Search is not available for this dataset
text
string
meta
dict
module Issue1422 where open import Common.Level public using (Level ; lzero ; lsuc) renaming (_⊔_ to _l⊔_) open import Common.Equality public -- # Relations relation : ∀ {ℓ} ℓ' → Set ℓ → Set (lsuc ℓ' l⊔ ℓ) relation ℓ' α = α → α → Set ℓ' reflexive : ∀ {ℓ ℓ'} {α : Set ℓ} → relation ℓ' α → Set (ℓ l⊔ ℓ') reflexive _R_ = ∀ {x} → x R x antisymmetric : ∀ {ℓ ℓ'} {α : Set ℓ} → relation ℓ' α → Set (ℓ l⊔ ℓ') antisymmetric _R_ = ∀ {x y} → x R y → y R x → x ≡ y _⇉_ : ∀ {ℓ₁ ℓ₁' ℓ₂ ℓ₂'} {α : Set ℓ₁} {β : Set ℓ₂} (_R₁_ : relation ℓ₁' α) (_R₂_ : relation ℓ₂' β) → relation (ℓ₁ l⊔ ℓ₁' l⊔ ℓ₂') (α → β) (_R₁_ ⇉ _R₂_) f g = ∀ {x y} → x R₁ y → f x R₂ g y proper : ∀ {ℓ ℓ'} {α : Set ℓ} (_R_ : relation ℓ' α) → α → Set ℓ' proper _R_ x = x R x -- # Dom record Dom {ℓ} ℓ' (D : Set ℓ) : Set (lsuc ℓ l⊔ lsuc ℓ') where field ⟦_⟧ : D → Set ℓ' open Dom {{...}} public -- # Partial Order record PartialOrder {ℓ} ℓ' (α : Set ℓ) : Set (ℓ l⊔ lsuc ℓ') where infix 4 _⊑_ field _⊑_ : relation ℓ' α ⊑-reflexivity : reflexive _⊑_ ⊑-antisymmetry : antisymmetric _⊑_ open PartialOrder {{...}} public monotonic : ∀ {ℓ₁ ℓ₁' ℓ₂ ℓ₂'} {α : Set ℓ₁} {{αPO : PartialOrder ℓ₁' α}} {β : Set ℓ₂} {{βPO : PartialOrder ℓ₂' β}} → (α → β) → Set (ℓ₁ l⊔ ℓ₁' l⊔ ℓ₂') monotonic = proper (_⊑_ ⇉ _⊑_)
{ "alphanum_fraction": 0.55703125, "avg_line_length": 29.7674418605, "ext": "agda", "hexsha": "cc58a49e996b1bb78803033713eeba785afb28c5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1422.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1422.agda", "max_line_length": 148, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1422.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 631, "size": 1280 }
------------------------------------------------------------------------------ -- Distributive laws base ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module DistributiveLaws.Base where infixl 7 _·_ ------------------------------------------------------------------------------ -- First-order logic with equality. -- -- NB. This is an equational theory, so we do not import the logical -- constants. open import Common.FOL.FOL-Eq public using ( _≡_ ; D ; refl ; subst ; sym ) -- Distributive laws axioms postulate _·_ : D → D → D -- The binary operation. leftDistributive : ∀ x y z → x · (y · z) ≡ (x · y) · (x · z) rightDistributive : ∀ x y z → (x · y) · z ≡ (x · z) · (y · z) {-# ATP axioms leftDistributive rightDistributive #-}
{ "alphanum_fraction": 0.4474789916, "avg_line_length": 32.8275862069, "ext": "agda", "hexsha": "b47c05d98acfdb6178f50eab3a433549f3f39d14", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/DistributiveLaws/Base.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/DistributiveLaws/Base.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/DistributiveLaws/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 216, "size": 952 }
open import Nat open import Prelude open import List open import contexts open import core module completeness where -- any hole is new to a complete expression e-complete-hnn : ∀{e u} → e ecomplete → hole-name-new e u e-complete-hnn (ECFix cmp) = HNNFix (e-complete-hnn cmp) e-complete-hnn ECVar = HNNVar e-complete-hnn (ECAp cmp1 cmp2) = HNNAp (e-complete-hnn cmp1) (e-complete-hnn cmp2) e-complete-hnn ECUnit = HNNUnit e-complete-hnn (ECPair cmp cmp₁) = HNNPair (e-complete-hnn cmp) (e-complete-hnn cmp₁) e-complete-hnn (ECFst cmp) = HNNFst (e-complete-hnn cmp) e-complete-hnn (ECSnd cmp) = HNNSnd (e-complete-hnn cmp) e-complete-hnn (ECCtor cmp) = HNNCtor (e-complete-hnn cmp) e-complete-hnn (ECCase cmp h) = HNNCase (e-complete-hnn cmp) λ i<∥rules∥ → e-complete-hnn (h i<∥rules∥) e-complete-hnn (ECAsrt cmp1 cmp2) = HNNAsrt (e-complete-hnn cmp1) (e-complete-hnn cmp2) {- TODO : probably delete e-hnn-complete : ∀{e} → (∀{u} → hole-name-new e u) → e ecomplete e-hnn-complete hnn∀ = {!!} -} -- a complete expression is holes-disjoint to all expressions e-complete-disjoint : ∀{e1 e2} → e1 ecomplete → holes-disjoint e1 e2 e-complete-disjoint (ECFix cmp) = HDFix (e-complete-disjoint cmp) e-complete-disjoint ECVar = HDVar e-complete-disjoint (ECAp cmp1 cmp2) = HDAp (e-complete-disjoint cmp1) (e-complete-disjoint cmp2) e-complete-disjoint ECUnit = HDUnit e-complete-disjoint (ECPair cmp cmp₁) = HDPair (e-complete-disjoint cmp) (e-complete-disjoint cmp₁) e-complete-disjoint (ECFst cmp) = HDFst (e-complete-disjoint cmp) e-complete-disjoint (ECSnd cmp) = HDSnd (e-complete-disjoint cmp) e-complete-disjoint (ECCtor cmp) = HDCtor (e-complete-disjoint cmp) e-complete-disjoint (ECCase cmp h) = HDCase (e-complete-disjoint cmp) λ i<∥rules∥ → e-complete-disjoint (h i<∥rules∥) e-complete-disjoint (ECAsrt cmp1 cmp2) = HDAsrt (e-complete-disjoint cmp1) (e-complete-disjoint cmp2) -- TODO a holes-disjoint-sym check - very involved but arguably pretty important -- TODO we should generalize this, to a theorem that says that if a hole name is new in -- e, then it is new in r and k {- TODO} -- if e evals to r, and e is complete, then r is complete eval-completeness : ∀{Δ Σ' Γ E e r τ k} → E env-complete → Δ , Σ' , Γ ⊢ E → Δ , Σ' , Γ ⊢ e :: τ → E ⊢ e ⇒ r ⊣ k → e ecomplete → r rcomplete eval-completeness Ecmp Γ⊢E (TALam _ _) EFun (ECLam ecmp) = RCLam Ecmp ecmp eval-completeness Ecmp Γ⊢E (TAFix _ _ _) EFix (ECFix ecmp) = RCFix Ecmp ecmp eval-completeness (ENVC Ecmp) Γ⊢E (TAVar _) (EVar h) ECVar = Ecmp h eval-completeness Ecmp Γ⊢E (TAApp _ ta-f ta-arg) (EApp {Ef = Ef} {x} {r2 = r2} CF∞ eval-f eval-arg eval-ef) (ECAp cmp-f cmp-arg) with eval-completeness Ecmp Γ⊢E ta-f eval-f cmp-f | preservation Γ⊢E ta-f eval-f ... | RCLam (ENVC Efcmp) efcmp | TALam Γ'⊢Ef (TALam _ ta-ef) = eval-completeness (ENVC env-cmp) (EnvInd Γ'⊢Ef (preservation Γ⊢E ta-arg eval-arg)) ta-ef eval-ef efcmp where env-cmp : ∀{x' rx'} → (x' , rx') ∈ (Ef ,, (x , r2)) → rx' rcomplete env-cmp {x'} {rx'} h with ctx-split {Γ = Ef} h env-cmp {x'} {rx'} h | Inl (_ , x'∈Ef) = Efcmp x'∈Ef env-cmp {x'} {rx'} h | Inr (_ , rx'==r2) rewrite rx'==r2 = eval-completeness Ecmp Γ⊢E ta-arg eval-arg cmp-arg eval-completeness Ecmp Γ⊢E (TAApp _ ta-f ta-arg) (EAppFix {Ef = Ef} {f} {x} {ef} {r2 = r2} CF∞ h eval-f eval-arg eval-ef) (ECAp cmp-f cmp-arg) rewrite h with eval-completeness Ecmp Γ⊢E ta-f eval-f cmp-f | preservation Γ⊢E ta-f eval-f ... | RCFix (ENVC Efcmp) efcmp | TAFix Γ'⊢Ef (TAFix _ _ ta-ef) = eval-completeness (ENVC new-Ef+-cmp) new-ctxcons ta-ef eval-ef efcmp where new-ctxcons = EnvInd (EnvInd Γ'⊢Ef (preservation Γ⊢E ta-f eval-f)) (preservation Γ⊢E ta-arg eval-arg) new-Ef-cmp : ∀{x' rx'} → (x' , rx') ∈ (Ef ,, (f , [ Ef ]fix f ⦇·λ x => ef ·⦈)) → rx' rcomplete new-Ef-cmp {x'} {rx'} h with ctx-split {Γ = Ef} h new-Ef-cmp {x'} {rx'} h | Inl (_ , x'∈Ef) = Efcmp x'∈Ef new-Ef-cmp {x'} {rx'} h | Inr (_ , rx'==r2) rewrite rx'==r2 = RCFix (ENVC Efcmp) efcmp new-Ef+-cmp : ∀{x' rx'} → (x' , rx') ∈ (Ef ,, (f , [ Ef ]fix f ⦇·λ x => ef ·⦈) ,, (x , r2)) → rx' rcomplete new-Ef+-cmp {x'} {rx'} h with ctx-split {Γ = Ef ,, (f , [ Ef ]fix f ⦇·λ x => ef ·⦈)} h new-Ef+-cmp {x'} {rx'} h | Inl (_ , x'∈Ef+) = new-Ef-cmp x'∈Ef+ new-Ef+-cmp {x'} {rx'} h | Inr (_ , rx'==r2) rewrite rx'==r2 = eval-completeness Ecmp Γ⊢E ta-arg eval-arg cmp-arg eval-completeness Ecmp Γ⊢E (TAApp _ ta1 ta2) (EAppUnfinished eval1 _ _ eval2) (ECAp ecmp1 ecmp2) = RCAp (eval-completeness Ecmp Γ⊢E ta1 eval1 ecmp1) (eval-completeness Ecmp Γ⊢E ta2 eval2 ecmp2) eval-completeness Ecmp Γ⊢E (TATpl ∥es∥==∥τs∥ _ tas) (ETuple ∥es∥==∥rs∥ ∥es∥==∥ks∥ evals) (ECTpl cmps) = RCTpl λ {i} rs[i] → let _ , es[i] = ∥l1∥==∥l2∥→l1[i]→l2[i] (! ∥es∥==∥rs∥) rs[i] _ , ks[i] = ∥l1∥==∥l2∥→l1[i]→l2[i] ∥es∥==∥ks∥ es[i] _ , τs[i] = ∥l1∥==∥l2∥→l1[i]→l2[i] ∥es∥==∥τs∥ es[i] in eval-completeness Ecmp Γ⊢E (tas es[i] τs[i]) (evals es[i] rs[i] ks[i]) (cmps es[i]) eval-completeness Ecmp Γ⊢E (TAGet ∥rs⊫=∥τs∥ i<∥τs∥ ta) (EGet _ i<∥rs∥ eval) (ECGet ecmp) with eval-completeness Ecmp Γ⊢E ta eval ecmp ... | RCTpl h = h i<∥rs∥ eval-completeness Ecmp Γ⊢E (TAGet _ i<∥τs∥ ta) (EGetUnfinished eval _) (ECGet ecmp) = RCGet (eval-completeness Ecmp Γ⊢E ta eval ecmp) eval-completeness Ecmp Γ⊢E (TACtor _ _ ta) (ECtor eval) (ECCtor ecmp) = RCCtor (eval-completeness Ecmp Γ⊢E ta eval ecmp) eval-completeness {Σ' = Σ'} (ENVC Ecmp) Γ⊢E (TACase d∈Σ'1 ta h1 h2) (EMatch {E = E} {xc = xc} {r' = r'} CF∞ form eval eval-ec) (ECCase ecmp rules-cmp) with h2 form ... | _ , _ , _ , _ , c∈cctx1 , ta-ec with preservation Γ⊢E ta eval ... | TACtor {cctx = cctx} d∈Σ' c∈cctx ta-r' rewrite ctxunicity {Γ = π1 Σ'} d∈Σ'1 d∈Σ' | ctxunicity {Γ = cctx} c∈cctx1 c∈cctx = eval-completeness (ENVC new-E-cmp) (EnvInd Γ⊢E ta-r') ta-ec eval-ec (rules-cmp form) where new-E-cmp : ∀{x' rx'} → (x' , rx') ∈ (E ,, (xc , r')) → rx' rcomplete new-E-cmp {x'} {rx'} x'∈E+ with ctx-split {Γ = E} x'∈E+ ... | Inl (_ , x'∈E) = Ecmp x'∈E ... | Inr (_ , rx'==r') rewrite rx'==r' with eval-completeness (ENVC Ecmp) Γ⊢E ta eval ecmp ... | RCCtor r'cmp = r'cmp eval-completeness Ecmp Γ⊢E (TACase _ ta _ _) (EMatchUnfinished eval _) (ECCase ecmp rulescmp) = RCCase Ecmp (eval-completeness Ecmp Γ⊢E ta eval ecmp) rulescmp eval-completeness Ecmp Γ⊢E (TAHole _) EHole () eval-completeness Ecmp Γ⊢E (TAPF _) EPF (ECPF pf-cmp) = RCPF pf-cmp eval-completeness Ecmp Γ⊢E (TAAsrt _ _ _) (EAsrt _ _ _) (ECAsrt _ _) = RCTpl (λ ()) -}
{ "alphanum_fraction": 0.6042300449, "avg_line_length": 58.0084033613, "ext": "agda", "hexsha": "c57ff3179387b73111589c536d3e7ac5da346a83", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnat-myth-", "max_forks_repo_path": "completeness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnat-myth-", "max_issues_repo_path": "completeness.agda", "max_line_length": 152, "max_stars_count": 1, "max_stars_repo_head_hexsha": "a8f9299090d95f4ef1a6c2f15954c2981c0ee25c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnat-myth-", "max_stars_repo_path": "completeness.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-19T23:42:31.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-19T23:42:31.000Z", "num_tokens": 2878, "size": 6903 }
{-# OPTIONS --without-K --safe #-} module Experiment.FingerTree.Common where open import Level renaming (zero to lzero ; suc to lsuc) open import Algebra open import Data.Product open import Function.Core open import Function.Endomorphism.Propositional open import Data.Nat hiding (_⊔_) import Data.Nat.Properties as ℕₚ foldr-to-foldMap : ∀ {a b e} {F : Set a → Set a} → (∀ {A : Set a} {B : Set b} → (A → B → B) → B → F A → B) → ∀ {A : Set a} (M : Monoid b e) → (A → Monoid.Carrier M) → F A → Monoid.Carrier M foldr-to-foldMap foldr M f xs = foldr (λ x m → Monoid._∙_ M (f x) m) (Monoid.ε M) xs foldMap-to-foldr : ∀ {a b} {F : Set a → Set a} → (∀ {A : Set a} (M : Monoid b b) → (A → Monoid.Carrier M) → F A → Monoid.Carrier M) → ∀ {A : Set a} {B : Set b} → (A → B → B) → B → F A → B foldMap-to-foldr foldMap {B = B} f e xs = foldMap (∘-id-monoid B) f xs e dual : ∀ {c e} → Monoid c e → Monoid c e dual m = record { Carrier = Carrier ; _≈_ = _≈_ ; _∙_ = flip _∙_ ; ε = ε ; isMonoid = record { isSemigroup = record { isMagma = record { isEquivalence = isEquivalence ; ∙-cong = λ x≈y u≈v → ∙-cong u≈v x≈y } ; assoc = λ x y z → sym $ assoc z y x } ; identity = identityʳ , identityˡ } } where open Monoid m foldMap-to-foldl : ∀ {a b} {F : Set a → Set a} → (∀ {A : Set a} (M : Monoid b b) → (A → Monoid.Carrier M) → F A → Monoid.Carrier M) → ∀ {A : Set a} {B : Set b} → (B → A → B) → B → F A → B foldMap-to-foldl foldMap {B = B} f e xs = foldMap (dual (∘-id-monoid B)) (flip f) xs e record RawFoldable {a} (F : Set a → Set a) : Set (lsuc a) where field foldMap : ∀ {A : Set a} (M : Monoid a a) → (A → Monoid.Carrier M) → F A → Monoid.Carrier M fold : (M : Monoid a a) → F (Monoid.Carrier M) → Monoid.Carrier M fold M = foldMap M id foldr : ∀ {A B : Set a} → (A → B → B) → B → F A → B foldr {A} {B} f e xs = foldMap (∘-id-monoid B) f xs e foldl : ∀ {A B : Set a} → (B → A → B) → B → F A → B foldl {A} {B} f e xs = foldMap (dual (∘-id-monoid B)) (flip f) xs e fromFoldr : ∀ {a} {F : Set a → Set a} → (∀ {A B : Set a} → (A → B → B) → B → F A → B) → RawFoldable {a} F fromFoldr foldr = record { foldMap = foldr-to-foldMap foldr }
{ "alphanum_fraction": 0.5446507515, "avg_line_length": 35.34375, "ext": "agda", "hexsha": "500c87d6e9b55d7b2f874ee8ea3d7760586bf40a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/FingerTree/Common.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/FingerTree/Common.agda", "max_line_length": 94, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/FingerTree/Common.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 929, "size": 2262 }
-- Andreas, 2017-06-16, issue #2604: -- Symbolic anchors in generated HTML. module Issue2604 where test1 : Set₁ -- Symbolic anchor test1 = bla where bla = Set -- Position anchor test2 : Set₁ -- Symbolic anchor test2 = bla where bla = Set -- Position anchor test3 : Set₁ -- Symbolic anchor test3 = bla module M where bla = Set -- Symbolic anchor module NamedModule where test4 : Set₁ -- Symbolic anchor test4 = M.bla module _ where test5 : Set₁ -- Position anchor test5 = M.bla -- Testing whether # in anchors confuses the browsers. -- Not Firefox 54.0, at least (Andreas, 2017-06-20). -- However, the Nu Html Checker complains (someone else, later). # : Set₁ # = Set #a : Set₁ #a = # b# : Set₁ b# = #a ## : Set₁ ## = b# -- The href attribute values #A and #%41 are (correctly?) treated as -- pointers to the same destination by Firefox 54.0. To point to %41 -- one should use #%2541. A : Set₁ A = Set %41 : Set₁ %41 = A -- Ampersands may need to be encoded in some way. The blaze-html -- library takes care of encoding id attribute values, and we manually -- replace ampersands with %26 in the fragment parts of href attribute -- values. &amp : Set₁ &amp = Set &lt : Set₁ &lt = &amp -- Test of fixity declarations. The id attribute value for the -- operator in the fixity declaration should be unique. infix 0 _%42∀_ _%42∀_ : Set₁ _%42∀_ = Set -- The following two variants of the character Ö should result in -- distinct links. Ö : Set₁ Ö = Set Ö : Set₁ Ö = Ö
{ "alphanum_fraction": 0.6734828496, "avg_line_length": 18.487804878, "ext": "agda", "hexsha": "8fab50987529f95209dc5ca68913d197d7cb29ac", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/LaTeXAndHTML/succeed/Issue2604.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/LaTeXAndHTML/succeed/Issue2604.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/LaTeXAndHTML/succeed/Issue2604.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 475, "size": 1516 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NConnected open import lib.types.Bool open import lib.types.FunctionSeq open import lib.types.Pointed open import lib.types.Suspension.Core open import lib.types.TLevel module lib.types.Suspension.Iterated where Susp^ : ∀ {i} (n : ℕ) → Type i → Type i Susp^ O X = X Susp^ (S n) X = Susp (Susp^ n X) Susp^-pt : ∀ {i} (n : ℕ) (A : Ptd i) → Susp^ n (de⊙ A) Susp^-pt O A = pt A Susp^-pt (S n) A = north ⊙Susp^ : ∀ {i} (n : ℕ) → Ptd i → Ptd i ⊙Susp^ n X = ptd (Susp^ n (de⊙ X)) (Susp^-pt n X) abstract Susp^-conn : ∀ {i} (n : ℕ) {A : Type i} {m : ℕ₋₂} {{_ : is-connected m A}} → is-connected (⟨ n ⟩₋₂ +2+ m) (Susp^ n A) Susp^-conn O = ⟨⟩ Susp^-conn (S n) = Susp-conn (Susp^-conn n) ⊙Susp^-conn' : ∀ {i} (n : ℕ) {A : Type i} {{_ : is-connected 0 A}} → is-connected ⟨ n ⟩ (Susp^ n A) ⊙Susp^-conn' O = ⟨⟩ ⊙Susp^-conn' (S n) = Susp-conn (⊙Susp^-conn' n) Susp^-fmap : ∀ {i j} (n : ℕ) {A : Type i} {B : Type j} → (A → B) → Susp^ n A → Susp^ n B Susp^-fmap O f = f Susp^-fmap (S n) f = Susp-fmap (Susp^-fmap n f) ⊙Susp^-fmap-pt : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} (f : X ⊙→ Y) → Susp^-fmap n (fst f) (pt (⊙Susp^ n X)) == pt (⊙Susp^ n Y) ⊙Susp^-fmap-pt O f = snd f ⊙Susp^-fmap-pt (S n) f = idp ⊙Susp^-fmap : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → X ⊙→ Y → ⊙Susp^ n X ⊙→ ⊙Susp^ n Y ⊙Susp^-fmap n f = Susp^-fmap n (fst f) , ⊙Susp^-fmap-pt n f Susp^-fmap-idf : ∀ {i} (n : ℕ) (A : Type i) → Susp^-fmap n (idf A) == idf (Susp^ n A) Susp^-fmap-idf O A = idp Susp^-fmap-idf (S n) A = ↯ $ Susp-fmap (Susp^-fmap n (idf A)) =⟪ ap Susp-fmap (Susp^-fmap-idf n A) ⟫ Susp-fmap (idf _) =⟪ λ= (Susp-fmap-idf _) ⟫ idf (Susp^ (S n) A) ∎∎ transport-Susp^ : ∀ {i} {A B : Type i} (n : ℕ) (p : A == B) → transport (Susp^ n) p == Susp^-fmap n (coe p) transport-Susp^ n idp = ! (Susp^-fmap-idf n _) ⊙Susp^-fmap-idf : ∀ {i} (n : ℕ) (X : Ptd i) → ⊙Susp^-fmap n (⊙idf X) ◃⊙idf =⊙∘ ⊙idf-seq ⊙Susp^-fmap-idf O X = =⊙∘-in idp ⊙Susp^-fmap-idf (S n) X = ⊙Susp^-fmap (S n) (⊙idf X) ◃⊙idf =⊙∘₁⟨ ap ⊙Susp-fmap (Susp^-fmap-idf n (de⊙ X)) ⟩ ⊙Susp-fmap (idf _) ◃⊙idf =⊙∘⟨ ⊙Susp-fmap-idf (Susp^ n (de⊙ X)) ⟩ ⊙idf-seq ∎⊙∘ ⊙transport-⊙Susp^ : ∀ {i} {X Y : Ptd i} (n : ℕ) (p : X == Y) → ⊙transport (⊙Susp^ n) p == ⊙Susp^-fmap n (⊙coe p) ⊙transport-⊙Susp^ n p@idp = ! (=⊙∘-out (⊙Susp^-fmap-idf n _)) Susp^-fmap-cst : ∀ {i j} (n : ℕ) {A : Type i} {Y : Ptd j} → Susp^-fmap n {A = A} (λ _ → pt Y) == (λ _ → pt (⊙Susp^ n Y)) Susp^-fmap-cst O = idp Susp^-fmap-cst (S n) {A} {Y} = ↯ $ Susp-fmap (Susp^-fmap n {A = A} (λ _ → pt Y)) =⟪ ap Susp-fmap (Susp^-fmap-cst n) ⟫ Susp-fmap (λ _ → pt (⊙Susp^ n Y)) =⟪ λ= (Susp-fmap-cst (pt (⊙Susp^ n Y))) ⟫ (λ _ → north) ∎∎ ⊙Susp^-fmap-cst : ∀ {i j} (n : ℕ) {X : Ptd i} {Y : Ptd j} → ⊙Susp^-fmap n (⊙cst {X = X} {Y = Y}) == ⊙cst ⊙Susp^-fmap-cst O = idp ⊙Susp^-fmap-cst (S n) = ap ⊙Susp-fmap (Susp^-fmap-cst n) ∙ ⊙Susp-fmap-cst Susp^-fmap-∘ : ∀ {i j k} (n : ℕ) {A : Type i} {B : Type j} {C : Type k} (g : B → C) (f : A → B) → Susp^-fmap n (g ∘ f) == Susp^-fmap n g ∘ Susp^-fmap n f Susp^-fmap-∘ O g f = idp Susp^-fmap-∘ (S n) g f = Susp-fmap (Susp^-fmap n (g ∘ f)) =⟨ ap Susp-fmap (Susp^-fmap-∘ n g f) ⟩ Susp-fmap (Susp^-fmap n g ∘ Susp^-fmap n f) =⟨ λ= (Susp-fmap-∘ (Susp^-fmap n g) (Susp^-fmap n f)) ⟩ Susp^-fmap (S n) g ∘ Susp^-fmap (S n) f =∎ ⊙Susp^-fmap-∘ : ∀ {i j k} (n : ℕ) {X : Ptd i} {Y : Ptd j} {Z : Ptd k} (g : Y ⊙→ Z) (f : X ⊙→ Y) → ⊙Susp^-fmap n (g ⊙∘ f) == ⊙Susp^-fmap n g ⊙∘ ⊙Susp^-fmap n f ⊙Susp^-fmap-∘ O g f = idp ⊙Susp^-fmap-∘ (S n) g f = ap ⊙Susp-fmap (Susp^-fmap-∘ n (fst g) (fst f)) ∙ ⊙Susp-fmap-∘ (Susp^-fmap n (fst g)) (Susp^-fmap n (fst f)) ⊙Susp^-fmap-seq : ∀ {i} (n : ℕ) {X : Ptd i} {Y : Ptd i} → X ⊙–→ Y → ⊙Susp^ n X ⊙–→ ⊙Susp^ n Y ⊙Susp^-fmap-seq n ⊙idf-seq = ⊙idf-seq ⊙Susp^-fmap-seq n (f ◃⊙∘ fs) = ⊙Susp^-fmap n f ◃⊙∘ ⊙Susp^-fmap-seq n fs ⊙Susp^-fmap-seq-∘ : ∀ {i} (n : ℕ) {X : Ptd i} {Y : Ptd i} (fs : X ⊙–→ Y) → ⊙Susp^-fmap n (⊙compose fs) ◃⊙idf =⊙∘ ⊙Susp^-fmap-seq n fs ⊙Susp^-fmap-seq-∘ n ⊙idf-seq = ⊙Susp^-fmap-idf n _ ⊙Susp^-fmap-seq-∘ n (f ◃⊙∘ fs) = =⊙∘-in $ ⊙Susp^-fmap n (f ⊙∘ ⊙compose fs) =⟨ ⊙Susp^-fmap-∘ n f (⊙compose fs) ⟩ ⊙Susp^-fmap n f ⊙∘ ⊙Susp^-fmap n (⊙compose fs) =⟨ ap (⊙Susp^-fmap n f ⊙∘_) (=⊙∘-out (⊙Susp^-fmap-seq-∘ n fs)) ⟩ ⊙Susp^-fmap n f ⊙∘ ⊙compose (⊙Susp^-fmap-seq n fs) =∎ ⊙Susp^-fmap-seq-=⊙∘ : ∀ {i} (n : ℕ) {X : Ptd i} {Y : Ptd i} {fs gs : X ⊙–→ Y} → fs =⊙∘ gs → ⊙Susp^-fmap-seq n fs =⊙∘ ⊙Susp^-fmap-seq n gs ⊙Susp^-fmap-seq-=⊙∘ n {fs = fs} {gs = gs} p = ⊙Susp^-fmap-seq n fs =⊙∘⟨ !⊙∘ $ ⊙Susp^-fmap-seq-∘ n fs ⟩ ⊙Susp^-fmap n (⊙compose fs) ◃⊙idf =⊙∘₁⟨ ap (⊙Susp^-fmap n) (=⊙∘-out p) ⟩ ⊙Susp^-fmap n (⊙compose gs) ◃⊙idf =⊙∘⟨ ⊙Susp^-fmap-seq-∘ n gs ⟩ ⊙Susp^-fmap-seq n gs ∎⊙∘ ⊙Sphere : (n : ℕ) → Ptd₀ ⊙Sphere n = ⊙Susp^ n ⊙Bool Sphere : (n : ℕ) → Type₀ Sphere n = de⊙ (⊙Sphere n) abstract instance Sphere-conn : ∀ (n : ℕ) → is-connected ⟨ n ⟩₋₁ (Sphere n) Sphere-conn 0 = inhab-conn true Sphere-conn (S n) = Susp-conn (Sphere-conn n) -- favonia: [S¹] has its own elim rules in Circle.agda. ⊙S⁰ = ⊙Sphere 0 ⊙S¹ = ⊙Sphere 1 ⊙S² = ⊙Sphere 2 ⊙S³ = ⊙Sphere 3 S⁰ = Sphere 0 S¹ = Sphere 1 S² = Sphere 2 S³ = Sphere 3
{ "alphanum_fraction": 0.5094871313, "avg_line_length": 33.0621118012, "ext": "agda", "hexsha": "d54b3d84032b6776fadbe3fb36829932f6297659", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Suspension/Iterated.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Suspension/Iterated.agda", "max_line_length": 77, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Suspension/Iterated.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 2832, "size": 5323 }
-- agda -c -isrc -i/usr/share/agda-stdlib/ src/Main.agda module Main where open import IO open import Function open import Coinduction open import Data.String using (String; toList; fromList) open import Example -- main = interact $ unline . reverse . lines main = run (♯ getContents >>= ♯_ ∘ eachline ( fromList ∘ rev ∘ toList) ) where open import Data.Maybe open import Data.Product open import Data.List using ([]; _∷_; [_]) open import Data.Colist using (Colist; []; _∷_) open import Data.String using (Costring; _++_) open import Data.Unit using (⊤; tt) open import Category.Monad.Partiality takeLine : Costring → Maybe (String × ∞ Costring) ⊥ takeLine [] = now nothing -- EOF takeLine xs = go "" xs where go : String → Costring → Maybe (String × ∞ Costring) ⊥ go acc [] = now (just (acc , ♯ [])) go acc (x ∷ xs) with fromList [ x ] go acc (_ ∷ xs) | "\n" = now (just (acc , xs)) go acc (_ ∷ xs) | last = later (♯ go (acc ++ last) (♭ xs)) takeLine' : Costring → (String × Costring) ⊥ takeLine' xs = go "" xs where go : String → Costring → (String × Costring) ⊥ go acc [] = now (acc , []) go acc (x ∷ xs) with fromList [ x ] go acc (x ∷ xs) | "\n" = now (acc , (♭ xs)) go acc (x ∷ xs) | last = later (♯ go (acc ++ last) (♭ xs)) eachline : (String → String) → Costring → IO ⊤ eachline f = go ∘ takeLine where go : Maybe (String × ∞ Costring) ⊥ → IO ⊤ go (now nothing) = return tt go (now (just (line , xs))) = ♯ putStrLn (f line) >> ♯ go (takeLine (♭ xs)) go (later x) = ♯ return tt >> ♯ go (♭ x) eachline' : (String → String) → Costring → IO ⊤ eachline' f = go ∘ takeLine' where go : (String × Costring) ⊥ → IO ⊤ go (now (line , xs)) = ♯ putStrLn (f line) >> ♯ go (takeLine' xs) go (later x) = ♯ return tt >> ♯ go (♭ x)
{ "alphanum_fraction": 0.5854724194, "avg_line_length": 36.62, "ext": "agda", "hexsha": "711611c6065bdf6db04d05eaa2f17e996443cf82", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9ad77d2aed8f950151e009135a9dfc02bc32ce65", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "notogawa/agda-haskell-example", "max_forks_repo_path": "src/Main.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9ad77d2aed8f950151e009135a9dfc02bc32ce65", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "notogawa/agda-haskell-example", "max_issues_repo_path": "src/Main.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "9ad77d2aed8f950151e009135a9dfc02bc32ce65", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "notogawa/agda-haskell-example", "max_stars_repo_path": "src/Main.agda", "max_stars_repo_stars_event_max_datetime": "2017-11-07T01:35:46.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-28T05:04:58.000Z", "num_tokens": 637, "size": 1831 }
{- Formal verification of authenticated append-only skiplists in Agda, version 1.0. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Data.Empty open import Data.Fin.Properties using (toℕ<n; toℕ-injective) open import Data.Product open import Data.Sum open import Data.Nat open import Data.Nat.Divisibility open import Data.Nat.Properties open import Data.Nat.Induction open import Data.List renaming (map to List-map) open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.All import Relation.Binary.PropositionalEquality as Eq open import Relation.Binary.Definitions open Eq using (_≡_; refl; trans; sym; cong; cong-app; subst) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎) open import Relation.Binary.PropositionalEquality renaming ( [_] to Reveal[_]) open import Relation.Binary.PropositionalEquality open import Relation.Binary.HeterogeneousEquality using (_≅_; ≅-to-≡; ≡-to-≅; _≇_) renaming (cong to ≅-cong; refl to ≅-refl; cong₂ to ≅-cong₂) open import Relation.Nullary open import Relation.Binary.Core open import Relation.Nullary.Negation using (contradiction; contraposition) import Relation.Nullary using (¬_) open import Function -- This module defines the hop relation used by the original AAOSL due to Maniatis -- and Baker, and proves various properties needed to establish it as a valid -- DepRel, so that we can instantiate the asbtract model with it to demonstrate that -- it is an instance of the class of AAOSLs for which we prove our properties. module AAOSL.Hops where open import AAOSL.Lemmas open import Data.Nat.Even -- The level of an index is 0 for index 0, -- otherwise, it is one plus the number of times -- that two divides said index. -- -- lvlOf must be marked terminating because in one branch -- we make recursive call on the quotient of the argument, which -- is not obviously smaller than that argument -- This is justified by proving that lvlOf is equal to lvlOfWF, -- which uses well-founded recursion {-# TERMINATING #-} lvlOf : ℕ → ℕ lvlOf 0 = 0 lvlOf (suc n) with even? (suc n) ...| no _ = 1 ...| yes e = suc (lvlOf (quotient e)) -- level of an index with well-founded recursion lvlOfWFHelp : (n : ℕ) → Acc _<_ n → ℕ lvlOfWFHelp 0 p = 0 lvlOfWFHelp (suc n) (acc rs) with even? (suc n) ... | no _ = 1 ... | yes (divides q eq) = suc (lvlOfWFHelp q (rs q (1+n=m*2⇒m<1+n q n eq))) lvlOfWF : ℕ → ℕ lvlOfWF n = lvlOfWFHelp n (<-wellFounded n) -- When looking at an index in the form 2^k * d, the level of -- said index is more easily defined. lvlOf' : ∀{n} → Pow2 n → ℕ lvlOf' zero = zero lvlOf' (pos l _ _ _) = suc l ------------------------------------------- -- Properties of lvlOf, lvlOfWF, and lvlOf' lvlOf≡lvlOfWFHelp : (n : ℕ) (p : Acc _<_ n) → lvlOf n ≡ lvlOfWFHelp n p lvlOf≡lvlOfWFHelp 0 p = refl lvlOf≡lvlOfWFHelp (suc n) (acc rs) with even? (suc n) ... | no _ = refl ... | yes (divides q eq) = cong suc (lvlOf≡lvlOfWFHelp q (rs q (1+n=m*2⇒m<1+n q n eq))) lvlOf≡lvlOfWF : (n : ℕ) → lvlOf n ≡ lvlOfWF n lvlOf≡lvlOfWF n = lvlOf≡lvlOfWFHelp n (<-wellFounded n) lvlOf≡lvlOf' : ∀ n → lvlOf n ≡ lvlOf' (to n) lvlOf≡lvlOf' n rewrite lvlOf≡lvlOfWF n = go n (<-wellFounded n) where go : (n : ℕ) (p : Acc _<_ n) → lvlOfWFHelp n p ≡ lvlOf' (to n) go 0 p = refl go (suc n) (acc rs) with even? (suc n) ... | no _ = refl ... | yes (divides q eq) with go q (rs q (1+n=m*2⇒m<1+n q n eq)) ... | ih with to q ... | pos l d odd prf = cong suc ih lvl≥2-even : ∀ {n} → 2 ≤ lvlOf n → Even n lvl≥2-even {suc n} x with 2 ∣? (suc n) ...| yes prf = prf ...| no prf = ⊥-elim ((≤⇒≯ x) (s≤s (s≤s z≤n))) lvlOfodd≡1 : ∀ n → Odd n → lvlOf n ≡ 1 lvlOfodd≡1 0 nodd = ⊥-elim (nodd (divides zero refl)) lvlOfodd≡1 (suc n) nodd with even? (suc n) ...| yes prf = ⊥-elim (nodd prf) ...| no prf = refl -- We eventually need to 'undo' a level lvlOf-undo : ∀{j}(e : Even (suc j)) → suc (lvlOf (quotient e)) ≡ lvlOf (suc j) lvlOf-undo {j} e with even? (suc j) ...| no abs = ⊥-elim (abs e) ...| yes prf rewrite even-irrelevant e prf = refl ∣-cmp : ∀{t u n} → (suc t * u) ∣ n → (d : suc t ∣ n) → u ∣ (quotient d) ∣-cmp {t} {u} {n} (divides q1 e1) (divides q2 e2) rewrite sym (*-assoc q1 (suc t) u) | *-comm q1 (suc t) | *-comm q2 (suc t) | *-assoc (suc t) q1 u = divides q1 (*-cancelˡ-≡ t (trans (sym e2) e1)) ∣-0< : ∀{n t} → 0 < n → (d : suc t ∣ n) → 0 < quotient d ∣-0< hip (divides zero e) = ⊥-elim (<⇒≢ hip (sym e)) ∣-0< hip (divides (suc q) e) = s≤s z≤n lvlOf-mono : ∀{n} k → 0 < n → 2 ^ k ∣ n → k ≤ lvlOf n lvlOf-mono zero hip prf = z≤n lvlOf-mono {suc n} (suc k) hip prf with even? (suc n) ...| no abs = ⊥-elim (abs (divides (quotient prf * (2 ^ k)) (trans (_∣_.equality prf) (trans (cong ((quotient prf) *_) (sym (*-comm (2 ^ k) 2))) (sym (*-assoc (quotient prf) (2 ^ k) 2)))))) ...| yes prf' = s≤s (lvlOf-mono {quotient prf'} k (∣-0< hip prf') (∣-cmp prf prf')) -- This property can be strenghtened to < if we ever need. lvlOf'-mono : ∀{k} d → 0 < d → k ≤ lvlOf' (to (2 ^ k * d)) lvlOf'-mono {k} d 0<d with to d ...| pos {d} kk dd odd eq with (2 ^ (k + kk)) * dd ≟ (2 ^ k) * d ...| no xx = ⊥-elim (xx ( trans (cong (_* dd) (^-distribˡ-+-* 2 k kk)) (trans (*-assoc (2 ^ k) (2 ^ kk) dd) (cong (λ x → (2 ^ k) * x) (sym eq))))) ...| yes xx with to-reduce {(2 ^ k) * d} {k + kk} {dd} (sym xx) odd ...| xx1 = ≤-trans (≮⇒≥ (m+n≮m k kk)) (≤-trans (n≤1+n (k + kk)) -- TODO-1: easy to strengthen to <; omit this step (≤-reflexive (sym (cong lvlOf' xx1)))) -- And a progress property about levels: -- These will be much easier to reason about in terms of lvlOf' -- as we can see in lvlOf-correct. lvlOf-correct : ∀{l j} → l < lvlOf j → 2 ^ l ≤ j lvlOf-correct {l} {j} prf rewrite lvlOf≡lvlOf' j with to j ...| zero = ⊥-elim (1+n≢0 (n≤0⇒n≡0 prf)) ...| pos l' d odd refl = 2^kd-mono (≤-unstep2 prf) (0<odd odd) -- lvlOf-prog states that if we have not reached 0, we landed somewhere -- where we can hop again at the same level. lvlOf-prog : ∀{l j} → 0 < j ∸ 2 ^ l → l < lvlOf j → l < lvlOf (j ∸ 2 ^ l) lvlOf-prog {l} {j} hip l<lvl rewrite lvlOf≡lvlOf' j | lvlOf≡lvlOf' (j ∸ 2 ^ l) with to j ...| zero = ⊥-elim (1+n≰n (≤-trans l<lvl z≤n)) ...| pos l₁ d₁ o₁ refl rewrite 2^ld-2l l₁ l d₁ (≤-unstep2 l<lvl) with l ≟ l₁ ...| no l≢l₁ rewrite to-2^kd l (odd-2^kd-1 (l₁ ∸ l) d₁ (0<m-n (≤∧≢⇒< (≤-unstep2 l<lvl) l≢l₁)) (0<odd o₁)) = ≤-refl ...| yes refl rewrite n∸n≡0 l₁ | +-comm d₁ 0 with odd∸1-even o₁ ...| divides q prf rewrite prf | sym (*-assoc (2 ^ l₁) q 2) | a*b*2-lemma (2 ^ l₁) q = lvlOf'-mono {suc l₁} q (1≤m*n⇒0<n {m = 2 ^ suc l₁} hip) lvlOf-no-overshoot : ∀ j l → suc l < lvlOf j → 0 < j ∸ 2 ^ l lvlOf-no-overshoot j l hip rewrite lvlOf≡lvlOf' j with to j ...| zero = ⊥-elim (1+n≰n (≤-trans (s≤s z≤n) hip)) ...| pos k d o refl = 0<m-n {2 ^ k * d} {2 ^ l} (<-≤-trans (2^-mono (≤-unstep2 hip)) (2^kd-mono {k} {k} ≤-refl (0<odd o))) --------------------------- -- The AAOSL Structure -- --------------------------- ------------------------------- -- Hops -- Encoding our hops into a relation. A value of type 'H l j i' -- witnesses the existence of a hop from j to i at level l. data H : ℕ → ℕ → ℕ → Set where hz : ∀ x → H 0 (suc x) x hs : ∀ {l x y z} → H l x y → H l y z → suc l < lvlOf x → H (suc l) x z ----------------------------- -- Hop's universal properties -- The universal property comes for free h-univ : ∀{l j i} → H l j i → i < j h-univ (hz x) = s≤s ≤-refl h-univ (hs h h₁ _) = <-trans (h-univ h₁) (h-univ h) -- It is easy to prove there are no hops from zero h-from0-⊥ : ∀{l i} → H l 0 i → ⊥ h-from0-⊥ (hs h h₁ _) = h-from0-⊥ h -- And it is easy to prove that i is a distance of 2 ^ l away -- from j. h-univ₂ : ∀{l i j} → H l j i → i ≡ j ∸ 2 ^ l h-univ₂ (hz x) = refl h-univ₂ (hs {l = l} {j} h₀ h₁ _) rewrite h-univ₂ h₀ | h-univ₂ h₁ | +-comm (2 ^ l) 0 | sym (∸-+-assoc j (2 ^ l) (2 ^ l)) = refl -- and vice versa. h-univ₁ : ∀{l i j} → H l j i → j ≡ i + 2 ^ l h-univ₁ (hz x) = sym (+-comm x 1) h-univ₁ (hs {l = l} {z = i} h₀ h₁ _) rewrite h-univ₁ h₀ | h-univ₁ h₁ | +-comm (2 ^ l) 0 = +-assoc i (2 ^ l) (2 ^ l) -------------- -- H and lvlOf -- A value of type H says something about the levels of their indices h-lvl-src : ∀{l j i} → H l j i → l < lvlOf j h-lvl-src (hz x) with even? (suc x) ...| no _ = s≤s z≤n ...| yes _ = s≤s z≤n h-lvl-src (hs h₀ h₁ prf) = prf h-lvl-tgt : ∀{l j i} → 0 < i → H l j i → l < lvlOf i h-lvl-tgt prf h rewrite h-univ₂ h = lvlOf-prog prf (h-lvl-src h) h-lvl-inj : ∀{l₁ l₂ j i} (h₁ : H l₁ j i)(h₂ : H l₂ j i) → l₁ ≡ l₂ h-lvl-inj {i = i} h₁ h₂ = 2^-injective (+-cancelˡ-≡ i (trans (sym (h-univ₁ h₁)) (h-univ₁ h₂))) -- TODO-1: document reasons for this pragma and justify it {-# TERMINATING #-} h-lvl-half : ∀{l j i y l₁} → H l j y → H l y i → H l₁ j i → lvlOf y ≡ suc l h-lvl-half w₀ w₁ (hz n) = ⊥-elim (1+n≰n (≤-<-trans (h-univ w₁) (h-univ w₀))) h-lvl-half {l}{j}{i}{y} w₀ w₁ (hs {l = l₁} {y = y₁} sh₀ sh₁ x) -- TODO-2: factor out a lemma to prove l₁ ≡ l and y₁ ≡ y (already exists?) with l₁ ≟ l ...| no imp with j ≟ i + (2 ^ l₁) + (2 ^ l₁) | j ≟ i + (2 ^ l) + (2 ^ l) ...| no imp1 | _ rewrite h-univ₁ sh₁ = ⊥-elim (imp1 (h-univ₁ sh₀)) ...| yes _ | no imp1 rewrite h-univ₁ w₁ = ⊥-elim (imp1 (h-univ₁ w₀)) ...| yes j₁ | yes j₂ with trans (sym j₂) j₁ ...| xx5 rewrite +-assoc i (2 ^ l) (2 ^ l) | +-assoc i (2 ^ l₁) (2 ^ l₁) with +-cancelˡ-≡ i xx5 ...| xx6 rewrite sym (+-identityʳ (2 ^ l)) | sym (+-identityʳ (2 ^ l₁)) | +-assoc (2 ^ l) 0 ((2 ^ l) + 0) | +-assoc (2 ^ l₁) 0 ((2 ^ l₁) + 0) | *-comm 2 (2 ^ l) | *-comm 2 (2 ^ l₁) = ⊥-elim (imp (sym (2^-injective {l} {l₁} ( sym (*2-injective (2 ^ l) (2 ^ l₁) xx6))))) h-lvl-half {l = l}{j = j}{i = i}{y = y} w₀ w₁ (hs {l = l₁} {y = y₁} sh₀ sh₁ x) | yes xx1 rewrite xx1 with y₁ ≟ y ...| no imp = ⊥-elim (imp (+-cancelʳ-≡ y₁ y (trans (sym (h-univ₁ sh₀)) (h-univ₁ w₀)))) ...| yes y₁≡y rewrite y₁≡y with w₀ ...| hs {l = l-1} ssh₀ ssh₁ xx rewrite sym xx1 = h-lvl-half sh₀ sh₁ (hs sh₀ sh₁ x) ...| hz y = lvlOfodd≡1 y (even-suc-odd y (lvl≥2-even {suc y} x)) -- If a hop goes over an index, then the level of this index is strictly -- less than the level of the hop. The '≤' is there because -- l starts at zero. -- -- For example, lvlOf 4 ≡ 3; the only hops that can go over 4 are -- those with l of 3 or higher. In fact, there is one at l ≡ 2 -- from 4 to 0: H 2 4 0 h-lvl-mid : ∀{l j i} → (k : ℕ) → H l j i → i < k → k < j → lvlOf k ≤ l h-lvl-mid k (hz x) i<k k<j = ⊥-elim (n≮n k (<-≤-trans k<j i<k)) h-lvl-mid {j = j} k (hs {l = l₀}{y = y} w₀ w₁ x) i<k k<j with <-cmp k y ...| tri< k<y k≢y k≯y = ≤-step (h-lvl-mid k w₁ i<k k<y) ...| tri> k≮y k≢y k>y = ≤-step (h-lvl-mid k w₀ k>y k<j) ...| tri≈ k≮y k≡y k≯y rewrite k≡y = ≤-reflexive (h-lvl-half w₀ w₁ (hs {l = l₀}{y = y} w₀ w₁ x)) h-lvl-≤₁ : ∀{l₁ l₂ j i₁ i₂} → (h : H l₁ j i₁)(v : H l₂ j i₂) → i₂ < i₁ → l₁ < l₂ h-lvl-≤₁ {l₁} {l₂} {j} {i₁} {i₂} h v i₂<i₁ = let h-univ = h-univ₁ h v-univ = h-univ₁ v eqj = trans (sym v-univ) h-univ in log-mono l₁ l₂ (n+p≡m+q∧n<m⇒q<p i₂<i₁ eqj) h-lvl-≤₂ : ∀{l₁ l₂ j₁ j₂ i} → (h : H l₁ j₁ i)(v : H l₂ j₂ i) → j₁ < j₂ → l₁ < l₂ h-lvl-≤₂ {l₁} {l₂} {j₁} {j₂} {i} h v j₂<j₁ = let h-univ = h-univ₁ h v-univ = h-univ₁ v in log-mono l₁ l₂ (+-cancelˡ-< i (subst (i + (2 ^ l₁) <_) v-univ (subst (_< j₂) h-univ j₂<j₁))) ------------------------------ -- Correctness and Irrelevance h-correct : ∀ j l → l < lvlOf j → H l j (j ∸ 2 ^ l) h-correct (suc j) zero prf = hz j h-correct (suc j) (suc l) prf with h-correct (suc j) l ...| ind with 2 ∣? (suc j) ...| no _ = ⊥-elim (ss≰1 prf) ...| yes e with ind (≤-unstep prf) ...| res₀ with h-correct (suc j ∸ 2 ^ l) l (lvlOf-prog {l} {suc j} (lvlOf-no-overshoot (suc j) l (subst (suc l <_ ) (lvlOf-undo e) prf)) (subst (l <_) (lvlOf-undo e) (≤-unstep prf))) ...| res₁ rewrite +-comm (2 ^ l) 0 | ∸-+-assoc (suc j) (2 ^ l) (2 ^ l) = hs res₀ res₁ (subst (suc l <_) (lvlOf-undo e) prf) h-irrelevant : ∀{l i j} → (h₁ : H l j i) → (h₂ : H l j i) → h₁ ≡ h₂ h-irrelevant (hz x) (hz .x) = refl h-irrelevant (hs {y = y} h₁ h₃ x) (hs {y = z} h₂ h₄ x₁) rewrite ≤-irrelevant x x₁ with y ≟ z ...| no abs = ⊥-elim (abs (trans (h-univ₂ h₁) (sym (h-univ₂ h₂)))) ...| yes refl = cong₂ (λ P Q → hs P Q x₁) (h-irrelevant h₁ h₂) (h-irrelevant h₃ h₄) ------------------------------------------------------------------- -- The non-overlapping property is stated in terms -- of subhops. The idea is that a hop is either separate -- from another one, or is entirely contained within the larger one. -- -- Entirely contained comes from _⊆Hop_ data _⊆Hop_ : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → H l₁ j₁ i₁ → H l₂ j₂ i₂ → Set where here : ∀{l i j}(h : H l j i) → h ⊆Hop h left : ∀{l₁ i₁ j₁ l₂ i₂ w j₂ } → (h : H l₁ j₁ i₁) → (w₀ : H l₂ j₂ w) → (w₁ : H l₂ w i₂) → (p : suc l₂ < lvlOf j₂) → h ⊆Hop w₀ → h ⊆Hop (hs w₀ w₁ p) right : ∀{l₁ i₁ j₁ l₂ i₂ w j₂} → (h : H l₁ j₁ i₁) → (w₀ : H l₂ j₂ w) → (w₁ : H l₂ w i₂) → (p : suc l₂ < lvlOf j₂) → h ⊆Hop w₁ → h ⊆Hop (hs w₀ w₁ p) ⊆Hop-refl : ∀{l₁ l₂ j i} → (h₁ : H l₁ j i) → (h₂ : H l₂ j i) → h₁ ⊆Hop h₂ ⊆Hop-refl h₁ h₂ with h-lvl-inj h₁ h₂ ...| refl rewrite h-irrelevant h₁ h₂ = here h₂ ⊆Hop-univ : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h1 : H l₁ j₁ i₁) → (h2 : H l₂ j₂ i₂) → h1 ⊆Hop h2 → i₂ ≤ i₁ × j₁ ≤ j₂ × l₁ ≤ l₂ ⊆Hop-univ h1 .h1 (here .h1) = ≤-refl , ≤-refl , ≤-refl ⊆Hop-univ h1 (hs w₀ w₁ p) (left h1 w₀ w₁ q hip) with ⊆Hop-univ h1 w₀ hip ...| a , b , c = (≤-trans (<⇒≤ (h-univ w₁)) a) , b , ≤-step c ⊆Hop-univ h1 (hs w₀ w₁ p) (right h1 w₀ w₁ q hip) with ⊆Hop-univ h1 w₁ hip ...| a , b , c = a , ≤-trans b (<⇒≤ (h-univ w₀)) , ≤-step c ⊆Hop-univ₁ : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h1 : H l₁ j₁ i₁) → (h2 : H l₂ j₂ i₂) → h1 ⊆Hop h2 → i₂ ≤ i₁ ⊆Hop-univ₁ h1 h2 h1h2 = proj₁ (⊆Hop-univ h1 h2 h1h2) ⊆Hop-src-≤ : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h1 : H l₁ j₁ i₁) → (h2 : H l₂ j₂ i₂) → h1 ⊆Hop h2 → j₁ ≤ j₂ ⊆Hop-src-≤ h1 h2 h1h2 = (proj₁ ∘ proj₂) (⊆Hop-univ h1 h2 h1h2) -- If two hops are not strictly the same, then the level of -- the smaller hop is strictly smaller than the level of -- the bigger hop. -- -- VERY IMPORTANT ⊆Hop-univ-lvl : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h₁ : H l₁ j₁ i₁) → (h₂ : H l₂ j₂ i₂) → h₁ ⊆Hop h₂ → j₁ < j₂ → l₁ < l₂ ⊆Hop-univ-lvl {l₁}{i₁}{j₁}{l₂}{i₂}{j₂} h₁ h₂ h₁⊆Hoph₂ j₁<j₂ = let r₁ : i₂ + (2 ^ l₁) ≤ i₁ + (2 ^ l₁) r₁ = +-monoˡ-≤ (2 ^ l₁) (proj₁ (⊆Hop-univ h₁ h₂ h₁⊆Hoph₂)) r₂ : i₁ + (2 ^ l₁) < i₂ + (2 ^ l₂) r₂ = subst₂ _<_ (h-univ₁ h₁) (h-univ₁ h₂) j₁<j₂ in log-mono l₁ l₂ ((+-cancelˡ-< i₂) (≤-<-trans r₁ r₂)) hz-⊆ : ∀{l j i k} → (v : H l j i) → i ≤ k → k < j → hz k ⊆Hop v hz-⊆ (hz x) i<k k<j rewrite ≤-antisym (≤-unstep2 k<j) i<k = here (hz x) hz-⊆ {k = k} (hs {y = y} v v₁ x) i<k k<j with k <? y ...| yes k<y = right (hz k) v v₁ x (hz-⊆ v₁ i<k k<y) ...| no k≮y = left (hz k) v v₁ x (hz-⊆ v (≮⇒≥ k≮y) k<j) ⊆Hop-inj₁ : ∀{l₁ l₂ j i₁ i₂} → (h : H l₁ j i₁)(v : H l₂ j i₂) → i₂ < i₁ → h ⊆Hop v ⊆Hop-inj₁ {i₁ = i₁} h (hz x) prf = ⊥-elim (n≮n i₁ (<-≤-trans (h-univ h) prf)) ⊆Hop-inj₁ {l} {j = j} {i₁ = i₁} h (hs {l = l₁} {y = y} v v₁ x) prf with y ≟ i₁ ...| yes refl = left h v v₁ x (⊆Hop-refl h v) ...| no y≢i₁ with h-lvl-≤₁ h (hs v v₁ x) prf ...| sl≤sl₁ with h-univ₂ h | h-univ₂ v ...| prf1 | prf2 = let r : j ∸ (2 ^ l₁) ≤ j ∸ (2 ^ l) r = ∸-monoʳ-≤ {m = 2 ^ l} {2 ^ l₁} j (^-mono l l₁ (≤-unstep2 sl≤sl₁)) in left h v v₁ x (⊆Hop-inj₁ h v (≤∧≢⇒< (subst₂ _≤_ (sym prf2) (sym prf1) r) y≢i₁)) ⊆Hop-inj₂ : ∀{l₁ l₂ j₁ j₂ i} → (h : H l₁ j₁ i)(v : H l₂ j₂ i) → j₁ < j₂ → h ⊆Hop v ⊆Hop-inj₂ h (hz x) prf = ⊥-elim (n≮n _ (<-≤-trans prf (h-univ h))) ⊆Hop-inj₂ {l} {j₁ = j₁} {i = i} h (hs {l = l₁} {y = y} v v₁ x) prf with y ≟ j₁ ...| yes refl = right h v v₁ x (⊆Hop-refl h v₁) ...| no y≢j₁ with h-lvl-≤₂ h (hs v v₁ x) prf ...| sl≤sl₁ with h-univ₁ h | h-univ₁ v₁ ...| prf1 | prf2 = let r : i + 2 ^ l ≤ i + 2 ^ l₁ r = +-monoʳ-≤ i (^-mono l l₁ (≤-unstep2 sl≤sl₁)) in right h v v₁ x (⊆Hop-inj₂ h v₁ (≤∧≢⇒< (subst₂ _≤_ (sym prf1) (sym prf2) r) (y≢j₁ ∘ sym))) ⊆Hop-inj₃ : ∀{l₁ l₂ j₁ j₂ i₁ i₂} → (h : H l₁ j₁ i₁)(v : H l₂ j₂ i₂) → i₁ ≡ i₂ → j₁ ≡ j₂ → h ⊆Hop v ⊆Hop-inj₃ h v refl refl with h-lvl-inj h v ...| refl rewrite h-irrelevant h v = here v -- This datatype encodes all the possible hop situations. This makes is -- much easier to structure proofs talking about two hops. data HopStatus : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → H l₁ j₁ i₁ → H l₂ j₂ i₂ → Set where -- Same hop; we carry the proofs explicitly here to be able to control -- when to perform the rewrites. Same : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂) → i₁ ≡ i₂ → j₁ ≡ j₂ → HopStatus h₁ h₂ -- h₂ h₁ -- ⌜⁻⁻⁻⁻⁻⁻⁻⌝ ⌜⁻⁻⁻⁻⁻⁻⁻⌝ -- | | | | -- i₂ < j₂ ≤ i₁ < j₁ SepL : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂) → j₂ ≤ i₁ → HopStatus h₁ h₂ -- h₁ h₂ -- ⌜⁻⁻⁻⁻⁻⁻⁻⌝ ⌜⁻⁻⁻⁻⁻⁻⁻⌝ -- | | | | -- i₁ < j₁ ≤ i₂ < j₂ SepR : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂) → j₁ ≤ i₂ → HopStatus h₁ h₂ -- h₂ -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ -- ∣ ∣ -- ∣ h₁ ∣ -- ∣ ⌜⁻⁻⁻⁻⁻⁻⁻⌝ | -- | | | | -- i₂ ≤ i₁ ⋯ j₁ ≤ j₂ SubL : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂) → i₂ < i₁ ⊎ j₁ < j₂ -- makes sure hops differ! → h₁ ⊆Hop h₂ → HopStatus h₁ h₂ -- h₁ -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ -- ∣ ∣ -- ∣ h₂ ∣ -- ∣ ⌜⁻⁻⁻⁻⁻⁻⁻⌝ | -- | | | | -- i₁ ≤ i₂ ⋯ j₂ < j₁ SubR : ∀{l₁ i₁ j₁ l₂ i₂ j₂}(h₁ : H l₁ j₁ i₁)(h₂ : H l₂ j₂ i₂) → i₁ < i₂ ⊎ j₂ < j₁ -- makes sure hops differ → h₂ ⊆Hop h₁ → HopStatus h₁ h₂ -- Finally, we can prove our no-overlap property. As it turns out, it is -- just a special case of general non-overlapping, and therefore, it is -- defined as such. mutual -- Distinguish is used to understand the relation between two arbitrary hops. -- It is used to perform the induction step on arbitrary hops. Note how -- 'no-overlap' has a clause that impedes the hops from being equal. distinguish : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h₁ : H l₁ j₁ i₁) → (h₂ : H l₂ j₂ i₂) → HopStatus h₁ h₂ distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2 with <-cmp i₁ i₂ ...| tri≈ i₁≮i₂ i₁≡i₂ i₂≮i₁ with <-cmp j₁ j₂ ...| tri≈ j₁≮j₂ j₁≡j₂ j₂≮j₁ = Same h1 h2 i₁≡i₂ j₁≡j₂ ...| tri< j₁<j₂ j₁≢j₂ j₂≮j₁ rewrite i₁≡i₂ = SubL h1 h2 (inj₂ j₁<j₂) (⊆Hop-inj₂ h1 h2 j₁<j₂) ...| tri> j₁≮j₂ j₁≢j₂ j₂<j₁ rewrite i₁≡i₂ = SubR h1 h2 (inj₂ j₂<j₁) (⊆Hop-inj₂ h2 h1 j₂<j₁) distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2 | tri< i₁<i₂ i₁≢i₂ i₂≮i₁ with <-cmp j₁ j₂ ...| tri≈ j₁≮j₂ j₁≡j₂ j₂≮j₁ rewrite j₁≡j₂ = SubR h1 h2 (inj₁ i₁<i₂) (⊆Hop-inj₁ h2 h1 i₁<i₂) ...| tri< j₁<j₂ j₁≢j₂ j₂≮j₁ with no-overlap h2 h1 i₁<i₂ ...| inj₁ a = SepR h1 h2 a ...| inj₂ b = SubR h1 h2 (inj₁ i₁<i₂) b distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2 | tri< i₁<i₂ i₁≢i₂ i₂≮i₁ | tri> j₁≮j₂ j₁≢j₂ j₂<j₁ with no-overlap h2 h1 i₁<i₂ ...| inj₁ a = SepR h1 h2 a ...| inj₂ b = SubR h1 h2 (inj₁ i₁<i₂) b distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2 | tri> i₁≮i₂ i₁≢i₂ i₂<i₁ with <-cmp j₁ j₂ ...| tri≈ j₁≮j₂ j₁≡j₂ j₂≮j₁ rewrite j₁≡j₂ = SubL h1 h2 (inj₁ i₂<i₁) (⊆Hop-inj₁ h1 h2 i₂<i₁) ...| tri< j₁<j₂ j₁≢j₂ j₂≮j₁ with no-overlap h1 h2 i₂<i₁ ...| inj₁ a = SepL h1 h2 a ...| inj₂ b = SubL h1 h2 (inj₁ i₂<i₁) b distinguish {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h1 h2 | tri> i₁≮i₂ i₁≢i₂ i₂<i₁ | tri> j₁≮j₂ j₁≢j₂ j₂<j₁ with no-overlap h1 h2 i₂<i₁ ...| inj₁ a = SepL h1 h2 a ...| inj₂ b = SubL h1 h2 (inj₁ i₂<i₁) b no-overlap-< : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h₁ : H l₁ j₁ i₁) → (h₂ : H l₂ j₂ i₂) → i₂ < i₁ → i₁ < j₂ → j₁ ≤ j₂ no-overlap-< h₁ h₂ prf hip with no-overlap h₁ h₂ prf ...| inj₁ imp = ⊥-elim (1+n≰n (≤-trans hip imp)) ...| inj₂ res = ⊆Hop-src-≤ h₁ h₂ res -- TODO-1: rename to nocross for consistency with paper -- Non-overlapping is more general, as hops might be completely -- separate and then, naturally won't overlap. no-overlap : ∀{l₁ i₁ j₁ l₂ i₂ j₂} → (h₁ : H l₁ j₁ i₁) → (h₂ : H l₂ j₂ i₂) → i₂ < i₁ -- this ensures h₁ ≢ h₂. → (j₂ ≤ i₁) ⊎ (h₁ ⊆Hop h₂) no-overlap h (hz x) prf = inj₁ prf no-overlap {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h₁ (hs {y = y} v₀ v₁ v-ok) hip with distinguish h₁ v₀ ...| SepL _ _ prf = inj₁ prf ...| SubL _ _ case prf = inj₂ (left h₁ v₀ v₁ v-ok prf) ...| Same _ _ p1 p2 = inj₂ (left h₁ v₀ v₁ v-ok (⊆Hop-inj₃ h₁ v₀ p1 p2)) no-overlap {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h₁ (hs {y = y} v₀ v₁ v-ok) hip | SepR _ _ j₁≤y with distinguish h₁ v₁ ...| SepL _ _ prf = ⊥-elim (<⇒≱ (h-univ h₁) (≤-trans j₁≤y prf)) ...| SepR _ _ prf = ⊥-elim (n≮n i₂ (<-trans hip (<-≤-trans (h-univ h₁) prf))) ...| SubR _ _ (inj₁ i₁<i₂) prf = ⊥-elim (n≮n i₂ (<-trans hip i₁<i₂)) ...| SubR _ _ (inj₂ y<j₁) prf = ⊥-elim (n≮n j₁ (≤-<-trans j₁≤y y<j₁)) ...| SubL _ _ case prf = inj₂ (right h₁ v₀ v₁ v-ok prf) ...| Same _ _ p1 p2 = inj₂ (right h₁ v₀ v₁ v-ok (⊆Hop-inj₃ h₁ v₁ p1 p2)) no-overlap {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h₁ (hs {y = y} v₀ v₁ v-ok) hip | SubR _ _ (inj₁ i₁<y) v₀⊆h₁ with distinguish h₁ v₁ ...| SepL _ _ prf = ⊥-elim (n≮n i₁ (<-≤-trans i₁<y prf)) ...| SepR _ _ prf = ⊥-elim (n≮n i₂ (<-≤-trans (<-trans hip (h-univ h₁)) prf)) ...| SubR _ _ (inj₁ i₁<i₂) prf = ⊥-elim (n≮n i₂ (<-trans hip i₁<i₂)) ...| SubR _ _ (inj₂ y<j₁) prf = ⊥-elim (≤⇒≯ (no-overlap-< h₁ v₁ hip i₁<y) y<j₁) ...| SubL _ _ case prf = inj₂ (right h₁ v₀ v₁ v-ok prf) ...| Same _ _ p1 p2 = inj₂ (right h₁ v₀ v₁ v-ok (⊆Hop-inj₃ h₁ v₁ p1 p2)) no-overlap {l₁} {i₁} {j₁} {l₂} {i₂} {j₂} h₁ (hs {y = y} v₀ v₁ v-ok) hip -- Here is the nasty case. We have to argue why this is impossible -- WITHOUT resorting to 'nov h₁ (hs v₀ v₁ v-ok)', otherwise this would -- result in an infinite loop. Note how 'nov' doesn't pattern match -- on any argument. -- -- Here's what this looks like: -- -- (hs v₀ v₁ v-ok) -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ -- | h₁ | -- | ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁺⁻⁻⁻⁻⁻⁻⁻⌝ -- | ∣ | ∣ -- | v₁ ∣ v₀ | ∣ -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁺⁻⁻⁻⁻⁻⁻⌜⁻⁻⁻⁻⁻⁻⁻⌝ | -- | | | | | -- i₂ < i₁ ≤ y ⋯ j₂ < j₁ -- -- We can pattern match on i₁ ≟ y | SubR _ _ (inj₂ j₂<j₁) v₀⊆h₁ with i₁ ≟ y -- And we quickly discover that if i≢y, we have a crossing between -- v₁ and h₁, and that's impossible. ...| no i₁≢y = ⊥-elim (n≮n y (<-≤-trans (<-trans (h-univ v₀) j₂<j₁) (no-overlap-< h₁ v₁ hip (≤∧≢⇒< (⊆Hop-univ₁ v₀ h₁ v₀⊆h₁) i₁≢y)))) -- The hard part really is when i₁ ≡ y, here's how this looks like: -- -- (hs v₀ v₁ v-ok) -- lvl l+1 ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ -- | | h₁ -- | ⌜⁻⁻⁻⁻⁻⁻⁻⁺⁻⁻⁻⁻⁻⁻⁻⌝ lvl l₁ -- | ∣ | ∣ -- | v₁ ∣ v₀ | ∣ -- lvl l ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁺⁻⁻⁻⁻⁻⁻⁻⌝ | -- | | | | -- i₂ < i₁ ⋯ j₂ < j₁ -- -- We must show that the composite hop (hs v₀ v₁ v-ok) is impossible to build -- to show that the crossing doesn't happen. -- -- Hence, we MUST reason about the levels of the indices and eliminate 'v-ok', -- Which is possible with a bit of struggling about levels. ...| yes refl with h-lvl-tgt (≤-trans (s≤s z≤n) hip) v₀ ...| l≤lvli₁ with ⊆Hop-univ-lvl _ _ v₀⊆h₁ j₂<j₁ ...| l<l₁ with h-lvl-mid i₁ (hs v₀ v₁ v-ok) hip (h-univ v₀) ...| lvli₁≤l+1 with h-lvl-tgt (≤-trans (s≤s z≤n) hip) h₁ ...| l₁≤lvli₁ rewrite ≤-antisym lvli₁≤l+1 l≤lvli₁ = ⊥-elim (n≮n _ (<-≤-trans l<l₁ (≤-unstep2 l₁≤lvli₁)))
{ "alphanum_fraction": 0.4854706016, "avg_line_length": 38.9676470588, "ext": "agda", "hexsha": "e809781601573f67f9d6af2294c9d1828a7a9a46", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "356489da3a99c66807606eca8dd235dc6140649c", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/aaosl-agda", "max_forks_repo_path": "AAOSL/Hops.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "356489da3a99c66807606eca8dd235dc6140649c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/aaosl-agda", "max_issues_repo_path": "AAOSL/Hops.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "356489da3a99c66807606eca8dd235dc6140649c", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/aaosl-agda", "max_stars_repo_path": "AAOSL/Hops.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 11630, "size": 26498 }
{-# OPTIONS --cubical --no-import-sorts --postfix-projections #-} module Cubical.Codata.M.Bisimilarity where open import Cubical.Core.Everything open import Cubical.Codata.M open import Cubical.Foundations.Equiv.Fiberwise open import Cubical.Foundations.Everything open Helpers using (J') -- Bisimilarity as a coinductive record type. record _≈_ {X : Type₀} {C : IxCont X} {x : X} (a b : M C x) : Type₀ where coinductive constructor _,_ field head≈ : a .head ≡ b .head tails≈ : ∀ y → (pa : C .snd x (a .head) y) (pb : C .snd x (b .head) y) → (\ i → C .snd x (head≈ i) y) [ pa ≡ pb ] → a .tails y pa ≈ b .tails y pb open _≈_ public module _ {X : Type₀} {C : IxCont X} where -- Here we show that `a ≡ b` and `a ≈ b` are equivalent. -- -- A direct construction of an isomorphism, like we do for streams, -- would be complicated by the type dependencies between the fields -- of `M C x` and even more so between the fields of the bisimilarity relation itself. -- -- Instead we rely on theorem 4.7.7 of the HoTT book (fiberwise equivalences) to show that `misib` is an equivalence. misib : {x : X} (a b : M C x) → a ≡ b → a ≈ b misib a b eq .head≈ i = eq i .head misib a b eq .tails≈ y pa pb q = misib (a .tails y pa) (b .tails y pb) (\ i → eq i .tails y (q i)) -- With `a` fixed, `misib` is a fiberwise transformation between (a ≡_) and (a ≈_). -- -- We show that the induced map on the total spaces is an -- equivalence because it is a map of contractible types. -- -- The domain is the HoTT singleton type, so contractible, while the -- codomain is shown to be contractible by `contr-T` below. T : ∀ {x} → M C x → Type _ T a = Σ (M C _) \ b → a ≈ b private lemma : ∀ {A} (B : Type₀) (P : A ≡ B) (pa : P i0) (pb : P i1) (peq : PathP (\ i → P i) pa pb) → PathP (\ i → PathP (\ j → P j) (transp (\ k → P (~ k ∧ i)) (~ i) (peq i)) pb) peq (\ j → transp (\ k → P (~ k ∨ j)) j pb) lemma {A} = J' _ \ pa → J' _ \ { i j → transp (\ _ → A) (~ i ∨ j) pa } -- We predefine `u'` so that Agda will agree that `contr-T-fst` is productive. private module Tails x a φ (u : Partial φ (T {x} a)) y (p : C .snd x (hcomp (λ i .o → u o .snd .head≈ i) (a .head)) y) where q = transp (\ i → C .snd x (hfill (\ i o → u o .snd .head≈ i) (inS (a .head)) (~ i)) y) i0 p a' = a .tails y q u' : Partial φ (T a') u' (φ = i1) = u 1=1 .fst .tails y p , u 1=1 .snd .tails≈ y q p \ j → transp (\ i → C .snd x (u 1=1 .snd .head≈ (~ i ∨ j)) y) j p contr-T-fst : ∀ x a φ → Partial φ (T {x} a) → M C x contr-T-fst x a φ u .head = hcomp (\ i o → u o .snd .head≈ i) (a .head) contr-T-fst x a φ u .tails y p = contr-T-fst y a' φ u' where open Tails x a φ u y p -- `contr-T-snd` is productive as the corecursive call appears as -- the main argument of transport, which is guardedness-preserving. {-# TERMINATING #-} contr-T-snd : ∀ x a φ → (u : Partial φ (T {x} a)) → a ≈ contr-T-fst x a φ u contr-T-snd x a φ u .head≈ i = hfill (λ { i (φ = i1) → u 1=1 .snd .head≈ i }) (inS (a .head)) i contr-T-snd x a φ u .tails≈ y pa pb peq = let r = contr-T-snd y (a .tails y pa) φ (\ { (φ = i1) → u 1=1 .fst .tails y pb , u 1=1 .snd .tails≈ y pa pb peq }) in transport (\ i → a .tails y pa ≈ contr-T-fst y (a .tails y (sym (fromPathP (\ i → peq (~ i))) i)) φ (\ { (φ = i1) → u 1=1 .fst .tails y pb , u 1=1 .snd .tails≈ y ((fromPathP (\ i → peq (~ i))) (~ i)) pb \ j → lemma _ (λ h → C .snd x (u _ .snd .head≈ h) y) pa pb peq i j })) r contr-T : ∀ x a φ → Partial φ (T {x} a) → T a contr-T x a φ u .fst = contr-T-fst x a φ u contr-T x a φ u .snd = contr-T-snd x a φ u contr-T-φ-fst : ∀ x a → (u : Partial i1 (T {x} a)) → contr-T x a i1 u .fst ≡ u 1=1 .fst contr-T-φ-fst x a u i .head = u 1=1 .fst .head contr-T-φ-fst x a u i .tails y p = let q = (transp (\ i → C .snd x (hfill (\ i o → u o .snd .head≈ i) (inS (a .head)) (~ i)) y) i0 p) in contr-T-φ-fst y (a .tails y q) (\ o → u o .fst .tails y p , u o .snd .tails≈ y q p \ j → transp (\ i → C .snd x (u 1=1 .snd .head≈ (~ i ∨ j)) y) j p) i -- `contr-T-φ-snd` is productive as the corecursive call appears as -- the main argument of transport, which is guardedness-preserving (even for paths of a coinductive type). {-# TERMINATING #-} contr-T-φ-snd : ∀ x a → (u : Partial i1 (T {x} a)) → (\ i → a ≈ contr-T-φ-fst x a u i) [ contr-T x a i1 u .snd ≡ u 1=1 .snd ] contr-T-φ-snd x a u i .head≈ = u _ .snd .head≈ contr-T-φ-snd x a u i .tails≈ y pa pb peq = let eqh = u 1=1 .snd .head≈ r = contr-T-φ-snd y (a .tails y pa) (\ o → u o .fst .tails y pb , u 1=1 .snd .tails≈ y pa pb peq) F : I → Type _ F k = a .tails y pa ≈ contr-T-fst y (a .tails y (transp (λ j → C .snd x (eqh (k ∧ ~ j)) y) (~ k) (peq k))) i1 (λ _ → u _ .fst .tails y pb , u _ .snd .tails≈ y (transp (λ j → C .snd x (eqh (k ∧ ~ j)) y) (~ k) (peq k)) pb (λ j → lemma (C .snd x (u 1=1 .fst .head) y) (λ h → C .snd x (eqh h) y) pa pb peq k j) ) u0 = contr-T-snd y (a .tails y pa) i1 (λ o → u o .fst .tails y pb , u o .snd .tails≈ y pa pb peq) in transport (λ l → PathP (λ z → a .tails y pa ≈ contr-T-φ-fst y (a .tails y (transp (λ k → C .snd x (u 1=1 .snd .head≈ (~ k ∧ l)) y) (~ l) (peq l))) (λ _ → u _ .fst .tails y pb , u _ .snd .tails≈ y (transp (λ k → C .snd x (u _ .snd .head≈ (~ k ∧ l)) y) (~ l) (peq l)) pb \ j → lemma (C .snd x (u 1=1 .fst .head) y) (λ h → C .snd x (eqh h) y) pa pb peq l j) z) (transpFill {A = F i0} i0 (\ i → inS (F i)) u0 l) (u _ .snd .tails≈ y pa pb peq)) r i contr-T-φ : ∀ x a → (u : Partial i1 (T {x} a)) → contr-T x a i1 u ≡ u 1=1 contr-T-φ x a u i .fst = contr-T-φ-fst x a u i contr-T-φ x a u i .snd = contr-T-φ-snd x a u i contr-T' : ∀ {x} a → isContr (T {x} a) contr-T' a = isContrPartial→isContr (contr-T _ a) \ u → sym (contr-T-φ _ a (\ _ → u)) bisimEquiv : ∀ {x} {a b : M C x} → isEquiv (misib a b) bisimEquiv = isContrToUniv _≈_ (misib _ _) contr-T'
{ "alphanum_fraction": 0.5008344712, "avg_line_length": 44.5337837838, "ext": "agda", "hexsha": "cfda4a8237e354d7dd7973be8ba96727c9b0f785", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Codata/M/Bisimilarity.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Codata/M/Bisimilarity.agda", "max_line_length": 127, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Codata/M/Bisimilarity.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2525, "size": 6591 }
{- Half adjoint equivalences ([HAEquiv]) - Iso to HAEquiv ([iso→HAEquiv]) - Equiv to HAEquiv ([equiv→HAEquiv]) - Cong is an equivalence ([congEquiv]) -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Foundations.Equiv.HalfAdjoint where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Foundations.Function open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Path private variable ℓ ℓ' : Level A : Type ℓ B : Type ℓ' record isHAEquiv {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B) : Type (ℓ-max ℓ ℓ') where field g : B → A linv : ∀ a → g (f a) ≡ a rinv : ∀ b → f (g b) ≡ b com : ∀ a → cong f (linv a) ≡ rinv (f a) -- from redtt's ha-equiv/symm com-op : ∀ b → cong g (rinv b) ≡ linv (g b) com-op b j i = hcomp (λ k → λ { (i = i0) → linv (g b) (j ∧ (~ k)) ; (j = i0) → g (rinv b i) ; (j = i1) → linv (g b) (i ∨ (~ k)) ; (i = i1) → g b }) (cap1 j i) where cap0 : Square {- (j = i0) -} (λ i → f (g (rinv b i))) {- (j = i1) -} (λ i → rinv b i) {- (i = i0) -} (λ j → f (linv (g b) j)) {- (i = i1) -} (λ j → rinv b j) cap0 j i = hcomp (λ k → λ { (i = i0) → com (g b) (~ k) j ; (j = i0) → f (g (rinv b i)) ; (j = i1) → rinv b i ; (i = i1) → rinv b j }) (rinv (rinv b i) j) filler : I → I → A filler j i = hfill (λ k → λ { (i = i0) → g (rinv b k) ; (i = i1) → g b }) (inS (linv (g b) i)) j cap1 : Square {- (j = i0) -} (λ i → g (rinv b i)) {- (j = i1) -} (λ i → g b) {- (i = i0) -} (λ j → linv (g b) j) {- (i = i1) -} (λ j → g b) cap1 j i = hcomp (λ k → λ { (i = i0) → linv (linv (g b) j) k ; (j = i0) → linv (g (rinv b i)) k ; (j = i1) → filler i k ; (i = i1) → filler j k }) (g (cap0 j i)) isHAEquiv→Iso : Iso A B Iso.fun isHAEquiv→Iso = f Iso.inv isHAEquiv→Iso = g Iso.rightInv isHAEquiv→Iso = rinv Iso.leftInv isHAEquiv→Iso = linv isHAEquiv→isEquiv : isEquiv f isHAEquiv→isEquiv .equiv-proof y = (g y , rinv y) , isCenter where isCenter : ∀ xp → (g y , rinv y) ≡ xp isCenter (x , p) i = gy≡x i , ry≡p i where gy≡x : g y ≡ x gy≡x = sym (cong g p) ∙∙ refl ∙∙ linv x lem0 : Square (cong f (linv x)) p (cong f (linv x)) p lem0 i j = invSides-filler p (sym (cong f (linv x))) (~ i) j ry≡p : Square (rinv y) p (cong f gy≡x) refl ry≡p i j = hcomp (λ k → λ { (i = i0) → cong rinv p k j ; (i = i1) → lem0 k j ; (j = i0) → f (doubleCompPath-filler (sym (cong g p)) refl (linv x) k i) ; (j = i1) → p k }) (com x (~ i) j) open isHAEquiv using (isHAEquiv→Iso; isHAEquiv→isEquiv) public HAEquiv : (A : Type ℓ) (B : Type ℓ') → Type (ℓ-max ℓ ℓ') HAEquiv A B = Σ[ f ∈ (A → B) ] isHAEquiv f -- vogt's lemma (https://ncatlab.org/nlab/show/homotopy+equivalence#vogts_lemma) iso→HAEquiv : Iso A B → HAEquiv A B iso→HAEquiv e = f , isHAEquivf where f = Iso.fun e g = Iso.inv e ε = Iso.rightInv e η = Iso.leftInv e Hfa≡fHa : (f : A → A) → (H : ∀ a → f a ≡ a) → ∀ a → H (f a) ≡ cong f (H a) Hfa≡fHa f H = J (λ f p → ∀ a → funExt⁻ (sym p) (f a) ≡ cong f (funExt⁻ (sym p) a)) (λ a → refl) (sym (funExt H)) isHAEquivf : isHAEquiv f isHAEquiv.g isHAEquivf = g isHAEquiv.linv isHAEquivf = η isHAEquiv.rinv isHAEquivf b i = hcomp (λ j → λ { (i = i0) → ε (f (g b)) j ; (i = i1) → ε b j }) (f (η (g b) i)) isHAEquiv.com isHAEquivf a i j = hcomp (λ k → λ { (i = i0) → ε (f (η a j)) k ; (j = i0) → ε (f (g (f a))) k ; (j = i1) → ε (f a) k}) (f (Hfa≡fHa (λ x → g (f x)) η a (~ i) j)) equiv→HAEquiv : A ≃ B → HAEquiv A B equiv→HAEquiv e = e .fst , λ where .isHAEquiv.g → invIsEq (snd e) .isHAEquiv.linv → retIsEq (snd e) .isHAEquiv.rinv → secIsEq (snd e) .isHAEquiv.com a → flipSquare (slideSquare (commSqIsEq (snd e) a)) congIso : {x y : A} (e : Iso A B) → Iso (x ≡ y) (Iso.fun e x ≡ Iso.fun e y) congIso {x = x} {y} e = goal where open isHAEquiv (iso→HAEquiv e .snd) open Iso goal : Iso (x ≡ y) (Iso.fun e x ≡ Iso.fun e y) fun goal = cong (iso→HAEquiv e .fst) inv goal p = sym (linv x) ∙∙ cong g p ∙∙ linv y rightInv goal p i j = hcomp (λ k → λ { (i = i0) → iso→HAEquiv e .fst (doubleCompPath-filler (sym (linv x)) (cong g p) (linv y) k j) ; (i = i1) → rinv (p j) k ; (j = i0) → com x i k ; (j = i1) → com y i k }) (iso→HAEquiv e .fst (g (p j))) leftInv goal p i j = hcomp (λ k → λ { (i = i1) → p j ; (j = i0) → Iso.leftInv e x (i ∨ k) ; (j = i1) → Iso.leftInv e y (i ∨ k) }) (Iso.leftInv e (p j) i) invCongFunct : {x : A} (e : Iso A B) (p : Iso.fun e x ≡ Iso.fun e x) (q : Iso.fun e x ≡ Iso.fun e x) → Iso.inv (congIso e) (p ∙ q) ≡ Iso.inv (congIso e) p ∙ Iso.inv (congIso e) q invCongFunct {x = x} e p q = helper (Iso.inv e) _ _ _ where helper : {x : A} {y : B} (f : A → B) (r : f x ≡ y) (p q : x ≡ x) → (sym r ∙∙ cong f (p ∙ q) ∙∙ r) ≡ (sym r ∙∙ cong f p ∙∙ r) ∙ (sym r ∙∙ cong f q ∙∙ r) helper {x = x} f = J (λ y r → (p q : x ≡ x) → (sym r ∙∙ cong f (p ∙ q) ∙∙ r) ≡ (sym r ∙∙ cong f p ∙∙ r) ∙ (sym r ∙∙ cong f q ∙∙ r)) λ p q → (λ i → rUnit (congFunct f p q i) (~ i)) ∙ λ i → rUnit (cong f p) i ∙ rUnit (cong f q) i
{ "alphanum_fraction": 0.4382451121, "avg_line_length": 38.3597560976, "ext": "agda", "hexsha": "6b986d6336c7813365606eb1628d6e5490db0552", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ayberkt/cubical", "max_forks_repo_path": "Cubical/Foundations/Equiv/HalfAdjoint.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ayberkt/cubical", "max_issues_repo_path": "Cubical/Foundations/Equiv/HalfAdjoint.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ayberkt/cubical", "max_stars_repo_path": "Cubical/Foundations/Equiv/HalfAdjoint.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2462, "size": 6291 }
{-# OPTIONS --without-K --exact-split #-} module abelian-groups where import 17-number-theory open 17-number-theory public is-abelian-Group : {l : Level} (G : Group l) → UU l is-abelian-Group G = (x y : type-Group G) → Id (mul-Group G x y) (mul-Group G y x) Ab : (l : Level) → UU (lsuc l) Ab l = Σ (Group l) is-abelian-Group group-Ab : {l : Level} (A : Ab l) → Group l group-Ab A = pr1 A set-Ab : {l : Level} (A : Ab l) → UU-Set l set-Ab A = set-Group (group-Ab A) type-Ab : {l : Level} (A : Ab l) → UU l type-Ab A = type-Group (group-Ab A) is-set-type-Ab : {l : Level} (A : Ab l) → is-set (type-Ab A) is-set-type-Ab A = is-set-type-Group (group-Ab A) associative-add-Ab : {l : Level} (A : Ab l) → has-associative-bin-op (set-Ab A) associative-add-Ab A = associative-mul-Group (group-Ab A) add-Ab : {l : Level} (A : Ab l) → type-Ab A → type-Ab A → type-Ab A add-Ab A = mul-Group (group-Ab A) is-associative-add-Ab : {l : Level} (A : Ab l) (x y z : type-Ab A) → Id (add-Ab A (add-Ab A x y) z) (add-Ab A x (add-Ab A y z)) is-associative-add-Ab A = is-associative-mul-Group (group-Ab A) semi-group-Ab : {l : Level} (A : Ab l) → Semi-Group l semi-group-Ab A = semi-group-Group (group-Ab A) is-group-Ab : {l : Level} (A : Ab l) → is-group (semi-group-Ab A) is-group-Ab A = is-group-Group (group-Ab A) has-zero-Ab : {l : Level} (A : Ab l) → is-unital (semi-group-Ab A) has-zero-Ab A = is-unital-Group (group-Ab A) zero-Ab : {l : Level} (A : Ab l) → type-Ab A zero-Ab A = unit-Group (group-Ab A) left-zero-law-Ab : {l : Level} (A : Ab l) → (x : type-Ab A) → Id (add-Ab A (zero-Ab A) x) x left-zero-law-Ab A = left-unit-law-Group (group-Ab A) right-zero-law-Ab : {l : Level} (A : Ab l) → (x : type-Ab A) → Id (add-Ab A x (zero-Ab A)) x right-zero-law-Ab A = right-unit-law-Group (group-Ab A) has-negatives-Ab : {l : Level} (A : Ab l) → is-group' (semi-group-Ab A) (has-zero-Ab A) has-negatives-Ab A = has-inverses-Group (group-Ab A) neg-Ab : {l : Level} (A : Ab l) → type-Ab A → type-Ab A neg-Ab A = inv-Group (group-Ab A) left-negative-law-Ab : {l : Level} (A : Ab l) (x : type-Ab A) → Id (add-Ab A (neg-Ab A x) x) (zero-Ab A) left-negative-law-Ab A = left-inverse-law-Group (group-Ab A) right-negative-law-Ab : {l : Level} (A : Ab l) (x : type-Ab A) → Id (add-Ab A x (neg-Ab A x)) (zero-Ab A) right-negative-law-Ab A = right-inverse-law-Group (group-Ab A) is-commutative-add-Ab : {l : Level} (A : Ab l) (x y : type-Ab A) → Id (add-Ab A x y) (add-Ab A y x) is-commutative-add-Ab A = pr2 A {- So far the basic interface of abelian groups. -} is-prop-is-abelian-Group : {l : Level} (G : Group l) → is-prop (is-abelian-Group G) is-prop-is-abelian-Group G = is-prop-Π (λ x → is-prop-Π (λ y → is-set-type-Group G _ _)) {- Homomorphisms of abelian groups -} preserves-add : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) → (type-Ab A → type-Ab B) → UU (l1 ⊔ l2) preserves-add A B = preserves-mul (semi-group-Ab A) (semi-group-Ab B) hom-Ab : {l1 l2 : Level} → Ab l1 → Ab l2 → UU (l1 ⊔ l2) hom-Ab A B = hom-Group (group-Ab A) (group-Ab B) map-hom-Ab : {l1 l2 : Level} (A : Ab l1) (B : Ab l2) → hom-Ab A B → type-Ab A → type-Ab B map-hom-Ab A B = map-hom-Group (group-Ab A) (group-Ab B) preserves-add-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) → ( f : hom-Ab A B) → preserves-add A B (map-hom-Ab A B f) preserves-add-Ab A B f = preserves-mul-hom-Group (group-Ab A) (group-Ab B) f {- We characterize the identity type of the abelian group homomorphisms. -} htpy-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) ( f g : hom-Ab A B) → UU (l1 ⊔ l2) htpy-hom-Ab A B f g = htpy-hom-Group (group-Ab A) (group-Ab B) f g reflexive-htpy-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) → ( f : hom-Ab A B) → htpy-hom-Ab A B f f reflexive-htpy-hom-Ab A B f = reflexive-htpy-hom-Group (group-Ab A) (group-Ab B) f htpy-hom-Ab-eq : {l1 l2 : Level} (A : Ab l1) (B : Ab l2) → (f g : hom-Ab A B) → Id f g → htpy-hom-Ab A B f g htpy-hom-Ab-eq A B f g = htpy-hom-Group-eq (group-Ab A) (group-Ab B) f g abstract is-contr-total-htpy-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) → ( f : hom-Ab A B) → is-contr (Σ (hom-Ab A B) (htpy-hom-Ab A B f)) is-contr-total-htpy-hom-Ab A B f = is-contr-total-htpy-hom-Group (group-Ab A) (group-Ab B) f abstract is-equiv-htpy-hom-Ab-eq : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) → ( f g : hom-Ab A B) → is-equiv (htpy-hom-Ab-eq A B f g) is-equiv-htpy-hom-Ab-eq A B f g = is-equiv-htpy-hom-Group-eq (group-Ab A) (group-Ab B) f g eq-htpy-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) → { f g : hom-Ab A B} → htpy-hom-Ab A B f g → Id f g eq-htpy-hom-Ab A B = eq-htpy-hom-Group (group-Ab A) (group-Ab B) is-set-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) → is-set (hom-Ab A B) is-set-hom-Ab A B = is-set-hom-Group (group-Ab A) (group-Ab B) preserves-add-id : {l : Level} (A : Ab l) → preserves-add A A id preserves-add-id A = preserves-mul-id (semi-group-Ab A) id-hom-Ab : { l1 : Level} (A : Ab l1) → hom-Ab A A id-hom-Ab A = id-Group (group-Ab A) comp-hom-Ab : { l1 l2 l3 : Level} (A : Ab l1) (B : Ab l2) (C : Ab l3) → ( hom-Ab B C) → (hom-Ab A B) → (hom-Ab A C) comp-hom-Ab A B C = comp-Group (group-Ab A) (group-Ab B) (group-Ab C) is-associative-comp-hom-Ab : { l1 l2 l3 l4 : Level} (A : Ab l1) (B : Ab l2) (C : Ab l3) (D : Ab l4) → ( h : hom-Ab C D) (g : hom-Ab B C) (f : hom-Ab A B) → Id (comp-hom-Ab A B D (comp-hom-Ab B C D h g) f) (comp-hom-Ab A C D h (comp-hom-Ab A B C g f)) is-associative-comp-hom-Ab A B C D = associative-Semi-Group ( semi-group-Ab A) ( semi-group-Ab B) ( semi-group-Ab C) ( semi-group-Ab D) left-unit-law-comp-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) ( f : hom-Ab A B) → Id (comp-hom-Ab A B B (id-hom-Ab B) f) f left-unit-law-comp-hom-Ab A B = left-unit-law-Semi-Group (semi-group-Ab A) (semi-group-Ab B) right-unit-law-comp-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) ( f : hom-Ab A B) → Id (comp-hom-Ab A A B f (id-hom-Ab A)) f right-unit-law-comp-hom-Ab A B = right-unit-law-Semi-Group (semi-group-Ab A) (semi-group-Ab B) {- Isomorphisms of abelian groups -} is-iso-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) → ( f : hom-Ab A B) → UU (l1 ⊔ l2) is-iso-hom-Ab A B = is-iso-hom-Semi-Group (semi-group-Ab A) (semi-group-Ab B) inv-is-iso-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) → is-iso-hom-Ab A B f → hom-Ab B A inv-is-iso-hom-Ab A B f = pr1 map-inv-is-iso-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) → is-iso-hom-Ab A B f → type-Ab B → type-Ab A map-inv-is-iso-hom-Ab A B f is-iso-f = map-hom-Ab B A (inv-is-iso-hom-Ab A B f is-iso-f) is-sec-inv-is-iso-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) → ( is-iso-f : is-iso-hom-Ab A B f) → Id (comp-hom-Ab B A B f (inv-is-iso-hom-Ab A B f is-iso-f)) (id-hom-Ab B) is-sec-inv-is-iso-hom-Ab A B f is-iso-f = pr1 (pr2 is-iso-f) is-sec-map-inv-is-iso-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) → ( is-iso-f : is-iso-hom-Ab A B f) → ( (map-hom-Ab A B f) ∘ (map-hom-Ab B A (inv-is-iso-hom-Ab A B f is-iso-f))) ~ id is-sec-map-inv-is-iso-hom-Ab A B f is-iso-f = htpy-hom-Ab-eq B B ( comp-hom-Ab B A B f (inv-is-iso-hom-Ab A B f is-iso-f)) ( id-hom-Ab B) ( is-sec-inv-is-iso-hom-Ab A B f is-iso-f) is-retr-inv-is-iso-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) → ( is-iso-f : is-iso-hom-Ab A B f) → Id (comp-hom-Ab A B A (inv-is-iso-hom-Ab A B f is-iso-f) f) (id-hom-Ab A) is-retr-inv-is-iso-hom-Ab A B f is-iso-f = pr2 (pr2 is-iso-f) is-retr-map-inv-is-iso-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) → ( is-iso-f : is-iso-hom-Ab A B f) → ( (map-inv-is-iso-hom-Ab A B f is-iso-f) ∘ (map-hom-Ab A B f)) ~ id is-retr-map-inv-is-iso-hom-Ab A B f is-iso-f = htpy-hom-Ab-eq A A ( comp-hom-Ab A B A (inv-is-iso-hom-Ab A B f is-iso-f) f) ( id-hom-Ab A) ( is-retr-inv-is-iso-hom-Ab A B f is-iso-f) is-prop-is-iso-hom-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) (f : hom-Ab A B) → is-prop (is-iso-hom-Ab A B f) is-prop-is-iso-hom-Ab A B f = is-prop-is-iso-hom-Semi-Group (semi-group-Ab A) (semi-group-Ab B) f iso-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) → UU (l1 ⊔ l2) iso-Ab A B = Σ (hom-Ab A B) (is-iso-hom-Ab A B) hom-iso-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) → iso-Ab A B → hom-Ab A B hom-iso-Ab A B = pr1 is-iso-hom-iso-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) → ( f : iso-Ab A B) → is-iso-hom-Ab A B (hom-iso-Ab A B f) is-iso-hom-iso-Ab A B = pr2 inv-hom-iso-Ab : { l1 l2 : Level} (A : Ab l1) (B : Ab l2) → iso-Ab A B → hom-Ab B A inv-hom-iso-Ab A B f = inv-is-iso-hom-Ab A B ( hom-iso-Ab A B f) ( is-iso-hom-iso-Ab A B f) id-iso-Ab : {l1 : Level} (A : Ab l1) → iso-Ab A A id-iso-Ab A = iso-id-Group (group-Ab A) iso-eq-Ab : { l1 : Level} (A B : Ab l1) → Id A B → iso-Ab A B iso-eq-Ab A .A refl = id-iso-Ab A abstract equiv-iso-eq-Ab' : {l1 : Level} (A B : Ab l1) → Id A B ≃ iso-Ab A B equiv-iso-eq-Ab' A B = ( equiv-iso-eq-Group' (group-Ab A) (group-Ab B)) ∘e ( equiv-ap-pr1-is-subtype is-prop-is-abelian-Group {A} {B}) abstract is-contr-total-iso-Ab : { l1 : Level} (A : Ab l1) → is-contr (Σ (Ab l1) (iso-Ab A)) is-contr-total-iso-Ab {l1} A = is-contr-equiv' ( Σ (Ab l1) (Id A)) ( equiv-tot (equiv-iso-eq-Ab' A)) ( is-contr-total-path A) is-equiv-iso-eq-Ab : { l1 : Level} (A B : Ab l1) → is-equiv (iso-eq-Ab A B) is-equiv-iso-eq-Ab A = fundamental-theorem-id A ( id-iso-Ab A) ( is-contr-total-iso-Ab A) ( iso-eq-Ab A) eq-iso-Ab : { l1 : Level} (A B : Ab l1) → iso-Ab A B → Id A B eq-iso-Ab A B = inv-is-equiv (is-equiv-iso-eq-Ab A B)
{ "alphanum_fraction": 0.5729282326, "avg_line_length": 31.0564263323, "ext": "agda", "hexsha": "2ded17f4737d124d504b8ae3ad9b75f6a87b7a0a", "lang": "Agda", "max_forks_count": 30, "max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z", "max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_forks_repo_path": "Agda/abelian-groups.agda", "max_issues_count": 8, "max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z", "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_issues_repo_path": "Agda/abelian-groups.agda", "max_line_length": 79, "max_stars_count": 333, "max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro", "max_stars_repo_path": "Agda/abelian-groups.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z", "num_tokens": 4438, "size": 9907 }
module Empty where record ⊤ : Set where constructor tt data ⊥ : Set where {-# IMPORT Data.FFI #-} {-# COMPILED_DATA ⊥ Data.FFI.AgdaEmpty #-} absurd : ∀ { A : Set } → ⊥ → A absurd ()
{ "alphanum_fraction": 0.5643564356, "avg_line_length": 15.5384615385, "ext": "agda", "hexsha": "25473c9b683e403544a182189a94d249fb2d1042", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "cantsin/agda-experiments", "max_forks_repo_path": "Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "cantsin/agda-experiments", "max_issues_repo_path": "Empty.agda", "max_line_length": 44, "max_stars_count": null, "max_stars_repo_head_hexsha": "382fcfae193079783621fc5cf54b6588e22ef759", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "cantsin/agda-experiments", "max_stars_repo_path": "Empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 66, "size": 202 }
------------------------------------------------------------------------------ -- First-Order Theory of Combinators (FOTC) ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- Code accompanying the paper "Combining Interactive and Automatic -- Reasoning in First Order Theories of Functional Programs" by Ana -- Bove, Peter Dybjer and Andrés Sicard-Ramírez (FoSSaCS 2012). -- The code presented here does not match the paper exactly. module FOTC.README where ------------------------------------------------------------------------------ -- Description -- Verification of functional programs using a version of Azcel's -- First-Order Theory of Combinators and showing the combination of -- interactive proofs with automatics proofs carried out by -- first-order automatic theorem provers (ATPs). ------------------------------------------------------------------------------ -- For the paper, prerequisites, tested versions of the ATPs and use, -- see https://github.com/asr/fotc/. ------------------------------------------------------------------------------ -- Conventions -- If the module's name ends in 'I' the module contains interactive -- proofs, if it ends in 'ATP' the module contains combined proofs, -- otherwise the module contains definitions and/or interactive proofs -- that are used by the interactive and combined proofs. ------------------------------------------------------------------------------ -- Base axioms open import FOTC.Base -- Properties for the base axioms open import FOTC.Base.PropertiesATP open import FOTC.Base.PropertiesI -- Axioms for lists, colists, streams, etc. open import FOTC.Base.List -- Properties for axioms for lists, colists, streams, etc open import FOTC.Base.List.PropertiesATP open import FOTC.Base.List.PropertiesI ------------------------------------------------------------------------------ -- Booleans -- The axioms open import FOTC.Data.Bool -- The inductive predicate open import FOTC.Data.Bool.Type -- Properties open import FOTC.Data.Bool.PropertiesATP open import FOTC.Data.Bool.PropertiesI ------------------------------------------------------------------------------ -- Natural numbers -- The axioms open import FOTC.Data.Nat -- The inductive predicate open import FOTC.Data.Nat.Type -- Properties open import FOTC.Data.Nat.PropertiesATP open import FOTC.Data.Nat.PropertiesI open import FOTC.Data.Nat.PropertiesByInductionATP open import FOTC.Data.Nat.PropertiesByInductionI -- Divisibility relation open import FOTC.Data.Nat.Divisibility.By0.PropertiesATP open import FOTC.Data.Nat.Divisibility.By0.PropertiesI open import FOTC.Data.Nat.Divisibility.NotBy0.PropertiesATP open import FOTC.Data.Nat.Divisibility.NotBy0.PropertiesI -- Induction open import FOTC.Data.Nat.Induction.Acc.WF-I open import FOTC.Data.Nat.Induction.NonAcc.LexicographicI -- Inequalites open import FOTC.Data.Nat.Inequalities.EliminationPropertiesATP open import FOTC.Data.Nat.Inequalities.EliminationPropertiesI open import FOTC.Data.Nat.Inequalities.PropertiesATP open import FOTC.Data.Nat.Inequalities.PropertiesI -- Unary numbers open import FOTC.Data.Nat.UnaryNumbers.Inequalities.PropertiesATP open import FOTC.Data.Nat.UnaryNumbers.TotalityATP ------------------------------------------------------------------------------ -- Lists -- The axioms open import FOTC.Data.List -- The inductive predicate open import FOTC.Data.List.Type -- Properties open import FOTC.Data.List.PropertiesATP open import FOTC.Data.List.PropertiesI -- Well-founded induction open import FOTC.Data.List.WF-Relation.LT-Cons.Induction.Acc.WF-I open import FOTC.Data.List.WF-Relation.LT-Cons.PropertiesI open import FOTC.Data.List.WF-Relation.LT-Length.Induction.Acc.WF-I open import FOTC.Data.List.WF-Relation.LT-Length.PropertiesI ------------------------------------------------------------------------------ -- Lists of natural numbers -- The inductive predicate open import FOTC.Data.Nat.List -- Properties open import FOTC.Data.Nat.List.PropertiesATP open import FOTC.Data.Nat.List.PropertiesI ------------------------------------------------------------------------------ -- Co-inductive natural numbers -- Some axioms open import FOTC.Data.Conat -- The co-inductive predicate open import FOTC.Data.Conat.Type -- Properties open import FOTC.Data.Conat.PropertiesATP open import FOTC.Data.Conat.PropertiesI -- Equality open import FOTC.Data.Conat.Equality.Type -- Equality properties open import FOTC.Data.Conat.Equality.PropertiesATP open import FOTC.Data.Conat.Equality.PropertiesI ------------------------------------------------------------------------------ -- Streams -- Some axioms open import FOTC.Data.Stream -- The co-inductive predicate open import FOTC.Data.Stream.Type -- Properties open import FOTC.Data.Stream.PropertiesATP open import FOTC.Data.Stream.PropertiesI -- Equality properties open import FOTC.Data.Stream.Equality.PropertiesATP open import FOTC.Data.Stream.Equality.PropertiesI ------------------------------------------------------------------------------ -- Bisimilary relation -- The co-inductive predicate open import FOTC.Relation.Binary.Bisimilarity.Type -- Properties open import FOTC.Relation.Binary.Bisimilarity.PropertiesATP open import FOTC.Relation.Binary.Bisimilarity.PropertiesI ------------------------------------------------------------------------------ -- Verification of programs -- Burstall's sort list algorithm: A structurally recursive algorithm open import FOTC.Program.SortList.CorrectnessProofATP open import FOTC.Program.SortList.CorrectnessProofI -- The division algorithm: A non-structurally recursive algorithm open import FOTC.Program.Division.CorrectnessProofATP open import FOTC.Program.Division.CorrectnessProofI -- The GCD algorithm: A non-structurally recursive algorithm open import FOTC.Program.GCD.Partial.CorrectnessProofATP open import FOTC.Program.GCD.Partial.CorrectnessProofI open import FOTC.Program.GCD.Total.CorrectnessProofATP open import FOTC.Program.GCD.Total.CorrectnessProofI -- The nest function: A very simple function with nested recursion open import FOTC.Program.Nest.PropertiesATP -- The McCarthy 91 function: A function with nested recursion open import FOTC.Program.McCarthy91.PropertiesATP -- The mirror function: A function with higher-order recursion open import FOTC.Program.Mirror.PropertiesATP open import FOTC.Program.Mirror.PropertiesI -- The map-iterate property: A property using co-induction open import FOTC.Program.MapIterate.MapIterateATP open import FOTC.Program.MapIterate.MapIterateI -- The alternating bit protocol: A program using induction and co-induction open import FOTC.Program.ABP.CorrectnessProofATP open import FOTC.Program.ABP.CorrectnessProofI -- The iter₀ function: A partial function open import FOTC.Program.Iter0.PropertiesATP open import FOTC.Program.Iter0.PropertiesI -- The Collatz function: A function without a termination proof open import FOTC.Program.Collatz.PropertiesATP open import FOTC.Program.Collatz.PropertiesI
{ "alphanum_fraction": 0.6796129924, "avg_line_length": 32.7375565611, "ext": "agda", "hexsha": "3860d7817742671f6c17b158fb87fb87700c859f", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/README.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/README.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/README.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 1609, "size": 7235 }
module OutsideIn.Prelude where open import Data.Nat public open import Relation.Binary.PropositionalEquality public renaming ([_] to iC) open import Relation.Nullary public open import Function public hiding (case_of_) cong₃ : ∀ {a b c d} {A : Set a} {B : Set b} {C : Set c} {D : Set d} (f : A → B → C → D) {x y u v x′ y′} → x ≡ y → u ≡ v → x′ ≡ y′ → f x u x′ ≡ f y v y′ cong₃ f refl refl refl = refl cong₄ : ∀ {a b c d e} {A : Set a} {B : Set b} {C : Set c} {D : Set d} {E : Set e} (f : A → B → C → D → E) {x y u v x′ y′ u′ v′} → x ≡ y → u ≡ v → x′ ≡ y′ → u′ ≡ v′ → f x u x′ u′ ≡ f y v y′ v′ cong₄ f refl refl refl refl = refl import Level postulate extensionality : Extensionality Level.zero Level.zero module Shapes where -- Used throughout to show structure preserving operations preserve structure, -- in order to maintain structural recursion. data Shape : Set where Nullary : Shape Unary : Shape → Shape Binary : Shape → Shape → Shape module Functors where import Data.Vec as V open V using (_∷_; Vec; []) isIdentity : ∀ {A} → (A → A) → Set isIdentity {A} f = ∀ {x} → f x ≡ x id-is-id : ∀ {A} → isIdentity {A} id id-is-id = refl record Functor (X : Set → Set) : Set₁ where field map : ∀ {A B} → (A → B) → X A → X B _<$>_ : ∀ {A B} → (A → B) → X A → X B _<$>_ = map field identity : ∀ {A : Set}{f : A → A} → isIdentity f → isIdentity (map f) field composite : ∀ {A B C : Set} {f : A → B} {g : B → C} → {x : X A} → ( (g ∘ f) <$> x ≡ g <$> (f <$> x)) Pointed : (Set → Set) → Set₁ Pointed X = ∀ {a} → a → X a id-is-functor : Functor id id-is-functor = record { map = id; identity = id; composite = refl } vec-is-functor : ∀ {n} → Functor (λ A → Vec A n) vec-is-functor {n} = record { map = V.map; identity = ident {n} ; composite = composite } where ident : {n : ℕ}{A : Set} {f : A → A} → isIdentity f →{x : Vec A n} → V.map f x ≡ x ident isid {[]} = refl ident isid {x ∷ xs} = cong₂ _∷_ isid (ident isid) composite : {A B C : Set}{n : ℕ} {f : A → B} {g : B → C} {x : Vec A n} → V.map (g ∘ f) x ≡ V.map g (V.map f x) composite {x = []} = refl composite {x = x ∷ xs} = cong₂ _∷_ refl composite private module F = Functor ⦃ ... ⦄ combine-composite′ : {X Y : Set → Set}{A B C : Set} ⦃ F2 : Functor Y ⦄ {V : X (Y A)}{f : A → B}{g : B → C} → (f1map : ∀ {a b} → (a → b) → (X a → X b)) → (f1comp : f1map (F.map g ∘ F.map f) V ≡ f1map (F.map g) (f1map (F.map f) V)) → f1map (F.map ⦃ F2 ⦄ (g ∘ f)) V ≡ f1map (F.map ⦃ F2 ⦄ g) (f1map (F.map ⦃ F2 ⦄ f) V) combine-composite′ ⦃ F2 ⦄ {V} f1map f1comp = trans (cong (λ t → f1map t V) (extensionality (λ x → F.composite ⦃ F2 ⦄))) f1comp combine-composite : {X Y : Set → Set}{A B C : Set} ⦃ F1 : Functor X ⦄ ⦃ F2 : Functor Y ⦄ {V : X (Y A)}{f : A → B}{g : B → C} → F.map ⦃ F1 ⦄ (F.map ⦃ F2 ⦄ (g ∘ f)) V ≡ F.map ⦃ F1 ⦄ (F.map ⦃ F2 ⦄ g) (F.map ⦃ F1 ⦄ (F.map ⦃ F2 ⦄ f) V) combine-composite {X}{Y} ⦃ F1 ⦄ ⦃ F2 ⦄ {V} = combine-composite′ {X}{Y} (F.map ⦃ F1 ⦄) (F.composite ⦃ F1 ⦄) infixr 6 _∘f_ _∘f_ : {X Y : Set → Set} → ( F1 : Functor X )( F2 : Functor Y ) → Functor (X ∘ Y) F1 ∘f F2 = record { map = F.map ⦃ F1 ⦄ ∘ F.map ⦃ F2 ⦄ ; composite = combine-composite ⦃ F1 ⦄ ⦃ F2 ⦄ ; identity = F.identity ⦃ F1 ⦄ ∘ F.identity ⦃ F2 ⦄ } module StupidEquality where open import Data.Bool public using (Bool; true; false) -- This equality doesn't place any proof demands -- because we don't actually care what equality is used. -- This is just for the initial base of type variables, where the user provides -- their own type equality relation. We don't care if it says Int ∼ Bool - this just -- provides a way for users to get some equality information threaded through the -- simplifier Eq : Set → Set Eq X = ∀ (a b : X) → Bool module Monads where open Functors record Monad (X : Set → Set) : Set₁ where field ⦃ is-functor ⦄ : Functor X field ⦃ point ⦄ : Pointed X open Functor is-functor field join : ∀ {a} → X (X a) → X a unit : ∀ {a} → a → X a unit = point _>>=_ : ∀ {a b} → X a → (a → X b) → X b _>>=_ a b = join (b <$> a) _>>_ : ∀ {a b} → X a → X b → X b _>>_ a b = a >>= λ _ → b _>=>_ : ∀ {a b c : Set} → (b → X c) → (a → X b) → (a → X c) _>=>_ a b = λ v → b v >>= a field is-left-ident : ∀ {a b}{x : a → X b}{v} → (point >=> x) v ≡ x v field is-right-ident : ∀ {a b}{x : a → X b}{v} → (x >=> point) v ≡ x v field >=>-assoc : ∀{p}{q}{r}{s}{a : r → X s}{b : q → X r} {c : p → X q}{v} → (a >=> (b >=> c)) v ≡ ((a >=> b) >=> c) v abstract <$>-unit : ∀ {A B}{g : A → B}{x} → g <$> (unit x) ≡ unit (g x) <$>-unit {A}{B}{g}{x} = begin g <$> (unit x) ≡⟨ sym (is-left-ident {x = _<$>_ g}) ⟩ join (unit <$> (g <$> (unit x))) ≡⟨ cong join (sym (composite)) ⟩ join ((λ x → unit (g x)) <$> (unit x)) ≡⟨ is-right-ident ⟩ unit (g x) ∎ where open ≡-Reasoning abstract <$>-bind : ∀ {A B C}{f : A → B}{g : B → X C}{x : X A} → (f <$> x) >>= g ≡ x >>= (λ z → g (f z)) <$>-bind = cong join (sym (composite)) natural-trans : ∀ {A B}{f : A → B}{x : X( X A)} → f <$> (join x) ≡ join ((_<$>_ f) <$> x) natural-trans {A}{B}{f}{x} = begin f <$> (join x) ≡⟨ sym (is-left-ident {x = _<$>_ f}) ⟩ join (unit <$> (f <$> (join x))) ≡⟨ † ⟩ join (unit <$> (f <$> (join (id <$> x)))) ≡⟨ <$>-bind ⟩ join ((λ v → unit (f v)) <$> (join (id <$> x))) ≡⟨ >=>-assoc { c = λ _ → x}{0} ⟩ join ((λ x → join ((unit ∘ f) <$> x)) <$> x ) ≡⟨ sym (<$>-bind) ⟩ ((_<$>_ (λ y → unit (f y))) <$> x ) >>= join ≡⟨ <$>-bind ⟩ x >>= (λ x → x >>= (λ y → unit (f y))) ≡⟨ * ⟩ join ((_<$>_ f) <$> x) ∎ where open ≡-Reasoning † : join (unit <$> (f <$> (join x))) ≡ join (unit <$> (f <$> (join (id <$> x)))) † = cong (λ t → join (unit <$> (f <$> join t))) (sym (identity id-is-id )) * : x >>= (λ x → x >>= (λ y → unit (f y))) ≡ join ((_<$>_ f) <$> x) * = cong (_>>=_ x) (extensionality (λ y → trans (sym <$>-bind) (is-left-ident {x = _<$>_ f}{v = y}))) id-is-monad : Monad id id-is-monad = record { is-functor = id-is-functor ; point = id ; join = id ; >=>-assoc = refl ; is-left-ident = refl ; is-right-ident = refl } record MonadHomomorphism {M₁ M₂ : Set → Set}(h : ∀ {x : Set} → M₁ x → M₂ x) ⦃ M₁-m : Monad M₁ ⦄ ⦃ M₂-m : Monad M₂ ⦄ : Set₁ where open Monad M₁-m using () renaming (unit to unit₁; join to join₁; is-functor to is-functor₁) open Monad M₂-m using () renaming (unit to unit₂; join to join₂; is-functor to is-functor₂) open Functor is-functor₁ using () renaming (map to map₁) open Functor is-functor₂ using () renaming (map to map₂) field h-return : ∀ {A}{x : A} → h (unit₁ x) ≡ unit₂ x field h-fmap : {A B : Set} {f : A → B} {x : M₁ A} → h (map₁ f x) ≡ map₂ f (h x) field h-join : ∀{τ}{x : M₁ (M₁ τ)} → h (join₁ x) ≡ join₂ (h (map₁ h x)) record MonadTrans (X : (Set → Set) → Set → Set) : Set₁ where field produces-monad : ∀ {m} → Monad m → Monad (X m) field lift : ∀ {m}⦃ mm : Monad m ⦄{a} → m a → X m a field is-homomorphism : ∀ {m} → (mm : Monad m) → MonadHomomorphism {m} {X m} (lift {m}) ⦃ mm ⦄ ⦃ produces-monad mm ⦄ module Ⓢ-Type where open Functors open Monads open StupidEquality data Ⓢ (τ : Set) : Set where suc : τ → Ⓢ τ zero : Ⓢ τ cata-Ⓢ : {a b : Set} → b → (a → b) → Ⓢ a → b cata-Ⓢ nil something zero = nil cata-Ⓢ nil something (suc n) = something n sequence-Ⓢ : ∀ {m}{b} → ⦃ monad : Monad m ⦄ → Ⓢ (m b) → m (Ⓢ b) sequence-Ⓢ ⦃ m ⦄ (suc n) = map suc n where open Functor (Monad.is-functor m) sequence-Ⓢ ⦃ m ⦄ (zero) = unit zero where open Monad (m) private fmap-Ⓢ : ∀ {a b} → (a → b) → Ⓢ a → Ⓢ b fmap-Ⓢ f zero = zero fmap-Ⓢ f (suc n) = suc (f n) abstract fmap-Ⓢ-id : ∀ {A} → {f : A → A} → isIdentity f → isIdentity (fmap-Ⓢ f) fmap-Ⓢ-id isid {zero} = refl fmap-Ⓢ-id isid {suc x} = cong suc isid fmap-Ⓢ-comp : ∀ {A B C : Set} {f : A → B} {g : B → C} → ∀ {x} → fmap-Ⓢ (g ∘ f) x ≡ fmap-Ⓢ g (fmap-Ⓢ f x) fmap-Ⓢ-comp {x = zero} = refl fmap-Ⓢ-comp {x = suc n} = refl Ⓢ-is-functor : Functor Ⓢ Ⓢ-is-functor = record { map = fmap-Ⓢ ; identity = fmap-Ⓢ-id ; composite = fmap-Ⓢ-comp } Ⓢ-eq : ∀ {x} → Eq x → Eq (Ⓢ x) Ⓢ-eq x zero zero = true Ⓢ-eq x (suc n) zero = false Ⓢ-eq x zero (suc m) = false Ⓢ-eq x (suc n) (suc m) = x n m private join-Ⓢ : ∀ {x} → Ⓢ (Ⓢ x) → Ⓢ x join-Ⓢ (zero) = zero join-Ⓢ (suc τ) = τ test-join : ∀ {A B}{f : A → B}{x : Ⓢ( Ⓢ A)} → fmap-Ⓢ f (join-Ⓢ x) ≡ join-Ⓢ (fmap-Ⓢ (fmap-Ⓢ f) x) test-join {x = zero} = refl test-join {x = suc n} = refl Ⓢ-is-monad : Monad Ⓢ Ⓢ-is-monad = record { is-functor = Ⓢ-is-functor ; point = suc ; join = join-Ⓢ ; is-left-ident = left-id ; is-right-ident = refl ; >=>-assoc = λ { {c = c}{v} → assoc {τ = c v} } } where left-id : ∀ {τ : Set}{v : Ⓢ τ} → join-Ⓢ (fmap-Ⓢ suc v) ≡ v left-id {v = zero } = refl left-id {v = suc v} = refl assoc : ∀ {q r s : Set} {a : r → Ⓢ s} {b : q → Ⓢ r}{τ : Ⓢ q} → join-Ⓢ (fmap-Ⓢ a (join-Ⓢ (fmap-Ⓢ b τ))) ≡ join-Ⓢ (fmap-Ⓢ (λ v′ → join-Ⓢ (fmap-Ⓢ a (b v′))) τ) assoc {τ = zero} = refl assoc {τ = suc v} = refl Ⓢ-Trans : (Set → Set) → Set → Set Ⓢ-Trans m x = m (Ⓢ x) private lift : ∀ {m : Set → Set}⦃ mm : Monad m ⦄{x} → m x → m (Ⓢ x) lift {m}⦃ mm ⦄{x} v = suc <$> v where open Monad mm open Functor is-functor module MonadProofs {m : Set → Set}⦃ mm : Monad m ⦄ where open Monad mm open Functor is-functor functor : Functor (Ⓢ-Trans m) functor = record { map = λ f v → (fmap-Ⓢ f) <$> v ; identity = λ p → identity (fmap-Ⓢ-id p) ; composite = λ { {x = x} → trans (cong (λ t → t <$> x) (extensionality ext)) composite } } where open ≡-Reasoning ext : ∀ {A B C : Set} {f : A → B} {g : B → C} → (x' : Ⓢ A) → fmap-Ⓢ (g ∘ f) x' ≡ (fmap-Ⓢ g ∘ fmap-Ⓢ f) x' ext (zero) = refl ext (suc n) = refl module Trans = Functor functor private cata-Ⓢ-u0 : ∀ {a b} → (a → m (Ⓢ b)) → Ⓢ a → m (Ⓢ b) cata-Ⓢ-u0 = cata-Ⓢ (unit zero) abstract right-id : {a b : Set} {x : a → Ⓢ-Trans m b} {v : a} → Trans.map x (lift {m} (unit v)) >>= cata-Ⓢ-u0 id ≡ x v right-id {a}{b}{x}{v} = begin Trans.map x (suc <$> (unit v)) >>= cata-Ⓢ-u0 id ≡⟨ * ⟩ (fmap-Ⓢ x <$> (unit (suc v))) >>= cata-Ⓢ-u0 id ≡⟨ † ⟩ join (cata-Ⓢ-u0 id <$> (unit (suc (x v)))) ≡⟨ cong join <$>-unit ⟩ join (unit (x v)) ≡⟨ cong join (sym(identity id-is-id)) ⟩ join (id <$> unit (x v)) ≡⟨ is-right-ident {x = id} ⟩ x v ∎ where open ≡-Reasoning * : Trans.map x (suc <$> (unit v)) >>= cata-Ⓢ-u0 id ≡ (fmap-Ⓢ x <$> (unit (suc v))) >>= cata-Ⓢ-u0 id * = cong (λ t → Trans.map x t >>= cata-Ⓢ-u0 id) <$>-unit † : (fmap-Ⓢ x <$> (unit (suc v))) >>= cata-Ⓢ-u0 id ≡ join (cata-Ⓢ-u0 id <$> (unit (suc (x v)))) † = cong (λ x → x >>= cata-Ⓢ-u0 id) <$>-unit left-id : {b : Set} {t : Ⓢ-Trans m b} → Trans.map (λ x' → lift {m} (unit x')) t >>= cata-Ⓢ-u0 id ≡ t left-id {b}{t} = trans <$>-bind (subst (λ q → t >>= q ≡ t) (sym (extensionality h≗unit)) (is-left-ident {x = λ _ → t} {v = 0})) where h : ∀ {A} → Ⓢ A → m (Ⓢ A) h x = cata-Ⓢ-u0 id (fmap-Ⓢ (λ x' → suc <$> (unit x')) x) h≗unit : ∀ {A} → h {A} ≗ unit h≗unit zero = refl h≗unit (suc y) = <$>-unit assoc : ∀ {p q r s : Set} {a : r → Ⓢ-Trans m s}{b : q → Ⓢ-Trans m r}{c : p → Ⓢ-Trans m q} {v : p} → Trans.map a (Trans.map b (c v) >>= cata-Ⓢ-u0 id) >>= cata-Ⓢ-u0 id ≡ Trans.map (λ v' → Trans.map a (b v') >>= cata-Ⓢ-u0 id) (c v) >>= cata-Ⓢ-u0 id assoc {p}{q}{r}{s}{a}{b}{c}{v} = let †₀ = cata-fmap †₁ = cong (λ x → x >>= cata-Ⓢ (unit zero) a) cata-fmap †₂ = >=>-assoc {c = λ _ → c v} {v = 0} †₃ = cong (_>>=_ (c v)) (extensionality ext) †₄ = cong (λ x → c v >>= cata-Ⓢ (unit zero) x) (extensionality (λ x → sym cata-fmap)) †₅ = sym (cata-fmap) in begin Trans.map a (Trans.map b (c v) >>= cata-Ⓢ-u0 id) >>= cata-Ⓢ-u0 id ≡⟨ †₀ ⟩ ((fmap-Ⓢ b <$> c v) >>= cata-Ⓢ-u0 id) >>= cata-Ⓢ-u0 a ≡⟨ †₁ ⟩ (c v >>= cata-Ⓢ-u0 b) >>= cata-Ⓢ-u0 a ≡⟨ †₂ ⟩ c v >>= (λ cv → cata-Ⓢ-u0 b cv >>= cata-Ⓢ-u0 a) ≡⟨ †₃ ⟩ c v >>= cata-Ⓢ-u0 (λ v' → b v' >>= cata-Ⓢ-u0 a) ≡⟨ †₄ ⟩ c v >>= cata-Ⓢ-u0 (λ v' → (fmap-Ⓢ a <$> b v') >>= cata-Ⓢ-u0 id) ≡⟨ †₅ ⟩ Trans.map (λ v' → Trans.map a (b v') >>= cata-Ⓢ-u0 id) (c v) >>= cata-Ⓢ-u0 id ∎ where open ≡-Reasoning ext : (x : Ⓢ q) → cata-Ⓢ-u0 b x >>= cata-Ⓢ-u0 a ≡ cata-Ⓢ-u0 (λ v' → b v' >>= cata-Ⓢ-u0 a) x ext zero = begin join ((cata-Ⓢ-u0 a) <$> unit zero) ≡⟨ cong join <$>-unit ⟩ join (unit (unit zero)) ≡⟨ cong join (sym (identity id-is-id)) ⟩ join (id <$> unit (unit zero)) ≡⟨ is-right-ident ⟩ unit zero ∎ ext (suc n) = refl cata-fmap : ∀{A B C}{a : A → B}{x : m (Ⓢ A)}{n : m C}{j : B → m C} → (fmap-Ⓢ a <$> x) >>= cata-Ⓢ n j ≡ x >>= cata-Ⓢ n (λ x → j ( a x)) cata-fmap {A}{B}{C}{a}{x}{n}{j} = trans <$>-bind (cong (_>>=_ x) (extensionality ext′)) where ext′ : (x' : Ⓢ A) → cata-Ⓢ n j (fmap-Ⓢ a x') ≡ cata-Ⓢ n (λ x0 → j (a x0)) x' ext′ zero = refl ext′ (suc n) = refl produces-monad = record { point = λ x → lift ⦃ mm ⦄ (unit x) ; is-functor = functor ; join = λ v → v >>= cata-Ⓢ (unit zero) id ; is-left-ident = left-id ; is-right-ident = right-id ; >=>-assoc = λ {_}{_}{_}{_}{a}{b}{c}{v} → assoc {a = a}{b}{c}{v} } module HomomorphismProofs {m : Set → Set}⦃ mm : Monad m ⦄ where open Monad mm open Functor is-functor open ≡-Reasoning cata-Ⓢ-u0 : ∀ {a b} → (a → m (Ⓢ b)) → Ⓢ a → m (Ⓢ b) cata-Ⓢ-u0 = cata-Ⓢ (unit zero) fmap-p : ∀ {A B : Set} {f : A → B} {x} → lift {m} (f <$> x) ≡ (fmap-Ⓢ f) <$> (lift {m} x) fmap-p {A}{B}{f}{x} = begin suc <$> (f <$> x) ≡⟨ sym (composite) ⟩ (λ t → suc (f t)) <$> x ≡⟨ refl ⟩ (λ t → fmap-Ⓢ f (suc t)) <$> x ≡⟨ composite ⟩ (fmap-Ⓢ f) <$> (suc <$> x) ∎ join-p : ∀{τ}{x : m (m (τ))} → suc <$> (join x) ≡ (suc <$> (_<$>_ suc <$> x)) >>= cata-Ⓢ-u0 id join-p {_}{x} = begin suc <$> (join x) ≡⟨ natural-trans ⟩ join ((_<$>_ suc) <$> x) ≡⟨ refl ⟩ x >>= (λ z → cata-Ⓢ-u0 id (suc (suc <$> z))) ≡⟨ sym (<$>-bind) ⟩ ((λ z → suc (suc <$> z)) <$> x) >>= cata-Ⓢ-u0 id ≡⟨ † ⟩ (suc <$> (_<$>_ suc <$> x)) >>= cata-Ⓢ-u0 id ∎ where † = cong (λ x → x >>= cata-Ⓢ-u0 id) (composite) is-homomorphism : MonadHomomorphism (lift {m}) ⦃ mm ⦄ ⦃ MonadProofs.produces-monad ⦃ mm ⦄ ⦄ is-homomorphism = record { h-return = refl ; h-fmap = fmap-p ; h-join = join-p } Ⓢ-Trans-is-trans : MonadTrans (Ⓢ-Trans) Ⓢ-Trans-is-trans = record { produces-monad = λ mm → MonadProofs.produces-monad ⦃ mm ⦄ ; lift = λ{m} → lift {m} ; is-homomorphism = λ mm → HomomorphismProofs.is-homomorphism ⦃ mm ⦄ } module PlusN-Type where open Ⓢ-Type open Monads open Functors open StupidEquality PlusN : (n : ℕ) → Set → Set PlusN zero = id PlusN (suc n) = Ⓢ-Trans (PlusN n) PlusN-eq : ∀ {n}{x} → Eq x → Eq (PlusN n x) PlusN-eq {zero} eq = eq PlusN-eq {suc n} eq = PlusN-eq {n} (Ⓢ-eq eq) PlusN-is-monad : ∀ {n} → Monad (PlusN n) PlusN-is-monad {zero} = id-is-monad PlusN-is-monad {suc n} = MonadTrans.produces-monad Ⓢ-Trans-is-trans (PlusN-is-monad {n}) _⨁_ = flip PlusN sequence-PlusN : ∀ {m}{n}{b} → ⦃ monad : Monad m ⦄ → (m b) ⨁ n → m (b ⨁ n) sequence-PlusN {n = zero} x = x sequence-PlusN {n = suc n} ⦃ m ⦄ x = sequence-PlusN {n = n}⦃ m ⦄ (PlusN-f.map (sequence-Ⓢ ⦃ m ⦄) x) where module PlusN-f = Functor (Monad.is-functor (PlusN-is-monad {n})) PlusN-collect : ∀ {n}{a b} → n ⨁ (a + b) ≡ (n ⨁ a) ⨁ b PlusN-collect {n}{zero} = refl PlusN-collect {n}{suc a}{b} = PlusN-collect {Ⓢ n}{a}{b} open Ⓢ-Type public open PlusN-Type public open Functors public open Monads public open Shapes public open StupidEquality public
{ "alphanum_fraction": 0.388228329, "avg_line_length": 44.1590413943, "ext": "agda", "hexsha": "79308c3f5c52889846a893823112224cf18a914e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "liamoc/outside-in", "max_forks_repo_path": "OutsideIn/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "liamoc/outside-in", "max_issues_repo_path": "OutsideIn/Prelude.agda", "max_line_length": 100, "max_stars_count": 2, "max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "liamoc/outside-in", "max_stars_repo_path": "OutsideIn/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z", "num_tokens": 7370, "size": 20269 }
-- Internal error in coverage checker. module Issue505 where data Nat : Set where zero : Nat suc : Nat → Nat _+_ : Nat → Nat → Nat zero + m = m suc n + m = suc (n + m) data Split : Nat → Nat → Set where 1x1 : Split (suc zero) (suc zero) _∣_ : ∀ {a b c} → Split a b → Split a c → Split a (b + c) _/_ : ∀ {a b c} → Split b a → Split c a → Split (b + c) a data ⊤ : Set where tt : ⊤ theorem : ∀ {a b} → (split : Split a b) → ⊤ theorem 1x1 = tt theorem {suc a} .{_} (l ∣ r) = tt theorem {zero } .{_} (l ∣ r) = tt theorem (l / r) = tt
{ "alphanum_fraction": 0.5401459854, "avg_line_length": 21.92, "ext": "agda", "hexsha": "2acca776bd15b0d2d6f9273b1e9d081ed0957894", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue505.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue505.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue505.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 224, "size": 548 }
module Structure.Setoid.Category.HomFunctor where import Functional as Fn open import Function.Equals open import Function.Equals.Proofs open import Logic.Predicate import Lvl open import Structure.Category open import Structure.Category.Dual open import Structure.Category.Functor.Contravariant open import Structure.Category.Functor open import Structure.Categorical.Properties open import Structure.Function open import Structure.Operator open import Structure.Relator.Equivalence open import Structure.Setoid open import Syntax.Function open import Syntax.Transitivity open import Structure.Setoid.Category open import Type private variable ℓ ℓₒ ℓₘ ℓₑ : Lvl.Level module _ (C : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}) where open CategoryObject(C) open Category ⦃ … ⦄ open ArrowNotation private open module MorphismEquiv {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv{x}{y} ⦄) using () covariantHomFunctor : Object → (C →ᶠᵘⁿᶜᵗᵒʳ setoidCategoryObject) ∃.witness (covariantHomFunctor x) y = [∃]-intro (x ⟶ y) Functor.map (∃.proof (covariantHomFunctor _)) f = [∃]-intro (f ∘_) ⦃ BinaryOperator.right binaryOperator ⦄ _⊜_.proof (Function.congruence (Functor.map-function (∃.proof (covariantHomFunctor _))) {f₁} {f₂} f₁f₂) {g} = f₁ ∘ g 🝖-[ congruence₂ₗ(_∘_) g f₁f₂ ] f₂ ∘ g 🝖-end _⊜_.proof (Functor.op-preserving (∃.proof (covariantHomFunctor _)) {f = f} {g = g}) {h} = (f ∘ g) ∘ h 🝖[ _≡_ ]-[ Morphism.associativity(_∘_) ] f ∘ (g ∘ h) 🝖[ _≡_ ]-[] ((f ∘_) Fn.∘ (g ∘_)) h 🝖-end _⊜_.proof (Functor.id-preserving (∃.proof (covariantHomFunctor _))) {f} = id ∘ f 🝖[ _≡_ ]-[ Morphism.identityₗ(_∘_)(id) ] f 🝖[ _≡_ ]-[] Fn.id(f) 🝖-end contravariantHomFunctor : Object → (C →ᶜᵒⁿᵗʳᵃᵛᵃʳⁱᵃⁿᵗᶠᵘⁿᶜᵗᵒʳ setoidCategoryObject) ∃.witness (contravariantHomFunctor x) y = [∃]-intro (y ⟶ x) Functor.map (∃.proof (contravariantHomFunctor _)) f = [∃]-intro (_∘ f) ⦃ BinaryOperator.left binaryOperator ⦄ _⊜_.proof (Function.congruence (Functor.map-function (∃.proof (contravariantHomFunctor _))) {g₁} {g₂} g₁g₂) {f} = f ∘ g₁ 🝖-[ congruence₂ᵣ(_∘_) f g₁g₂ ] f ∘ g₂ 🝖-end _⊜_.proof (Functor.op-preserving (∃.proof (contravariantHomFunctor _)) {f = h} {g = g}) {f} = f ∘ (g ∘ h) 🝖[ _≡_ ]-[ Morphism.associativity(_∘_) ]-sym (f ∘ g) ∘ h 🝖[ _≡_ ]-[] ((_∘ h) Fn.∘ (_∘ g)) f 🝖-end _⊜_.proof (Functor.id-preserving (∃.proof (contravariantHomFunctor _))) {f} = f ∘ id 🝖[ _≡_ ]-[ Morphism.identityᵣ(_∘_)(id) ] f 🝖[ _≡_ ]-[] Fn.id(f) 🝖-end
{ "alphanum_fraction": 0.6562986003, "avg_line_length": 43.593220339, "ext": "agda", "hexsha": "a8d2f40215f22b02ab6662dc630729203c921d55", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Setoid/Category/HomFunctor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Setoid/Category/HomFunctor.agda", "max_line_length": 115, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Setoid/Category/HomFunctor.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1045, "size": 2572 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Any (◇) for containers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Container.Relation.Unary.Any where open import Level using (_⊔_) open import Relation.Unary using (Pred; _⊆_) open import Data.Product as Prod using (_,_; proj₂; ∃) open import Function open import Data.Container.Core hiding (map) import Data.Container.Morphism as M record ◇ {s p} (C : Container s p) {x ℓ} {X : Set x} (P : Pred X ℓ) (cx : ⟦ C ⟧ X) : Set (p ⊔ ℓ) where constructor any field proof : ∃ λ p → P (proj₂ cx p) module _ {s₁ p₁ s₂ p₂} {C : Container s₁ p₁} {D : Container s₂ p₂} {x ℓ ℓ′} {X : Set x} {P : Pred X ℓ} {Q : Pred X ℓ′} where map : (f : C ⇒ D) → P ⊆ Q → ◇ D P ∘′ ⟪ f ⟫ ⊆ ◇ C Q map f P⊆Q (any (p , P)) .◇.proof = f .position p , P⊆Q P module _ {s₁ p₁ s₂ p₂} {C : Container s₁ p₁} {D : Container s₂ p₂} {x ℓ} {X : Set x} {P : Pred X ℓ} where map₁ : (f : C ⇒ D) → ◇ D P ∘′ ⟪ f ⟫ ⊆ ◇ C P map₁ f = map f id module _ {s p} {C : Container s p} {x ℓ ℓ′} {X : Set x} {P : Pred X ℓ} {Q : Pred X ℓ′} where map₂ : P ⊆ Q → ◇ C P ⊆ ◇ C Q map₂ = map (M.id C)
{ "alphanum_fraction": 0.4774637128, "avg_line_length": 28.4565217391, "ext": "agda", "hexsha": "4de90ab092599afec6a90e58f3095d391707d8ec", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Unary/Any.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Unary/Any.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Unary/Any.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 478, "size": 1309 }
module SystemF.Syntax.Term.Constructors where open import Prelude hiding (⊥-elim) open import SystemF.WellTyped open import SystemF.Substitutions.Lemmas open import SystemF.Substitutions open import SystemF.Syntax.Type.Constructors -- polymorphic function application -- applies a polymorphic function to an argument with the type of the domain poly-· : ∀ {ν n} {a : Type ν} {K : Ctx ν n} {f arg} → (fa : IsFunction a) → K ⊢ f ∈ a → K ⊢ arg ∈ domain fa → ∃ λ t → K ⊢ t ∈ codomain fa poly-· (lambda a b) ⊢f ⊢arg = , ⊢f · ⊢arg poly-· {K = K} {f = f} {arg = arg} (∀'-lambda {a} fa) ⊢f ⊢arg = , Λ (proj₂ (poly-· fa f' arg')) where f' : ctx-weaken K ⊢ _ ∈ a f' = subst (λ τ → ctx-weaken K ⊢ _ ∈ τ) (TypeLemmas.a-/Var-varwk↑-/-sub0≡a a) ((⊢tp-weaken ⊢f) [ tvar zero ]) arg' : ctx-weaken K ⊢ (tm-weaken arg) [ tvar zero ] ∈ domain fa arg' = subst (λ τ → ctx-weaken K ⊢ _ ∈ τ) (TypeLemmas.a-/Var-varwk↑-/-sub0≡a (domain fa)) ((⊢tp-weaken ⊢arg) [ tvar zero ]) -- Polymorphic identity function id' : {ν n : ℕ} → Term ν n id' = Λ (λ' (tvar zero) (var zero)) -- Bottom elimination/univeral property of the initial type ⊥-elim : ∀ {m n} → Type n → Term n m ⊥-elim a = λ' ⊥' ((var zero) [ a ]) -- Unit value tt = id' -- n-ary term abstraction λⁿ : ∀ {ν m k} → Vec (Type ν) k → Term ν (k N+ m) → Term ν m λⁿ [] t = t λⁿ (a ∷ as) t = λⁿ as (λ' a t) infixl 9 _·ⁿ_ -- n-ary term application _·ⁿ_ : ∀ {m n k} → Term m n → Vec (Term m n) k → Term m n s ·ⁿ [] = s s ·ⁿ (t ∷ ts) = (s ·ⁿ ts) · t -- Record/tuple constructor newrec : ∀ {ν n k} → Vec (Term ν n) k → {as : Vec (Type ν) k} → Term ν n newrec [] = tt newrec (t ∷ ts) {a ∷ as} = Λ (λ' (map tp-weaken (a ∷ as) →ⁿ tvar zero) (var zero ·ⁿ map tmtm-weaken (map tm-weaken (t ∷ ts)))) -- Field access/projection π : ∀ {ν n k} → Fin k → Term ν n → {as : Vec (Type ν) k} → Term ν n π () t {[]} π {n = n} x t {as} = (t [ lookup x as ]) · (λⁿ as (var (inject+ n x)))
{ "alphanum_fraction": 0.5568295115, "avg_line_length": 32.3548387097, "ext": "agda", "hexsha": "97970240f9553d5c8f57c9c04842b8a8be16054c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/SystemF/Syntax/Term/Constructors.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/SystemF/Syntax/Term/Constructors.agda", "max_line_length": 95, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/SystemF/Syntax/Term/Constructors.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 806, "size": 2006 }
-- {-# OPTIONS -v interaction.give:30 -v interaction.scope:30 -v highlighting:50 -v auto:10 #-} -- Andreas, 2014-07-05 and -08 module _ where data Unit : Set where unit : Unit auto : Unit auto = {!!} -- C-c C-a succeeds but then an error occurs during highlighting -- Problem WAS: -- Auto finds a solution, but then there is the error -- Failed to parse expression in ?0 -- Should work now. refine : Unit refine = {!unit!} -- Problem WAS: Highlighting after refine triggers an error.
{ "alphanum_fraction": 0.6888888889, "avg_line_length": 21.5217391304, "ext": "agda", "hexsha": "e5434d4f4adb091b120131004b35873febba6fdd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1226.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1226.agda", "max_line_length": 95, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1226.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 135, "size": 495 }
module examplesPaperJFP.Sized where open import Data.Product using (_×_; _,_) open import Data.String open import Function using (case_of_) open import Size open import examplesPaperJFP.NativeIOSafe open import examplesPaperJFP.BasicIO using (IOInterface; Command; Response) open import examplesPaperJFP.ConsoleInterface open import examplesPaperJFP.Console using (translateIOConsoleLocal) open import examplesPaperJFP.Object using (Interface; Method; Result; cellJ; CellMethod; get; put; CellResult) module UnfoldF where open import examplesPaperJFP.Coalgebra using (F; mapF) record νF (i : Size) : Set where coinductive constructor delay field force : ∀(j : Size< i) → F (νF j) open νF using (force) unfoldF : ∀{S} (t : S → F S) → ∀ i → (S → νF i) force (unfoldF t i s) j = mapF (unfoldF t j) (t s) mutual record IO (Iᵢₒ : IOInterface) (i : Size) (A : Set) : Set where coinductive constructor delay field force : {j : Size< i} → IO′ Iᵢₒ j A data IO′ (Iᵢₒ : IOInterface) (i : Size) (A : Set) : Set where exec′ : (c : Command Iᵢₒ) (f : Response Iᵢₒ c → IO Iᵢₒ i A) → IO′ Iᵢₒ i A return′ : (a : A) → IO′ Iᵢₒ i A module NestedRecursion (Iᵢₒ : IOInterface) (A : Set) where data F (X : Set) : Set where exec′ : (c : Command Iᵢₒ) (f : Response Iᵢₒ c → X) → F X return′ : (a : A) → F X record νF (i : Size) : Set where coinductive constructor delay field force : {j : Size< i} → F (νF j) open IO public module _ {Iᵢₒ : IOInterface } (let C = Command Iᵢₒ) (let R = Response Iᵢₒ) where infixl 2 _>>=_ exec : ∀ {i A} (c : C) (f : R c → IO Iᵢₒ i A) → IO Iᵢₒ i A return : ∀ {i A} (a : A) → IO Iᵢₒ i A _>>=_ : ∀ {i A B} (m : IO Iᵢₒ i A) (k : A → IO Iᵢₒ i B) → IO Iᵢₒ i B force (exec c f) = exec′ c f force (return a) = return′ a force (_>>=_ {i} m k) {j} with force m {j} ... | exec′ c f = exec′ c λ r → _>>=_ {j} (f r) k ... | return′ a = force (k a) {j} {-# NON_TERMINATING #-} translateIO : ∀{A : Set} → (translateLocal : (c : C) → NativeIO (R c)) → IO Iᵢₒ ∞ A → NativeIO A translateIO translateLocal m = case (force m) of λ{ (exec′ c f) → (translateLocal c) native>>= λ r → translateIO translateLocal (f r) ; (return′ a) → nativeReturn a } record IOObject (Iᵢₒ : IOInterface) (I : Interface) (i : Size) : Set where coinductive field method : ∀{j : Size< i} (m : Method I) → IO Iᵢₒ ∞ (Result I m × IOObject Iᵢₒ I j) open IOObject public CellC : (i : Size) → Set CellC = IOObject ConsoleInterface (cellJ String) simpleCell : ∀{i} (s : String) → CellC i force (method (simpleCell {i} s) {j} get) = exec′ (putStrLn ("getting (" ++ s ++ ")")) λ _ → return (s , simpleCell {j} s) force (method (simpleCell _) (put s)) = exec′ (putStrLn ("putting (" ++ s ++ ")")) λ _ → return (unit , simpleCell s) program : ∀{i} → IO ConsoleInterface i Unit force program = let c₁ = simpleCell "Start" in exec′ getLine λ{ nothing → return unit; (just s) → method c₁ (put s) >>= λ{ (_ , c₂) → method c₂ get >>= λ{ (s′ , c₃) → exec (putStrLn s′) λ _ → program }}} main : NativeIO Unit main = translateIO translateIOConsoleLocal program
{ "alphanum_fraction": 0.5806642942, "avg_line_length": 30.1071428571, "ext": "agda", "hexsha": "732b3c3eaa4b06218aace3eeb231b5427b9ef703", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/Sized.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/Sized.agda", "max_line_length": 84, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/Sized.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 1248, "size": 3372 }
module STLC2.Kovacs.Normalisation where open import STLC2.Kovacs.NormalForm public -------------------------------------------------------------------------------- -- (Tyᴺ) mutual infix 3 _⊩_ _⊩_ : 𝒞 → 𝒯 → Set Γ ⊩ ⎵ = Γ ⊢ⁿᶠ ⎵ Γ ⊩ A ⇒ B = ∀ {Γ′} → (η : Γ′ ⊇ Γ) (∂a : Γ′ ∂⊩ A) → Γ′ ∂⊩ B Γ ⊩ A ⩕ B = Γ ∂⊩ A × Γ ∂⊩ B Γ ⊩ ⫪ = ⊤ Γ ⊩ ⫫ = ⊥ Γ ⊩ A ⩖ B = Γ ∂⊩ A ⊎ Γ ∂⊩ B infix 3 _∂⊩_ _∂⊩_ : 𝒞 → 𝒯 → Set Γ ∂⊩ A = ∀ {Γ′ C} → (η : Γ′ ⊇ Γ) → (f : ∀ {Γ″} → Γ″ ⊇ Γ′ → Γ″ ⊩ A → Γ″ ⊢ⁿᶠ C) → Γ′ ⊢ⁿᶠ C -- (Conᴺ ; ∙ ; _,_) infix 3 _∂⊩⋆_ data _∂⊩⋆_ : 𝒞 → 𝒞 → Set where ∅ : ∀ {Γ} → Γ ∂⊩⋆ ∅ _,_ : ∀ {Γ Ξ A} → (ρ : Γ ∂⊩⋆ Ξ) (∂a : Γ ∂⊩ A) → Γ ∂⊩⋆ Ξ , A -------------------------------------------------------------------------------- -- (Tyᴺₑ) mutual acc : ∀ {A Γ Γ′} → Γ′ ⊇ Γ → Γ ⊩ A → Γ′ ⊩ A acc {⎵} η M = renⁿᶠ η M acc {A ⇒ B} η f = λ η′ a → f (η ○ η′) a acc {A ⩕ B} η s = ∂acc η (proj₁ s) , ∂acc η (proj₂ s) acc {⫪} η s = tt acc {⫫} η s = elim⊥ s acc {A ⩖ B} η (inj₁ a) = inj₁ (∂acc η a) acc {A ⩖ B} η (inj₂ b) = inj₂ (∂acc η b) -- TODO: Why doesn’t this work? -- acc {A ⩖ B} η s = case⊎ s (λ a → ∂acc η a) -- (λ b → ∂acc η b) ∂acc : ∀ {A Γ Γ′} → Γ′ ⊇ Γ → Γ ∂⊩ A → Γ′ ∂⊩ A ∂acc η ∂a = λ η′ f → ∂a (η ○ η′) f -- (Conᴺₑ) -- NOTE: _⬖_ = ∂acc⋆ _⬖_ : ∀ {Γ Γ′ Ξ} → Γ ∂⊩⋆ Ξ → Γ′ ⊇ Γ → Γ′ ∂⊩⋆ Ξ ∅ ⬖ η = ∅ (ρ , ∂a) ⬖ η = ρ ⬖ η , ∂acc η ∂a -------------------------------------------------------------------------------- !ƛ : ∀ {Γ A B} → (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ∂⊩ A → Γ′ ∂⊩ B) → Γ ⊩ A ⇒ B !ƛ f = λ η ∂a → f η ∂a _!∙_ : ∀ {Γ A B} → Γ ⊩ A ⇒ B → Γ ∂⊩ A → Γ ∂⊩ B f !∙ ∂a = f idₑ ∂a _!,_ : ∀ {Γ A B} → Γ ∂⊩ A → Γ ∂⊩ B → Γ ⊩ A ⩕ B ∂a !, ∂b = ∂a , ∂b !π₁ : ∀ {Γ A B} → Γ ⊩ A ⩕ B → Γ ∂⊩ A !π₁ s = proj₁ s !π₂ : ∀ {Γ A B} → Γ ⊩ A ⩕ B → Γ ∂⊩ B !π₂ s = proj₂ s !τ : ∀ {Γ} → Γ ⊩ ⫪ !τ = tt !φ : ∀ {Γ C} → Γ ⊩ ⫫ → Γ ∂⊩ C !φ s = elim⊥ s !ι₁ : ∀ {Γ A B} → Γ ∂⊩ A → Γ ⊩ A ⩖ B !ι₁ ∂a = inj₁ ∂a !ι₂ : ∀ {Γ A B} → Γ ∂⊩ B → Γ ⊩ A ⩖ B !ι₂ ∂b = inj₂ ∂b _!⁇_!∥_ : ∀ {Γ A B C} → Γ ⊩ A ⩖ B → (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ∂⊩ A → Γ′ ∂⊩ C) → (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ∂⊩ B → Γ′ ∂⊩ C) → Γ ∂⊩ C s !⁇ f !∥ g = elim⊎ s (λ ∂a → f idₑ ∂a) (λ ∂b → g idₑ ∂b) -------------------------------------------------------------------------------- return : ∀ {A Γ} → Γ ⊩ A → Γ ∂⊩ A return {A} a = λ η f → f idₑ (acc {A} η a) bind : ∀ {A C Γ} → Γ ∂⊩ A → (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ⊩ A → Γ′ ∂⊩ C) → Γ ∂⊩ C bind ∂a f = λ η f′ → ∂a η (λ η′ a → f (η ○ η′) a idₑ (λ η″ b → f′ (η′ ○ η″) b)) -------------------------------------------------------------------------------- ∂!λ : ∀ {Γ A B} → (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ∂⊩ A → Γ′ ∂⊩ B) → Γ ∂⊩ A ⇒ B ∂!λ {A = A} f = return {A ⇒ _} (!ƛ f) _∂!∙_ : ∀ {Γ A B} → Γ ∂⊩ A ⇒ B → Γ ∂⊩ A → Γ ∂⊩ B ∂f ∂!∙ ∂a = bind ∂f (λ η f → f !∙ ∂acc η ∂a) _∂!,_ : ∀ {Γ A B} → Γ ∂⊩ A → Γ ∂⊩ B → Γ ∂⊩ A ⩕ B ∂a ∂!, ∂b = return (∂a !, ∂b) ∂!π₁ : ∀ {Γ A B} → Γ ∂⊩ A ⩕ B → Γ ∂⊩ A ∂!π₁ ∂s = bind ∂s (λ η s → !π₁ s) ∂!π₂ : ∀ {Γ A B} → Γ ∂⊩ A ⩕ B → Γ ∂⊩ B ∂!π₂ ∂s = bind ∂s (λ η s → !π₂ s) ∂!τ : ∀ {Γ} → Γ ∂⊩ ⫪ ∂!τ {Γ} = return (!τ {Γ}) ∂!φ : ∀ {Γ C} → Γ ∂⊩ ⫫ → Γ ∂⊩ C ∂!φ ∂s = bind ∂s (λ η s → !φ s) ∂!ι₁ : ∀ {Γ A B} → Γ ∂⊩ A → Γ ∂⊩ A ⩖ B ∂!ι₁ {B = B} ∂a = return {_ ⩖ B} (!ι₁ ∂a) ∂!ι₂ : ∀ {Γ A B} → Γ ∂⊩ B → Γ ∂⊩ A ⩖ B ∂!ι₂ {A = A} ∂b = return {A ⩖ _} (!ι₂ ∂b) _∂!⁇_∂!∥_ : ∀ {Γ A B C} → Γ ∂⊩ A ⩖ B → (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ∂⊩ A → Γ′ ∂⊩ C) → (∀ {Γ′} → Γ′ ⊇ Γ → Γ′ ∂⊩ B → Γ′ ∂⊩ C) → Γ ∂⊩ C ∂s ∂!⁇ f ∂!∥ g = bind ∂s (λ η s → s !⁇ (λ η′ → f (η ○ η′)) !∥ (λ η′ → g (η ○ η′))) -------------------------------------------------------------------------------- -- (∈ᴺ) getᵥ : ∀ {Γ Ξ A} → Γ ∂⊩⋆ Ξ → Ξ ∋ A → Γ ∂⊩ A getᵥ (ρ , ∂a) zero = ∂a getᵥ (ρ , ∂a) (suc i) = getᵥ ρ i -- (Tmᴺ) eval : ∀ {Γ Ξ A} → Γ ∂⊩⋆ Ξ → Ξ ⊢ A → Γ ∂⊩ A eval ρ (𝓋 i) = getᵥ ρ i eval ρ (ƛ M) = ∂!λ (λ η ∂a → eval (ρ ⬖ η , ∂a) M) eval ρ (M ∙ N) = eval ρ M ∂!∙ eval ρ N eval ρ (M , N) = eval ρ M ∂!, eval ρ N eval ρ (π₁ M) = ∂!π₁ (eval ρ M) eval ρ (π₂ M) = ∂!π₂ (eval ρ M) eval ρ τ = ∂!τ eval ρ (φ M) = ∂!φ (eval ρ M) eval ρ (ι₁ M) = ∂!ι₁ (eval ρ M) eval ρ (ι₂ M) = ∂!ι₂ (eval ρ M) eval ρ (M ⁇ N₁ ∥ N₂) = eval ρ M ∂!⁇ (λ η ∂a → eval (ρ ⬖ η , ∂a) N₁) ∂!∥ (λ η ∂b → eval (ρ ⬖ η , ∂b) N₂) -------------------------------------------------------------------------------- mutual -- (qᴺ) reify : ∀ {A Γ} → Γ ∂⊩ A → Γ ⊢ⁿᶠ A reify {⎵} ∂a = ∂a idₑ (λ η M → M) reify {A ⇒ B} ∂a = ∂a idₑ (λ η f → ƛ (reify (f (wkₑ idₑ) (reflect 0)))) reify {A ⩕ B} ∂a = ∂a idₑ (λ η s → reify (proj₁ s) , reify (proj₂ s)) reify {⫪} ∂a = ∂a idₑ (λ η s → τ) reify {⫫} ∂a = ∂a idₑ (λ η s → elim⊥ s) reify {A ⩖ B} ∂a = ∂a idₑ (λ η s → elim⊎ s (λ a → ι₁ (reify a)) (λ b → ι₂ (reify b))) -- (uᴺ) reflect : ∀ {A Γ} → Γ ⊢ⁿᵉ A → Γ ∂⊩ A reflect {⎵} M = return (ne M) reflect {A ⇒ B} M = return {A ⇒ _} (λ η ∂a → reflect (renⁿᵉ η M ∙ reify ∂a)) reflect {A ⩕ B} M = return (reflect (π₁ M) , reflect (π₂ M)) reflect {⫪} M = return tt reflect {⫫} M = λ η f → ne (φ (renⁿᵉ η M)) reflect {A ⩖ B} M = λ η f → ne (renⁿᵉ η M ⁇ f (wkₑ idₑ) (inj₁ (reflect 0)) ∥ f (wkₑ idₑ) (inj₂ (reflect 0))) -------------------------------------------------------------------------------- -- (uᶜᴺ) idᵥ : ∀ {Γ} → Γ ∂⊩⋆ Γ idᵥ {∅} = ∅ idᵥ {Γ , A} = idᵥ ⬖ wkₑ idₑ , reflect 0 -- (nf) nf : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ⁿᶠ A nf M = reify (eval idᵥ M) --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.2595902018, "avg_line_length": 25.964, "ext": "agda", "hexsha": "4284dcf6702ee3dbaccaf5c2a7650d4394a1f5de", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand-kovacs", "max_forks_repo_path": "src/STLC2/Kovacs/Normalisation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand-kovacs", "max_issues_repo_path": "src/STLC2/Kovacs/Normalisation.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand-kovacs", "max_stars_repo_path": "src/STLC2/Kovacs/Normalisation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3427, "size": 6491 }
{-# OPTIONS --without-K #-} open import lib.Basics module lib.types.Empty where Empty-rec : ∀ {i} {A : Type i} → (Empty → A) Empty-rec = Empty-elim ⊥-rec : ∀ {i} {A : Type i} → (⊥ → A) ⊥-rec = Empty-rec Empty-is-prop : is-prop Empty Empty-is-prop = Empty-elim ⊥-is-prop : is-prop ⊥ ⊥-is-prop = Empty-is-prop negated-equiv-Empty : ∀ {i} (A : Type i) → (¬ A) → (Empty ≃ A) negated-equiv-Empty A notA = equiv Empty-elim notA (λ a → Empty-elim {P = λ _ → Empty-elim (notA a) == a} (notA a)) (Empty-elim {P = λ e → notA (Empty-elim e) == e})
{ "alphanum_fraction": 0.4946070878, "avg_line_length": 27.0416666667, "ext": "agda", "hexsha": "cc542e207cef68ddb83a5880208e89db9acaa4bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Empty.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Empty.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 214, "size": 649 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Sizes for Agda's sized types ------------------------------------------------------------------------ module Size where postulate Size : Set Size<_ : Size → Set ↑_ : Size → Size ∞ : Size {-# BUILTIN SIZE Size #-} {-# BUILTIN SIZELT Size<_ #-} {-# BUILTIN SIZESUC ↑_ #-} {-# BUILTIN SIZEINF ∞ #-}
{ "alphanum_fraction": 0.3696145125, "avg_line_length": 23.2105263158, "ext": "agda", "hexsha": "992d44c32432d9627125ea04b3042f04e0b0a39b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Size.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Size.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Size.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 96, "size": 441 }
{-# OPTIONS --without-K #-} module lib.Basics where open import lib.Base public open import lib.PathGroupoid public open import lib.PathFunctor public open import lib.NType public open import lib.Equivalences public open import lib.Univalence public open import lib.Funext public open import lib.PathOver public
{ "alphanum_fraction": 0.8121019108, "avg_line_length": 24.1538461538, "ext": "agda", "hexsha": "f4c31254d9a028f1ae85b8001f364bc1ce210202", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sattlerc/HoTT-Agda", "max_forks_repo_path": "lib/Basics.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sattlerc/HoTT-Agda", "max_issues_repo_path": "lib/Basics.agda", "max_line_length": 35, "max_stars_count": null, "max_stars_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "sattlerc/HoTT-Agda", "max_stars_repo_path": "lib/Basics.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 72, "size": 314 }
-- Andreas, 2011-04-14 -- {-# OPTIONS -v tc.cover:20 -v tc.lhs.unify:20 #-} -- Jesper, 2016-06-23: should also work --cubical-compatible {-# OPTIONS --cubical-compatible #-} module Issue291-1775 where -- Example by Ulf data Nat : Set where zero : Nat suc : Nat -> Nat data _≡_ {A : Set}(a : A) : A -> Set where refl : a ≡ a -- since 'n' occurs stronly rigid in 'suc n', the type 'n ≡ suc n' is empty h : (n : Nat) -> n ≡ suc n -> Nat h n () -- Example by [email protected] data Type : Set where ₁ : Type _×_ : Type → Type → Type _+_ : Type → Type → Type data Fun : Type → Type → Set where _∙_ : ∀ {s t u} → Fun t u → Fun s t → Fun s u π₁ : ∀ {s t} → Fun (s × t) s π₂ : ∀ {s t} → Fun (s × t) t ι₁ : ∀ {s t} → Fun s (s + t) ι₂ : ∀ {s t} → Fun t (s + t) data Val : (t : Type) → Fun ₁ t → Set where Valι₁ : ∀ {s t V} → Val s V → Val (s + t) (ι₁ ∙ V) Valι₂ : ∀ {s t V} → Val t V → Val (s + t) (ι₂ ∙ V) data ⊥ : Set where -- should succeed: ¬Valπ₁ : ∀ {s t : Type} {M : Fun ₁ (s × t)} → Val s (π₁ ∙ M) → ⊥ ¬Valπ₁ () {- OLD ERROR: Val .s (π₁ ∙ .M) should be empty, but it isn't obvious that it is. when checking that the clause ¬Valπ₁ () has type {s t : Type} {M : Fun ₁ (s × t)} → Val s (π₁ ∙ M) → ⊥ -}
{ "alphanum_fraction": 0.5247603834, "avg_line_length": 25.04, "ext": "agda", "hexsha": "940e64d8ab3c81ec6422fb2be1e5a4561d13f9d0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue291-1775.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue291-1775.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue291-1775.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 528, "size": 1252 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Group open import lib.types.Sigma open import lib.types.Pi open import lib.types.Truncation open import lib.types.SetQuotient open import lib.groups.Homomorphism open import lib.groups.Subgroup open import lib.groups.SubgroupProp module lib.groups.QuotientGroup where module _ {i j} {G : Group i} (P : NormalSubgroupProp G j) where private module G = Group G module P = NormalSubgroupProp P infix 80 _⊙_ _⊙_ = G.comp quot-group-rel : Rel G.El j quot-group-rel g₁ g₂ = P.prop (G.diff g₁ g₂) quot-group-struct : GroupStructure (SetQuot quot-group-rel) quot-group-struct = record {M} where module M where ident : SetQuot quot-group-rel ident = q[ G.ident ] abstract inv-rel : ∀ {g₁ g₂ : G.El} (pg₁g₂⁻¹ : P.prop (G.diff g₁ g₂)) → q[ G.inv g₁ ] == q[ G.inv g₂ ] :> SetQuot quot-group-rel inv-rel {g₁} {g₂} pg₁g₂⁻¹ = ! $ quot-rel $ transport! (λ g → P.prop (G.inv g₂ ⊙ g)) (G.inv-inv g₁) $ P.comm g₁ (G.inv g₂) pg₁g₂⁻¹ inv : SetQuot quot-group-rel → SetQuot quot-group-rel inv = SetQuot-rec SetQuot-level (λ g → q[ G.inv g ]) inv-rel abstract comp-rel-r : ∀ g₁ {g₂ g₂' : G.El} (pg₂g₂'⁻¹ : P.prop (G.diff g₂ g₂')) → q[ g₁ ⊙ g₂ ] == q[ g₁ ⊙ g₂' ] :> SetQuot quot-group-rel comp-rel-r g₁ {g₂} {g₂'} pg₂g₂'⁻¹ = quot-rel $ transport P.prop ( ap (_⊙ G.inv g₁) (! $ G.assoc g₁ g₂ (G.inv g₂')) ∙ G.assoc (g₁ ⊙ g₂) (G.inv g₂') (G.inv g₁) ∙ ap ((g₁ ⊙ g₂) ⊙_) (! $ G.inv-comp g₁ g₂')) (P.conj g₁ pg₂g₂'⁻¹) comp' : G.El → SetQuot quot-group-rel → SetQuot quot-group-rel comp' g₁ = SetQuot-rec SetQuot-level (λ g₂ → q[ g₁ ⊙ g₂ ]) (comp-rel-r g₁) abstract comp-rel-l : ∀ {g₁ g₁' : G.El} (pg₁g₁'⁻¹ : P.prop (G.diff g₁ g₁')) g₂ → q[ g₁ ⊙ g₂ ] == q[ g₁' ⊙ g₂ ] :> SetQuot quot-group-rel comp-rel-l {g₁} {g₁'} pg₁g₁'⁻¹ g₂ = quot-rel $ transport! P.prop ( ap ((g₁ ⊙ g₂) ⊙_) (G.inv-comp g₁' g₂) ∙ ! (G.assoc (g₁ ⊙ g₂) (G.inv g₂) (G.inv g₁') ) ∙ ap (_⊙ G.inv g₁') ( G.assoc g₁ g₂ (G.inv g₂) ∙ ap (g₁ ⊙_) (G.inv-r g₂) ∙ G.unit-r g₁)) pg₁g₁'⁻¹ comp'-rel : ∀ {g₁ g₁' : G.El} (pg₁g₁'⁻¹ : P.prop (G.diff g₁ g₁')) → comp' g₁ == comp' g₁' comp'-rel pg₁g₁'⁻¹ = λ= $ SetQuot-elim (λ _ → =-preserves-set SetQuot-level) (comp-rel-l pg₁g₁'⁻¹) (λ _ → prop-has-all-paths-↓ (SetQuot-level _ _)) comp : SetQuot quot-group-rel → SetQuot quot-group-rel → SetQuot quot-group-rel comp = SetQuot-rec (→-is-set SetQuot-level) comp' comp'-rel abstract unit-l : ∀ g → comp ident g == g unit-l = SetQuot-elim (λ _ → =-preserves-set SetQuot-level) (ap q[_] ∘ G.unit-l) (λ _ → prop-has-all-paths-↓ (SetQuot-level _ _)) assoc : ∀ g₁ g₂ g₃ → comp (comp g₁ g₂) g₃ == comp g₁ (comp g₂ g₃) assoc = SetQuot-elim (λ _ → Π-is-set λ _ → Π-is-set λ _ → =-preserves-set SetQuot-level) (λ g₁ → SetQuot-elim (λ _ → Π-is-set λ _ → =-preserves-set SetQuot-level) (λ g₂ → SetQuot-elim (λ _ → =-preserves-set SetQuot-level) (λ g₃ → ap q[_] $ G.assoc g₁ g₂ g₃) (λ _ → prop-has-all-paths-↓ (SetQuot-level _ _))) (λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → SetQuot-level _ _))) (λ _ → prop-has-all-paths-↓ (Π-is-prop λ _ → Π-is-prop λ _ → SetQuot-level _ _)) inv-l : ∀ g → comp (inv g) g == ident inv-l = SetQuot-elim (λ _ → =-preserves-set SetQuot-level) (ap q[_] ∘ G.inv-l) (λ _ → prop-has-all-paths-↓ (SetQuot-level _ _)) QuotGroup : Group (lmax i j) QuotGroup = group _ SetQuot-level quot-group-struct {- helper functions -} module _ {i j} {G : Group i} {P : NormalSubgroupProp G j} where private module G = Group G module P = NormalSubgroupProp P infix 80 _⊙_ _⊙_ = G.comp q[_]ᴳ : G →ᴳ QuotGroup P q[_]ᴳ = group-hom q[_] λ _ _ → idp quot-relᴳ : ∀ {g₁ g₂} → P.prop (G.diff g₁ g₂) → q[ g₁ ] == q[ g₂ ] quot-relᴳ {g₁} {g₂} = quot-rel {R = quot-group-rel P} {a₁ = g₁} {a₂ = g₂} private abstract quot-group-rel-is-refl : is-refl (quot-group-rel P) quot-group-rel-is-refl g = transport! P.prop (G.inv-r g) P.ident quot-group-rel-is-sym : is-sym (quot-group-rel P) quot-group-rel-is-sym {g₁} {g₂} pg₁g₂⁻¹ = transport P.prop (G.inv-comp g₁ (G.inv g₂) ∙ ap (_⊙ G.inv g₁) (G.inv-inv g₂)) (P.inv pg₁g₂⁻¹) quot-group-rel-is-trans : is-trans (quot-group-rel P) quot-group-rel-is-trans {g₁} {g₂} {g₃} pg₁g₂⁻¹ pg₂g₃⁻¹ = transport P.prop ( G.assoc g₁ (G.inv g₂) (g₂ ⊙ G.inv g₃) ∙ ap (g₁ ⊙_) ( ! (G.assoc (G.inv g₂) g₂ (G.inv g₃)) ∙ ap (_⊙ G.inv g₃) (G.inv-l g₂) ∙ G.unit-l (G.inv g₃))) (P.comp pg₁g₂⁻¹ pg₂g₃⁻¹) quot-relᴳ-equiv : {g₁ g₂ : G.El} → P.prop (g₁ ⊙ G.inv g₂) ≃ (q[ g₁ ] == q[ g₂ ]) quot-relᴳ-equiv = quot-rel-equiv {R = quot-group-rel P} (P.level _) quot-group-rel-is-refl quot-group-rel-is-sym quot-group-rel-is-trans module QuotGroup {i j} {G : Group i} (P : NormalSubgroupProp G j) where grp = QuotGroup P open Group grp public module _ {i j k} {G : Group i} (P : SubgroupProp G j) (Q : NormalSubgroupProp G k) where quot-of-sub : NormalSubgroupProp (Subgroup P) k quot-of-sub = Q ∘nsubᴳ Subgroup.inject P {- interactions between quotients and subgroups (work in progress) -} {- So far not used. -- QuotGroup rel-over-sub ≃ᴳ Subgroup prop-over-quot module _ {i j k} {G : Group i} (Q : NormalSubgroupProp G j) (P : SubgroupProp G k) (prop-respects-quot : NormalSubgroupProp.subgrp-prop Q ⊆ᴳ P) where private module G = Group G module Q = NormalSubgroupProp Q module P = SubgroupProp P prop-over-quot : SubgroupProp (QuotGroup Q) k prop-over-quot = record {M; diff = λ {g₁} {g₂} → M.diff' g₁ g₂} where module M where module QG = Group (QuotGroup Q) private abstract prop'-rel : ∀ {g₁ g₂} (qg₁g₂⁻¹ : quot-group-rel Q g₁ g₂) → P.prop g₁ == P.prop g₂ prop'-rel {g₁} {g₂} qg₁g₂⁻¹ = ua $ equiv (λ pg₁ → transport P.prop ( ap (λ g → G.comp g g₁) (G.inv-comp g₁ (G.inv g₂)) ∙ G.assoc (G.inv (G.inv g₂)) (G.inv g₁) g₁ ∙ ap2 G.comp (G.inv-inv g₂) (G.inv-l g₁) ∙ G.unit-r g₂) (P.comp (P.inv pg₁g₂⁻¹) pg₁)) (λ pg₂ → transport P.prop ( G.assoc g₁ (G.inv g₂) g₂ ∙ ap (G.comp g₁) (G.inv-l g₂) ∙ G.unit-r g₁) (P.comp pg₁g₂⁻¹ pg₂)) (λ _ → prop-has-all-paths (P.level g₂) _ _) (λ _ → prop-has-all-paths (P.level g₁) _ _) where pg₁g₂⁻¹ : P.prop (G.diff g₁ g₂) pg₁g₂⁻¹ = prop-respects-quot (G.diff g₁ g₂) qg₁g₂⁻¹ prop' : Group.El (QuotGroup Q) → hProp k prop' = SetQuot-rec (hProp-is-set k) (λ g → P.prop g , P.level g) (nType=-out ∘ prop'-rel) prop : QG.El → Type k prop g' = fst (prop' g') abstract level : ∀ g' → is-prop (prop g') level g' = snd (prop' g') ident : prop q[ G.ident ] ident = P.ident abstract diff' : ∀ g₁' g₂' → prop g₁' → prop g₂' → prop (QG.diff g₁' g₂') diff' = SetQuot-elim {P = λ g₁' → ∀ g₂' → prop g₁' → prop g₂' → prop (QG.diff g₁' g₂')} (λ g₁' → Π-is-set λ g₂' → →-is-set $ →-is-set $ raise-level -1 (level (QG.diff g₁' g₂'))) (λ g₁ → SetQuot-elim (λ g₂' → →-is-set $ →-is-set $ raise-level -1 (level (QG.diff q[ g₁ ] g₂'))) (λ g₂ pg₁ pg₂ → P.diff pg₁ pg₂) (λ {_} {g₂} _ → prop-has-all-paths-↓ (→-is-prop $ →-is-prop $ level q[ G.diff g₁ g₂ ]))) (λ {_} {g₁} _ → prop-has-all-paths-↓ (Π-is-prop λ g₂' → →-is-prop $ →-is-prop $ level (QG.diff q[ g₁ ] g₂'))) -}
{ "alphanum_fraction": 0.530478955, "avg_line_length": 37.5818181818, "ext": "agda", "hexsha": "4fa5ff20358c6897f425fd5ef0a4966548aa1f7b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/QuotientGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/QuotientGroup.agda", "max_line_length": 119, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/QuotientGroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3066, "size": 8268 }
-- Issue #2979 reported by Favonia on 2018-02-23 {-# OPTIONS --cubical-compatible --rewriting --confluence-check #-} data _==_ {A : Set} (a : A) : A → Set where idp : a == a record Marked (A : Set) : Set where constructor mark field unmark : A open Marked postulate _↦_ : ∀ {A : Set} → A → A → Set {-# BUILTIN REWRITE _↦_ #-} postulate A : Set Q : (I : Marked A → Set) → Set q : (I : Marked A → Set) (a : Marked A) → Q I Q-elim : (I : Marked A → Set) {P : Q I → Set} (q* : (a : Marked A) → P (q I a)) (x : Q I) → P x Q-rec : (I : Marked A → Set) {B : Set} (q* : Marked A → B) → Q I → B Q-rec-β : (I : Marked A → Set) {B : Set} (q* : Marked A → B) → (a : Marked A) → Q-rec I {B} q* (q I a) ↦ q* a {-# REWRITE Q-rec-β #-} p₀ : Marked A → Set p₀ (mark a) = A p₁ : Marked A → Set p₁ (mark a) = A q= : ∀ x → Q-rec p₀ (q p₀) x == Q-rec p₁ (q p₁) x q= = Q-elim p₀ (λ _ → idp)
{ "alphanum_fraction": 0.5082146769, "avg_line_length": 24.0263157895, "ext": "agda", "hexsha": "7930dc5a93562dd40e02b87435f7373b6b1a3019", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue2979.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue2979.agda", "max_line_length": 67, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue2979.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 400, "size": 913 }
module Printf where open import Data.List hiding(_++_) open import Data.String open import Data.Unit open import Data.Empty open import Data.Char open import Data.Product open import Data.Nat.Show renaming (show to showNat) open import Data.Nat open import Function using (_∘_) data ValidFormat : Set₁ where argument : (A : Set) → (A → String) → ValidFormat literal : Char → ValidFormat data Format : Set₁ where valid : List ValidFormat → Format invalid : Format parse : String → Format parse s = parse′ [] (toList s) where parse′ : List ValidFormat → List Char → Format parse′ l ('%' ∷ 's' ∷ fmt) = parse′ (argument String (λ x → x) ∷ l) fmt parse′ l ('%' ∷ 'c' ∷ fmt) = parse′ (argument Char (λ x → fromList [ x ]) ∷ l) fmt parse′ l ('%' ∷ 'd' ∷ fmt) = parse′ (argument ℕ showNat ∷ l) fmt parse′ l ('%' ∷ '%' ∷ fmt) = parse′ (literal '%' ∷ l) fmt parse′ l ('%' ∷ c ∷ fmt) = invalid parse′ l (c ∷ fmt) = parse′ (literal c ∷ l) fmt parse′ l [] = valid (reverse l) Args : Format → Set Args invalid = ⊥ → String Args (valid (argument t _ ∷ r)) = t → (Args (valid r)) Args (valid (literal _ ∷ r)) = Args (valid r) Args (valid []) = String FormatArgs : String → Set FormatArgs f = Args (parse f) sprintf : (f : String) → FormatArgs f sprintf = sprintf′ "" ∘ parse where sprintf′ : String → (f : Format) → Args f sprintf′ accum invalid = λ t → "" sprintf′ accum (valid []) = accum sprintf′ accum (valid (argument _ s ∷ l)) = λ t → (sprintf′ (accum ++ s t) (valid l)) sprintf′ accum (valid (literal c ∷ l)) = sprintf′ (accum ++ fromList [ c ]) (valid l)
{ "alphanum_fraction": 0.5727429557, "avg_line_length": 33.4423076923, "ext": "agda", "hexsha": "9aaea8f15805e55be40709cf35b5e41f73c5a402", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-01-06T19:34:26.000Z", "max_forks_repo_forks_event_min_datetime": "2019-11-13T12:44:41.000Z", "max_forks_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ajnavarro/language-dataset", "max_forks_repo_path": "data/github.com/liamoc/learn-you-an-agda/118c5d99819c6b3c3a5e1dedfc0078c4fa8c2ece/Printf.agda", "max_issues_count": 91, "max_issues_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_issues_repo_issues_event_max_datetime": "2022-03-21T04:17:18.000Z", "max_issues_repo_issues_event_min_datetime": "2019-11-11T15:41:26.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ajnavarro/language-dataset", "max_issues_repo_path": "data/github.com/liamoc/learn-you-an-agda/118c5d99819c6b3c3a5e1dedfc0078c4fa8c2ece/Printf.agda", "max_line_length": 92, "max_stars_count": 9, "max_stars_repo_head_hexsha": "34e2980af98ff2ded500619edce3e0907a6e9050", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ajnavarro/language-dataset", "max_stars_repo_path": "data/github.com/liamoc/learn-you-an-agda/118c5d99819c6b3c3a5e1dedfc0078c4fa8c2ece/Printf.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-11T09:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2018-08-07T11:54:33.000Z", "num_tokens": 528, "size": 1739 }
module Imports.Issue958 where postulate FunctorOps : Set module FunctorOps (ops : FunctorOps) where postulate map : Set postulate IsFunctor : Set module IsFunctor (fun : IsFunctor) where postulate ops : FunctorOps open FunctorOps ops public
{ "alphanum_fraction": 0.78, "avg_line_length": 20.8333333333, "ext": "agda", "hexsha": "37731c1139048a044f97db448332804b65aae03b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Imports/Issue958.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Imports/Issue958.agda", "max_line_length": 42, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Imports/Issue958.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 69, "size": 250 }
module Okasaki where open import Data.Bool using (Bool; true; false) renaming (T to So; not to ¬) open import Data.Nat hiding (_<_; _≤_; _≟_; compare) renaming (decTotalOrder to ℕ-DTO) open import Relation.Binary hiding (_⇒_) module RBTree {a ℓ}(order : StrictTotalOrder a ℓ ℓ) where open module sto = StrictTotalOrder order A = Carrier pattern LT = tri< _ _ _ pattern EQ = tri≈ _ _ _ pattern GT = tri> _ _ _ _≤_ = compare data Color : Set where R B : Color _=ᶜ_ : Color → Color → Bool R =ᶜ R = true B =ᶜ B = true _ =ᶜ _ = false Height = ℕ data Tree : Set a where E : Tree T : Color → Tree → A → Tree → Tree set = Tree empty : set empty = E member : A → set → Bool member x E = false member x (T _ a y b) with x ≤ y ... | LT = member x a ... | EQ = true ... | GT = member x b insert : A → set → set insert x s = makeBlack (ins s) where balance : Color → set → A → set → set balance B (T R (T R a x b) y c) z d = T R (T B a x b) y (T B c z d) balance B (T R a x (T R b y c)) z d = T R (T B a x b) y (T B c z d) balance B a x (T R (T R b y c) z d) = T R (T B a x b) y (T B c z d) balance B a x (T R b y (T R c z d)) = T R (T B a x b) y (T B c z d) balance color a x b = T color a x b ins : set → set ins E = T R E x E ins (T color a y b) with x ≤ y ... | LT = balance color (ins a) y b ... | EQ = T color a y b ... | GT = balance color a y (ins b) makeBlack : set → set makeBlack E = E makeBlack (T _ a y b) = T B a y b
{ "alphanum_fraction": 0.5334166146, "avg_line_length": 23.5441176471, "ext": "agda", "hexsha": "26621045dea82ff3322b71b93632bc450913ead1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "72e0989445760f63b9422ce5e0f8956d7f58d578", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "toonn/sciartt", "max_forks_repo_path": "Okasaki.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "72e0989445760f63b9422ce5e0f8956d7f58d578", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "toonn/sciartt", "max_issues_repo_path": "Okasaki.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "72e0989445760f63b9422ce5e0f8956d7f58d578", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "toonn/sciartt", "max_stars_repo_path": "Okasaki.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 593, "size": 1601 }
module _ where open import Agda.Builtin.Nat open import Agda.Builtin.List open import Agda.Builtin.Reflection renaming (bindTC to _>>=_) open import Agda.Builtin.Unit open import Agda.Builtin.Equality variable A B : Set x y : A xs : List A infix 3 _∈_ data _∈_ {A : Set} (x : A) : List A → Set where zero : x ∈ x ∷ xs suc : x ∈ xs → x ∈ y ∷ xs pattern vArg x = arg (arg-info visible relevant) x search : Nat → Term → Term → TC ⊤ search zero i hole = typeError (strErr "Not found" ∷ []) search (suc n) i hole = do catchTC (noConstraints (unify hole i)) (search n (con (quote _∈_.suc) (vArg i ∷ [])) hole) findElem : Nat → Term → TC ⊤ findElem depth hole = search depth (con (quote _∈_.zero) []) hole index : (x : A) (xs : List A) {@(tactic findElem 10) i : x ∈ xs} → Nat index x xs {zero} = zero index x xs {suc i} = suc (index x _ {i}) test₁ : index 3 (1 ∷ 2 ∷ 3 ∷ []) ≡ 2 test₁ = refl test₂ : index x (y ∷ x ∷ x ∷ []) ≡ 1 test₂ = refl
{ "alphanum_fraction": 0.613800206, "avg_line_length": 24.275, "ext": "agda", "hexsha": "be1d161f3695beafbf274eb9d4164a7c4a0d9405", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_forks_event_min_datetime": "2015-09-15T14:36:15.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/ListElemTactic.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/ListElemTactic.agda", "max_line_length": 70, "max_stars_count": 2, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/ListElemTactic.agda", "max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z", "num_tokens": 366, "size": 971 }
module Data.List.Proofs.Length where import Lvl open import Functional open import Function.Names as Names using (_⊜_) open import Data.Boolean open import Data.List as List open import Data.List.Functions open import Logic open import Logic.Propositional open import Numeral.Finite open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function.Multi open import Structure.Operator.Properties open import Structure.Operator open import Structure.Relator.Properties open import Syntax.Transitivity open import Type private variable ℓ ℓₑ : Lvl.Level private variable T A B : Type{ℓ} private variable l l₁ l₂ : List(T) private variable a b x : T private variable n : ℕ private variable f : A → B private variable P : List(T) → Stmt{ℓ} -- TODO: Almost all of these can use Preserving instead length-[∅] : (length(∅ {T = T}) ≡ 0) length-[∅] = [≡]-intro length-singleton : (length{T = T}(singleton(a)) ≡ 1) length-singleton = [≡]-intro instance length-preserves-prepend : Preserving₁(length)(a ⊰_)(𝐒) Preserving.proof (length-preserves-prepend {a = a}) {x} = [≡]-intro length-postpend : ((length ∘ postpend a) ⊜ (𝐒 ∘ length)) length-postpend {x = l} = List.elim [≡]-intro (\x l → [≡]-with(𝐒) {length(postpend _ l)}{𝐒(length l)}) l instance length-preserves-postpend : Preserving₁(length)(postpend a)(𝐒) Preserving.proof (length-preserves-postpend {a = a}) {x} = length-postpend {a = a}{x = x} length-[++] : (length{T = T}(l₁ ++ l₂) ≡ length(l₁) + length(l₂)) length-[++] {T = T} {l₁ = l₁} {l₂} = List.elim base next l₁ where base : length(∅ ++ l₂) ≡ length{T = T}(∅) + length(l₂) base = symmetry(_≡_) (identityₗ(_+_)(0)) next : ∀(x)(l) → (length(l ++ l₂) ≡ length(l) + length(l₂)) → (length((x ⊰ l) ++ l₂) ≡ length(x ⊰ l) + length(l₂)) next x l stmt = length((x ⊰ l) ++ l₂) 🝖[ _≡_ ]-[] length(x ⊰ (l ++ l₂)) 🝖[ _≡_ ]-[] 𝐒(length(l ++ l₂)) 🝖[ _≡_ ]-[ [≡]-with(𝐒) stmt ] 𝐒(length(l) + length(l₂)) 🝖[ _≡_ ]-[ [+]-stepₗ {length(l)} {length(l₂)} ] 𝐒(length(l)) + length(l₂) 🝖[ _≡_ ]-[] length(x ⊰ l) + length(l₂) 🝖-end instance length-preserves-[++] : Preserving₂(length{T = T})(_++_)(_+_) Preserving.proof length-preserves-[++] {l₁} {l₂} = length-[++] {l₁ = l₁} {l₂ = l₂} length-reverse : ((length{T = T} ∘ reverse) ⊜ length) length-reverse {x = ∅} = [≡]-intro length-reverse {x = x ⊰ l} = length-postpend{a = x}{x = reverse l} 🝖 [≡]-with(𝐒) (length-reverse {x = l}) instance length-preserves-reverse : Preserving₁(length{T = T})(reverse)(id) Preserving.proof length-preserves-reverse {l} = length-reverse {x = l} length-repeat : ((length{T = T} ∘ repeat(a)) ⊜ id) length-repeat{T = T}{x = 𝟎} = [≡]-intro length-repeat{T = T}{x = 𝐒(n)} = [≡]-with(𝐒) (length-repeat{T = T}{x = n}) length-tail : ((length{T = T} ∘ tail) ⊜ (𝐏 ∘ length)) length-tail{x = ∅} = [≡]-intro length-tail{x = _ ⊰ l} = [≡]-intro instance length-preserves-tail : Preserving₁(length{T = T})(tail)(𝐏) Preserving.proof length-preserves-tail {l} = length-tail {x = l} length-map : ∀{f : A → B} → ((length ∘ map f) ⊜ length) length-map {f = f}{x = ∅} = [≡]-intro length-map {f = f}{x = x ⊰ l} = [≡]-with(𝐒) (length-map {f = f}{x = l}) instance length-preserves-map : Preserving₁(length{T = T})(map f)(id) Preserving.proof (length-preserves-map {f = f}) {l} = length-map {f = f}{x = l} length-foldᵣ : ∀{init}{f}{g} → (∀{x}{l} → (length(f x l) ≡ g x (length l))) → (length{T = T}(foldᵣ f init l) ≡ foldᵣ g (length init) l) length-foldᵣ {l = ∅} _ = [≡]-intro length-foldᵣ {l = x ⊰ l} {init} {f} {g} p = length(foldᵣ f init (x ⊰ l)) 🝖[ _≡_ ]-[] length(f(x) (foldᵣ f init l)) 🝖[ _≡_ ]-[ p ] g(x) (length(foldᵣ f init l)) 🝖[ _≡_ ]-[ [≡]-with(g(x)) (length-foldᵣ {l = l} {init} {f} {g} p) ] g(x) (foldᵣ g (length init) l) 🝖[ _≡_ ]-[] foldᵣ g (length init) (x ⊰ l) 🝖-end length-concatMap : ∀{f} → (length{T = T}(concatMap f l) ≡ foldᵣ((_+_) ∘ length ∘ f) 𝟎 l) length-concatMap {l = l} {f} = length-foldᵣ{l = l}{init = ∅}{f = (_++_) ∘ f} \{x l} → length-[++] {l₁ = f(x)}{l₂ = l} length-accumulateIterate₀ : ∀{n}{f}{init : T} → (length(accumulateIterate₀ n f init) ≡ n) length-accumulateIterate₀ {n = 𝟎} = [≡]-intro length-accumulateIterate₀ {n = 𝐒 n}{f} = [≡]-with(𝐒) (length-accumulateIterate₀ {n = n}{f}) length-[++^] : (length(l ++^ n) ≡ length(l) ⋅ n) length-[++^] {l = l}{𝟎} = [≡]-intro length-[++^] {l = l}{𝐒(n)} = length-[++] {l₁ = l}{l ++^ n} 🝖 [≡]-with(expr ↦ length(l) + expr) (length-[++^] {l = l}{n}) length-isEmpty : (length(l) ≡ 0) ↔ (isEmpty(l) ≡ 𝑇) length-isEmpty {l = ∅} = [↔]-intro (const [≡]-intro) (const [≡]-intro) length-isEmpty {l = x ⊰ L} = [↔]-intro (\()) (\()) instance length-preserves-insert : Preserving₁(length)(insert n x)(𝐒) Preserving.proof (length-preserves-insert {n = n}) = proof{n = n} where proof : ∀{n} → (length(insert n x l) ≡ 𝐒(length l)) proof {l = _} {n = 𝟎} = [≡]-intro proof {l = ∅} {n = 𝐒 n} = [≡]-intro proof {x = x} {l = y ⊰ l} {n = 𝐒 n} rewrite proof {x = x} {l = l} {n = n} = [≡]-intro length-insertIn : ∀{n} → (length(insertIn x l n) ≡ 𝐒(length l)) length-insertIn {l = _} {n = 𝟎} = [≡]-intro length-insertIn {l = ∅} {n = 𝐒 n} = [≡]-intro length-insertIn {x = x} {l = y ⊰ l} {n = 𝐒 n} rewrite length-insertIn {x = x} {l = l} {n = n} = [≡]-intro
{ "alphanum_fraction": 0.5805691499, "avg_line_length": 40.8666666667, "ext": "agda", "hexsha": "4de291d84bf8863170d6ff044b4e7af5444955d4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/List/Proofs/Length.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/List/Proofs/Length.agda", "max_line_length": 135, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/List/Proofs/Length.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 2206, "size": 5517 }
-- We show Gausssian Integers forms an Euclidean domain. The proofs -- are straightforward. {-# OPTIONS --without-K --safe #-} module GauInt.EucDomain where -- imports from local. -- Hiding the usual div and mod function. We will the new instance in -- Integer.EucDomain2 import Instances hiding (DMℤ) open Instances open import Integer.EucDomain2 renaming (div' to divℤ ; mod' to modℤ ; euc-eq' to euc-eqℤ ; euc-rank' to euc-rankℤ) open import Integer.Properties open import GauInt.Base using (𝔾 ; _+_i ; _ᶜ ; Re ; Im ; _+0i ; _+0i' ; 0𝔾 ; 1𝔾) open import GauInt.Properties open import GauInt.Instances -- imports from stdlib and Agda. open import Relation.Nullary using (yes ; no ; ¬_) open import Relation.Binary.PropositionalEquality open import Data.Product as P using (_×_ ; _,_ ; proj₁ ; proj₂) open import Data.Sum as S renaming ([_,_]′ to ⊎-elim) open import Data.Nat as Nat using (ℕ ; suc ; zero ; z≤n) import Data.Nat.Properties as NatP open import Data.Integer as Int using (0ℤ ; +0 ; +_ ; _≥_ ; +≤+ ; +[1+_] ; -[1+_] ; ℤ ; ∣_∣) import Data.Integer.Properties as IntP import Data.Nat.Solver as NS import Data.Integer.Solver as IS import GauInt.Solver as GS open import Algebra.Properties.Ring +-*-ring open import Algebra.Definitions (_≡_ {A = 𝔾}) using (AlmostLeftCancellative) open import Function.Base using (_$_) -- ---------------------------------------------------------------------- -- Euclidean Structure on 𝔾 -- As explained in the imports part, we will use the div and mod -- function defined in Integer.EucDomain2. -- A special case when the divisor is a positive natural number. The proof: -- Let x = a + b i, and y = d. By integer euc-eq and euc-rank we have -- step-a : a = ra + qa * d, with rank ra ≤ d / 2. -- step-b : b = rb + qb * d, with rank rb ≤ d / 2. -- We let q = qa + qb i, r = ra + rb i. Easy to check that -- eq : x = r + q y. Slightly harder to check -- le : rank r ≤ d / 2 (see below). div' : 𝔾 -> (d : ℕ) -> ¬ d ≡ 0# -> 𝔾 div' n zero n0 with n0 refl ... | () div' (a + b i) d@(suc e) n0 = qa + qb i where qa = a / + d qb = b / + d mod' : 𝔾 -> (d : ℕ) -> ¬ d ≡ 0# -> 𝔾 mod' n zero n0 with n0 refl ... | () mod' (a + b i) d@(suc e) n0 = ra + rb i where ra = a % + d rb = b % + d div : (x y : 𝔾) -> ¬ y ≡ 0# -> 𝔾 div x y n0 = div' (x * y ᶜ) y*yᶜ n0' where y*yᶜ : ℕ y*yᶜ = rank y n0' : ¬ rank y ≡ 0# n0' = y≠0#⇒rank≠0 n0 mod : (x y : 𝔾) -> ¬ y ≡ 0# -> 𝔾 mod x y n0 = (x - q * y) where q = div x y n0 -- ---------------------------------------------------------------------- -- euc-eq and euc-rank property for div' and mod' -- Dividend = reminder + quotient * divisor. euc-eq' : ∀ (x : 𝔾) (d : ℕ) (n0 : ¬ d ≡ 0) -> let r = mod' x d n0 in let q = div' x d n0 in x ≡ r + q * (d +0i) euc-eq' n zero n0 with n0 refl ... | () euc-eq' x@(a + b i) d@(suc e) n0 = eq where -- setting up q and r. n0' : ¬ + d ≡ 0# n0' p = n0 (IntP.+-injective p) qa = a / + d qb = b / + d ra = a % + d rb = b % + d ea : a ≡ ra + qa * + d ea = euc-eqℤ a (+ d) n0' eb : b ≡ rb + qb * + d eb = euc-eqℤ b (+ d) n0' q : 𝔾 q = qa + qb i r : 𝔾 r = ra + rb i -- Inject natural number d to Gaussian integer. y = d +0i -- Proving x = r + q * y. eq : x ≡ r + q * y eq = begin x ≡⟨ refl ⟩ a + b i ≡⟨ cong (λ x -> x + b i) ea ⟩ (ra + qa * (+ d)) + b i ≡⟨ cong (λ x -> (ra + qa * (+ d)) + x i) eb ⟩ (ra + qa * (+ d)) + (rb + qb * (+ d)) i ≡⟨ refl ⟩ (ra + rb i) + ((qa * (+ d)) + (qb * (+ d)) i) ≡⟨ cong (λ x → (ra + rb i) + ((qa * (+ d)) + x i)) ((solve 3 (λ qa d qb → qb :* d := qa :* con 0ℤ :+ qb :* d) refl) qa (+ d) qb) ⟩ (ra + rb i) + ((qa * (+ d)) + (qa * 0ℤ + qb * (+ d)) i) ≡⟨ cong (λ x → (ra + rb i) + (x + (qa * 0ℤ + qb * (+ d)) i)) ((solve 3 (λ qa d qb → qa :* d := qa :* d :- qb :* con 0ℤ) refl) qa (+ d) qb) ⟩ (ra + rb i) + ((qa * (+ d) - qb * 0ℤ) + (qa * 0ℤ + qb * (+ d)) i) ≡⟨ refl ⟩ (ra + rb i) + (qa + qb i) * y ≡⟨ refl ⟩ r + q * y ∎ where open IS.+-*-Solver open ≡-Reasoning -- rank r < rank (inj d) euc-rank' : ∀ (x : 𝔾) (d : ℕ) (n0 : ¬ d ≡ 0) -> let r = mod' x d n0 in let q = div' x d n0 in rank r < rank (d +0i) euc-rank' n zero n0 with n0 refl ... | () euc-rank' x@(a + b i) d@(suc e) n0 = le where -- setting up q and r. n0' : ¬ + d ≡ 0# n0' p = n0 (IntP.+-injective p) r : 𝔾 r = mod' x d n0 ra = Re r rb = Im r q : 𝔾 q = div' x d n0 qa = Re q qb = Im q lea : ∣ ra ∣ ≤ d / 2 lea = euc-rankℤ a (+ d) n0' leb : ∣ rb ∣ ≤ d / 2 leb = euc-rankℤ b (+ d) n0' y = d +0i -- Proving rank r < rank y. -- Some auxillary lemmas. lem1 : ∀ {d : ℕ} -> d / 2 + d / 2 ≤ d lem1 {d} = begin d / 2 + d / 2 ≡⟨ solve 1 (λ x → x :+ x := x :* con 2) refl (d / 2) ⟩ d / 2 * 2 ≤⟨ NatP.m≤n+m (d / 2 * 2) (d % 2) ⟩ d % 2 + d / 2 * 2 ≡⟨ (sym $ NatESR.euc-eq d 2 (λ ())) ⟩ d ∎ where open NatP.≤-Reasoning open NS.+-*-Solver lem2 : ∀ {d : Nat.ℕ} -> d / 2 ≤ d lem2 {d} = begin d / 2 ≤⟨ NatP.m≤n+m (d / 2) (d / 2) ⟩ d / 2 + d / 2 ≤⟨ lem1 {d} ⟩ d ∎ where open NatP.≤-Reasoning open NS.+-*-Solver lem2-strict : ∀ {d : Nat.ℕ} .{{_ : NonZero d}} -> (d / 2) < d lem2-strict {x@(suc d)} with x / 2 Nat.≟ 0 ... | no ¬p = begin-strict x / 2 <⟨ NatP.m<n+m (x / 2) x/2>0 ⟩ x / 2 + x / 2 ≤⟨ lem1 {x} ⟩ x ∎ where open NatP.≤-Reasoning open NS.+-*-Solver open import Relation.Binary.Definitions open import Data.Empty x/2>0 : 0 < (x / 2) x/2>0 with NatP.<-cmp 0 (x / 2) ... | tri< a ¬b ¬c = a ... | tri≈ ¬a b ¬c = ⊥-elim (¬p (sym b)) ... | yes p rewrite p = Nat.s≤s Nat.z≤n lem3 : rank y ≡ d * d lem3 = begin rank y ≡⟨ refl ⟩ ∣ (+ d) * (+ d) + 0ℤ * 0ℤ ∣ ≡⟨ cong ∣_∣ (solve 1 (λ x → x :* x :+ con 0ℤ :* con 0ℤ := x :* x) refl (+ d)) ⟩ ∣ (+ d) * (+ d) ∣ ≡⟨ IntP.abs-*-commute (+ d) (+ d) ⟩ ∣ (+ d) ∣ * ∣ (+ d) ∣ ≡⟨ refl ⟩ d * d ∎ where open IS.+-*-Solver open ≡-Reasoning -- The proof idea: -- rank r = ∣ ra * ra + rb * rb ∣ = ∣ ra ∣ * ∣ ra ∣ + ∣ rb ∣ * ∣ rb ∣ -- ≤ d / 2 * d / 2 + d / 2 * d / 2 by the integer divmod property. -- ≤ d * d -- = rank y le : rank r < rank y le = begin-strict rank r ≡⟨ refl ⟩ let (sa , sae) = (a*a=+b ra) in let (sb , sbe) = a*a=+b rb in ∣ ra * ra + rb * rb ∣ ≡⟨ tri-eq' ra rb ⟩ ∣ ra * ra ∣ + ∣ rb * rb ∣ ≡⟨ cong₂ _+_ (IntP.abs-*-commute ra ra) (IntP.abs-*-commute rb rb) ⟩ ∣ ra ∣ * ∣ ra ∣ + ∣ rb ∣ * ∣ rb ∣ ≤⟨ NatP.+-mono-≤ (NatP.*-mono-≤ lea lea) (NatP.*-mono-≤ leb leb) ⟩ (d / 2) * (d / 2) + (d / 2) * (d / 2) ≡⟨ solve 1 (λ x → (x :* x) :+ (x :* x) := x :* (x :+ x)) refl (d / 2) ⟩ (d / 2) * ((d / 2) + (d / 2)) ≤⟨ NatP.*-monoʳ-≤ (d / 2) lem1 ⟩ (d / 2) * d <⟨ NatP.*-monoˡ-< d (lem2-strict {d}) ⟩ d * d ≡⟨ sym lem3 ⟩ rank y ∎ where open NatP.≤-Reasoning open NS.+-*-Solver -- ---------------------------------------------------------------------- -- euc-eq and euc-rank property for div and mod -- This is the case when the divisor y = c + d i is an arbitrary -- non-zero Gaussian integer. Easy to see rank y ᶜ = rank y = y * y -- ᶜ = ∣ c * c + d * d ∣ ≠ 0. Notice that by the previous spcial -- case (when the divisor is a positive natural number) we have -- eq' : x * y ᶜ = r' + q' * (y * y ᶜ), and -- le' : rank r' < rank (y * y ᶜ) = rank y * rank y ᶜ -- (eq') ⇒ r' = x * y ᶜ - q' * (y * y ᶜ) = (x - q' * y) * y ᶜ -- ⇒ eqr: rank r' = rank (x - q' * y) * rank y ᶜ -- (le') & (eqr) ⇒ rank (x - q' * y) < rank y since rank y ᶜ ≠ 0. -- So setting q = q', and r = x - q' * y as div and mod functions do, -- then check the euc-rank property holds. -- Dividend = reminder + quotient * divisor. euc-eq : ∀ (x y : 𝔾) (n0 : ¬ y ≡ 0𝔾) -> let r = mod x y n0 in let q = div x y n0 in x ≡ r + q * y euc-eq x y n0 = claim where -- Setting up r and q. r : 𝔾 r = mod x y n0 q : 𝔾 q = div x y n0 claim : x ≡ (x - q * y) + q * y claim = begin x ≡⟨ solve 2 (\ x qy -> x := (x :- qy) :+ qy) refl x (q * y) ⟩ (x - q * y) + q * y ∎ where open GS.+-*-Solver open ≡-Reasoning -- rank r < rank y. euc-rank : ∀ (x y : 𝔾) (n0 : ¬ y ≡ 0#) -> let r = mod x y n0 in let q = div x y n0 in rank r < rank y euc-rank x y n0 = claim where n0' : ¬ rank y ≡ 0# n0' = y≠0#⇒rank≠0 n0 r : 𝔾 r = mod x y n0 q : 𝔾 q = div x y n0 eq : x ≡ r + q * y eq = euc-eq x y n0 r' : 𝔾 r' = mod' (x * y ᶜ) (rank y) n0' q' : 𝔾 q' = div' (x * y ᶜ) (rank y) n0' eq' : x * y ᶜ ≡ r' + q' * (rank y +0i) eq' = euc-eq' (x * y ᶜ) (rank y) n0' le' : rank r' < rank (rank y +0i) le' = euc-rank' (x * y ᶜ) (rank y) n0' q=q' : q ≡ q' q=q' = refl -- eqr : rank r' = rank (x - q' * y) * rank y ᶜ ---- (3) eqr : rank r' ≡ rank (x - q' * y) * rank (y ᶜ) eqr = begin rank r' ≡⟨ cong rank step ⟩ rank ((x - q' * y) * y ᶜ) ≡⟨ rank-*-commute (x - q * y) (y ᶜ) ⟩ rank (x - q' * y) * rank (y ᶜ) ∎ where open ≡-Reasoning step : r' ≡ (x - q' * y) * y ᶜ step = begin r' ≡⟨ solve 2 (λ r x → r := r :+ x :- x) refl r' (q' * (rank y +0i)) ⟩ r' + q' * (rank y +0i) - q' * (rank y +0i) ≡⟨ cong (_- q' * (rank y +0i)) (sym eq') ⟩ x * y ᶜ - q' * (rank y +0i) ≡⟨ cong (λ z → x * y ᶜ - q' * z) (sym $ y*yᶜ=rank {y}) ⟩ x * y ᶜ - q' * (y * y ᶜ) ≡⟨ solve 4 (\ x yc q y -> x :* yc :- q :* ( y :* yc) := (x :- q :* y) :* yc) refl x (y ᶜ) q' y ⟩ (x - q' * y) * y ᶜ ∎ where open GS.+-*-Solver open ≡-Reasoning -- (le') & (eqr) ⇒ rank (x - q' * y) < rank y since rank y ᶜ ≠ 0. claim : rank (x - q' * y) < rank y claim = NatP.*-cancelʳ-< {rank (y ᶜ)} (rank (x - q * y)) (rank y) eqr' where eqr' : rank (x - q' * y) * rank (y ᶜ) < rank y * rank (y ᶜ) eqr' = begin-strict rank (x - q' * y) * rank (y ᶜ) ≡⟨ sym eqr ⟩ rank r' <⟨ le' ⟩ rank (rank y +0i) ≡⟨ cong rank (sym $ y*yᶜ=rank {y}) ⟩ rank (y * y ᶜ) ≡⟨ rank-*-commute y (y ᶜ) ⟩ rank y * rank (y ᶜ) ∎ where open GS.+-*-Solver open NatP.≤-Reasoning -- ---------------------------------------------------------------------- -- 𝔾 is an Euclidean Domain. import EuclideanDomain open EuclideanDomain.Structures (_≡_ {A = 𝔾}) using (IsEuclideanDomain) open EuclideanDomain.Bundles using (EuclideanDomainBundle) +-*-isEuclideanDomain : IsEuclideanDomain _+_ _*_ -_ 0𝔾 1𝔾 +-*-isEuclideanDomain = record { isCommutativeRing = +-*-isCommutativeRing ; *-alc = *-alc-𝔾 ; div = div ; mod = mod ; rank = rank ; euc-eq = euc-eq ; euc-rank = euc-rank } -- Bundle. +-*-euclideanDomain : EuclideanDomainBundle _ _ +-*-euclideanDomain = record { isEuclideanDomain = +-*-isEuclideanDomain' } -- ---------------------------------------------------------------------- -- Making 𝔾 an DivMod instance, overloading div and mod. -- Translation between two nonzeros. nz𝔾 : ∀ (x : 𝔾) -> .{{NonZero x}} -> ¬ x ≡ 0# nz𝔾 (+_ zero + +[1+ n ] i) {{n0}} i0 with i0 ... | () instance g-divmod : DivMod 𝔾 DivMod.NZT g-divmod = NZT𝔾 (g-divmod DivMod./ n) d = div n d (nz𝔾 d) (g-divmod DivMod.% n) d = mod n d (nz𝔾 d)
{ "alphanum_fraction": 0.4349573491, "avg_line_length": 31.2615384615, "ext": "agda", "hexsha": "37c401c6122c6a4298898b1fd0bc9e342130339d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "onestruggler/EucDomain", "max_forks_repo_path": "GauInt/EucDomain.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "onestruggler/EucDomain", "max_issues_repo_path": "GauInt/EucDomain.agda", "max_line_length": 205, "max_stars_count": null, "max_stars_repo_head_hexsha": "7e268e8354065fde734c9c2d9998d2cfd4a21f71", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "onestruggler/EucDomain", "max_stars_repo_path": "GauInt/EucDomain.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5056, "size": 12192 }
{- Definition of various kinds of categories. This library follows the UniMath terminology, that is: Concept Ob C Hom C Univalence Precategory Type Type No Category Type Set No Univalent Category Type Set Yes This file also contains - pathToIso : Turns a path between two objects into an isomorphism between them - opposite categories -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Category where open import Cubical.Core.Glue open import Cubical.Foundations.Prelude -- Precategories record Precategory ℓ ℓ' : Type (ℓ-suc (ℓ-max ℓ ℓ')) where no-eta-equality field ob : Type ℓ hom : ob → ob → Type ℓ' idn : ∀ x → hom x x seq : ∀ {x y z} (f : hom x y) (g : hom y z) → hom x z seq-λ : ∀ {x y : ob} (f : hom x y) → seq (idn x) f ≡ f seq-ρ : ∀ {x y} (f : hom x y) → seq f (idn y) ≡ f seq-α : ∀ {u v w x} (f : hom u v) (g : hom v w) (h : hom w x) → seq (seq f g) h ≡ seq f (seq g h) open Precategory public -- Categories record isCategory {ℓ ℓ'} (𝒞 : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where field homIsSet : ∀ {x y} → isSet (𝒞 .hom x y) open isCategory public -- Isomorphisms and paths in precategories record CatIso {ℓ ℓ' : Level} {𝒞 : Precategory ℓ ℓ'} (x y : 𝒞 .ob) : Type ℓ' where constructor catiso field h : 𝒞 .hom x y h⁻¹ : 𝒞 .hom y x sec : 𝒞 .seq h⁻¹ h ≡ 𝒞 .idn y ret : 𝒞 .seq h h⁻¹ ≡ 𝒞 .idn x pathToIso : {ℓ ℓ' : Level} {𝒞 : Precategory ℓ ℓ'} (x y : 𝒞 .ob) (p : x ≡ y) → CatIso {𝒞 = 𝒞} x y pathToIso {𝒞 = 𝒞} x y p = J (λ z _ → CatIso x z) (catiso (𝒞 .idn x) idx (𝒞 .seq-λ idx) (𝒞 .seq-λ idx)) p where idx = 𝒞 .idn x -- Univalent Categories record isUnivalent {ℓ ℓ'} (𝒞 : Precategory ℓ ℓ') : Type (ℓ-max ℓ ℓ') where field univ : (x y : 𝒞 .ob) → isEquiv (pathToIso {𝒞 = 𝒞} x y) open isUnivalent public -- Opposite Categories _^op : ∀ {ℓ ℓ'} → Precategory ℓ ℓ' → Precategory ℓ ℓ' (𝒞 ^op) .ob = 𝒞 .ob (𝒞 ^op) .hom x y = 𝒞 .hom y x (𝒞 ^op) .idn = 𝒞 .idn (𝒞 ^op) .seq f g = 𝒞 .seq g f (𝒞 ^op) .seq-λ = 𝒞 .seq-ρ (𝒞 ^op) .seq-ρ = 𝒞 .seq-λ (𝒞 ^op) .seq-α f g h = sym (𝒞 .seq-α _ _ _)
{ "alphanum_fraction": 0.5773809524, "avg_line_length": 26.313253012, "ext": "agda", "hexsha": "ae3727b3a91da96c51f4ca451d19ef0e8d329e10", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ayberkt/cubical", "max_forks_repo_path": "Cubical/Categories/Category.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ayberkt/cubical", "max_issues_repo_path": "Cubical/Categories/Category.agda", "max_line_length": 104, "max_stars_count": null, "max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ayberkt/cubical", "max_stars_repo_path": "Cubical/Categories/Category.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 940, "size": 2184 }
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.NType2 open import lib.types.Nat open import lib.types.TLevel open import lib.types.Empty open import lib.types.Pi open import lib.types.Sigma open import lib.types.Truncation open import lib.types.Pointed open import lib.types.Group open import lib.types.LoopSpace open import lib.groups.TruncationGroup open import lib.groups.GroupProduct open import lib.groups.Homomorphisms open import lib.groups.Unit module lib.groups.HomotopyGroup where {- Higher homotopy groups -} module _ {i} where π : (n : ℕ) (t : n ≠ O) (X : Ptd i) → Group i π n t X = Trunc-Group (Ω^-group-structure n t X) fundamental-group : (X : Ptd i) → Group i fundamental-group X = π 1 (ℕ-S≠O _) X {- π_(n+1) of a space is π_n of its loop space -} abstract π-inner-iso : ∀ {i} (n : ℕ) (tn : n ≠ 0) (tsn : S n ≠ 0) (X : Ptd i) → π (S n) tsn X == π n tn (⊙Ω X) π-inner-iso O tn tsn X = ⊥-rec (tn idp) π-inner-iso (S n') tn' tn X = group-ua (record { f = Trunc-fmap (Ω^-inner-out n X); pres-comp = Trunc-elim (λ _ → Π-level (λ _ → =-preserves-level _ Trunc-level)) (λ p → Trunc-elim (λ _ → =-preserves-level _ Trunc-level) (λ q → ap [_] (Ω^-inner-out-conc^ n tn' X p q)))} , is-equiv-Trunc ⟨0⟩ (Ω^-inner-out n X) (Ω^-inner-is-equiv n X)) where n : ℕ n = S n' {- We can shift the truncation inside the loop in the definition of π -} module _ {i} where private record Ω^Ts-PreIso (m : ℕ₋₂) (n : ℕ) (k : ℕ₋₂) (t : n ≠ O) (X : Ptd i) : Type i where field F : fst (⊙Ω^ n (⊙Trunc k X) ⊙→ ⊙Trunc m (⊙Ω^ n X)) pres-comp : ∀ (p q : Ω^ n (⊙Trunc k X)) → fst F (conc^ n t p q) == Trunc-fmap2 (conc^ n t) (fst F p) (fst F q) e : is-equiv (fst F) Ω^-Trunc-shift-preiso : (n : ℕ) (m : ℕ₋₂) (t : n ≠ O) (X : Ptd i) → Ω^Ts-PreIso m n ((n -2) +2+ m) t X Ω^-Trunc-shift-preiso O m t X = ⊥-rec (t idp) Ω^-Trunc-shift-preiso (S O) m _ X = record { F = (–> (Trunc=-equiv [ snd X ] [ snd X ]) , idp); pres-comp = Trunc=-∙-comm; e = snd (Trunc=-equiv [ snd X ] [ snd X ]) } Ω^-Trunc-shift-preiso (S (S n)) m t X = let r : Ω^Ts-PreIso (S m) (S n) ((S n -2) +2+ S m) (ℕ-S≠O _) X r = Ω^-Trunc-shift-preiso (S n) (S m) (ℕ-S≠O _) X H = (–> (Trunc=-equiv [ idp^ (S n) ] [ idp^ (S n) ]) , idp) G = ap^ 1 (Ω^Ts-PreIso.F r) in transport (λ k → Ω^Ts-PreIso m (S (S n)) k t X) (+2+-βr (S n -2) m) (record { F = H ⊙∘ G; pres-comp = λ p q → ap (fst H) (ap^-conc^ 1 (ℕ-S≠O _) (Ω^Ts-PreIso.F r) p q) ∙ (Trunc=-∙-comm (fst G p) (fst G q)); e = snd (Trunc=-equiv [ idp^ (S n) ] [ idp^ (S n) ] ∘e equiv-ap^ 1 (Ω^Ts-PreIso.F r) (Ω^Ts-PreIso.e r))}) π-Trunc-shift-iso : (n : ℕ) (t : n ≠ O) (X : Ptd i) → Ω^-Group n t (⊙Trunc ⟨ n ⟩ X) Trunc-level == π n t X π-Trunc-shift-iso n t X = group-ua (group-hom (fst F) pres-comp , e) where n-eq : ∀ (n : ℕ) → (n -2) +2+ ⟨0⟩ == ⟨ n ⟩ n-eq O = idp n-eq (S n) = ap S (n-eq n) r = transport (λ k → Ω^Ts-PreIso ⟨0⟩ n k t X) (n-eq n) (Ω^-Trunc-shift-preiso n ⟨0⟩ t X) open Ω^Ts-PreIso r abstract π-below-trunc : ∀ {i} (n : ℕ) (t : n ≠ O) (m : ℕ₋₂) (X : Ptd i) → (⟨ n ⟩ ≤T m) → π n t (⊙Trunc m X) == π n t X π-below-trunc n t m X lte = π n t (⊙Trunc m X) =⟨ ! (π-Trunc-shift-iso n t (⊙Trunc m X)) ⟩ Ω^-Group n t (⊙Trunc ⟨ n ⟩ (⊙Trunc m X)) Trunc-level =⟨ lemma ⟩ Ω^-Group n t (⊙Trunc ⟨ n ⟩ X) Trunc-level =⟨ π-Trunc-shift-iso n t X ⟩ π n t X ∎ where lemma : Ω^-Group n t (⊙Trunc ⟨ n ⟩ (⊙Trunc m X)) Trunc-level == Ω^-Group n t (⊙Trunc ⟨ n ⟩ X) Trunc-level lemma = ap (uncurry $ Ω^-Group n t) $ pair= (⊙ua (fuse-Trunc (fst X) ⟨ n ⟩ m) idp ∙ ap (λ k → ⊙Trunc k X) (minT-out-l lte)) (prop-has-all-paths-↓ has-level-is-prop) π-above-trunc : ∀ {i} (n : ℕ) (t : n ≠ O) (m : ℕ₋₂) (X : Ptd i) → (m <T ⟨ n ⟩) → π n t (⊙Trunc m X) == 0ᴳ π-above-trunc n t m X lt = π n t (⊙Trunc m X) =⟨ ! (π-Trunc-shift-iso n t (⊙Trunc m X)) ⟩ Ω^-Group n t (⊙Trunc ⟨ n ⟩ (⊙Trunc m X)) Trunc-level =⟨ contr-is-0ᴳ _ $ inhab-prop-is-contr (Group.ident (Ω^-Group n t (⊙Trunc ⟨ n ⟩ (⊙Trunc m X)) Trunc-level)) (Ω^-level-in ⟨-1⟩ n _ $ Trunc-preserves-level ⟨ n ⟩ $ raise-level-≤T (transport (λ k → m ≤T k) (+2+-comm ⟨-1⟩ (n -2)) (<T-to-≤T lt)) (Trunc-level {n = m})) ⟩ 0ᴳ ∎ π-above-level : ∀ {i} (n : ℕ) (t : n ≠ O) (m : ℕ₋₂) (X : Ptd i) → (m <T ⟨ n ⟩) → has-level m (fst X) → π n t X == 0ᴳ π-above-level n t m X lt pX = ap (π n t) (! (⊙ua (unTrunc-equiv _ pX) idp)) ∙ π-above-trunc n t m X lt {- πₙ(X × Y) == πₙ(X) × πₙ(Y) -} module _ {i j} (n : ℕ) (t : n ≠ O) (X : Ptd i) (Y : Ptd j) where π-× : π n t (X ⊙× Y) == π n t X ×ᴳ π n t Y π-× = group-ua (Trunc-Group-iso f pres-comp (is-eq f g f-g g-f)) ∙ Trunc-Group-× _ _ where f : Ω^ n (X ⊙× Y) → Ω^ n X × Ω^ n Y f r = (fst (ap^ n ⊙fst) r , fst (ap^ n ⊙snd) r) g : Ω^ n X × Ω^ n Y → Ω^ n (X ⊙× Y) g = fst (ap2^ n (⊙idf _)) f-g : (s : Ω^ n X × Ω^ n Y) → f (g s) == s f-g (p , q) = pair×= (app= (ap fst (ap^-ap2^ n ⊙fst (⊙idf _) ∙ ap2^-fst n)) (p , q)) (app= (ap fst (ap^-ap2^ n ⊙snd (⊙idf _) ∙ ap2^-snd n)) (p , q)) g-f : (r : Ω^ n (X ⊙× Y)) → g (f r) == r g-f = app= $ ap fst $ ap (λ h → h ⊙∘ ⊙diag) (ap2^-ap^ n (⊙idf _) ⊙fst ⊙snd) ∙ ap2^-diag n (⊙idf _ ⊙∘ pair⊙→ ⊙fst ⊙snd) ∙ ap^-idf n pres-comp : (p q : Ω^ n (X ⊙× Y)) → f (conc^ n t p q) == (conc^ n t (fst (f p)) (fst (f q)) , conc^ n t (snd (f p)) (snd (f q))) pres-comp p q = pair×= (ap^-conc^ n t ⊙fst p q) (ap^-conc^ n t ⊙snd p q)
{ "alphanum_fraction": 0.4785881566, "avg_line_length": 36.0120481928, "ext": "agda", "hexsha": "d4dea152bb811545d696649e4556f4dccdeb6eec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danbornside/HoTT-Agda", "max_forks_repo_path": "lib/groups/HomotopyGroup.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danbornside/HoTT-Agda", "max_issues_repo_path": "lib/groups/HomotopyGroup.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danbornside/HoTT-Agda", "max_stars_repo_path": "lib/groups/HomotopyGroup.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2647, "size": 5978 }
module Issue2579.Import where record Wrap (A : Set) : Set where constructor wrap field wrapped : A
{ "alphanum_fraction": 0.7307692308, "avg_line_length": 17.3333333333, "ext": "agda", "hexsha": "d768bf8425ad305a30f061571548f1d64a810504", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue2579/Import.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue2579/Import.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue2579/Import.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 28, "size": 104 }
module cedille-find where open import lib open import cedille-types occurrence-tuple = var × posinfo × string occurrences-table = trie (𝕃 occurrence-tuple) -------------------------- -- helper functions -------------------------- occurrence-tuple-to-JSON : occurrence-tuple → string occurrence-tuple-to-JSON (str , pos-info , filename) = "{\"defn\":\"" ^ str ^ "\",\"pos-info\":" ^ pos-info ^ ",\"filename\":\"" ^ filename ^ "\"}" find-symbols-to-JSON-h : 𝕃 occurrence-tuple → string find-symbols-to-JSON-h [] = "" find-symbols-to-JSON-h (x :: []) = (occurrence-tuple-to-JSON x) find-symbols-to-JSON-h (x :: xs) = (occurrence-tuple-to-JSON x) ^ "," ^ find-symbols-to-JSON-h xs find-symbols-to-JSON : var → 𝕃 occurrence-tuple → string find-symbols-to-JSON symb l = "{\"find\":{\"symbol\":\"" ^ symb ^ "\",\"occurrences\":[" ^ (find-symbols-to-JSON-h l) ^ "]}}" -- updates the value list in the symbol map provided that the key symbol is not being shadowed trie-append-or-create : occurrences-table → stringset → var → var → string → posinfo → occurrences-table trie-append-or-create symb-map shadow key defn pos-info filename with (stringset-contains shadow key) ... | tt = symb-map ... | ff with (trie-lookup symb-map key) ... | nothing = trie-insert symb-map key ((defn , pos-info , filename) :: []) ... | just list = trie-insert symb-map key ((defn , pos-info , filename) :: list) -------------------------- -- find declarations -------------------------- find-symbols-cmd : cmd → string → occurrences-table → stringset → occurrences-table find-symbols-t : Set → Set find-symbols-t X = X → var → string → occurrences-table → stringset → occurrences-table find-symbols-checkKind : find-symbols-t checkKind find-symbols-kind : find-symbols-t kind find-symbols-liftingType : find-symbols-t liftingType find-symbols-lterms : find-symbols-t lterms find-symbols-maybeCheckType : find-symbols-t maybeCheckType find-symbols-optType : find-symbols-t optType find-symbols-term : find-symbols-t term find-symbols-optTerm : find-symbols-t optTerm find-symbols-tk : find-symbols-t tk find-symbols-type : find-symbols-t type -------------------------- -- definitions -------------------------- find-symbols-checkKind (Kind k) defn filename symb-map shadow = find-symbols-kind k defn filename symb-map shadow find-symbols-cmd (DefKind _ kvar _ k _) filename symb-map shadow = find-symbols-kind k kvar filename symb-map shadow find-symbols-cmd (DefTerm _ var mcT t _ _) filename symb-map shadow = find-symbols-maybeCheckType mcT var filename (find-symbols-term t var filename symb-map shadow) shadow find-symbols-cmd (DefType _ var cK T _ _) filename symb-map shadow = find-symbols-checkKind cK var filename (find-symbols-type T var filename symb-map shadow) shadow find-symbols-cmd _ _ symb-map _ = symb-map find-symbols-kind (KndArrow k1 k2) defn filename symb-map shadow = find-symbols-kind k1 defn filename (find-symbols-kind k2 defn filename symb-map shadow) shadow find-symbols-kind (KndParens _ k _) defn filename symb-map shadow = find-symbols-kind k defn filename symb-map shadow find-symbols-kind (KndPi _ _ var tk k) defn filename symb-map shadow = find-symbols-tk tk defn filename (find-symbols-kind k defn filename symb-map (stringset-insert shadow var)) shadow find-symbols-kind (KndTpArrow T k) defn filename symb-map shadow = find-symbols-type T defn filename (find-symbols-kind k defn filename symb-map shadow) shadow find-symbols-kind (KndVar pos-info kvar) defn filename symb-map shadow = trie-append-or-create symb-map shadow kvar defn pos-info filename find-symbols-kind _ _ _ symb-map _ = symb-map find-symbols-liftingType (LiftArrow lT1 lT2) defn filename symb-map shadow = find-symbols-liftingType lT1 defn filename (find-symbols-liftingType lT2 defn filename symb-map shadow) shadow find-symbols-liftingType (LiftParens _ lT _) defn filename symb-map shadow = find-symbols-liftingType lT defn filename symb-map shadow find-symbols-liftingType (LiftPi _ var T lT) defn filename symb-map shadow = find-symbols-type T defn filename (find-symbols-liftingType lT defn filename symb-map (stringset-insert shadow var)) shadow find-symbols-liftingType (LiftTpArrow T lT) defn filename symb-map shadow = find-symbols-type T defn filename (find-symbols-liftingType lT defn filename symb-map shadow) shadow find-symbols-liftingType _ _ _ symb-map _ = symb-map find-symbols-lterms (LtermsCons _ t lt) defn filename symb-map shadow = find-symbols-term t defn filename (find-symbols-lterms lt defn filename symb-map shadow) shadow find-symbols-lterms _ _ _ symb-map _ = symb-map find-symbols-maybeCheckType (Type T) defn filename symb-map shadow = find-symbols-type T defn filename symb-map shadow find-symbols-maybeCheckType _ _ _ symb-map _ = symb-map find-symbols-optType (SomeType T) defn filename symb-map shadow = find-symbols-type T defn filename symb-map shadow find-symbols-optType _ _ _ symb-map _ = symb-map find-symbols-optTerm (SomeTerm t _) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow find-symbols-optTerm _ _ _ symb-map _ = symb-map find-symbols-term (App t1 _ t2) defn filename symb-map shadow = find-symbols-term t1 defn filename (find-symbols-term t2 defn filename symb-map shadow) shadow find-symbols-term (AppTp t T) defn filename symb-map shadow = find-symbols-term t defn filename (find-symbols-type T defn filename symb-map shadow) shadow find-symbols-term (Chi _ _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow find-symbols-term (Delta _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow find-symbols-term (Epsilon _ _ _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow --find-symbols-term (Fold _ _ T t) defn filename symb-map shadow = find-symbols-type T defn filename (find-symbols-term t defn filename symb-map shadow) shadow -- treated as a new top global def find-symbols-term (InlineDef _ _ var t _) defn filename symb-map shadow = find-symbols-term t var filename symb-map shadow find-symbols-term (IotaPair _ t1 t2 ot _) defn filename symb-map shadow = find-symbols-term t1 defn filename (find-symbols-term t2 defn filename (find-symbols-optTerm ot defn filename symb-map shadow) shadow) shadow find-symbols-term (IotaProj t _ _) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow find-symbols-term (Lam _ _ _ var _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map (stringset-insert shadow var) find-symbols-term (Parens _ t _) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow find-symbols-term (PiInj _ _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow find-symbols-term (Rho _ _ t1 t2) defn filename symb-map shadow = find-symbols-term t1 defn filename (find-symbols-term t2 defn filename symb-map shadow) shadow find-symbols-term (Sigma _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow find-symbols-term (Theta _ _ t lt) defn filename symb-map shadow = find-symbols-term t defn filename (find-symbols-lterms lt defn filename symb-map shadow) shadow find-symbols-term (Unfold _ t) defn filename symb-map shadow = find-symbols-term t defn filename symb-map shadow find-symbols-term (Var pos-info var) defn filename symb-map shadow = trie-append-or-create symb-map shadow var defn pos-info filename find-symbols-term _ _ _ symb-map _ = symb-map find-symbols-tk (Tkk k) defn filename symb-map shadow = find-symbols-kind k defn filename symb-map shadow find-symbols-tk (Tkt T) defn filename symb-map shadow = find-symbols-type T defn filename symb-map shadow find-symbols-type (Abs _ _ _ var tk T) defn filename symb-map shadow = find-symbols-tk tk defn filename (find-symbols-type T defn filename symb-map (stringset-insert shadow var)) shadow find-symbols-type (Iota _ _ var oT T) defn filename symb-map shadow = find-symbols-optType oT defn filename (find-symbols-type T defn filename symb-map (stringset-insert shadow var)) shadow find-symbols-type (Lft _ _ var t lT) defn filename symb-map shadow = find-symbols-term t defn filename (find-symbols-liftingType lT defn filename symb-map (stringset-insert shadow var)) shadow find-symbols-type (Mu _ _ var k T) defn filename symb-map shadow = find-symbols-kind k defn filename (find-symbols-type T defn filename symb-map (stringset-insert shadow var)) shadow find-symbols-type (NoSpans T _) defn filename symb-map shadow = find-symbols-type T defn filename symb-map shadow find-symbols-type (TpApp T1 T2) defn filename symb-map shadow = find-symbols-type T1 defn filename (find-symbols-type T2 defn filename symb-map shadow) shadow find-symbols-type (TpAppt T t) defn filename symb-map shadow = find-symbols-type T defn filename (find-symbols-term t defn filename symb-map shadow) shadow find-symbols-type (TpArrow T1 _ T2) defn filename symb-map shadow = find-symbols-type T1 defn filename (find-symbols-type T2 defn filename symb-map shadow) shadow find-symbols-type (TpEq t1 t2) defn filename symb-map shadow = find-symbols-term t1 defn filename (find-symbols-term t2 defn filename symb-map shadow) shadow find-symbols-type (TpLambda _ _ var tk T) defn filename symb-map shadow = find-symbols-tk tk defn filename (find-symbols-type T defn filename symb-map (stringset-insert shadow var)) shadow find-symbols-type (TpParens _ T _) defn filename symb-map shadow = find-symbols-type T defn filename symb-map shadow find-symbols-type (TpVar pos-info var) defn filename symb-map shadow = trie-append-or-create symb-map shadow var defn pos-info filename find-symbols-type (TpHole pos-info) defn filename symb-map shadow = trie-append-or-create symb-map shadow "hole" defn pos-info filename --ACG: Not sure this works
{ "alphanum_fraction": 0.7393511146, "avg_line_length": 79.746031746, "ext": "agda", "hexsha": "79d036e0b424bf490da156a77ea5962465a9b06d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/cedille-find.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/cedille-find.agda", "max_line_length": 215, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/cedille-find.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2601, "size": 10048 }
module list-thms2 where open import bool open import bool-thms open import bool-thms2 open import functions open import list open import list-thms open import nat open import nat-thms open import product-thms open import logic list-and-++ : ∀(l1 l2 : 𝕃 𝔹) → list-and (l1 ++ l2) ≡ (list-and l1) && (list-and l2) list-and-++ [] l2 = refl list-and-++ (x :: l1) l2 rewrite (list-and-++ l1 l2) | (&&-assoc x (list-and l1) (list-and l2))= refl list-or-++ : ∀(l1 l2 : 𝕃 𝔹) → list-or (l1 ++ l2) ≡ (list-or l1) || (list-or l2) list-or-++ [] l2 = refl list-or-++ (x :: l1) l2 rewrite (list-or-++ l1 l2) | (||-assoc x (list-or l1) (list-or l2)) = refl ++-singleton : ∀{ℓ}{A : Set ℓ}(a : A)(l1 l2 : 𝕃 A) → (l1 ++ [ a ]) ++ l2 ≡ l1 ++ (a :: l2) ++-singleton a l1 [] rewrite ++[] (l1 ++ a :: []) = refl ++-singleton a l1 l2 rewrite (++-assoc l1 [ a ] l2) = refl list-member-++ : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l1 l2 : 𝕃 A) → list-member eq a (l1 ++ l2) ≡ (list-member eq a l1) || (list-member eq a l2) list-member-++ eq a [] l2 = refl list-member-++ eq a (x :: l1) l2 with eq a x list-member-++ eq a (x :: l1) l2 | tt = refl list-member-++ eq a (x :: l1) l2 | ff rewrite (list-member-++ eq a l1 l2) = refl list-member-++2 : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l1 l2 : 𝕃 A) → list-member eq a l1 ≡ tt → list-member eq a (l1 ++ l2) ≡ tt list-member-++2 eq a [] l2 () list-member-++2 eq a (x :: l1) l2 p with eq a x list-member-++2 eq a (x :: l1) l2 p | tt = refl list-member-++2 eq a (x :: l1) l2 p | ff rewrite (list-member-++2 eq a l1 l2 p) = refl list-member-++3 : ∀{ℓ}{A : Set ℓ}(eq : A → A → 𝔹)(a : A)(l1 l2 : 𝕃 A) → list-member eq a l2 ≡ tt → list-member eq a (l1 ++ l2) ≡ tt list-member-++3 eq a [] l2 p = p list-member-++3 eq a (x :: l1) l2 p with eq a x list-member-++3 eq a (x :: l1) l2 p | tt = refl list-member-++3 eq a (x :: l1) l2 p | ff rewrite (list-member-++3 eq a l1 l2 p) = refl filter-ff-repeat : ∀{ℓ}{A : Set ℓ}{p : A → 𝔹}{a : A}(n : ℕ) → p a ≡ ff → filter p (repeat n a) ≡ [] filter-ff-repeat zero p1 = refl filter-ff-repeat{ℓ}{A}{p0}{a} (suc n) p1 with keep (p0 a) filter-ff-repeat{ℓ}{A}{p0}{a} (suc n) p1 | tt , y rewrite y = 𝔹-contra (sym p1) filter-ff-repeat{ℓ}{A}{p0}{a} (suc n) p1 | ff , y rewrite y = filter-ff-repeat {ℓ} {A} {p0} {a} n y is-empty-distr : ∀{ℓ}{A : Set ℓ} (l1 l2 : 𝕃 A) → is-empty (l1 ++ l2) ≡ (is-empty l1) && (is-empty l2) is-empty-distr [] l2 = refl is-empty-distr (x :: l1) l2 = refl is-empty-reverse : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → is-empty l ≡ is-empty (reverse l) is-empty-reverse [] = refl is-empty-reverse (x :: xs) rewrite (reverse-++h (x :: []) xs) | (is-empty-distr (reverse-helper [] xs) (x :: [])) | (&&-comm (is-empty (reverse-helper [] xs)) ff) = refl reverse-length : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → length (reverse l) ≡ length l reverse-length l = length-reverse-helper [] l last-distr : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A)(x : A)(p : is-empty l ≡ ff) → last (x :: l) refl ≡ last l p last-distr [] x () last-distr (x :: l) x2 refl = refl is-empty-[] : ∀{ℓ}{A : Set ℓ} (l : 𝕃 A)(p : is-empty l ≡ tt) → l ≡ [] is-empty-[] [] p = refl is-empty-[] (x :: l) () rev-help-empty : ∀ {ℓ}{A : Set ℓ} (l1 l2 : 𝕃 A) → (p1 : is-empty l2 ≡ ff) → is-empty (reverse-helper l1 l2) ≡ ff rev-help-empty l1 [] () rev-help-empty l1 (x :: l2) p rewrite reverse-++h (x :: l1) l2 | is-empty-distr (reverse-helper [] l2) (x :: l1) | (&&-comm (is-empty (reverse-helper [] l2)) ff) = refl is-empty-revh : ∀{ℓ}{A : Set ℓ}(h l : 𝕃 A) → is-empty l ≡ ff → is-empty (reverse-helper h l) ≡ ff is-empty-revh h l p = rev-help-empty h l p head-last-reverse-lem : ∀{ℓ}{A : Set ℓ}(h l : 𝕃 A)(p : is-empty l ≡ ff) → last l p ≡ head (reverse-helper h l) (is-empty-revh h l p) head-last-reverse-lem h [] () head-last-reverse-lem h (x :: []) p = refl head-last-reverse-lem h (x :: y :: l) p = head-last-reverse-lem (x :: h) (y :: l) refl head-last-reverse : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A)(p : is-empty l ≡ ff) → last l p ≡ head (reverse l) (rev-help-empty [] l p) head-last-reverse [] () head-last-reverse (x :: l) p with keep (is-empty l) head-last-reverse (x :: l) refl | tt , b rewrite is-empty-[] l b = refl head-last-reverse (x :: l) refl | ff , b rewrite (last-distr l x b) = head-last-reverse-lem (x :: []) l b reverse-reverse : ∀{ℓ}{A : Set ℓ}(l : 𝕃 A) → reverse (reverse l) ≡ l reverse-reverse [] = refl reverse-reverse (x :: l) rewrite (reverse-++h (x :: []) l) | (reverse-++ (reverse-helper [] l) (x :: [])) | reverse-reverse l = refl empty++elem : ∀ {ℓ}{A : Set ℓ} (a : A) (l : 𝕃 A) → is-empty ( l ++ [ a ]) ≡ ff empty++elem a [] = refl empty++elem a (x :: l) = refl last-++ : ∀{ℓ}{A : Set ℓ} (a : A) (l : 𝕃 A) → last (l ++ [ a ]) (empty++elem a l) ≡ a last-++ a [] = refl last-++ a (x :: l) rewrite last-distr (l ++ [ a ]) x (empty++elem a l) | last-++ a l = refl
{ "alphanum_fraction": 0.5317286652, "avg_line_length": 46.119266055, "ext": "agda", "hexsha": "0fb13ff5ccf562c286c4f64fd4f3a2e702ea92e9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "list-thms2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "list-thms2.agda", "max_line_length": 133, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "list-thms2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2029, "size": 5027 }
{-# OPTIONS --allow-unsolved-metas #-} module Semantics.Bind where open import Syntax.Types open import Syntax.Context renaming (_,_ to _,,_) open import Syntax.Terms open import Syntax.Substitution.Kits open import Syntax.Substitution.Instances open import Syntax.Substitution.Lemmas open import Semantics.Types open import Semantics.Terms open import Semantics.Context open import Semantics.Substitution.Kits open import Semantics.Substitution.Traversal open import Semantics.Substitution.Instances open import CategoryTheory.Categories using (Category ; ext) open import CategoryTheory.Functor open import CategoryTheory.NatTrans open import CategoryTheory.Monad open import CategoryTheory.Comonad open import CategoryTheory.CartesianStrength open import CategoryTheory.Instances.Reactive renaming (top to ⊤) open import TemporalOps.Diamond open import TemporalOps.Delay open import TemporalOps.Box open import TemporalOps.OtherOps open import TemporalOps.StrongMonad open import Data.Sum open import Data.Product using (_,_) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_ ; refl ; sym ; trans ; cong ; cong₂ ; subst) open ≡.≡-Reasoning open import Holes.Term using (⌞_⌟) open import Holes.Cong.Propositional open Comonad W-□ open Monad M-◇ private module F-◇ = Functor F-◇ private module F-□ = Functor F-□ open Functor F-□ renaming (fmap to □-f) open Functor F-◇ renaming (fmap to ◇-f) private module ▹ᵏ-C k = CartesianFunctor (F-cart-delay k) private module ▹ᵏ-F k = Functor (F-delay k) private module □-▹ᵏ k = _⟹_ (□-to-▹ᵏ k) bind-to->>= : ∀ Γ {⟦A⟧ ⟦B⟧} -> (⟦E⟧ : ⟦ Γ ⟧ₓ ⇴ ◇ ⟦A⟧) (⟦C⟧ : ⟦ Γ ˢ ⟧ₓ ⊗ ⟦A⟧ ⇴ ◇ ⟦B⟧) -> (n : ℕ) (⟦Γ⟧ : ⟦ Γ ⟧ₓ n) -> bindEvent Γ ⟦E⟧ ⟦C⟧ n ⟦Γ⟧ ≡ (⟦E⟧ n ⟦Γ⟧ >>= λ l ⟦A⟧ → ⟦C⟧ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧)) bind-to->>= Γ {⟦A⟧} {⟦B⟧} ⟦E⟧ ⟦C⟧ n ⟦Γ⟧ = begin bindEvent Γ ⟦E⟧ ⟦C⟧ n ⟦Γ⟧ ≡⟨⟩ μ.at ⟦B⟧ n (F-◇.fmap (⟦C⟧ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦A⟧ n (⟦ Γ ˢ⟧□ n ⟦Γ⟧ , ⟦E⟧ n ⟦Γ⟧))) ≡⟨ cong (μ.at ⟦B⟧ n) (lemma (⟦E⟧ n ⟦Γ⟧)) ⟩ μ.at ⟦B⟧ n (F-◇.fmap (⟦C⟧ ∘ ⟨ (λ l _ → ⟦ Γ ˢ⟧□ n ⟦Γ⟧ l) , id ⟩) n (⟦E⟧ n ⟦Γ⟧)) ≡⟨⟩ (⟦E⟧ n ⟦Γ⟧ >>= (λ l ⟦A⟧ → ⟦C⟧ l (⟦ Γ ˢ⟧□ n ⟦Γ⟧ l , ⟦A⟧))) ∎ where lemma : ∀ ◇⟦A⟧ -> F-◇.fmap (⟦C⟧ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦A⟧ n (⟦ Γ ˢ⟧□ n ⟦Γ⟧ , ◇⟦A⟧)) ≡ F-◇.fmap (⟦C⟧ ∘ ⟨ (λ l _ → ⟦ Γ ˢ⟧□ n ⟦Γ⟧ l) , id ⟩) n ◇⟦A⟧ lemma (k , a) = begin F-◇.fmap (⟦C⟧ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦A⟧ n (⟦ Γ ˢ⟧□ n ⟦Γ⟧ , (k , a))) ≡⟨⟩ k , ▹ᵏ-F.fmap k (⟦C⟧ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n (▹ᵏ-C.m k (□ ⟦ Γ ˢ ⟧ₓ) ⟦A⟧ n (□-▹ᵏ.at k (□ ⟦ Γ ˢ ⟧ₓ) n (δ.at ⟦ Γ ˢ ⟧ₓ k (⟦ Γ ˢ⟧□ n ⟦Γ⟧)) , a)) ≡⟨ {! !} ⟩ k , ▹ᵏ-F.fmap k (⟦C⟧ ∘ ⟨ (λ l _ → ⟦ Γ ˢ⟧□ n ⟦Γ⟧ l) , id ⟩) n a ≡⟨⟩ F-◇.fmap (⟦C⟧ ∘ ⟨ (λ l _ → ⟦ Γ ˢ⟧□ n ⟦Γ⟧ l) , id ⟩) n (k , a) ∎
{ "alphanum_fraction": 0.55022437, "avg_line_length": 36.2125, "ext": "agda", "hexsha": "38824577a5afd371153d283b10f894c5d8f383bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/Semantics/Bind.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/Semantics/Bind.agda", "max_line_length": 110, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/Semantics/Bind.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 1445, "size": 2897 }
module Prelude where infix 20 _≡_ _≤_ _∈_ infixl 60 _,_ _++_ _+_ _◄_ _◄²_ _∘_ : {A B : Set}{C : B -> Set}(f : (x : B) -> C x)(g : A -> B)(x : A) -> C (g x) (f ∘ g) x = f (g x) data _≡_ {A : Set}(x : A) : {B : Set} -> B -> Set where refl : x ≡ x cong : {A : Set}{B : A -> Set}(f : (z : A) -> B z){x y : A} -> x ≡ y -> f x ≡ f y cong f refl = refl subst : {A : Set}(P : A -> Set){x y : A} -> x ≡ y -> P y -> P x subst P refl px = px sym : {A : Set}{x y : A} -> x ≡ y -> y ≡ x sym refl = refl data Nat : Set where zero : Nat suc : Nat -> Nat _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) {-# BUILTIN NATURAL Nat #-} {-# BUILTIN SUC suc #-} {-# BUILTIN ZERO zero #-} {-# BUILTIN NATPLUS _+_ #-} data _≤_ : Nat -> Nat -> Set where leqZ : {m : Nat} -> zero ≤ m leqS : {n m : Nat} -> n ≤ m -> suc n ≤ suc m refl-≤ : {n : Nat} -> n ≤ n refl-≤ {zero } = leqZ refl-≤ {suc n} = leqS refl-≤ refl-≤' : {n m : Nat} -> n ≡ m -> n ≤ m refl-≤' refl = refl-≤ trans-≤ : {x y z : Nat} -> x ≤ y -> y ≤ z -> x ≤ z trans-≤ leqZ yz = leqZ trans-≤ (leqS xy) (leqS yz) = leqS (trans-≤ xy yz) lem-≤suc : {x : Nat} -> x ≤ suc x lem-≤suc {zero } = leqZ lem-≤suc {suc x} = leqS lem-≤suc lem-≤+L : (x : Nat){y : Nat} -> y ≤ x + y lem-≤+L zero = refl-≤ lem-≤+L (suc x) = trans-≤ (lem-≤+L x) lem-≤suc lem-≤+R : {x y : Nat} -> x ≤ x + y lem-≤+R {zero } = leqZ lem-≤+R {suc x} = leqS lem-≤+R data List (A : Set) : Set where ε : List A _,_ : List A -> A -> List A _++_ : {A : Set} -> List A -> List A -> List A xs ++ ε = xs xs ++ (ys , y) = (xs ++ ys) , y data All {A : Set}(P : A -> Set) : List A -> Set where ∅ : All P ε _◄_ : forall {xs x} -> All P xs -> P x -> All P (xs , x) {- data Some {A : Set}(P : A -> Set) : List A -> Set where hd : forall {x xs} -> P x -> Some P (xs , x) tl : forall {x xs} -> Some P xs -> Some P (xs , x) -} data _∈_ {A : Set}(x : A) : List A -> Set where hd : forall {xs} -> x ∈ xs , x tl : forall {y xs} -> x ∈ xs -> x ∈ xs , y _!_ : {A : Set}{P : A -> Set}{xs : List A} -> All P xs -> {x : A} -> x ∈ xs -> P x ∅ ! () (xs ◄ x) ! hd = x (xs ◄ x) ! tl i = xs ! i tabulate : {A : Set}{P : A -> Set}{xs : List A} -> ({x : A} -> x ∈ xs -> P x) -> All P xs tabulate {xs = ε} f = ∅ tabulate {xs = xs , x} f = tabulate (f ∘ tl) ◄ f hd data All² {I : Set}{A : I -> Set}(P : {i : I} -> A i -> Set) : {is : List I} -> All A is -> Set where ∅² : All² P ∅ _◄²_ : forall {i is}{x : A i}{xs : All A is} -> All² P xs -> P x -> All² P (xs ◄ x) data _∈²_ {I : Set}{A : I -> Set}{i : I}(x : A i) : {is : List I} -> All A is -> Set where hd² : forall {is}{xs : All A is} -> x ∈² xs ◄ x tl² : forall {j is}{y : A j}{xs : All A is} -> x ∈² xs -> x ∈² xs ◄ y
{ "alphanum_fraction": 0.4362606232, "avg_line_length": 26.3925233645, "ext": "agda", "hexsha": "a610d1a17bd06727935aadc847a80d68625104cf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "examples/outdated-and-incorrect/tait/Prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "examples/outdated-and-incorrect/tait/Prelude.agda", "max_line_length": 81, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/tait/Prelude.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 1298, "size": 2824 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Patterns for Fin ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Fin.Patterns where open import Data.Fin.Base ------------------------------------------------------------------------ -- Constants pattern 0F = zero pattern 1F = suc 0F pattern 2F = suc 1F pattern 3F = suc 2F pattern 4F = suc 3F pattern 5F = suc 4F pattern 6F = suc 5F pattern 7F = suc 6F pattern 8F = suc 7F pattern 9F = suc 8F
{ "alphanum_fraction": 0.4317789292, "avg_line_length": 22.2692307692, "ext": "agda", "hexsha": "f985fe00b11a6d3725b8e2f4a48acee949c7fd95", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/Fin/Patterns.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/Fin/Patterns.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/Fin/Patterns.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 142, "size": 579 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Pretty Printing -- This module is based on Jean-Philippe Bernardy's functional pearl -- "A Pretty But Not Greedy Printer" ------------------------------------------------------------------------ {-# OPTIONS --with-K #-} module Text.Pretty.Core where import Level open import Data.Bool.Base using (Bool) open import Data.Erased as Erased using (Erased) hiding (module Erased) open import Data.List.Base as List using (List; []; _∷_) open import Data.Nat.Base using (ℕ; zero; suc; _+_; _⊔_; _≤_; z≤n) open import Data.Nat.Properties open import Data.Product as Prod using (_×_; _,_; uncurry; proj₁; proj₂) import Data.Product.Relation.Unary.All as Allᴾ open import Data.Tree.Binary as Tree using (Tree; leaf; node) open import Data.Tree.Binary.Relation.Unary.All as Allᵀ using (leaf; node) import Data.Tree.Binary.Relation.Unary.All.Properties as Allᵀₚ import Data.Tree.Binary.Properties as Treeₚ open import Data.Maybe.Base as Maybe using (Maybe; nothing; just; maybe′) open import Data.Maybe.Relation.Unary.All as Allᴹ using (nothing; just) open import Data.String.Base as String open import Data.String.Unsafe as Stringₚ open import Function.Base open import Relation.Nullary using (Dec) open import Relation.Unary using (IUniversal; _⇒_) open import Relation.Binary.PropositionalEquality open import Data.Refinement hiding (map) import Data.Refinement.Relation.Unary.All as Allᴿ ------------------------------------------------------------------------ -- Block of text -- Content is a representation of the first line and the middle of the block. -- We use a tree rather than a list for the middle of the block so that we can -- extend it with lines on the left and on the line for free. We will ultimately -- render the block by traversing the tree left to right in a depth-first manner. Content : Set Content = Maybe (String × Tree String) size : Content → ℕ size = maybe′ (suc ∘ Tree.size ∘ proj₂) 0 All : ∀ {p} (P : String → Set p) → (Content → Set p) All P = Allᴹ.All (Allᴾ.All P (Allᵀ.All P)) All≤ : ℕ → Content → Set All≤ n = All (λ s → length s ≤ n) record Block : Set where field height : ℕ block : [ xs ∈ Content ∣ size xs ≡ height ] -- last line lastWidth : ℕ last : [ s ∈ String ∣ length s ≡ lastWidth ] -- max of all the widths maxWidth : [ n ∈ ℕ ∣ lastWidth ≤ n × All≤ n (block .value) ] ------------------------------------------------------------------------ -- Raw string text : String → Block text s = record { height = 0 ; block = nothing , ⦇ refl ⦈ ; lastWidth = width ; last = s , ⦇ refl ⦈ ; maxWidth = width , ⦇ (≤-refl , nothing) ⦈ } where width = length s; open Erased ------------------------------------------------------------------------ -- Empty empty : Block empty = text "" ------------------------------------------------------------------------ -- Helper functions node? : Content → String → Tree String → Content node? (just (x , xs)) y ys = just (x , node xs y ys) node? nothing y ys = just (y , ys) ∣node?∣ : ∀ b y ys → size (node? b y ys) ≡ size b + suc (Tree.size ys) ∣node?∣ (just (x , xs)) y ys = refl ∣node?∣ nothing y ys = refl ≤-Content : ∀ {m n} {b : Content} → m ≤ n → All≤ m b → All≤ n b ≤-Content {m} {n} m≤n = Allᴹ.map (Prod.map step (Allᵀ.map step)) where step : ∀ {p} → p ≤ m → p ≤ n step = flip ≤-trans m≤n All≤-node? : ∀ {l m r n} → All≤ n l → length m ≤ n → Allᵀ.All (λ s → length s ≤ n) r → All≤ n (node? l m r) All≤-node? nothing py pys = just (py , pys) All≤-node? (just (px , pxs)) py pys = just (px , node pxs py pys) ------------------------------------------------------------------------ -- Appending two documents private module append (x y : Block) where module x = Block x module y = Block y blockx = x.block .value blocky = y.block .value widthx = x.maxWidth .value widthy = y.maxWidth .value lastx = x.last .value lasty = y.last .value height : ℕ height = (_+_ on Block.height) x y lastWidth : ℕ lastWidth = (_+_ on Block.lastWidth) x y pad : Maybe String pad with x.lastWidth ... | 0 = nothing ... | l = just (replicate l ' ') size-pad : maybe′ length 0 pad ≡ x.lastWidth size-pad with x.lastWidth ... | 0 = refl ... | l@(suc _) = length-replicate l indent : Maybe String → String → String indent = maybe′ _++_ id size-indent : ∀ ma str → length (indent ma str) ≡ maybe′ length 0 ma + length str size-indent nothing str = refl size-indent (just pad) str = length-++ pad str indents : Maybe String → Tree String → Tree String indents = maybe′ (Tree.map ∘ _++_) id size-indents : ∀ ma t → Tree.size (indents ma t) ≡ Tree.size t size-indents nothing t = refl size-indents (just pad) t = Treeₚ.size-map (pad ++_) t unfold-indents : ∀ ma t → indents ma t ≡ Tree.map (indent ma) t unfold-indents nothing t = sym (Treeₚ.map-id t) unfold-indents (just pad) t = refl vContent : Content × String vContent with blocky ... | nothing = blockx , lastx ++ lasty ... | just (hd , tl) = node? {-,--------------,-} {-|-} blockx {-|-} {-|-} {-'---,-} {-,------------------,-} {-|-} (lastx {-|-} ++ {-|-} hd) {-|-} {-'------------------'-} {-|-} {-|-} (indents pad {-|-} tl) {-,----'-} , indent pad {-|-} lasty {-|-} {-'-------------'-} vBlock = proj₁ vContent vLast = proj₂ vContent isBlock : size blockx ≡ x.height → size blocky ≡ y.height → size vBlock ≡ height isBlock ∣x∣ ∣y∣ with blocky ... | nothing = begin size blockx ≡⟨ ∣x∣ ⟩ x.height ≡˘⟨ +-identityʳ x.height ⟩ x.height + 0 ≡⟨ cong (_ +_) ∣y∣ ⟩ x.height + y.height ∎ where open ≡-Reasoning ... | just (hd , tl) = begin ∣node∣ ≡⟨ ∣node?∣ blockx middle rest ⟩ ∣blockx∣ + suc (Tree.size rest) ≡⟨ cong ((size blockx +_) ∘′ suc) ∣rest∣ ⟩ ∣blockx∣ + suc (Tree.size tl) ≡⟨ cong₂ _+_ ∣x∣ ∣y∣ ⟩ x.height + y.height ∎ where open ≡-Reasoning ∣blockx∣ = size blockx middle = lastx ++ hd rest = indents pad tl ∣rest∣ = size-indents pad tl ∣node∣ = size (node? blockx middle rest) block : [ xs ∈ Content ∣ size xs ≡ height ] block .value = vBlock block .proof = ⦇ isBlock (Block.block x .proof) (Block.block y .proof) ⦈ where open Erased isLastLine : length lastx ≡ x.lastWidth → length lasty ≡ y.lastWidth → length vLast ≡ lastWidth isLastLine ∣x∣ ∣y∣ with blocky ... | nothing = begin length (lastx ++ lasty) ≡⟨ length-++ lastx lasty ⟩ length lastx + length lasty ≡⟨ cong₂ _+_ ∣x∣ ∣y∣ ⟩ x.lastWidth + y.lastWidth ∎ where open ≡-Reasoning ... | just (hd , tl) = begin length (indent pad lasty) ≡⟨ size-indent pad lasty ⟩ maybe′ length 0 pad + length lasty ≡⟨ cong₂ _+_ size-pad ∣y∣ ⟩ x.lastWidth + y.lastWidth ∎ where open ≡-Reasoning last : [ s ∈ String ∣ length s ≡ lastWidth ] last .value = vLast last .proof = ⦇ isLastLine (Block.last x .proof) (Block.last y .proof) ⦈ where open Erased vMaxWidth : ℕ vMaxWidth = widthx ⊔ (x.lastWidth + widthy) isMaxWidth₁ : y.lastWidth ≤ widthy → lastWidth ≤ vMaxWidth isMaxWidth₁ p = begin lastWidth ≤⟨ +-monoʳ-≤ x.lastWidth p ⟩ x.lastWidth + widthy ≤⟨ n≤m⊔n _ _ ⟩ vMaxWidth ∎ where open ≤-Reasoning isMaxWidth₂ : length lastx ≡ x.lastWidth → x.lastWidth ≤ widthx → All≤ widthx blockx → All≤ widthy blocky → All≤ vMaxWidth vBlock isMaxWidth₂ ∣x∣≡ ∣x∣≤ ∣xs∣ ∣ys∣ with blocky ... | nothing = ≤-Content (m≤m⊔n _ _) ∣xs∣ isMaxWidth₂ ∣x∣≡ ∣x∣≤ ∣xs∣ (just (∣hd∣ , ∣tl∣)) | just (hd , tl) = All≤-node? (≤-Content (m≤m⊔n _ _) ∣xs∣) middle (subst (Allᵀ.All _) (sym $ unfold-indents pad tl) $ Allᵀₚ.map⁺ (indent pad) (Allᵀ.map (indented _) ∣tl∣)) where middle : length (lastx ++ hd) ≤ vMaxWidth middle = begin length (lastx ++ hd) ≡⟨ length-++ lastx hd ⟩ length lastx + length hd ≡⟨ cong (_+ _) ∣x∣≡ ⟩ x.lastWidth + length hd ≤⟨ +-monoʳ-≤ x.lastWidth ∣hd∣ ⟩ x.lastWidth + widthy ≤⟨ n≤m⊔n _ _ ⟩ vMaxWidth ∎ where open ≤-Reasoning indented : ∀ s → length s ≤ widthy → length (indent pad s) ≤ vMaxWidth indented s ∣s∣ = begin length (indent pad s) ≡⟨ size-indent pad s ⟩ maybe′ length 0 pad + length s ≡⟨ cong (_+ _) size-pad ⟩ x.lastWidth + length s ≤⟨ +-monoʳ-≤ x.lastWidth ∣s∣ ⟩ x.lastWidth + widthy ≤⟨ n≤m⊔n (widthx) _ ⟩ vMaxWidth ∎ where open ≤-Reasoning maxWidth : [ n ∈ ℕ ∣ lastWidth ≤ n × All≤ n vBlock ] maxWidth .value = vMaxWidth maxWidth .proof = ⦇ _,_ ⦇ isMaxWidth₁ (map proj₁ (Block.maxWidth y .proof)) ⦈ ⦇ isMaxWidth₂ (Block.last x .proof) (map proj₁ (Block.maxWidth x .proof)) (map proj₂ (Block.maxWidth x .proof)) (map proj₂ (Block.maxWidth y .proof)) ⦈ ⦈ where open Erased infixl 4 _<>_ _<>_ : Block → Block → Block x <> y = record { append x y } ------------------------------------------------------------------------ -- Flush (introduces a new line) private module flush (x : Block) where module x = Block x blockx = x.block .value lastx = x.last .value widthx = x.maxWidth .value heightx = x.height height = suc heightx lastWidth = 0 vMaxWidth = widthx last : [ s ∈ String ∣ length s ≡ lastWidth ] last = "" , ⦇ refl ⦈ where open Erased vContent = node? blockx lastx leaf isBlock : size blockx ≡ heightx → size vContent ≡ height isBlock ∣x∣ = begin size vContent ≡⟨ ∣node?∣ blockx lastx leaf ⟩ size blockx + 1 ≡⟨ cong (_+ 1) ∣x∣ ⟩ heightx + 1 ≡⟨ +-comm heightx 1 ⟩ height ∎ where open ≡-Reasoning block : [ xs ∈ Content ∣ size xs ≡ height ] block .value = vContent block .proof = Erased.map isBlock $ Block.block x .proof maxWidth : [ n ∈ ℕ ∣ lastWidth ≤ n × All≤ n vContent ] maxWidth .value = widthx maxWidth .proof = map (z≤n ,_) ⦇ All≤-node? ⦇ proj₂ (Block.maxWidth x .proof) ⦈ ⦇ middle (Block.last x .proof) ⦇ proj₁ (Block.maxWidth x .proof) ⦈ ⦈ (pure leaf) ⦈ where open Erased middle : length lastx ≡ x.lastWidth → x.lastWidth ≤ vMaxWidth → length lastx ≤ vMaxWidth middle p q = begin length lastx ≡⟨ p ⟩ x.lastWidth ≤⟨ q ⟩ vMaxWidth ∎ where open ≤-Reasoning flush : Block → Block flush x = record { flush x } ------------------------------------------------------------------------ -- Other functions render : Block → String render x = unlines $ maybe′ (uncurry (λ hd tl → hd ∷ Tree.Infix.toList tl)) [] $ node? (Block.block x .value) (Block.last x .value) leaf valid : (width : ℕ) (b : Block) → Dec (Block.maxWidth b .value ≤ width) valid width b = Block.maxWidth b .value ≤? width
{ "alphanum_fraction": 0.5241771293, "avg_line_length": 33.9711815562, "ext": "agda", "hexsha": "eb142671d1c13e4ee57aeeaa00214c9d30dd591b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Text/Pretty/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Text/Pretty/Core.agda", "max_line_length": 87, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Text/Pretty/Core.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 3696, "size": 11788 }
module CoinductiveBuiltinList where open import Common.Coinduction data List (A : Set) : Set where [] : List A _∷_ : (x : A) (xs : ∞ (List A)) → List A {-# BUILTIN LIST List #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-}
{ "alphanum_fraction": 0.5840336134, "avg_line_length": 19.8333333333, "ext": "agda", "hexsha": "5969e8de8704c6862cd0fb6062152c1dc2c451b5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/CoinductiveBuiltinList.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/CoinductiveBuiltinList.agda", "max_line_length": 42, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/CoinductiveBuiltinList.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 82, "size": 238 }
-- This module introduces operators. module Introduction.Operators where -- Agda has a very flexible mechanism for defining operators, supporting infix, -- prefix, postfix and mixfix operators. data Nat : Set where zero : Nat suc : Nat -> Nat -- Any name containing underscores (_) can be used as an operator by writing -- the arguments where the underscores are. For instance, the function _+_ is -- the infix addition function. This function can be used either as a normal -- function: '_+_ zero zero', or as an operator: 'zero + zero'. _+_ : Nat -> Nat -> Nat zero + m = m suc n + m = suc (n + m) -- A fixity declaration specifies precedence level (50 in this case) and -- associativity (left associative here) of an operator. Only infix operators -- (whose names start and end with _) have associativity. infixl 50 _+_ -- The only restriction on where _ can appear in a name is that there cannot be -- two underscores in sequence. For instance, we can define an if-then-else -- operator: data Bool : Set where false : Bool true : Bool if_then_else_ : {A : Set} -> Bool -> A -> A -> A if true then x else y = x if false then x else y = y -- if_then_else_ is treated as a prefix operator (ends, but doesn't begin with -- an _), so the declared precedence determines how something in an else branch -- should be parsed. For instance, with the given precedences -- if x then y else a + b -- is parsed as -- if x then y else (a + b) -- and not -- (if x then y else a) + b infix 10 if_then_else_ -- In Agda there is no restriction on what characters are allowed to appear in -- an operator (as opposed to a function symbol). For instance, it is allowed -- (but not recommended) to define 'f' to be an infix operator and '+' to be a -- function symbol. module BadIdea where _f_ : Nat -> Nat -> Nat zero f zero = zero zero f suc n = suc n suc n f zero = suc n suc n f suc m = suc (n f m) + : Nat -> Nat + n = suc n
{ "alphanum_fraction": 0.6899185336, "avg_line_length": 29.7575757576, "ext": "agda", "hexsha": "f3381578f68abe662d4bea4cebf4eb763fd25934", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "examples/Introduction/Operators.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "examples/Introduction/Operators.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "examples/Introduction/Operators.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 535, "size": 1964 }
module Issue1232.All where import Issue1232.Fin import Issue1232.List
{ "alphanum_fraction": 0.8333333333, "avg_line_length": 12, "ext": "agda", "hexsha": "82626295dc04af782913a663cbae68e3afeda198", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue1232/All.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue1232/All.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue1232/All.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 21, "size": 72 }
{-# OPTIONS --without-K --safe #-} open import Level open import Categories.Category module Categories.Functor.Power.Functorial {o ℓ e : Level} (C : Category o ℓ e) where open import Relation.Binary.PropositionalEquality using (_≡_; refl; trans) open import Categories.Functor renaming (id to idF) open import Categories.Category.Discrete open import Categories.Category.Equivalence open import Categories.Category.Construction.Functors open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Categories.NaturalTransformation.NaturalIsomorphism as NI using (module NaturalIsomorphism; _≃_; refl) import Categories.Morphism.Reasoning as MR open MR C import Categories.Functor.Power as Power open Power C open Category using (Obj) open Category C using (_⇒_; _∘_; module Equiv) module C = Category C module CE = Equiv private variable i : Level I : Set i exp→functor₀ : Obj (Exp I) → Functor (Discrete I) C exp→functor₀ X = record { F₀ = X ; F₁ = λ { refl → C.id } ; identity = CE.refl ; homomorphism = λ { {_} {_} {_} {refl} {refl} → CE.sym C.identityˡ} ; F-resp-≈ = λ { {_} {_} {refl} {refl} refl → CE.refl} } exp→functor₁ : {X Y : I → C.Obj} → Exp I [ X , Y ] → NaturalTransformation (exp→functor₀ X) (exp→functor₀ Y) exp→functor₁ F = record { η = F ; commute = λ { refl → id-comm } ; sym-commute = λ { refl → id-comm-sym } } exp→functor : Functor (Exp I) (Functors (Discrete I) C) exp→functor = record { F₀ = exp→functor₀ ; F₁ = exp→functor₁ ; identity = CE.refl ; homomorphism = CE.refl ; F-resp-≈ = λ eqs {x} → eqs x } functor→exp : Functor (Functors (Discrete I) C) (Exp I) functor→exp = record { F₀ = Functor.F₀ ; F₁ = NaturalTransformation.η ; identity = λ _ → CE.refl ; homomorphism = λ _ → CE.refl ; F-resp-≈ = λ eqs i → eqs {i} } exp≋functor : StrongEquivalence (Exp I) (Functors (Discrete I) C) exp≋functor = record { F = exp→functor ; G = functor→exp ; weak-inverse = record { F∘G≈id = record { F⇒G = ntHelper record { η = λ DI → record { η = λ _ → C.id ; commute = λ { refl → C.∘-resp-≈ˡ (CE.sym (Functor.identity DI))} ; sym-commute = λ { refl → C.∘-resp-≈ˡ (Functor.identity DI)} } ; commute = λ _ → id-comm-sym } ; F⇐G = ntHelper record { η = λ DI → ntHelper record { η = λ _ → C.id ; commute = λ { refl → C.∘-resp-≈ʳ (Functor.identity DI)} } ; commute = λ _ → id-comm-sym } ; iso = λ X → record { isoˡ = C.identity²; isoʳ = C.identity² } } ; G∘F≈id = record { F⇒G = record { η = λ _ _ → C.id ; commute = λ _ _ → id-comm-sym ; sym-commute = λ _ _ → id-comm } ; F⇐G = record { η = λ _ _ → C.id ; commute = λ _ _ → id-comm-sym ; sym-commute = λ _ _ → id-comm } ; iso = λ X → record { isoˡ = λ _ → C.identity² ; isoʳ = λ _ → C.identity² } } } } where open C.HomReasoning
{ "alphanum_fraction": 0.6130771823, "avg_line_length": 32.25, "ext": "agda", "hexsha": "cab3e9fcb996a5a133dbec54a483a132ba3a2f33", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Power/Functorial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Power/Functorial.agda", "max_line_length": 113, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Power/Functorial.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1015, "size": 2967 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light where open import Light.Library public module Implementation where open import Light.Implementation public
{ "alphanum_fraction": 0.797029703, "avg_line_length": 28.8571428571, "ext": "agda", "hexsha": "891191cd1b5d3f550f791cb4e7cd4a9ec5abc7bc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 38, "size": 202 }
{-# OPTIONS --cubical --safe #-} module Cubical.Data.NatMinusOne where open import Cubical.Data.NatMinusOne.Base public
{ "alphanum_fraction": 0.7685950413, "avg_line_length": 24.2, "ext": "agda", "hexsha": "1446aaf55b57eeb32610ed08d35c5cf93bb2eb81", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "limemloh/cubical", "max_forks_repo_path": "Cubical/Data/NatMinusOne.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "limemloh/cubical", "max_issues_repo_path": "Cubical/Data/NatMinusOne.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "limemloh/cubical", "max_stars_repo_path": "Cubical/Data/NatMinusOne.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 31, "size": 121 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.Bouquet open import cohomology.Theory module cohomology.Bouquet {i} (OT : OrdinaryTheory i) where open OrdinaryTheory OT open import cohomology.Sphere OT C-Bouquet-diag : ∀ n (I : Type i) → has-choice 0 I i → C (ℕ-to-ℤ n) (⊙Bouquet I n) ≃ᴳ Πᴳ I (λ _ → C2 0) C-Bouquet-diag n I I-choice = C (ℕ-to-ℤ n) (⊙Bouquet I n) ≃ᴳ⟨ C-emap (ℕ-to-ℤ n) (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv)) ⟩ C (ℕ-to-ℤ n) (⊙BouquetLift I n) ≃ᴳ⟨ C-additive-iso (ℕ-to-ℤ n) (BouquetLift-family I n) I-choice ⟩ Πᴳ I (λ _ → C (ℕ-to-ℤ n) (⊙Lift (⊙Sphere n))) ≃ᴳ⟨ Πᴳ-emap-r I (λ _ → C-Sphere-diag n) ⟩ Πᴳ I (λ _ → C2 0) ≃ᴳ∎ abstract C-Bouquet-≠-is-trivial : ∀ (n : ℤ) (I : Type i) (m : ℕ) → (n ≠ ℕ-to-ℤ m) → has-choice 0 I i → is-trivialᴳ (C n (⊙Bouquet I m)) C-Bouquet-≠-is-trivial n I m n≠m I-choice = iso-preserves'-trivial (C n (⊙Bouquet I m) ≃ᴳ⟨ C-emap n (⊙BigWedge-emap-r (λ _ → ⊙lower-equiv)) ⟩ C n (⊙BouquetLift I m) ≃ᴳ⟨ C-additive-iso n (BouquetLift-family I m) I-choice ⟩ Πᴳ I (λ _ → C n (⊙Lift (⊙Sphere m))) ≃ᴳ∎) (Πᴳ-is-trivial I (λ _ → C n (⊙Lift (⊙Sphere m))) (λ _ → C-Sphere-≠-is-trivial n m n≠m))
{ "alphanum_fraction": 0.5808285946, "avg_line_length": 34.1944444444, "ext": "agda", "hexsha": "671975a0bfc2cc406d4bdec0c9a3e2f2b7e720a0", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/Bouquet.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/Bouquet.agda", "max_line_length": 91, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/Bouquet.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 634, "size": 1231 }
module Issue756b where data Nat : Set where zero : Nat suc : Nat → Nat data T : (Nat → Nat) → Set where idId : T (λ { zero → zero; (suc n) → suc n }) bad : ∀ f → T f → Nat bad .(λ { zero → zero ; (suc n) → suc n }) idId = zero
{ "alphanum_fraction": 0.5443037975, "avg_line_length": 19.75, "ext": "agda", "hexsha": "4fd6ee1f7675e2b2e23a50585397bcc23a5047be", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue756b.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue756b.agda", "max_line_length": 54, "max_stars_count": 1, "max_stars_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "masondesu/agda", "max_stars_repo_path": "test/fail/Issue756b.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 91, "size": 237 }
{-# OPTIONS --rewriting --without-K #-} open import Prelude open import GSeTT.Syntax open import GSeTT.Rules open import GSeTT.Disks open import CaTT.Ps-contexts open import CaTT.Uniqueness-Derivations-Ps open import Sets ℕ eqdecℕ module CaTT.Fullness where data Ty : Set₁ data Tm : Set₁ data Sub : Set₁ data _is-full-in_ : Ty → ps-ctx → Set₁ data Ty where ∗ : Ty ⇒ : Ty → Tm → Tm → Ty data Tm where v : ℕ → Tm coh : (Γ : ps-ctx) → (A : Ty) → A is-full-in Γ → Sub → Tm data Sub where <> : Sub <_,_↦_> : Sub → ℕ → Tm → Sub =⇒Ty : ∀ {A A' : Ty} {t t' u u' : Tm} → _==_ {A = Ty} (⇒ A t u) (⇒ A' t' u') → ((A == A' × t == t') × u == u') =⇒Ty idp = (idp , idp) , idp coh= : ∀ {Γ Γ' A A' Afull A'full γ γ'} → coh Γ A Afull γ == coh Γ' A' A'full γ' → ((Γ == Γ' × A == A') × γ == γ') coh= idp = (idp , idp) , idp <>= : ∀ {γ γ' x x' t t'} → < γ , x ↦ t > == < γ' , x' ↦ t' > → ((γ == γ' × x == x') × t == t') <>= idp = (idp , idp) , idp {- Set of variables -} varC : Pre-Ctx → set varC nil = Ø varC (Γ :: (x , _)) = (varC Γ) ∪-set (singleton x) varT : Ty → set vart : Tm → set varS : Sub → set varT ∗ = Ø varT (⇒ A t u) = (varT A) ∪-set ((vart t) ∪-set (vart u)) vart (v x) = singleton x vart (coh Γ A Afull γ) = varS γ varS <> = Ø varS < γ , x ↦ t > = (varS γ) ∪-set (vart t) {- fullness condition -} data _is-full-in_ where side-cond₁ : ∀ Γ A t u → (src-var Γ) ≗ ((varT A) ∪-set (vart t)) → (tgt-var Γ) ≗ ((varT A) ∪-set (vart u)) → (⇒ A t u) is-full-in Γ side-cond₂ : ∀ Γ A → (varC (fst Γ)) ≗ (varT A) → A is-full-in Γ ∈-drop : ∀ {A : Set} {a : A} {l : list A} → a ∈-list drop l → a ∈-list l ∈-drop {A} {a} {l :: a₁} x = inl x l∉∂⁻ : ∀ {Γ i x A y} → (Γ⊢ps : Γ ⊢ps x # A) → length Γ ≤ y → ¬ (y ∈-list (srcᵢ-var i Γ⊢ps)) l∉∂⁻ {i = i} pss lΓ≤y y∈ with eqdecℕ i O ... | inl _ = y∈ l∉∂⁻ {i = i} pss lΓ≤y (inr idp) | inr _ = Sn≰n _ lΓ≤y l∉∂⁻ (psd Γ⊢ps) lΓ≤y y∈ = l∉∂⁻ Γ⊢ps lΓ≤y y∈ l∉∂⁻ {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) SSl≤y y∈ with dec-≤ i (S (dim A)) ... | inl _ = l∉∂⁻ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) y∈ l∉∂⁻ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl (inl y∈)) | inr _ = l∉∂⁻ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) y∈ l∉∂⁻ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl (inr idp)) | inr _ = Sn≰n _ (n≤m→n≤Sm SSl≤y) l∉∂⁻ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inr idp) | inr _ = Sn≰n _ SSl≤y l∉∂⁺ : ∀ {Γ i x A y} → (Γ⊢ps : Γ ⊢ps x # A) → length Γ ≤ y → ¬ (y ∈-list (tgtᵢ-var i Γ⊢ps)) l∉∂⁺ {i = i} pss lΓ≤y y∈ with eqdecℕ i O ... | inl _ = y∈ l∉∂⁺ {i = i} pss lΓ≤y (inr idp) | inr _ = Sn≰n _ lΓ≤y l∉∂⁺ (psd Γ⊢ps) lΓ≤y y∈ = l∉∂⁺ Γ⊢ps lΓ≤y y∈ l∉∂⁺ {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) SSl≤y y∈ with dec-≤ i (S (dim A)) l∉∂⁺ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl (inl y∈)) | inr _ = l∉∂⁺ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) y∈ l∉∂⁺ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl (inr idp)) | inr _ = Sn≰n _ (n≤m→n≤Sm SSl≤y) l∉∂⁺ {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inr idp) | inr x = Sn≰n _ SSl≤y ... | inl _ with eqdecℕ i (S (dim A)) l∉∂⁺ {i = .(S (dim _))} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inl y∈drop) | inl _ | inl idp = l∉∂⁺ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) (∈-drop y∈drop) l∉∂⁺ {i = .(S (dim _))} (pse {A = _} Γ⊢ps idp idp idp idp idp) SSl≤y (inr idp) | inl _ | inl idp = Sn≰n _ (n≤m→n≤Sm SSl≤y) ... | inr _ = l∉∂⁺ Γ⊢ps (Sn≤m→n≤m (Sn≤m→n≤m SSl≤y)) y∈ ∂⁻ᵢ-var : ∀ {Γ x A y B i} → (Γ⊢ps : Γ ⊢ps x # A) → Γ ⊢t (Var y) # B → i ≤ dim B → ¬ (y ∈-list (srcᵢ-var i Γ⊢ps)) ∂⁻ᵢ-var pss (var x (inr (idp , idp))) (0≤ .0) () ∂⁻ᵢ-var (psd Γ⊢ps) Γ⊢y i≤B y∈∂⁻ = ∂⁻ᵢ-var Γ⊢ps Γ⊢y i≤B y∈∂⁻ ∂⁻ᵢ-var {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B y∈∂⁻ with dec-≤ i (S (dim A)) ... | inl _ = ∂⁻ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B y∈∂⁻ ∂⁻ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inl (inl y∈∂⁻)) | inr _ = ∂⁻ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B y∈∂⁻ ∂⁻ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inl (inr idp)) | inr _ = x∉ (psv Γ⊢ps) (n≤n _) (var (psv Γ⊢ps) y∈Γ) ∂⁻ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inr idp) | inr _ = x∉ (psv Γ⊢ps) (n≤Sn _) (var (psv Γ⊢ps) y∈Γ) ∂⁻ᵢ-var {i = i} (pse {A = B} Γ⊢ps idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) i≤B y∈∂⁻ with dec-≤ i (S (dim B)) ... | inl _ = l∉∂⁻ Γ⊢ps (n≤n _) y∈∂⁻ ... | inr i≰SB = i≰SB (n≤m→n≤Sm i≤B) ∂⁻ᵢ-var {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var _ (inr (idp , idp))) i≤SA y∈∂⁻ with dec-≤ i (S (dim A)) ... | inl _ = l∉∂⁻ Γ⊢ps (n≤Sn _) y∈∂⁻ ... | inr i≰SA = i≰SA i≤SA ∂⁺ᵢ-var : ∀ {Γ x A y B i} → (Γ⊢ps : Γ ⊢ps x # A) → Γ ⊢t (Var y) # B → i ≤ dim B → ¬ (y ∈-list (tgtᵢ-var i Γ⊢ps)) ∂⁺ᵢ-var pss (var x (inr (idp , idp))) (0≤ .0) () ∂⁺ᵢ-var (psd Γ⊢ps) Γ⊢y i≤B y∈∂⁺ = ∂⁺ᵢ-var Γ⊢ps Γ⊢y i≤B y∈∂⁺ ∂⁺ᵢ-var {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B y∈∂⁺ with dec-≤ i (S (dim A)) ... | inl i≤SdimA with eqdecℕ i (S (dim A)) ... | inr _ = ∂⁺ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B y∈∂⁺ ∂⁺ᵢ-var {i = .(S (dim _))} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var {x = y} _ (inl (inl y∈Γ))) i≤B (inl y∈drop) | inl i≤SdimA | inl idp = ∂⁺ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B (∈-drop y∈drop) ∂⁺ᵢ-var {i = .(S (dim _))} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inr idp) | inl i≤SdimA | inl idp = lΓ∉Γ (psv Γ⊢ps) y∈Γ ∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inl (inl y∈∂⁻)) | inr _ = ∂⁺ᵢ-var Γ⊢ps (var (psv Γ⊢ps) y∈Γ) i≤B y∈∂⁻ ∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inl (inr idp)) | inr _ = x∉ (psv Γ⊢ps) (n≤n _) (var (psv Γ⊢ps) y∈Γ) ∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inl (inl y∈Γ))) i≤B (inr idp) | inr _ = x∉ (psv Γ⊢ps) (n≤Sn _) (var (psv Γ⊢ps) y∈Γ) ∂⁺ᵢ-var {i = i} (pse {A = B} Γ⊢ps idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) i≤B y∈∂⁺ with dec-≤ i (S (dim B)) ... | inr i≰SB = i≰SB (n≤m→n≤Sm i≤B) ... | inl _ with eqdecℕ i (S (dim B)) ... | inr _ = l∉∂⁺ Γ⊢ps (n≤n _) y∈∂⁺ ∂⁺ᵢ-var (pse Γ⊢ps idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) i≤B (inl l∈drop) | inl _ | inl _ = l∉∂⁺ Γ⊢ps (n≤n _) (∈-drop l∈drop) ∂⁺ᵢ-var (pse Γ⊢ps idp idp idp idp idp) (var _ (inl (inr (idp , idp)))) i≤B (inr p) | inl _ | inl idp = Sn≰n _ i≤B ∂⁺ᵢ-var {i = i} (pse {A = A} Γ⊢ps idp idp idp idp idp) (var _ (inr (idp , idp))) i≤SA y∈∂⁺ with dec-≤ i (S (dim A)) ... | inr i≰SA = i≰SA i≤SA ... | inl _ with eqdecℕ i (S (dim A)) ... | inr _ = l∉∂⁺ Γ⊢ps (n≤Sn _) y∈∂⁺ ∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inr (idp , idp))) i≤SA (inl Sl∈drop) | inl _ | inl _ = l∉∂⁺ Γ⊢ps (n≤Sn _) (∈-drop Sl∈drop) ∂⁺ᵢ-var {i = i} (pse {A = _} Γ⊢ps idp idp idp idp idp) (var _ (inr (idp , idp))) i≤SA (inr Sl=l) | inl _ | inl _ = Sn≠n _ Sl=l ∈-varC : ∀ {Γ x A} → x # A ∈ Γ → x ∈-set (varC Γ) ∈-varC {Γ :: (y , B)} {x} {A} (inl x∈Γ) = ∈-∪₁ {A = varC Γ} {B = singleton y} (∈-varC x∈Γ) ∈-varC {Γ :: (y , B)} {x} {A} (inr (idp , _)) = ∈-∪₂ {A = varC Γ} {B = singleton y} (∈-singleton y) max-var-def : Pre-Ctx → ℕ × Pre-Ty max-var-def nil = 0 , ∗ max-var-def (Γ :: (y , B)) with dec-≤ (dimC Γ) (dim B) ... | inr _ = max-var-def Γ ... | inl _ = y , B max-var-is-max : ∀ {Γ} → Γ ≠ nil → Γ ⊢C → let (x , A) = max-var-def Γ in ((x # A ∈ Γ) × (dimC Γ == dim A)) max-var-is-max {nil} Γ≠nil _ = ⊥-elim (Γ≠nil idp) max-var-is-max {Γ :: (y , B)} _ Γ⊢ with dec-≤ (dimC Γ) (dim B) ... | inl _ = inr (idp , idp) , idp ... | inr _ with Γ max-var-is-max {Γ :: (y , B)} _ (cc Γ⊢ Γ⊢B idp) | inr _ | Δ :: (x , A) = let (x∈ , dimA) = max-var-is-max (λ{()}) Γ⊢ in inl x∈ , dimA max-var-is-max {Γ :: (.0 , .∗)} _ (cc Γ⊢ (ob _) idp) | inr _ | nil = inr (idp , idp) , idp max-var-is-max {Γ :: (.0 , _)} _ (cc Γ⊢ (ar _ _) idp) | inr dΓ≤dB | nil = ⊥-elim (dΓ≤dB (0≤ _)) psx-nonul : ∀ {Γ x A} → Γ ⊢ps x # A → Γ ≠ nil psx-nonul (psd x) idp = psx-nonul x idp ps-nonul : ∀ {Γ} → Γ ⊢ps → Γ ≠ nil ps-nonul (ps Γ⊢ps) = psx-nonul Γ⊢ps max-var : ∀ {Γ} → Γ ⊢ps → Σ (ℕ × Pre-Ty) λ {(x , A) → (x # A ∈ Γ) × (dimC Γ == dim A)} max-var {Γ} Γ⊢ps@(ps Γ⊢psx) = max-var-def Γ , max-var-is-max (ps-nonul Γ⊢ps) (psv Γ⊢psx) ∂Γ-not-full : ∀ Γ → ¬ (varC (fst Γ) ⊂ ((src-var Γ) ∪-set (tgt-var Γ))) ∂Γ-not-full (Γ , Γ⊢ps@(ps Γ⊢psx)) vΓ⊂∂ = let ((x , A) , (x∈Γ , dimA)) = max-var Γ⊢ps in ∉-∪ {set-of-list (srcᵢ-var (dimC Γ) Γ⊢psx)} {set-of-list (tgtᵢ-var (dimC Γ) Γ⊢psx)} {x} (λ x∈∂⁻ → ∂⁻ᵢ-var Γ⊢psx (var (psv Γ⊢psx) x∈Γ) (≤-= (n≤n _) dimA) (∈-set-∈-list _ _ x∈∂⁻)) (λ x∈∂⁺ → ∂⁺ᵢ-var Γ⊢psx (var (psv Γ⊢psx) x∈Γ) (≤-= (n≤n _) dimA) (∈-set-∈-list _ _ x∈∂⁺)) (vΓ⊂∂ x (∈-varC x∈Γ)) disjoint-cond : ∀ Γ A t u → (src-var Γ) ≗ ((varT A) ∪-set (vart t)) → (tgt-var Γ) ≗ ((varT A) ∪-set (vart u)) → ¬ (varC (fst Γ) ≗ varT (⇒ A t u)) disjoint-cond Γ A t u (_ , A⊂∂⁻) (_ , A⊂∂⁺) (Γ⊂A , _) = let vA = varT A in let vt = vart t in let vu = vart u in let sr = src-var Γ in let tg = tgt-var Γ in ∂Γ-not-full Γ (⊂-trans {varC (fst Γ)} {vA ∪-set (vt ∪-set vu)} {sr ∪-set tg} Γ⊂A (≗-⊂ {vA ∪-set (vt ∪-set vu)} {(vA ∪-set vt) ∪-set (vA ∪-set vu)} {sr ∪-set tg} (∪-factor (varT A) (vart t) (vart u)) (⊂-∪ {vA ∪-set vt} {sr} {vA ∪-set vu} {tg} A⊂∂⁻ A⊂∂⁺))) side-cond₁= : ∀ Γ A t u ∂⁻-full₁ ∂⁻-full₂ ∂⁺-full₁ ∂⁺-full₂ → ∂⁻-full₁ == ∂⁻-full₂ → ∂⁺-full₁ == ∂⁺-full₂ → side-cond₁ Γ A t u ∂⁻-full₁ ∂⁺-full₁ == side-cond₁ Γ A t u ∂⁻-full₂ ∂⁺-full₂ side-cond₁= Γ A t u ∂⁻-full₁ .∂⁻-full₁ ∂⁺-full₁ .∂⁺-full₁ idp idp = idp has-all-paths-is-full : ∀ Γ A → has-all-paths (A is-full-in Γ) has-all-paths-is-full Γ .(⇒ A t u) (side-cond₁ .Γ A t u x x₁) (side-cond₁ .Γ .A .t .u x₂ x₃) = ap² (λ ∂⁻ → λ ∂⁺ → side-cond₁ Γ A t u ∂⁻ ∂⁺) (is-prop-has-all-paths (is-prop-≗ (src-var Γ) (varT A ∪-set vart t)) x x₂) (is-prop-has-all-paths (is-prop-≗ (tgt-var Γ) (varT A ∪-set vart u)) x₁ x₃) has-all-paths-is-full Γ .(⇒ A t u) (side-cond₁ .Γ A t u ∂⁻ ∂⁺) (side-cond₂ .Γ .(⇒ A t u) full) = ⊥-elim (disjoint-cond Γ A t u ∂⁻ ∂⁺ full) has-all-paths-is-full Γ .(⇒ A t u) (side-cond₂ .Γ .(⇒ A t u) full) (side-cond₁ .Γ A t u ∂⁻ ∂⁺) = ⊥-elim (disjoint-cond Γ A t u ∂⁻ ∂⁺ full) has-all-paths-is-full Γ A (side-cond₂ .Γ .A x) (side-cond₂ .Γ .A x₁) = ap (side-cond₂ Γ A) (is-prop-has-all-paths (is-prop-≗ (varC (fst Γ)) (varT A)) x x₁) is-prop-full : ∀ Γ A → is-prop (A is-full-in Γ) is-prop-full Γ A = has-all-paths-is-prop (has-all-paths-is-full Γ A) eqdec-Ty : eqdec Ty eqdec-Tm : eqdec Tm eqdec-Sub : eqdec Sub eqdec-Ty ∗ ∗ = inl idp eqdec-Ty ∗ (⇒ _ _ _) = inr λ{()} eqdec-Ty (⇒ _ _ _) ∗ = inr λ{()} eqdec-Ty (⇒ A t u) (⇒ A' t' u') with eqdec-Ty A A' | eqdec-Tm t t' | eqdec-Tm u u' ... | inl idp | inl idp | inl idp = inl idp ... | inr A≠A' | _ | _ = inr λ {idp → A≠A' idp} ... | inl idp | inr t≠t' | _ = inr λ p → t≠t' (snd (fst (=⇒Ty p))) ... | inl idp | inl idp | inr u≠u' = inr λ p → u≠u' (snd (=⇒Ty p)) eqdec-Tm (v x) (v y) with eqdecℕ x y ... | inl idp = inl idp ... | inr x≠y = inr λ{idp → x≠y idp} eqdec-Tm (v _) (coh _ _ _ _) = inr λ{()} eqdec-Tm (coh _ _ _ _) (v _) = inr λ{()} eqdec-Tm (coh Γ A Afull γ) (coh Γ' A' A'full γ') with eqdec-ps Γ Γ' | eqdec-Ty A A' | eqdec-Sub γ γ' ... | inl idp | inl idp | inl idp = inl (ap (λ X → coh Γ A X γ) (is-prop-has-all-paths (is-prop-full Γ A) Afull A'full)) ... | inr Γ≠Γ' | _ | _ = inr λ {idp → Γ≠Γ' idp} ... | inl idp | inr A≠A' | _ = inr λ p → A≠A' (snd (fst (coh= p))) ... | inl idp | inl idp | inr γ≠γ' = inr λ p → γ≠γ' (snd (coh= p)) eqdec-Sub <> <> = inl idp eqdec-Sub <> < _ , _ ↦ _ > = inr λ{()} eqdec-Sub < _ , _ ↦ _ > <> = inr λ{()} eqdec-Sub < γ , x ↦ t > < γ' , x' ↦ t' > with eqdec-Sub γ γ' | eqdecℕ x x' | eqdec-Tm t t' ... | inl idp | inl idp | inl idp = inl idp ... | inr γ≠γ' | _ | _ = inr λ {idp → γ≠γ' idp} ... | inl idp | inr x≠x' | _ = inr λ p → x≠x' (snd (fst (<>= p))) ... | inl idp | inl idp | inr t≠t' = inr λ p → t≠t' (snd (<>= p))
{ "alphanum_fraction": 0.4630677353, "avg_line_length": 58.6451612903, "ext": "agda", "hexsha": "ea909bc31ab81f5def58c6fab4668b27f6d23ee3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thibautbenjamin/catt-formalization", "max_forks_repo_path": "CaTT/Fullness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thibautbenjamin/catt-formalization", "max_issues_repo_path": "CaTT/Fullness.agda", "max_line_length": 292, "max_stars_count": null, "max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thibautbenjamin/catt-formalization", "max_stars_repo_path": "CaTT/Fullness.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 7297, "size": 12726 }
------------------------------------------------------------------------ -- A sound, inductive approximation of stream equality ------------------------------------------------------------------------ -- The point of this module is to give a short (not entirely faithful) -- illustration of the technique used to establish soundness of -- RecursiveTypes.Subtyping.Axiomatic.Inductive._⊢_≤_ with respect to -- RecursiveTypes.Subtyping.Axiomatic.Coinductive._≤_. module InductiveStreamEquality {A : Set} where open import Codata.Musical.Notation open import Codata.Musical.Stream hiding (_∈_; lookup) open import Data.List open import Data.List.Membership.Propositional open import Data.List.Relation.Unary.All as All open import Data.List.Relation.Unary.Any using (here; there) open import Data.Product open import Relation.Binary.PropositionalEquality using (_≡_; refl) infixr 5 _∷_ infix 4 _⊢_≈_ _≈P_ _≈W_ ------------------------------------------------------------------------ -- An approximation of stream equality -- Streams do not need to be regular, so _⊢_≈_ is not complete with -- respect to _≈_. data _⊢_≈_ (H : List (Stream A × Stream A)) : Stream A → Stream A → Set where _∷_ : ∀ x {xs ys} → (x ∷ xs , x ∷ ys) ∷ H ⊢ ♭ xs ≈ ♭ ys → H ⊢ x ∷ xs ≈ x ∷ ys hyp : ∀ {xs ys} → (xs , ys) ∈ H → H ⊢ xs ≈ ys trans : ∀ {xs ys zs} → H ⊢ xs ≈ ys → H ⊢ ys ≈ zs → H ⊢ xs ≈ zs -- Example. repeat-refl : (x : A) → [] ⊢ repeat x ≈ repeat x repeat-refl x = x ∷ hyp (here refl) ------------------------------------------------------------------------ -- Soundness Valid : (Stream A → Stream A → Set) → Stream A × Stream A → Set Valid _R_ (xs , ys) = xs R ys -- Programs and WHNFs. mutual data _≈P_ : Stream A → Stream A → Set where sound : ∀ {A xs ys} → All (Valid _≈W_) A → A ⊢ xs ≈ ys → xs ≈P ys trans : ∀ {xs ys zs} → xs ≈P ys → ys ≈P zs → xs ≈P zs data _≈W_ : Stream A → Stream A → Set where _∷_ : ∀ x {xs ys} → ∞ (♭ xs ≈P ♭ ys) → x ∷ xs ≈W x ∷ ys transW : ∀ {xs ys zs} → xs ≈W ys → ys ≈W zs → xs ≈W zs transW (x ∷ xs≈ys) (.x ∷ ys≈zs) = x ∷ ♯ trans (♭ xs≈ys) (♭ ys≈zs) soundW : ∀ {A xs ys} → All (Valid _≈W_) A → A ⊢ xs ≈ ys → xs ≈W ys soundW valid (hyp h) = All.lookup valid h soundW valid (trans xs≈ys ys≈zs) = transW (soundW valid xs≈ys) (soundW valid ys≈zs) soundW valid (x ∷ xs≈ys) = proof where proof : _ ≈W _ proof = x ∷ ♯ sound (proof ∷ valid) xs≈ys whnf : ∀ {xs ys} → xs ≈P ys → xs ≈W ys whnf (sound valid xs≈ys) = soundW valid xs≈ys whnf (trans xs≈ys ys≈zs) = transW (whnf xs≈ys) (whnf ys≈zs) -- The programs and WHNFs are sound with respect to _≈_. mutual ⟦_⟧W : ∀ {xs ys} → xs ≈W ys → xs ≈ ys ⟦ x ∷ xs≈ys ⟧W = refl ∷ ♯ ⟦ ♭ xs≈ys ⟧P ⟦_⟧P : ∀ {xs ys} → xs ≈P ys → xs ≈ ys ⟦ xs≈ys ⟧P = ⟦ whnf xs≈ys ⟧W -- The programs and WHNFs are also complete with respect to _≈_. mutual completeP : ∀ {xs ys} → xs ≈ ys → xs ≈P ys completeP xs≈ys = sound (completeW xs≈ys ∷ []) (hyp (here refl)) completeW : ∀ {xs ys} → xs ≈ ys → xs ≈W ys completeW (refl ∷ xs≈ys) = _ ∷ ♯ completeP (♭ xs≈ys) -- Finally we get the intended soundness result for _⊢_≈_. reallySound : ∀ {A xs ys} → All (Valid _≈_) A → A ⊢ xs ≈ ys → xs ≈ ys reallySound valid xs≈ys = ⟦ sound (All.map (λ {p} → done p) valid) xs≈ys ⟧P where done : ∀ p → Valid _≈_ p → Valid _≈W_ p done (xs , ys) = completeW
{ "alphanum_fraction": 0.5455338958, "avg_line_length": 33.0480769231, "ext": "agda", "hexsha": "c6551deb1376c1ac9480c5478bb9e75a10b05716", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "InductiveStreamEquality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "InductiveStreamEquality.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "InductiveStreamEquality.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 1257, "size": 3437 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Support.StarEquality where open import Categories.Support.Equivalence open import Data.Star import Data.Star.Properties as Props open import Level open import Relation.Binary using ( Rel ; Reflexive; Symmetric; Transitive ; IsEquivalence ; _=[_]⇒_) open import Relation.Binary.PropositionalEquality using (_≡_) renaming (refl to ≡-refl) module StarEquality {o ℓ e} {Obj : Set o} (S : Obj → Obj → Setoid ℓ e) where private open module S i j = Setoid (S i j) using () renaming (Carrier to T) _≊_ : ∀ {i j} → Rel (T i j) e _≊_ {i}{j} = S._≈_ i j infix 4 _≈_ data _≈_ : {i₁ i₂ : Obj} → Rel (Star T i₁ i₂) (o ⊔ ℓ ⊔ e) where ε-cong : ∀ {i} → ε {x = i} ≈ ε {x = i} _◅-cong_ : {i j k : Obj}{x₁ x₂ : T i j} {xs₁ xs₂ : Star T j k} → x₁ ≊ x₂ → xs₁ ≈ xs₂ → (x₁ ◅ xs₁) ≈ (x₂ ◅ xs₂) _◅◅-cong_ : {i j k : Obj}{xs₁ xs₂ : Star T i j} {ys₁ ys₂ : Star T j k} → xs₁ ≈ xs₂ → ys₁ ≈ ys₂ → (xs₁ ◅◅ ys₁) ≈ (xs₂ ◅◅ ys₂) ε-cong ◅◅-cong p = p (p ◅-cong ps₁) ◅◅-cong ps₂ = p ◅-cong (ps₁ ◅◅-cong ps₂) _▻▻-cong_ : {i j k : Obj}{xs₁ xs₂ : Star T j k} {ys₁ ys₂ : Star T i j} → xs₁ ≈ xs₂ → ys₁ ≈ ys₂ → (xs₁ ▻▻ ys₁) ≈ (xs₂ ▻▻ ys₂) x ▻▻-cong y = y ◅◅-cong x private .refl : ∀ {i j} → Reflexive (_≈_ {i}{j}) refl {x = ε} = ε-cong refl {x = x ◅ xs} = S.refl _ _ ◅-cong refl .sym : ∀ {i j} → Symmetric (_≈_ {i}{j}) sym ε-cong = ε-cong sym (px ◅-cong pxs) = S.sym _ _ px ◅-cong sym pxs .trans : ∀ {i j} → Transitive (_≈_ {i}{j}) trans ε-cong ε-cong = ε-cong trans (px₁ ◅-cong pxs₁) (px₂ ◅-cong pxs₂) = S.trans _ _ px₁ px₂ ◅-cong trans pxs₁ pxs₂ .isEquivalence : ∀ {i j} → IsEquivalence (_≈_ {i}{j}) isEquivalence = record { refl = refl ; sym = sym ; trans = trans } private .reflexive : ∀ {i j} {x y : Star T i j} → x ≡ y → x ≈ y reflexive ≡-refl = refl StarSetoid : ∀ i j → Setoid (o ⊔ ℓ) (o ⊔ ℓ ⊔ e) StarSetoid i j = record { Carrier = Star T i j ; _≈_ = _≈_ ; isEquivalence = isEquivalence } .◅◅-assoc : {A B C D : Obj} (f : Star T A B) (g : Star T B C) (h : Star T C D) → ((f ◅◅ g) ◅◅ h) ≈ (f ◅◅ (g ◅◅ h)) ◅◅-assoc f g h = reflexive (Props.◅◅-assoc f g h) .▻▻-assoc : {A B C D : Obj} (f : Star T A B) (g : Star T B C) (h : Star T C D) → ((h ▻▻ g) ▻▻ f) ≈ (h ▻▻ (g ▻▻ f)) ▻▻-assoc f g h = sym (◅◅-assoc f g h) open StarEquality public using (StarSetoid) -- congruences involving Star lists of 2 relations module StarCong₂ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {I : Set o₁} (T-setoid : I → I → Setoid ℓ₁ e₁) {J : Set o₂} (U-setoid : J → J → Setoid ℓ₂ e₂) where private module T i j = Setoid (T-setoid i j) T : Rel I ℓ₁ T = T.Carrier _≊₁_ : ∀ {i j} → Rel (T i j) e₁ _≊₁_ {i}{j} = T._≈_ i j module T* i j = Setoid (StarSetoid T-setoid i j) _≈₁_ : ∀ {i j} → Rel (Star T i j) (o₁ ⊔ ℓ₁ ⊔ e₁) _≈₁_ {i}{j} = T*._≈_ i j open StarEquality T-setoid using () renaming (ε-cong to ε-cong₁; _◅-cong_ to _◅-cong₁_) module U i j = Setoid (U-setoid i j) U : Rel J ℓ₂ U = U.Carrier _≊₂_ : ∀ {i j} → Rel (U i j) e₂ _≊₂_ {i}{j} = U._≈_ i j module U* i j = Setoid (StarSetoid U-setoid i j) _≈₂_ : ∀ {i j} → Rel (Star U i j) (o₂ ⊔ ℓ₂ ⊔ e₂) _≈₂_ {i}{j} = U*._≈_ i j open StarEquality U-setoid using () renaming (ε-cong to ε-cong₂; _◅-cong_ to _◅-cong₂_) gmap-cong : (f : I → J) (g : T =[ f ]⇒ U) (g′ : T =[ f ]⇒ U) → (∀ {i j} (x y : T i j) → x ≊₁ y → g x ≊₂ g′ y) → ∀ {i j} (xs ys : Star T i j) → xs ≈₁ ys → gmap {U = U} f g xs ≈₂ gmap f g′ ys gmap-cong f g g′ eq ε .ε ε-cong₁ = ε-cong₂ gmap-cong f g g′ eq (x ◅ xs) (y ◅ ys) (x≊y ◅-cong₁ xs≈ys) = (eq x y x≊y) ◅-cong₂ (gmap-cong f g g′ eq xs ys xs≈ys) gmap-cong f g g′ eq (x ◅ xs) ε ()
{ "alphanum_fraction": 0.4960435213, "avg_line_length": 31.59375, "ext": "agda", "hexsha": "94193819a066671ebdcc371bc0775f1b4b7cd4b1", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Support/StarEquality.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Support/StarEquality.agda", "max_line_length": 80, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Support/StarEquality.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 1850, "size": 4044 }
module LC.Confluence where open import LC.Base open import LC.Subst open import LC.Reduction open import Data.Product open import Relation.Binary.Construct.Closure.ReflexiveTransitive β→confluent : ∀ {M N O : Term} → (M β→ N) → (M β→ O) → ∃ (λ P → (N β→* P) × (O β→* P)) β→confluent (β-ƛ-∙ {M} {N}) β-ƛ-∙ = M [ N ] , ε , ε β→confluent (β-ƛ-∙ {M} {N}) (β-∙-l {N = _} (β-ƛ {N = O} M→O)) = (O [ N ]) , cong-[]-l M→O , return β-ƛ-∙ β→confluent (β-ƛ-∙ {M} {N}) (β-∙-r {N = O} N→O) = M [ O ] , cong-[]-r M N→O , return β-ƛ-∙ β→confluent (β-ƛ M→N) (β-ƛ M→O) with β→confluent M→N M→O ... | P , N→P , O→P = ƛ P , cong-ƛ N→P , cong-ƛ O→P β→confluent (β-∙-l {L} (β-ƛ {N = N} M→N)) β-ƛ-∙ = N [ L ] , return β-ƛ-∙ , cong-[]-l M→N β→confluent (β-∙-l {L} M→N) (β-∙-l M→O) with β→confluent M→N M→O ... | P , N→P , O→P = P ∙ L , cong-∙-l N→P , cong-∙-l O→P β→confluent (β-∙-l {N = N} M→N) (β-∙-r {N = O} L→O) = N ∙ O , cong-∙-r (return L→O) , cong-∙-l (return M→N) β→confluent (β-∙-r {N = N} M→N) (β-ƛ-∙ {O}) = O [ N ] , return β-ƛ-∙ , cong-[]-r O M→N β→confluent (β-∙-r {N = N} M→N) (β-∙-l {N = O} L→O) = O ∙ N , cong-∙-l (return L→O) , cong-∙-r (return M→N) β→confluent (β-∙-r {L} {M} {N} M→N) (β-∙-r {N = O} M→O) with β→confluent M→N M→O ... | P , N→P , O→P = L ∙ P , cong-∙-r N→P , cong-∙-r O→P -- β→*-confluent : ∀ {M N O} → (M β→* N) → (M β→* O) → ∃ (λ P → (N β→* P) × (O β→* P)) -- β→*-confluent {O = O} ε M→O = O , M→O , ε -- β→*-confluent {N = N} M→N ε = N , ε , M→N -- β→*-confluent {M} {N} {O} (_◅_ {j = L} M→L L→N) (_◅_ {j = K} M→K K→O) with β→confluent M→L M→K -- ... | M' , L→M' , K→M' = {! !}
{ "alphanum_fraction": 0.4701492537, "avg_line_length": 50.25, "ext": "agda", "hexsha": "ba66dc427447666052a6eb626e20af46d6ce470b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/bidirectional", "max_forks_repo_path": "LC/Confluence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/bidirectional", "max_issues_repo_path": "LC/Confluence.agda", "max_line_length": 107, "max_stars_count": 2, "max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/bidirectional", "max_stars_repo_path": "LC/Confluence.agda", "max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z", "max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z", "num_tokens": 936, "size": 1608 }
-- This module closely follows a section of Martín Escardó's HoTT lecture notes: -- https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#funextfromua {-# OPTIONS --without-K #-} module Util.HoTT.FunctionalExtensionality where open import Axiom.Extensionality.Propositional using (ExtensionalityImplicit ; implicit-extensionality) open import Util.Data.Product using (map₂) open import Util.HoTT.Equiv open import Util.HoTT.Equiv.Induction open import Util.HoTT.HLevel.Core open import Util.HoTT.Homotopy open import Util.HoTT.Section open import Util.HoTT.Singleton open import Util.HoTT.Univalence open import Util.Prelude open import Util.Relation.Binary.PropositionalEquality using (Σ-≡⁻) private variable α β γ : Level A B C : Set α FunextNondep : ∀ α β → Set (lsuc (α ⊔ℓ β)) FunextNondep α β = {A : Set α} {B : Set β} {f g : A → B} → (∀ a → f a ≡ g a) → f ≡ g IsContr-∀-Closure : ∀ α β → Set (lsuc (α ⊔ℓ β)) IsContr-∀-Closure α β = {A : Set α} {B : A → Set β} → (∀ a → IsContr (B a)) → IsContr (∀ a → B a) FunextHapply : ∀ α β → Set (lsuc (α ⊔ℓ β)) FunextHapply α β = {A : Set α} {B : A → Set β} (f g : ∀ a → B a) → IsEquiv (≡→~ {f = f} {g}) Funext : ∀ α β → Set (lsuc (α ⊔ℓ β)) Funext α β = {A : Set α} {B : A → Set β} {f g : ∀ a → B a} → (∀ a → f a ≡ g a) → f ≡ g abstract precomp-IsEquiv : {A B : Set α} (f : A → B) → IsEquiv f → {C : Set α} → IsEquiv (λ (g : B → C) → g ∘ f) precomp-IsEquiv f f-equiv {C} = J-IsEquiv (λ A B f → IsEquiv (λ (g : B → C) → g ∘ f)) (λ A → id-IsEquiv) f f-equiv funext-nondep : FunextNondep α β funext-nondep {α} {β} {A} {B} {f} {g} f~g = cong (λ π x → π (f x , g x , f~g x)) π₀≡π₁ where Δ : Set β Δ = Σ[ b ∈ B ] Σ[ b′ ∈ B ] (b ≡ b′) δ : B → Δ δ b = b , b , refl π₀ π₁ : Δ → B π₀ (b , b′ , p) = b π₁ (b , b′ , p) = b′ δ-IsEquiv : IsEquiv δ δ-IsEquiv = IsIso→IsEquiv record { back = π₀ ; back∘forth = λ _ → refl ; forth∘back = λ { (b , b′ , refl) → refl } } φ : (Δ → B) → (B → B) φ = _∘ δ φ-IsEquiv : IsEquiv φ φ-IsEquiv = precomp-IsEquiv δ δ-IsEquiv φπ₀≡φπ₁ : φ π₀ ≡ φ π₁ φπ₀≡φπ₁ = refl π₀≡π₁ : π₀ ≡ π₁ π₀≡π₁ = IsEquiv→Injective φ-IsEquiv φπ₀≡φπ₁ postcomp-IsIso : {A : Set α} {B : Set β} (f : B → C) → IsIso f → IsIso (λ (g : A → B) → f ∘ g) postcomp-IsIso {A = A} {B} f i = record { back = λ g a → i .IsIso.back (g a) ; back∘forth = λ g → funext-nondep λ a → i .IsIso.back∘forth (g a) ; forth∘back = λ g → funext-nondep λ a → i .IsIso.forth∘back (g a) } postcomp-IsEquiv : {A : Set α} {B : Set β} (f : B → C) → IsEquiv f → IsEquiv (λ (g : A → B) → f ∘ g) postcomp-IsEquiv f f-equiv = IsIso→IsEquiv (postcomp-IsIso f (IsEquiv→IsIso f-equiv)) ∀-IsContr : IsContr-∀-Closure α β ∀-IsContr {A = A} {B} B-contr = ◁-pres-IsContr ΠB◁g-fiber g-fiber-IsContr where f : Σ A B → A f = proj₁ f-IsEquiv : IsEquiv f f-IsEquiv = proj₁-IsEquiv B-contr g : (A → Σ A B) → (A → A) g = f ∘_ g-IsEquiv : IsEquiv g g-IsEquiv = postcomp-IsEquiv f f-IsEquiv g-fiber-IsContr : IsContr (Σ[ h ∈ (A → Σ A B) ] (f ∘ h ≡ id)) g-fiber-IsContr = g-IsEquiv id ΠB◁g-fiber : (∀ a → B a) ◁ (Σ[ h ∈ (A → Σ A B) ] (f ∘ h ≡ id)) ΠB◁g-fiber = record { retraction = λ { (h , p) a → subst B (≡→~ p a) (proj₂ (h a)) } ; hasSection = record { section = λ h → (λ a → a , h a) , refl ; isSection = λ _ → refl } } ≡→~-IsEquiv : FunextHapply α β ≡→~-IsEquiv {A = A} {B} f = goal where i : ∀ a → IsContr (Σ[ b ∈ B a ] (f a ≡ b)) i a = IsContr-Singleton′ ii : IsContr (∀ a → Σ[ b ∈ B a ] (f a ≡ b)) ii = ∀-IsContr i iii : (∃[ g ] (f ~ g)) ◁ (∀ a → Σ[ b ∈ B a ] (f a ≡ b)) iii = ≅→▷ (Π-distr-Σ-≅ _ _ _) iv : IsContr (∃[ g ] (f ~ g)) iv = ◁-pres-IsContr iii ii e : (∃[ g ] (f ≡ g)) → (∃[ g ] (f ~ g)) e = map₂ (λ _ → ≡→~) e-IsEquiv : IsEquiv e e-IsEquiv = IsContr→IsEquiv IsContr-Singleton′ iv e goal : ∀ g → IsEquiv (≡→~ {f = f} {g}) goal = IsEquiv-map₂-f→IsEquiv-f (λ _ → ≡→~) e-IsEquiv funext : Funext α β funext {f = f} {g} eq = ≡→~-IsEquiv f g eq .proj₁ .proj₁ funext∙ : ExtensionalityImplicit α β funext∙ = implicit-extensionality funext module _ {α β} {A : Set α} {B : A → Set β} {f g : ∀ a → B a} where ≡→~∘funext : (eq : ∀ a → f a ≡ g a) → ≡→~ (funext eq) ≡ eq ≡→~∘funext eq = ≡→~-IsEquiv f g eq .proj₁ .proj₂ funext-unique′ : ∀ eq → (y : Σ-syntax (f ≡ g) (λ p → ≡→~ p ≡ eq)) → (funext eq , ≡→~∘funext eq) ≡ y funext-unique′ eq = ≡→~-IsEquiv f g eq .proj₂ funext-unique : ∀ eq (p : f ≡ g) → ≡→~ p ≡ eq → funext eq ≡ p funext-unique eq p q = proj₁ (Σ-≡⁻ (funext-unique′ eq (p , q))) funext∘≡→~ : ∀ (eq : f ≡ g) → funext (≡→~ eq) ≡ eq funext∘≡→~ eq = funext-unique (≡→~ eq) eq refl subst-funext : ∀ {α β γ} {A : Set α} {B : A → Set β} {f g : ∀ a → B a} → (P : ∀ a → B a → Set γ) → (f≡g : ∀ x → f x ≡ g x) → ∀ {a} (Pf : P a (f a)) → subst (λ f → P a (f a)) (funext f≡g) Pf ≡ subst (P a) (f≡g a) Pf subst-funext P f≡g {a} Pf = sym (trans (cong (λ p → subst (P a) (p a) Pf) (sym (≡→~∘funext f≡g))) go) where go : subst (P a) (≡→~ (funext f≡g) a) Pf ≡ subst (λ f → P a (f a)) (funext f≡g) Pf go with funext f≡g ... | refl = refl
{ "alphanum_fraction": 0.5056828432, "avg_line_length": 26.9077669903, "ext": "agda", "hexsha": "349f0a375a21ff170342b4b17a1636488bb96a72", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Util/HoTT/FunctionalExtensionality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Util/HoTT/FunctionalExtensionality.agda", "max_line_length": 94, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Util/HoTT/FunctionalExtensionality.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 2471, "size": 5543 }
open import Prelude module Nat where data Nat : Set where Z : Nat 1+ : Nat → Nat {-# BUILTIN NATURAL Nat #-} -- the succ operation is injective 1+inj : (x y : Nat) → (1+ x == 1+ y) → x == y 1+inj Z .0 refl = refl 1+inj (1+ x) .(1+ x) refl = refl -- equality of naturals is decidable. we represent this as computing a -- choice of units, with inl <> meaning that the naturals are indeed the -- same and inr <> that they are not. natEQ : (x y : Nat) → ((x == y) + ((x == y) → ⊥)) natEQ Z Z = Inl refl natEQ Z (1+ y) = Inr (λ ()) natEQ (1+ x) Z = Inr (λ ()) natEQ (1+ x) (1+ y) with natEQ x y natEQ (1+ x) (1+ .x) | Inl refl = Inl refl ... | Inr b = Inr (λ x₁ → b (1+inj x y x₁)) -- nat equality as a predicate. this saves some very repetetive casing. natEQp : (x y : Nat) → Set natEQp x y with natEQ x y natEQp x .x | Inl refl = ⊥ natEQp x y | Inr x₁ = ⊤ _nat+_ : Nat → Nat → Nat Z nat+ y = y 1+ x nat+ y = 1+ (x nat+ y)
{ "alphanum_fraction": 0.5535168196, "avg_line_length": 28.0285714286, "ext": "agda", "hexsha": "643bfe10109f8c2b3411af811b0506915dd50bd1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-agda", "max_forks_repo_path": "Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-agda", "max_issues_repo_path": "Nat.agda", "max_line_length": 74, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-agda", "max_stars_repo_path": "Nat.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 401, "size": 981 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module homotopy.PathSetIsInitalCover {i} (X : Ptd i) -- and an arbitrary covering {k} (⊙cov : ⊙Cover X k) where open Cover private univ-cover = path-set-cover X module ⊙cov = ⊙Cover ⊙cov -- Weak initiality by transport. quotient-cover : CoverHom univ-cover ⊙cov.cov quotient-cover _ p = cover-trace ⊙cov.cov ⊙cov.pt p -- Strong initiality by path induction. module Uniqueness (cover-hom : CoverHom univ-cover ⊙cov.cov) (pres-pt : cover-hom (pt X) idp₀ == ⊙cov.pt) where private lemma₁ : ∀ a p → cover-hom a [ p ] == quotient-cover a [ p ] lemma₁ ._ idp = pres-pt lemma₂ : ∀ a p → cover-hom a p == quotient-cover a p lemma₂ a = Trunc-elim (λ p → =-preserves-set (⊙cov.Fiber-level a)) (lemma₁ a) theorem : cover-hom == quotient-cover theorem = λ= λ a → λ= $ lemma₂ a
{ "alphanum_fraction": 0.6097297297, "avg_line_length": 25.6944444444, "ext": "agda", "hexsha": "4ad3f66ced588ee98c6d0e9aafe26563ffd4df87", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/PathSetIsInitalCover.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/PathSetIsInitalCover.agda", "max_line_length": 66, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/PathSetIsInitalCover.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 303, "size": 925 }
import Lvl open import Structure.Operator.Vector open import Structure.Setoid open import Type module Structure.Operator.Vector.FiniteDimensional.Proofs {ℓᵥ ℓₛ ℓᵥₑ ℓₛₑ} {V : Type{ℓᵥ}} ⦃ equiv-V : Equiv{ℓᵥₑ}(V) ⦄ {S : Type{ℓₛ}} ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ {_+ᵥ_ : V → V → V} {_⋅ₛᵥ_ : S → V → V} {_+ₛ_ _⋅ₛ_ : S → S → S} ⦃ vectorSpace : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) ⦄ where open VectorSpace(vectorSpace) open import Data.Tuple as Tuple using (_,_) open import Functional using (id ; _∘_ ; _∘₂_ ; _$_ ; swap ; _on₂_) open import Function.Equals open import Logic open import Logic.Classical open import Logic.Propositional open import Logic.Predicate open import Numeral.CoordinateVector as Vec using () renaming (Vector to Vec) open import Numeral.CoordinateVector.Proofs open import Numeral.Finite open import Numeral.Finite.Proofs open import Numeral.Natural open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs import Relator.Equals as Eq open import Relator.Equals.Proofs.Equivalence open import Structure.Function.Domain open import Structure.Function.Domain.Proofs open import Structure.Operator.Proofs open import Structure.Operator open import Structure.Operator.Vector.FiniteDimensional ⦃ vectorSpace = vectorSpace ⦄ open import Structure.Operator.Vector.LinearCombination ⦃ vectorSpace = vectorSpace ⦄ open import Structure.Operator.Vector.LinearCombination.Proofs open import Structure.Relator.Properties open import Syntax.Function open import Syntax.Number open import Syntax.Transitivity private variable ℓ ℓ₁ ℓ₂ ℓₗ : Lvl.Level private variable n n₁ n₂ : ℕ private variable vf vf₁ vf₂ : Vec(n)(V) private variable sf sf₁ sf₂ : Vec(n)(S) private variable i j : 𝕟(n) -- A basis could essentially be defined as being linearly independent and spanning the vector space. linearIndependence-spanning-basis-equivalence : (LinearlyIndependent(vf) ∧ Spanning(vf)) ↔ Basis(vf) linearIndependence-spanning-basis-equivalence = injective-surjective-bijective-equivalence _ -- Linearly independent sequence of vectors are vectors such that a linear combination of them never maps to zero. -- Note that this is the usual definition of linear independence. linearIndependence-equivalence : LinearlyIndependent(vf) ↔ (∀{sf} → (linearCombination(vf)(sf) ≡ 𝟎ᵥ) → (sf ⊜ Vec.fill(𝟎ₛ))) linearIndependence-equivalence = Two.injective-kernel {_▫₁_ = Vec.map₂(_+ₛ_)} ⦃ func = BinaryOperator.right linearCombination-binaryOperator ⦄ ⦃ cancₗ₂ = One.cancellationₗ-by-associativity-inverse ⦄ {inv₁ = Vec.map(−ₛ_)} -- postulate linearCombination-when-zero : (linearCombination(vf)(sf) ≡ 𝟎ᵥ) → (∀{i} → (vf(i) ≡ 𝟎ᵥ) ∨ (sf(i) ≡ 𝟎ₛ)) -- A sequence of vectors with a zero vector in it are not linearly independent, and a linearly independent sequence of vectors do not contain zero vectors. linearIndependence-no-zero-vectors : LinearlyIndependent(vf) → ∀{i} → (vf(i) ≡ 𝟎ᵥ) → ⊥ linearIndependence-no-zero-vectors {𝐒(n)}{vf} li {i} vfzero = distinct-identitiesₛ $ 𝟎ₛ 🝖[ _≡_ ]-[] Vec.fill 𝟎ₛ i 🝖[ _≡_ ]-[ _⊜_.proof ([↔]-to-[→] linearIndependence-equivalence li p) ]-sym Vec.indexProject i 𝟏ₛ 𝟎ₛ i 🝖[ _≡_ ]-[ [↔]-to-[→] (indexProject-true{i = i}{false = 𝟎ₛ}) ([∨]-introₗ(reflexivity(Eq._≡_))) ] 𝟏ₛ 🝖-end where p = linearCombination vf (Vec.indexProject i 𝟏ₛ 𝟎ₛ) 🝖[ _≡_ ]-[ linearCombination-of-indexProject{vf = vf} ] vf(i) 🝖[ _≡_ ]-[ vfzero ] 𝟎ᵥ 🝖-end --∀{i} → (vf(i) ≡ 𝟎ᵥ) → Spanning{𝐒(n)}(vf) → Spanning{n}(Vec.without i vf) -- There are no duplicates in a sequence of linearly independent vectors. linearIndependence-to-distinct : LinearlyIndependent(vf) → Vec.Distinct(vf) Injective.proof (linearIndependence-to-distinct {vf = vf} (intro inj)) {x} {y} vfxy = [¬¬]-elim ⦃ [≡][𝕟]-classical ⦄ $ nxy ↦ let p : linearCombination vf (Vec.indexProject x 𝟏ₛ 𝟎ₛ) ≡ linearCombination vf (Vec.indexProject y 𝟏ₛ 𝟎ₛ) p = linearCombination vf (Vec.indexProject x 𝟏ₛ 𝟎ₛ) 🝖[ _≡_ ]-[ linearCombination-of-indexProject{vf = vf} ] vf(x) 🝖[ _≡_ ]-[ vfxy ] vf(y) 🝖[ _≡_ ]-[ linearCombination-of-indexProject{vf = vf} ]-sym linearCombination vf (Vec.indexProject y 𝟏ₛ 𝟎ₛ) 🝖-end q : 𝟎ₛ ≡ 𝟏ₛ q = 𝟎ₛ 🝖[ _≡_ ]-[ [↔]-to-[→] (indexProject-false{true = 𝟏ₛ}) ([∨]-introₗ nxy) ]-sym Vec.proj(Vec.indexProject(x) 𝟏ₛ 𝟎ₛ) (y) 🝖[ _≡_ ]-[ _⊜_.proof(inj p) {y} ] Vec.proj(Vec.indexProject(y) 𝟏ₛ 𝟎ₛ) (y) 🝖[ _≡_ ]-[ [↔]-to-[→] (indexProject-true{false = 𝟎ₛ}) ([∨]-introₗ(reflexivity(Eq._≡_) {x = y})) ] 𝟏ₛ 🝖-end in distinct-identitiesₛ q -- A subsequence of a linearly independent sequence of vectors are linearly independent. postulate independent-subsequence-is-independent : ∀{N : 𝕟(n₁) → 𝕟(n₂)} ⦃ inj : Injective ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ (N) ⦄ → LinearlyIndependent{n₂}(vf) → LinearlyIndependent{n₁}(vf ∘ N) postulate linear-independent-sequence-set-equivalence : ∀{N : 𝕟(n₁) → 𝕟(n₂)} ⦃ bij : Bijective ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ (N)⦄ → LinearlyIndependent{n₂}(vf) ↔ LinearlyIndependent{n₁}(vf ∘ N) postulate spanning-supersequence-is-spanning : ∀{N : 𝕟(n₁) → 𝕟(n₂)} ⦃ surj : Surjective ⦃ [≡]-equiv ⦄ (N) ⦄ → Spanning{n₂}(vf) → Spanning{n₁}(vf ∘ N) postulate spanning-sequence-set-equivalence : ∀{N : 𝕟(n₁) → 𝕟(n₂)} ⦃ bij : Bijective ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ (N) ⦄ → Spanning{n₂}(vf) ↔ Spanning{n₁}(vf ∘ N) -- The number of linearly independent vectors is always less than the cardinality of a set of spanning vectors. -- TODO: It is important to prove this if possible postulate independent-less-than-spanning : ∀{n₁}{vf₁} → LinearlyIndependent{n₁}(vf₁) → ∀{n₂}{vf₂} → Spanning{n₂}(vf₂) → (n₁ ≤ n₂) {- TODO: Here is an idea of a proof, but it probably requires more development in the theory of cardinalities. Or maybe just some stuff on linearCombination LinearlyIndependent{n₁}(vf₁) Injective(linearCombination{n = n₁}(vf₁)) (essentially: Vec(n₁)(S) ≤ V) Spanning{n₂}(vf₂) Surjective(linearCombination{n = n₂}(vf₂)) (essentially: Vec(n₂)(S) ≥ V) Injective(linearCombination{n = n₂}(vf₂) ∘ inv) (Is this really true then? Essentially: V ≤ Vec(n₂)(S)) Injective(linearCombination{n = n₂}(vf₂) ∘ inv ∘ linearCombination{n = n₁}(vf₁)) (essentially: Vec(n₁)(S) ≤ Vec(n₂)(S)) n₁ ≤ n₂ (Note: This is not true in general. Only if the morphism is the "natural one" (the 𝟎 ↦ 𝟎 and n-tuples only maps to n-tuples and so on)), but is it really obtained by the proofs above? -} -- Two bases in a vector space are always of the same length. basis-equal-length : Basis{n₁}(vf₁) → Basis{n₂}(vf₂) → (n₁ Eq.≡ n₂) basis-equal-length b₁ b₂ with (li₁ , sp₁) ← [↔]-to-[←] linearIndependence-spanning-basis-equivalence b₁ | (li₂ , sp₂) ← [↔]-to-[←] linearIndependence-spanning-basis-equivalence b₂ = antisymmetry(_≤_)(Eq._≡_) (independent-less-than-spanning li₁ sp₂) (independent-less-than-spanning li₂ sp₁) -- A finite basis can always be constructed by a subsequence of a finite spanning sequence of vectors. -- TODO: One way of proving this is by assuming that the relation LinearlyIndependent is decidable (it is because of the isomorphism from matrices (all vector spaces of the same dimension are isomorphic) and then matrix operations can tell whether a set of finite vectors are decidable), and then remove vectors one by one from the spanning sequence until it is linearly independent (which it will be at the end. In extreme cases, a sequence of zero vectors are linearly independent). This algorithm will always terminate because all vectors are finite, but how will this be shown? postulate basis-subsequence-from-spanning : Spanning{n₂}(vf) → ∃(n₁ ↦ ∃{Obj = 𝕟(n₁) → 𝕟(n₂)}(N ↦ Injective ⦃ [≡]-equiv ⦄ ⦃ [≡]-equiv ⦄ (N) ∧ Basis{n₁}(vf ∘ N))) module _ ⦃ fin-dim@([∃]-intro(spanSize) ⦃ [∃]-intro span ⦃ span-spanning ⦄ ⦄) : FiniteDimensional ⦄ where -- A basis always exists for finite dimensional vector spaces. basis-existence : ∃(n ↦ ∃(vf ↦ Basis{n}(vf))) basis-existence with [∃]-intro(n) ⦃ [∃]-intro N ⦃ [∧]-intro inj basis ⦄ ⦄ ← basis-subsequence-from-spanning span-spanning = [∃]-intro(n) ⦃ [∃]-intro (span ∘ N) ⦃ basis ⦄ ⦄ -- The dimension of the vector space is the length of a basis, which are the same for every vector space. dim : ℕ dim = [∃]-witness basis-existence postulate basis-supersequence-from-linear-independence : LinearlyIndependent{n₂}(vf) → ∃(n₁ ↦ ∃{Obj = 𝕟(n₁) → 𝕟(n₂)}(N ↦ Surjective ⦃ [≡]-equiv ⦄ (N) ∧ Basis{n₁}(vf ∘ N))) -- TODO: One idea is to start with vf. Then try to add the basis vectors one by one from basis-existence while maintaining the linear independence postulate independence-spanning-equivalence-for-dimension : LinearlyIndependent{dim}(vf) ↔ Spanning{dim}(vf) -- TODO: For this to be formulated, reorganize some stuff -- finite-subspace-set-equality : ∀{Vₛ₁ Vₛ₂} → Subspace(Vₛ₁) → Subspace(Vₛ₂) → (dim(Vₛ₁) ≡ dim(Vₛ₂)) → (Vₛ₁ ≡ Vₛ₂) -- as in set equality
{ "alphanum_fraction": 0.6772097054, "avg_line_length": 58.4303797468, "ext": "agda", "hexsha": "728a6f372281d2ede230277befbc57aa33b13034", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/Vector/FiniteDimensional/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/Vector/FiniteDimensional/Proofs.agda", "max_line_length": 581, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/Vector/FiniteDimensional/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3203, "size": 9232 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Diagram.Pushout {o ℓ e} (C : Category o ℓ e) where open Category C open HomReasoning open import Level private variable A B X Y Z : Obj h h₁ h₂ j : A ⇒ B record Pushout (f : X ⇒ Y) (g : X ⇒ Z) : Set (o ⊔ ℓ ⊔ e) where field {Q} : Obj i₁ : Y ⇒ Q i₂ : Z ⇒ Q field commute : i₁ ∘ f ≈ i₂ ∘ g universal : h₁ ∘ f ≈ h₂ ∘ g → Q ⇒ cod h₁ unique : ∀ {eq : h₁ ∘ f ≈ h₂ ∘ g} → j ∘ i₁ ≈ h₁ → j ∘ i₂ ≈ h₂ → j ≈ universal eq universal∘i₁≈h₁ : ∀ {eq : h₁ ∘ f ≈ h₂ ∘ g} → universal eq ∘ i₁ ≈ h₁ universal∘i₂≈h₂ : ∀ {eq : h₁ ∘ f ≈ h₂ ∘ g} → universal eq ∘ i₂ ≈ h₂
{ "alphanum_fraction": 0.4698331194, "avg_line_length": 22.9117647059, "ext": "agda", "hexsha": "c3ebe4b4ca0d15f06d48af7461613d931aec503d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Pushout.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Pushout.agda", "max_line_length": 68, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Pushout.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 314, "size": 779 }
module L.Base where -- Reexport definitions open import L.Base.Sigma public open import L.Base.Coproduct public renaming (_+_ to _⊎_) open import L.Base.Empty public open import L.Base.Unit public open import L.Base.Nat public open import L.Base.Id public
{ "alphanum_fraction": 0.7898832685, "avg_line_length": 25.7, "ext": "agda", "hexsha": "8cd938932e185122645e96a0eb46b06dc71999c0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "borszag/smallib", "max_forks_repo_path": "src/L/Base.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "borszag/smallib", "max_issues_repo_path": "src/L/Base.agda", "max_line_length": 57, "max_stars_count": null, "max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "borszag/smallib", "max_stars_repo_path": "src/L/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 64, "size": 257 }
open import Level open import Relation.Binary.PropositionalEquality open import Relation.Binary using (Setoid) import Function.Equality import Relation.Binary.Reasoning.Setoid as SetoidR import Categories.Category import Categories.Functor import Categories.Category.Instance.Setoids import Categories.Category.Cocartesian import SecondOrder.Arity import SecondOrder.Signature import SecondOrder.Metavariable import SecondOrder.Term module SecondOrder.VRenaming {ℓ} {𝔸 : SecondOrder.Arity.Arity} (Σ : SecondOrder.Signature.Signature ℓ 𝔸) where open SecondOrder.Signature.Signature Σ open SecondOrder.Metavariable Σ open SecondOrder.Term Σ -- a renaming maps variables between contexts in a type-preserving way _⇒ᵛ_ : ∀ (Γ Δ : VContext) → Set ℓ Γ ⇒ᵛ Δ = ∀ {A} → A ∈ Γ → A ∈ Δ infix 4 _⇒ᵛ_ -- equality of renamings _≡ᵛ_ : ∀ {Γ Δ} (σ τ : Γ ⇒ᵛ Δ) → Set ℓ _≡ᵛ_ {Γ} σ τ = ∀ {A} (x : A ∈ Γ) → σ x ≡ τ x infixl 3 _≡ᵛ_ ≡ᵛ-refl : ∀ {Γ Δ} {ρ : Γ ⇒ᵛ Δ} → ρ ≡ᵛ ρ ≡ᵛ-refl = λ x → refl ≡ᵛ-sym : ∀ {Γ Δ} {ρ ν : Γ ⇒ᵛ Δ} → ρ ≡ᵛ ν → ν ≡ᵛ ρ ≡ᵛ-sym eq x = sym (eq x) ≡ᵛ-trans : ∀ {Γ Δ} {ρ ν γ : Γ ⇒ᵛ Δ} → ρ ≡ᵛ ν → ν ≡ᵛ γ → ρ ≡ᵛ γ ≡ᵛ-trans eq1 eq2 x = trans (eq1 x) (eq2 x) -- renamings form a setoid renaming-setoid : ∀ (Γ Δ : VContext) → Setoid ℓ ℓ renaming-setoid Γ Δ = record { Carrier = Γ ⇒ᵛ Δ ; _≈_ = λ ρ ν → ρ ≡ᵛ ν ; isEquivalence = record { refl = λ {ρ} x → ≡ᵛ-refl {Γ} {Δ} {ρ} x ; sym = ≡ᵛ-sym ; trans = ≡ᵛ-trans } } -- renaming preserves equality of variables ρ-resp-≡ : ∀ {Γ Δ A} {x y : A ∈ Γ} {ρ : Γ ⇒ᵛ Δ} → x ≡ y → ρ x ≡ ρ y ρ-resp-≡ refl = refl -- the identity renaming idᵛ : ∀ {Γ : VContext} → Γ ⇒ᵛ Γ idᵛ x = x -- composition of renamings _∘ᵛ_ : ∀ {Γ Δ Ξ} → Δ ⇒ᵛ Ξ → Γ ⇒ᵛ Δ → Γ ⇒ᵛ Ξ (σ ∘ᵛ ρ) x = σ (ρ x) infix 7 _∘ᵛ_ -- composition respects equality ∘ᵛ-resp-≡ᵛ : ∀ {Γ Δ Ξ} {τ₁ τ₂ : Δ ⇒ᵛ Ξ} {σ₁ σ₂ : Γ ⇒ᵛ Δ} → τ₁ ≡ᵛ τ₂ → σ₁ ≡ᵛ σ₂ → τ₁ ∘ᵛ σ₁ ≡ᵛ τ₂ ∘ᵛ σ₂ ∘ᵛ-resp-≡ᵛ {τ₁ = τ₁} {σ₂ = σ₂} ζ ξ x = trans (cong τ₁ (ξ x)) (ζ (σ₂ x)) -- the identity is the unit identity-leftᵛ : ∀ {Γ Δ} {ρ : Γ ⇒ᵛ Δ} → idᵛ ∘ᵛ ρ ≡ᵛ ρ identity-leftᵛ ρ = refl identity-rightᵛ : ∀ {Γ Δ} {ρ : Γ ⇒ᵛ Δ} → ρ ∘ᵛ idᵛ ≡ᵛ ρ identity-rightᵛ ρ = refl -- composition is associative assocᵛ : ∀ {Γ Δ Ξ Ψ} {τ : Γ ⇒ᵛ Δ} {ρ : Δ ⇒ᵛ Ξ} {σ : Ξ ⇒ᵛ Ψ} → (σ ∘ᵛ ρ) ∘ᵛ τ ≡ᵛ σ ∘ᵛ (ρ ∘ᵛ τ) assocᵛ x = refl sym-assocᵛ : ∀ {Γ Δ Ξ Ψ} {τ : Γ ⇒ᵛ Δ} {ρ : Δ ⇒ᵛ Ξ} {σ : Ξ ⇒ᵛ Ψ} → σ ∘ᵛ (ρ ∘ᵛ τ) ≡ᵛ (σ ∘ᵛ ρ) ∘ᵛ τ sym-assocᵛ x = refl -- contexts and renamings form a category module _ where open Categories.Category VContexts : Category ℓ ℓ ℓ VContexts = record { Obj = VContext ; _⇒_ = _⇒ᵛ_ ; _≈_ = _≡ᵛ_ ; id = idᵛ ; _∘_ = _∘ᵛ_ ; assoc = λ {_} {_} {_} {_} {f} {g} {h} {_} → assocᵛ {τ = f} {ρ = g} {σ = h} ; sym-assoc = λ {_} {_} {_} {_} {f} {g} {h} {_} → sym-assocᵛ {τ = f} {ρ = g} {σ = h} ; identityˡ = λ x → refl ; identityʳ = λ x → refl ; identity² = λ x → refl ; equiv = record { refl = λ {ρ} {_} → ≡ᵛ-refl {ρ = ρ} ; sym = ≡ᵛ-sym ; trans = ≡ᵛ-trans } ; ∘-resp-≈ = ∘ᵛ-resp-≡ᵛ } -- the coproduct structure of the category module _ where infixl 7 [_,_]ᵛ [_,_]ᵛ : ∀ {Γ Δ Ξ} → Γ ⇒ᵛ Ξ → Δ ⇒ᵛ Ξ → Γ ,, Δ ⇒ᵛ Ξ [ σ , τ ]ᵛ (var-inl x) = σ x [ σ , τ ]ᵛ (var-inr y) = τ y [,]ᵛ-resp-≡ᵛ : ∀ {Γ Δ Ξ} {ρ₁ ρ₂ : Γ ⇒ᵛ Ξ} {τ₁ τ₂ : Δ ⇒ᵛ Ξ} → ρ₁ ≡ᵛ ρ₂ → τ₁ ≡ᵛ τ₂ → [ ρ₁ , τ₁ ]ᵛ ≡ᵛ [ ρ₂ , τ₂ ]ᵛ [,]ᵛ-resp-≡ᵛ pρ pτ (var-inl x) = pρ x [,]ᵛ-resp-≡ᵛ pρ pτ (var-inr x) = pτ x inlᵛ : ∀ {Γ Δ} → Γ ⇒ᵛ Γ ,, Δ inlᵛ = var-inl inrᵛ : ∀ {Γ Δ} → Δ ⇒ᵛ Γ ,, Δ inrᵛ = var-inr uniqueᵛ : ∀ {Γ Δ Ξ} {τ : Γ ,, Δ ⇒ᵛ Ξ} {ρ : Γ ⇒ᵛ Ξ} {σ : Δ ⇒ᵛ Ξ} → τ ∘ᵛ inlᵛ ≡ᵛ ρ → τ ∘ᵛ inrᵛ ≡ᵛ σ → [ ρ , σ ]ᵛ ≡ᵛ τ uniqueᵛ ξ ζ (var-inl x) = sym (ξ x) uniqueᵛ ξ ζ (var-inr y) = sym (ζ y) uniqueᵛ² : ∀ {Γ Δ Ξ} {τ σ : Γ ,, Δ ⇒ᵛ Ξ} → τ ∘ᵛ inlᵛ ≡ᵛ σ ∘ᵛ inlᵛ → τ ∘ᵛ inrᵛ ≡ᵛ σ ∘ᵛ inrᵛ → τ ≡ᵛ σ uniqueᵛ² ξ ζ (var-inl x) = ξ x uniqueᵛ² ξ ζ (var-inr y) = ζ y Context-+ : Categories.Category.Cocartesian.BinaryCoproducts VContexts Context-+ = record { coproduct = λ {Γ Δ} → record { A+B = Γ ,, Δ ; i₁ = inlᵛ ; i₂ = inrᵛ ; [_,_] = [_,_]ᵛ ; inject₁ = λ x → refl ; inject₂ = λ x → refl ; unique = uniqueᵛ } } open Categories.Category.Cocartesian.BinaryCoproducts Context-+ -- the renaming from the empty context inᵛ : ∀ {Γ} → ctx-empty ⇒ᵛ Γ inᵛ () -- extension of a renaming is summing with identity ⇑ᵛ : ∀ {Γ Δ Ξ} → Γ ⇒ᵛ Δ → Γ ,, Ξ ⇒ᵛ Δ ,, Ξ ⇑ᵛ ρ = ρ +₁ idᵛ -- a renaming can also be extended on the right ʳ⇑ᵛ : ∀ {Γ Δ} → Γ ⇒ᵛ Δ → ∀ {Ξ} → Ξ ,, Γ ⇒ᵛ Ξ ,, Δ ʳ⇑ᵛ ρ = idᵛ +₁ ρ -- right extension of renamings commutes with right injection ʳ⇑ᵛ-comm-inrᵛ : ∀ {Γ Δ Ξ} (ρ : Γ ⇒ᵛ Δ) → (ʳ⇑ᵛ ρ {Ξ = Ξ}) ∘ᵛ (inrᵛ {Δ = Γ}) ≡ᵛ inrᵛ ∘ᵛ ρ ʳ⇑ᵛ-comm-inrᵛ ρ var-slot = refl ʳ⇑ᵛ-comm-inrᵛ ρ (var-inl x) = refl ʳ⇑ᵛ-comm-inrᵛ ρ (var-inr x) = refl -- left extension of renamings commutes with left injection ⇑ᵛ-comm-inlᵛ : ∀ {Γ Δ Ξ} (ρ : Γ ⇒ᵛ Δ) → (⇑ᵛ {Ξ = Ξ} ρ) ∘ᵛ (inlᵛ {Δ = Ξ}) ≡ᵛ inlᵛ ∘ᵛ ρ ⇑ᵛ-comm-inlᵛ ρ var-slot = refl ⇑ᵛ-comm-inlᵛ ρ (var-inl x) = refl ⇑ᵛ-comm-inlᵛ ρ (var-inr x) = refl -- the action of a renaming on terms module _ {Θ : MContext} where infix 6 [_]ᵛ_ [_]ᵛ_ : ∀ {Γ Δ A} → Γ ⇒ᵛ Δ → Term Θ Γ A → Term Θ Δ A [ ρ ]ᵛ (tm-var x) = tm-var (ρ x) [ ρ ]ᵛ (tm-meta M ts) = tm-meta M (λ i → [ ρ ]ᵛ (ts i)) [ ρ ]ᵛ (tm-oper f es) = tm-oper f (λ i → [ ⇑ᵛ ρ ]ᵛ (es i)) -- The sum of identities is an identity idᵛ+idᵛ : ∀ {Γ Δ} → idᵛ {Γ = Γ} +₁ idᵛ {Γ = Δ} ≡ᵛ idᵛ {Γ = Γ ,, Δ} idᵛ+idᵛ (var-inl x) = refl idᵛ+idᵛ (var-inr y) = refl -- The action of a renaming respects equality of terms []ᵛ-resp-≈ : ∀ {Θ Γ Δ A} {s t : Term Θ Γ A} {ρ : Γ ⇒ᵛ Δ} → s ≈ t → [ ρ ]ᵛ s ≈ [ ρ ]ᵛ t []ᵛ-resp-≈ (≈-≡ refl) = ≈-≡ refl []ᵛ-resp-≈ (≈-meta ξ) = ≈-meta (λ i → []ᵛ-resp-≈ (ξ i)) []ᵛ-resp-≈ (≈-oper ξ) = ≈-oper (λ i → []ᵛ-resp-≈ (ξ i)) -- The action of a renaming respects equality of renamings []ᵛ-resp-≡ᵛ : ∀ {Θ Γ Δ A} {ρ τ : Γ ⇒ᵛ Δ} {t : Term Θ Γ A} → ρ ≡ᵛ τ → [ ρ ]ᵛ t ≈ [ τ ]ᵛ t []ᵛ-resp-≡ᵛ {t = tm-var x} ξ = ≈-≡ (cong tm-var (ξ x)) []ᵛ-resp-≡ᵛ {t = tm-meta M ts} ξ = ≈-meta (λ i → []ᵛ-resp-≡ᵛ ξ) []ᵛ-resp-≡ᵛ {t = tm-oper f es} ξ = ≈-oper (λ i → []ᵛ-resp-≡ᵛ (+₁-cong₂ ξ ≡ᵛ-refl)) -- The action of the identity is trival [idᵛ] : ∀ {Θ Γ A} {t : Term Θ Γ A} → [ idᵛ ]ᵛ t ≈ t [idᵛ] {t = tm-var x} = ≈-refl [idᵛ] {t = tm-meta M ts} = ≈-meta λ i → [idᵛ] [idᵛ] {t = tm-oper f es} = ≈-oper λ i → ≈-trans ([]ᵛ-resp-≡ᵛ idᵛ+idᵛ) [idᵛ] -- Extension respects composition ⇑ᵛ-resp-∘ᵛ : ∀ {Γ Δ Ξ Ψ} {ρ : Γ ⇒ᵛ Δ} {τ : Δ ⇒ᵛ Ξ} → ⇑ᵛ {Ξ = Ψ} (τ ∘ᵛ ρ) ≡ᵛ (⇑ᵛ τ) ∘ᵛ (⇑ᵛ ρ) ⇑ᵛ-resp-∘ᵛ (var-inl x) = refl ⇑ᵛ-resp-∘ᵛ (var-inr y) = refl -- Right extension respects composition ʳ⇑ᵛ-resp-∘ᵛ : ∀ {Γ Δ Ξ Ψ} {ρ : Γ ⇒ᵛ Δ} {τ : Δ ⇒ᵛ Ξ} → ʳ⇑ᵛ (τ ∘ᵛ ρ) {Ξ = Ψ} ≡ᵛ (ʳ⇑ᵛ τ) ∘ᵛ (ʳ⇑ᵛ ρ) ʳ⇑ᵛ-resp-∘ᵛ (var-inl x) = refl ʳ⇑ᵛ-resp-∘ᵛ (var-inr y) = refl -- The action of a renaming is functorial [∘ᵛ] : ∀ {Θ Γ Δ Ξ} {ρ : Γ ⇒ᵛ Δ} {τ : Δ ⇒ᵛ Ξ} {A} {t : Term Θ Γ A} → [ τ ∘ᵛ ρ ]ᵛ t ≈ [ τ ]ᵛ ([ ρ ]ᵛ t) [∘ᵛ] {t = tm-var x} = ≈-refl [∘ᵛ] {t = tm-meta M ts} = ≈-meta (λ i → [∘ᵛ]) [∘ᵛ] {t = tm-oper f es} = ≈-oper (λ i → ≈-trans ([]ᵛ-resp-≡ᵛ ⇑ᵛ-resp-∘ᵛ) [∘ᵛ]) ∘ᵛ-resp-ʳ⇑ᵛ : ∀ {Γ Δ Ξ Λ} {ρ : Γ ⇒ᵛ Δ} {τ : Δ ⇒ᵛ Ξ} → ʳ⇑ᵛ (τ ∘ᵛ ρ) {Ξ = Λ} ≡ᵛ ʳ⇑ᵛ τ ∘ᵛ ʳ⇑ᵛ ρ ∘ᵛ-resp-ʳ⇑ᵛ (var-inl x) = refl ∘ᵛ-resp-ʳ⇑ᵛ (var-inr y) = refl ∘ᵛ-resp-ʳ⇑ᵛ-term : ∀ {Θ Γ Δ Ξ Λ A} {ρ : Γ ⇒ᵛ Δ} {τ : Δ ⇒ᵛ Ξ} {t : Term Θ (Λ ,, Γ) A} → [ ʳ⇑ᵛ (τ ∘ᵛ ρ) {Ξ = Λ} ]ᵛ t ≈ [ ʳ⇑ᵛ τ ]ᵛ ([ ʳ⇑ᵛ ρ ]ᵛ t) ∘ᵛ-resp-ʳ⇑ᵛ-term {Θ} {Γ} {Δ} {Ξ} {Λ} {A} {ρ} {τ} {t = t} = let open SetoidR (Term-setoid Θ (Λ ,, Ξ) A) in begin [ ʳ⇑ᵛ (τ ∘ᵛ ρ) {Ξ = Λ} ]ᵛ t ≈⟨ []ᵛ-resp-≡ᵛ ∘ᵛ-resp-ʳ⇑ᵛ ⟩ [ ʳ⇑ᵛ τ ∘ᵛ ʳ⇑ᵛ ρ ]ᵛ t ≈⟨ [∘ᵛ] ⟩ [ ʳ⇑ᵛ τ ]ᵛ ([ ʳ⇑ᵛ ρ ]ᵛ t) ∎ ʳ⇑ᵛ-comm-inrᵛ-term : ∀ {Θ Γ Δ Ξ A} {ρ : Γ ⇒ᵛ Δ} {t : Term Θ Γ A} → ([ ʳ⇑ᵛ ρ {Ξ = Ξ} ]ᵛ ([ inrᵛ {Δ = Γ} ]ᵛ t)) ≈ ([ inrᵛ ]ᵛ ([ ρ ]ᵛ t)) ʳ⇑ᵛ-comm-inrᵛ-term {Θ} {Γ} {Δ} {Ξ} {A} {ρ} {t = t} = let open SetoidR (Term-setoid Θ (Ξ ,, Δ) A) in begin [ ʳ⇑ᵛ ρ ]ᵛ ([ inrᵛ ]ᵛ t) ≈⟨ ≈-sym [∘ᵛ] ⟩ [ ʳ⇑ᵛ ρ ∘ᵛ var-inr ]ᵛ t ≈⟨ []ᵛ-resp-≡ᵛ (ʳ⇑ᵛ-comm-inrᵛ ρ) ⟩ [ inrᵛ ∘ᵛ ρ ]ᵛ t ≈⟨ [∘ᵛ] ⟩ [ inrᵛ ]ᵛ ([ ρ ]ᵛ t) ∎ -- Forming terms over a given metacontext and sort is functorial in the context module _ {Θ : MContext} {A : sort} where open Categories.Functor open Categories.Category.Instance.Setoids Term-Functor : Functor VContexts (Setoids ℓ ℓ) Term-Functor = record { F₀ = λ Γ → Term-setoid Θ Γ A ; F₁ = λ ρ → record { _⟨$⟩_ = [ ρ ]ᵛ_ ; cong = []ᵛ-resp-≈ } ; identity = ≈-trans [idᵛ] ; homomorphism = λ ξ → ≈-trans ([]ᵛ-resp-≈ ξ) [∘ᵛ] ; F-resp-≈ = λ ζ ξ → ≈-trans ([]ᵛ-resp-≡ᵛ ζ) ([]ᵛ-resp-≈ ξ) }
{ "alphanum_fraction": 0.4794095625, "avg_line_length": 31.4781144781, "ext": "agda", "hexsha": "6667488b48745371afc21c32a4349284a80e1af6", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SecondOrder/VRenaming.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SecondOrder/VRenaming.agda", "max_line_length": 115, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/SecondOrder/VRenaming.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 5379, "size": 9349 }
-- Andreas, 2017-12-13, issue #2867 -- Parentheses needed when giving module argument module _ where module M (A : Set) where id : A → A id x = x test : (F : Set → Set) (A : Set) (x : F A) → F A test F A = λ x → x where open M {!F A!} -- Give this -- Expected: M (F A)
{ "alphanum_fraction": 0.575, "avg_line_length": 18.6666666667, "ext": "agda", "hexsha": "5a74cf629eb6a32c7fe8436abbabfd3f0cd59e2a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2867.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2867.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2867.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 106, "size": 280 }
------------------------------------------------------------------------ -- Admissible rules are sometimes not "postulable" ------------------------------------------------------------------------ -- Even though a rule is admissible it may not be sound to postulate -- it, i.e. add it as an inductive constructor. This was observed by -- Edsko de Vries in a message to the Coq-club mailing list (Re: -- [Coq-Club] Adding (inductive) transitivity to weak bisimilarity not -- sound? (was: Need help with coinductive proof), 2009-08-28). module AdmissibleButNotPostulable where open import Codata.Musical.Notation using (∞; ♯_; ♭) open import Data.Nat open import Data.Product as Prod open import Function open import Relation.Binary.PropositionalEquality as P using (_≡_; [_]) open import Relation.Nullary using (¬_) ------------------------------------------------------------------------ -- The partiality monad data _⊥ (A : Set) : Set where now : (v : A) → A ⊥ later : (x : ∞ (A ⊥)) → A ⊥ ------------------------------------------------------------------------ -- Weak equality of computations in the partiality monad module WeakEquality where infix 4 _≈_ data _≈_ {A : Set} : A ⊥ → A ⊥ → Set where now : ∀ {v} → now v ≈ now v later : ∀ {x y} (x≈y : ∞ (♭ x ≈ ♭ y)) → later x ≈ later y laterʳ : ∀ {x y} (x≈y : x ≈ ♭ y ) → x ≈ later y laterˡ : ∀ {x y} (x≈y : ♭ x ≈ y ) → later x ≈ y -- Some lemmas. laterʳ⁻¹ : ∀ {A : Set} {x : A ⊥} {y} → x ≈ later y → x ≈ ♭ y laterʳ⁻¹ (later x≈y) = laterˡ (♭ x≈y) laterʳ⁻¹ (laterʳ x≈y) = x≈y laterʳ⁻¹ (laterˡ x≈ly) = laterˡ (laterʳ⁻¹ x≈ly) laterˡ⁻¹ : ∀ {A : Set} {x} {y : A ⊥} → later x ≈ y → ♭ x ≈ y laterˡ⁻¹ (later x≈y) = laterʳ (♭ x≈y) laterˡ⁻¹ (laterʳ lx≈y) = laterʳ (laterˡ⁻¹ lx≈y) laterˡ⁻¹ (laterˡ x≈y) = x≈y -- Weak equality is an equivalence relation. refl : {A : Set} (x : A ⊥) → x ≈ x refl (now v) = now refl (later x) = later (♯ refl (♭ x)) sym : {A : Set} {x y : A ⊥} → x ≈ y → y ≈ x sym now = now sym (later x≈y) = later (♯ sym (♭ x≈y)) sym (laterʳ x≈y) = laterˡ (sym x≈y) sym (laterˡ x≈y) = laterʳ (sym x≈y) trans : {A : Set} {x y z : A ⊥} → x ≈ y → y ≈ z → x ≈ z trans {x = now v} {z = z} p q = tr p q where tr : ∀ {y} → now v ≈ y → y ≈ z → now v ≈ z tr now y≈z = y≈z tr (laterʳ v≈y) ly≈z = tr v≈y (laterˡ⁻¹ ly≈z) trans {x = later x} lx≈y y≈z = tr lx≈y y≈z where tr : ∀ {y z} → later x ≈ y → y ≈ z → later x ≈ z tr lx≈ly (later y≈z) = later (♯ trans (laterˡ⁻¹ lx≈ly) (laterˡ (♭ y≈z))) tr lx≈y (laterʳ y≈z) = later (♯ trans (laterˡ⁻¹ lx≈y) y≈z ) tr lx≈ly (laterˡ y≈z) = tr (laterʳ⁻¹ lx≈ly) y≈z tr (laterˡ x≈y) y≈z = laterˡ ( trans x≈y y≈z ) -- Non-termination. never : {A : Set} → A ⊥ never = later (♯ never) -- Weak equality is not trivial (assuming that the argument to _⊥ is -- non-empty). non-trivial : {A : Set} {v : A} → ¬ now v ≈ never non-trivial (laterʳ v≈⊥) = non-trivial v≈⊥ ------------------------------------------------------------------------ -- Extended weak equality module ExtendedWeakEquality where infix 4 _≈_ infix 3 _∎ infixr 2 _≈⟨_⟩_ -- Let us try to postulate transitivity using an inductive rule. data _≈_ {A : Set} : A ⊥ → A ⊥ → Set where now : ∀ {v} → now v ≈ now v later : ∀ {x y} (x≈y : ∞ (♭ x ≈ ♭ y)) → later x ≈ later y laterʳ : ∀ {x y} (x≈y : x ≈ ♭ y ) → x ≈ later y laterˡ : ∀ {x y} (x≈y : ♭ x ≈ y ) → later x ≈ y -- Transitivity. _≈⟨_⟩_ : ∀ x {y z} (x≈y : x ≈ y) (y≈z : y ≈ z) → x ≈ z -- Reflexivity. _∎ : {A : Set} (x : A ⊥) → x ≈ x now v ∎ = now later x ∎ = later (♯ (♭ x ∎)) -- Extended weak equality is trivial. trivial : {A : Set} (x y : A ⊥) → x ≈ y trivial x y = x ≈⟨ laterʳ (x ∎) ⟩ later (♯ x) ≈⟨ later (♯ trivial x y) ⟩ later (♯ y) ≈⟨ laterˡ (y ∎) ⟩ y ∎ -- The problem is that there is no "contractive" proof of -- transitivity; the proof given above consumes the input -- certificate "faster" than it produces the output certificate. ------------------------------------------------------------------------ -- Capretta's definition of equality coincides with weak equality -- This is not really related to the problem discussed above, I just -- want to ensure that the definition of weak equality is not too -- strange. module Capretta'sEquality where infix 4 _⇓_ _≈_ -- x ⇓ v means that x terminates with the value v. data _⇓_ {A : Set} : A ⊥ → A → Set where now : ∀ {v} → now v ⇓ v later : ∀ {x v} (x⇓v : ♭ x ⇓ v) → later x ⇓ v -- Equality as defined by Capretta in "General Recursion via -- Coinductive Types". data _≈_ {A : Set} : A ⊥ → A ⊥ → Set where now : ∀ {x y v} (x⇓v : x ⇓ v) (y⇓v : y ⇓ v) → x ≈ y later : ∀ {x y} (x≈y : ∞ (♭ x ≈ ♭ y)) → later x ≈ later y -- Soundness. open WeakEquality using () renaming (_≈_ to _≋_) sound : {A : Set} {x y : A ⊥} → x ≈ y → x ≋ y sound (later x≈y) = WeakEquality.later (♯ sound (♭ x≈y)) sound (now x⇓v y⇓v) = nw x⇓v y⇓v where nw : ∀ {A : Set} {x y : A ⊥} {v} → x ⇓ v → y ⇓ v → x ≋ y nw now now = WeakEquality.now nw x⇓v (later y⇓v) = WeakEquality.laterʳ (nw x⇓v y⇓v) nw (later x⇓v) y⇓v = WeakEquality.laterˡ (nw x⇓v y⇓v) -- Completeness. data _≈P_ {A : Set} : A ⊥ → A ⊥ → Set where now : ∀ {x y v} (x⇓v : x ⇓ v) (y⇓v : y ⇓ v) → x ≈P y later : ∀ {x y} (x≈y : ∞ (♭ x ≈P ♭ y)) → later x ≈P later y laterʳ : ∀ {x y} (x≈y : x ≈P ♭ y ) → x ≈P later y laterˡ : ∀ {x y} (x≈y : ♭ x ≈P y ) → later x ≈P y data _≈W_ {A : Set} : A ⊥ → A ⊥ → Set where now : ∀ {x y v} (x⇓v : x ⇓ v) (y⇓v : y ⇓ v) → x ≈W y later : ∀ {x y} (x≈y : ♭ x ≈P ♭ y) → later x ≈W later y laterʳW : ∀ {A : Set} {x : A ⊥} {y} → x ≈W ♭ y → x ≈W later y laterʳW {y = y} x≈y with ♭ y | P.inspect ♭ y laterʳW x≈y | y′ | [ eq ] with x≈y laterʳW x≈y | y′ | [ eq ] | now {v = v} x⇓v y⇓v = now x⇓v (later (P.subst (λ y → y ⇓ v) (P.sym eq) y⇓v)) laterʳW x≈y | later y′ | [ eq ] | later x′≈y′ = later (P.subst (_≈P_ _) (P.sym eq) (laterʳ x′≈y′)) laterˡW : ∀ {A : Set} {x} {y : A ⊥} → ♭ x ≈W y → later x ≈W y laterˡW {x = x} x≈y with ♭ x | P.inspect ♭ x laterˡW x≈y | x′ | [ eq ] with x≈y laterˡW x≈y | x′ | [ eq ] | now {v = v} x⇓v y⇓v = now (later (P.subst (λ x → x ⇓ v) (P.sym eq) x⇓v)) y⇓v laterˡW x≈y | later x′ | [ eq ] | later {y = y′} x′≈y′ = later (P.subst (λ x → x ≈P ♭ y′) (P.sym eq) (laterˡ x′≈y′)) whnf : {A : Set} {x y : A ⊥} → x ≈P y → x ≈W y whnf (now x⇓v y⇓v) = now x⇓v y⇓v whnf (later x≈y) = later (♭ x≈y) whnf (laterʳ x≈y) = laterʳW (whnf x≈y) whnf (laterˡ x≈y) = laterˡW (whnf x≈y) mutual ⟦_⟧W : {A : Set} {x y : A ⊥} → x ≈W y → x ≈ y ⟦ now x⇓v y⇓v ⟧W = now x⇓v y⇓v ⟦ later x≈y ⟧W = later (♯ ⟦ x≈y ⟧P) ⟦_⟧P : {A : Set} {x y : A ⊥} → x ≈P y → x ≈ y ⟦ x≈y ⟧P = ⟦ whnf x≈y ⟧W complete : {A : Set} {x y : A ⊥} → x ≋ y → x ≈ y complete x≋y = ⟦ completeP x≋y ⟧P where completeP : {A : Set} {x y : A ⊥} → x ≋ y → x ≈P y completeP WeakEquality.now = now now now completeP (WeakEquality.later x≈y) = later (♯ completeP (♭ x≈y)) completeP (WeakEquality.laterʳ x≈y) = laterʳ (completeP x≈y) completeP (WeakEquality.laterˡ x≈y) = laterˡ (completeP x≈y) ------------------------------------------------------------------------ -- The weak equality above coincides with weak bisimilarity module WeakBisimilarity {A : Set} where -- The function drop n drops n later constructors (if possible). drop : ℕ → A ⊥ → A ⊥ drop zero x = x drop _ (now v) = now v drop (suc n) (later x) = drop n (♭ x) -- Weak simulations and bisimulations. The removal of a later -- constructor is treated as a silent transition. record IsWeakSimulation (_R_ : A ⊥ → A ⊥ → Set) : Set where field match-later : ∀ {x y} → later x R y → ∃ λ n → ♭ x R drop n y match-now : ∀ {v y} → now v R y → ∃ λ n → now v ≡ drop n y record IsWeakBisimulation (_R_ : A ⊥ → A ⊥ → Set) : Set where field left : IsWeakSimulation _R_ right : IsWeakSimulation (flip _R_) -- Weak bisimilarity. record _≈_ (x y : A ⊥) : Set₁ where field _R_ : A ⊥ → A ⊥ → Set xRy : x R y bisim : IsWeakBisimulation _R_ open WeakEquality hiding (module _≈_) renaming (_≈_ to _≋_) -- Completeness. complete : ∀ {x y} → x ≋ y → x ≈ y complete x≋y = record { _R_ = _≋_ ; xRy = x≋y ; bisim = record { left = record { match-later = λ lx≋y → (0 , laterˡ⁻¹ lx≋y) ; match-now = match-now } ; right = record { match-later = λ x≋ly → (0 , laterʳ⁻¹ x≋ly) ; match-now = match-now ∘ sym } } } where match-now : ∀ {v y} → now v ≋ y → ∃ λ n → now v ≡ drop n y match-now now = (0 , P.refl) match-now (laterʳ v≋y) = Prod.map suc id (match-now v≋y) -- Soundness. module Sound {x y} (x≈y : x ≈ y) where open _≈_ x≈y open IsWeakBisimulation open IsWeakSimulation helper₁ : ∀ {x} y → (∃ λ n → now x ≡ drop n y) → now x ≋ y helper₁ (now y) (zero , P.refl) = now helper₁ (now y) (suc n , P.refl) = now helper₁ (later y) (zero , ()) helper₁ (later y) (suc n , nx≡y-n) = laterʳ (helper₁ (♭ y) (n , nx≡y-n)) mutual helper₂ : ∀ {x} y → (∃ λ n → x R drop n y) → x ≋ y helper₂ y (zero , xRy) = sound _ _ xRy helper₂ (now y) (suc n , xRny) = sound _ _ xRny helper₂ (later y) (suc n , xRy-n) = laterʳ (helper₂ (♭ y) (n , xRy-n)) helper₃ : ∀ x {y} → (∃ λ n → drop (suc n) x R y) → x ≋ y helper₃ (now x) (n , nxRy) = sound _ _ nxRy helper₃ (later x) (zero , xRy) = laterˡ (sound _ _ xRy) helper₃ (later x) (suc n , x-nRy) = laterˡ (helper₃ (♭ x) (n , x-nRy)) sound : ∀ x y → x R y → x ≋ y sound (now x) y nxRy = helper₁ y $ match-now (left bisim) nxRy sound (later x) (now y) lxRny = sym $ helper₁ (later x) $ match-now (right bisim) lxRny sound (later x) (later y) lxRly with match-later (left bisim) lxRly ... | (suc n , xRy-n) = later (♯ helper₂ (♭ y) (n , xRy-n)) ... | (zero , xRly) with match-later (right bisim) xRly ... | (zero , xRy) = later (♯ sound _ _ xRy) ... | (suc n , x-1+nRy) = later (♯ helper₃ (♭ x) (n , x-1+nRy)) sound : ∀ {x y} → x ≈ y → x ≋ y sound x≈y = Sound.sound x≈y _ _ (_≈_.xRy x≈y) -- Note that the problem illustrated in ExtendedWeakEquality is -- related to the problem of weak bisimulation up to weak -- bisimilarity. Let R be a relation which is only inhabited for the -- pair (later (♯ x), later (♯ y)). R is a weak bisimulation up to -- weak bisimilarity (_≈_): -- -- later (♯ x) R later (♯ y) -- ↓ = -- x ≈ later (♯ x) R later (♯ y) -- -- later (♯ x) R later (♯ y) -- = ↓ -- later (♯ x) R later (♯ y) ≈ y -- -- Weak bisimilarity is transitive, so if every relation which is a -- weak bisimulation up to weak bisimilarity were contained in weak -- bisimilarity we would have x ≈ y for all x and y.
{ "alphanum_fraction": 0.4868432404, "avg_line_length": 34.6, "ext": "agda", "hexsha": "350814524508fa3bb8525d4307be46263dbc1cbf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/codata", "max_forks_repo_path": "AdmissibleButNotPostulable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/codata", "max_issues_repo_path": "AdmissibleButNotPostulable.agda", "max_line_length": 86, "max_stars_count": 1, "max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/codata", "max_stars_repo_path": "AdmissibleButNotPostulable.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z", "num_tokens": 4855, "size": 11591 }
{-# OPTIONS --universe-polymorphism #-} open import Categories.Category open import Categories.Object.BinaryProducts module Categories.Object.Exponentiating {o ℓ e} (C : Category o ℓ e) (binary : BinaryProducts C) where open Category C open BinaryProducts binary import Categories.Object.Product open Categories.Object.Product C import Categories.Object.Product.Morphisms open Categories.Object.Product.Morphisms C open import Categories.Square open GlueSquares C import Categories.Object.Exponential open Categories.Object.Exponential C hiding (repack) renaming (λ-distrib to λ-distrib′) open import Level record Exponentiating Σ : Set (o ⊔ ℓ ⊔ e) where field exponential : ∀{A} → Exponential A Σ module Σ↑ (X : Obj) = Exponential (exponential {X}) infixr 6 Σ↑_ Σ²_ Σ↑_ : Obj → Obj Σ↑_ X = Σ↑.B^A X {- Γ ; x : A ⊢ f x : Σ ────────────────────────────────────── λ-abs A f Γ ⊢ (λ (x : A) → f x) : Σ↑ A -} λ-abs : ∀ {Γ} A → (Γ × A) ⇒ Σ → Γ ⇒ Σ↑ A λ-abs {Γ} A f = Σ↑.λg A product f {- ───────────────────────────── eval f : Σ↑ A ; x : A ⊢ (f x) : Σ -} eval : {A : Obj} → (Σ↑ A × A) ⇒ Σ eval {A} = Σ↑.eval A ∘ repack product (Σ↑.product A) {- x : A ⊢ f x : B ───────────────────────────────────────── [Σ↑_] k : Σ↑ B ⊢ (λ (x : A) → k (f x)) : Σ↑ A -} [Σ↑_] : ∀ {A B} → A ⇒ B → Σ↑ B ⇒ Σ↑ A [Σ↑_] {A}{B} f = λ-abs A (eval {B} ∘ second f) Σ²_ : Obj → Obj Σ²_ X = Σ↑ (Σ↑ X) [Σ²_] : ∀ {X Y} → X ⇒ Y → Σ² X ⇒ Σ² Y [Σ² f ] = [Σ↑ [Σ↑ f ] ] flip : ∀ {A B} → A ⇒ Σ↑ B → B ⇒ Σ↑ A flip {A}{B} f = λ-abs {B} A (eval {B} ∘ swap ∘ second f) -- not sure this is the best name... "partial-apply" might be better curry : ∀ {X Y} → (Σ↑ (X × Y) × X) ⇒ Σ↑ Y curry {X}{Y} = λ-abs Y (eval {X × Y} ∘ assocˡ) -- some lemmas from Exponential specialized to C's chosen products open Equiv open HomReasoning private .repack∘first : ∀ {A X}{f : X ⇒ Σ↑ A} → repack product (Σ↑.product A) ∘ first f ≡ [ product ⇒ Σ↑.product A ]first f repack∘first {A} = [ product ⇒ product ⇒ Σ↑.product A ]repack∘⁂ .β : ∀{A X} {g : (X × A) ⇒ Σ} → eval {A} ∘ first (λ-abs A g) ≡ g β {A}{X}{g} = begin (Σ↑.eval A ∘ repack product (Σ↑.product A)) ∘ first (Σ↑.λg A product g) ↓⟨ pullʳ repack∘first ⟩ Σ↑.eval A ∘ [ product ⇒ Σ↑.product A ]first (Σ↑.λg A product g) ↓⟨ Σ↑.β A product ⟩ g ∎ .λ-unique : ∀{A X} {g : (X × A) ⇒ Σ} {h : X ⇒ Σ↑ A} → (eval ∘ first h ≡ g) → (h ≡ λ-abs A g) λ-unique {A}{X}{g}{h} commutes = Σ↑.λ-unique A product commutes′ where commutes′ : Σ↑.eval A ∘ [ product ⇒ Σ↑.product A ]first h ≡ g commutes′ = begin Σ↑.eval A ∘ [ product ⇒ Σ↑.product A ]first h ↑⟨ pullʳ repack∘first ⟩ (Σ↑.eval A ∘ repack product (Σ↑.product A)) ∘ first h ↓⟨ commutes ⟩ g ∎ .λ-η : ∀ {A X}{f : X ⇒ Σ↑ A } → λ-abs A (eval ∘ first f) ≡ f λ-η {A}{X}{f} = sym (λ-unique refl) .λ-cong : ∀{A B : Obj}{f g : (B × A) ⇒ Σ} → (f ≡ g) → (λ-abs A f ≡ λ-abs A g) λ-cong {A} f≡g = Σ↑.λ-cong A product f≡g .subst : ∀ {A C D} {f : (D × A) ⇒ Σ} {g : C ⇒ D} → λ-abs {D} A f ∘ g ≡ λ-abs {C} A (f ∘ first g) subst {A} = Σ↑.subst A product product .λ-η-id : ∀ {A} → λ-abs A eval ≡ id λ-η-id {A} = begin Σ↑.λg A product (Σ↑.eval A ∘ repack product (Σ↑.product A)) ↓⟨ Σ↑.λ-cong A product (∘-resp-≡ʳ (repack≡id⁂id product (Σ↑.product A))) ⟩ Σ↑.λg A product (Σ↑.eval A ∘ [ product ⇒ Σ↑.product A ]first id) ↓⟨ Σ↑.η A product ⟩ id ∎ .λ-distrib : ∀ {A B C}{f : A ⇒ B}{g : (C × B) ⇒ Σ} → λ-abs A (g ∘ second f) ≡ [Σ↑ f ] ∘ λ-abs B g λ-distrib {A}{B}{C}{f}{g} = begin Σ↑.λg A product (g ∘ second f) ↓⟨ λ-distrib′ exponential exponential product product product ⟩ Σ↑.λg A product (Σ↑.eval B ∘ [ product ⇒ Σ↑.product B ]second f) ∘ Σ↑.λg B product g ↑⟨ λ-cong (pullʳ [ product ⇒ product ⇒ Σ↑.product B ]repack∘⁂) ⟩∘⟨ refl ⟩ Σ↑.λg A product ((Σ↑.eval B ∘ repack product (Σ↑.product B)) ∘ second f) ∘ Σ↑.λg B product g ∎ .flip² : ∀{A B}{f : A ⇒ Σ↑ B} → flip (flip f) ≡ f flip² {A}{B}{f} = begin λ-abs {A} B (eval {A} ∘ swap ∘ second (flip f)) ↓⟨ λ-cong lem₁ ⟩ λ-abs {A} B (eval {B} ∘ first f) ↓⟨ λ-η ⟩ f ∎ where lem₁ : eval {A} ∘ swap ∘ second (flip f) ≡ eval {B} ∘ first f lem₁ = begin eval {A} ∘ swap ∘ second (flip f) ↑⟨ assoc ⟩ (eval {A} ∘ swap) ∘ second (flip f) ↓⟨ glue β swap∘⁂ ⟩ eval {B} ∘ (swap ∘ second f) ∘ swap ↓⟨ refl ⟩∘⟨ swap∘⁂ ⟩∘⟨ refl ⟩ eval {B} ∘ (first f ∘ swap) ∘ swap ↓⟨ refl ⟩∘⟨ cancelRight swap∘swap ⟩ eval {B} ∘ first f ∎
{ "alphanum_fraction": 0.4617772604, "avg_line_length": 29.9651162791, "ext": "agda", "hexsha": "458dc3e7e5b3cd3ba38464b6822f757bcae93a1c", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Object/Exponentiating.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Object/Exponentiating.agda", "max_line_length": 82, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Object/Exponentiating.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2123, "size": 5154 }
{-# OPTIONS --safe #-} module Cubical.Data.FinData.Properties where open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Transport open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Equiv open import Cubical.Foundations.Powerset open import Cubical.Foundations.Isomorphism open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.FinData.Base as Fin open import Cubical.Data.Nat renaming (zero to ℕzero ; suc to ℕsuc ;znots to ℕznots ; snotz to ℕsnotz) open import Cubical.Data.Nat.Order open import Cubical.Data.Empty as Empty open import Cubical.Relation.Nullary private variable ℓ ℓ' : Level A : Type ℓ m n k : ℕ znots : ∀{k} {m : Fin k} → ¬ (zero ≡ (suc m)) znots {k} {m} x = subst (Fin.rec (Fin k) ⊥) x m snotz : ∀{k} {m : Fin k} → ¬ ((suc m) ≡ zero) snotz {k} {m} x = subst (Fin.rec ⊥ (Fin k)) x m isPropFin0 : isProp (Fin 0) isPropFin0 = Empty.rec ∘ ¬Fin0 isContrFin1 : isContr (Fin 1) isContrFin1 .fst = zero isContrFin1 .snd zero = refl injSucFin : ∀ {n} {p q : Fin n} → suc p ≡ suc q → p ≡ q injSucFin {ℕsuc ℕzero} {zero} {zero} pf = refl injSucFin {ℕsuc (ℕsuc n)} pf = cong predFin pf discreteFin : ∀{k} → Discrete (Fin k) discreteFin zero zero = yes refl discreteFin zero (suc y) = no znots discreteFin (suc x) zero = no snotz discreteFin (suc x) (suc y) with discreteFin x y ... | yes p = yes (cong suc p) ... | no ¬p = no (λ q → ¬p (injSucFin q)) isSetFin : ∀{k} → isSet (Fin k) isSetFin = Discrete→isSet discreteFin data biEq {n : ℕ} (i j : Fin n) : Type where eq : i ≡ j → biEq i j ¬eq : ¬ i ≡ j → biEq i j data triEq {n : ℕ} (i j a : Fin n) : Type where leq : a ≡ i → triEq i j a req : a ≡ j → triEq i j a ¬eq : (¬ a ≡ i) × (¬ a ≡ j) → triEq i j a biEq? : (i j : Fin n) → biEq i j biEq? i j = case (discreteFin i j) return (λ _ → biEq i j) of λ { (yes p) → eq p ; (no ¬p) → ¬eq ¬p } triEq? : (i j a : Fin n) → triEq i j a triEq? i j a = case (discreteFin a i) return (λ _ → triEq i j a) of λ { (yes p) → leq p ; (no ¬p) → case (discreteFin a j) return (λ _ → triEq i j a) of λ { (yes q) → req q ; (no ¬q) → ¬eq (¬p , ¬q) }} weakenRespToℕ : ∀ {n} (i : Fin n) → toℕ (weakenFin i) ≡ toℕ i weakenRespToℕ zero = refl weakenRespToℕ (suc i) = cong ℕsuc (weakenRespToℕ i) toℕ<n : ∀ {n} (i : Fin n) → toℕ i < n toℕ<n {n = ℕsuc n} zero = n , +-comm n 1 toℕ<n {n = ℕsuc n} (suc i) = toℕ<n i .fst , +-suc _ _ ∙ cong ℕsuc (toℕ<n i .snd) toFin : {n : ℕ} (m : ℕ) → m < n → Fin n toFin {n = ℕzero} _ m<0 = Empty.rec (¬-<-zero m<0) toFin {n = ℕsuc n} _ (ℕzero , _) = fromℕ n --in this case we have m≡n toFin {n = ℕsuc n} m (ℕsuc k , p) = weakenFin (toFin m (k , cong predℕ p)) toFin0≡0 : {n : ℕ} (p : 0 < ℕsuc n) → toFin 0 p ≡ zero toFin0≡0 (ℕzero , p) = subst (λ x → fromℕ x ≡ zero) (cong predℕ p) refl toFin0≡0 {ℕzero} (ℕsuc k , p) = Empty.rec (ℕsnotz (+-comm 1 k ∙ (cong predℕ p))) toFin0≡0 {ℕsuc n} (ℕsuc k , p) = subst (λ x → weakenFin x ≡ zero) (sym (toFin0≡0 (k , cong predℕ p))) refl -- doing induction on toFin is awkward, so the following alternative enum : (m : ℕ) → m < n → Fin n enum {n = ℕzero} _ m<0 = Empty.rec (¬-<-zero m<0) enum {n = ℕsuc n} 0 _ = zero enum {n = ℕsuc n} (ℕsuc m) p = suc (enum m (pred-≤-pred p)) enum∘toℕ : (i : Fin n)(p : toℕ i < n) → enum (toℕ i) p ≡ i enum∘toℕ {n = ℕsuc n} zero _ = refl enum∘toℕ {n = ℕsuc n} (suc i) p t = suc (enum∘toℕ i (pred-≤-pred p) t) toℕ∘enum : (m : ℕ)(p : m < n) → toℕ (enum m p) ≡ m toℕ∘enum {n = ℕzero} _ m<0 = Empty.rec (¬-<-zero m<0) toℕ∘enum {n = ℕsuc n} 0 _ = refl toℕ∘enum {n = ℕsuc n} (ℕsuc m) p i = ℕsuc (toℕ∘enum m (pred-≤-pred p) i) enumExt : {m m' : ℕ}(p : m < n)(p' : m' < n) → m ≡ m' → enum m p ≡ enum m' p' enumExt p p' q i = enum (q i) (isProp→PathP (λ i → m≤n-isProp {m = ℕsuc (q i)}) p p' i) enumInj : {p : m < k}{q : n < k} → enum m p ≡ enum n q → m ≡ n enumInj p = sym (toℕ∘enum _ _) ∙ cong toℕ p ∙ toℕ∘enum _ _ enumIndStep : (P : Fin n → Type ℓ) → (k : ℕ)(p : ℕsuc k < n) → ((m : ℕ)(q : m < n)(q' : m ≤ k ) → P (enum m q)) → P (enum (ℕsuc k) p) → ((m : ℕ)(q : m < n)(q' : m ≤ ℕsuc k) → P (enum m q)) enumIndStep P k p f x m q q' = case (≤-split q') return (λ _ → P (enum m q)) of λ { (inl r') → f m q (pred-≤-pred r') ; (inr r') → subst P (enumExt p q (sym r')) x } enumElim : (P : Fin n → Type ℓ) → (k : ℕ)(p : k < n)(h : ℕsuc k ≡ n) → ((m : ℕ)(q : m < n)(q' : m ≤ k) → P (enum m q)) → (i : Fin n) → P i enumElim P k p h f i = subst P (enum∘toℕ i (toℕ<n i)) (f (toℕ i) (toℕ<n i) (pred-≤-pred (subst (λ a → toℕ i < a) (sym h) (toℕ<n i)))) ++FinAssoc : {n m k : ℕ} (U : FinVec A n) (V : FinVec A m) (W : FinVec A k) → PathP (λ i → FinVec A (+-assoc n m k i)) (U ++Fin (V ++Fin W)) ((U ++Fin V) ++Fin W) ++FinAssoc {n = ℕzero} _ _ _ = refl ++FinAssoc {n = ℕsuc n} U V W i zero = U zero ++FinAssoc {n = ℕsuc n} U V W i (suc ind) = ++FinAssoc (U ∘ suc) V W i ind ++FinRid : {n : ℕ} (U : FinVec A n) (V : FinVec A 0) → PathP (λ i → FinVec A (+-zero n i)) (U ++Fin V) U ++FinRid {n = ℕzero} U V = funExt λ i → Empty.rec (¬Fin0 i) ++FinRid {n = ℕsuc n} U V i zero = U zero ++FinRid {n = ℕsuc n} U V i (suc ind) = ++FinRid (U ∘ suc) V i ind ++FinElim : {P : A → Type ℓ'} {n m : ℕ} (U : FinVec A n) (V : FinVec A m) → (∀ i → P (U i)) → (∀ i → P (V i)) → ∀ i → P ((U ++Fin V) i) ++FinElim {n = ℕzero} _ _ _ PVHyp i = PVHyp i ++FinElim {n = ℕsuc n} _ _ PUHyp _ zero = PUHyp zero ++FinElim {P = P} {n = ℕsuc n} U V PUHyp PVHyp (suc i) = ++FinElim {P = P} (U ∘ suc) V (λ i → PUHyp (suc i)) PVHyp i ++FinPres∈ : {n m : ℕ} {α : FinVec A n} {β : FinVec A m} (S : ℙ A) → (∀ i → α i ∈ S) → (∀ i → β i ∈ S) → ∀ i → (α ++Fin β) i ∈ S ++FinPres∈ {n = ℕzero} S hα hβ i = hβ i ++FinPres∈ {n = ℕsuc n} S hα hβ zero = hα zero ++FinPres∈ {n = ℕsuc n} S hα hβ (suc i) = ++FinPres∈ S (hα ∘ suc) hβ i -- sends i to n+i if toℕ i < m and to i∸n otherwise -- then +Shuffle²≡id and over the induced path (i.e. in PathP (ua +ShuffleEquiv)) -- ++Fin is commutative, but how to go from there? +Shuffle : (m n : ℕ) → Fin (m + n) → Fin (n + m) +Shuffle m n i with <Dec (toℕ i) m ... | yes i<m = toFin (n + (toℕ i)) (<-k+ i<m) ... | no ¬i<m = toFin (toℕ i ∸ m) (subst (λ x → toℕ i ∸ m < x) (+-comm m n) (≤<-trans (∸-≤ (toℕ i) m) (toℕ<n i))) -- Proof that Fin n ⊎ Fin m ≃ Fin (n+m) module FinSumChar where fun : (n m : ℕ) → Fin n ⊎ Fin m → Fin (n + m) fun ℕzero m (inr i) = i fun (ℕsuc n) m (inl zero) = zero fun (ℕsuc n) m (inl (suc i)) = suc (fun n m (inl i)) fun (ℕsuc n) m (inr i) = suc (fun n m (inr i)) invSucAux : (n m : ℕ) → Fin n ⊎ Fin m → Fin (ℕsuc n) ⊎ Fin m invSucAux n m (inl i) = inl (suc i) invSucAux n m (inr i) = inr i inv : (n m : ℕ) → Fin (n + m) → Fin n ⊎ Fin m inv ℕzero m i = inr i inv (ℕsuc n) m zero = inl zero inv (ℕsuc n) m (suc i) = invSucAux n m (inv n m i) ret : (n m : ℕ) (i : Fin n ⊎ Fin m) → inv n m (fun n m i) ≡ i ret ℕzero m (inr i) = refl ret (ℕsuc n) m (inl zero) = refl ret (ℕsuc n) m (inl (suc i)) = subst (λ x → invSucAux n m x ≡ inl (suc i)) (sym (ret n m (inl i))) refl ret (ℕsuc n) m (inr i) = subst (λ x → invSucAux n m x ≡ inr i) (sym (ret n m (inr i))) refl sec : (n m : ℕ) (i : Fin (n + m)) → fun n m (inv n m i) ≡ i sec ℕzero m i = refl sec (ℕsuc n) m zero = refl sec (ℕsuc n) m (suc i) = helperPath (inv n m i) ∙ cong suc (sec n m i) where helperPath : ∀ x → fun (ℕsuc n) m (invSucAux n m x) ≡ suc (fun n m x) helperPath (inl _) = refl helperPath (inr _) = refl Equiv : (n m : ℕ) → Fin n ⊎ Fin m ≃ Fin (n + m) Equiv n m = isoToEquiv (iso (fun n m) (inv n m) (sec n m) (ret n m)) ++FinInl : (n m : ℕ) (U : FinVec A n) (W : FinVec A m) (i : Fin n) → U i ≡ (U ++Fin W) (fun n m (inl i)) ++FinInl (ℕsuc n) m U W zero = refl ++FinInl (ℕsuc n) m U W (suc i) = ++FinInl n m (U ∘ suc) W i ++FinInr : (n m : ℕ) (U : FinVec A n) (W : FinVec A m) (i : Fin m) → W i ≡ (U ++Fin W) (fun n m (inr i)) ++FinInr ℕzero (ℕsuc m) U W i = refl ++FinInr (ℕsuc n) m U W i = ++FinInr n m (U ∘ suc) W i -- Proof that Fin n × Fin m ≃ Fin nm module FinProdChar where open Iso sucProdToSumIso : (n m : ℕ) → Iso (Fin (ℕsuc n) × Fin m) (Fin m ⊎ (Fin n × Fin m)) fun (sucProdToSumIso n m) (zero , j) = inl j fun (sucProdToSumIso n m) (suc i , j) = inr (i , j) inv (sucProdToSumIso n m) (inl j) = zero , j inv (sucProdToSumIso n m) (inr (i , j)) = suc i , j rightInv (sucProdToSumIso n m) (inl j) = refl rightInv (sucProdToSumIso n m) (inr (i , j)) = refl leftInv (sucProdToSumIso n m) (zero , j) = refl leftInv (sucProdToSumIso n m) (suc i , j) = refl Equiv : (n m : ℕ) → (Fin n × Fin m) ≃ Fin (n · m) Equiv ℕzero m = uninhabEquiv (λ x → ¬Fin0 (fst x)) ¬Fin0 Equiv (ℕsuc n) m = Fin (ℕsuc n) × Fin m ≃⟨ isoToEquiv (sucProdToSumIso n m) ⟩ Fin m ⊎ (Fin n × Fin m) ≃⟨ isoToEquiv (⊎Iso idIso (equivToIso (Equiv n m))) ⟩ Fin m ⊎ Fin (n · m) ≃⟨ FinSumChar.Equiv m (n · m) ⟩ Fin (m + n · m) ■ -- Exhaustion of decidable predicate ∀Dec : (P : Fin m → Type ℓ) → (dec : (i : Fin m) → Dec (P i)) → ((i : Fin m) → P i) ⊎ (Σ[ i ∈ Fin m ] ¬ P i) ∀Dec {m = 0} _ _ = inl λ () ∀Dec {m = ℕsuc m} P dec = helper (dec zero) (∀Dec _ (dec ∘ suc)) where helper : Dec (P zero) → ((i : Fin m) → P (suc i)) ⊎ (Σ[ i ∈ Fin m ] ¬ P (suc i)) → ((i : Fin (ℕsuc m)) → P i) ⊎ (Σ[ i ∈ Fin (ℕsuc m) ] ¬ P i) helper (yes p) (inl q) = inl λ { zero → p ; (suc i) → q i } helper (yes _) (inr q) = inr (suc (q .fst) , q .snd) helper (no ¬p) _ = inr (zero , ¬p) ∀Dec2 : (P : Fin m → Fin n → Type ℓ) → (dec : (i : Fin m)(j : Fin n) → Dec (P i j)) → ((i : Fin m)(j : Fin n) → P i j) ⊎ (Σ[ i ∈ Fin m ] Σ[ j ∈ Fin n ] ¬ P i j) ∀Dec2 {m = 0} {n = n} _ _ = inl λ () ∀Dec2 {m = ℕsuc m} {n = n} P dec = helper (∀Dec (P zero) (dec zero)) (∀Dec2 (P ∘ suc) (dec ∘ suc)) where helper : ((j : Fin n) → P zero j) ⊎ (Σ[ j ∈ Fin n ] ¬ P zero j) → ((i : Fin m)(j : Fin n) → P (suc i) j) ⊎ (Σ[ i ∈ Fin m ] Σ[ j ∈ Fin n ] ¬ P (suc i) j) → ((i : Fin (ℕsuc m))(j : Fin n) → P i j) ⊎ (Σ[ i ∈ Fin (ℕsuc m) ] Σ[ j ∈ Fin n ] ¬ P i j) helper (inl p) (inl q) = inl λ { zero j → p j ; (suc i) j → q i j } helper (inl _) (inr q) = inr (suc (q .fst) , q .snd .fst , q .snd .snd) helper (inr p) _ = inr (zero , p)
{ "alphanum_fraction": 0.5253469272, "avg_line_length": 38.2418772563, "ext": "agda", "hexsha": "aaf4594777027507dd5028940bf7e9d14a489932", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Data/FinData/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Data/FinData/Properties.agda", "max_line_length": 98, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Data/FinData/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4820, "size": 10593 }
-- Currently imports are not allowed in mutual blocks. -- This might change. module ImportInMutual where mutual import Fake.Module T : Set -> Set T A = A
{ "alphanum_fraction": 0.7055214724, "avg_line_length": 14.8181818182, "ext": "agda", "hexsha": "d37b5d4bcb4e82df1a45fc43c2bc9d2a732c494b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/ImportInMutual.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/ImportInMutual.agda", "max_line_length": 54, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/ImportInMutual.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 44, "size": 163 }
{- A parameterized family of structures S can be combined into a single structure: X ↦ (a : A) → S a X This is more general than Structures.Function in that S can vary in A. -} {-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Structures.Parameterized where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Functions.FunExtEquiv open import Cubical.Foundations.SIP open import Cubical.Foundations.Univalence private variable ℓ ℓ₁ ℓ₁' : Level module _ {ℓ₀} (A : Type ℓ₀) where ParamStructure : (S : A → Type ℓ → Type ℓ₁) → Type ℓ → Type (ℓ-max ℓ₀ ℓ₁) ParamStructure S X = (a : A) → S a X ParamEquivStr : {S : A → Type ℓ → Type ℓ₁} → (∀ a → StrEquiv (S a) ℓ₁') → StrEquiv (ParamStructure S) (ℓ-max ℓ₀ ℓ₁') ParamEquivStr ι (X , l) (Y , m) e = ∀ a → ι a (X , l a) (Y , m a) e paramUnivalentStr : {S : A → Type ℓ → Type ℓ₁} (ι : ∀ a → StrEquiv (S a) ℓ₁') (θ : ∀ a → UnivalentStr (S a) (ι a)) → UnivalentStr (ParamStructure S) (ParamEquivStr ι) paramUnivalentStr ι θ e = compEquiv (equivΠCod λ a → θ a e) funExtEquiv paramEquivAction : {S : A → Type ℓ → Type ℓ₁} → (∀ a → EquivAction (S a)) → EquivAction (ParamStructure S) paramEquivAction α e = equivΠCod (λ a → α a e) paramTransportStr : {S : A → Type ℓ → Type ℓ₁} (α : ∀ a → EquivAction (S a)) (τ : ∀ a → TransportStr (α a)) → TransportStr (paramEquivAction α) paramTransportStr {S = S} α τ e f = funExt λ a → τ a e (f a) ∙ cong (λ fib → transport (λ i → S (fib .snd (~ i)) (ua e i)) (f (fib .snd i1))) (isContrSingl a .snd (_ , sym (transportRefl a)))
{ "alphanum_fraction": 0.6318981201, "avg_line_length": 33.6530612245, "ext": "agda", "hexsha": "e05be247ff6f0deb5cf6a4ec0c3314eee979217b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Structures/Parameterized.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Structures/Parameterized.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Structures/Parameterized.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 610, "size": 1649 }
module Haskell.Prim.Bool where open import Agda.Primitive open import Agda.Builtin.Bool public private variable ℓ : Level -------------------------------------------------- -- Booleans infixr 3 _&&_ _&&_ : Bool → Bool → Bool false && _ = false true && x = x infixr 2 _||_ _||_ : Bool → Bool → Bool false || x = x true || _ = true not : Bool → Bool not false = true not true = false otherwise : Bool otherwise = true
{ "alphanum_fraction": 0.5750577367, "avg_line_length": 14.4333333333, "ext": "agda", "hexsha": "46b86ad7f90ce6fd77f6c59901ad8b23c887f952", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "lib/Haskell/Prim/Bool.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "lib/Haskell/Prim/Bool.agda", "max_line_length": 50, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "lib/Haskell/Prim/Bool.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 128, "size": 433 }
------------------------------------------------------------------------------ -- Testing the η-expansion ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module Eta5 where postulate D : Set _≈_ : D → D → Set data ∃ (A : D → Set) : Set where _,_ : (t : D) → A t → ∃ A P : D → Set P ws = ∃ (λ zs → ws ≈ zs) {-# ATP definition P #-} postulate foo : ∀ ws → P ws → ∃ (λ zs → ws ≈ zs) {-# ATP prove foo #-}
{ "alphanum_fraction": 0.3608414239, "avg_line_length": 24.72, "ext": "agda", "hexsha": "bb6b7226823b11fd27a3ff07087f12453944591d", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Succeed/fol-theorems/Eta5.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Succeed/fol-theorems/Eta5.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Succeed/fol-theorems/Eta5.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 153, "size": 618 }
module Text.Greek.SBLGNT.Mark where open import Data.List open import Text.Greek.Bible open import Text.Greek.Script open import Text.Greek.Script.Unicode ΚΑΤΑ-ΜΑΡΚΟΝ : List (Word) ΚΑΤΑ-ΜΑΡΚΟΝ = word (Ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Mark.1.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.1" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.1.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.1.1" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.1" ∷ word (Κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.1.2" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.2" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.2" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.2" ∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ ᾳ ∷ []) "Mark.1.2" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.2" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ῃ ∷ []) "Mark.1.2" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.1.2" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "Mark.1.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.2" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.1.2" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.2" ∷ word (π ∷ ρ ∷ ὸ ∷ []) "Mark.1.2" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.1.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.1.2" ∷ word (ὃ ∷ ς ∷ []) "Mark.1.2" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.1.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.2" ∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.1.2" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.1.2" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Mark.1.3" ∷ word (β ∷ ο ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.1.3" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.3" ∷ word (τ ∷ ῇ ∷ []) "Mark.1.3" ∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Mark.1.3" ∷ word (Ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.1.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.3" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.1.3" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.1.3" ∷ word (ε ∷ ὐ ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.3" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.1.3" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.3" ∷ word (τ ∷ ρ ∷ ί ∷ β ∷ ο ∷ υ ∷ ς ∷ []) "Mark.1.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.3" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.4" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.1.4" ∷ word (ὁ ∷ []) "Mark.1.4" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.1.4" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.4" ∷ word (τ ∷ ῇ ∷ []) "Mark.1.4" ∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Mark.1.4" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Mark.1.4" ∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.1.4" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.4" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.4" ∷ word (ἄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.4" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.1.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.5" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.5" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.5" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Mark.1.5" ∷ word (ἡ ∷ []) "Mark.1.5" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ []) "Mark.1.5" ∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ []) "Mark.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.5" ∷ word (ο ∷ ἱ ∷ []) "Mark.1.5" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ υ ∷ μ ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.5" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.5" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.1.5" ∷ word (ὑ ∷ π ∷ []) "Mark.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.5" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.5" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.5" ∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ῃ ∷ []) "Mark.1.5" ∷ word (π ∷ ο ∷ τ ∷ α ∷ μ ∷ ῷ ∷ []) "Mark.1.5" ∷ word (ἐ ∷ ξ ∷ ο ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.1.5" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.5" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.6" ∷ word (ὁ ∷ []) "Mark.1.6" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.1.6" ∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ δ ∷ υ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.6" ∷ word (τ ∷ ρ ∷ ί ∷ χ ∷ α ∷ ς ∷ []) "Mark.1.6" ∷ word (κ ∷ α ∷ μ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6" ∷ word (ζ ∷ ώ ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.6" ∷ word (δ ∷ ε ∷ ρ ∷ μ ∷ α ∷ τ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.6" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.1.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.6" ∷ word (ὀ ∷ σ ∷ φ ∷ ὺ ∷ ν ∷ []) "Mark.1.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6" ∷ word (ἔ ∷ σ ∷ θ ∷ ω ∷ ν ∷ []) "Mark.1.6" ∷ word (ἀ ∷ κ ∷ ρ ∷ ί ∷ δ ∷ α ∷ ς ∷ []) "Mark.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.6" ∷ word (μ ∷ έ ∷ ∙λ ∷ ι ∷ []) "Mark.1.6" ∷ word (ἄ ∷ γ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.1.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.7" ∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ σ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.7" ∷ word (Ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.7" ∷ word (ὁ ∷ []) "Mark.1.7" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.1.7" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.7" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.1.7" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.7" ∷ word (ο ∷ ὗ ∷ []) "Mark.1.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.1.7" ∷ word (ε ∷ ἰ ∷ μ ∷ ὶ ∷ []) "Mark.1.7" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Mark.1.7" ∷ word (κ ∷ ύ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.1.7" ∷ word (∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.1.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.7" ∷ word (ἱ ∷ μ ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.1.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.7" ∷ word (ὑ ∷ π ∷ ο ∷ δ ∷ η ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.1.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.7" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.1.8" ∷ word (ἐ ∷ β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ α ∷ []) "Mark.1.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.8" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ι ∷ []) "Mark.1.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.1.8" ∷ word (δ ∷ ὲ ∷ []) "Mark.1.8" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Mark.1.8" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.8" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.8" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.1.8" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Mark.1.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.9" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.9" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.9" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.1.9" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.1.9" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.1.9" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.9" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.9" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.1.9" ∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ ὲ ∷ τ ∷ []) "Mark.1.9" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.9" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.9" ∷ word (ἐ ∷ β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.1.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.9" ∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.9" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.1.9" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.1.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.10" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.10" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Mark.1.10" ∷ word (ἐ ∷ κ ∷ []) "Mark.1.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.10" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.1.10" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.1.10" ∷ word (σ ∷ χ ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.1.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.10" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.10" ∷ word (τ ∷ ὸ ∷ []) "Mark.1.10" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.1.10" ∷ word (ὡ ∷ ς ∷ []) "Mark.1.10" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ὰ ∷ ν ∷ []) "Mark.1.10" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.1.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.10" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.1.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.11" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Mark.1.11" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.11" ∷ word (ἐ ∷ κ ∷ []) "Mark.1.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.11" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.1.11" ∷ word (Σ ∷ ὺ ∷ []) "Mark.1.11" ∷ word (ε ∷ ἶ ∷ []) "Mark.1.11" ∷ word (ὁ ∷ []) "Mark.1.11" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.1.11" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.11" ∷ word (ὁ ∷ []) "Mark.1.11" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Mark.1.11" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.11" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.1.11" ∷ word (ε ∷ ὐ ∷ δ ∷ ό ∷ κ ∷ η ∷ σ ∷ α ∷ []) "Mark.1.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.12" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.12" ∷ word (τ ∷ ὸ ∷ []) "Mark.1.12" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.1.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.12" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.1.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.12" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.1.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.13" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.13" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.13" ∷ word (τ ∷ ῇ ∷ []) "Mark.1.13" ∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ῳ ∷ []) "Mark.1.13" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ε ∷ ρ ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.1.13" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.1.13" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.13" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.1.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.13" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Mark.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.13" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.13" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.13" ∷ word (θ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.1.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.13" ∷ word (ο ∷ ἱ ∷ []) "Mark.1.13" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.1.13" ∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "Mark.1.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.14" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.1.14" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.1.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.14" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.14" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.14" ∷ word (ὁ ∷ []) "Mark.1.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.14" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.14" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Mark.1.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.1.14" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.1.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.1.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.15" ∷ word (Π ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.15" ∷ word (ὁ ∷ []) "Mark.1.15" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.15" ∷ word (ἤ ∷ γ ∷ γ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Mark.1.15" ∷ word (ἡ ∷ []) "Mark.1.15" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.1.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.1.15" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.1.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.15" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.1.15" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.15" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.15" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ῳ ∷ []) "Mark.1.15" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.16" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.16" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.1.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.16" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.16" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.16" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.1.16" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ α ∷ []) "Mark.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.16" ∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ α ∷ ν ∷ []) "Mark.1.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.16" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.1.16" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.16" ∷ word (ἀ ∷ μ ∷ φ ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.16" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.16" ∷ word (τ ∷ ῇ ∷ []) "Mark.1.16" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.1.16" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.16" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.1.16" ∷ word (ἁ ∷ ∙λ ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.1.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.17" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.1.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.17" ∷ word (ὁ ∷ []) "Mark.1.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.17" ∷ word (Δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Mark.1.17" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.1.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.17" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.1.17" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.17" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.1.17" ∷ word (ἁ ∷ ∙λ ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.1.17" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.1.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.18" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.18" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.18" ∷ word (τ ∷ ὰ ∷ []) "Mark.1.18" ∷ word (δ ∷ ί ∷ κ ∷ τ ∷ υ ∷ α ∷ []) "Mark.1.18" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.19" ∷ word (π ∷ ρ ∷ ο ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.1.19" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Mark.1.19" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.1.19" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.1.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.19" ∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.19" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.1.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.19" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.1.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.19" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.19" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.19" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.1.19" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ρ ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.19" ∷ word (τ ∷ ὰ ∷ []) "Mark.1.19" ∷ word (δ ∷ ί ∷ κ ∷ τ ∷ υ ∷ α ∷ []) "Mark.1.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.20" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.20" ∷ word (ἐ ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.1.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.20" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.20" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.20" ∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.1.20" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.20" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.20" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.1.20" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.1.20" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ω ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.20" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.1.20" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.1.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.21" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.21" ∷ word (Κ ∷ α ∷ φ ∷ α ∷ ρ ∷ ν ∷ α ∷ ο ∷ ύ ∷ μ ∷ []) "Mark.1.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.21" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.21" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.21" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.1.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.21" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ή ∷ ν ∷ []) "Mark.1.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.22" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.1.22" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.1.22" ∷ word (τ ∷ ῇ ∷ []) "Mark.1.22" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.1.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.22" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.1.22" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.1.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.22" ∷ word (ὡ ∷ ς ∷ []) "Mark.1.22" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.22" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Mark.1.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.22" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.1.22" ∷ word (ὡ ∷ ς ∷ []) "Mark.1.22" ∷ word (ο ∷ ἱ ∷ []) "Mark.1.22" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.1.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.23" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.23" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.23" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.23" ∷ word (τ ∷ ῇ ∷ []) "Mark.1.23" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῇ ∷ []) "Mark.1.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.23" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.1.23" ∷ word (ἐ ∷ ν ∷ []) "Mark.1.23" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.1.23" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.1.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.23" ∷ word (ἀ ∷ ν ∷ έ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.1.23" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.24" ∷ word (Τ ∷ ί ∷ []) "Mark.1.24" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.1.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.24" ∷ word (σ ∷ ο ∷ ί ∷ []) "Mark.1.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.1.24" ∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ έ ∷ []) "Mark.1.24" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ς ∷ []) "Mark.1.24" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Mark.1.24" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.1.24" ∷ word (ο ∷ ἶ ∷ δ ∷ ά ∷ []) "Mark.1.24" ∷ word (σ ∷ ε ∷ []) "Mark.1.24" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.1.24" ∷ word (ε ∷ ἶ ∷ []) "Mark.1.24" ∷ word (ὁ ∷ []) "Mark.1.24" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.1.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.24" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.1.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.25" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.25" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.25" ∷ word (ὁ ∷ []) "Mark.1.25" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.1.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.25" ∷ word (Φ ∷ ι ∷ μ ∷ ώ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.1.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.25" ∷ word (ἔ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ []) "Mark.1.25" ∷ word (ἐ ∷ ξ ∷ []) "Mark.1.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.26" ∷ word (σ ∷ π ∷ α ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ν ∷ []) "Mark.1.26" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.26" ∷ word (τ ∷ ὸ ∷ []) "Mark.1.26" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.1.26" ∷ word (τ ∷ ὸ ∷ []) "Mark.1.26" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.1.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.26" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.26" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Mark.1.26" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.1.26" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.26" ∷ word (ἐ ∷ ξ ∷ []) "Mark.1.26" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.27" ∷ word (ἐ ∷ θ ∷ α ∷ μ ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.27" ∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.27" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.1.27" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.1.27" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.27" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.27" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.27" ∷ word (Τ ∷ ί ∷ []) "Mark.1.27" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.1.27" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.1.27" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ὴ ∷ []) "Mark.1.27" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ή ∷ []) "Mark.1.27" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.1.27" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.27" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.27" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ σ ∷ ι ∷ []) "Mark.1.27" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.27" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.27" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ά ∷ σ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.1.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.27" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.28" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.28" ∷ word (ἡ ∷ []) "Mark.1.28" ∷ word (ἀ ∷ κ ∷ ο ∷ ὴ ∷ []) "Mark.1.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.28" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.28" ∷ word (π ∷ α ∷ ν ∷ τ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "Mark.1.28" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.28" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.1.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.28" ∷ word (π ∷ ε ∷ ρ ∷ ί ∷ χ ∷ ω ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.1.28" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.28" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.28" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.29" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.29" ∷ word (ἐ ∷ κ ∷ []) "Mark.1.29" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.29" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῆ ∷ ς ∷ []) "Mark.1.29" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.29" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.1.29" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.29" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.29" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.29" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.29" ∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ ο ∷ υ ∷ []) "Mark.1.29" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.1.29" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.1.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.29" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.1.29" ∷ word (ἡ ∷ []) "Mark.1.30" ∷ word (δ ∷ ὲ ∷ []) "Mark.1.30" ∷ word (π ∷ ε ∷ ν ∷ θ ∷ ε ∷ ρ ∷ ὰ ∷ []) "Mark.1.30" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.30" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ε ∷ ι ∷ τ ∷ ο ∷ []) "Mark.1.30" ∷ word (π ∷ υ ∷ ρ ∷ έ ∷ σ ∷ σ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.1.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.30" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.30" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.30" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.30" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.1.30" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.1.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.31" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.1.31" ∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.1.31" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.1.31" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.1.31" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.1.31" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.1.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.31" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.1.31" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.1.31" ∷ word (ὁ ∷ []) "Mark.1.31" ∷ word (π ∷ υ ∷ ρ ∷ ε ∷ τ ∷ ό ∷ ς ∷ []) "Mark.1.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.31" ∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ε ∷ ι ∷ []) "Mark.1.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.31" ∷ word (Ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.1.32" ∷ word (δ ∷ ὲ ∷ []) "Mark.1.32" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.1.32" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.1.32" ∷ word (ἔ ∷ δ ∷ υ ∷ []) "Mark.1.32" ∷ word (ὁ ∷ []) "Mark.1.32" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.1.32" ∷ word (ἔ ∷ φ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.1.32" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.32" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.32" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.32" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.32" ∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.1.32" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.32" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.32" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.1.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.33" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.33" ∷ word (ὅ ∷ ∙λ ∷ η ∷ []) "Mark.1.33" ∷ word (ἡ ∷ []) "Mark.1.33" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ς ∷ []) "Mark.1.33" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ η ∷ γ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.1.33" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.33" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.33" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.1.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.34" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.1.34" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.1.34" ∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.1.34" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.1.34" ∷ word (π ∷ ο ∷ ι ∷ κ ∷ ί ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "Mark.1.34" ∷ word (ν ∷ ό ∷ σ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.34" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.1.34" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.34" ∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.1.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.34" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.1.34" ∷ word (ἤ ∷ φ ∷ ι ∷ ε ∷ ν ∷ []) "Mark.1.34" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.1.34" ∷ word (τ ∷ ὰ ∷ []) "Mark.1.34" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.1.34" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.34" ∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.1.34" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.1.34" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.35" ∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.1.35" ∷ word (ἔ ∷ ν ∷ ν ∷ υ ∷ χ ∷ α ∷ []) "Mark.1.35" ∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.35" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.1.35" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.35" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.35" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.35" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.1.35" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.1.35" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.1.35" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ η ∷ ύ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.1.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.36" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ δ ∷ ί ∷ ω ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.1.36" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.36" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.1.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.36" ∷ word (ο ∷ ἱ ∷ []) "Mark.1.36" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.1.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.37" ∷ word (ε ∷ ὗ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.1.37" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.1.37" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.37" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.37" ∷ word (Π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.1.37" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.1.37" ∷ word (σ ∷ ε ∷ []) "Mark.1.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.38" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.1.38" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.38" ∷ word (Ἄ ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.1.38" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "Mark.1.38" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.38" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.38" ∷ word (ἐ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ α ∷ ς ∷ []) "Mark.1.38" ∷ word (κ ∷ ω ∷ μ ∷ ο ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.1.38" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.1.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.38" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.1.38" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ ω ∷ []) "Mark.1.38" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.38" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.1.38" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.1.38" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.1.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.39" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.39" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ω ∷ ν ∷ []) "Mark.1.39" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.39" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.1.39" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὰ ∷ ς ∷ []) "Mark.1.39" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.39" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.39" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.1.39" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.39" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.1.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.39" ∷ word (τ ∷ ὰ ∷ []) "Mark.1.39" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.1.39" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.1.39" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.1.40" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.1.40" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.40" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.40" ∷ word (∙λ ∷ ε ∷ π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.40" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.1.40" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.40" ∷ word (γ ∷ ο ∷ ν ∷ υ ∷ π ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.1.40" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.1.40" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.40" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.1.40" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.1.40" ∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ ς ∷ []) "Mark.1.40" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ α ∷ ί ∷ []) "Mark.1.40" ∷ word (μ ∷ ε ∷ []) "Mark.1.40" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Mark.1.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.41" ∷ word (ὀ ∷ ρ ∷ γ ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.1.41" ∷ word (ἐ ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Mark.1.41" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.1.41" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.1.41" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.41" ∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.1.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.41" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.1.41" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.41" ∷ word (Θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Mark.1.41" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.1.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.42" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.42" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.42" ∷ word (ἀ ∷ π ∷ []) "Mark.1.42" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.1.42" ∷ word (ἡ ∷ []) "Mark.1.42" ∷ word (∙λ ∷ έ ∷ π ∷ ρ ∷ α ∷ []) "Mark.1.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.42" ∷ word (ἐ ∷ κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.1.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.43" ∷ word (ἐ ∷ μ ∷ β ∷ ρ ∷ ι ∷ μ ∷ η ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.1.43" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.43" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.1.43" ∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.1.43" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.1.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.44" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.1.44" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.1.44" ∷ word (Ὅ ∷ ρ ∷ α ∷ []) "Mark.1.44" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.1.44" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.1.44" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ ς ∷ []) "Mark.1.44" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.44" ∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.1.44" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.44" ∷ word (δ ∷ ε ∷ ῖ ∷ ξ ∷ ο ∷ ν ∷ []) "Mark.1.44" ∷ word (τ ∷ ῷ ∷ []) "Mark.1.44" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.1.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.44" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ []) "Mark.1.44" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.1.44" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.1.44" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.1.44" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.1.44" ∷ word (ἃ ∷ []) "Mark.1.44" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.1.44" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.1.44" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.44" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.1.44" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.1.44" ∷ word (ὁ ∷ []) "Mark.1.45" ∷ word (δ ∷ ὲ ∷ []) "Mark.1.45" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.1.45" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.1.45" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.1.45" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.45" ∷ word (δ ∷ ι ∷ α ∷ φ ∷ η ∷ μ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.1.45" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.1.45" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.1.45" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.1.45" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.1.45" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.45" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.1.45" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ῶ ∷ ς ∷ []) "Mark.1.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.1.45" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.1.45" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.1.45" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.1.45" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.1.45" ∷ word (ἐ ∷ π ∷ []) "Mark.1.45" ∷ word (ἐ ∷ ρ ∷ ή ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.45" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Mark.1.45" ∷ word (ἦ ∷ ν ∷ []) "Mark.1.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.1.45" ∷ word (ἤ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.1.45" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.1.45" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.1.45" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ θ ∷ ε ∷ ν ∷ []) "Mark.1.45" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.1" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.2.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.2.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.1" ∷ word (Κ ∷ α ∷ φ ∷ α ∷ ρ ∷ ν ∷ α ∷ ο ∷ ὺ ∷ μ ∷ []) "Mark.2.1" ∷ word (δ ∷ ι ∷ []) "Mark.2.1" ∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.2.1" ∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ θ ∷ η ∷ []) "Mark.2.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.1" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.1" ∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "Mark.2.1" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.2.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.2" ∷ word (σ ∷ υ ∷ ν ∷ ή ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.2" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.2" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.2.2" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.2.2" ∷ word (χ ∷ ω ∷ ρ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.2" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.2.2" ∷ word (τ ∷ ὰ ∷ []) "Mark.2.2" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.2.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.2" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.2" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.2.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.2" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.2.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.3" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.3" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.3" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.2.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.2.3" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ν ∷ []) "Mark.2.3" ∷ word (α ∷ ἰ ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.3" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.2.3" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.2.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.4" ∷ word (μ ∷ ὴ ∷ []) "Mark.2.4" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.2.4" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ι ∷ []) "Mark.2.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.4" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.4" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.2.4" ∷ word (ἀ ∷ π ∷ ε ∷ σ ∷ τ ∷ έ ∷ γ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.4" ∷ word (σ ∷ τ ∷ έ ∷ γ ∷ η ∷ ν ∷ []) "Mark.2.4" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.4" ∷ word (ἦ ∷ ν ∷ []) "Mark.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.4" ∷ word (ἐ ∷ ξ ∷ ο ∷ ρ ∷ ύ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.4" ∷ word (χ ∷ α ∷ ∙λ ∷ ῶ ∷ σ ∷ ι ∷ []) "Mark.2.4" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.4" ∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.4" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.4" ∷ word (ὁ ∷ []) "Mark.2.4" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Mark.2.4" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ε ∷ ι ∷ τ ∷ ο ∷ []) "Mark.2.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.5" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.2.5" ∷ word (ὁ ∷ []) "Mark.2.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.5" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.5" ∷ word (τ ∷ ῷ ∷ []) "Mark.2.5" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ῷ ∷ []) "Mark.2.5" ∷ word (Τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.5" ∷ word (ἀ ∷ φ ∷ ί ∷ ε ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Mark.2.5" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.5" ∷ word (α ∷ ἱ ∷ []) "Mark.2.5" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Mark.2.5" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.6" ∷ word (δ ∷ έ ∷ []) "Mark.2.6" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.2.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.6" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.2.6" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.2.6" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.2.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.6" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.2.6" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.6" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.6" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Mark.2.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.6" ∷ word (Τ ∷ ί ∷ []) "Mark.2.7" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.2.7" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.2.7" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.2.7" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ []) "Mark.2.7" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.2.7" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.7" ∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Mark.2.7" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.2.7" ∷ word (ε ∷ ἰ ∷ []) "Mark.2.7" ∷ word (μ ∷ ὴ ∷ []) "Mark.2.7" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.2.7" ∷ word (ὁ ∷ []) "Mark.2.7" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.2.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.8" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.2.8" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.8" ∷ word (ὁ ∷ []) "Mark.2.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.8" ∷ word (τ ∷ ῷ ∷ []) "Mark.2.8" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.8" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.8" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.2.8" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.8" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.8" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.8" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.8" ∷ word (Τ ∷ ί ∷ []) "Mark.2.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.2.8" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.2.8" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.8" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.8" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "Mark.2.8" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.2.8" ∷ word (τ ∷ ί ∷ []) "Mark.2.9" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.9" ∷ word (ε ∷ ὐ ∷ κ ∷ ο ∷ π ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.9" ∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.9" ∷ word (τ ∷ ῷ ∷ []) "Mark.2.9" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ῷ ∷ []) "Mark.2.9" ∷ word (Ἀ ∷ φ ∷ ί ∷ ε ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Mark.2.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.9" ∷ word (α ∷ ἱ ∷ []) "Mark.2.9" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "Mark.2.9" ∷ word (ἢ ∷ []) "Mark.2.9" ∷ word (ε ∷ ἰ ∷ π ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.9" ∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.9" ∷ word (ἆ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.9" ∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.2.9" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.9" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Mark.2.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.2.10" ∷ word (δ ∷ ὲ ∷ []) "Mark.2.10" ∷ word (ε ∷ ἰ ∷ δ ∷ ῆ ∷ τ ∷ ε ∷ []) "Mark.2.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.10" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.2.10" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.2.10" ∷ word (ὁ ∷ []) "Mark.2.10" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.2.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.10" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.10" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.2.10" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.2.10" ∷ word (ἀ ∷ φ ∷ ι ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Mark.2.10" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.2.10" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.10" ∷ word (τ ∷ ῷ ∷ []) "Mark.2.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ υ ∷ τ ∷ ι ∷ κ ∷ ῷ ∷ []) "Mark.2.10" ∷ word (Σ ∷ ο ∷ ὶ ∷ []) "Mark.2.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.2.11" ∷ word (ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.2.11" ∷ word (ἆ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.11" ∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.2.11" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.11" ∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.2.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.11" ∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ν ∷ []) "Mark.2.11" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.2.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.12" ∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Mark.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.12" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.2.12" ∷ word (ἄ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.2.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.12" ∷ word (κ ∷ ρ ∷ ά ∷ β ∷ α ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.12" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.12" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.2.12" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.2.12" ∷ word (ἐ ∷ ξ ∷ ί ∷ σ ∷ τ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.2.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.2.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.12" ∷ word (δ ∷ ο ∷ ξ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.2.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.12" ∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "Mark.2.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.2.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.12" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.2.12" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.2.12" ∷ word (ε ∷ ἴ ∷ δ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.2.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.13" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.13" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.2.13" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.2.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.2.13" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.13" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.2.13" ∷ word (ὁ ∷ []) "Mark.2.13" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.2.13" ∷ word (ἤ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.2.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.2.13" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.13" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.2.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.14" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Mark.2.14" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.2.14" ∷ word (Λ ∷ ε ∷ υ ∷ ὶ ∷ ν ∷ []) "Mark.2.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.14" ∷ word (Ἁ ∷ ∙λ ∷ φ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.2.14" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.14" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.2.14" ∷ word (τ ∷ ε ∷ ∙λ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.14" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.14" ∷ word (Ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.2.14" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.2.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.14" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.2.14" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.2.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.15" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.15" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.2.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.2.15" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.15" ∷ word (τ ∷ ῇ ∷ []) "Mark.2.15" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.2.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.15" ∷ word (τ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.15" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ έ ∷ κ ∷ ε ∷ ι ∷ ν ∷ τ ∷ ο ∷ []) "Mark.2.15" ∷ word (τ ∷ ῷ ∷ []) "Mark.2.15" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.15" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.15" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.15" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.2.15" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.15" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.2.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.16" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.16" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.2.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.2.16" ∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.16" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Mark.2.16" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.2.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.16" ∷ word (τ ∷ ε ∷ ∙λ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.2.16" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.16" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.2.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.16" ∷ word (Ὅ ∷ τ ∷ ι ∷ []) "Mark.2.16" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.2.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (τ ∷ ε ∷ ∙λ ∷ ω ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.16" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.2.16" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ε ∷ ι ∷ []) "Mark.2.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.17" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.2.17" ∷ word (ὁ ∷ []) "Mark.2.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.2.17" ∷ word (Ο ∷ ὐ ∷ []) "Mark.2.17" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.2.17" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.17" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.17" ∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.17" ∷ word (ἰ ∷ α ∷ τ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.2.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.2.17" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.17" ∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.2.17" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.2.17" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.2.17" ∷ word (κ ∷ α ∷ ∙λ ∷ έ ∷ σ ∷ α ∷ ι ∷ []) "Mark.2.17" ∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Mark.2.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.2.17" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.17" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.2.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.18" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.18" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.2.18" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.18" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.2.18" ∷ word (τ ∷ ί ∷ []) "Mark.2.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.18" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.18" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.18" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.2.18" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.18" ∷ word (δ ∷ ὲ ∷ []) "Mark.2.18" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.2.18" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.18" ∷ word (ο ∷ ὐ ∷ []) "Mark.2.18" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.19" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.2.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.19" ∷ word (ὁ ∷ []) "Mark.2.19" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.2.19" ∷ word (Μ ∷ ὴ ∷ []) "Mark.2.19" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.19" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.19" ∷ word (υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Mark.2.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.19" ∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.2.19" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.19" ∷ word (ᾧ ∷ []) "Mark.2.19" ∷ word (ὁ ∷ []) "Mark.2.19" ∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ ς ∷ []) "Mark.2.19" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.2.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.19" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.19" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.2.19" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.2.19" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.19" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.19" ∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.2.19" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.2.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.19" ∷ word (ο ∷ ὐ ∷ []) "Mark.2.19" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.19" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.2.19" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.20" ∷ word (δ ∷ ὲ ∷ []) "Mark.2.20" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.2.20" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.2.20" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ θ ∷ ῇ ∷ []) "Mark.2.20" ∷ word (ἀ ∷ π ∷ []) "Mark.2.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.2.20" ∷ word (ὁ ∷ []) "Mark.2.20" ∷ word (ν ∷ υ ∷ μ ∷ φ ∷ ί ∷ ο ∷ ς ∷ []) "Mark.2.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.20" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.2.20" ∷ word (ν ∷ η ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.20" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.20" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.2.20" ∷ word (τ ∷ ῇ ∷ []) "Mark.2.20" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.2.20" ∷ word (Ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.2.21" ∷ word (ἐ ∷ π ∷ ί ∷ β ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Mark.2.21" ∷ word (ῥ ∷ ά ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.2.21" ∷ word (ἀ ∷ γ ∷ ν ∷ ά ∷ φ ∷ ο ∷ υ ∷ []) "Mark.2.21" ∷ word (ἐ ∷ π ∷ ι ∷ ρ ∷ ά ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "Mark.2.21" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.21" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.2.21" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ό ∷ ν ∷ []) "Mark.2.21" ∷ word (ε ∷ ἰ ∷ []) "Mark.2.21" ∷ word (δ ∷ ὲ ∷ []) "Mark.2.21" ∷ word (μ ∷ ή ∷ []) "Mark.2.21" ∷ word (α ∷ ἴ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.2.21" ∷ word (τ ∷ ὸ ∷ []) "Mark.2.21" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ω ∷ μ ∷ α ∷ []) "Mark.2.21" ∷ word (ἀ ∷ π ∷ []) "Mark.2.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.21" ∷ word (τ ∷ ὸ ∷ []) "Mark.2.21" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.2.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.21" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ῦ ∷ []) "Mark.2.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.21" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.2.21" ∷ word (σ ∷ χ ∷ ί ∷ σ ∷ μ ∷ α ∷ []) "Mark.2.21" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.22" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.2.22" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.2.22" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.22" ∷ word (ν ∷ έ ∷ ο ∷ ν ∷ []) "Mark.2.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.22" ∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.22" ∷ word (π ∷ α ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.22" ∷ word (ε ∷ ἰ ∷ []) "Mark.2.22" ∷ word (δ ∷ ὲ ∷ []) "Mark.2.22" ∷ word (μ ∷ ή ∷ []) "Mark.2.22" ∷ word (ῥ ∷ ή ∷ ξ ∷ ε ∷ ι ∷ []) "Mark.2.22" ∷ word (ὁ ∷ []) "Mark.2.22" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.2.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.22" ∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.22" ∷ word (ὁ ∷ []) "Mark.2.22" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.2.22" ∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ ∙λ ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "Mark.2.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.22" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.22" ∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ί ∷ []) "Mark.2.22" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.2.22" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.2.22" ∷ word (ν ∷ έ ∷ ο ∷ ν ∷ []) "Mark.2.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.22" ∷ word (ἀ ∷ σ ∷ κ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.22" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.2.22" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.2.23" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.2.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.2.23" ∷ word (ἐ ∷ ν ∷ []) "Mark.2.23" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.23" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.23" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.2.23" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.23" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.2.23" ∷ word (σ ∷ π ∷ ο ∷ ρ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.2.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.23" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.23" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.2.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.23" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.2.23" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.2.23" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.23" ∷ word (τ ∷ ί ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.2.23" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.23" ∷ word (σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ α ∷ ς ∷ []) "Mark.2.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.24" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.24" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.2.24" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.2.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.24" ∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.2.24" ∷ word (τ ∷ ί ∷ []) "Mark.2.24" ∷ word (π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.24" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.24" ∷ word (ὃ ∷ []) "Mark.2.24" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.2.24" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.2.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.25" ∷ word (Ο ∷ ὐ ∷ δ ∷ έ ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.2.25" ∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "Mark.2.25" ∷ word (τ ∷ ί ∷ []) "Mark.2.25" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.2.25" ∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.2.25" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.2.25" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.2.25" ∷ word (ἔ ∷ σ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.2.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.25" ∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ν ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.2.25" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.2.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.25" ∷ word (ο ∷ ἱ ∷ []) "Mark.2.25" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.2.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.2.25" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.2.26" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.2.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.2.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.26" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.2.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.26" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.2.26" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.2.26" ∷ word (Ἀ ∷ β ∷ ι ∷ α ∷ θ ∷ ὰ ∷ ρ ∷ []) "Mark.2.26" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.26" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.26" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.2.26" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.2.26" ∷ word (π ∷ ρ ∷ ο ∷ θ ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.2.26" ∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Mark.2.26" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.2.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.2.26" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.26" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.2.26" ∷ word (ε ∷ ἰ ∷ []) "Mark.2.26" ∷ word (μ ∷ ὴ ∷ []) "Mark.2.26" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.2.26" ∷ word (ἱ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.26" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.26" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.26" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.2.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.2.26" ∷ word (ο ∷ ὖ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.2.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.27" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.2.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.2.27" ∷ word (Τ ∷ ὸ ∷ []) "Mark.2.27" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.27" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.2.27" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.2.27" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.2.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.27" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.2.27" ∷ word (ὁ ∷ []) "Mark.2.27" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.2.27" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.2.27" ∷ word (τ ∷ ὸ ∷ []) "Mark.2.27" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.2.27" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.2.28" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ό ∷ ς ∷ []) "Mark.2.28" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.2.28" ∷ word (ὁ ∷ []) "Mark.2.28" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.2.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.28" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.2.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.2.28" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.2.28" ∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.2.28" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.1" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.3.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.3.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.1" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ή ∷ ν ∷ []) "Mark.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.1" ∷ word (ἦ ∷ ν ∷ []) "Mark.3.1" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.3.1" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.3.1" ∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Mark.3.1" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Mark.3.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.1" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.3.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.2" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ τ ∷ ή ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.3.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.2" ∷ word (ε ∷ ἰ ∷ []) "Mark.3.2" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.2" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.2" ∷ word (θ ∷ ε ∷ ρ ∷ α ∷ π ∷ ε ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.3.2" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.2" ∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.3" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.3" ∷ word (τ ∷ ῷ ∷ []) "Mark.3.3" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Mark.3.3" ∷ word (τ ∷ ῷ ∷ []) "Mark.3.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.3" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.3.3" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Mark.3.3" ∷ word (ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ []) "Mark.3.3" ∷ word (Ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.3.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.3" ∷ word (τ ∷ ὸ ∷ []) "Mark.3.3" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.3.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.4" ∷ word (Ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.4" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.4" ∷ word (σ ∷ ά ∷ β ∷ β ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.4" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.4" ∷ word (ἢ ∷ []) "Mark.3.4" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.4" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.3.4" ∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.4" ∷ word (ἢ ∷ []) "Mark.3.4" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.4" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.4" ∷ word (δ ∷ ὲ ∷ []) "Mark.3.4" ∷ word (ἐ ∷ σ ∷ ι ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.3.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.5" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.5" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.3.5" ∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "Mark.3.5" ∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ υ ∷ π ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.3.5" ∷ word (τ ∷ ῇ ∷ []) "Mark.3.5" ∷ word (π ∷ ω ∷ ρ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.3.5" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.5" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.3.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.5" ∷ word (τ ∷ ῷ ∷ []) "Mark.3.5" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Mark.3.5" ∷ word (Ἔ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Mark.3.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.5" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.5" ∷ word (ἐ ∷ ξ ∷ έ ∷ τ ∷ ε ∷ ι ∷ ν ∷ ε ∷ ν ∷ []) "Mark.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.5" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ α ∷ τ ∷ ε ∷ σ ∷ τ ∷ ά ∷ θ ∷ η ∷ []) "Mark.3.5" ∷ word (ἡ ∷ []) "Mark.3.5" ∷ word (χ ∷ ε ∷ ὶ ∷ ρ ∷ []) "Mark.3.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.6" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.6" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.6" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.3.6" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.3.6" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.3.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.6" ∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.3.6" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ ο ∷ ύ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.3.6" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.3.6" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.3.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.6" ∷ word (ὅ ∷ π ∷ ω ∷ ς ∷ []) "Mark.3.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.6" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.7" ∷ word (ὁ ∷ []) "Mark.3.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.3.7" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.3.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.7" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.3.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.7" ∷ word (ἀ ∷ ν ∷ ε ∷ χ ∷ ώ ∷ ρ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.7" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.7" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Mark.3.7" ∷ word (π ∷ ∙λ ∷ ῆ ∷ θ ∷ ο ∷ ς ∷ []) "Mark.3.7" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.7" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.7" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.7" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.7" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.8" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.3.8" ∷ word (Ἰ ∷ δ ∷ ο ∷ υ ∷ μ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.3.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.8" ∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ο ∷ υ ∷ []) "Mark.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.3.8" ∷ word (Τ ∷ ύ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.8" ∷ word (Σ ∷ ι ∷ δ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.3.8" ∷ word (π ∷ ∙λ ∷ ῆ ∷ θ ∷ ο ∷ ς ∷ []) "Mark.3.8" ∷ word (π ∷ ο ∷ ∙λ ∷ ύ ∷ []) "Mark.3.8" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.8" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.3.8" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ ε ∷ ι ∷ []) "Mark.3.8" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.3.8" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.8" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.9" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.3.9" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.9" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.3.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.9" ∷ word (π ∷ ∙λ ∷ ο ∷ ι ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.3.9" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ρ ∷ τ ∷ ε ∷ ρ ∷ ῇ ∷ []) "Mark.3.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.9" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.3.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.9" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.3.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.9" ∷ word (μ ∷ ὴ ∷ []) "Mark.3.9" ∷ word (θ ∷ ∙λ ∷ ί ∷ β ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.9" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.3.10" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.10" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.3.10" ∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ί ∷ π ∷ τ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.10" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.10" ∷ word (ἅ ∷ ψ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.10" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Mark.3.10" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.3.10" ∷ word (μ ∷ ά ∷ σ ∷ τ ∷ ι ∷ γ ∷ α ∷ ς ∷ []) "Mark.3.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.11" ∷ word (τ ∷ ὰ ∷ []) "Mark.3.11" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.3.11" ∷ word (τ ∷ ὰ ∷ []) "Mark.3.11" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Mark.3.11" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.3.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.11" ∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.3.11" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ π ∷ ι ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.11" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.3.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.3.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.11" ∷ word (Σ ∷ ὺ ∷ []) "Mark.3.11" ∷ word (ε ∷ ἶ ∷ []) "Mark.3.11" ∷ word (ὁ ∷ []) "Mark.3.11" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.3.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.3.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.3.12" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ α ∷ []) "Mark.3.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.12" ∷ word (μ ∷ ὴ ∷ []) "Mark.3.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.12" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.3.12" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.13" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Mark.3.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.13" ∷ word (τ ∷ ὸ ∷ []) "Mark.3.13" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.3.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.13" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.13" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.3.13" ∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.3.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.13" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.3.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.13" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.14" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.14" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.3.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.14" ∷ word (ὦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.14" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.3.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.14" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.3.14" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Mark.3.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.14" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.15" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.15" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.3.15" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.15" ∷ word (τ ∷ ὰ ∷ []) "Mark.3.15" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.3.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.16" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.3.16" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.16" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.16" ∷ word (ἐ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.3.16" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Mark.3.16" ∷ word (τ ∷ ῷ ∷ []) "Mark.3.16" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ι ∷ []) "Mark.3.16" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.3.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.17" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.3.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.17" ∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.17" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.3.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.17" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.3.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.17" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.17" ∷ word (ἐ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.3.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.17" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.3.17" ∷ word (Β ∷ ο ∷ α ∷ ν ∷ η ∷ ρ ∷ γ ∷ έ ∷ ς ∷ []) "Mark.3.17" ∷ word (ὅ ∷ []) "Mark.3.17" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.17" ∷ word (Υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Mark.3.17" ∷ word (Β ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.3.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ α ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Φ ∷ ί ∷ ∙λ ∷ ι ∷ π ∷ π ∷ ο ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Β ∷ α ∷ ρ ∷ θ ∷ ο ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Μ ∷ α ∷ θ ∷ θ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Θ ∷ ω ∷ μ ∷ ᾶ ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.3.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.18" ∷ word (Ἁ ∷ ∙λ ∷ φ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Θ ∷ α ∷ δ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.18" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ α ∷ []) "Mark.3.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.18" ∷ word (Κ ∷ α ∷ ν ∷ α ∷ ν ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.3.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.19" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ν ∷ []) "Mark.3.19" ∷ word (Ἰ ∷ σ ∷ κ ∷ α ∷ ρ ∷ ι ∷ ώ ∷ θ ∷ []) "Mark.3.19" ∷ word (ὃ ∷ ς ∷ []) "Mark.3.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.19" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.3.19" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.19" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.20" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.20" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.20" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.20" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.20" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.3.20" ∷ word (ὁ ∷ []) "Mark.3.20" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.3.20" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.3.20" ∷ word (μ ∷ ὴ ∷ []) "Mark.3.20" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.3.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.20" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.3.20" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.20" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.3.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.21" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.21" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.21" ∷ word (π ∷ α ∷ ρ ∷ []) "Mark.3.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.21" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.3.21" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.21" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.21" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.3.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.3.21" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.21" ∷ word (ἐ ∷ ξ ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.3.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.22" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.22" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.3.22" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.22" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.3.22" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.3.22" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.22" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.3.22" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.22" ∷ word (Β ∷ ε ∷ ε ∷ ∙λ ∷ ζ ∷ ε ∷ β ∷ ο ∷ ὺ ∷ ∙λ ∷ []) "Mark.3.22" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.22" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.22" ∷ word (ἐ ∷ ν ∷ []) "Mark.3.22" ∷ word (τ ∷ ῷ ∷ []) "Mark.3.22" ∷ word (ἄ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Mark.3.22" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.22" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "Mark.3.22" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.3.22" ∷ word (τ ∷ ὰ ∷ []) "Mark.3.22" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.3.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.23" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.23" ∷ word (ἐ ∷ ν ∷ []) "Mark.3.23" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.3.23" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.3.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.23" ∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.3.23" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.23" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Mark.3.23" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ν ∷ []) "Mark.3.23" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.3.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.24" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.24" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.3.24" ∷ word (ἐ ∷ φ ∷ []) "Mark.3.24" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.3.24" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Mark.3.24" ∷ word (ο ∷ ὐ ∷ []) "Mark.3.24" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.24" ∷ word (σ ∷ τ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.24" ∷ word (ἡ ∷ []) "Mark.3.24" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.3.24" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Mark.3.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.25" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.25" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ []) "Mark.3.25" ∷ word (ἐ ∷ φ ∷ []) "Mark.3.25" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.3.25" ∷ word (μ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ θ ∷ ῇ ∷ []) "Mark.3.25" ∷ word (ο ∷ ὐ ∷ []) "Mark.3.25" ∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.25" ∷ word (ἡ ∷ []) "Mark.3.25" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ []) "Mark.3.25" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Mark.3.25" ∷ word (σ ∷ τ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.26" ∷ word (ε ∷ ἰ ∷ []) "Mark.3.26" ∷ word (ὁ ∷ []) "Mark.3.26" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Mark.3.26" ∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.3.26" ∷ word (ἐ ∷ φ ∷ []) "Mark.3.26" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.26" ∷ word (ἐ ∷ μ ∷ ε ∷ ρ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.3.26" ∷ word (ο ∷ ὐ ∷ []) "Mark.3.26" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.26" ∷ word (σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.3.26" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.3.26" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.3.26" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.26" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.3.27" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.3.27" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.27" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.27" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.3.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.27" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.3.27" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.3.27" ∷ word (τ ∷ ὰ ∷ []) "Mark.3.27" ∷ word (σ ∷ κ ∷ ε ∷ ύ ∷ η ∷ []) "Mark.3.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.27" ∷ word (δ ∷ ι ∷ α ∷ ρ ∷ π ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Mark.3.27" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.27" ∷ word (μ ∷ ὴ ∷ []) "Mark.3.27" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.27" ∷ word (ἰ ∷ σ ∷ χ ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.3.27" ∷ word (δ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.3.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.27" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.3.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.3.27" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.3.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.27" ∷ word (δ ∷ ι ∷ α ∷ ρ ∷ π ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.3.27" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.3.28" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.3.28" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.3.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.3.28" ∷ word (ἀ ∷ φ ∷ ε ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.28" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.28" ∷ word (υ ∷ ἱ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.3.28" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.3.28" ∷ word (τ ∷ ὰ ∷ []) "Mark.3.28" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.3.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.28" ∷ word (α ∷ ἱ ∷ []) "Mark.3.28" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ι ∷ []) "Mark.3.28" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.3.28" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.3.28" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ή ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.28" ∷ word (ὃ ∷ ς ∷ []) "Mark.3.29" ∷ word (δ ∷ []) "Mark.3.29" ∷ word (ἂ ∷ ν ∷ []) "Mark.3.29" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.3.29" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.3.29" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.3.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.3.29" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.3.29" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.3.29" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.29" ∷ word (ἄ ∷ φ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.29" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.3.29" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.3.29" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.3.29" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.3.29" ∷ word (ἔ ∷ ν ∷ ο ∷ χ ∷ ό ∷ ς ∷ []) "Mark.3.29" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.29" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Mark.3.29" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.3.29" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.3.30" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.3.30" ∷ word (Π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.3.30" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.3.30" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.3.30" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.3.31" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.3.31" ∷ word (ἡ ∷ []) "Mark.3.31" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.31" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Mark.3.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.3.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.31" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.3.31" ∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.31" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.3.31" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.3.31" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.31" ∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.3.31" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.3.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.32" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ η ∷ τ ∷ ο ∷ []) "Mark.3.32" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.3.32" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.32" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.3.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.32" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.3.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.3.32" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.3.32" ∷ word (ἡ ∷ []) "Mark.3.32" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.32" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.3.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.32" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.32" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Mark.3.32" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.3.32" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.3.32" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.3.32" ∷ word (σ ∷ ε ∷ []) "Mark.3.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.33" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.3.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.3.33" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.33" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.3.33" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.3.33" ∷ word (ἡ ∷ []) "Mark.3.33" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.33" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.33" ∷ word (ἢ ∷ []) "Mark.3.33" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.33" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Mark.3.33" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.34" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.3.34" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.3.34" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.3.34" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.3.34" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Mark.3.34" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.3.34" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.3.34" ∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.3.34" ∷ word (ἡ ∷ []) "Mark.3.34" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.34" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.34" ∷ word (ο ∷ ἱ ∷ []) "Mark.3.34" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "Mark.3.34" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.34" ∷ word (ὃ ∷ ς ∷ []) "Mark.3.35" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.3.35" ∷ word (ἂ ∷ ν ∷ []) "Mark.3.35" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.3.35" ∷ word (τ ∷ ὸ ∷ []) "Mark.3.35" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ μ ∷ α ∷ []) "Mark.3.35" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.3.35" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.3.35" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.3.35" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ό ∷ ς ∷ []) "Mark.3.35" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.3.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.35" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὴ ∷ []) "Mark.3.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.3.35" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.3.35" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.3.35" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.4.1" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.4.1" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.1" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.4.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.1" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.1" ∷ word (σ ∷ υ ∷ ν ∷ ά ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.4.1" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.1" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.4.1" ∷ word (π ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.4.1" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.1" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.1" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.4.1" ∷ word (ἐ ∷ μ ∷ β ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.1" ∷ word (κ ∷ α ∷ θ ∷ ῆ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.1" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.1" ∷ word (τ ∷ ῇ ∷ []) "Mark.4.1" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.1" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.4.1" ∷ word (ὁ ∷ []) "Mark.4.1" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.4.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.4.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.1" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.1" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.1" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.1" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.2" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.4.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.4.2" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.2" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.2" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.4.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.2" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.2" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.2" ∷ word (τ ∷ ῇ ∷ []) "Mark.4.2" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.4.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.2" ∷ word (Ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.3" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.4.3" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.4.3" ∷ word (ὁ ∷ []) "Mark.4.3" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.4.3" ∷ word (σ ∷ π ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.4.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.4" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.4" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.4" ∷ word (τ ∷ ῷ ∷ []) "Mark.4.4" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.4" ∷ word (ὃ ∷ []) "Mark.4.4" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.4.4" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.4" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.4.4" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.4" ∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.4" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.4.4" ∷ word (τ ∷ ὰ ∷ []) "Mark.4.4" ∷ word (π ∷ ε ∷ τ ∷ ε ∷ ι ∷ ν ∷ ὰ ∷ []) "Mark.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.4" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ φ ∷ α ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.4" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Mark.4.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.5" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Mark.4.5" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.5" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.5" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.5" ∷ word (π ∷ ε ∷ τ ∷ ρ ∷ ῶ ∷ δ ∷ ε ∷ ς ∷ []) "Mark.4.5" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.4.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.5" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.4.5" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.4.5" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.5" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.5" ∷ word (ἐ ∷ ξ ∷ α ∷ ν ∷ έ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.4.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.4.5" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.5" ∷ word (μ ∷ ὴ ∷ []) "Mark.4.5" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.5" ∷ word (β ∷ ά ∷ θ ∷ ο ∷ ς ∷ []) "Mark.4.5" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.6" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.4.6" ∷ word (ἀ ∷ ν ∷ έ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.4.6" ∷ word (ὁ ∷ []) "Mark.4.6" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.4.6" ∷ word (ἐ ∷ κ ∷ α ∷ υ ∷ μ ∷ α ∷ τ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.6" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.4.6" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.6" ∷ word (μ ∷ ὴ ∷ []) "Mark.4.6" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.6" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ ν ∷ []) "Mark.4.6" ∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Mark.4.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ []) "Mark.4.7" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.7" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.7" ∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ α ∷ ς ∷ []) "Mark.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.7" ∷ word (α ∷ ἱ ∷ []) "Mark.4.7" ∷ word (ἄ ∷ κ ∷ α ∷ ν ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ π ∷ ν ∷ ι ∷ ξ ∷ α ∷ ν ∷ []) "Mark.4.7" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Mark.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.7" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.4.7" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.7" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.4.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.4.8" ∷ word (ἔ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.8" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.4.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.4.8" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8" ∷ word (α ∷ ὐ ∷ ξ ∷ α ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8" ∷ word (ἔ ∷ φ ∷ ε ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.4.8" ∷ word (ἓ ∷ ν ∷ []) "Mark.4.8" ∷ word (τ ∷ ρ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8" ∷ word (ἓ ∷ ν ∷ []) "Mark.4.8" ∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.8" ∷ word (ἓ ∷ ν ∷ []) "Mark.4.8" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Mark.4.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.9" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.9" ∷ word (Ὃ ∷ ς ∷ []) "Mark.4.9" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.9" ∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.4.9" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.9" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ έ ∷ τ ∷ ω ∷ []) "Mark.4.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.10" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.4.10" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.10" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.4.10" ∷ word (μ ∷ ό ∷ ν ∷ α ∷ ς ∷ []) "Mark.4.10" ∷ word (ἠ ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.10" ∷ word (ο ∷ ἱ ∷ []) "Mark.4.10" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.4.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.10" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.4.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.10" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.4.10" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ά ∷ ς ∷ []) "Mark.4.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.11" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.11" ∷ word (Ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.4.11" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.11" ∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.4.11" ∷ word (δ ∷ έ ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.11" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.4.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.11" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.4.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.4.11" ∷ word (δ ∷ ὲ ∷ []) "Mark.4.11" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.11" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.4.11" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.11" ∷ word (τ ∷ ὰ ∷ []) "Mark.4.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.11" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.12" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.12" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ σ ∷ ι ∷ []) "Mark.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12" ∷ word (μ ∷ ὴ ∷ []) "Mark.4.12" ∷ word (ἴ ∷ δ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.12" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ω ∷ σ ∷ ι ∷ []) "Mark.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12" ∷ word (μ ∷ ὴ ∷ []) "Mark.4.12" ∷ word (σ ∷ υ ∷ ν ∷ ι ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.12" ∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.4.12" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ έ ∷ ψ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.12" ∷ word (ἀ ∷ φ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.4.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.4.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.13" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.4.13" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.4.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.4.13" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.4.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.13" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.4.13" ∷ word (π ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Mark.4.13" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Mark.4.13" ∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.4.13" ∷ word (ὁ ∷ []) "Mark.4.14" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.4.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.14" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.14" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.4.14" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.4.15" ∷ word (δ ∷ έ ∷ []) "Mark.4.15" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.15" ∷ word (ο ∷ ἱ ∷ []) "Mark.4.15" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.4.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.15" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.4.15" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.4.15" ∷ word (σ ∷ π ∷ ε ∷ ί ∷ ρ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.15" ∷ word (ὁ ∷ []) "Mark.4.15" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "Mark.4.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.15" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.15" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.15" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.15" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.15" ∷ word (ὁ ∷ []) "Mark.4.15" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ ς ∷ []) "Mark.4.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.15" ∷ word (α ∷ ἴ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.4.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.15" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.15" ∷ word (ἐ ∷ σ ∷ π ∷ α ∷ ρ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.4.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.4.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.16" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Mark.4.16" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.16" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Mark.4.16" ∷ word (ο ∷ ἱ ∷ []) "Mark.4.16" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.16" ∷ word (τ ∷ ὰ ∷ []) "Mark.4.16" ∷ word (π ∷ ε ∷ τ ∷ ρ ∷ ώ ∷ δ ∷ η ∷ []) "Mark.4.16" ∷ word (σ ∷ π ∷ ε ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.4.16" ∷ word (ο ∷ ἳ ∷ []) "Mark.4.16" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.16" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.16" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.16" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.16" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.4.16" ∷ word (χ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Mark.4.16" ∷ word (∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.16" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.4.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.17" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.17" ∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ ν ∷ []) "Mark.4.17" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.17" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.17" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.4.17" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ί ∷ []) "Mark.4.17" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.17" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.4.17" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.4.17" ∷ word (θ ∷ ∙λ ∷ ί ∷ ψ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.4.17" ∷ word (ἢ ∷ []) "Mark.4.17" ∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.4.17" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.4.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.17" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.17" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.17" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.18" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.4.18" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.4.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.4.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.4.18" ∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ α ∷ ς ∷ []) "Mark.4.18" ∷ word (σ ∷ π ∷ ε ∷ ι ∷ ρ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.4.18" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Mark.4.18" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.4.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.18" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.18" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19" ∷ word (α ∷ ἱ ∷ []) "Mark.4.19" ∷ word (μ ∷ έ ∷ ρ ∷ ι ∷ μ ∷ ν ∷ α ∷ ι ∷ []) "Mark.4.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.19" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.4.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19" ∷ word (ἡ ∷ []) "Mark.4.19" ∷ word (ἀ ∷ π ∷ ά ∷ τ ∷ η ∷ []) "Mark.4.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.19" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.4.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19" ∷ word (α ∷ ἱ ∷ []) "Mark.4.19" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.4.19" ∷ word (τ ∷ ὰ ∷ []) "Mark.4.19" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὰ ∷ []) "Mark.4.19" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ι ∷ []) "Mark.4.19" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Mark.4.19" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ ν ∷ ί ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.19" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.19" ∷ word (ἄ ∷ κ ∷ α ∷ ρ ∷ π ∷ ο ∷ ς ∷ []) "Mark.4.19" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ί ∷ []) "Mark.4.20" ∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.20" ∷ word (ο ∷ ἱ ∷ []) "Mark.4.20" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.20" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.4.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.20" ∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.4.20" ∷ word (σ ∷ π ∷ α ∷ ρ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.20" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.4.20" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.20" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.20" ∷ word (ἓ ∷ ν ∷ []) "Mark.4.20" ∷ word (τ ∷ ρ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20" ∷ word (ἓ ∷ ν ∷ []) "Mark.4.20" ∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.20" ∷ word (ἓ ∷ ν ∷ []) "Mark.4.20" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Mark.4.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.21" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.21" ∷ word (Μ ∷ ή ∷ τ ∷ ι ∷ []) "Mark.4.21" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.21" ∷ word (ὁ ∷ []) "Mark.4.21" ∷ word (∙λ ∷ ύ ∷ χ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.4.21" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.21" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.4.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.21" ∷ word (μ ∷ ό ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.4.21" ∷ word (τ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.4.21" ∷ word (ἢ ∷ []) "Mark.4.21" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.4.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.21" ∷ word (κ ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.4.21" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.4.21" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.21" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.21" ∷ word (∙λ ∷ υ ∷ χ ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Mark.4.21" ∷ word (τ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.4.21" ∷ word (ο ∷ ὐ ∷ []) "Mark.4.22" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.4.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.4.22" ∷ word (κ ∷ ρ ∷ υ ∷ π ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.22" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.4.22" ∷ word (μ ∷ ὴ ∷ []) "Mark.4.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.22" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Mark.4.22" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.4.22" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.22" ∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ρ ∷ υ ∷ φ ∷ ο ∷ ν ∷ []) "Mark.4.22" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.4.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.4.22" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.4.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.22" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.4.22" ∷ word (ε ∷ ἴ ∷ []) "Mark.4.23" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.4.23" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.23" ∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.4.23" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.23" ∷ word (ἀ ∷ κ ∷ ο ∷ υ ∷ έ ∷ τ ∷ ω ∷ []) "Mark.4.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.24" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.24" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.24" ∷ word (τ ∷ ί ∷ []) "Mark.4.24" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.24" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.24" ∷ word (ᾧ ∷ []) "Mark.4.24" ∷ word (μ ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.4.24" ∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.4.24" ∷ word (μ ∷ ε ∷ τ ∷ ρ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.24" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.4.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.24" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ τ ∷ ε ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.24" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.4.24" ∷ word (ὃ ∷ ς ∷ []) "Mark.4.25" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.4.25" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.25" ∷ word (δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.25" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.4.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.25" ∷ word (ὃ ∷ ς ∷ []) "Mark.4.25" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.25" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.25" ∷ word (ὃ ∷ []) "Mark.4.25" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.4.25" ∷ word (ἀ ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.25" ∷ word (ἀ ∷ π ∷ []) "Mark.4.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.25" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.26" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.26" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.4.26" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.4.26" ∷ word (ἡ ∷ []) "Mark.4.26" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.4.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.26" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.4.26" ∷ word (ὡ ∷ ς ∷ []) "Mark.4.26" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.4.26" ∷ word (β ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.4.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.26" ∷ word (σ ∷ π ∷ ό ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.4.26" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.26" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.26" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ῃ ∷ []) "Mark.4.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.27" ∷ word (ν ∷ ύ ∷ κ ∷ τ ∷ α ∷ []) "Mark.4.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.4.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27" ∷ word (ὁ ∷ []) "Mark.4.27" ∷ word (σ ∷ π ∷ ό ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.4.27" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ τ ∷ ᾷ ∷ []) "Mark.4.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.27" ∷ word (μ ∷ η ∷ κ ∷ ύ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.27" ∷ word (ὡ ∷ ς ∷ []) "Mark.4.27" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.27" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.4.27" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.4.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ μ ∷ ά ∷ τ ∷ η ∷ []) "Mark.4.28" ∷ word (ἡ ∷ []) "Mark.4.28" ∷ word (γ ∷ ῆ ∷ []) "Mark.4.28" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ο ∷ φ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.4.28" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.4.28" ∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.4.28" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.4.28" ∷ word (σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ ν ∷ []) "Mark.4.28" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.4.28" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ η ∷ ς ∷ []) "Mark.4.28" ∷ word (σ ∷ ῖ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.4.28" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.28" ∷ word (τ ∷ ῷ ∷ []) "Mark.4.28" ∷ word (σ ∷ τ ∷ ά ∷ χ ∷ υ ∷ ϊ ∷ []) "Mark.4.28" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.29" ∷ word (δ ∷ ὲ ∷ []) "Mark.4.29" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῖ ∷ []) "Mark.4.29" ∷ word (ὁ ∷ []) "Mark.4.29" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ό ∷ ς ∷ []) "Mark.4.29" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.4.29" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.29" ∷ word (δ ∷ ρ ∷ έ ∷ π ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Mark.4.29" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.4.29" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ σ ∷ τ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.4.29" ∷ word (ὁ ∷ []) "Mark.4.29" ∷ word (θ ∷ ε ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ό ∷ ς ∷ []) "Mark.4.29" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.30" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.4.30" ∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.4.30" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ώ ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.4.30" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.30" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.4.30" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.30" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.4.30" ∷ word (ἢ ∷ []) "Mark.4.30" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.30" ∷ word (τ ∷ ί ∷ ν ∷ ι ∷ []) "Mark.4.30" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.4.30" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "Mark.4.30" ∷ word (θ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.4.30" ∷ word (ὡ ∷ ς ∷ []) "Mark.4.31" ∷ word (κ ∷ ό ∷ κ ∷ κ ∷ ῳ ∷ []) "Mark.4.31" ∷ word (σ ∷ ι ∷ ν ∷ ά ∷ π ∷ ε ∷ ω ∷ ς ∷ []) "Mark.4.31" ∷ word (ὃ ∷ ς ∷ []) "Mark.4.31" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.31" ∷ word (σ ∷ π ∷ α ∷ ρ ∷ ῇ ∷ []) "Mark.4.31" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.31" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.31" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.31" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.4.31" ∷ word (ὂ ∷ ν ∷ []) "Mark.4.31" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.4.31" ∷ word (σ ∷ π ∷ ε ∷ ρ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.4.31" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.31" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.4.31" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.4.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.32" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.4.32" ∷ word (σ ∷ π ∷ α ∷ ρ ∷ ῇ ∷ []) "Mark.4.32" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ []) "Mark.4.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.32" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.32" ∷ word (μ ∷ ε ∷ ῖ ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.4.32" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.4.32" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.4.32" ∷ word (∙λ ∷ α ∷ χ ∷ ά ∷ ν ∷ ω ∷ ν ∷ []) "Mark.4.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.32" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Mark.4.32" ∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.4.32" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.4.32" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.32" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.32" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.4.32" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.4.32" ∷ word (σ ∷ κ ∷ ι ∷ ὰ ∷ ν ∷ []) "Mark.4.32" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.32" ∷ word (τ ∷ ὰ ∷ []) "Mark.4.32" ∷ word (π ∷ ε ∷ τ ∷ ε ∷ ι ∷ ν ∷ ὰ ∷ []) "Mark.4.32" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.4.32" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.4.32" ∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ κ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.4.32" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.33" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "Mark.4.33" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.33" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.33" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.33" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.33" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.33" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.4.33" ∷ word (ἠ ∷ δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.4.33" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.4.33" ∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "Mark.4.34" ∷ word (δ ∷ ὲ ∷ []) "Mark.4.34" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.4.34" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.4.34" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.34" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.4.34" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.4.34" ∷ word (δ ∷ ὲ ∷ []) "Mark.4.34" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.34" ∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Mark.4.34" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.4.34" ∷ word (ἐ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ ε ∷ ν ∷ []) "Mark.4.34" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.4.34" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.4.35" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.4.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.35" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.35" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.4.35" ∷ word (τ ∷ ῇ ∷ []) "Mark.4.35" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.4.35" ∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.4.35" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.4.35" ∷ word (Δ ∷ ι ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.4.35" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.35" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.35" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.4.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.36" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.4.36" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.4.36" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.4.36" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.36" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.36" ∷ word (ὡ ∷ ς ∷ []) "Mark.4.36" ∷ word (ἦ ∷ ν ∷ []) "Mark.4.36" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.36" ∷ word (τ ∷ ῷ ∷ []) "Mark.4.36" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.4.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.36" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.4.36" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ α ∷ []) "Mark.4.36" ∷ word (ἦ ∷ ν ∷ []) "Mark.4.36" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.4.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.4.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.37" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.4.37" ∷ word (∙λ ∷ α ∷ ῖ ∷ ∙λ ∷ α ∷ ψ ∷ []) "Mark.4.37" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Mark.4.37" ∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ο ∷ υ ∷ []) "Mark.4.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.37" ∷ word (τ ∷ ὰ ∷ []) "Mark.4.37" ∷ word (κ ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.4.37" ∷ word (ἐ ∷ π ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.4.37" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.4.37" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.37" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.4.37" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.37" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.4.37" ∷ word (γ ∷ ε ∷ μ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.4.37" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.37" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.4.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.38" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.4.38" ∷ word (ἦ ∷ ν ∷ []) "Mark.4.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.4.38" ∷ word (τ ∷ ῇ ∷ []) "Mark.4.38" ∷ word (π ∷ ρ ∷ ύ ∷ μ ∷ ν ∷ ῃ ∷ []) "Mark.4.38" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.4.38" ∷ word (τ ∷ ὸ ∷ []) "Mark.4.38" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.4.38" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ω ∷ ν ∷ []) "Mark.4.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.38" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.38" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.4.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.38" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.4.38" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.4.38" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.4.38" ∷ word (ο ∷ ὐ ∷ []) "Mark.4.38" ∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.4.38" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.4.38" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.4.38" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ύ ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Mark.4.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39" ∷ word (δ ∷ ι ∷ ε ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.4.39" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.39" ∷ word (τ ∷ ῷ ∷ []) "Mark.4.39" ∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ῳ ∷ []) "Mark.4.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.4.39" ∷ word (τ ∷ ῇ ∷ []) "Mark.4.39" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.4.39" ∷ word (Σ ∷ ι ∷ ώ ∷ π ∷ α ∷ []) "Mark.4.39" ∷ word (π ∷ ε ∷ φ ∷ ί ∷ μ ∷ ω ∷ σ ∷ ο ∷ []) "Mark.4.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39" ∷ word (ἐ ∷ κ ∷ ό ∷ π ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.4.39" ∷ word (ὁ ∷ []) "Mark.4.39" ∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.4.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.39" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.4.39" ∷ word (γ ∷ α ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Mark.4.39" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Mark.4.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.40" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.4.40" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.4.40" ∷ word (Τ ∷ ί ∷ []) "Mark.4.40" ∷ word (δ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.4.40" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.4.40" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.4.40" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.4.40" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.4.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.4.41" ∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "Mark.4.41" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ν ∷ []) "Mark.4.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.4.41" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.4.41" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.4.41" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.4.41" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Mark.4.41" ∷ word (ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.4.41" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.4.41" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.4.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41" ∷ word (ὁ ∷ []) "Mark.4.41" ∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.4.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.4.41" ∷ word (ἡ ∷ []) "Mark.4.41" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ []) "Mark.4.41" ∷ word (ὑ ∷ π ∷ α ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ []) "Mark.4.41" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.4.41" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.1" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.5.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.1" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.1" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.5.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.1" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.5.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.1" ∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.5.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.1" ∷ word (Γ ∷ ε ∷ ρ ∷ α ∷ σ ∷ η ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.5.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.2" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.2" ∷ word (ἐ ∷ κ ∷ []) "Mark.5.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.2" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.2" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.2" ∷ word (ὑ ∷ π ∷ ή ∷ ν ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.2" ∷ word (ἐ ∷ κ ∷ []) "Mark.5.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.2" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.2" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.5.2" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.2" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.5.2" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.5.2" ∷ word (ὃ ∷ ς ∷ []) "Mark.5.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.3" ∷ word (κ ∷ α ∷ τ ∷ ο ∷ ί ∷ κ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.3" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.5.3" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.3" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.3" ∷ word (μ ∷ ν ∷ ή ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.5.3" ∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.5.3" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.5.3" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.3" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.3" ∷ word (δ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.5.3" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.5.4" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Mark.5.4" ∷ word (π ∷ έ ∷ δ ∷ α ∷ ι ∷ ς ∷ []) "Mark.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4" ∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ σ ∷ ι ∷ []) "Mark.5.4" ∷ word (δ ∷ ε ∷ δ ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4" ∷ word (δ ∷ ι ∷ ε ∷ σ ∷ π ∷ ά ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.5.4" ∷ word (ὑ ∷ π ∷ []) "Mark.5.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.5.4" ∷ word (ἁ ∷ ∙λ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.5.4" ∷ word (π ∷ έ ∷ δ ∷ α ∷ ς ∷ []) "Mark.5.4" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ε ∷ τ ∷ ρ ∷ ῖ ∷ φ ∷ θ ∷ α ∷ ι ∷ []) "Mark.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.4" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.4" ∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ ε ∷ ν ∷ []) "Mark.5.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.4" ∷ word (δ ∷ α ∷ μ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Mark.5.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.5.5" ∷ word (π ∷ α ∷ ν ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.5.5" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.5.5" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.5" ∷ word (μ ∷ ν ∷ ή ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.5" ∷ word (ὄ ∷ ρ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.5" ∷ word (ἦ ∷ ν ∷ []) "Mark.5.5" ∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.5" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ό ∷ π ∷ τ ∷ ω ∷ ν ∷ []) "Mark.5.5" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.5" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.5.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.6" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.5.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.5.6" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.6" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.6" ∷ word (ἔ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.6" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.6" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.7" ∷ word (κ ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.5.7" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Mark.5.7" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.5.7" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.7" ∷ word (Τ ∷ ί ∷ []) "Mark.5.7" ∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.5.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.7" ∷ word (σ ∷ ο ∷ ί ∷ []) "Mark.5.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.5.7" ∷ word (υ ∷ ἱ ∷ ὲ ∷ []) "Mark.5.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.7" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.5.7" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.7" ∷ word (ὑ ∷ ψ ∷ ί ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.5.7" ∷ word (ὁ ∷ ρ ∷ κ ∷ ί ∷ ζ ∷ ω ∷ []) "Mark.5.7" ∷ word (σ ∷ ε ∷ []) "Mark.5.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.7" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Mark.5.7" ∷ word (μ ∷ ή ∷ []) "Mark.5.7" ∷ word (μ ∷ ε ∷ []) "Mark.5.7" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ί ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.5.7" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.5.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.5.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.8" ∷ word (Ἔ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ []) "Mark.5.8" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.8" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.5.8" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.8" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.5.8" ∷ word (ἐ ∷ κ ∷ []) "Mark.5.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.8" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.5.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.9" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.5.9" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.9" ∷ word (Τ ∷ ί ∷ []) "Mark.5.9" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Mark.5.9" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.9" ∷ word (Λ ∷ ε ∷ γ ∷ ι ∷ ὼ ∷ ν ∷ []) "Mark.5.9" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Mark.5.9" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.5.9" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.9" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.5.9" ∷ word (ἐ ∷ σ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.5.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.10" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.5.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.10" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.10" ∷ word (μ ∷ ὴ ∷ []) "Mark.5.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.5.10" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ ῃ ∷ []) "Mark.5.10" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.5.10" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.10" ∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.5.10" ∷ word (ἦ ∷ ν ∷ []) "Mark.5.11" ∷ word (δ ∷ ὲ ∷ []) "Mark.5.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.5.11" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.11" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.11" ∷ word (ὄ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.5.11" ∷ word (ἀ ∷ γ ∷ έ ∷ ∙λ ∷ η ∷ []) "Mark.5.11" ∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.5.11" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ []) "Mark.5.11" ∷ word (β ∷ ο ∷ σ ∷ κ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.5.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.12" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.12" ∷ word (Π ∷ έ ∷ μ ∷ ψ ∷ ο ∷ ν ∷ []) "Mark.5.12" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.5.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.12" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.12" ∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.5.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.12" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.5.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13" ∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.5.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ α ∷ []) "Mark.5.13" ∷ word (τ ∷ ὰ ∷ []) "Mark.5.13" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.5.13" ∷ word (τ ∷ ὰ ∷ []) "Mark.5.13" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ α ∷ []) "Mark.5.13" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.5.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.13" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.13" ∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13" ∷ word (ὥ ∷ ρ ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.13" ∷ word (ἡ ∷ []) "Mark.5.13" ∷ word (ἀ ∷ γ ∷ έ ∷ ∙λ ∷ η ∷ []) "Mark.5.13" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.5.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.13" ∷ word (κ ∷ ρ ∷ η ∷ μ ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.5.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.13" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.13" ∷ word (ὡ ∷ ς ∷ []) "Mark.5.13" ∷ word (δ ∷ ι ∷ σ ∷ χ ∷ ί ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.5.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.13" ∷ word (ἐ ∷ π ∷ ν ∷ ί ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.5.13" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.13" ∷ word (τ ∷ ῇ ∷ []) "Mark.5.13" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ ῃ ∷ []) "Mark.5.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.14" ∷ word (ο ∷ ἱ ∷ []) "Mark.5.14" ∷ word (β ∷ ό ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.14" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.14" ∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.5.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.14" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.14" ∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.14" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.5.14" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.14" ∷ word (τ ∷ ί ∷ []) "Mark.5.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.5.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.14" ∷ word (γ ∷ ε ∷ γ ∷ ο ∷ ν ∷ ό ∷ ς ∷ []) "Mark.5.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.15" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15" ∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.5.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.15" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.15" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15" ∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Mark.5.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15" ∷ word (ἐ ∷ σ ∷ χ ∷ η ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Mark.5.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.15" ∷ word (∙λ ∷ ε ∷ γ ∷ ι ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.15" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.16" ∷ word (δ ∷ ι ∷ η ∷ γ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.5.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.16" ∷ word (ο ∷ ἱ ∷ []) "Mark.5.16" ∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.16" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.5.16" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.5.16" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.16" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Mark.5.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.16" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.5.16" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.16" ∷ word (χ ∷ ο ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.5.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.17" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.5.17" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.17" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.17" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.17" ∷ word (ὁ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.5.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.18" ∷ word (ἐ ∷ μ ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.18" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.18" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.5.18" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.5.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.18" ∷ word (ὁ ∷ []) "Mark.5.18" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.18" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.18" ∷ word (ᾖ ∷ []) "Mark.5.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.5.19" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.5.19" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.19" ∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.5.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.19" ∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ν ∷ []) "Mark.5.19" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.19" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.19" ∷ word (σ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.5.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.19" ∷ word (ἀ ∷ π ∷ ά ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.19" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.5.19" ∷ word (ὁ ∷ []) "Mark.5.19" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ό ∷ ς ∷ []) "Mark.5.19" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.5.19" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.5.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.19" ∷ word (ἠ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ έ ∷ ν ∷ []) "Mark.5.19" ∷ word (σ ∷ ε ∷ []) "Mark.5.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.20" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.20" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.20" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ σ ∷ σ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.5.20" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.20" ∷ word (τ ∷ ῇ ∷ []) "Mark.5.20" ∷ word (Δ ∷ ε ∷ κ ∷ α ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.5.20" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.5.20" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.20" ∷ word (ὁ ∷ []) "Mark.5.20" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.5.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.20" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.20" ∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.5.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.21" ∷ word (δ ∷ ι ∷ α ∷ π ∷ ε ∷ ρ ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.21" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.5.21" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.21" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.21" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.5.21" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.5.21" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.21" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.21" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.5.21" ∷ word (σ ∷ υ ∷ ν ∷ ή ∷ χ ∷ θ ∷ η ∷ []) "Mark.5.21" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.5.21" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ς ∷ []) "Mark.5.21" ∷ word (ἐ ∷ π ∷ []) "Mark.5.21" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.21" ∷ word (ἦ ∷ ν ∷ []) "Mark.5.21" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.5.21" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.21" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.22" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.22" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.5.22" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.22" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.5.22" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.5.22" ∷ word (Ἰ ∷ ά ∷ ϊ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.5.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.22" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.5.22" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.22" ∷ word (π ∷ ί ∷ π ∷ τ ∷ ε ∷ ι ∷ []) "Mark.5.22" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.22" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Mark.5.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.23" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.5.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.5.23" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.23" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.5.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.23" ∷ word (Τ ∷ ὸ ∷ []) "Mark.5.23" ∷ word (θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ ρ ∷ ι ∷ ό ∷ ν ∷ []) "Mark.5.23" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.5.23" ∷ word (ἐ ∷ σ ∷ χ ∷ ά ∷ τ ∷ ω ∷ ς ∷ []) "Mark.5.23" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.5.23" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.23" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.5.23" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ῇ ∷ ς ∷ []) "Mark.5.23" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.5.23" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.5.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.23" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.23" ∷ word (σ ∷ ω ∷ θ ∷ ῇ ∷ []) "Mark.5.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.23" ∷ word (ζ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.5.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.24" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.24" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.24" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.5.24" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.5.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.24" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.5.24" ∷ word (π ∷ ο ∷ ∙λ ∷ ύ ∷ ς ∷ []) "Mark.5.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.24" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ θ ∷ ∙λ ∷ ι ∷ β ∷ ο ∷ ν ∷ []) "Mark.5.24" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.5.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.25" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.5.25" ∷ word (ο ∷ ὖ ∷ σ ∷ α ∷ []) "Mark.5.25" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.25" ∷ word (ῥ ∷ ύ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.5.25" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.25" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.5.25" ∷ word (ἔ ∷ τ ∷ η ∷ []) "Mark.5.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.26" ∷ word (π ∷ α ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.5.26" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.5.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.5.26" ∷ word (ἰ ∷ α ∷ τ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.5.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.26" ∷ word (δ ∷ α ∷ π ∷ α ∷ ν ∷ ή ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.5.26" ∷ word (τ ∷ ὰ ∷ []) "Mark.5.26" ∷ word (π ∷ α ∷ ρ ∷ []) "Mark.5.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.5.26" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.5.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.26" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.5.26" ∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.5.26" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.26" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.26" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.26" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.5.26" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.5.26" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.5.27" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.5.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.27" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.5.27" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.5.27" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.27" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.27" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.5.27" ∷ word (ὄ ∷ π ∷ ι ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.27" ∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.27" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.27" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.27" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.5.28" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.5.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.28" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.5.28" ∷ word (ἅ ∷ ψ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Mark.5.28" ∷ word (κ ∷ ἂ ∷ ν ∷ []) "Mark.5.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.28" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.28" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.5.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.29" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.29" ∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ ά ∷ ν ∷ θ ∷ η ∷ []) "Mark.5.29" ∷ word (ἡ ∷ []) "Mark.5.29" ∷ word (π ∷ η ∷ γ ∷ ὴ ∷ []) "Mark.5.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.29" ∷ word (α ∷ ἵ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.29" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.5.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.29" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ []) "Mark.5.29" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.29" ∷ word (σ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.5.29" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.29" ∷ word (ἴ ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.29" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.29" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.29" ∷ word (μ ∷ ά ∷ σ ∷ τ ∷ ι ∷ γ ∷ ο ∷ ς ∷ []) "Mark.5.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.30" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.30" ∷ word (ὁ ∷ []) "Mark.5.30" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.5.30" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.30" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.30" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "Mark.5.30" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.5.30" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.30" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.5.30" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.30" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ α ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.30" ∷ word (ἐ ∷ ν ∷ []) "Mark.5.30" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.30" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.5.30" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.5.30" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.5.30" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.5.30" ∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.30" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.5.30" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.5.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.31" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.5.31" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.5.31" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.5.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.31" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.31" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.31" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.31" ∷ word (σ ∷ υ ∷ ν ∷ θ ∷ ∙λ ∷ ί ∷ β ∷ ο ∷ ν ∷ τ ∷ ά ∷ []) "Mark.5.31" ∷ word (σ ∷ ε ∷ []) "Mark.5.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.31" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.31" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.5.31" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.5.31" ∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.32" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ο ∷ []) "Mark.5.32" ∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.32" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.32" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.5.32" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.32" ∷ word (ἡ ∷ []) "Mark.5.33" ∷ word (δ ∷ ὲ ∷ []) "Mark.5.33" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.5.33" ∷ word (φ ∷ ο ∷ β ∷ η ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.5.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.33" ∷ word (τ ∷ ρ ∷ έ ∷ μ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.5.33" ∷ word (ε ∷ ἰ ∷ δ ∷ υ ∷ ῖ ∷ α ∷ []) "Mark.5.33" ∷ word (ὃ ∷ []) "Mark.5.33" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.5.33" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.33" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.5.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.33" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.5.33" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.33" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.5.33" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.5.33" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.33" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.33" ∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "Mark.5.33" ∷ word (ὁ ∷ []) "Mark.5.34" ∷ word (δ ∷ ὲ ∷ []) "Mark.5.34" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.5.34" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.34" ∷ word (Θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ η ∷ ρ ∷ []) "Mark.5.34" ∷ word (ἡ ∷ []) "Mark.5.34" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Mark.5.34" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.34" ∷ word (σ ∷ έ ∷ σ ∷ ω ∷ κ ∷ έ ∷ ν ∷ []) "Mark.5.34" ∷ word (σ ∷ ε ∷ []) "Mark.5.34" ∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.5.34" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.34" ∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ ν ∷ []) "Mark.5.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.34" ∷ word (ἴ ∷ σ ∷ θ ∷ ι ∷ []) "Mark.5.34" ∷ word (ὑ ∷ γ ∷ ι ∷ ὴ ∷ ς ∷ []) "Mark.5.34" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.34" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.34" ∷ word (μ ∷ ά ∷ σ ∷ τ ∷ ι ∷ γ ∷ ό ∷ ς ∷ []) "Mark.5.34" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.34" ∷ word (Ἔ ∷ τ ∷ ι ∷ []) "Mark.5.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.35" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.5.35" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.35" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.5.35" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.35" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ο ∷ υ ∷ []) "Mark.5.35" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.5.35" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.5.35" ∷ word (Ἡ ∷ []) "Mark.5.35" ∷ word (θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ η ∷ ρ ∷ []) "Mark.5.35" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.5.35" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.5.35" ∷ word (τ ∷ ί ∷ []) "Mark.5.35" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.5.35" ∷ word (σ ∷ κ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.5.35" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.35" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.5.35" ∷ word (ὁ ∷ []) "Mark.5.36" ∷ word (δ ∷ ὲ ∷ []) "Mark.5.36" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.5.36" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.5.36" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.36" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.5.36" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.36" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.36" ∷ word (τ ∷ ῷ ∷ []) "Mark.5.36" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ῳ ∷ []) "Mark.5.36" ∷ word (Μ ∷ ὴ ∷ []) "Mark.5.36" ∷ word (φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ []) "Mark.5.36" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.36" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ ε ∷ []) "Mark.5.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.37" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.5.37" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.5.37" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Mark.5.37" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.37" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.5.37" ∷ word (ε ∷ ἰ ∷ []) "Mark.5.37" ∷ word (μ ∷ ὴ ∷ []) "Mark.5.37" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.37" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.5.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.37" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.5.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.37" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.5.37" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.37" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.5.37" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.5.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.38" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.5.38" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.38" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.5.38" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.38" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ώ ∷ γ ∷ ο ∷ υ ∷ []) "Mark.5.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38" ∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.5.38" ∷ word (θ ∷ ό ∷ ρ ∷ υ ∷ β ∷ ο ∷ ν ∷ []) "Mark.5.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.5.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.38" ∷ word (ἀ ∷ ∙λ ∷ α ∷ ∙λ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.5.38" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.5.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.39" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.5.39" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.39" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.39" ∷ word (Τ ∷ ί ∷ []) "Mark.5.39" ∷ word (θ ∷ ο ∷ ρ ∷ υ ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.5.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.39" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.5.39" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.39" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.5.39" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.5.39" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.5.39" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.39" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ ι ∷ []) "Mark.5.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.5.40" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.40" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.5.40" ∷ word (δ ∷ ὲ ∷ []) "Mark.5.40" ∷ word (ἐ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.5.40" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.5.40" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.5.40" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.5.40" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.5.40" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.40" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.5.40" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.5.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.5.40" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.5.40" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.5.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.40" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.5.40" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.5.40" ∷ word (ἦ ∷ ν ∷ []) "Mark.5.40" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.40" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.5.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.41" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.5.41" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.5.41" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.5.41" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.5.41" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.5.41" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.5.41" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.41" ∷ word (Τ ∷ α ∷ ∙λ ∷ ι ∷ θ ∷ α ∷ []) "Mark.5.41" ∷ word (κ ∷ ο ∷ υ ∷ μ ∷ []) "Mark.5.41" ∷ word (ὅ ∷ []) "Mark.5.41" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.5.41" ∷ word (μ ∷ ε ∷ θ ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.5.41" ∷ word (Τ ∷ ὸ ∷ []) "Mark.5.41" ∷ word (κ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.5.41" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.5.41" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.5.41" ∷ word (ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.5.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.42" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.42" ∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.5.42" ∷ word (τ ∷ ὸ ∷ []) "Mark.5.42" ∷ word (κ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.5.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.42" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ π ∷ ά ∷ τ ∷ ε ∷ ι ∷ []) "Mark.5.42" ∷ word (ἦ ∷ ν ∷ []) "Mark.5.42" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.5.42" ∷ word (ἐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.5.42" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.5.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.42" ∷ word (ἐ ∷ ξ ∷ έ ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.5.42" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.5.42" ∷ word (ἐ ∷ κ ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.5.42" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.5.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.43" ∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.5.43" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.5.43" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.5.43" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.5.43" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.5.43" ∷ word (γ ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.5.43" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.5.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.5.43" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.5.43" ∷ word (δ ∷ ο ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.5.43" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.5.43" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.5.43" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.1" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.1" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.1" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.1" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ί ∷ δ ∷ α ∷ []) "Mark.6.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.1" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.1" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.1" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.6.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.6.2" ∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.6.2" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.2" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.2" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.2" ∷ word (τ ∷ ῇ ∷ []) "Mark.6.2" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ῇ ∷ []) "Mark.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.2" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.6.2" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.2" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.2" ∷ word (Π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.2" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.6.2" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.6.2" ∷ word (ἡ ∷ []) "Mark.6.2" ∷ word (σ ∷ ο ∷ φ ∷ ί ∷ α ∷ []) "Mark.6.2" ∷ word (ἡ ∷ []) "Mark.6.2" ∷ word (δ ∷ ο ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.6.2" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.6.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.2" ∷ word (α ∷ ἱ ∷ []) "Mark.6.2" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.6.2" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ῦ ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.2" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.2" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.6.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.2" ∷ word (γ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.2" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.6.3" ∷ word (ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.6.3" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.3" ∷ word (ὁ ∷ []) "Mark.6.3" ∷ word (τ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.3" ∷ word (ὁ ∷ []) "Mark.6.3" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.6.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.3" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.6.3" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (Ἰ ∷ ω ∷ σ ∷ ῆ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.3" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.6.3" ∷ word (α ∷ ἱ ∷ []) "Mark.6.3" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.3" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.6.3" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.3" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.3" ∷ word (ἐ ∷ σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.3" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.4" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.4" ∷ word (ὁ ∷ []) "Mark.6.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.6.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.4" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.6.4" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.4" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Mark.6.4" ∷ word (ἄ ∷ τ ∷ ι ∷ μ ∷ ο ∷ ς ∷ []) "Mark.6.4" ∷ word (ε ∷ ἰ ∷ []) "Mark.6.4" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.4" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.4" ∷ word (τ ∷ ῇ ∷ []) "Mark.6.4" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ί ∷ δ ∷ ι ∷ []) "Mark.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.4" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.4" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.4" ∷ word (σ ∷ υ ∷ γ ∷ γ ∷ ε ∷ ν ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.4" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.4" ∷ word (τ ∷ ῇ ∷ []) "Mark.6.4" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.6.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.5" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.5" ∷ word (ἐ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.5" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.6.5" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.6.5" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.5" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.6.5" ∷ word (ε ∷ ἰ ∷ []) "Mark.6.5" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.5" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.5" ∷ word (ἀ ∷ ρ ∷ ρ ∷ ώ ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.5" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.6.5" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.6.5" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.6.5" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.6" ∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ ζ ∷ ε ∷ ν ∷ []) "Mark.6.6" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.6" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.6" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.6" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.6" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ῆ ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.6" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.6.6" ∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.6.6" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Mark.6.6" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.6.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.7" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.7" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.6.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.7" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.7" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.7" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.7" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.7" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.6.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.7" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.7" ∷ word (π ∷ ν ∷ ε ∷ υ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.7" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.8" ∷ word (π ∷ α ∷ ρ ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.6.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.8" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.8" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.6.8" ∷ word (α ∷ ἴ ∷ ρ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.8" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.6.8" ∷ word (ε ∷ ἰ ∷ []) "Mark.6.8" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.8" ∷ word (ῥ ∷ ά ∷ β ∷ δ ∷ ο ∷ ν ∷ []) "Mark.6.8" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.6.8" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.8" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.6.8" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.8" ∷ word (π ∷ ή ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.8" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.8" ∷ word (ζ ∷ ώ ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.8" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ό ∷ ν ∷ []) "Mark.6.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.6.9" ∷ word (ὑ ∷ π ∷ ο ∷ δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.9" ∷ word (σ ∷ α ∷ ν ∷ δ ∷ ά ∷ ∙λ ∷ ι ∷ α ∷ []) "Mark.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.9" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.9" ∷ word (ἐ ∷ ν ∷ δ ∷ ύ ∷ σ ∷ η ∷ σ ∷ θ ∷ ε ∷ []) "Mark.6.9" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.9" ∷ word (χ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Mark.6.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.10" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.10" ∷ word (Ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.10" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.6.10" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Mark.6.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.10" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.10" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.6.10" ∷ word (μ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.10" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.6.10" ∷ word (ἂ ∷ ν ∷ []) "Mark.6.10" ∷ word (ἐ ∷ ξ ∷ έ ∷ ∙λ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Mark.6.10" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.11" ∷ word (ὃ ∷ ς ∷ []) "Mark.6.11" ∷ word (ἂ ∷ ν ∷ []) "Mark.6.11" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.6.11" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.11" ∷ word (δ ∷ έ ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.6.11" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.6.11" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.6.11" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.6.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.11" ∷ word (ἐ ∷ κ ∷ τ ∷ ι ∷ ν ∷ ά ∷ ξ ∷ α ∷ τ ∷ ε ∷ []) "Mark.6.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.11" ∷ word (χ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.6.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.11" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.6.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.11" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Mark.6.11" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.6.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.11" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.12" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.12" ∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.12" ∷ word (μ ∷ ε ∷ τ ∷ α ∷ ν ∷ ο ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.13" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.6.13" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.6.13" ∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.13" ∷ word (ἤ ∷ ∙λ ∷ ε ∷ ι ∷ φ ∷ ο ∷ ν ∷ []) "Mark.6.13" ∷ word (ἐ ∷ ∙λ ∷ α ∷ ί ∷ ῳ ∷ []) "Mark.6.13" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.13" ∷ word (ἀ ∷ ρ ∷ ρ ∷ ώ ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.13" ∷ word (ἐ ∷ θ ∷ ε ∷ ρ ∷ ά ∷ π ∷ ε ∷ υ ∷ ο ∷ ν ∷ []) "Mark.6.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.14" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.14" ∷ word (ὁ ∷ []) "Mark.6.14" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.14" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.14" ∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.6.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.14" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.6.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.14" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Mark.6.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.14" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.14" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.14" ∷ word (ὁ ∷ []) "Mark.6.14" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.6.14" ∷ word (ἐ ∷ γ ∷ ή ∷ γ ∷ ε ∷ ρ ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.14" ∷ word (ἐ ∷ κ ∷ []) "Mark.6.14" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.6.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.14" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.14" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.6.14" ∷ word (ἐ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.14" ∷ word (α ∷ ἱ ∷ []) "Mark.6.14" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.6.14" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.14" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.6.15" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.15" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.15" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.6.15" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.6.15" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.15" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.15" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.15" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Mark.6.15" ∷ word (ὡ ∷ ς ∷ []) "Mark.6.15" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.6.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.15" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.15" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.6.16" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.16" ∷ word (ὁ ∷ []) "Mark.6.16" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.16" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.16" ∷ word (Ὃ ∷ ν ∷ []) "Mark.6.16" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.6.16" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ α ∷ []) "Mark.6.16" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.16" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.6.16" ∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Mark.6.16" ∷ word (Α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.17" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.17" ∷ word (ὁ ∷ []) "Mark.6.17" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.17" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.6.17" ∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.17" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.17" ∷ word (ἔ ∷ δ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.17" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.17" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῇ ∷ []) "Mark.6.17" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.17" ∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ ά ∷ δ ∷ α ∷ []) "Mark.6.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.17" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.6.17" ∷ word (Φ ∷ ι ∷ ∙λ ∷ ί ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.17" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "Mark.6.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.6.17" ∷ word (ἐ ∷ γ ∷ ά ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.17" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.6.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.18" ∷ word (ὁ ∷ []) "Mark.6.18" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.18" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.18" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ ῃ ∷ []) "Mark.6.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.18" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.6.18" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.6.18" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.6.18" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.18" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.18" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.6.18" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.18" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῦ ∷ []) "Mark.6.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.6.18" ∷ word (ἡ ∷ []) "Mark.6.19" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.19" ∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ ὰ ∷ ς ∷ []) "Mark.6.19" ∷ word (ἐ ∷ ν ∷ ε ∷ ῖ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.6.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.19" ∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.6.19" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.19" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.19" ∷ word (ἠ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.19" ∷ word (ὁ ∷ []) "Mark.6.20" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.20" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.20" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ε ∷ ῖ ∷ τ ∷ ο ∷ []) "Mark.6.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.20" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.20" ∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Mark.6.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.20" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Mark.6.20" ∷ word (δ ∷ ί ∷ κ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ τ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.6.20" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.6.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.6.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.20" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.6.20" ∷ word (ἠ ∷ π ∷ ό ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.6.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.20" ∷ word (ἡ ∷ δ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.6.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.20" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ε ∷ ν ∷ []) "Mark.6.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.21" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.21" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.6.21" ∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.6.21" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.6.21" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ η ∷ ς ∷ []) "Mark.6.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ σ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.21" ∷ word (δ ∷ ε ∷ ῖ ∷ π ∷ ν ∷ ο ∷ ν ∷ []) "Mark.6.21" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21" ∷ word (μ ∷ ε ∷ γ ∷ ι ∷ σ ∷ τ ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21" ∷ word (χ ∷ ι ∷ ∙λ ∷ ι ∷ ά ∷ ρ ∷ χ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.21" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.21" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.22" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.22" ∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.22" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.22" ∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ ά ∷ δ ∷ ο ∷ ς ∷ []) "Mark.6.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22" ∷ word (ὀ ∷ ρ ∷ χ ∷ η ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22" ∷ word (ἀ ∷ ρ ∷ ε ∷ σ ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.22" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.22" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ ῃ ∷ []) "Mark.6.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.22" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.22" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.22" ∷ word (ὁ ∷ []) "Mark.6.22" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.22" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.22" ∷ word (κ ∷ ο ∷ ρ ∷ α ∷ σ ∷ ί ∷ ῳ ∷ []) "Mark.6.22" ∷ word (Α ∷ ἴ ∷ τ ∷ η ∷ σ ∷ ό ∷ ν ∷ []) "Mark.6.22" ∷ word (μ ∷ ε ∷ []) "Mark.6.22" ∷ word (ὃ ∷ []) "Mark.6.22" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.6.22" ∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ ς ∷ []) "Mark.6.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.22" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Mark.6.22" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.6.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.23" ∷ word (ὤ ∷ μ ∷ ο ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.6.23" ∷ word (Ὅ ∷ []) "Mark.6.23" ∷ word (τ ∷ ι ∷ []) "Mark.6.23" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.6.23" ∷ word (μ ∷ ε ∷ []) "Mark.6.23" ∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.6.23" ∷ word (δ ∷ ώ ∷ σ ∷ ω ∷ []) "Mark.6.23" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.6.23" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.6.23" ∷ word (ἡ ∷ μ ∷ ί ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.23" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.23" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.6.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.24" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.6.24" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.24" ∷ word (τ ∷ ῇ ∷ []) "Mark.6.24" ∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.6.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.24" ∷ word (Τ ∷ ί ∷ []) "Mark.6.24" ∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Mark.6.24" ∷ word (ἡ ∷ []) "Mark.6.24" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.24" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.24" ∷ word (Τ ∷ ὴ ∷ ν ∷ []) "Mark.6.24" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.24" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.6.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.24" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.6.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.25" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.6.25" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.25" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.6.25" ∷ word (σ ∷ π ∷ ο ∷ υ ∷ δ ∷ ῆ ∷ ς ∷ []) "Mark.6.25" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.25" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.25" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Mark.6.25" ∷ word (ᾐ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.6.25" ∷ word (Θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Mark.6.25" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.25" ∷ word (ἐ ∷ ξ ∷ α ∷ υ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.25" ∷ word (δ ∷ ῷ ∷ ς ∷ []) "Mark.6.25" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.6.25" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.25" ∷ word (π ∷ ί ∷ ν ∷ α ∷ κ ∷ ι ∷ []) "Mark.6.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.25" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.25" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.6.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.25" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.26" ∷ word (π ∷ ε ∷ ρ ∷ ί ∷ ∙λ ∷ υ ∷ π ∷ ο ∷ ς ∷ []) "Mark.6.26" ∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.26" ∷ word (ὁ ∷ []) "Mark.6.26" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.26" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.6.26" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.26" ∷ word (ὅ ∷ ρ ∷ κ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.26" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.26" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.6.26" ∷ word (ἠ ∷ θ ∷ έ ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.26" ∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.6.26" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.6.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.27" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.27" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.6.27" ∷ word (ὁ ∷ []) "Mark.6.27" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.6.27" ∷ word (σ ∷ π ∷ ε ∷ κ ∷ ο ∷ υ ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Mark.6.27" ∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.6.27" ∷ word (ἐ ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ ι ∷ []) "Mark.6.27" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.27" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.27" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.6.27" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ε ∷ φ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.27" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.27" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.27" ∷ word (τ ∷ ῇ ∷ []) "Mark.6.27" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ῇ ∷ []) "Mark.6.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.28" ∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.6.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.28" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.6.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.28" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.28" ∷ word (π ∷ ί ∷ ν ∷ α ∷ κ ∷ ι ∷ []) "Mark.6.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.28" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.6.28" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.6.28" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.28" ∷ word (κ ∷ ο ∷ ρ ∷ α ∷ σ ∷ ί ∷ ῳ ∷ []) "Mark.6.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.28" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.28" ∷ word (κ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.6.28" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.6.28" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.6.28" ∷ word (τ ∷ ῇ ∷ []) "Mark.6.28" ∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.6.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.6.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.29" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.29" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.29" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.6.29" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.29" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.29" ∷ word (ἦ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.29" ∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Mark.6.29" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.29" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Mark.6.29" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.6.29" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.29" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ῳ ∷ []) "Mark.6.29" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.30" ∷ word (σ ∷ υ ∷ ν ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.30" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.30" ∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.6.30" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.30" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.30" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.6.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.30" ∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.6.30" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.30" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.30" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.6.30" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.30" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.6.30" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.6.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.31" ∷ word (Δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Mark.6.31" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.6.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Mark.6.31" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.6.31" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.31" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.31" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.6.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ σ ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Mark.6.31" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.31" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.31" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.31" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.6.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.31" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.31" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.6.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.31" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.6.31" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.31" ∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.6.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.32" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.32" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.32" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.32" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.6.32" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.32" ∷ word (ἔ ∷ ρ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.32" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.6.32" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.6.32" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.6.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.33" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33" ∷ word (ἐ ∷ π ∷ έ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.33" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ί ∷ []) "Mark.6.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33" ∷ word (π ∷ ε ∷ ζ ∷ ῇ ∷ []) "Mark.6.33" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.6.33" ∷ word (π ∷ α ∷ σ ∷ ῶ ∷ ν ∷ []) "Mark.6.33" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.33" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ν ∷ []) "Mark.6.33" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.33" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.6.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.33" ∷ word (π ∷ ρ ∷ ο ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.6.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.34" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.6.34" ∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.6.34" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ν ∷ []) "Mark.6.34" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.6.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.34" ∷ word (ἐ ∷ σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.6.34" ∷ word (ἐ ∷ π ∷ []) "Mark.6.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.34" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.34" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.34" ∷ word (ὡ ∷ ς ∷ []) "Mark.6.34" ∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Mark.6.34" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.34" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.34" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Mark.6.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.34" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.6.34" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.34" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.6.34" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.35" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.6.35" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.6.35" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.6.35" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.35" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.35" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.35" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.35" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.6.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.35" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.35" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.35" ∷ word (Ἔ ∷ ρ ∷ η ∷ μ ∷ ό ∷ ς ∷ []) "Mark.6.35" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.35" ∷ word (ὁ ∷ []) "Mark.6.35" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.6.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.35" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.6.35" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.6.35" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ή ∷ []) "Mark.6.35" ∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ υ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.6.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.6.36" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.36" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.36" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.36" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.36" ∷ word (κ ∷ ύ ∷ κ ∷ ∙λ ∷ ῳ ∷ []) "Mark.6.36" ∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.36" ∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.6.36" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.36" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.36" ∷ word (τ ∷ ί ∷ []) "Mark.6.36" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.36" ∷ word (ὁ ∷ []) "Mark.6.37" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.37" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.6.37" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.6.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.37" ∷ word (Δ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.6.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.37" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.6.37" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.37" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.6.37" ∷ word (Ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.37" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.6.37" ∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.6.37" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.6.37" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.37" ∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.6.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.37" ∷ word (φ ∷ α ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.37" ∷ word (ὁ ∷ []) "Mark.6.38" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.38" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.6.38" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.38" ∷ word (Π ∷ ό ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.38" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.38" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.38" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.38" ∷ word (ἴ ∷ δ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.6.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.38" ∷ word (γ ∷ ν ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.38" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.38" ∷ word (Π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Mark.6.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.38" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.38" ∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ α ∷ ς ∷ []) "Mark.6.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.39" ∷ word (ἐ ∷ π ∷ έ ∷ τ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.6.39" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.39" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ∙λ ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.39" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.39" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ ό ∷ σ ∷ ι ∷ α ∷ []) "Mark.6.39" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ ό ∷ σ ∷ ι ∷ α ∷ []) "Mark.6.39" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.39" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.39" ∷ word (χ ∷ ∙λ ∷ ω ∷ ρ ∷ ῷ ∷ []) "Mark.6.39" ∷ word (χ ∷ ό ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.6.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.40" ∷ word (ἀ ∷ ν ∷ έ ∷ π ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.40" ∷ word (π ∷ ρ ∷ α ∷ σ ∷ ι ∷ α ∷ ὶ ∷ []) "Mark.6.40" ∷ word (π ∷ ρ ∷ α ∷ σ ∷ ι ∷ α ∷ ὶ ∷ []) "Mark.6.40" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.6.40" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.40" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.6.40" ∷ word (π ∷ ε ∷ ν ∷ τ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.6.41" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41" ∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Mark.6.41" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.41" ∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ α ∷ ς ∷ []) "Mark.6.41" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.6.41" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.41" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.41" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.6.41" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ό ∷ γ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.41" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.6.41" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.41" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.6.41" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.41" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.41" ∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.41" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.41" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.41" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.6.41" ∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ α ∷ ς ∷ []) "Mark.6.41" ∷ word (ἐ ∷ μ ∷ έ ∷ ρ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.41" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.6.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.42" ∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.6.42" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.42" ∷ word (ἐ ∷ χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.43" ∷ word (ἦ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.43" ∷ word (κ ∷ ∙λ ∷ ά ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.6.43" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.6.43" ∷ word (κ ∷ ο ∷ φ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Mark.6.43" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.6.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.43" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.6.43" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.6.43" ∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ ω ∷ ν ∷ []) "Mark.6.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.44" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.44" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.44" ∷ word (φ ∷ α ∷ γ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.44" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.44" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.44" ∷ word (π ∷ ε ∷ ν ∷ τ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ί ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.6.44" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ ε ∷ ς ∷ []) "Mark.6.44" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.45" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.45" ∷ word (ἠ ∷ ν ∷ ά ∷ γ ∷ κ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.45" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.45" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.6.45" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.45" ∷ word (ἐ ∷ μ ∷ β ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.6.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.45" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.45" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.6.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.45" ∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.45" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.45" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.45" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.45" ∷ word (Β ∷ η ∷ θ ∷ σ ∷ α ∷ ϊ ∷ δ ∷ ά ∷ ν ∷ []) "Mark.6.45" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.6.45" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.45" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ ε ∷ ι ∷ []) "Mark.6.45" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.6.45" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.6.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.46" ∷ word (ἀ ∷ π ∷ ο ∷ τ ∷ α ∷ ξ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.46" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.46" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.6.46" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.46" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.46" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.6.46" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ ξ ∷ α ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.6.46" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.47" ∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.6.47" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.6.47" ∷ word (ἦ ∷ ν ∷ []) "Mark.6.47" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.47" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.6.47" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.47" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Mark.6.47" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.47" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.47" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.47" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Mark.6.47" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.47" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.47" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.6.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.48" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.6.48" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.48" ∷ word (β ∷ α ∷ σ ∷ α ∷ ν ∷ ι ∷ ζ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.6.48" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.48" ∷ word (τ ∷ ῷ ∷ []) "Mark.6.48" ∷ word (ἐ ∷ ∙λ ∷ α ∷ ύ ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.48" ∷ word (ἦ ∷ ν ∷ []) "Mark.6.48" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.48" ∷ word (ὁ ∷ []) "Mark.6.48" ∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.6.48" ∷ word (ἐ ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ ο ∷ ς ∷ []) "Mark.6.48" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.48" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.6.48" ∷ word (τ ∷ ε ∷ τ ∷ ά ∷ ρ ∷ τ ∷ η ∷ ν ∷ []) "Mark.6.48" ∷ word (φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ὴ ∷ ν ∷ []) "Mark.6.48" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.48" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.6.48" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.48" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.48" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.48" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.48" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.48" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.48" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.48" ∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.6.48" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.6.48" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.6.48" ∷ word (ο ∷ ἱ ∷ []) "Mark.6.49" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.49" ∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.49" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.49" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.49" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.6.49" ∷ word (θ ∷ α ∷ ∙λ ∷ ά ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.6.49" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Mark.6.49" ∷ word (ἔ ∷ δ ∷ ο ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.49" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.49" ∷ word (φ ∷ ά ∷ ν ∷ τ ∷ α ∷ σ ∷ μ ∷ ά ∷ []) "Mark.6.49" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.6.49" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.49" ∷ word (ἀ ∷ ν ∷ έ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.6.49" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.50" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.50" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.50" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.6.50" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.50" ∷ word (ἐ ∷ τ ∷ α ∷ ρ ∷ ά ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.50" ∷ word (ὁ ∷ []) "Mark.6.50" ∷ word (δ ∷ ὲ ∷ []) "Mark.6.50" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.50" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.50" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.6.50" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.50" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.50" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.6.50" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.50" ∷ word (Θ ∷ α ∷ ρ ∷ σ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.6.50" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Mark.6.50" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Mark.6.50" ∷ word (μ ∷ ὴ ∷ []) "Mark.6.50" ∷ word (φ ∷ ο ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.6.50" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.51" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ η ∷ []) "Mark.6.51" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.6.51" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.51" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.51" ∷ word (τ ∷ ὸ ∷ []) "Mark.6.51" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.6.51" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.51" ∷ word (ἐ ∷ κ ∷ ό ∷ π ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.6.51" ∷ word (ὁ ∷ []) "Mark.6.51" ∷ word (ἄ ∷ ν ∷ ε ∷ μ ∷ ο ∷ ς ∷ []) "Mark.6.51" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.51" ∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.6.51" ∷ word (ἐ ∷ κ ∷ []) "Mark.6.51" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.6.51" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.51" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.51" ∷ word (ἐ ∷ ξ ∷ ί ∷ σ ∷ τ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.51" ∷ word (ο ∷ ὐ ∷ []) "Mark.6.52" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.6.52" ∷ word (σ ∷ υ ∷ ν ∷ ῆ ∷ κ ∷ α ∷ ν ∷ []) "Mark.6.52" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.52" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.52" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.52" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.6.52" ∷ word (ἦ ∷ ν ∷ []) "Mark.6.52" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.52" ∷ word (ἡ ∷ []) "Mark.6.52" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ []) "Mark.6.52" ∷ word (π ∷ ε ∷ π ∷ ω ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.6.52" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.6.53" ∷ word (δ ∷ ι ∷ α ∷ π ∷ ε ∷ ρ ∷ ά ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.53" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.53" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.53" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.6.53" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.6.53" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.53" ∷ word (Γ ∷ ε ∷ ν ∷ ν ∷ η ∷ σ ∷ α ∷ ρ ∷ ὲ ∷ τ ∷ []) "Mark.6.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.53" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ω ∷ ρ ∷ μ ∷ ί ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.54" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.6.54" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.6.54" ∷ word (ἐ ∷ κ ∷ []) "Mark.6.54" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.54" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ο ∷ υ ∷ []) "Mark.6.54" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.6.54" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ν ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.6.54" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.54" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ έ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ο ∷ ν ∷ []) "Mark.6.55" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.6.55" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.6.55" ∷ word (χ ∷ ώ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.6.55" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.6.55" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.55" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.55" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.6.55" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.6.55" ∷ word (κ ∷ ρ ∷ α ∷ β ∷ ά ∷ τ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.6.55" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.55" ∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ς ∷ []) "Mark.6.55" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.55" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.6.55" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.55" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ο ∷ ν ∷ []) "Mark.6.55" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.6.55" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.6.55" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.56" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.6.56" ∷ word (ἂ ∷ ν ∷ []) "Mark.6.56" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.6.56" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.56" ∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.6.56" ∷ word (ἢ ∷ []) "Mark.6.56" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.56" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.6.56" ∷ word (ἢ ∷ []) "Mark.6.56" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.6.56" ∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.56" ∷ word (ἐ ∷ ν ∷ []) "Mark.6.56" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.6.56" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.6.56" ∷ word (ἐ ∷ τ ∷ ί ∷ θ ∷ ε ∷ σ ∷ α ∷ ν ∷ []) "Mark.6.56" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.6.56" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.6.56" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.56" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.6.56" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.6.56" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.6.56" ∷ word (κ ∷ ἂ ∷ ν ∷ []) "Mark.6.56" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56" ∷ word (κ ∷ ρ ∷ α ∷ σ ∷ π ∷ έ ∷ δ ∷ ο ∷ υ ∷ []) "Mark.6.56" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56" ∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.6.56" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56" ∷ word (ἅ ∷ ψ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.6.56" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.6.56" ∷ word (ὅ ∷ σ ∷ ο ∷ ι ∷ []) "Mark.6.56" ∷ word (ἂ ∷ ν ∷ []) "Mark.6.56" ∷ word (ἥ ∷ ψ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.56" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.6.56" ∷ word (ἐ ∷ σ ∷ ῴ ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.6.56" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.1" ∷ word (σ ∷ υ ∷ ν ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.7.1" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.1" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.1" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.1" ∷ word (κ ∷ α ∷ ί ∷ []) "Mark.7.1" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.7.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.1" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.7.1" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.1" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.1" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ο ∷ ∙λ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.7.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.2" ∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.2" ∷ word (τ ∷ ι ∷ ν ∷ ὰ ∷ ς ∷ []) "Mark.7.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.2" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.2" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.7.2" ∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.7.2" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ []) "Mark.7.2" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.2" ∷ word (ἀ ∷ ν ∷ ί ∷ π ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.7.2" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.2" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.7.2" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.3" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.7.3" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.3" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.3" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.3" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.3" ∷ word (μ ∷ ὴ ∷ []) "Mark.7.3" ∷ word (π ∷ υ ∷ γ ∷ μ ∷ ῇ ∷ []) "Mark.7.3" ∷ word (ν ∷ ί ∷ ψ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.3" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.7.3" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.7.3" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.3" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.3" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.3" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.3" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.7.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4" ∷ word (ἀ ∷ π ∷ []) "Mark.7.4" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ᾶ ∷ ς ∷ []) "Mark.7.4" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.4" ∷ word (μ ∷ ὴ ∷ []) "Mark.7.4" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.4" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.4" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.7.4" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.7.4" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.4" ∷ word (ἃ ∷ []) "Mark.7.4" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Mark.7.4" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.4" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.4" ∷ word (π ∷ ο ∷ τ ∷ η ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4" ∷ word (ξ ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.4" ∷ word (κ ∷ ∙λ ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.7.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.5" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.5" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.5" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.7.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.5" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.5" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.7.5" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.7.5" ∷ word (τ ∷ ί ∷ []) "Mark.7.5" ∷ word (ο ∷ ὐ ∷ []) "Mark.7.5" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.5" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ί ∷ []) "Mark.7.5" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.5" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.7.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.5" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.5" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.7.5" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.7.5" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.7.5" ∷ word (χ ∷ ε ∷ ρ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.7.5" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.5" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.5" ∷ word (ὁ ∷ []) "Mark.7.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.6" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.7.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.6" ∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.7.6" ∷ word (ἐ ∷ π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.7.6" ∷ word (Ἠ ∷ σ ∷ α ∷ ΐ ∷ α ∷ ς ∷ []) "Mark.7.6" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.7.6" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.7.6" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.6" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.6" ∷ word (ὡ ∷ ς ∷ []) "Mark.7.6" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.6" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.7.6" ∷ word (ὁ ∷ []) "Mark.7.6" ∷ word (∙λ ∷ α ∷ ὸ ∷ ς ∷ []) "Mark.7.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.6" ∷ word (χ ∷ ε ∷ ί ∷ ∙λ ∷ ε ∷ σ ∷ ί ∷ ν ∷ []) "Mark.7.6" ∷ word (μ ∷ ε ∷ []) "Mark.7.6" ∷ word (τ ∷ ι ∷ μ ∷ ᾷ ∷ []) "Mark.7.6" ∷ word (ἡ ∷ []) "Mark.7.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.6" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ []) "Mark.7.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.7.6" ∷ word (π ∷ ό ∷ ρ ∷ ρ ∷ ω ∷ []) "Mark.7.6" ∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.7.6" ∷ word (ἀ ∷ π ∷ []) "Mark.7.6" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.7.6" ∷ word (μ ∷ ά ∷ τ ∷ η ∷ ν ∷ []) "Mark.7.7" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.7" ∷ word (σ ∷ έ ∷ β ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "Mark.7.7" ∷ word (μ ∷ ε ∷ []) "Mark.7.7" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.7" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.7.7" ∷ word (ἐ ∷ ν ∷ τ ∷ ά ∷ ∙λ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.7.7" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.7.7" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.8" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.7.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.8" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.7.8" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.8" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.8" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.7.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.9" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.9" ∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.7.9" ∷ word (ἀ ∷ θ ∷ ε ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.9" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.7.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.9" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.7.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.9" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.9" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ δ ∷ ο ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.9" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.7.9" ∷ word (τ ∷ η ∷ ρ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Mark.7.9" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.7.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.7.10" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.7.10" ∷ word (Τ ∷ ί ∷ μ ∷ α ∷ []) "Mark.7.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.10" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.10" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.10" ∷ word (κ ∷ α ∷ ί ∷ []) "Mark.7.10" ∷ word (Ὁ ∷ []) "Mark.7.10" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ῶ ∷ ν ∷ []) "Mark.7.10" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10" ∷ word (ἢ ∷ []) "Mark.7.10" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.7.10" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Mark.7.10" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.7.10" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.7.11" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.7.11" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.11" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.7.11" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.7.11" ∷ word (τ ∷ ῷ ∷ []) "Mark.7.11" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.7.11" ∷ word (ἢ ∷ []) "Mark.7.11" ∷ word (τ ∷ ῇ ∷ []) "Mark.7.11" ∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ί ∷ []) "Mark.7.11" ∷ word (Κ ∷ ο ∷ ρ ∷ β ∷ ᾶ ∷ ν ∷ []) "Mark.7.11" ∷ word (ὅ ∷ []) "Mark.7.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.11" ∷ word (Δ ∷ ῶ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.7.11" ∷ word (ὃ ∷ []) "Mark.7.11" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.7.11" ∷ word (ἐ ∷ ξ ∷ []) "Mark.7.11" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.7.11" ∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ η ∷ θ ∷ ῇ ∷ ς ∷ []) "Mark.7.11" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.7.12" ∷ word (ἀ ∷ φ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.7.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.12" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.7.12" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.7.12" ∷ word (τ ∷ ῷ ∷ []) "Mark.7.12" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.7.12" ∷ word (ἢ ∷ []) "Mark.7.12" ∷ word (τ ∷ ῇ ∷ []) "Mark.7.12" ∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ί ∷ []) "Mark.7.12" ∷ word (ἀ ∷ κ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.13" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.13" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.7.13" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.13" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.7.13" ∷ word (τ ∷ ῇ ∷ []) "Mark.7.13" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ό ∷ σ ∷ ε ∷ ι ∷ []) "Mark.7.13" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.7.13" ∷ word (ᾗ ∷ []) "Mark.7.13" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ δ ∷ ώ ∷ κ ∷ α ∷ τ ∷ ε ∷ []) "Mark.7.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.13" ∷ word (π ∷ α ∷ ρ ∷ ό ∷ μ ∷ ο ∷ ι ∷ α ∷ []) "Mark.7.13" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.7.13" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.7.13" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.14" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.7.14" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.7.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.14" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.7.14" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.14" ∷ word (Ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ έ ∷ []) "Mark.7.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.7.14" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.14" ∷ word (σ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ ε ∷ []) "Mark.7.14" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.7.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.15" ∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.15" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.7.15" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.15" ∷ word (ὃ ∷ []) "Mark.7.15" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.15" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.7.15" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.7.15" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.7.15" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.15" ∷ word (ἐ ∷ κ ∷ []) "Mark.7.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.15" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.7.15" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ά ∷ []) "Mark.7.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.15" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.15" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.15" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.15" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.17" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.7.17" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.17" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.7.17" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.17" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.7.17" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.7.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.17" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.17" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.7.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.17" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.7.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.7.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.18" ∷ word (Ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.7.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.18" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.7.18" ∷ word (ἀ ∷ σ ∷ ύ ∷ ν ∷ ε ∷ τ ∷ ο ∷ ί ∷ []) "Mark.7.18" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.7.18" ∷ word (ο ∷ ὐ ∷ []) "Mark.7.18" ∷ word (ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.7.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.18" ∷ word (π ∷ ᾶ ∷ ν ∷ []) "Mark.7.18" ∷ word (τ ∷ ὸ ∷ []) "Mark.7.18" ∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.18" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.18" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.18" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.18" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.18" ∷ word (ο ∷ ὐ ∷ []) "Mark.7.18" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.18" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.7.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.19" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.19" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.19" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.19" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.7.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.19" ∷ word (κ ∷ ο ∷ ι ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.19" ∷ word (ἀ ∷ φ ∷ ε ∷ δ ∷ ρ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.7.19" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.19" ∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.7.19" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.19" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.19" ∷ word (β ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.7.19" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.20" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.7.20" ∷ word (Τ ∷ ὸ ∷ []) "Mark.7.20" ∷ word (ἐ ∷ κ ∷ []) "Mark.7.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.20" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.7.20" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.20" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ []) "Mark.7.20" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.7.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.20" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.20" ∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.21" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.7.21" ∷ word (ἐ ∷ κ ∷ []) "Mark.7.21" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.21" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.7.21" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.7.21" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.21" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.7.21" ∷ word (ο ∷ ἱ ∷ []) "Mark.7.21" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ ὶ ∷ []) "Mark.7.21" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.21" ∷ word (π ∷ ο ∷ ρ ∷ ν ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "Mark.7.21" ∷ word (κ ∷ ∙λ ∷ ο ∷ π ∷ α ∷ ί ∷ []) "Mark.7.21" ∷ word (φ ∷ ό ∷ ν ∷ ο ∷ ι ∷ []) "Mark.7.21" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ῖ ∷ α ∷ ι ∷ []) "Mark.7.22" ∷ word (π ∷ ∙λ ∷ ε ∷ ο ∷ ν ∷ ε ∷ ξ ∷ ί ∷ α ∷ ι ∷ []) "Mark.7.22" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ί ∷ α ∷ ι ∷ []) "Mark.7.22" ∷ word (δ ∷ ό ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.7.22" ∷ word (ἀ ∷ σ ∷ έ ∷ ∙λ ∷ γ ∷ ε ∷ ι ∷ α ∷ []) "Mark.7.22" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ὸ ∷ ς ∷ []) "Mark.7.22" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.7.22" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ []) "Mark.7.22" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ η ∷ φ ∷ α ∷ ν ∷ ί ∷ α ∷ []) "Mark.7.22" ∷ word (ἀ ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ []) "Mark.7.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.23" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.7.23" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.23" ∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ ὰ ∷ []) "Mark.7.23" ∷ word (ἔ ∷ σ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.23" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.7.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.23" ∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.7.23" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.23" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.7.23" ∷ word (Ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.24" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.24" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.7.24" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.24" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.24" ∷ word (ὅ ∷ ρ ∷ ι ∷ α ∷ []) "Mark.7.24" ∷ word (Τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.7.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.24" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.7.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.24" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.24" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Mark.7.24" ∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.7.24" ∷ word (γ ∷ ν ∷ ῶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.7.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.24" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.7.24" ∷ word (ἠ ∷ δ ∷ υ ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Mark.7.24" ∷ word (∙λ ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.24" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.7.25" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.7.25" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.7.25" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.7.25" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.7.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.25" ∷ word (ἧ ∷ ς ∷ []) "Mark.7.25" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.7.25" ∷ word (τ ∷ ὸ ∷ []) "Mark.7.25" ∷ word (θ ∷ υ ∷ γ ∷ ά ∷ τ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.25" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.7.25" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.7.25" ∷ word (ἀ ∷ κ ∷ ά ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.25" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.7.25" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ π ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "Mark.7.25" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.7.25" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.25" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Mark.7.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.25" ∷ word (ἡ ∷ []) "Mark.7.26" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.26" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.7.26" ∷ word (ἦ ∷ ν ∷ []) "Mark.7.26" ∷ word (Ἑ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ ί ∷ ς ∷ []) "Mark.7.26" ∷ word (Σ ∷ υ ∷ ρ ∷ ο ∷ φ ∷ ο ∷ ι ∷ ν ∷ ί ∷ κ ∷ ι ∷ σ ∷ σ ∷ α ∷ []) "Mark.7.26" ∷ word (τ ∷ ῷ ∷ []) "Mark.7.26" ∷ word (γ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "Mark.7.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.26" ∷ word (ἠ ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.7.26" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.26" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.26" ∷ word (τ ∷ ὸ ∷ []) "Mark.7.26" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.26" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.7.26" ∷ word (ἐ ∷ κ ∷ []) "Mark.7.26" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.26" ∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.7.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.7.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.27" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.7.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.7.27" ∷ word (Ἄ ∷ φ ∷ ε ∷ ς ∷ []) "Mark.7.27" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.27" ∷ word (χ ∷ ο ∷ ρ ∷ τ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.7.27" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.27" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.7.27" ∷ word (ο ∷ ὐ ∷ []) "Mark.7.27" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.7.27" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.7.27" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.27" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.27" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.27" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.27" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ω ∷ ν ∷ []) "Mark.7.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.27" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.27" ∷ word (κ ∷ υ ∷ ν ∷ α ∷ ρ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "Mark.7.27" ∷ word (β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.27" ∷ word (ἡ ∷ []) "Mark.7.28" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.28" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.7.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.28" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.7.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.28" ∷ word (Κ ∷ ύ ∷ ρ ∷ ι ∷ ε ∷ []) "Mark.7.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.28" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.28" ∷ word (κ ∷ υ ∷ ν ∷ ά ∷ ρ ∷ ι ∷ α ∷ []) "Mark.7.28" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.7.28" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.28" ∷ word (τ ∷ ρ ∷ α ∷ π ∷ έ ∷ ζ ∷ η ∷ ς ∷ []) "Mark.7.28" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.28" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.28" ∷ word (ψ ∷ ι ∷ χ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.28" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.29" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.7.29" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.7.29" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.7.29" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.7.29" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.29" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.7.29" ∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.7.29" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ ή ∷ ∙λ ∷ υ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.29" ∷ word (ἐ ∷ κ ∷ []) "Mark.7.29" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.29" ∷ word (θ ∷ υ ∷ γ ∷ α ∷ τ ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.7.29" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.7.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.7.29" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.30" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.7.30" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.30" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.30" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.7.30" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.7.30" ∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.7.30" ∷ word (τ ∷ ὸ ∷ []) "Mark.7.30" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.7.30" ∷ word (β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.7.30" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.7.30" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.30" ∷ word (κ ∷ ∙λ ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.7.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.30" ∷ word (τ ∷ ὸ ∷ []) "Mark.7.30" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.7.30" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ η ∷ ∙λ ∷ υ ∷ θ ∷ ό ∷ ς ∷ []) "Mark.7.30" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.7.31" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.7.31" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.7.31" ∷ word (ἐ ∷ κ ∷ []) "Mark.7.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.31" ∷ word (ὁ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.31" ∷ word (Τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.7.31" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.7.31" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.7.31" ∷ word (Σ ∷ ι ∷ δ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.7.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.31" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.31" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.7.31" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.31" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.7.31" ∷ word (ἀ ∷ ν ∷ ὰ ∷ []) "Mark.7.31" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.7.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.7.31" ∷ word (ὁ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.7.31" ∷ word (Δ ∷ ε ∷ κ ∷ α ∷ π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.7.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.32" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.32" ∷ word (κ ∷ ω ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.7.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.32" ∷ word (μ ∷ ο ∷ γ ∷ ι ∷ ∙λ ∷ ά ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.7.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.32" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.32" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.32" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.32" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ῇ ∷ []) "Mark.7.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.32" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.7.32" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ []) "Mark.7.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.33" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ α ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.7.33" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.7.33" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.7.33" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.7.33" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.7.33" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.7.33" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.7.33" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.33" ∷ word (δ ∷ α ∷ κ ∷ τ ∷ ύ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.7.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.33" ∷ word (τ ∷ ὰ ∷ []) "Mark.7.33" ∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.7.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.33" ∷ word (π ∷ τ ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.7.33" ∷ word (ἥ ∷ ψ ∷ α ∷ τ ∷ ο ∷ []) "Mark.7.33" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.33" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.7.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.34" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.7.34" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.7.34" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.7.34" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.7.34" ∷ word (ἐ ∷ σ ∷ τ ∷ έ ∷ ν ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.7.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.34" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.7.34" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.7.34" ∷ word (Ε ∷ φ ∷ φ ∷ α ∷ θ ∷ α ∷ []) "Mark.7.34" ∷ word (ὅ ∷ []) "Mark.7.34" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.7.34" ∷ word (Δ ∷ ι ∷ α ∷ ν ∷ ο ∷ ί ∷ χ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.7.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.35" ∷ word (ἠ ∷ ν ∷ ο ∷ ί ∷ γ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.7.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.35" ∷ word (α ∷ ἱ ∷ []) "Mark.7.35" ∷ word (ἀ ∷ κ ∷ ο ∷ α ∷ ί ∷ []) "Mark.7.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.35" ∷ word (ἐ ∷ ∙λ ∷ ύ ∷ θ ∷ η ∷ []) "Mark.7.35" ∷ word (ὁ ∷ []) "Mark.7.35" ∷ word (δ ∷ ε ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "Mark.7.35" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.7.35" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ η ∷ ς ∷ []) "Mark.7.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.7.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.35" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.7.35" ∷ word (ὀ ∷ ρ ∷ θ ∷ ῶ ∷ ς ∷ []) "Mark.7.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.36" ∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.7.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.36" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.7.36" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.7.36" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.7.36" ∷ word (ὅ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.7.36" ∷ word (δ ∷ ὲ ∷ []) "Mark.7.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.7.36" ∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.7.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὶ ∷ []) "Mark.7.36" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.7.36" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.7.36" ∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ σ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.7.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.37" ∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.7.37" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.7.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.7.37" ∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.7.37" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.7.37" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ί ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.7.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.37" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.37" ∷ word (κ ∷ ω ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.7.37" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ []) "Mark.7.37" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.7.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.7.37" ∷ word (ἀ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.7.37" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.7.37" ∷ word (Ἐ ∷ ν ∷ []) "Mark.8.1" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.8.1" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.8.1" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.8.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.8.1" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Mark.8.1" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.8.1" ∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.8.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.1" ∷ word (μ ∷ ὴ ∷ []) "Mark.8.1" ∷ word (ἐ ∷ χ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.1" ∷ word (τ ∷ ί ∷ []) "Mark.8.1" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.1" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.1" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.1" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.8.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.1" ∷ word (Σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.8.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.8.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.2" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.8.2" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.2" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.8.2" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.8.2" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.2" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.8.2" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.8.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.2" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.2" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.2" ∷ word (τ ∷ ί ∷ []) "Mark.8.2" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.3" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.8.3" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ω ∷ []) "Mark.8.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.3" ∷ word (ν ∷ ή ∷ σ ∷ τ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.8.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.3" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.8.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.3" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ υ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.3" ∷ word (ἐ ∷ ν ∷ []) "Mark.8.3" ∷ word (τ ∷ ῇ ∷ []) "Mark.8.3" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.8.3" ∷ word (κ ∷ α ∷ ί ∷ []) "Mark.8.3" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.8.3" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.3" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.8.3" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.3" ∷ word (ἥ ∷ κ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.4" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.8.4" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.4" ∷ word (ο ∷ ἱ ∷ []) "Mark.8.4" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.8.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.4" ∷ word (Π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.4" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.4" ∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ί ∷ []) "Mark.8.4" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.8.4" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.8.4" ∷ word (χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ α ∷ ι ∷ []) "Mark.8.4" ∷ word (ἄ ∷ ρ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.4" ∷ word (ἐ ∷ π ∷ []) "Mark.8.4" ∷ word (ἐ ∷ ρ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Mark.8.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.5" ∷ word (ἠ ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.8.5" ∷ word (Π ∷ ό ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.5" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.5" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.5" ∷ word (ο ∷ ἱ ∷ []) "Mark.8.5" ∷ word (δ ∷ ὲ ∷ []) "Mark.8.5" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.8.5" ∷ word (Ἑ ∷ π ∷ τ ∷ ά ∷ []) "Mark.8.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.8.6" ∷ word (τ ∷ ῷ ∷ []) "Mark.8.6" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.8.6" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ ε ∷ σ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.8.6" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.6" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.8.6" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.6" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.8.6" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.6" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.8.6" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ []) "Mark.8.6" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.6" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.8.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.6" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.8.6" ∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.6" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Mark.8.6" ∷ word (τ ∷ ῷ ∷ []) "Mark.8.6" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.8.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.7" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.8.7" ∷ word (ἰ ∷ χ ∷ θ ∷ ύ ∷ δ ∷ ι ∷ α ∷ []) "Mark.8.7" ∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ α ∷ []) "Mark.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.7" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.8.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.8.7" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.7" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.8.7" ∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ι ∷ θ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.8" ∷ word (ἔ ∷ φ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.8" ∷ word (ἐ ∷ χ ∷ ο ∷ ρ ∷ τ ∷ ά ∷ σ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.8.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.8" ∷ word (ἦ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.8.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.8.8" ∷ word (κ ∷ ∙λ ∷ α ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.8" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.8.8" ∷ word (σ ∷ π ∷ υ ∷ ρ ∷ ί ∷ δ ∷ α ∷ ς ∷ []) "Mark.8.8" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.8.9" ∷ word (δ ∷ ὲ ∷ []) "Mark.8.9" ∷ word (ὡ ∷ ς ∷ []) "Mark.8.9" ∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ί ∷ ∙λ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.8.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.9" ∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.8.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.10" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.8.10" ∷ word (ἐ ∷ μ ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.8.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.10" ∷ word (τ ∷ ὸ ∷ []) "Mark.8.10" ∷ word (π ∷ ∙λ ∷ ο ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.10" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.8.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.10" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.10" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.10" ∷ word (τ ∷ ὰ ∷ []) "Mark.8.10" ∷ word (μ ∷ έ ∷ ρ ∷ η ∷ []) "Mark.8.10" ∷ word (Δ ∷ α ∷ ∙λ ∷ μ ∷ α ∷ ν ∷ ο ∷ υ ∷ θ ∷ ά ∷ []) "Mark.8.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.11" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.8.11" ∷ word (ο ∷ ἱ ∷ []) "Mark.8.11" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.8.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.11" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.8.11" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.11" ∷ word (ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.11" ∷ word (π ∷ α ∷ ρ ∷ []) "Mark.8.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.11" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.11" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.8.11" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.11" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.8.11" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.11" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.8.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.12" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ε ∷ ν ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.8.12" ∷ word (τ ∷ ῷ ∷ []) "Mark.8.12" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.8.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.12" ∷ word (Τ ∷ ί ∷ []) "Mark.8.12" ∷ word (ἡ ∷ []) "Mark.8.12" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ []) "Mark.8.12" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.8.12" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ []) "Mark.8.12" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.12" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.8.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.8.12" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.8.12" ∷ word (ε ∷ ἰ ∷ []) "Mark.8.12" ∷ word (δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.12" ∷ word (τ ∷ ῇ ∷ []) "Mark.8.12" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ᾷ ∷ []) "Mark.8.12" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Mark.8.12" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.8.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.13" ∷ word (ἀ ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.13" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.8.13" ∷ word (ἐ ∷ μ ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.8.13" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.13" ∷ word (τ ∷ ὸ ∷ []) "Mark.8.13" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.8.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.14" ∷ word (ἐ ∷ π ∷ ε ∷ ∙λ ∷ ά ∷ θ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.8.14" ∷ word (∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.14" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.14" ∷ word (ε ∷ ἰ ∷ []) "Mark.8.14" ∷ word (μ ∷ ὴ ∷ []) "Mark.8.14" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.8.14" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.8.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.14" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.8.14" ∷ word (μ ∷ ε ∷ θ ∷ []) "Mark.8.14" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.14" ∷ word (ἐ ∷ ν ∷ []) "Mark.8.14" ∷ word (τ ∷ ῷ ∷ []) "Mark.8.14" ∷ word (π ∷ ∙λ ∷ ο ∷ ί ∷ ῳ ∷ []) "Mark.8.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.15" ∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.8.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.8.15" ∷ word (Ὁ ∷ ρ ∷ ᾶ ∷ τ ∷ ε ∷ []) "Mark.8.15" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.15" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.8.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.15" ∷ word (ζ ∷ ύ ∷ μ ∷ η ∷ ς ∷ []) "Mark.8.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.15" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.8.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.15" ∷ word (ζ ∷ ύ ∷ μ ∷ η ∷ ς ∷ []) "Mark.8.15" ∷ word (Ἡ ∷ ρ ∷ ῴ ∷ δ ∷ ο ∷ υ ∷ []) "Mark.8.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.16" ∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.8.16" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.8.16" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.16" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.16" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.16" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.17" ∷ word (γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.17" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.17" ∷ word (Τ ∷ ί ∷ []) "Mark.8.17" ∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.8.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.17" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.17" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.17" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.17" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.8.17" ∷ word (ν ∷ ο ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.8.17" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.8.17" ∷ word (σ ∷ υ ∷ ν ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.17" ∷ word (π ∷ ε ∷ π ∷ ω ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Mark.8.17" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.17" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.17" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.8.17" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.8.17" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.18" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.18" ∷ word (ο ∷ ὐ ∷ []) "Mark.8.18" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.18" ∷ word (ὦ ∷ τ ∷ α ∷ []) "Mark.8.18" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.18" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.8.18" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.18" ∷ word (ο ∷ ὐ ∷ []) "Mark.8.18" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.18" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.8.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.19" ∷ word (π ∷ έ ∷ ν ∷ τ ∷ ε ∷ []) "Mark.8.19" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ α ∷ []) "Mark.8.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.19" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.19" ∷ word (π ∷ ε ∷ ν ∷ τ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ι ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19" ∷ word (π ∷ ό ∷ σ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19" ∷ word (κ ∷ ο ∷ φ ∷ ί ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.19" ∷ word (κ ∷ ∙λ ∷ α ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.19" ∷ word (π ∷ ∙λ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.8.19" ∷ word (ἤ ∷ ρ ∷ α ∷ τ ∷ ε ∷ []) "Mark.8.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.19" ∷ word (Δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.8.19" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.8.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.20" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.8.20" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.20" ∷ word (τ ∷ ε ∷ τ ∷ ρ ∷ α ∷ κ ∷ ι ∷ σ ∷ χ ∷ ι ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.20" ∷ word (π ∷ ό ∷ σ ∷ ω ∷ ν ∷ []) "Mark.8.20" ∷ word (σ ∷ π ∷ υ ∷ ρ ∷ ί ∷ δ ∷ ω ∷ ν ∷ []) "Mark.8.20" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.8.20" ∷ word (κ ∷ ∙λ ∷ α ∷ σ ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.8.20" ∷ word (ἤ ∷ ρ ∷ α ∷ τ ∷ ε ∷ []) "Mark.8.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.20" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.20" ∷ word (Ἑ ∷ π ∷ τ ∷ ά ∷ []) "Mark.8.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.21" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.8.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.21" ∷ word (Ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.8.21" ∷ word (σ ∷ υ ∷ ν ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.21" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.22" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.22" ∷ word (Β ∷ η ∷ θ ∷ σ ∷ α ∷ ϊ ∷ δ ∷ ά ∷ ν ∷ []) "Mark.8.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.22" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.22" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.8.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.22" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.22" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.8.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.22" ∷ word (ἅ ∷ ψ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.23" ∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.23" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.8.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.23" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "Mark.8.23" ∷ word (ἐ ∷ ξ ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.8.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.23" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.8.23" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.23" ∷ word (κ ∷ ώ ∷ μ ∷ η ∷ ς ∷ []) "Mark.8.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.23" ∷ word (π ∷ τ ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.8.23" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.23" ∷ word (τ ∷ ὰ ∷ []) "Mark.8.23" ∷ word (ὄ ∷ μ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.8.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.23" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.23" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.8.23" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.8.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.23" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.23" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.8.23" ∷ word (Ε ∷ ἴ ∷ []) "Mark.8.23" ∷ word (τ ∷ ι ∷ []) "Mark.8.23" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.8.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.24" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.8.24" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.8.24" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ω ∷ []) "Mark.8.24" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.24" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.24" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.24" ∷ word (ὡ ∷ ς ∷ []) "Mark.8.24" ∷ word (δ ∷ έ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Mark.8.24" ∷ word (ὁ ∷ ρ ∷ ῶ ∷ []) "Mark.8.24" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.8.24" ∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "Mark.8.25" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.8.25" ∷ word (ἐ ∷ π ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.8.25" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.8.25" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.8.25" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.8.25" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.25" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.25" ∷ word (δ ∷ ι ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.8.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.25" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ α ∷ τ ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.8.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.25" ∷ word (ἐ ∷ ν ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ π ∷ ε ∷ ν ∷ []) "Mark.8.25" ∷ word (τ ∷ η ∷ ∙λ ∷ α ∷ υ ∷ γ ∷ ῶ ∷ ς ∷ []) "Mark.8.25" ∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ α ∷ []) "Mark.8.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.26" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.8.26" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.26" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.8.26" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.26" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.8.26" ∷ word (Μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.8.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.26" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.26" ∷ word (κ ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Mark.8.26" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ ς ∷ []) "Mark.8.26" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.27" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.8.27" ∷ word (ὁ ∷ []) "Mark.8.27" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.8.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.27" ∷ word (ο ∷ ἱ ∷ []) "Mark.8.27" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.8.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.27" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.8.27" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.8.27" ∷ word (κ ∷ ώ ∷ μ ∷ α ∷ ς ∷ []) "Mark.8.27" ∷ word (Κ ∷ α ∷ ι ∷ σ ∷ α ∷ ρ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.8.27" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.27" ∷ word (Φ ∷ ι ∷ ∙λ ∷ ί ∷ π ∷ π ∷ ο ∷ υ ∷ []) "Mark.8.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.27" ∷ word (ἐ ∷ ν ∷ []) "Mark.8.27" ∷ word (τ ∷ ῇ ∷ []) "Mark.8.27" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.8.27" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.27" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.27" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.8.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.27" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.8.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.27" ∷ word (Τ ∷ ί ∷ ν ∷ α ∷ []) "Mark.8.27" ∷ word (μ ∷ ε ∷ []) "Mark.8.27" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.27" ∷ word (ο ∷ ἱ ∷ []) "Mark.8.27" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ι ∷ []) "Mark.8.27" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.27" ∷ word (ο ∷ ἱ ∷ []) "Mark.8.28" ∷ word (δ ∷ ὲ ∷ []) "Mark.8.28" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.8.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.28" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.8.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.28" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.8.28" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.28" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.8.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.28" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.8.28" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.8.28" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.8.28" ∷ word (δ ∷ ὲ ∷ []) "Mark.8.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.28" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.8.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.28" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.8.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.29" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.8.29" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.8.29" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.8.29" ∷ word (Ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.29" ∷ word (δ ∷ ὲ ∷ []) "Mark.8.29" ∷ word (τ ∷ ί ∷ ν ∷ α ∷ []) "Mark.8.29" ∷ word (μ ∷ ε ∷ []) "Mark.8.29" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.8.29" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.29" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.29" ∷ word (ὁ ∷ []) "Mark.8.29" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.8.29" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.29" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.29" ∷ word (Σ ∷ ὺ ∷ []) "Mark.8.29" ∷ word (ε ∷ ἶ ∷ []) "Mark.8.29" ∷ word (ὁ ∷ []) "Mark.8.29" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.8.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.30" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.30" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.30" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.8.30" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.8.30" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.8.30" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.8.30" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.30" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.31" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.8.31" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.8.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.31" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.31" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.8.31" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.31" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.8.31" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.31" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.8.31" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.8.31" ∷ word (π ∷ α ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31" ∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ α ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.31" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.8.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.31" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.8.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.31" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.8.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.31" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.8.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.31" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.8.31" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.31" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.8.31" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.32" ∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.8.32" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.32" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.8.32" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.8.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.32" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ∙λ ∷ α ∷ β ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.32" ∷ word (ὁ ∷ []) "Mark.8.32" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.8.32" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.32" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.8.32" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ι ∷ μ ∷ ᾶ ∷ ν ∷ []) "Mark.8.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.8.32" ∷ word (ὁ ∷ []) "Mark.8.33" ∷ word (δ ∷ ὲ ∷ []) "Mark.8.33" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ α ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.8.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.33" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.8.33" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.33" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.8.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.33" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.8.33" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.8.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.33" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.8.33" ∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.8.33" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.8.33" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.8.33" ∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "Mark.8.33" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.8.33" ∷ word (ο ∷ ὐ ∷ []) "Mark.8.33" ∷ word (φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.8.33" ∷ word (τ ∷ ὰ ∷ []) "Mark.8.33" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.33" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.8.33" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.8.33" ∷ word (τ ∷ ὰ ∷ []) "Mark.8.33" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.33" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.8.33" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.8.34" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.8.34" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.34" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.8.34" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.8.34" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.34" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.8.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.34" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.8.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.8.34" ∷ word (Ε ∷ ἴ ∷ []) "Mark.8.34" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.8.34" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.8.34" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.8.34" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.8.34" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.8.34" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ η ∷ σ ∷ ά ∷ σ ∷ θ ∷ ω ∷ []) "Mark.8.34" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.34" ∷ word (ἀ ∷ ρ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.8.34" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.34" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.8.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.34" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "Mark.8.34" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.8.34" ∷ word (ὃ ∷ ς ∷ []) "Mark.8.35" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.35" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.8.35" ∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Mark.8.35" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.35" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.8.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.35" ∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.8.35" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.8.35" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.8.35" ∷ word (ὃ ∷ ς ∷ []) "Mark.8.35" ∷ word (δ ∷ []) "Mark.8.35" ∷ word (ἂ ∷ ν ∷ []) "Mark.8.35" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.8.35" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.35" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.8.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.35" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.8.35" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.8.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.35" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.35" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.8.35" ∷ word (σ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.8.35" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.8.35" ∷ word (τ ∷ ί ∷ []) "Mark.8.36" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.36" ∷ word (ὠ ∷ φ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.8.36" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.8.36" ∷ word (κ ∷ ε ∷ ρ ∷ δ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.8.36" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.8.36" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.8.36" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.8.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.36" ∷ word (ζ ∷ η ∷ μ ∷ ι ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.8.36" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.8.36" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.8.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.36" ∷ word (τ ∷ ί ∷ []) "Mark.8.37" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.37" ∷ word (δ ∷ ο ∷ ῖ ∷ []) "Mark.8.37" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.8.37" ∷ word (ἀ ∷ ν ∷ τ ∷ ά ∷ ∙λ ∷ ∙λ ∷ α ∷ γ ∷ μ ∷ α ∷ []) "Mark.8.37" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.8.37" ∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.8.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.37" ∷ word (ὃ ∷ ς ∷ []) "Mark.8.38" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.8.38" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.8.38" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ῇ ∷ []) "Mark.8.38" ∷ word (μ ∷ ε ∷ []) "Mark.8.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.38" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.38" ∷ word (ἐ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.8.38" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.8.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.8.38" ∷ word (τ ∷ ῇ ∷ []) "Mark.8.38" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ᾷ ∷ []) "Mark.8.38" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Mark.8.38" ∷ word (τ ∷ ῇ ∷ []) "Mark.8.38" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ α ∷ ∙λ ∷ ί ∷ δ ∷ ι ∷ []) "Mark.8.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.38" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῷ ∷ []) "Mark.8.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.8.38" ∷ word (ὁ ∷ []) "Mark.8.38" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.8.38" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.38" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.8.38" ∷ word (ἐ ∷ π ∷ α ∷ ι ∷ σ ∷ χ ∷ υ ∷ ν ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.8.38" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.8.38" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.8.38" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.8.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.8.38" ∷ word (τ ∷ ῇ ∷ []) "Mark.8.38" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "Mark.8.38" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.8.38" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.8.38" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.8.38" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.8.38" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.38" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.8.38" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.8.38" ∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.8.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.1" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.9.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.1" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.9.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.9.1" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.1" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.1" ∷ word (ε ∷ ἰ ∷ σ ∷ ί ∷ ν ∷ []) "Mark.9.1" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.9.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.1" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.9.1" ∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.1" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.9.1" ∷ word (ο ∷ ὐ ∷ []) "Mark.9.1" ∷ word (μ ∷ ὴ ∷ []) "Mark.9.1" ∷ word (γ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.1" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.9.1" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.9.1" ∷ word (ἂ ∷ ν ∷ []) "Mark.9.1" ∷ word (ἴ ∷ δ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.1" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.1" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.1" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.9.1" ∷ word (ἐ ∷ ∙λ ∷ η ∷ ∙λ ∷ υ ∷ θ ∷ υ ∷ ῖ ∷ α ∷ ν ∷ []) "Mark.9.1" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.1" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ []) "Mark.9.1" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.2" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.9.2" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.2" ∷ word (ἓ ∷ ξ ∷ []) "Mark.9.2" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.9.2" ∷ word (ὁ ∷ []) "Mark.9.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.2" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.2" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2" ∷ word (ἀ ∷ ν ∷ α ∷ φ ∷ έ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.9.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.2" ∷ word (ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.9.2" ∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.2" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.9.2" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.2" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "Mark.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.2" ∷ word (μ ∷ ε ∷ τ ∷ ε ∷ μ ∷ ο ∷ ρ ∷ φ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.9.2" ∷ word (ἔ ∷ μ ∷ π ∷ ρ ∷ ο ∷ σ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.3" ∷ word (τ ∷ ὰ ∷ []) "Mark.9.3" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.9.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.3" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.3" ∷ word (σ ∷ τ ∷ ί ∷ ∙λ ∷ β ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.3" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ὰ ∷ []) "Mark.9.3" ∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.3" ∷ word (ο ∷ ἷ ∷ α ∷ []) "Mark.9.3" ∷ word (γ ∷ ν ∷ α ∷ φ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.9.3" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.3" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.9.3" ∷ word (ο ∷ ὐ ∷ []) "Mark.9.3" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.3" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.9.3" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ᾶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.4" ∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "Mark.9.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.4" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.4" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.9.4" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ε ∷ ῖ ∷ []) "Mark.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.4" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.4" ∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.4" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.4" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.9.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.5" ∷ word (ὁ ∷ []) "Mark.9.5" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.9.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.9.5" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.9.5" ∷ word (Ῥ ∷ α ∷ β ∷ β ∷ ί ∷ []) "Mark.9.5" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.5" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.5" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.5" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.9.5" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.9.5" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.5" ∷ word (σ ∷ κ ∷ η ∷ ν ∷ ά ∷ ς ∷ []) "Mark.9.5" ∷ word (σ ∷ ο ∷ ὶ ∷ []) "Mark.9.5" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ε ∷ ῖ ∷ []) "Mark.9.5" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.5" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "Mark.9.5" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.5" ∷ word (ο ∷ ὐ ∷ []) "Mark.9.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.6" ∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ []) "Mark.9.6" ∷ word (τ ∷ ί ∷ []) "Mark.9.6" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῇ ∷ []) "Mark.9.6" ∷ word (ἔ ∷ κ ∷ φ ∷ ο ∷ β ∷ ο ∷ ι ∷ []) "Mark.9.6" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.6" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.7" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.7" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ []) "Mark.9.7" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ κ ∷ ι ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.9.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.7" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.7" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ []) "Mark.9.7" ∷ word (ἐ ∷ κ ∷ []) "Mark.9.7" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.7" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.9.7" ∷ word (Ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.9.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.7" ∷ word (ὁ ∷ []) "Mark.9.7" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.9.7" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.7" ∷ word (ὁ ∷ []) "Mark.9.7" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Mark.9.7" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.8" ∷ word (ἐ ∷ ξ ∷ ά ∷ π ∷ ι ∷ ν ∷ α ∷ []) "Mark.9.8" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.9.8" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.9.8" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ α ∷ []) "Mark.9.8" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.9.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.9.8" ∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.9.8" ∷ word (μ ∷ ε ∷ θ ∷ []) "Mark.9.8" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.8" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.9" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ι ∷ ν ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.9" ∷ word (ἐ ∷ κ ∷ []) "Mark.9.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.9" ∷ word (ὄ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.9.9" ∷ word (δ ∷ ι ∷ ε ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.9.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.9" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.9" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.9.9" ∷ word (ἃ ∷ []) "Mark.9.9" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.9.9" ∷ word (δ ∷ ι ∷ η ∷ γ ∷ ή ∷ σ ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.9" ∷ word (ε ∷ ἰ ∷ []) "Mark.9.9" ∷ word (μ ∷ ὴ ∷ []) "Mark.9.9" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.9.9" ∷ word (ὁ ∷ []) "Mark.9.9" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.9.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.9" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.9" ∷ word (ἐ ∷ κ ∷ []) "Mark.9.9" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.9.9" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῇ ∷ []) "Mark.9.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.10" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.10" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.9.10" ∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.10" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.10" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.10" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.10" ∷ word (τ ∷ ί ∷ []) "Mark.9.10" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.10" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.10" ∷ word (ἐ ∷ κ ∷ []) "Mark.9.10" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.9.10" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.11" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.11" ∷ word (Ὅ ∷ τ ∷ ι ∷ []) "Mark.9.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.11" ∷ word (ο ∷ ἱ ∷ []) "Mark.9.11" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.11" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.11" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.9.11" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.11" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.9.11" ∷ word (ὁ ∷ []) "Mark.9.12" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.12" ∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.9.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.12" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.12" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.9.12" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.9.12" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.9.12" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ α ∷ θ ∷ ι ∷ σ ∷ τ ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.9.12" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.12" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.9.12" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.12" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.12" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.9.12" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.12" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.12" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.12" ∷ word (π ∷ ά ∷ θ ∷ ῃ ∷ []) "Mark.9.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.12" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ δ ∷ ε ∷ ν ∷ η ∷ θ ∷ ῇ ∷ []) "Mark.9.12" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.9.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.13" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.13" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.13" ∷ word (ἐ ∷ ∙λ ∷ ή ∷ ∙λ ∷ υ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.13" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.13" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.9.13" ∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.13" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.9.13" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.13" ∷ word (ἐ ∷ π ∷ []) "Mark.9.13" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.13" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.14" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.14" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.14" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.9.14" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.9.14" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.14" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ν ∷ []) "Mark.9.14" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.9.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.14" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.14" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.9.14" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.15" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.9.15" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.9.15" ∷ word (ὁ ∷ []) "Mark.9.15" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.9.15" ∷ word (ἰ ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.15" ∷ word (ἐ ∷ ξ ∷ ε ∷ θ ∷ α ∷ μ ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.15" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ τ ∷ ρ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.15" ∷ word (ἠ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.15" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.16" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.16" ∷ word (Τ ∷ ί ∷ []) "Mark.9.16" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.9.16" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.16" ∷ word (α ∷ ὑ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.17" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.9.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.17" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.9.17" ∷ word (ἐ ∷ κ ∷ []) "Mark.9.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.17" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.9.17" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.9.17" ∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ []) "Mark.9.17" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.17" ∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Mark.9.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.17" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.17" ∷ word (σ ∷ έ ∷ []) "Mark.9.17" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.17" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.9.17" ∷ word (ἄ ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.18" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.18" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.9.18" ∷ word (ῥ ∷ ή ∷ σ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.9.18" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18" ∷ word (ἀ ∷ φ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "Mark.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18" ∷ word (τ ∷ ρ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ []) "Mark.9.18" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.18" ∷ word (ὀ ∷ δ ∷ ό ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18" ∷ word (ξ ∷ η ∷ ρ ∷ α ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ []) "Mark.9.18" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.18" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.9.18" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.18" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.18" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.18" ∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.18" ∷ word (ὁ ∷ []) "Mark.9.19" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.19" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.9.19" ∷ word (Ὦ ∷ []) "Mark.9.19" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ []) "Mark.9.19" ∷ word (ἄ ∷ π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.19" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.9.19" ∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.9.19" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.19" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.19" ∷ word (ἔ ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.9.19" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.9.19" ∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.9.19" ∷ word (ἀ ∷ ν ∷ έ ∷ ξ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.9.19" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.9.19" ∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.19" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.19" ∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.9.19" ∷ word (μ ∷ ε ∷ []) "Mark.9.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.20" ∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ ν ∷ []) "Mark.9.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.20" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.20" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.20" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.9.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.20" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.20" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.9.20" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.9.20" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ π ∷ ά ∷ ρ ∷ α ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.9.20" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.20" ∷ word (π ∷ ε ∷ σ ∷ ὼ ∷ ν ∷ []) "Mark.9.20" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.20" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.20" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.9.20" ∷ word (ἐ ∷ κ ∷ υ ∷ ∙λ ∷ ί ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.20" ∷ word (ἀ ∷ φ ∷ ρ ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.9.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.21" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.21" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.21" ∷ word (Π ∷ ό ∷ σ ∷ ο ∷ ς ∷ []) "Mark.9.21" ∷ word (χ ∷ ρ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.21" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.9.21" ∷ word (ὡ ∷ ς ∷ []) "Mark.9.21" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.9.21" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.9.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.21" ∷ word (ὁ ∷ []) "Mark.9.21" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.21" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.21" ∷ word (Ἐ ∷ κ ∷ []) "Mark.9.21" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ι ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.22" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ς ∷ []) "Mark.9.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.22" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Mark.9.22" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.22" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.9.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.22" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.22" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ α ∷ []) "Mark.9.22" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.22" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ῃ ∷ []) "Mark.9.22" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.22" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.9.22" ∷ word (ε ∷ ἴ ∷ []) "Mark.9.22" ∷ word (τ ∷ ι ∷ []) "Mark.9.22" ∷ word (δ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Mark.9.22" ∷ word (β ∷ ο ∷ ή ∷ θ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Mark.9.22" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.22" ∷ word (σ ∷ π ∷ ∙λ ∷ α ∷ γ ∷ χ ∷ ν ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.22" ∷ word (ἐ ∷ φ ∷ []) "Mark.9.22" ∷ word (ἡ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.22" ∷ word (ὁ ∷ []) "Mark.9.23" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.23" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.23" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.23" ∷ word (Τ ∷ ὸ ∷ []) "Mark.9.23" ∷ word (Ε ∷ ἰ ∷ []) "Mark.9.23" ∷ word (δ ∷ ύ ∷ ν ∷ ῃ ∷ []) "Mark.9.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.23" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.9.23" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.23" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "Mark.9.23" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.9.24" ∷ word (κ ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.9.24" ∷ word (ὁ ∷ []) "Mark.9.24" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Mark.9.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.24" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.9.24" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.9.24" ∷ word (Π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ω ∷ []) "Mark.9.24" ∷ word (β ∷ ο ∷ ή ∷ θ ∷ ε ∷ ι ∷ []) "Mark.9.24" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.24" ∷ word (τ ∷ ῇ ∷ []) "Mark.9.24" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "Mark.9.24" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.9.25" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.25" ∷ word (ὁ ∷ []) "Mark.9.25" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.25" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.25" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.9.25" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.9.25" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.25" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.25" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.9.25" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.25" ∷ word (ἀ ∷ κ ∷ α ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "Mark.9.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.9.25" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.25" ∷ word (Τ ∷ ὸ ∷ []) "Mark.9.25" ∷ word (ἄ ∷ ∙λ ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.25" ∷ word (κ ∷ ω ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.9.25" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.9.25" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.9.25" ∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ά ∷ σ ∷ σ ∷ ω ∷ []) "Mark.9.25" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.9.25" ∷ word (ἔ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ []) "Mark.9.25" ∷ word (ἐ ∷ ξ ∷ []) "Mark.9.25" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.25" ∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.9.25" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ ς ∷ []) "Mark.9.25" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.25" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.26" ∷ word (κ ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.9.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.26" ∷ word (σ ∷ π ∷ α ∷ ρ ∷ ά ∷ ξ ∷ α ∷ ς ∷ []) "Mark.9.26" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.26" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.9.26" ∷ word (ὡ ∷ σ ∷ ε ∷ ὶ ∷ []) "Mark.9.26" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.26" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.9.26" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.26" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.9.26" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.26" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.9.26" ∷ word (ὁ ∷ []) "Mark.9.27" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.27" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.27" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.9.27" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.27" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.27" ∷ word (ἤ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.9.27" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.27" ∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ τ ∷ η ∷ []) "Mark.9.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.28" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.28" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.28" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.9.28" ∷ word (ο ∷ ἱ ∷ []) "Mark.9.28" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.9.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.28" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.9.28" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.28" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.28" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.28" ∷ word (Ὅ ∷ τ ∷ ι ∷ []) "Mark.9.28" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.28" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.28" ∷ word (ἠ ∷ δ ∷ υ ∷ ν ∷ ή ∷ θ ∷ η ∷ μ ∷ ε ∷ ν ∷ []) "Mark.9.28" ∷ word (ἐ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.28" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ []) "Mark.9.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.29" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.29" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.29" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.9.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.29" ∷ word (γ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.29" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.29" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.9.29" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.29" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.29" ∷ word (ε ∷ ἰ ∷ []) "Mark.9.29" ∷ word (μ ∷ ὴ ∷ []) "Mark.9.29" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.29" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῇ ∷ []) "Mark.9.29" ∷ word (Κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.9.30" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.9.30" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.30" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.9.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.9.30" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.9.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.30" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.30" ∷ word (ἤ ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.9.30" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.9.30" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.9.30" ∷ word (γ ∷ ν ∷ ο ∷ ῖ ∷ []) "Mark.9.30" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.9.31" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.31" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.31" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.9.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.31" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.9.31" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.31" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.31" ∷ word (Ὁ ∷ []) "Mark.9.31" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.9.31" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.31" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.31" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.31" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.31" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.31" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.9.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.31" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.9.31" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.31" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ α ∷ ν ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.31" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.9.31" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.9.31" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.31" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.9.32" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.32" ∷ word (ἠ ∷ γ ∷ ν ∷ ό ∷ ο ∷ υ ∷ ν ∷ []) "Mark.9.32" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.32" ∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "Mark.9.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.32" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.9.32" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.9.32" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.9.32" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.33" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.9.33" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.33" ∷ word (Κ ∷ α ∷ φ ∷ α ∷ ρ ∷ ν ∷ α ∷ ο ∷ ύ ∷ μ ∷ []) "Mark.9.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.33" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.33" ∷ word (τ ∷ ῇ ∷ []) "Mark.9.33" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.9.33" ∷ word (γ ∷ ε ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.33" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.9.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.33" ∷ word (Τ ∷ ί ∷ []) "Mark.9.33" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.33" ∷ word (τ ∷ ῇ ∷ []) "Mark.9.33" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.9.33" ∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.9.33" ∷ word (ο ∷ ἱ ∷ []) "Mark.9.34" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.34" ∷ word (ἐ ∷ σ ∷ ι ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.9.34" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.9.34" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.9.34" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.34" ∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ έ ∷ χ ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.34" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.34" ∷ word (τ ∷ ῇ ∷ []) "Mark.9.34" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.9.34" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.9.34" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.9.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.35" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Mark.9.35" ∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.35" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.35" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.9.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.35" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.9.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.35" ∷ word (Ε ∷ ἴ ∷ []) "Mark.9.35" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.9.35" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.9.35" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.35" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.35" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.35" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.35" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.35" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.35" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.36" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.9.36" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.9.36" ∷ word (ἔ ∷ σ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.9.36" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.36" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.36" ∷ word (μ ∷ έ ∷ σ ∷ ῳ ∷ []) "Mark.9.36" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.36" ∷ word (ἐ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.9.36" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.36" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.36" ∷ word (Ὃ ∷ ς ∷ []) "Mark.9.37" ∷ word (ἂ ∷ ν ∷ []) "Mark.9.37" ∷ word (ἓ ∷ ν ∷ []) "Mark.9.37" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.37" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.37" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.9.37" ∷ word (δ ∷ έ ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.37" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.37" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.9.37" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.37" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.9.37" ∷ word (δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.37" ∷ word (ὃ ∷ ς ∷ []) "Mark.9.37" ∷ word (ἂ ∷ ν ∷ []) "Mark.9.37" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.9.37" ∷ word (δ ∷ έ ∷ χ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.37" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.9.37" ∷ word (δ ∷ έ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.37" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.9.37" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.37" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ά ∷ []) "Mark.9.37" ∷ word (μ ∷ ε ∷ []) "Mark.9.37" ∷ word (Ἔ ∷ φ ∷ η ∷ []) "Mark.9.38" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.38" ∷ word (ὁ ∷ []) "Mark.9.38" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.9.38" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.9.38" ∷ word (ε ∷ ἴ ∷ δ ∷ ο ∷ μ ∷ έ ∷ ν ∷ []) "Mark.9.38" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "Mark.9.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.38" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.38" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.9.38" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.38" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.38" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.9.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.38" ∷ word (ἐ ∷ κ ∷ ω ∷ ∙λ ∷ ύ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.9.38" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.38" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.38" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.38" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.9.38" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.38" ∷ word (ὁ ∷ []) "Mark.9.39" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.39" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.9.39" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.9.39" ∷ word (Μ ∷ ὴ ∷ []) "Mark.9.39" ∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.39" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.39" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.9.39" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.9.39" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.39" ∷ word (ὃ ∷ ς ∷ []) "Mark.9.39" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.9.39" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.9.39" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.9.39" ∷ word (τ ∷ ῷ ∷ []) "Mark.9.39" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.9.39" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.9.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.39" ∷ word (δ ∷ υ ∷ ν ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.39" ∷ word (τ ∷ α ∷ χ ∷ ὺ ∷ []) "Mark.9.39" ∷ word (κ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ῆ ∷ σ ∷ α ∷ ί ∷ []) "Mark.9.39" ∷ word (μ ∷ ε ∷ []) "Mark.9.39" ∷ word (ὃ ∷ ς ∷ []) "Mark.9.40" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.40" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.9.40" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.40" ∷ word (κ ∷ α ∷ θ ∷ []) "Mark.9.40" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.9.40" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Mark.9.40" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.9.40" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.40" ∷ word (Ὃ ∷ ς ∷ []) "Mark.9.41" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.41" ∷ word (ἂ ∷ ν ∷ []) "Mark.9.41" ∷ word (π ∷ ο ∷ τ ∷ ί ∷ σ ∷ ῃ ∷ []) "Mark.9.41" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.9.41" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.9.41" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.9.41" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.41" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.9.41" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.41" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.41" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.9.41" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.9.41" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.9.41" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.9.41" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.9.41" ∷ word (ο ∷ ὐ ∷ []) "Mark.9.41" ∷ word (μ ∷ ὴ ∷ []) "Mark.9.41" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ῃ ∷ []) "Mark.9.41" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.41" ∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ὸ ∷ ν ∷ []) "Mark.9.41" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.41" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.42" ∷ word (ὃ ∷ ς ∷ []) "Mark.9.42" ∷ word (ἂ ∷ ν ∷ []) "Mark.9.42" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ σ ∷ ῃ ∷ []) "Mark.9.42" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.9.42" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.42" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.9.42" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.42" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.9.42" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.9.42" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.42" ∷ word (ἐ ∷ μ ∷ έ ∷ []) "Mark.9.42" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.42" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.42" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.9.42" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.42" ∷ word (ε ∷ ἰ ∷ []) "Mark.9.42" ∷ word (π ∷ ε ∷ ρ ∷ ί ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.42" ∷ word (μ ∷ ύ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.9.42" ∷ word (ὀ ∷ ν ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "Mark.9.42" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.9.42" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.9.42" ∷ word (τ ∷ ρ ∷ ά ∷ χ ∷ η ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.42" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.9.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.42" ∷ word (β ∷ έ ∷ β ∷ ∙λ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.42" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.42" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.42" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.9.42" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.9.43" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.43" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Mark.9.43" ∷ word (σ ∷ ε ∷ []) "Mark.9.43" ∷ word (ἡ ∷ []) "Mark.9.43" ∷ word (χ ∷ ε ∷ ί ∷ ρ ∷ []) "Mark.9.43" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.43" ∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ο ∷ ψ ∷ ο ∷ ν ∷ []) "Mark.9.43" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.9.43" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.43" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.9.43" ∷ word (σ ∷ ε ∷ []) "Mark.9.43" ∷ word (κ ∷ υ ∷ ∙λ ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.43" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.43" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.43" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.43" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.9.43" ∷ word (ἢ ∷ []) "Mark.9.43" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.9.43" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.9.43" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.9.43" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.43" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.43" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.43" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.43" ∷ word (γ ∷ έ ∷ ε ∷ ν ∷ ν ∷ α ∷ ν ∷ []) "Mark.9.43" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.43" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.43" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Mark.9.43" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.43" ∷ word (ἄ ∷ σ ∷ β ∷ ε ∷ σ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.9.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.45" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.45" ∷ word (ὁ ∷ []) "Mark.9.45" ∷ word (π ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.9.45" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.45" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Mark.9.45" ∷ word (σ ∷ ε ∷ []) "Mark.9.45" ∷ word (ἀ ∷ π ∷ ό ∷ κ ∷ ο ∷ ψ ∷ ο ∷ ν ∷ []) "Mark.9.45" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.45" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.45" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.9.45" ∷ word (σ ∷ ε ∷ []) "Mark.9.45" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.45" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.45" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.9.45" ∷ word (χ ∷ ω ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.45" ∷ word (ἢ ∷ []) "Mark.9.45" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.45" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.9.45" ∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "Mark.9.45" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.45" ∷ word (β ∷ ∙λ ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.45" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.45" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.45" ∷ word (γ ∷ έ ∷ ε ∷ ν ∷ ν ∷ α ∷ ν ∷ []) "Mark.9.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.47" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.47" ∷ word (ὁ ∷ []) "Mark.9.47" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ό ∷ ς ∷ []) "Mark.9.47" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.9.47" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ί ∷ ζ ∷ ῃ ∷ []) "Mark.9.47" ∷ word (σ ∷ ε ∷ []) "Mark.9.47" ∷ word (ἔ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.9.47" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.9.47" ∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.9.47" ∷ word (σ ∷ έ ∷ []) "Mark.9.47" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.9.47" ∷ word (μ ∷ ο ∷ ν ∷ ό ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.9.47" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.9.47" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.47" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.47" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.9.47" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.9.47" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.9.47" ∷ word (ἢ ∷ []) "Mark.9.47" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.9.47" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.9.47" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.9.47" ∷ word (β ∷ ∙λ ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.9.47" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.9.47" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.9.47" ∷ word (γ ∷ έ ∷ ε ∷ ν ∷ ν ∷ α ∷ ν ∷ []) "Mark.9.47" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.9.48" ∷ word (ὁ ∷ []) "Mark.9.48" ∷ word (σ ∷ κ ∷ ώ ∷ ∙λ ∷ η ∷ ξ ∷ []) "Mark.9.48" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.9.48" ∷ word (ο ∷ ὐ ∷ []) "Mark.9.48" ∷ word (τ ∷ ε ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ᾷ ∷ []) "Mark.9.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.48" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.48" ∷ word (π ∷ ῦ ∷ ρ ∷ []) "Mark.9.48" ∷ word (ο ∷ ὐ ∷ []) "Mark.9.48" ∷ word (σ ∷ β ∷ έ ∷ ν ∷ ν ∷ υ ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.48" ∷ word (Π ∷ ᾶ ∷ ς ∷ []) "Mark.9.49" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.9.49" ∷ word (π ∷ υ ∷ ρ ∷ ὶ ∷ []) "Mark.9.49" ∷ word (ἁ ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.49" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.9.50" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.50" ∷ word (ἅ ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.9.50" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.9.50" ∷ word (δ ∷ ὲ ∷ []) "Mark.9.50" ∷ word (τ ∷ ὸ ∷ []) "Mark.9.50" ∷ word (ἅ ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.9.50" ∷ word (ἄ ∷ ν ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.9.50" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.9.50" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.50" ∷ word (τ ∷ ί ∷ ν ∷ ι ∷ []) "Mark.9.50" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.9.50" ∷ word (ἀ ∷ ρ ∷ τ ∷ ύ ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.50" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.50" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.50" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.9.50" ∷ word (ἅ ∷ ∙λ ∷ α ∷ []) "Mark.9.50" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.9.50" ∷ word (ε ∷ ἰ ∷ ρ ∷ η ∷ ν ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.9.50" ∷ word (ἐ ∷ ν ∷ []) "Mark.9.50" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.9.50" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.1" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.1" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.10.1" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.1" ∷ word (τ ∷ ὰ ∷ []) "Mark.10.1" ∷ word (ὅ ∷ ρ ∷ ι ∷ α ∷ []) "Mark.10.1" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.10.1" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.1" ∷ word (π ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.10.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.1" ∷ word (Ἰ ∷ ο ∷ ρ ∷ δ ∷ ά ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.1" ∷ word (σ ∷ υ ∷ μ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.1" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.10.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.1" ∷ word (ὡ ∷ ς ∷ []) "Mark.10.1" ∷ word (ε ∷ ἰ ∷ ώ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.10.1" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.1" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.10.1" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.2" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.2" ∷ word (ε ∷ ἰ ∷ []) "Mark.10.2" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.2" ∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὶ ∷ []) "Mark.10.2" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.10.2" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.2" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.2" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.2" ∷ word (ὁ ∷ []) "Mark.10.3" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.3" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.3" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.3" ∷ word (Τ ∷ ί ∷ []) "Mark.10.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.3" ∷ word (ἐ ∷ ν ∷ ε ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.3" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.10.3" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.4" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.4" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.10.4" ∷ word (Ἐ ∷ π ∷ έ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.10.4" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.10.4" ∷ word (β ∷ ι ∷ β ∷ ∙λ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.10.4" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ α ∷ σ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.4" ∷ word (γ ∷ ρ ∷ ά ∷ ψ ∷ α ∷ ι ∷ []) "Mark.10.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.4" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.4" ∷ word (ὁ ∷ []) "Mark.10.5" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.5" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.5" ∷ word (Π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.5" ∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.5" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.10.5" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.10.5" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.5" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.5" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.10.5" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.10.5" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.10.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.6" ∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.10.6" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.10.6" ∷ word (ἄ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.6" ∷ word (θ ∷ ῆ ∷ ∙λ ∷ υ ∷ []) "Mark.10.6" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.10.6" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.7" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.10.7" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ε ∷ ι ∷ []) "Mark.10.7" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.10.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.7" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.7" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.7" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.7" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.10.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.8" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.8" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.8" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.10.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.8" ∷ word (σ ∷ ά ∷ ρ ∷ κ ∷ α ∷ []) "Mark.10.8" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.8" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.10.8" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.10.8" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.10.8" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.10.8" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.10.8" ∷ word (μ ∷ ί ∷ α ∷ []) "Mark.10.8" ∷ word (σ ∷ ά ∷ ρ ∷ ξ ∷ []) "Mark.10.8" ∷ word (ὃ ∷ []) "Mark.10.9" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.10.9" ∷ word (ὁ ∷ []) "Mark.10.9" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.10.9" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ζ ∷ ε ∷ υ ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.10.9" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.10.9" ∷ word (μ ∷ ὴ ∷ []) "Mark.10.9" ∷ word (χ ∷ ω ∷ ρ ∷ ι ∷ ζ ∷ έ ∷ τ ∷ ω ∷ []) "Mark.10.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.10" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.10" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.10" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.10" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.10.10" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.10.10" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "Mark.10.10" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.10" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.11" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.11" ∷ word (Ὃ ∷ ς ∷ []) "Mark.10.11" ∷ word (ἂ ∷ ν ∷ []) "Mark.10.11" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ῃ ∷ []) "Mark.10.11" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.11" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.10.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.11" ∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.10.11" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.10.11" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.11" ∷ word (ἐ ∷ π ∷ []) "Mark.10.11" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.10.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.12" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.10.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ []) "Mark.10.12" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ α ∷ σ ∷ α ∷ []) "Mark.10.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.12" ∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "Mark.10.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.10.12" ∷ word (γ ∷ α ∷ μ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.10.12" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.10.12" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ᾶ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.13" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ φ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.10.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.13" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ α ∷ []) "Mark.10.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.13" ∷ word (ἅ ∷ ψ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.13" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.13" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.13" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.10.13" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.10.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.13" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.10.14" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.14" ∷ word (ὁ ∷ []) "Mark.10.14" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.14" ∷ word (ἠ ∷ γ ∷ α ∷ ν ∷ ά ∷ κ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.14" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.14" ∷ word (Ἄ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.10.14" ∷ word (τ ∷ ὰ ∷ []) "Mark.10.14" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ α ∷ []) "Mark.10.14" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.10.14" ∷ word (π ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.10.14" ∷ word (μ ∷ ε ∷ []) "Mark.10.14" ∷ word (μ ∷ ὴ ∷ []) "Mark.10.14" ∷ word (κ ∷ ω ∷ ∙λ ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.10.14" ∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Mark.10.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.10.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.14" ∷ word (τ ∷ ο ∷ ι ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.10.14" ∷ word (ἡ ∷ []) "Mark.10.14" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.10.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.14" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.10.15" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.10.15" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.15" ∷ word (ὃ ∷ ς ∷ []) "Mark.10.15" ∷ word (ἂ ∷ ν ∷ []) "Mark.10.15" ∷ word (μ ∷ ὴ ∷ []) "Mark.10.15" ∷ word (δ ∷ έ ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.15" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.15" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.15" ∷ word (ὡ ∷ ς ∷ []) "Mark.10.15" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.10.15" ∷ word (ο ∷ ὐ ∷ []) "Mark.10.15" ∷ word (μ ∷ ὴ ∷ []) "Mark.10.15" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.10.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.15" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.10.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.16" ∷ word (ἐ ∷ ν ∷ α ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.16" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.10.16" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ υ ∷ ∙λ ∷ ό ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.16" ∷ word (τ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.16" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.10.16" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.10.16" ∷ word (ἐ ∷ π ∷ []) "Mark.10.16" ∷ word (α ∷ ὐ ∷ τ ∷ ά ∷ []) "Mark.10.16" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.17" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.17" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.17" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.10.17" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ρ ∷ α ∷ μ ∷ ὼ ∷ ν ∷ []) "Mark.10.17" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.17" ∷ word (γ ∷ ο ∷ ν ∷ υ ∷ π ∷ ε ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.17" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.10.17" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.17" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.10.17" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ έ ∷ []) "Mark.10.17" ∷ word (τ ∷ ί ∷ []) "Mark.10.17" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.17" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.17" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.10.17" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.17" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.17" ∷ word (ὁ ∷ []) "Mark.10.18" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.18" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.18" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.18" ∷ word (Τ ∷ ί ∷ []) "Mark.10.18" ∷ word (μ ∷ ε ∷ []) "Mark.10.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.18" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ό ∷ ν ∷ []) "Mark.10.18" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.18" ∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὸ ∷ ς ∷ []) "Mark.10.18" ∷ word (ε ∷ ἰ ∷ []) "Mark.10.18" ∷ word (μ ∷ ὴ ∷ []) "Mark.10.18" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.18" ∷ word (ὁ ∷ []) "Mark.10.18" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.10.18" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.10.19" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Mark.10.19" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ ς ∷ []) "Mark.10.19" ∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19" ∷ word (φ ∷ ο ∷ ν ∷ ε ∷ ύ ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19" ∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19" ∷ word (μ ∷ ο ∷ ι ∷ χ ∷ ε ∷ ύ ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19" ∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19" ∷ word (κ ∷ ∙λ ∷ έ ∷ ψ ∷ ῃ ∷ ς ∷ []) "Mark.10.19" ∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19" ∷ word (Μ ∷ ὴ ∷ []) "Mark.10.19" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.19" ∷ word (Τ ∷ ί ∷ μ ∷ α ∷ []) "Mark.10.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.19" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.19" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.19" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.19" ∷ word (ὁ ∷ []) "Mark.10.20" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.20" ∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.10.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.20" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.10.20" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.10.20" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.20" ∷ word (ἐ ∷ φ ∷ υ ∷ ∙λ ∷ α ∷ ξ ∷ ά ∷ μ ∷ η ∷ ν ∷ []) "Mark.10.20" ∷ word (ἐ ∷ κ ∷ []) "Mark.10.20" ∷ word (ν ∷ ε ∷ ό ∷ τ ∷ η ∷ τ ∷ ό ∷ ς ∷ []) "Mark.10.20" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.10.20" ∷ word (ὁ ∷ []) "Mark.10.21" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.21" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.21" ∷ word (ἐ ∷ μ ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.10.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.21" ∷ word (ἠ ∷ γ ∷ ά ∷ π ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.10.21" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.21" ∷ word (Ἕ ∷ ν ∷ []) "Mark.10.21" ∷ word (σ ∷ ε ∷ []) "Mark.10.21" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.10.21" ∷ word (ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.10.21" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.10.21" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.21" ∷ word (π ∷ ώ ∷ ∙λ ∷ η ∷ σ ∷ ο ∷ ν ∷ []) "Mark.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21" ∷ word (δ ∷ ὸ ∷ ς ∷ []) "Mark.10.21" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.21" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21" ∷ word (ἕ ∷ ξ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.21" ∷ word (θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.10.21" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.21" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Mark.10.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.21" ∷ word (δ ∷ ε ∷ ῦ ∷ ρ ∷ ο ∷ []) "Mark.10.21" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.10.21" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.10.21" ∷ word (ὁ ∷ []) "Mark.10.22" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.22" ∷ word (σ ∷ τ ∷ υ ∷ γ ∷ ν ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.22" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.10.22" ∷ word (τ ∷ ῷ ∷ []) "Mark.10.22" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "Mark.10.22" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.22" ∷ word (∙λ ∷ υ ∷ π ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.22" ∷ word (ἦ ∷ ν ∷ []) "Mark.10.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.22" ∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "Mark.10.22" ∷ word (κ ∷ τ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.10.22" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.10.22" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.23" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.23" ∷ word (ὁ ∷ []) "Mark.10.23" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.23" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.23" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.23" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.10.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.23" ∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.10.23" ∷ word (δ ∷ υ ∷ σ ∷ κ ∷ ό ∷ ∙λ ∷ ω ∷ ς ∷ []) "Mark.10.23" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.23" ∷ word (τ ∷ ὰ ∷ []) "Mark.10.23" ∷ word (χ ∷ ρ ∷ ή ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.10.23" ∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.23" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.23" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.23" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.23" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.23" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.23" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.23" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.24" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.24" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.10.24" ∷ word (ἐ ∷ θ ∷ α ∷ μ ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.24" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.10.24" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.24" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.10.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.24" ∷ word (ὁ ∷ []) "Mark.10.24" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.24" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.24" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.24" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.24" ∷ word (Τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.10.24" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.10.24" ∷ word (δ ∷ ύ ∷ σ ∷ κ ∷ ο ∷ ∙λ ∷ ό ∷ ν ∷ []) "Mark.10.24" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.24" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.24" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.24" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.24" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.24" ∷ word (ε ∷ ὐ ∷ κ ∷ ο ∷ π ∷ ώ ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.10.25" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.25" ∷ word (κ ∷ ά ∷ μ ∷ η ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.10.25" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.10.25" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.10.25" ∷ word (τ ∷ ρ ∷ υ ∷ μ ∷ α ∷ ∙λ ∷ ι ∷ ᾶ ∷ ς ∷ []) "Mark.10.25" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.10.25" ∷ word (ῥ ∷ α ∷ φ ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "Mark.10.25" ∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.25" ∷ word (ἢ ∷ []) "Mark.10.25" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.25" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.25" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.25" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.25" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.10.25" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.25" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.26" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.26" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.10.26" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.26" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.26" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.26" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.10.26" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.26" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.10.26" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.26" ∷ word (σ ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.26" ∷ word (ἐ ∷ μ ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ ς ∷ []) "Mark.10.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.27" ∷ word (ὁ ∷ []) "Mark.10.27" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.27" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.27" ∷ word (Π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.27" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ ι ∷ ς ∷ []) "Mark.10.27" ∷ word (ἀ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.10.27" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.10.27" ∷ word (ο ∷ ὐ ∷ []) "Mark.10.27" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.27" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Mark.10.27" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.27" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.27" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.10.27" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.27" ∷ word (τ ∷ ῷ ∷ []) "Mark.10.27" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Mark.10.27" ∷ word (Ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.28" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.28" ∷ word (ὁ ∷ []) "Mark.10.28" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.10.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.28" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.10.28" ∷ word (ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.10.28" ∷ word (ἀ ∷ φ ∷ ή ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.28" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ κ ∷ α ∷ μ ∷ έ ∷ ν ∷ []) "Mark.10.28" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.10.28" ∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.10.29" ∷ word (ὁ ∷ []) "Mark.10.29" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.29" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.10.29" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.10.29" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.29" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ί ∷ ς ∷ []) "Mark.10.29" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.29" ∷ word (ὃ ∷ ς ∷ []) "Mark.10.29" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.29" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.10.29" ∷ word (ἢ ∷ []) "Mark.10.29" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.29" ∷ word (ἢ ∷ []) "Mark.10.29" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὰ ∷ ς ∷ []) "Mark.10.29" ∷ word (ἢ ∷ []) "Mark.10.29" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.29" ∷ word (ἢ ∷ []) "Mark.10.29" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.10.29" ∷ word (ἢ ∷ []) "Mark.10.29" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.10.29" ∷ word (ἢ ∷ []) "Mark.10.29" ∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.29" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.29" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.10.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.29" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.10.29" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.29" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.29" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.10.30" ∷ word (μ ∷ ὴ ∷ []) "Mark.10.30" ∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.10.30" ∷ word (ἑ ∷ κ ∷ α ∷ τ ∷ ο ∷ ν ∷ τ ∷ α ∷ π ∷ ∙λ ∷ α ∷ σ ∷ ί ∷ ο ∷ ν ∷ α ∷ []) "Mark.10.30" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Mark.10.30" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.30" ∷ word (τ ∷ ῷ ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "Mark.10.30" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.10.30" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὰ ∷ ς ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30" ∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30" ∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.30" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.10.30" ∷ word (δ ∷ ι ∷ ω ∷ γ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.10.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.30" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.30" ∷ word (τ ∷ ῷ ∷ []) "Mark.10.30" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ι ∷ []) "Mark.10.30" ∷ word (τ ∷ ῷ ∷ []) "Mark.10.30" ∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "Mark.10.30" ∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "Mark.10.30" ∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.30" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.10.31" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.31" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.31" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.31" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.10.31" ∷ word (Ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.10.32" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.32" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.32" ∷ word (τ ∷ ῇ ∷ []) "Mark.10.32" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.10.32" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.32" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.32" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.10.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.32" ∷ word (ἦ ∷ ν ∷ []) "Mark.10.32" ∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ω ∷ ν ∷ []) "Mark.10.32" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.32" ∷ word (ὁ ∷ []) "Mark.10.32" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.32" ∷ word (ἐ ∷ θ ∷ α ∷ μ ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.32" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.32" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.32" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.32" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.32" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.10.32" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.10.32" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.32" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.10.32" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.32" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.32" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.32" ∷ word (τ ∷ ὰ ∷ []) "Mark.10.32" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "Mark.10.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.32" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ α ∷ ί ∷ ν ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.32" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.10.33" ∷ word (Ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.10.33" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ α ∷ ί ∷ ν ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.33" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.33" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.10.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33" ∷ word (ὁ ∷ []) "Mark.10.33" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.10.33" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.33" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.10.33" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.33" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.33" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.33" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.33" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ῳ ∷ []) "Mark.10.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.33" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.33" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.33" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34" ∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ί ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34" ∷ word (ἐ ∷ μ ∷ π ∷ τ ∷ ύ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34" ∷ word (μ ∷ α ∷ σ ∷ τ ∷ ι ∷ γ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.10.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.34" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.10.34" ∷ word (τ ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.10.34" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.10.34" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.34" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.35" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.35" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.35" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ς ∷ []) "Mark.10.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.35" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.10.35" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.35" ∷ word (υ ∷ ἱ ∷ ο ∷ ὶ ∷ []) "Mark.10.35" ∷ word (Ζ ∷ ε ∷ β ∷ ε ∷ δ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.35" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.35" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.35" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.10.35" ∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.35" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.35" ∷ word (ὃ ∷ []) "Mark.10.35" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.10.35" ∷ word (α ∷ ἰ ∷ τ ∷ ή ∷ σ ∷ ω ∷ μ ∷ έ ∷ ν ∷ []) "Mark.10.35" ∷ word (σ ∷ ε ∷ []) "Mark.10.35" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ῃ ∷ ς ∷ []) "Mark.10.35" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.35" ∷ word (ὁ ∷ []) "Mark.10.36" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.36" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.36" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.36" ∷ word (Τ ∷ ί ∷ []) "Mark.10.36" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.10.36" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.36" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.36" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.37" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.37" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.10.37" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.37" ∷ word (Δ ∷ ὸ ∷ ς ∷ []) "Mark.10.37" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.37" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.37" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.37" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.37" ∷ word (ἐ ∷ κ ∷ []) "Mark.10.37" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.10.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.37" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.10.37" ∷ word (ἐ ∷ ξ ∷ []) "Mark.10.37" ∷ word (ἀ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.10.37" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.10.37" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.37" ∷ word (τ ∷ ῇ ∷ []) "Mark.10.37" ∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "Mark.10.37" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.37" ∷ word (ὁ ∷ []) "Mark.10.38" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.38" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.38" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.38" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.38" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.10.38" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.10.38" ∷ word (τ ∷ ί ∷ []) "Mark.10.38" ∷ word (α ∷ ἰ ∷ τ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.38" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.38" ∷ word (π ∷ ι ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.38" ∷ word (τ ∷ ὸ ∷ []) "Mark.10.38" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.38" ∷ word (ὃ ∷ []) "Mark.10.38" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.38" ∷ word (π ∷ ί ∷ ν ∷ ω ∷ []) "Mark.10.38" ∷ word (ἢ ∷ []) "Mark.10.38" ∷ word (τ ∷ ὸ ∷ []) "Mark.10.38" ∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.10.38" ∷ word (ὃ ∷ []) "Mark.10.38" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.38" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.10.38" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.38" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.39" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.39" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.10.39" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.39" ∷ word (Δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "Mark.10.39" ∷ word (ὁ ∷ []) "Mark.10.39" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.39" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.39" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.39" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.39" ∷ word (Τ ∷ ὸ ∷ []) "Mark.10.39" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.39" ∷ word (ὃ ∷ []) "Mark.10.39" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.39" ∷ word (π ∷ ί ∷ ν ∷ ω ∷ []) "Mark.10.39" ∷ word (π ∷ ί ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.39" ∷ word (τ ∷ ὸ ∷ []) "Mark.10.39" ∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.10.39" ∷ word (ὃ ∷ []) "Mark.10.39" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.10.39" ∷ word (β ∷ α ∷ π ∷ τ ∷ ί ∷ ζ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.10.39" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.10.39" ∷ word (τ ∷ ὸ ∷ []) "Mark.10.40" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.40" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.40" ∷ word (ἐ ∷ κ ∷ []) "Mark.10.40" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.10.40" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.10.40" ∷ word (ἢ ∷ []) "Mark.10.40" ∷ word (ἐ ∷ ξ ∷ []) "Mark.10.40" ∷ word (ε ∷ ὐ ∷ ω ∷ ν ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.10.40" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.10.40" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.40" ∷ word (ἐ ∷ μ ∷ ὸ ∷ ν ∷ []) "Mark.10.40" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.40" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.10.40" ∷ word (ο ∷ ἷ ∷ ς ∷ []) "Mark.10.40" ∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.40" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.41" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.41" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.41" ∷ word (δ ∷ έ ∷ κ ∷ α ∷ []) "Mark.10.41" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.10.41" ∷ word (ἀ ∷ γ ∷ α ∷ ν ∷ α ∷ κ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.10.41" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.10.41" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.10.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.41" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.42" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.42" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.10.42" ∷ word (ὁ ∷ []) "Mark.10.42" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.42" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.10.42" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.10.42" ∷ word (Ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.10.42" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.10.42" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.42" ∷ word (δ ∷ ο ∷ κ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.42" ∷ word (ἄ ∷ ρ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.42" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42" ∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.10.42" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ υ ∷ ρ ∷ ι ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.42" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.42" ∷ word (ο ∷ ἱ ∷ []) "Mark.10.42" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.10.42" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ά ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.10.42" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.42" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.10.43" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.10.43" ∷ word (δ ∷ έ ∷ []) "Mark.10.43" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.43" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.43" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.43" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.10.43" ∷ word (ὃ ∷ ς ∷ []) "Mark.10.43" ∷ word (ἂ ∷ ν ∷ []) "Mark.10.43" ∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Mark.10.43" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Mark.10.43" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.10.43" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.43" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.43" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.43" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.10.43" ∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "Mark.10.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.44" ∷ word (ὃ ∷ ς ∷ []) "Mark.10.44" ∷ word (ἂ ∷ ν ∷ []) "Mark.10.44" ∷ word (θ ∷ έ ∷ ∙λ ∷ ῃ ∷ []) "Mark.10.44" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.44" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.10.44" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.44" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.10.44" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.44" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.10.44" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.10.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.45" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.10.45" ∷ word (ὁ ∷ []) "Mark.10.45" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.10.45" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.10.45" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.10.45" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.10.45" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.45" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ η ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.45" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.10.45" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.10.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.45" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.10.45" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.45" ∷ word (ψ ∷ υ ∷ χ ∷ ὴ ∷ ν ∷ []) "Mark.10.45" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.45" ∷ word (∙λ ∷ ύ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.10.45" ∷ word (ἀ ∷ ν ∷ τ ∷ ὶ ∷ []) "Mark.10.45" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.10.45" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.10.46" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.10.46" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.10.46" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ι ∷ χ ∷ ώ ∷ []) "Mark.10.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.46" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.10.46" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.46" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.10.46" ∷ word (Ἰ ∷ ε ∷ ρ ∷ ι ∷ χ ∷ ὼ ∷ []) "Mark.10.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.46" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.10.46" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.10.46" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.46" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.10.46" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.10.46" ∷ word (ὁ ∷ []) "Mark.10.46" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.10.46" ∷ word (Τ ∷ ι ∷ μ ∷ α ∷ ί ∷ ο ∷ υ ∷ []) "Mark.10.46" ∷ word (Β ∷ α ∷ ρ ∷ τ ∷ ι ∷ μ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Mark.10.46" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Mark.10.46" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ α ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "Mark.10.46" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ η ∷ τ ∷ ο ∷ []) "Mark.10.46" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.10.46" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.10.46" ∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.10.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.47" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.47" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.10.47" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.47" ∷ word (ὁ ∷ []) "Mark.10.47" ∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ ό ∷ ς ∷ []) "Mark.10.47" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.10.47" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.10.47" ∷ word (κ ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.47" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.10.47" ∷ word (Υ ∷ ἱ ∷ ὲ ∷ []) "Mark.10.47" ∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.10.47" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.10.47" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ ό ∷ ν ∷ []) "Mark.10.47" ∷ word (μ ∷ ε ∷ []) "Mark.10.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.48" ∷ word (ἐ ∷ π ∷ ε ∷ τ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.10.48" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.48" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.10.48" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.48" ∷ word (σ ∷ ι ∷ ω ∷ π ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.10.48" ∷ word (ὁ ∷ []) "Mark.10.48" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.48" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "Mark.10.48" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.10.48" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ζ ∷ ε ∷ ν ∷ []) "Mark.10.48" ∷ word (Υ ∷ ἱ ∷ ὲ ∷ []) "Mark.10.48" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Mark.10.48" ∷ word (ἐ ∷ ∙λ ∷ έ ∷ η ∷ σ ∷ ό ∷ ν ∷ []) "Mark.10.48" ∷ word (μ ∷ ε ∷ []) "Mark.10.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.49" ∷ word (σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.10.49" ∷ word (ὁ ∷ []) "Mark.10.49" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.49" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.49" ∷ word (Φ ∷ ω ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.10.49" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.10.49" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.49" ∷ word (φ ∷ ω ∷ ν ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ []) "Mark.10.49" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.49" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.10.49" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.10.49" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.49" ∷ word (Θ ∷ ά ∷ ρ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.10.49" ∷ word (ἔ ∷ γ ∷ ε ∷ ι ∷ ρ ∷ ε ∷ []) "Mark.10.49" ∷ word (φ ∷ ω ∷ ν ∷ ε ∷ ῖ ∷ []) "Mark.10.49" ∷ word (σ ∷ ε ∷ []) "Mark.10.49" ∷ word (ὁ ∷ []) "Mark.10.50" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.50" ∷ word (ἀ ∷ π ∷ ο ∷ β ∷ α ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.10.50" ∷ word (τ ∷ ὸ ∷ []) "Mark.10.50" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.10.50" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.10.50" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ η ∷ δ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.10.50" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.10.50" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.10.50" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.10.50" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.10.50" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.51" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.10.51" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.51" ∷ word (ὁ ∷ []) "Mark.10.51" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.51" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.51" ∷ word (Τ ∷ ί ∷ []) "Mark.10.51" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.10.51" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.10.51" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.10.51" ∷ word (ὁ ∷ []) "Mark.10.51" ∷ word (δ ∷ ὲ ∷ []) "Mark.10.51" ∷ word (τ ∷ υ ∷ φ ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Mark.10.51" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.51" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.51" ∷ word (Ρ ∷ α ∷ β ∷ β ∷ ο ∷ υ ∷ ν ∷ ι ∷ []) "Mark.10.51" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.10.51" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ ω ∷ []) "Mark.10.51" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.52" ∷ word (ὁ ∷ []) "Mark.10.52" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.10.52" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.10.52" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.52" ∷ word (Ὕ ∷ π ∷ α ∷ γ ∷ ε ∷ []) "Mark.10.52" ∷ word (ἡ ∷ []) "Mark.10.52" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ς ∷ []) "Mark.10.52" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.10.52" ∷ word (σ ∷ έ ∷ σ ∷ ω ∷ κ ∷ έ ∷ ν ∷ []) "Mark.10.52" ∷ word (σ ∷ ε ∷ []) "Mark.10.52" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.52" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.10.52" ∷ word (ἀ ∷ ν ∷ έ ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.10.52" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.10.52" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.10.52" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.10.52" ∷ word (ἐ ∷ ν ∷ []) "Mark.10.52" ∷ word (τ ∷ ῇ ∷ []) "Mark.10.52" ∷ word (ὁ ∷ δ ∷ ῷ ∷ []) "Mark.10.52" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.1" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.11.1" ∷ word (ἐ ∷ γ ∷ γ ∷ ί ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.1" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.1" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.1" ∷ word (Β ∷ η ∷ θ ∷ φ ∷ α ∷ γ ∷ ὴ ∷ []) "Mark.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.1" ∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.1" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.1" ∷ word (τ ∷ ὸ ∷ []) "Mark.11.1" ∷ word (Ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.11.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.1" ∷ word (Ἐ ∷ ∙λ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.11.1" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.11.1" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.11.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.1" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.2" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.2" ∷ word (Ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.2" ∷ word (κ ∷ ώ ∷ μ ∷ η ∷ ν ∷ []) "Mark.11.2" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.2" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Mark.11.2" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.2" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.11.2" ∷ word (ε ∷ ἰ ∷ σ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.11.2" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.11.2" ∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.2" ∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.2" ∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.11.2" ∷ word (ἐ ∷ φ ∷ []) "Mark.11.2" ∷ word (ὃ ∷ ν ∷ []) "Mark.11.2" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.2" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.11.2" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.11.2" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.11.2" ∷ word (∙λ ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.2" ∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.3" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.11.3" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.11.3" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.3" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.11.3" ∷ word (Τ ∷ ί ∷ []) "Mark.11.3" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.11.3" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.11.3" ∷ word (ε ∷ ἴ ∷ π ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.3" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.3" ∷ word (Ὁ ∷ []) "Mark.11.3" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.11.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.3" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.3" ∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.11.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.3" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.11.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.3" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.11.3" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.11.3" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.11.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.4" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.11.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.4" ∷ word (ε ∷ ὗ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.11.4" ∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.4" ∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.11.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.4" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.11.4" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.11.4" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.11.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.11.4" ∷ word (ἀ ∷ μ ∷ φ ∷ ό ∷ δ ∷ ο ∷ υ ∷ []) "Mark.11.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.4" ∷ word (∙λ ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.4" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.11.4" ∷ word (κ ∷ α ∷ ί ∷ []) "Mark.11.5" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.11.5" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.5" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.11.5" ∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.11.5" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.11.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.5" ∷ word (Τ ∷ ί ∷ []) "Mark.11.5" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.11.5" ∷ word (∙λ ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.5" ∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.5" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.11.6" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.11.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.6" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.11.6" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.11.6" ∷ word (ὁ ∷ []) "Mark.11.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.6" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ α ∷ ν ∷ []) "Mark.11.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.11.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.7" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.7" ∷ word (π ∷ ῶ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.7" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.7" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.7" ∷ word (ἐ ∷ π ∷ ι ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.7" ∷ word (τ ∷ ὰ ∷ []) "Mark.11.7" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.7" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.11.7" ∷ word (ἐ ∷ π ∷ []) "Mark.11.7" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.11.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.8" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.11.8" ∷ word (τ ∷ ὰ ∷ []) "Mark.11.8" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.11.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.8" ∷ word (ἔ ∷ σ ∷ τ ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.8" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.8" ∷ word (ὁ ∷ δ ∷ ό ∷ ν ∷ []) "Mark.11.8" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.11.8" ∷ word (δ ∷ ὲ ∷ []) "Mark.11.8" ∷ word (σ ∷ τ ∷ ι ∷ β ∷ ά ∷ δ ∷ α ∷ ς ∷ []) "Mark.11.8" ∷ word (κ ∷ ό ∷ ψ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.8" ∷ word (ἐ ∷ κ ∷ []) "Mark.11.8" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.8" ∷ word (ἀ ∷ γ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.11.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.9" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.9" ∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.9" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.9" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.9" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.11.9" ∷ word (Ὡ ∷ σ ∷ α ∷ ν ∷ ν ∷ ά ∷ []) "Mark.11.9" ∷ word (Ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.9" ∷ word (ὁ ∷ []) "Mark.11.9" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.9" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.9" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.11.9" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.11.9" ∷ word (Ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.11.10" ∷ word (ἡ ∷ []) "Mark.11.10" ∷ word (ἐ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.11.10" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.11.10" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.11.10" ∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.10" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.10" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Mark.11.10" ∷ word (Ὡ ∷ σ ∷ α ∷ ν ∷ ν ∷ ὰ ∷ []) "Mark.11.10" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.10" ∷ word (ὑ ∷ ψ ∷ ί ∷ σ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.11.10" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.11" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.11" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.11" ∷ word (τ ∷ ὸ ∷ []) "Mark.11.11" ∷ word (ἱ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.11.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.11" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ∙λ ∷ ε ∷ ψ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.11" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.11.11" ∷ word (ὀ ∷ ψ ∷ ὲ ∷ []) "Mark.11.11" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.11.11" ∷ word (ο ∷ ὔ ∷ σ ∷ η ∷ ς ∷ []) "Mark.11.11" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.11.11" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.11.11" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.11" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.11" ∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.11" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.11.11" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.11" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.11.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.12" ∷ word (τ ∷ ῇ ∷ []) "Mark.11.12" ∷ word (ἐ ∷ π ∷ α ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.11.12" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.11.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.12" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.11.12" ∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Mark.11.12" ∷ word (ἐ ∷ π ∷ ε ∷ ί ∷ ν ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.11.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.13" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.11.13" ∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ ν ∷ []) "Mark.11.13" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.11.13" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.13" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.13" ∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.11.13" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.11.13" ∷ word (ε ∷ ἰ ∷ []) "Mark.11.13" ∷ word (ἄ ∷ ρ ∷ α ∷ []) "Mark.11.13" ∷ word (τ ∷ ι ∷ []) "Mark.11.13" ∷ word (ε ∷ ὑ ∷ ρ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.11.13" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.13" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.11.13" ∷ word (ἐ ∷ π ∷ []) "Mark.11.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.11.13" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.11.13" ∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.11.13" ∷ word (ε ∷ ἰ ∷ []) "Mark.11.13" ∷ word (μ ∷ ὴ ∷ []) "Mark.11.13" ∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.11.13" ∷ word (ὁ ∷ []) "Mark.11.13" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.13" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.13" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.11.13" ∷ word (ἦ ∷ ν ∷ []) "Mark.11.13" ∷ word (σ ∷ ύ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.11.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.14" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.14" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.11.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.11.14" ∷ word (Μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.11.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.14" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.14" ∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.11.14" ∷ word (ἐ ∷ κ ∷ []) "Mark.11.14" ∷ word (σ ∷ ο ∷ ῦ ∷ []) "Mark.11.14" ∷ word (μ ∷ η ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.14" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.11.14" ∷ word (φ ∷ ά ∷ γ ∷ ο ∷ ι ∷ []) "Mark.11.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.14" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ο ∷ ν ∷ []) "Mark.11.14" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.14" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.11.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.14" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.15" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.15" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.11.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.15" ∷ word (τ ∷ ὸ ∷ []) "Mark.11.15" ∷ word (ἱ ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.11.15" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.11.15" ∷ word (ἐ ∷ κ ∷ β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.11.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.11.15" ∷ word (π ∷ ω ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.11.15" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.11.15" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.15" ∷ word (τ ∷ ῷ ∷ []) "Mark.11.15" ∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.11.15" ∷ word (τ ∷ ρ ∷ α ∷ π ∷ έ ∷ ζ ∷ α ∷ ς ∷ []) "Mark.11.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.15" ∷ word (κ ∷ ο ∷ ∙λ ∷ ∙λ ∷ υ ∷ β ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.15" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ θ ∷ έ ∷ δ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.11.15" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.11.15" ∷ word (π ∷ ω ∷ ∙λ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.11.15" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.11.15" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ὰ ∷ ς ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ σ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.11.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.16" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.11.16" ∷ word (ἤ ∷ φ ∷ ι ∷ ε ∷ ν ∷ []) "Mark.11.16" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.11.16" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.11.16" ∷ word (δ ∷ ι ∷ ε ∷ ν ∷ έ ∷ γ ∷ κ ∷ ῃ ∷ []) "Mark.11.16" ∷ word (σ ∷ κ ∷ ε ∷ ῦ ∷ ο ∷ ς ∷ []) "Mark.11.16" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.11.16" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.11.16" ∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.11.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.17" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.11.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.17" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.11.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.17" ∷ word (Ο ∷ ὐ ∷ []) "Mark.11.17" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.17" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.17" ∷ word (Ὁ ∷ []) "Mark.11.17" ∷ word (ο ∷ ἶ ∷ κ ∷ ό ∷ ς ∷ []) "Mark.11.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.11.17" ∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ς ∷ []) "Mark.11.17" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.11.17" ∷ word (κ ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.17" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.17" ∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.17" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.17" ∷ word (δ ∷ ὲ ∷ []) "Mark.11.17" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ ή ∷ κ ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.17" ∷ word (σ ∷ π ∷ ή ∷ ∙λ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.11.17" ∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.11.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.18" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.18" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.18" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.18" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.18" ∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.11.18" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.11.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.18" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.18" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.18" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.11.18" ∷ word (π ∷ ᾶ ∷ ς ∷ []) "Mark.11.18" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.18" ∷ word (ὁ ∷ []) "Mark.11.18" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.11.18" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ∙λ ∷ ή ∷ σ ∷ σ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.11.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.11.18" ∷ word (τ ∷ ῇ ∷ []) "Mark.11.18" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.11.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.18" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.19" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.11.19" ∷ word (ὀ ∷ ψ ∷ ὲ ∷ []) "Mark.11.19" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.11.19" ∷ word (ἐ ∷ ξ ∷ ε ∷ π ∷ ο ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.19" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.11.19" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.11.19" ∷ word (π ∷ ό ∷ ∙λ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.11.19" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.20" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.11.20" ∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.11.20" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.11.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.20" ∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ ν ∷ []) "Mark.11.20" ∷ word (ἐ ∷ ξ ∷ η ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ ν ∷ []) "Mark.11.20" ∷ word (ἐ ∷ κ ∷ []) "Mark.11.20" ∷ word (ῥ ∷ ι ∷ ζ ∷ ῶ ∷ ν ∷ []) "Mark.11.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.21" ∷ word (ἀ ∷ ν ∷ α ∷ μ ∷ ν ∷ η ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.21" ∷ word (ὁ ∷ []) "Mark.11.21" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.11.21" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.21" ∷ word (Ῥ ∷ α ∷ β ∷ β ∷ ί ∷ []) "Mark.11.21" ∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.11.21" ∷ word (ἡ ∷ []) "Mark.11.21" ∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ []) "Mark.11.21" ∷ word (ἣ ∷ ν ∷ []) "Mark.11.21" ∷ word (κ ∷ α ∷ τ ∷ η ∷ ρ ∷ ά ∷ σ ∷ ω ∷ []) "Mark.11.21" ∷ word (ἐ ∷ ξ ∷ ή ∷ ρ ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.22" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.11.22" ∷ word (ὁ ∷ []) "Mark.11.22" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.22" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.22" ∷ word (Ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.22" ∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.11.22" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.11.22" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.11.23" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.11.23" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.23" ∷ word (ὃ ∷ ς ∷ []) "Mark.11.23" ∷ word (ἂ ∷ ν ∷ []) "Mark.11.23" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.11.23" ∷ word (τ ∷ ῷ ∷ []) "Mark.11.23" ∷ word (ὄ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.11.23" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ῳ ∷ []) "Mark.11.23" ∷ word (Ἄ ∷ ρ ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.11.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.23" ∷ word (β ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ τ ∷ ι ∷ []) "Mark.11.23" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.23" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.23" ∷ word (θ ∷ ά ∷ ∙λ ∷ α ∷ σ ∷ σ ∷ α ∷ ν ∷ []) "Mark.11.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.23" ∷ word (μ ∷ ὴ ∷ []) "Mark.11.23" ∷ word (δ ∷ ι ∷ α ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῇ ∷ []) "Mark.11.23" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.23" ∷ word (τ ∷ ῇ ∷ []) "Mark.11.23" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ ᾳ ∷ []) "Mark.11.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.23" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.11.23" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ῃ ∷ []) "Mark.11.23" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.23" ∷ word (ὃ ∷ []) "Mark.11.23" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.11.23" ∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.23" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.23" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.11.24" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.11.24" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.11.24" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.24" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.11.24" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.11.24" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.11.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.24" ∷ word (α ∷ ἰ ∷ τ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.11.24" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.24" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.24" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.24" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.24" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.25" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.11.25" ∷ word (σ ∷ τ ∷ ή ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.25" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.11.25" ∷ word (ἀ ∷ φ ∷ ί ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.25" ∷ word (ε ∷ ἴ ∷ []) "Mark.11.25" ∷ word (τ ∷ ι ∷ []) "Mark.11.25" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.11.25" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ []) "Mark.11.25" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Mark.11.25" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.11.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.25" ∷ word (ὁ ∷ []) "Mark.11.25" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Mark.11.25" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.25" ∷ word (ὁ ∷ []) "Mark.11.25" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.25" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.25" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.25" ∷ word (ἀ ∷ φ ∷ ῇ ∷ []) "Mark.11.25" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.25" ∷ word (τ ∷ ὰ ∷ []) "Mark.11.25" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ τ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.11.25" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.11.25" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.11.27" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.27" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.11.27" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.11.27" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.27" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.27" ∷ word (τ ∷ ῷ ∷ []) "Mark.11.27" ∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.11.27" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.11.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.11.27" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.11.27" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.27" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.11.27" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.27" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.27" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.27" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.27" ∷ word (ο ∷ ἱ ∷ []) "Mark.11.27" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Mark.11.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.28" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.11.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.28" ∷ word (Ἐ ∷ ν ∷ []) "Mark.11.28" ∷ word (π ∷ ο ∷ ί ∷ ᾳ ∷ []) "Mark.11.28" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.11.28" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.28" ∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.11.28" ∷ word (ἢ ∷ []) "Mark.11.28" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.11.28" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.11.28" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.11.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.11.28" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.11.28" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.11.28" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.11.28" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.28" ∷ word (π ∷ ο ∷ ι ∷ ῇ ∷ ς ∷ []) "Mark.11.28" ∷ word (ὁ ∷ []) "Mark.11.29" ∷ word (δ ∷ ὲ ∷ []) "Mark.11.29" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.29" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.11.29" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.29" ∷ word (Ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.11.29" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.11.29" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.11.29" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.11.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.29" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ τ ∷ έ ∷ []) "Mark.11.29" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.11.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.29" ∷ word (ἐ ∷ ρ ∷ ῶ ∷ []) "Mark.11.29" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.29" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.29" ∷ word (π ∷ ο ∷ ί ∷ ᾳ ∷ []) "Mark.11.29" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.11.29" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.29" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Mark.11.29" ∷ word (τ ∷ ὸ ∷ []) "Mark.11.30" ∷ word (β ∷ ά ∷ π ∷ τ ∷ ι ∷ σ ∷ μ ∷ α ∷ []) "Mark.11.30" ∷ word (τ ∷ ὸ ∷ []) "Mark.11.30" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ ο ∷ υ ∷ []) "Mark.11.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.11.30" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.11.30" ∷ word (ἦ ∷ ν ∷ []) "Mark.11.30" ∷ word (ἢ ∷ []) "Mark.11.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.11.30" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.11.30" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ τ ∷ έ ∷ []) "Mark.11.30" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.11.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.31" ∷ word (δ ∷ ι ∷ ε ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.31" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.11.31" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.11.31" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.31" ∷ word (Τ ∷ ί ∷ []) "Mark.11.31" ∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.31" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.11.31" ∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.31" ∷ word (Ἐ ∷ ξ ∷ []) "Mark.11.31" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.11.31" ∷ word (ἐ ∷ ρ ∷ ε ∷ ῖ ∷ []) "Mark.11.31" ∷ word (Δ ∷ ι ∷ ὰ ∷ []) "Mark.11.31" ∷ word (τ ∷ ί ∷ []) "Mark.11.31" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.11.31" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.11.31" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.11.31" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.11.31" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.11.32" ∷ word (ε ∷ ἴ ∷ π ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.32" ∷ word (Ἐ ∷ ξ ∷ []) "Mark.11.32" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.11.32" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.11.32" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.32" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.11.32" ∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.32" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.11.32" ∷ word (ε ∷ ἶ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.11.32" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.11.32" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.11.32" ∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "Mark.11.32" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.11.32" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ η ∷ ς ∷ []) "Mark.11.32" ∷ word (ἦ ∷ ν ∷ []) "Mark.11.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.33" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.11.33" ∷ word (τ ∷ ῷ ∷ []) "Mark.11.33" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.11.33" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.11.33" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.11.33" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.11.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.11.33" ∷ word (ὁ ∷ []) "Mark.11.33" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.11.33" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.11.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.11.33" ∷ word (Ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.11.33" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.11.33" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.11.33" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.11.33" ∷ word (ἐ ∷ ν ∷ []) "Mark.11.33" ∷ word (π ∷ ο ∷ ί ∷ ᾳ ∷ []) "Mark.11.33" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ᾳ ∷ []) "Mark.11.33" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.11.33" ∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ []) "Mark.11.33" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.1" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.12.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.1" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.1" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.1" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.12.1" ∷ word (Ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.12.1" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.12.1" ∷ word (ἐ ∷ φ ∷ ύ ∷ τ ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ έ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.12.1" ∷ word (φ ∷ ρ ∷ α ∷ γ ∷ μ ∷ ὸ ∷ ν ∷ []) "Mark.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1" ∷ word (ὤ ∷ ρ ∷ υ ∷ ξ ∷ ε ∷ ν ∷ []) "Mark.12.1" ∷ word (ὑ ∷ π ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1" ∷ word (ᾠ ∷ κ ∷ ο ∷ δ ∷ ό ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.1" ∷ word (π ∷ ύ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1" ∷ word (ἐ ∷ ξ ∷ έ ∷ δ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.12.1" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.1" ∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.1" ∷ word (ἀ ∷ π ∷ ε ∷ δ ∷ ή ∷ μ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.2" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.2" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.2" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.2" ∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.2" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.2" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ῷ ∷ []) "Mark.12.2" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.2" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.2" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.12.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.2" ∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ῶ ∷ ν ∷ []) "Mark.12.2" ∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.12.2" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.12.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.2" ∷ word (κ ∷ α ∷ ρ ∷ π ∷ ῶ ∷ ν ∷ []) "Mark.12.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.2" ∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.3" ∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.3" ∷ word (ἔ ∷ δ ∷ ε ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "Mark.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.3" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.12.3" ∷ word (κ ∷ ε ∷ ν ∷ ό ∷ ν ∷ []) "Mark.12.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.4" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.12.4" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.4" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.4" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.4" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.4" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.12.4" ∷ word (ἐ ∷ κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ί ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.4" ∷ word (ἠ ∷ τ ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.5" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.5" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.5" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.12.5" ∷ word (ἀ ∷ π ∷ έ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Mark.12.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.5" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.5" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.12.5" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.12.5" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.12.5" ∷ word (δ ∷ έ ∷ ρ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.5" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.12.5" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.5" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ έ ∷ ν ∷ ν ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.5" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.12.6" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.12.6" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.12.6" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.12.6" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.6" ∷ word (ἀ ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.6" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.6" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.12.6" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.12.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.6" ∷ word (Ἐ ∷ ν ∷ τ ∷ ρ ∷ α ∷ π ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.6" ∷ word (υ ∷ ἱ ∷ ό ∷ ν ∷ []) "Mark.12.6" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.12.6" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.12.7" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.7" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.7" ∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ὶ ∷ []) "Mark.12.7" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.7" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.12.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.7" ∷ word (Ο ∷ ὗ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.12.7" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.7" ∷ word (ὁ ∷ []) "Mark.12.7" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Mark.12.7" ∷ word (δ ∷ ε ∷ ῦ ∷ τ ∷ ε ∷ []) "Mark.12.7" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.7" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.7" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.12.7" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.7" ∷ word (ἡ ∷ []) "Mark.12.7" ∷ word (κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ []) "Mark.12.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.8" ∷ word (∙λ ∷ α ∷ β ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.8" ∷ word (ἀ ∷ π ∷ έ ∷ κ ∷ τ ∷ ε ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Mark.12.8" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.8" ∷ word (ἐ ∷ ξ ∷ έ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.8" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.12.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.8" ∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.8" ∷ word (τ ∷ ί ∷ []) "Mark.12.9" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.9" ∷ word (ὁ ∷ []) "Mark.12.9" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.9" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.9" ∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.9" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.9" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ έ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.9" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.9" ∷ word (γ ∷ ε ∷ ω ∷ ρ ∷ γ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.12.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.9" ∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.9" ∷ word (ἀ ∷ μ ∷ π ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ α ∷ []) "Mark.12.9" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.12.9" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.12.10" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.10" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ὴ ∷ ν ∷ []) "Mark.12.10" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "Mark.12.10" ∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "Mark.12.10" ∷ word (Λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.12.10" ∷ word (ὃ ∷ ν ∷ []) "Mark.12.10" ∷ word (ἀ ∷ π ∷ ε ∷ δ ∷ ο ∷ κ ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.10" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.10" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.10" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.10" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Mark.12.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.10" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.12.10" ∷ word (γ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.10" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.12.11" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.12.11" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.12.11" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.11" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.11" ∷ word (θ ∷ α ∷ υ ∷ μ ∷ α ∷ σ ∷ τ ∷ ὴ ∷ []) "Mark.12.11" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.11" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.11" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.12.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.12" ∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.12.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.12" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.12" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.12" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.12" ∷ word (ἔ ∷ γ ∷ ν ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.12" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.12" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.12" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.12" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.12" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.12.12" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.12" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.12" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.12" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.12.12" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.13" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.13" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.13" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.13" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ ς ∷ []) "Mark.12.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.13" ∷ word (Φ ∷ α ∷ ρ ∷ ι ∷ σ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.12.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.13" ∷ word (Ἡ ∷ ρ ∷ ῳ ∷ δ ∷ ι ∷ α ∷ ν ∷ ῶ ∷ ν ∷ []) "Mark.12.13" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.13" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.13" ∷ word (ἀ ∷ γ ∷ ρ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.13" ∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "Mark.12.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.14" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.14" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.14" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.12.14" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.14" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ὴ ∷ ς ∷ []) "Mark.12.14" ∷ word (ε ∷ ἶ ∷ []) "Mark.12.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.14" ∷ word (ο ∷ ὐ ∷ []) "Mark.12.14" ∷ word (μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.12.14" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.12.14" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.12.14" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ό ∷ ς ∷ []) "Mark.12.14" ∷ word (ο ∷ ὐ ∷ []) "Mark.12.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.14" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.14" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.12.14" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "Mark.12.14" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.12.14" ∷ word (ἐ ∷ π ∷ []) "Mark.12.14" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.14" ∷ word (ὁ ∷ δ ∷ ὸ ∷ ν ∷ []) "Mark.12.14" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.14" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.14" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.14" ∷ word (ἔ ∷ ξ ∷ ε ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.14" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.12.14" ∷ word (κ ∷ ῆ ∷ ν ∷ σ ∷ ο ∷ ν ∷ []) "Mark.12.14" ∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ι ∷ []) "Mark.12.14" ∷ word (ἢ ∷ []) "Mark.12.14" ∷ word (ο ∷ ὔ ∷ []) "Mark.12.14" ∷ word (δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.14" ∷ word (ἢ ∷ []) "Mark.12.14" ∷ word (μ ∷ ὴ ∷ []) "Mark.12.14" ∷ word (δ ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "Mark.12.14" ∷ word (ὁ ∷ []) "Mark.12.15" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.15" ∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "Mark.12.15" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.12.15" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.15" ∷ word (ὑ ∷ π ∷ ό ∷ κ ∷ ρ ∷ ι ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.15" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.15" ∷ word (Τ ∷ ί ∷ []) "Mark.12.15" ∷ word (μ ∷ ε ∷ []) "Mark.12.15" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ ά ∷ ζ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.12.15" ∷ word (φ ∷ έ ∷ ρ ∷ ε ∷ τ ∷ έ ∷ []) "Mark.12.15" ∷ word (μ ∷ ο ∷ ι ∷ []) "Mark.12.15" ∷ word (δ ∷ η ∷ ν ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.15" ∷ word (ἴ ∷ δ ∷ ω ∷ []) "Mark.12.15" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.16" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.16" ∷ word (ἤ ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ ν ∷ []) "Mark.12.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.16" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.12.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.16" ∷ word (Τ ∷ ί ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.16" ∷ word (ἡ ∷ []) "Mark.12.16" ∷ word (ε ∷ ἰ ∷ κ ∷ ὼ ∷ ν ∷ []) "Mark.12.16" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.16" ∷ word (ἡ ∷ []) "Mark.12.16" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ρ ∷ α ∷ φ ∷ ή ∷ []) "Mark.12.16" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.16" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.16" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.12.16" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.16" ∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.12.16" ∷ word (ὁ ∷ []) "Mark.12.17" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.17" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.17" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.17" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.17" ∷ word (Τ ∷ ὰ ∷ []) "Mark.12.17" ∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.12.17" ∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ο ∷ τ ∷ ε ∷ []) "Mark.12.17" ∷ word (Κ ∷ α ∷ ί ∷ σ ∷ α ∷ ρ ∷ ι ∷ []) "Mark.12.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.17" ∷ word (τ ∷ ὰ ∷ []) "Mark.12.17" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.17" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.17" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.17" ∷ word (θ ∷ ε ∷ ῷ ∷ []) "Mark.12.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.17" ∷ word (ἐ ∷ ξ ∷ ε ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.12.17" ∷ word (ἐ ∷ π ∷ []) "Mark.12.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.17" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.18" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.18" ∷ word (Σ ∷ α ∷ δ ∷ δ ∷ ο ∷ υ ∷ κ ∷ α ∷ ῖ ∷ ο ∷ ι ∷ []) "Mark.12.18" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.12.18" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.18" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.12.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.18" ∷ word (ἀ ∷ ν ∷ ά ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.18" ∷ word (μ ∷ ὴ ∷ []) "Mark.12.18" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.12.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.18" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.18" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.18" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.12.19" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ ῆ ∷ ς ∷ []) "Mark.12.19" ∷ word (ἔ ∷ γ ∷ ρ ∷ α ∷ ψ ∷ ε ∷ ν ∷ []) "Mark.12.19" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.12.19" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.19" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.12.19" ∷ word (τ ∷ ι ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.19" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.12.19" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ά ∷ ν ∷ ῃ ∷ []) "Mark.12.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.19" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ί ∷ π ∷ ῃ ∷ []) "Mark.12.19" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.19" ∷ word (μ ∷ ὴ ∷ []) "Mark.12.19" ∷ word (ἀ ∷ φ ∷ ῇ ∷ []) "Mark.12.19" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.12.19" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.12.19" ∷ word (∙λ ∷ ά ∷ β ∷ ῃ ∷ []) "Mark.12.19" ∷ word (ὁ ∷ []) "Mark.12.19" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.12.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.19" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.19" ∷ word (ἐ ∷ ξ ∷ α ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.12.19" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.19" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.19" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ῷ ∷ []) "Mark.12.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.19" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.20" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ὶ ∷ []) "Mark.12.20" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.12.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.20" ∷ word (ὁ ∷ []) "Mark.12.20" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.20" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.12.20" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.20" ∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ ν ∷ ῄ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.12.20" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.20" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.12.20" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.21" ∷ word (ὁ ∷ []) "Mark.12.21" ∷ word (δ ∷ ε ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.12.21" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.12.21" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.12.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.21" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.12.21" ∷ word (μ ∷ ὴ ∷ []) "Mark.12.21" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ι ∷ π ∷ ὼ ∷ ν ∷ []) "Mark.12.21" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.21" ∷ word (ὁ ∷ []) "Mark.12.21" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.21" ∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.12.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.22" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.22" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.22" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.22" ∷ word (ἀ ∷ φ ∷ ῆ ∷ κ ∷ α ∷ ν ∷ []) "Mark.12.22" ∷ word (σ ∷ π ∷ έ ∷ ρ ∷ μ ∷ α ∷ []) "Mark.12.22" ∷ word (ἔ ∷ σ ∷ χ ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.12.22" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.22" ∷ word (ἡ ∷ []) "Mark.12.22" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.12.22" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.12.22" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.23" ∷ word (τ ∷ ῇ ∷ []) "Mark.12.23" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.23" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.12.23" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.23" ∷ word (τ ∷ ί ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.12.23" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.23" ∷ word (γ ∷ υ ∷ ν ∷ ή ∷ []) "Mark.12.23" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.23" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.23" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.23" ∷ word (ἔ ∷ σ ∷ χ ∷ ο ∷ ν ∷ []) "Mark.12.23" ∷ word (α ∷ ὐ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.12.23" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ []) "Mark.12.23" ∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.12.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.24" ∷ word (ὁ ∷ []) "Mark.12.24" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.24" ∷ word (Ο ∷ ὐ ∷ []) "Mark.12.24" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.12.24" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.12.24" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.12.24" ∷ word (μ ∷ ὴ ∷ []) "Mark.12.24" ∷ word (ε ∷ ἰ ∷ δ ∷ ό ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.24" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.12.24" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ὰ ∷ ς ∷ []) "Mark.12.24" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.12.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.12.24" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ μ ∷ ι ∷ ν ∷ []) "Mark.12.24" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.24" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.24" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.12.25" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.25" ∷ word (ἐ ∷ κ ∷ []) "Mark.12.25" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.25" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.25" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.12.25" ∷ word (γ ∷ α ∷ μ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.25" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.12.25" ∷ word (γ ∷ α ∷ μ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.25" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.12.25" ∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.12.25" ∷ word (ὡ ∷ ς ∷ []) "Mark.12.25" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.12.25" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.25" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.25" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.25" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.12.26" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.26" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.26" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.26" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.26" ∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ ν ∷ ω ∷ τ ∷ ε ∷ []) "Mark.12.26" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.26" ∷ word (τ ∷ ῇ ∷ []) "Mark.12.26" ∷ word (β ∷ ί ∷ β ∷ ∙λ ∷ ῳ ∷ []) "Mark.12.26" ∷ word (Μ ∷ ω ∷ ϋ ∷ σ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.12.26" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.12.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.26" ∷ word (β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.12.26" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.12.26" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.26" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.26" ∷ word (ὁ ∷ []) "Mark.12.26" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.12.26" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Mark.12.26" ∷ word (ὁ ∷ []) "Mark.12.26" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26" ∷ word (Ἀ ∷ β ∷ ρ ∷ α ∷ ὰ ∷ μ ∷ []) "Mark.12.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.26" ∷ word (ὁ ∷ []) "Mark.12.26" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26" ∷ word (Ἰ ∷ σ ∷ α ∷ ὰ ∷ κ ∷ []) "Mark.12.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.26" ∷ word (ὁ ∷ []) "Mark.12.26" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.26" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ []) "Mark.12.26" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.27" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.27" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.27" ∷ word (ν ∷ ε ∷ κ ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.27" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.12.27" ∷ word (ζ ∷ ώ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.27" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ []) "Mark.12.27" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.12.27" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.28" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.12.28" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.12.28" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.28" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.12.28" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.12.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.12.28" ∷ word (σ ∷ υ ∷ ζ ∷ η ∷ τ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.28" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.12.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.28" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.12.28" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.12.28" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.28" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.12.28" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.28" ∷ word (Π ∷ ο ∷ ί ∷ α ∷ []) "Mark.12.28" ∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "Mark.12.28" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Mark.12.28" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Mark.12.28" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.28" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.12.29" ∷ word (ὁ ∷ []) "Mark.12.29" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.29" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.29" ∷ word (Π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ []) "Mark.12.29" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.12.29" ∷ word (Ἄ ∷ κ ∷ ο ∷ υ ∷ ε ∷ []) "Mark.12.29" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ή ∷ ∙λ ∷ []) "Mark.12.29" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.29" ∷ word (ὁ ∷ []) "Mark.12.29" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.12.29" ∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.12.29" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.29" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.12.29" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.30" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.30" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.30" ∷ word (θ ∷ ε ∷ ό ∷ ν ∷ []) "Mark.12.30" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.30" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30" ∷ word (ψ ∷ υ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.12.30" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30" ∷ word (δ ∷ ι ∷ α ∷ ν ∷ ο ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.30" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.30" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.30" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.30" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.30" ∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "Mark.12.30" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.30" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.12.31" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.31" ∷ word (Ἀ ∷ γ ∷ α ∷ π ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.12.31" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.31" ∷ word (π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.12.31" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.31" ∷ word (ὡ ∷ ς ∷ []) "Mark.12.31" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.12.31" ∷ word (μ ∷ ε ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.12.31" ∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.31" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ η ∷ []) "Mark.12.31" ∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ []) "Mark.12.31" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.31" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.32" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.32" ∷ word (ὁ ∷ []) "Mark.12.32" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ς ∷ []) "Mark.12.32" ∷ word (Κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.12.32" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.12.32" ∷ word (ἐ ∷ π ∷ []) "Mark.12.32" ∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.32" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ς ∷ []) "Mark.12.32" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.32" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.12.32" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.32" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.12.32" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.32" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.12.32" ∷ word (π ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.12.32" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33" ∷ word (τ ∷ ὸ ∷ []) "Mark.12.33" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ ν ∷ []) "Mark.12.33" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.33" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.33" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.33" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.33" ∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.33" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.33" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.33" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.12.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33" ∷ word (ἐ ∷ ξ ∷ []) "Mark.12.33" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ς ∷ []) "Mark.12.33" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.33" ∷ word (ἰ ∷ σ ∷ χ ∷ ύ ∷ ο ∷ ς ∷ []) "Mark.12.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33" ∷ word (τ ∷ ὸ ∷ []) "Mark.12.33" ∷ word (ἀ ∷ γ ∷ α ∷ π ∷ ᾶ ∷ ν ∷ []) "Mark.12.33" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.33" ∷ word (π ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.12.33" ∷ word (ὡ ∷ ς ∷ []) "Mark.12.33" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.33" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.12.33" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.33" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.33" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.33" ∷ word (ὁ ∷ ∙λ ∷ ο ∷ κ ∷ α ∷ υ ∷ τ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.33" ∷ word (θ ∷ υ ∷ σ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.12.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.34" ∷ word (ὁ ∷ []) "Mark.12.34" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.34" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.12.34" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.34" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.34" ∷ word (ν ∷ ο ∷ υ ∷ ν ∷ ε ∷ χ ∷ ῶ ∷ ς ∷ []) "Mark.12.34" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.12.34" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.34" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.12.34" ∷ word (Ο ∷ ὐ ∷ []) "Mark.12.34" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ὰ ∷ ν ∷ []) "Mark.12.34" ∷ word (ε ∷ ἶ ∷ []) "Mark.12.34" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.12.34" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.34" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.34" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.34" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.12.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.34" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.12.34" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.12.34" ∷ word (ἐ ∷ τ ∷ ό ∷ ∙λ ∷ μ ∷ α ∷ []) "Mark.12.34" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.34" ∷ word (ἐ ∷ π ∷ ε ∷ ρ ∷ ω ∷ τ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.12.34" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.35" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.12.35" ∷ word (ὁ ∷ []) "Mark.12.35" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.12.35" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.12.35" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.12.35" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.35" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.35" ∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.12.35" ∷ word (Π ∷ ῶ ∷ ς ∷ []) "Mark.12.35" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.12.35" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.35" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.12.35" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.35" ∷ word (ὁ ∷ []) "Mark.12.35" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.12.35" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.12.35" ∷ word (Δ ∷ α ∷ υ ∷ ί ∷ δ ∷ []) "Mark.12.35" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.35" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.12.36" ∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.12.36" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.36" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.36" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.36" ∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "Mark.12.36" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.36" ∷ word (ἁ ∷ γ ∷ ί ∷ ῳ ∷ []) "Mark.12.36" ∷ word (Ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.36" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.12.36" ∷ word (τ ∷ ῷ ∷ []) "Mark.12.36" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "Mark.12.36" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.12.36" ∷ word (Κ ∷ ά ∷ θ ∷ ο ∷ υ ∷ []) "Mark.12.36" ∷ word (ἐ ∷ κ ∷ []) "Mark.12.36" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.12.36" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.12.36" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.12.36" ∷ word (ἂ ∷ ν ∷ []) "Mark.12.36" ∷ word (θ ∷ ῶ ∷ []) "Mark.12.36" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.36" ∷ word (ἐ ∷ χ ∷ θ ∷ ρ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.12.36" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.36" ∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.12.36" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.36" ∷ word (π ∷ ο ∷ δ ∷ ῶ ∷ ν ∷ []) "Mark.12.36" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.12.36" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.12.37" ∷ word (Δ ∷ α ∷ υ ∷ ὶ ∷ δ ∷ []) "Mark.12.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.12.37" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.12.37" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.37" ∷ word (π ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.12.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.37" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.37" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.12.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.37" ∷ word (ὁ ∷ []) "Mark.12.37" ∷ word (π ∷ ο ∷ ∙λ ∷ ὺ ∷ ς ∷ []) "Mark.12.37" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.12.37" ∷ word (ἤ ∷ κ ∷ ο ∷ υ ∷ ε ∷ ν ∷ []) "Mark.12.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.37" ∷ word (ἡ ∷ δ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.12.37" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.38" ∷ word (τ ∷ ῇ ∷ []) "Mark.12.38" ∷ word (δ ∷ ι ∷ δ ∷ α ∷ χ ∷ ῇ ∷ []) "Mark.12.38" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.38" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.12.38" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.12.38" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.12.38" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.38" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.12.38" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.38" ∷ word (θ ∷ ε ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.38" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.38" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.12.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.38" ∷ word (ἀ ∷ σ ∷ π ∷ α ∷ σ ∷ μ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.38" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.38" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.38" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.39" ∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ο ∷ κ ∷ α ∷ θ ∷ ε ∷ δ ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.39" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.39" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.39" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.12.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.39" ∷ word (π ∷ ρ ∷ ω ∷ τ ∷ ο ∷ κ ∷ ∙λ ∷ ι ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.39" ∷ word (ἐ ∷ ν ∷ []) "Mark.12.39" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.39" ∷ word (δ ∷ ε ∷ ί ∷ π ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.12.39" ∷ word (ο ∷ ἱ ∷ []) "Mark.12.40" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ σ ∷ θ ∷ ί ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.40" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.12.40" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.12.40" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.40" ∷ word (χ ∷ η ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.12.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.40" ∷ word (π ∷ ρ ∷ ο ∷ φ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.12.40" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ὰ ∷ []) "Mark.12.40" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.12.40" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.12.40" ∷ word (∙λ ∷ ή ∷ μ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.12.40" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.12.40" ∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "Mark.12.40" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.12.41" ∷ word (κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Mark.12.41" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Mark.12.41" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.41" ∷ word (γ ∷ α ∷ ζ ∷ ο ∷ φ ∷ υ ∷ ∙λ ∷ α ∷ κ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.12.41" ∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ ε ∷ ι ∷ []) "Mark.12.41" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.12.41" ∷ word (ὁ ∷ []) "Mark.12.41" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.12.41" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.12.41" ∷ word (χ ∷ α ∷ ∙λ ∷ κ ∷ ὸ ∷ ν ∷ []) "Mark.12.41" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.41" ∷ word (τ ∷ ὸ ∷ []) "Mark.12.41" ∷ word (γ ∷ α ∷ ζ ∷ ο ∷ φ ∷ υ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.41" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.12.41" ∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ ι ∷ ο ∷ ι ∷ []) "Mark.12.41" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.41" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.12.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.42" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.12.42" ∷ word (μ ∷ ί ∷ α ∷ []) "Mark.12.42" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "Mark.12.42" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ὴ ∷ []) "Mark.12.42" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.42" ∷ word (∙λ ∷ ε ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.12.42" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.12.42" ∷ word (ὅ ∷ []) "Mark.12.42" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.12.42" ∷ word (κ ∷ ο ∷ δ ∷ ρ ∷ ά ∷ ν ∷ τ ∷ η ∷ ς ∷ []) "Mark.12.42" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.12.43" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.12.43" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.12.43" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.12.43" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.12.43" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.12.43" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.43" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.12.43" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.12.43" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.12.43" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.12.43" ∷ word (ἡ ∷ []) "Mark.12.43" ∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "Mark.12.43" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.43" ∷ word (ἡ ∷ []) "Mark.12.43" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ὴ ∷ []) "Mark.12.43" ∷ word (π ∷ ∙λ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.12.43" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.43" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.43" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.12.43" ∷ word (β ∷ α ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.12.43" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.12.43" ∷ word (τ ∷ ὸ ∷ []) "Mark.12.43" ∷ word (γ ∷ α ∷ ζ ∷ ο ∷ φ ∷ υ ∷ ∙λ ∷ ά ∷ κ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.12.43" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.12.44" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.12.44" ∷ word (ἐ ∷ κ ∷ []) "Mark.12.44" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.12.44" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ε ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.12.44" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.12.44" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.44" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.12.44" ∷ word (δ ∷ ὲ ∷ []) "Mark.12.44" ∷ word (ἐ ∷ κ ∷ []) "Mark.12.44" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.12.44" ∷ word (ὑ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.12.44" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.12.44" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.12.44" ∷ word (ὅ ∷ σ ∷ α ∷ []) "Mark.12.44" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.12.44" ∷ word (ἔ ∷ β ∷ α ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.12.44" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.12.44" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.12.44" ∷ word (β ∷ ί ∷ ο ∷ ν ∷ []) "Mark.12.44" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.12.44" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.13.1" ∷ word (ἐ ∷ κ ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.13.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.1" ∷ word (ἐ ∷ κ ∷ []) "Mark.13.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.1" ∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.13.1" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.13.1" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.13.1" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.13.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.13.1" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.13.1" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.1" ∷ word (Δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ []) "Mark.13.1" ∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.13.1" ∷ word (π ∷ ο ∷ τ ∷ α ∷ π ∷ ο ∷ ὶ ∷ []) "Mark.13.1" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ι ∷ []) "Mark.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.1" ∷ word (π ∷ ο ∷ τ ∷ α ∷ π ∷ α ∷ ὶ ∷ []) "Mark.13.1" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ α ∷ ί ∷ []) "Mark.13.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.2" ∷ word (ὁ ∷ []) "Mark.13.2" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.13.2" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.13.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.13.2" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ ι ∷ ς ∷ []) "Mark.13.2" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ α ∷ ς ∷ []) "Mark.13.2" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.13.2" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ α ∷ ς ∷ []) "Mark.13.2" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ά ∷ ς ∷ []) "Mark.13.2" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.2" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.2" ∷ word (ἀ ∷ φ ∷ ε ∷ θ ∷ ῇ ∷ []) "Mark.13.2" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.13.2" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ς ∷ []) "Mark.13.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.2" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.13.2" ∷ word (ὃ ∷ ς ∷ []) "Mark.13.2" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.2" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.2" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ υ ∷ θ ∷ ῇ ∷ []) "Mark.13.2" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.13.3" ∷ word (κ ∷ α ∷ θ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.13.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.3" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.3" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.3" ∷ word (Ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.13.3" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.13.3" ∷ word (Ἐ ∷ ∙λ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.13.3" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ ν ∷ α ∷ ν ∷ τ ∷ ι ∷ []) "Mark.13.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.3" ∷ word (ἱ ∷ ε ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.13.3" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.13.3" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.13.3" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.13.3" ∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.3" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.3" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ς ∷ []) "Mark.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.3" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ς ∷ []) "Mark.13.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.3" ∷ word (Ἀ ∷ ν ∷ δ ∷ ρ ∷ έ ∷ α ∷ ς ∷ []) "Mark.13.3" ∷ word (Ε ∷ ἰ ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.13.4" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.4" ∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.4" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.4" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.4" ∷ word (τ ∷ ί ∷ []) "Mark.13.4" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.4" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.13.4" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.4" ∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ῃ ∷ []) "Mark.13.4" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.4" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.13.4" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.4" ∷ word (ὁ ∷ []) "Mark.13.5" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.13.5" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.13.5" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.13.5" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.5" ∷ word (Β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.5" ∷ word (μ ∷ ή ∷ []) "Mark.13.5" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.13.5" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.5" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.13.5" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.13.6" ∷ word (ἐ ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.6" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.6" ∷ word (τ ∷ ῷ ∷ []) "Mark.13.6" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.13.6" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.13.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.6" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.6" ∷ word (Ἐ ∷ γ ∷ ώ ∷ []) "Mark.13.6" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Mark.13.6" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.6" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.6" ∷ word (π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.6" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.7" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.7" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.7" ∷ word (π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.13.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.7" ∷ word (ἀ ∷ κ ∷ ο ∷ ὰ ∷ ς ∷ []) "Mark.13.7" ∷ word (π ∷ ο ∷ ∙λ ∷ έ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.13.7" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.7" ∷ word (θ ∷ ρ ∷ ο ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.7" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.13.7" ∷ word (γ ∷ ε ∷ ν ∷ έ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.13.7" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.13.7" ∷ word (ο ∷ ὔ ∷ π ∷ ω ∷ []) "Mark.13.7" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.7" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.13.7" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.8" ∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.13.8" ∷ word (ἐ ∷ π ∷ []) "Mark.13.8" ∷ word (ἔ ∷ θ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.13.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.8" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ []) "Mark.13.8" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.8" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.8" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.8" ∷ word (σ ∷ ε ∷ ι ∷ σ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.13.8" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.13.8" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Mark.13.8" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.8" ∷ word (∙λ ∷ ι ∷ μ ∷ ο ∷ ί ∷ []) "Mark.13.8" ∷ word (ἀ ∷ ρ ∷ χ ∷ ὴ ∷ []) "Mark.13.8" ∷ word (ὠ ∷ δ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "Mark.13.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.8" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.9" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.9" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.9" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.13.9" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.9" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.9" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ ι ∷ α ∷ []) "Mark.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.9" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ γ ∷ ω ∷ γ ∷ ὰ ∷ ς ∷ []) "Mark.13.9" ∷ word (δ ∷ α ∷ ρ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.9" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.9" ∷ word (ἡ ∷ γ ∷ ε ∷ μ ∷ ό ∷ ν ∷ ω ∷ ν ∷ []) "Mark.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.9" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.13.9" ∷ word (σ ∷ τ ∷ α ∷ θ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.9" ∷ word (ἕ ∷ ν ∷ ε ∷ κ ∷ ε ∷ ν ∷ []) "Mark.13.9" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.13.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.9" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.10" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.10" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.10" ∷ word (τ ∷ ὰ ∷ []) "Mark.13.10" ∷ word (ἔ ∷ θ ∷ ν ∷ η ∷ []) "Mark.13.10" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.13.10" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.13.10" ∷ word (κ ∷ η ∷ ρ ∷ υ ∷ χ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.13.10" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.10" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.11" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.11" ∷ word (ἄ ∷ γ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.11" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.11" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.11" ∷ word (π ∷ ρ ∷ ο ∷ μ ∷ ε ∷ ρ ∷ ι ∷ μ ∷ ν ∷ ᾶ ∷ τ ∷ ε ∷ []) "Mark.13.11" ∷ word (τ ∷ ί ∷ []) "Mark.13.11" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.13.11" ∷ word (ὃ ∷ []) "Mark.13.11" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.13.11" ∷ word (δ ∷ ο ∷ θ ∷ ῇ ∷ []) "Mark.13.11" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.11" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.11" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.13.11" ∷ word (τ ∷ ῇ ∷ []) "Mark.13.11" ∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Mark.13.11" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.13.11" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.11" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.11" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.13.11" ∷ word (ἐ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.13.11" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.11" ∷ word (ο ∷ ἱ ∷ []) "Mark.13.11" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.11" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.13.11" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.11" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.13.11" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.11" ∷ word (ἅ ∷ γ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.13.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ς ∷ []) "Mark.13.12" ∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὸ ∷ ν ∷ []) "Mark.13.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.12" ∷ word (θ ∷ ά ∷ ν ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12" ∷ word (π ∷ α ∷ τ ∷ ὴ ∷ ρ ∷ []) "Mark.13.12" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12" ∷ word (ἐ ∷ π ∷ α ∷ ν ∷ α ∷ σ ∷ τ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.12" ∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "Mark.13.12" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.12" ∷ word (γ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.12" ∷ word (θ ∷ α ∷ ν ∷ α ∷ τ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.13.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.13" ∷ word (ἔ ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.13" ∷ word (μ ∷ ι ∷ σ ∷ ο ∷ ύ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.13.13" ∷ word (ὑ ∷ π ∷ ὸ ∷ []) "Mark.13.13" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.13.13" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.13.13" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.13" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ ά ∷ []) "Mark.13.13" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.13.13" ∷ word (ὁ ∷ []) "Mark.13.13" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.13" ∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ε ∷ ί ∷ ν ∷ α ∷ ς ∷ []) "Mark.13.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.13" ∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.13.13" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.13.13" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.13" ∷ word (Ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.14" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.14" ∷ word (ἴ ∷ δ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.14" ∷ word (β ∷ δ ∷ έ ∷ ∙λ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "Mark.13.14" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.14" ∷ word (ἐ ∷ ρ ∷ η ∷ μ ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.13.14" ∷ word (ἑ ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ α ∷ []) "Mark.13.14" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.13.14" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.14" ∷ word (δ ∷ ε ∷ ῖ ∷ []) "Mark.13.14" ∷ word (ὁ ∷ []) "Mark.13.14" ∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.13.14" ∷ word (ν ∷ ο ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "Mark.13.14" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.14" ∷ word (ο ∷ ἱ ∷ []) "Mark.13.14" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.14" ∷ word (τ ∷ ῇ ∷ []) "Mark.13.14" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ᾳ ∷ []) "Mark.13.14" ∷ word (φ ∷ ε ∷ υ ∷ γ ∷ έ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.13.14" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.14" ∷ word (τ ∷ ὰ ∷ []) "Mark.13.14" ∷ word (ὄ ∷ ρ ∷ η ∷ []) "Mark.13.14" ∷ word (ὁ ∷ []) "Mark.13.15" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.15" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.15" ∷ word (δ ∷ ώ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.13.15" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.15" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ά ∷ τ ∷ ω ∷ []) "Mark.13.15" ∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "Mark.13.15" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.13.15" ∷ word (τ ∷ ι ∷ []) "Mark.13.15" ∷ word (ἆ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.13.15" ∷ word (ἐ ∷ κ ∷ []) "Mark.13.15" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.15" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.13.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.16" ∷ word (ὁ ∷ []) "Mark.13.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.16" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.13.16" ∷ word (ἀ ∷ γ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.13.16" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.16" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ρ ∷ ε ∷ ψ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.13.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.13.16" ∷ word (τ ∷ ὰ ∷ []) "Mark.13.16" ∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "Mark.13.16" ∷ word (ἆ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.13.16" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.16" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.16" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Mark.13.17" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.17" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.17" ∷ word (γ ∷ α ∷ σ ∷ τ ∷ ρ ∷ ὶ ∷ []) "Mark.13.17" ∷ word (ἐ ∷ χ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.17" ∷ word (θ ∷ η ∷ ∙λ ∷ α ∷ ζ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.17" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.17" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.17" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.13.18" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.18" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.13.18" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.18" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.18" ∷ word (χ ∷ ε ∷ ι ∷ μ ∷ ῶ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.13.18" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.19" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.19" ∷ word (α ∷ ἱ ∷ []) "Mark.13.19" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ []) "Mark.13.19" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "Mark.13.19" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ς ∷ []) "Mark.13.19" ∷ word (ο ∷ ἵ ∷ α ∷ []) "Mark.13.19" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.19" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.13.19" ∷ word (τ ∷ ο ∷ ι ∷ α ∷ ύ ∷ τ ∷ η ∷ []) "Mark.13.19" ∷ word (ἀ ∷ π ∷ []) "Mark.13.19" ∷ word (ἀ ∷ ρ ∷ χ ∷ ῆ ∷ ς ∷ []) "Mark.13.19" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.13.19" ∷ word (ἣ ∷ ν ∷ []) "Mark.13.19" ∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.13.19" ∷ word (ὁ ∷ []) "Mark.13.19" ∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "Mark.13.19" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.13.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.19" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Mark.13.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.19" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.19" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.19" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.20" ∷ word (ε ∷ ἰ ∷ []) "Mark.13.20" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.20" ∷ word (ἐ ∷ κ ∷ ο ∷ ∙λ ∷ ό ∷ β ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Mark.13.20" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.13.20" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.13.20" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.20" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.13.20" ∷ word (ἂ ∷ ν ∷ []) "Mark.13.20" ∷ word (ἐ ∷ σ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.13.20" ∷ word (π ∷ ᾶ ∷ σ ∷ α ∷ []) "Mark.13.20" ∷ word (σ ∷ ά ∷ ρ ∷ ξ ∷ []) "Mark.13.20" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.13.20" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.13.20" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.20" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.20" ∷ word (ο ∷ ὓ ∷ ς ∷ []) "Mark.13.20" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.13.20" ∷ word (ἐ ∷ κ ∷ ο ∷ ∙λ ∷ ό ∷ β ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Mark.13.20" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.13.20" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.21" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.21" ∷ word (ἐ ∷ ά ∷ ν ∷ []) "Mark.13.21" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.13.21" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.21" ∷ word (ε ∷ ἴ ∷ π ∷ ῃ ∷ []) "Mark.13.21" ∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.13.21" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.13.21" ∷ word (ὁ ∷ []) "Mark.13.21" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.13.21" ∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.13.21" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.13.21" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.21" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.21" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.22" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.22" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ό ∷ χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ι ∷ []) "Mark.13.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.22" ∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ π ∷ ρ ∷ ο ∷ φ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.22" ∷ word (δ ∷ ώ ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.22" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Mark.13.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.22" ∷ word (τ ∷ έ ∷ ρ ∷ α ∷ τ ∷ α ∷ []) "Mark.13.22" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.13.22" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.22" ∷ word (ἀ ∷ π ∷ ο ∷ π ∷ ∙λ ∷ α ∷ ν ∷ ᾶ ∷ ν ∷ []) "Mark.13.22" ∷ word (ε ∷ ἰ ∷ []) "Mark.13.22" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.13.22" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.22" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.13.22" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.23" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.23" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.23" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ί ∷ ρ ∷ η ∷ κ ∷ α ∷ []) "Mark.13.23" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.23" ∷ word (Ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.13.24" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.24" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.24" ∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.13.24" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.24" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.13.24" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.24" ∷ word (θ ∷ ∙λ ∷ ῖ ∷ ψ ∷ ι ∷ ν ∷ []) "Mark.13.24" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ν ∷ []) "Mark.13.24" ∷ word (ὁ ∷ []) "Mark.13.24" ∷ word (ἥ ∷ ∙λ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.13.24" ∷ word (σ ∷ κ ∷ ο ∷ τ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.24" ∷ word (ἡ ∷ []) "Mark.13.24" ∷ word (σ ∷ ε ∷ ∙λ ∷ ή ∷ ν ∷ η ∷ []) "Mark.13.24" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.24" ∷ word (δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.13.24" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.24" ∷ word (φ ∷ έ ∷ γ ∷ γ ∷ ο ∷ ς ∷ []) "Mark.13.24" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.13.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.25" ∷ word (ο ∷ ἱ ∷ []) "Mark.13.25" ∷ word (ἀ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ε ∷ ς ∷ []) "Mark.13.25" ∷ word (ἔ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.25" ∷ word (ἐ ∷ κ ∷ []) "Mark.13.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.25" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.13.25" ∷ word (π ∷ ί ∷ π ∷ τ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.13.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.25" ∷ word (α ∷ ἱ ∷ []) "Mark.13.25" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.13.25" ∷ word (α ∷ ἱ ∷ []) "Mark.13.25" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.25" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.25" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.25" ∷ word (σ ∷ α ∷ ∙λ ∷ ε ∷ υ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.26" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.26" ∷ word (ὄ ∷ ψ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.26" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.13.26" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.13.26" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.13.26" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.13.26" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.13.26" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.26" ∷ word (ν ∷ ε ∷ φ ∷ έ ∷ ∙λ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.26" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.13.26" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.13.26" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.13.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.26" ∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "Mark.13.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.27" ∷ word (τ ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.27" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "Mark.13.27" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.27" ∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.13.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.27" ∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ υ ∷ ν ∷ ά ∷ ξ ∷ ε ∷ ι ∷ []) "Mark.13.27" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.27" ∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.27" ∷ word (ἐ ∷ κ ∷ []) "Mark.13.27" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.13.27" ∷ word (τ ∷ ε ∷ σ ∷ σ ∷ ά ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.13.27" ∷ word (ἀ ∷ ν ∷ έ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.13.27" ∷ word (ἀ ∷ π ∷ []) "Mark.13.27" ∷ word (ἄ ∷ κ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.13.27" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.13.27" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.13.27" ∷ word (ἄ ∷ κ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.13.27" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.13.27" ∷ word (Ἀ ∷ π ∷ ὸ ∷ []) "Mark.13.28" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.28" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.28" ∷ word (σ ∷ υ ∷ κ ∷ ῆ ∷ ς ∷ []) "Mark.13.28" ∷ word (μ ∷ ά ∷ θ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.28" ∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ο ∷ ∙λ ∷ ή ∷ ν ∷ []) "Mark.13.28" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.28" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.13.28" ∷ word (ὁ ∷ []) "Mark.13.28" ∷ word (κ ∷ ∙λ ∷ ά ∷ δ ∷ ο ∷ ς ∷ []) "Mark.13.28" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.13.28" ∷ word (ἁ ∷ π ∷ α ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "Mark.13.28" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.28" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.28" ∷ word (ἐ ∷ κ ∷ φ ∷ ύ ∷ ῃ ∷ []) "Mark.13.28" ∷ word (τ ∷ ὰ ∷ []) "Mark.13.28" ∷ word (φ ∷ ύ ∷ ∙λ ∷ ∙λ ∷ α ∷ []) "Mark.13.28" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.28" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.28" ∷ word (ἐ ∷ γ ∷ γ ∷ ὺ ∷ ς ∷ []) "Mark.13.28" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.28" ∷ word (θ ∷ έ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.13.28" ∷ word (ἐ ∷ σ ∷ τ ∷ ί ∷ ν ∷ []) "Mark.13.28" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.13.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.29" ∷ word (ὑ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.13.29" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.13.29" ∷ word (ἴ ∷ δ ∷ η ∷ τ ∷ ε ∷ []) "Mark.13.29" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.29" ∷ word (γ ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ []) "Mark.13.29" ∷ word (γ ∷ ι ∷ ν ∷ ώ ∷ σ ∷ κ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.29" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.29" ∷ word (ἐ ∷ γ ∷ γ ∷ ύ ∷ ς ∷ []) "Mark.13.29" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.13.29" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.13.29" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.13.29" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.13.30" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.13.30" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.30" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.13.30" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.30" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.30" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.13.30" ∷ word (ἡ ∷ []) "Mark.13.30" ∷ word (γ ∷ ε ∷ ν ∷ ε ∷ ὰ ∷ []) "Mark.13.30" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.13.30" ∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ ς ∷ []) "Mark.13.30" ∷ word (ο ∷ ὗ ∷ []) "Mark.13.30" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.13.30" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.13.30" ∷ word (γ ∷ έ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.30" ∷ word (ὁ ∷ []) "Mark.13.31" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ς ∷ []) "Mark.13.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.31" ∷ word (ἡ ∷ []) "Mark.13.31" ∷ word (γ ∷ ῆ ∷ []) "Mark.13.31" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.13.31" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.31" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ []) "Mark.13.31" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.13.31" ∷ word (ο ∷ ὐ ∷ []) "Mark.13.31" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.31" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ ∙λ ∷ ε ∷ ύ ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.31" ∷ word (Π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.13.32" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.32" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.32" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.32" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "Mark.13.32" ∷ word (ἢ ∷ []) "Mark.13.32" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.32" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.13.32" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.13.32" ∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "Mark.13.32" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.13.32" ∷ word (ο ∷ ἱ ∷ []) "Mark.13.32" ∷ word (ἄ ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ο ∷ ι ∷ []) "Mark.13.32" ∷ word (ἐ ∷ ν ∷ []) "Mark.13.32" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ῷ ∷ []) "Mark.13.32" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.13.32" ∷ word (ὁ ∷ []) "Mark.13.32" ∷ word (υ ∷ ἱ ∷ ό ∷ ς ∷ []) "Mark.13.32" ∷ word (ε ∷ ἰ ∷ []) "Mark.13.32" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.32" ∷ word (ὁ ∷ []) "Mark.13.32" ∷ word (π ∷ α ∷ τ ∷ ή ∷ ρ ∷ []) "Mark.13.32" ∷ word (β ∷ ∙λ ∷ έ ∷ π ∷ ε ∷ τ ∷ ε ∷ []) "Mark.13.33" ∷ word (ἀ ∷ γ ∷ ρ ∷ υ ∷ π ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.33" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.13.33" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.13.33" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.33" ∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.33" ∷ word (ὁ ∷ []) "Mark.13.33" ∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ό ∷ ς ∷ []) "Mark.13.33" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.13.33" ∷ word (ὡ ∷ ς ∷ []) "Mark.13.34" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.13.34" ∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ η ∷ μ ∷ ο ∷ ς ∷ []) "Mark.13.34" ∷ word (ἀ ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.13.34" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.34" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.34" ∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.13.34" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.13.34" ∷ word (δ ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "Mark.13.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.34" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.13.34" ∷ word (ἐ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "Mark.13.34" ∷ word (ἑ ∷ κ ∷ ά ∷ σ ∷ τ ∷ ῳ ∷ []) "Mark.13.34" ∷ word (τ ∷ ὸ ∷ []) "Mark.13.34" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.13.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.13.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.13.34" ∷ word (τ ∷ ῷ ∷ []) "Mark.13.34" ∷ word (θ ∷ υ ∷ ρ ∷ ω ∷ ρ ∷ ῷ ∷ []) "Mark.13.34" ∷ word (ἐ ∷ ν ∷ ε ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ []) "Mark.13.34" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.13.34" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῇ ∷ []) "Mark.13.34" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.35" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.13.35" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.13.35" ∷ word (ο ∷ ἴ ∷ δ ∷ α ∷ τ ∷ ε ∷ []) "Mark.13.35" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.13.35" ∷ word (π ∷ ό ∷ τ ∷ ε ∷ []) "Mark.13.35" ∷ word (ὁ ∷ []) "Mark.13.35" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.13.35" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.13.35" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "Mark.13.35" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.13.35" ∷ word (ἢ ∷ []) "Mark.13.35" ∷ word (ὀ ∷ ψ ∷ ὲ ∷ []) "Mark.13.35" ∷ word (ἢ ∷ []) "Mark.13.35" ∷ word (μ ∷ ε ∷ σ ∷ ο ∷ ν ∷ ύ ∷ κ ∷ τ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.13.35" ∷ word (ἢ ∷ []) "Mark.13.35" ∷ word (ἀ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ρ ∷ ο ∷ φ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "Mark.13.35" ∷ word (ἢ ∷ []) "Mark.13.35" ∷ word (π ∷ ρ ∷ ω ∷ ΐ ∷ []) "Mark.13.35" ∷ word (μ ∷ ὴ ∷ []) "Mark.13.36" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.13.36" ∷ word (ἐ ∷ ξ ∷ α ∷ ί ∷ φ ∷ ν ∷ η ∷ ς ∷ []) "Mark.13.36" ∷ word (ε ∷ ὕ ∷ ρ ∷ ῃ ∷ []) "Mark.13.36" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.13.36" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.13.36" ∷ word (ὃ ∷ []) "Mark.13.37" ∷ word (δ ∷ ὲ ∷ []) "Mark.13.37" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.13.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.13.37" ∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.13.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.13.37" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.13.37" ∷ word (Ἦ ∷ ν ∷ []) "Mark.14.1" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.1" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.1" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.1" ∷ word (τ ∷ ὰ ∷ []) "Mark.14.1" ∷ word (ἄ ∷ ζ ∷ υ ∷ μ ∷ α ∷ []) "Mark.14.1" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.1" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.14.1" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.1" ∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.1" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.1" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.1" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.1" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.1" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.14.1" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.1" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.1" ∷ word (δ ∷ ό ∷ ∙λ ∷ ῳ ∷ []) "Mark.14.1" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.1" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ τ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.1" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.2" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.14.2" ∷ word (Μ ∷ ὴ ∷ []) "Mark.14.2" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.2" ∷ word (τ ∷ ῇ ∷ []) "Mark.14.2" ∷ word (ἑ ∷ ο ∷ ρ ∷ τ ∷ ῇ ∷ []) "Mark.14.2" ∷ word (μ ∷ ή ∷ π ∷ ο ∷ τ ∷ ε ∷ []) "Mark.14.2" ∷ word (ἔ ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.2" ∷ word (θ ∷ ό ∷ ρ ∷ υ ∷ β ∷ ο ∷ ς ∷ []) "Mark.14.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.2" ∷ word (∙λ ∷ α ∷ ο ∷ ῦ ∷ []) "Mark.14.2" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.3" ∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.3" ∷ word (Β ∷ η ∷ θ ∷ α ∷ ν ∷ ί ∷ ᾳ ∷ []) "Mark.14.3" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.3" ∷ word (τ ∷ ῇ ∷ []) "Mark.14.3" ∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ ᾳ ∷ []) "Mark.14.3" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3" ∷ word (∙λ ∷ ε ∷ π ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.14.3" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.14.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.3" ∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "Mark.14.3" ∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "Mark.14.3" ∷ word (ἀ ∷ ∙λ ∷ ά ∷ β ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.3" ∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.3" ∷ word (ν ∷ ά ∷ ρ ∷ δ ∷ ο ∷ υ ∷ []) "Mark.14.3" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ι ∷ κ ∷ ῆ ∷ ς ∷ []) "Mark.14.3" ∷ word (π ∷ ο ∷ ∙λ ∷ υ ∷ τ ∷ ε ∷ ∙λ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.3" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ρ ∷ ί ∷ ψ ∷ α ∷ σ ∷ α ∷ []) "Mark.14.3" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.3" ∷ word (ἀ ∷ ∙λ ∷ ά ∷ β ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.3" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ χ ∷ ε ∷ ε ∷ ν ∷ []) "Mark.14.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.3" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.14.3" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.4" ∷ word (δ ∷ έ ∷ []) "Mark.14.4" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.14.4" ∷ word (ἀ ∷ γ ∷ α ∷ ν ∷ α ∷ κ ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.4" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.4" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.14.4" ∷ word (Ε ∷ ἰ ∷ ς ∷ []) "Mark.14.4" ∷ word (τ ∷ ί ∷ []) "Mark.14.4" ∷ word (ἡ ∷ []) "Mark.14.4" ∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ []) "Mark.14.4" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.14.4" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.4" ∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.4" ∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "Mark.14.4" ∷ word (ἠ ∷ δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.5" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.5" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.14.5" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.5" ∷ word (μ ∷ ύ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.5" ∷ word (π ∷ ρ ∷ α ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.5" ∷ word (ἐ ∷ π ∷ ά ∷ ν ∷ ω ∷ []) "Mark.14.5" ∷ word (δ ∷ η ∷ ν ∷ α ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.14.5" ∷ word (τ ∷ ρ ∷ ι ∷ α ∷ κ ∷ ο ∷ σ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.14.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.5" ∷ word (δ ∷ ο ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.5" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.5" ∷ word (ἐ ∷ ν ∷ ε ∷ β ∷ ρ ∷ ι ∷ μ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.14.5" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.14.5" ∷ word (ὁ ∷ []) "Mark.14.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.6" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.6" ∷ word (Ἄ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.6" ∷ word (α ∷ ὐ ∷ τ ∷ ή ∷ ν ∷ []) "Mark.14.6" ∷ word (τ ∷ ί ∷ []) "Mark.14.6" ∷ word (α ∷ ὐ ∷ τ ∷ ῇ ∷ []) "Mark.14.6" ∷ word (κ ∷ ό ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "Mark.14.6" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.6" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.14.6" ∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.6" ∷ word (ἠ ∷ ρ ∷ γ ∷ ά ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.6" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.6" ∷ word (ἐ ∷ μ ∷ ο ∷ ί ∷ []) "Mark.14.6" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Mark.14.7" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.7" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.7" ∷ word (π ∷ τ ∷ ω ∷ χ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.7" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.7" ∷ word (μ ∷ ε ∷ θ ∷ []) "Mark.14.7" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.7" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.14.7" ∷ word (θ ∷ έ ∷ ∙λ ∷ η ∷ τ ∷ ε ∷ []) "Mark.14.7" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.7" ∷ word (ε ∷ ὖ ∷ []) "Mark.14.7" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.7" ∷ word (ἐ ∷ μ ∷ ὲ ∷ []) "Mark.14.7" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.7" ∷ word (ο ∷ ὐ ∷ []) "Mark.14.7" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ο ∷ τ ∷ ε ∷ []) "Mark.14.7" ∷ word (ἔ ∷ χ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.7" ∷ word (ὃ ∷ []) "Mark.14.8" ∷ word (ἔ ∷ σ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.14.8" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.8" ∷ word (π ∷ ρ ∷ ο ∷ έ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.14.8" ∷ word (μ ∷ υ ∷ ρ ∷ ί ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.8" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.8" ∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "Mark.14.8" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.8" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.8" ∷ word (ἐ ∷ ν ∷ τ ∷ α ∷ φ ∷ ι ∷ α ∷ σ ∷ μ ∷ ό ∷ ν ∷ []) "Mark.14.8" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.9" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.9" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.9" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.9" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.14.9" ∷ word (κ ∷ η ∷ ρ ∷ υ ∷ χ ∷ θ ∷ ῇ ∷ []) "Mark.14.9" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.9" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.9" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.9" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.9" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.9" ∷ word (ὃ ∷ []) "Mark.14.9" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.9" ∷ word (α ∷ ὕ ∷ τ ∷ η ∷ []) "Mark.14.9" ∷ word (∙λ ∷ α ∷ ∙λ ∷ η ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.9" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.9" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ό ∷ σ ∷ υ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.9" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.14.9" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.10" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ς ∷ []) "Mark.14.10" ∷ word (Ἰ ∷ σ ∷ κ ∷ α ∷ ρ ∷ ι ∷ ὼ ∷ θ ∷ []) "Mark.14.10" ∷ word (ὁ ∷ []) "Mark.14.10" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.10" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.10" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.10" ∷ word (ἀ ∷ π ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.10" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.10" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.10" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.10" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῖ ∷ []) "Mark.14.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.10" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.11" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.11" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.11" ∷ word (ἐ ∷ χ ∷ ά ∷ ρ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.11" ∷ word (ἐ ∷ π ∷ η ∷ γ ∷ γ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.14.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.11" ∷ word (ἀ ∷ ρ ∷ γ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.11" ∷ word (δ ∷ ο ∷ ῦ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.11" ∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ε ∷ ι ∷ []) "Mark.14.11" ∷ word (π ∷ ῶ ∷ ς ∷ []) "Mark.14.11" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.11" ∷ word (ε ∷ ὐ ∷ κ ∷ α ∷ ί ∷ ρ ∷ ω ∷ ς ∷ []) "Mark.14.11" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ο ∷ ῖ ∷ []) "Mark.14.11" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.12" ∷ word (τ ∷ ῇ ∷ []) "Mark.14.12" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Mark.14.12" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.14.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.12" ∷ word (ἀ ∷ ζ ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.14.12" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.14.12" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.12" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.12" ∷ word (ἔ ∷ θ ∷ υ ∷ ο ∷ ν ∷ []) "Mark.14.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.12" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.12" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.14.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.12" ∷ word (Π ∷ ο ∷ ῦ ∷ []) "Mark.14.12" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.14.12" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.12" ∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ά ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.12" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.12" ∷ word (φ ∷ ά ∷ γ ∷ ῃ ∷ ς ∷ []) "Mark.14.12" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.12" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.12" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.13" ∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.14.13" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.14.13" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.13" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.13" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.13" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.13" ∷ word (Ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.13" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.13" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.13" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.13" ∷ word (ἀ ∷ π ∷ α ∷ ν ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.14.13" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.13" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.14.13" ∷ word (κ ∷ ε ∷ ρ ∷ ά ∷ μ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.13" ∷ word (ὕ ∷ δ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.13" ∷ word (β ∷ α ∷ σ ∷ τ ∷ ά ∷ ζ ∷ ω ∷ ν ∷ []) "Mark.14.13" ∷ word (ἀ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.13" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.13" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.14" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.14" ∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "Mark.14.14" ∷ word (ε ∷ ἰ ∷ σ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.14.14" ∷ word (ε ∷ ἴ ∷ π ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.14" ∷ word (τ ∷ ῷ ∷ []) "Mark.14.14" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ ῃ ∷ []) "Mark.14.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.14" ∷ word (Ὁ ∷ []) "Mark.14.14" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.14.14" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.14" ∷ word (Π ∷ ο ∷ ῦ ∷ []) "Mark.14.14" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.14" ∷ word (κ ∷ α ∷ τ ∷ ά ∷ ∙λ ∷ υ ∷ μ ∷ ά ∷ []) "Mark.14.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.14" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.14" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.14" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.14" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.14" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.14" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.14" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.14" ∷ word (φ ∷ ά ∷ γ ∷ ω ∷ []) "Mark.14.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.15" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.14.15" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.15" ∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ε ∷ ι ∷ []) "Mark.14.15" ∷ word (ἀ ∷ ν ∷ ά ∷ γ ∷ α ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.15" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "Mark.14.15" ∷ word (ἐ ∷ σ ∷ τ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.15" ∷ word (ἕ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.15" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.14.15" ∷ word (ἑ ∷ τ ∷ ο ∷ ι ∷ μ ∷ ά ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.15" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.14.16" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.16" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ὶ ∷ []) "Mark.14.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.14.16" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.16" ∷ word (π ∷ ό ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16" ∷ word (ε ∷ ὗ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.16" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.14.16" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.16" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.16" ∷ word (ἡ ∷ τ ∷ ο ∷ ί ∷ μ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.16" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.16" ∷ word (π ∷ ά ∷ σ ∷ χ ∷ α ∷ []) "Mark.14.16" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.17" ∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.14.17" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.14.17" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.17" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.17" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.17" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.18" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "Mark.14.18" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.18" ∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.14.18" ∷ word (ὁ ∷ []) "Mark.14.18" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.18" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.18" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.18" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.18" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.18" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.18" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.18" ∷ word (ἐ ∷ ξ ∷ []) "Mark.14.18" ∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.14.18" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "Mark.14.18" ∷ word (μ ∷ ε ∷ []) "Mark.14.18" ∷ word (ὁ ∷ []) "Mark.14.18" ∷ word (ἐ ∷ σ ∷ θ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.14.18" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.18" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.14.18" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.14.19" ∷ word (∙λ ∷ υ ∷ π ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.14.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.19" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.19" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.19" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.14.19" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.19" ∷ word (Μ ∷ ή ∷ τ ∷ ι ∷ []) "Mark.14.19" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Mark.14.19" ∷ word (ὁ ∷ []) "Mark.14.20" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.20" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.20" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.20" ∷ word (Ε ∷ ἷ ∷ ς ∷ []) "Mark.14.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.20" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.20" ∷ word (ὁ ∷ []) "Mark.14.20" ∷ word (ἐ ∷ μ ∷ β ∷ α ∷ π ∷ τ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.20" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.20" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.14.20" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.20" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.20" ∷ word (τ ∷ ρ ∷ ύ ∷ β ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.20" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.21" ∷ word (ὁ ∷ []) "Mark.14.21" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.14.21" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.21" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.21" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.14.21" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.21" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.14.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.21" ∷ word (ο ∷ ὐ ∷ α ∷ ὶ ∷ []) "Mark.14.21" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.21" ∷ word (τ ∷ ῷ ∷ []) "Mark.14.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ῳ ∷ []) "Mark.14.21" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ῳ ∷ []) "Mark.14.21" ∷ word (δ ∷ ι ∷ []) "Mark.14.21" ∷ word (ο ∷ ὗ ∷ []) "Mark.14.21" ∷ word (ὁ ∷ []) "Mark.14.21" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.21" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.21" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.21" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.21" ∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "Mark.14.21" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.21" ∷ word (ε ∷ ἰ ∷ []) "Mark.14.21" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.21" ∷ word (ἐ ∷ γ ∷ ε ∷ ν ∷ ν ∷ ή ∷ θ ∷ η ∷ []) "Mark.14.21" ∷ word (ὁ ∷ []) "Mark.14.21" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.14.21" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.21" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.22" ∷ word (ἐ ∷ σ ∷ θ ∷ ι ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.14.22" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.22" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.14.22" ∷ word (ἄ ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.22" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.14.22" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.22" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.14.22" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.22" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.22" ∷ word (Λ ∷ ά ∷ β ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.22" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Mark.14.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.22" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.22" ∷ word (σ ∷ ῶ ∷ μ ∷ ά ∷ []) "Mark.14.22" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.23" ∷ word (∙λ ∷ α ∷ β ∷ ὼ ∷ ν ∷ []) "Mark.14.23" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.23" ∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.14.23" ∷ word (ἔ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.14.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.23" ∷ word (ἔ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.23" ∷ word (ἐ ∷ ξ ∷ []) "Mark.14.23" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.23" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.24" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.24" ∷ word (Τ ∷ ο ∷ ῦ ∷ τ ∷ ό ∷ []) "Mark.14.24" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.24" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.24" ∷ word (α ∷ ἷ ∷ μ ∷ ά ∷ []) "Mark.14.24" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.24" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.24" ∷ word (δ ∷ ι ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ς ∷ []) "Mark.14.24" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.24" ∷ word (ἐ ∷ κ ∷ χ ∷ υ ∷ ν ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.24" ∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "Mark.14.24" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.14.24" ∷ word (ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.25" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.25" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.25" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.25" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.14.25" ∷ word (ο ∷ ὐ ∷ []) "Mark.14.25" ∷ word (μ ∷ ὴ ∷ []) "Mark.14.25" ∷ word (π ∷ ί ∷ ω ∷ []) "Mark.14.25" ∷ word (ἐ ∷ κ ∷ []) "Mark.14.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.25" ∷ word (γ ∷ ε ∷ ν ∷ ή ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.25" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.25" ∷ word (ἀ ∷ μ ∷ π ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ []) "Mark.14.25" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.25" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.25" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.25" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ ς ∷ []) "Mark.14.25" ∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "Mark.14.25" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ []) "Mark.14.25" ∷ word (π ∷ ί ∷ ν ∷ ω ∷ []) "Mark.14.25" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.14.25" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.25" ∷ word (τ ∷ ῇ ∷ []) "Mark.14.25" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ ᾳ ∷ []) "Mark.14.25" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.25" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.14.25" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.26" ∷ word (ὑ ∷ μ ∷ ν ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.26" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ο ∷ ν ∷ []) "Mark.14.26" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.26" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.26" ∷ word (Ὄ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.26" ∷ word (Ἐ ∷ ∙λ ∷ α ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.14.26" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.27" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.27" ∷ word (ὁ ∷ []) "Mark.14.27" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.27" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.27" ∷ word (Π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.27" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.27" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.27" ∷ word (γ ∷ έ ∷ γ ∷ ρ ∷ α ∷ π ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.27" ∷ word (Π ∷ α ∷ τ ∷ ά ∷ ξ ∷ ω ∷ []) "Mark.14.27" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.27" ∷ word (π ∷ ο ∷ ι ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Mark.14.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.27" ∷ word (τ ∷ ὰ ∷ []) "Mark.14.27" ∷ word (π ∷ ρ ∷ ό ∷ β ∷ α ∷ τ ∷ α ∷ []) "Mark.14.27" ∷ word (δ ∷ ι ∷ α ∷ σ ∷ κ ∷ ο ∷ ρ ∷ π ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.27" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.14.28" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.28" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.28" ∷ word (ἐ ∷ γ ∷ ε ∷ ρ ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ί ∷ []) "Mark.14.28" ∷ word (μ ∷ ε ∷ []) "Mark.14.28" ∷ word (π ∷ ρ ∷ ο ∷ ά ∷ ξ ∷ ω ∷ []) "Mark.14.28" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.14.28" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.28" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.28" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.28" ∷ word (ὁ ∷ []) "Mark.14.29" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.29" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.29" ∷ word (ἔ ∷ φ ∷ η ∷ []) "Mark.14.29" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.29" ∷ word (Ε ∷ ἰ ∷ []) "Mark.14.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.29" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.29" ∷ word (σ ∷ κ ∷ α ∷ ν ∷ δ ∷ α ∷ ∙λ ∷ ι ∷ σ ∷ θ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.29" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.14.29" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.29" ∷ word (ἐ ∷ γ ∷ ώ ∷ []) "Mark.14.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.30" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.30" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.30" ∷ word (ὁ ∷ []) "Mark.14.30" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.30" ∷ word (Ἀ ∷ μ ∷ ὴ ∷ ν ∷ []) "Mark.14.30" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "Mark.14.30" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.14.30" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.30" ∷ word (σ ∷ ὺ ∷ []) "Mark.14.30" ∷ word (σ ∷ ή ∷ μ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.30" ∷ word (τ ∷ α ∷ ύ ∷ τ ∷ ῃ ∷ []) "Mark.14.30" ∷ word (τ ∷ ῇ ∷ []) "Mark.14.30" ∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὶ ∷ []) "Mark.14.30" ∷ word (π ∷ ρ ∷ ὶ ∷ ν ∷ []) "Mark.14.30" ∷ word (ἢ ∷ []) "Mark.14.30" ∷ word (δ ∷ ὶ ∷ ς ∷ []) "Mark.14.30" ∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Mark.14.30" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.30" ∷ word (τ ∷ ρ ∷ ί ∷ ς ∷ []) "Mark.14.30" ∷ word (μ ∷ ε ∷ []) "Mark.14.30" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.14.30" ∷ word (ὁ ∷ []) "Mark.14.31" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.31" ∷ word (ἐ ∷ κ ∷ π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.14.31" ∷ word (ἐ ∷ ∙λ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "Mark.14.31" ∷ word (Ἐ ∷ ὰ ∷ ν ∷ []) "Mark.14.31" ∷ word (δ ∷ έ ∷ ῃ ∷ []) "Mark.14.31" ∷ word (μ ∷ ε ∷ []) "Mark.14.31" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ π ∷ ο ∷ θ ∷ α ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.14.31" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.14.31" ∷ word (ο ∷ ὐ ∷ []) "Mark.14.31" ∷ word (μ ∷ ή ∷ []) "Mark.14.31" ∷ word (σ ∷ ε ∷ []) "Mark.14.31" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "Mark.14.31" ∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.14.31" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.31" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.31" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.31" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.32" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.32" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.32" ∷ word (χ ∷ ω ∷ ρ ∷ ί ∷ ο ∷ ν ∷ []) "Mark.14.32" ∷ word (ο ∷ ὗ ∷ []) "Mark.14.32" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.32" ∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "Mark.14.32" ∷ word (Γ ∷ ε ∷ θ ∷ σ ∷ η ∷ μ ∷ α ∷ ν ∷ ί ∷ []) "Mark.14.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.32" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.32" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.32" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.14.32" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.32" ∷ word (Κ ∷ α ∷ θ ∷ ί ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.32" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.14.32" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.32" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ ξ ∷ ω ∷ μ ∷ α ∷ ι ∷ []) "Mark.14.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33" ∷ word (π ∷ α ∷ ρ ∷ α ∷ ∙λ ∷ α ∷ μ ∷ β ∷ ά ∷ ν ∷ ε ∷ ι ∷ []) "Mark.14.33" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.33" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33" ∷ word (Ἰ ∷ ά ∷ κ ∷ ω ∷ β ∷ ο ∷ ν ∷ []) "Mark.14.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33" ∷ word (Ἰ ∷ ω ∷ ά ∷ ν ∷ ν ∷ η ∷ ν ∷ []) "Mark.14.33" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.33" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.33" ∷ word (ἐ ∷ κ ∷ θ ∷ α ∷ μ ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.14.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.33" ∷ word (ἀ ∷ δ ∷ η ∷ μ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.14.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.34" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.34" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.34" ∷ word (Π ∷ ε ∷ ρ ∷ ί ∷ ∙λ ∷ υ ∷ π ∷ ό ∷ ς ∷ []) "Mark.14.34" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.34" ∷ word (ἡ ∷ []) "Mark.14.34" ∷ word (ψ ∷ υ ∷ χ ∷ ή ∷ []) "Mark.14.34" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.14.34" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.34" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.14.34" ∷ word (μ ∷ ε ∷ ί ∷ ν ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.34" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.14.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.34" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.14.34" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.35" ∷ word (π ∷ ρ ∷ ο ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.35" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.14.35" ∷ word (ἔ ∷ π ∷ ι ∷ π ∷ τ ∷ ε ∷ ν ∷ []) "Mark.14.35" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.14.35" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.35" ∷ word (γ ∷ ῆ ∷ ς ∷ []) "Mark.14.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.35" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ η ∷ ύ ∷ χ ∷ ε ∷ τ ∷ ο ∷ []) "Mark.14.35" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.35" ∷ word (ε ∷ ἰ ∷ []) "Mark.14.35" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.35" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.35" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ ∙λ ∷ θ ∷ ῃ ∷ []) "Mark.14.35" ∷ word (ἀ ∷ π ∷ []) "Mark.14.35" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.35" ∷ word (ἡ ∷ []) "Mark.14.35" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.14.35" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.36" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.14.36" ∷ word (Α ∷ β ∷ β ∷ α ∷ []) "Mark.14.36" ∷ word (ὁ ∷ []) "Mark.14.36" ∷ word (π ∷ α ∷ τ ∷ ή ∷ ρ ∷ []) "Mark.14.36" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.14.36" ∷ word (δ ∷ υ ∷ ν ∷ α ∷ τ ∷ ά ∷ []) "Mark.14.36" ∷ word (σ ∷ ο ∷ ι ∷ []) "Mark.14.36" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ []) "Mark.14.36" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.36" ∷ word (π ∷ ο ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.36" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "Mark.14.36" ∷ word (ἀ ∷ π ∷ []) "Mark.14.36" ∷ word (ἐ ∷ μ ∷ ο ∷ ῦ ∷ []) "Mark.14.36" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.14.36" ∷ word (ο ∷ ὐ ∷ []) "Mark.14.36" ∷ word (τ ∷ ί ∷ []) "Mark.14.36" ∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "Mark.14.36" ∷ word (θ ∷ έ ∷ ∙λ ∷ ω ∷ []) "Mark.14.36" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.14.36" ∷ word (τ ∷ ί ∷ []) "Mark.14.36" ∷ word (σ ∷ ύ ∷ []) "Mark.14.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.37" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.37" ∷ word (ε ∷ ὑ ∷ ρ ∷ ί ∷ σ ∷ κ ∷ ε ∷ ι ∷ []) "Mark.14.37" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.37" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.14.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.37" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.37" ∷ word (τ ∷ ῷ ∷ []) "Mark.14.37" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.14.37" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ []) "Mark.14.37" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.14.37" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.37" ∷ word (ἴ ∷ σ ∷ χ ∷ υ ∷ σ ∷ α ∷ ς ∷ []) "Mark.14.37" ∷ word (μ ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.37" ∷ word (ὥ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.14.37" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.37" ∷ word (γ ∷ ρ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.14.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.38" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.38" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.38" ∷ word (μ ∷ ὴ ∷ []) "Mark.14.38" ∷ word (ἔ ∷ ∙λ ∷ θ ∷ η ∷ τ ∷ ε ∷ []) "Mark.14.38" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.38" ∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ό ∷ ν ∷ []) "Mark.14.38" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.38" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.14.38" ∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "Mark.14.38" ∷ word (π ∷ ρ ∷ ό ∷ θ ∷ υ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.38" ∷ word (ἡ ∷ []) "Mark.14.38" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.38" ∷ word (σ ∷ ὰ ∷ ρ ∷ ξ ∷ []) "Mark.14.38" ∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ή ∷ ς ∷ []) "Mark.14.38" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.39" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.39" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.39" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ η ∷ ύ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.39" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.39" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.39" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.39" ∷ word (ε ∷ ἰ ∷ π ∷ ώ ∷ ν ∷ []) "Mark.14.39" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.40" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.40" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.40" ∷ word (ε ∷ ὗ ∷ ρ ∷ ε ∷ ν ∷ []) "Mark.14.40" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.40" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "Mark.14.40" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.40" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.40" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.40" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.40" ∷ word (ὀ ∷ φ ∷ θ ∷ α ∷ ∙λ ∷ μ ∷ ο ∷ ὶ ∷ []) "Mark.14.40" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ α ∷ ρ ∷ υ ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.14.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.40" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.40" ∷ word (ᾔ ∷ δ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.40" ∷ word (τ ∷ ί ∷ []) "Mark.14.40" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.40" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.41" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.41" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.41" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.41" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.41" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.41" ∷ word (Κ ∷ α ∷ θ ∷ ε ∷ ύ ∷ δ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.41" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.41" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ὸ ∷ ν ∷ []) "Mark.14.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.41" ∷ word (ἀ ∷ ν ∷ α ∷ π ∷ α ∷ ύ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.41" ∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ ι ∷ []) "Mark.14.41" ∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.41" ∷ word (ἡ ∷ []) "Mark.14.41" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.14.41" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.14.41" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ί ∷ δ ∷ ο ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.41" ∷ word (ὁ ∷ []) "Mark.14.41" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.41" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.41" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.41" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.41" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.14.41" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.41" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.41" ∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.14.41" ∷ word (ἐ ∷ γ ∷ ε ∷ ί ∷ ρ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.42" ∷ word (ἄ ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.42" ∷ word (ἰ ∷ δ ∷ ο ∷ ὺ ∷ []) "Mark.14.42" ∷ word (ὁ ∷ []) "Mark.14.42" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ο ∷ ύ ∷ ς ∷ []) "Mark.14.42" ∷ word (μ ∷ ε ∷ []) "Mark.14.42" ∷ word (ἤ ∷ γ ∷ γ ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "Mark.14.42" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.43" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.14.43" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.14.43" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.43" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.43" ∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.43" ∷ word (Ἰ ∷ ο ∷ ύ ∷ δ ∷ α ∷ ς ∷ []) "Mark.14.43" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.43" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43" ∷ word (δ ∷ ώ ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.14.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.14.43" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.43" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.14.43" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.43" ∷ word (μ ∷ α ∷ χ ∷ α ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.14.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.14.43" ∷ word (π ∷ α ∷ ρ ∷ ὰ ∷ []) "Mark.14.43" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.14.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.14.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.43" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.43" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.14.43" ∷ word (δ ∷ ε ∷ δ ∷ ώ ∷ κ ∷ ε ∷ ι ∷ []) "Mark.14.44" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.44" ∷ word (ὁ ∷ []) "Mark.14.44" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ι ∷ δ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.44" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.44" ∷ word (σ ∷ ύ ∷ σ ∷ σ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "Mark.14.44" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.44" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.14.44" ∷ word (Ὃ ∷ ν ∷ []) "Mark.14.44" ∷ word (ἂ ∷ ν ∷ []) "Mark.14.44" ∷ word (φ ∷ ι ∷ ∙λ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.14.44" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ς ∷ []) "Mark.14.44" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.44" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.44" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.44" ∷ word (ἀ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.44" ∷ word (ἀ ∷ σ ∷ φ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.14.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.45" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.45" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.14.45" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.14.45" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.45" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.45" ∷ word (Ῥ ∷ α ∷ β ∷ β ∷ ί ∷ []) "Mark.14.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.45" ∷ word (κ ∷ α ∷ τ ∷ ε ∷ φ ∷ ί ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.45" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.45" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.46" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.46" ∷ word (ἐ ∷ π ∷ έ ∷ β ∷ α ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.14.46" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.14.46" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.14.46" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.46" ∷ word (ἐ ∷ κ ∷ ρ ∷ ά ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.46" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.46" ∷ word (ε ∷ ἷ ∷ ς ∷ []) "Mark.14.47" ∷ word (δ ∷ έ ∷ []) "Mark.14.47" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.14.47" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.47" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.14.47" ∷ word (σ ∷ π ∷ α ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.47" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.47" ∷ word (μ ∷ ά ∷ χ ∷ α ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "Mark.14.47" ∷ word (ἔ ∷ π ∷ α ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.47" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.47" ∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.47" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.47" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.14.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.47" ∷ word (ἀ ∷ φ ∷ ε ∷ ῖ ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.14.47" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.47" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.47" ∷ word (ὠ ∷ τ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.48" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.14.48" ∷ word (ὁ ∷ []) "Mark.14.48" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.48" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.48" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.48" ∷ word (Ὡ ∷ ς ∷ []) "Mark.14.48" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.14.48" ∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.14.48" ∷ word (ἐ ∷ ξ ∷ ή ∷ ∙λ ∷ θ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.48" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.48" ∷ word (μ ∷ α ∷ χ ∷ α ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.14.48" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.48" ∷ word (ξ ∷ ύ ∷ ∙λ ∷ ω ∷ ν ∷ []) "Mark.14.48" ∷ word (σ ∷ υ ∷ ∙λ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.14.48" ∷ word (μ ∷ ε ∷ []) "Mark.14.48" ∷ word (κ ∷ α ∷ θ ∷ []) "Mark.14.49" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.14.49" ∷ word (ἤ ∷ μ ∷ η ∷ ν ∷ []) "Mark.14.49" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.49" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.14.49" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.49" ∷ word (τ ∷ ῷ ∷ []) "Mark.14.49" ∷ word (ἱ ∷ ε ∷ ρ ∷ ῷ ∷ []) "Mark.14.49" ∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ω ∷ ν ∷ []) "Mark.14.49" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.49" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.49" ∷ word (ἐ ∷ κ ∷ ρ ∷ α ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ έ ∷ []) "Mark.14.49" ∷ word (μ ∷ ε ∷ []) "Mark.14.49" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "Mark.14.49" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.14.49" ∷ word (π ∷ ∙λ ∷ η ∷ ρ ∷ ω ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.49" ∷ word (α ∷ ἱ ∷ []) "Mark.14.49" ∷ word (γ ∷ ρ ∷ α ∷ φ ∷ α ∷ ί ∷ []) "Mark.14.49" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.50" ∷ word (ἀ ∷ φ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.50" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.50" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.50" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.50" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.51" ∷ word (ν ∷ ε ∷ α ∷ ν ∷ ί ∷ σ ∷ κ ∷ ο ∷ ς ∷ []) "Mark.14.51" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.14.51" ∷ word (σ ∷ υ ∷ ν ∷ η ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ε ∷ ι ∷ []) "Mark.14.51" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.51" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.51" ∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ α ∷ []) "Mark.14.51" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.14.51" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.14.51" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.51" ∷ word (κ ∷ ρ ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.51" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.51" ∷ word (ὁ ∷ []) "Mark.14.52" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.52" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ι ∷ π ∷ ὼ ∷ ν ∷ []) "Mark.14.52" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.52" ∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ α ∷ []) "Mark.14.52" ∷ word (γ ∷ υ ∷ μ ∷ ν ∷ ὸ ∷ ς ∷ []) "Mark.14.52" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ε ∷ ν ∷ []) "Mark.14.52" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.53" ∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.53" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.53" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.14.53" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.53" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.53" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ α ∷ []) "Mark.14.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.53" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.53" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.53" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.53" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.53" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.53" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "Mark.14.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.53" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.53" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.53" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.54" ∷ word (ὁ ∷ []) "Mark.14.54" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.54" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.14.54" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.54" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.54" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.54" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.14.54" ∷ word (ἔ ∷ σ ∷ ω ∷ []) "Mark.14.54" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.54" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.14.54" ∷ word (α ∷ ὐ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.14.54" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.54" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.14.54" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.54" ∷ word (ἦ ∷ ν ∷ []) "Mark.14.54" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.54" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.54" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.54" ∷ word (ὑ ∷ π ∷ η ∷ ρ ∷ ε ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.54" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.54" ∷ word (θ ∷ ε ∷ ρ ∷ μ ∷ α ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.14.54" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.14.54" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.54" ∷ word (φ ∷ ῶ ∷ ς ∷ []) "Mark.14.54" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.55" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.55" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.55" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.55" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.55" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.55" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.55" ∷ word (ἐ ∷ ζ ∷ ή ∷ τ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.55" ∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.14.55" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.55" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.14.55" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.55" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.55" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.55" ∷ word (θ ∷ α ∷ ν ∷ α ∷ τ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.55" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.14.55" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.55" ∷ word (ο ∷ ὐ ∷ χ ∷ []) "Mark.14.55" ∷ word (η ∷ ὕ ∷ ρ ∷ ι ∷ σ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.14.55" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ο ∷ ὶ ∷ []) "Mark.14.56" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.56" ∷ word (ἐ ∷ ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.56" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.14.56" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.56" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.56" ∷ word (ἴ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.56" ∷ word (α ∷ ἱ ∷ []) "Mark.14.56" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ι ∷ []) "Mark.14.56" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.56" ∷ word (ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.14.56" ∷ word (κ ∷ α ∷ ί ∷ []) "Mark.14.57" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.14.57" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.57" ∷ word (ἐ ∷ ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.14.57" ∷ word (κ ∷ α ∷ τ ∷ []) "Mark.14.57" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.57" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.57" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.58" ∷ word (Ἡ ∷ μ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.14.58" ∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.58" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.58" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.58" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.58" ∷ word (Ἐ ∷ γ ∷ ὼ ∷ []) "Mark.14.58" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ύ ∷ σ ∷ ω ∷ []) "Mark.14.58" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.58" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Mark.14.58" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.58" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.58" ∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ π ∷ ο ∷ ί ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.58" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.58" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.14.58" ∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.14.58" ∷ word (ἡ ∷ μ ∷ ε ∷ ρ ∷ ῶ ∷ ν ∷ []) "Mark.14.58" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.14.58" ∷ word (ἀ ∷ χ ∷ ε ∷ ι ∷ ρ ∷ ο ∷ π ∷ ο ∷ ί ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.58" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ή ∷ σ ∷ ω ∷ []) "Mark.14.58" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.59" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.14.59" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.14.59" ∷ word (ἴ ∷ σ ∷ η ∷ []) "Mark.14.59" ∷ word (ἦ ∷ ν ∷ []) "Mark.14.59" ∷ word (ἡ ∷ []) "Mark.14.59" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "Mark.14.59" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.59" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.60" ∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.14.60" ∷ word (ὁ ∷ []) "Mark.14.60" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.14.60" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.60" ∷ word (μ ∷ έ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.14.60" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.60" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.60" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.14.60" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.14.60" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.14.60" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.14.60" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.14.60" ∷ word (τ ∷ ί ∷ []) "Mark.14.60" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ί ∷ []) "Mark.14.60" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.14.60" ∷ word (κ ∷ α ∷ τ ∷ α ∷ μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.60" ∷ word (ὁ ∷ []) "Mark.14.61" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.61" ∷ word (ἐ ∷ σ ∷ ι ∷ ώ ∷ π ∷ α ∷ []) "Mark.14.61" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.61" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.14.61" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ ν ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.61" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.14.61" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.61" ∷ word (ὁ ∷ []) "Mark.14.61" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.14.61" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.14.61" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.61" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.61" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.61" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.61" ∷ word (Σ ∷ ὺ ∷ []) "Mark.14.61" ∷ word (ε ∷ ἶ ∷ []) "Mark.14.61" ∷ word (ὁ ∷ []) "Mark.14.61" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.14.61" ∷ word (ὁ ∷ []) "Mark.14.61" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.14.61" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.61" ∷ word (ε ∷ ὐ ∷ ∙λ ∷ ο ∷ γ ∷ η ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.61" ∷ word (ὁ ∷ []) "Mark.14.62" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.62" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.62" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.62" ∷ word (Ἐ ∷ γ ∷ ώ ∷ []) "Mark.14.62" ∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "Mark.14.62" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.62" ∷ word (ὄ ∷ ψ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.14.62" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.62" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ν ∷ []) "Mark.14.62" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.62" ∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ []) "Mark.14.62" ∷ word (ἐ ∷ κ ∷ []) "Mark.14.62" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.14.62" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.62" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.62" ∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.14.62" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.62" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.62" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.62" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.62" ∷ word (ν ∷ ε ∷ φ ∷ ε ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "Mark.14.62" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.62" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.14.62" ∷ word (ὁ ∷ []) "Mark.14.63" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.63" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.14.63" ∷ word (δ ∷ ι ∷ α ∷ ρ ∷ ρ ∷ ή ∷ ξ ∷ α ∷ ς ∷ []) "Mark.14.63" ∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.14.63" ∷ word (χ ∷ ι ∷ τ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "Mark.14.63" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.63" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.63" ∷ word (Τ ∷ ί ∷ []) "Mark.14.63" ∷ word (ἔ ∷ τ ∷ ι ∷ []) "Mark.14.63" ∷ word (χ ∷ ρ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.14.63" ∷ word (ἔ ∷ χ ∷ ο ∷ μ ∷ ε ∷ ν ∷ []) "Mark.14.63" ∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.14.63" ∷ word (ἠ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ τ ∷ ε ∷ []) "Mark.14.64" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.14.64" ∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "Mark.14.64" ∷ word (τ ∷ ί ∷ []) "Mark.14.64" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.14.64" ∷ word (φ ∷ α ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.64" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.64" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.64" ∷ word (π ∷ ά ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.64" ∷ word (κ ∷ α ∷ τ ∷ έ ∷ κ ∷ ρ ∷ ι ∷ ν ∷ α ∷ ν ∷ []) "Mark.14.64" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.64" ∷ word (ἔ ∷ ν ∷ ο ∷ χ ∷ ο ∷ ν ∷ []) "Mark.14.64" ∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.64" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.14.64" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ό ∷ []) "Mark.14.65" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.14.65" ∷ word (ἐ ∷ μ ∷ π ∷ τ ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.65" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ κ ∷ α ∷ ∙λ ∷ ύ ∷ π ∷ τ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.14.65" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.65" ∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.14.65" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65" ∷ word (κ ∷ ο ∷ ∙λ ∷ α ∷ φ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.65" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.65" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.65" ∷ word (Π ∷ ρ ∷ ο ∷ φ ∷ ή ∷ τ ∷ ε ∷ υ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.14.65" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.65" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.65" ∷ word (ὑ ∷ π ∷ η ∷ ρ ∷ έ ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.65" ∷ word (ῥ ∷ α ∷ π ∷ ί ∷ σ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.65" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.65" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ν ∷ []) "Mark.14.65" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.66" ∷ word (ὄ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.66" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.66" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.66" ∷ word (κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.14.66" ∷ word (ἐ ∷ ν ∷ []) "Mark.14.66" ∷ word (τ ∷ ῇ ∷ []) "Mark.14.66" ∷ word (α ∷ ὐ ∷ ∙λ ∷ ῇ ∷ []) "Mark.14.66" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.14.66" ∷ word (μ ∷ ί ∷ α ∷ []) "Mark.14.66" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.14.66" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ι ∷ σ ∷ κ ∷ ῶ ∷ ν ∷ []) "Mark.14.66" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.66" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ έ ∷ ω ∷ ς ∷ []) "Mark.14.66" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.67" ∷ word (ἰ ∷ δ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.14.67" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.67" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.14.67" ∷ word (θ ∷ ε ∷ ρ ∷ μ ∷ α ∷ ι ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.14.67" ∷ word (ἐ ∷ μ ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ σ ∷ α ∷ []) "Mark.14.67" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.67" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.14.67" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.14.67" ∷ word (σ ∷ ὺ ∷ []) "Mark.14.67" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.67" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.67" ∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ ο ∷ ῦ ∷ []) "Mark.14.67" ∷ word (ἦ ∷ σ ∷ θ ∷ α ∷ []) "Mark.14.67" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.14.67" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.14.67" ∷ word (ὁ ∷ []) "Mark.14.68" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.68" ∷ word (ἠ ∷ ρ ∷ ν ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.68" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.14.68" ∷ word (Ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.14.68" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Mark.14.68" ∷ word (ο ∷ ὔ ∷ τ ∷ ε ∷ []) "Mark.14.68" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ α ∷ μ ∷ α ∷ ι ∷ []) "Mark.14.68" ∷ word (σ ∷ ὺ ∷ []) "Mark.14.68" ∷ word (τ ∷ ί ∷ []) "Mark.14.68" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.14.68" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.68" ∷ word (ἐ ∷ ξ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.14.68" ∷ word (ἔ ∷ ξ ∷ ω ∷ []) "Mark.14.68" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.14.68" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.68" ∷ word (π ∷ ρ ∷ ο ∷ α ∷ ύ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.14.68" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.68" ∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ρ ∷ []) "Mark.14.68" ∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.68" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.69" ∷ word (ἡ ∷ []) "Mark.14.69" ∷ word (π ∷ α ∷ ι ∷ δ ∷ ί ∷ σ ∷ κ ∷ η ∷ []) "Mark.14.69" ∷ word (ἰ ∷ δ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ []) "Mark.14.69" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.14.69" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.69" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.69" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.69" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.14.69" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.14.69" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.69" ∷ word (Ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.14.69" ∷ word (ἐ ∷ ξ ∷ []) "Mark.14.69" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.69" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.14.69" ∷ word (ὁ ∷ []) "Mark.14.70" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.70" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.70" ∷ word (ἠ ∷ ρ ∷ ν ∷ ε ∷ ῖ ∷ τ ∷ ο ∷ []) "Mark.14.70" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.70" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.14.70" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.14.70" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.14.70" ∷ word (ο ∷ ἱ ∷ []) "Mark.14.70" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "Mark.14.70" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.14.70" ∷ word (τ ∷ ῷ ∷ []) "Mark.14.70" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.14.70" ∷ word (Ἀ ∷ ∙λ ∷ η ∷ θ ∷ ῶ ∷ ς ∷ []) "Mark.14.70" ∷ word (ἐ ∷ ξ ∷ []) "Mark.14.70" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.14.70" ∷ word (ε ∷ ἶ ∷ []) "Mark.14.70" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.70" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.14.70" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ῖ ∷ ο ∷ ς ∷ []) "Mark.14.70" ∷ word (ε ∷ ἶ ∷ []) "Mark.14.70" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.70" ∷ word (ἡ ∷ []) "Mark.14.70" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ι ∷ ά ∷ []) "Mark.14.70" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.14.70" ∷ word (ὁ ∷ μ ∷ ο ∷ ι ∷ ά ∷ ζ ∷ ε ∷ ι ∷ []) "Mark.14.70" ∷ word (ὁ ∷ []) "Mark.14.71" ∷ word (δ ∷ ὲ ∷ []) "Mark.14.71" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.14.71" ∷ word (ἀ ∷ ν ∷ α ∷ θ ∷ ε ∷ μ ∷ α ∷ τ ∷ ί ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.14.71" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.71" ∷ word (ὀ ∷ μ ∷ ν ∷ ύ ∷ ν ∷ α ∷ ι ∷ []) "Mark.14.71" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.71" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.14.71" ∷ word (ο ∷ ἶ ∷ δ ∷ α ∷ []) "Mark.14.71" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.14.71" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ν ∷ []) "Mark.14.71" ∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.14.71" ∷ word (ὃ ∷ ν ∷ []) "Mark.14.71" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.14.71" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.72" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.14.72" ∷ word (ἐ ∷ κ ∷ []) "Mark.14.72" ∷ word (δ ∷ ε ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.14.72" ∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ω ∷ ρ ∷ []) "Mark.14.72" ∷ word (ἐ ∷ φ ∷ ώ ∷ ν ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.14.72" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.72" ∷ word (ἀ ∷ ν ∷ ε ∷ μ ∷ ν ∷ ή ∷ σ ∷ θ ∷ η ∷ []) "Mark.14.72" ∷ word (ὁ ∷ []) "Mark.14.72" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ς ∷ []) "Mark.14.72" ∷ word (τ ∷ ὸ ∷ []) "Mark.14.72" ∷ word (ῥ ∷ ῆ ∷ μ ∷ α ∷ []) "Mark.14.72" ∷ word (ὡ ∷ ς ∷ []) "Mark.14.72" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.14.72" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.14.72" ∷ word (ὁ ∷ []) "Mark.14.72" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.14.72" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.14.72" ∷ word (Π ∷ ρ ∷ ὶ ∷ ν ∷ []) "Mark.14.72" ∷ word (ἀ ∷ ∙λ ∷ έ ∷ κ ∷ τ ∷ ο ∷ ρ ∷ α ∷ []) "Mark.14.72" ∷ word (φ ∷ ω ∷ ν ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.14.72" ∷ word (δ ∷ ὶ ∷ ς ∷ []) "Mark.14.72" ∷ word (τ ∷ ρ ∷ ί ∷ ς ∷ []) "Mark.14.72" ∷ word (μ ∷ ε ∷ []) "Mark.14.72" ∷ word (ἀ ∷ π ∷ α ∷ ρ ∷ ν ∷ ή ∷ σ ∷ ῃ ∷ []) "Mark.14.72" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.14.72" ∷ word (ἐ ∷ π ∷ ι ∷ β ∷ α ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.14.72" ∷ word (ἔ ∷ κ ∷ ∙λ ∷ α ∷ ι ∷ ε ∷ ν ∷ []) "Mark.14.72" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.1" ∷ word (ε ∷ ὐ ∷ θ ∷ ὺ ∷ ς ∷ []) "Mark.15.1" ∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.15.1" ∷ word (σ ∷ υ ∷ μ ∷ β ∷ ο ∷ ύ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.1" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.1" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.1" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.1" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.15.1" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.1" ∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ω ∷ ν ∷ []) "Mark.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.1" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.1" ∷ word (ὅ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.15.1" ∷ word (τ ∷ ὸ ∷ []) "Mark.15.1" ∷ word (σ ∷ υ ∷ ν ∷ έ ∷ δ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.1" ∷ word (δ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.1" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.1" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.15.1" ∷ word (ἀ ∷ π ∷ ή ∷ ν ∷ ε ∷ γ ∷ κ ∷ α ∷ ν ∷ []) "Mark.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.1" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ ν ∷ []) "Mark.15.1" ∷ word (Π ∷ ι ∷ ∙λ ∷ ά ∷ τ ∷ ῳ ∷ []) "Mark.15.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.2" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.2" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.2" ∷ word (ὁ ∷ []) "Mark.15.2" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.2" ∷ word (Σ ∷ ὺ ∷ []) "Mark.15.2" ∷ word (ε ∷ ἶ ∷ []) "Mark.15.2" ∷ word (ὁ ∷ []) "Mark.15.2" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.15.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.2" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.2" ∷ word (ὁ ∷ []) "Mark.15.2" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.2" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.2" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.15.2" ∷ word (Σ ∷ ὺ ∷ []) "Mark.15.2" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.15.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.3" ∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ό ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.3" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.3" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.3" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.3" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ά ∷ []) "Mark.15.3" ∷ word (ὁ ∷ []) "Mark.15.4" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.4" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.4" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.15.4" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ α ∷ []) "Mark.15.4" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.4" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.15.4" ∷ word (Ο ∷ ὐ ∷ κ ∷ []) "Mark.15.4" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ ν ∷ ῃ ∷ []) "Mark.15.4" ∷ word (ο ∷ ὐ ∷ δ ∷ έ ∷ ν ∷ []) "Mark.15.4" ∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.15.4" ∷ word (π ∷ ό ∷ σ ∷ α ∷ []) "Mark.15.4" ∷ word (σ ∷ ο ∷ υ ∷ []) "Mark.15.4" ∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.4" ∷ word (ὁ ∷ []) "Mark.15.5" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.5" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.15.5" ∷ word (ο ∷ ὐ ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "Mark.15.5" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.15.5" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.15.5" ∷ word (ὥ ∷ σ ∷ τ ∷ ε ∷ []) "Mark.15.5" ∷ word (θ ∷ α ∷ υ ∷ μ ∷ ά ∷ ζ ∷ ε ∷ ι ∷ ν ∷ []) "Mark.15.5" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.5" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.5" ∷ word (Κ ∷ α ∷ τ ∷ ὰ ∷ []) "Mark.15.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.6" ∷ word (ἑ ∷ ο ∷ ρ ∷ τ ∷ ὴ ∷ ν ∷ []) "Mark.15.6" ∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ ε ∷ ν ∷ []) "Mark.15.6" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.6" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.15.6" ∷ word (δ ∷ έ ∷ σ ∷ μ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.6" ∷ word (ὃ ∷ ν ∷ []) "Mark.15.6" ∷ word (π ∷ α ∷ ρ ∷ ῃ ∷ τ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.15.6" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.7" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.7" ∷ word (ὁ ∷ []) "Mark.15.7" ∷ word (∙λ ∷ ε ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.7" ∷ word (Β ∷ α ∷ ρ ∷ α ∷ β ∷ β ∷ ᾶ ∷ ς ∷ []) "Mark.15.7" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.15.7" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.7" ∷ word (σ ∷ τ ∷ α ∷ σ ∷ ι ∷ α ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.15.7" ∷ word (δ ∷ ε ∷ δ ∷ ε ∷ μ ∷ έ ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.7" ∷ word (ο ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.15.7" ∷ word (ἐ ∷ ν ∷ []) "Mark.15.7" ∷ word (τ ∷ ῇ ∷ []) "Mark.15.7" ∷ word (σ ∷ τ ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "Mark.15.7" ∷ word (φ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.7" ∷ word (π ∷ ε ∷ π ∷ ο ∷ ι ∷ ή ∷ κ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.8" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.15.8" ∷ word (ὁ ∷ []) "Mark.15.8" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ς ∷ []) "Mark.15.8" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ τ ∷ ο ∷ []) "Mark.15.8" ∷ word (α ∷ ἰ ∷ τ ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.15.8" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.15.8" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ ε ∷ ι ∷ []) "Mark.15.8" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.8" ∷ word (ὁ ∷ []) "Mark.15.9" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.9" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.9" ∷ word (ἀ ∷ π ∷ ε ∷ κ ∷ ρ ∷ ί ∷ θ ∷ η ∷ []) "Mark.15.9" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.9" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.15.9" ∷ word (Θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.9" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ω ∷ []) "Mark.15.9" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.15.9" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.9" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Mark.15.9" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.9" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.9" ∷ word (ἐ ∷ γ ∷ ί ∷ ν ∷ ω ∷ σ ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.10" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.15.10" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.15.10" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.15.10" ∷ word (φ ∷ θ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.10" ∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ ε ∷ δ ∷ ώ ∷ κ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.10" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.10" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.10" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.10" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.11" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.11" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.11" ∷ word (ἀ ∷ ν ∷ έ ∷ σ ∷ ε ∷ ι ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.11" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.15.11" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.11" ∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "Mark.15.11" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.11" ∷ word (Β ∷ α ∷ ρ ∷ α ∷ β ∷ β ∷ ᾶ ∷ ν ∷ []) "Mark.15.11" ∷ word (ἀ ∷ π ∷ ο ∷ ∙λ ∷ ύ ∷ σ ∷ ῃ ∷ []) "Mark.15.11" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.11" ∷ word (ὁ ∷ []) "Mark.15.12" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.12" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.12" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.15.12" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.12" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.15.12" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.12" ∷ word (Τ ∷ ί ∷ []) "Mark.15.12" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.15.12" ∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.12" ∷ word (π ∷ ο ∷ ι ∷ ή ∷ σ ∷ ω ∷ []) "Mark.15.12" ∷ word (ὃ ∷ ν ∷ []) "Mark.15.12" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.12" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.12" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ α ∷ []) "Mark.15.12" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.12" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.12" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.13" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.13" ∷ word (π ∷ ά ∷ ∙λ ∷ ι ∷ ν ∷ []) "Mark.15.13" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.15.13" ∷ word (Σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ ο ∷ ν ∷ []) "Mark.15.13" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.13" ∷ word (ὁ ∷ []) "Mark.15.14" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.14" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.14" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ε ∷ ν ∷ []) "Mark.15.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.14" ∷ word (Τ ∷ ί ∷ []) "Mark.15.14" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.15.14" ∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.14" ∷ word (κ ∷ α ∷ κ ∷ ό ∷ ν ∷ []) "Mark.15.14" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.14" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.14" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ σ ∷ σ ∷ ῶ ∷ ς ∷ []) "Mark.15.14" ∷ word (ἔ ∷ κ ∷ ρ ∷ α ∷ ξ ∷ α ∷ ν ∷ []) "Mark.15.14" ∷ word (Σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ ο ∷ ν ∷ []) "Mark.15.14" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.14" ∷ word (ὁ ∷ []) "Mark.15.15" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.15" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.15" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.15" ∷ word (τ ∷ ῷ ∷ []) "Mark.15.15" ∷ word (ὄ ∷ χ ∷ ∙λ ∷ ῳ ∷ []) "Mark.15.15" ∷ word (τ ∷ ὸ ∷ []) "Mark.15.15" ∷ word (ἱ ∷ κ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.15.15" ∷ word (π ∷ ο ∷ ι ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.15" ∷ word (ἀ ∷ π ∷ έ ∷ ∙λ ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.15.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.15" ∷ word (Β ∷ α ∷ ρ ∷ α ∷ β ∷ β ∷ ᾶ ∷ ν ∷ []) "Mark.15.15" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.15" ∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.15" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.15.15" ∷ word (φ ∷ ρ ∷ α ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ώ ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.15" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.15" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ θ ∷ ῇ ∷ []) "Mark.15.15" ∷ word (Ο ∷ ἱ ∷ []) "Mark.15.16" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.16" ∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ι ∷ ῶ ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.16" ∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ α ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.16" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.16" ∷ word (ἔ ∷ σ ∷ ω ∷ []) "Mark.15.16" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.15.16" ∷ word (α ∷ ὐ ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.15.16" ∷ word (ὅ ∷ []) "Mark.15.16" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.16" ∷ word (π ∷ ρ ∷ α ∷ ι ∷ τ ∷ ώ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.15.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.16" ∷ word (σ ∷ υ ∷ γ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.16" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.15.16" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.16" ∷ word (σ ∷ π ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.17" ∷ word (ἐ ∷ ν ∷ δ ∷ ι ∷ δ ∷ ύ ∷ σ ∷ κ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.17" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.17" ∷ word (π ∷ ο ∷ ρ ∷ φ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.17" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ τ ∷ ι ∷ θ ∷ έ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.17" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.17" ∷ word (π ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.17" ∷ word (ἀ ∷ κ ∷ ά ∷ ν ∷ θ ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.17" ∷ word (σ ∷ τ ∷ έ ∷ φ ∷ α ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.17" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.18" ∷ word (ἤ ∷ ρ ∷ ξ ∷ α ∷ ν ∷ τ ∷ ο ∷ []) "Mark.15.18" ∷ word (ἀ ∷ σ ∷ π ∷ ά ∷ ζ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "Mark.15.18" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.18" ∷ word (Χ ∷ α ∷ ῖ ∷ ρ ∷ ε ∷ []) "Mark.15.18" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῦ ∷ []) "Mark.15.18" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.18" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.19" ∷ word (ἔ ∷ τ ∷ υ ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.19" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.19" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.15.19" ∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ῳ ∷ []) "Mark.15.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.19" ∷ word (ἐ ∷ ν ∷ έ ∷ π ∷ τ ∷ υ ∷ ο ∷ ν ∷ []) "Mark.15.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.19" ∷ word (τ ∷ ι ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.19" ∷ word (τ ∷ ὰ ∷ []) "Mark.15.19" ∷ word (γ ∷ ό ∷ ν ∷ α ∷ τ ∷ α ∷ []) "Mark.15.19" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.19" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.20" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.15.20" ∷ word (ἐ ∷ ν ∷ έ ∷ π ∷ α ∷ ι ∷ ξ ∷ α ∷ ν ∷ []) "Mark.15.20" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.20" ∷ word (ἐ ∷ ξ ∷ έ ∷ δ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.20" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.20" ∷ word (π ∷ ο ∷ ρ ∷ φ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.20" ∷ word (ἐ ∷ ν ∷ έ ∷ δ ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.20" ∷ word (τ ∷ ὰ ∷ []) "Mark.15.20" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.15.20" ∷ word (τ ∷ ὰ ∷ []) "Mark.15.20" ∷ word (ἴ ∷ δ ∷ ι ∷ α ∷ []) "Mark.15.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.20" ∷ word (ἐ ∷ ξ ∷ ά ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.20" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.20" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.20" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ώ ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.20" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.20" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.21" ∷ word (ἀ ∷ γ ∷ γ ∷ α ∷ ρ ∷ ε ∷ ύ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.21" ∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ ο ∷ ν ∷ τ ∷ ά ∷ []) "Mark.15.21" ∷ word (τ ∷ ι ∷ ν ∷ α ∷ []) "Mark.15.21" ∷ word (Σ ∷ ί ∷ μ ∷ ω ∷ ν ∷ α ∷ []) "Mark.15.21" ∷ word (Κ ∷ υ ∷ ρ ∷ η ∷ ν ∷ α ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.15.21" ∷ word (ἐ ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.21" ∷ word (ἀ ∷ π ∷ []) "Mark.15.21" ∷ word (ἀ ∷ γ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.21" ∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "Mark.15.21" ∷ word (Ἀ ∷ ∙λ ∷ ε ∷ ξ ∷ ά ∷ ν ∷ δ ∷ ρ ∷ ο ∷ υ ∷ []) "Mark.15.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.21" ∷ word (Ῥ ∷ ο ∷ ύ ∷ φ ∷ ο ∷ υ ∷ []) "Mark.15.21" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.21" ∷ word (ἄ ∷ ρ ∷ ῃ ∷ []) "Mark.15.21" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.21" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.15.21" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.21" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.22" ∷ word (φ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.22" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.22" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.15.22" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.22" ∷ word (Γ ∷ ο ∷ ∙λ ∷ γ ∷ ο ∷ θ ∷ ᾶ ∷ ν ∷ []) "Mark.15.22" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ν ∷ []) "Mark.15.22" ∷ word (ὅ ∷ []) "Mark.15.22" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.22" ∷ word (μ ∷ ε ∷ θ ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.22" ∷ word (Κ ∷ ρ ∷ α ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Mark.15.22" ∷ word (Τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.15.22" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.23" ∷ word (ἐ ∷ δ ∷ ί ∷ δ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.23" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.23" ∷ word (ἐ ∷ σ ∷ μ ∷ υ ∷ ρ ∷ ν ∷ ι ∷ σ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.23" ∷ word (ο ∷ ἶ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.23" ∷ word (ὃ ∷ ς ∷ []) "Mark.15.23" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.23" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.15.23" ∷ word (ἔ ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ν ∷ []) "Mark.15.23" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.24" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.24" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.24" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.24" ∷ word (δ ∷ ι ∷ α ∷ μ ∷ ε ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.24" ∷ word (τ ∷ ὰ ∷ []) "Mark.15.24" ∷ word (ἱ ∷ μ ∷ ά ∷ τ ∷ ι ∷ α ∷ []) "Mark.15.24" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.24" ∷ word (β ∷ ά ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.24" ∷ word (κ ∷ ∙λ ∷ ῆ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.15.24" ∷ word (ἐ ∷ π ∷ []) "Mark.15.24" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ []) "Mark.15.24" ∷ word (τ ∷ ί ∷ ς ∷ []) "Mark.15.24" ∷ word (τ ∷ ί ∷ []) "Mark.15.24" ∷ word (ἄ ∷ ρ ∷ ῃ ∷ []) "Mark.15.24" ∷ word (Ἦ ∷ ν ∷ []) "Mark.15.25" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.25" ∷ word (ὥ ∷ ρ ∷ α ∷ []) "Mark.15.25" ∷ word (τ ∷ ρ ∷ ί ∷ τ ∷ η ∷ []) "Mark.15.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.25" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ ύ ∷ ρ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.25" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.25" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.26" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.26" ∷ word (ἡ ∷ []) "Mark.15.26" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ρ ∷ α ∷ φ ∷ ὴ ∷ []) "Mark.15.26" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.15.26" ∷ word (α ∷ ἰ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.26" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.26" ∷ word (ἐ ∷ π ∷ ι ∷ γ ∷ ε ∷ γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "Mark.15.26" ∷ word (Ὁ ∷ []) "Mark.15.26" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.15.26" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.26" ∷ word (Ἰ ∷ ο ∷ υ ∷ δ ∷ α ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.26" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.27" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.15.27" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.27" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.15.27" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.15.27" ∷ word (∙λ ∷ ῃ ∷ σ ∷ τ ∷ ά ∷ ς ∷ []) "Mark.15.27" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.15.27" ∷ word (ἐ ∷ κ ∷ []) "Mark.15.27" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.15.27" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.27" ∷ word (ἕ ∷ ν ∷ α ∷ []) "Mark.15.27" ∷ word (ἐ ∷ ξ ∷ []) "Mark.15.27" ∷ word (ε ∷ ὐ ∷ ω ∷ ν ∷ ύ ∷ μ ∷ ω ∷ ν ∷ []) "Mark.15.27" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.27" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.29" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.29" ∷ word (π ∷ α ∷ ρ ∷ α ∷ π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "Mark.15.29" ∷ word (ἐ ∷ β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ ή ∷ μ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.29" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.29" ∷ word (κ ∷ ι ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.29" ∷ word (τ ∷ ὰ ∷ ς ∷ []) "Mark.15.29" ∷ word (κ ∷ ε ∷ φ ∷ α ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "Mark.15.29" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.15.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.29" ∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.29" ∷ word (Ο ∷ ὐ ∷ ὰ ∷ []) "Mark.15.29" ∷ word (ὁ ∷ []) "Mark.15.29" ∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ύ ∷ ω ∷ ν ∷ []) "Mark.15.29" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.29" ∷ word (ν ∷ α ∷ ὸ ∷ ν ∷ []) "Mark.15.29" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.29" ∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ο ∷ μ ∷ ῶ ∷ ν ∷ []) "Mark.15.29" ∷ word (ἐ ∷ ν ∷ []) "Mark.15.29" ∷ word (τ ∷ ρ ∷ ι ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.15.29" ∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "Mark.15.29" ∷ word (σ ∷ ῶ ∷ σ ∷ ο ∷ ν ∷ []) "Mark.15.30" ∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.30" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ὰ ∷ ς ∷ []) "Mark.15.30" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.30" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.30" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.30" ∷ word (ὁ ∷ μ ∷ ο ∷ ί ∷ ω ∷ ς ∷ []) "Mark.15.31" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.31" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.31" ∷ word (ἀ ∷ ρ ∷ χ ∷ ι ∷ ε ∷ ρ ∷ ε ∷ ῖ ∷ ς ∷ []) "Mark.15.31" ∷ word (ἐ ∷ μ ∷ π ∷ α ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.31" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.15.31" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.15.31" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.15.31" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.31" ∷ word (γ ∷ ρ ∷ α ∷ μ ∷ μ ∷ α ∷ τ ∷ έ ∷ ω ∷ ν ∷ []) "Mark.15.31" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.31" ∷ word (Ἄ ∷ ∙λ ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.15.31" ∷ word (ἔ ∷ σ ∷ ω ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.31" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.31" ∷ word (ο ∷ ὐ ∷ []) "Mark.15.31" ∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.31" ∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.31" ∷ word (ὁ ∷ []) "Mark.15.32" ∷ word (χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.15.32" ∷ word (ὁ ∷ []) "Mark.15.32" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "Mark.15.32" ∷ word (Ἰ ∷ σ ∷ ρ ∷ α ∷ ὴ ∷ ∙λ ∷ []) "Mark.15.32" ∷ word (κ ∷ α ∷ τ ∷ α ∷ β ∷ ά ∷ τ ∷ ω ∷ []) "Mark.15.32" ∷ word (ν ∷ ῦ ∷ ν ∷ []) "Mark.15.32" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.32" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.32" ∷ word (σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.32" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.15.32" ∷ word (ἴ ∷ δ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.15.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.32" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.15.32" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.32" ∷ word (ο ∷ ἱ ∷ []) "Mark.15.32" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.15.32" ∷ word (σ ∷ ὺ ∷ ν ∷ []) "Mark.15.32" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.32" ∷ word (ὠ ∷ ν ∷ ε ∷ ί ∷ δ ∷ ι ∷ ζ ∷ ο ∷ ν ∷ []) "Mark.15.32" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.32" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.33" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.15.33" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.15.33" ∷ word (ἕ ∷ κ ∷ τ ∷ η ∷ ς ∷ []) "Mark.15.33" ∷ word (σ ∷ κ ∷ ό ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.33" ∷ word (ἐ ∷ γ ∷ έ ∷ ν ∷ ε ∷ τ ∷ ο ∷ []) "Mark.15.33" ∷ word (ἐ ∷ φ ∷ []) "Mark.15.33" ∷ word (ὅ ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.15.33" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.33" ∷ word (γ ∷ ῆ ∷ ν ∷ []) "Mark.15.33" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.15.33" ∷ word (ὥ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.15.33" ∷ word (ἐ ∷ ν ∷ ά ∷ τ ∷ η ∷ ς ∷ []) "Mark.15.33" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.34" ∷ word (τ ∷ ῇ ∷ []) "Mark.15.34" ∷ word (ἐ ∷ ν ∷ ά ∷ τ ∷ ῃ ∷ []) "Mark.15.34" ∷ word (ὥ ∷ ρ ∷ ᾳ ∷ []) "Mark.15.34" ∷ word (ἐ ∷ β ∷ ό ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.34" ∷ word (ὁ ∷ []) "Mark.15.34" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.15.34" ∷ word (φ ∷ ω ∷ ν ∷ ῇ ∷ []) "Mark.15.34" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ ῃ ∷ []) "Mark.15.34" ∷ word (Ἐ ∷ ∙λ ∷ ω ∷ ῒ ∷ []) "Mark.15.34" ∷ word (ἐ ∷ ∙λ ∷ ω ∷ ῒ ∷ []) "Mark.15.34" ∷ word (∙λ ∷ ε ∷ μ ∷ ὰ ∷ []) "Mark.15.34" ∷ word (σ ∷ α ∷ β ∷ α ∷ χ ∷ θ ∷ ά ∷ ν ∷ ι ∷ []) "Mark.15.34" ∷ word (ὅ ∷ []) "Mark.15.34" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.34" ∷ word (μ ∷ ε ∷ θ ∷ ε ∷ ρ ∷ μ ∷ η ∷ ν ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.34" ∷ word (Ὁ ∷ []) "Mark.15.34" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.15.34" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.15.34" ∷ word (ὁ ∷ []) "Mark.15.34" ∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "Mark.15.34" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.15.34" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.15.34" ∷ word (τ ∷ ί ∷ []) "Mark.15.34" ∷ word (ἐ ∷ γ ∷ κ ∷ α ∷ τ ∷ έ ∷ ∙λ ∷ ι ∷ π ∷ έ ∷ ς ∷ []) "Mark.15.34" ∷ word (μ ∷ ε ∷ []) "Mark.15.34" ∷ word (κ ∷ α ∷ ί ∷ []) "Mark.15.35" ∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "Mark.15.35" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.15.35" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ό ∷ τ ∷ ω ∷ ν ∷ []) "Mark.15.35" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.15.35" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.35" ∷ word (Ἴ ∷ δ ∷ ε ∷ []) "Mark.15.35" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.15.35" ∷ word (φ ∷ ω ∷ ν ∷ ε ∷ ῖ ∷ []) "Mark.15.35" ∷ word (δ ∷ ρ ∷ α ∷ μ ∷ ὼ ∷ ν ∷ []) "Mark.15.36" ∷ word (δ ∷ έ ∷ []) "Mark.15.36" ∷ word (τ ∷ ι ∷ ς ∷ []) "Mark.15.36" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.36" ∷ word (γ ∷ ε ∷ μ ∷ ί ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.36" ∷ word (σ ∷ π ∷ ό ∷ γ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.15.36" ∷ word (ὄ ∷ ξ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.15.36" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.36" ∷ word (κ ∷ α ∷ ∙λ ∷ ά ∷ μ ∷ ῳ ∷ []) "Mark.15.36" ∷ word (ἐ ∷ π ∷ ό ∷ τ ∷ ι ∷ ζ ∷ ε ∷ ν ∷ []) "Mark.15.36" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.36" ∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ ν ∷ []) "Mark.15.36" ∷ word (Ἄ ∷ φ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.15.36" ∷ word (ἴ ∷ δ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "Mark.15.36" ∷ word (ε ∷ ἰ ∷ []) "Mark.15.36" ∷ word (ἔ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.36" ∷ word (Ἠ ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.36" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "Mark.15.36" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.15.36" ∷ word (ὁ ∷ []) "Mark.15.37" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.37" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.15.37" ∷ word (ἀ ∷ φ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.15.37" ∷ word (φ ∷ ω ∷ ν ∷ ὴ ∷ ν ∷ []) "Mark.15.37" ∷ word (μ ∷ ε ∷ γ ∷ ά ∷ ∙λ ∷ η ∷ ν ∷ []) "Mark.15.37" ∷ word (ἐ ∷ ξ ∷ έ ∷ π ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.37" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.38" ∷ word (τ ∷ ὸ ∷ []) "Mark.15.38" ∷ word (κ ∷ α ∷ τ ∷ α ∷ π ∷ έ ∷ τ ∷ α ∷ σ ∷ μ ∷ α ∷ []) "Mark.15.38" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.38" ∷ word (ν ∷ α ∷ ο ∷ ῦ ∷ []) "Mark.15.38" ∷ word (ἐ ∷ σ ∷ χ ∷ ί ∷ σ ∷ θ ∷ η ∷ []) "Mark.15.38" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.15.38" ∷ word (δ ∷ ύ ∷ ο ∷ []) "Mark.15.38" ∷ word (ἀ ∷ π ∷ []) "Mark.15.38" ∷ word (ἄ ∷ ν ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "Mark.15.38" ∷ word (ἕ ∷ ω ∷ ς ∷ []) "Mark.15.38" ∷ word (κ ∷ ά ∷ τ ∷ ω ∷ []) "Mark.15.38" ∷ word (ἰ ∷ δ ∷ ὼ ∷ ν ∷ []) "Mark.15.39" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.39" ∷ word (ὁ ∷ []) "Mark.15.39" ∷ word (κ ∷ ε ∷ ν ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ []) "Mark.15.39" ∷ word (ὁ ∷ []) "Mark.15.39" ∷ word (π ∷ α ∷ ρ ∷ ε ∷ σ ∷ τ ∷ η ∷ κ ∷ ὼ ∷ ς ∷ []) "Mark.15.39" ∷ word (ἐ ∷ ξ ∷ []) "Mark.15.39" ∷ word (ἐ ∷ ν ∷ α ∷ ν ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.39" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.15.39" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.15.39" ∷ word (ο ∷ ὕ ∷ τ ∷ ω ∷ ς ∷ []) "Mark.15.39" ∷ word (ἐ ∷ ξ ∷ έ ∷ π ∷ ν ∷ ε ∷ υ ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.39" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.15.39" ∷ word (Ἀ ∷ ∙λ ∷ η ∷ θ ∷ ῶ ∷ ς ∷ []) "Mark.15.39" ∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.39" ∷ word (ὁ ∷ []) "Mark.15.39" ∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "Mark.15.39" ∷ word (υ ∷ ἱ ∷ ὸ ∷ ς ∷ []) "Mark.15.39" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.15.39" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.39" ∷ word (Ἦ ∷ σ ∷ α ∷ ν ∷ []) "Mark.15.40" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40" ∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ ε ∷ ς ∷ []) "Mark.15.40" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.40" ∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ό ∷ θ ∷ ε ∷ ν ∷ []) "Mark.15.40" ∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.40" ∷ word (ἐ ∷ ν ∷ []) "Mark.15.40" ∷ word (α ∷ ἷ ∷ ς ∷ []) "Mark.15.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.40" ∷ word (ἡ ∷ []) "Mark.15.40" ∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ὴ ∷ []) "Mark.15.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.40" ∷ word (ἡ ∷ []) "Mark.15.40" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.15.40" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.40" ∷ word (μ ∷ ι ∷ κ ∷ ρ ∷ ο ∷ ῦ ∷ []) "Mark.15.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40" ∷ word (Ἰ ∷ ω ∷ σ ∷ ῆ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.40" ∷ word (μ ∷ ή ∷ τ ∷ η ∷ ρ ∷ []) "Mark.15.40" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.40" ∷ word (Σ ∷ α ∷ ∙λ ∷ ώ ∷ μ ∷ η ∷ []) "Mark.15.40" ∷ word (α ∷ ἳ ∷ []) "Mark.15.41" ∷ word (ὅ ∷ τ ∷ ε ∷ []) "Mark.15.41" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.41" ∷ word (ἐ ∷ ν ∷ []) "Mark.15.41" ∷ word (τ ∷ ῇ ∷ []) "Mark.15.41" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ ᾳ ∷ []) "Mark.15.41" ∷ word (ἠ ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.41" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.41" ∷ word (δ ∷ ι ∷ η ∷ κ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.41" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.41" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.41" ∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ α ∷ ι ∷ []) "Mark.15.41" ∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ α ∷ ὶ ∷ []) "Mark.15.41" ∷ word (α ∷ ἱ ∷ []) "Mark.15.41" ∷ word (σ ∷ υ ∷ ν ∷ α ∷ ν ∷ α ∷ β ∷ ᾶ ∷ σ ∷ α ∷ ι ∷ []) "Mark.15.41" ∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "Mark.15.41" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.15.41" ∷ word (Ἱ ∷ ε ∷ ρ ∷ ο ∷ σ ∷ ό ∷ ∙λ ∷ υ ∷ μ ∷ α ∷ []) "Mark.15.41" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.15.42" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.15.42" ∷ word (ὀ ∷ ψ ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.42" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ η ∷ ς ∷ []) "Mark.15.42" ∷ word (ἐ ∷ π ∷ ε ∷ ὶ ∷ []) "Mark.15.42" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.42" ∷ word (π ∷ α ∷ ρ ∷ α ∷ σ ∷ κ ∷ ε ∷ υ ∷ ή ∷ []) "Mark.15.42" ∷ word (ὅ ∷ []) "Mark.15.42" ∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.15.42" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ά ∷ β ∷ β ∷ α ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.42" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ὼ ∷ ν ∷ []) "Mark.15.43" ∷ word (Ἰ ∷ ω ∷ σ ∷ ὴ ∷ φ ∷ []) "Mark.15.43" ∷ word (ὁ ∷ []) "Mark.15.43" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.43" ∷ word (Ἁ ∷ ρ ∷ ι ∷ μ ∷ α ∷ θ ∷ α ∷ ί ∷ α ∷ ς ∷ []) "Mark.15.43" ∷ word (ε ∷ ὐ ∷ σ ∷ χ ∷ ή ∷ μ ∷ ω ∷ ν ∷ []) "Mark.15.43" ∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ υ ∷ τ ∷ ή ∷ ς ∷ []) "Mark.15.43" ∷ word (ὃ ∷ ς ∷ []) "Mark.15.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.43" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.15.43" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.43" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ δ ∷ ε ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.43" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.43" ∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "Mark.15.43" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.43" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.15.43" ∷ word (τ ∷ ο ∷ ∙λ ∷ μ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.43" ∷ word (ε ∷ ἰ ∷ σ ∷ ῆ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "Mark.15.43" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.15.43" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.43" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.15.43" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.43" ∷ word (ᾐ ∷ τ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.15.43" ∷ word (τ ∷ ὸ ∷ []) "Mark.15.43" ∷ word (σ ∷ ῶ ∷ μ ∷ α ∷ []) "Mark.15.43" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.43" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "Mark.15.43" ∷ word (ὁ ∷ []) "Mark.15.44" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.44" ∷ word (Π ∷ ι ∷ ∙λ ∷ ᾶ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.44" ∷ word (ἐ ∷ θ ∷ α ∷ ύ ∷ μ ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.44" ∷ word (ε ∷ ἰ ∷ []) "Mark.15.44" ∷ word (ἤ ∷ δ ∷ η ∷ []) "Mark.15.44" ∷ word (τ ∷ έ ∷ θ ∷ ν ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.44" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.44" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.15.44" ∷ word (κ ∷ ε ∷ ν ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ α ∷ []) "Mark.15.44" ∷ word (ἐ ∷ π ∷ η ∷ ρ ∷ ώ ∷ τ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.44" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.44" ∷ word (ε ∷ ἰ ∷ []) "Mark.15.44" ∷ word (π ∷ ά ∷ ∙λ ∷ α ∷ ι ∷ []) "Mark.15.44" ∷ word (ἀ ∷ π ∷ έ ∷ θ ∷ α ∷ ν ∷ ε ∷ ν ∷ []) "Mark.15.44" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.45" ∷ word (γ ∷ ν ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.15.45" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.15.45" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.45" ∷ word (κ ∷ ε ∷ ν ∷ τ ∷ υ ∷ ρ ∷ ί ∷ ω ∷ ν ∷ ο ∷ ς ∷ []) "Mark.15.45" ∷ word (ἐ ∷ δ ∷ ω ∷ ρ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "Mark.15.45" ∷ word (τ ∷ ὸ ∷ []) "Mark.15.45" ∷ word (π ∷ τ ∷ ῶ ∷ μ ∷ α ∷ []) "Mark.15.45" ∷ word (τ ∷ ῷ ∷ []) "Mark.15.45" ∷ word (Ἰ ∷ ω ∷ σ ∷ ή ∷ φ ∷ []) "Mark.15.45" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.46" ∷ word (ἀ ∷ γ ∷ ο ∷ ρ ∷ ά ∷ σ ∷ α ∷ ς ∷ []) "Mark.15.46" ∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ α ∷ []) "Mark.15.46" ∷ word (κ ∷ α ∷ θ ∷ ε ∷ ∙λ ∷ ὼ ∷ ν ∷ []) "Mark.15.46" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.46" ∷ word (ἐ ∷ ν ∷ ε ∷ ί ∷ ∙λ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.46" ∷ word (τ ∷ ῇ ∷ []) "Mark.15.46" ∷ word (σ ∷ ι ∷ ν ∷ δ ∷ ό ∷ ν ∷ ι ∷ []) "Mark.15.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.46" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "Mark.15.46" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.15.46" ∷ word (ἐ ∷ ν ∷ []) "Mark.15.46" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ῳ ∷ []) "Mark.15.46" ∷ word (ὃ ∷ []) "Mark.15.46" ∷ word (ἦ ∷ ν ∷ []) "Mark.15.46" ∷ word (∙λ ∷ ε ∷ ∙λ ∷ α ∷ τ ∷ ο ∷ μ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.15.46" ∷ word (ἐ ∷ κ ∷ []) "Mark.15.46" ∷ word (π ∷ έ ∷ τ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.15.46" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.46" ∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ κ ∷ ύ ∷ ∙λ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.15.46" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.15.46" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.15.46" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.15.46" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ν ∷ []) "Mark.15.46" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.15.46" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Mark.15.46" ∷ word (ἡ ∷ []) "Mark.15.47" ∷ word (δ ∷ ὲ ∷ []) "Mark.15.47" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.47" ∷ word (ἡ ∷ []) "Mark.15.47" ∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ὴ ∷ []) "Mark.15.47" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.15.47" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.15.47" ∷ word (ἡ ∷ []) "Mark.15.47" ∷ word (Ἰ ∷ ω ∷ σ ∷ ῆ ∷ τ ∷ ο ∷ ς ∷ []) "Mark.15.47" ∷ word (ἐ ∷ θ ∷ ε ∷ ώ ∷ ρ ∷ ο ∷ υ ∷ ν ∷ []) "Mark.15.47" ∷ word (π ∷ ο ∷ ῦ ∷ []) "Mark.15.47" ∷ word (τ ∷ έ ∷ θ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "Mark.15.47" ∷ word (Κ ∷ α ∷ ὶ ∷ []) "Mark.16.1" ∷ word (δ ∷ ι ∷ α ∷ γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ υ ∷ []) "Mark.16.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.1" ∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.16.1" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.16.1" ∷ word (ἡ ∷ []) "Mark.16.1" ∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ὴ ∷ []) "Mark.16.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.1" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ α ∷ []) "Mark.16.1" ∷ word (ἡ ∷ []) "Mark.16.1" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.1" ∷ word (Ἰ ∷ α ∷ κ ∷ ώ ∷ β ∷ ο ∷ υ ∷ []) "Mark.16.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.1" ∷ word (Σ ∷ α ∷ ∙λ ∷ ώ ∷ μ ∷ η ∷ []) "Mark.16.1" ∷ word (ἠ ∷ γ ∷ ό ∷ ρ ∷ α ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.1" ∷ word (ἀ ∷ ρ ∷ ώ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "Mark.16.1" ∷ word (ἵ ∷ ν ∷ α ∷ []) "Mark.16.1" ∷ word (ἐ ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.1" ∷ word (ἀ ∷ ∙λ ∷ ε ∷ ί ∷ ψ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.1" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.16.1" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.2" ∷ word (∙λ ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.2" ∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.16.2" ∷ word (τ ∷ ῇ ∷ []) "Mark.16.2" ∷ word (μ ∷ ι ∷ ᾷ ∷ []) "Mark.16.2" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.16.2" ∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "Mark.16.2" ∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.2" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.16.2" ∷ word (τ ∷ ὸ ∷ []) "Mark.16.2" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.16.2" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ε ∷ ί ∷ ∙λ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.16.2" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.2" ∷ word (ἡ ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.2" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.3" ∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ ο ∷ ν ∷ []) "Mark.16.3" ∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "Mark.16.3" ∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ά ∷ ς ∷ []) "Mark.16.3" ∷ word (Τ ∷ ί ∷ ς ∷ []) "Mark.16.3" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ υ ∷ ∙λ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Mark.16.3" ∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.16.3" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.3" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ν ∷ []) "Mark.16.3" ∷ word (ἐ ∷ κ ∷ []) "Mark.16.3" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.16.3" ∷ word (θ ∷ ύ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.16.3" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.3" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.3" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.4" ∷ word (ἀ ∷ ν ∷ α ∷ β ∷ ∙λ ∷ έ ∷ ψ ∷ α ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.4" ∷ word (θ ∷ ε ∷ ω ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.4" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.4" ∷ word (ἀ ∷ π ∷ ο ∷ κ ∷ ε ∷ κ ∷ ύ ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.4" ∷ word (ὁ ∷ []) "Mark.16.4" ∷ word (∙λ ∷ ί ∷ θ ∷ ο ∷ ς ∷ []) "Mark.16.4" ∷ word (ἦ ∷ ν ∷ []) "Mark.16.4" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.16.4" ∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "Mark.16.4" ∷ word (σ ∷ φ ∷ ό ∷ δ ∷ ρ ∷ α ∷ []) "Mark.16.4" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.5" ∷ word (ε ∷ ἰ ∷ σ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.5" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.5" ∷ word (τ ∷ ὸ ∷ []) "Mark.16.5" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ο ∷ ν ∷ []) "Mark.16.5" ∷ word (ε ∷ ἶ ∷ δ ∷ ο ∷ ν ∷ []) "Mark.16.5" ∷ word (ν ∷ ε ∷ α ∷ ν ∷ ί ∷ σ ∷ κ ∷ ο ∷ ν ∷ []) "Mark.16.5" ∷ word (κ ∷ α ∷ θ ∷ ή ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.5" ∷ word (ἐ ∷ ν ∷ []) "Mark.16.5" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.5" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.5" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ β ∷ ε ∷ β ∷ ∙λ ∷ η ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.5" ∷ word (σ ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "Mark.16.5" ∷ word (∙λ ∷ ε ∷ υ ∷ κ ∷ ή ∷ ν ∷ []) "Mark.16.5" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.5" ∷ word (ἐ ∷ ξ ∷ ε ∷ θ ∷ α ∷ μ ∷ β ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.5" ∷ word (ὁ ∷ []) "Mark.16.6" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.6" ∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "Mark.16.6" ∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.16.6" ∷ word (Μ ∷ ὴ ∷ []) "Mark.16.6" ∷ word (ἐ ∷ κ ∷ θ ∷ α ∷ μ ∷ β ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ ε ∷ []) "Mark.16.6" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ν ∷ []) "Mark.16.6" ∷ word (ζ ∷ η ∷ τ ∷ ε ∷ ῖ ∷ τ ∷ ε ∷ []) "Mark.16.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.6" ∷ word (Ν ∷ α ∷ ζ ∷ α ∷ ρ ∷ η ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.16.6" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.6" ∷ word (ἐ ∷ σ ∷ τ ∷ α ∷ υ ∷ ρ ∷ ω ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.6" ∷ word (ἠ ∷ γ ∷ έ ∷ ρ ∷ θ ∷ η ∷ []) "Mark.16.6" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.16.6" ∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "Mark.16.6" ∷ word (ὧ ∷ δ ∷ ε ∷ []) "Mark.16.6" ∷ word (ἴ ∷ δ ∷ ε ∷ []) "Mark.16.6" ∷ word (ὁ ∷ []) "Mark.16.6" ∷ word (τ ∷ ό ∷ π ∷ ο ∷ ς ∷ []) "Mark.16.6" ∷ word (ὅ ∷ π ∷ ο ∷ υ ∷ []) "Mark.16.6" ∷ word (ἔ ∷ θ ∷ η ∷ κ ∷ α ∷ ν ∷ []) "Mark.16.6" ∷ word (α ∷ ὐ ∷ τ ∷ ό ∷ ν ∷ []) "Mark.16.6" ∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "Mark.16.7" ∷ word (ὑ ∷ π ∷ ά ∷ γ ∷ ε ∷ τ ∷ ε ∷ []) "Mark.16.7" ∷ word (ε ∷ ἴ ∷ π ∷ α ∷ τ ∷ ε ∷ []) "Mark.16.7" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.7" ∷ word (μ ∷ α ∷ θ ∷ η ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.16.7" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.16.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.7" ∷ word (τ ∷ ῷ ∷ []) "Mark.16.7" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ῳ ∷ []) "Mark.16.7" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.7" ∷ word (Π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ε ∷ ι ∷ []) "Mark.16.7" ∷ word (ὑ ∷ μ ∷ ᾶ ∷ ς ∷ []) "Mark.16.7" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.7" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.16.7" ∷ word (Γ ∷ α ∷ ∙λ ∷ ι ∷ ∙λ ∷ α ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.7" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ []) "Mark.16.7" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.16.7" ∷ word (ὄ ∷ ψ ∷ ε ∷ σ ∷ θ ∷ ε ∷ []) "Mark.16.7" ∷ word (κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "Mark.16.7" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.16.7" ∷ word (ὑ ∷ μ ∷ ῖ ∷ ν ∷ []) "Mark.16.7" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.8" ∷ word (ἔ ∷ φ ∷ υ ∷ γ ∷ ο ∷ ν ∷ []) "Mark.16.8" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.16.8" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.8" ∷ word (μ ∷ ν ∷ η ∷ μ ∷ ε ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.8" ∷ word (ε ∷ ἶ ∷ χ ∷ ε ∷ ν ∷ []) "Mark.16.8" ∷ word (γ ∷ ὰ ∷ ρ ∷ []) "Mark.16.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.16.8" ∷ word (τ ∷ ρ ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "Mark.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8" ∷ word (ἔ ∷ κ ∷ σ ∷ τ ∷ α ∷ σ ∷ ι ∷ ς ∷ []) "Mark.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "Mark.16.8" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "Mark.16.8" ∷ word (ε ∷ ἶ ∷ π ∷ α ∷ ν ∷ []) "Mark.16.8" ∷ word (ἐ ∷ φ ∷ ο ∷ β ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ []) "Mark.16.8" ∷ word (γ ∷ ά ∷ ρ ∷ []) "Mark.16.8" ∷ word (Π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "Mark.16.8" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.8" ∷ word (τ ∷ ὰ ∷ []) "Mark.16.8" ∷ word (π ∷ α ∷ ρ ∷ η ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ μ ∷ έ ∷ ν ∷ α ∷ []) "Mark.16.8" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.8" ∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "Mark.16.8" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.8" ∷ word (Π ∷ έ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.16.8" ∷ word (σ ∷ υ ∷ ν ∷ τ ∷ ό ∷ μ ∷ ω ∷ ς ∷ []) "Mark.16.8" ∷ word (ἐ ∷ ξ ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.16.8" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.16.8" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.8" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ς ∷ []) "Mark.16.8" ∷ word (ὁ ∷ []) "Mark.16.8" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.16.8" ∷ word (ἀ ∷ π ∷ ὸ ∷ []) "Mark.16.8" ∷ word (ἀ ∷ ν ∷ α ∷ τ ∷ ο ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "Mark.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8" ∷ word (ἄ ∷ χ ∷ ρ ∷ ι ∷ []) "Mark.16.8" ∷ word (δ ∷ ύ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "Mark.16.8" ∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ έ ∷ σ ∷ τ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.16.8" ∷ word (δ ∷ ι ∷ []) "Mark.16.8" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.16.8" ∷ word (τ ∷ ὸ ∷ []) "Mark.16.8" ∷ word (ἱ ∷ ε ∷ ρ ∷ ὸ ∷ ν ∷ []) "Mark.16.8" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.8" ∷ word (ἄ ∷ φ ∷ θ ∷ α ∷ ρ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.16.8" ∷ word (κ ∷ ή ∷ ρ ∷ υ ∷ γ ∷ μ ∷ α ∷ []) "Mark.16.8" ∷ word (τ ∷ ῆ ∷ ς ∷ []) "Mark.16.8" ∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.8" ∷ word (σ ∷ ω ∷ τ ∷ η ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "Mark.16.8" ∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "Mark.16.8" ∷ word (Ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "Mark.16.9" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.9" ∷ word (π ∷ ρ ∷ ω ∷ ῒ ∷ []) "Mark.16.9" ∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῃ ∷ []) "Mark.16.9" ∷ word (σ ∷ α ∷ β ∷ β ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "Mark.16.9" ∷ word (ἐ ∷ φ ∷ ά ∷ ν ∷ η ∷ []) "Mark.16.9" ∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "Mark.16.9" ∷ word (Μ ∷ α ∷ ρ ∷ ί ∷ ᾳ ∷ []) "Mark.16.9" ∷ word (τ ∷ ῇ ∷ []) "Mark.16.9" ∷ word (Μ ∷ α ∷ γ ∷ δ ∷ α ∷ ∙λ ∷ η ∷ ν ∷ ῇ ∷ []) "Mark.16.9" ∷ word (π ∷ α ∷ ρ ∷ []) "Mark.16.9" ∷ word (ἧ ∷ ς ∷ []) "Mark.16.9" ∷ word (ἐ ∷ κ ∷ β ∷ ε ∷ β ∷ ∙λ ∷ ή ∷ κ ∷ ε ∷ ι ∷ []) "Mark.16.9" ∷ word (ἑ ∷ π ∷ τ ∷ ὰ ∷ []) "Mark.16.9" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.16.9" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ η ∷ []) "Mark.16.10" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "Mark.16.10" ∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ ε ∷ ν ∷ []) "Mark.16.10" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.10" ∷ word (μ ∷ ε ∷ τ ∷ []) "Mark.16.10" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "Mark.16.10" ∷ word (γ ∷ ε ∷ ν ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.10" ∷ word (π ∷ ε ∷ ν ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ []) "Mark.16.10" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.10" ∷ word (κ ∷ ∙λ ∷ α ∷ ί ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.10" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.16.11" ∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.11" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.11" ∷ word (ζ ∷ ῇ ∷ []) "Mark.16.11" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.11" ∷ word (ἐ ∷ θ ∷ ε ∷ ά ∷ θ ∷ η ∷ []) "Mark.16.11" ∷ word (ὑ ∷ π ∷ []) "Mark.16.11" ∷ word (α ∷ ὐ ∷ τ ∷ ῆ ∷ ς ∷ []) "Mark.16.11" ∷ word (ἠ ∷ π ∷ ί ∷ σ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.11" ∷ word (Μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.16.12" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.12" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.16.12" ∷ word (δ ∷ υ ∷ σ ∷ ὶ ∷ ν ∷ []) "Mark.16.12" ∷ word (ἐ ∷ ξ ∷ []) "Mark.16.12" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.16.12" ∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ α ∷ τ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.12" ∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.16.12" ∷ word (ἐ ∷ ν ∷ []) "Mark.16.12" ∷ word (ἑ ∷ τ ∷ έ ∷ ρ ∷ ᾳ ∷ []) "Mark.16.12" ∷ word (μ ∷ ο ∷ ρ ∷ φ ∷ ῇ ∷ []) "Mark.16.12" ∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.12" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.12" ∷ word (ἀ ∷ γ ∷ ρ ∷ ό ∷ ν ∷ []) "Mark.16.12" ∷ word (κ ∷ ἀ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.16.13" ∷ word (ἀ ∷ π ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.13" ∷ word (ἀ ∷ π ∷ ή ∷ γ ∷ γ ∷ ε ∷ ι ∷ ∙λ ∷ α ∷ ν ∷ []) "Mark.16.13" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.13" ∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.13" ∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "Mark.16.13" ∷ word (ἐ ∷ κ ∷ ε ∷ ί ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.13" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.13" ∷ word (Ὕ ∷ σ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "Mark.16.14" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.14" ∷ word (ἀ ∷ ν ∷ α ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.14" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.14" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.14" ∷ word (ἕ ∷ ν ∷ δ ∷ ε ∷ κ ∷ α ∷ []) "Mark.16.14" ∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "Mark.16.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.14" ∷ word (ὠ ∷ ν ∷ ε ∷ ί ∷ δ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.16.14" ∷ word (τ ∷ ὴ ∷ ν ∷ []) "Mark.16.14" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.14" ∷ word (α ∷ ὐ ∷ τ ∷ ῶ ∷ ν ∷ []) "Mark.16.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.14" ∷ word (σ ∷ κ ∷ ∙λ ∷ η ∷ ρ ∷ ο ∷ κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "Mark.16.14" ∷ word (ὅ ∷ τ ∷ ι ∷ []) "Mark.16.14" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.14" ∷ word (θ ∷ ε ∷ α ∷ σ ∷ α ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "Mark.16.14" ∷ word (α ∷ ὐ ∷ τ ∷ ὸ ∷ ν ∷ []) "Mark.16.14" ∷ word (ἐ ∷ γ ∷ η ∷ γ ∷ ε ∷ ρ ∷ μ ∷ έ ∷ ν ∷ ο ∷ ν ∷ []) "Mark.16.14" ∷ word (ο ∷ ὐ ∷ κ ∷ []) "Mark.16.14" ∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ τ ∷ ε ∷ υ ∷ σ ∷ α ∷ ν ∷ []) "Mark.16.14" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.15" ∷ word (ε ∷ ἶ ∷ π ∷ ε ∷ ν ∷ []) "Mark.16.15" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.15" ∷ word (Π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ θ ∷ έ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.15" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.15" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.15" ∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "Mark.16.15" ∷ word (ἅ ∷ π ∷ α ∷ ν ∷ τ ∷ α ∷ []) "Mark.16.15" ∷ word (κ ∷ η ∷ ρ ∷ ύ ∷ ξ ∷ α ∷ τ ∷ ε ∷ []) "Mark.16.15" ∷ word (τ ∷ ὸ ∷ []) "Mark.16.15" ∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "Mark.16.15" ∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "Mark.16.15" ∷ word (τ ∷ ῇ ∷ []) "Mark.16.15" ∷ word (κ ∷ τ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "Mark.16.15" ∷ word (ὁ ∷ []) "Mark.16.16" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "Mark.16.16" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.16" ∷ word (β ∷ α ∷ π ∷ τ ∷ ι ∷ σ ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "Mark.16.16" ∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.16" ∷ word (ὁ ∷ []) "Mark.16.16" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.16" ∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ή ∷ σ ∷ α ∷ ς ∷ []) "Mark.16.16" ∷ word (κ ∷ α ∷ τ ∷ α ∷ κ ∷ ρ ∷ ι ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "Mark.16.16" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ α ∷ []) "Mark.16.17" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.17" ∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.17" ∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ σ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.17" ∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "Mark.16.17" ∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "Mark.16.17" ∷ word (ἐ ∷ ν ∷ []) "Mark.16.17" ∷ word (τ ∷ ῷ ∷ []) "Mark.16.17" ∷ word (ὀ ∷ ν ∷ ό ∷ μ ∷ α ∷ τ ∷ ί ∷ []) "Mark.16.17" ∷ word (μ ∷ ο ∷ υ ∷ []) "Mark.16.17" ∷ word (δ ∷ α ∷ ι ∷ μ ∷ ό ∷ ν ∷ ι ∷ α ∷ []) "Mark.16.17" ∷ word (ἐ ∷ κ ∷ β ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.17" ∷ word (γ ∷ ∙λ ∷ ώ ∷ σ ∷ σ ∷ α ∷ ι ∷ ς ∷ []) "Mark.16.17" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.17" ∷ word (κ ∷ α ∷ ι ∷ ν ∷ α ∷ ῖ ∷ ς ∷ []) "Mark.16.17" ∷ word (ὄ ∷ φ ∷ ε ∷ ι ∷ ς ∷ []) "Mark.16.18" ∷ word (ἀ ∷ ρ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18" ∷ word (κ ∷ ἂ ∷ ν ∷ []) "Mark.16.18" ∷ word (θ ∷ α ∷ ν ∷ ά ∷ σ ∷ ι ∷ μ ∷ ό ∷ ν ∷ []) "Mark.16.18" ∷ word (τ ∷ ι ∷ []) "Mark.16.18" ∷ word (π ∷ ί ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18" ∷ word (ο ∷ ὐ ∷ []) "Mark.16.18" ∷ word (μ ∷ ὴ ∷ []) "Mark.16.18" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "Mark.16.18" ∷ word (β ∷ ∙λ ∷ ά ∷ ψ ∷ ῃ ∷ []) "Mark.16.18" ∷ word (ἐ ∷ π ∷ ὶ ∷ []) "Mark.16.18" ∷ word (ἀ ∷ ρ ∷ ρ ∷ ώ ∷ σ ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "Mark.16.18" ∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "Mark.16.18" ∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ ή ∷ σ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.18" ∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "Mark.16.18" ∷ word (ἕ ∷ ξ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "Mark.16.18" ∷ word (Ὁ ∷ []) "Mark.16.19" ∷ word (μ ∷ ὲ ∷ ν ∷ []) "Mark.16.19" ∷ word (ο ∷ ὖ ∷ ν ∷ []) "Mark.16.19" ∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "Mark.16.19" ∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "Mark.16.19" ∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "Mark.16.19" ∷ word (τ ∷ ὸ ∷ []) "Mark.16.19" ∷ word (∙λ ∷ α ∷ ∙λ ∷ ῆ ∷ σ ∷ α ∷ ι ∷ []) "Mark.16.19" ∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "Mark.16.19" ∷ word (ἀ ∷ ν ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ φ ∷ θ ∷ η ∷ []) "Mark.16.19" ∷ word (ε ∷ ἰ ∷ ς ∷ []) "Mark.16.19" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.19" ∷ word (ο ∷ ὐ ∷ ρ ∷ α ∷ ν ∷ ὸ ∷ ν ∷ []) "Mark.16.19" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.19" ∷ word (ἐ ∷ κ ∷ ά ∷ θ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "Mark.16.19" ∷ word (ἐ ∷ κ ∷ []) "Mark.16.19" ∷ word (δ ∷ ε ∷ ξ ∷ ι ∷ ῶ ∷ ν ∷ []) "Mark.16.19" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.19" ∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "Mark.16.19" ∷ word (ἐ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ ο ∷ ι ∷ []) "Mark.16.20" ∷ word (δ ∷ ὲ ∷ []) "Mark.16.20" ∷ word (ἐ ∷ ξ ∷ ε ∷ ∙λ ∷ θ ∷ ό ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "Mark.16.20" ∷ word (ἐ ∷ κ ∷ ή ∷ ρ ∷ υ ∷ ξ ∷ α ∷ ν ∷ []) "Mark.16.20" ∷ word (π ∷ α ∷ ν ∷ τ ∷ α ∷ χ ∷ ο ∷ ῦ ∷ []) "Mark.16.20" ∷ word (τ ∷ ο ∷ ῦ ∷ []) "Mark.16.20" ∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "Mark.16.20" ∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.16.20" ∷ word (κ ∷ α ∷ ὶ ∷ []) "Mark.16.20" ∷ word (τ ∷ ὸ ∷ ν ∷ []) "Mark.16.20" ∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ν ∷ []) "Mark.16.20" ∷ word (β ∷ ε ∷ β ∷ α ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "Mark.16.20" ∷ word (δ ∷ ι ∷ ὰ ∷ []) "Mark.16.20" ∷ word (τ ∷ ῶ ∷ ν ∷ []) "Mark.16.20" ∷ word (ἐ ∷ π ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ύ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "Mark.16.20" ∷ word (σ ∷ η ∷ μ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "Mark.16.20" ∷ []
{ "alphanum_fraction": 0.3501315423, "avg_line_length": 46.3650526689, "ext": "agda", "hexsha": "4f59b66c42d12d58076267d80fcddd40af2f1cb5", "lang": "Agda", "max_forks_count": 5, "max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z", "max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "scott-fleischman/GreekGrammar", "max_forks_repo_path": "agda/Text/Greek/SBLGNT/Mark.agda", "max_issues_count": 13, "max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "scott-fleischman/GreekGrammar", "max_issues_repo_path": "agda/Text/Greek/SBLGNT/Mark.agda", "max_line_length": 98, "max_stars_count": 44, "max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "scott-fleischman/GreekGrammar", "max_stars_repo_path": "agda/Text/Greek/SBLGNT/Mark.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z", "num_tokens": 357766, "size": 523786 }
{-# OPTIONS --without-K #-} module FinNatLemmas where open import Data.Empty using (⊥-elim) open import Data.Product using (_×_; _,_) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _<_; _≤_; _∸_; z≤n; s≤s; module ≤-Reasoning) open import Data.Nat.Properties using (m+n∸n≡m; m≤m+n; +-∸-assoc; cancel-+-left) open import Data.Nat.Properties.Simple using (+-comm; +-assoc; *-comm; distribʳ-*-+; +-right-identity) open import Data.Fin using (Fin; zero; suc; toℕ; raise; fromℕ≤; reduce≥; inject+) open import Data.Fin.Properties using (bounded; toℕ-injective; toℕ-raise; toℕ-fromℕ≤; inject+-lemma) open import Relation.Binary using (module StrictTotalOrder) open import Relation.Binary.Core using (_≢_) open import Relation.Binary.PropositionalEquality using (_≡_; subst; refl; sym; cong; cong₂; trans; module ≡-Reasoning) ------------------------------------------------------------------------------ -- Fin and Nat lemmas toℕ-fin : (m n : ℕ) → (eq : m ≡ n) (fin : Fin m) → toℕ (subst Fin eq fin) ≡ toℕ fin toℕ-fin m .m refl fin = refl ∸≡ : (m n : ℕ) (i j : Fin (m + n)) (i≥ : m ≤ toℕ i) (j≥ : m ≤ toℕ j) → toℕ i ∸ m ≡ toℕ j ∸ m → i ≡ j ∸≡ m n i j i≥ j≥ p = toℕ-injective pr where pr = begin (toℕ i ≡⟨ sym (m+n∸n≡m (toℕ i) m) ⟩ (toℕ i + m) ∸ m ≡⟨ cong (λ x → x ∸ m) (+-comm (toℕ i) m) ⟩ (m + toℕ i) ∸ m ≡⟨ +-∸-assoc m i≥ ⟩ m + (toℕ i ∸ m) ≡⟨ cong (λ x → m + x) p ⟩ m + (toℕ j ∸ m) ≡⟨ sym (+-∸-assoc m j≥) ⟩ (m + toℕ j) ∸ m ≡⟨ cong (λ x → x ∸ m) (+-comm m (toℕ j)) ⟩ (toℕ j + m) ∸ m ≡⟨ m+n∸n≡m (toℕ j) m ⟩ toℕ j ∎) where open ≡-Reasoning cancel-right∸ : (m n k : ℕ) (k≤m : k ≤ m) (k≤n : k ≤ n) → (m ∸ k ≡ n ∸ k) → m ≡ n cancel-right∸ m n k k≤m k≤n mk≡nk = begin (m ≡⟨ sym (m+n∸n≡m m k) ⟩ (m + k) ∸ k ≡⟨ cong (λ x → x ∸ k) (+-comm m k) ⟩ (k + m) ∸ k ≡⟨ +-∸-assoc k k≤m ⟩ k + (m ∸ k) ≡⟨ cong (λ x → k + x) mk≡nk ⟩ k + (n ∸ k) ≡⟨ sym (+-∸-assoc k k≤n) ⟩ (k + n) ∸ k ≡⟨ cong (λ x → x ∸ k) (+-comm k n) ⟩ (n + k) ∸ k ≡⟨ m+n∸n≡m n k ⟩ n ∎) where open ≡-Reasoning raise< : (m n : ℕ) (i : Fin (m + n)) (i< : toℕ i < m) → toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ i<))) ≡ n + toℕ i raise< m n i i< = begin (toℕ (subst Fin (+-comm n m) (raise n (fromℕ≤ i<))) ≡⟨ toℕ-fin (n + m) (m + n) (+-comm n m) (raise n (fromℕ≤ i<)) ⟩ toℕ (raise n (fromℕ≤ i<)) ≡⟨ toℕ-raise n (fromℕ≤ i<) ⟩ n + toℕ (fromℕ≤ i<) ≡⟨ cong (λ x → n + x) (toℕ-fromℕ≤ i<) ⟩ n + toℕ i ∎) where open ≡-Reasoning toℕ-reduce≥ : (m n : ℕ) (i : Fin (m + n)) (i≥ : m ≤ toℕ i) → toℕ (reduce≥ i i≥) ≡ toℕ i ∸ m toℕ-reduce≥ 0 n i _ = refl toℕ-reduce≥ (suc m) n zero () toℕ-reduce≥ (suc m) n (suc i) (s≤s i≥) = toℕ-reduce≥ m n i i≥ inject≥ : (m n : ℕ) (i : Fin (m + n)) (i≥ : m ≤ toℕ i) → toℕ (subst Fin (+-comm n m) (inject+ m (reduce≥ i i≥))) ≡ toℕ i ∸ m inject≥ m n i i≥ = begin (toℕ (subst Fin (+-comm n m) (inject+ m (reduce≥ i i≥))) ≡⟨ toℕ-fin (n + m) (m + n) (+-comm n m) (inject+ m (reduce≥ i i≥)) ⟩ toℕ (inject+ m (reduce≥ i i≥)) ≡⟨ sym (inject+-lemma m (reduce≥ i i≥)) ⟩ toℕ (reduce≥ i i≥) ≡⟨ toℕ-reduce≥ m n i i≥ ⟩ toℕ i ∸ m ∎) where open ≡-Reasoning fromℕ≤-inj : (m n : ℕ) (i j : Fin n) (i< : toℕ i < m) (j< : toℕ j < m) → fromℕ≤ i< ≡ fromℕ≤ j< → i ≡ j fromℕ≤-inj m n i j i< j< fi≡fj = toℕ-injective (trans (sym (toℕ-fromℕ≤ i<)) (trans (cong toℕ fi≡fj) (toℕ-fromℕ≤ j<))) reduce≥-inj : (m n : ℕ) (i j : Fin (m + n)) (i≥ : m ≤ toℕ i) (j≥ : m ≤ toℕ j) → reduce≥ i i≥ ≡ reduce≥ j j≥ → i ≡ j reduce≥-inj m n i j i≥ j≥ ri≡rj = toℕ-injective (cancel-right∸ (toℕ i) (toℕ j) m i≥ j≥ (trans (sym (toℕ-reduce≥ m n i i≥)) (trans (cong toℕ ri≡rj) (toℕ-reduce≥ m n j j≥)))) inj₁-toℕ≡ : {m n : ℕ} (i : Fin (m + n)) (i< : toℕ i < m) → toℕ i ≡ toℕ (inject+ n (fromℕ≤ i<)) inj₁-toℕ≡ {0} _ () inj₁-toℕ≡ {suc m} zero (s≤s z≤n) = refl inj₁-toℕ≡ {suc (suc m)} (suc i) (s≤s (s≤s i<)) = cong suc (inj₁-toℕ≡ i (s≤s i<)) inj₁-≡ : {m n : ℕ} (i : Fin (m + n)) (i< : toℕ i < m) → i ≡ inject+ n (fromℕ≤ i<) inj₁-≡ i i< = toℕ-injective (inj₁-toℕ≡ i i<) inj₂-toℕ≡ : {m n : ℕ} (i : Fin (m + n)) (i≥ : m ≤ toℕ i ) → toℕ i ≡ toℕ (raise m (reduce≥ i i≥)) inj₂-toℕ≡ {Data.Nat.zero} i i≥ = refl inj₂-toℕ≡ {suc m} zero () inj₂-toℕ≡ {suc m} (suc i) (s≤s i≥) = cong suc (inj₂-toℕ≡ i i≥) inj₂-≡ : {m n : ℕ} (i : Fin (m + n)) (i≥ : m ≤ toℕ i ) → i ≡ raise m (reduce≥ i i≥) inj₂-≡ i i≥ = toℕ-injective (inj₂-toℕ≡ i i≥) inject+-injective : {m n : ℕ} (i j : Fin m) → (inject+ n i ≡ inject+ n j) → i ≡ j inject+-injective {m} {n} i j p = toℕ-injective pf where open ≡-Reasoning pf : toℕ i ≡ toℕ j pf = begin ( toℕ i ≡⟨ inject+-lemma n i ⟩ toℕ (inject+ n i) ≡⟨ cong toℕ p ⟩ toℕ (inject+ n j) ≡⟨ sym (inject+-lemma n j) ⟩ toℕ j ∎) raise-injective : {m n : ℕ} (i j : Fin n) → (raise m i ≡ raise m j) → i ≡ j raise-injective {m} {n} i j p = toℕ-injective (cancel-+-left m pf) where open ≡-Reasoning pf : m + toℕ i ≡ m + toℕ j pf = begin ( m + toℕ i ≡⟨ sym (toℕ-raise m i) ⟩ toℕ (raise m i) ≡⟨ cong toℕ p ⟩ toℕ (raise m j) ≡⟨ toℕ-raise m j ⟩ m + toℕ j ∎) toℕ-invariance : ∀ {n n'} → (i : Fin n) → (eq : n ≡ n') → toℕ (subst Fin eq i) ≡ toℕ i toℕ-invariance i refl = refl -- see FinEquiv for the naming inject+0≡uniti+ : ∀ {m} → (n : Fin m) → (eq : m ≡ m + 0) → inject+ 0 n ≡ subst Fin eq n inject+0≡uniti+ {m} n eq = toℕ-injective pf where open ≡-Reasoning pf : toℕ (inject+ 0 n) ≡ toℕ (subst Fin eq n) pf = begin ( toℕ (inject+ 0 n) ≡⟨ sym (inject+-lemma 0 n) ⟩ toℕ n ≡⟨ sym (toℕ-invariance n eq) ⟩ toℕ (subst Fin eq n) ∎) -- Following code taken from -- https://github.com/copumpkin/derpa/blob/master/REPA/Index.agda#L210 -- the next few bits are lemmas to prove uniqueness of euclidean division -- first : for nonzero divisors, a nonzero quotient would require a larger -- dividend than is consistent with a zero quotient, regardless of -- remainders. large : ∀ {d} {r : Fin (suc d)} x (r′ : Fin (suc d)) → toℕ r ≢ suc x * suc d + toℕ r′ large {d} {r} x r′ pf = irrefl pf ( start suc (toℕ r) ≤⟨ bounded r ⟩ suc d ≤⟨ m≤m+n (suc d) (x * suc d) ⟩ suc d + x * suc d -- same as (suc x * suc d) ≤⟨ m≤m+n (suc x * suc d) (toℕ r′) ⟩ suc x * suc d + toℕ r′ -- clearer in two steps; we'd need assoc anyway □) where open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≡⟨_⟩'_) open Relation.Binary.StrictTotalOrder Data.Nat.Properties.strictTotalOrder -- a raw statement of the uniqueness, in the arrangement of terms that's -- easiest to work with computationally addMul-lemma′ : ∀ x x′ d (r r′ : Fin (suc d)) → x * suc d + toℕ r ≡ x′ * suc d + toℕ r′ → r ≡ r′ × x ≡ x′ addMul-lemma′ zero zero d r r′ hyp = (toℕ-injective hyp) , refl addMul-lemma′ zero (suc x′) d r r′ hyp = ⊥-elim (large x′ r′ hyp) addMul-lemma′ (suc x) zero d r r′ hyp = ⊥-elim (large x r (sym hyp)) addMul-lemma′ (suc x) (suc x′) d r r′ hyp rewrite +-assoc (suc d) (x * suc d) (toℕ r) | +-assoc (suc d) (x′ * suc d) (toℕ r′) with addMul-lemma′ x x′ d r r′ (cancel-+-left (suc d) hyp) ... | pf₁ , pf₂ = pf₁ , cong suc pf₂ -- and now rearranged to the order that Data.Nat.DivMod uses addMul-lemma : ∀ x x′ d (r r′ : Fin (suc d)) → toℕ r + x * suc d ≡ toℕ r′ + x′ * suc d → r ≡ r′ × x ≡ x′ addMul-lemma x x′ d r r′ hyp rewrite +-comm (toℕ r) (x * suc d) | +-comm (toℕ r′) (x′ * suc d) = addMul-lemma′ x x′ d r r′ hyp -- purely about Nat, but still not in Data.Nat.Properties.Simple distribˡ-*-+ : ∀ m n o → m * (n + o) ≡ m * n + m * o distribˡ-*-+ m n o = trans (*-comm m (n + o)) ( trans (distribʳ-*-+ m n o) ( (cong₂ _+_ (*-comm n m) (*-comm o m)))) *-right-identity : ∀ n → n * 1 ≡ n *-right-identity n = trans (*-comm n 1) (+-right-identity n) ------------------------------------------------------------------------
{ "alphanum_fraction": 0.4813171415, "avg_line_length": 35.8326359833, "ext": "agda", "hexsha": "b8341e557a806606135646c1285b1e0954bc1a6a", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/FinNatLemmas.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/FinNatLemmas.agda", "max_line_length": 87, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/FinNatLemmas.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 3841, "size": 8564 }
open import Agda.Builtin.Bool open import Agda.Builtin.Equality test : (A : Set) (let X = _) (x : X) (p : A ≡ Bool) → Bool test .Bool true refl = false test .Bool false refl = true
{ "alphanum_fraction": 0.6612021858, "avg_line_length": 26.1428571429, "ext": "agda", "hexsha": "6c622ba6bdac63cbe29b50d099dd328cb9c58ca0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2834.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2834.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2834.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 62, "size": 183 }
-- Andreas, 2014-09-23 -- Syntax declaration for overloaded constructor. module _ where module A where syntax c x = ⟦ x ⟧ data D2 (A : Set) : Set where c : A → D2 A data D1 : Set where c : D1 open A test : D2 D1 test = ⟦ c ⟧ -- Should work.
{ "alphanum_fraction": 0.5969581749, "avg_line_length": 11.9545454545, "ext": "agda", "hexsha": "3a07fdc3473061f902a91ff7909a4b1a5952da7f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1194b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1194b.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1194b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 95, "size": 263 }
module Issue1419 where module A where module M where module B where module M where open A open B module N (let open M) where module LotsOfStuff where
{ "alphanum_fraction": 0.7453416149, "avg_line_length": 10.7333333333, "ext": "agda", "hexsha": "579e17821e53bcfd11580d9d22aaeee2dd05679f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue1419.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue1419.agda", "max_line_length": 27, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue1419.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 46, "size": 161 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A simple example of a program using the foreign function interface ------------------------------------------------------------------------ module README.Foreign.Haskell where -- In order to be considered safe by Agda, the standard library cannot -- add COMPILE pragmas binding the inductive types it defines to concrete -- Haskell types. -- To work around this limitation, we have defined FFI-friendly versions -- of these types together with a zero-cost coercion `coerce`. open import Level using (Level) open import Agda.Builtin.Int open import Agda.Builtin.Nat open import Data.Bool.Base using (Bool; if_then_else_) open import Data.Char as Char open import Data.List.Base as List using (List; _∷_; []; takeWhile; dropWhile) open import Data.Maybe.Base using (Maybe; just; nothing) open import Data.Product open import Function open import Relation.Nullary.Decidable import Foreign.Haskell as FFI open import Foreign.Haskell.Coerce private variable a : Level A : Set a -- Here we use the FFI version of Maybe and Pair. postulate primUncons : List A → FFI.Maybe (FFI.Pair A (List A)) primCatMaybes : List (FFI.Maybe A) → List A primTestChar : Char → Bool primIntEq : Int → Int → Bool {-# COMPILE GHC primUncons = \ _ _ xs -> case xs of { [] -> Nothing ; (x : xs) -> Just (x, xs) } #-} {-# FOREIGN GHC import Data.Maybe #-} {-# COMPILE GHC primCatMaybes = \ _ _ -> catMaybes #-} {-# COMPILE GHC primTestChar = ('-' /=) #-} {-# COMPILE GHC primIntEq = (==) #-} -- We however want to use the notion of Maybe and Pair internal to -- the standard library. For this we use `coerce` to take use back -- to the types we are used to. -- The typeclass mechanism uses the coercion rules for Maybe and Pair, -- as well as the knowledge that natural numbers are represented as -- integers. -- We additionally benefit from the congruence rules for List, Char, -- Bool, and a reflexivity principle for variable A. uncons : List A → Maybe (A × List A) uncons = coerce primUncons catMaybes : List (Maybe A) → List A catMaybes = coerce primCatMaybes testChar : Char → Bool testChar = coerce primTestChar -- note that coerce is useless here but the proof could come from -- either `coerce-fun coerce-refl coerce-refl` or `coerce-refl` alone -- We (and Agda) do not care which proof we got. eqNat : Nat → Nat → Bool eqNat = coerce primIntEq -- We can coerce `Nat` to `Int` but not `Int` to `Nat`. This fundamentally -- relies on the fact that `Coercible` understands that functions are -- contravariant. open import IO open import Codata.Musical.Notation open import Data.String.Base open import Relation.Nullary.Negation -- example program using uncons, catMaybes, and testChar main = run $ ♯ readFiniteFile "README/Foreign/Haskell.agda" {- read this file -} >>= λ f → ♯ let chars = toList f in let cleanup = catMaybes ∘ List.map (λ c → if testChar c then just c else nothing) in let cleaned = dropWhile ('\n' ≟_) $ cleanup chars in case uncons cleaned of λ where nothing → putStrLn "I cannot believe this file is filed with dashes only!" (just (c , cs)) → putStrLn $ unlines $ ("First (non dash) character: " ++ Char.show c) ∷ ("Rest (dash free) of the line: " ++ fromList (takeWhile (¬? ∘ ('\n' ≟_)) cs)) ∷ [] -- You can compile and run this test by writing: -- agda -c Haskell.agda -- ../../Haskell -- You should see the following text (without the indentation on the left): -- First (non dash) character: ' ' -- Rest (dash free) of the line: The Agda standard library
{ "alphanum_fraction": 0.6622019823, "avg_line_length": 33.9363636364, "ext": "agda", "hexsha": "89dba50ba339cbbe6e135ee08d18d6d810bfd548", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/README/Foreign/Haskell.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/README/Foreign/Haskell.agda", "max_line_length": 100, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/README/Foreign/Haskell.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 963, "size": 3733 }
{-# OPTIONS --sized-types #-} module Sized.Data.List where import Lvl open import Lang.Size open import Type private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable T A A₁ A₂ B B₁ B₂ Result : Type{ℓ} private variable s s₁ s₂ : Size data List(s : Size){ℓ} (T : Type{ℓ}) : Type{ℓ} where ∅ : List(s)(T) -- An empty list _⊰_ : ∀{sₛ : <ˢⁱᶻᵉ s} → T → List(sₛ)(T) → List(s)(T) -- Cons infixr 1000 _⊰_ tail : List(s)(T) → List(s)(T) tail ∅ = ∅ tail (_ ⊰ l) = l {- -- TODO: Size problems. See notes in Lang.Size. _++_ : List(s)(T) → List(s)(T) → List(s)(T) _++_ ∅ b = b _++_ {s = s} (_⊰_ {sₛ = sₛ} x a) b = _⊰_ {s = s}{sₛ = sₛ} x (_++_ {s = sₛ} a b) infixl 1000 _++_ -}
{ "alphanum_fraction": 0.540960452, "avg_line_length": 24.4137931034, "ext": "agda", "hexsha": "cf819934cc57221aadca28e549f6e2efe732b8dd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Sized/Data/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Sized/Data/List.agda", "max_line_length": 79, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Sized/Data/List.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 314, "size": 708 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT {- The cofiber space of [winl : X → X ∨ Y] is equivalent to [Y], - and the cofiber space of [winr : Y → X ∨ Y] is equivalent to [X]. -} module homotopy.WedgeCofiber {i} (X Y : Ptd i) where module CofWinl where module Into = CofiberRec {f = winl} (pt Y) (projr X Y) (λ _ → idp) into = Into.f out : de⊙ Y → Cofiber (winl {X = X} {Y = Y}) out = cfcod ∘ winr abstract out-into : (κ : Cofiber (winl {X = X} {Y = Y})) → out (into κ) == κ out-into = Cofiber-elim (! (cfglue (pt X) ∙ ap cfcod wglue)) (Wedge-elim (λ x → ! (cfglue (pt X) ∙ ap cfcod wglue) ∙ cfglue x) (λ y → idp) (↓-='-from-square $ (lemma (cfglue (pt X)) (ap cfcod wglue) ∙h⊡ (ap-∘ out (projr X Y) wglue ∙ ap (ap out) (Projr.glue-β X Y)) ∙v⊡ bl-square (ap cfcod wglue)))) (λ x → ↓-∘=idf-from-square out into $ ! (∙-unit-r _) ∙h⊡ ap (ap out) (Into.glue-β x) ∙v⊡ hid-square {p = (! (cfglue' winl (pt X) ∙ ap cfcod wglue))} ⊡v connection {q = cfglue x}) where lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) → ! (p ∙ q) ∙ p == ! q lemma idp idp = idp eq : Cofiber winl ≃ de⊙ Y eq = equiv into out (λ _ → idp) out-into ⊙eq : ⊙Cofiber ⊙winl ⊙≃ Y ⊙eq = ≃-to-⊙≃ eq idp cfcod-winl-projr-comm-sqr : CommSquare (cfcod' winl) (projr X Y) (idf _) CofWinl.into cfcod-winl-projr-comm-sqr = comm-sqr λ _ → idp module CofWinr where module Into = CofiberRec {f = winr} (pt X) (projl X Y) (λ _ → idp) into = Into.f out : de⊙ X → Cofiber (winr {X = X} {Y = Y}) out = cfcod ∘ winl abstract out-into : ∀ κ → out (into κ) == κ out-into = Cofiber-elim (ap cfcod wglue ∙ ! (cfglue (pt Y))) (Wedge-elim (λ x → idp) (λ y → (ap cfcod wglue ∙ ! (cfglue (pt Y))) ∙ cfglue y) (↓-='-from-square $ (ap-∘ out (projl X Y) wglue ∙ ap (ap out) (Projl.glue-β X Y)) ∙v⊡ connection ⊡h∙ ! (lemma (ap (cfcod' winr) wglue) (cfglue (pt Y))))) (λ y → ↓-∘=idf-from-square out into $ ! (∙-unit-r _) ∙h⊡ ap (ap out) (Into.glue-β y) ∙v⊡ hid-square {p = (ap (cfcod' winr) wglue ∙ ! (cfglue (pt Y)))} ⊡v connection {q = cfglue y}) where lemma : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : z == y) → (p ∙ ! q) ∙ q == p lemma idp idp = idp eq : Cofiber winr ≃ de⊙ X eq = equiv into out (λ _ → idp) out-into ⊙eq : ⊙Cofiber ⊙winr ⊙≃ X ⊙eq = ≃-to-⊙≃ eq idp cfcod-winr-projl-comm-sqr : CommSquare (cfcod' winr) (projl X Y) (idf _) CofWinr.into cfcod-winr-projl-comm-sqr = comm-sqr λ _ → idp
{ "alphanum_fraction": 0.4835549335, "avg_line_length": 32.8505747126, "ext": "agda", "hexsha": "463ca0662b14bfbe66a00c8329822c275878dfd4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/WedgeCofiber.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/WedgeCofiber.agda", "max_line_length": 87, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/WedgeCofiber.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1197, "size": 2858 }
module Issue1278.A (X : Set1) where data D : Set where d : D
{ "alphanum_fraction": 0.5942028986, "avg_line_length": 11.5, "ext": "agda", "hexsha": "8f9e95ca0c31afb62e903a9e0108df1aff77554b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1278/A.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1278/A.agda", "max_line_length": 35, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1278/A.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 26, "size": 69 }
-- Combinators for logical reasoning {-# OPTIONS --without-K --safe --exact-split #-} module Constructive.Combinators where -- agda-stdlib open import Data.Empty open import Data.Sum as Sum open import Data.Product as Prod open import Function.Base open import Relation.Nullary using (¬_; Dec; yes; no) open import Relation.Nullary.Decidable using (⌊_⌋) import Relation.Unary as U open import Relation.Binary.PropositionalEquality -- agda-misc open import Constructive.Common --------------------------------------------------------------------------- -- Combinators --------------------------------------------------------------------------- module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where →-distrib-⊎-× : ((A ⊎ B) → C) → (A → C) × (B → C) →-distrib-⊎-× f = f ∘ inj₁ , f ∘ inj₂ →-undistrib-⊎-× : (A → C) × (B → C) → (A ⊎ B) → C →-undistrib-⊎-× (f , g) (inj₁ x) = f x →-undistrib-⊎-× (f , g) (inj₂ y) = g y →-undistrib-⊎-×-flip : (A ⊎ B) → (A → C) × (B → C) → C →-undistrib-⊎-×-flip = flip →-undistrib-⊎-× →-undistrib-×-⊎ : (A → C) ⊎ (B → C) → (A × B) → C →-undistrib-×-⊎ (inj₁ f) (x , y) = f x →-undistrib-×-⊎ (inj₂ g) (x , y) = g y →-undistrib-×-⊎-flip : (A × B) → (A → C) ⊎ (B → C) → C →-undistrib-×-⊎-flip = flip →-undistrib-×-⊎ -- contradiction contradiction : ∀ {a w} {A : Set a} {WhatEver : Set w} → A → ¬ A → WhatEver contradiction x ¬x = ⊥-elim (¬x x) -- sum and product module _ {a b} {A : Set a} {B : Set b} where A⊎B→¬A→B : A ⊎ B → ¬ A → B A⊎B→¬A→B (inj₁ x) ¬A = contradiction x ¬A A⊎B→¬A→B (inj₂ y) ¬A = y A⊎B→¬B→A : A ⊎ B → ¬ B → A A⊎B→¬B→A (inj₁ x) ¬B = x A⊎B→¬B→A (inj₂ y) ¬B = contradiction y ¬B ¬A⊎B→A→B : ¬ A ⊎ B → A → B ¬A⊎B→A→B (inj₁ ¬A) x = contradiction x ¬A ¬A⊎B→A→B (inj₂ y) _ = y [A→B]→¬[A׬B] : (A → B) → ¬ (A × ¬ B) [A→B]→¬[A׬B] f (x , y) = y (f x) A×B→¬[A→¬B] : A × B → ¬ (A → ¬ B) A×B→¬[A→¬B] (x , y) f = f x y -- De Morgan's laws ¬[A⊎B]→¬A׬B : ¬ (A ⊎ B) → ¬ A × ¬ B ¬[A⊎B]→¬A׬B = →-distrib-⊎-× ¬A׬B→¬[A⊎B] : ¬ A × ¬ B → ¬ (A ⊎ B) ¬A׬B→¬[A⊎B] = →-undistrib-⊎-× A⊎B→¬[¬A׬B] : A ⊎ B → ¬ (¬ A × ¬ B) A⊎B→¬[¬A׬B] = →-undistrib-⊎-×-flip ¬A⊎¬B→¬[A×B] : ¬ A ⊎ ¬ B → ¬ (A × B) ¬A⊎¬B→¬[A×B] = →-undistrib-×-⊎ A×B→¬[¬A⊎¬B] : A × B → ¬ (¬ A ⊎ ¬ B) A×B→¬[¬A⊎¬B] = →-undistrib-×-⊎-flip -- Double negated DEM₃ ¬[A×B]→¬¬[¬A⊎¬B] : ¬ (A × B) → ¬ ¬ (¬ A ⊎ ¬ B) ¬[A×B]→¬¬[¬A⊎¬B] ¬[A×B] ¬[¬A⊎¬B] = ¬[¬A⊎¬B] (inj₁ λ x → contradiction (inj₂ (λ y → ¬[A×B] (x , y))) ¬[¬A⊎¬B]) dec⊎⇒¬[A×B]→¬A⊎¬B : Dec⊎ A → Dec⊎ B → ¬ (A × B) → ¬ A ⊎ ¬ B dec⊎⇒¬[A×B]→¬A⊎¬B (inj₁ x) (inj₁ y) ¬[A×B] = contradiction (x , y) ¬[A×B] dec⊎⇒¬[A×B]→¬A⊎¬B (inj₁ x) (inj₂ ¬y) ¬[A×B] = inj₂ ¬y dec⊎⇒¬[A×B]→¬A⊎¬B (inj₂ ¬x) _ ¬[A×B] = inj₁ ¬x join : (A → A → B) → A → B join f x = f x x -- properties of negation module _ {a} {A : Set a} where [A→¬A]→¬A : (A → ¬ A) → ¬ A [A→¬A]→¬A = join [¬A→A]→¬¬A : (¬ A → A) → ¬ ¬ A [¬A→A]→¬¬A ¬A→A ¬A = ¬A (¬A→A ¬A) -- Law of noncontradiction (LNC) ¬[A׬A] : ¬ (A × ¬ A) ¬[A׬A] = uncurry (flip _$_) module _ {a b} {A : Set a} {B : Set b} where ¬[A→B]→¬B : ¬ (A → B) → ¬ B ¬[A→B]→¬B ¬[A→B] y = ¬[A→B] (const y) ¬[A→B]→¬[A→¬¬B] : ¬ (A → B) → ¬ (A → ¬ ¬ B) ¬[A→B]→¬[A→¬¬B] ¬[A→B] A→¬¬B = ¬[A→B] λ x → ⊥-elim $ A→¬¬B x (¬[A→B]→¬B ¬[A→B]) ¬[A→B]→B→A : ¬ (A → B) → B → A ¬[A→B]→B→A ¬[A→B] y = contradiction (λ _ → y) ¬[A→B] [[A→B]→A]→¬A→A : ((A → B) → A) → ¬ A → A [[A→B]→A]→¬A→A [A→B]→A ¬A = [A→B]→A (⊥-elim ∘′ ¬A) [[A→B]→A]→¬¬A : ((A → B) → A) → ¬ ¬ A [[A→B]→A]→¬¬A [A→B]→A ¬A = ¬A ([[A→B]→A]→¬A→A [A→B]→A ¬A) [[[A→B]→A]→A]→¬B→¬¬A→A : (((A → B) → A) → A) → ¬ B → ¬ ¬ A → A [[[A→B]→A]→A]→¬B→¬¬A→A [[A→B]→A]→A ¬B ¬¬A = [[A→B]→A]→A λ A→B → contradiction (flip _∘′_ A→B ¬B) ¬¬A module _ {a b} {A : Set a} {B : Set b} where contraposition : (A → B) → ¬ B → ¬ A contraposition = flip _∘′_ -- variant of contraposition [A→¬¬B]→¬B→¬A : (A → ¬ ¬ B) → ¬ B → ¬ A [A→¬¬B]→¬B→¬A f ¬B x = (f x) ¬B [¬A→¬B]→¬¬[B→A] : (¬ A → ¬ B) → ¬ ¬ (B → A) [¬A→¬B]→¬¬[B→A] ¬A→¬B ¬[B→A] = ¬[B→A] λ y → ⊥-elim $ ¬A→¬B (¬[A→B]→¬B ¬[B→A]) y [A→¬B]→¬¬A→¬B : (A → ¬ B) → ¬ ¬ A → ¬ B [A→¬B]→¬¬A→¬B A→¬B ¬¬A y = ¬¬A λ x → A→¬B x y module _ {a} {A : Set a} where -- introduction for double negation DN-intro : A → ¬ ¬ A DN-intro = flip _$_ -- triple negation to negation TN-to-N : ¬ ¬ ¬ A → ¬ A TN-to-N = contraposition DN-intro -- Double negation of excluded middle DN-Dec⊎ : ¬ ¬ Dec⊎ A DN-Dec⊎ = λ f → (f ∘ inj₂) (f ∘ inj₁) -- eliminator for ⊥ ⊥-stable : ¬ ¬ ⊥ → ⊥ ⊥-stable f = f id -- Double negation is monad module _ {a} {A : Set a} where DN-join : ¬ ¬ ¬ ¬ A → ¬ ¬ A DN-join = TN-to-N module _ {a b} {A : Set a} {B : Set b} where DN-map : (A → B) → ¬ ¬ A → ¬ ¬ B DN-map = contraposition ∘′ contraposition module _ {a b} {A : Set a} {B : Set b} where DN-bind : (A → ¬ ¬ B) → ¬ ¬ A → ¬ ¬ B DN-bind f = DN-join ∘′ DN-map f DN-bind⁻¹ : (¬ ¬ A → ¬ ¬ B) → A → ¬ ¬ B DN-bind⁻¹ f = f ∘′ DN-intro module _ {a b} {A : Set a} {B : Set b} where DN-ap : ¬ ¬ (A → B) → ¬ ¬ A → ¬ ¬ B DN-ap ff fx = DN-bind (λ f → DN-map f fx) ff DN-ap⁻¹ : (¬ ¬ A → ¬ ¬ B) → ¬ ¬ (A → B) DN-ap⁻¹ f ¬[A→B] = ¬[A→B]→¬[A→¬¬B] ¬[A→B] (DN-bind⁻¹ f) -- distributive properties DN-distrib-× : ¬ ¬ (A × B) → ¬ ¬ A × ¬ ¬ B DN-distrib-× ¬¬A×B = DN-map proj₁ ¬¬A×B , DN-map proj₂ ¬¬A×B DN-undistrib-× : ¬ ¬ A × ¬ ¬ B → ¬ ¬ (A × B) DN-undistrib-× = [A→¬¬B]→¬B→¬A ¬[A×B]→¬¬[¬A⊎¬B] ∘′ ¬A׬B→¬[A⊎B] DN-undistrib-⊎ : ¬ ¬ A ⊎ ¬ ¬ B → ¬ ¬ (A ⊎ B) DN-undistrib-⊎ = Sum.[ DN-map inj₁ , DN-map inj₂ ] stable-undistrib-× : Stable A × Stable B → Stable (A × B) stable-undistrib-× (A-stable , B-stable) ¬¬[A×B] = Prod.map A-stable B-stable $ DN-distrib-× ¬¬[A×B] module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where ip-⊎-DN : (A → (B ⊎ C)) → ¬ ¬ ((A → B) ⊎ (A → C)) ip-⊎-DN f = DN-map Sum.[ (Sum.map const const ∘ f) , (λ ¬A → inj₁ λ x → ⊥-elim (¬A x)) ] DN-Dec⊎ DN-ip : ∀ {p q r} {P : Set p} {Q : Set q} {R : Q → Set r} → Q → (P → Σ Q R) → ¬ ¬ (Σ Q λ x → (P → R x)) DN-ip q f = DN-map Sum.[ (λ x → Prod.map₂ const (f x)) , (λ ¬P → q , λ P → ⊥-elim $ ¬P P) ] DN-Dec⊎ -- Properties of Dec⊎ module _ {a} {A : Set a} where dec⊎⇒dec : Dec⊎ A → Dec A dec⊎⇒dec (inj₁ x) = yes x dec⊎⇒dec (inj₂ y) = no y dec⇒dec⊎ : Dec A → Dec⊎ A dec⇒dec⊎ (yes p) = inj₁ p dec⇒dec⊎ (no ¬p) = inj₂ ¬p ¬-dec⊎ : Dec⊎ A → Dec⊎ (¬ A) ¬-dec⊎ (inj₁ x) = inj₂ (DN-intro x) ¬-dec⊎ (inj₂ y) = inj₁ y module _ {a b} {A : Set a} {B : Set b} where dec⊎-map : (A → B) → (B → A) → Dec⊎ A → Dec⊎ B dec⊎-map f g dec⊎ = Sum.map f (contraposition g) dec⊎ dec⊎-⊎ : Dec⊎ A → Dec⊎ B → Dec⊎ (A ⊎ B) dec⊎-⊎ (inj₁ x) _ = inj₁ (inj₁ x) dec⊎-⊎ (inj₂ ¬x) (inj₁ y) = inj₁ (inj₂ y) dec⊎-⊎ (inj₂ ¬x) (inj₂ ¬y) = inj₂ (¬A׬B→¬[A⊎B] (¬x , ¬y)) dec⊎-× : Dec⊎ A → Dec⊎ B → Dec⊎ (A × B) dec⊎-× (inj₁ x) (inj₁ y) = inj₁ (x , y) dec⊎-× (inj₁ x) (inj₂ ¬y) = inj₂ (¬y ∘ proj₂) dec⊎-× (inj₂ ¬x) _ = inj₂ (¬x ∘ proj₁) -- Properties of Stable module _ {a} {A : Set a} where dec⇒stable : Dec A → Stable A dec⇒stable (yes p) ¬¬A = p dec⇒stable (no ¬p) ¬¬A = ⊥-elim (¬¬A ¬p) ¬-stable : Stable (¬ A) ¬-stable = TN-to-N dec⊎⇒stable : Dec⊎ A → Stable A dec⊎⇒stable dec⊎ = dec⇒stable (dec⊎⇒dec dec⊎) module _ {a p} {A : Set a} {P : A → Set p} where DecU⇒stable : DecU P → ∀ x → Stable (P x) DecU⇒stable P? x = dec⊎⇒stable (P? x) -- Properties of DecU ¬-DecU : DecU P → DecU (λ x → ¬ (P x)) ¬-DecU P? x = ¬-dec⊎ (P? x) DecU⇒decidable : DecU P → U.Decidable P DecU⇒decidable P? x = dec⊎⇒dec (P? x) decidable⇒DecU : U.Decidable P → DecU P decidable⇒DecU P? x = dec⇒dec⊎ (P? x) DecU-map : ∀ {a b p} {A : Set a} {B : Set b} {P : A → Set p} → (f : B → A) → DecU P → DecU (λ x → P (f x)) DecU-map f P? x = dec⊎-map id id (P? (f x)) module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where DecU-⊎ : DecU P → DecU Q → DecU (λ x → P x ⊎ Q x) DecU-⊎ P? Q? x = dec⊎-⊎ (P? x) (Q? x) DecU-× : DecU P → DecU Q → DecU (λ x → P x × Q x) DecU-× P? Q? x = dec⊎-× (P? x) (Q? x) -- Quantifier module _ {a p} {A : Set a} {P : A → Set p} where ∃P→¬∀¬P : ∃ P → ¬ (∀ x → ¬ (P x)) ∃P→¬∀¬P = flip uncurry ∀P→¬∃¬P : (∀ x → P x) → ¬ ∃ λ x → ¬ (P x) ∀P→¬∃¬P f (x , ¬Px) = ¬Px (f x) ¬∃P→∀¬P : ¬ ∃ P → ∀ x → ¬ (P x) ¬∃P→∀¬P = curry ∀¬P→¬∃P : (∀ x → ¬ (P x)) → ¬ ∃ P ∀¬P→¬∃P = uncurry ∃¬P→¬∀P : ∃ (λ x → ¬ (P x)) → ¬ (∀ x → P x) ∃¬P→¬∀P (x , ¬Px) ∀P = ¬Px (∀P x) ¬∀¬P→¬¬∃P : ¬ (∀ x → ¬ P x) → ¬ ¬ ∃ P ¬∀¬P→¬¬∃P ¬∀¬P = contraposition ¬∃P→∀¬P ¬∀¬P ¬¬∃P→¬∀¬P : ¬ ¬ ∃ P → ¬ (∀ x → ¬ P x) ¬¬∃P→¬∀¬P ¬¬∃P = contraposition ∀¬P→¬∃P ¬¬∃P ¬¬∀P→¬∃¬P : ¬ ¬ (∀ x → P x) → ¬ ∃ λ x → ¬ (P x) ¬¬∀P→¬∃¬P ¬¬∀P = contraposition ∃¬P→¬∀P ¬¬∀P ¬¬∃P<=>¬∀¬P : ¬ ¬ ∃ P <=> ¬ (∀ x → ¬ P x) ¬¬∃P<=>¬∀¬P = mk<=> ¬¬∃P→¬∀¬P ¬∀¬P→¬¬∃P -- remove? ∀¬¬P→¬∃¬P : (∀ x → ¬ ¬ P x) → ¬ ∃ λ x → ¬ (P x) ∀¬¬P→¬∃¬P = uncurry -- converse of DNS ¬¬∀P→∀¬¬P : ¬ ¬ (∀ x → P x) → ∀ x → ¬ ¬ P x ¬¬∀P→∀¬¬P f x = DN-map (λ ∀P → ∀P x) f ∃¬¬P→¬¬∃P : (∃ λ x → ¬ ¬ P x) → ¬ ¬ ∃ λ x → P x ∃¬¬P→¬¬∃P (x , ¬¬Px) = DN-map (λ Px → x , Px) ¬¬Px ¬¬∃¬P→¬∀P : ¬ ¬ ∃ (λ x → ¬ (P x)) → ¬ (∀ x → P x) ¬¬∃¬P→¬∀P = contraposition ∀P→¬∃¬P ¬∃¬P→∀¬¬P : ¬ ∃ (λ x → ¬ P x) → ∀ x → ¬ ¬ P x ¬∃¬P→∀¬¬P = curry ∀P→∀¬¬P : (∀ x → P x) → ∀ x → ¬ ¬ P x ∀P→∀¬¬P ∀P x = DN-intro (∀P x) ∃P→∃¬¬P : ∃ P → ∃ λ x → ¬ ¬ P x ∃P→∃¬¬P (x , Px) = x , DN-intro Px module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where [∀¬P→∀¬Q]→¬¬[∃Q→∃P] : ((∀ x → ¬ P x) → (∀ x → ¬ Q x)) → ¬ ¬ (∃ Q → ∃ P) [∀¬P→∀¬Q]→¬¬[∃Q→∃P] ∀¬P→∀¬Q = DN-ap⁻¹ (¬∀¬P→¬¬∃P ∘ contraposition ∀¬P→∀¬Q ∘ ¬¬∃P→¬∀¬P) -- Quantifier rearrangement for stable predicate module _ {a p} {A : Set a} {P : A → Set p} (P-stable : ∀ x → Stable (P x)) where P-stable⇒∃¬¬P→∃P : ∃ (λ x → ¬ ¬ P x) → ∃ P P-stable⇒∃¬¬P→∃P (x , ¬¬Px) = x , P-stable x ¬¬Px P-stable⇒∀¬¬P→∀P : (∀ x → ¬ ¬ P x) → ∀ x → P x P-stable⇒∀¬¬P→∀P ∀¬¬P x = P-stable x (∀¬¬P x) P-stable⇒¬¬∀P→∀P : ¬ ¬ (∀ x → P x) → ∀ x → P x P-stable⇒¬¬∀P→∀P = P-stable⇒∀¬¬P→∀P ∘′ ¬¬∀P→∀¬¬P P-stable⇒¬∃¬P→∀P : ¬ ∃ (λ x → ¬ P x) → ∀ x → P x P-stable⇒¬∃¬P→∀P ¬∃¬P = P-stable⇒∀¬¬P→∀P (¬∃¬P→∀¬¬P ¬∃¬P) P-stable⇒¬∀P→¬¬∃¬P : ¬ (∀ x → P x) → ¬ ¬ ∃ (λ x → ¬ (P x)) P-stable⇒¬∀P→¬¬∃¬P ¬∀P = contraposition P-stable⇒¬∃¬P→∀P ¬∀P module _ {a p} {A : Set a} {P : A → Set p} (P? : DecU P) where P?⇒∃¬¬P→∃P : ∃ (λ x → ¬ ¬ P x) → ∃ P P?⇒∃¬¬P→∃P = P-stable⇒∃¬¬P→∃P (DecU⇒stable P?) P?⇒∀¬¬P→∀P : (∀ x → ¬ ¬ P x) → ∀ x → P x P?⇒∀¬¬P→∀P = P-stable⇒∀¬¬P→∀P (DecU⇒stable P?) P?⇒¬¬∀P→∀P : ¬ ¬ (∀ x → P x) → ∀ x → P x P?⇒¬¬∀P→∀P = P-stable⇒¬¬∀P→∀P (DecU⇒stable P?) P?⇒¬∃¬P→∀P : ¬ ∃ (λ x → ¬ P x) → ∀ x → P x P?⇒¬∃¬P→∀P = P-stable⇒¬∃¬P→∀P (DecU⇒stable P?) P?⇒¬∀P→¬¬∃¬P : ¬ (∀ x → P x) → ¬ ¬ ∃ (λ x → ¬ P x) P?⇒¬∀P→¬¬∃¬P = P-stable⇒¬∀P→¬¬∃¬P (DecU⇒stable P?) -- call/cc P?⇒[¬∀P→∀P]→∀P : (¬ (∀ x → P x) → ∀ x → P x) → ∀ x → P x P?⇒[¬∀P→∀P]→∀P ¬∀P→∀P = P?⇒¬¬∀P→∀P λ ¬∀P → ¬∀P (¬∀P→∀P ¬∀P) P?⇒[∃¬P→∀P]→∀P : (∃ (λ x → ¬ P x) → ∀ x → P x) → ∀ x → P x P?⇒[∃¬P→∀P]→∀P ∃¬P→∀P = P?⇒¬¬∀P→∀P λ ¬∀P → P?⇒¬∀P→¬¬∃¬P ¬∀P λ ∃¬P → ¬∀P (∃¬P→∀P ∃¬P) -- [∀¬P→¬∀Q]→¬∃¬Q→¬¬∃P module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where P?⇒[∃¬P→∃¬Q]→∀Q→∀P : DecU P → (∃ (λ x → ¬ P x) → ∃ (λ x → ¬ Q x)) → (∀ x → Q x) → ∀ x → P x P?⇒[∃¬P→∃¬Q]→∀Q→∀P P? ∃¬P→∃¬Q = P?⇒¬∃¬P→∀P P? ∘ contraposition ∃¬P→∃¬Q ∘ ∀P→¬∃¬P P?⇒[∃Q→∀P]→¬∀¬Q→∀P : DecU P → (∃ Q → ∀ x → P x) → ¬ (∀ x → ¬ Q x) → ∀ x → P x P?⇒[∃Q→∀P]→¬∀¬Q→∀P P? ∃Q→∀P ¬∀¬Q = P?⇒¬¬∀P→∀P P? (DN-map ∃Q→∀P (¬∀¬P→¬¬∃P ¬∀¬Q)) ¬[¬∀P⊎¬∀Q]→∀P×∀Q : DecU P → DecU Q → ¬ (¬ (∀ x → P x) ⊎ ¬ (∀ x → Q x)) → (∀ x → P x) × (∀ x → Q x) ¬[¬∀P⊎¬∀Q]→∀P×∀Q P? Q? ¬[¬∀P⊎¬∀Q] = Prod.map (P?⇒¬¬∀P→∀P P?) (P?⇒¬¬∀P→∀P Q?) (¬[A⊎B]→¬A׬B ¬[¬∀P⊎¬∀Q]) module _ {a p q} {A : Set a} {P : A → Set p} {Q : A → Set q} where ∃-undistrib-⊎ : ∃ P ⊎ ∃ Q → ∃ (λ x → P x ⊎ Q x) ∃-undistrib-⊎ (inj₁ (x , Px)) = x , inj₁ Px ∃-undistrib-⊎ (inj₂ (x , Qx)) = x , inj₂ Qx ∃-distrib-⊎ : ∃ (λ x → P x ⊎ Q x) → ∃ P ⊎ ∃ Q ∃-distrib-⊎ (x , inj₁ Px) = inj₁ (x , Px) ∃-distrib-⊎ (x , inj₂ Qx) = inj₂ (x , Qx) ∃-distrib-× : ∃ (λ x → P x × Q x) → ∃ P × ∃ Q ∃-distrib-× (x , Px , Qx) = (x , Px) , (x , Qx) ∀-undistrib-× : (∀ x → P x) × (∀ x → Q x) → ∀ x → P x × Q x ∀-undistrib-× (∀P , ∀Q) x = ∀P x , ∀Q x ∀-distrib-× : (∀ x → P x × Q x) → (∀ x → P x) × (∀ x → Q x) ∀-distrib-× ∀x→Px×Qx = proj₁ ∘ ∀x→Px×Qx , proj₂ ∘ ∀x→Px×Qx ∀-undistrib-⊎ : (∀ x → P x) ⊎ (∀ x → Q x) → ∀ x → P x ⊎ Q x ∀-undistrib-⊎ (inj₁ ∀P) x = inj₁ (∀P x) ∀-undistrib-⊎ (inj₂ ∀Q) x = inj₂ (∀Q x) ¬[¬∃P׬∃Q]→¬¬∃x→Px⊎Qx : ¬ (¬ ∃ P × ¬ ∃ Q) → ¬ ¬ ∃ λ x → P x ⊎ Q x ¬[¬∃P׬∃Q]→¬¬∃x→Px⊎Qx = DN-map ∃-undistrib-⊎ ∘′ contraposition ¬[A⊎B]→¬A׬B [¬¬∃x→Px⊎Qx]→¬[¬∃P׬∃Q] : (¬ ¬ ∃ λ x → P x ⊎ Q x) → ¬ (¬ ∃ P × ¬ ∃ Q) [¬¬∃x→Px⊎Qx]→¬[¬∃P׬∃Q] = contraposition ¬A׬B→¬[A⊎B] ∘′ DN-map ∃-distrib-⊎ ¬∀¬P׬∀¬Q→¬¬[∃P×∃Q] : ¬ (∀ x → ¬ P x) × ¬ (∀ x → ¬ Q x) → ¬ ¬ (∃ P × ∃ Q) ¬∀¬P׬∀¬Q→¬¬[∃P×∃Q] = DN-undistrib-× ∘′ Prod.map ¬∀¬P→¬¬∃P ¬∀¬P→¬¬∃P ¬¬[∃P×∃Q]→¬∀¬P׬∀¬Q : ¬ ¬ (∃ P × ∃ Q) → ¬ (∀ x → ¬ P x) × ¬ (∀ x → ¬ Q x) ¬¬[∃P×∃Q]→¬∀¬P׬∀¬Q = Prod.map ¬¬∃P→¬∀¬P ¬¬∃P→¬∀¬P ∘′ DN-distrib-× [∀x→Px→Qx]→∀P→∀Q : (∀ x → P x → Q x) → (∀ x → P x) → ∀ x → Q x [∀x→Px→Qx]→∀P→∀Q f g x = f x (g x)
{ "alphanum_fraction": 0.3962012168, "avg_line_length": 32.0142517815, "ext": "agda", "hexsha": "aa9d5f85bb332046d7016c220190326a65fc4804", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Constructive/Combinators.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Constructive/Combinators.agda", "max_line_length": 82, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Constructive/Combinators.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 8170, "size": 13478 }
module Sessions.Semantics.Commands where open import Prelude open import Data.Fin open import Sessions.Syntax.Types open import Sessions.Syntax.Values mutual data Cmd : Pred RCtx 0ℓ where fork : ∀[ Comp unit ⇒ Cmd ] mkchan : ∀ α → ε[ Cmd ] send : ∀ {a α} → ∀[ (Endptr (a ! α) ✴ Val a) ⇒ Cmd ] receive : ∀ {a α} → ∀[ Endptr (a ¿ α) ⇒ Cmd ] close : ∀[ Endptr end ⇒ Cmd ] δ : ∀ {Δ} → Cmd Δ → Pred RCtx 0ℓ δ (fork {α} _) = Emp δ (mkchan α) = Endptr α ✴ Endptr (α ⁻¹) δ (send {α = α} _) = Endptr α δ (receive {a} {α} _) = Val a ✴ Endptr α δ (close _) = Emp open import Relation.Ternary.Separation.Monad.Free Cmd δ renaming (Cont to Cont') open import Relation.Ternary.Separation.Monad.Error Comp : Type → Pred RCtx _ Comp a = ErrorT Free (Val a)
{ "alphanum_fraction": 0.5621370499, "avg_line_length": 29.6896551724, "ext": "agda", "hexsha": "92f0d68c2a9f8257f529aa139face94c9a1d839e", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Sessions/Semantics/Commands.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Sessions/Semantics/Commands.agda", "max_line_length": 83, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Sessions/Semantics/Commands.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 287, "size": 861 }
{-# OPTIONS --cubical --safe #-} module Relation.Nullary.Decidable.Properties where open import Relation.Nullary.Decidable open import Level open import Relation.Nullary.Stable open import Data.Empty open import HLevels open import Data.Empty.Properties using (isProp¬) open import Data.Unit open import Data.Empty Dec→Stable : ∀ {ℓ} (A : Type ℓ) → Dec A → Stable A Dec→Stable A (yes x) = λ _ → x Dec→Stable A (no x) = λ f → ⊥-elim (f x) isPropDec : (Aprop : isProp A) → isProp (Dec A) isPropDec Aprop (yes a) (yes a') i = yes (Aprop a a' i) isPropDec Aprop (yes a) (no ¬a) = ⊥-elim (¬a a) isPropDec Aprop (no ¬a) (yes a) = ⊥-elim (¬a a) isPropDec {A = A} Aprop (no ¬a) (no ¬a') i = no (isProp¬ A ¬a ¬a' i) True : Dec A → Type True (yes _) = ⊤ True (no _) = ⊥ toWitness : {x : Dec A} → True x → A toWitness {x = yes p} _ = p open import Path open import Data.Bool.Base from-reflects : ∀ b → (d : Dec A) → Reflects A b → does d ≡ b from-reflects false (no y) r = refl from-reflects false (yes y) r = ⊥-elim (r y) from-reflects true (no y) r = ⊥-elim (y r) from-reflects true (yes y) r = refl
{ "alphanum_fraction": 0.6449275362, "avg_line_length": 28.3076923077, "ext": "agda", "hexsha": "832b4f3df199a6840cbee92577bbe9293bd79d23", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Relation/Nullary/Decidable/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Relation/Nullary/Decidable/Properties.agda", "max_line_length": 68, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Relation/Nullary/Decidable/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 410, "size": 1104 }
-- Semantics of syntactic traversal and substitution module Semantics.Substitution.Traversal where open import Syntax.Types open import Syntax.Context renaming (_,_ to _,,_) open import Syntax.Terms open import Syntax.Substitution.Kits open import Syntax.Substitution.Instances open import Semantics.Types open import Semantics.Context open import Semantics.Terms open import Semantics.Substitution.Kits open import CategoryTheory.Categories using (Category ; ext) open import CategoryTheory.Functor open import CategoryTheory.NatTrans open import CategoryTheory.Monad open import CategoryTheory.Comonad open import CategoryTheory.Instances.Reactive renaming (top to ⊤) open import TemporalOps.Diamond open import TemporalOps.Box open import TemporalOps.OtherOps open import TemporalOps.Linear open import TemporalOps.StrongMonad open import Data.Sum open import Data.Product using (_,_) open import Relation.Binary.PropositionalEquality as ≡ using (_≡_ ; refl ; sym ; trans ; cong ; cong₂ ; subst) open ≡.≡-Reasoning private module F-□ = Functor F-□ private module F-◇ = Functor F-◇ open Comonad W-□ open Monad M-◇ open import Holes.Term using (⌞_⌟) open import Holes.Cong.Propositional module _ {𝒮} {k : Kit 𝒮} (⟦k⟧ : ⟦Kit⟧ k) where open ⟦Kit⟧ ⟦k⟧ open Kit k open ⟦K⟧ ⟦k⟧ open K k -- Soundness of syntactic traversal: -- Denotation of a term M traversed with substitution σ is -- the same as the denotation of σ followed by the denotation of M traverse-sound : ∀{Γ Δ A} (σ : Subst 𝒮 Γ Δ) (M : Γ ⊢ A) -> ⟦ traverse σ M ⟧ₘ ≈ ⟦ M ⟧ₘ ∘ ⟦subst⟧ σ traverse′-sound : ∀{Γ Δ A} (σ : Subst 𝒮 Γ Δ) (C : Γ ⊨ A) -> ⟦ traverse′ σ C ⟧ᵐ ≈ ⟦ C ⟧ᵐ ∘ ⟦subst⟧ σ traverse-sound ● (var ()) traverse-sound (σ ▸ T) (var top) = ⟦𝓉⟧ T traverse-sound (σ ▸ T) (var (pop x)) = traverse-sound σ (var x) traverse-sound σ (lam {Γ} {A} M) {n} {⟦Δ⟧} = ext lemma where lemma : ∀(⟦A⟧ : ⟦ A ⟧ₜ n) → Λ ⟦ traverse (σ ↑ k) M ⟧ₘ n ⟦Δ⟧ ⟦A⟧ ≡ (Λ ⟦ M ⟧ₘ ∘ ⟦subst⟧ σ) n ⟦Δ⟧ ⟦A⟧ lemma ⟦A⟧ rewrite traverse-sound (σ ↑ k) M {n} {⟦Δ⟧ , ⟦A⟧} | ⟦↑⟧ (A now) σ {n} {⟦Δ⟧ , ⟦A⟧} = refl traverse-sound σ (M $ N) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} | traverse-sound σ N {n} {⟦Δ⟧} = refl traverse-sound σ unit = refl traverse-sound σ [ M ,, N ] {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} | traverse-sound σ N {n} {⟦Δ⟧} = refl traverse-sound σ (fst M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse-sound σ (snd M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse-sound σ (inl M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse-sound σ (inr M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse-sound σ (case M inl↦ N₁ ||inr↦ N₂) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} with ⟦ M ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧) traverse-sound σ (case_inl↦_||inr↦_ {A = A} M N₁ N₂) {n} {⟦Δ⟧} | inj₁ ⟦A⟧ rewrite traverse-sound (σ ↑ k) N₁ {n} {⟦Δ⟧ , ⟦A⟧} | ⟦↑⟧ (A now) σ {n} {⟦Δ⟧ , ⟦A⟧} = refl traverse-sound σ (case_inl↦_||inr↦_ {B = B} M N₁ N₂) {n} {⟦Δ⟧} | inj₂ ⟦B⟧ rewrite traverse-sound (σ ↑ k) N₂ {n} {⟦Δ⟧ , ⟦B⟧} | ⟦↑⟧ (B now) σ {n} {⟦Δ⟧ , ⟦B⟧} = refl traverse-sound σ (sample M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse-sound {Γ} {Δ} {A} σ (stable M) {n} {⟦Δ⟧} = ext lemma where lemma : ∀ l -> ⟦ traverse {Γ} σ (stable M) ⟧ₘ n ⟦Δ⟧ l ≡ (⟦ stable {Γ} M ⟧ₘ ∘ ⟦subst⟧ σ) n ⟦Δ⟧ l lemma l rewrite traverse-sound (σ ↓ˢ k) M {l} {⟦ Δ ˢ⟧□ n ⟦Δ⟧ l} | □-≡ n l (⟦↓ˢ⟧ σ {n} {⟦Δ⟧}) l = refl traverse-sound σ (sig M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse-sound σ (letSig_In_ {A = A} M N) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} | traverse-sound (σ ↑ k) N {n} {⟦Δ⟧ , ⟦ M ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)} | ⟦↑⟧ (A always) σ {n} {⟦Δ⟧ , (⟦ M ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))} = refl traverse-sound σ (event E) = traverse′-sound σ E traverse′-sound σ (pure M) {n} {⟦Δ⟧} rewrite traverse-sound σ M {n} {⟦Δ⟧} = refl traverse′-sound σ (letSig_InC_ {A = A} S C) {n} {⟦Δ⟧} rewrite traverse-sound σ S {n} {⟦Δ⟧} | traverse′-sound (σ ↑ k) C {n} {⟦Δ⟧ , ⟦ S ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)} | ⟦↑⟧ (A always) σ {n} {⟦Δ⟧ , (⟦ S ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))} = refl traverse′-sound {Γ} {Δ} σ (letEvt_In_ {A = A} {B} E C) {n} {⟦Δ⟧} rewrite traverse-sound σ E {n} {⟦Δ⟧} | (ext λ m → ext λ b → traverse′-sound (σ ↓ˢ k ↑ k) C {m} {b}) = begin μ.at ⟦ B ⟧ₜ n (F-◇.fmap (⟦ C ⟧ᵐ ∘ ⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))) ≡⟨ cong (μ.at ⟦ B ⟧ₜ n) (F-◇.fmap-∘ {g = ⟦ C ⟧ᵐ} {⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id} {n} {st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))}) ⟩ μ.at ⟦ B ⟧ₜ n (F-◇.fmap (⟦ C ⟧ᵐ) n (F-◇.fmap (⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))))) ≡⟨ cong (λ x → μ.at ⟦ B ⟧ₜ n (F-◇.fmap ⟦ C ⟧ᵐ n x)) ( begin F-◇.fmap (⌞ ⟦subst⟧ (_↑_ {A = A now} (σ ↓ˢ k) k) ⌟ ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))) ≡⟨ cong! (ext λ m -> ext λ b → ⟦↑⟧ (A now) (σ ↓ˢ k) {m} {b}) ⟩ F-◇.fmap (⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))) ≡⟨ F-◇.fmap-∘ ⟩ F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (F-◇.fmap (F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) * id) n (st ⟦ Δ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))) ≡⟨ cong (F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n) (st-nat₁ (⟦subst⟧ (σ ↓ˢ k))) ⟩ F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⌞ F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧) ⌟ , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))) ≡⟨ cong! (⟦↓ˢ⟧ σ) ⟩ F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))) ∎ ) ⟩ μ.at ⟦ B ⟧ₜ n (F-◇.fmap ⟦ C ⟧ᵐ n (F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))))) ≡⟨ cong (μ.at ⟦ B ⟧ₜ n) (sym (F-◇.fmap-∘ {g = ⟦ C ⟧ᵐ}{ε.at ⟦ Γ ˢ ⟧ₓ * id}{n} {st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧))})) ⟩ μ.at ⟦ B ⟧ₜ n (F-◇.fmap (⟦ C ⟧ᵐ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ ⟦ A ⟧ₜ n ( ⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟦ E ⟧ₘ n (⟦subst⟧ σ n ⟦Δ⟧)))) ≡⟨⟩ ⟦ letEvt E In C ⟧ᵐ n (⟦subst⟧ σ n ⟦Δ⟧) ∎ traverse′-sound {_} {Δ} σ (select_↦_||_↦_||both↦_ {Γ} {A} {B} {C} E₁ C₁ E₂ C₂ C₃) {n} {⟦Δ⟧} rewrite traverse-sound σ E₁ {n} {⟦Δ⟧} | traverse-sound σ E₂ {n} {⟦Δ⟧} = begin μ.at ⟦ C ⟧ₜ n (F-◇.fmap (⌞ handle ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₁ ⟧ᵐ ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₂ ⟧ᵐ ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₃ ⟧ᵐ ⌟ ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))) ≡⟨ cong! (ext λ m → ext λ b → ind-hyp m b) ⟩ μ.at ⟦ C ⟧ₜ n (F-◇.fmap (⌞ handle (⟦ C₁ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {Event B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) (⟦ C₂ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {Event A now} (σ ↓ˢ k) k) k))) (⟦ C₃ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) ⌟ ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))) ≡⟨ cong! (ext λ m → ext λ b → ⟦subst⟧-handle {Δ}{Γ}{A}{B}{C} σ {⟦ C₁ ⟧ᵐ}{⟦ C₂ ⟧ᵐ}{⟦ C₃ ⟧ᵐ}{n = m} {b}) ⟩ μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ ∘ ⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))) ≡⟨ cong (μ.at ⟦ C ⟧ₜ n) (F-◇.fmap-∘ {g = handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ} {f = ⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id} {n} {st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)}) ⟩ μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n ⌞ (F-◇.fmap (⟦subst⟧ (σ ↓ˢ k) * id ∘ ε.at ⟦ Δ ˢ ⟧ₓ * id) n (st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))) ⌟) ≡⟨ cong (λ x → μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n x)) ( begin F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id ∘ F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) * id) n (st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧)) ≡⟨ F-◇.fmap-∘ ⟩ F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (F-◇.fmap (F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) * id) n (st ⟦ Δ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧ , ⟪ ⟦ E₁ ⟧ₘ ∘ ⟦subst⟧ σ , ⟦ E₂ ⟧ₘ ∘ ⟦subst⟧ σ ⟫ n ⟦Δ⟧))) ≡⟨ cong (F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n) (st-nat₁ (⟦subst⟧ (σ ↓ˢ k))) ⟩ F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⌞ F-□.fmap (⟦subst⟧ (σ ↓ˢ k)) n (⟦ Δ ˢ⟧□ n ⟦Δ⟧) ⌟ , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧))) ≡⟨ cong! (⟦↓ˢ⟧ σ) ⟩ F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧))) ∎ ) ⟩ μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ) n (F-◇.fmap (ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧))))) ≡⟨ cong (μ.at ⟦ C ⟧ₜ n) (sym (F-◇.fmap-∘ {g = handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ} {ε.at ⟦ Γ ˢ ⟧ₓ * id}{n} {st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧))})) ⟩ μ.at ⟦ C ⟧ₜ n (F-◇.fmap (handle ⟦ C₁ ⟧ᵐ ⟦ C₂ ⟧ᵐ ⟦ C₃ ⟧ᵐ ∘ ε.at ⟦ Γ ˢ ⟧ₓ * id) n (st ⟦ Γ ˢ ⟧ₓ (⟦ A ⟧ₜ ⊛ ⟦ B ⟧ₜ) n (⟦ Γ ˢ⟧□ n (⟦subst⟧ σ n ⟦Δ⟧) , ⟪ ⟦ E₁ ⟧ₘ , ⟦ E₂ ⟧ₘ ⟫ n (⟦subst⟧ σ n ⟦Δ⟧)))) ≡⟨⟩ ⟦ select E₁ ↦ C₁ || E₂ ↦ C₂ ||both↦ C₃ ⟧ᵐ n (⟦subst⟧ σ n ⟦Δ⟧) ∎ where ind-hyp : ∀ l c -> handle ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₁ ⟧ᵐ ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₂ ⟧ᵐ ⟦ traverse′ (σ ↓ˢ k ↑ k ↑ k) C₃ ⟧ᵐ l c ≡ handle (⟦ C₁ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {Event B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) (⟦ C₂ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {Event A now} (σ ↓ˢ k) k) k))) (⟦ C₃ ⟧ᵐ ∘ (⟦subst⟧ (_↑_ {B now} (_↑_ {A now} (σ ↓ˢ k) k) k))) l c ind-hyp l c rewrite ext (λ n -> (ext λ ⟦Δ⟧ -> (traverse′-sound (σ ↓ˢ k ↑ k ↑ k) C₁ {n} {⟦Δ⟧}))) | ext (λ n -> (ext λ ⟦Δ⟧ -> (traverse′-sound (σ ↓ˢ k ↑ k ↑ k) C₂ {n} {⟦Δ⟧}))) | ext (λ n -> (ext λ ⟦Δ⟧ -> (traverse′-sound (σ ↓ˢ k ↑ k ↑ k) C₃ {n} {⟦Δ⟧}))) = refl
{ "alphanum_fraction": 0.388539093, "avg_line_length": 54.316017316, "ext": "agda", "hexsha": "a6bdc0aff2b38c5facc7bbb39f5c2fb403c12e56", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/Semantics/Substitution/Traversal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/Semantics/Substitution/Traversal.agda", "max_line_length": 116, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/Semantics/Substitution/Traversal.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 6699, "size": 12547 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Endomorphisms on a Set ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Function.Endomorphism.Propositional {a} (A : Set a) where open import Algebra using (Magma; Semigroup; Monoid) open import Algebra.FunctionProperties.Core using (Op₂) open import Algebra.Morphism; open Definitions open import Algebra.Structures using (IsMagma; IsSemigroup; IsMonoid) open import Data.Nat.Base using (ℕ; zero; suc; _+_) open import Data.Nat.Properties using (+-0-monoid; +-semigroup) open import Data.Product using (_,_) open import Function open import Function.Equality using (_⟨$⟩_) open import Relation.Binary using (_Preserves_⟶_) open import Relation.Binary.PropositionalEquality as P using (_≡_; refl) import Function.Endomorphism.Setoid (P.setoid A) as Setoid Endo : Set a Endo = A → A ------------------------------------------------------------------------ -- Conversion back and forth with the Setoid-based notion of Endomorphism fromSetoidEndo : Setoid.Endo → Endo fromSetoidEndo = _⟨$⟩_ toSetoidEndo : Endo → Setoid.Endo toSetoidEndo f = record { _⟨$⟩_ = f ; cong = P.cong f } ------------------------------------------------------------------------ -- N-th composition _^_ : Endo → ℕ → Endo f ^ zero = id f ^ suc n = f ∘′ (f ^ n) ^-homo : ∀ f → Homomorphic₂ ℕ Endo _≡_ (f ^_) _+_ _∘′_ ^-homo f zero n = refl ^-homo f (suc m) n = P.cong (f ∘′_) (^-homo f m n) ------------------------------------------------------------------------ -- Structures ∘-isMagma : IsMagma _≡_ (Op₂ Endo ∋ _∘′_) ∘-isMagma = record { isEquivalence = P.isEquivalence ; ∙-cong = P.cong₂ _∘′_ } ∘-magma : Magma _ _ ∘-magma = record { isMagma = ∘-isMagma } ∘-isSemigroup : IsSemigroup _≡_ (Op₂ Endo ∋ _∘′_) ∘-isSemigroup = record { isMagma = ∘-isMagma ; assoc = λ _ _ _ → refl } ∘-semigroup : Semigroup _ _ ∘-semigroup = record { isSemigroup = ∘-isSemigroup } ∘-id-isMonoid : IsMonoid _≡_ _∘′_ id ∘-id-isMonoid = record { isSemigroup = ∘-isSemigroup ; identity = (λ _ → refl) , (λ _ → refl) } ∘-id-monoid : Monoid _ _ ∘-id-monoid = record { isMonoid = ∘-id-isMonoid } ------------------------------------------------------------------------ -- Homomorphism ^-isSemigroupMorphism : ∀ f → IsSemigroupMorphism +-semigroup ∘-semigroup (f ^_) ^-isSemigroupMorphism f = record { ⟦⟧-cong = P.cong (f ^_) ; ∙-homo = ^-homo f } ^-isMonoidMorphism : ∀ f → IsMonoidMorphism +-0-monoid ∘-id-monoid (f ^_) ^-isMonoidMorphism f = record { sm-homo = ^-isSemigroupMorphism f ; ε-homo = refl }
{ "alphanum_fraction": 0.5569948187, "avg_line_length": 27.8556701031, "ext": "agda", "hexsha": "8864357f71d633031eeebae0b23d050cde91373e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Function/Endomorphism/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Function/Endomorphism/Propositional.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Function/Endomorphism/Propositional.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 845, "size": 2702 }
-- MIT License -- Copyright (c) 2021 Luca Ciccone and Luca Padovani -- Permission is hereby granted, free of charge, to any person -- obtaining a copy of this software and associated documentation -- files (the "Software"), to deal in the Software without -- restriction, including without limitation the rights to use, -- copy, modify, merge, publish, distribute, sublicense, and/or sell -- copies of the Software, and to permit persons to whom the -- Software is furnished to do so, subject to the following -- conditions: -- The above copyright notice and this permission notice shall be -- included in all copies or substantial portions of the Software. -- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, -- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES -- OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND -- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT -- HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, -- WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING -- FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR -- OTHER DEALINGS IN THE SOFTWARE. {-# OPTIONS --guardedness --sized-types #-} open import Size open import Data.Empty open import Data.Product open import Data.Sum open import Data.List using ([]; _∷_; _∷ʳ_; _++_) open import Codata.Thunk open import Relation.Nullary open import Relation.Nullary.Negation using (contraposition) open import Relation.Unary using (_∈_; _⊆_) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl) open import Function.Base using (case_of_) open import Common module Subtyping {ℙ : Set} (message : Message ℙ) where open Message message open import Trace message open import SessionType message open import Transitions message open import Session message open import Compliance message open import HasTrace message data Sub : SessionType -> SessionType -> Size -> Set where nil<:any : ∀{T i} -> Sub nil T i end<:def : ∀{T S i} (e : End T) (def : Defined S) -> Sub T S i inp<:inp : ∀{f g i} (inc : dom f ⊆ dom g) (F : (x : ℙ) -> Thunk (Sub (f x .force) (g x .force)) i) -> Sub (inp f) (inp g) i out<:out : ∀{f g i} (W : Witness g) (inc : dom g ⊆ dom f) (F : ∀{x} (!x : x ∈ dom g) -> Thunk (Sub (f x .force) (g x .force)) i) -> Sub (out f) (out g) i _<:_ : SessionType -> SessionType -> Set _<:_ T S = Sub T S ∞ sub-defined : ∀{T S} -> T <: S -> Defined T -> Defined S sub-defined (end<:def _ def) _ = def sub-defined (inp<:inp _ _) _ = inp sub-defined (out<:out _ _ _) _ = out sub-sound : ∀{T S R} -> Compliance (R # T) -> T <: S -> ∞Compliance (R # S) force (sub-sound (win#def w def) sub) = win#def w (sub-defined sub def) force (sub-sound (out#inp (_ , !x) F) (end<:def (inp U) def)) with U _ (proj₂ (compliance->defined (F !x .force))) ... | () force (sub-sound (out#inp (_ , !x) F) (inp<:inp _ G)) = out#inp (_ , !x) λ !x -> sub-sound (F !x .force) (G _ .force) force (sub-sound (inp#out (_ , !x) F) (end<:def (out U) def)) = ⊥-elim (U _ !x) force (sub-sound (inp#out (_ , !x) F) (out<:out {f} {g} (_ , !y) inc G)) = inp#out (_ , !y) λ !x -> sub-sound (F (inc !x) .force) (G !x .force) SubtypingQ : SessionType -> SessionType -> Set SubtypingQ T S = ∀{R} -> Compliance (R # T) -> Compliance (R # S) if-eq : ℙ -> SessionType -> SessionType -> Continuation force (if-eq x T S y) with x ?= y ... | yes _ = T ... | no _ = S input* : SessionType input* = inp λ _ -> λ where .force -> win input : ℙ -> SessionType -> SessionType -> SessionType input x T S = inp (if-eq x T S) input*-but : ℙ -> SessionType input*-but x = input x nil win output : ℙ -> SessionType -> SessionType -> SessionType output x T S = out (if-eq x T S) input-if-eq-comp : ∀{f x T} -> Compliance (T # f x .force) -> ∀{y} (!y : y ∈ dom f) -> ∞Compliance (if-eq x T win y .force # f y .force) force (input-if-eq-comp {_} {x} comp {y} !y) with x ?= y ... | yes refl = comp ... | no neq = win#def Win-win !y output-if-eq-comp : ∀{f : Continuation}{x}{T} -> Compliance (T # f x .force) -> ∀{y} (!y : y ∈ dom (if-eq x T nil)) -> ∞Compliance (if-eq x T nil y .force # f y .force) force (output-if-eq-comp {_} {x} comp {y} !y) with x ?= y ... | yes refl = comp force (output-if-eq-comp {_} {x} comp {y} ()) | no neq input*-comp : ∀{f} (W : Witness f) -> Compliance (input* # out f) input*-comp W = inp#out W λ !x -> λ where .force -> win#def Win-win !x input*-but-comp : ∀{f x} (W : Witness f) (N : ¬ x ∈ dom f) -> Compliance (input*-but x # out f) input*-but-comp {f} {x} W N = inp#out W aux where aux : ∀{y : ℙ} -> (fy : y ∈ dom f) -> ∞Compliance (if-eq x nil win y .force # f y .force) force (aux {y} fy) with x ?= y ... | yes refl = ⊥-elim (N fy) ... | no neq = win#def Win-win fy ∈-output-if-eq : ∀{R} (x : ℙ) -> Defined R -> x ∈ dom (if-eq x R nil) ∈-output-if-eq x def with x ?= x ... | yes refl = def ... | no neq = ⊥-elim (neq refl) input-comp : ∀{g x R} -> Compliance (R # g x .force) -> Compliance (input x R win # out g) input-comp {g} {x} comp = inp#out (x , proj₂ (compliance->defined comp)) (input-if-eq-comp {g} comp) output-comp : ∀{f x R} -> Compliance (R # f x .force) -> Compliance (output x R nil # inp f) output-comp {f} {x} comp = out#inp (_ , ∈-output-if-eq x (proj₁ (compliance->defined comp))) (output-if-eq-comp {f} comp) sub-inp-inp : ∀{f g} (spec : SubtypingQ (inp f) (inp g)) (x : ℙ) -> SubtypingQ (f x .force) (g x .force) sub-inp-inp spec x comp with spec (output-comp comp) ... | win#def (out U) def = ⊥-elim (U _ (∈-output-if-eq x (proj₁ (compliance->defined comp)))) ... | out#inp (y , fy) F with F fy .force ... | comp' with x ?= y ... | yes refl = comp' sub-inp-inp spec x comp | out#inp (y , fy) F | win#def () def | no neq sub-out-out : ∀{f g} (spec : SubtypingQ (out f) (out g)) -> ∀{x} -> x ∈ dom g -> SubtypingQ (f x .force) (g x .force) sub-out-out spec {x} gx comp with spec (input-comp comp) ... | inp#out W F with F gx .force ... | comp' with x ?= x ... | yes refl = comp' ... | no neq = ⊥-elim (neq refl) sub-out->def : ∀{f g} (spec : SubtypingQ (out f) (out g)) (Wf : Witness f) -> ∀{x} (gx : x ∈ dom g) -> x ∈ dom f sub-out->def {f} spec Wf {x} gx with x ∈? f ... | yes fx = fx ... | no nfx with spec (input*-but-comp Wf nfx) ... | inp#out W F with F gx .force ... | res with x ?= x sub-out->def {f} spec Wf {x} gx | no nfx | inp#out W F | win#def () def | yes refl ... | no neq = ⊥-elim (neq refl) sub-inp->def : ∀{f g} (spec : SubtypingQ (inp f) (inp g)) -> ∀{x} (fx : x ∈ dom f) -> x ∈ dom g sub-inp->def {f} spec {x} fx with spec {output x win nil} (output-comp (win#def Win-win fx)) ... | win#def (out U) def = ⊥-elim (U _ (∈-output-if-eq x out)) ... | out#inp W F with F (∈-output-if-eq x out) .force ... | comp = proj₂ (compliance->defined comp) sub-complete : ∀{T S i} -> SubtypingQ T S -> Thunk (Sub T S) i force (sub-complete {nil} {_} spec) = nil<:any force (sub-complete {inp f} {nil} spec) with spec {win} (win#def Win-win inp) ... | win#def _ () force (sub-complete {inp _} {inp _} spec) = inp<:inp (sub-inp->def spec) λ x -> sub-complete (sub-inp-inp spec x) force (sub-complete {inp f} {out _} spec) with Empty? f ... | inj₁ U = end<:def (inp U) out ... | inj₂ (x , ?x) with spec {output x win nil} (output-comp (win#def Win-win ?x)) ... | win#def (out U) def = ⊥-elim (U x (∈-output-if-eq x out)) force (sub-complete {out f} {nil} spec) with spec {win} (win#def Win-win out) ... | win#def _ () force (sub-complete {out f} {inp _} spec) with Empty? f ... | inj₁ U = end<:def (out U) inp ... | inj₂ W with spec {input*} (input*-comp W) ... | win#def () _ force (sub-complete {out f} {out g} spec) with Empty? f ... | inj₁ Uf = end<:def (out Uf) out ... | inj₂ Wf with Empty? g ... | inj₂ Wg = out<:out Wg (sub-out->def spec Wf) λ !x -> sub-complete (sub-out-out spec !x) ... | inj₁ Ug with spec {input*} (input*-comp Wf) ... | inp#out (_ , !x) F = ⊥-elim (Ug _ !x) SubtypingQ->SubtypingS : ∀{T S} -> SubtypingQ T S -> SubtypingS T S SubtypingQ->SubtypingS spec comp = compliance-sound (spec (compliance-complete comp .force)) SubtypingS->SubtypingQ : ∀{T S} -> SubtypingS T S -> SubtypingQ T S SubtypingS->SubtypingQ spec comp = compliance-complete (spec (compliance-sound comp)) .force sub-excluded : ∀{T S φ} (sub : T <: S) (tφ : T HasTrace φ) (nsφ : ¬ S HasTrace φ) -> ∃[ ψ ] ∃[ x ] (ψ ⊑ φ × T HasTrace ψ × S HasTrace ψ × T HasTrace (ψ ∷ʳ O x) × ¬ S HasTrace (ψ ∷ʳ O x)) sub-excluded nil<:any tφ nsφ = ⊥-elim (nil-has-no-trace tφ) sub-excluded (end<:def e def) tφ nsφ with end-has-empty-trace e tφ ... | eq rewrite eq = ⊥-elim (nsφ (_ , def , refl)) sub-excluded (inp<:inp inc F) (_ , tdef , refl) nsφ = ⊥-elim (nsφ (_ , inp , refl)) sub-excluded (inp<:inp {f} {g} inc F) (_ , tdef , step inp tr) nsφ = let ψ , x , pre , tψ , sψ , tψx , nψx = sub-excluded (F _ .force) (_ , tdef , tr) (contraposition inp-has-trace nsφ) in _ , _ , some pre , inp-has-trace tψ , inp-has-trace sψ , inp-has-trace tψx , inp-has-no-trace nψx sub-excluded (out<:out W inc F) (_ , tdef , refl) nsφ = ⊥-elim (nsφ (_ , out , refl)) sub-excluded (out<:out {f} {g} W inc F) (_ , tdef , step (out {_} {x} fx) tr) nsφ with x ∈? g ... | yes gx = let ψ , x , pre , tψ , sψ , tψx , nψx = sub-excluded (F gx .force) (_ , tdef , tr) (contraposition out-has-trace nsφ) in _ , _ , some pre , out-has-trace tψ , out-has-trace sψ , out-has-trace tψx , out-has-no-trace nψx ... | no ngx = [] , _ , none , (_ , out , refl) , (_ , out , refl) , (_ , fx , step (out fx) refl) , λ { (_ , _ , step (out gx) _) → ⊥-elim (ngx gx) } sub-after : ∀{T S φ} (tφ : T HasTrace φ) (sφ : S HasTrace φ) -> T <: S -> after tφ <: after sφ sub-after (_ , _ , refl) (_ , _ , refl) sub = sub sub-after tφ@(_ , _ , step inp _) (_ , _ , step inp _) (end<:def e _) with end-has-empty-trace e tφ ... | () sub-after (_ , tdef , step inp tr) (_ , sdef , step inp sr) (inp<:inp _ F) = sub-after (_ , tdef , tr) (_ , sdef , sr) (F _ .force) sub-after tφ@(_ , _ , step (out _) _) (_ , _ , step (out _) _) (end<:def e _) with end-has-empty-trace e tφ ... | () sub-after (_ , tdef , step (out _) tr) (_ , sdef , step (out gx) sr) (out<:out _ _ F) = sub-after (_ , tdef , tr) (_ , sdef , sr) (F gx .force) sub-simulation : ∀{R R' T S S' φ} (comp : Compliance (R # T)) (sub : T <: S) (rr : Transitions R (co-trace φ) R') (sr : Transitions S φ S') -> ∃[ T' ] (Transitions T φ T' × T' <: S') sub-simulation comp sub refl refl = _ , refl , sub sub-simulation (win#def (out U) def) sub (step (out hx) rr) (step inp sr) = ⊥-elim (U _ hx) sub-simulation (out#inp W F) (end<:def (inp U) def) (step (out hx) rr) (step inp sr) with F hx .force ... | comp = ⊥-elim (U _ (proj₂ (compliance->defined comp))) sub-simulation (out#inp W F) (inp<:inp inc G) (step (out hx) rr) (step inp sr) = let _ , tr , sub = sub-simulation (F hx .force) (G _ . force) rr sr in _ , step inp tr , sub sub-simulation (inp#out {h} {f} (_ , fx) F) (end<:def (out U) def) (step inp rr) (step (out gx) sr) with F fx .force ... | comp = ⊥-elim (U _ (proj₂ (compliance->defined comp))) sub-simulation (inp#out W F) (out<:out W₁ inc G) (step inp rr) (step (out fx) sr) = let _ , tr , sub = sub-simulation (F (inc fx) .force) (G fx .force) rr sr in _ , step (out (inc fx)) tr , sub
{ "alphanum_fraction": 0.6002995331, "avg_line_length": 41.8856088561, "ext": "agda", "hexsha": "0f053178851d6df4793b2cdf87bf6a44235c6c98", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "boystrange/FairSubtypingAgda", "max_forks_repo_path": "src/Subtyping.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "boystrange/FairSubtypingAgda", "max_issues_repo_path": "src/Subtyping.agda", "max_line_length": 155, "max_stars_count": 4, "max_stars_repo_head_hexsha": "c4b78e70c3caf68d509f4360b9171d9f80ecb825", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "boystrange/FairSubtypingAgda", "max_stars_repo_path": "src/Subtyping.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-24T14:38:47.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-29T14:32:30.000Z", "num_tokens": 4134, "size": 11351 }
open import Agda.Primitive using (_⊔_; lsuc) open import Categories.Category open import Categories.Functor import Categories.Category.Cartesian as Cartesian open import Categories.Monad.Relative import SecondOrder.RelativeKleisli open import SecondOrder.RelativeMonadMorphism -- The category of relative monads and relative monad morphisms module SecondOrder.RelMon {o l e o' l' e'} {𝒞 : Category o l e} {𝒟 : Category o' l' e'} {J : Functor 𝒞 𝒟} where RelMon : Category (o ⊔ o' ⊔ l' ⊔ e') (lsuc o ⊔ lsuc l' ⊔ lsuc e') (o ⊔ e') RelMon = let open Category 𝒟 renaming (id to id_D; identityˡ to identˡ; identityʳ to identʳ; assoc to ass) in let open RMonadMorph in let open Monad in let open HomReasoning in record { Obj = Monad J ; _⇒_ = λ M N → RMonadMorph M N ; _≈_ = λ {M} {N} φ ψ → ∀ X → morph φ {X} ≈ morph ψ {X} ; id = λ {M} → record { morph = λ {X} → id_D {F₀ M X} ; law-unit = λ {X} → identˡ ; law-extend = λ {X} {Y} {f} → begin (id_D ∘ extend M f) ≈⟨ identˡ ⟩ extend M f ≈⟨ extend-≈ M {k = f} {h = id_D ∘ f} (⟺ identˡ) ⟩ extend M (id_D ∘ f) ≈⟨ ⟺ identʳ ⟩ (extend M (id_D ∘ f) ∘ id_D) ∎ } ; _∘_ = λ {M} {N} {L} φ ψ → record { morph = λ {X} → (morph φ {X}) ∘ (morph ψ {X}) ; law-unit = λ {X} → begin ((morph φ ∘ morph ψ) ∘ unit M) ≈⟨ ass ⟩ (morph φ ∘ (morph ψ ∘ unit M)) ≈⟨ refl⟩∘⟨ law-unit ψ ⟩ (morph φ ∘ unit N) ≈⟨ law-unit φ ⟩ unit L ∎ ; law-extend = λ {X} {Y} {f} → begin (morph φ ∘ morph ψ) ∘ extend M f ≈⟨ ass ⟩ morph φ ∘ (morph ψ ∘ extend M f) ≈⟨ refl⟩∘⟨ law-extend ψ ⟩ morph φ ∘ (extend N (morph ψ ∘ f) ∘ morph ψ) ≈⟨ ⟺ (ass) ⟩ (morph φ ∘ extend N (morph ψ ∘ f)) ∘ morph ψ ≈⟨ (law-extend φ ⟩∘⟨refl) ⟩ ((extend L (morph φ ∘ morph ψ ∘ f)) ∘ morph φ) ∘ morph ψ ≈⟨ ass ⟩ (extend L (morph φ ∘ morph ψ ∘ f)) ∘ morph φ ∘ morph ψ ≈⟨ ( extend-≈ L (⟺ (ass)) ⟩∘⟨refl) ⟩ extend L ((morph φ ∘ morph ψ) ∘ f) ∘ morph φ ∘ morph ψ ∎ } ; assoc = λ X → ass ; sym-assoc = λ X → ⟺ (ass) ; identityˡ = λ X → identˡ ; identityʳ = λ X → identʳ ; identity² = λ X → identˡ ; equiv = record { refl = λ X → Equiv.refl ; sym = λ φ≈ψ X → ⟺ (φ≈ψ X) ; trans = λ φ≈ψ ψ≈θ X → φ≈ψ X ○ ψ≈θ X } ; ∘-resp-≈ = λ φ≈ψ θ≈ω X → φ≈ψ X ⟩∘⟨ θ≈ω X }
{ "alphanum_fraction": 0.4317789292, "avg_line_length": 38.0921052632, "ext": "agda", "hexsha": "f0a806bd17f96cb0c439a76887a9d6b2ee334e4e", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andrejbauer/formaltt", "max_forks_repo_path": "src/SecondOrder/RelMon.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andrejbauer/formaltt", "max_issues_repo_path": "src/SecondOrder/RelMon.agda", "max_line_length": 102, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/SecondOrder/RelMon.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 1060, "size": 2895 }
module Sets.ImageSet where open import Data open import Functional open import Logic open import Logic.Propositional open import Logic.Predicate import Lvl open import Structure.Function open import Structure.Setoid renaming (_≡_ to _≡ₛ_) open import Type open import Type.Dependent private variable ℓ ℓₑ ℓᵢ ℓᵢ₁ ℓᵢ₂ ℓᵢ₃ ℓᵢₑ ℓ₁ ℓ₂ ℓ₃ : Lvl.Level private variable T X Y Z : Type{ℓ} record ImageSet {ℓᵢ ℓ} (T : Type{ℓ}) : Type{Lvl.𝐒(ℓᵢ) Lvl.⊔ ℓ} where constructor intro field {Index} : Type{ℓᵢ} elem : Index → T open ImageSet using (Index ; elem) public module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where _∈_ : T → ImageSet{ℓᵢ}(T) → Stmt a ∈ A = ∃(i ↦ a ≡ₛ elem A(i)) open import Data.Proofs open import Function.Proofs open import Logic.Propositional.Theorems open import Structure.Relator open import Structure.Relator.Properties open import Syntax.Transitivity {- instance ImageSet-equiv : Equiv(ImageSet{ℓᵢ}(T)) ImageSet-equiv = intro(_≡_) ⦃ [≡]-equivalence ⦄ -} instance [∈]-unaryOperatorₗ : ∀{A : ImageSet{ℓᵢ}(T)} → UnaryRelator(_∈ A) UnaryRelator.substitution [∈]-unaryOperatorₗ xy ([∃]-intro i ⦃ p ⦄) = [∃]-intro i ⦃ symmetry(_≡ₛ_) xy 🝖 p ⦄
{ "alphanum_fraction": 0.6922435363, "avg_line_length": 27.25, "ext": "agda", "hexsha": "7ee742e9a672d94b2a1139ec7ab63ee207fa4428", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Sets/ImageSet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Sets/ImageSet.agda", "max_line_length": 111, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Sets/ImageSet.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 474, "size": 1199 }
module Issue878 where data _==_ {A : Set} (a : A) : A → Set where idp : a == a data ⊤ : Set where tt : ⊤ record args : Set₁ where field P : ⊤ → Set g : (b : ⊤) → P b module _ (r : args) where open args r postulate ext : ∀ b → P b module _ {r : args} where open args r postulate β-r : ∀ b → ext r b == g b a : args a = record {P = λ x → (⊤ → ⊤); g = λ x → λ c → tt} err : ext a tt tt == tt err = β-r tt -- WAS: __IMPOSSIBLE__ in Conversion.hs
{ "alphanum_fraction": 0.5197505198, "avg_line_length": 15.03125, "ext": "agda", "hexsha": "3a6f3bdc7beac8bb460a4e30c9ea81705ae6251b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue878.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue878.agda", "max_line_length": 50, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue878.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 195, "size": 481 }
------------------------------------------------------------------------ -- ω-continuous functions ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} module Partiality-monad.Inductive.Omega-continuous where open import Equality.Propositional open import Prelude open import Bijection equality-with-J using (_↔_) import Partiality-algebra.Omega-continuous as O open import Partiality-monad.Inductive -- Definition of ω-continuous functions. [_⊥→_⊥] : ∀ {a b} → Type a → Type b → Type (a ⊔ b) [ A ⊥→ B ⊥] = O.[ partiality-algebra A ⟶ partiality-algebra B ] module [_⊥→_⊥] {a b} {A : Type a} {B : Type b} (f : [ A ⊥→ B ⊥]) = O.[_⟶_] f open [_⊥→_⊥] -- Identity. idω : ∀ {a} {A : Type a} → [ A ⊥→ A ⊥] idω = O.idω -- Composition. infixr 40 _∘ω_ _∘ω_ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} → [ B ⊥→ C ⊥] → [ A ⊥→ B ⊥] → [ A ⊥→ C ⊥] _∘ω_ = O._∘ω_ -- Equality characterisation lemma for ω-continuous functions. equality-characterisation-continuous : ∀ {a b} {A : Type a} {B : Type b} {f g : [ A ⊥→ B ⊥]} → (∀ x → function f x ≡ function g x) ↔ f ≡ g equality-characterisation-continuous = O.equality-characterisation-continuous -- Composition is associative. ∘ω-assoc : ∀ {a b c d} {A : Type a} {B : Type b} {C : Type c} {D : Type d} (f : [ C ⊥→ D ⊥]) (g : [ B ⊥→ C ⊥]) (h : [ A ⊥→ B ⊥]) → f ∘ω (g ∘ω h) ≡ (f ∘ω g) ∘ω h ∘ω-assoc = O.∘ω-assoc
{ "alphanum_fraction": 0.5210780926, "avg_line_length": 26.3090909091, "ext": "agda", "hexsha": "01ff914148d8c7621ee3023d36c7fd6d50f34396", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-monad/Inductive/Omega-continuous.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-monad/Inductive/Omega-continuous.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-monad/Inductive/Omega-continuous.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 534, "size": 1447 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use the Data.(Nat/Fin).Induction -- modules directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Induction.Nat where open import Data.Nat.Induction public open import Data.Fin.Induction public {-# WARNING_ON_IMPORT "Induction.Nat was deprecated in v1.1. Use Data.Nat.Induction and Data.Fin.Induction instead." #-}
{ "alphanum_fraction": 0.5413533835, "avg_line_length": 28, "ext": "agda", "hexsha": "95318e84d0c9dfb42465f2fc321cd032dead9f2e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Induction/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Induction/Nat.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Induction/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 107, "size": 532 }
module SystemF.Syntax.Context where open import Prelude open import SystemF.Syntax.Type open import Data.Vec Ctx : ℕ → ℕ → Set Ctx ν n = Vec (Type ν) n
{ "alphanum_fraction": 0.7402597403, "avg_line_length": 17.1111111111, "ext": "agda", "hexsha": "35521f16c406a5dfb3fd1ecef6fac9c43b763f99", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/SystemF/Syntax/Context.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/SystemF/Syntax/Context.agda", "max_line_length": 35, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/SystemF/Syntax/Context.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 43, "size": 154 }
module #9 where {- Define the type family Fin : N → U mentioned at the end of §1.3, and the dependent function fmax : ∏(n:N) Fin(n + 1) mentioned in §1.4. -} open import Data.Nat data Fin : ℕ → Set where FZ : {n : ℕ} → Fin (suc n) FS : {n : ℕ} → Fin n → Fin (suc n) fmax : (n : ℕ) → Fin (n + 1) fmax zero = FZ fmax (suc n) = FS (fmax n)
{ "alphanum_fraction": 0.5702005731, "avg_line_length": 20.5294117647, "ext": "agda", "hexsha": "4d7f114e68131c13a4cb1a17e92d1704deb5cf0d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "CodaFi/HoTT-Exercises", "max_forks_repo_path": "Chapter1/#9.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "CodaFi/HoTT-Exercises", "max_issues_repo_path": "Chapter1/#9.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "CodaFi/HoTT-Exercises", "max_stars_repo_path": "Chapter1/#9.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 142, "size": 349 }
------------------------------------------------------------------------ -- An expression can be derived from at most one string ------------------------------------------------------------------------ open import Mixfix.Expr module Mixfix.Cyclic.Uniqueness (i : PrecedenceGraphInterface) (g : PrecedenceGraphInterface.PrecedenceGraph i) where open import Codata.Musical.Notation using (♭) open import Data.Nat using (ℕ; zero; suc; _+_) open import Data.List using (List; []; _∷_) open import Data.List.Relation.Unary.Any using (here) open import Data.Vec using (Vec; []; _∷_) open import Data.Product using (_,_; -,_; proj₂) open import Relation.Binary.HeterogeneousEquality using (_≅_; refl) open import Relation.Binary.PropositionalEquality using (_≡_; refl) open PrecedenceCorrect i g open import TotalParserCombinators.Semantics hiding (_≅_) open import Mixfix.Fixity open import Mixfix.Operator open import Mixfix.Cyclic.Lib as Lib open Lib.Semantics import Mixfix.Cyclic.Grammar private module Grammar = Mixfix.Cyclic.Grammar i g module Unique where data _≋_ {A : Set} {x₁ : A} {s₁ p₁} (∈ : x₁ ∈⟦ p₁ ⟧· s₁) : ∀ {x₂ : A} {s₂ p₂} → x₂ ∈⟦ p₂ ⟧· s₂ → Set where refl : ∈ ≋ ∈ mutual precs : ∀ ps {s₁ s₂} {e₁ e₂ : Expr ps} (∈₁ : e₁ ∈⟦ Grammar.precs ps ⟧· s₁) (∈₂ : e₂ ∈⟦ Grammar.precs ps ⟧· s₂) → e₁ ≡ e₂ → ∈₁ ≋ ∈₂ precs [] () () _ precs (p ∷ ps) (∣ʳ (<$>_ {x = ( _ ∙ _)} ∈₁)) (∣ʳ (<$>_ {x = (._ ∙ ._)} ∈₂)) refl with precs ps ∈₁ ∈₂ refl precs (p ∷ ps) (∣ʳ (<$>_ {x = ( _ ∙ _)} ∈₁)) (∣ʳ (<$>_ {x = (._ ∙ ._)} .∈₁)) refl | refl = refl precs (p ∷ ps) (∣ˡ (<$> ∈₁)) (∣ʳ (<$>_ {x = _ ∙ _} ∈₂)) () precs (p ∷ ps) (∣ʳ (<$>_ {x = _ ∙ _} ∈₁)) (∣ˡ (<$> ∈₂)) () precs (p ∷ ps) (∣ˡ (<$>_ {x = e₁} ∈₁)) (∣ˡ (<$>_ {x = e₂} ∈₂)) eq = helper (lemma₁ eq) (lemma₂ eq) ∈₁ ∈₂ where lemma₁ : ∀ {assoc₁ assoc₂} {e₁ : ExprIn p assoc₁} {e₂ : ExprIn p assoc₂} → (Expr._∙_ (here {xs = ps} refl) e₁) ≡ (here refl ∙ e₂) → assoc₁ ≡ assoc₂ lemma₁ refl = refl lemma₂ : ∀ {assoc₁ assoc₂} {e₁ : ExprIn p assoc₁} {e₂ : ExprIn p assoc₂} → (Expr._∙_ (here {xs = ps} refl) e₁) ≡ (here refl ∙ e₂) → e₁ ≅ e₂ lemma₂ refl = refl helper : ∀ {assoc₁ assoc₂ s₁ s₂} {e₁ : ExprIn p assoc₁} {e₂ : ExprIn p assoc₂} → assoc₁ ≡ assoc₂ → e₁ ≅ e₂ → (∈₁ : (-, e₁) ∈⟦ Grammar.prec p ⟧· s₁) → (∈₂ : (-, e₂) ∈⟦ Grammar.prec p ⟧· s₂) → ∣ˡ {p₁ = (λ e → here refl ∙ proj₂ e) <$> Grammar.prec p} {p₂ = weakenE <$> Grammar.precs ps} (<$> ∈₁) ≋ ∣ˡ {p₁ = (λ e → here refl ∙ proj₂ e) <$> Grammar.prec p} {p₂ = weakenE <$> Grammar.precs ps} (<$> ∈₂) helper refl refl ∈₁ ∈₂ with prec ∈₁ ∈₂ helper refl refl ∈ .∈ | refl = refl prec : ∀ {p assoc s₁ s₂} {e : ExprIn p assoc} (∈₁ : (-, e) ∈⟦ Grammar.prec p ⟧· s₁) (∈₂ : (-, e) ∈⟦ Grammar.prec p ⟧· s₂) → ∈₁ ≋ ∈₂ prec {p} ∈₁′ ∈₂′ = prec′ ∈₁′ ∈₂′ refl where module P = Grammar.Prec p preRight⁺ : ∀ {s₁ s₂} {e₁ e₂ : ExprIn p right} (∈₁ : e₁ ∈⟦ P.preRight⁺ ⟧· s₁) (∈₂ : e₂ ∈⟦ P.preRight⁺ ⟧· s₂) → e₁ ≡ e₂ → ∈₁ ≋ ∈₂ preRight⁺ (∣ˡ (<$> ∈₁) ⊛∞ ∣ˡ (<$> ∈₂)) (∣ˡ (<$> ∈₁′) ⊛∞ ∣ˡ (<$> ∈₂′)) refl with inner _ ∈₁ ∈₁′ refl | preRight⁺ ∈₂ ∈₂′ refl preRight⁺ (∣ˡ (<$> ∈₁) ⊛∞ ∣ˡ (<$> ∈₂)) (∣ˡ (<$> .∈₁) ⊛∞ ∣ˡ (<$> .∈₂)) refl | refl | refl = refl preRight⁺ (∣ˡ (<$> ∈₁) ⊛∞ ∣ʳ (<$> ∈₂)) (∣ˡ (<$> ∈₁′) ⊛∞ ∣ʳ (<$> ∈₂′)) refl with inner _ ∈₁ ∈₁′ refl | precs _ ∈₂ ∈₂′ refl preRight⁺ (∣ˡ (<$> ∈₁) ⊛∞ ∣ʳ (<$> ∈₂)) (∣ˡ (<$> .∈₁) ⊛∞ ∣ʳ (<$> .∈₂)) refl | refl | refl = refl preRight⁺ (∣ʳ (<$> ∈₁ ⊛ ∈₃) ⊛∞ ∣ˡ (<$> ∈₂)) (∣ʳ (<$> ∈₁′ ⊛ ∈₃′) ⊛∞ ∣ˡ (<$> ∈₂′)) refl with precs _ ∈₁ ∈₁′ refl | preRight⁺ ∈₂ ∈₂′ refl | inner _ ∈₃ ∈₃′ refl preRight⁺ (∣ʳ (<$> ∈₁ ⊛ ∈₃) ⊛∞ ∣ˡ (<$> ∈₂)) (∣ʳ (<$> .∈₁ ⊛ .∈₃) ⊛∞ ∣ˡ (<$> .∈₂)) refl | refl | refl | refl = refl preRight⁺ (∣ʳ (<$> ∈₁ ⊛ ∈₃) ⊛∞ ∣ʳ (<$> ∈₂)) (∣ʳ (<$> ∈₁′ ⊛ ∈₃′) ⊛∞ ∣ʳ (<$> ∈₂′)) refl with precs _ ∈₁ ∈₁′ refl | precs _ ∈₂ ∈₂′ refl | inner _ ∈₃ ∈₃′ refl preRight⁺ (∣ʳ (<$> ∈₁ ⊛ ∈₃) ⊛∞ ∣ʳ (<$> ∈₂)) (∣ʳ (<$> .∈₁ ⊛ .∈₃) ⊛∞ ∣ʳ (<$> .∈₂)) refl | refl | refl | refl = refl preRight⁺ (∣ˡ (<$> _) ⊛∞ _) (∣ʳ (<$> _ ⊛ _) ⊛∞ _) () preRight⁺ (∣ʳ (<$> _ ⊛ _) ⊛∞ _) (∣ˡ (<$> _) ⊛∞ _) () preRight⁺ (∣ˡ (<$> _) ⊛∞ ∣ˡ (<$> _)) (∣ˡ (<$> _) ⊛∞ ∣ʳ (<$> _)) () preRight⁺ (∣ˡ (<$> _) ⊛∞ ∣ʳ (<$> _)) (∣ˡ (<$> _) ⊛∞ ∣ˡ (<$> _)) () preRight⁺ (∣ʳ (<$> _ ⊛ _) ⊛∞ ∣ˡ (<$> _)) (∣ʳ (<$> _ ⊛ _) ⊛∞ ∣ʳ (<$> _)) () preRight⁺ (∣ʳ (<$> _ ⊛ _) ⊛∞ ∣ʳ (<$> _)) (∣ʳ (<$> _ ⊛ _) ⊛∞ ∣ˡ (<$> _)) () postLeft⁺ : ∀ {s₁ s₂} {e₁ e₂ : ExprIn p left} (∈₁ : e₁ ∈⟦ P.postLeft⁺ ⟧· s₁) (∈₂ : e₂ ∈⟦ P.postLeft⁺ ⟧· s₂) → e₁ ≡ e₂ → ∈₁ ≋ ∈₂ postLeft⁺ (<$> (∣ˡ (<$> ∈₁)) ⊛∞ ∣ˡ (<$> ∈₂)) (<$> (∣ˡ (<$> ∈₁′)) ⊛∞ ∣ˡ (<$> ∈₂′)) refl with postLeft⁺ ∈₁ ∈₁′ refl | inner _ ∈₂ ∈₂′ refl postLeft⁺ (<$> (∣ˡ (<$> ∈₁)) ⊛∞ ∣ˡ (<$> ∈₂)) (<$> (∣ˡ (<$> .∈₁)) ⊛∞ ∣ˡ (<$> .∈₂)) refl | refl | refl = refl postLeft⁺ (<$> (∣ʳ (<$> ∈₁)) ⊛∞ ∣ˡ (<$> ∈₂)) (<$> (∣ʳ (<$> ∈₁′)) ⊛∞ ∣ˡ (<$> ∈₂′)) refl with precs _ ∈₁ ∈₁′ refl | inner _ ∈₂ ∈₂′ refl postLeft⁺ (<$> (∣ʳ (<$> ∈₁)) ⊛∞ ∣ˡ (<$> ∈₂)) (<$> (∣ʳ (<$> .∈₁)) ⊛∞ ∣ˡ (<$> .∈₂)) refl | refl | refl = refl postLeft⁺ (<$> (∣ˡ (<$> ∈₁)) ⊛∞ ∣ʳ (<$> ∈₂ ⊛ ∈₃)) (<$> (∣ˡ (<$> ∈₁′)) ⊛∞ ∣ʳ (<$> ∈₂′ ⊛ ∈₃′)) refl with postLeft⁺ ∈₁ ∈₁′ refl | inner _ ∈₂ ∈₂′ refl | precs _ ∈₃ ∈₃′ refl postLeft⁺ (<$> (∣ˡ (<$> ∈₁)) ⊛∞ ∣ʳ (<$> ∈₂ ⊛ ∈₃)) (<$> (∣ˡ (<$> .∈₁)) ⊛∞ ∣ʳ (<$> .∈₂ ⊛ .∈₃)) refl | refl | refl | refl = refl postLeft⁺ (<$> (∣ʳ (<$> ∈₁)) ⊛∞ ∣ʳ (<$> ∈₂ ⊛ ∈₃)) (<$> (∣ʳ (<$> ∈₁′)) ⊛∞ ∣ʳ (<$> ∈₂′ ⊛ ∈₃′)) refl with precs _ ∈₁ ∈₁′ refl | inner _ ∈₂ ∈₂′ refl | precs _ ∈₃ ∈₃′ refl postLeft⁺ (<$> (∣ʳ (<$> ∈₁)) ⊛∞ ∣ʳ (<$> ∈₂ ⊛ ∈₃)) (<$> (∣ʳ (<$> .∈₁)) ⊛∞ ∣ʳ (<$> .∈₂ ⊛ .∈₃)) refl | refl | refl | refl = refl postLeft⁺ (<$> _ ⊛∞ ∣ˡ (<$> _)) (<$> _ ⊛∞ ∣ʳ (<$> _ ⊛ _)) () postLeft⁺ (<$> _ ⊛∞ ∣ʳ (<$> _ ⊛ _)) (<$> _ ⊛∞ ∣ˡ (<$> _)) () postLeft⁺ (<$> (∣ˡ (<$> _)) ⊛∞ ∣ˡ (<$> _)) (<$> (∣ʳ (<$> _)) ⊛∞ ∣ˡ (<$> _)) () postLeft⁺ (<$> (∣ʳ (<$> _)) ⊛∞ ∣ˡ (<$> _)) (<$> (∣ˡ (<$> _)) ⊛∞ ∣ˡ (<$> _)) () postLeft⁺ (<$> (∣ˡ (<$> _)) ⊛∞ ∣ʳ (<$> _ ⊛ _)) (<$> (∣ʳ (<$> _)) ⊛∞ ∣ʳ (<$> _ ⊛ _)) () postLeft⁺ (<$> (∣ʳ (<$> _)) ⊛∞ ∣ʳ (<$> _ ⊛ _)) (<$> (∣ˡ (<$> _)) ⊛∞ ∣ʳ (<$> _ ⊛ _)) () prec′ : ∀ {assoc s₁ s₂} {e₁ e₂ : ExprIn p assoc} → (∈₁ : (-, e₁) ∈⟦ Grammar.prec p ⟧· s₁) (∈₂ : (-, e₂) ∈⟦ Grammar.prec p ⟧· s₂) → e₁ ≡ e₂ → ∈₁ ≋ ∈₂ prec′ (∥ˡ (<$> ∈₁)) (∥ˡ (<$> ∈₂)) refl with inner _ ∈₁ ∈₂ refl prec′ (∥ˡ (<$> ∈₁)) (∥ˡ (<$> .∈₁)) refl | refl = refl prec′ (∥ʳ (∥ˡ (<$> ∈₁ ⊛ ∈₂ ⊛∞ ∈₃ ))) (∥ʳ (∥ˡ (<$> ∈₁′ ⊛ ∈₂′ ⊛∞ ∈₃′))) refl with precs _ ∈₁ ∈₁′ refl | inner _ ∈₂ ∈₂′ refl | precs _ ∈₃ ∈₃′ refl prec′ (∥ʳ (∥ˡ (<$> ∈₁ ⊛ ∈₂ ⊛∞ ∈₃))) (∥ʳ (∥ˡ (<$> .∈₁ ⊛ .∈₂ ⊛∞ .∈₃))) refl | refl | refl | refl = refl prec′ (∥ʳ (∥ʳ (∥ˡ ∈₁))) (∥ʳ (∥ʳ (∥ˡ ∈₂))) refl with preRight⁺ ∈₁ ∈₂ refl prec′ (∥ʳ (∥ʳ (∥ˡ ∈₁))) (∥ʳ (∥ʳ (∥ˡ .∈₁))) refl | refl = refl prec′ (∥ʳ (∥ʳ (∥ʳ (∥ˡ ∈₁)))) (∥ʳ (∥ʳ (∥ʳ (∥ˡ ∈₂)))) refl with postLeft⁺ ∈₁ ∈₂ refl prec′ (∥ʳ (∥ʳ (∥ʳ (∥ˡ ∈₁)))) (∥ʳ (∥ʳ (∥ʳ (∥ˡ .∈₁)))) refl | refl = refl prec′ (∥ˡ (<$> _)) (∥ʳ (∥ˡ (<$> _ ⊛ _ ⊛∞ _))) () prec′ (∥ʳ (∥ˡ (<$> _ ⊛ _ ⊛∞ _))) (∥ˡ (<$> _)) () prec′ (∥ʳ (∥ʳ (∥ʳ (∥ʳ ())))) _ _ prec′ _ (∥ʳ (∥ʳ (∥ʳ (∥ʳ ())))) _ inner : ∀ {fix s₁ s₂} ops {e₁ e₂ : Inner {fix} ops} (∈₁ : e₁ ∈⟦ Grammar.inner ops ⟧· s₁) (∈₂ : e₂ ∈⟦ Grammar.inner ops ⟧· s₂) → e₁ ≡ e₂ → ∈₁ ≋ ∈₂ inner [] () () _ inner ((_ , op) ∷ ops) (∣ˡ (<$> ∈₁)) (∣ˡ (<$> ∈₂)) refl with inner′ _ _ ∈₁ ∈₂ inner ((_ , op) ∷ ops) (∣ˡ (<$> ∈₁)) (∣ˡ (<$> .∈₁)) refl | refl = refl inner ((_ , op) ∷ ops) (∣ʳ (<$>_ {x = ( _ ∙ _)} ∈₁)) (∣ʳ (<$>_ {x = (._ ∙ ._)} ∈₂)) refl with inner ops ∈₁ ∈₂ refl inner ((_ , op) ∷ ops) (∣ʳ (<$>_ {x = ( _ ∙ _)} ∈₁)) (∣ʳ (<$>_ {x = (._ ∙ ._)} .∈₁)) refl | refl = refl inner ((_ , op) ∷ ops) (∣ˡ (<$> ∈₁)) (∣ʳ (<$>_ {x = (_ ∙ _)} ∈₂)) () inner ((_ , op) ∷ ops) (∣ʳ (<$>_ {x = (_ ∙ _)} ∈₁)) (∣ˡ (<$> ∈₂)) () inner′ : ∀ {arity s₁ s₂} (ns : Vec NamePart (1 + arity)) (args : Vec (Expr anyPrecedence) arity) (∈₁ : args ∈⟦ Grammar.expr between ns ⟧· s₁) (∈₂ : args ∈⟦ Grammar.expr between ns ⟧· s₂) → ∈₁ ≋ ∈₂ inner′ (n ∷ []) [] between-[] between-[] = refl inner′ (n ∷ n′ ∷ ns) (arg ∷ args) (between-∷ ∈₁ ∈⋯₁) (between-∷ ∈₂ ∈⋯₂) with precs _ ∈₁ ∈₂ refl | inner′ (n′ ∷ ns) args ∈⋯₁ ∈⋯₂ inner′ (n ∷ n′ ∷ ns) (arg ∷ args) (between-∷ ∈₁ ∈⋯₁) (between-∷ .∈₁ .∈⋯₁) | refl | refl = refl -- There is at most one string representing a given expression. unique : ∀ {e s₁ s₂} → e ∈ Grammar.expression · s₁ → e ∈ Grammar.expression · s₂ → s₁ ≡ s₂ unique ∈₁ ∈₂ with ∈₁′ | ∈₂′ | Unique.precs _ ∈₁′ ∈₂′ refl where ∈₁′ = Lib.Semantics.complete (♭ Grammar.expr) ∈₁ ∈₂′ = Lib.Semantics.complete (♭ Grammar.expr) ∈₂ ... | ∈ | .∈ | Unique.refl = refl
{ "alphanum_fraction": 0.3708582834, "avg_line_length": 46.3888888889, "ext": "agda", "hexsha": "e56d75cd785081e82fde53b766982106da4eee12", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "Mixfix/Cyclic/Uniqueness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "Mixfix/Cyclic/Uniqueness.agda", "max_line_length": 132, "max_stars_count": 1, "max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/parser-combinators", "max_stars_repo_path": "Mixfix/Cyclic/Uniqueness.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z", "num_tokens": 4735, "size": 10020 }
module Example where open import Prelude import Typed data Data : Set where nat : Data bool : Data Datatype : Data -> List (List Data) Datatype nat = ε ◄ ε ◄ (ε ◄ nat) Datatype bool = ε ◄ ε ◄ ε data Effect : Set where data _⊆_ : Effect -> Effect -> Set where refl⊆ : forall {M} -> M ⊆ M Monad : Effect -> Set -> Set Monad e A = A return : forall {M A} -> A -> Monad M A return x = x map : forall {M A B} -> (A -> B) -> Monad M A -> Monad M B map f m = f m join : forall {M A} -> Monad M (Monad M A) -> Monad M A join m = m morph : forall {M N} -> M ⊆ N -> (A : Set) -> Monad M A -> Monad N A morph _ A x = x open module TT = Typed Data Datatype Effect _⊆_ Monad (\{M A} -> return {M}{A}) (\{M A B} -> map {M}{A}{B}) (\{M A} -> join {M}{A}) morph zero : forall {M Γ} -> InV M Γ (TyCon nat) zero = con (tl hd) ⟨⟩ suc : forall {M Γ} -> InV M Γ (TyCon nat) -> InV M Γ (TyCon nat) suc n = con hd (⟨⟩ ◃ n) true : forall {M Γ} -> InV M Γ (TyCon bool) true = con hd ⟨⟩ false : forall {M Γ} -> InV M Γ (TyCon bool) false = con (tl hd) ⟨⟩
{ "alphanum_fraction": 0.5161572052, "avg_line_length": 20.8181818182, "ext": "agda", "hexsha": "3744b73b7ebd8664ff76da3e6d94b91c1af190ac", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "examples/sinatra/Example.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "examples/sinatra/Example.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "examples/sinatra/Example.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 415, "size": 1145 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Core module Categories.Category.Construction.KaroubiEnvelope.Properties {o ℓ e} (𝒞 : Category o ℓ e) where open import Data.Product using (_,_) open import Categories.Functor renaming (id to idF) open import Categories.Functor.Properties open import Categories.Category.Construction.KaroubiEnvelope open import Categories.Morphism.Idempotent import Categories.Morphism.Idempotent.Bundles as BundledIdem open Category 𝒞 open Equiv -------------------------------------------------------------------------------- -- Some facts about embedding 𝒞 into it's Karoubi Envelope KaroubiEmbedding : Functor 𝒞 (KaroubiEnvelope 𝒞) KaroubiEmbedding = record { F₀ = λ X → record { obj = X ; isIdempotent = record { idem = id ; idempotent = identity² } } ; F₁ = λ f → record { hom = f ; absorbˡ = identityˡ ; absorbʳ = identityʳ } ; identity = refl ; homomorphism = refl ; F-resp-≈ = λ eq → eq } private module KaroubiEmbedding = Functor KaroubiEmbedding karoubi-embedding-full : Full KaroubiEmbedding karoubi-embedding-full = record { from = record { _⟨$⟩_ = λ f → BundledIdem.Idempotent⇒.hom f ; cong = λ eq → eq } ; right-inverse-of = λ _ → refl } karoubi-embedding-faithful : Faithful KaroubiEmbedding karoubi-embedding-faithful f g eq = eq karoubi-embedding-fully-faithful : FullyFaithful KaroubiEmbedding karoubi-embedding-fully-faithful = karoubi-embedding-full , karoubi-embedding-faithful -------------------------------------------------------------------------------- -- Some facts about splitting idempotents -- All idempotents in the Karoubi Envelope are split idempotent-split : ∀ {A} → Idempotent (KaroubiEnvelope 𝒞) A → SplitIdempotent (KaroubiEnvelope 𝒞) A idempotent-split {A} I = record { idem = idem ; isSplitIdempotent = record { obj = record { isIdempotent = record { idem = idem.hom ; idempotent = idempotent } } ; retract = record { hom = idem.hom ; absorbˡ = idempotent ; absorbʳ = idem.absorbʳ } ; section = record { hom = idem.hom ; absorbˡ = idem.absorbˡ ; absorbʳ = idempotent } ; retracts = idempotent ; splits = idempotent } } where module A = BundledIdem.Idempotent A open Idempotent I module idem = BundledIdem.Idempotent⇒ idem
{ "alphanum_fraction": 0.636400986, "avg_line_length": 26.4565217391, "ext": "agda", "hexsha": "a34240c75a655d8f5d5ef148725650aba2091c82", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/KaroubiEnvelope/Properties.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/KaroubiEnvelope/Properties.agda", "max_line_length": 101, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/KaroubiEnvelope/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 732, "size": 2434 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Functor.Hom where open import Data.Product using (_×_; uncurry; proj₁; proj₂; _,_) open import Categories.Support.Equivalence open import Categories.Support.SetoidFunctions renaming (id to id′) open import Categories.Category open import Categories.Bifunctor using (Bifunctor; Functor; module Functor) open import Categories.Agda module Hom {o ℓ e} (C : Category o ℓ e) where open Category C Hom[-,-] : Bifunctor (Category.op C) C (ISetoids ℓ e) Hom[-,-] = record { F₀ = F₀′ ; F₁ = λ f → record { _⟨$⟩_ = λ x → proj₂ f ∘ x ∘ proj₁ f ; cong = cong′ f } ; identity = identity′ ; homomorphism = homomorphism′ ; F-resp-≡ = F-resp-≡′ } where F₀′ : Obj × Obj → Setoid ℓ e F₀′ x = record { Carrier = uncurry _⇒_ x ; _≈_ = _≡_ ; isEquivalence = equiv } _⇆_ : ∀ A B → Set ℓ A ⇆ B = (proj₁ B ⇒ proj₁ A) × (proj₂ A ⇒ proj₂ B) .cong′ : ∀ {A B} → (f : A ⇆ B) → {x y : uncurry _⇒_ A} → x ≡ y → proj₂ f ∘ x ∘ proj₁ f ≡ proj₂ f ∘ y ∘ proj₁ f cong′ f x≡y = ∘-resp-≡ʳ (∘-resp-≡ˡ x≡y) .identity′ : {A : Obj × Obj} {x y : uncurry _⇒_ A} → x ≡ y → id ∘ x ∘ id ≡ y identity′ {A} {x} {y} x≡y = begin id ∘ x ∘ id ↓⟨ identityˡ ⟩ x ∘ id ↓⟨ identityʳ ⟩ x ↓⟨ x≡y ⟩ y ∎ where open HomReasoning .homomorphism′ : {X Y Z : Obj × Obj} → {f : X ⇆ Y} → {g : Y ⇆ Z} → {x y : uncurry _⇒_ X} → (x ≡ y) → (proj₂ g ∘ proj₂ f) ∘ (x ∘ (proj₁ f ∘ proj₁ g)) ≡ proj₂ g ∘ ((proj₂ f ∘ (y ∘ proj₁ f)) ∘ proj₁ g) homomorphism′ {f = f} {g} {x} {y} x≡y = begin (proj₂ g ∘ proj₂ f) ∘ (x ∘ (proj₁ f ∘ proj₁ g)) ↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ x≡y) ⟩ (proj₂ g ∘ proj₂ f) ∘ (y ∘ (proj₁ f ∘ proj₁ g)) ↓⟨ assoc ⟩ proj₂ g ∘ (proj₂ f ∘ (y ∘ (proj₁ f ∘ proj₁ g))) ↑⟨ ∘-resp-≡ʳ assoc ⟩ proj₂ g ∘ ((proj₂ f ∘ y) ∘ (proj₁ f ∘ proj₁ g)) ↑⟨ ∘-resp-≡ʳ assoc ⟩ proj₂ g ∘ (((proj₂ f ∘ y) ∘ proj₁ f) ∘ proj₁ g) ↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ assoc) ⟩ proj₂ g ∘ ((proj₂ f ∘ (y ∘ proj₁ f)) ∘ proj₁ g) ∎ where open HomReasoning .F-resp-≡′ : {A B : Obj × Obj} {f g : A ⇆ B} → proj₁ f ≡ proj₁ g × proj₂ f ≡ proj₂ g → {x y : uncurry _⇒_ A} → (x ≡ y) → proj₂ f ∘ x ∘ proj₁ f ≡ proj₂ g ∘ y ∘ proj₁ g F-resp-≡′ (f₁≡g₁ , f₂≡g₂) x≡y = ∘-resp-≡ f₂≡g₂ (∘-resp-≡ x≡y f₁≡g₁) Hom[_,-] : Obj → Functor C (ISetoids ℓ e) Hom[_,-] B = record { F₀ = λ x → Hom[-,-].F₀ (B , x) ; F₁ = λ f → Hom[-,-].F₁ (id , f) ; identity = Hom[-,-].identity ; homomorphism = homomorphism′ ; F-resp-≡ = λ F≡G x≡y → ∘-resp-≡ F≡G (∘-resp-≡ˡ x≡y) } where module Hom[-,-] = Functor Hom[-,-] -- I can't see an easy way to reuse the proof for the bifunctor :( -- luckily, it's an easy proof! .homomorphism′ : {X Y Z : Obj} {f : X ⇒ Y} {g : Y ⇒ Z} {x y : B ⇒ X} → (x ≡ y) → (g ∘ f) ∘ (x ∘ id) ≡ g ∘ ((f ∘ (y ∘ id)) ∘ id) homomorphism′ {f = f} {g} {x} {y} x≡y = begin (g ∘ f) ∘ (x ∘ id) ↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ x≡y) ⟩ (g ∘ f) ∘ (y ∘ id) ↓⟨ assoc ⟩ g ∘ (f ∘ (y ∘ id)) ↑⟨ ∘-resp-≡ʳ identityʳ ⟩ g ∘ ((f ∘ (y ∘ id)) ∘ id) ∎ where open HomReasoning Hom[-,_] : Obj → Functor (Category.op C) (ISetoids ℓ e) Hom[-,_] B = record { F₀ = λ x → Hom[-,-].F₀ (x , B) ; F₁ = λ f → Hom[-,-].F₁ (f , id) ; identity = Hom[-,-].identity ; homomorphism = homomorphism′ ; F-resp-≡ = λ F≡G x≡y → ∘-resp-≡ʳ (∘-resp-≡ x≡y F≡G) } where module Hom[-,-] = Functor Hom[-,-] .homomorphism′ : {X Y Z : Obj} {f : Y ⇒ X} {g : Z ⇒ Y} {x y : X ⇒ B} → (x ≡ y) → id ∘ (x ∘ (f ∘ g)) ≡ id ∘ ((id ∘ (y ∘ f)) ∘ g) homomorphism′ {f = f} {g} {x} {y} x≡y = begin id ∘ (x ∘ (f ∘ g)) ↓⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ x≡y) ⟩ id ∘ (y ∘ (f ∘ g)) ↑⟨ ∘-resp-≡ʳ assoc ⟩ id ∘ ((y ∘ f) ∘ g) ↑⟨ ∘-resp-≡ʳ (∘-resp-≡ˡ identityˡ) ⟩ id ∘ ((id ∘ (y ∘ f)) ∘ g) ∎ where open HomReasoning -- More explicit versions Hom[_][-,-] : ∀ {o ℓ e} → (C : Category o ℓ e) → Bifunctor (Category.op C) C (ISetoids ℓ e) Hom[ C ][-,-] = Hom[-,-] where open Hom C Hom[_][_,-] : ∀ {o ℓ e} → (C : Category o ℓ e) → Category.Obj C → Functor C (ISetoids ℓ e) Hom[ C ][ B ,-] = Hom[ B ,-] where open Hom C Hom[_][-,_] : ∀ {o ℓ e} → (C : Category o ℓ e) → Category.Obj C → Functor (Category.op C) (ISetoids ℓ e) Hom[ C ][-, B ] = Hom[-, B ] where open Hom C
{ "alphanum_fraction": 0.4489968321, "avg_line_length": 31.5666666667, "ext": "agda", "hexsha": "7d6f72093ce5e75b35321e0024b1ff41f01f3094", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Functor/Hom.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Functor/Hom.agda", "max_line_length": 118, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Functor/Hom.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 2144, "size": 4735 }
{-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Path where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Isomorphism private variable ℓ ℓ' : Level A : Type ℓ -- Less polymorphic version of `cong`, to avoid some unresolved metas cong′ : ∀ {B : Type ℓ'} (f : A → B) {x y : A} (p : x ≡ y) → Path B (f x) (f y) cong′ f = cong f toPathP-isEquiv : ∀ (A : I → Set ℓ){x y} → isEquiv (toPathP {A = A} {x} {y}) toPathP-isEquiv A {x} {y} = isoToIsEquiv (iso toPathP fromPathP to-from from-to) where to-from : ∀ (p : PathP A x y) → toPathP (fromPathP p) ≡ p to-from p h i = outS (hcomp-unique (λ { j (i = i0) → x ; j (i = i1) → fromPathP p j }) (inS (transp (λ j → A (i ∧ j)) (~ i) x)) \ h → inS (sq1 h i)) h where sq1 : (\ h → A [ x ≡ transp (\ j → A (h ∨ j)) h (p h) ]) [ (\ i → transp (λ j → A (i ∧ j)) (~ i) x) ≡ p ] sq1 = \ h i → comp (\ z → (hcomp (\ w → \ { (z = i1) → A (i ∧ (w ∨ h)) ; (z = i0) → A (i ∧ h) ; (i = i0) → A i0 ; (i = i1) → A (h ∨ (w ∧ z)) ; (h = i0) → A (i ∧ (w ∧ z)) ; (h = i1) → A i}) ((A (i ∧ h))))) (\ z → \ { (i = i0) → x ; (i = i1) → transp (\ j → A (h ∨ (z ∧ j))) (h ∨ ~ z) (p h) ; (h = i0) → transp (λ j → A ((i ∧ z) ∧ j)) (~ (i ∧ z)) x ; (h = i1) → p i }) (p (i ∧ h)) from-to : ∀ (q : transp A i0 x ≡ y) → fromPathP (toPathP {A = A} q) ≡ q from-to q = (\ h i → outS (transp-hcomp i {A' = A i1} (\ j → inS (A (i ∨ j))) ((λ { j (i = i0) → x ; j (i = i1) → q j })) (inS ((transp (λ j → A (i ∧ j)) (~ i) x)))) h) ∙ (\ h i → outS (hcomp-unique {A = A i1} ((λ { j (i = i0) → transp A i0 x ; j (i = i1) → q j })) (inS ((transp (λ j → A (i ∨ j)) i (transp (λ j → A (i ∧ j)) (~ i) x)))) \ h → inS (sq2 h i)) h) ∙ sym (lUnit q) where sq2 : (\ h → transp A i0 x ≡ q h) [ (\ i → transp (\ j → A (i ∨ j)) i (transp (\ j → A (i ∧ j)) (~ i) x)) ≡ refl ∙ q ] sq2 = \ h i → comp (\ z → hcomp (\ w → \ { (i = i1) → A i1 ; (i = i0) → A (h ∨ (w ∧ z)) ; (h = i0) → A (i ∨ (w ∧ z)) ; (h = i1) → A i1 ; (z = i0) → A (i ∨ h) ; (z = i1) → A ((i ∨ h) ∨ w) }) (A (i ∨ h))) (\ z → \ { (i = i0) → transp (λ j → A ((z ∨ h) ∧ j)) (~ z ∧ ~ h) x ; (i = i1) → q (z ∧ h) ; (h = i1) → compPath-filler refl q z i ; (h = i0) → transp (\ j → A (i ∨ (z ∧ j))) (i ∨ ~ z) (transp (\ j → A (i ∧ j)) (~ i) x) }) (transp (\ j → A ((i ∨ h) ∧ j)) (~ (i ∨ h)) x)
{ "alphanum_fraction": 0.2798733843, "avg_line_length": 54.1571428571, "ext": "agda", "hexsha": "80b7c0f1d7cfa7316a74b0d7ef14207d63c8f636", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Foundations/Path.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Foundations/Path.agda", "max_line_length": 125, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Foundations/Path.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1185, "size": 3791 }
module DivMod where open import IO open import Data.Nat open import Data.Nat.DivMod open import Codata.Musical.Notation open import Data.String.Base open import Data.Fin.Base using (toℕ) open import Level using (0ℓ) g : ℕ g = 7 div 5 k : ℕ k = toℕ (7 mod 5) showNat : ℕ → String showNat zero = "Z" showNat (suc x) = "S (" ++ showNat x ++ ")" main = run {0ℓ} (putStrLn (showNat g) >> putStrLn (showNat k))
{ "alphanum_fraction": 0.6853658537, "avg_line_length": 18.6363636364, "ext": "agda", "hexsha": "ce0a7319e25eb5213c2f1ce287008b5b443ba50f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "guilhermehas/agda", "max_forks_repo_path": "test/Compiler/with-stdlib/DivMod.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "guilhermehas/agda", "max_issues_repo_path": "test/Compiler/with-stdlib/DivMod.agda", "max_line_length": 62, "max_stars_count": null, "max_stars_repo_head_hexsha": "cb645fcad38f76a9bf37507583867595b5ce87a1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "guilhermehas/agda", "max_stars_repo_path": "test/Compiler/with-stdlib/DivMod.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 142, "size": 410 }
-- Andreas, 2016-07-29 -- -- agda --library-file=GARBAGE Issue2122.agda -- -- should complain about non-existent library file. -- This file is intentionally left empty.
{ "alphanum_fraction": 0.7151162791, "avg_line_length": 21.5, "ext": "agda", "hexsha": "63d72317f02d5606007d558659ef8fa451a7718f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Issue2122.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Issue2122.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Issue2122.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 46, "size": 172 }
module Sets.IterativeSet.Oper where import Lvl open import Data open import Data.Boolean open import Data.Boolean.Stmt open import Data.Either as Either using (_‖_) open import Data.Tuple as Tuple using () open import Functional open import Logic open import Numeral.Natural open import Relator.Equals using () renaming (_≡_ to Id ; [≡]-intro to intro) open import Sets.IterativeSet open import Syntax.Function open import Type.Dependent module _ where private variable {ℓ ℓ₁ ℓ₂} : Lvl.Level open Iset -- The empty set, consisting of no elements. -- Index is the empty type, which means that there are no objects pointing to elements in the set. ∅ : Iset{ℓ} ∅ = set{Index = Empty} empty -- The singleton set, consisting of one element. -- Index is the unit type, which means that there are a single object pointing to a single element in the set. singleton : Iset{ℓ} → Iset{ℓ} singleton = set{Index = Unit} ∘ const -- The pair set, consisting of two elements. -- Index is the boolean type, which means that there are two objects pointing to two elements in the set. pair : Iset{ℓ} → Iset{ℓ} → Iset{ℓ} pair A B = set{Index = Lvl.Up(Bool)} ((if_then B else A) ∘ Lvl.Up.obj) -- The union operator. -- Index(A ∪ B) is the either type of two indices, which means that both objects from the A and the B index point to elements in the set. _∪_ : Iset{ℓ} → Iset{ℓ} → Iset{ℓ} A ∪ B = set{Index = Index(A) ‖ Index(B)} (Either.map1 (elem(A)) (elem(B))) _,_ : Iset{ℓ} → Iset{ℓ} → Iset{ℓ} A , B = pair (singleton A) (pair A B) _⨯_ : Iset{ℓ} → Iset{ℓ} → Iset{ℓ} A ⨯ B = set{Index = Index(A) Tuple.⨯ Index(B)} \{(ia Tuple., ib) → (elem(A)(ia) , elem(B)(ib))} -- The big union operator. -- Index(⋃ A) is the dependent sum type of an Index(A) and the index of the element this index points to. ⋃ : Iset{ℓ} → Iset{ℓ} ⋃ A = set{Index = Σ(Index(A)) (ia ↦ Index(elem(A)(ia)))} (\{(intro ia i) → elem(elem(A)(ia))(i)}) indexFilter : (A : Iset{ℓ}) → (Index(A) → Stmt{ℓ}) → Iset{ℓ} indexFilter A P = set{Index = Σ(Index(A)) P} (elem(A) ∘ Σ.left) filter : (A : Iset{ℓ}) → (Iset{ℓ} → Stmt{ℓ}) → Iset{ℓ} filter{ℓ} A P = indexFilter A (P ∘ elem(A)) indexFilterBool : (A : Iset{ℓ}) → (Index(A) → Bool) → Iset{ℓ} indexFilterBool A f = indexFilter A (Lvl.Up ∘ IsTrue ∘ f) filterBool : (A : Iset{ℓ}) → (Iset{ℓ} → Bool) → Iset{ℓ} filterBool A f = indexFilterBool A (f ∘ elem(A)) mapSet : (Iset{ℓ} → Iset{ℓ}) → (Iset{ℓ} → Iset{ℓ}) mapSet f(A) = set{Index = Index(A)} (f ∘ elem(A)) -- The power set operator. -- Index(℘(A)) is a function type. An instance of such a function represents a subset, and essentially maps every element in A to a boolean which is interpreted as "in the subset of not". -- Note: This only works properly in a classical setting. Trying to use indexFilter instead result in universe level problems. ℘ : Iset{ℓ} → Iset{ℓ} ℘(A) = set{Index = Index(A) → Bool} (indexFilterBool A) -- The set of ordinal numbers of the first order. ω : Iset{ℓ} ω = set{Index = Lvl.Up ℕ} (N ∘ Lvl.Up.obj) where N : ℕ → Iset{ℓ} N(𝟎) = ∅ N(𝐒(n)) = N(n) ∪ singleton(N(n))
{ "alphanum_fraction": 0.6462025316, "avg_line_length": 40, "ext": "agda", "hexsha": "2e9dedbb1f77dc92a93ea030e2d1ff432f1817db", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Sets/IterativeSet/Oper.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Sets/IterativeSet/Oper.agda", "max_line_length": 189, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Sets/IterativeSet/Oper.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1111, "size": 3160 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Non-empty AVL trees ------------------------------------------------------------------------ -- AVL trees are balanced binary search trees. -- The search tree invariant is specified using the technique -- described by Conor McBride in his talk "Pivotal pragmatism". {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (StrictTotalOrder) module Data.AVL.NonEmpty {a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂) where open import Data.Bool.Base using (Bool) open import Data.Empty open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_; _++⁺_) open import Data.Maybe.Base hiding (map) open import Data.Nat.Base hiding (_<_; _⊔_; compare) open import Data.Product hiding (map) open import Data.Unit open import Function open import Level using (_⊔_; Lift; lift) open import Relation.Unary open StrictTotalOrder strictTotalOrder renaming (Carrier to Key) open import Data.AVL.Value Eq.setoid import Data.AVL.Indexed strictTotalOrder as Indexed open Indexed using (K&_ ; ⊥⁺ ; ⊤⁺; ⊥⁺<⊤⁺; ⊥⁺<[_]<⊤⁺; ⊥⁺<[_]; [_]<⊤⁺; node; toList) ------------------------------------------------------------------------ -- Types and functions with hidden indices -- NB: the height is non-zero thus guaranteeing that the AVL tree contains -- at least one value. data Tree⁺ {v} (V : Value v) : Set (a ⊔ v ⊔ ℓ₂) where tree : ∀ {h} → Indexed.Tree V ⊥⁺ ⊤⁺ (suc h) → Tree⁺ V module _ {v} {V : Value v} where private Val = Value.family V singleton : (k : Key) → Val k → Tree⁺ V singleton k v = tree (Indexed.singleton k v ⊥⁺<[ k ]<⊤⁺) insert : (k : Key) → Val k → Tree⁺ V → Tree⁺ V insert k v (tree t) with Indexed.insert k v t ⊥⁺<[ k ]<⊤⁺ ... | Indexed.0# , t′ = tree t′ ... | Indexed.1# , t′ = tree t′ insertWith : (k : Key) → (Maybe (Val k) → Val k) → Tree⁺ V → Tree⁺ V insertWith k f (tree t) with Indexed.insertWith k f t ⊥⁺<[ k ]<⊤⁺ ... | Indexed.0# , t′ = tree t′ ... | Indexed.1# , t′ = tree t′ delete : Key → Tree⁺ V → Maybe (Tree⁺ V) delete k (tree {h} t) with Indexed.delete k t ⊥⁺<[ k ]<⊤⁺ delete k (tree {h} t) | Indexed.1# , t′ = just (tree t′) delete k (tree {0} t) | Indexed.0# , t′ = nothing delete k (tree {suc h} t) | Indexed.0# , t′ = just (tree t′) lookup : (k : Key) → Tree⁺ V → Maybe (Val k) lookup k (tree t) = Indexed.lookup k t ⊥⁺<[ k ]<⊤⁺ module _ {v w} {V : Value v} {W : Value w} where private Val = Value.family V Wal = Value.family W map : ∀[ Val ⇒ Wal ] → Tree⁺ V → Tree⁺ W map f (tree t) = tree $ Indexed.map f t module _ {v} {V : Value v} where -- The input does not need to be ordered. fromList⁺ : List⁺ (K& V) → Tree⁺ V fromList⁺ = List⁺.foldr (uncurry insert) (uncurry singleton) -- The output is ordered toList⁺ : Tree⁺ V → List⁺ (K& V) toList⁺ (tree (node k&v l r bal)) = toList l ++⁺ k&v ∷ toList r
{ "alphanum_fraction": 0.5767536428, "avg_line_length": 32.4285714286, "ext": "agda", "hexsha": "1f03236e5b6b3e42be3d57f8ce13f873bfb7e923", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/AVL/NonEmpty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/AVL/NonEmpty.agda", "max_line_length": 82, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/AVL/NonEmpty.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 995, "size": 2951 }