Search is not available for this dataset
text
string
meta
dict
-- For the first task, we are asked to prove that max is idempotent and -- associative. The proves presented in this file are as succint as they -- possibly can. The proves come with added comments to aid understanding as -- the proves are meant to be short and simple but not very legible. The -- solution to task 1 starts in lines 44 and 51. module sv20.assign2.First where open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong) open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.Nat using (_≤_; z≤n; s≤s; _<_) open import Relation.Nullary using (¬_) open import Data.Empty using (⊥-elim) open import Function using (_∘_) -- First, we define the max function. Notice, how the function differs from the -- definition offered for the assignment max : ℕ → ℕ → ℕ max zero n = n max (suc m) zero = suc m max (suc m) (suc n) = suc (max m n) -- Nonetheless, we can prove that the definition of max presented in the -- assignment follows from ours. -- In athena, the first part of the definition corresponds to the sentence -- "y < x ==> x max y = x", which translated into Agda corresponds to: less : ∀ {x y} → y < x → max x y ≡ x -- and it is easily proven by: less {zero} () -- Nonesense case less {suc m} {zero} (s≤s z≤n) = refl -- Simplest case, y ≡ 0 less {suc m} {suc n} (s≤s n<m) = cong suc (less n<m) -- if "n < m → max m n ≡ m" then "suc n < suc m → max (suc m) (suc n) ≡ (suc m)" -- The second part of the definition asserts (in Athena) that -- "~ y < x ==> x max y = y" not-less : ∀ {x y} → ¬ (y < x) → max x y ≡ y -- which is easily proven by induction with: not-less {zero} {n} ¬y<x = refl -- Base case 1 not-less {suc m} {zero} ¬z<sm = ⊥-elim (¬z<sm (s≤s z≤n)) -- Base case 2 not-less {suc m} {suc n} ¬sn<sm = cong suc (not-less (¬sn<sm ∘ s≤s)) -- Inductive case --not-less {suc m} {suc n} ¬sn<sm = cong suc (not-less {m} {n} (λ n<m → ¬sn<sm (s≤s n<m))) -- The pattern ¬sn<sm ∘ s≤s means that you are creating a function ¬n<m from ¬sn<sm -- SOLUTIONS -- max is idempotent -- By induction: max-idem : ∀ x → max x x ≡ x max-idem zero = refl -- Base case: max 0 0 ≡ 0 max-idem (suc n) = cong suc (max-idem n) -- Inductive case: if "max n n ≡ n" then "max (suc n) (suc n) ≡ suc n" because "max (suc n) (suc n) ≡ suc (max n n)" -- max is associative -- By induction: max-assoc : ∀ x y z → max x (max y z) ≡ max (max x y) z max-assoc zero _ _ = refl -- Base cases: when one of the numbers is 0, then "max 0 n ≡ n" by definition of max max-assoc (suc m) zero _ = refl -- max-assoc (suc m) (suc n) zero = refl -- max-assoc (suc m) (suc n) (suc o) = cong suc (max-assoc m n o) -- Inductive case: if "max m (max n o) ≡ max (max m n) o" then "max (suc m) (max (suc n) (suc o)) ≡ suc (max m (max n o)) ≡ suc (max (max m n) o) ≡ max (max (suc m) (suc n)) (suc o)"
{ "alphanum_fraction": 0.6208088489, "avg_line_length": 50.7543859649, "ext": "agda", "hexsha": "fbd4be5763e0b9a94611c3f764d5c78a7080145b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/sv20/assign2/First.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/sv20/assign2/First.agda", "max_line_length": 245, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/sv20/assign2/First.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1026, "size": 2893 }
module PiFrac.Examples where open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.Sum open import Data.Product open import Data.Nat open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Maybe open import PiFrac.Syntax open import PiFrac.Opsem open import PiFrac.Eval ----------------------------------------------------------------------------- -- Patterns and data definitions pattern 𝔹 = 𝟙 +ᵤ 𝟙 pattern 𝔽 = inj₁ tt pattern 𝕋 = inj₂ tt 𝔹^ : ℕ → 𝕌 𝔹^ 0 = 𝟙 𝔹^ 1 = 𝔹 𝔹^ (suc (suc n)) = 𝔹 ×ᵤ 𝔹^ (suc n) ----------------------------------------------------------------------------- -- Adaptors [A+B]+C=[C+B]+A : ∀ {A B C} → (A +ᵤ B) +ᵤ C ↔ (C +ᵤ B) +ᵤ A [A+B]+C=[C+B]+A = assocr₊ ⨾ (id↔ ⊕ swap₊) ⨾ swap₊ [A+B]+C=[A+C]+B : ∀ {A B C} → (A +ᵤ B) +ᵤ C ↔ (A +ᵤ C) +ᵤ B [A+B]+C=[A+C]+B = assocr₊ ⨾ (id↔ ⊕ swap₊) ⨾ assocl₊ [A+B]+[C+D]=[A+C]+[B+D] : {A B C D : 𝕌} → (A +ᵤ B) +ᵤ (C +ᵤ D) ↔ (A +ᵤ C) +ᵤ (B +ᵤ D) [A+B]+[C+D]=[A+C]+[B+D] = assocl₊ ⨾ (assocr₊ ⊕ id↔) ⨾ ((id↔ ⊕ swap₊) ⊕ id↔) ⨾ (assocl₊ ⊕ id↔) ⨾ assocr₊ Ax[BxC]=Bx[AxC] : {A B C : 𝕌} → A ×ᵤ (B ×ᵤ C) ↔ B ×ᵤ (A ×ᵤ C) Ax[BxC]=Bx[AxC] = assocl⋆ ⨾ (swap⋆ ⊗ id↔) ⨾ assocr⋆ [AxB]×C=[A×C]xB : ∀ {A B C} → (A ×ᵤ B) ×ᵤ C ↔ (A ×ᵤ C) ×ᵤ B [AxB]×C=[A×C]xB = assocr⋆ ⨾ (id↔ ⊗ swap⋆) ⨾ assocl⋆ [A×B]×[C×D]=[A×C]×[B×D] : {A B C D : 𝕌} → (A ×ᵤ B) ×ᵤ (C ×ᵤ D) ↔ (A ×ᵤ C) ×ᵤ (B ×ᵤ D) [A×B]×[C×D]=[A×C]×[B×D] = assocl⋆ ⨾ (assocr⋆ ⊗ id↔) ⨾ ((id↔ ⊗ swap⋆) ⊗ id↔) ⨾ (assocl⋆ ⊗ id↔) ⨾ assocr⋆ -- CNOT(b₁,b₂) = (b₁,b₁ xor b₂) CNOT : 𝔹 ×ᵤ 𝔹 ↔ 𝔹 ×ᵤ 𝔹 CNOT = dist ⨾ (id↔ ⊕ (id↔ ⊗ swap₊)) ⨾ factor -- Trace trace⋆ : ∀ {A B C} → (c : ⟦ C ⟧) → A ×ᵤ C ↔ B ×ᵤ C → A ↔ B trace⋆ c f = uniti⋆r ⨾ (id↔ ⊗ ηₓ c) ⨾ assocl⋆ ⨾ (f ⊗ id↔) ⨾ assocr⋆ ⨾ (id↔ ⊗ εₓ _) ⨾ unite⋆r ex1 ex2 : Maybe ⟦ 𝟙 +ᵤ 𝟙 ⟧ ex1 = eval (trace⋆ (inj₁ tt) swap⋆) (inj₁ tt) -- just (inj₁ tt) ex2 = eval (trace⋆ (inj₁ tt) swap⋆) (inj₂ tt) -- nothing ----------------------------------------------------------------------------- -- Higher-Order Combinators hof/ : {A B : 𝕌} → (A ↔ B) → (v : ⟦ A ⟧) → (𝟙 ↔ 𝟙/ v ×ᵤ B) hof/ c v = ηₓ v ⨾ (c ⊗ id↔) ⨾ swap⋆ comp/ : {A B C : 𝕌} {v : ⟦ A ⟧} → (w : ⟦ B ⟧) → (𝟙/ v ×ᵤ B) ×ᵤ (𝟙/ w ×ᵤ C) ↔ (𝟙/ v ×ᵤ C) comp/ w = assocl⋆ ⨾ (assocr⋆ ⊗ id↔) ⨾ ((id↔ ⊗ εₓ w) ⊗ id↔) ⨾ (unite⋆r ⊗ id↔) app/ : {A B : 𝕌} → (v : ⟦ A ⟧) → (𝟙/ v ×ᵤ B) ×ᵤ A ↔ B app/ v = swap⋆ ⨾ assocl⋆ ⨾ (εₓ _ ⊗ id↔) ⨾ unite⋆l curry/ : {A B C : 𝕌} → (A ×ᵤ B ↔ C) → (v : ⟦ B ⟧) → (A ↔ 𝟙/ v ×ᵤ C) curry/ c v = uniti⋆l ⨾ (ηₓ v ⊗ id↔) ⨾ swap⋆ ⨾ assocl⋆ ⨾ (c ⊗ id↔) ⨾ swap⋆ -- h.o. version of cnot specialized to input input (v , w) htf : ∀ (v w : _) → 𝟙 ↔ 𝟙/ (v , w) ×ᵤ (𝔹 ×ᵤ 𝔹) htf v w = hof/ CNOT (v , w) -- applying htf to incoming input htfc : ∀ (v w : _) → (𝔹 ×ᵤ 𝔹) ↔ (𝔹 ×ᵤ 𝔹) htfc v w = uniti⋆l ⨾ (htf v w ⊗ id↔) ⨾ app/ (v , w) htfca : ⟦ 𝔹 ×ᵤ 𝔹 ⟧ → Maybe ⟦ 𝔹 ×ᵤ 𝔹 ⟧ htfca (v , w) = eval (htfc v w) (v , w) x1 x2 x3 x4 : Maybe ⟦ 𝔹 ×ᵤ 𝔹 ⟧ x1 = htfca (𝔽 , 𝔽) -- just (𝔽 , 𝔽) x2 = htfca (𝔽 , 𝕋) -- just (𝔽 , 𝕋) x3 = htfca (𝕋 , 𝔽) -- just (𝕋 , 𝕋) x4 = htfca (𝕋 , 𝕋) -- just (𝕋 , 𝔽) ----------------------------------------------------------------------------- -- Algebraic Identities inv/ : {A : 𝕌} {v : ⟦ A ⟧} → A ↔ (𝟙/_ {𝟙/ v} ↻) inv/ = uniti⋆r ⨾ (id↔ ⊗ ηₓ _) ⨾ assocl⋆ ⨾ (εₓ _ ⊗ id↔) ⨾ unite⋆l dist/ : {A B : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} → 𝟙/ (a , b) ↔ 𝟙/ a ×ᵤ 𝟙/ b dist/ {A} {B} {a} {b} = uniti⋆l ⨾ (ηₓ b ⊗ id↔) ⨾ uniti⋆l ⨾ (ηₓ a ⊗ id↔) ⨾ assocl⋆ ⨾ ([A×B]×[C×D]=[A×C]×[B×D] ⊗ id↔) ⨾ (swap⋆ ⊗ id↔) ⨾ assocr⋆ ⨾ (id↔ ⊗ εₓ (a , b)) ⨾ unite⋆r neg/ : {A B : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} → (A ↔ B) → (𝟙/ a ↔ 𝟙/ b) neg/ {A} {B} {a} {b} c = uniti⋆r ⨾ (id↔ ⊗ ηₓ _) ⨾ (id↔ ⊗ (! c) ⊗ id↔) ⨾ assocl⋆ ⨾ ((swap⋆ ⨾ εₓ _) ⊗ id↔) ⨾ unite⋆l fracDist : ∀ {A B} {a : ⟦ A ⟧} {b : ⟦ B ⟧} → 𝟙/ a ×ᵤ 𝟙/ b ↔ 𝟙/ (a , b) fracDist = uniti⋆l ⨾ ((ηₓ _ ⨾ swap⋆) ⊗ id↔) ⨾ assocr⋆ ⨾ (id↔ ⊗ ([A×B]×[C×D]=[A×C]×[B×D] ⨾ (εₓ _ ⊗ εₓ _) ⨾ unite⋆l)) ⨾ unite⋆r mulFrac : ∀ {A B C D} {b : ⟦ B ⟧} {d : ⟦ D ⟧} → (A ×ᵤ 𝟙/ b) ×ᵤ (C ×ᵤ 𝟙/ d) ↔ (A ×ᵤ C) ×ᵤ (𝟙/ (b , d)) mulFrac = [A×B]×[C×D]=[A×C]×[B×D] ⨾ (id↔ ⊗ fracDist) addFracCom : ∀ {A B C} {v : ⟦ C ⟧} → (A ×ᵤ 𝟙/ v) +ᵤ (B ×ᵤ 𝟙/ v) ↔ (A +ᵤ B) ×ᵤ (𝟙/ v) addFracCom = factor addFrac : ∀ {A B C D} → (v : ⟦ C ⟧) → (w : ⟦ D ⟧) → (A ×ᵤ 𝟙/_ {C} v) +ᵤ (B ×ᵤ 𝟙/_ {D} w) ↔ ((A ×ᵤ D) +ᵤ (C ×ᵤ B)) ×ᵤ (𝟙/_ {C ×ᵤ D} (v , w)) addFrac v w = ((uniti⋆r ⨾ (id↔ ⊗ ηₓ w)) ⊕ (uniti⋆l ⨾ (ηₓ v ⊗ id↔))) ⨾ [A×B]×[C×D]=[A×C]×[B×D] ⊕ [A×B]×[C×D]=[A×C]×[B×D] ⨾ ((id↔ ⊗ fracDist) ⊕ (id↔ ⊗ fracDist)) ⨾ factor
{ "alphanum_fraction": 0.4122977346, "avg_line_length": 34.8496240602, "ext": "agda", "hexsha": "016251245ced9595fd206c4eb1b2a13baa26dcd0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "PiFrac/Examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "PiFrac/Examples.agda", "max_line_length": 103, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "PiFrac/Examples.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2915, "size": 4635 }
------------------------------------------------------------------------------ -- The map-iterate property: A property using co-induction ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- The map-iterate property (Gibbons and Hutton, 2005): -- map f (iterate f x) = iterate f (f · x) module FOTC.Program.MapIterate.MapIterateATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.List open import FOTC.Relation.Binary.Bisimilarity.Type ------------------------------------------------------------------------------ -- The map-iterate property. ≈-map-iterate : ∀ f x → map f (iterate f x) ≈ iterate f (f · x) ≈-map-iterate f x = ≈-coind B h₁ h₂ where -- Based on the relation used by (Giménez and Castéran, 2007). B : D → D → Set B xs ys = ∃[ y ] xs ≡ map f (iterate f y) ∧ ys ≡ iterate f (f · y) {-# ATP definition B #-} postulate h₁ : ∀ {xs} {ys} → B xs ys → ∃[ x' ] ∃[ xs' ] ∃[ ys' ] xs ≡ x' ∷ xs' ∧ ys ≡ x' ∷ ys' ∧ B xs' ys' {-# ATP prove h₁ #-} postulate h₂ : B (map f (iterate f x)) (iterate f (f · x)) {-# ATP prove h₂ #-} ------------------------------------------------------------------------------ -- References -- -- Giménez, Eduardo and Casterán, Pierre (2007). A Tutorial on -- [Co-]Inductive Types in Coq. -- -- Gibbons, Jeremy and Hutton, Graham (2005). Proof Methods for -- Corecursive Programs. Fundamenta Informaticae XX, pp. 1–14.
{ "alphanum_fraction": 0.4879555281, "avg_line_length": 35.1956521739, "ext": "agda", "hexsha": "330d088cf516533bcb6bb16e51bc6d1bf19917e9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/MapIterate/MapIterateATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/MapIterate/MapIterateATP.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/MapIterate/MapIterateATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 446, "size": 1619 }
open import Prelude open import Nat open import Bij module NatDelta where instance NatBij : bij Nat Nat NatBij = record { convert = λ n → n; inj = λ n → n; surj = λ n → n , refl} open import Delta Nat {{NatBij}} nat-dd = dd
{ "alphanum_fraction": 0.5805243446, "avg_line_length": 15.7058823529, "ext": "agda", "hexsha": "ee04a375c2de868a829b8b16e8471d70a63e9220", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nickcollins/dependent-dicts-agda", "max_forks_repo_path": "NatDelta.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nickcollins/dependent-dicts-agda", "max_issues_repo_path": "NatDelta.agda", "max_line_length": 34, "max_stars_count": null, "max_stars_repo_head_hexsha": "db857f3e7dc9a4793f68504e6365d93ed75d7f88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nickcollins/dependent-dicts-agda", "max_stars_repo_path": "NatDelta.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 81, "size": 267 }
module Utils.HaskellTypes where postulate String : Set {-# BUILTIN STRING String #-} data Unit : Set where triv : Unit {-# COMPILED_DATA Unit () () #-} data Prod (A : Set) (B : Set) : Set where _,_ : A → B → Prod A B {-# COMPILED_DATA Prod (,) (,) #-} data Triple (A B C : Set) : Set where triple : A → B → C → Triple A B C {-# COMPILED_DATA Triple (,,) (,,) #-} infixr 20 _::_ data List (A : Set) : Set where [] : List A _::_ : A → List A → List A {-# COMPILED_DATA List [] [] (:) #-}
{ "alphanum_fraction": 0.5648702595, "avg_line_length": 21.7826086957, "ext": "agda", "hexsha": "04de9d8cc372135f00b2c50a1c59af7562a119ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "heades/Agda-LLS", "max_forks_repo_path": "Source/ALL/Utils/HaskellTypes.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_issues_repo_issues_event_max_datetime": "2017-04-05T17:30:16.000Z", "max_issues_repo_issues_event_min_datetime": "2017-03-27T14:52:46.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "heades/Agda-LLS", "max_issues_repo_path": "Source/ALL/Utils/HaskellTypes.agda", "max_line_length": 41, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c83f5d8201362b26a749138f6dbff2dd509f85b1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "heades/Agda-LLS", "max_stars_repo_path": "Source/ALL/Utils/HaskellTypes.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-02T23:41:23.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-09T20:53:53.000Z", "num_tokens": 167, "size": 501 }
module Numeral.Natural.Relation.DivisibilityWithRemainder.Proofs where import Lvl open import Data open import Data.Boolean.Stmt open import Functional open import Logic.Predicate open import Logic.Propositional open import Numeral.Finite import Numeral.Finite.Proofs as 𝕟 open import Numeral.Natural open import Numeral.Natural.Inductions open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Oper.Proofs.Order open import Numeral.Natural.Relation.DivisibilityWithRemainder hiding (base₀ ; base₊ ; step) open import Numeral.Natural.Relation.Order.Decidable open import Numeral.Natural.Relation.Order.Proofs open import Numeral.Natural.Relation.Order open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function open import Structure.Operator open import Structure.Operator.Proofs.Util open import Structure.Relator open import Syntax.Transitivity open import Type.Properties.Decidable.Proofs -- 0 does not divide anything with any remainder. [∣ᵣₑₘ]-0-divides : ∀{x}{r} → ¬(0 ∣ᵣₑₘ x)(r) [∣ᵣₑₘ]-0-divides {r = ()} -- 1 divides everything with the only possible remainder 0. [∣ᵣₑₘ]-1-divides : ∀{x}{r} → (1 ∣ᵣₑₘ x)(r) [∣ᵣₑₘ]-1-divides {𝟎} {r = 𝟎} = DivRem𝟎 [∣ᵣₑₘ]-1-divides {𝐒 x} {r = 𝟎} = DivRem𝐒 [∣ᵣₑₘ]-1-divides -- The quotient is the dividend when divided by 1. [∣ᵣₑₘ]-quotient-of-1 : ∀{x}{r} → (p : (1 ∣ᵣₑₘ x)(r)) → ([∣ᵣₑₘ]-quotient p ≡ x) [∣ᵣₑₘ]-quotient-of-1 {𝟎} {𝟎} DivRem𝟎 = [≡]-intro [∣ᵣₑₘ]-quotient-of-1 {𝐒 x}{𝟎} (DivRem𝐒 p) = [≡]-with(𝐒) ([∣ᵣₑₘ]-quotient-of-1 {x}{𝟎} p) -- [∣ᵣₑₘ]-remainder-dividend : ∀{x y}{r : 𝕟(y)} → (x < y) → (y ∣ᵣₑₘ x)(r) → (x ≡ 𝕟-to-ℕ r) -- How the arguments in the divisibility relation is related to each other by elementary functions. -- Note: The division theorem is proven using this. By proving that [∣ᵣₑₘ]-quotient and [∣ᵣₑₘ]-remainder is equal to the algorithmic functions of floored division and modulo, the theorem follows directly from this. [∣ᵣₑₘ]-is-division-with-remainder : ∀{x y}{r} → (p : (y ∣ᵣₑₘ x)(r)) → ((([∣ᵣₑₘ]-quotient p) ⋅ y) + (𝕟-to-ℕ ([∣ᵣₑₘ]-remainder p)) ≡ x) [∣ᵣₑₘ]-is-division-with-remainder {𝟎} {_} {𝟎} DivRem𝟎 = [≡]-intro [∣ᵣₑₘ]-is-division-with-remainder {𝐒 .(x + y)} {𝐒 y} {𝟎} (DivRem𝐒 {x = x} p) = 𝐒([∣ᵣₑₘ]-quotient p) ⋅ 𝐒(y) 🝖[ _≡_ ]-[ [⋅]-with-[𝐒]ₗ {[∣ᵣₑₘ]-quotient p}{𝐒(y)} ] (([∣ᵣₑₘ]-quotient p) ⋅ 𝐒(y)) + 𝐒(y) 🝖[ _≡_ ]-[] 𝐒((([∣ᵣₑₘ]-quotient p) ⋅ 𝐒(y)) + y) 🝖[ _≡_ ]-[ congruence₁(𝐒) (congruence₂ₗ(_+_)(y) ([∣ᵣₑₘ]-is-division-with-remainder p)) ] 𝐒(x + y) 🝖-end [∣ᵣₑₘ]-is-division-with-remainder {𝐒 .(𝕟-to-ℕ r)} {𝐒 y} {𝐒 r} DivRem𝟎 = [≡]-intro [∣ᵣₑₘ]-is-division-with-remainder {𝐒 .(x + y)} {𝐒(y@(𝐒 _))} {r@(𝐒 _)} (DivRem𝐒 {x = x} p) = (([∣ᵣₑₘ]-quotient (DivRem𝐒 p)) ⋅ 𝐒(y)) + (𝕟-to-ℕ r) 🝖[ _≡_ ]-[] (𝐒([∣ᵣₑₘ]-quotient p) ⋅ 𝐒(y)) + (𝕟-to-ℕ r) 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(𝕟-to-ℕ r) ([⋅]-with-[𝐒]ₗ {[∣ᵣₑₘ]-quotient p}{𝐒(y)}) ] ((([∣ᵣₑₘ]-quotient p) ⋅ 𝐒(y)) + 𝐒(y)) + (𝕟-to-ℕ r) 🝖[ _≡_ ]-[ One.commuteᵣ-assocₗ {a = ([∣ᵣₑₘ]-quotient p) ⋅ 𝐒(y)}{b = 𝐒(y)}{c = 𝕟-to-ℕ r} ] ((([∣ᵣₑₘ]-quotient p) ⋅ 𝐒(y)) + (𝕟-to-ℕ r)) + 𝐒(y) 🝖[ _≡_ ]-[] 𝐒(((([∣ᵣₑₘ]-quotient p) ⋅ 𝐒(y)) + (𝕟-to-ℕ r)) + y) 🝖[ _≡_ ]-[ congruence₁(𝐒) (congruence₂ₗ(_+_)(y) ([∣ᵣₑₘ]-is-division-with-remainder p)) ] 𝐒(x + y) 🝖-end -- When the arguments in the divisibility relation are related to each other. -- This also indicates that the divisibility relation actually states something about divisibility in the sense of the inverse of multiplication. [∣ᵣₑₘ]-equivalence : ∀{x y}{r} → (y ∣ᵣₑₘ x)(r) ↔ ∃(q ↦ (q ⋅ y) + (𝕟-to-ℕ r) ≡ x) [∣ᵣₑₘ]-equivalence = [↔]-intro (p ↦ l {q = [∃]-witness p} ([∃]-proof p)) (p ↦ [∃]-intro ([∣ᵣₑₘ]-quotient p) ⦃ [∣ᵣₑₘ]-is-division-with-remainder p ⦄) where l : ∀{x y q}{r} → ((q ⋅ y) + (𝕟-to-ℕ r) ≡ x) → (y ∣ᵣₑₘ x)(r) l {_}{_}{𝟎} {_} [≡]-intro = DivRem𝟎 l {x}{y}{𝐒 q}{r} p = substitute₁(x ↦ (y ∣ᵣₑₘ x)(r)) eq (DivRem𝐒 (l{(q ⋅ y) + (𝕟-to-ℕ r)}{y}{q}{r} [≡]-intro)) where eq = ((q ⋅ y) + (𝕟-to-ℕ r)) + y 🝖[ _≡_ ]-[ One.commuteᵣ-assocₗ {a = q ⋅ y}{b = 𝕟-to-ℕ r}{c = y} ] ((q ⋅ y) + y) + (𝕟-to-ℕ r) 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(𝕟-to-ℕ r) ([⋅]-with-[𝐒]ₗ {q}{y}) ]-sym (𝐒(q) ⋅ y) + (𝕟-to-ℕ r) 🝖[ _≡_ ]-[ p ] x 🝖-end -- ⌊/⌋-when-zero : ∀{x y} → (x ⌊/⌋ 𝐒(y) ≡ 𝟎) → (x ≡ 0) -- ⌊/⌋-when-positive : ∀{x y q} → (x ⌊/⌋ 𝐒(y) ≡ 𝐒(q)) → ∃(x₀ ↦ (x ≡ x₀ + 𝐒(y))) {- [∣ᵣₑₘ]-existence : ∀{x y} → ∃(𝐒(y) ∣ᵣₑₘ x) ∃.witness ([∣ᵣₑₘ]-existence {x} {y}) = ℕ-to-𝕟 (x mod 𝐒(y)) ⦃ {![↔]-to-[→] decide-is-true mod-maxᵣ!} ⦄ ∃.proof ([∣ᵣₑₘ]-existence {x} {y}) = [↔]-to-[←] [∣ᵣₑₘ]-equivalence ([∃]-intro (x ⌊/⌋ 𝐒(y)) ⦃ {!TODO: Insert division theorem here!} ⦄) -} DivRem𝟎Alt : ∀{x y} → (xy : (x < y)) → (y ∣ᵣₑₘ x)(ℕ-to-𝕟 x ⦃ [↔]-to-[→] decider-true xy ⦄) DivRem𝟎Alt {x} {𝐒 y} (succ p) = [≡]-substitutionᵣ (𝕟.𝕟-ℕ-inverse) {expr ↦ (𝐒 y ∣ᵣₑₘ expr)(ℕ-to-𝕟 x)} ((DivRem𝟎{𝐒(y)}{ℕ-to-𝕟 x})) where instance x<𝐒y : IsTrue (x <? 𝐒(y)) x<𝐒y = [↔]-to-[→] decider-true ([≤]-with-[𝐒] ⦃ p ⦄) DivRem𝐒Alt : ∀{x y}{r : 𝕟(y)} → (x ≥ y) → (y ∣ᵣₑₘ x −₀ y)(r) → (y ∣ᵣₑₘ x)(r) DivRem𝐒Alt{x}{𝟎}{} DivRem𝐒Alt{x}{𝐒(y)}{r} xy = [≡]-substitutionᵣ ([↔]-to-[→] ([−₀][+]-nullify2ᵣ{𝐒(y)}{x}) xy) {\expr → (𝐒(y) ∣ᵣₑₘ expr) r} ∘ DivRem𝐒{𝐒(y)}{x −₀ 𝐒(y)}{r} -- Every pair of numbers (positive divisor) when divided will yield a remainder and there is always a proof of it being the case. -- This is an alternative way of constructing the modulo operator. [∣ᵣₑₘ]-existence-alt : ∀{x y} → ∃(𝐒(y) ∣ᵣₑₘ x) [∣ᵣₑₘ]-existence-alt {x} {y} = [ℕ]-strong-induction {φ = x ↦ ∃(𝐒(y) ∣ᵣₑₘ x)} base step {x} where base : ∃(𝐒(y) ∣ᵣₑₘ 𝟎) base = [∃]-intro 𝟎 ⦃ DivRem𝟎 ⦄ step : ∀{i} → (∀{j} → (j ≤ i) → ∃(𝐒(y) ∣ᵣₑₘ j)) → ∃(𝐒(y) ∣ᵣₑₘ 𝐒(i)) step{i} p with [≤][>]-dichotomy {y}{i} ... | [∨]-introₗ yi = [∃]-map-proof (DivRem𝐒Alt([≤]-with-[𝐒] ⦃ yi ⦄)) (p{𝐒(i) −₀ 𝐒(y)} ([−₀]-lesser {i}{y})) ... | [∨]-introᵣ 𝐒iy = [∃]-intro (ℕ-to-𝕟 (𝐒(i)) ⦃ [↔]-to-[→] decider-true 𝐒iy ⦄) ⦃ DivRem𝟎Alt ([≤]-with-[𝐒] ⦃ 𝐒iy ⦄) ⦄ {- open import Structure.Setoid.Uniqueness {-[∣ᵣₑₘ]-uniqueness : ∀{x y}{p : ∃(𝐒(y) ∣ᵣₑₘ x)} → (p ≡ [∣ᵣₑₘ]-existence) [∣ᵣₑₘ]-uniqueness {.(𝕟-to-ℕ r)} {y} {[∃]-intro r ⦃ DivRem𝟎 ⦄} = {![≡]-intro!} [∣ᵣₑₘ]-uniqueness {.(x + 𝐒 y)} {y} {[∃]-intro r ⦃ DivRem𝐒 {x = x} p ⦄} = {!!}-} {-[∣ᵣₑₘ]-unique-remainder : ∀{x y} → Unique(𝐒(y) ∣ᵣₑₘ x) [∣ᵣₑₘ]-unique-remainder {.(𝕟-to-ℕ a)} {y} {a} {b} DivRem𝟎 q = {!!} [∣ᵣₑₘ]-unique-remainder {.(x + 𝐒 y)} {y} {a} {b} (DivRem𝐒 {x = x} p) q = {!!}-} open import Type.Properties.MereProposition [∣ᵣₑₘ]-mereProposition : ∀{x y}{r : 𝕟(𝐒(y))} → MereProposition((𝐒(y) ∣ᵣₑₘ x)(r)) [∣ᵣₑₘ]-mereProposition = intro proof where proof : ∀{x y}{r : 𝕟(𝐒(y))}{p q : (𝐒(y) ∣ᵣₑₘ x)(r)} → (p ≡ q) proof {.(𝕟-to-ℕ r)} {y} {r} {DivRem𝟎} {q} = {!!} proof {.(x + 𝐒 y)} {y} {r} {DivRem𝐒 {x = x} p} {q} = {!p!} -- testor : ∀{y x}{r : 𝕟(𝐒 y)}{p : (𝐒(y) ∣ᵣₑₘ x)(r)} → (p ≡ DivRem𝟎) ∨ ∃(q ↦ (p ≡ DivRem𝐒 q)) -- TODO: Maybe by injectivity of 𝕟-to-ℕ? test : ∀{y}{r : 𝕟(𝐒 y)}{p : (𝐒(y) ∣ᵣₑₘ (𝕟-to-ℕ r))(r)} → (p ≡ DivRem𝟎) {- test {y} {r} {p} with 𝕟-to-ℕ r test {_} {_} {_} | 𝟎 = {!!}-} -} {- open import Data.Tuple using (_⨯_ ; _,_) open import Type.Dependent open import Type.Properties.MereProposition [∣ᵣₑₘ]-mereProposition : ∀{x y}{r : 𝕟(y)} → MereProposition((y ∣ᵣₑₘ x)(r)) [∣ᵣₑₘ]-mereProposition = intro {!!} where proof : ∀{y}{r : 𝕟(y)} → (p q : Σ(ℕ) (x ↦ (y ∣ᵣₑₘ x)(r))) → (p ≡ q) proof {y} {r} (intro .(𝕟-to-ℕ r) DivRem𝟎) (intro .(𝕟-to-ℕ r) DivRem𝟎) = [≡]-intro proof {y} {r} (intro .(𝕟-to-ℕ r) DivRem𝟎) (intro .(x₂ + y) (DivRem𝐒{x = x₂} p₂)) = {!!} proof {y} {r} (intro .(x₁ + y) (DivRem𝐒{x = x₁} p₁)) (intro .(𝕟-to-ℕ r) DivRem𝟎) = {!!} proof {y} {r} (intro .(x₁ + y) (DivRem𝐒{x = x₁} p₁)) (intro .(x₂ + y) (DivRem𝐒{x = x₂} p₂)) = {!congruence₂ₗ(_+_)(y) (congruence₁(Σ.left) eq)!} where eq = proof (intro x₁ p₁) (intro x₂ p₂) test : ∀{a₁ a₂ : A}{b₁ : B(a₁)}{b₂ : B(a₂)} → (a₁ ≡ a₂) → (intro a₁ b₁ ≡ intro a₂ b₂) -}
{ "alphanum_fraction": 0.5542420884, "avg_line_length": 55.6232876712, "ext": "agda", "hexsha": "7f0a9234f76273402389cda8f0af535d57247f7d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Relation/DivisibilityWithRemainder/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Relation/DivisibilityWithRemainder/Proofs.agda", "max_line_length": 214, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Relation/DivisibilityWithRemainder/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 4547, "size": 8121 }
{- Maybe structure: X ↦ Maybe (S X) -} {-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Structures.Maybe where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.SIP open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Unit open import Cubical.Data.Empty open import Cubical.Data.Maybe private variable ℓ ℓ₁ ℓ₁' : Level MaybeRel : {A B : Type ℓ} (R : A → B → Type ℓ₁) → Maybe A → Maybe B → Type ℓ₁ MaybeRel R nothing nothing = Lift Unit MaybeRel R nothing (just _) = Lift ⊥ MaybeRel R (just _) nothing = Lift ⊥ MaybeRel R (just x) (just y) = R x y congMaybeRel : {A B : Type ℓ} {R : A → B → Type ℓ₁} {S : A → B → Type ℓ₁'} → (∀ x y → R x y ≃ S x y) → ∀ ox oy → MaybeRel R ox oy ≃ MaybeRel S ox oy congMaybeRel e nothing nothing = Lift≃Lift (idEquiv _) congMaybeRel e nothing (just _) = Lift≃Lift (idEquiv _) congMaybeRel e (just _) nothing = Lift≃Lift (idEquiv _) congMaybeRel e (just x) (just y) = e x y module MaybePathP where Code : (A : I → Type ℓ) → Maybe (A i0) → Maybe (A i1) → Type ℓ Code A = MaybeRel (PathP A) encodeRefl : {A : Type ℓ} → ∀ ox → Code (λ _ → A) ox ox encodeRefl nothing = lift tt encodeRefl (just _) = refl encode : (A : I → Type ℓ) → ∀ ox oy → PathP (λ i → Maybe (A i)) ox oy → Code A ox oy encode A ox oy p = transport (λ j → Code (λ i → A (i ∧ j)) ox (p j)) (encodeRefl ox) decode : {A : I → Type ℓ} → ∀ ox oy → Code A ox oy → PathP (λ i → Maybe (A i)) ox oy decode nothing nothing p i = nothing decode (just _) (just _) p i = just (p i) decodeEncodeRefl : {A : Type ℓ} (ox : Maybe A) → decode ox ox (encodeRefl ox) ≡ refl decodeEncodeRefl nothing = refl decodeEncodeRefl (just _) = refl decodeEncode : {A : I → Type ℓ} → ∀ ox oy p → decode ox oy (encode A ox oy p) ≡ p decodeEncode {A = A} ox oy p = transport (λ k → decode _ _ (transp (λ j → Code (λ i → A (i ∧ j ∧ k)) ox (p (j ∧ k))) (~ k) (encodeRefl ox)) ≡ (λ i → p (i ∧ k))) (decodeEncodeRefl ox) encodeDecode : (A : I → Type ℓ) → ∀ ox oy c → encode A ox oy (decode ox oy c) ≡ c encodeDecode A nothing nothing c = refl encodeDecode A (just x) (just y) c = transport (λ k → encode (λ i → A (i ∧ k)) _ _ (decode (just x) (just (c k)) (λ i → c (i ∧ k))) ≡ (λ i → c (i ∧ k))) (transportRefl _) Code≃PathP : {A : I → Type ℓ} → ∀ ox oy → Code A ox oy ≃ PathP (λ i → Maybe (A i)) ox oy Code≃PathP {A = A} ox oy = isoToEquiv isom where isom : Iso _ _ isom .Iso.fun = decode ox oy isom .Iso.inv = encode _ ox oy isom .Iso.rightInv = decodeEncode ox oy isom .Iso.leftInv = encodeDecode A ox oy -- Structured isomorphisms MaybeStructure : (S : Type ℓ → Type ℓ₁) → Type ℓ → Type ℓ₁ MaybeStructure S X = Maybe (S X) MaybeEquivStr : {S : Type ℓ → Type ℓ₁} → StrEquiv S ℓ₁' → StrEquiv (MaybeStructure S) ℓ₁' MaybeEquivStr ι (X , ox) (Y , oy) e = MaybeRel (λ x y → ι (X , x) (Y , y) e) ox oy maybeUnivalentStr : {S : Type ℓ → Type ℓ₁} (ι : StrEquiv S ℓ₁') → UnivalentStr S ι → UnivalentStr (MaybeStructure S) (MaybeEquivStr ι) maybeUnivalentStr ι θ {X , ox} {Y , oy} e = compEquiv (congMaybeRel (λ x y → θ {X , x} {Y , y} e) ox oy) (MaybePathP.Code≃PathP ox oy) maybeEquivAction : {S : Type ℓ → Type ℓ₁} → EquivAction S → EquivAction (MaybeStructure S) maybeEquivAction α e = congMaybeEquiv (α e) maybeTransportStr : {S : Type ℓ → Type ℓ₁} (α : EquivAction S) → TransportStr α → TransportStr (maybeEquivAction α) maybeTransportStr _ τ e nothing = refl maybeTransportStr _ τ e (just x) = cong just (τ e x)
{ "alphanum_fraction": 0.628005284, "avg_line_length": 34.7247706422, "ext": "agda", "hexsha": "8056ce4f6c82db989b18a230facb781a2c88d5fb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Structures/Maybe.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Structures/Maybe.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Structures/Maybe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1384, "size": 3785 }
{-# OPTIONS --cubical --safe --postfix-projections #-} open import Cubical.Core.Everything open import Cubical.Foundations.Embedding open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence -- A helper module for deriving univalence for a higher inductive-recursive -- universe. -- -- U is the type of codes -- El is the decoding -- uaf is a higher constructor that requires paths between codes to exist -- for equivalences of decodings -- comp is intended to be the computational behavior of El on uaf, although -- it seems that being a path is sufficient. -- ret is a higher constructor that fills out the equivalence structure -- for uaf and the computational behavior of El. -- -- Given a universe defined as above, it's possible to show that the path -- space of the code type is equivalent to the path space of the actual -- decodings, which are themselves determined by equivalences. -- -- The levels are left independent, but of course it will generally be -- impossible to define this sort of universe unless ℓ' < ℓ, because El will -- be too big to go in a constructor of U. The exception would be if U could -- be defined independently of El, though it might be tricky to get the right -- higher structure in such a case. module Cubical.Foundations.Univalence.Universe {ℓ ℓ'} (U : Type ℓ) (El : U → Type ℓ') (uaf : ∀{s t} → El s ≃ El t → s ≡ t) (comp : ∀{s t} (e : El s ≃ El t) → cong El (uaf e) ≡ ua e) (ret : ∀{s t : U} → (p : s ≡ t) → uaf (lineToEquiv (λ i → El (p i))) ≡ p) where minivalence : ∀{s t} → (s ≡ t) ≃ (El s ≡ El t) minivalence {s} {t} = isoToEquiv mini where open Iso mini : Iso (s ≡ t) (El s ≡ El t) mini .fun = cong El mini .inv = uaf ∘ pathToEquiv mini .rightInv p = comp (pathToEquiv p) ∙ uaη p mini .leftInv = ret isEmbeddingEl : isEmbedding El isEmbeddingEl s t = snd minivalence
{ "alphanum_fraction": 0.7030242935, "avg_line_length": 38.0566037736, "ext": "agda", "hexsha": "9f261cd537535f7b5c522c78846bcfc44e82aa9e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Foundations/Univalence/Universe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Foundations/Univalence/Universe.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Foundations/Univalence/Universe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 596, "size": 2017 }
module Main where open import IO open import Data.String open import Data.List open import Data.Bool {-# IMPORT AST #-} {-# COMPILED_TYPE String AST.Type #-} {-# COMPILED_TYPE String AST.Identifier #-} data Variable : Set where V : String → String → Variable varName : Variable → String varName (V _ name) = name {-# COMPILED_DATA Variable AST.Variable AST.Variable #-} data Expression : Set where New : String → List Expression → Expression FieldAccess : String → Expression → String → Expression MethodCall : String → Expression → String → List Expression → Expression Var : String → String → Expression exprType : Expression → String exprType (New t _) = t exprType (FieldAccess t _ _) = t exprType (MethodCall t _ _ _) = t exprType (Var t _) = t {-# COMPILED_DATA Expression AST.Expression AST.New AST.FieldAccess AST.MethodCall AST.Var #-} data Method : Set where Mth : String → List Variable → Expression → Method {-# COMPILED_DATA Method AST.Method AST.Method #-} data Constructor : Set where Cons : List Variable → Constructor {-# COMPILED_DATA Constructor AST.Constructor AST.Constructor #-} data Pair (A B : Set) : Set where P : A → B → Pair A B {-# COMPILED_DATA Pair (,) (,) #-} data SimpleMap (A B : Set) : Set where SM : List (Pair A B) → SimpleMap A B {-# COMPILED_DATA SimpleMap AST.SimpleMap AST.SimpleMap #-} data Class : Set where Cls : String → SimpleMap String String → Constructor → SimpleMap String Method → Class {-# COMPILED_DATA Class AST.Class AST.Class #-} data Program : Set where Prog : SimpleMap String Class → Program {-# COMPILED_DATA Program AST.Program AST.Program #-} postulate parseUnsafe : String → Program showProgram : Program → String getValue : {A B : Set} → A → SimpleMap A B → B {-# COMPILED parseUnsafe AST.parseUnsafe #-} {-# COMPILED showProgram AST.showProgram #-} infixr 5 _++l_ _++l_ : ∀ {a} {A : Set a} → List A → List A → List A xs ++l ys = Data.List._++_ xs ys {-# NO_TERMINATION_CHECK #-} subst : Pair String Expression → Expression → Expression subst substExpr (New t ps) = New t (map (subst substExpr) ps) subst substExpr (FieldAccess t e f) = FieldAccess t (subst substExpr e) f subst substExpr (MethodCall t e m ps) = MethodCall t (subst substExpr e) m (map (subst substExpr) ps) subst (P name expr) (Var t vName) = if name == vName then expr else (Var t vName) getMethod : Program → String → String → Method getMethod (Prog classes) clsName mthName with getValue clsName classes ... | Cls _ _ _ methods = getValue mthName methods reduceInvk : Program → Expression → String → List Expression → Expression reduceInvk p e mthName params with getMethod p (exprType e) mthName ... | Mth _ vars body = foldr subst body ((P "this" e) ∷ (zipWith P (map varName vars) params)) data Reduce {Pr : Program} : Expression → Expression → Set where RInvk : ∀ {t consParams mthType mthName mthParams} → Reduce {Pr} (MethodCall mthType (New t consParams) mthName mthParams) (reduceInvk Pr (New t consParams) mthName mthParams) RCField : ∀ {e₁ e₂ t f} → Reduce {Pr} e₁ e₂ → Reduce {Pr} (FieldAccess t e₁ f) (FieldAccess t e₂ f) RCInvk : ∀ {e₁ e₂ t m p} → Reduce {Pr} e₁ e₂ → Reduce {Pr} (MethodCall t e₁ m p) (MethodCall t e₂ m p) RCInvkArg : ∀ {e e₁ e₂ t m p₁ p₂} → Reduce {Pr} e₁ e₂ → Reduce {Pr} (MethodCall t e m (p₁ ++l [ e₁ ] ++l p₂)) (MethodCall t e m (p₁ ++l [ e₂ ] ++l p₂)) RCNewArg : ∀ {e₁ e₂ t p₁ p₂} → Reduce {Pr} e₁ e₂ → Reduce {Pr} (New t (p₁ ++l [ e₁ ] ++l p₂)) (New t (p₁ ++l [ e₂ ] ++l p₂)) main = run (putStrLn (showProgram (parseUnsafe "class A extends Object { A() {super();} }")))
{ "alphanum_fraction": 0.6868938764, "avg_line_length": 36.09, "ext": "agda", "hexsha": "d4579ab6de3b106a2a2d79a0ed7e62cb2cbbf53d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7042f7bfde851d5df7575bbe9bd51ecfc50f11f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "ademinn/RefactoringVerification", "max_forks_repo_path": "src/prover/Main.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7042f7bfde851d5df7575bbe9bd51ecfc50f11f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "ademinn/RefactoringVerification", "max_issues_repo_path": "src/prover/Main.agda", "max_line_length": 177, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7042f7bfde851d5df7575bbe9bd51ecfc50f11f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "ademinn/RefactoringVerification", "max_stars_repo_path": "src/prover/Main.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1069, "size": 3609 }
module trees where data Tree (A : Set) : Set where empty : Tree A node : Tree A -> A -> Tree A -> Tree A open import Data.Nat #nodes : {A : Set} -> Tree A -> ℕ #nodes empty = 0 #nodes (node t x t₁) = (#nodes t) + (1 + (#nodes t₁)) #leafs : {A : Set} -> Tree A -> ℕ #leafs empty = zero -- #leafs (node empty x empty) = 1 #leafs (node t x t₁) with t | t₁ ... | empty | empty = 1 ... | _ | _ = (#leafs t) + (#leafs t₁)
{ "alphanum_fraction": 0.4686868687, "avg_line_length": 24.75, "ext": "agda", "hexsha": "42d477bd80624d56d4d10b4cc9da682932b97ba6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "hablapps/safeoptics", "max_forks_repo_path": "src/main/agda/trees.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "hablapps/safeoptics", "max_issues_repo_path": "src/main/agda/trees.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "90fc9586f4c126ee83b8aa54ad417bb7a5325b1b", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "hablapps/safeoptics", "max_stars_repo_path": "src/main/agda/trees.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 178, "size": 495 }
------------------------------------------------------------------------ -- Queue instances for the queues in Queue.Truncated ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} import Equality.Path as P open import Prelude import Queue module Queue.Truncated.Instances {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) (open P.Derived-definitions-and-properties eq) {Q : ∀ {ℓ} → Type ℓ → Type ℓ} ⦃ is-queue : ∀ {ℓ} → Queue.Is-queue equality-with-J Q (λ _ → ↑ _ ⊤) ℓ ⦄ ⦃ is-queue-with-map : ∀ {ℓ₁ ℓ₂} → Queue.Is-queue-with-map equality-with-J Q ℓ₁ ℓ₂ ⦄ where open Queue equality-with-J open import Queue.Truncated eq as Q using (Queue) open import Bijection equality-with-J using (_↔_) open import Erased.Cubical eq hiding (map) open import H-level.Closure equality-with-J open import List equality-with-J as L hiding (map) open import Maybe equality-with-J open import Monad equality-with-J hiding (map) import Nat equality-with-J as Nat private variable a ℓ ℓ₁ ℓ₂ : Level A : Type a xs : List A module N = Q.Non-indexed instance -- Instances. Queue-is-queue : Is-queue (Queue Q) Very-stableᴱ-≡ ℓ Queue-is-queue .Is-queue.to-List = Q.to-List Queue-is-queue .Is-queue.from-List = Q.from-List Queue-is-queue .Is-queue.to-List-from-List = _↔_.right-inverse-of (Q.Queue↔List _) _ Queue-is-queue .Is-queue.enqueue = N.enqueue Queue-is-queue .Is-queue.to-List-enqueue = N.to-List-enqueue Queue-is-queue .Is-queue.dequeue = N.dequeue Queue-is-queue .Is-queue.to-List-dequeue = N.to-List-dequeue Queue-is-queue .Is-queue.dequeue⁻¹ = N.dequeue⁻¹ Queue-is-queue .Is-queue.to-List-dequeue⁻¹ = N.to-List-dequeue⁻¹ Queue-is-queue-with-map : Is-queue-with-map (Queue Q) ℓ₁ ℓ₂ Queue-is-queue-with-map .Is-queue-with-map.map = N.map Queue-is-queue-with-map .Is-queue-with-map.to-List-map = N.to-List-map Queue-is-queue-with-unique-representations : Is-queue-with-unique-representations (Queue Q) ℓ Queue-is-queue-with-unique-representations .Is-queue-with-unique-representations.from-List-to-List = _↔_.left-inverse-of (Q.Queue↔List _) _ ------------------------------------------------------------------------ -- Some examples private ns = Very-stable→Very-stableᴱ 1 $ Decidable-equality→Very-stable-≡ Nat._≟_ dequeue′ = dequeue ns to-List′ = to-List ns empty′ = empty ⦂ Queue Q ℕ example₁ : map suc (enqueue 3 empty) ≡ enqueue 4 empty′ example₁ = _↔_.to Q.≡-for-indices↔≡ [ refl _ ] example₂ : dequeue′ (map (_* 2) (enqueue 3 (enqueue 5 empty))) ≡ just (10 , enqueue 6 empty) example₂ = dequeue′ (map (_* 2) (enqueue 3 (enqueue 5 empty))) ≡⟨ cong dequeue′ (_↔_.to Q.≡-for-indices↔≡ [ refl _ ]) ⟩ dequeue′ (cons 10 (enqueue 6 empty)) ≡⟨ _↔_.right-inverse-of (Queue↔Maybe[×Queue] _) _ ⟩∎ just (10 , enqueue 6 empty) ∎ example₃ : (do x , q ← dequeue′ (map (_* 2) (enqueue 3 (enqueue 5 empty))) return (enqueue (3 * x) q)) ≡ just (enqueue 30 (enqueue 6 empty)) example₃ = (do x , q ← dequeue′ (map (_* 2) (enqueue 3 (enqueue 5 empty))) return (enqueue (3 * x) q ⦂ Queue Q ℕ)) ≡⟨ cong (_>>= λ _ → return (enqueue _ _)) example₂ ⟩ (do x , q ← just (10 , enqueue 6 empty) return (enqueue (3 * x) (q ⦂ Queue Q ℕ))) ≡⟨⟩ just (enqueue 30 (enqueue 6 empty)) ∎ example₄ : (do x , q ← dequeue′ (map (_* 2) (enqueue 3 (enqueue 5 empty))) let q = enqueue (3 * x) q return (to-List′ q)) ≡ just (6 ∷ 30 ∷ []) example₄ = (do x , q ← dequeue′ (map (_* 2) (enqueue 3 (enqueue 5 empty))) return (to-List′ (enqueue (3 * x) q))) ≡⟨ cong (_>>= λ _ → return (to-List′ (enqueue _ _))) example₂ ⟩ (do x , q ← just (10 , enqueue 6 empty) return (to-List′ (enqueue (3 * x) (q ⦂ Queue Q ℕ)))) ≡⟨⟩ just (to-List′ (enqueue 30 (enqueue 6 empty))) ≡⟨ cong just $ to-List-foldl-enqueue-empty _ ⟩∎ just (6 ∷ 30 ∷ []) ∎ example₅ : ∀ {xs} → dequeue′ (from-List (1 ∷ 2 ∷ 3 ∷ xs)) ≡ just (1 , from-List (2 ∷ 3 ∷ xs)) example₅ {xs = xs} = dequeue′ (from-List (1 ∷ 2 ∷ 3 ∷ xs)) ≡⟨ cong dequeue′ (_↔_.to Q.≡-for-indices↔≡ [ refl _ ]) ⟩ dequeue′ (cons 1 (from-List (2 ∷ 3 ∷ xs))) ≡⟨ _↔_.right-inverse-of (Queue↔Maybe[×Queue] _) _ ⟩∎ just (1 , from-List (2 ∷ 3 ∷ xs)) ∎ example₆ : foldr enqueue empty′ (3 ∷ 2 ∷ 1 ∷ []) ≡ from-List (1 ∷ 2 ∷ 3 ∷ []) example₆ = _↔_.to Q.≡-for-indices↔≡ [ refl _ ]
{ "alphanum_fraction": 0.5404796065, "avg_line_length": 36.4104477612, "ext": "agda", "hexsha": "a8a535154d069d5ffe4f7fa41d796fedd67157f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Queue/Truncated/Instances.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Queue/Truncated/Instances.agda", "max_line_length": 132, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Queue/Truncated/Instances.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 1635, "size": 4879 }
open import Relation.Nullary using (Dec; yes; no) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym) open import Data.Sum using (_⊎_) open _⊎_ module AKS.Nat.Roots where open import AKS.Nat using (ℕ; _≤_; _<_; n≤m⇒n<m⊎n≡m; <-irrefl; *-1-commutativeMonoid) open ℕ open import AKS.Nat using ([_,_]; binary-search; acc) open import AKS.Exponentiation *-1-commutativeMonoid using (_^_) record Root (n : ℕ) (b : ℕ) : Set where constructor Root✓ field root : ℕ root^b≤n : root ^ b ≤ n n<root^[1+b] : n < (suc root) ^ b open import AKS.Unsafe using (TODO) find-root : ∀ n b → Root n b find-root n b = loop 0 n binary-search where loop : ∀ l h → [ l , h ] → Root n b loop l h (acc downward upward) = TODO -- root-unique : root ^ b < n → n < (suc root) ^ b record Power (n : ℕ) (b : ℕ) : Set where constructor Power✓ field root : ℕ n≡root^b : n ≡ root ^ b power? : ∀ n b → Dec (Power n b) power? n b with find-root n b ... | Root✓ root₁ root₁^b≤n n<root₁^[1+b] with n≤m⇒n<m⊎n≡m root₁^b≤n ... | inj₁ root₁^b<n = no λ { (Power✓ root₂ n≡root₂^b) → TODO } ... | inj₂ root₁^b≡n = yes (Power✓ root₁ (sym root₁^b≡n)) record Perfect (n : ℕ) : Set where constructor Perfect✓ field b : ℕ power : Power n b perfect? : ∀ n → Dec (Perfect n) perfect? = TODO
{ "alphanum_fraction": 0.6194086429, "avg_line_length": 25.862745098, "ext": "agda", "hexsha": "76d81ddd73ebddb0f0902b809161f5914a876e02", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Nat/Roots.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Nat/Roots.agda", "max_line_length": 85, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Nat/Roots.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 516, "size": 1319 }
{-# OPTIONS --cubical --safe #-} module Function.Surjective.Base where open import Path open import Function.Fiber open import Level open import HITs.PropositionalTruncation open import Data.Sigma Surjective : (A → B) → Type _ Surjective f = ∀ y → ∥ fiber f y ∥ SplitSurjective : (A → B) → Type _ SplitSurjective f = ∀ y → fiber f y infixr 0 _↠!_ _↠_ _↠!_ : Type a → Type b → Type (a ℓ⊔ b) A ↠! B = Σ (A → B) SplitSurjective _↠_ : Type a → Type b → Type (a ℓ⊔ b) A ↠ B = Σ (A → B) Surjective
{ "alphanum_fraction": 0.6513026052, "avg_line_length": 20.7916666667, "ext": "agda", "hexsha": "34131a0157ba9f9bf0d40e573e4724171a89f11b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Function/Surjective/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Function/Surjective/Base.agda", "max_line_length": 40, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Function/Surjective/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 187, "size": 499 }
module T where postulate x : Set postulate y : Set postulate p : Set -> Set e : Set e = p y
{ "alphanum_fraction": 0.6489361702, "avg_line_length": 10.4444444444, "ext": "agda", "hexsha": "f83bf575c5f8d2657a54d627d27d38a1a3697719", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejtokarcik/agda-semantics", "max_forks_repo_path": "tests/covered/T.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejtokarcik/agda-semantics", "max_issues_repo_path": "tests/covered/T.agda", "max_line_length": 24, "max_stars_count": 3, "max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andrejtokarcik/agda-semantics", "max_stars_repo_path": "tests/covered/T.agda", "max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z", "num_tokens": 33, "size": 94 }
open import Agda.Builtin.Reflection open import Agda.Builtin.Unit @0 A : Set₁ A = Set macro @0 m : Term → TC ⊤ m B = bindTC (quoteTC A) λ A → unify A B B : Set₁ B = m
{ "alphanum_fraction": 0.606557377, "avg_line_length": 11.4375, "ext": "agda", "hexsha": "ac692099fa37387e3be54b923e089ce8b844e798", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/Fail/ErasedMacro1.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/Fail/ErasedMacro1.agda", "max_line_length": 35, "max_stars_count": 1, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/ErasedMacro1.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 70, "size": 183 }
module Prelude.Bool where open import Prelude.Unit open import Prelude.Empty open import Prelude.Equality open import Prelude.Decidable open import Prelude.Function open import Agda.Builtin.Bool public infix 0 if_then_else_ if_then_else_ : ∀ {a} {A : Set a} → Bool → A → A → A if true then x else y = x if false then x else y = y {-# INLINE if_then_else_ #-} infixr 3 _&&_ infixr 2 _||_ _||_ : Bool → Bool → Bool true || _ = true false || x = x {-# INLINE _||_ #-} _&&_ : Bool → Bool → Bool true && x = x false && _ = false {-# INLINE _&&_ #-} not : Bool → Bool not true = false not false = true {-# INLINE not #-} data IsTrue : Bool → Set where instance true : IsTrue true data IsFalse : Bool → Set where instance false : IsFalse false instance EqBool : Eq Bool _==_ {{EqBool}} false false = yes refl _==_ {{EqBool}} false true = no λ () _==_ {{EqBool}} true false = no λ () _==_ {{EqBool}} true true = yes refl decBool : ∀ b → Dec (IsTrue b) decBool false = no λ () decBool true = yes true {-# INLINE decBool #-} isYes : ∀ {a} {A : Set a} → Dec A → Bool isYes (yes _) = true isYes (no _) = false isNo : ∀ {a} {A : Set a} → Dec A → Bool isNo = not ∘ isYes infix 0 if′_then_else_ if′_then_else_ : ∀ {a} {A : Set a} (b : Bool) → ({{_ : IsTrue b}} → A) → ({{_ : IsFalse b}} → A) → A if′ true then x else _ = x if′ false then _ else y = y
{ "alphanum_fraction": 0.6155523256, "avg_line_length": 21.1692307692, "ext": "agda", "hexsha": "5abd0bec9a543697ef54903d3066d63722d99b6a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Prelude/Bool.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Prelude/Bool.agda", "max_line_length": 100, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Prelude/Bool.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 474, "size": 1376 }
module Prelude.Char where open import Prelude.Bool postulate Char : Set {-# BUILTIN CHAR Char #-} private primitive primCharEquality : (c c' : Char) -> Bool postulate eof : Char {-# COMPILED_EPIC eof () -> Int = foreign Int "eof" () #-} charEq : Char -> Char -> Bool charEq = primCharEquality
{ "alphanum_fraction": 0.6559485531, "avg_line_length": 14.1363636364, "ext": "agda", "hexsha": "724035496d6b583d134d549f2c1c7aaa72f0322c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/epic/Prelude/Char.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/epic/Prelude/Char.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/epic/Prelude/Char.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 86, "size": 311 }
-- Andreas, 2018-06-15, issue #1086 -- Reported by Andrea -- Fixed by Jesper in https://github.com/agda/agda/commit/242684bca62fabe43e125aefae7526be4b26a135 open import Common.Bool open import Common.Equality and : (a b : Bool) → Bool and true b = b and false b = false test : ∀ a b → and a b ≡ true → a ≡ true test true true refl = refl -- Should succeed.
{ "alphanum_fraction": 0.7071823204, "avg_line_length": 22.625, "ext": "agda", "hexsha": "bb59721f8148d8643222d0a51f86ada64b905304", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1086.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1086.agda", "max_line_length": 98, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1086.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 124, "size": 362 }
------------------------------------------------------------------------ -- Encoder and decoder instances for Atom.χ-ℕ-atoms ------------------------------------------------------------------------ module Coding.Instances.Nat where open import Atom -- The code-Var and code-Const instances are hidden: they are replaced -- by the code-ℕ instance. open import Coding.Instances χ-ℕ-atoms public hiding (rep-Var; rep-Const)
{ "alphanum_fraction": 0.5011709602, "avg_line_length": 30.5, "ext": "agda", "hexsha": "0cfb1c7c74e76cfd11f54c5c5407dcec99b482f4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Coding/Instances/Nat.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Coding/Instances/Nat.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Coding/Instances/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 82, "size": 427 }
{-# OPTIONS --warning=error --without-K --guardedness --safe #-} open import LogicalFormulae open import Numbers.Naturals.Definition open import Setoids.Setoids open import Numbers.Naturals.Order open import Vectors module Sequences where record Sequence {a : _} (A : Set a) : Set a where coinductive field head : A tail : Sequence A headInjective : {a : _} {A : Set a} {s1 s2 : Sequence A} → s1 ≡ s2 → Sequence.head s1 ≡ Sequence.head s2 headInjective {s1 = s1} {.s1} refl = refl constSequence : {a : _} {A : Set a} (k : A) → Sequence A Sequence.head (constSequence k) = k Sequence.tail (constSequence k) = constSequence k index : {a : _} {A : Set a} (s : Sequence A) (n : ℕ) → A index s zero = Sequence.head s index s (succ n) = index (Sequence.tail s) n funcToSequence : {a : _} {A : Set a} (f : ℕ → A) → Sequence A Sequence.head (funcToSequence f) = f 0 Sequence.tail (funcToSequence f) = funcToSequence (λ i → f (succ i)) funcToSequenceReversible : {a : _} {A : Set a} (f : ℕ → A) → (n : ℕ) → index (funcToSequence f) n ≡ f n funcToSequenceReversible f zero = refl funcToSequenceReversible f (succ n) = funcToSequenceReversible (λ i → f (succ i)) n map : {a b : _} {A : Set a} {B : Set b} (f : A → B) (s : Sequence A) → Sequence B Sequence.head (map f s) = f (Sequence.head s) Sequence.tail (map f s) = map f (Sequence.tail s) apply : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (f : A → B → C) (s1 : Sequence A) (s2 : Sequence B) → Sequence C Sequence.head (apply f s1 s2) = f (Sequence.head s1) (Sequence.head s2) Sequence.tail (apply f s1 s2) = apply f (Sequence.tail s1) (Sequence.tail s2) indexAndConst : {a : _} {A : Set a} (a : A) (n : ℕ) → index (constSequence a) n ≡ a indexAndConst a zero = refl indexAndConst a (succ n) = indexAndConst a n mapTwice : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (f : A → B) (g : B → C) (s : Sequence A) → {n : ℕ} → index (map g (map f s)) n ≡ index (map (λ i → g (f i)) s) n mapTwice f g s {zero} = refl mapTwice f g s {succ n} = mapTwice f g (Sequence.tail s) {n} mapAndIndex : {a b : _} {A : Set a} {B : Set b} (s : Sequence A) (f : A → B) (n : ℕ) → f (index s n) ≡ index (map f s) n mapAndIndex s f zero = refl mapAndIndex s f (succ n) = mapAndIndex (Sequence.tail s) f n indexExtensional : {a b c : _} {A : Set a} {B : Set b} (T : Setoid {_} {c} B) (s : Sequence A) (f g : A → B) → (extension : ∀ {x} → (Setoid._∼_ T (f x) (g x))) → {n : ℕ} → Setoid._∼_ T (index (map f s) n) (index (map g s) n) indexExtensional T s f g extension {zero} = extension indexExtensional T s f g extension {succ n} = indexExtensional T (Sequence.tail s) f g extension {n} indexAndApply : {a b c : _} {A : Set a} {B : Set b} {C : Set c} (s1 : Sequence A) (s2 : Sequence B) (f : A → B → C) → {m : ℕ} → index (apply f s1 s2) m ≡ f (index s1 m) (index s2 m) indexAndApply s1 s2 f {zero} = refl indexAndApply s1 s2 f {succ m} = indexAndApply (Sequence.tail s1) (Sequence.tail s2) f {m} mapAndApply : {a b c d : _} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (s1 : Sequence A) (s2 : Sequence B) (f : A → B → C) (g : C → D) → (m : ℕ) → index (map g (apply f s1 s2)) m ≡ g (f (index s1 m) (index s2 m)) mapAndApply s1 s2 f g zero = refl mapAndApply s1 s2 f g (succ m) = mapAndApply (Sequence.tail s1) (Sequence.tail s2) f g m assemble : {a : _} {A : Set a} → (x : A) → (s : Sequence A) → Sequence A Sequence.head (assemble x s) = x Sequence.tail (assemble x s) = s allTrue : {a : _} {A : Set a} {c : _} (pred : A → Set c) (s : Sequence A) → Set c allTrue pred s = (n : ℕ) → pred (index s n) tailFrom : {a : _} {A : Set a} (n : ℕ) → (s : Sequence A) → Sequence A tailFrom zero s = s tailFrom (succ n) s = tailFrom n (Sequence.tail s) subsequence : {a : _} {A : Set a} (x : Sequence A) → (indices : Sequence ℕ) → ((n : ℕ) → index indices n <N index indices (succ n)) → Sequence A Sequence.head (subsequence x selector increasing) = index x (Sequence.head selector) Sequence.tail (subsequence x selector increasing) = subsequence (tailFrom (succ (Sequence.head selector)) x) (Sequence.tail selector) λ n → increasing (succ n) take : {a : _} {A : Set a} (n : ℕ) (s : Sequence A) → Vec A n take zero s = [] take (succ n) s = Sequence.head s ,- take n (Sequence.tail s) unfold : {a : _} {A : Set a} → (A → A) → A → Sequence A Sequence.head (unfold f a) = a Sequence.tail (unfold f a) = unfold f (f a) indexAndUnfold : {a : _} {A : Set a} (f : A → A) (start : A) (n : ℕ) → index (unfold f start) (succ n) ≡ f (index (unfold f start) n) indexAndUnfold f s zero = refl indexAndUnfold f s (succ n) = indexAndUnfold f (f s) n
{ "alphanum_fraction": 0.6155691234, "avg_line_length": 48.7872340426, "ext": "agda", "hexsha": "45e0edb0de6b24ea09992ec041df924fde6ef438", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Sequences.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Sequences.agda", "max_line_length": 224, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Sequences.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1701, "size": 4586 }
{- Properties and Formulae about Cardinality This file contains: - Relation between abstract properties and cardinality in special cases; - Combinatorial formulae, namely, cardinality of A+B, A×B, ΣAB, ΠAB, etc; - A general form of Pigeonhole Principle; - Maximal value of numerical function on finite sets; - Set truncation of FinSet is equivalent to ℕ; - FinProp is equivalent to Bool. -} {-# OPTIONS --safe #-} module Cubical.Data.FinSet.Cardinality where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_) open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Transport open import Cubical.HITs.PropositionalTruncation as Prop open import Cubical.HITs.SetTruncation as Set open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Data.Unit open import Cubical.Data.Empty as Empty open import Cubical.Data.Bool hiding (_≟_) open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.Fin using (Fin-inj) open import Cubical.Data.Fin.LehmerCode as LehmerCode open import Cubical.Data.SumFin open import Cubical.Data.FinSet.Base open import Cubical.Data.FinSet.Properties open import Cubical.Data.FinSet.FiniteChoice open import Cubical.Data.FinSet.Constructors open import Cubical.Data.FinSet.Induction hiding (_+_) open import Cubical.Relation.Nullary open import Cubical.Functions.Fibration open import Cubical.Functions.Embedding open import Cubical.Functions.Surjection private variable ℓ ℓ' ℓ'' : Level n : ℕ X : FinSet ℓ Y : FinSet ℓ' -- cardinality of finite sets ∣≃card∣ : (X : FinSet ℓ) → ∥ X .fst ≃ Fin (card X) ∥ ∣≃card∣ X = X .snd .snd -- cardinality is invariant under equivalences cardEquiv : (X : FinSet ℓ)(Y : FinSet ℓ') → ∥ X .fst ≃ Y .fst ∥ → card X ≡ card Y cardEquiv X Y e = Prop.rec (isSetℕ _ _) (λ p → Fin-inj _ _ (ua p)) (∣ invEquiv (SumFin≃Fin _) ∣ ⋆̂ ∣invEquiv∣ (∣≃card∣ X) ⋆̂ e ⋆̂ ∣≃card∣ Y ⋆̂ ∣ SumFin≃Fin _ ∣) cardInj : card X ≡ card Y → ∥ X .fst ≃ Y .fst ∥ cardInj {X = X} {Y = Y} p = ∣≃card∣ X ⋆̂ ∣ pathToEquiv (cong Fin p) ∣ ⋆̂ ∣invEquiv∣ (∣≃card∣ Y) cardReflection : card X ≡ n → ∥ X .fst ≃ Fin n ∥ cardReflection {X = X} = cardInj {X = X} {Y = _ , isFinSetFin} card≡MereEquiv : (card X ≡ card Y) ≡ ∥ X .fst ≃ Y .fst ∥ card≡MereEquiv {X = X} {Y = Y} = hPropExt (isSetℕ _ _) isPropPropTrunc (cardInj {X = X} {Y = Y}) (cardEquiv X Y) -- special properties about specific cardinality module _ {X : FinSet ℓ} where card≡0→isEmpty : card X ≡ 0 → ¬ X .fst card≡0→isEmpty p x = Prop.rec isProp⊥ (λ e → subst Fin p (e .fst x)) (∣≃card∣ X) card>0→isInhab : card X > 0 → ∥ X .fst ∥ card>0→isInhab p = Prop.map (λ e → invEq e (Fin>0→isInhab _ p)) (∣≃card∣ X) card>1→hasNonEqualTerm : card X > 1 → ∥ Σ[ a ∈ X .fst ] Σ[ b ∈ X .fst ] ¬ a ≡ b ∥ card>1→hasNonEqualTerm p = Prop.map (λ e → e .fst (Fin>1→hasNonEqualTerm _ p .fst) , e .fst (Fin>1→hasNonEqualTerm _ p .snd .fst) , Fin>1→hasNonEqualTerm _ p .snd .snd ∘ invEq (congEquiv e)) (∣invEquiv∣ (∣≃card∣ X)) card≡1→isContr : card X ≡ 1 → isContr (X .fst) card≡1→isContr p = Prop.rec isPropIsContr (λ e → isOfHLevelRespectEquiv 0 (invEquiv (e ⋆ substEquiv Fin p)) isContrSumFin1) (∣≃card∣ X) card≤1→isProp : card X ≤ 1 → isProp (X .fst) card≤1→isProp p = Prop.rec isPropIsProp (λ e → isOfHLevelRespectEquiv 1 (invEquiv e) (Fin≤1→isProp (card X) p)) (∣≃card∣ X) card≡n : card X ≡ n → ∥ X ≡ 𝔽in n ∥ card≡n {n = n} p = Prop.map (λ e → (λ i → ua e i , isProp→PathP {B = λ j → isFinSet (ua e j)} (λ _ → isPropIsFinSet) (X .snd) (𝔽in n .snd) i )) (∣≃card∣ X ⋆̂ ∣ pathToEquiv (cong Fin p) ⋆ invEquiv (𝔽in≃Fin n) ∣) card≡0 : card X ≡ 0 → X ≡ 𝟘 card≡0 p = propTruncIdempotent≃ (isOfHLevelRespectEquiv 1 (FinSet≡ X 𝟘) (isOfHLevel≡ 1 (card≤1→isProp (subst (λ a → a ≤ 1) (sym p) (≤-solver 0 1))) (isProp⊥*))) .fst (card≡n p) card≡1 : card X ≡ 1 → X ≡ 𝟙 card≡1 p = propTruncIdempotent≃ (isOfHLevelRespectEquiv 1 (FinSet≡ X 𝟙) (isOfHLevel≡ 1 (card≤1→isProp (subst (λ a → a ≤ 1) (sym p) (≤-solver 1 1))) (isPropUnit*))) .fst (Prop.map (λ q → q ∙ 𝔽in1≡𝟙) (card≡n p)) module _ (X : FinSet ℓ) where isEmpty→card≡0 : ¬ X .fst → card X ≡ 0 isEmpty→card≡0 p = Prop.rec (isSetℕ _ _) (λ e → sym (isEmpty→Fin≡0 _ (p ∘ invEq e))) (∣≃card∣ X) isInhab→card>0 : ∥ X .fst ∥ → card X > 0 isInhab→card>0 = Prop.rec2 m≤n-isProp (λ p x → isInhab→Fin>0 _ (p .fst x)) (∣≃card∣ X) hasNonEqualTerm→card>1 : {a b : X. fst} → ¬ a ≡ b → card X > 1 hasNonEqualTerm→card>1 {a = a} {b = b} q = Prop.rec m≤n-isProp (λ p → hasNonEqualTerm→Fin>1 _ (p .fst a) (p .fst b) (q ∘ invEq (congEquiv p))) (∣≃card∣ X) isContr→card≡1 : isContr (X .fst) → card X ≡ 1 isContr→card≡1 p = cardEquiv X (_ , isFinSetUnit) ∣ isContr→≃Unit p ∣ isProp→card≤1 : isProp (X .fst) → card X ≤ 1 isProp→card≤1 p = isProp→Fin≤1 (card X) (Prop.rec isPropIsProp (λ e → isOfHLevelRespectEquiv 1 e p) (∣≃card∣ X)) {- formulae about cardinality -} -- results to be used in direct induction on FinSet card𝟘 : card (𝟘 {ℓ}) ≡ 0 card𝟘 {ℓ = ℓ} = isEmpty→card≡0 (𝟘 {ℓ}) (Empty.rec*) card𝟙 : card (𝟙 {ℓ}) ≡ 1 card𝟙 {ℓ = ℓ} = isContr→card≡1 (𝟙 {ℓ}) isContrUnit* card𝔽in : (n : ℕ) → card (𝔽in {ℓ} n) ≡ n card𝔽in {ℓ = ℓ} n = cardEquiv (𝔽in {ℓ} n) (_ , isFinSetFin) ∣ 𝔽in≃Fin n ∣ -- addition/product formula module _ (X : FinSet ℓ ) (Y : FinSet ℓ') where card+ : card (_ , isFinSet⊎ X Y) ≡ card X + card Y card+ = refl card× : card (_ , isFinSet× X Y) ≡ card X · card Y card× = refl -- total summation/product of numerical functions from finite sets module _ (X : FinSet ℓ) (f : X .fst → ℕ) where sum : ℕ sum = card (_ , isFinSetΣ X (λ x → Fin (f x) , isFinSetFin)) prod : ℕ prod = card (_ , isFinSetΠ X (λ x → Fin (f x) , isFinSetFin)) module _ (f : 𝟘 {ℓ} .fst → ℕ) where sum𝟘 : sum 𝟘 f ≡ 0 sum𝟘 = isEmpty→card≡0 (_ , isFinSetΣ 𝟘 (λ x → Fin (f x) , isFinSetFin)) ((invEquiv (Σ-cong-equiv-fst (invEquiv 𝟘≃Empty)) ⋆ ΣEmpty _) .fst) prod𝟘 : prod 𝟘 f ≡ 1 prod𝟘 = isContr→card≡1 (_ , isFinSetΠ 𝟘 (λ x → Fin (f x) , isFinSetFin)) (isContrΠ⊥*) module _ (f : 𝟙 {ℓ} .fst → ℕ) where sum𝟙 : sum 𝟙 f ≡ f tt* sum𝟙 = cardEquiv (_ , isFinSetΣ 𝟙 (λ x → Fin (f x) , isFinSetFin)) (Fin (f tt*) , isFinSetFin) ∣ Σ-contractFst isContrUnit* ∣ prod𝟙 : prod 𝟙 f ≡ f tt* prod𝟙 = cardEquiv (_ , isFinSetΠ 𝟙 (λ x → Fin (f x) , isFinSetFin)) (Fin (f tt*) , isFinSetFin) ∣ ΠUnit* _ ∣ module _ (X : FinSet ℓ ) (Y : FinSet ℓ') (f : X .fst ⊎ Y .fst → ℕ) where sum⊎ : sum (_ , isFinSet⊎ X Y) f ≡ sum X (f ∘ inl) + sum Y (f ∘ inr) sum⊎ = cardEquiv (_ , isFinSetΣ (_ , isFinSet⊎ X Y) (λ x → Fin (f x) , isFinSetFin)) (_ , isFinSet⊎ (_ , isFinSetΣ X (λ x → Fin (f (inl x)) , isFinSetFin)) (_ , isFinSetΣ Y (λ y → Fin (f (inr y)) , isFinSetFin))) ∣ Σ⊎≃ ∣ ∙ card+ (_ , isFinSetΣ X (λ x → Fin (f (inl x)) , isFinSetFin)) (_ , isFinSetΣ Y (λ y → Fin (f (inr y)) , isFinSetFin)) prod⊎ : prod (_ , isFinSet⊎ X Y) f ≡ prod X (f ∘ inl) · prod Y (f ∘ inr) prod⊎ = cardEquiv (_ , isFinSetΠ (_ , isFinSet⊎ X Y) (λ x → Fin (f x) , isFinSetFin)) (_ , isFinSet× (_ , isFinSetΠ X (λ x → Fin (f (inl x)) , isFinSetFin)) (_ , isFinSetΠ Y (λ y → Fin (f (inr y)) , isFinSetFin))) ∣ Π⊎≃ ∣ ∙ card× (_ , isFinSetΠ X (λ x → Fin (f (inl x)) , isFinSetFin)) (_ , isFinSetΠ Y (λ y → Fin (f (inr y)) , isFinSetFin)) -- technical lemma module _ (n : ℕ)(f : 𝔽in {ℓ} (1 + n) .fst → ℕ) where sum𝔽in1+n : sum (𝔽in (1 + n)) f ≡ f (inl tt*) + sum (𝔽in n) (f ∘ inr) sum𝔽in1+n = sum⊎ 𝟙 (𝔽in n) f ∙ (λ i → sum𝟙 (f ∘ inl) i + sum (𝔽in n) (f ∘ inr)) prod𝔽in1+n : prod (𝔽in (1 + n)) f ≡ f (inl tt*) · prod (𝔽in n) (f ∘ inr) prod𝔽in1+n = prod⊎ 𝟙 (𝔽in n) f ∙ (λ i → prod𝟙 (f ∘ inl) i · prod (𝔽in n) (f ∘ inr)) sumConst𝔽in : (n : ℕ)(f : 𝔽in {ℓ} n .fst → ℕ)(c : ℕ)(h : (x : 𝔽in n .fst) → f x ≡ c) → sum (𝔽in n) f ≡ c · n sumConst𝔽in 0 f c _ = sum𝟘 f ∙ 0≡m·0 c sumConst𝔽in (suc n) f c h = sum𝔽in1+n n f ∙ (λ i → h (inl tt*) i + sumConst𝔽in n (f ∘ inr) c (h ∘ inr) i) ∙ sym (·-suc c n) prodConst𝔽in : (n : ℕ)(f : 𝔽in {ℓ} n .fst → ℕ)(c : ℕ)(h : (x : 𝔽in n .fst) → f x ≡ c) → prod (𝔽in n) f ≡ c ^ n prodConst𝔽in 0 f c _ = prod𝟘 f prodConst𝔽in (suc n) f c h = prod𝔽in1+n n f ∙ (λ i → h (inl tt*) i · prodConst𝔽in n (f ∘ inr) c (h ∘ inr) i) module _ (X : FinSet ℓ) (f : X .fst → ℕ) (c : ℕ)(h : (x : X .fst) → f x ≡ c) where sumConst : sum X f ≡ c · card X sumConst = elimProp (λ X → (f : X .fst → ℕ)(c : ℕ)(h : (x : X .fst) → f x ≡ c) → sum X f ≡ c · (card X)) (λ X → isPropΠ3 (λ _ _ _ → isSetℕ _ _)) (λ n f c h → sumConst𝔽in n f c h ∙ (λ i → c · card𝔽in {ℓ = ℓ} n (~ i))) X f c h prodConst : prod X f ≡ c ^ card X prodConst = elimProp (λ X → (f : X .fst → ℕ)(c : ℕ)(h : (x : X .fst) → f x ≡ c) → prod X f ≡ c ^ (card X)) (λ X → isPropΠ3 (λ _ _ _ → isSetℕ _ _)) (λ n f c h → prodConst𝔽in n f c h ∙ (λ i → c ^ card𝔽in {ℓ = ℓ} n (~ i))) X f c h private ≡≤ : {m n l k r s : ℕ} → m ≤ n → l ≤ k → r ≡ m + l → s ≡ n + k → r ≤ s ≡≤ {m = m} {l = l} {k = k} p q u v = subst2 (_≤_) (sym u) (sym v) (≤-+-≤ p q) ≡< : {m n l k r s : ℕ} → m < n → l ≤ k → r ≡ m + l → s ≡ n + k → r < s ≡< {m = m} {l = l} {k = k} p q u v = subst2 (_<_) (sym u) (sym v) (<-+-≤ p q) sum≤𝔽in : (n : ℕ)(f g : 𝔽in {ℓ} n .fst → ℕ)(h : (x : 𝔽in n .fst) → f x ≤ g x) → sum (𝔽in n) f ≤ sum (𝔽in n) g sum≤𝔽in 0 f g _ = subst2 (_≤_) (sym (sum𝟘 f)) (sym (sum𝟘 g)) ≤-refl sum≤𝔽in (suc n) f g h = ≡≤ (h (inl tt*)) (sum≤𝔽in n (f ∘ inr) (g ∘ inr) (h ∘ inr)) (sum𝔽in1+n n f) (sum𝔽in1+n n g) sum<𝔽in : (n : ℕ)(f g : 𝔽in {ℓ} n .fst → ℕ)(t : ∥ 𝔽in {ℓ} n .fst ∥)(h : (x : 𝔽in n .fst) → f x < g x) → sum (𝔽in n) f < sum (𝔽in n) g sum<𝔽in {ℓ = ℓ} 0 _ _ t _ = Empty.rec (<→≢ (isInhab→card>0 (𝔽in 0) t) (card𝟘 {ℓ = ℓ})) sum<𝔽in (suc n) f g t h = ≡< (h (inl tt*)) (sum≤𝔽in n (f ∘ inr) (g ∘ inr) (<-weaken ∘ h ∘ inr)) (sum𝔽in1+n n f) (sum𝔽in1+n n g) module _ (X : FinSet ℓ) (f g : X .fst → ℕ) where module _ (h : (x : X .fst) → f x ≡ g x) where sum≡ : sum X f ≡ sum X g sum≡ i = sum X (λ x → h x i) prod≡ : prod X f ≡ prod X g prod≡ i = prod X (λ x → h x i) module _ (h : (x : X .fst) → f x ≤ g x) where sum≤ : sum X f ≤ sum X g sum≤ = elimProp (λ X → (f g : X .fst → ℕ)(h : (x : X .fst) → f x ≤ g x) → sum X f ≤ sum X g) (λ X → isPropΠ3 (λ _ _ _ → m≤n-isProp)) sum≤𝔽in X f g h module _ (t : ∥ X .fst ∥) (h : (x : X .fst) → f x < g x) where sum< : sum X f < sum X g sum< = elimProp (λ X → (f g : X .fst → ℕ)(t : ∥ X .fst ∥)(h : (x : X .fst) → f x < g x) → sum X f < sum X g) (λ X → isPropΠ4 (λ _ _ _ _ → m≤n-isProp)) sum<𝔽in X f g t h module _ (X : FinSet ℓ) (f : X .fst → ℕ) where module _ (c : ℕ)(h : (x : X .fst) → f x ≤ c) where sumBounded : sum X f ≤ c · card X sumBounded = subst (λ a → sum X f ≤ a) (sumConst X (λ _ → c) c (λ _ → refl)) (sum≤ X f (λ _ → c) h) module _ (c : ℕ)(h : (x : X .fst) → f x ≥ c) where sumBoundedBelow : sum X f ≥ c · card X sumBoundedBelow = subst (λ a → sum X f ≥ a) (sumConst X (λ _ → c) c (λ _ → refl)) (sum≤ X (λ _ → c) f h) -- some combinatorial identities module _ (X : FinSet ℓ ) (Y : X .fst → FinSet ℓ') where cardΣ : card (_ , isFinSetΣ X Y) ≡ sum X (λ x → card (Y x)) cardΣ = cardEquiv (_ , isFinSetΣ X Y) (_ , isFinSetΣ X (λ x → Fin (card (Y x)) , isFinSetFin)) (Prop.map Σ-cong-equiv-snd (choice X (λ x → Y x .fst ≃ Fin (card (Y x))) (λ x → ∣≃card∣ (Y x)))) cardΠ : card (_ , isFinSetΠ X Y) ≡ prod X (λ x → card (Y x)) cardΠ = cardEquiv (_ , isFinSetΠ X Y) (_ , isFinSetΠ X (λ x → Fin (card (Y x)) , isFinSetFin)) (Prop.map equivΠCod (choice X (λ x → Y x .fst ≃ Fin (card (Y x))) (λ x → ∣≃card∣ (Y x)))) module _ (X : FinSet ℓ ) (Y : FinSet ℓ') where card→ : card (_ , isFinSet→ X Y) ≡ card Y ^ card X card→ = cardΠ X (λ _ → Y) ∙ prodConst X (λ _ → card Y) (card Y) (λ _ → refl) module _ (X : FinSet ℓ ) where cardAut : card (_ , isFinSetAut X) ≡ LehmerCode.factorial (card X) cardAut = refl module _ (X : FinSet ℓ ) (Y : FinSet ℓ') (f : X .fst → Y .fst) where sumCardFiber : card X ≡ sum Y (λ y → card (_ , isFinSetFiber X Y f y)) sumCardFiber = cardEquiv X (_ , isFinSetΣ Y (λ y → _ , isFinSetFiber X Y f y)) ∣ totalEquiv f ∣ ∙ cardΣ Y (λ y → _ , isFinSetFiber X Y f y) -- the pigeonhole priniple -- a logical lemma private ¬ΠQ→¬¬ΣP : (X : Type ℓ) (P : X → Type ℓ' ) (Q : X → Type ℓ'') (r : (x : X) → ¬ (P x) → Q x) → ¬ ((x : X) → Q x) → ¬ ¬ (Σ X P) ¬ΠQ→¬¬ΣP _ _ _ r g f = g (λ x → r x (λ p → f (x , p))) module _ (f : X .fst → Y .fst) (n : ℕ) where fiberCount : ((y : Y .fst) → card (_ , isFinSetFiber X Y f y) ≤ n) → card X ≤ n · card Y fiberCount h = subst (λ a → a ≤ _) (sym (sumCardFiber X Y f)) (sumBounded Y (λ y → card (_ , isFinSetFiber X Y f y)) n h) module _ (p : card X > n · card Y) where ¬¬pigeonHole : ¬ ¬ (Σ[ y ∈ Y .fst ] card (_ , isFinSetFiber X Y f y) > n) ¬¬pigeonHole = ¬ΠQ→¬¬ΣP (Y .fst) (λ y → _ > n) (λ y → _ ≤ n) (λ y → <-asym') (λ h → <-asym p (fiberCount h)) pigeonHole : ∥ Σ[ y ∈ Y .fst ] card (_ , isFinSetFiber X Y f y) > n ∥ pigeonHole = PeirceLaw (isFinSetΣ Y (λ _ → _ , isDecProp→isFinSet m≤n-isProp (≤Dec _ _))) ¬¬pigeonHole -- a special case, proved in Cubical.Data.Fin.Properties -- a technical lemma private Σ∥P∥→∥ΣP∥ : (X : Type ℓ)(P : X → Type ℓ') → Σ X (λ x → ∥ P x ∥) → ∥ Σ X P ∥ Σ∥P∥→∥ΣP∥ _ _ (x , p) = Prop.map (λ q → x , q) p module _ (f : X .fst → Y .fst) (p : card X > card Y) where fiberNonEqualTerm : Σ[ y ∈ Y .fst ] card (_ , isFinSetFiber X Y f y) > 1 → ∥ Σ[ y ∈ Y .fst ] Σ[ a ∈ fiber f y ] Σ[ b ∈ fiber f y ] ¬ a ≡ b ∥ fiberNonEqualTerm (y , p) = Σ∥P∥→∥ΣP∥ _ _ (y , card>1→hasNonEqualTerm {X = _ , isFinSetFiber X Y f y} p) nonInj : Σ[ y ∈ Y .fst ] Σ[ a ∈ fiber f y ] Σ[ b ∈ fiber f y ] ¬ a ≡ b → Σ[ x ∈ X .fst ] Σ[ x' ∈ X .fst ] (¬ x ≡ x') × (f x ≡ f x') nonInj (y , (x , p) , (x' , q) , t) .fst = x nonInj (y , (x , p) , (x' , q) , t) .snd .fst = x' nonInj (y , (x , p) , (x' , q) , t) .snd .snd .fst u = t (λ i → u i , isSet→SquareP (λ i j → isFinSet→isSet (Y .snd)) p q (cong f u) refl i) nonInj (y , (x , p) , (x' , q) , t) .snd .snd .snd = p ∙ sym q pigeonHole' : ∥ Σ[ x ∈ X .fst ] Σ[ x' ∈ X .fst ] (¬ x ≡ x') × (f x ≡ f x') ∥ pigeonHole' = Prop.map nonInj (Prop.rec isPropPropTrunc fiberNonEqualTerm (pigeonHole {X = X} {Y = Y} f 1 (subst (λ a → _ > a) (sym (·-identityˡ _)) p))) -- cardinality and injection/surjection module _ (X : FinSet ℓ ) (Y : FinSet ℓ') where module _ (f : X .fst → Y .fst) where card↪Inequality' : isEmbedding f → card X ≤ card Y card↪Inequality' p = subst2 (_≤_) (sym (sumCardFiber X Y f)) (·-identityˡ _) (sumBounded Y (λ y → card (_ , isFinSetFiber X Y f y)) 1 (λ y → isProp→card≤1 (_ , isFinSetFiber X Y f y) (isEmbedding→hasPropFibers p y))) card↠Inequality' : isSurjection f → card X ≥ card Y card↠Inequality' p = subst2 (_≥_) (sym (sumCardFiber X Y f)) (·-identityˡ _) (sumBoundedBelow Y (λ y → card (_ , isFinSetFiber X Y f y)) 1 (λ y → isInhab→card>0 (_ , isFinSetFiber X Y f y) (p y))) card↪Inequality : ∥ X .fst ↪ Y .fst ∥ → card X ≤ card Y card↪Inequality = Prop.rec m≤n-isProp (λ (f , p) → card↪Inequality' f p) card↠Inequality : ∥ X .fst ↠ Y .fst ∥ → card X ≥ card Y card↠Inequality = Prop.rec m≤n-isProp (λ (f , p) → card↠Inequality' f p) -- maximal value of numerical functions module _ (X : Type ℓ) (f : X → ℕ) where module _ (x : X) where isMax : Type ℓ isMax = (x' : X) → f x' ≤ f x isPropIsMax : isProp isMax isPropIsMax = isPropΠ (λ _ → m≤n-isProp) uniqMax : (x x' : X) → isMax x → isMax x' → f x ≡ f x' uniqMax x x' p q = ≤-antisym (q x) (p x') ΣMax : Type ℓ ΣMax = Σ[ x ∈ X ] isMax x ∃Max : Type ℓ ∃Max = ∥ ΣMax ∥ ∃Max→maxValue : ∃Max → ℕ ∃Max→maxValue = SetElim.rec→Set isSetℕ (λ (x , p) → f x) (λ (x , p) (x' , q) → uniqMax x x' p q) -- lemma about maximal value on sum type module _ (X : Type ℓ ) (Y : Type ℓ') (f : X ⊎ Y → ℕ) where ΣMax⊎-case : ((x , p) : ΣMax X (f ∘ inl))((y , q) : ΣMax Y (f ∘ inr)) → Trichotomy (f (inl x)) (f (inr y)) → ΣMax (X ⊎ Y) f ΣMax⊎-case (x , p) (y , q) (lt r) .fst = inr y ΣMax⊎-case (x , p) (y , q) (lt r) .snd (inl x') = ≤-trans (p x') (<-weaken r) ΣMax⊎-case (x , p) (y , q) (lt r) .snd (inr y') = q y' ΣMax⊎-case (x , p) (y , q) (eq r) .fst = inr y ΣMax⊎-case (x , p) (y , q) (eq r) .snd (inl x') = ≤-trans (p x') (_ , r) ΣMax⊎-case (x , p) (y , q) (eq r) .snd (inr y') = q y' ΣMax⊎-case (x , p) (y , q) (gt r) .fst = inl x ΣMax⊎-case (x , p) (y , q) (gt r) .snd (inl x') = p x' ΣMax⊎-case (x , p) (y , q) (gt r) .snd (inr y') = ≤-trans (q y') (<-weaken r) ∃Max⊎ : ∃Max X (f ∘ inl) → ∃Max Y (f ∘ inr) → ∃Max (X ⊎ Y) f ∃Max⊎ = Prop.map2 (λ p q → ΣMax⊎-case p q (_≟_ _ _)) ΣMax𝟙 : (f : 𝟙 {ℓ} .fst → ℕ) → ΣMax _ f ΣMax𝟙 f .fst = tt* ΣMax𝟙 f .snd x = _ , cong f (sym (isContrUnit* .snd x)) ∃Max𝟙 : (f : 𝟙 {ℓ} .fst → ℕ) → ∃Max _ f ∃Max𝟙 f = ∣ ΣMax𝟙 f ∣ ∃Max𝔽in : (n : ℕ)(f : 𝔽in {ℓ} n .fst → ℕ)(x : ∥ 𝔽in {ℓ} n .fst ∥) → ∃Max _ f ∃Max𝔽in {ℓ = ℓ} 0 _ x = Empty.rec (<→≢ (isInhab→card>0 (𝔽in 0) x) (card𝟘 {ℓ = ℓ})) ∃Max𝔽in 1 f _ = subst (λ X → (f : X .fst → ℕ) → ∃Max _ f) (sym 𝔽in1≡𝟙) ∃Max𝟙 f ∃Max𝔽in (suc (suc n)) f _ = ∃Max⊎ (𝟙 .fst) (𝔽in (suc n) .fst) f (∃Max𝟙 (f ∘ inl)) (∃Max𝔽in (suc n) (f ∘ inr) ∣ * {n = n} ∣) module _ (X : FinSet ℓ) (f : X .fst → ℕ) (x : ∥ X .fst ∥) where ∃MaxFinSet : ∃Max _ f ∃MaxFinSet = elimProp (λ X → (f : X .fst → ℕ)(x : ∥ X .fst ∥) → ∃Max _ f) (λ X → isPropΠ2 (λ _ _ → isPropPropTrunc)) ∃Max𝔽in X f x maxValue : ℕ maxValue = ∃Max→maxValue _ _ ∃MaxFinSet {- some formal consequences of card -} -- card induces equivalence from set truncation of FinSet to natural numbers open Iso Iso-∥FinSet∥₂-ℕ : Iso ∥ FinSet ℓ ∥₂ ℕ Iso-∥FinSet∥₂-ℕ .fun = Set.rec isSetℕ card Iso-∥FinSet∥₂-ℕ .inv n = ∣ 𝔽in n ∣₂ Iso-∥FinSet∥₂-ℕ .rightInv n = card𝔽in n Iso-∥FinSet∥₂-ℕ {ℓ = ℓ} .leftInv = Set.elim {B = λ X → ∣ 𝔽in (Set.rec isSetℕ card X) ∣₂ ≡ X} (λ X → isSetPathImplicit) (elimProp (λ X → ∣ 𝔽in (card X) ∣₂ ≡ ∣ X ∣₂) (λ X → squash₂ _ _) (λ n i → ∣ 𝔽in (card𝔽in {ℓ = ℓ} n i) ∣₂)) -- this is the definition of natural numbers you learned from school ∥FinSet∥₂≃ℕ : ∥ FinSet ℓ ∥₂ ≃ ℕ ∥FinSet∥₂≃ℕ = isoToEquiv Iso-∥FinSet∥₂-ℕ -- FinProp is equivalent to Bool Bool→FinProp : Bool → FinProp ℓ Bool→FinProp true = 𝟙 , isPropUnit* Bool→FinProp false = 𝟘 , isProp⊥* injBool→FinProp : (x y : Bool) → Bool→FinProp {ℓ = ℓ} x ≡ Bool→FinProp y → x ≡ y injBool→FinProp true true _ = refl injBool→FinProp false false _ = refl injBool→FinProp true false p = Empty.rec (snotz (cong (card ∘ fst) p)) injBool→FinProp false true p = Empty.rec (znots (cong (card ∘ fst) p)) isEmbeddingBool→FinProp : isEmbedding (Bool→FinProp {ℓ = ℓ}) isEmbeddingBool→FinProp = injEmbedding isSetBool isSetFinProp (λ {x} {y} → injBool→FinProp x y) card-case : (P : FinProp ℓ) → {n : ℕ} → card (P .fst) ≡ n → Σ[ x ∈ Bool ] Bool→FinProp x ≡ P card-case P {n = 0} p = false , FinProp≡ (𝟘 , isProp⊥*) P .fst (cong fst (sym (card≡0 {X = P .fst} p))) card-case P {n = 1} p = true , FinProp≡ (𝟙 , isPropUnit*) P .fst (cong fst (sym (card≡1 {X = P .fst} p))) card-case P {n = suc (suc n)} p = Empty.rec (¬-<-zero (pred-≤-pred (subst (λ a → a ≤ 1) p (isProp→card≤1 (P .fst) (P .snd))))) isSurjectionBool→FinProp : isSurjection (Bool→FinProp {ℓ = ℓ}) isSurjectionBool→FinProp P = ∣ card-case P refl ∣ FinProp≃Bool : FinProp ℓ ≃ Bool FinProp≃Bool = invEquiv (Bool→FinProp , isEmbedding×isSurjection→isEquiv (isEmbeddingBool→FinProp , isSurjectionBool→FinProp)) isFinSetFinProp : isFinSet (FinProp ℓ) isFinSetFinProp = EquivPresIsFinSet (invEquiv FinProp≃Bool) isFinSetBool -- a more computationally efficient version of equivalence type module _ (X : FinSet ℓ ) (Y : FinSet ℓ') where isFinSet≃Eff' : Dec (card X ≡ card Y) → isFinSet (X .fst ≃ Y .fst) isFinSet≃Eff' (yes p) = factorial (card Y) , Prop.elim2 (λ _ _ → isPropPropTrunc {A = _ ≃ Fin _}) (λ p1 p2 → ∣ equivComp (p1 ⋆ pathToEquiv (cong Fin p) ⋆ SumFin≃Fin _) (p2 ⋆ SumFin≃Fin _) ⋆ lehmerEquiv ⋆ lehmerFinEquiv ⋆ invEquiv (SumFin≃Fin _) ∣) (∣≃card∣ X) (∣≃card∣ Y) isFinSet≃Eff' (no ¬p) = 0 , ∣ uninhabEquiv (¬p ∘ cardEquiv X Y ∘ ∣_∣) (idfun _) ∣ isFinSet≃Eff : isFinSet (X .fst ≃ Y .fst) isFinSet≃Eff = isFinSet≃Eff' (discreteℕ _ _) module _ (X Y : FinSet ℓ) where isFinSetType≡Eff : isFinSet (X .fst ≡ Y .fst) isFinSetType≡Eff = EquivPresIsFinSet (invEquiv univalence) (isFinSet≃Eff X Y)
{ "alphanum_fraction": 0.5474364896, "avg_line_length": 33.6702954899, "ext": "agda", "hexsha": "4402e7b8b69e66e590ea704d8d740114275663e2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/FinSet/Cardinality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/FinSet/Cardinality.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/FinSet/Cardinality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9972, "size": 21650 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Decidable setoid membership over vectors. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (DecSetoid) module Data.Vec.Membership.DecSetoid {c ℓ} (DS : DecSetoid c ℓ) where open import Data.Vec using (Vec) open import Data.Vec.Relation.Unary.Any using (any) open import Relation.Nullary using (Dec) open DecSetoid DS renaming (Carrier to A) ------------------------------------------------------------------------ -- Re-export contents of propositional membership open import Data.Vec.Membership.Setoid setoid public ------------------------------------------------------------------------ -- Other operations infix 4 _∈?_ _∈?_ : ∀ x {n} (xs : Vec A n) → Dec (x ∈ xs) x ∈? xs = any (x ≟_) xs
{ "alphanum_fraction": 0.4822616408, "avg_line_length": 30.0666666667, "ext": "agda", "hexsha": "f8b7abd5d88df66cde09f50297bd4f2e03152026", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Membership/DecSetoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Membership/DecSetoid.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Membership/DecSetoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 185, "size": 902 }
module _ where open import Agda.Primitive.Cubical postulate PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ {-# BUILTIN PATHP PathP #-}
{ "alphanum_fraction": 0.5769230769, "avg_line_length": 17.3333333333, "ext": "agda", "hexsha": "ca938f5c2c0dafcedc08fcef44d95e2033ca8b3c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_forks_event_min_datetime": "2021-04-01T18:30:09.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2788c.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2788c.agda", "max_line_length": 53, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2788c.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 58, "size": 156 }
module #8 where {- Define multiplication and exponentiation using recN. Verify that (N, +, 0, ×, 1) is a semiring using only indN. You will probably also need to use symmetry and transitivity of equality, Lemmas 2.1.1 and 2.1.2. -} open import Data.Nat recₙ : ∀{c}{C : Set c} → C → (ℕ → C → C) → ℕ → C recₙ c₀ cₛ zero = c₀ recₙ c₀ cₛ (suc n) = cₛ n (recₙ c₀ cₛ n) mul-recₙ : ℕ → ℕ → ℕ mul-recₙ n = recₙ 0 (λ _ z → z + n) exp-recₙ : ℕ → ℕ → ℕ exp-recₙ n = recₙ 1 (λ _ z → z * n) ind-ℕ : ∀{k}{C : ℕ → Set k} → C zero → ((n : ℕ) → C n → C (suc n)) → (n : ℕ) → C n ind-ℕ c0 cs zero = c0 ind-ℕ c0 cs (suc n) = cs n (ind-ℕ c0 cs n) record Semiring (X : Set) : Set where field ε : X _⊕_ : X → X → X _⊛_ : X → X → X open Semiring {{...}} public natIsSemiring : Semiring ℕ natIsSemiring = record { ε = zero ; _⊕_ = _+_ ; _⊛_ = _*_ } {- Semiring Laws Follow -}
{ "alphanum_fraction": 0.523659306, "avg_line_length": 23.1951219512, "ext": "agda", "hexsha": "1fada7ccbf1f7dba8746424964a31642f2cdb124", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Chapter1/#8.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Chapter1/#8.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Chapter1/#8.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 403, "size": 951 }
--------------------------------------- -- Pairs of sets --------------------------------------- {-# OPTIONS --allow-unsolved-meta #-} module sv20.assign2.SetTheory.Pairs where -- Everything involving pairs, be them unordered -- or ordered pairs. Also the definition of power set -- and cartesian product between sets. open import sv20.assign2.SetTheory.Logic open import sv20.assign2.SetTheory.Algebra open import sv20.assign2.SetTheory.Subset open import sv20.assign2.SetTheory.ZAxioms -- Pairs, justified by the pair axiom _ₚ_ : 𝓢 → 𝓢 → 𝓢 x ₚ y = proj₁ (pair x y) pair-d : (x y : 𝓢) → ∀ {z} → z ∈ x ₚ y ⇔ (z ≡ x ∨ z ≡ y) pair-d x y = proj₂ _ (pair x y) -- Both ∧-projections pair-d₁ : (x y : 𝓢) → ∀ {z} → z ∈ x ₚ y → (z ≡ x ∨ z ≡ y) pair-d₁ x y = ∧-proj₁ (pair-d x y) pair-d₂ : (x y : 𝓢) → ∀ {z} → (z ≡ x ∨ z ≡ y) → z ∈ x ₚ y pair-d₂ x y = ∧-proj₂ (pair-d x y) pair-p₁ : (x y : 𝓢) → x ₚ y ≡ y ₚ x pair-p₁ x y = equalitySubset (x ₚ y) (y ₚ x) (p₁ , p₂) where p₁ : (z : 𝓢) → z ∈ x ₚ y → z ∈ y ₚ x p₁ z z∈x,y = pair-d₂ y x (∨-sym _ _ (pair-d₁ x y z∈x,y)) p₂ : (z : 𝓢) → z ∈ y ₚ x → z ∈ x ₚ y p₂ z z∈y,x = pair-d₂ x y (∨-sym _ _ (pair-d₁ y x z∈y,x)) singleton : 𝓢 → 𝓢 singleton x = x ₚ x singletonp : (x : 𝓢) → ∀ {z} → z ∈ singleton x → z ≡ x singletonp x x₁ = ∨-idem _ (pair-d₁ x x x₁) singletonp₂ : (x : 𝓢) → x ∈ singleton x singletonp₂ x = pair-d₂ x x (inj₁ refl) singletonp₃ : (x : 𝓢) → ∀ {y} → x ≡ y → x ∈ singleton y singletonp₃ x x≡y = pair-d₂ _ _ (inj₁ x≡y) singletonp₄ : (x y : 𝓢) → x ∈ singleton y → x ∩ singleton y ≡ ∅ singletonp₄ x y h = {!!} where p₁ : x ≡ y p₁ = singletonp _ h p₂ : x ∩ singleton x ≡ ∅ p₂ = {!!} pair-prop-helper₁ : {a b c : 𝓢} → a ≡ b ∨ a ≡ c → a ≢ b → a ≡ c pair-prop-helper₁ (inj₁ a≡b) h = ⊥-elim (h a≡b) pair-prop-helper₁ (inj₂ refl) _ = refl pair-prop-helper₂ : {a b : 𝓢} → a ≢ b → b ≢ a pair-prop-helper₂ h b≡a = h (sym _ _ b≡a) -- Theorem 44, p. 31 (Suppes, 1972). pair-prop : (x y u v : 𝓢) → x ₚ y ≡ u ₚ v → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) pair-prop x y u v eq = ∨-e _ _ _ (pem (x ≡ y)) h-x≡y h-x≢y where u∈u,v : u ∈ (u ₚ v) u∈u,v = ∨-prop₁ (pair-d₂ u v) refl u∈x,y : u ∈ (x ₚ y) u∈x,y = memberEq u (u ₚ v) (x ₚ y) (u∈u,v , (sym _ _ eq)) disj₁ : u ≡ x ∨ u ≡ y disj₁ = pair-d₁ _ _ u∈x,y v∈u,v : v ∈ (u ₚ v) v∈u,v = ∨-prop₂ (pair-d₂ u v) refl v∈x,y : v ∈ (x ₚ y) v∈x,y = memberEq v (u ₚ v) (x ₚ y) (v∈u,v , (sym _ _ eq)) disj₂ : v ≡ x ∨ v ≡ y disj₂ = pair-d₁ _ _ v∈x,y x∈x,y : x ∈ (x ₚ y) x∈x,y = ∨-prop₁ (pair-d₂ x y) refl x∈u,v : x ∈ (u ₚ v) x∈u,v = memberEq x (x ₚ y) (u ₚ v) (x∈x,y , eq) disj₃ : x ≡ u ∨ x ≡ v disj₃ = pair-d₁ _ _ x∈u,v y∈x,y : y ∈ (x ₚ y) y∈x,y = ∨-prop₂ (pair-d₂ x y) refl y∈u,v : y ∈ (u ₚ v) y∈u,v = memberEq y (x ₚ y) (u ₚ v) (y∈x,y , eq) disj₄ : y ≡ u ∨ y ≡ v disj₄ = pair-d₁ _ _ y∈u,v h-x≡y : x ≡ y → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h-x≡y eq₂ = inj₁ (x≡u , v≡y) where x≡u : u ≡ x x≡u = ∨-idem _ disj-aux where disj-aux : u ≡ x ∨ u ≡ x disj-aux = subs _ (sym _ _ eq₂) disj₁ v≡y : v ≡ y v≡y = ∨-idem _ disj-aux where disj-aux : v ≡ y ∨ v ≡ y disj-aux = subs _ eq₂ disj₂ h-x≢y : x ≢ y → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h-x≢y ¬eq = ∨-e _ _ _ (pem (x ≡ u)) h₁ h₂ where h₁ : x ≡ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h₁ x≡u = ∨-e _ _ _ (pem (y ≡ u)) h₁₁ h₁₂ where h₁₁ : y ≡ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h₁₁ y≡u = ⊥-elim (¬eq (trans x≡u (sym _ _ y≡u))) h₁₂ : y ≢ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h₁₂ h = inj₁ (sym _ _ x≡u , sym _ _ (pair-prop-helper₁ disj₄ h)) h₂ : x ≢ u → (u ≡ x ∧ v ≡ y) ∨ (v ≡ x ∧ u ≡ y) h₂ h = inj₂ (sym _ _ (pair-prop-helper₁ disj₃ h) , (pair-prop-helper₁ disj₁ (pair-prop-helper₂ h))) -- Theorem 45, p. 32 (Suppes 1960). singleton-eq : (x y : 𝓢) → singleton x ≡ singleton y → x ≡ y singleton-eq x y eq = sym _ _ (∧-proj₁ (∨-idem _ aux)) where aux : ((y ≡ x) ∧ (y ≡ x)) ∨ ((y ≡ x) ∧ (y ≡ x)) aux = pair-prop x x y y eq singleton-⊆ : (x A : 𝓢) → x ∈ A → singleton x ⊆ A singleton-⊆ x A x∈A t t∈xₛ = subs _ (sym _ _ (singletonp _ t∈xₛ)) x∈A prop-p₂ : (y z : 𝓢) → y ₚ z ≡ singleton y ∪ singleton z prop-p₂ y z = equalitySubset _ _ (p₁ , p₂) where p₁ : (x : 𝓢) → x ∈ y ₚ z → x ∈ singleton y ∪ singleton z p₁ _ h = ∪-d₂ _ _ (∨-prop₅ (pair-d₁ _ _ h) (singletonp₃ _) (singletonp₃ _)) p₂ : (x : 𝓢) → x ∈ singleton y ∪ singleton z → x ∈ y ₚ z p₂ x h = pair-d₂ _ _ (∨-prop₅ (∪-d₁ _ _ h) (singletonp _) (singletonp _)) -- Ordered pairs _ₒ_ : 𝓢 → 𝓢 → 𝓢 x ₒ y = singleton x ₚ (x ₚ y) -- Just an abvreviation for next theorem abv₁ : 𝓢 → 𝓢 → 𝓢 → 𝓢 → Set abv₁ u x v y = (u ₚ u ≡ x ₚ x ∧ u ₚ v ≡ x ₚ y) ∨ (u ₚ v ≡ x ₚ x ∧ u ₚ u ≡ x ₚ y) -- Theorem 46, p. 32 (Suppes). ord-p : (x y u v : 𝓢) → x ₒ y ≡ u ₒ v → x ≡ u ∧ y ≡ v ord-p x y u v eq = ∨-e _ _ _ aux a→c b→c where aux : (singleton u ≡ singleton x ∧ (u ₚ v) ≡ (x ₚ y)) ∨ ((u ₚ v) ≡ singleton x ∧ singleton u ≡ (x ₚ y)) aux = pair-prop _ _ _ _ eq a→c : singleton u ≡ singleton x ∧ u ₚ v ≡ x ₚ y → x ≡ u ∧ y ≡ v a→c (eqₚ , eqₛ) = x≡u , y≡v where x≡u : x ≡ u x≡u = singleton-eq _ _ (sym _ _ eqₚ) p₁ : (x ≡ u ∧ y ≡ v) ∨ (y ≡ u ∧ x ≡ v) p₁ = pair-prop _ _ _ _ eqₛ p₂ : x ≡ u ∧ y ≡ v → y ≡ v p₂ (h₁ , h₂) = h₂ p₃ : y ≡ u ∧ x ≡ v → y ≡ v p₃ (h₁ , h₂) = subs (λ w → w ≡ v) x≡y h₂ where x≡y : x ≡ y x≡y = subs (λ w → x ≡ w) (sym y u h₁) x≡u y≡v : y ≡ v y≡v = ∨-e _ _ _ p₁ p₂ p₃ b→c : u ₚ v ≡ singleton x ∧ singleton u ≡ x ₚ y → x ≡ u ∧ y ≡ v b→c (h₁ , h₂) = p₃ , subs (λ w → w ≡ v) p₈ p₄ where p₁ : (x ≡ u ∧ x ≡ v) ∨ (x ≡ u ∧ x ≡ v) p₁ = pair-prop _ _ _ _ h₁ p₂ : x ≡ u ∧ x ≡ v p₂ = ∨-idem _ p₁ p₃ : x ≡ u p₃ = ∧-proj₁ p₂ p₄ : x ≡ v p₄ = ∧-proj₂ p₂ p₅ : (x ≡ u ∧ y ≡ u) ∨ (y ≡ u ∧ x ≡ u) p₅ = pair-prop _ _ _ _ h₂ p₆ : x ≡ u ∧ y ≡ u p₆ = ∨-∧ p₅ p₇ : y ≡ u p₇ = ∧-proj₂ p₆ p₈ : x ≡ y p₈ = subs (λ w → w ≡ y) (sym _ _ p₃) (sym _ _ p₇) -- Power sets 𝓟_ : 𝓢 → 𝓢 𝓟 x = proj₁ (pow x) -- Theorem 86, p. 47 (Suppes 1960) 𝓟-d : (x : 𝓢) → ∀ {z} → z ∈ (𝓟 x) ⇔ z ⊆ x 𝓟-d x = proj₂ _ (pow x) -- Both projections. 𝓟-d₁ : (x : 𝓢) → ∀ {z} → z ∈ (𝓟 x) → z ⊆ x 𝓟-d₁ _ = ∧-proj₁ (𝓟-d _) 𝓟-d₂ : (x : 𝓢) → ∀ {z} → z ⊆ x → z ∈ (𝓟 x) 𝓟-d₂ _ = ∧-proj₂ (𝓟-d _) -- Theorem 87, p. 47 (Suppes 1960). A∈𝓟A : (A : 𝓢) → A ∈ 𝓟 A A∈𝓟A A = 𝓟-d₂ A subsetOfItself -- Theorem 91, p. 48 (Suppes 1960). ⊆𝓟 : (A B : 𝓢) → A ⊆ B ⇔ 𝓟 A ⊆ 𝓟 B ⊆𝓟 A B = iₗ , iᵣ where iₗ : A ⊆ B → 𝓟 A ⊆ 𝓟 B iₗ A⊆B t t∈𝓟A = 𝓟-d₂ _ t⊆B where t⊆A : t ⊆ A t⊆A = 𝓟-d₁ A t∈𝓟A t⊆B : t ⊆ B t⊆B = trans-⊆ _ _ _ (t⊆A , A⊆B) iᵣ : 𝓟 A ⊆ 𝓟 B → A ⊆ B iᵣ 𝓟A⊆𝓟B t t∈A = 𝓟-d₁ _ A∈𝓟B _ t∈A where A∈𝓟B : A ∈ 𝓟 B A∈𝓟B = 𝓟A⊆𝓟B _ (A∈𝓟A _) -- Theorem 92, p. 48 (Suppes 1960). 𝓟∪ : (A B : 𝓢) → (𝓟 A) ∪ (𝓟 B) ⊆ 𝓟 (A ∪ B) 𝓟∪ A B t t∈𝓟A∪𝓟B = 𝓟-d₂ _ t⊆A∪B where ∪₁ : t ∈ 𝓟 A ∨ t ∈ 𝓟 B ∪₁ = ∪-d₁ _ _ t∈𝓟A∪𝓟B p : t ⊆ A ∨ t ⊆ B p = ∨-prop₄ aux₁ (𝓟-d₁ _) where aux₁ : t ⊆ A ∨ t ∈ 𝓟 B aux₁ = ∨-prop₃ ∪₁ (𝓟-d₁ _) t⊆A∪B : t ⊆ A ∪ B t⊆A∪B = ∪-prop₂ _ _ _ p -- Cartesian Product. First we have to prove some things using -- the subset axiom in order to be able to define cartesian products. -- Two abvreviations to make sub₄ shorter. abv₂ : 𝓢 → 𝓢 → 𝓢 → Set abv₂ z A B = z ∈ 𝓟 (𝓟 (A ∪ B)) abv₃ : 𝓢 → 𝓢 → 𝓢 → Set abv₃ z A B = ∃ (λ y → ∃ (λ w → (y ∈ A ∧ w ∈ B) ∧ z ≡ y ₒ w)) --Instance of the subset axiom. sub₄ : (A B : 𝓢) → ∃ (λ C → {z : 𝓢} → z ∈ C ⇔ abv₂ z A B ∧ abv₃ z A B) sub₄ A B = sub (λ x → abv₃ x A B) (𝓟 (𝓟 (A ∪ B))) -- Proved inside theorem 95, p. 49 (Suppes 1960) prop₁ : (A B x : 𝓢) → abv₃ x A B → abv₂ x A B prop₁ A B x (y , (z , ((y∈A , z∈B) , eqo))) = subs _ (sym _ _ eqo) yₒz∈𝓟𝓟A∪B where yₛ⊆A : singleton y ⊆ A yₛ⊆A = singleton-⊆ _ _ y∈A yₛ⊆A∪B : singleton y ⊆ A ∪ B yₛ⊆A∪B t t∈yₛ = trans-⊆ _ _ _ (yₛ⊆A , (∪-prop _ _)) _ t∈yₛ zₛ⊆B : singleton z ⊆ B zₛ⊆B = singleton-⊆ _ _ z∈B zₛ⊆A∪B : singleton z ⊆ A ∪ B zₛ⊆A∪B t t∈zₛ = trans-⊆ _ _ _ (zₛ⊆B , ∪-prop₃ _ _) _ t∈zₛ y,z⊆A∪B : y ₚ z ⊆ A ∪ B y,z⊆A∪B t t∈y,z = ∪-prop₄ _ _ _ yₛ⊆A∪B zₛ⊆A∪B _ p where p : t ∈ singleton y ∪ singleton z p = subs (λ w → t ∈ w) (prop-p₂ y z) t∈y,z yₛ∈𝓟A∪B : singleton y ∈ 𝓟 (A ∪ B) yₛ∈𝓟A∪B = 𝓟-d₂ _ yₛ⊆A∪B y,z∈𝓟A∪B : y ₚ z ∈ 𝓟 (A ∪ B) y,z∈𝓟A∪B = 𝓟-d₂ _ y,z⊆A∪B yₒz⊆𝓟A∪B : y ₒ z ⊆ 𝓟 (A ∪ B) yₒz⊆𝓟A∪B t t∈o = ∨-e _ _ _ (pair-d₁ _ _ t∈o) i₁ i₂ where i₁ : t ≡ singleton y → t ∈ 𝓟 (A ∪ B) i₁ eq = subs _ (sym t (singleton y) eq) yₛ∈𝓟A∪B i₂ : t ≡ y ₚ z → t ∈ 𝓟 (A ∪ B) i₂ eq = subs _ (sym t (y ₚ z) eq) y,z∈𝓟A∪B yₒz∈𝓟𝓟A∪B : y ₒ z ∈ 𝓟 (𝓟 (A ∪ B)) yₒz∈𝓟𝓟A∪B = 𝓟-d₂ _ yₒz⊆𝓟A∪B Aᵤ : 𝓢 → 𝓢 → 𝓢 Aᵤ A B = proj₁ (sub₄ A B) -- Theorem 95, p 49 (Suppes 1960). pAᵤ : (A B : 𝓢) → {z : 𝓢} → z ∈ (Aᵤ A B) ⇔ abv₂ z A B ∧ abv₃ z A B pAᵤ A B = proj₂ _ (sub₄ A B) crts : (A B : 𝓢) → ∃ (λ C → (z : 𝓢) → z ∈ C ⇔ abv₃ z A B) crts A B = (Aᵤ A B) , (λ w → ⇔-p₂ w (pAᵤ A B) (prop₁ A B w)) _X_ : 𝓢 → 𝓢 → 𝓢 A X B = proj₁ (crts A B) -- Theorem 97, p. 50 (Suppes 1960). crts-p : (A B x : 𝓢) → x ∈ A X B ⇔ abv₃ x A B crts-p A B x = proj₂ _ (crts A B) x -- Both projections crts-p₁ : (A B x : 𝓢) → x ∈ A X B → abv₃ x A B crts-p₁ A B x = ∧-proj₁ (crts-p A B x) crts-p₂ : (A B x : 𝓢) → abv₃ x A B → x ∈ A X B crts-p₂ A B x = ∧-proj₂ (crts-p A B x) crts-d₁ : (x y A B : 𝓢) → x ₒ y ∈ A X B → x ∈ A ∧ y ∈ B crts-d₁ x y A B h = (subs (λ w → w ∈ A) (sym _ _ eq₁) aux∈A) , subs (λ w → w ∈ B) (sym _ _ eq₂) aux₂∈B where foo : ∃ (λ z → ∃ (λ w → (z ∈ A ∧ w ∈ B) ∧ (x ₒ y) ≡ (z ₒ w))) foo = crts-p₁ A B (x ₒ y) h aux : 𝓢 aux = proj₁ foo aux-p : ∃ (λ w → (aux ∈ A ∧ w ∈ B) ∧ (x ₒ y) ≡ (aux ₒ w)) aux-p = proj₂ _ foo aux₂ : 𝓢 aux₂ = proj₁ aux-p aux₂-p : (aux ∈ A ∧ aux₂ ∈ B) ∧ (x ₒ y) ≡ (aux ₒ aux₂) aux₂-p = proj₂ _ aux-p aux∈A : aux ∈ A aux∈A = ∧-proj₁ (∧-proj₁ aux₂-p) aux₂∈B : aux₂ ∈ B aux₂∈B = ∧-proj₂ (∧-proj₁ aux₂-p) eq : x ₒ y ≡ aux ₒ aux₂ eq = ∧-proj₂ aux₂-p eqs : x ≡ aux ∧ y ≡ aux₂ eqs = ord-p _ _ _ _ eq eq₁ : x ≡ aux eq₁ = ∧-proj₁ eqs eq₂ : y ≡ aux₂ eq₂ = ∧-proj₂ eqs -- References -- -- Suppes, Patrick (1960). Axiomatic Set Theory. -- The University Series in Undergraduate Mathematics. -- D. Van Nostrand Company, inc. -- -- Enderton, Herbert B. (1977). Elements of Set Theory. -- Academic Press Inc.
{ "alphanum_fraction": 0.4769157544, "avg_line_length": 26.1970074813, "ext": "agda", "hexsha": "48ee1677182bdfc71178d3c210544410db30e2b5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Pairs.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Pairs.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Pairs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5939, "size": 10505 }
postulate A : Set I : ..(_ : A) → Set R : A → Set f : ∀ ..(x : A) (r : R x) → I x -- can now be used here ^
{ "alphanum_fraction": 0.406779661, "avg_line_length": 14.75, "ext": "agda", "hexsha": "46d60cb9dac6d05121214ac3beb144c23f7e7c24", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue2128.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue2128.agda", "max_line_length": 33, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue2128.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 54, "size": 118 }
module examplesPaperJFP.VariableListForDispatchOnly where open import Data.Product hiding (map) open import Data.List open import NativeIO open import StateSizedIO.GUI.WxBindingsFFI open import Relation.Binary.PropositionalEquality data VarList : Set₁ where [] : VarList addVar : (A : Set) → Var A → VarList → VarList prod : VarList → Set prod [] = Unit prod (addVar A v []) = A prod (addVar A v l) = A × prod l takeVar : (l : VarList) → NativeIO (prod l) takeVar [] = nativeReturn unit takeVar (addVar A v []) = nativeTakeVar {A} v native>>= λ a → nativeReturn a takeVar (addVar A v (addVar B v′ l)) = nativeTakeVar {A} v native>>= λ a → takeVar (addVar B v′ l) native>>= λ rest → nativeReturn ( a , rest ) putVar : (l : VarList) → prod l → NativeIO Unit putVar [] _ = nativeReturn unit putVar (addVar A v []) a = nativePutVar {A} v a putVar (addVar A v (addVar B v′ l)) (a , rest) = nativePutVar {A} v a native>>= λ _ → putVar (addVar B v′ l) rest native>>= nativeReturn dispatch : (l : VarList) → (prod l → NativeIO (prod l)) → NativeIO Unit dispatch l f = takeVar l native>>= λ a → f a native>>= λ a₁ → putVar l a₁ dispatchList : (l : VarList) → List (prod l → NativeIO (prod l)) → NativeIO Unit dispatchList l [] = nativeReturn unit dispatchList l (p ∷ rest) = dispatch l p native>>= λ _ → dispatchList l rest
{ "alphanum_fraction": 0.5677540778, "avg_line_length": 36.2272727273, "ext": "agda", "hexsha": "643c5459e42d44a8a7cd5a8b48f8b9235913aab9", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/VariableListForDispatchOnly.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/VariableListForDispatchOnly.agda", "max_line_length": 80, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/VariableListForDispatchOnly.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 483, "size": 1594 }
{-# OPTIONS --without-K #-} open import lib.Basics {- The generic nonrecursive higher inductive type with one point constructor and one paths constructor. -} module lib.types.Generic1HIT {i j} (A : Type i) (B : Type j) (g h : B → A) where {- data T : Type where cc : A → T pp : (b : B) → cc (f' b) ≡ cc (g b) -} module _ where private data #T-aux : Type (lmax i j) where #cc : A → #T-aux data #T : Type (lmax i j) where #t : #T-aux → (Unit → Unit) → #T T : Type _ T = #T cc : A → T cc a = #t (#cc a) _ postulate -- HIT pp : (b : B) → cc (g b) == cc (h b) module Elim {k} {P : T → Type k} (cc* : (a : A) → P (cc a)) (pp* : (b : B) → cc* (g b) == cc* (h b) [ P ↓ pp b ]) where f : Π T P f = f-aux phantom where f-aux : Phantom pp* → Π T P f-aux phantom (#t (#cc a) _) = cc* a postulate -- HIT pp-β : (b : B) → apd f (pp b) == pp* b open Elim public using () renaming (f to elim) module Rec {k} {C : Type k} (cc* : A → C) (pp* : (b : B) → cc* (g b) == cc* (h b)) where private module M = Elim cc* (λ b → ↓-cst-in (pp* b)) f : T → C f = M.f pp-β : (b : B) → ap f (pp b) == pp* b pp-β b = apd=cst-in {f = f} (M.pp-β b) module RecType {k} (C : A → Type k) (D : (b : B) → C (g b) ≃ C (h b)) where open Rec C (ua ∘ D) public coe-pp-β : (b : B) (d : C (g b)) → coe (ap f (pp b)) d == –> (D b) d coe-pp-β b d = coe (ap f (pp b)) d =⟨ pp-β _ |in-ctx (λ u → coe u d) ⟩ coe (ua (D b)) d =⟨ coe-β (D b) d ⟩ –> (D b) d ∎ -- Dependent path in [P] over [pp b] module _ {b : B} {d : C (g b)} {d' : C (h b)} where ↓-pp-in : –> (D b) d == d' → d == d' [ f ↓ pp b ] ↓-pp-in p = from-transp f (pp b) (coe-pp-β b d ∙' p) ↓-pp-out : d == d' [ f ↓ pp b ] → –> (D b) d == d' ↓-pp-out p = ! (coe-pp-β b d) ∙ to-transp p ↓-pp-β : (q : –> (D b) d == d') → ↓-pp-out (↓-pp-in q) == q ↓-pp-β q = ↓-pp-out (↓-pp-in q) =⟨ idp ⟩ ! (coe-pp-β b d) ∙ to-transp (from-transp f (pp b) (coe-pp-β b d ∙' q)) =⟨ to-transp-β f (pp b) (coe-pp-β b d ∙' q) |in-ctx (λ u → ! (coe-pp-β b d) ∙ u) ⟩ ! (coe-pp-β b d) ∙ (coe-pp-β b d ∙' q) =⟨ lem (coe-pp-β b d) q ⟩ q ∎ where lem : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) → ! p ∙ (p ∙' q) == q lem idp idp = idp
{ "alphanum_fraction": 0.4291649356, "avg_line_length": 26.1630434783, "ext": "agda", "hexsha": "cd5a24776f4e1e53f36cd77aaba997f068de6f57", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "lib/types/Generic1HIT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "lib/types/Generic1HIT.agda", "max_line_length": 99, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "lib/types/Generic1HIT.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1089, "size": 2407 }
-- Andreas, 2017-01-12, issue #2386 id : ∀{a}{A : Set a} → A → A id x = x data Eq (A : Set) : (x y : id A) → Set where refl : (x : A) → Eq A x x {-# BUILTIN EQUALITY Eq #-} -- Should be accepted.
{ "alphanum_fraction": 0.5198019802, "avg_line_length": 16.8333333333, "ext": "agda", "hexsha": "af89e1cde945e2823ee5c718dcfa37d10b9df0ba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2386BuiltinEqualityId.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2386BuiltinEqualityId.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2386BuiltinEqualityId.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 82, "size": 202 }
{-# OPTIONS --warning=error --safe #-} open import Everything.Safe -- This file contains everything that is --safe, but uses K. open import Logic.PropositionalLogic open import Logic.PropositionalLogicExamples open import Logic.PropositionalAxiomsTautology open import Sets.FinSetWithK open import Groups.FreeGroup.Lemmas open import Groups.FreeGroup.UniversalProperty open import Groups.FreeGroup.Parity open import Groups.FreeProduct.UniversalProperty module Everything.WithK where
{ "alphanum_fraction": 0.8323108384, "avg_line_length": 27.1666666667, "ext": "agda", "hexsha": "c48e1e28f618ce091d3dd8e5b03863a063a044f9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Everything/WithK.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Everything/WithK.agda", "max_line_length": 60, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Everything/WithK.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 108, "size": 489 }
module Generic.Lib.Data.Product where open import Data.Product renaming (map to pmap; zip to pzip) hiding (map₁; map₂) public open import Generic.Lib.Intro open import Generic.Lib.Category infixl 4 _,ᵢ_ first : ∀ {α β γ} {A : Set α} {B : Set β} {C : A -> Set γ} -> (∀ x -> C x) -> (p : A × B) -> C (proj₁ p) × B first f (x , y) = f x , y second : ∀ {α β γ} {A : Set α} {B : A -> Set β} {C : A -> Set γ} -> (∀ {x} -> B x -> C x) -> Σ A B -> Σ A C second g (x , y) = x , g y -- `B` and `C` are in the same universe. firstF : ∀ {α β} {A : Set α} {B : Set β} {C : A -> Set β} {F : Set β -> Set β} {{fFunctor : RawFunctor F}} -> (∀ x -> F (C x)) -> (p : A × B) -> F (C (proj₁ p) × B) firstF f (x , y) = flip _,_ y <$> f x -- `A` and `C` are in the same universe. secondF : ∀ {α β} {A : Set α} {B : A -> Set β} {C : A -> Set α} {F : Set α -> Set α} {{fFunctor : RawFunctor F}} -> (∀ {x} -> B x -> F (C x)) -> Σ A B -> F (Σ A C) secondF g (x , y) = _,_ x <$> g y record Σᵢ {α β} (A : Set α) (B : .A -> Set β) : Set (α ⊔ β) where constructor _,ᵢ_ field .iproj₁ : A iproj₂ : B iproj₁ open Σᵢ public ∃ᵢ : ∀ {α β} {A : Set α} -> (.A -> Set β) -> Set (α ⊔ β) ∃ᵢ = Σᵢ _ instance ,-inst : ∀ {α β} {A : Set α} {B : A -> Set β} {{x : A}} {{y : B x}} -> Σ A B ,-inst {{x}} {{y}} = x , y ,ᵢ-inst : ∀ {α β} {A : Set α} {B : .A -> Set β} {{x : A}} {{y : B x}} -> Σᵢ A B ,ᵢ-inst {{x}} {{y}} = x ,ᵢ y
{ "alphanum_fraction": 0.4514363885, "avg_line_length": 31.7826086957, "ext": "agda", "hexsha": "efb22caced340ab9533d17509d9db817f87dde22", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "turion/Generic", "max_forks_repo_path": "src/Generic/Lib/Data/Product.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "turion/Generic", "max_issues_repo_path": "src/Generic/Lib/Data/Product.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "turion/Generic", "max_stars_repo_path": "src/Generic/Lib/Data/Product.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 652, "size": 1462 }
{-# OPTIONS --cubical --safe #-} module Cubical.HITs.Modulo where open import Cubical.HITs.Modulo.Base public open import Cubical.HITs.Modulo.Properties public
{ "alphanum_fraction": 0.7777777778, "avg_line_length": 23.1428571429, "ext": "agda", "hexsha": "f23d6066165ea8fbdae3e6713532327d04c7d0f5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/HITs/Modulo.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/HITs/Modulo.agda", "max_line_length": 49, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/HITs/Modulo.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 43, "size": 162 }
{-# OPTIONS --without-K --safe #-} module Categories.Utils.EqReasoning where open import Level open import Relation.Binary.PropositionalEquality open import Data.Product using (Σ; _,_; _×_) open import Categories.Utils.Product subst₂-sym-subst₂ : {ℓa ℓb ℓp : Level} {A : Set ℓa} {B : Set ℓb} {a₁ a₂ : A} {b₁ b₂ : B} (R : A → B → Set ℓp) {p : R a₁ b₁} (eq₁ : a₁ ≡ a₂) (eq₂ : b₁ ≡ b₂) → subst₂ R (sym eq₁) (sym eq₂) (subst₂ R eq₁ eq₂ p) ≡ p subst₂-sym-subst₂ R refl refl = refl subst₂-subst₂-sym : {ℓa ℓb ℓp : Level} {A : Set ℓa} {B : Set ℓb} {a₁ a₂ : A} {b₁ b₂ : B} (R : A → B → Set ℓp) {p : R a₁ b₁} (eq₁ : a₂ ≡ a₁) (eq₂ : b₂ ≡ b₁) → subst₂ R eq₁ eq₂ (subst₂ R (sym eq₁) (sym eq₂) p) ≡ p subst₂-subst₂-sym R refl refl = refl subst₂-subst₂ : {ℓa ℓb ℓp : Level} {A : Set ℓa} {B : Set ℓb} {a₁ a₂ a₃ : A} {b₁ b₂ b₃ : B} (R : A → B → Set ℓp) {p : R a₁ b₁} (eq-a₁₂ : a₁ ≡ a₂) (eq-a₂₃ : a₂ ≡ a₃) (eq-b₁₂ : b₁ ≡ b₂) (eq-b₂₃ : b₂ ≡ b₃) → subst₂ R eq-a₂₃ eq-b₂₃ (subst₂ R eq-a₁₂ eq-b₁₂ p) ≡ subst₂ R (trans eq-a₁₂ eq-a₂₃) (trans eq-b₁₂ eq-b₂₃) p subst₂-subst₂ R refl refl refl refl = refl subst₂-app : ∀ {a₁ a₂ a₃ a₄ b₁ b₂} {A₁ : Set a₁} {A₂ : Set a₂} {A₃ : Set a₃} {A₄ : Set a₄} (B₁ : A₁ → A₃ → Set b₁) {B₂ : A₂ → A₄ → Set b₂} {f : A₂ → A₁} {h : A₄ → A₃} {x₁ x₂ : A₂} {x₃ x₄ : A₄} (y : B₂ x₁ x₃) (g : ∀ w z → B₂ w z → B₁ (f w) (h z)) (eq₁ : x₁ ≡ x₂) (eq₂ : x₃ ≡ x₄) → subst₂ B₁ (cong f eq₁) (cong h eq₂) (g x₁ x₃ y) ≡ g x₂ x₄ (subst₂ B₂ eq₁ eq₂ y) subst₂-app _ _ _ refl refl = refl subst₂-prod : ∀ {ℓa ℓb ℓr ℓs} {A : Set ℓa} {B : Set ℓb} (R : A → A → Set ℓr) (S : B → B → Set ℓs) {a b c d : A} {x y z w : B} {f : R a b} {g : S x y} (eq₁ : a ≡ c) (eq₂ : b ≡ d) (eq₃ : x ≡ z) (eq₄ : y ≡ w) → subst₂ (λ { (p , q) (r , s) → R p r × S q s }) (sym (cong₂ _,_ (sym eq₁) (sym eq₃))) (sym (cong₂ _,_ (sym eq₂) (sym eq₄))) (f , g) ≡ (subst₂ R eq₁ eq₂ f , subst₂ S eq₃ eq₄ g) subst₂-prod R S refl refl refl refl = refl ------------------ -- For reasoning with things from Categories.Utils.Product subst₂-expand : ∀ {a b ℓ ℓ′ p q} {A : Set a} {B : Set b} {P : A → Set p} {Q : B → Set q} (_∙_ : A → B → Set ℓ) → (_∘_ : ∀ {x y} → P x → Q y → Set ℓ′) → {a₁ a₂ : A} {b₁ b₂ : B} {p₁ p₂ : P a₁} {q₁ q₂ : Q b₁} (eq₁ : a₁ ≡ a₂) (eq₂ : p₁ ≡ p₂) (eq₃ : b₁ ≡ b₂) (eq₄ : q₁ ≡ q₂) → (F : a₁ ∙ b₁) → (G : p₁ ∘ q₁) → subst₂ (_∙_ -< _×_ >- _∘_) (cong₂ _,_ eq₁ eq₂) (cong₂ _,_ eq₃ eq₄) (F , G) ≡ (subst₂ _∙_ eq₁ eq₃ F , subst₂ _∘_ eq₂ eq₄ G) subst₂-expand T₁ T₂ refl refl refl refl F G = refl
{ "alphanum_fraction": 0.4883889695, "avg_line_length": 45.9333333333, "ext": "agda", "hexsha": "d8559d18c0b471a2f5b460090432c995db927f33", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Utils/EqReasoning.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Utils/EqReasoning.agda", "max_line_length": 120, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Utils/EqReasoning.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1334, "size": 2756 }
module BuildingBlock.BinaryLeafTree where open import Function open import Data.Nat open import Data.Nat.Etc open import Data.Nat.Properties.Simple using (+-right-identity) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Data.Fin using (Fin; toℕ; fromℕ; fromℕ≤; reduce≥) renaming (zero to Fzero; suc to Fsuc) open import Data.Empty open import Relation.Nullary using (Dec; yes; no; ¬_) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong; trans; sym; inspect) open PropEq.≡-Reasoning -------------------------------------------------------------------------------- -- Complete Binary Leaf Trees data BinaryLeafTree (A : Set) : ℕ → Set where Leaf : A → BinaryLeafTree A 0 Node : ∀ {n} → BinaryLeafTree A n → BinaryLeafTree A n → BinaryLeafTree A (suc n) -- splits a BinaryLeafTree into 2 split : ∀ {A n} → BinaryLeafTree A (suc n) → BinaryLeafTree A n × BinaryLeafTree A n split (Node xs ys) = xs , ys -- merge 2 BinaryLeafTree merge : ∀ {A n} → BinaryLeafTree A n → BinaryLeafTree A n → BinaryLeafTree A (suc n) merge = Node split-merge : ∀ {n A} → (xs : BinaryLeafTree A (suc n)) → merge (proj₁ (split xs)) (proj₂ (split xs)) ≡ xs split-merge (Node xs ys) = refl -- get the first element head : ∀ {A n} → BinaryLeafTree A n → A head (Leaf x) = x head (Node xs ys) = head xs -- searching transportFin : ∀ {a b} → a ≡ b → Fin a → Fin b transportFin refl i = i ¬a≤b⇒b<a : ∀ {a b} → ¬ (a ≤ b) → b < a ¬a≤b⇒b<a {zero } {b } p = ⊥-elim (p z≤n) ¬a≤b⇒b<a {suc a} {zero } p = s≤s z≤n ¬a≤b⇒b<a {suc a} {suc b} p = s≤s (¬a≤b⇒b<a (λ z → p (s≤s z))) elemAt : ∀ {A n} → BinaryLeafTree A n → Fin (2 ^ n) → A elemAt {n = zero} (Leaf x) Fzero = x elemAt {n = zero} (Leaf x) (Fsuc ()) elemAt {n = suc n} (Node xs ys) i with (2 ^ n) ≤? toℕ i elemAt {n = suc n} (Node xs ys) i | yes p = elemAt ys (transportFin (+-right-identity (2 ^ n)) (reduce≥ {2 ^ n} {2 ^ n + 0} i p)) elemAt {n = suc n} (Node xs ys) i | no ¬p = elemAt xs (fromℕ≤ (¬a≤b⇒b<a ¬p)) -- examples private fier : BinaryLeafTree ℕ 2 fier = Node (Node (Leaf 0) (Leaf 2)) (Node (Leaf 3) (Leaf 1))
{ "alphanum_fraction": 0.5566037736, "avg_line_length": 31.0933333333, "ext": "agda", "hexsha": "97adaef17dfc08d6e3ec9e624fc5dce694c960f1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/BuildingBlock/BinaryLeafTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/BuildingBlock/BinaryLeafTree.agda", "max_line_length": 129, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/BuildingBlock/BinaryLeafTree.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 819, "size": 2332 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} {- This module develops Lehmer codes, i.e. an encoding of permutations as finite integers. -} module Cubical.Data.Fin.LehmerCode where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Transport open import Cubical.Functions.Embedding open import Cubical.Functions.Surjection open import Cubical.Relation.Nullary open import Cubical.Relation.Nullary.DecidableEq open import Cubical.Data.Unit as ⊤ open import Cubical.Data.Empty as ⊥ open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Data.Fin.Base as F open import Cubical.Data.Fin.Properties renaming (punchOut to punchOutPrim) open import Cubical.Data.Sigma open import Cubical.Data.Sum as Sum using (_⊎_; inl; inr) private variable n : ℕ FinExcept : (i : Fin n) → Type₀ FinExcept i = Σ[ j ∈ Fin _ ] ¬ (i ≡ j) isSetFinExcept : {i : Fin n} → isSet (FinExcept i) isSetFinExcept = isOfHLevelΣ 2 isSetFin (λ _ → isProp→isSet (isPropΠ (λ _ → ⊥.isProp⊥))) fsucExc : {i : Fin n} → FinExcept i → FinExcept (fsuc i) fsucExc {i = i} j = fsuc (fst j) , snd j ∘ fsuc-inj toFinExc : {i : Fin n} → FinExcept i → Fin n toFinExc = fst toFinExc-injective : {i : Fin n} → {j k : FinExcept i} → toFinExc j ≡ toFinExc k → j ≡ k toFinExc-injective = Σ≡Prop (λ _ → isPropΠ λ _ → ⊥.isProp⊥) toℕExc : {i : Fin n} → FinExcept i → ℕ toℕExc = toℕ ∘ toFinExc toℕExc-injective : {i : Fin n} → {j k : FinExcept i} → toℕExc j ≡ toℕExc k → j ≡ k toℕExc-injective = toFinExc-injective ∘ toℕ-injective projectionEquiv : {i : Fin n} → (Unit ⊎ FinExcept i) ≃ Fin n projectionEquiv {n = n} {i = i} = isoToEquiv goal where goal : Iso (Unit ⊎ FinExcept i) (Fin n) goal .Iso.fun (inl _) = i goal .Iso.fun (inr m) = fst m goal .Iso.inv m = case discreteFin i m of λ { (yes _) → inl tt ; (no n) → inr (m , n) } goal .Iso.rightInv m with discreteFin i m ... | (yes p) = p ... | (no _) = toℕ-injective refl goal .Iso.leftInv (inl tt) with discreteFin i i ... | (yes _) = refl ... | (no ¬ii) = ⊥.rec (¬ii refl) goal .Iso.leftInv (inr m) with discreteFin i (fst m) ... | (yes p) = ⊥.rec (snd m p) ... | (no _) = cong inr (toℕExc-injective refl) punchOut : (i : Fin (suc n)) → FinExcept i → Fin n punchOut i ¬i = punchOutPrim (snd ¬i) punchOut-injective : (i : Fin (suc n)) → ∀ j k → punchOut i j ≡ punchOut i k → j ≡ k punchOut-injective i j k = toFinExc-injective ∘ punchOut-inj (snd j) (snd k) punchIn : (i : Fin (suc n)) → Fin n → FinExcept i punchIn {_} i j with fsplit i ... | inl iz = fsuc j , fznotfs ∘ (iz ∙_) punchIn {n} i j | inr (i′ , is) with n ... | zero = ⊥.rec (¬Fin0 j) ... | suc n′ with fsplit j ... | inl jz = fzero , fznotfs ∘ sym ∘ (is ∙_) ... | inr (j′ , _) = let (k , ¬k≡i′) = punchIn i′ j′ in fsuc k , ¬k≡i′ ∘ fsuc-inj ∘ (is ∙_) punchOut∘In :(i : Fin (suc n)) → ∀ j → punchOut i (punchIn i j) ≡ j punchOut∘In {_} i j with fsplit i ... | inl iz = toℕ-injective refl punchOut∘In {n} i j | inr (i′ , _) with n ... | zero = ⊥.rec (¬Fin0 j) ... | suc n′ with fsplit j ... | inl jz = toℕ-injective (cong toℕ jz) ... | inr (j′ , prfj) = -- the following uses a definitional equality of punchIn but I don't see -- how to sidestep this while using with-abstractions fsuc (punchOut i′ _) ≡⟨ cong (λ j → fsuc (punchOut i′ j)) (toℕExc-injective refl) ⟩ fsuc (punchOut i′ (punchIn i′ j′)) ≡⟨ cong fsuc (punchOut∘In i′ j′) ⟩ fsuc j′ ≡⟨ toℕ-injective (cong toℕ prfj) ⟩ j ∎ isEquivPunchOut : {i : Fin (suc n)} → isEquiv (punchOut i) isEquivPunchOut {i = i} = isEmbedding×isSurjection→isEquiv (isEmbPunchOut , isSurPunchOut) where isEmbPunchOut : isEmbedding (punchOut i) isEmbPunchOut = injEmbedding isSetFinExcept isSetFin λ {_} {_} → punchOut-injective i _ _ isSurPunchOut : isSurjection (punchOut i) isSurPunchOut b = ∣ _ , punchOut∘In i b ∣ punchOutEquiv : {i : Fin (suc n)} → FinExcept i ≃ Fin n punchOutEquiv = _ , isEquivPunchOut infixr 4 _∷_ data LehmerCode : (n : ℕ) → Type₀ where [] : LehmerCode zero _∷_ : ∀ {n} → Fin (suc n) → LehmerCode n → LehmerCode (suc n) isContrLehmerZero : isContr (LehmerCode 0) isContrLehmerZero = [] , λ { [] → refl } lehmerSucEquiv : Fin (suc n) × LehmerCode n ≃ LehmerCode (suc n) lehmerSucEquiv = isoToEquiv (iso (λ (e , c) → e ∷ c) (λ { (e ∷ c) → (e , c) }) (λ { (e ∷ c) → refl }) (λ (e , c) → refl)) lehmerEquiv : (Fin n ≃ Fin n) ≃ LehmerCode n lehmerEquiv {zero} = isContr→Equiv contrFF isContrLehmerZero where contrFF : isContr (Fin zero ≃ Fin zero) contrFF = idEquiv _ , λ y → equivEq (funExt λ f → ⊥.rec (¬Fin0 f)) lehmerEquiv {suc n} = (Fin (suc n) ≃ Fin (suc n)) ≃⟨ isoToEquiv i ⟩ (Σ[ k ∈ Fin (suc n) ] (FinExcept fzero ≃ FinExcept k)) ≃⟨ Σ-cong-equiv-snd ii ⟩ (Fin (suc n) × (Fin n ≃ Fin n)) ≃⟨ Σ-cong-equiv-snd (λ _ → lehmerEquiv) ⟩ (Fin (suc n) × LehmerCode n) ≃⟨ lehmerSucEquiv ⟩ LehmerCode (suc n) ■ where equivIn : (f : Fin (suc n) ≃ Fin (suc n)) → FinExcept fzero ≃ FinExcept (equivFun f fzero) equivIn f = FinExcept fzero ≃⟨ Σ-cong-equiv-snd (λ _ → preCompEquiv (invEquiv (congEquiv f))) ⟩ (Σ[ x ∈ Fin (suc n) ] ¬ ffun fzero ≡ ffun x) ≃⟨ Σ-cong-equiv-fst f ⟩ FinExcept (ffun fzero) ■ where ffun = equivFun f -- equivInChar : ∀ {f} x → fst (equivFun (equivIn f) x) ≡ equivFun f (fst x) -- equivInChar x = refl equivOut : ∀ {k} → FinExcept (fzero {k = n}) ≃ FinExcept k → Fin (suc n) ≃ Fin (suc n) equivOut {k = k} f = Fin (suc n) ≃⟨ invEquiv projectionEquiv ⟩ Unit ⊎ FinExcept fzero ≃⟨ isoToEquiv (Sum.⊎Iso idIso (equivToIso f)) ⟩ Unit ⊎ FinExcept k ≃⟨ projectionEquiv ⟩ Fin (suc n) ■ equivOutChar : ∀ {k} {f} (x : FinExcept fzero) → equivFun (equivOut {k = k} f) (fst x) ≡ fst (equivFun f x) equivOutChar {f = f} x with discreteFin fzero (fst x) ... | (yes y) = ⊥.rec (x .snd y) ... | (no n) = cong (λ x′ → fst (equivFun f x′)) (toℕExc-injective refl) i : Iso (Fin (suc n) ≃ Fin (suc n)) (Σ[ k ∈ Fin (suc n) ] (FinExcept (fzero {k = n}) ≃ FinExcept k)) Iso.fun i f = equivFun f fzero , equivIn f Iso.inv i (k , f) = equivOut f Iso.rightInv i (k , f) = ΣPathP (refl , equivEq (funExt λ x → toℕExc-injective (cong toℕ (equivOutChar {f = f} x)))) Iso.leftInv i f = equivEq (funExt goal) where goal : ∀ x → equivFun (equivOut (equivIn f)) x ≡ equivFun f x goal x = case fsplit x return (λ _ → equivFun (equivOut (equivIn f)) x ≡ equivFun f x) of λ { (inl xz) → subst (λ x → equivFun (equivOut (equivIn f)) x ≡ equivFun f x) xz refl ; (inr (_ , xn)) → equivOutChar {f = equivIn f} (x , fznotfs ∘ (_∙ sym xn)) } ii : ∀ k → (FinExcept fzero ≃ FinExcept k) ≃ (Fin n ≃ Fin n) ii k = (FinExcept fzero ≃ FinExcept k) ≃⟨ cong≃ (λ R → FinExcept fzero ≃ R) punchOutEquiv ⟩ (FinExcept fzero ≃ Fin n) ≃⟨ cong≃ (λ L → L ≃ Fin n) punchOutEquiv ⟩ (Fin n ≃ Fin n) ■ encode : (Fin n ≃ Fin n) → LehmerCode n encode = equivFun lehmerEquiv decode : LehmerCode n → Fin n ≃ Fin n decode = invEq lehmerEquiv factorial : ℕ → ℕ factorial zero = 1 factorial (suc n) = suc n · factorial n lehmerFinEquiv : LehmerCode n ≃ Fin (factorial n) lehmerFinEquiv {zero} = isContr→Equiv isContrLehmerZero isContrFin1 lehmerFinEquiv {suc n} = _ ≃⟨ invEquiv lehmerSucEquiv ⟩ _ ≃⟨ ≃-× (idEquiv _) lehmerFinEquiv ⟩ _ ≃⟨ factorEquiv ⟩ _ ■ private -- this example is copied from wikipedia, using the permutation of the letters A-G -- B,F,A,G,D,E,C -- given by the corresponding Lehmer code of -- 1 4 0 3 1 1 0 exampleCode : LehmerCode 7 exampleCode = (1 , (5 , refl)) ∷ (4 , (1 , refl)) ∷ (0 , (4 , refl)) ∷ (3 , (0 , refl)) ∷ (1 , (1 , refl)) ∷ (1 , (0 , refl)) ∷ (0 , (0 , refl)) ∷ [] example : Fin 7 ≃ Fin 7 example = decode exampleCode -- C should decode to G computation : fst (equivFun example (3 , (3 , refl))) ≡ 6 computation = refl _ : toℕ (equivFun lehmerFinEquiv exampleCode) ≡ 4019 _ = refl
{ "alphanum_fraction": 0.5695570112, "avg_line_length": 40.3901345291, "ext": "agda", "hexsha": "7c279d3698c9b94bcfd79692477f31e14c97b3ca", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Data/Fin/LehmerCode.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Data/Fin/LehmerCode.agda", "max_line_length": 151, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Data/Fin/LehmerCode.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3293, "size": 9007 }
{-# OPTIONS --without-K --safe #-} -- A Logical Relation for Dependent Type Theory Formalized in Agda module Logrel-MLTT where -- README import README -- Minimal library import Tools.Empty import Tools.Unit import Tools.Nat import Tools.Sum import Tools.Product import Tools.Function import Tools.Nullary import Tools.List import Tools.PropositionalEquality import Tools.Fin -- Grammar of the language import Definition.Untyped import Definition.Untyped.Properties -- Typing and conversion rules of language import Definition.Typed import Definition.Typed.Properties import Definition.Typed.Weakening import Definition.Typed.Reduction import Definition.Typed.RedSteps import Definition.Typed.EqualityRelation import Definition.Typed.EqRelInstance -- Logical relation import Definition.LogicalRelation import Definition.LogicalRelation.ShapeView import Definition.LogicalRelation.Irrelevance import Definition.LogicalRelation.Weakening import Definition.LogicalRelation.Properties import Definition.LogicalRelation.Application import Definition.LogicalRelation.Substitution import Definition.LogicalRelation.Substitution.Properties import Definition.LogicalRelation.Substitution.Irrelevance import Definition.LogicalRelation.Substitution.Conversion import Definition.LogicalRelation.Substitution.Reduction import Definition.LogicalRelation.Substitution.Reflexivity import Definition.LogicalRelation.Substitution.Weakening import Definition.LogicalRelation.Substitution.Reducibility import Definition.LogicalRelation.Substitution.Escape import Definition.LogicalRelation.Substitution.MaybeEmbed import Definition.LogicalRelation.Substitution.Introductions import Definition.LogicalRelation.Fundamental import Definition.LogicalRelation.Fundamental.Reducibility -- Consequences of the logical relation for typing and conversion import Definition.Typed.Consequences.Canonicity import Definition.Typed.Consequences.Injectivity import Definition.Typed.Consequences.Syntactic import Definition.Typed.Consequences.Inversion import Definition.Typed.Consequences.Inequality import Definition.Typed.Consequences.Substitution import Definition.Typed.Consequences.Equality import Definition.Typed.Consequences.InverseUniv import Definition.Typed.Consequences.Reduction import Definition.Typed.Consequences.NeTypeEq import Definition.Typed.Consequences.SucCong import Definition.Typed.Consequences.Consistency -- Algorithmic equality with lemmas that depend on typing consequences import Definition.Conversion import Definition.Conversion.Conversion import Definition.Conversion.Lift import Definition.Conversion.Reduction import Definition.Conversion.Soundness import Definition.Conversion.Stability import Definition.Conversion.Symmetry import Definition.Conversion.Transitivity import Definition.Conversion.Universe import Definition.Conversion.Weakening import Definition.Conversion.Whnf import Definition.Conversion.Decidable import Definition.Conversion.EqRelInstance import Definition.Conversion.FullReduction -- Consequences of the logical relation for algorithmic equality import Definition.Conversion.Consequences.Completeness -- Decidability of conversion import Definition.Typed.Decidable
{ "alphanum_fraction": 0.8771875, "avg_line_length": 34.4086021505, "ext": "agda", "hexsha": "88a1214d9f411dd79de9e02c50036e27454209ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "fhlkfy/logrel-mltt", "max_forks_repo_path": "Logrel-MLTT.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "fhlkfy/logrel-mltt", "max_issues_repo_path": "Logrel-MLTT.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "ea83fc4f618d1527d64ecac82d7d17e2f18ac391", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "fhlkfy/logrel-mltt", "max_stars_repo_path": "Logrel-MLTT.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 603, "size": 3200 }
module Prelude.Int.Core where open import Prelude.Unit open import Prelude.Empty open import Prelude.Nat open import Prelude.Number open import Prelude.Semiring open import Prelude.Ord open import Agda.Builtin.Int public neg : Nat → Int neg zero = pos zero neg (suc n) = negsuc n {-# INLINE neg #-} -- Integers are numbers -- instance NumInt : Number Int Number.Constraint NumInt _ = ⊤ Number.fromNat NumInt n = pos n NegInt : Negative Int Negative.Constraint NegInt _ = ⊤ Negative.fromNeg NegInt n = neg n -- Arithmetic -- _-NZ_ : Nat → Nat → Int a -NZ b with compare a b ... | less (diff k _) = negsuc k ... | equal _ = pos (a - b) -- a - b instead of 0 makes it compile to Integer minus ... | greater (diff k _) = pos (suc k) {-# INLINE _-NZ_ #-} _+Z_ : Int → Int → Int pos a +Z pos b = pos (a + b) pos a +Z negsuc b = a -NZ suc b negsuc a +Z pos b = b -NZ suc a negsuc a +Z negsuc b = negsuc (suc a + b) {-# INLINE _+Z_ #-} {-# DISPLAY _+Z_ a b = a + b #-} negateInt : Int → Int negateInt (pos n) = neg n negateInt (negsuc n) = pos (suc n) {-# INLINE negateInt #-} {-# DISPLAY negateInt a = negate a #-} _-Z_ : Int → Int → Int a -Z b = a +Z negateInt b {-# INLINE _-Z_ #-} abs : Int → Nat abs (pos n) = n abs (negsuc n) = suc n _*Z_ : Int → Int → Int pos a *Z pos b = pos (a * b) pos a *Z negsuc b = neg (a * suc b) negsuc a *Z pos b = neg (suc a * b) negsuc a *Z negsuc b = pos (suc a * suc b) {-# INLINE _*Z_ #-} {-# DISPLAY _*Z_ a b = a * b #-} instance SemiringInt : Semiring Int Semiring.zro SemiringInt = 0 Semiring.one SemiringInt = 1 Semiring._+_ SemiringInt = _+Z_ Semiring._*_ SemiringInt = _*Z_ SubInt : Subtractive Int Subtractive._-_ SubInt = _-Z_ Subtractive.negate SubInt = negateInt NonZeroInt : Int → Set NonZeroInt (pos zero) = ⊥ NonZeroInt _ = ⊤ infixl 7 quotInt-by remInt-by syntax quotInt-by b a = a quot b quotInt-by : (b : Int) {{_ : NonZeroInt b}} → Int → Int quotInt-by (pos zero) {{}} _ quotInt-by (pos (suc n)) (pos m) = pos (m div suc n) quotInt-by (pos (suc n)) (negsuc m) = neg (suc m div suc n) quotInt-by (negsuc n) (pos m) = neg (m div suc n) quotInt-by (negsuc n) (negsuc m) = pos (suc m div suc n) {-# INLINE quotInt-by #-} syntax remInt-by b a = a rem b remInt-by : (b : Int) {{_ : NonZeroInt b}} → Int → Int remInt-by (pos zero) {{}} _ remInt-by (pos (suc n)) (pos m) = pos ( m mod suc n) remInt-by (pos (suc n)) (negsuc m) = neg (suc m mod suc n) remInt-by (negsuc n) (pos m) = pos ( m mod suc n) remInt-by (negsuc n) (negsuc m) = neg (suc m mod suc n) {-# INLINE remInt-by #-}
{ "alphanum_fraction": 0.6086629002, "avg_line_length": 25.2857142857, "ext": "agda", "hexsha": "3e27451ccb3d22bd82f34adbfc305313c75e6241", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Int/Core.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Int/Core.agda", "max_line_length": 95, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Int/Core.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 960, "size": 2655 }
open import Oscar.Prelude module Oscar.Data.Maybe where data Maybe {a} (A : Ø a) : Ø a where ∅ : Maybe A ↑_ : A → Maybe A -- A dependent eliminator. maybe : ∀ {a b} {A : Set a} {B : Maybe A → Set b} → ((x : A) → B (↑ x)) → B ∅ → (x : Maybe A) → B x maybe j n (↑ x) = j x maybe j n ∅ = n -- A non-dependent eliminator. maybe′ : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → B → Maybe A → B maybe′ = maybe
{ "alphanum_fraction": 0.5118483412, "avg_line_length": 20.0952380952, "ext": "agda", "hexsha": "4eba1482f1aa41cadd6eb09aa93952b7dc6463db", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Data/Maybe.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Data/Maybe.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Data/Maybe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 168, "size": 422 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} module Dijkstra.EitherD where open import Agda.Builtin.Equality using (_≡_; refl) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Haskell.Prelude data EitherD (E : Set) : Set → Set₁ where -- Primitive combinators EitherD-return : ∀ {A} → A → EitherD E A EitherD-bind : ∀ {A B} → EitherD E A → (A → EitherD E B) → EitherD E B EitherD-bail : ∀ {A} → E → EitherD E A -- Branching conditionals (used for creating more convenient contracts) EitherD-if : ∀ {A} → Guards (EitherD E A) → EitherD E A EitherD-either : ∀ {A B C} → (B → EitherD E A) → (C → EitherD E A) → Either B C → EitherD E A EitherD-maybe : ∀ {A B} → EitherD E B → (A → EitherD E B) → Maybe A → EitherD E B pattern LeftD x = EitherD-bail x pattern RightD x = EitherD-return x private variable E : Set A B C : Set EitherD-run : EitherD E A → Either E A EitherD-run (EitherD-return x) = Right x EitherD-run (EitherD-bind m f) with EitherD-run m ... | Left x = Left x ... | Right y = EitherD-run (f y) EitherD-run (EitherD-bail x) = Left x EitherD-run (EitherD-if (clause (b ≔ c) gs)) = if toBool b then EitherD-run c else EitherD-run (EitherD-if gs) EitherD-run (EitherD-if (otherwise≔ c)) = EitherD-run c EitherD-run (EitherD-either f₁ f₂ (Left x)) = EitherD-run (f₁ x) EitherD-run (EitherD-either f₁ f₂ (Right y)) = EitherD-run (f₂ y) EitherD-run (EitherD-maybe n s nothing ) = EitherD-run n EitherD-run (EitherD-maybe n s (just x)) = EitherD-run (s x) EitherD-Pre : (E A : Set) → Set₁ EitherD-Pre E A = Set EitherD-Post : (E A : Set) → Set₁ EitherD-Post E A = Either E A → Set EitherD-Post-⇒ : ∀ {E} {A} → (P Q : EitherD-Post E A) → Set EitherD-Post-⇒ P Q = ∀ r → P r → Q r EitherD-PredTrans : (E A : Set) → Set₁ EitherD-PredTrans E A = EitherD-Post E A → EitherD-Pre E A EitherD-weakestPre-bindPost : (f : A → EitherD E B) → EitherD-Post E B → EitherD-Post E A EitherD-weakestPre : (m : EitherD E A) → EitherD-PredTrans E A EitherD-weakestPre (EitherD-return x) P = P (Right x) EitherD-weakestPre (EitherD-bind m f) P = EitherD-weakestPre m (EitherD-weakestPre-bindPost f P) EitherD-weakestPre (EitherD-bail x) P = P (Left x) EitherD-weakestPre (EitherD-if (clause (b ≔ c) gs)) P = (toBool b ≡ true → EitherD-weakestPre c P) × (toBool b ≡ false → EitherD-weakestPre (EitherD-if gs) P) EitherD-weakestPre (EitherD-if (otherwise≔ x)) P = EitherD-weakestPre x P EitherD-weakestPre (EitherD-either f₁ f₂ e) P = (∀ x → e ≡ Left x → EitherD-weakestPre (f₁ x) P) × (∀ y → e ≡ Right y → EitherD-weakestPre (f₂ y) P) EitherD-weakestPre (EitherD-maybe n s m) P = (m ≡ nothing → EitherD-weakestPre n P) × (∀ j → m ≡ just j → EitherD-weakestPre (s j) P) EitherD-weakestPre-bindPost f P (Left x) = P (Left x) EitherD-weakestPre-bindPost f P (Right y) = ∀ c → c ≡ y → EitherD-weakestPre (f c) P EitherD-Contract : (m : EitherD E A) → Set₁ EitherD-Contract{E}{A} m = (P : EitherD-Post E A) → EitherD-weakestPre m P → P (EitherD-run m) EitherD-contract : (m : EitherD E A) → EitherD-Contract m EitherD-contract (EitherD-return x) P wp = wp EitherD-contract (EitherD-bind m f) P wp with EitherD-contract m _ wp ...| wp' with EitherD-run m ... | Left x = wp' ... | Right y = EitherD-contract (f y) P (wp' y refl) EitherD-contract (EitherD-bail x) P wp = wp EitherD-contract{E}{A} (EitherD-if gs) P wp = EitherD-contract-if gs P wp where EitherD-contract-if : (gs : Guards (EitherD E A)) → EitherD-Contract (EitherD-if gs) EitherD-contract-if (clause (b ≔ c) gs) P wp with toBool b ... | false = EitherD-contract-if gs P (proj₂ wp refl) ... | true = EitherD-contract c P (proj₁ wp refl) EitherD-contract-if (otherwise≔ x) P wp = EitherD-contract x P wp EitherD-contract (EitherD-either f₁ f₂ (Left x)) P wp = EitherD-contract (f₁ x) P (proj₁ wp x refl) EitherD-contract (EitherD-either f₁ f₂ (Right y)) P wp = EitherD-contract (f₂ y) P (proj₂ wp y refl) EitherD-contract (EitherD-maybe f₁ f₂ nothing) P wp = EitherD-contract f₁ P (proj₁ wp refl) EitherD-contract (EitherD-maybe f₁ f₂ (just x)) P wp = EitherD-contract (f₂ x) P (proj₂ wp x refl) EitherD-⇒ : ∀ {E A} {P Q : EitherD-Post E A} → ∀ m → EitherD-weakestPre m P → (EitherD-Post-⇒ P Q) → EitherD-weakestPre m Q EitherD-⇒ {P = Post₁} {Post₂} (LeftD x ) pre pf = pf (Left x ) pre EitherD-⇒ {P = Post₁} {Post₂} (RightD x) pre pf = pf (Right x) pre EitherD-⇒ {P = Post₁} {Post₂} (EitherD-bind m x) pre pf = EitherD-⇒ m pre P⇒Q where P⇒Q : EitherD-Post-⇒ (EitherD-weakestPre-bindPost x Post₁) (EitherD-weakestPre-bindPost x Post₂) P⇒Q (Left rL) Pr = pf (Left rL) Pr P⇒Q (Right rR) Pr .rR refl = EitherD-⇒ (x rR) (Pr rR refl) pf EitherD-⇒ {Post₁} {Post₂} (EitherD-if (otherwise≔ x)) pre pf = EitherD-⇒ x pre pf EitherD-⇒ {Post₁} {Post₂} (EitherD-if (clause (x ≔ x₂) x₁)) (pre₁ , pre₂) pf = (λ x≡true → EitherD-⇒ x₂ (pre₁ x≡true) pf) , (λ x≡false → EitherD-⇒ (EitherD-if x₁) (pre₂ x≡false) pf) proj₁ (EitherD-⇒ {Post₁} {Post₂} (EitherD-either x₁ x₂ (Left x)) (pre₁ , pre₂) pf) .x refl = EitherD-⇒ (x₁ x) (pre₁ x refl) pf proj₂ (EitherD-⇒ {Post₁} {Post₂} (EitherD-either x₁ x₂ (Right x)) (pre₁ , pre₂) pf) .x refl = EitherD-⇒ (x₂ x) (pre₂ x refl) pf proj₁ (EitherD-⇒ {Post₁} {Post₂} (EitherD-maybe m x₁ .nothing) (pre₁ , pre₂) pf) refl = EitherD-⇒ m (pre₁ refl) pf proj₂ (EitherD-⇒ {Post₁} {Post₂} (EitherD-maybe m x₁ (just x)) (pre₁ , pre₂) pf) j refl = EitherD-⇒ (x₁ j) (pre₂ j refl) pf EitherD-⇒-bind : ∀ {E} {A} {P : EitherD-Post E A} → {Q : EitherD-Post E B} → {f : A → EitherD E B} → ∀ m → EitherD-weakestPre m P → EitherD-Post-⇒ P (EitherD-weakestPre-bindPost f Q) → EitherD-weakestPre (EitherD-bind m f) Q EitherD-⇒-bind = EitherD-⇒ EitherD-vacuous : ∀ (m : EitherD E A) → EitherD-weakestPre m (const Unit) EitherD-vacuous (LeftD x) = unit EitherD-vacuous (RightD x) = unit EitherD-vacuous (EitherD-if (otherwise≔ x)) = EitherD-vacuous x EitherD-vacuous (EitherD-if (clause (b ≔ x) x₁)) = (const (EitherD-vacuous x)) , (const (EitherD-vacuous (EitherD-if x₁))) EitherD-vacuous (EitherD-either x₁ x₂ x) = (λ x₃ _ → EitherD-vacuous (x₁ x₃)) , (λ y _ → EitherD-vacuous (x₂ y)) EitherD-vacuous (EitherD-maybe m x₁ x) = (const (EitherD-vacuous m)) , λ j _ → EitherD-vacuous (x₁ j) EitherD-vacuous (EitherD-bind m x) = EitherD-⇒-bind m (EitherD-vacuous m) λ { (Left _) _ → unit ; (Right _) _ → λ c _ → EitherD-vacuous (x c) }
{ "alphanum_fraction": 0.6301527818, "avg_line_length": 42.8271604938, "ext": "agda", "hexsha": "e06585cf976ccffd4c9354519ec09738d0ca04a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/Dijkstra/EitherD.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/Dijkstra/EitherD.agda", "max_line_length": 137, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/Dijkstra/EitherD.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2611, "size": 6938 }
module Structure.Category.NaturalTransformation where open import Functional using () renaming (id to idᶠⁿ) open import Functional.Dependent using () renaming (_∘_ to _∘ᶠⁿ_) import Lvl open import Logic open import Logic.Predicate open import Structure.Category open import Structure.Category.Functor open import Structure.Category.Proofs open import Structure.Categorical.Properties open import Structure.Setoid open import Syntax.Function open import Type open Category.ArrowNotation ⦃ … ⦄ open Category ⦃ … ⦄ hiding (identity) open CategoryObject ⦃ … ⦄ open Functor ⦃ … ⦄ module _ {ℓₗₒ ℓₗₘ ℓₗₑ ℓᵣₒ ℓᵣₘ ℓᵣₑ} {Cₗ : CategoryObject{ℓₗₒ}{ℓₗₘ}{ℓₗₑ}} {Cᵣ : CategoryObject{ℓᵣₒ}{ℓᵣₘ}{ℓᵣₑ}} where private instance _ = Cₗ private instance _ = Cᵣ module _ (([∃]-intro F₁ ⦃ functor₁ ⦄) ([∃]-intro F₂ ⦃ functor₂ ⦄) : Cₗ →ᶠᵘⁿᶜᵗᵒʳ Cᵣ) where -- A natural transformation is a family of morphisms on record NaturalTransformation(η : ∀(x) → (F₁(x) ⟶ F₂(x))) : Type{Lvl.of(Type.of(Cₗ)) Lvl.⊔ Lvl.of(Type.of(Cᵣ))} where constructor intro field natural : ∀{x y}{f : x ⟶ y} → (η(y) ∘ map(f) ≡ map(f) ∘ η(x)) record NaturalIsomorphism(η : ∀(x) → (F₁(x) ⟶ F₂(x))) : Type{Lvl.of(Type.of(Cₗ)) Lvl.⊔ Lvl.of(Type.of(Cᵣ))} where -- TODO: Consider defining this by two natural tranformations instead constructor intro field ⦃ naturalTransformation ⦄ : NaturalTransformation(η) ⦃ components-isomorphism ⦄ : ∀{x} → Morphism.Isomorphism{Morphism = Morphism ⦃ Cᵣ ⦄}(_∘_)(id) (η(x)) _→ᴺᵀ_ = ∃(NaturalTransformation) _↔ᴺᵀ_ = ∃(NaturalIsomorphism) module _ (F₁ F₂ : Cₗ →ᶠᵘⁿᶜᵗᵒʳ Cᵣ) where open NaturalIsomorphism ⦃ … ⦄ NaturalIsomorphism-inverse : ∀{η} → ⦃ ni : NaturalIsomorphism(F₁)(F₂)(η) ⦄ → NaturalIsomorphism(F₂)(F₁)(x ↦ Morphism.inv(_∘_)(id) (η(x))) -- TODO: Should not be an instance parameter NaturalTransformation.natural (NaturalIsomorphism.naturalTransformation NaturalIsomorphism-inverse) {x} {y} {f} = a where postulate a : ∀{a} → a -- TODO: Prove, and also move natural isomorphisms to a new file NaturalIsomorphism.components-isomorphism (NaturalIsomorphism-inverse {η}) {x} = inverse-isomorphism category (η(x)) module _ {F₁ F₂ : Cₗ →ᶠᵘⁿᶜᵗᵒʳ Cᵣ} where open NaturalIsomorphism ⦃ … ⦄ invᴺᵀ : (F₁ ↔ᴺᵀ F₂) → (F₂ ↔ᴺᵀ F₁) invᴺᵀ ([∃]-intro _) = [∃]-intro _ ⦃ NaturalIsomorphism-inverse F₁ F₂ ⦄
{ "alphanum_fraction": 0.6820448878, "avg_line_length": 41.4827586207, "ext": "agda", "hexsha": "b031383fbf502b2ea9784dd632e3359750b1e13c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Category/NaturalTransformation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Category/NaturalTransformation.agda", "max_line_length": 187, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Category/NaturalTransformation.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 977, "size": 2406 }
module UniDB.Morph.Pair where open import UniDB.Spec -------------------------------------------------------------------------------- infixl 5 _⊗_ data Pair (Ξ Ζ : MOR) : MOR where _⊗_ : {γ₁ γ₂ γ₃ : Dom} (ξ : Ξ γ₁ γ₂) (ζ : Ζ γ₂ γ₃) → Pair Ξ Ζ γ₁ γ₃ instance iHCompPair : {Ξ Ζ : MOR} → HComp Ξ Ζ (Pair Ξ Ζ) _⊡_ {{iHCompPair}} = _⊗_ module _ {Ξ : MOR} {{upΞ : Up Ξ}} {Ζ : MOR} {{upΖ : Up Ζ}} where instance iUpPair : Up (Pair Ξ Ζ) _↑₁ {{iUpPair}} (ξ ⊗ ζ) = ξ ↑₁ ⊗ ζ ↑₁ _↑_ {{iUpPair}} (ξ ⊗ ζ) δ = (ξ ↑ δ) ⊗ (ζ ↑ δ) ↑-zero {{iUpPair}} (ξ ⊗ ζ) rewrite ↑-zero ξ | ↑-zero ζ = refl ↑-suc {{iUpPair}} (ξ ⊗ ζ) δ⁺ rewrite ↑-suc ξ δ⁺ | ↑-suc ζ δ⁺ = refl iUpHCompPair : UpHComp Ξ Ζ (Pair Ξ Ζ) ⊡-↑₁ {{iUpHCompPair}} ξ ζ = refl --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.42, "avg_line_length": 25.7575757576, "ext": "agda", "hexsha": "6c59f1b1e7e79f40645f74e6f67a0c7285317cb1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "skeuchel/unidb-agda", "max_forks_repo_path": "UniDB/Morph/Pair.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "skeuchel/unidb-agda", "max_issues_repo_path": "UniDB/Morph/Pair.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "7ae52205db44ad4f463882ba7e5082120fb76349", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "skeuchel/unidb-agda", "max_stars_repo_path": "UniDB/Morph/Pair.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 379, "size": 850 }
-- Andreas, 2015-11-28 Check that postfix constructors are fine. -- There was a TODO in Agda.Syntax.Concrete.Operators which claimed -- there would be an ambiguity between `true` applied to variable `wrap` -- and (_wrap true), and arity of constructors would have to be checked. -- Parsing works fine, so I removed this TODO. data Bool : Set where true false : Bool record Wrap A : Set where constructor _wrap field wrapped : A test : Wrap Bool → Set test (true wrap) = Bool test (false wrap) = Bool test2 : {A : Set} → Wrap A → A test2 y = let x wrap = y in x
{ "alphanum_fraction": 0.7105263158, "avg_line_length": 30, "ext": "agda", "hexsha": "710256e3d15db86f991e6d9e4552fff71f173171", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Succeed/PostfixConstructorInPattern.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Succeed/PostfixConstructorInPattern.agda", "max_line_length": 72, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/PostfixConstructorInPattern.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 154, "size": 570 }
open import Agda.Builtin.Nat data B {A : Set} : A → Set where b : (a : A) → B a data C {A : Set} : ∀ {a} → B {A} a → Set where c : {a : A} → C (b a) id : ∀ {b} → C b → B 0 id c = {!!}
{ "alphanum_fraction": 0.4397905759, "avg_line_length": 17.3636363636, "ext": "agda", "hexsha": "793e2fcaeb91b23b5f1ee1a9be54faed0dc6f498", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/interaction/Issue2620.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/interaction/Issue2620.agda", "max_line_length": 46, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/interaction/Issue2620.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 89, "size": 191 }
{-# OPTIONS --includeC=helloworld.c #-} module Prelude.FFI where open import Prelude.IO open import Prelude.String open import Prelude.Unit postulate helloworld : IO Unit test : IO String {-# COMPILED_EPIC helloworld (u : Unit) -> Unit = foreign Unit "hello_world" () #-} {-# COMPILED_EPIC test (u : Unit) -> Unit = foreign String "test" () #-} main : IO Unit main = helloworld ,, x <- test , putStrLn x
{ "alphanum_fraction": 0.6746411483, "avg_line_length": 20.9, "ext": "agda", "hexsha": "9ea9e341206121084f9caeb4846b2d6c74c14261", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/epic/Prelude/FFI.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/epic/Prelude/FFI.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/epic/Prelude/FFI.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 113, "size": 418 }
-- Σ-Terms module Terms where open import Data.Vec hiding (_++_) open import Relation.Binary.PropositionalEquality open import Data.Nat open import Data.List open import Data.List.All open import Data.Fin.Base open import Size -- Ranked alphabet: Vector of natural numbers, where vec[i] denotes the arity of symbol i RankAlph : ℕ → Set RankAlph n = Vec ℕ n -- Types data Type : Set where TTerm : ∀ {n} → RankAlph n → Type TFun : Type → Type → Type -- Type environment Env : Set Env = List Type -- Environment lookup data _∈`_ : Type → Env → Set where here : ∀ {φ A} → A ∈` (A ∷ φ) there : ∀ {φ A A'} → A ∈` φ → A ∈` (A' ∷ φ) -- Bind a type n times on top of an environment bind : Env → (A : Type) → ℕ → Env bind φ A zero = φ bind φ A (suc n) = A ∷ (bind φ A n) -- Zero & Successor, Variables, prim. recursion on Σ-Nat, Abstraction, Application data Expr : Env → Type → Set where -- Given terms σ₁, ..., σₘ and a term σ with arity α(σ) = m, we get a new term σ(σ₁, ..., σₘ); Special case: m = 0 Term : ∀ {φ n vec} {i : Fin n} {m} {eq : Data.Vec.lookup vec i ≡ m} → (∀ (l : Fin m) → Expr φ (TTerm vec)) → Expr φ (TTerm vec) -- Recursion on Terms: For every term σ ∈ Σ with arity α(σ) = m, we have an expression of type A in an environment that binds m variables of type A -- Together with an expression of type Σ, by recursion on the correct expression we get an expression of type A Term-Rec : ∀ {φ n vec A} → (∀ {l : Fin n} {m} {eq : (Data.Vec.lookup vec l) ≡ m} → Expr (bind φ A m) A) → Expr φ (TTerm vec) → Expr φ A Var : ∀ {φ A} → A ∈` φ → Expr φ A Abs : ∀ {φ A B} → Expr (A ∷ φ) B → Expr φ (TFun A B) App : ∀ {φ A B} → Expr φ (TFun A B) → Expr φ A → Expr φ B ----- Big step semantics using Agda semantics ----- -- Data type for terms data TTerm' {n} : RankAlph n → Set where Term' : ∀ {vec m} {i : Fin n} {eq : (Data.Vec.lookup vec i) ≡ m} → (∀ (l : Fin m) → (TTerm' vec)) → (TTerm' vec) data TTerm'' {n} (ra : RankAlph n) : {i : Size} → Set where mk : ∀ {i} → (symb : Fin n) → Vec (TTerm'' ra {i}) (Data.Vec.lookup ra symb) → TTerm'' ra {↑ i} -- From data type to expression conversion : ∀ {φ n} {vec : RankAlph n} → TTerm' vec → Expr φ (TTerm vec) conversion (Term'{m = zero}{eq = eq} x) = Term{eq = eq} λ () conversion (Term'{m = suc n}{eq = eq} x) = Term{eq = eq} (λ l → conversion (x l)) -- Value definition Value : Type → Set Value (TTerm vec) = TTerm' vec Value (TFun A B) = Value A → Value B -- Lookup in environment of values access : ∀ {A φ} → A ∈` φ → All Value φ → Value A access here (px ∷ p) = px access (there x) (px ∷ p) = access x p -- Given a map from Fin (suc m) to anything; we can derive a map from Fin m to anything -- (make the Urbild smaller) urbild : ∀ {m} {A : Set} → (Fin (suc m) → A) → (Fin m → A) urbild l = λ x → l (raise 1 x) nary : (A : Set) → ℕ → Set nary A zero = A nary A (suc n) = A → nary A n algebra : ∀ {n} → RankAlph n → (A : Set) → Vec Set n algebra vec A = Data.Vec.map (nary A) vec term-rec : ∀ {A : Set} {n : ℕ} {vec : RankAlph n} → (alg : Vec Set n) → TTerm' vec → A term-rec v (Term'{m = zero} x) = {!!} term-rec v (Term'{m = suc m} x) = {!!} -- Evaluation eval : ∀ {φ A} → Expr φ A → All Value φ → Value A -- eval (Term{m = zero}{eq = eq} x) ϱ = Term'{eq = eq} λ () eval (Term{m = suc n}{eq = eq} x) ϱ = Term'{eq = eq} (λ l → eval (x l) ϱ) eval (Term-Rec σ-exprs eₛ) ϱ = {!!} eval (Var x) ϱ = access x ϱ eval (Abs e) ϱ = λ x → eval e (x ∷ ϱ) eval (App e e₁) ϱ = (eval e ϱ) (eval e₁ ϱ) ----- {-- -- eval (Σ-Rec σ-exprs eₛ) with (eval eₛ ϱ) -- ... | σ∈Σ⁰ i x = eval (σ-exprs i x) ϱ -- ... | σ∈Σᵐ i x x₁ = eval (σ-exprs i x₁) (rec σ-exprs ϱ x) -- rec : ∀ {φ A n m} {vec : Vec ℕ n} → (∀ (l : Fin n) → ∀ {m} → (Data.Vec.lookup vec l) ≡ m → Expr (bind φ A m) A) → All Value φ → (∀ (l : Fin m) → (Σ' vec)) → All Value (bind φ A m) -- rec {m = zero} σ-exprs ϱ terms = ϱ -- rec {m = suc m} σ-exprs ϱ terms = eval (Σ-Rec σ-exprs (conversion (terms (fromℕ m)))) ϱ ∷ (rec{m = m} σ-exprs ϱ (urbild terms)) -- Example: ℕ; Σ = {Z⁰, S¹} (where ⁿ defines arity) Nat : Type Nat = TTerm (0 ∷ 1 ∷ []) --- Natural number to expression ℕtoE : ℕ → Expr [] Nat --- Cases plus-exprs : ℕ → (∀ (l : Fin 2) → ∀ {m} → (Data.Vec.lookup (0 ∷ 1 ∷ []) l) ≡ m → Expr (bind [] (Nat) m) Nat) -- base case for n + zero = n plus-exprs n zero {zero} 0≡0 = ℕtoE n -- suc case, n + (suc m) = suc (n + m); (n + m) recursively calculated and put ontop of the environemnt, hence Var here -- plus-exprs n (suc zero) {suc zero} 1≡1 = Term{m = 1} (suc zero) (λ l → Var here) refl _plus_ : ℕ → ℕ → Expr [] (Nat) n plus m = Term-Rec (plus-exprs n) (ℕtoE m) -- Example with explanation -- --} ----- Small step semantics ----- ----- Substitution: See SystemT.agda for a more detailed description insdebr : ∀ {φ φ'} {A B} → B ∈` (φ' ++ φ) → B ∈` (φ' ++ (A ∷ φ)) insdebr {φ' = []} here = there here insdebr {φ' = []} (there x) = there (there x) insdebr {φ' = y ∷ ys} here = here insdebr {φ' = y ∷ ys} (there x) = there (insdebr x) -- Extract the ℕ m from proof that vector contains it at index l extr : ∀ {n l m} {vec : RankAlph n} → (Data.Vec.lookup vec l ≡ m) → ℕ extr {m} refl = m -- Proof that (A' ∷ ... ∷ A' ∷ (φ' ++ A ∷ φ)) is "equal to itself", Agda cannot see this -- from the definition of bind insbind : ∀ (φ' : Env) (φ : Env) (A' : Type) (m : ℕ) → bind (φ' ++ φ) A' m ≡ bind φ' A' m ++ φ insbind [] φ' A' zero = refl insbind [] φ' A' (suc m) = cong (_∷_ A') (insbind [] φ' A' m) insbind (x ∷ φ) φ' A' zero = refl insbind (x ∷ φ) φ' A' (suc m) = cong (_∷_ A') (insbind (x ∷ φ) φ' A' m) ins : ∀ {φ φ'} {A B} → Expr (φ' ++ φ) B → Expr (φ' ++ A ∷ φ) B ins (Var x) = Var (insdebr x) ins (Term{m = zero}{eq = eq} x) = Term{eq = eq} (λ ()) ins (Term{m = suc m}{eq = eq} x) = Term{eq = eq} λ l → ins (x l) -- Direct rewriting does not work since arity (m) is not in scope -- ins {φ} {φ'} {A} {B} (Term-Rec{n = n}{vec = vec}{A = .B} x x₁) rewrite (insbind φ' φ B {!!}) ins {φ} {φ'} {A} {B} (Term-Rec{n = n}{vec = vec}{A = .B} x x₁) = Term-Rec (λ {l : Fin n} {m} {eq : Data.Vec.lookup vec l ≡ m} → ϱ{vec = vec} l m eq (x {l} {m} {eq})) (ins x₁) where ϱ : ∀ {vec} → (l : Fin n) → (m : ℕ) → (Data.Vec.lookup vec l) ≡ m → Expr (bind (φ' ++ φ) B m) B → Expr (bind (φ' ++ (A ∷ φ)) B m) B ϱ l m eq ex rewrite (insbind φ' φ B m) | (insbind φ' (A ∷ φ) B m) = ins{φ = φ}{φ' = bind φ' B m}{A = A} ex ins {φ' = φ'} (Abs{A = A'} x) = Abs (ins{φ' = A' ∷ φ'} x) ins (App x y) = App (ins x) (ins y) varsub : ∀ {φ φ'} {A B} → A ∈` (φ' ++ B ∷ φ) → Expr φ B → Expr (φ' ++ φ) A varsub {φ' = []} here M = M varsub {φ' = []} (there x) M = Var x varsub {φ' = z ∷ zs} here M = Var here varsub {φ' = z ∷ zs} (there x) M = ins{φ' = []} (varsub x M) _[[_]] : ∀ {φ φ'} {A B : Type} → Expr (φ' ++ B ∷ φ) A → Expr φ B → Expr (φ' ++ φ) A Var x [[ M ]] = varsub x M Term{m = zero}{eq = eq} x [[ M ]] = Term{eq = eq} (λ ()) Term{m = suc m}{eq = eq} x [[ M ]] = Term{eq = eq} λ l → x l [[ M ]] _[[_]] {φ} {φ'} {A} {B} (Term-Rec{n = n}{vec = vec}{A = A'} trms e) M = Term-Rec (λ {l} {m} {eq} → ϱ{vec = vec} l m eq (trms {l} {m} {eq})) (e [[ M ]]) where ϱ : ∀ {vec} → (l : Fin n) → (m : ℕ) → (Data.Vec.lookup vec l) ≡ m → Expr (bind (φ' ++ B ∷ φ) A m) A → Expr (bind (φ' ++ φ) A m) A ϱ l m eq expr rewrite (insbind φ' (B ∷ φ) A m) | (insbind φ' φ A m) = _[[_]] {φ} {bind φ' A m} {A} {B} expr M Abs N [[ M ]] = Abs (N [[ M ]]) App N N' [[ M ]] = App (N [[ M ]]) (N' [[ M ]]) -- Values data Value' {φ} : (t : Type) → Expr φ t → Set where VTerm : ∀ {n} {vec : Vec ℕ n} {i : Fin n} {m} {eq : Data.Vec.lookup vec i ≡ m} → (subt : Fin m → Expr φ (TTerm vec)) → (∀ {l : Fin m} → Value' (TTerm vec) (subt l)) → Value' (TTerm vec) (Term {i = i}{m}{eq} subt) VFun : ∀ {A B expr} → Value' (TFun A B) (Abs expr) ---- Functions required for Term-Rec -- Select term for recursion termsel : ∀ {φ A n m vec} → (∀ {l : Fin n} {m'} {eq : Data.Vec.lookup vec l ≡ m'} → Expr (bind φ A m') A) → Expr φ (TTerm vec) → Expr (bind φ A m) A termsel {m = m} {vec = vec} trms (Term{i = i}{m = m'}{eq = eq} x) = {!!} termsel trms (Term-Rec x trm) = {!!} termsel trms (Var x) = {!!} termsel trms (App trm trm₁) = {!!} -- Proof that (bind (A ∷ φ) A m) ≡ (A ∷ bind φ A m) bindapp : ∀ {φ A m} → bind (A ∷ φ) A m ≡ (A ∷ bind φ A m) bindapp {m = zero} = refl bindapp {A = A} {m = suc m} = cong (_∷_ A) bindapp -- Looks more complicated than it is: -- Given a Term-Rec expression - including a map that for each term t' in our ranked alphabet with arity α(t') = m' -- defines an expression with m' bound variables - and a specific Term t with arity α(t) = m: -- Recursively, on m from "right-to-left", bind a Term-Rec expression with the same map using the topmost subterm on top of the environment -- Term-Rec trms σ(t₁, ..., tₘ) → -- ( ... ((trms(σ) [y₁ ↦ Term-Rec trms t₁]) [y₂ ↦ Term-Rec trms t₂]) ...) [yₘ ↦ Term-Rec trms tₘ] bindtosubs : ∀ {m n φ A} {vec : RankAlph n} → (trms : (∀ {l : Fin n} {m'} {eq : Data.Vec.lookup vec l ≡ m'} → Expr (bind φ A m') A)) → (subtrms : (∀ (l : Fin m) → Expr φ (TTerm vec))) → Expr (bind φ A m) A → Expr φ A bindtosubs {zero} trms subtrms e = e bindtosubs {suc m} {n = n} {φ} {A} {vec = vec} trms subtrms e rewrite sym (bindapp {φ} {A} {m}) = (bindtosubs{m = m}{n = n}{vec = vec} (λ {l} {m'} {eq} → ϱ l m' eq (trms {l} {m'} {eq})) (λ l → ins{φ' = []}{A = A} ((urbild subtrms) l)) e) [[ Term-Rec (λ {l} {m'} {eq} → trms {l} {m'} {eq}) (subtrms (fromℕ m)) ]] where -- Adjustement of environment/DeBruijn indices: In the recursion step, we have to adjust the term map (∀ t' with α(t') = m' we get an Expr with m' bound vars) -- by adding another bound variable. If we for example have a "Var here" in σ, this adjustement leads to the correct -- substitution with evaluated σ₁ that has m bound variables. ϱ : (l : Fin n) → (m' : ℕ) → (Data.Vec.lookup vec l) ≡ m' → Expr (bind φ A m') A → Expr (bind (A ∷ φ) A m') A ϱ l m' eq ex rewrite (bindapp {φ} {A} {m'}) = ins{φ' = []}{A = A} ex data _↠_ {φ} : {A : Type} → Expr φ A → Expr φ A → Set where -- Basic call-by-value λ-calc. stuff -- Application: Elimination & Reduction ξ-App1 : ∀ {A B} {L L' : Expr φ (TFun B A)} {M} → L ↠ L' → App L M ↠ App L' M ξ-App2 : ∀ {A B} {M M' : Expr φ A} {L : Expr φ (TFun A B)} → Value' (TFun A B) L → M ↠ M' → App L M ↠ App L M' β-App : ∀ {A B M exp} → Value' B M → App{B = A} (Abs exp) M ↠ (exp [[ M ]]) -- Term elimination ξ-TermRec : ∀ {A} {n} {vec : RankAlph n} {e e'} {trms : (∀ {l : Fin n} {m : ℕ} {eq : (Data.Vec.lookup vec l ≡ m)} → Expr (bind φ A m) A)} → e ↠ e' → Term-Rec{n = n}{vec = vec} (λ {l} {m'} {eq} → trms {l} {m'} {eq}) e ↠ Term-Rec (λ {l} {m'} {eq} → trms {l} {m'} {eq}) e' {- β-TermRec : ∀ {A} {n i} {vec : Vec ℕ n} {e} {trms : (∀ {l : Fin n} {m : ℕ} {eq : (Data.Vec.lookup vec i ≡ m)} → Expr (bind φ A m) A)} → Value' (TTerm vec) e → {!!} -}
{ "alphanum_fraction": 0.5023850085, "avg_line_length": 46.5873015873, "ext": "agda", "hexsha": "c03183b7ca82d5fdc15ac53161f7b886c463959b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-14T17:52:29.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-14T17:52:29.000Z", "max_forks_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "kcaliban/ldlc", "max_forks_repo_path": "src/sigmatypes/Terms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "kcaliban/ldlc", "max_issues_repo_path": "src/sigmatypes/Terms.agda", "max_line_length": 203, "max_stars_count": null, "max_stars_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "kcaliban/ldlc", "max_stars_repo_path": "src/sigmatypes/Terms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4562, "size": 11740 }
-- Andreas, 2017-08-28, issue #2723, reported by Andrea {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS --warning=error #-} -- {-# OPTIONS -v tc.cover:30 #-} record Test : Set1 where field one two : Set open Test foo : Test foo .one = {!!} foo = {!!} foo .two = {!!} -- WAS: internal error in clause compiler -- NOW: warning about unreachable clause
{ "alphanum_fraction": 0.6195652174, "avg_line_length": 17.5238095238, "ext": "agda", "hexsha": "6d07fe5c98afc177cb9c48a9b09765bc7c65ce6b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue2723.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue2723.agda", "max_line_length": 55, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue2723.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 106, "size": 368 }
module huffman where open import lib open import huffman-types public ---------------------------------------------------------------------------------- -- Run-rewriting rules ---------------------------------------------------------------------------------- data gratr2-nt : Set where _ws-plus-10 : gratr2-nt _ws : gratr2-nt _words : gratr2-nt _word : gratr2-nt _start : gratr2-nt _posinfo : gratr2-nt _ows-star-11 : gratr2-nt _ows : gratr2-nt _digit : gratr2-nt _codes : gratr2-nt _code : gratr2-nt _cmd : gratr2-nt _character-range-2 : gratr2-nt _character-range-1 : gratr2-nt _character-bar-7 : gratr2-nt _character-bar-6 : gratr2-nt _character-bar-5 : gratr2-nt _character-bar-4 : gratr2-nt _character-bar-3 : gratr2-nt _character : gratr2-nt _bvlit : gratr2-nt _aws-bar-9 : gratr2-nt _aws-bar-8 : gratr2-nt _aws : gratr2-nt gratr2-nt-eq : gratr2-nt → gratr2-nt → 𝔹 gratr2-nt-eq _ws-plus-10 _ws-plus-10 = tt gratr2-nt-eq _ws _ws = tt gratr2-nt-eq _words _words = tt gratr2-nt-eq _word _word = tt gratr2-nt-eq _start _start = tt gratr2-nt-eq _posinfo _posinfo = tt gratr2-nt-eq _ows-star-11 _ows-star-11 = tt gratr2-nt-eq _ows _ows = tt gratr2-nt-eq _digit _digit = tt gratr2-nt-eq _codes _codes = tt gratr2-nt-eq _code _code = tt gratr2-nt-eq _cmd _cmd = tt gratr2-nt-eq _character-range-2 _character-range-2 = tt gratr2-nt-eq _character-range-1 _character-range-1 = tt gratr2-nt-eq _character-bar-7 _character-bar-7 = tt gratr2-nt-eq _character-bar-6 _character-bar-6 = tt gratr2-nt-eq _character-bar-5 _character-bar-5 = tt gratr2-nt-eq _character-bar-4 _character-bar-4 = tt gratr2-nt-eq _character-bar-3 _character-bar-3 = tt gratr2-nt-eq _character _character = tt gratr2-nt-eq _bvlit _bvlit = tt gratr2-nt-eq _aws-bar-9 _aws-bar-9 = tt gratr2-nt-eq _aws-bar-8 _aws-bar-8 = tt gratr2-nt-eq _aws _aws = tt gratr2-nt-eq _ _ = ff open import rtn gratr2-nt huffman-start : gratr2-nt → 𝕃 gratr2-rule huffman-start _ws-plus-10 = (just "P71" , nothing , just _ws-plus-10 , inj₁ _aws :: inj₁ _ws-plus-10 :: []) :: (just "P70" , nothing , just _ws-plus-10 , inj₁ _aws :: []) :: [] huffman-start _ws = (just "P72" , nothing , just _ws , inj₁ _ws-plus-10 :: []) :: [] huffman-start _words = (just "WordsStart" , nothing , just _words , inj₁ _word :: []) :: (just "WordsNext" , nothing , just _words , inj₁ _word :: inj₁ _ws :: inj₁ _words :: []) :: [] huffman-start _word = (just "P1" , nothing , just _word , inj₁ _character :: inj₁ _word :: []) :: (just "P0" , nothing , just _word , inj₁ _character :: []) :: [] huffman-start _start = (just "File" , nothing , just _start , inj₁ _ows :: inj₁ _cmd :: inj₁ _ows :: []) :: [] huffman-start _posinfo = (just "Posinfo" , nothing , just _posinfo , []) :: [] huffman-start _ows-star-11 = (just "P74" , nothing , just _ows-star-11 , inj₁ _aws :: inj₁ _ows-star-11 :: []) :: (just "P73" , nothing , just _ows-star-11 , []) :: [] huffman-start _ows = (just "P75" , nothing , just _ows , inj₁ _ows-star-11 :: []) :: [] huffman-start _digit = (just "Zero" , nothing , just _digit , inj₂ '0' :: []) :: (just "One" , nothing , just _digit , inj₂ '1' :: []) :: [] huffman-start _codes = (just "CodesStart" , nothing , just _codes , inj₁ _code :: []) :: (just "CodesNext" , nothing , just _codes , inj₁ _code :: inj₁ _ws :: inj₁ _codes :: []) :: [] huffman-start _code = (just "Code" , nothing , just _code , inj₁ _word :: inj₁ _ws :: inj₂ '<' :: inj₂ '-' :: inj₁ _ws :: inj₁ _bvlit :: []) :: [] huffman-start _cmd = (just "Encode" , nothing , just _cmd , inj₁ _words :: []) :: (just "Decode" , nothing , just _cmd , inj₂ '!' :: inj₁ _ws :: inj₁ _codes :: inj₁ _ws :: inj₁ _bvlit :: []) :: [] huffman-start _character-range-2 = (just "P53" , nothing , just _character-range-2 , inj₂ 'Z' :: []) :: (just "P52" , nothing , just _character-range-2 , inj₂ 'Y' :: []) :: (just "P51" , nothing , just _character-range-2 , inj₂ 'X' :: []) :: (just "P50" , nothing , just _character-range-2 , inj₂ 'W' :: []) :: (just "P49" , nothing , just _character-range-2 , inj₂ 'V' :: []) :: (just "P48" , nothing , just _character-range-2 , inj₂ 'U' :: []) :: (just "P47" , nothing , just _character-range-2 , inj₂ 'T' :: []) :: (just "P46" , nothing , just _character-range-2 , inj₂ 'S' :: []) :: (just "P45" , nothing , just _character-range-2 , inj₂ 'R' :: []) :: (just "P44" , nothing , just _character-range-2 , inj₂ 'Q' :: []) :: (just "P43" , nothing , just _character-range-2 , inj₂ 'P' :: []) :: (just "P42" , nothing , just _character-range-2 , inj₂ 'O' :: []) :: (just "P41" , nothing , just _character-range-2 , inj₂ 'N' :: []) :: (just "P40" , nothing , just _character-range-2 , inj₂ 'M' :: []) :: (just "P39" , nothing , just _character-range-2 , inj₂ 'L' :: []) :: (just "P38" , nothing , just _character-range-2 , inj₂ 'K' :: []) :: (just "P37" , nothing , just _character-range-2 , inj₂ 'J' :: []) :: (just "P36" , nothing , just _character-range-2 , inj₂ 'I' :: []) :: (just "P35" , nothing , just _character-range-2 , inj₂ 'H' :: []) :: (just "P34" , nothing , just _character-range-2 , inj₂ 'G' :: []) :: (just "P33" , nothing , just _character-range-2 , inj₂ 'F' :: []) :: (just "P32" , nothing , just _character-range-2 , inj₂ 'E' :: []) :: (just "P31" , nothing , just _character-range-2 , inj₂ 'D' :: []) :: (just "P30" , nothing , just _character-range-2 , inj₂ 'C' :: []) :: (just "P29" , nothing , just _character-range-2 , inj₂ 'B' :: []) :: (just "P28" , nothing , just _character-range-2 , inj₂ 'A' :: []) :: [] huffman-start _character-range-1 = (just "P9" , nothing , just _character-range-1 , inj₂ 'h' :: []) :: (just "P8" , nothing , just _character-range-1 , inj₂ 'g' :: []) :: (just "P7" , nothing , just _character-range-1 , inj₂ 'f' :: []) :: (just "P6" , nothing , just _character-range-1 , inj₂ 'e' :: []) :: (just "P5" , nothing , just _character-range-1 , inj₂ 'd' :: []) :: (just "P4" , nothing , just _character-range-1 , inj₂ 'c' :: []) :: (just "P3" , nothing , just _character-range-1 , inj₂ 'b' :: []) :: (just "P27" , nothing , just _character-range-1 , inj₂ 'z' :: []) :: (just "P26" , nothing , just _character-range-1 , inj₂ 'y' :: []) :: (just "P25" , nothing , just _character-range-1 , inj₂ 'x' :: []) :: (just "P24" , nothing , just _character-range-1 , inj₂ 'w' :: []) :: (just "P23" , nothing , just _character-range-1 , inj₂ 'v' :: []) :: (just "P22" , nothing , just _character-range-1 , inj₂ 'u' :: []) :: (just "P21" , nothing , just _character-range-1 , inj₂ 't' :: []) :: (just "P20" , nothing , just _character-range-1 , inj₂ 's' :: []) :: (just "P2" , nothing , just _character-range-1 , inj₂ 'a' :: []) :: (just "P19" , nothing , just _character-range-1 , inj₂ 'r' :: []) :: (just "P18" , nothing , just _character-range-1 , inj₂ 'q' :: []) :: (just "P17" , nothing , just _character-range-1 , inj₂ 'p' :: []) :: (just "P16" , nothing , just _character-range-1 , inj₂ 'o' :: []) :: (just "P15" , nothing , just _character-range-1 , inj₂ 'n' :: []) :: (just "P14" , nothing , just _character-range-1 , inj₂ 'm' :: []) :: (just "P13" , nothing , just _character-range-1 , inj₂ 'l' :: []) :: (just "P12" , nothing , just _character-range-1 , inj₂ 'k' :: []) :: (just "P11" , nothing , just _character-range-1 , inj₂ 'j' :: []) :: (just "P10" , nothing , just _character-range-1 , inj₂ 'i' :: []) :: [] huffman-start _character-bar-7 = (just "P63" , nothing , just _character-bar-7 , inj₁ _character-bar-6 :: []) :: (just "P62" , nothing , just _character-bar-7 , inj₁ _character-range-1 :: []) :: [] huffman-start _character-bar-6 = (just "P61" , nothing , just _character-bar-6 , inj₁ _character-bar-5 :: []) :: (just "P60" , nothing , just _character-bar-6 , inj₁ _character-range-2 :: []) :: [] huffman-start _character-bar-5 = (just "P59" , nothing , just _character-bar-5 , inj₁ _character-bar-4 :: []) :: (just "P58" , nothing , just _character-bar-5 , inj₂ '(' :: []) :: [] huffman-start _character-bar-4 = (just "P57" , nothing , just _character-bar-4 , inj₁ _character-bar-3 :: []) :: (just "P56" , nothing , just _character-bar-4 , inj₂ ')' :: []) :: [] huffman-start _character-bar-3 = (just "P55" , nothing , just _character-bar-3 , inj₂ '.' :: []) :: (just "P54" , nothing , just _character-bar-3 , inj₂ ',' :: []) :: [] huffman-start _character = (just "P64" , nothing , just _character , inj₁ _character-bar-7 :: []) :: [] huffman-start _bvlit = (just "BvlitStart" , nothing , just _bvlit , inj₁ _digit :: []) :: (just "BvlitCons" , nothing , just _bvlit , inj₁ _digit :: inj₁ _bvlit :: []) :: [] huffman-start _aws-bar-9 = (just "P68" , nothing , just _aws-bar-9 , inj₁ _aws-bar-8 :: []) :: (just "P67" , nothing , just _aws-bar-9 , inj₂ '\n' :: []) :: [] huffman-start _aws-bar-8 = (just "P66" , nothing , just _aws-bar-8 , inj₂ ' ' :: []) :: (just "P65" , nothing , just _aws-bar-8 , inj₂ '\t' :: []) :: [] huffman-start _aws = (just "P69" , nothing , just _aws , inj₁ _aws-bar-9 :: []) :: [] huffman-return : maybe gratr2-nt → 𝕃 gratr2-rule huffman-return _ = [] huffman-rtn : gratr2-rtn huffman-rtn = record { start = _start ; _eq_ = gratr2-nt-eq ; gratr2-start = huffman-start ; gratr2-return = huffman-return } open import run ptr open noderiv ------------------------------------------ -- Length-decreasing rules ------------------------------------------ len-dec-rewrite : Run → maybe (Run × ℕ) len-dec-rewrite {- BvlitCons-} ((Id "BvlitCons") :: (ParseTree (parsed-digit x0)) :: _::_(ParseTree (parsed-bvlit x1)) rest) = just (ParseTree (parsed-bvlit (norm-bvlit (BvlitCons x0 x1))) ::' rest , 3) len-dec-rewrite {- BvlitStart-} ((Id "BvlitStart") :: _::_(ParseTree (parsed-digit x0)) rest) = just (ParseTree (parsed-bvlit (norm-bvlit (BvlitStart x0))) ::' rest , 2) len-dec-rewrite {- Code-} ((Id "Code") :: (ParseTree (parsed-word x0)) :: (ParseTree parsed-ws) :: (InputChar '<') :: (InputChar '-') :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-bvlit x1)) rest) = just (ParseTree (parsed-code (norm-code (Code x0 x1))) ::' rest , 7) len-dec-rewrite {- CodesNext-} ((Id "CodesNext") :: (ParseTree (parsed-code x0)) :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-codes x1)) rest) = just (ParseTree (parsed-codes (norm-codes (CodesNext x0 x1))) ::' rest , 4) len-dec-rewrite {- CodesStart-} ((Id "CodesStart") :: _::_(ParseTree (parsed-code x0)) rest) = just (ParseTree (parsed-codes (norm-codes (CodesStart x0))) ::' rest , 2) len-dec-rewrite {- Decode-} ((Id "Decode") :: (InputChar '!') :: (ParseTree parsed-ws) :: (ParseTree (parsed-codes x0)) :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-bvlit x1)) rest) = just (ParseTree (parsed-cmd (norm-cmd (Decode x0 x1))) ::' rest , 6) len-dec-rewrite {- Encode-} ((Id "Encode") :: _::_(ParseTree (parsed-words x0)) rest) = just (ParseTree (parsed-cmd (norm-cmd (Encode x0))) ::' rest , 2) len-dec-rewrite {- File-} ((Id "File") :: (ParseTree parsed-ows) :: (ParseTree (parsed-cmd x0)) :: _::_(ParseTree parsed-ows) rest) = just (ParseTree (parsed-start (norm-start (File x0))) ::' rest , 4) len-dec-rewrite {- One-} ((Id "One") :: _::_(InputChar '1') rest) = just (ParseTree (parsed-digit (norm-digit One)) ::' rest , 2) len-dec-rewrite {- P0-} ((Id "P0") :: _::_(ParseTree (parsed-character x0)) rest) = just (ParseTree (parsed-word (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P1-} ((Id "P1") :: (ParseTree (parsed-character x0)) :: _::_(ParseTree (parsed-word x1)) rest) = just (ParseTree (parsed-word (string-append 1 x0 x1)) ::' rest , 3) len-dec-rewrite {- P10-} ((Id "P10") :: _::_(InputChar 'i') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'i'))) ::' rest , 2) len-dec-rewrite {- P11-} ((Id "P11") :: _::_(InputChar 'j') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'j'))) ::' rest , 2) len-dec-rewrite {- P12-} ((Id "P12") :: _::_(InputChar 'k') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'k'))) ::' rest , 2) len-dec-rewrite {- P13-} ((Id "P13") :: _::_(InputChar 'l') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'l'))) ::' rest , 2) len-dec-rewrite {- P14-} ((Id "P14") :: _::_(InputChar 'm') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'm'))) ::' rest , 2) len-dec-rewrite {- P15-} ((Id "P15") :: _::_(InputChar 'n') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'n'))) ::' rest , 2) len-dec-rewrite {- P16-} ((Id "P16") :: _::_(InputChar 'o') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'o'))) ::' rest , 2) len-dec-rewrite {- P17-} ((Id "P17") :: _::_(InputChar 'p') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'p'))) ::' rest , 2) len-dec-rewrite {- P18-} ((Id "P18") :: _::_(InputChar 'q') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'q'))) ::' rest , 2) len-dec-rewrite {- P19-} ((Id "P19") :: _::_(InputChar 'r') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'r'))) ::' rest , 2) len-dec-rewrite {- P2-} ((Id "P2") :: _::_(InputChar 'a') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'a'))) ::' rest , 2) len-dec-rewrite {- P20-} ((Id "P20") :: _::_(InputChar 's') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 's'))) ::' rest , 2) len-dec-rewrite {- P21-} ((Id "P21") :: _::_(InputChar 't') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 't'))) ::' rest , 2) len-dec-rewrite {- P22-} ((Id "P22") :: _::_(InputChar 'u') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'u'))) ::' rest , 2) len-dec-rewrite {- P23-} ((Id "P23") :: _::_(InputChar 'v') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'v'))) ::' rest , 2) len-dec-rewrite {- P24-} ((Id "P24") :: _::_(InputChar 'w') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'w'))) ::' rest , 2) len-dec-rewrite {- P25-} ((Id "P25") :: _::_(InputChar 'x') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'x'))) ::' rest , 2) len-dec-rewrite {- P26-} ((Id "P26") :: _::_(InputChar 'y') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'y'))) ::' rest , 2) len-dec-rewrite {- P27-} ((Id "P27") :: _::_(InputChar 'z') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'z'))) ::' rest , 2) len-dec-rewrite {- P28-} ((Id "P28") :: _::_(InputChar 'A') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'A'))) ::' rest , 2) len-dec-rewrite {- P29-} ((Id "P29") :: _::_(InputChar 'B') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'B'))) ::' rest , 2) len-dec-rewrite {- P3-} ((Id "P3") :: _::_(InputChar 'b') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'b'))) ::' rest , 2) len-dec-rewrite {- P30-} ((Id "P30") :: _::_(InputChar 'C') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'C'))) ::' rest , 2) len-dec-rewrite {- P31-} ((Id "P31") :: _::_(InputChar 'D') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'D'))) ::' rest , 2) len-dec-rewrite {- P32-} ((Id "P32") :: _::_(InputChar 'E') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'E'))) ::' rest , 2) len-dec-rewrite {- P33-} ((Id "P33") :: _::_(InputChar 'F') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'F'))) ::' rest , 2) len-dec-rewrite {- P34-} ((Id "P34") :: _::_(InputChar 'G') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'G'))) ::' rest , 2) len-dec-rewrite {- P35-} ((Id "P35") :: _::_(InputChar 'H') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'H'))) ::' rest , 2) len-dec-rewrite {- P36-} ((Id "P36") :: _::_(InputChar 'I') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'I'))) ::' rest , 2) len-dec-rewrite {- P37-} ((Id "P37") :: _::_(InputChar 'J') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'J'))) ::' rest , 2) len-dec-rewrite {- P38-} ((Id "P38") :: _::_(InputChar 'K') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'K'))) ::' rest , 2) len-dec-rewrite {- P39-} ((Id "P39") :: _::_(InputChar 'L') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'L'))) ::' rest , 2) len-dec-rewrite {- P4-} ((Id "P4") :: _::_(InputChar 'c') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'c'))) ::' rest , 2) len-dec-rewrite {- P40-} ((Id "P40") :: _::_(InputChar 'M') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'M'))) ::' rest , 2) len-dec-rewrite {- P41-} ((Id "P41") :: _::_(InputChar 'N') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'N'))) ::' rest , 2) len-dec-rewrite {- P42-} ((Id "P42") :: _::_(InputChar 'O') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'O'))) ::' rest , 2) len-dec-rewrite {- P43-} ((Id "P43") :: _::_(InputChar 'P') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'P'))) ::' rest , 2) len-dec-rewrite {- P44-} ((Id "P44") :: _::_(InputChar 'Q') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'Q'))) ::' rest , 2) len-dec-rewrite {- P45-} ((Id "P45") :: _::_(InputChar 'R') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'R'))) ::' rest , 2) len-dec-rewrite {- P46-} ((Id "P46") :: _::_(InputChar 'S') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'S'))) ::' rest , 2) len-dec-rewrite {- P47-} ((Id "P47") :: _::_(InputChar 'T') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'T'))) ::' rest , 2) len-dec-rewrite {- P48-} ((Id "P48") :: _::_(InputChar 'U') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'U'))) ::' rest , 2) len-dec-rewrite {- P49-} ((Id "P49") :: _::_(InputChar 'V') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'V'))) ::' rest , 2) len-dec-rewrite {- P5-} ((Id "P5") :: _::_(InputChar 'd') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'd'))) ::' rest , 2) len-dec-rewrite {- P50-} ((Id "P50") :: _::_(InputChar 'W') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'W'))) ::' rest , 2) len-dec-rewrite {- P51-} ((Id "P51") :: _::_(InputChar 'X') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'X'))) ::' rest , 2) len-dec-rewrite {- P52-} ((Id "P52") :: _::_(InputChar 'Y') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'Y'))) ::' rest , 2) len-dec-rewrite {- P53-} ((Id "P53") :: _::_(InputChar 'Z') rest) = just (ParseTree (parsed-character-range-2 (string-append 0 (char-to-string 'Z'))) ::' rest , 2) len-dec-rewrite {- P54-} ((Id "P54") :: _::_(InputChar ',') rest) = just (ParseTree (parsed-character-bar-3 (string-append 0 (char-to-string ','))) ::' rest , 2) len-dec-rewrite {- P55-} ((Id "P55") :: _::_(InputChar '.') rest) = just (ParseTree (parsed-character-bar-3 (string-append 0 (char-to-string '.'))) ::' rest , 2) len-dec-rewrite {- P56-} ((Id "P56") :: _::_(InputChar ')') rest) = just (ParseTree (parsed-character-bar-4 (string-append 0 (char-to-string ')'))) ::' rest , 2) len-dec-rewrite {- P57-} ((Id "P57") :: _::_(ParseTree (parsed-character-bar-3 x0)) rest) = just (ParseTree (parsed-character-bar-4 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P58-} ((Id "P58") :: _::_(InputChar '(') rest) = just (ParseTree (parsed-character-bar-5 (string-append 0 (char-to-string '('))) ::' rest , 2) len-dec-rewrite {- P59-} ((Id "P59") :: _::_(ParseTree (parsed-character-bar-4 x0)) rest) = just (ParseTree (parsed-character-bar-5 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P6-} ((Id "P6") :: _::_(InputChar 'e') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'e'))) ::' rest , 2) len-dec-rewrite {- P60-} ((Id "P60") :: _::_(ParseTree (parsed-character-range-2 x0)) rest) = just (ParseTree (parsed-character-bar-6 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P61-} ((Id "P61") :: _::_(ParseTree (parsed-character-bar-5 x0)) rest) = just (ParseTree (parsed-character-bar-6 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P62-} ((Id "P62") :: _::_(ParseTree (parsed-character-range-1 x0)) rest) = just (ParseTree (parsed-character-bar-7 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P63-} ((Id "P63") :: _::_(ParseTree (parsed-character-bar-6 x0)) rest) = just (ParseTree (parsed-character-bar-7 (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P64-} ((Id "P64") :: _::_(ParseTree (parsed-character-bar-7 x0)) rest) = just (ParseTree (parsed-character (string-append 0 x0)) ::' rest , 2) len-dec-rewrite {- P65-} ((Id "P65") :: _::_(InputChar '\t') rest) = just (ParseTree parsed-aws-bar-8 ::' rest , 2) len-dec-rewrite {- P66-} ((Id "P66") :: _::_(InputChar ' ') rest) = just (ParseTree parsed-aws-bar-8 ::' rest , 2) len-dec-rewrite {- P67-} ((Id "P67") :: _::_(InputChar '\n') rest) = just (ParseTree parsed-aws-bar-9 ::' rest , 2) len-dec-rewrite {- P68-} ((Id "P68") :: _::_(ParseTree parsed-aws-bar-8) rest) = just (ParseTree parsed-aws-bar-9 ::' rest , 2) len-dec-rewrite {- P69-} ((Id "P69") :: _::_(ParseTree parsed-aws-bar-9) rest) = just (ParseTree parsed-aws ::' rest , 2) len-dec-rewrite {- P7-} ((Id "P7") :: _::_(InputChar 'f') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'f'))) ::' rest , 2) len-dec-rewrite {- P70-} ((Id "P70") :: _::_(ParseTree parsed-aws) rest) = just (ParseTree parsed-ws-plus-10 ::' rest , 2) len-dec-rewrite {- P71-} ((Id "P71") :: (ParseTree parsed-aws) :: _::_(ParseTree parsed-ws-plus-10) rest) = just (ParseTree parsed-ws-plus-10 ::' rest , 3) len-dec-rewrite {- P72-} ((Id "P72") :: _::_(ParseTree parsed-ws-plus-10) rest) = just (ParseTree parsed-ws ::' rest , 2) len-dec-rewrite {- P74-} ((Id "P74") :: (ParseTree parsed-aws) :: _::_(ParseTree parsed-ows-star-11) rest) = just (ParseTree parsed-ows-star-11 ::' rest , 3) len-dec-rewrite {- P75-} ((Id "P75") :: _::_(ParseTree parsed-ows-star-11) rest) = just (ParseTree parsed-ows ::' rest , 2) len-dec-rewrite {- P8-} ((Id "P8") :: _::_(InputChar 'g') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'g'))) ::' rest , 2) len-dec-rewrite {- P9-} ((Id "P9") :: _::_(InputChar 'h') rest) = just (ParseTree (parsed-character-range-1 (string-append 0 (char-to-string 'h'))) ::' rest , 2) len-dec-rewrite {- WordsNext-} ((Id "WordsNext") :: (ParseTree (parsed-word x0)) :: (ParseTree parsed-ws) :: _::_(ParseTree (parsed-words x1)) rest) = just (ParseTree (parsed-words (norm-words (WordsNext x0 x1))) ::' rest , 4) len-dec-rewrite {- WordsStart-} ((Id "WordsStart") :: _::_(ParseTree (parsed-word x0)) rest) = just (ParseTree (parsed-words (norm-words (WordsStart x0))) ::' rest , 2) len-dec-rewrite {- Zero-} ((Id "Zero") :: _::_(InputChar '0') rest) = just (ParseTree (parsed-digit (norm-digit Zero)) ::' rest , 2) len-dec-rewrite {- P73-} (_::_(Id "P73") rest) = just (ParseTree parsed-ows-star-11 ::' rest , 1) len-dec-rewrite {- Posinfo-} (_::_(Posinfo n) rest) = just (ParseTree (parsed-posinfo (ℕ-to-string n)) ::' rest , 1) len-dec-rewrite x = nothing rrs : rewriteRules rrs = record { len-dec-rewrite = len-dec-rewrite }
{ "alphanum_fraction": 0.6151631478, "avg_line_length": 118.6435643564, "ext": "agda", "hexsha": "0e7b043b31a0fbc508be481c404df50f09496096", "lang": "Agda", "max_forks_count": 17, "max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z", "max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rfindler/ial", "max_forks_repo_path": "huffman/huffman.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z", "max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rfindler/ial", "max_issues_repo_path": "huffman/huffman.agda", "max_line_length": 1831, "max_stars_count": 29, "max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rfindler/ial", "max_stars_repo_path": "huffman/huffman.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z", "num_tokens": 8404, "size": 23966 }
{-# OPTIONS --without-K --safe #-} module Data.Binary.Tests.Subtraction where open import Data.List as List using (List; _∷_; []) open import Data.Product open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Binary.Definitions open import Data.Binary.Operations.Semantics as Pos using (⟦_⇓⟧⁺) open import Relation.Binary.PropositionalEquality open import Data.Maybe as Maybe using (Maybe; just; nothing) ℤ : Set ℤ = Bit × ℕ ⟦_⇓⟧ : 𝔹± → ℤ ⟦ 0< (O , snd) ⇓⟧ = O , ⟦ snd ⇓⟧⁺ ⟦ 0< (I , snd) ⇓⟧ = I , ℕ.pred ⟦ snd ⇓⟧⁺ ⟦ 0ᵇ ⇓⟧ = O , 0 - : ℕ → ℤ - zero = O , zero - (suc snd) = I , snd +⇑ : ℕ → ℤ +⇑ = O ,_ ⟦_⇑⟧ : ℤ → 𝔹± ⟦ O , snd ⇑⟧ = Maybe.map (O ,_) Pos.⟦ snd ⇑⟧ ⟦ I , snd ⇑⟧ = Maybe.map (I ,_) Pos.⟦ suc snd ⇑⟧ -- _≡⌈_⌉≡_ : (𝔹 → 𝔹) → ℕ → (ℕ → ℕ) → Set -- fᵇ ≡⌈ n ⌉≡ fⁿ = let xs = List.upTo n in List.map (λ x → ⟦ fᵇ ⟦ x ⇑⟧ ⇓⟧ ) xs ≡ List.map fⁿ xs prod : ∀ {a b} {A : Set a} {B : Set b} → List A → List B → List (A × B) prod [] ys = [] prod (x ∷ xs) ys = List.foldr (λ y ys → (x , y) ∷ ys) (prod xs ys) ys _≡⌈_⌉₂≡_ : (𝔹± → 𝔹± → 𝔹±) → ℕ → (ℤ → ℤ → ℤ) → Set fᵇ ≡⌈ n ⌉₂≡ fⁿ = List.map (λ { (x , y) → ⟦ fᵇ ⟦ x ⇑⟧ ⟦ y ⇑⟧ ⇓⟧ }) zs ≡ List.map (uncurry fⁿ) zs where xs : List ℕ xs = List.upTo n ys = List.map (I ,_) xs List.++ List.map (O ,_) xs zs = prod ys ys _ℤ-_ : ℕ → ℕ → ℤ x ℤ- y with y ℕ.<ᵇ x (x ℤ- y) | I = O , (x ℕ.∸ suc y) (x ℤ- y) | O = I , (y ℕ.∸ x) _z+_ : ℤ → ℤ → ℤ (O , x) z+ (O , y) = O , (x ℕ.+ y) (O , x) z+ (I , y) = x ℤ- y (I , x) z+ (O , y) = y ℤ- x (I , x) z+ (I , y) = I , (suc x ℕ.+ y) {-# DISPLAY _,_ I xn = - (suc xn) #-} {-# DISPLAY _,_ O xn = +⇑ xn #-} open import Data.Binary.Operations.Subtraction -- _ : ⟦ ⟦ (- 3) ⇑⟧ + ⟦ +⇑ 2 ⇑⟧ ⇓⟧ ≡ (- 1) -- _ = refl -- _ : _+_ ≡⌈ 3 ⌉₂≡ _z+_ -- _ = refl
{ "alphanum_fraction": 0.4848311391, "avg_line_length": 24.9571428571, "ext": "agda", "hexsha": "b59a31d34bb13c624f35e445cf705e285b6add6e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-binary", "max_forks_repo_path": "Data/Binary/Tests/Subtraction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-binary", "max_issues_repo_path": "Data/Binary/Tests/Subtraction.agda", "max_line_length": 95, "max_stars_count": 1, "max_stars_repo_head_hexsha": "92af4d620febd47a9791d466d747278dc4a417aa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-binary", "max_stars_repo_path": "Data/Binary/Tests/Subtraction.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-21T21:30:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-03-21T21:30:10.000Z", "num_tokens": 913, "size": 1747 }
module NoSig where open import Data.Nat myFun : ℕ myFun = (\ x y -> y ) (\ x -> x) 0
{ "alphanum_fraction": 0.5747126437, "avg_line_length": 12.4285714286, "ext": "agda", "hexsha": "18aa41ad1c0c1e753c0165f90b199ec452966d35", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_forks_repo_path": "examples/NoSig.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_issues_repo_path": "examples/NoSig.agda", "max_line_length": 34, "max_stars_count": 16, "max_stars_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "JoeyEremondi/lambda-pi-constraint", "max_stars_repo_path": "examples/NoSig.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-05T20:21:46.000Z", "max_stars_repo_stars_event_min_datetime": "2017-03-16T11:14:56.000Z", "num_tokens": 33, "size": 87 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Induction over Subset ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Fin.Subset.Induction where open import Data.Nat.Base using (ℕ) open import Data.Nat.Induction using (<-wellFounded) open import Data.Fin.Subset using (Subset; _⊂_; ∣_∣) open import Data.Fin.Subset.Properties open import Induction open import Induction.WellFounded as WF ------------------------------------------------------------------------ -- Re-export accessability open WF public using (Acc; acc) ------------------------------------------------------------------------ -- Complete induction based on _⊂_ ⊂-Rec : ∀ {n ℓ} → RecStruct (Subset n) ℓ ℓ ⊂-Rec = WfRec _⊂_ ⊂-wellFounded : ∀ {n} → WellFounded (_⊂_ {n}) ⊂-wellFounded {n} = Subrelation.wellFounded p⊂q⇒∣p∣<∣q∣ (InverseImage.wellFounded ∣_∣ <-wellFounded)
{ "alphanum_fraction": 0.4989754098, "avg_line_length": 31.4838709677, "ext": "agda", "hexsha": "df304e1d5f8786c271161f4f8117c2dc807d6937", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Fin/Subset/Induction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Fin/Subset/Induction.agda", "max_line_length": 100, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Fin/Subset/Induction.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 246, "size": 976 }
module Data.QuadTree.LensProofs.Valid-LensWrappedTree where open import Haskell.Prelude renaming (zero to Z; suc to S) open import Data.Lens.Lens open import Data.Logic open import Data.QuadTree.InternalAgda open import Agda.Primitive open import Data.Lens.Proofs.LensLaws open import Data.Lens.Proofs.LensPostulates open import Data.Lens.Proofs.LensComposition open import Data.QuadTree.Implementation.QuadrantLenses open import Data.QuadTree.Implementation.Definition open import Data.QuadTree.Implementation.ValidTypes open import Data.QuadTree.Implementation.SafeFunctions open import Data.QuadTree.Implementation.PublicFunctions open import Data.QuadTree.Implementation.DataLenses ---- Lens laws for lensWrappedTree ValidLens-WrappedTree-ViewSet : {t : Set} {{eqT : Eq t}} {dep : Nat} -> ViewSet (lensWrappedTree {t} {dep}) ValidLens-WrappedTree-ViewSet (CVQuadrant qdi) (CVQuadTree (Wrapper (w , h) qdo)) = refl ValidLens-WrappedTree-SetView : {t : Set} {{eqT : Eq t}} {dep : Nat} -> SetView (lensWrappedTree {t} {dep}) ValidLens-WrappedTree-SetView (CVQuadTree (Wrapper (w , h) qdo)) = refl ValidLens-WrappedTree-SetSet : {t : Set} {{eqT : Eq t}} {dep : Nat} -> SetSet (lensWrappedTree {t} {dep}) ValidLens-WrappedTree-SetSet (CVQuadrant qd1) (CVQuadrant qd2) (CVQuadTree (Wrapper (w , h) qdo)) = refl ValidLens-WrappedTree : {t : Set} {{eqT : Eq t}} {dep : Nat} -> ValidLens (VQuadTree t {dep}) (VQuadrant t {dep}) ValidLens-WrappedTree = CValidLens lensWrappedTree (ValidLens-WrappedTree-ViewSet) (ValidLens-WrappedTree-SetView) (ValidLens-WrappedTree-SetSet)
{ "alphanum_fraction": 0.7563704164, "avg_line_length": 42.3421052632, "ext": "agda", "hexsha": "33a9b3da0e8a2d4394c3c8dbffd4ba4c418d1788", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "JonathanBrouwer/research-project", "max_forks_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensWrappedTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "JonathanBrouwer/research-project", "max_issues_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensWrappedTree.agda", "max_line_length": 145, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4959a3c9cd8563a1726e0e968e6a179008cd4d9f", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "JonathanBrouwer/research-project", "max_stars_repo_path": "src/Data/QuadTree/LensProofs/Valid-LensWrappedTree.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-25T09:10:20.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-25T09:10:20.000Z", "num_tokens": 480, "size": 1609 }
module LRTree {A : Set} where open import Data.List data Tag : Set where left : Tag right : Tag data LRTree : Set where empty : LRTree leaf : A → LRTree node : Tag → LRTree → LRTree → LRTree insert : A → LRTree → LRTree insert x empty = leaf x insert x (leaf y) = node left (leaf y) (leaf x) insert x (node left l r) = node right (insert x l) r insert x (node right l r) = node left l (insert x r) flatten : LRTree → List A flatten empty = [] flatten (leaf x) = x ∷ [] flatten (node _ l r) = flatten l ++ flatten r
{ "alphanum_fraction": 0.6471698113, "avg_line_length": 22.0833333333, "ext": "agda", "hexsha": "984c35d11e895b42eebd06a802dc417bc56904a0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/LRTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/LRTree.agda", "max_line_length": 52, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/LRTree.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 181, "size": 530 }
module Issue206 where postulate I : Set P : I → Set i : I Q : P i → Set Foo : (p : P i) → Q p → Set₁ Foo p q with i Foo p q | i′ = Set -- Now better error message: -- Issue206.agda:11,1-19 -- w != i of type I -- when checking that the type of the generated with function -- (w : I) (p : P w) (q : Q p) → Set₁ is well-formed
{ "alphanum_fraction": 0.5833333333, "avg_line_length": 17.6842105263, "ext": "agda", "hexsha": "828bc7b2e53f4ace854c0d97fbad118b61d3e44e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue206.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue206.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue206.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 127, "size": 336 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Definition open import Groups.Abelian.Definition open import Setoids.Setoids open import Vectors open import Numbers.Naturals.Semiring open import Sets.EquivalenceRelations module Groups.Vector {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} (G : Group S _+_) where open Setoid S open Equivalence eq open Group G vecEquiv : {n : ℕ} → Vec A n → Vec A n → Set b vecEquiv {zero} [] [] = True' vecEquiv {succ n} (x ,- v1) (y ,- v2) = (x ∼ y) && vecEquiv v1 v2 private vecEquivRefl : {n : ℕ} → (x : Vec A n) → vecEquiv x x vecEquivRefl [] = record {} vecEquivRefl (x ,- xs) = reflexive ,, vecEquivRefl xs vecEquivSymm : {n : ℕ} → (x y : Vec A n) → vecEquiv x y → vecEquiv y x vecEquivSymm [] [] record {} = record {} vecEquivSymm (x ,- xs) (y ,- ys) (fst ,, snd) = symmetric fst ,, vecEquivSymm _ _ snd vecEquivTrans : {n : ℕ} → (x y z : Vec A n) → vecEquiv x y → vecEquiv y z → vecEquiv x z vecEquivTrans [] [] [] x=y y=z = record {} vecEquivTrans (x ,- xs) (y ,- ys) (z ,- zs) (fst1 ,, snd1) (fst2 ,, snd2) = transitive fst1 fst2 ,, vecEquivTrans xs ys zs snd1 snd2 vectorSetoid : (n : ℕ) → Setoid (Vec A n) Setoid._∼_ (vectorSetoid n) = vecEquiv {n} Equivalence.reflexive (Setoid.eq (vectorSetoid n)) {x} = vecEquivRefl x Equivalence.symmetric (Setoid.eq (vectorSetoid n)) {x} {y} = vecEquivSymm x y Equivalence.transitive (Setoid.eq (vectorSetoid n)) {x} {y} {z} = vecEquivTrans x y z vectorAdd : {n : ℕ} → Vec A n → Vec A n → Vec A n vectorAdd [] [] = [] vectorAdd (x ,- v1) (y ,- v2) = (x + y) ,- (vectorAdd v1 v2) private addWellDefined : {n : ℕ} → (m k x y : Vec A n) → Setoid._∼_ (vectorSetoid n) m x → Setoid._∼_ (vectorSetoid n) k y → Setoid._∼_ (vectorSetoid n) (vectorAdd m k) (vectorAdd x y) addWellDefined [] [] [] [] m=x k=y = record {} addWellDefined (m ,- ms) (k ,- ks) (x ,- xs) (y ,- ys) (m=x ,, ms=xs) (k=y ,, ks=ys) = +WellDefined m=x k=y ,, addWellDefined ms ks xs ys ms=xs ks=ys addAssoc : {n : ℕ} → (x y z : Vec A n) → Setoid._∼_ (vectorSetoid n) (vectorAdd x (vectorAdd y z)) (vectorAdd (vectorAdd x y) z) addAssoc [] [] [] = record {} addAssoc (x ,- xs) (y ,- ys) (z ,- zs) = +Associative ,, addAssoc xs ys zs vecIdentRight : {n : ℕ} → (a : Vec A n) → Setoid._∼_ (vectorSetoid n) (vectorAdd a (vecPure 0G)) a vecIdentRight [] = record {} vecIdentRight (x ,- a) = identRight ,, vecIdentRight a vecIdentLeft : {n : ℕ} → (a : Vec A n) → Setoid._∼_ (vectorSetoid n) (vectorAdd (vecPure 0G) a) a vecIdentLeft [] = record {} vecIdentLeft (x ,- a) = identLeft ,, vecIdentLeft a vecInvLeft : {n : ℕ} → (a : Vec A n) → Setoid._∼_ (vectorSetoid n) (vectorAdd (vecMap inverse a) a) (vecPure 0G) vecInvLeft [] = record {} vecInvLeft (x ,- a) = invLeft ,, vecInvLeft a vecInvRight : {n : ℕ} → (a : Vec A n) → Setoid._∼_ (vectorSetoid n) (vectorAdd a (vecMap inverse a)) (vecPure 0G) vecInvRight [] = record {} vecInvRight (x ,- a) = invRight ,, vecInvRight a vectorGroup : {n : ℕ} → Group (vectorSetoid n) (vectorAdd {n}) Group.+WellDefined vectorGroup {m} {n} {x} {y} = addWellDefined m n x y Group.0G vectorGroup = vecPure 0G Group.inverse vectorGroup x = vecMap inverse x Group.+Associative vectorGroup {x} {y} {z} = addAssoc x y z Group.identRight vectorGroup {a} = vecIdentRight a Group.identLeft vectorGroup {a} = vecIdentLeft a Group.invLeft vectorGroup {a} = vecInvLeft a Group.invRight vectorGroup {a} = vecInvRight a abelianVectorGroup : {n : ℕ} → AbelianGroup G → AbelianGroup (vectorGroup {n}) AbelianGroup.commutative (abelianVectorGroup grp) {[]} {[]} = record {} AbelianGroup.commutative (abelianVectorGroup grp) {x ,- xs} {y ,- ys} = AbelianGroup.commutative grp ,, AbelianGroup.commutative (abelianVectorGroup grp) {xs} {ys}
{ "alphanum_fraction": 0.644589309, "avg_line_length": 46.7682926829, "ext": "agda", "hexsha": "156b03f509dd77110fd10baadb20e4e815a9bf58", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Vector.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Vector.agda", "max_line_length": 178, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Vector.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1404, "size": 3835 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Operations on and properties of decidable relations ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Relation.Nullary.Decidable where open import Data.Bool.Base using (Bool; false; true; not; T) open import Data.Empty open import Data.Product hiding (map) open import Data.Unit open import Function open import Function.Equality using (_⟨$⟩_; module Π) open import Function.Equivalence using (_⇔_; equivalence; module Equivalence) open import Function.Injection using (Injection; module Injection) open import Level using (Lift) open import Relation.Binary using (Setoid; module Setoid; Decidable) open import Relation.Binary.PropositionalEquality open import Relation.Nullary ⌊_⌋ : ∀ {p} {P : Set p} → Dec P → Bool ⌊ yes _ ⌋ = true ⌊ no _ ⌋ = false True : ∀ {p} {P : Set p} → Dec P → Set True Q = T ⌊ Q ⌋ False : ∀ {p} {P : Set p} → Dec P → Set False Q = T (not ⌊ Q ⌋) -- Gives a witness to the "truth". toWitness : ∀ {p} {P : Set p} {Q : Dec P} → True Q → P toWitness {Q = yes p} _ = p toWitness {Q = no _} () -- Establishes a "truth", given a witness. fromWitness : ∀ {p} {P : Set p} {Q : Dec P} → P → True Q fromWitness {Q = yes p} = const _ fromWitness {Q = no ¬p} = ¬p -- Variants for False. toWitnessFalse : ∀ {p} {P : Set p} {Q : Dec P} → False Q → ¬ P toWitnessFalse {Q = yes _} () toWitnessFalse {Q = no ¬p} _ = ¬p fromWitnessFalse : ∀ {p} {P : Set p} {Q : Dec P} → ¬ P → False Q fromWitnessFalse {Q = yes p} = flip _$_ p fromWitnessFalse {Q = no ¬p} = const _ map : ∀ {p q} {P : Set p} {Q : Set q} → P ⇔ Q → Dec P → Dec Q map P⇔Q (yes p) = yes (Equivalence.to P⇔Q ⟨$⟩ p) map P⇔Q (no ¬p) = no (¬p ∘ _⟨$⟩_ (Equivalence.from P⇔Q)) map′ : ∀ {p q} {P : Set p} {Q : Set q} → (P → Q) → (Q → P) → Dec P → Dec Q map′ P→Q Q→P = map (equivalence P→Q Q→P) module _ {a₁ a₂ b₁ b₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} where open Injection open Setoid A using () renaming (_≈_ to _≈A_) open Setoid B using () renaming (_≈_ to _≈B_) -- If there is an injection from one setoid to another, and the -- latter's equivalence relation is decidable, then the former's -- equivalence relation is also decidable. via-injection : Injection A B → Decidable _≈B_ → Decidable _≈A_ via-injection inj dec x y with dec (to inj ⟨$⟩ x) (to inj ⟨$⟩ y) ... | yes injx≈injy = yes (Injection.injective inj injx≈injy) ... | no injx≉injy = no (λ x≈y → injx≉injy (Π.cong (to inj) x≈y)) -- If a decision procedure returns "yes", then we can extract the -- proof using from-yes. module _ {p} {P : Set p} where From-yes : Dec P → Set p From-yes (yes _) = P From-yes (no _) = Lift p ⊤ from-yes : (p : Dec P) → From-yes p from-yes (yes p) = p from-yes (no _) = _ -- If a decision procedure returns "no", then we can extract the proof -- using from-no. From-no : Dec P → Set p From-no (no _) = ¬ P From-no (yes _) = Lift p ⊤ from-no : (p : Dec P) → From-no p from-no (no ¬p) = ¬p from-no (yes _) = _
{ "alphanum_fraction": 0.5922019815, "avg_line_length": 30.3786407767, "ext": "agda", "hexsha": "dae24e0a80c56b3e919e7b1cdf2e36573cd86481", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Decidable.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Nullary/Decidable.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1089, "size": 3129 }
module MLib.Prelude.Fin where open import MLib.Prelude.FromStdlib open import Data.Fin public open import Data.Fin.Properties public open FE using (cong) import Relation.Binary.Indexed as I -------------------------------------------------------------------------------- -- Types -------------------------------------------------------------------------------- -- 'Fin∸ {n} i' is a finite set with "n - i" inhabitants. Fin∸ : ∀ {n} → Fin n → Set Fin∸ {n} i = Fin (n Nat.∸ toℕ i) -------------------------------------------------------------------------------- -- Combinators -------------------------------------------------------------------------------- foldUpto : ∀ {a} {A : Set a} n → A → (Fin n → A → A) → A foldUpto Nat.zero z f = z foldUpto (Nat.suc n) z f = f zero (foldUpto n z (f ∘ suc)) foldMap : ∀ {n ℓ} {A : Set ℓ} → A → (A → A → A) → (Fin n → A) → A foldMap {n} z f g = foldUpto n z (f ∘ g) inject∸ : ∀ {n} (i : Fin n) → Fin∸ i → Fin n inject∸ zero j = j inject∸ (suc i) j = inject₁ (inject∸ i j) strengthen∸ : ∀ {n} (i : Fin n) → Fin∸ i → Fin n strengthen∸ zero j = j strengthen∸ (suc i) j = Fin.suc (strengthen∸ i j) module _ where open import Data.List using (List; []; _∷_; _++_) open import Data.Maybe using (Is-just) -- Performs a comprehension over the finite set. collect : ∀ n {a} {A : Fin n → Set a} (f : ∀ i → Maybe (A i)) → List (∃ A) collect n {A = A} f = foldUpto n [] (λ i xs → maybe (λ x → (i , x) ∷ xs) xs (f i)) collect′ : ∀ n {a} {A : Set a} (f : Fin n → Maybe A) → List A collect′ n {A = A} f = foldUpto n [] (λ i xs → maybe (λ x → x List.∷ xs) xs (f i)) -------------------------------------------------------------------------------- -- Theorems -------------------------------------------------------------------------------- module _ {ℓ p} (setoid : Setoid ℓ p) where open Setoid setoid renaming (Carrier to A) module _ {x y : A} {_+_ : A → A → A} (z-cong : x ≈ y) (+-cong : ∀ {x y u v} → x ≈ y → u ≈ v → (x + u) ≈ (y + v)) where foldMap-cong : ∀ {n} → (f g : Fin n → A) → (∀ i → f i ≈ g i) → foldMap {n} x _+_ f ≈ foldMap y _+_ g foldMap-cong {Nat.zero} f g p = z-cong foldMap-cong {Nat.suc n} f g p = +-cong (p _) (foldMap-cong (f ∘ suc) (g ∘ suc) (p ∘ suc)) ≠-inject : ∀ n (x : Fin n) → ¬ fromℕ n ≡ inject₁ x ≠-inject .(Nat.suc _) zero () ≠-inject .(Nat.suc _) (suc x) = ≠-inject _ x ∘ suc-injective suc≠inject : ∀ {n} (i : Fin n) → ¬ (suc i ≡ inject₁ i) suc≠inject zero () suc≠inject (suc i) p = suc≠inject i (suc-injective p) toℕ≤n : ∀ {n} (i : Fin n) → toℕ i Nat.≤ n toℕ≤n zero = Nat.z≤n toℕ≤n (suc i) = Nat.s≤s (toℕ≤n i) inject-refute : ∀ n {i : Fin (Nat.suc n)} x → i ≡ fromℕ n → ¬ i ≡ inject₁ x inject-refute _ {zero} zero () inject-refute _ {zero} (suc x) () inject-refute Nat.zero {suc i} _() inject-refute (Nat.suc n) {suc i} (zero) p () inject-refute (Nat.suc n) {suc i} (suc x) p q = inject-refute _ _ (suc-injective p) (suc-injective q) inject-< : ∀ {n} (i : Fin n) (j : Fin′ i) → inject j < i inject-< zero () inject-< (suc i) zero = Nat.s≤s Nat.z≤n inject-< (suc i) (suc j) = Nat.s≤s (inject-< i j) data Compareℕ {m} : (i : Fin m) (n : ℕ) → Set where less : ∀ bound (least : Fin′ bound) {greatest} → Compareℕ (inject! least) greatest equal : ∀ i → Compareℕ i (toℕ i) greater : ∀ greatest (least : Fin′ greatest) → Compareℕ greatest (toℕ least) compareℕ : ∀ {m} (i : Fin m) (n : ℕ) → Compareℕ i n compareℕ zero Nat.zero = equal _ compareℕ zero (Nat.suc n) = less (suc zero) zero compareℕ (suc i) Nat.zero = greater (suc i) zero compareℕ (suc i) (Nat.suc n) with compareℕ i n compareℕ (suc .(inject! least)) (Nat.suc n) | less bound least = less (suc bound) (suc least) compareℕ (suc i) (Nat.suc .(toℕ i)) | equal .i = equal (suc i) compareℕ (suc i) (Nat.suc .(toℕ least)) | greater .i least = greater (suc i) (suc least) reduce+ : ∀ m {n} (i : Fin (m Nat.+ n)) → (∃ λ (j : Fin m) → inject+ n j ≡ i) ⊎ ∃ λ j → raise m j ≡ i reduce+ Nat.zero i = inj₂ (i , ≡.refl) reduce+ (Nat.suc m) zero = inj₁ (zero , ≡.refl) reduce+ (Nat.suc m) (suc i) with reduce+ m i reduce+ (Nat.suc m) (suc i) | inj₁ (j , p) = inj₁ (suc j , ≡.cong suc p) reduce+ (Nat.suc m) (suc i) | inj₂ (j , p) = inj₂ (j , ≡.cong suc p) inject+-injective : ∀ {n m} {i j : Fin m} → inject+ n i ≡ inject+ n j → i ≡ j inject+-injective {i = zero} {zero} p = ≡.refl inject+-injective {i = zero} {suc j} () inject+-injective {i = suc i} {zero} () inject+-injective {n} {i = suc i} {suc j} p = ≡.cong suc (inject+-injective {n} (suc-injective p)) raise≢ : ∀ m n {i : Fin m} {j : Fin n} → ¬ raise n i ≡ inject+ m j raise≢ _ _ {j = zero} () raise≢ _ _ {j = suc _} p = ⊥-elim (raise≢ _ _ (suc-injective p)) raise-injective : ∀ {m} n {i j : Fin m} → raise n i ≡ raise n j → i ≡ j raise-injective Nat.zero {i} {j} p = p raise-injective (Nat.suc n) {i} {j} p = raise-injective n (suc-injective p) toℕ-injective′ : ∀ {m n} {i : Fin m} {j : Fin n} → toℕ i ≡ toℕ j → m ≡ n → i ≅ j toℕ-injective′ {i = i} {j} p ≡.refl = ≅.≡-to-≅ (toℕ-injective p) toℕ-injective₂ : ∀ {m} {f : Fin m → ℕ} {i i′ : Fin m} {j : Fin (f i)} {j′ : Fin (f i′)} → (toℕ i , toℕ j) ≡ (toℕ i′ , toℕ j′) → _≡_ {A = Σ (Fin m) (Fin ∘ f)} (i , j) (i′ , j′) toℕ-injective₂ {f = f} p = let q , r = Σ.≡⇒Pointwise-≡ p q′ = toℕ-injective q in Σ.Pointwise-≡⇒≡ (q′ , toℕ-injective′ (≅.≅-to-≡ r) (≡.cong f q′))
{ "alphanum_fraction": 0.5100558659, "avg_line_length": 40.3759398496, "ext": "agda", "hexsha": "167b1eb45a67518a6af14c2a006db79e43ed15ed", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bch29/agda-matrices", "max_forks_repo_path": "src/MLib/Prelude/Fin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bch29/agda-matrices", "max_issues_repo_path": "src/MLib/Prelude/Fin.agda", "max_line_length": 175, "max_stars_count": null, "max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bch29/agda-matrices", "max_stars_repo_path": "src/MLib/Prelude/Fin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2164, "size": 5370 }
------------------------------------------------------------------------ -- Higher lenses ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} import Equality.Path as P module Lens.Non-dependent.Higher {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq import Bi-invertibility open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (id) renaming (_∘_ to _⊚_) open import Bijection equality-with-J as Bij using (_↔_) open import Category equality-with-J as C using (Category; Precategory) open import Circle eq as Circle using (𝕊¹) open import Equality.Decidable-UIP equality-with-J open import Equality.Decision-procedures equality-with-J open import Equality.Path.Isomorphisms eq hiding (univ) open import Equivalence equality-with-J as Eq using (_≃_; Is-equivalence) open import Function-universe equality-with-J as F hiding (id; _∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional eq as Trunc import Nat equality-with-J as Nat open import Preimage equality-with-J using (_⁻¹_) open import Surjection equality-with-J using (_↠_) open import Univalence-axiom equality-with-J open import Lens.Non-dependent eq as Non-dependent hiding (no-first-projection-lens) import Lens.Non-dependent.Traditional eq as Traditional private variable a b c d r : Level A A₁ A₂ B B₁ B₂ C X Y : Set a n : ℕ ------------------------------------------------------------------------ -- Higher lenses -- Higher lenses. -- -- A little history: The "lenses" in Lens.Non-dependent.Bijection are -- not very well-behaved. I had previously considered some other -- variants, when Andrea Vezzosi suggested that I should look at Paolo -- Capriotti's higher lenses, and that I could perhaps use R → ∥ B ∥. -- This worked out nicely. -- -- For performance reasons η-equality is turned off for this record -- type. One can match on the constructor to block evaluation. record Lens (A : Set a) (B : Set b) : Set (lsuc (a ⊔ b)) where constructor ⟨_,_,_⟩ pattern no-eta-equality field -- Remainder type. R : Set (a ⊔ b) -- Equivalence. equiv : A ≃ (R × B) -- The proof of (mere) inhabitance. inhabited : R → ∥ B ∥ -- Remainder. remainder : A → R remainder a = proj₁ (_≃_.to equiv a) -- Getter. get : A → B get a = proj₂ (_≃_.to equiv a) -- Setter. set : A → B → A set a b = _≃_.from equiv (remainder a , b) -- A combination of get and set. modify : (B → B) → A → A modify f x = set x (f (get x)) -- Lens laws. get-set : ∀ a b → get (set a b) ≡ b get-set a b = proj₂ (_≃_.to equiv (_≃_.from equiv (remainder a , b))) ≡⟨ cong proj₂ (_≃_.right-inverse-of equiv _) ⟩∎ proj₂ (remainder a , b) ∎ set-get : ∀ a → set a (get a) ≡ a set-get a = _≃_.from equiv (_≃_.to equiv a) ≡⟨ _≃_.left-inverse-of equiv _ ⟩∎ a ∎ set-set : ∀ a b₁ b₂ → set (set a b₁) b₂ ≡ set a b₂ set-set a b₁ b₂ = let r = remainder a in _≃_.from equiv (remainder (_≃_.from equiv (r , b₁)) , b₂) ≡⟨⟩ _≃_.from equiv (proj₁ (_≃_.to equiv (_≃_.from equiv (r , b₁))) , b₂) ≡⟨ cong (λ x → _≃_.from equiv (proj₁ x , b₂)) (_≃_.right-inverse-of equiv _) ⟩∎ _≃_.from equiv (r , b₂) ∎ -- Another law. remainder-set : ∀ a b → remainder (set a b) ≡ remainder a remainder-set a b = proj₁ (_≃_.to equiv (_≃_.from equiv (remainder a , b))) ≡⟨ cong proj₁ $ _≃_.right-inverse-of equiv _ ⟩∎ remainder a ∎ -- The remainder function is surjective. remainder-surjective : Surjective remainder remainder-surjective r = ∥∥-map (λ b → _≃_.from equiv (r , b) , (remainder (_≃_.from equiv (r , b)) ≡⟨ cong proj₁ $ _≃_.right-inverse-of equiv _ ⟩∎ r ∎)) (inhabited r) -- Traditional lens. traditional-lens : Traditional.Lens A B traditional-lens = record { get = get ; set = set ; get-set = get-set ; set-get = set-get ; set-set = set-set } -- The following two coherence laws, which do not necessarily hold -- for traditional lenses (see -- Traditional.getter-equivalence-but-not-coherent), hold -- unconditionally for higher lenses. get-set-get : ∀ a → cong get (set-get a) ≡ get-set a (get a) get-set-get a = cong (proj₂ ⊚ _≃_.to equiv) (_≃_.left-inverse-of equiv _) ≡⟨ sym $ cong-∘ _ _ (_≃_.left-inverse-of equiv _) ⟩ cong proj₂ (cong (_≃_.to equiv) (_≃_.left-inverse-of equiv _)) ≡⟨ cong (cong proj₂) $ _≃_.left-right-lemma equiv _ ⟩∎ cong proj₂ (_≃_.right-inverse-of equiv _) ∎ get-set-set : ∀ a b₁ b₂ → cong get (set-set a b₁ b₂) ≡ trans (get-set (set a b₁) b₂) (sym (get-set a b₂)) get-set-set a b₁ b₂ = elim₁ (λ eq → cong (proj₂ ⊚ _≃_.to equiv) (cong (λ p → _≃_.from equiv (proj₁ p , _)) eq) ≡ trans (cong proj₂ (_≃_.right-inverse-of equiv _)) (sym (cong proj₂ (_≃_.right-inverse-of equiv _)))) (cong (proj₂ ⊚ _≃_.to equiv) (cong (λ p → _≃_.from equiv (proj₁ p , b₂)) (refl (proj₁ (_≃_.to equiv a) , b₁))) ≡⟨ cong (cong (proj₂ ⊚ _≃_.to equiv)) $ cong-refl _ ⟩ cong (proj₂ ⊚ _≃_.to equiv) (refl _) ≡⟨ cong-refl _ ⟩ refl _ ≡⟨ sym $ trans-symʳ _ ⟩∎ trans (cong proj₂ (_≃_.right-inverse-of equiv _)) (sym (cong proj₂ (_≃_.right-inverse-of equiv _))) ∎) (_≃_.right-inverse-of equiv _) -- A somewhat coherent lens. coherent-lens : Traditional.Coherent-lens A B coherent-lens = record { lens = traditional-lens ; get-set-get = get-set-get ; get-set-set = get-set-set } instance -- Higher lenses have getters and setters. has-getter-and-setter : Has-getter-and-setter (Lens {a = a} {b = b}) has-getter-and-setter = record { get = Lens.get ; set = Lens.set } ------------------------------------------------------------------------ -- Simple definitions related to lenses -- Lens can be expressed as a nested Σ-type. Lens-as-Σ : {A : Set a} {B : Set b} → Lens A B ↔ ∃ λ (R : Set (a ⊔ b)) → (A ≃ (R × B)) × (R → ∥ B ∥) Lens-as-Σ = record { surjection = record { logical-equivalence = record { to = λ l → R l , equiv l , inhabited l ; from = λ (R , equiv , inhabited) → record { R = R ; equiv = equiv ; inhabited = inhabited } } ; right-inverse-of = refl } ; left-inverse-of = λ { ⟨ _ , _ , _ ⟩ → refl _ } } where open Lens -- Isomorphisms can be converted into lenses. isomorphism-to-lens : {A : Set a} {B : Set b} {R : Set (a ⊔ b)} → A ↔ R × B → Lens A B isomorphism-to-lens {A = A} {B = B} {R = R} iso = record { R = R × ∥ B ∥ ; equiv = A ↔⟨ iso ⟩ R × B ↔⟨ F.id ×-cong inverse ∥∥×↔ ⟩ R × ∥ B ∥ × B ↔⟨ ×-assoc ⟩□ (R × ∥ B ∥) × B □ ; inhabited = proj₂ } -- Converts equivalences to lenses. ≃→lens : {A : Set a} {B : Set b} → A ≃ B → Lens A B ≃→lens {a = a} {A = A} {B = B} A≃B = record { R = ∥ ↑ a B ∥ ; equiv = A ↝⟨ A≃B ⟩ B ↝⟨ inverse ∥∥×≃ ⟩ ∥ B ∥ × B ↔⟨ ∥∥-cong (inverse Bij.↑↔) ×-cong F.id ⟩□ ∥ ↑ a B ∥ × B □ ; inhabited = ∥∥-map lower } -- Converts equivalences between types with the same universe level to -- lenses. ≃→lens′ : {A B : Set a} → A ≃ B → Lens A B ≃→lens′ {a = a} {A = A} {B = B} A≃B = record { R = ∥ B ∥ ; equiv = A ↝⟨ A≃B ⟩ B ↝⟨ inverse ∥∥×≃ ⟩□ ∥ B ∥ × B □ ; inhabited = P.id } ------------------------------------------------------------------------ -- Equality characterisations for lenses -- Equality of lenses is isomorphic to certain pairs. equality-characterisation₀ : {l₁ l₂ : Lens A B} → let open Lens in l₁ ≡ l₂ ↔ ∃ λ (p : R l₁ ≡ R l₂) → subst (λ R → A ≃ (R × B)) p (equiv l₁) ≡ equiv l₂ equality-characterisation₀ {A = A} {B = B} {l₁ = l₁} {l₂ = l₂} = l₁ ≡ l₂ ↔⟨ inverse $ Eq.≃-≡ $ Eq.↔⇒≃ Lens-as-Σ ⟩ l₁′ ≡ l₂′ ↝⟨ inverse Bij.Σ-≡,≡↔≡ ⟩ (∃ λ (p : R l₁ ≡ R l₂) → subst (λ R → A ≃ (R × B) × (R → ∥ B ∥)) p (proj₂ l₁′) ≡ proj₂ l₂′) ↝⟨ (∃-cong λ _ → inverse $ ignore-propositional-component (Π-closure ext 1 λ _ → truncation-is-proposition)) ⟩ (∃ λ (p : R l₁ ≡ R l₂) → proj₁ (subst (λ R → A ≃ (R × B) × (R → ∥ B ∥)) p (proj₂ l₁′)) ≡ equiv l₂) ↝⟨ (∃-cong λ p → ≡⇒↝ _ $ cong (λ x → proj₁ x ≡ _) (push-subst-, {y≡z = p} _ _)) ⟩□ (∃ λ (p : R l₁ ≡ R l₂) → subst (λ R → A ≃ (R × B)) p (equiv l₁) ≡ equiv l₂) □ where open Lens l₁′ = _↔_.to Lens-as-Σ l₁ l₂′ = _↔_.to Lens-as-Σ l₂ -- Equality of lenses is isomorphic to certain pairs (assuming -- univalence). equality-characterisation₁ : {A : Set a} {B : Set b} {l₁ l₂ : Lens A B} → let open Lens in Univalence (a ⊔ b) → l₁ ≡ l₂ ↔ ∃ λ (eq : R l₁ ≃ R l₂) → (eq ×-cong F.id) F.∘ equiv l₁ ≡ equiv l₂ equality-characterisation₁ {A = A} {B} {l₁} {l₂} univ = l₁ ≡ l₂ ↝⟨ equality-characterisation₀ ⟩ (∃ λ (p : R l₁ ≡ R l₂) → subst (λ R → A ≃ (R × B)) p (equiv l₁) ≡ equiv l₂) ↝⟨ inverse $ Σ-cong (inverse $ ≡≃≃ univ) (λ _ → F.id) ⟩ (∃ λ (eq : R l₁ ≃ R l₂) → subst (λ R → A ≃ (R × B)) (≃⇒≡ univ eq) (equiv l₁) ≡ equiv l₂) ↝⟨ (∃-cong λ _ → inverse $ ≡⇒↝ _ $ cong (λ p → p ≡ _) $ transport-theorem (λ R → A ≃ (R × B)) resp (λ _ → Eq.lift-equality ext (refl _)) univ _ _) ⟩□ (∃ λ (eq : R l₁ ≃ R l₂) → resp eq (equiv l₁) ≡ equiv l₂) □ where open Lens resp : X ≃ Y → A ≃ (X × B) → A ≃ (Y × B) resp {X = X} {Y = Y} X≃Y A≃X×B = A ↝⟨ A≃X×B ⟩ X × B ↝⟨ X≃Y ×-cong F.id ⟩□ Y × B □ -- Equality of lenses is isomorphic to certain pairs (assuming -- univalence). equality-characterisation₂ : {A : Set a} {B : Set b} {l₁ l₂ : Lens A B} → let open Lens in Univalence (a ⊔ b) → l₁ ≡ l₂ ↔ ∃ λ (eq : R l₁ ≃ R l₂) → ∀ x → (_≃_.to eq (remainder l₁ x) , get l₁ x) ≡ _≃_.to (equiv l₂) x equality-characterisation₂ {l₁ = l₁} {l₂} univ = l₁ ≡ l₂ ↝⟨ equality-characterisation₁ univ ⟩ (∃ λ (eq : R l₁ ≃ R l₂) → (eq ×-cong F.id) F.∘ equiv l₁ ≡ equiv l₂) ↝⟨ (∃-cong λ _ → inverse $ ≃-to-≡↔≡ ext) ⟩□ (∃ λ (eq : R l₁ ≃ R l₂) → ∀ x → (_≃_.to eq (remainder l₁ x) , get l₁ x) ≡ _≃_.to (equiv l₂) x) □ where open Lens -- Equality of lenses is isomorphic to certain triples (assuming -- univalence). equality-characterisation₃ : {A : Set a} {B : Set b} {l₁ l₂ : Lens A B} → let open Lens in Univalence (a ⊔ b) → l₁ ≡ l₂ ↔ ∃ λ (eq : R l₁ ≃ R l₂) → (∀ x → _≃_.to eq (remainder l₁ x) ≡ remainder l₂ x) × (∀ x → get l₁ x ≡ get l₂ x) equality-characterisation₃ {l₁ = l₁} {l₂} univ = l₁ ≡ l₂ ↝⟨ equality-characterisation₂ univ ⟩ (∃ λ (eq : R l₁ ≃ R l₂) → ∀ x → (_≃_.to eq (remainder l₁ x) , get l₁ x) ≡ _≃_.to (equiv l₂) x) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ → inverse ≡×≡↔≡) ⟩ (∃ λ (eq : R l₁ ≃ R l₂) → ∀ x → _≃_.to eq (remainder l₁ x) ≡ remainder l₂ x × get l₁ x ≡ get l₂ x) ↝⟨ (∃-cong λ _ → ΠΣ-comm) ⟩□ (∃ λ (eq : R l₁ ≃ R l₂) → (∀ x → _≃_.to eq (remainder l₁ x) ≡ remainder l₂ x) × (∀ x → get l₁ x ≡ get l₂ x)) □ where open Lens -- Equality of lenses is isomorphic to certain pairs (assuming -- univalence). equality-characterisation₄ : {A : Set a} {B : Set b} {l₁ l₂ : Lens A B} → let open Lens in Univalence (a ⊔ b) → l₁ ≡ l₂ ↔ ∃ λ (eq : R l₁ ≃ R l₂) → ∀ p → _≃_.from (equiv l₁) (_≃_.from eq (proj₁ p) , proj₂ p) ≡ _≃_.from (equiv l₂) p equality-characterisation₄ {l₁ = l₁} {l₂} univ = l₁ ≡ l₂ ↝⟨ equality-characterisation₁ univ ⟩ (∃ λ (eq : R l₁ ≃ R l₂) → (eq ×-cong F.id) F.∘ equiv l₁ ≡ equiv l₂) ↝⟨ (∃-cong λ _ → inverse $ ≃-from-≡↔≡ ext) ⟩□ (∃ λ (eq : R l₁ ≃ R l₂) → ∀ p → _≃_.from (equiv l₁) (_≃_.from eq (proj₁ p) , proj₂ p) ≡ _≃_.from (equiv l₂) p) □ where open Lens ------------------------------------------------------------------------ -- More lens equalities -- If the forward direction of an equivalence is Lens.get l, then the -- setter of l can be expressed using the other direction of the -- equivalence. from≡set : ∀ (l : Lens A B) is-equiv → let open Lens A≃B = Eq.⟨ get l , is-equiv ⟩ in ∀ a b → _≃_.from A≃B b ≡ set l a b from≡set l is-equiv a b = _≃_.to-from Eq.⟨ get , is-equiv ⟩ ( get (set a b) ≡⟨ get-set _ _ ⟩∎ b ∎) where open Lens l -- If two lenses have equal setters, then they also have equal -- getters. getters-equal-if-setters-equal : let open Lens in (l₁ l₂ : Lens A B) → set l₁ ≡ set l₂ → get l₁ ≡ get l₂ getters-equal-if-setters-equal l₁ l₂ setters-equal = ⟨ext⟩ λ a → get l₁ a ≡⟨ cong (get l₁) $ sym $ set-get l₂ _ ⟩ get l₁ (set l₂ a (get l₂ a)) ≡⟨ cong (λ f → get l₁ (f a (get l₂ a))) $ sym setters-equal ⟩ get l₁ (set l₁ a (get l₂ a)) ≡⟨ get-set l₁ _ _ ⟩∎ get l₂ a ∎ where open Lens -- A generalisation of lenses-equal-if-setters-equal (which is defined -- below). lenses-equal-if-setters-equal′ : let open Lens in {A : Set a} {B : Set b} (univ : Univalence (a ⊔ b)) (l₁ l₂ : Lens A B) (f : R l₁ → R l₂) → (B → ∀ r → ∃ λ b′ → remainder l₂ (_≃_.from (equiv l₁) (r , b′)) ≡ f r) → (∀ a → f (remainder l₁ a) ≡ remainder l₂ a) → Lens.set l₁ ≡ Lens.set l₂ → l₁ ≡ l₂ lenses-equal-if-setters-equal′ {A = A} {B = B} univ l₁ l₂ f ∃≡f f-remainder≡remainder setters-equal = _↔_.from (equality-characterisation₃ univ) ( R≃R , f-remainder≡remainder , ext⁻¹ (getters-equal-if-setters-equal l₁ l₂ setters-equal) ) where open Lens open _≃_ BR≃BR = B × R l₁ ↔⟨ ×-comm ⟩ R l₁ × B ↝⟨ inverse (equiv l₁) ⟩ A ↝⟨ equiv l₂ ⟩ R l₂ × B ↔⟨ ×-comm ⟩□ B × R l₂ □ to-BR≃BR : ∀ b b′ r → to BR≃BR (b , r) ≡ (b , remainder l₂ (from (equiv l₁) (r , b′))) to-BR≃BR b b′ r = swap (to (equiv l₂) (from (equiv l₁) (swap (b , r)))) ≡⟨ cong swap lemma ⟩ swap (swap (b , remainder l₂ (from (equiv l₁) (r , b′)))) ≡⟨⟩ b , remainder l₂ (from (equiv l₁) (r , b′)) ∎ where lemma = to (equiv l₂) (from (equiv l₁) (swap (b , r))) ≡⟨⟩ to (equiv l₂) (from (equiv l₁) (r , b)) ≡⟨ cong (λ r → to (equiv l₂) (from (equiv l₁) (proj₁ r , b))) $ sym $ right-inverse-of (equiv l₁) _ ⟩ to (equiv l₂) (from (equiv l₁) (proj₁ (to (equiv l₁) (from (equiv l₁) (r , b′))) , b)) ≡⟨⟩ to (equiv l₂) (set l₁ (from (equiv l₁) (r , b′)) b) ≡⟨ cong (to (equiv l₂)) $ ext⁻¹ (ext⁻¹ setters-equal _) _ ⟩ to (equiv l₂) (set l₂ (from (equiv l₁) (r , b′)) b) ≡⟨⟩ to (equiv l₂) (from (equiv l₂) (remainder l₂ (from (equiv l₁) (r , b′)) , b)) ≡⟨ right-inverse-of (equiv l₂) _ ⟩ remainder l₂ (from (equiv l₁) (r , b′)) , b ≡⟨⟩ swap (b , remainder l₂ (from (equiv l₁) (r , b′))) ∎ id-f≃ : Eq.Is-equivalence (Σ-map P.id f) id-f≃ = Eq.respects-extensional-equality (λ (b , r) → let b′ , ≡fr = ∃≡f b r in to BR≃BR (b , r) ≡⟨ to-BR≃BR _ _ _ ⟩ b , remainder l₂ (from (equiv l₁) (r , b′)) ≡⟨ cong (b ,_) ≡fr ⟩ b , f r ≡⟨⟩ Σ-map P.id f (b , r) ∎) (is-equivalence BR≃BR) f≃ : Eq.Is-equivalence f f≃ r = Trunc.rec (H-level-propositional ext 0) (λ b → Eq.drop-Σ-map-id _ id-f≃ b r) (inhabited l₂ r) R≃R : R l₁ ≃ R l₂ R≃R = Eq.⟨ f , f≃ ⟩ -- If the codomain of a lens is inhabited when it is merely inhabited -- and the remainder type is inhabited, then this lens is equal to -- another lens if their setters are equal (assuming univalence). lenses-equal-if-setters-equal : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → (l₁ l₂ : Lens A B) → (Lens.R l₁ → ∥ B ∥ → B) → Lens.set l₁ ≡ Lens.set l₂ → l₁ ≡ l₂ lenses-equal-if-setters-equal {B = B} univ l₁ l₂ inh′ setters-equal = lenses-equal-if-setters-equal′ univ l₁ l₂ f (λ _ r → inh r , (remainder l₂ (_≃_.from (equiv l₁) (r , inh r)) ≡⟨⟩ f r ∎)) (λ a → f (remainder l₁ a) ≡⟨⟩ remainder l₂ (set l₁ a (inh (remainder l₁ a))) ≡⟨ cong (remainder l₂) $ ext⁻¹ (ext⁻¹ setters-equal _) _ ⟩ remainder l₂ (set l₂ a (inh (remainder l₁ a))) ≡⟨ remainder-set l₂ _ _ ⟩∎ remainder l₂ a ∎) setters-equal where open Lens inh : Lens.R l₁ → B inh r = inh′ r (inhabited l₁ r) f : R l₁ → R l₂ f r = remainder l₂ (_≃_.from (equiv l₁) (r , inh r)) -- If a lens has a propositional remainder type, then this lens is -- equal to another lens if their setters are equal (assuming -- univalence). lenses-equal-if-setters-equal-and-remainder-propositional : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → (l₁ l₂ : Lens A B) → Is-proposition (Lens.R l₂) → Lens.set l₁ ≡ Lens.set l₂ → l₁ ≡ l₂ lenses-equal-if-setters-equal-and-remainder-propositional univ l₁ l₂ R₂-prop = lenses-equal-if-setters-equal′ univ l₁ l₂ f (λ b r → b , (remainder l₂ (_≃_.from (equiv l₁) (r , b)) ≡⟨ R₂-prop _ _ ⟩∎ f r ∎)) (λ a → f (remainder l₁ a) ≡⟨ R₂-prop _ _ ⟩ remainder l₂ a ∎) where open Lens f : R l₁ → R l₂ f r = Trunc.rec R₂-prop (λ b → remainder l₂ (_≃_.from (equiv l₁) (r , b))) (inhabited l₁ r) -- The functions ≃→lens and ≃→lens′ are pointwise equal (when -- applicable, assuming univalence). ≃→lens≡≃→lens′ : {A B : Set a} → Univalence a → (A≃B : A ≃ B) → ≃→lens A≃B ≡ ≃→lens′ A≃B ≃→lens≡≃→lens′ {B = B} univ A≃B = _↔_.from (equality-characterisation₃ univ) ( (∥ ↑ _ B ∥ ↔⟨ ∥∥-cong Bij.↑↔ ⟩□ ∥ B ∥ □) , (λ _ → refl _) , (λ _ → refl _) ) -- If the getter of a lens is an equivalence, then the lens formed -- using the equivalence (using ≃→lens) is equal to the lens (assuming -- univalence). get-equivalence→≡≃→lens : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → (l : Lens A B) → (eq : Is-equivalence (Lens.get l)) → l ≡ ≃→lens Eq.⟨ Lens.get l , eq ⟩ get-equivalence→≡≃→lens {A = A} {B = B} univ l eq = lenses-equal-if-setters-equal-and-remainder-propositional univ l (≃→lens Eq.⟨ Lens.get l , eq ⟩) truncation-is-proposition (⟨ext⟩ λ a → ⟨ext⟩ λ b → set l a b ≡⟨ sym $ from≡set l eq a b ⟩ _≃_.from A≃B b ≡⟨⟩ set (≃→lens A≃B) a b ∎) where open Lens A≃B : A ≃ B A≃B = Eq.⟨ _ , eq ⟩ -- A variant of get-equivalence→≡≃→lens. get-equivalence→≡≃→lens′ : {A B : Set a} → Univalence a → (l : Lens A B) → (eq : Is-equivalence (Lens.get l)) → l ≡ ≃→lens′ Eq.⟨ Lens.get l , eq ⟩ get-equivalence→≡≃→lens′ {A = A} {B = B} univ l eq = l ≡⟨ get-equivalence→≡≃→lens univ _ _ ⟩ ≃→lens A≃B ≡⟨ ≃→lens≡≃→lens′ univ _ ⟩∎ ≃→lens′ A≃B ∎ where A≃B = Eq.⟨ Lens.get l , eq ⟩ ------------------------------------------------------------------------ -- Some lens isomorphisms -- A generalised variant of Lens preserves bijections. Lens-cong′ : A₁ ↔ A₂ → B₁ ↔ B₂ → (∃ λ (R : Set r) → A₁ ≃ (R × B₁) × (R → ∥ B₁ ∥)) ↔ (∃ λ (R : Set r) → A₂ ≃ (R × B₂) × (R → ∥ B₂ ∥)) Lens-cong′ A₁↔A₂ B₁↔B₂ = ∃-cong λ _ → Eq.≃-preserves-bijections ext A₁↔A₂ (F.id ×-cong B₁↔B₂) ×-cong →-cong ext F.id (∥∥-cong B₁↔B₂) -- Lens preserves level-preserving bijections. Lens-cong : {A₁ A₂ : Set a} {B₁ B₂ : Set b} → A₁ ↔ A₂ → B₁ ↔ B₂ → Lens A₁ B₁ ↔ Lens A₂ B₂ Lens-cong {A₁ = A₁} {A₂ = A₂} {B₁ = B₁} {B₂ = B₂} A₁↔A₂ B₁↔B₂ = Lens A₁ B₁ ↝⟨ Lens-as-Σ ⟩ (∃ λ R → A₁ ≃ (R × B₁) × (R → ∥ B₁ ∥)) ↝⟨ Lens-cong′ A₁↔A₂ B₁↔B₂ ⟩ (∃ λ R → A₂ ≃ (R × B₂) × (R → ∥ B₂ ∥)) ↝⟨ inverse Lens-as-Σ ⟩□ Lens A₂ B₂ □ -- If B is a proposition, then Lens A B is isomorphic to A → B -- (assuming univalence). lens-to-proposition↔get : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → Is-proposition B → Lens A B ↔ (A → B) lens-to-proposition↔get {b = b} {A = A} {B = B} univ B-prop = Lens A B ↝⟨ Lens-as-Σ ⟩ (∃ λ R → A ≃ (R × B) × (R → ∥ B ∥)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ∥∥↔ B-prop) ⟩ (∃ λ R → A ≃ (R × B) × (R → B)) ↝⟨ (∃-cong λ _ → ×-cong₁ λ R→B → Eq.≃-preserves-bijections ext F.id $ drop-⊤-right λ r → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible B-prop (R→B r)) ⟩ (∃ λ R → A ≃ R × (R → B)) ↔⟨ (∃-cong λ _ → ∃-cong λ A≃R → →-cong {k = equivalence} ext (inverse A≃R) F.id) ⟩ (∃ λ R → A ≃ R × (A → B)) ↝⟨ Σ-assoc ⟩ (∃ λ R → A ≃ R) × (A → B) ↝⟨ (drop-⊤-left-× λ _ → other-singleton-with-≃-↔-⊤ {b = b} ext univ) ⟩□ (A → B) □ _ : {A : Set a} {B : Set b} (univ : Univalence (a ⊔ b)) (prop : Is-proposition B) (l : Lens A B) → _↔_.to (lens-to-proposition↔get univ prop) l ≡ rec prop P.id ⊚ Lens.inhabited l ⊚ Lens.remainder l _ = λ _ _ _ → refl _ -- A variant of the previous result. lens-to-proposition≃get : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → Is-proposition B → Lens A B ≃ (A → B) lens-to-proposition≃get {b = b} {A = A} {B = B} univ prop = Eq.↔→≃ get from refl (λ l → let lemma = ↑ b A ↔⟨ Bij.↑↔ ⟩ A ↝⟨ equiv l ⟩ R l × B ↔⟨ (drop-⊤-right λ r → _⇔_.to contractible⇔↔⊤ $ Trunc.rec (Contractible-propositional ext) (propositional⇒inhabited⇒contractible prop) (inhabited l r)) ⟩□ R l □ in _↔_.from (equality-characterisation₂ univ) (lemma , λ _ → refl _)) where open Lens from = λ get → record { R = ↑ b A ; equiv = A ↔⟨ inverse Bij.↑↔ ⟩ ↑ b A ↔⟨ (inverse $ drop-⊤-right {k = bijection} λ (lift a) → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible prop (get a)) ⟩□ ↑ b A × B □ ; inhabited = ∣_∣ ⊚ get ⊚ lower } _ : {A : Set a} {B : Set b} (univ : Univalence (a ⊔ b)) (prop : Is-proposition B) (l : Lens A B) → _≃_.to (lens-to-proposition≃get univ prop) l ≡ Lens.get l _ = λ _ _ _ → refl _ -- If B is contractible, then Lens A B is isomorphic to ⊤ (assuming -- univalence). lens-to-contractible↔⊤ : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → Contractible B → Lens A B ↔ ⊤ lens-to-contractible↔⊤ {A = A} {B} univ cB = Lens A B ↝⟨ lens-to-proposition↔get univ (mono₁ 0 cB) ⟩ (A → B) ↝⟨ →-cong ext F.id $ _⇔_.to contractible⇔↔⊤ cB ⟩ (A → ⊤) ↝⟨ →-right-zero ⟩□ ⊤ □ -- Lens A ⊥ is isomorphic to ¬ A (assuming univalence). lens-to-⊥↔¬ : {A : Set a} → Univalence (a ⊔ b) → Lens A (⊥ {ℓ = b}) ↔ ¬ A lens-to-⊥↔¬ {A = A} univ = Lens A ⊥ ↝⟨ lens-to-proposition↔get univ ⊥-propositional ⟩ (A → ⊥) ↝⟨ inverse $ ¬↔→⊥ ext ⟩□ ¬ A □ -- If A is contractible, then Lens A B is isomorphic to Contractible B -- (assuming univalence). lens-from-contractible↔codomain-contractible : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → Contractible A → Lens A B ↔ Contractible B lens-from-contractible↔codomain-contractible {A = A} {B} univ cA = Lens A B ↝⟨ Lens-as-Σ ⟩ (∃ λ R → A ≃ (R × B) × (R → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → Eq.≃-preserves-bijections ext (_⇔_.to contractible⇔↔⊤ cA) F.id ×-cong F.id) ⟩ (∃ λ R → ⊤ ≃ (R × B) × (R → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → Eq.inverse-isomorphism ext ×-cong F.id) ⟩ (∃ λ R → (R × B) ≃ ⊤ × (R → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → inverse (contractible↔≃⊤ ext) ×-cong F.id) ⟩ (∃ λ R → Contractible (R × B) × (R → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → Contractible-commutes-with-× ext ×-cong F.id) ⟩ (∃ λ R → (Contractible R × Contractible B) × (R → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → inverse ×-assoc) ⟩ (∃ λ R → Contractible R × Contractible B × (R → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → ∃-cong λ cR → F.id ×-cong →-cong ext (_⇔_.to contractible⇔↔⊤ cR) F.id) ⟩ (∃ λ R → Contractible R × Contractible B × (⊤ → ∥ B ∥)) ↝⟨ ∃-cong (λ _ → F.id ×-cong F.id ×-cong Π-left-identity) ⟩ (∃ λ R → Contractible R × Contractible B × ∥ B ∥) ↝⟨ ∃-cong (λ _ → ×-comm) ⟩ (∃ λ R → (Contractible B × ∥ B ∥) × Contractible R) ↝⟨ ∃-comm ⟩ (Contractible B × ∥ B ∥) × (∃ λ R → Contractible R) ↝⟨ drop-⊤-right (λ _ → ∃Contractible↔⊤ ext univ) ⟩ Contractible B × ∥ B ∥ ↝⟨ drop-⊤-right (λ cB → inhabited⇒∥∥↔⊤ ∣ proj₁ cB ∣) ⟩□ Contractible B □ -- Lens ⊥ B is isomorphic to the unit type (assuming univalence). lens-from-⊥↔⊤ : {B : Set b} → Univalence (a ⊔ b) → Lens (⊥ {ℓ = a}) B ↔ ⊤ lens-from-⊥↔⊤ {B = B} univ = _⇔_.to contractible⇔↔⊤ $ isomorphism-to-lens (⊥ ↝⟨ inverse ×-left-zero ⟩□ ⊥ × B □) , λ l → _↔_.from (equality-characterisation₂ univ) ( (⊥ × ∥ B ∥ ↔⟨ ×-left-zero ⟩ ⊥₀ ↔⟨ lemma l ⟩□ R l □) , λ x → ⊥-elim x ) where open Lens lemma : (l : Lens ⊥ B) → ⊥₀ ↔ R l lemma l = record { surjection = record { logical-equivalence = record { to = ⊥-elim ; from = whatever } ; right-inverse-of = whatever } ; left-inverse-of = λ x → ⊥-elim x } where whatever : ∀ {ℓ} {Whatever : R l → Set ℓ} → (r : R l) → Whatever r whatever r = ⊥-elim {ℓ = lzero} $ rec ⊥-propositional (λ b → ⊥-elim (_≃_.from (equiv l) (r , b))) (inhabited l r) -- There is an equivalence between A ≃ B and -- ∃ λ (l : Lens A B) → Is-equivalence (Lens.get l) (assuming -- univalence). -- -- See also ≃≃≊ below. ≃-≃-Σ-Lens-Is-equivalence-get : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → (A ≃ B) ≃ (∃ λ (l : Lens A B) → Is-equivalence (Lens.get l)) ≃-≃-Σ-Lens-Is-equivalence-get univ = Eq.↔→≃ (λ A≃B → ≃→lens A≃B , _≃_.is-equivalence A≃B) (λ (l , eq) → Eq.⟨ Lens.get l , eq ⟩) (λ (l , eq) → Σ-≡,≡→≡ (sym $ get-equivalence→≡≃→lens univ l eq) (Eq.propositional ext _ _ _)) (λ _ → Eq.lift-equality ext (refl _)) -- The right-to-left direction of ≃-≃-Σ-Lens-Is-equivalence-get -- returns the lens's getter (and some proof). to-from-≃-≃-Σ-Lens-Is-equivalence-get≡get : {A : Set a} {B : Set b} → (univ : Univalence (a ⊔ b)) (p@(l , _) : ∃ λ (l : Lens A B) → Is-equivalence (Lens.get l)) → _≃_.to (_≃_.from (≃-≃-Σ-Lens-Is-equivalence-get univ) p) ≡ Lens.get l to-from-≃-≃-Σ-Lens-Is-equivalence-get≡get _ _ = refl _ ------------------------------------------------------------------------ -- Results relating different kinds of lenses -- In general there is no split surjection from Lens A B to -- Traditional.Lens A B (assuming univalence). ¬Lens↠Traditional-lens : Univalence lzero → Univalence a → ∃ λ (A : Set a) → ¬ (Lens A ⊤ ↠ Traditional.Lens A ⊤) ¬Lens↠Traditional-lens univ₀ univ = let A = _ in A , (λ surj → $⟨ _⇔_.from contractible⇔↔⊤ (lens-to-contractible↔⊤ univ ⊤-contractible) ⟩ Contractible (Lens A ⊤) ↝⟨ H-level.respects-surjection surj 0 ⟩ Contractible (Traditional.Lens A ⊤) ↝⟨ mono₁ 0 ⟩ Is-proposition (Traditional.Lens A ⊤) ↝⟨ proj₂ $ Traditional.¬-lens-to-⊤-propositional univ₀ ⟩□ ⊥ □) -- Some lemmas used in Lens↠Traditional-lens and Lens↔Traditional-lens -- below. private module Lens↔Traditional-lens {A : Set a} {B : Set b} (A-set : Is-set A) where from : Block "conversion" → Traditional.Lens A B → Lens A B from ⊠ l = isomorphism-to-lens {R = ∃ λ (f : B → A) → ∀ b b′ → set (f b) b′ ≡ f b′} (record { surjection = record { logical-equivalence = record { to = λ a → (set a , set-set a) , get a ; from = λ { ((f , _) , b) → f b } } ; right-inverse-of = λ { ((f , h) , b) → let irr = {p q : ∀ b b′ → set (f b) b′ ≡ f b′} → p ≡ q irr = (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → A-set) _ _ lemma = get (f b) ≡⟨ cong get (sym (h b b)) ⟩ get (set (f b) b) ≡⟨ get-set (f b) b ⟩∎ b ∎ in (set (f b) , set-set (f b)) , get (f b) ≡⟨ cong₂ _,_ (Σ-≡,≡→≡ (⟨ext⟩ (h b)) irr) lemma ⟩∎ (f , h ) , b ∎ } } ; left-inverse-of = λ a → set a (get a) ≡⟨ set-get a ⟩∎ a ∎ }) where open Traditional.Lens l to∘from : ∀ bc l → Lens.traditional-lens (from bc l) ≡ l to∘from ⊠ l = _↔_.from Traditional.equality-characterisation₁ ( refl _ , refl _ , (λ a _ → B-set a _ _) , (λ _ → A-set _ _) , (λ _ _ _ → A-set _ _) ) where open Traditional.Lens l B-set : A → Is-set B B-set a = Traditional.h-level-respects-lens-from-inhabited 2 l a A-set from∘to : Univalence (a ⊔ b) → ∀ bc l → from bc (Lens.traditional-lens l) ≡ l from∘to univ ⊠ l′ = _↔_.from (equality-characterisation₄ univ) ( lemma , λ p → _≃_.from l (subst (λ _ → R) (refl _) (proj₁ p) , proj₂ p) ≡⟨ cong (λ r → _≃_.from l (r , proj₂ p)) $ subst-refl _ _ ⟩∎ _≃_.from l p ∎ ) where open Lens l′ renaming (equiv to l) B-set : (B → R) → ∥ B ∥ → Is-set B B-set f = rec (H-level-propositional ext 2) (λ b → proj₂-closure (f b) 2 $ H-level.respects-surjection (_≃_.surjection l) 2 A-set) R-set : ∥ B ∥ → Is-set R R-set = rec (H-level-propositional ext 2) (λ b → proj₁-closure (const b) 2 $ H-level.respects-surjection (_≃_.surjection l) 2 A-set) lemma′ : (∥ B ∥ × (∥ B ∥ → R)) ↔ R lemma′ = record { surjection = record { logical-equivalence = record { to = λ { (∥b∥ , f) → f ∥b∥ } ; from = λ r → inhabited r , λ _ → r } ; right-inverse-of = refl } ; left-inverse-of = λ { (∥b∥ , f) → curry (_↔_.to ≡×≡↔≡) (truncation-is-proposition _ _) (⟨ext⟩ λ ∥b∥′ → f ∥b∥ ≡⟨ cong f (truncation-is-proposition _ _) ⟩∎ f ∥b∥′ ∎) } } lemma = (∃ λ (f : B → A) → ∀ b b′ → _≃_.from l (proj₁ (_≃_.to l (f b)) , b′) ≡ f b′) × ∥ B ∥ ↔⟨ ×-comm ⟩ (∥ B ∥ × ∃ λ (f : B → A) → ∀ b b′ → _≃_.from l (proj₁ (_≃_.to l (f b)) , b′) ≡ f b′) ↝⟨ (∃-cong λ _ → Σ-cong (→-cong ext F.id l) λ f → ∀-cong ext λ b → ∀-cong ext λ b′ → ≡⇒↝ _ (cong (_≃_.from l (proj₁ (_≃_.to l (f b)) , b′) ≡_) (sym $ _≃_.left-inverse-of l _))) ⟩ (∥ B ∥ × ∃ λ (f : B → R × B) → ∀ b b′ → _≃_.from l (proj₁ (f b) , b′) ≡ _≃_.from l (f b′)) ↝⟨ ∃-cong (λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → Eq.≃-≡ (inverse l)) ⟩ (∥ B ∥ × ∃ λ (f : B → R × B) → ∀ b b′ → (proj₁ (f b) , b′) ≡ f b′) ↔⟨ (∃-cong λ _ → Σ-cong ΠΣ-comm λ _ → ∀-cong ext λ _ → ∀-cong ext λ _ → inverse $ ≡×≡↔≡) ⟩ (∥ B ∥ × ∃ λ (p : (B → R) × (B → B)) → ∀ b b′ → proj₁ p b ≡ proj₁ p b′ × b′ ≡ proj₂ p b′) ↔⟨ (∃-cong λ _ → inverse Σ-assoc) ⟩ (∥ B ∥ × ∃ λ (f : B → R) → ∃ λ (g : B → B) → ∀ b b′ → f b ≡ f b′ × b′ ≡ g b′) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ∀-cong ext λ _ → ΠΣ-comm) ⟩ (∥ B ∥ × ∃ λ (f : B → R) → ∃ λ (g : B → B) → ∀ b → (∀ b′ → f b ≡ f b′) × (∀ b′ → b′ ≡ g b′)) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → ΠΣ-comm) ⟩ (∥ B ∥ × ∃ λ (f : B → R) → ∃ λ (g : B → B) → Constant f × (B → ∀ b → b ≡ g b)) ↔⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-comm) ⟩ (∥ B ∥ × ∃ λ (f : B → R) → Constant f × ∃ λ (g : B → B) → B → ∀ b → b ≡ g b) ↔⟨ (∃-cong λ _ → Σ-assoc) ⟩ (∥ B ∥ × (∃ λ (f : B → R) → Constant f) × (∃ λ (g : B → B) → B → ∀ b → b ≡ g b)) ↔⟨ (∃-cong λ ∥b∥ → ∃-cong $ uncurry λ f _ → ∃-cong λ _ → inverse $ →-intro ext (λ _ → B-set f ∥b∥)) ⟩ (∥ B ∥ × (∃ λ (f : B → R) → Constant f) × (∃ λ (g : B → B) → ∀ b → b ≡ g b)) ↝⟨ (∃-cong λ _ → ∃-cong λ _ → ∃-cong λ _ → Eq.extensionality-isomorphism ext) ⟩ (∥ B ∥ × (∃ λ (f : B → R) → Constant f) × (∃ λ (g : B → B) → F.id ≡ g)) ↔⟨ (∃-cong λ _ → drop-⊤-right λ _ → _⇔_.to contractible⇔↔⊤ $ other-singleton-contractible _) ⟩ (∥ B ∥ × ∃ λ (f : B → R) → Constant f) ↝⟨ (∃-cong λ ∥b∥ → constant-function≃∥inhabited∥⇒inhabited (R-set ∥b∥)) ⟩ (∥ B ∥ × (∥ B ∥ → R)) ↔⟨ lemma′ ⟩□ R □ iso : Block "conversion" → Univalence (a ⊔ b) → Lens A B ↔ Traditional.Lens A B iso bc univ = record { surjection = record { logical-equivalence = record { from = from bc } ; right-inverse-of = to∘from bc } ; left-inverse-of = from∘to univ bc } -- If the domain A is a set, then there is a split surjection from -- Lens A B to Traditional.Lens A B. Lens↠Traditional-lens : Block "conversion" → Is-set A → Lens A B ↠ Traditional.Lens A B Lens↠Traditional-lens {A = A} {B = B} bc A-set = record { logical-equivalence = record { to = Lens.traditional-lens ; from = Lens↔Traditional-lens.from A-set bc } ; right-inverse-of = Lens↔Traditional-lens.to∘from A-set bc } -- The split surjection above preserves getters and setters. Lens↠Traditional-lens-preserves-getters-and-setters : {A : Set a} (b : Block "conversion") (s : Is-set A) → Preserves-getters-and-setters-⇔ A B (_↠_.logical-equivalence (Lens↠Traditional-lens b s)) Lens↠Traditional-lens-preserves-getters-and-setters ⊠ _ = (λ _ → refl _ , refl _) , (λ _ → refl _ , refl _) -- If the domain A is a set, then Traditional.Lens A B and Lens A B -- are isomorphic (assuming univalence). Lens↔Traditional-lens : {A : Set a} {B : Set b} → Block "conversion" → Univalence (a ⊔ b) → Is-set A → Lens A B ↔ Traditional.Lens A B Lens↔Traditional-lens bc univ A-set = Lens↔Traditional-lens.iso A-set bc univ -- The isomorphism preserves getters and setters. Lens↔Traditional-lens-preserves-getters-and-setters : {A : Set a} {B : Set b} (bc : Block "conversion") (univ : Univalence (a ⊔ b)) (s : Is-set A) → Preserves-getters-and-setters-⇔ A B (_↔_.logical-equivalence (Lens↔Traditional-lens bc univ s)) Lens↔Traditional-lens-preserves-getters-and-setters bc _ = Lens↠Traditional-lens-preserves-getters-and-setters bc -- If the codomain B is an inhabited set, then Lens A B and -- Traditional.Lens A B are logically equivalent. -- -- This definition is inspired by the statement of Corollary 13 from -- "Algebras and Update Strategies" by Johnson, Rosebrugh and Wood. -- -- See also Lens.Non-dependent.Equivalent-preimages.coherent↠higher. Lens⇔Traditional-lens : Is-set B → B → Lens A B ⇔ Traditional.Lens A B Lens⇔Traditional-lens {B = B} {A = A} B-set b₀ = record { to = Lens.traditional-lens ; from = from } where from : Traditional.Lens A B → Lens A B from l = isomorphism-to-lens {R = ∃ λ (a : A) → get a ≡ b₀} (record { surjection = record { logical-equivalence = record { to = λ a → (set a b₀ , get-set a b₀) , get a ; from = λ { ((a , _) , b) → set a b } } ; right-inverse-of = λ { ((a , h) , b) → let lemma = set (set a b) b₀ ≡⟨ set-set a b b₀ ⟩ set a b₀ ≡⟨ cong (set a) (sym h) ⟩ set a (get a) ≡⟨ set-get a ⟩∎ a ∎ in ((set (set a b) b₀ , get-set (set a b) b₀) , get (set a b)) ≡⟨ cong₂ _,_ (Σ-≡,≡→≡ lemma (B-set _ _)) (get-set a b) ⟩∎ ((a , h ) , b ) ∎ } } ; left-inverse-of = λ a → set (set a b₀) (get a) ≡⟨ set-set a b₀ (get a) ⟩ set a (get a) ≡⟨ set-get a ⟩∎ a ∎ }) where open Traditional.Lens l -- The logical equivalence preserves getters and setters. Lens⇔Traditional-lens-preserves-getters-and-setters : {B : Set b} (s : Is-set B) (b₀ : B) → Preserves-getters-and-setters-⇔ A B (Lens⇔Traditional-lens s b₀) Lens⇔Traditional-lens-preserves-getters-and-setters _ b₀ = (λ _ → refl _ , refl _) , (λ l → refl _ , ⟨ext⟩ λ a → ⟨ext⟩ λ b → set l (set l a b₀) b ≡⟨ set-set l _ _ _ ⟩∎ set l a b ∎) where open Traditional.Lens ------------------------------------------------------------------------ -- Some results related to h-levels -- If the domain of a lens is inhabited and has h-level n, then the -- codomain also has h-level n. h-level-respects-lens-from-inhabited : Lens A B → A → H-level n A → H-level n B h-level-respects-lens-from-inhabited {A = A} {B = B} {n = n} l a = H-level n A ↝⟨ H-level.respects-surjection (_≃_.surjection equiv) n ⟩ H-level n (R × B) ↝⟨ proj₂-closure (remainder a) n ⟩□ H-level n B □ where open Lens l -- This is not necessarily true for arbitrary domains (assuming -- univalence). ¬-h-level-respects-lens : Univalence (a ⊔ b) → ¬ (∀ n {A : Set a} {B : Set b} → Lens A B → H-level n A → H-level n B) ¬-h-level-respects-lens univ resp = $⟨ ⊥-propositional ⟩ Is-proposition ⊥ ↝⟨ resp 1 (_↔_.from (lens-from-⊥↔⊤ univ) _) ⟩ Is-proposition (↑ _ Bool) ↝⟨ ↑⁻¹-closure 1 ⟩ Is-proposition Bool ↝⟨ ¬-Bool-propositional ⟩□ ⊥₀ □ -- In fact, there is a lens with a proposition as its domain and a -- non-set as its codomain (assuming univalence). -- -- (The lemma does not actually use the univalence argument, but -- univalence is used by Circle.¬-𝕊¹-set.) lens-from-proposition-to-non-set : Univalence (# 0) → ∃ λ (A : Set a) → ∃ λ (B : Set b) → Lens A B × Is-proposition A × ¬ Is-set B lens-from-proposition-to-non-set {b = b} _ = ⊥ , ↑ b 𝕊¹ , record { R = ⊥ ; equiv = ⊥ ↔⟨ inverse ×-left-zero ⟩□ ⊥ × ↑ _ 𝕊¹ □ ; inhabited = ⊥-elim } , ⊥-propositional , Circle.¬-𝕊¹-set ⊚ H-level.respects-surjection (_↔_.surjection Bij.↑↔) 2 -- Lenses with contractible domains have contractible codomains. contractible-to-contractible : Lens A B → Contractible A → Contractible B contractible-to-contractible l c = h-level-respects-lens-from-inhabited l (proj₁ c) c -- If the domain type of a lens is contractible, then the remainder -- type is also contractible. domain-contractible⇒remainder-contractible : (l : Lens A B) → Contractible A → Contractible (Lens.R l) domain-contractible⇒remainder-contractible {A = A} {B = B} l = Contractible A ↔⟨ H-level-cong {k₂ = equivalence} ext 0 equiv ⟩ Contractible (R × B) ↔⟨ Contractible-commutes-with-× {k = bijection} ext ⟩ Contractible R × Contractible B ↝⟨ proj₁ ⟩□ Contractible R □ where open Lens l -- If the domain type of a lens has h-level n, then the remainder type -- also has h-level n. remainder-has-same-h-level-as-domain : (l : Lens A B) → ∀ n → H-level n A → H-level n (Lens.R l) remainder-has-same-h-level-as-domain l zero = domain-contractible⇒remainder-contractible l remainder-has-same-h-level-as-domain {A = A} {B = B} l (suc n) h = [inhabited⇒+]⇒+ n λ r → $⟨ h ⟩ H-level (1 + n) A ↝⟨ H-level.respects-surjection (_≃_.surjection equiv) (1 + n) ⟩ H-level (1 + n) (R × B) ↝⟨ rec (Π-closure ext 1 λ _ → H-level-propositional ext (1 + n)) (λ b → proj₁-closure (λ _ → b) (1 + n)) (inhabited r) ⟩□ H-level (1 + n) R □ where open Lens l -- If the getter function is an equivalence, then the remainder type -- is propositional. get-equivalence→remainder-propositional : (l : Lens A B) → Is-equivalence (Lens.get l) → Is-proposition (Lens.R l) get-equivalence→remainder-propositional l is-equiv = [inhabited⇒+]⇒+ 0 λ r → Trunc.rec (H-level-propositional ext 1) (λ b r₁ r₂ → r₁ ≡⟨ lemma _ _ ⟩ remainder (from A≃B b) ≡⟨ sym $ lemma _ _ ⟩∎ r₂ ∎) (inhabited r) where open _≃_ open Lens l A≃B = Eq.⟨ _ , is-equiv ⟩ lemma : ∀ b r → r ≡ remainder (from A≃B b) lemma b r = r ≡⟨ cong proj₁ $ sym $ right-inverse-of equiv _ ⟩ proj₁ (to equiv (from equiv (r , b))) ≡⟨ cong (proj₁ ⊚ to equiv) $ sym $ left-inverse-of A≃B _ ⟩ proj₁ (to equiv (from A≃B (to A≃B (from equiv (r , b))))) ≡⟨⟩ remainder (from A≃B (proj₂ (to equiv (from equiv (r , b))))) ≡⟨ cong (remainder ⊚ from A≃B ⊚ proj₂) $ right-inverse-of equiv _ ⟩∎ remainder (from A≃B b) ∎ -- If the getter function is pointwise equal to the identity -- function, then the remainder type is propositional. get≡id→remainder-propositional : (l : Lens A A) → (∀ a → Lens.get l a ≡ a) → Is-proposition (Lens.R l) get≡id→remainder-propositional l = (∀ a → Lens.get l a ≡ a) ↝⟨ (λ hyp → Eq.respects-extensional-equality (sym ⊚ hyp) (_≃_.is-equivalence F.id)) ⟩ Is-equivalence (Lens.get l) ↝⟨ get-equivalence→remainder-propositional l ⟩□ Is-proposition (Lens.R l) □ -- It is not necessarily the case that contractibility of A implies -- contractibility of Lens A B (assuming univalence). ¬-Contractible-closed-domain : ∀ {a b} → Univalence (a ⊔ b) → ¬ ({A : Set a} {B : Set b} → Contractible A → Contractible (Lens A B)) ¬-Contractible-closed-domain univ closure = $⟨ ↑⊤-contractible ⟩ Contractible (↑ _ ⊤) ↝⟨ closure ⟩ Contractible (Lens (↑ _ ⊤) ⊥) ↝⟨ H-level.respects-surjection (_↔_.surjection $ lens-from-contractible↔codomain-contractible univ ↑⊤-contractible) 0 ⟩ Contractible (Contractible ⊥) ↝⟨ proj₁ ⟩ Contractible ⊥ ↝⟨ proj₁ ⟩ ⊥ ↝⟨ ⊥-elim ⟩□ ⊥₀ □ where ↑⊤-contractible = ↑-closure 0 ⊤-contractible -- Contractible is closed under Lens A (assuming univalence). Contractible-closed-codomain : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → Contractible B → Contractible (Lens A B) Contractible-closed-codomain {A = A} {B} univ cB = $⟨ lens-to-contractible↔⊤ univ cB ⟩ Lens A B ↔ ⊤ ↝⟨ _⇔_.from contractible⇔↔⊤ ⟩□ Contractible (Lens A B) □ -- If B is a proposition, then Lens A B is also a proposition -- (assuming univalence). Is-proposition-closed-codomain : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → Is-proposition B → Is-proposition (Lens A B) Is-proposition-closed-codomain {A = A} {B} univ B-prop = $⟨ Π-closure ext 1 (λ _ → B-prop) ⟩ Is-proposition (A → B) ↝⟨ H-level.respects-surjection (_↔_.surjection $ inverse $ lens-to-proposition↔get univ B-prop) 1 ⟩□ Is-proposition (Lens A B) □ private -- If A has h-level 1 + n and equivalence between certain remainder -- types has h-level n, then Lens A B has h-level 1 + n (assuming -- univalence). domain-1+-remainder-equivalence-0+⇒lens-1+ : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → ∀ n → H-level (1 + n) A → ((l₁ l₂ : Lens A B) → H-level n (Lens.R l₁ ≃ Lens.R l₂)) → H-level (1 + n) (Lens A B) domain-1+-remainder-equivalence-0+⇒lens-1+ {A = A} univ n hA hR = ≡↔+ _ _ λ l₁ l₂ → $⟨ Σ-closure n (hR l₁ l₂) (λ _ → Π-closure ext n λ _ → +⇒≡ hA) ⟩ H-level n (∃ λ (eq : R l₁ ≃ R l₂) → ∀ p → _≡_ {A = A} _ _) ↝⟨ H-level.respects-surjection (_↔_.surjection $ inverse $ equality-characterisation₄ univ) n ⟩□ H-level n (l₁ ≡ l₂) □ where open Lens -- If A is a proposition, then Lens A B is also a proposition -- (assuming univalence). Is-proposition-closed-domain : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → Is-proposition A → Is-proposition (Lens A B) Is-proposition-closed-domain {b = b} {A = A} {B = B} univ A-prop = $⟨ R₁≃R₂ ⟩ (∀ l₁ l₂ → R l₁ ≃ R l₂) ↝⟨ (λ hyp l₁ l₂ → propositional⇒inhabited⇒contractible (Eq.left-closure ext 0 (R-prop l₁)) (hyp l₁ l₂)) ⟩ (∀ l₁ l₂ → Contractible (R l₁ ≃ R l₂)) ↝⟨ domain-1+-remainder-equivalence-0+⇒lens-1+ univ 0 A-prop ⟩□ Is-proposition (Lens A B) □ where open Lens R-prop : (l : Lens A B) → Is-proposition (R l) R-prop l = remainder-has-same-h-level-as-domain l 1 A-prop remainder⁻¹ : (l : Lens A B) → R l → A remainder⁻¹ l r = rec A-prop (λ b → _≃_.from (equiv l) (r , b)) (inhabited l r) R-to-R : (l₁ l₂ : Lens A B) → R l₁ → R l₂ R-to-R l₁ l₂ = remainder l₂ ⊚ remainder⁻¹ l₁ involutive : (l : Lens A B) {f : R l → R l} → ∀ r → f r ≡ r involutive l _ = R-prop l _ _ R₁≃R₂ : (l₁ l₂ : Lens A B) → R l₁ ≃ R l₂ R₁≃R₂ l₁ l₂ = Eq.↔⇒≃ $ Bij.bijection-from-involutive-family R-to-R (λ l _ → involutive l) l₁ l₂ -- An alternative proof. Is-proposition-closed-domain′ : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → Is-proposition A → Is-proposition (Lens A B) Is-proposition-closed-domain′ {A = A} {B} univ A-prop = $⟨ Traditional.lens-preserves-h-level-of-domain 0 A-prop ⟩ Is-proposition (Traditional.Lens A B) ↝⟨ H-level.respects-surjection (_↔_.surjection $ inverse $ Lens↔Traditional-lens ⊠ univ (mono₁ 1 A-prop)) 1 ⟩□ Is-proposition (Lens A B) □ -- If A is a set, then Lens A B is also a set (assuming univalence). -- -- TODO: Can one prove that the corresponding result does not hold for -- codomains? Are there types A and B such that B is a set, but -- Lens A B is not? Is-set-closed-domain : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → Is-set A → Is-set (Lens A B) Is-set-closed-domain {A = A} {B} univ A-set = $⟨ (λ {_ _} → Traditional.lens-preserves-h-level-of-domain 1 A-set) ⟩ Is-set (Traditional.Lens A B) ↝⟨ H-level.respects-surjection (_↔_.surjection $ inverse $ Lens↔Traditional-lens ⊠ univ A-set) 2 ⟩□ Is-set (Lens A B) □ -- If A has h-level n, then Lens A B has h-level 1 + n (assuming -- univalence). -- -- See also -- Lens.Non-dependent.Equivalent-preimages.higher-lens-preserves-h-level-of-domain. domain-0+⇒lens-1+ : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → ∀ n → H-level n A → H-level (1 + n) (Lens A B) domain-0+⇒lens-1+ {A = A} {B} univ n hA = $⟨ (λ l₁ l₂ → Eq.h-level-closure ext n (hR l₁) (hR l₂)) ⟩ ((l₁ l₂ : Lens A B) → H-level n (R l₁ ≃ R l₂)) ↝⟨ domain-1+-remainder-equivalence-0+⇒lens-1+ univ n (mono₁ n hA) ⟩□ H-level (1 + n) (Lens A B) □ where open Lens hR : ∀ l → H-level n (R l) hR l = remainder-has-same-h-level-as-domain l n hA -- An alternative proof. domain-0+⇒lens-1+′ : {A : Set a} {B : Set b} → Univalence (a ⊔ b) → ∀ n → H-level n A → H-level (1 + n) (Lens A B) domain-0+⇒lens-1+′ {A = A} {B} univ n hA = $⟨ Σ-closure (1 + n) (∃-H-level-H-level-1+ ext univ n) (λ _ → ×-closure (1 + n) (Eq.left-closure ext n (mono₁ n hA)) (Π-closure ext (1 + n) λ _ → mono (Nat.suc≤suc (Nat.zero≤ n)) $ truncation-is-proposition)) ⟩ H-level (1 + n) (∃ λ (p : ∃ (H-level n)) → A ≃ (proj₁ p × B) × (proj₁ p → ∥ B ∥)) ↝⟨ H-level.respects-surjection (_↔_.surjection $ inverse iso) (1 + n) ⟩□ H-level (1 + n) (Lens A B) □ where open Lens iso = Lens A B ↝⟨ inverse $ drop-⊤-right (λ l → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible (H-level-propositional ext n) (remainder-has-same-h-level-as-domain l n hA)) ⟩ (∃ λ (l : Lens A B) → H-level n (R l)) ↝⟨ inverse Σ-assoc F.∘ Σ-cong Lens-as-Σ (λ _ → F.id) ⟩ (∃ λ R → (A ≃ (R × B) × (R → ∥ B ∥)) × H-level n R) ↝⟨ (∃-cong λ _ → ×-comm) ⟩ (∃ λ R → H-level n R × A ≃ (R × B) × (R → ∥ B ∥)) ↝⟨ Σ-assoc ⟩□ (∃ λ (p : ∃ (H-level n)) → A ≃ (proj₁ p × B) × (proj₁ p → ∥ B ∥)) □ ------------------------------------------------------------------------ -- An existence result -- There is, in general, no lens for the first projection from a -- Σ-type. no-first-projection-lens : ∃ λ (A : Set a) → ∃ λ (B : A → Set b) → ¬ Lens (Σ A B) A no-first-projection-lens = Non-dependent.no-first-projection-lens Lens contractible-to-contractible ------------------------------------------------------------------------ -- Some results related to the remainder type -- The remainder type of a lens l : Lens A B is, for every b : B, -- equivalent to the preimage of the getter with respect to b. -- -- This result was pointed out to me by Andrea Vezzosi. remainder≃get⁻¹ : (l : Lens A B) (b : B) → Lens.R l ≃ Lens.get l ⁻¹ b remainder≃get⁻¹ l b = Eq.↔→≃ (λ r → _≃_.from equiv (r , b) , (get (_≃_.from equiv (r , b)) ≡⟨⟩ proj₂ (_≃_.to equiv (_≃_.from equiv (r , b))) ≡⟨ cong proj₂ $ _≃_.right-inverse-of equiv _ ⟩∎ b ∎)) (λ (a , _) → remainder a) (λ (a , get-a≡b) → let lemma = cong get (trans (cong (set a) (sym get-a≡b)) (_≃_.left-inverse-of equiv _)) ≡⟨ cong-trans _ _ (_≃_.left-inverse-of equiv _) ⟩ trans (cong get (cong (set a) (sym get-a≡b))) (cong get (_≃_.left-inverse-of equiv _)) ≡⟨ cong₂ trans (cong-∘ _ _ (sym get-a≡b)) (sym $ cong-∘ _ _ (_≃_.left-inverse-of equiv _)) ⟩ trans (cong (get ⊚ set a) (sym get-a≡b)) (cong proj₂ (cong (_≃_.to equiv) (_≃_.left-inverse-of equiv _))) ≡⟨ cong₂ (λ p q → trans p (cong proj₂ q)) (cong-sym _ get-a≡b) (_≃_.left-right-lemma equiv _) ⟩ trans (sym (cong (get ⊚ set a) get-a≡b)) (cong proj₂ (_≃_.right-inverse-of equiv _)) ≡⟨ sym $ sym-sym _ ⟩ sym (sym (trans (sym (cong (get ⊚ set a) get-a≡b)) (cong proj₂ (_≃_.right-inverse-of equiv _)))) ≡⟨ cong sym $ sym-trans _ (cong proj₂ (_≃_.right-inverse-of equiv _)) ⟩ sym (trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _))) (sym (sym (cong (get ⊚ set a) get-a≡b)))) ≡⟨ cong (λ eq → sym (trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _))) eq)) $ sym-sym (cong (get ⊚ set a) get-a≡b) ⟩∎ sym (trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _))) (cong (get ⊚ set a) get-a≡b)) ∎ in Σ-≡,≡→≡ (_≃_.from equiv (remainder a , b) ≡⟨⟩ set a b ≡⟨ cong (set a) (sym get-a≡b) ⟩ set a (get a) ≡⟨ set-get a ⟩∎ a ∎) (subst (λ a → get a ≡ b) (trans (cong (set a) (sym get-a≡b)) (set-get a)) (cong proj₂ $ _≃_.right-inverse-of equiv (remainder a , b)) ≡⟨⟩ subst (λ a → get a ≡ b) (trans (cong (set a) (sym get-a≡b)) (_≃_.left-inverse-of equiv _)) (cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ subst-∘ _ _ (trans _ (_≃_.left-inverse-of equiv _)) ⟩ subst (_≡ b) (cong get (trans (cong (set a) (sym get-a≡b)) (_≃_.left-inverse-of equiv _))) (cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ cong (λ eq → subst (_≡ b) eq (cong proj₂ $ _≃_.right-inverse-of equiv _)) lemma ⟩ subst (_≡ b) (sym (trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _))) (cong (get ⊚ set a) get-a≡b))) (cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ subst-trans (trans _ (cong (get ⊚ set a) get-a≡b)) ⟩ trans (trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _))) (cong (get ⊚ set a) get-a≡b)) (cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ elim¹ (λ eq → trans (trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _))) (cong (get ⊚ set a) eq)) (cong proj₂ $ _≃_.right-inverse-of equiv _) ≡ eq) ( trans (trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _))) (cong (get ⊚ set a) (refl _))) (cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ cong (λ eq → trans (trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _))) eq) (cong proj₂ $ _≃_.right-inverse-of equiv _)) $ cong-refl _ ⟩ trans (trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _))) (refl _)) (cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ cong (flip trans _) $ trans-reflʳ _ ⟩ trans (sym (cong proj₂ (_≃_.right-inverse-of equiv _))) (cong proj₂ $ _≃_.right-inverse-of equiv _) ≡⟨ trans-symˡ (cong proj₂ (_≃_.right-inverse-of equiv _)) ⟩∎ refl _ ∎) get-a≡b ⟩∎ get-a≡b ∎)) (λ r → remainder (_≃_.from equiv (r , b)) ≡⟨⟩ proj₁ (_≃_.to equiv (_≃_.from equiv (r , b))) ≡⟨ cong proj₁ $ _≃_.right-inverse-of equiv _ ⟩∎ r ∎) where open Lens l -- A corollary: Lens.get l ⁻¹_ is constant (up to equivalence). -- -- Paolo Capriotti discusses this kind of property -- (http://homotopytypetheory.org/2014/04/29/higher-lenses/). get⁻¹-constant : (l : Lens A B) (b₁ b₂ : B) → Lens.get l ⁻¹ b₁ ≃ Lens.get l ⁻¹ b₂ get⁻¹-constant l b₁ b₂ = Lens.get l ⁻¹ b₁ ↝⟨ inverse $ remainder≃get⁻¹ l b₁ ⟩ Lens.R l ↝⟨ remainder≃get⁻¹ l b₂ ⟩□ Lens.get l ⁻¹ b₂ □ -- The set function can be expressed using get⁻¹-constant and get. -- -- Paolo Capriotti defines set in a similar way -- (http://homotopytypetheory.org/2014/04/29/higher-lenses/). set-in-terms-of-get⁻¹-constant : (l : Lens A B) → Lens.set l ≡ λ a b → proj₁ (_≃_.to (get⁻¹-constant l (Lens.get l a) b) (a , refl _)) set-in-terms-of-get⁻¹-constant l = refl _ -- The remainder function can be expressed using remainder≃get⁻¹ and -- get. remainder-in-terms-of-remainder≃get⁻¹ : (l : Lens A B) → Lens.remainder l ≡ λ a → _≃_.from (remainder≃get⁻¹ l (Lens.get l a)) (a , refl _) remainder-in-terms-of-remainder≃get⁻¹ l = refl _ -- The lemma get⁻¹-constant satisfies some coherence properties. -- -- The first and third properties are discussed by Paolo Capriotti -- (http://homotopytypetheory.org/2014/04/29/higher-lenses/). get⁻¹-constant-∘ : (l : Lens A B) (b₁ b₂ b₃ : B) (p : Lens.get l ⁻¹ b₁) → _≃_.to (get⁻¹-constant l b₂ b₃) (_≃_.to (get⁻¹-constant l b₁ b₂) p) ≡ _≃_.to (get⁻¹-constant l b₁ b₃) p get⁻¹-constant-∘ l _ b₂ b₃ p = from (r₂ , b₃) , cong proj₂ (right-inverse-of (r₂ , b₃)) ≡⟨ cong (λ r → from (r , b₃) , cong proj₂ (right-inverse-of (r , b₃))) $ cong proj₁ $ right-inverse-of _ ⟩∎ from (r₁ , b₃) , cong proj₂ (right-inverse-of (r₁ , b₃)) ∎ where open Lens l open _≃_ equiv r₁ r₂ : R r₁ = proj₁ (to (proj₁ p)) r₂ = proj₁ (to (from (r₁ , b₂))) get⁻¹-constant-inverse : (l : Lens A B) (b₁ b₂ : B) (p : Lens.get l ⁻¹ b₁) → _≃_.to (get⁻¹-constant l b₁ b₂) p ≡ _≃_.from (get⁻¹-constant l b₂ b₁) p get⁻¹-constant-inverse _ _ _ _ = refl _ get⁻¹-constant-id : (l : Lens A B) (b : B) (p : Lens.get l ⁻¹ b) → _≃_.to (get⁻¹-constant l b b) p ≡ p get⁻¹-constant-id l b p = _≃_.to (get⁻¹-constant l b b) p ≡⟨ sym $ get⁻¹-constant-∘ l b _ _ p ⟩ _≃_.to (get⁻¹-constant l b b) (_≃_.to (get⁻¹-constant l b b) p) ≡⟨⟩ _≃_.from (get⁻¹-constant l b b) (_≃_.to (get⁻¹-constant l b b) p) ≡⟨ _≃_.left-inverse-of (get⁻¹-constant l b b) _ ⟩∎ p ∎ -- Another kind of coherence property does not hold for -- get⁻¹-constant. -- -- This kind of property came up in a discussion with Andrea Vezzosi. get⁻¹-constant-not-coherent : ¬ ({A B : Set} (l : Lens A B) (b₁ b₂ : B) (f : ∀ b → Lens.get l ⁻¹ b) → _≃_.to (get⁻¹-constant l b₁ b₂) (f b₁) ≡ f b₂) get⁻¹-constant-not-coherent = ({A B : Set} (l : Lens A B) (b₁ b₂ : B) (f : ∀ b → Lens.get l ⁻¹ b) → _≃_.to (get⁻¹-constant l b₁ b₂) (f b₁) ≡ f b₂) ↝⟨ (λ hyp → hyp l true false f) ⟩ _≃_.to (get⁻¹-constant l true false) (f true) ≡ f false ↝⟨ cong (proj₁ ⊚ proj₁) ⟩ true ≡ false ↝⟨ Bool.true≢false ⟩□ ⊥ □ where l : Lens (Bool × Bool) Bool l = record { R = Bool ; equiv = F.id ; inhabited = ∣_∣ } f : ∀ b → Lens.get l ⁻¹ b f b = (b , b) , refl _ -- If B is inhabited whenever it is merely inhabited, then the -- remainder type of a lens of type Lens A B can be expressed in terms -- of preimages of the lens's getter. remainder≃∃get⁻¹ : (l : Lens A B) (∥B∥→B : ∥ B ∥ → B) → Lens.R l ≃ ∃ λ (b : ∥ B ∥) → Lens.get l ⁻¹ (∥B∥→B b) remainder≃∃get⁻¹ {B = B} l ∥B∥→B = R ↔⟨ (inverse $ drop-⊤-left-× λ r → _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible truncation-is-proposition (inhabited r)) ⟩ ∥ B ∥ × R ↝⟨ (∃-cong λ _ → remainder≃get⁻¹ l _) ⟩□ (∃ λ (b : ∥ B ∥) → get ⁻¹ (∥B∥→B b)) □ where open Lens l ------------------------------------------------------------------------ -- Lens combinators module Lens-combinators where -- The definition of the identity lens is unique, if the get -- function is required to be the identity (assuming univalence). id-unique : {A : Set a} → Univalence a → ((l₁ , _) (l₂ , _) : ∃ λ (l : Lens A A) → ∀ a → Lens.get l a ≡ a) → l₁ ≡ l₂ id-unique {A = A} univ l₁ l₂ = _↔_.from (equality-characterisation₃ univ) ( R₁≃R₂ , (λ _ → uncurry get≡id→remainder-propositional l₂ _ _) , λ a → get (proj₁ l₁) a ≡⟨ proj₂ l₁ a ⟩ a ≡⟨ sym $ proj₂ l₂ a ⟩∎ get (proj₁ l₂) a ∎ ) where open Lens R→R : (l₁ l₂ : ∃ λ (l : Lens A A) → ∀ a → get l a ≡ a) → R (proj₁ l₁) → R (proj₁ l₂) R→R (l₁ , l₁-id) (l₂ , l₂-id) r = Trunc.rec (get≡id→remainder-propositional l₂ l₂-id) (A ↔⟨ equiv l₂ ⟩ R l₂ × A ↝⟨ proj₁ ⟩□ R l₂ □) (inhabited l₁ r) R₁≃R₂ : R (proj₁ l₁) ≃ R (proj₁ l₂) R₁≃R₂ = _↠_.from (Eq.≃↠⇔ (uncurry get≡id→remainder-propositional l₁) (uncurry get≡id→remainder-propositional l₂)) (record { to = R→R l₁ l₂ ; from = R→R l₂ l₁ }) -- The result of composing two lenses is unique if the codomain type -- is inhabited whenever it is merely inhabited, and we require that -- the resulting setter function is defined in a certain way -- (assuming univalence). ∘-unique : let open Lens in {A : Set a} {C : Set c} → Univalence (a ⊔ c) → (∥ C ∥ → C) → ((comp₁ , _) (comp₂ , _) : ∃ λ (comp : Lens B C → Lens A B → Lens A C) → ∀ l₁ l₂ a c → set (comp l₁ l₂) a c ≡ set l₂ a (set l₁ (get l₂ a) c)) → comp₁ ≡ comp₂ ∘-unique {A = A} {C = C} univ ∥C∥→C (comp₁ , set₁) (comp₂ , set₂) = ⟨ext⟩ λ l₁ → ⟨ext⟩ λ l₂ → lenses-equal-if-setters-equal univ (comp₁ l₁ l₂) (comp₂ l₁ l₂) (λ _ → ∥C∥→C) $ ⟨ext⟩ λ a → ⟨ext⟩ λ c → set (comp₁ l₁ l₂) a c ≡⟨ set₁ _ _ _ _ ⟩ set l₂ a (set l₁ (get l₂ a) c) ≡⟨ sym $ set₂ _ _ _ _ ⟩∎ set (comp₂ l₁ l₂) a c ∎ where open Lens -- Identity lens. id : Block "id" → Lens A A id {A = A} ⊠ = record { R = ∥ A ∥ ; equiv = A ↔⟨ inverse ∥∥×↔ ⟩□ ∥ A ∥ × A □ ; inhabited = P.id } -- Composition of lenses. -- -- Note that the domains are required to be at least as large as the -- codomains; this should match many use-cases. Without this -- restriction I failed to find a satisfactory definition of -- composition. (I suspect that if Agda had had cumulativity, then -- the domain and codomain could have lived in the same universe -- without any problems.) -- -- The composition operation matches on the lenses to ensure that it -- does not unfold when applied to neutral lenses. -- -- See also Lens.Non-dependent.Equivalent-preimages.⟨_⟩_⊚_. infix 9 ⟨_,_⟩_∘_ ⟨_,_⟩_∘_ : ∀ a b {A : Set (a ⊔ b ⊔ c)} {B : Set (b ⊔ c)} {C : Set c} → Lens B C → Lens A B → Lens A C ⟨_,_⟩_∘_ _ _ {A = A} {B} {C} l₁@(⟨ _ , _ , _ ⟩) l₂@(⟨ _ , _ , _ ⟩) = record { R = R l₂ × R l₁ ; equiv = A ↝⟨ equiv l₂ ⟩ R l₂ × B ↝⟨ F.id ×-cong equiv l₁ ⟩ R l₂ × (R l₁ × C) ↔⟨ ×-assoc ⟩□ (R l₂ × R l₁) × C □ ; inhabited = ∥∥-map (get l₁) ⊚ inhabited l₂ ⊚ proj₁ } where open Lens -- A variant of composition for lenses between types with the same -- universe level. infixr 9 _∘_ _∘_ : {A B C : Set a} → Lens B C → Lens A B → Lens A C l₁ ∘ l₂ = ⟨ lzero , lzero ⟩ l₁ ∘ l₂ -- Other definitions of composition match ⟨_,_⟩_∘_, if the codomain -- type is inhabited whenever it is merely inhabited, and the -- resulting setter function is defined in a certain way (assuming -- univalence). composition≡∘ : let open Lens in ∀ a b {A : Set (a ⊔ b ⊔ c)} {B : Set (b ⊔ c)} {C : Set c} → Univalence (a ⊔ b ⊔ c) → (∥ C ∥ → C) → (comp : Lens B C → Lens A B → Lens A C) → (∀ l₁ l₂ a c → set (comp l₁ l₂) a c ≡ set l₂ a (set l₁ (get l₂ a) c)) → comp ≡ ⟨ a , b ⟩_∘_ composition≡∘ _ _ univ ∥C∥→C comp set-comp = ∘-unique univ ∥C∥→C (comp , set-comp) (_ , λ { ⟨ _ , _ , _ ⟩ ⟨ _ , _ , _ ⟩ _ _ → refl _ }) -- Identity and composition form a kind of precategory (assuming -- univalence). associativity : ∀ a b c {A : Set (a ⊔ b ⊔ c ⊔ d)} {B : Set (b ⊔ c ⊔ d)} {C : Set (c ⊔ d)} {D : Set d} → Univalence (a ⊔ b ⊔ c ⊔ d) → (l₁ : Lens C D) (l₂ : Lens B C) (l₃ : Lens A B) → ⟨ a ⊔ b , c ⟩ l₁ ∘ (⟨ a , b ⟩ l₂ ∘ l₃) ≡ ⟨ a , b ⊔ c ⟩ (⟨ b , c ⟩ l₁ ∘ l₂) ∘ l₃ associativity _ _ _ univ ⟨ _ , _ , _ ⟩ ⟨ _ , _ , _ ⟩ ⟨ _ , _ , _ ⟩ = _↔_.from (equality-characterisation₂ univ) (Eq.↔⇒≃ (inverse ×-assoc) , λ _ → refl _) left-identity : ∀ bi a {A : Set (a ⊔ b)} {B : Set b} → Univalence (a ⊔ b) → (l : Lens A B) → ⟨ a , lzero ⟩ id bi ∘ l ≡ l left-identity ⊠ _ {B = B} univ l@(⟨ _ , _ , _ ⟩) = _↔_.from (equality-characterisation₂ univ) ( (R × ∥ B ∥ ↔⟨ lemma ⟩□ R □) , λ _ → refl _ ) where open Lens l lemma : R × ∥ B ∥ ↔ R lemma = record { surjection = record { logical-equivalence = record { to = proj₁ ; from = λ r → r , inhabited r } ; right-inverse-of = refl } ; left-inverse-of = λ { (r , _) → cong (λ x → r , x) $ truncation-is-proposition _ _ } } right-identity : ∀ bi a {A : Set (a ⊔ b)} {B : Set b} → Univalence (a ⊔ b) → (l : Lens A B) → ⟨ lzero , a ⟩ l ∘ id bi ≡ l right-identity ⊠ _ {A = A} univ l@(⟨ _ , _ , _ ⟩) = _↔_.from (equality-characterisation₂ univ) ( (∥ A ∥ × R ↔⟨ lemma ⟩□ R □) , λ _ → refl _ ) where open Lens l lemma : ∥ A ∥ × R ↔ R lemma = record { surjection = record { logical-equivalence = record { to = proj₂ ; from = λ r → ∥∥-map (λ b → _≃_.from equiv (r , b)) (inhabited r) , r } ; right-inverse-of = refl } ; left-inverse-of = λ { (_ , r) → cong (λ x → x , r) $ truncation-is-proposition _ _ } } open Lens-combinators ------------------------------------------------------------------------ -- Isomorphisms expressed using lens quasi-inverses private module B {a} (b : Block "id") = Bi-invertibility equality-with-J (Set a) Lens (id b) _∘_ module BM {a} (b : Block "id") (univ : Univalence a) = B.More b (left-identity b _ univ) (right-identity b _ univ) (associativity _ _ _ univ) -- A form of isomorphism between types, expressed using lenses. open B public renaming (_≅_ to [_]_≅_) using (Has-quasi-inverse) -- Lenses with quasi-inverses can be converted to equivalences. ≅→≃ : ∀ b → [ b ] A ≅ B → A ≃ B ≅→≃ ⊠ (l@(⟨ _ , _ , _ ⟩) , l⁻¹@(⟨ _ , _ , _ ⟩) , l∘l⁻¹≡id , l⁻¹∘l≡id) = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = get l ; from = get l⁻¹ } ; right-inverse-of = λ b → cong (λ l → get l b) l∘l⁻¹≡id } ; left-inverse-of = λ a → cong (λ l → get l a) l⁻¹∘l≡id }) where open Lens -- There is a split surjection from [ b ] A ≅ B to A ≃ B (assuming -- univalence). ≅↠≃ : {A B : Set a} (b : Block "id") → Univalence a → ([ b ] A ≅ B) ↠ (A ≃ B) ≅↠≃ {A = A} {B = B} b univ = record { logical-equivalence = record { to = ≅→≃ b ; from = from b } ; right-inverse-of = ≅→≃∘from b } where from : ∀ b → A ≃ B → [ b ] A ≅ B from b A≃B = l , l⁻¹ , l∘l⁻¹≡id b , l⁻¹∘l≡id b where l = ≃→lens′ A≃B l⁻¹ = ≃→lens′ (inverse A≃B) l∘l⁻¹≡id : ∀ b → l ∘ l⁻¹ ≡ id b l∘l⁻¹≡id ⊠ = _↔_.from (equality-characterisation₂ univ) ( (∥ A ∥ × ∥ B ∥ ↝⟨ Eq.⇔→≃ (×-closure 1 truncation-is-proposition truncation-is-proposition) truncation-is-proposition proj₂ (λ b → ∥∥-map (_≃_.from A≃B) b , b) ⟩ ∥ B ∥ □) , λ _ → cong₂ _,_ (truncation-is-proposition _ _) (_≃_.right-inverse-of A≃B _) ) l⁻¹∘l≡id : ∀ b → l⁻¹ ∘ l ≡ id b l⁻¹∘l≡id ⊠ = _↔_.from (equality-characterisation₂ univ) ( (∥ B ∥ × ∥ A ∥ ↝⟨ Eq.⇔→≃ (×-closure 1 truncation-is-proposition truncation-is-proposition) truncation-is-proposition proj₂ (λ a → ∥∥-map (_≃_.to A≃B) a , a) ⟩ ∥ A ∥ □) , λ _ → cong₂ _,_ (truncation-is-proposition _ _) (_≃_.left-inverse-of A≃B _) ) ≅→≃∘from : ∀ b A≃B → ≅→≃ b (from b A≃B) ≡ A≃B ≅→≃∘from ⊠ _ = Eq.lift-equality ext (refl _) -- There is not necessarily a split surjection from -- Is-equivalence (Lens.get l) to Has-quasi-inverse l, if l is a -- lens between types in the same universe (assuming univalence). ¬Is-equivalence-get↠Has-quasi-inverse : (b : Block "id") → Univalence a → ¬ ({A B : Set a} (l : Lens A B) → Is-equivalence (Lens.get l) ↠ Has-quasi-inverse b l) ¬Is-equivalence-get↠Has-quasi-inverse b univ surj = $⟨ ⊤-contractible ⟩ Contractible ⊤ ↝⟨ H-level.respects-surjection lemma₃ 0 ⟩ Contractible ((z : Z) → z ≡ z) ↝⟨ mono₁ 0 ⟩ Is-proposition ((z : Z) → z ≡ z) ↝⟨ ¬-prop ⟩□ ⊥ □ where open Lens Z,¬-prop = Circle.¬-type-of-refl-propositional Z = proj₁ Z,¬-prop ¬-prop = proj₂ Z,¬-prop lemma₂ : ∀ b → (∃ λ (eq : R (id b) ≃ R (id b)) → (∀ z → _≃_.to eq (remainder (id b) z) ≡ remainder (id b) z) × ((z : Z) → get (id b) z ≡ get (id b) z)) ≃ ((z : Z) → z ≡ z) lemma₂ ⊠ = (∃ λ (eq : ∥ Z ∥ ≃ ∥ Z ∥) → ((z : Z) → _≃_.to eq ∣ z ∣ ≡ ∣ z ∣) × ((z : Z) → z ≡ z)) ↔⟨ (∃-cong λ _ → drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ $ Π-closure ext 0 λ _ → +⇒≡ truncation-is-proposition) ⟩ (∥ Z ∥ ≃ ∥ Z ∥) × ((z : Z) → z ≡ z) ↔⟨ drop-⊤-left-Σ $ _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible (Eq.left-closure ext 0 truncation-is-proposition) F.id ⟩□ ((z : Z) → z ≡ z) □ lemma₃ = ⊤ ↔⟨ inverse $ _⇔_.to contractible⇔↔⊤ $ propositional⇒inhabited⇒contractible (Eq.propositional ext _) (_≃_.is-equivalence Eq.id) ⟩ Is-equivalence P.id ↔⟨ ≡⇒↝ equivalence $ cong Is-equivalence $ unblock b (λ b → _ ≡ get (id b)) (refl _) ⟩ Is-equivalence (get (id b)) ↝⟨ surj (id b) ⟩ Has-quasi-inverse b (id b) ↔⟨ BM.Has-quasi-inverse≃id≡id-domain b univ (id b , left-identity b _ univ _ , right-identity b _ univ _) ⟩ id b ≡ id b ↔⟨ equality-characterisation₃ univ ⟩ (∃ λ (eq : R (id b) ≃ R (id b)) → (∀ z → _≃_.to eq (remainder (id b) z) ≡ remainder (id b) z) × (∀ z → get (id b) z ≡ get (id b) z)) ↔⟨ lemma₂ b ⟩□ ((z : Z) → z ≡ z) □ -- See also ≃≃≅ below. ------------------------------------------------------------------------ -- Equivalences expressed using bi-invertibility for lenses -- A form of equivalence between types, expressed using lenses. open B public renaming (_≊_ to [_]_≊_) using (Has-left-inverse; Has-right-inverse; Is-bi-invertible) open BM public using (equality-characterisation-≊) -- Lenses with left inverses have propositional remainder types. has-left-inverse→remainder-propositional : (b : Block "id") (l : Lens A B) → Has-left-inverse b l → Is-proposition (Lens.R l) has-left-inverse→remainder-propositional ⊠ l@(⟨ _ , _ , _ ⟩) (l⁻¹@(⟨ _ , _ , _ ⟩) , l⁻¹∘l≡id) = $⟨ get≡id→remainder-propositional (l⁻¹ ∘ l) (λ a → cong (flip get a) l⁻¹∘l≡id) ⟩ Is-proposition (R (l⁻¹ ∘ l)) ↔⟨⟩ Is-proposition (R l × R l⁻¹) ↝⟨ H-level-×₁ (∥∥-map (remainder l⁻¹) ⊚ inhabited l) 1 ⟩□ Is-proposition (R l) □ where open Lens -- Lenses with right inverses have propositional remainder types. has-right-inverse→remainder-propositional : (b : Block "id") (l : Lens A B) → Has-right-inverse b l → Is-proposition (Lens.R l) has-right-inverse→remainder-propositional ⊠ l@(⟨ _ , _ , _ ⟩) (l⁻¹@(⟨ _ , _ , _ ⟩) , l∘l⁻¹≡id) = $⟨ get≡id→remainder-propositional (l ∘ l⁻¹) (λ a → cong (flip get a) l∘l⁻¹≡id) ⟩ Is-proposition (R (l ∘ l⁻¹)) ↔⟨⟩ Is-proposition (R l⁻¹ × R l) ↝⟨ H-level-×₂ (∥∥-map (remainder l⁻¹) ⊚ inhabited l) 1 ⟩□ Is-proposition (R l) □ where open Lens -- There is an equivalence between A ≃ B and [ b ] A ≊ B (assuming -- univalence). ≃≃≊ : {A B : Set a} (b : Block "id") → Univalence a → (A ≃ B) ≃ ([ b ] A ≊ B) ≃≃≊ {A = A} {B = B} b univ = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = to b ; from = from b } ; right-inverse-of = to∘from b } ; left-inverse-of = from∘to b }) where open Lens to : ∀ b → A ≃ B → [ b ] A ≊ B to b = B.≅→≊ b ⊚ _↠_.from (≅↠≃ b univ) from : ∀ b → [ b ] A ≊ B → A ≃ B from b = _↠_.to (≅↠≃ b univ) ⊚ _↠_.from (BM.≅↠≊ b univ) to∘from : ∀ b A≊B → to b (from b A≊B) ≡ A≊B to∘from b A≊B = _≃_.from (equality-characterisation-≊ b univ _ _) $ _↔_.from (equality-characterisation₃ univ) ( ∥B∥≃R b A≊B , lemma₁ b A≊B , lemma₂ b A≊B ) where l′ : ∀ b (A≊B : [ b ] A ≊ B) → Lens A B l′ b A≊B = proj₁ (to b (from b A≊B)) ∥B∥≃R : ∀ b (A≊B@(l , _) : [ b ] A ≊ B) → ∥ B ∥ ≃ R l ∥B∥≃R b (l , (l-inv@(l⁻¹ , _) , _)) = Eq.⇔→≃ truncation-is-proposition R-prop (Trunc.rec R-prop (remainder l ⊚ get l⁻¹)) (inhabited l) where R-prop = has-left-inverse→remainder-propositional b l l-inv lemma₁ : ∀ b (A≊B@(l , _) : [ b ] A ≊ B) a → _≃_.to (∥B∥≃R b A≊B) (remainder (l′ b A≊B) a) ≡ remainder l a lemma₁ ⊠ ( l@(⟨ _ , _ , _ ⟩) , (l⁻¹@(⟨ _ , _ , _ ⟩) , l⁻¹∘l≡id) , (⟨ _ , _ , _ ⟩ , _) ) a = remainder l (get l⁻¹ (get l a)) ≡⟨⟩ remainder l (get (l⁻¹ ∘ l) a) ≡⟨ cong (λ l′ → remainder l (get l′ a)) l⁻¹∘l≡id ⟩ remainder l (get (id ⊠) a) ≡⟨⟩ remainder l a ∎ lemma₂ : ∀ b (A≊B@(l , _) : [ b ] A ≊ B) a → get (l′ b A≊B) a ≡ get l a lemma₂ ⊠ (⟨ _ , _ , _ ⟩ , (⟨ _ , _ , _ ⟩ , _) , (⟨ _ , _ , _ ⟩ , _)) _ = refl _ from∘to : ∀ b A≃B → _↠_.to (≅↠≃ b univ) (_↠_.from (BM.≅↠≊ b univ) (B.≅→≊ b (_↠_.from (≅↠≃ b univ) A≃B))) ≡ A≃B from∘to ⊠ _ = Eq.lift-equality ext (refl _) -- The right-to-left direction of ≃≃≊ maps bi-invertible lenses to -- their getter functions. to-from-≃≃≊≡get : (b : Block "id") (univ : Univalence a) (A≊B@(l , _) : [ b ] A ≊ B) → _≃_.to (_≃_.from (≃≃≊ b univ) A≊B) ≡ Lens.get l to-from-≃≃≊≡get ⊠ _ (⟨ _ , _ , _ ⟩ , (⟨ _ , _ , _ ⟩ , _) , (⟨ _ , _ , _ ⟩ , _)) = refl _ -- A variant of ≃≃≊ that works even if A and B live in different -- universes. -- -- This variant came up in a discussion with Andrea Vezzosi. ≃≃≊′ : {A : Set a} {B : Set b} (b-id : Block "id") → Univalence (a ⊔ b) → (A ≃ B) ≃ ([ b-id ] ↑ b A ≊ ↑ a B) ≃≃≊′ {a = a} {b = b} {A = A} {B = B} b-id univ = A ≃ B ↔⟨ inverse $ Eq.≃-preserves-bijections ext Bij.↑↔ Bij.↑↔ ⟩ ↑ b A ≃ ↑ a B ↝⟨ ≃≃≊ b-id univ ⟩□ [ b-id ] ↑ b A ≊ ↑ a B □ -- The right-to-left direction of ≃≃≊′ maps bi-invertible lenses to a -- variant of their getter functions. to-from-≃≃≊′≡get : {A : Set a} {B : Set b} (b-id : Block "id") (univ : Univalence (a ⊔ b)) → (A≊B@(l , _) : [ b-id ] ↑ b A ≊ ↑ a B) → _≃_.to (_≃_.from (≃≃≊′ b-id univ) A≊B) ≡ lower ⊚ Lens.get l ⊚ lift to-from-≃≃≊′≡get ⊠ _ (⟨ _ , _ , _ ⟩ , (⟨ _ , _ , _ ⟩ , _) , (⟨ _ , _ , _ ⟩ , _)) = refl _ -- The getter function of a bi-invertible lens is an equivalence -- (assuming univalence). Is-bi-invertible→Is-equivalence-get : {A : Set a} (b : Block "id") → Univalence a → (l : Lens A B) → Is-bi-invertible b l → Is-equivalence (Lens.get l) Is-bi-invertible→Is-equivalence-get b@⊠ univ l@(⟨ _ , _ , _ ⟩) is-bi-inv@((⟨ _ , _ , _ ⟩ , _) , (⟨ _ , _ , _ ⟩ , _)) = _≃_.is-equivalence (_≃_.from (≃≃≊ b univ) (l , is-bi-inv)) -- If l is a lens between types in the same universe, then there is an -- equivalence between "l is bi-invertible" and "the getter of l is an -- equivalence" (assuming univalence). Is-bi-invertible≃Is-equivalence-get : {A B : Set a} (b : Block "id") → Univalence a → (l : Lens A B) → Is-bi-invertible b l ≃ Is-equivalence (Lens.get l) Is-bi-invertible≃Is-equivalence-get b univ l = Eq.⇔→≃ (BM.Is-bi-invertible-propositional b univ l) (Eq.propositional ext _) (Is-bi-invertible→Is-equivalence-get b univ l) (λ is-equiv → let l′ = ≃→lens′ Eq.⟨ get l , is-equiv ⟩ in $⟨ proj₂ (_≃_.to (≃≃≊ b univ) Eq.⟨ _ , is-equiv ⟩) ⟩ Is-bi-invertible b l′ ↝⟨ subst (Is-bi-invertible b) (sym $ get-equivalence→≡≃→lens′ univ l is-equiv) ⟩□ Is-bi-invertible b l □) where open Lens -- If A is a set, then there is an equivalence between [ b ] A ≊ B and -- [ b ] A ≅ B (assuming univalence). ≊≃≅ : {A B : Set a} (b : Block "id") → Univalence a → Is-set A → ([ b ] A ≊ B) ≃ ([ b ] A ≅ B) ≊≃≅ b univ A-set = ∃-cong λ _ → BM.Is-bi-invertible≃Has-quasi-inverse-domain b univ (Is-set-closed-domain univ A-set) ------------------------------------------------------------------------ -- A category -- If A is a set, then there is an equivalence between A ≃ B and -- [ b ] A ≅ B (assuming univalence). ≃≃≅ : {A B : Set a} (b : Block "≃≃≅") → Univalence a → Is-set A → (A ≃ B) ≃ ([ b ] A ≅ B) ≃≃≅ {A = A} {B = B} b@⊠ univ A-set = A ≃ B ↝⟨ ≃≃≊ b univ ⟩ [ b ] A ≊ B ↝⟨ ≊≃≅ b univ A-set ⟩□ [ b ] A ≅ B □ -- The equivalence ≃≃≅ maps identity to identity. ≃≃≅-id≡id : {A : Set a} (b : Block "≃≃≅") (univ : Univalence a) (A-set : Is-set A) → proj₁ (_≃_.to (≃≃≅ b univ A-set) F.id) ≡ id b ≃≃≅-id≡id ⊠ univ _ = _↔_.from (equality-characterisation₂ univ) (F.id , λ _ → refl _) -- Lenses between sets in the same universe form a precategory -- (assuming univalence). private precategory′ : Block "id" → Univalence a → C.Precategory′ (lsuc a) (lsuc a) precategory′ {a = a} b univ = SET a , (λ (A , A-set) (B , _) → Lens A B , Is-set-closed-domain univ A-set) , id b , _∘_ , left-identity b lzero univ _ , right-identity b lzero univ _ , (λ {_ _ _ _ l₁ l₂ l₃} → associativity lzero lzero lzero univ l₃ l₂ l₁) precategory : Block "precategory" → Univalence a → Precategory (lsuc a) (lsuc a) precategory ⊠ univ .C.Precategory.precategory = block λ b → precategory′ b univ -- Lenses between sets in the same universe form a category -- (assuming univalence). category : Block "category" → Univalence a → Category (lsuc a) (lsuc a) category ⊠ univ = block λ b → C.precategory-with-SET-to-category ext (λ _ _ → univ) (proj₂ $ precategory′ b univ) (λ (_ , A-set) _ → ≃≃≅ b univ A-set) (λ (_ , A-set) → ≃≃≅-id≡id b univ A-set) -- The precategory defined here is equal to the one defined in -- Traditional, if the latter one is lifted (assuming univalence). precategory≡precategory : (b : Block "precategory") → Univalence (lsuc a) → (univ : Univalence a) → precategory b univ ≡ C.lift-precategory-Hom _ Traditional.precategory precategory≡precategory ⊠ univ⁺ univ = block λ b → _↔_.to (C.equality-characterisation-Precategory ext univ⁺ univ⁺) ( F.id , (λ (X , X-set) (Y , _) → Lens X Y ↔⟨ Lens↔Traditional-lens b univ X-set ⟩ Traditional.Lens X Y ↔⟨ inverse Bij.↑↔ ⟩□ ↑ _ (Traditional.Lens X Y) □) , (λ (_ , X-set) → cong lift $ _↔_.from (Traditional.equality-characterisation-for-sets X-set) (refl _)) , (λ (_ , X-set) (_ , Y-set) _ (lift l₁) (lift l₂) → cong lift (∘-lemma b X-set Y-set l₁ l₂)) ) where ∘-lemma : ∀ b (A-set : Is-set A) (B-set : Is-set B) (l₁ : Traditional.Lens B C) (l₂ : Traditional.Lens A B) → Lens.traditional-lens (Lens↔Traditional-lens.from B-set b l₁ ∘ Lens↔Traditional-lens.from A-set b l₂) ≡ l₁ Traditional.Lens-combinators.∘ l₂ ∘-lemma ⊠ A-set _ _ _ = _↔_.from (Traditional.equality-characterisation-for-sets A-set) (refl _) -- The category defined here is equal to the one defined in -- Traditional, if the latter one is lifted (assuming univalence). category≡category : (b : Block "category") → Univalence (lsuc a) → (univ : Univalence a) → category b univ ≡ C.lift-category-Hom _ (Traditional.category univ) category≡category b univ⁺ univ = _↔_.from (C.≡↔precategory≡precategory ext) (Category.precategory (category b univ) ≡⟨ lemma b ⟩ precategory b univ ≡⟨ precategory≡precategory b univ⁺ univ ⟩∎ Category.precategory (C.lift-category-Hom _ (Traditional.category univ)) ∎) where lemma : ∀ b → Category.precategory (category b univ) ≡ precategory b univ lemma ⊠ = refl _
{ "alphanum_fraction": 0.4599145656, "avg_line_length": 36.0516050386, "ext": "agda", "hexsha": "71d74fce8410856ff9b87b963a402a3035062c46", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Saizan/dependent-lenses", "max_forks_repo_path": "src/Lens/Non-dependent/Higher.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Saizan/dependent-lenses", "max_issues_repo_path": "src/Lens/Non-dependent/Higher.agda", "max_line_length": 148, "max_stars_count": null, "max_stars_repo_head_hexsha": "b7921cc6b52858cd7d8a52c183c7a6544d1a4062", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Saizan/dependent-lenses", "max_stars_repo_path": "src/Lens/Non-dependent/Higher.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 31517, "size": 88723 }
open import Categories open import Functors open import RMonads module RMonads.CatofRAdj.TermRAdj {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}} {J : Fun C D}(M : RMonad J) where open import Library open import RAdjunctions open import RMonads.CatofRAdj M open import Categories.Terminal open import RMonads.REM M open import RMonads.REM.Adjunction M open import RAdjunctions.RAdj2RMon open import RMonads.CatofRAdj.TermRAdjObj M open import RMonads.CatofRAdj.TermRAdjHom M open Cat open Fun open RAdj omaplem : {X : Obj CatofAdj} {f : Hom CatofAdj X EMObj} → OMap (HomAdj.K (EMHom {X})) ≅ OMap (HomAdj.K f) omaplem {A}{f} = ext (λ X → AlgEq (fcong X (cong OMap (HomAdj.Rlaw f))) (iext λ Y → dext (λ {g} {g'} p → trans (trans (stripsubst (λ Z → Hom D Z (OMap (R (ObjAdj.adj A)) X)) (HMap (R (ObjAdj.adj A)) (right (ObjAdj.adj A) g)) (fcong Y (cong OMap (ObjAdj.law A)))) (cong' refl (ext (λ g₁ → cong (λ (F : Obj (ObjAdj.E A) → Obj D) → Hom D (F (OMap (L (ObjAdj.adj A)) Y)) (F X)) (cong OMap (HomAdj.Rlaw f)))) (icong' refl (ext (λ Z → cong (λ (F : Obj (ObjAdj.E A) → Obj D) → Hom (ObjAdj.E A) (OMap (L (ObjAdj.adj A)) Y) Z → Hom D (F (OMap (L (ObjAdj.adj A)) Y)) (F Z)) (cong OMap (HomAdj.Rlaw f)))) (icong' refl (ext (λ Z → cong (λ (F : Obj (ObjAdj.E A) → Obj D) → {Y₁ : Obj (ObjAdj.E A)} → Hom (ObjAdj.E A) Z Y₁ → Hom D (F Z) (F Y₁)) (cong OMap (HomAdj.Rlaw f)))) (cong HMap (HomAdj.Rlaw f)) (refl {x = OMap (L (ObjAdj.adj A)) Y})) (refl {x = X})) (refl {x = right (ObjAdj.adj A) g}))) (trans (cong₃ (λ A1 A2 → RAlgMorph.amor {A1}{A2}) (fcong Y (cong OMap (HomAdj.Llaw f))) refl (HomAdj.rightlaw f {Y} {X} {g})) (cong (RAlg.astr (OMap (HomAdj.K f) X)) (trans (stripsubst (Hom D (OMap J Y)) g (fcong X (cong OMap (HomAdj.Rlaw f)))) p)))))) hmaplem : {X : Obj CatofAdj} {f : Hom CatofAdj X EMObj} → {X₁ Y : Obj (ObjAdj.E X)} (f₁ : Hom (ObjAdj.E X) X₁ Y) → HMap (HomAdj.K (EMHom {X})) f₁ ≅ HMap (HomAdj.K f) f₁ hmaplem {A}{V}{X}{Y} f = lemZ (fcong X (omaplem {A} {V})) (fcong Y (omaplem {A} {V})) (cong' refl (ext (λ Z → cong (λ (F : Obj (ObjAdj.E A) → Obj D) → Hom D (F X) (F Y)) (cong OMap (HomAdj.Rlaw V)))) (icong' refl (ext (λ Z → cong (λ (F : Obj (ObjAdj.E A) → Obj D) → Hom (ObjAdj.E A) X Z → Hom D (F X) (F Z)) (cong OMap (HomAdj.Rlaw V)))) (icong' refl (ext (λ Z → cong (λ (F : Obj (ObjAdj.E A) → Obj D) → {Y₁ : Obj (ObjAdj.E A)} → Hom (ObjAdj.E A) Z Y₁ → Hom D (F Z) (F Y₁)) (cong OMap (HomAdj.Rlaw V)))) (cong HMap (HomAdj.Rlaw V)) (refl {x = X})) (refl {x = Y})) (refl {x = f})) uniq : {X : Obj CatofAdj} {f : Hom CatofAdj X EMObj} → EMHom {X} ≅ f uniq {X} {f} = HomAdjEq _ _ (FunctorEq _ _ (omaplem {X} {f}) (iext λ _ → iext λ _ → ext (hmaplem {X}{f}))) EMIsTerm : Term CatofAdj EMObj EMIsTerm = record { t = EMHom; law = uniq}
{ "alphanum_fraction": 0.4601429357, "avg_line_length": 34, "ext": "agda", "hexsha": "58827e1d1dee34177440fdfbfcc6f1c32bfc8956", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z", "max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jmchapman/Relative-Monads", "max_forks_repo_path": "RMonads/CatofRAdj/TermRAdj.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jmchapman/Relative-Monads", "max_issues_repo_path": "RMonads/CatofRAdj/TermRAdj.agda", "max_line_length": 75, "max_stars_count": 21, "max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jmchapman/Relative-Monads", "max_stars_repo_path": "RMonads/CatofRAdj/TermRAdj.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z", "num_tokens": 1300, "size": 3638 }
{-# OPTIONS --without-K --safe #-} open import Algebra module Data.FingerTree {c m} (ℳ : Monoid c m) where open import Data.FingerTree.Measures ℳ open import Data.FingerTree.Structures ℳ open import Data.FingerTree.Cons ℳ open import Data.FingerTree.View ℳ open import Data.FingerTree.Split ℳ
{ "alphanum_fraction": 0.7102803738, "avg_line_length": 21.4, "ext": "agda", "hexsha": "0c62242f58acdf5e83edb1f3d2c1acb77855296d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-indexed-fingertree", "max_forks_repo_path": "src/Data/FingerTree.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-indexed-fingertree", "max_issues_repo_path": "src/Data/FingerTree.agda", "max_line_length": 40, "max_stars_count": 1, "max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-indexed-fingertree", "max_stars_repo_path": "src/Data/FingerTree.agda", "max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z", "max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z", "num_tokens": 92, "size": 321 }
{-# OPTIONS --guardedness #-} module hello-world-prog where open import IO main : Main main = run (putStrLn "Hello, World!")
{ "alphanum_fraction": 0.6929133858, "avg_line_length": 15.875, "ext": "agda", "hexsha": "a9f00ec074b7f6fc112c9404e67213af86c7704c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3f6ea9a742135007ccb2b5f820147a7fc9472b9d", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "avieor/agda-demos", "max_forks_repo_path": "hello-world-prog.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3f6ea9a742135007ccb2b5f820147a7fc9472b9d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "avieor/agda-demos", "max_issues_repo_path": "hello-world-prog.agda", "max_line_length": 37, "max_stars_count": null, "max_stars_repo_head_hexsha": "3f6ea9a742135007ccb2b5f820147a7fc9472b9d", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "avieor/agda-demos", "max_stars_repo_path": "hello-world-prog.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 32, "size": 127 }
module CTL.Modalities.EF where open import FStream.Core open import Library -- Possibly sometime : s₀ ⊧ φ ⇔ ∃ s₀ R s₁ R ... ∃ i . sᵢ ⊧ φ data EF' {ℓ₁ ℓ₂} {C : Container ℓ₁} (props : FStream' C (Set ℓ₂)) : Set (ℓ₁ ⊔ ℓ₂) where alreadyE : head props → EF' props notYetE : E (fmap EF' (inF (tail props))) → EF' props open EF' EF : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream C (Set ℓ₂) → Set (ℓ₁ ⊔ ℓ₂) EF props = APred EF' (inF props) mutual EFₛ' : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream' C (Set ℓ₂) → FStream' {i} C (Set (ℓ₁ ⊔ ℓ₂)) head (EFₛ' props) = EF' props tail (EFₛ' props) = EFₛ (tail props) EFₛ : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} → FStream C (Set ℓ₂) → FStream {i} C (Set (ℓ₁ ⊔ ℓ₂)) inF (EFₛ props) = fmap EFₛ' (inF props)
{ "alphanum_fraction": 0.5757180157, "avg_line_length": 29.4615384615, "ext": "agda", "hexsha": "3afad91129bdd62aa5110c2291a5de4628ddf38a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "zimbatm/condatis", "max_forks_repo_path": "CTL/Modalities/EF.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "zimbatm/condatis", "max_issues_repo_path": "CTL/Modalities/EF.agda", "max_line_length": 61, "max_stars_count": 1, "max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Aerate/condatis", "max_stars_repo_path": "CTL/Modalities/EF.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z", "num_tokens": 353, "size": 766 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Surjection open import Oscar.Class.Smap open import Oscar.Class.Reflexivity open import Oscar.Data.Proposequality module Oscar.Class.Surjidentity where module _ {𝔬₁ 𝔯₁ 𝔬₂ 𝔯₂ ℓ₂} {𝔒₁ : Ø 𝔬₁} {𝔒₂ : Ø 𝔬₂} where module Surjidentity {μ : Surjection.type 𝔒₁ 𝔒₂} (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) (_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) (§ : Smap.type _∼₁_ _∼₂_ μ μ) (ε₁ : Reflexivity.type _∼₁_) (ε₂ : Reflexivity.type _∼₂_) = ℭLASS ((λ {x} {y} → § {x} {y}) , (λ {x} → ε₁ {x}) , (λ {x y} → _∼̇₂_ {x} {y}) , (λ {x} → ε₂ {x})) (∀ {x} → § (ε₁ {x}) ∼̇₂ ε₂) module _ {μ : Surjection.type 𝔒₁ 𝔒₂} {_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁} {_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂} {_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂} {§ : Smap.type _∼₁_ _∼₂_ μ μ} {ε₁ : Reflexivity.type _∼₁_} {ε₂ : Reflexivity.type _∼₂_} where surjidentity = Surjidentity.method _∼₁_ _∼₂_ _∼̇₂_ (λ {x} {y} → § {x} {y}) (λ {x} → ε₁ {x}) (λ {x} → ε₂ {x}) module Surjidentity! (∼₁ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) (∼₂ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂) (∼̇₂ : ∀ {x y} → ∼₂ x y → ∼₂ x y → Ø ℓ₂) ⦃ _ : Surjection.class 𝔒₁ 𝔒₂ ⦄ ⦃ _ : Smap!.class ∼₁ ∼₂ ⦄ ⦃ _ : Reflexivity.class ∼₁ ⦄ ⦃ _ : Reflexivity.class ∼₂ ⦄ = Surjidentity {surjection} ∼₁ ∼₂ ∼̇₂ § ε ε module _ (_∼₁_ : 𝔒₁ → 𝔒₁ → Ø 𝔯₁) {_∼₂_ : 𝔒₂ → 𝔒₂ → Ø 𝔯₂} (_∼̇₂_ : ∀ {x y} → x ∼₂ y → x ∼₂ y → Ø ℓ₂) ⦃ _ : Surjection.class 𝔒₁ 𝔒₂ ⦄ ⦃ _ : Smap!.class _∼₁_ _∼₂_ ⦄ ⦃ _ : Reflexivity.class _∼₁_ ⦄ ⦃ _ : Reflexivity.class _∼₂_ ⦄ where surjidentity[_,_] = Surjidentity.method {surjection} _∼₁_ _∼₂_ _∼̇₂_ § ε ε
{ "alphanum_fraction": 0.5189125296, "avg_line_length": 31.3333333333, "ext": "agda", "hexsha": "2042b2c14737b7d571ace0e3f5c55332746b30f7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Surjidentity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Surjidentity.agda", "max_line_length": 131, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Surjidentity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 928, "size": 1692 }
-- Andreas, 2011-10-04, transcription of Dan Doel's post on the Agda list {-# OPTIONS --experimental-irrelevance #-} module IrrelevantMatchRefl where postulate Level : Set lzero : Level lsuc : (i : Level) → Level _⊔_ : Level -> Level -> Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO lzero #-} {-# BUILTIN LEVELSUC lsuc #-} {-# BUILTIN LEVELMAX _⊔_ #-} infixl 6 _⊔_ data _≡_ {i : Level}{A : Set i}(a : A) : A → Set where refl : a ≡ a sym : ∀ {i}{A B : Set i} → A ≡ B → B ≡ A sym refl = refl -- irrelevant subst should be rejected, because it suggests -- that the equality proof is irrelevant also for reduction subst : ∀ {i j}{A : Set i}(P : A → Set j){a b : A} → .(a ≡ b) → P a → P b subst P refl x = x postulate D : Set lie : (D → D) ≡ D -- the following two substs may not reduce! ... abs : (D → D) → D abs f = subst (λ T → T) lie f app : D → D → D app d = subst (λ T → T) (sym lie) d ω : D ω = abs (λ d → app d d) -- ... otherwise Ω loops Ω : D Ω = app ω ω -- ... and this would be a real fixed-point combinator Y : (D → D) → D Y f = app δ δ where δ = abs (λ x → f (app x x)) K : D → D K x = abs (λ y → x) K∞ : D K∞ = Y K mayloop : K∞ ≡ abs (λ y → K∞) mayloop = refl -- gives error D != D → D
{ "alphanum_fraction": 0.5642458101, "avg_line_length": 20.5409836066, "ext": "agda", "hexsha": "c75f369bff6e2f168a8325bd19c8b1f9f42fdb7b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dagit/agda", "max_forks_repo_path": "test/fail/IrrelevantMatchRefl.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dagit/agda", "max_issues_repo_path": "test/fail/IrrelevantMatchRefl.agda", "max_line_length": 73, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/IrrelevantMatchRefl.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z", "num_tokens": 481, "size": 1253 }
module Common.Prelude where {-# IMPORT Common.FFI #-} import Common.Level data ⊥ : Set where record ⊤ : Set where postulate Char : Set {-# BUILTIN CHAR Char #-} {-# COMPILED_TYPE Char Char #-} postulate String : Set {-# BUILTIN STRING String #-} {-# COMPILED_TYPE String String #-} data Nat : Set where zero : Nat suc : Nat → Nat {-# BUILTIN NATURAL Nat #-} {-# COMPILED_DATA Nat Common.FFI.Nat Common.FFI.Zero Common.FFI.Suc #-} {-# COMPILED_JS Nat function (x,v) { return (x < 1? v.zero(): v.suc(x-1)); } #-} {-# COMPILED_JS zero 0 #-} {-# COMPILED_JS suc function (x) { return x+1; } #-} _+_ : Nat → Nat → Nat zero + n = n suc m + n = suc (m + n) {-# COMPILED_JS _+_ function (x) { return function (y) { return x+y; }; } #-} _∸_ : Nat → Nat → Nat m ∸ zero = m zero ∸ _ = zero suc m ∸ suc n = m ∸ n {-# COMPILED_JS _∸_ function (x) { return function (y) { return Math.max(0,x-y); }; } #-} pred : Nat → Nat pred zero = zero pred (suc n) = n data List A : Set where [] : List A _∷_ : A → List A → List A infixr 40 _∷_ _++_ _++_ : ∀ {A : Set} → List A → List A → List A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-} {-# COMPILED_DATA List [] [] (:) #-} data Bool : Set where true false : Bool if_then_else_ : ∀ {A : Set} → Bool → A → A → A if true then t else f = t if false then t else f = f {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} {-# COMPILED_DATA Bool Bool True False #-} {-# COMPILED_JS Bool function (x,v) { return (x? v["true"](): v["false"]()); } #-} {-# COMPILED_JS true true #-} {-# COMPILED_JS false false #-} data Unit : Set where unit : Unit {-# COMPILED_DATA Unit () () #-} postulate IO : Set → Set {-# COMPILED_TYPE IO IO #-} {-# BUILTIN IO IO #-}
{ "alphanum_fraction": 0.5623995715, "avg_line_length": 19.8617021277, "ext": "agda", "hexsha": "cd9975abd48bbfde684513447c9a73fde5408911", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/Common/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/Common/Prelude.agda", "max_line_length": 89, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/Common/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 615, "size": 1867 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Sets.EquivalenceRelations open import Setoids.Setoids module Setoids.DirectSum {m n o p : _} {A : Set m} {B : Set n} (R : Setoid {m} {o} A) (S : Setoid {n} {p} B) where directSumSetoid : Setoid {m ⊔ n} (A || B) Setoid._∼_ directSumSetoid (inl x) (inl y) = embedLevel {o} {p} (Setoid._∼_ R x y) Setoid._∼_ directSumSetoid (inl x) (inr y) = False' Setoid._∼_ directSumSetoid (inr x) (inl y) = False' Setoid._∼_ directSumSetoid (inr x) (inr y) = embedLevel {p} {o} (Setoid._∼_ S x y) Equivalence.reflexive (Setoid.eq directSumSetoid) {inl x} = Equivalence.reflexive (Setoid.eq R) {x} ,, record {} Equivalence.reflexive (Setoid.eq directSumSetoid) {inr x} = Equivalence.reflexive (Setoid.eq S) {x} ,, record {} Equivalence.symmetric (Setoid.eq directSumSetoid) {inl x} {inl y} (x=y ,, _) = (Equivalence.symmetric (Setoid.eq R) x=y) ,, record {} Equivalence.symmetric (Setoid.eq directSumSetoid) {inr x} {inr y} (x=y ,, _) = (Equivalence.symmetric (Setoid.eq S) x=y) ,, record {} Equivalence.transitive (Setoid.eq directSumSetoid) {inl x} {inl y} {inl z} (x=y ,, _) (y=z ,, _) = Equivalence.transitive (Setoid.eq R) x=y y=z ,, record {} Equivalence.transitive (Setoid.eq directSumSetoid) {inr x} {inr y} {inr z} (x=y ,, _) (y=z ,, _) = Equivalence.transitive (Setoid.eq S) x=y y=z ,, record {}
{ "alphanum_fraction": 0.6775312067, "avg_line_length": 68.6666666667, "ext": "agda", "hexsha": "2920760d05b33f9ce78cf7293983e1e478a34dde", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Setoids/DirectSum.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Setoids/DirectSum.agda", "max_line_length": 156, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Setoids/DirectSum.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 525, "size": 1442 }
open import Agda.Builtin.Nat open import Agda.Builtin.Equality postulate ⊤ ⊥ : Set _&_ : Set → Set → Set _≤_ : Nat → Nat → Set {-# TERMINATING #-} _∣_ : Nat → Nat → Set m ∣ zero = ⊤ zero ∣ suc n = ⊥ suc m ∣ suc n = (suc m ≤ suc n) & (suc m ∣ (n - m)) variable m n : Nat postulate divide-to-nat : n ∣ m → Nat trivial : m ≡ n divide-to-nat-correct : (e : m ∣ n) → divide-to-nat e * n ≡ m divide-to-nat-correct e = trivial
{ "alphanum_fraction": 0.5701357466, "avg_line_length": 18.4166666667, "ext": "agda", "hexsha": "cbc389bd2033dd620b687c3d3fd2bb7756a3339e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue3134.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue3134.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue3134.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 182, "size": 442 }
{-# OPTIONS --without-K #-} module hott.equivalence.core where open import equality.core using (_≡_ ; refl ; ap) open import sum using (Σ ; proj₁ ; proj₂ ; _,_) open import level using (_⊔_) open import hott.level.core using (contr ; prop ; _⁻¹_) open import function.core using (_$_) open import function.isomorphism.core using (_≅_ ; iso) -- a function is a weak equivalence, if the inverse images of all points are contractible weak-equiv : ∀ {i k} {X : Set i} {Y : Set k} (f : X → Y) → Set (i ⊔ k) weak-equiv {_} {_} {X} {Y} f = (y : Y) → contr $ f ⁻¹ y -- weak equivalences _≈_ : ∀ {i j} (X : Set i) (Y : Set j) → Set _ X ≈ Y = Σ (X → Y) λ f → weak-equiv f apply≈ : ∀ {i j} {X : Set i}{Y : Set j} → X ≈ Y → X → Y apply≈ = proj₁ ≈⇒≅ : ∀ {i j} {X : Set i} {Y : Set j} → X ≈ Y → X ≅ Y ≈⇒≅ {X = X}{Y} (f , we) = iso f g iso₁ iso₂ where g : Y → X g y = proj₁ (proj₁ (we y)) iso₁ : (x : X) → g (f x) ≡ x iso₁ x = ap proj₁ (proj₂ (we (f x)) (x , refl)) iso₂ : (y : Y) → f (g y) ≡ y iso₂ y = proj₂ (proj₁ (we y)) invert≈ : ∀ {i j} {X : Set i}{Y : Set j} → X ≈ Y → Y → X invert≈ (_ , we) y = proj₁ (proj₁ (we y))
{ "alphanum_fraction": 0.5406824147, "avg_line_length": 31.75, "ext": "agda", "hexsha": "13a3cde54a3536630517ec9bdab5e445a5562e64", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/hott/equivalence/core.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott/equivalence/core.agda", "max_line_length": 89, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "hott/equivalence/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 468, "size": 1143 }
{-# OPTIONS --cubical --safe #-} module Data.Binary.Increment.Strict where open import Prelude open import Strict open import Data.Binary.Definition open import Data.Bits.Strict open import Data.Binary.Increment inc′ : 𝔹 → 𝔹 inc′ 0ᵇ = 1ᵇ 0ᵇ inc′ (1ᵇ xs) = 2ᵇ xs inc′ (2ᵇ xs) = 0∷! inc′ xs inc′≡inc : ∀ xs → inc′ xs ≡ inc xs inc′≡inc 0ᵇ = refl inc′≡inc (1ᵇ xs) = refl inc′≡inc (2ᵇ xs) = 0∷!≡0∷ (inc′ xs) ; cong 1ᵇ_ (inc′≡inc xs)
{ "alphanum_fraction": 0.6498855835, "avg_line_length": 21.85, "ext": "agda", "hexsha": "a43042b4a433b00afab4b68a414005d83e2c01d0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Binary/Increment/Strict.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Binary/Increment/Strict.agda", "max_line_length": 60, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Binary/Increment/Strict.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 204, "size": 437 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} open import Cubical.Core.Everything open import Cubical.Algebra.Group module Cubical.Algebra.Group.Coset {ℓ} (G : Group ℓ) where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Function using (id; _∘_; flip) open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Functions.Embedding open import Cubical.Algebra.Group.Subgroup open import Cubical.Relation.Unary open import Cubical.Relation.Unary.Properties open import Cubical.Relation.Binary using (Reflexive; Symmetric; Transitive) open import Cubical.HITs.PropositionalTruncation open import Cubical.Relation.Binary.Reasoning.Equality open Group G open GroupLemmas G private variable ℓ′ : Level _≅[_]ˡ_ : ⟨ G ⟩ → Subgroup G ℓ′ → ⟨ G ⟩ → hProp _ x ≅[ H ]ˡ y = Subgroup.Member H (x ⁻¹ • y) module _ (H : Subgroup G ℓ′) where private module H = Subgroup H ≅ˡ-reflexive : Reflexive _≅[ H ]ˡ_ ≅ˡ-reflexive = subst⁻ (_∈ H.Member) (inverseˡ _) H.preservesId ≅ˡ-symmetric : Symmetric _≅[ H ]ˡ_ ≅ˡ-symmetric {x} {y} = subst (_∈ H.Member) (invDistr (x ⁻¹) y ∙ cong (y ⁻¹ •_) (invInvo x)) ∘ H.preservesInv ≅ˡ-transitive : Transitive _≅[ H ]ˡ_ ≅ˡ-transitive {i} {j} {k} x y = subst (_∈ H.Member) eq (H.preservesOp x y) where eq : _ eq = (i ⁻¹ • j) • (j ⁻¹ • k) ≡˘⟨ assoc _ _ _ ⟩ ((i ⁻¹ • j) • j ⁻¹) • k ≡⟨ cong (_• k) (assoc _ _ _) ⟩ (i ⁻¹ • (j • j ⁻¹)) • k ≡⟨ cong (λ v → (i ⁻¹ • v) • k) (inverseʳ j) ⟩ (i ⁻¹ • ε) • k ≡⟨ cong (_• k) (identityʳ (i ⁻¹)) ⟩ i ⁻¹ • k ∎ infix 9 _<•_ infixr 9 _<•′_ _<•′_ : ⟨ G ⟩ → Pred ⟨ G ⟩ ℓ′ → Pred ⟨ G ⟩ _ g <•′ H = (g •_) ⊣ H _<•_ : ⟨ G ⟩ → Subgroup G ℓ′ → Pred ⟨ G ⟩ _ g <• H = g <•′ Subgroup.Member H module _ (H : Pred ⟨ G ⟩ ℓ′) where cosetˡ-identity→ : ε <•′ H ⊆ H cosetˡ-identity→ = rec (isProp[ H ] _) λ ((h , subh) , εh≡x) → subst (_∈ H) (sym (identityˡ h) ∙ εh≡x) subh cosetˡ-identity← : H ⊆ ε <•′ H cosetˡ-identity← x∈H = ∣ (_ , x∈H) , identityˡ _ ∣ cosetˡ-identity : ε <•′ H ⇔ H cosetˡ-identity = cosetˡ-identity→ , cosetˡ-identity← cosetˡ-assoc→ : ∀ a b → (a • b) <•′ H ⊆ a <•′ b <•′ H cosetˡ-assoc→ a b = map λ ((h , subh) , abh≡x) → (b • h , ∣ (h , subh) , refl ∣) , sym (assoc _ _ _) ∙ abh≡x cosetˡ-assoc← : ∀ a b → a <•′ b <•′ H ⊆ (a • b) <•′ H cosetˡ-assoc← a b {x} = rec squash λ ((h , subh) , ah≡x) → map (λ ((g , subg) , bg≡h) → (g , subg) , ( a • b • g ≡⟨ assoc a b g ⟩ a • (b • g) ≡⟨ cong (a •_) bg≡h ⟩ a • h ≡⟨ ah≡x ⟩ x ∎ )) subh cosetˡ-assoc : ∀ a b → (a • b) <•′ H ≡ a <•′ b <•′ H cosetˡ-assoc a b = ⇔toPath _ _ (cosetˡ-assoc→ a b , cosetˡ-assoc← a b) module _ (H : Subgroup G ℓ′) where private module H = Subgroup H g∈gH : ∀ g → g ∈ g <• H g∈gH g = ∣ H.ε , identityʳ _ ∣ ≅-cosetˡ→ : ∀ x y → ⟨ x ≅[ H ]ˡ y ⟩ → x <• H ⇔ y <• H ≅-cosetˡ→ x y x≅y = xH⊆yH , xH⊇yH where xH⊆yH : x <• H ⊆ y <• H xH⊆yH {a} = map λ ((h , subh) , xh≡a) → (y ⁻¹ • x • h , H.preservesOp (≅ˡ-symmetric H x≅y) subh) , ( y • (y ⁻¹ • x • h) ≡˘⟨ assoc y (y ⁻¹ • x) h ⟩ y • (y ⁻¹ • x) • h ≡˘⟨ cong (_• h) (assoc y (y ⁻¹) x) ⟩ y • y ⁻¹ • x • h ≡⟨ cong (λ v → v • x • h) (inverseʳ y) ⟩ ε • x • h ≡⟨ cong (_• h) (identityˡ x) ⟩ x • h ≡⟨ xh≡a ⟩ a ∎) xH⊇yH : x <• H ⊇ y <• H xH⊇yH {a} = map λ ((h , subh) , yh≡a) → (x ⁻¹ • y • h , H.preservesOp x≅y subh) , ( x • (x ⁻¹ • y • h) ≡˘⟨ assoc x (x ⁻¹ • y) h ⟩ x • (x ⁻¹ • y) • h ≡˘⟨ cong (_• h) (assoc x (x ⁻¹) y) ⟩ x • x ⁻¹ • y • h ≡⟨ cong (λ v → v • y • h) (inverseʳ x) ⟩ ε • y • h ≡⟨ cong (_• h) (identityˡ y) ⟩ y • h ≡⟨ yh≡a ⟩ a ∎) ≅-cosetˡ← : ∀ x y → x <• H ⇔ y <• H → ⟨ x ≅[ H ]ˡ y ⟩ ≅-cosetˡ← x y (xH⊆yH , yH⊆xH) = rec ((_ ≅[ H ]ˡ _) .snd) (λ ((h , subh) , yh≡x) → subst (_∈ H.Member) (cong _⁻¹ ( h ≡˘⟨ identityˡ h ⟩ ε • h ≡˘⟨ cong (_• h) (inverseˡ y) ⟩ y ⁻¹ • y • h ≡⟨ assoc _ _ _ ⟩ y ⁻¹ • (y • h) ≡⟨ cong (y ⁻¹ •_) yh≡x ⟩ y ⁻¹ • x ∎ ) ∙ invDistr (y ⁻¹) x ∙ cong (x ⁻¹ •_) (invInvo y)) (H.preservesInv subh) ) (xH⊆yH {x} (g∈gH x)) ≅-cosetˡ : ∀ x y → ⟨ x ≅[ H ]ˡ y ⟩ ≃ (x <• H ⇔ y <• H) ≅-cosetˡ x y = isPropEquiv→Equiv ((x ≅[ H ]ˡ y) .snd) (isProp⇔ (x <• H) (y <• H)) (≅-cosetˡ→ x y) (≅-cosetˡ← x y) cosetˡ-idem→ : ((h , _) : ⟨ H ⟩) → h <• H ⊆ H.Member cosetˡ-idem→ (h , subh) = rec (isProp[ H.Member ] _) λ ((g , subg) , hg≡x) → subst (_∈ H.Member) hg≡x (H.preservesOp subh subg) cosetˡ-idem← : ((h , _) : ⟨ H ⟩) → H.Member ⊆ h <• H cosetˡ-idem← (h , subh) {x} subx = ∣ (h ⁻¹ • x , H.preservesOp (H.preservesInv subh) subx) , ( h • (h ⁻¹ • x) ≡˘⟨ assoc h (h ⁻¹) x ⟩ (h • h ⁻¹) • x ≡⟨ cong (_• x) (inverseʳ h) ⟩ ε • x ≡⟨ identityˡ x ⟩ x ∎) ∣ cosetˡ-idem : ((h , _) : ⟨ H ⟩) → h <• H ⇔ H.Member cosetˡ-idem h = cosetˡ-idem→ h , cosetˡ-idem← h _≅[_]ʳ_ : ⟨ G ⟩ → Subgroup G ℓ′ → ⟨ G ⟩ → hProp _ x ≅[ H ]ʳ y = Subgroup.Member H (x • y ⁻¹) module _ (H : Subgroup G ℓ′) where private module H = Subgroup H ≅ʳ-reflexive : Reflexive _≅[ H ]ʳ_ ≅ʳ-reflexive = subst⁻ (_∈ H.Member) (inverseʳ _) H.preservesId ≅ʳ-symmetric : Symmetric _≅[ H ]ʳ_ ≅ʳ-symmetric {x} {y} = subst (_∈ H.Member) (invDistr x (y ⁻¹) ∙ cong (_• x ⁻¹) (invInvo y)) ∘ H.preservesInv ≅ʳ-transitive : Transitive _≅[ H ]ʳ_ ≅ʳ-transitive {i} {j} {k} x y = subst (_∈ H.Member) eq (H.preservesOp x y) where eq : _ eq = (i • j ⁻¹) • (j • k ⁻¹) ≡˘⟨ assoc _ _ _ ⟩ ((i • j ⁻¹) • j) • k ⁻¹ ≡⟨ cong (_• k ⁻¹) (assoc _ _ _) ⟩ (i • (j ⁻¹ • j)) • k ⁻¹ ≡⟨ cong (λ v → (i • v) • k ⁻¹) (inverseˡ j) ⟩ (i • ε) • k ⁻¹ ≡⟨ cong (_• k ⁻¹) (identityʳ i) ⟩ i • k ⁻¹ ∎ infix 9 _•>_ infixl 9 _•>′_ _•>′_ : Pred ⟨ G ⟩ ℓ′ → ⟨ G ⟩ → Pred ⟨ G ⟩ _ H •>′ g = (_• g) ⊣ H _•>_ : Subgroup G ℓ′ → ⟨ G ⟩ → Pred ⟨ G ⟩ _ H •> g = Subgroup.Member H •>′ g module _ (H : Pred ⟨ G ⟩ ℓ′) where cosetʳ-identity→ : H •>′ ε ⊆ H cosetʳ-identity→ = rec (isProp[ H ] _) λ ((h , subh) , hε≡x) → subst (_∈ H) (sym (identityʳ h) ∙ hε≡x) subh cosetʳ-identity← : H ⊆ H •>′ ε cosetʳ-identity← x∈H = ∣ (_ , x∈H) , identityʳ _ ∣ cosetʳ-identity : H •>′ ε ⇔ H cosetʳ-identity = cosetʳ-identity→ , cosetʳ-identity← cosetʳ-assoc→ : ∀ a b → H •>′ (a • b) ⊆ H •>′ a •>′ b cosetʳ-assoc→ a b = map λ ((h , subh) , hab≡x) → (h • a , ∣ (h , subh) , refl ∣) , assoc _ _ _ ∙ hab≡x cosetʳ-assoc← : ∀ a b → H •>′ a •>′ b ⊆ H •>′ (a • b) cosetʳ-assoc← a b {x} = rec squash λ ((h , subh) , hb≡x) → map (λ ((g , subg) , ga≡h) → (g , subg) , ( g • (a • b) ≡˘⟨ assoc g a b ⟩ (g • a) • b ≡⟨ cong (_• b) ga≡h ⟩ h • b ≡⟨ hb≡x ⟩ x ∎ )) subh cosetʳ-assoc : ∀ a b → H •>′ (a • b) ≡ H •>′ a •>′ b cosetʳ-assoc a b = ⇔toPath _ _ (cosetʳ-assoc→ a b , cosetʳ-assoc← a b) module _ (H : Subgroup G ℓ′) where private module H = Subgroup H g∈Hg : ∀ g → g ∈ H •> g g∈Hg g = ∣ H.ε , identityˡ _ ∣ ≅-cosetʳ→ : ∀ x y → ⟨ x ≅[ H ]ʳ y ⟩ → H •> x ⇔ H •> y ≅-cosetʳ→ x y x≅y = Hx⊆Hy , Hx⊇Hy where Hx⊆Hy : H •> x ⊆ H •> y Hx⊆Hy {a} = map λ ((h , subh) , hx≡a) → (h • (x • y ⁻¹) , H.preservesOp subh x≅y) , ( h • (x • y ⁻¹) • y ≡˘⟨ cong (_• y) (assoc h x (y ⁻¹)) ⟩ h • x • y ⁻¹ • y ≡⟨ assoc (h • x) (y ⁻¹) y ⟩ (h • x) • (y ⁻¹ • y) ≡⟨ cong (h • x •_) (inverseˡ y) ⟩ h • x • ε ≡⟨ identityʳ (h • x) ⟩ h • x ≡⟨ hx≡a ⟩ a ∎) Hx⊇Hy : H •> x ⊇ H •> y Hx⊇Hy {a} = map λ ((h , subh) , hy≡a) → (h • (y • x ⁻¹) , H.preservesOp subh (≅ʳ-symmetric H x≅y)) , ( h • (y • x ⁻¹) • x ≡˘⟨ cong (_• x) (assoc h y (x ⁻¹)) ⟩ h • y • x ⁻¹ • x ≡⟨ assoc (h • y) (x ⁻¹) x ⟩ (h • y) • (x ⁻¹ • x) ≡⟨ cong (h • y •_) (inverseˡ x) ⟩ h • y • ε ≡⟨ identityʳ (h • y) ⟩ h • y ≡⟨ hy≡a ⟩ a ∎) ≅-cosetʳ← : ∀ x y → H •> x ⇔ H •> y → ⟨ x ≅[ H ]ʳ y ⟩ ≅-cosetʳ← x y (Hx⊆Hy , Hy⊆Hx) = rec ((_ ≅[ H ]ʳ _) .snd) (λ ((h , subh) , hy≡x) → subst (_∈ H.Member) ( h ≡˘⟨ identityʳ h ⟩ h • ε ≡˘⟨ cong (h •_) (inverseʳ y) ⟩ h • (y • y ⁻¹) ≡˘⟨ assoc h y (y ⁻¹) ⟩ (h • y) • y ⁻¹ ≡⟨ cong (_• y ⁻¹) hy≡x ⟩ x • y ⁻¹ ∎ ) subh ) (Hx⊆Hy {x} (g∈Hg x)) ≅-cosetʳ : ∀ x y → ⟨ x ≅[ H ]ʳ y ⟩ ≃ (H •> x ⇔ H •> y) ≅-cosetʳ x y = isPropEquiv→Equiv ((x ≅[ H ]ʳ y) .snd) (isProp⇔ (H •> x) (H •> y)) (≅-cosetʳ→ x y) (≅-cosetʳ← x y) cosetʳ-idem→ : ((h , _) : ⟨ H ⟩) → H •> h ⊆ H.Member cosetʳ-idem→ (h , subh) = rec (isProp[ H.Member ] _) λ ((g , subg) , gh≡x) → subst (_∈ H.Member) gh≡x (H.preservesOp subg subh) cosetʳ-idem← : ((h , _) : ⟨ H ⟩) → H.Member ⊆ H •> h cosetʳ-idem← (h , subh) {x} subx = ∣ (x • h ⁻¹ , H.preservesOp subx (H.preservesInv subh)) , ( (x • h ⁻¹) • h ≡⟨ assoc x (h ⁻¹) h ⟩ x • (h ⁻¹ • h) ≡⟨ cong (x •_) (inverseˡ h) ⟩ x • ε ≡⟨ identityʳ x ⟩ x ∎) ∣ cosetʳ-idem : ((h , _) : ⟨ H ⟩) → H •> h ⇔ H.Member cosetʳ-idem h = cosetʳ-idem→ h , cosetʳ-idem← h
{ "alphanum_fraction": 0.3969863269, "avg_line_length": 36.4440677966, "ext": "agda", "hexsha": "dc54c91703a45619458b6d753e635bfc3c440ee1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bijan2005/univalent-foundations", "max_forks_repo_path": "Cubical/Algebra/Group/Coset.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bijan2005/univalent-foundations", "max_issues_repo_path": "Cubical/Algebra/Group/Coset.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bijan2005/univalent-foundations", "max_stars_repo_path": "Cubical/Algebra/Group/Coset.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4794, "size": 10751 }
open import Agda.Builtin.List open import Agda.Builtin.Nat open import Agda.Builtin.Unit open import Agda.Builtin.Reflection pattern vArg x = arg (arg-info visible (modality relevant quantity-ω)) x make2 : Term → TC ⊤ make2 hole = bindTC (normalise (def (quote _+_) (vArg (lit (nat 1)) ∷ vArg (lit (nat 1)) ∷ []))) (unify hole) macro tester : Term → TC ⊤ tester hole = onlyReduceDefs (quote _+_ ∷ []) (make2 hole) _ = tester
{ "alphanum_fraction": 0.6928406467, "avg_line_length": 27.0625, "ext": "agda", "hexsha": "83f26ed12f43ba5ffa088121272c38a9fe640fda", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue5469.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue5469.agda", "max_line_length": 109, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue5469.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 142, "size": 433 }
-- a simple error monad module error where open import level open import string infixr 1 _≫=err_ _≫err_ data error-t{ℓ}(A : Set ℓ) : Set ℓ where no-error : A → error-t A yes-error : string → error-t A _≫=err_ : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → error-t A → (A → error-t B) → error-t B (no-error a) ≫=err f = f a (yes-error e) ≫=err _ = yes-error e _≫err_ : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'} → error-t A → error-t B → error-t B a ≫err b = a ≫=err λ _ → b
{ "alphanum_fraction": 0.5804347826, "avg_line_length": 23, "ext": "agda", "hexsha": "45d7126d3a68e2b8293eac2f7a08dffb0b8989aa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "error.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "error.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "error.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 201, "size": 460 }
------------------------------------------- -- This file contains basic definitions. -- ------------------------------------------- module Basics where open import Level data ⊥-poly {l : Level} : Set l where ⊥-poly-elim : ∀ {l w} {Whatever : Set w} → ⊥-poly {l} → Whatever ⊥-poly-elim ()
{ "alphanum_fraction": 0.4262295082, "avg_line_length": 25.4166666667, "ext": "agda", "hexsha": "2966cae708ad6e70042228ea1fd0bd48aafc3728", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "setoid-cats/Basics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "setoid-cats/Basics.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "setoid-cats/Basics.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 76, "size": 305 }
module leftpad where open import Agda.Builtin.Nat renaming (Nat to ℕ) open import Data.Nat.Properties open import Data.Vec open import Data.Product open import Function open import Relation.Binary.PropositionalEquality data LeOrGt : ℕ → ℕ → Set where le : ∀ m k → LeOrGt m (k + m) gt : ∀ m k → LeOrGt (suc k + m) m compare : ∀ m n → LeOrGt m n compare zero n = cast $ le 0 n where cast = subst (LeOrGt 0) (+-identityʳ n) compare (suc m) zero = cast $ gt 0 m where cast = subst (flip LeOrGt 0) (+-identityʳ (suc m)) compare (suc m) (suc n) with compare m n ... | le .m k = cast $ le (suc m) k where cast = subst (LeOrGt (suc m)) (+-suc k m) ... | gt .n k = cast $ gt (suc n) k where cast = subst (flip LeOrGt (suc n) ∘′ suc) (+-suc k n) _⊔_ : ℕ → ℕ → ℕ m ⊔ n with compare m n ... | le _ _ = n ... | gt _ _ = m module _ {a} {A : Set a} (x : A) where data LeftPad {n : ℕ} (xs : Vec A n) : ∀ m → Vec A m → Set where Padded : ∀ k → LeftPad xs (k + n) (replicate {n = k} x ++ xs) leftPad : ∀ n m (xs : Vec A n) → ∃ (LeftPad xs (n ⊔ m)) leftPad n m xs with compare n m ... | le .n k = , Padded k ... | gt .m k = , Padded 0
{ "alphanum_fraction": 0.5865970409, "avg_line_length": 29.4615384615, "ext": "agda", "hexsha": "2a9755059e57997df931efde00228bd6831312ac", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2021-11-24T10:17:34.000Z", "max_forks_repo_forks_event_min_datetime": "2018-05-15T21:48:31.000Z", "max_forks_repo_head_hexsha": "4c28fb7c10710b66c4ebb72c3a4b0ec8d2ba4469", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "RomainGehrig/lets-prove-leftpad", "max_forks_repo_path": "agda/leftpad.agda", "max_issues_count": 32, "max_issues_repo_head_hexsha": "4c28fb7c10710b66c4ebb72c3a4b0ec8d2ba4469", "max_issues_repo_issues_event_max_datetime": "2021-12-03T09:56:05.000Z", "max_issues_repo_issues_event_min_datetime": "2018-05-15T22:32:16.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "RomainGehrig/lets-prove-leftpad", "max_issues_repo_path": "agda/leftpad.agda", "max_line_length": 65, "max_stars_count": 443, "max_stars_repo_head_hexsha": "4c28fb7c10710b66c4ebb72c3a4b0ec8d2ba4469", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "RomainGehrig/lets-prove-leftpad", "max_stars_repo_path": "agda/leftpad.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-27T16:48:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T01:35:53.000Z", "num_tokens": 457, "size": 1149 }
{-# OPTIONS --rewriting #-} module Term.Core where open import Context open import Type open import Function open import Relation.Binary.PropositionalEquality hiding ([_]) open import Data.Empty open import Data.Unit.Base open import Data.Sum.Base {-# BUILTIN REWRITE _≡_ #-} {-# REWRITE foldlᶜ-▻-ε #-} {-# REWRITE mapᶜ-▻▻ #-} {-# REWRITE keep-id #-} {-# REWRITE dupl-keep-vs #-} {-# REWRITE renᵗ-id #-} {-# REWRITE renᵗ-∘ #-} {-# REWRITE subᵗ-idᵉ #-} {-# REWRITE subᵗ-renᵗ #-} {-# REWRITE subᵗ-Var #-} {-# REWRITE inject-foldr-⇒-renᵗ #-} {-# REWRITE inject-foldr-⇒-subᵗ #-} infix 3 _⊢_ infix 4 Λ_ ƛ_ infixl 7 _·_ infix 9 _[_] unfold : ∀ {Θ κ} -> Θ ⊢ᵗ (κ ⇒ᵏ ⋆) ⇒ᵏ κ ⇒ᵏ ⋆ -> Θ ⊢ᵗ κ -> Θ ⊢ᵗ ⋆ unfold ψ α = normalize $ ψ ∙ Lam (μ (shiftᵗ ψ) (Var vz)) ∙ α data _⊢_ : ∀ {Θ} -> Con (Star Θ) -> Star Θ -> Set where var : ∀ {Θ Γ} {α : Star Θ} -> α ∈ Γ -> Γ ⊢ α Λ_ : ∀ {Θ Γ σ} {α : Star (Θ ▻ σ)} -> shiftᶜ Γ ⊢ α -> Γ ⊢ π σ α -- A normalizing at the type level type instantiation. _[_] : ∀ {Θ Γ σ} {β : Star (Θ ▻ σ)} -> Γ ⊢ π σ β -> (α : Θ ⊢ᵗ σ) -> Γ ⊢ β [ α ]ᵗ -- A non-normalizing at the type level type instantiation. _<_> : ∀ {Θ Γ σ} {β : Star (Θ ▻ σ)} -> Γ ⊢ π σ β -> (α : Θ ⊢ᵗ σ) -> Γ ⊢ β < α >ᵗ -- A shorthand for `_< Var vz >` with more convenient computation at the type level. _<> : ∀ {Θ σ Γ} {β : Star (Θ ▻ σ ▻ σ)} -> Γ ⊢ π σ β -> Γ ⊢ unshiftᵗ β ƛ_ : ∀ {Θ Γ} {α β : Star Θ} -> Γ ▻ α ⊢ β -> Γ ⊢ α ⇒ β _·_ : ∀ {Θ Γ} {α β : Star Θ} -> Γ ⊢ α ⇒ β -> Γ ⊢ α -> Γ ⊢ β iwrap : ∀ {Θ Γ κ ψ} {α : Θ ⊢ᵗ κ} -> Γ ⊢ unfold ψ α -> Γ ⊢ μ ψ α unwrap : ∀ {Θ Γ κ ψ} {α : Θ ⊢ᵗ κ} -> Γ ⊢ μ ψ α -> Γ ⊢ unfold ψ α Term⁺ : Star⁺ -> Set Term⁺ α = ∀ {Θ} {Γ : Con (Star Θ)} -> Γ ⊢ normalize α Term⁻ : ∀ {Θ} -> Star Θ -> Set Term⁻ α = ∀ {Γ} -> Γ ⊢ normalize α bind : ∀ {Θ Γ} {α β : Star Θ} -> Γ ⊢ α -> Γ ▻ α ⊢ β -> Γ ⊢ β bind term body = (ƛ body) · term ren : ∀ {Θ Γ Δ} {α : Star Θ} -> Γ ⊆ Δ -> Γ ⊢ α -> Δ ⊢ α ren ι (var v) = var (renᵛ ι v) ren ι (Λ body) = Λ (ren (mapᶜ-⊆ ι) body) ren ι (fun [ α ]) = ren ι fun [ α ] ren ι (fun < α >) = ren ι fun < α > ren ι (fun <>) = ren ι fun <> ren ι (ƛ body) = ƛ (ren (keep ι) body) ren ι (fun · arg) = ren ι fun · ren ι arg ren ι (iwrap term) = iwrap (ren ι term) ren ι (unwrap term) = unwrap (ren ι term) shiftⁿ : ∀ {Θ Γ} {α : Star Θ} Δ -> Γ ⊢ α -> Γ ▻▻ Δ ⊢ α shiftⁿ = ren ∘ extʳ shift : ∀ {Θ Γ} {α β : Star Θ} -> Γ ⊢ α -> Γ ▻ β ⊢ α shift = shiftⁿ (ε ▻ _) instNonRec : ∀ {Θ Γ Δ} {α : Star Θ} -> Seq (Γ ⊢_) Δ -> Γ ▻▻ Δ ⊢ α -> Γ ⊢ α instNonRec ø body = body instNonRec {Δ = Δ ▻ _} (seq ▶ term) body = instNonRec seq (bind (shiftⁿ Δ term) body) module Y where self : Type⁺ (⋆ ⇒ᵏ ⋆) self = Lam μ (Lam Lam (Var (vs vz) ∙ Var vz ⇒ Var vz)) (Var vz) unfoldˢ : Term⁺ (π ⋆ $ self ∙ Var vz ⇒ self ∙ Var vz ⇒ Var vz) unfoldˢ = Λ ƛ unwrap (var vz) unrollˢ : Term⁺ (π ⋆ $ self ∙ Var vz ⇒ Var vz) unrollˢ = Λ ƛ unfoldˢ [ Var vz ] · var vz · var vz fix : Term⁺ (π ⋆ $ (Var vz ⇒ Var vz) ⇒ Var vz) fix = Λ ƛ unrollˢ [ Var vz ] · iwrap (ƛ var (vs vz) · (unrollˢ [ Var vz ] · var vz)) open Y using (fix) tuple : ∀ {Θ} -> Star (Θ ▻ ⋆) -> Star Θ tuple Fv = π ⋆ $ Fv ⇒ Var vz endo : ∀ {Θ} -> Star (Θ ▻ ⋆) -> Star Θ endo Fv = π ⋆ $ Fv ⇒ Fv fixBy : ∀ {Θ} {Γ : Con (Star Θ)} -> (Fv : Star (Θ ▻ ⋆)) -> Γ ⊢ (tuple Fv ⇒ tuple Fv) ⇒ endo Fv ⇒ tuple Fv fixBy Fv = ƛ fix < endo Fv ⇒ tuple Fv > · (ƛ ƛ Λ ƛ (var (vs vs vs vz) · (Λ ƛ (var (vs vs vs vz) · var (vs vs vz)) <> · -- `bind` is in order to make REWRITE rules fire (yeah, it's silly). (bind (var (vs vs vz) <>) (var vz) · var vz))) <> · var vz) ƛⁿ : ∀ {Θ Ξ Γ} {f : Star Ξ -> Star Θ} {β} -> ∀ Δ -> Γ ▻▻ mapᶜ f Δ ⊢ β -> Γ ⊢ conToTypeBy f Δ β ƛⁿ ε term = term ƛⁿ (Δ ▻ τ) body = ƛⁿ Δ (ƛ body) ƛⁿ' : ∀ {Θ Γ} {β : Star Θ} -> ∀ Δ -> Γ ▻▻ Δ ⊢ β -> Γ ⊢ conToTypeBy id Δ β ƛⁿ' ε term = term ƛⁿ' (Δ ▻ τ) body = ƛⁿ' Δ (ƛ body) applyⁿ : ∀ {Θ Ξ Γ} {β : Star Θ} {f : Star Ξ -> Star Θ} -> ∀ Δ -> Γ ⊢ conToTypeBy f Δ β -> Seq (λ τ -> Γ ⊢ f τ) Δ -> Γ ⊢ β applyⁿ _ y ø = y applyⁿ _ f (seq ▶ x) = applyⁿ _ f seq · x deeply : ∀ {Θ Ξ Γ} {f : Star Ξ -> Star Θ} {β γ} -> ∀ Δ -> Γ ▻▻ mapᶜ f Δ ⊢ β ⇒ γ -> Γ ⊢ conToTypeBy f Δ β -> Γ ⊢ conToTypeBy f Δ γ deeply ε g y = g · y deeply (Δ ▻ τ) g f = deeply Δ (ƛ ƛ shiftⁿ (ε ▻ _ ▻ _) (ƛ g) · var vz · (var (vs vz) · var vz)) f conToTypeShift : ∀ {Θ} -> Con (Star Θ) -> Star (Θ ▻ ⋆) conToTypeShift Δ = conToTypeBy shiftᵗ Δ (Var vz) -- This is not easy, but makes perfect sense and should be doable. postulate shift-⊢ : ∀ {Θ Γ β} {α : Star Θ} -> Γ ⊢ α -> shiftᶜ {τ = β} Γ ⊢ shiftᵗ α recursive : ∀ {Θ} {Γ : Con (Star (Θ ▻ ⋆))} -> (Δ : Con (Star Θ)) -> Γ ⊢ π ⋆ (conToTypeBy (shiftᵗⁿ (ε ▻ _ ▻ _)) Δ (Var vz) ⇒ Var vz) -> Seq (λ β -> Γ ⊢ shiftᵗ β) Δ recursive ε h = ø recursive (Δ ▻ τ) h = recursive Δ (Λ ƛ shift (shift-⊢ h <>) · deeply Δ (ƛ ƛ var (vs vz)) (var vz)) ▶ h < shiftᵗ τ > · (ƛⁿ Δ (ƛ var vz)) where byCon : ∀ {Θ} (Δ : Con (Star Θ)) -> let F = conToTypeShift Δ in ∀ {Γ} -> Γ ⊢ tuple F ⇒ tuple F byCon Δ = ƛ Λ ƛ applyⁿ Δ (var vz) (recursive Δ (var (vs vz))) fixCon : ∀ {Θ} (Δ : Con (Star Θ)) -> let F = conToTypeShift Δ in ∀ {Γ} -> Γ ⊢ endo F ⇒ tuple F fixCon Δ = fixBy (conToTypeShift Δ) · byCon Δ record Tuple {Θ} (Γ Δ : Con (Star Θ)) : Set where constructor PackTuple field tupleTerm : Γ ⊢ tuple (conToTypeShift Δ) mutualFix : ∀ {Θ} {Γ Δ : Con (Star Θ)} -> Seq (Γ ▻▻ Δ ⊢_) Δ -> Tuple Γ Δ mutualFix {Γ = Γ} {Δ} seq = PackTuple $ fixCon Δ · (Λ ƛ ƛⁿ Δ (applyⁿ Δ (var (vsⁿ (shiftᶜ Δ))) $ mapˢ (ren (keepⁿ (shiftᶜ Δ) ∘ extʳ $ ε ▻ _) ∘′ shift-⊢) seq)) -- Note that we do not perform the "pass the whole tuple in and extract each its element -- separately" trick, because we do know the type of the result (it's `α`). bindTuple : ∀ {Θ Γ Δ} {α : Star Θ} -> Tuple Γ Δ -> Γ ▻▻ Δ ⊢ α -> Γ ⊢ α bindTuple {Θ} {Γ} {Δ} {α} (PackTuple tup) body = tup < α > · (ƛⁿ Δ body) instRec : ∀ {Θ Γ Δ} {α : Star Θ} -> Seq (Γ ▻▻ Δ ⊢_) Δ -> Γ ▻▻ Δ ⊢ α -> Γ ⊢ α instRec = bindTuple ∘ mutualFix
{ "alphanum_fraction": 0.5090193506, "avg_line_length": 33.3224043716, "ext": "agda", "hexsha": "bc8ce8242654c56f966df8988eef3b273c2cd3b6", "lang": "Agda", "max_forks_count": 399, "max_forks_repo_forks_event_max_datetime": "2022-03-31T11:18:25.000Z", "max_forks_repo_forks_event_min_datetime": "2018-10-05T09:36:10.000Z", "max_forks_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "AriFordsham/plutus", "max_forks_repo_path": "papers/unraveling-recursion/code/src/Term/Core.agda", "max_issues_count": 2493, "max_issues_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_issues_repo_issues_event_max_datetime": "2022-03-31T15:31:31.000Z", "max_issues_repo_issues_event_min_datetime": "2018-09-28T19:28:17.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "AriFordsham/plutus", "max_issues_repo_path": "papers/unraveling-recursion/code/src/Term/Core.agda", "max_line_length": 96, "max_stars_count": 1299, "max_stars_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "AriFordsham/plutus", "max_stars_repo_path": "papers/unraveling-recursion/code/src/Term/Core.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-28T01:10:02.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-02T13:41:39.000Z", "num_tokens": 2923, "size": 6098 }
{-# OPTIONS --cubical-compatible #-} record Erased (A : Set) : Set where constructor [_] field @0 erased : A open Erased data W (A : Set) (B : A → Set) : Set where sup : (x : A) → (B x → W A B) → W A B lemma : {A : Set} {B : A → Set} → Erased (W A B) → W (Erased A) (λ x → Erased (B (erased x))) lemma [ sup x f ] = sup [ x ] λ ([ y ]) → lemma [ f y ] data ⊥ : Set where data E : Set where c : E → E magic : @0 E → ⊥ magic (c e) = magic e
{ "alphanum_fraction": 0.5108225108, "avg_line_length": 18.48, "ext": "agda", "hexsha": "01936149f66b92fafc7d18377019137410d0b44b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue4172-without-K.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue4172-without-K.agda", "max_line_length": 61, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue4172-without-K.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 182, "size": 462 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Numbers.Naturals.Definition open import Numbers.Integers.Definition open import Numbers.Integers.Addition open import Numbers.Integers.Multiplication open import Numbers.Integers.Order open import Groups.Definition module Numbers.Integers.Integers where open Numbers.Integers.Definition using (ℤ ; nonneg ; negSucc) public open Numbers.Integers.Addition using (_+Z_ ; ℤGroup ; ℤAbGrp) public open Numbers.Integers.Multiplication using (_*Z_) public open import Numbers.Integers.RingStructure.IntegralDomain public using (ℤIntDom) public open import Numbers.Integers.RingStructure.Ring public using (ℤRing) public open Numbers.Integers.Order using (_<Z_ ; ℤOrderedRing) public _-Z_ : ℤ → ℤ → ℤ a -Z b = a +Z (Group.inverse ℤGroup b) _^Z_ : ℤ → ℕ → ℤ a ^Z zero = nonneg 1 a ^Z succ b = a *Z (a ^Z b)
{ "alphanum_fraction": 0.7713625866, "avg_line_length": 34.64, "ext": "agda", "hexsha": "bda1730a913b4a4f8cdb495c29620a203d2d8080", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Numbers/Integers/Integers.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Numbers/Integers/Integers.agda", "max_line_length": 87, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Numbers/Integers/Integers.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 249, "size": 866 }
module AocUtil where open import Data.Maybe open import Data.String as String open import Foreign.Haskell using (Unit) open import Data.List as List open import Data.Nat open import Data.Char open import Data.Bool.Base open import AocIO void : ∀ {a} {A : Set a} → IO A → IO Unit void m = m >>= λ _ → return Unit.unit printString : String → IO Unit printString s = putStrLn (toCostring s) mainBuilder : (String → (List String) → IO Unit) → IO Unit mainBuilder main' = getProgName >>= λ name → getArgs >>= main' name readFileMain : (String → IO Unit) → String → (List String) → IO Unit readFileMain f name (file ∷ []) = readFiniteFile file >>= f readFileMain f name _ = putStrLn (toCostring ("Usage: " String.++ name String.++ " FILE")) splitWhen : ∀ {a} {A : Set a} → (A → Bool) → List A → List (List A) splitWhen pred [] = [] splitWhen pred (x ∷ ls) with (pred x) | splitWhen pred ls ... | false | [] = List.[ List.[ x ] ] splitWhen pred (x ∷ ls) | false | top-list ∷ rest = (x ∷ top-list) ∷ rest ... | true | rec = [] ∷ rec lines : List Char → List (List Char) lines = splitWhen isNewline where isNewline : Char → Bool isNewline '\n' = true isNewline _ = false words : List Char → List (List Char) words = splitWhen isWhitespace where isWhitespace : Char → Bool isWhitespace ' ' = true isWhitespace '\t' = true isWhitespace _ = false sequence-io-prim : ∀ {a} {A : Set a} → List (IO A) → IO (List A) sequence-io-prim [] = return [] sequence-io-prim (m ∷ ms) = m >>= λ x → sequence-io-prim ms >>= λ xs → return (x ∷ xs) toDigit : Char → Maybe ℕ toDigit '0' = just 0 toDigit '1' = just 1 toDigit '2' = just 2 toDigit '3' = just 3 toDigit '4' = just 4 toDigit '5' = just 5 toDigit '6' = just 6 toDigit '7' = just 7 toDigit '8' = just 8 toDigit '9' = just 9 toDigit _ = nothing unsafeParseNat : List Char → ℕ unsafeParseNat ls = unsafeParseNat' 0 ls where unsafeParseNat' : ℕ → List Char → ℕ unsafeParseNat' acc [] = acc unsafeParseNat' acc (x ∷ ls) with (toDigit x) ... | nothing = acc * 10 ... | just n = unsafeParseNat' (n + (acc * 10)) ls
{ "alphanum_fraction": 0.6378326996, "avg_line_length": 29.6338028169, "ext": "agda", "hexsha": "66988ff466dee1573ac3f9cd6de19b37d77112c7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37956e581dc51bf78008d7dd902bb18d2ee481f6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Zalastax/adventofcode2017", "max_forks_repo_path": "lib/AocUtil.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37956e581dc51bf78008d7dd902bb18d2ee481f6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Zalastax/adventofcode2017", "max_issues_repo_path": "lib/AocUtil.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "37956e581dc51bf78008d7dd902bb18d2ee481f6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Zalastax/adventofcode2017", "max_stars_repo_path": "lib/AocUtil.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 691, "size": 2104 }
------------------------------------------------------------------------ -- The extensional sublist relation over decidable setoid equality. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.List.Relation.Binary.Subset.DecSetoid {c ℓ} (S : DecSetoid c ℓ) where -- import Data.List.Relation.Binary.Permutation.Setoid as SetoidPerm -- import Data.List.Relation.Binary.Subset.Setoid as SetoidSubset -- import Data.List.Relation.Binary.Sublist.Heterogeneous.Properties -- as HeterogeneousProperties open import Level using (_⊔_) -- open DecSetoid S -- open SetoidSubset setoid public -- open DecSetoidEquality S open Relation.Binary using (Rel) open import Data.List using (List) ------------------------------------------------------------------------ -- Subset relation module _ where open import Function using (_∘_) open import Data.List open import Data.List.Membership.DecSetoid S using (_∈_; _∈?_) open import Relation.Nullary open import Data.List.Relation.Unary.Any public open import Data.List.Relation.Unary.Any.Properties using (¬Any[]) open DecSetoid S infix 4 _⊆_ _⊈_ _⊆_ : Rel (List Carrier) (c ⊔ ℓ) xs ⊆ ys = ∀ x → x ∈ xs → x ∈ ys _⊈_ : Rel (List Carrier) (c ⊔ ℓ) xs ⊈ ys = ¬ xs ⊆ ys -- lemma ∈-cong : ∀ {xs x y} → x ≈ y → x ∈ xs → y ∈ xs ∈-cong x≈y (here P) = here (trans (sym x≈y) P) ∈-cong x≈y (there P) = there (∈-cong x≈y P) ∉[] : ∀ {x xs} → ¬ x ∷ xs ⊆ [] ∉[] {x} {xs} P = ¬Any[] (∈-cong {[]} {x} {x} refl (P x (here refl))) ⊆-refl : ∀ {xs} → xs ⊆ xs ⊆-refl x P = P ∷-mono : ∀ {xs ys x y} → x ≈ y → xs ⊆ ys → x ∷ xs ⊆ y ∷ ys ∷-mono x≈y P x (here Q) = here (trans Q x≈y) ∷-mono x≈y P x (there Q) = there (P x Q) ⊆-swap : ∀ {xs x y} → x ∷ y ∷ xs ⊆ y ∷ x ∷ xs ⊆-swap x (here P) = there (here P) ⊆-swap x (there (here P)) = here P ⊆-swap x (there (there P)) = there (there P) infix 4 _⊆?_ _⊆?_ : Decidable _⊆_ [] ⊆? ys = yes (λ x ()) x ∷ xs ⊆? [] = no ∉[] x ∷ xs ⊆? y ∷ ys with x ∈? y ∷ ys x ∷ xs ⊆? y ∷ ys | yes P with xs ⊆? y ∷ ys ... | yes Q = yes λ where x (here R) → ∈-cong (sym R) P x (there R) → Q x R ... | no ¬Q = no λ R → ¬Q λ x S → R x (there S) x ∷ xs ⊆? y ∷ ys | no ¬P = no λ Q → ¬P (Q x (here refl)) ------------------------------------------------------------------------ -- Equivalence relation module _ where open DecSetoid S open import Data.Product open import Data.List open import Relation.Binary.Construct.Intersection open import Function.Base using (flip) infix 4 _≋_ _≋_ : Rel (List Carrier) (c ⊔ ℓ) _≋_ = _⊆_ ∩ flip _⊆_ {-# DISPLAY _⊆_ ∩ flip _⊆_ = _≋_ #-} ∷-cong : ∀ {xs ys x y} → x ≈ y → xs ≋ ys → x ∷ xs ≋ y ∷ ys ∷-cong x≈y (xs⊆ys , ys⊆xs) = ∷-mono x≈y xs⊆ys , ∷-mono (sym x≈y) ys⊆xs ≋-swap : ∀ {xs x y} → x ∷ y ∷ xs ≋ y ∷ x ∷ xs ≋-swap = ⊆-swap , ⊆-swap open import Data.List.Relation.Binary.Permutation.Homogeneous open import Relation.Nullary open import Relation.Nullary.Decidable infix 4 _≋?_ _≋?_ : Decidable _≋_ _≋?_ = decidable _⊆?_ (flip _⊆?_) ------------------------------------------------------------------------ -- Relational properties module _ where open import Data.Product ≋-isEquivalence : IsEquivalence _≋_ ≋-isEquivalence = record { refl = (λ x z → z) , (λ x z → z) ; sym = λ where (P , Q) → Q , P ; trans = λ where (P , Q) (S , T) → (λ x U → S x (P x U)) , λ x V → Q x (T x V) } -- shorthands ≋-refl : Reflexive _≋_ ≋-refl = IsEquivalence.refl ≋-isEquivalence ≋-sym : Symmetric _≋_ ≋-sym = IsEquivalence.sym ≋-isEquivalence ≋-trans : Transitive _≋_ ≋-trans = IsEquivalence.trans ≋-isEquivalence ⊆-IsPreorder : IsPreorder _≋_ _⊆_ ⊆-IsPreorder = record { isEquivalence = ≋-isEquivalence ; reflexive = λ where (P , Q) x R → P x R ; trans = λ P Q x R → Q x (P x R) } ⊆-Antisymmetric : Antisymmetric _≋_ _⊆_ ⊆-Antisymmetric P Q = P , Q ⊆-isPartialOrder : IsPartialOrder _≋_ _⊆_ ⊆-isPartialOrder = record { isPreorder = ⊆-IsPreorder ; antisym = ⊆-Antisymmetric } ⊆-isDecPartialOrder : IsDecPartialOrder _≋_ _⊆_ ⊆-isDecPartialOrder = record { isPartialOrder = ⊆-isPartialOrder ; _≟_ = _≋?_ ; _≤?_ = _⊆?_ } ------------------------------------------------------------------------ -- Bundles poset : Poset _ _ _ poset = record { Carrier = List (DecSetoid.Carrier S) ; _≈_ = _≋_ ; _≤_ = _⊆_ ; isPartialOrder = ⊆-isPartialOrder } setoid : Setoid _ _ setoid = record { Carrier = List (DecSetoid.Carrier S) ; _≈_ = _≋_ ; isEquivalence = ≋-isEquivalence } ------------------------------------------------------------------------ -- Reasoning module PosetReasoning where open import Relation.Binary.Reasoning.PartialOrder poset public module EqReasoning where open import Relation.Binary.Reasoning.Setoid setoid public
{ "alphanum_fraction": 0.5335195531, "avg_line_length": 28.8045977011, "ext": "agda", "hexsha": "198472e46fc6fcfddb940499ab182ad07aabfaf7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/bidirectional", "max_forks_repo_path": "Data/List/Relation/Binary/Subset/DecSetoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/bidirectional", "max_issues_repo_path": "Data/List/Relation/Binary/Subset/DecSetoid.agda", "max_line_length": 84, "max_stars_count": 2, "max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/bidirectional", "max_stars_repo_path": "Data/List/Relation/Binary/Subset/DecSetoid.agda", "max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z", "max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z", "num_tokens": 1820, "size": 5012 }
module Esterel.Variable.Signal where open import Data.Nat using (ℕ) renaming (_≟_ to _≟ℕ_) open import Function using (_∘_) open import Relation.Nullary using (Dec ; yes ; no ; ¬_) open import Relation.Binary using (Decidable) open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong ; trans ; sym) data Signal : Set where _ₛ : (S : ℕ) → Signal unwrap : Signal → ℕ unwrap (n ₛ) = n unwrap-inverse : ∀ {s} → (unwrap s) ₛ ≡ s unwrap-inverse {_ ₛ} = refl unwrap-injective : ∀ {s t} → unwrap s ≡ unwrap t → s ≡ t unwrap-injective s'≡t' = trans (sym unwrap-inverse) (trans (cong _ₛ s'≡t') unwrap-inverse) wrap : ℕ → Signal wrap = _ₛ bijective : ∀{x} → unwrap (wrap x) ≡ x bijective = refl -- for backward compatibility unwrap-neq : ∀{k1 : Signal} → ∀{k2 : Signal} → ¬ k1 ≡ k2 → ¬ (unwrap k1) ≡ (unwrap k2) unwrap-neq = (_∘ unwrap-injective) _≟_ : Decidable {A = Signal} _≡_ (s ₛ) ≟ (t ₛ) with s ≟ℕ t ... | yes p = yes (cong _ₛ p) ... | no ¬p = no (¬p ∘ cong unwrap) data Status : Set where present : Status absent : Status unknown : Status _≟ₛₜ_ : Decidable {A = Status} _≡_ present ≟ₛₜ present = yes refl present ≟ₛₜ absent = no λ() present ≟ₛₜ unknown = no λ() absent ≟ₛₜ present = no λ() absent ≟ₛₜ absent = yes refl absent ≟ₛₜ unknown = no λ() unknown ≟ₛₜ present = no λ() unknown ≟ₛₜ absent = no λ() unknown ≟ₛₜ unknown = yes refl
{ "alphanum_fraction": 0.6433212996, "avg_line_length": 24.7321428571, "ext": "agda", "hexsha": "75d5b62fad16ee91ab8fe95161b4e2c71795bc31", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/Esterel/Variable/Signal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/Esterel/Variable/Signal.agda", "max_line_length": 90, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/Esterel/Variable/Signal.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 529, "size": 1385 }
{-# OPTIONS --without-K --safe #-} module Fragment.Examples.Semigroup.Arith.Base where open import Fragment.Prelude public open import Data.Nat using (ℕ; _*_; _+_) public open import Data.Nat.Properties using (*-isSemigroup; +-isSemigroup) open import Relation.Binary.PropositionalEquality public open ≡-Reasoning public +-semigroup = semigroup→model +-isSemigroup *-semigroup = semigroup→model *-isSemigroup
{ "alphanum_fraction": 0.7710843373, "avg_line_length": 27.6666666667, "ext": "agda", "hexsha": "3d66a0ac3f5b62dcf286e862b9efddd57f66b374", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Examples/Semigroup/Arith/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Examples/Semigroup/Arith/Base.agda", "max_line_length": 56, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Examples/Semigroup/Arith/Base.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 110, "size": 415 }
module Bound.Lower.Order {A : Set}(_≤_ : A → A → Set) where open import Bound.Lower A data LeB : Bound → Bound → Set where lebx : {b : Bound} → LeB bot b lexy : {a b : A} → a ≤ b → LeB (val a) (val b)
{ "alphanum_fraction": 0.4444444444, "avg_line_length": 19.2857142857, "ext": "agda", "hexsha": "86675c91302aadc0b5e1539909755dea1527a507", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/Bound/Lower/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/Bound/Lower/Order.agda", "max_line_length": 59, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/Bound/Lower/Order.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 87, "size": 270 }
module Issue1078.A where -- The typo in the module name is intended! open import Common.Level using (Level) open import Issue1078A test = Level
{ "alphanum_fraction": 0.7739726027, "avg_line_length": 20.8571428571, "ext": "agda", "hexsha": "d2c4c7b06ea92ef509a10550f7fdf4b6c5d92a5e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1078/B.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1078/B.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1078/B.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 35, "size": 146 }
------------------------------------------------------------------------ -- A quotient inductive-inductive definition of the partiality monad ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} module Partiality-monad.Inductive where import Equality.Path as P open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude hiding (⊥) open import Bijection equality-with-J using (_↔_) open import Equivalence equality-with-J as Eq using (_≃_) open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import Partiality-algebra as PA hiding (_∘_) open import Partiality-algebra.Eliminators as PAE hiding (Arguments) import Partiality-algebra.Properties private variable a ℓ p q : Level A : Type a mutual infix 10 _⊥ infix 4 _⊑_ -- Originally the monad was postulated. After the release of Cubical -- Agda it was turned into a QIIT, but in order to not get any extra -- computation rules it was made abstract. abstract -- The partiality monad. data _⊥ (A : Type a) : Type a where never : A ⊥ now : A → A ⊥ ⨆ : Increasing-sequence A → A ⊥ antisymmetry : x ⊑ y → y ⊑ x → x P.≡ y -- We have chosen to explicitly make the type set-truncated. -- However, this constructor is mostly unused: it is used to -- define partiality-algebra below (and the corresponding record -- field is in turn also mostly unused, see its documentation -- for details), and it is mentioned in the implementation of -- eliminators (also below). ⊥-is-set-unused : P.Is-set (A ⊥) -- Increasing sequences. Increasing-sequence : Type ℓ → Type ℓ Increasing-sequence A = Σ (ℕ → A ⊥) λ f → ∀ n → f n ⊑ f (suc n) -- Upper bounds. Is-upper-bound : {A : Type a} → Increasing-sequence A → A ⊥ → Type a Is-upper-bound s x = ∀ n → (s [ n ]) ⊑ x -- A projection function for Increasing-sequence. infix 30 _[_] _[_] : Increasing-sequence A → ℕ → A ⊥ _[_] s n = proj₁ {A = _ → _ ⊥} s n private variable x y z : A ⊥ abstract -- An ordering relation. data _⊑_ {A : Type a} : A ⊥ → A ⊥ → Type a where ⊑-refl : ∀ x → x ⊑ x ⊑-trans : x ⊑ y → y ⊑ z → x ⊑ z never⊑ : ∀ x → never ⊑ x upper-bound : ∀ s → Is-upper-bound s (⨆ s) least-upper-bound : ∀ s ub → Is-upper-bound s ub → ⨆ s ⊑ ub ⊑-propositional : P.Is-proposition (x ⊑ y) -- A partiality algebra for the partiality monad. partiality-algebra : ∀ {a} (A : Type a) → Partiality-algebra a a A partiality-algebra A = record { T = A ⊥ ; partiality-algebra-with = record { _⊑_ = _⊑_ ; never = never′ ; now = now′ ; ⨆ = ⨆′ ; antisymmetry = antisymmetry′ ; T-is-set-unused = T-is-set-unused′ ; ⊑-refl = ⊑-refl′ ; ⊑-trans = ⊑-trans′ ; never⊑ = never⊑′ ; upper-bound = upper-bound′ ; least-upper-bound = least-upper-bound′ ; ⊑-propositional = ⊑-propositional′ } } where abstract never′ : A ⊥ never′ = never now′ : A → A ⊥ now′ = now ⨆′ : Increasing-sequence A → A ⊥ ⨆′ = ⨆ antisymmetry′ : x ⊑ y → y ⊑ x → x ≡ y antisymmetry′ = λ p q → _↔_.from ≡↔≡ (antisymmetry p q) T-is-set-unused′ : Is-set (A ⊥) T-is-set-unused′ = $⟨ (λ {x y} → ⊥-is-set-unused {x = x} {y = y}) ⟩ P.Is-set (A ⊥) ↝⟨ _↔_.from (H-level↔H-level 2) ⟩□ Is-set (A ⊥) □ ⊑-refl′ : (x : A ⊥) → x ⊑ x ⊑-refl′ = ⊑-refl ⊑-trans′ : x ⊑ y → y ⊑ z → x ⊑ z ⊑-trans′ = ⊑-trans never⊑′ : ∀ x → never′ ⊑ x never⊑′ = never⊑ upper-bound′ : ∀ s → Is-upper-bound s (⨆′ s) upper-bound′ = upper-bound least-upper-bound′ : ∀ s ub → Is-upper-bound s ub → ⨆′ s ⊑ ub least-upper-bound′ = least-upper-bound ⊑-propositional′ : Is-proposition (x ⊑ y) ⊑-propositional′ {x = x} {y = y} = $⟨ ⊑-propositional ⟩ P.Is-proposition (x ⊑ y) ↝⟨ _↔_.from (H-level↔H-level 1) ⟩□ Is-proposition (x ⊑ y) □ abstract -- The elimination principle. eliminators : Elimination-principle p q (partiality-algebra A) eliminators {A = A} args = record { ⊥-rec = ⊥-rec ; ⊑-rec = ⊑-rec ; ⊥-rec-never = refl ; ⊥-rec-now = λ _ → refl ; ⊥-rec-⨆ = λ _ → refl } where module A = PAE.Arguments args mutual inc-rec : (s : Increasing-sequence A) → A.Inc A.P A.Q s inc-rec (s , inc) = (λ n → ⊥-rec (s n)) , (λ n → ⊑-rec (inc n)) ⊥-rec : (x : A ⊥) → A.P x ⊥-rec never = A.pe ⊥-rec (now x) = A.po x ⊥-rec (⨆ s) = A.pl s (inc-rec s) ⊥-rec (antisymmetry {x = x} {y = y} p q i) = subst≡→[]≡ {B = A.P} {eq = antisymmetry p q} (A.pa p q (⊥-rec x) (⊥-rec y) (⊑-rec p) (⊑-rec q)) i ⊥-rec (⊥-is-set-unused {x = x} {y = y} p q i j) = lemma i j where ⊥-is-set-unused′ : P.Is-set (A ⊥) ⊥-is-set-unused′ = ⊥-is-set-unused lemma : P.[ (λ i → P.[ (λ j → A.P (⊥-is-set-unused′ p q i j)) ] ⊥-rec x ≡ ⊥-rec y) ] (λ i → ⊥-rec (p i)) ≡ (λ i → ⊥-rec (q i)) lemma = P.heterogeneous-UIP (λ x → _↔_.to (H-level↔H-level 2) (A.pp {x = x})) (⊥-is-set-unused p q) _ _ ⊑-rec : (x⊑y : x ⊑ y) → A.Q (⊥-rec x) (⊥-rec y) x⊑y ⊑-rec (⊑-refl x) = A.qr x (⊥-rec x) ⊑-rec (⊑-trans {x = x} {y = y} {z = z} p q) = A.qt p q (⊥-rec x) (⊥-rec y) (⊥-rec z) (⊑-rec p) (⊑-rec q) ⊑-rec (never⊑ x) = A.qe x (⊥-rec x) ⊑-rec (upper-bound s n) = A.qu s (inc-rec s) n ⊑-rec (least-upper-bound s ub is-ub) = A.ql s ub is-ub (inc-rec s) (⊥-rec ub) (λ n → ⊑-rec {x = proj₁ s n} (is-ub n)) ⊑-rec (⊑-propositional {x = x} {y = y} p q i) = lemma i where ⊑-propositional′ : P.Is-proposition (x ⊑ y) ⊑-propositional′ = ⊑-propositional lemma : P.[ (λ i → A.Q (⊥-rec x) (⊥-rec y) (⊑-propositional′ p q i)) ] ⊑-rec p ≡ ⊑-rec q lemma = P.heterogeneous-irrelevance (λ p → _↔_.to (H-level↔H-level 1) (A.qp (⊥-rec x) (⊥-rec y) p)) module _ {A : Type a} where open Partiality-algebra (partiality-algebra A) public hiding (T; _⊑_; _[_]; Increasing-sequence; Is-upper-bound) renaming ( T-is-set to ⊥-is-set ; equality-characterisation-T to equality-characterisation-⊥ ) open Partiality-algebra.Properties (partiality-algebra A) public -- The eliminators' arguments. Arguments : ∀ {a} p q (A : Type a) → Type (a ⊔ lsuc (p ⊔ q)) Arguments p q A = PAE.Arguments p q (partiality-algebra A) module _ (args : Arguments p q A) where open Eliminators (eliminators args) public -- Initiality. initial : Initial p q (partiality-algebra A) initial = eliminators→initiality _ eliminators
{ "alphanum_fraction": 0.4592729513, "avg_line_length": 32.8542510121, "ext": "agda", "hexsha": "94f23fa758118a2a36a493e46abc24e25c0f358d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-monad/Inductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-monad/Inductive.agda", "max_line_length": 85, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-monad/Inductive.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 2621, "size": 8115 }
module para where module Top (A B : Set) where module A (C D : Set) where postulate f : A -> B -> C -> D module B (E F : Set) = A F E renaming (f to j) postulate h : A -> B module C (G H : Set) where module D = B G H g' : A -> B g' = h g : A -> H -> G g x y = D.j x (h x) y module Bottom where postulate Nat : Set zero : Nat module D = Top Nat Nat module C = D.C Nat Nat x : Nat x = C.g zero zero
{ "alphanum_fraction": 0.5075921909, "avg_line_length": 13.1714285714, "ext": "agda", "hexsha": "e6f8b4c1b631eff0c40f763c6c64b5945da9a667", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/para.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/para.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/para.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 171, "size": 461 }
------------------------------------------------------------------------------- -- -- SET (in Hedberg library) for agda2 -- as of 2006.9.29 morning -- Yoshiki. -- module SET where ---------------------------------------------------------------------------- -- Auxiliary. ---------------------------------------------------------------------------- -- no : (x : A) -> B : Set if A : Set B : Set -- yes : (x : A) -> B type if A type B type -- El M type if M : Set data Unop (A : Set) : Set1 where unopI : (A -> A) -> Unop A data Pred (A : Set) : Set1 where PredI : (A -> Set) -> Pred A data Rel (A : Set) : Set1 where RelI : (A -> A -> Set) -> Rel A data Reflexive {A : Set} (R : A -> A -> Set) : Set where reflexiveI : ((a : A) -> R a a) -> Reflexive R data Symmetrical {A : Set} (R : A -> A -> Set) : Set where symmetricalI : ({a b : A} -> R a b -> R a b) -> Symmetrical R data Transitive {A : Set} (R : A -> A -> Set) : Set where transitiveI : ({a b c : A} -> R a b -> R b c -> R a c) -> Transitive R compositionalI : {A : Set} -> (R : A -> A -> Set) -> ({a b c : A} -> R b c -> R a b -> R a c) -> Transitive R compositionalI {A} R f = transitiveI (\{a b c : A} -> \(x : R a b) -> \(y : R b c) -> f y x) data Substitutive {A : Set} (R : A -> A -> Set) : Set1 where substitutiveI : ((P : A -> Set) -> {a b : A} -> R a b -> P a -> P b) -> Substitutive R data Collapsed (A : Set) : Set1 where collapsedI : ((P : A -> Set) -> {a b : A} -> P a -> P b) -> Collapsed A cmp : {A B C : Set} -> (B -> C) -> (A -> B) -> A -> C cmp f g a = f (g a) seq : {A B C : Set} -> (A -> B) -> (B -> C) -> A -> C seq f g = cmp g f S : {A B C : Set} -> (C -> B -> A) -> (C -> B) -> C -> A S x y z = x z (y z) K : {A B : Set} -> A -> B -> A K x y = x I : {A : Set} -> A -> A I a = a -- of course I = S K K id = \{A : Set} -> I {A} const = \{A B : Set} -> K {A}{B} -- Set version pS : {P Q R : Set} -> (R -> Q -> P) -> (R -> Q) -> R -> P pS x y z = x z (y z) pK : {P Q : Set} -> P -> Q -> P pK x y = x pI : {P : Set} -> P -> P pI a = a proj : {A : Set} -> (B : A -> Set) -> (a : A) -> (f : (aa : A) -> B aa) -> B a proj B a f = f a flip : {A B C : Set} (f : A -> B -> C) (b : B) (a : A) -> C flip f b a = f a b -- separate definition of FlipRel is necessary because it is not the case -- that Set : Set. FlipRel : {A : Set} -> (R : A -> A -> Set) -> (a b : A) -> Set FlipRel R a b = R b a ---------------------------------------------------------------------------- -- Product sets. ---------------------------------------------------------------------------- -- Prod : (A : Set) -> (A -> Set) -> Set -- Prod A B = (a : A) -> B a -- The above is not type-correct since (a : A) -> B a is not well-formed -- but the following works. data Prod (A : Set) (B : A -> Set) : Set where prodI : ((a : A) -> B a) -> Prod A B mapProd : {A : Set} -> {B C : A -> Set} -> ((a : A) -> B a -> C a) -> Prod A B -> Prod A C mapProd {A} f (prodI g) = prodI (\(a : A) -> f a (g a)) -- data Fun (A B : Set) : Set1 where -- funI : (A -> B) -> Fun A B Fun : Set -> Set -> Set Fun A B = Prod A (\(_ : A) -> B) mapFun : {A B C D : Set} -> (B -> A) -> (C -> D) -> (A -> C) -> B -> D mapFun {A} {B} {C} {D} f g h x = g (h (f x)) -- mapFun (|X1 |X2 |Y1 |Y2 :: Set) -- :: (X2 -> X1) -> (Y1 -> Y2) -> (X1 -> Y1) -> X2 -> Y2 -- = \f -> \g -> \h -> \x -> -- g (h (f x)) --------------------------------------------------------------------------- -- Identity proof sets. --------------------------------------------------------------------------- -- to accept the following definition more general scheme of -- inductive definition is required -- data Id (A : Set) (a b : A) : Set1 where -- ref : (a : A) -> Id A a a -- -- elimId (|X :: Set) -- (C :: (x1 x2 :: X) |-> Id x1 x2 -> Set) -- (refC :: (x :: X) -> C (refId x)) -- (|x1 |x2 :: X) -- (u :: Id x1 x2) :: -- C u -- = case u of { (ref x) -> refC x;} -- -- abstract whenId (|X :: Set)(C :: Rel X)(c :: (x :: X) -> C x x) -- :: (x1 x2 :: X) |-> Id x1 x2 -> C x1 x2 -- = elimId (\x1 x2 |-> \(u :: Id x1 x2) -> C x1 x2) c -- -- abstract substId (|X :: Set) :: Substitutive Id -- = \(C :: Pred X) -> -- whenId (\x1 x2 -> C x1 -> C x2) (\x -> id) -- -- abstract mapId (|X :: Set)(|Y :: Set)(f :: X -> Y) -- :: (x1 x2 :: X) |-> Id x1 x2 -> Id (f x1) (f x2) -- = whenId (\x1 x2 -> Id (f x1) (f x2)) (\(x :: X) -> refId (f x)) -- -- abstract symId (|X :: Set) :: Symmetrical Id -- = whenId (\(x1 x2 :: X) -> Id x2 x1) refId -- -- abstract cmpId (|X :: Set) :: Compositional Id -- = let lem :: (x y :: X) |-> Id x y -> (z :: X) |-> Id z x -> Id z y -- = whenId ( \(x y :: _) -> (z :: X) |-> Id z x -> Id z y) -- ( \x -> \z |-> id) -- in \(x1 x2 x3 :: _) |-> -- \(u :: Id x2 x3) -> -- \(v :: Id x1 x2) -> -- lem u v -- -- abstract tranId (|X :: Set) :: Transitive Id -- = \(x1 x2 x3 :: X) |-> -- \(u :: Id x1 x2) -> -- \(v :: Id x2 x3) -> -- cmpId v u ---------------------------------------------------------------------------- -- The empty set. ---------------------------------------------------------------------------- data Zero : Set where -- --abstract whenZero (X :: Set)(z :: Zero) :: X -- -- = case z of { } -- do not know how to encode whenZero; the following does not work. -- whenZero : (X : Set) -> (z : Zero) -> X -- whenZero X z = -- --elimZero (C :: Zero -> Set)(z :: Zero) :: C z -- -- = case z of { } -- elimZero either! -- elimZero : (C : Zero -> Set) -> (z : Zero) -> C z -- elimZero C z = -- -- abstract collZero :: Collapsed Zero -- = \(C :: Zero -> Set) -> -- \(z1 z2 :: Zero) |-> -- \(c :: C z1) -> -- case z1 of { } -- ---------------------------------------------------------------------------- -- The singleton set. ---------------------------------------------------------------------------- data Unit : Set where uu : Unit elUnit = uu elimUnit : (C : Unit -> Set) -> C uu -> (u : Unit) -> C u elimUnit C c uu = c -- Do not know of the exact use of Collapse! -- collUnit : (C : Unit -> Set) -> {u1 u2 : Unit} -> C u1 -> Collapsed Unit -- collUnit C {uu} {uu} A = collapsedI (\(P : Unit -> Set) -> \{a b : Unit} -> \(y : P a) -> A) -- abstract collUnit :: Collapsed Unit -- = \(C :: Unit -> Set) -> -- \(u1 u2 :: Unit) |-> -- \(c :: C u1) -> -- case u1 of { (tt) -> case u2 of { (tt) -> c;};} --------------------------------------------------------------------------- -- The successor set adds a new element. --------------------------------------------------------------------------- data Succ (A : Set) : Set where zerS : Succ A sucS : A -> Succ A zerSucc = \{A : Set} -> zerS {A} sucSucc = \{A : Set} -> sucS {A} elimSucc : {X : Set} -> (C : Succ X -> Set) -> C zerS -> ((x : X) -> C (sucS x)) -> (xx : Succ X) -> (C xx) elimSucc C c_z c_s zerS = c_z elimSucc C c_z c_s (sucS x) = c_s x whenSucc : {X Y : Set} -> Y -> (X -> Y) -> (Succ X) -> Y whenSucc y_z y_s zerS = y_z whenSucc y_z y_s (sucS x) = y_s x mapSucc : {X Y : Set} -> (X -> Y) -> Succ X -> Succ Y mapSucc {X} {_} f = whenSucc zerS (\(x : X) -> sucS (f x)) --------------------------------------------------------------------------- -- The (binary) disjoint union. --------------------------------------------------------------------------- data Plus (A B : Set) : Set where inl : A -> Plus A B inr : B -> Plus A B elimPlus : {X Y : Set} -> (C : Plus X Y -> Set) -> ((x : X) -> C (inl x)) -> ((y : Y) -> C (inr y)) -> (z : Plus X Y) -> C z elimPlus {X} {Y} C c_lft c_rgt (inl x) = c_lft x elimPlus {X} {Y} C c_lft c_rgt (inr x) = c_rgt x when : {X Y Z : Set} -> (X -> Z) -> (Y -> Z) -> Plus X Y -> Z when {X} {Y} {Z} f g (inl x) = f x when {X} {Y} {Z} f g (inr y) = g y whenplus : {X Y Z : Set} -> (X -> Z) -> (Y -> Z) -> Plus X Y -> Z whenplus = when mapPlus : {X1 X2 Y1 Y2 : Set} -> (X1 -> X2) -> (Y1 -> Y2) -> Plus X1 Y1 -> Plus X2 Y2 mapPlus f g = when (\x1 -> inl (f x1)) (\y1 -> inr (g y1)) swapPlus : {X Y : Set} -> Plus X Y -> Plus Y X swapPlus = when inr inl ---------------------------------------------------------------------------- -- Dependent pairs. ---------------------------------------------------------------------------- data Sum (A : Set) (B : A -> Set) : Set where sumI : (fst : A) -> B fst -> Sum A B depPair : {A : Set} -> {B : A -> Set} -> (a : A) -> B a -> Sum A B depPair a b = sumI a b depFst : {A : Set} -> {B : A -> Set} -> (c : Sum A B) -> A depFst (sumI fst snd) = fst depSnd : {A : Set} -> {B : A -> Set} -> (c : Sum A B) -> B (depFst c) depSnd (sumI fst snd) = snd depCur : {A : Set} -> {B : A -> Set} -> {C : Set} -> (f : Sum A B -> C) -> (a : A) -> B a -> C depCur f = \a -> \b -> f (depPair a b) -- the above works but the below does not---why? -- depCur : {X : Set} -> {Y : X -> Set} -> {Z : Set} -> (f : Sum X Y -> Z) -- -> {x : X} -> Y x -> Z -- depCur {X} {Y} {Z} f = \{x} -> \y -> f (depPair x y) -- Error message : -- When checking that the expression \{x} -> \y -> f (depPair x y) -- has type Y _x -> Z -- found an implicit lambda where an explicit lambda was expected depUncur : {A : Set} -> {B : A -> Set} -> {C : Set} -> ((a : A) -> B a -> C) -> Sum A B -> C depUncur f ab = f (depFst ab) (depSnd ab) depCurry : {A : Set} -> {B : A -> Set} -> {C : Sum A B -> Set} -> (f : (ab : Sum A B) -> C ab) -> (a : A) -> (b : B a) -> C (depPair a b) depCurry f a b = f (depPair a b) depUncurry : {A : Set} -> {B : A -> Set} -> {C : Sum A B -> Set} -> (f : (a : A) -> (b : B a) -> C (depPair a b)) -> (ab : Sum A B) -> C ab depUncurry f (sumI fst snd) = f fst snd mapSum : {A : Set} -> {B1 : A -> Set} -> {B2 : A -> Set} -> (f : (a : A) -> B1 a -> B2 a) -> Sum A B1 -> Sum A B2 mapSum f (sumI fst snd) = depPair fst (f fst snd) elimSum = \{A : Set}{B : A -> Set}{C : Sum A B -> Set} -> depUncurry{A}{B}{C} --------------------------------------------------------------------------- -- Nondependent pairs (binary) cartesian product. --------------------------------------------------------------------------- Times : Set -> Set -> Set Times A B = Sum A (\(_ : A) -> B) pair : {A : Set} -> {B : Set} -> A -> B -> Times A B pair a b = sumI a b fst : {A : Set} -> {B : Set} -> Times A B -> A fst (sumI a _) = a snd : {A : Set} -> {B : Set} -> Times A B -> B snd (sumI _ b) = b pairfun : {C : Set} -> {A : Set} -> {B : Set} -> (C -> A) -> (C -> B) -> C -> Times A B pairfun f g c = pair (f c) (g c) mapTimes : {A1 : Set} -> {A2 : Set} -> {B1 : Set} -> {B2 : Set} -> (A1 -> A2) -> (B1 -> B2) -> Times A1 B1 -> Times A2 B2 mapTimes f g (sumI a b) = pair (f a) (g b) swapTimes : {A : Set} -> {B : Set} -> Times A B -> Times B A swapTimes (sumI a b) = sumI b a cur : {A : Set} -> {B : Set} -> {C : Set} -> (f : Times A B -> C) -> A -> B -> C cur f a b = f (pair a b) uncur : {A : Set} -> {B : Set} -> {C : Set} -> (A -> B -> C) -> Times A B -> C uncur f (sumI a b) = f a b curry : {A : Set} -> {B : Set} -> {C : Times A B -> Set} -> ((p : Times A B) -> C p) -> (a : A) ->(b : B) -> C (pair a b) curry f a b = f (pair a b) uncurry : {A : Set} -> {B : Set} -> {C : Times A B -> Set} -> ((a : A) -> (b : B) -> C (pair a b)) -> (p : Times A B) -> C p uncurry f (sumI a b) = f a b elimTimes = \{A B : Set}{C : Times A B -> Set} -> uncurry{A}{B}{C} --------------------------------------------------------------------------- -- Natural numbers. --------------------------------------------------------------------------- data Nat : Set where zero : Nat succ : Nat -> Nat elimNat : (C : Nat -> Set) -> (C zero) -> ((m : Nat) -> C m -> C (succ m)) -> (n : Nat) -> C n elimNat C c_z c_s zero = c_z elimNat C c_z c_s (succ m') = c_s m' (elimNat C c_z c_s m') ---------------------------------------------------------------------------- -- Linear universe of finite sets. ---------------------------------------------------------------------------- Fin : (m : Nat) -> Set Fin zero = Zero Fin (succ n) = Succ (Fin n) {- Fin 0 = {} Fin 1 = { zerS } Fin 2 = { zerS (sucS zerS) } Fin 3 = { zerS (sucS zerS) (sucS (sucS zerS)) } -} valFin : (n' : Nat) -> Fin n' -> Nat valFin zero () valFin (succ n) zerS = zero valFin (succ n) (sucS x) = succ (valFin n x) zeroFin : (n : Nat) -> Fin (succ n) zeroFin n = zerS succFin : (n : Nat) -> Fin n -> Fin (succ n) succFin n N = sucS N ---------------------------------------------------------------------------- -- Do these really belong here? ---------------------------------------------------------------------------- HEAD : {A : Set} -> (n : Nat) -> (Fin (succ n) -> A) -> A HEAD n f = f (zeroFin n) TAIL : {A : Set} -> (n : Nat) -> (Fin (succ n) -> A) -> Fin n -> A TAIL n f N = f (succFin n N) ---------------------------------------------------------------------------- -- Lists. ---------------------------------------------------------------------------- data List (A : Set) : Set where nil : List A con : A -> List A -> List A elimList : {A : Set} -> (C : List A -> Set) -> (C nil) -> ((a : A) -> (as : List A) -> C as -> C (con a as)) -> (as : List A) -> C as elimList _ c_nil _ nil = c_nil elimList C c_nil c_con (con a as) = c_con a as (elimList C c_nil c_con as) ---------------------------------------------------------------------------- -- Tuples are "dependently typed vectors". ---------------------------------------------------------------------------- data Nill : Set where nill : Nill data Cons (A B : Set) : Set where cons : A -> B -> Cons A B Tuple : (n : Nat) -> (C : Fin n -> Set) -> Set Tuple zero = \ C -> Nill Tuple (succ n) = \ C -> Cons (C zerS) (Tuple n (\(N : Fin n) -> C (sucS N))) ---------------------------------------------------------------------------- -- Vectors homogeneously typed tuples. ---------------------------------------------------------------------------- Vec : Set -> Nat -> Set Vec A m = Tuple m (\(n : Fin m) -> A) ---------------------------------------------------------------------------- -- Monoidal expressions. ---------------------------------------------------------------------------- data Mon (A : Set) : Set where unit : Mon A at : A -> Mon A mul : Mon A -> Mon A -> Mon A {- -} ---------------------------------------------------------------------------- -- Propositions. ---------------------------------------------------------------------------- data Implies (A B : Set) : Set where impliesI : (A -> B) -> Implies A B data Absurd : Set where data Taut : Set where tt : Taut data Not (P : Set) : Set where notI : (P -> Absurd) -> Not P -- encoding of Exists is unsatisfactory! Its type should be Set. data Exists (A : Set) (P : A -> Set) : Set where existsI : (evidence : A) -> P evidence -> Exists A P data Forall (A : Set) (P : A -> Set) : Set where forallI : ((a : A) -> P a) -> Forall A P data And (A B : Set) : Set where andI : A -> B -> And A B Iff : Set -> Set -> Set Iff A B = And (Implies A B) (Implies B A) data Or (A B : Set) : Set where orIl : (a : A) -> Or A B orIr : (b : B) -> Or A B Decidable : Set -> Set Decidable P = Or P (Implies P Absurd) data DecidablePred {A : Set} (P : A -> Set) : Set where decidablepredIl : (a : A) -> (P a) -> DecidablePred P decidablepredIr : (a : A) -> (Implies (P a) Absurd) -> DecidablePred P data DecidableRel {A : Set} (R : A -> A -> Set) : Set where decidablerelIl : (a b : A) -> (R a b) -> DecidableRel R decidablerelIr : (a b : A) -> (Implies (R a b) Absurd) -> DecidableRel R data Least {A : Set} (_<=_ : A -> A -> Set) (P : A -> Set) (a : A) : Set where leastI : (P a) -> ((aa : A) -> P aa -> (a <= aa)) -> Least _<=_ P a data Greatest {A : Set} (_<=_ : A -> A -> Set) (P : A -> Set) (a : A) : Set where greatestI : (P a) -> ((aa : A) -> P aa -> (aa <= a)) -> Greatest _<=_ P a ---------------------------------------------------------------------------- -- Booleans. ---------------------------------------------------------------------------- data Bool : Set where true : Bool false : Bool elimBool : (C : Bool -> Set) -> C true -> C false -> (b : Bool) -> C b elimBool C c_t c_f true = c_t elimBool C c_t c_f false = c_f whenBool : (C : Set) -> C -> C -> Bool -> C whenBool C c_t c_f b = elimBool (\(_ : Bool) -> C) c_t c_f b data pred (A : Set) : Set where predI : (A -> Bool) -> pred A data rel (A : Set) : Set where relI : (A -> A -> Bool) -> rel A True : Bool -> Set True true = Taut True false = Absurd bool2set = True pred2Pred : {A : Set} -> pred A -> Pred A pred2Pred (predI p) = PredI (\a -> True (p a)) rel2Rel : {A : Set} -> rel A -> Rel A rel2Rel (relI r) = RelI (\a -> \b -> True (r a b)) -- decTrue : (p : Bool) -> Decidable (True p) -- decTrue true = orIl tt -- decTrue false = orIr (impliesI pI) -- decTrue false = orIr (impliesI (\(p : (True false)) -> p)) -- dec_lem : {P : Set} -> (decP : Decidable P) -- -> Exists A {- abstract dec_lem (|P :: Set)(decP :: Decidable P) :: Exist |_ (\(b :: Bool) -> Iff (True b) P) = case decP of { (inl trueP) -> struct { fst = true@_; snd = struct { fst = const |_ |_ trueP; -- (True true@_) snd = const |_ |_ tt;};}; (inr notP) -> struct { fst = false@_; snd = struct { fst = whenZero P; snd = notP;};};} dec2bool :: (P :: Set) |-> (decP :: Decidable P) -> Bool = \(P :: Set) |-> \(decP :: Decidable P) -> (dec_lem |_ decP).fst dec2bool_spec (|P :: Set)(decP :: Decidable P) :: Iff (True (dec2bool |_ decP)) P = (dec_lem |_ decP).snd abstract collTrue :: (b :: Bool) -> Collapsed (True b) = let aux (X :: Set)(C :: X -> Set) :: (b :: Bool) -> (f :: True b -> X) -> (t1 :: True b) |-> (t2 :: True b) |-> C (f t1) -> C (f t2) = \(b :: Bool) -> case b of { (true) -> \(f :: (x :: True true@_) -> X) -> \(t1 t2 :: True true@_) |-> \(c :: C (f t1)) -> case t1 of { (tt) -> case t2 of { (tt) -> c;};}; (false) -> \(f :: (x :: True false@_) -> X) -> \(t1 t2 :: True false@_) |-> \(c :: C (f t1)) -> case t1 of { };} in \(b :: Bool) -> \(P :: True b -> Set) -> aux (True b) P b id bool2nat (p :: Bool) :: Nat = case p of { (true) -> succ zero; (false) -> zero;} -}
{ "alphanum_fraction": 0.3778459964, "avg_line_length": 39.2469879518, "ext": "agda", "hexsha": "41ace045c22719b170bc52d16bb68c3dcfa41862", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/AIM5/yoshiki/SET.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/AIM5/yoshiki/SET.agda", "max_line_length": 96, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/AIM5/yoshiki/SET.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 6569, "size": 19545 }
-- Andreas, 2014-09-23 module _ where syntax c x = ⟦ x ⟧ syntax c x y = x + y -- Should complain about multiple notations.
{ "alphanum_fraction": 0.6484375, "avg_line_length": 14.2222222222, "ext": "agda", "hexsha": "69eae2ff9b9ff531f09242c2a577df12533ed190", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/MultipleNotations.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/MultipleNotations.agda", "max_line_length": 44, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/MultipleNotations.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 43, "size": 128 }
-- An Agda example file module test where open import Coinduction open import Data.Bool open import {- pointless comment between import and module name -} Data.Char open import Data.Nat open import Data.Nat.Properties open import Data.String open import Data.List hiding ([_]) open import Data.Vec hiding ([_]) open import Relation.Nullary.Core open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; trans; inspect; [_]) open SemiringSolver {- this is a {- nested -} comment -} -- Factorial _! : ℕ → ℕ 0 ! = 1 (suc n) ! = (suc n) * n ! -- The binomial coefficient _choose_ : ℕ → ℕ → ℕ _ choose 0 = 1 0 choose _ = 0 (suc n) choose (suc m) = (n choose m) + (n choose (suc m)) -- Pascal's rule choose-too-many : ∀ n m → n ≤ m → n choose (suc m) ≡ 0 choose-too-many .0 m z≤n = refl choose-too-many (suc n) (suc m) (s≤s le) with n choose (suc m) | choose-too-many n m le | n choose (suc (suc m)) | choose-too-many n (suc m) (≤-step le) ... | .0 | refl | .0 | refl = refl _++'_ : ∀ {a n m} {A : Set a} → Vec A n → Vec A m → Vec A (m + n) _++'_ {_} {n} {m} v₁ v₂ rewrite solve 2 (λ a b → b :+ a := a :+ b) refl n m = v₁ Data.Vec.++ v₂ ++'-test : (1 ∷ 2 ∷ 3 ∷ []) ++' (4 ∷ 5 ∷ []) ≡ (1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []) ++'-test = refl data Coℕ : Set where co0 : Coℕ cosuc : ∞ Coℕ → Coℕ nanana : Coℕ nanana = let two = ♯ cosuc (♯ (cosuc (♯ co0))) in cosuc two abstract data VacuumCleaner : Set where Roomba : VacuumCleaner pointlessLemmaAboutBoolFunctions : (f : Bool → Bool) → f (f (f true)) ≡ f true pointlessLemmaAboutBoolFunctions f with f true | inspect f true ... | true | [ eq₁ ] = trans (cong f eq₁) eq₁ ... | false | [ eq₁ ] with f false | inspect f false ... | true | _ = eq₁ ... | false | [ eq₂ ] = eq₂ mutual isEven : ℕ → Bool isEven 0 = true isEven (suc n) = not (isOdd n) isOdd : ℕ → Bool isOdd 0 = false isOdd (suc n) = not (isEven n) foo : String foo = "Hello World!" nl : Char nl = '\n' private intersperseString : Char → List String → String intersperseString c [] = "" intersperseString c (x ∷ xs) = Data.List.foldl (λ a b → a Data.String.++ Data.String.fromList (c ∷ []) Data.String.++ b) x xs baz : String baz = intersperseString nl (Data.List.replicate 5 foo) postulate Float : Set {-# BUILTIN FLOAT Float #-} pi : Float pi = 3.141593 -- Astronomical unit au : Float au = 1.496e11 -- m plusFloat : Float → Float → Float plusFloat a b = {! !} record Subset (A : Set) (P : A → Set) : Set where constructor _#_ field elem : A .proof : P elem
{ "alphanum_fraction": 0.6082877248, "avg_line_length": 24.8349514563, "ext": "agda", "hexsha": "d930a77b6abbd22305d4945b4169cee9ab1a80f0", "lang": "Agda", "max_forks_count": 16, "max_forks_repo_forks_event_max_datetime": "2021-02-14T10:05:12.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-06T20:43:39.000Z", "max_forks_repo_head_hexsha": "b8bf8ef1bc30999223deb95506b0685b4ec8449a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agent010101/agent010101.github.io", "max_forks_repo_path": "vendor/bundle/ruby/2.0.0/gems/pygments.rb-0.6.1/vendor/pygments-main/tests/examplefiles/test.agda", "max_issues_count": 34, "max_issues_repo_head_hexsha": "b8bf8ef1bc30999223deb95506b0685b4ec8449a", "max_issues_repo_issues_event_max_datetime": "2019-01-28T14:30:46.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-12T17:54:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agent010101/agent010101.github.io", "max_issues_repo_path": "vendor/bundle/ruby/2.0.0/gems/pygments.rb-0.6.1/vendor/pygments-main/tests/examplefiles/test.agda", "max_line_length": 152, "max_stars_count": 23, "max_stars_repo_head_hexsha": "b8bf8ef1bc30999223deb95506b0685b4ec8449a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agent010101/agent010101.github.io", "max_stars_repo_path": "vendor/bundle/ruby/2.0.0/gems/pygments.rb-0.6.1/vendor/pygments-main/tests/examplefiles/test.agda", "max_stars_repo_stars_event_max_datetime": "2017-08-25T17:11:52.000Z", "max_stars_repo_stars_event_min_datetime": "2015-02-17T18:34:15.000Z", "num_tokens": 922, "size": 2558 }
module Monad where module Prelude where infixl 40 _∘_ id : {A : Set} -> A -> A id x = x _∘_ : {A B C : Set} -> (B -> C) -> (A -> B) -> A -> C f ∘ g = \x -> f (g x) data Nat : Set where zero : Nat suc : Nat -> Nat module Base where data Monad (M : Set -> Set) : Set1 where monad : (return : {A : Set} -> A -> M A) -> (bind : {A B : Set} -> M A -> (A -> M B) -> M B) -> Monad M monadReturn : {M : Set -> Set} -> Monad M -> {A : Set} -> A -> M A monadReturn (monad ret bind) = ret monadBind : {M : Set -> Set} -> Monad M -> {A B : Set} -> M A -> (A -> M B) -> M B monadBind (monad ret bind) = bind module Monad {M : Set -> Set}(monadM : Base.Monad M) where open Prelude infixl 15 _>>=_ -- Return and bind -------------------------------------------------------- return : {A : Set} -> A -> M A return = Base.monadReturn monadM _>>=_ : {A B : Set} -> M A -> (A -> M B) -> M B _>>=_ = Base.monadBind monadM -- Other operations ------------------------------------------------------- liftM : {A B : Set} -> (A -> B) -> M A -> M B liftM f m = m >>= return ∘ f module List where infixr 20 _++_ _::_ -- The list datatype ------------------------------------------------------ data List (A : Set) : Set where nil : List A _::_ : A -> List A -> List A -- Some list operations --------------------------------------------------- foldr : {A B : Set} -> (A -> B -> B) -> B -> List A -> B foldr f e nil = e foldr f e (x :: xs) = f x (foldr f e xs) map : {A B : Set} -> (A -> B) -> List A -> List B map f nil = nil map f (x :: xs) = f x :: map f xs _++_ : {A : Set} -> List A -> List A -> List A nil ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) concat : {A : Set} -> List (List A) -> List A concat = foldr _++_ nil -- List is a monad -------------------------------------------------------- open Base monadList : Monad List monadList = monad ret bind where ret : {A : Set} -> A -> List A ret x = x :: nil bind : {A B : Set} -> List A -> (A -> List B) -> List B bind xs f = concat (map f xs) open Prelude open List module MonadList = Monad monadList open MonadList
{ "alphanum_fraction": 0.4249779347, "avg_line_length": 23.8526315789, "ext": "agda", "hexsha": "6485e98e7a328f4fa11353347b8d0a8631b3ba5d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/Monad.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/Monad.agda", "max_line_length": 84, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 746, "size": 2266 }
module Highlighting.M where postulate ℕ : Set _+_ _*_ : (x y : ℕ) → ℕ
{ "alphanum_fraction": 0.6, "avg_line_length": 12.5, "ext": "agda", "hexsha": "692b79adecf24e0ecd82059b408deb40ec72237e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Highlighting/M.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Highlighting/M.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Highlighting/M.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 29, "size": 75 }
module Definitions where data _∨_ (A B : Set) : Set where inl : A → A ∨ B inr : B → A ∨ B data _∧_ (A B : Set) : Set where _,_ : A → B → A ∧ B data ⊥ : Set where ¬_ : Set → Set ¬ A = A → ⊥
{ "alphanum_fraction": 0.4974874372, "avg_line_length": 14.2142857143, "ext": "agda", "hexsha": "5bd6195a619d6550acefca50f0b9beafe63cb1c6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "danr/agder", "max_forks_repo_path": "problems/DeMorgan/Definitions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "danr/agder", "max_issues_repo_path": "problems/DeMorgan/Definitions.agda", "max_line_length": 32, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "danr/agder", "max_stars_repo_path": "problems/DeMorgan/Definitions.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-17T12:07:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-05-17T12:07:03.000Z", "num_tokens": 90, "size": 199 }
{-# OPTIONS --without-K #-} module equality.calculus where open import sum using (Σ ; _,_ ; proj₁; proj₂) open import equality.core open import equality.groupoid public open import function.core ap' : ∀ {i j} {X : Set i}{Y : X → Set j} {x x' : X}(f : (x : X) → Y x)(p : x ≡ x') → subst Y p (f x) ≡ f x' ap' _ refl = refl subst-naturality : ∀ {i i' j} {X : Set i} {Y : Set i'} {x x' : X} (P : Y → Set j) (f : X → Y)(p : x ≡ x')(u : P (f x)) → subst (P ∘ f) p u ≡ subst P (ap f p) u subst-naturality _ _ refl _ = refl subst-hom : ∀ {i j}{X : Set i}(P : X → Set j){x y z : X} → (p : x ≡ y)(q : y ≡ z)(u : P x) → subst P q (subst P p u) ≡ subst P (p · q) u subst-hom _ refl q u = refl subst-eq : ∀ {i} {X : Set i}{x y z : X} → (p : y ≡ x)(q : y ≡ z) → subst (λ y → y ≡ z) p q ≡ sym p · q subst-eq refl _ = refl subst-eq₂ : ∀ {i} {X : Set i}{x y : X} → (p : x ≡ y) → (q : x ≡ x) → subst (λ z → z ≡ z) p q ≡ sym p · q · p subst-eq₂ refl q = sym (left-unit _) subst-const : ∀ {i j} {A : Set i}{X : Set j} → {a a' : A}(p : a ≡ a')(x : X) → subst (λ _ → X) p x ≡ x subst-const refl x = refl subst-const-ap : ∀ {i j} {A : Set i}{X : Set j} → {a a' : A}(f : A → X)(p : a ≡ a') → ap' f p ≡ subst-const p (f a) · ap f p subst-const-ap f refl = refl apΣ : ∀ {i j}{A : Set i}{B : A → Set j} {x x' : Σ A B} → (p : x ≡ x') → Σ (proj₁ x ≡ proj₁ x') λ q → subst B q (proj₂ x) ≡ proj₂ x' apΣ {B = B} p = J (λ x x' p → Σ (proj₁ x ≡ proj₁ x') λ q → subst B q (proj₂ x) ≡ proj₂ x') (λ x → refl , refl) _ _ p unapΣ : ∀ {i j}{A : Set i}{B : A → Set j} {a a' : A}{b : B a}{b' : B a'} → (Σ (a ≡ a') λ q → subst B q b ≡ b') → (a , b) ≡ (a' , b') unapΣ (refl , refl) = refl pair≡ : ∀ {i j}{A : Set i}{B : Set j} {a a' : A}{b b' : B} → (a ≡ a') → (b ≡ b') → (a , b) ≡ (a' , b') pair≡ refl refl = refl apΣ-proj : ∀ {i j}{A : Set i}{B : A → Set j} {a a' : A}{b : B a}{b' : B a'} (p : (a , b) ≡ (a' , b')) → proj₁ (apΣ p) ≡ ap proj₁ p apΣ-proj = J (λ _ _ p → proj₁ (apΣ p) ≡ ap proj₁ p) (λ x → refl) _ _ apΣ-sym : ∀ {i j}{A : Set i}{B : A → Set j} {a a' : A}{b : B a}{b' : B a'} (p : (a , b) ≡ (a' , b')) → proj₁ (apΣ (sym p)) ≡ sym (proj₁ (apΣ p)) apΣ-sym = J (λ _ _ p → proj₁ (apΣ (sym p)) ≡ sym (proj₁ (apΣ p))) (λ x → refl) _ _ subst-ap : ∀ {i j}{A : Set i}{B : Set j}{a a' : A} → (f : A → B) → (p : a ≡ a') → ap f (sym p) ≡ subst (λ x → f x ≡ f a) p refl subst-ap f refl = refl ap-map-id : ∀ {i j}{X : Set i}{Y : Set j}{x : X} → (f : X → Y) → ap f (refl {x = x}) ≡ refl {x = f x} ap-map-id f = refl ap-map-hom : ∀ {i j}{X : Set i}{Y : Set j}{x y z : X} → (f : X → Y)(p : x ≡ y)(q : y ≡ z) → ap f (p · q) ≡ ap f p · ap f q ap-map-hom f refl _ = refl ap-id : ∀ {l} {A : Set l}{x y : A}(p : x ≡ y) → ap id p ≡ p ap-id refl = refl ap-hom : ∀ {l m n} {A : Set l}{B : Set m}{C : Set n} {x y : A}(f : A → B)(g : B → C)(p : x ≡ y) → ap g (ap f p) ≡ ap (g ∘ f) p ap-hom f g refl = refl ap-inv : ∀ {i j} {X : Set i} {Y : Set j} → {x x' : X} → (f : X → Y)(p : x ≡ x') → ap f (sym p) ≡ sym (ap f p) ap-inv f refl = refl double-inverse : ∀ {i} {X : Set i} {x y : X} (p : x ≡ y) → sym (sym p) ≡ p double-inverse refl = refl inverse-comp : ∀ {i} {X : Set i} {x y z : X} (p : x ≡ y)(q : y ≡ z) → sym (p · q) ≡ sym q · sym p inverse-comp refl q = sym (left-unit (sym q)) inverse-unique : ∀ {i} {X : Set i} {x y : X} (p : x ≡ y)(q : y ≡ x) → p · q ≡ refl → sym p ≡ q inverse-unique refl q t = sym t
{ "alphanum_fraction": 0.3852255825, "avg_line_length": 29.8814814815, "ext": "agda", "hexsha": "1ea1053198fbbda4e42a6ada3aee20604950487e", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "equality/calculus.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "equality/calculus.agda", "max_line_length": 57, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "equality/calculus.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 1691, "size": 4034 }
open import Relation.Nullary.Decidable using (False) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong; module ≡-Reasoning) open import Data.List using (List) open List open import Data.Unit using (tt) module AKS.Binary.Base where open import Polynomial.Simple.AlmostCommutativeRing using (AlmostCommutativeRing) open import Polynomial.Simple.AlmostCommutativeRing.Instances using (module Nat) open Nat.Reflection using (∀⟨_⟩) open import AKS.Nat using (ℕ; _+_; _*_; _≟_; _<_; lte; suc-mono-≤) open ℕ open import AKS.Nat using (ℕ⁺; ℕ+; ⟅_⇑⟆) open import AKS.Nat using (Euclidean; Euclidean✓; _div_) open import AKS.Nat using (Acc; acc; <-well-founded) 2* : ℕ → ℕ 2* n = n + n infixl 5 _0ᵇ _1ᵇ data 𝔹⁺ : Set where 𝕓1ᵇ : 𝔹⁺ _0ᵇ _1ᵇ : 𝔹⁺ → 𝔹⁺ infixr 4 +_ data 𝔹 : Set where 𝕓0ᵇ : 𝔹 +_ : 𝔹⁺ → 𝔹 ⟦_⇓⟧⁺ : 𝔹⁺ → ℕ ⟦ 𝕓1ᵇ ⇓⟧⁺ = 1 ⟦ x 0ᵇ ⇓⟧⁺ = 2* ⟦ x ⇓⟧⁺ ⟦ x 1ᵇ ⇓⟧⁺ = 1 + 2* ⟦ x ⇓⟧⁺ ⟦_⇓⟧ : 𝔹 → ℕ ⟦ 𝕓0ᵇ ⇓⟧ = 0 ⟦ + x ⇓⟧ = ⟦ x ⇓⟧⁺ private lemma₁ : ∀ {q} → suc q < suc (q + suc (q + zero)) lemma₁ {q} = lte q (∀⟨ q ∷ [] ⟩) lemma₂ : ∀ {q} → suc q < suc (suc (q + suc (q + zero))) lemma₂ {q} = lte (suc q) (∀⟨ q ∷ [] ⟩) ⟦_⇑_⟧ʰ : ∀ n → Acc _<_ n → ∀ {≢0 : False (n ≟ 0)} → 𝔹⁺ ⟦ suc n ⇑ acc downward ⟧ʰ with suc n div 2 ... | Euclidean✓ (suc q) 0 refl r<m = ⟦ suc q ⇑ downward lemma₁ ⟧ʰ 0ᵇ ... | Euclidean✓ zero 1 refl r<m = 𝕓1ᵇ ... | Euclidean✓ (suc q) 1 refl r<m = ⟦ suc q ⇑ downward lemma₂ ⟧ʰ 1ᵇ ⟦_⇑⟧⁺ : ℕ⁺ → 𝔹⁺ ⟦ ℕ+ n ⇑⟧⁺ = ⟦ suc n ⇑ <-well-founded ⟧ʰ ⟦_⇑⟧ : ℕ → 𝔹 ⟦ zero ⇑⟧ = 𝕓0ᵇ ⟦ suc n ⇑⟧ = + ⟦ ℕ+ n ⇑⟧⁺ ℕ→𝔹→ℕ : ∀ n → ⟦ ⟦ n ⇑⟧ ⇓⟧ ≡ n ℕ→𝔹→ℕ zero = refl ℕ→𝔹→ℕ (suc n) = ℕ⁺→𝔹⁺→ℕ (suc n) <-well-founded where ℕ⁺→𝔹⁺→ℕ : ∀ (n : ℕ) (rec : Acc _<_ n) {≢0 : False (n ≟ 0)} → ⟦ ⟦ n ⇑ rec ⟧ʰ {≢0} ⇓⟧⁺ ≡ n ℕ⁺→𝔹⁺→ℕ (suc n) (acc downward) with suc n div 2 ... | Euclidean✓ (suc q) 0 refl r<m rewrite ℕ⁺→𝔹⁺→ℕ (suc q) (downward lemma₁) {tt} = ∀⟨ q ∷ [] ⟩ ... | Euclidean✓ zero 1 refl r<m = refl ... | Euclidean✓ (suc q) 1 refl r<m rewrite ℕ⁺→𝔹⁺→ℕ (suc q) (downward lemma₂) {tt} = ∀⟨ q ∷ [] ⟩ ⌈log₂_⌉⁺ : 𝔹⁺ → ℕ ⌈log₂ 𝕓1ᵇ ⌉⁺ = 1 ⌈log₂ (b 0ᵇ) ⌉⁺ = 1 + ⌈log₂ b ⌉⁺ ⌈log₂ (b 1ᵇ) ⌉⁺ = 1 + ⌈log₂ b ⌉⁺ ⌈log₂_⌉ : 𝔹 → ℕ ⌈log₂ 𝕓0ᵇ ⌉ = 0 ⌈log₂ + b ⌉ = ⌈log₂ b ⌉⁺ ⌊_/2⌋⁺ : 𝔹⁺ → 𝔹⁺ ⌊ 𝕓1ᵇ /2⌋⁺ = 𝕓1ᵇ ⌊ b 0ᵇ /2⌋⁺ = b ⌊ b 1ᵇ /2⌋⁺ = b ⌊_/2⌋ : 𝔹 → 𝔹 ⌊ 𝕓0ᵇ /2⌋ = 𝕓0ᵇ ⌊ + b /2⌋ = + ⌊ b /2⌋⁺ -- _+ᵇ_ : 𝔹 → 𝔹 → 𝔹 -- n +ᵇ m = ⟦ ⟦ n ⇓⟧ + ⟦ m ⇓⟧ ⇑⟧ -- -- data Bit : Set where -- -- 0𝑏 : Bit -- -- 1𝑏 : Bit -- -- _+ᵇ⁺_ : 𝔹⁺ → 𝔹⁺ → 𝔹⁺ -- -- n +ᵇ⁺ m = ⟦ ⟦ n ⇓⟧⁺ ⇑⟧⁺ -- -- where -- -- loop : Bit → 𝔹⁺ → 𝔹⁺ → 𝔹⁺ -- -- loop carry x y = ? -- -- unique⁺ : ∀ x y → ⟦ x ⇓⟧⁺ ≡ ⟦ y ⇓⟧⁺ → x ≡ y -- -- unique⁺ 1ᵇ 1ᵇ p = refl -- -- unique⁺ 1ᵇ (y 0ᵇ) p = {!!} -- -- unique⁺ 1ᵇ (y 1ᵇ) p = {!!} -- -- unique⁺ (x 0ᵇ) 1ᵇ p = {!!} -- -- unique⁺ (x 0ᵇ) (y 0ᵇ) p = {!!} -- -- unique⁺ (x 0ᵇ) (y 1ᵇ) p = {!!} -- -- unique⁺ (x 1ᵇ) y p = {!!} -- -- unique : ∀ x y → ⟦ x ⇓⟧ ≡ ⟦ y ⇓⟧ → x ≡ y -- -- unique 𝕓0ᵇ 𝕓0ᵇ p = refl -- -- unique 𝕓0ᵇ (𝕓 y) p = {!!} -- -- unique (𝕓 x) 𝕓0ᵇ p = {!!} -- -- unique (𝕓 x) (𝕓 y) p = {!!} module Test where eval-unit₁ : ⟦ + 𝕓1ᵇ 0ᵇ 1ᵇ 0ᵇ ⇓⟧ ≡ 10 eval-unit₁ = refl log-unit₁ : ⌈log₂ ⟦ 15 ⇑⟧ ⌉ ≡ 4 log-unit₁ = refl
{ "alphanum_fraction": 0.4874960431, "avg_line_length": 25.6829268293, "ext": "agda", "hexsha": "fd3b5b2de495af2b26169e3dc480bd278a2df4bb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Binary/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Binary/Base.agda", "max_line_length": 98, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Binary/Base.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 2009, "size": 3159 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) open import LogicalFormulae open import Sets.EquivalenceRelations open import Setoids.Setoids module Setoids.Algebra.Lemmas {a b : _} {A : Set a} (S : Setoid {a} {b} A) where open Setoid S open Equivalence eq open import Setoids.Subset S open import Setoids.Equality S open import Setoids.Intersection.Definition S open import Setoids.Union.Definition S intersectionAndUnion : {c d e : _} {pred1 : A → Set c} {pred2 : A → Set d} {pred3 : A → Set e} → (s1 : subset pred1) (s2 : subset pred2) (s3 : subset pred3) → intersection s1 (union s2 s3) =S union (intersection s1 s2) (intersection s1 s3) intersectionAndUnion s1 s2 s3 x = ans1 ,, ans2 where ans1 : _ ans1 (fst ,, inl x) = inl (fst ,, x) ans1 (fst ,, inr x) = inr (fst ,, x) ans2 : _ ans2 (inl x) = _&&_.fst x ,, inl (_&&_.snd x) ans2 (inr x) = _&&_.fst x ,, inr (_&&_.snd x)
{ "alphanum_fraction": 0.6632337796, "avg_line_length": 37.3461538462, "ext": "agda", "hexsha": "e610f2e6b5328ad29047225df61883613378e76d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Setoids/Algebra/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Setoids/Algebra/Lemmas.agda", "max_line_length": 239, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Setoids/Algebra/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 338, "size": 971 }
-- {-# OPTIONS -v tc:30 #-} -- Andreas, 2016-07-19, issue #2102 -- An abstract definition in a where block should not -- stop metas of parent function to be solved! test : _ test = Set -- WAS: yellow where abstract def = Set -- should succeed test1 = Set module M where abstract def = Set -- Similar situation mutual test2 : _ abstract def = Set test2 = Set
{ "alphanum_fraction": 0.6596306069, "avg_line_length": 15.7916666667, "ext": "agda", "hexsha": "c6380372dff9de7eaf7b00f4af3cdf04f6948373", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2102.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2102.agda", "max_line_length": 53, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2102.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 113, "size": 379 }
{-# OPTIONS --cubical --no-import-sorts --safe --experimental-lossy-unification #-} module Cubical.ZCohomology.Groups.Wedge where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.Foundations.HLevels open import Cubical.Foundations.Prelude open import Cubical.Foundations.Pointed open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws open import Cubical.HITs.Wedge open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to pRec2 ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; ∣_∣ to ∣_∣₁) open import Cubical.HITs.Truncation renaming (elim to trElim ; rec to trRec ; elim2 to trElim2) open import Cubical.Data.Nat open import Cubical.Algebra.Group open import Cubical.ZCohomology.Groups.Unit open import Cubical.ZCohomology.Groups.Sn open import Cubical.HITs.Pushout open import Cubical.Data.Sigma open import Cubical.Foundations.Isomorphism open import Cubical.Homotopy.Connected open import Cubical.HITs.Susp open import Cubical.HITs.S1 open import Cubical.HITs.Sn open import Cubical.Foundations.Equiv open GroupIso renaming (map to map') open GroupHom {- This module proves that Hⁿ(A ⋁ B) ≅ Hⁿ(A) × Hⁿ(B) for n ≥ 1 directly (rather than by means of Mayer-Vietoris). Proof sketch: Any ∣ f ∣₂ ∈ Hⁿ(A ⋁ B) is uniquely characterised by a pair of functions f₁ : A → Kₙ f₂ : B → Kₙ together with a path p : f₁ (pt A) ≡ f₂ (pt B) The map F : Hⁿ(A ⋁ B) → Hⁿ(A) × Hⁿ(B) simply forgets about p, i.e.: F(∣ f ∣₂) := (∣ f₁ ∣₂ , ∣ f₂ ∣₂) The construction of its inverse is defined by F⁻(∣ f₁ ∣₂ , ∣ f₂ ∣₂) := ∣ f₁∨f₂ ∣₂ where f₁∨f₂ : A ⋁ B → Kₙ is defined inductively by f₁∨f₂ (inl x) := f₁ x + f₂ (pt B) f₁∨f₂ (inr x) := f₂ x + f₁ (pt B) cong f₁∨f₂ (push tt) := "f₁ (pt A) + f₂ (pt B) =(commutativity) f₂ (pt B) + f₁ (pt A)" (this is the map wedgeFun⁻ below) Note that the cong-case above reduces to refl when f₁ (pt A) := f₂ (pt B) := 0 The fact that F and F⁻ cancel out is a proposition and we may thus assume for any ∣ f ∣₂ ∈ Hⁿ(A ⋁ B) and its corresponding f₁ that f₁ (pt A) = f₂ (pt B) = 0 (*) and f (inl (pt A)) = 0 (**) The fact that F(F⁻(∣ f₁ ∣₂ , ∣ f₂ ∣₂)) = ∣ f₁ ∣₂ , ∣ f₂ ∣₂) follows immediately from (*) The other way is slightly trickier. We need to construct paths Pₗ : f (inl (x)) + f (inr (pt B)) ---> f (inl (x)) Pᵣ : f (inr (x)) + f (inl (pt A)) ---> f (inr (x)) Together with a filler of the following square cong f (push tt) -----------------> ^ ^ | | | | Pₗ | | Pᵣ | | | | | | -----------------> Q where Q is commutativity proof f (inl (pt A)) + f (inr (pt B)) = f (inr (pt B)) + f (inl (pt A)) The square is filled by first constructing Pₗ by f (inl (x)) + f (inr (pt B)) ---[cong f (push tt)⁻¹]---> f (inl (x)) + f (inl (pt A)) ---[(**)]---> f (inl (x)) + 0 ---[right-unit]---> f (inl (x)) and then Pᵣ by f (inr (x)) + f (inl (pt A)) ---[(**)]---> f (inr (x)) + 0 ---[right-unit]---> f (inr (x)) and finally by using the fact that the group laws for Kₙ are refl at its base point. -} module _ {ℓ ℓ'} (A : Pointed ℓ) (B : Pointed ℓ') where private wedgeFun⁻ : ∀ n → (f : typ A → coHomK (suc n)) (g : typ B → coHomK (suc n)) → ((A ⋁ B) → coHomK (suc n)) wedgeFun⁻ n f g (inl x) = f x +ₖ g (pt B) wedgeFun⁻ n f g (inr x) = g x +ₖ f (pt A) wedgeFun⁻ n f g (push a i) = commₖ (suc n) (f (pt A)) (g (pt B)) i Hⁿ-⋁ : (n : ℕ) → GroupIso (coHomGr (suc n) (A ⋁ B)) (×coHomGr (suc n) (typ A) (typ B)) fun (map' (Hⁿ-⋁ zero)) = sElim (λ _ → isSet× setTruncIsSet setTruncIsSet) λ f → ∣ (λ x → f (inl x)) ∣₂ , ∣ (λ x → f (inr x)) ∣₂ isHom (map' (Hⁿ-⋁ zero)) = sElim2 (λ _ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ _ _ → refl inv (Hⁿ-⋁ zero) = uncurry (sElim2 (λ _ _ → setTruncIsSet) λ f g → ∣ wedgeFun⁻ 0 f g ∣₂) rightInv (Hⁿ-⋁ zero) = uncurry (coHomPointedElim _ (pt A) (λ _ → isPropΠ λ _ → isSet× setTruncIsSet setTruncIsSet _ _) λ f fId → coHomPointedElim _ (pt B) (λ _ → isSet× setTruncIsSet setTruncIsSet _ _) λ g gId → ΣPathP (cong ∣_∣₂ (funExt (λ x → cong (f x +ₖ_) gId ∙ rUnitₖ 1 (f x))) , cong ∣_∣₂ (funExt (λ x → cong (g x +ₖ_) fId ∙ rUnitₖ 1 (g x))))) leftInv (Hⁿ-⋁ zero) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (λ f → pRec (setTruncIsSet _ _) (λ fId → cong ∣_∣₂ (sym fId)) (helper f _ refl)) where helper : (f : A ⋁ B → coHomK 1) (x : coHomK 1) → f (inl (pt A)) ≡ x → ∥ f ≡ wedgeFun⁻ 0 (λ x → f (inl x)) (λ x → f (inr x)) ∥ helper f = trElim (λ _ → isProp→isOfHLevelSuc 2 (isPropΠ λ _ → propTruncIsProp)) (sphereElim 0 (λ _ → isPropΠ λ _ → propTruncIsProp) λ inlId → (∣ funExt (λ { (inl x) → sym (rUnitₖ 1 (f (inl x))) ∙∙ cong ((f (inl x)) +ₖ_) (sym inlId) ∙∙ cong ((f (inl x)) +ₖ_) (cong f (push tt)) ; (inr x) → sym (rUnitₖ 1 (f (inr x))) ∙ cong ((f (inr x)) +ₖ_) (sym inlId) ; (push tt i) j → cheating (f (inl (pt A))) (sym (inlId)) (f (inr (pt B))) (cong f (push tt)) j i}) ∣₁)) where cheating : (x : coHomK 1) (r : ∣ base ∣ ≡ x) (y : coHomK 1) (p : x ≡ y) → PathP (λ j → ((sym (rUnitₖ 1 x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j ≡ (sym (rUnitₖ 1 y) ∙ cong (y +ₖ_) r) j) p (commₖ 1 x y) cheating x = J (λ x r → (y : coHomK 1) (p : x ≡ y) → PathP (λ j → ((sym (rUnitₖ 1 x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j ≡ (sym (rUnitₖ 1 y) ∙ cong (y +ₖ_) r) j) p (commₖ 1 x y)) λ y → J (λ y p → PathP (λ j → ((sym (rUnitₖ 1 ∣ base ∣) ∙∙ refl ∙∙ cong (∣ base ∣ +ₖ_) p)) j ≡ (sym (rUnitₖ 1 y) ∙ refl) j) p (commₖ 1 ∣ base ∣ y)) λ i j → comp (λ _ → hLevelTrunc 3 S¹) (λ k → λ {(i = i0) → ∣ base ∣ ; (i = i1) → ∣ base ∣ ; (j = i0) → (rUnit (λ _ → ∣ base ∣) k) i ; (j = i1) → (rUnit (λ _ → ∣ base ∣) k) i}) ∣ base ∣ fun (map' (Hⁿ-⋁ (suc n))) = sElim (λ _ → isSet× setTruncIsSet setTruncIsSet) λ f → ∣ (λ x → f (inl x)) ∣₂ , ∣ (λ x → f (inr x)) ∣₂ isHom (map' (Hⁿ-⋁ (suc n))) = sElim2 (λ _ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ _ _ → refl inv (Hⁿ-⋁ (suc n)) = uncurry (sElim2 (λ _ _ → setTruncIsSet) λ f g → ∣ wedgeFun⁻ (suc n) f g ∣₂) rightInv (Hⁿ-⋁ (suc n)) = uncurry (coHomPointedElim _ (pt A) (λ _ → isPropΠ λ _ → isSet× setTruncIsSet setTruncIsSet _ _) λ f fId → coHomPointedElim _ (pt B) (λ _ → isSet× setTruncIsSet setTruncIsSet _ _) λ g gId → ΣPathP (cong ∣_∣₂ (funExt (λ x → cong (f x +ₖ_) gId ∙ rUnitₖ (2 + n) (f x))) , cong ∣_∣₂ (funExt (λ x → cong (g x +ₖ_) fId ∙ rUnitₖ (2 + n) (g x))))) leftInv (Hⁿ-⋁ (suc n)) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (λ f → pRec (setTruncIsSet _ _) (λ fId → cong ∣_∣₂ (sym fId)) (helper f _ refl)) where helper : (f : A ⋁ B → coHomK (2 + n)) (x : coHomK (2 + n)) → f (inl (pt A)) ≡ x → ∥ f ≡ wedgeFun⁻ (suc n) (λ x → f (inl x)) (λ x → f (inr x)) ∥ helper f = trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isPropΠ λ _ → propTruncIsProp)) (sphereToPropElim (suc n) (λ _ → isPropΠ λ _ → propTruncIsProp) λ inlId → (∣ funExt (λ { (inl x) → sym (rUnitₖ (2 + n) (f (inl x))) ∙∙ cong ((f (inl x)) +ₖ_) (sym inlId) ∙∙ cong ((f (inl x)) +ₖ_) (cong f (push tt)) ; (inr x) → sym (rUnitₖ (2 + n) (f (inr x))) ∙ cong ((f (inr x)) +ₖ_) (sym inlId) ; (push tt i) j → cheating (f (inl (pt A))) (sym (inlId)) (f (inr (pt B))) (cong f (push tt)) j i}) ∣₁)) where cheating : (x : coHomK (2 + n)) (r : ∣ north ∣ ≡ x) (y : coHomK (2 + n)) (p : x ≡ y) → PathP (λ j → ((sym (rUnitₖ (2 + n) x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j ≡ (sym (rUnitₖ (2 + n) y) ∙ cong (y +ₖ_) r) j) p (commₖ (2 + n) x y) cheating x = J (λ x r → (y : coHomK (2 + n)) (p : x ≡ y) → PathP (λ j → ((sym (rUnitₖ (2 + n) x) ∙∙ cong (x +ₖ_) r ∙∙ cong (x +ₖ_) p)) j ≡ (sym (rUnitₖ (2 + n) y) ∙ cong (y +ₖ_) r) j) p (commₖ (2 + n) x y)) doubleCheating where doubleCheating : (y : coHomK (2 + n)) → (p : ∣ north ∣ ≡ y) → PathP (λ j → ((refl ∙∙ refl ∙∙ cong (∣ north ∣ +ₖ_) p)) j ≡ (sym (rUnitₖ (2 + n) y) ∙ refl) j) p (commₖ (2 + n) ∣ north ∣ y) doubleCheating y = J (λ y p → PathP (λ j → ((refl ∙∙ refl ∙∙ cong (∣ north ∣ +ₖ_) p)) j ≡ (sym (rUnitₖ (2 + n) y) ∙ refl) j) p (commₖ (2 + n) ∣ north ∣ y)) λ i j → comp (λ _ → coHomK (2 + n)) (λ k → λ {(i = i0) → ∣ north ∣ ; (i = i1) → commₖ-base (2 + n) (~ k) j ; (j = i0) → rUnit (λ _ → ∣ north ∣) k i ; (j = i1) → rUnit (λ _ → ∣ north ∣) k i}) ∣ north ∣ wedgeConnected : ((x : typ A) → ∥ pt A ≡ x ∥) → ((x : typ B) → ∥ pt B ≡ x ∥) → (x : A ⋁ B) → ∥ inl (pt A) ≡ x ∥ wedgeConnected conA conB = PushoutToProp (λ _ → propTruncIsProp) (λ a → pRec propTruncIsProp (λ p → ∣ cong inl p ∣₁) (conA a)) λ b → pRec propTruncIsProp (λ p → ∣ push tt ∙ cong inr p ∣₁) (conB b) open import Cubical.Data.Int open import Cubical.Data.Empty renaming (rec to ⊥-rec) open import Cubical.Data.Bool open import Cubical.Data.Int renaming (+-comm to +-commℤ ; _+_ to _+ℤ_) even : Int → Bool even (pos zero) = true even (pos (suc zero)) = false even (pos (suc (suc n))) = even (pos n) even (negsuc zero) = false even (negsuc (suc n)) = even (pos n) open import Cubical.Data.Sum even-2 : (x : Int) → even (-2 +ℤ x) ≡ even x even-2 (pos zero) = refl even-2 (pos (suc zero)) = refl even-2 (pos (suc (suc n))) = cong even (cong sucInt (sucInt+pos _ _) ∙∙ sucInt+pos _ _ ∙∙ +-commℤ 0 (pos n)) ∙ noClueWhy n where noClueWhy : (n : ℕ) → even (pos n) ≡ even (pos n) noClueWhy n = refl even-2 (negsuc zero) = refl even-2 (negsuc (suc n)) = cong even (predInt+negsuc n _ ∙ +-commℤ -3 (negsuc n)) ∙ noClueWhy n where noClueWhy : (n : ℕ) → even (negsuc (suc (suc (suc n)))) ≡ even (pos n) noClueWhy n = refl test3 : (p : 0ₖ 1 ≡ 0ₖ 1) → even (ΩKn+1→Kn 0 (transport (λ i → ∣ (loop ∙ loop) i ∣ ≡ 0ₖ 1) p)) ≡ even (ΩKn+1→Kn 0 p) test3 p = cong even (cong (ΩKn+1→Kn 0) (cong (transport (λ i → ∣ (loop ∙ loop) i ∣ ≡ 0ₖ 1)) (lUnit p))) ∙∙ cong even (cong (ΩKn+1→Kn 0) λ j → transp (λ i → ∣ (loop ∙ loop) (i ∨ j) ∣ ≡ 0ₖ 1) j ((λ i → ∣ (loop ∙ loop) (~ i ∧ j) ∣) ∙ p)) ∙∙ cong even (ΩKn+1→Kn-hom 0 (sym (cong ∣_∣ (loop ∙ loop))) p) ∙ even-2 (ΩKn+1→Kn 0 p) test2 : Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 → Bool test2 = uncurry (trElim (λ _ → isGroupoidΠ λ _ → isOfHLevelSuc 2 isSetBool) λ {base p → even (ΩKn+1→Kn 0 p) ; (loop i) p → hcomp (λ k → λ { (i = i0) → test3 p k ; (i = i1) → even (ΩKn+1→Kn 0 p)}) (even (ΩKn+1→Kn 0 (transp (λ j → ∣ (loop ∙ loop) (i ∨ j) ∣ ≡ 0ₖ 1) i p)))}) *' : (x y : coHomK 1) (p : x +ₖ x ≡ 0ₖ 1) (q : y +ₖ y ≡ 0ₖ 1) → ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ *' = trElim2 (λ _ _ → isGroupoidΠ2 λ _ _ → isOfHLevelSuc 2 setTruncIsSet) (wedgeConSn _ _ (λ _ _ → isSetΠ2 λ _ _ → setTruncIsSet) (λ x p q → ∣ ∣ x ∣ , cong₂ _+ₖ_ p q ∣₂) (λ y p q → ∣ ∣ y ∣ , sym (rUnitₖ 1 (∣ y ∣ +ₖ ∣ y ∣)) ∙ cong₂ _+ₖ_ p q ∣₂) (funExt λ p → funExt λ q → cong ∣_∣₂ (ΣPathP (refl , (sym (lUnit _))))) .fst) _*_ : ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ → ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ → ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ _*_ = sRec (isSetΠ (λ _ → setTruncIsSet)) λ a → sRec setTruncIsSet λ b → *' (fst a) (fst b) (snd a) (snd b) *=∙ : (p q : 0ₖ 1 ≡ 0ₖ 1) → ∣ 0ₖ 1 , p ∣₂ * ∣ 0ₖ 1 , q ∣₂ ≡ ∣ 0ₖ 1 , p ∙ q ∣₂ *=∙ p q = cong ∣_∣₂ (ΣPathP (refl , sym (∙≡+₁ p q))) help : (n : ℕ) → even (pos (suc n)) ≡ true → even (negsuc n) ≡ true help zero p = ⊥-rec (true≢false (sym p)) help (suc n) p = p help2 : (n : ℕ) → even (pos (suc n)) ≡ false → even (negsuc n) ≡ false help2 zero p = refl help2 (suc n) p = p evenCharac : (x : Int) → even x ≡ true → Path ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ ∣ (0ₖ 1 , Kn→ΩKn+1 0 x) ∣₂ ∣ (0ₖ 1 , refl) ∣₂ evenCharac (pos zero) iseven i = ∣ (0ₖ 1) , (rUnit refl (~ i)) ∣₂ evenCharac (pos (suc zero)) iseven = ⊥-rec (true≢false (sym iseven)) evenCharac (pos (suc (suc zero))) iseven = cong ∣_∣₂ ((λ i → 0ₖ 1 , rUnit (cong ∣_∣ ((lUnit loop (~ i)) ∙ loop)) (~ i)) ∙ (ΣPathP (cong ∣_∣ loop , λ i j → ∣ (loop ∙ loop) (i ∨ j) ∣))) evenCharac (pos (suc (suc (suc n)))) iseven = (λ i → ∣ 0ₖ 1 , Kn→ΩKn+1-hom 0 (pos (suc n)) 2 i ∣₂) ∙∙ sym (*=∙ (Kn→ΩKn+1 0 (pos (suc n))) (Kn→ΩKn+1 0 (pos 2))) ∙∙ (cong₂ _*_ (evenCharac (pos (suc n)) iseven) (evenCharac 2 refl)) evenCharac (negsuc zero) iseven = ⊥-rec (true≢false (sym iseven)) evenCharac (negsuc (suc zero)) iseven = cong ∣_∣₂ ((λ i → 0ₖ 1 , λ i₁ → hfill (doubleComp-faces (λ i₂ → ∣ base ∣) (λ _ → ∣ base ∣) i₁) (inS ∣ compPath≡compPath' (sym loop) (sym loop) i i₁ ∣) (~ i)) ∙ ΣPathP ((cong ∣_∣ (sym loop)) , λ i j → ∣ (sym loop ∙' sym loop) (i ∨ j) ∣)) evenCharac (negsuc (suc (suc n))) iseven = cong ∣_∣₂ (λ i → 0ₖ 1 , Kn→ΩKn+1-hom 0 (negsuc n) -2 i) ∙∙ sym (*=∙ (Kn→ΩKn+1 0 (negsuc n)) (Kn→ΩKn+1 0 -2)) ∙∙ cong₂ _*_ (evenCharac (negsuc n) (help n iseven)) (evenCharac -2 refl) -- i oddCharac : (x : Int) → even x ≡ false → Path ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ ∣ (0ₖ 1 , Kn→ΩKn+1 0 x) ∣₂ ∣ (0ₖ 1 , cong ∣_∣ loop) ∣₂ oddCharac (pos zero) isOdd = ⊥-rec (true≢false isOdd) oddCharac (pos (suc zero)) isOdd i = ∣ (0ₖ 1 , λ j → hfill (doubleComp-faces (λ i₂ → ∣ base ∣) (λ _ → ∣ base ∣) j) (inS ∣ lUnit loop (~ i) j ∣) (~ i)) ∣₂ oddCharac (pos (suc (suc n))) isOdd = (λ i → ∣ 0ₖ 1 , Kn→ΩKn+1-hom 0 (pos n) 2 i ∣₂) ∙∙ sym (*=∙ (Kn→ΩKn+1 0 (pos n)) (Kn→ΩKn+1 0 2)) ∙∙ cong₂ _*_ (oddCharac (pos n) isOdd) (evenCharac 2 refl) oddCharac (negsuc zero) isOdd = cong ∣_∣₂ ((λ i → 0ₖ 1 , rUnit (sym (cong ∣_∣ loop)) (~ i)) ∙ ΣPathP (cong ∣_∣ (sym loop) , λ i j → ∣ hcomp (λ k → λ { (i = i0) → loop (~ j ∧ k) ; (i = i1) → loop j ; (j = i1) → base}) (loop (j ∨ ~ i)) ∣)) oddCharac (negsuc (suc zero)) isOdd = ⊥-rec (true≢false isOdd) oddCharac (negsuc (suc (suc n))) isOdd = cong ∣_∣₂ (λ i → 0ₖ 1 , Kn→ΩKn+1-hom 0 (negsuc n) -2 i) ∙∙ sym (*=∙ (Kn→ΩKn+1 0 (negsuc n)) (Kn→ΩKn+1 0 -2)) ∙∙ cong₂ _*_ (oddCharac (negsuc n) (help2 n isOdd)) (evenCharac (negsuc 1) refl) map⁻ : Bool → ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ map⁻ false = ∣ 0ₖ 1 , cong ∣_∣ loop ∣₂ map⁻ true = ∣ 0ₖ 1 , refl ∣₂ testIso : Iso ∥ Σ[ x ∈ coHomK 1 ] x +ₖ x ≡ 0ₖ 1 ∥₂ Bool Iso.fun testIso = sRec isSetBool test2 Iso.inv testIso = map⁻ Iso.rightInv testIso false = refl Iso.rightInv testIso true = refl Iso.leftInv testIso = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) (uncurry (trElim (λ _ → isGroupoidΠ λ _ → isOfHLevelPlus {n = 1} 2 (setTruncIsSet _ _)) (toPropElim (λ _ → isPropΠ (λ _ → setTruncIsSet _ _)) (λ p → path p (even (ΩKn+1→Kn 0 p)) refl)))) where path : (p : 0ₖ 1 ≡ 0ₖ 1) (b : Bool) → (even (ΩKn+1→Kn 0 p) ≡ b) → map⁻ (test2 (∣ base ∣ , p)) ≡ ∣ ∣ base ∣ , p ∣₂ path p false q = (cong map⁻ q) ∙∙ sym (oddCharac (ΩKn+1→Kn 0 p) q) ∙∙ cong ∣_∣₂ λ i → 0ₖ 1 , Iso.rightInv (Iso-Kn-ΩKn+1 0) p i path p true q = cong map⁻ q ∙∙ sym (evenCharac (ΩKn+1→Kn 0 p) q) ∙∙ cong ∣_∣₂ λ i → 0ₖ 1 , Iso.rightInv (Iso-Kn-ΩKn+1 0) p i
{ "alphanum_fraction": 0.4650357462, "avg_line_length": 47.4907161804, "ext": "agda", "hexsha": "bfe6db8dbfecbe7009e8698fcffcc6dd3ef4b840", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/ZCohomology/Groups/Wedge.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/ZCohomology/Groups/Wedge.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/ZCohomology/Groups/Wedge.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7420, "size": 17904 }
{-# OPTIONS --cubical --safe --postfix-projections #-} -- This module defines a data type for balanced strings of parentheses, -- which is isomorphic to binary trees. module Data.Dyck.Rose where open import Prelude open import Data.Nat using (_+_) open import Data.Vec.Iterated using (Vec; _∷_; []; foldlN; head) open import Data.Tree.Rose open import Data.List private variable n : ℕ -------------------------------------------------------------------------------- -- Programs: definition and associated functions -------------------------------------------------------------------------------- data Prog (A : Type a) : ℕ → Type a where halt : Prog A 1 pull : Prog A (1 + n) → Prog A n push : A → Prog A (1 + n) → Prog A (2 + n) -------------------------------------------------------------------------------- -- Conversion from a Prog to a Tree -------------------------------------------------------------------------------- prog→tree⊙ : Prog A n → Vec (Forest A) n → Forest A prog→tree⊙ halt (v ∷ []) = v prog→tree⊙ (pull is) st = prog→tree⊙ is ([] ∷ st) prog→tree⊙ (push v is) (t₁ ∷ t₂ ∷ st) = prog→tree⊙ is (((v & t₂) ∷ t₁) ∷ st) prog→tree : Prog A zero → Forest A prog→tree ds = prog→tree⊙ ds [] -------------------------------------------------------------------------------- -- Conversion from a Tree to a Prog -------------------------------------------------------------------------------- tree→prog⊙ : Forest A → Prog A (suc n) → Prog A n tree→prog⊙ [] = pull tree→prog⊙ ((t & ts) ∷ xs) = tree→prog⊙ ts ∘ tree→prog⊙ xs ∘ push t tree→prog : Forest A → Prog A zero tree→prog tr = tree→prog⊙ tr halt -------------------------------------------------------------------------------- -- Proof of isomorphism -------------------------------------------------------------------------------- tree→prog→tree⊙ : (e : Forest A) (is : Prog A (1 + n)) (st : Vec (Forest A) n) → prog→tree⊙ (tree→prog⊙ e is) st ≡ prog→tree⊙ is (e ∷ st) tree→prog→tree⊙ [] is st = refl tree→prog→tree⊙ ((t & ts) ∷ xs) is st = tree→prog→tree⊙ ts _ st ; tree→prog→tree⊙ xs (push t is) (ts ∷ st) tree→prog→tree : (e : Forest A) → prog→tree (tree→prog e) ≡ e tree→prog→tree e = tree→prog→tree⊙ e halt [] prog→tree→prog⊙ : (is : Prog A n) (st : Vec (Forest A) n) → tree→prog (prog→tree⊙ is st) ≡ foldlN (Prog A) tree→prog⊙ is st prog→tree→prog⊙ halt st = refl prog→tree→prog⊙ (pull is) st = prog→tree→prog⊙ is ([] ∷ st) prog→tree→prog⊙ (push x is) (t₁ ∷ t₂ ∷ st) = prog→tree→prog⊙ is (((x & t₂) ∷ t₁) ∷ st) prog→tree→prog : (is : Prog A 0) → tree→prog (prog→tree is) ≡ is prog→tree→prog is = prog→tree→prog⊙ is [] prog-iso : Prog A zero ⇔ Forest A prog-iso .fun = prog→tree prog-iso .inv = tree→prog prog-iso .rightInv = tree→prog→tree prog-iso .leftInv = prog→tree→prog
{ "alphanum_fraction": 0.4713532513, "avg_line_length": 36.4743589744, "ext": "agda", "hexsha": "e3c6c5d1d487c46b2b91b95a397d2535b45e2ac1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/Dyck/Rose.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/Dyck/Rose.agda", "max_line_length": 80, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/Dyck/Rose.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 894, "size": 2845 }
{-# OPTIONS --cubical --safe --postfix-projections #-} module Data.Sum.Properties where open import Prelude open import Data.Sum open import Data.Bool sumAsSigma : A ⊎ B ≃ Σ[ x ⦂ Bool ] (if x then A else B) sumAsSigma = isoToEquiv $ iso (either (true ,_) (false ,_)) (uncurry (bool inr inl)) (λ { (false , _) → refl ; (true , _) → refl}) (λ { (inl _) → refl ; (inr _) → refl})
{ "alphanum_fraction": 0.6055276382, "avg_line_length": 24.875, "ext": "agda", "hexsha": "cc3f8836dfd9ca9db4cbfcbf5ec42c96897a2ee7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Data/Sum/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Data/Sum/Properties.agda", "max_line_length": 55, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Data/Sum/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 131, "size": 398 }
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.SplittableOrder where -- Stdlib imports import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open import Level using (Level; _⊔_) open import Function using (_∘_) open import Data.Empty using (⊥-elim) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (_×_; _,_; proj₁; proj₂; ∃-syntax) open import Relation.Nullary using (¬_) open import Relation.Unary using (Pred) open import Relation.Binary using (Rel; REL; Transitive; Trichotomous; Tri; tri<; tri≈; tri>) open import Relation.Binary.Construct.Closure.Transitive using (TransClosure; [_]; _∷_; _++_) -- Local imports open import Dodo.Unary.Equality open import Dodo.Binary.Equality open import Dodo.Binary.Immediate open import Dodo.Binary.Trichotomous open import Dodo.Binary.Transitive open import Dodo.Binary.Domain open import Dodo.Binary.Filter open import Function using (flip) -- # Definitions # -- For any `R x y` there exists a /path/ from `x` to `y`. SplittableOrder : {a ℓ : Level} {A : Set a} (R : Rel A ℓ) → Set (a ⊔ ℓ) SplittableOrder R = R ⇔₂ TransClosure (immediate R) -- # Properties # module _ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} where splittable-trans : SplittableOrder R → Transitive R splittable-trans splitR Rij Rjk = ⇔₂-apply-⊇₂ splitR (⇔₂-apply-⊆₂ splitR Rij ++ ⇔₂-apply-⊆₂ splitR Rjk) splittable-flip : SplittableOrder R → SplittableOrder (flip R) splittable-flip splitR = ⇔: ⊆-proof ⊇-proof where ⊆-proof : flip R ⊆₂' TransClosure (immediate (flip R)) ⊆-proof _ _ = ⁺-map _ imm-flip ∘ ⁺-flip ∘ ⇔₂-apply-⊆₂ splitR ⊇-proof : TransClosure (immediate (flip R)) ⊆₂' flip R ⊇-proof _ _ = ⇔₂-apply-⊇₂ splitR ∘ ⁺-flip ∘ ⁺-map _ imm-flip -- # Operations # -- Split the left-most element from the ordered relation chain splitˡ : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → SplittableOrder R → {x y : A} → R x y -------------------------------------------------- → immediate R x y ⊎ ∃[ z ] (immediate R x z × R z y) splitˡ splitR Rxy with ⇔₂-apply-⊆₂ splitR Rxy ... | [ immRxy ] = inj₁ immRxy ... | _∷_ {x} {z} {y} immRxz immR⁺zy = inj₂ (z , immRxz , ⇔₂-apply-⊇₂ splitR immR⁺zy) -- Split the right-most element from the ordered relation chain splitʳ : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → SplittableOrder R → {x y : A} → R x y -------------------------------------------------- → immediate R x y ⊎ ∃[ z ] (R x z × immediate R z y) splitʳ {A = A} {R = R} splitR Rxy = lemma (⇔₂-apply-⊆₂ splitR Rxy) where lemma : ∀ {x y : A} → TransClosure (immediate R) x y → immediate R x y ⊎ ∃[ z ] (R x z × immediate R z y) lemma [ immRxy ] = inj₁ immRxy lemma ( _∷_ {x} {z} {y} immRxz immR⁺zy ) with lemma immR⁺zy ... | inj₁ immRzy = inj₂ (z , proj₁ immRxz , immRzy) ... | inj₂ (w , Rzw , immRwy) = inj₂ (w , splittable-trans splitR (proj₁ immRxz) Rzw , immRwy) -- Splits the given left-most element from the chain. unsplitˡ : ∀ {a ℓ₁ ℓ₂ : Level} {A : Set a} {_≈_ : Rel A ℓ₁} {R : Rel A ℓ₂} → Trichotomous _≈_ R → SplittableOrder R → {x y z : A} → R x z → immediate R x y → y ≈ z ⊎ R y z unsplitˡ triR splitR {x} {y} {z} Rxz immRxy with splitˡ splitR Rxz unsplitˡ triR splitR {x} {y} {z} Rxz immRxy | inj₁ immRxz = inj₁ (tri-immʳ triR immRxy immRxz) unsplitˡ triR splitR {x} {y} {z} Rxz immRxy | inj₂ (v , immRxv , Rvz) with triR y z unsplitˡ triR splitR {x} {y} {z} Rxz immRxy | inj₂ (v , immRxv , Rvz) | tri< Ryz y≢z ¬Rzy = inj₂ Ryz unsplitˡ triR splitR {x} {y} {z} Rxz immRxy | inj₂ (v , immRxv , Rvz) | tri≈ ¬Ryz y≡z ¬Rzy = inj₁ y≡z unsplitˡ triR splitR {x} {y} {z} Rxz immRxy | inj₂ (v , immRxv , Rvz) | tri> ¬Ryz y≢z Rzy = ⊥-elim (proj₂ immRxy (z , Rxz , [ Rzy ])) -- Splits the given right-most element from the chain. unsplitʳ : ∀ {a ℓ₁ ℓ₂ : Level} {A : Set a} {_≈_ : Rel A ℓ₁} {R : Rel A ℓ₂} → Trichotomous _≈_ R → SplittableOrder R → {x y z : A} → R x z → immediate R y z → x ≈ y ⊎ R x y unsplitʳ triR splitR {x} {y} {z} Rxz iRyz with splitʳ splitR Rxz unsplitʳ triR splitR {x} {y} {z} Rxz iRyz | inj₁ iRxz = inj₁ (tri-immˡ triR iRxz iRyz) unsplitʳ triR splitR {x} {y} {z} Rxz iRyz | inj₂ (v , Rxv , iRvz) with triR x y unsplitʳ triR splitR {x} {y} {z} Rxz iRyz | inj₂ (v , Rxv , iRvz) | tri< Rxy x≢y ¬Ryx = inj₂ Rxy unsplitʳ triR splitR {x} {y} {z} Rxz iRyz | inj₂ (v , Rxv , iRvz) | tri≈ ¬Rxy x≡y ¬Ryx = inj₁ x≡y unsplitʳ triR splitR {x} {y} {z} Rxz iRyz | inj₂ (v , Rxv , iRvz) | tri> ¬Rxy x≢y Ryx = ⊥-elim (proj₂ iRyz (x , Ryx , [ Rxz ])) splittable-imm-udr : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → SplittableOrder R → udr R ⇔₁ udr (immediate R) splittable-imm-udr {R = R} splitR = ⇔: ⊆-proof ⊇-proof where ⊆-proof : udr R ⊆₁' udr (immediate R) ⊆-proof x (inj₁ (y , Rxy)) = inj₁ (⁺-dom (⇔₂-apply-⊆₂ splitR Rxy)) ⊆-proof y (inj₂ (x , Rxy)) = inj₂ (⁺-codom (⇔₂-apply-⊆₂ splitR Rxy)) ⊇-proof : udr (immediate R) ⊆₁' udr R ⊇-proof x (inj₁ (y , Rxy)) = inj₁ (y , proj₁ Rxy) ⊇-proof y (inj₂ (x , Rxy)) = inj₂ (x , proj₁ Rxy) -- | If any value in the chain of R satisfies P, it remains splittable after lifting. -- -- The chain is traversed /to the left/. filter-splittableˡ : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → SplittableOrder R → (P : Pred A ℓ) → (∀ {x y : A} → P y → R x y → P x) --------------------------------- → SplittableOrder (filter-rel P R) filter-splittableˡ {A = A} {R = R} splitR P f = ⇔: ⊆-proof ⊇-proof where lemma⊆-imm : ∀ {x y : A} → (Px : P x) → (Py : P y) → immediate R x y → immediate (filter-rel P R) (with-pred x Px) (with-pred y Py) lemma⊆-imm {x} {y} Px Py (Rxy , ¬∃z) = Rxy , ¬∃z' where ¬∃z' : ¬ (∃[ z ] filter-rel P R (with-pred x Px) z × TransClosure (filter-rel P R) z (with-pred y Py)) ¬∃z' (with-pred z Pz , Rxz , R⁺zy) = ¬∃z (z , Rxz , ⁺-strip-filter R⁺zy) lemma⊆ : ∀ {x y : A} → (Px : P x) → (Py : P y) → TransClosure (immediate R) x y → TransClosure (immediate (filter-rel P R)) (with-pred x Px) (with-pred y Py) lemma⊆ Px Py [ iRxy ] = [ lemma⊆-imm Px Py iRxy ] lemma⊆ Px Py ( iRxz ∷ iR⁺zy ) = let Pz = ⁺-predˡ (λ Pz → f Pz ∘ proj₁) iR⁺zy Py in lemma⊆-imm Px Pz iRxz ∷ lemma⊆ Pz Py iR⁺zy ⊆-proof : filter-rel P R ⊆₂' TransClosure (immediate (filter-rel P R)) ⊆-proof (with-pred x Px) (with-pred y Py) Rxy = lemma⊆ Px Py (⇔₂-apply-⊆₂ splitR Rxy) lemma⊇-imm : ∀ {x y : A} → (Px : P x) → (Py : P y) → immediate (filter-rel P R) (with-pred x Px) (with-pred y Py) → immediate R x y lemma⊇-imm {x} {y} Px Py (Rxy , ¬∃z) = (Rxy , ¬∃z') where ¬∃z' : ¬ (∃[ z ] R x z × TransClosure R z y) ¬∃z' (z , Rxz , R⁺zy) = let Pz = ⁺-predˡ f R⁺zy Py in ¬∃z (with-pred z Pz , Rxz , ⁺-filter-relˡ f Pz Py R⁺zy) lemma⊇ : ∀ {x y : A} → (Px : P x) → (Py : P y) → TransClosure (immediate (filter-rel P R)) (with-pred x Px) (with-pred y Py) → TransClosure (immediate R) x y lemma⊇ Px Py [ iRxy ] = [ lemma⊇-imm Px Py iRxy ] lemma⊇ Px Py ( _∷_ {_} {with-pred z Pz} iRxz iR⁺zy ) = lemma⊇-imm Px Pz iRxz ∷ lemma⊇ Pz Py iR⁺zy ⊇-proof : TransClosure (immediate (filter-rel P R)) ⊆₂' filter-rel P R ⊇-proof (with-pred x Px) (with-pred y Py) Rxy = ⇔₂-apply-⊇₂ splitR (lemma⊇ Px Py Rxy) -- | If any value in the chain of R satisfies P, it remains splittable after lifting. -- -- The chain is traversed /to the right/. filter-splittableʳ : ∀ {a ℓ : Level} {A : Set a} {R : Rel A ℓ} → SplittableOrder R → (P : Pred A ℓ) → (∀ {x y : A} → P x → R x y → P y) --------------------------------- → SplittableOrder (filter-rel P R) filter-splittableʳ {A = A} {R = R} splitR P f = ⇔: ⊆-proof ⊇-proof where lemma⊆-imm : ∀ {x y : A} → (Px : P x) → (Py : P y) → immediate R x y → immediate (filter-rel P R) (with-pred x Px) (with-pred y Py) lemma⊆-imm {x} {y} Px Py (Rxy , ¬∃z) = Rxy , ¬∃z' where ¬∃z' : ¬ (∃[ z ] filter-rel P R (with-pred x Px) z × TransClosure (filter-rel P R) z (with-pred y Py)) ¬∃z' (with-pred z Pz , Rxz , R⁺zy) = ¬∃z (z , Rxz , ⁺-strip-filter R⁺zy) lemma⊆ : ∀ {x y : A} → (Px : P x) → (Py : P y) → TransClosure (immediate R) x y → TransClosure (immediate (filter-rel P R)) (with-pred x Px) (with-pred y Py) lemma⊆ Px Py [ iRxy ] = [ lemma⊆-imm Px Py iRxy ] lemma⊆ Px Py ( iRxz ∷ iR⁺zy ) = let Pz = f Px (proj₁ iRxz) in lemma⊆-imm Px Pz iRxz ∷ lemma⊆ Pz Py iR⁺zy ⊆-proof : filter-rel P R ⊆₂' TransClosure (immediate (filter-rel P R)) ⊆-proof (with-pred x Px) (with-pred y Py) Rxy = lemma⊆ Px Py (⇔₂-apply-⊆₂ splitR Rxy) lemma⊇-imm : ∀ {x y : A} → (Px : P x) → (Py : P y) → immediate (filter-rel P R) (with-pred x Px) (with-pred y Py) → immediate R x y lemma⊇-imm {x} {y} Px Py (Rxy , ¬∃z) = Rxy , ¬∃z' where ¬∃z' : ¬ (∃[ z ] R x z × TransClosure R z y) ¬∃z' (z , Rxz , R⁺zy) = let Pz = f Px Rxz in ¬∃z (with-pred z Pz , Rxz , ⁺-filter-relʳ f Pz Py R⁺zy) lemma⊇ : ∀ {x y : A} → (Px : P x) → (Py : P y) → TransClosure (immediate (filter-rel P R)) (with-pred x Px) (with-pred y Py) → TransClosure (immediate R) x y lemma⊇ Px Py [ iRxy ] = [ lemma⊇-imm Px Py iRxy ] lemma⊇ Px Py ( _∷_ {_} {with-pred z Pz} iRxz iR⁺zy ) = lemma⊇-imm Px Pz iRxz ∷ lemma⊇ Pz Py iR⁺zy ⊇-proof : TransClosure (immediate (filter-rel P R)) ⊆₂' filter-rel P R ⊇-proof (with-pred x Px) (with-pred y Py) Rxy = ⇔₂-apply-⊇₂ splitR (lemma⊇ Px Py Rxy)
{ "alphanum_fraction": 0.5836170213, "avg_line_length": 42.5339366516, "ext": "agda", "hexsha": "593062074f05cf20e7700abc546bea7167cd6e05", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/SplittableOrder.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/SplittableOrder.agda", "max_line_length": 134, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/SplittableOrder.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4077, "size": 9400 }
{-# OPTIONS --without-K #-} {- The main definitions are the following: * exploreΣ * exploreΣ-ind * adequate-sumΣ -} open import Level.NP open import Type hiding (★) open import Type.Identities open import Function.NP open import Function.Extensionality open import Data.Two open import Data.Product.NP open import Data.Fin open import Relation.Binary.Logical open import Relation.Binary.PropositionalEquality.NP using (_≡_ ; module ≡-Reasoning; !_; _∙_; coe; tr; ap; ap₂; J-orig) open import HoTT open import Category.Monad.Continuation.Alias open import Explore.Core open import Explore.Properties import Explore.Monad as EM open import Explore.Explorable module Explore.Product where module _ {m a b} {A : ★ a} {B : A → ★ b} where exploreΣ : Explore m A → (∀ {x} → Explore m (B x)) → Explore m (Σ A B) exploreΣ exploreᴬ exploreᴮ ε _⊕_ = exploreᴬ ε _⊕_ ⟨,⟩ exploreᴮ ε _⊕_ module _ {eᴬ : Explore m A} {eᴮ : ∀ {x} → Explore m (B x)} where exploreΣ-ind : ∀ {p} → ExploreInd p eᴬ → (∀ {x} → ExploreInd p (eᴮ {x})) → ExploreInd p (exploreΣ eᴬ eᴮ) exploreΣ-ind Peᴬ Peᴮ P Pε P⊕ Pf = Peᴬ (λ e → P (λ _ _ _ → e _ _ _)) Pε P⊕ (λ x → Peᴮ {x} (λ e → P (λ _ _ _ → e _ _ _)) Pε P⊕ (curry Pf x)) module _ {ℓ₀ ℓ₁ ℓᵣ} {a₀ a₁ aᵣ} {A₀ : ★ a₀} {A₁ : ★ a₁} {Aᵣ : ⟦★⟧ aᵣ A₀ A₁} {b₀ b₁ bᵣ} {B₀ : A₀ → ★ b₀} {B₁ : A₁ → ★ b₁} {Bᵣ : (Aᵣ ⟦→⟧ ⟦★⟧ bᵣ) B₀ B₁} {eᴬ₀ : Explore ℓ₀ A₀} {eᴬ₁ : Explore ℓ₁ A₁}(eᴬᵣ : ⟦Explore⟧ ℓᵣ Aᵣ eᴬ₀ eᴬ₁) {eᴮ₀ : ∀ {x} → Explore ℓ₀ (B₀ x)} {eᴮ₁ : ∀ {x} → Explore ℓ₁ (B₁ x)}(eᴮᵣ : ∀ {x₀ x₁}(x : Aᵣ x₀ x₁) → ⟦Explore⟧ ℓᵣ (Bᵣ x) (eᴮ₀ {x₀}) (eᴮ₁ {x₁})) where ⟦exploreΣ⟧ : ⟦Explore⟧ ℓᵣ (⟦Σ⟧ Aᵣ Bᵣ) (exploreΣ eᴬ₀ (λ {x} → eᴮ₀ {x})) (exploreΣ eᴬ₁ (λ {x} → eᴮ₁ {x})) ⟦exploreΣ⟧ P Pε P⊕ Pf = eᴬᵣ P Pε P⊕ (λ {x₀} {x₁} x → eᴮᵣ x P Pε P⊕ (λ xᵣ → Pf (x ⟦,⟧ xᵣ))) module _ {ℓ₀ ℓ₁ ℓᵣ} {a} {A : ★ a} {b} {B : A → ★ b} {eᴬ₀ : Explore ℓ₀ A} {eᴬ₁ : Explore ℓ₁ A}(eᴬᵣ : ⟦Explore⟧ ℓᵣ _≡_ eᴬ₀ eᴬ₁) {eᴮ₀ : ∀ {x} → Explore ℓ₀ (B x)} {eᴮ₁ : ∀ {x} → Explore ℓ₁ (B x)} (eᴮᵣ : ∀ x → ⟦Explore⟧ ℓᵣ _≡_ (eᴮ₀ {x}) (eᴮ₁ {x})) where ⟦exploreΣ⟧≡ : ⟦Explore⟧ ℓᵣ _≡_ (exploreΣ eᴬ₀ (λ {x} → eᴮ₀ {x})) (exploreΣ eᴬ₁ (λ {x} → eᴮ₁ {x})) ⟦exploreΣ⟧≡ P Pε P⊕ Pf = eᴬᵣ P Pε P⊕ λ x → J-orig _ (λ y → eᴮᵣ y P Pε P⊕ (Pf ∘ ap (_,_ y))) x module _ {ℓ₀ ℓ₁ ℓᵣ} {a} {A : ★ a} {b} {B : A → ★ b} {eᴬ₀ : Explore ℓ₀ A} {eᴬ₁ : Explore ℓ₁ A}(eᴬᵣ : ⟦Explore⟧ ℓᵣ _≡_ eᴬ₀ eᴬ₁) {eᴮ₀ : ∀ {x} → Explore ℓ₀ (B x)} {eᴮ₁ : ∀ {x} → Explore ℓ₁ (B x)} (eᴮᵣ : ∀ {x₀ x₁} (x : x₀ ≡ x₁) → ⟦Explore⟧ ℓᵣ (λ b₀ b₁ → tr B x b₀ ≡ b₁) (eᴮ₀ {x₀}) (eᴮ₁ {x₁})) where ⟦exploreΣ⟧↑≡ : ⟦Explore⟧ ℓᵣ _≡_ (exploreΣ eᴬ₀ (λ {x} → eᴮ₀ {x})) (exploreΣ eᴬ₁ (λ {x} → eᴮ₁ {x})) ⟦exploreΣ⟧↑≡ P Pε P⊕ Pf = eᴬᵣ P Pε P⊕ (λ x → eᴮᵣ x P Pε P⊕ (Pf ∘ pair= x)) module _ {A : ★₀} {B : A → ★₀} {sumᴬ : Sum A} {sumᴮ : ∀ {x} → Sum (B x)}{{_ : FunExt}}{{_ : UA}} where open Adequacy _≡_ private sumᴬᴮ : Sum (Σ A B) sumᴬᴮ = sumᴬ ⟨,⟩ (λ {x} → sumᴮ {x}) adequate-sumΣ : Adequate-sum sumᴬ → (∀ {x} → Adequate-sum (sumᴮ {x})) → Adequate-sum sumᴬᴮ adequate-sumΣ asumᴬ asumᴮ f = Fin (sumᴬᴮ f) ≡⟨by-definition⟩ Fin (sumᴬ (λ a → sumᴮ (λ b → f (a , b)))) ≡⟨ asumᴬ _ ⟩ Σ A (λ a → Fin (sumᴮ (λ b → f (a , b)))) ≡⟨ Σ=′ _ (λ _ → asumᴮ _) ⟩ Σ A (λ a → Σ (B a) (λ b → Fin (f (a , b)))) ≡⟨ Σ-assoc ⟩ Σ (Σ A B) (Fin ∘ f) ∎ where open ≡-Reasoning -- From now on, these are derived definitions for convenience and pedagogical reasons explore× : ∀ {m a b} {A : ★ a} {B : ★ b} → Explore m A → Explore m B → Explore m (A × B) explore× exploreᴬ exploreᴮ = exploreΣ exploreᴬ exploreᴮ explore×-ind : ∀ {m p a b} {A : ★ a} {B : ★ b} {eᴬ : Explore m A} {eᴮ : Explore m B} → ExploreInd p eᴬ → ExploreInd p eᴮ → ExploreInd p (explore× eᴬ eᴮ) explore×-ind Peᴬ Peᴮ = exploreΣ-ind Peᴬ Peᴮ sumΣ : ∀ {a b} {A : ★ a} {B : A → ★ b} → Sum A → (∀ {x} → Sum (B x)) → Sum (Σ A B) sumΣ = _⟨,⟩_ sum× : ∀ {a b} {A : ★ a} {B : ★ b} → Sum A → Sum B → Sum (A × B) sum× = _⟨,⟩′_ module _ {ℓ₀ ℓ₁ ℓᵣ A₀ A₁ B₀ B₁} {Aᵣ : ⟦★₀⟧ A₀ A₁} {Bᵣ : ⟦★₀⟧ B₀ B₁} {eᴬ₀ : Explore ℓ₀ A₀} {eᴬ₁ : Explore ℓ₁ A₁}(eᴬᵣ : ⟦Explore⟧ ℓᵣ Aᵣ eᴬ₀ eᴬ₁) {eᴮ₀ : Explore ℓ₀ B₀} {eᴮ₁ : Explore ℓ₁ B₁}(eᴮᵣ : ⟦Explore⟧ ℓᵣ Bᵣ eᴮ₀ eᴮ₁) where ⟦explore×⟧ : ⟦Explore⟧ ℓᵣ (Aᵣ ⟦×⟧ Bᵣ) (explore× eᴬ₀ eᴮ₀) (explore× eᴬ₁ eᴮ₁) ⟦explore×⟧ P Pε P⊕ Pf = eᴬᵣ P Pε P⊕ (λ x → eᴮᵣ P Pε P⊕ (λ y → Pf (_⟦,⟧_ x y))) module _ {ℓ₀ ℓ₁ ℓᵣ} {A B : ★₀} {eᴬ₀ : Explore ℓ₀ A} {eᴬ₁ : Explore ℓ₁ A}(eᴬᵣ : ⟦Explore⟧ ℓᵣ _≡_ eᴬ₀ eᴬ₁) {eᴮ₀ : Explore ℓ₀ B} {eᴮ₁ : Explore ℓ₁ B}(eᴮᵣ : ⟦Explore⟧ ℓᵣ _≡_ eᴮ₀ eᴮ₁) where ⟦explore×⟧≡ : ⟦Explore⟧ ℓᵣ _≡_ (explore× eᴬ₀ eᴮ₀) (explore× eᴬ₁ eᴮ₁) ⟦explore×⟧≡ P Pε P⊕ Pf = eᴬᵣ P Pε P⊕ (λ x → eᴮᵣ P Pε P⊕ (λ y → Pf (ap₂ _,_ x y))) {- μΣ : ∀ {A} {B : A → ★ _} → Explorable A → (∀ {x} → Explorable (B x)) → Explorable (Σ A B) μΣ μA μB = mk _ (exploreΣ-ind (explore-ind μA) (explore-ind μB)) (adequate-sumΣ (adequate-sum μA) (adequate-sum μB)) infixr 4 _×-μ_ _×-μ_ : ∀ {A B} → Explorable A → Explorable B → Explorable (A × B) μA ×-μ μB = μΣ μA μB _×-cmp_ : ∀ {A B : ★₀ } → Cmp A → Cmp B → Cmp (A × B) (ca ×-cmp cb) (a , b) (a' , b') = ca a a' ∧ cb b b' ×-unique : ∀ {A B}(μA : Explorable A)(μB : Explorable B)(cA : Cmp A)(cB : Cmp B) → Unique cA (count μA) → Unique cB (count μB) → Unique (cA ×-cmp cB) (count (μA ×-μ μB)) ×-unique μA μB cA cB uA uB (x , y) = count (μA ×-μ μB) ((cA ×-cmp cB) (x , y)) ≡⟨ explore-ext μA _ (λ x' → help (cA x x')) ⟩ count μA (cA x) ≡⟨ uA x ⟩ 1 ∎ where open ≡-Reasoning help : ∀ b → count μB (λ y' → b ∧ cB y y') ≡ (if b then 1 else 0) help = [0: sum-zero μB 1: uB y ] -} {- module _ {A} {Aₚ : A → ★₀} {B : A → _} {eᴬ : Explore ₁ A} (eᴬₚ : [Explore] _ _ Aₚ eᴬ) (eᴬ-ind : ExploreInd (ₛ ₀) eᴬ) {eᴮ : ∀ {x} → Explore ₀ (B x)} where open import Explore.One --open import Explore.Product exploreΠᵉ : Explore ₀ (Πᵉ eᴬ B) exploreΠᵉ = eᴬ-ind (λ e → Explore ₀ (Πᵉ e B)) (λ ε _∙₁_ x → x _) explore× (λ x → eᴮ {x}) exploreΠᵉ' : Explore ₀ (Πᵉ eᴬ B) exploreΠᵉ' = λ {M} ε _∙₁_ x → {!eᴬₚ (const (Lift M))!} exploreΠᵉ-ind : ExploreInd ₁ exploreΠᵉ exploreΠᵉ-ind = {!⟦Explore⟧ᵤ _ _ _ eᴬ!} -} module _ {ℓ a b} {A : ★ a} {B : A → ★ b} {eᴬ : Explore (ₛ ℓ) A} {eᴮ : ∀ {x} → Explore (ₛ ℓ) (B x)} where private eᴬᴮ = exploreΣ eᴬ λ {x} → eᴮ {x} focusΣ : Focus eᴬ → (∀ {x} → Focus (eᴮ {x})) → Focus eᴬᴮ focusΣ fᴬ fᴮ ((x , y) , z) = fᴬ (x , fᴮ (y , z)) lookupΣ : Lookup eᴬ → (∀ {x} → Lookup (eᴮ {x})) → Lookup eᴬᴮ lookupΣ lookupᴬ lookupᴮ d = uncurry (lookupᴮ ∘ lookupᴬ d) -- can also be derived from explore-ind reifyΣ : Reify eᴬ → (∀ {x} → Reify (eᴮ {x})) → Reify eᴬᴮ reifyΣ reifyᴬ reifyᴮ f = reifyᴬ (reifyᴮ ∘ curry f) module _ {ℓ} {A : ★₀} {B : A → ★₀} {eᴬ : Explore (ₛ ℓ) A} {eᴮ : ∀ {x} → Explore (ₛ ℓ) (B x)} {{_ : UA}}{{_ : FunExt}} where private eᴬᴮ = exploreΣ eᴬ λ {x} → eᴮ {x} ΣᵉΣ-ok : Adequate-Σ (Σᵉ eᴬ) → (∀ {x} → Adequate-Σ (Σᵉ (eᴮ {x}))) → Adequate-Σ (Σᵉ eᴬᴮ) ΣᵉΣ-ok eᴬ eᴮ f = eᴬ _ ∙ Σ=′ _ (λ _ → eᴮ _) ∙ Σ-assoc ΠᵉΣ-ok : Adequate-Π (Πᵉ eᴬ) → (∀ {x} → Adequate-Π (Πᵉ (eᴮ {x}))) → Adequate-Π (Πᵉ eᴬᴮ) ΠᵉΣ-ok eᴬ eᴮ f = eᴬ _ ∙ Π=′ _ (λ _ → eᴮ _) ∙ ! ΠΣ-curry module _ {ℓ a b} {A : ★ a} {B : ★ b} {eᴬ : Explore (ₛ ℓ) A} {eᴮ : Explore (ₛ ℓ) B} where private eᴬᴮ = explore× eᴬ eᴮ focus× : Focus eᴬ → Focus eᴮ → Focus eᴬᴮ focus× fᴬ fᴮ = focusΣ {eᴬ = eᴬ} {eᴮ = eᴮ} fᴬ fᴮ lookup× : Lookup eᴬ → Lookup eᴮ → Lookup eᴬᴮ lookup× fᴬ fᴮ = lookupΣ {eᴬ = eᴬ} {eᴮ = eᴮ} fᴬ fᴮ module _ {ℓ} {A B : ★₀} {eᴬ : Explore (ₛ ℓ) A} {eᴮ : Explore (ₛ ℓ) B} where private eᴬᴮ = explore× eᴬ eᴮ Σᵉ×-ok : {{_ : UA}}{{_ : FunExt}} → Adequate-Σ (Σᵉ eᴬ) → Adequate-Σ (Σᵉ eᴮ) → Adequate-Σ (Σᵉ eᴬᴮ) Σᵉ×-ok eᴬ eᴮ f = eᴬ _ ∙ Σ=′ _ (λ _ → eᴮ _) ∙ Σ-assoc Πᵉ×-ok : {{_ : UA}}{{_ : FunExt}} → Adequate-Π (Πᵉ eᴬ) → Adequate-Π (Πᵉ eᴮ) → Adequate-Π (Πᵉ eᴬᴮ) Πᵉ×-ok eᴬ eᴮ f = eᴬ _ ∙ Π=′ _ (λ _ → eᴮ _) ∙ ! ΠΣ-curry module Operators where infixr 4 _×ᵉ_ _×ⁱ_ _×ˢ_ _×ᵉ_ = explore× _×ⁱ_ = explore×-ind _×ᵃ_ = adequate-sumΣ _×ˢ_ = sum× _×ᶠ_ = focus× _×ˡ_ = lookup× -- Those are here only for pedagogical use private fst-explore : ∀ {m} {A : ★₀} {B : A → ★₀} → Explore m (Σ A B) → Explore m A fst-explore = EM.map _ fst snd-explore : ∀ {m} {A B : ★₀} → Explore m (A × B) → Explore m B snd-explore = EM.map _ snd sum'Σ : ∀ {A : ★₀} {B : A → ★₀} → Sum A → (∀ x → Sum (B x)) → Sum (Σ A B) sum'Σ sumᴬ sumᴮ f = sumᴬ (λ x₀ → sumᴮ x₀ (λ x₁ → f (x₀ , x₁))) explore×' : ∀ {A B : ★₀} → Explore₀ A → Explore _ B → Explore _ (A × B) explore×' exploreᴬ exploreᴮ ε _⊕_ f = exploreᴬ ε _⊕_ (λ x → exploreᴮ ε _⊕_ (curry f x)) explore×-ind' : ∀ {A B} {eᴬ : Explore _ A} {eᴮ : Explore _ B} → ExploreInd₀ eᴬ → ExploreInd₀ eᴮ → ExploreInd₀ (explore×' eᴬ eᴮ) explore×-ind' Peᴬ Peᴮ P Pε P⊕ Pf = Peᴬ (λ e → P (λ _ _ _ → e _ _ _)) Pε P⊕ (Peᴮ (λ e → P (λ _ _ _ → e _ _ _)) Pε P⊕ ∘ curry Pf) -- liftM2 _,_ in the continuation monad sum×' : ∀ {A B : ★₀} → Sum A → Sum B → Sum (A × B) sum×' sumᴬ sumᴮ f = sumᴬ λ x₀ → sumᴮ λ x₁ → f (x₀ , x₁) -- -} -- -} -- -}
{ "alphanum_fraction": 0.5169553806, "avg_line_length": 39.0368852459, "ext": "agda", "hexsha": "699bd320c0b9c9f14f50b4dbfd308fe4c5003fa5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Product.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Product.agda", "max_line_length": 153, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Product.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 5331, "size": 9525 }
{-# OPTIONS --without-K #-} module sets.vec.dependent where open import sets.nat.core open import sets.fin.core -- syntactic sugar to create finite dependent functions ⟦⟧ : ∀ {i}{P : Fin 0 → Set i} → (i : Fin 0) → P i ⟦⟧ () _∷∷_ : ∀ {i n}{P : Fin (suc n) → Set i} → (x : P zero)(xs : (i : Fin n) → P (suc i)) → (i : Fin (suc n)) → P i _∷∷_ {P = P} x xs zero = x _∷∷_ {P = P} x xs (suc i) = xs i infixr 5 _∷∷_
{ "alphanum_fraction": 0.5355450237, "avg_line_length": 22.2105263158, "ext": "agda", "hexsha": "00e4a4904cf7f3d01a4bb68479a71490f1930224", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/vec/dependent.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/vec/dependent.agda", "max_line_length": 55, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "sets/vec/dependent.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 183, "size": 422 }