word (ἐ ∷ ν ∷ []) "Titus.2.3" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Titus.2.3" ∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ π ∷ ρ ∷ ε ∷ π ∷ ε ∷ ῖ ∷ ς ∷ []) "Titus.2.3" ∷ word (μ ∷ ὴ ∷ []) "Titus.2.3" ∷ word (δ ∷ ι ∷ α ∷ β ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.2.3" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Titus.2.3" ∷ word (ο ∷ ἴ ∷ ν ∷ ῳ ∷ []) "Titus.2.3" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "Titus.2.3" ∷ word (δ ∷ ε ∷ δ ∷ ο ∷ υ ∷ ∙λ ∷ ω ∷ μ ∷ έ ∷ ν ∷ α ∷ ς ∷ []) "Titus.2.3" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.2.3" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.2.4" ∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ί ∷ ζ ∷ ω ∷ σ ∷ ι ∷ []) "Titus.2.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Titus.2.4" ∷ word (ν ∷ έ ∷ α ∷ ς ∷ []) "Titus.2.4" ∷ word (φ ∷ ι ∷ ∙λ ∷ ά ∷ ν ∷ δ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.2.4" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Titus.2.4" ∷ word (φ ∷ ι ∷ ∙λ ∷ ο ∷ τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Titus.2.4" ∷ word (σ ∷ ώ ∷ φ ∷ ρ ∷ ο ∷ ν ∷ α ∷ ς ∷ []) "Titus.2.5" ∷ word (ἁ ∷ γ ∷ ν ∷ ά ∷ ς ∷ []) "Titus.2.5" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ υ ∷ ρ ∷ γ ∷ ο ∷ ύ ∷ ς ∷ []) "Titus.2.5" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ά ∷ ς ∷ []) "Titus.2.5" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ σ ∷ σ ∷ ο ∷ μ ∷ έ ∷ ν ∷ α ∷ ς ∷ []) "Titus.2.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Titus.2.5" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Titus.2.5" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ν ∷ []) "Titus.2.5" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.2.5" ∷ word (μ ∷ ὴ ∷ []) "Titus.2.5" ∷ word (ὁ ∷ []) "Titus.2.5" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Titus.2.5" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Titus.2.5" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Titus.2.5" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Titus.2.5" ∷ word (Τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Titus.2.6" ∷ word (ν ∷ ε ∷ ω ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.2.6" ∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "Titus.2.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Titus.2.6" ∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Titus.2.6" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Titus.2.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Titus.2.7" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Titus.2.7" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Titus.2.7" ∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ν ∷ []) "Titus.2.7" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Titus.2.7" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Titus.2.7" ∷ word (ἐ ∷ ν ∷ []) "Titus.2.7" ∷ word (τ ∷ ῇ ∷ []) "Titus.2.7" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "Titus.2.7" ∷ word (ἀ ∷ φ ∷ θ ∷ ο ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Titus.2.7" ∷ word (σ ∷ ε ∷ μ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ α ∷ []) "Titus.2.7" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Titus.2.8" ∷ word (ὑ ∷ γ ∷ ι ∷ ῆ ∷ []) "Titus.2.8" ∷ word (ἀ ∷ κ ∷ α ∷ τ ∷ ά ∷ γ ∷ ν ∷ ω ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Titus.2.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.2.8" ∷ word (ὁ ∷ []) "Titus.2.8" ∷ word (ἐ ∷ ξ ∷ []) "Titus.2.8" ∷ word (ἐ ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Titus.2.8" ∷ word (ἐ ∷ ν ∷ τ ∷ ρ ∷ α ∷ π ∷ ῇ ∷ []) "Titus.2.8" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Titus.2.8" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Titus.2.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Titus.2.8" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Titus.2.8" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Titus.2.8" ∷ word (φ ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Titus.2.8" ∷ word (Δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.2.9" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Titus.2.9" ∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Titus.2.9" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ σ ∷ σ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Titus.2.9" ∷ word (ἐ ∷ ν ∷ []) "Titus.2.9" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Titus.2.9" ∷ word (ε ∷ ὐ ∷ α ∷ ρ ∷ έ ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.2.9" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Titus.2.9" ∷ word (μ ∷ ὴ ∷ []) "Titus.2.9" ∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Titus.2.9" ∷ word (μ ∷ ὴ ∷ []) "Titus.2.10" ∷ word (ν ∷ ο ∷ σ ∷ φ ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Titus.2.10" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Titus.2.10" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Titus.2.10" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Titus.2.10" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ ι ∷ κ ∷ ν ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Titus.2.10" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ή ∷ ν ∷ []) "Titus.2.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.2.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Titus.2.10" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Titus.2.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Titus.2.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Titus.2.10" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "Titus.2.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Titus.2.10" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Titus.2.10" ∷ word (κ ∷ ο ∷ σ ∷ μ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Titus.2.10" ∷ word (ἐ ∷ ν ∷ []) "Titus.2.10" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Titus.2.10" ∷ word (Ἐ ∷ π ∷ ε ∷ φ ∷ ά ∷ ν ∷ η ∷ []) "Titus.2.11" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Titus.2.11" ∷ word (ἡ ∷ []) "Titus.2.11" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Titus.2.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Titus.2.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Titus.2.11" ∷ word (σ ∷ ω ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Titus.2.11" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Titus.2.11" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Titus.2.11" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Titus.2.12" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Titus.2.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.2.12" ∷ word (ἀ ∷ ρ ∷ ν ∷ η ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Titus.2.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Titus.2.12" ∷ word (ἀ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Titus.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.2.12" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Titus.2.12" ∷ word (κ ∷ ο ∷ σ ∷ μ ∷ ι ∷ κ ∷ ὰ ∷ ς ∷ []) "Titus.2.12" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Titus.2.12" ∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ό ∷ ν ∷ ω ∷ ς ∷ []) "Titus.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.2.12" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ω ∷ ς ∷ []) "Titus.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.2.12" ∷ word (ε ∷ ὐ ∷ σ ∷ ε ∷ β ∷ ῶ ∷ ς ∷ []) "Titus.2.12" ∷ word (ζ ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Titus.2.12" ∷ word (ἐ ∷ ν ∷ []) "Titus.2.12" ∷ word (τ ∷ ῷ ∷ []) "Titus.2.12" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Titus.2.12" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ι ∷ []) "Titus.2.12" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Titus.2.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Titus.2.13" ∷ word (μ ∷ α ∷ κ ∷ α ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Titus.2.13" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "Titus.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.2.13" ∷ word (ἐ ∷ π ∷ ι ∷ φ ∷ ά ∷ ν ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Titus.2.13" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Titus.2.13" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Titus.2.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Titus.2.13" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ []) "Titus.2.13" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Titus.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.2.13" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "Titus.2.13" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Titus.2.13" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Titus.2.13" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Titus.2.13" ∷ word (ὃ ∷ ς ∷ []) "Titus.2.14" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Titus.2.14" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Titus.2.14" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Titus.2.14" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Titus.2.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.2.14" ∷ word (∙λ ∷ υ ∷ τ ∷ ρ ∷ ώ ∷ σ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Titus.2.14" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Titus.2.14" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Titus.2.14" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Titus.2.14" ∷ word (ἀ ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Titus.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.2.14" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ ῃ ∷ []) "Titus.2.14" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "Titus.2.14" ∷ word (∙λ ∷ α ∷ ὸ ∷ ν ∷ []) "Titus.2.14" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Titus.2.14" ∷ word (ζ ∷ η ∷ ∙λ ∷ ω ∷ τ ∷ ὴ ∷ ν ∷ []) "Titus.2.14" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Titus.2.14" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Titus.2.14" ∷ word (Τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Titus.2.15" ∷ word (∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Titus.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.2.15" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Titus.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.2.15" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ χ ∷ ε ∷ []) "Titus.2.15" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Titus.2.15" ∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Titus.2.15" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ α ∷ γ ∷ ῆ ∷ ς ∷ []) "Titus.2.15" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ί ∷ ς ∷ []) "Titus.2.15" ∷ word (σ ∷ ο ∷ υ ∷ []) "Titus.2.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "Titus.2.15" ∷ word (Ὑ ∷ π ∷ ο ∷ μ ∷ ί ∷ μ ∷ ν ∷ ῃ ∷ σ ∷ κ ∷ ε ∷ []) "Titus.3.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Titus.3.1" ∷ word (ἀ ∷ ρ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "Titus.3.1" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Titus.3.1" ∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ά ∷ σ ∷ σ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Titus.3.1" ∷ word (π ∷ ε ∷ ι ∷ θ ∷ α ∷ ρ ∷ χ ∷ ε ∷ ῖ ∷ ν ∷ []) "Titus.3.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Titus.3.1" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Titus.3.1" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Titus.3.1" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ν ∷ []) "Titus.3.1" ∷ word (ἑ ∷ τ ∷ ο ∷ ί ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.3.1" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Titus.3.1" ∷ word (μ ∷ η ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Titus.3.2" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ []) "Titus.3.2" ∷ word (ἀ ∷ μ ∷ ά ∷ χ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.3.2" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Titus.3.2" ∷ word (ἐ ∷ π ∷ ι ∷ ε ∷ ι ∷ κ ∷ ε ∷ ῖ ∷ ς ∷ []) "Titus.3.2" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Titus.3.2" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ ι ∷ κ ∷ ν ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Titus.3.2" ∷ word (π ∷ ρ ∷ α ∷ ΰ ∷ τ ∷ η ∷ τ ∷ α ∷ []) "Titus.3.2" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Titus.3.2" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Titus.3.2" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Titus.3.2" ∷ word (ἦ ∷ μ ∷ ε ∷ ν ∷ []) "Titus.3.3" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Titus.3.3" ∷ word (π ∷ ο ∷ τ ∷ ε ∷ []) "Titus.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.3" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Titus.3.3" ∷ word (ἀ ∷ ν ∷ ό ∷ η ∷ τ ∷ ο ∷ ι ∷ []) "Titus.3.3" ∷ word (ἀ ∷ π ∷ ε ∷ ι ∷ θ ∷ ε ∷ ῖ ∷ ς ∷ []) "Titus.3.3" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ώ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Titus.3.3" ∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Titus.3.3" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Titus.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.3" ∷ word (ἡ ∷ δ ∷ ο ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Titus.3.3" ∷ word (π ∷ ο ∷ ι ∷ κ ∷ ί ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "Titus.3.3" ∷ word (ἐ ∷ ν ∷ []) "Titus.3.3" ∷ word (κ ∷ α ∷ κ ∷ ί ∷ ᾳ ∷ []) "Titus.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.3" ∷ word (φ ∷ θ ∷ ό ∷ ν ∷ ῳ ∷ []) "Titus.3.3" ∷ word (δ ∷ ι ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Titus.3.3" ∷ word (σ ∷ τ ∷ υ ∷ γ ∷ η ∷ τ ∷ ο ∷ ί ∷ []) "Titus.3.3" ∷ word (μ ∷ ι ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Titus.3.3" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Titus.3.3" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Titus.3.4" ∷ word (δ ∷ ὲ ∷ []) "Titus.3.4" ∷ word (ἡ ∷ []) "Titus.3.4" ∷ word (χ ∷ ρ ∷ η ∷ σ ∷ τ ∷ ό ∷ τ ∷ η ∷ ς ∷ []) "Titus.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.4" ∷ word (ἡ ∷ []) "Titus.3.4" ∷ word (φ ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ί ∷ α ∷ []) "Titus.3.4" ∷ word (ἐ ∷ π ∷ ε ∷ φ ∷ ά ∷ ν ∷ η ∷ []) "Titus.3.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Titus.3.4" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "Titus.3.4" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Titus.3.4" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Titus.3.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Titus.3.5" ∷ word (ἐ ∷ ξ ∷ []) "Titus.3.5" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Titus.3.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Titus.3.5" ∷ word (ἐ ∷ ν ∷ []) "Titus.3.5" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Titus.3.5" ∷ word (ἃ ∷ []) "Titus.3.5" ∷ word (ἐ ∷ π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Titus.3.5" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Titus.3.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Titus.3.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Titus.3.5" ∷ word (τ ∷ ὸ ∷ []) "Titus.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Titus.3.5" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "Titus.3.5" ∷ word (ἔ ∷ σ ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Titus.3.5" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Titus.3.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Titus.3.5" ∷ word (∙λ ∷ ο ∷ υ ∷ τ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Titus.3.5" ∷ word (π ∷ α ∷ ∙λ ∷ ι ∷ γ ∷ γ ∷ ε ∷ ν ∷ ε ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Titus.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.5" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ α ∷ ι ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Titus.3.5" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Titus.3.5" ∷ word (ἁ ∷ γ ∷ ί ∷ ο ∷ υ ∷ []) "Titus.3.5" ∷ word (ο ∷ ὗ ∷ []) "Titus.3.6" ∷ word (ἐ ∷ ξ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Titus.3.6" ∷ word (ἐ ∷ φ ∷ []) "Titus.3.6" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Titus.3.6" ∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ω ∷ ς ∷ []) "Titus.3.6" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Titus.3.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Titus.3.6" ∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Titus.3.6" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Titus.3.6" ∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "Titus.3.6" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Titus.3.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.3.7" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ω ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Titus.3.7" ∷ word (τ ∷ ῇ ∷ []) "Titus.3.7" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "Titus.3.7" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ τ ∷ ι ∷ []) "Titus.3.7" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ []) "Titus.3.7" ∷ word (γ ∷ ε ∷ ν ∷ η ∷ θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Titus.3.7" ∷ word (κ ∷ α ∷ τ ∷ []) "Titus.3.7" ∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ α ∷ []) "Titus.3.7" ∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "Titus.3.7" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Titus.3.7" ∷ word (Π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Titus.3.8" ∷ word (ὁ ∷ []) "Titus.3.8" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Titus.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.8" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Titus.3.8" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Titus.3.8" ∷ word (β ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Titus.3.8" ∷ word (σ ∷ ε ∷ []) "Titus.3.8" ∷ word (δ ∷ ι ∷ α ∷ β ∷ ε ∷ β ∷ α ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Titus.3.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.3.8" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ί ∷ ζ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Titus.3.8" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Titus.3.8" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Titus.3.8" ∷ word (π ∷ ρ ∷ ο ∷ ΐ ∷ σ ∷ τ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Titus.3.8" ∷ word (ο ∷ ἱ ∷ []) "Titus.3.8" ∷ word (π ∷ ε ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ υ ∷ κ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Titus.3.8" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Titus.3.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ ά ∷ []) "Titus.3.8" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Titus.3.8" ∷ word (κ ∷ α ∷ ∙λ ∷ ὰ ∷ []) "Titus.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.8" ∷ word (ὠ ∷ φ ∷ έ ∷ ∙λ ∷ ι ∷ μ ∷ α ∷ []) "Titus.3.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Titus.3.8" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Titus.3.8" ∷ word (μ ∷ ω ∷ ρ ∷ ὰ ∷ ς ∷ []) "Titus.3.9" ∷ word (δ ∷ ὲ ∷ []) "Titus.3.9" ∷ word (ζ ∷ η ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Titus.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.9" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ς ∷ []) "Titus.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.9" ∷ word (ἔ ∷ ρ ∷ ε ∷ ι ∷ ς ∷ []) "Titus.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.9" ∷ word (μ ∷ ά ∷ χ ∷ α ∷ ς ∷ []) "Titus.3.9" ∷ word (ν ∷ ο ∷ μ ∷ ι ∷ κ ∷ ὰ ∷ ς ∷ []) "Titus.3.9" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ΐ ∷ σ ∷ τ ∷ α ∷ σ ∷ ο ∷ []) "Titus.3.9" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Titus.3.9" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Titus.3.9" ∷ word (ἀ ∷ ν ∷ ω ∷ φ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ ς ∷ []) "Titus.3.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.9" ∷ word (μ ∷ ά ∷ τ ∷ α ∷ ι ∷ ο ∷ ι ∷ []) "Titus.3.9" ∷ word (α ∷ ἱ ∷ ρ ∷ ε ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "Titus.3.10" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Titus.3.10" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Titus.3.10" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Titus.3.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.10" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Titus.3.10" ∷ word (ν ∷ ο ∷ υ ∷ θ ∷ ε ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Titus.3.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ι ∷ τ ∷ ο ∷ ῦ ∷ []) "Titus.3.10" ∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Titus.3.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Titus.3.11" ∷ word (ἐ ∷ ξ ∷ έ ∷ σ ∷ τ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Titus.3.11" ∷ word (ὁ ∷ []) "Titus.3.11" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ς ∷ []) "Titus.3.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.11" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Titus.3.11" ∷ word (ὢ ∷ ν ∷ []) "Titus.3.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ κ ∷ α ∷ τ ∷ ά ∷ κ ∷ ρ ∷ ι ∷ τ ∷ ο ∷ ς ∷ []) "Titus.3.11" ∷ word (Ὅ ∷ τ ∷ α ∷ ν ∷ []) "Titus.3.12" ∷ word (π ∷ έ ∷ μ ∷ ψ ∷ ω ∷ []) "Titus.3.12" ∷ word (Ἀ ∷ ρ ∷ τ ∷ ε ∷ μ ∷ ᾶ ∷ ν ∷ []) "Titus.3.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Titus.3.12" ∷ word (σ ∷ ὲ ∷ []) "Titus.3.12" ∷ word (ἢ ∷ []) "Titus.3.12" ∷ word (Τ ∷ υ ∷ χ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "Titus.3.12" ∷ word (σ ∷ π ∷ ο ∷ ύ ∷ δ ∷ α ∷ σ ∷ ο ∷ ν ∷ []) "Titus.3.12" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Titus.3.12" ∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "Titus.3.12" ∷ word (μ ∷ ε ∷ []) "Titus.3.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Titus.3.12" ∷ word (Ν ∷ ι ∷ κ ∷ ό ∷ π ∷ ο ∷ ∙λ ∷ ι ∷ ν ∷ []) "Titus.3.12" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Titus.3.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Titus.3.12" ∷ word (κ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ κ ∷ α ∷ []) "Titus.3.12" ∷ word (π ∷ α ∷ ρ ∷ α ∷ χ ∷ ε ∷ ι ∷ μ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Titus.3.12" ∷ word (ζ ∷ η ∷ ν ∷ ᾶ ∷ ν ∷ []) "Titus.3.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Titus.3.13" ∷ word (ν ∷ ο ∷ μ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "Titus.3.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.13" ∷ word (Ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Titus.3.13" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ς ∷ []) "Titus.3.13" ∷ word (π ∷ ρ ∷ ό ∷ π ∷ ε ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Titus.3.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.3.13" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Titus.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Titus.3.13" ∷ word (∙λ ∷ ε ∷ ί ∷ π ∷ ῃ ∷ []) "Titus.3.13" ∷ word (μ ∷ α ∷ ν ∷ θ ∷ α ∷ ν ∷ έ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Titus.3.14" ∷ word (δ ∷ ὲ ∷ []) "Titus.3.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Titus.3.14" ∷ word (ο ∷ ἱ ∷ []) "Titus.3.14" ∷ word (ἡ ∷ μ ∷ έ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Titus.3.14" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Titus.3.14" ∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "Titus.3.14" ∷ word (π ∷ ρ ∷ ο ∷ ΐ ∷ σ ∷ τ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Titus.3.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Titus.3.14" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Titus.3.14" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Titus.3.14" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Titus.3.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Titus.3.14" ∷ word (μ ∷ ὴ ∷ []) "Titus.3.14" ∷ word (ὦ ∷ σ ∷ ι ∷ ν ∷ []) "Titus.3.14" ∷ word (ἄ ∷ κ ∷ α ∷ ρ ∷ π ∷ ο ∷ ι ∷ []) "Titus.3.14" ∷ word (Ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Titus.3.15" ∷ word (σ ∷ ε ∷ []) "Titus.3.15" ∷ word (ο ∷ ἱ ∷ []) "Titus.3.15" ∷ word (μ ∷ ε ∷ τ ∷ []) "Titus.3.15" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Titus.3.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Titus.3.15" ∷ word (ἄ ∷ σ ∷ π ∷ α ∷ σ ∷ α ∷ ι ∷ []) "Titus.3.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Titus.3.15" ∷ word (φ ∷ ι ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Titus.3.15" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Titus.3.15" ∷ word (ἐ ∷ ν ∷ []) "Titus.3.15" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "Titus.3.15" ∷ word (ἡ ∷ []) "Titus.3.15" ∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "Titus.3.15" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Titus.3.15" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Titus.3.15" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Titus.3.15" ∷ []
{ "alphanum_fraction": 0.3497286192, "avg_line_length": 48.6731343284, "ext": "agda", "hexsha": "774c2ccaf2125b83d30d47e43ce5ab14fa91f2d0", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/SBLGNT/Titus.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/SBLGNT/Titus.agda", "max_line_length": 87, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/SBLGNT/Titus.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 23123, "size": 32611 }
------------------------------------------------------------------------------ -- From ListN as the least fixed-point to ListN using data ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- We want to represent the total lists of total natural numbers data -- type -- -- data ListN : D → Set where -- lnnil : ListN [] -- lncons : ∀ {n ns} → N n → ListN ns → ListN (n ∷ ns) -- -- using the representation of ListN as the least fixed-point. module LFPs.ListN where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Nat.Type open import FOTC.Data.Nat.UnaryNumbers ------------------------------------------------------------------------------ -- ListN is a least fixed-point of a functor -- The functor. -- ListNF : (D → Set) → D → Set -- ListNF P ns = ns ≡ [] ∨ (∃[ n' ] ∃[ ns' ] N n' ∧ ns ≡ n' ∷ ns' ∧ P ns') -- List is the least fixed-point of ListF. postulate ListN : D → Set -- ListN is a pre-fixed point of ListNF. -- -- Peter: It corresponds to the introduction rules. ListN-in : ∀ {ns} → ns ≡ [] ∨ (∃[ n' ] ∃[ ns' ] N n' ∧ ns ≡ n' ∷ ns' ∧ ListN ns') → ListN ns -- ListN is the least pre-fixed point of ListFN. -- -- Peter: It corresponds to the elimination rule of an inductively -- defined predicate. ListN-ind : (A : D → Set) → (∀ {ns} → ns ≡ [] ∨ (∃[ n' ] ∃[ ns' ] N n' ∧ ns ≡ n' ∷ ns' ∧ A ns') → A ns) → ∀ {ns} → ListN ns → A ns ------------------------------------------------------------------------------ -- The data constructors of List. lnnil : ListN [] lnnil = ListN-in (inj₁ refl) lncons : ∀ {n ns} → N n → ListN ns → ListN (n ∷ ns) lncons {n} {ns} Nn LNns = ListN-in (inj₂ (n , ns , Nn , refl , LNns)) ------------------------------------------------------------------------------ -- The induction principle for List. ListN-ind' : (A : D → Set) → A [] → (∀ n {ns} → N n → A ns → A (n ∷ ns)) → ∀ {ns} → ListN ns → A ns ListN-ind' A A[] is = ListN-ind A prf where prf : ∀ {ns} → ns ≡ [] ∨ (∃[ n' ] ∃[ ns' ] N n' ∧ ns ≡ n' ∷ ns' ∧ A ns') → A ns prf (inj₁ ns≡[]) = subst A (sym ns≡[]) A[] prf (inj₂ (n' , ns' , Nn' , h₁ , Ans')) = subst A (sym h₁) (is n' Nn' Ans') ------------------------------------------------------------------------------ -- Example ys : D ys = 0' ∷ 1' ∷ 2' ∷ [] ys-ListN : ListN ys ys-ListN = lncons nzero (lncons (nsucc nzero) (lncons (nsucc (nsucc nzero)) lnnil))
{ "alphanum_fraction": 0.4370342772, "avg_line_length": 32.3373493976, "ext": "agda", "hexsha": "e598eb24a306ac530b11366dd813ee492c87e563", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/fixed-points/LFPs/ListN.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/fixed-points/LFPs/ListN.agda", "max_line_length": 81, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/fixed-points/LFPs/ListN.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 815, "size": 2684 }
{-# OPTIONS --allow-unsolved-metas #-} module TermNode where open import OscarPrelude open import TermCode record TermNode : Set where inductive field children : List (TermCode × TermNode) number : Nat open TermNode public open import Membership _child∈_ : TermCode → TermNode → Set _child∈_ 𝔠 𝔫 = 𝔠 ∈ (fst <$> children 𝔫) _child∉_ : TermCode → TermNode → Set 𝔠 child∉ 𝔫 = ¬ (𝔠 child∈ 𝔫) open import DecidableMembership _child∈?_ : (𝔠 : TermCode) → (𝔫 : TermNode) → Dec $ 𝔠 child∈ 𝔫 c child∈? record { children = cs } = c ∈? (fst <$> cs) getChild : {𝔠 : TermCode} → (𝔫 : TermNode) → 𝔠 child∈ 𝔫 → TermNode getChild {𝔠} (record { children = [] ; number = number₁ }) () getChild {._} (record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }) zero = snd₁ getChild {𝔠} (𝔫@record { children = x ∷ children₁ ; number = number₁ }) (suc x₁) = getChild record 𝔫 { children = children₁ } x₁ addChild : {𝔠 : TermCode} (𝔫 : TermNode) → 𝔠 child∉ 𝔫 → TermNode → TermNode addChild {𝔠} 𝔫 𝔠∉𝔫 𝔫' = record 𝔫 { children = (𝔠 , 𝔫') ∷ children 𝔫 } setChild : {𝔠 : TermCode} (𝔫 : TermNode) → 𝔠 child∈ 𝔫 → TermNode → TermNode setChild {𝔠} record { children = [] ; number = number₁ } () 𝔫' setChild 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } (zero) 𝔫' = record 𝔫 { children = ((fst₁ , 𝔫') ∷ children₁) } setChild {𝔠} 𝔫@record { children = (x ∷ children₁) ; number = number₁ } (suc 𝔠∈𝔫) 𝔫' = record 𝔫 { children = (x ∷ children (setChild (record 𝔫 { children = children₁ }) 𝔠∈𝔫 𝔫')) } setGet-ok : ∀ {𝔠} 𝔫 → (𝔠∈𝔫 : 𝔠 child∈ 𝔫) → setChild 𝔫 𝔠∈𝔫 (getChild 𝔫 𝔠∈𝔫) ≡ 𝔫 setGet-ok record { children = [] ; number = number₁ } () setGet-ok record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } (zero) = refl setGet-ok record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } (suc 𝔠∈𝔫) rewrite setGet-ok (record { children = children₁ ; number = number₁ }) 𝔠∈𝔫 = refl storeTermCodes : List TermCode → Nat → StateT TermNode Identity Nat storeTermCodes [] 𝔑 = return 𝔑 storeTermCodes (𝔠 ∷ 𝔠s) 𝔑 = 𝔫 ← get -| case 𝔠 child∈? 𝔫 of λ { (no 𝔠∉tests) → let 𝔑' , 𝔫' = runIdentity $ runStateT (storeTermCodes 𝔠s $ suc 𝔑) (record { children = [] ; number = suc 𝔑 }) in put ((addChild 𝔫 𝔠∉tests 𝔫')) ~| return 𝔑' ; (yes 𝔠∈tests) → let 𝔑' , 𝔫' = runIdentity $ runStateT (storeTermCodes 𝔠s $ suc 𝔑) ((getChild 𝔫 𝔠∈tests)) in put ((setChild 𝔫 𝔠∈tests 𝔫')) ~| return 𝔑' } storeTermCodes[] : (𝔫 : TermNode) (𝔑 : Nat) → (runIdentity $ runStateT (storeTermCodes [] 𝔑) 𝔫) ≡ (𝔑 , 𝔫) storeTermCodes[] 𝔫 𝔑 = refl --{-# REWRITE storeTermCodes[] #-} storeTermCodes' : List TermCode → StateT Nat (StateT TermNode Identity) ⊤ storeTermCodes' 𝔠s = 𝔑 ← get -| tn ← lift get -| (let 𝔑' , tn' = runIdentity $ runStateT (storeTermCodes 𝔠s 𝔑) tn in put 𝔑' ~| lift (put tn') ~| return tt) open import Term open import Vector mutual storeTerm : Term → StateT Nat (StateT TermNode Identity) ⊤ storeTerm τ@(variable _) = storeTermCodes' (encodeTerm τ) storeTerm τ@(function _ τs) = storeTermCodes' (encodeTerm τ) ~| storeTerms τs storeTerms : Terms → StateT Nat (StateT TermNode Identity) ⊤ storeTerms ⟨ ⟨ [] ⟩ ⟩ = return tt storeTerms ⟨ ⟨ τ ∷ τs ⟩ ⟩ = storeTerm τ ~| storeTerms ⟨ ⟨ τs ⟩ ⟩ ~| return tt module ExampleStoreTerm where open import FunctionName open import VariableName example-Term₁ : Term example-Term₁ = (function ⟨ 2 ⟩ ⟨ ⟨ variable ⟨ 0 ⟩ ∷ function ⟨ 3 ⟩ ⟨ ⟨ variable ⟨ 2 ⟩ ∷ [] ⟩ ⟩ ∷ variable ⟨ 5 ⟩ ∷ [] ⟩ ⟩ ) example-Term₂ : Term example-Term₂ = (function ⟨ 2 ⟩ ⟨ ⟨ variable ⟨ 0 ⟩ ∷ variable ⟨ 2 ⟩ ∷ function ⟨ 3 ⟩ ⟨ ⟨ variable ⟨ 2 ⟩ ∷ [] ⟩ ⟩ ∷ variable ⟨ 5 ⟩ ∷ [] ⟩ ⟩ ) topNode : TermNode topNode = record { children = [] ; number = 0 } example-storeTerm : (⊤ × Nat) × TermNode example-storeTerm = runIdentity $ runStateT (runStateT (storeTerm example-Term₁ >> storeTerm example-Term₂) 0) topNode NodeStateT = StateT TermNode TopNodeState = StateT Nat (NodeStateT Identity) open import LiteralFormula open import IsLiteralFormula storeLiteralFormulaTerms : LiteralFormula → StateT Nat (StateT TermNode Identity) ⊤ storeLiteralFormulaTerms ⟨ atomic 𝑃 τs ⟩ = storeTerms τs storeLiteralFormulaTerms ⟨ logical 𝑃 τs ⟩ = storeTerms τs open import 𝓢equent storeSequentLiteralFormulaTerms : 𝓢equent LiteralFormula → StateT Nat (StateT TermNode Identity) ⊤′ storeSequentLiteralFormulaTerms (φˢs ⊢ φᵗ) = sequence $ storeLiteralFormulaTerms <$> ({!φᵗ!} ∷ φˢs)
{ "alphanum_fraction": 0.6008221994, "avg_line_length": 33.5517241379, "ext": "agda", "hexsha": "5d14ec67aa3002b7a3189fbe96cb59c503c48d45", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/TermNode.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/TermNode.agda", "max_line_length": 170, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/TermNode.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1793, "size": 4865 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Unit where open import Cubical.Data.Unit.Base public open import Cubical.Data.Unit.Properties public
{ "alphanum_fraction": 0.7430167598, "avg_line_length": 29.8333333333, "ext": "agda", "hexsha": "6e085e1bd8c97a71ad14a54632db2f5c114aaa09", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Unit.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Unit.agda", "max_line_length": 50, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 40, "size": 179 }
-- Laws for weakenings and substitutions. {-# OPTIONS --without-K --safe #-} module Definition.Untyped.Properties where open import Definition.Untyped open import Tools.Fin open import Tools.Nat open import Tools.List open import Tools.PropositionalEquality hiding (subst) private variable ℓ m n : Nat ρ ρ′ : Wk m n η : Wk n ℓ σ σ′ : Subst m n -- Weakening properties -- Two weakenings ρ and ρ′ are extensionally equal if they agree on -- all arguments when interpreted as functions mapping variables to -- variables. Formally, they are considered equal iff -- -- (∀ x → wkVar ρ x ≡ wkVar ρ′ x) -- -- Intensional (propositional) equality would be too fine. For -- instance, -- -- lift id : Γ∙A ≤ Γ∙A -- -- is extensionally equal to -- -- id : Γ∙A ≤ Γ∙A -- -- but syntactically different. -- "lift" preserves equality of weakenings. Or: -- If two weakenings are equal under wkVar, then they are equal when lifted. wkVar-lift : (∀ x → wkVar ρ x ≡ wkVar ρ′ x) → (∀ x → wkVar (lift ρ) x ≡ wkVar (lift ρ′) x) wkVar-lift eq x0 = refl wkVar-lift eq (x +1) = cong _+1 (eq x) wkVar-lifts : (∀ x → wkVar ρ x ≡ wkVar ρ′ x) → (∀ n x → wkVar (liftn ρ n) x ≡ wkVar (liftn ρ′ n) x) wkVar-lifts eq 0 x = eq x wkVar-lifts eq (1+ n) x = wkVar-lift (wkVar-lifts eq n) x -- Extensionally equal weakenings, if applied to a term, -- yield the same weakened term. Or: -- If two weakenings are equal under wkVar, then they are equal under wk. mutual wkVar-to-wk : (∀ x → wkVar ρ x ≡ wkVar ρ′ x) → ∀ t → wk ρ t ≡ wk ρ′ t wkVar-to-wk eq (var x) = cong var (eq x) wkVar-to-wk eq (gen k c) = cong (gen k) (wkVar-to-wkGen eq c) wkVar-to-wkGen : (∀ x → wkVar ρ x ≡ wkVar ρ′ x) → ∀ {bs} c → wkGen {bs = bs} ρ c ≡ wkGen {bs = bs} ρ′ c wkVar-to-wkGen eq [] = refl wkVar-to-wkGen eq (_∷_ {b = b} t ts) = cong₂ _∷_ (wkVar-to-wk (wkVar-lifts eq b) t) (wkVar-to-wkGen eq ts) -- lift id is extensionally equal to id. wkVar-lift-id : (x : Fin (1+ n)) → wkVar (lift id) x ≡ wkVar id x wkVar-lift-id x0 = refl wkVar-lift-id (x +1) = refl wkVar-lifts-id : (n : Nat) (x : Fin (n + m)) → wkVar (liftn id n) x ≡ wkVar id x wkVar-lifts-id 0 x = refl wkVar-lifts-id (1+ n) x0 = refl wkVar-lifts-id (1+ n) (x +1) = cong _+1 (wkVar-lifts-id n x) -- id is the identity renaming. wkVar-id : (x : Fin n) → wkVar id x ≡ x wkVar-id x = refl mutual wk-id : (t : Term n) → wk id t ≡ t wk-id (var x) = refl wk-id (gen k ts) = cong (gen k) (wkGen-id ts) wkGen-id : ∀ {bs} x → wkGen {n} {n} {bs} id x ≡ x wkGen-id [] = refl wkGen-id (_∷_ {b = b} t ts) = cong₂ _∷_ (trans (wkVar-to-wk (wkVar-lifts-id b) t) ( wk-id t)) (wkGen-id ts) -- lift id is also the identity renaming. wk-lift-id : (t : Term (1+ n)) → wk (lift id) t ≡ t wk-lift-id t = trans (wkVar-to-wk wkVar-lift-id t) (wk-id t) -- The composition of weakenings is correct... -- -- ...as action on variables. wkVar-comp : (ρ : Wk m ℓ) (ρ′ : Wk ℓ n) (x : Fin n) → wkVar ρ (wkVar ρ′ x) ≡ wkVar (ρ • ρ′) x wkVar-comp id ρ′ x = refl wkVar-comp (step ρ) ρ′ x = cong _+1 (wkVar-comp ρ ρ′ x) wkVar-comp (lift ρ) id x = refl wkVar-comp (lift ρ) (step ρ′) x = cong _+1 (wkVar-comp ρ ρ′ x) wkVar-comp (lift ρ) (lift ρ′) x0 = refl wkVar-comp (lift ρ) (lift ρ′) (x +1) = cong _+1 (wkVar-comp ρ ρ′ x) wkVar-comps : ∀ k → (ρ : Wk m ℓ) (ρ′ : Wk ℓ n) (x : Fin (k + n)) → wkVar (liftn ρ k • liftn ρ′ k) x ≡ wkVar (liftn (ρ • ρ′) k) x wkVar-comps 0 ρ ρ′ x = refl wkVar-comps (1+ n) ρ ρ′ x0 = refl wkVar-comps (1+ n) ρ ρ′ (x +1) = cong _+1 (wkVar-comps n ρ ρ′ x) -- ... as action on terms. mutual wk-comp : (ρ : Wk m ℓ) (ρ′ : Wk ℓ n) (t : Term n) → wk ρ (wk ρ′ t) ≡ wk (ρ • ρ′) t wk-comp ρ ρ′ (var x) = cong var (wkVar-comp ρ ρ′ x) wk-comp ρ ρ′ (gen k ts) = cong (gen k) (wkGen-comp ρ ρ′ ts) wkGen-comp : (ρ : Wk m ℓ) (ρ′ : Wk ℓ n) → ∀ {bs} g → wkGen ρ (wkGen ρ′ g) ≡ wkGen {bs = bs} (ρ • ρ′) g wkGen-comp ρ ρ′ [] = refl wkGen-comp ρ ρ′ (_∷_ {b = b} t ts) = cong₂ _∷_ (trans (wk-comp (liftn ρ b) (liftn ρ′ b) t) (wkVar-to-wk (wkVar-comps b ρ ρ′) t)) (wkGen-comp ρ ρ′ ts) -- The following lemmata are variations on the equality -- -- wk1 ∘ ρ = lift ρ ∘ wk1. -- -- Typing: Γ∙A ≤ Γ ≤ Δ <==> Γ∙A ≤ Δ∙A ≤ Δ. lift-step-comp : (ρ : Wk m n) → step id • ρ ≡ lift ρ • step id lift-step-comp id = refl lift-step-comp (step ρ) = cong step (lift-step-comp ρ) lift-step-comp (lift ρ) = refl wk1-wk : (ρ : Wk m n) (t : Term n) → wk1 (wk ρ t) ≡ wk (step ρ) t wk1-wk ρ t = wk-comp (step id) ρ t lift-wk1 : (ρ : Wk m n) (t : Term n) → wk (lift ρ) (wk1 t) ≡ wk (step ρ) t lift-wk1 pr A = trans (wk-comp (lift pr) (step id) A) (sym (cong (λ x → wk x A) (lift-step-comp pr))) wk1-wk≡lift-wk1 : (ρ : Wk m n) (t : Term n) → wk1 (wk ρ t) ≡ wk (lift ρ) (wk1 t) wk1-wk≡lift-wk1 ρ t = trans (wk1-wk ρ t) (sym (lift-wk1 ρ t)) -- Substitution properties. -- Two substitutions σ and σ′ are equal if they are pointwise equal, -- i.e., agree on all variables. -- -- ∀ x → σ x ≡ σ′ x -- If σ = σ′ then lift σ = lift σ′. substVar-lift : (∀ x → σ x ≡ σ′ x) → ∀ x → liftSubst σ x ≡ liftSubst σ′ x substVar-lift eq x0 = refl substVar-lift eq (x +1) = cong wk1 (eq x) substVar-lifts : (∀ x → σ x ≡ σ′ x) → ∀ n x → liftSubstn σ n x ≡ liftSubstn σ′ n x substVar-lifts eq 0 x = eq x substVar-lifts eq (1+ n) x0 = refl substVar-lifts eq (1+ n) (x +1) = cong wk1 (substVar-lifts eq n x) -- If σ = σ′ then subst σ t = subst σ′ t. mutual substVar-to-subst : ((x : Fin n) → σ x ≡ σ′ x) → (t : Term n) → subst σ t ≡ subst σ′ t substVar-to-subst eq (var x) = eq x substVar-to-subst eq (gen k ts) = cong (gen k) (substVar-to-substGen eq ts) substVar-to-substGen : ∀ {bs} → ((x : Fin n) → σ x ≡ σ′ x) → ∀ g → substGen {bs = bs} σ g ≡ substGen {bs = bs} σ′ g substVar-to-substGen eq [] = refl substVar-to-substGen eq (_∷_ {b = b} t ts) = cong₂ _∷_ (substVar-to-subst (substVar-lifts eq b) t) (substVar-to-substGen eq ts) -- lift id = id (as substitutions) subst-lift-id : (x : Fin (1+ n)) → (liftSubst idSubst) x ≡ idSubst x subst-lift-id x0 = refl subst-lift-id (x +1) = refl subst-lifts-id : (n : Nat) → (x : Fin (n + m)) → (liftSubstn idSubst n) x ≡ idSubst x subst-lifts-id 0 x = refl subst-lifts-id (1+ n) x0 = refl subst-lifts-id (1+ n) (x +1) = cong wk1 (subst-lifts-id n x) -- Identity substitution. mutual subst-id : (t : Term n) → subst idSubst t ≡ t subst-id (var x) = refl subst-id (gen k ts) = cong (gen k) (substGen-id ts) substGen-id : ∀ {bs} g → substGen {n} {n} {bs} idSubst g ≡ g substGen-id [] = refl substGen-id (_∷_ {b = b} t ts) = cong₂ _∷_ (trans (substVar-to-subst (subst-lifts-id b) t ) (subst-id t)) (substGen-id ts) -- Correctness of composition of weakening and substitution. -- Composition of liftings is lifting of the composition. -- lift ρ •ₛ lift σ = lift (ρ •ₛ σ) subst-lift-•ₛ : ∀ t → subst (lift ρ •ₛ liftSubst σ) t ≡ subst (liftSubst (ρ •ₛ σ)) t subst-lift-•ₛ = substVar-to-subst (λ { x0 → refl ; (x +1) → sym (wk1-wk≡lift-wk1 _ _)}) helper1 : (n : Nat) (x : Fin (1+ n + m)) → (lift (liftn ρ n) •ₛ liftSubst (liftSubstn σ n)) x ≡ liftSubst (liftSubstn (ρ •ₛ σ) n) x helper1 0 x0 = refl helper1 0 (x +1) = sym (wk1-wk≡lift-wk1 _ _) helper1 (1+ n) x0 = refl helper1 (1+ n) (x +1) = trans (sym (wk1-wk≡lift-wk1 _ _)) (cong wk1 (helper1 n x)) subst-lifts-•ₛ : ∀ n t → subst (liftn ρ n •ₛ liftSubstn σ n) t ≡ subst (liftSubstn (ρ •ₛ σ) n) t subst-lifts-•ₛ 0 t = refl subst-lifts-•ₛ (1+ n) t = substVar-to-subst (helper1 n) t -- lift σ ₛ• lift ρ = lift (σ ₛ• ρ) subst-lift-ₛ• : ∀ t → subst (liftSubst σ ₛ• lift ρ) t ≡ subst (liftSubst (σ ₛ• ρ)) t subst-lift-ₛ• = substVar-to-subst (λ { x0 → refl ; (x +1) → refl}) helper2 : (n : Nat) → (x : Fin (1+ n + m)) → liftSubst (liftSubstn σ n) (wkVar (lift (liftn ρ n)) x) ≡ liftSubst (liftSubstn (λ x₁ → σ (wkVar ρ x₁)) n) x helper2 0 x0 = refl helper2 0 (x +1) = refl helper2 (1+ n) x0 = refl helper2 (1+ n) (x +1) = cong wk1 (helper2 n x) subst-lifts-ₛ• : ∀ n t → subst (liftSubstn σ n ₛ• liftn ρ n) t ≡ subst (liftSubstn (σ ₛ• ρ) n) t subst-lifts-ₛ• 0 t = refl subst-lifts-ₛ• (1+ n) t = substVar-to-subst (helper2 n) t -- wk ρ ∘ subst σ = subst (ρ •ₛ σ) mutual wk-subst : ∀ t → wk ρ (subst σ t) ≡ subst (ρ •ₛ σ) t wk-subst (var x) = refl wk-subst (gen k ts) = cong (gen k) (wkGen-substGen ts) wkGen-substGen : ∀ {bs} t → wkGen ρ (substGen σ t) ≡ substGen {bs = bs} (ρ •ₛ σ) t wkGen-substGen [] = refl wkGen-substGen (_∷_ {b = b} t ts) = cong₂ _∷_ (trans (wk-subst t) ( subst-lifts-•ₛ b t)) (wkGen-substGen ts) -- subst σ ∘ wk ρ = subst (σ •ₛ ρ) mutual subst-wk : ∀ t → subst σ (wk ρ t) ≡ subst (σ ₛ• ρ) t subst-wk (var x) = refl subst-wk (gen k ts) = cong (gen k) (substGen-wkGen ts) substGen-wkGen : ∀ {bs} t → substGen σ (wkGen ρ t) ≡ substGen {bs = bs} (σ ₛ• ρ) t substGen-wkGen [] = refl substGen-wkGen (_∷_ {b = b} t ts) = cong₂ _∷_ (trans (subst-wk t) (subst-lifts-ₛ• b t)) (substGen-wkGen ts) -- Composition of liftings is lifting of the composition. wk-subst-lift : (G : Term (1+ n)) → wk (lift ρ) (subst (liftSubst σ) G) ≡ subst (liftSubst (ρ •ₛ σ)) G wk-subst-lift G = trans (wk-subst G) (subst-lift-•ₛ G) -- Renaming with ρ is the same as substituting with ρ turned into a substitution. wk≡subst : (ρ : Wk m n) (t : Term n) → wk ρ t ≡ subst (toSubst ρ) t wk≡subst ρ t = trans (cong (wk ρ) (sym (subst-id t))) (wk-subst t) -- Composition of substitutions. -- Composition of liftings is lifting of the composition. substCompLift : ∀ x → (liftSubst σ ₛ•ₛ liftSubst σ′) x ≡ (liftSubst (σ ₛ•ₛ σ′)) x substCompLift x0 = refl substCompLift {σ = σ} {σ′ = σ′} (x +1) = trans (subst-wk (σ′ x)) (sym (wk-subst (σ′ x))) substCompLifts : ∀ n x → (liftSubstn σ n ₛ•ₛ liftSubstn σ′ n) x ≡ (liftSubstn (σ ₛ•ₛ σ′) n) x substCompLifts 0 x = refl substCompLifts (1+ n) x0 = refl substCompLifts {σ = σ} {σ′ = σ′} (1+ n) (x +1) = trans (substCompLift {σ = liftSubstn σ n} {σ′ = liftSubstn σ′ n} (x +1)) (cong wk1 (substCompLifts n x)) -- Soundness of the composition of substitutions. mutual substCompEq : ∀ (t : Term n) → subst σ (subst σ′ t) ≡ subst (σ ₛ•ₛ σ′) t substCompEq (var x) = refl substCompEq (gen k ts) = cong (gen k) (substGenCompEq ts) substGenCompEq : ∀ {bs} t → substGen σ (substGen σ′ t) ≡ substGen {bs = bs} (σ ₛ•ₛ σ′) t substGenCompEq [] = refl substGenCompEq (_∷_ {b = b} t ts) = cong₂ _∷_ (trans (substCompEq t) (substVar-to-subst (substCompLifts b) t)) (substGenCompEq ts) -- Weakening single substitutions. -- Pulling apart a weakening composition in specific context _[a]. wk-comp-subst : ∀ {a} (ρ : Wk m ℓ) (ρ′ : Wk ℓ n) G → wk (lift (ρ • ρ′)) G [ a ] ≡ wk (lift ρ) (wk (lift ρ′) G) [ a ] wk-comp-subst {a = a} ρ ρ′ G = cong (λ x → x [ a ]) (sym (wk-comp (lift ρ) (lift ρ′) G)) -- Pushing a weakening into a single substitution. -- ρ (t[a]) = ((lift ρ) t)[ρ a] wk-β : ∀ {a} t → wk ρ (t [ a ]) ≡ wk (lift ρ) t [ wk ρ a ] wk-β t = trans (wk-subst t) (sym (trans (subst-wk t) (substVar-to-subst (λ { x0 → refl ; (x +1) → refl}) t))) -- Pushing a weakening into a single shifting substitution. -- If ρ′ = lift ρ then ρ′(t[a]↑) = ρ′(t) [ρ′(a)]↑ wk-β↑ : ∀ {a} t → wk (lift ρ) (t [ a ]↑) ≡ wk (lift ρ) t [ wk (lift ρ) a ]↑ wk-β↑ t = trans (wk-subst t) (sym (trans (subst-wk t) (substVar-to-subst (λ { x0 → refl ; (x +1) → refl}) t))) -- A specific equation on weakenings used for the reduction of natrec. wk-β-natrec : ∀ (ρ : Wk m n )G → Π ℕ ▹ (Π wk (lift ρ) G ▹ wk (lift (lift ρ)) (wk1 (G [ suc (var x0) ]↑))) ≡ Π ℕ ▹ (wk (lift ρ) G ▹▹ wk (lift ρ) G [ suc (var x0) ]↑) wk-β-natrec ρ G = cong₂ Π_▹_ refl (cong₂ Π_▹_ refl (trans (wk-comp (lift (lift ρ)) (step id) (subst (consSubst (wk1Subst var) (suc (var x0))) G)) (trans (wk-subst G) (sym (trans (wk-subst (wk (lift ρ) G)) (trans (subst-wk G) (substVar-to-subst (λ { x0 → refl ; (x +1) → refl}) G))))))) -- Composing a singleton substitution and a lifted substitution. -- sg u ∘ lift σ = cons id u ∘ lift σ = cons σ u substVarSingletonComp : ∀ {u} (x : Fin (1+ n)) → (sgSubst u ₛ•ₛ liftSubst σ) x ≡ (consSubst σ u) x substVarSingletonComp x0 = refl substVarSingletonComp {σ = σ} (x +1) = trans (subst-wk (σ x)) (subst-id (σ x)) -- The same again, as action on a term t. substSingletonComp : ∀ {a} t → subst (sgSubst a ₛ•ₛ liftSubst σ) t ≡ subst (consSubst σ a) t substSingletonComp = substVar-to-subst substVarSingletonComp -- A single substitution after a lifted substitution. -- ((lift σ) G)[t] = (cons σ t)(G) singleSubstComp : ∀ t (σ : Subst m n) G → (subst (liftSubst σ) G) [ t ] ≡ subst (consSubst σ t) G singleSubstComp t σ G = trans (substCompEq G) (substSingletonComp G) -- A single substitution after a lifted substitution (with weakening). -- ((lift (ρ ∘ σ)) G)[t] = (cons (ρ ∘ σ) t)(G) singleSubstWkComp : ∀ t (σ : Subst m n) G → wk (lift ρ) (subst (liftSubst σ) G) [ t ] ≡ subst (consSubst (ρ •ₛ σ) t) G singleSubstWkComp t σ G = trans (cong (subst (consSubst var t)) (trans (wk-subst G) (subst-lift-•ₛ G))) (trans (substCompEq G) (substSingletonComp G)) -- Pushing a substitution into a single substitution. singleSubstLift : ∀ G t → subst σ (G [ t ]) ≡ subst (liftSubst σ) G [ subst σ t ] singleSubstLift G t = trans (substCompEq G) (trans (trans (substVar-to-subst (λ { x0 → refl ; (x +1) → refl}) G) (sym (substSingletonComp G))) (sym (substCompEq G))) -- More specific laws. idWkLiftSubstLemma : ∀ (σ : Subst m n) G → wk (lift (step id)) (subst (liftSubst σ) G) [ var x0 ] ≡ subst (liftSubst σ) G idWkLiftSubstLemma σ G = trans (singleSubstWkComp (var x0) σ G) (substVar-to-subst (λ { x0 → refl ; (x +1) → refl}) G) substVarComp↑ : ∀ {t} (σ : Subst m n) x → (consSubst (wk1Subst idSubst) (subst (liftSubst σ) t) ₛ•ₛ liftSubst σ) x ≡ (liftSubst σ ₛ•ₛ consSubst (wk1Subst idSubst) t) x substVarComp↑ σ x0 = refl substVarComp↑ σ (x +1) = trans (subst-wk (σ x)) (sym (wk≡subst (step id) (σ x))) singleSubstLift↑ : ∀ (σ : Subst m n) G t → subst (liftSubst σ) (G [ t ]↑) ≡ subst (liftSubst σ) G [ subst (liftSubst σ) t ]↑ singleSubstLift↑ σ G t = trans (substCompEq G) (sym (trans (substCompEq G) (substVar-to-subst (substVarComp↑ σ) G))) substConsComp : ∀ {t G} → subst (consSubst (λ x → σ (x +1)) (subst (tail σ) t)) G ≡ subst σ (subst (consSubst (λ x → var (x +1)) (wk1 t)) G) substConsComp {t = t} {G = G} = trans (substVar-to-subst (λ { x0 → sym (subst-wk t) ; (x +1) → refl }) G) (sym (substCompEq G)) wkSingleSubstId : (F : Term (1+ n)) → (wk (lift (step id)) F) [ var x0 ] ≡ F wkSingleSubstId F = trans (subst-wk F) (trans (substVar-to-subst (λ { x0 → refl ; (x +1) → refl}) F) (subst-id F)) cons-wk-subst : ∀ (ρ : Wk m n) (σ : Subst n ℓ) a t → subst (sgSubst a ₛ• lift ρ ₛ•ₛ liftSubst σ) t ≡ subst (consSubst (ρ •ₛ σ) a) t cons-wk-subst ρ σ a = substVar-to-subst (λ { x0 → refl ; (x +1) → trans (subst-wk (σ x)) (sym (wk≡subst ρ (σ x))) }) natrecSucCaseLemma : (x : Fin (1+ n)) → (step id •ₛ consSubst (wk1Subst idSubst) (suc (var x0)) ₛ•ₛ liftSubst σ) x ≡ (liftSubst (liftSubst σ) ₛ• step id ₛ•ₛ consSubst (wk1Subst idSubst) (suc (var x0))) x natrecSucCaseLemma x0 = refl natrecSucCaseLemma {σ = σ} (x +1) = trans (subst-wk (σ x)) (sym (trans (wk1-wk (step id) _) (wk≡subst (step (step id)) (σ x)))) natrecSucCase : ∀ (σ : Subst m n) F → Π ℕ ▹ (Π subst (liftSubst σ) F ▹ subst (liftSubst (liftSubst σ)) (wk1 (F [ suc (var x0) ]↑))) ≡ Π ℕ ▹ (subst (liftSubst σ) F ▹▹ subst (liftSubst σ) F [ suc (var x0) ]↑) natrecSucCase σ F = cong₂ Π_▹_ refl (cong₂ Π_▹_ refl (trans (trans (subst-wk (F [ suc (var x0) ]↑)) (substCompEq F)) (sym (trans (wk-subst (subst (liftSubst σ) F)) (trans (substCompEq F) (substVar-to-subst natrecSucCaseLemma F)))))) natrecIrrelevantSubstLemma : ∀ F z s m (σ : Subst ℓ n) (x : Fin (1+ n)) → (sgSubst (natrec (subst (liftSubst σ) F) (subst σ z) (subst σ s) m) ₛ•ₛ liftSubst (sgSubst m) ₛ•ₛ liftSubst (liftSubst σ) ₛ• step id ₛ•ₛ consSubst (tail idSubst) (suc (var x0))) x ≡ (consSubst σ (suc m)) x natrecIrrelevantSubstLemma F z s m σ x0 = cong suc (trans (subst-wk m) (subst-id m)) natrecIrrelevantSubstLemma F z s m σ (x +1) = trans (subst-wk (wk (step id) (σ x))) (trans (subst-wk (σ x)) (subst-id (σ x))) natrecIrrelevantSubst : ∀ F z s m (σ : Subst ℓ n) → subst (consSubst σ (suc m)) F ≡ subst (liftSubst (sgSubst m)) (subst (liftSubst (liftSubst σ)) (wk1 (F [ suc (var x0) ]↑))) [ natrec (subst (liftSubst σ) F) (subst σ z) (subst σ s) m ] natrecIrrelevantSubst F z s m σ = sym (trans (substCompEq (subst (liftSubst (liftSubst σ)) (wk (step id) (subst (consSubst (tail idSubst) (suc (var x0))) F)))) (trans (substCompEq (wk (step id) (subst (consSubst (tail idSubst) (suc (var x0))) F))) (trans (subst-wk (subst (consSubst (tail idSubst) (suc (var x0))) F)) (trans (substCompEq F) (substVar-to-subst (natrecIrrelevantSubstLemma F z s m σ) F))))) natrecIrrelevantSubstLemma′ : ∀ F z s n (x : Fin (1+ m)) → (sgSubst (natrec F z s n) ₛ•ₛ liftSubst (sgSubst n) ₛ• step id ₛ•ₛ consSubst (tail idSubst) (suc (var x0))) x ≡ (consSubst var (suc n)) x natrecIrrelevantSubstLemma′ F z s n x0 = cong suc (trans (subst-wk n) (subst-id n)) natrecIrrelevantSubstLemma′ F z s n (x +1) = refl natrecIrrelevantSubst′ : ∀ (F : Term (1+ m)) z s n → subst (liftSubst (sgSubst n)) (wk1 (F [ suc (var x0) ]↑)) [ natrec F z s n ] ≡ F [ suc n ] natrecIrrelevantSubst′ F z s n = trans (substCompEq (wk (step id) (subst (consSubst (tail idSubst) (suc (var x0))) F))) (trans (subst-wk (subst (consSubst (tail idSubst) (suc (var x0))) F)) (trans (substCompEq F) (substVar-to-subst (natrecIrrelevantSubstLemma′ F z s n) F))) cons0wkLift1-id : ∀ (σ : Subst m n) G → subst (sgSubst (var x0)) (wk (lift (step id)) (subst (liftSubst σ) G)) ≡ subst (liftSubst σ) G cons0wkLift1-id σ G = trans (subst-wk (subst (liftSubst σ) G)) (trans (substVar-to-subst (λ { x0 → refl ; (x +1) → refl }) (subst (liftSubst σ) G)) (subst-id (subst (liftSubst σ) G))) substConsId : ∀ {t} G → subst (consSubst σ (subst σ t)) G ≡ subst σ (subst (sgSubst t) G) substConsId G = sym (trans (substCompEq G) (substVar-to-subst (λ { x0 → refl ; (x +1) → refl}) G)) substConsTailId : ∀ {G t} → subst (consSubst (tail σ) (subst σ t)) G ≡ subst σ (subst (consSubst (tail idSubst) t) G) substConsTailId {G = G} = trans (substVar-to-subst (λ { x0 → refl ; (x +1) → refl }) G) (sym (substCompEq G)) substConcatSingleton′ : ∀ {a} t → subst (σ ₛ•ₛ sgSubst a) t ≡ subst (consSubst σ (subst σ a)) t substConcatSingleton′ t = substVar-to-subst (λ { x0 → refl ; (x +1) → refl}) t wk1-tailId : (t : Term n) → wk1 t ≡ subst (tail idSubst) t wk1-tailId t = trans (sym (subst-id (wk1 t))) (subst-wk t) wk1-sgSubst : ∀ (t : Term n) t' → (wk1 t) [ t' ] ≡ t wk1-sgSubst t t' rewrite wk1-tailId t = let substVar-sgSubst-tail : ∀ a n → (sgSubst a ₛ•ₛ tail idSubst) n ≡ idSubst n substVar-sgSubst-tail a n = refl in trans (trans (substCompEq t) (substVar-to-subst (substVar-sgSubst-tail t') t)) (subst-id t)
{ "alphanum_fraction": 0.5557215129, "avg_line_length": 35.9083044983, "ext": "agda", "hexsha": "82792a71eff4f3309f3300cd0547bd632ad20019", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-11-27T15:58:33.000Z", "max_forks_repo_forks_event_min_datetime": "2017-10-18T14:18:20.000Z", "max_forks_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "fhlkfy/logrel-mltt", "max_forks_repo_path": "Definition/Untyped/Properties.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_issues_repo_issues_event_max_datetime": "2021-02-22T10:37:24.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-22T12:49:23.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "fhlkfy/logrel-mltt", "max_issues_repo_path": "Definition/Untyped/Properties.agda", "max_line_length": 93, "max_stars_count": 30, "max_stars_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "fhlkfy/logrel-mltt", "max_stars_repo_path": "Definition/Untyped/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:01:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-20T03:05:21.000Z", "num_tokens": 8243, "size": 20755 }
{-# OPTIONS --without-K --safe #-} open import Algebra open import Relation.Unary open import Relation.Binary hiding (Decidable) module Data.FingerTree.Split.Point {r m} (ℳ : Monoid r m) {s} {ℙ : Pred (Monoid.Carrier ℳ) s} (ℙ-resp : ℙ Respects (Monoid._≈_ ℳ)) (ℙ? : Decidable ℙ) where open import Relation.Nullary using (¬_; yes; no; Dec) open import Level using (_⊔_) open import Data.Product open import Function open import Data.List as List using (List; _∷_; []) open import Data.FingerTree.Measures ℳ open import Data.FingerTree.Reasoning ℳ open import Relation.Nullary using (Dec; yes; no) open import Relation.Nullary.Decidable using (True; toWitness; False; toWitnessFalse) open σ ⦃ ... ⦄ open Monoid ℳ renaming (Carrier to 𝓡) open import Data.FingerTree.Relation.Binary.Reasoning.FasterInference.Setoid setoid infixr 5 _∣_ record _∣_ (left focus : 𝓡) : Set s where constructor ¬[_]ℙ[_] field ¬ℙ : ¬ ℙ left !ℙ : ℙ (left ∙ focus) open _∣_ public _∣?_ : ∀ x y → Dec (x ∣ y) x ∣? y with ℙ? x ... | yes p = no λ c → ¬ℙ c p ... | no ¬p with ℙ? (x ∙ y) ... | no ¬c = no (¬c ∘ !ℙ) ... | yes p = yes ¬[ ¬p ]ℙ[ p ] infixl 2 _≈◄⟅_⟆ _≈▻⟅_⟆ _≈⟅_∣_⟆ _◄_ _▻_ _◄_ : ∀ {l f₁ f₂} → l ∣ f₁ ∙ f₂ → ¬ ℙ (l ∙ f₁) → (l ∙ f₁) ∣ f₂ !ℙ (p ◄ ¬ℙf) = ℙ-resp (sym (assoc _ _ _)) (!ℙ p) ¬ℙ (p ◄ ¬ℙf) = ¬ℙf _▻_ : ∀ {l f₁ f₂} → l ∣ f₁ ∙ f₂ → ℙ (l ∙ f₁) → l ∣ f₁ !ℙ (p ▻ ℙf) = ℙf ¬ℙ (p ▻ ℙf) = ¬ℙ p _≈◄⟅_⟆ : ∀ {x y z} → x ∣ y → x ≈ z → z ∣ y ¬ℙ (x⟅y⟆ ≈◄⟅ x≈z ⟆) = ¬ℙ x⟅y⟆ ∘ ℙ-resp (sym x≈z) !ℙ (x⟅y⟆ ≈◄⟅ x≈z ⟆) = ℙ-resp (≪∙ x≈z) (!ℙ x⟅y⟆) _≈▻⟅_⟆ : ∀ {x y z} → x ∣ y → y ≈ z → x ∣ z ¬ℙ (x⟅y⟆ ≈▻⟅ y≈z ⟆) = ¬ℙ x⟅y⟆ !ℙ (x⟅y⟆ ≈▻⟅ y≈z ⟆) = ℙ-resp (∙≫ y≈z) (!ℙ x⟅y⟆) _≈⟅_∣_⟆ : ∀ {x₁ y₁ x₂ y₂} → x₁ ∣ y₁ → x₁ ≈ x₂ → y₁ ≈ y₂ → x₂ ∣ y₂ ¬ℙ (x⟅y⟆ ≈⟅ x≈ ∣ y≈ ⟆) = ¬ℙ x⟅y⟆ ∘ ℙ-resp (sym x≈) !ℙ (x⟅y⟆ ≈⟅ x≈ ∣ y≈ ⟆) = ℙ-resp (∙-cong x≈ y≈) (!ℙ x⟅y⟆) ¬∄ℙ : ∀ {i} → ¬ (i ∣ ε) ¬∄ℙ i⟅ε⟆ = ¬ℙ i⟅ε⟆ (ℙ-resp (identityʳ _) (!ℙ i⟅ε⟆))
{ "alphanum_fraction": 0.5313959523, "avg_line_length": 26.7638888889, "ext": "agda", "hexsha": "1c8639b49402fe61ef4ce3b723d180ac2a043c7d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-indexed-fingertree", "max_forks_repo_path": "src/Data/FingerTree/Split/Point.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-indexed-fingertree", "max_issues_repo_path": "src/Data/FingerTree/Split/Point.agda", "max_line_length": 85, "max_stars_count": 1, "max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-indexed-fingertree", "max_stars_repo_path": "src/Data/FingerTree/Split/Point.agda", "max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z", "num_tokens": 1075, "size": 1927 }
module Category.Profunctor where open import Agda.Primitive using (Level; _⊔_; lsuc) open import Data.Product using (_,_; _×_) open import Function using (id) open import Relation.Binary.PropositionalEquality using (_≡_) Dimap : ∀ {a b} (p : Set a → Set a → Set b) → Set (lsuc a ⊔ b) Lmap : ∀ {a b} (p : Set a → Set a → Set b) → Set (lsuc a ⊔ b) Rmap : ∀ {a b} (p : Set a → Set a → Set b) → Set (lsuc a ⊔ b) Dimap p = ∀ {x y z w} → (f : x -> y) -> (h : z -> w) -> (g : p y z) → p x w Lmap p = ∀ {x y w} → (f : x -> y) -> (g : p y w) → p x w Rmap p = ∀ {x z w} → (h : z -> w) -> (g : p x z) → p x w record ProfunctorImp {a b : Level} (p : Set a → Set a → Set b) : Set (lsuc (a ⊔ b)) where field dimap : Dimap p lmap : Lmap p rmap : Rmap p dimapFromLmapRmap : ∀ {a b} {p : Set a → Set a → Set b} (lmap : Lmap p) (rmap : Rmap p) → Dimap p dimapFromLmapRmap lmap rmap f h g = rmap h (lmap f g) lmapRmapFromDimap : ∀ {a b} {p : Set a → Set a → Set b} (dimap : Dimap p) → (Lmap p × Rmap p) lmapRmapFromDimap dimap = (λ f → dimap f id) , dimap id module Profunctor {a b : Level} {p : Set a → Set a → Set b} (isProfunctor : ProfunctorImp p) where open ProfunctorImp isProfunctor public record LawfulProfunctorImp {a b} {p : Set a → Set a → Set b} (isProfunctor : ProfunctorImp p) : Set (lsuc (a ⊔ b)) where open Profunctor isProfunctor field lmapId : ∀ {a b} {g : p a b} → lmap id g ≡ g rmapId : ∀ {a b} {g : p a b} → rmap id g ≡ g dimapLmapRmap : ∀ {a b c d} {f : a → b} {g : p b c} {h : c → d} → dimap f h g ≡ lmap f (rmap h g) module LawfulProfunctor {a b} {p : Set a → Set a → Set b} {isProfunctor : ProfunctorImp p} (isLawful : LawfulProfunctorImp isProfunctor) where open Profunctor isProfunctor public open LawfulProfunctorImp isLawful public
{ "alphanum_fraction": 0.5839256424, "avg_line_length": 44.6097560976, "ext": "agda", "hexsha": "290d1ebeadc3a03fd0778c9e50239eee7e8a5e96", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crisoagf/agda-optics", "max_forks_repo_path": "src/Category/Profunctor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crisoagf/agda-optics", "max_issues_repo_path": "src/Category/Profunctor.agda", "max_line_length": 142, "max_stars_count": null, "max_stars_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crisoagf/agda-optics", "max_stars_repo_path": "src/Category/Profunctor.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 749, "size": 1829 }
module Cats.Category.Op where open import Relation.Binary using (Rel ; _Preserves₂_⟶_⟶_) open import Relation.Binary.PropositionalEquality as ≡ open import Level open import Cats.Category open import Cats.Category.Cat using (Cat) module _ {lo la l≈} (C : Category lo la l≈) where infixr 9 _∘_ infixr 4 _≈_ private module C = Category C module ≈ = C.≈ Obj : Set lo Obj = C.Obj _⇒_ : Obj → Obj → Set la A ⇒ B = B C.⇒ A id : ∀ {A} → A ⇒ A id = C.id _∘_ : ∀ {A B C : Obj} → (B ⇒ C) → (A ⇒ B) → A ⇒ C f ∘ g = g C.∘ f _≈_ : ∀ {A B} → Rel (A ⇒ B) l≈ _≈_ = C._≈_ ∘-resp : ∀ {A B C} → _∘_ {A} {B} {C} Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ ∘-resp {x = f} {g} {h} {i} f≈g h≈i = C.∘-resp h≈i f≈g assoc : ∀ {A B C D} {f : C ⇒ D} {g : B ⇒ C} {h : A ⇒ B} → (f ∘ g) ∘ h ≈ f ∘ (g ∘ h) assoc = C.unassoc _ᵒᵖ : Category lo la l≈ _ᵒᵖ = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = λ f g → g C.∘ f ; equiv = C.equiv ; ∘-resp = ∘-resp ; id-r = C.id-l ; id-l = C.id-r ; assoc = assoc } module _ {lo la l≈ : Level} where private module Cat = Category (Cat lo la l≈) op-involution : {C : Category lo la l≈} → ((C ᵒᵖ) ᵒᵖ) Cat.≅ C op-involution {C} = record { forth = record { fobj = λ x → x ; fmap = λ f → f ; fmap-resp = λ eq → eq ; fmap-id = C.≈.reflexive ≡.refl ; fmap-∘ = C.≈.reflexive ≡.refl } ; back = record { fobj = λ x → x ; fmap = λ f → f ; fmap-resp = λ eq → eq ; fmap-id = C.≈.reflexive ≡.refl ; fmap-∘ = C.≈.reflexive ≡.refl } -- TODO This sort of natural iso comes up all the time. Can we abstract it -- out? ; back-forth = record { iso = Coo.≅.refl ; forth-natural = C.≈.trans C.id-l (C.≈.sym C.id-r) } ; forth-back = record { iso = C.≅.refl ; forth-natural = C.≈.trans C.id-l (C.≈.sym C.id-r) } } where module C = Category C module Coo = Category ((C ᵒᵖ)ᵒᵖ) module ≈ = C.≈
{ "alphanum_fraction": 0.4649326521, "avg_line_length": 23.402173913, "ext": "agda", "hexsha": "8d846c0220b7c21e6ab0830352e5ced3d7e2554f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Op.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Op.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Op.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 919, "size": 2153 }
module AgdalightTelescopeSyntax where postulate A : Set B : A -> Set g : (x y : A; z : B x) -> A -- this is Agdalight syntax, should not parse
{ "alphanum_fraction": 0.644295302, "avg_line_length": 21.2857142857, "ext": "agda", "hexsha": "20a905348f3d5a6cde748e27c16c25f7e8915734", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/AgdalightTelescopeSyntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/AgdalightTelescopeSyntax.agda", "max_line_length": 45, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/AgdalightTelescopeSyntax.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 52, "size": 149 }
{-# OPTIONS --safe #-} module Cubical.Data.Graph.Examples where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Data.Empty open import Cubical.Data.Unit renaming (Unit to ⊤) open import Cubical.Data.Nat open import Cubical.Data.SumFin open import Cubical.Relation.Nullary open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.Graph.Base -- Some small graphs of common shape ⇒⇐ : Graph ℓ-zero ℓ-zero Node ⇒⇐ = Fin 3 Edge ⇒⇐ fzero (fsuc fzero) = ⊤ Edge ⇒⇐ (fsuc (fsuc fzero)) (fsuc fzero) = ⊤ Edge ⇒⇐ _ _ = ⊥ ⇐⇒ : Graph ℓ-zero ℓ-zero Node ⇐⇒ = Fin 3 Edge ⇐⇒ (fsuc fzero) fzero = ⊤ Edge ⇐⇒ (fsuc fzero) (fsuc (fsuc fzero)) = ⊤ Edge ⇐⇒ _ _ = ⊥ -- paralell pair graph ⇉ : Graph ℓ-zero ℓ-zero Node ⇉ = Fin 2 Edge ⇉ fzero (fsuc fzero) = Fin 2 Edge ⇉ _ _ = ⊥ -- The graph ω = 0 → 1 → 2 → ··· data Adj : ℕ → ℕ → Type₀ where adj : ∀ n → Adj n (suc n) areAdj : ∀ m n → Dec (Adj m n) areAdj zero zero = no λ () areAdj zero (suc zero) = yes (adj zero) areAdj zero (suc (suc n)) = no λ () areAdj (suc m) zero = no λ () areAdj (suc m) (suc n) = mapDec (λ { (adj .m) → adj (suc m) }) (λ { ¬a (adj .(suc m)) → ¬a (adj m) }) (areAdj m n) ωGr : Graph ℓ-zero ℓ-zero Node ωGr = ℕ Edge ωGr m n with areAdj m n ... | yes _ = ⊤ -- if n ≡ (suc m) ... | no _ = ⊥ -- otherwise record ωDiag ℓ : Type (ℓ-suc ℓ) where field ωNode : ℕ → Type ℓ ωEdge : ∀ n → ωNode n → ωNode (suc n) asDiag : Diag ℓ ωGr asDiag $ n = ωNode n _<$>_ asDiag {m} {n} f with areAdj m n asDiag <$> tt | yes (adj m) = ωEdge m -- The finite connected subgraphs of ω: 𝟘,𝟙,𝟚,𝟛,... data AdjFin : ∀ {k} → Fin k → Fin k → Type₀ where adj : ∀ {k} (n : Fin k) → AdjFin (finj n) (fsuc n) adj-fsuc : ∀ {k} {m n : Fin k} → AdjFin (fsuc m) (fsuc n) → AdjFin m n adj-fsuc {suc k} {.(finj n)} {fsuc n} (adj .(fsuc n)) = adj n areAdjFin : ∀ {k} (m n : Fin k) → Dec (AdjFin m n) areAdjFin {suc k} fzero fzero = no λ () areAdjFin {suc (suc k)} fzero (fsuc fzero) = yes (adj fzero) areAdjFin {suc (suc k)} fzero (fsuc (fsuc n)) = no λ () areAdjFin {suc k} (fsuc m) fzero = no λ () areAdjFin {suc k} (fsuc m) (fsuc n) = mapDec (λ { (adj m) → adj (fsuc m) }) (λ { ¬a a → ¬a (adj-fsuc a) }) (areAdjFin {k} m n) [_]Gr : ℕ → Graph ℓ-zero ℓ-zero Node [ k ]Gr = Fin k Edge [ k ]Gr m n with areAdjFin m n ... | yes _ = ⊤ -- if n ≡ (suc m) ... | no _ = ⊥ -- otherwise 𝟘Gr 𝟙Gr 𝟚Gr 𝟛Gr : Graph ℓ-zero ℓ-zero 𝟘Gr = [ 0 ]Gr; 𝟙Gr = [ 1 ]Gr; 𝟚Gr = [ 2 ]Gr; 𝟛Gr = [ 3 ]Gr record [_]Diag ℓ (k : ℕ) : Type (ℓ-suc ℓ) where field []Node : Fin (suc k) → Type ℓ []Edge : ∀ (n : Fin k) → []Node (finj n) → []Node (fsuc n) asDiag : Diag ℓ [ suc k ]Gr asDiag $ n = []Node n _<$>_ asDiag {m} {n} f with areAdjFin m n _<$>_ asDiag {.(finj n)} {fsuc n} f | yes (adj .n) = []Edge n -- Disjoint union of graphs module _ {ℓv ℓe ℓv' ℓe'} where _⊎Gr_ : ∀ (G : Graph ℓv ℓe) (G' : Graph ℓv' ℓe') → Graph (ℓ-max ℓv ℓv') (ℓ-max ℓe ℓe') Node (G ⊎Gr G') = Node G ⊎ Node G' Edge (G ⊎Gr G') (inl x) (inl y) = Lift {j = ℓe'} (Edge G x y) Edge (G ⊎Gr G') (inr x) (inr y) = Lift {j = ℓe } (Edge G' x y) Edge (G ⊎Gr G') _ _ = Lift ⊥ record ⊎Diag ℓ (G : Graph ℓv ℓe) (G' : Graph ℓv' ℓe') : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max (ℓ-max ℓv ℓv') (ℓ-max ℓe ℓe'))) where field ⊎Node : Node G ⊎ Node G' → Type ℓ ⊎Edgel : ∀ {x y} → Edge G x y → ⊎Node (inl x) → ⊎Node (inl y) ⊎Edger : ∀ {x y} → Edge G' x y → ⊎Node (inr x) → ⊎Node (inr y) asDiag : Diag ℓ (G ⊎Gr G') asDiag $ x = ⊎Node x _<$>_ asDiag {inl x} {inl y} f = ⊎Edgel (lower f) _<$>_ asDiag {inr x} {inr y} f = ⊎Edger (lower f) -- Cartesian product of graphs module _ {ℓv ℓe ℓv' ℓe'} where -- We need decidable equality in order to define the cartesian product DecGraph : ∀ ℓv ℓe → Type (ℓ-suc (ℓ-max ℓv ℓe)) DecGraph ℓv ℓe = Σ[ G ∈ Graph ℓv ℓe ] Discrete (Node G) _×Gr_ : (G : DecGraph ℓv ℓe) (G' : DecGraph ℓv' ℓe') → Graph (ℓ-max ℓv ℓv') (ℓ-max ℓe ℓe') Node (G ×Gr G') = Node (fst G) × Node (fst G') Edge (G ×Gr G') (x , x') (y , y') with snd G x y | snd G' x' y' ... | yes _ | yes _ = Edge (fst G) x y ⊎ Edge (fst G') x' y' ... | yes _ | no _ = Lift {j = ℓe } (Edge (fst G') x' y') ... | no _ | yes _ = Lift {j = ℓe'} (Edge (fst G) x y) ... | no _ | no _ = Lift ⊥ record ×Diag ℓ (G : DecGraph ℓv ℓe) (G' : DecGraph ℓv' ℓe') : Type (ℓ-max (ℓ-suc ℓ) (ℓ-max (ℓ-max ℓv ℓv') (ℓ-max ℓe ℓe'))) where field ×Node : Node (fst G) × Node (fst G') → Type ℓ ×Edge₁ : ∀ {x y} (f : Edge (fst G) x y) (x' : Node (fst G')) → ×Node (x , x') → ×Node (y , x') ×Edge₂ : ∀ (x : Node (fst G)) {x' y'} (f : Edge (fst G') x' y') → ×Node (x , x') → ×Node (x , y') asDiag : Diag ℓ (G ×Gr G') asDiag $ x = ×Node x _<$>_ asDiag {x , x'} {y , y'} f with snd G x y | snd G' x' y' _<$>_ asDiag {x , x'} {y , y'} (inl f) | yes _ | yes p' = subst _ p' (×Edge₁ f x') _<$>_ asDiag {x , x'} {y , y'} (inr f) | yes p | yes _ = subst _ p (×Edge₂ x f ) _<$>_ asDiag {x , x'} {y , y'} f | yes p | no _ = subst _ p (×Edge₂ x (lower f) ) _<$>_ asDiag {x , x'} {y , y'} f | no _ | yes p' = subst _ p' (×Edge₁ (lower f) x')
{ "alphanum_fraction": 0.5141466931, "avg_line_length": 34.2530864198, "ext": "agda", "hexsha": "b94a303b9b4e9bfcb9c63dea341fa658274f98e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Data/Graph/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Data/Graph/Examples.agda", "max_line_length": 103, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Data/Graph/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 2430, "size": 5549 }
{-# OPTIONS --safe --warning=error --without-K --guardedness #-} open import Setoids.Setoids open import Rings.Definition open import Rings.Lemmas open import Rings.Orders.Partial.Definition open import Rings.Orders.Total.Definition open import Groups.Definition open import Groups.Lemmas open import Fields.Fields open import Sets.EquivalenceRelations open import Sequences open import Setoids.Orders.Partial.Definition open import Setoids.Orders.Total.Definition open import Functions.Definition open import LogicalFormulae open import Numbers.Naturals.Semiring open import Numbers.Naturals.Order open import Numbers.Naturals.Order.Lemmas module Fields.CauchyCompletion.Multiplication {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where open Setoid S open SetoidTotalOrder (TotallyOrderedRing.total order) open SetoidPartialOrder pOrder open Equivalence eq open PartiallyOrderedRing pRing open Ring R open Group additiveGroup open Field F open import Fields.Orders.Lemmas {F = F} record { oRing = order } open import Fields.Orders.Total.Lemmas {F = F} record { oRing = order } open import Fields.Lemmas F open import Rings.Orders.Partial.Lemmas pRing open import Rings.Orders.Total.Lemmas order open import Rings.Orders.Total.Cauchy order open import Rings.Orders.Total.AbsoluteValue order open import Fields.CauchyCompletion.Definition order F open import Fields.CauchyCompletion.Setoid order F open import Fields.CauchyCompletion.Approximation order F 0!=1 : {e : A} → (0G < e) → 0R ∼ 1R → False 0!=1 {e} 0<e 0=1 = irreflexive (<WellDefined (Equivalence.reflexive eq) (oneZeroImpliesAllZero R 0=1) 0<e) private littleLemma : {a b c d : A} → ((a * b) + inverse (c * d)) ∼ ((a * (b + inverse d)) + (d * (a + inverse c))) littleLemma {a} {b} {c} {d} = Equivalence.transitive eq (Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq identLeft) (+WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (+WellDefined (Equivalence.transitive eq (ringMinusExtracts R) (inverseWellDefined additiveGroup *Commutative)) (Equivalence.reflexive eq)) (invLeft {d * a}))) (Equivalence.transitive eq (Equivalence.symmetric eq (ringMinusExtracts' R)) *Commutative))) (Equivalence.symmetric eq +Associative))) (+Associative)) (Equivalence.symmetric eq (+WellDefined (*DistributesOver+) (*DistributesOver+))) timesConverges : (a b : CauchyCompletion) → cauchy (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) timesConverges record { elts = a ; converges = aConv } record { elts = b ; converges = bConv } e 0<e with boundModulus record { elts = a ; converges = aConv } ... | aBound , (Na , prABound) with boundModulus record { elts = b ; converges = bConv } ... | bBound , (Nb , prBBound) = N , ans where boundBoth : A boundBoth = aBound + bBound abstract ab<bb : aBound < boundBoth ab<bb = <WellDefined identLeft groupIsAbelian (orderRespectsAddition {0R} {bBound} (greaterThanAbsImpliesGreaterThan0 (prBBound (succ Nb) (le 0 refl))) aBound) bb<bb : bBound < boundBoth bb<bb = <WellDefined identLeft (Equivalence.reflexive eq) (orderRespectsAddition {0R} {aBound} (greaterThanAbsImpliesGreaterThan0 (prABound (succ Na) (le 0 refl))) bBound) 0<boundBoth : 0R < boundBoth 0<boundBoth = <WellDefined identLeft (Equivalence.reflexive eq) (ringAddInequalities (greaterThanAbsImpliesGreaterThan0 (prABound (succ Na) (le 0 refl))) (greaterThanAbsImpliesGreaterThan0 (prBBound (succ Nb) (le 0 refl)))) abstract 1/boundBoothAndPr : Sg A λ i → i * (aBound + bBound) ∼ 1R 1/boundBoothAndPr = allInvertible boundBoth λ pr → irreflexive (<WellDefined (Equivalence.reflexive eq) pr 0<boundBoth) 1/boundBooth : A 1/boundBooth with 1/boundBoothAndPr ... | a , _ = a 1/boundBoothPr : 1/boundBooth * (aBound + bBound) ∼ 1R 1/boundBoothPr with 1/boundBoothAndPr ... | _ , pr = pr 0<1/boundBooth : 0G < 1/boundBooth 0<1/boundBooth = inversePositiveIsPositive 1/boundBoothPr 0<boundBoth abstract miniEAndPr : Sg A (λ i → (i + i) ∼ (e * 1/boundBooth)) miniEAndPr = halve charNot2 (e * 1/boundBooth) miniE : A miniE with miniEAndPr ... | a , _ = a miniEPr : (miniE + miniE) ∼ (e * 1/boundBooth) miniEPr with miniEAndPr ... | _ , pr = pr 0<miniE : 0R < miniE 0<miniE = halvePositive miniE (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq miniEPr) (orderRespectsMultiplication 0<e 0<1/boundBooth)) abstract reallyNAAndPr : Sg ℕ (λ N → {m n : ℕ} → N <N m → N <N n → abs (index a m + inverse (index a n)) < miniE) reallyNAAndPr = aConv miniE 0<miniE reallyNa : ℕ reallyNa with reallyNAAndPr ... | a , _ = a reallyNaPr : {m n : ℕ} → reallyNa <N m → reallyNa <N n → abs (index a m + inverse (index a n)) < miniE reallyNaPr with reallyNAAndPr ... | _ , pr = pr reallyNBAndPr : Sg ℕ (λ N → {m n : ℕ} → N <N m → N <N n → abs (index b m + inverse (index b n)) < miniE) reallyNBAndPr = bConv miniE 0<miniE reallyNb : ℕ reallyNb with reallyNBAndPr ... | a , _ = a reallyNbPr : {m n : ℕ} → reallyNb <N m → reallyNb <N n → abs (index b m + inverse (index b n)) < miniE reallyNbPr with reallyNBAndPr ... | _ , pr = pr N : ℕ N = (Na +N (Nb +N (reallyNa +N reallyNb))) ans : {m : ℕ} {n : ℕ} → N <N m → N <N n → abs (index (apply _*_ a b) m + inverse (index (apply _*_ a b) n)) < e ans {m} {n} N<m N<n rewrite indexAndApply a b _*_ {m} | indexAndApply a b _*_ {n} = ans''' where Na<m : Na <N m Na<m = inequalityShrinkLeft N<m Nb<n : Nb <N n Nb<n = inequalityShrinkLeft (inequalityShrinkRight {Na} N<n) abstract sum : {m n : ℕ} → (reallyNa +N reallyNb) <N m → (reallyNa +N reallyNb) <N n → (boundBoth * ((abs (index b m + inverse (index b n))) + (abs (index a m + inverse (index a n))))) < e sum {m} {n} <m <n = <WellDefined *Commutative (Equivalence.transitive eq (*WellDefined miniEPr (Equivalence.reflexive eq)) (Equivalence.transitive eq (Equivalence.symmetric eq *Associative) (Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) 1/boundBoothPr) *Commutative) (identIsIdent)))) (ringCanMultiplyByPositive {c = boundBoth} 0<boundBoth (ringAddInequalities (reallyNbPr {m} {n} (inequalityShrinkRight <m) (inequalityShrinkRight <n)) (reallyNaPr {m} {n} (inequalityShrinkLeft <m) (inequalityShrinkLeft <n)))) q : ((boundBoth * (abs (index b m + inverse (index b n)))) + (boundBoth * (abs (index a m + inverse (index a n))))) < e q = <WellDefined *DistributesOver+ (Equivalence.reflexive eq) (sum {m} {n} (inequalityShrinkRight {Nb} (inequalityShrinkRight {Na} N<m)) (inequalityShrinkRight {Nb} (inequalityShrinkRight {Na} N<n))) p : ((abs (index a m) * abs (index b m + inverse (index b n))) + (abs (index b n) * abs (index a m + inverse (index a n)))) < e p with totality 0R (index b m + inverse (index b n)) p | inl (inl 0<bm-bn) with totality 0R (index a m + inverse (index a n)) p | inl (inl 0<bm-bn) | inl (inl 0<am-an) = SetoidPartialOrder.<Transitive pOrder (ringAddInequalities (<WellDefined (Equivalence.reflexive eq) (*WellDefined (Equivalence.reflexive eq) (greaterZeroImpliesEqualAbs 0<bm-bn)) (ringCanMultiplyByPositive 0<bm-bn (SetoidPartialOrder.<Transitive pOrder (prABound m Na<m) ab<bb))) (<WellDefined (Equivalence.reflexive eq) (*WellDefined (Equivalence.reflexive eq) (greaterZeroImpliesEqualAbs 0<am-an)) (ringCanMultiplyByPositive 0<am-an (SetoidPartialOrder.<Transitive pOrder (prBBound n Nb<n) bb<bb)))) q p | inl (inl 0<bm-bn) | inl (inr am-an<0) = SetoidPartialOrder.<Transitive pOrder (ringAddInequalities (<WellDefined (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (greaterZeroImpliesEqualAbs 0<bm-bn))) (Equivalence.reflexive eq) (ringCanMultiplyByPositive (<WellDefined (Equivalence.reflexive eq) (greaterZeroImpliesEqualAbs 0<bm-bn) 0<bm-bn) (SetoidPartialOrder.<Transitive pOrder (prABound m Na<m) ab<bb))) (<WellDefined (*WellDefined (Equivalence.reflexive eq) (lessZeroImpliesEqualNegAbs am-an<0)) (Equivalence.reflexive eq) (ringCanMultiplyByPositive (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (lessZeroImpliesEqualNegAbs am-an<0)) (lemm2 _ am-an<0)) (SetoidPartialOrder.<Transitive pOrder (prBBound n Nb<n) bb<bb)))) q p | inl (inl 0<bm-bn) | inr 0=am-an = <WellDefined (+WellDefined (Equivalence.reflexive eq) (*WellDefined (Equivalence.reflexive eq) 0=am-an)) (Equivalence.reflexive eq) (<WellDefined (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq timesZero)) (Equivalence.reflexive eq) (<WellDefined (Equivalence.symmetric eq identRight) (Equivalence.reflexive eq) (SetoidPartialOrder.<Transitive pOrder (<WellDefined (Equivalence.reflexive eq) (+WellDefined (Equivalence.reflexive eq) (*WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (Equivalence.symmetric eq absZeroIsZero) (absWellDefined _ _ 0=am-an)))) (<WellDefined (Equivalence.reflexive eq) (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq timesZero)) (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq identRight) (<WellDefined (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (greaterZeroImpliesEqualAbs 0<bm-bn))) (Equivalence.reflexive eq) (ringCanMultiplyByPositive (<WellDefined (Equivalence.reflexive eq) (greaterZeroImpliesEqualAbs 0<bm-bn) 0<bm-bn) (SetoidPartialOrder.<Transitive pOrder (prABound m Na<m) ab<bb)))))) q))) p | inl (inr bm-bn<0) = SetoidPartialOrder.<Transitive pOrder ans'' q where bar : ((abs (index a m)) * (inverse (index b m + inverse (index b n)))) < (boundBoth * abs (index b m + inverse (index b n))) bar = <WellDefined (*WellDefined (Equivalence.reflexive eq) (lessZeroImpliesEqualNegAbs bm-bn<0)) (Equivalence.reflexive eq) (ringCanMultiplyByPositive (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (lessZeroImpliesEqualNegAbs bm-bn<0)) (lemm2 _ bm-bn<0)) (SetoidPartialOrder.<Transitive pOrder (prABound m Na<m) (ab<bb))) foo : (((abs (index b n)) * (abs (index a m + inverse (index a n)))) < (boundBoth * abs (index a m + inverse (index a n)))) || (((abs (index b n)) * (abs (index a m + inverse (index a n)))) ∼ (boundBoth * abs (index a m + inverse (index a n)))) foo with totality 0R (index a m + inverse (index a n)) foo | inl (inl 0<am-an) = inl (ringCanMultiplyByPositive 0<am-an (SetoidPartialOrder.<Transitive pOrder (prBBound n Nb<n) bb<bb)) foo | inl (inr am-an<0) = inl (ringCanMultiplyByPositive (lemm2 _ am-an<0) (SetoidPartialOrder.<Transitive pOrder (prBBound n Nb<n) bb<bb)) foo | inr 0=am-an = inr (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=am-an)) (Equivalence.transitive eq (Equivalence.transitive eq timesZero (Equivalence.symmetric eq timesZero)) (*WellDefined (Equivalence.reflexive eq) 0=am-an))) ans'' : _ ans'' with foo ... | inl pr = ringAddInequalities bar pr ... | inr pr = <WellDefined (Equivalence.reflexive eq) (+WellDefined (Equivalence.reflexive eq) pr) (orderRespectsAddition bar ((abs (index b n)) * (abs (index a m + inverse (index a n))))) p | inr 0=bm-bn = ans'' where bar : (boundBoth * abs (index b m + inverse (index b n))) ∼ 0R bar = Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.symmetric eq 0=bm-bn)) (absZeroIsZero))) timesZero bar' : (abs (index a m) * (index b m + inverse (index b n))) ∼ 0R bar' = Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=bm-bn)) timesZero foo : (((abs (index b n)) * (abs (index a m + inverse (index a n)))) < (boundBoth * abs (index a m + inverse (index a n)))) || (0R ∼ (index a m + inverse (index a n))) foo with totality 0R (index a m + inverse (index a n)) foo | inl (inl 0<am-an) = inl (SetoidPartialOrder.<Transitive pOrder (ringCanMultiplyByPositive 0<am-an (prBBound n Nb<n)) (ringCanMultiplyByPositive 0<am-an bb<bb)) foo | inl (inr am-an<0) = inl (SetoidPartialOrder.<Transitive pOrder (ringCanMultiplyByPositive (lemm2 _ am-an<0) (prBBound n Nb<n)) (ringCanMultiplyByPositive (lemm2 _ am-an<0) bb<bb)) foo | inr 0=am-an = inr 0=am-an ans'' : _ ans'' with foo ... | inl pr = SetoidPartialOrder.<Transitive pOrder (<WellDefined groupIsAbelian groupIsAbelian (<WellDefined (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq bar')) (+WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq bar)) (orderRespectsAddition pr 0R))) q ... | inr pr = <WellDefined (Equivalence.transitive eq (Equivalence.symmetric eq identRight) (+WellDefined (Equivalence.symmetric eq bar') (Equivalence.symmetric eq (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.symmetric eq pr)) absZeroIsZero)) timesZero)))) (Equivalence.reflexive eq) 0<e ans''' : abs ((index a m * index b m) + inverse (index a n * index b n)) < e ans''' with triangleInequality (index a m * (index b m + inverse (index b n))) (index b n * (index a m + inverse (index a n))) ... | inl less = <WellDefined (Equivalence.symmetric eq (absWellDefined ((index a m * index b m) + (inverse (index a n * index b n))) (((index a m) * (index b m + (inverse (index b n)))) + ((index b n) * (index a m + inverse (index a n)))) littleLemma)) (Equivalence.reflexive eq) (SetoidPartialOrder.<Transitive pOrder less (<WellDefined (+WellDefined (Equivalence.symmetric eq (absRespectsTimes (index a m) _)) (Equivalence.symmetric eq (absRespectsTimes (index b n) _))) (Equivalence.reflexive eq) p)) ... | inr equal = <WellDefined {_ + _} {abs _} {e} {e} (symmetric (transitive (transitive (absWellDefined ((index a m * index b m) + (inverse (index a n * index b n))) (((index a m) * (index b m + (inverse (index b n)))) + ((index b n) * (index a m + inverse (index a n)))) littleLemma) equal) (+WellDefined (absRespectsTimes (index a m) _) (absRespectsTimes (index b n) _)))) reflexive p _*C_ : CauchyCompletion → CauchyCompletion → CauchyCompletion CauchyCompletion.elts (record { elts = a ; converges = aConv } *C record { elts = b ; converges = bConv }) = apply _*_ a b CauchyCompletion.converges (a *C b) = timesConverges a b *CCommutative : {a b : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid (a *C b) (b *C a) *CCommutative {a} {b} ε 0<e = 0 , ans where foo : {x y : A} → (x * y) + inverse (y * x) ∼ 0G foo = Equivalence.transitive eq (+WellDefined (Equivalence.reflexive eq) (inverseWellDefined additiveGroup *Commutative)) invRight ans : {m : ℕ} → 0 <N m → abs (index (apply _+_ (CauchyCompletion.elts (a *C b)) (map inverse (CauchyCompletion.elts (b *C a)))) m) < ε ans {m} 0<m rewrite indexAndApply (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts b)) (map inverse (apply _*_ (CauchyCompletion.elts b) (CauchyCompletion.elts a))) _+_ {m} | indexAndApply (CauchyCompletion.elts a) (CauchyCompletion.elts b) _*_ {m} | equalityCommutative (mapAndIndex (apply _*_ (CauchyCompletion.elts b) (CauchyCompletion.elts a)) inverse m) | indexAndApply (CauchyCompletion.elts b) (CauchyCompletion.elts a) _*_ {m} = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ foo) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e private multiplicationWellDefinedLeft' : (0!=1 : 0R ∼ 1R → False) (a b c : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid a b → Setoid._∼_ cauchyCompletionSetoid (a *C c) (b *C c) multiplicationWellDefinedLeft' 0!=1 a b c a=b ε 0<e = N , ans where abstract cBoundAndPr : Sg A (λ b → Sg ℕ (λ N → (m : ℕ) → (N <N m) → (abs (index (CauchyCompletion.elts c) m)) < b)) cBoundAndPr = boundModulus c cBound : A cBound with cBoundAndPr ... | a , _ = a cBoundN : ℕ cBoundN with cBoundAndPr ... | _ , (N , _) = N cBoundPr : (m : ℕ) → (cBoundN <N m) → (abs (index (CauchyCompletion.elts c) m)) < cBound cBoundPr with cBoundAndPr ... | _ , (_ , pr) = pr 0<cBound : 0G < cBound 0<cBound with totality 0G cBound 0<cBound | inl (inl 0<cBound) = 0<cBound 0<cBound | inl (inr cBound<0) = exFalso (absNonnegative (SetoidPartialOrder.<Transitive pOrder (cBoundPr (succ cBoundN) (le 0 refl)) cBound<0)) 0<cBound | inr 0=cBound = exFalso (absNonnegative (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=cBound) (cBoundPr (succ cBoundN) (le 0 refl)))) e/c : A e/c with allInvertible cBound (λ pr → irreflexive (<WellDefined (Equivalence.reflexive eq) pr 0<cBound)) ... | (1/c , _) = ε * 1/c e/cPr : e/c * cBound ∼ ε e/cPr with allInvertible cBound (λ pr → irreflexive (<WellDefined (Equivalence.reflexive eq) pr 0<cBound)) ... | (1/c , pr) = Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.symmetric eq *Associative) (*WellDefined (Equivalence.reflexive eq) pr)) *Commutative) (identIsIdent) 0<e/c : 0G < e/c 0<e/c = ringCanCancelPositive {0G} {e/c} 0<cBound (<WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative timesZero)) (Equivalence.symmetric eq e/cPr) 0<e) abBound : ℕ abBound with a=b e/c 0<e/c ... | Na=b , _ = Na=b abPr : {m : ℕ} → (abBound <N m) → abs (index (apply _+_ (CauchyCompletion.elts a) (map inverse (CauchyCompletion.elts b))) m) < e/c abPr with a=b e/c 0<e/c ... | Na=b , pr = pr N : ℕ N = abBound +N cBoundN cBounded : (m : ℕ) → (N <N m) → abs (index (CauchyCompletion.elts c) m) < cBound cBounded m N<m = cBoundPr m (inequalityShrinkRight N<m) a-bSmall : (m : ℕ) → N <N m → abs ((index (CauchyCompletion.elts a) m) + inverse (index (CauchyCompletion.elts b) m)) < e/c a-bSmall m N<m = <WellDefined (absWellDefined _ _ (transitive (identityOfIndiscernablesLeft _∼_ reflexive (equalityCommutative (indexAndApply (CauchyCompletion.elts a) (map inverse (CauchyCompletion.elts b)) _+_ {m}))) (+WellDefined reflexive (identityOfIndiscernablesLeft _∼_ reflexive (mapAndIndex (CauchyCompletion.elts b) inverse m))))) reflexive (abPr {m} (inequalityShrinkLeft N<m)) ans : {m : ℕ} → N <N m → abs (index (apply _+_ (apply _*_ (CauchyCompletion.elts a) (CauchyCompletion.elts c)) (map inverse (apply _*_ (CauchyCompletion.elts b) (CauchyCompletion.elts c)))) m) < ε ans {m} N<m = <WellDefined (absWellDefined _ _ (transitive (+WellDefined (identityOfIndiscernablesLeft _∼_ reflexive (indexAndApply _ _ _*_ {m})) (transitive (transitive (ringMinusExtracts' R) (inverseWellDefined additiveGroup (identityOfIndiscernablesRight _∼_ reflexive (equalityCommutative (indexAndApply _ _ _*_ {m}))))) (identityOfIndiscernablesLeft _∼_ reflexive (equalityCommutative (mapAndIndex _ inverse m))))) (identityOfIndiscernablesLeft _∼_ reflexive (indexAndApply _ _ _+_ {m})))) reflexive (<WellDefined (absWellDefined ((index (CauchyCompletion.elts a) m + inverse (index (CauchyCompletion.elts b) m)) * index (CauchyCompletion.elts c) m) _ (Equivalence.transitive eq (Equivalence.transitive eq *Commutative *DistributesOver+) (+WellDefined *Commutative *Commutative))) (Equivalence.reflexive eq) (<WellDefined (Equivalence.symmetric eq (absRespectsTimes _ _)) (Equivalence.reflexive eq) (<WellDefined (Equivalence.reflexive eq) e/cPr (ans' (index (CauchyCompletion.elts a) m) (index (CauchyCompletion.elts b) m) (index (CauchyCompletion.elts c) m) (a-bSmall m N<m) (cBounded m N<m))))) where ans' : (a b c : A) → abs (a + inverse b) < e/c → abs c < cBound → (abs (a + inverse b) * abs c) < (e/c * cBound) ans' a b c a-b<e/c c<bound with totality 0R c ans' a b c a-b<e/c c<bound | inl (inl 0<c) with totality 0G (a + inverse b) ans' a b c a-b<e/c c<bound | inl (inl 0<c) | inl (inl 0<a-b) = ringMultiplyPositives 0<a-b 0<c a-b<e/c c<bound ans' a b c a-b<e/c c<bound | inl (inl 0<c) | inl (inr a-b<0) = ringMultiplyPositives (lemm2 (a + inverse b) a-b<0) 0<c a-b<e/c c<bound ans' a b c a-b<e/c c<bound | inl (inl 0<c) | inr 0=a-b = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a-b) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero))) (Equivalence.reflexive eq) (orderRespectsMultiplication 0<e/c 0<cBound) ans' a b c a-b<e/c c<bound | inl (inr c<0) with totality 0G (a + inverse b) ans' a b c a-b<e/c c<bound | inl (inr c<0) | inl (inl 0<a-b) = ringMultiplyPositives 0<a-b (lemm2 c c<0) a-b<e/c c<bound ans' a b c a-b<e/c c<bound | inl (inr c<0) | inl (inr a-b<0) = ringMultiplyPositives (lemm2 (a + inverse b) a-b<0) (lemm2 c c<0) a-b<e/c c<bound ans' a b c a-b<e/c c<bound | inl (inr c<0) | inr 0=a-b = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq 0=a-b) (Equivalence.reflexive eq)) (Equivalence.transitive eq *Commutative timesZero))) (Equivalence.reflexive eq) (orderRespectsMultiplication 0<e/c 0<cBound) ans' a b c a-b<e/c c<bound | inr 0=c = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (*WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq 0=c)) timesZero)) (Equivalence.reflexive eq) (orderRespectsMultiplication 0<e/c 0<cBound) multiplicationWellDefinedLeft : (a b c : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid a b → Setoid._∼_ cauchyCompletionSetoid (a *C c) (b *C c) multiplicationWellDefinedLeft with totality 0R 1R ... | inl (inl 0<1') = multiplicationWellDefinedLeft' (λ pr → irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq pr) 0<1')) ... | inl (inr 1<0) = multiplicationWellDefinedLeft' (λ pr → irreflexive {0G} (<WellDefined (Equivalence.symmetric eq pr) (Equivalence.reflexive eq) 1<0)) ... | inr (0=1) = λ a b c a=b → Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {a *C c} {injection 0G} {b *C c} (Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {injection 0G} {a *C c} (trivialIfInputTrivial 0=1 (a *C c))) (trivialIfInputTrivial 0=1 (b *C c)) multiplicationPreservedLeft : {a b : A} {c : CauchyCompletion} → (a ∼ b) → Setoid._∼_ cauchyCompletionSetoid (injection a *C c) (injection b *C c) multiplicationPreservedLeft {a} {b} {c} a=b = multiplicationWellDefinedLeft (injection a) (injection b) c (injectionPreservesSetoid a b a=b) multiplicationPreservedRight : {a b : A} {c : CauchyCompletion} → (a ∼ b) → Setoid._∼_ cauchyCompletionSetoid (c *C injection a) (c *C injection b) multiplicationPreservedRight {a} {b} {c} a=b = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {c *C injection a} {injection a *C c} {c *C injection b} (*CCommutative {c} {injection a}) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection a *C c} {injection b *C c} {c *C injection b} (multiplicationPreservedLeft {a} {b} {c} a=b) (*CCommutative {injection b} {c})) multiplicationPreserved : {a b c d : A} → (a ∼ b) → (c ∼ d) → Setoid._∼_ cauchyCompletionSetoid (injection a *C injection c) (injection b *C injection d) multiplicationPreserved {a} {b} {c} {d} a=b c=d = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {injection a *C injection c} {injection a *C injection d} {injection b *C injection d} (multiplicationPreservedRight {c} {d} {injection a} c=d) (multiplicationPreservedLeft {a} {b} {injection d} a=b) private multiplicationWellDefinedRight : (a b c : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid b c → Setoid._∼_ cauchyCompletionSetoid (a *C b) (a *C c) multiplicationWellDefinedRight a b c b=c = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {a *C b} {b *C a} {a *C c} (*CCommutative {a} {b}) (Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {b *C a} {c *C a} {a *C c} (multiplicationWellDefinedLeft b c a b=c) (*CCommutative {c} {a})) multiplicationWellDefined : {a b c d : CauchyCompletion} → Setoid._∼_ cauchyCompletionSetoid a b → Setoid._∼_ cauchyCompletionSetoid c d → Setoid._∼_ cauchyCompletionSetoid (a *C c) (b *C d) multiplicationWellDefined {a} {b} {c} {d} a=b c=d = Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {a *C c} {a *C d} {b *C d} (multiplicationWellDefinedRight a c d c=d) (multiplicationWellDefinedLeft a b d a=b)
{ "alphanum_fraction": 0.6828117629, "avg_line_length": 102.979757085, "ext": "agda", "hexsha": "6c53cd331addf0c4722db280150b5c99fa494341", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/CauchyCompletion/Multiplication.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/CauchyCompletion/Multiplication.agda", "max_line_length": 1174, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/CauchyCompletion/Multiplication.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 8343, "size": 25436 }
open import Common.IO open import Common.Unit open import Common.String -- Currently, it is not actually a test. -- I need a wat to check that Erasure does not happen when it normally would. {-# FOREIGN OCaml type i = | Bar of string;; #-} data I : Set where bar : String → I {-# COMPILE OCaml I No-Erasure #-} showI : I → String showI (bar x) = x main : IO Unit main = putStr (showI (bar "hello")) >>= λ _ → return unit
{ "alphanum_fraction": 0.6590389016, "avg_line_length": 16.1851851852, "ext": "agda", "hexsha": "0c32a71f9c7c0305622c718fdf3e7e8b9583241a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "xekoukou/agda-ocaml", "max_forks_repo_path": "test/Compiler/simple/Issue3732.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "xekoukou/agda-ocaml", "max_issues_repo_path": "test/Compiler/simple/Issue3732.agda", "max_line_length": 77, "max_stars_count": 7, "max_stars_repo_head_hexsha": "026a8f8473ab91f99c3f6545728e71fa847d2720", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "xekoukou/agda-ocaml", "max_stars_repo_path": "test/Compiler/simple/Issue3732.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 126, "size": 437 }
------------------------------------------------------------------------------ -- The LTC-PCF Booleans type ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- N.B. This module is re-exported by LTC-Bool.Data.Bool. module LTC-PCF.Data.Bool.Type where open import LTC-PCF.Base ------------------------------------------------------------------------------ -- The LTC-PCF Booleans type (inductive predicate for total Booleans). data Bool : D → Set where btrue : Bool true bfalse : Bool false -- The rule of proof by case analysis. Bool-ind : (A : D → Set) → A true → A false → ∀ {b} → Bool b → A b Bool-ind A At Af btrue = At Bool-ind A At Af bfalse = Af
{ "alphanum_fraction": 0.4491916859, "avg_line_length": 33.3076923077, "ext": "agda", "hexsha": "2b646c18dcf139340e82bd9abe852e11a569ba4c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Data/Bool/Type.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Data/Bool/Type.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Data/Bool/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 181, "size": 866 }
-- An ATP conjecture cannot have duplicate local hints. -- This error is detected by Syntax.Translation.ConcreteToAbstract. module ATPBadLocalHint2 where postulate D : Set foo : D bar : D {-# ATP prove foo bar bar #-}
{ "alphanum_fraction": 0.7173913043, "avg_line_length": 17.6923076923, "ext": "agda", "hexsha": "8ef7e6a1eec95ba80c70f767b352f38e54075a41", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "asr/eagda", "max_forks_repo_path": "test/fail/ATPBadLocalHint2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "asr/eagda", "max_issues_repo_path": "test/fail/ATPBadLocalHint2.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7220bebfe9f64297880ecec40314c0090018fdd0", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "asr/eagda", "max_stars_repo_path": "test/fail/ATPBadLocalHint2.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 59, "size": 230 }
module tuple where data ℕ : Set where Z : ℕ S : ℕ -> ℕ _+_ : ℕ -> ℕ -> ℕ n + Z = n n + S m = S (n + m) infixr 30 _+_ data Nil : Set where [] : Nil infix 20 _::_ data Cons (A B : Set) : Set where _::_ : A -> B -> Cons A B Tuple : Set -> ℕ -> Set Tuple A Z = Nil Tuple A (S n) = Cons A (Tuple A n) sumℕTuple : {n : ℕ} -> Tuple ℕ n -> Tuple ℕ n -> Tuple ℕ n sumℕTuple {Z} [] [] = [] sumℕTuple {S n} (m :: l) (m' :: l') = m + m' :: (sumℕTuple l l')
{ "alphanum_fraction": 0.4488188976, "avg_line_length": 13.0256410256, "ext": "agda", "hexsha": "a41bf092db1b308cc8f9384990fb0f69e8f5c288", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/tuple.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/tuple.agda", "max_line_length": 58, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/tuple.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 201, "size": 508 }
-- Andreas, 2012-09-15 module InstanceArgumentsDontDiscardCandidateUponUnsolvedConstraints where import Common.Level data ⊥ : Set where record ⊤ : Set where data Nat : Set where zero : Nat suc : Nat → Nat _≤_ : Nat → Nat → Set zero ≤ m = ⊤ (suc n) ≤ zero = ⊥ (suc n) ≤ (suc m) = n ≤ m data Vec (A : Set) : Nat → Set where [] : Vec A zero _∷_ : {n : Nat} → A → Vec A n → Vec A (suc n) lookup : {A : Set}{n : Nat} (m : Nat) {{m≤n : suc m ≤ n}} → Vec A n → A lookup m {{()}} [] lookup zero (a ∷ as) = a lookup (suc m) (a ∷ as) = lookup m as -- the instance in the recursive call is only found -- if the candiate m≤n : suc m ≤ _n is kept -- until the blocking _n has been solved
{ "alphanum_fraction": 0.585915493, "avg_line_length": 24.4827586207, "ext": "agda", "hexsha": "6002112560e94d1b628ac5d730c34004ac10aa62", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/InstanceArgumentsDontDiscardCandidateUponUnsolvedConstraints.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/InstanceArgumentsDontDiscardCandidateUponUnsolvedConstraints.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/InstanceArgumentsDontDiscardCandidateUponUnsolvedConstraints.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 266, "size": 710 }
module SN.AntiRename where open import Relation.Unary using (_∈_; _⊆_) open import Library open import Terms open import Substitution open import SN mutual -- To formulate this, we need heterogeneous SNholes, going from Γ to Δ -- unRenameSNh : ∀{a b Γ Δ} (ρ : Δ ≤ Γ) {t : Tm Γ b} {E : ECxt Γ a b} {t' : Tm Γ a} → -- SNhole (subst ρ t) (λ t' → subst ρ (E t')) t' → SNhole t E t' -- unRenameSNh = TODO unRenameSNe : ∀{a Γ Δ} {ρ : Δ ≤ Γ} {t : Tm Γ a}{t'} → IndRen ρ t t' → SNe t' → SNe t unRenameSNe (var x x₁) (var y) = var x unRenameSNe (app is is₁) (elim 𝒏 (appl 𝒖)) = elim (unRenameSNe is 𝒏) (appl (unRenameSN is₁ 𝒖)) unRenameSN : ∀{a Γ Δ} {ρ : Δ ≤ Γ} {t : Tm Γ a} {t'} → IndRen ρ t t' → SN t' → SN t -- neutral cases: unRenameSN n (ne 𝒏) = ne (unRenameSNe n 𝒏) -- redex cases: unRenameSN is (exp t⇒ 𝒕) = exp (unRename⇒1 is t⇒) (unRenameSN (proj₂ (unRename⇒0 is t⇒)) 𝒕) -- constructor cases: unRenameSN (abs t) (abs 𝒕) = abs (unRenameSN t 𝒕) unRename⇒0 : ∀{a Γ Δ} {ρ : Δ ≤ Γ} {t : Tm Γ a} {t' : Tm Δ a}{tρ} → IndRen ρ t tρ → tρ ⟨ _ ⟩⇒ t' → Σ _ \ s → IndRen ρ s t' unRename⇒0 {ρ = ρ} (app {u = u} (abs {t = t} is) is₁) (β 𝒖) = _ , prop→Ind ρ (≡.trans (≡.sym (sgs-lifts-term {σ = ρ} {u = u} {t = t})) (≡.cong₂ (λ t₁ u₁ → subst (sgs u₁) t₁) (Ind→prop _ is) (Ind→prop _ is₁))) unRename⇒0 (app is is₁) (cong (appl u) (appl .u) tρ→t') = let s , iss = unRename⇒0 is tρ→t' in app s _ , app iss is₁ unRename⇒1 : ∀{a Γ Δ} {ρ : Δ ≤ Γ} {t : Tm Γ a} {t' : Tm Δ a}{tρ} → (is : IndRen ρ t tρ) → (t⇒ : tρ ⟨ _ ⟩⇒ t') → t ⟨ _ ⟩⇒ proj₁ (unRename⇒0 is t⇒) unRename⇒1 (app (abs is) is₁) (β 𝒖) = β (unRenameSN is₁ 𝒖) unRename⇒1 (app is is₁) (cong (appl u) (appl .u) tρ→t') = cong (appl _) (appl _) (unRename⇒1 is tρ→t') -- Extensionality of SN for function types: -- If t x ∈ SN then t ∈ SN. absVarSNe : ∀{Γ a b}{t : Tm (a ∷ Γ) (a →̂ b)} → app t (var (zero)) ∈ SNe → t ∈ SNe absVarSNe (elim 𝒏 (appl 𝒖)) = 𝒏 absVarSN : ∀{Γ a b}{t : Tm (a ∷ Γ) (a →̂ b)} → app t (var (zero)) ∈ SN → t ∈ SN absVarSN (ne 𝒖) = ne (absVarSNe 𝒖) absVarSN (exp (β {t = t} 𝒖) 𝒕′) = abs (unRenameSN (prop→Ind contract (subst-ext contract-sgs t)) 𝒕′) absVarSN (exp (cong (appl ._) (appl ._) t⇒) 𝒕′) = exp t⇒ (absVarSN 𝒕′)
{ "alphanum_fraction": 0.4996003197, "avg_line_length": 45.4909090909, "ext": "agda", "hexsha": "7653611fe99b3b13d2e6737bff5755785530ee53", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z", "max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ryanakca/strong-normalization", "max_forks_repo_path": "agda-aplas14/SN/AntiRename.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ryanakca/strong-normalization", "max_issues_repo_path": "agda-aplas14/SN/AntiRename.agda", "max_line_length": 143, "max_stars_count": 32, "max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ryanakca/strong-normalization", "max_stars_repo_path": "agda-aplas14/SN/AntiRename.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z", "num_tokens": 1116, "size": 2502 }
-- Andreas, 2016-12-29, issue #2363 data Nat : Set where zero : Nat suc : Nat → Nat test : Nat → Nat test (suc n) with zero test zero | q = zero test zero = zero -- Error WAS: -- With clause pattern zero is not an instance of its parent pattern (suc "n") -- Expected error: -- With clause pattern zero is not an instance of its parent pattern (suc n)
{ "alphanum_fraction": 0.6768802228, "avg_line_length": 21.1176470588, "ext": "agda", "hexsha": "72a69c2a6890865d66099d3dd4f595e7358f6a2b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2363.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2363.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2363.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 106, "size": 359 }
module Oscar.Class.AlphaConversion where open import Oscar.Data.Nat open import Oscar.Data.Fin open import Oscar.Data.Equality open import Oscar.Function open import Oscar.Relation open import Oscar.Level record AlphaConversion {a} {A : Set a} {b} (B : A → Set b) {c} (C : A → Set c) : Set (a ⊔ b ⊔ c) where infixr 19 _◂_ field _◂_ : ∀ {m n} → m ⟨ B ⟩→ n → m ⟨ C ⟩→ n ◂-identity : ∀ {m} (x : C m) → id ◂ x ≡ x ◂-associativity : ∀ {l m n} (f : l ⟨ B ⟩→ m) (g : m ⟨ B ⟩→ n) (x : C l) → (g ∘ f) ◂ x ≡ g ◂ f ◂ x ◂-extensionality : ∀ {m n} {f g : m ⟨ B ⟩→ n} → f ≡̇ g → f ◂_ ≡̇ g ◂_ open AlphaConversion ⦃ … ⦄ public instance AlphaConversion⋆ : ∀ {a} {A : Set a} {bc} {BC : A → Set bc} → AlphaConversion BC BC AlphaConversion._◂_ AlphaConversion⋆ = id AlphaConversion.◂-identity AlphaConversion⋆ _ = refl AlphaConversion.◂-associativity AlphaConversion⋆ _ _ _ = refl AlphaConversion.◂-extensionality AlphaConversion⋆ f≡̇g x = f≡̇g x
{ "alphanum_fraction": 0.6149003148, "avg_line_length": 36.6538461538, "ext": "agda", "hexsha": "d661ff09a47cce4c804915a2cd902fda9fa265a7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Class/AlphaConversion.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Class/AlphaConversion.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Class/AlphaConversion.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 386, "size": 953 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Sigma.Base where open import Cubical.Core.Primitives public -- Σ-types are defined in Core/Primitives as they are needed for Glue types. _×_ : ∀ {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ') A × B = Σ A (λ _ → B) infixr 5 _×_
{ "alphanum_fraction": 0.6404109589, "avg_line_length": 22.4615384615, "ext": "agda", "hexsha": "46c3087a93e70122ae6e84511ee04167281ed711", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmester0/cubical", "max_forks_repo_path": "Cubical/Data/Sigma/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmester0/cubical", "max_issues_repo_path": "Cubical/Data/Sigma/Base.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmester0/cubical", "max_stars_repo_path": "Cubical/Data/Sigma/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 104, "size": 292 }
{-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module StrictApplication where open import Data.Nat {-# NON_TERMINATING #-} loop : ℕ loop = loop foo : ℕ foo = (λ _ → 0) loop
{ "alphanum_fraction": 0.5529801325, "avg_line_length": 18.875, "ext": "agda", "hexsha": "941796b213a6efe33893d7c635f3086491185aa9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/strict-evaluation/StrictApplication.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/strict-evaluation/StrictApplication.agda", "max_line_length": 42, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/strict-evaluation/StrictApplication.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 71, "size": 302 }