Search is not available for this dataset
text
string | meta
dict |
---|---|
module Issue1422 where
open import Common.Level public using (Level ; lzero ; lsuc) renaming (_⊔_ to _l⊔_)
open import Common.Equality public
-- # Relations
relation : ∀ {ℓ} ℓ' → Set ℓ → Set (lsuc ℓ' l⊔ ℓ)
relation ℓ' α = α → α → Set ℓ'
reflexive : ∀ {ℓ ℓ'} {α : Set ℓ} → relation ℓ' α → Set (ℓ l⊔ ℓ')
reflexive _R_ = ∀ {x} → x R x
antisymmetric : ∀ {ℓ ℓ'} {α : Set ℓ} → relation ℓ' α → Set (ℓ l⊔ ℓ')
antisymmetric _R_ = ∀ {x y} → x R y → y R x → x ≡ y
_⇉_ : ∀ {ℓ₁ ℓ₁' ℓ₂ ℓ₂'} {α : Set ℓ₁} {β : Set ℓ₂} (_R₁_ : relation ℓ₁' α) (_R₂_ : relation ℓ₂' β) → relation (ℓ₁ l⊔ ℓ₁' l⊔ ℓ₂') (α → β)
(_R₁_ ⇉ _R₂_) f g = ∀ {x y} → x R₁ y → f x R₂ g y
proper : ∀ {ℓ ℓ'} {α : Set ℓ} (_R_ : relation ℓ' α) → α → Set ℓ'
proper _R_ x = x R x
-- # Dom
record Dom {ℓ} ℓ' (D : Set ℓ) : Set (lsuc ℓ l⊔ lsuc ℓ') where
field
⟦_⟧ : D → Set ℓ'
open Dom {{...}} public
-- # Partial Order
record PartialOrder {ℓ} ℓ' (α : Set ℓ) : Set (ℓ l⊔ lsuc ℓ') where
infix 4 _⊑_
field
_⊑_ : relation ℓ' α
⊑-reflexivity : reflexive _⊑_
⊑-antisymmetry : antisymmetric _⊑_
open PartialOrder {{...}} public
monotonic : ∀ {ℓ₁ ℓ₁' ℓ₂ ℓ₂'} {α : Set ℓ₁} {{αPO : PartialOrder ℓ₁' α}} {β : Set ℓ₂} {{βPO : PartialOrder ℓ₂' β}} → (α → β) → Set (ℓ₁ l⊔ ℓ₁' l⊔ ℓ₂')
monotonic = proper (_⊑_ ⇉ _⊑_)
| {
"alphanum_fraction": 0.55703125,
"avg_line_length": 29.7674418605,
"ext": "agda",
"hexsha": "cc58a49e996b1bb78803033713eeba785afb28c5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1422.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1422.agda",
"max_line_length": 148,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1422.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 631,
"size": 1280
} |
------------------------------------------------------------------------------
-- Distributive laws base
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module DistributiveLaws.Base where
infixl 7 _·_
------------------------------------------------------------------------------
-- First-order logic with equality.
--
-- NB. This is an equational theory, so we do not import the logical
-- constants.
open import Common.FOL.FOL-Eq public using ( _≡_ ; D ; refl ; subst ; sym )
-- Distributive laws axioms
postulate
_·_ : D → D → D -- The binary operation.
leftDistributive : ∀ x y z → x · (y · z) ≡ (x · y) · (x · z)
rightDistributive : ∀ x y z → (x · y) · z ≡ (x · z) · (y · z)
{-# ATP axioms leftDistributive rightDistributive #-}
| {
"alphanum_fraction": 0.4474789916,
"avg_line_length": 32.8275862069,
"ext": "agda",
"hexsha": "b47c05d98acfdb6178f50eab3a433549f3f39d14",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/DistributiveLaws/Base.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/DistributiveLaws/Base.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/DistributiveLaws/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 216,
"size": 952
} |
open import Nat
open import Prelude
open import List
open import contexts
open import core
module completeness where
-- any hole is new to a complete expression
e-complete-hnn : ∀{e u} → e ecomplete → hole-name-new e u
e-complete-hnn (ECFix cmp) = HNNFix (e-complete-hnn cmp)
e-complete-hnn ECVar = HNNVar
e-complete-hnn (ECAp cmp1 cmp2) = HNNAp (e-complete-hnn cmp1) (e-complete-hnn cmp2)
e-complete-hnn ECUnit = HNNUnit
e-complete-hnn (ECPair cmp cmp₁) = HNNPair (e-complete-hnn cmp) (e-complete-hnn cmp₁)
e-complete-hnn (ECFst cmp) = HNNFst (e-complete-hnn cmp)
e-complete-hnn (ECSnd cmp) = HNNSnd (e-complete-hnn cmp)
e-complete-hnn (ECCtor cmp) = HNNCtor (e-complete-hnn cmp)
e-complete-hnn (ECCase cmp h) = HNNCase (e-complete-hnn cmp) λ i<∥rules∥ → e-complete-hnn (h i<∥rules∥)
e-complete-hnn (ECAsrt cmp1 cmp2) = HNNAsrt (e-complete-hnn cmp1) (e-complete-hnn cmp2)
{- TODO : probably delete
e-hnn-complete : ∀{e} → (∀{u} → hole-name-new e u) → e ecomplete
e-hnn-complete hnn∀ = {!!}
-}
-- a complete expression is holes-disjoint to all expressions
e-complete-disjoint : ∀{e1 e2} → e1 ecomplete → holes-disjoint e1 e2
e-complete-disjoint (ECFix cmp) = HDFix (e-complete-disjoint cmp)
e-complete-disjoint ECVar = HDVar
e-complete-disjoint (ECAp cmp1 cmp2) = HDAp (e-complete-disjoint cmp1) (e-complete-disjoint cmp2)
e-complete-disjoint ECUnit = HDUnit
e-complete-disjoint (ECPair cmp cmp₁) = HDPair (e-complete-disjoint cmp) (e-complete-disjoint cmp₁)
e-complete-disjoint (ECFst cmp) = HDFst (e-complete-disjoint cmp)
e-complete-disjoint (ECSnd cmp) = HDSnd (e-complete-disjoint cmp)
e-complete-disjoint (ECCtor cmp) = HDCtor (e-complete-disjoint cmp)
e-complete-disjoint (ECCase cmp h) = HDCase (e-complete-disjoint cmp) λ i<∥rules∥ → e-complete-disjoint (h i<∥rules∥)
e-complete-disjoint (ECAsrt cmp1 cmp2) = HDAsrt (e-complete-disjoint cmp1) (e-complete-disjoint cmp2)
-- TODO a holes-disjoint-sym check - very involved but arguably pretty important
-- TODO we should generalize this, to a theorem that says that if a hole name is new in
-- e, then it is new in r and k
{- TODO}
-- if e evals to r, and e is complete, then r is complete
eval-completeness : ∀{Δ Σ' Γ E e r τ k} →
E env-complete →
Δ , Σ' , Γ ⊢ E →
Δ , Σ' , Γ ⊢ e :: τ →
E ⊢ e ⇒ r ⊣ k →
e ecomplete →
r rcomplete
eval-completeness Ecmp Γ⊢E (TALam _ _) EFun (ECLam ecmp) = RCLam Ecmp ecmp
eval-completeness Ecmp Γ⊢E (TAFix _ _ _) EFix (ECFix ecmp) = RCFix Ecmp ecmp
eval-completeness (ENVC Ecmp) Γ⊢E (TAVar _) (EVar h) ECVar = Ecmp h
eval-completeness Ecmp Γ⊢E (TAApp _ ta-f ta-arg) (EApp {Ef = Ef} {x} {r2 = r2} CF∞ eval-f eval-arg eval-ef) (ECAp cmp-f cmp-arg)
with eval-completeness Ecmp Γ⊢E ta-f eval-f cmp-f | preservation Γ⊢E ta-f eval-f
... | RCLam (ENVC Efcmp) efcmp | TALam Γ'⊢Ef (TALam _ ta-ef)
= eval-completeness (ENVC env-cmp) (EnvInd Γ'⊢Ef (preservation Γ⊢E ta-arg eval-arg)) ta-ef eval-ef efcmp
where
env-cmp : ∀{x' rx'} → (x' , rx') ∈ (Ef ,, (x , r2)) → rx' rcomplete
env-cmp {x'} {rx'} h with ctx-split {Γ = Ef} h
env-cmp {x'} {rx'} h | Inl (_ , x'∈Ef) = Efcmp x'∈Ef
env-cmp {x'} {rx'} h | Inr (_ , rx'==r2) rewrite rx'==r2 =
eval-completeness Ecmp Γ⊢E ta-arg eval-arg cmp-arg
eval-completeness Ecmp Γ⊢E (TAApp _ ta-f ta-arg) (EAppFix {Ef = Ef} {f} {x} {ef} {r2 = r2} CF∞ h eval-f eval-arg eval-ef) (ECAp cmp-f cmp-arg)
rewrite h with eval-completeness Ecmp Γ⊢E ta-f eval-f cmp-f | preservation Γ⊢E ta-f eval-f
... | RCFix (ENVC Efcmp) efcmp | TAFix Γ'⊢Ef (TAFix _ _ ta-ef) =
eval-completeness (ENVC new-Ef+-cmp) new-ctxcons ta-ef eval-ef efcmp
where
new-ctxcons =
EnvInd (EnvInd Γ'⊢Ef (preservation Γ⊢E ta-f eval-f)) (preservation Γ⊢E ta-arg eval-arg)
new-Ef-cmp : ∀{x' rx'} → (x' , rx') ∈ (Ef ,, (f , [ Ef ]fix f ⦇·λ x => ef ·⦈)) → rx' rcomplete
new-Ef-cmp {x'} {rx'} h with ctx-split {Γ = Ef} h
new-Ef-cmp {x'} {rx'} h | Inl (_ , x'∈Ef) = Efcmp x'∈Ef
new-Ef-cmp {x'} {rx'} h | Inr (_ , rx'==r2) rewrite rx'==r2 = RCFix (ENVC Efcmp) efcmp
new-Ef+-cmp : ∀{x' rx'} → (x' , rx') ∈ (Ef ,, (f , [ Ef ]fix f ⦇·λ x => ef ·⦈) ,, (x , r2)) → rx' rcomplete
new-Ef+-cmp {x'} {rx'} h with ctx-split {Γ = Ef ,, (f , [ Ef ]fix f ⦇·λ x => ef ·⦈)} h
new-Ef+-cmp {x'} {rx'} h | Inl (_ , x'∈Ef+) = new-Ef-cmp x'∈Ef+
new-Ef+-cmp {x'} {rx'} h | Inr (_ , rx'==r2) rewrite rx'==r2 =
eval-completeness Ecmp Γ⊢E ta-arg eval-arg cmp-arg
eval-completeness Ecmp Γ⊢E (TAApp _ ta1 ta2) (EAppUnfinished eval1 _ _ eval2) (ECAp ecmp1 ecmp2) =
RCAp (eval-completeness Ecmp Γ⊢E ta1 eval1 ecmp1) (eval-completeness Ecmp Γ⊢E ta2 eval2 ecmp2)
eval-completeness Ecmp Γ⊢E (TATpl ∥es∥==∥τs∥ _ tas) (ETuple ∥es∥==∥rs∥ ∥es∥==∥ks∥ evals) (ECTpl cmps) =
RCTpl λ {i} rs[i] →
let
_ , es[i] = ∥l1∥==∥l2∥→l1[i]→l2[i] (! ∥es∥==∥rs∥) rs[i]
_ , ks[i] = ∥l1∥==∥l2∥→l1[i]→l2[i] ∥es∥==∥ks∥ es[i]
_ , τs[i] = ∥l1∥==∥l2∥→l1[i]→l2[i] ∥es∥==∥τs∥ es[i]
in
eval-completeness Ecmp Γ⊢E (tas es[i] τs[i]) (evals es[i] rs[i] ks[i]) (cmps es[i])
eval-completeness Ecmp Γ⊢E (TAGet ∥rs⊫=∥τs∥ i<∥τs∥ ta) (EGet _ i<∥rs∥ eval) (ECGet ecmp)
with eval-completeness Ecmp Γ⊢E ta eval ecmp
... | RCTpl h = h i<∥rs∥
eval-completeness Ecmp Γ⊢E (TAGet _ i<∥τs∥ ta) (EGetUnfinished eval _) (ECGet ecmp) =
RCGet (eval-completeness Ecmp Γ⊢E ta eval ecmp)
eval-completeness Ecmp Γ⊢E (TACtor _ _ ta) (ECtor eval) (ECCtor ecmp) =
RCCtor (eval-completeness Ecmp Γ⊢E ta eval ecmp)
eval-completeness {Σ' = Σ'} (ENVC Ecmp) Γ⊢E (TACase d∈Σ'1 ta h1 h2) (EMatch {E = E} {xc = xc} {r' = r'} CF∞ form eval eval-ec) (ECCase ecmp rules-cmp)
with h2 form
... | _ , _ , _ , _ , c∈cctx1 , ta-ec
with preservation Γ⊢E ta eval
... | TACtor {cctx = cctx} d∈Σ' c∈cctx ta-r'
rewrite ctxunicity {Γ = π1 Σ'} d∈Σ'1 d∈Σ' | ctxunicity {Γ = cctx} c∈cctx1 c∈cctx =
eval-completeness (ENVC new-E-cmp) (EnvInd Γ⊢E ta-r') ta-ec eval-ec (rules-cmp form)
where
new-E-cmp : ∀{x' rx'} → (x' , rx') ∈ (E ,, (xc , r')) → rx' rcomplete
new-E-cmp {x'} {rx'} x'∈E+ with ctx-split {Γ = E} x'∈E+
... | Inl (_ , x'∈E) = Ecmp x'∈E
... | Inr (_ , rx'==r') rewrite rx'==r'
with eval-completeness (ENVC Ecmp) Γ⊢E ta eval ecmp
... | RCCtor r'cmp = r'cmp
eval-completeness Ecmp Γ⊢E (TACase _ ta _ _) (EMatchUnfinished eval _) (ECCase ecmp rulescmp) =
RCCase Ecmp (eval-completeness Ecmp Γ⊢E ta eval ecmp) rulescmp
eval-completeness Ecmp Γ⊢E (TAHole _) EHole ()
eval-completeness Ecmp Γ⊢E (TAPF _) EPF (ECPF pf-cmp) = RCPF pf-cmp
eval-completeness Ecmp Γ⊢E (TAAsrt _ _ _) (EAsrt _ _ _) (ECAsrt _ _) = RCTpl (λ ())
-}
| {
"alphanum_fraction": 0.6042300449,
"avg_line_length": 58.0084033613,
"ext": "agda",
"hexsha": "c57ff3179387b73111589c536d3e7ac5da346a83",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnat-myth-",
"max_forks_repo_path": "completeness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnat-myth-",
"max_issues_repo_path": "completeness.agda",
"max_line_length": 152,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnat-myth-",
"max_stars_repo_path": "completeness.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z",
"num_tokens": 2878,
"size": 6903
} |
{-# OPTIONS --without-K --safe #-}
module Experiment.FingerTree.Common where
open import Level renaming (zero to lzero ; suc to lsuc)
open import Algebra
open import Data.Product
open import Function.Core
open import Function.Endomorphism.Propositional
open import Data.Nat hiding (_⊔_)
import Data.Nat.Properties as ℕₚ
foldr-to-foldMap : ∀ {a b e} {F : Set a → Set a} →
(∀ {A : Set a} {B : Set b} → (A → B → B) → B → F A → B) →
∀ {A : Set a} (M : Monoid b e) → (A → Monoid.Carrier M) → F A → Monoid.Carrier M
foldr-to-foldMap foldr M f xs = foldr (λ x m → Monoid._∙_ M (f x) m) (Monoid.ε M) xs
foldMap-to-foldr : ∀ {a b} {F : Set a → Set a} →
(∀ {A : Set a} (M : Monoid b b) → (A → Monoid.Carrier M) → F A → Monoid.Carrier M) →
∀ {A : Set a} {B : Set b} → (A → B → B) → B → F A → B
foldMap-to-foldr foldMap {B = B} f e xs = foldMap (∘-id-monoid B) f xs e
dual : ∀ {c e} → Monoid c e → Monoid c e
dual m = record
{ Carrier = Carrier
; _≈_ = _≈_
; _∙_ = flip _∙_
; ε = ε
; isMonoid = record
{ isSemigroup = record
{ isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = λ x≈y u≈v → ∙-cong u≈v x≈y
}
; assoc = λ x y z → sym $ assoc z y x
}
; identity = identityʳ , identityˡ
}
}
where open Monoid m
foldMap-to-foldl : ∀ {a b} {F : Set a → Set a} →
(∀ {A : Set a} (M : Monoid b b) → (A → Monoid.Carrier M) → F A → Monoid.Carrier M) →
∀ {A : Set a} {B : Set b} → (B → A → B) → B → F A → B
foldMap-to-foldl foldMap {B = B} f e xs = foldMap (dual (∘-id-monoid B)) (flip f) xs e
record RawFoldable {a} (F : Set a → Set a) : Set (lsuc a) where
field
foldMap : ∀ {A : Set a} (M : Monoid a a) → (A → Monoid.Carrier M) → F A → Monoid.Carrier M
fold : (M : Monoid a a) → F (Monoid.Carrier M) → Monoid.Carrier M
fold M = foldMap M id
foldr : ∀ {A B : Set a} → (A → B → B) → B → F A → B
foldr {A} {B} f e xs = foldMap (∘-id-monoid B) f xs e
foldl : ∀ {A B : Set a} → (B → A → B) → B → F A → B
foldl {A} {B} f e xs = foldMap (dual (∘-id-monoid B)) (flip f) xs e
fromFoldr : ∀ {a} {F : Set a → Set a} →
(∀ {A B : Set a} → (A → B → B) → B → F A → B) → RawFoldable {a} F
fromFoldr foldr = record
{ foldMap = foldr-to-foldMap foldr
}
| {
"alphanum_fraction": 0.5446507515,
"avg_line_length": 35.34375,
"ext": "agda",
"hexsha": "500c87d6e9b55d7b2f874ee8ea3d7760586bf40a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/FingerTree/Common.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/FingerTree/Common.agda",
"max_line_length": 94,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/FingerTree/Common.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 929,
"size": 2262
} |
-- Andreas, 2017-06-16, issue #2604:
-- Symbolic anchors in generated HTML.
module Issue2604 where
test1 : Set₁ -- Symbolic anchor
test1 = bla
where
bla = Set -- Position anchor
test2 : Set₁ -- Symbolic anchor
test2 = bla
where
bla = Set -- Position anchor
test3 : Set₁ -- Symbolic anchor
test3 = bla
module M where
bla = Set -- Symbolic anchor
module NamedModule where
test4 : Set₁ -- Symbolic anchor
test4 = M.bla
module _ where
test5 : Set₁ -- Position anchor
test5 = M.bla
-- Testing whether # in anchors confuses the browsers.
-- Not Firefox 54.0, at least (Andreas, 2017-06-20).
-- However, the Nu Html Checker complains (someone else, later).
# : Set₁
# = Set
#a : Set₁
#a = #
b# : Set₁
b# = #a
## : Set₁
## = b#
-- The href attribute values #A and #%41 are (correctly?) treated as
-- pointers to the same destination by Firefox 54.0. To point to %41
-- one should use #%2541.
A : Set₁
A = Set
%41 : Set₁
%41 = A
-- Ampersands may need to be encoded in some way. The blaze-html
-- library takes care of encoding id attribute values, and we manually
-- replace ampersands with %26 in the fragment parts of href attribute
-- values.
& : Set₁
& = Set
< : Set₁
< = &
-- Test of fixity declarations. The id attribute value for the
-- operator in the fixity declaration should be unique.
infix 0 _%42∀_
_%42∀_ : Set₁
_%42∀_ = Set
-- The following two variants of the character Ö should result in
-- distinct links.
Ö : Set₁
Ö = Set
Ö : Set₁
Ö = Ö
| {
"alphanum_fraction": 0.6734828496,
"avg_line_length": 18.487804878,
"ext": "agda",
"hexsha": "8fab50987529f95209dc5ca68913d197d7cb29ac",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/LaTeXAndHTML/succeed/Issue2604.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/LaTeXAndHTML/succeed/Issue2604.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/LaTeXAndHTML/succeed/Issue2604.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 475,
"size": 1516
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NConnected
open import lib.types.Bool
open import lib.types.FunctionSeq
open import lib.types.Pointed
open import lib.types.Suspension.Core
open import lib.types.TLevel
module lib.types.Suspension.Iterated where
Susp^ : ∀ {i} (n : ℕ) → Type i → Type i
Susp^ O X = X
Susp^ (S n) X = Susp (Susp^ n X)
Susp^-pt : ∀ {i} (n : ℕ) (A : Ptd i) → Susp^ n (de⊙ A)
Susp^-pt O A = pt A
Susp^-pt (S n) A = north
⊙Susp^ : ∀ {i} (n : ℕ) → Ptd i → Ptd i
⊙Susp^ n X = ptd (Susp^ n (de⊙ X)) (Susp^-pt n X)
abstract
Susp^-conn : ∀ {i} (n : ℕ) {A : Type i} {m : ℕ₋₂}
{{_ : is-connected m A}} → is-connected (⟨ n ⟩₋₂ +2+ m) (Susp^ n A)
Susp^-conn O = ⟨⟩
Susp^-conn (S n) = Susp-conn (Susp^-conn n)
⊙Susp^-conn' : ∀ {i} (n : ℕ) {A : Type i}
{{_ : is-connected 0 A}} → is-connected ⟨ n ⟩ (Susp^ n A)
⊙Susp^-conn' O = ⟨⟩
⊙Susp^-conn' (S n) = Susp-conn (⊙Susp^-conn' n)
Susp^-fmap : ∀ {i j} (n : ℕ) {A : Type i} {B : Type j}
→ (A → B) → Susp^ n A → Susp^ n B
Susp^-fmap O f = f
Susp^-fmap (S n) f = Susp-fmap (Susp^-fmap n f)
⊙Susp^-fmap-pt : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
(f : X ⊙→ Y)
→ Susp^-fmap n (fst f) (pt (⊙Susp^ n X)) == pt (⊙Susp^ n Y)
⊙Susp^-fmap-pt O f = snd f
⊙Susp^-fmap-pt (S n) f = idp
⊙Susp^-fmap : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ X ⊙→ Y → ⊙Susp^ n X ⊙→ ⊙Susp^ n Y
⊙Susp^-fmap n f = Susp^-fmap n (fst f) , ⊙Susp^-fmap-pt n f
Susp^-fmap-idf : ∀ {i} (n : ℕ) (A : Type i)
→ Susp^-fmap n (idf A) == idf (Susp^ n A)
Susp^-fmap-idf O A = idp
Susp^-fmap-idf (S n) A = ↯ $
Susp-fmap (Susp^-fmap n (idf A))
=⟪ ap Susp-fmap (Susp^-fmap-idf n A) ⟫
Susp-fmap (idf _)
=⟪ λ= (Susp-fmap-idf _) ⟫
idf (Susp^ (S n) A) ∎∎
transport-Susp^ : ∀ {i} {A B : Type i} (n : ℕ) (p : A == B)
→ transport (Susp^ n) p == Susp^-fmap n (coe p)
transport-Susp^ n idp = ! (Susp^-fmap-idf n _)
⊙Susp^-fmap-idf : ∀ {i} (n : ℕ) (X : Ptd i)
→ ⊙Susp^-fmap n (⊙idf X) ◃⊙idf =⊙∘ ⊙idf-seq
⊙Susp^-fmap-idf O X = =⊙∘-in idp
⊙Susp^-fmap-idf (S n) X =
⊙Susp^-fmap (S n) (⊙idf X) ◃⊙idf
=⊙∘₁⟨ ap ⊙Susp-fmap (Susp^-fmap-idf n (de⊙ X)) ⟩
⊙Susp-fmap (idf _) ◃⊙idf
=⊙∘⟨ ⊙Susp-fmap-idf (Susp^ n (de⊙ X)) ⟩
⊙idf-seq ∎⊙∘
⊙transport-⊙Susp^ : ∀ {i} {X Y : Ptd i} (n : ℕ) (p : X == Y)
→ ⊙transport (⊙Susp^ n) p == ⊙Susp^-fmap n (⊙coe p)
⊙transport-⊙Susp^ n p@idp = ! (=⊙∘-out (⊙Susp^-fmap-idf n _))
Susp^-fmap-cst : ∀ {i j} (n : ℕ) {A : Type i} {Y : Ptd j}
→ Susp^-fmap n {A = A} (λ _ → pt Y) == (λ _ → pt (⊙Susp^ n Y))
Susp^-fmap-cst O = idp
Susp^-fmap-cst (S n) {A} {Y} = ↯ $
Susp-fmap (Susp^-fmap n {A = A} (λ _ → pt Y))
=⟪ ap Susp-fmap (Susp^-fmap-cst n) ⟫
Susp-fmap (λ _ → pt (⊙Susp^ n Y))
=⟪ λ= (Susp-fmap-cst (pt (⊙Susp^ n Y))) ⟫
(λ _ → north) ∎∎
⊙Susp^-fmap-cst : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j}
→ ⊙Susp^-fmap n (⊙cst {X = X} {Y = Y}) == ⊙cst
⊙Susp^-fmap-cst O = idp
⊙Susp^-fmap-cst (S n) = ap ⊙Susp-fmap (Susp^-fmap-cst n) ∙ ⊙Susp-fmap-cst
Susp^-fmap-∘ : ∀ {i j k} (n : ℕ) {A : Type i} {B : Type j} {C : Type k}
(g : B → C) (f : A → B)
→ Susp^-fmap n (g ∘ f) == Susp^-fmap n g ∘ Susp^-fmap n f
Susp^-fmap-∘ O g f = idp
Susp^-fmap-∘ (S n) g f =
Susp-fmap (Susp^-fmap n (g ∘ f))
=⟨ ap Susp-fmap (Susp^-fmap-∘ n g f) ⟩
Susp-fmap (Susp^-fmap n g ∘ Susp^-fmap n f)
=⟨ λ= (Susp-fmap-∘ (Susp^-fmap n g) (Susp^-fmap n f)) ⟩
Susp^-fmap (S n) g ∘ Susp^-fmap (S n) f =∎
⊙Susp^-fmap-∘ : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(g : Y ⊙→ Z) (f : X ⊙→ Y)
→ ⊙Susp^-fmap n (g ⊙∘ f) == ⊙Susp^-fmap n g ⊙∘ ⊙Susp^-fmap n f
⊙Susp^-fmap-∘ O g f = idp
⊙Susp^-fmap-∘ (S n) g f =
ap ⊙Susp-fmap (Susp^-fmap-∘ n (fst g) (fst f))
∙ ⊙Susp-fmap-∘ (Susp^-fmap n (fst g)) (Susp^-fmap n (fst f))
⊙Susp^-fmap-seq : ∀ {i} (n : ℕ) {X : Ptd i} {Y : Ptd i}
→ X ⊙–→ Y
→ ⊙Susp^ n X ⊙–→ ⊙Susp^ n Y
⊙Susp^-fmap-seq n ⊙idf-seq = ⊙idf-seq
⊙Susp^-fmap-seq n (f ◃⊙∘ fs) = ⊙Susp^-fmap n f ◃⊙∘ ⊙Susp^-fmap-seq n fs
⊙Susp^-fmap-seq-∘ : ∀ {i} (n : ℕ) {X : Ptd i} {Y : Ptd i} (fs : X ⊙–→ Y)
→ ⊙Susp^-fmap n (⊙compose fs) ◃⊙idf =⊙∘ ⊙Susp^-fmap-seq n fs
⊙Susp^-fmap-seq-∘ n ⊙idf-seq = ⊙Susp^-fmap-idf n _
⊙Susp^-fmap-seq-∘ n (f ◃⊙∘ fs) = =⊙∘-in $
⊙Susp^-fmap n (f ⊙∘ ⊙compose fs)
=⟨ ⊙Susp^-fmap-∘ n f (⊙compose fs) ⟩
⊙Susp^-fmap n f ⊙∘ ⊙Susp^-fmap n (⊙compose fs)
=⟨ ap (⊙Susp^-fmap n f ⊙∘_) (=⊙∘-out (⊙Susp^-fmap-seq-∘ n fs)) ⟩
⊙Susp^-fmap n f ⊙∘ ⊙compose (⊙Susp^-fmap-seq n fs) =∎
⊙Susp^-fmap-seq-=⊙∘ : ∀ {i} (n : ℕ) {X : Ptd i} {Y : Ptd i} {fs gs : X ⊙–→ Y}
→ fs =⊙∘ gs
→ ⊙Susp^-fmap-seq n fs =⊙∘ ⊙Susp^-fmap-seq n gs
⊙Susp^-fmap-seq-=⊙∘ n {fs = fs} {gs = gs} p =
⊙Susp^-fmap-seq n fs
=⊙∘⟨ !⊙∘ $ ⊙Susp^-fmap-seq-∘ n fs ⟩
⊙Susp^-fmap n (⊙compose fs) ◃⊙idf
=⊙∘₁⟨ ap (⊙Susp^-fmap n) (=⊙∘-out p) ⟩
⊙Susp^-fmap n (⊙compose gs) ◃⊙idf
=⊙∘⟨ ⊙Susp^-fmap-seq-∘ n gs ⟩
⊙Susp^-fmap-seq n gs ∎⊙∘
⊙Sphere : (n : ℕ) → Ptd₀
⊙Sphere n = ⊙Susp^ n ⊙Bool
Sphere : (n : ℕ) → Type₀
Sphere n = de⊙ (⊙Sphere n)
abstract
instance
Sphere-conn : ∀ (n : ℕ) → is-connected ⟨ n ⟩₋₁ (Sphere n)
Sphere-conn 0 = inhab-conn true
Sphere-conn (S n) = Susp-conn (Sphere-conn n)
-- favonia: [S¹] has its own elim rules in Circle.agda.
⊙S⁰ = ⊙Sphere 0
⊙S¹ = ⊙Sphere 1
⊙S² = ⊙Sphere 2
⊙S³ = ⊙Sphere 3
S⁰ = Sphere 0
S¹ = Sphere 1
S² = Sphere 2
S³ = Sphere 3
| {
"alphanum_fraction": 0.5094871313,
"avg_line_length": 33.0621118012,
"ext": "agda",
"hexsha": "d54b3d84032b6776fadbe3fb36829932f6297659",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Suspension/Iterated.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Suspension/Iterated.agda",
"max_line_length": 77,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Suspension/Iterated.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2832,
"size": 5323
} |
-- agda -c -isrc -i/usr/share/agda-stdlib/ src/Main.agda
module Main where
open import IO
open import Function
open import Coinduction
open import Data.String using (String; toList; fromList)
open import Example
-- main = interact $ unline . reverse . lines
main = run (♯ getContents >>= ♯_ ∘ eachline ( fromList ∘ rev ∘ toList) ) where
open import Data.Maybe
open import Data.Product
open import Data.List using ([]; _∷_; [_])
open import Data.Colist using (Colist; []; _∷_)
open import Data.String using (Costring; _++_)
open import Data.Unit using (⊤; tt)
open import Category.Monad.Partiality
takeLine : Costring → Maybe (String × ∞ Costring) ⊥
takeLine [] = now nothing -- EOF
takeLine xs = go "" xs where
go : String → Costring → Maybe (String × ∞ Costring) ⊥
go acc [] = now (just (acc , ♯ []))
go acc (x ∷ xs) with fromList [ x ]
go acc (_ ∷ xs) | "\n" = now (just (acc , xs))
go acc (_ ∷ xs) | last = later (♯ go (acc ++ last) (♭ xs))
takeLine' : Costring → (String × Costring) ⊥
takeLine' xs = go "" xs where
go : String → Costring → (String × Costring) ⊥
go acc [] = now (acc , [])
go acc (x ∷ xs) with fromList [ x ]
go acc (x ∷ xs) | "\n" = now (acc , (♭ xs))
go acc (x ∷ xs) | last = later (♯ go (acc ++ last) (♭ xs))
eachline : (String → String) → Costring → IO ⊤
eachline f = go ∘ takeLine where
go : Maybe (String × ∞ Costring) ⊥ → IO ⊤
go (now nothing) = return tt
go (now (just (line , xs))) = ♯ putStrLn (f line) >> ♯ go (takeLine (♭ xs))
go (later x) = ♯ return tt >> ♯ go (♭ x)
eachline' : (String → String) → Costring → IO ⊤
eachline' f = go ∘ takeLine' where
go : (String × Costring) ⊥ → IO ⊤
go (now (line , xs)) = ♯ putStrLn (f line) >> ♯ go (takeLine' xs)
go (later x) = ♯ return tt >> ♯ go (♭ x)
| {
"alphanum_fraction": 0.5854724194,
"avg_line_length": 36.62,
"ext": "agda",
"hexsha": "711611c6065bdf6db04d05eaa2f17e996443cf82",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9ad77d2aed8f950151e009135a9dfc02bc32ce65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "notogawa/agda-haskell-example",
"max_forks_repo_path": "src/Main.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9ad77d2aed8f950151e009135a9dfc02bc32ce65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "notogawa/agda-haskell-example",
"max_issues_repo_path": "src/Main.agda",
"max_line_length": 79,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "9ad77d2aed8f950151e009135a9dfc02bc32ce65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "notogawa/agda-haskell-example",
"max_stars_repo_path": "src/Main.agda",
"max_stars_repo_stars_event_max_datetime": "2017-11-07T01:35:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-28T05:04:58.000Z",
"num_tokens": 637,
"size": 1831
} |
{- Formal verification of authenticated append-only skiplists in Agda, version 1.0.
Copyright (c) 2020 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import Data.Empty
open import Data.Fin.Properties using (toℕ<n; toℕ-injective)
open import Data.Product
open import Data.Sum
open import Data.Nat
open import Data.Nat.Divisibility
open import Data.Nat.Properties
open import Data.Nat.Induction
open import Data.List renaming (map to List-map)
open import Data.List.Relation.Unary.Any
open import Data.List.Relation.Unary.All
import Relation.Binary.PropositionalEquality as Eq
open import Relation.Binary.Definitions
open Eq using (_≡_; refl; trans; sym; cong; cong-app; subst)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
open import Relation.Binary.PropositionalEquality renaming ( [_] to Reveal[_])
open import Relation.Binary.PropositionalEquality
open import Relation.Binary.HeterogeneousEquality
using (_≅_; ≅-to-≡; ≡-to-≅; _≇_)
renaming (cong to ≅-cong; refl to ≅-refl; cong₂ to ≅-cong₂)
open import Relation.Nullary
open import Relation.Binary.Core
open import Relation.Nullary.Negation using (contradiction; contraposition)
import Relation.Nullary using (¬_)
open import Function
-- This module defines the hop relation used by the original AAOSL due to Maniatis
-- and Baker, and proves various properties needed to establish it as a valid
-- DepRel, so that we can instantiate the asbtract model with it to demonstrate that
-- it is an instance of the class of AAOSLs for which we prove our properties.
module AAOSL.Hops where
open import AAOSL.Lemmas
open import Data.Nat.Even
-- The level of an index is 0 for index 0,
-- otherwise, it is one plus the number of times
-- that two divides said index.
--
-- lvlOf must be marked terminating because in one branch
-- we make recursive call on the quotient of the argument, which
-- is not obviously smaller than that argument
-- This is justified by proving that lvlOf is equal to lvlOfWF,
-- which uses well-founded recursion
{-# TERMINATING #-}
lvlOf : ℕ → ℕ
lvlOf 0 = 0
lvlOf (suc n) with even? (suc n)
...| no _ = 1
...| yes e = suc (lvlOf (quotient e))
-- level of an index with well-founded recursion
lvlOfWFHelp : (n : ℕ) → Acc _<_ n → ℕ
lvlOfWFHelp 0 p = 0
lvlOfWFHelp (suc n) (acc rs) with even? (suc n)
... | no _ = 1
... | yes (divides q eq) = suc (lvlOfWFHelp q (rs q (1+n=m*2⇒m<1+n q n eq)))
lvlOfWF : ℕ → ℕ
lvlOfWF n = lvlOfWFHelp n (<-wellFounded n)
-- When looking at an index in the form 2^k * d, the level of
-- said index is more easily defined.
lvlOf' : ∀{n} → Pow2 n → ℕ
lvlOf' zero = zero
lvlOf' (pos l _ _ _) = suc l
-------------------------------------------
-- Properties of lvlOf, lvlOfWF, and lvlOf'
lvlOf≡lvlOfWFHelp : (n : ℕ) (p : Acc _<_ n) → lvlOf n ≡ lvlOfWFHelp n p
lvlOf≡lvlOfWFHelp 0 p = refl
lvlOf≡lvlOfWFHelp (suc n) (acc rs) with even? (suc n)
... | no _ = refl
... | yes (divides q eq) =
cong suc (lvlOf≡lvlOfWFHelp q (rs q (1+n=m*2⇒m<1+n q n eq)))
lvlOf≡lvlOfWF : (n : ℕ) → lvlOf n ≡ lvlOfWF n
lvlOf≡lvlOfWF n = lvlOf≡lvlOfWFHelp n (<-wellFounded n)
lvlOf≡lvlOf' : ∀ n → lvlOf n ≡ lvlOf' (to n)
lvlOf≡lvlOf' n rewrite lvlOf≡lvlOfWF n = go n (<-wellFounded n)
where
go : (n : ℕ) (p : Acc _<_ n) → lvlOfWFHelp n p ≡ lvlOf' (to n)
go 0 p = refl
go (suc n) (acc rs) with even? (suc n)
... | no _ = refl
... | yes (divides q eq) with go q (rs q (1+n=m*2⇒m<1+n q n eq))
... | ih with to q
... | pos l d odd prf = cong suc ih
lvl≥2-even : ∀ {n} → 2 ≤ lvlOf n → Even n
lvl≥2-even {suc n} x
with 2 ∣? (suc n)
...| yes prf = prf
...| no prf = ⊥-elim ((≤⇒≯ x) (s≤s (s≤s z≤n)))
lvlOfodd≡1 : ∀ n → Odd n → lvlOf n ≡ 1
lvlOfodd≡1 0 nodd = ⊥-elim (nodd (divides zero refl))
lvlOfodd≡1 (suc n) nodd
with even? (suc n)
...| yes prf = ⊥-elim (nodd prf)
...| no prf = refl
-- We eventually need to 'undo' a level
lvlOf-undo : ∀{j}(e : Even (suc j)) → suc (lvlOf (quotient e)) ≡ lvlOf (suc j)
lvlOf-undo {j} e with even? (suc j)
...| no abs = ⊥-elim (abs e)
...| yes prf rewrite even-irrelevant e prf = refl
∣-cmp : ∀{t u n} → (suc t * u) ∣ n → (d : suc t ∣ n) → u ∣ (quotient d)
∣-cmp {t} {u} {n} (divides q1 e1) (divides q2 e2)
rewrite sym (*-assoc q1 (suc t) u)
| *-comm q1 (suc t)
| *-comm q2 (suc t)
| *-assoc (suc t) q1 u
= divides q1 (*-cancelˡ-≡ t (trans (sym e2) e1))
∣-0< : ∀{n t} → 0 < n → (d : suc t ∣ n) → 0 < quotient d
∣-0< hip (divides zero e) = ⊥-elim (<⇒≢ hip (sym e))
∣-0< hip (divides (suc q) e) = s≤s z≤n
lvlOf-mono : ∀{n} k → 0 < n → 2 ^ k ∣ n → k ≤ lvlOf n
lvlOf-mono zero hip prf = z≤n
lvlOf-mono {suc n} (suc k) hip prf
with even? (suc n)
...| no abs = ⊥-elim (abs (divides (quotient prf * (2 ^ k))
(trans (_∣_.equality prf)
(trans (cong ((quotient prf) *_) (sym (*-comm (2 ^ k) 2)))
(sym (*-assoc (quotient prf) (2 ^ k) 2))))))
...| yes prf' = s≤s (lvlOf-mono {quotient prf'} k (∣-0< hip prf') (∣-cmp prf prf'))
-- This property can be strenghtened to < if we ever need.
lvlOf'-mono : ∀{k} d → 0 < d → k ≤ lvlOf' (to (2 ^ k * d))
lvlOf'-mono {k} d 0<d
with to d
...| pos {d} kk dd odd eq
with (2 ^ (k + kk)) * dd ≟ (2 ^ k) * d
...| no xx = ⊥-elim (xx ( trans (cong (_* dd) (^-distribˡ-+-* 2 k kk))
(trans (*-assoc (2 ^ k) (2 ^ kk) dd)
(cong (λ x → (2 ^ k) * x) (sym eq)))))
...| yes xx
with to-reduce {(2 ^ k) * d} {k + kk} {dd} (sym xx) odd
...| xx1 = ≤-trans (≮⇒≥ (m+n≮m k kk))
(≤-trans (n≤1+n (k + kk)) -- TODO-1: easy to strengthen to <; omit this step
(≤-reflexive (sym (cong lvlOf' xx1))))
-- And a progress property about levels:
-- These will be much easier to reason about in terms of lvlOf'
-- as we can see in lvlOf-correct.
lvlOf-correct : ∀{l j} → l < lvlOf j → 2 ^ l ≤ j
lvlOf-correct {l} {j} prf
rewrite lvlOf≡lvlOf' j
with to j
...| zero = ⊥-elim (1+n≢0 (n≤0⇒n≡0 prf))
...| pos l' d odd refl = 2^kd-mono (≤-unstep2 prf) (0<odd odd)
-- lvlOf-prog states that if we have not reached 0, we landed somewhere
-- where we can hop again at the same level.
lvlOf-prog : ∀{l j} → 0 < j ∸ 2 ^ l → l < lvlOf j → l < lvlOf (j ∸ 2 ^ l)
lvlOf-prog {l} {j} hip l<lvl
rewrite lvlOf≡lvlOf' j | lvlOf≡lvlOf' (j ∸ 2 ^ l)
with to j
...| zero = ⊥-elim (1+n≰n (≤-trans l<lvl z≤n))
...| pos l₁ d₁ o₁ refl
rewrite 2^ld-2l l₁ l d₁ (≤-unstep2 l<lvl)
with l ≟ l₁
...| no l≢l₁ rewrite to-2^kd l (odd-2^kd-1 (l₁ ∸ l) d₁
(0<m-n (≤∧≢⇒< (≤-unstep2 l<lvl) l≢l₁))
(0<odd o₁))
= ≤-refl
...| yes refl rewrite n∸n≡0 l₁ | +-comm d₁ 0
with odd∸1-even o₁
...| divides q prf rewrite prf
| sym (*-assoc (2 ^ l₁) q 2)
| a*b*2-lemma (2 ^ l₁) q
= lvlOf'-mono {suc l₁} q (1≤m*n⇒0<n {m = 2 ^ suc l₁} hip)
lvlOf-no-overshoot : ∀ j l → suc l < lvlOf j → 0 < j ∸ 2 ^ l
lvlOf-no-overshoot j l hip
rewrite lvlOf≡lvlOf' j with to j
...| zero = ⊥-elim (1+n≰n (≤-trans (s≤s z≤n) hip))
...| pos k d o refl = 0<m-n {2 ^ k * d} {2 ^ l}
(<-≤-trans (2^-mono (≤-unstep2 hip))
(2^kd-mono {k} {k} ≤-refl (0<odd o)))
---------------------------
-- The AAOSL Structure --
---------------------------
-------------------------------
-- Hops
-- Encoding our hops into a relation. A value of type 'H l j i'
-- witnesses the existence of a hop from j to i at level l.
data H : ℕ → ℕ → ℕ → Set where
hz : ∀ x → H 0 (suc x) x
hs : ∀ {l x y z}
→ H l x y
→ H l y z
→ suc l < lvlOf x
→ H (suc l) x z
-----------------------------
-- Hop's universal properties
-- The universal property comes for free
h-univ : ∀{l j i} → H l j i → i < j
h-univ (hz x) = s≤s ≤-refl
h-univ (hs h h₁ _) = <-trans (h-univ h₁) (h-univ h)
-- It is easy to prove there are no hops from zero
h-from0-⊥ : ∀{l i} → H l 0 i → ⊥
h-from0-⊥ (hs h h₁ _) = h-from0-⊥ h
-- And it is easy to prove that i is a distance of 2 ^ l away
-- from j.
h-univ₂ : ∀{l i j} → H l j i → i ≡ j ∸ 2 ^ l
h-univ₂ (hz x) = refl
h-univ₂ (hs {l = l} {j} h₀ h₁ _)
rewrite h-univ₂ h₀
| h-univ₂ h₁
| +-comm (2 ^ l) 0
| sym (∸-+-assoc j (2 ^ l) (2 ^ l))
= refl
-- and vice versa.
h-univ₁ : ∀{l i j} → H l j i → j ≡ i + 2 ^ l
h-univ₁ (hz x) = sym (+-comm x 1)
h-univ₁ (hs {l = l} {z = i} h₀ h₁ _)
rewrite h-univ₁ h₀
| h-univ₁ h₁
| +-comm (2 ^ l) 0
= +-assoc i (2 ^ l) (2 ^ l)
--------------
-- H and lvlOf
-- A value of type H says something about the levels of their indices
h-lvl-src : ∀{l j i} → H l j i → l < lvlOf j
h-lvl-src (hz x) with even? (suc x)
...| no _ = s≤s z≤n
...| yes _ = s≤s z≤n
h-lvl-src (hs h₀ h₁ prf) = prf
h-lvl-tgt : ∀{l j i} → 0 < i → H l j i → l < lvlOf i
h-lvl-tgt prf h rewrite h-univ₂ h = lvlOf-prog prf (h-lvl-src h)
h-lvl-inj : ∀{l₁ l₂ j i} (h₁ : H l₁ j i)(h₂ : H l₂ j i) → l₁ ≡ l₂
h-lvl-inj {i = i} h₁ h₂
= 2^-injective (+-cancelˡ-≡ i (trans (sym (h-univ₁ h₁)) (h-univ₁ h₂)))
-- TODO-1: document reasons for this pragma and justify it
{-# TERMINATING #-}
h-lvl-half : ∀{l j i y l₁} → H l j y → H l y i → H l₁ j i → lvlOf y ≡ suc l
h-lvl-half w₀ w₁ (hz n) = ⊥-elim (1+n≰n (≤-<-trans (h-univ w₁) (h-univ w₀)))
h-lvl-half {l}{j}{i}{y} w₀ w₁ (hs {l = l₁} {y = y₁} sh₀ sh₁ x)
-- TODO-2: factor out a lemma to prove l₁ ≡ l and y₁ ≡ y (already exists?)
with l₁ ≟ l
...| no imp
with j ≟ i + (2 ^ l₁) + (2 ^ l₁) | j ≟ i + (2 ^ l) + (2 ^ l)
...| no imp1 | _ rewrite h-univ₁ sh₁ = ⊥-elim (imp1 (h-univ₁ sh₀))
...| yes _ | no imp1 rewrite h-univ₁ w₁ = ⊥-elim (imp1 (h-univ₁ w₀))
...| yes j₁ | yes j₂
with trans (sym j₂) j₁
...| xx5 rewrite +-assoc i (2 ^ l) (2 ^ l)
| +-assoc i (2 ^ l₁) (2 ^ l₁)
with +-cancelˡ-≡ i xx5
...| xx6 rewrite sym (+-identityʳ (2 ^ l))
| sym (+-identityʳ (2 ^ l₁))
| +-assoc (2 ^ l) 0 ((2 ^ l) + 0)
| +-assoc (2 ^ l₁) 0 ((2 ^ l₁) + 0)
| *-comm 2 (2 ^ l)
| *-comm 2 (2 ^ l₁)
= ⊥-elim (imp (sym (2^-injective {l} {l₁} (
sym (*2-injective (2 ^ l) (2 ^ l₁) xx6)))))
h-lvl-half {l = l}{j = j}{i = i}{y = y} w₀ w₁ (hs {l = l₁} {y = y₁} sh₀ sh₁ x)
| yes xx1 rewrite xx1
with y₁ ≟ y
...| no imp = ⊥-elim (imp (+-cancelʳ-≡ y₁ y (trans (sym (h-univ₁ sh₀)) (h-univ₁ w₀))))
...| yes y₁≡y rewrite y₁≡y
with w₀
...| hs {l = l-1} ssh₀ ssh₁ xx rewrite sym xx1
= h-lvl-half sh₀ sh₁ (hs sh₀ sh₁ x)
...| hz y = lvlOfodd≡1 y (even-suc-odd y (lvl≥2-even {suc y} x))
-- If a hop goes over an index, then the level of this index is strictly
-- less than the level of the hop. The '≤' is there because
-- l starts at zero.
--
-- For example, lvlOf 4 ≡ 3; the only hops that can go over 4 are
-- those with l of 3 or higher. In fact, there is one at l ≡ 2
-- from 4 to 0: H 2 4 0
h-lvl-mid : ∀{l j i} → (k : ℕ) → H l j i → i < k → k < j → lvlOf k ≤ l
h-lvl-mid k (hz x) i<k k<j = ⊥-elim (n≮n k (<-≤-trans k<j i<k))
h-lvl-mid {j = j} k (hs {l = l₀}{y = y} w₀ w₁ x) i<k k<j
with <-cmp k y
...| tri< k<y k≢y k≯y = ≤-step (h-lvl-mid k w₁ i<k k<y)
...| tri> k≮y k≢y k>y = ≤-step (h-lvl-mid k w₀ k>y k<j)
...| tri≈ k≮y k≡y k≯y rewrite k≡y = ≤-reflexive (h-lvl-half w₀ w₁ (hs {l = l₀}{y = y} w₀ w₁ x))
h-lvl-≤₁ : ∀{l₁ l₂ j i₁ i₂}
→ (h : H l₁ j i₁)(v : H l₂ j i₂)
→ i₂ < i₁
→ l₁ < l₂
h-lvl-≤₁ {l₁} {l₂} {j} {i₁} {i₂} h v i₂<i₁ =
let h-univ = h-univ₁ h
v-univ = h-univ₁ v
eqj = trans (sym v-univ) h-univ
in log-mono l₁ l₂ (n+p≡m+q∧n<m⇒q<p i₂<i₁ eqj)
h-lvl-≤₂ : ∀{l₁ l₂ j₁ j₂ i}
→ (h : H l₁ j₁ i)(v : H l₂ j₂ i)
→ j₁ < j₂
→ l₁ < l₂
h-lvl-≤₂ {l₁} {l₂} {j₁} {j₂} {i} h v j₂<j₁ =
let h-univ = h-univ₁ h
v-univ = h-univ₁ v
in log-mono l₁ l₂ (+-cancelˡ-< i (subst (i + (2 ^ l₁) <_) v-univ (subst (_< j₂) h-univ j₂<j₁)))
------------------------------
-- Correctness and Irrelevance
h-correct : ∀ j l → l < lvlOf j → H l j (j ∸ 2 ^ l)
h-correct (suc j) zero prf = hz j
h-correct (suc j) (suc l) prf
with h-correct (suc j) l
...| ind with 2 ∣? (suc j)
...| no _ = ⊥-elim (ss≰1 prf)
...| yes e with ind (≤-unstep prf)
...| res₀
with h-correct (suc j ∸ 2 ^ l) l
(lvlOf-prog {l} {suc j}
(lvlOf-no-overshoot (suc j) l (subst (suc l <_ ) (lvlOf-undo e) prf))
(subst (l <_) (lvlOf-undo e) (≤-unstep prf)))
...| res₁
rewrite +-comm (2 ^ l) 0
| ∸-+-assoc (suc j) (2 ^ l) (2 ^ l)
= hs res₀ res₁ (subst (suc l <_) (lvlOf-undo e) prf)
h-irrelevant : ∀{l i j}
→ (h₁ : H l j i)
→ (h₂ : H l j i)
→ h₁ ≡ h₂
h-irrelevant (hz x) (hz .x) = refl
h-irrelevant (hs {y = y} h₁ h₃ x) (hs {y = z} h₂ h₄ x₁)
rewrite ≤-irrelevant x x₁
with y ≟ z
...| no abs = ⊥-elim (abs (trans (h-univ₂ h₁) (sym (h-univ₂ h₂))))
...| yes refl = cong₂ (λ P Q → hs P Q x₁) (h-irrelevant h₁ h₂) (h-irrelevant h₃ h₄)
-------------------------------------------------------------------
-- The non-overlapping property is stated in terms
-- of subhops. The idea is that a hop is either separate
-- from another one, or is entirely contained within the larger one.
--
-- Entirely contained comes from _⊆Hop_
data _⊆Hop_ : ∀{l₁ i₁ j₁ l₂ i₂ j₂}
→ H l₁ j₁ i₁
→ H l₂ j₂ i₂
→ Set where
here : ∀{l i j}(h : H l j i) → h ⊆Hop h
left : ∀{l₁ i₁ j₁ l₂ i₂ w j₂ }
→ (h : H l₁ j₁ i₁)
→ (w₀ : H l₂ j₂ w)
→ (w₁ : H l₂ w i₂)
→ (p : suc l₂ < lvlOf j₂)
→ h ⊆Hop w₀
→ h ⊆Hop (hs w₀ w₁ p)
right : ∀{l₁ i₁ j₁ l₂ i₂ w j₂}
→ (h : H l₁ j₁ i₁)
→ (w₀ : H l₂ j₂ w)
→ (w₁ : H l₂ w i₂)
→ (p : suc l₂ < lvlOf j₂)
→ h ⊆Hop w₁
→ h ⊆Hop (hs w₀ w₁ p)
⊆Hop-refl : ∀{l₁ l₂ j i}
→ (h₁ : H l₁ j i)
→ (h₂ : H l₂ j i)
→ h₁ ⊆Hop h₂
⊆Hop-refl h₁ h₂ with h-lvl-inj h₁ h₂
...| refl rewrite h-irrelevant h₁ h₂ = here h₂
⊆Hop-univ : ∀{l₁ i₁ j₁ l₂ i₂ j₂}
→ (h1 : H l₁ j₁ i₁)
→ (h2 : H l₂ j₂ i₂)
→ h1 ⊆Hop h2
→ i₂ ≤ i₁ × j₁ ≤ j₂ × l₁ ≤ l₂
⊆Hop-univ h1 .h1 (here .h1) = ≤-refl , ≤-refl , ≤-refl
⊆Hop-univ h1 (hs w₀ w₁ p) (left h1 w₀ w₁ q hip)
with ⊆Hop-univ h1 w₀ hip
...| a , b , c = (≤-trans (<⇒≤ (h-univ w₁)) a) , b , ≤-step c
⊆Hop-univ h1 (hs w₀ w₁ p) (right h1 w₀ w₁ q hip)
with ⊆Hop-univ h1 w₁ hip
...| a , b , c = a , ≤-trans b (<⇒≤ (h-univ w₀)) , ≤-step c
⊆Hop-univ₁ : ∀{l₁ i₁ j₁ l₂ i₂ j₂}
→ (h1 : H l₁ j₁ i₁)
→ (h2 : H l₂ j₂ i₂)
→ h1 ⊆Hop h2
→ i₂ ≤ i₁
⊆Hop-univ₁ h1 h2 h1h2 = proj₁ (⊆Hop-univ h1 h2 h1h2)
⊆Hop-src-≤ : ∀{l₁ i₁ j₁ l₂ i₂ j₂}
→ (h1 : H l₁ j₁ i₁)
→ (h2 : H l₂ j₂ i₂)
→ h1 ⊆Hop h2
→ j₁ ≤ j₂
⊆Hop-src-≤ h1 h2 h1h2 = (proj₁ ∘ proj₂) (⊆Hop-univ h1 h2 h1h2)
-- If two hops are not strictly the same, then the level of
-- the smaller hop is strictly smaller than the level of
-- the bigger hop.
--
-- VERY IMPORTANT
⊆Hop-univ-lvl : ∀{l₁ i₁ j₁ l₂ i₂ j₂}
→ (h₁ : H l₁ j₁ i₁)
→ (h₂ : H l₂ j₂ i₂)
→ h₁ ⊆Hop h₂
→ j₁ < j₂
→ l₁ < l₂
⊆Hop-univ-lvl {l₁}{i₁}{j₁}{l₂}{i₂}{j₂} h₁ h₂ h₁⊆Hoph₂ j₁<j₂
= let r₁ : i₂ + (2 ^ l₁) ≤ i₁ + (2 ^ l₁)
r₁ = +-monoˡ-≤ (2 ^ l₁) (proj₁ (⊆Hop-univ h₁ h₂ h₁⊆Hoph₂))
r₂ : i₁ + (2 ^ l₁) < i₂ + (2 ^ l₂)
r₂ = subst₂ _<_ (h-univ₁ h₁) (h-univ₁ h₂) j₁<j₂
in log-mono l₁ l₂ ((+-cancelˡ-< i₂) (≤-<-trans r₁ r₂))
hz-⊆ : ∀{l j i k}
→ (v : H l j i)
→ i ≤ k
→ k < j
→ hz k ⊆Hop v
hz-⊆ (hz x) i<k k<j
rewrite ≤-antisym (≤-unstep2 k<j) i<k = here (hz x)
hz-⊆ {k = k} (hs {y = y} v v₁ x) i<k k<j
with k <? y
...| yes k<y = right (hz k) v v₁ x (hz-⊆ v₁ i<k k<y)
...| no k≮y = left (hz k) v v₁ x (hz-⊆ v (≮⇒≥ k≮y) k<j)
⊆Hop-inj₁ : ∀{l₁ l₂ j i₁ i₂}
→ (h : H l₁ j i₁)(v : H l₂ j i₂)
→ i₂ < i₁
→ h ⊆Hop v
⊆Hop-inj₁ {i₁ = i₁} h (hz x) prf
= ⊥-elim (n≮n i₁ (<-≤-trans (h-univ h) prf))
⊆Hop-inj₁ {l} {j = j} {i₁ = i₁} h (hs {l = l₁} {y = y} v v₁ x) prf
with y ≟ i₁
...| yes refl = left h v v₁ x (⊆Hop-refl h v)
...| no y≢i₁
with h-lvl-≤₁ h (hs v v₁ x) prf
...| sl≤sl₁
with h-univ₂ h | h-univ₂ v
...| prf1 | prf2
= let r : j ∸ (2 ^ l₁) ≤ j ∸ (2 ^ l)
r = ∸-monoʳ-≤ {m = 2 ^ l} {2 ^ l₁} j (^-mono l l₁ (≤-unstep2 sl≤sl₁))
in left h v v₁ x (⊆Hop-inj₁ h v (≤∧≢⇒< (subst₂ _≤_ (sym prf2) (sym prf1) r) y≢i₁))
⊆Hop-inj₂ : ∀{l₁ l₂ j₁ j₂ i}
→ (h : H l₁ j₁ i)(v : H l₂ j₂ i)
→ j₁ < j₂
→ h ⊆Hop v
⊆Hop-inj₂ h (hz x) prf
= ⊥-elim (n≮n _ (<-≤-trans prf (h-univ h)))
⊆Hop-inj₂ {l} {j₁ = j₁} {i = i} h (hs {l = l₁} {y = y} v v₁ x) prf
with y ≟ j₁
...| yes refl = right h v v₁ x (⊆Hop-refl h v₁)
...| no y≢j₁
with h-lvl-≤₂ h (hs v v₁ x) prf
...| sl≤sl₁
with h-univ₁ h | h-univ₁ v₁
...| prf1 | prf2
= let r : i + 2 ^ l ≤ i + 2 ^ l₁
r = +-monoʳ-≤ i (^-mono l l₁ (≤-unstep2 sl≤sl₁))
in right h v v₁ x (⊆Hop-inj₂ h v₁ (≤∧≢⇒< (subst₂ _≤_ (sym prf1) (sym prf2) r) (y≢j₁ ∘ sym)))
⊆Hop-inj₃ : ∀{l₁ l₂ j₁ j₂ i₁ i₂}
→ (h : H l₁ j₁ i₁)(v : H l₂ j₂ i₂)
→ i₁ ≡ i₂ → j₁ ≡ j₂ → h ⊆Hop v
⊆Hop-inj₃ h v refl refl with h-lvl-inj h v
...| refl rewrite h-irrelevant h v = here v
-- This datatype encodes all the possible hop situations. This makes is
-- much easier to structure proofs talking about two hops.
data HopStatus : ∀{l₁ i₁ j₁ l₂ i₂ j₂}
→ H l₁ j₁ i₁
→ H l₂ j₂ i₂
→ Set where
-- Same hop; we carry the proofs explicitly here to be able to control
-- when to perform the rewrites.
Same : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂)
→ i₁ ≡ i₂
→ j₁ ≡ j₂
→ HopStatus h₁ h₂
-- h₂ h₁
-- ⌜⁻⁻⁻⁻⁻⁻⁻⌝ ⌜⁻⁻⁻⁻⁻⁻⁻⌝
-- | | | |
-- i₂ < j₂ ≤ i₁ < j₁
SepL : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂)
→ j₂ ≤ i₁
→ HopStatus h₁ h₂
-- h₁ h₂
-- ⌜⁻⁻⁻⁻⁻⁻⁻⌝ ⌜⁻⁻⁻⁻⁻⁻⁻⌝
-- | | | |
-- i₁ < j₁ ≤ i₂ < j₂
SepR : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂)
→ j₁ ≤ i₂
→ HopStatus h₁ h₂
-- h₂
-- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝
-- ∣ ∣
-- ∣ h₁ ∣
-- ∣ ⌜⁻⁻⁻⁻⁻⁻⁻⌝ |
-- | | | |
-- i₂ ≤ i₁ ⋯ j₁ ≤ j₂
SubL : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂)
→ i₂ < i₁ ⊎ j₁ < j₂ -- makes sure hops differ!
→ h₁ ⊆Hop h₂
→ HopStatus h₁ h₂
-- h₁
-- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝
-- ∣ ∣
-- ∣ h₂ ∣
-- ∣ ⌜⁻⁻⁻⁻⁻⁻⁻⌝ |
-- | | | |
-- i₁ ≤ i₂ ⋯ j₂ < j₁
SubR : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂)
→ i₁ < i₂ ⊎ j₂ < j₁ -- makes sure hops differ
→ h₂ ⊆Hop h₁
→ HopStatus h₁ h₂
-- Finally, we can prove our no-overlap property. As it turns out, it is
-- just a special case of general non-overlapping, and therefore, it is
-- defined as such.
mutual
-- Distinguish is used to understand the relation between two arbitrary hops.
-- It is used to perform the induction step on arbitrary hops. Note how
-- 'no-overlap' has a clause that impedes the hops from being equal.
distinguish : ∀{l₁ i₁ j₁ l₂ i₂ j₂}
→ (h₁ : H l₁ j₁ i₁)
→ (h₂ : H l₂ j₂ i₂)
→ HopStatus h₁ h₂
distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2
with <-cmp i₁ i₂
...| tri≈ i₁≮i₂ i₁≡i₂ i₂≮i₁
with <-cmp j₁ j₂
...| tri≈ j₁≮j₂ j₁≡j₂ j₂≮j₁ = Same h1 h2 i₁≡i₂ j₁≡j₂
...| tri< j₁<j₂ j₁≢j₂ j₂≮j₁ rewrite i₁≡i₂ = SubL h1 h2 (inj₂ j₁<j₂) (⊆Hop-inj₂ h1 h2 j₁<j₂)
...| tri> j₁≮j₂ j₁≢j₂ j₂<j₁ rewrite i₁≡i₂ = SubR h1 h2 (inj₂ j₂<j₁) (⊆Hop-inj₂ h2 h1 j₂<j₁)
distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2
| tri< i₁<i₂ i₁≢i₂ i₂≮i₁
with <-cmp j₁ j₂
...| tri≈ j₁≮j₂ j₁≡j₂ j₂≮j₁ rewrite j₁≡j₂ = SubR h1 h2 (inj₁ i₁<i₂) (⊆Hop-inj₁ h2 h1 i₁<i₂)
...| tri< j₁<j₂ j₁≢j₂ j₂≮j₁ with no-overlap h2 h1 i₁<i₂
...| inj₁ a = SepR h1 h2 a
...| inj₂ b = SubR h1 h2 (inj₁ i₁<i₂) b
distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2
| tri< i₁<i₂ i₁≢i₂ i₂≮i₁
| tri> j₁≮j₂ j₁≢j₂ j₂<j₁ with no-overlap h2 h1 i₁<i₂
...| inj₁ a = SepR h1 h2 a
...| inj₂ b = SubR h1 h2 (inj₁ i₁<i₂) b
distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2
| tri> i₁≮i₂ i₁≢i₂ i₂<i₁
with <-cmp j₁ j₂
...| tri≈ j₁≮j₂ j₁≡j₂ j₂≮j₁ rewrite j₁≡j₂ = SubL h1 h2 (inj₁ i₂<i₁) (⊆Hop-inj₁ h1 h2 i₂<i₁)
...| tri< j₁<j₂ j₁≢j₂ j₂≮j₁ with no-overlap h1 h2 i₂<i₁
...| inj₁ a = SepL h1 h2 a
...| inj₂ b = SubL h1 h2 (inj₁ i₂<i₁) b
distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2
| tri> i₁≮i₂ i₁≢i₂ i₂<i₁
| tri> j₁≮j₂ j₁≢j₂ j₂<j₁ with no-overlap h1 h2 i₂<i₁
...| inj₁ a = SepL h1 h2 a
...| inj₂ b = SubL h1 h2 (inj₁ i₂<i₁) b
no-overlap-< : ∀{l₁ i₁ j₁ l₂ i₂ j₂}
→ (h₁ : H l₁ j₁ i₁)
→ (h₂ : H l₂ j₂ i₂)
→ i₂ < i₁
→ i₁ < j₂
→ j₁ ≤ j₂
no-overlap-< h₁ h₂ prf hip with no-overlap h₁ h₂ prf
...| inj₁ imp = ⊥-elim (1+n≰n (≤-trans hip imp))
...| inj₂ res = ⊆Hop-src-≤ h₁ h₂ res
-- TODO-1: rename to nocross for consistency with paper
-- Non-overlapping is more general, as hops might be completely
-- separate and then, naturally won't overlap.
no-overlap : ∀{l₁ i₁ j₁ l₂ i₂ j₂}
→ (h₁ : H l₁ j₁ i₁)
→ (h₂ : H l₂ j₂ i₂)
→ i₂ < i₁ -- this ensures h₁ ≢ h₂.
→ (j₂ ≤ i₁) ⊎ (h₁ ⊆Hop h₂)
no-overlap h (hz x) prf = inj₁ prf
no-overlap {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h₁ (hs {y = y} v₀ v₁ v-ok) hip
with distinguish h₁ v₀
...| SepL _ _ prf = inj₁ prf
...| SubL _ _ case prf = inj₂ (left h₁ v₀ v₁ v-ok prf)
...| Same _ _ p1 p2 = inj₂ (left h₁ v₀ v₁ v-ok (⊆Hop-inj₃ h₁ v₀ p1 p2))
no-overlap {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h₁ (hs {y = y} v₀ v₁ v-ok) hip
| SepR _ _ j₁≤y
with distinguish h₁ v₁
...| SepL _ _ prf = ⊥-elim (<⇒≱ (h-univ h₁) (≤-trans j₁≤y prf))
...| SepR _ _ prf = ⊥-elim (n≮n i₂ (<-trans hip (<-≤-trans (h-univ h₁) prf)))
...| SubR _ _ (inj₁ i₁<i₂) prf = ⊥-elim (n≮n i₂ (<-trans hip i₁<i₂))
...| SubR _ _ (inj₂ y<j₁) prf = ⊥-elim (n≮n j₁ (≤-<-trans j₁≤y y<j₁))
...| SubL _ _ case prf = inj₂ (right h₁ v₀ v₁ v-ok prf)
...| Same _ _ p1 p2 = inj₂ (right h₁ v₀ v₁ v-ok (⊆Hop-inj₃ h₁ v₁ p1 p2))
no-overlap {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h₁ (hs {y = y} v₀ v₁ v-ok) hip
| SubR _ _ (inj₁ i₁<y) v₀⊆h₁
with distinguish h₁ v₁
...| SepL _ _ prf = ⊥-elim (n≮n i₁ (<-≤-trans i₁<y prf))
...| SepR _ _ prf = ⊥-elim (n≮n i₂ (<-≤-trans (<-trans hip (h-univ h₁)) prf))
...| SubR _ _ (inj₁ i₁<i₂) prf = ⊥-elim (n≮n i₂ (<-trans hip i₁<i₂))
...| SubR _ _ (inj₂ y<j₁) prf = ⊥-elim (≤⇒≯ (no-overlap-< h₁ v₁ hip i₁<y) y<j₁)
...| SubL _ _ case prf = inj₂ (right h₁ v₀ v₁ v-ok prf)
...| Same _ _ p1 p2 = inj₂ (right h₁ v₀ v₁ v-ok (⊆Hop-inj₃ h₁ v₁ p1 p2))
no-overlap {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h₁ (hs {y = y} v₀ v₁ v-ok) hip
-- Here is the nasty case. We have to argue why this is impossible
-- WITHOUT resorting to 'nov h₁ (hs v₀ v₁ v-ok)', otherwise this would
-- result in an infinite loop. Note how 'nov' doesn't pattern match
-- on any argument.
--
-- Here's what this looks like:
--
-- (hs v₀ v₁ v-ok)
-- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝
-- | h₁ |
-- | ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁺⁻⁻⁻⁻⁻⁻⁻⌝
-- | ∣ | ∣
-- | v₁ ∣ v₀ | ∣
-- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁺⁻⁻⁻⁻⁻⁻⌜⁻⁻⁻⁻⁻⁻⁻⌝ |
-- | | | | |
-- i₂ < i₁ ≤ y ⋯ j₂ < j₁
--
-- We can pattern match on i₁ ≟ y
| SubR _ _ (inj₂ j₂<j₁) v₀⊆h₁
with i₁ ≟ y
-- And we quickly discover that if i≢y, we have a crossing between
-- v₁ and h₁, and that's impossible.
...| no i₁≢y = ⊥-elim (n≮n y (<-≤-trans (<-trans (h-univ v₀) j₂<j₁)
(no-overlap-< h₁ v₁ hip (≤∧≢⇒< (⊆Hop-univ₁ v₀ h₁ v₀⊆h₁) i₁≢y))))
-- The hard part really is when i₁ ≡ y, here's how this looks like:
--
-- (hs v₀ v₁ v-ok)
-- lvl l+1 ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝
-- | | h₁
-- | ⌜⁻⁻⁻⁻⁻⁻⁻⁺⁻⁻⁻⁻⁻⁻⁻⌝ lvl l₁
-- | ∣ | ∣
-- | v₁ ∣ v₀ | ∣
-- lvl l ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁺⁻⁻⁻⁻⁻⁻⁻⌝ |
-- | | | |
-- i₂ < i₁ ⋯ j₂ < j₁
--
-- We must show that the composite hop (hs v₀ v₁ v-ok) is impossible to build
-- to show that the crossing doesn't happen.
--
-- Hence, we MUST reason about the levels of the indices and eliminate 'v-ok',
-- Which is possible with a bit of struggling about levels.
...| yes refl with h-lvl-tgt (≤-trans (s≤s z≤n) hip) v₀
...| l≤lvli₁ with ⊆Hop-univ-lvl _ _ v₀⊆h₁ j₂<j₁
...| l<l₁ with h-lvl-mid i₁ (hs v₀ v₁ v-ok) hip (h-univ v₀)
...| lvli₁≤l+1 with h-lvl-tgt (≤-trans (s≤s z≤n) hip) h₁
...| l₁≤lvli₁ rewrite ≤-antisym lvli₁≤l+1 l≤lvli₁
= ⊥-elim (n≮n _ (<-≤-trans l<l₁ (≤-unstep2 l₁≤lvli₁)))
| {
"alphanum_fraction": 0.4854706016,
"avg_line_length": 38.9676470588,
"ext": "agda",
"hexsha": "e809781601573f67f9d6af2294c9d1828a7a9a46",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "356489da3a99c66807606eca8dd235dc6140649c",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "cwjnkins/aaosl-agda",
"max_forks_repo_path": "AAOSL/Hops.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "356489da3a99c66807606eca8dd235dc6140649c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "cwjnkins/aaosl-agda",
"max_issues_repo_path": "AAOSL/Hops.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "356489da3a99c66807606eca8dd235dc6140649c",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "cwjnkins/aaosl-agda",
"max_stars_repo_path": "AAOSL/Hops.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 11630,
"size": 26498
} |
{-# OPTIONS --cubical --no-import-sorts --postfix-projections #-}
module Cubical.Codata.M.Bisimilarity where
open import Cubical.Core.Everything
open import Cubical.Codata.M
open import Cubical.Foundations.Equiv.Fiberwise
open import Cubical.Foundations.Everything
open Helpers using (J')
-- Bisimilarity as a coinductive record type.
record _≈_ {X : Type₀} {C : IxCont X} {x : X} (a b : M C x) : Type₀ where
coinductive
constructor _,_
field
head≈ : a .head ≡ b .head
tails≈ : ∀ y → (pa : C .snd x (a .head) y) (pb : C .snd x (b .head) y)
→ (\ i → C .snd x (head≈ i) y) [ pa ≡ pb ]
→ a .tails y pa ≈ b .tails y pb
open _≈_ public
module _ {X : Type₀} {C : IxCont X} where
-- Here we show that `a ≡ b` and `a ≈ b` are equivalent.
--
-- A direct construction of an isomorphism, like we do for streams,
-- would be complicated by the type dependencies between the fields
-- of `M C x` and even more so between the fields of the bisimilarity relation itself.
--
-- Instead we rely on theorem 4.7.7 of the HoTT book (fiberwise equivalences) to show that `misib` is an equivalence.
misib : {x : X} (a b : M C x) → a ≡ b → a ≈ b
misib a b eq .head≈ i = eq i .head
misib a b eq .tails≈ y pa pb q = misib (a .tails y pa) (b .tails y pb) (\ i → eq i .tails y (q i))
-- With `a` fixed, `misib` is a fiberwise transformation between (a ≡_) and (a ≈_).
--
-- We show that the induced map on the total spaces is an
-- equivalence because it is a map of contractible types.
--
-- The domain is the HoTT singleton type, so contractible, while the
-- codomain is shown to be contractible by `contr-T` below.
T : ∀ {x} → M C x → Type _
T a = Σ (M C _) \ b → a ≈ b
private
lemma : ∀ {A} (B : Type₀) (P : A ≡ B) (pa : P i0) (pb : P i1) (peq : PathP (\ i → P i) pa pb)
→ PathP (\ i → PathP (\ j → P j) (transp (\ k → P (~ k ∧ i)) (~ i) (peq i)) pb)
peq
(\ j → transp (\ k → P (~ k ∨ j)) j pb)
lemma {A} = J' _ \ pa → J' _ \ { i j → transp (\ _ → A) (~ i ∨ j) pa }
-- We predefine `u'` so that Agda will agree that `contr-T-fst` is productive.
private
module Tails x a φ (u : Partial φ (T {x} a)) y (p : C .snd x (hcomp (λ i .o → u o .snd .head≈ i) (a .head)) y) where
q = transp (\ i → C .snd x (hfill (\ i o → u o .snd .head≈ i) (inS (a .head)) (~ i)) y) i0 p
a' = a .tails y q
u' : Partial φ (T a')
u' (φ = i1) = u 1=1 .fst .tails y p
, u 1=1 .snd .tails≈ y q p \ j → transp (\ i → C .snd x (u 1=1 .snd .head≈ (~ i ∨ j)) y) j p
contr-T-fst : ∀ x a φ → Partial φ (T {x} a) → M C x
contr-T-fst x a φ u .head = hcomp (\ i o → u o .snd .head≈ i) (a .head)
contr-T-fst x a φ u .tails y p = contr-T-fst y a' φ u'
where
open Tails x a φ u y p
-- `contr-T-snd` is productive as the corecursive call appears as
-- the main argument of transport, which is guardedness-preserving.
{-# TERMINATING #-}
contr-T-snd : ∀ x a φ → (u : Partial φ (T {x} a)) → a ≈ contr-T-fst x a φ u
contr-T-snd x a φ u .head≈ i = hfill (λ { i (φ = i1) → u 1=1 .snd .head≈ i }) (inS (a .head)) i
contr-T-snd x a φ u .tails≈ y pa pb peq =
let r = contr-T-snd y (a .tails y pa) φ (\ { (φ = i1) → u 1=1 .fst .tails y pb , u 1=1 .snd .tails≈ y pa pb peq }) in
transport (\ i → a .tails y pa
≈ contr-T-fst y (a .tails y (sym (fromPathP (\ i → peq (~ i))) i)) φ
(\ { (φ = i1) → u 1=1 .fst .tails y pb , u 1=1 .snd .tails≈ y
((fromPathP (\ i → peq (~ i))) (~ i)) pb
\ j → lemma _ (λ h → C .snd x (u _ .snd .head≈ h) y) pa pb peq i j })) r
contr-T : ∀ x a φ → Partial φ (T {x} a) → T a
contr-T x a φ u .fst = contr-T-fst x a φ u
contr-T x a φ u .snd = contr-T-snd x a φ u
contr-T-φ-fst : ∀ x a → (u : Partial i1 (T {x} a)) → contr-T x a i1 u .fst ≡ u 1=1 .fst
contr-T-φ-fst x a u i .head = u 1=1 .fst .head
contr-T-φ-fst x a u i .tails y p
= let
q = (transp (\ i → C .snd x (hfill (\ i o → u o .snd .head≈ i) (inS (a .head)) (~ i)) y) i0 p)
in contr-T-φ-fst y (a .tails y q)
(\ o → u o .fst .tails y p
, u o .snd .tails≈ y q p \ j → transp (\ i → C .snd x (u 1=1 .snd .head≈ (~ i ∨ j)) y) j p)
i
-- `contr-T-φ-snd` is productive as the corecursive call appears as
-- the main argument of transport, which is guardedness-preserving (even for paths of a coinductive type).
{-# TERMINATING #-}
contr-T-φ-snd : ∀ x a → (u : Partial i1 (T {x} a)) → (\ i → a ≈ contr-T-φ-fst x a u i) [ contr-T x a i1 u .snd ≡ u 1=1 .snd ]
contr-T-φ-snd x a u i .head≈ = u _ .snd .head≈
contr-T-φ-snd x a u i .tails≈ y pa pb peq = let
eqh = u 1=1 .snd .head≈
r = contr-T-φ-snd y (a .tails y pa) (\ o → u o .fst .tails y pb , u 1=1 .snd .tails≈ y pa pb peq)
F : I → Type _
F k = a .tails y pa
≈ contr-T-fst y
(a .tails y (transp (λ j → C .snd x (eqh (k ∧ ~ j)) y) (~ k) (peq k)))
i1
(λ _ → u _ .fst .tails y pb
, u _ .snd .tails≈ y
(transp (λ j → C .snd x (eqh (k ∧ ~ j)) y) (~ k) (peq k))
pb
(λ j → lemma (C .snd x (u 1=1 .fst .head) y) (λ h → C .snd x (eqh h) y) pa pb peq k j)
)
u0 = contr-T-snd y (a .tails y pa) i1 (λ o → u o .fst .tails y pb , u o .snd .tails≈ y pa pb peq)
in transport
(λ l → PathP
(λ z → a .tails y pa
≈ contr-T-φ-fst y
(a .tails y (transp (λ k → C .snd x (u 1=1 .snd .head≈ (~ k ∧ l)) y) (~ l) (peq l)))
(λ _ → u _ .fst .tails y pb
, u _ .snd .tails≈ y (transp (λ k → C .snd x (u _ .snd .head≈ (~ k ∧ l)) y) (~ l) (peq l)) pb
\ j → lemma (C .snd x (u 1=1 .fst .head) y) (λ h → C .snd x (eqh h) y) pa pb peq l j)
z)
(transpFill {A = F i0} i0 (\ i → inS (F i)) u0 l)
(u _ .snd .tails≈ y pa pb peq))
r
i
contr-T-φ : ∀ x a → (u : Partial i1 (T {x} a)) → contr-T x a i1 u ≡ u 1=1
contr-T-φ x a u i .fst = contr-T-φ-fst x a u i
contr-T-φ x a u i .snd = contr-T-φ-snd x a u i
contr-T' : ∀ {x} a → isContr (T {x} a)
contr-T' a = isContrPartial→isContr (contr-T _ a) \ u → sym (contr-T-φ _ a (\ _ → u))
bisimEquiv : ∀ {x} {a b : M C x} → isEquiv (misib a b)
bisimEquiv = isContrToUniv _≈_ (misib _ _) contr-T'
| {
"alphanum_fraction": 0.5008344712,
"avg_line_length": 44.5337837838,
"ext": "agda",
"hexsha": "cfda4a8237e354d7dd7973be8ba96727c9b0f785",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Codata/M/Bisimilarity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Codata/M/Bisimilarity.agda",
"max_line_length": 127,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Codata/M/Bisimilarity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2525,
"size": 6591
} |
{-
Half adjoint equivalences ([HAEquiv])
- Iso to HAEquiv ([iso→HAEquiv])
- Equiv to HAEquiv ([equiv→HAEquiv])
- Cong is an equivalence ([congEquiv])
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Foundations.Equiv.HalfAdjoint where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Function
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
private
variable
ℓ ℓ' : Level
A : Type ℓ
B : Type ℓ'
record isHAEquiv {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) : Type (ℓ-max ℓ ℓ') where
field
g : B → A
linv : ∀ a → g (f a) ≡ a
rinv : ∀ b → f (g b) ≡ b
com : ∀ a → cong f (linv a) ≡ rinv (f a)
-- from redtt's ha-equiv/symm
com-op : ∀ b → cong g (rinv b) ≡ linv (g b)
com-op b j i = hcomp (λ k → λ { (i = i0) → linv (g b) (j ∧ (~ k))
; (j = i0) → g (rinv b i)
; (j = i1) → linv (g b) (i ∨ (~ k))
; (i = i1) → g b })
(cap1 j i)
where cap0 : Square {- (j = i0) -} (λ i → f (g (rinv b i)))
{- (j = i1) -} (λ i → rinv b i)
{- (i = i0) -} (λ j → f (linv (g b) j))
{- (i = i1) -} (λ j → rinv b j)
cap0 j i = hcomp (λ k → λ { (i = i0) → com (g b) (~ k) j
; (j = i0) → f (g (rinv b i))
; (j = i1) → rinv b i
; (i = i1) → rinv b j })
(rinv (rinv b i) j)
filler : I → I → A
filler j i = hfill (λ k → λ { (i = i0) → g (rinv b k)
; (i = i1) → g b })
(inS (linv (g b) i)) j
cap1 : Square {- (j = i0) -} (λ i → g (rinv b i))
{- (j = i1) -} (λ i → g b)
{- (i = i0) -} (λ j → linv (g b) j)
{- (i = i1) -} (λ j → g b)
cap1 j i = hcomp (λ k → λ { (i = i0) → linv (linv (g b) j) k
; (j = i0) → linv (g (rinv b i)) k
; (j = i1) → filler i k
; (i = i1) → filler j k })
(g (cap0 j i))
isHAEquiv→Iso : Iso A B
Iso.fun isHAEquiv→Iso = f
Iso.inv isHAEquiv→Iso = g
Iso.rightInv isHAEquiv→Iso = rinv
Iso.leftInv isHAEquiv→Iso = linv
isHAEquiv→isEquiv : isEquiv f
isHAEquiv→isEquiv .equiv-proof y = (g y , rinv y) , isCenter where
isCenter : ∀ xp → (g y , rinv y) ≡ xp
isCenter (x , p) i = gy≡x i , ry≡p i where
gy≡x : g y ≡ x
gy≡x = sym (cong g p) ∙∙ refl ∙∙ linv x
lem0 : Square (cong f (linv x)) p (cong f (linv x)) p
lem0 i j = invSides-filler p (sym (cong f (linv x))) (~ i) j
ry≡p : Square (rinv y) p (cong f gy≡x) refl
ry≡p i j = hcomp (λ k → λ { (i = i0) → cong rinv p k j
; (i = i1) → lem0 k j
; (j = i0) → f (doubleCompPath-filler (sym (cong g p)) refl (linv x) k i)
; (j = i1) → p k })
(com x (~ i) j)
open isHAEquiv using (isHAEquiv→Iso; isHAEquiv→isEquiv) public
HAEquiv : (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ')
HAEquiv A B = Σ[ f ∈ (A → B) ] isHAEquiv f
-- vogt's lemma (https://ncatlab.org/nlab/show/homotopy+equivalence#vogts_lemma)
iso→HAEquiv : Iso A B → HAEquiv A B
iso→HAEquiv e = f , isHAEquivf
where
f = Iso.fun e
g = Iso.inv e
ε = Iso.rightInv e
η = Iso.leftInv e
Hfa≡fHa : (f : A → A) → (H : ∀ a → f a ≡ a) → ∀ a → H (f a) ≡ cong f (H a)
Hfa≡fHa f H = J (λ f p → ∀ a → funExt⁻ (sym p) (f a) ≡ cong f (funExt⁻ (sym p) a))
(λ a → refl)
(sym (funExt H))
isHAEquivf : isHAEquiv f
isHAEquiv.g isHAEquivf = g
isHAEquiv.linv isHAEquivf = η
isHAEquiv.rinv isHAEquivf b i =
hcomp (λ j → λ { (i = i0) → ε (f (g b)) j
; (i = i1) → ε b j })
(f (η (g b) i))
isHAEquiv.com isHAEquivf a i j =
hcomp (λ k → λ { (i = i0) → ε (f (η a j)) k
; (j = i0) → ε (f (g (f a))) k
; (j = i1) → ε (f a) k})
(f (Hfa≡fHa (λ x → g (f x)) η a (~ i) j))
equiv→HAEquiv : A ≃ B → HAEquiv A B
equiv→HAEquiv e = e .fst , λ where
.isHAEquiv.g → invIsEq (snd e)
.isHAEquiv.linv → retIsEq (snd e)
.isHAEquiv.rinv → secIsEq (snd e)
.isHAEquiv.com a → flipSquare (slideSquare (commSqIsEq (snd e) a))
congIso : {x y : A} (e : Iso A B) → Iso (x ≡ y) (Iso.fun e x ≡ Iso.fun e y)
congIso {x = x} {y} e = goal
where
open isHAEquiv (iso→HAEquiv e .snd)
open Iso
goal : Iso (x ≡ y) (Iso.fun e x ≡ Iso.fun e y)
fun goal = cong (iso→HAEquiv e .fst)
inv goal p = sym (linv x) ∙∙ cong g p ∙∙ linv y
rightInv goal p i j =
hcomp (λ k → λ { (i = i0) → iso→HAEquiv e .fst
(doubleCompPath-filler (sym (linv x)) (cong g p) (linv y) k j)
; (i = i1) → rinv (p j) k
; (j = i0) → com x i k
; (j = i1) → com y i k })
(iso→HAEquiv e .fst (g (p j)))
leftInv goal p i j =
hcomp (λ k → λ { (i = i1) → p j
; (j = i0) → Iso.leftInv e x (i ∨ k)
; (j = i1) → Iso.leftInv e y (i ∨ k) })
(Iso.leftInv e (p j) i)
invCongFunct : {x : A} (e : Iso A B) (p : Iso.fun e x ≡ Iso.fun e x) (q : Iso.fun e x ≡ Iso.fun e x)
→ Iso.inv (congIso e) (p ∙ q) ≡ Iso.inv (congIso e) p ∙ Iso.inv (congIso e) q
invCongFunct {x = x} e p q = helper (Iso.inv e) _ _ _
where
helper : {x : A} {y : B} (f : A → B) (r : f x ≡ y) (p q : x ≡ x)
→ (sym r ∙∙ cong f (p ∙ q) ∙∙ r) ≡ (sym r ∙∙ cong f p ∙∙ r) ∙ (sym r ∙∙ cong f q ∙∙ r)
helper {x = x} f =
J (λ y r → (p q : x ≡ x)
→ (sym r ∙∙ cong f (p ∙ q) ∙∙ r) ≡ (sym r ∙∙ cong f p ∙∙ r) ∙ (sym r ∙∙ cong f q ∙∙ r))
λ p q → (λ i → rUnit (congFunct f p q i) (~ i))
∙ λ i → rUnit (cong f p) i ∙ rUnit (cong f q) i
| {
"alphanum_fraction": 0.4382451121,
"avg_line_length": 38.3597560976,
"ext": "agda",
"hexsha": "6b986d6336c7813365606eb1628d6e5490db0552",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ayberkt/cubical",
"max_forks_repo_path": "Cubical/Foundations/Equiv/HalfAdjoint.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ayberkt/cubical",
"max_issues_repo_path": "Cubical/Foundations/Equiv/HalfAdjoint.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ayberkt/cubical",
"max_stars_repo_path": "Cubical/Foundations/Equiv/HalfAdjoint.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2462,
"size": 6291
} |
{-# OPTIONS --without-K --exact-split #-}
module abelian-groups where
import 17-number-theory
open 17-number-theory public
is-abelian-Group :
{l : Level} (G : Group l) → UU l
is-abelian-Group G =
(x y : type-Group G) → Id (mul-Group G x y) (mul-Group G y x)
Ab : (l : Level) → UU (lsuc l)
Ab l = Σ (Group l) is-abelian-Group
group-Ab :
{l : Level} (A : Ab l) → Group l
group-Ab A = pr1 A
set-Ab :
{l : Level} (A : Ab l) → UU-Set l
set-Ab A = set-Group (group-Ab A)
type-Ab :
{l : Level} (A : Ab l) → UU l
type-Ab A = type-Group (group-Ab A)
is-set-type-Ab :
{l : Level} (A : Ab l) → is-set (type-Ab A)
is-set-type-Ab A = is-set-type-Group (group-Ab A)
associative-add-Ab :
{l : Level} (A : Ab l) → has-associative-bin-op (set-Ab A)
associative-add-Ab A = associative-mul-Group (group-Ab A)
add-Ab :
{l : Level} (A : Ab l) → type-Ab A → type-Ab A → type-Ab A
add-Ab A = mul-Group (group-Ab A)
is-associative-add-Ab :
{l : Level} (A : Ab l) (x y z : type-Ab A) →
Id (add-Ab A (add-Ab A x y) z) (add-Ab A x (add-Ab A y z))
is-associative-add-Ab A = is-associative-mul-Group (group-Ab A)
semi-group-Ab :
{l : Level} (A : Ab l) → Semi-Group l
semi-group-Ab A = semi-group-Group (group-Ab A)
is-group-Ab :
{l : Level} (A : Ab l) → is-group (semi-group-Ab A)
is-group-Ab A = is-group-Group (group-Ab A)
has-zero-Ab :
{l : Level} (A : Ab l) → is-unital (semi-group-Ab A)
has-zero-Ab A = is-unital-Group (group-Ab A)
zero-Ab :
{l : Level} (A : Ab l) → type-Ab A
zero-Ab A = unit-Group (group-Ab A)
left-zero-law-Ab :
{l : Level} (A : Ab l) → (x : type-Ab A) →
Id (add-Ab A (zero-Ab A) x) x
left-zero-law-Ab A = left-unit-law-Group (group-Ab A)
right-zero-law-Ab :
{l : Level} (A : Ab l) → (x : type-Ab A) →
Id (add-Ab A x (zero-Ab A)) x
right-zero-law-Ab A = right-unit-law-Group (group-Ab A)
has-negatives-Ab :
{l : Level} (A : Ab l) → is-group' (semi-group-Ab A) (has-zero-Ab A)
has-negatives-Ab A = has-inverses-Group (group-Ab A)
neg-Ab :
{l : Level} (A : Ab l) → type-Ab A → type-Ab A
neg-Ab A = inv-Group (group-Ab A)
left-negative-law-Ab :
{l : Level} (A : Ab l) (x : type-Ab A) →
Id (add-Ab A (neg-Ab A x) x) (zero-Ab A)
left-negative-law-Ab A = left-inverse-law-Group (group-Ab A)
right-negative-law-Ab :
{l : Level} (A : Ab l) (x : type-Ab A) →
Id (add-Ab A x (neg-Ab A x)) (zero-Ab A)
right-negative-law-Ab A = right-inverse-law-Group (group-Ab A)
is-commutative-add-Ab :
{l : Level} (A : Ab l) (x y : type-Ab A) →
Id (add-Ab A x y) (add-Ab A y x)
is-commutative-add-Ab A = pr2 A
{- So far the basic interface of abelian groups. -}
is-prop-is-abelian-Group :
{l : Level} (G : Group l) → is-prop (is-abelian-Group G)
is-prop-is-abelian-Group G =
is-prop-Π (λ x → is-prop-Π (λ y → is-set-type-Group G _ _))
{- Homomorphisms of abelian groups -}
preserves-add :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
(type-Ab A → type-Ab B) → UU (l1 ⊔ l2)
preserves-add A B = preserves-mul (semi-group-Ab A) (semi-group-Ab B)
hom-Ab :
{l1 l2 : Level} → Ab l1 → Ab l2 → UU (l1 ⊔ l2)
hom-Ab A B = hom-Group (group-Ab A) (group-Ab B)
map-hom-Ab :
{l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
hom-Ab A B → type-Ab A → type-Ab B
map-hom-Ab A B = map-hom-Group (group-Ab A) (group-Ab B)
preserves-add-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
( f : hom-Ab A B) → preserves-add A B (map-hom-Ab A B f)
preserves-add-Ab A B f = preserves-mul-hom-Group (group-Ab A) (group-Ab B) f
{- We characterize the identity type of the abelian group homomorphisms. -}
htpy-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2)
( f g : hom-Ab A B) → UU (l1 ⊔ l2)
htpy-hom-Ab A B f g = htpy-hom-Group (group-Ab A) (group-Ab B) f g
reflexive-htpy-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
( f : hom-Ab A B) → htpy-hom-Ab A B f f
reflexive-htpy-hom-Ab A B f =
reflexive-htpy-hom-Group (group-Ab A) (group-Ab B) f
htpy-hom-Ab-eq :
{l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
(f g : hom-Ab A B) → Id f g → htpy-hom-Ab A B f g
htpy-hom-Ab-eq A B f g = htpy-hom-Group-eq (group-Ab A) (group-Ab B) f g
abstract
is-contr-total-htpy-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
( f : hom-Ab A B) →
is-contr (Σ (hom-Ab A B) (htpy-hom-Ab A B f))
is-contr-total-htpy-hom-Ab A B f =
is-contr-total-htpy-hom-Group (group-Ab A) (group-Ab B) f
abstract
is-equiv-htpy-hom-Ab-eq :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
( f g : hom-Ab A B) → is-equiv (htpy-hom-Ab-eq A B f g)
is-equiv-htpy-hom-Ab-eq A B f g =
is-equiv-htpy-hom-Group-eq (group-Ab A) (group-Ab B) f g
eq-htpy-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
{ f g : hom-Ab A B} → htpy-hom-Ab A B f g → Id f g
eq-htpy-hom-Ab A B =
eq-htpy-hom-Group (group-Ab A) (group-Ab B)
is-set-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
is-set (hom-Ab A B)
is-set-hom-Ab A B = is-set-hom-Group (group-Ab A) (group-Ab B)
preserves-add-id :
{l : Level} (A : Ab l) → preserves-add A A id
preserves-add-id A = preserves-mul-id (semi-group-Ab A)
id-hom-Ab :
{ l1 : Level} (A : Ab l1) → hom-Ab A A
id-hom-Ab A = id-Group (group-Ab A)
comp-hom-Ab :
{ l1 l2 l3 : Level} (A : Ab l1) (B : Ab l2) (C : Ab l3) →
( hom-Ab B C) → (hom-Ab A B) → (hom-Ab A C)
comp-hom-Ab A B C =
comp-Group (group-Ab A) (group-Ab B) (group-Ab C)
is-associative-comp-hom-Ab :
{ l1 l2 l3 l4 : Level} (A : Ab l1) (B : Ab l2) (C : Ab l3) (D : Ab l4) →
( h : hom-Ab C D) (g : hom-Ab B C) (f : hom-Ab A B) →
Id (comp-hom-Ab A B D (comp-hom-Ab B C D h g) f)
(comp-hom-Ab A C D h (comp-hom-Ab A B C g f))
is-associative-comp-hom-Ab A B C D =
associative-Semi-Group
( semi-group-Ab A)
( semi-group-Ab B)
( semi-group-Ab C)
( semi-group-Ab D)
left-unit-law-comp-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2)
( f : hom-Ab A B) → Id (comp-hom-Ab A B B (id-hom-Ab B) f) f
left-unit-law-comp-hom-Ab A B =
left-unit-law-Semi-Group (semi-group-Ab A) (semi-group-Ab B)
right-unit-law-comp-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2)
( f : hom-Ab A B) → Id (comp-hom-Ab A A B f (id-hom-Ab A)) f
right-unit-law-comp-hom-Ab A B =
right-unit-law-Semi-Group (semi-group-Ab A) (semi-group-Ab B)
{- Isomorphisms of abelian groups -}
is-iso-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
( f : hom-Ab A B) → UU (l1 ⊔ l2)
is-iso-hom-Ab A B =
is-iso-hom-Semi-Group (semi-group-Ab A) (semi-group-Ab B)
inv-is-iso-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) →
is-iso-hom-Ab A B f → hom-Ab B A
inv-is-iso-hom-Ab A B f = pr1
map-inv-is-iso-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) →
is-iso-hom-Ab A B f → type-Ab B → type-Ab A
map-inv-is-iso-hom-Ab A B f is-iso-f =
map-hom-Ab B A (inv-is-iso-hom-Ab A B f is-iso-f)
is-sec-inv-is-iso-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) →
( is-iso-f : is-iso-hom-Ab A B f) →
Id (comp-hom-Ab B A B f (inv-is-iso-hom-Ab A B f is-iso-f)) (id-hom-Ab B)
is-sec-inv-is-iso-hom-Ab A B f is-iso-f = pr1 (pr2 is-iso-f)
is-sec-map-inv-is-iso-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) →
( is-iso-f : is-iso-hom-Ab A B f) →
( (map-hom-Ab A B f) ∘ (map-hom-Ab B A (inv-is-iso-hom-Ab A B f is-iso-f))) ~
id
is-sec-map-inv-is-iso-hom-Ab A B f is-iso-f =
htpy-hom-Ab-eq B B
( comp-hom-Ab B A B f (inv-is-iso-hom-Ab A B f is-iso-f))
( id-hom-Ab B)
( is-sec-inv-is-iso-hom-Ab A B f is-iso-f)
is-retr-inv-is-iso-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) →
( is-iso-f : is-iso-hom-Ab A B f) →
Id (comp-hom-Ab A B A (inv-is-iso-hom-Ab A B f is-iso-f) f) (id-hom-Ab A)
is-retr-inv-is-iso-hom-Ab A B f is-iso-f = pr2 (pr2 is-iso-f)
is-retr-map-inv-is-iso-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) →
( is-iso-f : is-iso-hom-Ab A B f) →
( (map-inv-is-iso-hom-Ab A B f is-iso-f) ∘ (map-hom-Ab A B f)) ~ id
is-retr-map-inv-is-iso-hom-Ab A B f is-iso-f =
htpy-hom-Ab-eq A A
( comp-hom-Ab A B A (inv-is-iso-hom-Ab A B f is-iso-f) f)
( id-hom-Ab A)
( is-retr-inv-is-iso-hom-Ab A B f is-iso-f)
is-prop-is-iso-hom-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) →
is-prop (is-iso-hom-Ab A B f)
is-prop-is-iso-hom-Ab A B f =
is-prop-is-iso-hom-Semi-Group (semi-group-Ab A) (semi-group-Ab B) f
iso-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) → UU (l1 ⊔ l2)
iso-Ab A B = Σ (hom-Ab A B) (is-iso-hom-Ab A B)
hom-iso-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
iso-Ab A B → hom-Ab A B
hom-iso-Ab A B = pr1
is-iso-hom-iso-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
( f : iso-Ab A B) → is-iso-hom-Ab A B (hom-iso-Ab A B f)
is-iso-hom-iso-Ab A B = pr2
inv-hom-iso-Ab :
{ l1 l2 : Level} (A : Ab l1) (B : Ab l2) →
iso-Ab A B → hom-Ab B A
inv-hom-iso-Ab A B f =
inv-is-iso-hom-Ab A B
( hom-iso-Ab A B f)
( is-iso-hom-iso-Ab A B f)
id-iso-Ab :
{l1 : Level} (A : Ab l1) → iso-Ab A A
id-iso-Ab A = iso-id-Group (group-Ab A)
iso-eq-Ab :
{ l1 : Level} (A B : Ab l1) → Id A B → iso-Ab A B
iso-eq-Ab A .A refl = id-iso-Ab A
abstract
equiv-iso-eq-Ab' :
{l1 : Level} (A B : Ab l1) → Id A B ≃ iso-Ab A B
equiv-iso-eq-Ab' A B =
( equiv-iso-eq-Group' (group-Ab A) (group-Ab B)) ∘e
( equiv-ap-pr1-is-subtype is-prop-is-abelian-Group {A} {B})
abstract
is-contr-total-iso-Ab :
{ l1 : Level} (A : Ab l1) → is-contr (Σ (Ab l1) (iso-Ab A))
is-contr-total-iso-Ab {l1} A =
is-contr-equiv'
( Σ (Ab l1) (Id A))
( equiv-tot (equiv-iso-eq-Ab' A))
( is-contr-total-path A)
is-equiv-iso-eq-Ab :
{ l1 : Level} (A B : Ab l1) → is-equiv (iso-eq-Ab A B)
is-equiv-iso-eq-Ab A =
fundamental-theorem-id A
( id-iso-Ab A)
( is-contr-total-iso-Ab A)
( iso-eq-Ab A)
eq-iso-Ab :
{ l1 : Level} (A B : Ab l1) → iso-Ab A B → Id A B
eq-iso-Ab A B = inv-is-equiv (is-equiv-iso-eq-Ab A B)
| {
"alphanum_fraction": 0.5729282326,
"avg_line_length": 31.0564263323,
"ext": "agda",
"hexsha": "2ded17f4737d124d504b8ae3ad9b75f6a87b7a0a",
"lang": "Agda",
"max_forks_count": 30,
"max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z",
"max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_forks_repo_path": "Agda/abelian-groups.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_issues_repo_path": "Agda/abelian-groups.agda",
"max_line_length": 79,
"max_stars_count": 333,
"max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_stars_repo_path": "Agda/abelian-groups.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z",
"num_tokens": 4438,
"size": 9907
} |
module Empty where
record ⊤ : Set where
constructor tt
data ⊥ : Set where
{-# IMPORT Data.FFI #-}
{-# COMPILED_DATA ⊥ Data.FFI.AgdaEmpty #-}
absurd : ∀ { A : Set } → ⊥ → A
absurd ()
| {
"alphanum_fraction": 0.5643564356,
"avg_line_length": 15.5384615385,
"ext": "agda",
"hexsha": "25473c9b683e403544a182189a94d249fb2d1042",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "cantsin/agda-experiments",
"max_forks_repo_path": "Empty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "cantsin/agda-experiments",
"max_issues_repo_path": "Empty.agda",
"max_line_length": 44,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "cantsin/agda-experiments",
"max_stars_repo_path": "Empty.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 66,
"size": 202
} |
------------------------------------------------------------------------------
-- First-Order Theory of Combinators (FOTC)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Code accompanying the paper "Combining Interactive and Automatic
-- Reasoning in First Order Theories of Functional Programs" by Ana
-- Bove, Peter Dybjer and Andrés Sicard-Ramírez (FoSSaCS 2012).
-- The code presented here does not match the paper exactly.
module FOTC.README where
------------------------------------------------------------------------------
-- Description
-- Verification of functional programs using a version of Azcel's
-- First-Order Theory of Combinators and showing the combination of
-- interactive proofs with automatics proofs carried out by
-- first-order automatic theorem provers (ATPs).
------------------------------------------------------------------------------
-- For the paper, prerequisites, tested versions of the ATPs and use,
-- see https://github.com/asr/fotc/.
------------------------------------------------------------------------------
-- Conventions
-- If the module's name ends in 'I' the module contains interactive
-- proofs, if it ends in 'ATP' the module contains combined proofs,
-- otherwise the module contains definitions and/or interactive proofs
-- that are used by the interactive and combined proofs.
------------------------------------------------------------------------------
-- Base axioms
open import FOTC.Base
-- Properties for the base axioms
open import FOTC.Base.PropertiesATP
open import FOTC.Base.PropertiesI
-- Axioms for lists, colists, streams, etc.
open import FOTC.Base.List
-- Properties for axioms for lists, colists, streams, etc
open import FOTC.Base.List.PropertiesATP
open import FOTC.Base.List.PropertiesI
------------------------------------------------------------------------------
-- Booleans
-- The axioms
open import FOTC.Data.Bool
-- The inductive predicate
open import FOTC.Data.Bool.Type
-- Properties
open import FOTC.Data.Bool.PropertiesATP
open import FOTC.Data.Bool.PropertiesI
------------------------------------------------------------------------------
-- Natural numbers
-- The axioms
open import FOTC.Data.Nat
-- The inductive predicate
open import FOTC.Data.Nat.Type
-- Properties
open import FOTC.Data.Nat.PropertiesATP
open import FOTC.Data.Nat.PropertiesI
open import FOTC.Data.Nat.PropertiesByInductionATP
open import FOTC.Data.Nat.PropertiesByInductionI
-- Divisibility relation
open import FOTC.Data.Nat.Divisibility.By0.PropertiesATP
open import FOTC.Data.Nat.Divisibility.By0.PropertiesI
open import FOTC.Data.Nat.Divisibility.NotBy0.PropertiesATP
open import FOTC.Data.Nat.Divisibility.NotBy0.PropertiesI
-- Induction
open import FOTC.Data.Nat.Induction.Acc.WF-I
open import FOTC.Data.Nat.Induction.NonAcc.LexicographicI
-- Inequalites
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP
open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI
open import FOTC.Data.Nat.Inequalities.PropertiesATP
open import FOTC.Data.Nat.Inequalities.PropertiesI
-- Unary numbers
open import FOTC.Data.Nat.UnaryNumbers.Inequalities.PropertiesATP
open import FOTC.Data.Nat.UnaryNumbers.TotalityATP
------------------------------------------------------------------------------
-- Lists
-- The axioms
open import FOTC.Data.List
-- The inductive predicate
open import FOTC.Data.List.Type
-- Properties
open import FOTC.Data.List.PropertiesATP
open import FOTC.Data.List.PropertiesI
-- Well-founded induction
open import FOTC.Data.List.WF-Relation.LT-Cons.Induction.Acc.WF-I
open import FOTC.Data.List.WF-Relation.LT-Cons.PropertiesI
open import FOTC.Data.List.WF-Relation.LT-Length.Induction.Acc.WF-I
open import FOTC.Data.List.WF-Relation.LT-Length.PropertiesI
------------------------------------------------------------------------------
-- Lists of natural numbers
-- The inductive predicate
open import FOTC.Data.Nat.List
-- Properties
open import FOTC.Data.Nat.List.PropertiesATP
open import FOTC.Data.Nat.List.PropertiesI
------------------------------------------------------------------------------
-- Co-inductive natural numbers
-- Some axioms
open import FOTC.Data.Conat
-- The co-inductive predicate
open import FOTC.Data.Conat.Type
-- Properties
open import FOTC.Data.Conat.PropertiesATP
open import FOTC.Data.Conat.PropertiesI
-- Equality
open import FOTC.Data.Conat.Equality.Type
-- Equality properties
open import FOTC.Data.Conat.Equality.PropertiesATP
open import FOTC.Data.Conat.Equality.PropertiesI
------------------------------------------------------------------------------
-- Streams
-- Some axioms
open import FOTC.Data.Stream
-- The co-inductive predicate
open import FOTC.Data.Stream.Type
-- Properties
open import FOTC.Data.Stream.PropertiesATP
open import FOTC.Data.Stream.PropertiesI
-- Equality properties
open import FOTC.Data.Stream.Equality.PropertiesATP
open import FOTC.Data.Stream.Equality.PropertiesI
------------------------------------------------------------------------------
-- Bisimilary relation
-- The co-inductive predicate
open import FOTC.Relation.Binary.Bisimilarity.Type
-- Properties
open import FOTC.Relation.Binary.Bisimilarity.PropertiesATP
open import FOTC.Relation.Binary.Bisimilarity.PropertiesI
------------------------------------------------------------------------------
-- Verification of programs
-- Burstall's sort list algorithm: A structurally recursive algorithm
open import FOTC.Program.SortList.CorrectnessProofATP
open import FOTC.Program.SortList.CorrectnessProofI
-- The division algorithm: A non-structurally recursive algorithm
open import FOTC.Program.Division.CorrectnessProofATP
open import FOTC.Program.Division.CorrectnessProofI
-- The GCD algorithm: A non-structurally recursive algorithm
open import FOTC.Program.GCD.Partial.CorrectnessProofATP
open import FOTC.Program.GCD.Partial.CorrectnessProofI
open import FOTC.Program.GCD.Total.CorrectnessProofATP
open import FOTC.Program.GCD.Total.CorrectnessProofI
-- The nest function: A very simple function with nested recursion
open import FOTC.Program.Nest.PropertiesATP
-- The McCarthy 91 function: A function with nested recursion
open import FOTC.Program.McCarthy91.PropertiesATP
-- The mirror function: A function with higher-order recursion
open import FOTC.Program.Mirror.PropertiesATP
open import FOTC.Program.Mirror.PropertiesI
-- The map-iterate property: A property using co-induction
open import FOTC.Program.MapIterate.MapIterateATP
open import FOTC.Program.MapIterate.MapIterateI
-- The alternating bit protocol: A program using induction and co-induction
open import FOTC.Program.ABP.CorrectnessProofATP
open import FOTC.Program.ABP.CorrectnessProofI
-- The iter₀ function: A partial function
open import FOTC.Program.Iter0.PropertiesATP
open import FOTC.Program.Iter0.PropertiesI
-- The Collatz function: A function without a termination proof
open import FOTC.Program.Collatz.PropertiesATP
open import FOTC.Program.Collatz.PropertiesI
| {
"alphanum_fraction": 0.6796129924,
"avg_line_length": 32.7375565611,
"ext": "agda",
"hexsha": "3860d7817742671f6c17b158fb87fb87700c859f",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/README.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/README.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/README.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1609,
"size": 7235
} |
module OutsideIn.Prelude where
open import Data.Nat public
open import Relation.Binary.PropositionalEquality public renaming ([_] to iC)
open import Relation.Nullary public
open import Function public hiding (case_of_)
cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
(f : A → B → C → D) {x y u v x′ y′} → x ≡ y → u ≡ v → x′ ≡ y′
→ f x u x′ ≡ f y v y′
cong₃ f refl refl refl = refl
cong₄ : ∀ {a b c d e} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {E : Set e}
(f : A → B → C → D → E) {x y u v x′ y′ u′ v′} → x ≡ y → u ≡ v → x′ ≡ y′ → u′ ≡ v′
→ f x u x′ u′ ≡ f y v y′ v′
cong₄ f refl refl refl refl = refl
import Level
postulate extensionality : Extensionality Level.zero Level.zero
module Shapes where
-- Used throughout to show structure preserving operations preserve structure,
-- in order to maintain structural recursion.
data Shape : Set where
Nullary : Shape
Unary : Shape → Shape
Binary : Shape → Shape → Shape
module Functors where
import Data.Vec as V
open V using (_∷_; Vec; [])
isIdentity : ∀ {A} → (A → A) → Set
isIdentity {A} f = ∀ {x} → f x ≡ x
id-is-id : ∀ {A} → isIdentity {A} id
id-is-id = refl
record Functor (X : Set → Set) : Set₁ where
field map : ∀ {A B} → (A → B) → X A → X B
_<$>_ : ∀ {A B} → (A → B) → X A → X B
_<$>_ = map
field identity : ∀ {A : Set}{f : A → A} → isIdentity f → isIdentity (map f)
field composite : ∀ {A B C : Set} {f : A → B} {g : B → C}
→ {x : X A} → ( (g ∘ f) <$> x ≡ g <$> (f <$> x))
Pointed : (Set → Set) → Set₁
Pointed X = ∀ {a} → a → X a
id-is-functor : Functor id
id-is-functor = record { map = id; identity = id; composite = refl }
vec-is-functor : ∀ {n} → Functor (λ A → Vec A n)
vec-is-functor {n} = record { map = V.map; identity = ident {n} ; composite = composite }
where ident : {n : ℕ}{A : Set} {f : A → A} → isIdentity f →{x : Vec A n} → V.map f x ≡ x
ident isid {[]} = refl
ident isid {x ∷ xs} = cong₂ _∷_ isid (ident isid)
composite : {A B C : Set}{n : ℕ} {f : A → B} {g : B → C} {x : Vec A n}
→ V.map (g ∘ f) x ≡ V.map g (V.map f x)
composite {x = []} = refl
composite {x = x ∷ xs} = cong₂ _∷_ refl composite
private
module F = Functor ⦃ ... ⦄
combine-composite′ : {X Y : Set → Set}{A B C : Set} ⦃ F2 : Functor Y ⦄
{V : X (Y A)}{f : A → B}{g : B → C}
→ (f1map : ∀ {a b} → (a → b) → (X a → X b))
→ (f1comp : f1map (F.map g ∘ F.map f) V
≡ f1map (F.map g) (f1map (F.map f) V))
→ f1map (F.map ⦃ F2 ⦄ (g ∘ f)) V
≡ f1map (F.map ⦃ F2 ⦄ g) (f1map (F.map ⦃ F2 ⦄ f) V)
combine-composite′ ⦃ F2 ⦄ {V} f1map f1comp = trans (cong (λ t → f1map t V)
(extensionality (λ x → F.composite ⦃ F2 ⦄)))
f1comp
combine-composite : {X Y : Set → Set}{A B C : Set} ⦃ F1 : Functor X ⦄ ⦃ F2 : Functor Y ⦄
{V : X (Y A)}{f : A → B}{g : B → C}
→ F.map ⦃ F1 ⦄ (F.map ⦃ F2 ⦄ (g ∘ f)) V
≡ F.map ⦃ F1 ⦄ (F.map ⦃ F2 ⦄ g) (F.map ⦃ F1 ⦄ (F.map ⦃ F2 ⦄ f) V)
combine-composite {X}{Y} ⦃ F1 ⦄ ⦃ F2 ⦄ {V} = combine-composite′ {X}{Y}
(F.map ⦃ F1 ⦄)
(F.composite ⦃ F1 ⦄)
infixr 6 _∘f_
_∘f_ : {X Y : Set → Set} → ( F1 : Functor X )( F2 : Functor Y )
→ Functor (X ∘ Y)
F1 ∘f F2 = record { map = F.map ⦃ F1 ⦄ ∘ F.map ⦃ F2 ⦄
; composite = combine-composite ⦃ F1 ⦄ ⦃ F2 ⦄
; identity = F.identity ⦃ F1 ⦄ ∘ F.identity ⦃ F2 ⦄
}
module StupidEquality where
open import Data.Bool public using (Bool; true; false)
-- This equality doesn't place any proof demands
-- because we don't actually care what equality is used.
-- This is just for the initial base of type variables, where the user provides
-- their own type equality relation. We don't care if it says Int ∼ Bool - this just
-- provides a way for users to get some equality information threaded through the
-- simplifier
Eq : Set → Set
Eq X = ∀ (a b : X) → Bool
module Monads where
open Functors
record Monad (X : Set → Set) : Set₁ where
field ⦃ is-functor ⦄ : Functor X
field ⦃ point ⦄ : Pointed X
open Functor is-functor
field join : ∀ {a} → X (X a) → X a
unit : ∀ {a} → a → X a
unit = point
_>>=_ : ∀ {a b} → X a → (a → X b) → X b
_>>=_ a b = join (b <$> a)
_>>_ : ∀ {a b} → X a → X b → X b
_>>_ a b = a >>= λ _ → b
_>=>_ : ∀ {a b c : Set} → (b → X c) → (a → X b) → (a → X c)
_>=>_ a b = λ v → b v >>= a
field is-left-ident : ∀ {a b}{x : a → X b}{v} → (point >=> x) v ≡ x v
field is-right-ident : ∀ {a b}{x : a → X b}{v} → (x >=> point) v ≡ x v
field >=>-assoc : ∀{p}{q}{r}{s}{a : r → X s}{b : q → X r} {c : p → X q}{v}
→ (a >=> (b >=> c)) v ≡ ((a >=> b) >=> c) v
abstract
<$>-unit : ∀ {A B}{g : A → B}{x} → g <$> (unit x) ≡ unit (g x)
<$>-unit {A}{B}{g}{x} = begin
g <$> (unit x) ≡⟨ sym (is-left-ident {x = _<$>_ g}) ⟩
join (unit <$> (g <$> (unit x))) ≡⟨ cong join (sym (composite)) ⟩
join ((λ x → unit (g x)) <$> (unit x)) ≡⟨ is-right-ident ⟩
unit (g x) ∎
where open ≡-Reasoning
abstract
<$>-bind : ∀ {A B C}{f : A → B}{g : B → X C}{x : X A}
→ (f <$> x) >>= g ≡ x >>= (λ z → g (f z))
<$>-bind = cong join (sym (composite))
natural-trans : ∀ {A B}{f : A → B}{x : X( X A)} → f <$> (join x) ≡ join ((_<$>_ f) <$> x)
natural-trans {A}{B}{f}{x} = begin
f <$> (join x) ≡⟨ sym (is-left-ident {x = _<$>_ f}) ⟩
join (unit <$> (f <$> (join x))) ≡⟨ † ⟩
join (unit <$> (f <$> (join (id <$> x)))) ≡⟨ <$>-bind ⟩
join ((λ v → unit (f v)) <$> (join (id <$> x))) ≡⟨ >=>-assoc { c = λ _ → x}{0} ⟩
join ((λ x → join ((unit ∘ f) <$> x)) <$> x ) ≡⟨ sym (<$>-bind) ⟩
((_<$>_ (λ y → unit (f y))) <$> x ) >>= join ≡⟨ <$>-bind ⟩
x >>= (λ x → x >>= (λ y → unit (f y))) ≡⟨ * ⟩
join ((_<$>_ f) <$> x) ∎
where open ≡-Reasoning
† : join (unit <$> (f <$> (join x))) ≡ join (unit <$> (f <$> (join (id <$> x))))
† = cong (λ t → join (unit <$> (f <$> join t))) (sym (identity id-is-id ))
* : x >>= (λ x → x >>= (λ y → unit (f y))) ≡ join ((_<$>_ f) <$> x)
* = cong (_>>=_ x)
(extensionality (λ y → trans (sym <$>-bind)
(is-left-ident {x = _<$>_ f}{v = y})))
id-is-monad : Monad id
id-is-monad = record { is-functor = id-is-functor
; point = id
; join = id
; >=>-assoc = refl
; is-left-ident = refl
; is-right-ident = refl
}
record MonadHomomorphism {M₁ M₂ : Set → Set}(h : ∀ {x : Set} → M₁ x → M₂ x)
⦃ M₁-m : Monad M₁ ⦄ ⦃ M₂-m : Monad M₂ ⦄ : Set₁ where
open Monad M₁-m using () renaming (unit to unit₁; join to join₁; is-functor to is-functor₁)
open Monad M₂-m using () renaming (unit to unit₂; join to join₂; is-functor to is-functor₂)
open Functor is-functor₁ using () renaming (map to map₁)
open Functor is-functor₂ using () renaming (map to map₂)
field h-return : ∀ {A}{x : A} → h (unit₁ x) ≡ unit₂ x
field h-fmap : {A B : Set} {f : A → B} {x : M₁ A}
→ h (map₁ f x) ≡ map₂ f (h x)
field h-join : ∀{τ}{x : M₁ (M₁ τ)} → h (join₁ x) ≡ join₂ (h (map₁ h x))
record MonadTrans (X : (Set → Set) → Set → Set) : Set₁ where
field produces-monad : ∀ {m} → Monad m → Monad (X m)
field lift : ∀ {m}⦃ mm : Monad m ⦄{a} → m a → X m a
field is-homomorphism : ∀ {m} → (mm : Monad m)
→ MonadHomomorphism {m} {X m} (lift {m}) ⦃ mm ⦄ ⦃ produces-monad mm ⦄
module Ⓢ-Type where
open Functors
open Monads
open StupidEquality
data Ⓢ (τ : Set) : Set where
suc : τ → Ⓢ τ
zero : Ⓢ τ
cata-Ⓢ : {a b : Set} → b → (a → b) → Ⓢ a → b
cata-Ⓢ nil something zero = nil
cata-Ⓢ nil something (suc n) = something n
sequence-Ⓢ : ∀ {m}{b} → ⦃ monad : Monad m ⦄ → Ⓢ (m b) → m (Ⓢ b)
sequence-Ⓢ ⦃ m ⦄ (suc n) = map suc n
where open Functor (Monad.is-functor m)
sequence-Ⓢ ⦃ m ⦄ (zero) = unit zero
where open Monad (m)
private
fmap-Ⓢ : ∀ {a b} → (a → b) → Ⓢ a → Ⓢ b
fmap-Ⓢ f zero = zero
fmap-Ⓢ f (suc n) = suc (f n)
abstract
fmap-Ⓢ-id : ∀ {A} → {f : A → A}
→ isIdentity f → isIdentity (fmap-Ⓢ f)
fmap-Ⓢ-id isid {zero} = refl
fmap-Ⓢ-id isid {suc x} = cong suc isid
fmap-Ⓢ-comp : ∀ {A B C : Set} {f : A → B} {g : B → C} → ∀ {x}
→ fmap-Ⓢ (g ∘ f) x ≡ fmap-Ⓢ g (fmap-Ⓢ f x)
fmap-Ⓢ-comp {x = zero} = refl
fmap-Ⓢ-comp {x = suc n} = refl
Ⓢ-is-functor : Functor Ⓢ
Ⓢ-is-functor = record { map = fmap-Ⓢ
; identity = fmap-Ⓢ-id
; composite = fmap-Ⓢ-comp
}
Ⓢ-eq : ∀ {x} → Eq x → Eq (Ⓢ x)
Ⓢ-eq x zero zero = true
Ⓢ-eq x (suc n) zero = false
Ⓢ-eq x zero (suc m) = false
Ⓢ-eq x (suc n) (suc m) = x n m
private
join-Ⓢ : ∀ {x} → Ⓢ (Ⓢ x) → Ⓢ x
join-Ⓢ (zero) = zero
join-Ⓢ (suc τ) = τ
test-join : ∀ {A B}{f : A → B}{x : Ⓢ( Ⓢ A)}
→ fmap-Ⓢ f (join-Ⓢ x) ≡ join-Ⓢ (fmap-Ⓢ (fmap-Ⓢ f) x)
test-join {x = zero} = refl
test-join {x = suc n} = refl
Ⓢ-is-monad : Monad Ⓢ
Ⓢ-is-monad = record { is-functor = Ⓢ-is-functor
; point = suc
; join = join-Ⓢ
; is-left-ident = left-id
; is-right-ident = refl
; >=>-assoc = λ { {c = c}{v} → assoc {τ = c v} }
}
where
left-id : ∀ {τ : Set}{v : Ⓢ τ} → join-Ⓢ (fmap-Ⓢ suc v) ≡ v
left-id {v = zero } = refl
left-id {v = suc v} = refl
assoc : ∀ {q r s : Set} {a : r → Ⓢ s} {b : q → Ⓢ r}{τ : Ⓢ q}
→ join-Ⓢ (fmap-Ⓢ a (join-Ⓢ (fmap-Ⓢ b τ)))
≡ join-Ⓢ (fmap-Ⓢ (λ v′ → join-Ⓢ (fmap-Ⓢ a (b v′))) τ)
assoc {τ = zero} = refl
assoc {τ = suc v} = refl
Ⓢ-Trans : (Set → Set) → Set → Set
Ⓢ-Trans m x = m (Ⓢ x)
private
lift : ∀ {m : Set → Set}⦃ mm : Monad m ⦄{x} → m x → m (Ⓢ x)
lift {m}⦃ mm ⦄{x} v = suc <$> v
where open Monad mm
open Functor is-functor
module MonadProofs {m : Set → Set}⦃ mm : Monad m ⦄ where
open Monad mm
open Functor is-functor
functor : Functor (Ⓢ-Trans m)
functor = record { map = λ f v → (fmap-Ⓢ f) <$> v
; identity = λ p → identity (fmap-Ⓢ-id p)
; composite = λ { {x = x} → trans (cong (λ t → t <$> x)
(extensionality ext)) composite }
}
where open ≡-Reasoning
ext : ∀ {A B C : Set} {f : A → B} {g : B → C} → (x' : Ⓢ A)
→ fmap-Ⓢ (g ∘ f) x' ≡ (fmap-Ⓢ g ∘ fmap-Ⓢ f) x'
ext (zero) = refl
ext (suc n) = refl
module Trans = Functor functor
private
cata-Ⓢ-u0 : ∀ {a b} → (a → m (Ⓢ b)) → Ⓢ a → m (Ⓢ b)
cata-Ⓢ-u0 = cata-Ⓢ (unit zero)
abstract
right-id : {a b : Set} {x : a → Ⓢ-Trans m b} {v : a}
→ Trans.map x (lift {m} (unit v)) >>= cata-Ⓢ-u0 id ≡ x v
right-id {a}{b}{x}{v} = begin
Trans.map x (suc <$> (unit v)) >>= cata-Ⓢ-u0 id ≡⟨ * ⟩
(fmap-Ⓢ x <$> (unit (suc v))) >>= cata-Ⓢ-u0 id ≡⟨ † ⟩
join (cata-Ⓢ-u0 id <$> (unit (suc (x v)))) ≡⟨ cong join <$>-unit ⟩
join (unit (x v)) ≡⟨ cong join (sym(identity id-is-id)) ⟩
join (id <$> unit (x v)) ≡⟨ is-right-ident {x = id} ⟩
x v ∎
where open ≡-Reasoning
* : Trans.map x (suc <$> (unit v)) >>= cata-Ⓢ-u0 id
≡ (fmap-Ⓢ x <$> (unit (suc v))) >>= cata-Ⓢ-u0 id
* = cong (λ t → Trans.map x t >>= cata-Ⓢ-u0 id) <$>-unit
† : (fmap-Ⓢ x <$> (unit (suc v))) >>= cata-Ⓢ-u0 id
≡ join (cata-Ⓢ-u0 id <$> (unit (suc (x v))))
† = cong (λ x → x >>= cata-Ⓢ-u0 id) <$>-unit
left-id : {b : Set} {t : Ⓢ-Trans m b}
→ Trans.map (λ x' → lift {m} (unit x')) t >>= cata-Ⓢ-u0 id ≡ t
left-id {b}{t} = trans <$>-bind (subst (λ q → t >>= q ≡ t)
(sym (extensionality h≗unit))
(is-left-ident {x = λ _ → t} {v = 0}))
where h : ∀ {A} → Ⓢ A → m (Ⓢ A)
h x = cata-Ⓢ-u0 id (fmap-Ⓢ (λ x' → suc <$> (unit x')) x)
h≗unit : ∀ {A} → h {A} ≗ unit
h≗unit zero = refl
h≗unit (suc y) = <$>-unit
assoc : ∀ {p q r s : Set}
{a : r → Ⓢ-Trans m s}{b : q → Ⓢ-Trans m r}{c : p → Ⓢ-Trans m q}
{v : p}
→ Trans.map a (Trans.map b (c v) >>= cata-Ⓢ-u0 id) >>= cata-Ⓢ-u0 id
≡ Trans.map (λ v' → Trans.map a (b v') >>= cata-Ⓢ-u0 id) (c v) >>= cata-Ⓢ-u0 id
assoc {p}{q}{r}{s}{a}{b}{c}{v}
= let
†₀ = cata-fmap
†₁ = cong (λ x → x >>= cata-Ⓢ (unit zero) a) cata-fmap
†₂ = >=>-assoc {c = λ _ → c v} {v = 0}
†₃ = cong (_>>=_ (c v)) (extensionality ext)
†₄ = cong (λ x → c v >>= cata-Ⓢ (unit zero) x)
(extensionality (λ x → sym cata-fmap))
†₅ = sym (cata-fmap)
in begin
Trans.map a (Trans.map b (c v) >>= cata-Ⓢ-u0 id) >>= cata-Ⓢ-u0 id ≡⟨ †₀ ⟩
((fmap-Ⓢ b <$> c v) >>= cata-Ⓢ-u0 id) >>= cata-Ⓢ-u0 a ≡⟨ †₁ ⟩
(c v >>= cata-Ⓢ-u0 b) >>= cata-Ⓢ-u0 a ≡⟨ †₂ ⟩
c v >>= (λ cv → cata-Ⓢ-u0 b cv >>= cata-Ⓢ-u0 a) ≡⟨ †₃ ⟩
c v >>= cata-Ⓢ-u0 (λ v' → b v' >>= cata-Ⓢ-u0 a) ≡⟨ †₄ ⟩
c v >>= cata-Ⓢ-u0 (λ v' → (fmap-Ⓢ a <$> b v') >>= cata-Ⓢ-u0 id) ≡⟨ †₅ ⟩
Trans.map (λ v' → Trans.map a (b v') >>= cata-Ⓢ-u0 id) (c v) >>= cata-Ⓢ-u0 id ∎
where open ≡-Reasoning
ext : (x : Ⓢ q) → cata-Ⓢ-u0 b x >>= cata-Ⓢ-u0 a
≡ cata-Ⓢ-u0 (λ v' → b v' >>= cata-Ⓢ-u0 a) x
ext zero = begin
join ((cata-Ⓢ-u0 a) <$> unit zero) ≡⟨ cong join <$>-unit ⟩
join (unit (unit zero)) ≡⟨ cong join (sym (identity id-is-id)) ⟩
join (id <$> unit (unit zero)) ≡⟨ is-right-ident ⟩
unit zero ∎
ext (suc n) = refl
cata-fmap : ∀{A B C}{a : A → B}{x : m (Ⓢ A)}{n : m C}{j : B → m C}
→ (fmap-Ⓢ a <$> x) >>= cata-Ⓢ n j ≡ x >>= cata-Ⓢ n (λ x → j ( a x))
cata-fmap {A}{B}{C}{a}{x}{n}{j} = trans <$>-bind
(cong (_>>=_ x) (extensionality ext′))
where ext′ : (x' : Ⓢ A) → cata-Ⓢ n j (fmap-Ⓢ a x')
≡ cata-Ⓢ n (λ x0 → j (a x0)) x'
ext′ zero = refl
ext′ (suc n) = refl
produces-monad = record { point = λ x → lift ⦃ mm ⦄ (unit x)
; is-functor = functor
; join = λ v → v >>= cata-Ⓢ (unit zero) id
; is-left-ident = left-id
; is-right-ident = right-id
; >=>-assoc = λ {_}{_}{_}{_}{a}{b}{c}{v}
→ assoc {a = a}{b}{c}{v}
}
module HomomorphismProofs {m : Set → Set}⦃ mm : Monad m ⦄ where
open Monad mm
open Functor is-functor
open ≡-Reasoning
cata-Ⓢ-u0 : ∀ {a b} → (a → m (Ⓢ b)) → Ⓢ a → m (Ⓢ b)
cata-Ⓢ-u0 = cata-Ⓢ (unit zero)
fmap-p : ∀ {A B : Set} {f : A → B} {x}
→ lift {m} (f <$> x) ≡ (fmap-Ⓢ f) <$> (lift {m} x)
fmap-p {A}{B}{f}{x} = begin
suc <$> (f <$> x) ≡⟨ sym (composite) ⟩
(λ t → suc (f t)) <$> x ≡⟨ refl ⟩
(λ t → fmap-Ⓢ f (suc t)) <$> x ≡⟨ composite ⟩
(fmap-Ⓢ f) <$> (suc <$> x) ∎
join-p : ∀{τ}{x : m (m (τ))}
→ suc <$> (join x) ≡ (suc <$> (_<$>_ suc <$> x)) >>= cata-Ⓢ-u0 id
join-p {_}{x} = begin
suc <$> (join x) ≡⟨ natural-trans ⟩
join ((_<$>_ suc) <$> x) ≡⟨ refl ⟩
x >>= (λ z → cata-Ⓢ-u0 id (suc (suc <$> z))) ≡⟨ sym (<$>-bind) ⟩
((λ z → suc (suc <$> z)) <$> x) >>= cata-Ⓢ-u0 id ≡⟨ † ⟩
(suc <$> (_<$>_ suc <$> x)) >>= cata-Ⓢ-u0 id ∎
where † = cong (λ x → x >>= cata-Ⓢ-u0 id) (composite)
is-homomorphism : MonadHomomorphism (lift {m}) ⦃ mm ⦄ ⦃ MonadProofs.produces-monad ⦃ mm ⦄ ⦄
is-homomorphism = record { h-return = refl
; h-fmap = fmap-p
; h-join = join-p
}
Ⓢ-Trans-is-trans : MonadTrans (Ⓢ-Trans)
Ⓢ-Trans-is-trans = record { produces-monad = λ mm → MonadProofs.produces-monad ⦃ mm ⦄
; lift = λ{m} → lift {m}
; is-homomorphism = λ mm → HomomorphismProofs.is-homomorphism ⦃ mm ⦄
}
module PlusN-Type where
open Ⓢ-Type
open Monads
open Functors
open StupidEquality
PlusN : (n : ℕ) → Set → Set
PlusN zero = id
PlusN (suc n) = Ⓢ-Trans (PlusN n)
PlusN-eq : ∀ {n}{x} → Eq x → Eq (PlusN n x)
PlusN-eq {zero} eq = eq
PlusN-eq {suc n} eq = PlusN-eq {n} (Ⓢ-eq eq)
PlusN-is-monad : ∀ {n} → Monad (PlusN n)
PlusN-is-monad {zero} = id-is-monad
PlusN-is-monad {suc n} = MonadTrans.produces-monad Ⓢ-Trans-is-trans (PlusN-is-monad {n})
_⨁_ = flip PlusN
sequence-PlusN : ∀ {m}{n}{b} → ⦃ monad : Monad m ⦄ → (m b) ⨁ n → m (b ⨁ n)
sequence-PlusN {n = zero} x = x
sequence-PlusN {n = suc n} ⦃ m ⦄ x = sequence-PlusN {n = n}⦃ m ⦄
(PlusN-f.map (sequence-Ⓢ ⦃ m ⦄) x)
where module PlusN-f = Functor (Monad.is-functor (PlusN-is-monad {n}))
PlusN-collect : ∀ {n}{a b} → n ⨁ (a + b) ≡ (n ⨁ a) ⨁ b
PlusN-collect {n}{zero} = refl
PlusN-collect {n}{suc a}{b} = PlusN-collect {Ⓢ n}{a}{b}
open Ⓢ-Type public
open PlusN-Type public
open Functors public
open Monads public
open Shapes public
open StupidEquality public
| {
"alphanum_fraction": 0.388228329,
"avg_line_length": 44.1590413943,
"ext": "agda",
"hexsha": "79308c3f5c52889846a893823112224cf18a914e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "liamoc/outside-in",
"max_forks_repo_path": "OutsideIn/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "liamoc/outside-in",
"max_issues_repo_path": "OutsideIn/Prelude.agda",
"max_line_length": 100,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "liamoc/outside-in",
"max_stars_repo_path": "OutsideIn/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z",
"num_tokens": 7370,
"size": 20269
} |
-- Internal error in coverage checker.
module Issue505 where
data Nat : Set where
zero : Nat
suc : Nat → Nat
_+_ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)
data Split : Nat → Nat → Set where
1x1 : Split (suc zero) (suc zero)
_∣_ : ∀ {a b c} → Split a b → Split a c → Split a (b + c)
_/_ : ∀ {a b c} → Split b a → Split c a → Split (b + c) a
data ⊤ : Set where
tt : ⊤
theorem : ∀ {a b} → (split : Split a b) → ⊤
theorem 1x1 = tt
theorem {suc a} .{_} (l ∣ r) = tt
theorem {zero } .{_} (l ∣ r) = tt
theorem (l / r) = tt
| {
"alphanum_fraction": 0.5401459854,
"avg_line_length": 21.92,
"ext": "agda",
"hexsha": "2acca776bd15b0d2d6f9273b1e9d081ed0957894",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue505.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue505.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue505.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 224,
"size": 548
} |
module Structure.Setoid.Category.HomFunctor where
import Functional as Fn
open import Function.Equals
open import Function.Equals.Proofs
open import Logic.Predicate
import Lvl
open import Structure.Category
open import Structure.Category.Dual
open import Structure.Category.Functor.Contravariant
open import Structure.Category.Functor
open import Structure.Categorical.Properties
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Equivalence
open import Structure.Setoid
open import Syntax.Function
open import Syntax.Transitivity
open import Structure.Setoid.Category
open import Type
private variable ℓ ℓₒ ℓₘ ℓₑ : Lvl.Level
module _ (C : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}) where
open CategoryObject(C)
open Category ⦃ … ⦄
open ArrowNotation
private open module MorphismEquiv {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv{x}{y} ⦄) using ()
covariantHomFunctor : Object → (C →ᶠᵘⁿᶜᵗᵒʳ setoidCategoryObject)
∃.witness (covariantHomFunctor x) y = [∃]-intro (x ⟶ y)
Functor.map (∃.proof (covariantHomFunctor _)) f = [∃]-intro (f ∘_) ⦃ BinaryOperator.right binaryOperator ⦄
_⊜_.proof (Function.congruence (Functor.map-function (∃.proof (covariantHomFunctor _))) {f₁} {f₂} f₁f₂) {g} =
f₁ ∘ g 🝖-[ congruence₂ₗ(_∘_) g f₁f₂ ]
f₂ ∘ g 🝖-end
_⊜_.proof (Functor.op-preserving (∃.proof (covariantHomFunctor _)) {f = f} {g = g}) {h} =
(f ∘ g) ∘ h 🝖[ _≡_ ]-[ Morphism.associativity(_∘_) ]
f ∘ (g ∘ h) 🝖[ _≡_ ]-[]
((f ∘_) Fn.∘ (g ∘_)) h 🝖-end
_⊜_.proof (Functor.id-preserving (∃.proof (covariantHomFunctor _))) {f} =
id ∘ f 🝖[ _≡_ ]-[ Morphism.identityₗ(_∘_)(id) ]
f 🝖[ _≡_ ]-[]
Fn.id(f) 🝖-end
contravariantHomFunctor : Object → (C →ᶜᵒⁿᵗʳᵃᵛᵃʳⁱᵃⁿᵗᶠᵘⁿᶜᵗᵒʳ setoidCategoryObject)
∃.witness (contravariantHomFunctor x) y = [∃]-intro (y ⟶ x)
Functor.map (∃.proof (contravariantHomFunctor _)) f = [∃]-intro (_∘ f) ⦃ BinaryOperator.left binaryOperator ⦄
_⊜_.proof (Function.congruence (Functor.map-function (∃.proof (contravariantHomFunctor _))) {g₁} {g₂} g₁g₂) {f} =
f ∘ g₁ 🝖-[ congruence₂ᵣ(_∘_) f g₁g₂ ]
f ∘ g₂ 🝖-end
_⊜_.proof (Functor.op-preserving (∃.proof (contravariantHomFunctor _)) {f = h} {g = g}) {f} =
f ∘ (g ∘ h) 🝖[ _≡_ ]-[ Morphism.associativity(_∘_) ]-sym
(f ∘ g) ∘ h 🝖[ _≡_ ]-[]
((_∘ h) Fn.∘ (_∘ g)) f 🝖-end
_⊜_.proof (Functor.id-preserving (∃.proof (contravariantHomFunctor _))) {f} =
f ∘ id 🝖[ _≡_ ]-[ Morphism.identityᵣ(_∘_)(id) ]
f 🝖[ _≡_ ]-[]
Fn.id(f) 🝖-end
| {
"alphanum_fraction": 0.6562986003,
"avg_line_length": 43.593220339,
"ext": "agda",
"hexsha": "a8d2f40215f22b02ab6662dc630729203c921d55",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Setoid/Category/HomFunctor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Setoid/Category/HomFunctor.agda",
"max_line_length": 115,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Setoid/Category/HomFunctor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1045,
"size": 2572
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Any (◇) for containers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Container.Relation.Unary.Any where
open import Level using (_⊔_)
open import Relation.Unary using (Pred; _⊆_)
open import Data.Product as Prod using (_,_; proj₂; ∃)
open import Function
open import Data.Container.Core hiding (map)
import Data.Container.Morphism as M
record ◇ {s p} (C : Container s p) {x ℓ} {X : Set x}
(P : Pred X ℓ) (cx : ⟦ C ⟧ X) : Set (p ⊔ ℓ) where
constructor any
field proof : ∃ λ p → P (proj₂ cx p)
module _ {s₁ p₁ s₂ p₂} {C : Container s₁ p₁} {D : Container s₂ p₂}
{x ℓ ℓ′} {X : Set x} {P : Pred X ℓ} {Q : Pred X ℓ′}
where
map : (f : C ⇒ D) → P ⊆ Q → ◇ D P ∘′ ⟪ f ⟫ ⊆ ◇ C Q
map f P⊆Q (any (p , P)) .◇.proof = f .position p , P⊆Q P
module _ {s₁ p₁ s₂ p₂} {C : Container s₁ p₁} {D : Container s₂ p₂}
{x ℓ} {X : Set x} {P : Pred X ℓ}
where
map₁ : (f : C ⇒ D) → ◇ D P ∘′ ⟪ f ⟫ ⊆ ◇ C P
map₁ f = map f id
module _ {s p} {C : Container s p}
{x ℓ ℓ′} {X : Set x} {P : Pred X ℓ} {Q : Pred X ℓ′}
where
map₂ : P ⊆ Q → ◇ C P ⊆ ◇ C Q
map₂ = map (M.id C)
| {
"alphanum_fraction": 0.4774637128,
"avg_line_length": 28.4565217391,
"ext": "agda",
"hexsha": "4de90ab092599afec6a90e58f3095d391707d8ec",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Unary/Any.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Unary/Any.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Unary/Any.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 478,
"size": 1309
} |
module SystemF.Syntax.Term.Constructors where
open import Prelude hiding (⊥-elim)
open import SystemF.WellTyped
open import SystemF.Substitutions.Lemmas
open import SystemF.Substitutions
open import SystemF.Syntax.Type.Constructors
-- polymorphic function application
-- applies a polymorphic function to an argument with the type of the domain
poly-· : ∀ {ν n} {a : Type ν} {K : Ctx ν n} {f arg} →
(fa : IsFunction a) → K ⊢ f ∈ a → K ⊢ arg ∈ domain fa → ∃ λ t → K ⊢ t ∈ codomain fa
poly-· (lambda a b) ⊢f ⊢arg = , ⊢f · ⊢arg
poly-· {K = K} {f = f} {arg = arg} (∀'-lambda {a} fa) ⊢f ⊢arg = , Λ (proj₂ (poly-· fa f' arg'))
where
f' : ctx-weaken K ⊢ _ ∈ a
f' = subst
(λ τ → ctx-weaken K ⊢ _ ∈ τ)
(TypeLemmas.a-/Var-varwk↑-/-sub0≡a a)
((⊢tp-weaken ⊢f) [ tvar zero ])
arg' : ctx-weaken K ⊢ (tm-weaken arg) [ tvar zero ] ∈ domain fa
arg' = subst
(λ τ → ctx-weaken K ⊢ _ ∈ τ)
(TypeLemmas.a-/Var-varwk↑-/-sub0≡a (domain fa))
((⊢tp-weaken ⊢arg) [ tvar zero ])
-- Polymorphic identity function
id' : {ν n : ℕ} → Term ν n
id' = Λ (λ' (tvar zero) (var zero))
-- Bottom elimination/univeral property of the initial type
⊥-elim : ∀ {m n} → Type n → Term n m
⊥-elim a = λ' ⊥' ((var zero) [ a ])
-- Unit value
tt = id'
-- n-ary term abstraction
λⁿ : ∀ {ν m k} → Vec (Type ν) k → Term ν (k N+ m) → Term ν m
λⁿ [] t = t
λⁿ (a ∷ as) t = λⁿ as (λ' a t)
infixl 9 _·ⁿ_
-- n-ary term application
_·ⁿ_ : ∀ {m n k} → Term m n → Vec (Term m n) k → Term m n
s ·ⁿ [] = s
s ·ⁿ (t ∷ ts) = (s ·ⁿ ts) · t
-- Record/tuple constructor
newrec : ∀ {ν n k} → Vec (Term ν n) k → {as : Vec (Type ν) k} → Term ν n
newrec [] = tt
newrec (t ∷ ts) {a ∷ as} =
Λ (λ' (map tp-weaken (a ∷ as) →ⁿ tvar zero)
(var zero ·ⁿ map tmtm-weaken (map tm-weaken (t ∷ ts))))
-- Field access/projection
π : ∀ {ν n k} → Fin k → Term ν n → {as : Vec (Type ν) k} → Term ν n
π () t {[]}
π {n = n} x t {as} =
(t [ lookup x as ]) · (λⁿ as (var (inject+ n x)))
| {
"alphanum_fraction": 0.5568295115,
"avg_line_length": 32.3548387097,
"ext": "agda",
"hexsha": "97970240f9553d5c8f57c9c04842b8a8be16054c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/SystemF/Syntax/Term/Constructors.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/SystemF/Syntax/Term/Constructors.agda",
"max_line_length": 95,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/SystemF/Syntax/Term/Constructors.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 806,
"size": 2006
} |
-- {-# OPTIONS -v interaction.give:30 -v interaction.scope:30 -v highlighting:50 -v auto:10 #-}
-- Andreas, 2014-07-05 and -08
module _ where
data Unit : Set where
unit : Unit
auto : Unit
auto = {!!} -- C-c C-a succeeds but then an error occurs during highlighting
-- Problem WAS:
-- Auto finds a solution, but then there is the error
-- Failed to parse expression in ?0
-- Should work now.
refine : Unit
refine = {!unit!}
-- Problem WAS: Highlighting after refine triggers an error.
| {
"alphanum_fraction": 0.6888888889,
"avg_line_length": 21.5217391304,
"ext": "agda",
"hexsha": "e5434d4f4adb091b120131004b35873febba6fdd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue1226.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue1226.agda",
"max_line_length": 95,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue1226.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 135,
"size": 495
} |
module examplesPaperJFP.Sized where
open import Data.Product using (_×_; _,_)
open import Data.String
open import Function using (case_of_)
open import Size
open import examplesPaperJFP.NativeIOSafe
open import examplesPaperJFP.BasicIO using (IOInterface; Command; Response)
open import examplesPaperJFP.ConsoleInterface
open import examplesPaperJFP.Console using (translateIOConsoleLocal)
open import examplesPaperJFP.Object using (Interface; Method; Result;
cellJ; CellMethod; get; put; CellResult)
module UnfoldF where
open import examplesPaperJFP.Coalgebra using (F; mapF)
record νF (i : Size) : Set where
coinductive
constructor delay
field force : ∀(j : Size< i) → F (νF j)
open νF using (force)
unfoldF : ∀{S} (t : S → F S) → ∀ i → (S → νF i)
force (unfoldF t i s) j = mapF (unfoldF t j) (t s)
mutual
record IO (Iᵢₒ : IOInterface) (i : Size) (A : Set) : Set where
coinductive
constructor delay
field force : {j : Size< i} → IO′ Iᵢₒ j A
data IO′ (Iᵢₒ : IOInterface) (i : Size) (A : Set) : Set where
exec′ : (c : Command Iᵢₒ) (f : Response Iᵢₒ c → IO Iᵢₒ i A) → IO′ Iᵢₒ i A
return′ : (a : A) → IO′ Iᵢₒ i A
module NestedRecursion (Iᵢₒ : IOInterface) (A : Set) where
data F (X : Set) : Set where
exec′ : (c : Command Iᵢₒ) (f : Response Iᵢₒ c → X) → F X
return′ : (a : A) → F X
record νF (i : Size) : Set where
coinductive
constructor delay
field force : {j : Size< i} → F (νF j)
open IO public
module _ {Iᵢₒ : IOInterface } (let C = Command Iᵢₒ) (let R = Response Iᵢₒ) where
infixl 2 _>>=_
exec : ∀ {i A} (c : C) (f : R c → IO Iᵢₒ i A) → IO Iᵢₒ i A
return : ∀ {i A} (a : A) → IO Iᵢₒ i A
_>>=_ : ∀ {i A B} (m : IO Iᵢₒ i A) (k : A → IO Iᵢₒ i B) → IO Iᵢₒ i B
force (exec c f) = exec′ c f
force (return a) = return′ a
force (_>>=_ {i} m k) {j} with force m {j}
... | exec′ c f = exec′ c λ r → _>>=_ {j} (f r) k
... | return′ a = force (k a) {j}
{-# NON_TERMINATING #-}
translateIO : ∀{A : Set}
→ (translateLocal : (c : C) → NativeIO (R c))
→ IO Iᵢₒ ∞ A
→ NativeIO A
translateIO translateLocal m = case (force m) of
λ{ (exec′ c f) → (translateLocal c) native>>= λ r →
translateIO translateLocal (f r)
; (return′ a) → nativeReturn a
}
record IOObject (Iᵢₒ : IOInterface) (I : Interface) (i : Size) : Set where
coinductive
field method : ∀{j : Size< i} (m : Method I)
→ IO Iᵢₒ ∞ (Result I m × IOObject Iᵢₒ I j)
open IOObject public
CellC : (i : Size) → Set
CellC = IOObject ConsoleInterface (cellJ String)
simpleCell : ∀{i} (s : String) → CellC i
force (method (simpleCell {i} s) {j} get) =
exec′ (putStrLn ("getting (" ++ s ++ ")")) λ _ →
return (s , simpleCell {j} s)
force (method (simpleCell _) (put s)) =
exec′ (putStrLn ("putting (" ++ s ++ ")")) λ _ →
return (unit , simpleCell s)
program : ∀{i} → IO ConsoleInterface i Unit
force program =
let c₁ = simpleCell "Start" in
exec′ getLine λ{ nothing → return unit; (just s) →
method c₁ (put s) >>= λ{ (_ , c₂) →
method c₂ get >>= λ{ (s′ , c₃) →
exec (putStrLn s′) λ _ →
program }}}
main : NativeIO Unit
main = translateIO translateIOConsoleLocal program
| {
"alphanum_fraction": 0.5806642942,
"avg_line_length": 30.1071428571,
"ext": "agda",
"hexsha": "732b3c3eaa4b06218aace3eeb231b5427b9ef703",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/Sized.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/Sized.agda",
"max_line_length": 84,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/Sized.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 1248,
"size": 3372
} |
module STLC2.Kovacs.Normalisation where
open import STLC2.Kovacs.NormalForm public
--------------------------------------------------------------------------------
-- (Tyᴺ)
mutual
infix 3 _⊩_
_⊩_ : 𝒞 → 𝒯 → Set
Γ ⊩ ⎵ = Γ ⊢ⁿᶠ ⎵
Γ ⊩ A ⇒ B = ∀ {Γ′} → (η : Γ′ ⊇ Γ) (∂a : Γ′ ∂⊩ A)
→ Γ′ ∂⊩ B
Γ ⊩ A ⩕ B = Γ ∂⊩ A × Γ ∂⊩ B
Γ ⊩ ⫪ = ⊤
Γ ⊩ ⫫ = ⊥
Γ ⊩ A ⩖ B = Γ ∂⊩ A ⊎ Γ ∂⊩ B
infix 3 _∂⊩_
_∂⊩_ : 𝒞 → 𝒯 → Set
Γ ∂⊩ A = ∀ {Γ′ C} → (η : Γ′ ⊇ Γ)
→ (f : ∀ {Γ″} → Γ″ ⊇ Γ′ → Γ″ ⊩ A → Γ″ ⊢ⁿᶠ C)
→ Γ′ ⊢ⁿᶠ C
-- (Conᴺ ; ∙ ; _,_)
infix 3 _∂⊩⋆_
data _∂⊩⋆_ : 𝒞 → 𝒞 → Set
where
∅ : ∀ {Γ} → Γ ∂⊩⋆ ∅
_,_ : ∀ {Γ Ξ A} → (ρ : Γ ∂⊩⋆ Ξ) (∂a : Γ ∂⊩ A)
→ Γ ∂⊩⋆ Ξ , A
--------------------------------------------------------------------------------
-- (Tyᴺₑ)
mutual
acc : ∀ {A Γ Γ′} → Γ′ ⊇ Γ → Γ ⊩ A → Γ′ ⊩ A
acc {⎵} η M = renⁿᶠ η M
acc {A ⇒ B} η f = λ η′ a → f (η ○ η′) a
acc {A ⩕ B} η s = ∂acc η (proj₁ s) , ∂acc η (proj₂ s)
acc {⫪} η s = tt
acc {⫫} η s = elim⊥ s
acc {A ⩖ B} η (inj₁ a) = inj₁ (∂acc η a)
acc {A ⩖ B} η (inj₂ b) = inj₂ (∂acc η b)
-- TODO: Why doesn’t this work?
-- acc {A ⩖ B} η s = case⊎ s (λ a → ∂acc η a)
-- (λ b → ∂acc η b)
∂acc : ∀ {A Γ Γ′} → Γ′ ⊇ Γ → Γ ∂⊩ A → Γ′ ∂⊩ A
∂acc η ∂a = λ η′ f → ∂a (η ○ η′) f
-- (Conᴺₑ)
-- NOTE: _⬖_ = ∂acc⋆
_⬖_ : ∀ {Γ Γ′ Ξ} → Γ ∂⊩⋆ Ξ → Γ′ ⊇ Γ → Γ′ ∂⊩⋆ Ξ
∅ ⬖ η = ∅
(ρ , ∂a) ⬖ η = ρ ⬖ η , ∂acc η ∂a
--------------------------------------------------------------------------------
!ƛ : ∀ {Γ A B} → (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ∂⊩ A → Γ′ ∂⊩ B)
→ Γ ⊩ A ⇒ B
!ƛ f = λ η ∂a → f η ∂a
_!∙_ : ∀ {Γ A B} → Γ ⊩ A ⇒ B → Γ ∂⊩ A
→ Γ ∂⊩ B
f !∙ ∂a = f idₑ ∂a
_!,_ : ∀ {Γ A B} → Γ ∂⊩ A → Γ ∂⊩ B
→ Γ ⊩ A ⩕ B
∂a !, ∂b = ∂a , ∂b
!π₁ : ∀ {Γ A B} → Γ ⊩ A ⩕ B
→ Γ ∂⊩ A
!π₁ s = proj₁ s
!π₂ : ∀ {Γ A B} → Γ ⊩ A ⩕ B
→ Γ ∂⊩ B
!π₂ s = proj₂ s
!τ : ∀ {Γ} → Γ ⊩ ⫪
!τ = tt
!φ : ∀ {Γ C} → Γ ⊩ ⫫
→ Γ ∂⊩ C
!φ s = elim⊥ s
!ι₁ : ∀ {Γ A B} → Γ ∂⊩ A
→ Γ ⊩ A ⩖ B
!ι₁ ∂a = inj₁ ∂a
!ι₂ : ∀ {Γ A B} → Γ ∂⊩ B
→ Γ ⊩ A ⩖ B
!ι₂ ∂b = inj₂ ∂b
_!⁇_!∥_ : ∀ {Γ A B C} → Γ ⊩ A ⩖ B
→ (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ∂⊩ A → Γ′ ∂⊩ C)
→ (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ∂⊩ B → Γ′ ∂⊩ C)
→ Γ ∂⊩ C
s !⁇ f !∥ g = elim⊎ s (λ ∂a → f idₑ ∂a)
(λ ∂b → g idₑ ∂b)
--------------------------------------------------------------------------------
return : ∀ {A Γ} → Γ ⊩ A → Γ ∂⊩ A
return {A} a = λ η f →
f idₑ (acc {A} η a)
bind : ∀ {A C Γ} → Γ ∂⊩ A → (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ⊩ A → Γ′ ∂⊩ C)
→ Γ ∂⊩ C
bind ∂a f = λ η f′ →
∂a η (λ η′ a →
f (η ○ η′) a idₑ (λ η″ b →
f′ (η′ ○ η″) b))
--------------------------------------------------------------------------------
∂!λ : ∀ {Γ A B} → (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ∂⊩ A → Γ′ ∂⊩ B)
→ Γ ∂⊩ A ⇒ B
∂!λ {A = A} f = return {A ⇒ _}
(!ƛ f)
_∂!∙_ : ∀ {Γ A B} → Γ ∂⊩ A ⇒ B → Γ ∂⊩ A
→ Γ ∂⊩ B
∂f ∂!∙ ∂a = bind ∂f (λ η f → f !∙ ∂acc η ∂a)
_∂!,_ : ∀ {Γ A B} → Γ ∂⊩ A → Γ ∂⊩ B
→ Γ ∂⊩ A ⩕ B
∂a ∂!, ∂b = return (∂a !, ∂b)
∂!π₁ : ∀ {Γ A B} → Γ ∂⊩ A ⩕ B
→ Γ ∂⊩ A
∂!π₁ ∂s = bind ∂s (λ η s → !π₁ s)
∂!π₂ : ∀ {Γ A B} → Γ ∂⊩ A ⩕ B
→ Γ ∂⊩ B
∂!π₂ ∂s = bind ∂s (λ η s → !π₂ s)
∂!τ : ∀ {Γ} → Γ ∂⊩ ⫪
∂!τ {Γ} = return (!τ {Γ})
∂!φ : ∀ {Γ C} → Γ ∂⊩ ⫫
→ Γ ∂⊩ C
∂!φ ∂s = bind ∂s (λ η s → !φ s)
∂!ι₁ : ∀ {Γ A B} → Γ ∂⊩ A
→ Γ ∂⊩ A ⩖ B
∂!ι₁ {B = B} ∂a = return {_ ⩖ B}
(!ι₁ ∂a)
∂!ι₂ : ∀ {Γ A B} → Γ ∂⊩ B
→ Γ ∂⊩ A ⩖ B
∂!ι₂ {A = A} ∂b = return {A ⩖ _}
(!ι₂ ∂b)
_∂!⁇_∂!∥_ : ∀ {Γ A B C} → Γ ∂⊩ A ⩖ B
→ (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ∂⊩ A → Γ′ ∂⊩ C)
→ (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ∂⊩ B → Γ′ ∂⊩ C)
→ Γ ∂⊩ C
∂s ∂!⁇ f ∂!∥ g = bind ∂s (λ η s → s !⁇ (λ η′ → f (η ○ η′))
!∥ (λ η′ → g (η ○ η′)))
--------------------------------------------------------------------------------
-- (∈ᴺ)
getᵥ : ∀ {Γ Ξ A} → Γ ∂⊩⋆ Ξ → Ξ ∋ A → Γ ∂⊩ A
getᵥ (ρ , ∂a) zero = ∂a
getᵥ (ρ , ∂a) (suc i) = getᵥ ρ i
-- (Tmᴺ)
eval : ∀ {Γ Ξ A} → Γ ∂⊩⋆ Ξ → Ξ ⊢ A → Γ ∂⊩ A
eval ρ (𝓋 i) = getᵥ ρ i
eval ρ (ƛ M) = ∂!λ (λ η ∂a → eval (ρ ⬖ η , ∂a) M)
eval ρ (M ∙ N) = eval ρ M ∂!∙ eval ρ N
eval ρ (M , N) = eval ρ M ∂!, eval ρ N
eval ρ (π₁ M) = ∂!π₁ (eval ρ M)
eval ρ (π₂ M) = ∂!π₂ (eval ρ M)
eval ρ τ = ∂!τ
eval ρ (φ M) = ∂!φ (eval ρ M)
eval ρ (ι₁ M) = ∂!ι₁ (eval ρ M)
eval ρ (ι₂ M) = ∂!ι₂ (eval ρ M)
eval ρ (M ⁇ N₁ ∥ N₂) = eval ρ M ∂!⁇ (λ η ∂a → eval (ρ ⬖ η , ∂a) N₁)
∂!∥ (λ η ∂b → eval (ρ ⬖ η , ∂b) N₂)
--------------------------------------------------------------------------------
mutual
-- (qᴺ)
reify : ∀ {A Γ} → Γ ∂⊩ A → Γ ⊢ⁿᶠ A
reify {⎵} ∂a = ∂a idₑ (λ η M → M)
reify {A ⇒ B} ∂a = ∂a idₑ (λ η f → ƛ (reify (f (wkₑ idₑ) (reflect 0))))
reify {A ⩕ B} ∂a = ∂a idₑ (λ η s → reify (proj₁ s) , reify (proj₂ s))
reify {⫪} ∂a = ∂a idₑ (λ η s → τ)
reify {⫫} ∂a = ∂a idₑ (λ η s → elim⊥ s)
reify {A ⩖ B} ∂a = ∂a idₑ (λ η s → elim⊎ s (λ a → ι₁ (reify a))
(λ b → ι₂ (reify b)))
-- (uᴺ)
reflect : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ∂⊩ A
reflect {⎵} M = return (ne M)
reflect {A ⇒ B} M = return {A ⇒ _}
(λ η ∂a → reflect (renⁿᵉ η M ∙ reify ∂a))
reflect {A ⩕ B} M = return (reflect (π₁ M) , reflect (π₂ M))
reflect {⫪} M = return tt
reflect {⫫} M = λ η f →
ne (φ (renⁿᵉ η M))
reflect {A ⩖ B} M = λ η f →
ne (renⁿᵉ η M ⁇ f (wkₑ idₑ) (inj₁ (reflect 0))
∥ f (wkₑ idₑ) (inj₂ (reflect 0)))
--------------------------------------------------------------------------------
-- (uᶜᴺ)
idᵥ : ∀ {Γ} → Γ ∂⊩⋆ Γ
idᵥ {∅} = ∅
idᵥ {Γ , A} = idᵥ ⬖ wkₑ idₑ , reflect 0
-- (nf)
nf : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ⁿᶠ A
nf M = reify (eval idᵥ M)
--------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.2595902018,
"avg_line_length": 25.964,
"ext": "agda",
"hexsha": "4284dcf6702ee3dbaccaf5c2a7650d4394a1f5de",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand-kovacs",
"max_forks_repo_path": "src/STLC2/Kovacs/Normalisation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand-kovacs",
"max_issues_repo_path": "src/STLC2/Kovacs/Normalisation.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand-kovacs",
"max_stars_repo_path": "src/STLC2/Kovacs/Normalisation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3427,
"size": 6491
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
module lib.types.Empty where
Empty-rec : ∀ {i} {A : Type i} → (Empty → A)
Empty-rec = Empty-elim
⊥-rec : ∀ {i} {A : Type i} → (⊥ → A)
⊥-rec = Empty-rec
Empty-is-prop : is-prop Empty
Empty-is-prop = Empty-elim
⊥-is-prop : is-prop ⊥
⊥-is-prop = Empty-is-prop
negated-equiv-Empty : ∀ {i} (A : Type i) → (¬ A) → (Empty ≃ A)
negated-equiv-Empty A notA = equiv Empty-elim
notA
(λ a → Empty-elim {P = λ _ → Empty-elim (notA a) == a} (notA a))
(Empty-elim {P = λ e → notA (Empty-elim e) == e})
| {
"alphanum_fraction": 0.4946070878,
"avg_line_length": 27.0416666667,
"ext": "agda",
"hexsha": "cc542e207cef68ddb83a5880208e89db9acaa4bc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Empty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Empty.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Empty.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 214,
"size": 649
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Sizes for Agda's sized types
------------------------------------------------------------------------
module Size where
postulate
Size : Set
Size<_ : Size → Set
↑_ : Size → Size
∞ : Size
{-# BUILTIN SIZE Size #-}
{-# BUILTIN SIZELT Size<_ #-}
{-# BUILTIN SIZESUC ↑_ #-}
{-# BUILTIN SIZEINF ∞ #-}
| {
"alphanum_fraction": 0.3696145125,
"avg_line_length": 23.2105263158,
"ext": "agda",
"hexsha": "992d44c32432d9627125ea04b3042f04e0b0a39b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Size.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Size.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Size.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 96,
"size": 441
} |
{-# OPTIONS --without-K #-}
module lib.Basics where
open import lib.Base public
open import lib.PathGroupoid public
open import lib.PathFunctor public
open import lib.NType public
open import lib.Equivalences public
open import lib.Univalence public
open import lib.Funext public
open import lib.PathOver public
| {
"alphanum_fraction": 0.8121019108,
"avg_line_length": 24.1538461538,
"ext": "agda",
"hexsha": "f4c31254d9a028f1ae85b8001f364bc1ce210202",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sattlerc/HoTT-Agda",
"max_forks_repo_path": "lib/Basics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sattlerc/HoTT-Agda",
"max_issues_repo_path": "lib/Basics.agda",
"max_line_length": 35,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "sattlerc/HoTT-Agda",
"max_stars_repo_path": "lib/Basics.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 72,
"size": 314
} |
-- Andreas, 2011-04-14
-- {-# OPTIONS -v tc.cover:20 -v tc.lhs.unify:20 #-}
-- Jesper, 2016-06-23: should also work --cubical-compatible
{-# OPTIONS --cubical-compatible #-}
module Issue291-1775 where
-- Example by Ulf
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data _≡_ {A : Set}(a : A) : A -> Set where
refl : a ≡ a
-- since 'n' occurs stronly rigid in 'suc n', the type 'n ≡ suc n' is empty
h : (n : Nat) -> n ≡ suc n -> Nat
h n ()
-- Example by [email protected]
data Type : Set where
₁ : Type
_×_ : Type → Type → Type
_+_ : Type → Type → Type
data Fun : Type → Type → Set where
_∙_ : ∀ {s t u} → Fun t u → Fun s t → Fun s u
π₁ : ∀ {s t} → Fun (s × t) s
π₂ : ∀ {s t} → Fun (s × t) t
ι₁ : ∀ {s t} → Fun s (s + t)
ι₂ : ∀ {s t} → Fun t (s + t)
data Val : (t : Type) → Fun ₁ t → Set where
Valι₁ : ∀ {s t V} → Val s V → Val (s + t) (ι₁ ∙ V)
Valι₂ : ∀ {s t V} → Val t V → Val (s + t) (ι₂ ∙ V)
data ⊥ : Set where
-- should succeed:
¬Valπ₁ : ∀ {s t : Type} {M : Fun ₁ (s × t)} → Val s (π₁ ∙ M) → ⊥
¬Valπ₁ ()
{- OLD ERROR:
Val .s (π₁ ∙ .M) should be empty, but it isn't obvious that it is.
when checking that the clause ¬Valπ₁ () has type
{s t : Type} {M : Fun ₁ (s × t)} → Val s (π₁ ∙ M) → ⊥
-}
| {
"alphanum_fraction": 0.5247603834,
"avg_line_length": 25.04,
"ext": "agda",
"hexsha": "940e64d8ab3c81ec6422fb2be1e5a4561d13f9d0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue291-1775.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue291-1775.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue291-1775.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 528,
"size": 1252
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
open import lib.types.Group
open import lib.types.Sigma
open import lib.types.Pi
open import lib.types.Truncation
open import lib.types.SetQuotient
open import lib.groups.Homomorphism
open import lib.groups.Subgroup
open import lib.groups.SubgroupProp
module lib.groups.QuotientGroup where
module _ {i j} {G : Group i} (P : NormalSubgroupProp G j) where
private
module G = Group G
module P = NormalSubgroupProp P
infix 80 _⊙_
_⊙_ = G.comp
quot-group-rel : Rel G.El j
quot-group-rel g₁ g₂ = P.prop (G.diff g₁ g₂)
quot-group-struct : GroupStructure (SetQuot quot-group-rel)
quot-group-struct = record {M} where
module M where
ident : SetQuot quot-group-rel
ident = q[ G.ident ]
abstract
inv-rel : ∀ {g₁ g₂ : G.El} (pg₁g₂⁻¹ : P.prop (G.diff g₁ g₂))
→ q[ G.inv g₁ ] == q[ G.inv g₂ ] :> SetQuot quot-group-rel
inv-rel {g₁} {g₂} pg₁g₂⁻¹ = ! $ quot-rel $
transport! (λ g → P.prop (G.inv g₂ ⊙ g))
(G.inv-inv g₁) $ P.comm g₁ (G.inv g₂) pg₁g₂⁻¹
inv : SetQuot quot-group-rel → SetQuot quot-group-rel
inv = SetQuot-rec SetQuot-level (λ g → q[ G.inv g ]) inv-rel
abstract
comp-rel-r : ∀ g₁ {g₂ g₂' : G.El} (pg₂g₂'⁻¹ : P.prop (G.diff g₂ g₂'))
→ q[ g₁ ⊙ g₂ ] == q[ g₁ ⊙ g₂' ] :> SetQuot quot-group-rel
comp-rel-r g₁ {g₂} {g₂'} pg₂g₂'⁻¹ = quot-rel $ transport P.prop
( ap (_⊙ G.inv g₁) (! $ G.assoc g₁ g₂ (G.inv g₂'))
∙ G.assoc (g₁ ⊙ g₂) (G.inv g₂') (G.inv g₁)
∙ ap ((g₁ ⊙ g₂) ⊙_) (! $ G.inv-comp g₁ g₂'))
(P.conj g₁ pg₂g₂'⁻¹)
comp' : G.El → SetQuot quot-group-rel → SetQuot quot-group-rel
comp' g₁ = SetQuot-rec SetQuot-level (λ g₂ → q[ g₁ ⊙ g₂ ]) (comp-rel-r g₁)
abstract
comp-rel-l : ∀ {g₁ g₁' : G.El} (pg₁g₁'⁻¹ : P.prop (G.diff g₁ g₁')) g₂
→ q[ g₁ ⊙ g₂ ] == q[ g₁' ⊙ g₂ ] :> SetQuot quot-group-rel
comp-rel-l {g₁} {g₁'} pg₁g₁'⁻¹ g₂ = quot-rel $ transport! P.prop
( ap ((g₁ ⊙ g₂) ⊙_) (G.inv-comp g₁' g₂)
∙ ! (G.assoc (g₁ ⊙ g₂) (G.inv g₂) (G.inv g₁') )
∙ ap (_⊙ G.inv g₁')
( G.assoc g₁ g₂ (G.inv g₂)
∙ ap (g₁ ⊙_) (G.inv-r g₂)
∙ G.unit-r g₁))
pg₁g₁'⁻¹
comp'-rel : ∀ {g₁ g₁' : G.El} (pg₁g₁'⁻¹ : P.prop (G.diff g₁ g₁'))
→ comp' g₁ == comp' g₁'
comp'-rel pg₁g₁'⁻¹ = λ= $ SetQuot-elim
(λ _ → =-preserves-set SetQuot-level)
(comp-rel-l pg₁g₁'⁻¹)
(λ _ → prop-has-all-paths-↓ (SetQuot-level _ _))
comp : SetQuot quot-group-rel → SetQuot quot-group-rel → SetQuot quot-group-rel
comp = SetQuot-rec (→-is-set SetQuot-level) comp' comp'-rel
abstract
unit-l : ∀ g → comp ident g == g
unit-l = SetQuot-elim
(λ _ → =-preserves-set SetQuot-level)
(ap q[_] ∘ G.unit-l)
(λ _ → prop-has-all-paths-↓ (SetQuot-level _ _))
assoc : ∀ g₁ g₂ g₃ → comp (comp g₁ g₂) g₃ == comp g₁ (comp g₂ g₃)
assoc = SetQuot-elim
(λ _ → Π-is-set λ _ → Π-is-set λ _ → =-preserves-set SetQuot-level)
(λ g₁ → SetQuot-elim
(λ _ → Π-is-set λ _ → =-preserves-set SetQuot-level)
(λ g₂ → SetQuot-elim
(λ _ → =-preserves-set SetQuot-level)
(λ g₃ → ap q[_] $ G.assoc g₁ g₂ g₃)
(λ _ → prop-has-all-paths-↓ (SetQuot-level _ _)))
(λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → SetQuot-level _ _)))
(λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → Π-is-prop λ _ → SetQuot-level _ _))
inv-l : ∀ g → comp (inv g) g == ident
inv-l = SetQuot-elim
(λ _ → =-preserves-set SetQuot-level)
(ap q[_] ∘ G.inv-l)
(λ _ → prop-has-all-paths-↓ (SetQuot-level _ _))
QuotGroup : Group (lmax i j)
QuotGroup = group _ SetQuot-level quot-group-struct
{- helper functions -}
module _ {i j} {G : Group i} {P : NormalSubgroupProp G j} where
private
module G = Group G
module P = NormalSubgroupProp P
infix 80 _⊙_
_⊙_ = G.comp
q[_]ᴳ : G →ᴳ QuotGroup P
q[_]ᴳ = group-hom q[_] λ _ _ → idp
quot-relᴳ : ∀ {g₁ g₂} → P.prop (G.diff g₁ g₂) → q[ g₁ ] == q[ g₂ ]
quot-relᴳ {g₁} {g₂} = quot-rel {R = quot-group-rel P} {a₁ = g₁} {a₂ = g₂}
private
abstract
quot-group-rel-is-refl : is-refl (quot-group-rel P)
quot-group-rel-is-refl g = transport! P.prop (G.inv-r g) P.ident
quot-group-rel-is-sym : is-sym (quot-group-rel P)
quot-group-rel-is-sym {g₁} {g₂} pg₁g₂⁻¹ =
transport P.prop (G.inv-comp g₁ (G.inv g₂) ∙ ap (_⊙ G.inv g₁) (G.inv-inv g₂)) (P.inv pg₁g₂⁻¹)
quot-group-rel-is-trans : is-trans (quot-group-rel P)
quot-group-rel-is-trans {g₁} {g₂} {g₃} pg₁g₂⁻¹ pg₂g₃⁻¹ =
transport P.prop
( G.assoc g₁ (G.inv g₂) (g₂ ⊙ G.inv g₃)
∙ ap (g₁ ⊙_) ( ! (G.assoc (G.inv g₂) g₂ (G.inv g₃))
∙ ap (_⊙ G.inv g₃) (G.inv-l g₂)
∙ G.unit-l (G.inv g₃)))
(P.comp pg₁g₂⁻¹ pg₂g₃⁻¹)
quot-relᴳ-equiv : {g₁ g₂ : G.El} → P.prop (g₁ ⊙ G.inv g₂) ≃ (q[ g₁ ] == q[ g₂ ])
quot-relᴳ-equiv = quot-rel-equiv {R = quot-group-rel P} (P.level _)
quot-group-rel-is-refl
quot-group-rel-is-sym
quot-group-rel-is-trans
module QuotGroup {i j} {G : Group i} (P : NormalSubgroupProp G j)
where
grp = QuotGroup P
open Group grp public
module _ {i j k} {G : Group i}
(P : SubgroupProp G j) (Q : NormalSubgroupProp G k) where
quot-of-sub : NormalSubgroupProp (Subgroup P) k
quot-of-sub = Q ∘nsubᴳ Subgroup.inject P
{- interactions between quotients and subgroups (work in progress) -}
{- So far not used.
-- QuotGroup rel-over-sub ≃ᴳ Subgroup prop-over-quot
module _ {i j k} {G : Group i}
(Q : NormalSubgroupProp G j) (P : SubgroupProp G k)
(prop-respects-quot : NormalSubgroupProp.subgrp-prop Q ⊆ᴳ P) where
private
module G = Group G
module Q = NormalSubgroupProp Q
module P = SubgroupProp P
prop-over-quot : SubgroupProp (QuotGroup Q) k
prop-over-quot = record {M; diff = λ {g₁} {g₂} → M.diff' g₁ g₂} where
module M where
module QG = Group (QuotGroup Q)
private
abstract
prop'-rel : ∀ {g₁ g₂} (qg₁g₂⁻¹ : quot-group-rel Q g₁ g₂)
→ P.prop g₁ == P.prop g₂
prop'-rel {g₁} {g₂} qg₁g₂⁻¹ = ua $
equiv (λ pg₁ → transport P.prop
( ap (λ g → G.comp g g₁) (G.inv-comp g₁ (G.inv g₂))
∙ G.assoc (G.inv (G.inv g₂)) (G.inv g₁) g₁
∙ ap2 G.comp (G.inv-inv g₂) (G.inv-l g₁)
∙ G.unit-r g₂)
(P.comp (P.inv pg₁g₂⁻¹) pg₁))
(λ pg₂ → transport P.prop
( G.assoc g₁ (G.inv g₂) g₂
∙ ap (G.comp g₁) (G.inv-l g₂)
∙ G.unit-r g₁)
(P.comp pg₁g₂⁻¹ pg₂))
(λ _ → prop-has-all-paths (P.level g₂) _ _)
(λ _ → prop-has-all-paths (P.level g₁) _ _)
where pg₁g₂⁻¹ : P.prop (G.diff g₁ g₂)
pg₁g₂⁻¹ = prop-respects-quot (G.diff g₁ g₂) qg₁g₂⁻¹
prop' : Group.El (QuotGroup Q) → hProp k
prop' = SetQuot-rec
(hProp-is-set k)
(λ g → P.prop g , P.level g)
(nType=-out ∘ prop'-rel)
prop : QG.El → Type k
prop g' = fst (prop' g')
abstract
level : ∀ g' → is-prop (prop g')
level g' = snd (prop' g')
ident : prop q[ G.ident ]
ident = P.ident
abstract
diff' : ∀ g₁' g₂' → prop g₁' → prop g₂' → prop (QG.diff g₁' g₂')
diff' = SetQuot-elim
{P = λ g₁' → ∀ g₂' → prop g₁' → prop g₂' → prop (QG.diff g₁' g₂')}
(λ g₁' → Π-is-set λ g₂' → →-is-set $ →-is-set $ raise-level -1 (level (QG.diff g₁' g₂')))
(λ g₁ → SetQuot-elim (λ g₂' → →-is-set $ →-is-set $ raise-level -1 (level (QG.diff q[ g₁ ] g₂')))
(λ g₂ pg₁ pg₂ → P.diff pg₁ pg₂)
(λ {_} {g₂} _ → prop-has-all-paths-↓ (→-is-prop $ →-is-prop $ level q[ G.diff g₁ g₂ ])))
(λ {_} {g₁} _ → prop-has-all-paths-↓ (Π-is-prop λ g₂' → →-is-prop $ →-is-prop $ level (QG.diff q[ g₁ ] g₂')))
-}
| {
"alphanum_fraction": 0.530478955,
"avg_line_length": 37.5818181818,
"ext": "agda",
"hexsha": "4fa5ff20358c6897f425fd5ef0a4966548aa1f7b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/QuotientGroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/QuotientGroup.agda",
"max_line_length": 119,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/QuotientGroup.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3066,
"size": 8268
} |
-- Issue #2979 reported by Favonia on 2018-02-23
{-# OPTIONS --cubical-compatible --rewriting --confluence-check #-}
data _==_ {A : Set} (a : A) : A → Set where
idp : a == a
record Marked (A : Set) : Set where
constructor mark
field
unmark : A
open Marked
postulate
_↦_ : ∀ {A : Set} → A → A → Set
{-# BUILTIN REWRITE _↦_ #-}
postulate
A : Set
Q : (I : Marked A → Set) → Set
q : (I : Marked A → Set) (a : Marked A) → Q I
Q-elim : (I : Marked A → Set) {P : Q I → Set}
(q* : (a : Marked A) → P (q I a)) (x : Q I) → P x
Q-rec : (I : Marked A → Set) {B : Set} (q* : Marked A → B)
→ Q I → B
Q-rec-β : (I : Marked A → Set) {B : Set} (q* : Marked A → B)
→ (a : Marked A) → Q-rec I {B} q* (q I a) ↦ q* a
{-# REWRITE Q-rec-β #-}
p₀ : Marked A → Set
p₀ (mark a) = A
p₁ : Marked A → Set
p₁ (mark a) = A
q= : ∀ x → Q-rec p₀ (q p₀) x == Q-rec p₁ (q p₁) x
q= = Q-elim p₀ (λ _ → idp)
| {
"alphanum_fraction": 0.5082146769,
"avg_line_length": 24.0263157895,
"ext": "agda",
"hexsha": "7930dc5a93562dd40e02b87435f7373b6b1a3019",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue2979.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue2979.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue2979.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 400,
"size": 913
} |
module Printf where
open import Data.List hiding(_++_)
open import Data.String
open import Data.Unit
open import Data.Empty
open import Data.Char
open import Data.Product
open import Data.Nat.Show renaming (show to showNat)
open import Data.Nat
open import Function using (_∘_)
data ValidFormat : Set₁ where
argument : (A : Set) → (A → String) → ValidFormat
literal : Char → ValidFormat
data Format : Set₁ where
valid : List ValidFormat → Format
invalid : Format
parse : String → Format
parse s = parse′ [] (toList s)
where
parse′ : List ValidFormat → List Char → Format
parse′ l ('%' ∷ 's' ∷ fmt) = parse′ (argument String (λ x → x) ∷ l) fmt
parse′ l ('%' ∷ 'c' ∷ fmt) = parse′ (argument Char (λ x → fromList [ x ]) ∷ l) fmt
parse′ l ('%' ∷ 'd' ∷ fmt) = parse′ (argument ℕ showNat ∷ l) fmt
parse′ l ('%' ∷ '%' ∷ fmt) = parse′ (literal '%' ∷ l) fmt
parse′ l ('%' ∷ c ∷ fmt) = invalid
parse′ l (c ∷ fmt) = parse′ (literal c ∷ l) fmt
parse′ l [] = valid (reverse l)
Args : Format → Set
Args invalid = ⊥ → String
Args (valid (argument t _ ∷ r)) = t → (Args (valid r))
Args (valid (literal _ ∷ r)) = Args (valid r)
Args (valid []) = String
FormatArgs : String → Set
FormatArgs f = Args (parse f)
sprintf : (f : String) → FormatArgs f
sprintf = sprintf′ "" ∘ parse
where
sprintf′ : String → (f : Format) → Args f
sprintf′ accum invalid = λ t → ""
sprintf′ accum (valid []) = accum
sprintf′ accum (valid (argument _ s ∷ l)) = λ t → (sprintf′ (accum ++ s t) (valid l))
sprintf′ accum (valid (literal c ∷ l)) = sprintf′ (accum ++ fromList [ c ]) (valid l)
| {
"alphanum_fraction": 0.5727429557,
"avg_line_length": 33.4423076923,
"ext": "agda",
"hexsha": "9aaea8f15805e55be40709cf35b5e41f73c5a402",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z",
"max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ajnavarro/language-dataset",
"max_forks_repo_path": "data/github.com/liamoc/learn-you-an-agda/118c5d99819c6b3c3a5e1dedfc0078c4fa8c2ece/Printf.agda",
"max_issues_count": 91,
"max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ajnavarro/language-dataset",
"max_issues_repo_path": "data/github.com/liamoc/learn-you-an-agda/118c5d99819c6b3c3a5e1dedfc0078c4fa8c2ece/Printf.agda",
"max_line_length": 92,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ajnavarro/language-dataset",
"max_stars_repo_path": "data/github.com/liamoc/learn-you-an-agda/118c5d99819c6b3c3a5e1dedfc0078c4fa8c2ece/Printf.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z",
"num_tokens": 528,
"size": 1739
} |
module Imports.Issue958 where
postulate FunctorOps : Set
module FunctorOps (ops : FunctorOps) where
postulate map : Set
postulate IsFunctor : Set
module IsFunctor (fun : IsFunctor) where
postulate ops : FunctorOps
open FunctorOps ops public
| {
"alphanum_fraction": 0.78,
"avg_line_length": 20.8333333333,
"ext": "agda",
"hexsha": "37731c1139048a044f97db448332804b65aae03b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Imports/Issue958.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Imports/Issue958.agda",
"max_line_length": 42,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Imports/Issue958.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 69,
"size": 250
} |
module Okasaki where
open import Data.Bool using (Bool; true; false) renaming (T to So; not to ¬)
open import Data.Nat hiding (_<_; _≤_; _≟_; compare)
renaming (decTotalOrder to ℕ-DTO)
open import Relation.Binary hiding (_⇒_)
module RBTree {a ℓ}(order : StrictTotalOrder a ℓ ℓ) where
open module sto = StrictTotalOrder order
A = Carrier
pattern LT = tri< _ _ _
pattern EQ = tri≈ _ _ _
pattern GT = tri> _ _ _
_≤_ = compare
data Color : Set where
R B : Color
_=ᶜ_ : Color → Color → Bool
R =ᶜ R = true
B =ᶜ B = true
_ =ᶜ _ = false
Height = ℕ
data Tree : Set a where
E : Tree
T : Color → Tree → A → Tree → Tree
set = Tree
empty : set
empty = E
member : A → set → Bool
member x E = false
member x (T _ a y b) with x ≤ y
... | LT = member x a
... | EQ = true
... | GT = member x b
insert : A → set → set
insert x s = makeBlack (ins s)
where
balance : Color → set → A → set → set
balance B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d)
balance B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d)
balance B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d)
balance B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d)
balance color a x b = T color a x b
ins : set → set
ins E = T R E x E
ins (T color a y b) with x ≤ y
... | LT = balance color (ins a) y b
... | EQ = T color a y b
... | GT = balance color a y (ins b)
makeBlack : set → set
makeBlack E = E
makeBlack (T _ a y b) = T B a y b
| {
"alphanum_fraction": 0.5334166146,
"avg_line_length": 23.5441176471,
"ext": "agda",
"hexsha": "26621045dea82ff3322b71b93632bc450913ead1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "72e0989445760f63b9422ce5e0f8956d7f58d578",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "toonn/sciartt",
"max_forks_repo_path": "Okasaki.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "72e0989445760f63b9422ce5e0f8956d7f58d578",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "toonn/sciartt",
"max_issues_repo_path": "Okasaki.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "72e0989445760f63b9422ce5e0f8956d7f58d578",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "toonn/sciartt",
"max_stars_repo_path": "Okasaki.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 593,
"size": 1601
} |
module _ where
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_)
open import Agda.Builtin.Unit
open import Agda.Builtin.Equality
variable
A B : Set
x y : A
xs : List A
infix 3 _∈_
data _∈_ {A : Set} (x : A) : List A → Set where
zero : x ∈ x ∷ xs
suc : x ∈ xs → x ∈ y ∷ xs
pattern vArg x = arg (arg-info visible relevant) x
search : Nat → Term → Term → TC ⊤
search zero i hole = typeError (strErr "Not found" ∷ [])
search (suc n) i hole = do
catchTC (noConstraints (unify hole i))
(search n (con (quote _∈_.suc) (vArg i ∷ [])) hole)
findElem : Nat → Term → TC ⊤
findElem depth hole = search depth (con (quote _∈_.zero) []) hole
index : (x : A) (xs : List A) {@(tactic findElem 10) i : x ∈ xs} → Nat
index x xs {zero} = zero
index x xs {suc i} = suc (index x _ {i})
test₁ : index 3 (1 ∷ 2 ∷ 3 ∷ []) ≡ 2
test₁ = refl
test₂ : index x (y ∷ x ∷ x ∷ []) ≡ 1
test₂ = refl
| {
"alphanum_fraction": 0.613800206,
"avg_line_length": 24.275,
"ext": "agda",
"hexsha": "be1d161f3695beafbf274eb9d4164a7c4a0d9405",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/ListElemTactic.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/ListElemTactic.agda",
"max_line_length": 70,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/ListElemTactic.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 366,
"size": 971
} |
module Data.List.Proofs.Length where
import Lvl
open import Functional
open import Function.Names as Names using (_⊜_)
open import Data.Boolean
open import Data.List as List
open import Data.List.Functions
open import Logic
open import Logic.Propositional
open import Numeral.Finite
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Function.Multi
open import Structure.Operator.Properties
open import Structure.Operator
open import Structure.Relator.Properties
open import Syntax.Transitivity
open import Type
private variable ℓ ℓₑ : Lvl.Level
private variable T A B : Type{ℓ}
private variable l l₁ l₂ : List(T)
private variable a b x : T
private variable n : ℕ
private variable f : A → B
private variable P : List(T) → Stmt{ℓ}
-- TODO: Almost all of these can use Preserving instead
length-[∅] : (length(∅ {T = T}) ≡ 0)
length-[∅] = [≡]-intro
length-singleton : (length{T = T}(singleton(a)) ≡ 1)
length-singleton = [≡]-intro
instance
length-preserves-prepend : Preserving₁(length)(a ⊰_)(𝐒)
Preserving.proof (length-preserves-prepend {a = a}) {x} = [≡]-intro
length-postpend : ((length ∘ postpend a) ⊜ (𝐒 ∘ length))
length-postpend {x = l} = List.elim [≡]-intro (\x l → [≡]-with(𝐒) {length(postpend _ l)}{𝐒(length l)}) l
instance
length-preserves-postpend : Preserving₁(length)(postpend a)(𝐒)
Preserving.proof (length-preserves-postpend {a = a}) {x} = length-postpend {a = a}{x = x}
length-[++] : (length{T = T}(l₁ ++ l₂) ≡ length(l₁) + length(l₂))
length-[++] {T = T} {l₁ = l₁} {l₂} = List.elim base next l₁ where
base : length(∅ ++ l₂) ≡ length{T = T}(∅) + length(l₂)
base = symmetry(_≡_) (identityₗ(_+_)(0))
next : ∀(x)(l) → (length(l ++ l₂) ≡ length(l) + length(l₂)) → (length((x ⊰ l) ++ l₂) ≡ length(x ⊰ l) + length(l₂))
next x l stmt =
length((x ⊰ l) ++ l₂) 🝖[ _≡_ ]-[]
length(x ⊰ (l ++ l₂)) 🝖[ _≡_ ]-[]
𝐒(length(l ++ l₂)) 🝖[ _≡_ ]-[ [≡]-with(𝐒) stmt ]
𝐒(length(l) + length(l₂)) 🝖[ _≡_ ]-[ [+]-stepₗ {length(l)} {length(l₂)} ]
𝐒(length(l)) + length(l₂) 🝖[ _≡_ ]-[]
length(x ⊰ l) + length(l₂) 🝖-end
instance
length-preserves-[++] : Preserving₂(length{T = T})(_++_)(_+_)
Preserving.proof length-preserves-[++] {l₁} {l₂} = length-[++] {l₁ = l₁} {l₂ = l₂}
length-reverse : ((length{T = T} ∘ reverse) ⊜ length)
length-reverse {x = ∅} = [≡]-intro
length-reverse {x = x ⊰ l} = length-postpend{a = x}{x = reverse l} 🝖 [≡]-with(𝐒) (length-reverse {x = l})
instance
length-preserves-reverse : Preserving₁(length{T = T})(reverse)(id)
Preserving.proof length-preserves-reverse {l} = length-reverse {x = l}
length-repeat : ((length{T = T} ∘ repeat(a)) ⊜ id)
length-repeat{T = T}{x = 𝟎} = [≡]-intro
length-repeat{T = T}{x = 𝐒(n)} = [≡]-with(𝐒) (length-repeat{T = T}{x = n})
length-tail : ((length{T = T} ∘ tail) ⊜ (𝐏 ∘ length))
length-tail{x = ∅} = [≡]-intro
length-tail{x = _ ⊰ l} = [≡]-intro
instance
length-preserves-tail : Preserving₁(length{T = T})(tail)(𝐏)
Preserving.proof length-preserves-tail {l} = length-tail {x = l}
length-map : ∀{f : A → B} → ((length ∘ map f) ⊜ length)
length-map {f = f}{x = ∅} = [≡]-intro
length-map {f = f}{x = x ⊰ l} = [≡]-with(𝐒) (length-map {f = f}{x = l})
instance
length-preserves-map : Preserving₁(length{T = T})(map f)(id)
Preserving.proof (length-preserves-map {f = f}) {l} = length-map {f = f}{x = l}
length-foldᵣ : ∀{init}{f}{g} → (∀{x}{l} → (length(f x l) ≡ g x (length l))) → (length{T = T}(foldᵣ f init l) ≡ foldᵣ g (length init) l)
length-foldᵣ {l = ∅} _ = [≡]-intro
length-foldᵣ {l = x ⊰ l} {init} {f} {g} p =
length(foldᵣ f init (x ⊰ l)) 🝖[ _≡_ ]-[]
length(f(x) (foldᵣ f init l)) 🝖[ _≡_ ]-[ p ]
g(x) (length(foldᵣ f init l)) 🝖[ _≡_ ]-[ [≡]-with(g(x)) (length-foldᵣ {l = l} {init} {f} {g} p) ]
g(x) (foldᵣ g (length init) l) 🝖[ _≡_ ]-[]
foldᵣ g (length init) (x ⊰ l) 🝖-end
length-concatMap : ∀{f} → (length{T = T}(concatMap f l) ≡ foldᵣ((_+_) ∘ length ∘ f) 𝟎 l)
length-concatMap {l = l} {f} = length-foldᵣ{l = l}{init = ∅}{f = (_++_) ∘ f} \{x l} → length-[++] {l₁ = f(x)}{l₂ = l}
length-accumulateIterate₀ : ∀{n}{f}{init : T} → (length(accumulateIterate₀ n f init) ≡ n)
length-accumulateIterate₀ {n = 𝟎} = [≡]-intro
length-accumulateIterate₀ {n = 𝐒 n}{f} = [≡]-with(𝐒) (length-accumulateIterate₀ {n = n}{f})
length-[++^] : (length(l ++^ n) ≡ length(l) ⋅ n)
length-[++^] {l = l}{𝟎} = [≡]-intro
length-[++^] {l = l}{𝐒(n)} =
length-[++] {l₁ = l}{l ++^ n}
🝖 [≡]-with(expr ↦ length(l) + expr) (length-[++^] {l = l}{n})
length-isEmpty : (length(l) ≡ 0) ↔ (isEmpty(l) ≡ 𝑇)
length-isEmpty {l = ∅} = [↔]-intro (const [≡]-intro) (const [≡]-intro)
length-isEmpty {l = x ⊰ L} = [↔]-intro (\()) (\())
instance
length-preserves-insert : Preserving₁(length)(insert n x)(𝐒)
Preserving.proof (length-preserves-insert {n = n}) = proof{n = n} where
proof : ∀{n} → (length(insert n x l) ≡ 𝐒(length l))
proof {l = _} {n = 𝟎} = [≡]-intro
proof {l = ∅} {n = 𝐒 n} = [≡]-intro
proof {x = x} {l = y ⊰ l} {n = 𝐒 n} rewrite proof {x = x} {l = l} {n = n} = [≡]-intro
length-insertIn : ∀{n} → (length(insertIn x l n) ≡ 𝐒(length l))
length-insertIn {l = _} {n = 𝟎} = [≡]-intro
length-insertIn {l = ∅} {n = 𝐒 n} = [≡]-intro
length-insertIn {x = x} {l = y ⊰ l} {n = 𝐒 n} rewrite length-insertIn {x = x} {l = l} {n = n} = [≡]-intro
| {
"alphanum_fraction": 0.5805691499,
"avg_line_length": 40.8666666667,
"ext": "agda",
"hexsha": "4de291d84bf8863170d6ff044b4e7af5444955d4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List/Proofs/Length.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List/Proofs/Length.agda",
"max_line_length": 135,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List/Proofs/Length.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2206,
"size": 5517
} |
-- We show Gausssian Integers forms an Euclidean domain. The proofs
-- are straightforward.
{-# OPTIONS --without-K --safe #-}
module GauInt.EucDomain where
-- imports from local.
-- Hiding the usual div and mod function. We will the new instance in
-- Integer.EucDomain2
import Instances hiding (DMℤ)
open Instances
open import Integer.EucDomain2
renaming (div' to divℤ ; mod' to modℤ ; euc-eq' to euc-eqℤ ; euc-rank' to euc-rankℤ)
open import Integer.Properties
open import GauInt.Base
using (𝔾 ; _+_i ; _ᶜ ; Re ; Im ; _+0i ; _+0i' ; 0𝔾 ; 1𝔾)
open import GauInt.Properties
open import GauInt.Instances
-- imports from stdlib and Agda.
open import Relation.Nullary using (yes ; no ; ¬_)
open import Relation.Binary.PropositionalEquality
open import Data.Product as P using (_×_ ; _,_ ; proj₁ ; proj₂)
open import Data.Sum as S renaming ([_,_]′ to ⊎-elim)
open import Data.Nat as Nat using (ℕ ; suc ; zero ; z≤n)
import Data.Nat.Properties as NatP
open import Data.Integer as Int
using (0ℤ ; +0 ; +_ ; _≥_ ; +≤+ ; +[1+_] ; -[1+_] ; ℤ ; ∣_∣)
import Data.Integer.Properties as IntP
import Data.Nat.Solver as NS
import Data.Integer.Solver as IS
import GauInt.Solver as GS
open import Algebra.Properties.Ring +-*-ring
open import Algebra.Definitions (_≡_ {A = 𝔾}) using (AlmostLeftCancellative)
open import Function.Base using (_$_)
-- ----------------------------------------------------------------------
-- Euclidean Structure on 𝔾
-- As explained in the imports part, we will use the div and mod
-- function defined in Integer.EucDomain2.
-- A special case when the divisor is a positive natural number. The proof:
-- Let x = a + b i, and y = d. By integer euc-eq and euc-rank we have
-- step-a : a = ra + qa * d, with rank ra ≤ d / 2.
-- step-b : b = rb + qb * d, with rank rb ≤ d / 2.
-- We let q = qa + qb i, r = ra + rb i. Easy to check that
-- eq : x = r + q y. Slightly harder to check
-- le : rank r ≤ d / 2 (see below).
div' : 𝔾 -> (d : ℕ) -> ¬ d ≡ 0# -> 𝔾
div' n zero n0 with n0 refl
... | ()
div' (a + b i) d@(suc e) n0 = qa + qb i
where
qa = a / + d
qb = b / + d
mod' : 𝔾 -> (d : ℕ) -> ¬ d ≡ 0# -> 𝔾
mod' n zero n0 with n0 refl
... | ()
mod' (a + b i) d@(suc e) n0 = ra + rb i
where
ra = a % + d
rb = b % + d
div : (x y : 𝔾) -> ¬ y ≡ 0# -> 𝔾
div x y n0 = div' (x * y ᶜ) y*yᶜ n0'
where
y*yᶜ : ℕ
y*yᶜ = rank y
n0' : ¬ rank y ≡ 0#
n0' = y≠0#⇒rank≠0 n0
mod : (x y : 𝔾) -> ¬ y ≡ 0# -> 𝔾
mod x y n0 = (x - q * y)
where
q = div x y n0
-- ----------------------------------------------------------------------
-- euc-eq and euc-rank property for div' and mod'
-- Dividend = reminder + quotient * divisor.
euc-eq' : ∀ (x : 𝔾) (d : ℕ) (n0 : ¬ d ≡ 0) ->
let r = mod' x d n0 in let q = div' x d n0 in
x ≡ r + q * (d +0i)
euc-eq' n zero n0 with n0 refl
... | ()
euc-eq' x@(a + b i) d@(suc e) n0 = eq
where
-- setting up q and r.
n0' : ¬ + d ≡ 0#
n0' p = n0 (IntP.+-injective p)
qa = a / + d
qb = b / + d
ra = a % + d
rb = b % + d
ea : a ≡ ra + qa * + d
ea = euc-eqℤ a (+ d) n0'
eb : b ≡ rb + qb * + d
eb = euc-eqℤ b (+ d) n0'
q : 𝔾
q = qa + qb i
r : 𝔾
r = ra + rb i
-- Inject natural number d to Gaussian integer.
y = d +0i
-- Proving x = r + q * y.
eq : x ≡ r + q * y
eq = begin
x ≡⟨ refl ⟩
a + b i ≡⟨ cong (λ x -> x + b i) ea ⟩
(ra + qa * (+ d)) + b i ≡⟨ cong (λ x -> (ra + qa * (+ d)) + x i) eb ⟩
(ra + qa * (+ d)) + (rb + qb * (+ d)) i ≡⟨ refl ⟩
(ra + rb i) + ((qa * (+ d)) + (qb * (+ d)) i) ≡⟨ cong (λ x → (ra + rb i) + ((qa * (+ d)) + x i)) ((solve 3 (λ qa d qb → qb :* d := qa :* con 0ℤ :+ qb :* d) refl) qa (+ d) qb) ⟩
(ra + rb i) + ((qa * (+ d)) + (qa * 0ℤ + qb * (+ d)) i) ≡⟨ cong (λ x → (ra + rb i) + (x + (qa * 0ℤ + qb * (+ d)) i)) ((solve 3 (λ qa d qb → qa :* d := qa :* d :- qb :* con 0ℤ) refl) qa (+ d) qb) ⟩
(ra + rb i) + ((qa * (+ d) - qb * 0ℤ) + (qa * 0ℤ + qb * (+ d)) i) ≡⟨ refl ⟩
(ra + rb i) + (qa + qb i) * y ≡⟨ refl ⟩
r + q * y ∎
where
open IS.+-*-Solver
open ≡-Reasoning
-- rank r < rank (inj d)
euc-rank' : ∀ (x : 𝔾) (d : ℕ) (n0 : ¬ d ≡ 0) ->
let r = mod' x d n0 in let q = div' x d n0 in
rank r < rank (d +0i)
euc-rank' n zero n0 with n0 refl
... | ()
euc-rank' x@(a + b i) d@(suc e) n0 = le
where
-- setting up q and r.
n0' : ¬ + d ≡ 0#
n0' p = n0 (IntP.+-injective p)
r : 𝔾
r = mod' x d n0
ra = Re r
rb = Im r
q : 𝔾
q = div' x d n0
qa = Re q
qb = Im q
lea : ∣ ra ∣ ≤ d / 2
lea = euc-rankℤ a (+ d) n0'
leb : ∣ rb ∣ ≤ d / 2
leb = euc-rankℤ b (+ d) n0'
y = d +0i
-- Proving rank r < rank y.
-- Some auxillary lemmas.
lem1 : ∀ {d : ℕ} -> d / 2 + d / 2 ≤ d
lem1 {d} = begin
d / 2 + d / 2 ≡⟨ solve 1 (λ x → x :+ x := x :* con 2) refl (d / 2) ⟩
d / 2 * 2 ≤⟨ NatP.m≤n+m (d / 2 * 2) (d % 2) ⟩
d % 2 + d / 2 * 2 ≡⟨ (sym $ NatESR.euc-eq d 2 (λ ())) ⟩
d ∎
where
open NatP.≤-Reasoning
open NS.+-*-Solver
lem2 : ∀ {d : Nat.ℕ} -> d / 2 ≤ d
lem2 {d} = begin
d / 2 ≤⟨ NatP.m≤n+m (d / 2) (d / 2) ⟩
d / 2 + d / 2 ≤⟨ lem1 {d} ⟩
d ∎
where
open NatP.≤-Reasoning
open NS.+-*-Solver
lem2-strict : ∀ {d : Nat.ℕ} .{{_ : NonZero d}} -> (d / 2) < d
lem2-strict {x@(suc d)} with x / 2 Nat.≟ 0
... | no ¬p = begin-strict
x / 2 <⟨ NatP.m<n+m (x / 2) x/2>0 ⟩
x / 2 + x / 2 ≤⟨ lem1 {x} ⟩
x ∎
where
open NatP.≤-Reasoning
open NS.+-*-Solver
open import Relation.Binary.Definitions
open import Data.Empty
x/2>0 : 0 < (x / 2)
x/2>0 with NatP.<-cmp 0 (x / 2)
... | tri< a ¬b ¬c = a
... | tri≈ ¬a b ¬c = ⊥-elim (¬p (sym b))
... | yes p rewrite p = Nat.s≤s Nat.z≤n
lem3 : rank y ≡ d * d
lem3 = begin
rank y ≡⟨ refl ⟩
∣ (+ d) * (+ d) + 0ℤ * 0ℤ ∣ ≡⟨ cong ∣_∣ (solve 1 (λ x → x :* x :+ con 0ℤ :* con 0ℤ := x :* x) refl (+ d)) ⟩
∣ (+ d) * (+ d) ∣ ≡⟨ IntP.abs-*-commute (+ d) (+ d) ⟩
∣ (+ d) ∣ * ∣ (+ d) ∣ ≡⟨ refl ⟩
d * d ∎
where
open IS.+-*-Solver
open ≡-Reasoning
-- The proof idea:
-- rank r = ∣ ra * ra + rb * rb ∣ = ∣ ra ∣ * ∣ ra ∣ + ∣ rb ∣ * ∣ rb ∣
-- ≤ d / 2 * d / 2 + d / 2 * d / 2 by the integer divmod property.
-- ≤ d * d
-- = rank y
le : rank r < rank y
le = begin-strict
rank r ≡⟨ refl ⟩
let (sa , sae) = (a*a=+b ra) in let (sb , sbe) = a*a=+b rb in
∣ ra * ra + rb * rb ∣ ≡⟨ tri-eq' ra rb ⟩
∣ ra * ra ∣ + ∣ rb * rb ∣ ≡⟨ cong₂ _+_ (IntP.abs-*-commute ra ra) (IntP.abs-*-commute rb rb) ⟩
∣ ra ∣ * ∣ ra ∣ + ∣ rb ∣ * ∣ rb ∣ ≤⟨ NatP.+-mono-≤ (NatP.*-mono-≤ lea lea) (NatP.*-mono-≤ leb leb) ⟩
(d / 2) * (d / 2) + (d / 2) * (d / 2) ≡⟨ solve 1 (λ x → (x :* x) :+ (x :* x) := x :* (x :+ x)) refl (d / 2) ⟩
(d / 2) * ((d / 2) + (d / 2)) ≤⟨ NatP.*-monoʳ-≤ (d / 2) lem1 ⟩
(d / 2) * d <⟨ NatP.*-monoˡ-< d (lem2-strict {d}) ⟩
d * d ≡⟨ sym lem3 ⟩
rank y ∎
where
open NatP.≤-Reasoning
open NS.+-*-Solver
-- ----------------------------------------------------------------------
-- euc-eq and euc-rank property for div and mod
-- This is the case when the divisor y = c + d i is an arbitrary
-- non-zero Gaussian integer. Easy to see rank y ᶜ = rank y = y * y
-- ᶜ = ∣ c * c + d * d ∣ ≠ 0. Notice that by the previous spcial
-- case (when the divisor is a positive natural number) we have
-- eq' : x * y ᶜ = r' + q' * (y * y ᶜ), and
-- le' : rank r' < rank (y * y ᶜ) = rank y * rank y ᶜ
-- (eq') ⇒ r' = x * y ᶜ - q' * (y * y ᶜ) = (x - q' * y) * y ᶜ
-- ⇒ eqr: rank r' = rank (x - q' * y) * rank y ᶜ
-- (le') & (eqr) ⇒ rank (x - q' * y) < rank y since rank y ᶜ ≠ 0.
-- So setting q = q', and r = x - q' * y as div and mod functions do,
-- then check the euc-rank property holds.
-- Dividend = reminder + quotient * divisor.
euc-eq : ∀ (x y : 𝔾) (n0 : ¬ y ≡ 0𝔾) ->
let r = mod x y n0 in let q = div x y n0 in
x ≡ r + q * y
euc-eq x y n0 = claim
where
-- Setting up r and q.
r : 𝔾
r = mod x y n0
q : 𝔾
q = div x y n0
claim : x ≡ (x - q * y) + q * y
claim = begin
x ≡⟨ solve 2 (\ x qy -> x := (x :- qy) :+ qy) refl x (q * y) ⟩
(x - q * y) + q * y ∎
where
open GS.+-*-Solver
open ≡-Reasoning
-- rank r < rank y.
euc-rank : ∀ (x y : 𝔾) (n0 : ¬ y ≡ 0#) ->
let r = mod x y n0 in let q = div x y n0 in
rank r < rank y
euc-rank x y n0 = claim
where
n0' : ¬ rank y ≡ 0#
n0' = y≠0#⇒rank≠0 n0
r : 𝔾
r = mod x y n0
q : 𝔾
q = div x y n0
eq : x ≡ r + q * y
eq = euc-eq x y n0
r' : 𝔾
r' = mod' (x * y ᶜ) (rank y) n0'
q' : 𝔾
q' = div' (x * y ᶜ) (rank y) n0'
eq' : x * y ᶜ ≡ r' + q' * (rank y +0i)
eq' = euc-eq' (x * y ᶜ) (rank y) n0'
le' : rank r' < rank (rank y +0i)
le' = euc-rank' (x * y ᶜ) (rank y) n0'
q=q' : q ≡ q'
q=q' = refl
-- eqr : rank r' = rank (x - q' * y) * rank y ᶜ ---- (3)
eqr : rank r' ≡ rank (x - q' * y) * rank (y ᶜ)
eqr = begin
rank r' ≡⟨ cong rank step ⟩
rank ((x - q' * y) * y ᶜ) ≡⟨ rank-*-commute (x - q * y) (y ᶜ) ⟩
rank (x - q' * y) * rank (y ᶜ) ∎
where
open ≡-Reasoning
step : r' ≡ (x - q' * y) * y ᶜ
step = begin
r' ≡⟨ solve 2 (λ r x → r := r :+ x :- x) refl r' (q' * (rank y +0i)) ⟩
r' + q' * (rank y +0i) - q' * (rank y +0i) ≡⟨ cong (_- q' * (rank y +0i)) (sym eq') ⟩
x * y ᶜ - q' * (rank y +0i) ≡⟨ cong (λ z → x * y ᶜ - q' * z) (sym $ y*yᶜ=rank {y}) ⟩
x * y ᶜ - q' * (y * y ᶜ) ≡⟨ solve 4 (\ x yc q y -> x :* yc :- q :* ( y :* yc) := (x :- q :* y) :* yc) refl x (y ᶜ) q' y ⟩
(x - q' * y) * y ᶜ ∎
where
open GS.+-*-Solver
open ≡-Reasoning
-- (le') & (eqr) ⇒ rank (x - q' * y) < rank y since rank y ᶜ ≠ 0.
claim : rank (x - q' * y) < rank y
claim = NatP.*-cancelʳ-< {rank (y ᶜ)} (rank (x - q * y)) (rank y) eqr'
where
eqr' : rank (x - q' * y) * rank (y ᶜ) < rank y * rank (y ᶜ)
eqr' = begin-strict
rank (x - q' * y) * rank (y ᶜ) ≡⟨ sym eqr ⟩
rank r' <⟨ le' ⟩
rank (rank y +0i) ≡⟨ cong rank (sym $ y*yᶜ=rank {y}) ⟩
rank (y * y ᶜ) ≡⟨ rank-*-commute y (y ᶜ) ⟩
rank y * rank (y ᶜ) ∎
where
open GS.+-*-Solver
open NatP.≤-Reasoning
-- ----------------------------------------------------------------------
-- 𝔾 is an Euclidean Domain.
import EuclideanDomain
open EuclideanDomain.Structures (_≡_ {A = 𝔾}) using (IsEuclideanDomain)
open EuclideanDomain.Bundles using (EuclideanDomainBundle)
+-*-isEuclideanDomain : IsEuclideanDomain _+_ _*_ -_ 0𝔾 1𝔾
+-*-isEuclideanDomain = record
{ isCommutativeRing = +-*-isCommutativeRing
; *-alc = *-alc-𝔾
; div = div
; mod = mod
; rank = rank
; euc-eq = euc-eq
; euc-rank = euc-rank
}
-- Bundle.
+-*-euclideanDomain : EuclideanDomainBundle _ _
+-*-euclideanDomain = record
{ isEuclideanDomain = +-*-isEuclideanDomain'
}
-- ----------------------------------------------------------------------
-- Making 𝔾 an DivMod instance, overloading div and mod.
-- Translation between two nonzeros.
nz𝔾 : ∀ (x : 𝔾) -> .{{NonZero x}} -> ¬ x ≡ 0#
nz𝔾 (+_ zero + +[1+ n ] i) {{n0}} i0 with i0
... | ()
instance
g-divmod : DivMod 𝔾
DivMod.NZT g-divmod = NZT𝔾
(g-divmod DivMod./ n) d = div n d (nz𝔾 d)
(g-divmod DivMod.% n) d = mod n d (nz𝔾 d)
| {
"alphanum_fraction": 0.4349573491,
"avg_line_length": 31.2615384615,
"ext": "agda",
"hexsha": "37c401c6122c6a4298898b1fd0bc9e342130339d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "onestruggler/EucDomain",
"max_forks_repo_path": "GauInt/EucDomain.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "onestruggler/EucDomain",
"max_issues_repo_path": "GauInt/EucDomain.agda",
"max_line_length": 205,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "onestruggler/EucDomain",
"max_stars_repo_path": "GauInt/EucDomain.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5056,
"size": 12192
} |
{-
Definition of various kinds of categories.
This library follows the UniMath terminology, that is:
Concept Ob C Hom C Univalence
Precategory Type Type No
Category Type Set No
Univalent Category Type Set Yes
This file also contains
- pathToIso : Turns a path between two objects into an isomorphism between them
- opposite categories
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Categories.Category where
open import Cubical.Core.Glue
open import Cubical.Foundations.Prelude
-- Precategories
record Precategory ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where
no-eta-equality
field
ob : Type ℓ
hom : ob → ob → Type ℓ'
idn : ∀ x → hom x x
seq : ∀ {x y z} (f : hom x y) (g : hom y z) → hom x z
seq-λ : ∀ {x y : ob} (f : hom x y) → seq (idn x) f ≡ f
seq-ρ : ∀ {x y} (f : hom x y) → seq f (idn y) ≡ f
seq-α : ∀ {u v w x} (f : hom u v) (g : hom v w) (h : hom w x) → seq (seq f g) h ≡ seq f (seq g h)
open Precategory public
-- Categories
record isCategory {ℓ ℓ'} (𝒞 : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where
field
homIsSet : ∀ {x y} → isSet (𝒞 .hom x y)
open isCategory public
-- Isomorphisms and paths in precategories
record CatIso {ℓ ℓ' : Level} {𝒞 : Precategory ℓ ℓ'} (x y : 𝒞 .ob) : Type ℓ' where
constructor catiso
field
h : 𝒞 .hom x y
h⁻¹ : 𝒞 .hom y x
sec : 𝒞 .seq h⁻¹ h ≡ 𝒞 .idn y
ret : 𝒞 .seq h h⁻¹ ≡ 𝒞 .idn x
pathToIso : {ℓ ℓ' : Level} {𝒞 : Precategory ℓ ℓ'} (x y : 𝒞 .ob) (p : x ≡ y) → CatIso {𝒞 = 𝒞} x y
pathToIso {𝒞 = 𝒞} x y p = J (λ z _ → CatIso x z) (catiso (𝒞 .idn x) idx (𝒞 .seq-λ idx) (𝒞 .seq-λ idx)) p
where
idx = 𝒞 .idn x
-- Univalent Categories
record isUnivalent {ℓ ℓ'} (𝒞 : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where
field
univ : (x y : 𝒞 .ob) → isEquiv (pathToIso {𝒞 = 𝒞} x y)
open isUnivalent public
-- Opposite Categories
_^op : ∀ {ℓ ℓ'} → Precategory ℓ ℓ' → Precategory ℓ ℓ'
(𝒞 ^op) .ob = 𝒞 .ob
(𝒞 ^op) .hom x y = 𝒞 .hom y x
(𝒞 ^op) .idn = 𝒞 .idn
(𝒞 ^op) .seq f g = 𝒞 .seq g f
(𝒞 ^op) .seq-λ = 𝒞 .seq-ρ
(𝒞 ^op) .seq-ρ = 𝒞 .seq-λ
(𝒞 ^op) .seq-α f g h = sym (𝒞 .seq-α _ _ _)
| {
"alphanum_fraction": 0.5773809524,
"avg_line_length": 26.313253012,
"ext": "agda",
"hexsha": "ae3727b3a91da96c51f4ca451d19ef0e8d329e10",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ayberkt/cubical",
"max_forks_repo_path": "Cubical/Categories/Category.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ayberkt/cubical",
"max_issues_repo_path": "Cubical/Categories/Category.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ayberkt/cubical",
"max_stars_repo_path": "Cubical/Categories/Category.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 940,
"size": 2184
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.NType2
open import lib.types.Nat
open import lib.types.TLevel
open import lib.types.Empty
open import lib.types.Pi
open import lib.types.Sigma
open import lib.types.Truncation
open import lib.types.Pointed
open import lib.types.Group
open import lib.types.LoopSpace
open import lib.groups.TruncationGroup
open import lib.groups.GroupProduct
open import lib.groups.Homomorphisms
open import lib.groups.Unit
module lib.groups.HomotopyGroup where
{- Higher homotopy groups -}
module _ {i} where
π : (n : ℕ) (t : n ≠ O) (X : Ptd i) → Group i
π n t X = Trunc-Group (Ω^-group-structure n t X)
fundamental-group : (X : Ptd i) → Group i
fundamental-group X = π 1 (ℕ-S≠O _) X
{- π_(n+1) of a space is π_n of its loop space -}
abstract
π-inner-iso : ∀ {i} (n : ℕ) (tn : n ≠ 0) (tsn : S n ≠ 0) (X : Ptd i)
→ π (S n) tsn X == π n tn (⊙Ω X)
π-inner-iso O tn tsn X = ⊥-rec (tn idp)
π-inner-iso (S n') tn' tn X = group-ua
(record {
f = Trunc-fmap (Ω^-inner-out n X);
pres-comp =
Trunc-elim (λ _ → Π-level (λ _ → =-preserves-level _ Trunc-level))
(λ p → Trunc-elim (λ _ → =-preserves-level _ Trunc-level)
(λ q → ap [_] (Ω^-inner-out-conc^ n tn' X p q)))} ,
is-equiv-Trunc ⟨0⟩ (Ω^-inner-out n X) (Ω^-inner-is-equiv n X))
where
n : ℕ
n = S n'
{- We can shift the truncation inside the loop in the definition of π -}
module _ {i} where
private
record Ω^Ts-PreIso (m : ℕ₋₂) (n : ℕ) (k : ℕ₋₂) (t : n ≠ O) (X : Ptd i)
: Type i where
field
F : fst (⊙Ω^ n (⊙Trunc k X) ⊙→ ⊙Trunc m (⊙Ω^ n X))
pres-comp : ∀ (p q : Ω^ n (⊙Trunc k X))
→ fst F (conc^ n t p q) == Trunc-fmap2 (conc^ n t) (fst F p) (fst F q)
e : is-equiv (fst F)
Ω^-Trunc-shift-preiso : (n : ℕ) (m : ℕ₋₂) (t : n ≠ O) (X : Ptd i)
→ Ω^Ts-PreIso m n ((n -2) +2+ m) t X
Ω^-Trunc-shift-preiso O m t X = ⊥-rec (t idp)
Ω^-Trunc-shift-preiso (S O) m _ X =
record { F = (–> (Trunc=-equiv [ snd X ] [ snd X ]) , idp);
pres-comp = Trunc=-∙-comm;
e = snd (Trunc=-equiv [ snd X ] [ snd X ]) }
Ω^-Trunc-shift-preiso (S (S n)) m t X =
let
r : Ω^Ts-PreIso (S m) (S n) ((S n -2) +2+ S m) (ℕ-S≠O _) X
r = Ω^-Trunc-shift-preiso (S n) (S m) (ℕ-S≠O _) X
H = (–> (Trunc=-equiv [ idp^ (S n) ] [ idp^ (S n) ]) , idp)
G = ap^ 1 (Ω^Ts-PreIso.F r)
in
transport (λ k → Ω^Ts-PreIso m (S (S n)) k t X)
(+2+-βr (S n -2) m)
(record {
F = H ⊙∘ G;
pres-comp = λ p q →
ap (fst H) (ap^-conc^ 1 (ℕ-S≠O _) (Ω^Ts-PreIso.F r) p q)
∙ (Trunc=-∙-comm (fst G p) (fst G q));
e = snd (Trunc=-equiv [ idp^ (S n) ] [ idp^ (S n) ]
∘e equiv-ap^ 1 (Ω^Ts-PreIso.F r) (Ω^Ts-PreIso.e r))})
π-Trunc-shift-iso : (n : ℕ) (t : n ≠ O) (X : Ptd i)
→ Ω^-Group n t (⊙Trunc ⟨ n ⟩ X) Trunc-level == π n t X
π-Trunc-shift-iso n t X = group-ua (group-hom (fst F) pres-comp , e)
where
n-eq : ∀ (n : ℕ) → (n -2) +2+ ⟨0⟩ == ⟨ n ⟩
n-eq O = idp
n-eq (S n) = ap S (n-eq n)
r = transport (λ k → Ω^Ts-PreIso ⟨0⟩ n k t X)
(n-eq n) (Ω^-Trunc-shift-preiso n ⟨0⟩ t X)
open Ω^Ts-PreIso r
abstract
π-below-trunc : ∀ {i} (n : ℕ) (t : n ≠ O) (m : ℕ₋₂) (X : Ptd i)
→ (⟨ n ⟩ ≤T m) → π n t (⊙Trunc m X) == π n t X
π-below-trunc n t m X lte =
π n t (⊙Trunc m X)
=⟨ ! (π-Trunc-shift-iso n t (⊙Trunc m X)) ⟩
Ω^-Group n t (⊙Trunc ⟨ n ⟩ (⊙Trunc m X)) Trunc-level
=⟨ lemma ⟩
Ω^-Group n t (⊙Trunc ⟨ n ⟩ X) Trunc-level
=⟨ π-Trunc-shift-iso n t X ⟩
π n t X ∎
where
lemma : Ω^-Group n t (⊙Trunc ⟨ n ⟩ (⊙Trunc m X)) Trunc-level
== Ω^-Group n t (⊙Trunc ⟨ n ⟩ X) Trunc-level
lemma = ap (uncurry $ Ω^-Group n t) $
pair=
(⊙ua (fuse-Trunc (fst X) ⟨ n ⟩ m) idp ∙
ap (λ k → ⊙Trunc k X) (minT-out-l lte))
(prop-has-all-paths-↓ has-level-is-prop)
π-above-trunc : ∀ {i} (n : ℕ) (t : n ≠ O) (m : ℕ₋₂) (X : Ptd i)
→ (m <T ⟨ n ⟩) → π n t (⊙Trunc m X) == 0ᴳ
π-above-trunc n t m X lt =
π n t (⊙Trunc m X)
=⟨ ! (π-Trunc-shift-iso n t (⊙Trunc m X)) ⟩
Ω^-Group n t (⊙Trunc ⟨ n ⟩ (⊙Trunc m X)) Trunc-level
=⟨ contr-is-0ᴳ _ $ inhab-prop-is-contr
(Group.ident (Ω^-Group n t (⊙Trunc ⟨ n ⟩ (⊙Trunc m X)) Trunc-level))
(Ω^-level-in ⟨-1⟩ n _ $ Trunc-preserves-level ⟨ n ⟩ $
raise-level-≤T
(transport (λ k → m ≤T k) (+2+-comm ⟨-1⟩ (n -2)) (<T-to-≤T lt))
(Trunc-level {n = m})) ⟩
0ᴳ ∎
π-above-level : ∀ {i} (n : ℕ) (t : n ≠ O) (m : ℕ₋₂) (X : Ptd i)
→ (m <T ⟨ n ⟩) → has-level m (fst X)
→ π n t X == 0ᴳ
π-above-level n t m X lt pX =
ap (π n t) (! (⊙ua (unTrunc-equiv _ pX) idp))
∙ π-above-trunc n t m X lt
{- πₙ(X × Y) == πₙ(X) × πₙ(Y) -}
module _ {i j} (n : ℕ) (t : n ≠ O) (X : Ptd i) (Y : Ptd j) where
π-× : π n t (X ⊙× Y) == π n t X ×ᴳ π n t Y
π-× =
group-ua (Trunc-Group-iso f pres-comp (is-eq f g f-g g-f))
∙ Trunc-Group-× _ _
where
f : Ω^ n (X ⊙× Y) → Ω^ n X × Ω^ n Y
f r = (fst (ap^ n ⊙fst) r , fst (ap^ n ⊙snd) r)
g : Ω^ n X × Ω^ n Y → Ω^ n (X ⊙× Y)
g = fst (ap2^ n (⊙idf _))
f-g : (s : Ω^ n X × Ω^ n Y) → f (g s) == s
f-g (p , q) = pair×=
(app= (ap fst (ap^-ap2^ n ⊙fst (⊙idf _) ∙ ap2^-fst n)) (p , q))
(app= (ap fst (ap^-ap2^ n ⊙snd (⊙idf _) ∙ ap2^-snd n)) (p , q))
g-f : (r : Ω^ n (X ⊙× Y)) → g (f r) == r
g-f = app= $ ap fst $
ap (λ h → h ⊙∘ ⊙diag) (ap2^-ap^ n (⊙idf _) ⊙fst ⊙snd)
∙ ap2^-diag n (⊙idf _ ⊙∘ pair⊙→ ⊙fst ⊙snd)
∙ ap^-idf n
pres-comp : (p q : Ω^ n (X ⊙× Y))
→ f (conc^ n t p q) == (conc^ n t (fst (f p)) (fst (f q)) ,
conc^ n t (snd (f p)) (snd (f q)))
pres-comp p q = pair×= (ap^-conc^ n t ⊙fst p q) (ap^-conc^ n t ⊙snd p q)
| {
"alphanum_fraction": 0.4785881566,
"avg_line_length": 36.0120481928,
"ext": "agda",
"hexsha": "d4dea152bb811545d696649e4556f4dccdeb6eec",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "lib/groups/HomotopyGroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "lib/groups/HomotopyGroup.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "lib/groups/HomotopyGroup.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2647,
"size": 5978
} |
module Issue2579.Import where
record Wrap (A : Set) : Set where
constructor wrap
field wrapped : A
| {
"alphanum_fraction": 0.7307692308,
"avg_line_length": 17.3333333333,
"ext": "agda",
"hexsha": "d768bf8425ad305a30f061571548f1d64a810504",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2579/Import.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2579/Import.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2579/Import.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 28,
"size": 104
} |
module cedille-find where
open import lib
open import cedille-types
occurrence-tuple = var × posinfo × string
occurrences-table = trie (𝕃 occurrence-tuple)
--------------------------
-- helper functions
--------------------------
occurrence-tuple-to-JSON : occurrence-tuple → string
occurrence-tuple-to-JSON (str , pos-info , filename) = "{\"defn\":\"" ^ str ^ "\",\"pos-info\":" ^ pos-info ^ ",\"filename\":\"" ^ filename ^ "\"}"
find-symbols-to-JSON-h : 𝕃 occurrence-tuple → string
find-symbols-to-JSON-h [] = ""
find-symbols-to-JSON-h (x :: []) = (occurrence-tuple-to-JSON x)
find-symbols-to-JSON-h (x :: xs) = (occurrence-tuple-to-JSON x) ^ "," ^ find-symbols-to-JSON-h xs
find-symbols-to-JSON : var → 𝕃 occurrence-tuple → string
find-symbols-to-JSON symb l = "{\"find\":{\"symbol\":\"" ^ symb ^ "\",\"occurrences\":[" ^ (find-symbols-to-JSON-h l) ^ "]}}"
-- updates the value list in the symbol map provided that the key symbol is not being shadowed
trie-append-or-create : occurrences-table → stringset → var → var → string → posinfo → occurrences-table
trie-append-or-create symb-map shadow key defn pos-info filename with (stringset-contains shadow key)
... | tt = symb-map
... | ff with (trie-lookup symb-map key)
... | nothing = trie-insert symb-map key ((defn , pos-info , filename) :: [])
... | just list = trie-insert symb-map key ((defn , pos-info , filename) :: list)
--------------------------
-- find declarations
--------------------------
find-symbols-cmd : cmd → string → occurrences-table → stringset → occurrences-table
find-symbols-t : Set → Set
find-symbols-t X = X → var → string → occurrences-table → stringset → occurrences-table
find-symbols-checkKind : find-symbols-t checkKind
find-symbols-kind : find-symbols-t kind
find-symbols-liftingType : find-symbols-t liftingType
find-symbols-lterms : find-symbols-t lterms
find-symbols-maybeCheckType : find-symbols-t maybeCheckType
find-symbols-optType : find-symbols-t optType
find-symbols-term : find-symbols-t term
find-symbols-optTerm : find-symbols-t optTerm
find-symbols-tk : find-symbols-t tk
find-symbols-type : find-symbols-t type
--------------------------
-- definitions
--------------------------
find-symbols-checkKind (Kind k) defn filename symb-map shadow = find-symbols-kind k defn filename symb-map shadow
find-symbols-cmd (DefKind _ kvar _ k _) filename symb-map shadow = find-symbols-kind k kvar filename symb-map shadow
find-symbols-cmd (DefTerm _ var mcT t _ _) filename symb-map shadow = find-symbols-maybeCheckType mcT var filename (find-symbols-term t var filename symb-map shadow) shadow
find-symbols-cmd (DefType _ var cK T _ _) filename symb-map shadow = find-symbols-checkKind cK var filename (find-symbols-type T var filename symb-map shadow) shadow
find-symbols-cmd _ _ symb-map _ = symb-map
find-symbols-kind (KndArrow k1 k2) defn filename symb-map shadow = find-symbols-kind k1 defn filename (find-symbols-kind k2 defn filename symb-map shadow) shadow
find-symbols-kind (KndParens _ k _) defn filename symb-map shadow = find-symbols-kind k defn filename symb-map shadow
find-symbols-kind (KndPi _ _ var tk k) defn filename symb-map shadow = find-symbols-tk tk defn filename (find-symbols-kind k defn filename symb-map (stringset-insert shadow var)) shadow
find-symbols-kind (KndTpArrow T k) defn filename symb-map shadow = find-symbols-type T defn filename (find-symbols-kind k defn filename symb-map shadow) shadow
find-symbols-kind (KndVar pos-info kvar) defn filename symb-map shadow = trie-append-or-create symb-map shadow kvar defn pos-info filename
find-symbols-kind _ _ _ symb-map _ = symb-map
find-symbols-liftingType (LiftArrow lT1 lT2) defn filename symb-map shadow = find-symbols-liftingType lT1 defn filename (find-symbols-liftingType lT2 defn filename symb-map shadow) shadow
find-symbols-liftingType (LiftParens _ lT _) defn filename symb-map shadow = find-symbols-liftingType lT defn filename symb-map shadow
find-symbols-liftingType (LiftPi _ var T lT) defn filename symb-map shadow = find-symbols-type T defn filename (find-symbols-liftingType lT defn filename symb-map (stringset-insert shadow var)) shadow
find-symbols-liftingType (LiftTpArrow T lT) defn filename symb-map shadow = find-symbols-type T defn filename (find-symbols-liftingType lT defn filename symb-map shadow) shadow
find-symbols-liftingType _ _ _ symb-map _ = symb-map
find-symbols-lterms (LtermsCons _ t lt) defn filename symb-map shadow = find-symbols-term t defn filename (find-symbols-lterms lt defn filename symb-map shadow) shadow
find-symbols-lterms _ _ _ symb-map _ = symb-map
find-symbols-maybeCheckType (Type T) defn filename symb-map shadow = find-symbols-type T defn filename symb-map shadow
find-symbols-maybeCheckType _ _ _ symb-map _ = symb-map
find-symbols-optType (SomeType T) defn filename symb-map shadow = find-symbols-type T defn filename symb-map shadow
find-symbols-optType _ _ _ symb-map _ = symb-map
find-symbols-optTerm (SomeTerm t _) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow
find-symbols-optTerm _ _ _ symb-map _ = symb-map
find-symbols-term (App t1 _ t2) defn filename symb-map shadow = find-symbols-term t1 defn filename (find-symbols-term t2 defn filename symb-map shadow) shadow
find-symbols-term (AppTp t T) defn filename symb-map shadow = find-symbols-term t defn filename (find-symbols-type T defn filename symb-map shadow) shadow
find-symbols-term (Chi _ _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow
find-symbols-term (Delta _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow
find-symbols-term (Epsilon _ _ _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow
--find-symbols-term (Fold _ _ T t) defn filename symb-map shadow = find-symbols-type T defn filename (find-symbols-term t defn filename symb-map shadow) shadow
-- treated as a new top global def
find-symbols-term (InlineDef _ _ var t _) defn filename symb-map shadow = find-symbols-term t var filename symb-map shadow
find-symbols-term (IotaPair _ t1 t2 ot _) defn filename symb-map shadow = find-symbols-term t1 defn filename (find-symbols-term t2 defn filename (find-symbols-optTerm ot defn filename symb-map shadow) shadow) shadow
find-symbols-term (IotaProj t _ _) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow
find-symbols-term (Lam _ _ _ var _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map (stringset-insert shadow var)
find-symbols-term (Parens _ t _) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow
find-symbols-term (PiInj _ _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow
find-symbols-term (Rho _ _ t1 t2) defn filename symb-map shadow = find-symbols-term t1 defn filename (find-symbols-term t2 defn filename symb-map shadow) shadow
find-symbols-term (Sigma _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow
find-symbols-term (Theta _ _ t lt) defn filename symb-map shadow = find-symbols-term t defn filename (find-symbols-lterms lt defn filename symb-map shadow) shadow
find-symbols-term (Unfold _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow
find-symbols-term (Var pos-info var) defn filename symb-map shadow = trie-append-or-create symb-map shadow var defn pos-info filename
find-symbols-term _ _ _ symb-map _ = symb-map
find-symbols-tk (Tkk k) defn filename symb-map shadow = find-symbols-kind k defn filename symb-map shadow
find-symbols-tk (Tkt T) defn filename symb-map shadow = find-symbols-type T defn filename symb-map shadow
find-symbols-type (Abs _ _ _ var tk T) defn filename symb-map shadow = find-symbols-tk tk defn filename (find-symbols-type T defn filename symb-map (stringset-insert shadow var)) shadow
find-symbols-type (Iota _ _ var oT T) defn filename symb-map shadow = find-symbols-optType oT defn filename (find-symbols-type T defn filename symb-map (stringset-insert shadow var)) shadow
find-symbols-type (Lft _ _ var t lT) defn filename symb-map shadow = find-symbols-term t defn filename (find-symbols-liftingType lT defn filename symb-map (stringset-insert shadow var)) shadow
find-symbols-type (Mu _ _ var k T) defn filename symb-map shadow = find-symbols-kind k defn filename (find-symbols-type T defn filename symb-map (stringset-insert shadow var)) shadow
find-symbols-type (NoSpans T _) defn filename symb-map shadow = find-symbols-type T defn filename symb-map shadow
find-symbols-type (TpApp T1 T2) defn filename symb-map shadow = find-symbols-type T1 defn filename (find-symbols-type T2 defn filename symb-map shadow) shadow
find-symbols-type (TpAppt T t) defn filename symb-map shadow = find-symbols-type T defn filename (find-symbols-term t defn filename symb-map shadow) shadow
find-symbols-type (TpArrow T1 _ T2) defn filename symb-map shadow = find-symbols-type T1 defn filename (find-symbols-type T2 defn filename symb-map shadow) shadow
find-symbols-type (TpEq t1 t2) defn filename symb-map shadow = find-symbols-term t1 defn filename (find-symbols-term t2 defn filename symb-map shadow) shadow
find-symbols-type (TpLambda _ _ var tk T) defn filename symb-map shadow = find-symbols-tk tk defn filename (find-symbols-type T defn filename symb-map (stringset-insert shadow var)) shadow
find-symbols-type (TpParens _ T _) defn filename symb-map shadow = find-symbols-type T defn filename symb-map shadow
find-symbols-type (TpVar pos-info var) defn filename symb-map shadow = trie-append-or-create symb-map shadow var defn pos-info filename
find-symbols-type (TpHole pos-info) defn filename symb-map shadow = trie-append-or-create symb-map shadow "hole" defn pos-info filename
--ACG: Not sure this works
| {
"alphanum_fraction": 0.7393511146,
"avg_line_length": 79.746031746,
"ext": "agda",
"hexsha": "79d036e0b424bf490da156a77ea5962465a9b06d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "xoltar/cedille",
"max_forks_repo_path": "src/cedille-find.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "xoltar/cedille",
"max_issues_repo_path": "src/cedille-find.agda",
"max_line_length": 215,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "xoltar/cedille",
"max_stars_repo_path": "src/cedille-find.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2601,
"size": 10048
} |
module list-thms2 where
open import bool
open import bool-thms
open import bool-thms2
open import functions
open import list
open import list-thms
open import nat
open import nat-thms
open import product-thms
open import logic
list-and-++ : ∀(l1 l2 : 𝕃 𝔹) → list-and (l1 ++ l2) ≡ (list-and l1) && (list-and l2)
list-and-++ [] l2 = refl
list-and-++ (x :: l1) l2 rewrite (list-and-++ l1 l2) | (&&-assoc x (list-and l1) (list-and l2))= refl
list-or-++ : ∀(l1 l2 : 𝕃 𝔹) → list-or (l1 ++ l2) ≡ (list-or l1) || (list-or l2)
list-or-++ [] l2 = refl
list-or-++ (x :: l1) l2 rewrite (list-or-++ l1 l2) | (||-assoc x (list-or l1) (list-or l2)) = refl
++-singleton : ∀{ℓ}{A : Set ℓ}(a : A)(l1 l2 : 𝕃 A) → (l1 ++ [ a ]) ++ l2 ≡ l1 ++ (a :: l2)
++-singleton a l1 [] rewrite ++[] (l1 ++ a :: []) = refl
++-singleton a l1 l2 rewrite (++-assoc l1 [ a ] l2) = refl
list-member-++ : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l1 l2 : 𝕃 A) →
list-member eq a (l1 ++ l2) ≡ (list-member eq a l1) || (list-member eq a l2)
list-member-++ eq a [] l2 = refl
list-member-++ eq a (x :: l1) l2 with eq a x
list-member-++ eq a (x :: l1) l2 | tt = refl
list-member-++ eq a (x :: l1) l2 | ff rewrite (list-member-++ eq a l1 l2) = refl
list-member-++2 : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l1 l2 : 𝕃 A) →
list-member eq a l1 ≡ tt →
list-member eq a (l1 ++ l2) ≡ tt
list-member-++2 eq a [] l2 ()
list-member-++2 eq a (x :: l1) l2 p with eq a x
list-member-++2 eq a (x :: l1) l2 p | tt = refl
list-member-++2 eq a (x :: l1) l2 p | ff rewrite (list-member-++2 eq a l1 l2 p) = refl
list-member-++3 : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l1 l2 : 𝕃 A) →
list-member eq a l2 ≡ tt →
list-member eq a (l1 ++ l2) ≡ tt
list-member-++3 eq a [] l2 p = p
list-member-++3 eq a (x :: l1) l2 p with eq a x
list-member-++3 eq a (x :: l1) l2 p | tt = refl
list-member-++3 eq a (x :: l1) l2 p | ff rewrite (list-member-++3 eq a l1 l2 p) = refl
filter-ff-repeat : ∀{ℓ}{A : Set ℓ}{p : A → 𝔹}{a : A}(n : ℕ) →
p a ≡ ff →
filter p (repeat n a) ≡ []
filter-ff-repeat zero p1 = refl
filter-ff-repeat{ℓ}{A}{p0}{a} (suc n) p1 with keep (p0 a)
filter-ff-repeat{ℓ}{A}{p0}{a} (suc n) p1 | tt , y rewrite y = 𝔹-contra (sym p1)
filter-ff-repeat{ℓ}{A}{p0}{a} (suc n) p1 | ff , y rewrite y = filter-ff-repeat {ℓ} {A} {p0} {a} n y
is-empty-distr : ∀{ℓ}{A : Set ℓ} (l1 l2 : 𝕃 A) → is-empty (l1 ++ l2) ≡ (is-empty l1) && (is-empty l2)
is-empty-distr [] l2 = refl
is-empty-distr (x :: l1) l2 = refl
is-empty-reverse : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → is-empty l ≡ is-empty (reverse l)
is-empty-reverse [] = refl
is-empty-reverse (x :: xs) rewrite (reverse-++h (x :: []) xs) | (is-empty-distr (reverse-helper [] xs) (x :: []))
| (&&-comm (is-empty (reverse-helper [] xs)) ff) = refl
reverse-length : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → length (reverse l) ≡ length l
reverse-length l = length-reverse-helper [] l
last-distr : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A)(x : A)(p : is-empty l ≡ ff) → last (x :: l) refl ≡ last l p
last-distr [] x ()
last-distr (x :: l) x2 refl = refl
is-empty-[] : ∀{ℓ}{A : Set ℓ} (l : 𝕃 A)(p : is-empty l ≡ tt) → l ≡ []
is-empty-[] [] p = refl
is-empty-[] (x :: l) ()
rev-help-empty : ∀ {ℓ}{A : Set ℓ} (l1 l2 : 𝕃 A) → (p1 : is-empty l2 ≡ ff) →
is-empty (reverse-helper l1 l2) ≡ ff
rev-help-empty l1 [] ()
rev-help-empty l1 (x :: l2) p rewrite reverse-++h (x :: l1) l2 | is-empty-distr (reverse-helper [] l2) (x :: l1)
| (&&-comm (is-empty (reverse-helper [] l2)) ff) = refl
is-empty-revh : ∀{ℓ}{A : Set ℓ}(h l : 𝕃 A) → is-empty l ≡ ff → is-empty (reverse-helper h l) ≡ ff
is-empty-revh h l p = rev-help-empty h l p
head-last-reverse-lem : ∀{ℓ}{A : Set ℓ}(h l : 𝕃 A)(p : is-empty l ≡ ff) → last l p ≡ head (reverse-helper h l) (is-empty-revh h l p)
head-last-reverse-lem h [] ()
head-last-reverse-lem h (x :: []) p = refl
head-last-reverse-lem h (x :: y :: l) p = head-last-reverse-lem (x :: h) (y :: l) refl
head-last-reverse : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A)(p : is-empty l ≡ ff) → last l p ≡ head (reverse l) (rev-help-empty [] l p)
head-last-reverse [] ()
head-last-reverse (x :: l) p with keep (is-empty l)
head-last-reverse (x :: l) refl | tt , b rewrite is-empty-[] l b = refl
head-last-reverse (x :: l) refl | ff , b rewrite (last-distr l x b) = head-last-reverse-lem (x :: []) l b
reverse-reverse : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → reverse (reverse l) ≡ l
reverse-reverse [] = refl
reverse-reverse (x :: l) rewrite (reverse-++h (x :: []) l) | (reverse-++ (reverse-helper [] l) (x :: [])) | reverse-reverse l = refl
empty++elem : ∀ {ℓ}{A : Set ℓ} (a : A) (l : 𝕃 A) → is-empty ( l ++ [ a ]) ≡ ff
empty++elem a [] = refl
empty++elem a (x :: l) = refl
last-++ : ∀{ℓ}{A : Set ℓ} (a : A) (l : 𝕃 A) → last (l ++ [ a ]) (empty++elem a l) ≡ a
last-++ a [] = refl
last-++ a (x :: l) rewrite last-distr (l ++ [ a ]) x (empty++elem a l) | last-++ a l = refl
| {
"alphanum_fraction": 0.5317286652,
"avg_line_length": 46.119266055,
"ext": "agda",
"hexsha": "0fb13ff5ccf562c286c4f64fd4f3a2e702ea92e9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "list-thms2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "list-thms2.agda",
"max_line_length": 133,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "list-thms2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2029,
"size": 5027
} |
{-# OPTIONS --allow-unsolved-metas #-}
module Semantics.Bind where
open import Syntax.Types
open import Syntax.Context renaming (_,_ to _,,_)
open import Syntax.Terms
open import Syntax.Substitution.Kits
open import Syntax.Substitution.Instances
open import Syntax.Substitution.Lemmas
open import Semantics.Types
open import Semantics.Terms
open import Semantics.Context
open import Semantics.Substitution.Kits
open import Semantics.Substitution.Traversal
open import Semantics.Substitution.Instances
open import CategoryTheory.Categories using (Category ; ext)
open import CategoryTheory.Functor
open import CategoryTheory.NatTrans
open import CategoryTheory.Monad
open import CategoryTheory.Comonad
open import CategoryTheory.CartesianStrength
open import CategoryTheory.Instances.Reactive renaming (top to ⊤)
open import TemporalOps.Diamond
open import TemporalOps.Delay
open import TemporalOps.Box
open import TemporalOps.OtherOps
open import TemporalOps.StrongMonad
open import Data.Sum
open import Data.Product using (_,_)
open import Relation.Binary.PropositionalEquality as ≡
using (_≡_ ; refl ; sym ; trans ; cong ; cong₂ ; subst)
open ≡.≡-Reasoning
open import Holes.Term using (⌞_⌟)
open import Holes.Cong.Propositional
open Comonad W-□
open Monad M-◇
private module F-◇ = Functor F-◇
private module F-□ = Functor F-□
open Functor F-□ renaming (fmap to □-f)
open Functor F-◇ renaming (fmap to ◇-f)
private module ▹ᵏ-C k = CartesianFunctor (F-cart-delay k)
private module ▹ᵏ-F k = Functor (F-delay k)
private module □-▹ᵏ k = _⟹_ (□-to-▹ᵏ k)
bind-to->>= : ∀ Γ {⟦A⟧ ⟦B⟧} -> (⟦E⟧ : ⟦ Γ ⟧ₓ ⇴ ◇ ⟦A⟧) (⟦C⟧ : ⟦ Γ ˢ ⟧ₓ ⊗ ⟦A⟧ ⇴ ◇ ⟦B⟧)
-> (n : ℕ) (⟦Γ⟧ : ⟦ Γ ⟧ₓ n)
-> bindEvent Γ ⟦E⟧ ⟦C⟧ n ⟦Γ⟧
≡ (⟦E⟧ n ⟦Γ⟧ >>= λ l ⟦A⟧ → ⟦C⟧ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧))
bind-to->>= Γ {⟦A⟧} {⟦B⟧} ⟦E⟧ ⟦C⟧ n ⟦Γ⟧ =
begin
bindEvent Γ ⟦E⟧ ⟦C⟧ n ⟦Γ⟧
≡⟨⟩
μ.at ⟦B⟧ n (F-◇.fmap (⟦C⟧ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦A⟧ n (⟦ Γ ˢ⟧□ n ⟦Γ⟧ , ⟦E⟧ n ⟦Γ⟧)))
≡⟨ cong (μ.at ⟦B⟧ n) (lemma (⟦E⟧ n ⟦Γ⟧)) ⟩
μ.at ⟦B⟧ n (F-◇.fmap (⟦C⟧ ∘ ⟨ (λ l _ → ⟦ Γ ˢ⟧□ n ⟦Γ⟧ l) , id ⟩) n (⟦E⟧ n ⟦Γ⟧))
≡⟨⟩
(⟦E⟧ n ⟦Γ⟧ >>= (λ l ⟦A⟧ → ⟦C⟧ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧)))
∎
where
lemma : ∀ ◇⟦A⟧
-> F-◇.fmap (⟦C⟧ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦A⟧ n (⟦ Γ ˢ⟧□ n ⟦Γ⟧ , ◇⟦A⟧))
≡ F-◇.fmap (⟦C⟧ ∘ ⟨ (λ l _ → ⟦ Γ ˢ⟧□ n ⟦Γ⟧ l) , id ⟩) n ◇⟦A⟧
lemma (k , a) =
begin
F-◇.fmap (⟦C⟧ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦A⟧ n (⟦ Γ ˢ⟧□ n ⟦Γ⟧ , (k , a)))
≡⟨⟩
k , ▹ᵏ-F.fmap k (⟦C⟧ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(▹ᵏ-C.m k (□ ⟦ Γ ˢ ⟧ₓ) ⟦A⟧ n (□-▹ᵏ.at k (□ ⟦ Γ ˢ ⟧ₓ) n (δ.at ⟦ Γ ˢ ⟧ₓ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧)) , a))
≡⟨ {! !} ⟩
k , ▹ᵏ-F.fmap k (⟦C⟧ ∘ ⟨ (λ l _ → ⟦ Γ ˢ⟧□ n ⟦Γ⟧ l) , id ⟩) n a
≡⟨⟩
F-◇.fmap (⟦C⟧ ∘ ⟨ (λ l _ → ⟦ Γ ˢ⟧□ n ⟦Γ⟧ l) , id ⟩) n (k , a)
∎
| {
"alphanum_fraction": 0.55022437,
"avg_line_length": 36.2125,
"ext": "agda",
"hexsha": "38824577a5afd371153d283b10f894c5d8f383bc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/Semantics/Bind.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/Semantics/Bind.agda",
"max_line_length": 110,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/Semantics/Bind.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 1445,
"size": 2897
} |
module Prelude where
infix 20 _≡_ _≤_ _∈_
infixl 60 _,_ _++_ _+_ _◄_ _◄²_
_∘_ : {A B : Set}{C : B -> Set}(f : (x : B) -> C x)(g : A -> B)(x : A) -> C (g x)
(f ∘ g) x = f (g x)
data _≡_ {A : Set}(x : A) : {B : Set} -> B -> Set where
refl : x ≡ x
cong : {A : Set}{B : A -> Set}(f : (z : A) -> B z){x y : A} ->
x ≡ y -> f x ≡ f y
cong f refl = refl
subst : {A : Set}(P : A -> Set){x y : A} -> x ≡ y -> P y -> P x
subst P refl px = px
sym : {A : Set}{x y : A} -> x ≡ y -> y ≡ x
sym refl = refl
data Nat : Set where
zero : Nat
suc : Nat -> Nat
_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
{-# BUILTIN NATURAL Nat #-}
{-# BUILTIN SUC suc #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN NATPLUS _+_ #-}
data _≤_ : Nat -> Nat -> Set where
leqZ : {m : Nat} -> zero ≤ m
leqS : {n m : Nat} -> n ≤ m -> suc n ≤ suc m
refl-≤ : {n : Nat} -> n ≤ n
refl-≤ {zero } = leqZ
refl-≤ {suc n} = leqS refl-≤
refl-≤' : {n m : Nat} -> n ≡ m -> n ≤ m
refl-≤' refl = refl-≤
trans-≤ : {x y z : Nat} -> x ≤ y -> y ≤ z -> x ≤ z
trans-≤ leqZ yz = leqZ
trans-≤ (leqS xy) (leqS yz) = leqS (trans-≤ xy yz)
lem-≤suc : {x : Nat} -> x ≤ suc x
lem-≤suc {zero } = leqZ
lem-≤suc {suc x} = leqS lem-≤suc
lem-≤+L : (x : Nat){y : Nat} -> y ≤ x + y
lem-≤+L zero = refl-≤
lem-≤+L (suc x) = trans-≤ (lem-≤+L x) lem-≤suc
lem-≤+R : {x y : Nat} -> x ≤ x + y
lem-≤+R {zero } = leqZ
lem-≤+R {suc x} = leqS lem-≤+R
data List (A : Set) : Set where
ε : List A
_,_ : List A -> A -> List A
_++_ : {A : Set} -> List A -> List A -> List A
xs ++ ε = xs
xs ++ (ys , y) = (xs ++ ys) , y
data All {A : Set}(P : A -> Set) : List A -> Set where
∅ : All P ε
_◄_ : forall {xs x} -> All P xs -> P x -> All P (xs , x)
{-
data Some {A : Set}(P : A -> Set) : List A -> Set where
hd : forall {x xs} -> P x -> Some P (xs , x)
tl : forall {x xs} -> Some P xs -> Some P (xs , x)
-}
data _∈_ {A : Set}(x : A) : List A -> Set where
hd : forall {xs} -> x ∈ xs , x
tl : forall {y xs} -> x ∈ xs -> x ∈ xs , y
_!_ : {A : Set}{P : A -> Set}{xs : List A} ->
All P xs -> {x : A} -> x ∈ xs -> P x
∅ ! ()
(xs ◄ x) ! hd = x
(xs ◄ x) ! tl i = xs ! i
tabulate : {A : Set}{P : A -> Set}{xs : List A} ->
({x : A} -> x ∈ xs -> P x) -> All P xs
tabulate {xs = ε} f = ∅
tabulate {xs = xs , x} f = tabulate (f ∘ tl) ◄ f hd
data All² {I : Set}{A : I -> Set}(P : {i : I} -> A i -> Set) :
{is : List I} -> All A is -> Set where
∅² : All² P ∅
_◄²_ : forall {i is}{x : A i}{xs : All A is} ->
All² P xs -> P x -> All² P (xs ◄ x)
data _∈²_ {I : Set}{A : I -> Set}{i : I}(x : A i) :
{is : List I} -> All A is -> Set where
hd² : forall {is}{xs : All A is} -> x ∈² xs ◄ x
tl² : forall {j is}{y : A j}{xs : All A is} ->
x ∈² xs -> x ∈² xs ◄ y
| {
"alphanum_fraction": 0.4362606232,
"avg_line_length": 26.3925233645,
"ext": "agda",
"hexsha": "a610d1a17bd06727935aadc847a80d68625104cf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "examples/outdated-and-incorrect/tait/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "examples/outdated-and-incorrect/tait/Prelude.agda",
"max_line_length": 81,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/tait/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 1298,
"size": 2824
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Patterns for Fin
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Patterns where
open import Data.Fin.Base
------------------------------------------------------------------------
-- Constants
pattern 0F = zero
pattern 1F = suc 0F
pattern 2F = suc 1F
pattern 3F = suc 2F
pattern 4F = suc 3F
pattern 5F = suc 4F
pattern 6F = suc 5F
pattern 7F = suc 6F
pattern 8F = suc 7F
pattern 9F = suc 8F
| {
"alphanum_fraction": 0.4317789292,
"avg_line_length": 22.2692307692,
"ext": "agda",
"hexsha": "f985fe00b11a6d3725b8e2f4a48acee949c7fd95",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Fin/Patterns.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Fin/Patterns.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Fin/Patterns.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 142,
"size": 579
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Pretty Printing
-- This module is based on Jean-Philippe Bernardy's functional pearl
-- "A Pretty But Not Greedy Printer"
------------------------------------------------------------------------
{-# OPTIONS --with-K #-}
module Text.Pretty.Core where
import Level
open import Data.Bool.Base using (Bool)
open import Data.Erased as Erased using (Erased) hiding (module Erased)
open import Data.List.Base as List using (List; []; _∷_)
open import Data.Nat.Base using (ℕ; zero; suc; _+_; _⊔_; _≤_; z≤n)
open import Data.Nat.Properties
open import Data.Product as Prod using (_×_; _,_; uncurry; proj₁; proj₂)
import Data.Product.Relation.Unary.All as Allᴾ
open import Data.Tree.Binary as Tree using (Tree; leaf; node)
open import Data.Tree.Binary.Relation.Unary.All as Allᵀ using (leaf; node)
import Data.Tree.Binary.Relation.Unary.All.Properties as Allᵀₚ
import Data.Tree.Binary.Properties as Treeₚ
open import Data.Maybe.Base as Maybe using (Maybe; nothing; just; maybe′)
open import Data.Maybe.Relation.Unary.All as Allᴹ using (nothing; just)
open import Data.String.Base as String
open import Data.String.Unsafe as Stringₚ
open import Function.Base
open import Relation.Nullary using (Dec)
open import Relation.Unary using (IUniversal; _⇒_)
open import Relation.Binary.PropositionalEquality
open import Data.Refinement hiding (map)
import Data.Refinement.Relation.Unary.All as Allᴿ
------------------------------------------------------------------------
-- Block of text
-- Content is a representation of the first line and the middle of the block.
-- We use a tree rather than a list for the middle of the block so that we can
-- extend it with lines on the left and on the line for free. We will ultimately
-- render the block by traversing the tree left to right in a depth-first manner.
Content : Set
Content = Maybe (String × Tree String)
size : Content → ℕ
size = maybe′ (suc ∘ Tree.size ∘ proj₂) 0
All : ∀ {p} (P : String → Set p) → (Content → Set p)
All P = Allᴹ.All (Allᴾ.All P (Allᵀ.All P))
All≤ : ℕ → Content → Set
All≤ n = All (λ s → length s ≤ n)
record Block : Set where
field
height : ℕ
block : [ xs ∈ Content ∣ size xs ≡ height ]
-- last line
lastWidth : ℕ
last : [ s ∈ String ∣ length s ≡ lastWidth ]
-- max of all the widths
maxWidth : [ n ∈ ℕ ∣ lastWidth ≤ n × All≤ n (block .value) ]
------------------------------------------------------------------------
-- Raw string
text : String → Block
text s = record
{ height = 0
; block = nothing , ⦇ refl ⦈
; lastWidth = width
; last = s , ⦇ refl ⦈
; maxWidth = width , ⦇ (≤-refl , nothing) ⦈
} where width = length s; open Erased
------------------------------------------------------------------------
-- Empty
empty : Block
empty = text ""
------------------------------------------------------------------------
-- Helper functions
node? : Content → String → Tree String → Content
node? (just (x , xs)) y ys = just (x , node xs y ys)
node? nothing y ys = just (y , ys)
∣node?∣ : ∀ b y ys → size (node? b y ys)
≡ size b + suc (Tree.size ys)
∣node?∣ (just (x , xs)) y ys = refl
∣node?∣ nothing y ys = refl
≤-Content : ∀ {m n} {b : Content} → m ≤ n → All≤ m b → All≤ n b
≤-Content {m} {n} m≤n = Allᴹ.map (Prod.map step (Allᵀ.map step))
where
step : ∀ {p} → p ≤ m → p ≤ n
step = flip ≤-trans m≤n
All≤-node? : ∀ {l m r n} →
All≤ n l → length m ≤ n → Allᵀ.All (λ s → length s ≤ n) r →
All≤ n (node? l m r)
All≤-node? nothing py pys = just (py , pys)
All≤-node? (just (px , pxs)) py pys = just (px , node pxs py pys)
------------------------------------------------------------------------
-- Appending two documents
private
module append (x y : Block) where
module x = Block x
module y = Block y
blockx = x.block .value
blocky = y.block .value
widthx = x.maxWidth .value
widthy = y.maxWidth .value
lastx = x.last .value
lasty = y.last .value
height : ℕ
height = (_+_ on Block.height) x y
lastWidth : ℕ
lastWidth = (_+_ on Block.lastWidth) x y
pad : Maybe String
pad with x.lastWidth
... | 0 = nothing
... | l = just (replicate l ' ')
size-pad : maybe′ length 0 pad ≡ x.lastWidth
size-pad with x.lastWidth
... | 0 = refl
... | l@(suc _) = length-replicate l
indent : Maybe String → String → String
indent = maybe′ _++_ id
size-indent : ∀ ma str → length (indent ma str)
≡ maybe′ length 0 ma + length str
size-indent nothing str = refl
size-indent (just pad) str = length-++ pad str
indents : Maybe String → Tree String → Tree String
indents = maybe′ (Tree.map ∘ _++_) id
size-indents : ∀ ma t → Tree.size (indents ma t) ≡ Tree.size t
size-indents nothing t = refl
size-indents (just pad) t = Treeₚ.size-map (pad ++_) t
unfold-indents : ∀ ma t → indents ma t ≡ Tree.map (indent ma) t
unfold-indents nothing t = sym (Treeₚ.map-id t)
unfold-indents (just pad) t = refl
vContent : Content × String
vContent with blocky
... | nothing = blockx
, lastx ++ lasty
... | just (hd , tl) = node?
{-,--------------,-}
{-|-} blockx {-|-}
{-|-} {-'---,-} {-,------------------,-}
{-|-} (lastx {-|-} ++ {-|-} hd) {-|-}
{-'------------------'-} {-|-} {-|-}
(indents pad {-|-} tl) {-,----'-}
, indent pad {-|-} lasty {-|-}
{-'-------------'-}
vBlock = proj₁ vContent
vLast = proj₂ vContent
isBlock : size blockx ≡ x.height → size blocky ≡ y.height →
size vBlock ≡ height
isBlock ∣x∣ ∣y∣ with blocky
... | nothing = begin
size blockx ≡⟨ ∣x∣ ⟩
x.height ≡˘⟨ +-identityʳ x.height ⟩
x.height + 0 ≡⟨ cong (_ +_) ∣y∣ ⟩
x.height + y.height ∎ where open ≡-Reasoning
... | just (hd , tl) = begin
∣node∣ ≡⟨ ∣node?∣ blockx middle rest ⟩
∣blockx∣ + suc (Tree.size rest) ≡⟨ cong ((size blockx +_) ∘′ suc) ∣rest∣ ⟩
∣blockx∣ + suc (Tree.size tl) ≡⟨ cong₂ _+_ ∣x∣ ∣y∣ ⟩
x.height + y.height ∎ where
open ≡-Reasoning
∣blockx∣ = size blockx
middle = lastx ++ hd
rest = indents pad tl
∣rest∣ = size-indents pad tl
∣node∣ = size (node? blockx middle rest)
block : [ xs ∈ Content ∣ size xs ≡ height ]
block .value = vBlock
block .proof = ⦇ isBlock (Block.block x .proof) (Block.block y .proof) ⦈
where open Erased
isLastLine : length lastx ≡ x.lastWidth →
length lasty ≡ y.lastWidth →
length vLast ≡ lastWidth
isLastLine ∣x∣ ∣y∣ with blocky
... | nothing = begin
length (lastx ++ lasty) ≡⟨ length-++ lastx lasty ⟩
length lastx + length lasty ≡⟨ cong₂ _+_ ∣x∣ ∣y∣ ⟩
x.lastWidth + y.lastWidth ∎ where open ≡-Reasoning
... | just (hd , tl) = begin
length (indent pad lasty) ≡⟨ size-indent pad lasty ⟩
maybe′ length 0 pad + length lasty ≡⟨ cong₂ _+_ size-pad ∣y∣ ⟩
x.lastWidth + y.lastWidth ∎ where open ≡-Reasoning
last : [ s ∈ String ∣ length s ≡ lastWidth ]
last .value = vLast
last .proof = ⦇ isLastLine (Block.last x .proof) (Block.last y .proof) ⦈
where open Erased
vMaxWidth : ℕ
vMaxWidth = widthx ⊔ (x.lastWidth + widthy)
isMaxWidth₁ : y.lastWidth ≤ widthy → lastWidth ≤ vMaxWidth
isMaxWidth₁ p = begin
lastWidth ≤⟨ +-monoʳ-≤ x.lastWidth p ⟩
x.lastWidth + widthy ≤⟨ n≤m⊔n _ _ ⟩
vMaxWidth ∎ where open ≤-Reasoning
isMaxWidth₂ : length lastx ≡ x.lastWidth →
x.lastWidth ≤ widthx →
All≤ widthx blockx →
All≤ widthy blocky →
All≤ vMaxWidth vBlock
isMaxWidth₂ ∣x∣≡ ∣x∣≤ ∣xs∣ ∣ys∣ with blocky
... | nothing = ≤-Content (m≤m⊔n _ _) ∣xs∣
isMaxWidth₂ ∣x∣≡ ∣x∣≤ ∣xs∣ (just (∣hd∣ , ∣tl∣))
| just (hd , tl) =
All≤-node? (≤-Content (m≤m⊔n _ _) ∣xs∣)
middle
(subst (Allᵀ.All _) (sym $ unfold-indents pad tl)
$ Allᵀₚ.map⁺ (indent pad) (Allᵀ.map (indented _) ∣tl∣))
where
middle : length (lastx ++ hd) ≤ vMaxWidth
middle = begin
length (lastx ++ hd) ≡⟨ length-++ lastx hd ⟩
length lastx + length hd ≡⟨ cong (_+ _) ∣x∣≡ ⟩
x.lastWidth + length hd ≤⟨ +-monoʳ-≤ x.lastWidth ∣hd∣ ⟩
x.lastWidth + widthy ≤⟨ n≤m⊔n _ _ ⟩
vMaxWidth ∎ where open ≤-Reasoning
indented : ∀ s → length s ≤ widthy →
length (indent pad s) ≤ vMaxWidth
indented s ∣s∣ = begin
length (indent pad s) ≡⟨ size-indent pad s ⟩
maybe′ length 0 pad + length s ≡⟨ cong (_+ _) size-pad ⟩
x.lastWidth + length s ≤⟨ +-monoʳ-≤ x.lastWidth ∣s∣ ⟩
x.lastWidth + widthy ≤⟨ n≤m⊔n (widthx) _ ⟩
vMaxWidth ∎ where open ≤-Reasoning
maxWidth : [ n ∈ ℕ ∣ lastWidth ≤ n × All≤ n vBlock ]
maxWidth .value = vMaxWidth
maxWidth .proof =
⦇ _,_ ⦇ isMaxWidth₁ (map proj₁ (Block.maxWidth y .proof)) ⦈
⦇ isMaxWidth₂ (Block.last x .proof)
(map proj₁ (Block.maxWidth x .proof))
(map proj₂ (Block.maxWidth x .proof))
(map proj₂ (Block.maxWidth y .proof))
⦈
⦈ where open Erased
infixl 4 _<>_
_<>_ : Block → Block → Block
x <> y = record { append x y }
------------------------------------------------------------------------
-- Flush (introduces a new line)
private
module flush (x : Block) where
module x = Block x
blockx = x.block .value
lastx = x.last .value
widthx = x.maxWidth .value
heightx = x.height
height = suc heightx
lastWidth = 0
vMaxWidth = widthx
last : [ s ∈ String ∣ length s ≡ lastWidth ]
last = "" , ⦇ refl ⦈ where open Erased
vContent = node? blockx lastx leaf
isBlock : size blockx ≡ heightx → size vContent ≡ height
isBlock ∣x∣ = begin
size vContent ≡⟨ ∣node?∣ blockx lastx leaf ⟩
size blockx + 1 ≡⟨ cong (_+ 1) ∣x∣ ⟩
heightx + 1 ≡⟨ +-comm heightx 1 ⟩
height ∎ where open ≡-Reasoning
block : [ xs ∈ Content ∣ size xs ≡ height ]
block .value = vContent
block .proof = Erased.map isBlock $ Block.block x .proof
maxWidth : [ n ∈ ℕ ∣ lastWidth ≤ n × All≤ n vContent ]
maxWidth .value = widthx
maxWidth .proof = map (z≤n ,_)
⦇ All≤-node? ⦇ proj₂ (Block.maxWidth x .proof) ⦈
⦇ middle (Block.last x .proof) ⦇ proj₁ (Block.maxWidth x .proof) ⦈ ⦈
(pure leaf)
⦈ where
open Erased
middle : length lastx ≡ x.lastWidth → x.lastWidth ≤ vMaxWidth →
length lastx ≤ vMaxWidth
middle p q = begin
length lastx ≡⟨ p ⟩
x.lastWidth ≤⟨ q ⟩
vMaxWidth ∎ where open ≤-Reasoning
flush : Block → Block
flush x = record { flush x }
------------------------------------------------------------------------
-- Other functions
render : Block → String
render x = unlines
$ maybe′ (uncurry (λ hd tl → hd ∷ Tree.Infix.toList tl)) []
$ node? (Block.block x .value) (Block.last x .value) leaf
valid : (width : ℕ) (b : Block) → Dec (Block.maxWidth b .value ≤ width)
valid width b = Block.maxWidth b .value ≤? width
| {
"alphanum_fraction": 0.5241771293,
"avg_line_length": 33.9711815562,
"ext": "agda",
"hexsha": "eb142671d1c13e4ee57aeeaa00214c9d30dd591b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Text/Pretty/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Text/Pretty/Core.agda",
"max_line_length": 87,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Text/Pretty/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 3696,
"size": 11788
} |
module CoinductiveBuiltinList where
open import Common.Coinduction
data List (A : Set) : Set where
[] : List A
_∷_ : (x : A) (xs : ∞ (List A)) → List A
{-# BUILTIN LIST List #-}
{-# BUILTIN NIL [] #-}
{-# BUILTIN CONS _∷_ #-}
| {
"alphanum_fraction": 0.5840336134,
"avg_line_length": 19.8333333333,
"ext": "agda",
"hexsha": "5969e8de8704c6862cd0fb6062152c1dc2c451b5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/CoinductiveBuiltinList.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/CoinductiveBuiltinList.agda",
"max_line_length": 42,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/CoinductiveBuiltinList.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 82,
"size": 238
} |
-- This module introduces operators.
module Introduction.Operators where
-- Agda has a very flexible mechanism for defining operators, supporting infix,
-- prefix, postfix and mixfix operators.
data Nat : Set where
zero : Nat
suc : Nat -> Nat
-- Any name containing underscores (_) can be used as an operator by writing
-- the arguments where the underscores are. For instance, the function _+_ is
-- the infix addition function. This function can be used either as a normal
-- function: '_+_ zero zero', or as an operator: 'zero + zero'.
_+_ : Nat -> Nat -> Nat
zero + m = m
suc n + m = suc (n + m)
-- A fixity declaration specifies precedence level (50 in this case) and
-- associativity (left associative here) of an operator. Only infix operators
-- (whose names start and end with _) have associativity.
infixl 50 _+_
-- The only restriction on where _ can appear in a name is that there cannot be
-- two underscores in sequence. For instance, we can define an if-then-else
-- operator:
data Bool : Set where
false : Bool
true : Bool
if_then_else_ : {A : Set} -> Bool -> A -> A -> A
if true then x else y = x
if false then x else y = y
-- if_then_else_ is treated as a prefix operator (ends, but doesn't begin with
-- an _), so the declared precedence determines how something in an else branch
-- should be parsed. For instance, with the given precedences
-- if x then y else a + b
-- is parsed as
-- if x then y else (a + b)
-- and not
-- (if x then y else a) + b
infix 10 if_then_else_
-- In Agda there is no restriction on what characters are allowed to appear in
-- an operator (as opposed to a function symbol). For instance, it is allowed
-- (but not recommended) to define 'f' to be an infix operator and '+' to be a
-- function symbol.
module BadIdea where
_f_ : Nat -> Nat -> Nat
zero f zero = zero
zero f suc n = suc n
suc n f zero = suc n
suc n f suc m = suc (n f m)
+ : Nat -> Nat
+ n = suc n
| {
"alphanum_fraction": 0.6899185336,
"avg_line_length": 29.7575757576,
"ext": "agda",
"hexsha": "f3381578f68abe662d4bea4cebf4eb763fd25934",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/Introduction/Operators.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/Introduction/Operators.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/Introduction/Operators.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 535,
"size": 1964
} |
module Issue1232.All where
import Issue1232.Fin
import Issue1232.List
| {
"alphanum_fraction": 0.8333333333,
"avg_line_length": 12,
"ext": "agda",
"hexsha": "82626295dc04af782913a663cbae68e3afeda198",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1232/All.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1232/All.agda",
"max_line_length": 26,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1232/All.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 21,
"size": 72
} |
{-# OPTIONS --without-K --safe #-}
open import Level
open import Categories.Category
module Categories.Functor.Power.Functorial {o ℓ e : Level} (C : Category o ℓ e) where
open import Relation.Binary.PropositionalEquality using (_≡_; refl; trans)
open import Categories.Functor renaming (id to idF)
open import Categories.Category.Discrete
open import Categories.Category.Equivalence
open import Categories.Category.Construction.Functors
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open import Categories.NaturalTransformation.NaturalIsomorphism as NI
using (module NaturalIsomorphism; _≃_; refl)
import Categories.Morphism.Reasoning as MR
open MR C
import Categories.Functor.Power as Power
open Power C
open Category using (Obj)
open Category C using (_⇒_; _∘_; module Equiv)
module C = Category C
module CE = Equiv
private
variable
i : Level
I : Set i
exp→functor₀ : Obj (Exp I) → Functor (Discrete I) C
exp→functor₀ X = record
{ F₀ = X
; F₁ = λ { refl → C.id }
; identity = CE.refl
; homomorphism = λ { {_} {_} {_} {refl} {refl} → CE.sym C.identityˡ}
; F-resp-≈ = λ { {_} {_} {refl} {refl} refl → CE.refl}
}
exp→functor₁ : {X Y : I → C.Obj} → Exp I [ X , Y ] → NaturalTransformation (exp→functor₀ X) (exp→functor₀ Y)
exp→functor₁ F = record { η = F ; commute = λ { refl → id-comm } ; sym-commute = λ { refl → id-comm-sym } }
exp→functor : Functor (Exp I) (Functors (Discrete I) C)
exp→functor = record
{ F₀ = exp→functor₀
; F₁ = exp→functor₁
; identity = CE.refl
; homomorphism = CE.refl
; F-resp-≈ = λ eqs {x} → eqs x
}
functor→exp : Functor (Functors (Discrete I) C) (Exp I)
functor→exp = record
{ F₀ = Functor.F₀
; F₁ = NaturalTransformation.η
; identity = λ _ → CE.refl
; homomorphism = λ _ → CE.refl
; F-resp-≈ = λ eqs i → eqs {i}
}
exp≋functor : StrongEquivalence (Exp I) (Functors (Discrete I) C)
exp≋functor = record
{ F = exp→functor
; G = functor→exp
; weak-inverse = record
{ F∘G≈id = record
{ F⇒G = ntHelper record
{ η = λ DI → record
{ η = λ _ → C.id
; commute = λ { refl → C.∘-resp-≈ˡ (CE.sym (Functor.identity DI))}
; sym-commute = λ { refl → C.∘-resp-≈ˡ (Functor.identity DI)}
}
; commute = λ _ → id-comm-sym
}
; F⇐G = ntHelper record
{ η = λ DI → ntHelper record { η = λ _ → C.id ; commute = λ { refl → C.∘-resp-≈ʳ (Functor.identity DI)} }
; commute = λ _ → id-comm-sym
}
; iso = λ X → record { isoˡ = C.identity²; isoʳ = C.identity² }
}
; G∘F≈id = record
{ F⇒G = record { η = λ _ _ → C.id ; commute = λ _ _ → id-comm-sym ; sym-commute = λ _ _ → id-comm }
; F⇐G = record { η = λ _ _ → C.id ; commute = λ _ _ → id-comm-sym ; sym-commute = λ _ _ → id-comm }
; iso = λ X → record { isoˡ = λ _ → C.identity² ; isoʳ = λ _ → C.identity² }
}
}
}
where
open C.HomReasoning
| {
"alphanum_fraction": 0.6130771823,
"avg_line_length": 32.25,
"ext": "agda",
"hexsha": "cab3e9fcb996a5a133dbec54a483a132ba3a2f33",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Power/Functorial.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Power/Functorial.agda",
"max_line_length": 113,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Power/Functorial.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1015,
"size": 2967
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light where
open import Light.Library public
module Implementation where open import Light.Implementation public
| {
"alphanum_fraction": 0.797029703,
"avg_line_length": 28.8571428571,
"ext": "agda",
"hexsha": "891191cd1b5d3f550f791cb4e7cd4a9ec5abc7bc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 38,
"size": 202
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.NatMinusOne where
open import Cubical.Data.NatMinusOne.Base public
| {
"alphanum_fraction": 0.7685950413,
"avg_line_length": 24.2,
"ext": "agda",
"hexsha": "1446aaf55b57eeb32610ed08d35c5cf93bb2eb81",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/NatMinusOne.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/NatMinusOne.agda",
"max_line_length": 48,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/NatMinusOne.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 31,
"size": 121
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.Bouquet
open import cohomology.Theory
module cohomology.Bouquet {i} (OT : OrdinaryTheory i) where
open OrdinaryTheory OT
open import cohomology.Sphere OT
C-Bouquet-diag : ∀ n (I : Type i) → has-choice 0 I i
→ C (ℕ-to-ℤ n) (⊙Bouquet I n) ≃ᴳ Πᴳ I (λ _ → C2 0)
C-Bouquet-diag n I I-choice =
C (ℕ-to-ℤ n) (⊙Bouquet I n)
≃ᴳ⟨ C-emap (ℕ-to-ℤ n) (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv)) ⟩
C (ℕ-to-ℤ n) (⊙BouquetLift I n)
≃ᴳ⟨ C-additive-iso (ℕ-to-ℤ n) (BouquetLift-family I n) I-choice ⟩
Πᴳ I (λ _ → C (ℕ-to-ℤ n) (⊙Lift (⊙Sphere n)))
≃ᴳ⟨ Πᴳ-emap-r I (λ _ → C-Sphere-diag n) ⟩
Πᴳ I (λ _ → C2 0)
≃ᴳ∎
abstract
C-Bouquet-≠-is-trivial : ∀ (n : ℤ) (I : Type i) (m : ℕ)
→ (n ≠ ℕ-to-ℤ m) → has-choice 0 I i
→ is-trivialᴳ (C n (⊙Bouquet I m))
C-Bouquet-≠-is-trivial n I m n≠m I-choice = iso-preserves'-trivial
(C n (⊙Bouquet I m)
≃ᴳ⟨ C-emap n (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv)) ⟩
C n (⊙BouquetLift I m)
≃ᴳ⟨ C-additive-iso n (BouquetLift-family I m) I-choice ⟩
Πᴳ I (λ _ → C n (⊙Lift (⊙Sphere m)))
≃ᴳ∎)
(Πᴳ-is-trivial I (λ _ → C n (⊙Lift (⊙Sphere m))) (λ _ → C-Sphere-≠-is-trivial n m n≠m))
| {
"alphanum_fraction": 0.5808285946,
"avg_line_length": 34.1944444444,
"ext": "agda",
"hexsha": "671975a0bfc2cc406d4bdec0c9a3e2f2b7e720a0",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cohomology/Bouquet.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cohomology/Bouquet.agda",
"max_line_length": 91,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cohomology/Bouquet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 634,
"size": 1231
} |
module Issue756b where
data Nat : Set where
zero : Nat
suc : Nat → Nat
data T : (Nat → Nat) → Set where
idId : T (λ { zero → zero; (suc n) → suc n })
bad : ∀ f → T f → Nat
bad .(λ { zero → zero ; (suc n) → suc n }) idId = zero | {
"alphanum_fraction": 0.5443037975,
"avg_line_length": 19.75,
"ext": "agda",
"hexsha": "4fd6ee1f7675e2b2e23a50585397bcc23a5047be",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue756b.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue756b.agda",
"max_line_length": 54,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "masondesu/agda",
"max_stars_repo_path": "test/fail/Issue756b.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 91,
"size": 237
} |
{-# OPTIONS --rewriting --without-K #-}
open import Prelude
open import GSeTT.Syntax
open import GSeTT.Rules
open import GSeTT.Disks
open import CaTT.Ps-contexts
open import CaTT.Uniqueness-Derivations-Ps
open import Sets ℕ eqdecℕ
module CaTT.Fullness where
data Ty : Set₁
data Tm : Set₁
data Sub : Set₁
data _is-full-in_ : Ty → ps-ctx → Set₁
data Ty where
∗ : Ty
⇒ : Ty → Tm → Tm → Ty
data Tm where
v : ℕ → Tm
coh : (Γ : ps-ctx) → (A : Ty) → A is-full-in Γ → Sub → Tm
data Sub where
<> : Sub
<_,_↦_> : Sub → ℕ → Tm → Sub
=⇒Ty : ∀ {A A' : Ty} {t t' u u' : Tm} → _==_ {A = Ty} (⇒ A t u) (⇒ A' t' u') → ((A == A' × t == t') × u == u')
=⇒Ty idp = (idp , idp) , idp
coh= : ∀ {Γ Γ' A A' Afull A'full γ γ'} → coh Γ A Afull γ == coh Γ' A' A'full γ' → ((Γ == Γ' × A == A') × γ == γ')
coh= idp = (idp , idp) , idp
<>= : ∀ {γ γ' x x' t t'} → < γ , x ↦ t > == < γ' , x' ↦ t' > → ((γ == γ' × x == x') × t == t')
<>= idp = (idp , idp) , idp
{- Set of variables -}
varC : Pre-Ctx → set
varC nil = Ø
varC (Γ :: (x , _)) = (varC Γ) ∪-set (singleton x)
varT : Ty → set
vart : Tm → set
varS : Sub → set
varT ∗ = Ø
varT (⇒ A t u) = (varT A) ∪-set ((vart t) ∪-set (vart u))
vart (v x) = singleton x
vart (coh Γ A Afull γ) = varS γ
varS <> = Ø
varS < γ , x ↦ t > = (varS γ) ∪-set (vart t)
{- fullness condition -}
data _is-full-in_ where
side-cond₁ : ∀ Γ A t u → (src-var Γ) ≗ ((varT A) ∪-set (vart t)) → (tgt-var Γ) ≗ ((varT A) ∪-set (vart u)) → (⇒ A t u) is-full-in Γ
side-cond₂ : ∀ Γ A → (varC (fst Γ)) ≗ (varT A) → A is-full-in Γ
∈-drop : ∀ {A : Set} {a : A} {l : list A} → a ∈-list drop l → a ∈-list l
∈-drop {A} {a} {l :: a₁} x = inl x
l∉∂⁻ : ∀ {Γ i x A y} → (Γ⊢ps : Γ ⊢ps x # A) → length Γ ≤ y → ¬ (y ∈-list (srcᵢ-var i Γ⊢ps))
l∉∂⁻ {i = i} pss lΓ≤y y∈ with eqdecℕ i O
... | inl _ = y∈
l∉∂⁻ {i = i} pss lΓ≤y (inr idp) | inr _ = Sn≰n _ lΓ≤y
l∉∂⁻ (psd Γ⊢ps) lΓ≤y y∈ = l∉∂⁻ Γ⊢ps lΓ≤y y∈
l∉∂⁻ {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) SSl≤y y∈ with dec-≤ i (S (dim A))
... | inl _ = l∉∂⁻ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) y∈
l∉∂⁻ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl (inl y∈)) | inr _ = l∉∂⁻ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) y∈
l∉∂⁻ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl (inr idp)) | inr _ = Sn≰n _ (n≤m→n≤Sm SSl≤y)
l∉∂⁻ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inr idp) | inr _ = Sn≰n _ SSl≤y
l∉∂⁺ : ∀ {Γ i x A y} → (Γ⊢ps : Γ ⊢ps x # A) → length Γ ≤ y → ¬ (y ∈-list (tgtᵢ-var i Γ⊢ps))
l∉∂⁺ {i = i} pss lΓ≤y y∈ with eqdecℕ i O
... | inl _ = y∈
l∉∂⁺ {i = i} pss lΓ≤y (inr idp) | inr _ = Sn≰n _ lΓ≤y
l∉∂⁺ (psd Γ⊢ps) lΓ≤y y∈ = l∉∂⁺ Γ⊢ps lΓ≤y y∈
l∉∂⁺ {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) SSl≤y y∈ with dec-≤ i (S (dim A))
l∉∂⁺ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl (inl y∈)) | inr _ = l∉∂⁺ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) y∈
l∉∂⁺ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl (inr idp)) | inr _ = Sn≰n _ (n≤m→n≤Sm SSl≤y)
l∉∂⁺ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inr idp) | inr x = Sn≰n _ SSl≤y
... | inl _ with eqdecℕ i (S (dim A))
l∉∂⁺ {i = .(S (dim _))} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl y∈drop) | inl _ | inl idp = l∉∂⁺ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) (∈-drop y∈drop)
l∉∂⁺ {i = .(S (dim _))} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inr idp) | inl _ | inl idp = Sn≰n _ (n≤m→n≤Sm SSl≤y)
... | inr _ = l∉∂⁺ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) y∈
∂⁻ᵢ-var : ∀ {Γ x A y B i} → (Γ⊢ps : Γ ⊢ps x # A) → Γ ⊢t (Var y) # B → i ≤ dim B → ¬ (y ∈-list (srcᵢ-var i Γ⊢ps))
∂⁻ᵢ-var pss (var x (inr (idp , idp))) (0≤ .0) ()
∂⁻ᵢ-var (psd Γ⊢ps) Γ⊢y i≤B y∈∂⁻ = ∂⁻ᵢ-var Γ⊢ps Γ⊢y i≤B y∈∂⁻
∂⁻ᵢ-var {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B y∈∂⁻ with dec-≤ i (S (dim A))
... | inl _ = ∂⁻ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B y∈∂⁻
∂⁻ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inl (inl y∈∂⁻)) | inr _ = ∂⁻ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B y∈∂⁻
∂⁻ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inl (inr idp)) | inr _ = x∉ (psv Γ⊢ps) (n≤n _) (var (psv Γ⊢ps) y∈Γ)
∂⁻ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inr idp) | inr _ = x∉ (psv Γ⊢ps) (n≤Sn _) (var (psv Γ⊢ps) y∈Γ)
∂⁻ᵢ-var {i = i} (pse {A = B} Γ⊢ps idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) i≤B y∈∂⁻ with dec-≤ i (S (dim B))
... | inl _ = l∉∂⁻ Γ⊢ps (n≤n _) y∈∂⁻
... | inr i≰SB = i≰SB (n≤m→n≤Sm i≤B)
∂⁻ᵢ-var {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var _ (inr (idp , idp))) i≤SA y∈∂⁻ with dec-≤ i (S (dim A))
... | inl _ = l∉∂⁻ Γ⊢ps (n≤Sn _) y∈∂⁻
... | inr i≰SA = i≰SA i≤SA
∂⁺ᵢ-var : ∀ {Γ x A y B i} → (Γ⊢ps : Γ ⊢ps x # A) → Γ ⊢t (Var y) # B → i ≤ dim B → ¬ (y ∈-list (tgtᵢ-var i Γ⊢ps))
∂⁺ᵢ-var pss (var x (inr (idp , idp))) (0≤ .0) ()
∂⁺ᵢ-var (psd Γ⊢ps) Γ⊢y i≤B y∈∂⁺ = ∂⁺ᵢ-var Γ⊢ps Γ⊢y i≤B y∈∂⁺
∂⁺ᵢ-var {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B y∈∂⁺ with dec-≤ i (S (dim A))
... | inl i≤SdimA with eqdecℕ i (S (dim A))
... | inr _ = ∂⁺ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B y∈∂⁺
∂⁺ᵢ-var {i = .(S (dim _))} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var {x = y} _ (inl (inl y∈Γ))) i≤B (inl y∈drop) | inl i≤SdimA | inl idp = ∂⁺ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B (∈-drop y∈drop)
∂⁺ᵢ-var {i = .(S (dim _))} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inr idp) | inl i≤SdimA | inl idp = lΓ∉Γ (psv Γ⊢ps) y∈Γ
∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inl (inl y∈∂⁻)) | inr _ = ∂⁺ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B y∈∂⁻
∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inl (inr idp)) | inr _ = x∉ (psv Γ⊢ps) (n≤n _) (var (psv Γ⊢ps) y∈Γ)
∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inr idp) | inr _ = x∉ (psv Γ⊢ps) (n≤Sn _) (var (psv Γ⊢ps) y∈Γ)
∂⁺ᵢ-var {i = i} (pse {A = B} Γ⊢ps idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) i≤B y∈∂⁺ with dec-≤ i (S (dim B))
... | inr i≰SB = i≰SB (n≤m→n≤Sm i≤B)
... | inl _ with eqdecℕ i (S (dim B))
... | inr _ = l∉∂⁺ Γ⊢ps (n≤n _) y∈∂⁺
∂⁺ᵢ-var (pse Γ⊢ps idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) i≤B (inl l∈drop) | inl _ | inl _ = l∉∂⁺ Γ⊢ps (n≤n _) (∈-drop l∈drop)
∂⁺ᵢ-var (pse Γ⊢ps idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) i≤B (inr p) | inl _ | inl idp = Sn≰n _ i≤B
∂⁺ᵢ-var {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var _ (inr (idp , idp))) i≤SA y∈∂⁺ with dec-≤ i (S (dim A))
... | inr i≰SA = i≰SA i≤SA
... | inl _ with eqdecℕ i (S (dim A))
... | inr _ = l∉∂⁺ Γ⊢ps (n≤Sn _) y∈∂⁺
∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inr (idp , idp))) i≤SA (inl Sl∈drop) | inl _ | inl _ = l∉∂⁺ Γ⊢ps (n≤Sn _) (∈-drop Sl∈drop)
∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inr (idp , idp))) i≤SA (inr Sl=l) | inl _ | inl _ = Sn≠n _ Sl=l
∈-varC : ∀ {Γ x A} → x # A ∈ Γ → x ∈-set (varC Γ)
∈-varC {Γ :: (y , B)} {x} {A} (inl x∈Γ) = ∈-∪₁ {A = varC Γ} {B = singleton y} (∈-varC x∈Γ)
∈-varC {Γ :: (y , B)} {x} {A} (inr (idp , _)) = ∈-∪₂ {A = varC Γ} {B = singleton y} (∈-singleton y)
max-var-def : Pre-Ctx → ℕ × Pre-Ty
max-var-def nil = 0 , ∗
max-var-def (Γ :: (y , B)) with dec-≤ (dimC Γ) (dim B)
... | inr _ = max-var-def Γ
... | inl _ = y , B
max-var-is-max : ∀ {Γ} → Γ ≠ nil → Γ ⊢C → let (x , A) = max-var-def Γ in ((x # A ∈ Γ) × (dimC Γ == dim A))
max-var-is-max {nil} Γ≠nil _ = ⊥-elim (Γ≠nil idp)
max-var-is-max {Γ :: (y , B)} _ Γ⊢ with dec-≤ (dimC Γ) (dim B)
... | inl _ = inr (idp , idp) , idp
... | inr _ with Γ
max-var-is-max {Γ :: (y , B)} _ (cc Γ⊢ Γ⊢B idp) | inr _ | Δ :: (x , A) = let (x∈ , dimA) = max-var-is-max (λ{()}) Γ⊢ in inl x∈ , dimA
max-var-is-max {Γ :: (.0 , .∗)} _ (cc Γ⊢ (ob _) idp) | inr _ | nil = inr (idp , idp) , idp
max-var-is-max {Γ :: (.0 , _)} _ (cc Γ⊢ (ar _ _) idp) | inr dΓ≤dB | nil = ⊥-elim (dΓ≤dB (0≤ _))
psx-nonul : ∀ {Γ x A} → Γ ⊢ps x # A → Γ ≠ nil
psx-nonul (psd x) idp = psx-nonul x idp
ps-nonul : ∀ {Γ} → Γ ⊢ps → Γ ≠ nil
ps-nonul (ps Γ⊢ps) = psx-nonul Γ⊢ps
max-var : ∀ {Γ} → Γ ⊢ps → Σ (ℕ × Pre-Ty) λ {(x , A) → (x # A ∈ Γ) × (dimC Γ == dim A)}
max-var {Γ} Γ⊢ps@(ps Γ⊢psx) = max-var-def Γ , max-var-is-max (ps-nonul Γ⊢ps) (psv Γ⊢psx)
∂Γ-not-full : ∀ Γ → ¬ (varC (fst Γ) ⊂ ((src-var Γ) ∪-set (tgt-var Γ)))
∂Γ-not-full (Γ , Γ⊢ps@(ps Γ⊢psx)) vΓ⊂∂ = let ((x , A) , (x∈Γ , dimA)) = max-var Γ⊢ps in
∉-∪ {set-of-list (srcᵢ-var (dimC Γ) Γ⊢psx)} {set-of-list (tgtᵢ-var (dimC Γ) Γ⊢psx)} {x}
(λ x∈∂⁻ → ∂⁻ᵢ-var Γ⊢psx (var (psv Γ⊢psx) x∈Γ) (≤-= (n≤n _) dimA) (∈-set-∈-list _ _ x∈∂⁻))
(λ x∈∂⁺ → ∂⁺ᵢ-var Γ⊢psx (var (psv Γ⊢psx) x∈Γ) (≤-= (n≤n _) dimA) (∈-set-∈-list _ _ x∈∂⁺))
(vΓ⊂∂ x (∈-varC x∈Γ))
disjoint-cond : ∀ Γ A t u → (src-var Γ) ≗ ((varT A) ∪-set (vart t)) → (tgt-var Γ) ≗ ((varT A) ∪-set (vart u)) → ¬ (varC (fst Γ) ≗ varT (⇒ A t u))
disjoint-cond Γ A t u (_ , A⊂∂⁻) (_ , A⊂∂⁺) (Γ⊂A , _) =
let vA = varT A in let vt = vart t in let vu = vart u in
let sr = src-var Γ in let tg = tgt-var Γ in
∂Γ-not-full Γ
(⊂-trans {varC (fst Γ)} {vA ∪-set (vt ∪-set vu)} {sr ∪-set tg} Γ⊂A
(≗-⊂ {vA ∪-set (vt ∪-set vu)} {(vA ∪-set vt) ∪-set (vA ∪-set vu)} {sr ∪-set tg} (∪-factor (varT A) (vart t) (vart u))
(⊂-∪ {vA ∪-set vt} {sr} {vA ∪-set vu} {tg} A⊂∂⁻ A⊂∂⁺)))
side-cond₁= : ∀ Γ A t u ∂⁻-full₁ ∂⁻-full₂ ∂⁺-full₁ ∂⁺-full₂ → ∂⁻-full₁ == ∂⁻-full₂ → ∂⁺-full₁ == ∂⁺-full₂ → side-cond₁ Γ A t u ∂⁻-full₁ ∂⁺-full₁ == side-cond₁ Γ A t u ∂⁻-full₂ ∂⁺-full₂
side-cond₁= Γ A t u ∂⁻-full₁ .∂⁻-full₁ ∂⁺-full₁ .∂⁺-full₁ idp idp = idp
has-all-paths-is-full : ∀ Γ A → has-all-paths (A is-full-in Γ)
has-all-paths-is-full Γ .(⇒ A t u) (side-cond₁ .Γ A t u x x₁) (side-cond₁ .Γ .A .t .u x₂ x₃) = ap² (λ ∂⁻ → λ ∂⁺ → side-cond₁ Γ A t u ∂⁻ ∂⁺) (is-prop-has-all-paths (is-prop-≗ (src-var Γ) (varT A ∪-set vart t)) x x₂) (is-prop-has-all-paths (is-prop-≗ (tgt-var Γ) (varT A ∪-set vart u)) x₁ x₃)
has-all-paths-is-full Γ .(⇒ A t u) (side-cond₁ .Γ A t u ∂⁻ ∂⁺) (side-cond₂ .Γ .(⇒ A t u) full) = ⊥-elim (disjoint-cond Γ A t u ∂⁻ ∂⁺ full)
has-all-paths-is-full Γ .(⇒ A t u) (side-cond₂ .Γ .(⇒ A t u) full) (side-cond₁ .Γ A t u ∂⁻ ∂⁺) = ⊥-elim (disjoint-cond Γ A t u ∂⁻ ∂⁺ full)
has-all-paths-is-full Γ A (side-cond₂ .Γ .A x) (side-cond₂ .Γ .A x₁) = ap (side-cond₂ Γ A) (is-prop-has-all-paths (is-prop-≗ (varC (fst Γ)) (varT A)) x x₁)
is-prop-full : ∀ Γ A → is-prop (A is-full-in Γ)
is-prop-full Γ A = has-all-paths-is-prop (has-all-paths-is-full Γ A)
eqdec-Ty : eqdec Ty
eqdec-Tm : eqdec Tm
eqdec-Sub : eqdec Sub
eqdec-Ty ∗ ∗ = inl idp
eqdec-Ty ∗ (⇒ _ _ _) = inr λ{()}
eqdec-Ty (⇒ _ _ _) ∗ = inr λ{()}
eqdec-Ty (⇒ A t u) (⇒ A' t' u') with eqdec-Ty A A' | eqdec-Tm t t' | eqdec-Tm u u'
... | inl idp | inl idp | inl idp = inl idp
... | inr A≠A' | _ | _ = inr λ {idp → A≠A' idp}
... | inl idp | inr t≠t' | _ = inr λ p → t≠t' (snd (fst (=⇒Ty p)))
... | inl idp | inl idp | inr u≠u' = inr λ p → u≠u' (snd (=⇒Ty p))
eqdec-Tm (v x) (v y) with eqdecℕ x y
... | inl idp = inl idp
... | inr x≠y = inr λ{idp → x≠y idp}
eqdec-Tm (v _) (coh _ _ _ _) = inr λ{()}
eqdec-Tm (coh _ _ _ _) (v _) = inr λ{()}
eqdec-Tm (coh Γ A Afull γ) (coh Γ' A' A'full γ') with eqdec-ps Γ Γ' | eqdec-Ty A A' | eqdec-Sub γ γ'
... | inl idp | inl idp | inl idp = inl (ap (λ X → coh Γ A X γ) (is-prop-has-all-paths (is-prop-full Γ A) Afull A'full))
... | inr Γ≠Γ' | _ | _ = inr λ {idp → Γ≠Γ' idp}
... | inl idp | inr A≠A' | _ = inr λ p → A≠A' (snd (fst (coh= p)))
... | inl idp | inl idp | inr γ≠γ' = inr λ p → γ≠γ' (snd (coh= p))
eqdec-Sub <> <> = inl idp
eqdec-Sub <> < _ , _ ↦ _ > = inr λ{()}
eqdec-Sub < _ , _ ↦ _ > <> = inr λ{()}
eqdec-Sub < γ , x ↦ t > < γ' , x' ↦ t' > with eqdec-Sub γ γ' | eqdecℕ x x' | eqdec-Tm t t'
... | inl idp | inl idp | inl idp = inl idp
... | inr γ≠γ' | _ | _ = inr λ {idp → γ≠γ' idp}
... | inl idp | inr x≠x' | _ = inr λ p → x≠x' (snd (fst (<>= p)))
... | inl idp | inl idp | inr t≠t' = inr λ p → t≠t' (snd (<>= p))
| {
"alphanum_fraction": 0.4630677353,
"avg_line_length": 58.6451612903,
"ext": "agda",
"hexsha": "ea909bc31ab81f5def58c6fab4668b27f6d23ee3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "CaTT/Fullness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "CaTT/Fullness.agda",
"max_line_length": 292,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "CaTT/Fullness.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7297,
"size": 12726
} |
------------------------------------------------------------------------
-- A sound, inductive approximation of stream equality
------------------------------------------------------------------------
-- The point of this module is to give a short (not entirely faithful)
-- illustration of the technique used to establish soundness of
-- RecursiveTypes.Subtyping.Axiomatic.Inductive._⊢_≤_ with respect to
-- RecursiveTypes.Subtyping.Axiomatic.Coinductive._≤_.
module InductiveStreamEquality {A : Set} where
open import Codata.Musical.Notation
open import Codata.Musical.Stream hiding (_∈_; lookup)
open import Data.List
open import Data.List.Membership.Propositional
open import Data.List.Relation.Unary.All as All
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.Product
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
infixr 5 _∷_
infix 4 _⊢_≈_ _≈P_ _≈W_
------------------------------------------------------------------------
-- An approximation of stream equality
-- Streams do not need to be regular, so _⊢_≈_ is not complete with
-- respect to _≈_.
data _⊢_≈_ (H : List (Stream A × Stream A)) :
Stream A → Stream A → Set where
_∷_ : ∀ x {xs ys} →
(x ∷ xs , x ∷ ys) ∷ H ⊢ ♭ xs ≈ ♭ ys →
H ⊢ x ∷ xs ≈ x ∷ ys
hyp : ∀ {xs ys} → (xs , ys) ∈ H → H ⊢ xs ≈ ys
trans : ∀ {xs ys zs} → H ⊢ xs ≈ ys → H ⊢ ys ≈ zs → H ⊢ xs ≈ zs
-- Example.
repeat-refl : (x : A) → [] ⊢ repeat x ≈ repeat x
repeat-refl x = x ∷ hyp (here refl)
------------------------------------------------------------------------
-- Soundness
Valid : (Stream A → Stream A → Set) → Stream A × Stream A → Set
Valid _R_ (xs , ys) = xs R ys
-- Programs and WHNFs.
mutual
data _≈P_ : Stream A → Stream A → Set where
sound : ∀ {A xs ys} → All (Valid _≈W_) A → A ⊢ xs ≈ ys → xs ≈P ys
trans : ∀ {xs ys zs} → xs ≈P ys → ys ≈P zs → xs ≈P zs
data _≈W_ : Stream A → Stream A → Set where
_∷_ : ∀ x {xs ys} → ∞ (♭ xs ≈P ♭ ys) → x ∷ xs ≈W x ∷ ys
transW : ∀ {xs ys zs} → xs ≈W ys → ys ≈W zs → xs ≈W zs
transW (x ∷ xs≈ys) (.x ∷ ys≈zs) = x ∷ ♯ trans (♭ xs≈ys) (♭ ys≈zs)
soundW : ∀ {A xs ys} → All (Valid _≈W_) A → A ⊢ xs ≈ ys → xs ≈W ys
soundW valid (hyp h) = All.lookup valid h
soundW valid (trans xs≈ys ys≈zs) = transW (soundW valid xs≈ys)
(soundW valid ys≈zs)
soundW valid (x ∷ xs≈ys) = proof
where
proof : _ ≈W _
proof = x ∷ ♯ sound (proof ∷ valid) xs≈ys
whnf : ∀ {xs ys} → xs ≈P ys → xs ≈W ys
whnf (sound valid xs≈ys) = soundW valid xs≈ys
whnf (trans xs≈ys ys≈zs) = transW (whnf xs≈ys) (whnf ys≈zs)
-- The programs and WHNFs are sound with respect to _≈_.
mutual
⟦_⟧W : ∀ {xs ys} → xs ≈W ys → xs ≈ ys
⟦ x ∷ xs≈ys ⟧W = refl ∷ ♯ ⟦ ♭ xs≈ys ⟧P
⟦_⟧P : ∀ {xs ys} → xs ≈P ys → xs ≈ ys
⟦ xs≈ys ⟧P = ⟦ whnf xs≈ys ⟧W
-- The programs and WHNFs are also complete with respect to _≈_.
mutual
completeP : ∀ {xs ys} → xs ≈ ys → xs ≈P ys
completeP xs≈ys = sound (completeW xs≈ys ∷ []) (hyp (here refl))
completeW : ∀ {xs ys} → xs ≈ ys → xs ≈W ys
completeW (refl ∷ xs≈ys) = _ ∷ ♯ completeP (♭ xs≈ys)
-- Finally we get the intended soundness result for _⊢_≈_.
reallySound : ∀ {A xs ys} → All (Valid _≈_) A → A ⊢ xs ≈ ys → xs ≈ ys
reallySound valid xs≈ys =
⟦ sound (All.map (λ {p} → done p) valid) xs≈ys ⟧P
where
done : ∀ p → Valid _≈_ p → Valid _≈W_ p
done (xs , ys) = completeW
| {
"alphanum_fraction": 0.5455338958,
"avg_line_length": 33.0480769231,
"ext": "agda",
"hexsha": "c6551deb1376c1ac9480c5478bb9e75a10b05716",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "InductiveStreamEquality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "InductiveStreamEquality.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "InductiveStreamEquality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 1257,
"size": 3437
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Support.StarEquality where
open import Categories.Support.Equivalence
open import Data.Star
import Data.Star.Properties as Props
open import Level
open import Relation.Binary
using ( Rel
; Reflexive; Symmetric; Transitive
; IsEquivalence
; _=[_]⇒_)
open import Relation.Binary.PropositionalEquality
using (_≡_)
renaming (refl to ≡-refl)
module StarEquality {o ℓ e} {Obj : Set o} (S : Obj → Obj → Setoid ℓ e) where
private
open module S i j = Setoid (S i j)
using () renaming (Carrier to T)
_≊_ : ∀ {i j} → Rel (T i j) e
_≊_ {i}{j} = S._≈_ i j
infix 4 _≈_
data _≈_ : {i₁ i₂ : Obj} → Rel (Star T i₁ i₂) (o ⊔ ℓ ⊔ e) where
ε-cong : ∀ {i} → ε {x = i} ≈ ε {x = i}
_◅-cong_ : {i j k : Obj}{x₁ x₂ : T i j} {xs₁ xs₂ : Star T j k}
→ x₁ ≊ x₂
→ xs₁ ≈ xs₂
→ (x₁ ◅ xs₁) ≈ (x₂ ◅ xs₂)
_◅◅-cong_ : {i j k : Obj}{xs₁ xs₂ : Star T i j} {ys₁ ys₂ : Star T j k}
→ xs₁ ≈ xs₂
→ ys₁ ≈ ys₂
→ (xs₁ ◅◅ ys₁) ≈ (xs₂ ◅◅ ys₂)
ε-cong ◅◅-cong p = p
(p ◅-cong ps₁) ◅◅-cong ps₂ = p ◅-cong (ps₁ ◅◅-cong ps₂)
_▻▻-cong_ : {i j k : Obj}{xs₁ xs₂ : Star T j k} {ys₁ ys₂ : Star T i j}
→ xs₁ ≈ xs₂
→ ys₁ ≈ ys₂
→ (xs₁ ▻▻ ys₁) ≈ (xs₂ ▻▻ ys₂)
x ▻▻-cong y = y ◅◅-cong x
private
.refl : ∀ {i j} → Reflexive (_≈_ {i}{j})
refl {x = ε} = ε-cong
refl {x = x ◅ xs} = S.refl _ _ ◅-cong refl
.sym : ∀ {i j} → Symmetric (_≈_ {i}{j})
sym ε-cong = ε-cong
sym (px ◅-cong pxs) = S.sym _ _ px ◅-cong sym pxs
.trans : ∀ {i j} → Transitive (_≈_ {i}{j})
trans ε-cong ε-cong = ε-cong
trans (px₁ ◅-cong pxs₁) (px₂ ◅-cong pxs₂)
= S.trans _ _ px₁ px₂ ◅-cong trans pxs₁ pxs₂
.isEquivalence : ∀ {i j} → IsEquivalence (_≈_ {i}{j})
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
private
.reflexive : ∀ {i j} {x y : Star T i j} → x ≡ y → x ≈ y
reflexive ≡-refl = refl
StarSetoid : ∀ i j → Setoid (o ⊔ ℓ) (o ⊔ ℓ ⊔ e)
StarSetoid i j = record
{ Carrier = Star T i j
; _≈_ = _≈_
; isEquivalence = isEquivalence
}
.◅◅-assoc : {A B C D : Obj} (f : Star T A B) (g : Star T B C) (h : Star T C D)
→ ((f ◅◅ g) ◅◅ h) ≈ (f ◅◅ (g ◅◅ h))
◅◅-assoc f g h = reflexive (Props.◅◅-assoc f g h)
.▻▻-assoc : {A B C D : Obj} (f : Star T A B) (g : Star T B C) (h : Star T C D)
→ ((h ▻▻ g) ▻▻ f) ≈ (h ▻▻ (g ▻▻ f))
▻▻-assoc f g h = sym (◅◅-assoc f g h)
open StarEquality public using (StarSetoid)
-- congruences involving Star lists of 2 relations
module StarCong₂ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂}
{I : Set o₁} (T-setoid : I → I → Setoid ℓ₁ e₁)
{J : Set o₂} (U-setoid : J → J → Setoid ℓ₂ e₂)
where
private
module T i j = Setoid (T-setoid i j)
T : Rel I ℓ₁
T = T.Carrier
_≊₁_ : ∀ {i j} → Rel (T i j) e₁
_≊₁_ {i}{j} = T._≈_ i j
module T* i j = Setoid (StarSetoid T-setoid i j)
_≈₁_ : ∀ {i j} → Rel (Star T i j) (o₁ ⊔ ℓ₁ ⊔ e₁)
_≈₁_ {i}{j} = T*._≈_ i j
open StarEquality T-setoid
using ()
renaming (ε-cong to ε-cong₁; _◅-cong_ to _◅-cong₁_)
module U i j = Setoid (U-setoid i j)
U : Rel J ℓ₂
U = U.Carrier
_≊₂_ : ∀ {i j} → Rel (U i j) e₂
_≊₂_ {i}{j} = U._≈_ i j
module U* i j = Setoid (StarSetoid U-setoid i j)
_≈₂_ : ∀ {i j} → Rel (Star U i j) (o₂ ⊔ ℓ₂ ⊔ e₂)
_≈₂_ {i}{j} = U*._≈_ i j
open StarEquality U-setoid
using ()
renaming (ε-cong to ε-cong₂; _◅-cong_ to _◅-cong₂_)
gmap-cong : (f : I → J) (g : T =[ f ]⇒ U) (g′ : T =[ f ]⇒ U)
→ (∀ {i j} (x y : T i j) → x ≊₁ y → g x ≊₂ g′ y)
→ ∀ {i j} (xs ys : Star T i j)
→ xs ≈₁ ys
→ gmap {U = U} f g xs ≈₂ gmap f g′ ys
gmap-cong f g g′ eq ε .ε ε-cong₁ = ε-cong₂
gmap-cong f g g′ eq (x ◅ xs) (y ◅ ys) (x≊y ◅-cong₁ xs≈ys)
= (eq x y x≊y) ◅-cong₂ (gmap-cong f g g′ eq xs ys xs≈ys)
gmap-cong f g g′ eq (x ◅ xs) ε ()
| {
"alphanum_fraction": 0.4960435213,
"avg_line_length": 31.59375,
"ext": "agda",
"hexsha": "94193819a066671ebdcc371bc0775f1b4b7cd4b1",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Support/StarEquality.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Support/StarEquality.agda",
"max_line_length": 80,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Support/StarEquality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 1850,
"size": 4044
} |
module LC.Confluence where
open import LC.Base
open import LC.Subst
open import LC.Reduction
open import Data.Product
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
β→confluent : ∀ {M N O : Term} → (M β→ N) → (M β→ O) → ∃ (λ P → (N β→* P) × (O β→* P))
β→confluent (β-ƛ-∙ {M} {N}) β-ƛ-∙ = M [ N ] , ε , ε
β→confluent (β-ƛ-∙ {M} {N}) (β-∙-l {N = _} (β-ƛ {N = O} M→O)) = (O [ N ]) , cong-[]-l M→O , return β-ƛ-∙
β→confluent (β-ƛ-∙ {M} {N}) (β-∙-r {N = O} N→O) = M [ O ] , cong-[]-r M N→O , return β-ƛ-∙
β→confluent (β-ƛ M→N) (β-ƛ M→O) with β→confluent M→N M→O
... | P , N→P , O→P = ƛ P , cong-ƛ N→P , cong-ƛ O→P
β→confluent (β-∙-l {L} (β-ƛ {N = N} M→N)) β-ƛ-∙ = N [ L ] , return β-ƛ-∙ , cong-[]-l M→N
β→confluent (β-∙-l {L} M→N) (β-∙-l M→O) with β→confluent M→N M→O
... | P , N→P , O→P = P ∙ L , cong-∙-l N→P , cong-∙-l O→P
β→confluent (β-∙-l {N = N} M→N) (β-∙-r {N = O} L→O) = N ∙ O , cong-∙-r (return L→O) , cong-∙-l (return M→N)
β→confluent (β-∙-r {N = N} M→N) (β-ƛ-∙ {O}) = O [ N ] , return β-ƛ-∙ , cong-[]-r O M→N
β→confluent (β-∙-r {N = N} M→N) (β-∙-l {N = O} L→O) = O ∙ N , cong-∙-l (return L→O) , cong-∙-r (return M→N)
β→confluent (β-∙-r {L} {M} {N} M→N) (β-∙-r {N = O} M→O) with β→confluent M→N M→O
... | P , N→P , O→P = L ∙ P , cong-∙-r N→P , cong-∙-r O→P
-- β→*-confluent : ∀ {M N O} → (M β→* N) → (M β→* O) → ∃ (λ P → (N β→* P) × (O β→* P))
-- β→*-confluent {O = O} ε M→O = O , M→O , ε
-- β→*-confluent {N = N} M→N ε = N , ε , M→N
-- β→*-confluent {M} {N} {O} (_◅_ {j = L} M→L L→N) (_◅_ {j = K} M→K K→O) with β→confluent M→L M→K
-- ... | M' , L→M' , K→M' = {! !} | {
"alphanum_fraction": 0.4701492537,
"avg_line_length": 50.25,
"ext": "agda",
"hexsha": "ba66dc427447666052a6eb626e20af46d6ce470b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/bidirectional",
"max_forks_repo_path": "LC/Confluence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/bidirectional",
"max_issues_repo_path": "LC/Confluence.agda",
"max_line_length": 107,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/bidirectional",
"max_stars_repo_path": "LC/Confluence.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z",
"num_tokens": 936,
"size": 1608
} |
-- This module closely follows a section of Martín Escardó's HoTT lecture notes:
-- https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#funextfromua
{-# OPTIONS --without-K #-}
module Util.HoTT.FunctionalExtensionality where
open import Axiom.Extensionality.Propositional using
(ExtensionalityImplicit ; implicit-extensionality)
open import Util.Data.Product using (map₂)
open import Util.HoTT.Equiv
open import Util.HoTT.Equiv.Induction
open import Util.HoTT.HLevel.Core
open import Util.HoTT.Homotopy
open import Util.HoTT.Section
open import Util.HoTT.Singleton
open import Util.HoTT.Univalence
open import Util.Prelude
open import Util.Relation.Binary.PropositionalEquality using (Σ-≡⁻)
private
variable
α β γ : Level
A B C : Set α
FunextNondep : ∀ α β → Set (lsuc (α ⊔ℓ β))
FunextNondep α β
= {A : Set α} {B : Set β} {f g : A → B} → (∀ a → f a ≡ g a) → f ≡ g
IsContr-∀-Closure : ∀ α β → Set (lsuc (α ⊔ℓ β))
IsContr-∀-Closure α β
= {A : Set α} {B : A → Set β} → (∀ a → IsContr (B a)) → IsContr (∀ a → B a)
FunextHapply : ∀ α β → Set (lsuc (α ⊔ℓ β))
FunextHapply α β
= {A : Set α} {B : A → Set β} (f g : ∀ a → B a) → IsEquiv (≡→~ {f = f} {g})
Funext : ∀ α β → Set (lsuc (α ⊔ℓ β))
Funext α β
= {A : Set α} {B : A → Set β} {f g : ∀ a → B a} → (∀ a → f a ≡ g a) → f ≡ g
abstract
precomp-IsEquiv : {A B : Set α} (f : A → B)
→ IsEquiv f
→ {C : Set α}
→ IsEquiv (λ (g : B → C) → g ∘ f)
precomp-IsEquiv f f-equiv {C}
= J-IsEquiv (λ A B f → IsEquiv (λ (g : B → C) → g ∘ f)) (λ A → id-IsEquiv) f
f-equiv
funext-nondep : FunextNondep α β
funext-nondep {α} {β} {A} {B} {f} {g} f~g
= cong (λ π x → π (f x , g x , f~g x)) π₀≡π₁
where
Δ : Set β
Δ = Σ[ b ∈ B ] Σ[ b′ ∈ B ] (b ≡ b′)
δ : B → Δ
δ b = b , b , refl
π₀ π₁ : Δ → B
π₀ (b , b′ , p) = b
π₁ (b , b′ , p) = b′
δ-IsEquiv : IsEquiv δ
δ-IsEquiv = IsIso→IsEquiv record
{ back = π₀
; back∘forth = λ _ → refl
; forth∘back = λ { (b , b′ , refl) → refl }
}
φ : (Δ → B) → (B → B)
φ = _∘ δ
φ-IsEquiv : IsEquiv φ
φ-IsEquiv = precomp-IsEquiv δ δ-IsEquiv
φπ₀≡φπ₁ : φ π₀ ≡ φ π₁
φπ₀≡φπ₁ = refl
π₀≡π₁ : π₀ ≡ π₁
π₀≡π₁ = IsEquiv→Injective φ-IsEquiv φπ₀≡φπ₁
postcomp-IsIso : {A : Set α} {B : Set β} (f : B → C)
→ IsIso f
→ IsIso (λ (g : A → B) → f ∘ g)
postcomp-IsIso {A = A} {B} f i = record
{ back = λ g a → i .IsIso.back (g a)
; back∘forth = λ g → funext-nondep λ a → i .IsIso.back∘forth (g a)
; forth∘back = λ g → funext-nondep λ a → i .IsIso.forth∘back (g a)
}
postcomp-IsEquiv : {A : Set α} {B : Set β} (f : B → C)
→ IsEquiv f
→ IsEquiv (λ (g : A → B) → f ∘ g)
postcomp-IsEquiv f f-equiv
= IsIso→IsEquiv (postcomp-IsIso f (IsEquiv→IsIso f-equiv))
∀-IsContr : IsContr-∀-Closure α β
∀-IsContr {A = A} {B} B-contr = ◁-pres-IsContr ΠB◁g-fiber g-fiber-IsContr
where
f : Σ A B → A
f = proj₁
f-IsEquiv : IsEquiv f
f-IsEquiv = proj₁-IsEquiv B-contr
g : (A → Σ A B) → (A → A)
g = f ∘_
g-IsEquiv : IsEquiv g
g-IsEquiv = postcomp-IsEquiv f f-IsEquiv
g-fiber-IsContr : IsContr (Σ[ h ∈ (A → Σ A B) ] (f ∘ h ≡ id))
g-fiber-IsContr = g-IsEquiv id
ΠB◁g-fiber : (∀ a → B a) ◁ (Σ[ h ∈ (A → Σ A B) ] (f ∘ h ≡ id))
ΠB◁g-fiber = record
{ retraction = λ { (h , p) a → subst B (≡→~ p a) (proj₂ (h a)) }
; hasSection = record
{ section = λ h → (λ a → a , h a) , refl
; isSection = λ _ → refl
}
}
≡→~-IsEquiv : FunextHapply α β
≡→~-IsEquiv {A = A} {B} f = goal
where
i : ∀ a → IsContr (Σ[ b ∈ B a ] (f a ≡ b))
i a = IsContr-Singleton′
ii : IsContr (∀ a → Σ[ b ∈ B a ] (f a ≡ b))
ii = ∀-IsContr i
iii : (∃[ g ] (f ~ g)) ◁ (∀ a → Σ[ b ∈ B a ] (f a ≡ b))
iii = ≅→▷ (Π-distr-Σ-≅ _ _ _)
iv : IsContr (∃[ g ] (f ~ g))
iv = ◁-pres-IsContr iii ii
e : (∃[ g ] (f ≡ g)) → (∃[ g ] (f ~ g))
e = map₂ (λ _ → ≡→~)
e-IsEquiv : IsEquiv e
e-IsEquiv = IsContr→IsEquiv IsContr-Singleton′ iv e
goal : ∀ g → IsEquiv (≡→~ {f = f} {g})
goal = IsEquiv-map₂-f→IsEquiv-f (λ _ → ≡→~) e-IsEquiv
funext : Funext α β
funext {f = f} {g} eq = ≡→~-IsEquiv f g eq .proj₁ .proj₁
funext∙ : ExtensionalityImplicit α β
funext∙ = implicit-extensionality funext
module _ {α β} {A : Set α} {B : A → Set β} {f g : ∀ a → B a} where
≡→~∘funext : (eq : ∀ a → f a ≡ g a)
→ ≡→~ (funext eq) ≡ eq
≡→~∘funext eq = ≡→~-IsEquiv f g eq .proj₁ .proj₂
funext-unique′ : ∀ eq
→ (y : Σ-syntax (f ≡ g) (λ p → ≡→~ p ≡ eq))
→ (funext eq , ≡→~∘funext eq) ≡ y
funext-unique′ eq = ≡→~-IsEquiv f g eq .proj₂
funext-unique : ∀ eq (p : f ≡ g)
→ ≡→~ p ≡ eq
→ funext eq ≡ p
funext-unique eq p q = proj₁ (Σ-≡⁻ (funext-unique′ eq (p , q)))
funext∘≡→~ : ∀ (eq : f ≡ g)
→ funext (≡→~ eq) ≡ eq
funext∘≡→~ eq = funext-unique (≡→~ eq) eq refl
subst-funext : ∀ {α β γ} {A : Set α} {B : A → Set β} {f g : ∀ a → B a}
→ (P : ∀ a → B a → Set γ)
→ (f≡g : ∀ x → f x ≡ g x)
→ ∀ {a} (Pf : P a (f a))
→ subst (λ f → P a (f a)) (funext f≡g) Pf ≡ subst (P a) (f≡g a) Pf
subst-funext P f≡g {a} Pf = sym
(trans
(cong (λ p → subst (P a) (p a) Pf) (sym (≡→~∘funext f≡g)))
go)
where
go : subst (P a) (≡→~ (funext f≡g) a) Pf
≡ subst (λ f → P a (f a)) (funext f≡g) Pf
go with funext f≡g
... | refl = refl
| {
"alphanum_fraction": 0.5056828432,
"avg_line_length": 26.9077669903,
"ext": "agda",
"hexsha": "349f0a375a21ff170342b4b17a1636488bb96a72",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Util/HoTT/FunctionalExtensionality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Util/HoTT/FunctionalExtensionality.agda",
"max_line_length": 94,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Util/HoTT/FunctionalExtensionality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 2471,
"size": 5543
} |
open import Prelude
module Nat where
data Nat : Set where
Z : Nat
1+ : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
-- the succ operation is injective
1+inj : (x y : Nat) → (1+ x == 1+ y) → x == y
1+inj Z .0 refl = refl
1+inj (1+ x) .(1+ x) refl = refl
-- equality of naturals is decidable. we represent this as computing a
-- choice of units, with inl <> meaning that the naturals are indeed the
-- same and inr <> that they are not.
natEQ : (x y : Nat) → ((x == y) + ((x == y) → ⊥))
natEQ Z Z = Inl refl
natEQ Z (1+ y) = Inr (λ ())
natEQ (1+ x) Z = Inr (λ ())
natEQ (1+ x) (1+ y) with natEQ x y
natEQ (1+ x) (1+ .x) | Inl refl = Inl refl
... | Inr b = Inr (λ x₁ → b (1+inj x y x₁))
-- nat equality as a predicate. this saves some very repetetive casing.
natEQp : (x y : Nat) → Set
natEQp x y with natEQ x y
natEQp x .x | Inl refl = ⊥
natEQp x y | Inr x₁ = ⊤
_nat+_ : Nat → Nat → Nat
Z nat+ y = y
1+ x nat+ y = 1+ (x nat+ y)
| {
"alphanum_fraction": 0.5535168196,
"avg_line_length": 28.0285714286,
"ext": "agda",
"hexsha": "643bfe10109f8c2b3411af811b0506915dd50bd1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "Nat.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 401,
"size": 981
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
module homotopy.PathSetIsInitalCover {i} (X : Ptd i)
-- and an arbitrary covering
{k} (⊙cov : ⊙Cover X k) where
open Cover
private
univ-cover = path-set-cover X
module ⊙cov = ⊙Cover ⊙cov
-- Weak initiality by transport.
quotient-cover : CoverHom univ-cover ⊙cov.cov
quotient-cover _ p = cover-trace ⊙cov.cov ⊙cov.pt p
-- Strong initiality by path induction.
module Uniqueness
(cover-hom : CoverHom univ-cover ⊙cov.cov)
(pres-pt : cover-hom (pt X) idp₀ == ⊙cov.pt)
where
private
lemma₁ : ∀ a p → cover-hom a [ p ] == quotient-cover a [ p ]
lemma₁ ._ idp = pres-pt
lemma₂ : ∀ a p → cover-hom a p == quotient-cover a p
lemma₂ a = Trunc-elim
(λ p → =-preserves-set (⊙cov.Fiber-level a))
(lemma₁ a)
theorem : cover-hom == quotient-cover
theorem = λ= λ a → λ= $ lemma₂ a
| {
"alphanum_fraction": 0.6097297297,
"avg_line_length": 25.6944444444,
"ext": "agda",
"hexsha": "4ad3f66ced588ee98c6d0e9aafe26563ffd4df87",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/PathSetIsInitalCover.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/PathSetIsInitalCover.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/PathSetIsInitalCover.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 303,
"size": 925
} |
import Lvl
open import Structure.Operator.Vector
open import Structure.Setoid
open import Type
module Structure.Operator.Vector.FiniteDimensional.Proofs
{ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ}
{V : Type{ℓᵥ}} ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄
{S : Type{ℓₛ}} ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄
{_+ᵥ_ : V → V → V}
{_⋅ₛᵥ_ : S → V → V}
{_+ₛ_ _⋅ₛ_ : S → S → S}
⦃ vectorSpace : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) ⦄
where
open VectorSpace(vectorSpace)
open import Data.Tuple as Tuple using (_,_)
open import Functional using (id ; _∘_ ; _∘₂_ ; _$_ ; swap ; _on₂_)
open import Function.Equals
open import Logic
open import Logic.Classical
open import Logic.Propositional
open import Logic.Predicate
open import Numeral.CoordinateVector as Vec using () renaming (Vector to Vec)
open import Numeral.CoordinateVector.Proofs
open import Numeral.Finite
open import Numeral.Finite.Proofs
open import Numeral.Natural
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
import Relator.Equals as Eq
open import Relator.Equals.Proofs.Equivalence
open import Structure.Function.Domain
open import Structure.Function.Domain.Proofs
open import Structure.Operator.Proofs
open import Structure.Operator
open import Structure.Operator.Vector.FiniteDimensional ⦃ vectorSpace = vectorSpace ⦄
open import Structure.Operator.Vector.LinearCombination ⦃ vectorSpace = vectorSpace ⦄
open import Structure.Operator.Vector.LinearCombination.Proofs
open import Structure.Relator.Properties
open import Syntax.Function
open import Syntax.Number
open import Syntax.Transitivity
private variable ℓ ℓ₁ ℓ₂ ℓₗ : Lvl.Level
private variable n n₁ n₂ : ℕ
private variable vf vf₁ vf₂ : Vec(n)(V)
private variable sf sf₁ sf₂ : Vec(n)(S)
private variable i j : 𝕟(n)
-- A basis could essentially be defined as being linearly independent and spanning the vector space.
linearIndependence-spanning-basis-equivalence : (LinearlyIndependent(vf) ∧ Spanning(vf)) ↔ Basis(vf)
linearIndependence-spanning-basis-equivalence = injective-surjective-bijective-equivalence _
-- Linearly independent sequence of vectors are vectors such that a linear combination of them never maps to zero.
-- Note that this is the usual definition of linear independence.
linearIndependence-equivalence : LinearlyIndependent(vf) ↔ (∀{sf} → (linearCombination(vf)(sf) ≡ 𝟎ᵥ) → (sf ⊜ Vec.fill(𝟎ₛ)))
linearIndependence-equivalence =
Two.injective-kernel
{_▫₁_ = Vec.map₂(_+ₛ_)}
⦃ func = BinaryOperator.right linearCombination-binaryOperator ⦄
⦃ cancₗ₂ = One.cancellationₗ-by-associativity-inverse ⦄
{inv₁ = Vec.map(−ₛ_)}
-- postulate linearCombination-when-zero : (linearCombination(vf)(sf) ≡ 𝟎ᵥ) → (∀{i} → (vf(i) ≡ 𝟎ᵥ) ∨ (sf(i) ≡ 𝟎ₛ))
-- A sequence of vectors with a zero vector in it are not linearly independent, and a linearly independent sequence of vectors do not contain zero vectors.
linearIndependence-no-zero-vectors : LinearlyIndependent(vf) → ∀{i} → (vf(i) ≡ 𝟎ᵥ) → ⊥
linearIndependence-no-zero-vectors {𝐒(n)}{vf} li {i} vfzero = distinct-identitiesₛ $
𝟎ₛ 🝖[ _≡_ ]-[]
Vec.fill 𝟎ₛ i 🝖[ _≡_ ]-[ _⊜_.proof ([↔]-to-[→] linearIndependence-equivalence li p) ]-sym
Vec.indexProject i 𝟏ₛ 𝟎ₛ i 🝖[ _≡_ ]-[ [↔]-to-[→] (indexProject-true{i = i}{false = 𝟎ₛ}) ([∨]-introₗ(reflexivity(Eq._≡_))) ]
𝟏ₛ 🝖-end
where
p =
linearCombination vf (Vec.indexProject i 𝟏ₛ 𝟎ₛ) 🝖[ _≡_ ]-[ linearCombination-of-indexProject{vf = vf} ]
vf(i) 🝖[ _≡_ ]-[ vfzero ]
𝟎ᵥ 🝖-end
--∀{i} → (vf(i) ≡ 𝟎ᵥ) → Spanning{𝐒(n)}(vf) → Spanning{n}(Vec.without i vf)
-- There are no duplicates in a sequence of linearly independent vectors.
linearIndependence-to-distinct : LinearlyIndependent(vf) → Vec.Distinct(vf)
Injective.proof (linearIndependence-to-distinct {vf = vf} (intro inj)) {x} {y} vfxy = [¬¬]-elim ⦃ [≡][𝕟]-classical ⦄ $ nxy ↦
let
p : linearCombination vf (Vec.indexProject x 𝟏ₛ 𝟎ₛ) ≡ linearCombination vf (Vec.indexProject y 𝟏ₛ 𝟎ₛ)
p =
linearCombination vf (Vec.indexProject x 𝟏ₛ 𝟎ₛ) 🝖[ _≡_ ]-[ linearCombination-of-indexProject{vf = vf} ]
vf(x) 🝖[ _≡_ ]-[ vfxy ]
vf(y) 🝖[ _≡_ ]-[ linearCombination-of-indexProject{vf = vf} ]-sym
linearCombination vf (Vec.indexProject y 𝟏ₛ 𝟎ₛ) 🝖-end
q : 𝟎ₛ ≡ 𝟏ₛ
q =
𝟎ₛ 🝖[ _≡_ ]-[ [↔]-to-[→] (indexProject-false{true = 𝟏ₛ}) ([∨]-introₗ nxy) ]-sym
Vec.proj(Vec.indexProject(x) 𝟏ₛ 𝟎ₛ) (y) 🝖[ _≡_ ]-[ _⊜_.proof(inj p) {y} ]
Vec.proj(Vec.indexProject(y) 𝟏ₛ 𝟎ₛ) (y) 🝖[ _≡_ ]-[ [↔]-to-[→] (indexProject-true{false = 𝟎ₛ}) ([∨]-introₗ(reflexivity(Eq._≡_) {x = y})) ]
𝟏ₛ 🝖-end
in distinct-identitiesₛ q
-- A subsequence of a linearly independent sequence of vectors are linearly independent.
postulate independent-subsequence-is-independent : ∀{N : 𝕟(n₁) → 𝕟(n₂)} ⦃ inj : Injective ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ (N) ⦄ → LinearlyIndependent{n₂}(vf) → LinearlyIndependent{n₁}(vf ∘ N)
postulate linear-independent-sequence-set-equivalence : ∀{N : 𝕟(n₁) → 𝕟(n₂)} ⦃ bij : Bijective ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ (N)⦄ → LinearlyIndependent{n₂}(vf) ↔ LinearlyIndependent{n₁}(vf ∘ N)
postulate spanning-supersequence-is-spanning : ∀{N : 𝕟(n₁) → 𝕟(n₂)} ⦃ surj : Surjective ⦃ [≡]-equiv ⦄ (N) ⦄ → Spanning{n₂}(vf) → Spanning{n₁}(vf ∘ N)
postulate spanning-sequence-set-equivalence : ∀{N : 𝕟(n₁) → 𝕟(n₂)} ⦃ bij : Bijective ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ (N) ⦄ → Spanning{n₂}(vf) ↔ Spanning{n₁}(vf ∘ N)
-- The number of linearly independent vectors is always less than the cardinality of a set of spanning vectors.
-- TODO: It is important to prove this if possible
postulate independent-less-than-spanning : ∀{n₁}{vf₁} → LinearlyIndependent{n₁}(vf₁) → ∀{n₂}{vf₂} → Spanning{n₂}(vf₂) → (n₁ ≤ n₂)
{- TODO: Here is an idea of a proof, but it probably requires more development in the theory of cardinalities. Or maybe just some stuff on linearCombination
LinearlyIndependent{n₁}(vf₁)
Injective(linearCombination{n = n₁}(vf₁)) (essentially: Vec(n₁)(S) ≤ V)
Spanning{n₂}(vf₂)
Surjective(linearCombination{n = n₂}(vf₂)) (essentially: Vec(n₂)(S) ≥ V)
Injective(linearCombination{n = n₂}(vf₂) ∘ inv) (Is this really true then? Essentially: V ≤ Vec(n₂)(S))
Injective(linearCombination{n = n₂}(vf₂) ∘ inv ∘ linearCombination{n = n₁}(vf₁)) (essentially: Vec(n₁)(S) ≤ Vec(n₂)(S))
n₁ ≤ n₂ (Note: This is not true in general. Only if the morphism is the "natural one" (the 𝟎 ↦ 𝟎 and n-tuples only maps to n-tuples and so on)), but is it really obtained by the proofs above?
-}
-- Two bases in a vector space are always of the same length.
basis-equal-length : Basis{n₁}(vf₁) → Basis{n₂}(vf₂) → (n₁ Eq.≡ n₂)
basis-equal-length b₁ b₂
with (li₁ , sp₁) ← [↔]-to-[←] linearIndependence-spanning-basis-equivalence b₁
| (li₂ , sp₂) ← [↔]-to-[←] linearIndependence-spanning-basis-equivalence b₂
= antisymmetry(_≤_)(Eq._≡_) (independent-less-than-spanning li₁ sp₂) (independent-less-than-spanning li₂ sp₁)
-- A finite basis can always be constructed by a subsequence of a finite spanning sequence of vectors.
-- TODO: One way of proving this is by assuming that the relation LinearlyIndependent is decidable (it is because of the isomorphism from matrices (all vector spaces of the same dimension are isomorphic) and then matrix operations can tell whether a set of finite vectors are decidable), and then remove vectors one by one from the spanning sequence until it is linearly independent (which it will be at the end. In extreme cases, a sequence of zero vectors are linearly independent). This algorithm will always terminate because all vectors are finite, but how will this be shown?
postulate basis-subsequence-from-spanning : Spanning{n₂}(vf) → ∃(n₁ ↦ ∃{Obj = 𝕟(n₁) → 𝕟(n₂)}(N ↦ Injective ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ (N) ∧ Basis{n₁}(vf ∘ N)))
module _ ⦃ fin-dim@([∃]-intro(spanSize) ⦃ [∃]-intro span ⦃ span-spanning ⦄ ⦄) : FiniteDimensional ⦄ where
-- A basis always exists for finite dimensional vector spaces.
basis-existence : ∃(n ↦ ∃(vf ↦ Basis{n}(vf)))
basis-existence
with [∃]-intro(n) ⦃ [∃]-intro N ⦃ [∧]-intro inj basis ⦄ ⦄ ← basis-subsequence-from-spanning span-spanning
= [∃]-intro(n) ⦃ [∃]-intro (span ∘ N) ⦃ basis ⦄ ⦄
-- The dimension of the vector space is the length of a basis, which are the same for every vector space.
dim : ℕ
dim = [∃]-witness basis-existence
postulate basis-supersequence-from-linear-independence : LinearlyIndependent{n₂}(vf) → ∃(n₁ ↦ ∃{Obj = 𝕟(n₁) → 𝕟(n₂)}(N ↦ Surjective ⦃ [≡]-equiv ⦄ (N) ∧ Basis{n₁}(vf ∘ N)))
-- TODO: One idea is to start with vf. Then try to add the basis vectors one by one from basis-existence while maintaining the linear independence
postulate independence-spanning-equivalence-for-dimension : LinearlyIndependent{dim}(vf) ↔ Spanning{dim}(vf)
-- TODO: For this to be formulated, reorganize some stuff
-- finite-subspace-set-equality : ∀{Vₛ₁ Vₛ₂} → Subspace(Vₛ₁) → Subspace(Vₛ₂) → (dim(Vₛ₁) ≡ dim(Vₛ₂)) → (Vₛ₁ ≡ Vₛ₂) -- as in set equality
| {
"alphanum_fraction": 0.6772097054,
"avg_line_length": 58.4303797468,
"ext": "agda",
"hexsha": "728a6f372281d2ede230277befbc57aa33b13034",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Vector/FiniteDimensional/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Vector/FiniteDimensional/Proofs.agda",
"max_line_length": 581,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Vector/FiniteDimensional/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 3203,
"size": 9232
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Diagram.Pushout {o ℓ e} (C : Category o ℓ e) where
open Category C
open HomReasoning
open import Level
private
variable
A B X Y Z : Obj
h h₁ h₂ j : A ⇒ B
record Pushout (f : X ⇒ Y) (g : X ⇒ Z) : Set (o ⊔ ℓ ⊔ e) where
field
{Q} : Obj
i₁ : Y ⇒ Q
i₂ : Z ⇒ Q
field
commute : i₁ ∘ f ≈ i₂ ∘ g
universal : h₁ ∘ f ≈ h₂ ∘ g → Q ⇒ cod h₁
unique : ∀ {eq : h₁ ∘ f ≈ h₂ ∘ g} →
j ∘ i₁ ≈ h₁ → j ∘ i₂ ≈ h₂ →
j ≈ universal eq
universal∘i₁≈h₁ : ∀ {eq : h₁ ∘ f ≈ h₂ ∘ g} →
universal eq ∘ i₁ ≈ h₁
universal∘i₂≈h₂ : ∀ {eq : h₁ ∘ f ≈ h₂ ∘ g} →
universal eq ∘ i₂ ≈ h₂
| {
"alphanum_fraction": 0.4698331194,
"avg_line_length": 22.9117647059,
"ext": "agda",
"hexsha": "c3ebe4b4ca0d15f06d48af7461613d931aec503d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Pushout.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Pushout.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Pushout.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 314,
"size": 779
} |
module L.Base where
-- Reexport definitions
open import L.Base.Sigma public
open import L.Base.Coproduct public renaming (_+_ to _⊎_)
open import L.Base.Empty public
open import L.Base.Unit public
open import L.Base.Nat public
open import L.Base.Id public
| {
"alphanum_fraction": 0.7898832685,
"avg_line_length": 25.7,
"ext": "agda",
"hexsha": "8cd938932e185122645e96a0eb46b06dc71999c0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "borszag/smallib",
"max_forks_repo_path": "src/L/Base.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "borszag/smallib",
"max_issues_repo_path": "src/L/Base.agda",
"max_line_length": 57,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "borszag/smallib",
"max_stars_repo_path": "src/L/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 64,
"size": 257
} |
open import Level
open import Relation.Binary.PropositionalEquality
open import Relation.Binary using (Setoid)
import Function.Equality
import Relation.Binary.Reasoning.Setoid as SetoidR
import Categories.Category
import Categories.Functor
import Categories.Category.Instance.Setoids
import Categories.Category.Cocartesian
import SecondOrder.Arity
import SecondOrder.Signature
import SecondOrder.Metavariable
import SecondOrder.Term
module SecondOrder.VRenaming
{ℓ}
{𝔸 : SecondOrder.Arity.Arity}
(Σ : SecondOrder.Signature.Signature ℓ 𝔸)
where
open SecondOrder.Signature.Signature Σ
open SecondOrder.Metavariable Σ
open SecondOrder.Term Σ
-- a renaming maps variables between contexts in a type-preserving way
_⇒ᵛ_ : ∀ (Γ Δ : VContext) → Set ℓ
Γ ⇒ᵛ Δ = ∀ {A} → A ∈ Γ → A ∈ Δ
infix 4 _⇒ᵛ_
-- equality of renamings
_≡ᵛ_ : ∀ {Γ Δ} (σ τ : Γ ⇒ᵛ Δ) → Set ℓ
_≡ᵛ_ {Γ} σ τ = ∀ {A} (x : A ∈ Γ) → σ x ≡ τ x
infixl 3 _≡ᵛ_
≡ᵛ-refl : ∀ {Γ Δ} {ρ : Γ ⇒ᵛ Δ} → ρ ≡ᵛ ρ
≡ᵛ-refl = λ x → refl
≡ᵛ-sym : ∀ {Γ Δ} {ρ ν : Γ ⇒ᵛ Δ}
→ ρ ≡ᵛ ν
→ ν ≡ᵛ ρ
≡ᵛ-sym eq x = sym (eq x)
≡ᵛ-trans : ∀ {Γ Δ} {ρ ν γ : Γ ⇒ᵛ Δ}
→ ρ ≡ᵛ ν
→ ν ≡ᵛ γ
→ ρ ≡ᵛ γ
≡ᵛ-trans eq1 eq2 x = trans (eq1 x) (eq2 x)
-- renamings form a setoid
renaming-setoid : ∀ (Γ Δ : VContext) → Setoid ℓ ℓ
renaming-setoid Γ Δ =
record
{ Carrier = Γ ⇒ᵛ Δ
; _≈_ = λ ρ ν → ρ ≡ᵛ ν
; isEquivalence =
record
{ refl = λ {ρ} x → ≡ᵛ-refl {Γ} {Δ} {ρ} x
; sym = ≡ᵛ-sym
; trans = ≡ᵛ-trans
}
}
-- renaming preserves equality of variables
ρ-resp-≡ : ∀ {Γ Δ A} {x y : A ∈ Γ} {ρ : Γ ⇒ᵛ Δ} → x ≡ y → ρ x ≡ ρ y
ρ-resp-≡ refl = refl
-- the identity renaming
idᵛ : ∀ {Γ : VContext} → Γ ⇒ᵛ Γ
idᵛ x = x
-- composition of renamings
_∘ᵛ_ : ∀ {Γ Δ Ξ} → Δ ⇒ᵛ Ξ → Γ ⇒ᵛ Δ → Γ ⇒ᵛ Ξ
(σ ∘ᵛ ρ) x = σ (ρ x)
infix 7 _∘ᵛ_
-- composition respects equality
∘ᵛ-resp-≡ᵛ : ∀ {Γ Δ Ξ} {τ₁ τ₂ : Δ ⇒ᵛ Ξ} {σ₁ σ₂ : Γ ⇒ᵛ Δ} →
τ₁ ≡ᵛ τ₂ → σ₁ ≡ᵛ σ₂ → τ₁ ∘ᵛ σ₁ ≡ᵛ τ₂ ∘ᵛ σ₂
∘ᵛ-resp-≡ᵛ {τ₁ = τ₁} {σ₂ = σ₂} ζ ξ x = trans (cong τ₁ (ξ x)) (ζ (σ₂ x))
-- the identity is the unit
identity-leftᵛ : ∀ {Γ Δ} {ρ : Γ ⇒ᵛ Δ} → idᵛ ∘ᵛ ρ ≡ᵛ ρ
identity-leftᵛ ρ = refl
identity-rightᵛ : ∀ {Γ Δ} {ρ : Γ ⇒ᵛ Δ} → ρ ∘ᵛ idᵛ ≡ᵛ ρ
identity-rightᵛ ρ = refl
-- composition is associative
assocᵛ : ∀ {Γ Δ Ξ Ψ} {τ : Γ ⇒ᵛ Δ} {ρ : Δ ⇒ᵛ Ξ} {σ : Ξ ⇒ᵛ Ψ} →
(σ ∘ᵛ ρ) ∘ᵛ τ ≡ᵛ σ ∘ᵛ (ρ ∘ᵛ τ)
assocᵛ x = refl
sym-assocᵛ : ∀ {Γ Δ Ξ Ψ} {τ : Γ ⇒ᵛ Δ} {ρ : Δ ⇒ᵛ Ξ} {σ : Ξ ⇒ᵛ Ψ} →
σ ∘ᵛ (ρ ∘ᵛ τ) ≡ᵛ (σ ∘ᵛ ρ) ∘ᵛ τ
sym-assocᵛ x = refl
-- contexts and renamings form a category
module _ where
open Categories.Category
VContexts : Category ℓ ℓ ℓ
VContexts =
record
{ Obj = VContext
; _⇒_ = _⇒ᵛ_
; _≈_ = _≡ᵛ_
; id = idᵛ
; _∘_ = _∘ᵛ_
; assoc = λ {_} {_} {_} {_} {f} {g} {h} {_} → assocᵛ {τ = f} {ρ = g} {σ = h}
; sym-assoc = λ {_} {_} {_} {_} {f} {g} {h} {_} → sym-assocᵛ {τ = f} {ρ = g} {σ = h}
; identityˡ = λ x → refl
; identityʳ = λ x → refl
; identity² = λ x → refl
; equiv = record { refl = λ {ρ} {_} → ≡ᵛ-refl {ρ = ρ} ; sym = ≡ᵛ-sym ; trans = ≡ᵛ-trans }
; ∘-resp-≈ = ∘ᵛ-resp-≡ᵛ
}
-- the coproduct structure of the category
module _ where
infixl 7 [_,_]ᵛ
[_,_]ᵛ : ∀ {Γ Δ Ξ} → Γ ⇒ᵛ Ξ → Δ ⇒ᵛ Ξ → Γ ,, Δ ⇒ᵛ Ξ
[ σ , τ ]ᵛ (var-inl x) = σ x
[ σ , τ ]ᵛ (var-inr y) = τ y
[,]ᵛ-resp-≡ᵛ : ∀ {Γ Δ Ξ} {ρ₁ ρ₂ : Γ ⇒ᵛ Ξ} {τ₁ τ₂ : Δ ⇒ᵛ Ξ} → ρ₁ ≡ᵛ ρ₂ → τ₁ ≡ᵛ τ₂ → [ ρ₁ , τ₁ ]ᵛ ≡ᵛ [ ρ₂ , τ₂ ]ᵛ
[,]ᵛ-resp-≡ᵛ pρ pτ (var-inl x) = pρ x
[,]ᵛ-resp-≡ᵛ pρ pτ (var-inr x) = pτ x
inlᵛ : ∀ {Γ Δ} → Γ ⇒ᵛ Γ ,, Δ
inlᵛ = var-inl
inrᵛ : ∀ {Γ Δ} → Δ ⇒ᵛ Γ ,, Δ
inrᵛ = var-inr
uniqueᵛ : ∀ {Γ Δ Ξ} {τ : Γ ,, Δ ⇒ᵛ Ξ} {ρ : Γ ⇒ᵛ Ξ} {σ : Δ ⇒ᵛ Ξ}
→ τ ∘ᵛ inlᵛ ≡ᵛ ρ
→ τ ∘ᵛ inrᵛ ≡ᵛ σ
→ [ ρ , σ ]ᵛ ≡ᵛ τ
uniqueᵛ ξ ζ (var-inl x) = sym (ξ x)
uniqueᵛ ξ ζ (var-inr y) = sym (ζ y)
uniqueᵛ² : ∀ {Γ Δ Ξ} {τ σ : Γ ,, Δ ⇒ᵛ Ξ}
→ τ ∘ᵛ inlᵛ ≡ᵛ σ ∘ᵛ inlᵛ
→ τ ∘ᵛ inrᵛ ≡ᵛ σ ∘ᵛ inrᵛ
→ τ ≡ᵛ σ
uniqueᵛ² ξ ζ (var-inl x) = ξ x
uniqueᵛ² ξ ζ (var-inr y) = ζ y
Context-+ : Categories.Category.Cocartesian.BinaryCoproducts VContexts
Context-+ =
record {
coproduct =
λ {Γ Δ} →
record
{ A+B = Γ ,, Δ
; i₁ = inlᵛ
; i₂ = inrᵛ
; [_,_] = [_,_]ᵛ
; inject₁ = λ x → refl
; inject₂ = λ x → refl
; unique = uniqueᵛ
}
}
open Categories.Category.Cocartesian.BinaryCoproducts Context-+
-- the renaming from the empty context
inᵛ : ∀ {Γ} → ctx-empty ⇒ᵛ Γ
inᵛ ()
-- extension of a renaming is summing with identity
⇑ᵛ : ∀ {Γ Δ Ξ} → Γ ⇒ᵛ Δ → Γ ,, Ξ ⇒ᵛ Δ ,, Ξ
⇑ᵛ ρ = ρ +₁ idᵛ
-- a renaming can also be extended on the right
ʳ⇑ᵛ : ∀ {Γ Δ} → Γ ⇒ᵛ Δ → ∀ {Ξ} → Ξ ,, Γ ⇒ᵛ Ξ ,, Δ
ʳ⇑ᵛ ρ = idᵛ +₁ ρ
-- right extension of renamings commutes with right injection
ʳ⇑ᵛ-comm-inrᵛ : ∀ {Γ Δ Ξ} (ρ : Γ ⇒ᵛ Δ)
→ (ʳ⇑ᵛ ρ {Ξ = Ξ}) ∘ᵛ (inrᵛ {Δ = Γ}) ≡ᵛ inrᵛ ∘ᵛ ρ
ʳ⇑ᵛ-comm-inrᵛ ρ var-slot = refl
ʳ⇑ᵛ-comm-inrᵛ ρ (var-inl x) = refl
ʳ⇑ᵛ-comm-inrᵛ ρ (var-inr x) = refl
-- left extension of renamings commutes with left injection
⇑ᵛ-comm-inlᵛ : ∀ {Γ Δ Ξ} (ρ : Γ ⇒ᵛ Δ) → (⇑ᵛ {Ξ = Ξ} ρ) ∘ᵛ (inlᵛ {Δ = Ξ}) ≡ᵛ inlᵛ ∘ᵛ ρ
⇑ᵛ-comm-inlᵛ ρ var-slot = refl
⇑ᵛ-comm-inlᵛ ρ (var-inl x) = refl
⇑ᵛ-comm-inlᵛ ρ (var-inr x) = refl
-- the action of a renaming on terms
module _ {Θ : MContext} where
infix 6 [_]ᵛ_
[_]ᵛ_ : ∀ {Γ Δ A} → Γ ⇒ᵛ Δ → Term Θ Γ A → Term Θ Δ A
[ ρ ]ᵛ (tm-var x) = tm-var (ρ x)
[ ρ ]ᵛ (tm-meta M ts) = tm-meta M (λ i → [ ρ ]ᵛ (ts i))
[ ρ ]ᵛ (tm-oper f es) = tm-oper f (λ i → [ ⇑ᵛ ρ ]ᵛ (es i))
-- The sum of identities is an identity
idᵛ+idᵛ : ∀ {Γ Δ} → idᵛ {Γ = Γ} +₁ idᵛ {Γ = Δ} ≡ᵛ idᵛ {Γ = Γ ,, Δ}
idᵛ+idᵛ (var-inl x) = refl
idᵛ+idᵛ (var-inr y) = refl
-- The action of a renaming respects equality of terms
[]ᵛ-resp-≈ : ∀ {Θ Γ Δ A} {s t : Term Θ Γ A} {ρ : Γ ⇒ᵛ Δ} → s ≈ t → [ ρ ]ᵛ s ≈ [ ρ ]ᵛ t
[]ᵛ-resp-≈ (≈-≡ refl) = ≈-≡ refl
[]ᵛ-resp-≈ (≈-meta ξ) = ≈-meta (λ i → []ᵛ-resp-≈ (ξ i))
[]ᵛ-resp-≈ (≈-oper ξ) = ≈-oper (λ i → []ᵛ-resp-≈ (ξ i))
-- The action of a renaming respects equality of renamings
[]ᵛ-resp-≡ᵛ : ∀ {Θ Γ Δ A} {ρ τ : Γ ⇒ᵛ Δ} {t : Term Θ Γ A} → ρ ≡ᵛ τ → [ ρ ]ᵛ t ≈ [ τ ]ᵛ t
[]ᵛ-resp-≡ᵛ {t = tm-var x} ξ = ≈-≡ (cong tm-var (ξ x))
[]ᵛ-resp-≡ᵛ {t = tm-meta M ts} ξ = ≈-meta (λ i → []ᵛ-resp-≡ᵛ ξ)
[]ᵛ-resp-≡ᵛ {t = tm-oper f es} ξ = ≈-oper (λ i → []ᵛ-resp-≡ᵛ (+₁-cong₂ ξ ≡ᵛ-refl))
-- The action of the identity is trival
[idᵛ] : ∀ {Θ Γ A} {t : Term Θ Γ A} → [ idᵛ ]ᵛ t ≈ t
[idᵛ] {t = tm-var x} = ≈-refl
[idᵛ] {t = tm-meta M ts} = ≈-meta λ i → [idᵛ]
[idᵛ] {t = tm-oper f es} = ≈-oper λ i → ≈-trans ([]ᵛ-resp-≡ᵛ idᵛ+idᵛ) [idᵛ]
-- Extension respects composition
⇑ᵛ-resp-∘ᵛ : ∀ {Γ Δ Ξ Ψ} {ρ : Γ ⇒ᵛ Δ} {τ : Δ ⇒ᵛ Ξ} → ⇑ᵛ {Ξ = Ψ} (τ ∘ᵛ ρ) ≡ᵛ (⇑ᵛ τ) ∘ᵛ (⇑ᵛ ρ)
⇑ᵛ-resp-∘ᵛ (var-inl x) = refl
⇑ᵛ-resp-∘ᵛ (var-inr y) = refl
-- Right extension respects composition
ʳ⇑ᵛ-resp-∘ᵛ : ∀ {Γ Δ Ξ Ψ} {ρ : Γ ⇒ᵛ Δ} {τ : Δ ⇒ᵛ Ξ} → ʳ⇑ᵛ (τ ∘ᵛ ρ) {Ξ = Ψ} ≡ᵛ (ʳ⇑ᵛ τ) ∘ᵛ (ʳ⇑ᵛ ρ)
ʳ⇑ᵛ-resp-∘ᵛ (var-inl x) = refl
ʳ⇑ᵛ-resp-∘ᵛ (var-inr y) = refl
-- The action of a renaming is functorial
[∘ᵛ] : ∀ {Θ Γ Δ Ξ} {ρ : Γ ⇒ᵛ Δ} {τ : Δ ⇒ᵛ Ξ} {A} {t : Term Θ Γ A}
→ [ τ ∘ᵛ ρ ]ᵛ t ≈ [ τ ]ᵛ ([ ρ ]ᵛ t)
[∘ᵛ] {t = tm-var x} = ≈-refl
[∘ᵛ] {t = tm-meta M ts} = ≈-meta (λ i → [∘ᵛ])
[∘ᵛ] {t = tm-oper f es} = ≈-oper (λ i → ≈-trans ([]ᵛ-resp-≡ᵛ ⇑ᵛ-resp-∘ᵛ) [∘ᵛ])
∘ᵛ-resp-ʳ⇑ᵛ : ∀ {Γ Δ Ξ Λ} {ρ : Γ ⇒ᵛ Δ} {τ : Δ ⇒ᵛ Ξ}
→ ʳ⇑ᵛ (τ ∘ᵛ ρ) {Ξ = Λ} ≡ᵛ ʳ⇑ᵛ τ ∘ᵛ ʳ⇑ᵛ ρ
∘ᵛ-resp-ʳ⇑ᵛ (var-inl x) = refl
∘ᵛ-resp-ʳ⇑ᵛ (var-inr y) = refl
∘ᵛ-resp-ʳ⇑ᵛ-term : ∀ {Θ Γ Δ Ξ Λ A} {ρ : Γ ⇒ᵛ Δ} {τ : Δ ⇒ᵛ Ξ} {t : Term Θ (Λ ,, Γ) A}
→ [ ʳ⇑ᵛ (τ ∘ᵛ ρ) {Ξ = Λ} ]ᵛ t ≈ [ ʳ⇑ᵛ τ ]ᵛ ([ ʳ⇑ᵛ ρ ]ᵛ t)
∘ᵛ-resp-ʳ⇑ᵛ-term {Θ} {Γ} {Δ} {Ξ} {Λ} {A} {ρ} {τ} {t = t} =
let open SetoidR (Term-setoid Θ (Λ ,, Ξ) A) in
begin
[ ʳ⇑ᵛ (τ ∘ᵛ ρ) {Ξ = Λ} ]ᵛ t ≈⟨ []ᵛ-resp-≡ᵛ ∘ᵛ-resp-ʳ⇑ᵛ ⟩
[ ʳ⇑ᵛ τ ∘ᵛ ʳ⇑ᵛ ρ ]ᵛ t ≈⟨ [∘ᵛ] ⟩
[ ʳ⇑ᵛ τ ]ᵛ ([ ʳ⇑ᵛ ρ ]ᵛ t)
∎
ʳ⇑ᵛ-comm-inrᵛ-term : ∀ {Θ Γ Δ Ξ A} {ρ : Γ ⇒ᵛ Δ} {t : Term Θ Γ A}
→ ([ ʳ⇑ᵛ ρ {Ξ = Ξ} ]ᵛ ([ inrᵛ {Δ = Γ} ]ᵛ t)) ≈ ([ inrᵛ ]ᵛ ([ ρ ]ᵛ t))
ʳ⇑ᵛ-comm-inrᵛ-term {Θ} {Γ} {Δ} {Ξ} {A} {ρ} {t = t} =
let open SetoidR (Term-setoid Θ (Ξ ,, Δ) A) in
begin
[ ʳ⇑ᵛ ρ ]ᵛ ([ inrᵛ ]ᵛ t) ≈⟨ ≈-sym [∘ᵛ] ⟩
[ ʳ⇑ᵛ ρ ∘ᵛ var-inr ]ᵛ t ≈⟨ []ᵛ-resp-≡ᵛ (ʳ⇑ᵛ-comm-inrᵛ ρ) ⟩
[ inrᵛ ∘ᵛ ρ ]ᵛ t ≈⟨ [∘ᵛ] ⟩
[ inrᵛ ]ᵛ ([ ρ ]ᵛ t)
∎
-- Forming terms over a given metacontext and sort is functorial in the context
module _ {Θ : MContext} {A : sort} where
open Categories.Functor
open Categories.Category.Instance.Setoids
Term-Functor : Functor VContexts (Setoids ℓ ℓ)
Term-Functor =
record
{ F₀ = λ Γ → Term-setoid Θ Γ A
; F₁ = λ ρ → record { _⟨$⟩_ = [ ρ ]ᵛ_ ; cong = []ᵛ-resp-≈ }
; identity = ≈-trans [idᵛ]
; homomorphism = λ ξ → ≈-trans ([]ᵛ-resp-≈ ξ) [∘ᵛ]
; F-resp-≈ = λ ζ ξ → ≈-trans ([]ᵛ-resp-≡ᵛ ζ) ([]ᵛ-resp-≈ ξ)
}
| {
"alphanum_fraction": 0.4794095625,
"avg_line_length": 31.4781144781,
"ext": "agda",
"hexsha": "6667488b48745371afc21c32a4349284a80e1af6",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SecondOrder/VRenaming.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SecondOrder/VRenaming.agda",
"max_line_length": 115,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SecondOrder/VRenaming.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 5379,
"size": 9349
} |
-- Andreas, 2017-12-13, issue #2867
-- Parentheses needed when giving module argument
module _ where
module M (A : Set) where
id : A → A
id x = x
test : (F : Set → Set) (A : Set) (x : F A) → F A
test F A = λ x → x
where open M {!F A!} -- Give this
-- Expected: M (F A)
| {
"alphanum_fraction": 0.575,
"avg_line_length": 18.6666666667,
"ext": "agda",
"hexsha": "5a74cf629eb6a32c7fe8436abbabfd3f0cd59e2a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2867.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2867.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2867.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 106,
"size": 280
} |
------------------------------------------------------------------------
-- Admissible rules are sometimes not "postulable"
------------------------------------------------------------------------
-- Even though a rule is admissible it may not be sound to postulate
-- it, i.e. add it as an inductive constructor. This was observed by
-- Edsko de Vries in a message to the Coq-club mailing list (Re:
-- [Coq-Club] Adding (inductive) transitivity to weak bisimilarity not
-- sound? (was: Need help with coinductive proof), 2009-08-28).
module AdmissibleButNotPostulable where
open import Codata.Musical.Notation using (∞; ♯_; ♭)
open import Data.Nat
open import Data.Product as Prod
open import Function
open import Relation.Binary.PropositionalEquality as P using (_≡_; [_])
open import Relation.Nullary using (¬_)
------------------------------------------------------------------------
-- The partiality monad
data _⊥ (A : Set) : Set where
now : (v : A) → A ⊥
later : (x : ∞ (A ⊥)) → A ⊥
------------------------------------------------------------------------
-- Weak equality of computations in the partiality monad
module WeakEquality where
infix 4 _≈_
data _≈_ {A : Set} : A ⊥ → A ⊥ → Set where
now : ∀ {v} → now v ≈ now v
later : ∀ {x y} (x≈y : ∞ (♭ x ≈ ♭ y)) → later x ≈ later y
laterʳ : ∀ {x y} (x≈y : x ≈ ♭ y ) → x ≈ later y
laterˡ : ∀ {x y} (x≈y : ♭ x ≈ y ) → later x ≈ y
-- Some lemmas.
laterʳ⁻¹ : ∀ {A : Set} {x : A ⊥} {y} → x ≈ later y → x ≈ ♭ y
laterʳ⁻¹ (later x≈y) = laterˡ (♭ x≈y)
laterʳ⁻¹ (laterʳ x≈y) = x≈y
laterʳ⁻¹ (laterˡ x≈ly) = laterˡ (laterʳ⁻¹ x≈ly)
laterˡ⁻¹ : ∀ {A : Set} {x} {y : A ⊥} → later x ≈ y → ♭ x ≈ y
laterˡ⁻¹ (later x≈y) = laterʳ (♭ x≈y)
laterˡ⁻¹ (laterʳ lx≈y) = laterʳ (laterˡ⁻¹ lx≈y)
laterˡ⁻¹ (laterˡ x≈y) = x≈y
-- Weak equality is an equivalence relation.
refl : {A : Set} (x : A ⊥) → x ≈ x
refl (now v) = now
refl (later x) = later (♯ refl (♭ x))
sym : {A : Set} {x y : A ⊥} → x ≈ y → y ≈ x
sym now = now
sym (later x≈y) = later (♯ sym (♭ x≈y))
sym (laterʳ x≈y) = laterˡ (sym x≈y)
sym (laterˡ x≈y) = laterʳ (sym x≈y)
trans : {A : Set} {x y z : A ⊥} → x ≈ y → y ≈ z → x ≈ z
trans {x = now v} {z = z} p q = tr p q
where
tr : ∀ {y} → now v ≈ y → y ≈ z → now v ≈ z
tr now y≈z = y≈z
tr (laterʳ v≈y) ly≈z = tr v≈y (laterˡ⁻¹ ly≈z)
trans {x = later x} lx≈y y≈z = tr lx≈y y≈z
where
tr : ∀ {y z} → later x ≈ y → y ≈ z → later x ≈ z
tr lx≈ly (later y≈z) = later (♯ trans (laterˡ⁻¹ lx≈ly) (laterˡ (♭ y≈z)))
tr lx≈y (laterʳ y≈z) = later (♯ trans (laterˡ⁻¹ lx≈y) y≈z )
tr lx≈ly (laterˡ y≈z) = tr (laterʳ⁻¹ lx≈ly) y≈z
tr (laterˡ x≈y) y≈z = laterˡ ( trans x≈y y≈z )
-- Non-termination.
never : {A : Set} → A ⊥
never = later (♯ never)
-- Weak equality is not trivial (assuming that the argument to _⊥ is
-- non-empty).
non-trivial : {A : Set} {v : A} → ¬ now v ≈ never
non-trivial (laterʳ v≈⊥) = non-trivial v≈⊥
------------------------------------------------------------------------
-- Extended weak equality
module ExtendedWeakEquality where
infix 4 _≈_
infix 3 _∎
infixr 2 _≈⟨_⟩_
-- Let us try to postulate transitivity using an inductive rule.
data _≈_ {A : Set} : A ⊥ → A ⊥ → Set where
now : ∀ {v} → now v ≈ now v
later : ∀ {x y} (x≈y : ∞ (♭ x ≈ ♭ y)) → later x ≈ later y
laterʳ : ∀ {x y} (x≈y : x ≈ ♭ y ) → x ≈ later y
laterˡ : ∀ {x y} (x≈y : ♭ x ≈ y ) → later x ≈ y
-- Transitivity.
_≈⟨_⟩_ : ∀ x {y z} (x≈y : x ≈ y) (y≈z : y ≈ z) → x ≈ z
-- Reflexivity.
_∎ : {A : Set} (x : A ⊥) → x ≈ x
now v ∎ = now
later x ∎ = later (♯ (♭ x ∎))
-- Extended weak equality is trivial.
trivial : {A : Set} (x y : A ⊥) → x ≈ y
trivial x y =
x ≈⟨ laterʳ (x ∎) ⟩
later (♯ x) ≈⟨ later (♯ trivial x y) ⟩
later (♯ y) ≈⟨ laterˡ (y ∎) ⟩
y ∎
-- The problem is that there is no "contractive" proof of
-- transitivity; the proof given above consumes the input
-- certificate "faster" than it produces the output certificate.
------------------------------------------------------------------------
-- Capretta's definition of equality coincides with weak equality
-- This is not really related to the problem discussed above, I just
-- want to ensure that the definition of weak equality is not too
-- strange.
module Capretta'sEquality where
infix 4 _⇓_ _≈_
-- x ⇓ v means that x terminates with the value v.
data _⇓_ {A : Set} : A ⊥ → A → Set where
now : ∀ {v} → now v ⇓ v
later : ∀ {x v} (x⇓v : ♭ x ⇓ v) → later x ⇓ v
-- Equality as defined by Capretta in "General Recursion via
-- Coinductive Types".
data _≈_ {A : Set} : A ⊥ → A ⊥ → Set where
now : ∀ {x y v} (x⇓v : x ⇓ v) (y⇓v : y ⇓ v) → x ≈ y
later : ∀ {x y} (x≈y : ∞ (♭ x ≈ ♭ y)) → later x ≈ later y
-- Soundness.
open WeakEquality using () renaming (_≈_ to _≋_)
sound : {A : Set} {x y : A ⊥} → x ≈ y → x ≋ y
sound (later x≈y) = WeakEquality.later (♯ sound (♭ x≈y))
sound (now x⇓v y⇓v) = nw x⇓v y⇓v
where
nw : ∀ {A : Set} {x y : A ⊥} {v} → x ⇓ v → y ⇓ v → x ≋ y
nw now now = WeakEquality.now
nw x⇓v (later y⇓v) = WeakEquality.laterʳ (nw x⇓v y⇓v)
nw (later x⇓v) y⇓v = WeakEquality.laterˡ (nw x⇓v y⇓v)
-- Completeness.
data _≈P_ {A : Set} : A ⊥ → A ⊥ → Set where
now : ∀ {x y v} (x⇓v : x ⇓ v) (y⇓v : y ⇓ v) → x ≈P y
later : ∀ {x y} (x≈y : ∞ (♭ x ≈P ♭ y)) → later x ≈P later y
laterʳ : ∀ {x y} (x≈y : x ≈P ♭ y ) → x ≈P later y
laterˡ : ∀ {x y} (x≈y : ♭ x ≈P y ) → later x ≈P y
data _≈W_ {A : Set} : A ⊥ → A ⊥ → Set where
now : ∀ {x y v} (x⇓v : x ⇓ v) (y⇓v : y ⇓ v) → x ≈W y
later : ∀ {x y} (x≈y : ♭ x ≈P ♭ y) → later x ≈W later y
laterʳW : ∀ {A : Set} {x : A ⊥} {y} → x ≈W ♭ y → x ≈W later y
laterʳW {y = y} x≈y with ♭ y | P.inspect ♭ y
laterʳW x≈y | y′ | [ eq ] with x≈y
laterʳW x≈y | y′ | [ eq ] | now {v = v} x⇓v y⇓v =
now x⇓v (later (P.subst (λ y → y ⇓ v) (P.sym eq) y⇓v))
laterʳW x≈y | later y′ | [ eq ] | later x′≈y′ =
later (P.subst (_≈P_ _) (P.sym eq) (laterʳ x′≈y′))
laterˡW : ∀ {A : Set} {x} {y : A ⊥} → ♭ x ≈W y → later x ≈W y
laterˡW {x = x} x≈y with ♭ x | P.inspect ♭ x
laterˡW x≈y | x′ | [ eq ] with x≈y
laterˡW x≈y | x′ | [ eq ] | now {v = v} x⇓v y⇓v =
now (later (P.subst (λ x → x ⇓ v) (P.sym eq) x⇓v)) y⇓v
laterˡW x≈y | later x′ | [ eq ] | later {y = y′} x′≈y′ =
later (P.subst (λ x → x ≈P ♭ y′) (P.sym eq) (laterˡ x′≈y′))
whnf : {A : Set} {x y : A ⊥} → x ≈P y → x ≈W y
whnf (now x⇓v y⇓v) = now x⇓v y⇓v
whnf (later x≈y) = later (♭ x≈y)
whnf (laterʳ x≈y) = laterʳW (whnf x≈y)
whnf (laterˡ x≈y) = laterˡW (whnf x≈y)
mutual
⟦_⟧W : {A : Set} {x y : A ⊥} → x ≈W y → x ≈ y
⟦ now x⇓v y⇓v ⟧W = now x⇓v y⇓v
⟦ later x≈y ⟧W = later (♯ ⟦ x≈y ⟧P)
⟦_⟧P : {A : Set} {x y : A ⊥} → x ≈P y → x ≈ y
⟦ x≈y ⟧P = ⟦ whnf x≈y ⟧W
complete : {A : Set} {x y : A ⊥} → x ≋ y → x ≈ y
complete x≋y = ⟦ completeP x≋y ⟧P
where
completeP : {A : Set} {x y : A ⊥} → x ≋ y → x ≈P y
completeP WeakEquality.now = now now now
completeP (WeakEquality.later x≈y) = later (♯ completeP (♭ x≈y))
completeP (WeakEquality.laterʳ x≈y) = laterʳ (completeP x≈y)
completeP (WeakEquality.laterˡ x≈y) = laterˡ (completeP x≈y)
------------------------------------------------------------------------
-- The weak equality above coincides with weak bisimilarity
module WeakBisimilarity {A : Set} where
-- The function drop n drops n later constructors (if possible).
drop : ℕ → A ⊥ → A ⊥
drop zero x = x
drop _ (now v) = now v
drop (suc n) (later x) = drop n (♭ x)
-- Weak simulations and bisimulations. The removal of a later
-- constructor is treated as a silent transition.
record IsWeakSimulation (_R_ : A ⊥ → A ⊥ → Set) : Set where
field
match-later : ∀ {x y} → later x R y → ∃ λ n → ♭ x R drop n y
match-now : ∀ {v y} → now v R y → ∃ λ n → now v ≡ drop n y
record IsWeakBisimulation (_R_ : A ⊥ → A ⊥ → Set) : Set where
field
left : IsWeakSimulation _R_
right : IsWeakSimulation (flip _R_)
-- Weak bisimilarity.
record _≈_ (x y : A ⊥) : Set₁ where
field
_R_ : A ⊥ → A ⊥ → Set
xRy : x R y
bisim : IsWeakBisimulation _R_
open WeakEquality hiding (module _≈_) renaming (_≈_ to _≋_)
-- Completeness.
complete : ∀ {x y} → x ≋ y → x ≈ y
complete x≋y = record
{ _R_ = _≋_
; xRy = x≋y
; bisim = record
{ left = record
{ match-later = λ lx≋y → (0 , laterˡ⁻¹ lx≋y)
; match-now = match-now
}
; right = record
{ match-later = λ x≋ly → (0 , laterʳ⁻¹ x≋ly)
; match-now = match-now ∘ sym
}
}
}
where
match-now : ∀ {v y} → now v ≋ y → ∃ λ n → now v ≡ drop n y
match-now now = (0 , P.refl)
match-now (laterʳ v≋y) = Prod.map suc id (match-now v≋y)
-- Soundness.
module Sound {x y} (x≈y : x ≈ y) where
open _≈_ x≈y
open IsWeakBisimulation
open IsWeakSimulation
helper₁ : ∀ {x} y → (∃ λ n → now x ≡ drop n y) → now x ≋ y
helper₁ (now y) (zero , P.refl) = now
helper₁ (now y) (suc n , P.refl) = now
helper₁ (later y) (zero , ())
helper₁ (later y) (suc n , nx≡y-n) =
laterʳ (helper₁ (♭ y) (n , nx≡y-n))
mutual
helper₂ : ∀ {x} y → (∃ λ n → x R drop n y) → x ≋ y
helper₂ y (zero , xRy) = sound _ _ xRy
helper₂ (now y) (suc n , xRny) = sound _ _ xRny
helper₂ (later y) (suc n , xRy-n) =
laterʳ (helper₂ (♭ y) (n , xRy-n))
helper₃ : ∀ x {y} → (∃ λ n → drop (suc n) x R y) → x ≋ y
helper₃ (now x) (n , nxRy) = sound _ _ nxRy
helper₃ (later x) (zero , xRy) = laterˡ (sound _ _ xRy)
helper₃ (later x) (suc n , x-nRy) =
laterˡ (helper₃ (♭ x) (n , x-nRy))
sound : ∀ x y → x R y → x ≋ y
sound (now x) y nxRy = helper₁ y $ match-now (left bisim) nxRy
sound (later x) (now y) lxRny =
sym $ helper₁ (later x) $ match-now (right bisim) lxRny
sound (later x) (later y) lxRly
with match-later (left bisim) lxRly
... | (suc n , xRy-n) = later (♯ helper₂ (♭ y) (n , xRy-n))
... | (zero , xRly) with match-later (right bisim) xRly
... | (zero , xRy) = later (♯ sound _ _ xRy)
... | (suc n , x-1+nRy) =
later (♯ helper₃ (♭ x) (n , x-1+nRy))
sound : ∀ {x y} → x ≈ y → x ≋ y
sound x≈y = Sound.sound x≈y _ _ (_≈_.xRy x≈y)
-- Note that the problem illustrated in ExtendedWeakEquality is
-- related to the problem of weak bisimulation up to weak
-- bisimilarity. Let R be a relation which is only inhabited for the
-- pair (later (♯ x), later (♯ y)). R is a weak bisimulation up to
-- weak bisimilarity (_≈_):
--
-- later (♯ x) R later (♯ y)
-- ↓ =
-- x ≈ later (♯ x) R later (♯ y)
--
-- later (♯ x) R later (♯ y)
-- = ↓
-- later (♯ x) R later (♯ y) ≈ y
--
-- Weak bisimilarity is transitive, so if every relation which is a
-- weak bisimulation up to weak bisimilarity were contained in weak
-- bisimilarity we would have x ≈ y for all x and y.
| {
"alphanum_fraction": 0.4868432404,
"avg_line_length": 34.6,
"ext": "agda",
"hexsha": "350814524508fa3bb8525d4307be46263dbc1cbf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "AdmissibleButNotPostulable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "AdmissibleButNotPostulable.agda",
"max_line_length": 86,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "AdmissibleButNotPostulable.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 4855,
"size": 11591
} |
{-# OPTIONS --universe-polymorphism #-}
open import Categories.Category
open import Categories.Object.BinaryProducts
module Categories.Object.Exponentiating {o ℓ e}
(C : Category o ℓ e)
(binary : BinaryProducts C) where
open Category C
open BinaryProducts binary
import Categories.Object.Product
open Categories.Object.Product C
import Categories.Object.Product.Morphisms
open Categories.Object.Product.Morphisms C
open import Categories.Square
open GlueSquares C
import Categories.Object.Exponential
open Categories.Object.Exponential C
hiding (repack)
renaming (λ-distrib to λ-distrib′)
open import Level
record Exponentiating Σ : Set (o ⊔ ℓ ⊔ e) where
field
exponential : ∀{A} → Exponential A Σ
module Σ↑ (X : Obj) = Exponential (exponential {X})
infixr 6 Σ↑_ Σ²_
Σ↑_ : Obj → Obj
Σ↑_ X = Σ↑.B^A X
{-
Γ ; x : A ⊢ f x : Σ
────────────────────────────────────── λ-abs A f
Γ ⊢ (λ (x : A) → f x) : Σ↑ A
-}
λ-abs : ∀ {Γ} A → (Γ × A) ⇒ Σ → Γ ⇒ Σ↑ A
λ-abs {Γ} A f = Σ↑.λg A product f
{-
───────────────────────────── eval
f : Σ↑ A ; x : A ⊢ (f x) : Σ
-}
eval : {A : Obj} → (Σ↑ A × A) ⇒ Σ
eval {A} = Σ↑.eval A ∘ repack product (Σ↑.product A)
{-
x : A ⊢ f x : B
───────────────────────────────────────── [Σ↑_]
k : Σ↑ B ⊢ (λ (x : A) → k (f x)) : Σ↑ A
-}
[Σ↑_] : ∀ {A B} → A ⇒ B → Σ↑ B ⇒ Σ↑ A
[Σ↑_] {A}{B} f = λ-abs A (eval {B} ∘ second f)
Σ²_ : Obj → Obj
Σ²_ X = Σ↑ (Σ↑ X)
[Σ²_] : ∀ {X Y} → X ⇒ Y → Σ² X ⇒ Σ² Y
[Σ² f ] = [Σ↑ [Σ↑ f ] ]
flip : ∀ {A B} → A ⇒ Σ↑ B → B ⇒ Σ↑ A
flip {A}{B} f = λ-abs {B} A (eval {B} ∘ swap ∘ second f)
-- not sure this is the best name... "partial-apply" might be better
curry : ∀ {X Y} → (Σ↑ (X × Y) × X) ⇒ Σ↑ Y
curry {X}{Y} = λ-abs Y (eval {X × Y} ∘ assocˡ)
-- some lemmas from Exponential specialized to C's chosen products
open Equiv
open HomReasoning
private
.repack∘first : ∀ {A X}{f : X ⇒ Σ↑ A}
→ repack product (Σ↑.product A) ∘ first f
≡ [ product ⇒ Σ↑.product A ]first f
repack∘first {A} = [ product ⇒ product ⇒ Σ↑.product A ]repack∘⁂
.β : ∀{A X} {g : (X × A) ⇒ Σ}
→ eval {A} ∘ first (λ-abs A g) ≡ g
β {A}{X}{g} =
begin
(Σ↑.eval A ∘ repack product (Σ↑.product A)) ∘ first (Σ↑.λg A product g)
↓⟨ pullʳ repack∘first ⟩
Σ↑.eval A ∘ [ product ⇒ Σ↑.product A ]first (Σ↑.λg A product g)
↓⟨ Σ↑.β A product ⟩
g
∎
.λ-unique : ∀{A X} {g : (X × A) ⇒ Σ} {h : X ⇒ Σ↑ A}
→ (eval ∘ first h ≡ g)
→ (h ≡ λ-abs A g)
λ-unique {A}{X}{g}{h} commutes
= Σ↑.λ-unique A product commutes′
where
commutes′ : Σ↑.eval A ∘ [ product ⇒ Σ↑.product A ]first h ≡ g
commutes′ =
begin
Σ↑.eval A ∘ [ product ⇒ Σ↑.product A ]first h
↑⟨ pullʳ repack∘first ⟩
(Σ↑.eval A ∘ repack product (Σ↑.product A)) ∘ first h
↓⟨ commutes ⟩
g
∎
.λ-η : ∀ {A X}{f : X ⇒ Σ↑ A }
→ λ-abs A (eval ∘ first f) ≡ f
λ-η {A}{X}{f} = sym (λ-unique refl)
.λ-cong : ∀{A B : Obj}{f g : (B × A) ⇒ Σ}
→ (f ≡ g)
→ (λ-abs A f ≡ λ-abs A g)
λ-cong {A} f≡g = Σ↑.λ-cong A product f≡g
.subst : ∀ {A C D} {f : (D × A) ⇒ Σ} {g : C ⇒ D}
→ λ-abs {D} A f ∘ g
≡ λ-abs {C} A (f ∘ first g)
subst {A} = Σ↑.subst A product product
.λ-η-id : ∀ {A} → λ-abs A eval ≡ id
λ-η-id {A} =
begin
Σ↑.λg A product (Σ↑.eval A ∘ repack product (Σ↑.product A))
↓⟨ Σ↑.λ-cong A product (∘-resp-≡ʳ (repack≡id⁂id product (Σ↑.product A))) ⟩
Σ↑.λg A product (Σ↑.eval A ∘ [ product ⇒ Σ↑.product A ]first id)
↓⟨ Σ↑.η A product ⟩
id
∎
.λ-distrib : ∀ {A B C}{f : A ⇒ B}{g : (C × B) ⇒ Σ}
→ λ-abs A (g ∘ second f)
≡ [Σ↑ f ] ∘ λ-abs B g
λ-distrib {A}{B}{C}{f}{g} =
begin
Σ↑.λg A product (g ∘ second f)
↓⟨ λ-distrib′ exponential exponential product product product ⟩
Σ↑.λg A product (Σ↑.eval B ∘ [ product ⇒ Σ↑.product B ]second f)
∘ Σ↑.λg B product g
↑⟨ λ-cong (pullʳ [ product ⇒ product ⇒ Σ↑.product B ]repack∘⁂) ⟩∘⟨ refl ⟩
Σ↑.λg A product ((Σ↑.eval B ∘ repack product (Σ↑.product B)) ∘ second f)
∘ Σ↑.λg B product g
∎
.flip² : ∀{A B}{f : A ⇒ Σ↑ B} → flip (flip f) ≡ f
flip² {A}{B}{f} =
begin
λ-abs {A} B (eval {A} ∘ swap ∘ second (flip f))
↓⟨ λ-cong lem₁ ⟩
λ-abs {A} B (eval {B} ∘ first f)
↓⟨ λ-η ⟩
f
∎
where
lem₁ : eval {A} ∘ swap ∘ second (flip f) ≡ eval {B} ∘ first f
lem₁ =
begin
eval {A} ∘ swap ∘ second (flip f)
↑⟨ assoc ⟩
(eval {A} ∘ swap) ∘ second (flip f)
↓⟨ glue β swap∘⁂ ⟩
eval {B} ∘ (swap ∘ second f) ∘ swap
↓⟨ refl ⟩∘⟨ swap∘⁂ ⟩∘⟨ refl ⟩
eval {B} ∘ (first f ∘ swap) ∘ swap
↓⟨ refl ⟩∘⟨ cancelRight swap∘swap ⟩
eval {B} ∘ first f
∎
| {
"alphanum_fraction": 0.4617772604,
"avg_line_length": 29.9651162791,
"ext": "agda",
"hexsha": "458dc3e7e5b3cd3ba38464b6822f757bcae93a1c",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Object/Exponentiating.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Object/Exponentiating.agda",
"max_line_length": 82,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Object/Exponentiating.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 2123,
"size": 5154
} |
{-# OPTIONS --safe #-}
module Cubical.Data.FinData.Properties where
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.Isomorphism
open import Cubical.Data.Sum
open import Cubical.Data.Sigma
open import Cubical.Data.FinData.Base as Fin
open import Cubical.Data.Nat renaming (zero to ℕzero ; suc to ℕsuc
;znots to ℕznots ; snotz to ℕsnotz)
open import Cubical.Data.Nat.Order
open import Cubical.Data.Empty as Empty
open import Cubical.Relation.Nullary
private
variable
ℓ ℓ' : Level
A : Type ℓ
m n k : ℕ
znots : ∀{k} {m : Fin k} → ¬ (zero ≡ (suc m))
znots {k} {m} x = subst (Fin.rec (Fin k) ⊥) x m
snotz : ∀{k} {m : Fin k} → ¬ ((suc m) ≡ zero)
snotz {k} {m} x = subst (Fin.rec ⊥ (Fin k)) x m
isPropFin0 : isProp (Fin 0)
isPropFin0 = Empty.rec ∘ ¬Fin0
isContrFin1 : isContr (Fin 1)
isContrFin1 .fst = zero
isContrFin1 .snd zero = refl
injSucFin : ∀ {n} {p q : Fin n} → suc p ≡ suc q → p ≡ q
injSucFin {ℕsuc ℕzero} {zero} {zero} pf = refl
injSucFin {ℕsuc (ℕsuc n)} pf = cong predFin pf
discreteFin : ∀{k} → Discrete (Fin k)
discreteFin zero zero = yes refl
discreteFin zero (suc y) = no znots
discreteFin (suc x) zero = no snotz
discreteFin (suc x) (suc y) with discreteFin x y
... | yes p = yes (cong suc p)
... | no ¬p = no (λ q → ¬p (injSucFin q))
isSetFin : ∀{k} → isSet (Fin k)
isSetFin = Discrete→isSet discreteFin
data biEq {n : ℕ} (i j : Fin n) : Type where
eq : i ≡ j → biEq i j
¬eq : ¬ i ≡ j → biEq i j
data triEq {n : ℕ} (i j a : Fin n) : Type where
leq : a ≡ i → triEq i j a
req : a ≡ j → triEq i j a
¬eq : (¬ a ≡ i) × (¬ a ≡ j) → triEq i j a
biEq? : (i j : Fin n) → biEq i j
biEq? i j = case (discreteFin i j) return (λ _ → biEq i j)
of λ { (yes p) → eq p ; (no ¬p) → ¬eq ¬p }
triEq? : (i j a : Fin n) → triEq i j a
triEq? i j a =
case (discreteFin a i) return (λ _ → triEq i j a) of
λ { (yes p) → leq p
; (no ¬p) →
case (discreteFin a j) return (λ _ → triEq i j a) of
λ { (yes q) → req q
; (no ¬q) → ¬eq (¬p , ¬q) }}
weakenRespToℕ : ∀ {n} (i : Fin n) → toℕ (weakenFin i) ≡ toℕ i
weakenRespToℕ zero = refl
weakenRespToℕ (suc i) = cong ℕsuc (weakenRespToℕ i)
toℕ<n : ∀ {n} (i : Fin n) → toℕ i < n
toℕ<n {n = ℕsuc n} zero = n , +-comm n 1
toℕ<n {n = ℕsuc n} (suc i) = toℕ<n i .fst , +-suc _ _ ∙ cong ℕsuc (toℕ<n i .snd)
toFin : {n : ℕ} (m : ℕ) → m < n → Fin n
toFin {n = ℕzero} _ m<0 = Empty.rec (¬-<-zero m<0)
toFin {n = ℕsuc n} _ (ℕzero , _) = fromℕ n --in this case we have m≡n
toFin {n = ℕsuc n} m (ℕsuc k , p) = weakenFin (toFin m (k , cong predℕ p))
toFin0≡0 : {n : ℕ} (p : 0 < ℕsuc n) → toFin 0 p ≡ zero
toFin0≡0 (ℕzero , p) = subst (λ x → fromℕ x ≡ zero) (cong predℕ p) refl
toFin0≡0 {ℕzero} (ℕsuc k , p) = Empty.rec (ℕsnotz (+-comm 1 k ∙ (cong predℕ p)))
toFin0≡0 {ℕsuc n} (ℕsuc k , p) =
subst (λ x → weakenFin x ≡ zero) (sym (toFin0≡0 (k , cong predℕ p))) refl
-- doing induction on toFin is awkward, so the following alternative
enum : (m : ℕ) → m < n → Fin n
enum {n = ℕzero} _ m<0 = Empty.rec (¬-<-zero m<0)
enum {n = ℕsuc n} 0 _ = zero
enum {n = ℕsuc n} (ℕsuc m) p = suc (enum m (pred-≤-pred p))
enum∘toℕ : (i : Fin n)(p : toℕ i < n) → enum (toℕ i) p ≡ i
enum∘toℕ {n = ℕsuc n} zero _ = refl
enum∘toℕ {n = ℕsuc n} (suc i) p t = suc (enum∘toℕ i (pred-≤-pred p) t)
toℕ∘enum : (m : ℕ)(p : m < n) → toℕ (enum m p) ≡ m
toℕ∘enum {n = ℕzero} _ m<0 = Empty.rec (¬-<-zero m<0)
toℕ∘enum {n = ℕsuc n} 0 _ = refl
toℕ∘enum {n = ℕsuc n} (ℕsuc m) p i = ℕsuc (toℕ∘enum m (pred-≤-pred p) i)
enumExt : {m m' : ℕ}(p : m < n)(p' : m' < n) → m ≡ m' → enum m p ≡ enum m' p'
enumExt p p' q i = enum (q i) (isProp→PathP (λ i → m≤n-isProp {m = ℕsuc (q i)}) p p' i)
enumInj : {p : m < k}{q : n < k} → enum m p ≡ enum n q → m ≡ n
enumInj p = sym (toℕ∘enum _ _) ∙ cong toℕ p ∙ toℕ∘enum _ _
enumIndStep :
(P : Fin n → Type ℓ)
→ (k : ℕ)(p : ℕsuc k < n)
→ ((m : ℕ)(q : m < n)(q' : m ≤ k ) → P (enum m q))
→ P (enum (ℕsuc k) p)
→ ((m : ℕ)(q : m < n)(q' : m ≤ ℕsuc k) → P (enum m q))
enumIndStep P k p f x m q q' =
case (≤-split q') return (λ _ → P (enum m q)) of
λ { (inl r') → f m q (pred-≤-pred r')
; (inr r') → subst P (enumExt p q (sym r')) x }
enumElim :
(P : Fin n → Type ℓ)
→ (k : ℕ)(p : k < n)(h : ℕsuc k ≡ n)
→ ((m : ℕ)(q : m < n)(q' : m ≤ k) → P (enum m q))
→ (i : Fin n) → P i
enumElim P k p h f i =
subst P (enum∘toℕ i (toℕ<n i)) (f (toℕ i) (toℕ<n i)
(pred-≤-pred (subst (λ a → toℕ i < a) (sym h) (toℕ<n i))))
++FinAssoc : {n m k : ℕ} (U : FinVec A n) (V : FinVec A m) (W : FinVec A k)
→ PathP (λ i → FinVec A (+-assoc n m k i)) (U ++Fin (V ++Fin W)) ((U ++Fin V) ++Fin W)
++FinAssoc {n = ℕzero} _ _ _ = refl
++FinAssoc {n = ℕsuc n} U V W i zero = U zero
++FinAssoc {n = ℕsuc n} U V W i (suc ind) = ++FinAssoc (U ∘ suc) V W i ind
++FinRid : {n : ℕ} (U : FinVec A n) (V : FinVec A 0)
→ PathP (λ i → FinVec A (+-zero n i)) (U ++Fin V) U
++FinRid {n = ℕzero} U V = funExt λ i → Empty.rec (¬Fin0 i)
++FinRid {n = ℕsuc n} U V i zero = U zero
++FinRid {n = ℕsuc n} U V i (suc ind) = ++FinRid (U ∘ suc) V i ind
++FinElim : {P : A → Type ℓ'} {n m : ℕ} (U : FinVec A n) (V : FinVec A m)
→ (∀ i → P (U i)) → (∀ i → P (V i)) → ∀ i → P ((U ++Fin V) i)
++FinElim {n = ℕzero} _ _ _ PVHyp i = PVHyp i
++FinElim {n = ℕsuc n} _ _ PUHyp _ zero = PUHyp zero
++FinElim {P = P} {n = ℕsuc n} U V PUHyp PVHyp (suc i) =
++FinElim {P = P} (U ∘ suc) V (λ i → PUHyp (suc i)) PVHyp i
++FinPres∈ : {n m : ℕ} {α : FinVec A n} {β : FinVec A m} (S : ℙ A)
→ (∀ i → α i ∈ S) → (∀ i → β i ∈ S) → ∀ i → (α ++Fin β) i ∈ S
++FinPres∈ {n = ℕzero} S hα hβ i = hβ i
++FinPres∈ {n = ℕsuc n} S hα hβ zero = hα zero
++FinPres∈ {n = ℕsuc n} S hα hβ (suc i) = ++FinPres∈ S (hα ∘ suc) hβ i
-- sends i to n+i if toℕ i < m and to i∸n otherwise
-- then +Shuffle²≡id and over the induced path (i.e. in PathP (ua +ShuffleEquiv))
-- ++Fin is commutative, but how to go from there?
+Shuffle : (m n : ℕ) → Fin (m + n) → Fin (n + m)
+Shuffle m n i with <Dec (toℕ i) m
... | yes i<m = toFin (n + (toℕ i)) (<-k+ i<m)
... | no ¬i<m = toFin (toℕ i ∸ m)
(subst (λ x → toℕ i ∸ m < x) (+-comm m n) (≤<-trans (∸-≤ (toℕ i) m) (toℕ<n i)))
-- Proof that Fin n ⊎ Fin m ≃ Fin (n+m)
module FinSumChar where
fun : (n m : ℕ) → Fin n ⊎ Fin m → Fin (n + m)
fun ℕzero m (inr i) = i
fun (ℕsuc n) m (inl zero) = zero
fun (ℕsuc n) m (inl (suc i)) = suc (fun n m (inl i))
fun (ℕsuc n) m (inr i) = suc (fun n m (inr i))
invSucAux : (n m : ℕ) → Fin n ⊎ Fin m → Fin (ℕsuc n) ⊎ Fin m
invSucAux n m (inl i) = inl (suc i)
invSucAux n m (inr i) = inr i
inv : (n m : ℕ) → Fin (n + m) → Fin n ⊎ Fin m
inv ℕzero m i = inr i
inv (ℕsuc n) m zero = inl zero
inv (ℕsuc n) m (suc i) = invSucAux n m (inv n m i)
ret : (n m : ℕ) (i : Fin n ⊎ Fin m) → inv n m (fun n m i) ≡ i
ret ℕzero m (inr i) = refl
ret (ℕsuc n) m (inl zero) = refl
ret (ℕsuc n) m (inl (suc i)) = subst (λ x → invSucAux n m x ≡ inl (suc i))
(sym (ret n m (inl i))) refl
ret (ℕsuc n) m (inr i) = subst (λ x → invSucAux n m x ≡ inr i) (sym (ret n m (inr i))) refl
sec : (n m : ℕ) (i : Fin (n + m)) → fun n m (inv n m i) ≡ i
sec ℕzero m i = refl
sec (ℕsuc n) m zero = refl
sec (ℕsuc n) m (suc i) = helperPath (inv n m i) ∙ cong suc (sec n m i)
where
helperPath : ∀ x → fun (ℕsuc n) m (invSucAux n m x) ≡ suc (fun n m x)
helperPath (inl _) = refl
helperPath (inr _) = refl
Equiv : (n m : ℕ) → Fin n ⊎ Fin m ≃ Fin (n + m)
Equiv n m = isoToEquiv (iso (fun n m) (inv n m) (sec n m) (ret n m))
++FinInl : (n m : ℕ) (U : FinVec A n) (W : FinVec A m) (i : Fin n)
→ U i ≡ (U ++Fin W) (fun n m (inl i))
++FinInl (ℕsuc n) m U W zero = refl
++FinInl (ℕsuc n) m U W (suc i) = ++FinInl n m (U ∘ suc) W i
++FinInr : (n m : ℕ) (U : FinVec A n) (W : FinVec A m) (i : Fin m)
→ W i ≡ (U ++Fin W) (fun n m (inr i))
++FinInr ℕzero (ℕsuc m) U W i = refl
++FinInr (ℕsuc n) m U W i = ++FinInr n m (U ∘ suc) W i
-- Proof that Fin n × Fin m ≃ Fin nm
module FinProdChar where
open Iso
sucProdToSumIso : (n m : ℕ) → Iso (Fin (ℕsuc n) × Fin m) (Fin m ⊎ (Fin n × Fin m))
fun (sucProdToSumIso n m) (zero , j) = inl j
fun (sucProdToSumIso n m) (suc i , j) = inr (i , j)
inv (sucProdToSumIso n m) (inl j) = zero , j
inv (sucProdToSumIso n m) (inr (i , j)) = suc i , j
rightInv (sucProdToSumIso n m) (inl j) = refl
rightInv (sucProdToSumIso n m) (inr (i , j)) = refl
leftInv (sucProdToSumIso n m) (zero , j) = refl
leftInv (sucProdToSumIso n m) (suc i , j) = refl
Equiv : (n m : ℕ) → (Fin n × Fin m) ≃ Fin (n · m)
Equiv ℕzero m = uninhabEquiv (λ x → ¬Fin0 (fst x)) ¬Fin0
Equiv (ℕsuc n) m = Fin (ℕsuc n) × Fin m ≃⟨ isoToEquiv (sucProdToSumIso n m) ⟩
Fin m ⊎ (Fin n × Fin m) ≃⟨ isoToEquiv (⊎Iso idIso (equivToIso (Equiv n m))) ⟩
Fin m ⊎ Fin (n · m) ≃⟨ FinSumChar.Equiv m (n · m) ⟩
Fin (m + n · m) ■
-- Exhaustion of decidable predicate
∀Dec :
(P : Fin m → Type ℓ)
→ (dec : (i : Fin m) → Dec (P i))
→ ((i : Fin m) → P i) ⊎ (Σ[ i ∈ Fin m ] ¬ P i)
∀Dec {m = 0} _ _ = inl λ ()
∀Dec {m = ℕsuc m} P dec = helper (dec zero) (∀Dec _ (dec ∘ suc))
where
helper :
Dec (P zero)
→ ((i : Fin m) → P (suc i)) ⊎ (Σ[ i ∈ Fin m ] ¬ P (suc i))
→ ((i : Fin (ℕsuc m)) → P i) ⊎ (Σ[ i ∈ Fin (ℕsuc m) ] ¬ P i)
helper (yes p) (inl q) = inl λ { zero → p ; (suc i) → q i }
helper (yes _) (inr q) = inr (suc (q .fst) , q .snd)
helper (no ¬p) _ = inr (zero , ¬p)
∀Dec2 :
(P : Fin m → Fin n → Type ℓ)
→ (dec : (i : Fin m)(j : Fin n) → Dec (P i j))
→ ((i : Fin m)(j : Fin n) → P i j) ⊎ (Σ[ i ∈ Fin m ] Σ[ j ∈ Fin n ] ¬ P i j)
∀Dec2 {m = 0} {n = n} _ _ = inl λ ()
∀Dec2 {m = ℕsuc m} {n = n} P dec = helper (∀Dec (P zero) (dec zero)) (∀Dec2 (P ∘ suc) (dec ∘ suc))
where
helper :
((j : Fin n) → P zero j) ⊎ (Σ[ j ∈ Fin n ] ¬ P zero j)
→ ((i : Fin m)(j : Fin n) → P (suc i) j) ⊎ (Σ[ i ∈ Fin m ] Σ[ j ∈ Fin n ] ¬ P (suc i) j)
→ ((i : Fin (ℕsuc m))(j : Fin n) → P i j) ⊎ (Σ[ i ∈ Fin (ℕsuc m) ] Σ[ j ∈ Fin n ] ¬ P i j)
helper (inl p) (inl q) = inl λ { zero j → p j ; (suc i) j → q i j }
helper (inl _) (inr q) = inr (suc (q .fst) , q .snd .fst , q .snd .snd)
helper (inr p) _ = inr (zero , p)
| {
"alphanum_fraction": 0.5253469272,
"avg_line_length": 38.2418772563,
"ext": "agda",
"hexsha": "aaf4594777027507dd5028940bf7e9d14a489932",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Data/FinData/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Data/FinData/Properties.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Data/FinData/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4820,
"size": 10593
} |
-- Currently imports are not allowed in mutual blocks.
-- This might change.
module ImportInMutual where
mutual
import Fake.Module
T : Set -> Set
T A = A
| {
"alphanum_fraction": 0.7055214724,
"avg_line_length": 14.8181818182,
"ext": "agda",
"hexsha": "d37b5d4bcb4e82df1a45fc43c2bc9d2a732c494b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/ImportInMutual.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/ImportInMutual.agda",
"max_line_length": 54,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/ImportInMutual.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 44,
"size": 163
} |
{-
A parameterized family of structures S can be combined into a single structure:
X ↦ (a : A) → S a X
This is more general than Structures.Function in that S can vary in A.
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Parameterized where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Functions.FunExtEquiv
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Univalence
private
variable
ℓ ℓ₁ ℓ₁' : Level
module _ {ℓ₀} (A : Type ℓ₀) where
ParamStructure : (S : A → Type ℓ → Type ℓ₁)
→ Type ℓ → Type (ℓ-max ℓ₀ ℓ₁)
ParamStructure S X = (a : A) → S a X
ParamEquivStr : {S : A → Type ℓ → Type ℓ₁}
→ (∀ a → StrEquiv (S a) ℓ₁') → StrEquiv (ParamStructure S) (ℓ-max ℓ₀ ℓ₁')
ParamEquivStr ι (X , l) (Y , m) e = ∀ a → ι a (X , l a) (Y , m a) e
paramUnivalentStr : {S : A → Type ℓ → Type ℓ₁}
(ι : ∀ a → StrEquiv (S a) ℓ₁') (θ : ∀ a → UnivalentStr (S a) (ι a))
→ UnivalentStr (ParamStructure S) (ParamEquivStr ι)
paramUnivalentStr ι θ e = compEquiv (equivΠCod λ a → θ a e) funExtEquiv
paramEquivAction : {S : A → Type ℓ → Type ℓ₁}
→ (∀ a → EquivAction (S a)) → EquivAction (ParamStructure S)
paramEquivAction α e = equivΠCod (λ a → α a e)
paramTransportStr : {S : A → Type ℓ → Type ℓ₁}
(α : ∀ a → EquivAction (S a)) (τ : ∀ a → TransportStr (α a))
→ TransportStr (paramEquivAction α)
paramTransportStr {S = S} α τ e f =
funExt λ a →
τ a e (f a)
∙ cong (λ fib → transport (λ i → S (fib .snd (~ i)) (ua e i)) (f (fib .snd i1)))
(isContrSingl a .snd (_ , sym (transportRefl a)))
| {
"alphanum_fraction": 0.6318981201,
"avg_line_length": 33.6530612245,
"ext": "agda",
"hexsha": "e05be247ff6f0deb5cf6a4ec0c3314eee979217b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Structures/Parameterized.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Structures/Parameterized.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Structures/Parameterized.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 610,
"size": 1649
} |
module Haskell.Prim.Bool where
open import Agda.Primitive
open import Agda.Builtin.Bool public
private
variable
ℓ : Level
--------------------------------------------------
-- Booleans
infixr 3 _&&_
_&&_ : Bool → Bool → Bool
false && _ = false
true && x = x
infixr 2 _||_
_||_ : Bool → Bool → Bool
false || x = x
true || _ = true
not : Bool → Bool
not false = true
not true = false
otherwise : Bool
otherwise = true
| {
"alphanum_fraction": 0.5750577367,
"avg_line_length": 14.4333333333,
"ext": "agda",
"hexsha": "46b86ad7f90ce6fd77f6c59901ad8b23c887f952",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "lib/Haskell/Prim/Bool.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "lib/Haskell/Prim/Bool.agda",
"max_line_length": 50,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "lib/Haskell/Prim/Bool.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 128,
"size": 433
} |
------------------------------------------------------------------------------
-- Testing the η-expansion
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Eta5 where
postulate
D : Set
_≈_ : D → D → Set
data ∃ (A : D → Set) : Set where
_,_ : (t : D) → A t → ∃ A
P : D → Set
P ws = ∃ (λ zs → ws ≈ zs)
{-# ATP definition P #-}
postulate foo : ∀ ws → P ws → ∃ (λ zs → ws ≈ zs)
{-# ATP prove foo #-}
| {
"alphanum_fraction": 0.3608414239,
"avg_line_length": 24.72,
"ext": "agda",
"hexsha": "bb6b7226823b11fd27a3ff07087f12453944591d",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Eta5.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Eta5.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Eta5.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 153,
"size": 618
} |
module Text.Greek.SBLGNT.Mark where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.Script
open import Text.Greek.Script.Unicode
ΚΑΤΑ-ΜΑΡΚΟΝ : List (Word)
ΚΑΤΑ-ΜΑΡΚΟΝ =
word (Ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Mark.1.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.1"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.1.1"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.1"
∷ word (Κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.1.2"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.2"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.2"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.2"
∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ ᾳ ∷ []) "Mark.1.2"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.2"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ῃ ∷ []) "Mark.1.2"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.1.2"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Mark.1.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.2"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.1.2"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.2"
∷ word (π ∷ ρ ∷ ὸ ∷ []) "Mark.1.2"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.1.2"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.1.2"
∷ word (ὃ ∷ ς ∷ []) "Mark.1.2"
∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.1.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.2"
∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.1.2"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.1.2"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Mark.1.3"
∷ word (β ∷ ο ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.1.3"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.3"
∷ word (τ ∷ ῇ ∷ []) "Mark.1.3"
∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Mark.1.3"
∷ word (Ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.1.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.3"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.1.3"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.1.3"
∷ word (ε ∷ ὐ ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.3"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.1.3"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.3"
∷ word (τ ∷ ρ ∷ ί ∷ β ∷ ο ∷ υ ∷ ς ∷ []) "Mark.1.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.3"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.4"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.1.4"
∷ word (ὁ ∷ []) "Mark.1.4"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.1.4"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.4"
∷ word (τ ∷ ῇ ∷ []) "Mark.1.4"
∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Mark.1.4"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Mark.1.4"
∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.1.4"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.4"
∷ word (ἄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.4"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.5"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.5"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.5"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.5"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Mark.1.5"
∷ word (ἡ ∷ []) "Mark.1.5"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ []) "Mark.1.5"
∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ []) "Mark.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.5"
∷ word (ο ∷ ἱ ∷ []) "Mark.1.5"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ υ ∷ μ ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.5"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.5"
∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.1.5"
∷ word (ὑ ∷ π ∷ []) "Mark.1.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.5"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.5"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.5"
∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ῃ ∷ []) "Mark.1.5"
∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῷ ∷ []) "Mark.1.5"
∷ word (ἐ ∷ ξ ∷ ο ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.1.5"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.5"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.6"
∷ word (ὁ ∷ []) "Mark.1.6"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.1.6"
∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.6"
∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ α ∷ ς ∷ []) "Mark.1.6"
∷ word (κ ∷ α ∷ μ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.1.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6"
∷ word (ζ ∷ ώ ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.6"
∷ word (δ ∷ ε ∷ ρ ∷ μ ∷ α ∷ τ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.6"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.1.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.6"
∷ word (ὀ ∷ σ ∷ φ ∷ ὺ ∷ ν ∷ []) "Mark.1.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6"
∷ word (ἔ ∷ σ ∷ θ ∷ ω ∷ ν ∷ []) "Mark.1.6"
∷ word (ἀ ∷ κ ∷ ρ ∷ ί ∷ δ ∷ α ∷ ς ∷ []) "Mark.1.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6"
∷ word (μ ∷ έ ∷ ∙λ ∷ ι ∷ []) "Mark.1.6"
∷ word (ἄ ∷ γ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.1.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.7"
∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ σ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.7"
∷ word (Ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.7"
∷ word (ὁ ∷ []) "Mark.1.7"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.1.7"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.7"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.1.7"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.7"
∷ word (ο ∷ ὗ ∷ []) "Mark.1.7"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.1.7"
∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "Mark.1.7"
∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Mark.1.7"
∷ word (κ ∷ ύ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.1.7"
∷ word (∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.1.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.7"
∷ word (ἱ ∷ μ ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.1.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.7"
∷ word (ὑ ∷ π ∷ ο ∷ δ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.1.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.7"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.1.8"
∷ word (ἐ ∷ β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "Mark.1.8"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.8"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ι ∷ []) "Mark.1.8"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.1.8"
∷ word (δ ∷ ὲ ∷ []) "Mark.1.8"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Mark.1.8"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.8"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.8"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.1.8"
∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Mark.1.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.9"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.9"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.9"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.1.9"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.1.9"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.1.9"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.9"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.9"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.1.9"
∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ ὲ ∷ τ ∷ []) "Mark.1.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.9"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.9"
∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.1.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.9"
∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.9"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.1.9"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.10"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.10"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Mark.1.10"
∷ word (ἐ ∷ κ ∷ []) "Mark.1.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.10"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.1.10"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.1.10"
∷ word (σ ∷ χ ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.1.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.10"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.10"
∷ word (τ ∷ ὸ ∷ []) "Mark.1.10"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.1.10"
∷ word (ὡ ∷ ς ∷ []) "Mark.1.10"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ὰ ∷ ν ∷ []) "Mark.1.10"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.1.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.10"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.1.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.11"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Mark.1.11"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.11"
∷ word (ἐ ∷ κ ∷ []) "Mark.1.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.11"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.1.11"
∷ word (Σ ∷ ὺ ∷ []) "Mark.1.11"
∷ word (ε ∷ ἶ ∷ []) "Mark.1.11"
∷ word (ὁ ∷ []) "Mark.1.11"
∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.1.11"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.11"
∷ word (ὁ ∷ []) "Mark.1.11"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Mark.1.11"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.11"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.1.11"
∷ word (ε ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ α ∷ []) "Mark.1.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.12"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.12"
∷ word (τ ∷ ὸ ∷ []) "Mark.1.12"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.1.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.12"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.1.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.12"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.1.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.13"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.13"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.13"
∷ word (τ ∷ ῇ ∷ []) "Mark.1.13"
∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Mark.1.13"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.1.13"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.1.13"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.13"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.1.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.13"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Mark.1.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.13"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.13"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.13"
∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.1.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.13"
∷ word (ο ∷ ἱ ∷ []) "Mark.1.13"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.1.13"
∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "Mark.1.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.14"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.1.14"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.1.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.14"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.14"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.14"
∷ word (ὁ ∷ []) "Mark.1.14"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.14"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.14"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Mark.1.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.1.14"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.1.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.14"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.1.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.15"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.15"
∷ word (Π ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.15"
∷ word (ὁ ∷ []) "Mark.1.15"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.15"
∷ word (ἤ ∷ γ ∷ γ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Mark.1.15"
∷ word (ἡ ∷ []) "Mark.1.15"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.1.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.15"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.1.15"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.15"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.1.15"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.15"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.15"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Mark.1.15"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.16"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.16"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.1.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.16"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.16"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.16"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.1.16"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ α ∷ []) "Mark.1.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.16"
∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ α ∷ ν ∷ []) "Mark.1.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.16"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.1.16"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.16"
∷ word (ἀ ∷ μ ∷ φ ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.16"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.16"
∷ word (τ ∷ ῇ ∷ []) "Mark.1.16"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.1.16"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.16"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.1.16"
∷ word (ἁ ∷ ∙λ ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.1.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.17"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.1.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.17"
∷ word (ὁ ∷ []) "Mark.1.17"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.17"
∷ word (Δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Mark.1.17"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.1.17"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.17"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.1.17"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.17"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.1.17"
∷ word (ἁ ∷ ∙λ ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.1.17"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.1.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.18"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.18"
∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.18"
∷ word (τ ∷ ὰ ∷ []) "Mark.1.18"
∷ word (δ ∷ ί ∷ κ ∷ τ ∷ υ ∷ α ∷ []) "Mark.1.18"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.19"
∷ word (π ∷ ρ ∷ ο ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.1.19"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Mark.1.19"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.1.19"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.1.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.19"
∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.19"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.19"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.1.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.19"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.19"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.19"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.1.19"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.19"
∷ word (τ ∷ ὰ ∷ []) "Mark.1.19"
∷ word (δ ∷ ί ∷ κ ∷ τ ∷ υ ∷ α ∷ []) "Mark.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.20"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.20"
∷ word (ἐ ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.1.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.20"
∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.20"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.20"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.1.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.20"
∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.1.20"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.20"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.20"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.1.20"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.20"
∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ω ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.20"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.1.20"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.1.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.21"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.21"
∷ word (Κ ∷ α ∷ φ ∷ α ∷ ρ ∷ ν ∷ α ∷ ο ∷ ύ ∷ μ ∷ []) "Mark.1.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.21"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.21"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.21"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.1.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.21"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ή ∷ ν ∷ []) "Mark.1.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.22"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.1.22"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.1.22"
∷ word (τ ∷ ῇ ∷ []) "Mark.1.22"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.1.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.22"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.22"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.1.22"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.1.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.22"
∷ word (ὡ ∷ ς ∷ []) "Mark.1.22"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.22"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Mark.1.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.22"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.1.22"
∷ word (ὡ ∷ ς ∷ []) "Mark.1.22"
∷ word (ο ∷ ἱ ∷ []) "Mark.1.22"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.1.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.23"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.23"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.23"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.23"
∷ word (τ ∷ ῇ ∷ []) "Mark.1.23"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῇ ∷ []) "Mark.1.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.23"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.1.23"
∷ word (ἐ ∷ ν ∷ []) "Mark.1.23"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.1.23"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.1.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.23"
∷ word (ἀ ∷ ν ∷ έ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.1.23"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.24"
∷ word (Τ ∷ ί ∷ []) "Mark.1.24"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.1.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.24"
∷ word (σ ∷ ο ∷ ί ∷ []) "Mark.1.24"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.1.24"
∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ έ ∷ []) "Mark.1.24"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ς ∷ []) "Mark.1.24"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Mark.1.24"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.24"
∷ word (ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Mark.1.24"
∷ word (σ ∷ ε ∷ []) "Mark.1.24"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.1.24"
∷ word (ε ∷ ἶ ∷ []) "Mark.1.24"
∷ word (ὁ ∷ []) "Mark.1.24"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.1.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.24"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.1.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.25"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.25"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.25"
∷ word (ὁ ∷ []) "Mark.1.25"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.25"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.25"
∷ word (Φ ∷ ι ∷ μ ∷ ώ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.1.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.25"
∷ word (ἔ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ []) "Mark.1.25"
∷ word (ἐ ∷ ξ ∷ []) "Mark.1.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.26"
∷ word (σ ∷ π ∷ α ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ν ∷ []) "Mark.1.26"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.26"
∷ word (τ ∷ ὸ ∷ []) "Mark.1.26"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.1.26"
∷ word (τ ∷ ὸ ∷ []) "Mark.1.26"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.1.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.26"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.26"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Mark.1.26"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.1.26"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.26"
∷ word (ἐ ∷ ξ ∷ []) "Mark.1.26"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.27"
∷ word (ἐ ∷ θ ∷ α ∷ μ ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.27"
∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.27"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.1.27"
∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.1.27"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.27"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.27"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.27"
∷ word (Τ ∷ ί ∷ []) "Mark.1.27"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.1.27"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.1.27"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ []) "Mark.1.27"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ή ∷ []) "Mark.1.27"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.1.27"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.27"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.27"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ σ ∷ ι ∷ []) "Mark.1.27"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.27"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.27"
∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ά ∷ σ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.1.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.27"
∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.27"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.28"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.28"
∷ word (ἡ ∷ []) "Mark.1.28"
∷ word (ἀ ∷ κ ∷ ο ∷ ὴ ∷ []) "Mark.1.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.28"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.28"
∷ word (π ∷ α ∷ ν ∷ τ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "Mark.1.28"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.28"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.1.28"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.28"
∷ word (π ∷ ε ∷ ρ ∷ ί ∷ χ ∷ ω ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.1.28"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.28"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.28"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.29"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.29"
∷ word (ἐ ∷ κ ∷ []) "Mark.1.29"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.29"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῆ ∷ ς ∷ []) "Mark.1.29"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.29"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.1.29"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.29"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.29"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.29"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.29"
∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ ο ∷ υ ∷ []) "Mark.1.29"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.29"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.1.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.29"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.1.29"
∷ word (ἡ ∷ []) "Mark.1.30"
∷ word (δ ∷ ὲ ∷ []) "Mark.1.30"
∷ word (π ∷ ε ∷ ν ∷ θ ∷ ε ∷ ρ ∷ ὰ ∷ []) "Mark.1.30"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.30"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ε ∷ ι ∷ τ ∷ ο ∷ []) "Mark.1.30"
∷ word (π ∷ υ ∷ ρ ∷ έ ∷ σ ∷ σ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.1.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.30"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.30"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.30"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.30"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.1.30"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.1.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.31"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.1.31"
∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.1.31"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.1.31"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.1.31"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.31"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.1.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.31"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.1.31"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.1.31"
∷ word (ὁ ∷ []) "Mark.1.31"
∷ word (π ∷ υ ∷ ρ ∷ ε ∷ τ ∷ ό ∷ ς ∷ []) "Mark.1.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.31"
∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ε ∷ ι ∷ []) "Mark.1.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.31"
∷ word (Ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.32"
∷ word (δ ∷ ὲ ∷ []) "Mark.1.32"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.1.32"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.1.32"
∷ word (ἔ ∷ δ ∷ υ ∷ []) "Mark.1.32"
∷ word (ὁ ∷ []) "Mark.1.32"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.1.32"
∷ word (ἔ ∷ φ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.1.32"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.32"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.32"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.32"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.32"
∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.1.32"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.32"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.32"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.1.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.33"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.33"
∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "Mark.1.33"
∷ word (ἡ ∷ []) "Mark.1.33"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Mark.1.33"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ η ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.1.33"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.33"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.33"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.1.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.34"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.34"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.34"
∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.1.34"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.34"
∷ word (π ∷ ο ∷ ι ∷ κ ∷ ί ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "Mark.1.34"
∷ word (ν ∷ ό ∷ σ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.34"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.1.34"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.34"
∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.1.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.34"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.1.34"
∷ word (ἤ ∷ φ ∷ ι ∷ ε ∷ ν ∷ []) "Mark.1.34"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.1.34"
∷ word (τ ∷ ὰ ∷ []) "Mark.1.34"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.1.34"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.34"
∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.34"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.1.34"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.35"
∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.1.35"
∷ word (ἔ ∷ ν ∷ ν ∷ υ ∷ χ ∷ α ∷ []) "Mark.1.35"
∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.35"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.1.35"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.35"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.35"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.35"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.1.35"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.1.35"
∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.1.35"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ η ∷ ύ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.36"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ δ ∷ ί ∷ ω ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.1.36"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.36"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.1.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.36"
∷ word (ο ∷ ἱ ∷ []) "Mark.1.36"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.1.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.37"
∷ word (ε ∷ ὗ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.1.37"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.37"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.37"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.37"
∷ word (Π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.37"
∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.1.37"
∷ word (σ ∷ ε ∷ []) "Mark.1.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.38"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.1.38"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.38"
∷ word (Ἄ ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.1.38"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "Mark.1.38"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.38"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.38"
∷ word (ἐ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ α ∷ ς ∷ []) "Mark.1.38"
∷ word (κ ∷ ω ∷ μ ∷ ο ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.1.38"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.1.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.38"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.1.38"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ ω ∷ []) "Mark.1.38"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.38"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.1.38"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.1.38"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.1.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.39"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.39"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Mark.1.39"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.39"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.39"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὰ ∷ ς ∷ []) "Mark.1.39"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.39"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.39"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.1.39"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.39"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.39"
∷ word (τ ∷ ὰ ∷ []) "Mark.1.39"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.1.39"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.1.39"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.40"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.40"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.40"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.40"
∷ word (∙λ ∷ ε ∷ π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.40"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.1.40"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.40"
∷ word (γ ∷ ο ∷ ν ∷ υ ∷ π ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.40"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.40"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.40"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.40"
∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.1.40"
∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ ς ∷ []) "Mark.1.40"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ α ∷ ί ∷ []) "Mark.1.40"
∷ word (μ ∷ ε ∷ []) "Mark.1.40"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Mark.1.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.41"
∷ word (ὀ ∷ ρ ∷ γ ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.1.41"
∷ word (ἐ ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Mark.1.41"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.41"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.1.41"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.41"
∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.1.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.41"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.1.41"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.41"
∷ word (Θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Mark.1.41"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.1.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.42"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.42"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.42"
∷ word (ἀ ∷ π ∷ []) "Mark.1.42"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.42"
∷ word (ἡ ∷ []) "Mark.1.42"
∷ word (∙λ ∷ έ ∷ π ∷ ρ ∷ α ∷ []) "Mark.1.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.42"
∷ word (ἐ ∷ κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.1.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.43"
∷ word (ἐ ∷ μ ∷ β ∷ ρ ∷ ι ∷ μ ∷ η ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.43"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.43"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.43"
∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.1.43"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.1.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.44"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.1.44"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.44"
∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Mark.1.44"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.1.44"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.1.44"
∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ ς ∷ []) "Mark.1.44"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.44"
∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.1.44"
∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.44"
∷ word (δ ∷ ε ∷ ῖ ∷ ξ ∷ ο ∷ ν ∷ []) "Mark.1.44"
∷ word (τ ∷ ῷ ∷ []) "Mark.1.44"
∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.1.44"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.44"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ []) "Mark.1.44"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.1.44"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.44"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.1.44"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.1.44"
∷ word (ἃ ∷ []) "Mark.1.44"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.1.44"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.1.44"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.44"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.1.44"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.44"
∷ word (ὁ ∷ []) "Mark.1.45"
∷ word (δ ∷ ὲ ∷ []) "Mark.1.45"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.1.45"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.1.45"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.1.45"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.45"
∷ word (δ ∷ ι ∷ α ∷ φ ∷ η ∷ μ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.1.45"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.45"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.1.45"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.1.45"
∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.1.45"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.45"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.1.45"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ῶ ∷ ς ∷ []) "Mark.1.45"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.45"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.1.45"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.1.45"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.45"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.1.45"
∷ word (ἐ ∷ π ∷ []) "Mark.1.45"
∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.45"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.45"
∷ word (ἦ ∷ ν ∷ []) "Mark.1.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.45"
∷ word (ἤ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.1.45"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.45"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.45"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.45"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.1"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.2.1"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.2.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.1"
∷ word (Κ ∷ α ∷ φ ∷ α ∷ ρ ∷ ν ∷ α ∷ ο ∷ ὺ ∷ μ ∷ []) "Mark.2.1"
∷ word (δ ∷ ι ∷ []) "Mark.2.1"
∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.2.1"
∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ θ ∷ η ∷ []) "Mark.2.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.1"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.1"
∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "Mark.2.1"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.2.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.2"
∷ word (σ ∷ υ ∷ ν ∷ ή ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.2"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.2"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.2.2"
∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.2.2"
∷ word (χ ∷ ω ∷ ρ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.2"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.2.2"
∷ word (τ ∷ ὰ ∷ []) "Mark.2.2"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.2.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.2"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.2"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.2.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.2"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.3"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.3"
∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.3"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.2.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.2.3"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "Mark.2.3"
∷ word (α ∷ ἰ ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.3"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.2.3"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.2.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.4"
∷ word (μ ∷ ὴ ∷ []) "Mark.2.4"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.2.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ι ∷ []) "Mark.2.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.4"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.4"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.2.4"
∷ word (ἀ ∷ π ∷ ε ∷ σ ∷ τ ∷ έ ∷ γ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.4"
∷ word (σ ∷ τ ∷ έ ∷ γ ∷ η ∷ ν ∷ []) "Mark.2.4"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.4"
∷ word (ἦ ∷ ν ∷ []) "Mark.2.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.4"
∷ word (ἐ ∷ ξ ∷ ο ∷ ρ ∷ ύ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.4"
∷ word (χ ∷ α ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ []) "Mark.2.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.4"
∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.4"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.4"
∷ word (ὁ ∷ []) "Mark.2.4"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Mark.2.4"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ε ∷ ι ∷ τ ∷ ο ∷ []) "Mark.2.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.5"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.2.5"
∷ word (ὁ ∷ []) "Mark.2.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.5"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.5"
∷ word (τ ∷ ῷ ∷ []) "Mark.2.5"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ῷ ∷ []) "Mark.2.5"
∷ word (Τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.5"
∷ word (ἀ ∷ φ ∷ ί ∷ ε ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Mark.2.5"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.5"
∷ word (α ∷ ἱ ∷ []) "Mark.2.5"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Mark.2.5"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.6"
∷ word (δ ∷ έ ∷ []) "Mark.2.6"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.2.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.6"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.2.6"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.2.6"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.2.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.6"
∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.2.6"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.6"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.6"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Mark.2.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.6"
∷ word (Τ ∷ ί ∷ []) "Mark.2.7"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.2.7"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.2.7"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.2.7"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ []) "Mark.2.7"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.2.7"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.7"
∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Mark.2.7"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.2.7"
∷ word (ε ∷ ἰ ∷ []) "Mark.2.7"
∷ word (μ ∷ ὴ ∷ []) "Mark.2.7"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.2.7"
∷ word (ὁ ∷ []) "Mark.2.7"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.2.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.8"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.2.8"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.8"
∷ word (ὁ ∷ []) "Mark.2.8"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.8"
∷ word (τ ∷ ῷ ∷ []) "Mark.2.8"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.2.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.8"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.8"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.2.8"
∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.8"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.8"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.8"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.8"
∷ word (Τ ∷ ί ∷ []) "Mark.2.8"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.2.8"
∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.2.8"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.8"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.8"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Mark.2.8"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.2.8"
∷ word (τ ∷ ί ∷ []) "Mark.2.9"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.9"
∷ word (ε ∷ ὐ ∷ κ ∷ ο ∷ π ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.9"
∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.9"
∷ word (τ ∷ ῷ ∷ []) "Mark.2.9"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ῷ ∷ []) "Mark.2.9"
∷ word (Ἀ ∷ φ ∷ ί ∷ ε ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Mark.2.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.9"
∷ word (α ∷ ἱ ∷ []) "Mark.2.9"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Mark.2.9"
∷ word (ἢ ∷ []) "Mark.2.9"
∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.9"
∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.9"
∷ word (ἆ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.9"
∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.2.9"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.9"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Mark.2.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.2.10"
∷ word (δ ∷ ὲ ∷ []) "Mark.2.10"
∷ word (ε ∷ ἰ ∷ δ ∷ ῆ ∷ τ ∷ ε ∷ []) "Mark.2.10"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.10"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.2.10"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.2.10"
∷ word (ὁ ∷ []) "Mark.2.10"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.2.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.10"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.2.10"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.2.10"
∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Mark.2.10"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.2.10"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.10"
∷ word (τ ∷ ῷ ∷ []) "Mark.2.10"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ῷ ∷ []) "Mark.2.10"
∷ word (Σ ∷ ο ∷ ὶ ∷ []) "Mark.2.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.2.11"
∷ word (ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.2.11"
∷ word (ἆ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.11"
∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.2.11"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.11"
∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.2.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.11"
∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ν ∷ []) "Mark.2.11"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.12"
∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Mark.2.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.12"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.2.12"
∷ word (ἄ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.2.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.12"
∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.12"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.12"
∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.12"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.2.12"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.2.12"
∷ word (ἐ ∷ ξ ∷ ί ∷ σ ∷ τ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.2.12"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.2.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.12"
∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.2.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.12"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Mark.2.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.2.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.12"
∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.2.12"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.2.12"
∷ word (ε ∷ ἴ ∷ δ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.2.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.13"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.13"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.2.13"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.2.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.13"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.13"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.2.13"
∷ word (ὁ ∷ []) "Mark.2.13"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.2.13"
∷ word (ἤ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.2.13"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.2.13"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.13"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.2.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.14"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Mark.2.14"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.2.14"
∷ word (Λ ∷ ε ∷ υ ∷ ὶ ∷ ν ∷ []) "Mark.2.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.14"
∷ word (Ἁ ∷ ∙λ ∷ φ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.2.14"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.14"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.2.14"
∷ word (τ ∷ ε ∷ ∙λ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.2.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.14"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.14"
∷ word (Ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.2.14"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.2.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.14"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.2.14"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.2.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.14"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.15"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.15"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.2.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.2.15"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.15"
∷ word (τ ∷ ῇ ∷ []) "Mark.2.15"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.2.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.15"
∷ word (τ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.15"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ έ ∷ κ ∷ ε ∷ ι ∷ ν ∷ τ ∷ ο ∷ []) "Mark.2.15"
∷ word (τ ∷ ῷ ∷ []) "Mark.2.15"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.15"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.15"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.15"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.2.15"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.2.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.16"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.16"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.2.16"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.2.16"
∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.16"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Mark.2.16"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.2.16"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.16"
∷ word (τ ∷ ε ∷ ∙λ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.2.16"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.16"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.16"
∷ word (Ὅ ∷ τ ∷ ι ∷ []) "Mark.2.16"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.2.16"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (τ ∷ ε ∷ ∙λ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.16"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.2.16"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Mark.2.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.17"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.2.17"
∷ word (ὁ ∷ []) "Mark.2.17"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.17"
∷ word (Ο ∷ ὐ ∷ []) "Mark.2.17"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.2.17"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.17"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.17"
∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.17"
∷ word (ἰ ∷ α ∷ τ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.2.17"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.2.17"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.17"
∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.2.17"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.17"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.2.17"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.2.17"
∷ word (κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Mark.2.17"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Mark.2.17"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.2.17"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.17"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.18"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.18"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.2.18"
∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.18"
∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.2.18"
∷ word (τ ∷ ί ∷ []) "Mark.2.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.18"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.18"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.18"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.2.18"
∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.18"
∷ word (δ ∷ ὲ ∷ []) "Mark.2.18"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.2.18"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18"
∷ word (ο ∷ ὐ ∷ []) "Mark.2.18"
∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.19"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.2.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.19"
∷ word (ὁ ∷ []) "Mark.2.19"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.19"
∷ word (Μ ∷ ὴ ∷ []) "Mark.2.19"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.19"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.19"
∷ word (υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Mark.2.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.19"
∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.2.19"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.19"
∷ word (ᾧ ∷ []) "Mark.2.19"
∷ word (ὁ ∷ []) "Mark.2.19"
∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ ς ∷ []) "Mark.2.19"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.2.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.19"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.19"
∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.2.19"
∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.2.19"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.19"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.19"
∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.2.19"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.2.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.19"
∷ word (ο ∷ ὐ ∷ []) "Mark.2.19"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.19"
∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.2.19"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.20"
∷ word (δ ∷ ὲ ∷ []) "Mark.2.20"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.2.20"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.2.20"
∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ θ ∷ ῇ ∷ []) "Mark.2.20"
∷ word (ἀ ∷ π ∷ []) "Mark.2.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.20"
∷ word (ὁ ∷ []) "Mark.2.20"
∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ ς ∷ []) "Mark.2.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.20"
∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.2.20"
∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.20"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.20"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.2.20"
∷ word (τ ∷ ῇ ∷ []) "Mark.2.20"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.2.20"
∷ word (Ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.2.21"
∷ word (ἐ ∷ π ∷ ί ∷ β ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Mark.2.21"
∷ word (ῥ ∷ ά ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.2.21"
∷ word (ἀ ∷ γ ∷ ν ∷ ά ∷ φ ∷ ο ∷ υ ∷ []) "Mark.2.21"
∷ word (ἐ ∷ π ∷ ι ∷ ρ ∷ ά ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "Mark.2.21"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.21"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.2.21"
∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ό ∷ ν ∷ []) "Mark.2.21"
∷ word (ε ∷ ἰ ∷ []) "Mark.2.21"
∷ word (δ ∷ ὲ ∷ []) "Mark.2.21"
∷ word (μ ∷ ή ∷ []) "Mark.2.21"
∷ word (α ∷ ἴ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.2.21"
∷ word (τ ∷ ὸ ∷ []) "Mark.2.21"
∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ []) "Mark.2.21"
∷ word (ἀ ∷ π ∷ []) "Mark.2.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.21"
∷ word (τ ∷ ὸ ∷ []) "Mark.2.21"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.2.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.21"
∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ῦ ∷ []) "Mark.2.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.21"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.21"
∷ word (σ ∷ χ ∷ ί ∷ σ ∷ μ ∷ α ∷ []) "Mark.2.21"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.22"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.2.22"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.2.22"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.22"
∷ word (ν ∷ έ ∷ ο ∷ ν ∷ []) "Mark.2.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.22"
∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.22"
∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.22"
∷ word (ε ∷ ἰ ∷ []) "Mark.2.22"
∷ word (δ ∷ ὲ ∷ []) "Mark.2.22"
∷ word (μ ∷ ή ∷ []) "Mark.2.22"
∷ word (ῥ ∷ ή ∷ ξ ∷ ε ∷ ι ∷ []) "Mark.2.22"
∷ word (ὁ ∷ []) "Mark.2.22"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.2.22"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.22"
∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.22"
∷ word (ὁ ∷ []) "Mark.2.22"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.2.22"
∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ ∙λ ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.22"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.22"
∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ί ∷ []) "Mark.2.22"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.2.22"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.22"
∷ word (ν ∷ έ ∷ ο ∷ ν ∷ []) "Mark.2.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.22"
∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.22"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.22"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.23"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.2.23"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.2.23"
∷ word (ἐ ∷ ν ∷ []) "Mark.2.23"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.23"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.23"
∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.2.23"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.23"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.23"
∷ word (σ ∷ π ∷ ο ∷ ρ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.2.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.23"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.23"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.23"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.2.23"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.2.23"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.23"
∷ word (τ ∷ ί ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.23"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.23"
∷ word (σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ α ∷ ς ∷ []) "Mark.2.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.24"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.24"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.2.24"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.2.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.24"
∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.2.24"
∷ word (τ ∷ ί ∷ []) "Mark.2.24"
∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.24"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.24"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.24"
∷ word (ὃ ∷ []) "Mark.2.24"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.2.24"
∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.25"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.25"
∷ word (Ο ∷ ὐ ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.2.25"
∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "Mark.2.25"
∷ word (τ ∷ ί ∷ []) "Mark.2.25"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.2.25"
∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.2.25"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.2.25"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.2.25"
∷ word (ἔ ∷ σ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.2.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.25"
∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ν ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.2.25"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.2.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.25"
∷ word (ο ∷ ἱ ∷ []) "Mark.2.25"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.2.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.25"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.2.26"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.26"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.26"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.2.26"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.26"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.2.26"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.26"
∷ word (Ἀ ∷ β ∷ ι ∷ α ∷ θ ∷ ὰ ∷ ρ ∷ []) "Mark.2.26"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.26"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.26"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.2.26"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.2.26"
∷ word (π ∷ ρ ∷ ο ∷ θ ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.2.26"
∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Mark.2.26"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.2.26"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.2.26"
∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.26"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.26"
∷ word (ε ∷ ἰ ∷ []) "Mark.2.26"
∷ word (μ ∷ ὴ ∷ []) "Mark.2.26"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.26"
∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.26"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.26"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.26"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.2.26"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.26"
∷ word (ο ∷ ὖ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.27"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.2.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.27"
∷ word (Τ ∷ ὸ ∷ []) "Mark.2.27"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.27"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.27"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.27"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.2.27"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.2.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.27"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.2.27"
∷ word (ὁ ∷ []) "Mark.2.27"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.2.27"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.27"
∷ word (τ ∷ ὸ ∷ []) "Mark.2.27"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.27"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.2.28"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ό ∷ ς ∷ []) "Mark.2.28"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.28"
∷ word (ὁ ∷ []) "Mark.2.28"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.2.28"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.28"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.28"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.28"
∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.2.28"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.1"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.3.1"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.3.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.1"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ή ∷ ν ∷ []) "Mark.3.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.1"
∷ word (ἦ ∷ ν ∷ []) "Mark.3.1"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.3.1"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.3.1"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Mark.3.1"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Mark.3.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.1"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.3.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.2"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ τ ∷ ή ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.3.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.2"
∷ word (ε ∷ ἰ ∷ []) "Mark.3.2"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.2"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.2"
∷ word (θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.3.2"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.2"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.2"
∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.3"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.3"
∷ word (τ ∷ ῷ ∷ []) "Mark.3.3"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Mark.3.3"
∷ word (τ ∷ ῷ ∷ []) "Mark.3.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.3"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.3.3"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Mark.3.3"
∷ word (ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ []) "Mark.3.3"
∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.3.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.3"
∷ word (τ ∷ ὸ ∷ []) "Mark.3.3"
∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.3.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.4"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.4"
∷ word (Ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.4"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.4"
∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.4"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.4"
∷ word (ἢ ∷ []) "Mark.3.4"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.4"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.3.4"
∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.4"
∷ word (ἢ ∷ []) "Mark.3.4"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.4"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.4"
∷ word (δ ∷ ὲ ∷ []) "Mark.3.4"
∷ word (ἐ ∷ σ ∷ ι ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.3.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.5"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.5"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.3.5"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Mark.3.5"
∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ υ ∷ π ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.3.5"
∷ word (τ ∷ ῇ ∷ []) "Mark.3.5"
∷ word (π ∷ ω ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.3.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.5"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.3.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.5"
∷ word (τ ∷ ῷ ∷ []) "Mark.3.5"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Mark.3.5"
∷ word (Ἔ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Mark.3.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.5"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.5"
∷ word (ἐ ∷ ξ ∷ έ ∷ τ ∷ ε ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Mark.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.5"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ α ∷ τ ∷ ε ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ []) "Mark.3.5"
∷ word (ἡ ∷ []) "Mark.3.5"
∷ word (χ ∷ ε ∷ ὶ ∷ ρ ∷ []) "Mark.3.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.6"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.6"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.6"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.3.6"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.3.6"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.3.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.6"
∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.3.6"
∷ word (σ ∷ υ ∷ μ ∷ β ∷ ο ∷ ύ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.3.6"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.3.6"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.3.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.6"
∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "Mark.3.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.6"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.7"
∷ word (ὁ ∷ []) "Mark.3.7"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.3.7"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.3.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.7"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.3.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.7"
∷ word (ἀ ∷ ν ∷ ε ∷ χ ∷ ώ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.7"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.7"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.7"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Mark.3.7"
∷ word (π ∷ ∙λ ∷ ῆ ∷ θ ∷ ο ∷ ς ∷ []) "Mark.3.7"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.7"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.7"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.7"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.7"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.8"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.8"
∷ word (Ἰ ∷ δ ∷ ο ∷ υ ∷ μ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.3.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.8"
∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ο ∷ υ ∷ []) "Mark.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.3.8"
∷ word (Τ ∷ ύ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8"
∷ word (Σ ∷ ι ∷ δ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.3.8"
∷ word (π ∷ ∙λ ∷ ῆ ∷ θ ∷ ο ∷ ς ∷ []) "Mark.3.8"
∷ word (π ∷ ο ∷ ∙λ ∷ ύ ∷ []) "Mark.3.8"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.8"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.3.8"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ ε ∷ ι ∷ []) "Mark.3.8"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.3.8"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.8"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.9"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.3.9"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.9"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.3.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.9"
∷ word (π ∷ ∙λ ∷ ο ∷ ι ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.3.9"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ρ ∷ τ ∷ ε ∷ ρ ∷ ῇ ∷ []) "Mark.3.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.9"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.3.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.9"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.3.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.9"
∷ word (μ ∷ ὴ ∷ []) "Mark.3.9"
∷ word (θ ∷ ∙λ ∷ ί ∷ β ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.9"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.9"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.3.10"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.10"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.3.10"
∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ί ∷ π ∷ τ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.10"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.10"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.10"
∷ word (ἅ ∷ ψ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.10"
∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Mark.3.10"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.3.10"
∷ word (μ ∷ ά ∷ σ ∷ τ ∷ ι ∷ γ ∷ α ∷ ς ∷ []) "Mark.3.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.11"
∷ word (τ ∷ ὰ ∷ []) "Mark.3.11"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.3.11"
∷ word (τ ∷ ὰ ∷ []) "Mark.3.11"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Mark.3.11"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.3.11"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.11"
∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.3.11"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ π ∷ ι ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.11"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.3.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.3.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.11"
∷ word (Σ ∷ ὺ ∷ []) "Mark.3.11"
∷ word (ε ∷ ἶ ∷ []) "Mark.3.11"
∷ word (ὁ ∷ []) "Mark.3.11"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.3.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.3.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.12"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.3.12"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ α ∷ []) "Mark.3.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.12"
∷ word (μ ∷ ὴ ∷ []) "Mark.3.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.12"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.3.12"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.13"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Mark.3.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.13"
∷ word (τ ∷ ὸ ∷ []) "Mark.3.13"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.3.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.13"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.13"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.3.13"
∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.3.13"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.3.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.13"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.3.13"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.13"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.14"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.14"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.3.14"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.14"
∷ word (ὦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.14"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.3.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.14"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.14"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Mark.3.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.14"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.15"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.15"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.3.15"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.15"
∷ word (τ ∷ ὰ ∷ []) "Mark.3.15"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.3.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.16"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.16"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.3.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.16"
∷ word (ἐ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.3.16"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Mark.3.16"
∷ word (τ ∷ ῷ ∷ []) "Mark.3.16"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ι ∷ []) "Mark.3.16"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.3.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.17"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.3.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.17"
∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.17"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.3.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.17"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.3.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.17"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.17"
∷ word (ἐ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.3.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.17"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.3.17"
∷ word (Β ∷ ο ∷ α ∷ ν ∷ η ∷ ρ ∷ γ ∷ έ ∷ ς ∷ []) "Mark.3.17"
∷ word (ὅ ∷ []) "Mark.3.17"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.17"
∷ word (Υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Mark.3.17"
∷ word (Β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.3.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ α ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Φ ∷ ί ∷ ∙λ ∷ ι ∷ π ∷ π ∷ ο ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Β ∷ α ∷ ρ ∷ θ ∷ ο ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Μ ∷ α ∷ θ ∷ θ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Θ ∷ ω ∷ μ ∷ ᾶ ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.3.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.18"
∷ word (Ἁ ∷ ∙λ ∷ φ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Θ ∷ α ∷ δ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ α ∷ []) "Mark.3.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.18"
∷ word (Κ ∷ α ∷ ν ∷ α ∷ ν ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.19"
∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ν ∷ []) "Mark.3.19"
∷ word (Ἰ ∷ σ ∷ κ ∷ α ∷ ρ ∷ ι ∷ ώ ∷ θ ∷ []) "Mark.3.19"
∷ word (ὃ ∷ ς ∷ []) "Mark.3.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.19"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.3.19"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.19"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.20"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.20"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.20"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.20"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.3.20"
∷ word (ὁ ∷ []) "Mark.3.20"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.3.20"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.3.20"
∷ word (μ ∷ ὴ ∷ []) "Mark.3.20"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.3.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.20"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.3.20"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.20"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.3.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.21"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.21"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.21"
∷ word (π ∷ α ∷ ρ ∷ []) "Mark.3.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.21"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.3.21"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.21"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.21"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.3.21"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.3.21"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.21"
∷ word (ἐ ∷ ξ ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.3.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.22"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.22"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.3.22"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.22"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.22"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.3.22"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.22"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.3.22"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.22"
∷ word (Β ∷ ε ∷ ε ∷ ∙λ ∷ ζ ∷ ε ∷ β ∷ ο ∷ ὺ ∷ ∙λ ∷ []) "Mark.3.22"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.22"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.22"
∷ word (ἐ ∷ ν ∷ []) "Mark.3.22"
∷ word (τ ∷ ῷ ∷ []) "Mark.3.22"
∷ word (ἄ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Mark.3.22"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.22"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Mark.3.22"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.3.22"
∷ word (τ ∷ ὰ ∷ []) "Mark.3.22"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.3.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.23"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.23"
∷ word (ἐ ∷ ν ∷ []) "Mark.3.23"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.3.23"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.3.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.23"
∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.3.23"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.23"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Mark.3.23"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ν ∷ []) "Mark.3.23"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.24"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.24"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.3.24"
∷ word (ἐ ∷ φ ∷ []) "Mark.3.24"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.3.24"
∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Mark.3.24"
∷ word (ο ∷ ὐ ∷ []) "Mark.3.24"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.24"
∷ word (σ ∷ τ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.24"
∷ word (ἡ ∷ []) "Mark.3.24"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.3.24"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Mark.3.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.25"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.25"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ []) "Mark.3.25"
∷ word (ἐ ∷ φ ∷ []) "Mark.3.25"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.3.25"
∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Mark.3.25"
∷ word (ο ∷ ὐ ∷ []) "Mark.3.25"
∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.25"
∷ word (ἡ ∷ []) "Mark.3.25"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ []) "Mark.3.25"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Mark.3.25"
∷ word (σ ∷ τ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.26"
∷ word (ε ∷ ἰ ∷ []) "Mark.3.26"
∷ word (ὁ ∷ []) "Mark.3.26"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Mark.3.26"
∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.3.26"
∷ word (ἐ ∷ φ ∷ []) "Mark.3.26"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.26"
∷ word (ἐ ∷ μ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.3.26"
∷ word (ο ∷ ὐ ∷ []) "Mark.3.26"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.26"
∷ word (σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.26"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.3.26"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.3.26"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.26"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.3.27"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.3.27"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.27"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.27"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.27"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.3.27"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.27"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.3.27"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.3.27"
∷ word (τ ∷ ὰ ∷ []) "Mark.3.27"
∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ η ∷ []) "Mark.3.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.27"
∷ word (δ ∷ ι ∷ α ∷ ρ ∷ π ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.27"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.27"
∷ word (μ ∷ ὴ ∷ []) "Mark.3.27"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.27"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.27"
∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.3.27"
∷ word (δ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.3.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.27"
∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.3.27"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.27"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.3.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.27"
∷ word (δ ∷ ι ∷ α ∷ ρ ∷ π ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.3.27"
∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.3.28"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.3.28"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.3.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.28"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.3.28"
∷ word (ἀ ∷ φ ∷ ε ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.28"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.28"
∷ word (υ ∷ ἱ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.28"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.3.28"
∷ word (τ ∷ ὰ ∷ []) "Mark.3.28"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.3.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.28"
∷ word (α ∷ ἱ ∷ []) "Mark.3.28"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ι ∷ []) "Mark.3.28"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.3.28"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.28"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.28"
∷ word (ὃ ∷ ς ∷ []) "Mark.3.29"
∷ word (δ ∷ []) "Mark.3.29"
∷ word (ἂ ∷ ν ∷ []) "Mark.3.29"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.3.29"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.3.29"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.3.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.3.29"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.3.29"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.3.29"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.29"
∷ word (ἄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.29"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.29"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.29"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.3.29"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.3.29"
∷ word (ἔ ∷ ν ∷ ο ∷ χ ∷ ό ∷ ς ∷ []) "Mark.3.29"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.29"
∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Mark.3.29"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.3.29"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.30"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.3.30"
∷ word (Π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.3.30"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.30"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.30"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.31"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.31"
∷ word (ἡ ∷ []) "Mark.3.31"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.31"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Mark.3.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.31"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.3.31"
∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.31"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.3.31"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.31"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.31"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.31"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.32"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ η ∷ τ ∷ ο ∷ []) "Mark.3.32"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.3.32"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.32"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.3.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.32"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.32"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.3.32"
∷ word (ἡ ∷ []) "Mark.3.32"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.32"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.3.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.32"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.32"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Mark.3.32"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.3.32"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.3.32"
∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.3.32"
∷ word (σ ∷ ε ∷ []) "Mark.3.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.33"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.3.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.33"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.33"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.3.33"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.33"
∷ word (ἡ ∷ []) "Mark.3.33"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.33"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.33"
∷ word (ἢ ∷ []) "Mark.3.33"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.33"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Mark.3.33"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.34"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.34"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.34"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.3.34"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.34"
∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Mark.3.34"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.3.34"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.34"
∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.3.34"
∷ word (ἡ ∷ []) "Mark.3.34"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.34"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.34"
∷ word (ο ∷ ἱ ∷ []) "Mark.3.34"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Mark.3.34"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.34"
∷ word (ὃ ∷ ς ∷ []) "Mark.3.35"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.3.35"
∷ word (ἂ ∷ ν ∷ []) "Mark.3.35"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.3.35"
∷ word (τ ∷ ὸ ∷ []) "Mark.3.35"
∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Mark.3.35"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.35"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.3.35"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.3.35"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ς ∷ []) "Mark.3.35"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.35"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὴ ∷ []) "Mark.3.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.35"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.35"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.3.35"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.1"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.4.1"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.4.1"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.1"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.4.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.1"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.1"
∷ word (σ ∷ υ ∷ ν ∷ ά ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.1"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.4.1"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.1"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.4.1"
∷ word (π ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.4.1"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.1"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.1"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.4.1"
∷ word (ἐ ∷ μ ∷ β ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.1"
∷ word (κ ∷ α ∷ θ ∷ ῆ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.1"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.1"
∷ word (τ ∷ ῇ ∷ []) "Mark.4.1"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.1"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.4.1"
∷ word (ὁ ∷ []) "Mark.4.1"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.4.1"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.4.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.1"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.1"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.1"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.1"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.2"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.4.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.4.2"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.2"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.2"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.4.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.2"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.2"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.2"
∷ word (τ ∷ ῇ ∷ []) "Mark.4.2"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.4.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.2"
∷ word (Ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.3"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.4.3"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.4.3"
∷ word (ὁ ∷ []) "Mark.4.3"
∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.4.3"
∷ word (σ ∷ π ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.4"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.4"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.4"
∷ word (τ ∷ ῷ ∷ []) "Mark.4.4"
∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.4"
∷ word (ὃ ∷ []) "Mark.4.4"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.4.4"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.4"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.4.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.4"
∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.4"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.4.4"
∷ word (τ ∷ ὰ ∷ []) "Mark.4.4"
∷ word (π ∷ ε ∷ τ ∷ ε ∷ ι ∷ ν ∷ ὰ ∷ []) "Mark.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.4"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ φ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.4"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Mark.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.5"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Mark.4.5"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.5"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.5"
∷ word (π ∷ ε ∷ τ ∷ ρ ∷ ῶ ∷ δ ∷ ε ∷ ς ∷ []) "Mark.4.5"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.4.5"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.5"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.4.5"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.4.5"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.5"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.5"
∷ word (ἐ ∷ ξ ∷ α ∷ ν ∷ έ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.4.5"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.4.5"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.5"
∷ word (μ ∷ ὴ ∷ []) "Mark.4.5"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.5"
∷ word (β ∷ ά ∷ θ ∷ ο ∷ ς ∷ []) "Mark.4.5"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.6"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.4.6"
∷ word (ἀ ∷ ν ∷ έ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.4.6"
∷ word (ὁ ∷ []) "Mark.4.6"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.4.6"
∷ word (ἐ ∷ κ ∷ α ∷ υ ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.6"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.4.6"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.6"
∷ word (μ ∷ ὴ ∷ []) "Mark.4.6"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.6"
∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ ν ∷ []) "Mark.4.6"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Mark.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Mark.4.7"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.7"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.7"
∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ α ∷ ς ∷ []) "Mark.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.7"
∷ word (α ∷ ἱ ∷ []) "Mark.4.7"
∷ word (ἄ ∷ κ ∷ α ∷ ν ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ π ∷ ν ∷ ι ∷ ξ ∷ α ∷ ν ∷ []) "Mark.4.7"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Mark.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.4.7"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.7"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.4.8"
∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.8"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.4.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.4.8"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8"
∷ word (α ∷ ὐ ∷ ξ ∷ α ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8"
∷ word (ἔ ∷ φ ∷ ε ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.4.8"
∷ word (ἓ ∷ ν ∷ []) "Mark.4.8"
∷ word (τ ∷ ρ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8"
∷ word (ἓ ∷ ν ∷ []) "Mark.4.8"
∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8"
∷ word (ἓ ∷ ν ∷ []) "Mark.4.8"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Mark.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.9"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.9"
∷ word (Ὃ ∷ ς ∷ []) "Mark.4.9"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.9"
∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.4.9"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.9"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ έ ∷ τ ∷ ω ∷ []) "Mark.4.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.10"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.4.10"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.10"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.4.10"
∷ word (μ ∷ ό ∷ ν ∷ α ∷ ς ∷ []) "Mark.4.10"
∷ word (ἠ ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.10"
∷ word (ο ∷ ἱ ∷ []) "Mark.4.10"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.4.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.10"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.4.10"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.10"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.4.10"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.10"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ά ∷ ς ∷ []) "Mark.4.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.11"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.11"
∷ word (Ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.4.11"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.11"
∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.4.11"
∷ word (δ ∷ έ ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.11"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.4.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.4.11"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.4.11"
∷ word (δ ∷ ὲ ∷ []) "Mark.4.11"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.11"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.4.11"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.11"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.11"
∷ word (τ ∷ ὰ ∷ []) "Mark.4.11"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.11"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.11"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.12"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.12"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ σ ∷ ι ∷ []) "Mark.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12"
∷ word (μ ∷ ὴ ∷ []) "Mark.4.12"
∷ word (ἴ ∷ δ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.12"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ σ ∷ ι ∷ []) "Mark.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12"
∷ word (μ ∷ ὴ ∷ []) "Mark.4.12"
∷ word (σ ∷ υ ∷ ν ∷ ι ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.12"
∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.4.12"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12"
∷ word (ἀ ∷ φ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.4.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.4.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.13"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.4.13"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.4.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.13"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.4.13"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.4.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.13"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.4.13"
∷ word (π ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Mark.4.13"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.13"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Mark.4.13"
∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.4.13"
∷ word (ὁ ∷ []) "Mark.4.14"
∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.4.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.14"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.14"
∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.4.14"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.4.15"
∷ word (δ ∷ έ ∷ []) "Mark.4.15"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.15"
∷ word (ο ∷ ἱ ∷ []) "Mark.4.15"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.4.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.15"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.4.15"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.4.15"
∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.15"
∷ word (ὁ ∷ []) "Mark.4.15"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Mark.4.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.15"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.15"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.15"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.15"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.15"
∷ word (ὁ ∷ []) "Mark.4.15"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Mark.4.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.15"
∷ word (α ∷ ἴ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.4.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.15"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.15"
∷ word (ἐ ∷ σ ∷ π ∷ α ∷ ρ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.4.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.4.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.16"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Mark.4.16"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.16"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Mark.4.16"
∷ word (ο ∷ ἱ ∷ []) "Mark.4.16"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.16"
∷ word (τ ∷ ὰ ∷ []) "Mark.4.16"
∷ word (π ∷ ε ∷ τ ∷ ρ ∷ ώ ∷ δ ∷ η ∷ []) "Mark.4.16"
∷ word (σ ∷ π ∷ ε ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.4.16"
∷ word (ο ∷ ἳ ∷ []) "Mark.4.16"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.16"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.16"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.16"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.16"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.4.16"
∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Mark.4.16"
∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.16"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.4.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.17"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.17"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.17"
∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ ν ∷ []) "Mark.4.17"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.17"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.17"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.4.17"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ί ∷ []) "Mark.4.17"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.17"
∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.4.17"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.4.17"
∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.4.17"
∷ word (ἢ ∷ []) "Mark.4.17"
∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.4.17"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.4.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.17"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.17"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.17"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.18"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.4.18"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.4.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.4.18"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.18"
∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ α ∷ ς ∷ []) "Mark.4.18"
∷ word (σ ∷ π ∷ ε ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.4.18"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Mark.4.18"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.4.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.18"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.18"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19"
∷ word (α ∷ ἱ ∷ []) "Mark.4.19"
∷ word (μ ∷ έ ∷ ρ ∷ ι ∷ μ ∷ ν ∷ α ∷ ι ∷ []) "Mark.4.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.19"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.4.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19"
∷ word (ἡ ∷ []) "Mark.4.19"
∷ word (ἀ ∷ π ∷ ά ∷ τ ∷ η ∷ []) "Mark.4.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.19"
∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.4.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19"
∷ word (α ∷ ἱ ∷ []) "Mark.4.19"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.4.19"
∷ word (τ ∷ ὰ ∷ []) "Mark.4.19"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὰ ∷ []) "Mark.4.19"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ []) "Mark.4.19"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Mark.4.19"
∷ word (σ ∷ υ ∷ μ ∷ π ∷ ν ∷ ί ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.19"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19"
∷ word (ἄ ∷ κ ∷ α ∷ ρ ∷ π ∷ ο ∷ ς ∷ []) "Mark.4.19"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ί ∷ []) "Mark.4.20"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.20"
∷ word (ο ∷ ἱ ∷ []) "Mark.4.20"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.20"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.4.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.20"
∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.4.20"
∷ word (σ ∷ π ∷ α ∷ ρ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.20"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.4.20"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.20"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.20"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.20"
∷ word (ἓ ∷ ν ∷ []) "Mark.4.20"
∷ word (τ ∷ ρ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20"
∷ word (ἓ ∷ ν ∷ []) "Mark.4.20"
∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20"
∷ word (ἓ ∷ ν ∷ []) "Mark.4.20"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Mark.4.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.21"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.21"
∷ word (Μ ∷ ή ∷ τ ∷ ι ∷ []) "Mark.4.21"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.21"
∷ word (ὁ ∷ []) "Mark.4.21"
∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.4.21"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.21"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.4.21"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.21"
∷ word (μ ∷ ό ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.4.21"
∷ word (τ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.4.21"
∷ word (ἢ ∷ []) "Mark.4.21"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.4.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.21"
∷ word (κ ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.4.21"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.4.21"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.21"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.21"
∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Mark.4.21"
∷ word (τ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.4.21"
∷ word (ο ∷ ὐ ∷ []) "Mark.4.22"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.4.22"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.4.22"
∷ word (κ ∷ ρ ∷ υ ∷ π ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.22"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.4.22"
∷ word (μ ∷ ὴ ∷ []) "Mark.4.22"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.22"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Mark.4.22"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.4.22"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.22"
∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ρ ∷ υ ∷ φ ∷ ο ∷ ν ∷ []) "Mark.4.22"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.4.22"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.22"
∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.4.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.22"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.4.22"
∷ word (ε ∷ ἴ ∷ []) "Mark.4.23"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.4.23"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.23"
∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.4.23"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.23"
∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ έ ∷ τ ∷ ω ∷ []) "Mark.4.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.24"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.24"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.24"
∷ word (τ ∷ ί ∷ []) "Mark.4.24"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.24"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.24"
∷ word (ᾧ ∷ []) "Mark.4.24"
∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.4.24"
∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.4.24"
∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.24"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.4.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.24"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ τ ∷ ε ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.24"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.4.24"
∷ word (ὃ ∷ ς ∷ []) "Mark.4.25"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.4.25"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.25"
∷ word (δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.25"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.4.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.25"
∷ word (ὃ ∷ ς ∷ []) "Mark.4.25"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.25"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.25"
∷ word (ὃ ∷ []) "Mark.4.25"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.25"
∷ word (ἀ ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.25"
∷ word (ἀ ∷ π ∷ []) "Mark.4.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.25"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.26"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.26"
∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.4.26"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.4.26"
∷ word (ἡ ∷ []) "Mark.4.26"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.4.26"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.26"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.4.26"
∷ word (ὡ ∷ ς ∷ []) "Mark.4.26"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.4.26"
∷ word (β ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.4.26"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.26"
∷ word (σ ∷ π ∷ ό ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.4.26"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.26"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.26"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ῃ ∷ []) "Mark.4.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27"
∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.27"
∷ word (ν ∷ ύ ∷ κ ∷ τ ∷ α ∷ []) "Mark.4.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.4.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27"
∷ word (ὁ ∷ []) "Mark.4.27"
∷ word (σ ∷ π ∷ ό ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.4.27"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ τ ∷ ᾷ ∷ []) "Mark.4.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27"
∷ word (μ ∷ η ∷ κ ∷ ύ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.27"
∷ word (ὡ ∷ ς ∷ []) "Mark.4.27"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.27"
∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.4.27"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.4.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ μ ∷ ά ∷ τ ∷ η ∷ []) "Mark.4.28"
∷ word (ἡ ∷ []) "Mark.4.28"
∷ word (γ ∷ ῆ ∷ []) "Mark.4.28"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.4.28"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.4.28"
∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.4.28"
∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.4.28"
∷ word (σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ ν ∷ []) "Mark.4.28"
∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.4.28"
∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ η ∷ ς ∷ []) "Mark.4.28"
∷ word (σ ∷ ῖ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.4.28"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.28"
∷ word (τ ∷ ῷ ∷ []) "Mark.4.28"
∷ word (σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ ϊ ∷ []) "Mark.4.28"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.29"
∷ word (δ ∷ ὲ ∷ []) "Mark.4.29"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῖ ∷ []) "Mark.4.29"
∷ word (ὁ ∷ []) "Mark.4.29"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ό ∷ ς ∷ []) "Mark.4.29"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.29"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.29"
∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Mark.4.29"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.4.29"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.4.29"
∷ word (ὁ ∷ []) "Mark.4.29"
∷ word (θ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ό ∷ ς ∷ []) "Mark.4.29"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.30"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.30"
∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.4.30"
∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.4.30"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.30"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.4.30"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.30"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.4.30"
∷ word (ἢ ∷ []) "Mark.4.30"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.30"
∷ word (τ ∷ ί ∷ ν ∷ ι ∷ []) "Mark.4.30"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.4.30"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "Mark.4.30"
∷ word (θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.4.30"
∷ word (ὡ ∷ ς ∷ []) "Mark.4.31"
∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ῳ ∷ []) "Mark.4.31"
∷ word (σ ∷ ι ∷ ν ∷ ά ∷ π ∷ ε ∷ ω ∷ ς ∷ []) "Mark.4.31"
∷ word (ὃ ∷ ς ∷ []) "Mark.4.31"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.31"
∷ word (σ ∷ π ∷ α ∷ ρ ∷ ῇ ∷ []) "Mark.4.31"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.31"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.31"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.31"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.4.31"
∷ word (ὂ ∷ ν ∷ []) "Mark.4.31"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.4.31"
∷ word (σ ∷ π ∷ ε ∷ ρ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.4.31"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.31"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.31"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.32"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.32"
∷ word (σ ∷ π ∷ α ∷ ρ ∷ ῇ ∷ []) "Mark.4.32"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Mark.4.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.32"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.32"
∷ word (μ ∷ ε ∷ ῖ ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.4.32"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.32"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.4.32"
∷ word (∙λ ∷ α ∷ χ ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "Mark.4.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.32"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Mark.4.32"
∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.4.32"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.4.32"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.32"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.32"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.4.32"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.32"
∷ word (σ ∷ κ ∷ ι ∷ ὰ ∷ ν ∷ []) "Mark.4.32"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.32"
∷ word (τ ∷ ὰ ∷ []) "Mark.4.32"
∷ word (π ∷ ε ∷ τ ∷ ε ∷ ι ∷ ν ∷ ὰ ∷ []) "Mark.4.32"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.32"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.4.32"
∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.4.32"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.33"
∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Mark.4.33"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.33"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.33"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.33"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.33"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.33"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.4.33"
∷ word (ἠ ∷ δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.4.33"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.33"
∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Mark.4.34"
∷ word (δ ∷ ὲ ∷ []) "Mark.4.34"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.4.34"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.34"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.34"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.4.34"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.4.34"
∷ word (δ ∷ ὲ ∷ []) "Mark.4.34"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.34"
∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Mark.4.34"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.34"
∷ word (ἐ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ ε ∷ ν ∷ []) "Mark.4.34"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.34"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.35"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.4.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.35"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.35"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.4.35"
∷ word (τ ∷ ῇ ∷ []) "Mark.4.35"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.4.35"
∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.4.35"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.4.35"
∷ word (Δ ∷ ι ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.4.35"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.35"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.35"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.4.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.36"
∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.36"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.36"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.4.36"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.36"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.36"
∷ word (ὡ ∷ ς ∷ []) "Mark.4.36"
∷ word (ἦ ∷ ν ∷ []) "Mark.4.36"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.36"
∷ word (τ ∷ ῷ ∷ []) "Mark.4.36"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.4.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.36"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.4.36"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ α ∷ []) "Mark.4.36"
∷ word (ἦ ∷ ν ∷ []) "Mark.4.36"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.4.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.37"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.37"
∷ word (∙λ ∷ α ∷ ῖ ∷ ∙λ ∷ α ∷ ψ ∷ []) "Mark.4.37"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Mark.4.37"
∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ο ∷ υ ∷ []) "Mark.4.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.37"
∷ word (τ ∷ ὰ ∷ []) "Mark.4.37"
∷ word (κ ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.4.37"
∷ word (ἐ ∷ π ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.4.37"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.37"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.37"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.4.37"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.37"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.4.37"
∷ word (γ ∷ ε ∷ μ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.37"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.37"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.4.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.38"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.4.38"
∷ word (ἦ ∷ ν ∷ []) "Mark.4.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.4.38"
∷ word (τ ∷ ῇ ∷ []) "Mark.4.38"
∷ word (π ∷ ρ ∷ ύ ∷ μ ∷ ν ∷ ῃ ∷ []) "Mark.4.38"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.38"
∷ word (τ ∷ ὸ ∷ []) "Mark.4.38"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.4.38"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ω ∷ ν ∷ []) "Mark.4.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.38"
∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.38"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.38"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.38"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.4.38"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.4.38"
∷ word (ο ∷ ὐ ∷ []) "Mark.4.38"
∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.38"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.4.38"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.4.38"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Mark.4.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39"
∷ word (δ ∷ ι ∷ ε ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.4.39"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.39"
∷ word (τ ∷ ῷ ∷ []) "Mark.4.39"
∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ῳ ∷ []) "Mark.4.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.4.39"
∷ word (τ ∷ ῇ ∷ []) "Mark.4.39"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.4.39"
∷ word (Σ ∷ ι ∷ ώ ∷ π ∷ α ∷ []) "Mark.4.39"
∷ word (π ∷ ε ∷ φ ∷ ί ∷ μ ∷ ω ∷ σ ∷ ο ∷ []) "Mark.4.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39"
∷ word (ἐ ∷ κ ∷ ό ∷ π ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.39"
∷ word (ὁ ∷ []) "Mark.4.39"
∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.4.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.39"
∷ word (γ ∷ α ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Mark.4.39"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Mark.4.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.40"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.4.40"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.40"
∷ word (Τ ∷ ί ∷ []) "Mark.4.40"
∷ word (δ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.4.40"
∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.40"
∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.4.40"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.40"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.4.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.41"
∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Mark.4.41"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Mark.4.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.41"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.4.41"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.4.41"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.4.41"
∷ word (ἄ ∷ ρ ∷ α ∷ []) "Mark.4.41"
∷ word (ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.4.41"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.4.41"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.4.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41"
∷ word (ὁ ∷ []) "Mark.4.41"
∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.4.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41"
∷ word (ἡ ∷ []) "Mark.4.41"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Mark.4.41"
∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ []) "Mark.4.41"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.4.41"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.1"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.5.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.1"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.1"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.5.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.1"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.5.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.1"
∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.5.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.1"
∷ word (Γ ∷ ε ∷ ρ ∷ α ∷ σ ∷ η ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.5.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.2"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.2"
∷ word (ἐ ∷ κ ∷ []) "Mark.5.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.2"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.2"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.2"
∷ word (ὑ ∷ π ∷ ή ∷ ν ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.2"
∷ word (ἐ ∷ κ ∷ []) "Mark.5.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.2"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.2"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.5.2"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.2"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.5.2"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.5.2"
∷ word (ὃ ∷ ς ∷ []) "Mark.5.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.3"
∷ word (κ ∷ α ∷ τ ∷ ο ∷ ί ∷ κ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.3"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.5.3"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.3"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.3"
∷ word (μ ∷ ν ∷ ή ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.5.3"
∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.5.3"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.5.3"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.3"
∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.3"
∷ word (δ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.5.3"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.5.4"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.4"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.4"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Mark.5.4"
∷ word (π ∷ έ ∷ δ ∷ α ∷ ι ∷ ς ∷ []) "Mark.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4"
∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ σ ∷ ι ∷ []) "Mark.5.4"
∷ word (δ ∷ ε ∷ δ ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ π ∷ ά ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.5.4"
∷ word (ὑ ∷ π ∷ []) "Mark.5.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.4"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.5.4"
∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.5.4"
∷ word (π ∷ έ ∷ δ ∷ α ∷ ς ∷ []) "Mark.5.4"
∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ε ∷ τ ∷ ρ ∷ ῖ ∷ φ ∷ θ ∷ α ∷ ι ∷ []) "Mark.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.4"
∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ ε ∷ ν ∷ []) "Mark.5.4"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.4"
∷ word (δ ∷ α ∷ μ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Mark.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.5.5"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.5.5"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.5.5"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.5"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.5"
∷ word (μ ∷ ν ∷ ή ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.5"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.5"
∷ word (ὄ ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.5"
∷ word (ἦ ∷ ν ∷ []) "Mark.5.5"
∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ό ∷ π ∷ τ ∷ ω ∷ ν ∷ []) "Mark.5.5"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.5"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.6"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.5.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.6"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.5.6"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.6"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.6"
∷ word (ἔ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.6"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.6"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.7"
∷ word (κ ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.5.7"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Mark.5.7"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.5.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.7"
∷ word (Τ ∷ ί ∷ []) "Mark.5.7"
∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.5.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.7"
∷ word (σ ∷ ο ∷ ί ∷ []) "Mark.5.7"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.5.7"
∷ word (υ ∷ ἱ ∷ ὲ ∷ []) "Mark.5.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.7"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.5.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.7"
∷ word (ὑ ∷ ψ ∷ ί ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.5.7"
∷ word (ὁ ∷ ρ ∷ κ ∷ ί ∷ ζ ∷ ω ∷ []) "Mark.5.7"
∷ word (σ ∷ ε ∷ []) "Mark.5.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.7"
∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Mark.5.7"
∷ word (μ ∷ ή ∷ []) "Mark.5.7"
∷ word (μ ∷ ε ∷ []) "Mark.5.7"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ί ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.5.7"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.5.8"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.5.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.8"
∷ word (Ἔ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ []) "Mark.5.8"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.8"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.5.8"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.8"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.5.8"
∷ word (ἐ ∷ κ ∷ []) "Mark.5.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.8"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.5.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.9"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.5.9"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.9"
∷ word (Τ ∷ ί ∷ []) "Mark.5.9"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Mark.5.9"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.9"
∷ word (Λ ∷ ε ∷ γ ∷ ι ∷ ὼ ∷ ν ∷ []) "Mark.5.9"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Mark.5.9"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.5.9"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.9"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.5.9"
∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.5.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.10"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.5.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.10"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.10"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.10"
∷ word (μ ∷ ὴ ∷ []) "Mark.5.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.5.10"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ ῃ ∷ []) "Mark.5.10"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.5.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.10"
∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.5.10"
∷ word (ἦ ∷ ν ∷ []) "Mark.5.11"
∷ word (δ ∷ ὲ ∷ []) "Mark.5.11"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.5.11"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.11"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.11"
∷ word (ὄ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.5.11"
∷ word (ἀ ∷ γ ∷ έ ∷ ∙λ ∷ η ∷ []) "Mark.5.11"
∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.5.11"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Mark.5.11"
∷ word (β ∷ ο ∷ σ ∷ κ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.5.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.12"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.12"
∷ word (Π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Mark.5.12"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.5.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.12"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.12"
∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.5.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.12"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.5.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13"
∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.5.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "Mark.5.13"
∷ word (τ ∷ ὰ ∷ []) "Mark.5.13"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.5.13"
∷ word (τ ∷ ὰ ∷ []) "Mark.5.13"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Mark.5.13"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.5.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.13"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.13"
∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13"
∷ word (ὥ ∷ ρ ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.13"
∷ word (ἡ ∷ []) "Mark.5.13"
∷ word (ἀ ∷ γ ∷ έ ∷ ∙λ ∷ η ∷ []) "Mark.5.13"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.5.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.13"
∷ word (κ ∷ ρ ∷ η ∷ μ ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.5.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.13"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.13"
∷ word (ὡ ∷ ς ∷ []) "Mark.5.13"
∷ word (δ ∷ ι ∷ σ ∷ χ ∷ ί ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13"
∷ word (ἐ ∷ π ∷ ν ∷ ί ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.5.13"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.13"
∷ word (τ ∷ ῇ ∷ []) "Mark.5.13"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.5.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.14"
∷ word (ο ∷ ἱ ∷ []) "Mark.5.14"
∷ word (β ∷ ό ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.14"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.5.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.14"
∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.5.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.14"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.5.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.14"
∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.5.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.14"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.5.14"
∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.14"
∷ word (τ ∷ ί ∷ []) "Mark.5.14"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.5.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.14"
∷ word (γ ∷ ε ∷ γ ∷ ο ∷ ν ∷ ό ∷ ς ∷ []) "Mark.5.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.15"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.5.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15"
∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.15"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.15"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15"
∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Mark.5.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15"
∷ word (ἐ ∷ σ ∷ χ ∷ η ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Mark.5.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15"
∷ word (∙λ ∷ ε ∷ γ ∷ ι ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.5.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.16"
∷ word (δ ∷ ι ∷ η ∷ γ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.5.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.16"
∷ word (ο ∷ ἱ ∷ []) "Mark.5.16"
∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.16"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.5.16"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.5.16"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.16"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Mark.5.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.16"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.5.16"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.16"
∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.5.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.17"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.5.17"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.17"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.17"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.17"
∷ word (ὁ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.5.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.18"
∷ word (ἐ ∷ μ ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.18"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.18"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.18"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.5.18"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.5.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.18"
∷ word (ὁ ∷ []) "Mark.5.18"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.18"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.18"
∷ word (ᾖ ∷ []) "Mark.5.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.19"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.5.19"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.5.19"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.19"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.19"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.19"
∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.5.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.19"
∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ν ∷ []) "Mark.5.19"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.19"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.19"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.19"
∷ word (σ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.5.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.19"
∷ word (ἀ ∷ π ∷ ά ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.19"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.5.19"
∷ word (ὁ ∷ []) "Mark.5.19"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ό ∷ ς ∷ []) "Mark.5.19"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.5.19"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.5.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.19"
∷ word (ἠ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ έ ∷ ν ∷ []) "Mark.5.19"
∷ word (σ ∷ ε ∷ []) "Mark.5.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.20"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.20"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.20"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.5.20"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.20"
∷ word (τ ∷ ῇ ∷ []) "Mark.5.20"
∷ word (Δ ∷ ε ∷ κ ∷ α ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.5.20"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.5.20"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.20"
∷ word (ὁ ∷ []) "Mark.5.20"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.5.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.20"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.20"
∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.5.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.21"
∷ word (δ ∷ ι ∷ α ∷ π ∷ ε ∷ ρ ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.21"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.5.21"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.21"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.21"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.5.21"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.5.21"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.21"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.21"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.5.21"
∷ word (σ ∷ υ ∷ ν ∷ ή ∷ χ ∷ θ ∷ η ∷ []) "Mark.5.21"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.5.21"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ς ∷ []) "Mark.5.21"
∷ word (ἐ ∷ π ∷ []) "Mark.5.21"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.21"
∷ word (ἦ ∷ ν ∷ []) "Mark.5.21"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.5.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.21"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.22"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.22"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.5.22"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.22"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.5.22"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.5.22"
∷ word (Ἰ ∷ ά ∷ ϊ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.5.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.22"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.5.22"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.22"
∷ word (π ∷ ί ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "Mark.5.22"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.22"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.22"
∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Mark.5.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.23"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.5.23"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.23"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.23"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.5.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.23"
∷ word (Τ ∷ ὸ ∷ []) "Mark.5.23"
∷ word (θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ ρ ∷ ι ∷ ό ∷ ν ∷ []) "Mark.5.23"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.5.23"
∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ω ∷ ς ∷ []) "Mark.5.23"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.5.23"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.23"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.5.23"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ῇ ∷ ς ∷ []) "Mark.5.23"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.5.23"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.5.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.23"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.23"
∷ word (σ ∷ ω ∷ θ ∷ ῇ ∷ []) "Mark.5.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.23"
∷ word (ζ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.5.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.24"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.24"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.24"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.24"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.5.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.24"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.5.24"
∷ word (π ∷ ο ∷ ∙λ ∷ ύ ∷ ς ∷ []) "Mark.5.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.24"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ θ ∷ ∙λ ∷ ι ∷ β ∷ ο ∷ ν ∷ []) "Mark.5.24"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.25"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.5.25"
∷ word (ο ∷ ὖ ∷ σ ∷ α ∷ []) "Mark.5.25"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.25"
∷ word (ῥ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.5.25"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.25"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.5.25"
∷ word (ἔ ∷ τ ∷ η ∷ []) "Mark.5.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.26"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.26"
∷ word (π ∷ α ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.5.26"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.5.26"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.5.26"
∷ word (ἰ ∷ α ∷ τ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.5.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.26"
∷ word (δ ∷ α ∷ π ∷ α ∷ ν ∷ ή ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.5.26"
∷ word (τ ∷ ὰ ∷ []) "Mark.5.26"
∷ word (π ∷ α ∷ ρ ∷ []) "Mark.5.26"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.5.26"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.5.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.26"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.5.26"
∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.5.26"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.26"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.26"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.26"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.5.26"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.5.26"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.5.27"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.5.27"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.27"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.5.27"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.5.27"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.27"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.27"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.5.27"
∷ word (ὄ ∷ π ∷ ι ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.27"
∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.27"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.27"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.27"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.5.28"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.5.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.28"
∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.5.28"
∷ word (ἅ ∷ ψ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Mark.5.28"
∷ word (κ ∷ ἂ ∷ ν ∷ []) "Mark.5.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.28"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.28"
∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.5.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.29"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.29"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Mark.5.29"
∷ word (ἡ ∷ []) "Mark.5.29"
∷ word (π ∷ η ∷ γ ∷ ὴ ∷ []) "Mark.5.29"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.29"
∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.29"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.5.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.29"
∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ []) "Mark.5.29"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.29"
∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.5.29"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.29"
∷ word (ἴ ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.29"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.29"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.29"
∷ word (μ ∷ ά ∷ σ ∷ τ ∷ ι ∷ γ ∷ ο ∷ ς ∷ []) "Mark.5.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.30"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.30"
∷ word (ὁ ∷ []) "Mark.5.30"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.5.30"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.30"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.30"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "Mark.5.30"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.5.30"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.30"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.5.30"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.30"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ α ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.30"
∷ word (ἐ ∷ ν ∷ []) "Mark.5.30"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.30"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.5.30"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.5.30"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.5.30"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.5.30"
∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.30"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.30"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.31"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.5.31"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.5.31"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.5.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.31"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.31"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.31"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.31"
∷ word (σ ∷ υ ∷ ν ∷ θ ∷ ∙λ ∷ ί ∷ β ∷ ο ∷ ν ∷ τ ∷ ά ∷ []) "Mark.5.31"
∷ word (σ ∷ ε ∷ []) "Mark.5.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.31"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.31"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.5.31"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.5.31"
∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.32"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ο ∷ []) "Mark.5.32"
∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.32"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.32"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.5.32"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.32"
∷ word (ἡ ∷ []) "Mark.5.33"
∷ word (δ ∷ ὲ ∷ []) "Mark.5.33"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.5.33"
∷ word (φ ∷ ο ∷ β ∷ η ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.5.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.33"
∷ word (τ ∷ ρ ∷ έ ∷ μ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.5.33"
∷ word (ε ∷ ἰ ∷ δ ∷ υ ∷ ῖ ∷ α ∷ []) "Mark.5.33"
∷ word (ὃ ∷ []) "Mark.5.33"
∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.5.33"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.33"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.33"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.33"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.33"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.5.33"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.33"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.33"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.33"
∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Mark.5.33"
∷ word (ὁ ∷ []) "Mark.5.34"
∷ word (δ ∷ ὲ ∷ []) "Mark.5.34"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.5.34"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.34"
∷ word (Θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ η ∷ ρ ∷ []) "Mark.5.34"
∷ word (ἡ ∷ []) "Mark.5.34"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Mark.5.34"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.34"
∷ word (σ ∷ έ ∷ σ ∷ ω ∷ κ ∷ έ ∷ ν ∷ []) "Mark.5.34"
∷ word (σ ∷ ε ∷ []) "Mark.5.34"
∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.5.34"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.34"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Mark.5.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.34"
∷ word (ἴ ∷ σ ∷ θ ∷ ι ∷ []) "Mark.5.34"
∷ word (ὑ ∷ γ ∷ ι ∷ ὴ ∷ ς ∷ []) "Mark.5.34"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.34"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.34"
∷ word (μ ∷ ά ∷ σ ∷ τ ∷ ι ∷ γ ∷ ό ∷ ς ∷ []) "Mark.5.34"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.34"
∷ word (Ἔ ∷ τ ∷ ι ∷ []) "Mark.5.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.35"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.35"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.35"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.35"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.35"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ο ∷ υ ∷ []) "Mark.5.35"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.35"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.35"
∷ word (Ἡ ∷ []) "Mark.5.35"
∷ word (θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ η ∷ ρ ∷ []) "Mark.5.35"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.35"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.5.35"
∷ word (τ ∷ ί ∷ []) "Mark.5.35"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.5.35"
∷ word (σ ∷ κ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.35"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.35"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.35"
∷ word (ὁ ∷ []) "Mark.5.36"
∷ word (δ ∷ ὲ ∷ []) "Mark.5.36"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.5.36"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.5.36"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.36"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.5.36"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.36"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.36"
∷ word (τ ∷ ῷ ∷ []) "Mark.5.36"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ῳ ∷ []) "Mark.5.36"
∷ word (Μ ∷ ὴ ∷ []) "Mark.5.36"
∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Mark.5.36"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.36"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ ε ∷ []) "Mark.5.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.37"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.5.37"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.5.37"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Mark.5.37"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.37"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.5.37"
∷ word (ε ∷ ἰ ∷ []) "Mark.5.37"
∷ word (μ ∷ ὴ ∷ []) "Mark.5.37"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.37"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.5.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.37"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.5.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.37"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.5.37"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.37"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.5.37"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.5.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.38"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.38"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.38"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.5.38"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.38"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ο ∷ υ ∷ []) "Mark.5.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38"
∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.5.38"
∷ word (θ ∷ ό ∷ ρ ∷ υ ∷ β ∷ ο ∷ ν ∷ []) "Mark.5.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.5.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38"
∷ word (ἀ ∷ ∙λ ∷ α ∷ ∙λ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.5.38"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.5.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.39"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.5.39"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.39"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.39"
∷ word (Τ ∷ ί ∷ []) "Mark.5.39"
∷ word (θ ∷ ο ∷ ρ ∷ υ ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.5.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.39"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.5.39"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.39"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.5.39"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.5.39"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.5.39"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.39"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ ι ∷ []) "Mark.5.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.5.40"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.40"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.5.40"
∷ word (δ ∷ ὲ ∷ []) "Mark.5.40"
∷ word (ἐ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.5.40"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.5.40"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.5.40"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.40"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.5.40"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.40"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.40"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.5.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.40"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.40"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.40"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.5.40"
∷ word (ἦ ∷ ν ∷ []) "Mark.5.40"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.40"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.5.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.41"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.5.41"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.41"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.41"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.41"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.41"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.41"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.41"
∷ word (Τ ∷ α ∷ ∙λ ∷ ι ∷ θ ∷ α ∷ []) "Mark.5.41"
∷ word (κ ∷ ο ∷ υ ∷ μ ∷ []) "Mark.5.41"
∷ word (ὅ ∷ []) "Mark.5.41"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.5.41"
∷ word (μ ∷ ε ∷ θ ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.41"
∷ word (Τ ∷ ὸ ∷ []) "Mark.5.41"
∷ word (κ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.5.41"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.5.41"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.5.41"
∷ word (ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.5.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.42"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.42"
∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.5.42"
∷ word (τ ∷ ὸ ∷ []) "Mark.5.42"
∷ word (κ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.5.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.42"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ π ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Mark.5.42"
∷ word (ἦ ∷ ν ∷ []) "Mark.5.42"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.5.42"
∷ word (ἐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.5.42"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.5.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.42"
∷ word (ἐ ∷ ξ ∷ έ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.42"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.42"
∷ word (ἐ ∷ κ ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.5.42"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.5.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.43"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.43"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.43"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.43"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.43"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.43"
∷ word (γ ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.5.43"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.5.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.43"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.5.43"
∷ word (δ ∷ ο ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.5.43"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.43"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.43"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.1"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.1"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.1"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.1"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ί ∷ δ ∷ α ∷ []) "Mark.6.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.1"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.1"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.1"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.6.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.6.2"
∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.6.2"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.2"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.2"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.2"
∷ word (τ ∷ ῇ ∷ []) "Mark.6.2"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῇ ∷ []) "Mark.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.2"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.6.2"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.2"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.2"
∷ word (Π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.2"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.6.2"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.6.2"
∷ word (ἡ ∷ []) "Mark.6.2"
∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Mark.6.2"
∷ word (ἡ ∷ []) "Mark.6.2"
∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.6.2"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2"
∷ word (α ∷ ἱ ∷ []) "Mark.6.2"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.6.2"
∷ word (τ ∷ ο ∷ ι ∷ α ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.2"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.2"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.6.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.2"
∷ word (γ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.2"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.6.3"
∷ word (ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.6.3"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.3"
∷ word (ὁ ∷ []) "Mark.6.3"
∷ word (τ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.3"
∷ word (ὁ ∷ []) "Mark.6.3"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.6.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.3"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.6.3"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (Ἰ ∷ ω ∷ σ ∷ ῆ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.3"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.6.3"
∷ word (α ∷ ἱ ∷ []) "Mark.6.3"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.3"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.6.3"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.3"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3"
∷ word (ἐ ∷ σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.3"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.4"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.4"
∷ word (ὁ ∷ []) "Mark.6.4"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.6.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.4"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.6.4"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.4"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Mark.6.4"
∷ word (ἄ ∷ τ ∷ ι ∷ μ ∷ ο ∷ ς ∷ []) "Mark.6.4"
∷ word (ε ∷ ἰ ∷ []) "Mark.6.4"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.4"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.4"
∷ word (τ ∷ ῇ ∷ []) "Mark.6.4"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ί ∷ δ ∷ ι ∷ []) "Mark.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.4"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.4"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.4"
∷ word (σ ∷ υ ∷ γ ∷ γ ∷ ε ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.4"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.4"
∷ word (τ ∷ ῇ ∷ []) "Mark.6.4"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.6.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.5"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.5"
∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.5"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.6.5"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.6.5"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.5"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.6.5"
∷ word (ε ∷ ἰ ∷ []) "Mark.6.5"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.5"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.5"
∷ word (ἀ ∷ ρ ∷ ρ ∷ ώ ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.5"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.6.5"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.6.5"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.6.5"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.6"
∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ ζ ∷ ε ∷ ν ∷ []) "Mark.6.6"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.6"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.6"
∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.6"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.6"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ῆ ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.6"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.6.6"
∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.6.6"
∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Mark.6.6"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.6.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.7"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.7"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.7"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.6.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.7"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.7"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.7"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.7"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.7"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.6.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.7"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.7"
∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.7"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.8"
∷ word (π ∷ α ∷ ρ ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.6.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.8"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.8"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.6.8"
∷ word (α ∷ ἴ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.8"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.6.8"
∷ word (ε ∷ ἰ ∷ []) "Mark.6.8"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.8"
∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ο ∷ ν ∷ []) "Mark.6.8"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.6.8"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.8"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.6.8"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.8"
∷ word (π ∷ ή ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.8"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.8"
∷ word (ζ ∷ ώ ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.8"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ό ∷ ν ∷ []) "Mark.6.8"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.6.9"
∷ word (ὑ ∷ π ∷ ο ∷ δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.9"
∷ word (σ ∷ α ∷ ν ∷ δ ∷ ά ∷ ∙λ ∷ ι ∷ α ∷ []) "Mark.6.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.9"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.9"
∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "Mark.6.9"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.9"
∷ word (χ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Mark.6.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.10"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.10"
∷ word (Ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.10"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.6.10"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Mark.6.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.10"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.10"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.6.10"
∷ word (μ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.10"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.6.10"
∷ word (ἂ ∷ ν ∷ []) "Mark.6.10"
∷ word (ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Mark.6.10"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.11"
∷ word (ὃ ∷ ς ∷ []) "Mark.6.11"
∷ word (ἂ ∷ ν ∷ []) "Mark.6.11"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.6.11"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.11"
∷ word (δ ∷ έ ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.11"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.6.11"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.6.11"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.11"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.6.11"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.6.11"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.11"
∷ word (ἐ ∷ κ ∷ τ ∷ ι ∷ ν ∷ ά ∷ ξ ∷ α ∷ τ ∷ ε ∷ []) "Mark.6.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.11"
∷ word (χ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.6.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.11"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.6.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.11"
∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Mark.6.11"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.6.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.11"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.12"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.12"
∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.12"
∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.13"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.6.13"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.6.13"
∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.6.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.13"
∷ word (ἤ ∷ ∙λ ∷ ε ∷ ι ∷ φ ∷ ο ∷ ν ∷ []) "Mark.6.13"
∷ word (ἐ ∷ ∙λ ∷ α ∷ ί ∷ ῳ ∷ []) "Mark.6.13"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.13"
∷ word (ἀ ∷ ρ ∷ ρ ∷ ώ ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.13"
∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ ο ∷ ν ∷ []) "Mark.6.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.14"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.14"
∷ word (ὁ ∷ []) "Mark.6.14"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.14"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.14"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.6.14"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.14"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.6.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.14"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Mark.6.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.14"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.14"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.14"
∷ word (ὁ ∷ []) "Mark.6.14"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.6.14"
∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.14"
∷ word (ἐ ∷ κ ∷ []) "Mark.6.14"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.6.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.14"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.14"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.6.14"
∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.14"
∷ word (α ∷ ἱ ∷ []) "Mark.6.14"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.6.14"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.14"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.6.15"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.15"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.15"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.15"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.6.15"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.6.15"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.15"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.15"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Mark.6.15"
∷ word (ὡ ∷ ς ∷ []) "Mark.6.15"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.6.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.15"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.15"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.6.16"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.16"
∷ word (ὁ ∷ []) "Mark.6.16"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.16"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.16"
∷ word (Ὃ ∷ ν ∷ []) "Mark.6.16"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.6.16"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ α ∷ []) "Mark.6.16"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.16"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.6.16"
∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Mark.6.16"
∷ word (Α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.17"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.17"
∷ word (ὁ ∷ []) "Mark.6.17"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.17"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.6.17"
∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.17"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.17"
∷ word (ἔ ∷ δ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.17"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.17"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῇ ∷ []) "Mark.6.17"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.17"
∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ ά ∷ δ ∷ α ∷ []) "Mark.6.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.17"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.6.17"
∷ word (Φ ∷ ι ∷ ∙λ ∷ ί ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.17"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "Mark.6.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.6.17"
∷ word (ἐ ∷ γ ∷ ά ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.17"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.18"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.18"
∷ word (ὁ ∷ []) "Mark.6.18"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.18"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.18"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ ῃ ∷ []) "Mark.6.18"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.18"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.6.18"
∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.6.18"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.6.18"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.18"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.18"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.6.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.18"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "Mark.6.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.6.18"
∷ word (ἡ ∷ []) "Mark.6.19"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.19"
∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ ὰ ∷ ς ∷ []) "Mark.6.19"
∷ word (ἐ ∷ ν ∷ ε ∷ ῖ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.6.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.19"
∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.6.19"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.19"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.19"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.19"
∷ word (ἠ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.19"
∷ word (ὁ ∷ []) "Mark.6.20"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.20"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.20"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ε ∷ ῖ ∷ τ ∷ ο ∷ []) "Mark.6.20"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.20"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.20"
∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Mark.6.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.20"
∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Mark.6.20"
∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ τ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.6.20"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.6.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.6.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.20"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.6.20"
∷ word (ἠ ∷ π ∷ ό ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.6.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20"
∷ word (ἡ ∷ δ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.6.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.20"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ε ∷ ν ∷ []) "Mark.6.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.21"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.21"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.6.21"
∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.6.21"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.6.21"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ σ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.21"
∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "Mark.6.21"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21"
∷ word (μ ∷ ε ∷ γ ∷ ι ∷ σ ∷ τ ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21"
∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ ρ ∷ χ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.21"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.22"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.22"
∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.22"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.22"
∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ ά ∷ δ ∷ ο ∷ ς ∷ []) "Mark.6.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22"
∷ word (ὀ ∷ ρ ∷ χ ∷ η ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22"
∷ word (ἀ ∷ ρ ∷ ε ∷ σ ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.22"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.22"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ ῃ ∷ []) "Mark.6.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.22"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.22"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.22"
∷ word (ὁ ∷ []) "Mark.6.22"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.22"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.22"
∷ word (κ ∷ ο ∷ ρ ∷ α ∷ σ ∷ ί ∷ ῳ ∷ []) "Mark.6.22"
∷ word (Α ∷ ἴ ∷ τ ∷ η ∷ σ ∷ ό ∷ ν ∷ []) "Mark.6.22"
∷ word (μ ∷ ε ∷ []) "Mark.6.22"
∷ word (ὃ ∷ []) "Mark.6.22"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.6.22"
∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ ς ∷ []) "Mark.6.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Mark.6.22"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.6.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.23"
∷ word (ὤ ∷ μ ∷ ο ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.6.23"
∷ word (Ὅ ∷ []) "Mark.6.23"
∷ word (τ ∷ ι ∷ []) "Mark.6.23"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.6.23"
∷ word (μ ∷ ε ∷ []) "Mark.6.23"
∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.6.23"
∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Mark.6.23"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.6.23"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.6.23"
∷ word (ἡ ∷ μ ∷ ί ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.23"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.23"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.23"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.6.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.24"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.6.24"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.24"
∷ word (τ ∷ ῇ ∷ []) "Mark.6.24"
∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.6.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.24"
∷ word (Τ ∷ ί ∷ []) "Mark.6.24"
∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Mark.6.24"
∷ word (ἡ ∷ []) "Mark.6.24"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.24"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.24"
∷ word (Τ ∷ ὴ ∷ ν ∷ []) "Mark.6.24"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.24"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.6.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.24"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.6.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.25"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.6.25"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.25"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.6.25"
∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ῆ ∷ ς ∷ []) "Mark.6.25"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.25"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.25"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Mark.6.25"
∷ word (ᾐ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.25"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.6.25"
∷ word (Θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Mark.6.25"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.25"
∷ word (ἐ ∷ ξ ∷ α ∷ υ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.25"
∷ word (δ ∷ ῷ ∷ ς ∷ []) "Mark.6.25"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.6.25"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.25"
∷ word (π ∷ ί ∷ ν ∷ α ∷ κ ∷ ι ∷ []) "Mark.6.25"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.25"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.25"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.6.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.25"
∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.26"
∷ word (π ∷ ε ∷ ρ ∷ ί ∷ ∙λ ∷ υ ∷ π ∷ ο ∷ ς ∷ []) "Mark.6.26"
∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.26"
∷ word (ὁ ∷ []) "Mark.6.26"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.26"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.26"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.26"
∷ word (ὅ ∷ ρ ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.26"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.26"
∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.26"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.26"
∷ word (ἠ ∷ θ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.26"
∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.6.26"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.6.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.27"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.27"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.6.27"
∷ word (ὁ ∷ []) "Mark.6.27"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.27"
∷ word (σ ∷ π ∷ ε ∷ κ ∷ ο ∷ υ ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Mark.6.27"
∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.6.27"
∷ word (ἐ ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ι ∷ []) "Mark.6.27"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.27"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.27"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.6.27"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.27"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.27"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.27"
∷ word (τ ∷ ῇ ∷ []) "Mark.6.27"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῇ ∷ []) "Mark.6.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.28"
∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.6.28"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.28"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.28"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.28"
∷ word (π ∷ ί ∷ ν ∷ α ∷ κ ∷ ι ∷ []) "Mark.6.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.28"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.6.28"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.6.28"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.28"
∷ word (κ ∷ ο ∷ ρ ∷ α ∷ σ ∷ ί ∷ ῳ ∷ []) "Mark.6.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.28"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.28"
∷ word (κ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.28"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.6.28"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.6.28"
∷ word (τ ∷ ῇ ∷ []) "Mark.6.28"
∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.6.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.29"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.29"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.29"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.6.29"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.29"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.29"
∷ word (ἦ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.29"
∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Mark.6.29"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.29"
∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Mark.6.29"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.6.29"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.29"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ῳ ∷ []) "Mark.6.29"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.30"
∷ word (σ ∷ υ ∷ ν ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.30"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.30"
∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.6.30"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.30"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.30"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.6.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.30"
∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.6.30"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.30"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.30"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.6.30"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.30"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.6.30"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.6.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.31"
∷ word (Δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Mark.6.31"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.6.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Mark.6.31"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.6.31"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.31"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.31"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.31"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.6.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Mark.6.31"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.31"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.31"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.31"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.6.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.31"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.31"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.6.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.6.31"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.31"
∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.6.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.32"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.32"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.32"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.32"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.6.32"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.32"
∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.32"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.6.32"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.6.32"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.6.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.33"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33"
∷ word (ἐ ∷ π ∷ έ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.33"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.6.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33"
∷ word (π ∷ ε ∷ ζ ∷ ῇ ∷ []) "Mark.6.33"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.6.33"
∷ word (π ∷ α ∷ σ ∷ ῶ ∷ ν ∷ []) "Mark.6.33"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.33"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ν ∷ []) "Mark.6.33"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.33"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.6.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33"
∷ word (π ∷ ρ ∷ ο ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.6.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.34"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.6.34"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.6.34"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ν ∷ []) "Mark.6.34"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.6.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.34"
∷ word (ἐ ∷ σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.6.34"
∷ word (ἐ ∷ π ∷ []) "Mark.6.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.34"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.34"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.34"
∷ word (ὡ ∷ ς ∷ []) "Mark.6.34"
∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Mark.6.34"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.34"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.34"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Mark.6.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.34"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.34"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.34"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.6.34"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.35"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.6.35"
∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.6.35"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.6.35"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.35"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.35"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.35"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.35"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.6.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.35"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.35"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.35"
∷ word (Ἔ ∷ ρ ∷ η ∷ μ ∷ ό ∷ ς ∷ []) "Mark.6.35"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.35"
∷ word (ὁ ∷ []) "Mark.6.35"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.6.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.35"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.6.35"
∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.6.35"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ []) "Mark.6.35"
∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ υ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.6.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.6.36"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.36"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.36"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.36"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.36"
∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Mark.6.36"
∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.36"
∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.6.36"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.36"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.36"
∷ word (τ ∷ ί ∷ []) "Mark.6.36"
∷ word (φ ∷ ά ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.36"
∷ word (ὁ ∷ []) "Mark.6.37"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.37"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.6.37"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.37"
∷ word (Δ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.6.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.37"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.6.37"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.37"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.37"
∷ word (Ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.37"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.6.37"
∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.6.37"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.6.37"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.37"
∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.6.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.37"
∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.37"
∷ word (ὁ ∷ []) "Mark.6.38"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.38"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.6.38"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.38"
∷ word (Π ∷ ό ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.38"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.38"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.38"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.38"
∷ word (ἴ ∷ δ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.38"
∷ word (γ ∷ ν ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.38"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.38"
∷ word (Π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Mark.6.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.38"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.38"
∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ α ∷ ς ∷ []) "Mark.6.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.39"
∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.6.39"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.39"
∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ∙λ ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.39"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.39"
∷ word (σ ∷ υ ∷ μ ∷ π ∷ ό ∷ σ ∷ ι ∷ α ∷ []) "Mark.6.39"
∷ word (σ ∷ υ ∷ μ ∷ π ∷ ό ∷ σ ∷ ι ∷ α ∷ []) "Mark.6.39"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.39"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.39"
∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ῷ ∷ []) "Mark.6.39"
∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.6.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.40"
∷ word (ἀ ∷ ν ∷ έ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.40"
∷ word (π ∷ ρ ∷ α ∷ σ ∷ ι ∷ α ∷ ὶ ∷ []) "Mark.6.40"
∷ word (π ∷ ρ ∷ α ∷ σ ∷ ι ∷ α ∷ ὶ ∷ []) "Mark.6.40"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.6.40"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.40"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.6.40"
∷ word (π ∷ ε ∷ ν ∷ τ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41"
∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.6.41"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41"
∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Mark.6.41"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.41"
∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ α ∷ ς ∷ []) "Mark.6.41"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.6.41"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.41"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.41"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.6.41"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ό ∷ γ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.41"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.6.41"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.41"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.6.41"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.41"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.41"
∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.41"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.41"
∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ α ∷ ς ∷ []) "Mark.6.41"
∷ word (ἐ ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.41"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.42"
∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.42"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.42"
∷ word (ἐ ∷ χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.43"
∷ word (ἦ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.43"
∷ word (κ ∷ ∙λ ∷ ά ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.6.43"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.6.43"
∷ word (κ ∷ ο ∷ φ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Mark.6.43"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.6.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.43"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.6.43"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.43"
∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ ω ∷ ν ∷ []) "Mark.6.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.44"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.44"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.44"
∷ word (φ ∷ α ∷ γ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.44"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.44"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.44"
∷ word (π ∷ ε ∷ ν ∷ τ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ί ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.6.44"
∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ ε ∷ ς ∷ []) "Mark.6.44"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.45"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.45"
∷ word (ἠ ∷ ν ∷ ά ∷ γ ∷ κ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.45"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.45"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.6.45"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.45"
∷ word (ἐ ∷ μ ∷ β ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.45"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.45"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.45"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.6.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.45"
∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.45"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.45"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.45"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.45"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.45"
∷ word (Β ∷ η ∷ θ ∷ σ ∷ α ∷ ϊ ∷ δ ∷ ά ∷ ν ∷ []) "Mark.6.45"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.6.45"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.45"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ ε ∷ ι ∷ []) "Mark.6.45"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.45"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.6.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.46"
∷ word (ἀ ∷ π ∷ ο ∷ τ ∷ α ∷ ξ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.46"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.46"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.46"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.46"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.46"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.6.46"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ ξ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.6.46"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.47"
∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.47"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.47"
∷ word (ἦ ∷ ν ∷ []) "Mark.6.47"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.47"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.6.47"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.47"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Mark.6.47"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.47"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.47"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.47"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.47"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.47"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.47"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.6.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.48"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.6.48"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.48"
∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.48"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.48"
∷ word (τ ∷ ῷ ∷ []) "Mark.6.48"
∷ word (ἐ ∷ ∙λ ∷ α ∷ ύ ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.48"
∷ word (ἦ ∷ ν ∷ []) "Mark.6.48"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.48"
∷ word (ὁ ∷ []) "Mark.6.48"
∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.6.48"
∷ word (ἐ ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ ο ∷ ς ∷ []) "Mark.6.48"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.48"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.6.48"
∷ word (τ ∷ ε ∷ τ ∷ ά ∷ ρ ∷ τ ∷ η ∷ ν ∷ []) "Mark.6.48"
∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ ν ∷ []) "Mark.6.48"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.48"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.48"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.48"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.48"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.48"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.48"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.48"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.48"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.48"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.48"
∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.6.48"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.48"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.6.48"
∷ word (ο ∷ ἱ ∷ []) "Mark.6.49"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.49"
∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.49"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.49"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.49"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.49"
∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.49"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.49"
∷ word (ἔ ∷ δ ∷ ο ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.49"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.49"
∷ word (φ ∷ ά ∷ ν ∷ τ ∷ α ∷ σ ∷ μ ∷ ά ∷ []) "Mark.6.49"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.49"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.49"
∷ word (ἀ ∷ ν ∷ έ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.49"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.50"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.50"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.50"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.6.50"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.50"
∷ word (ἐ ∷ τ ∷ α ∷ ρ ∷ ά ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.50"
∷ word (ὁ ∷ []) "Mark.6.50"
∷ word (δ ∷ ὲ ∷ []) "Mark.6.50"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.50"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.50"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.6.50"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.50"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.50"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.6.50"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.50"
∷ word (Θ ∷ α ∷ ρ ∷ σ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.6.50"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Mark.6.50"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Mark.6.50"
∷ word (μ ∷ ὴ ∷ []) "Mark.6.50"
∷ word (φ ∷ ο ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.6.50"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.51"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Mark.6.51"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.51"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.51"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.51"
∷ word (τ ∷ ὸ ∷ []) "Mark.6.51"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.6.51"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.51"
∷ word (ἐ ∷ κ ∷ ό ∷ π ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.51"
∷ word (ὁ ∷ []) "Mark.6.51"
∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.6.51"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.51"
∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.51"
∷ word (ἐ ∷ κ ∷ []) "Mark.6.51"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.6.51"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.51"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.51"
∷ word (ἐ ∷ ξ ∷ ί ∷ σ ∷ τ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.51"
∷ word (ο ∷ ὐ ∷ []) "Mark.6.52"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.52"
∷ word (σ ∷ υ ∷ ν ∷ ῆ ∷ κ ∷ α ∷ ν ∷ []) "Mark.6.52"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.52"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.52"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.52"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.6.52"
∷ word (ἦ ∷ ν ∷ []) "Mark.6.52"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.52"
∷ word (ἡ ∷ []) "Mark.6.52"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ []) "Mark.6.52"
∷ word (π ∷ ε ∷ π ∷ ω ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.6.52"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.53"
∷ word (δ ∷ ι ∷ α ∷ π ∷ ε ∷ ρ ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.53"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.53"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.53"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.6.53"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.53"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.53"
∷ word (Γ ∷ ε ∷ ν ∷ ν ∷ η ∷ σ ∷ α ∷ ρ ∷ ὲ ∷ τ ∷ []) "Mark.6.53"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.53"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ω ∷ ρ ∷ μ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.53"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.54"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.54"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.54"
∷ word (ἐ ∷ κ ∷ []) "Mark.6.54"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.54"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ο ∷ υ ∷ []) "Mark.6.54"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.54"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.54"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.54"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ έ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.55"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.6.55"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.55"
∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.55"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.55"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.55"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.55"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.55"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.55"
∷ word (κ ∷ ρ ∷ α ∷ β ∷ ά ∷ τ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.55"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.55"
∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.6.55"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.55"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.55"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.55"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ο ∷ ν ∷ []) "Mark.6.55"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.55"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.6.55"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.56"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.56"
∷ word (ἂ ∷ ν ∷ []) "Mark.6.56"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.6.56"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.56"
∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.6.56"
∷ word (ἢ ∷ []) "Mark.6.56"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.56"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.6.56"
∷ word (ἢ ∷ []) "Mark.6.56"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.56"
∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.56"
∷ word (ἐ ∷ ν ∷ []) "Mark.6.56"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.6.56"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.6.56"
∷ word (ἐ ∷ τ ∷ ί ∷ θ ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.56"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.56"
∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.56"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.56"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.6.56"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.56"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.56"
∷ word (κ ∷ ἂ ∷ ν ∷ []) "Mark.6.56"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56"
∷ word (κ ∷ ρ ∷ α ∷ σ ∷ π ∷ έ ∷ δ ∷ ο ∷ υ ∷ []) "Mark.6.56"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.6.56"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56"
∷ word (ἅ ∷ ψ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.56"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.56"
∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Mark.6.56"
∷ word (ἂ ∷ ν ∷ []) "Mark.6.56"
∷ word (ἥ ∷ ψ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.56"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56"
∷ word (ἐ ∷ σ ∷ ῴ ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.56"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.1"
∷ word (σ ∷ υ ∷ ν ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.1"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.7.1"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.1"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.1"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.1"
∷ word (κ ∷ α ∷ ί ∷ []) "Mark.7.1"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.7.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.1"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.7.1"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.1"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.1"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.7.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.2"
∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.2"
∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ ς ∷ []) "Mark.7.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.2"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.2"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.7.2"
∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.7.2"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Mark.7.2"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.2"
∷ word (ἀ ∷ ν ∷ ί ∷ π ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.7.2"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.2"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.7.2"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.3"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.7.3"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.3"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.3"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.3"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.3"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.3"
∷ word (μ ∷ ὴ ∷ []) "Mark.7.3"
∷ word (π ∷ υ ∷ γ ∷ μ ∷ ῇ ∷ []) "Mark.7.3"
∷ word (ν ∷ ί ∷ ψ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.3"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.7.3"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.7.3"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.3"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.3"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.3"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.3"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.7.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4"
∷ word (ἀ ∷ π ∷ []) "Mark.7.4"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Mark.7.4"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.4"
∷ word (μ ∷ ὴ ∷ []) "Mark.7.4"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.4"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.4"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.7.4"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.7.4"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.4"
∷ word (ἃ ∷ []) "Mark.7.4"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Mark.7.4"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.4"
∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.4"
∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4"
∷ word (ξ ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4"
∷ word (κ ∷ ∙λ ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.7.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.5"
∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.5"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.5"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.5"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.5"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.7.5"
∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.7.5"
∷ word (τ ∷ ί ∷ []) "Mark.7.5"
∷ word (ο ∷ ὐ ∷ []) "Mark.7.5"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.5"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ί ∷ []) "Mark.7.5"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.5"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.7.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.5"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.5"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.7.5"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.7.5"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.7.5"
∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.7.5"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.5"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.5"
∷ word (ὁ ∷ []) "Mark.7.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.6"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.7.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.6"
∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.7.6"
∷ word (ἐ ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.7.6"
∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ α ∷ ς ∷ []) "Mark.7.6"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.7.6"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.7.6"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.6"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.6"
∷ word (ὡ ∷ ς ∷ []) "Mark.7.6"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.6"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.7.6"
∷ word (ὁ ∷ []) "Mark.7.6"
∷ word (∙λ ∷ α ∷ ὸ ∷ ς ∷ []) "Mark.7.6"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.6"
∷ word (χ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ σ ∷ ί ∷ ν ∷ []) "Mark.7.6"
∷ word (μ ∷ ε ∷ []) "Mark.7.6"
∷ word (τ ∷ ι ∷ μ ∷ ᾷ ∷ []) "Mark.7.6"
∷ word (ἡ ∷ []) "Mark.7.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.6"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ []) "Mark.7.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.6"
∷ word (π ∷ ό ∷ ρ ∷ ρ ∷ ω ∷ []) "Mark.7.6"
∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.7.6"
∷ word (ἀ ∷ π ∷ []) "Mark.7.6"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.7.6"
∷ word (μ ∷ ά ∷ τ ∷ η ∷ ν ∷ []) "Mark.7.7"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.7"
∷ word (σ ∷ έ ∷ β ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Mark.7.7"
∷ word (μ ∷ ε ∷ []) "Mark.7.7"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.7"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.7.7"
∷ word (ἐ ∷ ν ∷ τ ∷ ά ∷ ∙λ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.7.7"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.7.7"
∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.8"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.7.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.8"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.7.8"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.8"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.8"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.7.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.9"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.9"
∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.7.9"
∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.9"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.7.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.9"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.7.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.9"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.9"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.9"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.7.9"
∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Mark.7.9"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.7.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.7.10"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.7.10"
∷ word (Τ ∷ ί ∷ μ ∷ α ∷ []) "Mark.7.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.10"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.10"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.10"
∷ word (κ ∷ α ∷ ί ∷ []) "Mark.7.10"
∷ word (Ὁ ∷ []) "Mark.7.10"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ῶ ∷ ν ∷ []) "Mark.7.10"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10"
∷ word (ἢ ∷ []) "Mark.7.10"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Mark.7.10"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.7.10"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.7.11"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.7.11"
∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.11"
∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.7.11"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.7.11"
∷ word (τ ∷ ῷ ∷ []) "Mark.7.11"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.7.11"
∷ word (ἢ ∷ []) "Mark.7.11"
∷ word (τ ∷ ῇ ∷ []) "Mark.7.11"
∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ί ∷ []) "Mark.7.11"
∷ word (Κ ∷ ο ∷ ρ ∷ β ∷ ᾶ ∷ ν ∷ []) "Mark.7.11"
∷ word (ὅ ∷ []) "Mark.7.11"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.11"
∷ word (Δ ∷ ῶ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.7.11"
∷ word (ὃ ∷ []) "Mark.7.11"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.11"
∷ word (ἐ ∷ ξ ∷ []) "Mark.7.11"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.7.11"
∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ η ∷ θ ∷ ῇ ∷ ς ∷ []) "Mark.7.11"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.7.12"
∷ word (ἀ ∷ φ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.7.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.12"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.7.12"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.7.12"
∷ word (τ ∷ ῷ ∷ []) "Mark.7.12"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.7.12"
∷ word (ἢ ∷ []) "Mark.7.12"
∷ word (τ ∷ ῇ ∷ []) "Mark.7.12"
∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ί ∷ []) "Mark.7.12"
∷ word (ἀ ∷ κ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.13"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.13"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.7.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.13"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.7.13"
∷ word (τ ∷ ῇ ∷ []) "Mark.7.13"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ό ∷ σ ∷ ε ∷ ι ∷ []) "Mark.7.13"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.7.13"
∷ word (ᾗ ∷ []) "Mark.7.13"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ δ ∷ ώ ∷ κ ∷ α ∷ τ ∷ ε ∷ []) "Mark.7.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.13"
∷ word (π ∷ α ∷ ρ ∷ ό ∷ μ ∷ ο ∷ ι ∷ α ∷ []) "Mark.7.13"
∷ word (τ ∷ ο ∷ ι ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.7.13"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.7.13"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.14"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.7.14"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.7.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.14"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.7.14"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.14"
∷ word (Ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ έ ∷ []) "Mark.7.14"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.7.14"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.14"
∷ word (σ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Mark.7.14"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.7.15"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.15"
∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.15"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.7.15"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.15"
∷ word (ὃ ∷ []) "Mark.7.15"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.15"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.7.15"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.7.15"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.7.15"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.15"
∷ word (ἐ ∷ κ ∷ []) "Mark.7.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.15"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.7.15"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ά ∷ []) "Mark.7.15"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.15"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.15"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.15"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.15"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.17"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.7.17"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.17"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.17"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.7.17"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.17"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.7.17"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.7.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.17"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.17"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.7.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.17"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.7.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.7.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.18"
∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.7.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.18"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.7.18"
∷ word (ἀ ∷ σ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ ο ∷ ί ∷ []) "Mark.7.18"
∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.7.18"
∷ word (ο ∷ ὐ ∷ []) "Mark.7.18"
∷ word (ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.18"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.18"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "Mark.7.18"
∷ word (τ ∷ ὸ ∷ []) "Mark.7.18"
∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.18"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.18"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.18"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.18"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.18"
∷ word (ο ∷ ὐ ∷ []) "Mark.7.18"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.18"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.7.18"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.19"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.19"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.19"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.19"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.7.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.19"
∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.19"
∷ word (ἀ ∷ φ ∷ ε ∷ δ ∷ ρ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.7.19"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.19"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.7.19"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.19"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.19"
∷ word (β ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.7.19"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.20"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.20"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.20"
∷ word (Τ ∷ ὸ ∷ []) "Mark.7.20"
∷ word (ἐ ∷ κ ∷ []) "Mark.7.20"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.20"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.7.20"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.20"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ []) "Mark.7.20"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.7.20"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.20"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.20"
∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.21"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.7.21"
∷ word (ἐ ∷ κ ∷ []) "Mark.7.21"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.21"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.7.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.21"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.7.21"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.21"
∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.7.21"
∷ word (ο ∷ ἱ ∷ []) "Mark.7.21"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ὶ ∷ []) "Mark.7.21"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.21"
∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "Mark.7.21"
∷ word (κ ∷ ∙λ ∷ ο ∷ π ∷ α ∷ ί ∷ []) "Mark.7.21"
∷ word (φ ∷ ό ∷ ν ∷ ο ∷ ι ∷ []) "Mark.7.21"
∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "Mark.7.22"
∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ ξ ∷ ί ∷ α ∷ ι ∷ []) "Mark.7.22"
∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ί ∷ α ∷ ι ∷ []) "Mark.7.22"
∷ word (δ ∷ ό ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.7.22"
∷ word (ἀ ∷ σ ∷ έ ∷ ∙λ ∷ γ ∷ ε ∷ ι ∷ α ∷ []) "Mark.7.22"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ς ∷ []) "Mark.7.22"
∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.7.22"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ []) "Mark.7.22"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ η ∷ φ ∷ α ∷ ν ∷ ί ∷ α ∷ []) "Mark.7.22"
∷ word (ἀ ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "Mark.7.22"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.23"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.7.23"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.23"
∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ὰ ∷ []) "Mark.7.23"
∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.23"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.23"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.7.23"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.23"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.23"
∷ word (Ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.24"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.24"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.7.24"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.24"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.24"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.24"
∷ word (ὅ ∷ ρ ∷ ι ∷ α ∷ []) "Mark.7.24"
∷ word (Τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.7.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.24"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.7.24"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.24"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.24"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Mark.7.24"
∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.7.24"
∷ word (γ ∷ ν ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.7.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.24"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.24"
∷ word (ἠ ∷ δ ∷ υ ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Mark.7.24"
∷ word (∙λ ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.24"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.7.25"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.7.25"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.7.25"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.7.25"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.7.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.25"
∷ word (ἧ ∷ ς ∷ []) "Mark.7.25"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.7.25"
∷ word (τ ∷ ὸ ∷ []) "Mark.7.25"
∷ word (θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.25"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.7.25"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.7.25"
∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.25"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.7.25"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.7.25"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.7.25"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.25"
∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Mark.7.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.25"
∷ word (ἡ ∷ []) "Mark.7.26"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.26"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.7.26"
∷ word (ἦ ∷ ν ∷ []) "Mark.7.26"
∷ word (Ἑ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ί ∷ ς ∷ []) "Mark.7.26"
∷ word (Σ ∷ υ ∷ ρ ∷ ο ∷ φ ∷ ο ∷ ι ∷ ν ∷ ί ∷ κ ∷ ι ∷ σ ∷ σ ∷ α ∷ []) "Mark.7.26"
∷ word (τ ∷ ῷ ∷ []) "Mark.7.26"
∷ word (γ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "Mark.7.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.26"
∷ word (ἠ ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.7.26"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.26"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.26"
∷ word (τ ∷ ὸ ∷ []) "Mark.7.26"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.26"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.7.26"
∷ word (ἐ ∷ κ ∷ []) "Mark.7.26"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.26"
∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.7.26"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.7.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.27"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.27"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.7.27"
∷ word (Ἄ ∷ φ ∷ ε ∷ ς ∷ []) "Mark.7.27"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.27"
∷ word (χ ∷ ο ∷ ρ ∷ τ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.7.27"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.27"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.7.27"
∷ word (ο ∷ ὐ ∷ []) "Mark.7.27"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.7.27"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.7.27"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.27"
∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.27"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.27"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.27"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.27"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ω ∷ ν ∷ []) "Mark.7.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.27"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.27"
∷ word (κ ∷ υ ∷ ν ∷ α ∷ ρ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Mark.7.27"
∷ word (β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.27"
∷ word (ἡ ∷ []) "Mark.7.28"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.28"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.7.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.28"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.7.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.28"
∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Mark.7.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.28"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.28"
∷ word (κ ∷ υ ∷ ν ∷ ά ∷ ρ ∷ ι ∷ α ∷ []) "Mark.7.28"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.7.28"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.28"
∷ word (τ ∷ ρ ∷ α ∷ π ∷ έ ∷ ζ ∷ η ∷ ς ∷ []) "Mark.7.28"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.28"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.28"
∷ word (ψ ∷ ι ∷ χ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.28"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.29"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.7.29"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.7.29"
∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.7.29"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.29"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.29"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.7.29"
∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.7.29"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ ή ∷ ∙λ ∷ υ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.29"
∷ word (ἐ ∷ κ ∷ []) "Mark.7.29"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.29"
∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.7.29"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.7.29"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.30"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.7.30"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.30"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.30"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.7.30"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.7.30"
∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.7.30"
∷ word (τ ∷ ὸ ∷ []) "Mark.7.30"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.7.30"
∷ word (β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.30"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.7.30"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.30"
∷ word (κ ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.7.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.30"
∷ word (τ ∷ ὸ ∷ []) "Mark.7.30"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.30"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ η ∷ ∙λ ∷ υ ∷ θ ∷ ό ∷ ς ∷ []) "Mark.7.30"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.31"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.7.31"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.7.31"
∷ word (ἐ ∷ κ ∷ []) "Mark.7.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.31"
∷ word (ὁ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.31"
∷ word (Τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.7.31"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.31"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.7.31"
∷ word (Σ ∷ ι ∷ δ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.7.31"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.31"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.31"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.7.31"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.31"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.7.31"
∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Mark.7.31"
∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.7.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.31"
∷ word (ὁ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.31"
∷ word (Δ ∷ ε ∷ κ ∷ α ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.7.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.32"
∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.32"
∷ word (κ ∷ ω ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.7.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.32"
∷ word (μ ∷ ο ∷ γ ∷ ι ∷ ∙λ ∷ ά ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.7.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.32"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.32"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.32"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.32"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ῇ ∷ []) "Mark.7.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.32"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.32"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.7.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.33"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ α ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.7.33"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.33"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.33"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.7.33"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.7.33"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.33"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.7.33"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.33"
∷ word (δ ∷ α ∷ κ ∷ τ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.7.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.33"
∷ word (τ ∷ ὰ ∷ []) "Mark.7.33"
∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.7.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.33"
∷ word (π ∷ τ ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.7.33"
∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.7.33"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.33"
∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.7.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.34"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.7.34"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.34"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.34"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.7.34"
∷ word (ἐ ∷ σ ∷ τ ∷ έ ∷ ν ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.7.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.34"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.7.34"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.34"
∷ word (Ε ∷ φ ∷ φ ∷ α ∷ θ ∷ α ∷ []) "Mark.7.34"
∷ word (ὅ ∷ []) "Mark.7.34"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.34"
∷ word (Δ ∷ ι ∷ α ∷ ν ∷ ο ∷ ί ∷ χ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.7.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.35"
∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ γ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.7.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.35"
∷ word (α ∷ ἱ ∷ []) "Mark.7.35"
∷ word (ἀ ∷ κ ∷ ο ∷ α ∷ ί ∷ []) "Mark.7.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.35"
∷ word (ἐ ∷ ∙λ ∷ ύ ∷ θ ∷ η ∷ []) "Mark.7.35"
∷ word (ὁ ∷ []) "Mark.7.35"
∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Mark.7.35"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.35"
∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.7.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.35"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.7.35"
∷ word (ὀ ∷ ρ ∷ θ ∷ ῶ ∷ ς ∷ []) "Mark.7.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.36"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.7.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.36"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.36"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.7.36"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.36"
∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.7.36"
∷ word (δ ∷ ὲ ∷ []) "Mark.7.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.36"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.7.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Mark.7.36"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.7.36"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.7.36"
∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.7.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.37"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.7.37"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.7.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.37"
∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.7.37"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.37"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.7.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.37"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.37"
∷ word (κ ∷ ω ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.37"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Mark.7.37"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.7.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.37"
∷ word (ἀ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.7.37"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.37"
∷ word (Ἐ ∷ ν ∷ []) "Mark.8.1"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.8.1"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.8.1"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.8.1"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.8.1"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Mark.8.1"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.8.1"
∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.8.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.1"
∷ word (μ ∷ ὴ ∷ []) "Mark.8.1"
∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.1"
∷ word (τ ∷ ί ∷ []) "Mark.8.1"
∷ word (φ ∷ ά ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.1"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.1"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.1"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.8.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.1"
∷ word (Σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.8.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.8.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.2"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.8.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.2"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.8.2"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.8.2"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.2"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.8.2"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.8.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.2"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.2"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.2"
∷ word (τ ∷ ί ∷ []) "Mark.8.2"
∷ word (φ ∷ ά ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.3"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.8.3"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ω ∷ []) "Mark.8.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.3"
∷ word (ν ∷ ή ∷ σ ∷ τ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.8.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.3"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.8.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.3"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ υ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.3"
∷ word (ἐ ∷ ν ∷ []) "Mark.8.3"
∷ word (τ ∷ ῇ ∷ []) "Mark.8.3"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.8.3"
∷ word (κ ∷ α ∷ ί ∷ []) "Mark.8.3"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.8.3"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.3"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.8.3"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.3"
∷ word (ἥ ∷ κ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.4"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.8.4"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.4"
∷ word (ο ∷ ἱ ∷ []) "Mark.8.4"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.8.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.4"
∷ word (Π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.4"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.4"
∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ί ∷ []) "Mark.8.4"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.8.4"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.8.4"
∷ word (χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Mark.8.4"
∷ word (ἄ ∷ ρ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.4"
∷ word (ἐ ∷ π ∷ []) "Mark.8.4"
∷ word (ἐ ∷ ρ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Mark.8.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.5"
∷ word (ἠ ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.8.5"
∷ word (Π ∷ ό ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.5"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.5"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.5"
∷ word (ο ∷ ἱ ∷ []) "Mark.8.5"
∷ word (δ ∷ ὲ ∷ []) "Mark.8.5"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.8.5"
∷ word (Ἑ ∷ π ∷ τ ∷ ά ∷ []) "Mark.8.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6"
∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.8.6"
∷ word (τ ∷ ῷ ∷ []) "Mark.8.6"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.8.6"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ ε ∷ σ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.8.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.6"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.8.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6"
∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.8.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.6"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.8.6"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.6"
∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.8.6"
∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.8.6"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.6"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.8.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.8.6"
∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Mark.8.6"
∷ word (τ ∷ ῷ ∷ []) "Mark.8.6"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.8.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.7"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.8.7"
∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ δ ∷ ι ∷ α ∷ []) "Mark.8.7"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ []) "Mark.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.7"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.8.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.8.7"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.7"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.8.7"
∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.8"
∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.8.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.8"
∷ word (ἐ ∷ χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.8.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.8"
∷ word (ἦ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.8.8"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.8.8"
∷ word (κ ∷ ∙λ ∷ α ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.8"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.8.8"
∷ word (σ ∷ π ∷ υ ∷ ρ ∷ ί ∷ δ ∷ α ∷ ς ∷ []) "Mark.8.8"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.8.9"
∷ word (δ ∷ ὲ ∷ []) "Mark.8.9"
∷ word (ὡ ∷ ς ∷ []) "Mark.8.9"
∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ί ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.8.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.9"
∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.8.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.10"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.8.10"
∷ word (ἐ ∷ μ ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.8.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.10"
∷ word (τ ∷ ὸ ∷ []) "Mark.8.10"
∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.10"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.8.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.10"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.10"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.10"
∷ word (τ ∷ ὰ ∷ []) "Mark.8.10"
∷ word (μ ∷ έ ∷ ρ ∷ η ∷ []) "Mark.8.10"
∷ word (Δ ∷ α ∷ ∙λ ∷ μ ∷ α ∷ ν ∷ ο ∷ υ ∷ θ ∷ ά ∷ []) "Mark.8.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.11"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.8.11"
∷ word (ο ∷ ἱ ∷ []) "Mark.8.11"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.8.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.11"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.8.11"
∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.11"
∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.11"
∷ word (π ∷ α ∷ ρ ∷ []) "Mark.8.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.11"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.11"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.8.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.11"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.8.11"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.11"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.8.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.12"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ε ∷ ν ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.8.12"
∷ word (τ ∷ ῷ ∷ []) "Mark.8.12"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.8.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.12"
∷ word (Τ ∷ ί ∷ []) "Mark.8.12"
∷ word (ἡ ∷ []) "Mark.8.12"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ []) "Mark.8.12"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.8.12"
∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ []) "Mark.8.12"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.12"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.8.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.8.12"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.8.12"
∷ word (ε ∷ ἰ ∷ []) "Mark.8.12"
∷ word (δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.12"
∷ word (τ ∷ ῇ ∷ []) "Mark.8.12"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ᾷ ∷ []) "Mark.8.12"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Mark.8.12"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.13"
∷ word (ἀ ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.13"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.8.13"
∷ word (ἐ ∷ μ ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.8.13"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.13"
∷ word (τ ∷ ὸ ∷ []) "Mark.8.13"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.8.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.14"
∷ word (ἐ ∷ π ∷ ε ∷ ∙λ ∷ ά ∷ θ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.8.14"
∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.14"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.14"
∷ word (ε ∷ ἰ ∷ []) "Mark.8.14"
∷ word (μ ∷ ὴ ∷ []) "Mark.8.14"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.8.14"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.8.14"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.14"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.8.14"
∷ word (μ ∷ ε ∷ θ ∷ []) "Mark.8.14"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.14"
∷ word (ἐ ∷ ν ∷ []) "Mark.8.14"
∷ word (τ ∷ ῷ ∷ []) "Mark.8.14"
∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.8.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.15"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.8.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.15"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.8.15"
∷ word (Ὁ ∷ ρ ∷ ᾶ ∷ τ ∷ ε ∷ []) "Mark.8.15"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.15"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.8.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.15"
∷ word (ζ ∷ ύ ∷ μ ∷ η ∷ ς ∷ []) "Mark.8.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.15"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.8.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.15"
∷ word (ζ ∷ ύ ∷ μ ∷ η ∷ ς ∷ []) "Mark.8.15"
∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ ο ∷ υ ∷ []) "Mark.8.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.16"
∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.8.16"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.8.16"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.16"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.16"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.16"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.16"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.17"
∷ word (γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.17"
∷ word (Τ ∷ ί ∷ []) "Mark.8.17"
∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.8.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.17"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.17"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.17"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.17"
∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.8.17"
∷ word (ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.8.17"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.8.17"
∷ word (σ ∷ υ ∷ ν ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.17"
∷ word (π ∷ ε ∷ π ∷ ω ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Mark.8.17"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.17"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.17"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.8.17"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.8.17"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.18"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.18"
∷ word (ο ∷ ὐ ∷ []) "Mark.8.18"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.18"
∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.8.18"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.18"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.18"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.18"
∷ word (ο ∷ ὐ ∷ []) "Mark.8.18"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.18"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.8.19"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.19"
∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Mark.8.19"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19"
∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ α ∷ []) "Mark.8.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.19"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.19"
∷ word (π ∷ ε ∷ ν ∷ τ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ι ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19"
∷ word (π ∷ ό ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19"
∷ word (κ ∷ ο ∷ φ ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19"
∷ word (κ ∷ ∙λ ∷ α ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.19"
∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.8.19"
∷ word (ἤ ∷ ρ ∷ α ∷ τ ∷ ε ∷ []) "Mark.8.19"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.19"
∷ word (Δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.8.19"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.8.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.20"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.8.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.20"
∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ι ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.20"
∷ word (π ∷ ό ∷ σ ∷ ω ∷ ν ∷ []) "Mark.8.20"
∷ word (σ ∷ π ∷ υ ∷ ρ ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Mark.8.20"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.8.20"
∷ word (κ ∷ ∙λ ∷ α ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.20"
∷ word (ἤ ∷ ρ ∷ α ∷ τ ∷ ε ∷ []) "Mark.8.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.20"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.20"
∷ word (Ἑ ∷ π ∷ τ ∷ ά ∷ []) "Mark.8.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.21"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.8.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.21"
∷ word (Ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.8.21"
∷ word (σ ∷ υ ∷ ν ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.21"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.22"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.22"
∷ word (Β ∷ η ∷ θ ∷ σ ∷ α ∷ ϊ ∷ δ ∷ ά ∷ ν ∷ []) "Mark.8.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.22"
∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.22"
∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.8.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.22"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.22"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.22"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.8.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.22"
∷ word (ἅ ∷ ψ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.23"
∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.23"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.23"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.8.23"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.23"
∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Mark.8.23"
∷ word (ἐ ∷ ξ ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.8.23"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.23"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.8.23"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.23"
∷ word (κ ∷ ώ ∷ μ ∷ η ∷ ς ∷ []) "Mark.8.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.23"
∷ word (π ∷ τ ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.8.23"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.23"
∷ word (τ ∷ ὰ ∷ []) "Mark.8.23"
∷ word (ὄ ∷ μ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.8.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.23"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.23"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.8.23"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.8.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.23"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.23"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.8.23"
∷ word (Ε ∷ ἴ ∷ []) "Mark.8.23"
∷ word (τ ∷ ι ∷ []) "Mark.8.23"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.8.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.24"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.8.24"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.8.24"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ []) "Mark.8.24"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.24"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.24"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.24"
∷ word (ὡ ∷ ς ∷ []) "Mark.8.24"
∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Mark.8.24"
∷ word (ὁ ∷ ρ ∷ ῶ ∷ []) "Mark.8.24"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.8.24"
∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.8.25"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.8.25"
∷ word (ἐ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.8.25"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.8.25"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.8.25"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.8.25"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.25"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.25"
∷ word (δ ∷ ι ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.8.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.25"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ α ∷ τ ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.8.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.25"
∷ word (ἐ ∷ ν ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ π ∷ ε ∷ ν ∷ []) "Mark.8.25"
∷ word (τ ∷ η ∷ ∙λ ∷ α ∷ υ ∷ γ ∷ ῶ ∷ ς ∷ []) "Mark.8.25"
∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ α ∷ []) "Mark.8.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.26"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.8.26"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.26"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.8.26"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.26"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.8.26"
∷ word (Μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.8.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.26"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.26"
∷ word (κ ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Mark.8.26"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ ς ∷ []) "Mark.8.26"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.27"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.27"
∷ word (ὁ ∷ []) "Mark.8.27"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.8.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.27"
∷ word (ο ∷ ἱ ∷ []) "Mark.8.27"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.8.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.27"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.27"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.8.27"
∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.8.27"
∷ word (Κ ∷ α ∷ ι ∷ σ ∷ α ∷ ρ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.8.27"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.27"
∷ word (Φ ∷ ι ∷ ∙λ ∷ ί ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Mark.8.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.27"
∷ word (ἐ ∷ ν ∷ []) "Mark.8.27"
∷ word (τ ∷ ῇ ∷ []) "Mark.8.27"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.8.27"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.27"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.27"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.8.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.27"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.8.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.27"
∷ word (Τ ∷ ί ∷ ν ∷ α ∷ []) "Mark.8.27"
∷ word (μ ∷ ε ∷ []) "Mark.8.27"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.27"
∷ word (ο ∷ ἱ ∷ []) "Mark.8.27"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Mark.8.27"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.27"
∷ word (ο ∷ ἱ ∷ []) "Mark.8.28"
∷ word (δ ∷ ὲ ∷ []) "Mark.8.28"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.8.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.28"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.28"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.8.28"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.28"
∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.8.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.28"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.8.28"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.8.28"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.8.28"
∷ word (δ ∷ ὲ ∷ []) "Mark.8.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.28"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.8.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.28"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.29"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.8.29"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.29"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.8.29"
∷ word (Ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.29"
∷ word (δ ∷ ὲ ∷ []) "Mark.8.29"
∷ word (τ ∷ ί ∷ ν ∷ α ∷ []) "Mark.8.29"
∷ word (μ ∷ ε ∷ []) "Mark.8.29"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.29"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.29"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.29"
∷ word (ὁ ∷ []) "Mark.8.29"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.8.29"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.29"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.29"
∷ word (Σ ∷ ὺ ∷ []) "Mark.8.29"
∷ word (ε ∷ ἶ ∷ []) "Mark.8.29"
∷ word (ὁ ∷ []) "Mark.8.29"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.8.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.30"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.30"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.30"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.8.30"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.8.30"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.30"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.8.30"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.30"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.31"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.8.31"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.8.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.31"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.31"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.8.31"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.31"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.8.31"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.31"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.8.31"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.8.31"
∷ word (π ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.31"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.8.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.31"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.8.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.31"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.8.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.31"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.8.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.8.31"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.31"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.8.31"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.32"
∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.8.32"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.32"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.8.32"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.8.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.32"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ∙λ ∷ α ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.32"
∷ word (ὁ ∷ []) "Mark.8.32"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.8.32"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.32"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.8.32"
∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ι ∷ μ ∷ ᾶ ∷ ν ∷ []) "Mark.8.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.32"
∷ word (ὁ ∷ []) "Mark.8.33"
∷ word (δ ∷ ὲ ∷ []) "Mark.8.33"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ α ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.33"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.8.33"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.33"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.8.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.33"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.33"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.8.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.33"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.33"
∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.8.33"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.8.33"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.8.33"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Mark.8.33"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.33"
∷ word (ο ∷ ὐ ∷ []) "Mark.8.33"
∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.33"
∷ word (τ ∷ ὰ ∷ []) "Mark.8.33"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.33"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.8.33"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.8.33"
∷ word (τ ∷ ὰ ∷ []) "Mark.8.33"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.33"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.8.33"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.34"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.34"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.34"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.8.34"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.8.34"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.34"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.8.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.34"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.8.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.34"
∷ word (Ε ∷ ἴ ∷ []) "Mark.8.34"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.8.34"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.8.34"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.8.34"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.8.34"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.34"
∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ η ∷ σ ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "Mark.8.34"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.34"
∷ word (ἀ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.8.34"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.34"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.8.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.34"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "Mark.8.34"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.8.34"
∷ word (ὃ ∷ ς ∷ []) "Mark.8.35"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.35"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.8.35"
∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Mark.8.35"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.35"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.8.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.35"
∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.8.35"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.8.35"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.8.35"
∷ word (ὃ ∷ ς ∷ []) "Mark.8.35"
∷ word (δ ∷ []) "Mark.8.35"
∷ word (ἂ ∷ ν ∷ []) "Mark.8.35"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.8.35"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.35"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.8.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.35"
∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.8.35"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.8.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.35"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.35"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.8.35"
∷ word (σ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.8.35"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.8.35"
∷ word (τ ∷ ί ∷ []) "Mark.8.36"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.36"
∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.8.36"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.8.36"
∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.8.36"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.36"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.8.36"
∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.8.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.36"
∷ word (ζ ∷ η ∷ μ ∷ ι ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.36"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.36"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.8.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.36"
∷ word (τ ∷ ί ∷ []) "Mark.8.37"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.37"
∷ word (δ ∷ ο ∷ ῖ ∷ []) "Mark.8.37"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.8.37"
∷ word (ἀ ∷ ν ∷ τ ∷ ά ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Mark.8.37"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.37"
∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.8.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.37"
∷ word (ὃ ∷ ς ∷ []) "Mark.8.38"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.38"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.8.38"
∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ῇ ∷ []) "Mark.8.38"
∷ word (μ ∷ ε ∷ []) "Mark.8.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.38"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.38"
∷ word (ἐ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.38"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.8.38"
∷ word (τ ∷ ῇ ∷ []) "Mark.8.38"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ᾷ ∷ []) "Mark.8.38"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Mark.8.38"
∷ word (τ ∷ ῇ ∷ []) "Mark.8.38"
∷ word (μ ∷ ο ∷ ι ∷ χ ∷ α ∷ ∙λ ∷ ί ∷ δ ∷ ι ∷ []) "Mark.8.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.38"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῷ ∷ []) "Mark.8.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.38"
∷ word (ὁ ∷ []) "Mark.8.38"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.8.38"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.38"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.8.38"
∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.38"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.38"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.8.38"
∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.8.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.8.38"
∷ word (τ ∷ ῇ ∷ []) "Mark.8.38"
∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "Mark.8.38"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.38"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.8.38"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.38"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.8.38"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.38"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.8.38"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.38"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.8.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.1"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.9.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.1"
∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.9.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.9.1"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.1"
∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.9.1"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.9.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.1"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.9.1"
∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.1"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.9.1"
∷ word (ο ∷ ὐ ∷ []) "Mark.9.1"
∷ word (μ ∷ ὴ ∷ []) "Mark.9.1"
∷ word (γ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.1"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.9.1"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.9.1"
∷ word (ἂ ∷ ν ∷ []) "Mark.9.1"
∷ word (ἴ ∷ δ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.1"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.1"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.9.1"
∷ word (ἐ ∷ ∙λ ∷ η ∷ ∙λ ∷ υ ∷ θ ∷ υ ∷ ῖ ∷ α ∷ ν ∷ []) "Mark.9.1"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.1"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Mark.9.1"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.2"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.9.2"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.2"
∷ word (ἓ ∷ ξ ∷ []) "Mark.9.2"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.9.2"
∷ word (ὁ ∷ []) "Mark.9.2"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.2"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.2"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2"
∷ word (ἀ ∷ ν ∷ α ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.9.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.2"
∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.9.2"
∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.2"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.9.2"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.2"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2"
∷ word (μ ∷ ε ∷ τ ∷ ε ∷ μ ∷ ο ∷ ρ ∷ φ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.9.2"
∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.3"
∷ word (τ ∷ ὰ ∷ []) "Mark.9.3"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.9.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.3"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.3"
∷ word (σ ∷ τ ∷ ί ∷ ∙λ ∷ β ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.3"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὰ ∷ []) "Mark.9.3"
∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.3"
∷ word (ο ∷ ἷ ∷ α ∷ []) "Mark.9.3"
∷ word (γ ∷ ν ∷ α ∷ φ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.9.3"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.3"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.9.3"
∷ word (ο ∷ ὐ ∷ []) "Mark.9.3"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.3"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.9.3"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ᾶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.4"
∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Mark.9.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.4"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.4"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.9.4"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ε ∷ ῖ ∷ []) "Mark.9.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.4"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.4"
∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.4"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.4"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.9.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.5"
∷ word (ὁ ∷ []) "Mark.9.5"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.9.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.9.5"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.9.5"
∷ word (Ῥ ∷ α ∷ β ∷ β ∷ ί ∷ []) "Mark.9.5"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.5"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.5"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.5"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.9.5"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.9.5"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.5"
∷ word (σ ∷ κ ∷ η ∷ ν ∷ ά ∷ ς ∷ []) "Mark.9.5"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.9.5"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ε ∷ ῖ ∷ []) "Mark.9.5"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "Mark.9.5"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.5"
∷ word (ο ∷ ὐ ∷ []) "Mark.9.6"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.6"
∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ []) "Mark.9.6"
∷ word (τ ∷ ί ∷ []) "Mark.9.6"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῇ ∷ []) "Mark.9.6"
∷ word (ἔ ∷ κ ∷ φ ∷ ο ∷ β ∷ ο ∷ ι ∷ []) "Mark.9.6"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.6"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.7"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.7"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ []) "Mark.9.7"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ κ ∷ ι ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.9.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.7"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.7"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Mark.9.7"
∷ word (ἐ ∷ κ ∷ []) "Mark.9.7"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.7"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.9.7"
∷ word (Ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.9.7"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.7"
∷ word (ὁ ∷ []) "Mark.9.7"
∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.9.7"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.7"
∷ word (ὁ ∷ []) "Mark.9.7"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Mark.9.7"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.8"
∷ word (ἐ ∷ ξ ∷ ά ∷ π ∷ ι ∷ ν ∷ α ∷ []) "Mark.9.8"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.9.8"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.9.8"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Mark.9.8"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.9.8"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.8"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.9.8"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.9.8"
∷ word (μ ∷ ε ∷ θ ∷ []) "Mark.9.8"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.8"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.9"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ι ∷ ν ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.9"
∷ word (ἐ ∷ κ ∷ []) "Mark.9.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.9"
∷ word (ὄ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.9.9"
∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.9.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.9"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.9"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.9.9"
∷ word (ἃ ∷ []) "Mark.9.9"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.9.9"
∷ word (δ ∷ ι ∷ η ∷ γ ∷ ή ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.9"
∷ word (ε ∷ ἰ ∷ []) "Mark.9.9"
∷ word (μ ∷ ὴ ∷ []) "Mark.9.9"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.9.9"
∷ word (ὁ ∷ []) "Mark.9.9"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.9.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.9"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.9"
∷ word (ἐ ∷ κ ∷ []) "Mark.9.9"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.9.9"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῇ ∷ []) "Mark.9.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.10"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.10"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.9.10"
∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.10"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.10"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.10"
∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.10"
∷ word (τ ∷ ί ∷ []) "Mark.9.10"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.10"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.10"
∷ word (ἐ ∷ κ ∷ []) "Mark.9.10"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.9.10"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.11"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.11"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.11"
∷ word (Ὅ ∷ τ ∷ ι ∷ []) "Mark.9.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.11"
∷ word (ο ∷ ἱ ∷ []) "Mark.9.11"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.11"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.11"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.9.11"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.11"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.9.11"
∷ word (ὁ ∷ []) "Mark.9.12"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.12"
∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.9.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.12"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.12"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.9.12"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.9.12"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.9.12"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ θ ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.9.12"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.12"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.9.12"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.12"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.12"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.9.12"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.12"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.12"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.12"
∷ word (π ∷ ά ∷ θ ∷ ῃ ∷ []) "Mark.9.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.12"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ δ ∷ ε ∷ ν ∷ η ∷ θ ∷ ῇ ∷ []) "Mark.9.12"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.9.13"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.13"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.13"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.13"
∷ word (ἐ ∷ ∙λ ∷ ή ∷ ∙λ ∷ υ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.13"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.13"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.9.13"
∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.13"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.9.13"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.13"
∷ word (ἐ ∷ π ∷ []) "Mark.9.13"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.13"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.14"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.14"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.14"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.14"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.9.14"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.9.14"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.14"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ν ∷ []) "Mark.9.14"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.9.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.14"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.14"
∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.9.14"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.15"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.9.15"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.9.15"
∷ word (ὁ ∷ []) "Mark.9.15"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.9.15"
∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.15"
∷ word (ἐ ∷ ξ ∷ ε ∷ θ ∷ α ∷ μ ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.15"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ τ ∷ ρ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.15"
∷ word (ἠ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.15"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.16"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.16"
∷ word (Τ ∷ ί ∷ []) "Mark.9.16"
∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.9.16"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.16"
∷ word (α ∷ ὑ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.17"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.9.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.17"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.9.17"
∷ word (ἐ ∷ κ ∷ []) "Mark.9.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.17"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.9.17"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.9.17"
∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ []) "Mark.9.17"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.17"
∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Mark.9.17"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.17"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.17"
∷ word (σ ∷ έ ∷ []) "Mark.9.17"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.17"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.9.17"
∷ word (ἄ ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.18"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.18"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.9.18"
∷ word (ῥ ∷ ή ∷ σ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.9.18"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18"
∷ word (ἀ ∷ φ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "Mark.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18"
∷ word (τ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "Mark.9.18"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.18"
∷ word (ὀ ∷ δ ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18"
∷ word (ξ ∷ η ∷ ρ ∷ α ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ []) "Mark.9.18"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.18"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.9.18"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.18"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.18"
∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.18"
∷ word (ὁ ∷ []) "Mark.9.19"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.19"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.19"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.9.19"
∷ word (Ὦ ∷ []) "Mark.9.19"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ []) "Mark.9.19"
∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.19"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.9.19"
∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.9.19"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.19"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.19"
∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.9.19"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.9.19"
∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.9.19"
∷ word (ἀ ∷ ν ∷ έ ∷ ξ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.9.19"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.9.19"
∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.19"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.19"
∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.9.19"
∷ word (μ ∷ ε ∷ []) "Mark.9.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.20"
∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ ν ∷ []) "Mark.9.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.20"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.20"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.20"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.9.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.20"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.20"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.9.20"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.9.20"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ π ∷ ά ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.9.20"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.20"
∷ word (π ∷ ε ∷ σ ∷ ὼ ∷ ν ∷ []) "Mark.9.20"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.20"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.9.20"
∷ word (ἐ ∷ κ ∷ υ ∷ ∙λ ∷ ί ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.20"
∷ word (ἀ ∷ φ ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.9.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.21"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.21"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.21"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.9.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.21"
∷ word (Π ∷ ό ∷ σ ∷ ο ∷ ς ∷ []) "Mark.9.21"
∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.21"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.9.21"
∷ word (ὡ ∷ ς ∷ []) "Mark.9.21"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.9.21"
∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.9.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.21"
∷ word (ὁ ∷ []) "Mark.9.21"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.21"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.21"
∷ word (Ἐ ∷ κ ∷ []) "Mark.9.21"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ι ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.22"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Mark.9.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.22"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Mark.9.22"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.22"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.9.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.22"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.22"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ α ∷ []) "Mark.9.22"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.22"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ῃ ∷ []) "Mark.9.22"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.22"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.9.22"
∷ word (ε ∷ ἴ ∷ []) "Mark.9.22"
∷ word (τ ∷ ι ∷ []) "Mark.9.22"
∷ word (δ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Mark.9.22"
∷ word (β ∷ ο ∷ ή ∷ θ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Mark.9.22"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.22"
∷ word (σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.22"
∷ word (ἐ ∷ φ ∷ []) "Mark.9.22"
∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.22"
∷ word (ὁ ∷ []) "Mark.9.23"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.23"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.23"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.23"
∷ word (Τ ∷ ὸ ∷ []) "Mark.9.23"
∷ word (Ε ∷ ἰ ∷ []) "Mark.9.23"
∷ word (δ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Mark.9.23"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.23"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.9.23"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.23"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Mark.9.23"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.9.24"
∷ word (κ ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.9.24"
∷ word (ὁ ∷ []) "Mark.9.24"
∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Mark.9.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.24"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.9.24"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.9.24"
∷ word (Π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ []) "Mark.9.24"
∷ word (β ∷ ο ∷ ή ∷ θ ∷ ε ∷ ι ∷ []) "Mark.9.24"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.24"
∷ word (τ ∷ ῇ ∷ []) "Mark.9.24"
∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Mark.9.24"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.9.25"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.25"
∷ word (ὁ ∷ []) "Mark.9.25"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.25"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.25"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.9.25"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.9.25"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.25"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.25"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.9.25"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.25"
∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.9.25"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.9.25"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.25"
∷ word (Τ ∷ ὸ ∷ []) "Mark.9.25"
∷ word (ἄ ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.25"
∷ word (κ ∷ ω ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.9.25"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.9.25"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.9.25"
∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ά ∷ σ ∷ σ ∷ ω ∷ []) "Mark.9.25"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.9.25"
∷ word (ἔ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ []) "Mark.9.25"
∷ word (ἐ ∷ ξ ∷ []) "Mark.9.25"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.25"
∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.9.25"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ ς ∷ []) "Mark.9.25"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.25"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.26"
∷ word (κ ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.9.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.26"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.26"
∷ word (σ ∷ π ∷ α ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.9.26"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.26"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.26"
∷ word (ὡ ∷ σ ∷ ε ∷ ὶ ∷ []) "Mark.9.26"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.26"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.9.26"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.26"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.26"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.9.26"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.26"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.9.26"
∷ word (ὁ ∷ []) "Mark.9.27"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.27"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.27"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.9.27"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.27"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.27"
∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.9.27"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.27"
∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.9.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.28"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.28"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.28"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.9.28"
∷ word (ο ∷ ἱ ∷ []) "Mark.9.28"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.9.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.28"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.9.28"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.28"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.28"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.28"
∷ word (Ὅ ∷ τ ∷ ι ∷ []) "Mark.9.28"
∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.28"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.28"
∷ word (ἠ ∷ δ ∷ υ ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Mark.9.28"
∷ word (ἐ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.28"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Mark.9.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.29"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.29"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.29"
∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.9.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.29"
∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.29"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.29"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.9.29"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.29"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.29"
∷ word (ε ∷ ἰ ∷ []) "Mark.9.29"
∷ word (μ ∷ ὴ ∷ []) "Mark.9.29"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.29"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῇ ∷ []) "Mark.9.29"
∷ word (Κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.30"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.30"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.30"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.9.30"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.30"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.30"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.30"
∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.9.30"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.30"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.9.30"
∷ word (γ ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.9.30"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.9.31"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.31"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.31"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.9.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.31"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.9.31"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.31"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.31"
∷ word (Ὁ ∷ []) "Mark.9.31"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.9.31"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.31"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.31"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.31"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.31"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.31"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.9.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.31"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.31"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.31"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.31"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.9.31"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.31"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.31"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.9.32"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.32"
∷ word (ἠ ∷ γ ∷ ν ∷ ό ∷ ο ∷ υ ∷ ν ∷ []) "Mark.9.32"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.32"
∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "Mark.9.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.32"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.32"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.32"
∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.9.32"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.33"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.9.33"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.33"
∷ word (Κ ∷ α ∷ φ ∷ α ∷ ρ ∷ ν ∷ α ∷ ο ∷ ύ ∷ μ ∷ []) "Mark.9.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.33"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.33"
∷ word (τ ∷ ῇ ∷ []) "Mark.9.33"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.9.33"
∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.33"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.9.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.33"
∷ word (Τ ∷ ί ∷ []) "Mark.9.33"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.33"
∷ word (τ ∷ ῇ ∷ []) "Mark.9.33"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.9.33"
∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.9.33"
∷ word (ο ∷ ἱ ∷ []) "Mark.9.34"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.34"
∷ word (ἐ ∷ σ ∷ ι ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.9.34"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.34"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.9.34"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.34"
∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ έ ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.34"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.34"
∷ word (τ ∷ ῇ ∷ []) "Mark.9.34"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.9.34"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.9.34"
∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.9.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.35"
∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Mark.9.35"
∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.35"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.35"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.9.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.35"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.9.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.35"
∷ word (Ε ∷ ἴ ∷ []) "Mark.9.35"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.9.35"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.9.35"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.35"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.35"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.35"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.35"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.35"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.35"
∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.36"
∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.9.36"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.9.36"
∷ word (ἔ ∷ σ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.36"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.36"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.36"
∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Mark.9.36"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.36"
∷ word (ἐ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.36"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.36"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.36"
∷ word (Ὃ ∷ ς ∷ []) "Mark.9.37"
∷ word (ἂ ∷ ν ∷ []) "Mark.9.37"
∷ word (ἓ ∷ ν ∷ []) "Mark.9.37"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.37"
∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.37"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.9.37"
∷ word (δ ∷ έ ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.37"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.37"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.9.37"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.37"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.9.37"
∷ word (δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.37"
∷ word (ὃ ∷ ς ∷ []) "Mark.9.37"
∷ word (ἂ ∷ ν ∷ []) "Mark.9.37"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.9.37"
∷ word (δ ∷ έ ∷ χ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.37"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.9.37"
∷ word (δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.37"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.37"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ά ∷ []) "Mark.9.37"
∷ word (μ ∷ ε ∷ []) "Mark.9.37"
∷ word (Ἔ ∷ φ ∷ η ∷ []) "Mark.9.38"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.38"
∷ word (ὁ ∷ []) "Mark.9.38"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.9.38"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.9.38"
∷ word (ε ∷ ἴ ∷ δ ∷ ο ∷ μ ∷ έ ∷ ν ∷ []) "Mark.9.38"
∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "Mark.9.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.38"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.38"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.9.38"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.38"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.38"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.9.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.38"
∷ word (ἐ ∷ κ ∷ ω ∷ ∙λ ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.9.38"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.38"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.38"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.38"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.9.38"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.38"
∷ word (ὁ ∷ []) "Mark.9.39"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.39"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.39"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.39"
∷ word (Μ ∷ ὴ ∷ []) "Mark.9.39"
∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.39"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.39"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.39"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.9.39"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.39"
∷ word (ὃ ∷ ς ∷ []) "Mark.9.39"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.9.39"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.9.39"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.39"
∷ word (τ ∷ ῷ ∷ []) "Mark.9.39"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.9.39"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.39"
∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.39"
∷ word (τ ∷ α ∷ χ ∷ ὺ ∷ []) "Mark.9.39"
∷ word (κ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ῆ ∷ σ ∷ α ∷ ί ∷ []) "Mark.9.39"
∷ word (μ ∷ ε ∷ []) "Mark.9.39"
∷ word (ὃ ∷ ς ∷ []) "Mark.9.40"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.40"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.40"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.40"
∷ word (κ ∷ α ∷ θ ∷ []) "Mark.9.40"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.9.40"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Mark.9.40"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.9.40"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.40"
∷ word (Ὃ ∷ ς ∷ []) "Mark.9.41"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.41"
∷ word (ἂ ∷ ν ∷ []) "Mark.9.41"
∷ word (π ∷ ο ∷ τ ∷ ί ∷ σ ∷ ῃ ∷ []) "Mark.9.41"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.41"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.9.41"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.41"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.41"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.9.41"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.41"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.41"
∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.9.41"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.9.41"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.9.41"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.41"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.41"
∷ word (ο ∷ ὐ ∷ []) "Mark.9.41"
∷ word (μ ∷ ὴ ∷ []) "Mark.9.41"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ῃ ∷ []) "Mark.9.41"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.41"
∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "Mark.9.41"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.41"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.42"
∷ word (ὃ ∷ ς ∷ []) "Mark.9.42"
∷ word (ἂ ∷ ν ∷ []) "Mark.9.42"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ σ ∷ ῃ ∷ []) "Mark.9.42"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.9.42"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.42"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.9.42"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.42"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.42"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.42"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.42"
∷ word (ἐ ∷ μ ∷ έ ∷ []) "Mark.9.42"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.42"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.42"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.42"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.42"
∷ word (ε ∷ ἰ ∷ []) "Mark.9.42"
∷ word (π ∷ ε ∷ ρ ∷ ί ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.42"
∷ word (μ ∷ ύ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.9.42"
∷ word (ὀ ∷ ν ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Mark.9.42"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.9.42"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.42"
∷ word (τ ∷ ρ ∷ ά ∷ χ ∷ η ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.42"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.42"
∷ word (β ∷ έ ∷ β ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.42"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.42"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.42"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.42"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.43"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.43"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Mark.9.43"
∷ word (σ ∷ ε ∷ []) "Mark.9.43"
∷ word (ἡ ∷ []) "Mark.9.43"
∷ word (χ ∷ ε ∷ ί ∷ ρ ∷ []) "Mark.9.43"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.43"
∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ο ∷ ψ ∷ ο ∷ ν ∷ []) "Mark.9.43"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.9.43"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.43"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.9.43"
∷ word (σ ∷ ε ∷ []) "Mark.9.43"
∷ word (κ ∷ υ ∷ ∙λ ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.43"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.43"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.43"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.43"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.9.43"
∷ word (ἢ ∷ []) "Mark.9.43"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.9.43"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.9.43"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.43"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.43"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.43"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.43"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.43"
∷ word (γ ∷ έ ∷ ε ∷ ν ∷ ν ∷ α ∷ ν ∷ []) "Mark.9.43"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.43"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.43"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Mark.9.43"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.43"
∷ word (ἄ ∷ σ ∷ β ∷ ε ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.9.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.45"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.45"
∷ word (ὁ ∷ []) "Mark.9.45"
∷ word (π ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.45"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.45"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Mark.9.45"
∷ word (σ ∷ ε ∷ []) "Mark.9.45"
∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ο ∷ ψ ∷ ο ∷ ν ∷ []) "Mark.9.45"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.45"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.45"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.9.45"
∷ word (σ ∷ ε ∷ []) "Mark.9.45"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.45"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.45"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.45"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.9.45"
∷ word (χ ∷ ω ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.45"
∷ word (ἢ ∷ []) "Mark.9.45"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.45"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.9.45"
∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Mark.9.45"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.45"
∷ word (β ∷ ∙λ ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.45"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.45"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.45"
∷ word (γ ∷ έ ∷ ε ∷ ν ∷ ν ∷ α ∷ ν ∷ []) "Mark.9.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.47"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.47"
∷ word (ὁ ∷ []) "Mark.9.47"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ό ∷ ς ∷ []) "Mark.9.47"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.47"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Mark.9.47"
∷ word (σ ∷ ε ∷ []) "Mark.9.47"
∷ word (ἔ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.9.47"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.47"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.47"
∷ word (σ ∷ έ ∷ []) "Mark.9.47"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.47"
∷ word (μ ∷ ο ∷ ν ∷ ό ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.9.47"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.47"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.47"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.47"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.47"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.47"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.9.47"
∷ word (ἢ ∷ []) "Mark.9.47"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.9.47"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.47"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.47"
∷ word (β ∷ ∙λ ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.47"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.47"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.47"
∷ word (γ ∷ έ ∷ ε ∷ ν ∷ ν ∷ α ∷ ν ∷ []) "Mark.9.47"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.48"
∷ word (ὁ ∷ []) "Mark.9.48"
∷ word (σ ∷ κ ∷ ώ ∷ ∙λ ∷ η ∷ ξ ∷ []) "Mark.9.48"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.48"
∷ word (ο ∷ ὐ ∷ []) "Mark.9.48"
∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ᾷ ∷ []) "Mark.9.48"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.48"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.48"
∷ word (π ∷ ῦ ∷ ρ ∷ []) "Mark.9.48"
∷ word (ο ∷ ὐ ∷ []) "Mark.9.48"
∷ word (σ ∷ β ∷ έ ∷ ν ∷ ν ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.48"
∷ word (Π ∷ ᾶ ∷ ς ∷ []) "Mark.9.49"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.49"
∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Mark.9.49"
∷ word (ἁ ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.49"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.50"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.50"
∷ word (ἅ ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.9.50"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.50"
∷ word (δ ∷ ὲ ∷ []) "Mark.9.50"
∷ word (τ ∷ ὸ ∷ []) "Mark.9.50"
∷ word (ἅ ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.9.50"
∷ word (ἄ ∷ ν ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.50"
∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.50"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.50"
∷ word (τ ∷ ί ∷ ν ∷ ι ∷ []) "Mark.9.50"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.50"
∷ word (ἀ ∷ ρ ∷ τ ∷ ύ ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.50"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.50"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.50"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.50"
∷ word (ἅ ∷ ∙λ ∷ α ∷ []) "Mark.9.50"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.50"
∷ word (ε ∷ ἰ ∷ ρ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.50"
∷ word (ἐ ∷ ν ∷ []) "Mark.9.50"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.9.50"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.1"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.1"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.10.1"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.1"
∷ word (τ ∷ ὰ ∷ []) "Mark.10.1"
∷ word (ὅ ∷ ρ ∷ ι ∷ α ∷ []) "Mark.10.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.10.1"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.1"
∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.10.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.1"
∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.1"
∷ word (σ ∷ υ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.1"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.1"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.10.1"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.1"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.1"
∷ word (ὡ ∷ ς ∷ []) "Mark.10.1"
∷ word (ε ∷ ἰ ∷ ώ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.10.1"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.1"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.10.1"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.2"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.2"
∷ word (ε ∷ ἰ ∷ []) "Mark.10.2"
∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.2"
∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "Mark.10.2"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.10.2"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.2"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.2"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.2"
∷ word (ὁ ∷ []) "Mark.10.3"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.3"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.3"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.3"
∷ word (Τ ∷ ί ∷ []) "Mark.10.3"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.3"
∷ word (ἐ ∷ ν ∷ ε ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.3"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.10.3"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.4"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.4"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.10.4"
∷ word (Ἐ ∷ π ∷ έ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.10.4"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.10.4"
∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.10.4"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ α ∷ σ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.4"
∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ α ∷ ι ∷ []) "Mark.10.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.4"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.4"
∷ word (ὁ ∷ []) "Mark.10.5"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.5"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.5"
∷ word (Π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.5"
∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.5"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.10.5"
∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.10.5"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.5"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.10.5"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.10.5"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.10.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.6"
∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.10.6"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.10.6"
∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.6"
∷ word (θ ∷ ῆ ∷ ∙λ ∷ υ ∷ []) "Mark.10.6"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.10.6"
∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.7"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.10.7"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Mark.10.7"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.10.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.7"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.7"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.7"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.7"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.7"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.10.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.8"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.8"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.8"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.10.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.8"
∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Mark.10.8"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.8"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.10.8"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.10.8"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.10.8"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.10.8"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.10.8"
∷ word (μ ∷ ί ∷ α ∷ []) "Mark.10.8"
∷ word (σ ∷ ά ∷ ρ ∷ ξ ∷ []) "Mark.10.8"
∷ word (ὃ ∷ []) "Mark.10.9"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.10.9"
∷ word (ὁ ∷ []) "Mark.10.9"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.10.9"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ζ ∷ ε ∷ υ ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.10.9"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.10.9"
∷ word (μ ∷ ὴ ∷ []) "Mark.10.9"
∷ word (χ ∷ ω ∷ ρ ∷ ι ∷ ζ ∷ έ ∷ τ ∷ ω ∷ []) "Mark.10.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.10"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.10"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.10"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.10"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.10.10"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.10.10"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.10.10"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.10"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.11"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.11"
∷ word (Ὃ ∷ ς ∷ []) "Mark.10.11"
∷ word (ἂ ∷ ν ∷ []) "Mark.10.11"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ῃ ∷ []) "Mark.10.11"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.11"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.10.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.11"
∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.10.11"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.10.11"
∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.11"
∷ word (ἐ ∷ π ∷ []) "Mark.10.11"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.10.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.12"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.10.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "Mark.10.12"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.10.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.12"
∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Mark.10.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.10.12"
∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.10.12"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.10.12"
∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.13"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ φ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.10.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.13"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ α ∷ []) "Mark.10.13"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.13"
∷ word (ἅ ∷ ψ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.13"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.13"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.13"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.10.13"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.10.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.13"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.10.14"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.14"
∷ word (ὁ ∷ []) "Mark.10.14"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.14"
∷ word (ἠ ∷ γ ∷ α ∷ ν ∷ ά ∷ κ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.14"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.14"
∷ word (Ἄ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.10.14"
∷ word (τ ∷ ὰ ∷ []) "Mark.10.14"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ α ∷ []) "Mark.10.14"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.10.14"
∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.10.14"
∷ word (μ ∷ ε ∷ []) "Mark.10.14"
∷ word (μ ∷ ὴ ∷ []) "Mark.10.14"
∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.10.14"
∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Mark.10.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.10.14"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.14"
∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.14"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.10.14"
∷ word (ἡ ∷ []) "Mark.10.14"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.10.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.14"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.14"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.10.15"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.10.15"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.15"
∷ word (ὃ ∷ ς ∷ []) "Mark.10.15"
∷ word (ἂ ∷ ν ∷ []) "Mark.10.15"
∷ word (μ ∷ ὴ ∷ []) "Mark.10.15"
∷ word (δ ∷ έ ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.15"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.15"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.15"
∷ word (ὡ ∷ ς ∷ []) "Mark.10.15"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.10.15"
∷ word (ο ∷ ὐ ∷ []) "Mark.10.15"
∷ word (μ ∷ ὴ ∷ []) "Mark.10.15"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.10.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.15"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.10.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.16"
∷ word (ἐ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.16"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.10.16"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ υ ∷ ∙λ ∷ ό ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.16"
∷ word (τ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.16"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.10.16"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.10.16"
∷ word (ἐ ∷ π ∷ []) "Mark.10.16"
∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Mark.10.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.17"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.17"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.17"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.10.17"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ὼ ∷ ν ∷ []) "Mark.10.17"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.17"
∷ word (γ ∷ ο ∷ ν ∷ υ ∷ π ∷ ε ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.17"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.10.17"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.17"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.10.17"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ έ ∷ []) "Mark.10.17"
∷ word (τ ∷ ί ∷ []) "Mark.10.17"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.17"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.17"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.10.17"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.17"
∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.17"
∷ word (ὁ ∷ []) "Mark.10.18"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.18"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.18"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.18"
∷ word (Τ ∷ ί ∷ []) "Mark.10.18"
∷ word (μ ∷ ε ∷ []) "Mark.10.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.18"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Mark.10.18"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.18"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ς ∷ []) "Mark.10.18"
∷ word (ε ∷ ἰ ∷ []) "Mark.10.18"
∷ word (μ ∷ ὴ ∷ []) "Mark.10.18"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.18"
∷ word (ὁ ∷ []) "Mark.10.18"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.10.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.10.19"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Mark.10.19"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "Mark.10.19"
∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19"
∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19"
∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19"
∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ύ ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19"
∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19"
∷ word (κ ∷ ∙λ ∷ έ ∷ ψ ∷ ῃ ∷ ς ∷ []) "Mark.10.19"
∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19"
∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19"
∷ word (Τ ∷ ί ∷ μ ∷ α ∷ []) "Mark.10.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.19"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.19"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.19"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.19"
∷ word (ὁ ∷ []) "Mark.10.20"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.20"
∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.10.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.20"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.10.20"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.10.20"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.20"
∷ word (ἐ ∷ φ ∷ υ ∷ ∙λ ∷ α ∷ ξ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "Mark.10.20"
∷ word (ἐ ∷ κ ∷ []) "Mark.10.20"
∷ word (ν ∷ ε ∷ ό ∷ τ ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Mark.10.20"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.10.20"
∷ word (ὁ ∷ []) "Mark.10.21"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.21"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.21"
∷ word (ἐ ∷ μ ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.10.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.21"
∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.21"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.21"
∷ word (Ἕ ∷ ν ∷ []) "Mark.10.21"
∷ word (σ ∷ ε ∷ []) "Mark.10.21"
∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.10.21"
∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.10.21"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.10.21"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.21"
∷ word (π ∷ ώ ∷ ∙λ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Mark.10.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21"
∷ word (δ ∷ ὸ ∷ ς ∷ []) "Mark.10.21"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.21"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21"
∷ word (ἕ ∷ ξ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.21"
∷ word (θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.10.21"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.21"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Mark.10.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21"
∷ word (δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Mark.10.21"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.10.21"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.10.21"
∷ word (ὁ ∷ []) "Mark.10.22"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.22"
∷ word (σ ∷ τ ∷ υ ∷ γ ∷ ν ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.22"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.10.22"
∷ word (τ ∷ ῷ ∷ []) "Mark.10.22"
∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "Mark.10.22"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.22"
∷ word (∙λ ∷ υ ∷ π ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.22"
∷ word (ἦ ∷ ν ∷ []) "Mark.10.22"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.22"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Mark.10.22"
∷ word (κ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.10.22"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.10.22"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.23"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.23"
∷ word (ὁ ∷ []) "Mark.10.23"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.23"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.23"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.23"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.10.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.23"
∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.10.23"
∷ word (δ ∷ υ ∷ σ ∷ κ ∷ ό ∷ ∙λ ∷ ω ∷ ς ∷ []) "Mark.10.23"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.23"
∷ word (τ ∷ ὰ ∷ []) "Mark.10.23"
∷ word (χ ∷ ρ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.10.23"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.23"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.23"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.23"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.23"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.23"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.23"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.23"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.24"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.24"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.10.24"
∷ word (ἐ ∷ θ ∷ α ∷ μ ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.24"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.10.24"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.24"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.10.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.24"
∷ word (ὁ ∷ []) "Mark.10.24"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.24"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.24"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.24"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.24"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.24"
∷ word (Τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.10.24"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.10.24"
∷ word (δ ∷ ύ ∷ σ ∷ κ ∷ ο ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.10.24"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.24"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.24"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.24"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.24"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.24"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.24"
∷ word (ε ∷ ὐ ∷ κ ∷ ο ∷ π ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.10.25"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.25"
∷ word (κ ∷ ά ∷ μ ∷ η ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.10.25"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.10.25"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.10.25"
∷ word (τ ∷ ρ ∷ υ ∷ μ ∷ α ∷ ∙λ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Mark.10.25"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.10.25"
∷ word (ῥ ∷ α ∷ φ ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "Mark.10.25"
∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.25"
∷ word (ἢ ∷ []) "Mark.10.25"
∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.25"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.25"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.25"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.25"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.25"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.25"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.26"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.26"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.10.26"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.26"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.26"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.26"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.10.26"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.26"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.10.26"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.26"
∷ word (σ ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.26"
∷ word (ἐ ∷ μ ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.10.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.27"
∷ word (ὁ ∷ []) "Mark.10.27"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.27"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.27"
∷ word (Π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.27"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Mark.10.27"
∷ word (ἀ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.10.27"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.10.27"
∷ word (ο ∷ ὐ ∷ []) "Mark.10.27"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.27"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Mark.10.27"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.27"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.27"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.10.27"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.27"
∷ word (τ ∷ ῷ ∷ []) "Mark.10.27"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Mark.10.27"
∷ word (Ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.28"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.28"
∷ word (ὁ ∷ []) "Mark.10.28"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.10.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.28"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.10.28"
∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.10.28"
∷ word (ἀ ∷ φ ∷ ή ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.28"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.28"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ κ ∷ α ∷ μ ∷ έ ∷ ν ∷ []) "Mark.10.28"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.10.28"
∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.10.29"
∷ word (ὁ ∷ []) "Mark.10.29"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.29"
∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.10.29"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.10.29"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.29"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ί ∷ ς ∷ []) "Mark.10.29"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.29"
∷ word (ὃ ∷ ς ∷ []) "Mark.10.29"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.29"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.29"
∷ word (ἢ ∷ []) "Mark.10.29"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.29"
∷ word (ἢ ∷ []) "Mark.10.29"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὰ ∷ ς ∷ []) "Mark.10.29"
∷ word (ἢ ∷ []) "Mark.10.29"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.29"
∷ word (ἢ ∷ []) "Mark.10.29"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.29"
∷ word (ἢ ∷ []) "Mark.10.29"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.10.29"
∷ word (ἢ ∷ []) "Mark.10.29"
∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.29"
∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.29"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.10.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.29"
∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.29"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.29"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.29"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.10.30"
∷ word (μ ∷ ὴ ∷ []) "Mark.10.30"
∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.10.30"
∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ο ∷ ν ∷ τ ∷ α ∷ π ∷ ∙λ ∷ α ∷ σ ∷ ί ∷ ο ∷ ν ∷ α ∷ []) "Mark.10.30"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Mark.10.30"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.30"
∷ word (τ ∷ ῷ ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "Mark.10.30"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.10.30"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὰ ∷ ς ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30"
∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.30"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.10.30"
∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.10.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.30"
∷ word (τ ∷ ῷ ∷ []) "Mark.10.30"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ι ∷ []) "Mark.10.30"
∷ word (τ ∷ ῷ ∷ []) "Mark.10.30"
∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Mark.10.30"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.10.30"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.30"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.10.31"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.31"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.31"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.31"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31"
∷ word (Ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.10.32"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.32"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.32"
∷ word (τ ∷ ῇ ∷ []) "Mark.10.32"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.10.32"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.32"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.32"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.10.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.32"
∷ word (ἦ ∷ ν ∷ []) "Mark.10.32"
∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Mark.10.32"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.32"
∷ word (ὁ ∷ []) "Mark.10.32"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.32"
∷ word (ἐ ∷ θ ∷ α ∷ μ ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.32"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.32"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.32"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.32"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.32"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.10.32"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.32"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.32"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.10.32"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.32"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.32"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.32"
∷ word (τ ∷ ὰ ∷ []) "Mark.10.32"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.32"
∷ word (σ ∷ υ ∷ μ ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.32"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.10.33"
∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.10.33"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.33"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.33"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.10.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33"
∷ word (ὁ ∷ []) "Mark.10.33"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.10.33"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.33"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.10.33"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.33"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.33"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.33"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.33"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Mark.10.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.33"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.33"
∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34"
∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ί ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34"
∷ word (ἐ ∷ μ ∷ π ∷ τ ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34"
∷ word (μ ∷ α ∷ σ ∷ τ ∷ ι ∷ γ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.10.34"
∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.10.34"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.10.34"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.34"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.35"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.35"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.35"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ς ∷ []) "Mark.10.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.35"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.10.35"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.35"
∷ word (υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Mark.10.35"
∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.35"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.35"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.35"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.10.35"
∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.35"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.35"
∷ word (ὃ ∷ []) "Mark.10.35"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.10.35"
∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ έ ∷ ν ∷ []) "Mark.10.35"
∷ word (σ ∷ ε ∷ []) "Mark.10.35"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.35"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.35"
∷ word (ὁ ∷ []) "Mark.10.36"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.36"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.36"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.36"
∷ word (Τ ∷ ί ∷ []) "Mark.10.36"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.10.36"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.36"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.36"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.37"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.37"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.10.37"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.37"
∷ word (Δ ∷ ὸ ∷ ς ∷ []) "Mark.10.37"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.37"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.37"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.37"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.37"
∷ word (ἐ ∷ κ ∷ []) "Mark.10.37"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.10.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.37"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.37"
∷ word (ἐ ∷ ξ ∷ []) "Mark.10.37"
∷ word (ἀ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.10.37"
∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.37"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.37"
∷ word (τ ∷ ῇ ∷ []) "Mark.10.37"
∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "Mark.10.37"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.37"
∷ word (ὁ ∷ []) "Mark.10.38"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.38"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.38"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.38"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.38"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.10.38"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.10.38"
∷ word (τ ∷ ί ∷ []) "Mark.10.38"
∷ word (α ∷ ἰ ∷ τ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.38"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.38"
∷ word (π ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.38"
∷ word (τ ∷ ὸ ∷ []) "Mark.10.38"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.38"
∷ word (ὃ ∷ []) "Mark.10.38"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.38"
∷ word (π ∷ ί ∷ ν ∷ ω ∷ []) "Mark.10.38"
∷ word (ἢ ∷ []) "Mark.10.38"
∷ word (τ ∷ ὸ ∷ []) "Mark.10.38"
∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.10.38"
∷ word (ὃ ∷ []) "Mark.10.38"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.38"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.10.38"
∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.38"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.39"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.39"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.10.39"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.39"
∷ word (Δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Mark.10.39"
∷ word (ὁ ∷ []) "Mark.10.39"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.39"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.39"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.39"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.39"
∷ word (Τ ∷ ὸ ∷ []) "Mark.10.39"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.39"
∷ word (ὃ ∷ []) "Mark.10.39"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.39"
∷ word (π ∷ ί ∷ ν ∷ ω ∷ []) "Mark.10.39"
∷ word (π ∷ ί ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.39"
∷ word (τ ∷ ὸ ∷ []) "Mark.10.39"
∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.10.39"
∷ word (ὃ ∷ []) "Mark.10.39"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.39"
∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.10.39"
∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.39"
∷ word (τ ∷ ὸ ∷ []) "Mark.10.40"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.40"
∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.40"
∷ word (ἐ ∷ κ ∷ []) "Mark.10.40"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.10.40"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.10.40"
∷ word (ἢ ∷ []) "Mark.10.40"
∷ word (ἐ ∷ ξ ∷ []) "Mark.10.40"
∷ word (ε ∷ ὐ ∷ ω ∷ ν ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.10.40"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.10.40"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.40"
∷ word (ἐ ∷ μ ∷ ὸ ∷ ν ∷ []) "Mark.10.40"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.40"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.10.40"
∷ word (ο ∷ ἷ ∷ ς ∷ []) "Mark.10.40"
∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.40"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.41"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.41"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.41"
∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Mark.10.41"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.41"
∷ word (ἀ ∷ γ ∷ α ∷ ν ∷ α ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.41"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.10.41"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.10.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.41"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.42"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.42"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.42"
∷ word (ὁ ∷ []) "Mark.10.42"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.42"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.42"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.42"
∷ word (Ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.10.42"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.10.42"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.42"
∷ word (δ ∷ ο ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.42"
∷ word (ἄ ∷ ρ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.42"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.10.42"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ υ ∷ ρ ∷ ι ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.42"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.42"
∷ word (ο ∷ ἱ ∷ []) "Mark.10.42"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.10.42"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.42"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.10.43"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.10.43"
∷ word (δ ∷ έ ∷ []) "Mark.10.43"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.43"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.43"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.43"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.10.43"
∷ word (ὃ ∷ ς ∷ []) "Mark.10.43"
∷ word (ἂ ∷ ν ∷ []) "Mark.10.43"
∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Mark.10.43"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Mark.10.43"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.10.43"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.43"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.43"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.43"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.10.43"
∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.44"
∷ word (ὃ ∷ ς ∷ []) "Mark.10.44"
∷ word (ἂ ∷ ν ∷ []) "Mark.10.44"
∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Mark.10.44"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.44"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.44"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.44"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.10.44"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.44"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.44"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.10.44"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.45"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.45"
∷ word (ὁ ∷ []) "Mark.10.45"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.10.45"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.45"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.10.45"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.10.45"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.45"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.45"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.10.45"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.45"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.45"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.45"
∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.10.45"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.45"
∷ word (∙λ ∷ ύ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.10.45"
∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "Mark.10.45"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.10.45"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.46"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.46"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.46"
∷ word (Ἰ ∷ ε ∷ ρ ∷ ι ∷ χ ∷ ώ ∷ []) "Mark.10.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.46"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.46"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.46"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.10.46"
∷ word (Ἰ ∷ ε ∷ ρ ∷ ι ∷ χ ∷ ὼ ∷ []) "Mark.10.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.46"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.10.46"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.46"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.46"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.10.46"
∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.10.46"
∷ word (ὁ ∷ []) "Mark.10.46"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.10.46"
∷ word (Τ ∷ ι ∷ μ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.46"
∷ word (Β ∷ α ∷ ρ ∷ τ ∷ ι ∷ μ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Mark.10.46"
∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Mark.10.46"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ α ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "Mark.10.46"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ η ∷ τ ∷ ο ∷ []) "Mark.10.46"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.46"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.46"
∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.10.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.47"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.47"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.10.47"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.47"
∷ word (ὁ ∷ []) "Mark.10.47"
∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ ό ∷ ς ∷ []) "Mark.10.47"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.47"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.47"
∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.47"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.47"
∷ word (Υ ∷ ἱ ∷ ὲ ∷ []) "Mark.10.47"
∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.10.47"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.10.47"
∷ word (ἐ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ ό ∷ ν ∷ []) "Mark.10.47"
∷ word (μ ∷ ε ∷ []) "Mark.10.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.48"
∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.10.48"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.48"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.10.48"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.48"
∷ word (σ ∷ ι ∷ ω ∷ π ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.10.48"
∷ word (ὁ ∷ []) "Mark.10.48"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.48"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "Mark.10.48"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.10.48"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ζ ∷ ε ∷ ν ∷ []) "Mark.10.48"
∷ word (Υ ∷ ἱ ∷ ὲ ∷ []) "Mark.10.48"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Mark.10.48"
∷ word (ἐ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ ό ∷ ν ∷ []) "Mark.10.48"
∷ word (μ ∷ ε ∷ []) "Mark.10.48"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.49"
∷ word (σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.10.49"
∷ word (ὁ ∷ []) "Mark.10.49"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.49"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.49"
∷ word (Φ ∷ ω ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.10.49"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.49"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.49"
∷ word (φ ∷ ω ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ []) "Mark.10.49"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.49"
∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.10.49"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.49"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.49"
∷ word (Θ ∷ ά ∷ ρ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.10.49"
∷ word (ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.10.49"
∷ word (φ ∷ ω ∷ ν ∷ ε ∷ ῖ ∷ []) "Mark.10.49"
∷ word (σ ∷ ε ∷ []) "Mark.10.49"
∷ word (ὁ ∷ []) "Mark.10.50"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.50"
∷ word (ἀ ∷ π ∷ ο ∷ β ∷ α ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.10.50"
∷ word (τ ∷ ὸ ∷ []) "Mark.10.50"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.50"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.50"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ η ∷ δ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.50"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.50"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.50"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.50"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.10.50"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.51"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.51"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.51"
∷ word (ὁ ∷ []) "Mark.10.51"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.51"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.51"
∷ word (Τ ∷ ί ∷ []) "Mark.10.51"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.10.51"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.51"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.51"
∷ word (ὁ ∷ []) "Mark.10.51"
∷ word (δ ∷ ὲ ∷ []) "Mark.10.51"
∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Mark.10.51"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.51"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.51"
∷ word (Ρ ∷ α ∷ β ∷ β ∷ ο ∷ υ ∷ ν ∷ ι ∷ []) "Mark.10.51"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.51"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ ω ∷ []) "Mark.10.51"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.52"
∷ word (ὁ ∷ []) "Mark.10.52"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.52"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.52"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.52"
∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.10.52"
∷ word (ἡ ∷ []) "Mark.10.52"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Mark.10.52"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.52"
∷ word (σ ∷ έ ∷ σ ∷ ω ∷ κ ∷ έ ∷ ν ∷ []) "Mark.10.52"
∷ word (σ ∷ ε ∷ []) "Mark.10.52"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.52"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.10.52"
∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.10.52"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.52"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.10.52"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.52"
∷ word (ἐ ∷ ν ∷ []) "Mark.10.52"
∷ word (τ ∷ ῇ ∷ []) "Mark.10.52"
∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.10.52"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.1"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.11.1"
∷ word (ἐ ∷ γ ∷ γ ∷ ί ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.1"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.1"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.1"
∷ word (Β ∷ η ∷ θ ∷ φ ∷ α ∷ γ ∷ ὴ ∷ []) "Mark.11.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.1"
∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.1"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.1"
∷ word (τ ∷ ὸ ∷ []) "Mark.11.1"
∷ word (Ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.11.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.1"
∷ word (Ἐ ∷ ∙λ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.11.1"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.11.1"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.11.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.1"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.2"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.2"
∷ word (Ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.2"
∷ word (κ ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Mark.11.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.2"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Mark.11.2"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.2"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.11.2"
∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.11.2"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.11.2"
∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.2"
∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.2"
∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.11.2"
∷ word (ἐ ∷ φ ∷ []) "Mark.11.2"
∷ word (ὃ ∷ ν ∷ []) "Mark.11.2"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.2"
∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.11.2"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.11.2"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.11.2"
∷ word (∙λ ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.2"
∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.3"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.11.3"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.11.3"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.3"
∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.11.3"
∷ word (Τ ∷ ί ∷ []) "Mark.11.3"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.11.3"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.11.3"
∷ word (ε ∷ ἴ ∷ π ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.3"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.3"
∷ word (Ὁ ∷ []) "Mark.11.3"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.11.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.3"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.3"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.11.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.3"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.11.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.3"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.11.3"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.11.3"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.11.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.4"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.11.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.4"
∷ word (ε ∷ ὗ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.11.4"
∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.4"
∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.11.4"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.4"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.11.4"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.11.4"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.11.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.11.4"
∷ word (ἀ ∷ μ ∷ φ ∷ ό ∷ δ ∷ ο ∷ υ ∷ []) "Mark.11.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.4"
∷ word (∙λ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.4"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.11.4"
∷ word (κ ∷ α ∷ ί ∷ []) "Mark.11.5"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.11.5"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.5"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.11.5"
∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.11.5"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.11.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.5"
∷ word (Τ ∷ ί ∷ []) "Mark.11.5"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.11.5"
∷ word (∙λ ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.5"
∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.5"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.11.6"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.11.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.6"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.11.6"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.11.6"
∷ word (ὁ ∷ []) "Mark.11.6"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.6"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ α ∷ ν ∷ []) "Mark.11.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.11.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.7"
∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.7"
∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.7"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.7"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.11.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.7"
∷ word (ἐ ∷ π ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.7"
∷ word (τ ∷ ὰ ∷ []) "Mark.11.7"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.7"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.11.7"
∷ word (ἐ ∷ π ∷ []) "Mark.11.7"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.11.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.8"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.11.8"
∷ word (τ ∷ ὰ ∷ []) "Mark.11.8"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.11.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.8"
∷ word (ἔ ∷ σ ∷ τ ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.8"
∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.11.8"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.11.8"
∷ word (δ ∷ ὲ ∷ []) "Mark.11.8"
∷ word (σ ∷ τ ∷ ι ∷ β ∷ ά ∷ δ ∷ α ∷ ς ∷ []) "Mark.11.8"
∷ word (κ ∷ ό ∷ ψ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.8"
∷ word (ἐ ∷ κ ∷ []) "Mark.11.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.8"
∷ word (ἀ ∷ γ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.11.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.9"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.9"
∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.9"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.9"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.9"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.11.9"
∷ word (Ὡ ∷ σ ∷ α ∷ ν ∷ ν ∷ ά ∷ []) "Mark.11.9"
∷ word (Ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.9"
∷ word (ὁ ∷ []) "Mark.11.9"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.9"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.9"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.11.9"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.11.9"
∷ word (Ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.11.10"
∷ word (ἡ ∷ []) "Mark.11.10"
∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.11.10"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.11.10"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.11.10"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.10"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.10"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Mark.11.10"
∷ word (Ὡ ∷ σ ∷ α ∷ ν ∷ ν ∷ ὰ ∷ []) "Mark.11.10"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.10"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.10"
∷ word (ὑ ∷ ψ ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.11.10"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.11"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.11"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.11"
∷ word (τ ∷ ὸ ∷ []) "Mark.11.11"
∷ word (ἱ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.11.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.11"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.11"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.11.11"
∷ word (ὀ ∷ ψ ∷ ὲ ∷ []) "Mark.11.11"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.11.11"
∷ word (ο ∷ ὔ ∷ σ ∷ η ∷ ς ∷ []) "Mark.11.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.11.11"
∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.11.11"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.11"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.11"
∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.11"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.11.11"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.11"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.11.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.12"
∷ word (τ ∷ ῇ ∷ []) "Mark.11.12"
∷ word (ἐ ∷ π ∷ α ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.11.12"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.11.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.12"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.11.12"
∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Mark.11.12"
∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ν ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.11.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.13"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.11.13"
∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ ν ∷ []) "Mark.11.13"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.11.13"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.13"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.13"
∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.11.13"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.13"
∷ word (ε ∷ ἰ ∷ []) "Mark.11.13"
∷ word (ἄ ∷ ρ ∷ α ∷ []) "Mark.11.13"
∷ word (τ ∷ ι ∷ []) "Mark.11.13"
∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.11.13"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.11.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.13"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.11.13"
∷ word (ἐ ∷ π ∷ []) "Mark.11.13"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.11.13"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.11.13"
∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.11.13"
∷ word (ε ∷ ἰ ∷ []) "Mark.11.13"
∷ word (μ ∷ ὴ ∷ []) "Mark.11.13"
∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.11.13"
∷ word (ὁ ∷ []) "Mark.11.13"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.13"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.13"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.11.13"
∷ word (ἦ ∷ ν ∷ []) "Mark.11.13"
∷ word (σ ∷ ύ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.11.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.14"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.14"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.11.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.11.14"
∷ word (Μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.11.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.14"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.14"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.11.14"
∷ word (ἐ ∷ κ ∷ []) "Mark.11.14"
∷ word (σ ∷ ο ∷ ῦ ∷ []) "Mark.11.14"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.14"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.11.14"
∷ word (φ ∷ ά ∷ γ ∷ ο ∷ ι ∷ []) "Mark.11.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.14"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ο ∷ ν ∷ []) "Mark.11.14"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.14"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.11.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.14"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.15"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.15"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.11.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.15"
∷ word (τ ∷ ὸ ∷ []) "Mark.11.15"
∷ word (ἱ ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.11.15"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.11.15"
∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.11.15"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.11.15"
∷ word (π ∷ ω ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.11.15"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.11.15"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.15"
∷ word (τ ∷ ῷ ∷ []) "Mark.11.15"
∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.11.15"
∷ word (τ ∷ ρ ∷ α ∷ π ∷ έ ∷ ζ ∷ α ∷ ς ∷ []) "Mark.11.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.15"
∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ υ ∷ β ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ θ ∷ έ ∷ δ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.11.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.15"
∷ word (π ∷ ω ∷ ∙λ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.11.15"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.11.15"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ὰ ∷ ς ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ σ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.11.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.16"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.11.16"
∷ word (ἤ ∷ φ ∷ ι ∷ ε ∷ ν ∷ []) "Mark.11.16"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.11.16"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.11.16"
∷ word (δ ∷ ι ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ ῃ ∷ []) "Mark.11.16"
∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Mark.11.16"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.11.16"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.11.16"
∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.11.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.17"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.11.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.17"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.11.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.17"
∷ word (Ο ∷ ὐ ∷ []) "Mark.11.17"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.17"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.17"
∷ word (Ὁ ∷ []) "Mark.11.17"
∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ς ∷ []) "Mark.11.17"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.11.17"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ς ∷ []) "Mark.11.17"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.11.17"
∷ word (κ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.17"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.17"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.17"
∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.17"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.17"
∷ word (δ ∷ ὲ ∷ []) "Mark.11.17"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ ή ∷ κ ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.17"
∷ word (σ ∷ π ∷ ή ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.11.17"
∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.18"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.18"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.18"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.18"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.18"
∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.11.18"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.11.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.18"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.18"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.18"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.18"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.11.18"
∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.11.18"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.18"
∷ word (ὁ ∷ []) "Mark.11.18"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.11.18"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.11.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.11.18"
∷ word (τ ∷ ῇ ∷ []) "Mark.11.18"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.11.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.18"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.19"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.11.19"
∷ word (ὀ ∷ ψ ∷ ὲ ∷ []) "Mark.11.19"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.11.19"
∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.19"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.11.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.11.19"
∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.11.19"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.20"
∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.11.20"
∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.11.20"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.11.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.20"
∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ ν ∷ []) "Mark.11.20"
∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Mark.11.20"
∷ word (ἐ ∷ κ ∷ []) "Mark.11.20"
∷ word (ῥ ∷ ι ∷ ζ ∷ ῶ ∷ ν ∷ []) "Mark.11.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.21"
∷ word (ἀ ∷ ν ∷ α ∷ μ ∷ ν ∷ η ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.21"
∷ word (ὁ ∷ []) "Mark.11.21"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.11.21"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.21"
∷ word (Ῥ ∷ α ∷ β ∷ β ∷ ί ∷ []) "Mark.11.21"
∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.11.21"
∷ word (ἡ ∷ []) "Mark.11.21"
∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ []) "Mark.11.21"
∷ word (ἣ ∷ ν ∷ []) "Mark.11.21"
∷ word (κ ∷ α ∷ τ ∷ η ∷ ρ ∷ ά ∷ σ ∷ ω ∷ []) "Mark.11.21"
∷ word (ἐ ∷ ξ ∷ ή ∷ ρ ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.22"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.22"
∷ word (ὁ ∷ []) "Mark.11.22"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.22"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.22"
∷ word (Ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.22"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.11.22"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.11.22"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.11.23"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.11.23"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.23"
∷ word (ὃ ∷ ς ∷ []) "Mark.11.23"
∷ word (ἂ ∷ ν ∷ []) "Mark.11.23"
∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.11.23"
∷ word (τ ∷ ῷ ∷ []) "Mark.11.23"
∷ word (ὄ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.11.23"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.11.23"
∷ word (Ἄ ∷ ρ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.11.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.23"
∷ word (β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.11.23"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.23"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.23"
∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.23"
∷ word (μ ∷ ὴ ∷ []) "Mark.11.23"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῇ ∷ []) "Mark.11.23"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.23"
∷ word (τ ∷ ῇ ∷ []) "Mark.11.23"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Mark.11.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.23"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.11.23"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ῃ ∷ []) "Mark.11.23"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.23"
∷ word (ὃ ∷ []) "Mark.11.23"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.11.23"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.23"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.23"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.11.24"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.11.24"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.11.24"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.24"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.11.24"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.11.24"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.11.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.24"
∷ word (α ∷ ἰ ∷ τ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.11.24"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.24"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.24"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.24"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.24"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.25"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.11.25"
∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.25"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.11.25"
∷ word (ἀ ∷ φ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.25"
∷ word (ε ∷ ἴ ∷ []) "Mark.11.25"
∷ word (τ ∷ ι ∷ []) "Mark.11.25"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.25"
∷ word (κ ∷ α ∷ τ ∷ ά ∷ []) "Mark.11.25"
∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.25"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.11.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.25"
∷ word (ὁ ∷ []) "Mark.11.25"
∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Mark.11.25"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.25"
∷ word (ὁ ∷ []) "Mark.11.25"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.25"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.25"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.25"
∷ word (ἀ ∷ φ ∷ ῇ ∷ []) "Mark.11.25"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.25"
∷ word (τ ∷ ὰ ∷ []) "Mark.11.25"
∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.11.25"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.25"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.27"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.27"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.11.27"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.27"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.27"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.27"
∷ word (τ ∷ ῷ ∷ []) "Mark.11.27"
∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.11.27"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.11.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.27"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.27"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.27"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.27"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.27"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.27"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.27"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.27"
∷ word (ο ∷ ἱ ∷ []) "Mark.11.27"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Mark.11.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.28"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.11.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.28"
∷ word (Ἐ ∷ ν ∷ []) "Mark.11.28"
∷ word (π ∷ ο ∷ ί ∷ ᾳ ∷ []) "Mark.11.28"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.11.28"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.28"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.28"
∷ word (ἢ ∷ []) "Mark.11.28"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.11.28"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.11.28"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.11.28"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.28"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.28"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.11.28"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.11.28"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.28"
∷ word (π ∷ ο ∷ ι ∷ ῇ ∷ ς ∷ []) "Mark.11.28"
∷ word (ὁ ∷ []) "Mark.11.29"
∷ word (δ ∷ ὲ ∷ []) "Mark.11.29"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.29"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.11.29"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.29"
∷ word (Ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.11.29"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.11.29"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.11.29"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.11.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.29"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ τ ∷ έ ∷ []) "Mark.11.29"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.11.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.29"
∷ word (ἐ ∷ ρ ∷ ῶ ∷ []) "Mark.11.29"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.29"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.29"
∷ word (π ∷ ο ∷ ί ∷ ᾳ ∷ []) "Mark.11.29"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.11.29"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.29"
∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Mark.11.29"
∷ word (τ ∷ ὸ ∷ []) "Mark.11.30"
∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.11.30"
∷ word (τ ∷ ὸ ∷ []) "Mark.11.30"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.11.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.11.30"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.11.30"
∷ word (ἦ ∷ ν ∷ []) "Mark.11.30"
∷ word (ἢ ∷ []) "Mark.11.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.11.30"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.11.30"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ τ ∷ έ ∷ []) "Mark.11.30"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.11.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.31"
∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.31"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.31"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.11.31"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.31"
∷ word (Τ ∷ ί ∷ []) "Mark.11.31"
∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.31"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.11.31"
∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.31"
∷ word (Ἐ ∷ ξ ∷ []) "Mark.11.31"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.11.31"
∷ word (ἐ ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.11.31"
∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.11.31"
∷ word (τ ∷ ί ∷ []) "Mark.11.31"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.11.31"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.11.31"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.31"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.31"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.11.32"
∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.32"
∷ word (Ἐ ∷ ξ ∷ []) "Mark.11.32"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.11.32"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.32"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.32"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.32"
∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.32"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.32"
∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.11.32"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.32"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.11.32"
∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "Mark.11.32"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.32"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Mark.11.32"
∷ word (ἦ ∷ ν ∷ []) "Mark.11.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.33"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.33"
∷ word (τ ∷ ῷ ∷ []) "Mark.11.33"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.11.33"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.33"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.11.33"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.33"
∷ word (ὁ ∷ []) "Mark.11.33"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.33"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.33"
∷ word (Ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.11.33"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.11.33"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.11.33"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.33"
∷ word (ἐ ∷ ν ∷ []) "Mark.11.33"
∷ word (π ∷ ο ∷ ί ∷ ᾳ ∷ []) "Mark.11.33"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.11.33"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.33"
∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Mark.11.33"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.1"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.12.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.1"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.1"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.1"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.12.1"
∷ word (Ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.12.1"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.12.1"
∷ word (ἐ ∷ φ ∷ ύ ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.12.1"
∷ word (φ ∷ ρ ∷ α ∷ γ ∷ μ ∷ ὸ ∷ ν ∷ []) "Mark.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1"
∷ word (ὤ ∷ ρ ∷ υ ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.12.1"
∷ word (ὑ ∷ π ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1"
∷ word (ᾠ ∷ κ ∷ ο ∷ δ ∷ ό ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.1"
∷ word (π ∷ ύ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1"
∷ word (ἐ ∷ ξ ∷ έ ∷ δ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.12.1"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.1"
∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1"
∷ word (ἀ ∷ π ∷ ε ∷ δ ∷ ή ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.2"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.2"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.2"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.2"
∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.2"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.2"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "Mark.12.2"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.2"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.2"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.12.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.2"
∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ῶ ∷ ν ∷ []) "Mark.12.2"
∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.12.2"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.12.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.2"
∷ word (κ ∷ α ∷ ρ ∷ π ∷ ῶ ∷ ν ∷ []) "Mark.12.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.2"
∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.3"
∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.3"
∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "Mark.12.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.3"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.12.3"
∷ word (κ ∷ ε ∷ ν ∷ ό ∷ ν ∷ []) "Mark.12.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.4"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.12.4"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.4"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.4"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.4"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.4"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.4"
∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.12.4"
∷ word (ἐ ∷ κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ί ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.4"
∷ word (ἠ ∷ τ ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.5"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.5"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.5"
∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.12.5"
∷ word (ἀ ∷ π ∷ έ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Mark.12.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.5"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.5"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.12.5"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.12.5"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.12.5"
∷ word (δ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.5"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.12.5"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.5"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ έ ∷ ν ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.5"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.12.6"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.12.6"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.12.6"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.12.6"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.6"
∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.6"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.6"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.12.6"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.6"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.12.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.6"
∷ word (Ἐ ∷ ν ∷ τ ∷ ρ ∷ α ∷ π ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.6"
∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Mark.12.6"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.12.6"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.12.7"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.7"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.7"
∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ὶ ∷ []) "Mark.12.7"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.7"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.7"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.12.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.7"
∷ word (Ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.12.7"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.7"
∷ word (ὁ ∷ []) "Mark.12.7"
∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Mark.12.7"
∷ word (δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Mark.12.7"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.7"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.7"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.12.7"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.7"
∷ word (ἡ ∷ []) "Mark.12.7"
∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ []) "Mark.12.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.8"
∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.8"
∷ word (ἀ ∷ π ∷ έ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Mark.12.8"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.8"
∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.8"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.8"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.12.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.8"
∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.8"
∷ word (τ ∷ ί ∷ []) "Mark.12.9"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.9"
∷ word (ὁ ∷ []) "Mark.12.9"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.9"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.9"
∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.9"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.9"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.9"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.9"
∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.12.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.9"
∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.9"
∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.12.9"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.12.9"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.12.10"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.10"
∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ὴ ∷ ν ∷ []) "Mark.12.10"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.12.10"
∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "Mark.12.10"
∷ word (Λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.12.10"
∷ word (ὃ ∷ ν ∷ []) "Mark.12.10"
∷ word (ἀ ∷ π ∷ ε ∷ δ ∷ ο ∷ κ ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.10"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.10"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.10"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.10"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Mark.12.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.10"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.12.10"
∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.10"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.12.11"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.12.11"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.12.11"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.11"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.11"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ὴ ∷ []) "Mark.12.11"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.11"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.11"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.12.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.12"
∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.12.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.12"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.12.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.12"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.12"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.12"
∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.12"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.12"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.12"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.12.12"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.12"
∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.12"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.12"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.12.12"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.13"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.13"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.13"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.13"
∷ word (τ ∷ ι ∷ ν ∷ α ∷ ς ∷ []) "Mark.12.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.13"
∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.12.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.13"
∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.12.13"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.13"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.13"
∷ word (ἀ ∷ γ ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.13"
∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "Mark.12.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.14"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.14"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.14"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.12.14"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.14"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ὴ ∷ ς ∷ []) "Mark.12.14"
∷ word (ε ∷ ἶ ∷ []) "Mark.12.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.14"
∷ word (ο ∷ ὐ ∷ []) "Mark.12.14"
∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.12.14"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.12.14"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.12.14"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ό ∷ ς ∷ []) "Mark.12.14"
∷ word (ο ∷ ὐ ∷ []) "Mark.12.14"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.14"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.14"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.12.14"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.12.14"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.12.14"
∷ word (ἐ ∷ π ∷ []) "Mark.12.14"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.14"
∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.12.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.14"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.14"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.14"
∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.14"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.12.14"
∷ word (κ ∷ ῆ ∷ ν ∷ σ ∷ ο ∷ ν ∷ []) "Mark.12.14"
∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ι ∷ []) "Mark.12.14"
∷ word (ἢ ∷ []) "Mark.12.14"
∷ word (ο ∷ ὔ ∷ []) "Mark.12.14"
∷ word (δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.14"
∷ word (ἢ ∷ []) "Mark.12.14"
∷ word (μ ∷ ὴ ∷ []) "Mark.12.14"
∷ word (δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.14"
∷ word (ὁ ∷ []) "Mark.12.15"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.15"
∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Mark.12.15"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.12.15"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.15"
∷ word (ὑ ∷ π ∷ ό ∷ κ ∷ ρ ∷ ι ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.15"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.15"
∷ word (Τ ∷ ί ∷ []) "Mark.12.15"
∷ word (μ ∷ ε ∷ []) "Mark.12.15"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.12.15"
∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ έ ∷ []) "Mark.12.15"
∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.12.15"
∷ word (δ ∷ η ∷ ν ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.15"
∷ word (ἴ ∷ δ ∷ ω ∷ []) "Mark.12.15"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.16"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.16"
∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ ν ∷ []) "Mark.12.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.16"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.12.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.16"
∷ word (Τ ∷ ί ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.16"
∷ word (ἡ ∷ []) "Mark.12.16"
∷ word (ε ∷ ἰ ∷ κ ∷ ὼ ∷ ν ∷ []) "Mark.12.16"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.16"
∷ word (ἡ ∷ []) "Mark.12.16"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ρ ∷ α ∷ φ ∷ ή ∷ []) "Mark.12.16"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.16"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.16"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.12.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.16"
∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.12.16"
∷ word (ὁ ∷ []) "Mark.12.17"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.17"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.17"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.17"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.17"
∷ word (Τ ∷ ὰ ∷ []) "Mark.12.17"
∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.12.17"
∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ο ∷ τ ∷ ε ∷ []) "Mark.12.17"
∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ι ∷ []) "Mark.12.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.17"
∷ word (τ ∷ ὰ ∷ []) "Mark.12.17"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.17"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.17"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.17"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "Mark.12.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.17"
∷ word (ἐ ∷ ξ ∷ ε ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.12.17"
∷ word (ἐ ∷ π ∷ []) "Mark.12.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.17"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.18"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.18"
∷ word (Σ ∷ α ∷ δ ∷ δ ∷ ο ∷ υ ∷ κ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.12.18"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.18"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.18"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.12.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.18"
∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.18"
∷ word (μ ∷ ὴ ∷ []) "Mark.12.18"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.12.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.18"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.18"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.18"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.12.19"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.12.19"
∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.12.19"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.12.19"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.19"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.12.19"
∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.19"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.12.19"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ά ∷ ν ∷ ῃ ∷ []) "Mark.12.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.19"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ί ∷ π ∷ ῃ ∷ []) "Mark.12.19"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.19"
∷ word (μ ∷ ὴ ∷ []) "Mark.12.19"
∷ word (ἀ ∷ φ ∷ ῇ ∷ []) "Mark.12.19"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.12.19"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.19"
∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.12.19"
∷ word (ὁ ∷ []) "Mark.12.19"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.12.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.19"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.19"
∷ word (ἐ ∷ ξ ∷ α ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.12.19"
∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.19"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.19"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῷ ∷ []) "Mark.12.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.19"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.20"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Mark.12.20"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.20"
∷ word (ὁ ∷ []) "Mark.12.20"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.20"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.12.20"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.20"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.12.20"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.20"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.12.20"
∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.21"
∷ word (ὁ ∷ []) "Mark.12.21"
∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.12.21"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.12.21"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.12.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.21"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.12.21"
∷ word (μ ∷ ὴ ∷ []) "Mark.12.21"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ι ∷ π ∷ ὼ ∷ ν ∷ []) "Mark.12.21"
∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.21"
∷ word (ὁ ∷ []) "Mark.12.21"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.21"
∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.12.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.22"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.22"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.22"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.22"
∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ α ∷ ν ∷ []) "Mark.12.22"
∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.22"
∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.12.22"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.22"
∷ word (ἡ ∷ []) "Mark.12.22"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.12.22"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.12.22"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.23"
∷ word (τ ∷ ῇ ∷ []) "Mark.12.23"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.23"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.12.23"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.23"
∷ word (τ ∷ ί ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.12.23"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.23"
∷ word (γ ∷ υ ∷ ν ∷ ή ∷ []) "Mark.12.23"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.23"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.23"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.23"
∷ word (ἔ ∷ σ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.12.23"
∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.12.23"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.23"
∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.12.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.24"
∷ word (ὁ ∷ []) "Mark.12.24"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.24"
∷ word (Ο ∷ ὐ ∷ []) "Mark.12.24"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.12.24"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.12.24"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.12.24"
∷ word (μ ∷ ὴ ∷ []) "Mark.12.24"
∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.24"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.12.24"
∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ὰ ∷ ς ∷ []) "Mark.12.24"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.12.24"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.24"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.12.24"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.24"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.24"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.12.25"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.25"
∷ word (ἐ ∷ κ ∷ []) "Mark.12.25"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.25"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.25"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.12.25"
∷ word (γ ∷ α ∷ μ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.25"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.12.25"
∷ word (γ ∷ α ∷ μ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.25"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.12.25"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.12.25"
∷ word (ὡ ∷ ς ∷ []) "Mark.12.25"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.12.25"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.25"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.25"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.25"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.12.26"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.26"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.26"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.26"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.26"
∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.26"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.26"
∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "Mark.12.26"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.26"
∷ word (τ ∷ ῇ ∷ []) "Mark.12.26"
∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ῳ ∷ []) "Mark.12.26"
∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.12.26"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.12.26"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.26"
∷ word (β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.12.26"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.12.26"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.26"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.26"
∷ word (ὁ ∷ []) "Mark.12.26"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.12.26"
∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Mark.12.26"
∷ word (ὁ ∷ []) "Mark.12.26"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26"
∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Mark.12.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.26"
∷ word (ὁ ∷ []) "Mark.12.26"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26"
∷ word (Ἰ ∷ σ ∷ α ∷ ὰ ∷ κ ∷ []) "Mark.12.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.26"
∷ word (ὁ ∷ []) "Mark.12.26"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ []) "Mark.12.26"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.27"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.27"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.27"
∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.27"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.12.27"
∷ word (ζ ∷ ώ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.27"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Mark.12.27"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.12.27"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.28"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.12.28"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.12.28"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.28"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.12.28"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.12.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.12.28"
∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.28"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.12.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.28"
∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.12.28"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.12.28"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.28"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.28"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.28"
∷ word (Π ∷ ο ∷ ί ∷ α ∷ []) "Mark.12.28"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.12.28"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Mark.12.28"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Mark.12.28"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.28"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.12.29"
∷ word (ὁ ∷ []) "Mark.12.29"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.29"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.29"
∷ word (Π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Mark.12.29"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.12.29"
∷ word (Ἄ ∷ κ ∷ ο ∷ υ ∷ ε ∷ []) "Mark.12.29"
∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Mark.12.29"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.29"
∷ word (ὁ ∷ []) "Mark.12.29"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.29"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.12.29"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.29"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.12.29"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.30"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.30"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.30"
∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Mark.12.30"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.30"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30"
∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.12.30"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30"
∷ word (δ ∷ ι ∷ α ∷ ν ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.30"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30"
∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "Mark.12.30"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30"
∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.12.31"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.31"
∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.31"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.31"
∷ word (π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.12.31"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.31"
∷ word (ὡ ∷ ς ∷ []) "Mark.12.31"
∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.31"
∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.12.31"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.31"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "Mark.12.31"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Mark.12.31"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.31"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.32"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.32"
∷ word (ὁ ∷ []) "Mark.12.32"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ς ∷ []) "Mark.12.32"
∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.12.32"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.12.32"
∷ word (ἐ ∷ π ∷ []) "Mark.12.32"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.32"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ς ∷ []) "Mark.12.32"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.32"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.12.32"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.32"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.32"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.32"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.12.32"
∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.12.32"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33"
∷ word (τ ∷ ὸ ∷ []) "Mark.12.33"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ ν ∷ []) "Mark.12.33"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.33"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.33"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.33"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.33"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.33"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.33"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.33"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.12.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33"
∷ word (ἐ ∷ ξ ∷ []) "Mark.12.33"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.33"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.33"
∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "Mark.12.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33"
∷ word (τ ∷ ὸ ∷ []) "Mark.12.33"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ ν ∷ []) "Mark.12.33"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.33"
∷ word (π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.12.33"
∷ word (ὡ ∷ ς ∷ []) "Mark.12.33"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.33"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.12.33"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.33"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.33"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.33"
∷ word (ὁ ∷ ∙λ ∷ ο ∷ κ ∷ α ∷ υ ∷ τ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33"
∷ word (θ ∷ υ ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.12.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.34"
∷ word (ὁ ∷ []) "Mark.12.34"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.34"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.12.34"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.34"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.34"
∷ word (ν ∷ ο ∷ υ ∷ ν ∷ ε ∷ χ ∷ ῶ ∷ ς ∷ []) "Mark.12.34"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.12.34"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.34"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.34"
∷ word (Ο ∷ ὐ ∷ []) "Mark.12.34"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ὰ ∷ ν ∷ []) "Mark.12.34"
∷ word (ε ∷ ἶ ∷ []) "Mark.12.34"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.12.34"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.34"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.34"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.34"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.34"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.12.34"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.12.34"
∷ word (ἐ ∷ τ ∷ ό ∷ ∙λ ∷ μ ∷ α ∷ []) "Mark.12.34"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.34"
∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.12.34"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.35"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.12.35"
∷ word (ὁ ∷ []) "Mark.12.35"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.35"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.12.35"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.12.35"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.35"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.35"
∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.12.35"
∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.12.35"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.35"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.35"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.12.35"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.35"
∷ word (ὁ ∷ []) "Mark.12.35"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.12.35"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.12.35"
∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Mark.12.35"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.35"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.12.36"
∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.12.36"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.36"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.36"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.36"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.12.36"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.36"
∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Mark.12.36"
∷ word (Ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.36"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.36"
∷ word (τ ∷ ῷ ∷ []) "Mark.12.36"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Mark.12.36"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.12.36"
∷ word (Κ ∷ ά ∷ θ ∷ ο ∷ υ ∷ []) "Mark.12.36"
∷ word (ἐ ∷ κ ∷ []) "Mark.12.36"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.12.36"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.12.36"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.12.36"
∷ word (ἂ ∷ ν ∷ []) "Mark.12.36"
∷ word (θ ∷ ῶ ∷ []) "Mark.12.36"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.36"
∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.12.36"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.36"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.12.36"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.36"
∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Mark.12.36"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.36"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.12.37"
∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.12.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.12.37"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.37"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.37"
∷ word (π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.12.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.37"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.37"
∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.12.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.37"
∷ word (ὁ ∷ []) "Mark.12.37"
∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ς ∷ []) "Mark.12.37"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.12.37"
∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ε ∷ ν ∷ []) "Mark.12.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.37"
∷ word (ἡ ∷ δ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.12.37"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.38"
∷ word (τ ∷ ῇ ∷ []) "Mark.12.38"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.12.38"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.38"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.12.38"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.12.38"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.12.38"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.38"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.12.38"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.38"
∷ word (θ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.38"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.38"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.12.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.38"
∷ word (ἀ ∷ σ ∷ π ∷ α ∷ σ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.38"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.38"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.38"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.39"
∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ο ∷ κ ∷ α ∷ θ ∷ ε ∷ δ ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.39"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.39"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.39"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.39"
∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ο ∷ κ ∷ ∙λ ∷ ι ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.39"
∷ word (ἐ ∷ ν ∷ []) "Mark.12.39"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.39"
∷ word (δ ∷ ε ∷ ί ∷ π ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.12.39"
∷ word (ο ∷ ἱ ∷ []) "Mark.12.40"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ θ ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.40"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.12.40"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.40"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.40"
∷ word (χ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.40"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.40"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ὰ ∷ []) "Mark.12.40"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.12.40"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.12.40"
∷ word (∙λ ∷ ή ∷ μ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.40"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.12.40"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Mark.12.40"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.41"
∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Mark.12.41"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Mark.12.41"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.41"
∷ word (γ ∷ α ∷ ζ ∷ ο ∷ φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.12.41"
∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.12.41"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.12.41"
∷ word (ὁ ∷ []) "Mark.12.41"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.12.41"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.12.41"
∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ὸ ∷ ν ∷ []) "Mark.12.41"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.41"
∷ word (τ ∷ ὸ ∷ []) "Mark.12.41"
∷ word (γ ∷ α ∷ ζ ∷ ο ∷ φ ∷ υ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.41"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.12.41"
∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.12.41"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.41"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.12.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.42"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.12.42"
∷ word (μ ∷ ί ∷ α ∷ []) "Mark.12.42"
∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "Mark.12.42"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ὴ ∷ []) "Mark.12.42"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.42"
∷ word (∙λ ∷ ε ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.42"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.12.42"
∷ word (ὅ ∷ []) "Mark.12.42"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.42"
∷ word (κ ∷ ο ∷ δ ∷ ρ ∷ ά ∷ ν ∷ τ ∷ η ∷ ς ∷ []) "Mark.12.42"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.43"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.43"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.43"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.12.43"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.43"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.43"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.43"
∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.12.43"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.12.43"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.12.43"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.43"
∷ word (ἡ ∷ []) "Mark.12.43"
∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "Mark.12.43"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.43"
∷ word (ἡ ∷ []) "Mark.12.43"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ὴ ∷ []) "Mark.12.43"
∷ word (π ∷ ∙λ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.12.43"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.43"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.43"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.43"
∷ word (β ∷ α ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.43"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.43"
∷ word (τ ∷ ὸ ∷ []) "Mark.12.43"
∷ word (γ ∷ α ∷ ζ ∷ ο ∷ φ ∷ υ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.43"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.44"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.44"
∷ word (ἐ ∷ κ ∷ []) "Mark.12.44"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.44"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.44"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.44"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.44"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.44"
∷ word (δ ∷ ὲ ∷ []) "Mark.12.44"
∷ word (ἐ ∷ κ ∷ []) "Mark.12.44"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.44"
∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.12.44"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.12.44"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.12.44"
∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.12.44"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.12.44"
∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.44"
∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.44"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.44"
∷ word (β ∷ ί ∷ ο ∷ ν ∷ []) "Mark.12.44"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.12.44"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.13.1"
∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.13.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.1"
∷ word (ἐ ∷ κ ∷ []) "Mark.13.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.1"
∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.13.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.13.1"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.13.1"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.13.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.13.1"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.13.1"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.1"
∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.13.1"
∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.13.1"
∷ word (π ∷ ο ∷ τ ∷ α ∷ π ∷ ο ∷ ὶ ∷ []) "Mark.13.1"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ι ∷ []) "Mark.13.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.1"
∷ word (π ∷ ο ∷ τ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Mark.13.1"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Mark.13.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.2"
∷ word (ὁ ∷ []) "Mark.13.2"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.13.2"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.13.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.13.2"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.13.2"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ς ∷ []) "Mark.13.2"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.13.2"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.13.2"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ά ∷ ς ∷ []) "Mark.13.2"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.2"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.2"
∷ word (ἀ ∷ φ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.13.2"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.13.2"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ς ∷ []) "Mark.13.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.2"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.13.2"
∷ word (ὃ ∷ ς ∷ []) "Mark.13.2"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.2"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.2"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ υ ∷ θ ∷ ῇ ∷ []) "Mark.13.2"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.13.3"
∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.13.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.3"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.3"
∷ word (Ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.13.3"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.13.3"
∷ word (Ἐ ∷ ∙λ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.13.3"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Mark.13.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.3"
∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.13.3"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.13.3"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.13.3"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.13.3"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.3"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.13.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.3"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ς ∷ []) "Mark.13.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.3"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.13.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.3"
∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ α ∷ ς ∷ []) "Mark.13.3"
∷ word (Ε ∷ ἰ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.13.4"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.4"
∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.4"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.4"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.4"
∷ word (τ ∷ ί ∷ []) "Mark.13.4"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.4"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.13.4"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.4"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Mark.13.4"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.4"
∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.13.4"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.4"
∷ word (ὁ ∷ []) "Mark.13.5"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.13.5"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.13.5"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.13.5"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.5"
∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.5"
∷ word (μ ∷ ή ∷ []) "Mark.13.5"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.13.5"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.5"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.13.5"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.13.6"
∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.6"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.6"
∷ word (τ ∷ ῷ ∷ []) "Mark.13.6"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.13.6"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.13.6"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.6"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.6"
∷ word (Ἐ ∷ γ ∷ ώ ∷ []) "Mark.13.6"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Mark.13.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.6"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.6"
∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.6"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.7"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.7"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.7"
∷ word (π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.13.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.7"
∷ word (ἀ ∷ κ ∷ ο ∷ ὰ ∷ ς ∷ []) "Mark.13.7"
∷ word (π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.13.7"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.7"
∷ word (θ ∷ ρ ∷ ο ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.7"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.13.7"
∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.13.7"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.13.7"
∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.13.7"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.7"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.13.7"
∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.8"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.8"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.13.8"
∷ word (ἐ ∷ π ∷ []) "Mark.13.8"
∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.13.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.8"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.13.8"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.8"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.8"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.8"
∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.13.8"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.13.8"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Mark.13.8"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.8"
∷ word (∙λ ∷ ι ∷ μ ∷ ο ∷ ί ∷ []) "Mark.13.8"
∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Mark.13.8"
∷ word (ὠ ∷ δ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Mark.13.8"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.8"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.9"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.9"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.9"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.13.9"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.9"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.9"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ ι ∷ α ∷ []) "Mark.13.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.9"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὰ ∷ ς ∷ []) "Mark.13.9"
∷ word (δ ∷ α ∷ ρ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.9"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.9"
∷ word (ἡ ∷ γ ∷ ε ∷ μ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Mark.13.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.9"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.13.9"
∷ word (σ ∷ τ ∷ α ∷ θ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.9"
∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.13.9"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.13.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.9"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.10"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.10"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.10"
∷ word (τ ∷ ὰ ∷ []) "Mark.13.10"
∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Mark.13.10"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.13.10"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.13.10"
∷ word (κ ∷ η ∷ ρ ∷ υ ∷ χ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.13.10"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.10"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.11"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.11"
∷ word (ἄ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.11"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.11"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.11"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.11"
∷ word (π ∷ ρ ∷ ο ∷ μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾶ ∷ τ ∷ ε ∷ []) "Mark.13.11"
∷ word (τ ∷ ί ∷ []) "Mark.13.11"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.11"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.13.11"
∷ word (ὃ ∷ []) "Mark.13.11"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.13.11"
∷ word (δ ∷ ο ∷ θ ∷ ῇ ∷ []) "Mark.13.11"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.11"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.11"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.13.11"
∷ word (τ ∷ ῇ ∷ []) "Mark.13.11"
∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Mark.13.11"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.13.11"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.11"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.11"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.13.11"
∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.13.11"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.11"
∷ word (ο ∷ ἱ ∷ []) "Mark.13.11"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.11"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.13.11"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.11"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.13.11"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.11"
∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.13.12"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.13.12"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.13.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.12"
∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12"
∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Mark.13.12"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12"
∷ word (ἐ ∷ π ∷ α ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.12"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.13.12"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.12"
∷ word (γ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12"
∷ word (θ ∷ α ∷ ν ∷ α ∷ τ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.13.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.13"
∷ word (ἔ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.13"
∷ word (μ ∷ ι ∷ σ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.13.13"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.13.13"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.13.13"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.13.13"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.13"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Mark.13.13"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.13.13"
∷ word (ὁ ∷ []) "Mark.13.13"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.13"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ε ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Mark.13.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.13"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.13.13"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.13.13"
∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.13"
∷ word (Ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.14"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.14"
∷ word (ἴ ∷ δ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.14"
∷ word (β ∷ δ ∷ έ ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "Mark.13.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.14"
∷ word (ἐ ∷ ρ ∷ η ∷ μ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.13.14"
∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Mark.13.14"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.13.14"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.14"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.13.14"
∷ word (ὁ ∷ []) "Mark.13.14"
∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.13.14"
∷ word (ν ∷ ο ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "Mark.13.14"
∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.14"
∷ word (ο ∷ ἱ ∷ []) "Mark.13.14"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.14"
∷ word (τ ∷ ῇ ∷ []) "Mark.13.14"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ᾳ ∷ []) "Mark.13.14"
∷ word (φ ∷ ε ∷ υ ∷ γ ∷ έ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.13.14"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.14"
∷ word (τ ∷ ὰ ∷ []) "Mark.13.14"
∷ word (ὄ ∷ ρ ∷ η ∷ []) "Mark.13.14"
∷ word (ὁ ∷ []) "Mark.13.15"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.15"
∷ word (δ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.13.15"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.15"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ά ∷ τ ∷ ω ∷ []) "Mark.13.15"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.13.15"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.13.15"
∷ word (τ ∷ ι ∷ []) "Mark.13.15"
∷ word (ἆ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.13.15"
∷ word (ἐ ∷ κ ∷ []) "Mark.13.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.15"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.13.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.16"
∷ word (ὁ ∷ []) "Mark.13.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.16"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.13.16"
∷ word (ἀ ∷ γ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.13.16"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.16"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.13.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.16"
∷ word (τ ∷ ὰ ∷ []) "Mark.13.16"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.13.16"
∷ word (ἆ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.13.16"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.16"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.16"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Mark.13.17"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.17"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.17"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.17"
∷ word (γ ∷ α ∷ σ ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.13.17"
∷ word (ἐ ∷ χ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.17"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.17"
∷ word (θ ∷ η ∷ ∙λ ∷ α ∷ ζ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.17"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.17"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.18"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.13.18"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.18"
∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.18"
∷ word (χ ∷ ε ∷ ι ∷ μ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.13.18"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.19"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.19"
∷ word (α ∷ ἱ ∷ []) "Mark.13.19"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.13.19"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.13.19"
∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ς ∷ []) "Mark.13.19"
∷ word (ο ∷ ἵ ∷ α ∷ []) "Mark.13.19"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.19"
∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.13.19"
∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ η ∷ []) "Mark.13.19"
∷ word (ἀ ∷ π ∷ []) "Mark.13.19"
∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.13.19"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.13.19"
∷ word (ἣ ∷ ν ∷ []) "Mark.13.19"
∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.13.19"
∷ word (ὁ ∷ []) "Mark.13.19"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.13.19"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.13.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.19"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Mark.13.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.19"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.19"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.19"
∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.20"
∷ word (ε ∷ ἰ ∷ []) "Mark.13.20"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.20"
∷ word (ἐ ∷ κ ∷ ο ∷ ∙λ ∷ ό ∷ β ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Mark.13.20"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.13.20"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.13.20"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.20"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.13.20"
∷ word (ἂ ∷ ν ∷ []) "Mark.13.20"
∷ word (ἐ ∷ σ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.13.20"
∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Mark.13.20"
∷ word (σ ∷ ά ∷ ρ ∷ ξ ∷ []) "Mark.13.20"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.13.20"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.13.20"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.20"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.20"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.13.20"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.13.20"
∷ word (ἐ ∷ κ ∷ ο ∷ ∙λ ∷ ό ∷ β ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Mark.13.20"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.13.20"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.21"
∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.21"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.13.21"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.13.21"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.21"
∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.13.21"
∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.13.21"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.13.21"
∷ word (ὁ ∷ []) "Mark.13.21"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.13.21"
∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.13.21"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.13.21"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.21"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.21"
∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.22"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.22"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ό ∷ χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.13.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.22"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.22"
∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.22"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Mark.13.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.22"
∷ word (τ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Mark.13.22"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.13.22"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.22"
∷ word (ἀ ∷ π ∷ ο ∷ π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ ν ∷ []) "Mark.13.22"
∷ word (ε ∷ ἰ ∷ []) "Mark.13.22"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.13.22"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.22"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.13.22"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.23"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.23"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.23"
∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ί ∷ ρ ∷ η ∷ κ ∷ α ∷ []) "Mark.13.23"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.23"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.23"
∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.13.24"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.24"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.24"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.24"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.24"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.13.24"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.24"
∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Mark.13.24"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.13.24"
∷ word (ὁ ∷ []) "Mark.13.24"
∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.13.24"
∷ word (σ ∷ κ ∷ ο ∷ τ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.24"
∷ word (ἡ ∷ []) "Mark.13.24"
∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Mark.13.24"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.24"
∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.13.24"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.24"
∷ word (φ ∷ έ ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Mark.13.24"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.13.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.25"
∷ word (ο ∷ ἱ ∷ []) "Mark.13.25"
∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Mark.13.25"
∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.25"
∷ word (ἐ ∷ κ ∷ []) "Mark.13.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.25"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.13.25"
∷ word (π ∷ ί ∷ π ∷ τ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.25"
∷ word (α ∷ ἱ ∷ []) "Mark.13.25"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.13.25"
∷ word (α ∷ ἱ ∷ []) "Mark.13.25"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.25"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.25"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.25"
∷ word (σ ∷ α ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.26"
∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.26"
∷ word (ὄ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.26"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.13.26"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.13.26"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.26"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.13.26"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.13.26"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.26"
∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.26"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.13.26"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.13.26"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.13.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.26"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Mark.13.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.27"
∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.27"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.13.27"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.27"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.13.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.27"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ ά ∷ ξ ∷ ε ∷ ι ∷ []) "Mark.13.27"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.27"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.27"
∷ word (ἐ ∷ κ ∷ []) "Mark.13.27"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.13.27"
∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.13.27"
∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.13.27"
∷ word (ἀ ∷ π ∷ []) "Mark.13.27"
∷ word (ἄ ∷ κ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.13.27"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.13.27"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.13.27"
∷ word (ἄ ∷ κ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.13.27"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.13.27"
∷ word (Ἀ ∷ π ∷ ὸ ∷ []) "Mark.13.28"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.28"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.28"
∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ ς ∷ []) "Mark.13.28"
∷ word (μ ∷ ά ∷ θ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.28"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.28"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.13.28"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.28"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.13.28"
∷ word (ὁ ∷ []) "Mark.13.28"
∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ο ∷ ς ∷ []) "Mark.13.28"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.13.28"
∷ word (ἁ ∷ π ∷ α ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Mark.13.28"
∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.28"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.28"
∷ word (ἐ ∷ κ ∷ φ ∷ ύ ∷ ῃ ∷ []) "Mark.13.28"
∷ word (τ ∷ ὰ ∷ []) "Mark.13.28"
∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.13.28"
∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.28"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.28"
∷ word (ἐ ∷ γ ∷ γ ∷ ὺ ∷ ς ∷ []) "Mark.13.28"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.28"
∷ word (θ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.13.28"
∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.13.28"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.13.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.29"
∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.29"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.29"
∷ word (ἴ ∷ δ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.29"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.29"
∷ word (γ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Mark.13.29"
∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.29"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.29"
∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Mark.13.29"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.13.29"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.29"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.29"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.13.30"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.13.30"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.30"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.30"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.30"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.30"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.13.30"
∷ word (ἡ ∷ []) "Mark.13.30"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ []) "Mark.13.30"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.13.30"
∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ ς ∷ []) "Mark.13.30"
∷ word (ο ∷ ὗ ∷ []) "Mark.13.30"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.30"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.30"
∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.30"
∷ word (ὁ ∷ []) "Mark.13.31"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Mark.13.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.31"
∷ word (ἡ ∷ []) "Mark.13.31"
∷ word (γ ∷ ῆ ∷ []) "Mark.13.31"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.13.31"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.31"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Mark.13.31"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.13.31"
∷ word (ο ∷ ὐ ∷ []) "Mark.13.31"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.31"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.31"
∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.13.32"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.32"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.32"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.32"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "Mark.13.32"
∷ word (ἢ ∷ []) "Mark.13.32"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.32"
∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.32"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.13.32"
∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.13.32"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.13.32"
∷ word (ο ∷ ἱ ∷ []) "Mark.13.32"
∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.13.32"
∷ word (ἐ ∷ ν ∷ []) "Mark.13.32"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Mark.13.32"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.13.32"
∷ word (ὁ ∷ []) "Mark.13.32"
∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.13.32"
∷ word (ε ∷ ἰ ∷ []) "Mark.13.32"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.32"
∷ word (ὁ ∷ []) "Mark.13.32"
∷ word (π ∷ α ∷ τ ∷ ή ∷ ρ ∷ []) "Mark.13.32"
∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.33"
∷ word (ἀ ∷ γ ∷ ρ ∷ υ ∷ π ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.33"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.13.33"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.13.33"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.33"
∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.33"
∷ word (ὁ ∷ []) "Mark.13.33"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.13.33"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.13.33"
∷ word (ὡ ∷ ς ∷ []) "Mark.13.34"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.13.34"
∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ η ∷ μ ∷ ο ∷ ς ∷ []) "Mark.13.34"
∷ word (ἀ ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.13.34"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.34"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.34"
∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.34"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.34"
∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.13.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.34"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.34"
∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.34"
∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Mark.13.34"
∷ word (τ ∷ ὸ ∷ []) "Mark.13.34"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.13.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.34"
∷ word (τ ∷ ῷ ∷ []) "Mark.13.34"
∷ word (θ ∷ υ ∷ ρ ∷ ω ∷ ρ ∷ ῷ ∷ []) "Mark.13.34"
∷ word (ἐ ∷ ν ∷ ε ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.13.34"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.13.34"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῇ ∷ []) "Mark.13.34"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.35"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.13.35"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.13.35"
∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.13.35"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.35"
∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.35"
∷ word (ὁ ∷ []) "Mark.13.35"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.13.35"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.35"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.13.35"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.35"
∷ word (ἢ ∷ []) "Mark.13.35"
∷ word (ὀ ∷ ψ ∷ ὲ ∷ []) "Mark.13.35"
∷ word (ἢ ∷ []) "Mark.13.35"
∷ word (μ ∷ ε ∷ σ ∷ ο ∷ ν ∷ ύ ∷ κ ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.35"
∷ word (ἢ ∷ []) "Mark.13.35"
∷ word (ἀ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ρ ∷ ο ∷ φ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Mark.13.35"
∷ word (ἢ ∷ []) "Mark.13.35"
∷ word (π ∷ ρ ∷ ω ∷ ΐ ∷ []) "Mark.13.35"
∷ word (μ ∷ ὴ ∷ []) "Mark.13.36"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.13.36"
∷ word (ἐ ∷ ξ ∷ α ∷ ί ∷ φ ∷ ν ∷ η ∷ ς ∷ []) "Mark.13.36"
∷ word (ε ∷ ὕ ∷ ρ ∷ ῃ ∷ []) "Mark.13.36"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.36"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.13.36"
∷ word (ὃ ∷ []) "Mark.13.37"
∷ word (δ ∷ ὲ ∷ []) "Mark.13.37"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.13.37"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.13.37"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.37"
∷ word (Ἦ ∷ ν ∷ []) "Mark.14.1"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.1"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.1"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.1"
∷ word (τ ∷ ὰ ∷ []) "Mark.14.1"
∷ word (ἄ ∷ ζ ∷ υ ∷ μ ∷ α ∷ []) "Mark.14.1"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.1"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.14.1"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.1"
∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.1"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.1"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.1"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.1"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.1"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.14.1"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.1"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.1"
∷ word (δ ∷ ό ∷ ∙λ ∷ ῳ ∷ []) "Mark.14.1"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.1"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.1"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.2"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.14.2"
∷ word (Μ ∷ ὴ ∷ []) "Mark.14.2"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.2"
∷ word (τ ∷ ῇ ∷ []) "Mark.14.2"
∷ word (ἑ ∷ ο ∷ ρ ∷ τ ∷ ῇ ∷ []) "Mark.14.2"
∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.14.2"
∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.2"
∷ word (θ ∷ ό ∷ ρ ∷ υ ∷ β ∷ ο ∷ ς ∷ []) "Mark.14.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.2"
∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Mark.14.2"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.3"
∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.3"
∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ ᾳ ∷ []) "Mark.14.3"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.3"
∷ word (τ ∷ ῇ ∷ []) "Mark.14.3"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.14.3"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3"
∷ word (∙λ ∷ ε ∷ π ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.14.3"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.14.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.3"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.14.3"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.14.3"
∷ word (ἀ ∷ ∙λ ∷ ά ∷ β ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.3"
∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.3"
∷ word (ν ∷ ά ∷ ρ ∷ δ ∷ ο ∷ υ ∷ []) "Mark.14.3"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ι ∷ κ ∷ ῆ ∷ ς ∷ []) "Mark.14.3"
∷ word (π ∷ ο ∷ ∙λ ∷ υ ∷ τ ∷ ε ∷ ∙λ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.3"
∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ ί ∷ ψ ∷ α ∷ σ ∷ α ∷ []) "Mark.14.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.3"
∷ word (ἀ ∷ ∙λ ∷ ά ∷ β ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.3"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Mark.14.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.3"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.14.3"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.4"
∷ word (δ ∷ έ ∷ []) "Mark.14.4"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.14.4"
∷ word (ἀ ∷ γ ∷ α ∷ ν ∷ α ∷ κ ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.4"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.4"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.14.4"
∷ word (Ε ∷ ἰ ∷ ς ∷ []) "Mark.14.4"
∷ word (τ ∷ ί ∷ []) "Mark.14.4"
∷ word (ἡ ∷ []) "Mark.14.4"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ []) "Mark.14.4"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.14.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.4"
∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.4"
∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.14.4"
∷ word (ἠ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.5"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.5"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.14.5"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.5"
∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.5"
∷ word (π ∷ ρ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.5"
∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "Mark.14.5"
∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.14.5"
∷ word (τ ∷ ρ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.14.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.5"
∷ word (δ ∷ ο ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.5"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.5"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.5"
∷ word (ἐ ∷ ν ∷ ε ∷ β ∷ ρ ∷ ι ∷ μ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.14.5"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.14.5"
∷ word (ὁ ∷ []) "Mark.14.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.6"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.6"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.6"
∷ word (Ἄ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.6"
∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.14.6"
∷ word (τ ∷ ί ∷ []) "Mark.14.6"
∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.14.6"
∷ word (κ ∷ ό ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Mark.14.6"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.6"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.14.6"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.6"
∷ word (ἠ ∷ ρ ∷ γ ∷ ά ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.6"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.6"
∷ word (ἐ ∷ μ ∷ ο ∷ ί ∷ []) "Mark.14.6"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Mark.14.7"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.7"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.7"
∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.7"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.7"
∷ word (μ ∷ ε ∷ θ ∷ []) "Mark.14.7"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.7"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.14.7"
∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ τ ∷ ε ∷ []) "Mark.14.7"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.7"
∷ word (ε ∷ ὖ ∷ []) "Mark.14.7"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.7"
∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.14.7"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.7"
∷ word (ο ∷ ὐ ∷ []) "Mark.14.7"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Mark.14.7"
∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.7"
∷ word (ὃ ∷ []) "Mark.14.8"
∷ word (ἔ ∷ σ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.14.8"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.8"
∷ word (π ∷ ρ ∷ ο ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.14.8"
∷ word (μ ∷ υ ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.8"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.8"
∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "Mark.14.8"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.8"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.8"
∷ word (ἐ ∷ ν ∷ τ ∷ α ∷ φ ∷ ι ∷ α ∷ σ ∷ μ ∷ ό ∷ ν ∷ []) "Mark.14.8"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.9"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.9"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.9"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.9"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.14.9"
∷ word (κ ∷ η ∷ ρ ∷ υ ∷ χ ∷ θ ∷ ῇ ∷ []) "Mark.14.9"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.9"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.9"
∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.9"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.9"
∷ word (ὃ ∷ []) "Mark.14.9"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.9"
∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.14.9"
∷ word (∙λ ∷ α ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.9"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ό ∷ σ ∷ υ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.9"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.14.9"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.10"
∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ς ∷ []) "Mark.14.10"
∷ word (Ἰ ∷ σ ∷ κ ∷ α ∷ ρ ∷ ι ∷ ὼ ∷ θ ∷ []) "Mark.14.10"
∷ word (ὁ ∷ []) "Mark.14.10"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.10"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.10"
∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.10"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.10"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.10"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.10"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.10"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῖ ∷ []) "Mark.14.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.10"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.11"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.11"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.11"
∷ word (ἐ ∷ χ ∷ ά ∷ ρ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.11"
∷ word (ἐ ∷ π ∷ η ∷ γ ∷ γ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.14.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.11"
∷ word (ἀ ∷ ρ ∷ γ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.11"
∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.11"
∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ε ∷ ι ∷ []) "Mark.14.11"
∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.14.11"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.11"
∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ω ∷ ς ∷ []) "Mark.14.11"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῖ ∷ []) "Mark.14.11"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.12"
∷ word (τ ∷ ῇ ∷ []) "Mark.14.12"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Mark.14.12"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.14.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.12"
∷ word (ἀ ∷ ζ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.14.12"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.14.12"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.12"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.12"
∷ word (ἔ ∷ θ ∷ υ ∷ ο ∷ ν ∷ []) "Mark.14.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.12"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.12"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.14.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.12"
∷ word (Π ∷ ο ∷ ῦ ∷ []) "Mark.14.12"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.14.12"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.12"
∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ά ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.12"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.12"
∷ word (φ ∷ ά ∷ γ ∷ ῃ ∷ ς ∷ []) "Mark.14.12"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.12"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.13"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.14.13"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.14.13"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.13"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.13"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.13"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.13"
∷ word (Ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.13"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.13"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.13"
∷ word (ἀ ∷ π ∷ α ∷ ν ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.14.13"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.13"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.14.13"
∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ μ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.13"
∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.13"
∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.14.13"
∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.13"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.14"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.14"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.14.14"
∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.14.14"
∷ word (ε ∷ ἴ ∷ π ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.14"
∷ word (τ ∷ ῷ ∷ []) "Mark.14.14"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ ῃ ∷ []) "Mark.14.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.14"
∷ word (Ὁ ∷ []) "Mark.14.14"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.14.14"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.14"
∷ word (Π ∷ ο ∷ ῦ ∷ []) "Mark.14.14"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.14"
∷ word (κ ∷ α ∷ τ ∷ ά ∷ ∙λ ∷ υ ∷ μ ∷ ά ∷ []) "Mark.14.14"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.14"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.14"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.14"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.14"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.14"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.14"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.14"
∷ word (φ ∷ ά ∷ γ ∷ ω ∷ []) "Mark.14.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.15"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.14.15"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.15"
∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ε ∷ ι ∷ []) "Mark.14.15"
∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.15"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Mark.14.15"
∷ word (ἐ ∷ σ ∷ τ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.15"
∷ word (ἕ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.15"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.14.15"
∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.15"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.14.16"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.16"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.14.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.14.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.16"
∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16"
∷ word (ε ∷ ὗ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.16"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.14.16"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16"
∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.16"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.16"
∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.16"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.17"
∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.14.17"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.14.17"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.17"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.17"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.18"
∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Mark.14.18"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.18"
∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.14.18"
∷ word (ὁ ∷ []) "Mark.14.18"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.18"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.18"
∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.18"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.18"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.18"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.18"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.18"
∷ word (ἐ ∷ ξ ∷ []) "Mark.14.18"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.14.18"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.14.18"
∷ word (μ ∷ ε ∷ []) "Mark.14.18"
∷ word (ὁ ∷ []) "Mark.14.18"
∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.14.18"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.18"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.14.18"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.14.19"
∷ word (∙λ ∷ υ ∷ π ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.14.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.19"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.19"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.19"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.14.19"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.19"
∷ word (Μ ∷ ή ∷ τ ∷ ι ∷ []) "Mark.14.19"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Mark.14.19"
∷ word (ὁ ∷ []) "Mark.14.20"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.20"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.20"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.20"
∷ word (Ε ∷ ἷ ∷ ς ∷ []) "Mark.14.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.20"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.20"
∷ word (ὁ ∷ []) "Mark.14.20"
∷ word (ἐ ∷ μ ∷ β ∷ α ∷ π ∷ τ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.20"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.20"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.14.20"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.20"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.20"
∷ word (τ ∷ ρ ∷ ύ ∷ β ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.20"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.21"
∷ word (ὁ ∷ []) "Mark.14.21"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.14.21"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.21"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.21"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.21"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.14.21"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.21"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.14.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.21"
∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Mark.14.21"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.21"
∷ word (τ ∷ ῷ ∷ []) "Mark.14.21"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Mark.14.21"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῳ ∷ []) "Mark.14.21"
∷ word (δ ∷ ι ∷ []) "Mark.14.21"
∷ word (ο ∷ ὗ ∷ []) "Mark.14.21"
∷ word (ὁ ∷ []) "Mark.14.21"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.21"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.21"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.21"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.14.21"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.21"
∷ word (ε ∷ ἰ ∷ []) "Mark.14.21"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.21"
∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Mark.14.21"
∷ word (ὁ ∷ []) "Mark.14.21"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.14.21"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.21"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.22"
∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.14.22"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.22"
∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.14.22"
∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.22"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.14.22"
∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.22"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.14.22"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.22"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.22"
∷ word (Λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.22"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Mark.14.22"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.22"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.22"
∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "Mark.14.22"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.23"
∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.14.23"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.23"
∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.14.23"
∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.14.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.23"
∷ word (ἔ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.23"
∷ word (ἐ ∷ ξ ∷ []) "Mark.14.23"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.23"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.24"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.24"
∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Mark.14.24"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.24"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.24"
∷ word (α ∷ ἷ ∷ μ ∷ ά ∷ []) "Mark.14.24"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.24"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.24"
∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Mark.14.24"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.24"
∷ word (ἐ ∷ κ ∷ χ ∷ υ ∷ ν ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.24"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Mark.14.24"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.14.24"
∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.25"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.25"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.25"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.25"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.14.25"
∷ word (ο ∷ ὐ ∷ []) "Mark.14.25"
∷ word (μ ∷ ὴ ∷ []) "Mark.14.25"
∷ word (π ∷ ί ∷ ω ∷ []) "Mark.14.25"
∷ word (ἐ ∷ κ ∷ []) "Mark.14.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.25"
∷ word (γ ∷ ε ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.25"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.25"
∷ word (ἀ ∷ μ ∷ π ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.14.25"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.25"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.25"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.25"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "Mark.14.25"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.14.25"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.14.25"
∷ word (π ∷ ί ∷ ν ∷ ω ∷ []) "Mark.14.25"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.14.25"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.25"
∷ word (τ ∷ ῇ ∷ []) "Mark.14.25"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Mark.14.25"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.25"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.14.25"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.26"
∷ word (ὑ ∷ μ ∷ ν ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.26"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.14.26"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.26"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.26"
∷ word (Ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.26"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.26"
∷ word (Ἐ ∷ ∙λ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.14.26"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.27"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.27"
∷ word (ὁ ∷ []) "Mark.14.27"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.27"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.27"
∷ word (Π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.27"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.27"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.27"
∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.27"
∷ word (Π ∷ α ∷ τ ∷ ά ∷ ξ ∷ ω ∷ []) "Mark.14.27"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.27"
∷ word (π ∷ ο ∷ ι ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Mark.14.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.27"
∷ word (τ ∷ ὰ ∷ []) "Mark.14.27"
∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Mark.14.27"
∷ word (δ ∷ ι ∷ α ∷ σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.27"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.14.28"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.28"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.28"
∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ί ∷ []) "Mark.14.28"
∷ word (μ ∷ ε ∷ []) "Mark.14.28"
∷ word (π ∷ ρ ∷ ο ∷ ά ∷ ξ ∷ ω ∷ []) "Mark.14.28"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.14.28"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.28"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.28"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.28"
∷ word (ὁ ∷ []) "Mark.14.29"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.29"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.29"
∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.14.29"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.29"
∷ word (Ε ∷ ἰ ∷ []) "Mark.14.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.29"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.29"
∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.29"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.14.29"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.29"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Mark.14.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.30"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.30"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.30"
∷ word (ὁ ∷ []) "Mark.14.30"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.30"
∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.30"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.30"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.14.30"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.30"
∷ word (σ ∷ ὺ ∷ []) "Mark.14.30"
∷ word (σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.30"
∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Mark.14.30"
∷ word (τ ∷ ῇ ∷ []) "Mark.14.30"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὶ ∷ []) "Mark.14.30"
∷ word (π ∷ ρ ∷ ὶ ∷ ν ∷ []) "Mark.14.30"
∷ word (ἢ ∷ []) "Mark.14.30"
∷ word (δ ∷ ὶ ∷ ς ∷ []) "Mark.14.30"
∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Mark.14.30"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.30"
∷ word (τ ∷ ρ ∷ ί ∷ ς ∷ []) "Mark.14.30"
∷ word (μ ∷ ε ∷ []) "Mark.14.30"
∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.14.30"
∷ word (ὁ ∷ []) "Mark.14.31"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.31"
∷ word (ἐ ∷ κ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.14.31"
∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.14.31"
∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.14.31"
∷ word (δ ∷ έ ∷ ῃ ∷ []) "Mark.14.31"
∷ word (μ ∷ ε ∷ []) "Mark.14.31"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.14.31"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.14.31"
∷ word (ο ∷ ὐ ∷ []) "Mark.14.31"
∷ word (μ ∷ ή ∷ []) "Mark.14.31"
∷ word (σ ∷ ε ∷ []) "Mark.14.31"
∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.14.31"
∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.14.31"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.31"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.31"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.31"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.32"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.32"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.32"
∷ word (χ ∷ ω ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.14.32"
∷ word (ο ∷ ὗ ∷ []) "Mark.14.32"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.32"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Mark.14.32"
∷ word (Γ ∷ ε ∷ θ ∷ σ ∷ η ∷ μ ∷ α ∷ ν ∷ ί ∷ []) "Mark.14.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.32"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.32"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.32"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.14.32"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.32"
∷ word (Κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.32"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.14.32"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.32"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ ξ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Mark.14.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.14.33"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.33"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33"
∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.14.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33"
∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.14.33"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.33"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.33"
∷ word (ἐ ∷ κ ∷ θ ∷ α ∷ μ ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.14.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33"
∷ word (ἀ ∷ δ ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.14.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.34"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.34"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.34"
∷ word (Π ∷ ε ∷ ρ ∷ ί ∷ ∙λ ∷ υ ∷ π ∷ ό ∷ ς ∷ []) "Mark.14.34"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.34"
∷ word (ἡ ∷ []) "Mark.14.34"
∷ word (ψ ∷ υ ∷ χ ∷ ή ∷ []) "Mark.14.34"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.34"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.34"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.14.34"
∷ word (μ ∷ ε ∷ ί ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.34"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.14.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.34"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.14.34"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.35"
∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.35"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.14.35"
∷ word (ἔ ∷ π ∷ ι ∷ π ∷ τ ∷ ε ∷ ν ∷ []) "Mark.14.35"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.14.35"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.35"
∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.14.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.35"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ η ∷ ύ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.14.35"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.35"
∷ word (ε ∷ ἰ ∷ []) "Mark.14.35"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.35"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.35"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.14.35"
∷ word (ἀ ∷ π ∷ []) "Mark.14.35"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.35"
∷ word (ἡ ∷ []) "Mark.14.35"
∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.14.35"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.36"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.14.36"
∷ word (Α ∷ β ∷ β ∷ α ∷ []) "Mark.14.36"
∷ word (ὁ ∷ []) "Mark.14.36"
∷ word (π ∷ α ∷ τ ∷ ή ∷ ρ ∷ []) "Mark.14.36"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.14.36"
∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ά ∷ []) "Mark.14.36"
∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.14.36"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ []) "Mark.14.36"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.36"
∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.36"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.14.36"
∷ word (ἀ ∷ π ∷ []) "Mark.14.36"
∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.14.36"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.14.36"
∷ word (ο ∷ ὐ ∷ []) "Mark.14.36"
∷ word (τ ∷ ί ∷ []) "Mark.14.36"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.14.36"
∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Mark.14.36"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.14.36"
∷ word (τ ∷ ί ∷ []) "Mark.14.36"
∷ word (σ ∷ ύ ∷ []) "Mark.14.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.37"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.37"
∷ word (ε ∷ ὑ ∷ ρ ∷ ί ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "Mark.14.37"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.37"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.14.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.37"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.37"
∷ word (τ ∷ ῷ ∷ []) "Mark.14.37"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.14.37"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.14.37"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.14.37"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.37"
∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "Mark.14.37"
∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.37"
∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.14.37"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.37"
∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.14.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.38"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.38"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.38"
∷ word (μ ∷ ὴ ∷ []) "Mark.14.38"
∷ word (ἔ ∷ ∙λ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Mark.14.38"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.38"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ό ∷ ν ∷ []) "Mark.14.38"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.38"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.14.38"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.14.38"
∷ word (π ∷ ρ ∷ ό ∷ θ ∷ υ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.38"
∷ word (ἡ ∷ []) "Mark.14.38"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.38"
∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "Mark.14.38"
∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ή ∷ ς ∷ []) "Mark.14.38"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.39"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.39"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.39"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ η ∷ ύ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.39"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.39"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.39"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.39"
∷ word (ε ∷ ἰ ∷ π ∷ ώ ∷ ν ∷ []) "Mark.14.39"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.40"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.40"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.40"
∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.14.40"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.40"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.14.40"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.40"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.40"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.40"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.40"
∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.14.40"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ρ ∷ υ ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.14.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.40"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.40"
∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.40"
∷ word (τ ∷ ί ∷ []) "Mark.14.40"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.40"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.41"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.41"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.41"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.41"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.41"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.41"
∷ word (Κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.41"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.41"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.14.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.41"
∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.41"
∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.14.41"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.41"
∷ word (ἡ ∷ []) "Mark.14.41"
∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.14.41"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.14.41"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.41"
∷ word (ὁ ∷ []) "Mark.14.41"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.41"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.41"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.41"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.41"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.14.41"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.41"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.41"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.14.41"
∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.42"
∷ word (ἄ ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.42"
∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.14.42"
∷ word (ὁ ∷ []) "Mark.14.42"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.14.42"
∷ word (μ ∷ ε ∷ []) "Mark.14.42"
∷ word (ἤ ∷ γ ∷ γ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Mark.14.42"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.43"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.14.43"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.14.43"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.43"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.43"
∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.43"
∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ς ∷ []) "Mark.14.43"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.43"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43"
∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.43"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.43"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.14.43"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.43"
∷ word (μ ∷ α ∷ χ ∷ α ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.14.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.14.43"
∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.14.43"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.14.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.14.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.14.43"
∷ word (δ ∷ ε ∷ δ ∷ ώ ∷ κ ∷ ε ∷ ι ∷ []) "Mark.14.44"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.44"
∷ word (ὁ ∷ []) "Mark.14.44"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.44"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.44"
∷ word (σ ∷ ύ ∷ σ ∷ σ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.44"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.44"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.14.44"
∷ word (Ὃ ∷ ν ∷ []) "Mark.14.44"
∷ word (ἂ ∷ ν ∷ []) "Mark.14.44"
∷ word (φ ∷ ι ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.14.44"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.14.44"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.44"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.44"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.44"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.44"
∷ word (ἀ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.44"
∷ word (ἀ ∷ σ ∷ φ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.14.44"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.45"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.45"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.14.45"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.45"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.45"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.45"
∷ word (Ῥ ∷ α ∷ β ∷ β ∷ ί ∷ []) "Mark.14.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.45"
∷ word (κ ∷ α ∷ τ ∷ ε ∷ φ ∷ ί ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.45"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.45"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.46"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.46"
∷ word (ἐ ∷ π ∷ έ ∷ β ∷ α ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.14.46"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.14.46"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.46"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.46"
∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.46"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.46"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.47"
∷ word (δ ∷ έ ∷ []) "Mark.14.47"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.14.47"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.47"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.14.47"
∷ word (σ ∷ π ∷ α ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.47"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.47"
∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "Mark.14.47"
∷ word (ἔ ∷ π ∷ α ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.47"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.47"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.47"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.47"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.14.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.47"
∷ word (ἀ ∷ φ ∷ ε ∷ ῖ ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.14.47"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.47"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.47"
∷ word (ὠ ∷ τ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.48"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.14.48"
∷ word (ὁ ∷ []) "Mark.14.48"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.48"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.48"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.48"
∷ word (Ὡ ∷ ς ∷ []) "Mark.14.48"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.14.48"
∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.14.48"
∷ word (ἐ ∷ ξ ∷ ή ∷ ∙λ ∷ θ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.48"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.48"
∷ word (μ ∷ α ∷ χ ∷ α ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.14.48"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.48"
∷ word (ξ ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.14.48"
∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.14.48"
∷ word (μ ∷ ε ∷ []) "Mark.14.48"
∷ word (κ ∷ α ∷ θ ∷ []) "Mark.14.49"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.14.49"
∷ word (ἤ ∷ μ ∷ η ∷ ν ∷ []) "Mark.14.49"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.49"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.14.49"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.49"
∷ word (τ ∷ ῷ ∷ []) "Mark.14.49"
∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.14.49"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.14.49"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.49"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.49"
∷ word (ἐ ∷ κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ έ ∷ []) "Mark.14.49"
∷ word (μ ∷ ε ∷ []) "Mark.14.49"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.14.49"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.49"
∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.49"
∷ word (α ∷ ἱ ∷ []) "Mark.14.49"
∷ word (γ ∷ ρ ∷ α ∷ φ ∷ α ∷ ί ∷ []) "Mark.14.49"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.50"
∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.50"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.50"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.50"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.50"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.51"
∷ word (ν ∷ ε ∷ α ∷ ν ∷ ί ∷ σ ∷ κ ∷ ο ∷ ς ∷ []) "Mark.14.51"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.14.51"
∷ word (σ ∷ υ ∷ ν ∷ η ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.14.51"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.51"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.51"
∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ α ∷ []) "Mark.14.51"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.14.51"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.14.51"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.51"
∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.51"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.51"
∷ word (ὁ ∷ []) "Mark.14.52"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.52"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ι ∷ π ∷ ὼ ∷ ν ∷ []) "Mark.14.52"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.52"
∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ α ∷ []) "Mark.14.52"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ὸ ∷ ς ∷ []) "Mark.14.52"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Mark.14.52"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.53"
∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.53"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.53"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.14.53"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.53"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.53"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ α ∷ []) "Mark.14.53"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.53"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.53"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.53"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.53"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.53"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.53"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.53"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Mark.14.53"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.53"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.53"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.53"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.54"
∷ word (ὁ ∷ []) "Mark.14.54"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.54"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.14.54"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.54"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.54"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.54"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.54"
∷ word (ἔ ∷ σ ∷ ω ∷ []) "Mark.14.54"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.54"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.54"
∷ word (α ∷ ὐ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.14.54"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.54"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.14.54"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.54"
∷ word (ἦ ∷ ν ∷ []) "Mark.14.54"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.54"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.54"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.54"
∷ word (ὑ ∷ π ∷ η ∷ ρ ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.54"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.54"
∷ word (θ ∷ ε ∷ ρ ∷ μ ∷ α ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.54"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.54"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.54"
∷ word (φ ∷ ῶ ∷ ς ∷ []) "Mark.14.54"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.55"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.55"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.55"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.55"
∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.55"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.55"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.55"
∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.55"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.14.55"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.55"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.14.55"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.55"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.55"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.55"
∷ word (θ ∷ α ∷ ν ∷ α ∷ τ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.55"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.55"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.55"
∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.14.55"
∷ word (η ∷ ὕ ∷ ρ ∷ ι ∷ σ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.14.55"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.14.56"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.56"
∷ word (ἐ ∷ ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.56"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.14.56"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.56"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.56"
∷ word (ἴ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.56"
∷ word (α ∷ ἱ ∷ []) "Mark.14.56"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ι ∷ []) "Mark.14.56"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.56"
∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.56"
∷ word (κ ∷ α ∷ ί ∷ []) "Mark.14.57"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.14.57"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.57"
∷ word (ἐ ∷ ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.57"
∷ word (κ ∷ α ∷ τ ∷ []) "Mark.14.57"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.57"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.57"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.58"
∷ word (Ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.58"
∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.58"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.58"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.58"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.58"
∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Mark.14.58"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ύ ∷ σ ∷ ω ∷ []) "Mark.14.58"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.58"
∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Mark.14.58"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.58"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.58"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ π ∷ ο ∷ ί ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.58"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.58"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.14.58"
∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.14.58"
∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.14.58"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.58"
∷ word (ἀ ∷ χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ π ∷ ο ∷ ί ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.58"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.14.58"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.59"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.14.59"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.14.59"
∷ word (ἴ ∷ σ ∷ η ∷ []) "Mark.14.59"
∷ word (ἦ ∷ ν ∷ []) "Mark.14.59"
∷ word (ἡ ∷ []) "Mark.14.59"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "Mark.14.59"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.59"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.60"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.14.60"
∷ word (ὁ ∷ []) "Mark.14.60"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.14.60"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.60"
∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.14.60"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.60"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.60"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.14.60"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.14.60"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.14.60"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.14.60"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.14.60"
∷ word (τ ∷ ί ∷ []) "Mark.14.60"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Mark.14.60"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.14.60"
∷ word (κ ∷ α ∷ τ ∷ α ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.60"
∷ word (ὁ ∷ []) "Mark.14.61"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.61"
∷ word (ἐ ∷ σ ∷ ι ∷ ώ ∷ π ∷ α ∷ []) "Mark.14.61"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.61"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.61"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.61"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.14.61"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.61"
∷ word (ὁ ∷ []) "Mark.14.61"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.14.61"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.14.61"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.61"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.61"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.61"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.61"
∷ word (Σ ∷ ὺ ∷ []) "Mark.14.61"
∷ word (ε ∷ ἶ ∷ []) "Mark.14.61"
∷ word (ὁ ∷ []) "Mark.14.61"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.14.61"
∷ word (ὁ ∷ []) "Mark.14.61"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.61"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.61"
∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.61"
∷ word (ὁ ∷ []) "Mark.14.62"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.62"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.62"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.62"
∷ word (Ἐ ∷ γ ∷ ώ ∷ []) "Mark.14.62"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Mark.14.62"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.62"
∷ word (ὄ ∷ ψ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.62"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.62"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.14.62"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.62"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.62"
∷ word (ἐ ∷ κ ∷ []) "Mark.14.62"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.14.62"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.62"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.62"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.14.62"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.62"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.62"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.62"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.62"
∷ word (ν ∷ ε ∷ φ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.14.62"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.62"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.14.62"
∷ word (ὁ ∷ []) "Mark.14.63"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.63"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.14.63"
∷ word (δ ∷ ι ∷ α ∷ ρ ∷ ρ ∷ ή ∷ ξ ∷ α ∷ ς ∷ []) "Mark.14.63"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.63"
∷ word (χ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Mark.14.63"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.63"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.63"
∷ word (Τ ∷ ί ∷ []) "Mark.14.63"
∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.14.63"
∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.63"
∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.63"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.14.63"
∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.64"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.64"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Mark.14.64"
∷ word (τ ∷ ί ∷ []) "Mark.14.64"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.64"
∷ word (φ ∷ α ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.64"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.64"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.64"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.64"
∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Mark.14.64"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.64"
∷ word (ἔ ∷ ν ∷ ο ∷ χ ∷ ο ∷ ν ∷ []) "Mark.14.64"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.64"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.14.64"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ό ∷ []) "Mark.14.65"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.14.65"
∷ word (ἐ ∷ μ ∷ π ∷ τ ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.65"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.65"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.65"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.14.65"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65"
∷ word (κ ∷ ο ∷ ∙λ ∷ α ∷ φ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.65"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.65"
∷ word (Π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ε ∷ υ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.14.65"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.65"
∷ word (ὑ ∷ π ∷ η ∷ ρ ∷ έ ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.65"
∷ word (ῥ ∷ α ∷ π ∷ ί ∷ σ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.65"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.65"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Mark.14.65"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.66"
∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.66"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.66"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.66"
∷ word (κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.14.66"
∷ word (ἐ ∷ ν ∷ []) "Mark.14.66"
∷ word (τ ∷ ῇ ∷ []) "Mark.14.66"
∷ word (α ∷ ὐ ∷ ∙λ ∷ ῇ ∷ []) "Mark.14.66"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.66"
∷ word (μ ∷ ί ∷ α ∷ []) "Mark.14.66"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.66"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ι ∷ σ ∷ κ ∷ ῶ ∷ ν ∷ []) "Mark.14.66"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.66"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.14.66"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.67"
∷ word (ἰ ∷ δ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.14.67"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.67"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.67"
∷ word (θ ∷ ε ∷ ρ ∷ μ ∷ α ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.67"
∷ word (ἐ ∷ μ ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ σ ∷ α ∷ []) "Mark.14.67"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.67"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.67"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.67"
∷ word (σ ∷ ὺ ∷ []) "Mark.14.67"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.67"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.67"
∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.14.67"
∷ word (ἦ ∷ σ ∷ θ ∷ α ∷ []) "Mark.14.67"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.67"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.14.67"
∷ word (ὁ ∷ []) "Mark.14.68"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.68"
∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.68"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.14.68"
∷ word (Ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.14.68"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Mark.14.68"
∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.14.68"
∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ α ∷ μ ∷ α ∷ ι ∷ []) "Mark.14.68"
∷ word (σ ∷ ὺ ∷ []) "Mark.14.68"
∷ word (τ ∷ ί ∷ []) "Mark.14.68"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.14.68"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.68"
∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.68"
∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.14.68"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.68"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.68"
∷ word (π ∷ ρ ∷ ο ∷ α ∷ ύ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.68"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.68"
∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ρ ∷ []) "Mark.14.68"
∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.68"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.69"
∷ word (ἡ ∷ []) "Mark.14.69"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ σ ∷ κ ∷ η ∷ []) "Mark.14.69"
∷ word (ἰ ∷ δ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.14.69"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.69"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.69"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.69"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.69"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.69"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.69"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.69"
∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.69"
∷ word (ἐ ∷ ξ ∷ []) "Mark.14.69"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.69"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.69"
∷ word (ὁ ∷ []) "Mark.14.70"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.70"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.70"
∷ word (ἠ ∷ ρ ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ο ∷ []) "Mark.14.70"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.70"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.70"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.14.70"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.70"
∷ word (ο ∷ ἱ ∷ []) "Mark.14.70"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.70"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.70"
∷ word (τ ∷ ῷ ∷ []) "Mark.14.70"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.14.70"
∷ word (Ἀ ∷ ∙λ ∷ η ∷ θ ∷ ῶ ∷ ς ∷ []) "Mark.14.70"
∷ word (ἐ ∷ ξ ∷ []) "Mark.14.70"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.70"
∷ word (ε ∷ ἶ ∷ []) "Mark.14.70"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.70"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.70"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Mark.14.70"
∷ word (ε ∷ ἶ ∷ []) "Mark.14.70"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.70"
∷ word (ἡ ∷ []) "Mark.14.70"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ι ∷ ά ∷ []) "Mark.14.70"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.14.70"
∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Mark.14.70"
∷ word (ὁ ∷ []) "Mark.14.71"
∷ word (δ ∷ ὲ ∷ []) "Mark.14.71"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.71"
∷ word (ἀ ∷ ν ∷ α ∷ θ ∷ ε ∷ μ ∷ α ∷ τ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.71"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.71"
∷ word (ὀ ∷ μ ∷ ν ∷ ύ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.71"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.71"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.14.71"
∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Mark.14.71"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.71"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.14.71"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.71"
∷ word (ὃ ∷ ν ∷ []) "Mark.14.71"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.71"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.72"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.14.72"
∷ word (ἐ ∷ κ ∷ []) "Mark.14.72"
∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.72"
∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ρ ∷ []) "Mark.14.72"
∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.72"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.72"
∷ word (ἀ ∷ ν ∷ ε ∷ μ ∷ ν ∷ ή ∷ σ ∷ θ ∷ η ∷ []) "Mark.14.72"
∷ word (ὁ ∷ []) "Mark.14.72"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.72"
∷ word (τ ∷ ὸ ∷ []) "Mark.14.72"
∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "Mark.14.72"
∷ word (ὡ ∷ ς ∷ []) "Mark.14.72"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.72"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.72"
∷ word (ὁ ∷ []) "Mark.14.72"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.72"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.72"
∷ word (Π ∷ ρ ∷ ὶ ∷ ν ∷ []) "Mark.14.72"
∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Mark.14.72"
∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.72"
∷ word (δ ∷ ὶ ∷ ς ∷ []) "Mark.14.72"
∷ word (τ ∷ ρ ∷ ί ∷ ς ∷ []) "Mark.14.72"
∷ word (μ ∷ ε ∷ []) "Mark.14.72"
∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.14.72"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.72"
∷ word (ἐ ∷ π ∷ ι ∷ β ∷ α ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.14.72"
∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ ι ∷ ε ∷ ν ∷ []) "Mark.14.72"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.1"
∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.15.1"
∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.15.1"
∷ word (σ ∷ υ ∷ μ ∷ β ∷ ο ∷ ύ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.1"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.1"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.1"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.1"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.15.1"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.1"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.15.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.1"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.15.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.1"
∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.15.1"
∷ word (τ ∷ ὸ ∷ []) "Mark.15.1"
∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.1"
∷ word (δ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.1"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.15.1"
∷ word (ἀ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ ν ∷ []) "Mark.15.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.1"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Mark.15.1"
∷ word (Π ∷ ι ∷ ∙λ ∷ ά ∷ τ ∷ ῳ ∷ []) "Mark.15.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.2"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.2"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.2"
∷ word (ὁ ∷ []) "Mark.15.2"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.2"
∷ word (Σ ∷ ὺ ∷ []) "Mark.15.2"
∷ word (ε ∷ ἶ ∷ []) "Mark.15.2"
∷ word (ὁ ∷ []) "Mark.15.2"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.15.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.2"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.2"
∷ word (ὁ ∷ []) "Mark.15.2"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.2"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.2"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.15.2"
∷ word (Σ ∷ ὺ ∷ []) "Mark.15.2"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.15.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.3"
∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ό ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.3"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.3"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.3"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.3"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.15.3"
∷ word (ὁ ∷ []) "Mark.15.4"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.4"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.4"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.15.4"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.15.4"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.4"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.15.4"
∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.15.4"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.15.4"
∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.15.4"
∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.15.4"
∷ word (π ∷ ό ∷ σ ∷ α ∷ []) "Mark.15.4"
∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.15.4"
∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.4"
∷ word (ὁ ∷ []) "Mark.15.5"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.15.5"
∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.15.5"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.15.5"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.15.5"
∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.15.5"
∷ word (θ ∷ α ∷ υ ∷ μ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.15.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.5"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.5"
∷ word (Κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.15.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.6"
∷ word (ἑ ∷ ο ∷ ρ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.15.6"
∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ ε ∷ ν ∷ []) "Mark.15.6"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.6"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.15.6"
∷ word (δ ∷ έ ∷ σ ∷ μ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.6"
∷ word (ὃ ∷ ν ∷ []) "Mark.15.6"
∷ word (π ∷ α ∷ ρ ∷ ῃ ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.15.6"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.7"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.7"
∷ word (ὁ ∷ []) "Mark.15.7"
∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.7"
∷ word (Β ∷ α ∷ ρ ∷ α ∷ β ∷ β ∷ ᾶ ∷ ς ∷ []) "Mark.15.7"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.15.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.7"
∷ word (σ ∷ τ ∷ α ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.15.7"
∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.7"
∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.15.7"
∷ word (ἐ ∷ ν ∷ []) "Mark.15.7"
∷ word (τ ∷ ῇ ∷ []) "Mark.15.7"
∷ word (σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.15.7"
∷ word (φ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.7"
∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ ή ∷ κ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.8"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.15.8"
∷ word (ὁ ∷ []) "Mark.15.8"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.15.8"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.15.8"
∷ word (α ∷ ἰ ∷ τ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.15.8"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.15.8"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ ε ∷ ι ∷ []) "Mark.15.8"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.8"
∷ word (ὁ ∷ []) "Mark.15.9"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.9"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.9"
∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.15.9"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.9"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.15.9"
∷ word (Θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.9"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ω ∷ []) "Mark.15.9"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.15.9"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.9"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Mark.15.9"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.9"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.9"
∷ word (ἐ ∷ γ ∷ ί ∷ ν ∷ ω ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.15.10"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.15.10"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.15.10"
∷ word (φ ∷ θ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.10"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ε ∷ δ ∷ ώ ∷ κ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.10"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.10"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.10"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.10"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.11"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.11"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.11"
∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.11"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.15.11"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.11"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.15.11"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.11"
∷ word (Β ∷ α ∷ ρ ∷ α ∷ β ∷ β ∷ ᾶ ∷ ν ∷ []) "Mark.15.11"
∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ῃ ∷ []) "Mark.15.11"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.11"
∷ word (ὁ ∷ []) "Mark.15.12"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.12"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.12"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.15.12"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.12"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.15.12"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.12"
∷ word (Τ ∷ ί ∷ []) "Mark.15.12"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.15.12"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.12"
∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.15.12"
∷ word (ὃ ∷ ν ∷ []) "Mark.15.12"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.12"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Mark.15.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.12"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.12"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.13"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.13"
∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.15.13"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.15.13"
∷ word (Σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ ο ∷ ν ∷ []) "Mark.15.13"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.13"
∷ word (ὁ ∷ []) "Mark.15.14"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.14"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.14"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.15.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.14"
∷ word (Τ ∷ ί ∷ []) "Mark.15.14"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.15.14"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.14"
∷ word (κ ∷ α ∷ κ ∷ ό ∷ ν ∷ []) "Mark.15.14"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.14"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.14"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.15.14"
∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.15.14"
∷ word (Σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ ο ∷ ν ∷ []) "Mark.15.14"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.14"
∷ word (ὁ ∷ []) "Mark.15.15"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.15"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.15"
∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.15"
∷ word (τ ∷ ῷ ∷ []) "Mark.15.15"
∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.15.15"
∷ word (τ ∷ ὸ ∷ []) "Mark.15.15"
∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.15.15"
∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.15"
∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.15"
∷ word (Β ∷ α ∷ ρ ∷ α ∷ β ∷ β ∷ ᾶ ∷ ν ∷ []) "Mark.15.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.15"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.15"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.15.15"
∷ word (φ ∷ ρ ∷ α ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ώ ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.15"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Mark.15.15"
∷ word (Ο ∷ ἱ ∷ []) "Mark.15.16"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.16"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ι ∷ ῶ ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.16"
∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.16"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.16"
∷ word (ἔ ∷ σ ∷ ω ∷ []) "Mark.15.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.15.16"
∷ word (α ∷ ὐ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.15.16"
∷ word (ὅ ∷ []) "Mark.15.16"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.16"
∷ word (π ∷ ρ ∷ α ∷ ι ∷ τ ∷ ώ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.16"
∷ word (σ ∷ υ ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.16"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.15.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.16"
∷ word (σ ∷ π ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.17"
∷ word (ἐ ∷ ν ∷ δ ∷ ι ∷ δ ∷ ύ ∷ σ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.17"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.17"
∷ word (π ∷ ο ∷ ρ ∷ φ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.17"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ι ∷ θ ∷ έ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.17"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.17"
∷ word (π ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.17"
∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.17"
∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.18"
∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.15.18"
∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.15.18"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.18"
∷ word (Χ ∷ α ∷ ῖ ∷ ρ ∷ ε ∷ []) "Mark.15.18"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῦ ∷ []) "Mark.15.18"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.18"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.19"
∷ word (ἔ ∷ τ ∷ υ ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.19"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.15.19"
∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ῳ ∷ []) "Mark.15.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.19"
∷ word (ἐ ∷ ν ∷ έ ∷ π ∷ τ ∷ υ ∷ ο ∷ ν ∷ []) "Mark.15.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.19"
∷ word (τ ∷ ι ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.19"
∷ word (τ ∷ ὰ ∷ []) "Mark.15.19"
∷ word (γ ∷ ό ∷ ν ∷ α ∷ τ ∷ α ∷ []) "Mark.15.19"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.19"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.20"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.15.20"
∷ word (ἐ ∷ ν ∷ έ ∷ π ∷ α ∷ ι ∷ ξ ∷ α ∷ ν ∷ []) "Mark.15.20"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.20"
∷ word (ἐ ∷ ξ ∷ έ ∷ δ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.20"
∷ word (π ∷ ο ∷ ρ ∷ φ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.20"
∷ word (ἐ ∷ ν ∷ έ ∷ δ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.20"
∷ word (τ ∷ ὰ ∷ []) "Mark.15.20"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.15.20"
∷ word (τ ∷ ὰ ∷ []) "Mark.15.20"
∷ word (ἴ ∷ δ ∷ ι ∷ α ∷ []) "Mark.15.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.20"
∷ word (ἐ ∷ ξ ∷ ά ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.20"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.20"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.20"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.20"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.20"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.21"
∷ word (ἀ ∷ γ ∷ γ ∷ α ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.21"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ά ∷ []) "Mark.15.21"
∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "Mark.15.21"
∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ α ∷ []) "Mark.15.21"
∷ word (Κ ∷ υ ∷ ρ ∷ η ∷ ν ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.15.21"
∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.21"
∷ word (ἀ ∷ π ∷ []) "Mark.15.21"
∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.21"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.21"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.15.21"
∷ word (Ἀ ∷ ∙λ ∷ ε ∷ ξ ∷ ά ∷ ν ∷ δ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.15.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.21"
∷ word (Ῥ ∷ ο ∷ ύ ∷ φ ∷ ο ∷ υ ∷ []) "Mark.15.21"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.21"
∷ word (ἄ ∷ ρ ∷ ῃ ∷ []) "Mark.15.21"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.21"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.15.21"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.22"
∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.22"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.22"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.15.22"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.22"
∷ word (Γ ∷ ο ∷ ∙λ ∷ γ ∷ ο ∷ θ ∷ ᾶ ∷ ν ∷ []) "Mark.15.22"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.15.22"
∷ word (ὅ ∷ []) "Mark.15.22"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.22"
∷ word (μ ∷ ε ∷ θ ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.22"
∷ word (Κ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Mark.15.22"
∷ word (Τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.15.22"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.23"
∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.23"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.23"
∷ word (ἐ ∷ σ ∷ μ ∷ υ ∷ ρ ∷ ν ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.23"
∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.23"
∷ word (ὃ ∷ ς ∷ []) "Mark.15.23"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.23"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.15.23"
∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.15.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.24"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.24"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.24"
∷ word (δ ∷ ι ∷ α ∷ μ ∷ ε ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.24"
∷ word (τ ∷ ὰ ∷ []) "Mark.15.24"
∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.15.24"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.24"
∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.24"
∷ word (κ ∷ ∙λ ∷ ῆ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.15.24"
∷ word (ἐ ∷ π ∷ []) "Mark.15.24"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.15.24"
∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.15.24"
∷ word (τ ∷ ί ∷ []) "Mark.15.24"
∷ word (ἄ ∷ ρ ∷ ῃ ∷ []) "Mark.15.24"
∷ word (Ἦ ∷ ν ∷ []) "Mark.15.25"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.25"
∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.15.25"
∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ η ∷ []) "Mark.15.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.25"
∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.25"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.26"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.26"
∷ word (ἡ ∷ []) "Mark.15.26"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ρ ∷ α ∷ φ ∷ ὴ ∷ []) "Mark.15.26"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.15.26"
∷ word (α ∷ ἰ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.26"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.26"
∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.15.26"
∷ word (Ὁ ∷ []) "Mark.15.26"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.15.26"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.26"
∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.26"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.27"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.15.27"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.27"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.27"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.15.27"
∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ά ∷ ς ∷ []) "Mark.15.27"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.15.27"
∷ word (ἐ ∷ κ ∷ []) "Mark.15.27"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.15.27"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.27"
∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.15.27"
∷ word (ἐ ∷ ξ ∷ []) "Mark.15.27"
∷ word (ε ∷ ὐ ∷ ω ∷ ν ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.15.27"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.27"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.29"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.29"
∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.15.29"
∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.29"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.29"
∷ word (κ ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.29"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.15.29"
∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Mark.15.29"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.15.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.29"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.29"
∷ word (Ο ∷ ὐ ∷ ὰ ∷ []) "Mark.15.29"
∷ word (ὁ ∷ []) "Mark.15.29"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ύ ∷ ω ∷ ν ∷ []) "Mark.15.29"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.29"
∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Mark.15.29"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.29"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.15.29"
∷ word (ἐ ∷ ν ∷ []) "Mark.15.29"
∷ word (τ ∷ ρ ∷ ι ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.15.29"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.15.29"
∷ word (σ ∷ ῶ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.15.30"
∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.30"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.15.30"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.30"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.30"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.30"
∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Mark.15.31"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.31"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.31"
∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.31"
∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.31"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.15.31"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.15.31"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.15.31"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.31"
∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.15.31"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.31"
∷ word (Ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.15.31"
∷ word (ἔ ∷ σ ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.31"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.31"
∷ word (ο ∷ ὐ ∷ []) "Mark.15.31"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.31"
∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.31"
∷ word (ὁ ∷ []) "Mark.15.32"
∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.15.32"
∷ word (ὁ ∷ []) "Mark.15.32"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.15.32"
∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Mark.15.32"
∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ά ∷ τ ∷ ω ∷ []) "Mark.15.32"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "Mark.15.32"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.32"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.32"
∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.32"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.32"
∷ word (ἴ ∷ δ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.15.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.32"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.15.32"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.32"
∷ word (ο ∷ ἱ ∷ []) "Mark.15.32"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.15.32"
∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.15.32"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.32"
∷ word (ὠ ∷ ν ∷ ε ∷ ί ∷ δ ∷ ι ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.15.32"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.32"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.33"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.15.33"
∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.15.33"
∷ word (ἕ ∷ κ ∷ τ ∷ η ∷ ς ∷ []) "Mark.15.33"
∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.33"
∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.15.33"
∷ word (ἐ ∷ φ ∷ []) "Mark.15.33"
∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.15.33"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.33"
∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.15.33"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.15.33"
∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.15.33"
∷ word (ἐ ∷ ν ∷ ά ∷ τ ∷ η ∷ ς ∷ []) "Mark.15.33"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.34"
∷ word (τ ∷ ῇ ∷ []) "Mark.15.34"
∷ word (ἐ ∷ ν ∷ ά ∷ τ ∷ ῃ ∷ []) "Mark.15.34"
∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Mark.15.34"
∷ word (ἐ ∷ β ∷ ό ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.34"
∷ word (ὁ ∷ []) "Mark.15.34"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.15.34"
∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Mark.15.34"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.15.34"
∷ word (Ἐ ∷ ∙λ ∷ ω ∷ ῒ ∷ []) "Mark.15.34"
∷ word (ἐ ∷ ∙λ ∷ ω ∷ ῒ ∷ []) "Mark.15.34"
∷ word (∙λ ∷ ε ∷ μ ∷ ὰ ∷ []) "Mark.15.34"
∷ word (σ ∷ α ∷ β ∷ α ∷ χ ∷ θ ∷ ά ∷ ν ∷ ι ∷ []) "Mark.15.34"
∷ word (ὅ ∷ []) "Mark.15.34"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.34"
∷ word (μ ∷ ε ∷ θ ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.34"
∷ word (Ὁ ∷ []) "Mark.15.34"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.15.34"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.15.34"
∷ word (ὁ ∷ []) "Mark.15.34"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.15.34"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.15.34"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.15.34"
∷ word (τ ∷ ί ∷ []) "Mark.15.34"
∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ τ ∷ έ ∷ ∙λ ∷ ι ∷ π ∷ έ ∷ ς ∷ []) "Mark.15.34"
∷ word (μ ∷ ε ∷ []) "Mark.15.34"
∷ word (κ ∷ α ∷ ί ∷ []) "Mark.15.35"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.15.35"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.35"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.15.35"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.35"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.35"
∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.15.35"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.15.35"
∷ word (φ ∷ ω ∷ ν ∷ ε ∷ ῖ ∷ []) "Mark.15.35"
∷ word (δ ∷ ρ ∷ α ∷ μ ∷ ὼ ∷ ν ∷ []) "Mark.15.36"
∷ word (δ ∷ έ ∷ []) "Mark.15.36"
∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.15.36"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.36"
∷ word (γ ∷ ε ∷ μ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.36"
∷ word (σ ∷ π ∷ ό ∷ γ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.36"
∷ word (ὄ ∷ ξ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.15.36"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.36"
∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ῳ ∷ []) "Mark.15.36"
∷ word (ἐ ∷ π ∷ ό ∷ τ ∷ ι ∷ ζ ∷ ε ∷ ν ∷ []) "Mark.15.36"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.36"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.15.36"
∷ word (Ἄ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.36"
∷ word (ἴ ∷ δ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.15.36"
∷ word (ε ∷ ἰ ∷ []) "Mark.15.36"
∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.36"
∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.36"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.15.36"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.36"
∷ word (ὁ ∷ []) "Mark.15.37"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.37"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.15.37"
∷ word (ἀ ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.37"
∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Mark.15.37"
∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.15.37"
∷ word (ἐ ∷ ξ ∷ έ ∷ π ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.37"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.38"
∷ word (τ ∷ ὸ ∷ []) "Mark.15.38"
∷ word (κ ∷ α ∷ τ ∷ α ∷ π ∷ έ ∷ τ ∷ α ∷ σ ∷ μ ∷ α ∷ []) "Mark.15.38"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.38"
∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Mark.15.38"
∷ word (ἐ ∷ σ ∷ χ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.15.38"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.15.38"
∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.15.38"
∷ word (ἀ ∷ π ∷ []) "Mark.15.38"
∷ word (ἄ ∷ ν ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.15.38"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.15.38"
∷ word (κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.15.38"
∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.15.39"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.39"
∷ word (ὁ ∷ []) "Mark.15.39"
∷ word (κ ∷ ε ∷ ν ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.39"
∷ word (ὁ ∷ []) "Mark.15.39"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ὼ ∷ ς ∷ []) "Mark.15.39"
∷ word (ἐ ∷ ξ ∷ []) "Mark.15.39"
∷ word (ἐ ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.39"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.39"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.15.39"
∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.15.39"
∷ word (ἐ ∷ ξ ∷ έ ∷ π ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.39"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.15.39"
∷ word (Ἀ ∷ ∙λ ∷ η ∷ θ ∷ ῶ ∷ ς ∷ []) "Mark.15.39"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.39"
∷ word (ὁ ∷ []) "Mark.15.39"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.15.39"
∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.15.39"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.15.39"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.39"
∷ word (Ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.40"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ε ∷ ς ∷ []) "Mark.15.40"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.40"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.15.40"
∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.40"
∷ word (ἐ ∷ ν ∷ []) "Mark.15.40"
∷ word (α ∷ ἷ ∷ ς ∷ []) "Mark.15.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.40"
∷ word (ἡ ∷ []) "Mark.15.40"
∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ὴ ∷ []) "Mark.15.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.40"
∷ word (ἡ ∷ []) "Mark.15.40"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.15.40"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.40"
∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40"
∷ word (Ἰ ∷ ω ∷ σ ∷ ῆ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.40"
∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.15.40"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40"
∷ word (Σ ∷ α ∷ ∙λ ∷ ώ ∷ μ ∷ η ∷ []) "Mark.15.40"
∷ word (α ∷ ἳ ∷ []) "Mark.15.41"
∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.15.41"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.41"
∷ word (ἐ ∷ ν ∷ []) "Mark.15.41"
∷ word (τ ∷ ῇ ∷ []) "Mark.15.41"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ ᾳ ∷ []) "Mark.15.41"
∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.41"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.41"
∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.41"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.41"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.41"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ ι ∷ []) "Mark.15.41"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Mark.15.41"
∷ word (α ∷ ἱ ∷ []) "Mark.15.41"
∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ β ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.41"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.41"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.15.41"
∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.15.41"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.42"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.15.42"
∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.42"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.15.42"
∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Mark.15.42"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.42"
∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ή ∷ []) "Mark.15.42"
∷ word (ὅ ∷ []) "Mark.15.42"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.42"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ά ∷ β ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.42"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.15.43"
∷ word (Ἰ ∷ ω ∷ σ ∷ ὴ ∷ φ ∷ []) "Mark.15.43"
∷ word (ὁ ∷ []) "Mark.15.43"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.43"
∷ word (Ἁ ∷ ρ ∷ ι ∷ μ ∷ α ∷ θ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.43"
∷ word (ε ∷ ὐ ∷ σ ∷ χ ∷ ή ∷ μ ∷ ω ∷ ν ∷ []) "Mark.15.43"
∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ή ∷ ς ∷ []) "Mark.15.43"
∷ word (ὃ ∷ ς ∷ []) "Mark.15.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.43"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.15.43"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.43"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.43"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.43"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.15.43"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.43"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.15.43"
∷ word (τ ∷ ο ∷ ∙λ ∷ μ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.43"
∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.15.43"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.15.43"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.43"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.43"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.43"
∷ word (ᾐ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.15.43"
∷ word (τ ∷ ὸ ∷ []) "Mark.15.43"
∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Mark.15.43"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.43"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.15.43"
∷ word (ὁ ∷ []) "Mark.15.44"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.44"
∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.44"
∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.44"
∷ word (ε ∷ ἰ ∷ []) "Mark.15.44"
∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.15.44"
∷ word (τ ∷ έ ∷ θ ∷ ν ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.44"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.44"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.44"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.44"
∷ word (κ ∷ ε ∷ ν ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ α ∷ []) "Mark.15.44"
∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.44"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.44"
∷ word (ε ∷ ἰ ∷ []) "Mark.15.44"
∷ word (π ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "Mark.15.44"
∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.15.44"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.45"
∷ word (γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.15.45"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.45"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.45"
∷ word (κ ∷ ε ∷ ν ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.45"
∷ word (ἐ ∷ δ ∷ ω ∷ ρ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.15.45"
∷ word (τ ∷ ὸ ∷ []) "Mark.15.45"
∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Mark.15.45"
∷ word (τ ∷ ῷ ∷ []) "Mark.15.45"
∷ word (Ἰ ∷ ω ∷ σ ∷ ή ∷ φ ∷ []) "Mark.15.45"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.46"
∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.46"
∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ α ∷ []) "Mark.15.46"
∷ word (κ ∷ α ∷ θ ∷ ε ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.15.46"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.46"
∷ word (ἐ ∷ ν ∷ ε ∷ ί ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.46"
∷ word (τ ∷ ῇ ∷ []) "Mark.15.46"
∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ ι ∷ []) "Mark.15.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.46"
∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.46"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.46"
∷ word (ἐ ∷ ν ∷ []) "Mark.15.46"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ῳ ∷ []) "Mark.15.46"
∷ word (ὃ ∷ []) "Mark.15.46"
∷ word (ἦ ∷ ν ∷ []) "Mark.15.46"
∷ word (∙λ ∷ ε ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.46"
∷ word (ἐ ∷ κ ∷ []) "Mark.15.46"
∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.15.46"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.46"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ∙λ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.46"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.15.46"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.15.46"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.46"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.46"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.46"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Mark.15.46"
∷ word (ἡ ∷ []) "Mark.15.47"
∷ word (δ ∷ ὲ ∷ []) "Mark.15.47"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.47"
∷ word (ἡ ∷ []) "Mark.15.47"
∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ὴ ∷ []) "Mark.15.47"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.47"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.47"
∷ word (ἡ ∷ []) "Mark.15.47"
∷ word (Ἰ ∷ ω ∷ σ ∷ ῆ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.47"
∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.47"
∷ word (π ∷ ο ∷ ῦ ∷ []) "Mark.15.47"
∷ word (τ ∷ έ ∷ θ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.47"
∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.16.1"
∷ word (δ ∷ ι ∷ α ∷ γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.16.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.1"
∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.16.1"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.16.1"
∷ word (ἡ ∷ []) "Mark.16.1"
∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ὴ ∷ []) "Mark.16.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.1"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.16.1"
∷ word (ἡ ∷ []) "Mark.16.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.1"
∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.16.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.1"
∷ word (Σ ∷ α ∷ ∙λ ∷ ώ ∷ μ ∷ η ∷ []) "Mark.16.1"
∷ word (ἠ ∷ γ ∷ ό ∷ ρ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.1"
∷ word (ἀ ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.16.1"
∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.16.1"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.1"
∷ word (ἀ ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.1"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.16.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.2"
∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.2"
∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.16.2"
∷ word (τ ∷ ῇ ∷ []) "Mark.16.2"
∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Mark.16.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.16.2"
∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.16.2"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.2"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.16.2"
∷ word (τ ∷ ὸ ∷ []) "Mark.16.2"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.16.2"
∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.16.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.2"
∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.3"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.16.3"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.16.3"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ά ∷ ς ∷ []) "Mark.16.3"
∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.16.3"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ υ ∷ ∙λ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Mark.16.3"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.16.3"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.3"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.16.3"
∷ word (ἐ ∷ κ ∷ []) "Mark.16.3"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.16.3"
∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.16.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.3"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.4"
∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.4"
∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.4"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.4"
∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ε ∷ κ ∷ ύ ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.4"
∷ word (ὁ ∷ []) "Mark.16.4"
∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ς ∷ []) "Mark.16.4"
∷ word (ἦ ∷ ν ∷ []) "Mark.16.4"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.16.4"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Mark.16.4"
∷ word (σ ∷ φ ∷ ό ∷ δ ∷ ρ ∷ α ∷ []) "Mark.16.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.5"
∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.5"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.5"
∷ word (τ ∷ ὸ ∷ []) "Mark.16.5"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.16.5"
∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.16.5"
∷ word (ν ∷ ε ∷ α ∷ ν ∷ ί ∷ σ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.16.5"
∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.5"
∷ word (ἐ ∷ ν ∷ []) "Mark.16.5"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.5"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.5"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.5"
∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.16.5"
∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ ν ∷ []) "Mark.16.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.5"
∷ word (ἐ ∷ ξ ∷ ε ∷ θ ∷ α ∷ μ ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.5"
∷ word (ὁ ∷ []) "Mark.16.6"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.6"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.16.6"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.16.6"
∷ word (Μ ∷ ὴ ∷ []) "Mark.16.6"
∷ word (ἐ ∷ κ ∷ θ ∷ α ∷ μ ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.16.6"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.16.6"
∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.16.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.6"
∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.16.6"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.6"
∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.6"
∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Mark.16.6"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.16.6"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.16.6"
∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.16.6"
∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.16.6"
∷ word (ὁ ∷ []) "Mark.16.6"
∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.16.6"
∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.16.6"
∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Mark.16.6"
∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.16.6"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.16.7"
∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.16.7"
∷ word (ε ∷ ἴ ∷ π ∷ α ∷ τ ∷ ε ∷ []) "Mark.16.7"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.7"
∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.16.7"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.16.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.7"
∷ word (τ ∷ ῷ ∷ []) "Mark.16.7"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.16.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.7"
∷ word (Π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Mark.16.7"
∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.16.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.7"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.16.7"
∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.7"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.16.7"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.16.7"
∷ word (ὄ ∷ ψ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.16.7"
∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.16.7"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.16.7"
∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.16.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.8"
∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.16.8"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.16.8"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.8"
∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.8"
∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.16.8"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.16.8"
∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.16.8"
∷ word (τ ∷ ρ ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Mark.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8"
∷ word (ἔ ∷ κ ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "Mark.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.16.8"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.16.8"
∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.16.8"
∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.16.8"
∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.16.8"
∷ word (Π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.16.8"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.8"
∷ word (τ ∷ ὰ ∷ []) "Mark.16.8"
∷ word (π ∷ α ∷ ρ ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Mark.16.8"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.8"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.16.8"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.8"
∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.16.8"
∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ό ∷ μ ∷ ω ∷ ς ∷ []) "Mark.16.8"
∷ word (ἐ ∷ ξ ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.16.8"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.16.8"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.8"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.16.8"
∷ word (ὁ ∷ []) "Mark.16.8"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.16.8"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.16.8"
∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8"
∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Mark.16.8"
∷ word (δ ∷ ύ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.16.8"
∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.16.8"
∷ word (δ ∷ ι ∷ []) "Mark.16.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.16.8"
∷ word (τ ∷ ὸ ∷ []) "Mark.16.8"
∷ word (ἱ ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.16.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8"
∷ word (ἄ ∷ φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.16.8"
∷ word (κ ∷ ή ∷ ρ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "Mark.16.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.16.8"
∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.8"
∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Mark.16.8"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Mark.16.8"
∷ word (Ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.16.9"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.9"
∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.16.9"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Mark.16.9"
∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.16.9"
∷ word (ἐ ∷ φ ∷ ά ∷ ν ∷ η ∷ []) "Mark.16.9"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.16.9"
∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ ᾳ ∷ []) "Mark.16.9"
∷ word (τ ∷ ῇ ∷ []) "Mark.16.9"
∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ῇ ∷ []) "Mark.16.9"
∷ word (π ∷ α ∷ ρ ∷ []) "Mark.16.9"
∷ word (ἧ ∷ ς ∷ []) "Mark.16.9"
∷ word (ἐ ∷ κ ∷ β ∷ ε ∷ β ∷ ∙λ ∷ ή ∷ κ ∷ ε ∷ ι ∷ []) "Mark.16.9"
∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.16.9"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.16.9"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Mark.16.10"
∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.16.10"
∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.16.10"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.10"
∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.16.10"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.16.10"
∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.10"
∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ []) "Mark.16.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.10"
∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.10"
∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.16.11"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.11"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.11"
∷ word (ζ ∷ ῇ ∷ []) "Mark.16.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.11"
∷ word (ἐ ∷ θ ∷ ε ∷ ά ∷ θ ∷ η ∷ []) "Mark.16.11"
∷ word (ὑ ∷ π ∷ []) "Mark.16.11"
∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.16.11"
∷ word (ἠ ∷ π ∷ ί ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.11"
∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.16.12"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.12"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.16.12"
∷ word (δ ∷ υ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.16.12"
∷ word (ἐ ∷ ξ ∷ []) "Mark.16.12"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.16.12"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.12"
∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.16.12"
∷ word (ἐ ∷ ν ∷ []) "Mark.16.12"
∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.16.12"
∷ word (μ ∷ ο ∷ ρ ∷ φ ∷ ῇ ∷ []) "Mark.16.12"
∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.12"
∷ word (ἀ ∷ γ ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.16.12"
∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.16.13"
∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.13"
∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.16.13"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.13"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.13"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.16.13"
∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.13"
∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.13"
∷ word (Ὕ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.16.14"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.14"
∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.14"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.14"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.14"
∷ word (ἕ ∷ ν ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.16.14"
∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.16.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.14"
∷ word (ὠ ∷ ν ∷ ε ∷ ί ∷ δ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.16.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.16.14"
∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.14"
∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.16.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.14"
∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.14"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.14"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.14"
∷ word (θ ∷ ε ∷ α ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.14"
∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.16.14"
∷ word (ἐ ∷ γ ∷ η ∷ γ ∷ ε ∷ ρ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.14"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.16.14"
∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.15"
∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.16.15"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.15"
∷ word (Π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.15"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.16.15"
∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ α ∷ []) "Mark.16.15"
∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ α ∷ τ ∷ ε ∷ []) "Mark.16.15"
∷ word (τ ∷ ὸ ∷ []) "Mark.16.15"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.16.15"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Mark.16.15"
∷ word (τ ∷ ῇ ∷ []) "Mark.16.15"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Mark.16.15"
∷ word (ὁ ∷ []) "Mark.16.16"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.16.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.16"
∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.16.16"
∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.16"
∷ word (ὁ ∷ []) "Mark.16.16"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.16"
∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.16.16"
∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.16"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Mark.16.17"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.17"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.17"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.17"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.16.17"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.16.17"
∷ word (ἐ ∷ ν ∷ []) "Mark.16.17"
∷ word (τ ∷ ῷ ∷ []) "Mark.16.17"
∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.16.17"
∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.16.17"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.16.17"
∷ word (ἐ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.17"
∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Mark.16.17"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.17"
∷ word (κ ∷ α ∷ ι ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.16.17"
∷ word (ὄ ∷ φ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.16.18"
∷ word (ἀ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18"
∷ word (κ ∷ ἂ ∷ ν ∷ []) "Mark.16.18"
∷ word (θ ∷ α ∷ ν ∷ ά ∷ σ ∷ ι ∷ μ ∷ ό ∷ ν ∷ []) "Mark.16.18"
∷ word (τ ∷ ι ∷ []) "Mark.16.18"
∷ word (π ∷ ί ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18"
∷ word (ο ∷ ὐ ∷ []) "Mark.16.18"
∷ word (μ ∷ ὴ ∷ []) "Mark.16.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.16.18"
∷ word (β ∷ ∙λ ∷ ά ∷ ψ ∷ ῃ ∷ []) "Mark.16.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.16.18"
∷ word (ἀ ∷ ρ ∷ ρ ∷ ώ ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.16.18"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.16.18"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.18"
∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.16.18"
∷ word (ἕ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18"
∷ word (Ὁ ∷ []) "Mark.16.19"
∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.16.19"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.16.19"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.16.19"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.16.19"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.16.19"
∷ word (τ ∷ ὸ ∷ []) "Mark.16.19"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.19"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.19"
∷ word (ἀ ∷ ν ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ φ ∷ θ ∷ η ∷ []) "Mark.16.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.19"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.19"
∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.16.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.19"
∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.16.19"
∷ word (ἐ ∷ κ ∷ []) "Mark.16.19"
∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.16.19"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.19"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.16.19"
∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.16.20"
∷ word (δ ∷ ὲ ∷ []) "Mark.16.20"
∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.20"
∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ ξ ∷ α ∷ ν ∷ []) "Mark.16.20"
∷ word (π ∷ α ∷ ν ∷ τ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "Mark.16.20"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.20"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.20"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.16.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.20"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.20"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.16.20"
∷ word (β ∷ ε ∷ β ∷ α ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.16.20"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.16.20"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.16.20"
∷ word (ἐ ∷ π ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.16.20"
∷ word (σ ∷ η ∷ μ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Mark.16.20"
∷ []
| {
"alphanum_fraction": 0.3501315423,
"avg_line_length": 46.3650526689,
"ext": "agda",
"hexsha": "4f59b66c42d12d58076267d80fcddd40af2f1cb5",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z",
"max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "scott-fleischman/GreekGrammar",
"max_forks_repo_path": "agda/Text/Greek/SBLGNT/Mark.agda",
"max_issues_count": 13,
"max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "scott-fleischman/GreekGrammar",
"max_issues_repo_path": "agda/Text/Greek/SBLGNT/Mark.agda",
"max_line_length": 98,
"max_stars_count": 44,
"max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "scott-fleischman/GreekGrammar",
"max_stars_repo_path": "agda/Text/Greek/SBLGNT/Mark.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z",
"num_tokens": 357766,
"size": 523786
} |
{-# OPTIONS --without-K #-}
module FinNatLemmas where
open import Data.Empty using (⊥-elim)
open import Data.Product using (_×_; _,_)
open import Data.Nat
using (ℕ; zero; suc; _+_; _*_; _<_; _≤_; _∸_; z≤n; s≤s; module ≤-Reasoning)
open import Data.Nat.Properties
using (m+n∸n≡m; m≤m+n; +-∸-assoc; cancel-+-left)
open import Data.Nat.Properties.Simple
using (+-comm; +-assoc; *-comm; distribʳ-*-+; +-right-identity)
open import Data.Fin
using (Fin; zero; suc; toℕ; raise; fromℕ≤; reduce≥; inject+)
open import Data.Fin.Properties
using (bounded; toℕ-injective; toℕ-raise; toℕ-fromℕ≤; inject+-lemma)
open import Relation.Binary using (module StrictTotalOrder)
open import Relation.Binary.Core using (_≢_)
open import Relation.Binary.PropositionalEquality
using (_≡_; subst; refl; sym; cong; cong₂; trans; module ≡-Reasoning)
------------------------------------------------------------------------------
-- Fin and Nat lemmas
toℕ-fin : (m n : ℕ) → (eq : m ≡ n) (fin : Fin m) →
toℕ (subst Fin eq fin) ≡ toℕ fin
toℕ-fin m .m refl fin = refl
∸≡ : (m n : ℕ) (i j : Fin (m + n)) (i≥ : m ≤ toℕ i) (j≥ : m ≤ toℕ j) →
toℕ i ∸ m ≡ toℕ j ∸ m → i ≡ j
∸≡ m n i j i≥ j≥ p = toℕ-injective pr
where pr = begin (toℕ i
≡⟨ sym (m+n∸n≡m (toℕ i) m) ⟩
(toℕ i + m) ∸ m
≡⟨ cong (λ x → x ∸ m) (+-comm (toℕ i) m) ⟩
(m + toℕ i) ∸ m
≡⟨ +-∸-assoc m i≥ ⟩
m + (toℕ i ∸ m)
≡⟨ cong (λ x → m + x) p ⟩
m + (toℕ j ∸ m)
≡⟨ sym (+-∸-assoc m j≥) ⟩
(m + toℕ j) ∸ m
≡⟨ cong (λ x → x ∸ m) (+-comm m (toℕ j)) ⟩
(toℕ j + m) ∸ m
≡⟨ m+n∸n≡m (toℕ j) m ⟩
toℕ j ∎)
where open ≡-Reasoning
cancel-right∸ : (m n k : ℕ) (k≤m : k ≤ m) (k≤n : k ≤ n) →
(m ∸ k ≡ n ∸ k) → m ≡ n
cancel-right∸ m n k k≤m k≤n mk≡nk =
begin (m
≡⟨ sym (m+n∸n≡m m k) ⟩
(m + k) ∸ k
≡⟨ cong (λ x → x ∸ k) (+-comm m k) ⟩
(k + m) ∸ k
≡⟨ +-∸-assoc k k≤m ⟩
k + (m ∸ k)
≡⟨ cong (λ x → k + x) mk≡nk ⟩
k + (n ∸ k)
≡⟨ sym (+-∸-assoc k k≤n) ⟩
(k + n) ∸ k
≡⟨ cong (λ x → x ∸ k) (+-comm k n) ⟩
(n + k) ∸ k
≡⟨ m+n∸n≡m n k ⟩
n ∎)
where open ≡-Reasoning
raise< : (m n : ℕ) (i : Fin (m + n)) (i< : toℕ i < m) →
toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ i<))) ≡ n + toℕ i
raise< m n i i< =
begin (toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ i<)))
≡⟨ toℕ-fin (n + m) (m + n) (+-comm n m) (raise n (fromℕ≤ i<)) ⟩
toℕ (raise n (fromℕ≤ i<))
≡⟨ toℕ-raise n (fromℕ≤ i<) ⟩
n + toℕ (fromℕ≤ i<)
≡⟨ cong (λ x → n + x) (toℕ-fromℕ≤ i<) ⟩
n + toℕ i ∎)
where open ≡-Reasoning
toℕ-reduce≥ : (m n : ℕ) (i : Fin (m + n)) (i≥ : m ≤ toℕ i) →
toℕ (reduce≥ i i≥) ≡ toℕ i ∸ m
toℕ-reduce≥ 0 n i _ = refl
toℕ-reduce≥ (suc m) n zero ()
toℕ-reduce≥ (suc m) n (suc i) (s≤s i≥) = toℕ-reduce≥ m n i i≥
inject≥ : (m n : ℕ) (i : Fin (m + n)) (i≥ : m ≤ toℕ i) →
toℕ (subst Fin (+-comm n m) (inject+ m (reduce≥ i i≥))) ≡ toℕ i ∸ m
inject≥ m n i i≥ =
begin (toℕ (subst Fin (+-comm n m) (inject+ m (reduce≥ i i≥)))
≡⟨ toℕ-fin (n + m) (m + n) (+-comm n m) (inject+ m (reduce≥ i i≥)) ⟩
toℕ (inject+ m (reduce≥ i i≥))
≡⟨ sym (inject+-lemma m (reduce≥ i i≥)) ⟩
toℕ (reduce≥ i i≥)
≡⟨ toℕ-reduce≥ m n i i≥ ⟩
toℕ i ∸ m ∎)
where open ≡-Reasoning
fromℕ≤-inj : (m n : ℕ) (i j : Fin n) (i< : toℕ i < m) (j< : toℕ j < m) →
fromℕ≤ i< ≡ fromℕ≤ j< → i ≡ j
fromℕ≤-inj m n i j i< j< fi≡fj =
toℕ-injective
(trans (sym (toℕ-fromℕ≤ i<)) (trans (cong toℕ fi≡fj) (toℕ-fromℕ≤ j<)))
reduce≥-inj : (m n : ℕ) (i j : Fin (m + n)) (i≥ : m ≤ toℕ i) (j≥ : m ≤ toℕ j) →
reduce≥ i i≥ ≡ reduce≥ j j≥ → i ≡ j
reduce≥-inj m n i j i≥ j≥ ri≡rj =
toℕ-injective
(cancel-right∸ (toℕ i) (toℕ j) m i≥ j≥
(trans (sym (toℕ-reduce≥ m n i i≥))
(trans (cong toℕ ri≡rj) (toℕ-reduce≥ m n j j≥))))
inj₁-toℕ≡ : {m n : ℕ} (i : Fin (m + n)) (i< : toℕ i < m) →
toℕ i ≡ toℕ (inject+ n (fromℕ≤ i<))
inj₁-toℕ≡ {0} _ ()
inj₁-toℕ≡ {suc m} zero (s≤s z≤n) = refl
inj₁-toℕ≡ {suc (suc m)} (suc i) (s≤s (s≤s i<)) = cong suc (inj₁-toℕ≡ i (s≤s i<))
inj₁-≡ : {m n : ℕ} (i : Fin (m + n)) (i< : toℕ i < m) → i ≡ inject+ n (fromℕ≤ i<)
inj₁-≡ i i< = toℕ-injective (inj₁-toℕ≡ i i<)
inj₂-toℕ≡ : {m n : ℕ} (i : Fin (m + n)) (i≥ : m ≤ toℕ i ) →
toℕ i ≡ toℕ (raise m (reduce≥ i i≥))
inj₂-toℕ≡ {Data.Nat.zero} i i≥ = refl
inj₂-toℕ≡ {suc m} zero ()
inj₂-toℕ≡ {suc m} (suc i) (s≤s i≥) = cong suc (inj₂-toℕ≡ i i≥)
inj₂-≡ : {m n : ℕ} (i : Fin (m + n)) (i≥ : m ≤ toℕ i ) → i ≡ raise m (reduce≥ i i≥)
inj₂-≡ i i≥ = toℕ-injective (inj₂-toℕ≡ i i≥)
inject+-injective : {m n : ℕ} (i j : Fin m) → (inject+ n i ≡ inject+ n j) → i ≡ j
inject+-injective {m} {n} i j p = toℕ-injective pf
where
open ≡-Reasoning
pf : toℕ i ≡ toℕ j
pf = begin (
toℕ i
≡⟨ inject+-lemma n i ⟩
toℕ (inject+ n i)
≡⟨ cong toℕ p ⟩
toℕ (inject+ n j)
≡⟨ sym (inject+-lemma n j) ⟩
toℕ j ∎)
raise-injective : {m n : ℕ} (i j : Fin n) → (raise m i ≡ raise m j) → i ≡ j
raise-injective {m} {n} i j p = toℕ-injective (cancel-+-left m pf)
where
open ≡-Reasoning
pf : m + toℕ i ≡ m + toℕ j
pf = begin (
m + toℕ i
≡⟨ sym (toℕ-raise m i) ⟩
toℕ (raise m i)
≡⟨ cong toℕ p ⟩
toℕ (raise m j)
≡⟨ toℕ-raise m j ⟩
m + toℕ j ∎)
toℕ-invariance : ∀ {n n'} → (i : Fin n) → (eq : n ≡ n') → toℕ (subst Fin eq i) ≡ toℕ i
toℕ-invariance i refl = refl
-- see FinEquiv for the naming
inject+0≡uniti+ : ∀ {m} → (n : Fin m) → (eq : m ≡ m + 0) → inject+ 0 n ≡ subst Fin eq n
inject+0≡uniti+ {m} n eq = toℕ-injective pf
where
open ≡-Reasoning
pf : toℕ (inject+ 0 n) ≡ toℕ (subst Fin eq n)
pf = begin (
toℕ (inject+ 0 n)
≡⟨ sym (inject+-lemma 0 n) ⟩
toℕ n
≡⟨ sym (toℕ-invariance n eq) ⟩
toℕ (subst Fin eq n) ∎)
-- Following code taken from
-- https://github.com/copumpkin/derpa/blob/master/REPA/Index.agda#L210
-- the next few bits are lemmas to prove uniqueness of euclidean division
-- first : for nonzero divisors, a nonzero quotient would require a larger
-- dividend than is consistent with a zero quotient, regardless of
-- remainders.
large : ∀ {d} {r : Fin (suc d)} x (r′ : Fin (suc d)) →
toℕ r ≢ suc x * suc d + toℕ r′
large {d} {r} x r′ pf = irrefl pf (
start
suc (toℕ r)
≤⟨ bounded r ⟩
suc d
≤⟨ m≤m+n (suc d) (x * suc d) ⟩
suc d + x * suc d -- same as (suc x * suc d)
≤⟨ m≤m+n (suc x * suc d) (toℕ r′) ⟩
suc x * suc d + toℕ r′ -- clearer in two steps; we'd need assoc anyway
□)
where
open ≤-Reasoning
renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≡⟨_⟩'_)
open Relation.Binary.StrictTotalOrder Data.Nat.Properties.strictTotalOrder
-- a raw statement of the uniqueness, in the arrangement of terms that's
-- easiest to work with computationally
addMul-lemma′ : ∀ x x′ d (r r′ : Fin (suc d)) →
x * suc d + toℕ r ≡ x′ * suc d + toℕ r′ → r ≡ r′ × x ≡ x′
addMul-lemma′ zero zero d r r′ hyp = (toℕ-injective hyp) , refl
addMul-lemma′ zero (suc x′) d r r′ hyp = ⊥-elim (large x′ r′ hyp)
addMul-lemma′ (suc x) zero d r r′ hyp = ⊥-elim (large x r (sym hyp))
addMul-lemma′ (suc x) (suc x′) d r r′ hyp
rewrite +-assoc (suc d) (x * suc d) (toℕ r)
| +-assoc (suc d) (x′ * suc d) (toℕ r′)
with addMul-lemma′ x x′ d r r′ (cancel-+-left (suc d) hyp)
... | pf₁ , pf₂ = pf₁ , cong suc pf₂
-- and now rearranged to the order that Data.Nat.DivMod uses
addMul-lemma : ∀ x x′ d (r r′ : Fin (suc d)) →
toℕ r + x * suc d ≡ toℕ r′ + x′ * suc d → r ≡ r′ × x ≡ x′
addMul-lemma x x′ d r r′ hyp rewrite +-comm (toℕ r) (x * suc d)
| +-comm (toℕ r′) (x′ * suc d)
= addMul-lemma′ x x′ d r r′ hyp
-- purely about Nat, but still not in Data.Nat.Properties.Simple
distribˡ-*-+ : ∀ m n o → m * (n + o) ≡ m * n + m * o
distribˡ-*-+ m n o =
trans (*-comm m (n + o)) (
trans (distribʳ-*-+ m n o) (
(cong₂ _+_ (*-comm n m) (*-comm o m))))
*-right-identity : ∀ n → n * 1 ≡ n
*-right-identity n = trans (*-comm n 1) (+-right-identity n)
------------------------------------------------------------------------
| {
"alphanum_fraction": 0.4813171415,
"avg_line_length": 35.8326359833,
"ext": "agda",
"hexsha": "b8341e557a806606135646c1285b1e0954bc1a6a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/FinNatLemmas.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/FinNatLemmas.agda",
"max_line_length": 87,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/FinNatLemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3841,
"size": 8564
} |
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
test : (A : Set) (let X = _) (x : X) (p : A ≡ Bool) → Bool
test .Bool true refl = false
test .Bool false refl = true
| {
"alphanum_fraction": 0.6612021858,
"avg_line_length": 26.1428571429,
"ext": "agda",
"hexsha": "6c622ba6bdac63cbe29b50d099dd328cb9c58ca0",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2834.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2834.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2834.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 62,
"size": 183
} |
-- Andreas, 2014-09-23
-- Syntax declaration for overloaded constructor.
module _ where
module A where
syntax c x = ⟦ x ⟧
data D2 (A : Set) : Set where
c : A → D2 A
data D1 : Set where
c : D1
open A
test : D2 D1
test = ⟦ c ⟧
-- Should work.
| {
"alphanum_fraction": 0.5969581749,
"avg_line_length": 11.9545454545,
"ext": "agda",
"hexsha": "3a07fdc3473061f902a91ff7909a4b1a5952da7f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1194b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1194b.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1194b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 95,
"size": 263
} |
module Issue1419 where
module A where
module M where
module B where
module M where
open A
open B
module N (let open M) where
module LotsOfStuff where
| {
"alphanum_fraction": 0.7453416149,
"avg_line_length": 10.7333333333,
"ext": "agda",
"hexsha": "579e17821e53bcfd11580d9d22aaeee2dd05679f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1419.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1419.agda",
"max_line_length": 27,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1419.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 46,
"size": 161
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- A simple example of a program using the foreign function interface
------------------------------------------------------------------------
module README.Foreign.Haskell where
-- In order to be considered safe by Agda, the standard library cannot
-- add COMPILE pragmas binding the inductive types it defines to concrete
-- Haskell types.
-- To work around this limitation, we have defined FFI-friendly versions
-- of these types together with a zero-cost coercion `coerce`.
open import Level using (Level)
open import Agda.Builtin.Int
open import Agda.Builtin.Nat
open import Data.Bool.Base using (Bool; if_then_else_)
open import Data.Char as Char
open import Data.List.Base as List using (List; _∷_; []; takeWhile; dropWhile)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Data.Product
open import Function
open import Relation.Nullary.Decidable
import Foreign.Haskell as FFI
open import Foreign.Haskell.Coerce
private
variable
a : Level
A : Set a
-- Here we use the FFI version of Maybe and Pair.
postulate
primUncons : List A → FFI.Maybe (FFI.Pair A (List A))
primCatMaybes : List (FFI.Maybe A) → List A
primTestChar : Char → Bool
primIntEq : Int → Int → Bool
{-# COMPILE GHC primUncons = \ _ _ xs -> case xs of
{ [] -> Nothing
; (x : xs) -> Just (x, xs)
}
#-}
{-# FOREIGN GHC import Data.Maybe #-}
{-# COMPILE GHC primCatMaybes = \ _ _ -> catMaybes #-}
{-# COMPILE GHC primTestChar = ('-' /=) #-}
{-# COMPILE GHC primIntEq = (==) #-}
-- We however want to use the notion of Maybe and Pair internal to
-- the standard library. For this we use `coerce` to take use back
-- to the types we are used to.
-- The typeclass mechanism uses the coercion rules for Maybe and Pair,
-- as well as the knowledge that natural numbers are represented as
-- integers.
-- We additionally benefit from the congruence rules for List, Char,
-- Bool, and a reflexivity principle for variable A.
uncons : List A → Maybe (A × List A)
uncons = coerce primUncons
catMaybes : List (Maybe A) → List A
catMaybes = coerce primCatMaybes
testChar : Char → Bool
testChar = coerce primTestChar
-- note that coerce is useless here but the proof could come from
-- either `coerce-fun coerce-refl coerce-refl` or `coerce-refl` alone
-- We (and Agda) do not care which proof we got.
eqNat : Nat → Nat → Bool
eqNat = coerce primIntEq
-- We can coerce `Nat` to `Int` but not `Int` to `Nat`. This fundamentally
-- relies on the fact that `Coercible` understands that functions are
-- contravariant.
open import IO
open import Codata.Musical.Notation
open import Data.String.Base
open import Relation.Nullary.Negation
-- example program using uncons, catMaybes, and testChar
main = run $
♯ readFiniteFile "README/Foreign/Haskell.agda" {- read this file -} >>= λ f →
♯ let chars = toList f in
let cleanup = catMaybes ∘ List.map (λ c → if testChar c then just c else nothing) in
let cleaned = dropWhile ('\n' ≟_) $ cleanup chars in
case uncons cleaned of λ where
nothing → putStrLn "I cannot believe this file is filed with dashes only!"
(just (c , cs)) → putStrLn $ unlines
$ ("First (non dash) character: " ++ Char.show c)
∷ ("Rest (dash free) of the line: " ++ fromList (takeWhile (¬? ∘ ('\n' ≟_)) cs))
∷ []
-- You can compile and run this test by writing:
-- agda -c Haskell.agda
-- ../../Haskell
-- You should see the following text (without the indentation on the left):
-- First (non dash) character: ' '
-- Rest (dash free) of the line: The Agda standard library
| {
"alphanum_fraction": 0.6622019823,
"avg_line_length": 33.9363636364,
"ext": "agda",
"hexsha": "89dba50ba339cbbe6e135ee08d18d6d810bfd548",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/README/Foreign/Haskell.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/README/Foreign/Haskell.agda",
"max_line_length": 100,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/README/Foreign/Haskell.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 963,
"size": 3733
} |
{-# OPTIONS --sized-types #-}
module Sized.Data.List where
import Lvl
open import Lang.Size
open import Type
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
private variable T A A₁ A₂ B B₁ B₂ Result : Type{ℓ}
private variable s s₁ s₂ : Size
data List(s : Size){ℓ} (T : Type{ℓ}) : Type{ℓ} where
∅ : List(s)(T) -- An empty list
_⊰_ : ∀{sₛ : <ˢⁱᶻᵉ s} → T → List(sₛ)(T) → List(s)(T) -- Cons
infixr 1000 _⊰_
tail : List(s)(T) → List(s)(T)
tail ∅ = ∅
tail (_ ⊰ l) = l
{-
-- TODO: Size problems. See notes in Lang.Size.
_++_ : List(s)(T) → List(s)(T) → List(s)(T)
_++_ ∅ b = b
_++_ {s = s} (_⊰_ {sₛ = sₛ} x a) b = _⊰_ {s = s}{sₛ = sₛ} x (_++_ {s = sₛ} a b)
infixl 1000 _++_
-}
| {
"alphanum_fraction": 0.540960452,
"avg_line_length": 24.4137931034,
"ext": "agda",
"hexsha": "cf819934cc57221aadca28e549f6e2efe732b8dd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Sized/Data/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Sized/Data/List.agda",
"max_line_length": 79,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Sized/Data/List.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 314,
"size": 708
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
{- The cofiber space of [winl : X → X ∨ Y] is equivalent to [Y],
- and the cofiber space of [winr : Y → X ∨ Y] is equivalent to [X]. -}
module homotopy.WedgeCofiber {i} (X Y : Ptd i) where
module CofWinl where
module Into = CofiberRec {f = winl} (pt Y) (projr X Y) (λ _ → idp)
into = Into.f
out : de⊙ Y → Cofiber (winl {X = X} {Y = Y})
out = cfcod ∘ winr
abstract
out-into : (κ : Cofiber (winl {X = X} {Y = Y})) → out (into κ) == κ
out-into = Cofiber-elim
(! (cfglue (pt X) ∙ ap cfcod wglue))
(Wedge-elim
(λ x → ! (cfglue (pt X) ∙ ap cfcod wglue) ∙ cfglue x)
(λ y → idp)
(↓-='-from-square $
(lemma (cfglue (pt X)) (ap cfcod wglue)
∙h⊡ (ap-∘ out (projr X Y) wglue ∙ ap (ap out) (Projr.glue-β X Y))
∙v⊡ bl-square (ap cfcod wglue))))
(λ x → ↓-∘=idf-from-square out into $
! (∙-unit-r _) ∙h⊡
ap (ap out) (Into.glue-β x) ∙v⊡
hid-square {p = (! (cfglue' winl (pt X) ∙ ap cfcod wglue))}
⊡v connection {q = cfglue x})
where
lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z)
→ ! (p ∙ q) ∙ p == ! q
lemma idp idp = idp
eq : Cofiber winl ≃ de⊙ Y
eq = equiv into out (λ _ → idp) out-into
⊙eq : ⊙Cofiber ⊙winl ⊙≃ Y
⊙eq = ≃-to-⊙≃ eq idp
cfcod-winl-projr-comm-sqr : CommSquare (cfcod' winl) (projr X Y) (idf _) CofWinl.into
cfcod-winl-projr-comm-sqr = comm-sqr λ _ → idp
module CofWinr where
module Into = CofiberRec {f = winr} (pt X) (projl X Y) (λ _ → idp)
into = Into.f
out : de⊙ X → Cofiber (winr {X = X} {Y = Y})
out = cfcod ∘ winl
abstract
out-into : ∀ κ → out (into κ) == κ
out-into = Cofiber-elim
(ap cfcod wglue ∙ ! (cfglue (pt Y)))
(Wedge-elim
(λ x → idp)
(λ y → (ap cfcod wglue ∙ ! (cfglue (pt Y))) ∙ cfglue y)
(↓-='-from-square $
(ap-∘ out (projl X Y) wglue ∙ ap (ap out) (Projl.glue-β X Y)) ∙v⊡
connection
⊡h∙ ! (lemma (ap (cfcod' winr) wglue) (cfglue (pt Y)))))
(λ y → ↓-∘=idf-from-square out into $
! (∙-unit-r _) ∙h⊡
ap (ap out) (Into.glue-β y) ∙v⊡
hid-square {p = (ap (cfcod' winr) wglue ∙ ! (cfglue (pt Y)))}
⊡v connection {q = cfglue y})
where
lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : z == y)
→ (p ∙ ! q) ∙ q == p
lemma idp idp = idp
eq : Cofiber winr ≃ de⊙ X
eq = equiv into out (λ _ → idp) out-into
⊙eq : ⊙Cofiber ⊙winr ⊙≃ X
⊙eq = ≃-to-⊙≃ eq idp
cfcod-winr-projl-comm-sqr : CommSquare (cfcod' winr) (projl X Y) (idf _) CofWinr.into
cfcod-winr-projl-comm-sqr = comm-sqr λ _ → idp
| {
"alphanum_fraction": 0.4835549335,
"avg_line_length": 32.8505747126,
"ext": "agda",
"hexsha": "463ca0662b14bfbe66a00c8329822c275878dfd4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/WedgeCofiber.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/WedgeCofiber.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/WedgeCofiber.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1197,
"size": 2858
} |
module Issue1278.A (X : Set1) where
data D : Set where
d : D
| {
"alphanum_fraction": 0.5942028986,
"avg_line_length": 11.5,
"ext": "agda",
"hexsha": "8f9e95ca0c31afb62e903a9e0108df1aff77554b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue1278/A.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue1278/A.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue1278/A.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 26,
"size": 69
} |
-- Combinators for logical reasoning
{-# OPTIONS --without-K --safe --exact-split #-}
module Constructive.Combinators where
-- agda-stdlib
open import Data.Empty
open import Data.Sum as Sum
open import Data.Product as Prod
open import Function.Base
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Nullary.Decidable using (⌊_⌋)
import Relation.Unary as U
open import Relation.Binary.PropositionalEquality
-- agda-misc
open import Constructive.Common
---------------------------------------------------------------------------
-- Combinators
---------------------------------------------------------------------------
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
→-distrib-⊎-× : ((A ⊎ B) → C) → (A → C) × (B → C)
→-distrib-⊎-× f = f ∘ inj₁ , f ∘ inj₂
→-undistrib-⊎-× : (A → C) × (B → C) → (A ⊎ B) → C
→-undistrib-⊎-× (f , g) (inj₁ x) = f x
→-undistrib-⊎-× (f , g) (inj₂ y) = g y
→-undistrib-⊎-×-flip : (A ⊎ B) → (A → C) × (B → C) → C
→-undistrib-⊎-×-flip = flip →-undistrib-⊎-×
→-undistrib-×-⊎ : (A → C) ⊎ (B → C) → (A × B) → C
→-undistrib-×-⊎ (inj₁ f) (x , y) = f x
→-undistrib-×-⊎ (inj₂ g) (x , y) = g y
→-undistrib-×-⊎-flip : (A × B) → (A → C) ⊎ (B → C) → C
→-undistrib-×-⊎-flip = flip →-undistrib-×-⊎
-- contradiction
contradiction : ∀ {a w} {A : Set a} {WhatEver : Set w} → A → ¬ A → WhatEver
contradiction x ¬x = ⊥-elim (¬x x)
-- sum and product
module _ {a b} {A : Set a} {B : Set b} where
A⊎B→¬A→B : A ⊎ B → ¬ A → B
A⊎B→¬A→B (inj₁ x) ¬A = contradiction x ¬A
A⊎B→¬A→B (inj₂ y) ¬A = y
A⊎B→¬B→A : A ⊎ B → ¬ B → A
A⊎B→¬B→A (inj₁ x) ¬B = x
A⊎B→¬B→A (inj₂ y) ¬B = contradiction y ¬B
¬A⊎B→A→B : ¬ A ⊎ B → A → B
¬A⊎B→A→B (inj₁ ¬A) x = contradiction x ¬A
¬A⊎B→A→B (inj₂ y) _ = y
[A→B]→¬[A׬B] : (A → B) → ¬ (A × ¬ B)
[A→B]→¬[A׬B] f (x , y) = y (f x)
A×B→¬[A→¬B] : A × B → ¬ (A → ¬ B)
A×B→¬[A→¬B] (x , y) f = f x y
-- De Morgan's laws
¬[A⊎B]→¬A׬B : ¬ (A ⊎ B) → ¬ A × ¬ B
¬[A⊎B]→¬A׬B = →-distrib-⊎-×
¬A׬B→¬[A⊎B] : ¬ A × ¬ B → ¬ (A ⊎ B)
¬A׬B→¬[A⊎B] = →-undistrib-⊎-×
A⊎B→¬[¬A׬B] : A ⊎ B → ¬ (¬ A × ¬ B)
A⊎B→¬[¬A׬B] = →-undistrib-⊎-×-flip
¬A⊎¬B→¬[A×B] : ¬ A ⊎ ¬ B → ¬ (A × B)
¬A⊎¬B→¬[A×B] = →-undistrib-×-⊎
A×B→¬[¬A⊎¬B] : A × B → ¬ (¬ A ⊎ ¬ B)
A×B→¬[¬A⊎¬B] = →-undistrib-×-⊎-flip
-- Double negated DEM₃
¬[A×B]→¬¬[¬A⊎¬B] : ¬ (A × B) → ¬ ¬ (¬ A ⊎ ¬ B)
¬[A×B]→¬¬[¬A⊎¬B] ¬[A×B] ¬[¬A⊎¬B] =
¬[¬A⊎¬B] (inj₁ λ x → contradiction (inj₂ (λ y → ¬[A×B] (x , y))) ¬[¬A⊎¬B])
dec⊎⇒¬[A×B]→¬A⊎¬B : Dec⊎ A → Dec⊎ B → ¬ (A × B) → ¬ A ⊎ ¬ B
dec⊎⇒¬[A×B]→¬A⊎¬B (inj₁ x) (inj₁ y) ¬[A×B] = contradiction (x , y) ¬[A×B]
dec⊎⇒¬[A×B]→¬A⊎¬B (inj₁ x) (inj₂ ¬y) ¬[A×B] = inj₂ ¬y
dec⊎⇒¬[A×B]→¬A⊎¬B (inj₂ ¬x) _ ¬[A×B] = inj₁ ¬x
join : (A → A → B) → A → B
join f x = f x x
-- properties of negation
module _ {a} {A : Set a} where
[A→¬A]→¬A : (A → ¬ A) → ¬ A
[A→¬A]→¬A = join
[¬A→A]→¬¬A : (¬ A → A) → ¬ ¬ A
[¬A→A]→¬¬A ¬A→A ¬A = ¬A (¬A→A ¬A)
-- Law of noncontradiction (LNC)
¬[A׬A] : ¬ (A × ¬ A)
¬[A׬A] = uncurry (flip _$_)
module _ {a b} {A : Set a} {B : Set b} where
¬[A→B]→¬B : ¬ (A → B) → ¬ B
¬[A→B]→¬B ¬[A→B] y = ¬[A→B] (const y)
¬[A→B]→¬[A→¬¬B] : ¬ (A → B) → ¬ (A → ¬ ¬ B)
¬[A→B]→¬[A→¬¬B] ¬[A→B] A→¬¬B = ¬[A→B] λ x → ⊥-elim $ A→¬¬B x (¬[A→B]→¬B ¬[A→B])
¬[A→B]→B→A : ¬ (A → B) → B → A
¬[A→B]→B→A ¬[A→B] y = contradiction (λ _ → y) ¬[A→B]
[[A→B]→A]→¬A→A : ((A → B) → A) → ¬ A → A
[[A→B]→A]→¬A→A [A→B]→A ¬A = [A→B]→A (⊥-elim ∘′ ¬A)
[[A→B]→A]→¬¬A : ((A → B) → A) → ¬ ¬ A
[[A→B]→A]→¬¬A [A→B]→A ¬A = ¬A ([[A→B]→A]→¬A→A [A→B]→A ¬A)
[[[A→B]→A]→A]→¬B→¬¬A→A : (((A → B) → A) → A) → ¬ B → ¬ ¬ A → A
[[[A→B]→A]→A]→¬B→¬¬A→A [[A→B]→A]→A ¬B ¬¬A =
[[A→B]→A]→A λ A→B → contradiction (flip _∘′_ A→B ¬B) ¬¬A
module _ {a b} {A : Set a} {B : Set b} where
contraposition : (A → B) → ¬ B → ¬ A
contraposition = flip _∘′_
-- variant of contraposition
[A→¬¬B]→¬B→¬A : (A → ¬ ¬ B) → ¬ B → ¬ A
[A→¬¬B]→¬B→¬A f ¬B x = (f x) ¬B
[¬A→¬B]→¬¬[B→A] : (¬ A → ¬ B) → ¬ ¬ (B → A)
[¬A→¬B]→¬¬[B→A] ¬A→¬B ¬[B→A] = ¬[B→A] λ y → ⊥-elim $ ¬A→¬B (¬[A→B]→¬B ¬[B→A]) y
[A→¬B]→¬¬A→¬B : (A → ¬ B) → ¬ ¬ A → ¬ B
[A→¬B]→¬¬A→¬B A→¬B ¬¬A y = ¬¬A λ x → A→¬B x y
module _ {a} {A : Set a} where
-- introduction for double negation
DN-intro : A → ¬ ¬ A
DN-intro = flip _$_
-- triple negation to negation
TN-to-N : ¬ ¬ ¬ A → ¬ A
TN-to-N = contraposition DN-intro
-- Double negation of excluded middle
DN-Dec⊎ : ¬ ¬ Dec⊎ A
DN-Dec⊎ = λ f → (f ∘ inj₂) (f ∘ inj₁)
-- eliminator for ⊥
⊥-stable : ¬ ¬ ⊥ → ⊥
⊥-stable f = f id
-- Double negation is monad
module _ {a} {A : Set a} where
DN-join : ¬ ¬ ¬ ¬ A → ¬ ¬ A
DN-join = TN-to-N
module _ {a b} {A : Set a} {B : Set b} where
DN-map : (A → B) → ¬ ¬ A → ¬ ¬ B
DN-map = contraposition ∘′ contraposition
module _ {a b} {A : Set a} {B : Set b} where
DN-bind : (A → ¬ ¬ B) → ¬ ¬ A → ¬ ¬ B
DN-bind f = DN-join ∘′ DN-map f
DN-bind⁻¹ : (¬ ¬ A → ¬ ¬ B) → A → ¬ ¬ B
DN-bind⁻¹ f = f ∘′ DN-intro
module _ {a b} {A : Set a} {B : Set b} where
DN-ap : ¬ ¬ (A → B) → ¬ ¬ A → ¬ ¬ B
DN-ap ff fx = DN-bind (λ f → DN-map f fx) ff
DN-ap⁻¹ : (¬ ¬ A → ¬ ¬ B) → ¬ ¬ (A → B)
DN-ap⁻¹ f ¬[A→B] = ¬[A→B]→¬[A→¬¬B] ¬[A→B] (DN-bind⁻¹ f)
-- distributive properties
DN-distrib-× : ¬ ¬ (A × B) → ¬ ¬ A × ¬ ¬ B
DN-distrib-× ¬¬A×B = DN-map proj₁ ¬¬A×B , DN-map proj₂ ¬¬A×B
DN-undistrib-× : ¬ ¬ A × ¬ ¬ B → ¬ ¬ (A × B)
DN-undistrib-× = [A→¬¬B]→¬B→¬A ¬[A×B]→¬¬[¬A⊎¬B] ∘′ ¬A׬B→¬[A⊎B]
DN-undistrib-⊎ : ¬ ¬ A ⊎ ¬ ¬ B → ¬ ¬ (A ⊎ B)
DN-undistrib-⊎ = Sum.[ DN-map inj₁ , DN-map inj₂ ]
stable-undistrib-× : Stable A × Stable B → Stable (A × B)
stable-undistrib-× (A-stable , B-stable) ¬¬[A×B] =
Prod.map A-stable B-stable $ DN-distrib-× ¬¬[A×B]
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
ip-⊎-DN : (A → (B ⊎ C)) → ¬ ¬ ((A → B) ⊎ (A → C))
ip-⊎-DN f =
DN-map Sum.[ (Sum.map const const ∘ f) , (λ ¬A → inj₁ λ x → ⊥-elim (¬A x)) ]
DN-Dec⊎
DN-ip : ∀ {p q r} {P : Set p} {Q : Set q} {R : Q → Set r} →
Q → (P → Σ Q R) → ¬ ¬ (Σ Q λ x → (P → R x))
DN-ip q f =
DN-map Sum.[ (λ x → Prod.map₂ const (f x)) ,
(λ ¬P → q , λ P → ⊥-elim $ ¬P P) ] DN-Dec⊎
-- Properties of Dec⊎
module _ {a} {A : Set a} where
dec⊎⇒dec : Dec⊎ A → Dec A
dec⊎⇒dec (inj₁ x) = yes x
dec⊎⇒dec (inj₂ y) = no y
dec⇒dec⊎ : Dec A → Dec⊎ A
dec⇒dec⊎ (yes p) = inj₁ p
dec⇒dec⊎ (no ¬p) = inj₂ ¬p
¬-dec⊎ : Dec⊎ A → Dec⊎ (¬ A)
¬-dec⊎ (inj₁ x) = inj₂ (DN-intro x)
¬-dec⊎ (inj₂ y) = inj₁ y
module _ {a b} {A : Set a} {B : Set b} where
dec⊎-map : (A → B) → (B → A) → Dec⊎ A → Dec⊎ B
dec⊎-map f g dec⊎ = Sum.map f (contraposition g) dec⊎
dec⊎-⊎ : Dec⊎ A → Dec⊎ B → Dec⊎ (A ⊎ B)
dec⊎-⊎ (inj₁ x) _ = inj₁ (inj₁ x)
dec⊎-⊎ (inj₂ ¬x) (inj₁ y) = inj₁ (inj₂ y)
dec⊎-⊎ (inj₂ ¬x) (inj₂ ¬y) = inj₂ (¬A׬B→¬[A⊎B] (¬x , ¬y))
dec⊎-× : Dec⊎ A → Dec⊎ B → Dec⊎ (A × B)
dec⊎-× (inj₁ x) (inj₁ y) = inj₁ (x , y)
dec⊎-× (inj₁ x) (inj₂ ¬y) = inj₂ (¬y ∘ proj₂)
dec⊎-× (inj₂ ¬x) _ = inj₂ (¬x ∘ proj₁)
-- Properties of Stable
module _ {a} {A : Set a} where
dec⇒stable : Dec A → Stable A
dec⇒stable (yes p) ¬¬A = p
dec⇒stable (no ¬p) ¬¬A = ⊥-elim (¬¬A ¬p)
¬-stable : Stable (¬ A)
¬-stable = TN-to-N
dec⊎⇒stable : Dec⊎ A → Stable A
dec⊎⇒stable dec⊎ = dec⇒stable (dec⊎⇒dec dec⊎)
module _ {a p} {A : Set a} {P : A → Set p} where
DecU⇒stable : DecU P → ∀ x → Stable (P x)
DecU⇒stable P? x = dec⊎⇒stable (P? x)
-- Properties of DecU
¬-DecU : DecU P → DecU (λ x → ¬ (P x))
¬-DecU P? x = ¬-dec⊎ (P? x)
DecU⇒decidable : DecU P → U.Decidable P
DecU⇒decidable P? x = dec⊎⇒dec (P? x)
decidable⇒DecU : U.Decidable P → DecU P
decidable⇒DecU P? x = dec⇒dec⊎ (P? x)
DecU-map : ∀ {a b p} {A : Set a} {B : Set b} {P : A → Set p} →
(f : B → A) → DecU P → DecU (λ x → P (f x))
DecU-map f P? x = dec⊎-map id id (P? (f x))
module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where
DecU-⊎ : DecU P → DecU Q → DecU (λ x → P x ⊎ Q x)
DecU-⊎ P? Q? x = dec⊎-⊎ (P? x) (Q? x)
DecU-× : DecU P → DecU Q → DecU (λ x → P x × Q x)
DecU-× P? Q? x = dec⊎-× (P? x) (Q? x)
-- Quantifier
module _ {a p} {A : Set a} {P : A → Set p} where
∃P→¬∀¬P : ∃ P → ¬ (∀ x → ¬ (P x))
∃P→¬∀¬P = flip uncurry
∀P→¬∃¬P : (∀ x → P x) → ¬ ∃ λ x → ¬ (P x)
∀P→¬∃¬P f (x , ¬Px) = ¬Px (f x)
¬∃P→∀¬P : ¬ ∃ P → ∀ x → ¬ (P x)
¬∃P→∀¬P = curry
∀¬P→¬∃P : (∀ x → ¬ (P x)) → ¬ ∃ P
∀¬P→¬∃P = uncurry
∃¬P→¬∀P : ∃ (λ x → ¬ (P x)) → ¬ (∀ x → P x)
∃¬P→¬∀P (x , ¬Px) ∀P = ¬Px (∀P x)
¬∀¬P→¬¬∃P : ¬ (∀ x → ¬ P x) → ¬ ¬ ∃ P
¬∀¬P→¬¬∃P ¬∀¬P = contraposition ¬∃P→∀¬P ¬∀¬P
¬¬∃P→¬∀¬P : ¬ ¬ ∃ P → ¬ (∀ x → ¬ P x)
¬¬∃P→¬∀¬P ¬¬∃P = contraposition ∀¬P→¬∃P ¬¬∃P
¬¬∀P→¬∃¬P : ¬ ¬ (∀ x → P x) → ¬ ∃ λ x → ¬ (P x)
¬¬∀P→¬∃¬P ¬¬∀P = contraposition ∃¬P→¬∀P ¬¬∀P
¬¬∃P<=>¬∀¬P : ¬ ¬ ∃ P <=> ¬ (∀ x → ¬ P x)
¬¬∃P<=>¬∀¬P = mk<=> ¬¬∃P→¬∀¬P ¬∀¬P→¬¬∃P
-- remove?
∀¬¬P→¬∃¬P : (∀ x → ¬ ¬ P x) → ¬ ∃ λ x → ¬ (P x)
∀¬¬P→¬∃¬P = uncurry
-- converse of DNS
¬¬∀P→∀¬¬P : ¬ ¬ (∀ x → P x) → ∀ x → ¬ ¬ P x
¬¬∀P→∀¬¬P f x = DN-map (λ ∀P → ∀P x) f
∃¬¬P→¬¬∃P : (∃ λ x → ¬ ¬ P x) → ¬ ¬ ∃ λ x → P x
∃¬¬P→¬¬∃P (x , ¬¬Px) = DN-map (λ Px → x , Px) ¬¬Px
¬¬∃¬P→¬∀P : ¬ ¬ ∃ (λ x → ¬ (P x)) → ¬ (∀ x → P x)
¬¬∃¬P→¬∀P = contraposition ∀P→¬∃¬P
¬∃¬P→∀¬¬P : ¬ ∃ (λ x → ¬ P x) → ∀ x → ¬ ¬ P x
¬∃¬P→∀¬¬P = curry
∀P→∀¬¬P : (∀ x → P x) → ∀ x → ¬ ¬ P x
∀P→∀¬¬P ∀P x = DN-intro (∀P x)
∃P→∃¬¬P : ∃ P → ∃ λ x → ¬ ¬ P x
∃P→∃¬¬P (x , Px) = x , DN-intro Px
module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where
[∀¬P→∀¬Q]→¬¬[∃Q→∃P] : ((∀ x → ¬ P x) → (∀ x → ¬ Q x)) → ¬ ¬ (∃ Q → ∃ P)
[∀¬P→∀¬Q]→¬¬[∃Q→∃P] ∀¬P→∀¬Q =
DN-ap⁻¹ (¬∀¬P→¬¬∃P ∘ contraposition ∀¬P→∀¬Q ∘ ¬¬∃P→¬∀¬P)
-- Quantifier rearrangement for stable predicate
module _ {a p} {A : Set a} {P : A → Set p} (P-stable : ∀ x → Stable (P x)) where
P-stable⇒∃¬¬P→∃P : ∃ (λ x → ¬ ¬ P x) → ∃ P
P-stable⇒∃¬¬P→∃P (x , ¬¬Px) = x , P-stable x ¬¬Px
P-stable⇒∀¬¬P→∀P : (∀ x → ¬ ¬ P x) → ∀ x → P x
P-stable⇒∀¬¬P→∀P ∀¬¬P x = P-stable x (∀¬¬P x)
P-stable⇒¬¬∀P→∀P : ¬ ¬ (∀ x → P x) → ∀ x → P x
P-stable⇒¬¬∀P→∀P = P-stable⇒∀¬¬P→∀P ∘′ ¬¬∀P→∀¬¬P
P-stable⇒¬∃¬P→∀P : ¬ ∃ (λ x → ¬ P x) → ∀ x → P x
P-stable⇒¬∃¬P→∀P ¬∃¬P = P-stable⇒∀¬¬P→∀P (¬∃¬P→∀¬¬P ¬∃¬P)
P-stable⇒¬∀P→¬¬∃¬P : ¬ (∀ x → P x) → ¬ ¬ ∃ (λ x → ¬ (P x))
P-stable⇒¬∀P→¬¬∃¬P ¬∀P = contraposition P-stable⇒¬∃¬P→∀P ¬∀P
module _ {a p} {A : Set a} {P : A → Set p} (P? : DecU P) where
P?⇒∃¬¬P→∃P : ∃ (λ x → ¬ ¬ P x) → ∃ P
P?⇒∃¬¬P→∃P = P-stable⇒∃¬¬P→∃P (DecU⇒stable P?)
P?⇒∀¬¬P→∀P : (∀ x → ¬ ¬ P x) → ∀ x → P x
P?⇒∀¬¬P→∀P = P-stable⇒∀¬¬P→∀P (DecU⇒stable P?)
P?⇒¬¬∀P→∀P : ¬ ¬ (∀ x → P x) → ∀ x → P x
P?⇒¬¬∀P→∀P = P-stable⇒¬¬∀P→∀P (DecU⇒stable P?)
P?⇒¬∃¬P→∀P : ¬ ∃ (λ x → ¬ P x) → ∀ x → P x
P?⇒¬∃¬P→∀P = P-stable⇒¬∃¬P→∀P (DecU⇒stable P?)
P?⇒¬∀P→¬¬∃¬P : ¬ (∀ x → P x) → ¬ ¬ ∃ (λ x → ¬ P x)
P?⇒¬∀P→¬¬∃¬P = P-stable⇒¬∀P→¬¬∃¬P (DecU⇒stable P?)
-- call/cc
P?⇒[¬∀P→∀P]→∀P : (¬ (∀ x → P x) → ∀ x → P x) → ∀ x → P x
P?⇒[¬∀P→∀P]→∀P ¬∀P→∀P = P?⇒¬¬∀P→∀P λ ¬∀P → ¬∀P (¬∀P→∀P ¬∀P)
P?⇒[∃¬P→∀P]→∀P : (∃ (λ x → ¬ P x) → ∀ x → P x) → ∀ x → P x
P?⇒[∃¬P→∀P]→∀P ∃¬P→∀P =
P?⇒¬¬∀P→∀P λ ¬∀P → P?⇒¬∀P→¬¬∃¬P ¬∀P λ ∃¬P → ¬∀P (∃¬P→∀P ∃¬P)
-- [∀¬P→¬∀Q]→¬∃¬Q→¬¬∃P
module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where
P?⇒[∃¬P→∃¬Q]→∀Q→∀P : DecU P → (∃ (λ x → ¬ P x) → ∃ (λ x → ¬ Q x)) →
(∀ x → Q x) → ∀ x → P x
P?⇒[∃¬P→∃¬Q]→∀Q→∀P P? ∃¬P→∃¬Q =
P?⇒¬∃¬P→∀P P? ∘ contraposition ∃¬P→∃¬Q ∘ ∀P→¬∃¬P
P?⇒[∃Q→∀P]→¬∀¬Q→∀P : DecU P → (∃ Q → ∀ x → P x) → ¬ (∀ x → ¬ Q x) → ∀ x → P x
P?⇒[∃Q→∀P]→¬∀¬Q→∀P P? ∃Q→∀P ¬∀¬Q = P?⇒¬¬∀P→∀P P? (DN-map ∃Q→∀P (¬∀¬P→¬¬∃P ¬∀¬Q))
¬[¬∀P⊎¬∀Q]→∀P×∀Q : DecU P → DecU Q → ¬ (¬ (∀ x → P x) ⊎ ¬ (∀ x → Q x)) →
(∀ x → P x) × (∀ x → Q x)
¬[¬∀P⊎¬∀Q]→∀P×∀Q P? Q? ¬[¬∀P⊎¬∀Q] =
Prod.map (P?⇒¬¬∀P→∀P P?) (P?⇒¬¬∀P→∀P Q?) (¬[A⊎B]→¬A׬B ¬[¬∀P⊎¬∀Q])
module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where
∃-undistrib-⊎ : ∃ P ⊎ ∃ Q → ∃ (λ x → P x ⊎ Q x)
∃-undistrib-⊎ (inj₁ (x , Px)) = x , inj₁ Px
∃-undistrib-⊎ (inj₂ (x , Qx)) = x , inj₂ Qx
∃-distrib-⊎ : ∃ (λ x → P x ⊎ Q x) → ∃ P ⊎ ∃ Q
∃-distrib-⊎ (x , inj₁ Px) = inj₁ (x , Px)
∃-distrib-⊎ (x , inj₂ Qx) = inj₂ (x , Qx)
∃-distrib-× : ∃ (λ x → P x × Q x) → ∃ P × ∃ Q
∃-distrib-× (x , Px , Qx) = (x , Px) , (x , Qx)
∀-undistrib-× : (∀ x → P x) × (∀ x → Q x) → ∀ x → P x × Q x
∀-undistrib-× (∀P , ∀Q) x = ∀P x , ∀Q x
∀-distrib-× : (∀ x → P x × Q x) → (∀ x → P x) × (∀ x → Q x)
∀-distrib-× ∀x→Px×Qx = proj₁ ∘ ∀x→Px×Qx , proj₂ ∘ ∀x→Px×Qx
∀-undistrib-⊎ : (∀ x → P x) ⊎ (∀ x → Q x) → ∀ x → P x ⊎ Q x
∀-undistrib-⊎ (inj₁ ∀P) x = inj₁ (∀P x)
∀-undistrib-⊎ (inj₂ ∀Q) x = inj₂ (∀Q x)
¬[¬∃P׬∃Q]→¬¬∃x→Px⊎Qx : ¬ (¬ ∃ P × ¬ ∃ Q) → ¬ ¬ ∃ λ x → P x ⊎ Q x
¬[¬∃P׬∃Q]→¬¬∃x→Px⊎Qx = DN-map ∃-undistrib-⊎ ∘′ contraposition ¬[A⊎B]→¬A׬B
[¬¬∃x→Px⊎Qx]→¬[¬∃P׬∃Q] : (¬ ¬ ∃ λ x → P x ⊎ Q x) → ¬ (¬ ∃ P × ¬ ∃ Q)
[¬¬∃x→Px⊎Qx]→¬[¬∃P׬∃Q] = contraposition ¬A׬B→¬[A⊎B] ∘′ DN-map ∃-distrib-⊎
¬∀¬P׬∀¬Q→¬¬[∃P×∃Q] : ¬ (∀ x → ¬ P x) × ¬ (∀ x → ¬ Q x) → ¬ ¬ (∃ P × ∃ Q)
¬∀¬P׬∀¬Q→¬¬[∃P×∃Q] = DN-undistrib-× ∘′ Prod.map ¬∀¬P→¬¬∃P ¬∀¬P→¬¬∃P
¬¬[∃P×∃Q]→¬∀¬P׬∀¬Q : ¬ ¬ (∃ P × ∃ Q) → ¬ (∀ x → ¬ P x) × ¬ (∀ x → ¬ Q x)
¬¬[∃P×∃Q]→¬∀¬P׬∀¬Q = Prod.map ¬¬∃P→¬∀¬P ¬¬∃P→¬∀¬P ∘′ DN-distrib-×
[∀x→Px→Qx]→∀P→∀Q : (∀ x → P x → Q x) → (∀ x → P x) → ∀ x → Q x
[∀x→Px→Qx]→∀P→∀Q f g x = f x (g x)
| {
"alphanum_fraction": 0.3962012168,
"avg_line_length": 32.0142517815,
"ext": "agda",
"hexsha": "aa9d5f85bb332046d7016c220190326a65fc4804",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Constructive/Combinators.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Constructive/Combinators.agda",
"max_line_length": 82,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Constructive/Combinators.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 8170,
"size": 13478
} |
module Sessions.Semantics.Commands where
open import Prelude
open import Data.Fin
open import Sessions.Syntax.Types
open import Sessions.Syntax.Values
mutual
data Cmd : Pred RCtx 0ℓ where
fork : ∀[ Comp unit ⇒ Cmd ]
mkchan : ∀ α → ε[ Cmd ]
send : ∀ {a α} → ∀[ (Endptr (a ! α) ✴ Val a) ⇒ Cmd ]
receive : ∀ {a α} → ∀[ Endptr (a ¿ α) ⇒ Cmd ]
close : ∀[ Endptr end ⇒ Cmd ]
δ : ∀ {Δ} → Cmd Δ → Pred RCtx 0ℓ
δ (fork {α} _) = Emp
δ (mkchan α) = Endptr α ✴ Endptr (α ⁻¹)
δ (send {α = α} _) = Endptr α
δ (receive {a} {α} _) = Val a ✴ Endptr α
δ (close _) = Emp
open import Relation.Ternary.Separation.Monad.Free Cmd δ renaming (Cont to Cont')
open import Relation.Ternary.Separation.Monad.Error
Comp : Type → Pred RCtx _
Comp a = ErrorT Free (Val a)
| {
"alphanum_fraction": 0.5621370499,
"avg_line_length": 29.6896551724,
"ext": "agda",
"hexsha": "92f0d68c2a9f8257f529aa139face94c9a1d839e",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Sessions/Semantics/Commands.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Sessions/Semantics/Commands.agda",
"max_line_length": 83,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Sessions/Semantics/Commands.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 287,
"size": 861
} |
{-# OPTIONS --cubical --safe #-}
module Relation.Nullary.Decidable.Properties where
open import Relation.Nullary.Decidable
open import Level
open import Relation.Nullary.Stable
open import Data.Empty
open import HLevels
open import Data.Empty.Properties using (isProp¬)
open import Data.Unit
open import Data.Empty
Dec→Stable : ∀ {ℓ} (A : Type ℓ) → Dec A → Stable A
Dec→Stable A (yes x) = λ _ → x
Dec→Stable A (no x) = λ f → ⊥-elim (f x)
isPropDec : (Aprop : isProp A) → isProp (Dec A)
isPropDec Aprop (yes a) (yes a') i = yes (Aprop a a' i)
isPropDec Aprop (yes a) (no ¬a) = ⊥-elim (¬a a)
isPropDec Aprop (no ¬a) (yes a) = ⊥-elim (¬a a)
isPropDec {A = A} Aprop (no ¬a) (no ¬a') i = no (isProp¬ A ¬a ¬a' i)
True : Dec A → Type
True (yes _) = ⊤
True (no _) = ⊥
toWitness : {x : Dec A} → True x → A
toWitness {x = yes p} _ = p
open import Path
open import Data.Bool.Base
from-reflects : ∀ b → (d : Dec A) → Reflects A b → does d ≡ b
from-reflects false (no y) r = refl
from-reflects false (yes y) r = ⊥-elim (r y)
from-reflects true (no y) r = ⊥-elim (y r)
from-reflects true (yes y) r = refl
| {
"alphanum_fraction": 0.6449275362,
"avg_line_length": 28.3076923077,
"ext": "agda",
"hexsha": "832b4f3df199a6840cbee92577bbe9293bd79d23",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Relation/Nullary/Decidable/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Relation/Nullary/Decidable/Properties.agda",
"max_line_length": 68,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Relation/Nullary/Decidable/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 410,
"size": 1104
} |
-- Semantics of syntactic traversal and substitution
module Semantics.Substitution.Traversal where
open import Syntax.Types
open import Syntax.Context renaming (_,_ to _,,_)
open import Syntax.Terms
open import Syntax.Substitution.Kits
open import Syntax.Substitution.Instances
open import Semantics.Types
open import Semantics.Context
open import Semantics.Terms
open import Semantics.Substitution.Kits
open import CategoryTheory.Categories using (Category ; ext)
open import CategoryTheory.Functor
open import CategoryTheory.NatTrans
open import CategoryTheory.Monad
open import CategoryTheory.Comonad
open import CategoryTheory.Instances.Reactive renaming (top to ⊤)
open import TemporalOps.Diamond
open import TemporalOps.Box
open import TemporalOps.OtherOps
open import TemporalOps.Linear
open import TemporalOps.StrongMonad
open import Data.Sum
open import Data.Product using (_,_)
open import Relation.Binary.PropositionalEquality as ≡
using (_≡_ ; refl ; sym ; trans ; cong ; cong₂ ; subst)
open ≡.≡-Reasoning
private module F-□ = Functor F-□
private module F-◇ = Functor F-◇
open Comonad W-□
open Monad M-◇
open import Holes.Term using (⌞_⌟)
open import Holes.Cong.Propositional
module _ {𝒮} {k : Kit 𝒮} (⟦k⟧ : ⟦Kit⟧ k) where
open ⟦Kit⟧ ⟦k⟧
open Kit k
open ⟦K⟧ ⟦k⟧
open K k
-- Soundness of syntactic traversal:
-- Denotation of a term M traversed with substitution σ is
-- the same as the denotation of σ followed by the denotation of M
traverse-sound : ∀{Γ Δ A} (σ : Subst 𝒮 Γ Δ) (M : Γ ⊢ A)
-> ⟦ traverse σ M ⟧ₘ ≈ ⟦ M ⟧ₘ ∘ ⟦subst⟧ σ
traverse′-sound : ∀{Γ Δ A} (σ : Subst 𝒮 Γ Δ) (C : Γ ⊨ A)
-> ⟦ traverse′ σ C ⟧ᵐ ≈ ⟦ C ⟧ᵐ ∘ ⟦subst⟧ σ
traverse-sound ● (var ())
traverse-sound (σ ▸ T) (var top) = ⟦𝓉⟧ T
traverse-sound (σ ▸ T) (var (pop x)) = traverse-sound σ (var x)
traverse-sound σ (lam {Γ} {A} M) {n} {⟦Δ⟧} = ext lemma
where
lemma : ∀(⟦A⟧ : ⟦ A ⟧ₜ n) →
Λ ⟦ traverse (σ ↑ k) M ⟧ₘ n ⟦Δ⟧ ⟦A⟧ ≡ (Λ ⟦ M ⟧ₘ ∘ ⟦subst⟧ σ) n ⟦Δ⟧ ⟦A⟧
lemma ⟦A⟧ rewrite traverse-sound (σ ↑ k) M {n} {⟦Δ⟧ , ⟦A⟧}
| ⟦↑⟧ (A now) σ {n} {⟦Δ⟧ , ⟦A⟧} = refl
traverse-sound σ (M $ N) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧}
| traverse-sound σ N {n} {⟦Δ⟧} = refl
traverse-sound σ unit = refl
traverse-sound σ [ M ,, N ] {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧}
| traverse-sound σ N {n} {⟦Δ⟧} = refl
traverse-sound σ (fst M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse-sound σ (snd M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse-sound σ (inl M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse-sound σ (inr M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse-sound σ (case M inl↦ N₁ ||inr↦ N₂) {n} {⟦Δ⟧}
rewrite traverse-sound σ M {n} {⟦Δ⟧} with ⟦ M ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)
traverse-sound σ (case_inl↦_||inr↦_ {A = A} M N₁ N₂) {n} {⟦Δ⟧} | inj₁ ⟦A⟧
rewrite traverse-sound (σ ↑ k) N₁ {n} {⟦Δ⟧ , ⟦A⟧}
| ⟦↑⟧ (A now) σ {n} {⟦Δ⟧ , ⟦A⟧} = refl
traverse-sound σ (case_inl↦_||inr↦_ {B = B} M N₁ N₂) {n} {⟦Δ⟧} | inj₂ ⟦B⟧
rewrite traverse-sound (σ ↑ k) N₂ {n} {⟦Δ⟧ , ⟦B⟧}
| ⟦↑⟧ (B now) σ {n} {⟦Δ⟧ , ⟦B⟧} = refl
traverse-sound σ (sample M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse-sound {Γ} {Δ} {A} σ (stable M) {n} {⟦Δ⟧} = ext lemma
where
lemma : ∀ l -> ⟦ traverse {Γ} σ (stable M) ⟧ₘ n ⟦Δ⟧ l
≡ (⟦ stable {Γ} M ⟧ₘ ∘ ⟦subst⟧ σ) n ⟦Δ⟧ l
lemma l rewrite traverse-sound (σ ↓ˢ k) M {l} {⟦ Δ ˢ⟧□ n ⟦Δ⟧ l}
| □-≡ n l (⟦↓ˢ⟧ σ {n} {⟦Δ⟧}) l = refl
traverse-sound σ (sig M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse-sound σ (letSig_In_ {A = A} M N) {n} {⟦Δ⟧}
rewrite traverse-sound σ M {n} {⟦Δ⟧}
| traverse-sound (σ ↑ k) N {n} {⟦Δ⟧ , ⟦ M ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)}
| ⟦↑⟧ (A always) σ {n} {⟦Δ⟧ , (⟦ M ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))} = refl
traverse-sound σ (event E) = traverse′-sound σ E
traverse′-sound σ (pure M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl
traverse′-sound σ (letSig_InC_ {A = A} S C) {n} {⟦Δ⟧}
rewrite traverse-sound σ S {n} {⟦Δ⟧}
| traverse′-sound (σ ↑ k) C {n} {⟦Δ⟧ , ⟦ S ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)}
| ⟦↑⟧ (A always) σ {n} {⟦Δ⟧ , (⟦ S ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))} = refl
traverse′-sound {Γ} {Δ} σ (letEvt_In_ {A = A} {B} E C) {n} {⟦Δ⟧}
rewrite traverse-sound σ E {n} {⟦Δ⟧}
| (ext λ m → ext λ b → traverse′-sound (σ ↓ˢ k ↑ k) C {m} {b}) =
begin
μ.at ⟦ B ⟧ₜ n
(F-◇.fmap (⟦ C ⟧ᵐ ∘ ⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))))
≡⟨ cong (μ.at ⟦ B ⟧ₜ n) (F-◇.fmap-∘ {g = ⟦ C ⟧ᵐ} {⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id}
{n} {st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))}) ⟩
μ.at ⟦ B ⟧ₜ n (F-◇.fmap (⟦ C ⟧ᵐ) n
(F-◇.fmap (⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))))
≡⟨ cong (λ x → μ.at ⟦ B ⟧ₜ n (F-◇.fmap ⟦ C ⟧ᵐ n x)) (
begin
F-◇.fmap (⌞ ⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ⌟ ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))
≡⟨ cong! (ext λ m -> ext λ b → ⟦↑⟧ (A now) (σ ↓ˢ k) {m} {b}) ⟩
F-◇.fmap (⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))
≡⟨ F-◇.fmap-∘ ⟩
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(F-◇.fmap (F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) * id) n
(st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))))
≡⟨ cong (F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n)
(st-nat₁ (⟦subst⟧ (σ ↓ˢ k))) ⟩
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⌞ F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧) ⌟
, ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))
≡⟨ cong! (⟦↓ˢ⟧ σ) ⟩
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧)
, ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))
∎
) ⟩
μ.at ⟦ B ⟧ₜ n (F-◇.fmap ⟦ C ⟧ᵐ n
(F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧)
, ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))))
≡⟨ cong (μ.at ⟦ B ⟧ₜ n) (sym (F-◇.fmap-∘ {g = ⟦ C ⟧ᵐ}{ε.at ⟦ Γ ˢ ⟧ₓ * id}{n}
{st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧)
, ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))})) ⟩
μ.at ⟦ B ⟧ₜ n (F-◇.fmap (⟦ C ⟧ᵐ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧)
, ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))))
≡⟨⟩
⟦ letEvt E In C ⟧ᵐ n (⟦subst⟧ σ n ⟦Δ⟧)
∎
traverse′-sound {_} {Δ} σ (select_↦_||_↦_||both↦_ {Γ} {A} {B} {C} E₁ C₁ E₂ C₂ C₃) {n} {⟦Δ⟧}
rewrite traverse-sound σ E₁ {n} {⟦Δ⟧}
| traverse-sound σ E₂ {n} {⟦Δ⟧} =
begin
μ.at ⟦ C ⟧ₜ n
(F-◇.fmap (⌞ handle ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₁ ⟧ᵐ
⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₂ ⟧ᵐ
⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₃ ⟧ᵐ ⌟ ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)))
≡⟨ cong! (ext λ m → ext λ b → ind-hyp m b) ⟩
μ.at ⟦ C ⟧ₜ n
(F-◇.fmap (⌞ handle
(⟦ C₁ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {Event B now} (_↑_ {A now} (σ ↓ˢ k) k) k)))
(⟦ C₂ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {Event A now} (σ ↓ˢ k) k) k)))
(⟦ C₃ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) ⌟
∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)))
≡⟨ cong! (ext λ m → ext λ b →
⟦subst⟧-handle {Δ}{Γ}{A}{B}{C} σ {⟦ C₁ ⟧ᵐ}{⟦ C₂ ⟧ᵐ}{⟦ C₃ ⟧ᵐ}{n = m} {b}) ⟩
μ.at ⟦ C ⟧ₜ n
(F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ ∘ ⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)))
≡⟨ cong (μ.at ⟦ C ⟧ₜ n) (F-◇.fmap-∘ {g = handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ}
{f = ⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id} {n}
{st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)})
⟩
μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n
⌞ (F-◇.fmap (⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n
(st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))) ⌟)
≡⟨ cong (λ x → μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n x)) (
begin
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id ∘ F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) * id) n
(st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))
≡⟨ F-◇.fmap-∘ ⟩
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(F-◇.fmap (F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) * id) n
(st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)))
≡⟨ cong (F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n)
(st-nat₁ (⟦subst⟧ (σ ↓ˢ k))) ⟩
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⌞ F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧) ⌟ , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧)))
≡⟨ cong! (⟦↓ˢ⟧ σ) ⟩
F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧)))
∎
) ⟩
μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n
(F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧)))))
≡⟨ cong (μ.at ⟦ C ⟧ₜ n) (sym (F-◇.fmap-∘ {g = handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ}
{ε.at ⟦ Γ ˢ ⟧ₓ * id}{n} {st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧))})) ⟩
μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n
(st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n
(⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧))))
≡⟨⟩
⟦ select E₁ ↦ C₁ || E₂ ↦ C₂ ||both↦ C₃ ⟧ᵐ n (⟦subst⟧ σ n ⟦Δ⟧)
∎
where
ind-hyp : ∀ l c
-> handle
⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₁ ⟧ᵐ
⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₂ ⟧ᵐ
⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₃ ⟧ᵐ l c
≡ handle
(⟦ C₁ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {Event B now} (_↑_ {A now} (σ ↓ˢ k) k) k)))
(⟦ C₂ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {Event A now} (σ ↓ˢ k) k) k)))
(⟦ C₃ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) l c
ind-hyp l c rewrite ext (λ n -> (ext λ ⟦Δ⟧ -> (traverse′-sound (σ ↓ˢ k ↑ k ↑ k) C₁ {n} {⟦Δ⟧})))
| ext (λ n -> (ext λ ⟦Δ⟧ -> (traverse′-sound (σ ↓ˢ k ↑ k ↑ k) C₂ {n} {⟦Δ⟧})))
| ext (λ n -> (ext λ ⟦Δ⟧ -> (traverse′-sound (σ ↓ˢ k ↑ k ↑ k) C₃ {n} {⟦Δ⟧}))) = refl
| {
"alphanum_fraction": 0.388539093,
"avg_line_length": 54.316017316,
"ext": "agda",
"hexsha": "a6bdc0aff2b38c5facc7bbb39f5c2fb403c12e56",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/Semantics/Substitution/Traversal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/Semantics/Substitution/Traversal.agda",
"max_line_length": 116,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/Semantics/Substitution/Traversal.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 6699,
"size": 12547
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Endomorphisms on a Set
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Function.Endomorphism.Propositional {a} (A : Set a) where
open import Algebra using (Magma; Semigroup; Monoid)
open import Algebra.FunctionProperties.Core using (Op₂)
open import Algebra.Morphism; open Definitions
open import Algebra.Structures using (IsMagma; IsSemigroup; IsMonoid)
open import Data.Nat.Base using (ℕ; zero; suc; _+_)
open import Data.Nat.Properties using (+-0-monoid; +-semigroup)
open import Data.Product using (_,_)
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Relation.Binary using (_Preserves_⟶_)
open import Relation.Binary.PropositionalEquality as P using (_≡_; refl)
import Function.Endomorphism.Setoid (P.setoid A) as Setoid
Endo : Set a
Endo = A → A
------------------------------------------------------------------------
-- Conversion back and forth with the Setoid-based notion of Endomorphism
fromSetoidEndo : Setoid.Endo → Endo
fromSetoidEndo = _⟨$⟩_
toSetoidEndo : Endo → Setoid.Endo
toSetoidEndo f = record
{ _⟨$⟩_ = f
; cong = P.cong f
}
------------------------------------------------------------------------
-- N-th composition
_^_ : Endo → ℕ → Endo
f ^ zero = id
f ^ suc n = f ∘′ (f ^ n)
^-homo : ∀ f → Homomorphic₂ ℕ Endo _≡_ (f ^_) _+_ _∘′_
^-homo f zero n = refl
^-homo f (suc m) n = P.cong (f ∘′_) (^-homo f m n)
------------------------------------------------------------------------
-- Structures
∘-isMagma : IsMagma _≡_ (Op₂ Endo ∋ _∘′_)
∘-isMagma = record
{ isEquivalence = P.isEquivalence
; ∙-cong = P.cong₂ _∘′_
}
∘-magma : Magma _ _
∘-magma = record { isMagma = ∘-isMagma }
∘-isSemigroup : IsSemigroup _≡_ (Op₂ Endo ∋ _∘′_)
∘-isSemigroup = record
{ isMagma = ∘-isMagma
; assoc = λ _ _ _ → refl
}
∘-semigroup : Semigroup _ _
∘-semigroup = record { isSemigroup = ∘-isSemigroup }
∘-id-isMonoid : IsMonoid _≡_ _∘′_ id
∘-id-isMonoid = record
{ isSemigroup = ∘-isSemigroup
; identity = (λ _ → refl) , (λ _ → refl)
}
∘-id-monoid : Monoid _ _
∘-id-monoid = record { isMonoid = ∘-id-isMonoid }
------------------------------------------------------------------------
-- Homomorphism
^-isSemigroupMorphism : ∀ f → IsSemigroupMorphism +-semigroup ∘-semigroup (f ^_)
^-isSemigroupMorphism f = record
{ ⟦⟧-cong = P.cong (f ^_)
; ∙-homo = ^-homo f
}
^-isMonoidMorphism : ∀ f → IsMonoidMorphism +-0-monoid ∘-id-monoid (f ^_)
^-isMonoidMorphism f = record
{ sm-homo = ^-isSemigroupMorphism f
; ε-homo = refl
}
| {
"alphanum_fraction": 0.5569948187,
"avg_line_length": 27.8556701031,
"ext": "agda",
"hexsha": "8864357f71d633031eeebae0b23d050cde91373e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Function/Endomorphism/Propositional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Function/Endomorphism/Propositional.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Function/Endomorphism/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 845,
"size": 2702
} |
-- MIT License
-- Copyright (c) 2021 Luca Ciccone and Luca Padovani
-- Permission is hereby granted, free of charge, to any person
-- obtaining a copy of this software and associated documentation
-- files (the "Software"), to deal in the Software without
-- restriction, including without limitation the rights to use,
-- copy, modify, merge, publish, distribute, sublicense, and/or sell
-- copies of the Software, and to permit persons to whom the
-- Software is furnished to do so, subject to the following
-- conditions:
-- The above copyright notice and this permission notice shall be
-- included in all copies or substantial portions of the Software.
-- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
-- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
-- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
-- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
-- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
-- OTHER DEALINGS IN THE SOFTWARE.
{-# OPTIONS --guardedness --sized-types #-}
open import Size
open import Data.Empty
open import Data.Product
open import Data.Sum
open import Data.List using ([]; _∷_; _∷ʳ_; _++_)
open import Codata.Thunk
open import Relation.Nullary
open import Relation.Nullary.Negation using (contraposition)
open import Relation.Unary using (_∈_; _⊆_)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl)
open import Function.Base using (case_of_)
open import Common
module Subtyping {ℙ : Set} (message : Message ℙ)
where
open Message message
open import Trace message
open import SessionType message
open import Transitions message
open import Session message
open import Compliance message
open import HasTrace message
data Sub : SessionType -> SessionType -> Size -> Set where
nil<:any : ∀{T i} -> Sub nil T i
end<:def : ∀{T S i} (e : End T) (def : Defined S) -> Sub T S i
inp<:inp : ∀{f g i} (inc : dom f ⊆ dom g) (F : (x : ℙ) -> Thunk (Sub (f x .force) (g x .force)) i) -> Sub (inp f) (inp g) i
out<:out : ∀{f g i} (W : Witness g) (inc : dom g ⊆ dom f) (F : ∀{x} (!x : x ∈ dom g) -> Thunk (Sub (f x .force) (g x .force)) i) -> Sub (out f) (out g) i
_<:_ : SessionType -> SessionType -> Set
_<:_ T S = Sub T S ∞
sub-defined : ∀{T S} -> T <: S -> Defined T -> Defined S
sub-defined (end<:def _ def) _ = def
sub-defined (inp<:inp _ _) _ = inp
sub-defined (out<:out _ _ _) _ = out
sub-sound : ∀{T S R} -> Compliance (R # T) -> T <: S -> ∞Compliance (R # S)
force (sub-sound (win#def w def) sub) = win#def w (sub-defined sub def)
force (sub-sound (out#inp (_ , !x) F) (end<:def (inp U) def)) with U _ (proj₂ (compliance->defined (F !x .force)))
... | ()
force (sub-sound (out#inp (_ , !x) F) (inp<:inp _ G)) =
out#inp (_ , !x) λ !x -> sub-sound (F !x .force) (G _ .force)
force (sub-sound (inp#out (_ , !x) F) (end<:def (out U) def)) = ⊥-elim (U _ !x)
force (sub-sound (inp#out (_ , !x) F) (out<:out {f} {g} (_ , !y) inc G)) =
inp#out (_ , !y) λ !x -> sub-sound (F (inc !x) .force) (G !x .force)
SubtypingQ : SessionType -> SessionType -> Set
SubtypingQ T S = ∀{R} -> Compliance (R # T) -> Compliance (R # S)
if-eq : ℙ -> SessionType -> SessionType -> Continuation
force (if-eq x T S y) with x ?= y
... | yes _ = T
... | no _ = S
input* : SessionType
input* = inp λ _ -> λ where .force -> win
input : ℙ -> SessionType -> SessionType -> SessionType
input x T S = inp (if-eq x T S)
input*-but : ℙ -> SessionType
input*-but x = input x nil win
output : ℙ -> SessionType -> SessionType -> SessionType
output x T S = out (if-eq x T S)
input-if-eq-comp :
∀{f x T} ->
Compliance (T # f x .force) ->
∀{y} (!y : y ∈ dom f) ->
∞Compliance (if-eq x T win y .force # f y .force)
force (input-if-eq-comp {_} {x} comp {y} !y) with x ?= y
... | yes refl = comp
... | no neq = win#def Win-win !y
output-if-eq-comp :
∀{f : Continuation}{x}{T} ->
Compliance (T # f x .force) ->
∀{y} (!y : y ∈ dom (if-eq x T nil)) ->
∞Compliance (if-eq x T nil y .force # f y .force)
force (output-if-eq-comp {_} {x} comp {y} !y) with x ?= y
... | yes refl = comp
force (output-if-eq-comp {_} {x} comp {y} ()) | no neq
input*-comp : ∀{f} (W : Witness f) -> Compliance (input* # out f)
input*-comp W = inp#out W λ !x -> λ where .force -> win#def Win-win !x
input*-but-comp :
∀{f x}
(W : Witness f)
(N : ¬ x ∈ dom f) ->
Compliance (input*-but x # out f)
input*-but-comp {f} {x} W N = inp#out W aux
where
aux : ∀{y : ℙ} -> (fy : y ∈ dom f) -> ∞Compliance (if-eq x nil win y .force # f y .force)
force (aux {y} fy) with x ?= y
... | yes refl = ⊥-elim (N fy)
... | no neq = win#def Win-win fy
∈-output-if-eq : ∀{R} (x : ℙ) -> Defined R -> x ∈ dom (if-eq x R nil)
∈-output-if-eq x def with x ?= x
... | yes refl = def
... | no neq = ⊥-elim (neq refl)
input-comp : ∀{g x R} -> Compliance (R # g x .force) -> Compliance (input x R win # out g)
input-comp {g} {x} comp = inp#out (x , proj₂ (compliance->defined comp)) (input-if-eq-comp {g} comp)
output-comp : ∀{f x R} -> Compliance (R # f x .force) -> Compliance (output x R nil # inp f)
output-comp {f} {x} comp = out#inp (_ , ∈-output-if-eq x (proj₁ (compliance->defined comp))) (output-if-eq-comp {f} comp)
sub-inp-inp :
∀{f g}
(spec : SubtypingQ (inp f) (inp g))
(x : ℙ) ->
SubtypingQ (f x .force) (g x .force)
sub-inp-inp spec x comp with spec (output-comp comp)
... | win#def (out U) def = ⊥-elim (U _ (∈-output-if-eq x (proj₁ (compliance->defined comp))))
... | out#inp (y , fy) F with F fy .force
... | comp' with x ?= y
... | yes refl = comp'
sub-inp-inp spec x comp | out#inp (y , fy) F | win#def () def | no neq
sub-out-out :
∀{f g}
(spec : SubtypingQ (out f) (out g)) ->
∀{x} -> x ∈ dom g ->
SubtypingQ (f x .force) (g x .force)
sub-out-out spec {x} gx comp with spec (input-comp comp)
... | inp#out W F with F gx .force
... | comp' with x ?= x
... | yes refl = comp'
... | no neq = ⊥-elim (neq refl)
sub-out->def :
∀{f g}
(spec : SubtypingQ (out f) (out g))
(Wf : Witness f) ->
∀{x} (gx : x ∈ dom g) ->
x ∈ dom f
sub-out->def {f} spec Wf {x} gx with x ∈? f
... | yes fx = fx
... | no nfx with spec (input*-but-comp Wf nfx)
... | inp#out W F with F gx .force
... | res with x ?= x
sub-out->def {f} spec Wf {x} gx | no nfx | inp#out W F | win#def () def | yes refl
... | no neq = ⊥-elim (neq refl)
sub-inp->def : ∀{f g} (spec : SubtypingQ (inp f) (inp g)) -> ∀{x} (fx : x ∈ dom f) -> x ∈ dom g
sub-inp->def {f} spec {x} fx with spec {output x win nil} (output-comp (win#def Win-win fx))
... | win#def (out U) def = ⊥-elim (U _ (∈-output-if-eq x out))
... | out#inp W F with F (∈-output-if-eq x out) .force
... | comp = proj₂ (compliance->defined comp)
sub-complete : ∀{T S i} -> SubtypingQ T S -> Thunk (Sub T S) i
force (sub-complete {nil} {_} spec) = nil<:any
force (sub-complete {inp f} {nil} spec) with spec {win} (win#def Win-win inp)
... | win#def _ ()
force (sub-complete {inp _} {inp _} spec) = inp<:inp (sub-inp->def spec) λ x -> sub-complete (sub-inp-inp spec x)
force (sub-complete {inp f} {out _} spec) with Empty? f
... | inj₁ U = end<:def (inp U) out
... | inj₂ (x , ?x) with spec {output x win nil} (output-comp (win#def Win-win ?x))
... | win#def (out U) def = ⊥-elim (U x (∈-output-if-eq x out))
force (sub-complete {out f} {nil} spec) with spec {win} (win#def Win-win out)
... | win#def _ ()
force (sub-complete {out f} {inp _} spec) with Empty? f
... | inj₁ U = end<:def (out U) inp
... | inj₂ W with spec {input*} (input*-comp W)
... | win#def () _
force (sub-complete {out f} {out g} spec) with Empty? f
... | inj₁ Uf = end<:def (out Uf) out
... | inj₂ Wf with Empty? g
... | inj₂ Wg = out<:out Wg (sub-out->def spec Wf) λ !x -> sub-complete (sub-out-out spec !x)
... | inj₁ Ug with spec {input*} (input*-comp Wf)
... | inp#out (_ , !x) F = ⊥-elim (Ug _ !x)
SubtypingQ->SubtypingS : ∀{T S} -> SubtypingQ T S -> SubtypingS T S
SubtypingQ->SubtypingS spec comp = compliance-sound (spec (compliance-complete comp .force))
SubtypingS->SubtypingQ : ∀{T S} -> SubtypingS T S -> SubtypingQ T S
SubtypingS->SubtypingQ spec comp = compliance-complete (spec (compliance-sound comp)) .force
sub-excluded :
∀{T S φ}
(sub : T <: S)
(tφ : T HasTrace φ)
(nsφ : ¬ S HasTrace φ) ->
∃[ ψ ] ∃[ x ]
(ψ ⊑ φ × T HasTrace ψ × S HasTrace ψ × T HasTrace (ψ ∷ʳ O x) × ¬ S HasTrace (ψ ∷ʳ O x))
sub-excluded nil<:any tφ nsφ = ⊥-elim (nil-has-no-trace tφ)
sub-excluded (end<:def e def) tφ nsφ with end-has-empty-trace e tφ
... | eq rewrite eq = ⊥-elim (nsφ (_ , def , refl))
sub-excluded (inp<:inp inc F) (_ , tdef , refl) nsφ =
⊥-elim (nsφ (_ , inp , refl))
sub-excluded (inp<:inp {f} {g} inc F) (_ , tdef , step inp tr) nsφ =
let ψ , x , pre , tψ , sψ , tψx , nψx = sub-excluded (F _ .force) (_ , tdef , tr) (contraposition inp-has-trace nsφ) in
_ , _ , some pre , inp-has-trace tψ , inp-has-trace sψ , inp-has-trace tψx , inp-has-no-trace nψx
sub-excluded (out<:out W inc F) (_ , tdef , refl) nsφ =
⊥-elim (nsφ (_ , out , refl))
sub-excluded (out<:out {f} {g} W inc F) (_ , tdef , step (out {_} {x} fx) tr) nsφ with x ∈? g
... | yes gx =
let ψ , x , pre , tψ , sψ , tψx , nψx = sub-excluded (F gx .force) (_ , tdef , tr) (contraposition out-has-trace nsφ) in
_ , _ , some pre , out-has-trace tψ , out-has-trace sψ , out-has-trace tψx , out-has-no-trace nψx
... | no ngx =
[] , _ , none , (_ , out , refl) , (_ , out , refl) , (_ , fx , step (out fx) refl) , λ { (_ , _ , step (out gx) _) → ⊥-elim (ngx gx) }
sub-after : ∀{T S φ} (tφ : T HasTrace φ) (sφ : S HasTrace φ) -> T <: S -> after tφ <: after sφ
sub-after (_ , _ , refl) (_ , _ , refl) sub = sub
sub-after tφ@(_ , _ , step inp _) (_ , _ , step inp _) (end<:def e _) with end-has-empty-trace e tφ
... | ()
sub-after (_ , tdef , step inp tr) (_ , sdef , step inp sr) (inp<:inp _ F) =
sub-after (_ , tdef , tr) (_ , sdef , sr) (F _ .force)
sub-after tφ@(_ , _ , step (out _) _) (_ , _ , step (out _) _) (end<:def e _) with end-has-empty-trace e tφ
... | ()
sub-after (_ , tdef , step (out _) tr) (_ , sdef , step (out gx) sr) (out<:out _ _ F) =
sub-after (_ , tdef , tr) (_ , sdef , sr) (F gx .force)
sub-simulation :
∀{R R' T S S' φ}
(comp : Compliance (R # T))
(sub : T <: S)
(rr : Transitions R (co-trace φ) R')
(sr : Transitions S φ S') ->
∃[ T' ] (Transitions T φ T' × T' <: S')
sub-simulation comp sub refl refl = _ , refl , sub
sub-simulation (win#def (out U) def) sub (step (out hx) rr) (step inp sr) = ⊥-elim (U _ hx)
sub-simulation (out#inp W F) (end<:def (inp U) def) (step (out hx) rr) (step inp sr) with F hx .force
... | comp = ⊥-elim (U _ (proj₂ (compliance->defined comp)))
sub-simulation (out#inp W F) (inp<:inp inc G) (step (out hx) rr) (step inp sr) =
let _ , tr , sub = sub-simulation (F hx .force) (G _ . force) rr sr in
_ , step inp tr , sub
sub-simulation (inp#out {h} {f} (_ , fx) F) (end<:def (out U) def) (step inp rr) (step (out gx) sr) with F fx .force
... | comp = ⊥-elim (U _ (proj₂ (compliance->defined comp)))
sub-simulation (inp#out W F) (out<:out W₁ inc G) (step inp rr) (step (out fx) sr) =
let _ , tr , sub = sub-simulation (F (inc fx) .force) (G fx .force) rr sr in
_ , step (out (inc fx)) tr , sub
| {
"alphanum_fraction": 0.6002995331,
"avg_line_length": 41.8856088561,
"ext": "agda",
"hexsha": "0f053178851d6df4793b2cdf87bf6a44235c6c98",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "boystrange/FairSubtypingAgda",
"max_forks_repo_path": "src/Subtyping.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "boystrange/FairSubtypingAgda",
"max_issues_repo_path": "src/Subtyping.agda",
"max_line_length": 155,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "boystrange/FairSubtypingAgda",
"max_stars_repo_path": "src/Subtyping.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z",
"num_tokens": 4134,
"size": 11351
} |
open import Agda.Primitive using (_⊔_; lsuc)
open import Categories.Category
open import Categories.Functor
import Categories.Category.Cartesian as Cartesian
open import Categories.Monad.Relative
import SecondOrder.RelativeKleisli
open import SecondOrder.RelativeMonadMorphism
-- The category of relative monads and relative monad morphisms
module SecondOrder.RelMon
{o l e o' l' e'}
{𝒞 : Category o l e}
{𝒟 : Category o' l' e'}
{J : Functor 𝒞 𝒟}
where
RelMon : Category (o ⊔ o' ⊔ l' ⊔ e') (lsuc o ⊔ lsuc l' ⊔ lsuc e') (o ⊔ e')
RelMon =
let open Category 𝒟 renaming (id to id_D; identityˡ to identˡ; identityʳ to identʳ; assoc to ass) in
let open RMonadMorph in
let open Monad in
let open HomReasoning in
record
{ Obj = Monad J
; _⇒_ = λ M N → RMonadMorph M N
; _≈_ = λ {M} {N} φ ψ → ∀ X → morph φ {X} ≈ morph ψ {X}
; id = λ {M} →
record
{ morph = λ {X} → id_D {F₀ M X}
; law-unit = λ {X} → identˡ
; law-extend = λ {X} {Y} {f} →
begin
(id_D ∘ extend M f) ≈⟨ identˡ ⟩
extend M f ≈⟨ extend-≈ M {k = f} {h = id_D ∘ f} (⟺ identˡ) ⟩
extend M (id_D ∘ f) ≈⟨ ⟺ identʳ ⟩
(extend M (id_D ∘ f) ∘ id_D)
∎
}
; _∘_ = λ {M} {N} {L} φ ψ →
record
{ morph = λ {X} → (morph φ {X}) ∘ (morph ψ {X})
; law-unit = λ {X} →
begin
((morph φ ∘ morph ψ) ∘ unit M) ≈⟨ ass ⟩
(morph φ ∘ (morph ψ ∘ unit M)) ≈⟨ refl⟩∘⟨ law-unit ψ ⟩
(morph φ ∘ unit N) ≈⟨ law-unit φ ⟩
unit L
∎
; law-extend = λ {X} {Y} {f} →
begin
(morph φ ∘ morph ψ) ∘ extend M f ≈⟨ ass ⟩
morph φ ∘ (morph ψ ∘ extend M f) ≈⟨ refl⟩∘⟨ law-extend ψ ⟩
morph φ ∘ (extend N (morph ψ ∘ f) ∘ morph ψ) ≈⟨ ⟺ (ass) ⟩
(morph φ ∘ extend N (morph ψ ∘ f)) ∘ morph ψ ≈⟨ (law-extend φ ⟩∘⟨refl) ⟩
((extend L (morph φ ∘ morph ψ ∘ f)) ∘ morph φ) ∘ morph ψ ≈⟨ ass ⟩
(extend L (morph φ ∘ morph ψ ∘ f)) ∘ morph φ ∘ morph ψ
≈⟨ ( extend-≈ L (⟺ (ass)) ⟩∘⟨refl) ⟩
extend L ((morph φ ∘ morph ψ) ∘ f) ∘ morph φ ∘ morph ψ
∎
}
; assoc = λ X → ass
; sym-assoc = λ X → ⟺ (ass)
; identityˡ = λ X → identˡ
; identityʳ = λ X → identʳ
; identity² = λ X → identˡ
; equiv = record
{ refl = λ X → Equiv.refl
; sym = λ φ≈ψ X → ⟺ (φ≈ψ X)
; trans = λ φ≈ψ ψ≈θ X → φ≈ψ X ○ ψ≈θ X
}
; ∘-resp-≈ = λ φ≈ψ θ≈ω X → φ≈ψ X ⟩∘⟨ θ≈ω X
}
| {
"alphanum_fraction": 0.4317789292,
"avg_line_length": 38.0921052632,
"ext": "agda",
"hexsha": "f0a806bd17f96cb0c439a76887a9d6b2ee334e4e",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SecondOrder/RelMon.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SecondOrder/RelMon.agda",
"max_line_length": 102,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SecondOrder/RelMon.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 1060,
"size": 2895
} |
module Sets.ImageSet where
open import Data
open import Functional
open import Logic
open import Logic.Propositional
open import Logic.Predicate
import Lvl
open import Structure.Function
open import Structure.Setoid renaming (_≡_ to _≡ₛ_)
open import Type
open import Type.Dependent
private variable ℓ ℓₑ ℓᵢ ℓᵢ₁ ℓᵢ₂ ℓᵢ₃ ℓᵢₑ ℓ₁ ℓ₂ ℓ₃ : Lvl.Level
private variable T X Y Z : Type{ℓ}
record ImageSet {ℓᵢ ℓ} (T : Type{ℓ}) : Type{Lvl.𝐒(ℓᵢ) Lvl.⊔ ℓ} where
constructor intro
field
{Index} : Type{ℓᵢ}
elem : Index → T
open ImageSet using (Index ; elem) public
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
_∈_ : T → ImageSet{ℓᵢ}(T) → Stmt
a ∈ A = ∃(i ↦ a ≡ₛ elem A(i))
open import Data.Proofs
open import Function.Proofs
open import Logic.Propositional.Theorems
open import Structure.Relator
open import Structure.Relator.Properties
open import Syntax.Transitivity
{-
instance
ImageSet-equiv : Equiv(ImageSet{ℓᵢ}(T))
ImageSet-equiv = intro(_≡_) ⦃ [≡]-equivalence ⦄
-}
instance
[∈]-unaryOperatorₗ : ∀{A : ImageSet{ℓᵢ}(T)} → UnaryRelator(_∈ A)
UnaryRelator.substitution [∈]-unaryOperatorₗ xy ([∃]-intro i ⦃ p ⦄) = [∃]-intro i ⦃ symmetry(_≡ₛ_) xy 🝖 p ⦄
| {
"alphanum_fraction": 0.6922435363,
"avg_line_length": 27.25,
"ext": "agda",
"hexsha": "7ee742e9a672d94b2a1139ec7ab63ee207fa4428",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Sets/ImageSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Sets/ImageSet.agda",
"max_line_length": 111,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Sets/ImageSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 474,
"size": 1199
} |
module Issue878 where
data _==_ {A : Set} (a : A) : A → Set where
idp : a == a
data ⊤ : Set where
tt : ⊤
record args : Set₁ where
field
P : ⊤ → Set
g : (b : ⊤) → P b
module _ (r : args) where
open args r
postulate
ext : ∀ b → P b
module _ {r : args} where
open args r
postulate
β-r : ∀ b → ext r b == g b
a : args
a = record {P = λ x → (⊤ → ⊤); g = λ x → λ c → tt}
err : ext a tt tt == tt
err = β-r tt
-- WAS: __IMPOSSIBLE__ in Conversion.hs
| {
"alphanum_fraction": 0.5197505198,
"avg_line_length": 15.03125,
"ext": "agda",
"hexsha": "3a6f3bdc7beac8bb460a4e30c9ea81705ae6251b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue878.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue878.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue878.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 195,
"size": 481
} |
------------------------------------------------------------------------
-- ω-continuous functions
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
module Partiality-monad.Inductive.Omega-continuous where
open import Equality.Propositional
open import Prelude
open import Bijection equality-with-J using (_↔_)
import Partiality-algebra.Omega-continuous as O
open import Partiality-monad.Inductive
-- Definition of ω-continuous functions.
[_⊥→_⊥] : ∀ {a b} → Type a → Type b → Type (a ⊔ b)
[ A ⊥→ B ⊥] = O.[ partiality-algebra A ⟶ partiality-algebra B ]
module [_⊥→_⊥] {a b} {A : Type a} {B : Type b} (f : [ A ⊥→ B ⊥]) =
O.[_⟶_] f
open [_⊥→_⊥]
-- Identity.
idω : ∀ {a} {A : Type a} → [ A ⊥→ A ⊥]
idω = O.idω
-- Composition.
infixr 40 _∘ω_
_∘ω_ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} →
[ B ⊥→ C ⊥] → [ A ⊥→ B ⊥] → [ A ⊥→ C ⊥]
_∘ω_ = O._∘ω_
-- Equality characterisation lemma for ω-continuous functions.
equality-characterisation-continuous :
∀ {a b} {A : Type a} {B : Type b} {f g : [ A ⊥→ B ⊥]} →
(∀ x → function f x ≡ function g x) ↔ f ≡ g
equality-characterisation-continuous =
O.equality-characterisation-continuous
-- Composition is associative.
∘ω-assoc :
∀ {a b c d} {A : Type a} {B : Type b} {C : Type c} {D : Type d}
(f : [ C ⊥→ D ⊥]) (g : [ B ⊥→ C ⊥]) (h : [ A ⊥→ B ⊥]) →
f ∘ω (g ∘ω h) ≡ (f ∘ω g) ∘ω h
∘ω-assoc = O.∘ω-assoc
| {
"alphanum_fraction": 0.5210780926,
"avg_line_length": 26.3090909091,
"ext": "agda",
"hexsha": "01ff914148d8c7621ee3023d36c7fd6d50f34396",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Partiality-monad/Inductive/Omega-continuous.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Partiality-monad/Inductive/Omega-continuous.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Partiality-monad/Inductive/Omega-continuous.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 534,
"size": 1447
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use the Data.(Nat/Fin).Induction
-- modules directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Induction.Nat where
open import Data.Nat.Induction public
open import Data.Fin.Induction public
{-# WARNING_ON_IMPORT
"Induction.Nat was deprecated in v1.1.
Use Data.Nat.Induction and Data.Fin.Induction instead."
#-}
| {
"alphanum_fraction": 0.5413533835,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "95318e84d0c9dfb42465f2fc321cd032dead9f2e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Induction/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Induction/Nat.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Induction/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 107,
"size": 532
} |
module SystemF.Syntax.Context where
open import Prelude
open import SystemF.Syntax.Type
open import Data.Vec
Ctx : ℕ → ℕ → Set
Ctx ν n = Vec (Type ν) n
| {
"alphanum_fraction": 0.7402597403,
"avg_line_length": 17.1111111111,
"ext": "agda",
"hexsha": "35521f16c406a5dfb3fd1ecef6fac9c43b763f99",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/SystemF/Syntax/Context.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/SystemF/Syntax/Context.agda",
"max_line_length": 35,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/SystemF/Syntax/Context.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 43,
"size": 154
} |
module #9 where
{-
Define the type family Fin : N → U mentioned at the end of §1.3, and the dependent
function fmax : ∏(n:N) Fin(n + 1) mentioned in §1.4.
-}
open import Data.Nat
data Fin : ℕ → Set where
FZ : {n : ℕ} → Fin (suc n)
FS : {n : ℕ} → Fin n → Fin (suc n)
fmax : (n : ℕ) → Fin (n + 1)
fmax zero = FZ
fmax (suc n) = FS (fmax n)
| {
"alphanum_fraction": 0.5702005731,
"avg_line_length": 20.5294117647,
"ext": "agda",
"hexsha": "4d7f114e68131c13a4cb1a17e92d1704deb5cf0d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CodaFi/HoTT-Exercises",
"max_forks_repo_path": "Chapter1/#9.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CodaFi/HoTT-Exercises",
"max_issues_repo_path": "Chapter1/#9.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CodaFi/HoTT-Exercises",
"max_stars_repo_path": "Chapter1/#9.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 142,
"size": 349
} |
------------------------------------------------------------------------
-- An expression can be derived from at most one string
------------------------------------------------------------------------
open import Mixfix.Expr
module Mixfix.Cyclic.Uniqueness
(i : PrecedenceGraphInterface)
(g : PrecedenceGraphInterface.PrecedenceGraph i)
where
open import Codata.Musical.Notation using (♭)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.List using (List; []; _∷_)
open import Data.List.Relation.Unary.Any using (here)
open import Data.Vec using (Vec; []; _∷_)
open import Data.Product using (_,_; -,_; proj₂)
open import Relation.Binary.HeterogeneousEquality using (_≅_; refl)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open PrecedenceCorrect i g
open import TotalParserCombinators.Semantics hiding (_≅_)
open import Mixfix.Fixity
open import Mixfix.Operator
open import Mixfix.Cyclic.Lib as Lib
open Lib.Semantics
import Mixfix.Cyclic.Grammar
private module Grammar = Mixfix.Cyclic.Grammar i g
module Unique where
data _≋_ {A : Set} {x₁ : A} {s₁ p₁} (∈ : x₁ ∈⟦ p₁ ⟧· s₁) :
∀ {x₂ : A} {s₂ p₂} → x₂ ∈⟦ p₂ ⟧· s₂ → Set where
refl : ∈ ≋ ∈
mutual
precs : ∀ ps {s₁ s₂} {e₁ e₂ : Expr ps}
(∈₁ : e₁ ∈⟦ Grammar.precs ps ⟧· s₁)
(∈₂ : e₂ ∈⟦ Grammar.precs ps ⟧· s₂) →
e₁ ≡ e₂ → ∈₁ ≋ ∈₂
precs [] () () _
precs (p ∷ ps) (∣ʳ (<$>_ {x = ( _ ∙ _)} ∈₁))
(∣ʳ (<$>_ {x = (._ ∙ ._)} ∈₂)) refl with precs ps ∈₁ ∈₂ refl
precs (p ∷ ps) (∣ʳ (<$>_ {x = ( _ ∙ _)} ∈₁))
(∣ʳ (<$>_ {x = (._ ∙ ._)} .∈₁)) refl | refl = refl
precs (p ∷ ps) (∣ˡ (<$> ∈₁)) (∣ʳ (<$>_ {x = _ ∙ _} ∈₂)) ()
precs (p ∷ ps) (∣ʳ (<$>_ {x = _ ∙ _} ∈₁)) (∣ˡ (<$> ∈₂)) ()
precs (p ∷ ps) (∣ˡ (<$>_ {x = e₁} ∈₁)) (∣ˡ (<$>_ {x = e₂} ∈₂)) eq =
helper (lemma₁ eq) (lemma₂ eq) ∈₁ ∈₂
where
lemma₁ : ∀ {assoc₁ assoc₂}
{e₁ : ExprIn p assoc₁} {e₂ : ExprIn p assoc₂} →
(Expr._∙_ (here {xs = ps} refl) e₁) ≡ (here refl ∙ e₂) →
assoc₁ ≡ assoc₂
lemma₁ refl = refl
lemma₂ : ∀ {assoc₁ assoc₂}
{e₁ : ExprIn p assoc₁} {e₂ : ExprIn p assoc₂} →
(Expr._∙_ (here {xs = ps} refl) e₁) ≡ (here refl ∙ e₂) →
e₁ ≅ e₂
lemma₂ refl = refl
helper : ∀ {assoc₁ assoc₂ s₁ s₂}
{e₁ : ExprIn p assoc₁} {e₂ : ExprIn p assoc₂} →
assoc₁ ≡ assoc₂ → e₁ ≅ e₂ →
(∈₁ : (-, e₁) ∈⟦ Grammar.prec p ⟧· s₁) →
(∈₂ : (-, e₂) ∈⟦ Grammar.prec p ⟧· s₂) →
∣ˡ {p₁ = (λ e → here refl ∙ proj₂ e) <$> Grammar.prec p}
{p₂ = weakenE <$> Grammar.precs ps} (<$> ∈₁) ≋
∣ˡ {p₁ = (λ e → here refl ∙ proj₂ e) <$> Grammar.prec p}
{p₂ = weakenE <$> Grammar.precs ps} (<$> ∈₂)
helper refl refl ∈₁ ∈₂ with prec ∈₁ ∈₂
helper refl refl ∈ .∈ | refl = refl
prec : ∀ {p assoc s₁ s₂} {e : ExprIn p assoc}
(∈₁ : (-, e) ∈⟦ Grammar.prec p ⟧· s₁)
(∈₂ : (-, e) ∈⟦ Grammar.prec p ⟧· s₂) →
∈₁ ≋ ∈₂
prec {p} ∈₁′ ∈₂′ = prec′ ∈₁′ ∈₂′ refl
where
module P = Grammar.Prec p
preRight⁺ : ∀ {s₁ s₂} {e₁ e₂ : ExprIn p right}
(∈₁ : e₁ ∈⟦ P.preRight⁺ ⟧· s₁)
(∈₂ : e₂ ∈⟦ P.preRight⁺ ⟧· s₂) →
e₁ ≡ e₂ → ∈₁ ≋ ∈₂
preRight⁺ (∣ˡ (<$> ∈₁) ⊛∞ ∣ˡ (<$> ∈₂))
(∣ˡ (<$> ∈₁′) ⊛∞ ∣ˡ (<$> ∈₂′)) refl with inner _ ∈₁ ∈₁′ refl | preRight⁺ ∈₂ ∈₂′ refl
preRight⁺ (∣ˡ (<$> ∈₁) ⊛∞ ∣ˡ (<$> ∈₂))
(∣ˡ (<$> .∈₁) ⊛∞ ∣ˡ (<$> .∈₂)) refl | refl | refl = refl
preRight⁺ (∣ˡ (<$> ∈₁) ⊛∞ ∣ʳ (<$> ∈₂))
(∣ˡ (<$> ∈₁′) ⊛∞ ∣ʳ (<$> ∈₂′)) refl with inner _ ∈₁ ∈₁′ refl | precs _ ∈₂ ∈₂′ refl
preRight⁺ (∣ˡ (<$> ∈₁) ⊛∞ ∣ʳ (<$> ∈₂))
(∣ˡ (<$> .∈₁) ⊛∞ ∣ʳ (<$> .∈₂)) refl | refl | refl = refl
preRight⁺ (∣ʳ (<$> ∈₁ ⊛ ∈₃) ⊛∞ ∣ˡ (<$> ∈₂))
(∣ʳ (<$> ∈₁′ ⊛ ∈₃′) ⊛∞ ∣ˡ (<$> ∈₂′)) refl with precs _ ∈₁ ∈₁′ refl | preRight⁺ ∈₂ ∈₂′ refl | inner _ ∈₃ ∈₃′ refl
preRight⁺ (∣ʳ (<$> ∈₁ ⊛ ∈₃) ⊛∞ ∣ˡ (<$> ∈₂))
(∣ʳ (<$> .∈₁ ⊛ .∈₃) ⊛∞ ∣ˡ (<$> .∈₂)) refl | refl | refl | refl = refl
preRight⁺ (∣ʳ (<$> ∈₁ ⊛ ∈₃) ⊛∞ ∣ʳ (<$> ∈₂))
(∣ʳ (<$> ∈₁′ ⊛ ∈₃′) ⊛∞ ∣ʳ (<$> ∈₂′)) refl with precs _ ∈₁ ∈₁′ refl | precs _ ∈₂ ∈₂′ refl | inner _ ∈₃ ∈₃′ refl
preRight⁺ (∣ʳ (<$> ∈₁ ⊛ ∈₃) ⊛∞ ∣ʳ (<$> ∈₂))
(∣ʳ (<$> .∈₁ ⊛ .∈₃) ⊛∞ ∣ʳ (<$> .∈₂)) refl | refl | refl | refl = refl
preRight⁺ (∣ˡ (<$> _) ⊛∞ _)
(∣ʳ (<$> _ ⊛ _) ⊛∞ _) ()
preRight⁺ (∣ʳ (<$> _ ⊛ _) ⊛∞ _)
(∣ˡ (<$> _) ⊛∞ _) ()
preRight⁺ (∣ˡ (<$> _) ⊛∞ ∣ˡ (<$> _))
(∣ˡ (<$> _) ⊛∞ ∣ʳ (<$> _)) ()
preRight⁺ (∣ˡ (<$> _) ⊛∞ ∣ʳ (<$> _))
(∣ˡ (<$> _) ⊛∞ ∣ˡ (<$> _)) ()
preRight⁺ (∣ʳ (<$> _ ⊛ _) ⊛∞ ∣ˡ (<$> _))
(∣ʳ (<$> _ ⊛ _) ⊛∞ ∣ʳ (<$> _)) ()
preRight⁺ (∣ʳ (<$> _ ⊛ _) ⊛∞ ∣ʳ (<$> _))
(∣ʳ (<$> _ ⊛ _) ⊛∞ ∣ˡ (<$> _)) ()
postLeft⁺ : ∀ {s₁ s₂} {e₁ e₂ : ExprIn p left}
(∈₁ : e₁ ∈⟦ P.postLeft⁺ ⟧· s₁)
(∈₂ : e₂ ∈⟦ P.postLeft⁺ ⟧· s₂) →
e₁ ≡ e₂ → ∈₁ ≋ ∈₂
postLeft⁺ (<$> (∣ˡ (<$> ∈₁)) ⊛∞ ∣ˡ (<$> ∈₂))
(<$> (∣ˡ (<$> ∈₁′)) ⊛∞ ∣ˡ (<$> ∈₂′)) refl with postLeft⁺ ∈₁ ∈₁′ refl | inner _ ∈₂ ∈₂′ refl
postLeft⁺ (<$> (∣ˡ (<$> ∈₁)) ⊛∞ ∣ˡ (<$> ∈₂))
(<$> (∣ˡ (<$> .∈₁)) ⊛∞ ∣ˡ (<$> .∈₂)) refl | refl | refl = refl
postLeft⁺ (<$> (∣ʳ (<$> ∈₁)) ⊛∞ ∣ˡ (<$> ∈₂))
(<$> (∣ʳ (<$> ∈₁′)) ⊛∞ ∣ˡ (<$> ∈₂′)) refl with precs _ ∈₁ ∈₁′ refl | inner _ ∈₂ ∈₂′ refl
postLeft⁺ (<$> (∣ʳ (<$> ∈₁)) ⊛∞ ∣ˡ (<$> ∈₂))
(<$> (∣ʳ (<$> .∈₁)) ⊛∞ ∣ˡ (<$> .∈₂)) refl | refl | refl = refl
postLeft⁺ (<$> (∣ˡ (<$> ∈₁)) ⊛∞ ∣ʳ (<$> ∈₂ ⊛ ∈₃))
(<$> (∣ˡ (<$> ∈₁′)) ⊛∞ ∣ʳ (<$> ∈₂′ ⊛ ∈₃′)) refl with postLeft⁺ ∈₁ ∈₁′ refl | inner _ ∈₂ ∈₂′ refl | precs _ ∈₃ ∈₃′ refl
postLeft⁺ (<$> (∣ˡ (<$> ∈₁)) ⊛∞ ∣ʳ (<$> ∈₂ ⊛ ∈₃))
(<$> (∣ˡ (<$> .∈₁)) ⊛∞ ∣ʳ (<$> .∈₂ ⊛ .∈₃)) refl | refl | refl | refl = refl
postLeft⁺ (<$> (∣ʳ (<$> ∈₁)) ⊛∞ ∣ʳ (<$> ∈₂ ⊛ ∈₃))
(<$> (∣ʳ (<$> ∈₁′)) ⊛∞ ∣ʳ (<$> ∈₂′ ⊛ ∈₃′)) refl with precs _ ∈₁ ∈₁′ refl | inner _ ∈₂ ∈₂′ refl | precs _ ∈₃ ∈₃′ refl
postLeft⁺ (<$> (∣ʳ (<$> ∈₁)) ⊛∞ ∣ʳ (<$> ∈₂ ⊛ ∈₃))
(<$> (∣ʳ (<$> .∈₁)) ⊛∞ ∣ʳ (<$> .∈₂ ⊛ .∈₃)) refl | refl | refl | refl = refl
postLeft⁺ (<$> _ ⊛∞ ∣ˡ (<$> _))
(<$> _ ⊛∞ ∣ʳ (<$> _ ⊛ _)) ()
postLeft⁺ (<$> _ ⊛∞ ∣ʳ (<$> _ ⊛ _))
(<$> _ ⊛∞ ∣ˡ (<$> _)) ()
postLeft⁺ (<$> (∣ˡ (<$> _)) ⊛∞ ∣ˡ (<$> _))
(<$> (∣ʳ (<$> _)) ⊛∞ ∣ˡ (<$> _)) ()
postLeft⁺ (<$> (∣ʳ (<$> _)) ⊛∞ ∣ˡ (<$> _))
(<$> (∣ˡ (<$> _)) ⊛∞ ∣ˡ (<$> _)) ()
postLeft⁺ (<$> (∣ˡ (<$> _)) ⊛∞ ∣ʳ (<$> _ ⊛ _))
(<$> (∣ʳ (<$> _)) ⊛∞ ∣ʳ (<$> _ ⊛ _)) ()
postLeft⁺ (<$> (∣ʳ (<$> _)) ⊛∞ ∣ʳ (<$> _ ⊛ _))
(<$> (∣ˡ (<$> _)) ⊛∞ ∣ʳ (<$> _ ⊛ _)) ()
prec′ : ∀ {assoc s₁ s₂} {e₁ e₂ : ExprIn p assoc} →
(∈₁ : (-, e₁) ∈⟦ Grammar.prec p ⟧· s₁)
(∈₂ : (-, e₂) ∈⟦ Grammar.prec p ⟧· s₂) →
e₁ ≡ e₂ → ∈₁ ≋ ∈₂
prec′ (∥ˡ (<$> ∈₁)) (∥ˡ (<$> ∈₂)) refl with inner _ ∈₁ ∈₂ refl
prec′ (∥ˡ (<$> ∈₁)) (∥ˡ (<$> .∈₁)) refl | refl = refl
prec′ (∥ʳ (∥ˡ (<$> ∈₁ ⊛ ∈₂ ⊛∞ ∈₃ )))
(∥ʳ (∥ˡ (<$> ∈₁′ ⊛ ∈₂′ ⊛∞ ∈₃′))) refl
with precs _ ∈₁ ∈₁′ refl | inner _ ∈₂ ∈₂′ refl | precs _ ∈₃ ∈₃′ refl
prec′ (∥ʳ (∥ˡ (<$> ∈₁ ⊛ ∈₂ ⊛∞ ∈₃)))
(∥ʳ (∥ˡ (<$> .∈₁ ⊛ .∈₂ ⊛∞ .∈₃))) refl | refl | refl | refl = refl
prec′ (∥ʳ (∥ʳ (∥ˡ ∈₁))) (∥ʳ (∥ʳ (∥ˡ ∈₂))) refl with preRight⁺ ∈₁ ∈₂ refl
prec′ (∥ʳ (∥ʳ (∥ˡ ∈₁))) (∥ʳ (∥ʳ (∥ˡ .∈₁))) refl | refl = refl
prec′ (∥ʳ (∥ʳ (∥ʳ (∥ˡ ∈₁)))) (∥ʳ (∥ʳ (∥ʳ (∥ˡ ∈₂)))) refl with postLeft⁺ ∈₁ ∈₂ refl
prec′ (∥ʳ (∥ʳ (∥ʳ (∥ˡ ∈₁)))) (∥ʳ (∥ʳ (∥ʳ (∥ˡ .∈₁)))) refl | refl = refl
prec′ (∥ˡ (<$> _)) (∥ʳ (∥ˡ (<$> _ ⊛ _ ⊛∞ _))) ()
prec′ (∥ʳ (∥ˡ (<$> _ ⊛ _ ⊛∞ _))) (∥ˡ (<$> _)) ()
prec′ (∥ʳ (∥ʳ (∥ʳ (∥ʳ ())))) _ _
prec′ _ (∥ʳ (∥ʳ (∥ʳ (∥ʳ ())))) _
inner : ∀ {fix s₁ s₂} ops {e₁ e₂ : Inner {fix} ops}
(∈₁ : e₁ ∈⟦ Grammar.inner ops ⟧· s₁)
(∈₂ : e₂ ∈⟦ Grammar.inner ops ⟧· s₂) →
e₁ ≡ e₂ → ∈₁ ≋ ∈₂
inner [] () () _
inner ((_ , op) ∷ ops) (∣ˡ (<$> ∈₁))
(∣ˡ (<$> ∈₂)) refl with inner′ _ _ ∈₁ ∈₂
inner ((_ , op) ∷ ops) (∣ˡ (<$> ∈₁))
(∣ˡ (<$> .∈₁)) refl | refl = refl
inner ((_ , op) ∷ ops) (∣ʳ (<$>_ {x = ( _ ∙ _)} ∈₁))
(∣ʳ (<$>_ {x = (._ ∙ ._)} ∈₂)) refl with inner ops ∈₁ ∈₂ refl
inner ((_ , op) ∷ ops) (∣ʳ (<$>_ {x = ( _ ∙ _)} ∈₁))
(∣ʳ (<$>_ {x = (._ ∙ ._)} .∈₁)) refl | refl = refl
inner ((_ , op) ∷ ops) (∣ˡ (<$> ∈₁)) (∣ʳ (<$>_ {x = (_ ∙ _)} ∈₂)) ()
inner ((_ , op) ∷ ops) (∣ʳ (<$>_ {x = (_ ∙ _)} ∈₁)) (∣ˡ (<$> ∈₂)) ()
inner′ : ∀ {arity s₁ s₂}
(ns : Vec NamePart (1 + arity))
(args : Vec (Expr anyPrecedence) arity)
(∈₁ : args ∈⟦ Grammar.expr between ns ⟧· s₁)
(∈₂ : args ∈⟦ Grammar.expr between ns ⟧· s₂) →
∈₁ ≋ ∈₂
inner′ (n ∷ []) [] between-[] between-[] = refl
inner′ (n ∷ n′ ∷ ns) (arg ∷ args)
(between-∷ ∈₁ ∈⋯₁) (between-∷ ∈₂ ∈⋯₂)
with precs _ ∈₁ ∈₂ refl | inner′ (n′ ∷ ns) args ∈⋯₁ ∈⋯₂
inner′ (n ∷ n′ ∷ ns) (arg ∷ args)
(between-∷ ∈₁ ∈⋯₁) (between-∷ .∈₁ .∈⋯₁) | refl | refl = refl
-- There is at most one string representing a given expression.
unique : ∀ {e s₁ s₂} →
e ∈ Grammar.expression · s₁ →
e ∈ Grammar.expression · s₂ →
s₁ ≡ s₂
unique ∈₁ ∈₂ with ∈₁′ | ∈₂′ | Unique.precs _ ∈₁′ ∈₂′ refl
where
∈₁′ = Lib.Semantics.complete (♭ Grammar.expr) ∈₁
∈₂′ = Lib.Semantics.complete (♭ Grammar.expr) ∈₂
... | ∈ | .∈ | Unique.refl = refl
| {
"alphanum_fraction": 0.3708582834,
"avg_line_length": 46.3888888889,
"ext": "agda",
"hexsha": "e56d75cd785081e82fde53b766982106da4eee12",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "Mixfix/Cyclic/Uniqueness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "Mixfix/Cyclic/Uniqueness.agda",
"max_line_length": 132,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "Mixfix/Cyclic/Uniqueness.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 4735,
"size": 10020
} |
module Example where
open import Prelude
import Typed
data Data : Set where
nat : Data
bool : Data
Datatype : Data -> List (List Data)
Datatype nat = ε ◄ ε ◄ (ε ◄ nat)
Datatype bool = ε ◄ ε ◄ ε
data Effect : Set where
data _⊆_ : Effect -> Effect -> Set where
refl⊆ : forall {M} -> M ⊆ M
Monad : Effect -> Set -> Set
Monad e A = A
return : forall {M A} -> A -> Monad M A
return x = x
map : forall {M A B} -> (A -> B) -> Monad M A -> Monad M B
map f m = f m
join : forall {M A} -> Monad M (Monad M A) -> Monad M A
join m = m
morph : forall {M N} -> M ⊆ N -> (A : Set) -> Monad M A -> Monad N A
morph _ A x = x
open module TT =
Typed Data Datatype
Effect _⊆_
Monad
(\{M A} -> return {M}{A})
(\{M A B} -> map {M}{A}{B})
(\{M A} -> join {M}{A})
morph
zero : forall {M Γ} -> InV M Γ (TyCon nat)
zero = con (tl hd) ⟨⟩
suc : forall {M Γ} -> InV M Γ (TyCon nat) -> InV M Γ (TyCon nat)
suc n = con hd (⟨⟩ ◃ n)
true : forall {M Γ} -> InV M Γ (TyCon bool)
true = con hd ⟨⟩
false : forall {M Γ} -> InV M Γ (TyCon bool)
false = con (tl hd) ⟨⟩
| {
"alphanum_fraction": 0.5161572052,
"avg_line_length": 20.8181818182,
"ext": "agda",
"hexsha": "3744b73b7ebd8664ff76da3e6d94b91c1af190ac",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/sinatra/Example.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/sinatra/Example.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/sinatra/Example.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 415,
"size": 1145
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Core
module Categories.Category.Construction.KaroubiEnvelope.Properties {o ℓ e} (𝒞 : Category o ℓ e) where
open import Data.Product using (_,_)
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Properties
open import Categories.Category.Construction.KaroubiEnvelope
open import Categories.Morphism.Idempotent
import Categories.Morphism.Idempotent.Bundles as BundledIdem
open Category 𝒞
open Equiv
--------------------------------------------------------------------------------
-- Some facts about embedding 𝒞 into it's Karoubi Envelope
KaroubiEmbedding : Functor 𝒞 (KaroubiEnvelope 𝒞)
KaroubiEmbedding = record
{ F₀ = λ X → record
{ obj = X
; isIdempotent = record
{ idem = id
; idempotent = identity²
}
}
; F₁ = λ f → record
{ hom = f
; absorbˡ = identityˡ
; absorbʳ = identityʳ
}
; identity = refl
; homomorphism = refl
; F-resp-≈ = λ eq → eq
}
private
module KaroubiEmbedding = Functor KaroubiEmbedding
karoubi-embedding-full : Full KaroubiEmbedding
karoubi-embedding-full = record
{ from = record
{ _⟨$⟩_ = λ f → BundledIdem.Idempotent⇒.hom f
; cong = λ eq → eq
}
; right-inverse-of = λ _ → refl
}
karoubi-embedding-faithful : Faithful KaroubiEmbedding
karoubi-embedding-faithful f g eq = eq
karoubi-embedding-fully-faithful : FullyFaithful KaroubiEmbedding
karoubi-embedding-fully-faithful = karoubi-embedding-full , karoubi-embedding-faithful
--------------------------------------------------------------------------------
-- Some facts about splitting idempotents
-- All idempotents in the Karoubi Envelope are split
idempotent-split : ∀ {A} → Idempotent (KaroubiEnvelope 𝒞) A → SplitIdempotent (KaroubiEnvelope 𝒞) A
idempotent-split {A} I = record
{ idem = idem
; isSplitIdempotent = record
{ obj = record
{ isIdempotent = record
{ idem = idem.hom
; idempotent = idempotent
}
}
; retract = record
{ hom = idem.hom
; absorbˡ = idempotent
; absorbʳ = idem.absorbʳ
}
; section = record
{ hom = idem.hom
; absorbˡ = idem.absorbˡ
; absorbʳ = idempotent
}
; retracts = idempotent
; splits = idempotent
}
}
where
module A = BundledIdem.Idempotent A
open Idempotent I
module idem = BundledIdem.Idempotent⇒ idem
| {
"alphanum_fraction": 0.636400986,
"avg_line_length": 26.4565217391,
"ext": "agda",
"hexsha": "a34240c75a655d8f5d5ef148725650aba2091c82",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/KaroubiEnvelope/Properties.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/KaroubiEnvelope/Properties.agda",
"max_line_length": 101,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/KaroubiEnvelope/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 732,
"size": 2434
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Functor.Hom where
open import Data.Product using (_×_; uncurry; proj₁; proj₂; _,_)
open import Categories.Support.Equivalence
open import Categories.Support.SetoidFunctions renaming (id to id′)
open import Categories.Category
open import Categories.Bifunctor using (Bifunctor; Functor; module Functor)
open import Categories.Agda
module Hom {o ℓ e} (C : Category o ℓ e) where
open Category C
Hom[-,-] : Bifunctor (Category.op C) C (ISetoids ℓ e)
Hom[-,-] = record
{ F₀ = F₀′
; F₁ = λ f → record
{ _⟨$⟩_ = λ x → proj₂ f ∘ x ∘ proj₁ f
; cong = cong′ f
}
; identity = identity′
; homomorphism = homomorphism′
; F-resp-≡ = F-resp-≡′
}
where
F₀′ : Obj × Obj → Setoid ℓ e
F₀′ x = record
{ Carrier = uncurry _⇒_ x
; _≈_ = _≡_
; isEquivalence = equiv
}
_⇆_ : ∀ A B → Set ℓ
A ⇆ B = (proj₁ B ⇒ proj₁ A) × (proj₂ A ⇒ proj₂ B)
.cong′ : ∀ {A B} → (f : A ⇆ B) → {x y : uncurry _⇒_ A} → x ≡ y
→ proj₂ f ∘ x ∘ proj₁ f ≡ proj₂ f ∘ y ∘ proj₁ f
cong′ f x≡y = ∘-resp-≡ʳ (∘-resp-≡ˡ x≡y)
.identity′ : {A : Obj × Obj} {x y : uncurry _⇒_ A} → x ≡ y → id ∘ x ∘ id ≡ y
identity′ {A} {x} {y} x≡y =
begin
id ∘ x ∘ id
↓⟨ identityˡ ⟩
x ∘ id
↓⟨ identityʳ ⟩
x
↓⟨ x≡y ⟩
y
∎
where
open HomReasoning
.homomorphism′ : {X Y Z : Obj × Obj}
→ {f : X ⇆ Y}
→ {g : Y ⇆ Z}
→ {x y : uncurry _⇒_ X} → (x ≡ y)
→ (proj₂ g ∘ proj₂ f) ∘ (x ∘ (proj₁ f ∘ proj₁ g)) ≡ proj₂ g ∘ ((proj₂ f ∘ (y ∘ proj₁ f)) ∘ proj₁ g)
homomorphism′ {f = f} {g} {x} {y} x≡y =
begin
(proj₂ g ∘ proj₂ f) ∘ (x ∘ (proj₁ f ∘ proj₁ g))
↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ x≡y) ⟩
(proj₂ g ∘ proj₂ f) ∘ (y ∘ (proj₁ f ∘ proj₁ g))
↓⟨ assoc ⟩
proj₂ g ∘ (proj₂ f ∘ (y ∘ (proj₁ f ∘ proj₁ g)))
↑⟨ ∘-resp-≡ʳ assoc ⟩
proj₂ g ∘ ((proj₂ f ∘ y) ∘ (proj₁ f ∘ proj₁ g))
↑⟨ ∘-resp-≡ʳ assoc ⟩
proj₂ g ∘ (((proj₂ f ∘ y) ∘ proj₁ f) ∘ proj₁ g)
↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ assoc) ⟩
proj₂ g ∘ ((proj₂ f ∘ (y ∘ proj₁ f)) ∘ proj₁ g)
∎
where
open HomReasoning
.F-resp-≡′ : {A B : Obj × Obj} {f g : A ⇆ B}
→ proj₁ f ≡ proj₁ g × proj₂ f ≡ proj₂ g
→ {x y : uncurry _⇒_ A} → (x ≡ y)
→ proj₂ f ∘ x ∘ proj₁ f ≡ proj₂ g ∘ y ∘ proj₁ g
F-resp-≡′ (f₁≡g₁ , f₂≡g₂) x≡y = ∘-resp-≡ f₂≡g₂ (∘-resp-≡ x≡y f₁≡g₁)
Hom[_,-] : Obj → Functor C (ISetoids ℓ e)
Hom[_,-] B = record
{ F₀ = λ x → Hom[-,-].F₀ (B , x)
; F₁ = λ f → Hom[-,-].F₁ (id , f)
; identity = Hom[-,-].identity
; homomorphism = homomorphism′
; F-resp-≡ = λ F≡G x≡y → ∘-resp-≡ F≡G (∘-resp-≡ˡ x≡y)
}
where
module Hom[-,-] = Functor Hom[-,-]
-- I can't see an easy way to reuse the proof for the bifunctor :(
-- luckily, it's an easy proof!
.homomorphism′ : {X Y Z : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} {x y : B ⇒ X}
→ (x ≡ y) → (g ∘ f) ∘ (x ∘ id) ≡ g ∘ ((f ∘ (y ∘ id)) ∘ id)
homomorphism′ {f = f} {g} {x} {y} x≡y =
begin
(g ∘ f) ∘ (x ∘ id)
↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ x≡y) ⟩
(g ∘ f) ∘ (y ∘ id)
↓⟨ assoc ⟩
g ∘ (f ∘ (y ∘ id))
↑⟨ ∘-resp-≡ʳ identityʳ ⟩
g ∘ ((f ∘ (y ∘ id)) ∘ id)
∎
where
open HomReasoning
Hom[-,_] : Obj → Functor (Category.op C) (ISetoids ℓ e)
Hom[-,_] B = record
{ F₀ = λ x → Hom[-,-].F₀ (x , B)
; F₁ = λ f → Hom[-,-].F₁ (f , id)
; identity = Hom[-,-].identity
; homomorphism = homomorphism′
; F-resp-≡ = λ F≡G x≡y → ∘-resp-≡ʳ (∘-resp-≡ x≡y F≡G)
}
where
module Hom[-,-] = Functor Hom[-,-]
.homomorphism′ : {X Y Z : Obj} {f : Y ⇒ X} {g : Z ⇒ Y} {x y : X ⇒ B} →
(x ≡ y) → id ∘ (x ∘ (f ∘ g)) ≡ id ∘ ((id ∘ (y ∘ f)) ∘ g)
homomorphism′ {f = f} {g} {x} {y} x≡y =
begin
id ∘ (x ∘ (f ∘ g))
↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ x≡y) ⟩
id ∘ (y ∘ (f ∘ g))
↑⟨ ∘-resp-≡ʳ assoc ⟩
id ∘ ((y ∘ f) ∘ g)
↑⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ identityˡ) ⟩
id ∘ ((id ∘ (y ∘ f)) ∘ g)
∎
where
open HomReasoning
-- More explicit versions
Hom[_][-,-] : ∀ {o ℓ e} → (C : Category o ℓ e) → Bifunctor (Category.op C) C (ISetoids ℓ e)
Hom[ C ][-,-] = Hom[-,-]
where open Hom C
Hom[_][_,-] : ∀ {o ℓ e} → (C : Category o ℓ e) → Category.Obj C → Functor C (ISetoids ℓ e)
Hom[ C ][ B ,-] = Hom[ B ,-]
where open Hom C
Hom[_][-,_] : ∀ {o ℓ e} → (C : Category o ℓ e) → Category.Obj C → Functor (Category.op C) (ISetoids ℓ e)
Hom[ C ][-, B ] = Hom[-, B ]
where open Hom C | {
"alphanum_fraction": 0.4489968321,
"avg_line_length": 31.5666666667,
"ext": "agda",
"hexsha": "7d6f72093ce5e75b35321e0024b1ff41f01f3094",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Functor/Hom.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Functor/Hom.agda",
"max_line_length": 118,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Functor/Hom.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 2144,
"size": 4735
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.Path where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Isomorphism
private
variable
ℓ ℓ' : Level
A : Type ℓ
-- Less polymorphic version of `cong`, to avoid some unresolved metas
cong′ : ∀ {B : Type ℓ'} (f : A → B) {x y : A} (p : x ≡ y)
→ Path B (f x) (f y)
cong′ f = cong f
toPathP-isEquiv : ∀ (A : I → Set ℓ){x y} → isEquiv (toPathP {A = A} {x} {y})
toPathP-isEquiv A {x} {y} = isoToIsEquiv (iso toPathP fromPathP to-from from-to)
where
to-from : ∀ (p : PathP A x y) → toPathP (fromPathP p) ≡ p
to-from p h i = outS (hcomp-unique (λ { j (i = i0) → x ; j (i = i1) → fromPathP p j })
(inS (transp (λ j → A (i ∧ j)) (~ i) x))
\ h → inS (sq1 h i))
h
where
sq1 : (\ h → A [ x ≡ transp (\ j → A (h ∨ j)) h (p h) ]) [ (\ i → transp (λ j → A (i ∧ j)) (~ i) x) ≡ p ]
sq1 = \ h i → comp (\ z → (hcomp (\ w →
\ { (z = i1) → A (i ∧ (w ∨ h))
; (z = i0) → A (i ∧ h)
; (i = i0) → A i0
; (i = i1) → A (h ∨ (w ∧ z))
; (h = i0) → A (i ∧ (w ∧ z))
; (h = i1) → A i})
((A (i ∧ h)))))
(\ z → \ { (i = i0) → x
; (i = i1) → transp (\ j → A (h ∨ (z ∧ j))) (h ∨ ~ z) (p h)
; (h = i0) → transp (λ j → A ((i ∧ z) ∧ j)) (~ (i ∧ z)) x
; (h = i1) → p i })
(p (i ∧ h))
from-to : ∀ (q : transp A i0 x ≡ y) → fromPathP (toPathP {A = A} q) ≡ q
from-to q = (\ h i → outS (transp-hcomp i {A' = A i1} (\ j → inS (A (i ∨ j)))
((λ { j (i = i0) → x ; j (i = i1) → q j }))
(inS ((transp (λ j → A (i ∧ j)) (~ i) x))))
h)
∙ (\ h i → outS (hcomp-unique {A = A i1} ((λ { j (i = i0) → transp A i0 x ; j (i = i1) → q j }))
(inS ((transp (λ j → A (i ∨ j)) i (transp (λ j → A (i ∧ j)) (~ i) x))))
\ h → inS (sq2 h i))
h)
∙ sym (lUnit q)
where
sq2 : (\ h → transp A i0 x ≡ q h) [ (\ i → transp (\ j → A (i ∨ j)) i (transp (\ j → A (i ∧ j)) (~ i) x)) ≡ refl ∙ q ]
sq2 = \ h i → comp (\ z → hcomp (\ w → \ { (i = i1) → A i1
; (i = i0) → A (h ∨ (w ∧ z))
; (h = i0) → A (i ∨ (w ∧ z))
; (h = i1) → A i1
; (z = i0) → A (i ∨ h)
; (z = i1) → A ((i ∨ h) ∨ w) })
(A (i ∨ h)))
(\ z → \ { (i = i0) → transp (λ j → A ((z ∨ h) ∧ j)) (~ z ∧ ~ h) x
; (i = i1) → q (z ∧ h)
; (h = i1) → compPath-filler refl q z i
; (h = i0) → transp (\ j → A (i ∨ (z ∧ j))) (i ∨ ~ z) (transp (\ j → A (i ∧ j)) (~ i) x)
})
(transp (\ j → A ((i ∨ h) ∧ j)) (~ (i ∨ h)) x)
| {
"alphanum_fraction": 0.2798733843,
"avg_line_length": 54.1571428571,
"ext": "agda",
"hexsha": "80b7c0f1d7cfa7316a74b0d7ef14207d63c8f636",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/Foundations/Path.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/Foundations/Path.agda",
"max_line_length": 125,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/Foundations/Path.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1185,
"size": 3791
} |
module DivMod where
open import IO
open import Data.Nat
open import Data.Nat.DivMod
open import Codata.Musical.Notation
open import Data.String.Base
open import Data.Fin.Base using (toℕ)
open import Level using (0ℓ)
g : ℕ
g = 7 div 5
k : ℕ
k = toℕ (7 mod 5)
showNat : ℕ → String
showNat zero = "Z"
showNat (suc x) = "S (" ++ showNat x ++ ")"
main = run {0ℓ} (putStrLn (showNat g) >> putStrLn (showNat k))
| {
"alphanum_fraction": 0.6853658537,
"avg_line_length": 18.6363636364,
"ext": "agda",
"hexsha": "ce0a7319e25eb5213c2f1ce287008b5b443ba50f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "guilhermehas/agda",
"max_forks_repo_path": "test/Compiler/with-stdlib/DivMod.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "guilhermehas/agda",
"max_issues_repo_path": "test/Compiler/with-stdlib/DivMod.agda",
"max_line_length": 62,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "guilhermehas/agda",
"max_stars_repo_path": "test/Compiler/with-stdlib/DivMod.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 142,
"size": 410
} |
-- Andreas, 2016-07-29
--
-- agda --library-file=GARBAGE Issue2122.agda
--
-- should complain about non-existent library file.
-- This file is intentionally left empty.
| {
"alphanum_fraction": 0.7151162791,
"avg_line_length": 21.5,
"ext": "agda",
"hexsha": "63d72317f02d5606007d558659ef8fa451a7718f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2122.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2122.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2122.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 46,
"size": 172
} |
module Sets.IterativeSet.Oper where
import Lvl
open import Data
open import Data.Boolean
open import Data.Boolean.Stmt
open import Data.Either as Either using (_‖_)
open import Data.Tuple as Tuple using ()
open import Functional
open import Logic
open import Numeral.Natural
open import Relator.Equals using () renaming (_≡_ to Id ; [≡]-intro to intro)
open import Sets.IterativeSet
open import Syntax.Function
open import Type.Dependent
module _ where
private variable {ℓ ℓ₁ ℓ₂} : Lvl.Level
open Iset
-- The empty set, consisting of no elements.
-- Index is the empty type, which means that there are no objects pointing to elements in the set.
∅ : Iset{ℓ}
∅ = set{Index = Empty} empty
-- The singleton set, consisting of one element.
-- Index is the unit type, which means that there are a single object pointing to a single element in the set.
singleton : Iset{ℓ} → Iset{ℓ}
singleton = set{Index = Unit} ∘ const
-- The pair set, consisting of two elements.
-- Index is the boolean type, which means that there are two objects pointing to two elements in the set.
pair : Iset{ℓ} → Iset{ℓ} → Iset{ℓ}
pair A B = set{Index = Lvl.Up(Bool)} ((if_then B else A) ∘ Lvl.Up.obj)
-- The union operator.
-- Index(A ∪ B) is the either type of two indices, which means that both objects from the A and the B index point to elements in the set.
_∪_ : Iset{ℓ} → Iset{ℓ} → Iset{ℓ}
A ∪ B = set{Index = Index(A) ‖ Index(B)} (Either.map1 (elem(A)) (elem(B)))
_,_ : Iset{ℓ} → Iset{ℓ} → Iset{ℓ}
A , B = pair (singleton A) (pair A B)
_⨯_ : Iset{ℓ} → Iset{ℓ} → Iset{ℓ}
A ⨯ B = set{Index = Index(A) Tuple.⨯ Index(B)} \{(ia Tuple., ib) → (elem(A)(ia) , elem(B)(ib))}
-- The big union operator.
-- Index(⋃ A) is the dependent sum type of an Index(A) and the index of the element this index points to.
⋃ : Iset{ℓ} → Iset{ℓ}
⋃ A = set{Index = Σ(Index(A)) (ia ↦ Index(elem(A)(ia)))} (\{(intro ia i) → elem(elem(A)(ia))(i)})
indexFilter : (A : Iset{ℓ}) → (Index(A) → Stmt{ℓ}) → Iset{ℓ}
indexFilter A P = set{Index = Σ(Index(A)) P} (elem(A) ∘ Σ.left)
filter : (A : Iset{ℓ}) → (Iset{ℓ} → Stmt{ℓ}) → Iset{ℓ}
filter{ℓ} A P = indexFilter A (P ∘ elem(A))
indexFilterBool : (A : Iset{ℓ}) → (Index(A) → Bool) → Iset{ℓ}
indexFilterBool A f = indexFilter A (Lvl.Up ∘ IsTrue ∘ f)
filterBool : (A : Iset{ℓ}) → (Iset{ℓ} → Bool) → Iset{ℓ}
filterBool A f = indexFilterBool A (f ∘ elem(A))
mapSet : (Iset{ℓ} → Iset{ℓ}) → (Iset{ℓ} → Iset{ℓ})
mapSet f(A) = set{Index = Index(A)} (f ∘ elem(A))
-- The power set operator.
-- Index(℘(A)) is a function type. An instance of such a function represents a subset, and essentially maps every element in A to a boolean which is interpreted as "in the subset of not".
-- Note: This only works properly in a classical setting. Trying to use indexFilter instead result in universe level problems.
℘ : Iset{ℓ} → Iset{ℓ}
℘(A) = set{Index = Index(A) → Bool} (indexFilterBool A)
-- The set of ordinal numbers of the first order.
ω : Iset{ℓ}
ω = set{Index = Lvl.Up ℕ} (N ∘ Lvl.Up.obj) where
N : ℕ → Iset{ℓ}
N(𝟎) = ∅
N(𝐒(n)) = N(n) ∪ singleton(N(n))
| {
"alphanum_fraction": 0.6462025316,
"avg_line_length": 40,
"ext": "agda",
"hexsha": "2e9dedbb1f77dc92a93ea030e2d1ff432f1817db",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Sets/IterativeSet/Oper.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Sets/IterativeSet/Oper.agda",
"max_line_length": 189,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Sets/IterativeSet/Oper.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1111,
"size": 3160
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Non-empty AVL trees
------------------------------------------------------------------------
-- AVL trees are balanced binary search trees.
-- The search tree invariant is specified using the technique
-- described by Conor McBride in his talk "Pivotal pragmatism".
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (StrictTotalOrder)
module Data.AVL.NonEmpty
{a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂) where
open import Data.Bool.Base using (Bool)
open import Data.Empty
open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_; _++⁺_)
open import Data.Maybe.Base hiding (map)
open import Data.Nat.Base hiding (_<_; _⊔_; compare)
open import Data.Product hiding (map)
open import Data.Unit
open import Function
open import Level using (_⊔_; Lift; lift)
open import Relation.Unary
open StrictTotalOrder strictTotalOrder renaming (Carrier to Key)
open import Data.AVL.Value Eq.setoid
import Data.AVL.Indexed strictTotalOrder as Indexed
open Indexed using (K&_ ; ⊥⁺ ; ⊤⁺; ⊥⁺<⊤⁺; ⊥⁺<[_]<⊤⁺; ⊥⁺<[_]; [_]<⊤⁺; node; toList)
------------------------------------------------------------------------
-- Types and functions with hidden indices
-- NB: the height is non-zero thus guaranteeing that the AVL tree contains
-- at least one value.
data Tree⁺ {v} (V : Value v) : Set (a ⊔ v ⊔ ℓ₂) where
tree : ∀ {h} → Indexed.Tree V ⊥⁺ ⊤⁺ (suc h) → Tree⁺ V
module _ {v} {V : Value v} where
private
Val = Value.family V
singleton : (k : Key) → Val k → Tree⁺ V
singleton k v = tree (Indexed.singleton k v ⊥⁺<[ k ]<⊤⁺)
insert : (k : Key) → Val k → Tree⁺ V → Tree⁺ V
insert k v (tree t) with Indexed.insert k v t ⊥⁺<[ k ]<⊤⁺
... | Indexed.0# , t′ = tree t′
... | Indexed.1# , t′ = tree t′
insertWith : (k : Key) → (Maybe (Val k) → Val k) → Tree⁺ V → Tree⁺ V
insertWith k f (tree t) with Indexed.insertWith k f t ⊥⁺<[ k ]<⊤⁺
... | Indexed.0# , t′ = tree t′
... | Indexed.1# , t′ = tree t′
delete : Key → Tree⁺ V → Maybe (Tree⁺ V)
delete k (tree {h} t) with Indexed.delete k t ⊥⁺<[ k ]<⊤⁺
delete k (tree {h} t) | Indexed.1# , t′ = just (tree t′)
delete k (tree {0} t) | Indexed.0# , t′ = nothing
delete k (tree {suc h} t) | Indexed.0# , t′ = just (tree t′)
lookup : (k : Key) → Tree⁺ V → Maybe (Val k)
lookup k (tree t) = Indexed.lookup k t ⊥⁺<[ k ]<⊤⁺
module _ {v w} {V : Value v} {W : Value w} where
private
Val = Value.family V
Wal = Value.family W
map : ∀[ Val ⇒ Wal ] → Tree⁺ V → Tree⁺ W
map f (tree t) = tree $ Indexed.map f t
module _ {v} {V : Value v} where
-- The input does not need to be ordered.
fromList⁺ : List⁺ (K& V) → Tree⁺ V
fromList⁺ = List⁺.foldr (uncurry insert) (uncurry singleton)
-- The output is ordered
toList⁺ : Tree⁺ V → List⁺ (K& V)
toList⁺ (tree (node k&v l r bal)) = toList l ++⁺ k&v ∷ toList r
| {
"alphanum_fraction": 0.5767536428,
"avg_line_length": 32.4285714286,
"ext": "agda",
"hexsha": "1f03236e5b6b3e42be3d57f8ce13f873bfb7e923",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/AVL/NonEmpty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/AVL/NonEmpty.agda",
"max_line_length": 82,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/AVL/NonEmpty.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 995,
"size": 2951
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.