Search is not available for this dataset
text
string
meta
dict
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of rose trees ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Data.Tree.Rose.Properties where open import Level using (Level) open import Size open import Data.List.Base as List using (List) open import Data.List.Extrema.Nat import Data.List.Properties as Listₚ open import Data.Nat.Base using (ℕ; zero; suc) open import Data.Tree.Rose open import Function.Base open import Relation.Binary.PropositionalEquality open ≡-Reasoning private variable a b c : Level A : Set a B : Set b C : Set c i : Size ------------------------------------------------------------------------ -- map properties map-compose : (f : A → B) (g : B → C) → map {i = i} (g ∘′ f) ≗ map {i = i} g ∘′ map {i = i} f map-compose f g (node a ts) = cong (node (g (f a))) $ begin List.map (map (g ∘′ f)) ts ≡⟨ Listₚ.map-cong (map-compose f g) ts ⟩ List.map (map g ∘ map f) ts ≡⟨ Listₚ.map-compose ts ⟩ List.map (map g) (List.map (map f) ts) ∎ depth-map : (f : A → B) (t : Rose A i) → depth {i = i} (map {i = i} f t) ≡ depth {i = i} t depth-map f (node a ts) = cong (suc ∘′ max 0) $ begin List.map depth (List.map (map f) ts) ≡˘⟨ Listₚ.map-compose ts ⟩ List.map (depth ∘′ map f) ts ≡⟨ Listₚ.map-cong (depth-map f) ts ⟩ List.map depth ts ∎ ------------------------------------------------------------------------ -- foldr properties foldr-map : (f : A → B) (n : B → List C → C) (ts : Rose A i) → foldr {i = i} n (map {i = i} f ts) ≡ foldr {i = i} (n ∘′ f) ts foldr-map f n (node a ts) = cong (n (f a)) $ begin List.map (foldr n) (List.map (map f) ts) ≡˘⟨ Listₚ.map-compose ts ⟩ List.map (foldr n ∘′ map f) ts ≡⟨ Listₚ.map-cong (foldr-map f n) ts ⟩ List.map (foldr (n ∘′ f)) ts ∎
{ "alphanum_fraction": 0.4921279837, "avg_line_length": 35.8, "ext": "agda", "hexsha": "6a77f0dfba4db2f76d71aa94ac318791226d1916", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Tree/Rose/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Tree/Rose/Properties.agda", "max_line_length": 90, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Tree/Rose/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 633, "size": 1969 }
module Day2 where open import Data.String as String open import Data.Maybe open import Foreign.Haskell using (Unit) open import Data.List as List hiding (fromMaybe) open import Data.Nat open import Data.Nat.DivMod import Data.Nat.Show as ℕs open import Data.Char open import Data.Vec as Vec renaming (_>>=_ to _VV=_ ; toList to VecToList) open import Data.Product open import Relation.Nullary open import Data.Nat.Properties open import Data.Bool.Base open import AocIO open import AocUtil open import AocVec import Data.Fin as Fin natDiff : ℕ → ℕ → ℕ natDiff zero y = y natDiff x zero = x natDiff (suc x) (suc y) = natDiff x y fromMaybe : ∀ {a} {A : Set a} → A → Maybe A → A fromMaybe v (just x) = x fromMaybe v nothing = v find : ∀ {a} {A : Set a} → (A → Bool) → List A → Maybe A find pred [] = nothing find pred (x ∷ ls) with (pred x) ... | false = find pred ls ... | true = just x dividesEvenly : ℕ → ℕ → Bool dividesEvenly zero zero = true dividesEvenly zero dividend = false dividesEvenly (suc divisor) dividend with (dividend mod (suc divisor)) ... | Fin.Fin.zero = true ... | Fin.Fin.suc p = false oneDividesTheOther : ℕ → ℕ → Bool oneDividesTheOther x y = dividesEvenly x y ∨ dividesEvenly y x main2 : IO Unit main2 = mainBuilder (readFileMain processFile) where parseLine : List Char → List ℕ parseLine ls with (words ls) ... | line-words = List.map unsafeParseNat line-words minMax : {n : ℕ} → Vec ℕ (suc n) → (ℕ × ℕ) minMax {0} (x ∷ []) = x , x minMax {suc _} (x ∷ ls) with (minMax ls) ... | min , max = (min ⊓ x) , (max ⊔ x) minMaxDiff : List ℕ → ℕ minMaxDiff ls = helper (Vec.fromList ls) where helper : {n : ℕ} → Vec ℕ n → ℕ helper [] = 0 helper (x ∷ vec) with (minMax (x ∷ vec)) ... | min , max = natDiff min max lineDiff : List Char → ℕ lineDiff s = minMaxDiff (parseLine s) processFile : String → IO Unit processFile file-content with (lines (String.toList file-content)) ... | file-lines with (List.map lineDiff file-lines) ... | line-diffs = printString (ℕs.show (List.sum line-diffs)) main : IO Unit main = mainBuilder (readFileMain processFile) where parseLine : List Char → List ℕ parseLine ls with (words ls) ... | line-words = List.map unsafeParseNat line-words pierreDiv : ℕ → ℕ → ℕ pierreDiv x y with (x ⊓ y) | (x ⊔ y) ... | 0 | _ = 0 ... | _ | 0 = 0 ... | (suc min) | (suc max) = (suc max) div (suc min) lineDivider : List ℕ → Maybe ℕ lineDivider [] = nothing lineDivider (x ∷ ln) with (find (oneDividesTheOther x) ln) ... | nothing = lineDivider ln ... | just y = just (pierreDiv x y) lineScore : List Char → ℕ lineScore s = fromMaybe 0 (lineDivider (parseLine s)) processFile : String → IO Unit processFile file-content with (lines (String.toList file-content)) ... | file-lines with (List.map lineScore file-lines) ... | line-scores = printString (ℕs.show (List.sum line-scores))
{ "alphanum_fraction": 0.6426666667, "avg_line_length": 31.914893617, "ext": "agda", "hexsha": "208559bf1a06527e041f035161d9fc69385358c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37956e581dc51bf78008d7dd902bb18d2ee481f6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/adventofcode2017", "max_forks_repo_path": "day-2/Day2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37956e581dc51bf78008d7dd902bb18d2ee481f6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/adventofcode2017", "max_issues_repo_path": "day-2/Day2.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "37956e581dc51bf78008d7dd902bb18d2ee481f6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/adventofcode2017", "max_stars_repo_path": "day-2/Day2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 951, "size": 3000 }
module OlderBasicILP.Indirect where open import Common.Context public -- Propositions of intuitionistic logic of proofs, without ∨, ⊥, or +. infixr 10 _⦂_ infixl 9 _∧_ infixr 7 _▻_ data Ty (X : Set) : Set where α_ : Atom → Ty X _▻_ : Ty X → Ty X → Ty X _⦂_ : X → Ty X → Ty X _∧_ : Ty X → Ty X → Ty X ⊤ : Ty X module _ {X : Set} where infix 7 _▻◅_ _▻◅_ : Ty X → Ty X → Ty X A ▻◅ B = (A ▻ B) ∧ (B ▻ A) -- Additional useful propositions. _⦂⋆_ : ∀ {n} → VCx X n → VCx (Ty X) n → Cx (Ty X) ∅ ⦂⋆ ∅ = ∅ (TS , T) ⦂⋆ (Ξ , A) = (TS ⦂⋆ Ξ) , (T ⦂ A)
{ "alphanum_fraction": 0.5111111111, "avg_line_length": 20.1724137931, "ext": "agda", "hexsha": "a5b0b39d6143a1d69d79c99a3aa42906c493f227", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "OlderBasicILP/Indirect.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "OlderBasicILP/Indirect.agda", "max_line_length": 70, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "OlderBasicILP/Indirect.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 283, "size": 585 }
------------------------------------------------------------------------------ -- Group theory properties using Agsy ------------------------------------------------------------------------------ {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Tested with the development version of the Agda standard library on -- 02 February 2012. module Agsy.GroupTheory where open import Data.Product open import Relation.Binary.PropositionalEquality open ≡-Reasoning infix 8 _⁻¹ infixl 7 _·_ ------------------------------------------------------------------------------ -- Group theory axioms postulate G : Set -- The universe. ε : G -- The identity element. _·_ : G → G → G -- The binary operation. _⁻¹ : G → G -- The inverse function. assoc : ∀ x y z → x · y · z ≡ x · (y · z) leftIdentity : ∀ x → ε · x ≡ x rightIdentity : ∀ x → x · ε ≡ x leftInverse : ∀ x → x ⁻¹ · x ≡ ε rightInverse : ∀ x → x · x ⁻¹ ≡ ε -- Properties y≡x⁻¹[xy] : ∀ a b → b ≡ a ⁻¹ · (a · b) y≡x⁻¹[xy] a b = {!-t 20 -m!} -- Agsy fails x≡[xy]y⁻¹ : ∀ a b → a ≡ (a · b) · b ⁻¹ x≡[xy]y⁻¹ a b = {!-t 20 -m!} -- Agsy fails rightIdentityUnique : Σ G λ u → (∀ x → x · u ≡ x) × (∀ u' → (∀ x → x · u' ≡ x) → u ≡ u') rightIdentityUnique = {!-t 20 -m!} -- Agsy fails -- ε -- , rightIdentity -- , λ x x' → begin -- ε ≡⟨ sym (x' ε) ⟩ -- ε · x ≡⟨ leftIdentity x ⟩ -- x -- ∎ rightIdentityUnique' : ∀ x u → x · u ≡ x → ε ≡ u rightIdentityUnique' x u xu≡x = {!-t 20 -m!} -- Agsy fails leftIdentityUnique : Σ G λ u → (∀ x → u · x ≡ x) × (∀ u' → (∀ x → u' · x ≡ x) → u ≡ u') leftIdentityUnique = {!-t 20 -m!} -- Agsy fails -- ε -- , leftIdentity -- , λ x x' → begin -- ε ≡⟨ sym (x' ε) ⟩ -- x · ε ≡⟨ rightIdentity x ⟩ -- x -- ∎ leftIdentityUnique' : ∀ x u → u · x ≡ x → ε ≡ u leftIdentityUnique' x u ux≡x = {!-t 20 -m!} rightCancellation : ∀ x y z → y · x ≡ z · x → y ≡ z rightCancellation x y z = λ hyp → {!-t 20 -m!} -- Agsy fails leftCancellation : ∀ x y z → x · y ≡ x · z → y ≡ z leftCancellation x y z = λ hyp → {!-t 20 -m!} -- Agsy fails leftCancellationER : (x y z : G) → x · y ≡ x · z → y ≡ z leftCancellationER x y z x·y≡x·z = begin y ≡⟨ sym (leftIdentity y) ⟩ ε · y ≡⟨ subst (λ t → ε · y ≡ t · y) (sym (leftInverse x)) refl ⟩ x ⁻¹ · x · y ≡⟨ assoc (x ⁻¹) x y ⟩ x ⁻¹ · (x · y) ≡⟨ subst (λ t → x ⁻¹ · (x · y) ≡ x ⁻¹ · t) x·y≡x·z refl ⟩ x ⁻¹ · (x · z) ≡⟨ sym (assoc (x ⁻¹) x z) ⟩ x ⁻¹ · x · z ≡⟨ subst (λ t → x ⁻¹ · x · z ≡ t · z) (leftInverse x) refl ⟩ ε · z ≡⟨ leftIdentity z ⟩ z ∎ rightInverseUnique : ∀ x → Σ G λ r → (x · r ≡ ε) × (∀ r' → x · r' ≡ ε → r ≡ r') rightInverseUnique x = {!-t 20 -m!} -- Agsy fails rightInverseUnique' : ∀ x r → x · r ≡ ε → x ⁻¹ ≡ r rightInverseUnique' x r = λ hyp → {!-t 20 -m!} -- Agsy fails leftInverseUnique : ∀ x → Σ G λ l → (l · x ≡ ε) × (∀ l' → l' · x ≡ ε → l ≡ l') leftInverseUnique x = {!-t 20 -m!} -- Agsy fails ⁻¹-involutive : ∀ x → x ⁻¹ ⁻¹ ≡ x ⁻¹-involutive x = {!-t 20 -m!} -- Agsy fails inverseDistribution : ∀ x y → (x · y) ⁻¹ ≡ y ⁻¹ · x ⁻¹ inverseDistribution x y = {!-t 20 -m!} -- Agsy fails -- If the square of every element is the identity, the system is -- commutative. From: TPTP 6.4.0. File: Problems/GRP/GRP001-2.p x²≡ε→comm : (∀ a → a · a ≡ ε) → ∀ {b c d} → b · c ≡ d → c · b ≡ d x²≡ε→comm hyp {b} {c} {d} bc≡d = {!-t 20 -m!} -- Agsy fails
{ "alphanum_fraction": 0.4347043702, "avg_line_length": 33.8260869565, "ext": "agda", "hexsha": "483e977b8fa3ac127a17930289426c6bc27e6073", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/Agsy/GroupTheory.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/Agsy/GroupTheory.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/Agsy/GroupTheory.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1496, "size": 3890 }
data Bool : Set where true false : Bool data Eq : Bool → Bool → Set where refl : (x : Bool) → Eq x x test : (x : Bool) → Eq true x → Set test _ (refl false) = Bool
{ "alphanum_fraction": 0.5906432749, "avg_line_length": 17.1, "ext": "agda", "hexsha": "313fae0824ff8880d2d3733d5c9daa82d1a69595", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3014.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3014.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3014.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 60, "size": 171 }
------------------------------------------------------------------------ -- Some decision procedures for equality ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module Equality.Decision-procedures {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open Derived-definitions-and-properties eq open import Equality.Decidable-UIP eq open import Prelude hiding (module ⊤; module ⊥; module ↑; module ℕ; module Σ; module List) ------------------------------------------------------------------------ -- The unit type module ⊤ where -- Equality of values of the unit type is decidable. infix 4 _≟_ _≟_ : Decidable-equality ⊤ _ ≟ _ = yes (refl _) ------------------------------------------------------------------------ -- The empty type module ⊥ {ℓ} where -- Equality of values of the empty type is decidable. infix 4 _≟_ _≟_ : Decidable-equality (⊥ {ℓ = ℓ}) () ≟ () ------------------------------------------------------------------------ -- Lifting module ↑ {a ℓ} {A : Type a} where -- ↑ preserves decidability of equality. module Dec (dec : Decidable-equality A) where infix 4 _≟_ _≟_ : Decidable-equality (↑ ℓ A) lift x ≟ lift y = ⊎-map (cong lift) (_∘ cong lower) (dec x y) ------------------------------------------------------------------------ -- Booleans module Bool where -- The values true and false are distinct. abstract true≢false : true ≢ false true≢false true≡false = subst T true≡false _ -- Equality of booleans is decidable. infix 4 _≟_ _≟_ : Decidable-equality Bool true ≟ true = yes (refl _) false ≟ false = yes (refl _) true ≟ false = no true≢false false ≟ true = no (true≢false ∘ sym) ------------------------------------------------------------------------ -- Σ-types module Σ {a b} {A : Type a} {B : A → Type b} where -- Two variants of Dec._≟_ (which is defined below). set⇒dec⇒dec⇒dec : {x₁ x₂ : A} {y₁ : B x₁} {y₂ : B x₂} → Is-set A → Dec (x₁ ≡ x₂) → (∀ eq → Dec (subst B eq y₁ ≡ y₂)) → Dec ((x₁ , y₁) ≡ (x₂ , y₂)) set⇒dec⇒dec⇒dec set₁ (no x₁≢x₂) dec₂ = no (x₁≢x₂ ∘ cong proj₁) set⇒dec⇒dec⇒dec set₁ (yes x₁≡x₂) dec₂ with dec₂ x₁≡x₂ … | yes cast-y₁≡y₂ = yes (Σ-≡,≡→≡ x₁≡x₂ cast-y₁≡y₂) … | no cast-y₁≢y₂ = no (cast-y₁≢y₂ ∘ subst (λ p → subst B p _ ≡ _) (set₁ _ _) ∘ proj₂ ∘ Σ-≡,≡←≡) decidable⇒dec⇒dec : {x₁ x₂ : A} {y₁ : B x₁} {y₂ : B x₂} → Decidable-equality A → (∀ eq → Dec (subst B eq y₁ ≡ y₂)) → Dec ((x₁ , y₁) ≡ (x₂ , y₂)) decidable⇒dec⇒dec dec = set⇒dec⇒dec⇒dec (decidable⇒set dec) (dec _ _) -- Σ preserves decidability of equality. module Dec (_≟A_ : Decidable-equality A) (_≟B_ : {x : A} → Decidable-equality (B x)) where infix 4 _≟_ _≟_ : Decidable-equality (Σ A B) _ ≟ _ = decidable⇒dec⇒dec _≟A_ (λ _ → _ ≟B _) ------------------------------------------------------------------------ -- Binary products module × {a b} {A : Type a} {B : Type b} where -- _,_ preserves decided equality. dec⇒dec⇒dec : {x₁ x₂ : A} {y₁ y₂ : B} → Dec (x₁ ≡ x₂) → Dec (y₁ ≡ y₂) → Dec ((x₁ , y₁) ≡ (x₂ , y₂)) dec⇒dec⇒dec (no x₁≢x₂) _ = no (x₁≢x₂ ∘ cong proj₁) dec⇒dec⇒dec _ (no y₁≢y₂) = no (y₁≢y₂ ∘ cong proj₂) dec⇒dec⇒dec (yes x₁≡x₂) (yes y₁≡y₂) = yes (cong₂ _,_ x₁≡x₂ y₁≡y₂) -- _×_ preserves decidability of equality. module Dec (_≟A_ : Decidable-equality A) (_≟B_ : Decidable-equality B) where infix 4 _≟_ _≟_ : Decidable-equality (A × B) _ ≟ _ = dec⇒dec⇒dec (_ ≟A _) (_ ≟B _) ------------------------------------------------------------------------ -- Binary sums module ⊎ {a b} {A : Type a} {B : Type b} where abstract -- The values inj₁ x and inj₂ y are never equal. inj₁≢inj₂ : {x : A} {y : B} → inj₁ x ≢ inj₂ y inj₁≢inj₂ = Bool.true≢false ∘ cong (if_then true else false) -- The inj₁ and inj₂ constructors are cancellative. cancel-inj₁ : {x y : A} → _≡_ {A = A ⊎ B} (inj₁ x) (inj₁ y) → x ≡ y cancel-inj₁ {x = x} = cong {A = A ⊎ B} {B = A} [ id , const x ] cancel-inj₂ : {x y : B} → _≡_ {A = A ⊎ B} (inj₂ x) (inj₂ y) → x ≡ y cancel-inj₂ {x = x} = cong {A = A ⊎ B} {B = B} [ const x , id ] -- _⊎_ preserves decidability of equality. module Dec (_≟A_ : Decidable-equality A) (_≟B_ : Decidable-equality B) where infix 4 _≟_ _≟_ : Decidable-equality (A ⊎ B) inj₁ x ≟ inj₁ y = ⊎-map (cong (inj₁ {B = B})) (λ x≢y → x≢y ∘ cancel-inj₁) (x ≟A y) inj₂ x ≟ inj₂ y = ⊎-map (cong (inj₂ {A = A})) (λ x≢y → x≢y ∘ cancel-inj₂) (x ≟B y) inj₁ x ≟ inj₂ y = no inj₁≢inj₂ inj₂ x ≟ inj₁ y = no (inj₁≢inj₂ ∘ sym) ------------------------------------------------------------------------ -- Lists module List {a} {A : Type a} where abstract -- The values [] and x ∷ xs are never equal. []≢∷ : ∀ {x : A} {xs} → [] ≢ x ∷ xs []≢∷ = Bool.true≢false ∘ cong (λ { [] → true; (_ ∷ _) → false }) -- The _∷_ constructor is cancellative in both arguments. private head? : A → List A → A head? x [] = x head? _ (x ∷ _) = x tail? : List A → List A tail? [] = [] tail? (_ ∷ xs) = xs cancel-∷-head : ∀ {x y : A} {xs ys} → x ∷ xs ≡ y ∷ ys → x ≡ y cancel-∷-head {x} = cong (head? x) cancel-∷-tail : ∀ {x y : A} {xs ys} → x ∷ xs ≡ y ∷ ys → xs ≡ ys cancel-∷-tail = cong tail? abstract -- An η-like result for the cancellation lemmas. unfold-∷ : ∀ {x y : A} {xs ys} (eq : x ∷ xs ≡ y ∷ ys) → eq ≡ cong₂ _∷_ (cancel-∷-head eq) (cancel-∷-tail eq) unfold-∷ {x} eq = eq ≡⟨ sym $ trans-reflʳ eq ⟩ trans eq (refl _) ≡⟨ sym $ cong (trans eq) sym-refl ⟩ trans eq (sym (refl _)) ≡⟨ sym $ trans-reflˡ _ ⟩ trans (refl _) (trans eq (sym (refl _))) ≡⟨ sym $ cong-roughly-id (λ xs → head? x xs ∷ tail? xs) non-empty eq tt tt lemma₁ ⟩ cong (λ xs → head? x xs ∷ tail? xs) eq ≡⟨ lemma₂ _∷_ (head? x) tail? eq ⟩∎ cong₂ _∷_ (cong (head? x) eq) (cong tail? eq) ∎ where non-empty : List A → Bool non-empty [] = false non-empty (_ ∷ _) = true lemma₁ : (xs : List A) → if non-empty xs then ⊤ else ⊥ → head? x xs ∷ tail? xs ≡ xs lemma₁ [] () lemma₁ (_ ∷ _) _ = refl _ lemma₂ : {A B C D : Type a} {x y : A} (f : B → C → D) (g : A → B) (h : A → C) → (eq : x ≡ y) → cong (λ x → f (g x) (h x)) eq ≡ cong₂ f (cong g eq) (cong h eq) lemma₂ f g h = elim (λ eq → cong (λ x → f (g x) (h x)) eq ≡ cong₂ f (cong g eq) (cong h eq)) (λ x → cong (λ x → f (g x) (h x)) (refl x) ≡⟨ cong-refl (λ x → f (g x) (h x)) ⟩ refl (f (g x) (h x)) ≡⟨ sym $ cong₂-refl f ⟩ cong₂ f (refl (g x)) (refl (h x)) ≡⟨ sym $ cong₂ (cong₂ f) (cong-refl g) (cong-refl h) ⟩∎ cong₂ f (cong g (refl x)) (cong h (refl x)) ∎) -- List preserves decidability of equality. module Dec (_≟A_ : Decidable-equality A) where infix 4 _≟_ _≟_ : Decidable-equality (List A) [] ≟ [] = yes (refl []) [] ≟ (_ ∷ _) = no []≢∷ (_ ∷ _) ≟ [] = no ([]≢∷ ∘ sym) (x ∷ xs) ≟ (y ∷ ys) with x ≟A y ... | no x≢y = no (x≢y ∘ cancel-∷-head) ... | yes x≡y with xs ≟ ys ... | yes xs≡ys = yes (cong₂ _∷_ x≡y xs≡ys) ... | no xs≢ys = no (xs≢ys ∘ cancel-∷-tail) ------------------------------------------------------------------------ -- Finite sets module Fin where -- Equality of finite numbers is decidable. infix 4 _≟_ _≟_ : ∀ {n} → Decidable-equality (Fin n) _≟_ {zero} = λ () _≟_ {suc n} = ⊎.Dec._≟_ (λ _ _ → yes (refl tt)) (_≟_ {n})
{ "alphanum_fraction": 0.4510601578, "avg_line_length": 29.8235294118, "ext": "agda", "hexsha": "c1f753919847575cc1402beea66514daac87e75c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Equality/Decision-procedures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Equality/Decision-procedures.agda", "max_line_length": 120, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Equality/Decision-procedures.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 3039, "size": 8112 }
module Cats.Category.Cat.Facts.Exponential where open import Data.Product using (_,_) open import Level using (_⊔_) open import Relation.Binary using (IsEquivalence) open import Cats.Bifunctor using (Bifunctor ; Bifunctor→Functor₁ ; transposeBifunctor₁ ; transposeBifunctor₁-resp) open import Cats.Category open import Cats.Category.Cat as Cat using (Cat ; Functor ; _∘_ ; _≈_) renaming (id to Id) open import Cats.Category.Cat.Facts.Product using (hasBinaryProducts ; ⟨_×_⟩) open import Cats.Category.Fun using (Fun ; Trans ; ≈-intro ; ≈-elim) open import Cats.Category.Fun.Facts using (NatIso→≅) open import Cats.Category.Product.Binary using (_×_) open import Cats.Trans.Iso as NatIso using (NatIso) open import Cats.Util.Conv open import Cats.Util.Simp using (simp!) import Cats.Category.Base as Base import Cats.Category.Constructions.Unique as Unique import Cats.Category.Constructions.Iso as Iso open Functor open Trans open Iso.Build._≅_ infixr 1 _↝_ _↝_ : ∀ {lo la l≈ lo′ la′ l≈′} → Category lo la l≈ → Category lo′ la′ l≈′ → Category (lo ⊔ la ⊔ l≈ ⊔ lo′ ⊔ la′ ⊔ l≈′) (lo ⊔ la ⊔ la′ ⊔ l≈′) (lo ⊔ l≈′) _↝_ = Fun module _ {lo la l≈ lo′ la′ l≈′} {B : Category lo la l≈} {C : Category lo′ la′ l≈′} where private module B = Category B module C = Category C module B↝C = Category (Fun B C) Eval : Bifunctor (B ↝ C) B C Eval = record { fobj = λ where (F , x) → fobj F x ; fmap = λ where {F , a} {G , b} (θ , f) → fmap G f C.∘ component θ a ; fmap-resp = λ where {F , a} {G , b} {θ , f} {ι , g} (θ≈ι , f≈g) → C.∘-resp (fmap-resp G f≈g) (≈-elim θ≈ι) ; fmap-id = λ { {F , b} → C.≈.trans (C.∘-resp-l (fmap-id F)) C.id-l } ; fmap-∘ = λ where {F , a} {G , b} {H , c} {θ , f} {ι , g} → begin (fmap H f C.∘ component θ b) C.∘ (fmap G g C.∘ component ι a) ≈⟨ C.∘-resp-l (C.≈.sym (natural θ)) ⟩ (component θ c C.∘ fmap G f) C.∘ (fmap G g C.∘ component ι a) ≈⟨ simp! C ⟩ component θ c C.∘ (fmap G f C.∘ fmap G g) C.∘ component ι a ≈⟨ C.∘-resp-r (C.∘-resp-l (fmap-∘ G)) ⟩ component θ c C.∘ (fmap G (f B.∘ g)) C.∘ component ι a ≈⟨ simp! C ⟩ (component θ c C.∘ fmap G (f B.∘ g)) C.∘ component ι a ≈⟨ C.∘-resp-l (natural θ) ⟩ (fmap H (f B.∘ g) C.∘ component θ a) C.∘ component ι a ≈⟨ simp! C ⟩ fmap H (f B.∘ g) C.∘ component θ a C.∘ component ι a ∎ } where open C.≈-Reasoning module _ {lo la l≈ lo′ la′ l≈′ lo″ la″ l≈″} {B : Category lo la l≈} {C : Category lo′ la′ l≈′} {D : Category lo″ la″ l≈″} where private module B = Category B module C = Category C module D = Category D module C↝D = Category (Fun C D) Curry : Bifunctor B C D → Functor B (C ↝ D) Curry F = transposeBifunctor₁ F Curry-resp : ∀ {F G} → F ≈ G → Curry F ≈ Curry G Curry-resp = transposeBifunctor₁-resp Curry-correct : ∀ {F} → Eval ∘ ⟨ Curry F × Id ⟩ ≈ F Curry-correct {F} = record { iso = D.≅.refl ; forth-natural = λ where {a , a′} {b , b′} {f , f′} → begin D.id D.∘ fmap F (B.id , f′) D.∘ fmap F (f , C.id) ≈⟨ D.≈.trans D.id-l (fmap-∘ F) ⟩ fmap F (B.id B.∘ f , f′ C.∘ C.id) ≈⟨ fmap-resp F (B.id-l , C.id-r) ⟩ fmap F (f , f′) ≈⟨ D.≈.sym D.id-r ⟩ fmap F (f , f′) D.∘ D.id ∎ } where open D.≈-Reasoning Curry-unique : ∀ {F Curry′} → Eval ∘ ⟨ Curry′ × Id ⟩ ≈ F → Curry′ ≈ Curry F Curry-unique {F} {Curry′} eq@record { iso = iso ; forth-natural = fnat } = record { iso = λ {x} → let open C↝D.≅-Reasoning in C↝D.≅.sym ( begin fobj (Curry F) x ≈⟨ NatIso.iso (Curry-resp (sym-Cat eq)) ⟩ fobj (Curry (Eval ∘ ⟨ Curry′ × Id ⟩)) x ≈⟨ NatIso→≅ (lem x) ⟩ fobj Curry′ x ∎ ) ; forth-natural = λ {a} {b} {f} → ≈-intro λ {x} → -- TODO We need a simplification tactic. let open D.≈-Reasoning in triangle (forth iso D.∘ component (fmap Curry′ f) x) ( begin ((forth iso D.∘ (fmap (fobj Curry′ b) C.id D.∘ component (fmap Curry′ B.id) x) D.∘ D.id) D.∘ D.id D.∘ D.id) D.∘ component (fmap Curry′ f) x ≈⟨ ∘-resp-l (trans (∘-resp-r id-l) (trans id-r (trans (∘-resp-r (trans id-r (trans (∘-resp (fmap-id (fobj Curry′ b)) (≈-elim (fmap-id Curry′))) id-l))) id-r))) ⟩ forth iso D.∘ component (fmap Curry′ f) x ∎ ) ( begin fmap F (f , C.id) D.∘ (forth iso D.∘ (fmap (fobj Curry′ a) C.id D.∘ component (fmap Curry′ B.id) x) D.∘ D.id) D.∘ D.id D.∘ D.id ≈⟨ ∘-resp-r (trans (∘-resp-r id-r) (trans id-r (trans (∘-resp-r (trans id-r (trans (∘-resp-l (fmap-id (fobj Curry′ a))) (trans id-l (≈-elim (fmap-id Curry′)))))) id-r))) ⟩ fmap F (f , C.id) D.∘ forth iso ≈⟨ sym fnat ⟩ forth iso D.∘ fmap (fobj Curry′ b) C.id D.∘ component (fmap Curry′ f) x ≈⟨ ∘-resp-r (trans (∘-resp-l (fmap-id (fobj Curry′ b))) id-l) ⟩ forth iso D.∘ component (fmap Curry′ f) x ∎ ) } where open D using (id-l ; id-r ; ∘-resp ; ∘-resp-l ; ∘-resp-r) open D.≈ using (sym ; trans) open IsEquivalence Cat.equiv using () renaming (sym to sym-Cat) lem : ∀ x → NatIso (Bifunctor→Functor₁ (Eval ∘ ⟨ Curry′ × Id ⟩) x) (fobj Curry′ x) lem x = record { iso = D.≅.refl ; forth-natural = D.≈.trans D.id-l (D.∘-resp-r (≈-elim (fmap-id Curry′))) } instance hasExponentials : ∀ l → HasExponentials (Cat l l l) hasExponentials l = record { _↝′_ = λ B C → record { Cᴮ = B ↝ C ; eval = Eval ; curry′ = λ F → record { arr = Curry F ; prop = Curry-correct {F = F} ; unique = λ {g} eq → let open IsEquivalence Cat.equiv using (sym) in sym (Curry-unique eq) } } }
{ "alphanum_fraction": 0.4886771826, "avg_line_length": 33.1761658031, "ext": "agda", "hexsha": "c03e5a5f35f2edeb3da7b31dcda67a2d4878103b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Cat/Facts/Exponential.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Cat/Facts/Exponential.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Cat/Facts/Exponential.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2417, "size": 6403 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category using (Category) open import Categories.Category.Monoidal.Core using (Monoidal) module Categories.Category.Monoidal.Utilities {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where open import Level open import Function using (_$_) open import Data.Product using (_×_; _,_; curry′) open import Categories.Category.Product open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor using (Bifunctor; appˡ; appʳ) open import Categories.Functor.Properties using ([_]-resp-≅) open import Categories.NaturalTransformation renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism hiding (unitorˡ; unitorʳ; associator; _≃_) infixr 10 _⊗ᵢ_ open import Categories.Morphism C using (_≅_; module ≅) open import Categories.Morphism.IsoEquiv C using (_≃_; ⌞_⌟) open import Categories.Morphism.Isomorphism C using (_∘ᵢ_; lift-triangle′; lift-pentagon′) open import Categories.Morphism.Reasoning C private module C = Category C open C hiding (id; identityˡ; identityʳ; assoc) open Commutation private variable X Y Z W A B : Obj f g h i a b : X ⇒ Y open Monoidal M module ⊗ = Functor ⊗ -- for exporting, it makes sense to use the above long names, but for -- internal consumption, the traditional (short!) categorical names are more -- convenient. However, they are not symmetric, even though the concepts are, so -- we'll use ⇒ and ⇐ arrows to indicate that module Shorthands where λ⇒ = unitorˡ.from λ⇐ = unitorˡ.to ρ⇒ = unitorʳ.from ρ⇐ = unitorʳ.to -- eta expansion fixes a problem in 2.6.1, will be reported α⇒ = λ {X} {Y} {Z} → associator.from {X} {Y} {Z} α⇐ = λ {X} {Y} {Z} → associator.to {X} {Y} {Z} open Shorthands private [x⊗y]⊗z : Bifunctor (Product C C) C C [x⊗y]⊗z = ⊗ ∘F (⊗ ⁂ idF) -- note how this one needs re-association to typecheck (i.e. be correct) x⊗[y⊗z] : Bifunctor (Product C C) C C x⊗[y⊗z] = ⊗ ∘F (idF ⁂ ⊗) ∘F assocˡ _ _ _ unitor-coherenceʳ : [ (A ⊗₀ unit) ⊗₀ unit ⇒ A ⊗₀ unit ]⟨ ρ⇒ ⊗₁ C.id ≈ ρ⇒ ⟩ unitor-coherenceʳ = cancel-fromˡ unitorʳ unitorʳ-commute-from unitor-coherenceˡ : [ unit ⊗₀ unit ⊗₀ A ⇒ unit ⊗₀ A ]⟨ C.id ⊗₁ λ⇒ ≈ λ⇒ ⟩ unitor-coherenceˡ = cancel-fromˡ unitorˡ unitorˡ-commute-from -- All the implicits below can be inferred, but being explicit is clearer unitorˡ-naturalIsomorphism : NaturalIsomorphism (unit ⊗-) idF unitorˡ-naturalIsomorphism = record { F⇒G = ntHelper record { η = λ X → λ⇒ {X} ; commute = λ f → unitorˡ-commute-from {f = f} } ; F⇐G = ntHelper record { η = λ X → λ⇐ {X} ; commute = λ f → unitorˡ-commute-to {f = f} } ; iso = λ X → unitorˡ.iso {X} } unitorʳ-naturalIsomorphism : NaturalIsomorphism (-⊗ unit) idF unitorʳ-naturalIsomorphism = record { F⇒G = ntHelper record { η = λ X → ρ⇒ {X} ; commute = λ f → unitorʳ-commute-from {f = f} } ; F⇐G = ntHelper record { η = λ X → ρ⇐ {X} ; commute = λ f → unitorʳ-commute-to {f = f} } ; iso = λ X → unitorʳ.iso {X} } -- skipping the explicit arguments here, it does not increase understandability associator-naturalIsomorphism : NaturalIsomorphism [x⊗y]⊗z x⊗[y⊗z] associator-naturalIsomorphism = record { F⇒G = ntHelper record { η = λ { ((X , Y) , Z) → α⇒ {X} {Y} {Z}} ; commute = λ _ → assoc-commute-from } ; F⇐G = ntHelper record { η = λ _ → α⇐ ; commute = λ _ → assoc-commute-to } ; iso = λ _ → associator.iso } module unitorˡ-natural = NaturalIsomorphism unitorˡ-naturalIsomorphism module unitorʳ-natural = NaturalIsomorphism unitorʳ-naturalIsomorphism module associator-natural = NaturalIsomorphism associator-naturalIsomorphism _⊗ᵢ_ : X ≅ Y → Z ≅ W → X ⊗₀ Z ≅ Y ⊗₀ W f ⊗ᵢ g = [ ⊗ ]-resp-≅ record { from = from f , from g ; to = to f , to g ; iso = record { isoˡ = isoˡ f , isoˡ g ; isoʳ = isoʳ f , isoʳ g } } where open _≅_ triangle-iso : ≅.refl ⊗ᵢ unitorˡ ∘ᵢ associator ≃ unitorʳ {X} ⊗ᵢ ≅.refl {Y} triangle-iso = lift-triangle′ triangle pentagon-iso : ≅.refl ⊗ᵢ associator ∘ᵢ associator ∘ᵢ associator {X} {Y} {Z} ⊗ᵢ ≅.refl {W} ≃ associator ∘ᵢ associator pentagon-iso = lift-pentagon′ pentagon refl⊗refl≃refl : ≅.refl {A} ⊗ᵢ ≅.refl {B} ≃ ≅.refl refl⊗refl≃refl = ⌞ ⊗.identity ⌟
{ "alphanum_fraction": 0.6592592593, "avg_line_length": 31.3043478261, "ext": "agda", "hexsha": "6f359ee0ea1d7f593ee8e0aec229809161ec75fe", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Utilities.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Utilities.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Utilities.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1688, "size": 4320 }
------------------------------------------------------------------------ -- A library of parser combinators ------------------------------------------------------------------------ -- This module also provides examples of parsers for which the indices -- cannot be inferred. module RecursiveDescent.Hybrid.Lib where open import RecursiveDescent.Hybrid import RecursiveDescent.Hybrid.Type as Type open import RecursiveDescent.Index open import Utilities open import Data.Nat hiding (_≟_) open import Data.Vec using (Vec; []; _∷_) open import Data.Vec1 using (Vec₁; []; _∷_; map₀₁) open import Data.List using (List; []; _∷_; foldr; reverse) open import Data.Product.Record hiding (_×_) open import Data.Product using (_×_) renaming (_,_ to pair) open import Data.Bool hiding (_≟_) open import Data.Function open import Data.Maybe open import Data.Unit hiding (_≟_) open import Data.Bool.Properties as Bool import Data.Char as Char open Char using (Char; _==_) open import Algebra private module BCS = CommutativeSemiring Bool.commutativeSemiring-∨-∧ open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality using (refl) ------------------------------------------------------------------------ -- Applicative functor parsers -- We could get these for free with better library support. infixl 50 _⊛_ _⊛!_ _<⊛_ _⊛>_ _<$>_ _<$_ _⊗_ _⊗!_ _⊛_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ (r₁ -> r₂) -> Parser tok nt i₂ r₁ -> Parser tok nt _ r₂ p₁ ⊛ p₂ = p₁ >>= \f -> p₂ >>= \x -> return (f x) -- A variant: If the second parser does not accept the empty string, -- then neither does the combination. (This is immediate for the first -- parser, but for the second one a small lemma is needed, hence this -- variant.) _⊛!_ : forall {tok nt i₁ c₂ r₁ r₂} -> Parser tok nt i₁ (r₁ -> r₂) -> Parser tok nt (false , c₂) r₁ -> Parser tok nt (false , _) r₂ _⊛!_ {i₁ = i₁} p₁ p₂ = cast (BCS.*-comm (proj₁ i₁) false) refl (p₁ ⊛ p₂) _<$>_ : forall {tok nt i r₁ r₂} -> (r₁ -> r₂) -> Parser tok nt i r₁ -> Parser tok nt _ r₂ f <$> x = return f ⊛ x _<⊛_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ r₁ -> Parser tok nt i₂ r₂ -> Parser tok nt _ r₁ x <⊛ y = const <$> x ⊛ y _⊛>_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ r₁ -> Parser tok nt i₂ r₂ -> Parser tok nt _ r₂ x ⊛> y = flip const <$> x ⊛ y _<$_ : forall {tok nt i r₁ r₂} -> r₁ -> Parser tok nt i r₂ -> Parser tok nt _ r₁ x <$ y = const x <$> y _⊗_ : forall {tok nt i₁ i₂ r₁ r₂} -> Parser tok nt i₁ r₁ -> Parser tok nt i₂ r₂ -> Parser tok nt _ (r₁ × r₂) p₁ ⊗ p₂ = pair <$> p₁ ⊛ p₂ _⊗!_ : forall {tok nt i₁ c₂ r₁ r₂} -> Parser tok nt i₁ r₁ -> Parser tok nt (false , c₂) r₂ -> Parser tok nt (false , _) (r₁ × r₂) p₁ ⊗! p₂ = pair <$> p₁ ⊛! p₂ ------------------------------------------------------------------------ -- Parsing sequences infix 55 _⋆ _+ -- Not accepted by the productivity checker: -- mutual -- _⋆ : forall {tok r d} -> -- Parser tok (false , d) r -> -- Parser tok _ (List r) -- p ⋆ ~ return [] ∣ p + -- _+ : forall {tok r d} -> -- Parser tok (false , d) r -> -- Parser tok _ (List r) -- p + ~ _∷_ <$> p ⊛ p ⋆ -- By inlining some definitions we can show that the definitions are -- productive, though. The following definitions have also been -- simplified: mutual _⋆ : forall {tok nt r d} -> Parser tok nt (false , d) r -> Parser tok nt _ (List r) p ⋆ ~ Type.alt _ _ (return []) (p +) _+ : forall {tok nt r d} -> Parser tok nt (false , d) r -> Parser tok nt _ (List r) p + ~ Type._!>>=_ p \x -> Type._?>>=_ (p ⋆) \xs -> return (x ∷ xs) -- p sepBy sep parses one or more ps separated by seps. _sepBy_ : forall {tok nt r r' i d} -> Parser tok nt i r -> Parser tok nt (false , d) r' -> Parser tok nt _ (List r) p sepBy sep = _∷_ <$> p ⊛ (sep ⊛> p) ⋆ -- Note that the index of atLeast is only partly inferred; the -- recursive structure of atLeast-index is given manually. atLeast-index : Corners -> ℕ -> Index atLeast-index c zero = _ atLeast-index c (suc n) = _ -- At least n occurrences of p. atLeast : forall {tok nt c r} (n : ℕ) -> Parser tok nt (false , c) r -> Parser tok nt (atLeast-index c n) (List r) atLeast zero p = p ⋆ atLeast (suc n) p = _∷_ <$> p ⊛ atLeast n p -- Chains at least n occurrences of op, in an a-associative -- manner. The ops are surrounded by ps. chain≥ : forall {tok nt c₁ i₂ r} (n : ℕ) -> Assoc -> Parser tok nt (false , c₁) r -> Parser tok nt i₂ (r -> r -> r) -> Parser tok nt _ r chain≥ n a p op = chain≥-combine a <$> p ⊛ atLeast n (op ⊗! p) -- exactly n p parses n occurrences of p. exactly-index : Index -> ℕ -> Index exactly-index i zero = _ exactly-index i (suc n) = _ exactly : forall {tok nt i r} n -> Parser tok nt i r -> Parser tok nt (exactly-index i n) (Vec r n) exactly zero p = return [] exactly (suc n) p = _∷_ <$> p ⊛ exactly n p -- A function with a similar type: sequence : forall {tok nt i r n} -> Vec₁ (Parser tok nt i r) n -> Parser tok nt (exactly-index i n) (Vec r n) sequence [] = return [] sequence (p ∷ ps) = _∷_ <$> p ⊛ sequence ps -- p between ps parses p repeatedly, between the elements of ps: -- ∙ between (x ∷ y ∷ z ∷ []) ≈ x ∙ y ∙ z. between-corners : Corners -> ℕ -> Corners between-corners c′ zero = _ between-corners c′ (suc n) = _ _between_ : forall {tok nt i r c′ r′ n} -> Parser tok nt i r -> Vec₁ (Parser tok nt (false , c′) r′) (suc n) -> Parser tok nt (false , between-corners c′ n) (Vec r n) p between (x ∷ []) = [] <$ x p between (x ∷ y ∷ xs) = _∷_ <$> (x ⊛> p) ⊛ (p between (y ∷ xs)) ------------------------------------------------------------------------ -- N-ary variants of _∣_ -- choice ps parses one of the elements in ps. choice-corners : Corners -> ℕ -> Corners choice-corners c zero = _ choice-corners c (suc n) = _ choice : forall {tok nt c r n} -> Vec₁ (Parser tok nt (false , c) r) n -> Parser tok nt (false , choice-corners c n) r choice [] = fail choice (p ∷ ps) = p ∣ choice ps -- choiceMap f xs ≈ choice (map f xs), but avoids use of Vec₁ and -- fromList. choiceMap-corners : forall {a} -> (a -> Corners) -> List a -> Corners choiceMap-corners c [] = _ choiceMap-corners c (x ∷ xs) = _ choiceMap : forall {tok nt r a} {c : a -> Corners} -> ((x : a) -> Parser tok nt (false , c x) r) -> (xs : List a) -> Parser tok nt (false , choiceMap-corners c xs) r choiceMap f [] = fail choiceMap f (x ∷ xs) = f x ∣ choiceMap f xs ------------------------------------------------------------------------ -- sat and friends sat : forall {tok nt r} -> (tok -> Maybe r) -> Parser tok nt (0I ·I 1I) r sat {tok} {nt} {r} p = symbol !>>= \c -> ok (p c) where okIndex : Maybe r -> Index okIndex nothing = _ okIndex (just _) = _ ok : (x : Maybe r) -> Parser tok nt (okIndex x) r ok nothing = fail ok (just x) = return x sat' : forall {tok nt} -> (tok -> Bool) -> Parser tok nt _ ⊤ sat' p = sat (boolToMaybe ∘ p) any : forall {tok nt} -> Parser tok nt _ tok any = sat just ------------------------------------------------------------------------ -- Token parsers module Token (a : DecSetoid) where open DecSetoid a using (_≟_) renaming (carrier to tok) -- Parses a given token (or, really, a given equivalence class of -- tokens). sym : forall {nt} -> tok -> Parser tok nt _ tok sym x = sat p where p : tok -> Maybe tok p y with x ≟ y ... | yes _ = just y ... | no _ = nothing -- Parses a sequence of tokens. string : forall {nt n} -> Vec tok n -> Parser tok nt _ (Vec tok n) string cs = sequence (map₀₁ sym cs) ------------------------------------------------------------------------ -- Character parsers digit : forall {nt} -> Parser Char nt _ ℕ digit = 0 <$ sym '0' ∣ 1 <$ sym '1' ∣ 2 <$ sym '2' ∣ 3 <$ sym '3' ∣ 4 <$ sym '4' ∣ 5 <$ sym '5' ∣ 6 <$ sym '6' ∣ 7 <$ sym '7' ∣ 8 <$ sym '8' ∣ 9 <$ sym '9' where open Token Char.decSetoid number : forall {nt} -> Parser Char nt _ ℕ number = toNum <$> digit + where toNum = foldr (\n x -> 10 * x + n) 0 ∘ reverse -- whitespace recognises an incomplete but useful list of whitespace -- characters. whitespace : forall {nt} -> Parser Char nt _ ⊤ whitespace = sat' isSpace where isSpace = \c -> (c == ' ') ∨ (c == '\t') ∨ (c == '\n') ∨ (c == '\r')
{ "alphanum_fraction": 0.5346132129, "avg_line_length": 29.6153846154, "ext": "agda", "hexsha": "35c35b0463274eede2b9b837f1b9e6965c4a502d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/RecursiveDescent/Hybrid/Lib.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/RecursiveDescent/Hybrid/Lib.agda", "max_line_length": 72, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/RecursiveDescent/Hybrid/Lib.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 2746, "size": 8855 }
open import Data.Proofs open import Function.Proofs open import Logic.Propositional.Theorems open import Structure.Container.SetLike open import Structure.Relator open import Structure.Relator.Properties open import Syntax.Transitivity instance ImageSet-setLike : SetLike(_∈_ {ℓᵢ}) SetLike._⊆_ ImageSet-setLike A B = ∀{x} → (x ∈ A) → (x ∈ B) SetLike._≡_ ImageSet-setLike A B = ∀{x} → (x ∈ A) ↔ (x ∈ B) SetLike.[⊆]-membership ImageSet-setLike = [↔]-reflexivity SetLike.[≡]-membership ImageSet-setLike = [↔]-reflexivity private open module ImageSet-SetLike {ℓᵢ} = SetLike(ImageSet-setLike{ℓᵢ}) public open import Structure.Container.SetLike.Proofs using ([⊇]-membership) public module _ {ℓᵢ} where instance [⊆]-binaryRelator = Structure.Container.SetLike.Proofs.[⊆]-binaryRelator ⦃ ImageSet-setLike{ℓᵢ} ⦄ instance [⊇]-binaryRelator = Structure.Container.SetLike.Proofs.[⊇]-binaryRelator ⦃ ImageSet-setLike{ℓᵢ} ⦄ instance [≡]-to-[⊆] = Structure.Container.SetLike.Proofs.[≡]-to-[⊆] ⦃ ImageSet-setLike{ℓᵢ} ⦄ instance [≡]-to-[⊇] = Structure.Container.SetLike.Proofs.[≡]-to-[⊇] ⦃ ImageSet-setLike{ℓᵢ} ⦄ instance [⊆]-reflexivity = Structure.Container.SetLike.Proofs.[⊆]-reflexivity ⦃ ImageSet-setLike{ℓᵢ} ⦄ instance [⊆]-antisymmetry = Structure.Container.SetLike.Proofs.[⊆]-antisymmetry ⦃ ImageSet-setLike{ℓᵢ} ⦄ instance [⊆]-transitivity = Structure.Container.SetLike.Proofs.[⊆]-transitivity ⦃ ImageSet-setLike{ℓᵢ} ⦄ instance [⊆]-partialOrder = Structure.Container.SetLike.Proofs.[⊆]-partialOrder ⦃ ImageSet-setLike{ℓᵢ} ⦄ instance [≡]-reflexivity = Structure.Container.SetLike.Proofs.[≡]-reflexivity ⦃ ImageSet-setLike{ℓᵢ} ⦄ instance [≡]-symmetry = Structure.Container.SetLike.Proofs.[≡]-symmetry ⦃ ImageSet-setLike{ℓᵢ} ⦄ instance [≡]-transitivity = Structure.Container.SetLike.Proofs.[≡]-transitivity ⦃ ImageSet-setLike{ℓᵢ} ⦄ instance [≡]-equivalence = Structure.Container.SetLike.Proofs.[≡]-equivalence ⦃ ImageSet-setLike{ℓᵢ} ⦄ instance [∈]-unaryOperatorᵣ = Structure.Container.SetLike.Proofs.[∈]-unaryOperatorᵣ ⦃ ImageSet-setLike{ℓᵢ} ⦄
{ "alphanum_fraction": 0.6885468538, "avg_line_length": 69.03125, "ext": "agda", "hexsha": "0909597163e4fcbd1edf41d7443df991af904616", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Sets/ImageSet/SetLike.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Sets/ImageSet/SetLike.agda", "max_line_length": 112, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Sets/ImageSet/SetLike.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 822, "size": 2209 }
module Issue180 where module Example₁ where data C : Set where c : C → C data Indexed : (C → C) → Set where i : Indexed c foo : Indexed c → Set foo i = C module Example₂ where data List (A : Set) : Set where nil : List A cons : A → List A → List A postulate A : Set x : A T : Set T = List A → List A data P : List T → Set where p : (f : T) → P (cons f nil) data S : (xs : List T) → P xs → Set where s : (f : T) → S (cons f nil) (p f) foo : S (cons (cons x) nil) (p (cons x)) → A foo (s ._) = x
{ "alphanum_fraction": 0.5177935943, "avg_line_length": 16.0571428571, "ext": "agda", "hexsha": "1101be5536ed582f1e38f73878682d2fca89fe8d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue180.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue180.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue180.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 211, "size": 562 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Hash open import LibraBFT.Lemmas open import LibraBFT.Base.KVMap open import LibraBFT.Base.PKCS open import LibraBFT.Base.Types open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Crypto open import LibraBFT.Impl.Handle open import LibraBFT.Concrete.System.Parameters open EpochConfig -- This module defines an abstract system state given a reachable -- concrete system state. module LibraBFT.Concrete.System where ℓ-VSFP : Level ℓ-VSFP = 1ℓ ℓ⊔ ℓ-RoundManager open import LibraBFT.Yasm.Base import LibraBFT.Yasm.System ℓ-RoundManager ℓ-VSFP ConcSysParms as LYS -- What EpochConfigs are known in the system? For now, only the initial one. Later, we will add -- knowledge of subsequent EpochConfigs known via EpochChangeProofs. data EpochConfig∈Sys (st : LYS.SystemState) (𝓔 : EpochConfig) : Set ℓ-EC where inGenInfo : init-EC genInfo ≡ 𝓔 → EpochConfig∈Sys st 𝓔 -- inECP : ∀ {ecp} → ecp ECP∈Sys st → verify-ECP ecp 𝓔 → EpochConfig∈Sys -- A peer pid can sign a new message for a given PK if pid is the owner of a PK in a known -- EpochConfig. record PeerCanSignForPK (st : LYS.SystemState) (v : Vote) (pid : NodeId) (pk : PK) : Set ℓ-VSFP where constructor mkPCS4PK field 𝓔 : EpochConfig 𝓔id≡ : epoch 𝓔 ≡ v ^∙ vEpoch 𝓔inSys : EpochConfig∈Sys st 𝓔 mbr : Member 𝓔 nid≡ : toNodeId 𝓔 mbr ≡ pid pk≡ : getPubKey 𝓔 mbr ≡ pk open PeerCanSignForPK PCS4PK⇒NodeId-PK-OK : ∀ {st v pid pk} → (pcs : PeerCanSignForPK st v pid pk) → NodeId-PK-OK (𝓔 pcs) pk pid PCS4PK⇒NodeId-PK-OK (mkPCS4PK _ _ _ mbr n≡ pk≡) = mbr , n≡ , pk≡ -- This is super simple for now because the only known EpochConfig is dervied from genInfo, which is not state-dependent PeerCanSignForPK-stable : LYS.ValidSenderForPK-stable-type PeerCanSignForPK PeerCanSignForPK-stable _ _ (mkPCS4PK 𝓔₁ 𝓔id≡₁ (inGenInfo refl) mbr₁ nid≡₁ pk≡₁) = (mkPCS4PK 𝓔₁ 𝓔id≡₁ (inGenInfo refl) mbr₁ nid≡₁ pk≡₁) open import LibraBFT.Yasm.Yasm ℓ-RoundManager ℓ-VSFP ConcSysParms PeerCanSignForPK (λ {st} {part} {pk} → PeerCanSignForPK-stable {st} {part} {pk}) -- An implementation must prove that, if one of its handlers sends a -- message that contains a vote and is signed by a public key pk, then -- either the vote's author is the peer executing the handler, the -- epochId is in range, the peer is a member of the epoch, and its key -- in that epoch is pk; or, a message with the same signature has been -- sent before. This is represented by StepPeerState-AllValidParts. module WithSPS (sps-corr : StepPeerState-AllValidParts) where -- Bring in 'unwind', 'ext-unforgeability' and friends open Structural sps-corr -- TODO-1: refactor this somewhere else? Maybe something like -- LibraBFT.Impl.Consensus.Types.Properties? sameSig⇒sameVoteData : ∀ {v1 v2 : Vote} {pk} → WithVerSig pk v1 → WithVerSig pk v2 → v1 ^∙ vSignature ≡ v2 ^∙ vSignature → NonInjective-≡ sha256 ⊎ v2 ^∙ vVoteData ≡ v1 ^∙ vVoteData sameSig⇒sameVoteData {v1} {v2} wvs1 wvs2 refl with verify-bs-inj (verified wvs1) (verified wvs2) -- The signable fields of the votes must be the same (we do not model signature collisions) ...| bs≡ -- Therefore the LedgerInfo is the same for the new vote as for the previous vote = sym <⊎$> (hashVote-inj1 {v1} {v2} (sameBS⇒sameHash bs≡)) -- We are now ready to define an 'IntermediateSystemState' view for a concrete -- reachable state. We will do so by fixing an epoch that exists in -- the system, which will enable us to define the abstract -- properties. The culminaton of this 'PerEpoch' module is seen in -- the 'IntSystemState' "function" at the bottom, which probably the -- best place to start uynderstanding this. Longer term, we will -- also need higher-level, cross-epoch properties. module PerState (st : SystemState)(r : ReachableSystemState st) where -- TODO-3: Remove this postulate when we are satisfied with the -- "hash-collision-tracking" solution. For example, when proving voo -- (in LibraBFT.LibraBFT.Concrete.Properties.VotesOnce), we -- currently use this postulate to eliminate the possibility of two -- votes that have the same signature but different VoteData -- whenever we use sameSig⇒sameVoteData. To eliminate the -- postulate, we need to refine the properties we prove to enable -- the possibility of a hash collision, in which case the required -- property might not hold. However, it is not sufficient to simply -- prove that a hash collision *exists* (which is obvious, -- regardless of the LibraBFT implementation). Rather, we -- ultimately need to produce a specific hash collision and relate -- it to the data in the system, so that we can prove that the -- desired properties hold *unless* an actual hash collision is -- found by the implementation given the data in the system. In -- the meantime, we simply require that the collision identifies a -- reachable state; later "collision tracking" will require proof -- that the colliding values actually exist in that state. postulate -- temporary assumption that hash collisions don't exist (see comment above) meta-sha256-cr : ¬ (NonInjective-≡ sha256) sameSig⇒sameVoteDataNoCol : ∀ {v1 v2 : Vote} {pk} → WithVerSig pk v1 → WithVerSig pk v2 → v1 ^∙ vSignature ≡ v2 ^∙ vSignature → v2 ^∙ vVoteData ≡ v1 ^∙ vVoteData sameSig⇒sameVoteDataNoCol {v1} {v2} wvs1 wvs2 refl with sameSig⇒sameVoteData {v1} {v2} wvs1 wvs2 refl ...| inj₁ hb = ⊥-elim (meta-sha256-cr hb) ...| inj₂ x = x module PerEpoch (𝓔 : EpochConfig) where open import LibraBFT.Abstract.Abstract UID _≟UID_ NodeId 𝓔 (ConcreteVoteEvidence 𝓔) as Abs hiding (qcVotes; Vote) open import LibraBFT.Concrete.Intermediate 𝓔 (ConcreteVoteEvidence 𝓔) open import LibraBFT.Concrete.Records 𝓔 -- * Auxiliary definitions; -- Here we capture the idea that there exists a vote message that -- witnesses the existence of a given Abs.Vote record ∃VoteMsgFor (v : Abs.Vote) : Set where constructor mk∃VoteMsgFor field -- A message that was actually sent nm : NetworkMsg cv : Vote cv∈nm : cv ⊂Msg nm -- And contained a valid vote that, once abstracted, yeilds v. vmsgMember : EpochConfig.Member 𝓔 vmsgSigned : WithVerSig (getPubKey 𝓔 vmsgMember) cv vmsg≈v : α-ValidVote 𝓔 cv vmsgMember ≡ v vmsgEpoch : cv ^∙ vEpoch ≡ epoch 𝓔 open ∃VoteMsgFor public record ∃VoteMsgSentFor (sm : SentMessages)(v : Abs.Vote) : Set where constructor mk∃VoteMsgSentFor field vmFor : ∃VoteMsgFor v vmSender : NodeId nmSentByAuth : (vmSender , (nm vmFor)) ∈ sm open ∃VoteMsgSentFor public ∃VoteMsgSentFor-stable : ∀ {pre : SystemState} {post : SystemState} {v} → Step pre post → ∃VoteMsgSentFor (msgPool pre) v → ∃VoteMsgSentFor (msgPool post) v ∃VoteMsgSentFor-stable theStep (mk∃VoteMsgSentFor sndr vmFor sba) = mk∃VoteMsgSentFor sndr vmFor (msgs-stable theStep sba) ∈QC⇒sent : ∀{st : SystemState} {q α} → Abs.Q q α-Sent (msgPool st) → Meta-Honest-Member α → (vα : α Abs.∈QC q) → ∃VoteMsgSentFor (msgPool st) (Abs.∈QC-Vote q vα) ∈QC⇒sent vsent@(ws {sender} {nm} e≡ nm∈st (qc∈NM {cqc} {q} .{nm} valid cqc∈nm q≡)) ha va with All-reduce⁻ {vdq = Any-lookup va} (α-Vote cqc valid) All-self (subst (Any-lookup va ∈_) (cong Abs.qVotes q≡) (Any-lookup-correctP va)) ...| as , as∈cqc , α≡ with α-Vote-evidence cqc valid as∈cqc | inspect (α-Vote-evidence cqc valid) as∈cqc ...| ev | [ refl ] with vote∈qc {vs = as} as∈cqc refl cqc∈nm ...| v∈nm = mk∃VoteMsgSentFor (mk∃VoteMsgFor nm (₋cveVote ev) v∈nm (₋ivvMember (₋cveIsValidVote ev)) (₋ivvSigned (₋cveIsValidVote ev)) (sym α≡) (₋ivvEpoch (₋cveIsValidVote ev))) sender nm∈st -- Finally, we can define the abstract system state corresponding to the concrete state st IntSystemState : IntermediateSystemState ℓ0 IntSystemState = record { InSys = λ { r → r α-Sent (msgPool st) } ; HasBeenSent = λ { v → ∃VoteMsgSentFor (msgPool st) v } ; ∈QC⇒HasBeenSent = ∈QC⇒sent {st = st} }
{ "alphanum_fraction": 0.6375026545, "avg_line_length": 49.3089005236, "ext": "agda", "hexsha": "fefe80e0a354c67393d32f9c9c77aa9ca526fd1c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Concrete/System.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Concrete/System.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Concrete/System.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2847, "size": 9418 }
------------------------------------------------------------------------ -- The SKI encoding into types ------------------------------------------------------------------------ {-# OPTIONS --safe --without-K #-} module FOmegaInt.Undecidable.Encoding where open import Data.Context.WellFormed open import Data.List using ([]; _∷_) open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Fin using (Fin; zero; suc; raise) open import Data.Fin.Substitution open import Data.Fin.Substitution.ExtraLemmas open import Relation.Binary.PropositionalEquality hiding ([_]) open import FOmegaInt.Syntax open import FOmegaInt.Syntax.SingleVariableSubstitution open import FOmegaInt.Syntax.HereditarySubstitution open import FOmegaInt.Syntax.Normalization open import FOmegaInt.Kinding.Canonical open import FOmegaInt.Undecidable.SK open Syntax open ElimCtx open ContextConversions using (⌞_⌟Ctx) open RenamingCommutes open Kinding open ≡-Reasoning ---------------------------------------------------------------------- -- Support for the encoding: injection of shapes into kinds. -- For every shape `k' there is a kind `⌈ k ⌉' that erases/simplifies -- back to `k', i.e. `⌈_⌉' is a right inverse of kind erasure `⌊_⌋'. -- -- NOTE. The definition here is almost identical to that in -- FOmegaInt.Typing.Encodings except we inject shapes into `Kind Elim -- n' rather than `Kind Term n'. ⌈_⌉ : ∀ {n} → SKind → Kind Elim n ⌈ ★ ⌉ = ⌜*⌝ ⌈ j ⇒ k ⌉ = Π ⌈ j ⌉ ⌈ k ⌉ ⌊⌋∘⌈⌉-id : ∀ {n} k → ⌊ ⌈_⌉ {n} k ⌋ ≡ k ⌊⌋∘⌈⌉-id ★ = refl ⌊⌋∘⌈⌉-id (j ⇒ k) = cong₂ _⇒_ (⌊⌋∘⌈⌉-id j) (⌊⌋∘⌈⌉-id k) -- The kind `⌈ k ⌉' is well-formed (in any well-formed context). ⌈⌉-kd : ∀ {n} {Γ : Ctx n} k → Γ ctx → Γ ⊢ ⌈ k ⌉ kd ⌈⌉-kd ★ Γ-ctx = kd-⌜*⌝ Γ-ctx ⌈⌉-kd (j ⇒ k) Γ-ctx = let ⌈j⌉-kd = ⌈⌉-kd j Γ-ctx in kd-Π ⌈j⌉-kd (⌈⌉-kd k (wf-kd ⌈j⌉-kd ∷ Γ-ctx)) -- Injected kinds are stable under application of substitutions. module InjSubstAppLemmas {T : ℕ → Set} (l : Lift T Term) where open Lift l open SubstApp l ⌈⌉-Kind/ : ∀ {m n} k {σ : Sub T m n} → ⌈ k ⌉ Kind′/ σ ≡ ⌈ k ⌉ ⌈⌉-Kind/ ★ = refl ⌈⌉-Kind/ (j ⇒ k) = cong₂ Π (⌈⌉-Kind/ j) (⌈⌉-Kind/ k) open Substitution hiding (subst; _[_]; _↑; sub) open TermSubst termSubst using (varLift; termLift) open InjSubstAppLemmas varLift public renaming (⌈⌉-Kind/ to ⌈⌉-Kind/Var) ⌈⌉-weaken : ∀ {n} k → weakenKind′ {n} ⌈ k ⌉ ≡ ⌈ k ⌉ ⌈⌉-weaken k = ⌈⌉-Kind/Var k kd-⌈⌉-weaken : ∀ {n} k → weakenElimAsc {n} (kd ⌈ k ⌉) ≡ kd ⌈ k ⌉ kd-⌈⌉-weaken k = cong kd (⌈⌉-weaken k) kd-⌈⌉-weaken⋆ : ∀ {n k} m → weakenElimAsc⋆ m {n} (kd ⌈ k ⌉) ≡ kd ⌈ k ⌉ kd-⌈⌉-weaken⋆ zero = refl kd-⌈⌉-weaken⋆ (suc m) = trans (cong weakenElimAsc (kd-⌈⌉-weaken⋆ m)) (kd-⌈⌉-weaken _) lookup-raise-* : ∀ {n m} {Γ : Ctx n} (E : CtxExt n m) {x} k → lookup Γ x ≡ kd ⌈ k ⌉ → lookup (E ++ Γ) (raise m x) ≡ kd ⌈ k ⌉ lookup-raise-* {_} {m} {Γ} E {x} k hyp = begin lookup (E ++ Γ) (raise m x) ≡⟨ lookup-weaken⋆ m E Γ x ⟩ weakenElimAsc⋆ m (lookup Γ x) ≡⟨ cong (weakenElimAsc⋆ m) hyp ⟩ weakenElimAsc⋆ m (kd ⌈ k ⌉) ≡⟨ kd-⌈⌉-weaken⋆ m ⟩ kd ⌈ k ⌉ ∎ where ------------------------------------------------------------------------ -- Encoding of SK terms into types -- The encoding uses 7 type variables: -- -- 2 nullary operators encoding the combinators S and K, -- 1 binary operator encoding application, -- 2 ternary operators encoding the S reduction/expansion laws, -- 2 binary operators encoding the K reduction/expansion laws. -- -- We define some pattern synonyms for readability of definitions. |Γ| = 7 pattern x₀ = zero pattern x₁ = suc zero pattern x₂ = suc (suc zero) pattern x₃ = suc (suc (suc zero)) pattern x₄ = suc (suc (suc (suc zero))) pattern x₅ = suc (suc (suc (suc (suc zero)))) pattern x₆ = suc (suc (suc (suc (suc (suc zero))))) module _ {n} where -- Shorthands to help with the encodings v₀ : Elim (1 + n) v₀ = var∙ x₀ v₁ : Elim (2 + n) v₁ = var∙ x₁ v₂ : Elim (3 + n) v₂ = var∙ x₂ module EncodingWeakened {n} m where -- NOTE. Here we assume (m + 3) variables in context, with the names -- of S, K and App being the first three. infixl 9 _⊛_ encS : Elim (m + (3 + n)) encS = var∙ (raise m x₂) encK : Elim (m + (3 + n)) encK = var∙ (raise m x₁) _⊛_ : (a b : Elim (m + (3 + n))) → Elim (m + (3 + n)) a ⊛ b = var (raise m x₀) ∙ (a ∷ b ∷ []) -- Encoding of SK terms into raw types with (m + 3) free variables. encode : SKTerm → Elim (m + (3 + n)) encode S = encS encode K = encK encode (s · t) = (encode s) ⊛ (encode t) module Encoding = EncodingWeakened {0} 4 module _ {n} where -- Operator kinds for combinator terms. kdS : Kind Elim (0 + n) kdS = ⌜*⌝ kdK : Kind Elim (1 + n) kdK = ⌜*⌝ kdApp : Kind Elim (2 + n) kdApp = Π ⌜*⌝ (Π ⌜*⌝ ⌜*⌝) -- Operator kinds reduction/expansion laws. kdSRed : Kind Elim (3 + n) kdSRed = Π ⌜*⌝ (Π ⌜*⌝ (Π ⌜*⌝ (encS ⊛ v₂ ⊛ v₁ ⊛ v₀ ⋯ v₂ ⊛ v₀ ⊛ (v₁ ⊛ v₀)))) where open EncodingWeakened (3 + 0) kdKRed : Kind Elim (4 + n) kdKRed = Π ⌜*⌝ (Π ⌜*⌝ (encK ⊛ v₁ ⊛ v₀ ⋯ v₁)) where open EncodingWeakened (2 + 1) kdSExp : Kind Elim (5 + n) kdSExp = Π ⌜*⌝ (Π ⌜*⌝ (Π ⌜*⌝ (v₂ ⊛ v₀ ⊛ (v₁ ⊛ v₀) ⋯ encS ⊛ v₂ ⊛ v₁ ⊛ v₀))) where open EncodingWeakened (3 + 2) kdKExp : Kind Elim (6 + n) kdKExp = Π ⌜*⌝ (Π ⌜*⌝ (v₁ ⋯ encK ⊛ v₁ ⊛ v₀)) where open EncodingWeakened (2 + 3) -- The context for the SK encoding (aka the signature) Γ-SK : Ctx 3 Γ-SK = kd kdApp ∷ kd kdK ∷ kd kdS ∷ [] Γ-SK? : Ctx |Γ| Γ-SK? = kd kdKExp ∷ kd kdSExp ∷ kd kdKRed ∷ kd kdSRed ∷ Γ-SK ⌞Γ-SK?⌟ : TermCtx.Ctx |Γ| ⌞Γ-SK?⌟ = ⌞ Γ-SK? ⌟Ctx module _ where open Encoding private Γ-nf = nfCtx ⌞Γ-SK?⌟ -- Encoded SK terms are in normal form. nf-encode : ∀ t → nf Γ-nf ⌞ encode t ⌟ ≡ encode t nf-encode S = refl nf-encode K = refl nf-encode (s · t) = cong₂ _⊛_ (begin weakenElim (nf Γ-nf ⌞ encode s ⌟) /⟨ ★ ⟩ sub (nf Γ-nf ⌞ encode t ⌟) ≡⟨ /Var-wk-↑⋆-hsub-vanishes 0 (nf Γ-nf ⌞ encode s ⌟) ⟩ nf Γ-nf ⌞ encode s ⌟ ≡⟨ nf-encode s ⟩ encode s ∎) (nf-encode t) ------------------------------------------------------------------------ -- Canonical operator kinding of encodings module KindedEncodingWeakened {m} (E : CtxExt 3 m) (Γ-ctx : E ++ Γ-SK ctx) where open EncodingWeakened {0} m private Γ = E ++ Γ-SK -- Kinded encodings of the SK terms Ne∈-S : Γ ⊢Ne encS ∈ ⌜*⌝ Ne∈-S = ∈-∙ (⇉-var _ Γ-ctx (lookup-raise-* E ★ refl)) ⇉-[] Ne∈-K : Γ ⊢Ne encK ∈ ⌜*⌝ Ne∈-K = ∈-∙ (⇉-var _ Γ-ctx (lookup-raise-* E ★ refl)) ⇉-[] Ne∈-⊛ : ∀ {a b} → Γ ⊢Ne a ∈ ⌜*⌝ → Γ ⊢Ne b ∈ ⌜*⌝ → Γ ⊢Ne a ⊛ b ∈ ⌜*⌝ Ne∈-⊛ a∈* b∈* = ∈-∙ (⇉-var _ Γ-ctx (lookup-raise-* E (★ ⇒ ★ ⇒ ★) refl)) (⇉-∷ (Nf⇇-ne a∈*) (kd-⌜*⌝ Γ-ctx) (⇉-∷ (Nf⇇-ne b∈*) (kd-⌜*⌝ Γ-ctx) ⇉-[])) Ne∈-encode : (t : SKTerm) → Γ ⊢Ne encode t ∈ ⌜*⌝ Ne∈-encode S = Ne∈-S Ne∈-encode K = Ne∈-K Ne∈-encode (s · t) = Ne∈-⊛ (Ne∈-encode s) (Ne∈-encode t) -- Another shorthand Ne∈-var : ∀ {n} {Γ : Ctx n} {k} x → Γ ctx → lookup Γ x ≡ kd k → Γ ⊢Ne var∙ x ∈ k Ne∈-var x Γ-ctx Γ[x]≡k = ∈-∙ (⇉-var x Γ-ctx Γ[x]≡k) ⇉-[] -- The signatures Γ-SK and Γ-SK? are well-formed kdS-kd : [] ⊢ kdS kd kdS-kd = kd-⌜*⌝ [] Γ₁-ctx : kd kdS ∷ [] ctx Γ₁-ctx = wf-kd kdS-kd ∷ [] kdK-kd : kd kdS ∷ [] ⊢ kdK kd kdK-kd = kd-⌜*⌝ Γ₁-ctx Γ₂-ctx : kd kdK ∷ kd kdS ∷ [] ctx Γ₂-ctx = wf-kd kdK-kd ∷ Γ₁-ctx kdApp-kd : kd kdK ∷ kd kdS ∷ [] ⊢ kdApp kd kdApp-kd = kd-Π *₂-kd (kd-Π *₃-kd (kd-⌜*⌝ (wf-kd *₃-kd ∷ Γ₃-ctx′))) where *₂-kd = kd-⌜*⌝ Γ₂-ctx Γ₃-ctx′ = wf-kd *₂-kd ∷ Γ₂-ctx *₃-kd = kd-⌜*⌝ Γ₃-ctx′ Γ-SK-ctx : Γ-SK ctx Γ-SK-ctx = wf-kd kdApp-kd ∷ Γ₂-ctx kdSRed-kd : Γ-SK ⊢ kdSRed kd kdSRed-kd = kd-Π *₃-kd (kd-Π *₄-kd (kd-Π *₅-kd (kd-⋯ (⇉-s-i (Ne∈-⊛ (Ne∈-⊛ (Ne∈-⊛ Ne∈-S (Ne∈-var x₂ Γ₆-ctx′ refl)) (Ne∈-var x₁ Γ₆-ctx′ refl)) (Ne∈-var x₀ Γ₆-ctx′ refl))) (⇉-s-i (Ne∈-⊛ (Ne∈-⊛ (Ne∈-var x₂ Γ₆-ctx′ refl) (Ne∈-var x₀ Γ₆-ctx′ refl)) (Ne∈-⊛ (Ne∈-var x₁ Γ₆-ctx′ refl) (Ne∈-var x₀ Γ₆-ctx′ refl))))))) where *₃-kd = kd-⌜*⌝ Γ-SK-ctx Γ₄-ctx′ = wf-kd *₃-kd ∷ Γ-SK-ctx *₄-kd = kd-⌜*⌝ Γ₄-ctx′ Γ₅-ctx′ = wf-kd *₄-kd ∷ Γ₄-ctx′ *₅-kd = kd-⌜*⌝ Γ₅-ctx′ Γ₆-ctx′ = wf-kd *₅-kd ∷ Γ₅-ctx′ open KindedEncodingWeakened (kd ⌜*⌝ ∷ kd ⌜*⌝ ∷ kd ⌜*⌝ ∷ []) Γ₆-ctx′ Γ₄-ctx : kd kdSRed ∷ Γ-SK ctx Γ₄-ctx = wf-kd kdSRed-kd ∷ Γ-SK-ctx kdKRed-kd : kd kdSRed ∷ Γ-SK ⊢ kdKRed kd kdKRed-kd = (kd-Π *₄-kd (kd-Π *₅-kd (kd-⋯ (⇉-s-i (Ne∈-⊛ (Ne∈-⊛ Ne∈-K (Ne∈-var x₁ Γ₆-ctx′ refl)) (Ne∈-var x₀ Γ₆-ctx′ refl))) (⇉-s-i (Ne∈-var x₁ Γ₆-ctx′ refl))))) where *₄-kd = kd-⌜*⌝ Γ₄-ctx Γ₅-ctx′ = wf-kd *₄-kd ∷ Γ₄-ctx *₅-kd = kd-⌜*⌝ Γ₅-ctx′ Γ₆-ctx′ = wf-kd *₅-kd ∷ Γ₅-ctx′ open KindedEncodingWeakened (kd ⌜*⌝ ∷ kd ⌜*⌝ ∷ kd kdSRed ∷ []) Γ₆-ctx′ Γ₅-ctx : kd kdKRed ∷ kd kdSRed ∷ Γ-SK ctx Γ₅-ctx = wf-kd kdKRed-kd ∷ Γ₄-ctx kdSExp-kd : kd kdKRed ∷ kd kdSRed ∷ Γ-SK ⊢ kdSExp kd kdSExp-kd = kd-Π *₅-kd (kd-Π *₆-kd (kd-Π *₇-kd (kd-⋯ (⇉-s-i (Ne∈-⊛ (Ne∈-⊛ (Ne∈-var x₂ Γ₈-ctx′ refl) (Ne∈-var x₀ Γ₈-ctx′ refl)) (Ne∈-⊛ (Ne∈-var x₁ Γ₈-ctx′ refl) (Ne∈-var x₀ Γ₈-ctx′ refl)))) (⇉-s-i (Ne∈-⊛ (Ne∈-⊛ (Ne∈-⊛ Ne∈-S (Ne∈-var x₂ Γ₈-ctx′ refl)) (Ne∈-var x₁ Γ₈-ctx′ refl)) (Ne∈-var x₀ Γ₈-ctx′ refl)))))) where *₅-kd = kd-⌜*⌝ Γ₅-ctx Γ₆-ctx′ = wf-kd *₅-kd ∷ Γ₅-ctx *₆-kd = kd-⌜*⌝ Γ₆-ctx′ Γ₇-ctx′ = wf-kd *₆-kd ∷ Γ₆-ctx′ *₇-kd = kd-⌜*⌝ Γ₇-ctx′ Γ₈-ctx′ = wf-kd *₇-kd ∷ Γ₇-ctx′ open KindedEncodingWeakened (kd ⌜*⌝ ∷ kd ⌜*⌝ ∷ kd ⌜*⌝ ∷ kd kdKRed ∷ kd kdSRed ∷ []) Γ₈-ctx′ Γ₆-ctx : kd kdSExp ∷ kd kdKRed ∷ kd kdSRed ∷ Γ-SK ctx Γ₆-ctx = wf-kd kdSExp-kd ∷ Γ₅-ctx kdKExp-kd : kd kdSExp ∷ kd kdKRed ∷ kd kdSRed ∷ Γ-SK ⊢ kdKExp kd kdKExp-kd = (kd-Π *₆-kd (kd-Π *₇-kd (kd-⋯ (⇉-s-i (Ne∈-var x₁ Γ₈-ctx′ refl)) (⇉-s-i (Ne∈-⊛ (Ne∈-⊛ Ne∈-K (Ne∈-var x₁ Γ₈-ctx′ refl)) (Ne∈-var x₀ Γ₈-ctx′ refl)))))) where *₆-kd = kd-⌜*⌝ Γ₆-ctx Γ₇-ctx′ = wf-kd *₆-kd ∷ Γ₆-ctx *₇-kd = kd-⌜*⌝ Γ₇-ctx′ Γ₈-ctx′ = wf-kd *₇-kd ∷ Γ₇-ctx′ open KindedEncodingWeakened (kd ⌜*⌝ ∷ kd ⌜*⌝ ∷ kd kdSExp ∷ kd kdKRed ∷ kd kdSRed ∷ []) Γ₈-ctx′ Γ-SK?-ctx : Γ-SK? ctx Γ-SK?-ctx = wf-kd kdKExp-kd ∷ Γ₆-ctx module KindedEncoding = KindedEncodingWeakened (kd kdKExp ∷ kd kdSExp ∷ kd kdKRed ∷ kd kdSRed ∷ []) Γ-SK?-ctx ------------------------------------------------------------------------ -- Encoding of SK term equality in canonical subtyping open Encoding open KindedEncoding -- Some helper lemmas. wk-hsub-helper : ∀ {n} (a b c : Elim n) → (weakenElim (weakenElim a) /⟨ ★ ⟩ sub b ↑) [ c ∈ ★ ] ≡ a wk-hsub-helper a b c = begin (weakenElim (weakenElim a) /⟨ ★ ⟩ sub b ↑) [ c ∈ ★ ] ≡⟨ cong (λ a → (a /⟨ ★ ⟩ sub b ↑) [ c ∈ ★ ]) (ELV.wk-commutes a) ⟩ (weakenElim a Elim/Var V.wk V.↑ /⟨ ★ ⟩ sub b ↑) [ c ∈ ★ ] ≡⟨ cong (_[ c ∈ ★ ]) (/Var-wk-↑⋆-hsub-vanishes 1 (weakenElim a)) ⟩ weakenElim a [ c ∈ ★ ] ≡⟨ /Var-wk-↑⋆-hsub-vanishes 0 a ⟩ a ∎ where module EL = TermLikeLemmas termLikeLemmasElim module ELV = LiftAppLemmas EL.varLiftAppLemmas module V = VarSubst -- Admissible kinding and subtyping rules for construction the encoded -- SK derivations. <:-⊛ : ∀ {a₁ a₂ b₁ b₂} → Γ-SK? ⊢ a₁ ≃ a₂ ⇇ ⌜*⌝ → Γ-SK? ⊢ b₁ ≃ b₂ ⇇ ⌜*⌝ → Γ-SK? ⊢ a₁ ⊛ b₁ <: a₂ ⊛ b₂ <:-⊛ a₁≃a₂ b₁≃b₂ = <:-∙ (⇉-var _ Γ-SK?-ctx refl) (≃-∷ a₁≃a₂ (≃-∷ b₁≃b₂ ≃-[])) Ne∈-Sᵣ : ∀ {a b c} → Γ-SK? ⊢Ne a ∈ ⌜*⌝ → Γ-SK? ⊢Ne b ∈ ⌜*⌝ → Γ-SK? ⊢Ne c ∈ ⌜*⌝ → Γ-SK? ⊢Ne var x₃ ∙ (a ∷ b ∷ c ∷ []) ∈ encS ⊛ a ⊛ b ⊛ c ⋯ a ⊛ c ⊛ (b ⊛ c) Ne∈-Sᵣ {a} {b} {c} a∈* b∈* c∈* = ∈-∙ (⇉-var _ Γ-SK?-ctx refl) (⇉-∷ (Nf⇇-ne a∈*) *-kd (⇉-∷ (Nf⇇-ne b∈*) *-kd (⇉-∷ (Nf⇇-ne c∈*) *-kd ⇉-[]′))) where *-kd = kd-⌜*⌝ Γ-SK?-ctx a≡⟨⟨a/wk⟩/wk⟩[b][c] = wk-hsub-helper a b c b≡⟨b/wk⟩[c] = /Var-wk-↑⋆-hsub-vanishes 0 b ⇉-[]′ = subst₂ (λ a′ b′ → Γ-SK? ⊢ encS ⊛ a′ ⊛ b′ ⊛ c ⋯ a′ ⊛ c ⊛ (b′ ⊛ c) ⇉∙ [] ⇉ encS ⊛ a ⊛ b ⊛ c ⋯ a ⊛ c ⊛ (b ⊛ c)) (sym a≡⟨⟨a/wk⟩/wk⟩[b][c]) (sym b≡⟨b/wk⟩[c]) ⇉-[] <:-Sᵣ : ∀ {a b c} → Γ-SK? ⊢Ne a ∈ ⌜*⌝ → Γ-SK? ⊢Ne b ∈ ⌜*⌝ → Γ-SK? ⊢Ne c ∈ ⌜*⌝ → Γ-SK? ⊢ encS ⊛ a ⊛ b ⊛ c <: a ⊛ c ⊛ (b ⊛ c) <:-Sᵣ a∈* b∈* c∈* = <:-trans (<:-⟨| (Ne∈-Sᵣ a∈* b∈* c∈*)) (<:-|⟩ (Ne∈-Sᵣ a∈* b∈* c∈*)) Ne∈-Kᵣ : ∀ {a b} → Γ-SK? ⊢Ne a ∈ ⌜*⌝ → Γ-SK? ⊢Ne b ∈ ⌜*⌝ → Γ-SK? ⊢Ne var x₂ ∙ (a ∷ b ∷ []) ∈ encK ⊛ a ⊛ b ⋯ a Ne∈-Kᵣ {a} {b} a∈* b∈* = ∈-∙ (⇉-var _ Γ-SK?-ctx refl) (⇉-∷ (Nf⇇-ne a∈*) *-kd (⇉-∷ (Nf⇇-ne b∈*) *-kd ⇉-[]′)) where *-kd = kd-⌜*⌝ Γ-SK?-ctx ⇉-[]′ = subst (λ a′ → Γ-SK? ⊢ encK ⊛ a′ ⊛ b ⋯ a′ ⇉∙ [] ⇉ encK ⊛ a ⊛ b ⋯ a) (sym (/Var-wk-↑⋆-hsub-vanishes 0 a)) ⇉-[] <:-Kᵣ : ∀ {a b} → Γ-SK? ⊢Ne a ∈ ⌜*⌝ → Γ-SK? ⊢Ne b ∈ ⌜*⌝ → Γ-SK? ⊢ encK ⊛ a ⊛ b <: a <:-Kᵣ a∈* b∈* = <:-trans (<:-⟨| (Ne∈-Kᵣ a∈* b∈*)) (<:-|⟩ (Ne∈-Kᵣ a∈* b∈*)) Ne∈-Sₑ : ∀ {a b c} → Γ-SK? ⊢Ne a ∈ ⌜*⌝ → Γ-SK? ⊢Ne b ∈ ⌜*⌝ → Γ-SK? ⊢Ne c ∈ ⌜*⌝ → Γ-SK? ⊢Ne var x₁ ∙ (a ∷ b ∷ c ∷ []) ∈ a ⊛ c ⊛ (b ⊛ c) ⋯ encS ⊛ a ⊛ b ⊛ c Ne∈-Sₑ {a} {b} {c} a∈* b∈* c∈* = ∈-∙ (⇉-var _ Γ-SK?-ctx refl) (⇉-∷ (Nf⇇-ne a∈*) *-kd (⇉-∷ (Nf⇇-ne b∈*) *-kd (⇉-∷ (Nf⇇-ne c∈*) *-kd ⇉-[]′))) where *-kd = kd-⌜*⌝ Γ-SK?-ctx a≡⟨⟨a/wk⟩/wk⟩[b][c] = wk-hsub-helper a b c b≡⟨b/wk⟩[c] = /Var-wk-↑⋆-hsub-vanishes 0 b ⇉-[]′ = subst₂ (λ a′ b′ → Γ-SK? ⊢ a′ ⊛ c ⊛ (b′ ⊛ c) ⋯ encS ⊛ a′ ⊛ b′ ⊛ c ⇉∙ [] ⇉ a ⊛ c ⊛ (b ⊛ c) ⋯ encS ⊛ a ⊛ b ⊛ c) (sym a≡⟨⟨a/wk⟩/wk⟩[b][c]) (sym b≡⟨b/wk⟩[c]) ⇉-[] <:-Sₑ : ∀ {a b c} → Γ-SK? ⊢Ne a ∈ ⌜*⌝ → Γ-SK? ⊢Ne b ∈ ⌜*⌝ → Γ-SK? ⊢Ne c ∈ ⌜*⌝ → Γ-SK? ⊢ a ⊛ c ⊛ (b ⊛ c) <: encS ⊛ a ⊛ b ⊛ c <:-Sₑ a∈* b∈* c∈* = <:-trans (<:-⟨| (Ne∈-Sₑ a∈* b∈* c∈*)) (<:-|⟩ (Ne∈-Sₑ a∈* b∈* c∈*)) Ne∈-Kₑ : ∀ {a b} → Γ-SK? ⊢Ne a ∈ ⌜*⌝ → Γ-SK? ⊢Ne b ∈ ⌜*⌝ → Γ-SK? ⊢Ne var x₀ ∙ (a ∷ b ∷ []) ∈ a ⋯ encK ⊛ a ⊛ b Ne∈-Kₑ {a} {b} a∈* b∈* = ∈-∙ (⇉-var _ Γ-SK?-ctx refl) (⇉-∷ (Nf⇇-ne a∈*) *-kd (⇉-∷ (Nf⇇-ne b∈*) *-kd ⇉-[]′)) where *-kd = kd-⌜*⌝ Γ-SK?-ctx ⇉-[]′ = subst (λ a′ → Γ-SK? ⊢ a′ ⋯ encK ⊛ a′ ⊛ b ⇉∙ [] ⇉ a ⋯ encK ⊛ a ⊛ b) (sym (/Var-wk-↑⋆-hsub-vanishes 0 a)) ⇉-[] <:-Kₑ : ∀ {a b} → Γ-SK? ⊢Ne a ∈ ⌜*⌝ → Γ-SK? ⊢Ne b ∈ ⌜*⌝ → Γ-SK? ⊢ a <: encK ⊛ a ⊛ b <:-Kₑ a∈* b∈* = <:-trans (<:-⟨| (Ne∈-Kₑ a∈* b∈*)) (<:-|⟩ (Ne∈-Kₑ a∈* b∈*)) -- Encoding of SK term equality in canonical subtyping mutual <:-encode : ∀ {s t} → s ≡SK t → Γ-SK? ⊢ encode s <: encode t <:-encode (≡-refl {t}) = <:-reflNf⇉ (⇉-s-i (Ne∈-encode t)) <:-encode (≡-trans s≡t t≡u) = <:-trans (<:-encode s≡t) (<:-encode t≡u) <:-encode (≡-sym t≡s) = :>-encode t≡s <:-encode (≡-Sred {s} {t} {u}) = <:-Sᵣ (Ne∈-encode s) (Ne∈-encode t) (Ne∈-encode u) <:-encode (≡-Kred {s} {t}) = <:-Kᵣ (Ne∈-encode s) (Ne∈-encode t) <:-encode (≡-· s₁≡t₁ s₂≡t₂) = <:-⊛ (≃-encode s₁≡t₁) (≃-encode s₂≡t₂) :>-encode : ∀ {s t} → s ≡SK t → Γ-SK? ⊢ encode t <: encode s :>-encode (≡-refl {t}) = <:-reflNf⇉ (⇉-s-i (Ne∈-encode t)) :>-encode (≡-trans s≡t t≡u) = <:-trans (:>-encode t≡u) (:>-encode s≡t) :>-encode (≡-sym t≡s) = <:-encode t≡s :>-encode (≡-Sred {s} {t} {u}) = <:-Sₑ (Ne∈-encode s) (Ne∈-encode t) (Ne∈-encode u) :>-encode (≡-Kred {s} {t}) = <:-Kₑ (Ne∈-encode s) (Ne∈-encode t) :>-encode (≡-· s₁≡t₁ s₂≡t₂) = <:-⊛ (≃-sym (≃-encode s₁≡t₁)) (≃-sym (≃-encode s₂≡t₂)) ≃-encode : ∀ {s t} → s ≡SK t → Γ-SK? ⊢ encode s ≃ encode t ⇇ ⌜*⌝ ≃-encode {s} {t} s≡t = let es⇇* = Nf⇇-ne (Ne∈-encode s) et⇇* = Nf⇇-ne (Ne∈-encode t) in <:-antisym (kd-⌜*⌝ Γ-SK?-ctx) (<:-⇇ es⇇* et⇇* (<:-encode s≡t)) (<:-⇇ et⇇* es⇇* (:>-encode s≡t)) <:⇇-encode : ∀ {s t} → s ≡SK t → Γ-SK? ⊢ encode s <: encode t ⇇ ⌜*⌝ <:⇇-encode {s} {t} s≡t = <:-⇇ (Nf⇇-ne (Ne∈-encode s)) (Nf⇇-ne (Ne∈-encode t)) (<:-encode s≡t)
{ "alphanum_fraction": 0.4723568145, "avg_line_length": 32.0677290837, "ext": "agda", "hexsha": "b8f8b10fde87341070f93abd6ef83e0dfc8cdfd7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Blaisorblade/f-omega-int-agda", "max_forks_repo_path": "src/FOmegaInt/Undecidable/Encoding.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Blaisorblade/f-omega-int-agda", "max_issues_repo_path": "src/FOmegaInt/Undecidable/Encoding.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Blaisorblade/f-omega-int-agda", "max_stars_repo_path": "src/FOmegaInt/Undecidable/Encoding.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8724, "size": 16098 }
{-# OPTIONS --safe #-} module Cubical.Algebra.OrderedCommMonoid.Instances where open import Cubical.Foundations.Prelude open import Cubical.Algebra.OrderedCommMonoid.Base open import Cubical.Data.Nat open import Cubical.Data.Nat.Order ℕ≤+ : OrderedCommMonoid ℓ-zero ℓ-zero ℕ≤+ .fst = ℕ ℕ≤+ .snd .OrderedCommMonoidStr._≤_ = _≤_ ℕ≤+ .snd .OrderedCommMonoidStr._·_ = _+_ ℕ≤+ .snd .OrderedCommMonoidStr.ε = 0 ℕ≤+ .snd .OrderedCommMonoidStr.isOrderedCommMonoid = makeIsOrderedCommMonoid isSetℕ +-assoc +-zero (λ _ → refl) +-comm (λ _ _ → isProp≤) (λ _ → ≤-refl) (λ _ _ _ → ≤-trans) (λ _ _ → ≤-antisym) (λ _ _ _ → ≤-+k) (λ _ _ _ → ≤-k+) ℕ≤· : OrderedCommMonoid ℓ-zero ℓ-zero ℕ≤· .fst = ℕ ℕ≤· .snd .OrderedCommMonoidStr._≤_ = _≤_ ℕ≤· .snd .OrderedCommMonoidStr._·_ = _·_ ℕ≤· .snd .OrderedCommMonoidStr.ε = 1 ℕ≤· .snd .OrderedCommMonoidStr.isOrderedCommMonoid = makeIsOrderedCommMonoid isSetℕ ·-assoc ·-identityʳ ·-identityˡ ·-comm (λ _ _ → isProp≤) (λ _ → ≤-refl) (λ _ _ _ → ≤-trans) (λ _ _ → ≤-antisym) (λ _ _ _ → ≤-·k) lmono where lmono : (x y z : ℕ) → x ≤ y → z · x ≤ z · y lmono x y z x≤y = subst ((z · x) ≤_) (·-comm y z) (subst (_≤ (y · z)) (·-comm x z) (≤-·k x≤y))
{ "alphanum_fraction": 0.6102236422, "avg_line_length": 34.7777777778, "ext": "agda", "hexsha": "ca6dbb984a54e1efe3ca72b88164411edf4db054", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/OrderedCommMonoid/Instances.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/OrderedCommMonoid/Instances.agda", "max_line_length": 102, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/OrderedCommMonoid/Instances.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 530, "size": 1252 }
module _ where open import Common.Prelude open import Common.Reflection open import Common.Equality record Foo (A : Set) : Set where field foo : A → Nat open Foo {{...}} instance FooNat : Foo Nat foo {{FooNat}} n = n FooBool : Foo Bool foo {{FooBool}} true = 1 foo {{FooBool}} false = 0 macro do-foo : ∀ {A} {{_ : Foo A}} → A → Tactic do-foo x = give (lit (nat (foo x))) test₁ : do-foo 5 ≡ 5 test₁ = refl test₂ : do-foo false ≡ 0 test₂ = refl macro lastHidden : {n : Nat} → Tactic lastHidden {n} = give (lit (nat n)) test₃ : lastHidden {4} ≡ 4 test₃ = refl macro hiddenTerm : {a : Term} → Tactic hiddenTerm {a} = give a test₄ : hiddenTerm {4} ≡ 4 test₄ = refl
{ "alphanum_fraction": 0.613960114, "avg_line_length": 15.6, "ext": "agda", "hexsha": "78b30bf876c3ea3dd447cc30d8da304a3df31a12", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/HiddenMacroArgs.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/HiddenMacroArgs.agda", "max_line_length": 43, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/HiddenMacroArgs.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 264, "size": 702 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of membership of vectors based on propositional equality. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Vec.Membership.Propositional.Properties where open import Data.Fin using (Fin; zero; suc) open import Data.Product as Prod using (_,_; ∃; _×_; -,_) open import Data.Vec hiding (here; there) open import Data.Vec.Relation.Unary.Any using (here; there) open import Data.List using ([]; _∷_) open import Data.List.Relation.Unary.Any using (here; there) open import Data.Vec.Relation.Unary.Any using (Any; here; there) open import Data.Vec.Membership.Propositional open import Data.List.Membership.Propositional using () renaming (_∈_ to _∈ₗ_) open import Function using (_∘_; id) open import Relation.Unary using (Pred) open import Relation.Binary.PropositionalEquality using (refl) ------------------------------------------------------------------------ -- lookup module _ {a} {A : Set a} where ∈-lookup : ∀ {n} i (xs : Vec A n) → lookup xs i ∈ xs ∈-lookup zero (x ∷ xs) = here refl ∈-lookup (suc i) (x ∷ xs) = there (∈-lookup i xs) ------------------------------------------------------------------------ -- map module _ {a b} {A : Set a} {B : Set b} (f : A → B) where ∈-map⁺ : ∀ {m v} {xs : Vec A m} → v ∈ xs → f v ∈ map f xs ∈-map⁺ (here refl) = here refl ∈-map⁺ (there x∈xs) = there (∈-map⁺ x∈xs) ------------------------------------------------------------------------ -- _++_ module _ {a} {A : Set a} {v : A} where ∈-++⁺ˡ : ∀ {m n} {xs : Vec A m} {ys : Vec A n} → v ∈ xs → v ∈ xs ++ ys ∈-++⁺ˡ (here refl) = here refl ∈-++⁺ˡ (there x∈xs) = there (∈-++⁺ˡ x∈xs) ∈-++⁺ʳ : ∀ {m n} (xs : Vec A m) {ys : Vec A n} → v ∈ ys → v ∈ xs ++ ys ∈-++⁺ʳ [] x∈ys = x∈ys ∈-++⁺ʳ (x ∷ xs) x∈ys = there (∈-++⁺ʳ xs x∈ys) ------------------------------------------------------------------------ -- tabulate module _ {a} {A : Set a} where ∈-tabulate⁺ : ∀ {n} (f : Fin n → A) i → f i ∈ tabulate f ∈-tabulate⁺ f zero = here refl ∈-tabulate⁺ f (suc i) = there (∈-tabulate⁺ (f ∘ suc) i) ------------------------------------------------------------------------ -- allFin ∈-allFin⁺ : ∀ {n} (i : Fin n) → i ∈ allFin n ∈-allFin⁺ = ∈-tabulate⁺ id ------------------------------------------------------------------------ -- allPairs module _ {a b} {A : Set a} {B : Set b} where ∈-allPairs⁺ : ∀ {m n x y} {xs : Vec A m} {ys : Vec B n} → x ∈ xs → y ∈ ys → (x , y) ∈ allPairs xs ys ∈-allPairs⁺ {xs = x ∷ xs} (here refl) = ∈-++⁺ˡ ∘ ∈-map⁺ (x ,_) ∈-allPairs⁺ {xs = x ∷ _} (there x∈xs) = ∈-++⁺ʳ (map (x ,_) _) ∘ ∈-allPairs⁺ x∈xs ------------------------------------------------------------------------ -- toList module _ {a} {A : Set a} {v : A} where ∈-toList⁺ : ∀ {n} {xs : Vec A n} → v ∈ xs → v ∈ₗ toList xs ∈-toList⁺ (here refl) = here refl ∈-toList⁺ (there x∈) = there (∈-toList⁺ x∈) ∈-toList⁻ : ∀ {n} {xs : Vec A n} → v ∈ₗ toList xs → v ∈ xs ∈-toList⁻ {xs = []} () ∈-toList⁻ {xs = x ∷ xs} (here refl) = here refl ∈-toList⁻ {xs = x ∷ xs} (there v∈xs) = there (∈-toList⁻ v∈xs) ------------------------------------------------------------------------ -- fromList module _ {a} {A : Set a} {v : A} where ∈-fromList⁺ : ∀ {xs} → v ∈ₗ xs → v ∈ fromList xs ∈-fromList⁺ (here refl) = here refl ∈-fromList⁺ (there x∈) = there (∈-fromList⁺ x∈) ∈-fromList⁻ : ∀ {xs} → v ∈ fromList xs → v ∈ₗ xs ∈-fromList⁻ {[]} () ∈-fromList⁻ {_ ∷ _} (here refl) = here refl ∈-fromList⁻ {_ ∷ _} (there v∈xs) = there (∈-fromList⁻ v∈xs) ------------------------------------------------------------------------ -- Relationship to Any module _ {a p} {A : Set a} {P : Pred A p} where fromAny : ∀ {n} {xs : Vec A n} → Any P xs → ∃ λ x → x ∈ xs × P x fromAny (here px) = -, here refl , px fromAny (there v) = Prod.map₂ (Prod.map₁ there) (fromAny v) toAny : ∀ {n x} {xs : Vec A n} → x ∈ xs → P x → Any P xs toAny (here refl) px = here px toAny (there v) px = there (toAny v px)
{ "alphanum_fraction": 0.4444978376, "avg_line_length": 34.1147540984, "ext": "agda", "hexsha": "c86014e7006171e9d0eedd0045fbefea30329c73", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Membership/Propositional/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Membership/Propositional/Properties.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Membership/Propositional/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1438, "size": 4162 }
module Issue357a where module M (X : Set) where data R : Set where r : X → R postulate P Q : Set q : Q open M P open M.R works : M.R Q → Q works (M.R.r q) = q fails : M.R Q → Q fails (r q) = q
{ "alphanum_fraction": 0.5471698113, "avg_line_length": 10.0952380952, "ext": "agda", "hexsha": "7fb63946ea46714639e3d057e6ed122759c6713b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue357a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue357a.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue357a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 87, "size": 212 }
{-# OPTIONS --without-K --safe #-} open import Algebra.Structures.Bundles.Field import Algebra.Linear.Structures.Bundles.FiniteDimensional as FDB module Algebra.Linear.Space.FiniteDimensional.Product {k ℓᵏ} (K : Field k ℓᵏ) {n a₁ ℓ₁} (V₁-space : FDB.FiniteDimensional K a₁ ℓ₁ n) {p a₂ ℓ₂} (V₂-space : FDB.FiniteDimensional K a₂ ℓ₂ p) where open import Algebra.Linear.Structures.VectorSpace K open import Algebra.Linear.Structures.Bundles as VS open import Algebra.Linear.Structures.FiniteDimensional K open import Algebra.Linear.Morphism.Bundles K open VectorSpaceField open FDB.FiniteDimensional V₁-space using () renaming ( Carrier to V₁ ; _≈_ to _≈₁_ ; isEquivalence to ≈₁-isEquiv ; refl to ≈₁-refl ; sym to ≈₁-sym ; trans to ≈₁-trans ; reflexive to ≈₁-reflexive ; _+_ to _+₁_ ; _∙_ to _∙₁_ ; -_ to -₁_ ; 0# to 0₁ ; +-identityˡ to +₁-identityˡ ; +-identityʳ to +₁-identityʳ ; +-identity to +₁-identity ; +-cong to +₁-cong ; +-assoc to +₁-assoc ; +-comm to +₁-comm ; *ᵏ-∙-compat to *ᵏ-∙₁-compat ; ∙-+-distrib to ∙₁-+₁-distrib ; ∙-+ᵏ-distrib to ∙₁-+ᵏ-distrib ; ∙-cong to ∙₁-cong ; ∙-identity to ∙₁-identity ; ∙-absorbˡ to ∙₁-absorbˡ ; ∙-absorbʳ to ∙₁-absorbʳ ; -‿cong to -₁‿cong ; -‿inverseˡ to -₁‿inverseˡ ; -‿inverseʳ to -₁‿inverseʳ ; vectorSpace to vectorSpace₁ ; embed to embed₁ ) open FDB.FiniteDimensional V₂-space using () renaming ( Carrier to V₂ ; _≈_ to _≈₂_ ; isEquivalence to ≈₂-isEquiv ; refl to ≈₂-refl ; sym to ≈₂-sym ; trans to ≈₂-trans ; reflexive to ≈₂-reflexive ; _+_ to _+₂_ ; _∙_ to _∙₂_ ; -_ to -₂_ ; 0# to 0₂ ; +-identityˡ to +₂-identityˡ ; +-identityʳ to +₂-identityʳ ; +-identity to +₂-identity ; +-cong to +₂-cong ; +-assoc to +₂-assoc ; +-comm to +₂-comm ; *ᵏ-∙-compat to *ᵏ-∙₂-compat ; ∙-+-distrib to ∙₂-+₂-distrib ; ∙-+ᵏ-distrib to ∙₂-+ᵏ-distrib ; ∙-cong to ∙₂-cong ; ∙-identity to ∙₂-identity ; ∙-absorbˡ to ∙₂-absorbˡ ; ∙-absorbʳ to ∙₂-absorbʳ ; -‿cong to -₂‿cong ; -‿inverseˡ to -₂‿inverseˡ ; -‿inverseʳ to -₂‿inverseʳ ; vectorSpace to vectorSpace₂ ; embed to embed₂ ) open LinearIsomorphism embed₁ using () renaming ( ⟦_⟧ to ⟦_⟧₁ ; ⟦⟧-cong to ⟦⟧₁-cong ; injective to ⟦⟧₁-injective ; surjective to ⟦⟧₁-surjective ; +-homo to +₁-homo ; ∙-homo to ∙₁-homo ; 0#-homo to 0₁-homo ) open LinearIsomorphism embed₂ using () renaming ( ⟦_⟧ to ⟦_⟧₂ ; ⟦⟧-cong to ⟦⟧₂-cong ; injective to ⟦⟧₂-injective ; surjective to ⟦⟧₂-surjective ; +-homo to +₂-homo ; ∙-homo to ∙₂-homo ; 0#-homo to 0₂-homo ) open import Data.Product import Algebra.Linear.Construct.ProductSpace K vectorSpace₁ vectorSpace₂ as PS open VS.VectorSpace PS.vectorSpace renaming ( refl to ≈-refl ; sym to ≈-sym ; trans to ≈-trans ) open import Algebra.Linear.Construct.Vector K using ( ++-cong ; ++-identityˡ ; ++-split ; +-distrib-++ ; ∙-distrib-++ ; 0++0≈0 ) renaming ( _≈_ to _≈v_ ; ≈-refl to ≈v-refl ; ≈-sym to ≈v-sym ; ≈-trans to ≈v-trans ; ≈-reflexive to ≈v-reflexive ; _+_ to _+v_ ; _∙_ to _∙v_ ; 0# to 0v ; +-cong to +v-cong ; setoid to vec-setoid ; vectorSpace to vector-vectorSpace ) open import Data.Nat using (ℕ) renaming (_+_ to _+ℕ_) open import Relation.Binary.PropositionalEquality as P using (_≡_; subst; subst-subst-sym) renaming ( refl to ≡-refl ; sym to ≡-sym ; trans to ≡-trans ) open import Data.Vec open import Algebra.Morphism.Definitions (V₁ × V₂) (Vec K' (n +ℕ p)) _≈v_ open import Algebra.Linear.Morphism.Definitions K (V₁ × V₂) (Vec K' (n +ℕ p)) _≈v_ import Relation.Binary.Morphism.Definitions (V₁ × V₂) (Vec K' (n +ℕ p)) as R open import Function open import Relation.Binary.EqReasoning (vec-setoid (n +ℕ p)) ⟦_⟧ : V₁ × V₂ -> Vec K' (n +ℕ p) ⟦ (u , v) ⟧ = ⟦ u ⟧₁ ++ ⟦ v ⟧₂ ⟦⟧-cong : R.Homomorphic₂ PS._≈_ _≈v_ ⟦_⟧ ⟦⟧-cong (r₁ , r₂) = ++-cong (⟦⟧₁-cong r₁) (⟦⟧₂-cong r₂) +-homo : Homomorphic₂ ⟦_⟧ _+_ _+v_ +-homo (x₁ , x₂) (y₁ , y₂) = begin ⟦ (x₁ , x₂) + (y₁ , y₂) ⟧ ≡⟨⟩ ⟦ x₁ +₁ y₁ ⟧₁ ++ ⟦ x₂ +₂ y₂ ⟧₂ ≈⟨ ++-cong (+₁-homo x₁ y₁) (+₂-homo x₂ y₂) ⟩ (⟦ x₁ ⟧₁ +v ⟦ y₁ ⟧₁) ++ (⟦ x₂ ⟧₂ +v ⟦ y₂ ⟧₂) ≈⟨ ≈v-sym (+-distrib-++ ⟦ x₁ ⟧₁ ⟦ x₂ ⟧₂ ⟦ y₁ ⟧₁ ⟦ y₂ ⟧₂) ⟩ (⟦ x₁ ⟧₁ ++ ⟦ x₂ ⟧₂) +v (⟦ y₁ ⟧₁ ++ ⟦ y₂ ⟧₂) ≈⟨ +v-cong ≈v-refl ≈v-refl ⟩ ⟦ x₁ , x₂ ⟧ +v ⟦ y₁ , y₂ ⟧ ∎ 0#-homo : Homomorphic₀ ⟦_⟧ 0# 0v 0#-homo = begin ⟦ 0# ⟧ ≡⟨⟩ ⟦ 0₁ ⟧₁ ++ ⟦ 0₂ ⟧₂ ≈⟨ ++-cong 0₁-homo 0₂-homo ⟩ (0v {n}) ++ (0v {p}) ≈⟨ 0++0≈0 {n} {p} ⟩ 0v {n +ℕ p} ∎ ∙-homo : ScalarHomomorphism ⟦_⟧ _∙_ _∙v_ ∙-homo c (x₁ , x₂) = begin ⟦ c ∙ (x₁ , x₂) ⟧ ≈⟨ ++-cong (∙₁-homo c x₁) (∙₂-homo c x₂) ⟩ (c ∙v ⟦ x₁ ⟧₁) ++ (c ∙v ⟦ x₂ ⟧₂) ≈⟨ ≈v-sym (∙-distrib-++ c ⟦ x₁ ⟧₁ ⟦ x₂ ⟧₂) ⟩ c ∙v ⟦ x₁ , x₂ ⟧ ∎ ⟦⟧-injective : Injective PS._≈_ (_≈v_ {n +ℕ p}) ⟦_⟧ ⟦⟧-injective {x₁ , x₂} {y₁ , y₂} r = let (r₁ , r₂) = ++-split r in ⟦⟧₁-injective r₁ , ⟦⟧₂-injective r₂ ⟦⟧-surjective : Surjective PS._≈_ (_≈v_ {n +ℕ p}) ⟦_⟧ ⟦⟧-surjective y = let (x₁ , x₂ , r) = splitAt n y (u , r₁) = ⟦⟧₁-surjective x₁ (v , r₂) = ⟦⟧₂-surjective x₂ in (u , v) , ≈v-trans (++-cong r₁ r₂) (≈v-sym (≈v-reflexive r)) embed : LinearIsomorphism PS.vectorSpace (vector-vectorSpace {n +ℕ p}) embed = record { ⟦_⟧ = ⟦_⟧ ; isLinearIsomorphism = record { isLinearMonomorphism = record { isLinearMap = record { isAbelianGroupMorphism = record { gp-homo = record { mn-homo = record { sm-homo = record { ⟦⟧-cong = ⟦⟧-cong ; ∙-homo = +-homo } ; ε-homo = 0#-homo } } } ; ∙-homo = ∙-homo } ; injective = ⟦⟧-injective } ; surjective = ⟦⟧-surjective } } isFiniteDimensional : IsFiniteDimensional _≈_ _+_ _∙_ -_ 0# (n +ℕ p) isFiniteDimensional = record { isVectorSpace = isVectorSpace ; embed = embed }
{ "alphanum_fraction": 0.5248194252, "avg_line_length": 26.5591836735, "ext": "agda", "hexsha": "87a7c934ee4164e079a1d00c0ba5cdf637c1c2ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "felko/linear-algebra", "max_forks_repo_path": "src/Algebra/Linear/Space/FiniteDimensional/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "felko/linear-algebra", "max_issues_repo_path": "src/Algebra/Linear/Space/FiniteDimensional/Product.agda", "max_line_length": 82, "max_stars_count": 15, "max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "felko/linear-algebra", "max_stars_repo_path": "src/Algebra/Linear/Space/FiniteDimensional/Product.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z", "num_tokens": 2916, "size": 6507 }
module Numeral.Sign.Oper where open import Data.Boolean open import Numeral.Sign -- Negation −_ : (+|−) → (+|−) − (➕) = (➖) − (➖) = (➕) -- Addition _+_ : (+|−) → (+|−) → (+|0|−) (➕) + (➕) = (➕) (➖) + (➖) = (➖) (➕) + (➖) = (𝟎) (➖) + (➕) = (𝟎) -- Multiplication _⨯_ : (+|−) → (+|−) → (+|−) (➕) ⨯ (➕) = (➕) (➖) ⨯ (➖) = (➕) (➕) ⨯ (➖) = (➖) (➖) ⨯ (➕) = (➖) _⋚_ : (+|−) → (+|−) → (+|0|−) ➕ ⋚ ➕ = 𝟎 ➕ ⋚ ➖ = ➕ ➖ ⋚ ➕ = ➖ ➖ ⋚ ➖ = 𝟎
{ "alphanum_fraction": 0.2599531616, "avg_line_length": 14.2333333333, "ext": "agda", "hexsha": "8dc6076a83f760bab98bfa72a7a48a51a7264021", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Sign/Oper.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Sign/Oper.agda", "max_line_length": 30, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Sign/Oper.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 293, "size": 427 }
{-# OPTIONS --without-K #-} module FinEquivCat where -- We will define a rig category whose objects are Fin types and whose -- morphisms are type equivalences; and where the equivalence of -- morphisms ≋ is extensional open import Level using () renaming (zero to lzero; suc to lsuc) open import Data.Fin using (Fin; zero; suc) open import Data.Nat using (ℕ; _+_; _*_) open import Data.Unit using () open import Data.Sum using (_⊎_; inj₁; inj₂) renaming (map to map⊎) open import Data.Product using (_,_; proj₁; proj₂;_×_; Σ; uncurry) renaming (map to map×) import Function as F using (_∘_; id) import Relation.Binary.PropositionalEquality as P using (refl; trans; cong) open import Categories.Category using (Category) open import Categories.Groupoid using (Groupoid) open import Categories.Monoidal using (Monoidal) open import Categories.Monoidal.Helpers using (module MonoidalHelperFunctors) open import Categories.Bifunctor using (Bifunctor) open import Categories.NaturalIsomorphism using (NaturalIsomorphism) open import Categories.Monoidal.Braided using (Braided) open import Categories.Monoidal.Symmetric using (Symmetric) open import Categories.RigCategory using (RigCategory; module BimonoidalHelperFunctors) open import Equiv using (id≃; sym≃; _∼_; sym∼; _●_) open import EquivEquiv using (_≋_; eq; id≋; sym≋; trans≋; _◎_; ●-assoc; lid≋; rid≋; linv≋; rinv≋; module _≋_) open import FinEquivTypeEquiv using (_fin≃_; module PlusE; module TimesE; module PlusTimesE) open PlusE using (_+F_; unite+; unite+r; uniti+; uniti+r; swap+; sswap+; assocl+; assocr+) open TimesE using (_*F_; unite*; uniti*; unite*r; uniti*r; swap*; sswap*; assocl*; assocr*) open PlusTimesE using (distz; factorz; distzr; factorzr; dist; factor; distl; factorl) open import FinEquivEquivPlus using ( [id+id]≋id; +●≋●+; _+≋_; unite₊-nat; unite₊r-nat; uniti₊-nat; uniti₊r-nat; assocr₊-nat; assocl₊-nat; unite-assocr₊-coh; assocr₊-coh; swap₊-nat; sswap₊-nat; assocr₊-swap₊-coh; assocl₊-swap₊-coh) open import FinEquivEquivTimes using ( id*id≋id; *●≋●*; _*≋_; unite*-nat; unite*r-nat; uniti*-nat; uniti*r-nat; assocr*-nat; assocl*-nat; unite-assocr*-coh; assocr*-coh; swap*-nat; sswap*-nat; assocr*-swap*-coh; assocl*-swap*-coh) open import FinEquivEquivPlusTimes using ( distl-nat; factorl-nat; dist-nat; factor-nat; distzr-nat; factorzr-nat; distz-nat; factorz-nat; A×[B⊎C]≃[A×C]⊎[A×B]; [A⊎B]×C≃[C×A]⊎[C×B]; [A⊎B⊎C]×D≃[A×D⊎B×D]⊎C×D; A×B×[C⊎D]≃[A×B]×C⊎[A×B]×D; [A⊎B]×[C⊎D]≃[[A×C⊎B×C]⊎A×D]⊎B×D; 0×0≃0; 0×[A⊎B]≃0; 0×1≃0; A×0≃0; 0×A×B≃0; A×0×B≃0; A×[0+B]≃A×B; 1×[A⊎B]≃A⊎B) ------------------------------------------------------------------------------ -- Fin and type equivalences are a category -- note how all of the 'higher structure' (i.e. ≋ equations) are all -- generic, i.e. they are true of all equivalences, not just _fin≃_. FinEquivCat : Category lzero lzero lzero FinEquivCat = record { Obj = ℕ ; _⇒_ = _fin≃_ ; _≡_ = _≋_ ; id = id≃ ; _∘_ = _●_ ; assoc = λ { {f = f} {g} {h} → ●-assoc {f = f} {g} {h} } ; identityˡ = lid≋ ; identityʳ = rid≋ ; equiv = record { refl = id≋ ; sym = sym≋ ; trans = trans≋ } ; ∘-resp-≡ = _◎_ } FinEquivGroupoid : Groupoid FinEquivCat FinEquivGroupoid = record { _⁻¹ = sym≃ ; iso = λ { {f = A≃B} → record { isoˡ = linv≋ A≃B ; isoʳ = rinv≋ A≃B } } } -- The additive structure is monoidal ⊎-bifunctor : Bifunctor FinEquivCat FinEquivCat FinEquivCat ⊎-bifunctor = record { F₀ = uncurry _+_ ; F₁ = uncurry _+F_ ; identity = [id+id]≋id ; homomorphism = +●≋●+ ; F-resp-≡ = uncurry _+≋_ } module ⊎h = MonoidalHelperFunctors FinEquivCat ⊎-bifunctor 0 0⊎x≡x : NaturalIsomorphism ⊎h.id⊗x ⊎h.x 0⊎x≡x = record { F⇒G = record { η = λ _ → unite+ ; commute = λ _ → unite₊-nat } ; F⇐G = record { η = λ _ → uniti+ ; commute = λ _ → uniti₊-nat } ; iso = λ _ → record { isoˡ = linv≋ unite+ ; isoʳ = rinv≋ unite+ } } x⊎0≡x : NaturalIsomorphism ⊎h.x⊗id ⊎h.x x⊎0≡x = record { F⇒G = record { η = λ _ → unite+r ; commute = λ _ → unite₊r-nat } ; F⇐G = record { η = λ _ → uniti+r ; commute = λ _ → uniti₊r-nat } ; iso = λ X → record { isoˡ = linv≋ unite+r ; isoʳ = rinv≋ unite+r } } [x⊎y]⊎z≡x⊎[y⊎z] : NaturalIsomorphism ⊎h.[x⊗y]⊗z ⊎h.x⊗[y⊗z] [x⊎y]⊎z≡x⊎[y⊎z] = record { F⇒G = record { η = λ X → assocr+ {m = X zero} ; commute = λ _ → assocr₊-nat } ; F⇐G = record { η = λ X → assocl+ {m = X zero} ; commute = λ _ → assocl₊-nat } ; iso = λ X → record { isoˡ = linv≋ assocr+ ; isoʳ = rinv≋ assocr+ } } CPM⊎ : Monoidal FinEquivCat CPM⊎ = record { ⊗ = ⊎-bifunctor ; id = 0 ; identityˡ = 0⊎x≡x ; identityʳ = x⊎0≡x ; assoc = [x⊎y]⊎z≡x⊎[y⊎z] ; triangle = unite-assocr₊-coh ; pentagon = assocr₊-coh } -- The multiplicative structure is monoidal ×-bifunctor : Bifunctor FinEquivCat FinEquivCat FinEquivCat ×-bifunctor = record { F₀ = uncurry _*_ ; F₁ = uncurry _*F_ ; identity = id*id≋id ; homomorphism = *●≋●* ; F-resp-≡ = uncurry _*≋_ } module ×h = MonoidalHelperFunctors FinEquivCat ×-bifunctor 1 1×y≡y : NaturalIsomorphism ×h.id⊗x ×h.x 1×y≡y = record { F⇒G = record { η = λ _ → unite* ; commute = λ _ → unite*-nat } ; F⇐G = record { η = λ _ → uniti* ; commute = λ _ → uniti*-nat } ; iso = λ X → record { isoˡ = linv≋ unite* ; isoʳ = rinv≋ unite* } } y×1≡y : NaturalIsomorphism ×h.x⊗id ×h.x y×1≡y = record { F⇒G = record { η = λ X → unite*r ; commute = λ _ → unite*r-nat } ; F⇐G = record { η = λ X → uniti*r ; commute = λ _ → uniti*r-nat } ; iso = λ X → record { isoˡ = linv≋ unite*r ; isoʳ = rinv≋ unite*r } } [x×y]×z≡x×[y×z] : NaturalIsomorphism ×h.[x⊗y]⊗z ×h.x⊗[y⊗z] [x×y]×z≡x×[y×z] = record { F⇒G = record { η = λ X → assocr* {m = X zero} ; commute = λ _ → assocr*-nat } ; F⇐G = record { η = λ X → assocl* {m = X zero} ; commute = λ _ → assocl*-nat } ; iso = λ X → record { isoˡ = linv≋ assocr* ; isoʳ = rinv≋ assocr* } } CPM× : Monoidal FinEquivCat CPM× = record { ⊗ = ×-bifunctor ; id = 1 ; identityˡ = 1×y≡y ; identityʳ = y×1≡y ; assoc = [x×y]×z≡x×[y×z] ; triangle = unite-assocr*-coh ; pentagon = assocr*-coh } -- The monoidal structures are symmetric x⊎y≈y⊎x : NaturalIsomorphism ⊎h.x⊗y ⊎h.y⊗x x⊎y≈y⊎x = record { F⇒G = record { η = λ X → swap+ {m = X zero} ; commute = λ _ → swap₊-nat } ; F⇐G = record { η = λ X → sswap+ {m = X zero} {n = X (suc zero)} ; commute = λ _ → sswap₊-nat } ; iso = λ X → record { isoˡ = linv≋ swap+ ; isoʳ = rinv≋ swap+ } } BM⊎ : Braided CPM⊎ BM⊎ = record { braid = x⊎y≈y⊎x ; hexagon₁ = assocr₊-swap₊-coh ; hexagon₂ = assocl₊-swap₊-coh } x×y≈y×x : NaturalIsomorphism ×h.x⊗y ×h.y⊗x x×y≈y×x = record { F⇒G = record { η = λ X → swap* {m = X zero} ; commute = λ _ → swap*-nat } ; F⇐G = record { η = λ X → sswap* {m = X zero} ; commute = λ _ → sswap*-nat } ; iso = λ X → record { isoˡ = linv≋ swap* ; isoʳ = rinv≋ swap* } } BM× : Braided CPM× BM× = record { braid = x×y≈y×x ; hexagon₁ = assocr*-swap*-coh ; hexagon₂ = assocl*-swap*-coh } SBM⊎ : Symmetric BM⊎ SBM⊎ = record { symmetry = linv≋ sswap+ } SBM× : Symmetric BM× SBM× = record { symmetry = linv≋ sswap* } -- And finally the multiplicative structure distributes over the -- additive one module r = BimonoidalHelperFunctors BM⊎ BM× x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] : NaturalIsomorphism r.x⊗[y⊕z] r.[x⊗y]⊕[x⊗z] x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] = record { F⇒G = record { η = λ X → distl {m = X zero} ; commute = λ _ → distl-nat } ; F⇐G = record { η = λ X → factorl {m = X zero} ; commute = λ _ → factorl-nat } ; iso = λ X → record { isoˡ = linv≋ distl ; isoʳ = rinv≋ distl } } [x⊕y]⊗z≡[x⊗z]⊕[y⊗z] : NaturalIsomorphism r.[x⊕y]⊗z r.[x⊗z]⊕[y⊗z] [x⊕y]⊗z≡[x⊗z]⊕[y⊗z] = record { F⇒G = record { η = λ X → dist {m = X zero} ; commute = λ _ → dist-nat } ; F⇐G = record { η = λ X → factor {m = X zero} ; commute = λ _ → factor-nat } ; iso = λ X → record { isoˡ = linv≋ dist ; isoʳ = rinv≋ dist } } x⊗0≡0 : NaturalIsomorphism r.x⊗0 r.0↑ x⊗0≡0 = record { F⇒G = record { η = λ X → distzr {m = X zero} ; commute = λ _ → distzr-nat } ; F⇐G = record { η = λ X → factorzr {n = X zero} ; commute = λ _ → factorzr-nat } ; iso = λ X → record { isoˡ = linv≋ distzr ; isoʳ = rinv≋ distzr } } 0⊗x≡0 : NaturalIsomorphism r.0⊗x r.0↑ 0⊗x≡0 = record { F⇒G = record { η = λ X → distz {m = X zero} ; commute = λ _ → distz-nat } ; F⇐G = record { η = λ X → factorz {m = X zero} ; commute = λ _ → factorz-nat } ; iso = λ X → record { isoˡ = linv≋ distz ; isoʳ = rinv≋ distz } } TERig : RigCategory SBM⊎ SBM× TERig = record { distribₗ = x⊗[y⊕z]≡[x⊗y]⊕[x⊗z] ; distribᵣ = [x⊕y]⊗z≡[x⊗z]⊕[y⊗z] ; annₗ = 0⊗x≡0 ; annᵣ = x⊗0≡0 ; laplazaI = A×[B⊎C]≃[A×C]⊎[A×B] ; laplazaII = [A⊎B]×C≃[C×A]⊎[C×B] ; laplazaIV = [A⊎B⊎C]×D≃[A×D⊎B×D]⊎C×D ; laplazaVI = A×B×[C⊎D]≃[A×B]×C⊎[A×B]×D ; laplazaIX = [A⊎B]×[C⊎D]≃[[A×C⊎B×C]⊎A×D]⊎B×D ; laplazaX = 0×0≃0 ; laplazaXI = 0×[A⊎B]≃0 ; laplazaXIII = 0×1≃0 ; laplazaXV = A×0≃0 ; laplazaXVI = 0×A×B≃0 ; laplazaXVII = A×0×B≃0 ; laplazaXIX = A×[0+B]≃A×B ; laplazaXXIII = 1×[A⊎B]≃A⊎B } ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.5491525424, "avg_line_length": 25.5511811024, "ext": "agda", "hexsha": "152d476b4b34f5ce17be038b6423607d9a96012a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/FinEquivCat.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/FinEquivCat.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/FinEquivCat.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 4594, "size": 9735 }
{-# OPTIONS --cubical --safe #-} module Classical where open import Prelude open import Relation.Nullary.Stable using (Stable) public open import Relation.Nullary.Decidable.Properties using (Dec→Stable) public Classical : Type a → Type a Classical A = ¬ ¬ A pure : A → Classical A pure x k = k x _>>=_ : Classical A → (A → Classical B) → Classical B xs >>= f = λ k → xs λ x → f x k _<*>_ : Classical (A → B) → Classical A → Classical B fs <*> xs = λ k → fs λ f → xs λ x → k (f x) lem : {A : Type a} → Classical (Dec A) lem k = k (no (k ∘ yes))
{ "alphanum_fraction": 0.6315789474, "avg_line_length": 23.9565217391, "ext": "agda", "hexsha": "464c16b7ccc385eaff750fcba77b775103613a55", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Classical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Classical.agda", "max_line_length": 75, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Classical.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 174, "size": 551 }
------------------------------------------------------------------------ -- Bi-invertibility with erased proofs ------------------------------------------------------------------------ -- The development is based on the presentation of bi-invertibility -- (for types and functions) and related things in the HoTT book, but -- adapted to a setting with erasure. {-# OPTIONS --without-K --safe #-} open import Equality open import Prelude as P hiding (id; _∘_; [_,_]) -- The code is parametrised by something like a "raw" category. module Bi-invertibility.Erased {e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) {o h} (Obj : Type o) (Hom : Obj → Obj → Type h) (id : {A : Obj} → Hom A A) (_∘′_ : {A B C : Obj} → Hom B C → Hom A B → Hom A C) where open import Bi-invertibility eq Obj Hom id _∘′_ as Bi using (Has-left-inverse; Has-right-inverse; Is-bi-invertible; Has-quasi-inverse; _≊_; _≅_) open Derived-definitions-and-properties eq open import Equivalence eq as Eq using (_≃_) open import Equivalence.Erased eq as EEq using (_≃ᴱ_) open import Equivalence.Erased.Contractible-preimages eq as ECP using (Contractibleᴱ) open import Erased.Without-box-cong eq open import Function-universe eq as F hiding (id; _∘_) open import Logical-equivalence using (_⇔_) open import H-level eq open import H-level.Closure eq open import Preimage eq open import Surjection eq using (_↠_) private variable A B : Obj f : Hom A B infixr 9 _∘_ _∘_ : {A B C : Obj} → Hom B C → Hom A B → Hom A C _∘_ = _∘′_ -- Has-left-inverseᴱ f means that f has a left inverse. The proof is -- erased. Has-left-inverseᴱ : @0 Hom A B → Type h Has-left-inverseᴱ f = ∃ λ f⁻¹ → Erased (f⁻¹ ∘ f ≡ id) -- Has-right-inverseᴱ f means that f has a right inverse. The proof is -- erased. Has-right-inverseᴱ : @0 Hom A B → Type h Has-right-inverseᴱ f = ∃ λ f⁻¹ → Erased (f ∘ f⁻¹ ≡ id) -- Is-bi-invertibleᴱ f means that f has a left inverse and a (possibly -- distinct) right inverse. The proofs are erased. Is-bi-invertibleᴱ : @0 Hom A B → Type h Is-bi-invertibleᴱ f = Has-left-inverseᴱ f × Has-right-inverseᴱ f -- Has-quasi-inverseᴱ f means that f has a left inverse that is also a -- right inverse. The proofs are erased. Has-quasi-inverseᴱ : @0 Hom A B → Type h Has-quasi-inverseᴱ f = ∃ λ f⁻¹ → Erased (f ∘ f⁻¹ ≡ id × f⁻¹ ∘ f ≡ id) -- Some notions of isomorphism or equivalence. infix 4 _≊ᴱ_ _≅ᴱ_ _≊ᴱ_ : Obj → Obj → Type h A ≊ᴱ B = ∃ λ (f : Hom A B) → Is-bi-invertibleᴱ f _≅ᴱ_ : Obj → Obj → Type h A ≅ᴱ B = ∃ λ (f : Hom A B) → Has-quasi-inverseᴱ f -- Morphisms with quasi-inverses are bi-invertible. Has-quasi-inverseᴱ→Is-bi-invertibleᴱ : (@0 f : Hom A B) → Has-quasi-inverseᴱ f → Is-bi-invertibleᴱ f Has-quasi-inverseᴱ→Is-bi-invertibleᴱ _ (f⁻¹ , [ f∘f⁻¹≡id , f⁻¹∘f≡id ]) = (f⁻¹ , [ f⁻¹∘f≡id ]) , (f⁻¹ , [ f∘f⁻¹≡id ]) ≅ᴱ→≊ᴱ : A ≅ᴱ B → A ≊ᴱ B ≅ᴱ→≊ᴱ = ∃-cong λ f → Has-quasi-inverseᴱ→Is-bi-invertibleᴱ f -- Some conversion functions. Has-left-inverse→Has-left-inverseᴱ : Has-left-inverse f → Has-left-inverseᴱ f Has-left-inverse→Has-left-inverseᴱ = Σ-map P.id [_]→ @0 Has-left-inverse≃Has-left-inverseᴱ : Has-left-inverse f ≃ Has-left-inverseᴱ f Has-left-inverse≃Has-left-inverseᴱ {f = f} = (∃ λ f⁻¹ → f⁻¹ ∘ f ≡ id ) ↔⟨ (∃-cong λ _ → inverse $ erased Erased↔) ⟩□ (∃ λ f⁻¹ → Erased (f⁻¹ ∘ f ≡ id)) □ Has-right-inverse→Has-right-inverseᴱ : Has-right-inverse f → Has-right-inverseᴱ f Has-right-inverse→Has-right-inverseᴱ = Σ-map P.id [_]→ @0 Has-right-inverse≃Has-right-inverseᴱ : Has-right-inverse f ≃ Has-right-inverseᴱ f Has-right-inverse≃Has-right-inverseᴱ {f = f} = (∃ λ f⁻¹ → f ∘ f⁻¹ ≡ id ) ↔⟨ (∃-cong λ _ → inverse $ erased Erased↔) ⟩□ (∃ λ f⁻¹ → Erased (f ∘ f⁻¹ ≡ id)) □ Is-bi-invertible→Is-bi-invertibleᴱ : Is-bi-invertible f → Is-bi-invertibleᴱ f Is-bi-invertible→Is-bi-invertibleᴱ = Σ-map Has-left-inverse→Has-left-inverseᴱ Has-right-inverse→Has-right-inverseᴱ @0 Is-bi-invertible≃Is-bi-invertibleᴱ : Is-bi-invertible f ≃ Is-bi-invertibleᴱ f Is-bi-invertible≃Is-bi-invertibleᴱ {f = f} = Has-left-inverse f × Has-right-inverse f ↝⟨ Has-left-inverse≃Has-left-inverseᴱ ×-cong Has-right-inverse≃Has-right-inverseᴱ ⟩□ Has-left-inverseᴱ f × Has-right-inverseᴱ f □ Has-quasi-inverse→Has-quasi-inverseᴱ : Has-quasi-inverse f → Has-quasi-inverseᴱ f Has-quasi-inverse→Has-quasi-inverseᴱ = Σ-map P.id [_]→ @0 Has-quasi-inverse≃Has-quasi-inverseᴱ : Has-quasi-inverse f ≃ Has-quasi-inverseᴱ f Has-quasi-inverse≃Has-quasi-inverseᴱ {f = f} = (∃ λ f⁻¹ → f ∘ f⁻¹ ≡ id × f⁻¹ ∘ f ≡ id ) ↔⟨ (∃-cong λ _ → inverse $ erased Erased↔) ⟩□ (∃ λ f⁻¹ → Erased (f ∘ f⁻¹ ≡ id × f⁻¹ ∘ f ≡ id)) □ ≊→≊ᴱ : A ≊ B → A ≊ᴱ B ≊→≊ᴱ = Σ-map P.id Is-bi-invertible→Is-bi-invertibleᴱ @0 ≊≃≊ᴱ : (A ≊ B) ≃ (A ≊ᴱ B) ≊≃≊ᴱ {A = A} {B = B} = (∃ λ (f : Hom A B) → Is-bi-invertible f) ↝⟨ (∃-cong λ _ → Is-bi-invertible≃Is-bi-invertibleᴱ) ⟩□ (∃ λ (f : Hom A B) → Is-bi-invertibleᴱ f) □ ≅→≅ᴱ : A ≅ B → A ≅ᴱ B ≅→≅ᴱ = Σ-map P.id Has-quasi-inverse→Has-quasi-inverseᴱ @0 ≅≃≅ᴱ : (A ≅ B) ≃ (A ≅ᴱ B) ≅≃≅ᴱ {A = A} {B = B} = (∃ λ (f : Hom A B) → Has-quasi-inverse f) ↝⟨ (∃-cong λ _ → Has-quasi-inverse≃Has-quasi-inverseᴱ) ⟩□ (∃ λ (f : Hom A B) → Has-quasi-inverseᴱ f) □ -- The remaining code relies on some further assumptions, similar to -- those of a precategory. However, note that Hom A B is not required -- to be a set (some properties require Hom A A to be a set for some -- A). module More (@0 left-identity : {A B : Obj} (f : Hom A B) → id ∘ f ≡ f) (@0 right-identity : {A B : Obj} (f : Hom A B) → f ∘ id ≡ f) (@0 associativity : {A B C D : Obj} (f : Hom C D) (g : Hom B C) (h : Hom A B) → f ∘ (g ∘ h) ≡ (f ∘ g) ∘ h) where -- A workaround for Agda's lack of erased modules. private record Proofs : Type (o ⊔ h) where field lid : {A B : Obj} (f : Hom A B) → id ∘ f ≡ f rid : {A B : Obj} (f : Hom A B) → f ∘ id ≡ f ass : {A B C D : Obj} (f : Hom C D) (g : Hom B C) (h : Hom A B) → f ∘ (g ∘ h) ≡ (f ∘ g) ∘ h @0 proofs : Proofs proofs .Proofs.lid = left-identity proofs .Proofs.rid = right-identity proofs .Proofs.ass = associativity module BiM (p : Proofs) = Bi.More (Proofs.lid p) (Proofs.rid p) (Proofs.ass p) -- Bi-invertible morphisms have quasi-inverses. Is-bi-invertibleᴱ→Has-quasi-inverseᴱ : Is-bi-invertibleᴱ f → Has-quasi-inverseᴱ f Is-bi-invertibleᴱ→Has-quasi-inverseᴱ {f = f} ((f⁻¹₁ , [ f⁻¹₁∘f≡id ]) , (f⁻¹₂ , [ f∘f⁻¹₂≡id ])) = (f⁻¹₁ ∘ f ∘ f⁻¹₂) , [ (f ∘ f⁻¹₁ ∘ f ∘ f⁻¹₂ ≡⟨ cong (f ∘_) $ associativity _ _ _ ⟩ f ∘ (f⁻¹₁ ∘ f) ∘ f⁻¹₂ ≡⟨ cong (λ f′ → f ∘ f′ ∘ f⁻¹₂) f⁻¹₁∘f≡id ⟩ f ∘ id ∘ f⁻¹₂ ≡⟨ cong (f ∘_) $ left-identity _ ⟩ f ∘ f⁻¹₂ ≡⟨ f∘f⁻¹₂≡id ⟩∎ id ∎) , ((f⁻¹₁ ∘ f ∘ f⁻¹₂) ∘ f ≡⟨ cong (λ f′ → (f⁻¹₁ ∘ f′) ∘ f) f∘f⁻¹₂≡id ⟩ (f⁻¹₁ ∘ id) ∘ f ≡⟨ cong (_∘ f) $ right-identity _ ⟩ f⁻¹₁ ∘ f ≡⟨ f⁻¹₁∘f≡id ⟩∎ id ∎) ] -- Has-left-inverseᴱ f is contractible (with an erased proof) if f -- has a quasi-inverse (with erased proofs). Contractibleᴱ-Has-left-inverseᴱ : {@0 f : Hom A B} → Has-quasi-inverseᴱ f → Contractibleᴱ (Has-left-inverseᴱ f) Contractibleᴱ-Has-left-inverseᴱ {f = f} (f⁻¹ , [ f∘f⁻¹≡id , f⁻¹∘f≡id ]) = ECP.Contractibleᴱ-⁻¹ᴱ (_∘ f) (_∘ f⁻¹) (λ g → (g ∘ f⁻¹) ∘ f ≡⟨ sym $ associativity _ _ _ ⟩ g ∘ f⁻¹ ∘ f ≡⟨ cong (g ∘_) f⁻¹∘f≡id ⟩ g ∘ id ≡⟨ right-identity _ ⟩∎ g ∎) (λ g → (g ∘ f) ∘ f⁻¹ ≡⟨ sym $ associativity _ _ _ ⟩ g ∘ f ∘ f⁻¹ ≡⟨ cong (g ∘_) f∘f⁻¹≡id ⟩ g ∘ id ≡⟨ right-identity _ ⟩∎ g ∎) id -- Has-right-inverseᴱ f is contractible (with an erased proof) if f -- has a quasi-inverse (with erased proofs). Contractibleᴱ-Has-right-inverseᴱ : {@0 f : Hom A B} → Has-quasi-inverseᴱ f → Contractibleᴱ (Has-right-inverseᴱ f) Contractibleᴱ-Has-right-inverseᴱ {f = f} (f⁻¹ , [ f∘f⁻¹≡id , f⁻¹∘f≡id ]) = ECP.Contractibleᴱ-⁻¹ᴱ (f ∘_) (f⁻¹ ∘_) (λ g → f ∘ f⁻¹ ∘ g ≡⟨ associativity _ _ _ ⟩ (f ∘ f⁻¹) ∘ g ≡⟨ cong (_∘ g) f∘f⁻¹≡id ⟩ id ∘ g ≡⟨ left-identity _ ⟩∎ g ∎) (λ g → f⁻¹ ∘ f ∘ g ≡⟨ associativity _ _ _ ⟩ (f⁻¹ ∘ f) ∘ g ≡⟨ cong (_∘ g) f⁻¹∘f≡id ⟩ id ∘ g ≡⟨ left-identity _ ⟩∎ g ∎) id -- Is-bi-invertibleᴱ f is a proposition (in erased contexts). @0 Is-bi-invertibleᴱ-propositional : (f : Hom A B) → Is-proposition (Is-bi-invertibleᴱ f) Is-bi-invertibleᴱ-propositional f = $⟨ BiM.Is-bi-invertible-propositional proofs f ⟩ Is-proposition (Is-bi-invertible f) ↝⟨ H-level-cong _ 1 Is-bi-invertible≃Is-bi-invertibleᴱ ⦂ (_ → _) ⟩ Is-proposition (Is-bi-invertibleᴱ f) □ -- If Hom A A is a set, where A is the domain of f, then -- Has-quasi-inverseᴱ f is a proposition (in erased contexts). @0 Has-quasi-inverseᴱ-propositional-domain : {f : Hom A B} → Is-set (Hom A A) → Is-proposition (Has-quasi-inverseᴱ f) Has-quasi-inverseᴱ-propositional-domain {f = f} s = $⟨ BiM.Has-quasi-inverse-propositional-domain proofs s ⟩ Is-proposition (Has-quasi-inverse f) ↝⟨ H-level-cong _ 1 Has-quasi-inverse≃Has-quasi-inverseᴱ ⦂ (_ → _) ⟩□ Is-proposition (Has-quasi-inverseᴱ f) □ -- If Hom B B is a set, where B is the codomain of f, then -- Has-quasi-inverseᴱ f is a proposition (in erased contexts). @0 Has-quasi-inverseᴱ-propositional-codomain : {f : Hom A B} → Is-set (Hom B B) → Is-proposition (Has-quasi-inverseᴱ f) Has-quasi-inverseᴱ-propositional-codomain {f = f} s = $⟨ BiM.Has-quasi-inverse-propositional-codomain proofs s ⟩ Is-proposition (Has-quasi-inverse f) ↝⟨ H-level-cong _ 1 Has-quasi-inverse≃Has-quasi-inverseᴱ ⦂ (_ → _) ⟩□ Is-proposition (Has-quasi-inverseᴱ f) □ -- There is a logical equivalence between Has-quasi-inverseᴱ f and -- Is-bi-invertibleᴱ f. Has-quasi-inverseᴱ⇔Is-bi-invertibleᴱ : Has-quasi-inverseᴱ f ⇔ Is-bi-invertibleᴱ f Has-quasi-inverseᴱ⇔Is-bi-invertibleᴱ = record { to = Has-quasi-inverseᴱ→Is-bi-invertibleᴱ _ ; from = Is-bi-invertibleᴱ→Has-quasi-inverseᴱ } -- There is a logical equivalence between A ≅ᴱ B and A ≊ᴱ B. ≅ᴱ⇔≊ᴱ : (A ≅ᴱ B) ⇔ (A ≊ᴱ B) ≅ᴱ⇔≊ᴱ = ∃-cong λ _ → Has-quasi-inverseᴱ⇔Is-bi-invertibleᴱ -- Is-bi-invertibleᴱ and Has-quasi-inverseᴱ are equivalent (with -- erased proofs) for morphisms with domain A for which Hom A A is a -- set. Is-bi-invertibleᴱ≃ᴱHas-quasi-inverseᴱ-domain : {f : Hom A B} → @0 Is-set (Hom A A) → Is-bi-invertibleᴱ f ≃ᴱ Has-quasi-inverseᴱ f Is-bi-invertibleᴱ≃ᴱHas-quasi-inverseᴱ-domain s = EEq.⇔→≃ᴱ (Is-bi-invertibleᴱ-propositional _) (Has-quasi-inverseᴱ-propositional-domain s) (_⇔_.from Has-quasi-inverseᴱ⇔Is-bi-invertibleᴱ) (_⇔_.to Has-quasi-inverseᴱ⇔Is-bi-invertibleᴱ) -- Is-bi-invertibleᴱ and Has-quasi-inverseᴱ are equivalent (with -- erased proofs) for morphisms with codomain B for which Hom B B is -- a set. Is-bi-invertibleᴱ≃ᴱHas-quasi-inverseᴱ-codomain : {f : Hom A B} → @0 Is-set (Hom B B) → Is-bi-invertibleᴱ f ≃ᴱ Has-quasi-inverseᴱ f Is-bi-invertibleᴱ≃ᴱHas-quasi-inverseᴱ-codomain s = EEq.⇔→≃ᴱ (Is-bi-invertibleᴱ-propositional _) (Has-quasi-inverseᴱ-propositional-codomain s) (_⇔_.from Has-quasi-inverseᴱ⇔Is-bi-invertibleᴱ) (_⇔_.to Has-quasi-inverseᴱ⇔Is-bi-invertibleᴱ) -- A ≊ᴱ B and A ≅ᴱ B are equivalent (with erased proofs) if Hom A A -- is a set. ≊ᴱ≃ᴱ≅ᴱ-domain : @0 Is-set (Hom A A) → (A ≊ᴱ B) ≃ᴱ (A ≅ᴱ B) ≊ᴱ≃ᴱ≅ᴱ-domain s = ∃-cong λ _ → Is-bi-invertibleᴱ≃ᴱHas-quasi-inverseᴱ-domain s -- A ≊ᴱ B and A ≅ᴱ B are equivalent (with erased proofs) if Hom B B -- is a set. ≊ᴱ≃ᴱ≅ᴱ-codomain : @0 Is-set (Hom B B) → (A ≊ᴱ B) ≃ᴱ (A ≅ᴱ B) ≊ᴱ≃ᴱ≅ᴱ-codomain s = ∃-cong λ _ → Is-bi-invertibleᴱ≃ᴱHas-quasi-inverseᴱ-codomain s -- An equality characterisation lemma for _≊ᴱ_. @0 equality-characterisation-≊ᴱ : (f g : A ≊ᴱ B) → (f ≡ g) ≃ (proj₁ f ≡ proj₁ g) equality-characterisation-≊ᴱ f g = f ≡ g ↝⟨ inverse $ Eq.≃-≡ (inverse ≊≃≊ᴱ) ⟩ _≃_.from ≊≃≊ᴱ f ≡ _≃_.from ≊≃≊ᴱ g ↝⟨ BiM.equality-characterisation-≊ proofs _ _ ⟩□ proj₁ f ≡ proj₁ g □ -- Two equality characterisation lemmas for _≅ᴱ_. @0 equality-characterisation-≅ᴱ-domain : Is-set (Hom A A) → (f g : A ≅ᴱ B) → (f ≡ g) ≃ (proj₁ f ≡ proj₁ g) equality-characterisation-≅ᴱ-domain s f g = f ≡ g ↝⟨ inverse $ Eq.≃-≡ (inverse ≅≃≅ᴱ) ⟩ _≃_.from ≅≃≅ᴱ f ≡ _≃_.from ≅≃≅ᴱ g ↝⟨ BiM.equality-characterisation-≅-domain proofs s _ _ ⟩□ proj₁ f ≡ proj₁ g □ @0 equality-characterisation-≅ᴱ-codomain : Is-set (Hom B B) → (f g : A ≅ᴱ B) → (f ≡ g) ≃ (proj₁ f ≡ proj₁ g) equality-characterisation-≅ᴱ-codomain s f g = f ≡ g ↝⟨ inverse $ Eq.≃-≡ (inverse ≅≃≅ᴱ) ⟩ _≃_.from ≅≃≅ᴱ f ≡ _≃_.from ≅≃≅ᴱ g ↝⟨ BiM.equality-characterisation-≅-codomain proofs s _ _ ⟩□ proj₁ f ≡ proj₁ g □ -- If f : Hom A B has a quasi-inverse, then Has-quasi-inverseᴱ f is -- equivalent to id ≡ id (in erased contexts), where id stands for -- either the identity at A or at B. @0 Has-quasi-inverseᴱ≃id≡id-domain : {f : Hom A B} → Has-quasi-inverseᴱ f → Has-quasi-inverseᴱ f ≃ (id ≡ id {A = A}) Has-quasi-inverseᴱ≃id≡id-domain {f = f} q-inv = Has-quasi-inverseᴱ f ↝⟨ inverse Has-quasi-inverse≃Has-quasi-inverseᴱ ⟩ Has-quasi-inverse f ↝⟨ BiM.Has-quasi-inverse≃id≡id-domain proofs (_≃_.from Has-quasi-inverse≃Has-quasi-inverseᴱ q-inv) ⟩□ id ≡ id □ @0 Has-quasi-inverseᴱ≃id≡id-codomain : {f : Hom A B} → Has-quasi-inverseᴱ f → Has-quasi-inverseᴱ f ≃ (id ≡ id {A = B}) Has-quasi-inverseᴱ≃id≡id-codomain {f = f} q-inv = Has-quasi-inverseᴱ f ↝⟨ inverse Has-quasi-inverse≃Has-quasi-inverseᴱ ⟩ Has-quasi-inverse f ↝⟨ BiM.Has-quasi-inverse≃id≡id-codomain proofs (_≃_.from Has-quasi-inverse≃Has-quasi-inverseᴱ q-inv) ⟩□ id ≡ id □
{ "alphanum_fraction": 0.5761480466, "avg_line_length": 36.3840399002, "ext": "agda", "hexsha": "8a99ecf5bb30ba78930c4d0631de8a2abd72ea6a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Bi-invertibility/Erased.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Bi-invertibility/Erased.agda", "max_line_length": 129, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Bi-invertibility/Erased.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 6320, "size": 14590 }
------------------------------------------------------------------------------ -- The gcd is divisible by any common divisor (using equational reasoning) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Program.GCD.Partial.DivisibleI where open import FOTC.Base open import FOTC.Base.PropertiesI open import FOTC.Data.Nat open import FOTC.Data.Nat.Divisibility.NotBy0 open import FOTC.Data.Nat.Divisibility.NotBy0.PropertiesI open import FOTC.Data.Nat.Induction.NonAcc.LexicographicI open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI open import FOTC.Data.Nat.Inequalities.PropertiesI open import FOTC.Data.Nat.PropertiesI open import FOTC.Program.GCD.Partial.ConversionRulesI open import FOTC.Program.GCD.Partial.Definitions open import FOTC.Program.GCD.Partial.GCD ------------------------------------------------------------------------------ -- The gcd 0 (succ n) is Divisible. gcd-0S-Divisible : ∀ {n} → N n → Divisible zero (succ₁ n) (gcd zero (succ₁ n)) gcd-0S-Divisible {n} _ c _ (c∣0 , c∣Sn) = subst (_∣_ c) (sym (gcd-0S n)) c∣Sn ------------------------------------------------------------------------------ -- The gcd (succ₁ n) 0 is Divisible. gcd-S0-Divisible : ∀ {n} → N n → Divisible (succ₁ n) zero (gcd (succ₁ n) zero) gcd-S0-Divisible {n} _ c _ (c∣Sn , c∣0) = subst (_∣_ c) (sym (gcd-S0 n)) c∣Sn ------------------------------------------------------------------------------ -- The gcd (succ₁ m) (succ₁ n) when succ₁ m > succ₁ n is Divisible. gcd-S>S-Divisible : ∀ {m n} → N m → N n → (Divisible (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n))) → succ₁ m > succ₁ n → Divisible (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n)) gcd-S>S-Divisible {m} {n} Nm Nn acc Sm>Sn c Nc (c∣Sm , c∣Sn) = {- Proof: ----------------- (Hip.) c | m c | n ---------------------- (Thm.) -------- (Hip.) c | (m ∸ n) c | n ------------------------------------------ (IH) c | gcd m (n ∸ m) m > n --------------------------------------------------- (gcd def.) c | gcd m n -} subst (_∣_ c) (sym (gcd-S>S m n Sm>Sn)) (acc c Nc (c|Sm-Sn , c∣Sn)) where c|Sm-Sn : c ∣ succ₁ m ∸ succ₁ n c|Sm-Sn = x∣y→x∣z→x∣y∸z Nc (nsucc Nm) (nsucc Nn) c∣Sm c∣Sn ------------------------------------------------------------------------------ -- The gcd (succ₁ m) (succ₁ n) when succ₁ m ≯ succ₁ n is Divisible. gcd-S≯S-Divisible : ∀ {m n} → N m → N n → (Divisible (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m))) → succ₁ m ≯ succ₁ n → Divisible (succ₁ m) (succ₁ n) (gcd (succ₁ m) (succ₁ n)) gcd-S≯S-Divisible {m} {n} Nm Nn acc Sm≯Sn c Nc (c∣Sm , c∣Sn) = {- Proof ----------------- (Hip.) c | m c | n -------- (Hip.) ---------------------- (Thm.) c | m c | n ∸ m ------------------------------------------ (IH) c | gcd m (n ∸ m) m ≯ n --------------------------------------------------- (gcd def.) c | gcd m n -} subst (_∣_ c) (sym (gcd-S≯S m n Sm≯Sn)) (acc c Nc (c∣Sm , c|Sn-Sm)) where c|Sn-Sm : c ∣ succ₁ n ∸ succ₁ m c|Sn-Sm = x∣y→x∣z→x∣y∸z Nc (nsucc Nn) (nsucc Nm) c∣Sn c∣Sm ------------------------------------------------------------------------------ -- The gcd m n when m > n is Divisible. gcd-x>y-Divisible : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → x≢0≢y o p → Divisible o p (gcd o p)) → m > n → x≢0≢y m n → Divisible m n (gcd m n) gcd-x>y-Divisible nzero nzero _ _ ¬0≡0∧0≡0 _ _ = ⊥-elim (¬0≡0∧0≡0 (refl , refl)) gcd-x>y-Divisible nzero (nsucc Nn) _ 0>Sn _ _ _ = ⊥-elim (0>x→⊥ (nsucc Nn) 0>Sn) gcd-x>y-Divisible (nsucc Nm) nzero _ _ _ c Nc = gcd-S0-Divisible Nm c Nc gcd-x>y-Divisible (nsucc {m} Nm) (nsucc {n} Nn) ah Sm>Sn _ c Nc = gcd-S>S-Divisible Nm Nn ih Sm>Sn c Nc where -- Inductive hypothesis. ih : Divisible (succ₁ m ∸ succ₁ n) (succ₁ n) (gcd (succ₁ m ∸ succ₁ n) (succ₁ n)) ih = ah {succ₁ m ∸ succ₁ n} {succ₁ n} (∸-N (nsucc Nm) (nsucc Nn)) (nsucc Nn) ([Sx∸Sy,Sy]<[Sx,Sy] Nm Nn) (λ p → ⊥-elim (S≢0 (∧-proj₂ p))) ------------------------------------------------------------------------------ -- The gcd m n when m ≯ n is Divisible. gcd-x≯y-Divisible : ∀ {m n} → N m → N n → (∀ {o p} → N o → N p → Lexi o p m n → x≢0≢y o p → Divisible o p (gcd o p)) → m ≯ n → x≢0≢y m n → Divisible m n (gcd m n) gcd-x≯y-Divisible nzero nzero _ _ h _ _ = ⊥-elim (h (refl , refl)) gcd-x≯y-Divisible nzero (nsucc Nn) _ _ _ c Nc = gcd-0S-Divisible Nn c Nc gcd-x≯y-Divisible (nsucc _) nzero _ Sm≯0 _ _ _ = ⊥-elim (S≯0→⊥ Sm≯0) gcd-x≯y-Divisible (nsucc {m} Nm) (nsucc {n} Nn) ah Sm≯Sn _ c Nc = gcd-S≯S-Divisible Nm Nn ih Sm≯Sn c Nc where -- Inductive hypothesis. ih : Divisible (succ₁ m) (succ₁ n ∸ succ₁ m) (gcd (succ₁ m) (succ₁ n ∸ succ₁ m)) ih = ah {succ₁ m} {succ₁ n ∸ succ₁ m} (nsucc Nm) (∸-N (nsucc Nn) (nsucc Nm)) ([Sx,Sy∸Sx]<[Sx,Sy] Nm Nn) (λ p → ⊥-elim (S≢0 (∧-proj₁ p))) ------------------------------------------------------------------------------ -- The gcd is Divisible. gcdDivisible : ∀ {m n} → N m → N n → x≢0≢y m n → Divisible m n (gcd m n) gcdDivisible = Lexi-wfind A h where A : D → D → Set A i j = x≢0≢y i j → Divisible i j (gcd i j) h : ∀ {i j} → N i → N j → (∀ {k l} → N k → N l → Lexi k l i j → A k l) → A i j h Ni Nj ah = case (gcd-x>y-Divisible Ni Nj ah) (gcd-x≯y-Divisible Ni Nj ah) (x>y∨x≯y Ni Nj)
{ "alphanum_fraction": 0.4493406777, "avg_line_length": 41.0342465753, "ext": "agda", "hexsha": "fefc9d4fca73a762db765be72e21bce082bf263f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/GCD/Partial/DivisibleI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/GCD/Partial/DivisibleI.agda", "max_line_length": 82, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/GCD/Partial/DivisibleI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 2139, "size": 5991 }
{-# OPTIONS --without-K #-} module Control.Category where open import Level using (suc; _⊔_) open import Relation.Binary hiding (_⇒_) open import Relation.Binary.PropositionalEquality -- Module HomSet provides notation A ⇒ B for the Set of morphisms -- from between objects A and B and names _≈_ and ≈-refl/sym/trans -- for the equality of morphisms. module HomSet {o h e} {Obj : Set o} (Hom : Obj → Obj → Setoid h e) where _⇒_ : (A B : Obj) → Set h A ⇒ B = Setoid.Carrier (Hom A B) module _ {A B : Obj} where open Setoid (Hom A B) public using (_≈_) renaming ( isEquivalence to ≈-equiv ; refl to ≈-refl ; sym to ≈-sym ; trans to ≈-trans ) {- _≈_ : {A B : Obj} → Rel (A ⇒ B) e _≈_ {A = A}{B = B} = Setoid._≈_ (Hom A B) ≈-equiv : {A B : Obj} → IsEquivalence (Setoid._≈_ (Hom A B)) ≈-equiv {A = A}{B = B} = Setoid.isEquivalence (Hom A B) ≈-refl : {A B : Obj} → Reflexive _≈_ ≈-refl {A = A}{B = B} = Setoid.refl (Hom A B) ≈-sym : {A B : Obj} → Symmetric _≈_ ≈-sym {A = A}{B = B} = Setoid.sym (Hom A B) ≈-trans : {A B : Obj} → Transitive _≈_ ≈-trans {A = A}{B = B} = Setoid.trans (Hom A B) -} -- Category operations: identity and composition. -- Module T-CategoryOps Hom provides the types of -- identity and composition (forward and backward). module T-CategoryOps {o h e} {Obj : Set o} (Hom : Obj → Obj → Setoid h e) where open HomSet Hom T-id = ∀ {A} → A ⇒ A T-⟫ = ∀ {A B C} (f : A ⇒ B) (g : B ⇒ C) → A ⇒ C T-∘ = ∀ {A B C} (g : B ⇒ C) (f : A ⇒ B) → A ⇒ C -- Record CategoryOps Hom can be instantiated to implement -- identity and composition for category Hom. record CategoryOps {o h e} {Obj : Set o} (Hom : Obj → Obj → Setoid h e) : Set (o ⊔ h ⊔ e) where open T-CategoryOps Hom infixl 9 _⟫_ infixr 9 _∘_ field id : T-id _⟫_ : T-⟫ _∘_ : T-∘ g ∘ f = f ⟫ g -- Category laws: left and right identity and composition. -- Module T-CategoryLaws ops provides the types of the laws -- for the category operations ops. module T-CategoryLaws {o h e} {Obj : Set o} {Hom : Obj → Obj → Setoid h e} (ops : CategoryOps Hom) where open HomSet Hom public open T-CategoryOps Hom public open CategoryOps ops public T-id-first = ∀ {A B} {g : A ⇒ B} → (id ⟫ g) ≈ g T-id-last = ∀ {A B} {f : A ⇒ B} → (f ⟫ id) ≈ f T-∘-assoc = ∀ {A B C D} (f : A ⇒ B) {g : B ⇒ C} {h : C ⇒ D} → ((f ⟫ g) ⟫ h) ≈ (f ⟫ (g ⟫ h)) T-∘-cong = ∀ {A B C} {f f′ : A ⇒ B} {g g′ : B ⇒ C} → f ≈ f′ → g ≈ g′ → (f ⟫ g) ≈ (f′ ⟫ g′) -- Record CategoryLaws ops can be instantiated to prove the laws of the -- category operations (identity and compositions). record CategoryLaws {o h e} {Obj : Set o} {Hom : Obj → Obj → Setoid h e} (ops : CategoryOps Hom) : Set (o ⊔ h ⊔ e) where open T-CategoryLaws ops field id-first : T-id-first id-last : T-id-last ∘-assoc : T-∘-assoc ∘-cong : T-∘-cong -- Record IsCategory Hom contains the data (operations and laws) to make -- Hom a category. record IsCategory {o h e} {Obj : Set o} (Hom : Obj → Obj → Setoid h e) : Set (o ⊔ h ⊔ e) where field ops : CategoryOps Hom laws : CategoryLaws ops open HomSet Hom public open CategoryOps ops public open CategoryLaws laws public -- The category: packaging objects, morphisms, and laws. record Category o h e : Set (suc (o ⊔ h ⊔ e)) where field {Obj} : Set o Hom : Obj → Obj → Setoid h e isCategory : IsCategory Hom open IsCategory isCategory public -- Initial object record IsInitial {o h e} {Obj : Set o} (Hom : Obj → Obj → Setoid h e) (Initial : Obj) : Set (h ⊔ o ⊔ e) where open HomSet Hom open T-CategoryOps Hom field initial : ∀ {A} → Initial ⇒ A initial-universal : ∀ {A} {f : Initial ⇒ A} → f ≈ initial -- Terminal object record IsFinal {o h e} {Obj : Set o} (Hom : Obj → Obj → Setoid h e) (Final : Obj) : Set (h ⊔ o ⊔ e) where open HomSet Hom open T-CategoryOps Hom field final : ∀ {A} → A ⇒ Final final-universal : ∀ {A} {f : A ⇒ Final} → f ≈ final
{ "alphanum_fraction": 0.5593100189, "avg_line_length": 27.3032258065, "ext": "agda", "hexsha": "4c76b8a0d73f36d1be895710a35e34ec0a687792", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andreasabel/cubical", "max_forks_repo_path": "src/Control/Category.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andreasabel/cubical", "max_issues_repo_path": "src/Control/Category.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andreasabel/cubical", "max_stars_repo_path": "src/Control/Category.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1526, "size": 4232 }
module Cats.Category.Cat.Facts.Initial where open import Cats.Category open import Cats.Category.Cat using (Cat) open import Cats.Category.Zero using (Zero) open import Cats.Functor module _ {lo la l≈} where open Category (Cat lo la l≈) Zero-Initial : IsInitial (Zero lo la l≈) Zero-Initial X = ∃!-intro f _ f-Unique where f : Functor (Zero lo la l≈) X f = record { fobj = λ() ; fmap = λ{} ; fmap-resp = λ{} ; fmap-id = λ{} ; fmap-∘ = λ{} } f-Unique : IsUnique f f-Unique f′ = record { iso = λ{} ; forth-natural = λ{} } instance hasInitial : ∀ lo la l≈ → HasInitial (Cat lo la l≈) hasInitial lo la l≈ = record { Zero = Zero lo la l≈ ; isInitial = Zero-Initial }
{ "alphanum_fraction": 0.5434516524, "avg_line_length": 20.9487179487, "ext": "agda", "hexsha": "a63d583440bba8cbbf94b0e2dbef794b54f390a3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Cat/Facts/Initial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Cat/Facts/Initial.agda", "max_line_length": 53, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Cat/Facts/Initial.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 246, "size": 817 }
module Issue361 where data _==_ {A : Set}(a : A) : A -> Set where refl : a == a postulate A : Set a b : A F : A -> Set record R (a : A) : Set where constructor c field p : A beta : (x : A) -> R.p {b} (c {b} x) == x beta x = refl lemma : (r : R a) -> R.p {b} (c {b} (R.p {a} r)) == R.p {a} r lemma r = beta (R.p {a} r)
{ "alphanum_fraction": 0.4692082111, "avg_line_length": 15.5, "ext": "agda", "hexsha": "c6a429a04974a12923b4819ee26199c9651a86cc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue361.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue361.agda", "max_line_length": 61, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue361.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 151, "size": 341 }
open import lib module rtn (gratr2-nt : Set) where gratr2-rule : Set gratr2-rule = maybe string × maybe string × maybe gratr2-nt × 𝕃 (gratr2-nt ⊎ char) record gratr2-rtn : Set where field start : gratr2-nt _eq_ : gratr2-nt → gratr2-nt → 𝔹 gratr2-start : gratr2-nt → 𝕃 gratr2-rule gratr2-return : maybe gratr2-nt → 𝕃 gratr2-rule
{ "alphanum_fraction": 0.6676056338, "avg_line_length": 25.3571428571, "ext": "agda", "hexsha": "06bdb42614b559381ad9e36f7509664157fe9866", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/rtn.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/rtn.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/rtn.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 140, "size": 355 }
------------------------------------------------------------------------ -- Definitions of combinatorial functions on integers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --exact-split #-} module Math.Combinatorics.IntegerFunction where open import Data.Nat hiding (_*_) open import Data.Integer import Math.Combinatorics.Function as ℕF [-1]^_ : ℕ → ℤ [-1]^ 0 = + 1 [-1]^ 1 = - (+ 1) [-1]^ ℕ.suc (ℕ.suc n) = [-1]^ n ------------------------------------------------------------------------ -- Permutation, Falling factorial -- P n k = n * (n - 1) * ... * (n - k + 1) (k terms) P : ℤ → ℕ → ℤ P (+ n) k = + (ℕF.P n k) P (-[1+ n ]) k = [-1]^ k * (+ ℕF.Poch (ℕ.suc n) k)
{ "alphanum_fraction": 0.3807040417, "avg_line_length": 29.5, "ext": "agda", "hexsha": "6df1e1b7897459447b00fd2e3c749a92b28c9d57", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-combinatorics", "max_forks_repo_path": "Math/Combinatorics/IntegerFunction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-combinatorics", "max_issues_repo_path": "Math/Combinatorics/IntegerFunction.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "9fafa35c940ff7b893a80120f6a1f22b0a3917b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-combinatorics", "max_stars_repo_path": "Math/Combinatorics/IntegerFunction.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-25T07:25:27.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-25T08:24:15.000Z", "num_tokens": 204, "size": 767 }
open import Agda.Builtin.Unit open import Agda.Builtin.List open import Agda.Builtin.Reflection id : {A : Set} → A → A id x = x macro tac : Term → TC ⊤ tac hole = unify hole (def (quote id) (arg (arg-info visible (modality relevant quantity-ω)) (var 0 []) ∷ [])) test : {A : Set} → A → A test x = {!tac!}
{ "alphanum_fraction": 0.5549295775, "avg_line_length": 18.6842105263, "ext": "agda", "hexsha": "d8513fda032d39314b9a6f40c4e19d805d0b8aa7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/interaction/Issue3486.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/interaction/Issue3486.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/interaction/Issue3486.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 114, "size": 355 }
{-# OPTIONS --safe #-} module Squaring where open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.Product open import Data.Bool hiding (_≤_;_<_) open import Data.Nat.Properties open ≡-Reasoning div-mod2 : ℕ → ℕ × Bool div-mod2 0 = 0 , false div-mod2 (suc 0) = 0 , true div-mod2 (suc (suc n)) = let q , r = div-mod2 n in suc q , r -- The first argument (k) helps Agda to prove -- that the function terminates pow-sqr-aux : ℕ → ℕ → ℕ → ℕ pow-sqr-aux 0 _ _ = 1 pow-sqr-aux _ _ 0 = 1 pow-sqr-aux (suc k) b e with div-mod2 e ... | e' , false = pow-sqr-aux k (b * b) e' ... | e' , true = b * pow-sqr-aux k (b * b) e' pow-sqr : ℕ → ℕ → ℕ pow-sqr b e = pow-sqr-aux e b e div-mod2-spec : ∀ n → let q , r = div-mod2 n in 2 * q + (if r then 1 else 0) ≡ n div-mod2-spec 0 = refl div-mod2-spec 1 = refl div-mod2-spec (suc (suc n)) with div-mod2 n | div-mod2-spec n ... | q , r | eq rewrite +-suc q (q + 0) | eq = refl div-mod2-lt : ∀ n → 0 < n → proj₁ (div-mod2 n) < n div-mod2-lt 0 lt = lt div-mod2-lt 1 lt = lt div-mod2-lt 2 lt = s≤s (s≤s z≤n) div-mod2-lt (suc (suc (suc n))) lt with div-mod2 (suc n) | div-mod2-lt (suc n) (s≤s z≤n) ... | q , r | ih = ≤-step (s≤s ih) pow-lemma : ∀ b e → (b * b) ^ e ≡ b ^ (2 * e) pow-lemma b e = begin (b * b) ^ e ≡⟨ cong (λ t → (b * t) ^ e) (sym (*-identityʳ b)) ⟩ (b ^ 2) ^ e ≡⟨ ^-*-assoc b 2 e ⟩ b ^ (2 * e) ∎ pow-sqr-lemma : ∀ k b e → e ≤ k → pow-sqr-aux k b e ≡ b ^ e pow-sqr-lemma 0 _ 0 _ = refl pow-sqr-lemma (suc k) _ 0 _ = refl pow-sqr-lemma (suc k) b (suc e) (s≤s le) with div-mod2 (suc e) | div-mod2-spec (suc e) | div-mod2-lt (suc e) (s≤s z≤n) ... | e' , false | eq | lt = begin pow-sqr-aux k (b * b) e' ≡⟨ pow-sqr-lemma k (b * b) e' (≤-trans (≤-pred lt) le) ⟩ (b * b) ^ e' ≡⟨ pow-lemma b e' ⟩ b ^ (2 * e') ≡⟨ cong (b ^_) (trans (sym (+-identityʳ (e' + (e' + 0)))) eq) ⟩ b ^ suc e ∎ ... | e' , true | eq | lt = cong (b *_) (begin pow-sqr-aux k (b * b) e' ≡⟨ pow-sqr-lemma k (b * b) e' (≤-trans (≤-pred lt) le) ⟩ (b * b) ^ e' ≡⟨ pow-lemma b e' ⟩ b ^ (2 * e') ≡⟨ cong (b ^_) (suc-injective (trans (+-comm 1 _) eq)) ⟩ b ^ e ∎)
{ "alphanum_fraction": 0.541314554, "avg_line_length": 32.7692307692, "ext": "agda", "hexsha": "0e79fa7c05b86b73e4be6e69d150ee04912055a0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z", "max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Brethland/LEARNING-STUFF", "max_forks_repo_path": "Agda/Squaring.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Brethland/LEARNING-STUFF", "max_issues_repo_path": "Agda/Squaring.agda", "max_line_length": 83, "max_stars_count": 2, "max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Brethland/LEARNING-STUFF", "max_stars_repo_path": "Agda/Squaring.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z", "num_tokens": 993, "size": 2130 }
module TemporalOps.StrongMonad where open import CategoryTheory.Instances.Reactive open import CategoryTheory.Functor open import CategoryTheory.Monad open import CategoryTheory.Comonad open import CategoryTheory.NatTrans open import CategoryTheory.BCCCs open import CategoryTheory.CartesianStrength open import TemporalOps.Next open import TemporalOps.Delay open import TemporalOps.Diamond open import TemporalOps.Diamond.Join open import TemporalOps.Box open import TemporalOps.Common.Other open import TemporalOps.Common.Compare open import TemporalOps.Common.Rewriting open import TemporalOps.OtherOps open import Relation.Binary.PropositionalEquality as ≡ hiding (inspect) open import Data.Product open import Data.Sum open import Data.Nat hiding (_*_) open import Data.Nat.Properties using (+-identityʳ ; +-comm ; +-suc ; +-assoc) open import Holes.Term using (⌞_⌟) open import Holes.Cong.Propositional open Monad M-◇ open Comonad W-□ private module F-◇ = Functor F-◇ private module F-□ = Functor F-□ open ≡.≡-Reasoning ◇-□-Strong : WStrongMonad ℝeactive-cart M-◇ W-cart-□ ◇-□-Strong = record { st = st-◇ ; st-nat₁ = st-nat₁-◇ ; st-nat₂ = st-nat₂-◇ ; st-λ = st-λ-◇ ; st-α = st-α-◇ ; st-η = refl ; st-μ = λ{A}{B}{n}{a} -> st-μ-◇ {A}{B}{n}{a} } where open Functor F-◇ renaming (fmap to ◇-f ; omap to ◇-o) open Functor F-□ renaming (fmap to □-f ; omap to □-o) private module ▹ᵏ-C k = CartesianFunctor (F-cart-delay k) private module ▹ᵏ-F k = Functor (F-delay k) private module ▹-F = Functor F-▹ private module ▹-C = CartesianFunctor (F-cart-▹) private module □-C = CartesianFunctor (F-cart-□) private module □-CW = CartesianComonad (W-cart-□) private module □-▹ᵏ k = _⟹_ (□-to-▹ᵏ k) st-◇ : ∀(A B : τ) -> □ A ⊗ ◇ B ⇴ ◇ (□ A ⊗ B) st-◇ A B n (□A , (k , a)) = k , ▹ᵏ-C.m k (□ A) B n (□-▹ᵏ.at k (□ A) n (δ.at A k □A) , a) st-nat₁-◇ : ∀{A B C : τ} (f : A ⇴ B) -> ◇-f (□-f f * id) ∘ st-◇ A C ≈ st-◇ B C ∘ □-f f * id st-nat₁-◇ {A} {B} {C} f {n} {□A , k , a} rewrite ▹ᵏ-C.m-nat₁ k (□-f f) {n} {(□-▹ᵏ.at k (□ A) n (δ.at A k □A)) , a} | (□-▹ᵏ.nat-cond k {□ A} {□ B} {□-f f} {n} {δ.at A k □A}) = refl st-nat₂-◇ : ∀{A B C : τ} (f : A ⇴ B) -> ◇-f (id * f) ∘ st-◇ C A ≈ st-◇ C B ∘ id * ◇-f f st-nat₂-◇ {A} {B} {C} f {n} {□C , k , a} rewrite ▹ᵏ-C.m-nat₂ k f {n} {□-▹ᵏ.at k (□ C) n (δ.at C k □C) , a} = refl st-λ-◇ : ∀{A} -> ◇-f π₂ ∘ st-◇ ⊤ A ≈ π₂ st-λ-◇ {A} {n} {□⊤ , (k , a)} = begin ◇-f π₂ n (st-◇ ⊤ A n (□⊤ , (k , a))) ≡⟨⟩ ◇-f π₂ n (k , ▹ᵏ-C.m k (□ ⊤) A n (□-▹ᵏ.at k (□ ⊤) n (δ.at ⊤ n □⊤) , a)) ≡⟨⟩ k , ▹ᵏ-F.fmap k π₂ n (▹ᵏ-C.m k (□ ⊤) A n (□-▹ᵏ.at k (□ ⊤) n (δ.at ⊤ n □⊤) , a)) ≡⟨ cong (λ x -> k , x) lemma ⟩ k , a ∎ where lemma : ▹ᵏ-F.fmap k π₂ ∘ ▹ᵏ-C.m k (□ ⊤) A ≈ π₂ lemma {n} {t , b} = begin ▹ᵏ-F.fmap k π₂ n (▹ᵏ-C.m k (□ ⊤) A n (t , b)) ≡⟨⟩ ▹ᵏ-F.fmap k π₂ n (▹ᵏ-C.m k (□ ⊤) A n (⌞ t ⌟ , b)) ≡⟨ cong! (▹ᵏ-F.fmap-id k {□ ⊤}{n}{t}) ⟩ ▹ᵏ-F.fmap k π₂ n (▹ᵏ-C.m k (□ ⊤) A n (▹ᵏ-F.fmap k ⌞ id ⌟ n t , b)) ≡⟨⟩ ▹ᵏ-F.fmap k π₂ n (▹ᵏ-C.m k (□ ⊤) A n (⌞ ▹ᵏ-F.fmap k (u ∘ ε.at ⊤) n t ⌟ , b)) ≡⟨ cong! (▹ᵏ-F.fmap-∘ k) ⟩ ▹ᵏ-F.fmap k π₂ n (▹ᵏ-C.m k (□ ⊤) A n (▹ᵏ-F.fmap k u n (▹ᵏ-F.fmap k (ε.at ⊤) n t) , b)) ≡⟨ cong (▹ᵏ-F.fmap k π₂ n) (sym (▹ᵏ-C.m-nat₁ k u)) ⟩ ▹ᵏ-F.fmap k π₂ n (▹ᵏ-F.fmap k (u * id) n (▹ᵏ-C.m k ⊤ A n (▹ᵏ-F.fmap k (ε.at ⊤) n t , b))) ≡⟨ sym (▹ᵏ-F.fmap-∘ k) ⟩ ▹ᵏ-F.fmap k (π₂ ∘ u * id) n (▹ᵏ-C.m k ⊤ A n (▹ᵏ-F.fmap k (ε.at ⊤) n t , b)) ≡⟨⟩ ▹ᵏ-F.fmap k π₂ n (▹ᵏ-C.m k ⊤ A n (⌞ ▹ᵏ-F.fmap k (ε.at ⊤) n t ⌟ , b)) ≡⟨ cong! (⊤-eq k n t) ⟩ ▹ᵏ-F.fmap k π₂ n (▹ᵏ-C.m k ⊤ A n (▹ᵏ-C.u k n top.tt , b)) ≡⟨ ▹ᵏ-C.unital-left k ⟩ b ∎ where ⊤-eq : ∀ k n t -> ▹ᵏ-F.fmap k (ε.at ⊤) n t ≡ ▹ᵏ-C.u k n top.tt ⊤-eq zero n t = refl ⊤-eq (suc k) zero t = refl ⊤-eq (suc k) (suc n) t = ⊤-eq k n t st-α-◇ : ∀{A B C : τ} -> st-◇ A (□ B ⊗ C) ∘ id * st-◇ B C ∘ assoc-right ∘ m⁻¹ A B * id ≈ ◇-f (assoc-right ∘ m⁻¹ A B * id) ∘ st-◇ (A ⊗ B) C st-α-◇ {A} {B} {C} {n} {□A⊗B , (k , a)} = begin st-◇ A (□ B ⊗ C) n (□-f π₁ n □A⊗B , st-◇ B C n (□-f π₂ n □A⊗B , (k , a))) ≡⟨ cong (λ x → k , x) ( begin ▹ᵏ-C.m k (□ A) (□ B ⊗ C) n ( □-▹ᵏ.at k (□ A) n (δ.at A k (□-f π₁ n □A⊗B)) , ▹ᵏ-C.m k (□ B) C n (□-▹ᵏ.at k (□ B) n (δ.at B n (□-f π₂ n □A⊗B)) , a)) ≡⟨⟩ -- Naturality and definitional equality ▹ᵏ-C.m k (□ A) (□ B ⊗ C) n ((id {delay □ A by k} * ▹ᵏ-C.m k (□ B) C) n (assoc-right {delay □ A by k} {delay □ B by k} {delay C by k} n (((□-▹ᵏ.at k (□ A) * □-▹ᵏ.at k (□ B)) n ((δ.at A * δ.at B) n (m⁻¹ A B n □A⊗B))) , a))) ≡⟨ ▹ᵏ-C.associative k ⟩ ▹ᵏ-F.fmap k assoc-right n (▹ᵏ-C.m k (□ A ⊗ □ B) C n ( ⌞ ▹ᵏ-C.m k (□ A) (□ B) n ((□-▹ᵏ.at k (□ A) * □-▹ᵏ.at k (□ B)) n ((δ.at A * δ.at B) n (m⁻¹ A B n □A⊗B))) ⌟ , a)) ≡⟨ cong! (lemma k) ⟩ ▹ᵏ-F.fmap k assoc-right n (▹ᵏ-C.m k (□ A ⊗ □ B) C n ( □-▹ᵏ.at k (□ A ⊗ □ B) n (□-C.m (□ A) (□ B) n ((δ.at A * δ.at B) n (m⁻¹ A B n □A⊗B))) , a)) ≡⟨⟩ ▹ᵏ-F.fmap k assoc-right n (▹ᵏ-C.m k (□ A ⊗ □ B) C n ( ⌞ □-▹ᵏ.at k (□ A ⊗ □ B) n (□-f (m⁻¹ A B) n (δ.at (A ⊗ B) k □A⊗B)) ⌟ , a)) ≡⟨ cong! (□-▹ᵏ.nat-cond k {f = m⁻¹ A B} {n} {δ.at (A ⊗ B) k □A⊗B}) ⟩ ▹ᵏ-F.fmap k assoc-right n ⌞ (▹ᵏ-C.m k (□ A ⊗ □ B) C n (▹ᵏ-F.fmap k (m⁻¹ A B) n (□-▹ᵏ.at k (□ (A ⊗ B)) n (δ.at (A ⊗ B) k □A⊗B)) , a)) ⌟ ≡⟨ cong! (▹ᵏ-C.m-nat₁ k (m⁻¹ A B) {n} {(□-▹ᵏ.at k (□ (A ⊗ B)) n (δ.at (A ⊗ B) k □A⊗B)) , a}) ⟩ ▹ᵏ-F.fmap k assoc-right n (▹ᵏ-F.fmap k (m⁻¹ A B * id) n (▹ᵏ-C.m k (□ (A ⊗ B)) C n (□-▹ᵏ.at k (□ (A ⊗ B)) n (δ.at (A ⊗ B) k □A⊗B) , a))) ≡⟨ sym (▹ᵏ-F.fmap-∘ k) ⟩ ▹ᵏ-F.fmap k (assoc-right ∘ m⁻¹ A B * id) n (▹ᵏ-C.m k (□ (A ⊗ B)) C n (□-▹ᵏ.at k (□ (A ⊗ B)) n (δ.at (A ⊗ B) k □A⊗B) , a)) ≡⟨⟩ ▹ᵏ-F.fmap k (assoc-right ∘ m⁻¹ A B * id) n (▹ᵏ-C.m k (□ (A ⊗ B)) C n (□-▹ᵏ.at k (□ (A ⊗ B)) n (δ.at (A ⊗ B) k □A⊗B) , a)) ∎ ) ⟩ ◇-f (assoc-right ∘ m⁻¹ A B * id) n (st-◇ (A ⊗ B) C n (□A⊗B , (k , a))) ∎ where lemma : ∀ k -> ▹ᵏ-C.m k (□ A) (□ B) ∘ □-▹ᵏ.at k (□ A) * □-▹ᵏ.at k (□ B) ≈ □-▹ᵏ.at k (□ A ⊗ □ B) ∘ □-C.m (□ A) (□ B) lemma zero = refl lemma (suc k) {zero} {□□A , □□B} = refl lemma (suc k) {suc n} {□□A , □□B} = lemma k st-μ-◇ : ∀{A B : τ} -> μ.at (□ A ⊗ B) ∘ ◇-f (st-◇ A B) ∘ st-◇ A (◇ B) ≈ st-◇ A B ∘ (id * μ.at B) st-μ-◇ {A} {B} {n} {□A , (k , a)} with inspect (compareLeq k n) st-μ-◇ {A} {B} {.(k + l)} {□A , k , a} | snd==[ .k + l ] with≡ pf = begin μ.at (□ A ⊗ B) (k + l) (◇-f (st-◇ A B) (k + l) (st-◇ A (◇ B) (k + l) (□A , (k , a)))) ≡⟨⟩ μ-compare (□ A ⊗ B) (k + l) k (▹ᵏ-F.fmap k (st-◇ A B) (k + l) (▹ᵏ-C.m k (□ A) (◇ B) (k + l) (□-▹ᵏ.at k (□ A) (k + l) (δ.at A (k + l) □A) , a))) (⌞ compareLeq k (k + l) ⌟) ≡⟨ cong! pf ⟩ μ-compare (□ A ⊗ B) (k + l) k (▹ᵏ-F.fmap k (st-◇ A B) (k + l) (▹ᵏ-C.m k (□ A) (◇ B) (k + l) (□-▹ᵏ.at k (□ A) (k + l) (δ.at A (k + l) □A) , a))) (snd==[ k + l ]) ≡⟨⟩ μ-shift k l (rew (delay-+-left0 k l) (▹ᵏ-F.fmap k (st-◇ A B) (k + l) (▹ᵏ-C.m k (□ A) (◇ B) (k + l) ( □-▹ᵏ.at k (□ A) (k + l) (δ.at A (k + l) □A) , a)))) ≡⟨ cong (μ-shift k l) (fmap-delay-+-n+0 k l) ⟩ μ-shift k l (st-◇ A B l (rew (delay-+-left0 k l) (▹ᵏ-C.m k (□ A) (◇ B) (k + l) ( □-▹ᵏ.at k (□ A) (k + l) (δ.at A (k + l) □A) , a)))) ≡⟨ cong (λ x → μ-shift k l (st-◇ A B l x)) (m-delay-+-n+0 k l) ⟩ μ-shift k l (st-◇ A B l ( rew (delay-+-left0 k l) (□-▹ᵏ.at k (□ A) (k + l) (δ.at A (k + l) □A)) , rew (delay-+-left0 k l) a)) ≡⟨ cong (λ x → μ-shift k l (st-◇ A B l (x , _))) (rew-□-left0 k l) ⟩ μ-shift k l (st-◇ A B l (□A , rew (delay-+-left0 k l) a))  ≡⟨ lemma k l (rew (delay-+-left0 k l) a) ⟩ st-◇ A B (k + l) (□A , μ-shift k l (rew (delay-+-left0 k l) a)) ≡⟨⟩ st-◇ A B (k + l) (□A , μ-compare B (k + l) k a (⌞ snd==[ k + l ] ⌟)) ≡⟨ cong! pf ⟩ st-◇ A B (k + l) (□A , μ.at B (k + l) (k , a)) ∎ where rew-□-left0 : ∀ k l -> rew (delay-+-left0 k l) (□-▹ᵏ.at k (□ A) (k + l) (δ.at A (k + l) □A)) ≡ □A rew-□-left0 zero l = refl rew-□-left0 (suc k) l = rew-□-left0 k l rew-□ : ∀ k l m -> rew (sym (delay-+ k m l)) (□-▹ᵏ.at m (□ A) l (δ.at A m □A)) ≡ □-▹ᵏ.at (k + m) (□ A) (k + l) (δ.at A (k + m) □A) rew-□ zero l m = refl rew-□ (suc k) l m = rew-□ k l m lemma : ∀ k l a -> μ-shift k l (st-◇ A B l (□A , a)) ≡ st-◇ A B (k + l) (□A , μ-shift k l a) lemma k l (m , a) = begin μ-shift k l (st-◇ A B l (□A , (m , a))) ≡⟨⟩ k + m , rew (sym (delay-+ k m l)) (▹ᵏ-C.m m (□ A) B l (□-▹ᵏ.at m (□ A) l (δ.at A m □A) , a)) ≡⟨ cong (λ x -> _ , x) (m-delay-+-sym k l m) ⟩ k + m , ▹ᵏ-C.m (k + m) (□ A) B (k + l) ( rew (sym (delay-+ k m l)) (□-▹ᵏ.at m (□ A) l (δ.at A m □A)) , rew (sym (delay-+ k m l)) a) ≡⟨ cong (λ x → _ , ▹ᵏ-C.m (k + m) (□ A) B (k + l) (x , _)) (rew-□ k l m) ⟩ k + m , ▹ᵏ-C.m (k + m) (□ A) B (k + l) ( □-▹ᵏ.at (k + m) (□ A) (k + l) (δ.at A (k + m) □A) , rew (sym (delay-+ k m l)) a) ≡⟨⟩ st-◇ A B (k + l) (□A , (k + m , rew (sym (delay-+ k m l)) a)) ∎ st-μ-◇ {A} {B} {.n} {□A , .(n + suc l) , a} | fst==suc[ n + l ] with≡ pf = begin μ.at (□ A ⊗ B) n (◇-f (st-◇ A B) n (st-◇ A (◇ B) n (□A , (n + suc l , a)))) ≡⟨⟩ μ-compare (□ A ⊗ B) n (n + suc l) (▹ᵏ-F.fmap (n + suc l) (st-◇ A B) n (▹ᵏ-C.m (n + suc l) (□ A) (◇ B) n (□-▹ᵏ.at (n + suc l) (□ A) n (δ.at A (n + suc l) □A) , a))) (⌞ compareLeq (n + suc l) n ⌟) ≡⟨ cong! pf ⟩ μ-compare (□ A ⊗ B) n (n + suc l) (▹ᵏ-F.fmap (n + suc l) (st-◇ A B) n (▹ᵏ-C.m (n + suc l) (□ A) (◇ B) n (□-▹ᵏ.at (n + suc l) (□ A) n (δ.at A (n + suc l) □A) , a))) (fst==suc[ n + l ]) ≡⟨⟩ n + suc l , rew (delay-⊤ n l) top.tt ≡⟨ cong (λ x -> _ , x) (lemma n l) ⟩ n + suc l , ▹ᵏ-C.m (n + suc l) (□ A) B n (□-▹ᵏ.at (n + suc l) (□ A) n (δ.at A (n + suc l) □A) , rew (delay-⊤ n l) top.tt) ≡⟨⟩ st-◇ A B n (□A , μ-compare B n (n + suc l) a (⌞ fst==suc[ n + l ] ⌟)) ≡⟨ cong! pf ⟩ st-◇ A B n (□A , μ.at B n ((n + suc l) , a)) ∎ where lemma : ∀ n l -> rew (delay-⊤ n l) top.tt ≡ ▹ᵏ-C.m (n + suc l) (□ A) B n (□-▹ᵏ.at (n + suc l) (□ A) n (δ.at A (n + suc l) □A) , rew (delay-⊤ n l) top.tt) lemma zero l = refl lemma (suc n) l = lemma n l open WStrongMonad ◇-□-Strong public
{ "alphanum_fraction": 0.3405584696, "avg_line_length": 43.6498316498, "ext": "agda", "hexsha": "9b2c9092728f79fb5295ec029c3d14358a5bcd5b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/TemporalOps/StrongMonad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/TemporalOps/StrongMonad.agda", "max_line_length": 133, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/TemporalOps/StrongMonad.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 6170, "size": 12964 }
module Numeral.Natural.Relation.Order.Existence where import Lvl open import Logic open import Logic.Propositional open import Logic.Predicate open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs import Numeral.Natural.Relation.Order as [≤def] open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Relator.Ordering open import Structure.Function open import Structure.Function.Domain open import Syntax.Function open import Syntax.Transitivity _≤_ : ℕ → ℕ → Stmt _≤_ a b = ∃{Obj = ℕ}(n ↦ a + n ≡ b) _<_ : ℕ → ℕ → Stmt _<_ a b = (𝐒(a) ≤ b) open From-[≤][<] (_≤_) (_<_) public [≤]-with-[𝐒] : ∀{a b : ℕ} → (a ≤ b) → (𝐒(a) ≤ 𝐒(b)) [≤]-with-[𝐒] {a} {b} ([∃]-intro n ⦃ f ⦄) = [∃]-intro n ⦃ 𝐒(a) + n 🝖[ _≡_ ]-[ [+]-stepₗ {a} {n} ] 𝐒(a + n) 🝖[ _≡_ ]-[ congruence₁(𝐒) f ] 𝐒(b) 🝖-end ⦄ [≤]-equivalence : ∀{x y} → (x ≤ y) ↔ (x [≤def].≤ y) [≤]-equivalence{x}{y} = [↔]-intro (l{x}{y}) (r{x}{y}) where l : ∀{x y} → (x ≤ y) ← (x [≤def].≤ y) l{𝟎} {y} ([≤def].min) = [∃]-intro(y) ⦃ [≡]-intro ⦄ l{𝐒(x)}{𝟎} () l{𝐒(x)}{𝐒(y)} ([≤def].succ proof) = [≤]-with-[𝐒] {x}{y} (l{x}{y} (proof)) r : ∀{x y} → (x ≤ y) → (x [≤def].≤ y) r{𝟎} {y} ([∃]-intro(z) ⦃ 𝟎+z≡y ⦄) = [≤def].min r{𝐒(x)}{𝟎} ([∃]-intro(z) ⦃ ⦄) r{𝐒(x)}{𝐒(y)} ([∃]-intro(z) ⦃ 𝐒x+z≡𝐒y ⦄) = [≤def].succ (r{x}{y} ([∃]-intro(z) ⦃ injective(𝐒)(𝐒x+z≡𝐒y) ⦄))
{ "alphanum_fraction": 0.5331935709, "avg_line_length": 31.1086956522, "ext": "agda", "hexsha": "dfa461a09e63b5206e6570e6dba7a29c563b7f4d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Relation/Order/Existence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Relation/Order/Existence.agda", "max_line_length": 107, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Relation/Order/Existence.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 720, "size": 1431 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Greatest common divisor ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Nat.GCD where open import Data.Nat.Base open import Data.Nat.Divisibility open import Data.Nat.DivMod open import Data.Nat.GCD.Lemmas open import Data.Nat.Properties open import Data.Nat.Induction using (Acc; acc; <′-Rec; <′-recBuilder; <-wellFounded) open import Data.Product open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂) open import Function open import Induction using (build) open import Induction.Lexicographic using (_⊗_; [_⊗_]) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_; subst; cong) open import Relation.Nullary using (Dec) open import Relation.Nullary.Negation using (contradiction) import Relation.Nullary.Decidable as Dec ------------------------------------------------------------------------ -- Definition -- Calculated via Euclid's algorithm. In order to show progress, -- avoiding the initial step where the first argument may increase, it -- is necessary to first define a version `gcd′` which assumes that the -- first argument is strictly smaller than the second. The full `gcd` -- function then compares the two arguments and applies `gcd′` -- accordingly. gcd′ : ∀ m n → Acc _<_ m → n < m → ℕ gcd′ m zero _ _ = m gcd′ m n@(suc n-1) (acc rec) n<m = gcd′ n (m % n) (rec _ n<m) (m%n<n m n-1) gcd : ℕ → ℕ → ℕ gcd m n with <-cmp m n ... | tri< m<n _ _ = gcd′ n m (<-wellFounded n) m<n ... | tri≈ _ _ _ = m ... | tri> _ _ n<m = gcd′ m n (<-wellFounded m) n<m ------------------------------------------------------------------------ -- Core properties of gcd′ gcd′[m,n]∣m,n : ∀ {m n} rec n<m → gcd′ m n rec n<m ∣ m × gcd′ m n rec n<m ∣ n gcd′[m,n]∣m,n {m} {zero} rec n<m = ∣-refl , m ∣0 gcd′[m,n]∣m,n {m} {suc n} (acc rec) n<m with gcd′[m,n]∣m,n (rec _ n<m) (m%n<n m n) ... | gcd∣n , gcd∣m%n = ∣n∣m%n⇒∣m gcd∣n gcd∣m%n , gcd∣n gcd′-greatest : ∀ {m n c} rec n<m → c ∣ m → c ∣ n → c ∣ gcd′ m n rec n<m gcd′-greatest {m} {zero} rec n<m c∣m c∣n = c∣m gcd′-greatest {m} {suc n} (acc rec) n<m c∣m c∣n = gcd′-greatest (rec _ n<m) (m%n<n m n) c∣n (%-presˡ-∣ c∣m c∣n) ------------------------------------------------------------------------ -- Core properties of gcd gcd[m,n]∣m : ∀ m n → gcd m n ∣ m gcd[m,n]∣m m n with <-cmp m n ... | tri< n<m _ _ = proj₂ (gcd′[m,n]∣m,n {n} {m} _ _) ... | tri≈ _ _ _ = ∣-refl ... | tri> _ _ m<n = proj₁ (gcd′[m,n]∣m,n {m} {n} _ _) gcd[m,n]∣n : ∀ m n → gcd m n ∣ n gcd[m,n]∣n m n with <-cmp m n ... | tri< n<m _ _ = proj₁ (gcd′[m,n]∣m,n {n} {m} _ _) ... | tri≈ _ P.refl _ = ∣-refl ... | tri> _ _ m<n = proj₂ (gcd′[m,n]∣m,n {m} {n} _ _) gcd-greatest : ∀ {m n c} → c ∣ m → c ∣ n → c ∣ gcd m n gcd-greatest {m} {n} c∣m c∣n with <-cmp m n ... | tri< n<m _ _ = gcd′-greatest _ _ c∣n c∣m ... | tri≈ _ _ _ = c∣m ... | tri> _ _ m<n = gcd′-greatest _ _ c∣m c∣n ------------------------------------------------------------------------ -- Other properties -- Note that all other properties of `gcd` should be inferable from the -- 3 core properties above. gcd[0,0]≡0 : gcd 0 0 ≡ 0 gcd[0,0]≡0 = ∣-antisym (gcd 0 0 ∣0) (gcd-greatest (0 ∣0) (0 ∣0)) gcd[m,n]≢0 : ∀ m n → m ≢ 0 ⊎ n ≢ 0 → gcd m n ≢ 0 gcd[m,n]≢0 m n (inj₁ m≢0) eq = m≢0 (0∣⇒≡0 (subst (_∣ m) eq (gcd[m,n]∣m m n))) gcd[m,n]≢0 m n (inj₂ n≢0) eq = n≢0 (0∣⇒≡0 (subst (_∣ n) eq (gcd[m,n]∣n m n))) gcd[m,n]≡0⇒m≡0 : ∀ {m n} → gcd m n ≡ 0 → m ≡ 0 gcd[m,n]≡0⇒m≡0 {zero} {n} eq = P.refl gcd[m,n]≡0⇒m≡0 {suc m} {n} eq = contradiction eq (gcd[m,n]≢0 (suc m) n (inj₁ λ())) gcd[m,n]≡0⇒n≡0 : ∀ m {n} → gcd m n ≡ 0 → n ≡ 0 gcd[m,n]≡0⇒n≡0 m {zero} eq = P.refl gcd[m,n]≡0⇒n≡0 m {suc n} eq = contradiction eq (gcd[m,n]≢0 m (suc n) (inj₂ λ())) gcd-comm : ∀ m n → gcd m n ≡ gcd n m gcd-comm m n = ∣-antisym (gcd-greatest (gcd[m,n]∣n m n) (gcd[m,n]∣m m n)) (gcd-greatest (gcd[m,n]∣n n m) (gcd[m,n]∣m n m)) gcd-universality : ∀ {m n g} → (∀ {d} → d ∣ m × d ∣ n → d ∣ g) → (∀ {d} → d ∣ g → d ∣ m × d ∣ n) → g ≡ gcd m n gcd-universality {m} {n} forwards backwards with backwards ∣-refl ... | back₁ , back₂ = ∣-antisym (gcd-greatest back₁ back₂) (forwards (gcd[m,n]∣m m n , gcd[m,n]∣n m n)) -- This could be simplified with some nice backwards/forwards reasoning -- after the new function hierarchy is up and running. gcd[cm,cn]/c≡gcd[m,n] : ∀ c m n {≢0} → (gcd (c * m) (c * n) / c) {≢0} ≡ gcd m n gcd[cm,cn]/c≡gcd[m,n] c@(suc c-1) m n = gcd-universality forwards backwards where forwards : ∀ {d : ℕ} → d ∣ m × d ∣ n → d ∣ gcd (c * m) (c * n) / c forwards {d} (d∣m , d∣n) = m*n∣o⇒n∣o/m c d (gcd-greatest (*-monoʳ-∣ c d∣m) (*-monoʳ-∣ c d∣n)) backwards : ∀ {d : ℕ} → d ∣ gcd (c * m) (c * n) / c → d ∣ m × d ∣ n backwards {d} d∣gcd[cm,cn]/c with m∣n/o⇒o*m∣n (gcd-greatest (m∣m*n m) (m∣m*n n)) d∣gcd[cm,cn]/c ... | cd∣gcd[cm,n] = *-cancelˡ-∣ c-1 (∣-trans cd∣gcd[cm,n] (gcd[m,n]∣m (c * m) _)) , *-cancelˡ-∣ c-1 (∣-trans cd∣gcd[cm,n] (gcd[m,n]∣n (c * m) _)) c*gcd[m,n]≡gcd[cm,cn] : ∀ c m n → c * gcd m n ≡ gcd (c * m) (c * n) c*gcd[m,n]≡gcd[cm,cn] zero m n = P.sym gcd[0,0]≡0 c*gcd[m,n]≡gcd[cm,cn] c@(suc c-1) m n = begin c * gcd m n ≡⟨ cong (c *_) (P.sym (gcd[cm,cn]/c≡gcd[m,n] c m n)) ⟩ c * (gcd (c * m) (c * n) / c) ≡⟨ m*[n/m]≡n (gcd-greatest (m∣m*n m) (m∣m*n n)) ⟩ gcd (c * m) (c * n) ∎ where open P.≡-Reasoning gcd[m,n]≤n : ∀ m n → gcd m (suc n) ≤ suc n gcd[m,n]≤n m n = ∣⇒≤ (gcd[m,n]∣n m (suc n)) n/gcd[m,n]≢0 : ∀ m n {n≢0 : Dec.False (n ≟ 0)} {gcd≢0} → (n / gcd m n) {gcd≢0} ≢ 0 n/gcd[m,n]≢0 m n@(suc n-1) {n≢0} {gcd≢0} = m<n⇒n≢0 (m≥n⇒m/n>0 {n} {gcd m n} {gcd≢0} (gcd[m,n]≤n m n-1)) ------------------------------------------------------------------------ -- A formal specification of GCD module GCD where -- Specification of the greatest common divisor (gcd) of two natural -- numbers. record GCD (m n gcd : ℕ) : Set where constructor is field -- The gcd is a common divisor. commonDivisor : gcd ∣ m × gcd ∣ n -- All common divisors divide the gcd, i.e. the gcd is the -- greatest common divisor according to the partial order _∣_. greatest : ∀ {d} → d ∣ m × d ∣ n → d ∣ gcd open GCD public -- The gcd is unique. unique : ∀ {d₁ d₂ m n} → GCD m n d₁ → GCD m n d₂ → d₁ ≡ d₂ unique d₁ d₂ = ∣-antisym (GCD.greatest d₂ (GCD.commonDivisor d₁)) (GCD.greatest d₁ (GCD.commonDivisor d₂)) -- The gcd relation is "symmetric". sym : ∀ {d m n} → GCD m n d → GCD n m d sym g = is (swap $ GCD.commonDivisor g) (GCD.greatest g ∘ swap) -- The gcd relation is "reflexive". refl : ∀ {n} → GCD n n n refl = is (∣-refl , ∣-refl) proj₁ -- The GCD of 0 and n is n. base : ∀ {n} → GCD 0 n n base {n} = is (n ∣0 , ∣-refl) proj₂ -- If d is the gcd of n and k, then it is also the gcd of n and -- n + k. step : ∀ {n k d} → GCD n k d → GCD n (n + k) d step g with GCD.commonDivisor g step {n} {k} {d} g | (d₁ , d₂) = is (d₁ , ∣m∣n⇒∣m+n d₁ d₂) greatest′ where greatest′ : ∀ {d′} → d′ ∣ n × d′ ∣ n + k → d′ ∣ d greatest′ (d₁ , d₂) = GCD.greatest g (d₁ , ∣m+n∣m⇒∣n d₂ d₁) open GCD public using (GCD) hiding (module GCD) -- The function gcd fulfils the conditions required of GCD gcd-GCD : ∀ m n → GCD m n (gcd m n) gcd-GCD m n = record { commonDivisor = gcd[m,n]∣m m n , gcd[m,n]∣n m n ; greatest = uncurry′ gcd-greatest } -- Calculates the gcd of the arguments. mkGCD : ∀ m n → ∃ λ d → GCD m n d mkGCD m n = gcd m n , gcd-GCD m n -- gcd as a proposition is decidable gcd? : (m n d : ℕ) → Dec (GCD m n d) gcd? m n d = Dec.map′ (λ { P.refl → gcd-GCD m n }) (GCD.unique (gcd-GCD m n)) (gcd m n ≟ d) GCD-* : ∀ {m n d c} → GCD (m * suc c) (n * suc c) (d * suc c) → GCD m n d GCD-* (GCD.is (dc∣nc , dc∣mc) dc-greatest) = GCD.is (*-cancelʳ-∣ _ dc∣nc , *-cancelʳ-∣ _ dc∣mc) λ {_} → *-cancelʳ-∣ _ ∘ dc-greatest ∘ map (*-monoˡ-∣ _) (*-monoˡ-∣ _) GCD-/ : ∀ {m n d c} {≢0} → c ∣ m → c ∣ n → c ∣ d → GCD m n d → GCD ((m / c) {≢0}) ((n / c) {≢0}) ((d / c) {≢0}) GCD-/ {m} {n} {d} {c@(suc c-1)} (divides p P.refl) (divides q P.refl) (divides r P.refl) gcd rewrite m*n/n≡m p c {_} | m*n/n≡m q c {_} | m*n/n≡m r c {_} = GCD-* gcd GCD-/gcd : ∀ m n {≢0} → GCD ((m / gcd m n) {≢0}) ((n / gcd m n) {≢0}) 1 GCD-/gcd m n {≢0} rewrite P.sym (n/n≡1 (gcd m n) {≢0}) = GCD-/ {≢0 = ≢0} (gcd[m,n]∣m m n) (gcd[m,n]∣n m n) ∣-refl (gcd-GCD m n) ------------------------------------------------------------------------ -- Calculating the gcd -- The calculation also proves Bézout's lemma. module Bézout where module Identity where -- If m and n have greatest common divisor d, then one of the -- following two equations is satisfied, for some numbers x and y. -- The proof is "lemma" below (Bézout's lemma). -- -- (If this identity was stated using integers instead of natural -- numbers, then it would not be necessary to have two equations.) data Identity (d m n : ℕ) : Set where +- : (x y : ℕ) (eq : d + y * n ≡ x * m) → Identity d m n -+ : (x y : ℕ) (eq : d + x * m ≡ y * n) → Identity d m n -- Various properties about Identity. sym : ∀ {d} → Symmetric (Identity d) sym (+- x y eq) = -+ y x eq sym (-+ x y eq) = +- y x eq refl : ∀ {d} → Identity d d d refl = -+ 0 1 P.refl base : ∀ {d} → Identity d 0 d base = -+ 0 1 P.refl private infixl 7 _⊕_ _⊕_ : ℕ → ℕ → ℕ m ⊕ n = 1 + m + n step : ∀ {d n k} → Identity d n k → Identity d n (n + k) step {d} {n} (+- x y eq) with compare x y ... | equal x = +- (2 * x) x (lem₂ d x eq) ... | less x i = +- (2 * x ⊕ i) (x ⊕ i) (lem₃ d x eq) ... | greater y i = +- (2 * y ⊕ i) y (lem₄ d y n eq) step {d} {n} (-+ x y eq) with compare x y ... | equal x = -+ (2 * x) x (lem₅ d x eq) ... | less x i = -+ (2 * x ⊕ i) (x ⊕ i) (lem₆ d x eq) ... | greater y i = -+ (2 * y ⊕ i) y (lem₇ d y n eq) open Identity public using (Identity; +-; -+) hiding (module Identity) module Lemma where -- This type packs up the gcd, the proof that it is a gcd, and the -- proof that it satisfies Bézout's identity. data Lemma (m n : ℕ) : Set where result : (d : ℕ) (g : GCD m n d) (b : Identity d m n) → Lemma m n -- Various properties about Lemma. sym : Symmetric Lemma sym (result d g b) = result d (GCD.sym g) (Identity.sym b) base : ∀ d → Lemma 0 d base d = result d GCD.base Identity.base refl : ∀ d → Lemma d d refl d = result d GCD.refl Identity.refl stepˡ : ∀ {n k} → Lemma n (suc k) → Lemma n (suc (n + k)) stepˡ {n} {k} (result d g b) = subst (Lemma n) (+-suc n k) $ result d (GCD.step g) (Identity.step b) stepʳ : ∀ {n k} → Lemma (suc k) n → Lemma (suc (n + k)) n stepʳ = sym ∘ stepˡ ∘ sym open Lemma public using (Lemma; result) hiding (module Lemma) -- Bézout's lemma proved using some variant of the extended -- Euclidean algorithm. lemma : (m n : ℕ) → Lemma m n lemma m n = build [ <′-recBuilder ⊗ <′-recBuilder ] P gcd″ (m , n) where P : ℕ × ℕ → Set P (m , n) = Lemma m n gcd″ : ∀ p → (<′-Rec ⊗ <′-Rec) P p → P p gcd″ (zero , n ) rec = Lemma.base n gcd″ (suc m , zero ) rec = Lemma.sym (Lemma.base (suc m)) gcd″ (suc m , suc n ) rec with compare m n ... | equal .m = Lemma.refl (suc m) ... | less .m k = Lemma.stepˡ $ proj₁ rec (suc k) (lem₁ k m) -- "gcd (suc m) (suc k)" ... | greater .n k = Lemma.stepʳ $ proj₂ rec (suc k) (lem₁ k n) (suc n) -- "gcd (suc k) (suc n)" -- Bézout's identity can be recovered from the GCD. identity : ∀ {m n d} → GCD m n d → Identity d m n identity {m} {n} g with lemma m n ... | result d g′ b with GCD.unique g g′ ... | P.refl = b
{ "alphanum_fraction": 0.5068189287, "avg_line_length": 35.8, "ext": "agda", "hexsha": "9e46c712f1234fd058cb32b724e768a904fa0ae6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Nat/GCD.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Nat/GCD.agda", "max_line_length": 103, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Nat/GCD.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 4990, "size": 12172 }
open import Nat open import Prelude open import contexts open import dynamics-core module canonical-value-forms where canonical-value-forms-num : ∀{Δ d} → Δ , ∅ ⊢ d :: num → d val → Σ[ n ∈ Nat ] (d == N n) canonical-value-forms-num TANum VNum = _ , refl canonical-value-forms-num (TAVar x₁) () canonical-value-forms-num (TAAp wt wt₁) () canonical-value-forms-num (TAEHole x x₁) () canonical-value-forms-num (TANEHole x wt x₁) () canonical-value-forms-num (TACast wt x) () canonical-value-forms-num (TAFailedCast wt x x₁ x₂) () canonical-value-forms-arr : ∀{Δ d τ1 τ2} → Δ , ∅ ⊢ d :: (τ1 ==> τ2) → d val → Σ[ x ∈ Nat ] Σ[ d' ∈ ihexp ] ((d == (·λ x ·[ τ1 ] d')) × (Δ , ■ (x , τ1) ⊢ d' :: τ2)) canonical-value-forms-arr (TAVar x₁) () canonical-value-forms-arr {Δ = Δ} {d = ·λ x ·[ τ1 ] d} {τ1 = τ1} {τ2 = τ2} (TALam _ wt) VLam = _ , _ , refl , tr (λ Γ → Δ , Γ ⊢ d :: τ2) (extend-empty x τ1) wt canonical-value-forms-arr (TAAp wt wt₁) () canonical-value-forms-arr (TAEHole x x₁) () canonical-value-forms-arr (TANEHole x wt x₁) () canonical-value-forms-arr (TACast wt x) () canonical-value-forms-arr (TAFailedCast x x₁ x₂ x₃) () canonical-value-form-sum : ∀{Δ d τ1 τ2} → Δ , ∅ ⊢ d :: (τ1 ⊕ τ2) → d val → (Σ[ d' ∈ ihexp ] ((d == (inl τ2 d')) × (Δ , ∅ ⊢ d' :: τ1))) + (Σ[ d' ∈ ihexp ] ((d == (inr τ1 d')) × (Δ , ∅ ⊢ d' :: τ2))) canonical-value-form-sum (TAInl wt) (VInl v) = Inl (_ , refl , wt) canonical-value-form-sum (TAInr wt) (VInr v) = Inr (_ , refl , wt) canonical-value-form-prod : ∀{Δ d τ1 τ2} → Δ , ∅ ⊢ d :: (τ1 ⊠ τ2) → d val → Σ[ d1 ∈ ihexp ] Σ[ d2 ∈ ihexp ] ((d == ⟨ d1 , d2 ⟩) × (Δ , ∅ ⊢ d1 :: τ1) × (Δ , ∅ ⊢ d2 :: τ2)) canonical-value-form-prod (TAVar x) () canonical-value-form-prod (TAAp wt wt₁) () canonical-value-form-prod (TACase wt x wt₁ x₁ wt₂) () canonical-value-form-prod (TAPair wt wt₁) (VPair v v₁) = _ , _ , refl , wt , wt₁ canonical-value-form-prod (TAFst wt) () canonical-value-form-prod (TASnd wt) () canonical-value-form-prod (TAEHole x x₁) () canonical-value-form-prod (TANEHole x wt x₁) () canonical-value-form-prod (TACast wt x) () canonical-value-form-prod (TAFailedCast wt x x₁ x₂) () -- this argues (somewhat informally, because you still have to inspect -- the types of the theorems above and manually verify this property) -- that we didn't miss any cases above; this intentionally will make this -- file fail to typecheck if we added more types, hopefully forcing us to -- remember to add canonical forms lemmas as appropriate canonical-value-forms-coverage1 : ∀{Δ d τ} → Δ , ∅ ⊢ d :: τ → d val → τ ≠ num → ((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ==> τ2)) → ((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ⊕ τ2)) → ((τ1 : htyp) (τ2 : htyp) → τ ≠ (τ1 ⊠ τ2)) → ⊥ canonical-value-forms-coverage1 TANum val nn na ns np = nn refl canonical-value-forms-coverage1 (TALam x wt) val nn na ns np = na _ _ refl canonical-value-forms-coverage1 (TAInl wt) val nn na ns np = ns _ _ refl canonical-value-forms-coverage1 (TAInr wt) val nn na ns np = ns _ _ refl canonical-value-forms-coverage1 (TAPair wt wt₁) val nn na ns np = np _ _ refl canonical-value-forms-coverage2 : ∀{Δ d} → Δ , ∅ ⊢ d :: ⦇-⦈ → d val → ⊥ canonical-value-forms-coverage2 (TAVar x₁) () canonical-value-forms-coverage2 (TAAp wt wt₁) () canonical-value-forms-coverage2 (TAEHole x x₁) () canonical-value-forms-coverage2 (TANEHole x wt x₁) () canonical-value-forms-coverage2 (TACast wt x) () canonical-value-forms-coverage2 (TAFailedCast wt x x₁ x₂) ()
{ "alphanum_fraction": 0.4966139955, "avg_line_length": 49.7752808989, "ext": "agda", "hexsha": "68f5fd37a5a2f760036dd7e595c43487a3374654", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "canonical-value-forms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "canonical-value-forms.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "canonical-value-forms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1391, "size": 4430 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Meta.Isomorphism where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Functions.FunExtEquiv open import Cubical.Homotopy.Base open import Cubical.Data.Sigma open import Cubical.Relation.Binary open import Cubical.Algebra.Group open import Cubical.Structures.LeftAction open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties open import Cubical.DStructures.Structures.Constant open import Cubical.DStructures.Structures.Type open import Cubical.DStructures.Structures.Group private variable ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓA' ℓ≅A ℓ≅A' ℓB ℓB' ℓ≅B ℓ≅B' ℓC ℓ≅C ℓ≅ᴰ ℓ≅ᴰ' : Level open URGStr open URGStrᴰ ---------------------------------------------- -- Pseudo-isomorphisms between URG structures -- are relational isos of the underlying rel. ---------------------------------------------- 𝒮-PIso : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A) {A' : Type ℓA'} (𝒮-A' : URGStr A' ℓ≅A') → Type (ℓ-max (ℓ-max ℓA ℓA') (ℓ-max ℓ≅A ℓ≅A')) 𝒮-PIso 𝒮-A 𝒮-A' = RelIso (URGStr._≅_ 𝒮-A) (URGStr._≅_ 𝒮-A') ---------------------------------------------- -- Since the relations are univalent, -- a rel. iso induces an iso of the underlying -- types. ---------------------------------------------- 𝒮-PIso→Iso : {A : Type ℓA} (𝒮-A : URGStr A ℓ≅A) {A' : Type ℓA'} (𝒮-A' : URGStr A' ℓ≅A') (ℱ : 𝒮-PIso 𝒮-A 𝒮-A') → Iso A A' 𝒮-PIso→Iso 𝒮-A 𝒮-A' ℱ = RelIso→Iso (_≅_ 𝒮-A) (_≅_ 𝒮-A') (uni 𝒮-A) (uni 𝒮-A') ℱ ---------------------------------------------- -- From a DURG structure, extract the -- relational family over the base type ---------------------------------------------- 𝒮ᴰ→relFamily : {A : Type ℓA} {𝒮-A : URGStr A ℓ≅A} {B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B) → RelFamily A ℓB ℓ≅B -- define the type family, just B 𝒮ᴰ→relFamily {B = B} 𝒮ᴰ-B .fst = B -- the binary relation is the displayed relation over ρ a 𝒮ᴰ→relFamily {𝒮-A = 𝒮-A} {B = B} 𝒮ᴰ-B .snd {a = a} b b' = 𝒮ᴰ-B ._≅ᴰ⟨_⟩_ b (𝒮-A .ρ a) b' -------------------------------------------------------------- -- the type of relational isos between a DURG structure -- and the pulled back relational family of another -- -- ℱ will in applications always be an isomorphism, -- but that's not needed for this definition. -------------------------------------------------------------- 𝒮ᴰ-♭PIso : {A : Type ℓA} {𝒮-A : URGStr A ℓ≅A} {A' : Type ℓA'} {𝒮-A' : URGStr A' ℓ≅A'} (ℱ : A → A') {B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B) {B' : A' → Type ℓB'} (𝒮ᴰ-B' : URGStrᴰ 𝒮-A' B' ℓ≅B') → Type (ℓ-max ℓA (ℓ-max (ℓ-max ℓB ℓB') (ℓ-max ℓ≅B ℓ≅B'))) 𝒮ᴰ-♭PIso ℱ 𝒮ᴰ-B 𝒮ᴰ-B' = ♭RelFiberIsoOver ℱ (𝒮ᴰ→relFamily 𝒮ᴰ-B) (𝒮ᴰ→relFamily 𝒮ᴰ-B') --------------------------------------------------------- -- Given -- - an isomorphism ℱ of underlying types A, A', and -- - an 𝒮ᴰ-bPIso over ℱ -- produce an iso of the underlying total spaces --------------------------------------------------------- 𝒮ᴰ-♭PIso-Over→TotalIso : {A : Type ℓA} {𝒮-A : URGStr A ℓ≅A} {A' : Type ℓA'} {𝒮-A' : URGStr A' ℓ≅A'} (ℱ : Iso A A') {B : A → Type ℓB} (𝒮ᴰ-B : URGStrᴰ 𝒮-A B ℓ≅B) {B' : A' → Type ℓB'} (𝒮ᴰ-B' : URGStrᴰ 𝒮-A' B' ℓ≅B') (𝒢 : 𝒮ᴰ-♭PIso (Iso.fun ℱ) 𝒮ᴰ-B 𝒮ᴰ-B') → Iso (Σ A B) (Σ A' B') 𝒮ᴰ-♭PIso-Over→TotalIso ℱ 𝒮ᴰ-B 𝒮ᴰ-B' 𝒢 = RelFiberIsoOver→Iso ℱ (𝒮ᴰ→relFamily 𝒮ᴰ-B) (𝒮ᴰ-B .uniᴰ) (𝒮ᴰ→relFamily 𝒮ᴰ-B') (𝒮ᴰ-B' .uniᴰ) 𝒢
{ "alphanum_fraction": 0.5092927207, "avg_line_length": 37.25, "ext": "agda", "hexsha": "8e0406f06d993a116082a6d0e0b391af7508b811", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Meta/Isomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Meta/Isomorphism.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Meta/Isomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1555, "size": 3874 }
module Structure.Function.Multi where open import Data open import Data.Boolean open import Data.Tuple.Raise import Data.Tuple.Raiseᵣ.Functions as Raise open import Data.Tuple.RaiseTypeᵣ import Data.Tuple.RaiseTypeᵣ.Functions as RaiseType open import Function.DomainRaise as DomainRaise using (_→̂_) import Function.Equals.Multi as Multi open import Function.Multi import Function.Multi.Functions as Multi open import Functional open import Lang.Instance open import Logic open import Logic.Propositional open import Logic.Predicate import Lvl import Lvl.MultiFunctions as Lvl open import Numeral.Natural open import Numeral.Natural.Oper.Comparisons open import Structure.Setoid.Uniqueness open import Structure.Setoid open import Syntax.Number open import Type private variable ℓ ℓ₁ ℓ₂ ℓₑ ℓₑ₁ ℓₑ₂ ℓₗ : Lvl.Level private variable n : ℕ module Names where module _ {X : Type{ℓ₁}} {Y : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(Y) ⦄ where -- Definition of the relation between a function and an operation that says: -- The function preserves the operation. -- Often used when defining homomorphisms. -- Examples: -- Preserving(1) (f)(g₁)(g₂) -- = (∀{x} → (f ∘₁ g₁)(x) ≡ (g₂ on₁ f)(x)) -- = (∀{x} → (f(g₁(x)) ≡ g₂(f(x))) -- Preserving(2) (f)(g₁)(g₂) -- = (∀{x y} → (f ∘₂ g₁)(x)(y) ≡ (g₂ on₂ f)(x)(y)) -- = (∀{x y} → (f(g₁ x y) ≡ g₂ (f(x)) (f(y))) -- Preserving(3) (f)(g₁)(g₂) -- = (∀{x y z} → (f ∘₃ g₁)(x)(y)(z) ≡ (g₂ on₃ f)(x)(y)(z)) -- = (∀{x y z} → (f(g₁ x y z) ≡ g₂ (f(x)) (f(y)) (f(z)))) -- Alternative implementation: -- Preserving(n) (f)(g₁)(g₂) = Multi.Names.⊜₊(n) ([→̂]-to-[⇉] n (f DomainRaise.∘ g₁)) ([→̂]-to-[⇉] n (g₂ DomainRaise.on f)) Preserving : (n : ℕ) → (f : X → Y) → (X →̂ X)(n) → (Y →̂ Y)(n) → Stmt{if positive?(n) then (ℓ₁ Lvl.⊔ ℓₑ₂) else ℓₑ₂} Preserving(𝟎) (f)(g₁)(g₂) = (f(g₁) ≡ g₂) Preserving(𝐒(𝟎)) (f)(g₁)(g₂) = (∀{x} → f(g₁(x)) ≡ g₂(f(x))) Preserving(𝐒(𝐒(n))) (f)(g₁)(g₂) = (∀{x} → Preserving(𝐒(n)) (f) (g₁(x)) (g₂(f(x)))) Preserving₀ = Preserving(0) Preserving₁ = Preserving(1) Preserving₂ = Preserving(2) Preserving₃ = Preserving(3) Preserving₄ = Preserving(4) Preserving₅ = Preserving(5) Preserving₆ = Preserving(6) Preserving₇ = Preserving(7) Preserving₈ = Preserving(8) Preserving₉ = Preserving(9) module _ where RelationReplacement : ∀{B : Type{ℓ}} → (B → B → Type{ℓₑ}) → (n : ℕ) → ∀{ℓ𝓈 ℓ𝓈ₑ}{As : Types{n}(ℓ𝓈)} → (RaiseType.mapWithLvls(\A ℓₑ → Equiv{ℓₑ}(A)) As ℓ𝓈ₑ) ⇉ᵢₙₛₜ ((As ⇉ B) → (As ⇉ B) → Stmt{Lvl.⨆(ℓ𝓈) Lvl.⊔ ℓₑ Lvl.⊔ Lvl.⨆(ℓ𝓈ₑ)}) RelationReplacement(_▫_) 0 f g = f ▫ g RelationReplacement(_▫_) 1 f g = ∀{x y} → (x ≡ y) → (f(x) ▫ g(y)) RelationReplacement(_▫_) (𝐒(𝐒(n))) = Multi.expl-to-inst(𝐒(n)) (Multi.compose(𝐒(n)) (\R f g → ∀{x y} → (x ≡ y) → R (f(x)) (g(y))) (Multi.inst-to-expl(𝐒(n)) (RelationReplacement(_▫_) (𝐒(n))))) FunctionReplacement : (n : ℕ) → ∀{ℓ𝓈 ℓ𝓈ₑ}{As : Types{n}(ℓ𝓈)}{B : Type{ℓ}} → (RaiseType.mapWithLvls(\A ℓₑ → Equiv{ℓₑ}(A)) As ℓ𝓈ₑ) ⇉ᵢₙₛₜ (⦃ equiv-B : Equiv{ℓₑ}(B) ⦄ → (As ⇉ B) → (As ⇉ B) → Stmt{Lvl.⨆(ℓ𝓈) Lvl.⊔ ℓₑ Lvl.⊔ Lvl.⨆(ℓ𝓈ₑ)}) FunctionReplacement 0 f g = f ≡ g FunctionReplacement 1 f g = ∀{x y} → (x ≡ y) → (f(x) ≡ g(y)) FunctionReplacement (𝐒(𝐒(n))) = Multi.expl-to-inst(𝐒(n)) (Multi.compose(𝐒(n)) (\R ⦃ equiv-B ⦄ f g → ∀{x y} → (x ≡ y) → R ⦃ equiv-B ⦄ (f(x)) (g(y))) (Multi.inst-to-expl(𝐒(n)) (FunctionReplacement (𝐒(n))))) -- Generalization of `Structure.Function.Function` for nested function types (or normally known as: functions of any number of arguments (n-ary functions)). -- Examples: -- Function(0) f g = f ≡ g -- Function(1) f g = ∀{x y} → (x ≡ y) → (f(x) ≡ g(y)) -- Function(2) f g = ∀{x y} → (x ≡ y) → ∀{x₁ y₁} → (x₁ ≡ y₁) → (f(x)(x₁) ≡ g(y)(y₁)) -- Function(3) f g = ∀{x y} → (x ≡ y) → ∀{x₁ y₁} → (x₁ ≡ y₁) → ∀{x₂ y₂} → (x₂ ≡ y₂) → (f(x)(x₁)(x₂) ≡ g(y)(y₁)(y₂)) Function : (n : ℕ) → ∀{ℓ𝓈 ℓ𝓈ₑ}{As : Types{n}(ℓ𝓈)}{B : Type{ℓ}} → (RaiseType.mapWithLvls(\A ℓₑ → Equiv{ℓₑ}(A)) As ℓ𝓈ₑ) ⇉ᵢₙₛₜ (⦃ equiv-B : Equiv{ℓₑ}(B) ⦄ → (As ⇉ B) → Stmt) Function(n) = Multi.expl-to-inst(n) (Multi.compose(n) (\R ⦃ equiv-B ⦄ → R ⦃ equiv-B ⦄ $₂_) (Multi.inst-to-expl(n) (FunctionReplacement(n)))) module _ where CompatibleReplacement : (n : ℕ) → ∀{ℓ𝓈 ℓ𝓈ₗ}{As : Types{n}(ℓ𝓈)}{B : Type{ℓ}} → (RaiseType.mapWithLvls(\A ℓₗ → A → A → Type{ℓₗ}) As ℓ𝓈ₗ) ⇉ ((B → B → Stmt{ℓₗ}) → (As ⇉ B) → (As ⇉ B) → Stmt{ℓₗ Lvl.⊔ Lvl.⨆(ℓ𝓈) Lvl.⊔ Lvl.⨆(ℓ𝓈ₗ)}) CompatibleReplacement 0 (_▫_) f g = f ▫ g CompatibleReplacement 1 (_▫₀_)(_▫_) f g = ∀{x y} → (x ▫₀ y) → (f(x) ▫ g(y)) CompatibleReplacement (𝐒(𝐒(n))) (_▫₀_) = Multi.compose(𝐒(n)) (R ↦ _▫_ ↦ f ↦ g ↦ ∀{x y} → (x ▫₀ y) → R(_▫_) (f(x)) (g(y))) (CompatibleReplacement(𝐒(n))) Compatible : (n : ℕ) → ∀{ℓ𝓈 ℓ𝓈ₗ}{As : Types{n}(ℓ𝓈)}{B : Type{ℓ}} → (RaiseType.mapWithLvls(\A ℓₗ → A → A → Type{ℓₗ}) As ℓ𝓈ₗ) ⇉ ((B → B → Stmt{ℓₗ}) → (As ⇉ B) → Stmt) Compatible(n) = Multi.compose(n) ((_$₂_) ∘_) (CompatibleReplacement(n)) module _ {T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ where -- Definition of the relation between a function and an operation that says: -- The function preserves the operation. -- This is a special case of the (_preserves_)-relation that has the same operator inside and outside. -- Special cases: -- Additive function (Operator is a conventional _+_) -- Multiplicative function (Operator is a conventional _*_) -- ∀{x y} → (f(x ▫ y) ≡ f(x) ▫ f(y)) _preserves_ : (T → T) → (T → T → T) → Stmt f preserves (_▫_) = Preserving(2) f (_▫_)(_▫_) -- module _ {X : Type{ℓ₁}} {Y : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(Y) ⦄ where module _ (n : ℕ) (f : X → Y) (g₁ : (X →̂ X)(n)) (g₂ : (Y →̂ Y)(n)) where record Preserving : Stmt{if positive?(n) then (ℓ₁ Lvl.⊔ ℓₑ₂) else ℓₑ₂} where -- TODO: Is it possible to prove for levels that an if-expression is less if both are less? constructor intro field proof : Names.Preserving(n) (f)(g₁)(g₂) preserving = inst-fn Preserving.proof Preserving₀ = Preserving(0) Preserving₁ = Preserving(1) Preserving₂ = Preserving(2) Preserving₃ = Preserving(3) Preserving₄ = Preserving(4) Preserving₅ = Preserving(5) Preserving₆ = Preserving(6) Preserving₇ = Preserving(7) Preserving₈ = Preserving(8) Preserving₉ = Preserving(9) preserving₀ = preserving(0) preserving₁ = preserving(1) preserving₂ = preserving(2) preserving₃ = preserving(3) preserving₄ = preserving(4) preserving₅ = preserving(5) preserving₆ = preserving(6) preserving₇ = preserving(7) preserving₈ = preserving(8) preserving₉ = preserving(9) module _ {T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (n : ℕ) (f : T → T) (_▫_ : T → T → T) where _preserves_ = Preserving(2) (f)(_▫_)(_▫_) {- module _ {T : Type{ℓ}} where module _ (n : ℕ) {ℓₗ} (_▫_ : T → T → Stmt{ℓₗ}) (f : RaiseType.repeat n T ⇉ T) where record Compatible : Stmt{ℓₗ Lvl.⊔ (if positive?(n) then ℓ else Lvl.𝟎)} where constructor intro field proof : Names.Compatible(n) (_▫_)(f) compatible = inst-fn Compatible.proof Compatible₀ = Compatible(0) Compatible₁ = Compatible(1) Compatible₂ = Compatible(2) Compatible₃ = Compatible(3) Compatible₄ = Compatible(4) Compatible₅ = Compatible(5) Compatible₆ = Compatible(6) Compatible₇ = Compatible(7) Compatible₈ = Compatible(8) Compatible₉ = Compatible(9) compatible₀ = compatible(0) compatible₁ = compatible(1) compatible₂ = compatible(2) compatible₃ = compatible(3) compatible₄ = compatible(4) compatible₅ = compatible(5) compatible₆ = compatible(6) compatible₇ = compatible(7) compatible₈ = compatible(8) compatible₉ = compatible(9) -}
{ "alphanum_fraction": 0.5956466069, "avg_line_length": 47.3333333333, "ext": "agda", "hexsha": "6b7d39496e32a6c633d94cece4a1140d7ddad1f5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Function/Multi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Function/Multi.agda", "max_line_length": 233, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Function/Multi.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3290, "size": 7810 }
------------------------------------------------------------------------ -- If the "Outrageous but Meaningful Coincidences" approach is used to -- formalise a language, then you can end up with an extensional type -- theory (with equality reflection) ------------------------------------------------------------------------ module README.DependentlyTyped.Extensional-type-theory where import Axiom.Extensionality.Propositional as E open import Data.Empty open import Data.Product renaming (curry to c) open import Data.Unit open import Data.Universe.Indexed import deBruijn.Context open import Function hiding (_∋_) renaming (const to k) import Level import Relation.Binary.PropositionalEquality as P ------------------------------------------------------------------------ -- A non-indexed universe mutual data U : Set where empty : U π : (a : U) (b : El a → U) → U El : U → Set El empty = ⊥ El (π a b) = (x : El a) → El (b x) Uni : IndexedUniverse _ _ _ Uni = record { I = ⊤; U = λ _ → U; El = El } ------------------------------------------------------------------------ -- Contexts and variables -- We get these for free. open deBruijn.Context Uni public renaming (_·_ to _⊙_; ·-cong to ⊙-cong) -- Some abbreviations. ⟨empty⟩ : ∀ {Γ} → Type Γ ⟨empty⟩ = -, λ _ → empty ⟨π⟩ : ∀ {Γ} (σ : Type Γ) → Type (Γ ▻ σ) → Type Γ ⟨π⟩ σ τ = -, k π ˢ indexed-type σ ˢ c (indexed-type τ) ⟨π̂⟩ : ∀ {Γ} (σ : Type Γ) → ((γ : Env Γ) → El (indexed-type σ γ) → U) → Type Γ ⟨π̂⟩ σ τ = -, k π ˢ indexed-type σ ˢ τ ------------------------------------------------------------------------ -- Well-typed terms mutual infixl 9 _·_ infix 3 _⊢_ -- Terms. data _⊢_ (Γ : Ctxt) : Type Γ → Set where var : ∀ {σ} (x : Γ ∋ σ) → Γ ⊢ σ ƛ : ∀ {σ τ} (t : Γ ▻ σ ⊢ τ) → Γ ⊢ ⟨π⟩ σ τ _·_ : ∀ {σ τ} (t₁ : Γ ⊢ ⟨π̂⟩ σ τ) (t₂ : Γ ⊢ σ) → Γ ⊢ (-, τ ˢ ⟦ t₂ ⟧) -- Semantics of terms. ⟦_⟧ : ∀ {Γ σ} → Γ ⊢ σ → Value Γ σ ⟦ var x ⟧ γ = lookup x γ ⟦ ƛ t ⟧ γ = λ v → ⟦ t ⟧ (γ , v) ⟦ t₁ · t₂ ⟧ γ = (⟦ t₁ ⟧ γ) (⟦ t₂ ⟧ γ) ------------------------------------------------------------------------ -- We can define looping terms (assuming extensionality) module Looping (ext : E.Extensionality Level.zero Level.zero) where -- The casts are examples of the use of equality reflection: the -- casts are meta-language constructions, not object-language -- constructions. cast₁ : ∀ {Γ} → Γ ▻ ⟨empty⟩ ⊢ ⟨π⟩ ⟨empty⟩ ⟨empty⟩ → Γ ▻ ⟨empty⟩ ⊢ ⟨empty⟩ cast₁ t = P.subst (_⊢_ _) (P.cong (_,_ tt) (ext (⊥-elim ∘ proj₂))) t cast₂ : ∀ {Γ} → Γ ▻ ⟨empty⟩ ⊢ ⟨empty⟩ → Γ ▻ ⟨empty⟩ ⊢ ⟨π⟩ ⟨empty⟩ ⟨empty⟩ cast₂ t = P.subst (_⊢_ _) (P.cong (_,_ tt) (ext (⊥-elim ∘ proj₂))) t ω : ε ▻ ⟨empty⟩ ⊢ ⟨empty⟩ ω = cast₁ (ƛ (cast₂ (var zero) · var zero)) -- A simple example of a term which does not have a normal form. Ω : ε ▻ ⟨empty⟩ ⊢ ⟨empty⟩ Ω = cast₂ ω · ω const-Ω : ε ⊢ ⟨π⟩ ⟨empty⟩ ⟨empty⟩ const-Ω = ƛ Ω -- Some observations: -- -- * The language with spines (in README.DependentlyTyped.Term) does -- not support terms like the ones above; in the casts one would -- have to prove that distinct spines are equal. -- -- * The spines ensure that the normaliser in -- README.DependentlyTyped.NBE terminates. The existence of terms -- like Ω implies that it is impossible to implement a normaliser -- for the spine-less language defined in this module.
{ "alphanum_fraction": 0.5244080678, "avg_line_length": 29.747826087, "ext": "agda", "hexsha": "ba65548a4c38d852ac657dd67de5e56cd53d82d9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "README/DependentlyTyped/Extensional-type-theory.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "README/DependentlyTyped/Extensional-type-theory.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "README/DependentlyTyped/Extensional-type-theory.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 1131, "size": 3421 }
module Issue888 (A : Set) where -- Check that let-bound variables show up in "show context" data ℕ : Set where zero : ℕ suc : ℕ → ℕ f : Set -> Set f X = let Y : ℕ -> Set Y n = ℕ m : ℕ m = {!!} in {!!} -- Issue 1112: dependent let-bindings data Singleton : ℕ → Set where mkSingleton : (n : ℕ) -> Singleton n g : ℕ -> ℕ g x = let i = zero z = mkSingleton x in {!!}
{ "alphanum_fraction": 0.5165876777, "avg_line_length": 16.88, "ext": "agda", "hexsha": "5d205ba75e5c553c6757816a239f4016c4cc4000", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/interaction/Issue888.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/interaction/Issue888.agda", "max_line_length": 59, "max_stars_count": 1, "max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "masondesu/agda", "max_stars_repo_path": "test/interaction/Issue888.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 136, "size": 422 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An explanation about the `Axiom` modules. ------------------------------------------------------------------------ module README.Axiom where open import Level using (Level) private variable ℓ : Level ------------------------------------------------------------------------ -- Introduction -- Several rules that are used without thought in written mathematics -- cannot be proved in Agda. The modules in the `Axiom` folder -- provide types expressing some of these rules that users may want to -- use even when they're not provable in Agda. ------------------------------------------------------------------------ -- Example: law of excluded middle -- In classical logic the law of excluded middle states that for any -- proposition `P` either `P` or `¬P` must hold. This is impossible -- to prove in Agda because Agda is a constructive system and so any -- proof of the excluded middle would have to build a term of either -- type `P` or `¬P`. This is clearly impossible without any knowledge -- of what proposition `P` is. -- The types for which `P` or `¬P` holds is called `Dec P` in the -- standard library (short for `Decidable`). open import Relation.Nullary using (Dec) -- The type of the proof of saying that excluded middle holds for -- all types at universe level ℓ is therefore: -- -- ExcludedMiddle ℓ = ∀ {P : Set ℓ} → Dec P -- -- and this type is exactly the one found in `Axiom.ExcludedMiddle`: open import Axiom.ExcludedMiddle -- There are two different ways that the axiom can be introduced into -- your Agda development. The first option is to postulate it: postulate excludedMiddle : ExcludedMiddle ℓ -- This has the advantage that it only needs to be postulated once -- and it can then be imported into many different modules as with any -- other proof. The downside is that the resulting Agda code will no -- longer type check under the --safe flag. -- The second approach is to pass it as a module parameter: module Proof (excludedMiddle : ExcludedMiddle ℓ) where -- The advantage of this approach is that the resulting Agda -- development can still be type checked under the --safe flag. -- Intuitively the reason for this is that when postulating it -- you are telling Agda that excluded middle does hold (which is clearly -- untrue as discussed above). In contrast when passing it as a module -- parameter you are telling Agda that **if** excluded middle was true -- then the following proofs would hold, which is logically valid. -- The disadvantage of this approach is that it is now necessary to -- include the excluded middle assumption as a parameter in every module -- that you want to use it in. Additionally the modules can never -- be fully instantiated (without postulating excluded middle). ------------------------------------------------------------------------ -- Other axioms -- Double negation elimination -- (∀ P → ¬ ¬ P → P) import Axiom.DoubleNegationElimination -- Function extensionality -- (∀ f g → (∀ x → f x ≡ g x) → f ≡ g) import Axiom.Extensionality.Propositional import Axiom.Extensionality.Heterogeneous -- Uniqueness of identity proofs (UIP) -- (∀ x y (p q : x ≡ y) → p ≡ q) import Axiom.UniquenessOfIdentityProofs
{ "alphanum_fraction": 0.65951013, "avg_line_length": 36.7444444444, "ext": "agda", "hexsha": "d22dfc0ca9003ff718aa6d86260b983a5cd5f7b6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/README/Axiom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/README/Axiom.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/README/Axiom.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 736, "size": 3307 }
module Human.String where open import Human.Bool open import Human.List renaming ( length to llength ) open import Human.Char open import Human.Nat postulate String : Set {-# BUILTIN STRING String #-} primitive primStringToList : String → List Char primStringFromList : List Char → String primStringAppend : String → String → String primStringEquality : String → String → Bool primShowChar : Char → String primShowString : String → String {-# COMPILE JS primStringToList = function(x) { return x.split(""); } #-} {-# COMPILE JS primStringFromList = function(x) { return x.join(""); } #-} {-# COMPILE JS primStringAppend = function(x) { return function(y) { return x+y; }; } #-} {-# COMPILE JS primStringEquality = function(x) { return function(y) { return x===y; }; } #-} {-# COMPILE JS primShowChar = function(x) { return JSON.stringify(x); } #-} {-# COMPILE JS primShowString = function(x) { return JSON.stringify(x); } #-} toList : String → List Char toList = primStringToList {-# COMPILE JS primStringToList = function(x) { return x.split(""); } #-} slength : String → Nat slength s = llength (toList s) {-# COMPILE JS slength = function(s) { return s.length; } #-}
{ "alphanum_fraction": 0.6802325581, "avg_line_length": 34.4, "ext": "agda", "hexsha": "3cabbdf56f5bcdbcbb58182d0cfcbf949089bcbc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MaisaMilena/JuiceMaker", "max_forks_repo_path": "src/Human/String.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MaisaMilena/JuiceMaker", "max_issues_repo_path": "src/Human/String.agda", "max_line_length": 93, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b509eb4c4014605facfb4ee5c807cd07753d4477", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MaisaMilena/JuiceMaker", "max_stars_repo_path": "src/Human/String.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-28T05:46:27.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-29T17:35:20.000Z", "num_tokens": 300, "size": 1204 }
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.Group where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.FunExtEquiv open import Cubical.Data.Prod.Base hiding (_×_) renaming (_×Σ_ to _×_) open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) open import Cubical.Structures.Monoid private variable ℓ ℓ' : Level group-axiom : (X : Type ℓ) → monoid-structure X → Type ℓ group-axiom G ((e , _·_) , _) = ((x : G) → Σ G (λ x' → (x · x' ≡ e) × (x' · x ≡ e))) group-structure : Type ℓ → Type ℓ group-structure = add-to-structure (monoid-structure) group-axiom Groups : Type (ℓ-suc ℓ) Groups {ℓ} = TypeWithStr ℓ group-structure -- Extracting components of a group ⟨_⟩ : Groups {ℓ} → Type ℓ ⟨ (G , _) ⟩ = G id : (G : Groups {ℓ}) → ⟨ G ⟩ id (_ , ((e , _) , _) , _) = e group-operation : (G : Groups {ℓ}) → ⟨ G ⟩ → ⟨ G ⟩ → ⟨ G ⟩ group-operation (_ , ((_ , f) , _) , _) = f infixl 20 group-operation syntax group-operation G x y = x ·⟨ G ⟩ y group-is-set : (G : Groups {ℓ}) → isSet ⟨ G ⟩ group-is-set (_ , (_ , (P , _)) , _) = P group-assoc : (G : Groups {ℓ}) → (x y z : ⟨ G ⟩) → (x ·⟨ G ⟩ (y ·⟨ G ⟩ z)) ≡ ((x ·⟨ G ⟩ y) ·⟨ G ⟩ z) group-assoc (_ , (_ , (_ , P , _)) , _) = P group-runit : (G : Groups {ℓ}) → (x : ⟨ G ⟩) → x ·⟨ G ⟩ (id G) ≡ x group-runit (_ , (_ , (_ , _ , P , _)) , _) = P group-lunit : (G : Groups {ℓ}) → (x : ⟨ G ⟩) → (id G) ·⟨ G ⟩ x ≡ x group-lunit (_ , (_ , (_ , _ , _ , P)) , _) = P group-Σinv : (G : Groups {ℓ}) → (x : ⟨ G ⟩) → Σ (⟨ G ⟩) (λ x' → (x ·⟨ G ⟩ x' ≡ (id G)) × (x' ·⟨ G ⟩ x ≡ (id G))) group-Σinv (_ , _ , P) = P -- Defining the inverse function inv : (G : Groups {ℓ}) → ⟨ G ⟩ → ⟨ G ⟩ inv (_ , _ , P) x = fst (P x) group-rinv : (G : Groups {ℓ}) → (x : ⟨ G ⟩) → x ·⟨ G ⟩ (inv G x) ≡ id G group-rinv (_ , _ , P) x = fst (snd (P x)) group-linv : (G : Groups {ℓ}) → (x : ⟨ G ⟩) → (inv G x) ·⟨ G ⟩ x ≡ id G group-linv (_ , _ , P) x = snd (snd (P x)) -- Iso for groups are those for monoids group-iso : StrIso group-structure ℓ group-iso = add-to-iso monoid-structure monoid-iso group-axiom -- Auxiliary lemmas for subtypes (taken from Escardo) to-Σ-≡ : {X : Type ℓ} {A : X → Type ℓ'} {σ τ : Σ X A} → (Σ (fst σ ≡ fst τ) λ p → PathP (λ i → A (p i)) (snd σ) (snd τ)) → σ ≡ τ to-Σ-≡ (eq , p) = λ i → eq i , p i to-subtype-≡ : {X : Type ℓ} {A : X → Type ℓ'} {x y : X} {a : A x} {b : A y} → ((x : X) → isProp (A x)) → x ≡ y → Path (Σ X (λ x → A x)) (x , a) (y , b) to-subtype-≡ {x = x} {y} {a} {b} f eq = to-Σ-≡ (eq , toPathP (f y _ b)) -- TODO: this proof without toPathP? -- Group axiom isProp group-axiom-isProp : (X : Type ℓ) → (s : monoid-structure X) → isProp (group-axiom X s) group-axiom-isProp X (((e , _·_) , s@(isSet , assoc , rid , lid))) = isPropPi γ where γ : (x : X) → isProp (Σ X (λ x' → (x · x' ≡ e) × (x' · x ≡ e))) γ x (y , a , q) (z , p , b) = to-subtype-≡ u t where t : y ≡ z t = inv-lemma X e _·_ s x y z q p u : (x' : X) → isProp ((x · x' ≡ e) × (x' · x ≡ e)) u x' = isPropΣ (isSet _ _) (λ _ → isSet _ _) -- Group paths equivalent to equality group-is-SNS : SNS {ℓ} group-structure group-iso group-is-SNS = add-axioms-SNS monoid-structure monoid-iso group-axiom group-axiom-isProp monoid-is-SNS GroupPath : (M N : Groups {ℓ}) → (M ≃[ group-iso ] N) ≃ (M ≡ N) GroupPath M N = SIP group-structure group-iso group-is-SNS M N -- Trying to improve isomorphisms to only have to preserve -- _·_ group-iso' : StrIso group-structure ℓ group-iso' G S f = (x y : ⟨ G ⟩) → equivFun f (x ·⟨ G ⟩ y) ≡ equivFun f x ·⟨ S ⟩ equivFun f y -- Trying to reduce isomorphisms to simpler ones -- First we prove that both notions of group-iso are equal -- since both are props and there is are functions from -- one to the other -- Functions group-iso→group-iso' : (G S : Groups {ℓ}) (f : ⟨ G ⟩ ≃ ⟨ S ⟩) → group-iso G S f → group-iso' G S f group-iso→group-iso' G S f γ = snd γ group-iso'→group-iso : (G S : Groups {ℓ}) (f : ⟨ G ⟩ ≃ ⟨ S ⟩) → group-iso' G S f → group-iso G S f group-iso'→group-iso G S f γ = η , γ where g : ⟨ G ⟩ → ⟨ S ⟩ g = equivFun f e : ⟨ G ⟩ e = id G d : ⟨ S ⟩ d = id S δ : g e ≡ g e ·⟨ S ⟩ g e δ = g e ≡⟨ cong g (sym (group-lunit G _)) ⟩ g (e ·⟨ G ⟩ e) ≡⟨ γ e e ⟩ g e ·⟨ S ⟩ g e ∎ η : g e ≡ d η = g e ≡⟨ sym (group-runit S _) ⟩ g e ·⟨ S ⟩ d ≡⟨ cong (λ - → g e ·⟨ S ⟩ -) (sym (group-rinv S _)) ⟩ g e ·⟨ S ⟩ (g e ·⟨ S ⟩ (inv S (g e))) ≡⟨ group-assoc S _ _ _ ⟩ (g e ·⟨ S ⟩ g e) ·⟨ S ⟩ (inv S (g e)) ≡⟨ cong (λ - → group-operation S - (inv S (g e))) (sym δ) ⟩ g e ·⟨ S ⟩ (inv S (g e)) ≡⟨ group-rinv S _ ⟩ d ∎ -- Both are Props isProp-Iso : (G S : Groups {ℓ}) (f : ⟨ G ⟩ ≃ ⟨ S ⟩) → isProp (group-iso G S f) isProp-Iso G S f = isPropΣ (group-is-set S _ _) (λ _ → isPropPi (λ x → isPropPi λ y → group-is-set S _ _)) isProp-Iso' : (G S : Groups {ℓ}) (f : ⟨ G ⟩ ≃ ⟨ S ⟩) → isProp (group-iso' G S f) isProp-Iso' G S f = isPropPi (λ x → isPropPi λ y → group-is-set S _ _) -- Propositional equality to-Prop-≡ : {X Y : Type ℓ} (f : X → Y) (g : Y → X) → isProp X → isProp Y → X ≡ Y to-Prop-≡ {ℓ} {X} {Y} f g p q = isoToPath (iso f g aux₂ aux₁) where aux₁ : (x : X) → g (f x) ≡ x aux₁ x = p _ _ aux₂ : (y : Y) → f (g y) ≡ y aux₂ y = q _ _ -- Finally both are equal group-iso'≡group-iso : group-iso' {ℓ} ≡ group-iso group-iso'≡group-iso = funExt₃ γ where γ : ∀ (G S : Groups {ℓ}) (f : ⟨ G ⟩ ≃ ⟨ S ⟩) → group-iso' G S f ≡ group-iso G S f γ G S f = to-Prop-≡ (group-iso'→group-iso G S f) (group-iso→group-iso' G S f) (isProp-Iso' G S f) (isProp-Iso G S f) -- And Finally we have what we wanted group-is-SNS' : SNS {ℓ} group-structure group-iso' group-is-SNS' = transport γ group-is-SNS where γ : SNS {ℓ} group-structure group-iso ≡ SNS {ℓ} group-structure group-iso' γ = cong (SNS group-structure) (sym group-iso'≡group-iso) GroupPath' : (M N : Groups {ℓ}) → (M ≃[ group-iso' ] N) ≃ (M ≡ N) GroupPath' M N = SIP group-structure group-iso' group-is-SNS' M N --------------------------------------------------------------------- -- Abelians group (just add one axiom and prove that it is a hProp) --------------------------------------------------------------------- abelian-group-axiom : (X : Type ℓ) → group-structure X → Type ℓ abelian-group-axiom G (((_ , _·_), _), _) = (x y : G) → x · y ≡ y · x abelian-group-structure : Type ℓ → Type ℓ abelian-group-structure = add-to-structure (group-structure) abelian-group-axiom AbGroups : Type (ℓ-suc ℓ) AbGroups {ℓ} = TypeWithStr ℓ abelian-group-structure abelian-group-iso : StrIso abelian-group-structure ℓ abelian-group-iso = add-to-iso group-structure group-iso abelian-group-axiom abelian-group-axiom-isProp : (X : Type ℓ) → (s : group-structure X) → isProp (abelian-group-axiom X s) abelian-group-axiom-isProp X ((_ , (group-isSet , _)) , _) = isPropPi (λ x → isPropPi λ y → group-isSet _ _) abelian-group-is-SNS : SNS {ℓ} abelian-group-structure abelian-group-iso abelian-group-is-SNS = add-axioms-SNS group-structure group-iso abelian-group-axiom abelian-group-axiom-isProp group-is-SNS AbGroupPath : (M N : AbGroups {ℓ}) → (M ≃[ abelian-group-iso ] N) ≃ (M ≡ N) AbGroupPath M N = SIP abelian-group-structure abelian-group-iso abelian-group-is-SNS M N
{ "alphanum_fraction": 0.5196363177, "avg_line_length": 33.1338912134, "ext": "agda", "hexsha": "038e8f8610511ff21833c44e873ebe595b4c7979", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "borsiemir/cubical", "max_forks_repo_path": "Cubical/Structures/Group.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "borsiemir/cubical", "max_issues_repo_path": "Cubical/Structures/Group.agda", "max_line_length": 103, "max_stars_count": null, "max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "borsiemir/cubical", "max_stars_repo_path": "Cubical/Structures/Group.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3093, "size": 7919 }
data D : Set where @0 c : D -- The following definition should be rejected. Matching on an erased -- constructor in an *erased* position should not on its own make it -- possible to use erased definitions in the right-hand side. f : @0 D → D f c = c x : D x = f c
{ "alphanum_fraction": 0.6840148699, "avg_line_length": 20.6923076923, "ext": "agda", "hexsha": "32120e03ed0e8e14d0c41575b136e34b5e2955e0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue4638-3.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue4638-3.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue4638-3.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 77, "size": 269 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Abstract.Types open import LibraBFT.Abstract.Types.EpochConfig open WithAbsVote -- This module contains properties about RecordChains, culminating in -- theorem S5, which is the main per-epoch correctness condition. The -- properties are based on the original version of the LibraBFT paper, -- which was current when they were developed: -- https://developers.diem.com/docs/assets/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2019-06-28.pdf -- Even though the implementation has changed since that version of the -- paper, we do not need to redo these proofs because that affects only -- the concrete implementation. This demonstrates one advantage of -- separating these proofs into abstract and concrete pieces. module LibraBFT.Abstract.RecordChain.Properties (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) (NodeId : Set) (𝓔 : EpochConfig UID NodeId) (𝓥 : VoteEvidence UID NodeId 𝓔) where open import LibraBFT.Abstract.Types UID NodeId 𝓔 open import LibraBFT.Abstract.System UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.Records.Extends UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.RecordChain UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.RecordChain.Assumptions UID _≟UID_ NodeId 𝓔 𝓥 open EpochConfig 𝓔 module WithInvariants {ℓ} (InSys : Record → Set ℓ) (votes-only-once : VotesOnlyOnceRule InSys) (preferred-round-rule : PreferredRoundRule InSys) where open All-InSys-props InSys ---------------------- -- Lemma 2 -- Lemma 2 states that there can be at most one certified block per -- round. If two blocks have a quorum certificate for the same round, -- then they are equal or their unique identifier is not -- injective. This is required because, on the concrete side, this bId -- will be a hash function which might yield collisions. lemmaS2 : {b₀ b₁ : Block}{q₀ q₁ : QC} → InSys (Q q₀) → InSys (Q q₁) → (p₀ : B b₀ ← Q q₀) → (p₁ : B b₁ ← Q q₁) → getRound b₀ ≡ getRound b₁ → NonInjective-≡ bId ⊎ b₀ ≡ b₁ lemmaS2 {b₀} {b₁} {q₀} {q₁} ex₀ ex₁ (B←Q refl h₀) (B←Q refl h₁) refl with b₀ ≟Block b₁ ...| yes done = inj₂ done ...| no imp with bft-assumption (qVotes-C1 q₀) (qVotes-C1 q₁) ...| (a , (a∈q₀mem , a∈q₁mem , honest)) with Any-sym (Any-map⁻ a∈q₀mem) | Any-sym (Any-map⁻ a∈q₁mem) ...| a∈q₀ | a∈q₁ with All-lookup (qVotes-C3 q₀) (∈QC-Vote-correct q₀ a∈q₀) | All-lookup (qVotes-C3 q₁) (∈QC-Vote-correct q₁ a∈q₁) ...| a∈q₀rnd≡ | a∈q₁rnd≡ with <-cmp (abs-vRound (∈QC-Vote q₀ a∈q₀)) (abs-vRound (∈QC-Vote q₁ a∈q₁)) ...| tri< va<va' _ _ = ⊥-elim (<⇒≢ (subst₂ _<_ a∈q₀rnd≡ a∈q₁rnd≡ va<va') refl) ...| tri> _ _ va'<va = ⊥-elim (<⇒≢ (subst₂ _≤_ (cong suc a∈q₁rnd≡) a∈q₀rnd≡ va'<va) refl) ...| tri≈ _ v₀≡v₁ _ = let v₀∈q₀ = ∈QC-Vote-correct q₀ a∈q₀ v₁∈q₁ = ∈QC-Vote-correct q₁ a∈q₁ ppp = trans h₀ (trans (vote≡⇒QPrevId≡ {q₀} {q₁} v₀∈q₀ v₁∈q₁ (votes-only-once a honest ex₀ ex₁ a∈q₀ a∈q₁ v₀≡v₁)) (sym h₁)) in inj₁ ((b₀ , b₁) , (imp , ppp)) ---------------- -- Lemma S3 lemmaS3 : ∀{r₂ q'} {rc : RecordChain r₂} → InSys r₂ → (rc' : RecordChain (Q q')) → InSys (Q q') -- Immediately before a (Q q), we have the certified block (B b), which is the 'B' in S3 → (c3 : 𝕂-chain Contig 3 rc) -- This is B₀ ← C₀ ← B₁ ← C₁ ← B₂ ← C₂ in S3 → round r₂ < getRound q' → NonInjective-≡ bId ⊎ (getRound (kchainBlock (suc (suc zero)) c3) ≤ prevRound rc') lemmaS3 {r₂} {q'} ex₀ (step rc' b←q') ex₁ (s-chain {rc = rc} {b = b₂} {q₂} r←b₂ _ b₂←q₂ c2) hyp with bft-assumption (qVotes-C1 q₂) (qVotes-C1 q') ...| (a , (a∈q₂mem , a∈q'mem , honest)) with Any-sym (Any-map⁻ a∈q₂mem) | Any-sym (Any-map⁻ a∈q'mem) ...| a∈q₂ | a∈q' -- TODO-1: We have done similar reasoning on the order of votes for -- lemmaS2. We should factor out a predicate that analyzes the rounds -- of QC's and returns us a judgement about the order of the votes. with All-lookup (qVotes-C3 q') (∈QC-Vote-correct q' a∈q') | All-lookup (qVotes-C3 q₂) (∈QC-Vote-correct q₂ a∈q₂) ...| a∈q'rnd≡ | a∈q₂rnd≡ with <-cmp (round r₂) (abs-vRound (∈QC-Vote q' a∈q')) ...| tri> _ _ va'<va₂ with subst₂ _<_ a∈q'rnd≡ a∈q₂rnd≡ (≤-trans va'<va₂ (≤-reflexive (sym a∈q₂rnd≡))) ...| res = ⊥-elim (n≮n (getRound q') (≤-trans res (≤-unstep hyp))) lemmaS3 {q' = q'} ex₀ (step rc' b←q') ex₁ (s-chain {rc = rc} {b = b₂} {q₂} r←b₂ P b₂←q₂ c2) hyp | (a , (a∈q₂mem , a∈q'mem , honest)) | a∈q₂ | a∈q' | a∈q'rnd≡ | a∈q₂rnd≡ | tri≈ _ v₂≡v' _ = let v₂∈q₂ = ∈QC-Vote-correct q₂ a∈q₂ v'∈q' = ∈QC-Vote-correct q' a∈q' in ⊥-elim (<⇒≢ hyp (vote≡⇒QRound≡ {q₂} {q'} v₂∈q₂ v'∈q' (votes-only-once a honest {q₂} {q'} ex₀ ex₁ a∈q₂ a∈q' (trans a∈q₂rnd≡ v₂≡v')))) lemmaS3 {r} {q'} ex₀ (step rc' b←q') ex₁ (s-chain {rc = rc} {b = b₂} {q₂} r←b₂ P b₂←q₂ c2) hyp | (a , (a∈q₂mem , a∈q'mem , honest)) | a∈q₂ | a∈q' | a∈q'rnd≡ | a∈q₂rnd≡ | tri< va₂<va' _ _ with b←q' ...| B←Q rrr xxx = preferred-round-rule a honest {q₂} {q'} ex₀ ex₁ (s-chain r←b₂ P b₂←q₂ c2) a∈q₂ (step rc' (B←Q rrr xxx)) a∈q' (≤-trans (≤-reflexive (cong suc a∈q₂rnd≡)) va₂<va') ------------------ -- Proposition S4 -- The base case for lemma S4 resorts to a pretty simple -- arithmetic statement. propS4-base-arith : ∀ n r → n ≤ r → r ≤ (suc (suc n)) → r ∈ (suc (suc n) ∷ suc n ∷ n ∷ []) propS4-base-arith .0 .0 z≤n z≤n = there (there (here refl)) propS4-base-arith .0 .1 z≤n (s≤s z≤n) = there (here refl) propS4-base-arith .0 .2 z≤n (s≤s (s≤s z≤n)) = here refl propS4-base-arith (suc r) (suc n) (s≤s h0) (s≤s h1) = ∈-cong suc (propS4-base-arith r n h0 h1) -- Which is then translated to LibraBFT lingo propS4-base-lemma-1 : ∀{q}{rc : RecordChain (Q q)} → (c3 : 𝕂-chain Contig 3 rc) -- This is B₀ ← C₀ ← B₁ ← C₁ ← B₂ ← C₂ in S4 → (r : ℕ) → getRound (c3 b⟦ suc (suc zero) ⟧) ≤ r → r ≤ getRound (c3 b⟦ zero ⟧) → r ∈ ( getRound (c3 b⟦ zero ⟧) ∷ getRound (c3 b⟦ (suc zero) ⟧) ∷ getRound (c3 b⟦ (suc (suc zero)) ⟧) ∷ []) propS4-base-lemma-1 (s-chain {b = b0} _ p0 (B←Q refl b←q0) (s-chain {b = b1} r←b1 p1 (B←Q refl b←q1) (s-chain {r = R} {b = b2} r←b2 p2 (B←Q refl b←q2) 0-chain))) r hyp0 hyp1 rewrite p0 | p1 = propS4-base-arith (bRound b2) r hyp0 hyp1 propS4-base-lemma-2 : ∀{k r} {rc : RecordChain r} → All-InSys rc → (q' : QC) → InSys (Q q') → {b' : Block} → (rc' : RecordChain (B b')) → (ext : (B b') ← (Q q')) → (c : 𝕂-chain Contig k rc) → (ix : Fin k) → getRound (kchainBlock ix c) ≡ getRound b' → NonInjective-≡ bId ⊎ (kchainBlock ix c ≡ b') propS4-base-lemma-2 {rc = rc} prev∈sys q' q'∈sys rc' ext (s-chain r←b prf b←q c) zero hyp = lemmaS2 (All-InSys⇒last-InSys prev∈sys) q'∈sys b←q ext hyp propS4-base-lemma-2 prev∈sys q' q'∈sys rc' ext (s-chain r←b prf b←q c) (suc ix) = propS4-base-lemma-2 (All-InSys-unstep (All-InSys-unstep prev∈sys)) q' q'∈sys rc' ext c ix propS4-base : ∀{q q'} → {rc : RecordChain (Q q)} → All-InSys rc → (rc' : RecordChain (Q q')) → InSys (Q q') → (c3 : 𝕂-chain Contig 3 rc) -- This is B₀ ← C₀ ← B₁ ← C₁ ← B₂ ← C₂ in S4 → getRound (c3 b⟦ suc (suc zero) ⟧) ≤ getRound q' → getRound q' ≤ getRound (c3 b⟦ zero ⟧) → NonInjective-≡ bId ⊎ B (c3 b⟦ suc (suc zero) ⟧) ∈RC rc' propS4-base {q' = q'} prev∈sys (step {B b} rc'@(step rc'' q←b) b←q@(B←Q refl _)) q'∈sys c3 hyp0 hyp1 with propS4-base-lemma-1 c3 (getRound b) hyp0 hyp1 ...| here r with propS4-base-lemma-2 prev∈sys q' q'∈sys rc' b←q c3 zero (sym r) ...| inj₁ hb = inj₁ hb ...| inj₂ res with 𝕂-chain-∈RC c3 zero (suc (suc zero)) z≤n res rc' ...| inj₁ hb = inj₁ hb ...| inj₂ res' = inj₂ (there b←q res') propS4-base {q} {q'} prev∈sys (step rc' (B←Q refl x₀)) q'∈sys c3 hyp0 hyp1 | there (here r) with propS4-base-lemma-2 prev∈sys q' q'∈sys rc' (B←Q refl x₀) c3 (suc zero) (sym r) ...| inj₁ hb = inj₁ hb ...| inj₂ res with 𝕂-chain-∈RC c3 (suc zero) (suc (suc zero)) (s≤s z≤n) res rc' ...| inj₁ hb = inj₁ hb ...| inj₂ res' = inj₂ (there (B←Q refl x₀) res') propS4-base {q' = q'} prev∈sys (step rc' (B←Q refl x₀)) q'∈sys c3 hyp0 hyp1 | there (there (here r)) with propS4-base-lemma-2 prev∈sys q' q'∈sys rc' (B←Q refl x₀) c3 (suc (suc zero)) (sym r) ...| inj₁ hb = inj₁ hb ...| inj₂ res with 𝕂-chain-∈RC c3 (suc (suc zero)) (suc (suc zero)) (s≤s (s≤s z≤n)) res rc' ...| inj₁ hb = inj₁ hb ...| inj₂ res' = inj₂ (there (B←Q refl x₀) res') propS4 : ∀{q q'} → {rc : RecordChain (Q q)} → All-InSys rc → (rc' : RecordChain (Q q')) → All-InSys rc' → (c3 : 𝕂-chain Contig 3 rc) -- This is B₀ ← C₀ ← B₁ ← C₁ ← B₂ ← C₂ in S4 → getRound (c3 b⟦ suc (suc zero) ⟧) ≤ getRound q' -- In the paper, the proposition states that B₀ ←⋆ B, yet, B is the block preceding -- C, which in our case is 'prevBlock rc''. Hence, to say that B₀ ←⋆ B is -- to say that B₀ is a block in the RecordChain that goes all the way to C. → NonInjective-≡ bId ⊎ B (c3 b⟦ suc (suc zero) ⟧) ∈RC rc' propS4 {q' = q'} {rc} prev∈sys (step rc' b←q') prev∈sys' c3 hyp with getRound q' ≤?ℕ getRound (c3 b⟦ zero ⟧) ...| yes rq≤rb₂ = propS4-base {q' = q'} prev∈sys (step rc' b←q') (All-InSys⇒last-InSys prev∈sys') c3 hyp rq≤rb₂ propS4 {q' = q'} prev∈sys (step rc' b←q') all∈sys c3 hyp | no rb₂<rq with lemmaS3 (All-InSys⇒last-InSys prev∈sys) (step rc' b←q') (All-InSys⇒last-InSys all∈sys) c3 (subst (_< getRound q') (kchainBlockRoundZero-lemma c3) (≰⇒> rb₂<rq)) ...| inj₁ hb = inj₁ hb ...| inj₂ ls3 with rc' | b←q' ...| step rc'' q←b | (B←Q {b} rx x) with rc'' | q←b ...| empty | (I←B _ _) = contradiction (n≤0⇒n≡0 ls3) (¬bRound≡0 (kchain-to-RecordChain-at-b⟦⟧ c3 (suc (suc zero)))) ...| step {r = r} rc''' (B←Q {q = q''} refl bid≡) | (Q←B ry y) with propS4 {q' = q''} prev∈sys (step rc''' (B←Q refl bid≡)) (All-InSys-unstep (All-InSys-unstep all∈sys)) c3 ls3 ...| inj₁ hb' = inj₁ hb' ...| inj₂ final = inj₂ (there (B←Q rx x) (there (Q←B ry y) final)) ------------------- -- Theorem S5 thmS5 : ∀{q q'} → {rc : RecordChain (Q q )} → All-InSys rc → {rc' : RecordChain (Q q')} → All-InSys rc' → {b b' : Block} → CommitRule rc b → CommitRule rc' b' → NonInjective-≡ bId ⊎ ((B b) ∈RC rc' ⊎ (B b') ∈RC rc) -- Not conflicting means one extends the other. thmS5 {rc = rc} prev∈sys {rc'} prev∈sys' (commit-rule c3 refl) (commit-rule c3' refl) with <-cmp (getRound (c3 b⟦ suc (suc zero) ⟧)) (getRound (c3' b⟦ suc (suc zero) ⟧)) ...| tri≈ _ r≡r' _ = inj₁ <⊎$> (propS4 prev∈sys rc' prev∈sys' c3 (≤-trans (≡⇒≤ r≡r') (kchain-round-≤-lemma' c3' (suc (suc zero))))) ...| tri< r<r' _ _ = inj₁ <⊎$> (propS4 prev∈sys rc' prev∈sys' c3 (≤-trans (≤-unstep r<r') (kchain-round-≤-lemma' c3' (suc (suc zero))))) ...| tri> _ _ r'<r = inj₂ <⊎$> (propS4 prev∈sys' rc prev∈sys c3' (≤-trans (≤-unstep r'<r) (kchain-round-≤-lemma' c3 (suc (suc zero)))))
{ "alphanum_fraction": 0.5478162039, "avg_line_length": 49.272, "ext": "agda", "hexsha": "295f82d6b64c8b8473f8c21ffe921b10f095baeb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Abstract/RecordChain/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Abstract/RecordChain/Properties.agda", "max_line_length": 144, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Abstract/RecordChain/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4996, "size": 12318 }
{-# OPTIONS --cubical #-} open import Cubical.Foundations.Prelude open import Cubical.Relation.Nullary open import Cubical.Data.Empty open import Cubical.Data.Nat open import Cubical.Data.Unit open import Cubical.Data.Prod open import Cubical.Data.Bool module Direction where -- some nat things. move to own module? sucn : (n : ℕ) → (ℕ → ℕ) sucn n = iter n suc sucnsuc : (n m : ℕ) → sucn n (suc m) ≡ suc (sucn n m) sucnsuc zero m = refl sucnsuc (suc n) m = sucn (suc n) (suc m) ≡⟨ refl ⟩ suc (sucn n (suc m)) ≡⟨ cong suc (sucnsuc n m) ⟩ suc (suc (sucn n m)) ∎ doublePred : (n : ℕ) → doubleℕ (predℕ n) ≡ predℕ (predℕ (doubleℕ n)) doublePred zero = refl doublePred (suc n) = refl -- doubleDoublesPred : (n : ℕ) → doublesℕ n 1 ≡ -- doubleDoublesPred zero = refl -- doubleDoublesPred (suc n) = {!!} sucPred : (n : ℕ) → ¬ (n ≡ zero) → suc (predℕ n) ≡ n sucPred zero 0≠0 = ⊥-elim (0≠0 refl) sucPred (suc n) sucn≠0 = refl predSucSuc : (n : ℕ) → ¬ (predℕ (suc (suc n)) ≡ 0) predSucSuc n = snotz doubleDoubles : (n m : ℕ) → doubleℕ (doublesℕ n m) ≡ doublesℕ (suc n) m doubleDoubles zero m = refl doubleDoubles (suc n) m = doubleDoubles n (doubleℕ m) doublePos : (n : ℕ) → ¬ (n ≡ 0) → ¬ (doubleℕ n ≡ 0) doublePos zero 0≠0 = ⊥-elim (0≠0 refl) doublePos (suc n) sn≠0 = snotz doublesPos : (n m : ℕ) → ¬ (m ≡ 0) → ¬ (doublesℕ n m ≡ 0) doublesPos zero m m≠0 = m≠0 doublesPos (suc n) m m≠0 = doublesPos n (doubleℕ m) (doublePos m (m≠0)) predDoublePos : (n : ℕ) → ¬ (n ≡ 0) → ¬ (predℕ (doubleℕ n)) ≡ 0 predDoublePos zero n≠0 = ⊥-elim (n≠0 refl) predDoublePos (suc n) sn≠0 = snotz doubleDoublesOne≠0 : (n : ℕ) → ¬ (doubleℕ (doublesℕ n (suc zero)) ≡ 0) doubleDoublesOne≠0 zero = snotz doubleDoublesOne≠0 (suc n) = doublePos (doublesℕ n 2) (doublesPos n 2 (snotz)) predDoubleDoublesOne≠0 : (n : ℕ) → ¬ (predℕ (doubleℕ (doublesℕ n (suc zero))) ≡ 0) predDoubleDoublesOne≠0 zero = snotz predDoubleDoublesOne≠0 (suc n) = predDoublePos (doublesℕ n 2) (doublesPos n 2 snotz) doublesZero : (n : ℕ) → doublesℕ n zero ≡ zero doublesZero zero = refl doublesZero (suc n) = doublesZero n -- 2^n(m+1) = (2^n)m + 2^n -- doublesSuc : (n m : ℕ) → doublesℕ n (suc m) ≡ sucn (doublesℕ n 1) (doublesℕ n m) -- doublesSuc zero m = refl -- doublesSuc (suc n) m = -- doublesℕ n (suc (suc (doubleℕ m))) -- ≡⟨ doublesSuc n (suc (doubleℕ m)) ⟩ -- sucn (doublesℕ n 1) (doublesℕ n (suc (doubleℕ m))) -- ≡⟨ cong (λ z → sucn (doublesℕ n 1) z) (doublesSuc n (doubleℕ m)) ⟩ -- sucn (doublesℕ n 1) (sucn (doublesℕ n 1) (doublesℕ n (doubleℕ m))) -- ≡⟨ sucnDoubles n (doublesℕ n (doubleℕ m)) ⟩ -- sucn (doublesℕ n 2) (doublesℕ n (doubleℕ m)) -- ∎ -- where -- sucnDoubles : (n m : ℕ) → sucn (doublesℕ n 1) (sucn (doublesℕ n 1) m) ≡ sucn (doublesℕ n 2) m -- sucnDoubles zero m = refl -- sucnDoubles (suc n) m = -- sucn (doublesℕ n 2) (sucn (doublesℕ n 2) m) -- ≡⟨ sym (sucnDoubles n (sucn (doublesℕ n 2) m)) ⟩ -- sucn (doublesℕ n 1) (sucn (doublesℕ n 1) (sucn (doublesℕ n 2) m)) -- ≡⟨ {!!} ⟩ {!!} -- 2 * (i + n) = 2*i + 2*n doubleSucn : (i n : ℕ) → doubleℕ (sucn i n) ≡ sucn (doubleℕ i) (doubleℕ n) doubleSucn zero n = refl doubleSucn (suc i) n = suc (suc (doubleℕ (sucn i n))) ≡⟨ cong (λ z → suc (suc z)) (doubleSucn i n) ⟩ suc (suc (sucn (doubleℕ i) (doubleℕ n))) ≡⟨ refl ⟩ suc (sucn (suc (doubleℕ i)) (doubleℕ n)) ≡⟨ cong suc refl ⟩ sucn (suc (suc (doubleℕ i))) (doubleℕ n) ∎ doublesSucn : (i n m : ℕ) → doublesℕ n (sucn i m) ≡ sucn (doublesℕ n i) (doublesℕ n m) doublesSucn i zero m = refl doublesSucn i (suc n) m = doublesℕ n (doubleℕ (sucn i m)) ≡⟨ cong (doublesℕ n) (doubleSucn i m) ⟩ doublesℕ n (sucn (doubleℕ i) (doubleℕ m)) ≡⟨ doublesSucn (doubleℕ i) n (doubleℕ m) ⟩ sucn (doublesℕ n (doubleℕ i)) (doublesℕ n (doubleℕ m)) ∎ -- 2^n * (m + 2) = doublesSucSuc : (n m : ℕ) → doublesℕ n (suc (suc m)) ≡ sucn (doublesℕ (suc n) 1) (doublesℕ n m) doublesSucSuc zero m = refl doublesSucSuc (suc n) m = doublesℕ (suc n) (suc (suc m)) ≡⟨ refl ⟩ doublesℕ n (sucn 4 (doubleℕ m)) ≡⟨ doublesSucn 4 n (doubleℕ m) ⟩ sucn (doublesℕ n 4) (doublesℕ n (doubleℕ m)) ∎ n+n≡2n : (n : ℕ) → sucn n n ≡ doubleℕ n n+n≡2n zero = refl n+n≡2n (suc n) = sucn (suc n) (suc n) ≡⟨ sucnsuc (suc n) n ⟩ suc (sucn (suc n) n) ≡⟨ refl ⟩ suc (suc (sucn n n)) ≡⟨ cong (λ z → suc (suc z)) (n+n≡2n n) ⟩ suc (suc (doubleℕ n)) ∎ -- predDoubles : (n m : ℕ) → ¬ (n ≡ 0) → ¬ (m ≡ 0) → ¬ (predℕ (doublesℕ n m)) ≡ 0 -- predDoubles zero m n≠0 m≠0 = ⊥-elim (n≠0 refl) -- predDoubles (suc n) m sn≠0 m≠0 = {!!} -- "Direction" type for determining direction in spatial structures. -- We interpret ↓ as 0 and ↑ as 1 when used in numerals in -- numerical types. data Dir : Type₀ where ↓ : Dir ↑ : Dir caseDir : ∀ {ℓ} → {A : Type ℓ} → (ad au : A) → Dir → A caseDir ad au ↓ = ad caseDir ad au ↑ = au ¬↓≡↑ : ¬ ↓ ≡ ↑ ¬↓≡↑ eq = subst (caseDir Dir ⊥) eq ↓ ¬↑≡↓ : ¬ ↑ ≡ ↓ ¬↑≡↓ eq = subst (caseDir ⊥ Dir) eq ↓ -- Dependent "directional numerals": -- for natural n, obtain 2ⁿ "numerals". -- This is basically a little-endian binary notation. -- NOTE: Would an implementation of DirNum with dependent vectors be preferable -- over using products? DirNum : ℕ → Type₀ DirNum zero = Unit DirNum (suc n) = Dir × (DirNum n) sucDoubleDirNum+ : (r : ℕ) → DirNum r → DirNum (suc r) sucDoubleDirNum+ r x = (↑ , x) -- bad name, since this is doubling "to" suc r doubleDirNum+ : (r : ℕ) → DirNum r → DirNum (suc r) doubleDirNum+ r x = (↓ , x) DirNum→ℕ : ∀ {n} → DirNum n → ℕ DirNum→ℕ {zero} tt = zero DirNum→ℕ {suc n} (↓ , d) = doublesℕ (suc zero) (DirNum→ℕ d) DirNum→ℕ {suc n} (↑ , d) = suc (doublesℕ (suc zero) (DirNum→ℕ d)) double-lemma : ∀ {r} → (d : DirNum r) → doubleℕ (DirNum→ℕ d) ≡ DirNum→ℕ (doubleDirNum+ r d) double-lemma {r} d = refl ¬↓,d≡↑,d′ : ∀ {n} → ∀ (d d′ : DirNum n) → ¬ (↓ , d) ≡ (↑ , d′) ¬↓,d≡↑,d′ {n} d d′ ↓,d≡↑,d′ = ¬↓≡↑ (cong proj₁ ↓,d≡↑,d′) ¬↑,d≡↓,d′ : ∀ {n} → ∀ (d d′ : DirNum n) → ¬ (↑ , d) ≡ (↓ , d′) ¬↑,d≡↓,d′ {n} d d′ ↑,d≡↓,d′ = ¬↑≡↓ (cong proj₁ ↑,d≡↓,d′) -- dropping least significant bit preserves equality dropLeast≡ : ∀ {n} → ∀ (ds ds′ : DirNum n) (d : Dir) → ((d , ds) ≡ (d , ds′)) → ds ≡ ds′ dropLeast≡ {n} ds ds′ d d,ds≡d,ds′ = cong proj₂ d,ds≡d,ds′ -- give the next numeral, cycling back to 0 -- in case of 2ⁿ - 1 next : ∀ {n} → DirNum n → DirNum n next {zero} tt = tt next {suc n} (↓ , ds) = (↑ , ds) next {suc n} (↑ , ds) = (↓ , next ds) prev : ∀ {n} → DirNum n → DirNum n prev {zero} tt = tt prev {suc n} (↓ , ds) = (↓ , prev ds) prev {suc n} (↑ , ds) = (↓ , ds) zero-n : (n : ℕ) → DirNum n zero-n zero = tt zero-n (suc n) = (↓ , zero-n n) zero-n→0 : ∀ {r} → DirNum→ℕ (zero-n r) ≡ zero zero-n→0 {zero} = refl zero-n→0 {suc r} = doubleℕ (DirNum→ℕ (zero-n r)) ≡⟨ cong doubleℕ (zero-n→0 {r}) ⟩ doubleℕ zero ≡⟨ refl ⟩ zero ∎ zero-n? : ∀ {n} → (x : DirNum n) → Dec (x ≡ zero-n n) zero-n? {zero} tt = yes refl zero-n? {suc n} (↓ , ds) with zero-n? ds ... | no ds≠zero-n = no (λ y → ds≠zero-n (dropLeast≡ ds (zero-n n) ↓ y)) ... | yes ds≡zero-n = yes (cong (λ y → (↓ , y)) ds≡zero-n) zero-n? {suc n} (↑ , ds) = no ((¬↑,d≡↓,d′ ds (zero-n n))) zero-n≡0 : {r : ℕ} → DirNum→ℕ (zero-n r) ≡ zero zero-n≡0{zero} = refl zero-n≡0 {suc r} = doubleℕ (DirNum→ℕ {r} (zero-n r)) ≡⟨ cong doubleℕ (zero-n≡0 {r}) ⟩ 0 ∎ -- x is doubleable as a DirNum precisely when x's most significant bit is 0 -- this should return a Dec doubleable-n? : {n : ℕ} → (x : DirNum n) → Bool doubleable-n? {zero} tt = false doubleable-n? {suc n} (x , x₁) with zero-n? x₁ ... | yes _ = true ... | no _ = doubleable-n? x₁ dropMost : {r : ℕ} → DirNum (suc r) → DirNum r dropMost {zero} d = tt dropMost {suc zero} (x , (x₁ , x₂)) = (x₁ , x₂) dropMost {suc (suc r)} (x , x₁) = (x , dropMost x₁) -- need to prove property about doubleable --doubleDirNum : (r : ℕ) (d : DirNum r) → doubleable-n? {r} d ≡ true → DirNum r -- bad: doubleDirNum : (r : ℕ) (d : DirNum r) → DirNum r doubleDirNum zero d = tt doubleDirNum (suc r) d = doubleDirNum+ r (dropMost {r} d) -- doubleDirNum zero d doubleable = ⊥-elim (false≢true doubleable) -- doubleDirNum (suc r) d doubleable = doubleDirNum+ r (dropMost {r} d) one-n : (n : ℕ) → DirNum n one-n zero = tt one-n (suc n) = (↑ , zero-n n) -- numeral for 2ⁿ - 1 max-n : (n : ℕ) → DirNum n max-n zero = tt max-n (suc n) = (↑ , max-n n) --half-n : (n : ℕ) → DirNum n max→ℕ : (r : ℕ) → DirNum→ℕ (max-n r) ≡ predℕ (doublesℕ r 1) max→ℕ zero = refl max→ℕ (suc r) = suc (doubleℕ (DirNum→ℕ (max-n r))) ≡⟨ cong (λ z → suc (doubleℕ z)) (max→ℕ r) ⟩ suc (doubleℕ (predℕ (doublesℕ r 1))) ≡⟨ cong suc (doublePred (doublesℕ r 1)) ⟩ suc (predℕ (predℕ (doubleℕ (doublesℕ r 1)))) ≡⟨ cong (λ z → suc (predℕ (predℕ z))) (doubleDoubles r 1) ⟩ suc (predℕ (predℕ (doublesℕ (suc r) 1))) ≡⟨ refl ⟩ suc (predℕ (predℕ (doublesℕ r 2))) ≡⟨ sucPred (predℕ (doublesℕ r 2)) H ⟩ predℕ (doublesℕ r 2) ∎ where G : (r : ℕ) → doubleℕ (doublesℕ r 1) ≡ doublesℕ r 2 G zero = refl G (suc r) = doubleℕ (doublesℕ r 2) ≡⟨ doubleDoubles r 2 ⟩ doublesℕ (suc r) 2 ≡⟨ refl ⟩ doublesℕ r (doubleℕ 2) ∎ H : ¬ predℕ (doublesℕ r 2) ≡ zero H = λ h → (predDoublePos (doublesℕ r 1) (doublesPos r 1 snotz) (( predℕ (doubleℕ (doublesℕ r 1)) ≡⟨ cong predℕ (G r) ⟩ predℕ (doublesℕ r 2) ≡⟨ h ⟩ 0 ∎ ))) max? : ∀ {n} → (x : DirNum n) → Dec (x ≡ max-n n) max? {zero} tt = yes refl max? {suc n} (↓ , ds) = no ((¬↓,d≡↑,d′ ds (max-n n))) max? {suc n} (↑ , ds) with max? ds ... | yes ds≡max-n = yes ( (↑ , ds) ≡⟨ cong (λ x → (↑ , x)) ds≡max-n ⟩ (↑ , max-n n) ∎ ) ... | no ¬ds≡max-n = no (λ d,ds≡d,max-n → ¬ds≡max-n ((dropLeast≡ ds (max-n n) ↑ d,ds≡d,max-n))) maxn+1≡↑maxn : ∀ n → max-n (suc n) ≡ (↑ , (max-n n)) maxn+1≡↑maxn n = refl maxr≡pred2ʳ : (r : ℕ) (d : DirNum r) → d ≡ max-n r → DirNum→ℕ d ≡ predℕ (doublesℕ r (suc zero)) maxr≡pred2ʳ zero d d≡max = refl maxr≡pred2ʳ (suc r) (↓ , ds) d≡max = ⊥-elim ((¬↓,d≡↑,d′ ds (max-n r)) d≡max) maxr≡pred2ʳ (suc r) (↑ , ds) d≡max = suc (doubleℕ (DirNum→ℕ ds)) ≡⟨ cong (λ x → suc (doubleℕ x)) (maxr≡pred2ʳ r ds ds≡max) ⟩ suc (doubleℕ (predℕ (doublesℕ r (suc zero)))) -- 2*(2^r - 1) + 1 = 2^r+1 - 1 ≡⟨ cong suc (doublePred (doublesℕ r (suc zero))) ⟩ suc (predℕ (predℕ (doubleℕ (doublesℕ r (suc zero))))) ≡⟨ sucPred (predℕ (doubleℕ (doublesℕ r (suc zero)))) ( (predDoublePos (doublesℕ r (suc zero)) ((doublesPos r 1 snotz)))) ⟩ predℕ (doubleℕ (doublesℕ r (suc zero))) ≡⟨ cong predℕ (doubleDoubles r (suc zero)) ⟩ predℕ (doublesℕ (suc r) 1) ≡⟨ refl ⟩ predℕ (doublesℕ r 2) -- 2^r*2 - 1 = 2^(r+1) - 1 ∎ where ds≡max : ds ≡ max-n r ds≡max = dropLeast≡ ds (max-n r) ↑ d≡max -- TODO: rename embed-next : (r : ℕ) → DirNum r → DirNum (suc r) embed-next zero tt = (↓ , tt) embed-next (suc r) (d , ds) with zero-n? ds ... | no _ = (d , embed-next r ds) ... | yes _ = (d , zero-n (suc r)) -- embed-next-thm : (r : ℕ) (d : DirNum r) → DirNum→ℕ d ≡ DirNum→ℕ (embed-next r d) -- embed-next-thm zero d = refl -- embed-next-thm (suc r) (d , ds) with zero-n? ds -- ... | no _ = {!!} -- ... | yes _ = {!!} -- TODO: rename? nextsuc-lemma : (r : ℕ) (x : DirNum r) → ¬ ((sucDoubleDirNum+ r x) ≡ max-n (suc r)) → ¬ (x ≡ max-n r) nextsuc-lemma zero tt ¬H = ⊥-elim (¬H refl) nextsuc-lemma (suc r) (↓ , x) ¬H = ¬↓,d≡↑,d′ x (max-n r) nextsuc-lemma (suc r) (↑ , x) ¬H = λ h → ¬H (H (dropLeast≡ x (max-n r) ↑ h)) --⊥-elim (¬H H) where H : (x ≡ max-n r) → sucDoubleDirNum+ (suc r) (↑ , x) ≡ (↑ , (↑ , max-n r)) H x≡maxnr = sucDoubleDirNum+ (suc r) (↑ , x) ≡⟨ cong (λ y → sucDoubleDirNum+ (suc r) (↑ , y)) x≡maxnr ⟩ sucDoubleDirNum+ (suc r) (↑ , max-n r) ≡⟨ refl ⟩ (↑ , (↑ , max-n r)) ∎ next≡suc : (r : ℕ) (x : DirNum r) → ¬ (x ≡ max-n r) → DirNum→ℕ (next x) ≡ suc (DirNum→ℕ x) next≡suc zero tt ¬x≡maxnr = ⊥-elim (¬x≡maxnr refl) next≡suc (suc r) (↓ , x) ¬x≡maxnr = refl next≡suc (suc r) (↑ , x) ¬x≡maxnr = doubleℕ (DirNum→ℕ (next x)) ≡⟨ cong doubleℕ (next≡suc r x (nextsuc-lemma r x ¬x≡maxnr)) ⟩ doubleℕ (suc (DirNum→ℕ x)) ≡⟨ refl ⟩ suc (suc (doubleℕ (DirNum→ℕ x))) ∎ -- doublesuclemma : (r : ℕ) (x : DirNum (suc r)) → -- doubleℕ (DirNum→ℕ (next x)) ≡ suc (suc (doubleℕ (DirNum→ℕ x))) -- doublesuclemma zero (↓ , x₁) = refl -- doublesuclemma zero (↑ , x₁) = {!!} -- doublesuclemma (suc r) x = {!!} -- doubleℕ (DirNum→ℕ (next x)) -- ≡⟨ cong doubleℕ (next≡suc r x ¬x≡maxnr) ⟩ -- doubleℕ (suc (DirNum→ℕ x)) -- ≡⟨ refl ⟩ -- suc (suc (doubleℕ (DirNum→ℕ x))) -- ∎
{ "alphanum_fraction": 0.5472239454, "avg_line_length": 32, "ext": "agda", "hexsha": "fa5adb76d992ad5dde7ee762398cb78504add14b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_forks_repo_path": "Multidimensional/Direction.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_issues_repo_issues_event_max_datetime": "2019-07-02T16:24:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-19T20:40:07.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_issues_repo_path": "Multidimensional/Direction.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wrrnhttn/agda-cubical-multidimensional", "max_stars_repo_path": "Multidimensional/Direction.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5984, "size": 12896 }
{-# OPTIONS --irrelevant-projections #-} data _≡_ {A : Set} : A → A → Set where refl : (x : A) → x ≡ x module Erased where record Erased (A : Set) : Set where constructor [_] field @0 erased : A open Erased record _↔_ (A B : Set) : Set where field to : A → B from : B → A to∘from : ∀ x → to (from x) ≡ x from∘to : ∀ x → from (to x) ≡ x postulate A : Set P : (B : Set) → (Erased A → B) → Set p : (B : Set) (f : Erased A ↔ B) → P B (_↔_.to f) fails : P (Erased (Erased A)) (λ (x : Erased A) → [ x ]) fails = p _ (record { from = λ ([ x ]) → [ erased x ] ; to∘from = refl ; from∘to = λ _ → refl _ }) module Irrelevant where record Irrelevant (A : Set) : Set where constructor [_] field .irr : A open Irrelevant record _↔_ (A B : Set) : Set where field to : A → B from : B → A to∘from : ∀ x → to (from x) ≡ x from∘to : ∀ x → from (to x) ≡ x postulate A : Set P : (B : Set) → (Irrelevant A → B) → Set p : (B : Set) (f : Irrelevant A ↔ B) → P B (_↔_.to f) fails : P (Irrelevant (Irrelevant A)) (λ (x : Irrelevant A) → [ x ]) fails = p _ (record { from = λ ([ x ]) → [ irr x ] ; to∘from = refl ; from∘to = λ _ → refl _ })
{ "alphanum_fraction": 0.45, "avg_line_length": 21.9047619048, "ext": "agda", "hexsha": "39ca73c4ec5187b3f7a2c42478363b3e8121562b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4480.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4480.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4480.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 508, "size": 1380 }
------------------------------------------------------------------------ -- A virtual machine ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} module Lambda.Simplified.Partiality-monad.Inductive.Virtual-machine where open import Equality.Propositional open import Prelude hiding (⊥) open import Monad equality-with-J open import Partiality-monad.Inductive open import Partiality-monad.Inductive.Fixpoints open import Lambda.Simplified.Syntax open import Lambda.Simplified.Virtual-machine open Closure Code -- A functional semantics for the VM. -- -- For an alternative definition, see the semantics in -- Lambda.Partiality-monad.Inductive.Virtual-machine, which is defined -- without using a fixpoint combinator. execP : State → Partial State (λ _ → Maybe Value) (Maybe Value) execP s with step s ... | continue s′ = rec s′ ... | done v = return (just v) ... | crash = return nothing exec : State → Maybe Value ⊥ exec s = fixP execP s
{ "alphanum_fraction": 0.6344827586, "avg_line_length": 27.4324324324, "ext": "agda", "hexsha": "741d43799abcbb2b600e2f74df4ee02238bdb4c4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Lambda/Simplified/Partiality-monad/Inductive/Virtual-machine.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Lambda/Simplified/Partiality-monad/Inductive/Virtual-machine.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Lambda/Simplified/Partiality-monad/Inductive/Virtual-machine.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 219, "size": 1015 }
{-# OPTIONS --without-K #-} open import HoTT open import experimental.TwoConstancyHIT module experimental.TwoConstancy {i j} {A : Type i} {B : Type j} (B-is-gpd : is-gpd B) (f : A → B) (f-is-const₀ : ∀ a₁ a₂ → f a₁ == f a₂) (f-is-const₁ : ∀ a₁ a₂ a₃ → f-is-const₀ a₁ a₂ ∙' f-is-const₀ a₂ a₃ == f-is-const₀ a₁ a₃) where private abstract lemma₁ : ∀ a (t₂ : TwoConstancy A) → point a == t₂ lemma₁ a = TwoConstancy-elim {P = λ t₂ → point a == t₂} (λ _ → =-preserves-level 1 TwoConstancy-level) (λ b → link₀ a b) (λ b₁ b₂ → ↓-cst=idf-in' $ link₁ a b₁ b₂) (λ b₁ b₂ b₃ → set-↓-has-all-paths-↓ $ TwoConstancy-level _ _ ) lemma₂ : ∀ (a₁ a₂ : A) → lemma₁ a₁ == lemma₁ a₂ [ (λ t₁ → ∀ t₂ → t₁ == t₂) ↓ link₀ a₁ a₂ ] lemma₂ a₁ a₂ = ↓-cst→app-in $ TwoConstancy-elim {P = λ t₂ → lemma₁ a₁ t₂ == lemma₁ a₂ t₂ [ (λ t₁ → t₁ == t₂) ↓ link₀ a₁ a₂ ]} (λ _ → ↓-preserves-level 1 λ _ → =-preserves-level 1 TwoConstancy-level) (λ b → ↓-idf=cst-in $ ! $ link₁ a₁ a₂ b) (λ b₁ b₂ → prop-has-all-paths-↓ $ ↓-level λ _ → TwoConstancy-level _ _) (λ b₁ b₂ b₃ → prop-has-all-paths-↓ $ contr-is-prop $ ↓-level λ _ → ↓-level λ _ → TwoConstancy-level _ _) TwoConstancy-has-all-paths : has-all-paths (TwoConstancy A) TwoConstancy-has-all-paths = TwoConstancy-elim {P = λ t₁ → ∀ t₂ → t₁ == t₂} (λ _ → Π-level λ _ → =-preserves-level 1 TwoConstancy-level) lemma₁ lemma₂ (λ a₁ a₂ a₃ → prop-has-all-paths-↓ $ ↓-level λ t₁ → Π-is-set λ t₂ → TwoConstancy-level t₁ t₂) TwoConstancy-is-prop : is-prop (TwoConstancy A) TwoConstancy-is-prop = all-paths-is-prop TwoConstancy-has-all-paths cst-extend : Trunc -1 A → B cst-extend = TwoConstancy-rec B-is-gpd f f-is-const₀ f-is-const₁ ∘ Trunc-rec TwoConstancy-is-prop point -- The beta rule. -- This is definitionally true, so you don't need it. cst-extend-β : cst-extend ∘ [_] == f cst-extend-β = idp
{ "alphanum_fraction": 0.5690741638, "avg_line_length": 38.9245283019, "ext": "agda", "hexsha": "fe7561b89c5cdc357479a8f8850256e90e2d605e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/experimental/TwoConstancy.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/experimental/TwoConstancy.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/experimental/TwoConstancy.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 769, "size": 2063 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Applicative functors ------------------------------------------------------------------------ -- Note that currently the applicative functor laws are not included -- here. {-# OPTIONS --without-K --safe #-} module Category.Applicative where open import Data.Unit open import Category.Applicative.Indexed RawApplicative : ∀ {f} → (Set f → Set f) → Set _ RawApplicative F = RawIApplicative {I = ⊤} (λ _ _ → F) module RawApplicative {f} {F : Set f → Set f} (app : RawApplicative F) where open RawIApplicative app public RawApplicativeZero : ∀ {f} → (Set f → Set f) → Set _ RawApplicativeZero F = RawIApplicativeZero {I = ⊤} (λ _ _ → F) module RawApplicativeZero {f} {F : Set f → Set f} (app : RawApplicativeZero F) where open RawIApplicativeZero app public RawAlternative : ∀ {f} → (Set f → Set f) → Set _ RawAlternative F = RawIAlternative {I = ⊤} (λ _ _ → F) module RawAlternative {f} {F : Set f → Set f} (app : RawAlternative F) where open RawIAlternative app public
{ "alphanum_fraction": 0.5639484979, "avg_line_length": 31.4864864865, "ext": "agda", "hexsha": "712fc1c7397538b9dba0d170c1c0e427a5121c27", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Category/Applicative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Category/Applicative.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Category/Applicative.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 292, "size": 1165 }
------------------------------------------------------------------------ -- A definitional interpreter that is instrumented with information -- about the number of steps required to run the compiled program ------------------------------------------------------------------------ open import Prelude import Lambda.Syntax module Lambda.Interpreter.Steps {Name : Type} (open Lambda.Syntax Name) (def : Name → Tm 1) where import Equality.Propositional as E open import Monad E.equality-with-J open import Vec.Data E.equality-with-J open import Delay-monad open import Delay-monad.Bisimilarity open import Lambda.Delay-crash import Lambda.Interpreter def as I open Closure Tm ------------------------------------------------------------------------ -- The interpreter -- A step annotation. infix 1 ✓_ ✓_ : ∀ {A i} → Delay-crash A i → Delay-crash A i ✓ x = later λ { .force → x } -- The instrumented interpreter. infix 10 _∙_ mutual ⟦_⟧ : ∀ {i n} → Tm n → Env n → Delay-crash Value i ⟦ var x ⟧ ρ = ✓ return (index ρ x) ⟦ lam t ⟧ ρ = ✓ return (lam t ρ) ⟦ t₁ · t₂ ⟧ ρ = do v₁ ← ⟦ t₁ ⟧ ρ v₂ ← ⟦ t₂ ⟧ ρ v₁ ∙ v₂ ⟦ call f t ⟧ ρ = do v ← ⟦ t ⟧ ρ lam (def f) [] ∙ v ⟦ con b ⟧ ρ = ✓ return (con b) ⟦ if t₁ t₂ t₃ ⟧ ρ = do v₁ ← ⟦ t₁ ⟧ ρ ⟦if⟧ v₁ t₂ t₃ ρ _∙_ : ∀ {i} → Value → Value → Delay-crash Value i lam t₁ ρ ∙ v₂ = later λ { .force → ⟦ t₁ ⟧ (v₂ ∷ ρ) } con _ ∙ _ = crash ⟦if⟧ : ∀ {i n} → Value → Tm n → Tm n → Env n → Delay-crash Value i ⟦if⟧ (lam _ _) _ _ _ = crash ⟦if⟧ (con true) t₂ t₃ ρ = ✓ ⟦ t₂ ⟧ ρ ⟦if⟧ (con false) t₂ t₃ ρ = ✓ ⟦ t₃ ⟧ ρ ------------------------------------------------------------------------ -- The semantics given above gives the same (uninstrumented) result as -- the one in Lambda.Interpreter mutual -- The result of the instrumented interpreter is an expansion of -- that of the uninstrumented interpreter. ⟦⟧≳⟦⟧ : ∀ {i n} (t : Tm n) {ρ : Env n} → [ i ] ⟦ t ⟧ ρ ≳ I.⟦ t ⟧ ρ ⟦⟧≳⟦⟧ (var x) = laterˡ (reflexive _) ⟦⟧≳⟦⟧ (lam t) = laterˡ (reflexive _) ⟦⟧≳⟦⟧ (t₁ · t₂) = ⟦⟧≳⟦⟧ t₁ >>=-cong λ _ → ⟦⟧≳⟦⟧ t₂ >>=-cong λ _ → ∙≳∙ _ ⟦⟧≳⟦⟧ (call f t) = ⟦⟧≳⟦⟧ t >>=-cong λ _ → ∙≳∙ _ ⟦⟧≳⟦⟧ (con b) = laterˡ (reflexive _) ⟦⟧≳⟦⟧ (if t₁ t₂ t₃) = ⟦⟧≳⟦⟧ t₁ >>=-cong λ _ → ⟦if⟧≳⟦if⟧ _ t₂ t₃ ∙≳∙ : ∀ {i} (v₁ {v₂} : Value) → [ i ] v₁ ∙ v₂ ≳ v₁ I.∙ v₂ ∙≳∙ (lam t₁ ρ) = later λ { .force → ⟦⟧≳⟦⟧ t₁ } ∙≳∙ (con _) = reflexive _ ⟦if⟧≳⟦if⟧ : ∀ {i n} v₁ (t₂ t₃ : Tm n) {ρ} → [ i ] ⟦if⟧ v₁ t₂ t₃ ρ ≳ I.⟦if⟧ v₁ t₂ t₃ ρ ⟦if⟧≳⟦if⟧ (lam _ _) _ _ = reflexive _ ⟦if⟧≳⟦if⟧ (con true) t₂ t₃ = laterˡ (⟦⟧≳⟦⟧ t₂) ⟦if⟧≳⟦if⟧ (con false) t₂ t₃ = laterˡ (⟦⟧≳⟦⟧ t₃)
{ "alphanum_fraction": 0.444368367, "avg_line_length": 28.637254902, "ext": "agda", "hexsha": "191892d4282c8aae8d09a6408f5ef124e1e0f4d8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Lambda/Interpreter/Steps.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Lambda/Interpreter/Steps.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Lambda/Interpreter/Steps.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1226, "size": 2921 }
open import Agda.Primitive postulate ∞ : ∀ {a} (A : Set a) → Set (lsuc a) {-# BUILTIN INFINITY ∞ #-}
{ "alphanum_fraction": 0.5648148148, "avg_line_length": 13.5, "ext": "agda", "hexsha": "6adccb70a2b0cf326b9fde7e78eb320033ef4bef", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/BuiltinInfinityBadType.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/BuiltinInfinityBadType.agda", "max_line_length": 39, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/BuiltinInfinityBadType.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 42, "size": 108 }
-- {-# OPTIONS -v tc.lhs.problem:10 #-} -- {-# OPTIONS --compile --ghc-flag=-i.. #-} module Issue727 where open import Common.Prelude renaming (Nat to ℕ) open import Common.MAlonzo hiding (main) Sum : ℕ → Set Sum 0 = ℕ Sum (suc n) = ℕ → Sum n sum : (n : ℕ) → ℕ → Sum n sum 0 acc = acc sum (suc n) acc m = sum n (m + acc) main = mainPrintNat (sum 3 0 1 2 3)
{ "alphanum_fraction": 0.5866666667, "avg_line_length": 22.0588235294, "ext": "agda", "hexsha": "f2dc6e45d68b9ca263d1b17a7dfa77a49cad0862", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue727.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue727.agda", "max_line_length": 46, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue727.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 135, "size": 375 }
{-# OPTIONS --type-in-type #-} module IDescTT where --******************************************** -- Prelude --******************************************** -- Some preliminary stuffs, to avoid relying on the stdlib --**************** -- Sigma and friends --**************** data Sigma (A : Set) (B : A -> Set) : Set where _,_ : (x : A) (y : B x) -> Sigma A B _*_ : (A : Set)(B : Set) -> Set A * B = Sigma A \_ -> B fst : {A : Set}{B : A -> Set} -> Sigma A B -> A fst (a , _) = a snd : {A : Set}{B : A -> Set} (p : Sigma A B) -> B (fst p) snd (a , b) = b data Zero : Set where data Unit : Set where Void : Unit --**************** -- Sum and friends --**************** data _+_ (A : Set)(B : Set) : Set where l : A -> A + B r : B -> A + B --**************** -- Equality --**************** data _==_ {A : Set}(x : A) : A -> Set where refl : x == x subst : forall {x y} -> x == y -> x -> y subst refl x = x cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y cong f refl = refl cong2 : {A B C : Set}(f : A -> B -> C){x y : A}{z t : B} -> x == y -> z == t -> f x z == f y t cong2 f refl refl = refl postulate reflFun : {A B : Set}(f : A -> B)(g : A -> B)-> ((a : A) -> f a == g a) -> f == g --**************** -- Meta-language --**************** -- Note that we could define Nat, Bool, and the related operations in -- IDesc. But it is awful to code with them, in Agda. data Nat : Set where ze : Nat su : Nat -> Nat data Bool : Set where true : Bool false : Bool plus : Nat -> Nat -> Nat plus ze n' = n' plus (su n) n' = su (plus n n') le : Nat -> Nat -> Bool le ze _ = true le (su _) ze = false le (su n) (su n') = le n n' --******************************************** -- Desc code --******************************************** data IDesc (I : Set) : Set where var : I -> IDesc I const : Set -> IDesc I prod : IDesc I -> IDesc I -> IDesc I sigma : (S : Set) -> (S -> IDesc I) -> IDesc I pi : (S : Set) -> (S -> IDesc I) -> IDesc I --******************************************** -- Desc interpretation --******************************************** [|_|] : {I : Set} -> IDesc I -> (I -> Set) -> Set [| var i |] P = P i [| const X |] P = X [| prod D D' |] P = [| D |] P * [| D' |] P [| sigma S T |] P = Sigma S (\s -> [| T s |] P) [| pi S T |] P = (s : S) -> [| T s |] P --******************************************** -- Fixpoint construction --******************************************** data IMu {I : Set}(R : I -> IDesc I)(i : I) : Set where con : [| R i |] (\j -> IMu R j) -> IMu R i --******************************************** -- Predicate: All --******************************************** All : {I : Set}(D : IDesc I)(P : I -> Set) -> [| D |] P -> IDesc (Sigma I P) All (var i) P x = var (i , x) All (const X) P x = const Unit All (prod D D') P (d , d') = prod (All D P d) (All D' P d') All (sigma S T) P (a , b) = All (T a) P b All (pi S T) P f = pi S (\s -> All (T s) P (f s)) all : {I : Set}(D : IDesc I)(X : I -> Set) (R : Sigma I X -> Set)(P : (x : Sigma I X) -> R x) -> (xs : [| D |] X) -> [| All D X xs |] R all (var i) X R P x = P (i , x) all (const K) X R P k = Void all (prod D D') X R P (x , y) = ( all D X R P x , all D' X R P y ) all (sigma S T) X R P (a , b) = all (T a) X R P b all (pi S T) X R P f = \a -> all (T a) X R P (f a) --******************************************** -- Elimination principle: induction --******************************************** -- One would like to write the following: {- indI : {I : Set} (R : I -> IDesc I) (P : Sigma I (IMu R) -> Set) (m : (i : I) (xs : [| R i |] (IMu R)) (hs : [| All (R i) (IMu R) xs |] P) -> P ( i , con xs)) -> (i : I)(x : IMu R i) -> P ( i , x ) indI {I} R P m i (con xs) = m i xs (all (R i) (IMu R) P induct xs) where induct : (x : Sigma I (IMu R)) -> P x induct (i , xs) = indI R P m i xs -} -- But the termination-checker complains, so here we go -- inductive-recursive: module Elim {I : Set} (R : I -> IDesc I) (P : Sigma I (IMu R) -> Set) (m : (i : I) (xs : [| R i |] (IMu R)) (hs : [| All (R i) (IMu R) xs |] P) -> P ( i , con xs )) where mutual indI : (i : I)(x : IMu R i) -> P (i , x) indI i (con xs) = m i xs (hyps (R i) xs) hyps : (D : IDesc I) -> (xs : [| D |] (IMu R)) -> [| All D (IMu R) xs |] P hyps (var i) x = indI i x hyps (const X) x = Void hyps (prod D D') (d , d') = hyps D d , hyps D' d' hyps (pi S R) f = \ s -> hyps (R s) (f s) hyps (sigma S R) ( a , b ) = hyps (R a) b indI : {I : Set} (R : I -> IDesc I) (P : Sigma I (IMu R) -> Set) (m : (i : I) (xs : [| R i |] (IMu R)) (hs : [| All (R i) (IMu R) xs |] P) -> P ( i , con xs)) -> (i : I)(x : IMu R i) -> P ( i , x ) indI = Elim.indI --******************************************** -- Examples --******************************************** --**************** -- Nat --**************** data NatConst : Set where Ze : NatConst Su : NatConst natCases : NatConst -> IDesc Unit natCases Ze = const Unit natCases Suc = var Void NatD : Unit -> IDesc Unit NatD Void = sigma NatConst natCases Natd : Unit -> Set Natd x = IMu NatD x zed : Natd Void zed = con (Ze , Void) sud : Natd Void -> Natd Void sud n = con (Su , n) --**************** -- Desc --**************** data DescDConst : Set where lvar : DescDConst lconst : DescDConst lprod : DescDConst lpi : DescDConst lsigma : DescDConst descDChoice : Set -> DescDConst -> IDesc Unit descDChoice I lvar = const I descDChoice _ lconst = const Set descDChoice _ lprod = prod (var Void) (var Void) descDChoice _ lpi = sigma Set (\S -> pi S (\s -> var Void)) descDChoice _ lsigma = sigma Set (\S -> pi S (\s -> var Void)) descD : (I : Set) -> IDesc Unit descD I = sigma DescDConst (descDChoice I) IDescl0 : (I : Set) -> Unit -> Set IDescl0 I = IMu (\_ -> descD I) IDescl : (I : Set) -> Set IDescl I = IDescl0 I _ varl : {I : Set}(i : I) -> IDescl I varl i = con (lvar , i) constl : {I : Set}(X : Set) -> IDescl I constl X = con (lconst , X) prodl : {I : Set}(D D' : IDescl I) -> IDescl I prodl D D' = con (lprod , (D , D')) pil : {I : Set}(S : Set)(T : S -> IDescl I) -> IDescl I pil S T = con (lpi , ( S , T)) sigmal : {I : Set}(S : Set)(T : S -> IDescl I) -> IDescl I sigmal S T = con (lsigma , ( S , T)) --**************** -- Vec (constraints) --**************** data VecConst : Set where Vnil : VecConst Vcons : VecConst vecDChoice : Set -> Nat -> VecConst -> IDesc Nat vecDChoice X n Vnil = const (n == ze) vecDChoice X n Vcons = sigma Nat (\m -> prod (var m) (const (n == su m))) vecD : Set -> Nat -> IDesc Nat vecD X n = sigma VecConst (vecDChoice X n) vec : Set -> Nat -> Set vec X n = IMu (vecD X) n --**************** -- Vec (de-tagged, forced) --**************** data VecConst2 : Nat -> Set where Vnil : VecConst2 ze Vcons : {n : Nat} -> VecConst2 (su n) vecDChoice2 : Set -> (n : Nat) -> VecConst2 n -> IDesc Nat vecDChoice2 X ze Vnil = const Unit vecDChoice2 X (su n) Vcons = prod (const X) (var n) vecD2 : Set -> Nat -> IDesc Nat vecD2 X n = sigma (VecConst2 n) (vecDChoice2 X n) vec2 : Set -> Nat -> Set vec2 X n = IMu (vecD2 X) n --**************** -- Fin (de-tagged) --**************** data FinConst : Nat -> Set where Fz : {n : Nat} -> FinConst (su n) Fs : {n : Nat} -> FinConst (su n) finDChoice : (n : Nat) -> FinConst n -> IDesc Nat finDChoice ze () finDChoice (su n) Fz = const Unit finDChoice (su n) Fs = var n finD : Nat -> IDesc Nat finD n = sigma (FinConst n) (finDChoice n) fin : Nat -> Set fin n = IMu finD n --******************************************** -- Enumerations (hard-coded) --******************************************** -- Unlike in Desc.agda, we don't carry the levitation of finite sets -- here. We hard-code them and manipulate with standard Agda -- machinery. Both presentation are isomorph but, in Agda, the coded -- one quickly gets unusable. data EnumU : Set where nilE : EnumU consE : EnumU -> EnumU data EnumT : (e : EnumU) -> Set where EZe : {e : EnumU} -> EnumT (consE e) ESu : {e : EnumU} -> EnumT e -> EnumT (consE e) spi : (e : EnumU)(P : EnumT e -> Set) -> Set spi nilE P = Unit spi (consE e) P = P EZe * spi e (\e -> P (ESu e)) switch : (e : EnumU)(P : EnumT e -> Set)(b : spi e P)(x : EnumT e) -> P x switch nilE P b () switch (consE e) P b EZe = fst b switch (consE e) P b (ESu n) = switch e (\e -> P (ESu e)) (snd b) n _++_ : EnumU -> EnumU -> EnumU nilE ++ e' = e' (consE e) ++ e' = consE (e ++ e') -- A special switch, for tagged descriptions. Switching on a -- concatenation of finite sets: sswitch : (e : EnumU)(e' : EnumU)(P : Set) (b : spi e (\_ -> P))(b' : spi e' (\_ -> P))(x : EnumT (e ++ e')) -> P sswitch nilE nilE P b b' () sswitch nilE (consE e') P b b' EZe = fst b' sswitch nilE (consE e') P b b' (ESu n) = sswitch nilE e' P b (snd b') n sswitch (consE e) e' P b b' EZe = fst b sswitch (consE e) e' P b b' (ESu n) = sswitch e e' P (snd b) b' n --******************************************** -- Tagged indexed description --******************************************** FixMenu : Set -> Set FixMenu I = Sigma EnumU (\e -> (i : I) -> spi e (\_ -> IDesc I)) SensitiveMenu : Set -> Set SensitiveMenu I = Sigma (I -> EnumU) (\F -> (i : I) -> spi (F i) (\_ -> IDesc I)) TagIDesc : Set -> Set TagIDesc I = FixMenu I * SensitiveMenu I toIDesc : (I : Set) -> TagIDesc I -> (I -> IDesc I) toIDesc I ((E , ED) , (F , FD)) i = sigma (EnumT (E ++ F i)) (\x -> sswitch E (F i) (IDesc I) (ED i) (FD i) x) --******************************************** -- Catamorphism --******************************************** cata : (I : Set) (R : I -> IDesc I) (T : I -> Set) -> ((i : I) -> [| R i |] T -> T i) -> (i : I) -> IMu R i -> T i cata I R T phi i x = indI R (\it -> T (fst it)) (\i xs ms -> phi i (replace (R i) T xs ms)) i x where replace : (D : IDesc I)(T : I -> Set) (xs : [| D |] (IMu R)) (ms : [| All D (IMu R) xs |] (\it -> T (fst it))) -> [| D |] T replace (var i) T x y = y replace (const Z) T z z' = z replace (prod D D') T (x , x') (y , y') = replace D T x y , replace D' T x' y' replace (sigma A B) T (a , b) t = a , replace (B a) T b t replace (pi A B) T f t = \s -> replace (B s) T (f s) (t s) --******************************************** -- Hutton's razor --******************************************** --******************************** -- Types code --******************************** data Type : Set where nat : Type bool : Type pair : Type -> Type -> Type --******************************** -- Typed expressions --******************************** Val : Type -> Set Val nat = Nat Val bool = Bool Val (pair x y) = (Val x) * (Val y) -- Fix menu: exprFixMenu : FixMenu Type exprFixMenu = ( consE (consE nilE) , \ty -> (const (Val ty), -- Val t (prod (var bool) (prod (var ty) (var ty)), -- if b then t1 else t2 Void))) -- Indexed menu: choiceMenu : Type -> EnumU choiceMenu nat = consE nilE choiceMenu bool = consE nilE choiceMenu (pair x y) = nilE choiceDessert : (ty : Type) -> spi (choiceMenu ty) (\ _ -> IDesc Type) choiceDessert nat = (prod (var nat) (var nat) , Void) choiceDessert bool = (prod (var nat) (var nat) , Void ) choiceDessert (pair x y) = Void exprSensitiveMenu : SensitiveMenu Type exprSensitiveMenu = ( choiceMenu , choiceDessert ) -- Expression: expr : TagIDesc Type expr = exprFixMenu , exprSensitiveMenu exprIDesc : TagIDesc Type -> (Type -> IDesc Type) exprIDesc D = toIDesc Type D --******************************** -- Closed terms --******************************** closeTerm : Type -> IDesc Type closeTerm = exprIDesc expr --******************************** -- Closed term evaluation --******************************** eval : {ty : Type} -> IMu closeTerm ty -> Val ty eval {ty} term = cata Type closeTerm Val evalOneStep ty term where evalOneStep : (ty : Type) -> [| closeTerm ty |] Val -> Val ty evalOneStep _ (EZe , t) = t evalOneStep _ ((ESu EZe) , (true , ( x , _))) = x evalOneStep _ ((ESu EZe) , (false , ( _ , y ))) = y evalOneStep nat ((ESu (ESu EZe)) , (x , y)) = plus x y evalOneStep nat ((ESu (ESu (ESu ()))) , t) evalOneStep bool ((ESu (ESu EZe)) , (x , y) ) = le x y evalOneStep bool ((ESu (ESu (ESu ()))) , _) evalOneStep (pair x y) (ESu (ESu ()) , _) --******************************************** -- Free monad construction --******************************************** _**_ : {I : Set} (R : TagIDesc I)(X : I -> Set) -> TagIDesc I ((E , ED) , FFD) ** X = ((( consE E , \ i -> ( const (X i) , ED i ))) , FFD) --******************************************** -- Substitution --******************************************** apply : {I : Set} (R : TagIDesc I)(X Y : I -> Set) -> ((i : I) -> X i -> IMu (toIDesc I (R ** Y)) i) -> (i : I) -> [| toIDesc I (R ** X) i |] (IMu (toIDesc I (R ** Y))) -> IMu (toIDesc I (R ** Y)) i apply (( E , ED) , (F , FD)) X Y sig i (EZe , x) = sig i x apply (( E , ED) , (F , FD)) X Y sig i (ESu n , t) = con (ESu n , t) substI : {I : Set} (X Y : I -> Set)(R : TagIDesc I) (sigma : (i : I) -> X i -> IMu (toIDesc I (R ** Y)) i) (i : I)(D : IMu (toIDesc I (R ** X)) i) -> IMu (toIDesc I (R ** Y)) i substI {I} X Y R sig i term = cata I (toIDesc I (R ** X)) (IMu (toIDesc I (R ** Y))) (apply R X Y sig) i term --******************************************** -- Hutton's razor is free monad --******************************************** Empty : Type -> Set Empty _ = Zero closeTerm' : Type -> IDesc Type closeTerm' = toIDesc Type (expr ** Empty) update : {ty : Type} -> IMu closeTerm ty -> IMu closeTerm' ty update {ty} tm = cata Type closeTerm (IMu closeTerm') (\ _ tagTm -> con (ESu (fst tagTm) , (snd tagTm))) ty tm --******************************** -- Closed term' evaluation --******************************** eval' : {ty : Type} -> IMu closeTerm' ty -> Val ty eval' {ty} term = cata Type closeTerm' Val evalOneStep ty term where evalOneStep : (ty : Type) -> [| closeTerm' ty |] Val -> Val ty evalOneStep _ (EZe , ()) evalOneStep _ (ESu EZe , t) = t evalOneStep _ ((ESu (ESu EZe)) , (true , ( x , _))) = x evalOneStep _ ((ESu (ESu EZe)) , (false , ( _ , y ))) = y evalOneStep nat ((ESu (ESu (ESu EZe))) , (x , y)) = plus x y evalOneStep nat (((ESu (ESu (ESu (ESu ()))))) , t) evalOneStep bool ((ESu (ESu (ESu EZe))) , (x , y) ) = le x y evalOneStep bool ((ESu (ESu (ESu (ESu ())))) , _) evalOneStep (pair x y) (ESu (ESu (ESu ())) , _) --******************************** -- Open terms --******************************** -- A context is a snoc-list of types -- put otherwise, a context is a type telescope data Context : Set where [] : Context _,_ : Context -> Type -> Context -- The environment realizes the context, having a value for each type Env : Context -> Set Env [] = Unit Env (G , S) = Env G * Val S -- A typed-variable indexes into the context, obtaining a proof that -- what we get is what you want (WWGIWYW) Var : Context -> Type -> Set Var [] T = Zero Var (G , S) T = Var G T + (S == T) -- The lookup gets into the context to extract the value lookup : (G : Context) -> Env G -> (T : Type) -> Var G T -> Val T lookup [] _ T () lookup (G , .T) (g , t) T (r refl) = t lookup (G , S) (g , t) T (l x) = lookup G g T x -- Open term: holes are either values or variables in a context openTerm : Context -> Type -> IDesc Type openTerm c = toIDesc Type (expr ** (Var c)) --******************************** -- Evaluation of open terms --******************************** -- |discharge| is the local substitution expected by |substI|. It is -- just sugar around context lookup discharge : (context : Context) -> Env context -> (ty : Type) -> Var context ty -> IMu closeTerm' ty discharge ctxt env ty variable = con (ESu EZe , lookup ctxt env ty variable ) -- |substExpr| is the specialized |substI| to expressions. We get it -- generically from the free monad construction. substExpr : {ty : Type} (context : Context) (sigma : (ty : Type) -> Var context ty -> IMu closeTerm' ty) -> IMu (openTerm context) ty -> IMu closeTerm' ty substExpr {ty} c sig term = substI (Var c) Empty expr sig ty term -- By first doing substitution to close the term, we can use -- evaluation of closed terms, obtaining evaluation of open terms -- under a valid context. evalOpen : {ty : Type}(context : Context) -> Env context -> IMu (openTerm context) ty -> Val ty evalOpen ctxt env tm = eval' (substExpr ctxt (discharge ctxt env) tm) --******************************** -- Tests --******************************** -- Test context: -- V 0 :-> true, V 1 :-> 2, V 2 :-> ( false , 1 ) testContext : Context testContext = (([] , bool) , nat) , pair bool nat testEnv : Env testContext testEnv = ((Void , true ) , su (su ze)) , (false , su ze) -- V 1 test1 : IMu (openTerm testContext) nat test1 = con (EZe , ( l (r refl) ) ) testSubst1 : IMu closeTerm' nat testSubst1 = substExpr testContext (discharge testContext testEnv) test1 -- = 2 testEval1 : Val nat testEval1 = evalOpen testContext testEnv test1 -- add 1 (V 1) test2 : IMu (openTerm testContext) nat test2 = con (ESu (ESu (ESu EZe)) , (con (ESu EZe , su ze) , con ( EZe , l (r refl) )) ) testSubst2 : IMu closeTerm' nat testSubst2 = substExpr testContext (discharge testContext testEnv) test2 -- = 3 testEval2 : Val nat testEval2 = evalOpen testContext testEnv test2 -- if (V 0) then (V 1) else 0 test3 : IMu (openTerm testContext) nat test3 = con (ESu (ESu EZe) , (con (EZe , l (l (r refl))) , (con (EZe , l (r refl)) , con (ESu EZe , ze)))) testSubst3 : IMu closeTerm' nat testSubst3 = substExpr testContext (discharge testContext testEnv) test3 -- = 2 testEval3 : Val nat testEval3 = evalOpen testContext testEnv test3 -- V 2 test4 : IMu (openTerm testContext) (pair bool nat) test4 = con (EZe , r refl ) testSubst4 : IMu closeTerm' (pair bool nat) testSubst4 = substExpr testContext (discharge testContext testEnv) test4 -- = (false , 1) testEval4 : Val (pair bool nat) testEval4 = evalOpen testContext testEnv test4
{ "alphanum_fraction": 0.468797012, "avg_line_length": 29.2963525836, "ext": "agda", "hexsha": "0df2ad0ce5f4c3258ce0068bfd7fbce8a4192b4a", "lang": "Agda", "max_forks_count": 12, "max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z", "max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z", "max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mietek/epigram", "max_forks_repo_path": "models/IDescTT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mietek/epigram", "max_issues_repo_path": "models/IDescTT.agda", "max_line_length": 110, "max_stars_count": 48, "max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mietek/epigram", "max_stars_repo_path": "models/IDescTT.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z", "max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z", "num_tokens": 6242, "size": 19277 }
module STLC2 where open import Data.Nat -- open import Data.List open import Data.Empty using (⊥-elim) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst) open import Relation.Nullary open import Data.Product -- de Bruijn indexed lambda calculus infix 5 ƛ_ infixl 7 _∙_ infix 9 var_ data Term : Set where var_ : ℕ → Term ƛ_ : Term → Term _∙_ : Term → Term → Term -- only "shift" the variable when -- 1. it's free -- 2. it will be captured after substitution -- free <= x && x < subst-depth shift : ℕ → ℕ → Term → Term shift free subst-depth (var x) with free >? x shift free subst-depth (var x) | yes p = var x -- bound shift free subst-depth (var x) | no ¬p with subst-depth >? x -- free shift free subst-depth (var x) | no ¬p | yes q = var (suc x) -- will be captured, should increment shift free subst-depth (var x) | no ¬p | no ¬q = var x shift free subst-depth (ƛ M) = ƛ (shift (suc free) (suc subst-depth) M) shift free subst-depth (M ∙ N) = shift free subst-depth M ∙ shift free subst-depth N infixl 10 _[_/_] _[_/_] : Term → Term → ℕ → Term (var x) [ N / n ] with x ≟ n (var x) [ N / n ] | yes p = N (var x) [ N / n ] | no ¬p = var x (ƛ M) [ N / n ] = ƛ ((M [ shift 0 (suc n) N / suc n ])) (L ∙ M) [ N / n ] = L [ N / n ] ∙ M [ N / n ] -- substitution infixl 10 _[_] _[_] : Term → Term → Term M [ N ] = M [ N / zero ] -- β reduction infix 3 _β→_ data _β→_ : Term → Term → Set where β-ƛ-∙ : ∀ {M N} → ((ƛ M) ∙ N) β→ (M [ N ]) β-ƛ : ∀ {M N} → M β→ N → ƛ M β→ ƛ N β-∙-l : ∀ {L M N} → M β→ N → M ∙ L β→ N ∙ L β-∙-r : ∀ {L M N} → M β→ N → L ∙ M β→ L ∙ N -- the reflexive and transitive closure of _β→_ infix 2 _β→*_ infixr 2 _→*_ data _β→*_ : Term → Term → Set where ∎ : ∀ {M} → M β→* M _→*_ : ∀ {L M N} → L β→ M → M β→* N -------------- → L β→* N infixl 3 _<β>_ _<β>_ : ∀ {M N O} → M β→* N → N β→* O → M β→* O _<β>_ {M} {.M} {O} ∎ N→O = N→O _<β>_ {M} {N} {O} (L→M →* M→N) N→O = L→M →* M→N <β> N→O -- infix 2 _-↠_ infixr 2 _→⟨_⟩_ _→⟨_⟩_ : ∀ {M N} → ∀ L → L β→ M → M β→* N -------------- → L β→* N L →⟨ P ⟩ Q = P →* Q infixr 2 _→*⟨_⟩_ _→*⟨_⟩_ : ∀ {M N} → ∀ L → L β→* M → M β→* N -------------- → L β→* N L →*⟨ P ⟩ Q = P <β> Q infix 3 _→∎ _→∎ : ∀ M → M β→* M M →∎ = ∎ jump : ∀ {M N} → M β→ N → M β→* N jump {M} {N} M→N = M→N →* ∎ -- the symmetric closure of _β→*_ infix 1 _β≡_ data _β≡_ : Term → Term → Set where β-sym : ∀ {M N} → M β→* N → N β→* M ------- → M β≡ N infixr 2 _=*⟨_⟩_ _=*⟨_⟩_ : ∀ {M N} → ∀ L → L β≡ M → M β≡ N -------------- → L β≡ N L =*⟨ β-sym A B ⟩ β-sym C D = β-sym (A <β> C) (D <β> B) infixr 2 _=*⟨⟩_ _=*⟨⟩_ : ∀ {N} → ∀ L → L β≡ N -------------- → L β≡ N L =*⟨⟩ β-sym C D = β-sym C D infix 3 _=∎ _=∎ : ∀ M → M β≡ M M =∎ = β-sym ∎ ∎ forward : ∀ {M N} → M β≡ N → M β→* N forward (β-sym A _) = A backward : ∀ {M N} → M β≡ N → N β→* M backward (β-sym _ B) = B -- data Normal : Set where Normal : Term → Set Normal M = ¬ ∃ (λ N → M β→ N) normal : ∀ {M N} → Normal M → M β→* N → M ≡ N normal P ∎ = refl normal P (M→L →* L→N) = ⊥-elim (P (_ , M→L)) normal-ƛ : ∀ {M} → Normal (ƛ M) → Normal M normal-ƛ P (N , M→N) = P ((ƛ N) , (β-ƛ M→N)) normal-ƛ' : ∀ {M} → Normal M → Normal (ƛ M) normal-ƛ' P (.(ƛ N) , β-ƛ {N = N} ƛM→N) = P (N , ƛM→N) normal-∙-r : ∀ {M N} → Normal (M ∙ N) → Normal N normal-∙-r {M} P (O , N→O) = P (M ∙ O , (β-∙-r N→O)) normal-∙-l : ∀ {M N} → Normal (M ∙ N) → Normal M normal-∙-l {_} {N} P (O , M→O) = P (O ∙ N , (β-∙-l M→O)) cong-ƛ : ∀ {M N} → M β→* N → ƛ M β→* ƛ N cong-ƛ ∎ = ∎ cong-ƛ (M→N →* N→O) = β-ƛ M→N →* cong-ƛ N→O cong-∙-l : ∀ {L M N} → M β→* N → M ∙ L β→* N ∙ L cong-∙-l ∎ = ∎ cong-∙-l (M→N →* N→O) = β-∙-l M→N →* cong-∙-l N→O cong-∙-r : ∀ {L M N} → M β→* N → L ∙ M β→* L ∙ N cong-∙-r ∎ = ∎ cong-∙-r (M→N →* N→O) = β-∙-r M→N →* cong-∙-r N→O ∙-dist-r : ∀ M N O → (ƛ (M ∙ N)) ∙ O β→* ((ƛ M) ∙ O) ∙ ((ƛ N) ∙ O) ∙-dist-r (var x) N O = {! !} ∙-dist-r (ƛ M) N O = {! !} ∙-dist-r (M ∙ L) N O = {! !} ∙-dist-r2 : ∀ M N O → (ƛ (M ∙ N)) ∙ O β≡ ((ƛ M) ∙ O) ∙ ((ƛ N) ∙ O) ∙-dist-r2 (var x) N O = {! !} ∙-dist-r2 (ƛ M) N O = {! !} ∙-dist-r2 (M ∙ L) (var x) O = (ƛ (M ∙ L ∙ var x)) ∙ O =*⟨ β-sym (β-ƛ-∙ →* ∎) {! !} ⟩ ((M ∙ L ∙ var x) [ O ]) =*⟨ {! !} ⟩ {! !} =*⟨ {! !} ⟩ (ƛ M ∙ L) ∙ O ∙ ((ƛ var x) ∙ O) =∎ ∙-dist-r2 (M ∙ L) (ƛ N) O = {! !} ∙-dist-r2 (M ∙ L) (N ∙ K) O = {! !} -- {! !} -- →*⟨ {! !} ⟩ -- {! !} -- →*⟨ {! !} ⟩ -- {! !} -- →*⟨ {! !} ⟩ -- {! !} -- →*⟨ {! !} ⟩ -- {! !} -- →∎ -- (ƛ M) [ N / n ] = ƛ ((M [ shift 0 (suc n) N / suc n ])) cong-[]2 : ∀ {M N L n} → M β→ N → (M [ L / n ]) β→* (N [ L / n ]) cong-[]2 (β-ƛ-∙ {var x} {N}) = {! !} cong-[]2 {_} {_} {L} {n} (β-ƛ-∙ {ƛ M} {N}) = (ƛ (ƛ (M [ shift 0 (suc (suc n)) (shift 0 (suc n) L) / suc (suc n) ]))) ∙ (N [ L / n ]) →*⟨ jump β-ƛ-∙ ⟩ ƛ ((M [ shift 0 (suc (suc n)) (shift 0 (suc n) L) / suc (suc n) ]) [ shift 0 1 (N [ L / n ]) / 1 ]) →*⟨ cong-ƛ {! !} ⟩ ƛ {! !} →*⟨ {! !} ⟩ {! !} →*⟨ {! !} ⟩ ƛ ((M [ shift 0 1 N / 1 ]) [ shift 0 (suc n) L / suc n ]) →∎ cong-[]2 {_} {_} {L} {n} (β-ƛ-∙ {M ∙ K} {N}) = (ƛ (M [ shift 0 (suc n) L / suc n ]) ∙ (K [ shift 0 (suc n) L / suc n ])) ∙ (N [ L / n ]) →*⟨ {! !} ⟩ -- →*⟨ forward (∙-dist-r2 (M [ shift zero (suc n) L / suc n ]) (K [ shift zero (suc n) L / suc n ]) (N [ L / n ])) ⟩ (ƛ (M [ shift zero (suc n) L / suc n ])) ∙ (N [ L / n ]) ∙ ((ƛ (K [ shift 0 (suc n) L / suc n ])) ∙ (N [ L / n ])) →*⟨ cong-∙-l (cong-[]2 (β-ƛ-∙ {M} {N})) ⟩ ((M [ N ]) [ L / n ]) ∙ ((ƛ (K [ shift 0 (suc n) L / suc n ])) ∙ (N [ L / n ])) →*⟨ cong-∙-r (cong-[]2 (β-ƛ-∙ {K} {N})) ⟩ ((M [ N ]) [ L / n ]) ∙ ((K [ N ]) [ L / n ]) →∎ cong-[]2 (β-ƛ M→N) = cong-ƛ (cong-[]2 M→N) cong-[]2 (β-∙-l M→N) = cong-∙-l (cong-[]2 M→N) cong-[]2 (β-∙-r M→N) = cong-∙-r (cong-[]2 M→N) cong-∙-l' : ∀ {L M N} → M β→* N → M ∙ L ≡ N ∙ L cong-∙-l' ∎ = refl cong-∙-l' {L} {M} {O} (_→*_ {M = N} M→N N→O) = trans M∙L≡N∙L N∙L≡O∙L where M∙L≡N∙L : M ∙ L ≡ N ∙ L M∙L≡N∙L = {! !} N∙L≡O∙L : N ∙ L ≡ O ∙ L N∙L≡O∙L = cong-∙-l' N→O -- rans (cong-∙-l' (M→N →* ∎)) (cong-∙-l' N→O) cong-[] : ∀ {M N L n} → M β→ N → (M [ L / n ]) ≡ (N [ L / n ]) cong-[] β-ƛ-∙ = {! !} cong-[] (β-ƛ M→N) = {! !} cong-[] (β-∙-l M→N) = cong-∙-l' {! cong-[] M→N !} cong-[] (β-∙-r M→N) = {! !} normal-unique' : ∀ {M N O} → Normal N → Normal O → M β→ N → M β→ O → N ≡ O normal-unique' P Q β-ƛ-∙ β-ƛ-∙ = refl normal-unique' P Q (β-ƛ-∙ {M} {L}) (β-∙-l {N = .(ƛ N)} (β-ƛ {N = N} M→N)) = {! !} -- trans (normal P (cong-[]2 M→N)) N[L]≡ƛN∙L -- trans (normal P (cong-[]2 M→N)) N[L]≡ƛN∙L where N[L]≡ƛN∙L : (N [ L ]) ≡ (ƛ N) ∙ L N[L]≡ƛN∙L = sym (normal Q (jump β-ƛ-∙)) -- β-ƛ-∙ : ∀ {M N} → ((ƛ M) ∙ N) β→ (M [ N ]) normal-unique' P Q (β-ƛ-∙ {M} {L}) (β-∙-r {N = N} L→N) = {! sym (normal Q (jump β-ƛ-∙)) !} -- sym (trans (normal Q (jump β-ƛ-∙)) (cong (λ x → M [ x ]) (sym (normal {! !} (jump N→O))))) -- sym (trans (normal Q (jump β-ƛ-∙)) (cong (λ x → {! M [ x ] !}) {! !})) -- sym (trans {! !} (normal {! P !} (jump β-ƛ-∙))) normal-unique' P Q (β-ƛ M→N) (β-ƛ M→O) = cong ƛ_ (normal-unique' (normal-ƛ P) (normal-ƛ Q) M→N M→O) normal-unique' P Q (β-∙-l M→N) β-ƛ-∙ = {!normal (normal-∙-l P) !} normal-unique' P Q (β-∙-l {L} {N = N} M→N) (β-∙-l {N = O} M→O) = cong (λ x → x ∙ L) (normal-unique' (normal-∙-l P) (normal-∙-l Q) M→N M→O) normal-unique' P Q (β-∙-l M→N) (β-∙-r M→O) = cong₂ _∙_ (sym (normal (normal-∙-l Q) (jump M→N))) (normal (normal-∙-r P) (jump M→O)) normal-unique' {O = O} P Q (β-∙-r {L} {N = N} M→N) M→O = {! !} normal-unique : ∀ {M N O} → Normal N → Normal O → M β→* N → M β→* O → N ≡ O normal-unique P Q ∎ M→O = normal P M→O normal-unique P Q M→N ∎ = sym (normal Q M→N) normal-unique P Q (_→*_ {M = L} M→L L→N) (_→*_ {M = K} M→K K→O) = {! !} -- rewrite (normal-unique' {! !} {! !} M→L M→K) = normal-unique P Q L→N {! K→O !} -- where -- postulate L≡K : L ≡ K -- normal-unique' P Q {! !} {! !} -- ... | U = {! !} -- trans {! !} (normal-unique {! !} {! !} L→N {! !}) -- L≡K = {! !} -- normal-unique P Q {! !} M→O -- normal-unique P Q M→N ∎ = sym (normal Q M→N) -- normal-unique P Q M→N (M→L →* L→O) = {! !} -- β→*-confluent : ∀ {M N O} → (M β→* N) → (M β→* O) → ∃ (λ P → (N β→* P) × (O β→* P)) -- β→*-confluent {M} {.M} {O} ∎ M→O = O , M→O , ∎ -- β→*-confluent {M} {N} {.M} (M→L →* L→N) ∎ = N , ∎ , (M→L →* L→N) -- β→*-confluent {M} {N} {O} (M→L →* L→N) (M→K →* K→O) = {! !} -- lemma-0 : ∀ M N → M [ N ] β→* (ƛ M) ∙ N -- lemma-0 (var zero) (var zero) = (var zero) →⟨ {! !} ⟩ {! !} -- lemma-0 (var zero) (var suc y) = {! !} -- lemma-0 (var suc x) (var y) = {! !} -- lemma-0 (var x) (ƛ O) = {! !} -- lemma-0 (var x) (O ∙ P) = {! !} -- lemma-0 (ƛ M) O = {! !} -- lemma-0 (M ∙ N) O = {! !} -- lemma : ∀ M N O → ((ƛ M) ∙ N β→* O) → M [ N ] β→* O -- lemma (var x) N .((ƛ var x) ∙ N) (.((ƛ var x) ∙ N) ∎) = {! !} -- lemma (ƛ M) N .((ƛ (ƛ M)) ∙ N) (.((ƛ (ƛ M)) ∙ N) ∎) = {! !} -- lemma (M ∙ M₁) N .((ƛ M ∙ M₁) ∙ N) (.((ƛ M ∙ M₁) ∙ N) ∎) = {! !} -- lemma M N O (.((ƛ M) ∙ N) →⟨⟩ redex→O) = lemma M N O redex→O -- lemma M N O (_→⟨_⟩_ .((ƛ M) ∙ N) {P} ƛM∙N→P P→O) = {! !} -- -- lemma M N P (jump ƛM∙N→P) <β> P→O -- lemma-1 : ∀ M N O P → (ƛ M β→* N) → (N ∙ O β→* P) → M [ O ] β→* P -- lemma-1 M .(ƛ M) O P (.(ƛ M) ∎) N∙O→P = lemma M O P N∙O→P -- lemma-1 M N O P (.(ƛ M) →⟨⟩ ƛM→N) N∙O→P = lemma-1 M N O P ƛM→N N∙O→P -- lemma-1 M N O .(N ∙ O) (.(ƛ M) →⟨ x ⟩ ƛM→N) (.(N ∙ O) ∎) = {! !} -- lemma-1 M N O P (.(ƛ M) →⟨ x ⟩ ƛM→N) (.(N ∙ O) →⟨⟩ N∙O→P) = {! !} -- lemma-1 M N O P (.(ƛ M) →⟨ x ⟩ ƛM→N) (.(N ∙ O) →⟨ x₁ ⟩ N∙O→P) = {! !} -- -- (M [ N ]) β→* O -- -- M'→O : P ∙ N β→* O -- -- L→M' : ƛ M β→ P -- -- (M [ N ]) β→* O -- -- M'→O : N₂ ∙ N β→* O -- -- L→M' : ƛ M β→ N₂ -- -- M→N : (M [ N ]) β→* N₁ -- -- that diamond prop -- -- -- -- M -- -- N O -- -- P -- -- -- β→*-confluent : ∀ {M N O} → (M β→* N) → (M β→* O) → ∃ (λ P → (N β→* P) × (O β→* P)) -- β→*-confluent {O = O} (M ∎) M→O = O , M→O , (O ∎) -- β→*-confluent (L →⟨⟩ M→N) M→O = β→*-confluent M→N M→O -- β→*-confluent {N = N} (L →⟨ x ⟩ M→N) (.L ∎) = N , (N ∎) , (L →⟨ x ⟩ M→N) -- β→*-confluent (L →⟨ x ⟩ M→N) (.L →⟨⟩ M→O) = β→*-confluent (L →⟨ x ⟩ M→N) M→O -- β→*-confluent (.((ƛ _) ∙ _) →⟨ β-ƛ-∙ ⟩ M→N) (.((ƛ _) ∙ _) →⟨ β-ƛ-∙ ⟩ M'→O) = β→*-confluent M→N M'→O -- β→*-confluent {N = N} {O} (.((ƛ M) ∙ N₁) →⟨ β-ƛ-∙ {M} {N₁} ⟩ M→N) (.((ƛ M) ∙ N₁) →⟨ β-∙-l {N = N₂} L→M' ⟩ M'→O) = β→*-confluent M→N (lemma-1 M N₂ N₁ O ((ƛ M) →⟨ L→M' ⟩ (N₂ ∎)) M'→O) -- β→*-confluent (.((ƛ _) ∙ _) →⟨ β-ƛ-∙ ⟩ M→N) (.((ƛ _) ∙ _) →⟨ β-∙-r L→M' ⟩ M'→O) = {! !} -- β→*-confluent (.(ƛ _) →⟨ β-ƛ L→M ⟩ M→N) (.(ƛ _) →⟨ L→M' ⟩ M'→O) = {! !} -- β→*-confluent (.(_ ∙ _) →⟨ β-∙-l L→M ⟩ M→N) (.(_ ∙ _) →⟨ L→M' ⟩ M'→O) = {! !} -- β→*-confluent (.(_ ∙ _) →⟨ β-∙-r L→M ⟩ M→N) (.(_ ∙ _) →⟨ L→M' ⟩ M'→O) = {! !} -- L -- M M' -- N O -- P -- -- module Example where -- S : Term -- S = ƛ ƛ ƛ var 2 ∙ var 0 ∙ (var 1 ∙ var 0) -- K : Term -- K = ƛ ƛ var 1 -- I : Term -- I = ƛ (var 0) -- Z : Term -- Z = ƛ ƛ var 0 -- SZ : Term -- SZ = ƛ ƛ var 1 ∙ var 0 -- PLUS : Term -- PLUS = ƛ ƛ ƛ ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0) -- test-0 : ƛ (ƛ ƛ var 1) ∙ var 0 β→* ƛ ƛ var 1 -- test-0 = -- ƛ (ƛ ƛ var 1) ∙ var 0 -- →⟨ β-ƛ β-ƛ-∙ ⟩ -- ƛ (ƛ var 1) [ var 0 / 0 ] -- →⟨⟩ -- ƛ ƛ ((var 1) [ shift 0 1 (var 0) / 1 ]) -- →⟨⟩ -- ƛ ƛ ((var 1) [ var 1 / 1 ]) -- →⟨⟩ -- ƛ (ƛ var 1) -- ∎ -- test-2 : PLUS ∙ Z ∙ SZ β→* SZ -- test-2 = -- PLUS ∙ Z ∙ SZ -- →⟨⟩ -- (ƛ (ƛ (ƛ (ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero))))) ∙ Z ∙ SZ -- →⟨ β-∙-l β-ƛ-∙ ⟩ -- ((ƛ (ƛ (ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)))) [ Z ]) ∙ SZ -- →⟨⟩ -- ((ƛ (ƛ (ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)))) [ Z / 0 ]) ∙ SZ -- →⟨⟩ -- (ƛ ((ƛ (ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero))) [ shift 0 1 Z / 1 ])) ∙ SZ -- →⟨⟩ -- (ƛ ((ƛ (ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero))) [ Z / 1 ])) ∙ SZ -- →⟨⟩ -- (ƛ (ƛ ((ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)) [ Z / 2 ]))) ∙ SZ -- →⟨⟩ -- (ƛ (ƛ (ƛ ((var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)) [ Z / 3 ])))) ∙ SZ -- →⟨⟩ -- (ƛ ƛ ƛ Z ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)) ∙ SZ -- →⟨ β-ƛ-∙ ⟩ -- ((ƛ ƛ Z ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)) [ SZ / 0 ]) -- →⟨⟩ -- ƛ ((ƛ Z ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)) [ SZ / 1 ]) -- →⟨⟩ -- ƛ ƛ ((Z ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var zero)) [ SZ / 2 ]) -- →⟨⟩ -- ƛ ƛ Z ∙ var 1 ∙ (SZ ∙ var 1 ∙ var 0) -- →⟨ β-ƛ (β-ƛ (β-∙-r (β-∙-l β-ƛ-∙))) ⟩ -- ƛ ƛ Z ∙ var 1 ∙ (((ƛ var 1 ∙ var 0) [ var 1 ]) ∙ var 0) -- →⟨⟩ -- ƛ ƛ Z ∙ var 1 ∙ (((ƛ var 1 ∙ var 0) [ var 1 / 0 ]) ∙ var 0) -- →⟨⟩ -- ƛ ƛ Z ∙ var 1 ∙ ((ƛ ((var 1 ∙ var 0) [ shift 0 1 (var 1) / 1 ])) ∙ var 0) -- →⟨⟩ -- ƛ ƛ Z ∙ var 1 ∙ ((ƛ ((var 1 ∙ var 0) [ var 1 / 1 ])) ∙ var 0) -- →⟨⟩ -- ƛ ƛ Z ∙ var 1 ∙ ((ƛ var 1 ∙ var 0) ∙ var 0) -- →⟨ β-ƛ (β-ƛ (β-∙-r β-ƛ-∙)) ⟩ -- ƛ ƛ Z ∙ var 1 ∙ ((var 1 ∙ var 0) [ var 0 / 0 ]) -- →⟨⟩ -- ƛ ƛ (ƛ ƛ var 0) ∙ var 1 ∙ (var 1 ∙ var 0) -- →⟨ β-ƛ (β-ƛ (β-∙-l β-ƛ-∙)) ⟩ -- ƛ ƛ ((ƛ var 0) [ var 1 / 0 ]) ∙ (var 1 ∙ var 0) -- →⟨⟩ -- ƛ ƛ (ƛ ((var 0) [ var 1 / 1 ])) ∙ (var 1 ∙ var 0) -- →⟨⟩ -- ƛ ƛ (ƛ var 0) ∙ (var 1 ∙ var 0) -- →⟨ β-ƛ (β-ƛ β-ƛ-∙) ⟩ -- ƛ ƛ ((var 0) [ var 1 ∙ var 0 / 0 ]) -- →⟨⟩ -- SZ -- ∎
{ "alphanum_fraction": 0.3663784012, "avg_line_length": 30.852494577, "ext": "agda", "hexsha": "22890c07fa7e61fc0b43a7b360bb456506df736c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/bidirectional", "max_forks_repo_path": "LC/stash/STLC2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/bidirectional", "max_issues_repo_path": "LC/stash/STLC2.agda", "max_line_length": 184, "max_stars_count": 2, "max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/bidirectional", "max_stars_repo_path": "LC/stash/STLC2.agda", "max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z", "max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z", "num_tokens": 7855, "size": 14223 }
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import Relation.Binary.PropositionalEquality using (_≡_; refl; setoid; cong; trans) import Function.Equality open import Relation.Binary using (Setoid) open import Categories.Category open import Categories.Functor open import Categories.Category.Instance.Setoids open import Categories.Monad.Relative open import Categories.Category.Equivalence open import Categories.Category.Cocartesian module SecondOrder.RelativeMonadMorphism {o ℓ e o′ ℓ′ e′ : Level} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} where record RMonadMorph {J : Functor C D} (M M’ : Monad J) : Set (lsuc (o ⊔ ℓ′ ⊔ e′)) where open Category D open Monad field morph : ∀ {X} → (F₀ M X) ⇒ (F₀ M’ X) law-unit : ∀ {X} → morph ∘ (unit M {X}) ≈ unit M’ {X} law-extend : ∀ {X Y} {k : (Functor.F₀ J X) ⇒ (F₀ M Y)} → (morph {Y}) ∘ (extend M k) ≈ (extend M’ ((morph {Y}) ∘ k)) ∘ (morph {X}) -- here, the equality used is the equivalence relation between morphisms of the category D
{ "alphanum_fraction": 0.6445454545, "avg_line_length": 35.4838709677, "ext": "agda", "hexsha": "9ef6f341c6d794a5b63e47b623d7725851cc2641", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SecondOrder/RelativeMonadMorphism.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SecondOrder/RelativeMonadMorphism.agda", "max_line_length": 92, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/SecondOrder/RelativeMonadMorphism.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 336, "size": 1100 }
open import Preliminaries open import Preorder module PreorderExamples where -- there is a preorder on Unit unit-p : Preorder Unit unit-p = preorder (preorder-structure (λ x x₁ → Unit) (λ x → <>) (λ x y z _ _ → <>)) -- there is a preorder on Nat _≤n_ : Nat → Nat → Set _≤n_ Z Z = Unit _≤n_ Z (S n) = Unit _≤n_ (S m) Z = Void _≤n_ (S m) (S n) = m ≤n n nat-refl : ∀ (n : Nat) → n ≤n n nat-refl Z = <> nat-refl (S n) = nat-refl n nat-trans : ∀ (m n p : Nat) → m ≤n n → n ≤n p → m ≤n p nat-trans Z Z Z x x₁ = <> nat-trans Z Z (S p) x x₁ = <> nat-trans Z (S n) Z x x₁ = <> nat-trans Z (S n) (S p) x x₁ = <> nat-trans (S m) Z Z () x₁ nat-trans (S m) Z (S p) () x₁ nat-trans (S m) (S n) Z x () nat-trans (S m) (S n) (S p) x x₁ = nat-trans m n p x x₁ nat-p : Preorder Nat nat-p = preorder (preorder-structure (λ m n → m ≤n n) nat-refl nat-trans)
{ "alphanum_fraction": 0.5472972973, "avg_line_length": 25.3714285714, "ext": "agda", "hexsha": "9c4eba6653e981781a3f0c829b3e52e226ca36e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity-drafts/PreorderExamples.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity-drafts/PreorderExamples.agda", "max_line_length": 86, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity-drafts/PreorderExamples.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 374, "size": 888 }
-- Andreas, 2020-06-17, issue #4135 -- Do not allow meta-solving during projection disambiguation! data Bool : Set where true false : Bool module Foo (b : Bool) where record R : Set where field f : Bool open R public open module True = Foo true open module False = Foo false test : Foo.R {!!} test .f = {!!} -- WAS: succeeds with constraint ?0 := true -- C-c C-= -- Expected error: -- Ambiguous projection f. -- It could refer to any of -- True.f (introduced at <open module True>) -- False.f (introduced at <open module False>) -- when checking the clause left hand side -- test .f
{ "alphanum_fraction": 0.667218543, "avg_line_length": 21.5714285714, "ext": "agda", "hexsha": "b81c65810dfab9dc5002f0ce0974f2e161bb31b7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue4135Record.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4135Record.agda", "max_line_length": 62, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4135Record.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 170, "size": 604 }
-- 2010-10-15 and 2012-03-09 {-# OPTIONS -v tc.conv.irr:50 -v tc.decl.ax:10 #-} module Issue351 where import Common.Irrelevance data _==_ {A : Set1}(a : A) : A -> Set where refl : a == a record R : Set1 where constructor mkR field fromR : Set reflR : (r : R) -> r == (mkR _) reflR r = refl {a = _} record IR : Set1 where constructor mkIR field .fromIR : Set reflIR : (r : IR) -> r == (mkIR _) reflIR r = refl {a = _} -- peeking into the irrelevant argument, we can immediately solve for the meta
{ "alphanum_fraction": 0.6199616123, "avg_line_length": 19.2962962963, "ext": "agda", "hexsha": "eb2da9c70b2f41d690cf1d9b0ab30bd188fa1674", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/succeed/Issue351.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/succeed/Issue351.agda", "max_line_length": 78, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/Issue351.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 190, "size": 521 }
open import Prelude module Implicits.Semantics.Type where open import Data.Vec open import Implicits.Syntax open import SystemF.Everything as F using () ⟦_⟧tp→ : ∀ {ν} → Type ν → F.Type ν ⟦ simpl (tc n) ⟧tp→ = F.tc n ⟦ simpl (tvar n) ⟧tp→ = F.tvar n ⟦ simpl (a →' b) ⟧tp→ = ⟦ a ⟧tp→ F.→' ⟦ b ⟧tp→ ⟦ a ⇒ b ⟧tp→ = ⟦ a ⟧tp→ F.→' ⟦ b ⟧tp→ ⟦ ∀' x ⟧tp→ = F.∀' ⟦ x ⟧tp→ ⟦_⟧tps→ : ∀ {ν n} → Vec (Type ν) n → Vec (F.Type ν) n ⟦ v ⟧tps→ = map (⟦_⟧tp→) v
{ "alphanum_fraction": 0.5446428571, "avg_line_length": 24.8888888889, "ext": "agda", "hexsha": "ea88ccc38cc3ee68f10dc6ca3274c94be60107f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Semantics/Type.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Semantics/Type.agda", "max_line_length": 53, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Semantics/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 226, "size": 448 }
-- Andreas, 2011-04-05 module EtaContractToMillerPattern where data _==_ {A : Set}(a : A) : A -> Set where refl : a == a record Prod (A B : Set) : Set where constructor _,_ field fst : A snd : B open Prod postulate A B C : Set test : let X : (Prod A B -> C) -> (Prod A B -> C) X = _ in (x : Prod A B -> C) -> X (\ z -> x (fst z , snd z)) == x test x = refl -- eta contracts unification problem to X x = x
{ "alphanum_fraction": 0.5296703297, "avg_line_length": 22.75, "ext": "agda", "hexsha": "69f1bc4cc0122aec5ff6aa45b2dafb2906037fe9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/EtaContractToMillerPattern.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/EtaContractToMillerPattern.agda", "max_line_length": 49, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/EtaContractToMillerPattern.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 154, "size": 455 }
{-# OPTIONS --safe #-} module Cubical.Foundations.Path where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Reflection.StrictEquiv private variable ℓ ℓ' : Level A : Type ℓ -- Less polymorphic version of `cong`, to avoid some unresolved metas cong′ : ∀ {B : Type ℓ'} (f : A → B) {x y : A} (p : x ≡ y) → Path B (f x) (f y) cong′ f = cong f {-# INLINE cong′ #-} PathP≡Path : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≡ Path (P i1) (transport (λ i → P i) p) q PathP≡Path P p q i = PathP (λ j → P (i ∨ j)) (transport-filler (λ j → P j) p i) q PathP≡Path⁻ : ∀ (P : I → Type ℓ) (p : P i0) (q : P i1) → PathP P p q ≡ Path (P i0) p (transport⁻ (λ i → P i) q) PathP≡Path⁻ P p q i = PathP (λ j → P (~ i ∧ j)) p (transport⁻-filler (λ j → P j) q i) PathPIsoPath : ∀ (A : I → Type ℓ) (x : A i0) (y : A i1) → Iso (PathP A x y) (transport (λ i → A i) x ≡ y) PathPIsoPath A x y .Iso.fun = fromPathP PathPIsoPath A x y .Iso.inv = toPathP PathPIsoPath A x y .Iso.rightInv q k i = hcomp (λ j → λ { (i = i0) → slide (j ∨ ~ k) ; (i = i1) → q j ; (k = i0) → transp (λ l → A (i ∨ l)) i (fromPathPFiller j) ; (k = i1) → ∧∨Square i j }) (transp (λ l → A (i ∨ ~ k ∨ l)) (i ∨ ~ k) (transp (λ l → (A (i ∨ (~ k ∧ l)))) (k ∨ i) (transp (λ l → A (i ∧ l)) (~ i) x))) where fromPathPFiller : _ fromPathPFiller = hfill (λ j → λ { (i = i0) → x ; (i = i1) → q j }) (inS (transp (λ j → A (i ∧ j)) (~ i) x)) slide : I → _ slide i = transp (λ l → A (i ∨ l)) i (transp (λ l → A (i ∧ l)) (~ i) x) ∧∨Square : I → I → _ ∧∨Square i j = hcomp (λ l → λ { (i = i0) → slide j ; (i = i1) → q (j ∧ l) ; (j = i0) → slide i ; (j = i1) → q (i ∧ l) }) (slide (i ∨ j)) PathPIsoPath A x y .Iso.leftInv q k i = outS (hcomp-unique (λ j → λ { (i = i0) → x ; (i = i1) → transp (λ l → A (j ∨ l)) j (q j) }) (inS (transp (λ l → A (i ∧ l)) (~ i) x)) (λ j → inS (transp (λ l → A (i ∧ (j ∨ l))) (~ i ∨ j) (q (i ∧ j))))) k PathP≃Path : (A : I → Type ℓ) (x : A i0) (y : A i1) → PathP A x y ≃ (transport (λ i → A i) x ≡ y) PathP≃Path A x y = isoToEquiv (PathPIsoPath A x y) PathP≡compPath : ∀ {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) (r : x ≡ z) → (PathP (λ i → x ≡ q i) p r) ≡ (p ∙ q ≡ r) PathP≡compPath p q r k = PathP (λ i → p i0 ≡ q (i ∨ k)) (λ j → compPath-filler p q k j) r PathP≡doubleCompPathˡ : ∀ {A : Type ℓ} {w x y z : A} (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z) → (PathP (λ i → p i ≡ s i) q r) ≡ (p ⁻¹ ∙∙ q ∙∙ s ≡ r) PathP≡doubleCompPathˡ p q r s k = PathP (λ i → p (i ∨ k) ≡ s (i ∨ k)) (λ j → doubleCompPath-filler (p ⁻¹) q s k j) r PathP≡doubleCompPathʳ : ∀ {A : Type ℓ} {w x y z : A} (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z) → (PathP (λ i → p i ≡ s i) q r) ≡ (q ≡ p ∙∙ r ∙∙ s ⁻¹) PathP≡doubleCompPathʳ p q r s k = PathP (λ i → p (i ∧ (~ k)) ≡ s (i ∧ (~ k))) q (λ j → doubleCompPath-filler p r (s ⁻¹) k j) compPathl-cancel : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : x ≡ z) → p ∙ (sym p ∙ q) ≡ q compPathl-cancel p q = p ∙ (sym p ∙ q) ≡⟨ assoc p (sym p) q ⟩ (p ∙ sym p) ∙ q ≡⟨ cong (_∙ q) (rCancel p) ⟩ refl ∙ q ≡⟨ sym (lUnit q) ⟩ q ∎ compPathr-cancel : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : z ≡ y) (q : x ≡ y) → (q ∙ sym p) ∙ p ≡ q compPathr-cancel {x = x} p q i j = hcomp-equivFiller (doubleComp-faces (λ _ → x) (sym p) j) (inS (q j)) (~ i) compPathl-isEquiv : {x y z : A} (p : x ≡ y) → isEquiv (λ (q : y ≡ z) → p ∙ q) compPathl-isEquiv p = isoToIsEquiv (iso (p ∙_) (sym p ∙_) (compPathl-cancel p) (compPathl-cancel (sym p))) compPathlEquiv : {x y z : A} (p : x ≡ y) → (y ≡ z) ≃ (x ≡ z) compPathlEquiv p = (p ∙_) , compPathl-isEquiv p compPathr-isEquiv : {x y z : A} (p : y ≡ z) → isEquiv (λ (q : x ≡ y) → q ∙ p) compPathr-isEquiv p = isoToIsEquiv (iso (_∙ p) (_∙ sym p) (compPathr-cancel p) (compPathr-cancel (sym p))) compPathrEquiv : {x y z : A} (p : y ≡ z) → (x ≡ y) ≃ (x ≡ z) compPathrEquiv p = (_∙ p) , compPathr-isEquiv p -- Variations of isProp→isSet for PathP isProp→SquareP : ∀ {B : I → I → Type ℓ} → ((i j : I) → isProp (B i j)) → {a : B i0 i0} {b : B i0 i1} {c : B i1 i0} {d : B i1 i1} → (r : PathP (λ j → B j i0) a c) (s : PathP (λ j → B j i1) b d) → (t : PathP (λ j → B i0 j) a b) (u : PathP (λ j → B i1 j) c d) → SquareP B t u r s isProp→SquareP {B = B} isPropB {a = a} r s t u i j = hcomp (λ { k (i = i0) → isPropB i0 j (base i0 j) (t j) k ; k (i = i1) → isPropB i1 j (base i1 j) (u j) k ; k (j = i0) → isPropB i i0 (base i i0) (r i) k ; k (j = i1) → isPropB i i1 (base i i1) (s i) k }) (base i j) where base : (i j : I) → B i j base i j = transport (λ k → B (i ∧ k) (j ∧ k)) a isProp→isPropPathP : ∀ {ℓ} {B : I → Type ℓ} → ((i : I) → isProp (B i)) → (b0 : B i0) (b1 : B i1) → isProp (PathP (λ i → B i) b0 b1) isProp→isPropPathP {B = B} hB b0 b1 = isProp→SquareP (λ _ → hB) refl refl isProp→isContrPathP : {A : I → Type ℓ} → (∀ i → isProp (A i)) → (x : A i0) (y : A i1) → isContr (PathP A x y) isProp→isContrPathP h x y = isProp→PathP h x y , isProp→isPropPathP h x y _ -- Flipping a square along its diagonal flipSquare : {a₀₀ a₀₁ : A} {a₀₋ : a₀₀ ≡ a₀₁} {a₁₀ a₁₁ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁} → Square a₀₋ a₁₋ a₋₀ a₋₁ → Square a₋₀ a₋₁ a₀₋ a₁₋ flipSquare sq i j = sq j i module _ {a₀₀ a₀₁ : A} {a₀₋ : a₀₀ ≡ a₀₁} {a₁₀ a₁₁ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} {a₋₁ : a₀₁ ≡ a₁₁} where flipSquareEquiv : Square a₀₋ a₁₋ a₋₀ a₋₁ ≃ Square a₋₀ a₋₁ a₀₋ a₁₋ unquoteDef flipSquareEquiv = defStrictEquiv flipSquareEquiv flipSquare flipSquare flipSquarePath : Square a₀₋ a₁₋ a₋₀ a₋₁ ≡ Square a₋₀ a₋₁ a₀₋ a₁₋ flipSquarePath = ua flipSquareEquiv module _ {a₀₀ a₁₁ : A} {a₋ : a₀₀ ≡ a₁₁} {a₁₀ : A} {a₁₋ : a₁₀ ≡ a₁₁} {a₋₀ : a₀₀ ≡ a₁₀} where slideSquareFaces : (i j k : I) → Partial (i ∨ ~ i ∨ j ∨ ~ j) A slideSquareFaces i j k (i = i0) = a₋ (j ∧ ~ k) slideSquareFaces i j k (i = i1) = a₁₋ j slideSquareFaces i j k (j = i0) = a₋₀ i slideSquareFaces i j k (j = i1) = a₋ (i ∨ ~ k) slideSquare : Square a₋ a₁₋ a₋₀ refl → Square refl a₁₋ a₋₀ a₋ slideSquare sq i j = hcomp (slideSquareFaces i j) (sq i j) slideSquareEquiv : (Square a₋ a₁₋ a₋₀ refl) ≃ (Square refl a₁₋ a₋₀ a₋) slideSquareEquiv = isoToEquiv (iso slideSquare slideSquareInv fillerTo fillerFrom) where slideSquareInv : Square refl a₁₋ a₋₀ a₋ → Square a₋ a₁₋ a₋₀ refl slideSquareInv sq i j = hcomp (λ k → slideSquareFaces i j (~ k)) (sq i j) fillerTo : ∀ p → slideSquare (slideSquareInv p) ≡ p fillerTo p k i j = hcomp-equivFiller (λ k → slideSquareFaces i j (~ k)) (inS (p i j)) (~ k) fillerFrom : ∀ p → slideSquareInv (slideSquare p) ≡ p fillerFrom p k i j = hcomp-equivFiller (slideSquareFaces i j) (inS (p i j)) (~ k) -- The type of fillers of a square is equivalent to the double composition identites Square≃doubleComp : {a₀₀ a₀₁ a₁₀ a₁₁ : A} (a₀₋ : a₀₀ ≡ a₀₁) (a₁₋ : a₁₀ ≡ a₁₁) (a₋₀ : a₀₀ ≡ a₁₀) (a₋₁ : a₀₁ ≡ a₁₁) → Square a₀₋ a₁₋ a₋₀ a₋₁ ≃ (a₋₀ ⁻¹ ∙∙ a₀₋ ∙∙ a₋₁ ≡ a₁₋) Square≃doubleComp a₀₋ a₁₋ a₋₀ a₋₁ = transportEquiv (PathP≡doubleCompPathˡ a₋₀ a₀₋ a₁₋ a₋₁) -- Flipping a square in Ω²A is the same as inverting it sym≡flipSquare : {x : A} (P : Square (refl {x = x}) refl refl refl) → sym P ≡ flipSquare P sym≡flipSquare {x = x} P = sym (main refl P) where B : (q : x ≡ x) → I → Type _ B q i = PathP (λ j → x ≡ q (i ∨ j)) (λ k → q (i ∧ k)) refl main : (q : x ≡ x) (p : refl ≡ q) → PathP (λ i → B q i) (λ i j → p j i) (sym p) main q = J (λ q p → PathP (λ i → B q i) (λ i j → p j i) (sym p)) refl -- Inverting both interval arguments of a square in Ω²A is the same as doing nothing sym-cong-sym≡id : {x : A} (P : Square (refl {x = x}) refl refl refl) → P ≡ λ i j → P (~ i) (~ j) sym-cong-sym≡id {x = x} P = sym (main refl P) where B : (q : x ≡ x) → I → Type _ B q i = Path (x ≡ q i) (λ j → q (i ∨ ~ j)) λ j → q (i ∧ j) main : (q : x ≡ x) (p : refl ≡ q) → PathP (λ i → B q i) (λ i j → p (~ i) (~ j)) p main q = J (λ q p → PathP (λ i → B q i) (λ i j → p (~ i) (~ j)) p) refl -- Applying cong sym is the same as flipping a square in Ω²A flipSquare≡cong-sym : ∀ {ℓ} {A : Type ℓ} {x : A} (P : Square (refl {x = x}) refl refl refl) → flipSquare P ≡ λ i j → P i (~ j) flipSquare≡cong-sym P = sym (sym≡flipSquare P) ∙ sym (sym-cong-sym≡id (cong sym P)) -- Applying cong sym is the same as inverting a square in Ω²A sym≡cong-sym : ∀ {ℓ} {A : Type ℓ} {x : A} (P : Square (refl {x = x}) refl refl refl) → sym P ≡ cong sym P sym≡cong-sym P = sym-cong-sym≡id (sym P) -- sym induces an equivalence on identity types of paths symIso : {a b : A} (p q : a ≡ b) → Iso (p ≡ q) (q ≡ p) symIso p q = iso sym sym (λ _ → refl) λ _ → refl -- J is an equivalence Jequiv : {x : A} (P : ∀ y → x ≡ y → Type ℓ') → P x refl ≃ (∀ {y} (p : x ≡ y) → P y p) Jequiv P = isoToEquiv isom where isom : Iso _ _ Iso.fun isom = J P Iso.inv isom f = f refl Iso.rightInv isom f = implicitFunExt λ {_} → funExt λ t → J (λ _ t → J P (f refl) t ≡ f t) (JRefl P (f refl)) t Iso.leftInv isom = JRefl P -- Action of PathP on equivalences (without relying on univalence) congPathIso : ∀ {ℓ ℓ'} {A : I → Type ℓ} {B : I → Type ℓ'} (e : ∀ i → A i ≃ B i) {a₀ : A i0} {a₁ : A i1} → Iso (PathP A a₀ a₁) (PathP B (e i0 .fst a₀) (e i1 .fst a₁)) congPathIso {A = A} {B} e {a₀} {a₁} .Iso.fun p i = e i .fst (p i) congPathIso {A = A} {B} e {a₀} {a₁} .Iso.inv q i = hcomp (λ j → λ { (i = i0) → retEq (e i0) a₀ j ; (i = i1) → retEq (e i1) a₁ j }) (invEq (e i) (q i)) congPathIso {A = A} {B} e {a₀} {a₁} .Iso.rightInv q k i = hcomp (λ j → λ { (i = i0) → commSqIsEq (e i0 .snd) a₀ j k ; (i = i1) → commSqIsEq (e i1 .snd) a₁ j k ; (k = i0) → e i .fst (hfill (λ j → λ { (i = i0) → retEq (e i0) a₀ j ; (i = i1) → retEq (e i1) a₁ j }) (inS (invEq (e i) (q i))) j) ; (k = i1) → q i }) (secEq (e i) (q i) k) where b = commSqIsEq congPathIso {A = A} {B} e {a₀} {a₁} .Iso.leftInv p k i = hcomp (λ j → λ { (i = i0) → retEq (e i0) a₀ (j ∨ k) ; (i = i1) → retEq (e i1) a₁ (j ∨ k) ; (k = i1) → p i }) (retEq (e i) (p i) k) congPathEquiv : ∀ {ℓ ℓ'} {A : I → Type ℓ} {B : I → Type ℓ'} (e : ∀ i → A i ≃ B i) {a₀ : A i0} {a₁ : A i1} → PathP A a₀ a₁ ≃ PathP B (e i0 .fst a₀) (e i1 .fst a₁) congPathEquiv e = isoToEquiv (congPathIso e) -- Characterizations of dependent paths in path types doubleCompPath-filler∙ : {a b c d : A} (p : a ≡ b) (q : b ≡ c) (r : c ≡ d) → PathP (λ i → p i ≡ r (~ i)) (p ∙ q ∙ r) q doubleCompPath-filler∙ {A = A} {b = b} p q r j i = hcomp (λ k → λ { (i = i0) → p j ; (i = i1) → side j k ; (j = i1) → q (i ∧ k)}) (p (j ∨ i)) where side : I → I → A side i j = hcomp (λ k → λ { (i = i1) → q j ; (j = i0) → b ; (j = i1) → r (~ i ∧ k)}) (q j) PathP→compPathL : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → PathP (λ i → p i ≡ q i) r s → sym p ∙ r ∙ q ≡ s PathP→compPathL {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (j ∨ k) ; (i = i1) → q (j ∨ k) ; (j = i0) → doubleCompPath-filler∙ (sym p) r q (~ k) i ; (j = i1) → s i }) (P j i) PathP→compPathR : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → PathP (λ i → p i ≡ q i) r s → r ≡ p ∙ s ∙ sym q PathP→compPathR {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (j ∧ (~ k)) ; (i = i1) → q (j ∧ (~ k)) ; (j = i0) → r i ; (j = i1) → doubleCompPath-filler∙ p s (sym q) (~ k) i}) (P j i) -- Other direction compPathL→PathP : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → sym p ∙ r ∙ q ≡ s → PathP (λ i → p i ≡ q i) r s compPathL→PathP {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (~ k ∨ j) ; (i = i1) → q (~ k ∨ j) ; (j = i0) → doubleCompPath-filler∙ (sym p) r q k i ; (j = i1) → s i}) (P j i) compPathR→PathP : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → r ≡ p ∙ s ∙ sym q → PathP (λ i → p i ≡ q i) r s compPathR→PathP {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (k ∧ j) ; (i = i1) → q (k ∧ j) ; (j = i0) → r i ; (j = i1) → doubleCompPath-filler∙ p s (sym q) k i}) (P j i) compPathR→PathP∙∙ : {a b c d : A} {p : a ≡ c} {q : b ≡ d} {r : a ≡ b} {s : c ≡ d} → r ≡ p ∙∙ s ∙∙ sym q → PathP (λ i → p i ≡ q i) r s compPathR→PathP∙∙ {p = p} {q = q} {r = r} {s = s} P j i = hcomp (λ k → λ { (i = i0) → p (k ∧ j) ; (i = i1) → q (k ∧ j) ; (j = i0) → r i ; (j = i1) → doubleCompPath-filler p s (sym q) (~ k) i}) (P j i)
{ "alphanum_fraction": 0.4704479769, "avg_line_length": 39.0960451977, "ext": "agda", "hexsha": "4452fc272ab25adf0dc90d9c84534746205d9560", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lpw25/cubical", "max_forks_repo_path": "Cubical/Foundations/Path.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lpw25/cubical", "max_issues_repo_path": "Cubical/Foundations/Path.agda", "max_line_length": 106, "max_stars_count": null, "max_stars_repo_head_hexsha": "9f9ad9dad7404c75cf457f81ba5ac269afe1b1a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lpw25/cubical", "max_stars_repo_path": "Cubical/Foundations/Path.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6299, "size": 13840 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Base.Types import LibraBFT.Impl.Consensus.ConsensusTypes.VoteData as VoteData open import LibraBFT.ImplShared.Base.Types open import LibraBFT.ImplShared.Consensus.Types open import Optics.All open import Util.Prelude module LibraBFT.Impl.Consensus.ConsensusTypes.Properties.VoteData (self : VoteData) where record Contract : Set where field ep≡ : self ^∙ vdParent ∙ biEpoch ≡ self ^∙ vdProposed ∙ biEpoch parRnd< : self ^∙ vdParent ∙ biRound < self ^∙ vdProposed ∙ biRound parVer≤ : (self ^∙ vdParent ∙ biVersion) ≤-Version (self ^∙ vdProposed ∙ biVersion) open Contract contract : VoteData.verify self ≡ Right unit → Contract contract with self ^∙ vdParent ∙ biEpoch ≟ self ^∙ vdProposed ∙ biEpoch ...| no neq = (λ ()) ...| yes refl with self ^∙ vdParent ∙ biRound <? self ^∙ vdProposed ∙ biRound ...| no ¬par<prop = (λ ()) ...| yes par<prop with (self ^∙ vdParent ∙ biVersion) ≤?-Version (self ^∙ vdProposed ∙ biVersion) ...| no ¬parVer≤ = (λ ()) ...| yes parVer≤ = (λ x → record { ep≡ = refl ; parRnd< = par<prop ; parVer≤ = parVer≤ })
{ "alphanum_fraction": 0.6450276243, "avg_line_length": 39.1351351351, "ext": "agda", "hexsha": "5148309671b472f9bd940ad8b8c7aca957237033", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/Properties/VoteData.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/Properties/VoteData.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/Consensus/ConsensusTypes/Properties/VoteData.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 450, "size": 1448 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Groups.Definition open import Sets.EquivalenceRelations module Groups.Groups where reflGroupWellDefined : {lvl : _} {A : Set lvl} {m n x y : A} {op : A → A → A} → m ≡ x → n ≡ y → (op m n) ≡ (op x y) reflGroupWellDefined {lvl} {A} {m} {n} {.m} {.n} {op} refl refl = refl fourWay+Associative : {a b : _} → {A : Set a} → {S : Setoid {a} {b} A} → {_·_ : A → A → A} → (G : Group S _·_) → {r s t u : A} → (Setoid._∼_ S) (r · ((s · t) · u)) ((r · s) · (t · u)) fourWay+Associative {S = S} {_·_} G {r} {s} {t} {u} = transitive p1 (transitive p2 p3) where open Group G renaming (inverse to _^-1) open Setoid S open Equivalence eq p1 : r · ((s · t) · u) ∼ (r · (s · t)) · u p2 : (r · (s · t)) · u ∼ ((r · s) · t) · u p3 : ((r · s) · t) · u ∼ (r · s) · (t · u) p1 = Group.+Associative G p2 = Group.+WellDefined G (Group.+Associative G) reflexive p3 = symmetric (Group.+Associative G) fourWay+Associative' : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A → A → A} (G : Group S _·_) {a b c d : A} → (Setoid._∼_ S (((a · b) · c) · d) (a · ((b · c) · d))) fourWay+Associative' {S = S} G = transitive (symmetric +Associative) (symmetric (fourWay+Associative G)) where open Group G open Setoid S open Equivalence eq fourWay+Associative'' : {m n : _} {A : Set m} {S : Setoid {m} {n} A} {_·_ : A → A → A} (G : Group S _·_) {a b c d : A} → (Setoid._∼_ S (a · (b · (c · d))) (a · ((b · c) · d))) fourWay+Associative'' {S = S} {_·_ = _·_} G = transitive +Associative (symmetric (fourWay+Associative G)) where open Group G open Setoid S open Equivalence eq
{ "alphanum_fraction": 0.5488157135, "avg_line_length": 45.5526315789, "ext": "agda", "hexsha": "34d5f2708262349bb2ec6938bd7ff357927f5f20", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Groups.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Groups.agda", "max_line_length": 183, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Groups.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 703, "size": 1731 }
module Punctaffy.Hypersnippet.Dim where open import Level using (Level; suc; _⊔_) open import Algebra.Bundles using (IdempotentCommutativeMonoid) open import Algebra.Morphism using (IsIdempotentCommutativeMonoidMorphism) -- For all the purposes we have for it so far, a `DimSys` is a bounded -- semilattice. The `agda-stdlib` library calls this an idempotent commutative -- monoid. record DimSys {n l : Level} : Set (suc (n ⊔ l)) where field dimIdempotentCommutativeMonoid : IdempotentCommutativeMonoid n l open IdempotentCommutativeMonoid dimIdempotentCommutativeMonoid public record DimSysMorphism {n₀ n₁ l₀ l₁ : Level} : Set (suc (n₀ ⊔ n₁ ⊔ l₀ ⊔ l₁)) where field From : DimSys {n₀} {l₀} To : DimSys {n₁} {l₁} private module F = DimSys From module T = DimSys To field morphDim : F.Carrier → T.Carrier isIdempotentCommutativeMonoidMorphism : IsIdempotentCommutativeMonoidMorphism F.dimIdempotentCommutativeMonoid T.dimIdempotentCommutativeMonoid morphDim dimLte : {n l : Level} → {ds : DimSys {n} {l}} → DimSys.Carrier ds → DimSys.Carrier ds → Set l dimLte {n} {l} {ds} a b = DimSys._≈_ ds (DimSys._∙_ ds a b) b
{ "alphanum_fraction": 0.7362542955, "avg_line_length": 36.375, "ext": "agda", "hexsha": "210619529f42c28a94de6efa1b5df1c1f6b3a439", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b5a981ce0158c3c8e1296da4a71e83de23ed52ef", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "lathe/punctaffy-for-racket", "max_forks_repo_path": "notes/code-sketches/agda/src/Punctaffy/Hypersnippet/Dim.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "2a958bf3987459e9197eb5963fe5107ea2e2e912", "max_issues_repo_issues_event_max_datetime": "2022-03-06T14:40:21.000Z", "max_issues_repo_issues_event_min_datetime": "2021-03-12T03:11:01.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "rocketnia/lexmeta", "max_issues_repo_path": "notes/code-sketches/agda/src/Punctaffy/Hypersnippet/Dim.agda", "max_line_length": 118, "max_stars_count": 1, "max_stars_repo_head_hexsha": "2a958bf3987459e9197eb5963fe5107ea2e2e912", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "rocketnia/lexmeta", "max_stars_repo_path": "notes/code-sketches/agda/src/Punctaffy/Hypersnippet/Dim.agda", "max_stars_repo_stars_event_max_datetime": "2020-02-03T21:26:07.000Z", "max_stars_repo_stars_event_min_datetime": "2020-02-03T21:26:07.000Z", "num_tokens": 403, "size": 1164 }
{-# OPTIONS --without-K #-} module equality.groupoid where open import equality.core _⁻¹ : ∀ {i}{X : Set i}{x y : X} → x ≡ y → y ≡ x _⁻¹ = sym left-unit : ∀ {i}{X : Set i}{x y : X} → (p : x ≡ y) → p · refl ≡ p left-unit refl = refl right-unit : ∀ {i}{X : Set i}{x y : X} → (p : x ≡ y) → refl · p ≡ p right-unit refl = refl associativity : ∀ {i}{X : Set i}{x y z w : X} → (p : x ≡ y)(q : y ≡ z)(r : z ≡ w) → p · q · r ≡ p · (q · r) associativity refl _ _ = refl left-inverse : ∀ {i}{X : Set i}{x y : X} → (p : x ≡ y) → p · p ⁻¹ ≡ refl left-inverse refl = refl right-inverse : ∀ {i}{X : Set i}{x y : X} → (p : x ≡ y) → p ⁻¹ · p ≡ refl right-inverse refl = refl
{ "alphanum_fraction": 0.4202531646, "avg_line_length": 23.9393939394, "ext": "agda", "hexsha": "47e2c571a4f7793ab308f1c23eece55875e6aaa4", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/equality/groupoid.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/equality/groupoid.agda", "max_line_length": 49, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "equality/groupoid.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 295, "size": 790 }
{-# OPTIONS --safe #-} module Issue2250-2 where open import Agda.Builtin.Bool open import Agda.Builtin.Equality data ⊥ : Set where abstract f : Bool → Bool f x = true {-# INJECTIVE f #-} same : f true ≡ f false same = refl not-same : f true ≡ f false → ⊥ not-same () absurd : ⊥ absurd = not-same same
{ "alphanum_fraction": 0.6332288401, "avg_line_length": 13.2916666667, "ext": "agda", "hexsha": "ba6547349f81f014124e36499c97d26f70b587e2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2250-2.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2250-2.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2250-2.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 107, "size": 319 }
-- Andreas, 2011-05-09 -- {-# OPTIONS -v tc.meta:15 -v tc.inj:40 #-} module Issue383 where data D (A : Set) : A → Set where data Unit : Set where unit : Unit D′ : (A : Set) → A → Unit → Set D′ A x unit = D A x postulate Q : (A : Set) → A → Set q : (u : Unit) (A : Set) (x : A) → D′ A x u → Q A x A : Set x : A d : D A x P : (A : Set) → A → Set p : P (Q _ _) (q _ _ _ d) -- SOLVED, WORKS NOW. -- OLD BEHAVIOR: -- Agda does not infer the values of the underscores on the last line. -- Shouldn't constructor-headedness come to the rescue here? Agda does -- identify D′ as being constructor-headed, and does invert D′ /six -- times/, but still fails to infer that the third underscore should -- be unit. {- blocked _41 := d by [(D A x) =< (D′ _39 _40 _38) : Set] blocked _42 := q _38 _36 _40 _41 by [_40 == _37 : _36] -}
{ "alphanum_fraction": 0.5828437133, "avg_line_length": 22.3947368421, "ext": "agda", "hexsha": "04faed55407fc6c62aad51b1ad94ff81409828bd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue383.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue383.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue383.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 312, "size": 851 }
{-# OPTIONS --without-K #-} open import HoTT import homotopy.HopfConstruction open import homotopy.CircleHSpace open import homotopy.SuspensionJoin using () renaming (e to suspension-join) open import homotopy.S1SuspensionS0 using () renaming (e to S¹≃SuspensionS⁰) import homotopy.JoinAssoc module homotopy.Hopf where -- To move S⁰ = Bool S² = Suspension S¹ S³ = Suspension S² -- To move S¹-connected : is-connected ⟨0⟩ S¹ S¹-connected = ([ base ] , Trunc-elim (λ x → =-preserves-level ⟨0⟩ Trunc-level) (S¹-elim idp (prop-has-all-paths-↓ ((Trunc-level :> is-set (Trunc ⟨0⟩ S¹)) _ _)))) module Hopf = homotopy.HopfConstruction S¹ S¹-connected S¹-hSpace Hopf : S² → Type₀ Hopf = Hopf.H.f Hopf-fiber : Hopf (north _) == S¹ Hopf-fiber = idp Hopf-total : Σ _ Hopf == S³ Hopf-total = Σ _ Hopf =⟨ Hopf.theorem ⟩ S¹ * S¹ =⟨ ua S¹≃SuspensionS⁰ |in-ctx (λ u → u * S¹) ⟩ (Suspension S⁰) * S¹ =⟨ ua (suspension-join S⁰) |in-ctx (λ u → u * S¹) ⟩ (S⁰ * S⁰) * S¹ =⟨ ua (homotopy.JoinAssoc.*-assoc S⁰ S⁰ S¹) ⟩ S⁰ * (S⁰ * S¹) =⟨ ! (ua (suspension-join S¹)) |in-ctx (λ u → S⁰ * u) ⟩ S⁰ * S² =⟨ ! (ua (suspension-join S²)) ⟩ S³ ∎
{ "alphanum_fraction": 0.617671346, "avg_line_length": 30.275, "ext": "agda", "hexsha": "18636541a0d72e261485a1bbfa5ef4155be69f59", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/Hopf.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/Hopf.agda", "max_line_length": 95, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/Hopf.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 485, "size": 1211 }
{-# OPTIONS --rewriting #-} open import Common.Prelude open import Common.Equality {-# BUILTIN REWRITE _≡_ #-} postulate is-id : ∀ {A : Set} → (A → A) → Bool postulate is-id-true : ∀ {A} → is-id {A} (λ x → x) ≡ true {-# REWRITE is-id-true #-} test₁ : is-id {Nat} (λ x → x) ≡ true test₁ = refl postulate is-const : ∀ {A : Set} → (A → A) → Bool postulate is-const-true : ∀ {A} (x : A) → is-const (λ _ → x) ≡ true {-# REWRITE is-const-true #-} test₂ : is-const {Nat} (λ _ → 42) ≡ true test₂ = refl ap : {A B : Set} (f : A → B) {x y : A} → x ≡ y → f x ≡ f y ap f refl = refl record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B open _×_ {- Cartesian product -} module _ {A B : Set} where _,=_ : {a a' : A} (p : a ≡ a') {b b' : B} (q : b ≡ b') → (a , b) ≡ (a' , b') refl ,= refl = refl ap-,-l : (b : B) {a a' : A} (p : a ≡ a') → ap (λ z → z , b) p ≡ (p ,= refl) ap-,-l b refl = refl {-# REWRITE ap-,-l #-} test₃ : (b : B) {a a' : A} (p : a ≡ a') → ap (λ z → z , b) p ≡ (p ,= refl) test₃ _ _ = refl ap-,-r : (a : A) {b b' : B} (p : b ≡ b') → ap (λ z → a , z) p ≡ (refl ,= p) ap-,-r a refl = refl {-# REWRITE ap-,-r #-} test₄ : (a : A) {b b' : B} (p : b ≡ b') → ap (λ z → a , z) p ≡ (refl ,= p) test₄ a _ = refl ap-idf : {A : Set} {x y : A} (p : x ≡ y) → ap (λ x → x) p ≡ p ap-idf refl = refl {-# REWRITE ap-idf #-} {- Function extensionality -} module _ {A B : Set} {f g : A → B} where postulate funext : ((x : A) → f x ≡ g x) → f ≡ g postulate ap-app-funext : (a : A) (h : (x : A) → f x ≡ g x) → ap (λ f → f a) (funext h) ≡ h a {-# REWRITE ap-app-funext #-} test₅ : (a : A) (h : (x : A) → f x ≡ g x) → ap (λ f → f a) (funext h) ≡ h a test₅ a h = refl {- Dependent paths -} module _ where PathOver : {A : Set} (B : A → Set) {x y : A} (p : x ≡ y) (u : B x) (v : B y) → Set PathOver B refl u v = (u ≡ v) postulate PathOver-triv : {A B : Set} {x y : A} (p : x ≡ y) (u v : B) → (PathOver (λ _ → B) p u v) ≡ (u ≡ v) {-# REWRITE PathOver-triv #-} test₆ : (p : 1 ≡ 1) → PathOver (λ _ → Nat) p 2 2 test₆ p = refl
{ "alphanum_fraction": 0.4591836735, "avg_line_length": 22.9361702128, "ext": "agda", "hexsha": "598d98bf11ae318e93dc49470be5fcd15ce3ff48", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/HigherOrderRewriting.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/HigherOrderRewriting.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/HigherOrderRewriting.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 985, "size": 2156 }
module Numeral.Real where open import Data.Tuple open import Logic import Lvl open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Rational open import Numeral.Rational.Oper open import Relator.Equals open import Type open import Type.Quotient -- TODO: This will not work, but it is the standard concept at least. Maybe there is a better way record CauchySequence (a : ℕ → ℚ) : Stmt where field N : ℚ₊ → ℕ ∀{ε : ℚ₊}{m n : ℕ} → (m > N(ε)) → (n > N(ε)) → (‖ a(m) − a(n) ‖ < ε) _converges-to-same_ : Σ(CauchySequence) → Σ(CauchySequence) → Stmt{Lvl.𝟎} a converges-to-same b = lim(n ↦ Σ.left(a) − Σ.left(b)) ≡ 𝟎 ℝ : Type{Lvl.𝟎} ℝ = Σ(CauchySequence) / (_converges-to-same_) -- TODO: Here is another idea: https://github.com/dylanede/cubical-experiments/blob/master/scratch.agda -- TODO: Also these: https://en.wikipedia.org/wiki/Construction_of_the_real_numbers#Construction_from_Cauchy_sequences
{ "alphanum_fraction": 0.7154989384, "avg_line_length": 32.4827586207, "ext": "agda", "hexsha": "27d931f1845f86d669d03f0d042e133528bd2ddf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "old/Mathematical/Numeral/Real.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "old/Mathematical/Numeral/Real.agda", "max_line_length": 118, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "old/Mathematical/Numeral/Real.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 323, "size": 942 }
------------------------------------------------------------------------------ -- The division program is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of the division program using -- repeated subtraction (Dybjer 1985). -- Peter Dybjer. Program verification in a logical theory of -- constructions. In Jean-Pierre Jouannaud, editor. Functional -- Programming Languages and Computer Architecture, volume 201 of -- LNCS, 1985, pages 334-349. Appears in revised form as Programming -- Methodology Group Report 26, June 1986. module LTC-PCF.Program.Division.CorrectnessProof where open import LTC-PCF.Base open import LTC-PCF.Data.Nat open import LTC-PCF.Data.Nat.Inequalities open import LTC-PCF.Data.Nat.Inequalities.Properties open import LTC-PCF.Data.Nat.Properties import LTC-PCF.Data.Nat.Induction.NonAcc.WF open module WFInd = LTC-PCF.Data.Nat.Induction.NonAcc.WF.WFInd open import LTC-PCF.Program.Division.Division open import LTC-PCF.Program.Division.Specification open import LTC-PCF.Program.Division.Result open import LTC-PCF.Program.Division.Totality ------------------------------------------------------------------------------ -- The division program is correct when the dividend is less than the -- divisor. div-x<y-correct : ∀ {i j} → N i → N j → i < j → divSpec i j (div i j) div-x<y-correct Ni Nj i<j = div-x<y-N i<j , div-x<y-resultCorrect Ni Nj i<j -- The division program is correct when the dividend is greater or -- equal than the divisor. div-x≮y-correct : ∀ {i j} → N i → N j → (∀ {i'} → N i' → i' < i → divSpec i' j (div i' j)) → j > zero → i ≮ j → divSpec i j (div i j) div-x≮y-correct {i} {j} Ni Nj ah j>0 i≮j = div-x≮y-N ih i≮j , div-x≮y-resultCorrect Ni Nj ih i≮j where -- The inductive hypothesis on i ∸ j. ih : divSpec (i ∸ j) j (div (i ∸ j) j) ih = ah {i ∸ j} (∸-N Ni Nj) (x≥y→y>0→x∸y<x Ni Nj (x≮y→x≥y Ni Nj i≮j) j>0) ------------------------------------------------------------------------------ -- The division program is correct. -- We do the well-founded induction on i and we keep j fixed. divCorrect : ∀ {i j} → N i → N j → j > zero → divSpec i j (div i j) divCorrect {j = j} Ni Nj j>0 = <-wfind A ih Ni where A : D → Set A d = divSpec d j (div d j) -- The inductive step doesn't use the variable i (nor Ni). To make -- this clear we write down the inductive step using the variables m -- and n. ih : ∀ {n} → N n → (∀ {m} → N m → m < n → A m) → A n ih {n} Nn ah = case (div-x<y-correct Nn Nj) (div-x≮y-correct Nn Nj ah j>0) (x<y∨x≮y Nn Nj)
{ "alphanum_fraction": 0.5692844677, "avg_line_length": 38.7162162162, "ext": "agda", "hexsha": "071251e99514273adc7e97d72a6dde1c4f53fe9f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/LTC-PCF/Program/Division/CorrectnessProof.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/LTC-PCF/Program/Division/CorrectnessProof.agda", "max_line_length": 80, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/LTC-PCF/Program/Division/CorrectnessProof.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 839, "size": 2865 }
module Data.Num.Bij.Properties where open import Data.Num.Bij renaming (_+B_ to _+_; _*B_ to _*_) open import Data.List open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong; sym; trans) open PropEq.≡-Reasoning -------------------------------------------------------------------------------- 1∷≡incrB∘*2 : ∀ m → one ∷ m ≡ incrB (*2 m) 1∷≡incrB∘*2 [] = refl 1∷≡incrB∘*2 (one ∷ ms) = cong (λ x → one ∷ x) (1∷≡incrB∘*2 ms) 1∷≡incrB∘*2 (two ∷ ms) = cong (λ x → one ∷ incrB x) (1∷≡incrB∘*2 ms) split-∷ : ∀ m ms → m ∷ ms ≡ (m ∷ []) + *2 ms split-∷ m [] = refl split-∷ one (one ∷ ns) = cong (λ x → one ∷ x) (1∷≡incrB∘*2 ns) split-∷ one (two ∷ ns) = cong (λ x → one ∷ incrB x) (1∷≡incrB∘*2 ns) split-∷ two (one ∷ ns) = cong (λ x → two ∷ x) (1∷≡incrB∘*2 ns) split-∷ two (two ∷ ns) = cong (λ x → two ∷ incrB x) (1∷≡incrB∘*2 ns) {- +B-assoc : ∀ m n o → (m + n) + o ≡ m + (n + o) +B-assoc [] _ _ = refl +B-assoc (m ∷ ms) n o = begin (m ∷ ms) + n + o ≡⟨ cong (λ x → x + n + o) (split-∷ m ms) ⟩ (m ∷ []) + *2 ms + n + o ≡⟨ cong (λ x → x + o) (+B-assoc (m ∷ []) (*2 ms) n) ⟩ (m ∷ []) + (*2 ms + n) + o ≡⟨ +B-assoc (m ∷ []) (*2 ms + n) o ⟩ (m ∷ []) + ((*2 ms + n) + o) ≡⟨ cong (λ x → (m ∷ []) + x) (+B-assoc (*2 ms) n o) ⟩ (m ∷ []) + (*2 ms + (n + o)) ≡⟨ sym (+B-assoc (m ∷ []) (*2 ms) (n + o)) ⟩ (m ∷ []) + *2 ms + (n + o) ≡⟨ cong (λ x → x + (n + o)) (sym (split-∷ m ms)) ⟩ (m ∷ ms) + (n + o) ∎ +B-right-identity : ∀ n → n + [] ≡ n +B-right-identity [] = refl +B-right-identity (n ∷ ns) = refl +B-comm : ∀ m n → m + n ≡ n + m +B-comm [] n = sym (+B-right-identity n) +B-comm (m ∷ ms) n = begin (m ∷ ms) + n ≡⟨ cong (λ x → x + n) (split-∷ m ms) ⟩ (m ∷ []) + *2 ms + n ≡⟨ +B-comm ((m ∷ []) + *2 ms) n ⟩ n + ((m ∷ []) + *2 ms) ≡⟨ cong (λ x → n + x) (sym (split-∷ m ms)) ⟩ n + (m ∷ ms) ∎ {- begin (m ∷ ms) + n ≡⟨ cong (λ x → x + n) (split-∷ m ms) ⟩ (m ∷ []) + *2 ms + n ≡⟨ +B-assoc (m ∷ []) (*2 ms) n ⟩ (m ∷ []) + (*2 ms + n) ≡⟨ cong (λ x → (m ∷ []) + x) (+B-comm (*2 ms) n) ⟩ (m ∷ []) + (n + *2 ms) ≡⟨ sym (+B-assoc (m ∷ []) n (*2 ms)) ⟩ (m ∷ []) + n + *2 ms ≡⟨ cong (λ x → x + *2 ms) (+B-comm (m ∷ []) n) ⟩ n + (m ∷ []) + *2 ms ≡⟨ +B-assoc n (m ∷ []) (*2 ms) ⟩ n + ((m ∷ []) + *2 ms) ≡⟨ cong (λ x → n + x) (sym (split-∷ m ms)) ⟩ n + (m ∷ ms) ∎ -} +B-*2-distrib : ∀ m n → *2 (m + n) ≡ *2 m + *2 n +B-*2-distrib [] n = refl +B-*2-distrib (m ∷ ms) n = begin *2 ((m ∷ ms) + n) ≡⟨ cong (λ x → *2 (x + n)) (split-∷ m ms) ⟩ *2 ((m ∷ []) + *2 ms + n) ≡⟨ +B-*2-distrib ((m ∷ []) + *2 ms) n ⟩ *2 ((m ∷ []) + *2 ms) + *2 n ≡⟨ cong (λ x → *2 x + *2 n) (sym (split-∷ m ms)) ⟩ *2 (m ∷ ms) + *2 n ∎ +B-*B-incrB : ∀ m n → m * incrB n ≡ m + m * n +B-*B-incrB [] n = refl +B-*B-incrB (m ∷ ms) n = begin (m ∷ ms) * incrB n ≡⟨ cong (λ x → x * incrB n) (split-∷ m ms) ⟩ ((m ∷ []) + *2 ms) * incrB n ≡⟨ +B-*B-incrB ((m ∷ []) + *2 ms) n ⟩ (m ∷ []) + *2 ms + ((m ∷ []) + *2 ms) * n ≡⟨ cong (λ x → x + x * n) (sym (split-∷ m ms)) ⟩ (m ∷ ms) + (m ∷ ms) * n ∎ *B-right-[] : ∀ n → n * [] ≡ [] *B-right-[] [] = refl *B-right-[] (one ∷ ns) = cong *2_ (*B-right-[] ns) *B-right-[] (two ∷ ns) = cong *2_ (*B-right-[] ns) *B-+B-distrib : ∀ m n o → (n + o) * m ≡ n * m + o * m *B-+B-distrib m [] o = refl *B-+B-distrib m (n ∷ ns) o = begin ((n ∷ ns) + o) * m ≡⟨ cong (λ x → (x + o) * m) (split-∷ n ns) ⟩ ((n ∷ []) + *2 ns + o) * m ≡⟨ *B-+B-distrib m ((n ∷ []) + *2 ns) o ⟩ ((n ∷ []) + *2 ns) * m + o * m ≡⟨ cong (λ x → x * m + o * m) (sym (split-∷ n ns)) ⟩ (n ∷ ns) * m + o * m ∎ *B-comm : ∀ m n → m * n ≡ n * m *B-comm [] n = sym (*B-right-[] n) *B-comm (m ∷ ms) n = begin (m ∷ ms) * n ≡⟨ cong (λ x → x * n) (split-∷ m ms) ⟩ ((m ∷ []) + *2 ms) * n ≡⟨ *B-comm ((m ∷ []) + *2 ms) n ⟩ n * ((m ∷ []) + *2 ms) ≡⟨ cong (λ x → n * x) (sym (split-∷ m ms)) ⟩ n * (m ∷ ms) ∎ {- begin {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ∎ -} {- +B-*B-incrB : ∀ m n → m * incrB n ≡ m + m * n +B-*B-incrB [] n = refl +B-*B-incrB (one ∷ ms) [] = {! !} +B-*B-incrB (one ∷ ms) (n ∷ ns) = {! !} begin incrB n + ms * incrB n ≡⟨ cong (λ x → incrB n + x) (+B-*B-incrB ms n) ⟩ incrB n + (ms + ms * n) ≡⟨ sym (+B-assoc (incrB n) ms (ms * n)) ⟩ incrB n + ms + ms * n ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ (one ∷ []) + *2 ms + (n + ms * n) ≡⟨ cong (λ x → x + (n + ms * n)) (sym (split-∷ one ms)) ⟩ (one ∷ ms) + (n + ms * n) ∎ +B-*B-incrB (two ∷ ms) n = begin {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ∎ -} {- begin {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ∎ -} -}
{ "alphanum_fraction": 0.3166880852, "avg_line_length": 27.3718592965, "ext": "agda", "hexsha": "b452b489522b11163a33bda4b216241f51c36cbd", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/Data/Num/Bij/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/Data/Num/Bij/Properties.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/Data/Num/Bij/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 2636, "size": 5447 }
{-# OPTIONS --safe #-} module Cubical.Algebra.OrderedCommMonoid.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure open import Cubical.Foundations.HLevels open import Cubical.Foundations.SIP using (TypeWithStr) open import Cubical.Data.Sigma open import Cubical.Algebra.CommMonoid open import Cubical.Algebra.OrderedCommMonoid.Base open import Cubical.Relation.Binary.Poset private variable ℓ ℓ' ℓ'' : Level module _ (M : OrderedCommMonoid ℓ ℓ') (P : ⟨ M ⟩ → hProp ℓ'') where open OrderedCommMonoidStr (snd M) module _ (·Closed : (x y : ⟨ M ⟩) → ⟨ P x ⟩ → ⟨ P y ⟩ → ⟨ P (x · y) ⟩) (εContained : ⟨ P ε ⟩) where private subtype = Σ[ x ∈ ⟨ M ⟩ ] ⟨ P x ⟩ submonoid = makeSubCommMonoid (OrderedCommMonoid→CommMonoid M) P ·Closed εContained _≤ₛ_ : (x y : ⟨ submonoid ⟩) → Type ℓ' x ≤ₛ y = (fst x) ≤ (fst y) pres≤ : (x y : ⟨ submonoid ⟩) (x≤y : x ≤ₛ y) → (fst x) ≤ (fst y) pres≤ x y x≤y = x≤y makeOrderedSubmonoid : OrderedCommMonoid _ ℓ' fst makeOrderedSubmonoid = subtype OrderedCommMonoidStr._≤_ (snd makeOrderedSubmonoid) = _≤ₛ_ OrderedCommMonoidStr._·_ (snd makeOrderedSubmonoid) = CommMonoidStr._·_ (snd submonoid) OrderedCommMonoidStr.ε (snd makeOrderedSubmonoid) = CommMonoidStr.ε (snd submonoid) OrderedCommMonoidStr.isOrderedCommMonoid (snd makeOrderedSubmonoid) = IsOrderedCommMonoidFromIsCommMonoid (CommMonoidStr.isCommMonoid (snd submonoid)) (λ x y → is-prop-valued (fst x) (fst y)) (λ x → is-refl (fst x)) (λ x y z → is-trans (fst x) (fst y) (fst z)) (λ x y x≤y y≤x → Σ≡Prop (λ x → snd (P x)) (is-antisym (fst x) (fst y) (pres≤ x y x≤y) (pres≤ y x y≤x))) (λ x y z x≤y → MonotoneR (pres≤ x y x≤y)) λ x y z x≤y → MonotoneL (pres≤ x y x≤y)
{ "alphanum_fraction": 0.6321353066, "avg_line_length": 34.4, "ext": "agda", "hexsha": "208db81eb61a5219f9772b36a0c6ee2035db9c9d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/OrderedCommMonoid/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/OrderedCommMonoid/Properties.agda", "max_line_length": 91, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/OrderedCommMonoid/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 689, "size": 1892 }
{-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v tc.conv.elim:100 #-} module Issue814 where record IsMonoid (M : Set) : Set where field unit : M _*_ : M → M → M record Monoid : Set₁ where field carrier : Set is-mon : IsMonoid carrier record Structure (Struct : Set₁) (HasStruct : Set → Set) (carrier : Struct → Set) : Set₁ where field has-struct : (X : Struct) → HasStruct (carrier X) mon-mon-struct : Structure Monoid IsMonoid Monoid.carrier mon-mon-struct = record { has-struct = Monoid.is-mon } mon-mon-struct' : Structure Monoid IsMonoid Monoid.carrier mon-mon-struct' = record { has-struct = Monoid.is-mon } unit : {Struct : Set₁}{C : Struct → Set} → ⦃ X : Struct ⦄ → ⦃ struct : Structure Struct IsMonoid C ⦄ → C X unit {Struct}{C} ⦃ X ⦄ ⦃ struct ⦄ = IsMonoid.unit (Structure.has-struct struct X) f : (M : Monoid) → Monoid.carrier M f M = unit -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/Eliminators.hs:45 -- This used to crash, but should only produce unsolved metas.
{ "alphanum_fraction": 0.6430446194, "avg_line_length": 27.2142857143, "ext": "agda", "hexsha": "57ca5bb0a5b81ec370fcf63c260a83c6fb5a7048", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue814.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue814.agda", "max_line_length": 81, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue814.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 356, "size": 1143 }
{-# OPTIONS --rewriting #-} module Properties.Subtyping where open import Agda.Builtin.Equality using (_≡_; refl) open import FFI.Data.Either using (Either; Left; Right; mapLR; swapLR; cond) open import FFI.Data.Maybe using (Maybe; just; nothing) open import Luau.Subtyping using (_<:_; _≮:_; Tree; Language; ¬Language; witness; unknown; never; scalar; function; scalar-function; scalar-function-ok; scalar-function-err; scalar-function-tgt; scalar-scalar; function-scalar; function-ok; function-ok₁; function-ok₂; function-err; function-tgt; left; right; _,_) open import Luau.Type using (Type; Scalar; nil; number; string; boolean; never; unknown; _⇒_; _∪_; _∩_; skalar) open import Properties.Contradiction using (CONTRADICTION; ¬; ⊥) open import Properties.Equality using (_≢_) open import Properties.Functions using (_∘_) open import Properties.Product using (_×_; _,_) -- Language membership is decidable dec-language : ∀ T t → Either (¬Language T t) (Language T t) dec-language nil (scalar number) = Left (scalar-scalar number nil (λ ())) dec-language nil (scalar boolean) = Left (scalar-scalar boolean nil (λ ())) dec-language nil (scalar string) = Left (scalar-scalar string nil (λ ())) dec-language nil (scalar nil) = Right (scalar nil) dec-language nil function = Left (scalar-function nil) dec-language nil (function-ok s t) = Left (scalar-function-ok nil) dec-language nil (function-err t) = Left (scalar-function-err nil) dec-language boolean (scalar number) = Left (scalar-scalar number boolean (λ ())) dec-language boolean (scalar boolean) = Right (scalar boolean) dec-language boolean (scalar string) = Left (scalar-scalar string boolean (λ ())) dec-language boolean (scalar nil) = Left (scalar-scalar nil boolean (λ ())) dec-language boolean function = Left (scalar-function boolean) dec-language boolean (function-ok s t) = Left (scalar-function-ok boolean) dec-language boolean (function-err t) = Left (scalar-function-err boolean) dec-language number (scalar number) = Right (scalar number) dec-language number (scalar boolean) = Left (scalar-scalar boolean number (λ ())) dec-language number (scalar string) = Left (scalar-scalar string number (λ ())) dec-language number (scalar nil) = Left (scalar-scalar nil number (λ ())) dec-language number function = Left (scalar-function number) dec-language number (function-ok s t) = Left (scalar-function-ok number) dec-language number (function-err t) = Left (scalar-function-err number) dec-language string (scalar number) = Left (scalar-scalar number string (λ ())) dec-language string (scalar boolean) = Left (scalar-scalar boolean string (λ ())) dec-language string (scalar string) = Right (scalar string) dec-language string (scalar nil) = Left (scalar-scalar nil string (λ ())) dec-language string function = Left (scalar-function string) dec-language string (function-ok s t) = Left (scalar-function-ok string) dec-language string (function-err t) = Left (scalar-function-err string) dec-language (T₁ ⇒ T₂) (scalar s) = Left (function-scalar s) dec-language (T₁ ⇒ T₂) function = Right function dec-language (T₁ ⇒ T₂) (function-ok s t) = cond (Right ∘ function-ok₁) (λ p → mapLR (function-ok p) function-ok₂ (dec-language T₂ t)) (dec-language T₁ s) dec-language (T₁ ⇒ T₂) (function-err t) = mapLR function-err function-err (swapLR (dec-language T₁ t)) dec-language never t = Left never dec-language unknown t = Right unknown dec-language (T₁ ∪ T₂) t = cond (λ p → cond (Left ∘ _,_ p) (Right ∘ right) (dec-language T₂ t)) (Right ∘ left) (dec-language T₁ t) dec-language (T₁ ∩ T₂) t = cond (Left ∘ left) (λ p → cond (Left ∘ right) (Right ∘ _,_ p) (dec-language T₂ t)) (dec-language T₁ t) dec-language nil (function-tgt t) = Left (scalar-function-tgt nil) dec-language (T₁ ⇒ T₂) (function-tgt t) = mapLR function-tgt function-tgt (dec-language T₂ t) dec-language boolean (function-tgt t) = Left (scalar-function-tgt boolean) dec-language number (function-tgt t) = Left (scalar-function-tgt number) dec-language string (function-tgt t) = Left (scalar-function-tgt string) -- ¬Language T is the complement of Language T language-comp : ∀ {T} t → ¬Language T t → ¬(Language T t) language-comp t (p₁ , p₂) (left q) = language-comp t p₁ q language-comp t (p₁ , p₂) (right q) = language-comp t p₂ q language-comp t (left p) (q₁ , q₂) = language-comp t p q₁ language-comp t (right p) (q₁ , q₂) = language-comp t p q₂ language-comp (scalar s) (scalar-scalar s p₁ p₂) (scalar s) = p₂ refl language-comp (scalar s) (function-scalar s) (scalar s) = language-comp function (scalar-function s) function language-comp (scalar s) never (scalar ()) language-comp function (scalar-function ()) function language-comp (function-ok s t) (scalar-function-ok ()) (function-ok₁ p) language-comp (function-ok s t) (function-ok p₁ p₂) (function-ok₁ q) = language-comp s q p₁ language-comp (function-ok s t) (function-ok p₁ p₂) (function-ok₂ q) = language-comp t p₂ q language-comp (function-err t) (function-err p) (function-err q) = language-comp t q p language-comp (function-tgt t) (scalar-function-tgt ()) (function-tgt q) language-comp (function-tgt t) (function-tgt p) (function-tgt q) = language-comp t p q -- ≮: is the complement of <: ¬≮:-impl-<: : ∀ {T U} → ¬(T ≮: U) → (T <: U) ¬≮:-impl-<: {T} {U} p t q with dec-language U t ¬≮:-impl-<: {T} {U} p t q | Left r = CONTRADICTION (p (witness t q r)) ¬≮:-impl-<: {T} {U} p t q | Right r = r <:-impl-¬≮: : ∀ {T U} → (T <: U) → ¬(T ≮: U) <:-impl-¬≮: p (witness t q r) = language-comp t r (p t q) <:-impl-⊇ : ∀ {T U} → (T <: U) → ∀ t → ¬Language U t → ¬Language T t <:-impl-⊇ {T} p t q with dec-language T t <:-impl-⊇ {_} p t q | Left r = r <:-impl-⊇ {_} p t q | Right r = CONTRADICTION (language-comp t q (p t r)) -- reflexivity ≮:-refl : ∀ {T} → ¬(T ≮: T) ≮:-refl (witness t p q) = language-comp t q p <:-refl : ∀ {T} → (T <: T) <:-refl = ¬≮:-impl-<: ≮:-refl -- transititivity ≮:-trans-≡ : ∀ {S T U} → (S ≮: T) → (T ≡ U) → (S ≮: U) ≮:-trans-≡ p refl = p <:-trans-≡ : ∀ {S T U} → (S <: T) → (T ≡ U) → (S <: U) <:-trans-≡ p refl = p ≡-impl-<: : ∀ {T U} → (T ≡ U) → (T <: U) ≡-impl-<: refl = <:-refl ≡-trans-≮: : ∀ {S T U} → (S ≡ T) → (T ≮: U) → (S ≮: U) ≡-trans-≮: refl p = p ≡-trans-<: : ∀ {S T U} → (S ≡ T) → (T <: U) → (S <: U) ≡-trans-<: refl p = p ≮:-trans : ∀ {S T U} → (S ≮: U) → Either (S ≮: T) (T ≮: U) ≮:-trans {T = T} (witness t p q) = mapLR (witness t p) (λ z → witness t z q) (dec-language T t) <:-trans : ∀ {S T U} → (S <: T) → (T <: U) → (S <: U) <:-trans p q t r = q t (p t r) <:-trans-≮: : ∀ {S T U} → (S <: T) → (S ≮: U) → (T ≮: U) <:-trans-≮: p (witness t q r) = witness t (p t q) r ≮:-trans-<: : ∀ {S T U} → (S ≮: U) → (T <: U) → (S ≮: T) ≮:-trans-<: (witness t p q) r = witness t p (<:-impl-⊇ r t q) -- Properties of union <:-union : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∪ S) <: (T ∪ U)) <:-union p q t (left r) = left (p t r) <:-union p q t (right r) = right (q t r) <:-∪-left : ∀ {S T} → S <: (S ∪ T) <:-∪-left t p = left p <:-∪-right : ∀ {S T} → T <: (S ∪ T) <:-∪-right t p = right p <:-∪-lub : ∀ {S T U} → (S <: U) → (T <: U) → ((S ∪ T) <: U) <:-∪-lub p q t (left r) = p t r <:-∪-lub p q t (right r) = q t r <:-∪-symm : ∀ {T U} → (T ∪ U) <: (U ∪ T) <:-∪-symm t (left p) = right p <:-∪-symm t (right p) = left p <:-∪-assocl : ∀ {S T U} → (S ∪ (T ∪ U)) <: ((S ∪ T) ∪ U) <:-∪-assocl t (left p) = left (left p) <:-∪-assocl t (right (left p)) = left (right p) <:-∪-assocl t (right (right p)) = right p <:-∪-assocr : ∀ {S T U} → ((S ∪ T) ∪ U) <: (S ∪ (T ∪ U)) <:-∪-assocr t (left (left p)) = left p <:-∪-assocr t (left (right p)) = right (left p) <:-∪-assocr t (right p) = right (right p) ≮:-∪-left : ∀ {S T U} → (S ≮: U) → ((S ∪ T) ≮: U) ≮:-∪-left (witness t p q) = witness t (left p) q ≮:-∪-right : ∀ {S T U} → (T ≮: U) → ((S ∪ T) ≮: U) ≮:-∪-right (witness t p q) = witness t (right p) q ≮:-left-∪ : ∀ {S T U} → (S ≮: (T ∪ U)) → (S ≮: T) ≮:-left-∪ (witness t p (q₁ , q₂)) = witness t p q₁ ≮:-right-∪ : ∀ {S T U} → (S ≮: (T ∪ U)) → (S ≮: U) ≮:-right-∪ (witness t p (q₁ , q₂)) = witness t p q₂ -- Properties of intersection <:-intersect : ∀ {R S T U} → (R <: T) → (S <: U) → ((R ∩ S) <: (T ∩ U)) <:-intersect p q t (r₁ , r₂) = (p t r₁ , q t r₂) <:-∩-left : ∀ {S T} → (S ∩ T) <: S <:-∩-left t (p , _) = p <:-∩-right : ∀ {S T} → (S ∩ T) <: T <:-∩-right t (_ , p) = p <:-∩-glb : ∀ {S T U} → (S <: T) → (S <: U) → (S <: (T ∩ U)) <:-∩-glb p q t r = (p t r , q t r) <:-∩-symm : ∀ {T U} → (T ∩ U) <: (U ∩ T) <:-∩-symm t (p₁ , p₂) = (p₂ , p₁) <:-∩-assocl : ∀ {S T U} → (S ∩ (T ∩ U)) <: ((S ∩ T) ∩ U) <:-∩-assocl t (p , (p₁ , p₂)) = (p , p₁) , p₂ <:-∩-assocr : ∀ {S T U} → ((S ∩ T) ∩ U) <: (S ∩ (T ∩ U)) <:-∩-assocr t ((p , p₁) , p₂) = p , (p₁ , p₂) ≮:-∩-left : ∀ {S T U} → (S ≮: T) → (S ≮: (T ∩ U)) ≮:-∩-left (witness t p q) = witness t p (left q) ≮:-∩-right : ∀ {S T U} → (S ≮: U) → (S ≮: (T ∩ U)) ≮:-∩-right (witness t p q) = witness t p (right q) -- Distribution properties <:-∩-distl-∪ : ∀ {S T U} → (S ∩ (T ∪ U)) <: ((S ∩ T) ∪ (S ∩ U)) <:-∩-distl-∪ t (p₁ , left p₂) = left (p₁ , p₂) <:-∩-distl-∪ t (p₁ , right p₂) = right (p₁ , p₂) ∩-distl-∪-<: : ∀ {S T U} → ((S ∩ T) ∪ (S ∩ U)) <: (S ∩ (T ∪ U)) ∩-distl-∪-<: t (left (p₁ , p₂)) = (p₁ , left p₂) ∩-distl-∪-<: t (right (p₁ , p₂)) = (p₁ , right p₂) <:-∩-distr-∪ : ∀ {S T U} → ((S ∪ T) ∩ U) <: ((S ∩ U) ∪ (T ∩ U)) <:-∩-distr-∪ t (left p₁ , p₂) = left (p₁ , p₂) <:-∩-distr-∪ t (right p₁ , p₂) = right (p₁ , p₂) ∩-distr-∪-<: : ∀ {S T U} → ((S ∩ U) ∪ (T ∩ U)) <: ((S ∪ T) ∩ U) ∩-distr-∪-<: t (left (p₁ , p₂)) = (left p₁ , p₂) ∩-distr-∪-<: t (right (p₁ , p₂)) = (right p₁ , p₂) <:-∪-distl-∩ : ∀ {S T U} → (S ∪ (T ∩ U)) <: ((S ∪ T) ∩ (S ∪ U)) <:-∪-distl-∩ t (left p) = (left p , left p) <:-∪-distl-∩ t (right (p₁ , p₂)) = (right p₁ , right p₂) ∪-distl-∩-<: : ∀ {S T U} → ((S ∪ T) ∩ (S ∪ U)) <: (S ∪ (T ∩ U)) ∪-distl-∩-<: t (left p₁ , p₂) = left p₁ ∪-distl-∩-<: t (right p₁ , left p₂) = left p₂ ∪-distl-∩-<: t (right p₁ , right p₂) = right (p₁ , p₂) <:-∪-distr-∩ : ∀ {S T U} → ((S ∩ T) ∪ U) <: ((S ∪ U) ∩ (T ∪ U)) <:-∪-distr-∩ t (left (p₁ , p₂)) = left p₁ , left p₂ <:-∪-distr-∩ t (right p) = (right p , right p) ∪-distr-∩-<: : ∀ {S T U} → ((S ∪ U) ∩ (T ∪ U)) <: ((S ∩ T) ∪ U) ∪-distr-∩-<: t (left p₁ , left p₂) = left (p₁ , p₂) ∪-distr-∩-<: t (left p₁ , right p₂) = right p₂ ∪-distr-∩-<: t (right p₁ , p₂) = right p₁ ∩-<:-∪ : ∀ {S T} → (S ∩ T) <: (S ∪ T) ∩-<:-∪ t (p , _) = left p -- Properties of functions <:-function : ∀ {R S T U} → (R <: S) → (T <: U) → (S ⇒ T) <: (R ⇒ U) <:-function p q function function = function <:-function p q (function-ok s t) (function-ok₁ r) = function-ok₁ (<:-impl-⊇ p s r) <:-function p q (function-ok s t) (function-ok₂ r) = function-ok₂ (q t r) <:-function p q (function-err s) (function-err r) = function-err (<:-impl-⊇ p s r) <:-function p q (function-tgt t) (function-tgt r) = function-tgt (q t r) <:-function-∩-∩ : ∀ {R S T U} → ((R ⇒ T) ∩ (S ⇒ U)) <: ((R ∩ S) ⇒ (T ∩ U)) <:-function-∩-∩ function (function , function) = function <:-function-∩-∩ (function-ok s t) (function-ok₁ p , q) = function-ok₁ (left p) <:-function-∩-∩ (function-ok s t) (function-ok₂ p , function-ok₁ q) = function-ok₁ (right q) <:-function-∩-∩ (function-ok s t) (function-ok₂ p , function-ok₂ q) = function-ok₂ (p , q) <:-function-∩-∩ (function-err s) (function-err p , q) = function-err (left p) <:-function-∩-∩ (function-tgt s) (function-tgt p , function-tgt q) = function-tgt (p , q) <:-function-∩-∪ : ∀ {R S T U} → ((R ⇒ T) ∩ (S ⇒ U)) <: ((R ∪ S) ⇒ (T ∪ U)) <:-function-∩-∪ function (function , function) = function <:-function-∩-∪ (function-ok s t) (function-ok₁ p₁ , function-ok₁ p₂) = function-ok₁ (p₁ , p₂) <:-function-∩-∪ (function-ok s t) (p₁ , function-ok₂ p₂) = function-ok₂ (right p₂) <:-function-∩-∪ (function-ok s t) (function-ok₂ p₁ , p₂) = function-ok₂ (left p₁) <:-function-∩-∪ (function-err s) (function-err p₁ , function-err q₂) = function-err (p₁ , q₂) <:-function-∩-∪ (function-tgt t) (function-tgt p , q) = function-tgt (left p) <:-function-∩ : ∀ {S T U} → ((S ⇒ T) ∩ (S ⇒ U)) <: (S ⇒ (T ∩ U)) <:-function-∩ function (function , function) = function <:-function-∩ (function-ok s t) (p₁ , function-ok₁ p₂) = function-ok₁ p₂ <:-function-∩ (function-ok s t) (function-ok₁ p₁ , p₂) = function-ok₁ p₁ <:-function-∩ (function-ok s t) (function-ok₂ p₁ , function-ok₂ p₂) = function-ok₂ (p₁ , p₂) <:-function-∩ (function-err s) (function-err p₁ , function-err p₂) = function-err p₂ <:-function-∩ (function-tgt t) (function-tgt p₁ , function-tgt p₂) = function-tgt (p₁ , p₂) <:-function-∪ : ∀ {R S T U} → ((R ⇒ S) ∪ (T ⇒ U)) <: ((R ∩ T) ⇒ (S ∪ U)) <:-function-∪ function (left function) = function <:-function-∪ (function-ok s t) (left (function-ok₁ p)) = function-ok₁ (left p) <:-function-∪ (function-ok s t) (left (function-ok₂ p)) = function-ok₂ (left p) <:-function-∪ (function-err s) (left (function-err p)) = function-err (left p) <:-function-∪ (scalar s) (left (scalar ())) <:-function-∪ function (right function) = function <:-function-∪ (function-ok s t) (right (function-ok₁ p)) = function-ok₁ (right p) <:-function-∪ (function-ok s t) (right (function-ok₂ p)) = function-ok₂ (right p) <:-function-∪ (function-err s) (right (function-err x)) = function-err (right x) <:-function-∪ (scalar s) (right (scalar ())) <:-function-∪ (function-tgt t) (left (function-tgt p)) = function-tgt (left p) <:-function-∪ (function-tgt t) (right (function-tgt p)) = function-tgt (right p) <:-function-∪-∩ : ∀ {R S T U} → ((R ∩ S) ⇒ (T ∪ U)) <: ((R ⇒ T) ∪ (S ⇒ U)) <:-function-∪-∩ function function = left function <:-function-∪-∩ (function-ok s t) (function-ok₁ (left p)) = left (function-ok₁ p) <:-function-∪-∩ (function-ok s t) (function-ok₂ (left p)) = left (function-ok₂ p) <:-function-∪-∩ (function-ok s t) (function-ok₁ (right p)) = right (function-ok₁ p) <:-function-∪-∩ (function-ok s t) (function-ok₂ (right p)) = right (function-ok₂ p) <:-function-∪-∩ (function-err s) (function-err (left p)) = left (function-err p) <:-function-∪-∩ (function-err s) (function-err (right p)) = right (function-err p) <:-function-∪-∩ (function-tgt t) (function-tgt (left p)) = left (function-tgt p) <:-function-∪-∩ (function-tgt t) (function-tgt (right p)) = right (function-tgt p) <:-function-left : ∀ {R S T U} → (S ⇒ T) <: (R ⇒ U) → (R <: S) <:-function-left {R} {S} p s Rs with dec-language S s <:-function-left p s Rs | Right Ss = Ss <:-function-left p s Rs | Left ¬Ss with p (function-err s) (function-err ¬Ss) <:-function-left p s Rs | Left ¬Ss | function-err ¬Rs = CONTRADICTION (language-comp s ¬Rs Rs) <:-function-right : ∀ {R S T U} → (S ⇒ T) <: (R ⇒ U) → (T <: U) <:-function-right p t Tt with p (function-tgt t) (function-tgt Tt) <:-function-right p t Tt | function-tgt St = St ≮:-function-left : ∀ {R S T U} → (R ≮: S) → (S ⇒ T) ≮: (R ⇒ U) ≮:-function-left (witness t p q) = witness (function-err t) (function-err q) (function-err p) ≮:-function-right : ∀ {R S T U} → (T ≮: U) → (S ⇒ T) ≮: (R ⇒ U) ≮:-function-right (witness t p q) = witness (function-tgt t) (function-tgt p) (function-tgt q) -- Properties of scalars skalar-function-ok : ∀ {s t} → (¬Language skalar (function-ok s t)) skalar-function-ok = (scalar-function-ok number , (scalar-function-ok string , (scalar-function-ok nil , scalar-function-ok boolean))) scalar-<: : ∀ {S T} → (s : Scalar S) → Language T (scalar s) → (S <: T) scalar-<: number p (scalar number) (scalar number) = p scalar-<: boolean p (scalar boolean) (scalar boolean) = p scalar-<: string p (scalar string) (scalar string) = p scalar-<: nil p (scalar nil) (scalar nil) = p scalar-∩-function-<:-never : ∀ {S T U} → (Scalar S) → ((T ⇒ U) ∩ S) <: never scalar-∩-function-<:-never number .(scalar number) (() , scalar number) scalar-∩-function-<:-never boolean .(scalar boolean) (() , scalar boolean) scalar-∩-function-<:-never string .(scalar string) (() , scalar string) scalar-∩-function-<:-never nil .(scalar nil) (() , scalar nil) function-≮:-scalar : ∀ {S T U} → (Scalar U) → ((S ⇒ T) ≮: U) function-≮:-scalar s = witness function function (scalar-function s) scalar-≮:-function : ∀ {S T U} → (Scalar U) → (U ≮: (S ⇒ T)) scalar-≮:-function s = witness (scalar s) (scalar s) (function-scalar s) unknown-≮:-scalar : ∀ {U} → (Scalar U) → (unknown ≮: U) unknown-≮:-scalar s = witness function unknown (scalar-function s) scalar-≮:-never : ∀ {U} → (Scalar U) → (U ≮: never) scalar-≮:-never s = witness (scalar s) (scalar s) never scalar-≢-impl-≮: : ∀ {T U} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ≮: U) scalar-≢-impl-≮: s₁ s₂ p = witness (scalar s₁) (scalar s₁) (scalar-scalar s₁ s₂ p) scalar-≢-∩-<:-never : ∀ {T U V} → (Scalar T) → (Scalar U) → (T ≢ U) → (T ∩ U) <: V scalar-≢-∩-<:-never s t p u (scalar s₁ , scalar s₂) = CONTRADICTION (p refl) skalar-scalar : ∀ {T} (s : Scalar T) → (Language skalar (scalar s)) skalar-scalar number = left (scalar number) skalar-scalar boolean = right (right (right (scalar boolean))) skalar-scalar string = right (left (scalar string)) skalar-scalar nil = right (right (left (scalar nil))) -- Properties of unknown and never unknown-≮: : ∀ {T U} → (T ≮: U) → (unknown ≮: U) unknown-≮: (witness t p q) = witness t unknown q never-≮: : ∀ {T U} → (T ≮: U) → (T ≮: never) never-≮: (witness t p q) = witness t p never unknown-≮:-never : (unknown ≮: never) unknown-≮:-never = witness (scalar nil) unknown never unknown-≮:-function : ∀ {S T} → (unknown ≮: (S ⇒ T)) unknown-≮:-function = witness (scalar nil) unknown (function-scalar nil) function-≮:-never : ∀ {T U} → ((T ⇒ U) ≮: never) function-≮:-never = witness function function never <:-never : ∀ {T} → (never <: T) <:-never t (scalar ()) ≮:-never-left : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: T) → (S ∩ U) ≮: never ≮:-never-left p (witness t q₁ q₂) with p t q₁ ≮:-never-left p (witness t q₁ q₂) | left r = CONTRADICTION (language-comp t q₂ r) ≮:-never-left p (witness t q₁ q₂) | right r = witness t (q₁ , r) never ≮:-never-right : ∀ {S T U} → (S <: (T ∪ U)) → (S ≮: U) → (S ∩ T) ≮: never ≮:-never-right p (witness t q₁ q₂) with p t q₁ ≮:-never-right p (witness t q₁ q₂) | left r = witness t (q₁ , r) never ≮:-never-right p (witness t q₁ q₂) | right r = CONTRADICTION (language-comp t q₂ r) <:-unknown : ∀ {T} → (T <: unknown) <:-unknown t p = unknown <:-everything : unknown <: ((never ⇒ unknown) ∪ skalar) <:-everything (scalar s) p = right (skalar-scalar s) <:-everything function p = left function <:-everything (function-ok s t) p = left (function-ok₁ never) <:-everything (function-err s) p = left (function-err never) <:-everything (function-tgt t) p = left (function-tgt unknown) -- A Gentle Introduction To Semantic Subtyping (https://www.cduce.org/papers/gentle.pdf) -- defines a "set-theoretic" model (sec 2.5) -- Unfortunately we don't quite have this property, due to uninhabited types, -- for example (never -> T) is equivalent to (never -> U) -- when types are interpreted as sets of syntactic values. _⊆_ : ∀ {A : Set} → (A → Set) → (A → Set) → Set (P ⊆ Q) = ∀ a → (P a) → (Q a) _⊗_ : ∀ {A B : Set} → (A → Set) → (B → Set) → ((A × B) → Set) (P ⊗ Q) (a , b) = (P a) × (Q b) Comp : ∀ {A : Set} → (A → Set) → (A → Set) Comp P a = ¬(P a) Lift : ∀ {A : Set} → (A → Set) → (Maybe A → Set) Lift P nothing = ⊥ Lift P (just a) = P a set-theoretic-if : ∀ {S₁ T₁ S₂ T₂} → -- This is the "if" part of being a set-theoretic model -- though it uses the definition from Frisch's thesis -- rather than from the Gentle Introduction. The difference -- being the presence of Lift, (written D_Ω in Defn 4.2 of -- https://www.cduce.org/papers/frisch_phd.pdf). (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) → (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) → Q ⊆ Comp((Language S₂) ⊗ Comp(Lift(Language T₂)))) set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , just u) Qtu (S₂t , ¬T₂u) = q (t , just u) Qtu (S₁t , ¬T₁u) where S₁t : Language S₁ t S₁t with dec-language S₁ t S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t) S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t) S₁t | Right r = r ¬T₁u : ¬(Language T₁ u) ¬T₁u T₁u with p (function-ok t u) (function-ok₂ T₁u) ¬T₁u T₁u | function-ok₁ ¬S₂t = language-comp t ¬S₂t S₂t ¬T₁u T₁u | function-ok₂ T₂u = ¬T₂u T₂u set-theoretic-if {S₁} {T₁} {S₂} {T₂} p Q q (t , nothing) Qt- (S₂t , _) = q (t , nothing) Qt- (S₁t , λ ()) where S₁t : Language S₁ t S₁t with dec-language S₁ t S₁t | Left ¬S₁t with p (function-err t) (function-err ¬S₁t) S₁t | Left ¬S₁t | function-err ¬S₂t = CONTRADICTION (language-comp t ¬S₂t S₂t) S₁t | Right r = r not-quite-set-theoretic-only-if : ∀ {S₁ T₁ S₂ T₂} → -- We don't quite have that this is a set-theoretic model -- it's only true when Language S₂ is inhabited -- in particular it's not true when S₂ is never, ∀ s₂ → Language S₂ s₂ → -- This is the "only if" part of being a set-theoretic model (∀ Q → Q ⊆ Comp((Language S₁) ⊗ Comp(Lift(Language T₁))) → Q ⊆ Comp((Language S₂) ⊗ Comp(Lift(Language T₂)))) → (Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂)) not-quite-set-theoretic-only-if {S₁} {T₁} {S₂} {T₂} s₂ S₂s₂ p = r where Q : (Tree × Maybe Tree) → Set Q (t , just u) = Either (¬Language S₁ t) (Language T₁ u) Q (t , nothing) = ¬Language S₁ t q : Q ⊆ Comp(Language S₁ ⊗ Comp(Lift(Language T₁))) q (t , just u) (Left ¬S₁t) (S₁t , ¬T₁u) = language-comp t ¬S₁t S₁t q (t , just u) (Right T₂u) (S₁t , ¬T₁u) = ¬T₁u T₂u q (t , nothing) ¬S₁t (S₁t , _) = language-comp t ¬S₁t S₁t r : Language (S₁ ⇒ T₁) ⊆ Language (S₂ ⇒ T₂) r function function = function r (function-err s) (function-err ¬S₁s) with dec-language S₂ s r (function-err s) (function-err ¬S₁s) | Left ¬S₂s = function-err ¬S₂s r (function-err s) (function-err ¬S₁s) | Right S₂s = CONTRADICTION (p Q q (s , nothing) ¬S₁s (S₂s , λ ())) r (function-ok s t) (function-ok₁ ¬S₁s) with dec-language S₂ s r (function-ok s t) (function-ok₁ ¬S₁s) | Left ¬S₂s = function-ok₁ ¬S₂s r (function-ok s t) (function-ok₁ ¬S₁s) | Right S₂s = CONTRADICTION (p Q q (s , nothing) ¬S₁s (S₂s , λ ())) r (function-ok s t) (function-ok₂ T₁t) with dec-language T₂ t r (function-ok s t) (function-ok₂ T₁t) | Left ¬T₂t with dec-language S₂ s r (function-ok s t) (function-ok₂ T₁t) | Left ¬T₂t | Left ¬S₂s = function-ok₁ ¬S₂s r (function-ok s t) (function-ok₂ T₁t) | Left ¬T₂t | Right S₂s = CONTRADICTION (p Q q (s , just t) (Right T₁t) (S₂s , language-comp t ¬T₂t)) r (function-ok s t) (function-ok₂ T₁t) | Right T₂t = function-ok₂ T₂t r (function-tgt t) (function-tgt T₁t) with dec-language T₂ t r (function-tgt t) (function-tgt T₁t) | Left ¬T₂t = CONTRADICTION (p Q q (s₂ , just t) (Right T₁t) (S₂s₂ , language-comp t ¬T₂t)) r (function-tgt t) (function-tgt T₁t) | Right T₂t = function-tgt T₂t -- A counterexample when the argument type is empty. set-theoretic-counterexample-one : (∀ Q → Q ⊆ Comp((Language never) ⊗ Comp(Lift(Language number))) → Q ⊆ Comp((Language never) ⊗ Comp(Lift(Language string)))) set-theoretic-counterexample-one Q q ((scalar s) , u) Qtu (scalar () , p) set-theoretic-counterexample-two : (never ⇒ number) ≮: (never ⇒ string) set-theoretic-counterexample-two = witness (function-tgt (scalar number)) (function-tgt (scalar number)) (function-tgt (scalar-scalar number string (λ ())))
{ "alphanum_fraction": 0.5928347168, "avg_line_length": 48.2385892116, "ext": "agda", "hexsha": "73bf0e9a9dc21aceccc0666dc248a50f7bcd2509", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sthagen/Roblox-luau", "max_forks_repo_path": "prototyping/Properties/Subtyping.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "39fbd2146a379fb0878369b48764cd7e8772c0fb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sthagen/Roblox-luau", "max_issues_repo_path": "prototyping/Properties/Subtyping.agda", "max_line_length": 313, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f1b46f4b967f11fabe666da1de0e71b225368260", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Libertus-Lab/luau", "max_stars_repo_path": "prototyping/Properties/Subtyping.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-06T08:03:00.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-06T08:03:00.000Z", "num_tokens": 9221, "size": 23251 }
open import Nat open import Prelude open import List open import core open import judgemental-erase module moveerase where -- type actions don't change the term other than moving the cursor -- around moveeraset : {t t' : τ̂} {δ : direction} → (t + move δ +> t') → (t ◆t) == (t' ◆t) moveeraset TMArrChild1 = refl moveeraset TMArrChild2 = refl moveeraset TMArrParent1 = refl moveeraset TMArrParent2 = refl moveeraset (TMArrZip1 {t2 = t2} m) = ap1 (λ x → x ==> t2) (moveeraset m) moveeraset (TMArrZip2 {t1 = t1} m) = ap1 (λ x → t1 ==> x) (moveeraset m) -- the actual movements don't change the erasure moveerase : {e e' : ê} {δ : direction} → (e + move δ +>e e') → (e ◆e) == (e' ◆e) moveerase EMAscChild1 = refl moveerase EMAscChild2 = refl moveerase EMAscParent1 = refl moveerase EMAscParent2 = refl moveerase EMLamChild1 = refl moveerase EMLamParent = refl moveerase EMPlusChild1 = refl moveerase EMPlusChild2 = refl moveerase EMPlusParent1 = refl moveerase EMPlusParent2 = refl moveerase EMApChild1 = refl moveerase EMApChild2 = refl moveerase EMApParent1 = refl moveerase EMApParent2 = refl moveerase EMNEHoleChild1 = refl moveerase EMNEHoleParent = refl -- this form is essentially the same as above, but for judgemental -- erasure, which is sometimes more convenient. moveerasee' : {e e' : ê} {e◆ : ė} {δ : direction} → erase-e e e◆ → (e + move δ +>e e') → erase-e e' e◆ moveerasee' er1 m with erase-e◆ er1 ... | refl = ◆erase-e _ _ (! (moveerase m)) moveeraset' : ∀{ t t◆ t'' δ} → erase-t t t◆ → t + move δ +> t'' → erase-t t'' t◆ moveeraset' er m with erase-t◆ er moveeraset' er m | refl = ◆erase-t _ _ (! (moveeraset m)) -- movements don't change either the type or expression under expression -- actions mutual moveerase-synth : ∀{Γ e e' e◆ t t' δ } → (er : erase-e e e◆) → Γ ⊢ e◆ => t → Γ ⊢ e => t ~ move δ ~> e' => t' → (e ◆e) == (e' ◆e) × t == t' moveerase-synth er wt (SAMove x) = moveerase x , refl moveerase-synth (EEAscL er) (SAsc x) (SAZipAsc1 x₁) = ap1 (λ q → q ·: _) (moveerase-ana er x x₁) , refl moveerase-synth er wt (SAZipAsc2 x x₁ x₂ x₃) with (moveeraset x) ... | qq = ap1 (λ q → _ ·: q) qq , eq-ert-trans qq x₂ x₁ moveerase-synth (EEApL er) (SAp wt x x₁) (SAZipApArr x₂ x₃ x₄ d x₅) with erasee-det x₃ er ... | refl with synthunicity wt x₄ ... | refl with moveerase-synth er x₄ d ... | pp , refl with matcharrunicity x x₂ ... | refl = (ap1 (λ q → q ∘ _) pp ) , refl moveerase-synth (EEApR er) (SAp wt x x₁) (SAZipApAna x₂ x₃ x₄) with synthunicity x₃ wt ... | refl with matcharrunicity x x₂ ... | refl = ap1 (λ q → _ ∘ q) (moveerase-ana er x₁ x₄ ) , refl moveerase-synth (EEPlusL er) (SPlus x x₁) (SAZipPlus1 x₂) = ap1 (λ q → q ·+ _) (moveerase-ana er x x₂) , refl moveerase-synth (EEPlusR er) (SPlus x x₁) (SAZipPlus2 x₂) = ap1 (λ q → _ ·+ q) (moveerase-ana er x₁ x₂) , refl moveerase-synth er wt (SAZipHole x x₁ d) = ap1 ⦇⌜_⌟⦈ (π1 (moveerase-synth x x₁ d)) , refl moveerase-ana : ∀{Γ e e' e◆ t δ } → (er : erase-e e e◆) → Γ ⊢ e◆ <= t → Γ ⊢ e ~ move δ ~> e' ⇐ t → (e ◆e) == (e' ◆e) moveerase-ana er wt (AASubsume x x₁ x₂ x₃) = π1 (moveerase-synth x x₁ x₂) moveerase-ana er wt (AAMove x) = moveerase x moveerase-ana (EELam er) (ASubsume () x₂) _ moveerase-ana (EELam er) (ALam x₁ x₂ wt) (AAZipLam x₃ x₄ d) with matcharrunicity x₂ x₄ ... | refl = ap1 (λ q → ·λ _ q) (moveerase-ana er wt d)
{ "alphanum_fraction": 0.5710919089, "avg_line_length": 40.6276595745, "ext": "agda", "hexsha": "a2247cf6afe14d2b7dd9975004b41084fac034da", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-07-03T03:45:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-07-03T03:45:07.000Z", "max_forks_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/agda-popl17", "max_forks_repo_path": "moveerase.agda", "max_issues_count": 37, "max_issues_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7", "max_issues_repo_issues_event_max_datetime": "2016-11-09T18:13:55.000Z", "max_issues_repo_issues_event_min_datetime": "2016-07-07T16:23:11.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/agda-popl17", "max_issues_repo_path": "moveerase.agda", "max_line_length": 114, "max_stars_count": 14, "max_stars_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/agda-popl17", "max_stars_repo_path": "moveerase.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-11T12:30:50.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-01T22:44:11.000Z", "num_tokens": 1451, "size": 3819 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Bool.Properties where open import Cubical.Core.Everything open import Cubical.Functions.Involution open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Foundations.Univalence open import Cubical.Data.Bool.Base open import Cubical.Data.Empty open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq notnot : ∀ x → not (not x) ≡ x notnot true = refl notnot false = refl notIsEquiv : isEquiv not notIsEquiv = involIsEquiv {f = not} notnot notEquiv : Bool ≃ Bool notEquiv = involEquiv {f = not} notnot notEq : Bool ≡ Bool notEq = involPath {f = not} notnot private variable ℓ : Level -- This computes to false as expected nfalse : Bool nfalse = transp (λ i → notEq i) i0 true -- Sanity check nfalsepath : nfalse ≡ false nfalsepath = refl K-Bool : (P : {b : Bool} → b ≡ b → Type ℓ) → (∀{b} → P {b} refl) → ∀{b} → (q : b ≡ b) → P q K-Bool P Pr {false} = J (λ{ false q → P q ; true _ → Lift ⊥ }) Pr K-Bool P Pr {true} = J (λ{ true q → P q ; false _ → Lift ⊥ }) Pr isSetBool : isSet Bool isSetBool a b = J (λ _ p → ∀ q → p ≡ q) (K-Bool (refl ≡_) refl) true≢false : ¬ true ≡ false true≢false p = subst (λ b → if b then Bool else ⊥) p true false≢true : ¬ false ≡ true false≢true p = subst (λ b → if b then ⊥ else Bool) p true not≢const : ∀ x → ¬ not x ≡ x not≢const false = true≢false not≢const true = false≢true zeroˡ : ∀ x → true or x ≡ true zeroˡ false = refl zeroˡ true = refl zeroʳ : ∀ x → x or true ≡ true zeroʳ false = refl zeroʳ true = refl or-identityˡ : ∀ x → false or x ≡ x or-identityˡ false = refl or-identityˡ true = refl or-identityʳ : ∀ x → x or false ≡ x or-identityʳ false = refl or-identityʳ true = refl or-comm : ∀ x y → x or y ≡ y or x or-comm false y = false or y ≡⟨ or-identityˡ y ⟩ y ≡⟨ sym (or-identityʳ y) ⟩ y or false ∎ or-comm true y = true or y ≡⟨ zeroˡ y ⟩ true ≡⟨ sym (zeroʳ y) ⟩ y or true ∎ or-assoc : ∀ x y z → x or (y or z) ≡ (x or y) or z or-assoc false y z = false or (y or z) ≡⟨ or-identityˡ _ ⟩ y or z ≡[ i ]⟨ or-identityˡ y (~ i) or z ⟩ ((false or y) or z) ∎ or-assoc true y z = true or (y or z) ≡⟨ zeroˡ _ ⟩ true ≡⟨ sym (zeroˡ _) ⟩ true or z ≡[ i ]⟨ zeroˡ y (~ i) or z ⟩ (true or y) or z ∎ or-idem : ∀ x → x or x ≡ x or-idem false = refl or-idem true = refl ⊕-identityʳ : ∀ x → x ⊕ false ≡ x ⊕-identityʳ false = refl ⊕-identityʳ true = refl ⊕-comm : ∀ x y → x ⊕ y ≡ y ⊕ x ⊕-comm false false = refl ⊕-comm false true = refl ⊕-comm true false = refl ⊕-comm true true = refl ⊕-assoc : ∀ x y z → x ⊕ (y ⊕ z) ≡ (x ⊕ y) ⊕ z ⊕-assoc false y z = refl ⊕-assoc true false z = refl ⊕-assoc true true z = notnot z not-⊕ˡ : ∀ x y → not (x ⊕ y) ≡ not x ⊕ y not-⊕ˡ false y = refl not-⊕ˡ true y = notnot y ⊕-invol : ∀ x y → x ⊕ (x ⊕ y) ≡ y ⊕-invol false x = refl ⊕-invol true x = notnot x isEquiv-⊕ : ∀ x → isEquiv (x ⊕_) isEquiv-⊕ x = involIsEquiv (⊕-invol x) ⊕-Path : ∀ x → Bool ≡ Bool ⊕-Path x = involPath {f = x ⊕_} (⊕-invol x) ⊕-Path-refl : ⊕-Path false ≡ refl ⊕-Path-refl = isInjectiveTransport refl ¬transportNot : ∀(P : Bool ≡ Bool) b → ¬ (transport P (not b) ≡ transport P b) ¬transportNot P b eq = not≢const b sub where sub : not b ≡ b sub = subst {A = Bool → Bool} (λ f → f (not b) ≡ f b) (λ i c → transport⁻Transport P c i) (cong (transport⁻ P) eq) module BoolReflection where data Table (A : Type₀) (P : Bool ≡ A) : Type₀ where inspect : (b c : A) → transport P false ≡ b → transport P true ≡ c → Table A P table : ∀ P → Table Bool P table = J Table (inspect false true refl refl) reflLemma : (P : Bool ≡ Bool) → transport P false ≡ false → transport P true ≡ true → transport P ≡ transport (⊕-Path false) reflLemma P ff tt i false = ff i reflLemma P ff tt i true = tt i notLemma : (P : Bool ≡ Bool) → transport P false ≡ true → transport P true ≡ false → transport P ≡ transport (⊕-Path true) notLemma P ft tf i false = ft i notLemma P ft tf i true = tf i categorize : ∀ P → transport P ≡ transport (⊕-Path (transport P false)) categorize P with table P categorize P | inspect false true p q = subst (λ b → transport P ≡ transport (⊕-Path b)) (sym p) (reflLemma P p q) categorize P | inspect true false p q = subst (λ b → transport P ≡ transport (⊕-Path b)) (sym p) (notLemma P p q) categorize P | inspect false false p q = rec (¬transportNot P false (q ∙ sym p)) categorize P | inspect true true p q = rec (¬transportNot P false (q ∙ sym p)) ⊕-complete : ∀ P → P ≡ ⊕-Path (transport P false) ⊕-complete P = isInjectiveTransport (categorize P) ⊕-comp : ∀ p q → ⊕-Path p ∙ ⊕-Path q ≡ ⊕-Path (q ⊕ p) ⊕-comp p q = isInjectiveTransport (λ i x → ⊕-assoc q p x i) open Iso reflectIso : Iso Bool (Bool ≡ Bool) reflectIso .fun = ⊕-Path reflectIso .inv P = transport P false reflectIso .leftInv = ⊕-identityʳ reflectIso .rightInv P = sym (⊕-complete P) reflectEquiv : Bool ≃ (Bool ≡ Bool) reflectEquiv = isoToEquiv reflectIso
{ "alphanum_fraction": 0.6069082035, "avg_line_length": 27.1785714286, "ext": "agda", "hexsha": "4d07834fa67100e0a6d70e855cb2d695678e6f4b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Bool/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Bool/Properties.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Bool/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2067, "size": 5327 }
-- There were some serious bugs in the termination checker -- which were hidden by the fact that it didn't go inside -- records. They should be fixed now. module Issue222 where record R (A : Set) : Set where module M (a : A) where -- Bug.agda:4,17-18 -- Panic: unbound variable A -- when checking that the expression A has type _5
{ "alphanum_fraction": 0.7172619048, "avg_line_length": 25.8461538462, "ext": "agda", "hexsha": "98fb936afb38a147121046d829535e8051a6f375", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue222.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue222.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue222.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 92, "size": 336 }
-- {-# OPTIONS -v scope.decl.trace:50 #-} data D : Set where D : Set
{ "alphanum_fraction": 0.5857142857, "avg_line_length": 14, "ext": "agda", "hexsha": "feedb385099250dd7a7f1532f78969770157864a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3448.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3448.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3448.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 23, "size": 70 }
-- A Simple selection of modules with some renamings to -- make my (your) life easier when starting a new agda module. -- -- This includes standard functionality to work on: -- 1. Functions, -- 2. Naturals, -- 3. Products and Coproducts (projections and injections are p1, p2, i1, i2). -- 4. Finite Types (zero and suc are fz and fs) -- 5. Lists -- 6. Booleans and PropositionalEquality -- 7. Decidable Predicates -- module Prelude where open import Data.Unit.NonEta using (Unit; unit) public open import Data.Empty using (⊥; ⊥-elim) public open import Function using (_∘_; _$_; flip; id; const; _on_) public open import Data.Nat using (ℕ; suc; zero; _+_; _*_; _∸_) renaming (_≟_ to _≟-ℕ_; _≤?_ to _≤?-ℕ_) public open import Data.Fin using (Fin; fromℕ; fromℕ≤; toℕ) renaming (zero to fz; suc to fs) public open import Data.Fin.Properties using () renaming (_≟_ to _≟-Fin_) public open import Data.List using (List; _∷_; []; map; _++_; zip; filter; all; any; concat; foldr; reverse; length) public open import Data.Product using (∃; Σ; _×_; _,_; uncurry; curry) renaming (proj₁ to p1; proj₂ to p2 ; <_,_> to split) public open import Data.Sum using (_⊎_; [_,_]′) renaming (inj₁ to i1; inj₂ to i2 ; [_,_] to either) public open import Data.Bool using (Bool; true; false; if_then_else_; not) renaming (_∧_ to _and_; _∨_ to _or_) public open import Relation.Nullary using (Dec; yes; no; ¬_) public open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst) public open import Data.Maybe using (Maybe; just; nothing) renaming (maybe′ to maybe) public dec-elim : ∀{a b}{A : Set a}{B : Set b} → (A → B) → (¬ A → B) → Dec A → B dec-elim f g (yes p) = f p dec-elim f g (no p) = g p dec2set : ∀{a}{A : Set a} → Dec A → Set dec2set (yes _) = Unit dec2set (no _) = ⊥ isTrue : ∀{a}{A : Set a} → Dec A → Bool isTrue (yes _) = true isTrue _ = false takeWhile : ∀{a}{A : Set a} → (A → Bool) → List A → List A takeWhile _ [] = [] takeWhile f (x ∷ xs) with f x ...| true = x ∷ takeWhile f xs ...| _ = takeWhile f xs -- Some minor boilerplate to solve equality problem... record Eq (A : Set) : Set where constructor eq field cmp : (x y : A) → Dec (x ≡ y) open Eq {{...}} record Enum (A : Set) : Set where constructor enum field toEnum : A → Maybe ℕ fromEnum : ℕ → Maybe A open Enum {{...}} instance eq-ℕ : Eq ℕ eq-ℕ = eq _≟-ℕ_ enum-ℕ : Enum ℕ enum-ℕ = enum just just eq-Fin : ∀{n} → Eq (Fin n) eq-Fin = eq _≟-Fin_ enum-Fin : ∀{n} → Enum (Fin n) enum-Fin {n} = enum (λ x → just (toℕ x)) fromℕ-partial where fromℕ-partial : ℕ → Maybe (Fin n) fromℕ-partial m with suc m ≤?-ℕ n ...| yes prf = just (fromℕ≤ {m} {n} prf) ...| no _ = nothing eq-⊥ : Eq ⊥ eq-⊥ = eq (λ x → ⊥-elim x) enum-⊥ : Enum ⊥ enum-⊥ = enum ⊥-elim (const nothing) eq-Maybe : ∀{A} ⦃ eqA : Eq A ⦄ → Eq (Maybe A) eq-Maybe = eq decide where just-inj : ∀{a}{A : Set a}{x y : A} → _≡_ {a} {Maybe A} (just x) (just y) → x ≡ y just-inj refl = refl decide : {A : Set} ⦃ eqA : Eq A ⦄ → (x y : Maybe A) → Dec (x ≡ y) decide nothing nothing = yes refl decide nothing (just _) = no (λ ()) decide (just _) nothing = no (λ ()) decide ⦃ eq f ⦄ (just x) (just y) with f x y ...| yes x≡y = yes (cong just x≡y) ...| no x≢y = no (x≢y ∘ just-inj) enum-Maybe : ∀{A} ⦃ enA : Enum A ⦄ → Enum (Maybe A) enum-Maybe ⦃ enum aℕ ℕa ⦄ = enum (maybe aℕ nothing) (just ∘ ℕa) eq-List : {A : Set}{{eq : Eq A}} → Eq (List A) eq-List {A} {{eq _≟_}} = eq decide where open import Data.List.Properties renaming (∷-injective to ∷-inj) decide : (a b : List A) → Dec (a ≡ b) decide [] (_ ∷ _) = no (λ ()) decide (_ ∷ _) [] = no (λ ()) decide [] [] = yes refl decide (a ∷ as) (b ∷ bs) with a ≟ b | decide as bs ...| yes a≡b | yes as≡bs rewrite a≡b = yes (cong (_∷_ b) as≡bs) ...| no a≢b | yes as≡bs = no (a≢b ∘ p1 ∘ ∷-inj) ...| yes a≡b | no as≢bs = no (as≢bs ∘ p2 ∘ ∷-inj) ...| no a≢b | no as≢bs = no (a≢b ∘ p1 ∘ ∷-inj)
{ "alphanum_fraction": 0.5201393425, "avg_line_length": 26.7034883721, "ext": "agda", "hexsha": "a526f6fea9ee6b2f4a41b1841230b504d62bad06", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "VictorCMiraldo/agda-rw", "max_forks_repo_path": "Prelude.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "VictorCMiraldo/agda-rw", "max_issues_repo_path": "Prelude.agda", "max_line_length": 79, "max_stars_count": 16, "max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "VictorCMiraldo/agda-rw", "max_stars_repo_path": "Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z", "max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z", "num_tokens": 1698, "size": 4593 }
module Control.Monad.Free.Quotiented where open import Prelude open import Data.List hiding (map) open import Data.Fin.Sigma open import Algebra postulate uip : isSet A -------------------------------------------------------------------------------- -- Some functors -------------------------------------------------------------------------------- private variable F : Type a → Type a G : Type b → Type b -------------------------------------------------------------------------------- -- A free monad without any quotients: this can be treated as the "syntax tree" -- for the later proper free monad. -------------------------------------------------------------------------------- data Syntax (F : Type a → Type a) (A : Type a) : Type (ℓsuc a) where lift : (Fx : F A) → Syntax F A return : (x : A) → Syntax F A _>>=_ : (xs : Syntax F B) → (k : B → Syntax F A) → Syntax F A -- ^ -- This needs to be a set. So apparently, everything does module RawMonadSyntax where _>>_ : Syntax F A → Syntax F B → Syntax F B xs >> ys = xs >>= const ys -------------------------------------------------------------------------------- -- Quotients for functors -------------------------------------------------------------------------------- -- All of these quotients are defined on syntax trees, since otherwise we get a -- cyclic dependency. record Equation (Σ : Type a → Type a) (ν : Type a) : Type (ℓsuc a) where constructor _⊜_ field lhs rhs : Syntax Σ ν open Equation public record Law (F : Type a → Type a) : Type (ℓsuc a) where constructor _↦_⦂_ field Γ : Type a ν : Type a eqn : Γ → Equation F ν open Law public Theory : (Type a → Type a) → Type (ℓsuc a) Theory Σ = List (Law Σ) private variable 𝒯 : Theory F Quotiented : Theory F → (∀ {ν} → Syntax F ν → Syntax F ν → Type b) → Type _ Quotiented 𝒯 R = (i : Fin (length 𝒯)) → -- An index into the list of equations let Γ ↦ ν ⦂ 𝓉 = 𝒯 !! i in -- one of the equations in the list (γ : Γ) → -- The environment, basically the needed things for the equation R (lhs (𝓉 γ)) (rhs (𝓉 γ)) -------------------------------------------------------------------------------- -- The free monad, quotiented over a theory -------------------------------------------------------------------------------- mutual data Free (F : Type a → Type a) (𝒯 : Theory F) : Type a → Type (ℓsuc a) where -- The first three constructors are the same as the syntax type lift : (Fx : F A) → Free F 𝒯 A return : (x : A) → Free F 𝒯 A _>>=_ : (xs : Free F 𝒯 B) → (k : B → Free F 𝒯 A) → Free F 𝒯 A -- The quotients for the monad laws >>=-idˡ : (f : B → Free F 𝒯 A) (x : B) → (return x >>= f) ≡ f x >>=-idʳ : (x : Free F 𝒯 A) → (x >>= return) ≡ x >>=-assoc : (xs : Free F 𝒯 C) (f : C → Free F 𝒯 B) (g : B → Free F 𝒯 A) → ((xs >>= f) >>= g) ≡ (xs >>= (λ x → f x >>= g)) -- This is the quotient for the theory. quot : Quotiented 𝒯 (λ lhs rhs → ∣ lhs ∣↑ ≡ ∣ rhs ∣↑) -- This converts from the unquotiented syntax to the free type. -- You cannot go the other way! -- The fact that we're doing all this conversion is what makes things trickier -- later (and also that this is interleaved with the data definition). ∣_∣↑ : Syntax F A → Free F 𝒯 A ∣ lift x ∣↑ = lift x ∣ return x ∣↑ = return x ∣ xs >>= k ∣↑ = ∣ xs ∣↑ >>= (∣_∣↑ ∘ k) module FreeMonadSyntax where _>>_ : Free F 𝒯 A → Free F 𝒯 B → Free F 𝒯 B xs >> ys = xs >>= const ys -------------------------------------------------------------------------------- -- Recursion Schemes -------------------------------------------------------------------------------- private variable p : Level P : ∀ T → Free F 𝒯 T → Type p -- The functor for a free monad (not really! This is a "raw" free functor) data FreeF (F : Type a → Type a) (𝒯 : Theory F) (P : ∀ T → Free F 𝒯 T → Type b) (A : Type a) : Type (ℓsuc a ℓ⊔ b) where liftF : (Fx : F A) → FreeF F 𝒯 P A returnF : (x : A) → FreeF F 𝒯 P A bindF : (xs : Free F 𝒯 B) (P⟨xs⟩ : P B xs) (k : B → Free F 𝒯 A) (P⟨∘k⟩ : ∀ x → P A (k x)) → FreeF F 𝒯 P A -- There can also be a quotiented free functor (I think) -- The "in" function ⟪_⟫ : FreeF F 𝒯 P A → Free F 𝒯 A ⟪ liftF x ⟫ = lift x ⟪ returnF x ⟫ = return x ⟪ bindF xs P⟨xs⟩ k P⟨∘k⟩ ⟫ = xs >>= k -- An algebra Alg : (F : Type a → Type a) → (𝒯 : Theory F) → (P : ∀ T → Free F 𝒯 T → Type b) → Type _ Alg F 𝒯 P = ∀ {A} → (xs : FreeF F 𝒯 P A) → P A ⟪ xs ⟫ -- You can run a non-coherent algebra on a syntax tree ⟦_⟧↑ : Alg F 𝒯 P → (xs : Syntax F A) → P A ∣ xs ∣↑ ⟦ alg ⟧↑ (lift x) = alg (liftF x) ⟦ alg ⟧↑ (return x) = alg (returnF x) ⟦ alg ⟧↑ (xs >>= k) = alg (bindF ∣ xs ∣↑ (⟦ alg ⟧↑ xs) (∣_∣↑ ∘ k) (⟦ alg ⟧↑ ∘ k)) -- Coherency for an algebra: an algebra that's coherent can be run on a proper -- Free monad. record Coherent {a p} {F : Type a → Type a} {𝒯 : Theory F} {P : ∀ T → Free F 𝒯 T → Type p} (ψ : Alg F 𝒯 P) : Type (ℓsuc a ℓ⊔ p) where field c->>=idˡ : ∀ (f : A → Free F 𝒯 B) Pf x → ψ (bindF (return x) (ψ (returnF x)) f Pf) ≡[ i ≔ P _ (>>=-idˡ f x i) ]≡ Pf x c->>=idʳ : ∀ (x : Free F 𝒯 A) Px → ψ (bindF x Px return (λ y → ψ (returnF y))) ≡[ i ≔ P A (>>=-idʳ x i) ]≡ Px c->>=assoc : ∀ (xs : Free F 𝒯 C) Pxs (f : C → Free F 𝒯 B) Pf (g : B → Free F 𝒯 A) Pg → ψ (bindF (xs >>= f) (ψ (bindF xs Pxs f Pf)) g Pg) ≡[ i ≔ P A (>>=-assoc xs f g i) ]≡ ψ (bindF xs Pxs (λ x → f x >>= g) λ x → ψ (bindF (f x) (Pf x) g Pg)) c-quot : (i : Fin (length 𝒯)) → let Γ ↦ ν ⦂ 𝓉 = 𝒯 !! i in (γ : Γ) → ⟦ ψ ⟧↑ (lhs (𝓉 γ)) ≡[ j ≔ P ν (quot i γ j) ]≡ ⟦ ψ ⟧↑ (rhs (𝓉 γ)) open Coherent public -- A full dependent algebra Ψ : (F : Type a → Type a) (𝒯 : Theory F) (P : ∀ T → Free F 𝒯 T → Type p) → Type _ Ψ F 𝒯 P = Σ (Alg F 𝒯 P) Coherent Ψ-syntax : (F : Type a → Type a) (𝒯 : Theory F) (P : ∀ {T} → Free F 𝒯 T → Type p) → Type _ Ψ-syntax F 𝒯 P = Ψ F 𝒯 (λ T → P {T}) syntax Ψ-syntax F 𝒯 (λ xs → P) = Ψ[ xs ⦂ F ⋆ * / 𝒯 ] ⇒ P -- Non-dependent algebras Φ : (F : Type a → Type a) → (𝒯 : Theory F) → (Type a → Type b) → Type _ Φ A 𝒯 B = Ψ A 𝒯 (λ T _ → B T) syntax Φ F 𝒯 (λ A → B) = Φ[ F ⋆ A / 𝒯 ] ⇒ B -- Running the algebra module _ (ψ : Ψ F 𝒯 P) where ⟦_⟧ : (xs : Free F 𝒯 A) → P A xs -- We need the terminating pragma here because Agda can't see that ∣_∣↑ makes -- something the same size (I think) {-# TERMINATING #-} undecorate : (xs : Syntax F A) → ⟦ fst ψ ⟧↑ xs ≡ ⟦ ∣ xs ∣↑ ⟧ undecorate (lift x) i = fst ψ (liftF x) undecorate (return x) i = fst ψ (returnF x) undecorate (xs >>= k) i = fst ψ (bindF ∣ xs ∣↑ (undecorate xs i) (λ x → ∣ k x ∣↑) (λ x → undecorate (k x) i)) ⟦ lift x ⟧ = ψ .fst (liftF x) ⟦ return x ⟧ = ψ .fst (returnF x) ⟦ xs >>= k ⟧ = ψ .fst (bindF xs ⟦ xs ⟧ k (⟦_⟧ ∘ k)) ⟦ >>=-idˡ f k i ⟧ = ψ .snd .c->>=idˡ f (⟦_⟧ ∘ f) k i ⟦ >>=-idʳ xs i ⟧ = ψ .snd .c->>=idʳ xs ⟦ xs ⟧ i ⟦ >>=-assoc xs f g i ⟧ = ψ .snd .c->>=assoc xs ⟦ xs ⟧ f (⟦_⟧ ∘ f) g (⟦_⟧ ∘ g) i ⟦ quot p e i ⟧ = subst₂ (PathP (λ j → P _ (quot p e j))) (undecorate _) (undecorate _) (ψ .snd .c-quot p e) i -- For a proposition, use this to prove the algebra is coherent prop-coh : {alg : Alg F 𝒯 P} → (∀ {T} → ∀ xs → isProp (P T xs)) → Coherent alg prop-coh {P = P} P-isProp .c->>=idˡ f Pf x = toPathP (P-isProp (f x) (transp (λ i → P _ (>>=-idˡ f x i)) i0 _) _) prop-coh {P = P} P-isProp .c->>=idʳ x Px = toPathP (P-isProp x (transp (λ i → P _ (>>=-idʳ x i)) i0 _) _) prop-coh {P = P} P-isProp .c->>=assoc xs Pxs f Pf g Pg = toPathP (P-isProp (xs >>= (λ x → f x >>= g)) (transp (λ i → P _ (>>=-assoc xs f g i)) i0 _) _) prop-coh {𝒯 = 𝒯} {P = P} P-isProp .c-quot i e = toPathP (P-isProp (∣ (𝒯 !! i) .eqn e .rhs ∣↑) (transp (λ j → P _ (quot i e j)) i0 _) _) -- A more conventional catamorphism module _ {ℓ} (fun : Functor ℓ ℓ) where open Functor fun using (map; 𝐹) module _ {B : Type ℓ} {𝒯 : Theory 𝐹} where module _ (ϕ : 𝐹 B → B) where ϕ₁ : Alg 𝐹 𝒯 λ T _ → (T → B) → B ϕ₁ (liftF x) h = ϕ (map h x) ϕ₁ (returnF x) h = h x ϕ₁ (bindF _ P⟨xs⟩ _ P⟨∘k⟩) h = P⟨xs⟩ (flip P⟨∘k⟩ h) InTheory : Type _ InTheory = Quotiented 𝒯 λ lhs rhs → ∀ f → ⟦ ϕ₁ ⟧↑ lhs f ≡ ⟦ ϕ₁ ⟧↑ rhs f module _ (ϕ-coh : InTheory) where cata-coh : Coherent ϕ₁ cata-coh .c->>=idˡ f Pf x = refl cata-coh .c->>=idʳ x Px = refl cata-coh .c->>=assoc xs Pxs f Pf g Pg = refl cata-coh .c-quot i e j f = ϕ-coh i e f j cata-alg : Φ[ 𝐹 ⋆ A / 𝒯 ] ⇒ ((A → B) → B) cata-alg = ϕ₁ , cata-coh cata : (A → B) → (ϕ : 𝐹 B → B) → InTheory ϕ → Free 𝐹 𝒯 A → B cata h ϕ coh xs = ⟦ cata-alg ϕ coh ⟧ xs h
{ "alphanum_fraction": 0.4691095967, "avg_line_length": 35.9477911647, "ext": "agda", "hexsha": "2b09394c4ffb140e819cd1a9f19a254c726902c5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Control/Monad/Free/Quotiented.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Control/Monad/Free/Quotiented.agda", "max_line_length": 96, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Control/Monad/Free/Quotiented.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 3470, "size": 8951 }
------------------------------------------------------------------------ -- Container combinators ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Indexed-container.Combinators where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (id; const) renaming (_∘_ to _⊚_) open import Prelude.Size open import Bijection equality-with-J as Bijection using (_↔_) import Equivalence equality-with-J as Eq open import Function-universe equality-with-J as F hiding (id; _∘_) open import Indexed-container open import Relation -- An identity combinator. -- -- Taken from "Indexed containers" by Altenkirch, Ghani, Hancock, -- McBride and Morris (JFP, 2015). id : ∀ {i} {I : Type i} → Container I I id = (λ _ → ↑ _ ⊤) ◁ λ {i} _ i′ → i ≡ i′ -- An unfolding lemma for ⟦ id ⟧. ⟦id⟧↔ : ∀ {k ℓ x} {I : Type ℓ} {X : Rel x I} {i} → Extensionality? k ℓ (ℓ ⊔ x) → ⟦ id ⟧ X i ↝[ k ] X i ⟦id⟧↔ {X = X} {i} ext = ↑ _ ⊤ × (λ i′ → i ≡ i′) ⊆ X ↔⟨ drop-⊤-left-× (λ _ → Bijection.↑↔) ⟩ (λ i′ → i ≡ i′) ⊆ X ↔⟨⟩ (∀ {i′} → i ≡ i′ → X i′) ↔⟨ Bijection.implicit-Π↔Π ⟩ (∀ i′ → i ≡ i′ → X i′) ↝⟨ inverse-ext? (λ ext → ∀-intro _ ext) ext ⟩□ X i □ -- An unfolding lemma for ⟦ id ⟧₂. ⟦id⟧₂↔ : ∀ {k ℓ x} {I : Type ℓ} {X : Rel x I} → Extensionality? k ℓ ℓ → ∀ (R : ∀ {i} → Rel₂ ℓ (X i)) {i} → (x y : ⟦ id ⟧ X i) → ⟦ id ⟧₂ R (x , y) ↝[ k ] proj₁ x ≡ proj₁ y × R (proj₂ x refl , proj₂ y refl) ⟦id⟧₂↔ ext R {i} x@(s , f) y@(t , g) = ⟦ id ⟧₂ R (x , y) ↔⟨⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : i ≡ o) → R (f p , g (subst (λ _ → i ≡ o) eq p))) ↔⟨ ∃-cong (λ _ → Bijection.implicit-Π↔Π) ⟩ (∃ λ (eq : s ≡ t) → ∀ o (p : i ≡ o) → R (f p , g (subst (λ _ → i ≡ o) eq p))) ↝⟨ ∃-cong (λ _ → inverse-ext? (λ ext → ∀-intro _ ext) ext) ⟩ (∃ λ (eq : s ≡ t) → R (f refl , g (subst (λ _ → i ≡ i) eq refl))) ↝⟨ ∃-cong (λ eq → ≡⇒↝ _ (cong (λ eq → R (f refl , g eq)) (subst-const eq))) ⟩ s ≡ t × R (f refl , g refl) □ -- A second unfolding lemma for ⟦ id ⟧₂. ⟦id⟧₂≡↔ : ∀ {ℓ} {I : Type ℓ} {X : Rel ℓ I} {i} → Extensionality ℓ ℓ → (x y : ⟦ id ⟧ X i) → ⟦ id ⟧₂ (uncurry _≡_) (x , y) ↔ x ≡ y ⟦id⟧₂≡↔ ext x@(s , f) y@(t , g) = ⟦ id ⟧₂ (uncurry _≡_) (x , y) ↝⟨ ⟦id⟧₂↔ ext (uncurry _≡_) x y ⟩ s ≡ t × f refl ≡ g refl ↔⟨ ∃-cong (λ _ → Eq.≃-≡ (Eq.↔⇒≃ $ inverse $ ∀-intro _ ext)) ⟩ s ≡ t × (λ _ → f) ≡ (λ _ → g) ↔⟨ ∃-cong (λ _ → Eq.≃-≡ (Eq.↔⇒≃ Bijection.implicit-Π↔Π)) ⟩ s ≡ t × (λ {_} → f) ≡ g ↝⟨ ≡×≡↔≡ ⟩ x ≡ y □ -- A constant combinator. const : ∀ {i} {I : Type i} → Rel i I → Container I I const X = X ◁ λ _ _ → ⊥ -- An unfolding lemma for ⟦ const ⟧. ⟦const⟧↔ : ∀ {k ℓ y} {I : Type ℓ} X {Y : Rel y I} {i} → Extensionality? k ℓ (ℓ ⊔ y) → ⟦ const X ⟧ Y i ↝[ k ] X i ⟦const⟧↔ {k} {ℓ} {I = I} X {Y} {i} ext = X i × (∀ {i} → ⊥ → Y i) ↔⟨ ∃-cong (λ _ → Bijection.implicit-Π↔Π) ⟩ X i × (∀ i → ⊥ → Y i) ↝⟨ ∃-cong (λ _ → ∀-cong ext λ _ → Π⊥↔⊤ (lower-extensionality? k lzero ℓ ext)) ⟩ X i × (I → ⊤) ↔⟨ drop-⊤-right (λ _ → →-right-zero) ⟩ X i □ -- An unfolding lemma for ⟦ const ⟧₂. ⟦const⟧₂↔ : ∀ {k ℓ y} {I : Type ℓ} {X} {Y : Rel y I} → Extensionality? k ℓ ℓ → ∀ (R : ∀ {i} → Rel₂ ℓ (Y i)) {i} (x y : ⟦ const X ⟧ Y i) → ⟦ const X ⟧₂ R (x , y) ↝[ k ] proj₁ x ≡ proj₁ y ⟦const⟧₂↔ {X = X} ext R x@(s , f) y@(t , g) = ⟦ const X ⟧₂ R (x , y) ↔⟨⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : ⊥) → R (f p , g (subst (λ _ → ⊥) eq p))) ↔⟨ ∃-cong (λ _ → Bijection.implicit-Π↔Π) ⟩ (∃ λ (eq : s ≡ t) → ∀ o (p : ⊥) → R (f p , g (subst (λ _ → ⊥) eq p))) ↝⟨ ∃-cong (λ _ → ∀-cong ext λ _ → Π⊥↔⊤ ext) ⟩ (∃ λ (eq : s ≡ t) → ∀ o → ⊤) ↔⟨ drop-⊤-right (λ _ → →-right-zero) ⟩ s ≡ t □ where open Container -- A composition combinator. infixr 9 _∘_ _∘_ : ∀ {ℓ} {I J K : Type ℓ} → Container J K → Container I J → Container I K C ∘ D = ⟦ C ⟧ (Shape D) ◁ (λ { (s , f) i → ∃ λ j → ∃ λ (p : Position C s j) → Position D (f p) i }) where open Container -- An unfolding lemma for ⟦ C ∘ D ⟧. ⟦∘⟧↔ : ∀ {fk ℓ x} {I J K : Type ℓ} {X : Rel x I} → Extensionality? fk ℓ (ℓ ⊔ x) → ∀ (C : Container J K) {D : Container I J} {k} → ⟦ C ∘ D ⟧ X k ↝[ fk ] ⟦ C ⟧ (⟦ D ⟧ X) k ⟦∘⟧↔ {X = X} ext C {D} {k} = ⟦ C ∘ D ⟧ X k ↔⟨⟩ (∃ λ { (s , f) → ∀ {i} → (∃ λ j → ∃ λ (p : Position C s j) → Position D (f p) i) → X i }) ↔⟨ inverse Σ-assoc ⟩ (∃ λ s → ∃ λ (f : Position C s ⊆ Shape D) → ∀ {i} → (∃ λ j → ∃ λ (p : Position C s j) → Position D (f p) i) → X i) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → implicit-∀-cong ext $ from-isomorphism currying) ⟩ (∃ λ s → ∃ λ (f : Position C s ⊆ Shape D) → ∀ {i} j → (∃ λ (p : Position C s j) → Position D (f p) i) → X i) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → Bijection.implicit-Π↔Π) ⟩ (∃ λ s → ∃ λ (f : Position C s ⊆ Shape D) → ∀ i j → (∃ λ (p : Position C s j) → Position D (f p) i) → X i) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → Π-comm) ⟩ (∃ λ s → ∃ λ (f : Position C s ⊆ Shape D) → ∀ j i → (∃ λ (p : Position C s j) → Position D (f p) i) → X i) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → inverse Bijection.implicit-Π↔Π) ⟩ (∃ λ s → ∃ λ (f : Position C s ⊆ Shape D) → ∀ {j} i → (∃ λ (p : Position C s j) → Position D (f p) i) → X i) ↔⟨ (∃-cong λ _ → inverse implicit-ΠΣ-comm) ⟩ (∃ λ s → ∀ {j} → ∃ λ (f : Position C s j → Shape D j) → ∀ i → (∃ λ (p : Position C s j) → Position D (f p) i) → X i) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ ∃-cong λ _ → ∀-cong ext λ _ → from-isomorphism currying) ⟩ (∃ λ s → ∀ {j} → ∃ λ (f : Position C s j → Shape D j) → ∀ i → (p : Position C s j) → Position D (f p) i → X i) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ ∃-cong λ _ → from-isomorphism Π-comm) ⟩ (∃ λ s → ∀ {j} → ∃ λ (f : Position C s j → Shape D j) → (p : Position C s j) → ∀ i → Position D (f p) i → X i) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ from-isomorphism $ inverse ΠΣ-comm) ⟩ (∃ λ s → ∀ {j} → Position C s j → ∃ λ (s′ : Shape D j) → ∀ i → Position D s′ i → X i) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ ∀-cong ext λ _ → ∃-cong λ _ → from-isomorphism $ inverse Bijection.implicit-Π↔Π) ⟩ (∃ λ s → ∀ {j} → Position C s j → ∃ λ (s′ : Shape D j) → Position D s′ ⊆ X) ↔⟨⟩ ⟦ C ⟧ (⟦ D ⟧ X) k □ where open Container -- TODO: Define ⟦∘⟧₂↔ (an unfolding lemma for ⟦ C ∘ D ⟧₂). -- A reindexing combinator. -- -- Taken from "Indexed containers". reindex₂ : ∀ {ℓ} {I O₁ O₂ : Type ℓ} → (O₂ → O₁) → Container I O₁ → Container I O₂ reindex₂ f (S ◁ P) = (S ⊚ f) ◁ P -- An unfolding lemma for ⟦ reindex₂ f C ⟧. ⟦reindex₂⟧↔ : ∀ {ℓ x} {I O₁ O₂ : Type ℓ} (f : O₂ → O₁) (C : Container I O₁) {X : Rel x I} {o} → ⟦ reindex₂ f C ⟧ X o ↔ ⟦ C ⟧ X (f o) ⟦reindex₂⟧↔ f C = Bijection.id -- An unfolding lemma for ⟦ reindex₂ f C ⟧₂. ⟦reindex₂⟧₂↔ : ∀ {ℓ x} {I O : Type ℓ} {X : Rel x I} (C : Container I O) (f : I → O) (R : ∀ {i} → Rel₂ ℓ (X i)) {i} (x y : ⟦ reindex₂ f C ⟧ X i) → ⟦ reindex₂ f C ⟧₂ R (x , y) ↔ ⟦ C ⟧₂ R (x , y) ⟦reindex₂⟧₂↔ C f R x@(s , g) y@(t , h) = ⟦ reindex₂ f C ⟧₂ R (x , y) ↔⟨⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : Position (reindex₂ f C) s o) → R (g p , h (subst (λ s → Position (reindex₂ f C) s o) eq p))) ↔⟨⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : Position C s o) → R (g p , h (subst (λ s → Position C s o) eq p))) ↔⟨⟩ ⟦ C ⟧₂ R (x , y) □ where open Container -- Another reindexing combinator. reindex₁ : ∀ {ℓ} {I₁ I₂ O : Type ℓ} → (I₁ → I₂) → Container I₁ O → Container I₂ O reindex₁ f C = Shape C ◁ (λ s i → ∃ λ i′ → f i′ ≡ i × Position C s i′) where open Container -- An unfolding lemma for ⟦ reindex₁ f C ⟧. ⟦reindex₁⟧↔ : ∀ {k ℓ x} {I₁ I₂ O : Type ℓ} {f : I₁ → I₂} → Extensionality? k ℓ (ℓ ⊔ x) → ∀ (C : Container I₁ O) {X : Rel x I₂} {o} → ⟦ reindex₁ f C ⟧ X o ↝[ k ] ⟦ C ⟧ (X ⊚ f) o ⟦reindex₁⟧↔ {f = f} ext C {X} {o} = ⟦ reindex₁ f C ⟧ X o ↔⟨ (∃-cong λ _ → Bijection.implicit-Π↔Π) ⟩ (∃ λ (s : Shape C o) → ∀ i → (∃ λ i′ → f i′ ≡ i × Position C s i′) → X i) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → from-isomorphism currying) ⟩ (∃ λ (s : Shape C o) → ∀ i i′ → f i′ ≡ i × Position C s i′ → X i) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → from-isomorphism currying) ⟩ (∃ λ (s : Shape C o) → ∀ i i′ → f i′ ≡ i → Position C s i′ → X i) ↔⟨ (∃-cong λ _ → Π-comm) ⟩ (∃ λ (s : Shape C o) → ∀ i i′ → f i ≡ i′ → Position C s i → X i′) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → inverse-ext? (λ ext → ∀-intro _ ext) ext) ⟩ (∃ λ (s : Shape C o) → ∀ i → Position C s i → X (f i)) ↔⟨ (∃-cong λ _ → inverse Bijection.implicit-Π↔Π) ⟩ ⟦ C ⟧ (X ⊚ f) o □ where open Container -- An unfolding lemma for ⟦ reindex₁ f C ⟧₂. ⟦reindex₁⟧₂↔ : ∀ {k ℓ x} {I O : Type ℓ} {X : Rel x O} → Extensionality? k ℓ ℓ → ∀ (C : Container I O) (f : I → O) (R : ∀ {o} → Rel₂ ℓ (X o)) {o} (x y : ⟦ reindex₁ f C ⟧ X o) → ⟦ reindex₁ f C ⟧₂ R (x , y) ↝[ k ] ⟦ C ⟧₂ R ( (proj₁ x , λ p → proj₂ x (_ , refl , p)) , (proj₁ y , λ p → proj₂ y (_ , refl , p)) ) ⟦reindex₁⟧₂↔ ext C f R x@(s , g) y@(t , h) = ⟦ reindex₁ f C ⟧₂ R (x , y) ↔⟨⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : ∃ λ o′ → f o′ ≡ o × Position C s o′) → R (g p , h (subst (λ s → ∃ λ o′ → f o′ ≡ o × Position C s o′) eq p))) ↝⟨ (∃-cong λ eq → implicit-∀-cong ext $ ∀-cong ext λ _ → ≡⇒↝ _ $ cong (R ⊚ (g _ ,_) ⊚ h) $ lemma eq) ⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : ∃ λ o′ → f o′ ≡ o × Position C s o′) → R ( g p , h ( proj₁ p , proj₁ (proj₂ p) , subst (λ s → Position C s (proj₁ p)) eq (proj₂ (proj₂ p)) ) )) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ from-isomorphism currying) ⟩ (∃ λ (eq : s ≡ t) → ∀ {o} o′ (p : f o′ ≡ o × Position C s o′) → R ( g (o′ , p) , h (o′ , proj₁ p , subst (λ s → Position C s o′) eq (proj₂ p)) )) ↝⟨ (∃-cong λ _ → implicit-∀-cong ext $ ∀-cong ext λ _ → from-isomorphism currying) ⟩ (∃ λ (eq : s ≡ t) → ∀ {o} o′ (≡o : f o′ ≡ o) (p : Position C s o′) → R ( g (o′ , ≡o , p) , h (o′ , ≡o , subst (λ s → Position C s o′) eq p) )) ↔⟨ (∃-cong λ _ → Bijection.implicit-Π↔Π) ⟩ (∃ λ (eq : s ≡ t) → ∀ o o′ (≡o : f o′ ≡ o) (p : Position C s o′) → R ( g (o′ , ≡o , p) , h (o′ , ≡o , subst (λ s → Position C s o′) eq p) )) ↔⟨ (∃-cong λ _ → Π-comm) ⟩ (∃ λ (eq : s ≡ t) → ∀ o o′ (≡o′ : f o ≡ o′) (p : Position C s o) → R ( g (o , ≡o′ , p) , h (o , ≡o′ , subst (λ s → Position C s o) eq p) )) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → inverse-ext? (λ ext → ∀-intro _ ext) ext) ⟩ (∃ λ (eq : s ≡ t) → ∀ o (p : Position C s o) → R ( g (o , refl , p) , h (o , refl , subst (λ s → Position C s o) eq p) )) ↔⟨ (∃-cong λ _ → inverse Bijection.implicit-Π↔Π) ⟩ (∃ λ (eq : s ≡ t) → ∀ {o} (p : Position C s o) → R ( g (o , refl , p) , h (o , refl , subst (λ s → Position C s o) eq p) )) ↔⟨⟩ ⟦ C ⟧₂ R ((s , λ p → g (_ , refl , p)) , (t , λ p → h (_ , refl , p))) □ where open Container lemma = λ (eq : s ≡ t) {o} {p : ∃ λ o′ → f o′ ≡ o × Position C s o′} → subst (λ s → ∃ λ o′ → f o′ ≡ o × Position C s o′) eq p ≡⟨ push-subst-pair′ {y≡z = eq} _ _ (subst-const eq) ⟩ ( proj₁ p , subst (λ { (s , o′) → f o′ ≡ o × Position C s o′ }) (Σ-≡,≡→≡ eq (subst-const eq)) (proj₂ p) ) ≡⟨⟩ ( proj₁ p , subst (λ { (s , o′) → f o′ ≡ o × Position C s o′ }) (Σ-≡,≡→≡ eq (trans (subst-const eq) refl)) (proj₂ p) ) ≡⟨ cong (λ eq → _ , subst (λ { (s , o′) → f o′ ≡ o × Position C s o′ }) eq (proj₂ p)) $ Σ-≡,≡→≡-subst-const eq refl ⟩ ( proj₁ p , subst (λ { (s , o′) → f o′ ≡ o × Position C s o′ }) (cong₂ _,_ eq refl) (proj₂ p) ) ≡⟨ cong (_ ,_) $ push-subst-, {y≡z = cong₂ _,_ eq refl} ((_≡ o) ⊚ f ⊚ proj₂) (uncurry (Position C)) ⟩ ( proj₁ p , subst ((_≡ o) ⊚ f ⊚ proj₂) (cong₂ _,_ eq refl) (proj₁ (proj₂ p)) , subst (uncurry (Position C)) (cong₂ _,_ eq refl) (proj₂ (proj₂ p)) ) ≡⟨ cong (λ eq′ → _ , eq′ , subst (uncurry (Position C)) (cong₂ _,_ eq refl) _) $ subst-∘ ((_≡ o) ⊚ f) proj₂ (cong₂ _,_ eq refl) ⟩ ( proj₁ p , subst ((_≡ o) ⊚ f) (cong proj₂ (cong₂ _,_ eq refl)) (proj₁ (proj₂ p)) , subst (uncurry (Position C)) (cong (_, _) eq) (proj₂ (proj₂ p)) ) ≡⟨ cong₂ (λ eq₁ eq₂ → _ , subst ((_≡ o) ⊚ f) eq₁ _ , eq₂) (cong-proj₂-cong₂-, eq refl) (sym $ subst-∘ (uncurry (Position C)) (_, _) eq) ⟩ ( proj₁ p , subst ((_≡ o) ⊚ f) refl (proj₁ (proj₂ p)) , subst (uncurry (Position C) ⊚ (_, _)) eq (proj₂ (proj₂ p)) ) ≡⟨⟩ ( proj₁ p , proj₁ (proj₂ p) , subst (λ s → Position C s (proj₁ p)) eq (proj₂ (proj₂ p)) ) ∎ -- A combined reindexing combinator. -- -- The application reindex swap is similar to the overline function -- from Section 6.3.4.1 in Pous and Sangiorgi's "Enhancements of the -- bisimulation proof method". reindex : ∀ {ℓ} {I O : Type ℓ} → (I → O) → Container I O → Container O I reindex f = reindex₂ f ⊚ reindex₁ f -- An unfolding lemma for ⟦ reindex f C ⟧. ⟦reindex⟧↔ : ∀ {k ℓ x} {I O : Type ℓ} {f : I → O} → Extensionality? k ℓ (ℓ ⊔ x) → ∀ (C : Container I O) {X : Rel x O} {i} → ⟦ reindex f C ⟧ X i ↝[ k ] ⟦ C ⟧ (X ⊚ f) (f i) ⟦reindex⟧↔ {f = f} ext C {X} {i} = ⟦ reindex f C ⟧ X i ↔⟨⟩ ⟦ reindex₂ f (reindex₁ f C) ⟧ X i ↔⟨⟩ ⟦ reindex₁ f C ⟧ X (f i) ↝⟨ ⟦reindex₁⟧↔ ext C ⟩□ ⟦ C ⟧ (X ⊚ f) (f i) □ -- An unfolding lemma for ⟦ reindex f C ⟧₂. ⟦reindex⟧₂↔ : ∀ {k ℓ x} {I O : Type ℓ} {X : Rel x O} → Extensionality? k ℓ ℓ → ∀ (C : Container I O) (f : I → O) (R : ∀ {o} → Rel₂ ℓ (X o)) {i} (x y : ⟦ reindex f C ⟧ X i) → ⟦ reindex f C ⟧₂ R (x , y) ↝[ k ] ⟦ C ⟧₂ R ( (proj₁ x , λ p → proj₂ x (_ , refl , p)) , (proj₁ y , λ p → proj₂ y (_ , refl , p)) ) ⟦reindex⟧₂↔ ext C f R x y = ⟦ reindex f C ⟧₂ R (x , y) ↔⟨⟩ ⟦ reindex₂ f (reindex₁ f C) ⟧₂ R (x , y) ↔⟨⟩ ⟦ reindex₁ f C ⟧₂ R (x , y) ↝⟨ ⟦reindex₁⟧₂↔ ext C f R x y ⟩□ ⟦ C ⟧₂ R ( (proj₁ x , λ p → proj₂ x (_ , refl , p)) , (proj₁ y , λ p → proj₂ y (_ , refl , p)) ) □ -- If f is an involution, then ν (reindex f C) i is pointwise -- logically equivalent to ν C i ⊚ f. mutual ν-reindex⇔ : ∀ {ℓ} {I : Type ℓ} {C : Container I I} {f : I → I} → f ⊚ f ≡ P.id → ∀ {i x} → ν (reindex f C) i x ⇔ ν C i (f x) ν-reindex⇔ {C = C} {f} inv {i} {x} = ν (reindex f C) i x ↔⟨⟩ ⟦ reindex f C ⟧ (ν′ (reindex f C) i) x ↝⟨ ⟦reindex⟧↔ _ C ⟩ ⟦ C ⟧ (ν′ (reindex f C) i ⊚ f) (f x) ↝⟨ ⟦⟧-cong _ C (ν′-reindex⇔ inv) ⟩ ⟦ C ⟧ (ν′ C i ⊚ f ⊚ f) (f x) ↔⟨ ≡⇒↝ bijection $ cong (λ g → ⟦ C ⟧ (ν′ C i ⊚ g) (f x)) inv ⟩ ⟦ C ⟧ (ν′ C i) (f x) ↔⟨⟩ ν C i (f x) □ ν′-reindex⇔ : ∀ {ℓ} {I : Type ℓ} {C : Container I I} {f : I → I} → f ⊚ f ≡ P.id → ∀ {i x} → ν′ (reindex f C) i x ⇔ ν′ C i (f x) ν′-reindex⇔ {C = C} {f} inv = record { to = to; from = from } where to : ∀ {i} → ν′ (reindex f C) i ⊆ ν′ C i ⊚ f force (to x) = _⇔_.to (ν-reindex⇔ inv) (force x) from : ∀ {i} → ν′ C i ⊚ f ⊆ ν′ (reindex f C) i force (from x) = _⇔_.from (ν-reindex⇔ inv) (force x) -- A cartesian product combinator. -- -- Similar to a construction in "Containers: Constructing strictly -- positive types" by Abbott, Altenkirch and Ghani (see -- Proposition 3.5). infixr 2 _⊗_ _⊗_ : ∀ {ℓ} {I O : Type ℓ} → Container I O → Container I O → Container I O C₁ ⊗ C₂ = (λ o → Shape C₁ o × Shape C₂ o) ◁ (λ { (s₁ , s₂) i → Position C₁ s₁ i ⊎ Position C₂ s₂ i }) where open Container -- An unfolding lemma for ⟦ C₁ ⊗ C₂ ⟧. ⟦⊗⟧↔ : ∀ {k ℓ x} {I O : Type ℓ} → Extensionality? k ℓ (ℓ ⊔ x) → ∀ (C₁ C₂ : Container I O) {X : Rel x I} {o} → ⟦ C₁ ⊗ C₂ ⟧ X o ↝[ k ] ⟦ C₁ ⟧ X o × ⟦ C₂ ⟧ X o ⟦⊗⟧↔ {k} {ℓ} ext C₁ C₂ {X} {o} = ⟦ C₁ ⊗ C₂ ⟧ X o ↔⟨⟩ (∃ λ (s : Shape C₁ o × Shape C₂ o) → (λ i → Position C₁ (proj₁ s) i ⊎ Position C₂ (proj₂ s) i) ⊆ X) ↔⟨ inverse Σ-assoc ⟩ (∃ λ (s₁ : Shape C₁ o) → ∃ λ (s₂ : Shape C₂ o) → (λ i → Position C₁ s₁ i ⊎ Position C₂ s₂ i) ⊆ X) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → implicit-∀-cong ext $ Π⊎↔Π×Π (lower-extensionality? k lzero ℓ ext)) ⟩ (∃ λ (s₁ : Shape C₁ o) → ∃ λ (s₂ : Shape C₂ o) → ∀ {i} → (Position C₁ s₁ i → X i) × (Position C₂ s₂ i → X i)) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → implicit-ΠΣ-comm) ⟩ (∃ λ (s₁ : Shape C₁ o) → ∃ λ (s₂ : Shape C₂ o) → Position C₁ s₁ ⊆ X × Position C₂ s₂ ⊆ X) ↔⟨ (∃-cong λ _ → ∃-comm) ⟩ (∃ λ (s₁ : Shape C₁ o) → Position C₁ s₁ ⊆ X × ∃ λ (s₂ : Shape C₂ o) → Position C₂ s₂ ⊆ X) ↔⟨ Σ-assoc ⟩ (∃ λ (s : Shape C₁ o) → Position C₁ s ⊆ X) × (∃ λ (s : Shape C₂ o) → Position C₂ s ⊆ X) ↔⟨⟩ ⟦ C₁ ⟧ X o × ⟦ C₂ ⟧ X o □ where open Container -- An unfolding lemma for ⟦ C₁ ⊗ C₂ ⟧₂. ⟦⊗⟧₂↔ : ∀ {k ℓ x} {I : Type ℓ} {X : Rel x I} → Extensionality? k ℓ ℓ → ∀ (C₁ C₂ : Container I I) (R : ∀ {i} → Rel₂ ℓ (X i)) {i} (x y : ⟦ C₁ ⊗ C₂ ⟧ X i) → let (x₁ , x₂) , f = x (y₁ , y₂) , g = y in ⟦ C₁ ⊗ C₂ ⟧₂ R (x , y) ↝[ k ] ⟦ C₁ ⟧₂ R ((x₁ , f ⊚ inj₁) , (y₁ , g ⊚ inj₁)) × ⟦ C₂ ⟧₂ R ((x₂ , f ⊚ inj₂) , (y₂ , g ⊚ inj₂)) ⟦⊗⟧₂↔ ext C₁ C₂ R (x@(x₁ , x₂) , f) (y@(y₁ , y₂) , g) = ⟦ C₁ ⊗ C₂ ⟧₂ R ((x , f) , (y , g)) ↔⟨⟩ (∃ λ (eq : x ≡ y) → ∀ {o} (p : Position (C₁ ⊗ C₂) x o) → R (f p , g (subst (λ s → Position (C₁ ⊗ C₂) s o) eq p))) ↔⟨⟩ (∃ λ (eq : x ≡ y) → ∀ {o} (p : Position C₁ x₁ o ⊎ Position C₂ x₂ o) → R ( f p , g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) eq p) )) ↔⟨ inverse (Σ-cong ≡×≡↔≡ λ _ → Bijection.id) ⟩ (∃ λ (eq : x₁ ≡ y₁ × x₂ ≡ y₂) → ∀ {o} (p : Position C₁ x₁ o ⊎ Position C₂ x₂ o) → R ( f p , g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) (cong₂ _,_ (proj₁ eq) (proj₂ eq)) p) )) ↔⟨ inverse Σ-assoc ⟩ (∃ λ (eq₁ : x₁ ≡ y₁) → ∃ λ (eq₂ : x₂ ≡ y₂) → ∀ {o} (p : Position C₁ x₁ o ⊎ Position C₂ x₂ o) → R ( f p , g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) (cong₂ _,_ eq₁ eq₂) p) )) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → implicit-∀-cong ext $ Π⊎↔Π×Π ext) ⟩ (∃ λ (eq₁ : x₁ ≡ y₁) → ∃ λ (eq₂ : x₂ ≡ y₂) → ∀ {o} → ((p : Position C₁ x₁ o) → R ( f (inj₁ p) , g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) (cong₂ _,_ eq₁ eq₂) (inj₁ p)) )) × ((p : Position C₂ x₂ o) → R ( f (inj₂ p) , g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) (cong₂ _,_ eq₁ eq₂) (inj₂ p)) ))) ↝⟨ (∃-cong λ eq₁ → ∃-cong λ eq₂ → implicit-∀-cong ext $ (∀-cong ext λ _ → ≡⇒↝ _ $ cong (R ⊚ (f _ ,_)) $ lemma₁ eq₁ eq₂) ×-cong (∀-cong ext λ _ → ≡⇒↝ _ $ cong (R ⊚ (f _ ,_)) $ lemma₂ eq₁ eq₂)) ⟩ (∃ λ (eq₁ : x₁ ≡ y₁) → ∃ λ (eq₂ : x₂ ≡ y₂) → ∀ {o} → ((p : Position C₁ x₁ o) → R (f (inj₁ p) , g (inj₁ (subst (λ s₁ → Position C₁ s₁ o) eq₁ p)))) × ((p : Position C₂ x₂ o) → R (f (inj₂ p) , g (inj₂ (subst (λ s₂ → Position C₂ s₂ o) eq₂ p))))) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → implicit-ΠΣ-comm) ⟩ (∃ λ (eq₁ : x₁ ≡ y₁) → ∃ λ (eq₂ : x₂ ≡ y₂) → (∀ {o} (p : Position C₁ x₁ o) → R (f (inj₁ p) , g (inj₁ (subst (λ s₁ → Position C₁ s₁ o) eq₁ p)))) × (∀ {o} (p : Position C₂ x₂ o) → R (f (inj₂ p) , g (inj₂ (subst (λ s₂ → Position C₂ s₂ o) eq₂ p))))) ↔⟨ (∃-cong λ _ → ∃-comm) ⟩ (∃ λ (eq₁ : x₁ ≡ y₁) → (∀ {o} (p : Position C₁ x₁ o) → R (f (inj₁ p) , g (inj₁ (subst (λ s₁ → Position C₁ s₁ o) eq₁ p)))) × ∃ λ (eq₂ : x₂ ≡ y₂) → (∀ {o} (p : Position C₂ x₂ o) → R (f (inj₂ p) , g (inj₂ (subst (λ s₂ → Position C₂ s₂ o) eq₂ p))))) ↔⟨ Σ-assoc ⟩ (∃ λ (eq : x₁ ≡ y₁) → (∀ {o} (p : Container.Position C₁ x₁ o) → R ( f (inj₁ p) , g (inj₁ (subst (λ s₁ → Container.Position C₁ s₁ o) eq p))) )) × (∃ λ (eq : x₂ ≡ y₂) → (∀ {o} (p : Container.Position C₂ x₂ o) → R ( f (inj₂ p) , g (inj₂ (subst (λ s₂ → Container.Position C₂ s₂ o) eq p)) ))) ↔⟨⟩ ⟦ C₁ ⟧₂ R ((x₁ , f ⊚ inj₁) , (y₁ , g ⊚ inj₁)) × ⟦ C₂ ⟧₂ R ((x₂ , f ⊚ inj₂) , (y₂ , g ⊚ inj₂)) □ where open Container lemma₁ = λ (eq₁ : x₁ ≡ y₁) (eq₂ : x₂ ≡ y₂) {o p} → g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) (cong₂ _,_ eq₁ eq₂) (inj₁ p)) ≡⟨ cong g $ push-subst-inj₁ {y≡z = cong₂ _,_ eq₁ eq₂} _ _ ⟩ g (inj₁ (subst (λ { (s₁ , s₂) → Position C₁ s₁ o }) (cong₂ _,_ eq₁ eq₂) p)) ≡⟨ cong (g ⊚ inj₁) $ subst-∘ _ _ (cong₂ _,_ eq₁ eq₂) ⟩ g (inj₁ (subst (λ s₁ → Position C₁ s₁ o) (cong proj₁ (cong₂ _,_ eq₁ eq₂)) p)) ≡⟨ cong (g ⊚ inj₁) $ cong (flip (subst _) _) $ cong-proj₁-cong₂-, eq₁ eq₂ ⟩∎ g (inj₁ (subst (λ s₁ → Position C₁ s₁ o) eq₁ p)) ∎ lemma₂ = λ (eq₁ : x₁ ≡ y₁) (eq₂ : x₂ ≡ y₂) {o p} → g (subst (λ { (s₁ , s₂) → Position C₁ s₁ o ⊎ Position C₂ s₂ o }) (cong₂ _,_ eq₁ eq₂) (inj₂ p)) ≡⟨ cong g $ push-subst-inj₂ {y≡z = cong₂ _,_ eq₁ eq₂} _ _ ⟩ g (inj₂ (subst (λ { (s₁ , s₂) → Position C₂ s₂ o }) (cong₂ _,_ eq₁ eq₂) p)) ≡⟨ cong (g ⊚ inj₂) $ subst-∘ _ _ (cong₂ _,_ eq₁ eq₂) ⟩ g (inj₂ (subst (λ s₂ → Position C₂ s₂ o) (cong proj₂ (cong₂ _,_ eq₁ eq₂)) p)) ≡⟨ cong (g ⊚ inj₂) $ cong (flip (subst _) _) $ cong-proj₂-cong₂-, eq₁ eq₂ ⟩∎ g (inj₂ (subst (λ s₂ → Position C₂ s₂ o) eq₂ p)) ∎ -- The greatest fixpoint ν (C₁ ⊗ C₂) i is contained in the -- intersection ν C₁ i ∩ ν C₂ i. ν-⊗⊆ : ∀ {ℓ} {I : Type ℓ} {C₁ C₂ : Container I I} {i} → ν (C₁ ⊗ C₂) i ⊆ ν C₁ i ∩ ν C₂ i ν-⊗⊆ {C₁ = C₁} {C₂} {i} = ν (C₁ ⊗ C₂) i ⊆⟨⟩ ⟦ C₁ ⊗ C₂ ⟧ (ν′ (C₁ ⊗ C₂) i) ⊆⟨ ⟦⊗⟧↔ _ C₁ C₂ ⟩ ⟦ C₁ ⟧ (ν′ (C₁ ⊗ C₂) i) ∩ ⟦ C₂ ⟧ (ν′ (C₁ ⊗ C₂) i) ⊆⟨ Σ-map (map C₁ ν-⊗⊆₁′) (map C₂ ν-⊗⊆₂′) ⟩ ⟦ C₁ ⟧ (ν′ C₁ i) ∩ ⟦ C₂ ⟧ (ν′ C₂ i) ⊆⟨ P.id ⟩∎ ν C₁ i ∩ ν C₂ i ∎ where ν-⊗⊆₁′ : ν′ (C₁ ⊗ C₂) i ⊆ ν′ C₁ i force (ν-⊗⊆₁′ x) = proj₁ (ν-⊗⊆ (force x)) ν-⊗⊆₂′ : ν′ (C₁ ⊗ C₂) i ⊆ ν′ C₂ i force (ν-⊗⊆₂′ x) = proj₂ (ν-⊗⊆ (force x)) -- A disjoint union combinator. -- -- Similar to a construction in "Containers: Constructing strictly -- positive types" by Abbott, Altenkirch and Ghani (see -- Proposition 3.5). infixr 2 _⊕_ _⊕_ : ∀ {ℓ} {I O : Type ℓ} → Container I O → Container I O → Container I O C₁ ⊕ C₂ = (λ o → Shape C₁ o ⊎ Shape C₂ o) ◁ [ Position C₁ , Position C₂ ] where open Container -- An unfolding lemma for ⟦ C₁ ⊕ C₂ ⟧. ⟦⊕⟧↔ : ∀ {ℓ x} {I O : Type ℓ} (C₁ C₂ : Container I O) {X : Rel x I} {o} → ⟦ C₁ ⊕ C₂ ⟧ X o ↔ ⟦ C₁ ⟧ X o ⊎ ⟦ C₂ ⟧ X o ⟦⊕⟧↔ C₁ C₂ {X} {o} = ⟦ C₁ ⊕ C₂ ⟧ X o ↔⟨⟩ (∃ λ (s : Shape C₁ o ⊎ Shape C₂ o) → [ Position C₁ , Position C₂ ] s ⊆ X) ↝⟨ ∃-⊎-distrib-right ⟩ (∃ λ (s : Shape C₁ o) → Position C₁ s ⊆ X) ⊎ (∃ λ (s : Shape C₂ o) → Position C₂ s ⊆ X) ↔⟨⟩ ⟦ C₁ ⟧ X o ⊎ ⟦ C₂ ⟧ X o □ where open Container -- An unfolding lemma for ⟦ C₁ ⊕ C₂ ⟧₂. ⟦⊕⟧₂↔ : ∀ {k ℓ x} {I : Type ℓ} {X : Rel x I} → Extensionality? k ℓ ℓ → ∀ (C₁ C₂ : Container I I) (R : ∀ {i} → Rel₂ ℓ (X i)) {i} (x y : ⟦ C₁ ⊕ C₂ ⟧ X i) → ⟦ C₁ ⊕ C₂ ⟧₂ R (x , y) ↝[ k ] (curry (⟦ C₁ ⟧₂ R) ⊎-rel curry (⟦ C₂ ⟧₂ R)) (_↔_.to (⟦⊕⟧↔ C₁ C₂) x) (_↔_.to (⟦⊕⟧↔ C₁ C₂) y) ⟦⊕⟧₂↔ ext C₁ C₂ R (inj₁ x , f) (inj₁ y , g) = ⟦ C₁ ⊕ C₂ ⟧₂ R ((inj₁ x , f) , (inj₁ y , g)) ↔⟨⟩ (∃ λ (eq : inj₁ x ≡ inj₁ y) → ∀ {o} (p : Position C₁ x o) → R ( f p , g (subst (λ s → [_,_] {C = λ _ → Rel _ _} (Position C₁) (Position C₂) s o) eq p) )) ↔⟨ inverse $ Σ-cong Bijection.≡↔inj₁≡inj₁ (λ _ → Bijection.id) ⟩ (∃ λ (eq : x ≡ y) → ∀ {o} (p : Position C₁ x o) → R ( f p , g (subst (λ s → [_,_] {C = λ _ → Rel _ _} (Position C₁) (Position C₂) s o) (cong inj₁ eq) p) )) ↝⟨ (∃-cong λ eq → implicit-∀-cong ext $ ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ x → R (_ , g x)) $ sym $ subst-∘ _ _ eq) ⟩ (∃ λ (eq : x ≡ y) → ∀ {o} (p : Position C₁ x o) → R ( f p , g (subst (λ s → Position C₁ s o) eq p) )) ↔⟨⟩ ⟦ C₁ ⟧₂ R ((x , f) , (y , g)) □ where open Container ⟦⊕⟧₂↔ _ C₁ C₂ R (inj₁ x , f) (inj₂ y , g) = ⟦ C₁ ⊕ C₂ ⟧₂ R ((inj₁ x , f) , (inj₂ y , g)) ↔⟨⟩ (∃ λ (eq : inj₁ x ≡ inj₂ y) → _) ↔⟨ inverse $ Σ-cong (inverse Bijection.≡↔⊎) (λ _ → Bijection.id) ⟩ (∃ λ (eq : ⊥) → _) ↔⟨ Σ-left-zero ⟩ ⊥ □ ⟦⊕⟧₂↔ _ C₁ C₂ R (inj₂ x , f) (inj₁ y , g) = ⟦ C₁ ⊕ C₂ ⟧₂ R ((inj₂ x , f) , (inj₁ y , g)) ↔⟨⟩ (∃ λ (eq : inj₂ x ≡ inj₁ y) → _) ↔⟨ inverse $ Σ-cong (inverse Bijection.≡↔⊎) (λ _ → Bijection.id) ⟩ (∃ λ (eq : ⊥) → _) ↔⟨ Σ-left-zero ⟩ ⊥ □ ⟦⊕⟧₂↔ ext C₁ C₂ R (inj₂ x , f) (inj₂ y , g) = ⟦ C₁ ⊕ C₂ ⟧₂ R ((inj₂ x , f) , (inj₂ y , g)) ↔⟨⟩ (∃ λ (eq : inj₂ x ≡ inj₂ y) → ∀ {o} (p : Position C₂ x o) → R ( f p , g (subst (λ s → [_,_] {C = λ _ → Rel _ _} (Position C₁) (Position C₂) s o) eq p) )) ↔⟨ inverse $ Σ-cong Bijection.≡↔inj₂≡inj₂ (λ _ → Bijection.id) ⟩ (∃ λ (eq : x ≡ y) → ∀ {o} (p : Position C₂ x o) → R ( f p , g (subst (λ s → [_,_] {C = λ _ → Rel _ _} (Position C₁) (Position C₂) s o) (cong inj₂ eq) p) )) ↝⟨ (∃-cong λ eq → implicit-∀-cong ext $ ∀-cong ext λ _ → ≡⇒↝ _ $ cong (λ x → R (_ , g x)) $ sym $ subst-∘ _ _ eq) ⟩ (∃ λ (eq : x ≡ y) → ∀ {o} (p : Position C₂ x o) → R ( f p , g (subst (λ s → Position C₂ s o) eq p) )) ↔⟨⟩ ⟦ C₂ ⟧₂ R ((x , f) , (y , g)) □ where open Container mutual -- A combinator that is similar to the function ⟷ from -- Section 6.3.4.1 in Pous and Sangiorgi's "Enhancements of the -- bisimulation proof method". ⟷[_] : ∀ {ℓ} {I : Type ℓ} → Container (I × I) (I × I) → Container (I × I) (I × I) ⟷[ C ] = C ⟷ C -- A generalisation of ⟷[_]. infix 1 _⟷_ _⟷_ : ∀ {ℓ} {I : Type ℓ} → (_ _ : Container (I × I) (I × I)) → Container (I × I) (I × I) C₁ ⟷ C₂ = C₁ ⊗ reindex swap C₂ -- An unfolding lemma for ⟦ C₁ ⟷ C₂ ⟧. ⟦⟷⟧↔ : ∀ {k ℓ x} {I : Type ℓ} → Extensionality? k ℓ (ℓ ⊔ x) → ∀ (C₁ C₂ : Container (I × I) (I × I)) {X : Rel₂ x I} {i} → ⟦ C₁ ⟷ C₂ ⟧ X i ↝[ k ] ⟦ C₁ ⟧ X i × (⟦ C₂ ⟧ (X ⁻¹) ⁻¹) i ⟦⟷⟧↔ ext C₁ C₂ {X} {i} = ⟦ C₁ ⟷ C₂ ⟧ X i ↔⟨⟩ ⟦ C₁ ⊗ reindex swap C₂ ⟧ X i ↝⟨ ⟦⊗⟧↔ ext C₁ (reindex swap C₂) ⟩ ⟦ C₁ ⟧ X i × ⟦ reindex swap C₂ ⟧ X i ↝⟨ ∃-cong (λ _ → ⟦reindex⟧↔ ext C₂) ⟩□ ⟦ C₁ ⟧ X i × (⟦ C₂ ⟧ (X ⁻¹) ⁻¹) i □ -- An unfolding lemma for ⟦ C₁ ⟷ C₂ ⟧₂. ⟦⟷⟧₂↔ : ∀ {k ℓ x} {I : Type ℓ} {X : Rel₂ x I} → Extensionality? k ℓ ℓ → ∀ (C₁ C₂ : Container (I × I) (I × I)) (R : ∀ {i} → Rel₂ ℓ (X i)) {i} (x y : ⟦ C₁ ⟷ C₂ ⟧ X i) → let (s₁ , s₂) , f = x (t₁ , t₂) , g = y in ⟦ C₁ ⟷ C₂ ⟧₂ R (x , y) ↝[ k ] ⟦ C₁ ⟧₂ R ((s₁ , f ⊚ inj₁) , (t₁ , g ⊚ inj₁)) × ⟦ C₂ ⟧₂ R ( (s₂ , λ p → f (inj₂ (_ , refl , p))) , (t₂ , λ p → g (inj₂ (_ , refl , p))) ) ⟦⟷⟧₂↔ ext C₁ C₂ R x@((s₁ , s₂) , f) y@((t₁ , t₂) , g) = ⟦ C₁ ⟷ C₂ ⟧₂ R (x , y) ↔⟨⟩ ⟦ C₁ ⊗ reindex swap C₂ ⟧₂ R (x , y) ↝⟨ ⟦⊗⟧₂↔ ext C₁ (reindex swap C₂) R _ (_ , g) ⟩ ⟦ C₁ ⟧₂ R ((s₁ , f ⊚ inj₁) , (t₁ , g ⊚ inj₁)) × ⟦ reindex swap C₂ ⟧₂ R ((s₂ , f ⊚ inj₂) , (t₂ , g ⊚ inj₂)) ↝⟨ ∃-cong (λ _ → ⟦reindex⟧₂↔ ext C₂ _ R _ (_ , g ⊚ inj₂)) ⟩□ ⟦ C₁ ⟧₂ R ((s₁ , f ⊚ inj₁) , (t₁ , g ⊚ inj₁)) × ⟦ C₂ ⟧₂ R ( (s₂ , λ p → f (inj₂ (_ , refl , p))) , (t₂ , λ p → g (inj₂ (_ , refl , p))) ) □ -- The greatest fixpoint ν (C₁ ⟷ C₂) i is contained in the -- intersection ν C₁ i ∩ ν C₂ i ⁻¹. ν-↔⊆ : ∀ {ℓ} {I : Type ℓ} {C₁ C₂ : Container (I × I) (I × I)} {i} → ν (C₁ ⟷ C₂) i ⊆ ν C₁ i ∩ ν C₂ i ⁻¹ ν-↔⊆ {C₁ = C₁} {C₂} {i} = ν (C₁ ⟷ C₂) i ⊆⟨⟩ ν (C₁ ⊗ reindex swap C₂) i ⊆⟨ ν-⊗⊆ ⟩ ν C₁ i ∩ ν (reindex swap C₂) i ⊆⟨ Σ-map P.id (_⇔_.to (ν-reindex⇔ refl)) ⟩∎ ν C₁ i ∩ ν C₂ i ⁻¹ ∎ -- The following three lemmas correspond to the second part of -- Exercise 6.3.24 in Pous and Sangiorgi's "Enhancements of the -- bisimulation proof method". -- Post-fixpoints of the container reindex₂ swap id ⊗ C are -- post-fixpoints of ⟷[ C ]. ⊆reindex₂-swap-⊗→⊆⟷ : ∀ {ℓ r} {I : Type ℓ} {C : Container (I × I) (I × I)} {R : Rel₂ r I} → R ⊆ ⟦ reindex₂ swap id ⊗ C ⟧ R → R ⊆ ⟦ ⟷[ C ] ⟧ R ⊆reindex₂-swap-⊗→⊆⟷ {C = C} {R} R⊆ = R ⊆⟨ (λ x → lemma₁ x , lemma₂ x) ⟩ ⟦ C ⟧ R ∩ R ⁻¹ ⊆⟨ Σ-map P.id lemma₃ ⟩ ⟦ C ⟧ R ∩ ⟦ C ⟧ (R ⁻¹) ⁻¹ ⊆⟨ _⇔_.from (⟦⟷⟧↔ _ C C) ⟩∎ ⟦ ⟷[ C ] ⟧ R ∎ where lemma₀ = R ⊆⟨ R⊆ ⟩ ⟦ reindex₂ swap id ⊗ C ⟧ R ⊆⟨ ⟦⊗⟧↔ _ (reindex₂ swap id) C ⟩∎ ⟦ reindex₂ swap id ⟧ R ∩ ⟦ C ⟧ R ∎ lemma₁ = R ⊆⟨ lemma₀ ⟩ ⟦ reindex₂ swap id ⟧ R ∩ ⟦ C ⟧ R ⊆⟨ proj₂ ⟩∎ ⟦ C ⟧ R ∎ lemma₂ = R ⊆⟨ lemma₀ ⟩ ⟦ reindex₂ swap id ⟧ R ∩ ⟦ C ⟧ R ⊆⟨ proj₁ ⟩ ⟦ reindex₂ swap id ⟧ R ⊆⟨ P.id ⟩ ⟦ id ⟧ R ⁻¹ ⊆⟨ _⇔_.to (⟦id⟧↔ _) ⟩∎ R ⁻¹ ∎ lemma₃ = R ⊆⟨ lemma₁ ⟩ ⟦ C ⟧ R ⊆⟨ map C lemma₂ ⟩∎ ⟦ C ⟧ (R ⁻¹) ∎ -- The symmetric closure of a post-fixpoint of ⟷[ C ] is a -- post-fixpoint of reindex₂ swap id ⊗ C. ⊆⟷→∪-swap⊆reindex₂-swap-⊗ : ∀ {ℓ r} {I : Type ℓ} {C : Container (I × I) (I × I)} {R : Rel₂ r I} → R ⊆ ⟦ ⟷[ C ] ⟧ R → R ∪ R ⁻¹ ⊆ ⟦ reindex₂ swap id ⊗ C ⟧ (R ∪ R ⁻¹) ⊆⟷→∪-swap⊆reindex₂-swap-⊗ {C = C} {R} R⊆ = R ∪ R ⁻¹ ⊆⟨ (λ x → lemma₁ x , lemma₂ x) ⟩ ⟦ reindex₂ swap id ⟧ (R ∪ R ⁻¹) ∩ ⟦ C ⟧ (R ∪ R ⁻¹) ⊆⟨ _⇔_.from (⟦⊗⟧↔ _ (reindex₂ swap id) C) ⟩∎ ⟦ reindex₂ swap id ⊗ C ⟧ (R ∪ R ⁻¹) ∎ where lemma₁ = R ∪ R ⁻¹ ⊆⟨ [ inj₂ , inj₁ ] ⟩ R ⁻¹ ∪ R ⊆⟨ P.id ⟩ R ⁻¹ ∪ R ⁻¹ ⁻¹ ⊆⟨ P.id ⟩ (R ∪ R ⁻¹) ⁻¹ ⊆⟨ _⇔_.from (⟦id⟧↔ _) ⟩ ⟦ id ⟧ (R ∪ R ⁻¹) ⁻¹ ⊆⟨ P.id ⟩∎ ⟦ reindex₂ swap id ⟧ (R ∪ R ⁻¹) ∎ lemma₂ = R ∪ R ⁻¹ ⊆⟨ ⊎-map R⊆ R⊆ ⟩ ⟦ ⟷[ C ] ⟧ R ∪ ⟦ ⟷[ C ] ⟧ R ⁻¹ ⊆⟨ ⊎-map (_⇔_.to (⟦⟷⟧↔ _ C C)) (_⇔_.to (⟦⟷⟧↔ _ C C)) ⟩ ⟦ C ⟧ R ∩ ⟦ C ⟧ (R ⁻¹) ⁻¹ ∪ ⟦ C ⟧ R ⁻¹ ∩ ⟦ C ⟧ (R ⁻¹) ⊆⟨ ⊎-map proj₁ proj₂ ⟩ ⟦ C ⟧ R ∪ ⟦ C ⟧ (R ⁻¹) ⊆⟨ [ map C inj₁ , map C inj₂ ] ⟩∎ ⟦ C ⟧ (R ∪ R ⁻¹) ∎ -- The greatest fixpoint of ⟷[ C ] is pointwise logically equivalent -- to the greatest fixpoint of reindex₂ swap id ⊗ C. -- -- Note that this proof is not necessarily size-preserving. TODO: -- Figure out if the proof can be made size-preserving. ν-⟷⇔ : ∀ {ℓ} {I : Type ℓ} {C : Container (I × I) (I × I)} {p} → ν ⟷[ C ] ∞ p ⇔ ν (reindex₂ swap id ⊗ C) ∞ p ν-⟷⇔ {C = C} = record { to = let R = ν ⟷[ C ] ∞ in $⟨ (λ {_} → ν-out _) ⟩ R ⊆ ⟦ ⟷[ C ] ⟧ R ↝⟨ ⊆⟷→∪-swap⊆reindex₂-swap-⊗ ⟩ R ∪ R ⁻¹ ⊆ ⟦ reindex₂ swap id ⊗ C ⟧ (R ∪ R ⁻¹) ↝⟨ unfold _ ⟩ R ∪ R ⁻¹ ⊆ ν (reindex₂ swap id ⊗ C) ∞ ↝⟨ (λ hyp {_} x → hyp (inj₁ x)) ⟩□ R ⊆ ν (reindex₂ swap id ⊗ C) ∞ □ ; from = let R = ν (reindex₂ swap id ⊗ C) ∞ in $⟨ (λ {_} → ν-out _) ⟩ R ⊆ ⟦ reindex₂ swap id ⊗ C ⟧ R ↝⟨ ⊆reindex₂-swap-⊗→⊆⟷ ⟩ R ⊆ ⟦ ⟷[ C ] ⟧ R ↝⟨ unfold _ ⟩□ R ⊆ ν ⟷[ C ] ∞ □ }
{ "alphanum_fraction": 0.365741475, "avg_line_length": 37.3814229249, "ext": "agda", "hexsha": "2030025656da349e5cff7fe15c815afc7cf44d60", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Indexed-container/Combinators.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Indexed-container/Combinators.agda", "max_line_length": 148, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Indexed-container/Combinators.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 16061, "size": 37830 }
module Lib.Vec where open import Common.Nat renaming (zero to Z; suc to S) open import Lib.Fin open import Common.Unit import Common.List -- using (List ; [] ; _∷_) data Vec (A : Set) : Nat -> Set where _∷_ : forall {n} -> A -> Vec A n -> Vec A (S n) [] : Vec A Z infixr 30 _++_ _++_ : {A : Set}{m n : Nat} -> Vec A m -> Vec A n -> Vec A (m + n) [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) snoc : {A : Set}{n : Nat} -> Vec A n -> A -> Vec A (S n) snoc [] e = e ∷ [] snoc (x ∷ xs) e = x ∷ snoc xs e length : {A : Set}{n : Nat} -> Vec A n -> Nat length [] = Z length (x ∷ xs) = 1 + length xs length' : {A : Set}{n : Nat} -> Vec A n -> Nat length' {n = n} _ = n zipWith3 : ∀ {A B C D n} -> (A -> B -> C -> D) -> Vec A n -> Vec B n -> Vec C n -> Vec D n zipWith3 f [] [] [] = [] zipWith3 f (x ∷ xs) (y ∷ ys) (z ∷ zs) = f x y z ∷ zipWith3 f xs ys zs zipWith : ∀ {A B C n} -> (A -> B -> C) -> Vec A n -> Vec B n -> {u : Unit} -> Vec C n zipWith _ [] [] = [] zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys {u = unit} _!_ : ∀ {A n} -> Vec A n -> Fin n -> A (x ∷ xs) ! fz = x (_ ∷ xs) ! fs n = xs ! n [] ! () _[_]=_ : {A : Set}{n : Nat} -> Vec A n -> Fin n -> A -> Vec A n (a ∷ as) [ fz ]= e = e ∷ as (a ∷ as) [ fs n ]= e = a ∷ (as [ n ]= e) [] [ () ]= e map : ∀ {A B n}(f : A -> B)(xs : Vec A n) -> Vec B n map f [] = [] map f (x ∷ xs) = f x ∷ map f xs forgetL : {A : Set}{n : Nat} -> Vec A n -> Common.List.List A forgetL [] = Common.List.[] forgetL (x ∷ xs) = x Common.List.∷ forgetL xs rem : {A : Set}(xs : Common.List.List A) -> Vec A (Common.List.length xs) rem Common.List.[] = [] rem (x Common.List.∷ xs) = x ∷ rem xs
{ "alphanum_fraction": 0.4635879218, "avg_line_length": 29.1206896552, "ext": "agda", "hexsha": "b59038a8a66d8718b82426e2acf245cd2ff57af7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Compiler/simple/Lib/Vec.agda", "max_issues_count": 16, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Compiler/simple/Lib/Vec.agda", "max_line_length": 90, "max_stars_count": 7, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Compiler/simple/Lib/Vec.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z", "num_tokens": 699, "size": 1689 }
{-# OPTIONS --without-K #-} module Agda.Builtin.Nat where open import Agda.Builtin.Bool data Nat : Set where zero : Nat suc : (n : Nat) → Nat {-# BUILTIN NATURAL Nat #-} infix 4 _==_ _<_ infixl 6 _+_ _-_ infixl 7 _*_ _+_ : Nat → Nat → Nat zero + m = m suc n + m = suc (n + m) {-# BUILTIN NATPLUS _+_ #-} _-_ : Nat → Nat → Nat n - zero = n zero - suc m = zero suc n - suc m = n - m {-# BUILTIN NATMINUS _-_ #-} _*_ : Nat → Nat → Nat zero * m = zero suc n * m = m + n * m {-# BUILTIN NATTIMES _*_ #-} _==_ : Nat → Nat → Bool zero == zero = true suc n == suc m = n == m _ == _ = false {-# BUILTIN NATEQUALS _==_ #-} _<_ : Nat → Nat → Bool _ < zero = false zero < suc _ = true suc n < suc m = n < m {-# BUILTIN NATLESS _<_ #-} -- Helper function div-helper for Euclidean division. --------------------------------------------------------------------------- -- -- div-helper computes n / 1+m via iteration on n. -- -- n div (suc m) = div-helper 0 m n m -- -- The state of the iterator has two accumulator variables: -- -- k: The quotient, returned once n=0. Initialized to 0. -- -- j: A counter, initialized to the divisor m, decreased on each iteration step. -- Once it reaches 0, the quotient k is increased and j reset to m, -- starting the next countdown. -- -- Under the precondition j ≤ m, the invariant is -- -- div-helper k m n j = k + (n + m - j) div (1 + m) div-helper : (k m n j : Nat) → Nat div-helper k m zero j = k div-helper k m (suc n) zero = div-helper (suc k) m n m div-helper k m (suc n) (suc j) = div-helper k m n j {-# BUILTIN NATDIVSUCAUX div-helper #-} -- Proof of the invariant by induction on n. -- -- clause 1: div-helper k m 0 j -- = k by definition -- = k + (0 + m - j) div (1 + m) since m - j < 1 + m -- -- clause 2: div-helper k m (1 + n) 0 -- = div-helper (1 + k) m n m by definition -- = 1 + k + (n + m - m) div (1 + m) by induction hypothesis -- = 1 + k + n div (1 + m) by simplification -- = k + (n + (1 + m)) div (1 + m) by expansion -- = k + (1 + n + m - 0) div (1 + m) by expansion -- -- clause 3: div-helper k m (1 + n) (1 + j) -- = div-helper k m n j by definition -- = k + (n + m - j) div (1 + m) by induction hypothesis -- = k + ((1 + n) + m - (1 + j)) div (1 + m) by expansion -- -- Q.e.d. -- Helper function mod-helper for the remainder computation. --------------------------------------------------------------------------- -- -- (Analogous to div-helper.) -- -- mod-helper computes n % 1+m via iteration on n. -- -- n mod (suc m) = mod-helper 0 m n m -- -- The invariant is: -- -- m = k + j ==> mod-helper k m n j = (n + k) mod (1 + m). mod-helper : (k m n j : Nat) → Nat mod-helper k m zero j = k mod-helper k m (suc n) zero = mod-helper 0 m n m mod-helper k m (suc n) (suc j) = mod-helper (suc k) m n j {-# BUILTIN NATMODSUCAUX mod-helper #-} -- Proof of the invariant by induction on n. -- -- clause 1: mod-helper k m 0 j -- = k by definition -- = (0 + k) mod (1 + m) since m = k + j, thus k < m -- -- clause 2: mod-helper k m (1 + n) 0 -- = mod-helper 0 m n m by definition -- = (n + 0) mod (1 + m) by induction hypothesis -- = (n + (1 + m)) mod (1 + m) by expansion -- = (1 + n) + k) mod (1 + m) since k = m (as l = 0) -- -- clause 3: mod-helper k m (1 + n) (1 + j) -- = mod-helper (1 + k) m n j by definition -- = (n + (1 + k)) mod (1 + m) by induction hypothesis -- = ((1 + n) + k) mod (1 + m) by commutativity -- -- Q.e.d.
{ "alphanum_fraction": 0.466768138, "avg_line_length": 29.4179104478, "ext": "agda", "hexsha": "798c28194e67f0a9dcf40434678c1ec1c2fbaffb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "caryoscelus/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "caryoscelus/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Nat.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "98d6f195fe672e54ef0389b4deb62e04e3e98327", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "caryoscelus/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1256, "size": 3942 }
{-# OPTIONS --allow-unsolved-metas #-} open import Agda.Builtin.List open import Agda.Builtin.Nat infixl 6 _∷ʳ_ _∷ʳ_ : {A : Set} → List A → A → List A [] ∷ʳ x = x ∷ [] (hd ∷ tl) ∷ʳ x = hd ∷ tl ∷ʳ x infixl 5 _∷ʳ′_ data InitLast {A : Set} : List A → Set where [] : InitLast [] _∷ʳ′_ : (xs : List A) (x : A) → InitLast (xs ∷ʳ x) initLast : {A : Set} (xs : List A) → InitLast xs initLast [] = [] initLast (x ∷ xs) with initLast xs ... | [] = [] ∷ʳ′ x ... | ys ∷ʳ′ y = (x ∷ ys) ∷ʳ′ y f : (xs : List Nat) → Set f xs with initLast xs ... | [] = {!!} ... | xs ∷ʳ′ x = {!!} -- ^ Shadowing a variable that is bound implicitly in the `...` is allowed
{ "alphanum_fraction": 0.5043478261, "avg_line_length": 23, "ext": "agda", "hexsha": "bbe861242d967919258a79239601229fd551125e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue4704.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue4704.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue4704.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 287, "size": 690 }
open import Nat open import Prelude open import core open import contexts open import progress open import htype-decidable open import lemmas-complete module complete-progress where -- as in progress, we define a datatype for the possible outcomes of -- progress for readability. data okc : (d : ihexp) (Δ : hctx) → Set where V : ∀{d Δ} → d val → okc d Δ S : ∀{d Δ} → Σ[ d' ∈ ihexp ] (d ↦ d') → okc d Δ complete-progress : {Δ : hctx} {d : ihexp} {τ : htyp} → Δ , ∅ ⊢ d :: τ → d dcomplete → okc d Δ complete-progress wt comp with progress wt complete-progress wt comp | I x = abort (lem-ind-comp comp x) complete-progress wt comp | S x = S x complete-progress wt comp | BV (BVVal x) = V x complete-progress wt (DCCast comp x₂ ()) | BV (BVHoleCast x x₁) complete-progress (TACast wt x) (DCCast comp x₃ x₄) | BV (BVArrCast x₁ x₂) = abort (x₁ (complete-consistency x x₃ x₄))
{ "alphanum_fraction": 0.6203703704, "avg_line_length": 34.7142857143, "ext": "agda", "hexsha": "16959b2e1548eaa937d0962c938eb461bf3fbf2e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "complete-progress.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "complete-progress.agda", "max_line_length": 120, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "complete-progress.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 306, "size": 972 }
{-# OPTIONS --without-K --safe #-} open import Definition.Typed.EqualityRelation module Definition.LogicalRelation.Substitution.Introductions.Natrec {{eqrel : EqRelSet}} where open EqRelSet {{...}} open import Definition.Untyped open import Definition.Untyped.Properties open import Definition.Typed open import Definition.Typed.Properties open import Definition.Typed.RedSteps open import Definition.LogicalRelation open import Definition.LogicalRelation.Irrelevance open import Definition.LogicalRelation.Properties open import Definition.LogicalRelation.Application open import Definition.LogicalRelation.Substitution open import Definition.LogicalRelation.Substitution.Properties import Definition.LogicalRelation.Substitution.Irrelevance as S open import Definition.LogicalRelation.Substitution.Reflexivity open import Definition.LogicalRelation.Substitution.Weakening open import Definition.LogicalRelation.Substitution.Introductions.Nat open import Definition.LogicalRelation.Substitution.Introductions.Pi open import Definition.LogicalRelation.Substitution.Introductions.SingleSubst open import Tools.Embedding open import Tools.Product open import Tools.Empty import Tools.PropositionalEquality as PE -- Natural recursion closure reduction (requires reducible terms and equality). natrec-subst* : ∀ {Γ C c g n n′ l} → Γ ∙ ℕ ⊢ C → Γ ⊢ c ∷ C [ zero ] → Γ ⊢ g ∷ Π ℕ ▹ (C ▹▹ C [ suc (var 0) ]↑) → Γ ⊢ n ⇒* n′ ∷ ℕ → ([ℕ] : Γ ⊩⟨ l ⟩ ℕ) → Γ ⊩⟨ l ⟩ n′ ∷ ℕ / [ℕ] → (∀ {t t′} → Γ ⊩⟨ l ⟩ t ∷ ℕ / [ℕ] → Γ ⊩⟨ l ⟩ t′ ∷ ℕ / [ℕ] → Γ ⊩⟨ l ⟩ t ≡ t′ ∷ ℕ / [ℕ] → Γ ⊢ C [ t ] ≡ C [ t′ ]) → Γ ⊢ natrec C c g n ⇒* natrec C c g n′ ∷ C [ n ] natrec-subst* C c g (id x) [ℕ] [n′] prop = id (natrecⱼ C c g x) natrec-subst* C c g (x ⇨ n⇒n′) [ℕ] [n′] prop = let q , w = redSubst*Term n⇒n′ [ℕ] [n′] a , s = redSubstTerm x [ℕ] q in natrec-subst C c g x ⇨ conv* (natrec-subst* C c g n⇒n′ [ℕ] [n′] prop) (prop q a (symEqTerm [ℕ] s)) -- Helper functions for construction of valid type for the successor case of natrec. sucCase₃ : ∀ {Γ l} ([Γ] : ⊩ᵛ Γ) ([ℕ] : Γ ⊩ᵛ⟨ l ⟩ ℕ / [Γ]) → Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ suc (var 0) ∷ ℕ / [Γ] ∙″ [ℕ] / (λ {Δ} {σ} → wk1ᵛ {ℕ} {ℕ} [Γ] [ℕ] [ℕ] {Δ} {σ}) sucCase₃ {Γ} {l} [Γ] [ℕ] {Δ} {σ} = sucᵛ {n = var 0} {l = l} (_∙″_ {A = ℕ} [Γ] [ℕ]) (λ {Δ} {σ} → wk1ᵛ {ℕ} {ℕ} [Γ] [ℕ] [ℕ] {Δ} {σ}) (λ ⊢Δ [σ] → proj₂ [σ] , (λ [σ′] [σ≡σ′] → proj₂ [σ≡σ′])) {Δ} {σ} sucCase₂ : ∀ {F Γ l} ([Γ] : ⊩ᵛ Γ) ([ℕ] : Γ ⊩ᵛ⟨ l ⟩ ℕ / [Γ]) ([F] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F / ([Γ] ∙″ [ℕ])) → Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F [ suc (var 0) ]↑ / ([Γ] ∙″ [ℕ]) sucCase₂ {F} {Γ} {l} [Γ] [ℕ] [F] = subst↑S {ℕ} {F} {suc (var 0)} [Γ] [ℕ] [F] (λ {Δ} {σ} → sucCase₃ [Γ] [ℕ] {Δ} {σ}) sucCase₁ : ∀ {F Γ l} ([Γ] : ⊩ᵛ Γ) ([ℕ] : Γ ⊩ᵛ⟨ l ⟩ ℕ / [Γ]) ([F] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F / ([Γ] ∙″ [ℕ])) → Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F ▹▹ F [ suc (var 0) ]↑ / ([Γ] ∙″ [ℕ]) sucCase₁ {F} {Γ} {l} [Γ] [ℕ] [F] = ▹▹ᵛ {F} {F [ suc (var 0) ]↑} (_∙″_ {A = ℕ} [Γ] [ℕ]) [F] (sucCase₂ {F} [Γ] [ℕ] [F]) -- Construct a valid type for the successor case of natrec. sucCase : ∀ {F Γ l} ([Γ] : ⊩ᵛ Γ) ([ℕ] : Γ ⊩ᵛ⟨ l ⟩ ℕ / [Γ]) ([F] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F / ([Γ] ∙″ [ℕ])) → Γ ⊩ᵛ⟨ l ⟩ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) / [Γ] sucCase {F} {Γ} {l} [Γ] [ℕ] [F] = Πᵛ {ℕ} {F ▹▹ F [ suc (var 0) ]↑} [Γ] [ℕ] (sucCase₁ {F} [Γ] [ℕ] [F]) -- Construct a valid type equality for the successor case of natrec. sucCaseCong : ∀ {F F′ Γ l} ([Γ] : ⊩ᵛ Γ) ([ℕ] : Γ ⊩ᵛ⟨ l ⟩ ℕ / [Γ]) ([F] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F / ([Γ] ∙″ [ℕ])) ([F′] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F′ / ([Γ] ∙″ [ℕ])) ([F≡F′] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F ≡ F′ / [Γ] ∙″ [ℕ] / [F]) → Γ ⊩ᵛ⟨ l ⟩ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) ≡ Π ℕ ▹ (F′ ▹▹ F′ [ suc (var 0) ]↑) / [Γ] / sucCase {F} [Γ] [ℕ] [F] sucCaseCong {F} {F′} {Γ} {l} [Γ] [ℕ] [F] [F′] [F≡F′] = Π-congᵛ {ℕ} {F ▹▹ F [ suc (var 0) ]↑} {ℕ} {F′ ▹▹ F′ [ suc (var 0) ]↑} [Γ] [ℕ] (sucCase₁ {F} [Γ] [ℕ] [F]) [ℕ] (sucCase₁ {F′} [Γ] [ℕ] [F′]) (reflᵛ {ℕ} [Γ] [ℕ]) (▹▹-congᵛ {F} {F′} {F [ suc (var 0) ]↑} {F′ [ suc (var 0) ]↑} (_∙″_ {A = ℕ} [Γ] [ℕ]) [F] [F′] [F≡F′] (sucCase₂ {F} [Γ] [ℕ] [F]) (sucCase₂ {F′} [Γ] [ℕ] [F′]) (subst↑SEq {ℕ} {F} {F′} {suc (var 0)} {suc (var 0)} [Γ] [ℕ] [F] [F′] [F≡F′] (λ {Δ} {σ} → sucCase₃ [Γ] [ℕ] {Δ} {σ}) (λ {Δ} {σ} → sucCase₃ [Γ] [ℕ] {Δ} {σ}) (λ {Δ} {σ} → reflᵗᵛ {ℕ} {suc (var 0)} (_∙″_ {A = ℕ} [Γ] [ℕ]) (λ {Δ} {σ} → wk1ᵛ {ℕ} {ℕ} [Γ] [ℕ] [ℕ] {Δ} {σ}) (λ {Δ} {σ} → sucCase₃ [Γ] [ℕ] {Δ} {σ}) {Δ} {σ}))) -- Reducibility of natural recursion under a valid substitution. natrecTerm : ∀ {F z s n Γ Δ σ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F / _∙″_ {l = l} [Γ] (ℕᵛ [Γ])) ([F₀] : Γ ⊩ᵛ⟨ l ⟩ F [ zero ] / [Γ]) ([F₊] : Γ ⊩ᵛ⟨ l ⟩ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) / [Γ]) ([z] : Γ ⊩ᵛ⟨ l ⟩ z ∷ F [ zero ] / [Γ] / [F₀]) ([s] : Γ ⊩ᵛ⟨ l ⟩ s ∷ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) / [Γ] / [F₊]) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σn] : Δ ⊩⟨ l ⟩ n ∷ ℕ / ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) → Δ ⊩⟨ l ⟩ natrec (subst (liftSubst σ) F) (subst σ z) (subst σ s) n ∷ subst (liftSubst σ) F [ n ] / irrelevance′ (PE.sym (singleSubstComp n σ F)) (proj₁ ([F] ⊢Δ ([σ] , [σn]))) natrecTerm {F} {z} {s} {n} {Γ} {Δ} {σ} {l} [Γ] [F] [F₀] [F₊] [z] [s] ⊢Δ [σ] (ιx (ℕₜ .(suc m) d n≡n (sucᵣ {m} [m]))) = let [ℕ] = ℕᵛ {l = l} [Γ] [σℕ] = proj₁ ([ℕ] ⊢Δ [σ]) ⊢ℕ = escape (proj₁ ([ℕ] ⊢Δ [σ])) ⊢F = escape (proj₁ ([F] (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ]))) ⊢z = PE.subst (λ x → _ ⊢ _ ∷ x) (singleSubstLift F zero) (escapeTerm (proj₁ ([F₀] ⊢Δ [σ])) (proj₁ ([z] ⊢Δ [σ]))) ⊢s = PE.subst (λ x → Δ ⊢ subst σ s ∷ x) (natrecSucCase σ F) (escapeTerm (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([s] ⊢Δ [σ]))) ⊢m = escapeTerm {l = l} [σℕ] (ιx [m]) [σsm] = irrelevanceTerm {l = l} (ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) [σℕ] (ιx (ℕₜ (suc m) (idRedTerm:*: (sucⱼ ⊢m)) n≡n (sucᵣ [m]))) [σn] = ℕₜ (suc m) d n≡n (sucᵣ [m]) [σn]′ , [σn≡σsm] = redSubst*Term (redₜ d) [σℕ] [σsm] [σFₙ]′ = proj₁ ([F] ⊢Δ ([σ] , ιx [σn])) [σFₙ] = irrelevance′ (PE.sym (singleSubstComp n σ F)) [σFₙ]′ [σFₛₘ] = irrelevance′ (PE.sym (singleSubstComp (suc m) σ F)) (proj₁ ([F] ⊢Δ ([σ] , [σsm]))) [Fₙ≡Fₛₘ] = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (PE.sym (singleSubstComp (suc m) σ F)) [σFₙ]′ [σFₙ] (proj₂ ([F] ⊢Δ ([σ] , ιx [σn])) ([σ] , [σsm]) (reflSubst [Γ] ⊢Δ [σ] , [σn≡σsm])) [σFₘ] = irrelevance′ (PE.sym (PE.trans (substCompEq F) (substSingletonComp F))) (proj₁ ([F] ⊢Δ ([σ] , ιx [m]))) [σFₛₘ]′ = irrelevance′ (natrecIrrelevantSubst F z s m σ) (proj₁ ([F] ⊢Δ ([σ] , [σsm]))) [σF₊ₘ] = substSΠ₁ (proj₁ ([F₊] ⊢Δ [σ])) [σℕ] (ιx [m]) natrecM = appTerm [σFₘ] [σFₛₘ]′ [σF₊ₘ] (appTerm [σℕ] [σF₊ₘ] (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([s] ⊢Δ [σ])) (ιx [m])) (natrecTerm {F} {z} {s} {m} {σ = σ} [Γ] [F] [F₀] [F₊] [z] [s] ⊢Δ [σ] (ιx [m])) natrecM′ = irrelevanceTerm′ (PE.trans (PE.sym (natrecIrrelevantSubst F z s m σ)) (PE.sym (singleSubstComp (suc m) σ F))) [σFₛₘ]′ [σFₛₘ] natrecM reduction = natrec-subst* ⊢F ⊢z ⊢s (redₜ d) [σℕ] [σsm] (λ {t} {t′} [t] [t′] [t≡t′] → PE.subst₂ (λ x y → _ ⊢ x ≡ y) (PE.sym (singleSubstComp t σ F)) (PE.sym (singleSubstComp t′ σ F)) (≅-eq (escapeEq (proj₁ ([F] ⊢Δ ([σ] , [t]))) (proj₂ ([F] ⊢Δ ([σ] , [t])) ([σ] , [t′]) (reflSubst [Γ] ⊢Δ [σ] , [t≡t′]))))) ⇨∷* (conv* (natrec-suc ⊢m ⊢F ⊢z ⊢s ⇨ id (escapeTerm [σFₛₘ] natrecM′)) (sym (≅-eq (escapeEq [σFₙ] [Fₙ≡Fₛₘ])))) in proj₁ (redSubst*Term reduction [σFₙ] (convTerm₂ [σFₙ] [σFₛₘ] [Fₙ≡Fₛₘ] natrecM′)) natrecTerm {F} {z} {s} {n} {Γ} {Δ} {σ} {l} [Γ] [F] [F₀] [F₊] [z] [s] ⊢Δ [σ] (ιx (ℕₜ .zero d n≡n zeroᵣ)) = let [ℕ] = ℕᵛ {l = l} [Γ] [σℕ] = proj₁ ([ℕ] ⊢Δ [σ]) ⊢ℕ = escape (proj₁ ([ℕ] ⊢Δ [σ])) [σF] = proj₁ ([F] (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ])) ⊢F = escape [σF] ⊢z = PE.subst (λ x → _ ⊢ _ ∷ x) (singleSubstLift F zero) (escapeTerm (proj₁ ([F₀] ⊢Δ [σ])) (proj₁ ([z] ⊢Δ [σ]))) ⊢s = PE.subst (λ x → Δ ⊢ subst σ s ∷ x) (natrecSucCase σ F) (escapeTerm (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([s] ⊢Δ [σ]))) [σ0] = irrelevanceTerm {l = l} (ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) [σℕ] (ιx (ℕₜ zero (idRedTerm:*: (zeroⱼ ⊢Δ)) n≡n zeroᵣ)) [σn]′ , [σn≡σ0] = redSubst*Term (redₜ d) (proj₁ ([ℕ] ⊢Δ [σ])) [σ0] [σn] = ιx (ℕₜ zero d n≡n zeroᵣ) [σFₙ]′ = proj₁ ([F] ⊢Δ ([σ] , [σn])) [σFₙ] = irrelevance′ (PE.sym (singleSubstComp n σ F)) [σFₙ]′ [Fₙ≡F₀]′ = proj₂ ([F] ⊢Δ ([σ] , [σn])) ([σ] , [σ0]) (reflSubst [Γ] ⊢Δ [σ] , [σn≡σ0]) [Fₙ≡F₀] = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (PE.sym (substCompEq F)) [σFₙ]′ [σFₙ] [Fₙ≡F₀]′ [Fₙ≡F₀]″ = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (PE.trans (substConcatSingleton′ F) (PE.sym (singleSubstComp zero σ F))) [σFₙ]′ [σFₙ] [Fₙ≡F₀]′ [σz] = proj₁ ([z] ⊢Δ [σ]) reduction = natrec-subst* ⊢F ⊢z ⊢s (redₜ d) (proj₁ ([ℕ] ⊢Δ [σ])) [σ0] (λ {t} {t′} [t] [t′] [t≡t′] → PE.subst₂ (λ x y → _ ⊢ x ≡ y) (PE.sym (singleSubstComp t σ F)) (PE.sym (singleSubstComp t′ σ F)) (≅-eq (escapeEq (proj₁ ([F] ⊢Δ ([σ] , [t]))) (proj₂ ([F] ⊢Δ ([σ] , [t])) ([σ] , [t′]) (reflSubst [Γ] ⊢Δ [σ] , [t≡t′]))))) ⇨∷* (conv* (natrec-zero ⊢F ⊢z ⊢s ⇨ id ⊢z) (sym (≅-eq (escapeEq [σFₙ] [Fₙ≡F₀]″)))) in proj₁ (redSubst*Term reduction [σFₙ] (convTerm₂ [σFₙ] (proj₁ ([F₀] ⊢Δ [σ])) [Fₙ≡F₀] [σz])) natrecTerm {F} {z} {s} {n} {Γ} {Δ} {σ} {l} [Γ] [F] [F₀] [F₊] [z] [s] ⊢Δ [σ] (ιx (ℕₜ m d n≡n (ne (neNfₜ neM ⊢m m≡m)))) = let [ℕ] = ℕᵛ {l = l} [Γ] [σℕ] = proj₁ ([ℕ] ⊢Δ [σ]) ⊢ℕ = escape (proj₁ ([ℕ] ⊢Δ [σ])) [σn] = ιx (ℕₜ m d n≡n (ne (neNfₜ neM ⊢m m≡m))) [σF] = proj₁ ([F] (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ])) ⊢F = escape [σF] ⊢F≡F = escapeEq [σF] (reflEq [σF]) ⊢z = PE.subst (λ x → _ ⊢ _ ∷ x) (singleSubstLift F zero) (escapeTerm (proj₁ ([F₀] ⊢Δ [σ])) (proj₁ ([z] ⊢Δ [σ]))) ⊢z≡z = PE.subst (λ x → _ ⊢ _ ≅ _ ∷ x) (singleSubstLift F zero) (escapeTermEq (proj₁ ([F₀] ⊢Δ [σ])) (reflEqTerm (proj₁ ([F₀] ⊢Δ [σ])) (proj₁ ([z] ⊢Δ [σ])))) ⊢s = PE.subst (λ x → Δ ⊢ subst σ s ∷ x) (natrecSucCase σ F) (escapeTerm (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([s] ⊢Δ [σ]))) ⊢s≡s = PE.subst (λ x → Δ ⊢ subst σ s ≅ subst σ s ∷ x) (natrecSucCase σ F) (escapeTermEq (proj₁ ([F₊] ⊢Δ [σ])) (reflEqTerm (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([s] ⊢Δ [σ])))) [σm] = neuTerm [σℕ] neM ⊢m m≡m [σn]′ , [σn≡σm] = redSubst*Term (redₜ d) [σℕ] [σm] [σFₙ]′ = proj₁ ([F] ⊢Δ ([σ] , [σn])) [σFₙ] = irrelevance′ (PE.sym (singleSubstComp n σ F)) [σFₙ]′ [σFₘ] = irrelevance′ (PE.sym (singleSubstComp m σ F)) (proj₁ ([F] ⊢Δ ([σ] , [σm]))) [Fₙ≡Fₘ] = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (PE.sym (singleSubstComp m σ F)) [σFₙ]′ [σFₙ] ((proj₂ ([F] ⊢Δ ([σ] , [σn]))) ([σ] , [σm]) (reflSubst [Γ] ⊢Δ [σ] , [σn≡σm])) natrecM = neuTerm [σFₘ] (natrecₙ neM) (natrecⱼ ⊢F ⊢z ⊢s ⊢m) (~-natrec ⊢F≡F ⊢z≡z ⊢s≡s m≡m) reduction = natrec-subst* ⊢F ⊢z ⊢s (redₜ d) [σℕ] [σm] (λ {t} {t′} [t] [t′] [t≡t′] → PE.subst₂ (λ x y → _ ⊢ x ≡ y) (PE.sym (singleSubstComp t σ F)) (PE.sym (singleSubstComp t′ σ F)) (≅-eq (escapeEq (proj₁ ([F] ⊢Δ ([σ] , [t]))) (proj₂ ([F] ⊢Δ ([σ] , [t])) ([σ] , [t′]) (reflSubst [Γ] ⊢Δ [σ] , [t≡t′]))))) in proj₁ (redSubst*Term reduction [σFₙ] (convTerm₂ [σFₙ] [σFₘ] [Fₙ≡Fₘ] natrecM)) -- Reducibility of natural recursion congurence under a valid substitution equality. natrec-congTerm : ∀ {F F′ z z′ s s′ n m Γ Δ σ σ′ l} ([Γ] : ⊩ᵛ Γ) ([F] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F / _∙″_ {l = l} [Γ] (ℕᵛ [Γ])) ([F′] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F′ / _∙″_ {l = l} [Γ] (ℕᵛ [Γ])) ([F≡F′] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F ≡ F′ / _∙″_ {l = l} [Γ] (ℕᵛ [Γ]) / [F]) ([F₀] : Γ ⊩ᵛ⟨ l ⟩ F [ zero ] / [Γ]) ([F′₀] : Γ ⊩ᵛ⟨ l ⟩ F′ [ zero ] / [Γ]) ([F₀≡F′₀] : Γ ⊩ᵛ⟨ l ⟩ F [ zero ] ≡ F′ [ zero ] / [Γ] / [F₀]) ([F₊] : Γ ⊩ᵛ⟨ l ⟩ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) / [Γ]) ([F′₊] : Γ ⊩ᵛ⟨ l ⟩ Π ℕ ▹ (F′ ▹▹ F′ [ suc (var 0) ]↑) / [Γ]) ([F₊≡F₊′] : Γ ⊩ᵛ⟨ l ⟩ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) ≡ Π ℕ ▹ (F′ ▹▹ F′ [ suc (var 0) ]↑) / [Γ] / [F₊]) ([z] : Γ ⊩ᵛ⟨ l ⟩ z ∷ F [ zero ] / [Γ] / [F₀]) ([z′] : Γ ⊩ᵛ⟨ l ⟩ z′ ∷ F′ [ zero ] / [Γ] / [F′₀]) ([z≡z′] : Γ ⊩ᵛ⟨ l ⟩ z ≡ z′ ∷ F [ zero ] / [Γ] / [F₀]) ([s] : Γ ⊩ᵛ⟨ l ⟩ s ∷ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) / [Γ] / [F₊]) ([s′] : Γ ⊩ᵛ⟨ l ⟩ s′ ∷ Π ℕ ▹ (F′ ▹▹ F′ [ suc (var 0) ]↑) / [Γ] / [F′₊]) ([s≡s′] : Γ ⊩ᵛ⟨ l ⟩ s ≡ s′ ∷ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) / [Γ] / [F₊]) (⊢Δ : ⊢ Δ) ([σ] : Δ ⊩ˢ σ ∷ Γ / [Γ] / ⊢Δ) ([σ′] : Δ ⊩ˢ σ′ ∷ Γ / [Γ] / ⊢Δ) ([σ≡σ′] : Δ ⊩ˢ σ ≡ σ′ ∷ Γ / [Γ] / ⊢Δ / [σ]) ([σn] : Δ ⊩⟨ l ⟩ n ∷ ℕ / ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) ([σm] : Δ ⊩⟨ l ⟩ m ∷ ℕ / ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) ([σn≡σm] : Δ ⊩⟨ l ⟩ n ≡ m ∷ ℕ / ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) → Δ ⊩⟨ l ⟩ natrec (subst (liftSubst σ) F) (subst σ z) (subst σ s) n ≡ natrec (subst (liftSubst σ′) F′) (subst σ′ z′) (subst σ′ s′) m ∷ subst (liftSubst σ) F [ n ] / irrelevance′ (PE.sym (singleSubstComp n σ F)) (proj₁ ([F] ⊢Δ ([σ] , [σn]))) natrec-congTerm {F} {F′} {z} {z′} {s} {s′} {n} {m} {Γ} {Δ} {σ} {σ′} {l} [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] (ιx (ℕₜ .(suc n′) d n≡n (sucᵣ {n′} [n′]))) (ιx (ℕₜ .(suc m′) d′ m≡m (sucᵣ {m′} [m′]))) (ιx (ℕₜ₌ .(suc n″) .(suc m″) d₁ d₁′ t≡u (sucᵣ {n″} {m″} [n″≡m″]))) = let n″≡n′ = suc-PE-injectivity (whrDet*Term (redₜ d₁ , sucₙ) (redₜ d , sucₙ)) m″≡m′ = suc-PE-injectivity (whrDet*Term (redₜ d₁′ , sucₙ) (redₜ d′ , sucₙ)) [ℕ] = ℕᵛ {l = l} [Γ] [σℕ] = proj₁ ([ℕ] ⊢Δ [σ]) [σ′ℕ] = proj₁ ([ℕ] ⊢Δ [σ′]) [n′≡m′] = irrelevanceEqTerm″ n″≡n′ m″≡m′ PE.refl [σℕ] [σℕ] (ιx [n″≡m″]) [σn] = ℕₜ (suc n′) d n≡n (sucᵣ [n′]) [σ′m] = ℕₜ (suc m′) d′ m≡m (sucᵣ [m′]) [σn≡σ′m] = ℕₜ₌ (suc n″) (suc m″) d₁ d₁′ t≡u (sucᵣ [n″≡m″]) ⊢ℕ = escape [σℕ] ⊢F = escape (proj₁ ([F] (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ]))) ⊢z = PE.subst (λ x → _ ⊢ _ ∷ x) (singleSubstLift F zero) (escapeTerm (proj₁ ([F₀] ⊢Δ [σ])) (proj₁ ([z] ⊢Δ [σ]))) ⊢s = PE.subst (λ x → Δ ⊢ subst σ s ∷ x) (natrecSucCase σ F) (escapeTerm (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([s] ⊢Δ [σ]))) ⊢n′ = escapeTerm {l = l} [σℕ] (ιx [n′]) ⊢ℕ′ = escape [σ′ℕ] ⊢F′ = escape (proj₁ ([F′] (⊢Δ ∙ ⊢ℕ′) (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ′]))) ⊢z′ = PE.subst (λ x → _ ⊢ _ ∷ x) (singleSubstLift F′ zero) (escapeTerm (proj₁ ([F′₀] ⊢Δ [σ′])) (proj₁ ([z′] ⊢Δ [σ′]))) ⊢s′ = PE.subst (λ x → Δ ⊢ subst σ′ s′ ∷ x) (natrecSucCase σ′ F′) (escapeTerm (proj₁ ([F′₊] ⊢Δ [σ′])) (proj₁ ([s′] ⊢Δ [σ′]))) ⊢m′ = escapeTerm {l = l} [σ′ℕ] (ιx [m′]) [σsn′] = irrelevanceTerm {l = l} (ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) [σℕ] (ιx (ℕₜ (suc n′) (idRedTerm:*: (sucⱼ ⊢n′)) n≡n (sucᵣ [n′]))) [σn]′ , [σn≡σsn′] = redSubst*Term (redₜ d) [σℕ] [σsn′] [σFₙ]′ = proj₁ ([F] ⊢Δ ([σ] , ιx [σn])) [σFₙ] = irrelevance′ (PE.sym (singleSubstComp n σ F)) [σFₙ]′ [σFₛₙ′] = irrelevance′ (PE.sym (singleSubstComp (suc n′) σ F)) (proj₁ ([F] ⊢Δ ([σ] , [σsn′]))) [Fₙ≡Fₛₙ′] = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (PE.sym (singleSubstComp (suc n′) σ F)) [σFₙ]′ [σFₙ] (proj₂ ([F] ⊢Δ ([σ] , ιx [σn])) ([σ] , [σsn′]) (reflSubst [Γ] ⊢Δ [σ] , [σn≡σsn′])) [Fₙ≡Fₛₙ′]′ = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (natrecIrrelevantSubst F z s n′ σ) [σFₙ]′ [σFₙ] (proj₂ ([F] ⊢Δ ([σ] , ιx [σn])) ([σ] , [σsn′]) (reflSubst [Γ] ⊢Δ [σ] , [σn≡σsn′])) [σFₙ′] = irrelevance′ (PE.sym (PE.trans (substCompEq F) (substSingletonComp F))) (proj₁ ([F] ⊢Δ ([σ] , ιx [n′]))) [σFₛₙ′]′ = irrelevance′ (natrecIrrelevantSubst F z s n′ σ) (proj₁ ([F] ⊢Δ ([σ] , [σsn′]))) [σF₊ₙ′] = substSΠ₁ (proj₁ ([F₊] ⊢Δ [σ])) [σℕ] (ιx [n′]) [σ′sm′] = irrelevanceTerm {l = l} (ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) [σ′ℕ] (ιx (ℕₜ (suc m′) (idRedTerm:*: (sucⱼ ⊢m′)) m≡m (sucᵣ [m′]))) [σ′m]′ , [σ′m≡σ′sm′] = redSubst*Term (redₜ d′) [σ′ℕ] [σ′sm′] [σ′F′ₘ]′ = proj₁ ([F′] ⊢Δ ([σ′] , ιx [σ′m])) [σ′F′ₘ] = irrelevance′ (PE.sym (singleSubstComp m σ′ F′)) [σ′F′ₘ]′ [σ′Fₘ]′ = proj₁ ([F] ⊢Δ ([σ′] , ιx [σ′m])) [σ′Fₘ] = irrelevance′ (PE.sym (singleSubstComp m σ′ F)) [σ′Fₘ]′ [σ′F′ₛₘ′] = irrelevance′ (PE.sym (singleSubstComp (suc m′) σ′ F′)) (proj₁ ([F′] ⊢Δ ([σ′] , [σ′sm′]))) [F′ₘ≡F′ₛₘ′] = irrelevanceEq″ (PE.sym (singleSubstComp m σ′ F′)) (PE.sym (singleSubstComp (suc m′) σ′ F′)) [σ′F′ₘ]′ [σ′F′ₘ] (proj₂ ([F′] ⊢Δ ([σ′] , ιx [σ′m])) ([σ′] , [σ′sm′]) (reflSubst [Γ] ⊢Δ [σ′] , [σ′m≡σ′sm′])) [σ′Fₘ′] = irrelevance′ (PE.sym (PE.trans (substCompEq F) (substSingletonComp F))) (proj₁ ([F] ⊢Δ ([σ′] , ιx [m′]))) [σ′F′ₘ′] = irrelevance′ (PE.sym (PE.trans (substCompEq F′) (substSingletonComp F′))) (proj₁ ([F′] ⊢Δ ([σ′] , ιx [m′]))) [σ′F′ₛₘ′]′ = irrelevance′ (natrecIrrelevantSubst F′ z′ s′ m′ σ′) (proj₁ ([F′] ⊢Δ ([σ′] , [σ′sm′]))) [σ′F′₊ₘ′] = substSΠ₁ (proj₁ ([F′₊] ⊢Δ [σ′])) [σ′ℕ] (ιx [m′]) [σFₙ′≡σ′Fₘ′] = irrelevanceEq″ (PE.sym (singleSubstComp n′ σ F)) (PE.sym (singleSubstComp m′ σ′ F)) (proj₁ ([F] ⊢Δ ([σ] , ιx [n′]))) [σFₙ′] (proj₂ ([F] ⊢Δ ([σ] , ιx [n′])) ([σ′] , ιx [m′]) ([σ≡σ′] , [n′≡m′])) [σ′Fₘ′≡σ′F′ₘ′] = irrelevanceEq″ (PE.sym (singleSubstComp m′ σ′ F)) (PE.sym (singleSubstComp m′ σ′ F′)) (proj₁ ([F] ⊢Δ ([σ′] , ιx [m′]))) [σ′Fₘ′] ([F≡F′] ⊢Δ ([σ′] , ιx [m′])) [σFₙ′≡σ′F′ₘ′] = transEq [σFₙ′] [σ′Fₘ′] [σ′F′ₘ′] [σFₙ′≡σ′Fₘ′] [σ′Fₘ′≡σ′F′ₘ′] [σFₙ≡σ′Fₘ] = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (PE.sym (singleSubstComp m σ′ F)) (proj₁ ([F] ⊢Δ ([σ] , ιx [σn]))) [σFₙ] (proj₂ ([F] ⊢Δ ([σ] , ιx [σn])) ([σ′] , ιx [σ′m]) ([σ≡σ′] , ιx [σn≡σ′m])) [σ′Fₘ≡σ′F′ₘ] = irrelevanceEq″ (PE.sym (singleSubstComp m σ′ F)) (PE.sym (singleSubstComp m σ′ F′)) [σ′Fₘ]′ [σ′Fₘ] ([F≡F′] ⊢Δ ([σ′] , ιx [σ′m])) [σFₙ≡σ′F′ₘ] = transEq [σFₙ] [σ′Fₘ] [σ′F′ₘ] [σFₙ≡σ′Fₘ] [σ′Fₘ≡σ′F′ₘ] natrecN = appTerm [σFₙ′] [σFₛₙ′]′ [σF₊ₙ′] (appTerm [σℕ] [σF₊ₙ′] (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([s] ⊢Δ [σ])) (ιx [n′])) (natrecTerm {F} {z} {s} {n′} {σ = σ} [Γ] [F] [F₀] [F₊] [z] [s] ⊢Δ [σ] (ιx [n′])) natrecN′ = irrelevanceTerm′ (PE.trans (PE.sym (natrecIrrelevantSubst F z s n′ σ)) (PE.sym (singleSubstComp (suc n′) σ F))) [σFₛₙ′]′ [σFₛₙ′] natrecN natrecM = appTerm [σ′F′ₘ′] [σ′F′ₛₘ′]′ [σ′F′₊ₘ′] (appTerm [σ′ℕ] [σ′F′₊ₘ′] (proj₁ ([F′₊] ⊢Δ [σ′])) (proj₁ ([s′] ⊢Δ [σ′])) (ιx [m′])) (natrecTerm {F′} {z′} {s′} {m′} {σ = σ′} [Γ] [F′] [F′₀] [F′₊] [z′] [s′] ⊢Δ [σ′] (ιx [m′])) natrecM′ = irrelevanceTerm′ (PE.trans (PE.sym (natrecIrrelevantSubst F′ z′ s′ m′ σ′)) (PE.sym (singleSubstComp (suc m′) σ′ F′))) [σ′F′ₛₘ′]′ [σ′F′ₛₘ′] natrecM [σs≡σ′s] = proj₂ ([s] ⊢Δ [σ]) [σ′] [σ≡σ′] [σ′s≡σ′s′] = convEqTerm₂ (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([F₊] ⊢Δ [σ′])) (proj₂ ([F₊] ⊢Δ [σ]) [σ′] [σ≡σ′]) ([s≡s′] ⊢Δ [σ′]) [σs≡σ′s′] = transEqTerm (proj₁ ([F₊] ⊢Δ [σ])) [σs≡σ′s] [σ′s≡σ′s′] appEq = convEqTerm₂ [σFₙ] [σFₛₙ′]′ [Fₙ≡Fₛₙ′]′ (app-congTerm [σFₙ′] [σFₛₙ′]′ [σF₊ₙ′] (app-congTerm [σℕ] [σF₊ₙ′] (proj₁ ([F₊] ⊢Δ [σ])) [σs≡σ′s′] (ιx [n′]) (ιx [m′]) [n′≡m′]) (natrecTerm {F} {z} {s} {n′} {σ = σ} [Γ] [F] [F₀] [F₊] [z] [s] ⊢Δ [σ] (ιx [n′])) (convTerm₂ [σFₙ′] [σ′F′ₘ′] [σFₙ′≡σ′F′ₘ′] (natrecTerm {F′} {z′} {s′} {m′} {σ = σ′} [Γ] [F′] [F′₀] [F′₊] [z′] [s′] ⊢Δ [σ′] (ιx [m′]))) (natrec-congTerm {F} {F′} {z} {z′} {s} {s′} {n′} {m′} {σ = σ} [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] (ιx [n′]) (ιx [m′]) [n′≡m′])) reduction₁ = natrec-subst* ⊢F ⊢z ⊢s (redₜ d) [σℕ] [σsn′] (λ {t} {t′} [t] [t′] [t≡t′] → PE.subst₂ (λ x y → _ ⊢ x ≡ y) (PE.sym (singleSubstComp t σ F)) (PE.sym (singleSubstComp t′ σ F)) (≅-eq (escapeEq (proj₁ ([F] ⊢Δ ([σ] , [t]))) (proj₂ ([F] ⊢Δ ([σ] , [t])) ([σ] , [t′]) (reflSubst [Γ] ⊢Δ [σ] , [t≡t′]))))) ⇨∷* (conv* (natrec-suc ⊢n′ ⊢F ⊢z ⊢s ⇨ id (escapeTerm [σFₛₙ′] natrecN′)) (sym (≅-eq (escapeEq [σFₙ] [Fₙ≡Fₛₙ′])))) reduction₂ = natrec-subst* ⊢F′ ⊢z′ ⊢s′ (redₜ d′) [σ′ℕ] [σ′sm′] (λ {t} {t′} [t] [t′] [t≡t′] → PE.subst₂ (λ x y → _ ⊢ x ≡ y) (PE.sym (singleSubstComp t σ′ F′)) (PE.sym (singleSubstComp t′ σ′ F′)) (≅-eq (escapeEq (proj₁ ([F′] ⊢Δ ([σ′] , [t]))) (proj₂ ([F′] ⊢Δ ([σ′] , [t])) ([σ′] , [t′]) (reflSubst [Γ] ⊢Δ [σ′] , [t≡t′]))))) ⇨∷* (conv* (natrec-suc ⊢m′ ⊢F′ ⊢z′ ⊢s′ ⇨ id (escapeTerm [σ′F′ₛₘ′] natrecM′)) (sym (≅-eq (escapeEq [σ′F′ₘ] [F′ₘ≡F′ₛₘ′])))) eq₁ = proj₂ (redSubst*Term reduction₁ [σFₙ] (convTerm₂ [σFₙ] [σFₛₙ′] [Fₙ≡Fₛₙ′] natrecN′)) eq₂ = proj₂ (redSubst*Term reduction₂ [σ′F′ₘ] (convTerm₂ [σ′F′ₘ] [σ′F′ₛₘ′] [F′ₘ≡F′ₛₘ′] natrecM′)) in transEqTerm [σFₙ] eq₁ (transEqTerm [σFₙ] appEq (convEqTerm₂ [σFₙ] [σ′F′ₘ] [σFₙ≡σ′F′ₘ] (symEqTerm [σ′F′ₘ] eq₂))) natrec-congTerm {F} {F′} {z} {z′} {s} {s′} {n} {m} {Γ} {Δ} {σ} {σ′} {l} [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] (ιx (ℕₜ .zero d n≡n zeroᵣ)) (ιx (ℕₜ .zero d₁ m≡m zeroᵣ)) (ιx (ℕₜ₌ .zero .zero d₂ d′ t≡u zeroᵣ)) = let [ℕ] = ℕᵛ {l = l} [Γ] [σℕ] = proj₁ ([ℕ] ⊢Δ [σ]) ⊢ℕ = escape (proj₁ ([ℕ] ⊢Δ [σ])) ⊢F = escape (proj₁ ([F] {σ = liftSubst σ} (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ]))) ⊢z = PE.subst (λ x → _ ⊢ _ ∷ x) (singleSubstLift F zero) (escapeTerm (proj₁ ([F₀] ⊢Δ [σ])) (proj₁ ([z] ⊢Δ [σ]))) ⊢s = PE.subst (λ x → Δ ⊢ subst σ s ∷ x) (natrecSucCase σ F) (escapeTerm (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([s] ⊢Δ [σ]))) ⊢F′ = escape (proj₁ ([F′] {σ = liftSubst σ′} (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ′]))) ⊢z′ = PE.subst (λ x → _ ⊢ _ ∷ x) (singleSubstLift F′ zero) (escapeTerm (proj₁ ([F′₀] ⊢Δ [σ′])) (proj₁ ([z′] ⊢Δ [σ′]))) ⊢s′ = PE.subst (λ x → Δ ⊢ subst σ′ s′ ∷ x) (natrecSucCase σ′ F′) (escapeTerm (proj₁ ([F′₊] ⊢Δ [σ′])) (proj₁ ([s′] ⊢Δ [σ′]))) [σ0] = irrelevanceTerm {l = l} (ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) (proj₁ ([ℕ] ⊢Δ [σ])) (ιx (ℕₜ zero (idRedTerm:*: (zeroⱼ ⊢Δ)) n≡n zeroᵣ)) [σ′0] = irrelevanceTerm {l = l} (ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) (proj₁ ([ℕ] ⊢Δ [σ′])) (ιx (ℕₜ zero (idRedTerm:*: (zeroⱼ ⊢Δ)) m≡m zeroᵣ)) [σn]′ , [σn≡σ0] = redSubst*Term (redₜ d) (proj₁ ([ℕ] ⊢Δ [σ])) [σ0] [σ′m]′ , [σ′m≡σ′0] = redSubst*Term (redₜ d′) (proj₁ ([ℕ] ⊢Δ [σ′])) [σ′0] [σn] = ιx (ℕₜ zero d n≡n zeroᵣ) [σ′m] = ιx (ℕₜ zero d′ m≡m zeroᵣ) [σn≡σ′m] = ιx (ℕₜ₌ zero zero d₂ d′ t≡u zeroᵣ) [σn≡σ′0] = transEqTerm [σℕ] [σn≡σ′m] [σ′m≡σ′0] [σFₙ]′ = proj₁ ([F] ⊢Δ ([σ] , [σn])) [σFₙ] = irrelevance′ (PE.sym (singleSubstComp n σ F)) [σFₙ]′ [σ′Fₘ]′ = proj₁ ([F] ⊢Δ ([σ′] , [σ′m])) [σ′Fₘ] = irrelevance′ (PE.sym (singleSubstComp m σ′ F)) [σ′Fₘ]′ [σ′F′ₘ]′ = proj₁ ([F′] ⊢Δ ([σ′] , [σ′m])) [σ′F′ₘ] = irrelevance′ (PE.sym (singleSubstComp m σ′ F′)) [σ′F′ₘ]′ [σFₙ≡σ′Fₘ] = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (PE.sym (singleSubstComp m σ′ F)) [σFₙ]′ [σFₙ] (proj₂ ([F] ⊢Δ ([σ] , [σn])) ([σ′] , [σ′m]) ([σ≡σ′] , [σn≡σ′m])) [σ′Fₘ≡σ′F′ₘ] = irrelevanceEq″ (PE.sym (singleSubstComp m σ′ F)) (PE.sym (singleSubstComp m σ′ F′)) [σ′Fₘ]′ [σ′Fₘ] ([F≡F′] ⊢Δ ([σ′] , [σ′m])) [σFₙ≡σ′F′ₘ] = transEq [σFₙ] [σ′Fₘ] [σ′F′ₘ] [σFₙ≡σ′Fₘ] [σ′Fₘ≡σ′F′ₘ] [Fₙ≡F₀]′ = proj₂ ([F] ⊢Δ ([σ] , [σn])) ([σ] , [σ0]) (reflSubst [Γ] ⊢Δ [σ] , [σn≡σ0]) [Fₙ≡F₀] = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (PE.sym (substCompEq F)) [σFₙ]′ [σFₙ] [Fₙ≡F₀]′ [σFₙ≡σ′F₀]′ = proj₂ ([F] ⊢Δ ([σ] , [σn])) ([σ′] , [σ′0]) ([σ≡σ′] , [σn≡σ′0]) [σFₙ≡σ′F₀] = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (PE.sym (substCompEq F)) [σFₙ]′ [σFₙ] [σFₙ≡σ′F₀]′ [F′ₘ≡F′₀]′ = proj₂ ([F′] ⊢Δ ([σ′] , [σ′m])) ([σ′] , [σ′0]) (reflSubst [Γ] ⊢Δ [σ′] , [σ′m≡σ′0]) [F′ₘ≡F′₀] = irrelevanceEq″ (PE.sym (singleSubstComp m σ′ F′)) (PE.sym (substCompEq F′)) [σ′F′ₘ]′ [σ′F′ₘ] [F′ₘ≡F′₀]′ [Fₙ≡F₀]″ = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (PE.trans (substConcatSingleton′ F) (PE.sym (singleSubstComp zero σ F))) [σFₙ]′ [σFₙ] [Fₙ≡F₀]′ [F′ₘ≡F′₀]″ = irrelevanceEq″ (PE.sym (singleSubstComp m σ′ F′)) (PE.trans (substConcatSingleton′ F′) (PE.sym (singleSubstComp zero σ′ F′))) [σ′F′ₘ]′ [σ′F′ₘ] [F′ₘ≡F′₀]′ [σz] = proj₁ ([z] ⊢Δ [σ]) [σ′z′] = proj₁ ([z′] ⊢Δ [σ′]) [σz≡σ′z] = convEqTerm₂ [σFₙ] (proj₁ ([F₀] ⊢Δ [σ])) [Fₙ≡F₀] (proj₂ ([z] ⊢Δ [σ]) [σ′] [σ≡σ′]) [σ′z≡σ′z′] = convEqTerm₂ [σFₙ] (proj₁ ([F₀] ⊢Δ [σ′])) [σFₙ≡σ′F₀] ([z≡z′] ⊢Δ [σ′]) [σz≡σ′z′] = transEqTerm [σFₙ] [σz≡σ′z] [σ′z≡σ′z′] reduction₁ = natrec-subst* ⊢F ⊢z ⊢s (redₜ d) (proj₁ ([ℕ] ⊢Δ [σ])) [σ0] (λ {t} {t′} [t] [t′] [t≡t′] → PE.subst₂ (λ x y → _ ⊢ x ≡ y) (PE.sym (singleSubstComp t σ F)) (PE.sym (singleSubstComp t′ σ F)) (≅-eq (escapeEq (proj₁ ([F] ⊢Δ ([σ] , [t]))) (proj₂ ([F] ⊢Δ ([σ] , [t])) ([σ] , [t′]) (reflSubst [Γ] ⊢Δ [σ] , [t≡t′]))))) ⇨∷* (conv* (natrec-zero ⊢F ⊢z ⊢s ⇨ id ⊢z) (sym (≅-eq (escapeEq [σFₙ] [Fₙ≡F₀]″)))) reduction₂ = natrec-subst* ⊢F′ ⊢z′ ⊢s′ (redₜ d′) (proj₁ ([ℕ] ⊢Δ [σ′])) [σ′0] (λ {t} {t′} [t] [t′] [t≡t′] → PE.subst₂ (λ x y → _ ⊢ x ≡ y) (PE.sym (singleSubstComp t σ′ F′)) (PE.sym (singleSubstComp t′ σ′ F′)) (≅-eq (escapeEq (proj₁ ([F′] ⊢Δ ([σ′] , [t]))) (proj₂ ([F′] ⊢Δ ([σ′] , [t])) ([σ′] , [t′]) (reflSubst [Γ] ⊢Δ [σ′] , [t≡t′]))))) ⇨∷* (conv* (natrec-zero ⊢F′ ⊢z′ ⊢s′ ⇨ id ⊢z′) (sym (≅-eq (escapeEq [σ′F′ₘ] [F′ₘ≡F′₀]″)))) eq₁ = proj₂ (redSubst*Term reduction₁ [σFₙ] (convTerm₂ [σFₙ] (proj₁ ([F₀] ⊢Δ [σ])) [Fₙ≡F₀] [σz])) eq₂ = proj₂ (redSubst*Term reduction₂ [σ′F′ₘ] (convTerm₂ [σ′F′ₘ] (proj₁ ([F′₀] ⊢Δ [σ′])) [F′ₘ≡F′₀] [σ′z′])) in transEqTerm [σFₙ] eq₁ (transEqTerm [σFₙ] [σz≡σ′z′] (convEqTerm₂ [σFₙ] [σ′F′ₘ] [σFₙ≡σ′F′ₘ] (symEqTerm [σ′F′ₘ] eq₂))) natrec-congTerm {F} {F′} {z} {z′} {s} {s′} {n} {m} {Γ} {Δ} {σ} {σ′} {l} [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] (ιx (ℕₜ n′ d n≡n (ne (neNfₜ neN′ ⊢n′ n≡n₁)))) (ιx (ℕₜ m′ d′ m≡m (ne (neNfₜ neM′ ⊢m′ m≡m₁)))) (ιx (ℕₜ₌ n″ m″ d₁ d₁′ t≡u (ne (neNfₜ₌ x₂ x₃ prop₂)))) = let n″≡n′ = whrDet*Term (redₜ d₁ , ne x₂) (redₜ d , ne neN′) m″≡m′ = whrDet*Term (redₜ d₁′ , ne x₃) (redₜ d′ , ne neM′) [ℕ] = ℕᵛ {l = l} [Γ] [σℕ] = proj₁ ([ℕ] ⊢Δ [σ]) [σ′ℕ] = proj₁ ([ℕ] ⊢Δ [σ′]) [σn] = ℕₜ n′ d n≡n (ne (neNfₜ neN′ ⊢n′ n≡n₁)) [σ′m] = ℕₜ m′ d′ m≡m (ne (neNfₜ neM′ ⊢m′ m≡m₁)) [σn≡σ′m] = ℕₜ₌ n″ m″ d₁ d₁′ t≡u (ne (neNfₜ₌ x₂ x₃ prop₂)) ⊢ℕ = escape (proj₁ ([ℕ] ⊢Δ [σ])) [σF] = proj₁ ([F] (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ])) [σ′F] = proj₁ ([F] (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ′])) [σ′F′] = proj₁ ([F′] (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ′])) ⊢F = escape [σF] ⊢F≡F = escapeEq [σF] (reflEq [σF]) ⊢z = PE.subst (λ x → _ ⊢ _ ∷ x) (singleSubstLift F zero) (escapeTerm (proj₁ ([F₀] ⊢Δ [σ])) (proj₁ ([z] ⊢Δ [σ]))) ⊢z≡z = PE.subst (λ x → _ ⊢ _ ≅ _ ∷ x) (singleSubstLift F zero) (escapeTermEq (proj₁ ([F₀] ⊢Δ [σ])) (reflEqTerm (proj₁ ([F₀] ⊢Δ [σ])) (proj₁ ([z] ⊢Δ [σ])))) ⊢s = PE.subst (λ x → Δ ⊢ subst σ s ∷ x) (natrecSucCase σ F) (escapeTerm (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([s] ⊢Δ [σ]))) ⊢s≡s = PE.subst (λ x → Δ ⊢ subst σ s ≅ subst σ s ∷ x) (natrecSucCase σ F) (escapeTermEq (proj₁ ([F₊] ⊢Δ [σ])) (reflEqTerm (proj₁ ([F₊] ⊢Δ [σ])) (proj₁ ([s] ⊢Δ [σ])))) ⊢F′ = escape [σ′F′] ⊢F′≡F′ = escapeEq [σ′F′] (reflEq [σ′F′]) ⊢z′ = PE.subst (λ x → _ ⊢ _ ∷ x) (singleSubstLift F′ zero) (escapeTerm (proj₁ ([F′₀] ⊢Δ [σ′])) (proj₁ ([z′] ⊢Δ [σ′]))) ⊢z′≡z′ = PE.subst (λ x → _ ⊢ _ ≅ _ ∷ x) (singleSubstLift F′ zero) (escapeTermEq (proj₁ ([F′₀] ⊢Δ [σ′])) (reflEqTerm (proj₁ ([F′₀] ⊢Δ [σ′])) (proj₁ ([z′] ⊢Δ [σ′])))) ⊢s′ = PE.subst (λ x → Δ ⊢ subst σ′ s′ ∷ x) (natrecSucCase σ′ F′) (escapeTerm (proj₁ ([F′₊] ⊢Δ [σ′])) (proj₁ ([s′] ⊢Δ [σ′]))) ⊢s′≡s′ = PE.subst (λ x → Δ ⊢ subst σ′ s′ ≅ subst σ′ s′ ∷ x) (natrecSucCase σ′ F′) (escapeTermEq (proj₁ ([F′₊] ⊢Δ [σ′])) (reflEqTerm (proj₁ ([F′₊] ⊢Δ [σ′])) (proj₁ ([s′] ⊢Δ [σ′])))) ⊢σF≡σ′F = escapeEq [σF] (proj₂ ([F] {σ = liftSubst σ} (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ])) {σ′ = liftSubst σ′} (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ′]) (liftSubstSEq {F = ℕ} [Γ] ⊢Δ [ℕ] [σ] [σ≡σ′])) ⊢σz≡σ′z = PE.subst (λ x → _ ⊢ _ ≅ _ ∷ x) (singleSubstLift F zero) (escapeTermEq (proj₁ ([F₀] ⊢Δ [σ])) (proj₂ ([z] ⊢Δ [σ]) [σ′] [σ≡σ′])) ⊢σs≡σ′s = PE.subst (λ x → Δ ⊢ subst σ s ≅ subst σ′ s ∷ x) (natrecSucCase σ F) (escapeTermEq (proj₁ ([F₊] ⊢Δ [σ])) (proj₂ ([s] ⊢Δ [σ]) [σ′] [σ≡σ′])) ⊢σ′F≡⊢σ′F′ = escapeEq [σ′F] ([F≡F′] (⊢Δ ∙ ⊢ℕ) (liftSubstS {F = ℕ} [Γ] ⊢Δ [ℕ] [σ′])) ⊢σ′z≡⊢σ′z′ = PE.subst (λ x → _ ⊢ _ ≅ _ ∷ x) (singleSubstLift F zero) (≅-conv (escapeTermEq (proj₁ ([F₀] ⊢Δ [σ′])) ([z≡z′] ⊢Δ [σ′])) (sym (≅-eq (escapeEq (proj₁ ([F₀] ⊢Δ [σ])) (proj₂ ([F₀] ⊢Δ [σ]) [σ′] [σ≡σ′]))))) ⊢σ′s≡⊢σ′s′ = PE.subst (λ x → Δ ⊢ subst σ′ s ≅ subst σ′ s′ ∷ x) (natrecSucCase σ F) (≅-conv (escapeTermEq (proj₁ ([F₊] ⊢Δ [σ′])) ([s≡s′] ⊢Δ [σ′])) (sym (≅-eq (escapeEq (proj₁ ([F₊] ⊢Δ [σ])) (proj₂ ([F₊] ⊢Δ [σ]) [σ′] [σ≡σ′]))))) ⊢F≡F′ = ≅-trans ⊢σF≡σ′F ⊢σ′F≡⊢σ′F′ ⊢z≡z′ = ≅ₜ-trans ⊢σz≡σ′z ⊢σ′z≡⊢σ′z′ ⊢s≡s′ = ≅ₜ-trans ⊢σs≡σ′s ⊢σ′s≡⊢σ′s′ [σn′] = neuTerm [σℕ] neN′ ⊢n′ n≡n₁ [σn]′ , [σn≡σn′] = redSubst*Term (redₜ d) [σℕ] [σn′] [σFₙ]′ = proj₁ ([F] ⊢Δ ([σ] , ιx [σn])) [σFₙ] = irrelevance′ (PE.sym (singleSubstComp n σ F)) [σFₙ]′ [σFₙ′] = irrelevance′ (PE.sym (singleSubstComp n′ σ F)) (proj₁ ([F] ⊢Δ ([σ] , [σn′]))) [Fₙ≡Fₙ′] = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (PE.sym (singleSubstComp n′ σ F)) [σFₙ]′ [σFₙ] ((proj₂ ([F] ⊢Δ ([σ] , ιx [σn]))) ([σ] , [σn′]) (reflSubst [Γ] ⊢Δ [σ] , [σn≡σn′])) [σ′m′] = neuTerm [σ′ℕ] neM′ ⊢m′ m≡m₁ [σ′m]′ , [σ′m≡σ′m′] = redSubst*Term (redₜ d′) [σ′ℕ] [σ′m′] [σ′F′ₘ]′ = proj₁ ([F′] ⊢Δ ([σ′] , ιx [σ′m])) [σ′F′ₘ] = irrelevance′ (PE.sym (singleSubstComp m σ′ F′)) [σ′F′ₘ]′ [σ′Fₘ]′ = proj₁ ([F] ⊢Δ ([σ′] , ιx [σ′m])) [σ′Fₘ] = irrelevance′ (PE.sym (singleSubstComp m σ′ F)) [σ′Fₘ]′ [σ′F′ₘ′] = irrelevance′ (PE.sym (singleSubstComp m′ σ′ F′)) (proj₁ ([F′] ⊢Δ ([σ′] , [σ′m′]))) [F′ₘ≡F′ₘ′] = irrelevanceEq″ (PE.sym (singleSubstComp m σ′ F′)) (PE.sym (singleSubstComp m′ σ′ F′)) [σ′F′ₘ]′ [σ′F′ₘ] ((proj₂ ([F′] ⊢Δ ([σ′] , ιx [σ′m]))) ([σ′] , [σ′m′]) (reflSubst [Γ] ⊢Δ [σ′] , [σ′m≡σ′m′])) [σFₙ≡σ′Fₘ] = irrelevanceEq″ (PE.sym (singleSubstComp n σ F)) (PE.sym (singleSubstComp m σ′ F)) [σFₙ]′ [σFₙ] (proj₂ ([F] ⊢Δ ([σ] , ιx [σn])) ([σ′] , ιx [σ′m]) ([σ≡σ′] , ιx [σn≡σ′m])) [σ′Fₘ≡σ′F′ₘ] = irrelevanceEq″ (PE.sym (singleSubstComp m σ′ F)) (PE.sym (singleSubstComp m σ′ F′)) (proj₁ ([F] ⊢Δ ([σ′] , ιx [σ′m]))) [σ′Fₘ] ([F≡F′] ⊢Δ ([σ′] , ιx [σ′m])) [σFₙ≡σ′F′ₘ] = transEq [σFₙ] [σ′Fₘ] [σ′F′ₘ] [σFₙ≡σ′Fₘ] [σ′Fₘ≡σ′F′ₘ] [σFₙ′≡σ′Fₘ′] = transEq [σFₙ′] [σFₙ] [σ′F′ₘ′] (symEq [σFₙ] [σFₙ′] [Fₙ≡Fₙ′]) (transEq [σFₙ] [σ′F′ₘ] [σ′F′ₘ′] [σFₙ≡σ′F′ₘ] [F′ₘ≡F′ₘ′]) natrecN = neuTerm [σFₙ′] (natrecₙ neN′) (natrecⱼ ⊢F ⊢z ⊢s ⊢n′) (~-natrec ⊢F≡F ⊢z≡z ⊢s≡s n≡n₁) natrecM = neuTerm [σ′F′ₘ′] (natrecₙ neM′) (natrecⱼ ⊢F′ ⊢z′ ⊢s′ ⊢m′) (~-natrec ⊢F′≡F′ ⊢z′≡z′ ⊢s′≡s′ m≡m₁) natrecN≡M = convEqTerm₂ [σFₙ] [σFₙ′] [Fₙ≡Fₙ′] (neuEqTerm [σFₙ′] (natrecₙ neN′) (natrecₙ neM′) (natrecⱼ ⊢F ⊢z ⊢s ⊢n′) (conv (natrecⱼ ⊢F′ ⊢z′ ⊢s′ ⊢m′) (sym (≅-eq (escapeEq [σFₙ′] [σFₙ′≡σ′Fₘ′])))) (~-natrec ⊢F≡F′ ⊢z≡z′ ⊢s≡s′ (PE.subst₂ (λ x y → _ ⊢ x ~ y ∷ _) n″≡n′ m″≡m′ prop₂))) reduction₁ = natrec-subst* ⊢F ⊢z ⊢s (redₜ d) [σℕ] [σn′] (λ {t} {t′} [t] [t′] [t≡t′] → PE.subst₂ (λ x y → _ ⊢ x ≡ y) (PE.sym (singleSubstComp t σ F)) (PE.sym (singleSubstComp t′ σ F)) (≅-eq (escapeEq (proj₁ ([F] ⊢Δ ([σ] , [t]))) (proj₂ ([F] ⊢Δ ([σ] , [t])) ([σ] , [t′]) (reflSubst [Γ] ⊢Δ [σ] , [t≡t′]))))) reduction₂ = natrec-subst* ⊢F′ ⊢z′ ⊢s′ (redₜ d′) [σ′ℕ] [σ′m′] (λ {t} {t′} [t] [t′] [t≡t′] → PE.subst₂ (λ x y → _ ⊢ x ≡ y) (PE.sym (singleSubstComp t σ′ F′)) (PE.sym (singleSubstComp t′ σ′ F′)) (≅-eq (escapeEq (proj₁ ([F′] ⊢Δ ([σ′] , [t]))) (proj₂ ([F′] ⊢Δ ([σ′] , [t])) ([σ′] , [t′]) (reflSubst [Γ] ⊢Δ [σ′] , [t≡t′]))))) eq₁ = proj₂ (redSubst*Term reduction₁ [σFₙ] (convTerm₂ [σFₙ] [σFₙ′] [Fₙ≡Fₙ′] natrecN)) eq₂ = proj₂ (redSubst*Term reduction₂ [σ′F′ₘ] (convTerm₂ [σ′F′ₘ] [σ′F′ₘ′] [F′ₘ≡F′ₘ′] natrecM)) in transEqTerm [σFₙ] eq₁ (transEqTerm [σFₙ] natrecN≡M (convEqTerm₂ [σFₙ] [σ′F′ₘ] [σFₙ≡σ′F′ₘ] (symEqTerm [σ′F′ₘ] eq₂))) -- Refuting cases natrec-congTerm [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] [σn] (ιx (ℕₜ _ d₁ _ zeroᵣ)) (ιx (ℕₜ₌ _ _ d₂ d′ t≡u (sucᵣ prop₂))) = ⊥-elim (zero≢suc (whrDet*Term (redₜ d₁ , zeroₙ) (redₜ d′ , sucₙ))) natrec-congTerm [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] [σn] (ιx (ℕₜ n d₁ _ (ne (neNfₜ neK ⊢k k≡k)))) (ιx (ℕₜ₌ _ _ d₂ d′ t≡u (sucᵣ prop₂))) = ⊥-elim (suc≢ne neK (whrDet*Term (redₜ d′ , sucₙ) (redₜ d₁ , ne neK))) natrec-congTerm [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] (ιx (ℕₜ _ d _ zeroᵣ)) [σm] (ιx (ℕₜ₌ _ _ d₁ d′ t≡u (sucᵣ prop₂))) = ⊥-elim (zero≢suc (whrDet*Term (redₜ d , zeroₙ) (redₜ d₁ , sucₙ))) natrec-congTerm [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] (ιx (ℕₜ n d _ (ne (neNfₜ neK ⊢k k≡k)))) [σm] (ιx (ℕₜ₌ _ _ d₁ d′ t≡u (sucᵣ prop₂))) = ⊥-elim (suc≢ne neK (whrDet*Term (redₜ d₁ , sucₙ) (redₜ d , ne neK))) natrec-congTerm [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] (ιx (ℕₜ _ d _ (sucᵣ prop))) [σm] (ιx (ℕₜ₌ _ _ d₂ d′ t≡u zeroᵣ)) = ⊥-elim (zero≢suc (whrDet*Term (redₜ d₂ , zeroₙ) (redₜ d , sucₙ))) natrec-congTerm [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] [σn] (ιx (ℕₜ _ d₁ _ (sucᵣ prop₁))) (ιx (ℕₜ₌ _ _ d₂ d′ t≡u zeroᵣ)) = ⊥-elim (zero≢suc (whrDet*Term (redₜ d′ , zeroₙ) (redₜ d₁ , sucₙ))) natrec-congTerm [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] [σn] (ιx (ℕₜ n d₁ _ (ne (neNfₜ neK ⊢k k≡k)))) (ιx (ℕₜ₌ _ _ d₂ d′ t≡u zeroᵣ)) = ⊥-elim (zero≢ne neK (whrDet*Term (redₜ d′ , zeroₙ) (redₜ d₁ , ne neK))) natrec-congTerm [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] (ιx (ℕₜ n d _ (ne (neNfₜ neK ⊢k k≡k)))) [σm] (ιx (ℕₜ₌ _ _ d₂ d′ t≡u zeroᵣ)) = ⊥-elim (zero≢ne neK (whrDet*Term (redₜ d₂ , zeroₙ) (redₜ d , ne neK))) natrec-congTerm [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] (ιx (ℕₜ _ d _ (sucᵣ prop))) [σm] (ιx (ℕₜ₌ n₁ n′ d₂ d′ t≡u (ne (neNfₜ₌ x x₁ prop₂)))) = ⊥-elim (suc≢ne x (whrDet*Term (redₜ d , sucₙ) (redₜ d₂ , ne x))) natrec-congTerm [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] (ιx (ℕₜ _ d _ zeroᵣ)) [σm] (ιx (ℕₜ₌ n₁ n′ d₂ d′ t≡u (ne (neNfₜ₌ x x₁ prop₂)))) = ⊥-elim (zero≢ne x (whrDet*Term (redₜ d , zeroₙ) (redₜ d₂ , ne x))) natrec-congTerm [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] [σn] (ιx (ℕₜ _ d₁ _ (sucᵣ prop₁))) (ιx (ℕₜ₌ n₁ n′ d₂ d′ t≡u (ne (neNfₜ₌ x₁ x₂ prop₂)))) = ⊥-elim (suc≢ne x₂ (whrDet*Term (redₜ d₁ , sucₙ) (redₜ d′ , ne x₂))) natrec-congTerm [Γ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ′] [σ≡σ′] [σn] (ιx (ℕₜ _ d₁ _ zeroᵣ)) (ιx (ℕₜ₌ n₁ n′ d₂ d′ t≡u (ne (neNfₜ₌ x₁ x₂ prop₂)))) = ⊥-elim (zero≢ne x₂ (whrDet*Term (redₜ d₁ , zeroₙ) (redₜ d′ , ne x₂))) -- Validity of natural recursion. natrecᵛ : ∀ {F z s n Γ l} ([Γ] : ⊩ᵛ Γ) ([ℕ] : Γ ⊩ᵛ⟨ l ⟩ ℕ / [Γ]) ([F] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F / ([Γ] ∙′ [ℕ])) ([F₀] : Γ ⊩ᵛ⟨ l ⟩ F [ zero ] / [Γ]) ([F₊] : Γ ⊩ᵛ⟨ l ⟩ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) / [Γ]) ([Fₙ] : Γ ⊩ᵛ⟨ l ⟩ F [ n ] / [Γ]) → Γ ⊩ᵛ⟨ l ⟩ z ∷ F [ zero ] / [Γ] / [F₀] → Γ ⊩ᵛ⟨ l ⟩ s ∷ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) / [Γ] / [F₊] → ([n] : Γ ⊩ᵛ⟨ l ⟩ n ∷ ℕ / [Γ] / [ℕ]) → Γ ⊩ᵛ⟨ l ⟩ natrec F z s n ∷ F [ n ] / [Γ] / [Fₙ] natrecᵛ {F} {z} {s} {n} {l = l} [Γ] [ℕ] [F] [F₀] [F₊] [Fₙ] [z] [s] [n] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [F]′ = S.irrelevance {A = F} (_∙″_ {A = ℕ} [Γ] [ℕ]) (_∙″_ {l = l} [Γ] (ℕᵛ [Γ])) [F] [σn]′ = irrelevanceTerm {l′ = l} (proj₁ ([ℕ] ⊢Δ [σ])) (ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) (proj₁ ([n] ⊢Δ [σ])) n′ = subst σ n eqPrf = PE.trans (singleSubstComp n′ σ F) (PE.sym (PE.trans (substCompEq F) (substConcatSingleton′ F))) in irrelevanceTerm′ eqPrf (irrelevance′ (PE.sym (singleSubstComp n′ σ F)) (proj₁ ([F]′ ⊢Δ ([σ] , [σn]′)))) (proj₁ ([Fₙ] ⊢Δ [σ])) (natrecTerm {F} {z} {s} {n′} {σ = σ} [Γ] [F]′ [F₀] [F₊] [z] [s] ⊢Δ [σ] [σn]′) , (λ {σ′} [σ′] [σ≡σ′] → let [σ′n]′ = irrelevanceTerm {l′ = l} (proj₁ ([ℕ] ⊢Δ [σ′])) (ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) (proj₁ ([n] ⊢Δ [σ′])) [σn≡σ′n] = irrelevanceEqTerm {l′ = l} (proj₁ ([ℕ] ⊢Δ [σ])) (ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) (proj₂ ([n] ⊢Δ [σ]) [σ′] [σ≡σ′]) in irrelevanceEqTerm′ eqPrf (irrelevance′ (PE.sym (singleSubstComp n′ σ F)) (proj₁ ([F]′ ⊢Δ ([σ] , [σn]′)))) (proj₁ ([Fₙ] ⊢Δ [σ])) (natrec-congTerm {F} {F} {z} {z} {s} {s} {n′} {subst σ′ n} {σ = σ} [Γ] [F]′ [F]′ (reflᵛ {F} (_∙″_ {A = ℕ} {l = l} [Γ] (ℕᵛ [Γ])) [F]′) [F₀] [F₀] (reflᵛ {F [ zero ]} [Γ] [F₀]) [F₊] [F₊] (reflᵛ {Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑)} [Γ] [F₊]) [z] [z] (reflᵗᵛ {F [ zero ]} {z} [Γ] [F₀] [z]) [s] [s] (reflᵗᵛ {Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑)} {s} [Γ] [F₊] [s]) ⊢Δ [σ] [σ′] [σ≡σ′] [σn]′ [σ′n]′ [σn≡σ′n])) -- Validity of natural recursion congurence. natrec-congᵛ : ∀ {F F′ z z′ s s′ n n′ Γ l} ([Γ] : ⊩ᵛ Γ) ([ℕ] : Γ ⊩ᵛ⟨ l ⟩ ℕ / [Γ]) ([F] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F / ([Γ] ∙″ [ℕ])) ([F′] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F′ / ([Γ] ∙″ [ℕ])) ([F≡F′] : Γ ∙ ℕ ⊩ᵛ⟨ l ⟩ F ≡ F′ / [Γ] ∙″ [ℕ] / [F]) ([F₀] : Γ ⊩ᵛ⟨ l ⟩ F [ zero ] / [Γ]) ([F′₀] : Γ ⊩ᵛ⟨ l ⟩ F′ [ zero ] / [Γ]) ([F₀≡F′₀] : Γ ⊩ᵛ⟨ l ⟩ F [ zero ] ≡ F′ [ zero ] / [Γ] / [F₀]) ([F₊] : Γ ⊩ᵛ⟨ l ⟩ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) / [Γ]) ([F′₊] : Γ ⊩ᵛ⟨ l ⟩ Π ℕ ▹ (F′ ▹▹ F′ [ suc (var 0) ]↑) / [Γ]) ([F₊≡F′₊] : Γ ⊩ᵛ⟨ l ⟩ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) ≡ Π ℕ ▹ (F′ ▹▹ F′ [ suc (var 0) ]↑) / [Γ] / [F₊]) ([Fₙ] : Γ ⊩ᵛ⟨ l ⟩ F [ n ] / [Γ]) ([z] : Γ ⊩ᵛ⟨ l ⟩ z ∷ F [ zero ] / [Γ] / [F₀]) ([z′] : Γ ⊩ᵛ⟨ l ⟩ z′ ∷ F′ [ zero ] / [Γ] / [F′₀]) ([z≡z′] : Γ ⊩ᵛ⟨ l ⟩ z ≡ z′ ∷ F [ zero ] / [Γ] / [F₀]) ([s] : Γ ⊩ᵛ⟨ l ⟩ s ∷ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) / [Γ] / [F₊]) ([s′] : Γ ⊩ᵛ⟨ l ⟩ s′ ∷ Π ℕ ▹ (F′ ▹▹ F′ [ suc (var 0) ]↑) / [Γ] / [F′₊]) ([s≡s′] : Γ ⊩ᵛ⟨ l ⟩ s ≡ s′ ∷ Π ℕ ▹ (F ▹▹ F [ suc (var 0) ]↑) / [Γ] / [F₊]) ([n] : Γ ⊩ᵛ⟨ l ⟩ n ∷ ℕ / [Γ] / [ℕ]) ([n′] : Γ ⊩ᵛ⟨ l ⟩ n′ ∷ ℕ / [Γ] / [ℕ]) ([n≡n′] : Γ ⊩ᵛ⟨ l ⟩ n ≡ n′ ∷ ℕ / [Γ] / [ℕ]) → Γ ⊩ᵛ⟨ l ⟩ natrec F z s n ≡ natrec F′ z′ s′ n′ ∷ F [ n ] / [Γ] / [Fₙ] natrec-congᵛ {F} {F′} {z} {z′} {s} {s′} {n} {n′} {l = l} [Γ] [ℕ] [F] [F′] [F≡F′] [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [Fₙ] [z] [z′] [z≡z′] [s] [s′] [s≡s′] [n] [n′] [n≡n′] {Δ = Δ} {σ = σ} ⊢Δ [σ] = let [F]′ = S.irrelevance {A = F} (_∙″_ {A = ℕ} [Γ] [ℕ]) (_∙″_ {l = l} [Γ] (ℕᵛ [Γ])) [F] [F′]′ = S.irrelevance {A = F′} (_∙″_ {A = ℕ} [Γ] [ℕ]) (_∙″_ {l = l} [Γ] (ℕᵛ [Γ])) [F′] [F≡F′]′ = S.irrelevanceEq {A = F} {B = F′} (_∙″_ {A = ℕ} [Γ] [ℕ]) (_∙″_ {l = l} [Γ] (ℕᵛ [Γ])) [F] [F]′ [F≡F′] [σn]′ = irrelevanceTerm {l′ = l} (proj₁ ([ℕ] ⊢Δ [σ])) (ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) (proj₁ ([n] ⊢Δ [σ])) [σn′]′ = irrelevanceTerm {l′ = l} (proj₁ ([ℕ] ⊢Δ [σ])) (ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) (proj₁ ([n′] ⊢Δ [σ])) [σn≡σn′]′ = irrelevanceEqTerm {l′ = l} (proj₁ ([ℕ] ⊢Δ [σ])) (ℕᵣ (idRed:*: (ℕⱼ ⊢Δ))) ([n≡n′] ⊢Δ [σ]) [Fₙ]′ = irrelevance′ (PE.sym (singleSubstComp (subst σ n) σ F)) (proj₁ ([F]′ ⊢Δ ([σ] , [σn]′))) in irrelevanceEqTerm′ (PE.sym (singleSubstLift F n)) [Fₙ]′ (proj₁ ([Fₙ] ⊢Δ [σ])) (natrec-congTerm {F} {F′} {z} {z′} {s} {s′} {subst σ n} {subst σ n′} [Γ] [F]′ [F′]′ [F≡F′]′ [F₀] [F′₀] [F₀≡F′₀] [F₊] [F′₊] [F₊≡F′₊] [z] [z′] [z≡z′] [s] [s′] [s≡s′] ⊢Δ [σ] [σ] (reflSubst [Γ] ⊢Δ [σ]) [σn]′ [σn′]′ [σn≡σn′]′)
{ "alphanum_fraction": 0.3313304721, "avg_line_length": 60.2365236524, "ext": "agda", "hexsha": "f785938ee0b7228bde9e4c397c96a04d012660f8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Natrec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Natrec.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/LogicalRelation/Substitution/Introductions/Natrec.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 25125, "size": 54755 }
module Element where open import OscarPrelude record Element : Set where constructor ⟨_⟩ field element : Nat open Element public instance EqElement : Eq Element Eq._==_ EqElement ⟨ ε₁ ⟩ ⟨ ε₂ ⟩ with ε₁ ≟ ε₂ Eq._==_ EqElement ⟨ _ ⟩ ⟨ _ ⟩ | yes refl = yes refl Eq._==_ EqElement ⟨ _ ⟩ ⟨ _ ⟩ | no ε₁≢ε₂ = no λ {refl → ε₁≢ε₂ refl}
{ "alphanum_fraction": 0.6461988304, "avg_line_length": 19, "ext": "agda", "hexsha": "6d938acce313782e003202982149cd004756cda8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Element.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Element.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Element.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 127, "size": 342 }
{-# OPTIONS --type-in-type #-} module Selective.Theorems where open import Prelude.Equality open import Selective -- Now let's typecheck some theorems cong-handle : ∀ {A B} {F : Set → Set} {{_ : Selective F}} {x y : F (Either A B)} {f : F (A → B)} → x ≡ y → handle x f ≡ handle y f cong-handle refl = {!!} cong-handle-handler : ∀ {A B} {F : Set → Set} {{_ : Selective F}} {x : F (Either A B)} {f g : F (A → B)} → f ≡ g → handle x f ≡ handle x g cong-handle-handler refl = {!!} cong-ap-right : ∀ {A B} {F : Set → Set} {{_ : Applicative F}} {x y : F A} {f : F (A → B)} → x ≡ y → f <*> x ≡ f <*> y cong-ap-right refl = refl -- lemma : ∀ {A B} {F : Set → Set} {{_ : Applicative F}} -- {x : F A} {f : A → B} → -- pure (_$_) <*> pure f <*> x ≡ (pure f) <*> x -- lemma = refl -- Identity: pure id <*> v = v t1 : ∀ {A : Set} {F : Set → Set} {{_ : Selective F}} → (v : F A) → (apS (pure id) v) ≡ v t1 v = apS (pure id) v ≡⟨ refl ⟩ -- Definition of 'apS' handle (left <$> pure id) (flip (_$_) <$> v) ≡⟨ cong-handle fmap-pure-ap ⟩ handle (pure left <*> pure id) (flip (_$_) <$> v) ≡⟨ cong-handle ap-homomorphism ⟩ -- Push 'left' inside 'pure' handle (pure (left id)) (flip (_$_) <$> v) ≡⟨ p2 ⟩ -- Apply P2 (_$ id) <$> (flip (_$_) <$> v) ≡⟨ refl ⟩ let f = (_$ id) g = flip (_$_) in f <$> (g <$> v) ≡⟨ fmap-pure-ap ⟩ pure f <*> (g <$> v) ≡⟨ cong-ap-right fmap-pure-ap ⟩ pure f <*> (pure g <*> v) ≡⟨ refl ⟩ pure (_$ id) <*> (pure g <*> v) ≡⟨ {!?!} ⟩ -- ap-interchange (pure g <*> v) <*> pure id ≡⟨ refl ⟩ pure (λ x f -> f x) <*> v <*> pure id ≡⟨ {!!} ⟩ -- (f <$> g) <$> v -- ≡⟨ refl ⟩ -- (f ∘ g) <$> v -- ≡⟨ refl ⟩ -- ((_$ id) ∘ flip (_$_)) <$> v -- ≡⟨ refl ⟩ -- Simplify pure id <*> v ≡⟨ fmap-pure-ap ⟩ id <$> v ≡⟨ fmap-id ⟩ -- Functor identity: fmap id = id v ∎ t1' : ∀ {A : Set} {F : Set → Set} {{_ : Selective F}} → (v : F A) → (apS (pure id) v) ≡ v t1' v = apS (pure id) v ≡⟨ refl ⟩ -- Definition of 'apS' handle (left <$> pure id) (flip (_$_) <$> v) ≡⟨ cong-handle fmap-pure-ap ⟩ handle (pure left <*> pure id) (flip (_$_) <$> v) ≡⟨ cong-handle ap-homomorphism ⟩ -- Push 'left' inside 'pure' handle (pure (left id)) (flip (_$_) <$> v) ≡⟨ p2 ⟩ -- Apply P2 (_$ id) <$> (flip (_$_) <$> v) ≡⟨ refl ⟩ let f = (_$ id) g = flip (_$_) in f <$> (g <$> v) ≡⟨ {!!} ⟩ (f ∘ g) <$> v ≡⟨ refl ⟩ ((_$ id) ∘ flip (_$_)) <$> v ≡⟨ refl ⟩ -- Simplify id <$> v ≡⟨ fmap-id ⟩ -- Functor identity: fmap id = id v ∎ -- Homomorphism: pure f <*> pure x = pure (f x) t2 : ∀ {A B : Set} {F : Set → Set} {{_ : Selective F}} (f : A → B) (x : A) → (apS (pure {F} f) (pure x)) ≡ pure (f x) t2 f x = apS (pure f) (pure x) ≡⟨ refl ⟩ -- Definition of 'apS' handle (left <$> pure f) (flip (_$_) <$> pure x) ≡⟨ cong-handle fmap-pure-ap ⟩ -- Push 'Left' inside 'pure' handle (pure left <*> pure f) (flip (_$_) <$> pure x) ≡⟨ cong-handle ap-homomorphism ⟩ handle (pure (left f)) (flip (_$_) <$> pure x) ≡⟨ p2 ⟩ -- Apply P2 (_$ f) <$> (flip (_$_) <$> pure x) ≡⟨ {!?!} ⟩ -- Simplify f <$> pure x ≡⟨ fmap-pure-ap ⟩ pure f <*> pure x ≡⟨ ap-homomorphism ⟩ pure (f x) ∎ -- Interchange: u <*> pure y = pure ($y) <*> u t3 : ∀ {A B : Set} {F : Set → Set} {{_ : Selective F}} (f : F (A → B)) (x : A) → apS f (pure x) ≡ apS (pure (_$ x)) f t3 f x = {!!} -- === -- Express right-hand side of the theorem using 'apS' -- apS (pure ($y)) u -- === -- Definition of 'apS' -- handle (Left <$> pure ($y)) (flip ($) <$> u) -- === -- Push 'Left' inside 'pure' -- handle (pure (Left ($y))) (flip ($) <$> u) -- === -- Apply P2 -- ($($y)) <$> (flip ($) <$> u) -- === -- Simplify, obtaining (#) -- ($y) <$> u either-left-lemma : ∀ {A B C : Set} {x : A} {f : A → C} {g : B → C} → either f g (left x) ≡ f x either-left-lemma = refl either-left-lemma1 : ∀ {A B C : Set} {F : Set → Set} {{_ : Functor F}} → {x : F A} {f : A → C} {g : B → C} → (either f g <$> (fmap {F = F} left x)) ≡ (f <$> x) either-left-lemma1 = {!!} t3-lhs-lemma : ∀ {A B : Set} {F : Set → Set} {{_ : Selective F}} (f : F (A → B)) (x : A) → apS f (pure x) ≡ ((_$ x) <$> f) t3-lhs-lemma {A} {B} f x = apS f (pure x) ≡⟨ refl ⟩ -- Definition of 'apS' handle (left <$> f) (flip (_$_) <$> pure x) ≡⟨ cong-handle-handler fmap-pure-ap ⟩ -- Rewrite to have a pure handler handle (left <$> f) (pure (flip (_$_)) <*> pure x) ≡⟨ cong-handle-handler ap-homomorphism ⟩ handle (left <$> f) (pure (flip (_$_) x)) ≡⟨ cong-handle-handler refl ⟩ handle (left <$> f) (pure (_$ x)) ≡⟨ p1 ⟩ -- Apply P1 either (_$ x) id <$> (left <$> f) ≡⟨ {!!} ⟩ (_$ x) <$> f ∎ -- -- Express the lefthand side using 'apS' -- apS u (pure y) -- === -- Definition of 'apS' -- handle (Left <$> u) (flip ($) <$> pure y) -- === -- Rewrite to have a pure handler -- handle (Left <$> u) (pure ($y)) -- === -- Apply P1 -- either ($y) id <$> (Left <$> u) -- === -- Simplify, obtaining (#) -- ($y) <$> u
{ "alphanum_fraction": 0.3937218233, "avg_line_length": 35.8622754491, "ext": "agda", "hexsha": "d6f0a6c7918fa813908f1d3d797eb6c613eecb40", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4af28af701b65b45900bba2d92a526ce44a3be63", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "tuura/selective-theory-agda", "max_forks_repo_path": "src/Selective/Theorems.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4af28af701b65b45900bba2d92a526ce44a3be63", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "tuura/selective-theory-agda", "max_issues_repo_path": "src/Selective/Theorems.agda", "max_line_length": 78, "max_stars_count": 7, "max_stars_repo_head_hexsha": "4af28af701b65b45900bba2d92a526ce44a3be63", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "tuura/selective-theory-agda", "max_stars_repo_path": "src/Selective/Theorems.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-22T12:31:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-07-11T14:42:19.000Z", "num_tokens": 2104, "size": 5989 }
open import Prelude hiding (_≤_) open import Data.Nat.Properties open import Induction.Nat module Implicits.Resolution.GenericFinite.Examples.Haskell where open import Implicits.Resolution.GenericFinite.TerminationCondition open import Implicits.Resolution.GenericFinite.Resolution open import Implicits.Resolution.GenericFinite.Algorithm open import Implicits.Syntax open import Implicits.Syntax.Type.Unification open import Implicits.Resolution.Termination open import Implicits.Substitutions haskellCondition : TerminationCondition haskellCondition = record { TCtx = ∃ Type ; _<_ = _hρ<_ ; _<?_ = λ { (_ , x) (_ , y) → x hρ<? y } ; step = λ Φ Δ a b τ → , a ; wf-< = hρ<-well-founded } open ResolutionRules haskellCondition public open ResolutionAlgorithm haskellCondition public module Deterministic⊆HaskellFinite where open import Implicits.Resolution.Deterministic.Resolution as D open import Data.Nat hiding (_<_) open import Data.Nat.Properties open import Relation.Binary using (module DecTotalOrder) open import Extensions.ListFirst open DecTotalOrder decTotalOrder using () renaming (refl to ≤-refl; trans to ≤-trans) module F = ResolutionRules haskellCondition module M = MetaTypeMetaSubst lem₆ : ∀ {ν μ} (a : Type ν) (b : Type (suc μ)) c → (, a) hρ< (, b) → (, a) hρ< (, b tp[/tp c ]) lem₆ a b c p = ≤-trans p (h||a/s|| b (TypeSubst.sub c)) where open SubstSizeLemmas lem₅ : ∀ {ν μ} {Δ : ICtx ν} {b τ} (a : Type μ) → Δ ⊢ b ↓ τ → (, a) hρ< (, b) → (, a) hρ< (, simpl τ) lem₅ {τ = τ} a (i-simp .τ) q = q lem₅ a (i-iabs _ p) q = lem₅ a p q lem₅ a (i-tabs {ρ = b} c p) q = lem₅ a p (lem₆ a b c q) -- Oliveira's termination condition is part of the well-formdness of types -- So we assume here that ⊢term x holds for all types x mutual lem : ∀ {ν} {Δ : ICtx ν} {a r g} → (∀ {ν} (a : Type ν) → ⊢term a) → (, simpl a) hρ≤ g → Δ D.⊢ r ↓ a → Δ F., g ⊢ r ↓ a lem all-⊢term q (i-simp a) = i-simp a lem {a = a} {g = g}all-⊢term q (i-iabs {ρ₁ = ρ₁} {ρ₂ = ρ₂} ⊢ρ₁ ρ₂↓a) with all-⊢term (ρ₁ ⇒ ρ₂) lem {a = a} {g = g} all-⊢term q (i-iabs {ρ₁ = ρ₁} {ρ₂ = ρ₂} ⊢ρ₁ ρ₂↓a) | term-iabs _ _ a-hρ<-b _ = i-iabs ρ₁<g (complete' (, ρ₁) all-⊢term ⊢ρ₁ ≤-refl) (lem all-⊢term q ρ₂↓a) where ρ₁<g : (, ρ₁) hρ< g ρ₁<g = ≤-trans (lem₅ ρ₁ ρ₂↓a a-hρ<-b) q lem all-⊢term q (i-tabs b p) = i-tabs b (lem all-⊢term q p) complete' : ∀ {ν} {a : Type ν} {Δ : ICtx ν} → (g : ∃ Type) → (∀ {ν} (a : Type ν) → ⊢term a) → Δ D.⊢ᵣ a → (, a) hρ≤ g → Δ F., g ⊢ᵣ a complete' g all-⊢term (r-simp x p) q = r-simp (proj₁ $ first⟶∈ x) (lem all-⊢term q p) complete' g all-⊢term (r-iabs ρ₁ p) q = r-iabs ρ₁ (complete' g all-⊢term p q) complete' g all-⊢term (r-tabs p) q = r-tabs (complete' g all-⊢term p q) complete : ∀ {ν} {a : Type ν} {Δ : ICtx ν} → (∀ {ν} (a : Type ν) → ⊢term a) → Δ D.⊢ᵣ a → Δ F., (, a) ⊢ᵣ a complete all-⊢term p = complete' _ all-⊢term p ≤-refl
{ "alphanum_fraction": 0.6072377158, "avg_line_length": 41.8333333333, "ext": "agda", "hexsha": "165a4e0e653a98859c17c96899ca8d3ca20c0552", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/GenericFinite/Examples/Haskell.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/GenericFinite/Examples/Haskell.agda", "max_line_length": 102, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/GenericFinite/Examples/Haskell.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 1230, "size": 3012 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Setoids.Setoids open import Sets.EquivalenceRelations open import Groups.Definition module Groups.Subgroups.Examples {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) where open import Groups.Subgroups.Definition G open import Groups.Lemmas G open Group G open Setoid S open Equivalence eq trivialSubgroupPred : A → Set b trivialSubgroupPred a = (a ∼ 0G) trivialSubgroup : Subgroup trivialSubgroupPred Subgroup.isSubset trivialSubgroup x=y x=0 = transitive (symmetric x=y) x=0 Subgroup.closedUnderPlus trivialSubgroup x=0 y=0 = transitive (+WellDefined x=0 y=0) identLeft Subgroup.containsIdentity trivialSubgroup = reflexive Subgroup.closedUnderInverse trivialSubgroup x=0 = transitive (inverseWellDefined x=0) invIdent improperSubgroupPred : A → Set improperSubgroupPred a = True improperSubgroup : Subgroup improperSubgroupPred Subgroup.isSubset improperSubgroup _ _ = record {} Subgroup.closedUnderPlus improperSubgroup _ _ = record {} Subgroup.containsIdentity improperSubgroup = record {} Subgroup.closedUnderInverse improperSubgroup _ = record {}
{ "alphanum_fraction": 0.785472973, "avg_line_length": 34.8235294118, "ext": "agda", "hexsha": "09bb189b74f98f3ae145d8063705790cd242bab8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Subgroups/Examples.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Subgroups/Examples.agda", "max_line_length": 119, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Subgroups/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 327, "size": 1184 }
module nat where data N : Set where zero : N suc : N -> N _+_ : N -> N -> N n + zero = n n + (suc m) = suc (n + m) _*_ : N -> N -> N n * zero = zero n * (suc m) = (m * n) + m
{ "alphanum_fraction": 0.4371584699, "avg_line_length": 13.0714285714, "ext": "agda", "hexsha": "034e4c86817c034e57fbeaab49991c282c3212b9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2f064f660d6f3ce5fc3e5b05e8f096fa4b26c717", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "uedatakumi/nat", "max_forks_repo_path": "nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2f064f660d6f3ce5fc3e5b05e8f096fa4b26c717", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "uedatakumi/nat", "max_issues_repo_path": "nat.agda", "max_line_length": 25, "max_stars_count": 1, "max_stars_repo_head_hexsha": "2f064f660d6f3ce5fc3e5b05e8f096fa4b26c717", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "uedatakumi/nat", "max_stars_repo_path": "nat.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-02T15:31:17.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-02T15:31:17.000Z", "num_tokens": 83, "size": 183 }
module _ where module N (_ : Set₁) where data D : Set₁ where c : Set → D open N Set using (D) renaming (module D to MD) open import Common.Equality -- No longer two ways to qualify twoWaysToQualify : D.c ≡ MD.c twoWaysToQualify = refl
{ "alphanum_fraction": 0.685483871, "avg_line_length": 14.5882352941, "ext": "agda", "hexsha": "17bf74db7481498f956e8e146072e5cdf341c2be", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue836a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue836a.agda", "max_line_length": 46, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue836a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 80, "size": 248 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.Strict2Group.Explicit.Notation where open import Cubical.Foundations.Prelude hiding (comp) open import Cubical.Data.Group.Base module S2GBaseNotation {ℓ : Level} (C₀ C₁ : Group ℓ) (s t : morph C₁ C₀) (i : morph C₀ C₁) (∘ : (g f : Group.type C₁) → (s .fst) g ≡ (t .fst f) → Group.type C₁) where -- group operations of the object group TC₀ = Group.type C₀ 1₀ = isGroup.id (Group.groupStruc C₀) _∙₀_ = isGroup.comp (Group.groupStruc C₀) C₀⁻¹ = isGroup.inv (Group.groupStruc C₀) rUnit₀ = isGroup.rUnit (Group.groupStruc C₀) lUnit₀ = isGroup.lUnit (Group.groupStruc C₀) assoc₀ = isGroup.assoc (Group.groupStruc C₀) lCancel₀ = isGroup.lCancel (Group.groupStruc C₀) rCancel₀ = isGroup.lCancel (Group.groupStruc C₀) -- group operation of the morphism group TC₁ = Group.type C₁ 1₁ = isGroup.id (Group.groupStruc C₁) C₁⁻¹ = isGroup.inv (Group.groupStruc C₁) _∙₁_ = isGroup.comp (Group.groupStruc C₁) rUnit₁ = isGroup.rUnit (Group.groupStruc C₁) lUnit₁ = isGroup.lUnit (Group.groupStruc C₁) assoc₁ = isGroup.assoc (Group.groupStruc C₁) lCancel₁ = isGroup.lCancel (Group.groupStruc C₁) rCancel₁ = isGroup.lCancel (Group.groupStruc C₁) -- interface for source, target and identity map src = fst s src∙₁ = snd s tar = fst t tar∙₁ = snd t id = fst i id∙₀ = snd i ∙c : {g f g' f' : Group.type C₁} → (coh1 : s .fst g ≡ t .fst f) → (coh2 : s .fst g' ≡ t .fst f') → s .fst (g ∙₁ g') ≡ t .fst (f ∙₁ f') ∙c {g} {f} {g'} {f'} coh1 coh2 = (s .snd g g') ∙ ((cong (_∙₀ (s .fst g')) coh1) ∙ (cong ((t .fst f) ∙₀_) coh2) ∙ (sym (t .snd f f'))) -- for two morphisms the condition for them to be composable CohCond : (g f : TC₁) → Type ℓ CohCond g f = src g ≡ tar f
{ "alphanum_fraction": 0.6549375709, "avg_line_length": 38.3043478261, "ext": "agda", "hexsha": "a0e026bb9c1aa1872d184687aa1606ea78dafe39", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/Data/Strict2Group/Explicit/Notation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/Data/Strict2Group/Explicit/Notation.agda", "max_line_length": 166, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/Data/Strict2Group/Explicit/Notation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 680, "size": 1762 }
------------------------------------------------------------------------ -- Application of substitutions ------------------------------------------------------------------------ -- Given an operation which applies a substitution to a term, subject -- to some conditions, more operations and lemmas are defined/proved. -- (This module reexports various other modules.) open import Data.Universe.Indexed module deBruijn.Substitution.Data.Application {i u e} {Uni : IndexedUniverse i u e} where import deBruijn.Substitution.Data.Application.Application open deBruijn.Substitution.Data.Application.Application {_} {_} {_} {Uni} public import deBruijn.Substitution.Data.Application.Application21 open deBruijn.Substitution.Data.Application.Application21 {_} {_} {_} {Uni} public import deBruijn.Substitution.Data.Application.Application22 open deBruijn.Substitution.Data.Application.Application22 {_} {_} {_} {Uni} public import deBruijn.Substitution.Data.Application.Application1 open deBruijn.Substitution.Data.Application.Application1 {_} {_} {_} {Uni} public
{ "alphanum_fraction": 0.688723206, "avg_line_length": 39.7407407407, "ext": "agda", "hexsha": "a390dbd92a0143b11e7a7fc746f4452a5df0ecf9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/dependently-typed-syntax", "max_forks_repo_path": "deBruijn/Substitution/Data/Application.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/dependently-typed-syntax", "max_issues_repo_path": "deBruijn/Substitution/Data/Application.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/dependently-typed-syntax", "max_stars_repo_path": "deBruijn/Substitution/Data/Application.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z", "num_tokens": 226, "size": 1073 }
---------------------------------------------------------------------------- -- Well-founded induction on the natural numbers ---------------------------------------------------------------------------- {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.FOTC.Data.Nat.Induction.NonAcc.WF-I where open import FOTC.Base open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI open import FOTC.Data.Nat.Type ------------------------------------------------------------------------------ -- Well-founded induction postulate <-wfind₁ : (A : D → Set) → (∀ {n} → N n → (∀ {m} → N m → m < n → A m) → A n) → ∀ {n} → N n → A n postulate PN : ∀ {n m} → N n → m < n → N m -- Well-founded induction removing N m from the second line. <-wfind₂ : (A : D → Set) → (∀ {n} → N n → (∀ {m} → m < n → A m) → A n) → ∀ {n} → N n → A n <-wfind₂ A h = <-wfind₁ A (λ Nn' h' → h Nn' (λ p → h' (PN Nn' p) p)) -- Well-founded induction removing N n from the second line. <-wfind₃ : (A : D → Set) → (∀ {n} → (∀ {m} → N m → m < n → A m) → A n) → ∀ {n} → N n → A n <-wfind₃ A h = <-wfind₁ A (λ Nn' h' → h h')
{ "alphanum_fraction": 0.4299201162, "avg_line_length": 35.3076923077, "ext": "agda", "hexsha": "caf58ddc55b1f303aa357a76e46ecd1167916253", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/FOTC/Data/Nat/Induction/NonAcc/WF-I.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/FOTC/Data/Nat/Induction/NonAcc/WF-I.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/FOTC/Data/Nat/Induction/NonAcc/WF-I.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 408, "size": 1377 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Property that elements are grouped ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.Grouped where open import Data.List using (List; []; _∷_; map) open import Data.List.Relation.Unary.All as All using (All; []; _∷_; all) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_) open import Relation.Binary as B using (REL; Rel) open import Relation.Unary as U using (Pred) open import Relation.Nullary using (¬_; yes) open import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Sum using (_⊎-dec_) open import Relation.Nullary.Product using (_×-dec_) open import Relation.Nullary.Negation using (¬?) open import Level using (_⊔_) infixr 5 _∷≉_ _∷≈_ data Grouped {a ℓ} {A : Set a} (_≈_ : Rel A ℓ) : Pred (List A) (a ⊔ ℓ) where [] : Grouped _≈_ [] _∷≉_ : ∀ {x xs} → All (λ y → ¬ (x ≈ y)) xs → Grouped _≈_ xs → Grouped _≈_ (x ∷ xs) _∷≈_ : ∀ {x y xs} → x ≈ y → Grouped _≈_ (y ∷ xs) → Grouped _≈_ (x ∷ y ∷ xs) module _ {a ℓ} {A : Set a} {_≈_ : Rel A ℓ} where grouped? : B.Decidable _≈_ → U.Decidable (Grouped _≈_) grouped? _≟_ [] = yes [] grouped? _≟_ (x ∷ []) = yes ([] ∷≉ []) grouped? _≟_ (x ∷ y ∷ xs) = map′ from to ((x ≟ y ⊎-dec all (λ z → ¬? (x ≟ z)) (y ∷ xs)) ×-dec (grouped? _≟_ (y ∷ xs))) where from : ((x ≈ y) ⊎ All (λ z → ¬ (x ≈ z)) (y ∷ xs)) × Grouped _≈_ (y ∷ xs) → Grouped _≈_ (x ∷ y ∷ xs) from (inj₁ x≈y , grouped[y∷xs]) = x≈y ∷≈ grouped[y∷xs] from (inj₂ all[x≉,y∷xs] , grouped[y∷xs]) = all[x≉,y∷xs] ∷≉ grouped[y∷xs] to : Grouped _≈_ (x ∷ y ∷ xs) → ((x ≈ y) ⊎ All (λ z → ¬ (x ≈ z)) (y ∷ xs)) × Grouped _≈_ (y ∷ xs) to (all[x≉,y∷xs] ∷≉ grouped[y∷xs]) = inj₂ all[x≉,y∷xs] , grouped[y∷xs] to (x≈y ∷≈ grouped[y∷xs]) = inj₁ x≈y , grouped[y∷xs]
{ "alphanum_fraction": 0.5313295976, "avg_line_length": 46.7380952381, "ext": "agda", "hexsha": "c898c23e402c4f25564d0f48adda7655a2bf39ba", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Grouped.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Grouped.agda", "max_line_length": 126, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/Grouped.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 770, "size": 1963 }
-- Convert between `X` and `X-Bool` {-# OPTIONS --without-K --safe --exact-split #-} module Constructive.Axiom.Properties.Bool where -- agda-stdlib open import Level renaming (suc to lsuc; zero to lzero) open import Data.Empty open import Data.Unit using (⊤; tt) open import Data.Bool using (Bool; true; false; not) open import Data.Sum as Sum open import Data.Product as Prod open import Function.Base open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; subst; sym; cong) -- agda-misc open import Constructive.Axiom open import Constructive.Combinators open import Constructive.Common private toBool : ∀ {a p} {A : Set a} {P : A → Set p} → DecU P → (A → Bool) toBool P? x = ⌊ dec⊎⇒dec (P? x) ⌋ toDecU : ∀ {a} p {A : Set a} (P : A → Bool) → DecU (λ x → lift {ℓ = p} (P x) ≡ lift true) toDecU p P x with P x ... | false = inj₂ (λ ()) ... | true = inj₁ refl lift-injective : ∀ {a ℓ} {A : Set a} {x y : A} → lift {ℓ = ℓ} x ≡ lift y → x ≡ y lift-injective refl = refl lift-injective′ : ∀ {a ℓ} {A : Set a} {P : A → Bool} → ∃ (λ x → lift {ℓ = ℓ} (P x) ≡ lift true) → ∃ (λ x → P x ≡ true) lift-injective′ = Prod.map₂ lift-injective lift-cong′ : ∀ {a p} {A : Set a} {P : A → Bool} → ∃ (λ x → P x ≡ true) → ∃ (λ x → lift (P x) ≡ lift true) lift-cong′ {p = p} (x , y) = x , cong (lift {ℓ = p}) y module _ {a p} {A : Set a} {P : A → Set p} (P? : DecU P) where from-eq : ∀ x → toBool P? x ≡ true → P x from-eq x eq with P? x from-eq x eq | inj₁ Px = Px from-eq x () | inj₂ ¬Px equal-refl : (∃P : ∃ P) → toBool P? (proj₁ ∃P) ≡ true equal-refl (x , Px) with P? x ... | inj₁ _ = refl ... | inj₂ ¬Px = ⊥-elim $ ¬Px Px ∃eq⇒∃P : (∃ λ x → toBool P? x ≡ true) → ∃ P ∃eq⇒∃P (x , eq) = x , from-eq x eq ∃P⇒∃eq : ∃ P → ∃ λ x → toBool P? x ≡ true ∃P⇒∃eq ∃P@(x , Px) = x , equal-refl ∃P -- LPO <=> LPO-Bool lpo⇒lpo-Bool : ∀ {a p} {A : Set a} → LPO A p → LPO-Bool A lpo⇒lpo-Bool {a} {p} lpo P = Sum.map lift-injective′ (contraposition lift-cong′) $ lpo (toDecU p P) lpo-Bool⇒lpo : ∀ {a} p {A : Set a} → LPO-Bool A → LPO A p lpo-Bool⇒lpo p lpo-Bool P? = Sum.map (∃eq⇒∃P P?) (contraposition (∃P⇒∃eq P?)) $ lpo-Bool (toBool P?) -- LLPO <=> LLPO-Bool llpo⇒llpo-Bool : ∀ {a p} {A : Set a} → LLPO A p → LLPO-Bool A llpo⇒llpo-Bool {a} {p} llpo P Q h = Sum.map (contraposition lift-cong′) (contraposition lift-cong′) $ llpo (toDecU p P) (toDecU p Q) (contraposition (Prod.map lift-injective′ lift-injective′) h) llpo-Bool⇒llpo : ∀ {a} p {A : Set a} → LLPO-Bool A → LLPO A p llpo-Bool⇒llpo p llpo-Bool P? Q? ¬[∃P×∃Q] = Sum.map (contraposition (∃P⇒∃eq P?)) (contraposition (∃P⇒∃eq Q?)) $ llpo-Bool (toBool P?) (toBool Q?) (contraposition (Prod.map (∃eq⇒∃P P?) (∃eq⇒∃P Q?)) ¬[∃P×∃Q]) -- MP⊎ <=> MP⊎-Bool mp⊎⇒mp⊎-Bool : ∀ {a p} {A : Set a} → MP⊎ A p → MP⊎-Bool A mp⊎⇒mp⊎-Bool {a} {p} mp⊎ P Q ¬[¬∃Peq׬∃Qeq] = Sum.map (DN-map lift-injective′) (DN-map lift-injective′) $ mp⊎ (toDecU p P) (toDecU p Q) (contraposition (λ {(u , v) → contraposition lift-cong′ u , contraposition lift-cong′ v}) ¬[¬∃Peq׬∃Qeq]) mp⊎-Bool⇒mp⊎ : ∀ {a} p {A : Set a} → MP⊎-Bool A → MP⊎ A p mp⊎-Bool⇒mp⊎ p mp⊎-Bool P? Q? ¬[¬∃P׬Q] = Sum.map (DN-map (∃eq⇒∃P P?)) (DN-map (∃eq⇒∃P Q?)) $ mp⊎-Bool (toBool P?) (toBool Q?) (contraposition (Prod.map (contraposition (∃P⇒∃eq P?)) (contraposition (∃P⇒∃eq Q?))) ¬[¬∃P׬Q]) -- LPO-Bool <=> LPO-Bool-Alt private not-injective : ∀ {x y} → not x ≡ not y → x ≡ y not-injective {false} {false} refl = refl not-injective {false} {true} () not-injective {true} {false} () not-injective {true} {true} refl = refl x≡false⇒x≢true : ∀ {x} → x ≡ false → x ≢ true x≡false⇒x≢true {false} refl () not[x]≢true⇒x≡true : ∀ {x} → not x ≢ true → x ≡ true not[x]≢true⇒x≡true {false} neq = ⊥-elim $ neq refl not[x]≢true⇒x≡true {true} _ = refl not[x]≡true→x≢true : ∀ {x} → not x ≡ true → x ≢ true not[x]≡true→x≢true notx≡true = x≡false⇒x≢true (not-injective notx≡true) x≢true⇒x≡false : ∀ {x} → x ≢ true → x ≡ false x≢true⇒x≡false {false} neq = refl x≢true⇒x≡false {true} neq = ⊥-elim $ neq refl lpo-Bool⇒lpo-Bool-Alt : ∀ {a} {A : Set a} → LPO-Bool A → LPO-Bool-Alt A lpo-Bool⇒lpo-Bool-Alt lpo-Bool P = Sum.map (Prod.map₂ not-injective) (λ ¬∃notPx≡true x → not[x]≢true⇒x≡true $ ¬∃P→∀¬P ¬∃notPx≡true x) $ lpo-Bool (not ∘ P) lpo-Bool-Alt⇒lpo-Bool : ∀ {a} {A : Set a} → LPO-Bool-Alt A → LPO-Bool A lpo-Bool-Alt⇒lpo-Bool lpo-Bool-Alt P = Sum.map (Prod.map₂ not-injective) (λ ∀x→notPx≡true → ∀¬P→¬∃P λ x → not[x]≡true→x≢true $ ∀x→notPx≡true x) $ lpo-Bool-Alt (not ∘ P)
{ "alphanum_fraction": 0.5486026731, "avg_line_length": 36.3088235294, "ext": "agda", "hexsha": "887f90a17d4c385f9beca7dd2282d28b8b1627f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Constructive/Axiom/Properties/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Constructive/Axiom/Properties/Bool.agda", "max_line_length": 82, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Constructive/Axiom/Properties/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 2255, "size": 4938 }
{-# OPTIONS --cubical #-} open import Agda.Builtin.Cubical.Path data D : Set where c : D data E : Set where c : (x y : E) → x ≡ y postulate A : Set f : (x y : E) → x ≡ y → (u v : A) → u ≡ v works : E → A works (c x y i) = f x y (E.c x y) (works x) (works y) i fails : E → A fails (c x y i) = f x y ( c x y) (fails x) (fails y) i
{ "alphanum_fraction": 0.5087209302, "avg_line_length": 17.2, "ext": "agda", "hexsha": "c8f1e9e655790049c8e7629351fde08ed0e1d491", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Succeed/Issue4404.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue4404.agda", "max_line_length": 55, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue4404.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 151, "size": 344 }
module Selective.Examples.TestCall where open import Selective.Libraries.Call open import Prelude AddReplyMessage : MessageType AddReplyMessage = ValueType UniqueTag ∷ [ ValueType ℕ ]ˡ AddReply : InboxShape AddReply = [ AddReplyMessage ]ˡ AddMessage : MessageType AddMessage = ValueType UniqueTag ∷ ReferenceType AddReply ∷ ValueType ℕ ∷ [ ValueType ℕ ]ˡ Calculator : InboxShape Calculator = [ AddMessage ]ˡ calculatorActor : ∀ {i} → ∞ActorM (↑ i) Calculator (Lift (lsuc lzero) ⊤) [] (λ _ → []) calculatorActor .force = receive ∞>>= λ { (Msg Z (tag ∷ _ ∷ n ∷ m ∷ [])) .force → (Z ![t: Z ] (lift tag ∷ [ lift (n + m) ]ᵃ)) ∞>> (do strengthen [] calculatorActor) ; (Msg (S ()) _) } TestBox : InboxShape TestBox = AddReply calltestActor : ∀{i} → ∞ActorM i TestBox (Lift (lsuc lzero) ℕ) [] (λ _ → []) calltestActor .force = spawn∞ calculatorActor ∞>> do x ← call Z Z 0 ((lift 10) ∷ [ lift 32 ]ᵃ) ⊆-refl Z strengthen [] return-result x where return-result : SelectedMessage {TestBox} (call-select 0 [ Z ]ᵐ Z) → ∀ {i} → ∞ActorM i TestBox (Lift (lsuc lzero) ℕ) [] (λ _ → []) return-result record { msg = (Msg Z (tag ∷ n ∷ [])) } = return n return-result record { msg = (Msg (S x) x₁) ; msg-ok = () }
{ "alphanum_fraction": 0.6143637783, "avg_line_length": 31.243902439, "ext": "agda", "hexsha": "6139cc7fbb7156f16b612fef0e5410fbfd128214", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/singly-typed-actors", "max_forks_repo_path": "src/Selective/Examples/TestCall.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/singly-typed-actors", "max_issues_repo_path": "src/Selective/Examples/TestCall.agda", "max_line_length": 90, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ae541df13d069df4eb1464f29fbaa9804aad439f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/thesis", "max_stars_repo_path": "src/Selective/Examples/TestCall.agda", "max_stars_repo_stars_event_max_datetime": "2018-02-02T16:44:43.000Z", "max_stars_repo_stars_event_min_datetime": "2018-02-02T16:44:43.000Z", "num_tokens": 430, "size": 1281 }
open import Common.Level open import Common.Prelude open import Common.Reflection open import Common.Equality postulate a b : Level data Check : Set where check : (x y : Term) → x ≡ y → Check pattern _==_ x y = check x y refl pattern `a = def (quote a) [] pattern `b = def (quote b) [] pattern `suc x = def (quote lsuc) (vArg x ∷ []) pattern _`⊔_ x y = def (quote _⊔_) (vArg x ∷ vArg y ∷ []) t₀ = quoteTerm Set₃ == sort (lit 3) t₁ = quoteTerm (Set a) == sort (set `a) t₂ = quoteTerm (Set (lsuc b)) == sort (set (`suc `b)) t₃ = quoteTerm (Set (a ⊔ b)) == sort (set (`a `⊔ `b))
{ "alphanum_fraction": 0.6149914821, "avg_line_length": 24.4583333333, "ext": "agda", "hexsha": "cb5aaea3c61879cf3492b9a1b3ff4e85025c37ed", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1207.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1207.agda", "max_line_length": 57, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1207.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 217, "size": 587 }