Search is not available for this dataset
text
string
meta
dict
module examplesPaperJFP.CounterCell where open import Data.Product open import Data.Nat.Base open import Data.Nat.Show open import Data.String.Base using (String; _++_) open import Size -- open import NativeIO -- open import SizedIO.Base -- open import SizedIO.Object -- open import SizedIO.IOObject -- open import SizedIO.ConsoleObject -- open import SizedIO.Console hiding (main) open import examplesPaperJFP.NativeIOSafe open import examplesPaperJFP.ConsoleInterface open import examplesPaperJFP.Console hiding (main) open import examplesPaperJFP.Object using (Interface; Method; Result; CellMethod; get; put; CellResult; cellJ) open import examplesPaperJFP.Sized hiding (program; main) data CounterMethod A : Set where super : (m : CellMethod A) → CounterMethod A stats : CounterMethod A pattern getᶜ = super get pattern putᶜ x = super (put x) statsCellI : (A : Set) → Interface Method (statsCellI A) = CounterMethod A Result (statsCellI A) (super m) = Result (cellJ A) m Result (statsCellI A) stats = Unit CounterC : (i : Size) → Set CounterC = IOObject ConsoleInterface (statsCellI String) counterCell : ∀{i} (c : CellC i) (ngets nputs : ℕ) → CounterC i method (counterCell c ngets nputs) getᶜ = method c get >>= λ { (s , c′) → return (s , counterCell c′ (1 + ngets) nputs) } method (counterCell c ngets nputs) (putᶜ x) = method c (put x) >>= λ { (_ , c′) → return (unit , counterCell c′ ngets (1 + nputs)) } method (counterCell c ngets nputs) stats = exec (putStrLn ("Counted " ++ show ngets ++ " calls to get and " ++ show nputs ++ " calls to put.")) λ _ → return (unit , counterCell c ngets nputs) program : String → IO ConsoleInterface ∞ Unit program arg = let c₀ = counterCell (simpleCell "Start") 0 0 in method c₀ getᶜ >>= λ{ (s , c₁) → exec (putStrLn s) λ _ → method c₁ (putᶜ arg) >>= λ{ (_ , c₂) → method c₂ getᶜ >>= λ{ (s′ , c₃) → exec (putStrLn s′) λ _ → method c₃ (putᶜ "Over!") >>= λ{ (_ , c₄) → method c₄ stats >>= λ{ (_ , c₅) → return unit }}}}} main : NativeIO Unit main = translateIO translateIOConsoleLocal (program "Hello")
{ "alphanum_fraction": 0.629982669, "avg_line_length": 32.9714285714, "ext": "agda", "hexsha": "4d6091193fa82bcf3dfe82b9f5a6bf77c75822f3", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/CounterCell.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/CounterCell.agda", "max_line_length": 110, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/CounterCell.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 697, "size": 2308 }
module bools where open import lib ---------------------------------------------------------------------- -- these problems are about the nand operator, also known as the Scheffer stroke ---------------------------------------------------------------------- nand-not : ∀ (b : 𝔹) → ~ b ≡ b nand b nand-not tt = refl nand-not ff = refl nand-or : ∀ (b1 b2 : 𝔹) → b1 || b2 ≡ (b1 nand b1) nand (b2 nand b2) nand-or tt tt = refl nand-or tt ff = refl nand-or ff tt = refl nand-or ff ff = refl nand-and : ∀ (b1 b2 : 𝔹) → b1 && b2 ≡ (b1 nand b2) nand (b1 nand b2) nand-and tt tt = refl nand-and tt ff = refl nand-and ff tt = refl nand-and ff ff = refl nand-imp : ∀ (b1 b2 : 𝔹) → b1 imp b2 ≡ b1 nand (b2 nand b2) nand-imp tt tt = refl nand-imp tt ff = refl nand-imp ff tt = refl nand-imp ff ff = refl ite-not : ∀(A : Set)(x : 𝔹)(y : A)(z : A) → if x then y else z ≡ if ~ x then z else y ite-not A tt y z = refl ite-not A ff y z = refl &&-distrib : ∀ x y z → x && (y || z) ≡ (x && y) || (x && z) &&-distrib tt tt tt = refl &&-distrib tt tt ff = refl &&-distrib tt ff tt = refl &&-distrib tt ff ff = refl &&-distrib ff tt tt = refl &&-distrib ff tt ff = refl &&-distrib ff ff tt = refl &&-distrib ff ff ff = refl combK : ∀ x y → x imp (y imp x) ≡ tt combK tt tt = refl combK tt ff = refl combK ff tt = refl combK ff ff = refl combS : ∀ x y z → (x imp (y imp z)) ≡ tt → (x imp y) ≡ tt → x ≡ tt → z ≡ tt combS tt tt tt x₁ x₂ x₃ = refl
{ "alphanum_fraction": 0.5148448043, "avg_line_length": 28.5, "ext": "agda", "hexsha": "2ba45644141ea02aba82bac9bc9c453d8d1e49c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "51d54ed9c232f93baad238d328b77dd024344226", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout6", "max_forks_repo_path": "bools.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "51d54ed9c232f93baad238d328b77dd024344226", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout6", "max_issues_repo_path": "bools.agda", "max_line_length": 86, "max_stars_count": null, "max_stars_repo_head_hexsha": "51d54ed9c232f93baad238d328b77dd024344226", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout6", "max_stars_repo_path": "bools.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 553, "size": 1482 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cohomology.ChainComplex open import cohomology.Theory open import groups.KernelImage open import cw.CW module cw.cohomology.ReconstructedCochainComplex {i : ULevel} (OT : OrdinaryTheory i) where open OrdinaryTheory OT import cw.cohomology.TipAndAugment OT as TAA import cw.cohomology.TipCoboundary OT as TC import cw.cohomology.HigherCoboundary OT as HC open import cw.cohomology.WedgeOfCells OT cochain-template : ∀ {n} (⊙skel : ⊙Skeleton {i} n) {m} → Dec (m ≤ n) → AbGroup i cochain-template ⊙skel (inr _) = Lift-abgroup {j = i} Unit-abgroup cochain-template ⊙skel {m = 0} (inl 0≤n) = TAA.C2×CX₀-abgroup (⊙cw-take 0≤n ⊙skel) 0 cochain-template ⊙skel {m = S m} (inl Sm≤n) = CXₙ/Xₙ₋₁-abgroup (⊙cw-take Sm≤n ⊙skel) (ℕ-to-ℤ (S m)) cochain-is-abelian-template : ∀ {n} (⊙skel : ⊙Skeleton {i} n) {m} m≤n? → is-abelian (AbGroup.grp (cochain-template ⊙skel {m} m≤n?)) cochain-is-abelian-template ⊙skel m≤n? = AbGroup.comm (cochain-template ⊙skel m≤n?) abstract private coboundary-first-template : ∀ {n} (⊙skel : ⊙Skeleton {i} n) → (0≤n : 0 ≤ n) (1≤n : 1 ≤ n) → ⊙cw-init (⊙cw-take 1≤n ⊙skel) == ⊙cw-take (≤-trans lteS 1≤n) ⊙skel → ⊙cw-take (≤-trans lteS 1≤n) ⊙skel == ⊙cw-take 0≤n ⊙skel → TAA.C2×CX₀ (⊙cw-take 0≤n ⊙skel) 0 →ᴳ CXₙ/Xₙ₋₁ (⊙cw-take 1≤n ⊙skel) 1 coboundary-first-template ⊙skel 0≤n 1≤n path₀ path₁ = TC.cw-co∂-head (⊙cw-take 1≤n ⊙skel) ∘ᴳ transport!ᴳ (λ ⊙skel → TAA.C2×CX₀ ⊙skel 0) (path₀ ∙ path₁) coboundary-higher-template : ∀ {n} (⊙skel : ⊙Skeleton {i} n) → {m : ℕ} (Sm≤n : S m ≤ n) (SSm≤n : S (S m) ≤ n) → ⊙cw-init (⊙cw-take SSm≤n ⊙skel) == ⊙cw-take (≤-trans lteS SSm≤n) ⊙skel → ⊙cw-take (≤-trans lteS SSm≤n) ⊙skel == ⊙cw-take Sm≤n ⊙skel → CXₙ/Xₙ₋₁ (⊙cw-take Sm≤n ⊙skel) (ℕ-to-ℤ (S m)) →ᴳ CXₙ/Xₙ₋₁ (⊙cw-take SSm≤n ⊙skel) (ℕ-to-ℤ (S (S m))) coboundary-higher-template ⊙skel {m} Sm≤n SSm≤n path₀ path₁ = HC.cw-co∂-last (⊙cw-take SSm≤n ⊙skel) ∘ᴳ transport!ᴳ (λ ⊙skel → CXₙ/Xₙ₋₁ ⊙skel (ℕ-to-ℤ (S m))) (path₀ ∙ path₁) coboundary-template : ∀ {n} (⊙skel : ⊙Skeleton {i} n) → {m : ℕ} (m≤n? : Dec (m ≤ n)) (Sm≤n? : Dec (S m ≤ n)) → AbGroup.grp (cochain-template ⊙skel m≤n?) →ᴳ AbGroup.grp (cochain-template ⊙skel Sm≤n?) coboundary-template ⊙skel _ (inr _) = cst-hom coboundary-template ⊙skel (inr m≰n) (inl Sm≤n) = ⊥-rec $ m≰n (≤-trans lteS Sm≤n) coboundary-template ⊙skel {m = 0} (inl 0≤n) (inl 1≤n) = coboundary-first-template ⊙skel 0≤n 1≤n (⊙cw-init-take 1≤n ⊙skel) (ap (λ 0≤n → ⊙cw-take 0≤n ⊙skel) (≤-has-all-paths (≤-trans lteS 1≤n) 0≤n)) coboundary-template ⊙skel {m = S m} (inl Sm≤n) (inl SSm≤n) = coboundary-higher-template ⊙skel Sm≤n SSm≤n (⊙cw-init-take SSm≤n ⊙skel) (ap (λ Sm≤n → ⊙cw-take Sm≤n ⊙skel) (≤-has-all-paths (≤-trans lteS SSm≤n) Sm≤n)) cochain-complex : ∀ {n} → ⊙Skeleton {i} n → CochainComplex i cochain-complex {n} ⊙skel = record {M} where module M where head : AbGroup i head = C-abgroup 0 (⊙Lift ⊙Bool) cochain : ℕ → AbGroup i cochain m = cochain-template ⊙skel (≤-dec m n) augment : C 0 (⊙Lift ⊙Bool) →ᴳ AbGroup.grp (cochain 0) augment = TAA.cw-coε (⊙cw-take (O≤ n) ⊙skel) coboundary : ∀ m → (AbGroup.grp (cochain m) →ᴳ AbGroup.grp (cochain (S m))) coboundary m = coboundary-template ⊙skel (≤-dec m n) (≤-dec (S m) n) {- Properties of coboundaries -} {- lemmas of paths -} private abstract path-lemma₀ : ∀ {n} (⊙skel : ⊙Skeleton {i} (S n)) {m} (m<n : m < n) (Sm<n : S m < n) → ap (λ m≤Sn → ⊙cw-take m≤Sn ⊙skel) (≤-has-all-paths (≤-trans lteS (lteSR (inr Sm<n))) (lteSR (inr m<n))) == ap (λ m≤n → ⊙cw-take m≤n (⊙cw-init ⊙skel)) (≤-has-all-paths (≤-trans lteS (inr Sm<n)) (inr m<n)) path-lemma₀ ⊙skel m<n Sm<n = ap (λ m≤Sn → ⊙cw-take m≤Sn ⊙skel) (≤-has-all-paths (≤-trans lteS (lteSR (inr Sm<n))) (lteSR (inr m<n))) =⟨ ap (ap (λ m≤Sn → ⊙cw-take m≤Sn ⊙skel)) (contr-has-all-paths (≤-is-prop _ _) _ _) ⟩ ap (λ m≤Sn → ⊙cw-take m≤Sn ⊙skel) (ap (lteSR ∘ inr) (<-has-all-paths (<-trans ltS Sm<n) m<n)) =⟨ ∘-ap (λ m≤Sn → ⊙cw-take m≤Sn ⊙skel) (lteSR ∘ inr) _ ⟩ ap (λ Sm<n → ⊙cw-take (lteSR (inr Sm<n)) ⊙skel) (<-has-all-paths (<-trans ltS Sm<n) m<n) =⟨ ap-∘ (λ m≤n → ⊙cw-take m≤n (⊙cw-init ⊙skel)) inr _ ⟩ ap (λ m≤n → ⊙cw-take m≤n (⊙cw-init ⊙skel)) (ap inr (<-has-all-paths (<-trans ltS Sm<n) m<n)) =⟨ ap (ap (λ m≤n → ⊙cw-take m≤n (⊙cw-init ⊙skel))) (contr-has-all-paths (≤-is-prop _ _) _ _) ⟩ ap (λ m≤n → ⊙cw-take m≤n (⊙cw-init ⊙skel)) (≤-has-all-paths (≤-trans lteS (inr Sm<n)) (inr m<n)) =∎ -- would be trivial with [≤-has-all-paths] defined with the set detection (issue #2003) path-lemma₁ : ∀ {n} (⊙skel : ⊙Skeleton {i} (S (S n))) → ap (λ n≤SSn → ⊙cw-take n≤SSn ⊙skel) (≤-has-all-paths (lteSR lteS) (lteSR lteS)) == ap (λ n≤Sn → ⊙cw-take n≤Sn (⊙cw-init ⊙skel)) (≤-has-all-paths lteS lteS) path-lemma₁ ⊙skel = ap (λ n≤SSn → ⊙cw-take n≤SSn ⊙skel) (≤-has-all-paths (lteSR lteS) (lteSR lteS)) =⟨ ap (ap (λ n≤SSn → ⊙cw-take n≤SSn ⊙skel)) (contr-has-all-paths (≤-is-prop _ _) _ _) ⟩ idp =⟨ ap (ap (λ n≤Sn → ⊙cw-take n≤Sn (⊙cw-init ⊙skel))) (contr-has-all-paths (≤-is-prop _ _) _ _) ⟩ ap (λ n≤Sn → ⊙cw-take n≤Sn (⊙cw-init ⊙skel)) (≤-has-all-paths lteS lteS) =∎ -- would be trivial with [≤-has-all-paths] defined with the set detection (issue #2003) path-lemma₂ : ∀ {n} (⊙skel : ⊙Skeleton {i} (S n)) → ap (λ n≤Sn → ⊙cw-take n≤Sn ⊙skel) (≤-has-all-paths lteS lteS) == idp path-lemma₂ ⊙skel = ap (λ n≤Sn → ⊙cw-take n≤Sn ⊙skel) (≤-has-all-paths lteS lteS) =⟨ ap (ap (λ n≤Sn → ⊙cw-take n≤Sn ⊙skel)) (contr-has-all-paths (≤-is-prop _ _) _ _) ⟩ idp =∎ {- properties of coboundary-template -} abstract {- lemmas of the first coboundary -} coboundary-first-template-descend-from-far : ∀ {n} (⊙skel : ⊙Skeleton {i} (S n)) 0<n 1<n → coboundary-template {n = S n} ⊙skel {0} (inl (lteSR (inr 0<n))) (inl (lteSR (inr 1<n))) == coboundary-template {n = n} (⊙cw-init ⊙skel) (inl (inr 0<n)) (inl (inr 1<n)) coboundary-first-template-descend-from-far ⊙skel 0<n 1<n = ap (coboundary-first-template ⊙skel (lteSR (inr 0<n)) (lteSR (inr 1<n)) (⊙cw-init-take (lteSR (inr 1<n)) ⊙skel)) (path-lemma₀ ⊙skel 0<n 1<n) coboundary-first-template-descend-from-two : ∀ (⊙skel : ⊙Skeleton {i} 2) → coboundary-template {n = 2} ⊙skel (inl (lteSR lteS)) (inl lteS) == coboundary-template {n = 1} (⊙cw-init ⊙skel) (inl lteS) (inl lteE) coboundary-first-template-descend-from-two ⊙skel = ap (coboundary-first-template ⊙skel (lteSR lteS) lteS idp) (path-lemma₁ ⊙skel) coboundary-first-template-β : ∀ (⊙skel : ⊙Skeleton {i} 1) → coboundary-template {n = 1} ⊙skel (inl lteS) (inl lteE) == TC.cw-co∂-head ⊙skel coboundary-first-template-β ⊙skel = group-hom= $ ap (GroupHom.f ∘ coboundary-first-template ⊙skel lteS lteE idp) (path-lemma₂ ⊙skel) {- lemmas of higher coboundaries -} coboundary-higher-template-descend-from-far : ∀ {n} (⊙skel : ⊙Skeleton {i} (S n)) {m} Sm<n SSm<n → coboundary-template {n = S n} ⊙skel {m = S m} (inl (lteSR (inr Sm<n))) (inl (lteSR (inr SSm<n))) == coboundary-template {n = n} (⊙cw-init ⊙skel) {m = S m} (inl (inr Sm<n)) (inl (inr SSm<n)) coboundary-higher-template-descend-from-far ⊙skel {m} Sm<n SSm<n = ap (coboundary-higher-template ⊙skel (lteSR (inr Sm<n)) (lteSR (inr SSm<n)) (⊙cw-init-take (lteSR (inr SSm<n)) ⊙skel)) (path-lemma₀ ⊙skel Sm<n SSm<n) coboundary-higher-template-descend-from-one-above : ∀ {n} (⊙skel : ⊙Skeleton {i} (S (S (S n)))) → coboundary-template {n = S (S (S n))} ⊙skel {m = S n} (inl (lteSR lteS)) (inl lteS) == coboundary-template {n = S (S n)} (⊙cw-init ⊙skel) {m = S n} (inl lteS) (inl lteE) coboundary-higher-template-descend-from-one-above ⊙skel = ap (coboundary-higher-template ⊙skel (lteSR lteS) lteS idp) (path-lemma₁ ⊙skel) coboundary-higher-template-β : ∀ {n} (⊙skel : ⊙Skeleton {i} (S (S n))) → coboundary-template {n = S (S n)} ⊙skel {m = S n} (inl lteS) (inl lteE) == HC.cw-co∂-last ⊙skel coboundary-higher-template-β ⊙skel = group-hom= $ ap (GroupHom.f ∘ coboundary-higher-template ⊙skel lteS lteE idp) (path-lemma₂ ⊙skel)
{ "alphanum_fraction": 0.5757610969, "avg_line_length": 54.4683544304, "ext": "agda", "hexsha": "a881314baa1c8fb385a932598dfe1785038bfc00", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z", "max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mikeshulman/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/ReconstructedCochainComplex.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mikeshulman/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/ReconstructedCochainComplex.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mikeshulman/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/ReconstructedCochainComplex.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3936, "size": 8606 }
module Cats.Util.Logic.Constructive where open import Data.Empty public using (⊥ ; ⊥-elim) open import Data.Product public using (_,_ ; ∃-syntax ; Σ-syntax) renaming (_×_ to _∧_ ; proj₁ to ∧-eliml ; proj₂ to ∧-elimr) open import Data.Sum public using () renaming (_⊎_ to _∨_ ; inj₁ to ∨-introl ; inj₂ to ∨-intror) open import Data.Unit public using (⊤) renaming (tt to ⊤-intro) open import Relation.Nullary public using (¬_) -- De Morgan's constructive rules module _ {p q} {P : Set p} {Q : Set q} where ¬∨¬→¬∧ : ¬ P ∨ ¬ Q → ¬ (P ∧ Q) ¬∨¬→¬∧ (∨-introl ¬p) (p , _) = ¬p p ¬∨¬→¬∧ (∨-intror ¬q) (_ , q) = ¬q q ¬∨→¬∧¬ : ¬ (P ∨ Q) → ¬ P ∧ ¬ Q ¬∨→¬∧¬ ¬p∨q = (λ p → ¬p∨q (∨-introl p)) , (λ q → ¬p∨q (∨-intror q)) ¬∧¬→¬∨ : ¬ P ∧ ¬ Q → ¬ (P ∨ Q) ¬∧¬→¬∨ (¬p , _) (∨-introl p) = ¬p p ¬∧¬→¬∨ (_ , ¬q) (∨-intror q) = ¬q q -- Quantifiers and negation module _ {u p} {U : Set u} {P : U → Set p} where ¬∃→∀¬ : ¬ (∃[ u ] (P u)) → ∀ u → ¬ P u ¬∃→∀¬ ¬∃ u pu = ¬∃ (u , pu) ∀¬→¬∃ : (∀ u → ¬ (P u)) → ¬ (∃[ u ] (P u)) ∀¬→¬∃ ∀¬ (u , pu) = ∀¬ u pu ∃¬→¬∀ : ∃[ u ] (¬ P u) → ¬ (∀ u → P u) ∃¬→¬∀ (u , ¬pu) ∀upu = ¬pu (∀upu u)
{ "alphanum_fraction": 0.4516407599, "avg_line_length": 24.125, "ext": "agda", "hexsha": "d91a5a5f8ac4e5443830f25e05e5f6f28a37507b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Util/Logic/Constructive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Util/Logic/Constructive.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Util/Logic/Constructive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 579, "size": 1158 }
{-# OPTIONS --safe #-} module Cubical.Algebra.Group.Instances.DiffInt where open import Cubical.Foundations.Prelude open import Cubical.Data.Int.MoreInts.DiffInt renaming ( _+_ to _+ℤ_ ; _-_ to _-ℤ_) open import Cubical.Algebra.Group.Base open import Cubical.HITs.SetQuotients open GroupStr ℤGroup : Group₀ fst ℤGroup = ℤ 1g (snd ℤGroup) = [ 0 , 0 ] _·_ (snd ℤGroup) = _+ℤ_ inv (snd ℤGroup) = -ℤ_ isGroup (snd ℤGroup) = makeIsGroup ℤ-isSet +ℤ-assoc (λ x → zero-identityʳ 0 x) (λ x → zero-identityˡ 0 x) -ℤ-invʳ -ℤ-invˡ
{ "alphanum_fraction": 0.568627451, "avg_line_length": 25.5, "ext": "agda", "hexsha": "a56ca50eca5e40926e17cd10ed342a27eb83a773", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Group/Instances/DiffInt.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Group/Instances/DiffInt.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Group/Instances/DiffInt.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 211, "size": 663 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Groups open import Groups.Homomorphisms.Definition open import Groups.Definition open import Numbers.Naturals.Naturals open import Setoids.Setoids open import Functions.Definition open import Sets.EquivalenceRelations open import Rings.Definition open import Rings.Homomorphisms.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Rings.Homomorphisms.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+A_ _*A_ : A → A → A} (R : Ring S _+A_ _*A_) where open import Groups.Homomorphisms.Lemmas2 (Ring.additiveGroup R) imageRing : {c d : _} {B : Set c} {T : Setoid {c} {d} B} {_+B_ : B → B → B} {_*B_ : B → B → B} → (f : A → B) → SetoidSurjection S T f → ({x y : A} → Setoid._∼_ T (f (x +A y)) ((f x) +B (f y))) → ({x y : A} → Setoid._∼_ T (f (x *A y)) ((f x) *B (f y))) → ({x y m n : B} → Setoid._∼_ T x m → Setoid._∼_ T y n → Setoid._∼_ T (x +B y) (m +B n)) → ({x y m n : B} → Setoid._∼_ T x m → Setoid._∼_ T y n → Setoid._∼_ T (x *B y) (m *B n)) → Ring T _+B_ _*B_ Ring.additiveGroup (imageRing f surj respects+ respects* +wd *wd) = imageGroup f surj respects+ +wd Ring.*WellDefined (imageRing f surj respects+ respects* +wd *wd) = *wd Ring.1R (imageRing f surj respects+ respects* +wd *wd) = f (Ring.1R R) Ring.groupIsAbelian (imageRing {T = T} f record { surjective = surjective ; wellDefined = wellDefined } respects+ respects* +wd *wd) {a} {b} with surjective {a} ... | x , fx=a with surjective {b} ... | y , fy=b = transitive (+wd (symmetric fx=a) (symmetric fy=b)) (transitive (transitive (symmetric respects+) (transitive (wellDefined (Ring.groupIsAbelian R)) respects+)) (+wd fy=b fx=a)) where open Setoid T open Equivalence eq Ring.*Associative (imageRing {T = T} f record { surjective = surjective ; wellDefined = wellDefined } respects+ respects* +wd *wd) {a} {b} {c} with surjective {a} ... | x , fx=a with surjective {b} ... | y , fy=b with surjective {c} ... | z , fz=c = transitive (*wd (symmetric fx=a) (transitive (*wd (symmetric fy=b) (symmetric fz=c)) (symmetric respects*))) (transitive (transitive (symmetric respects*) (transitive (wellDefined (Ring.*Associative R)) respects*)) (*wd (transitive respects* (*wd fx=a fy=b)) fz=c)) where open Setoid T open Equivalence eq Ring.*Commutative (imageRing {T = T} f record { surjective = surjective ; wellDefined = wellDefined } respects+ respects* +wd *wd) {a} {b} with surjective {a} ... | x , fx=a with surjective {b} ... | y , fy=b = transitive (*wd (symmetric fx=a) (symmetric fy=b)) (transitive (transitive (symmetric respects*) (transitive (wellDefined (Ring.*Commutative R)) respects*)) (*wd fy=b fx=a)) where open Setoid T open Equivalence eq Ring.*DistributesOver+ (imageRing {T = T} f record { surjective = surjective ; wellDefined = wellDefined } respects+ respects* +wd *wd) {a} {b} {c} with surjective {a} ... | x , fx=a with surjective {b} ... | y , fy=b with surjective {c} ... | z , fz=c = transitive (*wd (symmetric fx=a) (+wd (symmetric fy=b) (symmetric fz=c))) (transitive (transitive (transitive (*wd reflexive (symmetric respects+)) (symmetric respects*)) (transitive (transitive (wellDefined (Ring.*DistributesOver+ R)) respects+) (+wd respects* respects*))) (+wd (*wd fx=a fy=b) (*wd fx=a fz=c))) where open Setoid T open Equivalence eq Ring.identIsIdent (imageRing {T = T} f record { wellDefined = wellDefined ; surjective = surjective } respects+ respects* +wd *wd) {b} with surjective {b} Ring.identIsIdent (imageRing {T = T} f record { wellDefined = wellDefined ; surjective = surjective } respects+ respects* +wd *wd) {b} | a , fa=b = transitive (transitive (*wd reflexive (symmetric fa=b)) (transitive (symmetric respects*) (wellDefined (Ring.identIsIdent R)))) fa=b where open Setoid T open Equivalence eq homToImageRing : {c d : _} {B : Set c} {T : Setoid {c} {d} B} {_+B_ : B → B → B} {_*B_ : B → B → B} → (f : A → B) → (surj : SetoidSurjection S T f) → (respects+ : {x y : A} → Setoid._∼_ T (f (x +A y)) ((f x) +B (f y))) → (respects* : {x y : A} → Setoid._∼_ T (f (x *A y)) ((f x) *B (f y))) → (+wd : {x y m n : B} → Setoid._∼_ T x m → Setoid._∼_ T y n → Setoid._∼_ T (x +B y) (m +B n)) → (*wd : {x y m n : B} → Setoid._∼_ T x m → Setoid._∼_ T y n → Setoid._∼_ T (x *B y) (m *B n)) → RingHom R (imageRing f surj respects+ respects* +wd *wd) f RingHom.preserves1 (homToImageRing {T = T} f surj respects+ respects* +wd *wd) = reflexive where open Setoid T open Equivalence eq RingHom.ringHom (homToImageRing f surj respects+ respects* +wd *wd) = respects* RingHom.groupHom (homToImageRing f surj respects+ respects* +wd *wd) = homToImageGroup f surj respects+ +wd
{ "alphanum_fraction": 0.6532071504, "avg_line_length": 75.4761904762, "ext": "agda", "hexsha": "79fff15a95e41668a0fbd77a7f62acba8ada51ab", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/Homomorphisms/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/Homomorphisms/Lemmas.agda", "max_line_length": 540, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/Homomorphisms/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 1668, "size": 4755 }
-- {-# OPTIONS --sized-types #-} module Issue166NotSized where postulate Size : Set ↑_ : Size → Size ∞ : Size -- {-# BUILTIN SIZE Size #-} -- {-# BUILTIN SIZESUC ↑_ #-} -- {-# BUILTIN SIZEINF ∞ #-} data ⊥ : Set where module M (A : Set) where data SizedNat : {i : Size} → Set where zero : {i : Size} → SizedNat {↑ i} suc : {i : Size} → SizedNat {i} → SizedNat {↑ i} open M ⊥
{ "alphanum_fraction": 0.5328467153, "avg_line_length": 17.8695652174, "ext": "agda", "hexsha": "56db6da1f319f5009fe71c8bc5745f490bb269a7", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/bugs/Issue166NotSized.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/bugs/Issue166NotSized.agda", "max_line_length": 53, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/bugs/Issue166NotSized.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 145, "size": 411 }
------------------------------------------------------------------------ -- Total parser combinators (very short version) -- Nils Anders Danielsson ------------------------------------------------------------------------ module Short where open import Category.Monad open import Coinduction open import Data.Bool import Data.BoundedVec.Inefficient as BoundedVec open import Data.Char import Data.Colist as Colist open import Data.List as List open import Data.Maybe open import Data.Nat open import Data.Nat.Show open import Data.String using (Costring) open import Function open import IO hiding (return) renaming (_>>=_ to _>>=IO_) open import Relation.Nullary.Decidable open RawMonadPlus List.monadPlus using () renaming (_>>=_ to _>>=′_) infix 7 _⋆ _+ infixl 6 _>>=_ _>>=app_ infixl 5 _∣_ ------------------------------------------------------------------------ -- Helper functions flatten : {A : Set} → Maybe (List A) → List A flatten nothing = [] flatten (just xs) = xs app : {A B : Set} → Maybe (A → List B) → A → List B app nothing x = [] app (just f) x = f x _>>=app_ : {A B : Set} → List A → Maybe (A → List B) → List B xs >>=app nothing = [] xs >>=app just f = xs >>=′ f ------------------------------------------------------------------------ -- Parsers mutual data Parser : (R : Set) → List R → Set₁ where return : ∀ {R} (x : R) → Parser R [ x ] fail : ∀ {R} → Parser R [] token : Parser Char [] _∣_ : ∀ {R xs₁ xs₂} (p₁ : Parser R xs₁ ) (p₂ : Parser R xs₂) → Parser R (xs₁ ++ xs₂) _>>=_ : ∀ {R₁ R₂ xs} {f : Maybe (R₁ → List R₂)} (p₁ : ∞⟨ f ⟩Parser R₁ (flatten xs) ) (p₂ : (x : R₁) → ∞⟨ xs ⟩Parser R₂ (app f x)) → Parser R₂ (flatten xs >>=app f) ∞⟨_⟩Parser : {R₂ : Set} → Maybe R₂ → (R₁ : Set) → List R₁ → Set₁ ∞⟨ nothing ⟩Parser R₁ xs = ∞ (Parser R₁ xs) ∞⟨ just _ ⟩Parser R₁ xs = Parser R₁ xs ------------------------------------------------------------------------ -- Derived combinators sat : ∀ {R} → (Char → Maybe R) → Parser R [] sat {R} p = token >>= (ok ∘ p) where ok-index : Maybe R → List R ok-index nothing = [] ok-index (just x) = [ x ] ok : (x : Maybe R) → Parser R (ok-index x) ok nothing = fail ok (just x) = return x tok : Char → Parser Char [] tok t = sat (λ t′ → if t == t′ then just t′ else nothing) return⋆ : ∀ {R} (xs : List R) → Parser R xs return⋆ [] = fail return⋆ (x ∷ xs) = return x ∣ return⋆ xs mutual _⋆ : ∀ {R} → Parser R [] → Parser (List R) _ p ⋆ = return [] ∣ p + _+ : ∀ {R} → Parser R [] → Parser (List R) _ p + = p >>= λ x → ♯ ( p ⋆ >>= λ xs → return (x ∷ xs) ) digit = sat (λ t → if in-range t then just (to-number t) else nothing) where in-range : Char → Bool in-range t = ⌊ toNat '0' ≤? toNat t ⌋ ∧ ⌊ toNat t ≤? toNat '9' ⌋ to-number : Char → ℕ to-number t = toNat t ∸ toNat '0' number = digit + >>= return ∘ foldl (λ n d → 10 * n + d) 0 ------------------------------------------------------------------------ -- Parser interpreter delayed? : ∀ {R R′ xs} {m : Maybe R′} → ∞⟨ m ⟩Parser R xs → Maybe R′ delayed? {m = m} _ = m delayed?′ : ∀ {R₁ R₂ R′ : Set} {m : Maybe R′} {f : R₁ → List R₂} → ((x : R₁) → ∞⟨ m ⟩Parser R₂ (f x)) → Maybe R′ delayed?′ {m = m} _ = m ∂-initial : ∀ {R xs} → Parser R xs → Char → List R ∂-initial (return x) t = [] ∂-initial fail t = [] ∂-initial token t = [ t ] ∂-initial (p₁ ∣ p₂) t = ∂-initial p₁ t ++ ∂-initial p₂ t ∂-initial (p₁ >>= p₂) t with delayed? p₁ | delayed?′ p₂ ... | just f | nothing = ∂-initial p₁ t >>=′ f ... | just f | just xs = (∂-initial p₁ t >>=′ f) ++ (xs >>=′ λ x → ∂-initial (p₂ x) t) ... | nothing | nothing = [] ... | nothing | just xs = xs >>=′ λ x → ∂-initial (p₂ x) t ∂ : ∀ {R xs} (p : Parser R xs) (t : Char) → Parser R (∂-initial p t) ∂ (return x) t = fail ∂ fail t = fail ∂ token t = return t ∂ (p₁ ∣ p₂) t = ∂ p₁ t ∣ ∂ p₂ t ∂ (p₁ >>= p₂) t with delayed? p₁ | delayed?′ p₂ ... | just f | nothing = ∂ p₁ t >>= (λ x → ♭ (p₂ x)) ... | just f | just xs = ∂ p₁ t >>= (λ x → p₂ x) ∣ return⋆ xs >>= λ x → ∂ (p₂ x) t ... | nothing | nothing = ♯ ∂ (♭ p₁) t >>= (λ x → ♭ (p₂ x)) ... | nothing | just xs = ♯ ∂ (♭ p₁) t >>= (λ x → p₂ x) ∣ return⋆ xs >>= λ x → ∂ (p₂ x) t parse : ∀ {R xs} → Parser R xs → List Char → List R parse {xs = xs} p [] = xs parse p (t ∷ s) = parse (∂ p t) s ------------------------------------------------------------------------ -- Example data Expr : Set where num : (n : ℕ) → Expr plus : (e₁ e₂ : Expr) → Expr times : (e₁ e₂ : Expr) → Expr ⟦_⟧ : Expr → ℕ ⟦ num n ⟧ = n ⟦ plus e₁ e₂ ⟧ = ⟦ e₁ ⟧ + ⟦ e₂ ⟧ ⟦ times e₁ e₂ ⟧ = ⟦ e₁ ⟧ * ⟦ e₂ ⟧ mutual term = factor ∣ ♯ term >>= λ e₁ → tok '+' >>= λ _ → factor >>= λ e₂ → return (plus e₁ e₂) factor = atom ∣ ♯ factor >>= λ e₁ → tok '*' >>= λ _ → atom >>= λ e₂ → return (times e₁ e₂) atom = (number >>= return ∘ num) ∣ tok '(' >>= λ _ → ♯ term >>= λ e → tok ')' >>= λ _ → return e ------------------------------------------------------------------------ -- IO toList : Costring → List Char toList = BoundedVec.toList ∘ Colist.take 100000 main = run $ ♯ getContents >>=IO λ s → ♯ let s′ = takeWhile (not ∘ _==_ '\n') $ toList s es = parse term s′ in mapM′ (putStrLn ∘ show ∘ ⟦_⟧) (Colist.fromList es)
{ "alphanum_fraction": 0.4276944065, "avg_line_length": 30.7015706806, "ext": "agda", "hexsha": "adcdce970d1d8d5e4858534016943a28acbc0bcd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/parser-combinators", "max_forks_repo_path": "misc/Short.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644", "max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z", "max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/parser-combinators", "max_issues_repo_path": "misc/Short.agda", "max_line_length": 73, "max_stars_count": 7, "max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yurrriq/parser-combinators", "max_stars_repo_path": "misc/Short.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z", "num_tokens": 1973, "size": 5864 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A solver that uses reflection to automatically obtain and solve -- equations over rings. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Tactic.RingSolver where open import Agda.Builtin.Reflection open import Algebra open import Data.Fin as Fin using (Fin) open import Data.Vec as Vec using (Vec; _∷_; []) open import Data.List as List using (List; _∷_; []) open import Data.Maybe.Base as Maybe using (Maybe; just; nothing; fromMaybe) open import Data.Nat using (ℕ; suc; zero; _<ᵇ_) open import Data.Nat.Reflection using (toTerm; toFinTerm) open import Data.Bool using (Bool; if_then_else_; true; false) open import Data.Unit using (⊤) open import Data.String using (String) open import Data.Product using (_,_) open import Function open import Reflection.Argument open import Reflection.Term open import Reflection.TypeChecking.MonadSyntax open import Tactic.RingSolver.NonReflective renaming (solve to solve-fn) open import Tactic.RingSolver.Core.AlmostCommutativeRing open import Tactic.RingSolver.Core.NatSet as NatSet open import Tactic.RingSolver.Core.ReflectionHelp open AlmostCommutativeRing ------------------------------------------------------------------------ -- Processing ------------------------------------------------------------------------ private record RingNames : Set where constructor +⇒_*⇒_^⇒_-⇒_ field +′ *′ ^′ -′ : Maybe Name checkIsRing : Term → TC Term checkIsRing ring = checkType ring (def (quote AlmostCommutativeRing) (2 ⋯⟨∷⟩ [])) getVariableIDs : Term → Maybe NatSet getVariableIDs = go [] where go : NatSet → Term → Maybe NatSet go t (con (quote List._∷_) (_ ∷ _ ∷ var i [] ⟨∷⟩ xs ⟨∷⟩ _)) = go (insert i t) xs go t (con (quote List.List.[]) _) = just t go _ _ = nothing module OverRing (ring : Term) where -- Takes the name of a function that takes the ring as it's first -- explicit argument and the terms of it's arguments and inserts -- the required ring arguments -- e.g. "_+_" $ʳ xs = "_+_ {_} {_} ring xs" _$ʳ_ : Name → Args Term → Term nm $ʳ args = def nm (2 ⋯⟅∷⟆ ring ⟨∷⟩ args) checkIsListOfVariables : Term → TC Term checkIsListOfVariables xs = checkType xs (def (quote List) (1 ⋯⟅∷⟆ (quote Carrier $ʳ []) ⟨∷⟩ [])) >>= normalise getFieldName : Name → TC (Maybe Name) getFieldName nm = normalise (nm $ʳ []) <&> λ where (def f args) → just f _ → nothing getRingOperatorNames : TC RingNames getRingOperatorNames = ⦇ +⇒ getFieldName (quote _+_) *⇒ getFieldName (quote _*_) ^⇒ getFieldName (quote _^_) -⇒ getFieldName (quote -_) ⦈ module _ (nms : RingNames) (numVars : ℕ) where open RingNames nms -- This function applies the hidden arguments that the constructors -- that Expr needs. The first is the universe level, the second is the -- type it contains, and the third is the number of variables it's -- indexed by. All three of these could likely be inferred, but to -- make things easier we supply the third because we know it. _$ᵉ_ : Name → List (Arg Term) → Term e $ᵉ xs = con e (1 ⋯⟅∷⟆ quote Carrier $ʳ [] ⟅∷⟆ toTerm numVars ⟅∷⟆ xs) -- A constant expression. Κ′ : Term → Term Κ′ x = quote Κ $ᵉ (x ⟨∷⟩ []) _⇓≟_ : Maybe Name → Name → Bool nothing ⇓≟ _ = false just x ⇓≟ y = primQNameEquality x y {-# INLINE _⇓≟_ #-} module ToExpr (Ι′ : ℕ → Maybe Term) where mutual -- Application of a ring operator often doesn't have a type as -- simple as "Carrier → Carrier → Carrier": there may be hidden -- arguments, etc. Here, we do our best to handle those cases, -- by just taking the last two explicit arguments. E⟨_⟩₂ : Name → List (Arg Term) → Term E⟨ nm ⟩₂ (x ⟨∷⟩ y ⟨∷⟩ []) = nm $ᵉ (E x ⟨∷⟩ E y ⟨∷⟩ []) E⟨ nm ⟩₂ (x ∷ xs) = E⟨ nm ⟩₂ xs E⟨ nm ⟩₂ _ = unknown E⟨_⟩₁ : Name → List (Arg Term) → Term E⟨ nm ⟩₁ (x ⟨∷⟩ []) = nm $ᵉ (E x ⟨∷⟩ []) E⟨ nm ⟩₁ (x ∷ xs) = E⟨ nm ⟩₁ xs E⟨ _ ⟩₁ _ = unknown E⟨^⟩ : List (Arg Term) → Term E⟨^⟩ (x ⟨∷⟩ y ⟨∷⟩ []) = quote _⊛_ $ᵉ (E x ⟨∷⟩ y ⟨∷⟩ []) E⟨^⟩ (x ∷ xs) = E⟨^⟩ xs E⟨^⟩ _ = unknown -- When trying to figure out the shape of an expression, one of -- the difficult tasks is recognizing where constants in the -- underlying ring are used. If we were only dealing with ℕ, we -- might look for its constructors: however, we want to deal with -- arbitrary types which implement AlmostCommutativeRing. If the -- Term type contained type information we might be able to -- recognize it there, but it doesn't. -- -- We're in luck, though, because all other cases in the following -- function *are* recognizable. As a result, the "catch-all" case -- will just assume that it has a constant expression. E : Term → Term -- Recognise the ring's fields E (def (quote _+_) xs) = E⟨ quote _⊕_ ⟩₂ xs E (def (quote _*_) xs) = E⟨ quote _⊗_ ⟩₂ xs E (def (quote _^_) xs) = E⟨^⟩ xs E (def (quote -_) xs) = E⟨ quote ⊝_ ⟩₁ xs -- Recognise the underlying implementation of the ring's fields E (def nm xs) = if +′ ⇓≟ nm then E⟨ quote _⊕_ ⟩₂ xs else if *′ ⇓≟ nm then E⟨ quote _⊗_ ⟩₂ xs else if ^′ ⇓≟ nm then E⟨^⟩ xs else if -′ ⇓≟ nm then E⟨ quote ⊝_ ⟩₁ xs else Κ′ (def nm xs) -- Variables E v@(var x _) = fromMaybe (Κ′ v) (Ι′ x) -- Special case to recognise "suc" for naturals E (con (quote ℕ.suc) (x ⟨∷⟩ [])) = quote _⊕_ $ᵉ (Κ′ (toTerm 1) ⟨∷⟩ E x ⟨∷⟩ []) E t = Κ′ t callSolver : Vec String numVars → Term → Term → Args Type callSolver nms lhs rhs = 2 ⋯⟅∷⟆ ring ⟨∷⟩ toTerm numVars ⟨∷⟩ vlams nms (quote _⊜_ $ʳ (toTerm numVars ⟨∷⟩ E lhs ⟨∷⟩ E rhs ⟨∷⟩ [])) ⟨∷⟩ hlams nms (quote refl $ʳ (1 ⋯⟅∷⟆ [])) ⟨∷⟩ [] where Ι′ : ℕ → Maybe Term Ι′ i = if i <ᵇ numVars then just (var i []) else nothing open ToExpr Ι′ constructSoln : NatSet → Term → Term → Term constructSoln t lhs rhs = quote trans $ʳ (3 ⋯⟅∷⟆ quote sym $ʳ (2 ⋯⟅∷⟆ quote Ops.correct $ʳ (1 ⋯⟅∷⟆ E lhs ⟨∷⟩ ρ ⟨∷⟩ []) ⟨∷⟩ []) ⟨∷⟩ (quote Ops.correct $ʳ (1 ⋯⟅∷⟆ E rhs ⟨∷⟩ ρ ⟨∷⟩ [])) ⟨∷⟩ []) where Ι′ : ℕ → Maybe Term Ι′ i = Maybe.map (λ x → quote Ι $ᵉ (toFinTerm x ⟨∷⟩ [])) (lookup i t) open ToExpr Ι′ ρ : Term ρ = curriedTerm t ------------------------------------------------------------------------ -- Macros ------------------------------------------------------------------------ -- This is the main macro which solves for equations in which the variables -- are universally quantified over: -- -- lemma : ∀ x y → x + y ≈ y + x -- lemma = solve-∀ TypeRing -- -- where TypRing is your implementation of AlmostCommutativeRing. (Find some -- example implementations in Polynomial.Solver.Ring.AlmostCommutativeRing.Instances). solve-∀-macro : Name → Term → TC ⊤ solve-∀-macro ring hole = do ring′ ← checkIsRing (def ring []) commitTC let open OverRing ring′ operatorNames ← getRingOperatorNames hole′ ← inferType hole >>= reduce let variables , k , equation = underPi hole′ just (lhs ∷ rhs ∷ []) ← pure (getArgs 2 equation) where nothing → typeError (strErr "Malformed call to solve." ∷ strErr "Expected target type to be like: ∀ x y → x + y ≈ y + x." ∷ strErr "Instead: " ∷ termErr hole′ ∷ []) unify hole (def (quote solve-fn) (callSolver operatorNames variables k lhs rhs)) macro solve-∀ : Name → Term → TC ⊤ solve-∀ = solve-∀-macro -- Use this macro when you want to solve something *under* a lambda. For example: -- say you have a long proof, and you just want the solver to deal with an -- intermediate step. Call it like so: -- -- lemma₃ : ∀ x y → x + y * 1 + 3 ≈ 2 + 1 + y + x -- lemma₃ x y = begin -- x + y * 1 + 3 ≈⟨ +-comm x (y * 1) ⟨ +-cong ⟩ refl ⟩ -- y * 1 + x + 3 ≈⟨ solve (x ∷ y ∷ []) Int.ring ⟩ -- 3 + y + x ≡⟨ refl ⟩ -- 2 + 1 + y + x ∎ -- -- The first argument is the free variables, and the second is the -- ring implementation (as before). -- -- One thing to note here is that we need to be able to infer *both* sides of -- the equality, which the normal equaltional reasoning combinators don't let you -- do. You'll need the combinators defined in Relation.Binary.Reasoning.Inference. -- These are just as powerful as the others, but have slightly better inference properties. solve-macro : Term → Name → Term → TC ⊤ solve-macro i ring hole = do ring′ ← checkIsRing (def ring []) commitTC let open OverRing ring′ operatorNames ← getRingOperatorNames listOfVariables′ ← checkIsListOfVariables i commitTC hole′ ← inferType hole >>= reduce just vars′ ← pure (getVariableIDs listOfVariables′) where nothing → typeError (strErr "Malformed call to solve." ∷ strErr "First argument should be a list of free variables." ∷ strErr "Instead: " ∷ termErr listOfVariables′ ∷ []) just (lhs ∷ rhs ∷ []) ← pure (getArgs 2 hole′) where nothing → typeError (strErr "Malformed call to solve." ∷ strErr "First argument should be a list of free variables." ∷ strErr "Instead: " ∷ termErr hole′ ∷ []) unify hole (constructSoln operatorNames (List.length vars′) vars′ lhs rhs) macro solve : Term → Name → Term → TC ⊤ solve = solve-macro
{ "alphanum_fraction": 0.5325426945, "avg_line_length": 40.694980695, "ext": "agda", "hexsha": "7cab859fed3d2f6060b6a80c5785a4bedccdd0a9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Tactic/RingSolver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Tactic/RingSolver.agda", "max_line_length": 97, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Tactic/RingSolver.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 3101, "size": 10540 }
{-# OPTIONS --without-K #-} open import homotopy.3x3.Common open import homotopy.3x3.PushoutPushout open import homotopy.3x3.Transpose module homotopy.JoinAssoc3x3 {i} (A B C : Type i) where open M using (Pushout^2) join-assoc-span^2 : Span^2 {i} join-assoc-span^2 = span^2 A (A × C) (A × C) (A × B) ((A × B) × C) (A × C) B (B × C) C fst (idf _) fst (λ u → fst (fst u) , snd u) fst snd fst snd (λ u → fst (fst u) , snd u) (λ u → snd (fst u) , snd u) (idf _) snd (λ _ → idp) (λ _ → idp) (λ _ → idp) (λ _ → idp) open import homotopy.3x3.Commutes join-assoc-span^2 as PP module _ (A B : Type i) (f : B → A) where lemma3-fun : Pushout (span A B B f (idf _)) → A lemma3-fun = Lemma3Fun.f module _ where module Lemma3Fun = PushoutRec (idf _) f (λ _ → idp) lemma3-eq : (x : Pushout (span A B B f (idf _))) → left (lemma3-fun x) == x lemma3-eq = Pushout-elim (λ _ → idp) glue (λ b → ↓-∘=idf-in left lemma3-fun (idp,=□idp,-in idp ∙□-i/ idp / ! (ap (ap left) (Lemma3Fun.glue-β b)) /)) lemma3 : Pushout (span A B B f (idf _)) ≃ A lemma3 = equiv lemma3-fun left (λ _ → idp) lemma3-eq module _ (A B : Type i) (f : B → A) where lemma3'-fun : Pushout (span B A B (idf _) f) → A lemma3'-fun = Lemma3'Fun.f module _ where module Lemma3'Fun = PushoutRec f (idf _) (λ _ → idp) lemma3'-eq : (x : Pushout (span B A B (idf _) f)) → right (lemma3'-fun x) == x lemma3'-eq = ! ∘ (Pushout-elim glue (λ _ → idp) (λ b → ↓-idf=∘-in right lemma3'-fun (,idp=□,idp-in idp ∙□-i/ ap (ap right) (Lemma3'Fun.glue-β b) / idp /))) lemma3' : Pushout (span B A B (idf _) f) ≃ A lemma3' = equiv lemma3'-fun right (λ _ → idp) lemma3'-eq module _ (X Y Z T : Type i) (f : Z → X) (g : Z → Y) where private P1 : Type i P1 = Pushout (span X Y Z f g) P2 : Type i P2 = Pushout (span (X × T) (Y × T) (Z × T) (λ u → (f (fst u) , snd u)) (λ u → (g (fst u) , snd u))) lemma4 : P2 ≃ (P1 × T) lemma4 = equiv to from to-from from-to module Lemma4 where to : P2 → P1 × T to = To.f module _ where module To = PushoutRec (λ u → (left (fst u) , snd u)) (λ u → (right (fst u) , snd u)) (λ u → pair×= (glue (fst u)) idp) from-curr : T → (P1 → P2) from-curr t = FromCurr.f module _ where module FromCurr = PushoutRec {D = P2} (λ x → left (x , t)) (λ y → right (y , t)) (λ z → glue (z , t)) from : P1 × T → P2 from (x , t) = from-curr t x to-from : (u : P1 × T) → to (from u) == u to-from (x , t) = to-from-curr t x where ap-idf,×cst : ∀ {i j} {A : Type i} {B : Type j} {x y : A} (p : x == y) {b : B} → ap (λ v → v , b) p == pair×= p idp ap-idf,×cst idp = idp to-from-curr : (t : T) (x : P1) → to (from-curr t x) == (x , t) to-from-curr t = Pushout-elim (λ _ → idp) (λ _ → idp) (λ z → ↓-='-in (ap-idf,×cst (glue z) ∙ ! (To.glue-β (z , t)) ∙ ! (ap (ap to) (FromCurr.glue-β t z)) ∙ ∘-ap to (from-curr t) (glue z))) from-to : (u : P2) → from (to u) == u from-to = Pushout-elim (λ _ → idp) (λ _ → idp) (λ c → ↓-∘=idf-in from to (! (ap (ap from) (To.glue-β c) ∙ ap-pair×= from (glue (fst c)) ∙ FromCurr.glue-β (snd c) (fst c)))) where ap-pair×= : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A × B → C) {a a' : A} (p : a == a') {b : B} → ap f (pair×= p idp) == ap (λ a → f (a , b)) p ap-pair×= f {a = a} {a' = .a} idp = idp module _ (X Y T : Type i) where private P1 : Type i P1 = Pushout (span X Y (X × Y) fst snd) P2 : Type i P2 = Pushout (span (T × X) (T × Y) ((T × X) × Y) fst (λ u → (fst (fst u) , snd u))) lemma4' : P2 ≃ (T × P1) lemma4' = equiv to from to-from from-to module Lemma4' where to : P2 → T × P1 to = To.f module _ where module To = PushoutRec {D = T × P1} (λ u → (fst u , left (snd u))) (λ u → (fst u , right (snd u))) (λ c → pair×= idp (glue (snd (fst c) , snd c))) from-curr : T → (P1 → P2) from-curr t = FromCurr.f module _ where module FromCurr = PushoutRec {D = P2} (λ x → left (t , x)) (λ y → right (t , y)) (λ z → glue ((t , fst z) , snd z)) from : T × P1 → P2 from (t , x) = from-curr t x to-from : (u : T × P1) → to (from u) == u to-from (t , x) = to-from-curr t x where to-from-curr : (t : T) (x : P1) → to (from-curr t x) == (t , x) to-from-curr t = Pushout-elim (λ _ → idp) (λ _ → idp) (λ c → ↓-='-in (ap-cst,id (λ _ → _) (glue c) ∙ ! (lemma5 c))) where lemma5 : (c : X × Y) → ap (to ∘ from-curr t) (glue c) == pair×= idp (glue c) lemma5 (x , y) = ap (to ∘ from-curr t) (glue (x , y)) =⟨ ap-∘ to (from-curr t) (glue (x , y)) ⟩ ap to (ap (from-curr t) (glue (x , y))) =⟨ FromCurr.glue-β t (x , y) |in-ctx ap to ⟩ ap to (glue ((t , x) , y)) =⟨ To.glue-β ((t , x) , y) ⟩ pair×= idp (glue (x , y)) ∎ from-to : (x : P2) → from (to x) == x from-to = Pushout-elim (λ _ → idp) (λ _ → idp) (λ c → ↓-∘=idf-in from to (! (lemma42 c))) where ap-pair×= : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A × B → C) {a : A} {b b' : B} (p : b == b') → ap f (pair×= idp p) == ap (λ b → f (a , b)) p ap-pair×= f {b = b} {b' = .b} idp = idp lemma42 : (c : (T × X) × Y) → ap from (ap to (glue c)) == glue c lemma42 ((t , x) , y) = ap from (ap to (glue ((t , x) , y))) =⟨ To.glue-β ((t , x) , y) |in-ctx ap from ⟩ ap from (pair×= idp (glue (x , y))) =⟨ ap-pair×= from (glue (x , y)) ⟩ ap (from-curr t) (glue (x , y)) =⟨ FromCurr.glue-β t (x , y) ⟩ glue ((t , x) , y) ∎ lemma2 : M.v-h-span join-assoc-span^2 == *-span A (B * C) lemma2 = span= (lemma3 A (A × C) fst) (ide _) (lemma4' B C A) (Pushout-elim (λ _ → idp) (λ _ → idp) (λ x → ↓-='-in (lemma2-1 x ∙ ! (lemma2-2 x)))) (Pushout-elim (λ _ → idp) (λ _ → idp) (λ x → ↓-='-in (lemma2-3 x ∙ ! (M.F₃∙.glue-β join-assoc-span^2 _ ∙ ∙-unit-r (glue _))))) where lemma2-1 : (x : (A × B) × C) → _ lemma2-1 ((a , b) , c) = ap (fst ∘ Lemma4'.to B C A) (glue ((a , b) , c)) =⟨ ap-∘ fst (Lemma4'.to B C A) (glue ((a , b) , c)) ⟩ ap fst (ap (Lemma4'.to B C A) (glue ((a , b) , c))) =⟨ Lemma4'.To.glue-β B C A ((a , b) , c) |in-ctx fst×= ⟩ fst×= (pair×= idp (glue (b , c))) =⟨ fst×=-β idp (glue (b , c)) ⟩ idp ∎ lemma2-2 : (x : (A × B) × C) → _ lemma2-2 ((a , b) , c) = ap (lemma3-fun A (A × C) fst ∘ M.f₁∙ join-assoc-span^2) (glue ((a , b) , c)) =⟨ ap-∘ (lemma3-fun A (A × C) fst) (M.f₁∙ join-assoc-span^2) (glue ((a , b) , c)) ⟩ ap (lemma3-fun A (A × C) fst) (ap (M.f₁∙ join-assoc-span^2) (glue ((a , b) , c))) =⟨ M.F₁∙.glue-β join-assoc-span^2 ((a , b) , c) |in-ctx ap (lemma3-fun A (A × C) fst) ⟩ ap (lemma3-fun A (A × C) fst) (glue (a , c) ∙ idp) =⟨ ∙-unit-r (glue (a , c)) |in-ctx ap (lemma3-fun A (A × C) fst) ⟩ ap (lemma3-fun A (A × C) fst) (glue (a , c)) =⟨ Lemma3Fun.glue-β A (A × C) fst (a , c) ⟩ idp ∎ lemma2-3 : (x : (A × B) × C) → _ lemma2-3 ((a , b) , c) = ap (snd ∘ Lemma4'.to B C A) (glue ((a , b) , c)) =⟨ ap-∘ snd (Lemma4'.to B C A) (glue ((a , b) , c)) ⟩ ap snd (ap (Lemma4'.to B C A) (glue ((a , b) , c))) =⟨ Lemma4'.To.glue-β B C A ((a , b) , c) |in-ctx snd×= ⟩ snd×= (pair×= idp (glue (b , c))) =⟨ snd×=-β idp (glue (b , c)) ⟩ glue (b , c) ∎ lemma2' : M.v-h-span (transpose join-assoc-span^2) == *-span (A * B) C lemma2' = span= (ide _) (lemma3' C (A × C) snd) (lemma4 A B (A × B) C fst snd) (Pushout-elim (λ _ → idp) (λ _ → idp) (λ c → ↓-='-in (ap-∘ fst (Lemma4.to A B (A × B) C fst snd) (glue c) ∙ ap (ap fst) (Lemma4.To.glue-β A B (A × B) C fst snd c) ∙ fst×=-β (glue (fst c)) idp ∙ ! (∙-unit-r (glue (fst c))) ∙ ! (M.F₁∙.glue-β (transpose join-assoc-span^2) c)))) (Pushout-elim (λ _ → idp) (λ _ → idp) (λ u → ↓-='-in (lemma2'-1 u ∙ ! (lemma2'-2 u)))) where lemma2'-1 : (u : (A × B) × C) → ap (snd ∘ Lemma4.to A B (A × B) C fst snd) (glue u) == idp lemma2'-1 u = ap (snd ∘ Lemma4.to A B (A × B) C fst snd) (glue u) =⟨ ap-∘ snd (Lemma4.to A B (A × B) C fst snd) (glue u) ⟩ ap snd (ap (Lemma4.to A B (A × B) C fst snd) (glue u)) =⟨ Lemma4.To.glue-β A B (A × B) C fst snd u |in-ctx snd×= ⟩ snd×= (pair×= (glue (fst u)) idp) =⟨ snd×=-β (glue (fst u)) idp ⟩ idp ∎ lemma2'-2 : (u : (A × B) × C) → ap (lemma3'-fun C (A × C) snd ∘ M.f₃∙ (transpose join-assoc-span^2)) (glue u) == idp lemma2'-2 u = ap (lemma3'-fun C (A × C) snd ∘ M.f₃∙ (transpose join-assoc-span^2)) (glue u) =⟨ ap-∘ (lemma3'-fun C (A × C) snd) (M.f₃∙ (transpose join-assoc-span^2)) (glue u) ⟩ ap (lemma3'-fun C (A × C) snd) (ap (M.f₃∙ (transpose join-assoc-span^2)) (glue u)) =⟨ M.F₃∙.glue-β (transpose join-assoc-span^2) u |in-ctx ap (lemma3'-fun C (A × C) snd) ⟩ ap (lemma3'-fun C (A × C) snd) (glue (fst (fst u) , snd u) ∙ idp) =⟨ ∙-unit-r (glue (fst (fst u) , snd u)) |in-ctx ap (lemma3'-fun C (A × C) snd) ⟩ ap (lemma3'-fun C (A × C) snd) (glue (fst (fst u) , snd u)) =⟨ Lemma3'Fun.glue-β C (A × C) snd (fst (fst u) , snd u) ⟩ idp ∎ lemma1 : Pushout^2 join-assoc-span^2 == A * (B * C) lemma1 = ap Pushout lemma2 lemma1' : Pushout^2 (transpose join-assoc-span^2) == (A * B) * C lemma1' = ap Pushout lemma2' *-assoc : A * (B * C) == (A * B) * C *-assoc = ! lemma1 ∙ ua PP.theorem ∙ lemma1'
{ "alphanum_fraction": 0.4847461206, "avg_line_length": 43.2557077626, "ext": "agda", "hexsha": "df1a7769bb98dcf5863a45b0502a9643b3973e50", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/JoinAssoc3x3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/JoinAssoc3x3.agda", "max_line_length": 285, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/JoinAssoc3x3.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 4253, "size": 9473 }
{-# OPTIONS --safe --without-K #-} module Categories.Examples.Monad.Duration where -- Monad induced by pairing a Monoid and a Setoid open import Level open import Function.Base using (_-⟪_⟫-_; _on_; _∘_) renaming (id to id→) open import Function.Equality using (Π; _⟨$⟩_; cong) open import Relation.Binary open import Relation.Binary.Indexed.Heterogeneous.Construct.Trivial open import Data.Product using (Σ; _,_; _×_; proj₁; proj₂; dmap′; zip; map₁; map₂) open import Algebra using (Monoid) open import Categories.Category open import Categories.Category.Instance.Setoids open import Categories.Functor renaming (id to idF) open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) open import Categories.Monad using (Monad) open import Data.Nat.Properties renaming (+-0-monoid to +-0-nat-monoid) open import Data.Integer.Properties renaming (+-0-monoid to +-0-integer-monoid) open import Data.Rational.Properties renaming (+-0-monoid to +-0-rational-monoid) open Monoid public monoid×-₀ : ∀ {l₁ l₂ e₁ e₂} → Monoid l₁ e₁ → Setoid l₂ e₂ → Setoid _ _ monoid×-₀ m s = record { Carrier = m.Carrier × s.Carrier ; _≈_ = m._≈_ on proj₁ -⟪ _×_ ⟫- s._≈_ on proj₂ ; isEquivalence = record { refl = m.refl , s.refl ; sym = dmap′ m.sym s.sym ; trans = zip m.trans s.trans } } where module m = Monoid m module s = Setoid s monoid×-₁ : ∀ {l₁ l₂ e₁ e₂} {A B : Setoid l₂ e₂} → (m : Monoid l₁ e₁) → (f : Setoids l₂ e₂ [ A , B ]) → Setoids _ _ [ monoid×-₀ m A , monoid×-₀ m B ] monoid×-₁ _ f = record { _⟨$⟩_ = map₂ (_⟨$⟩_ f) ; cong = map₂ (cong f) } -- levels have to be the same because everything gets put into the same stop monoid×-endo : ∀ {l₁ e₁} → Monoid l₁ e₁ → Endofunctor (Setoids l₁ e₁) monoid×-endo m = record { F₀ = monoid×-₀ m ; F₁ = monoid×-₁ m ; identity = id→ ; homomorphism = λ {_} {_} {_} {f} {g} p → map₂ (cong g ∘ cong f) p ; F-resp-≈ = λ f → map₂ f } monoid×-η : ∀ {l e} → (m : Monoid l e) → NaturalTransformation idF (monoid×-endo m) monoid×-η m = ntHelper record { η = λ _ → record { _⟨$⟩_ = m.ε ,_ ; cong = m.refl ,_ } ; commute = λ f x → m.refl , cong f x } where module m = Monoid m monoid×-μ : ∀ {l} → (m : Monoid l l) → NaturalTransformation (monoid×-endo m ∘F monoid×-endo m) (monoid×-endo m) monoid×-μ m = ntHelper record { η = λ X → record { _⟨$⟩_ = λ { (d , d₁ , value) → ( d m.∙ d₁) , value } ; cong = λ { (d , d₁ , v) → m.∙-cong d d₁ , v } } ; commute = λ { f (d , d₁ , v) → m.∙-cong d d₁ , cong f v } } where module m = Monoid m monoid×-monad : ∀ {l} → Monoid l l → Monad (Setoids l l) monoid×-monad m = record { F = monoid×-endo m ; η = monoid×-η m ; μ = monoid×-μ m ; assoc = λ (p₀ , p₁ , p₂ , p₃) → m.trans (m.∙-cong p₀ (m.∙-cong p₁ p₂)) (m.sym (m.assoc _ _ _)) , p₃ ; sym-assoc = λ (p₀ , p₁ , p₂ , p₃) → m.trans (m.∙-cong (m.∙-cong p₀ p₁) p₂) ( (m.assoc _ _ _)) , p₃ ; identityˡ = λ p → map₁ (m.trans (m.identityʳ _)) p ; identityʳ = λ p → map₁ (m.trans (m.identityˡ _)) p } where module m = Monoid m natDuration : Monad (Setoids 0ℓ 0ℓ) natDuration = monoid×-monad +-0-nat-monoid integerDuration : Monad (Setoids 0ℓ 0ℓ) integerDuration = monoid×-monad +-0-integer-monoid rationalDuration : Monad (Setoids 0ℓ 0ℓ) rationalDuration = monoid×-monad +-0-rational-monoid
{ "alphanum_fraction": 0.6285032797, "avg_line_length": 34.9375, "ext": "agda", "hexsha": "2850722f601d827e4ccb75f8e19133b203654d8d", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:35.000Z", "max_forks_repo_forks_event_min_datetime": "2020-08-07T08:05:09.000Z", "max_forks_repo_head_hexsha": "4dbe20d538bf830a0c46050da2c6e6aa93f3804a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/categories-examples", "max_forks_repo_path": "src/Categories/Examples/Monad/Duration.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "4dbe20d538bf830a0c46050da2c6e6aa93f3804a", "max_issues_repo_issues_event_max_datetime": "2021-03-19T00:37:29.000Z", "max_issues_repo_issues_event_min_datetime": "2020-06-13T14:52:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/categories-examples", "max_issues_repo_path": "src/Categories/Examples/Monad/Duration.agda", "max_line_length": 149, "max_stars_count": 8, "max_stars_repo_head_hexsha": "4dbe20d538bf830a0c46050da2c6e6aa93f3804a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/categories-examples", "max_stars_repo_path": "src/Categories/Examples/Monad/Duration.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-14T10:16:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-06-11T02:10:08.000Z", "num_tokens": 1293, "size": 3354 }
module LongList where infixr 6 _∷_ data List (A : Set) : Set where [] : List A _∷_ : A -> List A -> List A postulate Bool : Set t : Bool long : List Bool long = t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ t ∷ []
{ "alphanum_fraction": 0.2505456413, "avg_line_length": 71.7880184332, "ext": "agda", "hexsha": "7576c52cc33cd58f5460a4448fa65ee2e60a2b8e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/bugs/LongList.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/bugs/LongList.agda", "max_line_length": 76, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/bugs/LongList.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 11667, "size": 15578 }
{-# OPTIONS --rewriting --prop --exact-split #-} open import common {- An arity is something of the form (((n_1, k_1), …, (n_l, k_l)) , k), where the n_i are natural numbers and the k_i and k are sorts. We will use two different types of sorts, so we parametrize arities by the type of sorts. The type [ArityArgs Sort] represents the first components of arities (the list), and [Arity Sort] represents arities. -} data ArityArgs (Sort : Set) : Set where [] : ArityArgs Sort _,_ : ArityArgs Sort → (ℕ × Sort) → ArityArgs Sort record Arity (Sort : Set) : Set where constructor _,_ field args : ArityArgs Sort sort : Sort open Arity public SyntaxArityArgs = ArityArgs SyntaxSort SyntaxArity = Arity SyntaxSort {- A signature consists of symbols, which are indexed by their arities. To have instead a set of symbols and an arity function is very inconvenient. -} record Signature : Set₁ where field Symbols : SyntaxArity → Set open Signature public {- Expressions are indexed by their syntactic class and their scope. An expression is either a variable or a symbol applied to the appropriate number of arguments. The type [Expr Σ n] is defined simultaneously with the type [Args Σ n args] which represents the type of the arguments of a symbol with arity (args, _). -} data Args (Σ : Signature) (n : ℕ) : SyntaxArityArgs → Set data Expr (Σ : Signature) (n : ℕ) : SyntaxSort → Set where var : VarPos n → Expr Σ n Tm sym : {ar : SyntaxArity} (s : Symbols Σ ar) → Args Σ n (args ar) → Expr Σ n (sort ar) data Args Σ n where [] : Args Σ n [] _,_ : {m : ℕ} {k : SyntaxSort} {args : SyntaxArityArgs} → Args Σ n args → Expr Σ (n + m) k → Args Σ n (args , (m , k)) {- Abbreviations for type-/term-expressions -} TyExpr : (Σ : Signature) → ℕ → Set TyExpr Σ n = Expr Σ n Ty TmExpr : (Σ : Signature) → ℕ → Set TmExpr Σ n = Expr Σ n Tm {- weakenV : {n m : ℕ} {{_ : n ≤ m}} (p : WeakPos n) → VarPos n → VarPos m weakenV ⦃ ≤r ⦄ p x = x weakenV ⦃ ≤S r ⦄ last x = prev (weakenV {{r}} last x) weakenV ⦃ ≤S r ⦄ (prev p) last = last weakenV ⦃ ≤S r ⦄ (prev p) (prev x) = prev (weakenV {{≤P (≤S r)}} p x) -} -- weakenVL : {n m : ℕ} {{_ : n ≤ m}} → VarPos n → VarPos m -- weakenVL {{ ≤r }} x = x -- weakenVL {{ ≤S p }} x = prev (weakenVL {{p}} x) -- postulate -- weakenV : {n m : ℕ} {{_ : n ≤ m}} (p : WeakPos n) → VarPos n → VarPos m -- weakenV {m = _} ⦃ ≤r ⦄ last last = last -- weakenV {m = _} ⦃ ≤S r ⦄ last last = prev (weakenV {{r}} last last) -- weakenV {m = suc m} ⦃ r ⦄ (prev p) last = last -- weakenV {m = suc m} ⦃ ≤r ⦄ last (prev x) = prev x -- weakenV {m = suc m} ⦃ ≤S r ⦄ last (prev x) = prev (weakenV {m = m} {{≤P (≤S r)}} last x) -- weakenV {m = suc m} ⦃ r ⦄ (prev p) (prev x) = prev (weakenV {m = m} {{≤P r}} p x) -- weakenV {m = suc m} (prev wp) last = last -- weakenV {m = suc m} {{p}} (prev wp) (prev x) = prev (weakenV {{≤P p}} wp x) -- weakenV {m = suc m} ⦃ ≤r ⦄ last x = x -- weakenV {m = suc m} ⦃ ≤S r ⦄ last x = prev (weakenV {{r}} last x) -- weakenV {m = suc m} ⦃ p ⦄ (prev wp) last = last -- weakenV {m = suc m} ⦃ p ⦄ (prev wp) (prev x) = prev (weakenV {{≤P p}} wp x) -- weakenV {m = suc m} ⦃ ≤r ⦄ last x = x -- weakenV {m = suc m} ⦃ ≤S p ⦄ last x = prev (weakenV {{p}} last x) postulate TODO : {A : Set} → A weaken : {Σ : Signature} {k : _} {n m : ℕ} {{_ : n ≤ m}} (p : WeakPos n) → Expr Σ n k → Expr Σ m k weakenA : {Σ : Signature} {ar : _} {n m : ℕ} {{_ : n ≤ m}} (p : WeakPos n) → Args Σ n ar → Args Σ m ar weaken p (var x) = var (weakenV p x) weaken p (sym s es) = sym s (weakenA p es) weakenA p [] = [] weakenA {{q}} p (_,_ {m = m} es e) = (weakenA p es , weaken {{≤+ m {{q}}}} (weakenPos (≤-+ {m = m}) p) e) weaken' : {Σ : Signature} {k : _} {n m : ℕ} {{_ : n ≤ m}} (p : WeakPos n) → Expr Σ n k → Expr Σ m k weaken' ⦃ ≤r ⦄ p e = e weaken' ⦃ ≤S q ⦄ p e = weaken {{≤S q}} p e weakenL : {Σ : Signature} {k : _} {m n : ℕ} → Expr Σ m k → Expr Σ (m + n) k weakenL {n = zero} e = e weakenL {n = suc n} e = weaken last e weaken0 : {Σ : Signature} {k : _} {n : ℕ} → Expr Σ 0 k → Expr Σ n k weaken0 e = weaken {{0≤}} last e weaken0' : {Σ : Signature} {k : _} {n : ℕ} → Expr Σ 0 k → Expr Σ n k weaken0' {n = zero} e = e weaken0' {n = suc n} e = weaken last e weakenAL : {Σ : Signature} {ar : _} {m n : ℕ} → Args Σ m ar → Args Σ (m + n) ar weakenAL {n = zero} es = es weakenAL {n = suc n} es = weakenA last es prev^last : (n l : ℕ) → WeakPos (n + l) prev^last n zero = last prev^last n (suc l) = prev (prev^last n l) -- weaken≤ : {Σ : Signature} {k : _} {n m l : ℕ} {{_ : n ≤ m}} → Expr Σ (n + l) k → Expr Σ (m + l) k -- weaken≤ ⦃ ≤r ⦄ e = e -- weaken≤ {n = n} {l = l} ⦃ ≤S p ⦄ e = weaken {{TODO}} (prev^last n l) e -- weaken^V' : {l m n : ℕ} → VarPos (l + m) → VarPos (l + n + m) -- weaken^' : {Σ : Signature} {k : _} {l m n : ℕ} → Expr Σ (l + m) k → Expr Σ (l + n + m) k -- weaken^A' : {Σ : Signature} {ar : _} {l m n : ℕ} → Args Σ (l + m) ar → Args Σ (l + n + m) ar -- weaken^V' {zero} {m} {zero} k = k -- weaken^V' {zero} {m} {suc n} k = prev (weaken^V' {zero} {m} {n} k) -- weaken^V' {suc l} {m} {n} last = last -- weaken^V' {suc l} {m} {n} (prev k) = prev (weaken^V' {l} {m} {n} k) -- weaken^' {l = l} {m} {n} (var k) = var (weaken^V' {l = _} {m} {n} k) -- weaken^' {l = l} {m} {n} (sym s x) = sym s (weaken^A' {l = _} {m} {n} x) -- weaken^A' [] = [] -- weaken^A' {l = l} {m} {n} (_,_ {m = _} a x) = (weaken^A' {l = _} {m} {n} a , weaken^' {l = _} {m} {n} x) -- -- this should not be defined as iterated weakening, it should reduce on expressions -- weaken^ : {Σ : Signature} {k : _} {l n m : ℕ} {{p : n ≤ m}} → Expr Σ (l + n) k → Expr Σ (l + m) k -- weaken^ {l = l} {n} {m} {{p}} k = weaken^' {l = l} {{!n!}} {{!!}} k -- weaken^A : {Σ : Signature} {ar : _} {l n m : ℕ} {{p : n ≤ m}} → Args Σ (l + n) ar → Args Σ (l + m) ar -- weaken^A {{p}} = weaken^A' {{p}} -- weakenV≤r : {n : ℕ} {p : WeakPos n} (v : VarPos n) → weakenV {{≤r}} p v ≡ v -- weakenV≤r {p = last} last = refl -- weakenV≤r {p = prev p} last = refl -- weakenV≤r {p = last} (prev v) = refl -- weakenV≤r {p = prev p} (prev v) = ap prev (weakenV≤r {p = p} v) -- weaken≤r : {Σ : Signature} {k : _} {n : ℕ} {p : WeakPos n} (e : Expr Σ n k) → weaken p e ≡ e -- weakenA≤r : {Σ : Signature} {k : _} {n : ℕ} {p : WeakPos n} (as : Args Σ n k) → weakenA p as ≡ as -- weaken≤r {p = p} (var x) = ap var (weakenV≤r {p = p} x) -- weaken≤r (sym s x) = ap (sym s) (weakenA≤r x) -- weakenA≤r [] = refl -- weakenA≤r (es , e) = ap2 _,_ (weakenA≤r es) (weaken≤r e) -- -- {-# REWRITE weaken^'≤r #-} {- Contexts, [Ctx Σ n] represents contexts in signature [Σ] and of length [n] -} data Ctx (Σ : Signature) : ℕ → Set where ◇ : Ctx Σ 0 _,_ : {n : ℕ} (Γ : Ctx Σ n) (A : TyExpr Σ n) → Ctx Σ (suc n) {- TODO Dependent contexts, [DepCtx Σ n m] represents contexts in signature [Σ], in scope [n], and of length [m]. They are built in the other direction compared to [Ctx], we add types to the left instead of adding them to the right. The reason is that the "purpose" of dependent contexts is to move the types one by one to the context on the left. -} data DepCtx (Σ : Signature) (n : ℕ) : ℕ → Set where ◇ : DepCtx Σ n 0 _,_ : {m : ℕ} → DepCtx Σ n m → TyExpr Σ (n + m) → DepCtx Σ n (suc m) {- Extraction of types from contexts. We need this partial version instead of the total well-typed one (below, not used). -} get : {Σ : Signature} {n : ℕ} (k : ℕ) → Ctx Σ n → Partial (VarPos n × TyExpr Σ n) get k ◇ = fail get zero (Γ , A) = return (last , weaken last A) get (suc k) (Γ , X) = do (k' , A) ← get k Γ return (prev k' , weaken last A) getTotal : {Σ : Signature} {n : ℕ} (k : VarPos n) → Ctx Σ n → TyExpr Σ n getTotal last (Γ , A) = weaken last A getTotal (prev k) (Γ , X) = weaken last (getTotal k Γ) {- In order to deal with extensions of signatures, we need a notion of map between signatures. There are a few possible options: - Mapping symbols to symbols: not strong enough, as later we need to map a symbol s(-) to the expression s(a, -) - Mapping expressions to expressions: too strong, makes it impossible to look inside expressions - Mapping symbols to expression-building function: this is the approach we take. A symbol will be mapped to a function of the corresponding arity between expressions of the codomain signature. We need sometimes to restrict them to expressions in a certain scope (bounded below). This happens for instance when turning typing rules to partial functions on the syntax, we replace something by a specific term which lives in a scope, so the map between signatures does not work for a lower scope. We need to have it bounded below (as opposed to having a fixed scope) otherwise we cannot map expressions to expressions (as they may bind new variables). Therefore we define [(Σ →Sig Σ') n] which represents maps from symbols of [Σ] to expression-building functions for signature [Σ'], and which works for any scope above (and including) [n]. -} record _→Sig_ (Σ Σ' : Signature) (n : ℕ) : Set where constructor sub field _$_ : {m : ℕ} {{p : n ≤ m}} {ar : SyntaxArity} (s : Symbols Σ ar) → Args Σ' m (args ar) → Expr Σ' m (sort ar) open _→Sig_ public {- Identity map -} idSig : {n : ℕ} {Σ : Signature} → (Σ →Sig Σ) n idSig $ s = sym s {- Lifting at a higher scope -} liftSig : {m n : ℕ} {Σ Σ' : Signature} → (Σ →Sig Σ') m → (Σ →Sig Σ') (m + n) (liftSig {n = n} ↑ $ s) x = _$_ ↑ {{≤tr {{≤-+ {m = n}}}}} s x {- Lifting of a map between signatures to expressions -} ↑Expr : {Σ Σ' : Signature} {n : ℕ} {k : SyntaxSort} → (Σ →Sig Σ') n → Expr Σ n k → Expr Σ' n k ↑Args : {Σ Σ' : Signature} {n : ℕ} {args : SyntaxArityArgs} → (Σ →Sig Σ') n → Args Σ n args → Args Σ' n args ↑Expr ↑ (var x) = var x ↑Expr ↑ (sym s x) = (↑ $ s) (↑Args ↑ x) ↑Args ↑ [] = [] ↑Args ↑ (_,_ {m = m} es e) = ↑Args ↑ es , ↑Expr (liftSig ↑) e {- [ExtSig Σ ar] extends the signature [Σ] by an arity [ar]. In order to add a symbol only at the correct arity, we use an inductive family (another possibility would be to use decidable equality of arities but that would be very ugly). -} data ExtSigSymbols (S : SyntaxArity → Set) (ar : SyntaxArity) : SyntaxArity → Set where prev : {ar' : SyntaxArity} → S ar' → (ExtSigSymbols S ar) ar' new : (ExtSigSymbols S ar) ar ExtSig : Signature → SyntaxArity → Signature Symbols (ExtSig Σ ar) = ExtSigSymbols (Symbols Σ) ar {- If an extended signature maps to [Σ'], then the original signature too. -} Ext→ : {Σ Σ' : Signature} {ar : SyntaxArity} {n : ℕ} → (ExtSig Σ ar →Sig Σ') n → (Σ →Sig Σ') n Ext→ ↑ $ s = ↑ $ (prev s) {- Arities of metavariables -} MArityArgs : ℕ → SyntaxArityArgs MArityArgs zero = [] MArityArgs (suc n) = MArityArgs n , (0 , Tm) MArity : ℕ → SyntaxSort → SyntaxArity args (MArity n k) = MArityArgs n sort (MArity n k) = k {- [ExtSig^ Σ args] extends the signature [Σ] by symbols for metavariables with arities given by [args] -} ExtSig^ : Signature → SyntaxArityArgs → Signature ExtSig^ Σ [] = Σ ExtSig^ Σ (args , (n , k)) = ExtSig (ExtSig^ Σ args) (MArity n k) {- Example ExtSig^ Σ ((0, Ty), (1, Ty)) = extend Σ with one symbol of arity (() , Ty) and one symbol of arity ((0 , Tm), Ty) -} {- Given two signatures [Σ] and [Σ'], we can map from a signature extended over [Σ] to [Σ'] as long as we can map from [Σ] to [Σ'] and that we have terms [as] in [Σ'] to replace the new symbols. [SubstM ↑ as] represents that map. -} -- trExpr : {Σ : Signature} {n n' : ℕ} (p : n === n') {k : SyntaxSort} → Expr Σ n k → Expr Σ n' k -- trExpr refl u = u -- trExpr! : {Σ : Signature} {n n' : ℕ} (p : n === n') {k : SyntaxSort} → Expr Σ n' k → Expr Σ n k -- trExpr! refl u = u pred : ℕ → ℕ pred zero = zero pred (suc n) = n trV : {n m : ℕ} → n ≡ m → VarPos n → VarPos m trV {m = suc m} p last = last trV {m = suc m} p (prev x) = prev (trV (ap pred p) x) tr : {Σ : Signature} {k : SyntaxSort} {n m : ℕ} → n ≡ m → Expr Σ n k → Expr Σ m k trA : {Σ : Signature} {ar : SyntaxArityArgs} {n m : ℕ} → n ≡ m → Args Σ n ar → Args Σ m ar tr p (var x) = var (trV p x) tr p (sym s es) = sym s (trA p es) trA p [] = [] trA p (es , x) = (trA p es , tr (ap (_+ _) p) x) tr! : {Σ : Signature} {k : SyntaxSort} {n m : ℕ} → m ≡ n → Expr Σ n k → Expr Σ m k tr! p e = tr (! p) e data Mor (Σ : Signature) (n : ℕ) : ℕ → Set where ◇ : Mor Σ n 0 _,_ : {m : ℕ} (δ : Mor Σ n m) (u : TmExpr Σ n) → Mor Σ n (suc m) weakenMor : {Σ : Signature} {n m : ℕ} → Mor Σ m n → Mor Σ (suc m) n weakenMor ◇ = ◇ weakenMor (δ , u) = (weakenMor δ , weaken last u) idMor : {Σ : Signature} {n : ℕ} → Mor Σ n n idMor {n = zero} = ◇ idMor {n = suc n} = (weakenMor idMor , var last) weakenMor+ : {Σ : Signature} (k : ℕ) {n m : ℕ} → Mor Σ m n → Mor Σ (m + k) (n + k) weakenMor+ zero δ = δ weakenMor+ (suc k) δ = (weakenMor (weakenMor+ k δ) , var last) SubstMor : {Σ : Signature} {n m : ℕ} {k : SyntaxSort} → Expr Σ n k → Mor Σ m n → Expr Σ m k SubstAMor : {Σ : Signature} {n m : ℕ} {args : SyntaxArityArgs} → Args Σ n args → Mor Σ m n → Args Σ m args SubstMor (var last) (δ , u) = u SubstMor (var (prev x)) (δ , u) = SubstMor (var x) δ SubstMor (sym s es) δ = sym s (SubstAMor es δ) SubstAMor [] δ = [] SubstAMor (_,_ {m = m} es x) δ = (SubstAMor es δ , SubstMor x (weakenMor+ m δ)) -- Subst1 : {Σ : Signature} {n : ℕ} (m : ℕ) {k : SyntaxSort} → Expr Σ (suc n + m) k → TmExpr Σ n → Expr Σ (n + m) k -- Subst1A : {Σ : Signature} {n : ℕ} (m : ℕ) {args : SyntaxArityArgs} → Args Σ (suc n + m) args → TmExpr Σ n → Args Σ (n + m) args -- Subst1 n (sym s x) a = sym s (Subst1A n x a) -- Subst1 zero (var last) a = a -- Subst1 zero (var (prev x)) a = var x -- Subst1 (suc m) (var last) a = var last -- Subst1 (suc m) (var (prev x)) a = weaken last (Subst1 m (var x) a) -- Subst1A m [] a = [] -- Subst1A {n = n} m (_,_ {m = k} es e) a = (Subst1A m es a , tr! (assoc {n} {m} {k}) (Subst1 (m + k) (tr (assoc {suc n} {m} {k}) e) a)) Subst : {Σ : Signature} {l m : ℕ} {k : SyntaxSort} → Expr Σ (m + l) k → Args Σ m (MArityArgs l) → Expr Σ m k Subst {l = zero} e [] = e Subst {l = suc l} {m} e (as , a) = Subst (SubstMor e (idMor , weakenL a)) as SubstM : {Σ Σ' : Signature} {m : ℕ} {args : SyntaxArityArgs} → (Σ →Sig Σ') m → Args Σ' m args → ((ExtSig^ Σ args) →Sig Σ') m SubstM ↑ [] = ↑ SubstM ↑ (as , a) $ prev s = SubstM ↑ as $ s (SubstM ↑ (_,_ {m = l} as a)) $ new = Subst (weaken' {{≤+ l}} (prev^last _ l) a) subst : {n m : ℕ} {k : SyntaxSort} {Σ Σ' : Signature} (↑ : (Σ →Sig Σ') n) {args : SyntaxArityArgs} (as : Args Σ' (n + m) args) → Expr (ExtSig^ Σ args) (n + m) k → Expr Σ' (n + m) k subst {m = m} ↑ as e = ↑Expr (SubstM (liftSig ↑) as) e -- {- -- Example: -- args = ((0, Ty), (1, Ty), (1, Tm)) -- ExtSig^ Σ args = Σ + {A} + {B} + {u} where A has arity ((), Ty), B has arity ((0, Tm), Ty), u has arity ((0, Tm), Tm) -- To get a map from it to Σ', we need -- - a map from Σ to Σ' -- - a type expression in Σ' (for A) -- - a type expression in Σ' in scope (m + 1) (for B) -- - a term expression in Σ' in scope (m + 1) (for u) -- -}
{ "alphanum_fraction": 0.5747241058, "avg_line_length": 37.5112219451, "ext": "agda", "hexsha": "e1b9107f72195c423ec4ddef380367e4d4096d19", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guillaumebrunerie/general-type-theories", "max_forks_repo_path": "syntx.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guillaumebrunerie/general-type-theories", "max_issues_repo_path": "syntx.agda", "max_line_length": 136, "max_stars_count": null, "max_stars_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guillaumebrunerie/general-type-theories", "max_stars_repo_path": "syntx.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 6060, "size": 15042 }
{-# OPTIONS --cubical --safe --postfix-projections #-} module Relation.Nullary.Decidable.Logic where open import Prelude open import Data.Sum open import Relation.Nullary.Decidable disj : (A → C) → (B → C) → (¬ A → ¬ B → ¬ C) → Dec A → Dec B → Dec C disj l r n x y .does = x .does or y .does disj l r n (yes x) y .why = l x disj l r n (no x) (yes y) .why = r y disj l r n (no ¬x) (no ¬y) .why = n ¬x ¬y conj : (A → B → C) → (¬ A → ¬ C) → (¬ B → ¬ C) → Dec A → Dec B → Dec C conj c l r x y .does = x .does and y .does conj c l r (no ¬x) y .why = l ¬x conj c l r (yes x) (no ¬y) .why = r ¬y conj c l r (yes x) (yes y) .why = c x y negate : (A → ¬ B) → (¬ A → B) → Dec A → Dec B negate t f d .does = not (d .does) negate t f (yes d) .why = t d negate t f (no ¬d) .why = f ¬d ! : Dec A → Dec (¬ A) ! = negate (λ x ¬x → ¬x x) id infixl 7 _&&_ _&&_ : Dec A → Dec B → Dec (A × B) _&&_ = conj _,_ (_∘ fst) (_∘ snd) infixl 6 _||_ _||_ : Dec A → Dec B → Dec (A ⊎ B) _||_ = disj inl inr either
{ "alphanum_fraction": 0.53125, "avg_line_length": 27.5555555556, "ext": "agda", "hexsha": "634ad7d4048ff021ac31b5b89577b9630db770d8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Relation/Nullary/Decidable/Logic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Relation/Nullary/Decidable/Logic.agda", "max_line_length": 70, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Relation/Nullary/Decidable/Logic.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 431, "size": 992 }
{-# OPTIONS --without-K #-} module Pif2 where {-- 2 paths --} open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; subst; subst₂; cong; cong₂; setoid; inspect; [_]; proof-irrelevance; module ≡-Reasoning) open import Relation.Binary.PropositionalEquality.TrustMe using (trustMe) open import Relation.Nullary using (Dec; yes; no; ¬_) open import Data.Nat.Properties using (m≢1+m+n; i+j≡0⇒i≡0; i+j≡0⇒j≡0; n≤m+n) open import Data.Nat.Properties.Simple using (+-right-identity; +-suc; +-assoc; +-comm; *-assoc; *-comm; *-right-zero; distribʳ-*-+) open import Data.Nat.DivMod using (_mod_) open import Relation.Binary using (Rel; Decidable; Setoid) open import Relation.Binary.Core using (Transitive) open import Data.String using (String) renaming (_++_ to _++S_) open import Data.Nat.Show using (show) open import Data.Bool using (Bool; false; true; T; _∧_; _∨_) open import Data.Nat using (ℕ; suc; _+_; _∸_; _*_; _<_; _≮_; _≤_; _≰_; z≤n; s≤s; _≟_; _≤?_; module ≤-Reasoning) open import Data.Fin using (Fin; zero; suc; toℕ; fromℕ; _ℕ-_; _≺_; raise; inject+; inject₁; inject≤; _≻toℕ_) renaming (_+_ to _F+_) open import Data.Fin.Properties using (bounded; inject+-lemma) open import Data.Vec.Properties using (lookup∘tabulate; tabulate∘lookup; lookup-allFin; tabulate-∘; tabulate-allFin; map-id; allFin-map) open import Data.List using (List; []; _∷_; _∷ʳ_; foldl; replicate; reverse; downFrom; concatMap; gfilter; initLast; InitLast; _∷ʳ'_) renaming (_++_ to _++L_; map to mapL; concat to concatL; zip to zipL) open import Data.List.NonEmpty using (List⁺; module List⁺; [_]; _∷⁺_; head; last; _⁺++_) renaming (toList to nonEmptyListtoList; _∷ʳ_ to _n∷ʳ_; tail to ntail) open List⁺ public open import Data.List.Any using (Any; here; there; any; module Membership) open import Data.Maybe using (Maybe; nothing; just; maybe′) open import Data.Vec using (Vec; tabulate; []; _∷_; tail; lookup; zip; zipWith; splitAt; _[_]≔_; allFin; toList) renaming (_++_ to _++V_; map to mapV; concat to concatV) open import Function using (id; _∘_; _$_) open import Data.Empty using (⊥; ⊥-elim) open import Data.Unit using (⊤; tt) open import Data.Sum using (_⊎_; inj₁; inj₂) open import Data.Product using (Σ; _×_; _,_; proj₁; proj₂) open import Cauchy open import Perm open import Proofs open import CauchyProofs open import CauchyProofsT open import CauchyProofsS open import Groupoid open import PiLevel0 open import Swaps open import Pif ------------------------------------------------------------------------------ -- Picture so far: -- -- path p -- ===================== -- || || || -- || ||2path || -- || || || -- || || path q || -- t₁ =================t₂ -- || ... || -- ===================== -- -- The types t₁, t₂, etc are discrete groupoids. The paths between -- them correspond to permutations. Each syntactically different -- permutation corresponds to a path but equivalent permutations are -- connected by 2paths. But now we want an alternative definition of -- 2paths that is structural, i.e., that looks at the actual -- construction of the path t₁ ⟷ t₂ in terms of combinators... The -- theorem we want is that α ∼ β iff we can rewrite α to β using -- various syntactic structural rules. We start with a collection of -- simplication rules and then try to show they are complete. -- Simplification rules infix 30 _⇔_ data _⇔_ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) → Set where assoc◎l : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → (c₁ ◎ (c₂ ◎ c₃)) ⇔ ((c₁ ◎ c₂) ◎ c₃) assoc◎r : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → ((c₁ ◎ c₂) ◎ c₃) ⇔ (c₁ ◎ (c₂ ◎ c₃)) assoc⊕l : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (c₁ ⊕ (c₂ ⊕ c₃)) ⇔ (assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊) assoc⊕r : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (assocl₊ ◎ ((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊) ⇔ (c₁ ⊕ (c₂ ⊕ c₃)) assoc⊗l : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (c₁ ⊗ (c₂ ⊗ c₃)) ⇔ (assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) assoc⊗r : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (assocl⋆ ◎ ((c₁ ⊗ c₂) ⊗ c₃) ◎ assocr⋆) ⇔ (c₁ ⊗ (c₂ ⊗ c₃)) dist⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → ((c₁ ⊕ c₂) ⊗ c₃) ⇔ (dist ◎ ((c₁ ⊗ c₃) ⊕ (c₂ ⊗ c₃)) ◎ factor) factor⇔ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → (dist ◎ ((c₁ ⊗ c₃) ⊕ (c₂ ⊗ c₃)) ◎ factor) ⇔ ((c₁ ⊕ c₂) ⊗ c₃) idl◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (id⟷ ◎ c) ⇔ c idl◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ id⟷ ◎ c idr◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ◎ id⟷) ⇔ c idr◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ (c ◎ id⟷) linv◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (c ◎ ! c) ⇔ id⟷ linv◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ⇔ (c ◎ ! c) rinv◎l : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → (! c ◎ c) ⇔ id⟷ rinv◎r : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → id⟷ ⇔ (! c ◎ c) unitel₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (unite₊ ◎ c₂) ⇔ ((c₁ ⊕ c₂) ◎ unite₊) uniter₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → ((c₁ ⊕ c₂) ◎ unite₊) ⇔ (unite₊ ◎ c₂) unitil₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (uniti₊ ◎ (c₁ ⊕ c₂)) ⇔ (c₂ ◎ uniti₊) unitir₊⇔ : {t₁ t₂ : U} {c₁ : ZERO ⟷ ZERO} {c₂ : t₁ ⟷ t₂} → (c₂ ◎ uniti₊) ⇔ (uniti₊ ◎ (c₁ ⊕ c₂)) unitial₊⇔ : {t₁ t₂ : U} → (uniti₊ {PLUS t₁ t₂} ◎ assocl₊) ⇔ (uniti₊ ⊕ id⟷) unitiar₊⇔ : {t₁ t₂ : U} → (uniti₊ {t₁} ⊕ id⟷ {t₂}) ⇔ (uniti₊ ◎ assocl₊) swapl₊⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → (swap₊ ◎ (c₁ ⊕ c₂)) ⇔ ((c₂ ⊕ c₁) ◎ swap₊) swapr₊⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → ((c₂ ⊕ c₁) ◎ swap₊) ⇔ (swap₊ ◎ (c₁ ⊕ c₂)) unitel⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (unite⋆ ◎ c₂) ⇔ ((c₁ ⊗ c₂) ◎ unite⋆) uniter⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → ((c₁ ⊗ c₂) ◎ unite⋆) ⇔ (unite⋆ ◎ c₂) unitil⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (uniti⋆ ◎ (c₁ ⊗ c₂)) ⇔ (c₂ ◎ uniti⋆) unitir⋆⇔ : {t₁ t₂ : U} {c₁ : ONE ⟷ ONE} {c₂ : t₁ ⟷ t₂} → (c₂ ◎ uniti⋆) ⇔ (uniti⋆ ◎ (c₁ ⊗ c₂)) unitial⋆⇔ : {t₁ t₂ : U} → (uniti⋆ {TIMES t₁ t₂} ◎ assocl⋆) ⇔ (uniti⋆ ⊗ id⟷) unitiar⋆⇔ : {t₁ t₂ : U} → (uniti⋆ {t₁} ⊗ id⟷ {t₂}) ⇔ (uniti⋆ ◎ assocl⋆) swapl⋆⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → (swap⋆ ◎ (c₁ ⊗ c₂)) ⇔ ((c₂ ⊗ c₁) ◎ swap⋆) swapr⋆⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} → ((c₂ ⊗ c₁) ◎ swap⋆) ⇔ (swap⋆ ◎ (c₁ ⊗ c₂)) swapfl⋆⇔ : {t₁ t₂ t₃ : U} → (swap₊ {TIMES t₂ t₃} {TIMES t₁ t₃} ◎ factor) ⇔ (factor ◎ (swap₊ {t₂} {t₁} ⊗ id⟷)) swapfr⋆⇔ : {t₁ t₂ t₃ : U} → (factor ◎ (swap₊ {t₂} {t₁} ⊗ id⟷)) ⇔ (swap₊ {TIMES t₂ t₃} {TIMES t₁ t₃} ◎ factor) id⇔ : {t₁ t₂ : U} {c : t₁ ⟷ t₂} → c ⇔ c trans⇔ : {t₁ t₂ : U} {c₁ c₂ c₃ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₃) → (c₁ ⇔ c₃) resp◎⇔ : {t₁ t₂ t₃ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₁ ⟷ t₂} {c₄ : t₂ ⟷ t₃} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ◎ c₂) ⇔ (c₃ ◎ c₄) resp⊕⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₁ ⟷ t₂} {c₄ : t₃ ⟷ t₄} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ⊕ c₂) ⇔ (c₃ ⊕ c₄) resp⊗⇔ : {t₁ t₂ t₃ t₄ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₁ ⟷ t₂} {c₄ : t₃ ⟷ t₄} → (c₁ ⇔ c₃) → (c₂ ⇔ c₄) → (c₁ ⊗ c₂) ⇔ (c₃ ⊗ c₄) -- better syntax for writing 2paths infix 2 _▤ infixr 2 _⇔⟨_⟩_ _⇔⟨_⟩_ : {t₁ t₂ : U} (c₁ : t₁ ⟷ t₂) {c₂ : t₁ ⟷ t₂} {c₃ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₃) → (c₁ ⇔ c₃) _ ⇔⟨ α ⟩ β = trans⇔ α β _▤ : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → (c ⇔ c) _▤ c = id⇔ -- Inverses for 2paths 2! : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₂ ⇔ c₁) 2! assoc◎l = assoc◎r 2! assoc◎r = assoc◎l 2! assoc⊕l = assoc⊕r 2! assoc⊕r = assoc⊕l 2! assoc⊗l = assoc⊗r 2! assoc⊗r = assoc⊗l 2! dist⇔ = factor⇔ 2! factor⇔ = dist⇔ 2! idl◎l = idl◎r 2! idl◎r = idl◎l 2! idr◎l = idr◎r 2! idr◎r = idr◎l 2! linv◎l = linv◎r 2! linv◎r = linv◎l 2! rinv◎l = rinv◎r 2! rinv◎r = rinv◎l 2! unitel₊⇔ = uniter₊⇔ 2! uniter₊⇔ = unitel₊⇔ 2! unitil₊⇔ = unitir₊⇔ 2! unitir₊⇔ = unitil₊⇔ 2! swapl₊⇔ = swapr₊⇔ 2! swapr₊⇔ = swapl₊⇔ 2! unitial₊⇔ = unitiar₊⇔ 2! unitiar₊⇔ = unitial₊⇔ 2! unitel⋆⇔ = uniter⋆⇔ 2! uniter⋆⇔ = unitel⋆⇔ 2! unitil⋆⇔ = unitir⋆⇔ 2! unitir⋆⇔ = unitil⋆⇔ 2! unitial⋆⇔ = unitiar⋆⇔ 2! unitiar⋆⇔ = unitial⋆⇔ 2! swapl⋆⇔ = swapr⋆⇔ 2! swapr⋆⇔ = swapl⋆⇔ 2! swapfl⋆⇔ = swapfr⋆⇔ 2! swapfr⋆⇔ = swapfl⋆⇔ 2! id⇔ = id⇔ 2! (trans⇔ α β) = trans⇔ (2! β) (2! α) 2! (resp◎⇔ α β) = resp◎⇔ (2! α) (2! β) 2! (resp⊕⇔ α β) = resp⊕⇔ (2! α) (2! β) 2! (resp⊗⇔ α β) = resp⊗⇔ (2! α) (2! β) -- a nice example of 2 paths negEx : uniti⋆ ◎ (swap⋆ ◎ ((swap₊ {ONE} {ONE} ⊗ id⟷) ◎ (swap⋆ ◎ unite⋆))) ⇔ swap₊ negEx = uniti⋆ ◎ (swap⋆ ◎ ((swap₊ ⊗ id⟷) ◎ (swap⋆ ◎ unite⋆))) ⇔⟨ resp◎⇔ id⇔ assoc◎l ⟩ uniti⋆ ◎ ((swap⋆ ◎ (swap₊ ⊗ id⟷)) ◎ (swap⋆ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ swapl⋆⇔ id⇔) ⟩ uniti⋆ ◎ (((id⟷ ⊗ swap₊) ◎ swap⋆) ◎ (swap⋆ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ assoc◎r ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ (swap⋆ ◎ (swap⋆ ◎ unite⋆))) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ assoc◎l) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ ((swap⋆ ◎ swap⋆) ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ (resp◎⇔ linv◎l id⇔)) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ (id⟷ ◎ unite⋆)) ⇔⟨ resp◎⇔ id⇔ (resp◎⇔ id⇔ idl◎l) ⟩ uniti⋆ ◎ ((id⟷ ⊗ swap₊) ◎ unite⋆) ⇔⟨ assoc◎l ⟩ (uniti⋆ ◎ (id⟷ ⊗ swap₊)) ◎ unite⋆ ⇔⟨ resp◎⇔ unitil⋆⇔ id⇔ ⟩ (swap₊ ◎ uniti⋆) ◎ unite⋆ ⇔⟨ assoc◎r ⟩ swap₊ ◎ (uniti⋆ ◎ unite⋆) ⇔⟨ resp◎⇔ id⇔ linv◎l ⟩ swap₊ ◎ id⟷ ⇔⟨ idr◎l ⟩ swap₊ ▤ -- The equivalence ⇔ of paths is rich enough to make U a 1groupoid: -- the points are types (t : U); the 1paths are ⟷; and the 2paths -- between them are based on the simplification rules ⇔ G' : 1Groupoid G' = record { set = U ; _↝_ = _⟷_ ; _≈_ = _⇔_ ; id = id⟷ ; _∘_ = λ p q → q ◎ p ; _⁻¹ = ! ; lneutr = λ _ → idr◎l ; rneutr = λ _ → idl◎l ; assoc = λ _ _ _ → assoc◎l ; equiv = record { refl = id⇔ ; sym = 2! ; trans = trans⇔ } ; linv = λ {t₁} {t₂} α → linv◎l ; rinv = λ {t₁} {t₂} α → rinv◎l ; ∘-resp-≈ = λ p∼q r∼s → resp◎⇔ r∼s p∼q } ------------------------------------------------------------------------------ -- Soundness and completeness -- The idea is to invert evaluation and use that to extract from each -- extensional representation of a combinator, a canonical syntactic -- representative canonical : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) canonical c = perm2c (size≡ c , c2perm c) -- Check canonical NOT = canonical NEG1 = canonical NEG2 = canonical NEG3 -- = canonical NEG4 = canonical NEG5 canonicalEx : Bool canonicalEx = let x = canonical NOT in comb= x (canonical NEG1) ∧ comb= x (canonical NEG2) ∧ comb= x (canonical NEG3) ∧ comb= x (canonical NEG4) ∧ comb= x (canonical NEG5) -- Proof of soundness and completeness: now we want to verify that ⇔ -- is sound and complete with respect to ∼. The statement to prove is -- that for all c₁ and c₂, we have c₁ ∼ c₂ iff c₁ ⇔ c₂ assoc⊕∼ : {t₁ t₂ t₃ t₄ t₅ t₆ : U} {c₁ : t₁ ⟷ t₂} {c₂ : t₃ ⟷ t₄} {c₃ : t₅ ⟷ t₆} → subst Cauchy (+-assoc (size t₁) (size t₃) (size t₅)) (c2cauchy ((c₁ ⊕ c₂) ⊕ c₃)) ≡ c2cauchy (c₁ ⊕ (c₂ ⊕ c₃)) assoc⊕∼ {t₁} {t₂} {t₃} {t₄} {t₅} {t₆} {c₁} {c₂} {c₃} = begin (subst Cauchy (+-assoc (size t₁) (size t₃) (size t₅)) (mapV (inject+ (size t₅)) (mapV (inject+ (size t₃)) (c2cauchy c₁) ++V mapV (raise (size t₁)) (c2cauchy c₂)) ++V mapV (raise (size t₁ + size t₃)) (c2cauchy c₃)) ≡⟨ cong (λ x → subst Cauchy (+-assoc (size t₁) (size t₃) (size t₅)) (x ++V mapV (raise (size t₁ + size t₃)) (c2cauchy c₃))) (map-++-commute (inject+ (size t₅)) (mapV (inject+ (size t₃)) (c2cauchy c₁))) ⟩ subst Cauchy (+-assoc (size t₁) (size t₃) (size t₅)) ((mapV (inject+ (size t₅)) (mapV (inject+ (size t₃)) (c2cauchy c₁)) ++V mapV (inject+ (size t₅)) (mapV (raise (size t₁)) (c2cauchy c₂))) ++V mapV (raise (size t₁ + size t₃)) (c2cauchy c₃)) ≡⟨ cong (λ x → subst Cauchy (+-assoc (size t₁) (size t₃) (size t₅)) (x ++V mapV (raise (size t₁ + size t₃)) (c2cauchy c₃))) (cong₂ _++V_ (sym (map-∘ (inject+ (size t₅)) (inject+ (size t₃)) (c2cauchy c₁))) (sym (map-∘ (inject+ (size t₅)) (raise (size t₁)) (c2cauchy c₂)))) ⟩ subst Cauchy (+-assoc (size t₁) (size t₃) (size t₅)) ((mapV (inject+ (size t₅) ∘ inject+ (size t₃)) (c2cauchy c₁) ++V mapV (inject+ (size t₅) ∘ raise (size t₁)) (c2cauchy c₂)) ++V mapV (raise (size t₁ + size t₃)) (c2cauchy c₃)) ≡⟨ {!!} ⟩ (subst (λ x → Vec (Fin x) (size t₁)) (+-assoc (size t₁) (size t₃) (size t₅)) (mapV (inject+ (size t₅) ∘ inject+ (size t₃)) (c2cauchy c₁))) ++V ((subst (λ x → Vec (Fin x) (size t₃)) (+-assoc (size t₁) (size t₃) (size t₅)) (mapV (inject+ (size t₅) ∘ raise (size t₁)) (c2cauchy c₂))) ++V (subst (λ x → Vec (Fin x) (size t₅)) (+-assoc (size t₁) (size t₃) (size t₅)) (mapV (raise (size t₁ + size t₃)) (c2cauchy c₃)))) ≡⟨ {!!} ⟩ mapV (inject+ (size t₃ + size t₅)) (c2cauchy c₁) ++V (mapV (raise (size t₁) ∘ inject+ (size t₅)) (c2cauchy c₂) ++V mapV (raise (size t₁) ∘ raise (size t₃)) (c2cauchy c₃)) ≡⟨ cong (λ x → mapV (inject+ (size t₃ + size t₅)) (c2cauchy c₁) ++V x) (cong₂ _++V_ (map-∘ (raise (size t₁)) (inject+ (size t₅)) (c2cauchy c₂)) (map-∘ (raise (size t₁)) (raise (size t₃)) (c2cauchy c₃))) ⟩ mapV (inject+ (size t₃ + size t₅)) (c2cauchy c₁) ++V (mapV (raise (size t₁)) (mapV (inject+ (size t₅)) (c2cauchy c₂)) ++V mapV (raise (size t₁)) (mapV (raise (size t₃)) (c2cauchy c₃))) ≡⟨ cong (λ x → mapV (inject+ (size t₃ + size t₅)) (c2cauchy c₁) ++V x) (sym (map-++-commute (raise (size t₁)) (mapV (inject+ (size t₅)) (c2cauchy c₂)))) ⟩ mapV (inject+ (size t₃ + size t₅)) (c2cauchy c₁) ++V (mapV (raise (size t₁)) (mapV (inject+ (size t₅)) (c2cauchy c₂) ++V mapV (raise (size t₃)) (c2cauchy c₃))) ≡⟨ refl ⟩ pcompcauchy (c2cauchy c₁) (pcompcauchy (c2cauchy c₂) (c2cauchy c₃)) ∎) where open ≡-Reasoning soundness : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ⇔ c₂) → (c₁ ∼ c₂) soundness (assoc◎l {t₁} {t₂} {t₃} {t₄} {c₁} {c₂} {c₃}) = assoc∼ {t₁} {t₂} {t₃} {t₄} {c₁} {c₂} {c₃} soundness (assoc◎r {t₁} {t₂} {t₃} {t₄} {c₁} {c₂} {c₃}) = sym (assoc∼ {t₁} {t₂} {t₃} {t₄} {c₁} {c₂} {c₃}) soundness (assoc⊕l {t₁} {t₂} {t₃} {t₄} {t₅} {t₆} {c₁} {c₂} {c₃}) = begin (c2cauchy (c₁ ⊕ (c₂ ⊕ c₃)) ≡⟨ sym (assoc⊕∼ {t₁} {t₂} {t₃} {t₄} {t₅} {t₆} {c₁} {c₂} {c₃}) ⟩ subst Cauchy (+-assoc (size t₁) (size t₃) (size t₅)) (c2cauchy {PLUS (PLUS t₁ t₃) t₅} {PLUS (PLUS t₂ t₄) t₆} ((c₁ ⊕ c₂) ⊕ c₃)) ≡⟨ sym (scomprid _) ⟩ scompcauchy (subst Cauchy (size≡! (assocl₊ {t₁} {t₃} {t₅})) (c2cauchy {PLUS (PLUS t₁ t₃) t₅} {PLUS (PLUS t₂ t₄) t₆} ((c₁ ⊕ c₂) ⊕ c₃))) (idcauchy (size t₁ + (size t₃ + size t₅))) ≡⟨ cong (scompcauchy (subst Cauchy (size≡! (assocl₊ {t₁} {t₃} {t₅})) (c2cauchy {PLUS (PLUS t₁ t₃) t₅} {PLUS (PLUS t₂ t₄) t₆} ((c₁ ⊕ c₂) ⊕ c₃)))) (sym (congD! idcauchy (size≡! (assocl₊ {t₁} {t₃} {t₅})))) ⟩ scompcauchy (subst Cauchy (size≡! (assocl₊ {t₁} {t₃} {t₅})) (c2cauchy {PLUS (PLUS t₁ t₃) t₅} {PLUS (PLUS t₂ t₄) t₆} ((c₁ ⊕ c₂) ⊕ c₃))) (subst Cauchy (size≡! (assocl₊ {t₁} {t₃} {t₅})) (idcauchy ((size t₁ + size t₃) + size t₅))) ≡⟨ cong (λ x → scompcauchy (subst Cauchy (size≡! (assocl₊ {t₁} {t₃} {t₅})) (c2cauchy {PLUS (PLUS t₁ t₃) t₅} {PLUS (PLUS t₂ t₄) t₆} ((c₁ ⊕ c₂) ⊕ c₃))) (subst Cauchy (size≡! (assocl₊ {t₁} {t₃} {t₅})) x)) (sym (congD! idcauchy (size≡! ((c₁ ⊕ c₂) ⊕ c₃)))) ⟩ scompcauchy (subst Cauchy (size≡! (assocl₊ {t₁} {t₃} {t₅})) (c2cauchy {PLUS (PLUS t₁ t₃) t₅} {PLUS (PLUS t₂ t₄) t₆} ((c₁ ⊕ c₂) ⊕ c₃))) (subst Cauchy (size≡! (assocl₊ {t₁} {t₃} {t₅})) (subst Cauchy (size≡! ((c₁ ⊕ c₂) ⊕ c₃)) (idcauchy ((size t₂ + size t₄) + size t₆)))) ≡⟨ sym (subst-dist scompcauchy (size≡! (assocl₊ {t₁} {t₃} {t₅})) _ _) ⟩ subst Cauchy (size≡! (assocl₊ {t₁} {t₃} {t₅})) (scompcauchy (c2cauchy {PLUS (PLUS t₁ t₃) t₅} {PLUS (PLUS t₂ t₄) t₆} ((c₁ ⊕ c₂) ⊕ c₃)) (subst Cauchy (size≡! ((c₁ ⊕ c₂) ⊕ c₃)) (idcauchy ((size t₂ + size t₄) + size t₆)))) ≡⟨ sym (scomplid _) ⟩ scompcauchy (idcauchy (size t₁ + (size t₃ + size t₅))) (subst Cauchy (size≡! (assocl₊ {t₁} {t₃} {t₅})) (scompcauchy (c2cauchy {PLUS (PLUS t₁ t₃) t₅} {PLUS (PLUS t₂ t₄) t₆} ((c₁ ⊕ c₂) ⊕ c₃)) (subst Cauchy (size≡! ((c₁ ⊕ c₂) ⊕ c₃)) (idcauchy ((size t₂ + size t₄) + size t₆))))) ≡⟨ refl ⟩ c2cauchy (assocl₊ ◎ (((c₁ ⊕ c₂) ⊕ c₃) ◎ assocr₊)) ∎) where open ≡-Reasoning soundness (assoc⊕r {t₁} {t₂} {t₃} {t₄} {t₅} {t₆} {c₁} {c₂} {c₃}) = {!!} soundness (assoc⊗l {t₁} {t₂} {t₃} {t₄} {t₅} {t₆} {c₁} {c₂} {c₃}) = {!!} soundness (assoc⊗r {t₁} {t₂} {t₃} {t₄} {t₅} {t₆} {c₁} {c₂} {c₃}) = {!!} soundness (dist⇔ {t₁} {t₂} {t₃} {t₄} {t₅} {t₆} {c₁} {c₂} {c₃}) = {!!} soundness (factor⇔ {t₁} {t₂} {t₃} {t₄} {t₅} {t₆} {c₁} {c₂} {c₃}) = {!!} soundness (idl◎l {t₁} {t₂} {c}) = id◎c∼c {t₁} {t₂} {c} soundness (idl◎r {t₁} {t₂} {c}) = sym (id◎c∼c {t₁} {t₂} {c}) soundness (idr◎l {t₁} {t₂} {c}) = c◎id∼c {t₁} {t₂} {c} soundness (idr◎r {t₁} {t₂} {c}) = sym (c◎id∼c {t₁} {t₂} {c}) soundness (linv◎l {t₁} {t₂} {c}) = linv∼ {t₁} {t₂} {c} soundness (linv◎r {t₁} {t₂} {c}) = sym (linv∼ {t₁} {t₂} {c}) soundness (rinv◎l {t₁} {t₂} {c}) = rinv∼ {t₁} {t₂} {c} soundness (rinv◎r {t₁} {t₂} {c}) = sym (rinv∼ {t₁} {t₂} {c}) soundness (unitel₊⇔ {t₁} {t₂} {c₁} {c₂}) = {!!} soundness (uniter₊⇔ {t₁} {t₂} {c₁} {c₂}) = {!!} soundness (unitil₊⇔ {t₁} {t₂} {c₁} {c₂}) = {!!} soundness (unitir₊⇔ {t₁} {t₂} {c₁} {c₂}) = {!!} soundness (unitial₊⇔ {t₁} {t₂}) = {!!} soundness (unitiar₊⇔ {t₁} {t₂}) = {!!} soundness (swapl₊⇔ {t₁} {t₂} {t₃} {t₄} {c₁} {c₂}) = {!!} soundness (swapr₊⇔ {t₁} {t₂} {t₃} {t₄} {c₁} {c₂}) = {!!} soundness (unitel⋆⇔ {t₁} {t₂} {c₁} {c₂}) = {!!} soundness (uniter⋆⇔ {t₁} {t₂} {c₁} {c₂}) = {!!} soundness (unitil⋆⇔ {t₁} {t₂} {c₁} {c₂}) = {!!} soundness (unitir⋆⇔ {t₁} {t₂} {c₁} {c₂}) = {!!} soundness (unitial⋆⇔ {t₁} {t₂}) = {!!} soundness (unitiar⋆⇔ {t₁} {t₂}) = {!!} soundness (swapl⋆⇔ {t₁} {t₂} {t₃} {t₄} {c₁} {c₂}) = {!!} soundness (swapr⋆⇔ {t₁} {t₂} {t₃} {t₄} {c₁} {c₂}) = {!!} soundness (swapfl⋆⇔ {t₁} {t₂} {t₃}) = {!!} soundness (swapfr⋆⇔ {t₁} {t₂} {t₃}) = {!!} soundness (id⇔ {t₁} {t₂} {c}) = refl∼ {t₁} {t₂} {c} soundness (trans⇔ {t₁} {t₂} {c₁} {c₂} {c₃} α β) = trans∼ {t₁} {t₂} {c₁} {c₂} {c₃} (soundness α) (soundness β) soundness (resp◎⇔ {t₁} {t₂} {t₃} {c₁} {c₃} {c₂} {c₄} α β) = resp∼ {t₁} {t₂} {t₃} {c₁} {c₂} {c₃} {c₄} (soundness α) (soundness β) soundness (resp⊕⇔ {t₁} {t₂} {t₃} {t₄} {c₁} {c₂} {c₃} {c₄} α β) = {!!} soundness (resp⊗⇔ {t₁} {t₂} {t₃} {t₄} {c₁} {c₂} {c₃} {c₄} α β) = {!!} -- If we can prove that every combinator is equal to its normal form -- then we can prove completeness. inversion : {t₁ t₂ : U} (c : t₁ ⟷ t₂) → canonical c ⇔ c inversion (c₁ ◎ c₂) = {!!} inversion {PLUS ZERO t} {.t} unite₊ = {!!} inversion {t} {PLUS ZERO .t} uniti₊ = {!!} inversion {PLUS t₁ t₂} {PLUS .t₂ .t₁} swap₊ = {!!} inversion {PLUS t₁ (PLUS t₂ t₃)} {PLUS (PLUS .t₁ .t₂) .t₃} assocl₊ = {!!} inversion {PLUS (PLUS t₁ t₂) t₃} {PLUS .t₁ (PLUS .t₂ .t₃)} assocr₊ = {!!} inversion {TIMES ONE t} {.t} unite⋆ = {!!} inversion {t} {TIMES ONE .t} uniti⋆ = {!!} inversion {TIMES t₁ t₂} {TIMES .t₂ .t₁} swap⋆ = {!!} inversion {TIMES t₁ (TIMES t₂ t₃)} {TIMES (TIMES .t₁ .t₂) .t₃} assocl⋆ = {!!} inversion {TIMES (TIMES t₁ t₂) t₃} {TIMES .t₁ (TIMES .t₂ .t₃)} assocr⋆ = {!!} inversion {TIMES .ZERO t} {ZERO} distz = {!!} inversion {ZERO} {TIMES ZERO t} factorz = {!!} inversion {TIMES (PLUS t₁ t₂) t₃} {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} dist = {!!} inversion {PLUS (TIMES t₁ t₃) (TIMES t₂ .t₃)} {TIMES (PLUS .t₁ .t₂) .t₃} factor = {!!} inversion {t} {.t} id⟷ = canonical id⟷ ⇔⟨ id⇔ ⟩ normalizeC t ◎ transposition*2c (size t) (size t) refl (cauchy→transposition* (idcauchy (size t))) ◎ ! (normalizeC t) ⇔⟨ {!!} ⟩ normalizeC t ◎ id⟷ ◎ ! (normalizeC t) ⇔⟨ resp◎⇔ id⇔ idl◎l ⟩ normalizeC t ◎ ! (normalizeC t) ⇔⟨ linv◎l ⟩ id⟷ ▤ inversion {PLUS t₁ t₂} {PLUS t₃ t₄} (c₁ ⊕ c₂) = {!!} inversion {TIMES t₁ t₂} {TIMES t₃ t₄} (c₁ ⊗ c₂) = {!!} inversion {PLUS ONE ONE} {BOOL} foldBool = {!!} {-- canonical foldBool = ((uniti₊ ◎ swap₊ ⊕ uniti₊ ◎ swap₊) ◎ assocr₊ ◎ (id⟷ ⊕ unite₊)) ◎ (id⟷ ◎ (id⟷ ⊕ id⟷) ◎ id⟷) ◎ (((id⟷ ⊕ uniti₊) ◎ assocl₊) ◎ (swap₊ ◎ unite₊ ⊕ swap₊ ◎ unite₊)) ◎ foldBool --} inversion {BOOL} {PLUS ONE ONE} unfoldBool = {!!} resp≡⇔ : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ≡ c₂) → (c₁ ⇔ c₂) resp≡⇔ {t₁} {t₂} {c₁} {c₂} p rewrite p = id⇔ completeness : {t₁ t₂ : U} {c₁ c₂ : t₁ ⟷ t₂} → (c₁ ∼ c₂) → (c₁ ⇔ c₂) completeness {t₁} {t₂} {c₁} {c₂} c₁∼c₂ = c₁ ⇔⟨ 2! (inversion c₁) ⟩ canonical c₁ ⇔⟨ resp≡⇔ {!!} ⟩ canonical c₂ ⇔⟨ inversion c₂ ⟩ c₂ ▤ ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4867131632, "avg_line_length": 42.0296846011, "ext": "agda", "hexsha": "c6b7f93713971ed1753678b9bcbadb1ab36ffce9", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/Pif2.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/Pif2.agda", "max_line_length": 87, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/Pif2.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 11681, "size": 22654 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.NType2 open import lib.types.Group open import lib.types.Word open import lib.groups.GeneratedAbelianGroup open import lib.groups.GeneratedGroup open import lib.groups.GroupProduct open import lib.groups.Homomorphism open import lib.groups.Isomorphism module lib.groups.FreeAbelianGroup {i} where module FreeAbelianGroup (A : Type i) where private module Gen = GeneratedAbelianGroup A empty-rel open Gen hiding (GenAbGroup; module HomomorphismEquiv) public CommutativityRel : Rel (Word A) i CommutativityRel = AbGroupRel FormalSumRel : Rel (Word A) i FormalSumRel = QuotWordRel FormalSum : Type i FormalSum = QuotWord FreeGroup : Group i FreeGroup = Gen.GenGroup FreeAbGroup : AbGroup i FreeAbGroup = Gen.GenAbGroup module FreeAbGroup = AbGroup FreeAbGroup {- Universal Property -} module Freeness {j} (G : AbGroup j) where private module G = AbGroup G extend-equiv : (A → G.El) ≃ (FreeAbGroup.grp →ᴳ G.grp) extend-equiv = Gen.HomomorphismEquiv.extend-equiv G ∘e every-function-respects-empty-rel-equiv A G.grp extend : (A → G.El) → (FreeAbGroup.grp →ᴳ G.grp) extend = –> extend-equiv extend-is-equiv : is-equiv extend extend-is-equiv = snd extend-equiv extend-hom : Πᴳ A (λ _ → G.grp) →ᴳ hom-group FreeAbGroup.grp G extend-hom = record {M} where module M where f : (A → G.El) → (FreeAbGroup.grp →ᴳ G.grp) f = extend abstract pres-comp : preserves-comp (Group.comp (Πᴳ A (λ _ → G.grp))) (Group.comp (hom-group FreeAbGroup.grp G)) f pres-comp = λ f₁ f₂ → group-hom= $ λ= $ QuotWord-elim (Word-extendᴳ-comp G f₁ f₂) (λ _ → prop-has-all-paths-↓) extend-iso : Πᴳ A (λ _ → G.grp) ≃ᴳ hom-group FreeAbGroup.grp G extend-iso = extend-hom , snd extend-equiv
{ "alphanum_fraction": 0.6722077922, "avg_line_length": 28.3088235294, "ext": "agda", "hexsha": "882f7b00bee85ff5c5995ead5702c8b3fb799bd5", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/groups/FreeAbelianGroup.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/groups/FreeAbelianGroup.agda", "max_line_length": 115, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/groups/FreeAbelianGroup.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 583, "size": 1925 }
{-# OPTIONS --without-K --safe #-} module Categories.Enriched.Over.One where open import Level open import Categories.Category.Monoidal.Instance.One open import Categories.Enriched.Category TruthValue : (o ℓ e t : Level) → Set (o ⊔ ℓ ⊔ e ⊔ suc t) TruthValue o ℓ e t = Category (One-Monoidal {o} {ℓ} {e}) t
{ "alphanum_fraction": 0.7064516129, "avg_line_length": 25.8333333333, "ext": "agda", "hexsha": "b5f7471810866c5d197fecb240fd835b898f3af8", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Enriched/Over/One.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Enriched/Over/One.agda", "max_line_length": 58, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Enriched/Over/One.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 93, "size": 310 }
{-# OPTIONS --without-K --safe #-} module Util.HoTT.Equiv.Core where open import Util.Prelude open import Util.HoTT.HLevel.Core infix 4 _≅_ _≃_ private variable α β γ : Level A B C : Set α Injective : (f : A → B) → Set _ Injective f = ∀ {x y} → f x ≡ f y → x ≡ y record IsIso {A : Set α} {B : Set β} (forth : A → B) : Set (α ⊔ℓ β) where field back : B → A back∘forth : ∀ x → back (forth x) ≡ x forth∘back : ∀ x → forth (back x) ≡ x record _≅_ (A : Set α) (B : Set β) : Set (α ⊔ℓ β) where field forth : A → B isIso : IsIso forth open IsIso isIso public open _≅_ public IsEquiv : {A : Set α} {B : Set β} (forth : A → B) → Set (α ⊔ℓ β) IsEquiv {A = A} {B} forth = ∀ b → IsContr (Σ[ a ∈ A ] forth a ≡ b) record _≃_ (A : Set α) (B : Set β) : Set (α ⊔ℓ β) where field forth : A → B isEquiv : IsEquiv forth open _≃_ public
{ "alphanum_fraction": 0.5474040632, "avg_line_length": 17.3725490196, "ext": "agda", "hexsha": "f1691fe4060eeec9391233404f107784ce4f54c8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JLimperg/msc-thesis-code", "max_forks_repo_path": "src/Util/HoTT/Equiv/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JLimperg/msc-thesis-code", "max_issues_repo_path": "src/Util/HoTT/Equiv/Core.agda", "max_line_length": 67, "max_stars_count": 5, "max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JLimperg/msc-thesis-code", "max_stars_repo_path": "src/Util/HoTT/Equiv/Core.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z", "max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z", "num_tokens": 369, "size": 886 }
module Nat where data Nat : Set data Nat where zero : Nat suc : Nat -> Nat plus : Nat -> Nat -> Nat plus zero n = n plus (suc m) n = suc (plus m n) elim : (P : (n : Nat) -> Set) -> (z : P (plus zero zero)) -> (s : (n : Nat) -> P (plus zero n) -> P (plus (suc zero) n)) -> (n : Nat) -> P n elim P z s zero = z elim P z s (suc n) = s n (elim P z s n)
{ "alphanum_fraction": 0.4831168831, "avg_line_length": 20.2631578947, "ext": "agda", "hexsha": "4ab64de6a2384eaa3940d66fe10269bd07df7b96", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "src/prototyping/term/examples/Nat.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "src/prototyping/term/examples/Nat.agda", "max_line_length": 69, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "src/prototyping/term/examples/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 146, "size": 385 }
module Oscar.Category where open import Oscar.Level open import Oscar.Function record Setoid {𝔬} (𝔒 : Ø 𝔬) 𝔮 : Ø 𝔬 ∙̂ ↑̂ 𝔮 where infix 4 _≋_ field _≋_ : 𝔒 → 𝔒 → Ø 𝔮 ≋-reflexivity : ∀ {x} → x ≋ x ≋-symmetry : ∀ {x y} → x ≋ y → y ≋ x ≋-transitivity : ∀ {x y} → x ≋ y → ∀ {z} → y ≋ z → x ≋ z record Semigroupoid {𝔬} {𝔒 : Ø 𝔬} {𝔪} (𝔐 : 𝔒 → 𝔒 → Ø 𝔪) {𝔮} (𝔐-setoid : ∀ {x y} → Setoid (𝔐 x y) 𝔮) : Ø 𝔬 ∙̂ 𝔪 ∙̂ 𝔮 where instance _ = λ {x y} → 𝔐-setoid {x} {y} open Setoid ⦃ … ⦄ using (_≋_) infixr 9 _∙_ field _∙_ : ∀ {y z} → 𝔐 y z → ∀ {x} → 𝔐 x y → 𝔐 x z ∙-extensionality : ∀ {x y} {f₁ f₂ : 𝔐 x y} → f₁ ≋ f₂ → ∀ {z} {g₁ g₂ : 𝔐 y z} → g₁ ≋ g₂ → g₁ ∙ f₁ ≋ g₂ ∙ f₂ ∙-associativity : ∀ {w x} (f : 𝔐 w x) {y} (g : 𝔐 x y) {z} (h : 𝔐 y z) → (h ∙ g) ∙ f ≋ h ∙ (g ∙ f) record Category {𝔬} {𝔒 : Ø 𝔬} {𝔪} {𝔐 : 𝔒 → 𝔒 → Ø 𝔪} {𝔮} {𝔐-setoid : ∀ {x y} → Setoid (𝔐 x y) 𝔮} (semigroupoid : Semigroupoid 𝔐 𝔐-setoid) : Ø 𝔬 ∙̂ 𝔪 ∙̂ 𝔮 where instance _ = λ {x y} → 𝔐-setoid {x} {y} open Setoid ⦃ … ⦄ using (_≋_) open Semigroupoid semigroupoid using (_∙_) field ε : ∀ {x} → 𝔐 x x ε-left-identity : ∀ {x y} {f : 𝔐 x y} → ε ∙ f ≋ f ε-right-identity : ∀ {x y} {f : 𝔐 x y} → f ∙ ε ≋ f record Semifunctor {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔪₁} {𝔐₁ : 𝔒₁ → 𝔒₁ → Ø 𝔪₁} {𝔮₁} {𝔐₁-setoid : ∀ {x y} → Setoid (𝔐₁ x y) 𝔮₁} (semigroupoid₁ : Semigroupoid 𝔐₁ 𝔐₁-setoid) {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔪₂} {𝔐₂ : 𝔒₂ → 𝔒₂ → Ø 𝔪₂} {𝔮₂} {𝔐₂-setoid : ∀ {x y} → Setoid (𝔐₂ x y) 𝔮₂} (semigroupoid₂ : Semigroupoid 𝔐₂ 𝔐₂-setoid) : Ø 𝔬₁ ∙̂ 𝔪₁ ∙̂ 𝔮₁ ∙̂ 𝔬₂ ∙̂ 𝔪₂ ∙̂ 𝔮₂ where instance _ = λ {x y} → 𝔐₁-setoid {x} {y} instance _ = λ {x y} → 𝔐₂-setoid {x} {y} open Setoid ⦃ … ⦄ using (_≋_) module ⒈ = Semigroupoid semigroupoid₁ module ⒉ = Semigroupoid semigroupoid₂ field {μ} : 𝔒₁ → 𝔒₂ 𝔣 : ∀ {x y} → 𝔐₁ x y → 𝔐₂ (μ x) (μ y) 𝔣-extensionality : ∀ {x y} → {f₁ f₂ : 𝔐₁ x y} → f₁ ≋ f₂ → 𝔣 f₁ ≋ 𝔣 f₂ 𝔣-commutativity : ∀ {x y} {f : 𝔐₁ x y} {z} {g : 𝔐₁ y z} → 𝔣 (g ⒈.∙ f) ≋ 𝔣 g ⒉.∙ 𝔣 f record Functor {𝔬₁} {𝔒₁ : Ø 𝔬₁} {𝔪₁} {𝔐₁ : 𝔒₁ → 𝔒₁ → Ø 𝔪₁} {𝔮₁} {𝔐₁-setoid : ∀ {x y} → Setoid (𝔐₁ x y) 𝔮₁} {semigroupoid₁ : Semigroupoid 𝔐₁ 𝔐₁-setoid} {𝔬₂} {𝔒₂ : Ø 𝔬₂} {𝔪₂} {𝔐₂ : 𝔒₂ → 𝔒₂ → Ø 𝔪₂} {𝔮₂} {𝔐₂-setoid : ∀ {x y} → Setoid (𝔐₂ x y) 𝔮₂} {semigroupoid₂ : Semigroupoid 𝔐₂ 𝔐₂-setoid} (semifunctor : Semifunctor semigroupoid₁ semigroupoid₂) (category₁ : Category semigroupoid₁) (category₂ : Category semigroupoid₂) : Ø 𝔬₁ ∙̂ 𝔪₁ ∙̂ 𝔮₁ ∙̂ 𝔬₂ ∙̂ 𝔪₂ ∙̂ 𝔮₂ where instance _ = λ {x y} → 𝔐₂-setoid {x} {y} open Setoid ⦃ … ⦄ using (_≋_) open Semifunctor semifunctor using (𝔣; μ) module ⒈ = Category category₁ module ⒉ = Category category₂ field 𝔣-identity : ∀ {x : 𝔒₁} → 𝔣 (⒈.ε {x = x}) ≋ (⒉.ε {x = μ x})
{ "alphanum_fraction": 0.5174165457, "avg_line_length": 32.4235294118, "ext": "agda", "hexsha": "6361f43b26866316f732e9241ceee5df3008a1c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Category.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Category.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Category.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1670, "size": 2756 }
module consoleExamples.simpleLoop where open import ConsoleLib open import Data.Bool renaming (not to ¬) open import Data.String hiding (_==_) open import SizedIO.Base open import Size -- the following program asks the user for an input, which is a string. -- It converts this string into a Boolean value (by mapping "true" to true and -- "false" to false), applies Boolean negation to the result -- and then converts the resulting Boolean value back to a string boolStrInput2Bool : String → Bool boolStrInput2Bool s = s ==str "true" checkStrBoolInput : String → Bool checkStrBoolInput s = (s ==str "true") ∨ (s ==str "false") bool2Str : Bool → String bool2Str true = "true" bool2Str false = "false" -- when writing a recursive program you need to write first the body -- as an element of IOConsole -- and apply an eliminator to it, followed by a a function which -- results in an element of IOConsole' -- otherwise the recursion would unfold and you get an infinite term -- -- The functions WriteString+ and ReadLine+ which need the continuing program -- as argument can be used to create elements of IOConsole' -- -- Furthermore after applying a size argument (i which is of type Size) -- the termination checker can figure out that your definition is productive -- i.e. has at least one interaction before carrying out the recursion. mainBody : ∀{i} → IOConsole i Unit force (mainBody) = WriteString+ "Enter true or false" (GetLine >>= λ s → if (checkStrBoolInput s) then (WriteString ("Result of negating your input is " ++ bool2Str (¬ (boolStrInput2Bool s))) >>= λ _ → mainBody) else (WriteString ("Please enter \"true\" or \"false\"") >>= λ _ → mainBody)) main : ConsoleProg main = run mainBody
{ "alphanum_fraction": 0.6609195402, "avg_line_length": 36.8076923077, "ext": "agda", "hexsha": "b4ad0a572c8820bee649bf5625c38ff818315401", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/consoleExamples/simpleLoop.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/consoleExamples/simpleLoop.agda", "max_line_length": 84, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/consoleExamples/simpleLoop.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 445, "size": 1914 }
module DoBlock3 where data Id (A : Set) : Set where id : A → Id A _>>=_ : {A B : Set} → Id A → (A → Id B) → Id B id x >>= f = f x _>>_ : {A B : Set} → Id A → Id B → Id B _ >> y = y f : {A : Set} → A → Id A f x = do id x id x
{ "alphanum_fraction": 0.3674911661, "avg_line_length": 7.6486486486, "ext": "agda", "hexsha": "1eabd3083954600d45ec71f31144b52d6ee2f662", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z", "max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "msuperdock/agda-unused", "max_forks_repo_path": "data/expression/DoBlock3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "msuperdock/agda-unused", "max_issues_repo_path": "data/expression/DoBlock3.agda", "max_line_length": 21, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "msuperdock/agda-unused", "max_stars_repo_path": "data/expression/DoBlock3.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z", "num_tokens": 141, "size": 283 }
module Numeral.Natural.UnclosedOper where import Lvl open import Data open import Data.Boolean.Stmt open import Data.Option as Option using (Option) open import Data.Option.Functions as Option open import Logic.Propositional open import Numeral.Finite as 𝕟 using (𝕟) import Numeral.Finite.Bound as 𝕟bound open import Numeral.Integer as ℤ using (ℤ) open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Comparisons open import Numeral.Natural.Oper.Modulo open import Numeral.Natural.Oper.Modulo.Proofs open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Decidable open import Numeral.Natural.Relation.Order.Proofs import Numeral.Sign as Sign open import Type.Properties.Decidable.Proofs infix 10010 _−_ -- TODO _/_ : ℕ → ℕ → ℚ -- Unclosed total subtraction from natural numbers to an optional natural number. -- When the subtraction gives a negative number semantically, this operation gives Option.None. _−?_ : ℕ → ℕ → Option(ℕ) a −? 𝟎 = Option.Some(a) 𝟎 −? 𝐒(b) = Option.None 𝐒(a) −? 𝐒(b) = a −? b -- Unclosed total floored division {-# TERMINATING #-} _⌊/₀⌋_ : ℕ → ℕ → ℕ 𝐒(x) ⌊/₀⌋ 𝐒(y) with (𝐒(x) −? 𝐒(y)) ... | Option.Some(𝐒x𝐒y) = 𝐒(𝐒x𝐒y ⌊/₀⌋ 𝐒(y)) ... | Option.None = 𝟎 {-# CATCHALL #-} _ ⌊/₀⌋ _ = 𝟎 -- Unclosed total subtraction from natural numbers to an optional natural number. -- When dividing by 0, this operation gives Option.None. {-# TERMINATING #-} _⌊/⌋?_ : ℕ → ℕ → Option(ℕ) _ ⌊/⌋? 𝟎 = Option.None 𝟎 ⌊/⌋? 𝐒(_) = Option.Some(𝟎) 𝐒(x) ⌊/⌋? 𝐒(y) with (𝐒(x) −? 𝐒(y)) ... | Option.Some(𝐒x𝐒y) = Option.map 𝐒(𝐒x𝐒y ⌊/⌋? 𝐒(y)) ... | Option.None = Option.Some(𝟎) -- Unclosed total subtraction from natural numbers to an optional natural number. -- When dividing by 0 or the division gives a rational number semantically, this operation gives Option.None. {-# TERMINATING #-} _/?_ : ℕ → ℕ → Option(ℕ) _ /? 𝟎 = Option.None 𝟎 /? 𝐒(_) = Option.Some(𝟎) 𝐒(x) /? 𝐒(y) with (𝐒(x) −? 𝐒(y)) ... | Option.Some(𝐒x𝐒y) = Option.map 𝐒(𝐒x𝐒y /? 𝐒(y)) ... | Option.None = Option.None -- Unclosed total subtraction from natural numbers to finite natural numbers _−₀fin_ : (x : ℕ) → ℕ → 𝕟(𝐒(x)) 𝟎 −₀fin _ = 𝕟.𝟎 𝐒(x) −₀fin 𝟎 = 𝕟.𝐒(x −₀fin 𝟎) 𝐒(x) −₀fin 𝐒(y) = 𝕟bound.bound-𝐒 (x −₀fin y) -- Unclosed total subtraction from a natural number and a finite natural number to a finite natural number _−fin_ : (x : ℕ) → 𝕟(𝐒(x)) → 𝕟(𝐒(x)) 𝟎 −fin 𝕟.𝟎 = 𝕟.𝟎 𝐒(x) −fin 𝕟.𝟎 = 𝕟.𝐒(x −fin 𝕟.𝟎) 𝐒(x) −fin 𝕟.𝐒(y) = 𝕟bound.bound-𝐒 (x −fin y) -- Modulo operation to upper bounded natural numbers. _modfin_ : ℕ → (b : ℕ) → ⦃ _ : IsTrue(b ≢? 𝟎) ⦄ → 𝕟(b) a modfin 𝐒 b = 𝕟.ℕ-to-𝕟 (a mod 𝐒(b)) ⦃ [↔]-to-[→] decider-true (mod-maxᵣ{a}{𝐒 b}) ⦄
{ "alphanum_fraction": 0.6565547129, "avg_line_length": 34.6125, "ext": "agda", "hexsha": "667cf8ac483cebd572d4f88f1b33608b80c7fa28", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/UnclosedOper.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/UnclosedOper.agda", "max_line_length": 109, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/UnclosedOper.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1148, "size": 2769 }
open import Type module Structure.Operator.SetAlgebra {ℓ} (S : Type{ℓ}) where import Lvl open import Functional open import Logic open import Logic.Propositional open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Operator.Properties open import Structure.Operator.Proofs open import Structure.Relator.Properties open import Syntax.Transitivity record Fundamentals : Stmt{ℓ} where infixl 1001 _∩_ infixl 1000 _∪_ field _∪_ : S → S → S -- Union _∩_ : S → S → S -- Intersection ∅ : S -- Empty set 𝐔 : S -- Universal set field -- TODO: This is two commutative monoids with distributivity over each other ⦃ [∪]-commutativity ⦄ : Commutativity(_∪_) ⦃ [∩]-commutativity ⦄ : Commutativity(_∩_) ⦃ [∪]-associativity ⦄ : Associativity(_∪_) ⦃ [∩]-associativity ⦄ : Associativity(_∩_) ⦃ [∪][∩]-distributivityₗ ⦄ : Distributivityₗ(_∪_)(_∩_) ⦃ [∩][∪]-distributivityₗ ⦄ : Distributivityₗ(_∩_)(_∪_) ⦃ [∪]-identityₗ ⦄ : Identityₗ(_∪_)(∅) ⦃ [∩]-identityₗ ⦄ : Identityₗ(_∩_)(𝐔) instance [∪][∩]-distributivityᵣ : Distributivityᵣ(_∪_)(_∩_) [∪][∩]-distributivityᵣ = [↔]-to-[→] OneTypeTwoOp.distributivity-equivalence-by-commutativity [∪][∩]-distributivityₗ instance [∩][∪]-distributivityᵣ : Distributivityᵣ(_∩_)(_∪_) [∩][∪]-distributivityᵣ = [↔]-to-[→] OneTypeTwoOp.distributivity-equivalence-by-commutativity [∩][∪]-distributivityₗ instance [∪]-identityᵣ : Identityᵣ(_∪_)(∅) [∪]-identityᵣ = [↔]-to-[→] One.identity-equivalence-by-commutativity [∪]-identityₗ instance [∩]-identityᵣ : Identityᵣ(_∩_)(𝐔) [∩]-identityᵣ = [↔]-to-[→] One.identity-equivalence-by-commutativity [∩]-identityₗ record Complement : Stmt{ℓ} where infixl 1002 ∁_ infixl 1000 _∖_ field ∁_ : S → S -- Complement field ⦃ fundamentals ⦄ : Fundamentals open Fundamentals(fundamentals) field -- TODO: Not really inverses. These are using the absorbers [∪]-inverseᵣ : ∀{s : S} → (s ∪ ∁(s) ≡ 𝐔) [∩]-inverseᵣ : ∀{s : S} → (s ∩ ∁(s) ≡ ∅) _∖_ : S → S → S -- Difference _∖_ (s₁)(s₂) = s₁ ∩ ∁(s₂) [∪]-inverseₗ : ∀{s : S} → (∁(s) ∪ s ≡ 𝐔) [∪]-inverseₗ = transitivity(_≡_) (commutativity(_∪_)) [∪]-inverseᵣ [∩]-inverseₗ : ∀{s : S} → (∁(s) ∩ s ≡ ∅) [∩]-inverseₗ = transitivity(_≡_) (commutativity(_∩_)) [∩]-inverseᵣ [∁]-of-[∅] : (∁(∅) ≡ 𝐔) [∁]-of-[∅] = symmetry(_≡_) (identityₗ(_∪_)(∅)) 🝖 ([∪]-inverseᵣ) [∁]-of-[𝐔] : (∁(𝐔) ≡ ∅) [∁]-of-[𝐔] = symmetry(_≡_) (identityₗ(_∩_)(𝐔)) 🝖 ([∩]-inverseᵣ) [∪]-idempotence : ∀{s : S} → (s ∪ s) ≡ s [∪]-idempotence{s} = ([≡]-intro) 🝖 (symmetry(_≡_) (identityᵣ(_∩_)(𝐔))) 🝖 ([≡]-with(expr ↦ ((s ∪ s) ∩ expr)) (symmetry(_≡_) [∪]-inverseᵣ)) 🝖 (symmetry(_≡_) (distributivityₗ(_∪_)(_∩_))) 🝖 ([≡]-with(expr ↦ (s ∪ expr)) [∩]-inverseᵣ) 🝖 ((identityᵣ(_∪_)(∅))) [∩]-idempotence : ∀{s : S} → (s ∩ s) ≡ s [∩]-idempotence{s} = ([≡]-intro) 🝖 (symmetry(_≡_) (identityᵣ(_∪_)(∅))) 🝖 ([≡]-with(expr ↦ ((s ∩ s) ∪ expr)) (symmetry(_≡_) [∩]-inverseᵣ)) 🝖 (symmetry(_≡_) (distributivityₗ(_∩_)(_∪_))) 🝖 ([≡]-with(expr ↦ (s ∩ expr)) [∪]-inverseᵣ) 🝖 ((identityᵣ(_∩_)(𝐔))) [∪]-absorber : ∀{s : S} → (s ∪ 𝐔) ≡ 𝐔 [∪]-absorber{s} = ([≡]-with(expr ↦ s ∪ expr) (symmetry(_≡_) [∪]-inverseᵣ)) 🝖 (symmetry(_≡_) (associativity(_∪_))) 🝖 ([≡]-with(expr ↦ expr ∪ ∁(s)) [∪]-idempotence) 🝖 ([∪]-inverseᵣ) -- s∪𝐔 = s∪(s ∪ ∁(s)) = (s∪s) ∪ ∁(s) = s ∪ ∁(s) = 𝐔 [∩]-absorber : ∀{s : S} → (s ∩ ∅) ≡ ∅ [∩]-absorber{s} = ([≡]-with(expr ↦ s ∩ expr) (symmetry(_≡_) [∩]-inverseᵣ)) 🝖 (symmetry(_≡_) (associativity(_∩_))) 🝖 ([≡]-with(expr ↦ expr ∩ ∁(s)) [∩]-idempotence) 🝖 ([∩]-inverseᵣ) -- s∩∅ = s∩(s ∩ ∁(s)) = (s∩s) ∩ ∁(s) = s ∩ ∁(s) = ∅ -- postulate [∪]-absorptionₗ : ∀{s₁ s₂ : S} → (s₁ ∪ (s₁ ∩ s₂)) ≡ s₁ -- s₁∪(s₁∩s₂) -- = (s₁∪s₁)∩(s₁∪s₂) -- = s₁∩(s₁∪s₂) -- = (s₁∩s₁) ∪ (s₁∩s₂) -- = s₁ ∪ (s₁∩s₂) -- = ? -- postulate [∩]-absorptionₗ : ∀{s₁ s₂ : S} → (s₁ ∩ (s₁ ∪ s₂)) ≡ s₁ -- ∁(s₁) ∪ ∁(s₁ ∪ s₂) = ∁(s₁) -- ∁(s₁) ∩ ∁(s₁ ∪ s₂) = ∁(s₁ ∪ s₂) -- ∁(s₁) ∪ ∁(s₁ ∩ s₂) = ∁(s₁ ∩ s₂) -- ∁(s₁) ∩ ∁(s₁ ∩ s₂) = ∁(s₁) -- postulate a : ∀{a} → a -- postulate [∁]-of-[∪] : ∀{s₁ s₂ : S} → ∁(s₁ ∪ s₂) ≡ ∁(s₁) ∩ ∁(s₂) -- [∁]-of-[∪] = -- ((∁(s₁) ∩ ∁(s₂)) ∪ (s₁ ∪ s₂)) = 𝐔 ? -- (s₁ ∪ s₂) ∪ ∁(s₁ ∪ s₂) = 𝐔 -- ∁(s₂) ∩ ((s₁ ∪ s₂) ∪ ∁(s₁ ∪ s₂)) = ∁(s₁) ∩ 𝐔 -- (∁(s₂) ∩ (s₁ ∪ s₂)) ∪ (∁(s₁) ∩ ∁(s₁ ∪ s₂)) = ∁(s₂) ∩ 𝐔 -- (∁(s₂) ∩ (s₁ ∪ s₂)) ∪ (∁(s₁) ∩ ∁(s₁ ∪ s₂)) = ∁(s₂) ∩ 𝐔 -- (∁(s₂) ∩ (s₁ ∪ s₂)) ∪ (∁(s₁) ∩ ∁(s₁ ∪ s₂)) = ∁(s₂) -- ∁(s₂) = (∁(s₂) ∩ (s₁ ∪ s₂)) ∪ (∁(s₁) ∩ ∁(s₁ ∪ s₂)) -- ∁(s₂) = ((∁(s₂) ∩ s₁) ∪ (∁(s₂) ∩ s₂)) ∪ ∁(s₁ ∪ s₂) -- ∁(s₂) = ((∁(s₂) ∩ s₁) ∪ ∅) ∪ ∁(s₁ ∪ s₂) -- ∁(s₂) = (∁(s₂) ∩ s₁) ∪ ∁(s₁ ∪ s₂) -- ∁(s₁) ∩ ∁(s₂) = ∁(s₁) ∩ ((∁(s₂) ∩ s₁) ∪ ∁(s₁ ∪ s₂)) -- ∁(s₁) ∩ ∁(s₂) = (∁(s₁) ∩ (∁(s₂) ∩ s₁)) ∪ (∁(s₁) ∩ ∁(s₁ ∪ s₂)) -- ∁(s₁) ∩ ∁(s₂) = (∁(s₁) ∩ (∁(s₂) ∩ s₁)) ∪ ∁(s₁ ∪ s₂) -- ∁(s₁) ∩ ∁(s₂) = (∁(s₁) ∩ (s₁ ∩ ∁(s₂))) ∪ ∁(s₁ ∪ s₂) -- ∁(s₁) ∩ ∁(s₂) = ((∁(s₁) ∩ s₁) ∩ ∁(s₂)) ∪ ∁(s₁ ∪ s₂) -- ∁(s₁) ∩ ∁(s₂) = (∅ ∩ ∁(s₂)) ∪ ∁(s₁ ∪ s₂) -- ∁(s₁) ∩ ∁(s₂) = ∅ ∪ ∁(s₁ ∪ s₂) -- ∁(s₁) ∩ ∁(s₂) = ∁(s₁ ∪ s₂) -- postulate proof1 : ∀{a b c d} → (a ∩ b) ∩ (c ∪ d) ≡ (a ∩ (b ∩ d)) ∪ (b ∩ (a ∩ c)) -- (a ∩ b) ∩ (c ∪ d) -- = ((a ∩ b) ∩ c) ∪ ((a ∩ b) ∩ d) -- = ((b ∩ a) ∩ c) ∪ ((a ∩ b) ∩ d) -- = (b ∩ (a ∩ c)) ∪ ((a ∩ b) ∩ d) -- = (b ∩ (a ∩ c)) ∪ (a ∩ (b ∩ d)) -- = (a ∩ (b ∩ d)) ∪ (b ∩ (a ∩ c)) -- postulate proof2 : ∀{a b} → (a ∩ b) ∩ (∁(a) ∪ ∁(b)) ≡ ∅ -- (a ∩ b) ∩ (∁(a) ∪ ∁(b)) -- = (a ∩ (b ∩ ∁(b))) ∪ (b ∩ (a ∩ ∁(a))) -- = (a ∩ ∅) ∪ (b ∩ (a ∩ ∁(a))) -- = ∅ ∪ (b ∩ (a ∩ ∁(a))) -- = b ∩ (a ∩ ∁(a)) -- = b ∩ ∅ -- = ∅ -- ∁(s₁ ∪ s₂) ∪ (s₁ ∪ s₂) = 𝐔 -- (∁(s₁ ∪ s₂) ∪ (s₁ ∪ s₂)) ∩ (∁(a) ∪ ∁(b)) = 𝐔 ∩ (∁(a) ∪ ∁(b)) -- (∁(s₁ ∪ s₂) ∪ (s₁ ∪ s₂)) ∩ (∁(a) ∪ ∁(b)) = ∁(a) ∪ ∁(b) -- ∁(a) ∪ ∁(b) = (∁(s₁ ∪ s₂) ∪ (s₁ ∪ s₂)) ∩ (∁(a) ∪ ∁(b)) -- ∁(a) ∪ ∁(b) = (∁(s₁ ∪ s₂) ∩ (∁(a) ∪ ∁(b))) ∪ ((s₁ ∪ s₂) ∩ (∁(a) ∪ ∁(b))) -- ∁(a) ∪ ∁(b) = (∁(s₁ ∪ s₂) ∩ (∁(a) ∪ ∁(b))) ∪ ∅ -- ∁(a) ∪ ∁(b) = ∁(s₁ ∪ s₂) ∩ (∁(a) ∪ ∁(b)) postulate [∁]-of-[∩] : ∀{s₁ s₂ : S} → ∁(s₁ ∩ s₂) ≡ ∁(s₁) ∪ ∁(s₂) [∁∁]-elim : ∀{s : S} → ∁(∁(s)) ≡ s [∁∁]-elim {s} = transitivity(_≡_) proof2 (symmetry(_≡_) proof1) where proof1 : s ≡ s ∪ ∁(∁(s)) proof1 = [∩]-inverseᵣ {∁(s)} ⩺ [≡]-with(s ∪_) ⩺ (eq ↦ transitivity(_≡_) eq ((identityᵣ(_∪_)(∅)) {s})) ⩺ symmetry(_≡_) ⩺ (eq ↦ transitivity(_≡_) eq ((distributivityₗ(_∪_)(_∩_)))) ⩺ (eq ↦ transitivity(_≡_) eq ([≡]-with(_∩ (s ∪ ∁(∁(s)))) ([∪]-inverseᵣ))) ⩺ (eq ↦ transitivity(_≡_) eq (identityₗ(_∩_)(𝐔))) -- ∁(s) ∩ ∁(∁(s)) ≡ ∅ -- s ∪ (∁(s) ∩ ∁(∁(s))) ≡ s ∪ ∅ -- s ∪ (∁(s) ∩ ∁(∁(s))) ≡ s -- s ≡ s ∪ (∁(s) ∩ ∁(∁(s))) -- s ≡ (s ∪ ∁(s)) ∩ (s ∪ ∁(∁(s))) -- s ≡ 𝐔 ∩ (s ∪ ∁(∁(s))) -- s ≡ s ∪ ∁(∁(s)) proof2 : ∁(∁(s)) ≡ s ∪ ∁(∁(s)) proof2 = [∩]-inverseᵣ {s} ⩺ [≡]-with(_∪ ∁(∁(s))) ⩺ (eq ↦ transitivity(_≡_) eq (identityₗ(_∪_)(∅))) ⩺ symmetry(_≡_) ⩺ (eq ↦ transitivity(_≡_) eq ((distributivityᵣ(_∪_)(_∩_)))) ⩺ (eq ↦ transitivity(_≡_) eq ([≡]-with((s ∪ ∁(∁(s))) ∩_) ([∪]-inverseᵣ))) ⩺ (eq ↦ transitivity(_≡_) eq ((identityᵣ(_∩_)(𝐔)))) -- (s ∩ ∁(s)) ∪ ∁(∁(s)) ≡ ∅ ∪ ∁(∁(s)) -- (s ∩ ∁(s)) ∪ ∁(∁(s)) ≡ ∁(∁(s)) -- ∁(∁(s)) ≡ (s ∩ ∁(s)) ∪ ∁(∁(s)) -- ∁(∁(s)) ≡ (s ∪ ∁(∁(s))) ∩ (∁(s) ∪ ∁(∁(s))) -- ∁(∁(s)) ≡ (s ∪ ∁(∁(s))) ∩ 𝐔 -- ∁(∁(s)) ≡ s ∪ ∁(∁(s)) postulate [∁]-uniqueness : ∀{s₁ s₂ : S} → (s₁ ∪ s₂ ≡ 𝐔) → (s₁ ∩ s₂ ≡ ∅) → (s₁ ≡ ∁(s₂)) postulate [∁]-of-[∖] : ∀{s₁ s₂ : S} → ∁(s₁ ∖ s₂) ≡ ∁(s₁) ∪ s₂ postulate [∖]-of-[∁] : ∀{s₁ s₂ : S} → ∁(s₁) ∖ ∁(s₂) ≡ s₂ ∖ s₁ postulate [∖]-of-[∪]ᵣ : ∀{s₁ s₂ s₃ : S} → (s₁ ∖ (s₂ ∪ s₃)) ≡ (s₁ ∖ s₂)∩(s₁ ∖ s₃) postulate [∖]-of-[∩]ᵣ : ∀{s₁ s₂ s₃ : S} → (s₁ ∖ (s₂ ∩ s₃)) ≡ (s₁ ∖ s₂)∪(s₁ ∖ s₃) postulate [∖]-of-[∖]ᵣ : ∀{s₁ s₂ s₃ : S} → (s₁ ∖ (s₂ ∖ s₃)) ≡ (s₁ ∩ s₃)∪(s₁ ∖ s₂) postulate [∩]-from-[∖] : ∀{s₁ s₂ : S} → (s₁ ∖ (s₁ ∖ s₂)) ≡ (s₁ ∩ s₂) -- TODO: from [∖]-of-[∖]ᵣ postulate [∖]-self : ∀{s : S} → s ∖ s ≡ ∅ postulate [∖]-of-[∅]ₗ : ∀{s : S} → ∅ ∖ s ≡ ∅ postulate [∖]-of-[∅]ᵣ : ∀{s : S} → s ∖ ∅ ≡ s postulate [∖]-of-[𝐔]ₗ : ∀{s : S} → 𝐔 ∖ s ≡ ∁(s) postulate [∖]-of-[𝐔]ᵣ : ∀{s : S} → s ∖ 𝐔 ≡ ∅ record Subset : Type{Lvl.𝐒(ℓ)} where field _⊆_ : S → S → Stmt{ℓ} -- Subset ⦃ fundamentals ⦄ : Fundamentals open Fundamentals(fundamentals) field ⦃ [⊆]-antisymmetry ⦄ : Antisymmetry(_⊆_)(_≡_) ⦃ [⊆]-transitivity ⦄ : Transitivity(_⊆_) ⦃ [⊆]-reflexivity ⦄ : Reflexivity(_⊆_) [≡]-to-[⊆] : ∀{a b} → (a ≡ b) → (a ⊆ b) [⊆]ₗ-of-[∪] : ∀{a b c} → (a ⊆ c) → (b ⊆ c) → ((a ∪ b) ⊆ c) [⊆]ᵣ-of-[∪]ₗ : ∀{a b} → (a ⊆ (a ∪ b)) [⊆]ₗ-of-[∩]ₗ : ∀{a b} → ((a ∩ b) ⊆ a) [⊆]ᵣ-of-[∩] : ∀{a b c} → (c ⊆ a) → (c ⊆ b) → (c ⊆ (a ∩ b)) [⊆]ᵣ-of-[∪]ᵣ : ∀{a b} → (b ⊆ (a ∪ b)) [⊆]ᵣ-of-[∪]ᵣ {a}{b} = [⊆]ᵣ-of-[∪]ₗ {b}{a} 🝖 [≡]-to-[⊆] (commutativity(_∪_)) [⊆]ₗ-of-[∩]ᵣ : ∀{a b} → ((a ∩ b) ⊆ b) [⊆]ₗ-of-[∩]ᵣ {a}{b} = [≡]-to-[⊆] (commutativity(_∩_)) 🝖 [⊆]ₗ-of-[∩]ₗ {b}{a} [⊆]-min : ∀{s} → (∅ ⊆ s) [⊆]-min {s} = [⊆]ᵣ-of-[∪]ₗ {∅}{s} 🝖 [≡]-to-[⊆] (identityₗ(_∪_)(∅)) [⊆]-max : ∀{s} → (s ⊆ 𝐔) [⊆]-max {s} = [≡]-to-[⊆] (symmetry(_≡_) (identityₗ(_∩_)(𝐔))) 🝖 [⊆]ₗ-of-[∩]ₗ {𝐔}{s} [⊆][∩]-equiv : ∀{a b} → (a ⊆ b) ↔ (a ∩ b ≡ a) [⊆][∩]-equiv {a}{b} = [↔]-intro l r where l : (a ⊆ b) ← (a ∩ b ≡ a) l aba = [≡]-to-[⊆] (symmetry(_≡_) aba) 🝖 [⊆]ₗ-of-[∩]ᵣ r : (a ⊆ b) → (a ∩ b ≡ a) r ab = (antisymmetry(_⊆_)(_≡_) ([⊆]ₗ-of-[∩]ₗ) ([⊆]ᵣ-of-[∩] {a}{b}{a} (reflexivity(_⊆_)) ab) ) {- [⊆][∪]-equiv : ∀{a b} → (a ⊆ b) ↔ (a ∪ b ≡ b) [⊆][∪]-equiv {a}{b} = [↔]-intro l r where l : (a ⊆ b) ← (a ∪ b ≡ b) l aba = [≡]-to-[⊆] (symmetry(_≡_) aba) 🝖 [⊆]ᵣ-of-[∪]ᵣ r : (a ⊆ b) → (a ∪ b ≡ b) r ab = (antisymmetry ([⊆]ᵣ-of-[∪]ᵣ) ([⊆]ₗ-of-[∪] {a}{b}{a} reflexivity ab) ) -} -- [⊆][∖]-equiv : (a ⊆ b) ↔ (a ∖ b ≡ ∅) -- [⊆][∁]-equiv : (a ⊆ b) ↔ (∁(b) ⊆ ∁(a)) -- [∩][∪]-sub : (a ∩ b) ⊆ (a ∪ b)
{ "alphanum_fraction": 0.3914811229, "avg_line_length": 32.898089172, "ext": "agda", "hexsha": "cb3ccc6f31fe3c87a89ce2d1d03530443564a2aa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Operator/SetAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Operator/SetAlgebra.agda", "max_line_length": 119, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Operator/SetAlgebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 6254, "size": 10330 }
module ImportTests.ExtractDependent where open import Data.Bool open import Data.Nat open import ExtractDependent f : ℕ -> Bool f 0 = false f _ = true testApply : Bool testApply = apply _ _ f 5 testApplyImp : Bool testApplyImp = applyImp f 6 testApplyImpSameName : Bool testApplyImpSameName = applyImpSameName {ℕ} Bool f 3
{ "alphanum_fraction": 0.7720364742, "avg_line_length": 16.45, "ext": "agda", "hexsha": "31243912f68f5da76375f7f0822db4f69e8367b0", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z", "max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "omega12345/RefactorAgda", "max_forks_repo_path": "RefactorAgdaEngine/Test/Tests/output/ImportTests/ExtractDependent.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "omega12345/RefactorAgda", "max_issues_repo_path": "RefactorAgdaEngine/Test/Tests/output/ImportTests/ExtractDependent.agda", "max_line_length": 52, "max_stars_count": 5, "max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "omega12345/RefactorAgda", "max_stars_repo_path": "RefactorAgdaEngine/Test/Tests/output/ImportTests/ExtractDependent.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z", "num_tokens": 101, "size": 329 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Values for AVL trees -- Values must respect the underlying equivalence on keys ----------------------------------------------------------------------- {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Setoid; _Respects_) module Data.AVL.Value {a ℓ} (S : Setoid a ℓ) where open import Level using (suc; _⊔_) import Function as F open Setoid S renaming (Carrier to Key) record Value v : Set (a ⊔ ℓ ⊔ suc v) where constructor MkValue field family : Key → Set v respects : family Respects _≈_ -- The function `const` is defined using copatterns to prevent eager -- unfolding of the function in goal types. const : ∀ {v} → Set v → Value v Value.family (const V) = F.const V Value.respects (const V) = F.const F.id
{ "alphanum_fraction": 0.5797438882, "avg_line_length": 29.6206896552, "ext": "agda", "hexsha": "79d3f5617ccefe8a4917415182213290c261070d", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Value.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Value.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/AVL/Value.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 207, "size": 859 }
module Thesis.Subst where -------------------------------------------------------------------------------- -- Prove substitution lemma. Unfortunately, this is done using a quite different -- machinery from what we use elsewhere. The machinery for defining substitution -- is taken from a formalization of hereditary substitution (Hereditary -- Substitutions for Simple Types, Formalized, by Keller and Altenkirch), and -- uses a different machinery for weakening. -- I developed the lemmas relating substitution and this form of weakening from -- scratch. -------------------------------------------------------------------------------- open import Thesis.Lang hiding (_-_) _-_ : ∀ {σ} Γ → Var Γ σ → Context ∅ - () (σ • Γ) - this = Γ (τ • Γ) - that x = τ • (Γ - x) import Relation.Binary.PropositionalEquality as P open P hiding (subst) open import Postulate.Extensionality extend-env : ∀ {σ Γ} (x : Var Γ σ) (rho : ⟦ Γ - x ⟧Context) (v : ⟦ σ ⟧Type) → ⟦ Γ ⟧Context extend-env this rho v = v • rho extend-env (that x) (v1 • rho) v = v1 • extend-env x rho v extend-env-sound : ∀ {σ Γ} (x : Var Γ σ) (rho : ⟦ Γ - x ⟧Context) (v : ⟦ σ ⟧Type) → v ≡ ⟦ x ⟧Var (extend-env x rho v) extend-env-sound this rho v = refl extend-env-sound (that x) (v1 • rho) v = extend-env-sound x rho v wkv : ∀ {Γ σ τ} → (x : Var Γ σ) → Var (Γ - x) τ → Var Γ τ wkv this y = that y wkv (that x) this = this wkv (that x) (that y) = that (wkv x y) data EqV : ∀ {Γ σ τ} → Var Γ σ → Var Γ τ → Set where same : ∀ {Γ σ} → {x : Var Γ σ} → EqV x x diff : ∀ {Γ σ τ} → (x : Var Γ σ) → (z : Var (Γ - x) τ) → EqV x (wkv x z) -- If x and y do not represent the same variable, then -- ∃ z. y ≡ wkv x z, allowing us to construct a proof that diff x z : EqV x y eq : ∀ {Γ σ τ} → (x : Var Γ σ) → (y : Var Γ τ) → EqV x y eq this this = same eq this (that y) = diff this y eq (that x) this = diff (that x) this eq (that x) (that y) with eq x y eq (that y) (that .y) | same = same eq (that x) (that .(wkv x z)) | diff .x z = diff (that x) (that z) wkTerm : ∀ {Γ σ τ} → (x : Var Γ σ) → Term (Γ - x) τ → Term Γ τ wkTerm x (var v) = var (wkv x v) wkTerm x (app t₁ t₂) = (app (wkTerm x t₁) (wkTerm x t₂)) wkTerm x (abs t) = abs (wkTerm (that x) t) wkTerm x (const c) = const c wkv-sound : ∀ {Γ σ τ} → (x : Var Γ σ) → (y : Var (Γ - x) τ) → (ρ : ⟦ Γ - x ⟧Context) (v : ⟦ σ ⟧Type) → ⟦ wkv x y ⟧Var (extend-env x ρ v) ≡ ⟦ y ⟧Var ρ wkv-sound this y ρ v = refl wkv-sound (that x) this (v0 • ρ) v = refl wkv-sound (that x) (that y) (v0 • ρ) v = wkv-sound x y ρ v wkTerm-sound : ∀ {Γ σ τ} → (x : Var Γ σ) → (t : Term (Γ - x) τ) → (ρ : ⟦ Γ - x ⟧Context) (v : ⟦ σ ⟧Type) → ⟦ wkTerm x t ⟧Term (extend-env x ρ v) ≡ ⟦ t ⟧Term ρ wkTerm-sound x (const c) ρ v = refl wkTerm-sound x (var y) ρ v = wkv-sound x y ρ v wkTerm-sound x (app t₁ t₂) ρ v rewrite wkTerm-sound x t₁ ρ v | wkTerm-sound x t₂ ρ v = refl wkTerm-sound x (abs t) ρ v = ext (λ v₁ → wkTerm-sound (that x) t (v₁ • ρ) v) substVar : ∀ {Γ σ τ} → Var Γ τ → (x : Var Γ σ) → Term (Γ - x) σ → Term (Γ - x) τ substVar v x u with eq x v substVar v .v u | same = u substVar .(wkv x z) x u | diff .x z = var z -- The above is the crucial rule. The dotted pattern makes producing the result -- easy. subst : ∀ {Γ σ τ} → Term Γ τ → (x : Var Γ σ) → Term (Γ - x) σ → Term (Γ - x) τ subst (var v) x u = substVar v x u subst (app t₁ t₂) x u = app (subst t₁ x u) (subst t₂ x u) subst (abs t) x u = abs (subst t (that x) (wkTerm this u)) subst (const c) x u = const c substVar-lemma : ∀ {σ τ Γ} (v : Var Γ τ) (x : Var Γ σ) s rho → ⟦ substVar v x s ⟧Term rho ≡ ⟦ v ⟧Var (extend-env x rho (⟦ s ⟧Term rho)) substVar-lemma v x s rho with eq x v substVar-lemma .(wkv x z) x s rho | diff .x z = sym (wkv-sound x z rho (⟦ s ⟧Term rho)) substVar-lemma x .x s rho | same = extend-env-sound x rho (⟦ s ⟧Term rho) subst-lemma : ∀ {σ τ Γ} (t : Term Γ τ) (x : Var Γ σ) s rho → ⟦ subst t x s ⟧Term rho ≡ ⟦ t ⟧Term (extend-env x rho (⟦ s ⟧Term rho)) subst-lemma (const c) x s rho = refl subst-lemma (var y) x s rho = substVar-lemma y x s rho subst-lemma (app t₁ t₂) x s rho rewrite subst-lemma t₁ x s rho | subst-lemma t₂ x s rho = refl subst-lemma (abs t) x s rho = ext body where body : ∀ v → ⟦ subst t (that x) (wkTerm this s) ⟧Term (v • rho) ≡ ⟦ t ⟧Term (v • extend-env x rho (⟦ s ⟧Term rho)) body v rewrite subst-lemma t (that x) (wkTerm this s) (v • rho) | wkTerm-sound this s rho v = refl
{ "alphanum_fraction": 0.5738520697, "avg_line_length": 42.5096153846, "ext": "agda", "hexsha": "a3e04486b642b1fb2a7e63541ef317e34a1b7367", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/Subst.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/Subst.agda", "max_line_length": 135, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/Subst.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 1714, "size": 4421 }
------------------------------------------------------------------------------ -- Abelian group base ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module GroupTheory.AbelianGroup.Base where -- We use the group theory base open import GroupTheory.Base public ------------------------------------------------------------------------------ -- Abelian group theory axioms -- We only need to add the commutativity axiom. postulate comm : ∀ a b → a · b ≡ b · a {-# ATP axiom comm #-}
{ "alphanum_fraction": 0.4055232558, "avg_line_length": 32.7619047619, "ext": "agda", "hexsha": "0ecdefc1c504bd23fda29c6733c76562fa9b8d5c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/GroupTheory/AbelianGroup/Base.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/GroupTheory/AbelianGroup/Base.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/GroupTheory/AbelianGroup/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 111, "size": 688 }
-- Agda Sample File -- https://github.com/agda/agda/blob/master/examples/syntax/highlighting/Test.agda -- This test file currently lacks module-related stuff. {- Nested {- comment. -} -} module Test where infix 12 _! infixl 7 _+_ _-_ infixr 2 -_ postulate x : Set f : (Set -> Set -> Set) -> Set f _*_ = x * x data ℕ : Set where zero : ℕ suc : ℕ -> ℕ _+_ : ℕ -> ℕ -> ℕ zero + n = n suc m + n = suc (m + n) postulate _-_ : ℕ -> ℕ -> ℕ -_ : ℕ -> ℕ - n = n _! : ℕ -> ℕ zero ! = suc zero suc n ! = n - n ! record Equiv {a : Set} (_≈_ : a -> a -> Set) : Set where field refl : forall x -> x ≈ x sym : {x y : a} -> x ≈ y -> y ≈ x _`trans`_ : forall {x y z} -> x ≈ y -> y ≈ z -> x ≈ z data _≡_ {a : Set} (x : a) : a -> Set where refl : x ≡ x subst : forall {a x y} -> (P : a -> Set) -> x ≡ y -> P x -> P y subst {x = x} .{y = x} _ refl p = p Equiv-≡ : forall {a} -> Equiv {a} _≡_ Equiv-≡ {a} = record { refl = \_ -> refl ; sym = sym ; _`trans`_ = _`trans`_ } where sym : {x y : a} -> x ≡ y -> y ≡ x sym refl = refl _`trans`_ : {x y z : a} -> x ≡ y -> y ≡ z -> x ≡ z refl `trans` refl = refl postulate String : Set Char : Set Float : Set data Int : Set where pos : ℕ → Int negsuc : ℕ → Int {-# BUILTIN STRING String #-} {-# BUILTIN CHAR Char #-} {-# BUILTIN FLOAT Float #-} {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN INTEGER Int #-} {-# BUILTIN INTEGERPOS pos #-} {-# BUILTIN INTEGERNEGSUC negsuc #-} data [_] (a : Set) : Set where [] : [ a ] _∷_ : a -> [ a ] -> [ a ] {-# BUILTIN LIST [_] #-} {-# BUILTIN NIL [] #-} {-# BUILTIN CONS _∷_ #-} primitive primStringToList : String -> [ Char ] string : [ Char ] string = primStringToList "∃ apa" char : Char char = '∀' anotherString : String anotherString = "¬ be\ \pa" nat : ℕ nat = 45 float : Float float = 45.0e-37 -- Testing qualified names. open import Test Eq = Test.Equiv {Test.ℕ}
{ "alphanum_fraction": 0.5034791252, "avg_line_length": 17.8053097345, "ext": "agda", "hexsha": "0b33568ca3f83047721432ed58c38564fd5172ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5ed3cf60fe0829b9c84698248e73e7e3306def5f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dawidsowa/syntax-highlighting", "max_forks_repo_path": "autotests/input/test.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5ed3cf60fe0829b9c84698248e73e7e3306def5f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dawidsowa/syntax-highlighting", "max_issues_repo_path": "autotests/input/test.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "5ed3cf60fe0829b9c84698248e73e7e3306def5f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dawidsowa/syntax-highlighting", "max_stars_repo_path": "autotests/input/test.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 748, "size": 2012 }
{- This second-order term syntax was created from the following second-order syntax description: syntax CommRing | CR type * : 0-ary term zero : * | 𝟘 add : * * -> * | _⊕_ l20 one : * | 𝟙 mult : * * -> * | _⊗_ l30 neg : * -> * | ⊖_ r50 theory (𝟘U⊕ᴸ) a |> add (zero, a) = a (𝟘U⊕ᴿ) a |> add (a, zero) = a (⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c)) (⊕C) a b |> add(a, b) = add(b, a) (𝟙U⊗ᴸ) a |> mult (one, a) = a (𝟙U⊗ᴿ) a |> mult (a, one) = a (⊗A) a b c |> mult (mult(a, b), c) = mult (a, mult(b, c)) (⊗D⊕ᴸ) a b c |> mult (a, add (b, c)) = add (mult(a, b), mult(a, c)) (⊗D⊕ᴿ) a b c |> mult (add (a, b), c) = add (mult(a, c), mult(b, c)) (𝟘X⊗ᴸ) a |> mult (zero, a) = zero (𝟘X⊗ᴿ) a |> mult (a, zero) = zero (⊖N⊕ᴸ) a |> add (neg (a), a) = zero (⊖N⊕ᴿ) a |> add (a, neg (a)) = zero (⊗C) a b |> mult(a, b) = mult(b, a) -} module CommRing.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import CommRing.Signature private variable Γ Δ Π : Ctx α : *T 𝔛 : Familyₛ -- Inductive term declaration module CR:Terms (𝔛 : Familyₛ) where data CR : Familyₛ where var : ℐ ⇾̣ CR mvar : 𝔛 α Π → Sub CR Π Γ → CR α Γ 𝟘 : CR * Γ _⊕_ : CR * Γ → CR * Γ → CR * Γ 𝟙 : CR * Γ _⊗_ : CR * Γ → CR * Γ → CR * Γ ⊖_ : CR * Γ → CR * Γ infixl 20 _⊕_ infixl 30 _⊗_ infixr 50 ⊖_ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 CRᵃ : MetaAlg CR CRᵃ = record { 𝑎𝑙𝑔 = λ where (zeroₒ ⋮ _) → 𝟘 (addₒ ⋮ a , b) → _⊕_ a b (oneₒ ⋮ _) → 𝟙 (multₒ ⋮ a , b) → _⊗_ a b (negₒ ⋮ a) → ⊖_ a ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module CRᵃ = MetaAlg CRᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : CR ⇾̣ 𝒜 𝕊 : Sub CR Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 𝟘 = 𝑎𝑙𝑔 (zeroₒ ⋮ tt) 𝕤𝕖𝕞 (_⊕_ a b) = 𝑎𝑙𝑔 (addₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 𝟙 = 𝑎𝑙𝑔 (oneₒ ⋮ tt) 𝕤𝕖𝕞 (_⊗_ a b) = 𝑎𝑙𝑔 (multₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (⊖_ a) = 𝑎𝑙𝑔 (negₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ CRᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ CR α Γ) → 𝕤𝕖𝕞 (CRᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (zeroₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (addₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (oneₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (multₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (negₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ CR ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : CR ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ CRᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : CR α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub CR Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! 𝟘 = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (_⊕_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! 𝟙 = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (_⊗_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (⊖_ a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature CR:Syn : Syntax CR:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = CR:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open CR:Terms 𝔛 in record { ⊥ = CR ⋉ CRᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax CR:Syn public open CR:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands CRᵃ public open import SOAS.Metatheory CR:Syn public
{ "alphanum_fraction": 0.5020626062, "avg_line_length": 26.5870967742, "ext": "agda", "hexsha": "659af290ca653a205aba9307ac867e1586dbff20", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/CommRing/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/CommRing/Syntax.agda", "max_line_length": 93, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/CommRing/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 2686, "size": 4121 }
module Data.Either.Multi where open import Data open import Data.Either import Data.Tuple.Raiseᵣ.Functions as Raise open import Data.Tuple.RaiseTypeᵣ open import Data.Tuple.RaiseTypeᵣ.Functions open import Data.Tuple using (_⨯_ ; _,_) open import Function.Multi open import Function.Multi.Functions import Lvl import Lvl.MultiFunctions as Lvl open import Numeral.Finite open import Numeral.Natural open import Type Alt : (n : ℕ) → ∀{ℓ𝓈} → TypesOfTypes{n}(ℓ𝓈) ⇉ Type{Lvl.⨆(ℓ𝓈)} Alt(n) = binaryTypeRelator₊(n)(_‖_)(Empty) pattern alt₀ x = _‖_.Left x pattern alt₁ x = _‖_.Right(alt₀ x) pattern alt₂ x = _‖_.Right(alt₁ x) pattern alt₃ x = _‖_.Right(alt₂ x) pattern alt₄ x = _‖_.Right(alt₃ x) pattern alt₅ x = _‖_.Right(alt₄ x) pattern alt₆ x = _‖_.Right(alt₅ x) pattern alt₇ x = _‖_.Right(alt₆ x) pattern alt₈ x = _‖_.Right(alt₇ x) pattern alt₉ x = _‖_.Right(alt₈ x) pattern alt₁,₂ x = _‖_.Right(x) pattern alt₂,₃ x = _‖_.Right(alt₁,₂ x) pattern alt₃,₄ x = _‖_.Right(alt₂,₃ x) pattern alt₄,₅ x = _‖_.Right(alt₃,₄ x) pattern alt₅,₆ x = _‖_.Right(alt₄,₅ x) pattern alt₆,₇ x = _‖_.Right(alt₅,₆ x) pattern alt₇,₈ x = _‖_.Right(alt₆,₇ x) pattern alt₈,₉ x = _‖_.Right(alt₇,₈ x) {- -- TODO: Move or generalize uncurry uncurryTypes : (n : ℕ) → ∀{ℓ𝓈}{ℓ}{B : Type{ℓ}} → (TypesOfTypes{𝐒(n)}(ℓ𝓈) ⇉ B) → (Types(ℓ𝓈) → B) uncurryTypes(𝟎) f = f uncurryTypes(𝐒(n)) f (x , xs) = uncurryTypes(n) (f(x)) xs -- TODO: Problem with the type. Not normalizing correctly alt : ∀{n}{ℓ𝓈}{As : Types(ℓ𝓈)} → (i : 𝕟(𝐒(n))) → (index i As) → uncurryTypes(n) (Alt(𝐒(n)){ℓ𝓈}) As alt {0} 𝟎 x = x alt {1} 𝟎 x = Left x alt {1} (𝐒 𝟎) x = Right x alt {𝐒(𝐒(n))} 𝟎 x = {!Left x!} alt {𝐒(𝐒(n))} (𝐒 i) x = {!Right(alt {𝐒(n)} i x)!} -}
{ "alphanum_fraction": 0.6367231638, "avg_line_length": 33.3962264151, "ext": "agda", "hexsha": "cea965bd7ca5094a6768483ef02323bcd69c73f8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Either/Multi.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Either/Multi.agda", "max_line_length": 98, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Either/Multi.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 822, "size": 1770 }
{-# OPTIONS --allow-unsolved-metas #-} module FindTermNode where open import TermNode open import OscarPrelude record FindTermNode (A : Set) : Set where field findTermNode : A → TermNode → Maybe TermNode open FindTermNode ⦃ … ⦄ public open import TermCode open import Term open import Element instance FindTermNodeTermCode : FindTermNode TermCode FindTermNode.findTermNode FindTermNodeTermCode termCode record { children = [] ; number = number₁ } = nothing FindTermNode.findTermNode FindTermNodeTermCode termCode 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } = ifYes fst₁ ≟ termCode then just snd₁ else findTermNode termCode record 𝔫 { children = children₁ } FindTermNodeTermCodes : FindTermNode (List TermCode) FindTermNode.findTermNode FindTermNodeTermCodes [] node = just node FindTermNode.findTermNode FindTermNodeTermCodes (x ∷ termCodes) node = join $ findTermNode termCodes <$> findTermNode x node FindTermNodeTerm : FindTermNode Term FindTermNode.findTermNode FindTermNodeTerm term node = findTermNode (encodeTerm term) node -- This is starting to get difficult. We need Agda to know that the Term is encoded in the TermNode. Then we can drop the Maybe getInterpretationOfTerm : Term → TermNode → Maybe Element getInterpretationOfTerm τ node = ⟨_⟩ ∘ number <$> findTermNode (encodeTerm τ) node open import Membership FindTermNodeTermCode-ok : ∀ {𝔠 𝔫} → 𝔠 child∈ 𝔫 → IsJust (findTermNode 𝔠 𝔫) FindTermNodeTermCode-ok {𝔠} {record { children = [] ; number = number₁ }} () --FindTermNodeTermCode-ok {𝔠} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} x₁ = case (fst₁ ≟_) 𝔠 , graphAt {B = λ 𝑐 → Dec (fst₁ ≡ 𝑐)} (fst₁ ≟_) 𝔠 of λ { (yes x , snd₂) → {!!} ; (no x , snd₂) → {!!}} --λ { ((yes ===) , (inspect s1)) → {!!} ; ((no =n=) , inspect s2) → {!!} } --FindTermNodeTermCode-ok {𝔠} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} x₁ = case fst₁ ≟ 𝔠 of λ { (yes refl) → {!!} ; (no x) → {!!}} FindTermNodeTermCode-ok {𝔠} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} x₁ with fst₁ ≟ 𝔠 FindTermNodeTermCode-ok {𝔠} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} x₁ | yes eq2 = tt FindTermNodeTermCode-ok {.fst₁} {record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} (zero) | no neq = ⊥-elim (neq refl) FindTermNodeTermCode-ok {𝔠} {𝔫@record { children = (fst₁ , snd₁) ∷ children₁ ; number = number₁ }} (suc x₁) | no neq = FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} x₁ Justified : ∀ {a} {A : Set a} → (m : Maybe A) → IsJust m → ∃ λ x → m ≡ just x Justified nothing () Justified (just x) x₁ = _ , refl open import FunctionName open import Vector storeTerm-ok : ∀ τ 𝔫 𝔑 → IsJust (findTermNode τ (snd (runIdentity (runStateT (runStateT (storeTerm τ) 𝔑) 𝔫)))) storeTerm-ok (variable 𝑥) 𝔫 𝔑 with variable 𝑥 child∈? 𝔫 storeTerm-ok (variable 𝑥) 𝔫 𝔑 | no x with TermCode.variable 𝑥 ≟ variable 𝑥 storeTerm-ok (variable 𝑥) 𝔫 𝔑 | no x | yes _ = tt storeTerm-ok (variable 𝑥) 𝔫 𝔑 | no x | no variable𝑥≢variable𝑥 = ⊥-elim (variable𝑥≢variable𝑥 refl) --storeTerm-ok (variable 𝑥) 𝔫 𝔑 | yes vx∈𝔫 rewrite setGet-ok 𝔫 vx∈𝔫 = {!𝔫!} storeTerm-ok (variable 𝑥) record { children = [] ; number = number₁ } 𝔑 | yes () --storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 rewrite setGet-ok 𝔫 vx∈𝔫 = {!!} storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 rewrite setGet-ok 𝔫 vx∈𝔫 with fst₁ ≟ variable 𝑥 storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | yes eq = tt --… | no neq = case vx∈𝔫 of λ { (here .(map fst children₁)) → ⊥-elim (neq refl) ; (there .fst₁ asdf) → case graphAt FindTermNodeTermCode-ok asdf of λ { (ingraph sss) → {!!} } } -- storeTerm-ok x {!record 𝔫 { children = children₁ }!} 𝔑 -- x record 𝔫 { children = children₁ } 𝔑 --… | no neq = case vx∈𝔫 of λ { (here .(map fst children₁)) → ⊥-elim (neq refl) ; (there .fst₁ asdf) → case inspect $ FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} asdf of λ { (.(FindTermNodeTermCode-ok asdf) , ingraph refl) → {!!}} } -- storeTerm-ok x {!record 𝔫 { children = children₁ }!} 𝔑 -- x record 𝔫 { children = children₁ } 𝔑 storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | no neq with vx∈𝔫 storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | no neq | zero = ⊥-elim (neq refl) --storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | no neq | there dfdsf fdsdfs with FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} fdsdfs | graphAt (FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }}) fdsdfs --… | frfrrf | ingraph tttttt = transport _ (snd $ Justified (FindTermNode.findTermNode FindTermNodeTermCode (variable 𝑥) (record { children = children₁ ; number = number₁ })) (FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} fdsdfs)) _ storeTerm-ok x@(variable 𝑥) 𝔫@record { children = ((fst₁ , snd₁) ∷ children₁) ; number = number₁ } 𝔑 | yes vx∈𝔫 | no neq | suc fdsdfs rewrite (snd $ Justified (FindTermNode.findTermNode FindTermNodeTermCode (variable 𝑥) (record { children = children₁ ; number = number₁ })) (FindTermNodeTermCode-ok {𝔫 = record 𝔫 { children = children₁ }} fdsdfs)) = tt storeTerm-ok (function 𝑥 𝑎) 𝔫 𝔑 with (function 𝑥 (arity 𝑎)) child∈? 𝔫 storeTerm-ok (function 𝑥 ⟨ ⟨ [] ⟩ ⟩) 𝔫 𝔑 | no x with Eq._==_ EqFunctionName ⟨ name 𝑥 ⟩ ⟨ name 𝑥 ⟩ storeTerm-ok (function 𝑥 ⟨ ⟨ [] ⟩ ⟩) 𝔫 𝔑 | no x | (yes refl) = tt … | no neq = ⊥-elim (neq refl) --storeTerm-ok τ₀@(function 𝑓 ⟨ τ₁ ∷ τ₂s ⟩) 𝔫 𝔑 | no 𝔠₁∉𝔫 = {!τ₁!} storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₁∉𝔫 with variable 𝑥 child∈? 𝔫 storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) with 𝑓₀ ≟ 𝑓₀ storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) | yes refl with TermCode.variable 𝑥 ≟ variable 𝑥 storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) | yes refl | yes eq = tt storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) | yes refl | no neq = ⊥-elim (neq refl) storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥 ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (yes 𝔠₁∈𝔫) | no neq = ⊥-elim (neq refl) storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) with 𝑓₀ ≟ 𝑓₀ storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) | yes refl with TermCode.variable 𝑥₁ ≟ variable 𝑥₁ storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) | yes refl | yes 𝔠₁≡𝔠₁ = tt storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) | yes refl | no 𝔠₁≢𝔠₁ = ⊥-elim (𝔠₁≢𝔠₁ refl) storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ [] ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | (no 𝔠₁∉𝔫) | no 𝑓₀≢𝑓₀ = ⊥-elim (𝑓₀≢𝑓₀ refl) -- rewrite setGet-ok 𝔫 𝔠₁∈𝔫 storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ τ₂ ∷ τ₃s ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 with variable 𝑥₁ child∈? 𝔫 storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ τ₂ ∷ τ₃s ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | yes 𝔠₁∈𝔫 = {!!} storeTerm-ok (function 𝑓₀ ⟨ ⟨ variable 𝑥₁ ∷ τ₂ ∷ τ₃s ⟩ ⟩) 𝔫 𝔑 | no 𝔠₀∉𝔫 | no 𝔠₁∉𝔫 = {!!} storeTerm-ok τ₀@(function 𝑓₀ ⟨ ⟨ function 𝑓₁ τ₁s ∷ τ₂s ⟩ ⟩) 𝔫 𝔑 | no 𝔠₁∉𝔫 = {!!} storeTerm-ok (function 𝑥 x₁) 𝔫 𝔑 | yes x = {!!} mutual storeTermVerifiably' : (τ : Term) → StateT Nat (StateT (Σ TermNode λ n → IsJust (findTermNode τ n)) Identity) ⊤ storeTermVerifiably' (variable x) = {!!} storeTermVerifiably' (function x x₁) = {!!} storeTermVerifiably : Term → StateT Nat (StateT TermNode Identity) ⊤ storeTermVerifiably τ@(variable _) = storeTermCodes' (encodeTerm τ) storeTermVerifiably τ@(function _ τs) = storeTermCodes' (encodeTerm τ) ~| storeTermsVerifiably τs storeTermsVerifiably : Terms → StateT Nat (StateT TermNode Identity) ⊤ storeTermsVerifiably ⟨ ⟨ [] ⟩ ⟩ = return tt storeTermsVerifiably ⟨ ⟨ τ ∷ τs ⟩ ⟩ = storeTermVerifiably τ ~| storeTermsVerifiably ⟨ ⟨ τs ⟩ ⟩ ~| return tt
{ "alphanum_fraction": 0.6484177596, "avg_line_length": 79.9134615385, "ext": "agda", "hexsha": "89fbca561a6d978bae16696427a09a9c7b35a57f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/FindTermNode.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/FindTermNode.agda", "max_line_length": 352, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/FindTermNode.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3493, "size": 8311 }
module Relator.Congruence.Proofs where import Lvl open import Functional open import Logic.Propositional open import Logic.Predicate -- TODO: open import Structure.Function.Domain open import Structure.Relator.Equivalence open import Structure.Relator.Properties open import Relator.Congruence open import Relator.Equals open import Relator.Equals.Proofs open import Structure.Function.Names open import Syntax.Transitivity open import Type module _ {ℓ₁ ℓ₂} {X : Type{ℓ₁}}{Y : Type{ℓ₂}} {f : X → Y} where instance [≅]-reflexivity : Reflexivity (_≅_of f) Reflexivity.proof([≅]-reflexivity) = [≅]-intro [≡]-intro instance [≅]-symmetry : Symmetry (_≅_of f) Symmetry.proof([≅]-symmetry) = ([≅]-intro ∘ symmetry(_≡_) ∘ [≅]-elim) instance [≅]-transitivity : Transitivity (_≅_of f) Transitivity.proof([≅]-transitivity) (eq1) (eq2) = [≅]-intro(([≅]-elim eq1) 🝖 ([≅]-elim eq2)) instance [≅]-equivalence : Equivalence (_≅_of f) [≅]-equivalence = record { reflexivity = [≅]-reflexivity ; symmetry = [≅]-symmetry ; transitivity = [≅]-transitivity } [≅]-to-[≡] : Injective(f) ↔ (∀{x₁ x₂ : X} → (x₁ ≅ x₂ of f) → (x₁ ≡ x₂)) [≅]-to-[≡] = [↔]-intro (_∘ [≅]-intro) (_∘ [≅]-elim) module _ {ℓ₁ ℓ₂ ℓ₃} {X₁ : Type{ℓ₁}}{X₂ : Type{ℓ₂}}{Y : Type{ℓ₃}} where [≅]-composition : ∀{x₁ x₂ : X₁}{g : X₁ → X₂} → (x₁ ≅ x₂ of g) → ∀{f : X₂ → Y} → (g(x₁) ≅ g(x₂) of f) [≅]-composition ([≅]-intro (fx₁≡fx₂)) {f} = [≅]-intro ([≡]-with(f) (fx₁≡fx₂)) -- x₁ ≅ x₂ -- ⇔ g(x₁) = g(x₂) -- ⇒ f(g(x₁)) = f(g(x₂))
{ "alphanum_fraction": 0.5983502538, "avg_line_length": 33.5319148936, "ext": "agda", "hexsha": "b9deab45c5ae43dbd1384914822e214821a5b12c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Relator/Congruence/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Relator/Congruence/Proofs.agda", "max_line_length": 102, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Relator/Congruence/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 630, "size": 1576 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- Exponential Object -- TODO: Where is the notation from? It is neither from Wikipedia nor the nLab. module Categories.Object.Exponential {o ℓ e} (𝒞 : Category o ℓ e) where open Category 𝒞 open import Level open import Function using (_$_) open import Categories.Morphism.Reasoning 𝒞 open import Categories.Object.Product 𝒞 hiding (repack; repack≡id; repack∘; repack-cancel; up-to-iso; transport-by-iso) open import Categories.Morphism 𝒞 open HomReasoning private variable A B C D X Y : Obj record Exponential (A B : Obj) : Set (o ⊔ ℓ ⊔ e) where field B^A : Obj product : Product B^A A module product = Product product B^A×A : Obj B^A×A = product.A×B field eval : B^A×A ⇒ B λg : ∀ (X×A : Product X A) → (Product.A×B X×A ⇒ B) → (X ⇒ B^A) β : ∀ (X×A : Product X A) {g : Product.A×B X×A ⇒ B} → (eval ∘ [ X×A ⇒ product ] λg X×A g ×id ≈ g) λ-unique : ∀ (X×A : Product X A) {g : Product.A×B X×A ⇒ B} {h : X ⇒ B^A} → (eval ∘ [ X×A ⇒ product ] h ×id ≈ g) → (h ≈ λg X×A g) η : ∀ (X×A : Product X A) {f : X ⇒ B^A } → λg X×A (eval ∘ [ X×A ⇒ product ] f ×id) ≈ f η X×A {f} = sym (λ-unique X×A refl) λ-cong : ∀ {X : Obj} (X×A : Product X A) {f g} → f ≈ g → λg X×A f ≈ λg X×A g λ-cong X×A {f = f} {g = g} f≡g = λ-unique X×A (trans (β X×A) f≡g) subst : ∀ (p₂ : Product C A) (p₃ : Product D A) {f g} → λg p₃ f ∘ g ≈ λg p₂ (f ∘ [ p₂ ⇒ p₃ ] g ×id) subst p₂ p₃ {f} {g} = λ-unique p₂ (begin eval ∘ [ p₂ ⇒ product ] λg p₃ f ∘ g ×id ≈˘⟨ refl⟩∘⟨ [ p₂ ⇒ p₃ ⇒ product ]×id∘×id ⟩ eval ∘ [ p₃ ⇒ product ] λg p₃ f ×id ∘ [ p₂ ⇒ p₃ ] g ×id ≈⟨ pullˡ (β p₃) ⟩ f ∘ [ p₂ ⇒ p₃ ] g ×id ∎) η-id : λg product eval ≈ id η-id = begin λg product eval ≈˘⟨ identityʳ ⟩ λg product eval ∘ id ≈⟨ subst _ _ ⟩ λg product (eval ∘ [ product ⇒ product ] id ×id) ≈⟨ η product ⟩ id ∎ λ-unique′ : ∀ (X×A : Product X A) {h i : X ⇒ B^A} → eval ∘ [ X×A ⇒ product ] h ×id ≈ eval ∘ [ X×A ⇒ product ] i ×id → h ≈ i λ-unique′ p eq = trans (λ-unique p eq) (sym (λ-unique p refl)) -- some aliases to make proof signatures less ugly [_]eval : ∀{A B}(e₁ : Exponential A B) → Exponential.B^A×A e₁ ⇒ B [ e₁ ]eval = Exponential.eval e₁ [_]λ : ∀{A B}(e₁ : Exponential A B) → {X : Obj} → (X×A : Product X A) → (Product.A×B X×A ⇒ B) → (X ⇒ Exponential.B^A e₁) [ e₁ ]λ = Exponential.λg e₁ {- D×C --id × f--> D×A --g--> B D --λ (g ∘ id × f)--> B^C \ ^ \ / λ g λ (e ∘ id × f) \ / v / B^A -} λ-distrib : ∀ (e₁ : Exponential C B) (e₂ : Exponential A B) (p₃ : Product D C) (p₄ : Product D A) (p₅ : Product (Exponential.B^A e₂) C) {f} {g : Product.A×B p₄ ⇒ B} → [ e₁ ]λ p₃ (g ∘ [ p₃ ⇒ p₄ ]id× f) ≈ [ e₁ ]λ p₅ ([ e₂ ]eval ∘ [ p₅ ⇒ Exponential.product e₂ ]id× f) ∘ [ e₂ ]λ p₄ g λ-distrib e₁ e₂ p₃ p₄ p₅ {f} {g} = sym $ e₁.λ-unique p₃ $ begin [ e₁ ]eval ∘ ([ p₃ ⇒ p₁ ] [ e₁ ]λ p₅ ([ e₂ ]eval ∘ [ p₅ ⇒ p₂ ]id× f) ∘ [ e₂ ]λ p₄ g ×id) ≈˘⟨ refl⟩∘⟨ [ p₃ ⇒ p₅ ⇒ p₁ ]×id∘×id ⟩ [ e₁ ]eval ∘ [ p₅ ⇒ p₁ ] [ e₁ ]λ p₅ ([ e₂ ]eval ∘ [ p₅ ⇒ p₂ ]id× f) ×id ∘ [ p₃ ⇒ p₅ ] [ e₂ ]λ p₄ g ×id ≈⟨ pullˡ (e₁.β p₅) ⟩ ([ e₂ ]eval ∘ [ p₅ ⇒ p₂ ]id× f) ∘ [ p₃ ⇒ p₅ ] [ e₂ ]λ p₄ g ×id ≈⟨ assoc ⟩ [ e₂ ]eval ∘ [ p₅ ⇒ p₂ ]id× f ∘ [ p₃ ⇒ p₅ ] [ e₂ ]λ p₄ g ×id ≈˘⟨ refl⟩∘⟨ [ p₄ ⇒ p₂ , p₃ ⇒ p₅ ]first↔second ⟩ [ e₂ ]eval ∘ [ p₄ ⇒ p₂ ] [ e₂ ]λ p₄ g ×id ∘ [ p₃ ⇒ p₄ ]id× f ≈⟨ pullˡ (e₂.β p₄) ⟩ g ∘ [ p₃ ⇒ p₄ ]id× f ∎ where module e₁ = Exponential e₁ module e₂ = Exponential e₂ p₁ = e₁.product p₂ = e₂.product repack : ∀{A B} (e₁ e₂ : Exponential A B) → Exponential.B^A e₁ ⇒ Exponential.B^A e₂ repack e₁ e₂ = e₂.λg e₁.product e₁.eval where module e₁ = Exponential e₁ module e₂ = Exponential e₂ repack≡id : ∀{A B} (e : Exponential A B) → repack e e ≈ id repack≡id = Exponential.η-id repack∘ : ∀ (e₁ e₂ e₃ : Exponential A B) → repack e₂ e₃ ∘ repack e₁ e₂ ≈ repack e₁ e₃ repack∘ e₁ e₂ e₃ = let p₁ = product e₁ in let p₂ = product e₂ in begin [ e₃ ]λ p₂ [ e₂ ]eval ∘ [ e₂ ]λ p₁ [ e₁ ]eval ≈⟨ λ-cong e₃ p₂ (introʳ (second-id p₂)) ⟩∘⟨refl ⟩ [ e₃ ]λ p₂ ([ e₂ ]eval ∘ [ p₂ ⇒ p₂ ]id× id) ∘ [ e₂ ]λ p₁ [ e₁ ]eval ≈˘⟨ λ-distrib e₃ e₂ p₁ p₁ p₂ ⟩ [ e₃ ]λ p₁ ([ e₁ ]eval ∘ [ p₁ ⇒ p₁ ]id× id) ≈⟨ λ-cong e₃ p₁ (⟺ (introʳ (second-id (product e₁)))) ⟩ [ e₃ ]λ p₁ [ e₁ ]eval ∎ where open Exponential repack-cancel : ∀{A B} (e₁ e₂ : Exponential A B) → repack e₁ e₂ ∘ repack e₂ e₁ ≈ id repack-cancel e₁ e₂ = repack∘ e₂ e₁ e₂ ○ repack≡id e₂ up-to-iso : ∀{A B} (e₁ e₂ : Exponential A B) → Exponential.B^A e₁ ≅ Exponential.B^A e₂ up-to-iso e₁ e₂ = record { from = repack e₁ e₂ ; to = repack e₂ e₁ ; iso = record { isoˡ = repack-cancel e₂ e₁ ; isoʳ = repack-cancel e₁ e₂ } } transport-by-iso : ∀ (e : Exponential A B) → Exponential.B^A e ≅ X → Exponential A B transport-by-iso {X = X} e e≅X = record { B^A = X ; product = X×A ; eval = e.eval ; λg = λ Y×A Y×A⇒B → from ∘ (e.λg Y×A Y×A⇒B) ; β = λ Y×A {h} → begin e.eval ∘ [ Y×A ⇒ X×A ] from ∘ e.λg Y×A h ×id ≈⟨ refl⟩∘⟨ e.product.⟨⟩-cong₂ (pullˡ (cancelˡ isoˡ)) (elimˡ refl) ⟩ e.eval ∘ [ Y×A ⇒ e.product ] e.λg Y×A h ×id ≈⟨ e.β Y×A ⟩ h ∎ ; λ-unique = λ Y×A {h} {i} eq → switch-tofromˡ e≅X $ e.λ-unique Y×A $ begin e.eval ∘ [ Y×A ⇒ e.product ] to ∘ i ×id ≈⟨ refl⟩∘⟨ e.product.⟨⟩-cong₂ assoc (introˡ refl) ⟩ e.eval ∘ [ Y×A ⇒ X×A ] i ×id ≈⟨ eq ⟩ h ∎ } where module e = Exponential e X×A = Mobile e.product e≅X ≅.refl open _≅_ e≅X
{ "alphanum_fraction": 0.4675304155, "avg_line_length": 36.5838150289, "ext": "agda", "hexsha": "da9c270b118836628d8378fac35adf31d54e9551", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Object/Exponential.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Object/Exponential.agda", "max_line_length": 101, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Object/Exponential.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2751, "size": 6329 }
{-# OPTIONS --without-K --safe #-} open import Relation.Binary.Core module Morphism.Structures where open import Algebra import Algebra.Morphism.Definitions as MorphismDefinitions open import Level using (Level; _⊔_) import Function.Definitions as FunctionDefinitions open import Relation.Binary.Morphism.Structures open import Algebra.Morphism.Structures private variable a b ℓ₁ ℓ₂ : Level
{ "alphanum_fraction": 0.8029925187, "avg_line_length": 23.5882352941, "ext": "agda", "hexsha": "fe8b381bdd51f3538575b857e7e8e06dfd7a295d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/Agda-Algebra", "max_forks_repo_path": "src/Morphism/Structures.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_issues_repo_issues_event_max_datetime": "2022-01-31T18:19:52.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-02T20:50:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/Agda-Algebra", "max_issues_repo_path": "src/Morphism/Structures.agda", "max_line_length": 58, "max_stars_count": null, "max_stars_repo_head_hexsha": "72030f78934877ad67bf4e36e74e43845cabbf55", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/Agda-Algebra", "max_stars_repo_path": "src/Morphism/Structures.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 92, "size": 401 }
-- Andreas, 2015-05-02, issue reported by Gabe Dijkstra open import Common.Prelude open import Common.Equality data T : Set where c0 : ⊥ → T c1 : ⊥ → T -- The following should not pass, as c0 and c1 are not fully applied. c0≠c1 : c0 ≡ c1 → ⊥ c0≠c1 () -- The latter conflicts with function extensionality. postulate fun-ext : {A B : Set} → (f g : A → B) → ((x : A) → f x ≡ g x) → f ≡ g c0=c1 : c0 ≡ c1 c0=c1 = fun-ext c0 c1 (λ ()) wrong : ⊥ wrong = c0≠c1 c0=c1
{ "alphanum_fraction": 0.6135881104, "avg_line_length": 21.4090909091, "ext": "agda", "hexsha": "ee12ca12a1f10a2a7f46d6e30d6291b6c6e02dfa", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue1497.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1497.agda", "max_line_length": 71, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1497.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 193, "size": 471 }
{-# OPTIONS --without-K --safe #-} module Categories.Morphism.Cartesian where open import Level open import Categories.Category open import Categories.Functor private variable o ℓ e : Level C D : Category o ℓ e record Cartesian (F : Functor C D) {X Y} (f : C [ X , Y ]) : Set (levelOfTerm F) where private module C = Category C module D = Category D open Functor F open D field universal : ∀ {A} {u : F₀ A ⇒ F₀ X} (h : C [ A , Y ]) → F₁ f ∘ u ≈ F₁ h → C [ A , X ] commute : ∀ {A} {u : F₀ A ⇒ F₀ X} {h : C [ A , Y ]} (eq : F₁ f ∘ u ≈ F₁ h) → C [ C [ f ∘ universal h eq ] ≈ h ] compat : ∀ {A} {u : F₀ A ⇒ F₀ X} {h : C [ A , Y ]} (eq : F₁ f ∘ u ≈ F₁ h) → F₁ (universal h eq) ≈ u
{ "alphanum_fraction": 0.4780487805, "avg_line_length": 26.4516129032, "ext": "agda", "hexsha": "9f3cce53ea79e57de1a5072598e95058ab10e5ce", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Morphism/Cartesian.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Morphism/Cartesian.agda", "max_line_length": 86, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Morphism/Cartesian.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 285, "size": 820 }
module Issue1232.Nat where
{ "alphanum_fraction": 0.8214285714, "avg_line_length": 9.3333333333, "ext": "agda", "hexsha": "c79531495a5ea75f7f533200330ef01425952b36", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue1232/Nat.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue1232/Nat.agda", "max_line_length": 26, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue1232/Nat.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 9, "size": 28 }
------------------------------------------------------------------------ -- The Agda standard library -- -- An inductive definition for the permutation relation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Binary.Permutation.Propositional {a} {A : Set a} where open import Data.List.Base using (List; []; _∷_) open import Relation.Binary open import Relation.Binary.PropositionalEquality using (_≡_; refl) import Relation.Binary.Reasoning.Setoid as EqReasoning ------------------------------------------------------------------------ -- An inductive definition of permutation -- Note that one would expect that this would be defined in terms of -- `Permutation.Setoid`. This is not currently the case as it involves -- adding in a bunch of trivial `_≡_` proofs to the constructors which -- a) adds noise and b) prevents easy access to the variables `x`, `y`. -- This may be changed in future when a better solution is found. infix 3 _↭_ data _↭_ : Rel (List A) a where refl : ∀ {xs} → xs ↭ xs prep : ∀ {xs ys} x → xs ↭ ys → x ∷ xs ↭ x ∷ ys swap : ∀ {xs ys} x y → xs ↭ ys → x ∷ y ∷ xs ↭ y ∷ x ∷ ys trans : ∀ {xs ys zs} → xs ↭ ys → ys ↭ zs → xs ↭ zs ------------------------------------------------------------------------ -- _↭_ is an equivalence ↭-reflexive : _≡_ ⇒ _↭_ ↭-reflexive refl = refl ↭-refl : Reflexive _↭_ ↭-refl = refl ↭-sym : ∀ {xs ys} → xs ↭ ys → ys ↭ xs ↭-sym refl = refl ↭-sym (prep x xs↭ys) = prep x (↭-sym xs↭ys) ↭-sym (swap x y xs↭ys) = swap y x (↭-sym xs↭ys) ↭-sym (trans xs↭ys ys↭zs) = trans (↭-sym ys↭zs) (↭-sym xs↭ys) -- A smart version of trans that avoids unnecessary `refl`s (see #1113). ↭-trans : Transitive _↭_ ↭-trans refl ρ₂ = ρ₂ ↭-trans ρ₁ refl = ρ₁ ↭-trans ρ₁ ρ₂ = trans ρ₁ ρ₂ ↭-isEquivalence : IsEquivalence _↭_ ↭-isEquivalence = record { refl = refl ; sym = ↭-sym ; trans = ↭-trans } ↭-setoid : Setoid _ _ ↭-setoid = record { isEquivalence = ↭-isEquivalence } ------------------------------------------------------------------------ -- A reasoning API to chain permutation proofs and allow "zooming in" -- to localised reasoning. module PermutationReasoning where private module Base = EqReasoning ↭-setoid open EqReasoning ↭-setoid public hiding (step-≈; step-≈˘) infixr 2 step-↭ step-↭˘ step-swap step-prep step-↭ = Base.step-≈ step-↭˘ = Base.step-≈˘ -- Skip reasoning on the first element step-prep : ∀ x xs {ys zs : List A} → (x ∷ ys) IsRelatedTo zs → xs ↭ ys → (x ∷ xs) IsRelatedTo zs step-prep x xs rel xs↭ys = relTo (trans (prep x xs↭ys) (begin rel)) -- Skip reasoning about the first two elements step-swap : ∀ x y xs {ys zs : List A} → (y ∷ x ∷ ys) IsRelatedTo zs → xs ↭ ys → (x ∷ y ∷ xs) IsRelatedTo zs step-swap x y xs rel xs↭ys = relTo (trans (swap x y xs↭ys) (begin rel)) syntax step-↭ x y↭z x↭y = x ↭⟨ x↭y ⟩ y↭z syntax step-↭˘ x y↭z y↭x = x ↭˘⟨ y↭x ⟩ y↭z syntax step-prep x xs y↭z x↭y = x ∷ xs <⟨ x↭y ⟩ y↭z syntax step-swap x y xs y↭z x↭y = x ∷ y ∷ xs <<⟨ x↭y ⟩ y↭z
{ "alphanum_fraction": 0.5474683544, "avg_line_length": 32.2448979592, "ext": "agda", "hexsha": "b0ae5f6ec63bf37ced67409bf83d1e4faed3681b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Propositional.agda", "max_line_length": 73, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1101, "size": 3160 }
-- Andreas, 2017-11-19, issue #2854 -- Agda should not complain about "possibly empty type of sizes" -- if the SIZELT builtin is not bound. data Tree : Set₁ where node : {A : Set} (f : A → Tree) → Tree const : Tree → Tree const t = node λ x → t -- WAS: -- Failed to solve the following constraints: -- Is not empty type of sizes: _A_6 t -- Expected: -- Unsolved meta.
{ "alphanum_fraction": 0.6578249337, "avg_line_length": 20.9444444444, "ext": "agda", "hexsha": "5e02e4238913cd4ef871177b0e9af814e77b0ada", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2854.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2854.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2854.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 116, "size": 377 }
module DSession where open import Data.Bool open import Data.Fin open import Data.Empty open import Data.List open import Data.List.All open import Data.Maybe hiding (All) open import Data.Nat open import Data.Product open import Data.Sum open import Data.Unit open import Function using (_$_) open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Typing open import Syntax open import Global open import Channel open import Values -- this is really just a Kleisli arrow data Cont (G : SCtx) (φ : TCtx) (t : Type) : Type → Set where ident : (ina-G : Inactive G) → (unr-φ : All Unr φ) → Cont G φ t t bind : ∀ {φ₁ φ₂ G₁ G₂ t₂ t₃} → (ts : Split φ φ₁ φ₂) → (ss : SSplit G G₁ G₂) → (e₂ : Expr (t ∷ φ₁) t₂) → (ϱ₂ : VEnv G₁ φ₁) → (κ₂ : Cont G₂ φ₂ t₂ t₃) → Cont G φ t t₃ subsume : ∀ {t₁ t₂} → (t≤t1 : SubT t t₁) → (κ : Cont G φ t₁ t₂) → Cont G φ t t₂ compose : ∀ {G G₁ G₂ φ φ₁ φ₂ t₁ t₂ t₃} → Split φ φ₁ φ₂ → SSplit G G₁ G₂ → Cont G₁ φ₁ t₁ t₂ → Cont G₂ φ₂ t₂ t₃ → Cont G φ t₁ t₃ compose ss ssp (ident ina-G unr-φ) (ident ina-G₁ unr-φ₁) = ident (ssplit-inactive ssp ina-G ina-G₁) (split-unr ss unr-φ unr-φ₁) compose ss ssp (ident ina-G unr-φ) (bind ts ss₁ e₂ ϱ₂ κ₂) = bind {!!} {!!} e₂ ϱ₂ κ₂ compose ss ssp (ident ina-G unr-φ) (subsume t≤t1 κ₂) with inactive-left-ssplit ssp ina-G ... | refl = subsume t≤t1 {!!} compose ss ssp (bind ts ss₁ e₂ ϱ₂ κ₁) (ident ina-G unr-φ) = {!!} compose ss ssp (bind ts ss₁ e₂ ϱ₂ κ₁) (bind ts₁ ss₂ e₃ ϱ₃ κ₂) = {!!} compose ss ssp (bind ts ss₁ e₂ ϱ₂ κ₁) (subsume t≤t1 κ₂) = {!!} compose ss ssp (subsume t≤t1 κ₁) (ident ina-G unr-φ) = {!!} compose ss ssp (subsume t≤t1 κ₁) (bind ts ss₁ e₂ ϱ₂ κ₂) = {!!} compose ss ssp (subsume t≤t1 κ₁) (subsume t≤t2 κ₂) = {!!} -- command is a monad data Command (G : SCtx) (t : Type) : Set where Return : (v : Val G t) → Command G t Fork : ∀ {φ₁ φ₂ G₁ G₂} → (ss : SSplit G G₁ G₂) → (κ₁ : Cont G₁ φ₁ TUnit TUnit) → (κ₂ : Cont G₂ φ₂ TUnit t) → Command G t New : ∀ {φ} → (s : SType) → (κ : Cont G φ (TPair (TChan (SType.force s)) (TChan (SType.force (dual s)))) t) → Command G t Close : ∀ {φ G₁ G₂} → (ss : SSplit G G₁ G₂) → (v : Val G₁ (TChan send!)) → (κ : Cont G₂ φ TUnit t) → Command G t Wait : ∀ {φ G₁ G₂} → (ss : SSplit G G₁ G₂) → (v : Val G₁ (TChan send?)) → (κ : Cont G₂ φ TUnit t) → Command G t Send : ∀ {φ G₁ G₂ G₁₁ G₁₂ tv s} → (ss : SSplit G G₁ G₂) → (ss-args : SSplit G₁ G₁₁ G₁₂) → (vch : Val G₁₁ (TChan (send tv s))) → (v : Val G₁₂ tv) → (κ : Cont G₂ φ (TChan (SType.force s)) t) → Command G t Recv : ∀ {φ G₁ G₂ tv s} → (ss : SSplit G G₁ G₂) → (vch : Val G₁ (TChan (recv tv s))) → (κ : Cont G₂ φ (TPair (TChan (SType.force s)) tv) t) → Command G t Select : ∀ {φ G₁ G₂ s₁ s₂} → (ss : SSplit G G₁ G₂) → (lab : Selector) → (vch : Val G₁ (TChan (sintern s₁ s₂))) → (κ : Cont G₂ φ (TChan (selection lab (SType.force s₁) (SType.force s₂))) t) → Command G t Branch : ∀ {φ G₁ G₂ s₁ s₂} → (ss : SSplit G G₁ G₂) → (vch : Val G₁ (TChan (sextern s₁ s₂))) → (dcont : (lab : Selector) → Cont G₂ φ (TChan (selection lab (SType.force s₁) (SType.force s₂))) t) → Command G t NSelect : ∀ {φ G₁ G₂ m alt} → (ss : SSplit G G₁ G₂) → (lab : Fin m) → (vch : Val G₁ (TChan (sintN m alt))) → (κ : Cont G₂ φ (TChan (SType.force (alt lab))) t) → Command G t NBranch : ∀ {φ G₁ G₂ m alt} → (ss : SSplit G G₁ G₂) → (vch : Val G₁ (TChan (sextN m alt))) → (dcont : (lab : Fin m) → Cont G₂ φ (TChan (SType.force (alt lab))) t) → Command G t -- cont G = ∀ G' → G ≤ G' → SSplit G' Gval Gcont → Val Gval t → data _≼_ G : SCtx → Set where ≼-rfl : G ≼ G ≼-ext : ∀ {G'} → G ≼ G' → G ≼ (nothing ∷ G') {- mbindf : ∀ {Gin G1in G2in G1out G2out t t'} → SSplit Gin G1in G2in → Command G1in G1out t → (∀ G2in' G1out' G2out' → G2in ≼ G2in' → G1out ≼ G1out' → G2out ≼ G2out' → Val G1out' t → Command G2in' G2out' t') → Command Gin G2out t' mbindf = {!!} -} mbind : ∀ {G G₁ G₂ Φ t t'} → SSplit G G₁ G₂ → Command G₁ t → Cont G₂ Φ t t' → Command G t' mbind ssp (Return v) (ident x x₁) with inactive-right-ssplit ssp x ... | refl = Return v mbind ssp (Return v) (bind ts ss e₂ ϱ₂ cont) = {!!} mbind ssp (Return v) (subsume t≤t1 cont) = {!!} mbind ssp (Fork ss κ₁ κ₂) cont = Fork {!!} κ₁ {!!} mbind ssp (New s κ) cont = {!!} mbind ssp (Close ss v κ) cont = {!!} mbind ssp (Wait ss v κ) cont = {!!} mbind ssp (Send ss ss-args vch v κ) cont = {!!} mbind ssp (Recv ss vch κ) cont = {!!} mbind ssp (Select ss lab vch κ) cont = {!!} mbind ssp (Branch ss vch dcont) cont = {!!} mbind ssp (NSelect ss lab vch κ) cont = {!!} mbind ssp (NBranch ss vch dcont) cont = {!!}
{ "alphanum_fraction": 0.5731757877, "avg_line_length": 29.4146341463, "ext": "agda", "hexsha": "981b16905a946875f44698c2c7d96f88787ff54c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "peterthiemann/definitional-session", "max_forks_repo_path": "src/DSession.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "peterthiemann/definitional-session", "max_issues_repo_path": "src/DSession.agda", "max_line_length": 104, "max_stars_count": 9, "max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "peterthiemann/definitional-session", "max_stars_repo_path": "src/DSession.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z", "num_tokens": 2023, "size": 4824 }
module Hwequivalence where open import Relation.Binary.PropositionalEquality open import Data.Bool -- A 1-bit adder bit-adder-spec : Bool → Bool → Bool → Bool bit-adder-spec A B C = X ∧ Y where X : Bool X = (A ∧ not B ∧ not C) ∨ (not A ∧ B ∧ not C) ∨ (not A ∧ not B ∧ C) ∨ (A ∧ B ∧ C) Y : Bool Y = (A ∧ B) ∨ (A ∧ C) ∨ (B ∧ C) bit-adder-imp : Bool → Bool → Bool → Bool bit-adder-imp A B C = X ∧ Y where u : Bool u = (A ∧ not B) ∨ (not A ∧ B) v : Bool v = u ∧ C w : Bool w = A ∧ B X : Bool X = (u ∧ not C) ∨ (not u ∧ C) Y : Bool Y = (w ∨ v) data _≃_ {A : Set} (f : A → A) (g : A → A) : Set where f≃g : ((x y : A) → (x ≡ y) → (f x ≡ g y)) → f ≃ g -- Prove equivalence of specification and implementation using -- ≃ data type. equivalence-spec-imp : ∀ (A B : Bool) → (bit-adder-spec A B) ≃ (bit-adder-imp A B) equivalence-spec-imp A B = f≃g (λ x y x₁ → prove x y x₁) where pr1 : (x y : Bool) → (bit-adder-spec x y true) ≡ (bit-adder-imp x y true) pr1 true true = refl pr1 true false = refl pr1 false true = refl pr1 false false = refl pr2 : (x y : Bool) → (bit-adder-spec x y false) ≡ (bit-adder-imp x y false) pr2 true true = refl pr2 true false = refl pr2 false true = refl pr2 false false = refl prove : (x y : Bool) → (p : x ≡ y) → (bit-adder-spec A B x) ≡ (bit-adder-imp A B y) prove true .true refl = pr1 A B prove false .false refl = pr2 A B
{ "alphanum_fraction": 0.5306666667, "avg_line_length": 22.0588235294, "ext": "agda", "hexsha": "9cba825deca146ad4552002798019acf058cfab8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "amal029/agda-tutorial-dybjer", "max_forks_repo_path": "HWequivalence.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "amal029/agda-tutorial-dybjer", "max_issues_repo_path": "HWequivalence.agda", "max_line_length": 85, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7128bb419cd4aa3eeacae1fae1a9eb2e57ee8166", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "amal029/agda-tutorial-dybjer", "max_stars_repo_path": "HWequivalence.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:52:30.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:52:30.000Z", "num_tokens": 596, "size": 1500 }
{-# OPTIONS --without-K --safe #-} module Definition.Typed.Properties where open import Definition.Untyped open import Definition.Typed open import Tools.Empty using (⊥; ⊥-elim) open import Tools.Product import Tools.PropositionalEquality as PE -- Escape context extraction wfTerm : ∀ {Γ A t} → Γ ⊢ t ∷ A → ⊢ Γ wfTerm (ℕⱼ ⊢Γ) = ⊢Γ wfTerm (Πⱼ F ▹ G) = wfTerm F wfTerm (var ⊢Γ x₁) = ⊢Γ wfTerm (lamⱼ F t) with wfTerm t wfTerm (lamⱼ F t) | ⊢Γ ∙ F′ = ⊢Γ wfTerm (g ∘ⱼ a) = wfTerm a wfTerm (zeroⱼ ⊢Γ) = ⊢Γ wfTerm (sucⱼ n) = wfTerm n wfTerm (natrecⱼ F z s n) = wfTerm z wfTerm (conv t A≡B) = wfTerm t wf : ∀ {Γ A} → Γ ⊢ A → ⊢ Γ wf (ℕⱼ ⊢Γ) = ⊢Γ wf (Uⱼ ⊢Γ) = ⊢Γ wf (Πⱼ F ▹ G) = wf F wf (univ A) = wfTerm A wfEqTerm : ∀ {Γ A t u} → Γ ⊢ t ≡ u ∷ A → ⊢ Γ wfEqTerm (refl t) = wfTerm t wfEqTerm (sym t≡u) = wfEqTerm t≡u wfEqTerm (trans t≡u u≡r) = wfEqTerm t≡u wfEqTerm (conv t≡u A≡B) = wfEqTerm t≡u wfEqTerm (Π-cong F F≡H G≡E) = wfEqTerm F≡H wfEqTerm (app-cong f≡g a≡b) = wfEqTerm f≡g wfEqTerm (β-red F t a) = wfTerm a wfEqTerm (η-eq F f g f0≡g0) = wfTerm f wfEqTerm (suc-cong n) = wfEqTerm n wfEqTerm (natrec-cong F≡F′ z≡z′ s≡s′ n≡n′) = wfEqTerm z≡z′ wfEqTerm (natrec-zero F z s) = wfTerm z wfEqTerm (natrec-suc n F z s) = wfTerm n wfEq : ∀ {Γ A B} → Γ ⊢ A ≡ B → ⊢ Γ wfEq (univ A≡B) = wfEqTerm A≡B wfEq (refl A) = wf A wfEq (sym A≡B) = wfEq A≡B wfEq (trans A≡B B≡C) = wfEq A≡B wfEq (Π-cong F F≡H G≡E) = wfEq F≡H -- Reduction is a subset of conversion subsetTerm : ∀ {Γ A t u} → Γ ⊢ t ⇒ u ∷ A → Γ ⊢ t ≡ u ∷ A subsetTerm (natrec-subst F z s n⇒n′) = natrec-cong (refl F) (refl z) (refl s) (subsetTerm n⇒n′) subsetTerm (natrec-zero F z s) = natrec-zero F z s subsetTerm (natrec-suc n F z s) = natrec-suc n F z s subsetTerm (app-subst t⇒u a) = app-cong (subsetTerm t⇒u) (refl a) subsetTerm (β-red A t a) = β-red A t a subsetTerm (conv t⇒u A≡B) = conv (subsetTerm t⇒u) A≡B subset : ∀ {Γ A B} → Γ ⊢ A ⇒ B → Γ ⊢ A ≡ B subset (univ A⇒B) = univ (subsetTerm A⇒B) subset*Term : ∀ {Γ A t u} → Γ ⊢ t ⇒* u ∷ A → Γ ⊢ t ≡ u ∷ A subset*Term (id t) = refl t subset*Term (t⇒t′ ⇨ t⇒*u) = trans (subsetTerm t⇒t′) (subset*Term t⇒*u) subset* : ∀ {Γ A B} → Γ ⊢ A ⇒* B → Γ ⊢ A ≡ B subset* (id A) = refl A subset* (A⇒A′ ⇨ A′⇒*B) = trans (subset A⇒A′) (subset* A′⇒*B) -- Can extract left-part of a reduction redFirstTerm : ∀ {Γ t u A} → Γ ⊢ t ⇒ u ∷ A → Γ ⊢ t ∷ A redFirstTerm (conv t⇒u A≡B) = conv (redFirstTerm t⇒u) A≡B redFirstTerm (app-subst t⇒u a) = (redFirstTerm t⇒u) ∘ⱼ a redFirstTerm (β-red A t a) = (lamⱼ A t) ∘ⱼ a redFirstTerm (natrec-subst F z s n⇒n′) = natrecⱼ F z s (redFirstTerm n⇒n′) redFirstTerm (natrec-zero F z s) = natrecⱼ F z s (zeroⱼ (wfTerm z)) redFirstTerm (natrec-suc n F z s) = natrecⱼ F z s (sucⱼ n) redFirst : ∀ {Γ A B} → Γ ⊢ A ⇒ B → Γ ⊢ A redFirst (univ A⇒B) = univ (redFirstTerm A⇒B) redFirst*Term : ∀ {Γ t u A} → Γ ⊢ t ⇒* u ∷ A → Γ ⊢ t ∷ A redFirst*Term (id t) = t redFirst*Term (t⇒t′ ⇨ t′⇒*u) = redFirstTerm t⇒t′ redFirst* : ∀ {Γ A B} → Γ ⊢ A ⇒* B → Γ ⊢ A redFirst* (id A) = A redFirst* (A⇒A′ ⇨ A′⇒*B) = redFirst A⇒A′ -- No neutral terms are well-formed in an empty context noNe : ∀ {t A} → ε ⊢ t ∷ A → Neutral t → ⊥ noNe (var x₁ ()) (var x) noNe (conv ⊢t x) (var n) = noNe ⊢t (var n) noNe (⊢t ∘ⱼ ⊢t₁) (∘ₙ neT) = noNe ⊢t neT noNe (conv ⊢t x) (∘ₙ neT) = noNe ⊢t (∘ₙ neT) noNe (natrecⱼ x ⊢t ⊢t₁ ⊢t₂) (natrecₙ neT) = noNe ⊢t₂ neT noNe (conv ⊢t x) (natrecₙ neT) = noNe ⊢t (natrecₙ neT) -- Neutrals do not weak head reduce neRedTerm : ∀ {Γ t u A} (d : Γ ⊢ t ⇒ u ∷ A) (n : Neutral t) → ⊥ neRedTerm (conv d x) n = neRedTerm d n neRedTerm (app-subst d x) (∘ₙ n) = neRedTerm d n neRedTerm (β-red x x₁ x₂) (∘ₙ ()) neRedTerm (natrec-subst x x₁ x₂ d) (natrecₙ n₁) = neRedTerm d n₁ neRedTerm (natrec-zero x x₁ x₂) (natrecₙ ()) neRedTerm (natrec-suc x x₁ x₂ x₃) (natrecₙ ()) neRed : ∀ {Γ A B} (d : Γ ⊢ A ⇒ B) (N : Neutral A) → ⊥ neRed (univ x) N = neRedTerm x N -- Whnfs do not weak head reduce whnfRedTerm : ∀ {Γ t u A} (d : Γ ⊢ t ⇒ u ∷ A) (w : Whnf t) → ⊥ whnfRedTerm (conv d x) w = whnfRedTerm d w whnfRedTerm (app-subst d x) (ne (∘ₙ x₁)) = neRedTerm d x₁ whnfRedTerm (β-red x x₁ x₂) (ne (∘ₙ ())) whnfRedTerm (natrec-subst x x₁ x₂ d) (ne (natrecₙ x₃)) = neRedTerm d x₃ whnfRedTerm (natrec-zero x x₁ x₂) (ne (natrecₙ ())) whnfRedTerm (natrec-suc x x₁ x₂ x₃) (ne (natrecₙ ())) whnfRed : ∀ {Γ A B} (d : Γ ⊢ A ⇒ B) (w : Whnf A) → ⊥ whnfRed (univ x) w = whnfRedTerm x w whnfRed*Term : ∀ {Γ t u A} (d : Γ ⊢ t ⇒* u ∷ A) (w : Whnf t) → t PE.≡ u whnfRed*Term (id x) Uₙ = PE.refl whnfRed*Term (id x) Πₙ = PE.refl whnfRed*Term (id x) ℕₙ = PE.refl whnfRed*Term (id x) lamₙ = PE.refl whnfRed*Term (id x) zeroₙ = PE.refl whnfRed*Term (id x) sucₙ = PE.refl whnfRed*Term (id x) (ne x₁) = PE.refl whnfRed*Term (conv x x₁ ⇨ d) w = ⊥-elim (whnfRedTerm x w) whnfRed*Term (x ⇨ d) (ne x₁) = ⊥-elim (neRedTerm x x₁) whnfRed* : ∀ {Γ A B} (d : Γ ⊢ A ⇒* B) (w : Whnf A) → A PE.≡ B whnfRed* (id x) w = PE.refl whnfRed* (x ⇨ d) w = ⊥-elim (whnfRed x w) -- Whr is deterministic whrDetTerm : ∀{Γ t u A u′ A′} (d : Γ ⊢ t ⇒ u ∷ A) (d′ : Γ ⊢ t ⇒ u′ ∷ A′) → u PE.≡ u′ whrDetTerm (conv d x) d′ = whrDetTerm d d′ whrDetTerm d (conv d′ x₁) = whrDetTerm d d′ whrDetTerm (app-subst d x) (app-subst d′ x₁) rewrite whrDetTerm d d′ = PE.refl whrDetTerm (app-subst d x) (β-red x₁ x₂ x₃) = ⊥-elim (whnfRedTerm d lamₙ) whrDetTerm (β-red x x₁ x₂) (app-subst d x₃) = ⊥-elim (whnfRedTerm d lamₙ) whrDetTerm (β-red x x₁ x₂) (β-red x₃ x₄ x₅) = PE.refl whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-subst x₃ x₄ x₅ d′) rewrite whrDetTerm d d′ = PE.refl whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-zero x₃ x₄ x₅) = ⊥-elim (whnfRedTerm d zeroₙ) whrDetTerm (natrec-subst x x₁ x₂ d) (natrec-suc x₃ x₄ x₅ x₆) = ⊥-elim (whnfRedTerm d sucₙ) whrDetTerm (natrec-zero x x₁ x₂) (natrec-subst x₃ x₄ x₅ d′) = ⊥-elim (whnfRedTerm d′ zeroₙ) whrDetTerm (natrec-zero x x₁ x₂) (natrec-zero x₃ x₄ x₅) = PE.refl whrDetTerm (natrec-suc x x₁ x₂ x₃) (natrec-subst x₄ x₅ x₆ d′) = ⊥-elim (whnfRedTerm d′ sucₙ) whrDetTerm (natrec-suc x x₁ x₂ x₃) (natrec-suc x₄ x₅ x₆ x₇) = PE.refl whrDet : ∀{Γ A B B′} (d : Γ ⊢ A ⇒ B) (d′ : Γ ⊢ A ⇒ B′) → B PE.≡ B′ whrDet (univ x) (univ x₁) = whrDetTerm x x₁ whrDet↘Term : ∀{Γ t u A u′} (d : Γ ⊢ t ↘ u ∷ A) (d′ : Γ ⊢ t ⇒* u′ ∷ A) → Γ ⊢ u′ ⇒* u ∷ A whrDet↘Term (proj₁ , proj₂) (id x) = proj₁ whrDet↘Term (id x , proj₂) (x₁ ⇨ d′) = ⊥-elim (whnfRedTerm x₁ proj₂) whrDet↘Term (x ⇨ proj₁ , proj₂) (x₁ ⇨ d′) = whrDet↘Term (PE.subst (λ x₂ → _ ⊢ x₂ ↘ _ ∷ _) (whrDetTerm x x₁) (proj₁ , proj₂)) d′ whrDet*Term : ∀{Γ t u A u′} (d : Γ ⊢ t ↘ u ∷ A) (d′ : Γ ⊢ t ↘ u′ ∷ A) → u PE.≡ u′ whrDet*Term (id x , proj₂) (id x₁ , proj₄) = PE.refl whrDet*Term (id x , proj₂) (x₁ ⇨ proj₃ , proj₄) = ⊥-elim (whnfRedTerm x₁ proj₂) whrDet*Term (x ⇨ proj₁ , proj₂) (id x₁ , proj₄) = ⊥-elim (whnfRedTerm x proj₄) whrDet*Term (x ⇨ proj₁ , proj₂) (x₁ ⇨ proj₃ , proj₄) = whrDet*Term (proj₁ , proj₂) (PE.subst (λ x₂ → _ ⊢ x₂ ↘ _ ∷ _) (whrDetTerm x₁ x) (proj₃ , proj₄)) whrDet* : ∀{Γ A B B′} (d : Γ ⊢ A ↘ B) (d′ : Γ ⊢ A ↘ B′) → B PE.≡ B′ whrDet* (id x , proj₂) (id x₁ , proj₄) = PE.refl whrDet* (id x , proj₂) (x₁ ⇨ proj₃ , proj₄) = ⊥-elim (whnfRed x₁ proj₂) whrDet* (x ⇨ proj₁ , proj₂) (id x₁ , proj₄) = ⊥-elim (whnfRed x proj₄) whrDet* (A⇒A′ ⇨ A′⇒*B , whnfB) (A⇒A″ ⇨ A″⇒*B′ , whnfB′) = whrDet* (A′⇒*B , whnfB) (PE.subst (λ x → _ ⊢ x ↘ _) (whrDet A⇒A″ A⇒A′) (A″⇒*B′ , whnfB′)) -- Identity of syntactic reduction idRed:*: : ∀ {Γ A} → Γ ⊢ A → Γ ⊢ A :⇒*: A idRed:*: A = [ A , A , id A ] idRedTerm:*: : ∀ {Γ A t} → Γ ⊢ t ∷ A → Γ ⊢ t :⇒*: t ∷ A idRedTerm:*: t = [ t , t , id t ] -- U cannot be a term UnotInA : ∀ {A Γ} → Γ ⊢ U ∷ A → ⊥ UnotInA (conv U∷U x) = UnotInA U∷U UnotInA[t] : ∀ {A B t a Γ} → t [ a ] PE.≡ U → Γ ⊢ a ∷ A → Γ ∙ A ⊢ t ∷ B → ⊥ UnotInA[t] () x₁ (ℕⱼ x₂) UnotInA[t] () x₁ (Πⱼ x₂ ▹ x₃) UnotInA[t] x₁ x₂ (var x₃ here) rewrite x₁ = UnotInA x₂ UnotInA[t] () x₂ (var x₃ (there x₄)) UnotInA[t] () x₁ (lamⱼ x₂ x₃) UnotInA[t] () x₁ (x₂ ∘ⱼ x₃) UnotInA[t] () x₁ (zeroⱼ x₂) UnotInA[t] () x₁ (sucⱼ x₂) UnotInA[t] () x₁ (natrecⱼ x₂ x₃ x₄ x₅) UnotInA[t] x x₁ (conv x₂ x₃) = UnotInA[t] x x₁ x₂ redU*Term′ : ∀ {A B U′ Γ} → U′ PE.≡ U → Γ ⊢ A ⇒ U′ ∷ B → ⊥ redU*Term′ U′≡U (conv A⇒U x) = redU*Term′ U′≡U A⇒U redU*Term′ () (app-subst A⇒U x) redU*Term′ U′≡U (β-red x x₁ x₂) = UnotInA[t] U′≡U x₂ x₁ redU*Term′ () (natrec-subst x x₁ x₂ A⇒U) redU*Term′ U′≡U (natrec-zero x x₁ x₂) rewrite U′≡U = UnotInA x₁ redU*Term′ () (natrec-suc x x₁ x₂ x₃) redU*Term : ∀ {A B Γ} → Γ ⊢ A ⇒* U ∷ B → ⊥ redU*Term (id x) = UnotInA x redU*Term (x ⇨ A⇒*U) = redU*Term A⇒*U -- Nothing reduces to U redU : ∀ {A Γ} → Γ ⊢ A ⇒ U → ⊥ redU (univ x) = redU*Term′ PE.refl x redU* : ∀ {A Γ} → Γ ⊢ A ⇒* U → A PE.≡ U redU* (id x) = PE.refl redU* (x ⇨ A⇒*U) rewrite redU* A⇒*U = ⊥-elim (redU x)
{ "alphanum_fraction": 0.5740929129, "avg_line_length": 36.4074074074, "ext": "agda", "hexsha": "bcce14478032d2d95022fd562a03ed75a4c74319", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "loic-p/logrel-mltt", "max_forks_repo_path": "Definition/Typed/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "loic-p/logrel-mltt", "max_issues_repo_path": "Definition/Typed/Properties.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "2251b8da423be0c6fb916f2675d7bd8537e4cd96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "loic-p/logrel-mltt", "max_stars_repo_path": "Definition/Typed/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4673, "size": 8847 }
open import Data.Product using ( _×_ ; _,_ ) open import Relation.Unary using ( _∈_ ) open import Web.Semantic.DL.FOL using ( Formula ; _∈₂_ ; _∈₂_⇒_ ) open import Web.Semantic.DL.FOL.Model using ( _⊨f_ ) open import Web.Semantic.DL.Role using ( Role ; ⟨_⟩ ; ⟨_⟩⁻¹ ) open import Web.Semantic.DL.Role.Model using ( _⟦_⟧₂ ; ⟦⟧₂-resp-≈ ) open import Web.Semantic.DL.Signature using ( Signature ) open import Web.Semantic.DL.TBox.Interp using ( Interp ; ≈-sym ) module Web.Semantic.DL.Role.Skolemization {Σ : Signature} where rskolem : ∀ {Δ} → Role Σ → Δ → Δ → Formula Σ Δ rskolem ⟨ r ⟩ x y = (x , y) ∈₂ r rskolem ⟨ r ⟩⁻¹ x y = (y , x) ∈₂ r rskolem⇒ : ∀ {Δ} → Role Σ → Δ → Δ → Formula Σ Δ → Formula Σ Δ rskolem⇒ ⟨ r ⟩ x y F = (x , y) ∈₂ r ⇒ F rskolem⇒ ⟨ r ⟩⁻¹ x y F = (y , x) ∈₂ r ⇒ F rskolem-sound : ∀ I R x y → (I ⊨f rskolem R x y) → ((x , y) ∈ I ⟦ R ⟧₂) rskolem-sound I ⟨ r ⟩ x y xy∈⟦r⟧ = xy∈⟦r⟧ rskolem-sound I ⟨ r ⟩⁻¹ x y yx∈⟦r⟧ = yx∈⟦r⟧ rskolem⇒-sound : ∀ I R x y F → (I ⊨f rskolem⇒ R x y F) → ((x , y) ∈ I ⟦ R ⟧₂) → (I ⊨f F) rskolem⇒-sound I ⟨ r ⟩ x y F xy∈r⇒F xy∈⟦r⟧ = xy∈r⇒F xy∈⟦r⟧ rskolem⇒-sound I ⟨ r ⟩⁻¹ x y F yx∈r⇒F yx∈⟦r⟧ = yx∈r⇒F yx∈⟦r⟧
{ "alphanum_fraction": 0.5765920826, "avg_line_length": 43.037037037, "ext": "agda", "hexsha": "8d633cdb538eb61924059f1b9034409bd6e9106d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/DL/Role/Skolemization.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/DL/Role/Skolemization.agda", "max_line_length": 88, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/DL/Role/Skolemization.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 605, "size": 1162 }
-- Inductively constructed substitution maps module SOAS.ContextMaps.Inductive {T : Set} where open import SOAS.Common open import SOAS.Context open import SOAS.Sorting open import SOAS.Families.Core {T} open import SOAS.Variable private variable α : T Γ Δ : Ctx 𝒳 𝒴 : Familyₛ -- A list of terms in context Δ for every variable in context Γ data Sub (𝒳 : Familyₛ) : Ctx → Ctx → Set where • : Sub 𝒳 ∅ Δ _◂_ : 𝒳 α Δ → Sub 𝒳 Γ Δ → Sub 𝒳 (α ∙ Γ) Δ infixl 120 _◂_ infix 150 _⟩ pattern _⟩ t = t ◂ • -- Functorial mapping Sub₁ : (f : 𝒳 ⇾̣ 𝒴) → Sub 𝒳 Γ Δ → Sub 𝒴 Γ Δ Sub₁ f • = • Sub₁ f (x ◂ σ) = f x ◂ Sub₁ f σ -- Conversion between inductive substitutions and context maps module _ {𝒳 : Familyₛ} where index : Sub 𝒳 Γ Δ → Γ ~[ 𝒳 ]↝ Δ index • () index (t ◂ σ) new = t index (t ◂ σ) (old v) = index σ v tabulate : Γ ~[ 𝒳 ]↝ Δ → Sub 𝒳 Γ Δ tabulate {Γ = ∅} σ = • tabulate {Γ = α ∙ Γ} σ = σ new ◂ tabulate (σ ∘ old) ix∘tab≈id : (σ : Γ ~[ 𝒳 ]↝ Δ) (v : ℐ α Γ) → index (tabulate σ) v ≡ σ v ix∘tab≈id {Γ = α ∙ Γ} σ new = refl ix∘tab≈id {Γ = α ∙ Γ} σ (old v) = ix∘tab≈id (σ ∘ old) v tab∘ix≈id : (σ : Sub 𝒳 Γ Δ) → tabulate (index σ) ≡ σ tab∘ix≈id • = refl tab∘ix≈id (x ◂ σ) rewrite tab∘ix≈id σ = refl -- Naturality conditions tabulate-nat : (f : 𝒳 ⇾̣ 𝒴)(σ : Γ ~[ 𝒳 ]↝ Δ) → tabulate {𝒴} (f ∘ σ) ≡ Sub₁ f (tabulate {𝒳} σ) tabulate-nat {Γ = ∅} f σ = refl tabulate-nat {Γ = α ∙ Γ} f σ = cong (f (σ new) ◂_) (tabulate-nat f (σ ∘ old)) index-nat : (f : 𝒳 ⇾̣ 𝒴)(σ : Sub 𝒳 Γ Δ)(v : ℐ α Γ) → index (Sub₁ f σ) v ≡ f (index σ v) index-nat f (x ◂ σ) new = refl index-nat f (x ◂ σ) (old v) = index-nat f σ v
{ "alphanum_fraction": 0.5598086124, "avg_line_length": 26.5396825397, "ext": "agda", "hexsha": "88adb72457d478e99395b804cacf9905c6753f43", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "k4rtik/agda-soas", "max_forks_repo_path": "SOAS/ContextMaps/Inductive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "k4rtik/agda-soas", "max_issues_repo_path": "SOAS/ContextMaps/Inductive.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "b224d31e20cfd010b7c924ce940f3c2f417777e3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "k4rtik/agda-soas", "max_stars_repo_path": "SOAS/ContextMaps/Inductive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 779, "size": 1672 }
------------------------------------------------------------------------------ -- The division program is correct ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- This module proves the correctness of the division program using -- repeated subtraction (Dybjer 1985). module FOTC.Program.Division.CorrectnessProofI where open import FOTC.Base open import FOTC.Data.Nat open import FOTC.Data.Nat.Inequalities open import FOTC.Data.Nat.Inequalities.PropertiesI open import FOTC.Data.Nat.PropertiesI import FOTC.Data.Nat.Induction.NonAcc.WF-I open module WFInd = FOTC.Data.Nat.Induction.NonAcc.WF-I.WFInd open import FOTC.Program.Division.Division open import FOTC.Program.Division.ResultI open import FOTC.Program.Division.Specification open import FOTC.Program.Division.TotalityI ------------------------------------------------------------------------------ -- The division program is correct when the dividend is less than the -- divisor. div-x<y-correct : ∀ {i j} → N i → N j → i < j → divSpec i j (div i j) div-x<y-correct Ni Nj i<j = div-x<y-N i<j , div-x<y-resultCorrect Ni Nj i<j -- The division program is correct when the dividend is greater or -- equal than the divisor. div-x≮y-correct : ∀ {i j} → N i → N j → (∀ {i'} → N i' → i' < i → divSpec i' j (div i' j)) → j > zero → i ≮ j → divSpec i j (div i j) div-x≮y-correct {i} {j} Ni Nj ah j>0 i≮j = div-x≮y-N ih i≮j , div-x≮y-resultCorrect Ni Nj ih i≮j where -- The inductive hypothesis on i ∸ j. ih : divSpec (i ∸ j) j (div (i ∸ j) j) ih = ah {i ∸ j} (∸-N Ni Nj) (x≥y→y>0→x∸y<x Ni Nj (x≮y→x≥y Ni Nj i≮j) j>0) ------------------------------------------------------------------------------ -- The division program is correct. -- We do the well-founded induction on i and we keep j fixed. divCorrect : ∀ {i j} → N i → N j → j > zero → divSpec i j (div i j) divCorrect {j = j} Ni Nj j>0 = <-wfind A ih Ni where A : D → Set A d = divSpec d j (div d j) -- The inductive step doesn't use the variable i (nor Ni). To make -- this clear we write down the inductive step using the variables m -- and n. ih : ∀ {n} → N n → (∀ {m} → N m → m < n → A m) → A n ih {n} Nn ah = case (div-x<y-correct Nn Nj) (div-x≮y-correct Nn Nj ah j>0) (x<y∨x≮y Nn Nj) ------------------------------------------------------------------------------ -- References -- -- Dybjer, Peter (1985). Program Verification in a Logical Theory of -- Constructions. In: Functional Programming Languages and Computer -- Architecture. Ed. by Jouannaud, -- Jean-Pierre. Vol. 201. LNCS. Appears in revised form as Programming -- Methodology Group Report 26, University of Gothenburg and Chalmers -- University of Technology, June 1986. Springer, pp. 334–349.
{ "alphanum_fraction": 0.557698703, "avg_line_length": 38.5512820513, "ext": "agda", "hexsha": "728fc212c326a10f10c9374fc708063d2c2c8888", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Program/Division/CorrectnessProofI.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Program/Division/CorrectnessProofI.agda", "max_line_length": 79, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Program/Division/CorrectnessProofI.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 862, "size": 3007 }
{-# OPTIONS --universe-polymorphism #-} module UniversePolymorphicFunctor where postulate Level : Set zero : Level suc : (i : Level) → Level _⊔_ : Level → Level → Level {-# BUILTIN LEVEL Level #-} {-# BUILTIN LEVELZERO zero #-} {-# BUILTIN LEVELSUC suc #-} {-# BUILTIN LEVELMAX _⊔_ #-} infixl 6 _⊔_ record IsEquivalence {a ℓ} {A : Set a} (_≈_ : A → A → Set ℓ) : Set (a ⊔ ℓ) where field refl : ∀ {x} → x ≈ x sym : ∀ {i j} → i ≈ j → j ≈ i trans : ∀ {i j k} → i ≈ j → j ≈ k → i ≈ k record Setoid c ℓ : Set (suc (c ⊔ ℓ)) where infix 4 _≈_ field Carrier : Set c _≈_ : Carrier → Carrier → Set ℓ isEquivalence : IsEquivalence _≈_ open IsEquivalence isEquivalence public infixr 0 _⟶_ record _⟶_ {f₁ f₂ t₁ t₂} (From : Setoid f₁ f₂) (To : Setoid t₁ t₂) : Set (f₁ ⊔ f₂ ⊔ t₁ ⊔ t₂) where infixl 5 _⟨$⟩_ field _⟨$⟩_ : Setoid.Carrier From → Setoid.Carrier To cong : ∀ {x y} → Setoid._≈_ From x y → Setoid._≈_ To (_⟨$⟩_ x) (_⟨$⟩_ y) open _⟶_ public id : ∀ {a₁ a₂} {A : Setoid a₁ a₂} → A ⟶ A id = record { _⟨$⟩_ = λ x → x; cong = λ x≈y → x≈y } infixr 9 _∘_ _∘_ : ∀ {a₁ a₂} {A : Setoid a₁ a₂} {b₁ b₂} {B : Setoid b₁ b₂} {c₁ c₂} {C : Setoid c₁ c₂} → B ⟶ C → A ⟶ B → A ⟶ C f ∘ g = record { _⟨$⟩_ = λ x → f ⟨$⟩ (g ⟨$⟩ x) ; cong = λ x≈y → cong f (cong g x≈y) } _⇨_ : ∀ {f₁ f₂ t₁ t₂} → Setoid f₁ f₂ → Setoid t₁ t₂ → Setoid _ _ From ⇨ To = record { Carrier = From ⟶ To ; _≈_ = λ f g → ∀ {x y} → x ≈₁ y → f ⟨$⟩ x ≈₂ g ⟨$⟩ y ; isEquivalence = record { refl = λ {f} → cong f ; sym = λ f∼g x∼y → To.sym (f∼g (From.sym x∼y)) ; trans = λ f∼g g∼h x∼y → To.trans (f∼g From.refl) (g∼h x∼y) } } where open module From = Setoid From using () renaming (_≈_ to _≈₁_) open module To = Setoid To using () renaming (_≈_ to _≈₂_) record Functor {f₁ f₂ f₃ f₄} (F : Setoid f₁ f₂ → Setoid f₃ f₄) : Set (suc (f₁ ⊔ f₂) ⊔ f₃ ⊔ f₄) where field map : ∀ {A B} → (A ⇨ B) ⟶ (F A ⇨ F B) identity : ∀ {A} → let open Setoid (F A ⇨ F A) in map ⟨$⟩ id ≈ id composition : ∀ {A B C} (f : B ⟶ C) (g : A ⟶ B) → let open Setoid (F A ⇨ F C) in map ⟨$⟩ (f ∘ g) ≈ (map ⟨$⟩ f) ∘ (map ⟨$⟩ g)
{ "alphanum_fraction": 0.4862778731, "avg_line_length": 26.202247191, "ext": "agda", "hexsha": "550d0fa337b54acd33538bb5bfc349659cd91658", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "benchmark/misc/UniversePolymorphicFunctor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "benchmark/misc/UniversePolymorphicFunctor.agda", "max_line_length": 67, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "benchmark/misc/UniversePolymorphicFunctor.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 1052, "size": 2332 }
-- Andreas, 2011-04-15 -- {-# OPTIONS -v tc.meta:20 #-} module SameMeta where infix 10 _≡_ data _≡_ {A : Set}(a : A) : A -> Set where refl : a ≡ a infixr 5 _×_ _,_ data _×_ (A B : Set) : Set where _,_ : A -> B -> A × B postulate A : Set same : let X : A -> A -> A -> A × A X = _ in {x y z : A} -> X x y y ≡ (x , y) × X x x y ≡ X x y y same = refl , refl -- second equation triggers pruning of second variable of X -- which makes the first equation linear and solvable
{ "alphanum_fraction": 0.527027027, "avg_line_length": 22.5217391304, "ext": "agda", "hexsha": "68d900d65b5af676da83d68a033d8bb294653f1c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/SameMeta.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/SameMeta.agda", "max_line_length": 59, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/SameMeta.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 185, "size": 518 }
{-# OPTIONS --cubical --safe #-} module Function.Isomorphism where open import Cubical.Foundations.Equiv using (isoToEquiv) public open import Cubical.Foundations.Isomorphism using (Iso; section; retract; isoToPath; iso) public open import Level open import Path open import Function open import Data.Sigma open import Relation.Binary open Iso public infix 4 _⇔_ _⇔_ = Iso sym-⇔ : (A ⇔ B) → (B ⇔ A) fun (sym-⇔ A⇔B) = inv A⇔B inv (sym-⇔ A⇔B) = fun A⇔B leftInv (sym-⇔ A⇔B) = rightInv A⇔B rightInv (sym-⇔ A⇔B) = leftInv A⇔B refl-⇔ : A ⇔ A fun refl-⇔ x = x inv refl-⇔ x = x leftInv refl-⇔ x = refl rightInv refl-⇔ x = refl trans-⇔ : A ⇔ B → B ⇔ C → A ⇔ C fun (trans-⇔ A⇔B B⇔C) = fun B⇔C ∘ fun A⇔B inv (trans-⇔ A⇔B B⇔C) = inv A⇔B ∘ inv B⇔C leftInv (trans-⇔ A⇔B B⇔C) x = cong (inv A⇔B) (leftInv B⇔C _) ; leftInv A⇔B _ rightInv (trans-⇔ A⇔B B⇔C) x = cong (fun B⇔C) (rightInv A⇔B _) ; rightInv B⇔C _ iso-Σ : {B : A → Type b} {C : A → Type c} → (∀ x → B x ⇔ C x) → Σ A B ⇔ Σ A C iso-Σ B⇔C .fun (x , xs) = x , B⇔C x .fun xs iso-Σ B⇔C .inv (x , xs) = x , B⇔C x .inv xs iso-Σ B⇔C .rightInv (x , xs) i .fst = x iso-Σ B⇔C .rightInv (x , xs) i .snd = B⇔C x .rightInv xs i iso-Σ B⇔C .leftInv (x , xs) i .fst = x iso-Σ B⇔C .leftInv (x , xs) i .snd = B⇔C x .leftInv xs i ⇔-equiv : Equivalence (Type a) a Equivalence._≋_ ⇔-equiv = _⇔_ Equivalence.sym ⇔-equiv = sym-⇔ Equivalence.refl ⇔-equiv = refl-⇔ Equivalence.trans ⇔-equiv = trans-⇔ open import HLevels open import Equiv iso⇔equiv : isSet A → (A ⇔ B) ⇔ (A ≃ B) iso⇔equiv isSetA .fun = isoToEquiv iso⇔equiv isSetA .inv = equivToIso iso⇔equiv isSetA .rightInv x i .fst = x .fst iso⇔equiv isSetA .rightInv x i .snd = isPropIsEquiv (x .fst) (isoToEquiv (equivToIso x) .snd) (x .snd) i iso⇔equiv isSetA .leftInv x i .fun = x .fun iso⇔equiv isSetA .leftInv x i .inv = x .inv iso⇔equiv isSetA .leftInv x i .rightInv = x .rightInv iso⇔equiv isSetA .leftInv x i .leftInv y = isSetA _ y (equivToIso (isoToEquiv x) .leftInv y) (x .leftInv y) i
{ "alphanum_fraction": 0.6343545957, "avg_line_length": 32.1129032258, "ext": "agda", "hexsha": "53e76b5fd9857805b93445e1be0216a026a981ff", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Function/Isomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Function/Isomorphism.agda", "max_line_length": 109, "max_stars_count": null, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Function/Isomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 988, "size": 1991 }
-- Andreas, 2015-05-06, issue reported by Nisse postulate _ : Set postulate _ : Set -- Error message WAS: "Multiple definitions of _." -- BUT: If the first occurrence of _ is accepted, then the second one -- should also be accepted. -- Error NOW: "Invalid name: _"
{ "alphanum_fraction": 0.695970696, "avg_line_length": 19.5, "ext": "agda", "hexsha": "6b9174585feba6cc6c70562bc8f0ebc7fa402ea0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1465.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1465.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1465.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 77, "size": 273 }
{-# OPTIONS --without-K #-} module hott.equivalence where open import hott.equivalence.alternative public open import hott.equivalence.core public open import hott.equivalence.properties public open import hott.equivalence.inverse public -- open import hott.equivalence.coind public
{ "alphanum_fraction": 0.8204225352, "avg_line_length": 31.5555555556, "ext": "agda", "hexsha": "bf60aaa0a508840e44f1db8b0a545f1b8b287198", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "hott/equivalence.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "hott/equivalence.agda", "max_line_length": 47, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "hott/equivalence.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 56, "size": 284 }
-- Andreas, 2016-08-04, issue #964 -- Allow open metas and interaction points in imported files {-# OPTIONS --allow-unsolved-metas #-} -- {-# OPTIONS -v import:100 #-} -- {-# OPTIONS -v meta.postulate:20 #-} -- {-# OPTIONS -v tc.meta:25 #-} -- Andreas, 2016-10-09, while working on issue #2223: -- -- This module is an example that we can be in a context -- that is shorter than the current section. -- Typically, this would be the empty context. -- -- {-# OPTIONS -v tc.constr.add:45 #-} open import Common.Level module Common.Issue964.UnsolvedMetas (A : Set₁) where meta : Level meta = {!!} -- unsolved interaction point module M (B : Set) where meta2 : Set meta meta2 = _ -- unsolved meta module N (C D : meta2) where meta3 : meta2 meta3 = Set -- EOF
{ "alphanum_fraction": 0.6530089629, "avg_line_length": 21.6944444444, "ext": "agda", "hexsha": "88de3041303e4a757e62be9f7f87c1995e72c673", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Common/Issue964/UnsolvedMetas.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Common/Issue964/UnsolvedMetas.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Common/Issue964/UnsolvedMetas.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 230, "size": 781 }
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Algebra.Signature module Fragment.Algebra.Homomorphism.Properties (Σ : Signature) where open import Fragment.Algebra.Algebra Σ open import Fragment.Algebra.Homomorphism.Base Σ open import Fragment.Algebra.Homomorphism.Setoid Σ open import Level using (Level) open import Relation.Binary using (Setoid) private variable a b c d ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level A : Algebra {a} {ℓ₁} B : Algebra {b} {ℓ₂} C : Algebra {c} {ℓ₃} D : Algebra {d} {ℓ₄} id-unitˡ : ∀ {f : A ⟿ B} → id ⊙ f ≗ f id-unitˡ {B = B} = Setoid.refl ∥ B ∥/≈ id-unitʳ : ∀ {f : A ⟿ B} → f ⊙ id ≗ f id-unitʳ {B = B} = Setoid.refl ∥ B ∥/≈ ⊙-assoc : ∀ (h : C ⟿ D) (g : B ⟿ C) (f : A ⟿ B) → (h ⊙ g) ⊙ f ≗ h ⊙ (g ⊙ f) ⊙-assoc {D = D} _ _ _ = Setoid.refl ∥ D ∥/≈ ⊙-congˡ : ∀ (h : B ⟿ C) (f g : A ⟿ B) → f ≗ g → h ⊙ f ≗ h ⊙ g ⊙-congˡ h _ _ f≗g = ∣ h ∣-cong f≗g ⊙-congʳ : ∀ (h : A ⟿ B) (f g : B ⟿ C) → f ≗ g → f ⊙ h ≗ g ⊙ h ⊙-congʳ _ _ _ f≗g = f≗g
{ "alphanum_fraction": 0.5288461538, "avg_line_length": 25.3658536585, "ext": "agda", "hexsha": "770e6f4f63b531d84c04af5bf130ab04efd1a8c6", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Algebra/Homomorphism/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Algebra/Homomorphism/Properties.agda", "max_line_length": 69, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Algebra/Homomorphism/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 482, "size": 1040 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Environments (heterogeneous collections) ------------------------------------------------------------------------ {-# OPTIONS --with-K --safe #-} module Data.Star.Environment {ℓ} (Ty : Set ℓ) where open import Level open import Data.Star.List open import Data.Star.Decoration open import Data.Star.Pointer as Pointer hiding (lookup) open import Data.Unit open import Function hiding (_∋_) open import Relation.Binary.PropositionalEquality open import Relation.Binary.Construct.Closure.ReflexiveTransitive -- Contexts, listing the types of all the elements in an environment. Ctxt : Set ℓ Ctxt = List Ty -- Variables (de Bruijn indices); pointers into environments. infix 4 _∋_ _∋_ : Ctxt → Ty → Set ℓ Γ ∋ σ = Any (const (Lift ℓ ⊤)) (σ ≡_) Γ vz : ∀ {Γ σ} → Γ ▻ σ ∋ σ vz = this refl vs : ∀ {Γ σ τ} → Γ ∋ τ → Γ ▻ σ ∋ τ vs = that _ -- Environments. The T function maps types to element types. Env : ∀ {e} → (Ty → Set e) → (Ctxt → Set (ℓ ⊔ e)) Env T Γ = All T Γ -- A safe lookup function for environments. lookup : ∀ {Γ σ} {T : Ty → Set} → Γ ∋ σ → Env T Γ → T σ lookup i ρ with Pointer.lookup i ρ ... | result refl x = x
{ "alphanum_fraction": 0.5928917609, "avg_line_length": 25.7916666667, "ext": "agda", "hexsha": "90d9d56baacc2f73d0ac85979ef082369f01a524", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/Environment.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/Environment.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/Environment.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 355, "size": 1238 }
-- | Stuff regarding isomorphisms and isomorphic data structures. module Isomorphisms where open import Function open import Relation.Binary.PropositionalEquality as P using (_≡_; refl; sym; trans; cong; module ≡-Reasoning) open ≡-Reasoning record IsIso {A B : Set} (f : A → B) : Set where field inv : B → A isLeftInv : (a : A) → inv (f a) ≡ a isRightInv : (b : B) → f (inv b) ≡ b iso-comp : {A B C : Set} → {f : A → B} → {g : B → C} → IsIso f → IsIso g → IsIso (g ∘ f) iso-comp {A} {B} {C} {f} {g} if ig = record { inv = IsIso.inv if ∘ IsIso.inv ig ; isLeftInv = λ a → begin (IsIso.inv if ∘ IsIso.inv ig) ((g ∘ f) a) ≡⟨ refl ⟩ (IsIso.inv if (IsIso.inv ig (g (f a)))) ≡⟨ cong (λ x → IsIso.inv if x) (IsIso.isLeftInv ig (f a)) ⟩ (IsIso.inv if (f a)) ≡⟨ IsIso.isLeftInv if a ⟩ a ∎ ; isRightInv = λ c → begin (g ∘ f) ((IsIso.inv if ∘ IsIso.inv ig) c) ≡⟨ refl ⟩ g (f ((IsIso.inv if) ((IsIso.inv ig) c))) ≡⟨ cong (λ x → g x) (IsIso.isRightInv if (IsIso.inv ig c)) ⟩ g ((IsIso.inv ig) c) ≡⟨ IsIso.isRightInv ig c ⟩ c ∎ } iso-rev : {A B : Set} → {f : A → B} → (I : IsIso f) → IsIso (IsIso.inv I) iso-rev {A} {B} {f} I = record { inv = f ; isLeftInv = IsIso.isRightInv I ; isRightInv = IsIso.isLeftInv I } record Iso (A B : Set) : Set where field iso : A → B indeedIso : IsIso iso iso-trans : {A B C : Set} → Iso A B → Iso B C → Iso A C iso-trans I₁ I₂ = record { iso = Iso.iso I₂ ∘ Iso.iso I₁ ; indeedIso = iso-comp (Iso.indeedIso I₁) (Iso.indeedIso I₂) }
{ "alphanum_fraction": 0.4938063063, "avg_line_length": 31.1578947368, "ext": "agda", "hexsha": "fdbd109dcef9ae54bc792350fd30cc4947a34960", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "OTTTests/Isomorphisms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "OTTTests/Isomorphisms.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "OTTTests/Isomorphisms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 648, "size": 1776 }
------------------------------------------------------------------------ -- The Agda standard library -- -- A binary representation of natural numbers ------------------------------------------------------------------------ module Data.Bin where open import Data.Nat as Nat using (ℕ; zero; z≤n; s≤s) renaming (suc to 1+_) open Nat.≤-Reasoning import Data.Nat.Properties as NP open import Data.Digit open import Data.Fin as Fin using (Fin; zero) renaming (suc to 1+_) open import Data.Fin.Properties as FP using (_+′_) open import Data.List as List hiding (downFrom) open import Function open import Data.Product open import Algebra open import Relation.Binary open import Relation.Binary.Consequences open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; sym) open import Relation.Nullary private module BitOrd = StrictTotalOrder (FP.strictTotalOrder 2) ------------------------------------------------------------------------ -- The type -- A representation of binary natural numbers in which there is -- exactly one representative for every number. -- The function toℕ below defines the meaning of Bin. infix 8 _1# -- bs stands for the binary number 1<reverse bs>, which is positive. Bin⁺ : Set Bin⁺ = List Bit data Bin : Set where -- Zero. 0# : Bin -- bs 1# stands for the binary number 1<reverse bs>. _1# : (bs : Bin⁺) → Bin ------------------------------------------------------------------------ -- Conversion functions -- Converting to a list of bits starting with the _least_ significant -- one. toBits : Bin → List Bit toBits 0# = [ 0b ] toBits (bs 1#) = bs ++ [ 1b ] -- Converting to a natural number. toℕ : Bin → ℕ toℕ = fromDigits ∘ toBits -- Converting from a list of bits, starting with the _least_ -- significant one. fromBits : List Bit → Bin fromBits [] = 0# fromBits (b ∷ bs) with fromBits bs fromBits (b ∷ bs) | bs′ 1# = (b ∷ bs′) 1# fromBits (zero ∷ bs) | 0# = 0# fromBits (1+ zero ∷ bs) | 0# = [] 1# fromBits (1+ 1+ () ∷ bs) | _ -- Converting from a natural number. fromℕ : ℕ → Bin fromℕ n = fromBits $ proj₁ $ toDigits 2 n ------------------------------------------------------------------------ -- (Bin, _≡_, _<_) is a strict total order infix 4 _<_ -- Order relation. Wrapped so that the parameters can be inferred. data _<_ (b₁ b₂ : Bin) : Set where less : (lt : (Nat._<_ on toℕ) b₁ b₂) → b₁ < b₂ private <-trans : Transitive _<_ <-trans (less lt₁) (less lt₂) = less (NP.<-trans lt₁ lt₂) asym : ∀ {b₁ b₂} → b₁ < b₂ → ¬ b₂ < b₁ asym {b₁} {b₂} (less lt) (less gt) = tri⟶asym cmp lt gt where cmp = StrictTotalOrder.compare NP.strictTotalOrder irr : ∀ {b₁ b₂} → b₁ < b₂ → b₁ ≢ b₂ irr lt eq = asym⟶irr (PropEq.resp₂ _<_) sym asym eq lt irr′ : ∀ {b} → ¬ b < b irr′ lt = irr lt refl ∷∙ : ∀ {b₁ b₂ bs₁ bs₂} → bs₁ 1# < bs₂ 1# → (b₁ ∷ bs₁) 1# < (b₂ ∷ bs₂) 1# ∷∙ {b₁} {b₂} {bs₁} {bs₂} (less lt) = less (begin 1 + (m₁ + n₁ * 2) ≤⟨ ≤-refl {x = 1} +-mono (≤-pred (FP.bounded b₁) +-mono ≤-refl) ⟩ 1 + (1 + n₁ * 2) ≡⟨ refl ⟩ suc n₁ * 2 ≤⟨ lt *-mono ≤-refl ⟩ n₂ * 2 ≤⟨ n≤m+n m₂ (n₂ * 2) ⟩ m₂ + n₂ * 2 ∎ ) where open Nat; open NP open DecTotalOrder decTotalOrder renaming (refl to ≤-refl) m₁ = Fin.toℕ b₁; m₂ = Fin.toℕ b₂ n₁ = toℕ (bs₁ 1#); n₂ = toℕ (bs₂ 1#) ∙∷ : ∀ {b₁ b₂ bs} → Fin._<_ b₁ b₂ → (b₁ ∷ bs) 1# < (b₂ ∷ bs) 1# ∙∷ {b₁} {b₂} {bs} lt = less (begin 1 + (m₁ + n * 2) ≡⟨ sym (+-assoc 1 m₁ (n * 2)) ⟩ (1 + m₁) + n * 2 ≤⟨ lt +-mono ≤-refl ⟩ m₂ + n * 2 ∎) where open Nat; open NP open DecTotalOrder decTotalOrder renaming (refl to ≤-refl) open CommutativeSemiring commutativeSemiring using (+-assoc) m₁ = Fin.toℕ b₁; m₂ = Fin.toℕ b₂; n = toℕ (bs 1#) 1<[23] : ∀ {b} → [] 1# < (b ∷ []) 1# 1<[23] {b} = less (NP.n≤m+n (Fin.toℕ b) 2) 1<2+ : ∀ {bs b} → [] 1# < (b ∷ bs) 1# 1<2+ {[]} = 1<[23] 1<2+ {b ∷ bs} = <-trans 1<[23] (∷∙ {b₁ = b} (1<2+ {bs})) 0<1 : 0# < [] 1# 0<1 = less (s≤s z≤n) 0<+ : ∀ {bs} → 0# < bs 1# 0<+ {[]} = 0<1 0<+ {b ∷ bs} = <-trans 0<1 1<2+ compare⁺ : Trichotomous (_≡_ on _1#) (_<_ on _1#) compare⁺ [] [] = tri≈ irr′ refl irr′ compare⁺ [] (b ∷ bs) = tri< 1<2+ (irr 1<2+) (asym 1<2+) compare⁺ (b ∷ bs) [] = tri> (asym 1<2+) (irr 1<2+ ∘ sym) 1<2+ compare⁺ (b₁ ∷ bs₁) (b₂ ∷ bs₂) with compare⁺ bs₁ bs₂ ... | tri< lt ¬eq ¬gt = tri< (∷∙ lt) (irr (∷∙ lt)) (asym (∷∙ lt)) ... | tri> ¬lt ¬eq gt = tri> (asym (∷∙ gt)) (irr (∷∙ gt) ∘ sym) (∷∙ gt) compare⁺ (b₁ ∷ bs) (b₂ ∷ .bs) | tri≈ ¬lt refl ¬gt with BitOrd.compare b₁ b₂ compare⁺ (b ∷ bs) (.b ∷ .bs) | tri≈ ¬lt refl ¬gt | tri≈ ¬lt′ refl ¬gt′ = tri≈ irr′ refl irr′ ... | tri< lt′ ¬eq ¬gt′ = tri< (∙∷ lt′) (irr (∙∷ lt′)) (asym (∙∷ lt′)) ... | tri> ¬lt′ ¬eq gt′ = tri> (asym (∙∷ gt′)) (irr (∙∷ gt′) ∘ sym) (∙∷ gt′) compare : Trichotomous _≡_ _<_ compare 0# 0# = tri≈ irr′ refl irr′ compare 0# (bs₂ 1#) = tri< 0<+ (irr 0<+) (asym 0<+) compare (bs₁ 1#) 0# = tri> (asym 0<+) (irr 0<+ ∘ sym) 0<+ compare (bs₁ 1#) (bs₂ 1#) = compare⁺ bs₁ bs₂ strictTotalOrder : StrictTotalOrder _ _ _ strictTotalOrder = record { Carrier = Bin ; _≈_ = _≡_ ; _<_ = _<_ ; isStrictTotalOrder = record { isEquivalence = PropEq.isEquivalence ; trans = <-trans ; compare = compare ; <-resp-≈ = PropEq.resp₂ _<_ } } ------------------------------------------------------------------------ -- (Bin, _≡_) is a decidable setoid decSetoid : DecSetoid _ _ decSetoid = StrictTotalOrder.decSetoid strictTotalOrder infix 4 _≟_ _≟_ : Decidable {A = Bin} _≡_ _≟_ = DecSetoid._≟_ decSetoid ------------------------------------------------------------------------ -- Arithmetic -- Power of two. infixr 8 2^_ 2^_ : ℕ → Bin⁺ 2^ 0 = [] 2^ 1+ n = 0b ∷ 2^ n -- Base 2 logarithm (rounded downwards). ⌊log₂_⌋ : Bin⁺ → ℕ ⌊log₂ (b ∷ bs) ⌋ = 1+ ⌊log₂ bs ⌋ ⌊log₂ [] ⌋ = 0 -- Multiplication by 2. infix 7 _*2 _*2+1 _*2 : Bin → Bin 0# *2 = 0# (bs 1#) *2 = (0b ∷ bs) 1# _*2+1 : Bin → Bin 0# *2+1 = [] 1# (bs 1#) *2+1 = (1b ∷ bs) 1# -- Division by 2, rounded downwards. ⌊_/2⌋ : Bin → Bin ⌊ 0# /2⌋ = 0# ⌊ [] 1# /2⌋ = 0# ⌊ (b ∷ bs) 1# /2⌋ = bs 1# -- Addition. Carry : Set Carry = Bit addBits : Carry → Bit → Bit → Carry × Bit addBits c b₁ b₂ with c +′ (b₁ +′ b₂) ... | zero = (0b , 0b) ... | 1+ zero = (0b , 1b) ... | 1+ 1+ zero = (1b , 0b) ... | 1+ 1+ 1+ zero = (1b , 1b) ... | 1+ 1+ 1+ 1+ () addCarryToBitList : Carry → List Bit → List Bit addCarryToBitList zero bs = bs addCarryToBitList (1+ zero) [] = 1b ∷ [] addCarryToBitList (1+ zero) (zero ∷ bs) = 1b ∷ bs addCarryToBitList (1+ zero) (1+ zero ∷ bs) = 0b ∷ addCarryToBitList 1b bs addCarryToBitList (1+ 1+ ()) _ addCarryToBitList _ ((1+ 1+ ()) ∷ _) addBitLists : Carry → List Bit → List Bit → List Bit addBitLists c [] bs₂ = addCarryToBitList c bs₂ addBitLists c bs₁ [] = addCarryToBitList c bs₁ addBitLists c (b₁ ∷ bs₁) (b₂ ∷ bs₂) with addBits c b₁ b₂ ... | (c' , b') = b' ∷ addBitLists c' bs₁ bs₂ infixl 6 _+_ _+_ : Bin → Bin → Bin m + n = fromBits (addBitLists 0b (toBits m) (toBits n)) -- Multiplication. infixl 7 _*_ _*_ : Bin → Bin → Bin 0# * n = 0# [] 1# * n = n -- (b + 2 * bs 1#) * n = b * n + 2 * (bs 1# * n) (b ∷ bs) 1# * n with bs 1# * n (b ∷ bs) 1# * n | 0# = 0# (zero ∷ bs) 1# * n | bs' 1# = (0b ∷ bs') 1# (1+ zero ∷ bs) 1# * n | bs' 1# = n + (0b ∷ bs') 1# ((1+ 1+ ()) ∷ _) 1# * _ | _ -- Successor. suc : Bin → Bin suc n = [] 1# + n -- Division by 2, rounded upwards. ⌈_/2⌉ : Bin → Bin ⌈ n /2⌉ = ⌊ suc n /2⌋ -- Predecessor. pred : Bin⁺ → Bin pred [] = 0# pred (zero ∷ bs) = pred bs *2+1 pred (1+ zero ∷ bs) = (zero ∷ bs) 1# pred (1+ 1+ () ∷ bs) -- downFrom n enumerates all numbers from n - 1 to 0. This function is -- linear in n. Analysis: fromℕ takes linear time, and the preds used -- take amortised constant time (to see this, let the cost of a pred -- be 2, and put 1 debit on every bit which is 1). downFrom : ℕ → List Bin downFrom n = helper n (fromℕ n) where helper : ℕ → Bin → List Bin helper zero 0# = [] helper (1+ n) (bs 1#) = n′ ∷ helper n n′ where n′ = pred bs -- Impossible cases: helper zero (_ 1#) = [] helper (1+ _) 0# = [] ------------------------------------------------------------------------ -- Tests -- The tests below have been commented out since (at least one version -- of) Agda is too slow or memory-hungry to type check them. {- -- The tests below are run when this module is type checked. -- First some test helpers: private testLimit : ℕ testLimit = 5 nats : List ℕ nats = List.downFrom testLimit nats⁺ : List ℕ nats⁺ = filter (λ n → decToBool (Nat._≤?_ 1 n)) nats natPairs : List (ℕ × ℕ) natPairs = zip nats (reverse nats) _=[_]_ : (ℕ → ℕ) → List ℕ → (Bin → Bin) → Set f =[ ns ] g = map f ns ≡ map (toℕ ∘ g ∘ fromℕ) ns _=[_]₂_ : (ℕ → ℕ → ℕ) → List (ℕ × ℕ) → (Bin → Bin → Bin) → Set f =[ ps ]₂ g = map (uncurry f) ps ≡ map (toℕ ∘ uncurry (g on fromℕ)) ps -- And then the tests: private test-*2+1 : (λ n → Nat._+_ (Nat._*_ n 2) 1) =[ nats ] _*2+1 test-*2+1 = refl test-*2 : (λ n → Nat._*_ n 2) =[ nats ] _*2 test-*2 = refl test-⌊_/2⌋ : Nat.⌊_/2⌋ =[ nats ] ⌊_/2⌋ test-⌊_/2⌋ = refl test-+ : Nat._+_ =[ natPairs ]₂ _+_ test-+ = refl test-* : Nat._*_ =[ natPairs ]₂ _*_ test-* = refl test-suc : 1+_ =[ nats ] suc test-suc = refl test-⌈_/2⌉ : Nat.⌈_/2⌉ =[ nats ] ⌈_/2⌉ test-⌈_/2⌉ = refl drop-1# : Bin → Bin⁺ drop-1# 0# = [] drop-1# (bs 1#) = bs test-pred : Nat.pred =[ nats⁺ ] (pred ∘ drop-1#) test-pred = refl test-downFrom : map toℕ (downFrom testLimit) ≡ List.downFrom testLimit test-downFrom = refl -}
{ "alphanum_fraction": 0.5031031425, "avg_line_length": 27.2144772118, "ext": "agda", "hexsha": "1808726baadc36c3ab84d5d3b9370d8208f6f27c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Bin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Bin.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Bin.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 4136, "size": 10151 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.EM1HSpace open import homotopy.EilenbergMacLane open import homotopy.EilenbergMacLane1 open import homotopy.EM1HSpace open import homotopy.EM1HSpaceAssoc module homotopy.EilenbergMacLaneFunctor where open EMExplicit module _ {i j} {G : Group i} {H : Group j} (φ : G →ᴳ H) where private module φ = GroupHom φ EM₁-fmap-hom : G →ᴳ Ω^S-group 0 (⊙EM₁ H) EM₁-fmap-hom = group-hom f f-preserves-comp where f : Group.El G → embase' H == embase f g = emloop (φ.f g) f-preserves-comp : ∀ g₁ g₂ → f (Group.comp G g₁ g₂) == f g₁ ∙ f g₂ f-preserves-comp g₁ g₂ = emloop (φ.f (Group.comp G g₁ g₂)) =⟨ ap emloop (φ.pres-comp g₁ g₂) ⟩ emloop (Group.comp H (φ.f g₁) (φ.f g₂)) =⟨ emloop-comp' H (φ.f g₁) (φ.f g₂) ⟩ emloop (φ.f g₁) ∙ emloop (φ.f g₂) =∎ module EM₁FmapRec = EM₁Level₁Rec {G = G} {C = EM₁ H} {{EM₁-level₁ H {⟨-2⟩}}} embase EM₁-fmap-hom abstract EM₁-fmap : EM₁ G → EM₁ H EM₁-fmap = EM₁FmapRec.f EM₁-fmap-embase-β : EM₁-fmap embase ↦ embase EM₁-fmap-embase-β = EM₁FmapRec.embase-β {-# REWRITE EM₁-fmap-embase-β #-} EM₁-fmap-emloop-β : ∀ g → ap EM₁-fmap (emloop g) == emloop (φ.f g) EM₁-fmap-emloop-β = EM₁FmapRec.emloop-β ⊙EM₁-fmap : ⊙EM₁ G ⊙→ ⊙EM₁ H ⊙EM₁-fmap = EM₁-fmap , idp module _ {i j k} {G : Group i} {H : Group j} {K : Group k} (ψ : H →ᴳ K) (φ : G →ᴳ H) where EM₁-fmap-∘ : EM₁-fmap (ψ ∘ᴳ φ) ∼ EM₁-fmap ψ ∘ EM₁-fmap φ EM₁-fmap-∘ = EM₁-set-elim {P = λ x → EM₁-fmap (ψ ∘ᴳ φ) x == EM₁-fmap ψ (EM₁-fmap φ x)} {{λ x → has-level-apply (EM₁-level₁ K) _ _}} idp $ λ g → ↓-='-in' $ ap (EM₁-fmap ψ ∘ EM₁-fmap φ) (emloop g) =⟨ ap-∘ (EM₁-fmap ψ) (EM₁-fmap φ) (emloop g) ⟩ ap (EM₁-fmap ψ) (ap (EM₁-fmap φ) (emloop g)) =⟨ ap (ap (EM₁-fmap ψ)) (EM₁-fmap-emloop-β φ g) ⟩ ap (EM₁-fmap ψ) (emloop (GroupHom.f φ g)) =⟨ EM₁-fmap-emloop-β ψ (GroupHom.f φ g) ⟩ emloop (GroupHom.f (ψ ∘ᴳ φ) g) =⟨ ! (EM₁-fmap-emloop-β (ψ ∘ᴳ φ) g) ⟩ ap (EM₁-fmap (ψ ∘ᴳ φ)) (emloop g) =∎ ⊙EM₁-fmap-∘ : ⊙EM₁-fmap (ψ ∘ᴳ φ) ⊙∼ ⊙EM₁-fmap ψ ⊙∘ ⊙EM₁-fmap φ ⊙EM₁-fmap-∘ = EM₁-fmap-∘ , idp module _ {i} (G : Group i) where EM₁-fmap-idhom : EM₁-fmap (idhom G) ∼ idf (EM₁ G) EM₁-fmap-idhom = EM₁-set-elim {P = λ x → EM₁-fmap (idhom G) x == x} {{λ x → has-level-apply (EM₁-level₁ G) (EM₁-fmap (idhom G) x) x}} idp $ λ g → ↓-='-in' $ ! $ ap (EM₁-fmap (idhom G)) (emloop g) =⟨ EM₁-fmap-emloop-β (idhom G) g ⟩ emloop g =⟨ ! (ap-idf (emloop g)) ⟩ ap (idf (EM₁ G)) (emloop g) =∎ ⊙EM₁-fmap-idhom : ⊙EM₁-fmap (idhom G) ⊙∼ ⊙idf (⊙EM₁ G) ⊙EM₁-fmap-idhom = EM₁-fmap-idhom , idp module _ {i j} (G : Group i) (H : Group j) where EM₁-fmap-cst-hom : EM₁-fmap (cst-hom {G = G} {H = H}) ∼ cst embase EM₁-fmap-cst-hom = EM₁-set-elim {P = λ x → EM₁-fmap cst-hom x == embase} {{λ x → has-level-apply (EM₁-level₁ H) (EM₁-fmap cst-hom x) embase}} idp $ λ g → ↓-app=cst-in' $ ! $ ap (EM₁-fmap cst-hom) (emloop g) =⟨ EM₁-fmap-emloop-β cst-hom g ⟩ emloop (Group.ident H) =⟨ emloop-ident ⟩ idp =∎ ⊙EM₁-fmap-cst-hom : ⊙EM₁-fmap (cst-hom {G = G} {H = H}) ⊙∼ ⊙cst ⊙EM₁-fmap-cst-hom = EM₁-fmap-cst-hom , idp module _ {i j} (G : AbGroup i) (H : AbGroup j) (φ : G →ᴬᴳ H) where ⊙EM-fmap : ∀ n → ⊙EM G n ⊙→ ⊙EM H n ⊙EM-fmap = EMImplicitMap.⊙EM-fmap (⊙EM₁-fmap φ) (EM₁HSpace.H-⊙EM₁ G) (EM₁HSpace.H-⊙EM₁ H) EM-fmap : ∀ n → EM G n → EM H n EM-fmap n = fst (⊙EM-fmap n) module _ {i} (G H : AbGroup i) (φ : AbGroup.grp G →ᴳ AbGroup.grp H) where private module SN = SpectrumNatural {X = ⊙EM₁ (AbGroup.grp G)} {Y = ⊙EM₁ (AbGroup.grp H)} (⊙EM₁-fmap φ) {{EM₁-conn}} {{EM₁-conn}} {{EM₁-level₁ (AbGroup.grp G)}} {{EM₁-level₁ (AbGroup.grp H)}} (EM₁HSpace.H-⊙EM₁ G) (EM₁HSpace.H-⊙EM₁ H) abstract {- checking this definition is very slow for some mysterious reason (unification maybe?) -} ⊙–>-spectrum-natural : ∀ (n : ℕ) → ⊙–> (spectrum H n) ◃⊙∘ ⊙Ω-fmap (⊙EM-fmap G H φ (S n)) ◃⊙idf =⊙∘ ⊙EM-fmap G H φ n ◃⊙∘ ⊙–> (spectrum G n) ◃⊙idf ⊙–>-spectrum-natural n = ⊙–> (spectrum H n) ◃⊙∘ ⊙Ω-fmap (⊙EM-fmap G H φ (S n)) ◃⊙idf =⊙∘₁⟨ 0 & 1 & ap ⊙–> (spectrum-def H n) ⟩ ⊙–> (Spectrum.spectrum H n) ◃⊙∘ ⊙Ω-fmap (⊙EM-fmap G H φ (S n)) ◃⊙idf =⊙∘⟨ SN.⊙–>-spectrum-natural n ⟩ ⊙EM-fmap G H φ n ◃⊙∘ ⊙–> (Spectrum.spectrum G n) ◃⊙idf =⊙∘₁⟨ 1 & 1 & ap ⊙–> (! (spectrum-def G n)) ⟩ ⊙EM-fmap G H φ n ◃⊙∘ ⊙–> (spectrum G n) ◃⊙idf ∎⊙∘ {- derived from `⊙–>-spectrum-natural` instead of from `SN.⊙<–-spectrum-natural n` since that circumvents the slowness issue for this definition. -} ⊙<–-spectrum-natural : ∀ (n : ℕ) → ⊙<– (spectrum H n) ◃⊙∘ ⊙EM-fmap G H φ n ◃⊙idf =⊙∘ ⊙Ω-fmap (⊙EM-fmap G H φ (S n)) ◃⊙∘ ⊙<– (spectrum G n) ◃⊙idf ⊙<–-spectrum-natural n = ⊙<– (spectrum H n) ◃⊙∘ ⊙EM-fmap G H φ n ◃⊙idf =⊙∘⟨ 2 & 0 & !⊙∘ $ ⊙<–-inv-r-=⊙∘ (spectrum G n) ⟩ ⊙<– (spectrum H n) ◃⊙∘ ⊙EM-fmap G H φ n ◃⊙∘ ⊙–> (spectrum G n) ◃⊙∘ ⊙<– (spectrum G n) ◃⊙idf =⊙∘⟨ 1 & 2 & !⊙∘ $ ⊙–>-spectrum-natural n ⟩ ⊙<– (spectrum H n) ◃⊙∘ ⊙–> (spectrum H n) ◃⊙∘ ⊙Ω-fmap (⊙EM-fmap G H φ (S n)) ◃⊙∘ ⊙<– (spectrum G n) ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙<–-inv-l-=⊙∘ (spectrum H n) ⟩ ⊙Ω-fmap (⊙EM-fmap G H φ (S n)) ◃⊙∘ ⊙<– (spectrum G n) ◃⊙idf ∎⊙∘ module _ {i j k} (G : AbGroup i) (H : AbGroup j) (K : AbGroup k) (ψ : H →ᴬᴳ K) (φ : G →ᴬᴳ H) where private module G = AbGroup G module H = AbGroup H module K = AbGroup K ⊙EM-fmap-∘ : ∀ n → ⊙EM-fmap G K (ψ ∘ᴳ φ) n == ⊙EM-fmap H K ψ n ⊙∘ ⊙EM-fmap G H φ n ⊙EM-fmap-∘ O = ⊙Ω-fmap (⊙EM₁-fmap (ψ ∘ᴳ φ)) =⟨ ap ⊙Ω-fmap (⊙λ= (⊙EM₁-fmap-∘ ψ φ)) ⟩ ⊙Ω-fmap (⊙EM₁-fmap ψ ⊙∘ ⊙EM₁-fmap φ) =⟨ ⊙Ω-fmap-∘ (⊙EM₁-fmap ψ) (⊙EM₁-fmap φ) ⟩ ⊙Ω-fmap (⊙EM₁-fmap ψ) ⊙∘ ⊙Ω-fmap (⊙EM₁-fmap φ) =∎ ⊙EM-fmap-∘ (S n) = ⊙Trunc-fmap (⊙Susp^-fmap n (⊙EM₁-fmap (ψ ∘ᴳ φ))) =⟨ ap (⊙Trunc-fmap ∘ ⊙Susp^-fmap n) (⊙λ= (⊙EM₁-fmap-∘ ψ φ)) ⟩ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙EM₁-fmap ψ ⊙∘ ⊙EM₁-fmap φ)) =⟨ ap ⊙Trunc-fmap (⊙Susp^-fmap-∘ n (⊙EM₁-fmap ψ) (⊙EM₁-fmap φ)) ⟩ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙EM₁-fmap ψ) ⊙∘ ⊙Susp^-fmap n (⊙EM₁-fmap φ)) =⟨ ! (⊙λ= (⊙Trunc-fmap-⊙∘ (⊙Susp^-fmap n (⊙EM₁-fmap ψ)) (⊙Susp^-fmap n (⊙EM₁-fmap φ)))) ⟩ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙EM₁-fmap ψ)) ⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙EM₁-fmap φ)) =∎ EM-fmap-∘ : ∀ n → EM-fmap G K (ψ ∘ᴳ φ) n == EM-fmap H K ψ n ∘ EM-fmap G H φ n EM-fmap-∘ n = ap fst (⊙EM-fmap-∘ n) module _ {i} (G : AbGroup i) where private module G = AbGroup G open EM₁HSpace G using (mult; mult-emloop-β) EM₁-neg : EM₁ G.grp → EM₁ G.grp EM₁-neg = EM₁-fmap (inv-hom G) ⊙EM₁-neg : ⊙EM₁ G.grp ⊙→ ⊙EM₁ G.grp ⊙EM₁-neg = ⊙EM₁-fmap (inv-hom G) abstract EM₁-neg-emloop-β : ∀ g → ap EM₁-neg (emloop g) == ! (emloop g) EM₁-neg-emloop-β g = ap EM₁-neg (emloop g) =⟨ EM₁-fmap-emloop-β (inv-hom G) g ⟩ emloop (G.inv g) =⟨ emloop-inv g ⟩ ! (emloop g) =∎ EM₁-neg-! : ∀ (p : embase' G.grp == embase) → ap EM₁-neg p == ! p EM₁-neg-! p = transport (λ q → ap EM₁-neg q == ! q) (<–-inv-r (emloop-equiv G.grp) p) $ EM₁-neg-emloop-β (<– (emloop-equiv G.grp) p) ⊙Ω-fmap-⊙EM₁-neg : ⊙Ω-fmap ⊙EM₁-neg == ⊙Ω-! ⊙Ω-fmap-⊙EM₁-neg = ⊙λ=' EM₁-neg-! $ prop-has-all-paths-↓ {{has-level-apply (has-level-apply (EM₁-level₁ G.grp {n = -2}) _ _) _ _}} EM₁-neg-inv-l : ∀ (x : EM₁ G.grp) → mult (EM₁-neg x) x == embase EM₁-neg-inv-l = EM₁-set-elim {P = λ x → mult (EM₁-neg x) x == embase} {{λ x → has-level-apply (EM₁-level₁ G.grp) _ _}} idp $ λ g → ↓-='-in-=ₛ $ !ₛ $ ap (λ x → mult (EM₁-neg x) x) (emloop g) ◃∙ idp ◃∎ =ₛ⟨ 1 & 1 & expand [] ⟩ ap (λ x → mult (EM₁-neg x) x) (emloop g) ◃∎ =ₛ₁⟨ ! (ap2-diag (λ x y → mult (EM₁-neg x) y) (emloop g)) ⟩ ap2 (λ x y → mult (EM₁-neg x) y) (emloop g) (emloop g) ◃∎ =ₛ⟨ ap2-out (λ x y → mult (EM₁-neg x) y) (emloop g) (emloop g) ⟩ ap (λ x → mult (EM₁-neg x) embase) (emloop g) ◃∙ ap (λ y → y) (emloop g) ◃∎ =ₛ₁⟨ 1 & 1 & ap-idf (emloop g) ⟩ ap (λ x → mult (EM₁-neg x) embase) (emloop g) ◃∙ emloop g ◃∎ =ₛ₁⟨ 0 & 1 & ap-∘ (λ x → mult x embase) EM₁-neg (emloop g) ⟩ ap (λ x → mult x embase) (ap EM₁-neg (emloop g)) ◃∙ emloop g ◃∎ =ₛ₁⟨ 0 & 1 & ap (ap (λ x → mult x embase)) (EM₁-neg-emloop-β g) ⟩ ap (λ x → mult x embase) (! (emloop g)) ◃∙ emloop g ◃∎ =ₛ₁⟨ 0 & 1 & ap-! (λ x → mult x embase) (emloop g) ⟩ ! (ap (λ x → mult x embase) (emloop g)) ◃∙ emloop g ◃∎ =ₛ₁⟨ 0 & 1 & ap ! (mult-emloop-β g embase) ⟩ ! (emloop g) ◃∙ emloop g ◃∎ =ₛ₁⟨ !-inv-l (emloop g) ⟩ idp ◃∎ =ₛ₁⟨ 1 & 0 & ! (ap-cst embase (emloop g)) ⟩ idp ◃∙ ap (cst embase) (emloop g) ◃∎ ∎ₛ EM₁-neg-inv-r : ∀ (x : EM₁ G.grp) → mult x (EM₁-neg x) == embase EM₁-neg-inv-r = EM₁-set-elim {P = λ x → mult x (EM₁-neg x) == embase} {{λ x → has-level-apply (EM₁-level₁ G.grp) _ _}} idp $ λ g → ↓-='-in-=ₛ $ !ₛ $ ap (λ x → mult x (EM₁-neg x)) (emloop g) ◃∙ idp ◃∎ =ₛ⟨ 1 & 1 & expand [] ⟩ ap (λ x → mult x (EM₁-neg x)) (emloop g) ◃∎ =ₛ₁⟨ ! (ap2-diag (λ x y → mult x (EM₁-neg y)) (emloop g)) ⟩ ap2 (λ x y → mult x (EM₁-neg y)) (emloop g) (emloop g) ◃∎ =ₛ⟨ ap2-out (λ x y → mult x (EM₁-neg y)) (emloop g) (emloop g) ⟩ ap (λ x → mult x embase) (emloop g) ◃∙ ap EM₁-neg (emloop g) ◃∎ =ₛ₁⟨ 0 & 1 & mult-emloop-β g embase ⟩ emloop g ◃∙ ap EM₁-neg (emloop g) ◃∎ =ₛ₁⟨ 1 & 1 & EM₁-neg-emloop-β g ⟩ emloop g ◃∙ ! (emloop g) ◃∎ =ₛ₁⟨ !-inv-r (emloop g) ⟩ idp ◃∎ =ₛ₁⟨ 1 & 0 & ! (ap-cst embase (emloop g)) ⟩ idp ◃∙ ap (λ _ → embase) (emloop g) ◃∎ ∎ₛ EM-neg : ∀ (n : ℕ) → EM G n → EM G n EM-neg n = EM-fmap G G (inv-hom G) n ⊙EM-neg : ∀ (n : ℕ) → ⊙EM G n ⊙→ ⊙EM G n ⊙EM-neg n = ⊙EM-fmap G G (inv-hom G) n private -- superseded by Susp-flip-EM-neg EM-neg-2=Trunc-fmap-Susp-flip : EM-neg 2 ∼ Trunc-fmap Susp-flip EM-neg-2=Trunc-fmap-Susp-flip = Trunc-elim {{λ t → =-preserves-level (EM-level G 2)}} $ Susp-elim {P = λ s → EM-neg 2 [ s ]₂ == Trunc-fmap Susp-flip [ s ]₂} (ap [_]₂ (merid embase)) (ap [_]₂ (! (merid embase))) $ λ x → ↓-='-in-=ₛ $ ap [_]₂ (merid embase) ◃∙ ap (Trunc-fmap Susp-flip ∘ [_]₂) (merid x) ◃∎ =ₛ₁⟨ 1 & 1 & ap-∘ [_]₂ Susp-flip (merid x) ⟩ ap [_]₂ (merid embase) ◃∙ ap [_]₂ (ap Susp-flip (merid x)) ◃∎ =ₛ₁⟨ 1 & 1 & ap (ap [_]₂) (SuspFlip.merid-β x) ⟩ ap [_]₂ (merid embase) ◃∙ ap [_]₂ (! (merid x)) ◃∎ =ₛ₁⟨ 0 & 1 & ap (ap [_]₂) (! (!-! (merid embase))) ⟩ ap [_]₂ (! (! (merid embase))) ◃∙ ap [_]₂ (! (merid x)) ◃∎ =ₛ⟨ ap-seq-=ₛ [_]₂ (∙-!-seq (merid x ◃∙ ! (merid embase) ◃∎)) ⟩ ap [_]₂ (! (η x)) ◃∎ =ₛ₁⟨ ap-! [_]₂ (η x) ⟩ ! (ap [_]₂ (η x)) ◃∎ =ₛ₁⟨ cancels-inverse (ap [_]₂ (η x)) (ap [_]₂ (η (EM₁-neg x))) $ ap [_]₂ (η x) ∙ ap [_]₂ (η (EM₁-neg x)) =⟨ ∙-ap [_]₂ (η x) (η (EM₁-neg x)) ⟩ ap [_]₂ (η x ∙ η (EM₁-neg x)) =⟨ ap (<– (=ₜ-equiv [ north ]₂ [ north ]₂)) $ ! $ comp x (EM₁-neg x) ⟩ ap [_]₂ (η (mult x (EM₁-neg x))) =⟨ ap (ap [_]₂ ∘ η) (EM₁-neg-inv-r x) ⟩ ap [_]₂ (η embase) =⟨ ap (ap [_]₂) (!-inv-r (merid embase)) ⟩ idp =∎ ⟩ ap [_]₂ (η (EM₁-neg x)) ◃∎ =ₛ⟨ ap-seq-∙ [_]₂ (merid (EM₁-neg x) ◃∙ ! (merid embase) ◃∎) ⟩ ap [_]₂ (merid (EM₁-neg x)) ◃∙ ap [_]₂ (! (merid embase)) ◃∎ =ₛ₁⟨ 0 & 1 & ap (ap [_]₂) (! (SuspFmap.merid-β EM₁-neg x)) ⟩ ap [_]₂ (ap (Susp-fmap EM₁-neg) (merid x)) ◃∙ ap [_]₂ (! (merid embase)) ◃∎ =ₛ₁⟨ 0 & 1 & ∘-ap [_]₂ (Susp-fmap EM₁-neg) (merid x) ⟩ ap (EM-neg 2 ∘ [_]₂) (merid x) ◃∙ ap [_]₂ (! (merid embase)) ◃∎ ∎ₛ where open EM₁HSpaceAssoc G using (η; H-⊙EM₁; H-⊙EM₁-assoc; H-EM₁-assoc-coh-unit-l-r-pentagon) open import homotopy.Pi2HSuspCompose H-⊙EM₁ H-⊙EM₁-assoc H-EM₁-assoc-coh-unit-l-r-pentagon using (comp) cancels-inverse : ∀ {i} {A : Type i} {x y : A} (p : x == y) (q : y == x) → p ∙ q == idp → ! p == q cancels-inverse p@idp [email protected] idp = idp ⊙EM-neg-2=⊙Trunc-fmap-⊙Susp-flip : ⊙EM-neg 2 == ⊙Trunc-fmap (⊙Susp-flip (⊙EM₁ G.grp)) ⊙EM-neg-2=⊙Trunc-fmap-⊙Susp-flip = ⊙λ=' {X = ⊙EM G 2} {Y = ⊙EM G 2} EM-neg-2=Trunc-fmap-Susp-flip $ ↓-idf=cst-in $ =ₛ-out $ !ₛ $ ap [_]₂ (merid embase) ◃∙ ap [_]₂ (! (merid embase)) ◃∎ =ₛ⟨ ap-seq-=ₛ [_]₂ (seq-!-inv-r (merid (embase' G.grp) ◃∎)) ⟩ [] ∎ₛ ⊙to-alt-EM : ∀ n → ⊙EM G (S (S n)) ⊙≃ ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ n (⊙EM G 2)) ⊙to-alt-EM n = (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ⊙⁻¹ ⊙∘e ⊙coe-equiv (ap (⊙Trunc (⟨ n ⟩₋₂ +2+ 2)) (! (⊙Susp^-+ n 1))) ⊙∘e ⊙coe-equiv (ap (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n)) ⊙∘e ⊙coe-equiv (ap (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂)) ⊙–>-⊙to-alt-EM : ∀ n → ⊙–> (⊙to-alt-EM n) ◃⊙idf =⊙∘ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap {n = ⟨ n ⟩₋₂ +2+ 2} (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙transport (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙idf ⊙–>-⊙to-alt-EM n = ⊙–> (⊙to-alt-EM n) ◃⊙idf =⊙∘⟨ =⊙∘-in idp ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙coe (ap (⊙Trunc (⟨ n ⟩₋₂ +2+ 2)) (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙coe (ap (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n)) ◃⊙∘ ⊙coe (ap (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂)) ◃⊙idf =⊙∘₁⟨ 1 & 1 & ! (⊙transport-⊙coe (⊙Trunc (⟨ n ⟩₋₂ +2+ 2)) (! (⊙Susp^-+ n 1))) ∙ ⊙transport-⊙Trunc (! (⊙Susp^-+ n 1)) ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap {n = ⟨ n ⟩₋₂ +2+ 2} (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙coe (ap (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n)) ◃⊙∘ ⊙coe (ap (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂)) ◃⊙idf =⊙∘₁⟨ 2 & 1 & ! $ ⊙transport-⊙coe (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap {n = ⟨ n ⟩₋₂ +2+ 2} (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙transport (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ◃⊙∘ ⊙coe (ap (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂)) ◃⊙idf =⊙∘₁⟨ 3 & 1 & ! $ ⊙transport-⊙coe (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap {n = ⟨ n ⟩₋₂ +2+ 2} (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙transport (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙idf ∎⊙∘ ⊙EM-neg=⊙Trunc-fmap-⊙Susp-flip : ∀ (n : ℕ) → ⊙EM-neg (S (S n)) == ⊙Trunc-fmap (⊙Susp-flip (⊙Susp^ n (⊙EM₁ G.grp))) ⊙EM-neg=⊙Trunc-fmap-⊙Susp-flip n = equiv-is-inj (post⊙∘-is-equiv (⊙to-alt-EM n)) (⊙EM-neg (S (S n))) (⊙Trunc-fmap (⊙Susp-flip (⊙Susp^ n (⊙EM₁ G.grp)))) $ =⊙∘-out {fs = ⊙–> (⊙to-alt-EM n) ◃⊙∘ ⊙EM-neg (S (S n)) ◃⊙idf} {gs = ⊙–> (⊙to-alt-EM n) ◃⊙∘ ⊙Trunc-fmap (⊙Susp-flip (⊙Susp^ n (⊙EM₁ G.grp))) ◃⊙idf} $ ⊙–> (⊙to-alt-EM n) ◃⊙∘ ⊙EM-neg (S (S n)) ◃⊙idf =⊙∘⟨ 0 & 1 & ⊙–>-⊙to-alt-EM n ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap {n = ⟨ n ⟩₋₂ +2+ 2} (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙transport (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙∘ ⊙EM-neg (S (S n)) ◃⊙idf =⊙∘⟨ 3 & 2 & !⊙∘ $ ⊙transport-natural-=⊙∘ (+2+-comm 2 ⟨ n ⟩₋₂) (λ k → ⊙Trunc-fmap {n = k} (⊙Susp^-fmap (S n) ⊙EM₁-neg)) ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap {n = ⟨ n ⟩₋₂ +2+ 2} (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙transport (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap (S n) ⊙EM₁-neg) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙idf =⊙∘⟨ 2 & 2 & !⊙∘ $ ⊙transport-natural-=⊙∘ (+-comm 1 n) (λ l → ⊙Trunc-fmap (⊙Susp^-fmap l ⊙EM₁-neg)) ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap {n = ⟨ n ⟩₋₂ +2+ 2} (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap (n + 1) ⊙EM₁-neg) ◃⊙∘ ⊙transport (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙idf =⊙∘⟨ 1 & 2 & ⊙Trunc-fmap-seq-=⊙∘ $ =⊙∘-in {fs = ⊙coe (! (⊙Susp^-+ n 1)) ◃⊙∘ ⊙Susp^-fmap (n + 1) ⊙EM₁-neg ◃⊙idf} {gs = ⊙Susp^-fmap n (⊙Susp-fmap EM₁-neg) ◃⊙∘ ⊙coe (! (⊙Susp^-+ n 1)) ◃⊙idf} $ ! $ ⊙Susp^-+-natural' n 1 ⊙EM₁-neg ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙Susp-fmap EM₁-neg)) ◃⊙∘ ⊙Trunc-fmap {n = ⟨ n ⟩₋₂ +2+ 2} (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙transport (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙idf =⊙∘⟨ 0 & 2 & ⊙Susp^-⊙Trunc-equiv-natural' (⊙Susp-fmap EM₁-neg) 2 n ⟩ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙EM-neg 2)) ◃⊙∘ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap {n = ⟨ n ⟩₋₂ +2+ 2} (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙transport (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙idf =⊙∘₁⟨ 0 & 1 & ap (⊙Trunc-fmap ∘ ⊙Susp^-fmap n) $ ⊙EM-neg-2=⊙Trunc-fmap-⊙Susp-flip ⟩ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙Trunc-fmap (⊙Susp-flip (⊙EM₁ G.grp)))) ◃⊙∘ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap {n = ⟨ n ⟩₋₂ +2+ 2} (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙transport (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙idf =⊙∘⟨ 0 & 2 & !⊙∘ $ ⊙Susp^-⊙Trunc-equiv-natural' (⊙Susp-flip _) 2 n ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙Susp-flip (⊙EM₁ G.grp))) ◃⊙∘ ⊙Trunc-fmap {n = ⟨ n ⟩₋₂ +2+ 2} (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙transport (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙idf =⊙∘₁⟨ 3 & 1 & p ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙Susp-flip (⊙EM₁ G.grp))) ◃⊙∘ ⊙Trunc-fmap {n = ⟨ n ⟩₋₂ +2+ 2} (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙Trunc-fmap (⊙coe (ap (λ l → ⊙Susp^ l (⊙EM₁ G.grp)) (+-comm 1 n))) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙idf =⊙∘⟨ 1 & 3 & ⊙Trunc-fmap-seq-=⊙∘ $ ⊙Susp^-fmap n (⊙Susp-flip (⊙EM₁ G.grp)) ◃⊙∘ ⊙coe (! (⊙Susp^-+ n 1)) ◃⊙∘ ⊙coe (ap (λ l → ⊙Susp^ l (⊙EM₁ G.grp)) (+-comm 1 n)) ◃⊙idf =⊙∘⟨ 3 & 0 & ⊙contract ⟩ ⊙Susp^-fmap n (⊙Susp-flip (⊙EM₁ G.grp)) ◃⊙∘ ⊙coe (! (⊙Susp^-+ n 1)) ◃⊙∘ ⊙coe (ap (λ l → ⊙Susp^ l (⊙EM₁ G.grp)) (+-comm 1 n)) ◃⊙∘ ⊙coe (⊙Susp^-+ 1 n {⊙EM₁ G.grp}) ◃⊙idf =⊙∘⟨ 1 & 3 & !⊙∘ $ ⊙coe-seq-∙ (⊙Susp^-comm-seq 1 n) ⟩ ⊙Susp^-fmap n (⊙Susp-flip (⊙EM₁ G.grp)) ◃⊙∘ ⊙coe (⊙Susp^-comm 1 n) ◃⊙idf =⊙∘⟨ ⊙Susp^-comm-flip 0 n (⊙EM₁ G.grp) ⟩ ⊙coe (⊙Susp^-comm 1 n) ◃⊙∘ ⊙Susp-flip (⊙Susp^ 0 (⊙Susp^ n (⊙EM₁ G.grp))) ◃⊙idf =⊙∘⟨ 0 & 1 & ⊙coe-seq-∙ (⊙Susp^-comm-seq 1 n) ⟩ ⊙coe (! (⊙Susp^-+ n 1)) ◃⊙∘ ⊙coe (ap (λ l → ⊙Susp^ l (⊙EM₁ G.grp)) (+-comm 1 n)) ◃⊙∘ ⊙coe (⊙Susp^-+ 1 n {⊙EM₁ G.grp}) ◃⊙∘ ⊙Susp-flip (⊙Susp^ 0 (⊙Susp^ n (⊙EM₁ G.grp))) ◃⊙idf =⊙∘⟨ 2 & 1 & ⊙expand ⊙idf-seq ⟩ ⊙coe (! (⊙Susp^-+ n 1)) ◃⊙∘ ⊙coe (ap (λ l → ⊙Susp^ l (⊙EM₁ G.grp)) (+-comm 1 n)) ◃⊙∘ ⊙Susp-flip (⊙Susp^ 0 (⊙Susp^ n (⊙EM₁ G.grp))) ◃⊙idf ∎⊙∘ ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙Trunc-fmap (⊙coe (ap (λ l → ⊙Susp^ l (⊙EM₁ G.grp)) (+-comm 1 n))) ◃⊙∘ ⊙Trunc-fmap (⊙Susp-flip (⊙Susp^ n (⊙EM₁ G.grp))) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙idf =⊙∘⟨ 3 & 2 & ⊙transport-natural-=⊙∘ (+2+-comm 2 ⟨ n ⟩₋₂) (λ k → ⊙Trunc-fmap {n = k} (⊙Susp-flip (⊙Susp^ n (⊙EM₁ G.grp)))) ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙Trunc-fmap (⊙coe (ap (λ l → ⊙Susp^ l (⊙EM₁ G.grp)) (+-comm 1 n))) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙∘ ⊙Trunc-fmap (⊙Susp-flip (⊙Susp^ n (⊙EM₁ G.grp))) ◃⊙idf =⊙∘₁⟨ 2 & 1 & ! p ⟩ ⊙<– (⊙Susp^-⊙Trunc-equiv (⊙Susp (EM₁ G.grp)) 2 n) ◃⊙∘ ⊙Trunc-fmap (⊙coe (! (⊙Susp^-+ n 1))) ◃⊙∘ ⊙transport (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ◃⊙∘ ⊙transport (λ k → ⊙Trunc k (⊙Susp^ (S n) (⊙EM₁ G.grp))) (+2+-comm 2 ⟨ n ⟩₋₂) ◃⊙∘ ⊙Trunc-fmap (⊙Susp-flip (⊙Susp^ n (⊙EM₁ G.grp))) ◃⊙idf =⊙∘⟨ 0 & 4 & !⊙∘ $ ⊙–>-⊙to-alt-EM n ⟩ ⊙–> (⊙to-alt-EM n) ◃⊙∘ ⊙Trunc-fmap (⊙Susp-flip (⊙Susp^ n (⊙EM₁ G.grp))) ◃⊙idf ∎⊙∘ where p : ⊙transport (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) == ⊙Trunc-fmap (⊙coe (ap (λ l → ⊙Susp^ l (⊙EM₁ G.grp)) (+-comm 1 n))) p = ⊙transport-⊙coe (λ l → ⊙Trunc (⟨ n ⟩₋₂ +2+ 2) (⊙Susp^ l (⊙EM₁ G.grp))) (+-comm 1 n) ∙ ap ⊙coe (ap-∘ (⊙Trunc (⟨ n ⟩₋₂ +2+ 2)) (λ l → ⊙Susp^ l (⊙EM₁ G.grp)) (+-comm 1 n)) ∙ ! (⊙transport-⊙coe (⊙Trunc (⟨ n ⟩₋₂ +2+ 2)) (ap (λ l → ⊙Susp^ l (⊙EM₁ G.grp)) (+-comm 1 n))) ∙ ⊙transport-⊙Trunc (ap (λ l → ⊙Susp^ l (⊙EM₁ G.grp)) (+-comm 1 n)) module _ {i} (G : AbGroup i) where private module G = AbGroup G ⊙EM-fmap-idhom : ∀ (n : ℕ) → ⊙EM-fmap G G (idhom G.grp) n == ⊙idf (⊙EM G n) ⊙EM-fmap-idhom O = ⊙Ω-fmap (⊙EM₁-fmap (idhom G.grp)) =⟨ ap ⊙Ω-fmap (⊙λ= (⊙EM₁-fmap-idhom G.grp)) ⟩ ⊙Ω-fmap (⊙idf (⊙EM₁ G.grp)) =⟨ ⊙Ω-fmap-idf ⟩ ⊙idf _ =∎ ⊙EM-fmap-idhom (S n) = ⊙Trunc-fmap (⊙Susp^-fmap n (⊙EM₁-fmap (idhom G.grp))) =⟨ ap (⊙Trunc-fmap ∘ ⊙Susp^-fmap n) (⊙λ= (⊙EM₁-fmap-idhom G.grp)) ⟩ ⊙Trunc-fmap (⊙Susp^-fmap n (⊙idf (⊙EM₁ G.grp))) =⟨ ap ⊙Trunc-fmap (=⊙∘-out (⊙Susp^-fmap-idf n (⊙EM₁ G.grp))) ⟩ ⊙Trunc-fmap (⊙idf (⊙Susp^ n (⊙EM₁ G.grp))) =⟨ ⊙λ= ⊙Trunc-fmap-⊙idf ⟩ ⊙idf _ =∎ EM-fmap-idhom : ∀ (n : ℕ) → EM-fmap G G (idhom G.grp) n == idf (EM G n) EM-fmap-idhom n = ap fst (⊙EM-fmap-idhom n) module _ {i} {j} (G : AbGroup i) (H : AbGroup j) where ⊙EM-fmap-cst-hom : ∀ (n : ℕ) → ⊙EM-fmap G H cst-hom n == ⊙cst ⊙EM-fmap-cst-hom O = ⊙Ω-fmap (⊙EM₁-fmap cst-hom) =⟨ ap ⊙Ω-fmap (⊙λ= (⊙EM₁-fmap-cst-hom (AbGroup.grp G) (AbGroup.grp H))) ⟩ ⊙Ω-fmap ⊙cst =⟨ ⊙Ω-fmap-cst ⟩ ⊙cst =∎ ⊙EM-fmap-cst-hom (S n) = ⊙Trunc-fmap (⊙Susp^-fmap n (⊙EM₁-fmap cst-hom)) =⟨ ap (⊙Trunc-fmap ∘ ⊙Susp^-fmap n) (⊙λ= (⊙EM₁-fmap-cst-hom (AbGroup.grp G) (AbGroup.grp H))) ⟩ ⊙Trunc-fmap (⊙Susp^-fmap n ⊙cst) =⟨ ap ⊙Trunc-fmap (⊙Susp^-fmap-cst n) ⟩ ⊙Trunc-fmap ⊙cst =⟨ ⊙λ= ⊙Trunc-fmap-cst ⟩ ⊙cst =∎ EM-fmap-cst-hom : ∀ (n : ℕ) → EM-fmap G H cst-hom n == cst (pt (⊙EM H n)) EM-fmap-cst-hom n = ap fst (⊙EM-fmap-cst-hom n) transport-EM : ∀ {i} {G H : AbGroup i} (p : G == H) (n : ℕ) → transport (λ K → EM K n) p == EM-fmap G H (coeᴬᴳ p) n transport-EM {G = G} idp n = ! $ EM-fmap G G (coeᴳ idp) n =⟨ ap (λ φ → EM-fmap G G φ n) (coeᴳ-idp (AbGroup.grp G)) ⟩ EM-fmap G G (idhom (AbGroup.grp G)) n =⟨ EM-fmap-idhom G n ⟩ idf (EM G n) =∎ transport-EM-uaᴬᴳ : ∀ {i} (G H : AbGroup i) (iso : G ≃ᴬᴳ H) (n : ℕ) → transport (λ K → EM K n) (uaᴬᴳ G H iso) == EM-fmap G H (–>ᴳ iso) n transport-EM-uaᴬᴳ G H iso n = transport (λ K → EM K n) (uaᴬᴳ G H iso) =⟨ transport-EM (uaᴬᴳ G H iso) n ⟩ EM-fmap G H (coeᴬᴳ (uaᴬᴳ G H iso)) n =⟨ ap (λ p → EM-fmap G H p n) (coeᴬᴳ-β G H iso) ⟩ EM-fmap G H (–>ᴳ iso) n =∎ ⊙transport-⊙EM : ∀ {i} {G H : AbGroup i} (p : G == H) (n : ℕ) → ⊙transport (λ K → ⊙EM K n) p == ⊙EM-fmap G H (coeᴬᴳ p) n ⊙transport-⊙EM {G = G} p@idp n = ! $ ⊙EM-fmap G G (coeᴳ idp) n =⟨ ap (λ φ → ⊙EM-fmap G G φ n) (coeᴳ-idp (AbGroup.grp G)) ⟩ ⊙EM-fmap G G (idhom (AbGroup.grp G)) n =⟨ ⊙EM-fmap-idhom G n ⟩ ⊙idf (⊙EM G n) =∎ ⊙transport-⊙EM-uaᴬᴳ : ∀ {i} (G H : AbGroup i) (iso : G ≃ᴬᴳ H) (n : ℕ) → ⊙transport (λ K → ⊙EM K n) (uaᴬᴳ G H iso) == ⊙EM-fmap G H (–>ᴳ iso) n ⊙transport-⊙EM-uaᴬᴳ G H iso n = ⊙transport (λ K → ⊙EM K n) (uaᴬᴳ G H iso) =⟨ ⊙transport-⊙EM (uaᴬᴳ G H iso) n ⟩ ⊙EM-fmap G H (coeᴬᴳ (uaᴬᴳ G H iso)) n =⟨ ap (λ p → ⊙EM-fmap G H p n) (coeᴬᴳ-β G H iso) ⟩ ⊙EM-fmap G H (–>ᴳ iso) n =∎
{ "alphanum_fraction": 0.4600084153, "avg_line_length": 41.963081862, "ext": "agda", "hexsha": "79b2bece79a1091d7b4662d43b7adf4bffd1adac", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/EilenbergMacLaneFunctor.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/EilenbergMacLaneFunctor.agda", "max_line_length": 111, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/EilenbergMacLaneFunctor.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 14647, "size": 26143 }
{-# OPTIONS --guardedness #-} module Issue728 where open import Common.MAlonzo using () renaming (main to mainDefault) main = mainDefault
{ "alphanum_fraction": 0.7446808511, "avg_line_length": 17.625, "ext": "agda", "hexsha": "292c24a52c189729d15dfa928064f311ca54fd21", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Issue728.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Issue728.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Issue728.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 32, "size": 141 }
module Pi-.Everything where open import Pi-.Syntax -- Syntax of Pi- open import Pi-.Opsem -- Abstract machine semantics of Pi- open import Pi-.AuxLemmas -- Some auxiliary lemmas about opsem for forward/backward deterministic proof open import Pi-.NoRepeat -- Forward/backward deterministic lemmas and Non-repeating lemma open import Pi-.Invariants -- Some invariants about abstract machine semantics open import Pi-.Eval -- Evaluator for Pi- open import Pi-.Interp -- Big-step intepreter for Pi- open import Pi-.Properties -- Properties of Pi- open import Pi-.Examples -- Examples open import Pi-.Category -- Pi- Category
{ "alphanum_fraction": 0.7370820669, "avg_line_length": 54.8333333333, "ext": "agda", "hexsha": "1a64dc48bac7f97aa4dc617eca9da5532fd26ebb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "Pi-/Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "Pi-/Everything.agda", "max_line_length": 105, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "Pi-/Everything.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 151, "size": 658 }
module Data.List.Exts where open import Class.Equality open import Class.Monad open import Class.Functor open import Data.Bool hiding (_≟_) open import Data.List open import Data.Maybe using (Maybe; just; nothing) open import Data.Maybe.Instance open import Data.Nat using (ℕ; zero; suc; _⊔_) open import Data.Product open import Relation.Nullary open import Relation.Unary private variable A : Set lookupMaybe : ∀ {a} {A : Set a} -> ℕ -> List A -> Maybe A lookupMaybe n [] = nothing lookupMaybe zero (x ∷ l) = just x lookupMaybe (suc n) (x ∷ l) = lookupMaybe n l findIndexList : {A : Set} {P : A -> Set} -> Decidable P -> List A -> Maybe ℕ findIndexList P? [] = nothing findIndexList P? (x ∷ v) with P? x ... | yes p = just 0 ... | no ¬p = suc <$> findIndexList P? v dropHeadIfAny : ∀ {a} {A : Set a} -> List A -> List A dropHeadIfAny [] = [] dropHeadIfAny (x ∷ l) = l -- inverse to intercalate {-# TERMINATING #-} splitMulti : ∀ {A : Set} {{_ : Eq A}} -> A -> List A -> List (List A) splitMulti a [] = [] splitMulti a l@(x ∷ xs) with break (a ≟_) l ... | fst , snd = fst ∷ splitMulti a (dropHeadIfAny snd) takeEven : ∀ {a} {A : Set a} -> List A -> List A takeEven [] = [] takeEven (x ∷ []) = [] takeEven (x ∷ x₁ ∷ l) = x₁ ∷ takeEven l maximum : List ℕ → ℕ maximum [] = 0 maximum (x ∷ l) = x ⊔ maximum l mapWithIndex : ∀ {a b} {A : Set a} {B : Set b} → (ℕ → A → B) → List A → List B mapWithIndex f l = zipWith f (upTo (length l)) l isInit : ⦃ EqB A ⦄ → List A → List A → Bool isInit [] l' = true isInit (x ∷ l) [] = false isInit (x ∷ l) (x₁ ∷ l') = x ≣ x₁ ∧ isInit l l'
{ "alphanum_fraction": 0.6143667297, "avg_line_length": 27.8421052632, "ext": "agda", "hexsha": "c0502fd8a0c8a3d8f3149dffef96221c0d90fabc", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z", "max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "WhatisRT/meta-cedille", "max_forks_repo_path": "stdlib-exts/Data/List/Exts.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "WhatisRT/meta-cedille", "max_issues_repo_path": "stdlib-exts/Data/List/Exts.agda", "max_line_length": 78, "max_stars_count": 35, "max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "WhatisRT/meta-cedille", "max_stars_repo_path": "stdlib-exts/Data/List/Exts.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z", "num_tokens": 568, "size": 1587 }
{-# OPTIONS --rewriting --prop #-} open import common open import syntx open import derivability open import structuralrules open import typingrules open import typetheories module _ where {- Π-Types + a dependent type -} module _ where TypingRuleΠ : TypingRule (TTDer ◇) ([] , (0 , Ty) , (1 , Ty)) Ty TypingRuleΠ = Ty ([] , Ty [] , Ty ([] , (sym 0 [] / apr T 0 []))) ΠUEl-TT1 : TypeTheory ΠUEl-TT1 = ◇ , TypingRuleΠ TypingRuleλ : TypingRule (TTDer ΠUEl-TT1) ([] , (0 , Ty) , (1 , Ty) , (1 , Tm)) Tm TypingRuleλ = Tm ([] , Ty [] , Ty ([] , (sym 0 [] / apr T 0 [])) , Tm ([] , (sym 1 [] / apr T 1 [])) (sym 1 ([] , sym 0 []) / apr T 1 ([] ,0Tm apr T 0 []))) (sym 3 ([] , sym 2 [] , sym 1 ([] , var last)) / apr T 3 ([] ,0Ty apr T 2 [] ,1Ty apr T 1 ([] ,0Tm apr S (var 0) ([] , apr T 2 [])))) ΠUEl-TT2 : TypeTheory ΠUEl-TT2 = ΠUEl-TT1 , TypingRuleλ TypingRuleapp : TypingRule (TTDer ΠUEl-TT2) ([] , (0 , Ty) , (1 , Ty) , (0 , Tm) , (0 , Tm)) Tm TypingRuleapp = Tm ([] , Ty [] , Ty ([] , (sym 0 [] / apr T 0 [])) , Tm [] (sym 3 ([] , sym 1 [] , sym 0 ([] , var last)) / apr T 3 ([] ,0Ty apr T 1 [] ,1Ty apr T 0 ([] ,0Tm apr S (var 0) ([] , apr T 1 [])))) , Tm [] (sym 2 [] / apr T 2 [])) (sym 2 ([] , sym 0 []) / apr T 2 ([] ,0Tm apr T 0 [])) ΠUEl-TT3 : TypeTheory ΠUEl-TT3 = ΠUEl-TT2 , TypingRuleapp TypingRuleBeta : EqualityRule (TTDer ΠUEl-TT3) ([] , (0 , Ty) , (1 , Ty) , (1 , Tm) , (0 , Tm)) Tm TypingRuleBeta = Tm= ([] , Ty [] , Ty ([] , sym 0 [] / apr T 0 []) , Tm ([] , sym 1 [] / apr T 1 []) (sym 1 ([] , sym 0 []) / apr T 1 ([] ,0Tm apr T 0 [])) , Tm [] (sym 2 [] / apr T 2 [])) (sym 2 ([] , sym 0 []) <: sym 4 ([] , sym 3 [] , sym 2 ([] , var last) , sym 5 ([] , sym 3 [] , sym 2 ([] , var last) , sym 1 ([] , var last)) , sym 0 []) / apr T 4 ([] ,0Ty apr T 3 [] ,1Ty apr T 2 ([] ,0Tm apr S (var 0) ([] ,0Ty apr T 3 [])) ,0Tm apr T 5 ([] ,0Ty apr T 3 [] ,1Ty apr T 2 ([] ,0Tm apr S (var zero) ([] ,0Ty apr T 3 [])) ,1Tm apr T 1 ([] ,0Tm apr S (var zero) ([] ,0Ty apr T 3 []))) {-{{((tt , (tt , tt)) , ((tt , refl) , tt)) , ((tt , refl) , (refl , tt)) , tt}}-} ,0Tm apr T 0 []) {-{{((((tt , (tt , tt)) , ((tt , refl) , tt)) , (tt , (refl , tt))) , (tt , (refl , tt))) , tt}}-} // sym 1 ([] , sym 0 []) / apr T 1 ([] ,0Tm apr T 0 [])) ΠUEl-TT4 : TypeTheory ΠUEl-TT4 = ΠUEl-TT3 ,= TypingRuleBeta TypingRuleEta : EqualityRule (TTDer ΠUEl-TT4) ([] , (0 , Ty) , (1 , Ty) , (0 , Tm)) Tm TypingRuleEta = Tm= ([] , Ty [] , Ty ([] , sym 0 [] / apr T 0 []) , Tm [] (sym 4 ([] , sym 1 [] , sym 0 ([] , var last)) / apr T 4 ([] ,0Ty apr T 1 [] ,1Ty apr T 0 ([] ,0Tm apr S (var 0) ([] ,0Ty apr T 1 []))))) (sym 5 ([] , sym 2 [] , sym 1 ([] , var last)) <: sym 0 [] / apr T 0 [] // sym 4 ([] , sym 2 [] , sym 1 ([] , var last) , sym 3 ([] , sym 2 [] , sym 1 ([] , var last) , sym 0 [] , var last)) / apr T 4 ([] ,0Ty apr T 2 [] ,1Ty apr T 1 ([] ,0Tm apr S (var 0) ([] ,0Ty apr T 2 [])) ,1Tm apr T 3 ([] ,0Ty apr T 2 [] ,1Ty apr T 1 ([] ,0Tm apr S (var 0) ([] ,0Ty apr T 2 [])) ,0Tm apr T 0 [] ,0Tm apr S (var 0) ([] ,0Ty apr T 2 [])))) ΠUEl-TT5 : TypeTheory ΠUEl-TT5 = ΠUEl-TT4 ,= TypingRuleEta TypingRuleU : TypingRule (TTDer ΠUEl-TT5) [] Ty TypingRuleU = Ty [] ΠUEl-TT6 : TypeTheory ΠUEl-TT6 = ΠUEl-TT5 , TypingRuleU TypingRuleEl : TypingRule (TTDer ΠUEl-TT6) ([] , (0 , Tm)) Ty TypingRuleEl = Ty ([] , Tm [] (sym 0 [] / apr T 0 [])) ΠUEl-TT : TypeTheory ΠUEl-TT = ΠUEl-TT6 , TypingRuleEl -- {- Natural numbers -} -- module _ where -- TypingRuleℕ : TypingRule (TTDer ◇) [] Ty -- TypingRuleℕ = Ty [] -- ℕ-TT0 : TypeTheory -- ℕ-TT0 = ◇ , TypingRuleℕ -- TypingRule0 : TypingRule (TTDer ℕ-TT0) [] Tm -- TypingRule0 = Tm [] (sym 0 [] / apr T 0 []) -- ℕ-TT1 : TypeTheory -- ℕ-TT1 = ℕ-TT0 , TypingRule0 -- TypingRuleS : TypingRule (TTDer ℕ-TT1) ([] , (0 , Tm)) Tm -- TypingRuleS = Tm ([] , Tm [] (sym 1 [] / apr T 1 [])) -- (sym 2 [] / apr T 2 []) -- ℕ-TT2 : TypeTheory -- ℕ-TT2 = ℕ-TT1 , TypingRuleS -- TypingRuleℕ-elim : TypingRule (TTDer ℕ-TT2) ([] , (1 , Ty) , (0 , Tm) , (2 , Tm) , (0 , Tm)) Tm -- TypingRuleℕ-elim = Tm ([] , Ty ([] , sym 2 [] / apr T 2 []) -- , Tm [] (sym 0 ([] , sym 2 []) / apr T 0 ([] ,0Tm apr T 2 [])) -- , Tm ([] , sym 4 [] / apr T 4 [] -- , sym 2 ([] , sym 0 []) / apr T 2 ([] ,0Tm apr T 0 [])) -- (sym 3 ([] , sym 4 ([] , sym 1 [])) / -- apr T 3 ([] ,0Tm apr T 4 ([] ,0Tm apr T 1 []))) -- , Tm [] (sym 5 [] / apr T 5 [])) -- (sym 3 ([] , (sym 0 [])) / apr T 3 ([] ,0Tm apr T 0 [])) -- ℕ-TT3 : TypeTheory -- ℕ-TT3 = ℕ-TT2 , TypingRuleℕ-elim -- TypingRuleℕ0-β : EqualityRule (TTDer ℕ-TT3) ([] , (1 , Ty) , (0 , Tm) , (2 , Tm)) Tm -- TypingRuleℕ0-β = Tm= ([] , Ty ([] , (sym 3 [] / apr T 3 [])) -- , Tm [] (sym 0 ([] , sym 3 []) / apr T 0 ([] ,0Tm apr T 3 [])) -- , Tm ([] , (sym 5 [] / apr T 5 []) -- , (sym 2 ([] , sym 0 []) / apr T 2 ([] ,0Tm apr T 0 []))) -- (sym 3 ([] , sym 5 ([] , sym 1 [])) / apr T 3 ([] ,0Tm apr T 5 ([] ,0Tm apr T 1 [])))) -- (sym 2 ([] , sym 5 []) <: sym 3 ([] , sym 2 ([] , var last) , sym 1 [] , sym 0 ([] , var (prev last) , var last) , sym 5 []) -- / apr T 3 ([] ,1Ty apr T 2 ([] ,0Tm apr S (var 0) ([] ,0Ty apr T 6 [])) -- ,0Tm apr T 1 [] -- ,2Tm apr T 0 ([] ,0Tm apr S (var 1) ([] ,0Ty apr T 6 []) -- ,0Tm apr S (var 0) ([] ,0Ty apr T 2 ([] ,0Tm apr S (var 1) ([] ,0Ty apr T 6 [])))) -- ,0Tm apr T 5 []) -- // sym 1 [] -- / apr T 1 []) -- ℕ-TT4 : TypeTheory -- ℕ-TT4 = ℕ-TT3 ,= TypingRuleℕ0-β -- TypingRuleℕS-β : EqualityRule (TTDer ℕ-TT4) ([] , (1 , Ty) , (0 , Tm) , (2 , Tm) , (0 , Tm)) Tm -- TypingRuleℕS-β = Tm= ([] , Ty ([] , (sym 3 [] / apr T 3 [])) -- , Tm [] (sym 0 ([] , sym 3 []) / apr T 0 ([] ,0Tm apr T 3 [])) -- , Tm ([] , (sym 5 [] / apr T 5 []) -- , (sym 2 ([] , sym 0 []) / apr T 2 ([] ,0Tm apr T 0 []))) -- (sym 3 ([] , sym 5 ([] , sym 1 [])) / apr T 3 ([] ,0Tm apr T 5 ([] ,0Tm apr T 1 []))) -- , Tm [] (sym 6 [] / apr T 6 [])) -- (sym 3 ([] , sym 5 ([] , sym 0 [])) -- <: sym 4 ([] , sym 3 ([] , var last) , sym 2 [] , sym 1 ([] , var (prev last) , var last) , sym 5 ([] , sym 0 [])) -- / apr T 4 ([] ,1Ty apr T 3 ([] ,0Tm apr S (var 0) ([] ,0Ty apr T 7 [])) ,0Tm apr T 2 [] ,2Tm apr T 1 ([] ,0Tm apr S (var 1) ([] ,0Ty apr T 7 []) ,0Tm (apr S (var 0) ([] ,0Ty apr T 3 ([] ,0Tm apr S (var 1) ([] ,0Ty apr T 7 []))))) ,0Tm apr T 5 ([] ,0Tm apr T 0 [])) -- // sym 1 ([] , sym 0 [] , sym 4 ([] , sym 3 ([] , var last) , sym 2 [] , sym 1 ([] , var (prev last) , var last) , sym 0 [])) -- / apr T 1 ([] ,0Tm apr T 0 [] ,0Tm apr T 4 ([] ,1Ty apr T 3 ([] ,0Tm apr S (var 0) ([] ,0Ty apr T 7 [])) ,0Tm apr T 2 [] ,2Tm apr T 1 ([] ,0Tm apr S (var 1) ([] ,0Ty apr T 7 []) ,0Tm (apr S (var 0) ([] ,0Ty apr T 3 ([] ,0Tm apr S (var 1) ([] ,0Ty apr T 7 []))))) ,0Tm apr T 0 []))) -- ℕ-TT5 : TypeTheory -- ℕ-TT5 = ℕ-TT4 ,= TypingRuleℕS-β
{ "alphanum_fraction": 0.3402530003, "avg_line_length": 53.773255814, "ext": "agda", "hexsha": "b854f765f3b3bc16fc2d46cd50faf6079eb281e5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guillaumebrunerie/general-type-theories", "max_forks_repo_path": "examples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guillaumebrunerie/general-type-theories", "max_issues_repo_path": "examples.agda", "max_line_length": 309, "max_stars_count": null, "max_stars_repo_head_hexsha": "f9bfefd0a70ae5bdc3906829ee1165c731882bca", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guillaumebrunerie/general-type-theories", "max_stars_repo_path": "examples.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3211, "size": 9249 }
-- agad-modeの使い方 -- https://agda.readthedocs.io/en/latest/tools/emacs-mode.html {-# OPTIONS --without-K --safe #-} module Learn.Interactive where -- ロード -- タイプチェックする -- C-c C-l -- Ctrlを押しながら、cを押して次にlを押す -- このとき、ソース内に"?"が存在すればそれをゴールにする -- ゴールには番号が振られる -- 型推論する -- C-c C-d -- 評価する -- C-c C-n -- 終了させる -- C-c C-x C-q -- Ctrlを押しながら、c、x、qと押す -- 再スタートさせる -- C-c C-x C-r ---------------------------------------------------------------------------- -- ゴールへの操作 -- ゴール内に値を書いてからゴールにカーソルを合わせ実行する。 -- 与える -- C-c C-SPC -- Ctrlを押しながら、cを押して次にスペースを押す -- 型が合っていればゴールは消える -- リファイン -- C-c C-r -- 何もない状態で行うと関数ならラムダ、レコード型ならコンストラクタを挿入する -- ゴールに関数がある場合、関数の引数をゴールにする -- ケーススプリット -- C-c C-c -- ゴール内に変数を書く、またはC-c C-cして出てきた入力枠に変数を入力すると -- その変数でパターンマッチングを行う -- ゴールの型を確認する -- C-c C-t -- 環境を確認する -- C-c C-e ---------------------------------------------------------------------------- -- 自然数 data ℕ : Set where zero : ℕ suc : ℕ → ℕ -- 等価性 infix 3 _≡_ data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x cong : ∀ {A B : Set} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl -- 足し算 -- 右辺に?と書いてC-c C-l(ロード)する -- モジュールは無視で module Step1 where _+_ : ℕ → ℕ → ℕ m + n = {! !} -- ゴールに"m"と入力する module Step2 where _+_ : ℕ → ℕ → ℕ m + n = {! m !} -- ゴールにカーソルを合わせ C-c C-c (ケーススプリット)する module Step3 where _+_ : ℕ → ℕ → ℕ zero + n = {! !} suc m + n = {! !} -- インデントを整える module Step4 where _+_ : ℕ → ℕ → ℕ zero + n = {! !} suc m + n = {! !} -- ゴール内に右辺値を書く module Step5 where _+_ : ℕ → ℕ → ℕ zero + n = {! zero !} suc m + n = {! !} -- ゴールにカーソルを合わせ C-c C-SPC (Give)する module Step6 where _+_ : ℕ → ℕ → ℕ zero + n = zero suc m + n = {! !} -- もう一方のゴールも同様にする -- このときmは再帰的な呼び出しをするときに小さくなっている _+_ : ℕ → ℕ → ℕ zero + n = zero suc m + n = suc (m + n) -- +の結合性 -- 証明したい型を書く。右辺を?にしてゴールにする module Assoc1 where +-assoc : ∀ m n o → (m + n) + o ≡ m + (n + o) +-assoc m n o = {! !} -- このとき+の定義から+の左の変数で帰納するとよいとわかる -- 単一の変数であるならばパターンマッチングできるのでmを選びゴールに書く module Assoc2 where +-assoc : ∀ m n o → (m + n) + o ≡ m + (n + o) +-assoc m n o = {! m !} -- C-c C-cする -- ここで +-assoc zero n o の右辺のゴールでC-c C-tすると zero ≡ zero とわかる -- 同じ形ならreflが使えるのでreflをC-c C-SPCする module Assoc3 where +-assoc : ∀ m n o → (m + n) + o ≡ m + (n + o) +-assoc zero n o = refl +-assoc (suc m) n o = {! !} -- 次に +-assoc (suc m) n o の右辺でC-c C-tすると -- suc ((m + n) + o) ≡ suc (m + (n + o)) とわかる -- 両辺に同じ関数(suc)が掛かっているのでcongが使える -- congとゴール内に書く module Assoc4 where +-assoc : ∀ m n o → (m + n) + o ≡ m + (n + o) +-assoc zero n o = refl +-assoc (suc m) n o = {!cong !} -- C-c C-rするとゴールが分かれる -- 前はsucを与える module Assoc5 where +-assoc : ∀ m n o → (m + n) + o ≡ m + (n + o) +-assoc zero n o = refl +-assoc (suc m) n o = cong suc {! !} -- 後ろは+-assoc m n oの型と同じなのでそれを与える -- これで証明終了 module Assoc6 where +-assoc : ∀ m n o → (m + n) + o ≡ m + (n + o) +-assoc zero n o = refl +-assoc (suc m) n o = cong suc (+-assoc m n o)
{ "alphanum_fraction": 0.5262089956, "avg_line_length": 19.8456375839, "ext": "agda", "hexsha": "ebe13bcc8c0492b1a2da3128e5c14745c0a7ba29", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Learn/Interactive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Learn/Interactive.agda", "max_line_length": 76, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Learn/Interactive.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 1652, "size": 2957 }
module Ual.Both where infix 10 _∧_ record _∧_ (A B : Set) : Set where field andL : A andR : B
{ "alphanum_fraction": 0.6, "avg_line_length": 13.125, "ext": "agda", "hexsha": "d1083a00739c6f6e4a02b4ac8029fc9f3e629716", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ea0260e1a0612ba581e4283dfb187f531a944dfd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "brunoczim/ual", "max_forks_repo_path": "Both.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ea0260e1a0612ba581e4283dfb187f531a944dfd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "brunoczim/ual", "max_issues_repo_path": "Both.agda", "max_line_length": 34, "max_stars_count": null, "max_stars_repo_head_hexsha": "ea0260e1a0612ba581e4283dfb187f531a944dfd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "brunoczim/ual", "max_stars_repo_path": "Both.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 45, "size": 105 }
{-# OPTIONS --without-K #-} open import Function open import Data.Zero open import Relation.Binary.PropositionalEquality.NP open import Explore.Zero import Explore.Universe.Type import Explore.Universe open import Function.Extensionality open import Type.Identities open import HoTT open Equivalences module Explore.Universe.Base (open Explore.Universe.Type {𝟘}) (u : U) where open Explore.Universe 𝟘 open FromKit 𝟘ⁱ (λ {{ua}}{{_}} → 𝟘ˢ-ok {{ua}}) 𝟘ˡ 𝟘ᶠ (λ {{ua}} → Σᵉ𝟘-ok {{ua}}) Πᵉ𝟘-ok (λ {ℓ₀ ℓ₁} ℓᵣ → ⟦𝟘ᵉ⟧ {ℓ₀} {ℓ₁} {ℓᵣ} {_≡_}) (const 𝟙ᵁ) (λ {{ua}} {{fext}} v → equiv (λ _ ()) _ (λ f → λ= (λ())) (λ _ → refl)) u public
{ "alphanum_fraction": 0.6255506608, "avg_line_length": 28.375, "ext": "agda", "hexsha": "c17b379c7980172ee8897972f549c996f2538d81", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Universe/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Universe/Base.agda", "max_line_length": 94, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Universe/Base.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 265, "size": 681 }
-- Andreas, 2019-02-23, re #3578, less reduction in the unifier. -- Non-interactive version of interaction/Issue635c.agda. -- {-# OPTIONS -v tc.lhs.unify:50 #-} open import Common.Bool open import Common.Equality open import Common.Product test : (p : Bool × Bool) → proj₁ p ≡ true → Set test _ refl = Bool -- Tests that the unifier does the necessary weak head reduction.
{ "alphanum_fraction": 0.7188328912, "avg_line_length": 26.9285714286, "ext": "agda", "hexsha": "ea5f8961a2b5760c2eff4a34e9c40bf30572a650", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue635.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue635.agda", "max_line_length": 65, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue635.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 105, "size": 377 }
{-# OPTIONS --without-K --safe #-} module Fragment.Examples.Semigroup.Arith.Functions where open import Fragment.Examples.Semigroup.Arith.Base -- Fully dynamic associativity +-dyn-assoc₁ : ∀ {f : ℕ → ℕ} {m n o} → (f m + n) + o ≡ f m + (n + o) +-dyn-assoc₁ = fragment SemigroupFrex +-semigroup +-dyn-assoc₂ : ∀ {f g : ℕ → ℕ} {m n o p} → ((f m + n) + o) + g p ≡ f m + (n + (o + g p)) +-dyn-assoc₂ = fragment SemigroupFrex +-semigroup +-dyn-assoc₃ : ∀ {f g h : ℕ → ℕ} {m n o p q} → (f m + n) + g o + (p + h q) ≡ f m + (n + g o + p) + h q +-dyn-assoc₃ = fragment SemigroupFrex +-semigroup *-dyn-assoc₁ : ∀ {f : ℕ → ℕ} {m n o} → (f m * n) * o ≡ f m * (n * o) *-dyn-assoc₁ = fragment SemigroupFrex *-semigroup *-dyn-assoc₂ : ∀ {f g : ℕ → ℕ} {m n o p} → ((f m * n) * o) * g p ≡ f m * (n * (o * g p)) *-dyn-assoc₂ = fragment SemigroupFrex *-semigroup *-dyn-assoc₃ : ∀ {f g h : ℕ → ℕ} {m n o p q} → (f m * n) * g o * (p * h q) ≡ f m * (n * g o * p) * h q *-dyn-assoc₃ = fragment SemigroupFrex *-semigroup -- Partially static associativity +-sta-assoc₁ : ∀ {f : ℕ → ℕ} {m} → (m + 2) + (3 + f 0) ≡ m + (5 + f 0) +-sta-assoc₁ = fragment SemigroupFrex +-semigroup +-sta-assoc₂ : ∀ {f g : ℕ → ℕ} {m n o p} → (((f m + g n) + 5) + o) + p ≡ f m + (g n + (2 + (3 + (o + p)))) +-sta-assoc₂ = fragment SemigroupFrex +-semigroup +-sta-assoc₃ : ∀ {f : ℕ → ℕ} {m n o p} → f (n + m) + (n + 2) + (3 + (o + p)) ≡ f (n + m) + (((n + 1) + (4 + o)) + p) +-sta-assoc₃ = fragment SemigroupFrex +-semigroup *-sta-assoc₁ : ∀ {f : ℕ → ℕ} {m} → (m * 2) * (3 * f 0) ≡ m * (6 * f 0) *-sta-assoc₁ = fragment SemigroupFrex *-semigroup *-sta-assoc₂ : ∀ {f g : ℕ → ℕ} {m n o p} → (((f m * g n) * 6) * o) * p ≡ f m * (g n * (2 * (3 * (o * p)))) *-sta-assoc₂ = fragment SemigroupFrex *-semigroup *-sta-assoc₃ : ∀ {f : ℕ → ℕ} {m n o p} → f (n + m) * (n * 4) * (3 * (o * p)) ≡ f (n + m) * (((n * 2) * (6 * o)) * p) *-sta-assoc₃ = fragment SemigroupFrex *-semigroup
{ "alphanum_fraction": 0.5061983471, "avg_line_length": 42.0869565217, "ext": "agda", "hexsha": "dbe8368a033566bff61aa0e9b63359ee3f9430fa", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Examples/Semigroup/Arith/Functions.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Examples/Semigroup/Arith/Functions.agda", "max_line_length": 116, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Examples/Semigroup/Arith/Functions.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 862, "size": 1936 }
-- Abstract definitions can't be projection-like module Issue447 where postulate I : Set R : I → Set module M (i : I) (r : R i) where abstract P : Set₂ P = Set₁ p : P p = Set
{ "alphanum_fraction": 0.5792079208, "avg_line_length": 11.8823529412, "ext": "agda", "hexsha": "38fac901e1e7139cd21e422f40307f69d8c0598e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue447.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue447.agda", "max_line_length": 48, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue447.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 69, "size": 202 }
module Rationals where open import Nats renaming (_+_ to _:+:_; _*_ to _:*:_) open import Equality open import Data.Product open import Agda.Builtin.TrustMe infixl 7 _÷_ infixr 5 _→ℕ infixr 7 _÷_↓_ infixr 7 _÷_↑_ infixl 6 _+_ data ℚ : Set where _÷_ : (a b : ℕ) → ℚ _→ℕ : {a : ℕ} → ℚ → ∃ (λ m → m ≡ a) _→ℕ {a} _ = a , refl -- of course. _÷_↓_ : ∀ a b n → (a :*: n ÷ (b :*: n)) ≡ a ÷ b _ ÷ _ ↓ _ = primTrustMe _÷_↑_ : ∀ a b n → a ÷ b ≡ (a :*: n ÷ (b :*: n)) a ÷ b ↑ n = sym (a ÷ b ↓ n) _+_ : ℚ → ℚ → ℚ a ÷ c + b ÷ d = (a :*: d :+: b :*: c) ÷ (c :*: d) _*_ : ℚ → ℚ → ℚ (a ÷ c) * (b ÷ d) = a :*: b ÷ (c :*: d) _/_ : ℚ → ℚ → ℚ (a ÷ c) / (b ÷ d) = a :*: d ÷ (c :*: b)
{ "alphanum_fraction": 0.4472511144, "avg_line_length": 19.2285714286, "ext": "agda", "hexsha": "4ae837d83d313f179fa4b7fe7e64cc04858a3593", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ice1k/Theorems", "max_forks_repo_path": "src/Rationals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ice1k/Theorems", "max_issues_repo_path": "src/Rationals.agda", "max_line_length": 54, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ice1k/Theorems", "max_stars_repo_path": "src/Rationals.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z", "num_tokens": 363, "size": 673 }
module Implicits.Resolution.Infinite.Expressiveness where open import Prelude hiding (Bool) open import Data.Fin.Substitution open import Data.List open import Data.List.Any open Membership-≡ open import Extensions.ListFirst open import SystemF.Everything as F using () open import Implicits.Resolution.Ambiguous.Resolution as A open import Implicits.Resolution.Deterministic.Resolution as D open import Implicits.Resolution.Infinite.Resolution as I open import Implicits.Syntax open import Implicits.Substitutions module Deterministic⊆Infinite where complete : ∀ {ν} {a : Type ν} {Δ : ICtx ν} → Δ D.⊢ᵣ a → Δ I.⊢ᵣ a complete (r-simp x r↓a) = r-simp (proj₁ $ first⟶∈ x) (lem r↓a) where lem : ∀ {ν} {Δ : ICtx ν} {r a} → Δ D.⊢ r ↓ a → Δ I.⊢ r ↓ a lem (i-simp a) = i-simp a lem (i-iabs x₁ x₂) = i-iabs (complete x₁) (lem x₂) lem (i-tabs b x₁) = i-tabs b (lem x₁) complete (r-iabs ρ₁ x) = r-iabs (complete x) complete (r-tabs x) = r-tabs (complete x) module Deterministic⊂Infinite where open import Implicits.Resolution.Deterministic.Incomplete as Inc -- We gave an example of a query that the det rules could not resolve -- ((Int ⇒ Bool) List.∷ Bool List.∷ List.[]) ⊢ᵣ Bool -- Here we derive it for the Infinite rules, to prove that we are strictly -- more expressive infinite-can : Δ I.⊢ᵣ Bool infinite-can = r-simp (there (here refl)) p where p : Δ I.⊢ Bool ↓ tc 0 p = i-simp (tc 0) module Infinite⇔Ambiguous (nf : ∀ {ν n} {Γ : F.Ctx ν n} {t a} → Γ F.⊢ t ∈ a → ∃ λ (t₂ : F.Term ν n) → Γ F.⊢ t₂ ⇑ a) where open import Implicits.Resolution.Ambiguous.SystemFEquiv hiding (equivalent) open import Implicits.Resolution.Infinite.NormalFormEquiv hiding (equivalent) open import Implicits.Resolution.Embedding.Lemmas open import Function.Equivalence sound : ∀ {ν} {a : Type ν} {Δ : ICtx ν} → Δ I.⊢ᵣ a → Δ A.⊢ᵣ a sound (r-simp x p) = lem p (r-ivar x) where lem : ∀ {ν} {Δ : ICtx ν} {a τ} → Δ I.⊢ a ↓ τ → Δ A.⊢ᵣ a → Δ A.⊢ᵣ (simpl τ) lem (i-simp τ) ⊢y = ⊢y lem (i-iabs ⊢a b↓τ) ⊢b = lem b↓τ (r-iapp ⊢b (sound ⊢a)) lem (i-tabs b a) ⊢y = lem a (r-tapp b ⊢y) sound (r-iabs p) = r-iabs (sound p) sound (r-tabs p) = r-tabs (sound p) complete : ∀ {ν} {a : Type ν} {Δ : ICtx ν} → Δ A.⊢ᵣ a → Δ I.⊢ᵣ a complete {a = a} p = subst₂ (λ Δ r → Δ I.⊢ᵣ r) (ctx→← _) (tp→← a) (from-⇑ (proj₂ (nf (to-⊢ p)))) equivalent : ∀ {ν} (Δ : ICtx ν) r → Δ I.⊢ᵣ r ⇔ Δ A.⊢ᵣ r equivalent Δ r = equivalence sound complete
{ "alphanum_fraction": 0.6332537788, "avg_line_length": 36.4347826087, "ext": "agda", "hexsha": "e0127839af4282d15185e7cd1fe7ad5893765c32", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Infinite/Expressiveness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Infinite/Expressiveness.agda", "max_line_length": 98, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Infinite/Expressiveness.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 995, "size": 2514 }
module Issue493 where module M where postulate A B C : Set open M using (A) hiding (B)
{ "alphanum_fraction": 0.6956521739, "avg_line_length": 11.5, "ext": "agda", "hexsha": "32dc9c47bb26c0508426d21ccdb3e603f2e8d567", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue493.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue493.agda", "max_line_length": 27, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue493.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 29, "size": 92 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Rings.Definition open import Rings.IntegralDomains.Definition open import Fields.Fields open import Setoids.Setoids open import Sets.EquivalenceRelations module Fields.FieldOfFractions.Field {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where open import Fields.FieldOfFractions.Ring I fieldOfFractions : Field fieldOfFractionsRing Field.allInvertible fieldOfFractions (record { num = fst ; denom = b }) prA = (record { num = b ; denom = fst ; denomNonzero = ans }) , need where abstract open Setoid S open Equivalence eq need : ((b * fst) * Ring.1R R) ∼ ((fst * b) * Ring.1R R) need = Ring.*WellDefined R (Ring.*Commutative R) reflexive ans : fst ∼ Ring.0R R → False ans pr = prA need' where need' : (fst * Ring.1R R) ∼ (b * Ring.0R R) need' = transitive (Ring.*WellDefined R pr reflexive) (transitive (transitive (Ring.*Commutative R) (Ring.timesZero R)) (symmetric (Ring.timesZero R))) Field.nontrivial fieldOfFractions pr = IntegralDomain.nontrivial I (symmetric (transitive (symmetric (Ring.timesZero R)) (transitive (Ring.*Commutative R) (transitive pr (Ring.identIsIdent R))))) where open Setoid S open Equivalence eq pr' : (Ring.0R R) * (Ring.1R R) ∼ (Ring.1R R) * (Ring.1R R) pr' = pr
{ "alphanum_fraction": 0.6643788607, "avg_line_length": 42.8529411765, "ext": "agda", "hexsha": "3a6d1afebd50978c95846c1a9cbc9dcb03686d37", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Fields/FieldOfFractions/Field.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Fields/FieldOfFractions/Field.agda", "max_line_length": 195, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Fields/FieldOfFractions/Field.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 459, "size": 1457 }
module Data.List.Combinatorics.Proofs where import Lvl open import Data open import Data.List open import Data.List.Combinatorics open import Data.List.Functions hiding (skip) renaming (module LongOper to List) open Data.List.Functions.LongOper open import Data.List.Relation.Permutation open import Data.List.Relation.Quantification open import Data.List.Relation.Quantification.Proofs open import Data.List.Relation.Sublist open import Data.List.Relation.Sublist.Proofs open import Data.List.Proofs open import Data.List.Equiv.Id open import Data.List.Proofs.Length open import Data.Tuple as Tuple using (_⨯_ ; _,_) import Data.Tuple.Raiseᵣ as Tuple₊ import Data.Tuple.Raiseᵣ.Functions as Tuple₊ open import Functional open import Logic.Propositional open import Numeral.Natural open import Numeral.Natural.Combinatorics open import Numeral.Natural.Combinatorics.Proofs open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Oper.Proofs.Multiplication open import Numeral.Natural.Oper.Proofs.Order open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs.Equiv open import Structure.Function open import Structure.Operator open import Structure.Operator.Properties open import Structure.Relator.Properties open import Syntax.Function open import Syntax.Transitivity open import Type private variable ℓ ℓ₁ ℓ₂ : Lvl.Level private variable T A B : Type{ℓ} private variable l l₁ l₂ : List(T) private variable x : T private variable n k : ℕ sublists₊-contains-sublists : AllElements (_⊑ l) (sublists₊(l)) sublists₊-contains-sublists {l = ∅} = ∅ sublists₊-contains-sublists {l = x ⊰ l} with sublists₊(l) | sublists₊-contains-sublists {l = l} ... | ∅ | _ = use [⊑]-minimum ⊰ ∅ ... | sx ⊰ sl | px ⊰ pl = use [⊑]-minimum ⊰ skip px ⊰ use px ⊰ p pl where p : ∀{x : T}{l}{sl} → AllElements (_⊑ l) sl → AllElements (_⊑ (x ⊰ l)) (concatMap(y ↦ y ⊰ (x ⊰ y) ⊰ ∅) sl) p {sl = ∅} ∅ = ∅ p {sl = _ ⊰ _} (sll ⊰ alsl) = (skip sll) ⊰ (use sll) ⊰ (p alsl) {- sublists₊-contains-all-nonempty-sublists : ∀{x}{l₁ l₂ : List(T)} → (x ⊰ l₁ ⊑ l₂) → ExistsElement (_≡ x ⊰ l₁) (sublists(l₂)) sublists₊-contains-all-nonempty-sublists {l₁ = l₁} {prepend x l₂} (use p) = ⊰ (• {!!}) sublists₊-contains-all-nonempty-sublists {l₁ = l₁} {prepend x l₂} (skip p) = ⊰ (⊰ {!sublists₊-contains-all-nonempty-sublists ?!}) sublists-contains-all-sublists : ∀{l₁ l₂ : List(T)} → (l₁ ⊑ l₂) → ExistsElement (_≡ l₁) (sublists(l₂)) sublists-contains-all-sublists {l₁ = ∅} {∅} _⊑_.empty = • [≡]-intro sublists-contains-all-sublists {l₁ = ∅} {prepend x l₂} (skip sub) = • [≡]-intro sublists-contains-all-sublists {l₁ = prepend x l₁} {prepend .x l₂} (use sub) = ⊰ (⊰ {!!}) sublists-contains-all-sublists {l₁ = prepend x l₁} {prepend x₁ l₂} (skip sub) = {!!} -} permutes-insertedEverywhere : AllElements (_permutes (x ⊰ l)) (insertedEverywhere x l) permutes-insertedEverywhere {x = x} {∅} = _permutes_.prepend _permutes_.empty ⊰ ∅ permutes-insertedEverywhere {x = x} {y ⊰ l} = reflexivity(_permutes_) ⊰ AllElements-mapᵣ(y List.⊰_) (p ↦ trans (_permutes_.prepend p) _permutes_.swap) (permutes-insertedEverywhere {x = x} {l}) {- AllElements-insertedEverywhere-function : ∀{P : List(T) → Type{ℓ}} → (∀{l₁ l₂}{x} → (l₁ permutes l₂) → (P(x ⊰ l₁) → P(x ⊰ l₂))) → (∀{l₁ l₂} → (l₁ permutes l₂) → (P(l₁) → P(l₂))) → (∀{l₁ l₂ : List(T)} → (l₁ permutes l₂) → (AllElements P (insertedEverywhere x l₁) → AllElements P (insertedEverywhere x l₂))) AllElements-insertedEverywhere-function _ pperm {l₁ = ∅} {∅} _permutes_.empty p@(_ ⊰ _) = p AllElements-insertedEverywhere-function t pperm {l₁ = x ⊰ l₁} {.x ⊰ l₂} (_permutes_.prepend perm) (p ⊰ pl) = pperm (_permutes_.prepend (_permutes_.prepend perm)) p ⊰ {!AllElements-insertedEverywhere-function t pperm {l₁ = l₁} {l₂} perm!} -- TODO: Probably needs more assumptions -- AllElements-insertedEverywhere-function {l₁ = l₁} {l₂} pperm perm (AllElements-without-map {!!} {!!} pl) -- AllElements-map (x List.⊰_) (\{l} → {!!}) (AllElements-insertedEverywhere-function {l₁ = l₁} {l₂} pperm perm {!!}) AllElements-insertedEverywhere-function _ pperm {l₁ = x ⊰ .(x₁ ⊰ _)} {x₁ ⊰ .(x ⊰ _)} _permutes_.swap (p₁ ⊰ p₂ ⊰ pl) = pperm (trans _permutes_.swap (_permutes_.prepend _permutes_.swap)) p₂ ⊰ pperm (trans (_permutes_.prepend _permutes_.swap) _permutes_.swap) p₁ ⊰ {!!} AllElements-insertedEverywhere-function t pperm (trans perm₁ perm₂) = AllElements-insertedEverywhere-function t pperm perm₂ ∘ AllElements-insertedEverywhere-function t pperm perm₁ -} permutations-contains-permutations : AllElements (_permutes l) (permutations(l)) permutations-contains-permutations {l = ∅} = _permutes_.empty ⊰ ∅ permutations-contains-permutations {l = x ⊰ ∅} = _permutes_.prepend _permutes_.empty ⊰ ∅ permutations-contains-permutations {l = x ⊰ y ⊰ l} = AllElements-concatMap(insertedEverywhere x) (perm ↦ AllElements-of-transitive-binary-relationₗ (_permutes_.prepend perm) permutes-insertedEverywhere) (permutations-contains-permutations {l = y ⊰ l}) sublists₊-length : length(sublists₊ l) ≡ (2 ^ (length l)) −₀ 1 sublists₊-length {l = ∅} = [≡]-intro sublists₊-length {l = x ⊰ l} = length(sublists₊ (x ⊰ l)) 🝖[ _≡_ ]-[] length(singleton(x) ⊰ foldᵣ (prev ↦ rest ↦ (prev ⊰ (x ⊰ prev) ⊰ rest)) ∅ (sublists₊ l)) 🝖[ _≡_ ]-[] 𝐒(length(foldᵣ (prev ↦ rest ↦ (prev ⊰ (x ⊰ prev) ⊰ rest)) ∅ (sublists₊ l))) 🝖[ _≡_ ]-[ [≡]-with(𝐒) (length-foldᵣ {l = sublists₊(l)}{init = ∅}{f = (prev ↦ rest ↦ (prev ⊰ (x ⊰ prev) ⊰ rest))}{g = const(𝐒 ∘ 𝐒)} [≡]-intro) ] 𝐒(foldᵣ (prev ↦ rest ↦ 𝐒(𝐒(rest))) 𝟎 (sublists₊ l)) 🝖[ _≡_ ]-[ [≡]-with(𝐒) (foldᵣ-constant-[+]ᵣ{l = sublists₊ l}{init = 𝟎}) ] 𝐒(2 ⋅ length(sublists₊ l)) 🝖[ _≡_ ]-[ [≡]-with(𝐒 ∘ (2 ⋅_)) (sublists₊-length {l = l}) ] 𝐒(2 ⋅ (2 ^ (length l) −₀ 1)) 🝖[ _≡_ ]-[ [≡]-with(𝐒) (distributivityₗ(_⋅_)(_−₀_) {2}{2 ^ length(l)}{1}) ] 𝐒((2 ⋅ (2 ^ (length l))) −₀ 2) 🝖[ _≡_ ]-[] 𝐒((2 ^ 𝐒(length l)) −₀ 2) 🝖[ _≡_ ]-[] 𝐒((2 ^ length(x ⊰ l)) −₀ 2) 🝖[ _≡_ ]-[ [↔]-to-[→] [−₀][𝐒]ₗ-equality ([^]ₗ-strictly-growing {0}{0}{𝐒(length l)} [≤]-with-[𝐒]) ]-sym 𝐒(2 ^ length(x ⊰ l)) −₀ 2 🝖[ _≡_ ]-[] (2 ^ length (x ⊰ l)) −₀ 1 🝖-end sublists-length : length(sublists l) ≡ 2 ^ (length l) sublists-length {l = l} = length(sublists l) 🝖[ _≡_ ]-[] length(∅ ⊰ sublists₊ l) 🝖[ _≡_ ]-[] 𝐒(length(sublists₊ l)) 🝖[ _≡_ ]-[ [≡]-with(𝐒) (sublists₊-length {l = l}) ] 𝐒((2 ^ length(l)) −₀ 1) 🝖[ _≡_ ]-[ [↔]-to-[→] [−₀][𝐒]ₗ-equality ([^]ₗ-growing {2}{0}{length l} (\()) [≤]-minimum) ]-sym 𝐒(2 ^ length(l)) −₀ 1 🝖[ _≡_ ]-[] 2 ^ length(l) 🝖-end combinations-length : length(combinations k l) ≡ 𝑐𝐶(length(l))(k) combinations-length {0} {l = _} = [≡]-intro combinations-length {𝐒 k} {l = ∅} = [≡]-intro combinations-length {1} {l = x ⊰ l} = length(combinations 1 (x ⊰ l)) 🝖[ _≡_ ]-[] length(x ⊰ l) 🝖[ _≡_ ]-[] 𝐒(length l) 🝖[ _≡_ ]-[ 𝑐𝐶-singleton-subsets ]-sym 𝐒(𝑐𝐶 (length l) 1) 🝖[ _≡_ ]-[] 1 + 𝑐𝐶 (length l) 1 🝖[ _≡_ ]-[] 𝑐𝐶 (length l) 0 + 𝑐𝐶 (length l) 1 🝖[ _≡_ ]-[] 𝑐𝐶 (𝐒(length l)) 1 🝖[ _≡_ ]-[] 𝑐𝐶 (length(x ⊰ l)) 1 🝖-end combinations-length {𝐒(𝐒 k)} {l = x ⊰ l} = length(combinations (𝐒(𝐒 k)) (x ⊰ l)) 🝖[ _≡_ ]-[] length(map (x ,_) (combinations (𝐒 k) l) ++ combinations (𝐒(𝐒 k)) l) 🝖[ _≡_ ]-[ length-[++] {l₁ = map (x ,_) (combinations (𝐒 k) l)}{l₂ = combinations (𝐒(𝐒 k)) l} ] length(map (x ,_) (combinations (𝐒 k) l)) + length(combinations (𝐒(𝐒 k)) l) 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(length(combinations (𝐒(𝐒 k)) l)) (length-map{f = (x ,_)}{x = combinations (𝐒 k) l}) ] length(combinations (𝐒 k) l) + length(combinations (𝐒(𝐒 k)) l) 🝖[ _≡_ ]-[ congruence₂(_+_) (combinations-length {𝐒 k} {l = l}) (combinations-length {𝐒(𝐒 k)} {l = l}) ] 𝑐𝐶(length(l))(𝐒 k) + 𝑐𝐶(length(l))(𝐒(𝐒 k)) 🝖[ _≡_ ]-[] 𝑐𝐶 (length(x ⊰ l)) (𝐒(𝐒 k)) 🝖-end repeatableCombinations-length : length(repeatableCombinations k l) ≡ 𝑐𝐶((length(l) + k) −₀ 1)(k) repeatableCombinations-length {0} {l = _} = [≡]-intro repeatableCombinations-length {1} {l = x ⊰ l} = [≡]-intro repeatableCombinations-length {𝐒 k} {l = ∅} = symmetry(_≡_) (𝑐𝐶-larger-subsets{k}{𝐒(k)} (reflexivity(_≤_))) repeatableCombinations-length {𝐒(𝐒 k)} {l = x ⊰ l} = length (repeatableCombinations (𝐒(𝐒 k)) (x ⊰ l)) 🝖[ _≡_ ]-[] length(map(x ,_) (repeatableCombinations (𝐒 k) (x ⊰ l)) ++ repeatableCombinations(𝐒(𝐒 k)) l) 🝖[ _≡_ ]-[ length-[++] {l₁ = map(x ,_) (repeatableCombinations (𝐒 k) (x ⊰ l))}{l₂ = repeatableCombinations(𝐒(𝐒 k)) l} ] length(map(x ,_) (repeatableCombinations (𝐒 k) (x ⊰ l))) + length(repeatableCombinations(𝐒(𝐒 k)) l) 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(length(repeatableCombinations(𝐒(𝐒 k)) l)) (length-map {f = x ,_}{x = repeatableCombinations (𝐒 k) (x ⊰ l)}) ] length(repeatableCombinations (𝐒 k) (x ⊰ l)) + length(repeatableCombinations(𝐒(𝐒 k)) l) 🝖[ _≡_ ]-[ congruence₂(_+_) (repeatableCombinations-length{k = 𝐒 k}{l = x ⊰ l}) (repeatableCombinations-length{k = 𝐒(𝐒 k)}{l = l}) ] 𝑐𝐶((length(x ⊰ l) + 𝐒(k)) −₀ 1)(𝐒(k)) + 𝑐𝐶((length(l) + 𝐒(𝐒(k))) −₀ 1)(𝐒(𝐒(k))) 🝖[ _≡_ ]-[] 𝑐𝐶((length(x ⊰ l) + 𝐒(𝐒 k)) −₀ 1) (𝐒(𝐒 k)) 🝖-end tuples-length : length(tuples n l) ≡ length(l) ^ n tuples-length {0} = [≡]-intro tuples-length {1} = [≡]-intro tuples-length {𝐒(𝐒(n))}{l = ∅} = [≡]-intro tuples-length {𝐒(𝐒(n))}{l = x ⊰ l} = length(tuples(𝐒(𝐒(n))) (x ⊰ l)) 🝖[ _≡_ ]-[] length(concatMap(y ↦ map (y Tuple₊.⊰_) (tuples (𝐒(n)) (x ⊰ l))) (x ⊰ l)) 🝖[ _≡_ ]-[ length-concatMap {l = x ⊰ l}{f = y ↦ map (y Tuple₊.⊰_) (tuples (𝐒(n)) (x ⊰ l))} ] foldᵣ((_+_) ∘ length ∘ (y ↦ map (y Tuple₊.⊰_) (tuples (𝐒(n)) (x ⊰ l)))) 𝟎 (x ⊰ l) 🝖[ _≡_ ]-[ foldᵣ-function₊-raw {l₁ = x ⊰ l}{a₁ = 𝟎} (\{a b} → [≡]-with(_+ b) (length-map{f = a Tuple₊.⊰_}{x = tuples (𝐒(n)) (x ⊰ l)})) [≡]-intro [≡]-intro ] foldᵣ((_+_) ∘ length ∘ (y ↦ tuples (𝐒(n)) (x ⊰ l))) 𝟎 (x ⊰ l) 🝖[ _≡_ ]-[] foldᵣ(const(length(tuples (𝐒(n)) (x ⊰ l)) +_)) 𝟎 (x ⊰ l) 🝖[ _≡_ ]-[ foldᵣ-constant-[+]ₗ{l = x ⊰ l} {init = 𝟎}{step = length(tuples (𝐒(n)) (x ⊰ l))} ] length(x ⊰ l) ⋅ length(tuples(𝐒(n)) (x ⊰ l)) 🝖[ _≡_ ]-[ congruence₂ᵣ(_⋅_) (length(x ⊰ l)) (tuples-length {𝐒(n)} {l = x ⊰ l}) ] length(x ⊰ l) ⋅ (length(x ⊰ l) ^ 𝐒(n)) 🝖[ _≡_ ]-[] length(x ⊰ l) ^ 𝐒(𝐒(n)) 🝖-end rotations-length : length(rotations l) ≡ length(l) rotations-length{l = l} = length-accumulateIterate₀{f = rotateₗ(1)}{init = l} insertedEverywhere-contents-length : AllElements(p ↦ length(p) ≡ 𝐒(length(l))) (insertedEverywhere x l) insertedEverywhere-contents-length = AllElements-fn (Function.congruence ⦃ _ ⦄ Proofs.permutes-length-function) permutes-insertedEverywhere insertedEverywhere-length : length(insertedEverywhere x l) ≡ 𝐒(length(l)) insertedEverywhere-length {x = x} {∅} = [≡]-intro insertedEverywhere-length {x = x} {a ⊰ l} = length(insertedEverywhere x (a ⊰ l)) 🝖[ _≡_ ]-[] length((x ⊰ a ⊰ l) ⊰ (map (List.prepend a) (insertedEverywhere x l))) 🝖[ _≡_ ]-[] 𝐒(length(map (List.prepend a) (insertedEverywhere x l))) 🝖[ _≡_ ]-[ [≡]-with(𝐒) (length-map{f = List.prepend a}{x = insertedEverywhere x l}) ] 𝐒(length(insertedEverywhere x l)) 🝖[ _≡_ ]-[ [≡]-with(𝐒) (insertedEverywhere-length {x = x} {l}) ] 𝐒(𝐒(length(l))) 🝖[ _≡_ ]-[] 𝐒(length(a ⊰ l)) 🝖-end permutation-length : AllElements(p ↦ length p ≡ length l) (permutations l) permutation-length{l = l} = AllElements-fn (Function.congruence ⦃ _ ⦄ Proofs.permutes-length-function) (permutations-contains-permutations{l = l}) {-permutations-length : length(permutations l) ≡ length(l) ! permutations-length {l = ∅} = [≡]-intro permutations-length {l = x ⊰ ∅} = [≡]-intro permutations-length {l = x ⊰ y ⊰ l} = length(permutations(x ⊰ y ⊰ l)) 🝖[ _≡_ ]-[] length(concatMap(insertedEverywhere x) (permutations(y ⊰ l))) 🝖[ _≡_ ]-[ length-concatMap{l = permutations(y ⊰ l)}{f = insertedEverywhere x} ] foldᵣ (_+_ ∘ length ∘ insertedEverywhere x) 𝟎 (permutations (y ⊰ l)) 🝖[ _≡_ ]-[ {!!} ] foldᵣ (_+_ ∘ length) 𝟎 (map (insertedEverywhere x) (permutations (y ⊰ l))) 🝖[ _≡_ ]-[ {!!} ] 𝐒(𝐒(length l)) ⋅ (𝐒(length l) ⋅ (length(l)!)) 🝖[ _≡_ ]-[] length(x ⊰ y ⊰ l)! 🝖-end -} {-permutations-length {l = x ⊰ y ⊰ l} with permutations(y ⊰ l) | permutations-length {l = y ⊰ l} ... | ∅ | p = {!!} ... | z ⊰ pyl | p = length(foldᵣ((_++_) ∘ insertedEverywhere x) ∅ (z ⊰ pyl)) 🝖[ _≡_ ]-[] length(insertedEverywhere x z ++ foldᵣ((_++_) ∘ insertedEverywhere x) ∅ pyl) 🝖[ _≡_ ]-[ length-[++] {l₁ = insertedEverywhere x z}{l₂ = foldᵣ((_++_) ∘ insertedEverywhere x) ∅ pyl} ] length(insertedEverywhere x z) + length(foldᵣ((_++_) ∘ insertedEverywhere x) ∅ pyl) 🝖[ _≡_ ]-[ congruence₂ₗ(_+_)(length(foldᵣ((_++_) ∘ insertedEverywhere x) ∅ pyl)) (insertedEverywhere-length {x = x}{l = z}) ] 𝐒(length z) + length(foldᵣ((_++_) ∘ insertedEverywhere x) ∅ pyl) 🝖[ _≡_ ]-[ {!!} ] 𝐒(𝐒(length l)) ⋅ 𝐒(length pyl) 🝖[ _≡_ ]-[ congruence₂ᵣ(_⋅_)(𝐒(𝐒(length l))) p ] 𝐒(𝐒(length l)) ⋅ (𝐒(length l) ⋅ (length(l) !)) 🝖-end-} {- TODO: Proof of above length(concatMap (insertedEverywhere x) (permutations(y ⊰ l))) foldᵣ((_+_) ∘ length ∘ (insertedEverywhere x)) (permutations(y ⊰ l)) foldᵣ((_+_) ∘ 𝐒 ∘ length) (permutations(y ⊰ l)) foldᵣ((_+_) ∘ 𝐒) (map length(permutations(y ⊰ l))) foldᵣ((_+_) ∘ 𝐒) (map (const(length(y ⊰ l))) (permutations(y ⊰ l))) -- from permutation-length when map function yields the same value for every element in the list foldᵣ((_+_) ∘ 𝐒 ∘ const(length(y ⊰ l))) (permutations(y ⊰ l)) foldᵣ((_+_) ∘ const(𝐒 ∘ length(y ⊰ l))) (permutations(y ⊰ l)) 𝐒(length(y ⊰ l)) ⋅ length(permutations(y ⊰ l)) 𝐒(length(y ⊰ l)) ⋅ (length(y ⊰ l) !) -} {- length(permutations (x ⊰ y ⊰ l)) 🝖[ _≡_ ]-[ {!!} ] -- length(concatMap (insertedEverywhere x) (permutations(y ⊰ l))) 🝖[ _≡_ ]-[ length-concatMap {l = permutations(y ⊰ l)}{f = insertedEverywhere x} ] -- foldᵣ (_+_ ∘ length ∘ insertedEverywhere x) 𝟎 (permutations(y ⊰ l)) 🝖[ _≡_ ]-[ {!length-foldᵣ {l = permutations(y ⊰ l)}{init = 𝟎}!} ] 𝐒(𝐒(length l)) ⋅ (𝐒(length l) ⋅ (length(l) !)) 🝖[ _≡_ ]-[] (length(x ⊰ y ⊰ l) !) 🝖-end -}
{ "alphanum_fraction": 0.5663248645, "avg_line_length": 69.9132420091, "ext": "agda", "hexsha": "afa7e8621adac1f01652fd5118b3307b5e8c4dc1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/List/Combinatorics/Proofs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/List/Combinatorics/Proofs.agda", "max_line_length": 305, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/List/Combinatorics/Proofs.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 6159, "size": 15311 }
{-# OPTIONS --type-in-type #-} open import Function open import Data.Nat.Base open import Data.Bool.Base open import Data.Product {-# NO_POSITIVITY_CHECK #-} record IFix {I : Set} (F : (I -> Set) -> I -> Set) (i : I) : Set where constructor wrap field unwrap : F (IFix F) i open IFix data Expr : Set -> Set where Lit : ℕ -> Expr ℕ Inc : Expr ℕ -> Expr ℕ IsZ : Expr ℕ -> Expr Bool Pair : ∀ {A B} -> Expr A -> Expr B -> Expr (A × B) Fst : ∀ {A B} -> Expr (A × B) -> Expr A Snd : ∀ {A B} -> Expr (A × B) -> Expr B -- As usually the pattern vector of a Scott-encoded data type encodes pattern-matching. ExprF′ : (Set -> Set) -> Set -> Set ExprF′ = λ Rec I -> (R : Set -> Set) -> (ℕ -> R ℕ) -> (Rec ℕ -> R ℕ) -> (Rec ℕ -> R Bool) -> (∀ {A B} -> Rec A -> Rec B -> R (A × B)) -> (∀ {A B} -> Rec (A × B) -> R A) -> (∀ {A B} -> Rec (A × B) -> R B) -> R I Expr′ : Set -> Set Expr′ = IFix ExprF′ expr-to-expr′ : ∀ {A} -> Expr A -> Expr′ A expr-to-expr′ (Lit x) = wrap λ R lit inc isZ pair fst snd -> lit x expr-to-expr′ (Inc x) = wrap λ R lit inc isZ pair fst snd -> inc (expr-to-expr′ x) expr-to-expr′ (IsZ x) = wrap λ R lit inc isZ pair fst snd -> isZ (expr-to-expr′ x) expr-to-expr′ (Pair x y) = wrap λ R lit inc isZ pair fst snd -> pair (expr-to-expr′ x) (expr-to-expr′ y) expr-to-expr′ (Fst p) = wrap λ R lit inc isZ pair fst snd -> fst (expr-to-expr′ p) expr-to-expr′ (Snd p) = wrap λ R lit inc isZ pair fst snd -> snd (expr-to-expr′ p) {-# TERMINATING #-} expr′-to-expr : ∀ {A} -> Expr′ A -> Expr A expr′-to-expr e = unwrap e Expr Lit (Inc ∘ expr′-to-expr) (IsZ ∘ expr′-to-expr) (λ x y -> Pair (expr′-to-expr x) (expr′-to-expr y)) (Fst ∘ expr′-to-expr) (Snd ∘ expr′-to-expr) isZero : ℕ -> Bool isZero zero = true isZero (suc _) = false {-# TERMINATING #-} evalExpr′ : ∀ {A} -> Expr′ A -> A evalExpr′ e = unwrap e id id (suc ∘ evalExpr′) (isZero ∘ evalExpr′) (λ x y -> (evalExpr′ x , evalExpr′ y)) (proj₁ ∘ evalExpr′) (proj₂ ∘ evalExpr′)
{ "alphanum_fraction": 0.541848089, "avg_line_length": 27.56, "ext": "agda", "hexsha": "fea773f2da29b2e175cd7e15ab63abd6c50881d3", "lang": "Agda", "max_forks_count": 399, "max_forks_repo_forks_event_max_datetime": "2022-03-31T11:18:25.000Z", "max_forks_repo_forks_event_min_datetime": "2018-10-05T09:36:10.000Z", "max_forks_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "AriFordsham/plutus", "max_forks_repo_path": "notes/fomega/gadts/Expr.agda", "max_issues_count": 2493, "max_issues_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_issues_repo_issues_event_max_datetime": "2022-03-31T15:31:31.000Z", "max_issues_repo_issues_event_min_datetime": "2018-09-28T19:28:17.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "AriFordsham/plutus", "max_issues_repo_path": "notes/fomega/gadts/Expr.agda", "max_line_length": 104, "max_stars_count": 1299, "max_stars_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "AriFordsham/plutus", "max_stars_repo_path": "notes/fomega/gadts/Expr.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-28T01:10:02.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-02T13:41:39.000Z", "num_tokens": 790, "size": 2067 }
------------------------------------------------------------------------ -- Lists ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Equality module List {reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where open import Prelude open import Bijection eq as Bijection using (_↔_) open Derived-definitions-and-properties eq open import Equality.Decision-procedures eq import Equivalence eq as Eq open import Function-universe eq hiding (_∘_) open import H-level eq as H-level open import H-level.Closure eq open import Monad eq hiding (map) open import Nat eq open import Nat.Solver eq private variable a ℓ : Level A B C : Type a x y : A f : A → B n : ℕ xs ys zs : List A ns : List ℕ ------------------------------------------------------------------------ -- Some functions -- The tail of a list. Returns [] if the list is empty. tail : List A → List A tail [] = [] tail (_ ∷ xs) = xs -- The function take n returns the first n elements of a list (or the -- entire list, if the list does not contain n elements). take : ℕ → List A → List A take zero xs = [] take (suc n) (x ∷ xs) = x ∷ take n xs take (suc n) xs@[] = xs -- The function drop n removes the first n elements from a list (or -- all elements, if the list does not contain n elements). drop : ℕ → List A → List A drop zero xs = xs drop (suc n) (x ∷ xs) = drop n xs drop (suc n) xs@[] = xs -- Right fold. foldr : (A → B → B) → B → List A → B foldr _⊕_ ε [] = ε foldr _⊕_ ε (x ∷ xs) = x ⊕ foldr _⊕_ ε xs -- Left fold. foldl : (B → A → B) → B → List A → B foldl _⊕_ ε [] = ε foldl _⊕_ ε (x ∷ xs) = foldl _⊕_ (ε ⊕ x) xs -- The length of a list. length : List A → ℕ length = foldr (const suc) 0 -- The sum of all the elements in a list of natural numbers. sum : List ℕ → ℕ sum = foldr _+_ 0 -- Appends two lists. infixr 5 _++_ _++_ : List A → List A → List A xs ++ ys = foldr _∷_ ys xs -- Maps a function over a list. map : (A → B) → List A → List B map f = foldr (λ x ys → f x ∷ ys) [] -- Concatenates a list of lists. concat : List (List A) → List A concat = foldr _++_ [] -- "Zips" two lists, using the given function to combine elementsw. zip-with : (A → B → C) → List A → List B → List C zip-with f [] _ = [] zip-with f _ [] = [] zip-with f (x ∷ xs) (y ∷ ys) = f x y ∷ zip-with f xs ys -- "Zips" two lists. zip : List A → List B → List (A × B) zip = zip-with _,_ -- Reverses a list. reverse : List A → List A reverse = foldl (λ xs x → x ∷ xs) [] -- Replicates the given value the given number of times. replicate : ℕ → A → List A replicate zero x = [] replicate (suc n) x = x ∷ replicate n x -- A filter function. filter : (A → Bool) → List A → List A filter p = foldr (λ x xs → if p x then x ∷ xs else xs) [] -- Finds the element at the given position. index : (xs : List A) → Fin (length xs) → A index [] () index (x ∷ xs) fzero = x index (x ∷ xs) (fsuc i) = index xs i -- A lookup function. lookup : (A → A → Bool) → A → List (A × B) → Maybe B lookup _≟_ x [] = nothing lookup _≟_ x ((y , z) ∷ ps) = if x ≟ y then just z else lookup _≟_ x ps -- The list nats-< consists of the first n natural numbers in -- strictly descending order. nats-< : ℕ → List ℕ nats-< zero = [] nats-< (suc n) = n ∷ nats-< n -- A list that includes every tail of the given list (including the -- list itself) exactly once. Longer tails precede shorter ones. tails : List A → List (List A) tails [] = [] ∷ [] tails xxs@(_ ∷ xs) = xxs ∷ tails xs ------------------------------------------------------------------------ -- Some properties -- If you take the first n elements from xs and append what you get if -- you drop the first n elements from xs, then you get xs (even if n -- is larger than the length of xs). take++drop : ∀ n → take n xs ++ drop n xs ≡ xs take++drop zero = refl _ take++drop {xs = []} (suc n) = refl _ take++drop {xs = x ∷ xs} (suc n) = cong (x ∷_) (take++drop n) -- The map function commutes with take n. map-take : map f (take n xs) ≡ take n (map f xs) map-take {n = zero} = refl _ map-take {n = suc n} {xs = []} = refl _ map-take {n = suc n} {xs = x ∷ xs} = cong (_ ∷_) map-take -- The map function commutes with drop n. map-drop : ∀ n → map f (drop n xs) ≡ drop n (map f xs) map-drop zero = refl _ map-drop {xs = []} (suc n) = refl _ map-drop {xs = x ∷ xs} (suc n) = map-drop n -- The function foldr _∷_ [] is pointwise equal to the identity -- function. foldr-∷-[] : (xs : List A) → foldr _∷_ [] xs ≡ xs foldr-∷-[] [] = refl _ foldr-∷-[] (x ∷ xs) = cong (x ∷_) (foldr-∷-[] xs) -- The empty list is a right identity for the append function. ++-right-identity : (xs : List A) → xs ++ [] ≡ xs ++-right-identity [] = refl _ ++-right-identity (x ∷ xs) = cong (x ∷_) (++-right-identity xs) -- The append function is associative. ++-associative : (xs ys zs : List A) → xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs ++-associative [] ys zs = refl _ ++-associative (x ∷ xs) ys zs = cong (x ∷_) (++-associative xs ys zs) -- The map function commutes with _++_. map-++ : (f : A → B) (xs ys : List A) → map f (xs ++ ys) ≡ map f xs ++ map f ys map-++ f [] ys = refl _ map-++ f (x ∷ xs) ys = cong (f x ∷_) (map-++ f xs ys) -- The concat function commutes with _++_. concat-++ : (xss yss : List (List A)) → concat (xss ++ yss) ≡ concat xss ++ concat yss concat-++ [] yss = refl _ concat-++ (xs ∷ xss) yss = concat ((xs ∷ xss) ++ yss) ≡⟨⟩ xs ++ concat (xss ++ yss) ≡⟨ cong (xs ++_) (concat-++ xss yss) ⟩ xs ++ (concat xss ++ concat yss) ≡⟨ ++-associative xs _ _ ⟩ (xs ++ concat xss) ++ concat yss ≡⟨ refl _ ⟩∎ concat (xs ∷ xss) ++ concat yss ∎ -- A lemma relating foldr and _++_. foldr-++ : {c : A → B → B} {n : B} → ∀ xs → foldr c n (xs ++ ys) ≡ foldr c (foldr c n ys) xs foldr-++ [] = refl _ foldr-++ {ys = ys} {c = c} {n = n} (x ∷ xs) = foldr c n (x ∷ xs ++ ys) ≡⟨⟩ c x (foldr c n (xs ++ ys)) ≡⟨ cong (c x) (foldr-++ xs) ⟩ c x (foldr c (foldr c n ys) xs) ≡⟨⟩ foldr c (foldr c n ys) (x ∷ xs) ∎ -- A fusion lemma for foldr and map. foldr∘map : (_⊕_ : B → C → C) (ε : C) (f : A → B) (xs : List A) → (foldr _⊕_ ε ∘ map f) xs ≡ foldr (_⊕_ ∘ f) ε xs foldr∘map _⊕_ ε f [] = ε ∎ foldr∘map _⊕_ ε f (x ∷ xs) = cong (f x ⊕_) (foldr∘map _⊕_ ε f xs) -- A fusion lemma for length and map. length∘map : (f : A → B) (xs : List A) → (length ∘ map f) xs ≡ length xs length∘map = foldr∘map _ _ -- A lemma relating index, map and length∘map. index∘map : ∀ xs {i} → index (map f xs) i ≡ f (index xs (subst Fin (length∘map f xs) i)) index∘map {f = f} (x ∷ xs) {i} = index (f x ∷ map f xs) i ≡⟨ lemma i ⟩ f (index (x ∷ xs) (subst (λ n → ⊤ ⊎ Fin n) p i)) ≡⟨⟩ f (index (x ∷ xs) (subst (Fin ∘ suc) p i)) ≡⟨ cong (f ∘ index (_ ∷ xs)) (subst-∘ Fin suc _) ⟩ f (index (x ∷ xs) (subst Fin (cong suc p) i)) ≡⟨⟩ f (index (x ∷ xs) (subst Fin (length∘map f (x ∷ xs)) i)) ∎ where p = length∘map f xs lemma : ∀ i → index (f x ∷ map f xs) i ≡ f (index (x ∷ xs) (subst (λ n → ⊤ ⊎ Fin n) p i)) lemma fzero = index (f x ∷ map f xs) fzero ≡⟨⟩ f x ≡⟨⟩ f (index (x ∷ xs) fzero) ≡⟨⟩ f (index (x ∷ xs) (inj₁ (subst (λ _ → ⊤) p tt))) ≡⟨ cong (f ∘ index (_ ∷ xs)) $ sym $ push-subst-inj₁ _ Fin ⟩∎ f (index (x ∷ xs) (subst (λ n → ⊤ ⊎ Fin n) p fzero)) ∎ lemma (fsuc i) = index (f x ∷ map f xs) (fsuc i) ≡⟨⟩ index (map f xs) i ≡⟨ index∘map xs ⟩ f (index xs (subst Fin p i)) ≡⟨⟩ f (index (x ∷ xs) (fsuc (subst Fin p i))) ≡⟨ cong (f ∘ index (_ ∷ xs)) $ sym $ push-subst-inj₂ _ Fin ⟩∎ f (index (x ∷ xs) (subst (λ n → ⊤ ⊎ Fin n) p (fsuc i))) ∎ -- The length function is homomorphic with respect to _++_/_+_. length-++ : ∀ xs → length (xs ++ ys) ≡ length xs + length ys length-++ [] = refl _ length-++ (_ ∷ xs) = cong suc (length-++ xs) -- The sum function is homomorphic with respect to _++_/_+_. sum-++ : ∀ ms → sum (ms ++ ns) ≡ sum ms + sum ns sum-++ [] = refl _ sum-++ {ns = ns} (m ∷ ms) = sum (m ∷ ms ++ ns) ≡⟨⟩ m + sum (ms ++ ns) ≡⟨ cong (m +_) $ sum-++ ms ⟩ m + (sum ms + sum ns) ≡⟨ +-assoc m ⟩ (m + sum ms) + sum ns ≡⟨⟩ sum (m ∷ ms) + sum ns ∎ -- Some lemmas related to reverse. ++-reverse : ∀ xs → reverse xs ++ ys ≡ foldl (flip _∷_) ys xs ++-reverse xs = lemma xs where lemma : ∀ xs → foldl (flip _∷_) ys xs ++ zs ≡ foldl (flip _∷_) (ys ++ zs) xs lemma [] = refl _ lemma {ys = ys} {zs = zs} (x ∷ xs) = foldl (flip _∷_) ys (x ∷ xs) ++ zs ≡⟨⟩ foldl (flip _∷_) (x ∷ ys) xs ++ zs ≡⟨ lemma xs ⟩ foldl (flip _∷_) (x ∷ ys ++ zs) xs ≡⟨⟩ foldl (flip _∷_) (ys ++ zs) (x ∷ xs) ∎ reverse-∷ : ∀ xs → reverse (x ∷ xs) ≡ reverse xs ++ x ∷ [] reverse-∷ {x = x} xs = reverse (x ∷ xs) ≡⟨⟩ foldl (flip _∷_) (x ∷ []) xs ≡⟨ sym $ ++-reverse xs ⟩∎ reverse xs ++ x ∷ [] ∎ reverse-++ : ∀ xs → reverse (xs ++ ys) ≡ reverse ys ++ reverse xs reverse-++ {ys = ys} [] = reverse ys ≡⟨ sym $ ++-right-identity _ ⟩∎ reverse ys ++ [] ∎ reverse-++ {ys = ys} (x ∷ xs) = reverse (x ∷ xs ++ ys) ≡⟨ reverse-∷ (xs ++ _) ⟩ reverse (xs ++ ys) ++ x ∷ [] ≡⟨ cong (_++ _) $ reverse-++ xs ⟩ (reverse ys ++ reverse xs) ++ x ∷ [] ≡⟨ sym $ ++-associative (reverse ys) _ _ ⟩ reverse ys ++ (reverse xs ++ x ∷ []) ≡⟨ cong (reverse ys ++_) $ sym $ reverse-∷ xs ⟩∎ reverse ys ++ reverse (x ∷ xs) ∎ reverse-reverse : (xs : List A) → reverse (reverse xs) ≡ xs reverse-reverse [] = refl _ reverse-reverse (x ∷ xs) = reverse (reverse (x ∷ xs)) ≡⟨ cong reverse (reverse-∷ xs) ⟩ reverse (reverse xs ++ x ∷ []) ≡⟨ reverse-++ (reverse xs) ⟩ reverse (x ∷ []) ++ reverse (reverse xs) ≡⟨⟩ x ∷ reverse (reverse xs) ≡⟨ cong (x ∷_) (reverse-reverse xs) ⟩∎ x ∷ xs ∎ map-reverse : ∀ xs → map f (reverse xs) ≡ reverse (map f xs) map-reverse [] = refl _ map-reverse {f = f} (x ∷ xs) = map f (reverse (x ∷ xs)) ≡⟨ cong (map f) $ reverse-∷ xs ⟩ map f (reverse xs ++ x ∷ []) ≡⟨ map-++ _ (reverse xs) _ ⟩ map f (reverse xs) ++ f x ∷ [] ≡⟨ cong (_++ _) $ map-reverse xs ⟩ reverse (map f xs) ++ f x ∷ [] ≡⟨ sym $ reverse-∷ (map f xs) ⟩ reverse (f x ∷ map f xs) ≡⟨⟩ reverse (map f (x ∷ xs)) ∎ foldr-reverse : {c : A → B → B} {n : B} → ∀ xs → foldr c n (reverse xs) ≡ foldl (flip c) n xs foldr-reverse [] = refl _ foldr-reverse {c = c} {n = n} (x ∷ xs) = foldr c n (reverse (x ∷ xs)) ≡⟨ cong (foldr c n) (reverse-++ {ys = xs} (x ∷ [])) ⟩ foldr c n (reverse xs ++ x ∷ []) ≡⟨ foldr-++ (reverse xs) ⟩ foldr c (c x n) (reverse xs) ≡⟨ foldr-reverse xs ⟩ foldl (flip c) (c x n) xs ≡⟨⟩ foldl (flip c) n (x ∷ xs) ∎ foldl-reverse : {c : B → A → B} {n : B} → ∀ xs → foldl c n (reverse xs) ≡ foldr (flip c) n xs foldl-reverse {c = c} {n = n} xs = foldl c n (reverse xs) ≡⟨ sym (foldr-reverse (reverse xs)) ⟩ foldr (flip c) n (reverse (reverse xs)) ≡⟨ cong (foldr (flip c) n) (reverse-reverse xs) ⟩∎ foldr (flip c) n xs ∎ length-reverse : (xs : List A) → length (reverse xs) ≡ length xs length-reverse [] = refl _ length-reverse (x ∷ xs) = length (reverse (x ∷ xs)) ≡⟨ cong length (reverse-∷ xs) ⟩ length (reverse xs ++ x ∷ []) ≡⟨ length-++ (reverse xs) ⟩ length (reverse xs) + 1 ≡⟨ cong (_+ 1) (length-reverse xs) ⟩ length xs + 1 ≡⟨ +-comm (length xs) ⟩∎ length (x ∷ xs) ∎ sum-reverse : ∀ ns → sum (reverse ns) ≡ sum ns sum-reverse [] = refl _ sum-reverse (n ∷ ns) = sum (reverse (n ∷ ns)) ≡⟨ cong sum (reverse-∷ ns) ⟩ sum (reverse ns ++ n ∷ []) ≡⟨ sum-++ (reverse ns) ⟩ sum (reverse ns) + sum (n ∷ []) ≡⟨ cong₂ _+_ (sum-reverse ns) +-right-identity ⟩ sum ns + n ≡⟨ +-comm (sum ns) ⟩∎ sum (n ∷ ns) ∎ -- The functions filter and map commute (kind of). filter∘map : (p : B → Bool) (f : A → B) (xs : List A) → (filter p ∘ map f) xs ≡ (map f ∘ filter (p ∘ f)) xs filter∘map p f [] = refl _ filter∘map p f (x ∷ xs) with p (f x) ... | true = cong (_ ∷_) (filter∘map p f xs) ... | false = filter∘map p f xs -- The length of replicate n x is n. length-replicate : ∀ n → length (replicate n x) ≡ n length-replicate zero = refl _ length-replicate {x = x} (suc n) = length (replicate (suc n) x) ≡⟨⟩ suc (length (replicate n x)) ≡⟨ cong suc $ length-replicate n ⟩∎ suc n ∎ -- The sum of replicate m n is m * n. sum-replicate : ∀ m → sum (replicate m n) ≡ m * n sum-replicate zero = refl _ sum-replicate {n = n} (suc m) = sum (replicate (suc m) n) ≡⟨⟩ n + sum (replicate m n) ≡⟨ cong (n +_) $ sum-replicate m ⟩ n + m * n ≡⟨⟩ suc m * n ∎ -- The length of nats-< n is n. length∘nats-< : ∀ n → length (nats-< n) ≡ n length∘nats-< zero = 0 ∎ length∘nats-< (suc n) = cong suc (length∘nats-< n) -- The sum of nats-< n can be expressed without referring to lists. sum-nats-< : ∀ n → sum (nats-< n) ≡ ⌊ n * pred n /2⌋ sum-nats-< zero = refl _ sum-nats-< (suc zero) = refl _ sum-nats-< (suc (suc n)) = sum (suc n ∷ nats-< (suc n)) ≡⟨⟩ suc n + sum (nats-< (suc n)) ≡⟨ cong (suc n +_) (sum-nats-< (suc n)) ⟩ suc n + ⌊ suc n * n /2⌋ ≡⟨ sym $ ⌊2*+/2⌋≡ (suc n) ⟩ ⌊ 2 * suc n + suc n * n /2⌋ ≡⟨ cong ⌊_/2⌋ (solve 1 (λ n → con 2 :* (con 1 :+ n) :+ (con 1 :+ n) :* n := con 1 :+ n :+ (con 1 :+ n :+ n :* (con 1 :+ n))) (refl _) n) ⟩ ⌊ suc n + (suc n + n * suc n) /2⌋ ≡⟨⟩ ⌊ suc (suc n) * suc n /2⌋ ∎ -- If xs ++ ys is equal to [], then both lists are. ++≡[]→≡[]×≡[] : ∀ xs → xs ++ ys ≡ [] → xs ≡ [] × ys ≡ [] ++≡[]→≡[]×≡[] {ys = []} [] _ = refl _ , refl _ ++≡[]→≡[]×≡[] {ys = _ ∷ _} [] ∷≡[] = ⊥-elim (List.[]≢∷ (sym ∷≡[])) ++≡[]→≡[]×≡[] (_ ∷ _) ∷≡[] = ⊥-elim (List.[]≢∷ (sym ∷≡[])) -- Empty lists are not equal to non-empty lists. []≢++∷ : ∀ xs → [] ≢ xs ++ y ∷ ys []≢++∷ {y = y} {ys = ys} xs = [] ≡ xs ++ y ∷ ys ↝⟨ sym ∘ proj₂ ∘ ++≡[]→≡[]×≡[] xs ∘ sym ⟩ [] ≡ y ∷ ys ↝⟨ List.[]≢∷ ⟩□ ⊥ □ ------------------------------------------------------------------------ -- The list monad instance -- The list monad. raw-monad : Raw-monad (List {a = ℓ}) Raw-monad.return raw-monad x = x ∷ [] Raw-monad._>>=_ raw-monad xs f = concat (map f xs) monad : Monad (List {a = ℓ}) Monad.raw-monad monad = raw-monad Monad.left-identity monad x f = foldr-∷-[] (f x) Monad.right-identity monad xs = lemma xs where lemma : ∀ xs → concat (map (_∷ []) xs) ≡ xs lemma [] = refl _ lemma (x ∷ xs) = concat (map (_∷ []) (x ∷ xs)) ≡⟨⟩ x ∷ concat (map (_∷ []) xs) ≡⟨ cong (x ∷_) (lemma xs) ⟩∎ x ∷ xs ∎ Monad.associativity monad xs f g = lemma xs where lemma : ∀ xs → concat (map (concat ∘ map g ∘ f) xs) ≡ concat (map g (concat (map f xs))) lemma [] = refl _ lemma (x ∷ xs) = concat (map (concat ∘ map g ∘ f) (x ∷ xs)) ≡⟨⟩ concat (map g (f x)) ++ concat (map (concat ∘ map g ∘ f) xs) ≡⟨ cong (concat (map g (f x)) ++_) (lemma xs) ⟩ concat (map g (f x)) ++ concat (map g (concat (map f xs))) ≡⟨ sym $ concat-++ (map g (f x)) _ ⟩ concat (map g (f x) ++ map g (concat (map f xs))) ≡⟨ cong concat (sym $ map-++ g (f x) _) ⟩ concat (map g (f x ++ concat (map f xs))) ≡⟨ refl _ ⟩∎ concat (map g (concat (map f (x ∷ xs)))) ∎ ------------------------------------------------------------------------ -- Some isomorphisms -- An unfolding lemma for List. List↔Maybe[×List] : List A ↔ Maybe (A × List A) List↔Maybe[×List] = record { surjection = record { logical-equivalence = record { to = λ { [] → inj₁ tt; (x ∷ xs) → inj₂ (x , xs) } ; from = [ (λ _ → []) , uncurry _∷_ ] } ; right-inverse-of = [ (λ _ → refl _) , (λ _ → refl _) ] } ; left-inverse-of = λ { [] → refl _; (_ ∷ _) → refl _ } } -- Some isomorphisms related to list equality. []≡[]↔⊤ : [] ≡ ([] ⦂ List A) ↔ ⊤ []≡[]↔⊤ = [] ≡ [] ↔⟨ inverse $ Eq.≃-≡ (Eq.↔⇒≃ List↔Maybe[×List]) ⟩ nothing ≡ nothing ↝⟨ inverse Bijection.≡↔inj₁≡inj₁ ⟩ tt ≡ tt ↝⟨ tt≡tt↔⊤ ⟩□ ⊤ □ []≡∷↔⊥ : [] ≡ x ∷ xs ↔ ⊥ {ℓ = ℓ} []≡∷↔⊥ {x = x} {xs = xs} = [] ≡ x ∷ xs ↔⟨ inverse $ Eq.≃-≡ (Eq.↔⇒≃ List↔Maybe[×List]) ⟩ nothing ≡ just (x , xs) ↝⟨ Bijection.≡↔⊎ ⟩ ⊥ ↝⟨ ⊥↔⊥ ⟩□ ⊥ □ ∷≡[]↔⊥ : x ∷ xs ≡ [] ↔ ⊥ {ℓ = ℓ} ∷≡[]↔⊥ {x = x} {xs = xs} = x ∷ xs ≡ [] ↝⟨ ≡-comm ⟩ [] ≡ x ∷ xs ↝⟨ []≡∷↔⊥ ⟩□ ⊥ □ ∷≡∷↔≡×≡ : x ∷ xs ≡ y ∷ ys ↔ x ≡ y × xs ≡ ys ∷≡∷↔≡×≡ {x = x} {xs = xs} {y = y} {ys = ys} = x ∷ xs ≡ y ∷ ys ↔⟨ inverse $ Eq.≃-≡ (Eq.↔⇒≃ List↔Maybe[×List]) ⟩ just (x , xs) ≡ just (y , ys) ↝⟨ inverse Bijection.≡↔inj₂≡inj₂ ⟩ (x , xs) ≡ (y , ys) ↝⟨ inverse ≡×≡↔≡ ⟩□ x ≡ y × xs ≡ ys □ ------------------------------------------------------------------------ -- H-levels -- If A is inhabited, then List A is not a proposition. ¬-List-propositional : A → ¬ Is-proposition (List A) ¬-List-propositional x h = List.[]≢∷ $ h [] (x ∷ []) -- H-levels greater than or equal to two are closed under List. H-level-List : ∀ n → H-level (2 + n) A → H-level (2 + n) (List A) H-level-List n _ {[]} {[]} = $⟨ ⊤-contractible ⟩ Contractible ⊤ ↝⟨ H-level-cong _ 0 (inverse []≡[]↔⊤) ⟩ Contractible ([] ≡ []) ↝⟨ H-level.mono (zero≤ (1 + n)) ⟩□ H-level (1 + n) ([] ≡ []) □ H-level-List n h {[]} {y ∷ ys} = $⟨ ⊥-propositional ⟩ Is-proposition ⊥₀ ↝⟨ H-level-cong _ 1 (inverse []≡∷↔⊥) ⟩ Is-proposition ([] ≡ y ∷ ys) ↝⟨ H-level.mono (suc≤suc (zero≤ n)) ⟩□ H-level (1 + n) ([] ≡ y ∷ ys) □ H-level-List n h {x ∷ xs} {[]} = $⟨ ⊥-propositional ⟩ Is-proposition ⊥₀ ↝⟨ H-level-cong _ 1 (inverse ∷≡[]↔⊥) ⟩ Is-proposition (x ∷ xs ≡ []) ↝⟨ H-level.mono (suc≤suc (zero≤ n)) ⟩□ H-level (1 + n) (x ∷ xs ≡ []) □ H-level-List n h {x ∷ xs} {y ∷ ys} = H-level-cong _ (1 + n) (inverse ∷≡∷↔≡×≡) (×-closure (1 + n) h (H-level-List n h))
{ "alphanum_fraction": 0.4643319691, "avg_line_length": 34.2859680284, "ext": "agda", "hexsha": "449106820ce15260e69dd6df0c2d6218f11ddef0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/List.agda", "max_line_length": 122, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/List.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 7564, "size": 19303 }
module Optics.Prism where open import Agda.Primitive using (Level; _⊔_; lsuc) open import Data.Product using (_×_; _,_; ∃-syntax; Σ-syntax) open import Data.Sum using (_⊎_; inj₁; inj₂; fromInj₂) open import Data.Empty using (⊥-elim) open import Function.Inverse using (_↔_; inverse) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; module ≡-Reasoning; cong; cong₂; sym) open import Category.Functor.Arr open import Category.Functor.Either open import Category.Profunctor.Star open import Category.Profunctor.Joker open import Category.Choice open import Optics Prism : ∀ {l} (S T A B : Set l) → Set (lsuc l) Prism = Optic ChoiceImp module Prism {l} {S T A B : Set l} (prism : Prism S T A B) where matching : S → A ⊎ T matching = matchingOptic S T A B (starChoice eitherApplicative) prism put : B → T put = putOptic S T A B (jokerChoice arrFunctor) prism record LawfulPrism {l} {S A : Set l} (prism' : Prism S S A A) : Set (lsuc l) where open Prism prism' public prism : Prism S S A A prism = prism' field matchingput : ∀ (a : A) → matching (put a) ≡ inj₁ a putmatching : ∀ (s : S) (a : A) → matching s ≡ inj₁ a → put a ≡ s matchingmatching : ∀ (s t : S) → matching s ≡ inj₂ t → matching t ≡ inj₂ s matchingWithWitness : (s : S) → (Σ[ a ∈ A ] matching s ≡ inj₁ a) ⊎ (Σ[ t ∈ S ] matching s ≡ inj₂ t) matchingWithWitness s with matching s ... | inj₁ a = inj₁ (a , refl) ... | inj₂ t = inj₂ (t , refl) uninjed₁ : ∀ {l₁ l₂} {A : Set l₁} {B : Set l₂} {x x₁ : A} → inj₁ {l₁} {l₂} {A} {B} x ≡ inj₁ {l₁} {l₂} {A} {B} x₁ → x ≡ x₁ uninjed₁ refl = refl uninjed₂ : ∀ {l₁ l₂} {A : Set l₁} {B : Set l₂} {x x₁ : B} → inj₂ {l₁} {l₂} {A} {B} x ≡ inj₂ {l₁} {l₂} {A} {B} x₁ → x ≡ x₁ uninjed₂ refl = refl inj₁≢inj₂ : ∀ {l₁ l₂} {A : Set l₁} {B : Set l₂} {x : A} {x₁ : B} → inj₁ x ≢ inj₂ x₁ inj₁≢inj₂ () prismIso : ∀ {l} {S A : Set l} {prism : Prism S S A A} → (lawful : LawfulPrism prism) → S ↔ (A ⊎ ∃[ s ] ∃[ t ] (Prism.matching prism s ≡ inj₂ t)) prismIso {_} {S} {A} lawful = inverse to from from∘to to∘from where open LawfulPrism lawful to : S → A ⊎ ∃[ s ] ∃[ t ] (matching s ≡ inj₂ t) to s with matchingWithWitness s ... | inj₁ (a , _) = inj₁ a ... | inj₂ (t , w) = inj₂ (s , t , w) from : A ⊎ ∃[ s ] ∃[ t ] (matching s ≡ inj₂ t) → S from (inj₁ x) = put x from (inj₂ (s , t , matchs≡injt)) = s from∘to : (s : S) → from (to s) ≡ s from∘to s with matchingWithWitness s ... | inj₁ (a , w) = putmatching s a w ... | inj₂ (t , _) = refl congΣ : ∀ {l₁ l₂} {T : Set l₁} {cmp : Set l₂} (W : T → cmp) (x : cmp) (t t' : T) (w : x ≡ W t) (w' : x ≡ W t') → t ≡ t' → (t , w) ≡ (t' , w') congΣ _ _ _ _ refl refl refl = refl to∘from : (elem : A ⊎ ∃[ s ] ∃[ t ] (matching s ≡ inj₂ t)) → to (from elem) ≡ elem open ≡-Reasoning to∘from (inj₁ x) with matchingWithWitness (put x) ... | inj₁ ( x₁ , w ) = cong inj₁ (uninjed₁ (inj₁ x₁ ≡⟨ sym w ⟩ matching (put x) ≡⟨ matchingput x ⟩ inj₁ x ∎)) ... | inj₂ ( x₁ , w ) = ⊥-elim (inj₁≢inj₂ (inj₁ x ≡⟨ sym (matchingput x) ⟩ matching (put x) ≡⟨ w ⟩ inj₂ x₁ ∎)) to∘from (inj₂ (s , t , w)) with matchingWithWitness s ... | inj₂ (t₁ , w₁) = cong inj₂ (cong (s ,_) (congΣ (λ tᵢ → inj₂ tᵢ) (matching s) t₁ t w₁ w (uninjed₂ (inj₂ t₁ ≡⟨ sym w₁ ⟩ matching s ≡⟨ w ⟩ inj₂ t ∎)))) ... | inj₁ (a , w₁) = ⊥-elim (inj₁≢inj₂ (inj₁ a ≡⟨ sym w₁ ⟩ matching s ≡⟨ w ⟩ inj₂ t ∎))
{ "alphanum_fraction": 0.5452032071, "avg_line_length": 48.8783783784, "ext": "agda", "hexsha": "c60e475323b217bff434afbe806f4878ca2f8608", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crisoagf/agda-optics", "max_forks_repo_path": "src/Optics/Prism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crisoagf/agda-optics", "max_issues_repo_path": "src/Optics/Prism.agda", "max_line_length": 185, "max_stars_count": null, "max_stars_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crisoagf/agda-optics", "max_stars_repo_path": "src/Optics/Prism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1494, "size": 3617 }
module product-thms where open import eq open import level open import product open import unit open import functions -- this is called the inspect idiom, in the Agda stdlib keep : ∀{ℓ}{A : Set ℓ} → (x : A) → Σ A (λ y → x ≡ y) keep x = ( x , refl ) ,inj : ∀{ℓ ℓ'}{A : Set ℓ}{B : Set ℓ'}{a a' : A}{b b' : B} → (a , b) ≡ (a' , b') → (a ≡ a') ∧ (b ≡ b') ,inj refl = refl , refl eta-× : ∀{ℓ₁ ℓ₂ ℓ₃}{A : Set ℓ₁}{B : Set ℓ₂}{C : Set ℓ₃}{h : A × B → C} → (extensionality {ℓ₁ ⊔ ℓ₂}{ℓ₃}) → (λ c → h (fst c , snd c)) ≡ h eta-× {A = A}{B}{C}{h} ext = ext eta-×-aux where eta-×-aux : ∀{a : Σ A (λ x → B)} → h (fst a , snd a) ≡ h a eta-×-aux {(a , b)} = refl eq-× : ∀{ℓ₁ ℓ₂}{A : Set ℓ₁}{B : Set ℓ₂}{a a' : A}{b b' : B} → a ≡ a' → b ≡ b' → (a , b) ≡ (a' , b') eq-× refl refl = refl twist-×-iso : ∀{ℓ : level}{U V : Set ℓ}{a : U × V} → (twist-× ∘ twist-×) a ≡ id a twist-×-iso {a = u , v} = refl -- This module proves typical isomorphisms about ∧. module ∧-Isos where postulate ext-set : ∀{l1 l2 : level} → extensionality {l1} {l2} ∧-unit-l : ∀{ℓ}{A : Set ℓ} → A → A ∧ (⊤ {ℓ}) ∧-unit-l x = x , triv ∧-unit-r : ∀{ℓ}{A : Set ℓ} → A → ⊤ ∧ A ∧-unit-r x = twist-× (∧-unit-l x) ∧-unit-l-iso : ∀{ℓ}{A : Set ℓ} → Iso A (A ∧ ⊤) ∧-unit-l-iso {_}{A} = isIso ∧-unit-l fst refl (ext-set aux) where aux : {a : A ∧ ⊤} → (fst a , triv) ≡ a aux {x , triv} = refl ∧-unit-r-iso : ∀{ℓ}{A : Set ℓ} → Iso A (⊤ ∧ A) ∧-unit-r-iso {_}{A} = isIso ∧-unit-r snd refl (ext-set aux) where aux : {a : ⊤ ∧ A} → (triv , snd a) ≡ a aux {triv , x} = refl ∧-assoc₁ : ∀{ℓ}{A B C : Set ℓ} → (A ∧ (B ∧ C)) → ((A ∧ B) ∧ C) ∧-assoc₁ (a , b , c) = ((a , b) , c) ∧-assoc₂ : ∀{ℓ}{A B C : Set ℓ} → ((A ∧ B) ∧ C) → (A ∧ (B ∧ C)) ∧-assoc₂ ((a , b) , c) = (a , b , c) ∧-assoc-iso : ∀{ℓ}{A B C : Set ℓ} → Iso (A ∧ (B ∧ C)) ((A ∧ B) ∧ C) ∧-assoc-iso {_}{A}{B}{C} = isIso ∧-assoc₁ ∧-assoc₂ (ext-set aux₁) (ext-set aux₂) where aux₁ : {a : A ∧ (B ∧ C)} → ∧-assoc₂ (∧-assoc₁ a) ≡ a aux₁ {a , (b , c)} = refl aux₂ : {a : (A ∧ B) ∧ C} → ∧-assoc₁ (∧-assoc₂ a) ≡ a aux₂ {(a , b) , c} = refl
{ "alphanum_fraction": 0.4529274005, "avg_line_length": 29.6527777778, "ext": "agda", "hexsha": "f82962f81782fb1827e858e05cc5f0d699b34ab3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "product-thms.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "product-thms.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "product-thms.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1046, "size": 2135 }
{-# OPTIONS --cubical --safe --prop #-} open import Algebra open import Prelude open import Relation.Binary.Equivalence.PropTruncated module Algebra.Construct.Cayley.Propositional {a} (mon : Monoid a) where open Monoid mon record 𝒞 : Type a where constructor cayley infixr 7 _⇓_ field _⇓_ : 𝑆 → 𝑆 small : ∀ x → _⇓_ ε ∙ x ≐ _⇓_ x open 𝒞 public ⟦_⇓⟧ : 𝒞 → 𝑆 ⟦ x ⇓⟧ = x ⇓ ε ⟦_⇑⟧ : 𝑆 → 𝒞 ⟦ x ⇑⟧ ⇓ y = x ∙ y ⟦ x ⇑⟧ .small y = ∣ cong (_∙ y) (∙ε x) ∣ ⓔ : 𝒞 ⓔ ⇓ x = x ⓔ .small x = ∣ ε∙ x ∣ module _ where open Reasoning _⊙_ : 𝒞 → 𝒞 → 𝒞 (x ⊙ y) ⇓ z = x ⇓ y ⇓ z (x ⊙ y) .small z = x ⇓ y ⇓ ε ∙ z ≐˘⟨ ∙cong (_∙ z) (x .small (y ⇓ ε)) ⟩ x ⇓ ε ∙ y ⇓ ε ∙ z ≡⟨ assoc (x ⇓ ε) (y ⇓ ε) z ⟩ x ⇓ ε ∙ (y ⇓ ε ∙ z) ≐⟨ ∙cong (x ⇓ ε ∙_) (y .small z) ⟩ x ⇓ ε ∙ y ⇓ z ≐⟨ x .small (y ⇓ z) ⟩ x ⇓ y ⇓ z ∎ ⊙-assoc : Associative _⊙_ ⊙-assoc x y z = refl ⓔ⊙ : ∀ x → ⓔ ⊙ x ≡ x ⓔ⊙ x = refl ⊙ⓔ : ∀ x → x ⊙ ⓔ ≡ x ⊙ⓔ x = refl cayleyMonoid : Monoid a Monoid.𝑆 cayleyMonoid = 𝒞 Monoid._∙_ cayleyMonoid = _⊙_ Monoid.ε cayleyMonoid = ⓔ Monoid.assoc cayleyMonoid = ⊙-assoc Monoid.ε∙ cayleyMonoid = ⓔ⊙ Monoid.∙ε cayleyMonoid = ⊙ⓔ open import Data.Sigma.Properties open import Relation.Nullary.Stable 𝒞≡ : {x y : 𝒞} → (∀ z → x ⇓ z ≡ y ⇓ z) → x ≡ y 𝒞≡ { f } { cayley g q } f≡g = subst (λ (g′ : 𝑆 → 𝑆) → (q′ : ∀ x → g′ ε ∙ x ≐ g′ x) → f ≡ cayley g′ q′) (funExt f≡g) (λ _ → refl) q ∙-homo : ∀ x y → ⟦ x ∙ y ⇑⟧ ≡ ⟦ x ⇑⟧ ⊙ ⟦ y ⇑⟧ ∙-homo x y = 𝒞≡ (assoc x y) ε-homo : ⟦ ε ⇑⟧ ≡ ⓔ ε-homo = 𝒞≡ ε∙ homo-to : MonoidHomomorphism mon ⟶ cayleyMonoid MonoidHomomorphism_⟶_.f homo-to = ⟦_⇑⟧ MonoidHomomorphism_⟶_.∙-homo homo-to = ∙-homo MonoidHomomorphism_⟶_.ε-homo homo-to = ε-homo ⓔ-homo : ⟦ ⓔ ⇓⟧ ≡ ε ⓔ-homo = refl module _ (sIsStable : ∀ {x y : 𝑆} → Stable (x ≡ y)) where ⊙-homo : ∀ x y → ⟦ x ⊙ y ⇓⟧ ≡ ⟦ x ⇓⟧ ∙ ⟦ y ⇓⟧ ⊙-homo x y = sym (unsquash sIsStable (x .small ⟦ y ⇓⟧)) 𝒞-iso : 𝒞 ⇔ 𝑆 fun 𝒞-iso = ⟦_⇓⟧ inv 𝒞-iso = ⟦_⇑⟧ rightInv 𝒞-iso = ∙ε leftInv 𝒞-iso x = 𝒞≡ λ y → unsquash sIsStable (x .small y) homo-from : MonoidHomomorphism cayleyMonoid ⟶ mon MonoidHomomorphism_⟶_.f homo-from = ⟦_⇓⟧ MonoidHomomorphism_⟶_.∙-homo homo-from = ⊙-homo MonoidHomomorphism_⟶_.ε-homo homo-from = ⓔ-homo
{ "alphanum_fraction": 0.5318202047, "avg_line_length": 23.1649484536, "ext": "agda", "hexsha": "fd14a18395301abbac8171ccf38247c9b07aab4f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Algebra/Construct/Cayley/Propositional.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Algebra/Construct/Cayley/Propositional.agda", "max_line_length": 72, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Algebra/Construct/Cayley/Propositional.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 1279, "size": 2247 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Boolean algebra expressions ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Properties.BooleanAlgebra.Expression {b} (B : BooleanAlgebra b b) where open BooleanAlgebra B open import Category.Applicative import Category.Applicative.Indexed as Applicative open import Category.Monad open import Data.Fin using (Fin) open import Data.Nat open import Data.Product using (_,_; proj₁; proj₂) open import Data.Vec as Vec using (Vec) import Data.Vec.Categorical as VecCat import Function.Identity.Categorical as IdCat open import Data.Vec.Properties using (lookup-map) open import Data.Vec.Relation.Binary.Pointwise.Extensional as PW using (Pointwise; ext) open import Function open import Relation.Binary.PropositionalEquality as P using (_≗_) import Relation.Binary.Reflection as Reflection -- Expressions made up of variables and the operations of a boolean -- algebra. infixr 7 _and_ infixr 6 _or_ data Expr n : Set b where var : (x : Fin n) → Expr n _or_ _and_ : (e₁ e₂ : Expr n) → Expr n not : (e : Expr n) → Expr n top bot : Expr n -- The semantics of an expression, parametrised by an applicative -- functor. module Semantics {F : Set b → Set b} (A : RawApplicative F) where open RawApplicative A ⟦_⟧ : ∀ {n} → Expr n → Vec (F Carrier) n → F Carrier ⟦ var x ⟧ ρ = Vec.lookup ρ x ⟦ e₁ or e₂ ⟧ ρ = pure _∨_ ⊛ ⟦ e₁ ⟧ ρ ⊛ ⟦ e₂ ⟧ ρ ⟦ e₁ and e₂ ⟧ ρ = pure _∧_ ⊛ ⟦ e₁ ⟧ ρ ⊛ ⟦ e₂ ⟧ ρ ⟦ not e ⟧ ρ = pure ¬_ ⊛ ⟦ e ⟧ ρ ⟦ top ⟧ ρ = pure ⊤ ⟦ bot ⟧ ρ = pure ⊥ -- flip Semantics.⟦_⟧ e is natural. module Naturality {F₁ F₂ : Set b → Set b} {A₁ : RawApplicative F₁} {A₂ : RawApplicative F₂} (f : Applicative.Morphism A₁ A₂) where open P.≡-Reasoning open Applicative.Morphism f open Semantics A₁ renaming (⟦_⟧ to ⟦_⟧₁) open Semantics A₂ renaming (⟦_⟧ to ⟦_⟧₂) open RawApplicative A₁ renaming (pure to pure₁; _⊛_ to _⊛₁_) open RawApplicative A₂ renaming (pure to pure₂; _⊛_ to _⊛₂_) natural : ∀ {n} (e : Expr n) → op ∘ ⟦ e ⟧₁ ≗ ⟦ e ⟧₂ ∘ Vec.map op natural (var x) ρ = begin op (Vec.lookup ρ x) ≡⟨ P.sym $ lookup-map x op ρ ⟩ Vec.lookup (Vec.map op ρ) x ∎ natural (e₁ or e₂) ρ = begin op (pure₁ _∨_ ⊛₁ ⟦ e₁ ⟧₁ ρ ⊛₁ ⟦ e₂ ⟧₁ ρ) ≡⟨ op-⊛ _ _ ⟩ op (pure₁ _∨_ ⊛₁ ⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ P.cong₂ _⊛₂_ (op-⊛ _ _) P.refl ⟩ op (pure₁ _∨_) ⊛₂ op (⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ P.cong₂ _⊛₂_ (P.cong₂ _⊛₂_ (op-pure _) (natural e₁ ρ)) (natural e₂ ρ) ⟩ pure₂ _∨_ ⊛₂ ⟦ e₁ ⟧₂ (Vec.map op ρ) ⊛₂ ⟦ e₂ ⟧₂ (Vec.map op ρ) ∎ natural (e₁ and e₂) ρ = begin op (pure₁ _∧_ ⊛₁ ⟦ e₁ ⟧₁ ρ ⊛₁ ⟦ e₂ ⟧₁ ρ) ≡⟨ op-⊛ _ _ ⟩ op (pure₁ _∧_ ⊛₁ ⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ P.cong₂ _⊛₂_ (op-⊛ _ _) P.refl ⟩ op (pure₁ _∧_) ⊛₂ op (⟦ e₁ ⟧₁ ρ) ⊛₂ op (⟦ e₂ ⟧₁ ρ) ≡⟨ P.cong₂ _⊛₂_ (P.cong₂ _⊛₂_ (op-pure _) (natural e₁ ρ)) (natural e₂ ρ) ⟩ pure₂ _∧_ ⊛₂ ⟦ e₁ ⟧₂ (Vec.map op ρ) ⊛₂ ⟦ e₂ ⟧₂ (Vec.map op ρ) ∎ natural (not e) ρ = begin op (pure₁ ¬_ ⊛₁ ⟦ e ⟧₁ ρ) ≡⟨ op-⊛ _ _ ⟩ op (pure₁ ¬_) ⊛₂ op (⟦ e ⟧₁ ρ) ≡⟨ P.cong₂ _⊛₂_ (op-pure _) (natural e ρ) ⟩ pure₂ ¬_ ⊛₂ ⟦ e ⟧₂ (Vec.map op ρ) ∎ natural top ρ = begin op (pure₁ ⊤) ≡⟨ op-pure _ ⟩ pure₂ ⊤ ∎ natural bot ρ = begin op (pure₁ ⊥) ≡⟨ op-pure _ ⟩ pure₂ ⊥ ∎ -- An example of how naturality can be used: Any boolean algebra can -- be lifted, in a pointwise manner, to vectors of carrier elements. lift : ℕ → BooleanAlgebra b b lift n = record { Carrier = Vec Carrier n ; _≈_ = Pointwise _≈_ ; _∨_ = zipWith _∨_ ; _∧_ = zipWith _∧_ ; ¬_ = map ¬_ ; ⊤ = pure ⊤ ; ⊥ = pure ⊥ ; isBooleanAlgebra = record { isDistributiveLattice = record { isLattice = record { isEquivalence = PW.isEquivalence isEquivalence ; ∨-comm = λ _ _ → ext λ i → solve i 2 (λ x y → x or y , y or x) (∨-comm _ _) _ _ ; ∨-assoc = λ _ _ _ → ext λ i → solve i 3 (λ x y z → (x or y) or z , x or (y or z)) (∨-assoc _ _ _) _ _ _ ; ∨-cong = λ xs≈us ys≈vs → ext λ i → solve₁ i 4 (λ x y u v → x or y , u or v) _ _ _ _ (∨-cong (Pointwise.app xs≈us i) (Pointwise.app ys≈vs i)) ; ∧-comm = λ _ _ → ext λ i → solve i 2 (λ x y → x and y , y and x) (∧-comm _ _) _ _ ; ∧-assoc = λ _ _ _ → ext λ i → solve i 3 (λ x y z → (x and y) and z , x and (y and z)) (∧-assoc _ _ _) _ _ _ ; ∧-cong = λ xs≈ys us≈vs → ext λ i → solve₁ i 4 (λ x y u v → x and y , u and v) _ _ _ _ (∧-cong (Pointwise.app xs≈ys i) (Pointwise.app us≈vs i)) ; absorptive = (λ _ _ → ext λ i → solve i 2 (λ x y → x or (x and y) , x) (∨-absorbs-∧ _ _) _ _) , (λ _ _ → ext λ i → solve i 2 (λ x y → x and (x or y) , x) (∧-absorbs-∨ _ _) _ _) } ; ∨-∧-distribʳ = λ _ _ _ → ext λ i → solve i 3 (λ x y z → (y and z) or x , (y or x) and (z or x)) (∨-∧-distribʳ _ _ _) _ _ _ } ; ∨-complementʳ = λ _ → ext λ i → solve i 1 (λ x → x or (not x) , top) (∨-complementʳ _) _ ; ∧-complementʳ = λ _ → ext λ i → solve i 1 (λ x → x and (not x) , bot) (∧-complementʳ _) _ ; ¬-cong = λ xs≈ys → ext λ i → solve₁ i 2 (λ x y → not x , not y) _ _ (¬-cong (Pointwise.app xs≈ys i)) } } where open RawApplicative VecCat.applicative using (pure; zipWith) renaming (_<$>_ to map) ⟦_⟧Id : ∀ {n} → Expr n → Vec Carrier n → Carrier ⟦_⟧Id = Semantics.⟦_⟧ IdCat.applicative ⟦_⟧Vec : ∀ {m n} → Expr n → Vec (Vec Carrier m) n → Vec Carrier m ⟦_⟧Vec = Semantics.⟦_⟧ VecCat.applicative open module R {n} (i : Fin n) = Reflection setoid var (λ e ρ → Vec.lookup (⟦ e ⟧Vec ρ) i) (λ e ρ → ⟦ e ⟧Id (Vec.map (flip Vec.lookup i) ρ)) (λ e ρ → sym $ reflexive $ Naturality.natural (VecCat.lookup-morphism i) e ρ)
{ "alphanum_fraction": 0.4321020113, "avg_line_length": 40.8978494624, "ext": "agda", "hexsha": "c7b993a3d87351aa69afd5b8945dbcf48f71d06d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/BooleanAlgebra/Expression.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/BooleanAlgebra/Expression.agda", "max_line_length": 124, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/BooleanAlgebra/Expression.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2575, "size": 7607 }
module Syntax where open import Agda.Builtin.FromNat public open import Agda.Builtin.FromNeg public record plus-syntax (A : Set) (B : A → Set) (C : ∀ x → B x → Set) : Set where infixl 6 _+_ field _+_ : ∀ x (y : B x) → C x y plus-syntax-simple = λ A B C → plus-syntax A (λ _ → B) (λ _ _ → C) open plus-syntax {{…}} public record minus-syntax (A : Set) (B : A → Set) (C : ∀ x → B x → Set) : Set where infixl 6 _-_ field _-_ : ∀ x (y : B x) → C x y minus-syntax-simple = λ A B C → minus-syntax A (λ _ → B) (λ _ _ → C) open minus-syntax {{…}} public record times-syntax (A : Set) (B : A → Set) (C : ∀ x → B x → Set) : Set where infixl 7 _*_ field _*_ : ∀ x (y : B x) → C x y times-syntax-simple = λ A B C → times-syntax A (λ _ → B) (λ _ _ → C) open times-syntax {{…}} public record raise-syntax (A : Set) (B : A → Set) (C : ∀ x → B x → Set) : Set where infixl 8 _^_ field _^_ : ∀ x (y : B x) → C x y raise-syntax-simple = λ A B C → raise-syntax A (λ _ → B) (λ _ _ → C) open raise-syntax {{…}} public
{ "alphanum_fraction": 0.5668292683, "avg_line_length": 27.7027027027, "ext": "agda", "hexsha": "a7f55503d9d2fd3387fb942ace3f45432122b584", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "kcsmnt0/numbers", "max_forks_repo_path": "src/Syntax.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "kcsmnt0/numbers", "max_issues_repo_path": "src/Syntax.agda", "max_line_length": 77, "max_stars_count": 9, "max_stars_repo_head_hexsha": "67ea7b96228c592daf79e800ebe4a7c12ed7221e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "kcsmnt0/numbers", "max_stars_repo_path": "src/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2020-01-16T07:16:26.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-20T01:29:41.000Z", "num_tokens": 381, "size": 1025 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Lift where open import Level open import Categories.Category open import Categories.Functor using (Functor) liftC : ∀ {o ℓ e} o′ ℓ′ e′ → Category o ℓ e → Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) liftC o′ ℓ′ e′ C = record { Obj = Lift o′ Obj ; _⇒_ = λ X Y → Lift ℓ′ (lower X ⇒ lower Y) ; _≈_ = λ f g → Lift e′ (lower f ≈ lower g) ; id = lift id ; _∘_ = λ f g → lift (lower f ∘ lower g) ; assoc = lift assoc ; sym-assoc = lift sym-assoc ; identityˡ = lift identityˡ ; identityʳ = lift identityʳ ; identity² = lift identity² ; equiv = record { refl = lift Equiv.refl ; sym = λ eq → lift (Equiv.sym (lower eq)) ; trans = λ eq eq′ → lift (Equiv.trans (lower eq) (lower eq′)) } ; ∘-resp-≈ = λ eq eq′ → lift (∘-resp-≈ (lower eq) (lower eq′)) } where open Category C liftF : ∀ {o ℓ e} o′ ℓ′ e′ (C : Category o ℓ e) → Functor C (liftC o′ ℓ′ e′ C) liftF o′ ℓ′ e′ C = record { F₀ = lift ; F₁ = lift ; identity = lift refl ; homomorphism = lift refl ; F-resp-≈ = lift } where open Category C open Equiv unliftF : ∀ {o ℓ e} o′ ℓ′ e′ (C : Category o ℓ e) → Functor (liftC o′ ℓ′ e′ C) C unliftF o′ ℓ′ e′ C = record { F₀ = lower ; F₁ = lower ; identity = refl ; homomorphism = refl ; F-resp-≈ = lower } where open Category C open Equiv
{ "alphanum_fraction": 0.5346938776, "avg_line_length": 28.8235294118, "ext": "agda", "hexsha": "a36534426e01626c52469d74e82d913d6ed9950d", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Lift.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Lift.agda", "max_line_length": 81, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Lift.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 560, "size": 1470 }
module L.Base.Id.Properties where open import L.Base.Id.Core sym : ∀{a} {A : Set a} {x y : A} → x ≡ y → y ≡ x sym {x = x}{y = y} = λ p → J (λ a b _ → b ≡ a) (λ _ → refl) x y p tran : ∀{a} {A : Set a} {x y z : A} → x ≡ y → y ≡ z → x ≡ z tran {x = x}{y = y}{z = z} = λ p → J (λ a b p → b ≡ z → a ≡ z) (λ a q → q) x y p ap : ∀{a b} {A : Set a} {B : Set b} {x y : A} → (f : A → B) → x ≡ y → (f x) ≡ (f y) ap {x = x}{y = y} = λ f p → J (λ a b p → (f a) ≡ (f b)) (λ u → refl) x y p transport : ∀{a b} {A : Set a} {x y : A} → (B : (x : A) → Set b) → x ≡ y → B x → B y transport {x = x}{y = y} = λ B p → J (λ a b p → B a → B b) (λ a q → q) x y p
{ "alphanum_fraction": 0.3761061947, "avg_line_length": 32.2857142857, "ext": "agda", "hexsha": "4637bf04b8f743fd6b1689b03fd3c3f65d08571c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "borszag/smallib", "max_forks_repo_path": "src/L/Base/Id/Properties.agda", "max_issues_count": 10, "max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "borszag/smallib", "max_issues_repo_path": "src/L/Base/Id/Properties.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "borszag/smallib", "max_stars_repo_path": "src/L/Base/Id/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 339, "size": 678 }
module BadInductionRecursion1 where data Unit : Set where unit : Unit mutual data D : Set where d : forall u -> (D′ u -> D′ u) -> D D′ : Unit -> Set D′ unit = D _·_ : D -> D -> D d unit f · x = f x ω : D ω = d unit (\x -> x · x) Ω : D Ω = ω · ω
{ "alphanum_fraction": 0.5018867925, "avg_line_length": 12.0454545455, "ext": "agda", "hexsha": "4bafbfb38a2d9b2565e684c32af7d9bb5bcf4a86", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/BadInductionRecursion1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/BadInductionRecursion1.agda", "max_line_length": 39, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/BadInductionRecursion1.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 112, "size": 265 }
------------------------------------------------------------------------------ -- The FOTC co-inductive natural numbers type ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- N.B. This module is re-exported by FOTC.Data.Conat. -- Adapted from (Sander 1992). module FOTC.Data.Conat.Type where open import FOTC.Base ------------------------------------------------------------------------------ -- The FOTC co-inductive natural numbers type (co-inductive predicate -- for total co-inductive natural) -- Functional for the NatF predicate. -- NatF : (D → Set) → D → Set -- NatF A n = n = zero ∨ (∃[ n' ] n = succ n' ∧ A n') -- Conat is the greatest fixed-point of NatF (by Conat-out and -- Conat-coind). postulate Conat : D → Set -- Conat is a post-fixed point of NatF, i.e. -- -- Conat ≤ NatF Conat. postulate Conat-out : ∀ {n} → Conat n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ Conat n') {-# ATP axiom Conat-out #-} -- Conat is the greatest post-fixed point of NatF, i.e. -- -- ∀ A. A ≤ NatF A ⇒ A ≤ Conat. -- -- N.B. This is an axiom schema. Because in the automatic proofs we -- *must* use an instance, we do not add this postulate as an ATP -- axiom. postulate Conat-coind : (A : D → Set) → -- A is post-fixed point of NatF. (∀ {n} → A n → n ≡ zero ∨ (∃[ n' ] n ≡ succ₁ n' ∧ A n')) → -- Conat is greater than A. ∀ {n} → A n → Conat n ------------------------------------------------------------------------------ -- References -- -- Sander, Herbert P. (1992). A Logic of Functional Programs with an -- Application to Concurrency. PhD thesis. Department of Computer -- Sciences: Chalmers University of Technology and University of -- Gothenburg.
{ "alphanum_fraction": 0.5138150903, "avg_line_length": 31.3666666667, "ext": "agda", "hexsha": "ae7f17ba928dddbcaf58585626f4dd87822f0d26", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Conat/Type.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Conat/Type.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Conat/Type.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 490, "size": 1882 }
module Connectives where -- Imports import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong) open Eq.≡-Reasoning open import Data.Nat using (ℕ) open import Function using (_∘_) -- open import plfa.part1.Isomorphism using (_≃_; _≲_; extensionality) -- open plfa.part1.Isomorphism.≃-Reasoning postulate -- 外延性の公理 extensionality : ∀ {A B : Set} {f g : A → B} → (∀ (x : A) → f x ≡ g x) ----------------------- → f ≡ g -- 同型 infix 0 _≃_ record _≃_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x to∘from : ∀ (y : B) → to (from y) ≡ y open _≃_ ≃-refl : ∀ {A : Set} ----- → A ≃ A ≃-refl = record { to = λ{x → x} ; from = λ{y → y} ; from∘to = λ{x → refl} ; to∘from = λ{y → refl} } ≃-trans : ∀ {A B C : Set} → A ≃ B → B ≃ C ----- → A ≃ C ≃-trans A≃B B≃C = record { to = to B≃C ∘ to A≃B ; from = from A≃B ∘ from B≃C ; from∘to = λ{x → begin (from A≃B ∘ from B≃C) ((to B≃C ∘ to A≃B) x) ≡⟨⟩ from A≃B (from B≃C (to B≃C (to A≃B x))) ≡⟨ cong (from A≃B) (from∘to B≃C (to A≃B x)) ⟩ from A≃B (to A≃B x) ≡⟨ from∘to A≃B x ⟩ x ∎} ; to∘from = λ{y → begin (to B≃C ∘ to A≃B) ((from A≃B ∘ from B≃C) y) ≡⟨⟩ to B≃C (to A≃B (from A≃B (from B≃C y))) ≡⟨ cong (to B≃C) (to∘from A≃B (from B≃C y)) ⟩ to B≃C (from B≃C y) ≡⟨ to∘from B≃C y ⟩ y ∎} } module ≃-Reasoning where infix 1 ≃-begin_ infixr 2 _≃⟨_⟩_ infix 3 _≃-∎ ≃-begin_ : ∀ {A B : Set} → A ≃ B ----- → A ≃ B ≃-begin A≃B = A≃B _≃⟨_⟩_ : ∀ (A : Set) {B C : Set} → A ≃ B → B ≃ C ----- → A ≃ C A ≃⟨ A≃B ⟩ B≃C = ≃-trans A≃B B≃C _≃-∎ : ∀ (A : Set) ----- → A ≃ A A ≃-∎ = ≃-refl open ≃-Reasoning -- 埋め込み infix 0 _≲_ record _≲_ (A B : Set) : Set where field to : A → B from : B → A from∘to : ∀ (x : A) → from (to x) ≡ x open _≲_ -- Conjunction is product -- 直積 data _×_ (A B : Set) : Set where ⟨_,_⟩ : A → B ----- → A × B proj₁ : ∀ {A B : Set} → A × B ----- → A proj₁ ⟨ x , y ⟩ = x proj₂ : ∀ {A B : Set} → A × B ----- → B proj₂ ⟨ x , y ⟩ = y record _×′_ (A B : Set) : Set where field proj₁′ : A proj₂′ : B open _×′_ η-× : ∀ {A B : Set} (w : A × B) → ⟨ proj₁ w , proj₂ w ⟩ ≡ w η-× ⟨ x , y ⟩ = refl infixr 2 _×_ data Bool : Set where true : Bool false : Bool data Tri : Set where aa : Tri bb : Tri cc : Tri ×-count : Bool × Tri → ℕ ×-count ⟨ true , aa ⟩ = 1 ×-count ⟨ true , bb ⟩ = 2 ×-count ⟨ true , cc ⟩ = 3 ×-count ⟨ false , aa ⟩ = 4 ×-count ⟨ false , bb ⟩ = 5 ×-count ⟨ false , cc ⟩ = 6 ×-comm : ∀ {A B : Set} → A × B ≃ B × A ×-comm = record { to = λ{ ⟨ x , y ⟩ → ⟨ y , x ⟩ } ; from = λ{ ⟨ y , x ⟩ → ⟨ x , y ⟩ } ; from∘to = λ{ ⟨ x , y ⟩ → refl } ; to∘from = λ{ ⟨ y , x ⟩ → refl } } ×-assoc : ∀ {A B C : Set} → (A × B) × C ≃ A × (B × C) ×-assoc = record { to = λ{ ⟨ ⟨ x , y ⟩ , z ⟩ → ⟨ x , ⟨ y , z ⟩ ⟩ } ; from = λ{ ⟨ x , ⟨ y , z ⟩ ⟩ → ⟨ ⟨ x , y ⟩ , z ⟩ } ; from∘to = λ{ ⟨ ⟨ x , y ⟩ , z ⟩ → refl } ; to∘from = λ{ ⟨ x , ⟨ y , z ⟩ ⟩ → refl } } -- Truth is unit data ⊤ : Set where tt : -- ⊤ η-⊤ : ∀ (w : ⊤) → tt ≡ w η-⊤ tt = refl ⊤-count : ⊤ → ℕ ⊤-count tt = 1 ⊤-identityˡ : ∀ {A : Set} → ⊤ × A ≃ A ⊤-identityˡ = record { to = λ{ ⟨ tt , x ⟩ → x } ; from = λ{ x → ⟨ tt , x ⟩ } ; from∘to = λ{ ⟨ tt , x ⟩ → refl } ; to∘from = λ{ x → refl } } ⊤-identityʳ : ∀ {A : Set} → (A × ⊤) ≃ A ⊤-identityʳ {A} = ≃-begin (A × ⊤) ≃⟨ ×-comm ⟩ (⊤ × A) ≃⟨ ⊤-identityˡ ⟩ A ≃-∎ -- Disjunction is sum -- 直和 data _⊎_ (A B : Set) : Set where inj₁ : A ----- → A ⊎ B inj₂ : B ----- → A ⊎ B case-⊎ : ∀ {A B C : Set} → (A → C) → (B → C) → A ⊎ B ----------- → C case-⊎ f g (inj₁ x) = f x case-⊎ f g (inj₂ y) = g y η-⊎ : ∀ {A B : Set} (w : A ⊎ B) → case-⊎ inj₁ inj₂ w ≡ w η-⊎ (inj₁ x) = refl η-⊎ (inj₂ y) = refl uniq-⊎ : ∀ {A B C : Set} (h : A ⊎ B → C) (w : A ⊎ B) → case-⊎ (h ∘ inj₁) (h ∘ inj₂) w ≡ h w uniq-⊎ h (inj₁ x) = refl uniq-⊎ h (inj₂ y) = refl infixr 1 _⊎_ ⊎-count : Bool ⊎ Tri → ℕ ⊎-count (inj₁ true) = 1 ⊎-count (inj₁ false) = 2 ⊎-count (inj₂ aa) = 3 ⊎-count (inj₂ bb) = 4 ⊎-count (inj₂ cc) = 5 -- False is empty data ⊥ : Set where -- no clauses! ⊥-elim : ∀ {A : Set} → ⊥ -- → A ⊥-elim () uniq-⊥ : ∀ {C : Set} (h : ⊥ → C) (w : ⊥) → ⊥-elim w ≡ h w uniq-⊥ h () ⊥-count : ⊥ → ℕ ⊥-count () -- Implication is function →-elim : ∀ {A B : Set} → (A → B) → A ------- → B →-elim L M = L M η-→ : ∀ {A B : Set} (f : A → B) → (λ (x : A) → f x) ≡ f η-→ f = refl →-count : (Bool → Tri) → ℕ →-count f with f true | f false ... | aa | aa = 1 ... | aa | bb = 2 ... | aa | cc = 3 ... | bb | aa = 4 ... | bb | bb = 5 ... | bb | cc = 6 ... | cc | aa = 7 ... | cc | bb = 8 ... | cc | cc = 9 currying : ∀ {A B C : Set} → (A → B → C) ≃ (A × B → C) currying = record { to = λ{ f → λ{ ⟨ x , y ⟩ → f x y }} ; from = λ{ g → λ{ x → λ{ y → g ⟨ x , y ⟩ }}} ; from∘to = λ{ f → refl } ; to∘from = λ{ g → extensionality λ{ ⟨ x , y ⟩ → refl }} } →-distrib-⊎ : ∀ {A B C : Set} → (A ⊎ B → C) ≃ ((A → C) × (B → C)) →-distrib-⊎ = record { to = λ{ f → ⟨ f ∘ inj₁ , f ∘ inj₂ ⟩ } ; from = λ{ ⟨ g , h ⟩ → λ{ (inj₁ x) → g x ; (inj₂ y) → h y } } ; from∘to = λ{ f → extensionality λ{ (inj₁ x) → refl ; (inj₂ y) → refl } } ; to∘from = λ{ ⟨ g , h ⟩ → refl } } →-distrib-× : ∀ {A B C : Set} → (A → B × C) ≃ (A → B) × (A → C) →-distrib-× = record { to = λ{ f → ⟨ proj₁ ∘ f , proj₂ ∘ f ⟩ } ; from = λ{ ⟨ g , h ⟩ → λ x → ⟨ g x , h x ⟩ } ; from∘to = λ{ f → extensionality λ{ x → η-× (f x) } } ; to∘from = λ{ ⟨ g , h ⟩ → refl } } -- Distribution ×-distrib-⊎ : ∀ {A B C : Set} → (A ⊎ B) × C ≃ (A × C) ⊎ (B × C) ×-distrib-⊎ = record { to = λ{ ⟨ inj₁ x , z ⟩ → (inj₁ ⟨ x , z ⟩) ; ⟨ inj₂ y , z ⟩ → (inj₂ ⟨ y , z ⟩) } ; from = λ{ (inj₁ ⟨ x , z ⟩) → ⟨ inj₁ x , z ⟩ ; (inj₂ ⟨ y , z ⟩) → ⟨ inj₂ y , z ⟩ } ; from∘to = λ{ ⟨ inj₁ x , z ⟩ → refl ; ⟨ inj₂ y , z ⟩ → refl } ; to∘from = λ{ (inj₁ ⟨ x , z ⟩) → refl ; (inj₂ ⟨ y , z ⟩) → refl } } ⊎-distrib-× : ∀ {A B C : Set} → (A × B) ⊎ C ≲ (A ⊎ C) × (B ⊎ C) ⊎-distrib-× = record { to = λ{ (inj₁ ⟨ x , y ⟩) → ⟨ inj₁ x , inj₁ y ⟩ ; (inj₂ z) → ⟨ inj₂ z , inj₂ z ⟩ } ; from = λ{ ⟨ inj₁ x , inj₁ y ⟩ → (inj₁ ⟨ x , y ⟩) ; ⟨ inj₁ x , inj₂ z ⟩ → (inj₂ z) ; ⟨ inj₂ z , _ ⟩ → (inj₂ z) } ; from∘to = λ{ (inj₁ ⟨ x , y ⟩) → refl ; (inj₂ z) → refl } }
{ "alphanum_fraction": 0.3635863586, "avg_line_length": 20.6005665722, "ext": "agda", "hexsha": "04ebe307bcea6d3d1a57a36fe626da651d02213b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "akiomik/plfa-solutions", "max_forks_repo_path": "part1/connectives/Connectives.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "akiomik/plfa-solutions", "max_issues_repo_path": "part1/connectives/Connectives.agda", "max_line_length": 78, "max_stars_count": 1, "max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "akiomik/plfa-solutions", "max_stars_repo_path": "part1/connectives/Connectives.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z", "num_tokens": 3457, "size": 7272 }
module Numeral.Natural.Oper.Proofs.Order where open import Functional open import Logic open import Logic.Propositional open import Logic.Propositional.Theorems open import Numeral.Natural open import Numeral.Natural.Oper open import Numeral.Natural.Oper.Proofs open import Numeral.Natural.Relation.Order open import Numeral.Natural.Relation.Order.Classical open import Numeral.Natural.Relation.Order.Proofs open import Relator.Equals open import Relator.Equals.Proofs open import Relator.Ordering.Proofs open import Structure.Function.Domain open import Structure.Operator open import Structure.Operator.Properties open import Structure.Relator.Properties open import Syntax.Transitivity [≤]ₗ[+] : ∀{x y : ℕ} → (x + y ≤ x) → (y ≡ 𝟎) [≤]ₗ[+] {𝟎} = [≤][0]ᵣ [≤]ₗ[+] {𝐒(x)}{y} (proof) = [≤]ₗ[+] {x} ([≤]-without-[𝐒] {x + y} {x} (proof)) [≤]-with-[+]ᵣ : ∀{x y z : ℕ} → (x ≤ y) → (x + z ≤ y + z) [≤]-with-[+]ᵣ {_}{_}{𝟎} (proof) = proof [≤]-with-[+]ᵣ {_}{_}{𝐒(z)} (proof) = [≤]-with-[𝐒] ⦃ [≤]-with-[+]ᵣ {_}{_}{z} (proof) ⦄ [≤]-with-[+]ₗ : ∀{x y z : ℕ} → (x ≤ y) → (z + x ≤ z + y) [≤]-with-[+]ₗ {.0} {𝟎} {z } min = reflexivity(_≤_) [≤]-with-[+]ₗ {.0} {𝐒 y} {z} min = [≤]-successor([≤]-with-[+]ₗ {0}{y}{z} [≤]-minimum) [≤]-with-[+]ₗ {𝐒 x} {𝐒 y} {z} (succ xy ) = [≤]-with-[𝐒] ⦃ [≤]-with-[+]ₗ {x} {y} {z} xy ⦄ [≤]-of-[+]ᵣ : ∀{x y : ℕ} → (y ≤ x + y) [≤]-of-[+]ᵣ {x} {𝟎} = [≤]-minimum [≤]-of-[+]ᵣ {𝟎} {𝐒 x} = reflexivity(_≤_) [≤]-of-[+]ᵣ {𝐒 x} {𝐒 y} = [≤]-with-[𝐒] ⦃ [≤]-of-[+]ᵣ {𝐒 x}{y} ⦄ [≤]-of-[+]ₗ : ∀{x y : ℕ} → (x ≤ x + y) [≤]-of-[+]ₗ {𝟎} {y} = [≤]-minimum [≤]-of-[+]ₗ {𝐒 x} {𝟎} = reflexivity(_≤_) [≤]-of-[+]ₗ {𝐒 x} {𝐒 y} = [≤]-with-[𝐒] ⦃ [≤]-of-[+]ₗ {x}{𝐒 y} ⦄ [≤]-with-[+] : ∀{x₁ y₁ : ℕ} → ⦃ _ : (x₁ ≤ y₁)⦄ → ∀{x₂ y₂ : ℕ} → ⦃ _ : (x₂ ≤ y₂)⦄ → (x₁ + x₂ ≤ y₁ + y₂) [≤]-with-[+] {x₁} {y₁} ⦃ x1y1 ⦄ {.0} {y₂} ⦃ min ⦄ = transitivity(_≤_) x1y1 [≤]-of-[+]ₗ [≤]-with-[+] {x₁} {y₁} ⦃ x1y1 ⦄ {𝐒 x₂} {𝐒 y₂} ⦃ succ p ⦄ = succ ([≤]-with-[+] {x₁} {y₁} {x₂} {y₂} ⦃ p ⦄) [≤]-from-[+] : ∀{ℓ}{P : ℕ → Stmt{ℓ}}{x} → (∀{n} → P(x + n)) → (∀{y} → ⦃ _ : (x ≤ y) ⦄ → P(y)) [≤]-from-[+] {ℓ} {P} {𝟎} anpxn {y} ⦃ [≤]-minimum ⦄ = anpxn{y} [≤]-from-[+] {ℓ} {P} {𝐒 x} anpxn {𝐒 y} ⦃ succ xy ⦄ = [≤]-from-[+] {ℓ} {P ∘ 𝐒} {x} anpxn {y} ⦃ xy ⦄ [−₀][+]-nullify2 : ∀{x y} → (x ≤ y) ↔ (x + (y −₀ x) ≡ y) [−₀][+]-nullify2 {x}{y} = [↔]-intro (l{x}{y}) (r{x}{y}) where l : ∀{x y} → (x ≤ y) ← (x + (y −₀ x) ≡ y) l {𝟎} {_} _ = [≤]-minimum l {𝐒(_)}{𝟎} () l {𝐒(x)}{𝐒(y)} proof = [≤]-with-[𝐒] ⦃ l{x}{y} (injective(𝐒) proof) ⦄ r : ∀{x y} → (x ≤ y) → (x + (y −₀ x) ≡ y) r {𝟎} {𝟎} proof = [≡]-intro r {𝟎} {𝐒(_)} proof = [≡]-intro r {𝐒(_)}{𝟎} () r {𝐒(x)}{𝐒(y)} (succ proof) = [≡]-with(𝐒) (r{x}{y} (proof)) [−₀][+]-nullify2ᵣ : ∀{x y} → (x ≤ y) ↔ ((y −₀ x) + x ≡ y) [−₀][+]-nullify2ᵣ {x}{y} = [↔]-transitivity [−₀][+]-nullify2 ([≡]-substitution (commutativity(_+_) {x}{y −₀ x}) {_≡ y}) [−₀]-when-0 : ∀{x y} → (x ≤ y) ↔ (x −₀ y ≡ 𝟎) [−₀]-when-0 {x}{y} = [↔]-intro (l{x}{y}) (r{x}{y}) where l : ∀{x y} → (x ≤ y) ← (x −₀ y ≡ 𝟎) l {𝟎} {_} _ = [≤]-minimum l {𝐒(_)}{𝟎} () l {𝐒(x)}{𝐒(y)} proof = [≤]-with-[𝐒] ⦃ l{x}{y} proof ⦄ r : ∀{x y} → (x ≤ y) → (x −₀ y ≡ 𝟎) r {𝟎} {_} proof = [≡]-intro r {𝐒(_)}{𝟎} () r {𝐒(x)}{𝐒(y)} (succ proof) = r{x}{y} (proof) [−₀]-lesser-[𝐒]ₗ : ∀{x y} → ((x −₀ 𝐒(y)) ≤ (x −₀ y)) [−₀]-lesser-[𝐒]ᵣ : ∀{x y} → ((x −₀ y) ≤ (𝐒(x) −₀ y)) [−₀]-lesser-[𝐒]ₗ {𝟎} {_} = [≤]-minimum [−₀]-lesser-[𝐒]ₗ {𝐒(_)}{𝟎} = [≤]-of-[𝐒] [−₀]-lesser-[𝐒]ₗ {𝐒(x)}{𝐒(y)} = [−₀]-lesser-[𝐒]ᵣ {x}{𝐒(y)} [−₀]-lesser-[𝐒]ᵣ {𝟎} {_} = [≤]-minimum [−₀]-lesser-[𝐒]ᵣ {𝐒(x)}{𝟎} = [≤]-of-[𝐒] [−₀]-lesser-[𝐒]ᵣ {𝐒(x)}{𝐒(y)} = [−₀]-lesser-[𝐒]ₗ {𝐒(x)}{y} [≤][−₀][𝐒]ₗ : ∀{x y} → ((𝐒(x) −₀ y) ≤ 𝐒(x −₀ y)) [≤][−₀][𝐒]ₗ {x} {𝟎} = reflexivity(_≤_) [≤][−₀][𝐒]ₗ {𝟎} {𝐒(y)} = [≤]-minimum [≤][−₀][𝐒]ₗ {𝐒(x)}{𝐒(y)} = [≤][−₀][𝐒]ₗ {x}{y} [−₀][𝐒]ₗ-equality : ∀{x y} → (x ≥ y) ↔ ((𝐒(x) −₀ y) ≡ 𝐒(x −₀ y)) [−₀][𝐒]ₗ-equality = [↔]-intro l r where l : ∀{x y} → (x ≥ y) ← ((𝐒(x) −₀ y) ≡ 𝐒(x −₀ y)) l {𝟎} {𝟎} p = [≤]-minimum l {𝐒 x} {𝟎} p = [≤]-minimum l {𝐒 x} {𝐒 y} p = [≤]-with-[𝐒] ⦃ l{x}{y} p ⦄ r : ∀{x y} → (x ≥ y) → ((𝐒(x) −₀ y) ≡ 𝐒(x −₀ y)) r {x} {.𝟎} min = [≡]-intro r {𝐒 x} {𝐒 y} (succ xy) = r xy [−₀]-lesser : ∀{x y} → ((x −₀ y) ≤ x) [−₀]-lesser {𝟎} {_} = [≤]-minimum [−₀]-lesser {𝐒(x)}{𝟎} = reflexivity(_≤_) [−₀]-lesser {𝐒(x)}{𝐒(y)} = ([−₀]-lesser-[𝐒]ₗ {𝐒(x)}{y}) 🝖 ([−₀]-lesser {𝐒(x)}{y}) -- TODO: Converse is probably also true. One way to prove the equivalence is contraposition of [−₀]-comparison. Another is by [≤]-with-[+]ᵣ and some other stuff, but it seems to require more work [−₀]-positive : ∀{x y} → (y > x) → (y −₀ x > 0) [−₀]-positive {𝟎} {𝐒(y)} _ = [≤]-with-[𝐒] ⦃ [≤]-minimum ⦄ [−₀]-positive {𝐒(x)}{𝐒(y)} (succ p) = [−₀]-positive {x}{y} p [−₀]-nested-sameₗ : ∀{x y} → (x ≥ y) ↔ (x −₀ (x −₀ y) ≡ y) [−₀]-nested-sameₗ {x}{y} = [↔]-intro (l{x}{y}) (r{x}{y}) where l : ∀{x y} → (x ≥ y) ← (x −₀ (x −₀ y) ≡ y) l {x}{y} proof = y 🝖[ _≤_ ]-[ [≡]-to-[≤] (symmetry(_≡_) proof) ] x −₀ (x −₀ y) 🝖[ _≤_ ]-[ [−₀]-lesser {x}{x −₀ y} ] x 🝖[ _≤_ ]-end r : ∀{x y} → (x ≥ y) → (x −₀ (x −₀ y) ≡ y) r{x}{y} x≥y = x −₀ (x −₀ y) 🝖[ _≡_ ]-[ [≡]-with(_−₀ (x −₀ y)) (symmetry(_≡_) ([↔]-to-[→] ([−₀][+]-nullify2 {y}{x}) (x≥y)) 🝖 commutativity(_+_) {y}{x −₀ y}) ] ((x −₀ y) + y) −₀ (x −₀ y) 🝖[ _≡_ ]-[ [−₀]ₗ[+]ₗ-nullify {x −₀ y}{y} ] y 🝖-end [+][−₀]-almost-associativity : ∀{x y z} → (y ≥ z) → ((x + y) −₀ z ≡ x + (y −₀ z)) [+][−₀]-almost-associativity {x} {y} {.𝟎} min = [≡]-intro [+][−₀]-almost-associativity {x} {𝐒 y} {𝐒 z} (succ p) = [+][−₀]-almost-associativity {x}{y}{z} p [−₀][𝄩]-equality-condition : ∀{x y} → (x ≥ y) ↔ (x −₀ y ≡ x 𝄩 y) [−₀][𝄩]-equality-condition = [↔]-intro l r where l : ∀{x y} → (x ≥ y) ← (x −₀ y ≡ x 𝄩 y) l {_} {𝟎} _ = min l {𝐒 x} {𝐒 y} p = succ(l p) r : ∀{x y} → (x ≥ y) → (x −₀ y ≡ x 𝄩 y) r min = [≡]-intro r (succ p) = r p [𝄩]-intro-by[−₀] : ∀{ℓ}{P : ℕ → TYPE(ℓ)} → ∀{x y} → P(x −₀ y) → P(y −₀ x) → P(x 𝄩 y) [𝄩]-intro-by[−₀] {x = x}{y = y} p1 p2 with [≤][>]-dichotomy {x}{y} ... | [∨]-introₗ le rewrite [↔]-to-[→] [−₀][𝄩]-equality-condition le rewrite commutativity(_𝄩_) {x}{y} = p2 ... | [∨]-introᵣ gt rewrite [↔]-to-[→] [−₀][𝄩]-equality-condition ([≤]-predecessor gt) = p1 [𝄩]-of-𝐒ₗ : ∀{x y} → (x ≥ y) → (𝐒(x) 𝄩 y ≡ 𝐒(x 𝄩 y)) [𝄩]-of-𝐒ₗ {𝟎} {𝟎} = const [≡]-intro [𝄩]-of-𝐒ₗ {𝐒 x} {𝟎} = const [≡]-intro [𝄩]-of-𝐒ₗ {𝐒 x} {𝐒 y} = [𝄩]-of-𝐒ₗ {x} {y} ∘ [≤]-without-[𝐒] [𝄩]-of-𝐒ᵣ : ∀{x y} → (x ≤ y) → (x 𝄩 𝐒(y) ≡ 𝐒(x 𝄩 y)) [𝄩]-of-𝐒ᵣ {𝟎} {𝟎} = const [≡]-intro [𝄩]-of-𝐒ᵣ {𝟎} {𝐒 y} = const [≡]-intro [𝄩]-of-𝐒ᵣ {𝐒 x} {𝐒 y} = [𝄩]-of-𝐒ᵣ {x} {y} ∘ [≤]-without-[𝐒] [<]-with-[+]ᵣ : ∀{x y z} → (x < y) → (x + z < y + z) [<]-with-[+]ᵣ = [≤]-with-[+]ᵣ [<]-with-[+]ₗ : ∀{x y z} → (y < z) → (x + y < x + z) [<]-with-[+]ₗ {x}{y}{z} = [≤]-with-[+]ₗ {𝐒 y}{z}{x} [<]-with-[+]-weak : ∀{x₁ x₂ y₁ y₂} → ((x₁ ≤ x₂) ∧ (y₁ < y₂)) ∨ ((x₁ < x₂) ∧ (y₁ ≤ y₂)) → (x₁ + y₁ < x₂ + y₂) [<]-with-[+]-weak ([∨]-introₗ ([∧]-intro x12 y12)) = [≤]-with-[+] ⦃ x12 ⦄ ⦃ y12 ⦄ [<]-with-[+]-weak ([∨]-introᵣ ([∧]-intro x12 y12)) = [≤]-with-[+] ⦃ x12 ⦄ ⦃ y12 ⦄ [<]-with-[+] : ∀{x₁ x₂ y₁ y₂} → (x₁ < x₂) → (y₁ < y₂) → (x₁ + y₁ < x₂ + y₂) [<]-with-[+] x12 y12 = [≤]-predecessor ([≤]-with-[+] ⦃ x12 ⦄ ⦃ y12 ⦄) [≤]-with-[⋅]ᵣ : ∀{a b c} → (a ≤ b) → ((a ⋅ c) ≤ (b ⋅ c)) [≤]-with-[⋅]ᵣ {c = 𝟎} _ = [≤]-minimum [≤]-with-[⋅]ᵣ {c = 𝐒 c} ab = [≤]-with-[+] ⦃ ab ⦄ ⦃ [≤]-with-[⋅]ᵣ {c = c} ab ⦄ [≤]-with-[⋅]ₗ : ∀{a b c} → (b ≤ c) → ((a ⋅ b) ≤ (a ⋅ c)) [≤]-with-[⋅]ₗ {a}{b}{c} rewrite commutativity(_⋅_) {a}{b} rewrite commutativity(_⋅_) {a}{c} = [≤]-with-[⋅]ᵣ {c = a} [<]-with-[⋅]ᵣ : ∀{a b c} → (a < b) → ((a ⋅ 𝐒(c)) < (b ⋅ 𝐒(c))) [<]-with-[⋅]ᵣ {c = 𝟎} = id [<]-with-[⋅]ᵣ {c = 𝐒 c} = [<]-with-[+] ∘ₛ [<]-with-[⋅]ᵣ {c = c} [<]-with-[⋅]ₗ : ∀{a b c} → (b < c) → ((𝐒(a) ⋅ b) < (𝐒(a) ⋅ c)) [<]-with-[⋅]ₗ {a}{b}{c} rewrite commutativity(_⋅_) {𝐒(a)}{b} rewrite commutativity(_⋅_) {𝐒(a)}{c} = [<]-with-[⋅]ᵣ {c = a} [⋅]ᵣ-growing : ∀{n c} → (1 ≤ c) → (n ≤ (c ⋅ n)) [⋅]ᵣ-growing {n}{𝐒 c} = [≤]-with-[⋅]ᵣ {1}{𝐒(c)}{n} [⋅]ᵣ-strictly-growing : ∀{n c} → (2 ≤ c) → (𝐒(n) < (c ⋅ 𝐒(n))) [⋅]ᵣ-strictly-growing {n} {1} (succ()) [⋅]ᵣ-strictly-growing {n} {𝐒(𝐒 c)} = [<]-with-[⋅]ᵣ {1}{𝐒(𝐒(c))}{n} [^]-positive : ∀{a b} → ((𝐒(a) ^ b) > 0) [^]-positive {a}{𝟎} = reflexivity(_≤_) [^]-positive {a}{𝐒 b} = 𝐒(a) ^ 𝐒(b) 🝖[ _≥_ ]-[] 𝐒(a) ⋅ (𝐒(a) ^ b) 🝖[ _≥_ ]-[ [<]-with-[⋅]ₗ {a} ([^]-positive {a}{b}) ] 𝐒(𝐒(a) ⋅ 0) 🝖[ _≥_ ]-[ succ min ] 1 🝖[ _≥_ ]-end [^]ₗ-strictly-growing : ∀{n a b} → (a < b) → ((𝐒(𝐒(n)) ^ a) < (𝐒(𝐒(n)) ^ b)) [^]ₗ-strictly-growing {n} {𝟎} {.(𝐒 b)} (succ {y = b} p) = [≤]-with-[+]ᵣ [≤]-minimum 🝖 [≤]-with-[⋅]ₗ {𝐒(𝐒(n))}{1}{𝐒(𝐒(n)) ^ b} ([^]-positive {𝐒(n)}{b}) [^]ₗ-strictly-growing {n} {𝐒 a} {.(𝐒 b)} (succ {y = b} p) = [<]-with-[⋅]ₗ {𝐒(n)} ([^]ₗ-strictly-growing {n}{a}{b} p) [^]ₗ-growing : ∀{n a b} → ¬((n ≡ 𝟎) ∧ (a ≡ 𝟎)) → (a ≤ b) → ((n ^ a) ≤ (n ^ b)) [^]ₗ-growing {𝟎} {𝟎} {_} p _ with () ← p([∧]-intro [≡]-intro [≡]-intro) [^]ₗ-growing {𝟎} {𝐒 a} {𝐒 b} _ _ = min [^]ₗ-growing {𝐒 𝟎}{a} {b} _ _ rewrite [^]-of-𝟏ₗ {a} rewrite [^]-of-𝟏ₗ {b} = succ min [^]ₗ-growing {𝐒 (𝐒 n)}{a}{b} _ ab with [≤]-to-[<][≡] ab ... | [∨]-introₗ p = sub₂(_<_)(_≤_) ([^]ₗ-strictly-growing {n}{a}{b} p) ... | [∨]-introᵣ [≡]-intro = reflexivity(_≤_)
{ "alphanum_fraction": 0.413803938, "avg_line_length": 41.8771929825, "ext": "agda", "hexsha": "ee1219792e265b4ce20938a5baf1c291fd7817d0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Numeral/Natural/Oper/Proofs/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Numeral/Natural/Oper/Proofs/Order.agda", "max_line_length": 195, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Numeral/Natural/Oper/Proofs/Order.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 5789, "size": 9548 }
{-# OPTIONS --without-K #-} module Pi1 where open import Data.List open import Data.Nat open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Relation.Binary.PropositionalEquality open ≡-Reasoning open import Groupoid infix 2 _□ infixr 2 _⟷⟨_⟩_ infix 2 _▤ infixr 2 _⇔⟨_⟩_ infixr 10 _◎_ infix 30 _⟷_ infix 4 _∼_ -- homotopy between two paths infix 4 _≃_ -- type of equivalences -- Work on ch. on sets and n-levels and n=-2 and n=-1 -- then work on ch. on equivalences -- then go back to functions are functors; type families are fibrations -- then work on int construction -- then work on example from popl ------------------------------------------------------------------------------ -- Level 0: -- Types at this level are just plain sets with no interesting path structure. -- The path structure is defined at levels 1 and beyond. data U : Set where ZERO : U ONE : U PLUS : U → U → U TIMES : U → U → U ⟦_⟧ : U → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ -- Programs -- We use pointed types; programs are "fibers" from functions that map a -- pointed type to another. In other words, each program takes one particular -- value to another; if we want to work on another value, we generally use -- another program. -- -- We can recover a regular function by collecting all the fibers that -- compose to the identity permutation. record U• : Set where constructor •[_,_] field ∣_∣ : U • : ⟦ ∣_∣ ⟧ open U• -- examples of plain types, values, and pointed types ZERO• : {absurd : ⟦ ZERO ⟧} → U• ZERO• {absurd} = •[ ZERO , absurd ] ONE• : U• ONE• = •[ ONE , tt ] BOOL : U BOOL = PLUS ONE ONE BOOL² : U BOOL² = TIMES BOOL BOOL TRUE : ⟦ BOOL ⟧ TRUE = inj₁ tt FALSE : ⟦ BOOL ⟧ FALSE = inj₂ tt BOOL•F : U• BOOL•F = •[ BOOL , FALSE ] BOOL•T : U• BOOL•T = •[ BOOL , TRUE ] -- The actual programs are the commutative semiring isomorphisms between -- pointed types. data _⟷_ : U• → U• → Set where unite₊ : ∀ {t v} → •[ PLUS ZERO t , inj₂ v ] ⟷ •[ t , v ] uniti₊ : ∀ {t v} → •[ t , v ] ⟷ •[ PLUS ZERO t , inj₂ v ] swap1₊ : ∀ {t₁ t₂ v₁} → •[ PLUS t₁ t₂ , inj₁ v₁ ] ⟷ •[ PLUS t₂ t₁ , inj₂ v₁ ] swap2₊ : ∀ {t₁ t₂ v₂} → •[ PLUS t₁ t₂ , inj₂ v₂ ] ⟷ •[ PLUS t₂ t₁ , inj₁ v₂ ] assocl1₊ : ∀ {t₁ t₂ t₃ v₁} → •[ PLUS t₁ (PLUS t₂ t₃) , inj₁ v₁ ] ⟷ •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ] assocl2₊ : ∀ {t₁ t₂ t₃ v₂} → •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₁ v₂) ] ⟷ •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ] assocl3₊ : ∀ {t₁ t₂ t₃ v₃} → •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₂ v₃) ] ⟷ •[ PLUS (PLUS t₁ t₂) t₃ , inj₂ v₃ ] assocr1₊ : ∀ {t₁ t₂ t₃ v₁} → •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ] ⟷ •[ PLUS t₁ (PLUS t₂ t₃) , inj₁ v₁ ] assocr2₊ : ∀ {t₁ t₂ t₃ v₂} → •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ] ⟷ •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₁ v₂) ] assocr3₊ : ∀ {t₁ t₂ t₃ v₃} → •[ PLUS (PLUS t₁ t₂) t₃ , inj₂ v₃ ] ⟷ •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₂ v₃) ] unite⋆ : ∀ {t v} → •[ TIMES ONE t , (tt , v) ] ⟷ •[ t , v ] uniti⋆ : ∀ {t v} → •[ t , v ] ⟷ •[ TIMES ONE t , (tt , v) ] swap⋆ : ∀ {t₁ t₂ v₁ v₂} → •[ TIMES t₁ t₂ , (v₁ , v₂) ] ⟷ •[ TIMES t₂ t₁ , (v₂ , v₁) ] assocl⋆ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → •[ TIMES t₁ (TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ] ⟷ •[ TIMES (TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ] assocr⋆ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → •[ TIMES (TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ] ⟷ •[ TIMES t₁ (TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ] distz : ∀ {t v absurd} → •[ TIMES ZERO t , (absurd , v) ] ⟷ •[ ZERO , absurd ] factorz : ∀ {t v absurd} → •[ ZERO , absurd ] ⟷ •[ TIMES ZERO t , (absurd , v) ] dist1 : ∀ {t₁ t₂ t₃ v₁ v₃} → •[ TIMES (PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ] ⟷ •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₁ (v₁ , v₃) ] dist2 : ∀ {t₁ t₂ t₃ v₂ v₃} → •[ TIMES (PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ] ⟷ •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₂ (v₂ , v₃) ] factor1 : ∀ {t₁ t₂ t₃ v₁ v₃} → •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₁ (v₁ , v₃) ] ⟷ •[ TIMES (PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ] factor2 : ∀ {t₁ t₂ t₃ v₂ v₃} → •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₂ (v₂ , v₃) ] ⟷ •[ TIMES (PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ] id⟷ : ∀ {t v} → •[ t , v ] ⟷ •[ t , v ] _◎_ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → (•[ t₁ , v₁ ] ⟷ •[ t₂ , v₂ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₃ , v₃ ]) → (•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) ⊕1 : ∀ {t₁ t₂ t₃ t₄ v₁ v₃} → (•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) → (•[ PLUS t₁ t₂ , inj₁ v₁ ] ⟷ •[ PLUS t₃ t₄ , inj₁ v₃ ]) ⊕2 : ∀ {t₁ t₂ t₃ t₄ v₂ v₄} → (•[ t₂ , v₂ ] ⟷ •[ t₄ , v₄ ]) → (•[ PLUS t₁ t₂ , inj₂ v₂ ] ⟷ •[ PLUS t₃ t₄ , inj₂ v₄ ]) _⊗_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} → (•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₄ , v₄ ]) → (•[ TIMES t₁ t₂ , (v₁ , v₂) ] ⟷ •[ TIMES t₃ t₄ , (v₃ , v₄) ]) -- Nicer syntax that shows intermediate values instead of point-free -- combinators _⟷⟨_⟩_ : (t₁ : U•) {t₂ : U•} {t₃ : U•} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _ ⟷⟨ α ⟩ β = α ◎ β _□ : (t : U•) → {t : U•} → (t ⟷ t) _□ t = id⟷ -- trace -- first every combinator (t + t1) <-> (t + t2) can be decomposed into -- four relations (or injective partial functions): -- r11 : t1 -> t2 -- r12 : t1 -> t -- r21 : t -> t2 -- r22 : t -> t -- c = r11 ∪ (r12 ◎ r22⋆ ◎ r21) eval : ∀ {t₁ t₂ v₁ v₂} → (•[ t₁ , v₁ ] ⟷ •[ t₂ , v₂ ]) → List U• eval {t₁ = ZERO} {v₁ = ()} _ eval {t₂ = ZERO} {v₂ = ()} _ eval {t} {PLUS .ZERO .t} {v} {inj₂ .v} uniti₊ = •[ t , v ] ∷ •[ PLUS ZERO t , inj₂ v ] ∷ [] eval {PLUS .ZERO .t} {t} {inj₂ .v} {v} unite₊ = •[ PLUS ZERO t , inj₂ v ] ∷ •[ t , v ] ∷ [] eval {PLUS t₁ t₂} {PLUS .t₂ .t₁} {inj₁ v₁} {inj₂ .v₁} swap1₊ = •[ PLUS t₁ t₂ , inj₁ v₁ ] ∷ •[ PLUS t₂ t₁ , inj₂ v₁ ] ∷ [] eval {PLUS t₁ t₂} {PLUS .t₂ .t₁} {inj₂ v₂} {inj₁ .v₂} swap2₊ = •[ PLUS t₁ t₂ , inj₂ v₂ ] ∷ •[ PLUS t₂ t₁ , inj₁ v₂ ] ∷ [] eval {PLUS t₁ (PLUS t₂ t₃)} {PLUS (PLUS .t₁ .t₂) .t₃} {inj₁ v₁} {inj₁ (inj₁ .v₁)} assocl1₊ = •[ PLUS t₁ (PLUS t₂ t₃) , inj₁ v₁ ] ∷ •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ] ∷ [] eval {PLUS t₁ (PLUS t₂ t₃)} {PLUS (PLUS .t₁ .t₂) .t₃} {inj₂ (inj₁ v₂)} {inj₁ (inj₂ .v₂)} assocl2₊ = •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₁ v₂) ] ∷ •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ] ∷ [] eval {PLUS t₁ (PLUS t₂ t₃)} {PLUS (PLUS .t₁ .t₂) .t₃} {inj₂ (inj₂ v₃)} {inj₂ .v₃} assocl3₊ = •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₂ v₃) ] ∷ •[ PLUS (PLUS t₁ t₂) t₃ , inj₂ v₃ ] ∷ [] eval {PLUS (PLUS .t₁ .t₂) .t₃} {PLUS t₁ (PLUS t₂ t₃)} {inj₁ (inj₁ .v₁)} {inj₁ v₁} assocr1₊ = •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ] ∷ •[ PLUS t₁ (PLUS t₂ t₃) , inj₁ v₁ ] ∷ [] eval {PLUS (PLUS .t₁ .t₂) .t₃} {PLUS t₁ (PLUS t₂ t₃)} {inj₁ (inj₂ .v₂)} {inj₂ (inj₁ v₂)} assocr2₊ = •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ] ∷ •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₁ v₂) ] ∷ [] eval {PLUS (PLUS .t₁ .t₂) .t₃} {PLUS t₁ (PLUS t₂ t₃)} {inj₂ .v₃} {inj₂ (inj₂ v₃)} assocr3₊ = •[ PLUS (PLUS t₁ t₂) t₃ , inj₂ v₃ ] ∷ •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₂ v₃) ] ∷ [] eval {t} {TIMES .ONE .t} {v} {(tt , .v)} uniti⋆ = •[ t , v ] ∷ •[ TIMES ONE t , (tt , v) ] ∷ [] eval {TIMES .ONE .t} {t} {(tt , .v)} {v} unite⋆ = •[ TIMES ONE t , (tt , v) ] ∷ •[ t , v ] ∷ [] eval {TIMES t₁ t₂} {TIMES .t₂ .t₁} {(v₁ , v₂)} {(.v₂ , .v₁)} swap⋆ = •[ TIMES t₁ t₂ , (v₁ , v₂) ] ∷ •[ TIMES t₂ t₁ , (v₂ , v₁) ] ∷ [] eval {TIMES t₁ (TIMES t₂ t₃)} {TIMES (TIMES .t₁ .t₂) .t₃} {(v₁ , (v₂ , v₃))} {((.v₁ , .v₂) , .v₃)} assocl⋆ = •[ TIMES t₁ (TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ] ∷ •[ TIMES (TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ] ∷ [] eval {TIMES (TIMES .t₁ .t₂) .t₃} {TIMES t₁ (TIMES t₂ t₃)} {((.v₁ , .v₂) , .v₃)} {(v₁ , (v₂ , v₃))} assocr⋆ = •[ TIMES (TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ] ∷ •[ TIMES t₁ (TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ] ∷ [] eval {TIMES (PLUS t₁ t₂) t₃} {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} {(inj₁ v₁ , v₃)} {inj₁ (.v₁ , .v₃)} dist1 = •[ TIMES (PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ] ∷ •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₁ (v₁ , v₃) ] ∷ [] eval {TIMES (PLUS t₁ t₂) t₃} {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} {(inj₂ v₂ , v₃)} {inj₂ (.v₂ , .v₃)} dist2 = •[ TIMES (PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ] ∷ •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₂ (v₂ , v₃) ] ∷ [] eval {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} {TIMES (PLUS t₁ t₂) t₃} {inj₁ (.v₁ , .v₃)} {(inj₁ v₁ , v₃)} factor1 = •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₁ (v₁ , v₃) ] ∷ •[ TIMES (PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ] ∷ [] eval {PLUS (TIMES .t₁ .t₃) (TIMES .t₂ .t₃)} {TIMES (PLUS t₁ t₂) t₃} {inj₂ (.v₂ , .v₃)} {(inj₂ v₂ , v₃)} factor2 = •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₂ (v₂ , v₃) ] ∷ •[ TIMES (PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ] ∷ [] eval {t} {.t} {v} {.v} id⟷ = •[ t , v ] ∷ •[ t , v ] ∷ [] eval {t₁} {t₃} {v₁} {v₃} (_◎_ {t₂ = t₂} {v₂ = v₂} c₁ c₂) = eval {t₁} {t₂} {v₁} {v₂} c₁ ++ eval {t₂} {t₃} {v₂} {v₃} c₂ eval {PLUS t₁ t₂} {PLUS t₃ t₄} {inj₁ v₁} {inj₁ v₃} (⊕1 c) = eval {t₁} {t₃} {v₁} {v₃} c -- tag eval {PLUS t₁ t₂} {PLUS t₃ t₄} {inj₂ v₂} {inj₂ v₄} (⊕2 c) = eval {t₂} {t₄} {v₂} {v₄} c -- tag eval {TIMES t₁ t₂} {TIMES t₃ t₄} {(v₁ , v₂)} {(v₃ , v₄)} (c₁ ⊗ c₂) = (eval {t₁} {t₃} {v₁} {v₃} c₁) ++ (eval {t₂} {t₄} {v₂} {v₄} c₂) -- zip test = eval (•[ BOOL² , (TRUE , TRUE) ] ⟷⟨ dist1 ⟩ •[ PLUS (TIMES ONE BOOL) (TIMES ONE BOOL) , inj₁ (tt , TRUE) ] ⟷⟨ ⊕1 (id⟷ ⊗ swap1₊)⟩ •[ PLUS (TIMES ONE BOOL) (TIMES ONE BOOL) , inj₁ (tt , FALSE) ] ⟷⟨ factor1 ⟩ •[ BOOL² , (TRUE , FALSE) ] □) -- The above are "fibers". We collect the fibers into functions. data SWAP₊ {t₁ t₂ v₁ v₂} : (•[ PLUS t₁ t₂ , inj₁ v₁ ] ⟷ •[ PLUS t₂ t₁ , inj₂ v₁ ]) → (•[ PLUS t₁ t₂ , inj₂ v₂ ] ⟷ •[ PLUS t₂ t₁ , inj₁ v₂ ]) → Set where swap₊ : SWAP₊ swap1₊ swap2₊ Fun : (t₁ t₂ : U) → Set Fun t₁ t₂ = (v₁ : ⟦ t₁ ⟧) → Σ[ v₂ ∈ ⟦ t₂ ⟧ ] (•[ t₁ , v₁ ] ⟷ •[ t₂ , v₂ ]) NOT : Fun BOOL BOOL NOT (inj₁ tt) = (FALSE , swap1₊) NOT (inj₂ tt) = (TRUE , swap2₊) -- Note that functions are not reversible!! Squash : Fun BOOL BOOL Squash (inj₁ x) = inj₂ x , swap1₊ Squash (inj₂ y) = inj₂ y , id⟷ CNOT : Fun BOOL² BOOL² CNOT (inj₂ tt , b) = ((FALSE , b) , dist2 ◎ (⊕2 id⟷) ◎ factor2) CNOT (inj₁ tt , inj₂ tt) = ((TRUE , TRUE) , dist1 ◎ (⊕1 (id⟷ ⊗ swap2₊)) ◎ factor1) CNOT (inj₁ tt , inj₁ tt) = ((TRUE , FALSE) , (•[ BOOL² , (TRUE , TRUE) ] ⟷⟨ dist1 ⟩ •[ PLUS (TIMES ONE BOOL) (TIMES ONE BOOL) , inj₁ (tt , TRUE) ] ⟷⟨ ⊕1 (id⟷ ⊗ swap1₊)⟩ •[ PLUS (TIMES ONE BOOL) (TIMES ONE BOOL) , inj₁ (tt , FALSE) ] ⟷⟨ factor1 ⟩ •[ BOOL² , (TRUE , FALSE) ] □)) -- The universe of types is a groupoid. The objects of this groupoid are the -- pointed types; the morphisms are the programs; and the equivalence of -- programs is the degenerate observational equivalence that equates every -- two programs that are extensionally equivalent. ! : {t₁ t₂ : U•} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁) ! unite₊ = uniti₊ ! uniti₊ = unite₊ ! swap1₊ = swap2₊ ! swap2₊ = swap1₊ ! assocl1₊ = assocr1₊ ! assocl2₊ = assocr2₊ ! assocl3₊ = assocr3₊ ! assocr1₊ = assocl1₊ ! assocr2₊ = assocl2₊ ! assocr3₊ = assocl3₊ ! unite⋆ = uniti⋆ ! uniti⋆ = unite⋆ ! swap⋆ = swap⋆ ! assocl⋆ = assocr⋆ ! assocr⋆ = assocl⋆ ! distz = factorz ! factorz = distz ! dist1 = factor1 ! dist2 = factor2 ! factor1 = dist1 ! factor2 = dist2 ! id⟷ = id⟷ ! (c₁ ◎ c₂) = ! c₂ ◎ ! c₁ ! (⊕1 c₁) = ⊕1 (! c₁) ! (⊕2 c₂) = ⊕2 (! c₂) ! (c₁ ⊗ c₂) = ! c₁ ⊗ ! c₂ _obs≅_ : {t₁ t₂ : U•} → (c₁ c₂ : t₁ ⟷ t₂) → Set c₁ obs≅ c₂ = ⊤ UG : 1Groupoid UG = record { set = U• ; _↝_ = _⟷_ ; _≈_ = _obs≅_ ; id = id⟷ ; _∘_ = λ y⟷z x⟷y → x⟷y ◎ y⟷z ; _⁻¹ = ! ; lneutr = λ _ → tt ; rneutr = λ _ → tt ; assoc = λ _ _ _ → tt ; equiv = record { refl = tt ; sym = λ _ → tt ; trans = λ _ _ → tt } ; linv = λ _ → tt ; rinv = λ _ → tt ; ∘-resp-≈ = λ _ _ → tt } -- Now let us talk about homotopies and equivalences -- Two paths starting at the same point are homotopic if they map that point -- to related points (of course, related by another path) _∼_ : {t₁ t₂ t₂' : U•} → (p : t₁ ⟷ t₂) → (q : t₁ ⟷ t₂') → Set _∼_ {t₁} {t₂} {t₂'} p q = (t₂ ⟷ t₂') refl∼ : {t₁ t₂ : U•} → (p : t₁ ⟷ t₂) → (p ∼ p) refl∼ {t₁} {t₂} p = id⟷ sym∼ : {t₁ t₂ t₂' : U•} {p : t₁ ⟷ t₂} {q : t₁ ⟷ t₂'} → (p ∼ q) → (q ∼ p) sym∼ p∼q = ! p∼q trans∼ : {t₁ t₂ t₂' t₂'' : U•} {p : t₁ ⟷ t₂} {q : t₁ ⟷ t₂'} {r : t₁ ⟷ t₂''} → (p ∼ q) → (q ∼ r) → (p ∼ r) trans∼ p∼q q∼r = p∼q ◎ q∼r module T where -- Note that paths mapping a point FALSE and TRUE can be homotopic p : •[ BOOL , FALSE ] ⟷ •[ BOOL , FALSE ] p = id⟷ q : •[ BOOL , FALSE ] ⟷ •[ BOOL , TRUE ] q = swap2₊ p∼q : p ∼ q p∼q = swap2₊ -- equivalences -- the following makes no sense because I can use id⟷ for α and β record qinv {t₁ t₂ : U•} (p : t₁ ⟷ t₂) : Set where constructor mkqinv field q : t₂ ⟷ t₁ α : (p ◎ q) ∼ id⟷ β : (q ◎ p) ∼ id⟷ idqinv : {t : U•} → qinv {t} {t} id⟷ idqinv = record { q = id⟷ ; α = id⟷ ; β = id⟷ } record isequiv {t₁ t₂ : U•} (p : t₁ ⟷ t₂) : Set where constructor mkisequiv field q : t₂ ⟷ t₁ α : (p ◎ q) ∼ id⟷ r : t₂ ⟷ t₁ β : (r ◎ p) ∼ id⟷ equiv₁ : {t₁ t₂ : U•} {p : t₁ ⟷ t₂} → qinv p → isequiv p equiv₁ (mkqinv iq iα iβ) = mkisequiv iq iα iq iβ _≃_ : (t₁ t₂ : U•) → Set t₁ ≃ t₂ = Σ[ p ∈ t₁ ⟷ t₂ ] (isequiv p) id≃ : {t : U•} → t ≃ t id≃ = (id⟷ , equiv₁ idqinv) ------------------------------------------------------------------------------ -- Level 1: -- Types are sets of paths. The paths are defined at level 0. At level 1, -- there is no interesting 2path structure. From the perspective of level 0, -- we have points with non-trivial paths between them, i.e., we have a -- groupoid. The paths cross type boundaries, i.e., we have heterogeneous -- equality -- types data 1U : Set where 1ZERO : 1U -- empty set of paths 1ONE : 1U -- a trivial path 1PLUS : 1U → 1U → 1U -- disjoint union of paths 1TIMES : 1U → 1U → 1U -- pairs of paths PATH : (t₁ t₂ : U•) → 1U -- level 0 paths between values -- values data Path (t₁ t₂ : U•) : Set where path : (c : t₁ ⟷ t₂) → Path t₁ t₂ 1⟦_⟧ : 1U → Set 1⟦ 1ZERO ⟧ = ⊥ 1⟦ 1ONE ⟧ = ⊤ 1⟦ 1PLUS t₁ t₂ ⟧ = 1⟦ t₁ ⟧ ⊎ 1⟦ t₂ ⟧ 1⟦ 1TIMES t₁ t₂ ⟧ = 1⟦ t₁ ⟧ × 1⟦ t₂ ⟧ 1⟦ PATH t₁ t₂ ⟧ = Path t₁ t₂ -- examples T⟷F : Set T⟷F = Path BOOL•T BOOL•F F⟷T : Set F⟷T = Path BOOL•F BOOL•T p₁ p₂ p₃ p₄ p₅ : T⟷F p₁ = path swap1₊ p₂ = path (id⟷ ◎ swap1₊) p₃ = path (swap1₊ ◎ swap2₊ ◎ swap1₊) p₄ = path (swap1₊ ◎ id⟷) p₅ = path (uniti⋆ ◎ swap⋆ ◎ (swap1₊ ⊗ id⟷) ◎ swap⋆ ◎ unite⋆) p₆ : (T⟷F × T⟷F) ⊎ F⟷T p₆ = inj₁ (p₁ , p₂) -- Programs map paths to paths. We also use pointed types. record 1U• : Set where constructor 1•[_,_] field 1∣_∣ : 1U 1• : 1⟦ 1∣_∣ ⟧ open 1U• data _⇔_ : 1U• → 1U• → Set where unite₊ : ∀ {t v} → 1•[ 1PLUS 1ZERO t , inj₂ v ] ⇔ 1•[ t , v ] uniti₊ : ∀ {t v} → 1•[ t , v ] ⇔ 1•[ 1PLUS 1ZERO t , inj₂ v ] swap1₊ : ∀ {t₁ t₂ v₁} → 1•[ 1PLUS t₁ t₂ , inj₁ v₁ ] ⇔ 1•[ 1PLUS t₂ t₁ , inj₂ v₁ ] swap2₊ : ∀ {t₁ t₂ v₂} → 1•[ 1PLUS t₁ t₂ , inj₂ v₂ ] ⇔ 1•[ 1PLUS t₂ t₁ , inj₁ v₂ ] assocl1₊ : ∀ {t₁ t₂ t₃ v₁} → 1•[ 1PLUS t₁ (1PLUS t₂ t₃) , inj₁ v₁ ] ⇔ 1•[ 1PLUS (1PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ] assocl2₊ : ∀ {t₁ t₂ t₃ v₂} → 1•[ 1PLUS t₁ (1PLUS t₂ t₃) , inj₂ (inj₁ v₂) ] ⇔ 1•[ 1PLUS (1PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ] assocl3₊ : ∀ {t₁ t₂ t₃ v₃} → 1•[ 1PLUS t₁ (1PLUS t₂ t₃) , inj₂ (inj₂ v₃) ] ⇔ 1•[ 1PLUS (1PLUS t₁ t₂) t₃ , inj₂ v₃ ] assocr1₊ : ∀ {t₁ t₂ t₃ v₁} → 1•[ 1PLUS (1PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ] ⇔ 1•[ 1PLUS t₁ (1PLUS t₂ t₃) , inj₁ v₁ ] assocr2₊ : ∀ {t₁ t₂ t₃ v₂} → 1•[ 1PLUS (1PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ] ⇔ 1•[ 1PLUS t₁ (1PLUS t₂ t₃) , inj₂ (inj₁ v₂) ] assocr3₊ : ∀ {t₁ t₂ t₃ v₃} → 1•[ 1PLUS (1PLUS t₁ t₂) t₃ , inj₂ v₃ ] ⇔ 1•[ 1PLUS t₁ (1PLUS t₂ t₃) , inj₂ (inj₂ v₃) ] unite⋆ : ∀ {t v} → 1•[ 1TIMES 1ONE t , (tt , v) ] ⇔ 1•[ t , v ] uniti⋆ : ∀ {t v} → 1•[ t , v ] ⇔ 1•[ 1TIMES 1ONE t , (tt , v) ] swap⋆ : ∀ {t₁ t₂ v₁ v₂} → 1•[ 1TIMES t₁ t₂ , (v₁ , v₂) ] ⇔ 1•[ 1TIMES t₂ t₁ , (v₂ , v₁) ] assocl⋆ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → 1•[ 1TIMES t₁ (1TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ] ⇔ 1•[ 1TIMES (1TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ] assocr⋆ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → 1•[ 1TIMES (1TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ] ⇔ 1•[ 1TIMES t₁ (1TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ] distz : ∀ {t v absurd} → 1•[ 1TIMES 1ZERO t , (absurd , v) ] ⇔ 1•[ 1ZERO , absurd ] factorz : ∀ {t v absurd} → 1•[ 1ZERO , absurd ] ⇔ 1•[ 1TIMES 1ZERO t , (absurd , v) ] dist1 : ∀ {t₁ t₂ t₃ v₁ v₃} → 1•[ 1TIMES (1PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ] ⇔ 1•[ 1PLUS (1TIMES t₁ t₃) (1TIMES t₂ t₃) , inj₁ (v₁ , v₃) ] dist2 : ∀ {t₁ t₂ t₃ v₂ v₃} → 1•[ 1TIMES (1PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ] ⇔ 1•[ 1PLUS (1TIMES t₁ t₃) (1TIMES t₂ t₃) , inj₂ (v₂ , v₃) ] factor1 : ∀ {t₁ t₂ t₃ v₁ v₃} → 1•[ 1PLUS (1TIMES t₁ t₃) (1TIMES t₂ t₃) , inj₁ (v₁ , v₃) ] ⇔ 1•[ 1TIMES (1PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ] factor2 : ∀ {t₁ t₂ t₃ v₂ v₃} → 1•[ 1PLUS (1TIMES t₁ t₃) (1TIMES t₂ t₃) , inj₂ (v₂ , v₃) ] ⇔ 1•[ 1TIMES (1PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ] id⇔ : ∀ {t v} → 1•[ t , v ] ⇔ 1•[ t , v ] _◎_ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → (1•[ t₁ , v₁ ] ⇔ 1•[ t₂ , v₂ ]) → (1•[ t₂ , v₂ ] ⇔ 1•[ t₃ , v₃ ]) → (1•[ t₁ , v₁ ] ⇔ 1•[ t₃ , v₃ ]) ⊕1 : ∀ {t₁ t₂ t₃ t₄ v₁ v₃} → (1•[ t₁ , v₁ ] ⇔ 1•[ t₃ , v₃ ]) → (1•[ 1PLUS t₁ t₂ , inj₁ v₁ ] ⇔ 1•[ 1PLUS t₃ t₄ , inj₁ v₃ ]) ⊕2 : ∀ {t₁ t₂ t₃ t₄ v₂ v₄} → (1•[ t₂ , v₂ ] ⇔ 1•[ t₄ , v₄ ]) → (1•[ 1PLUS t₁ t₂ , inj₂ v₂ ] ⇔ 1•[ 1PLUS t₃ t₄ , inj₂ v₄ ]) _⊗_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} → (1•[ t₁ , v₁ ] ⇔ 1•[ t₃ , v₃ ]) → (1•[ t₂ , v₂ ] ⇔ 1•[ t₄ , v₄ ]) → (1•[ 1TIMES t₁ t₂ , (v₁ , v₂) ] ⇔ 1•[ 1TIMES t₃ t₄ , (v₃ , v₄) ]) lidl : ∀ {t₁ t₂} → {c : t₁ ⟷ t₂} → 1•[ PATH t₁ t₂ , path (id⟷ ◎ c) ] ⇔ 1•[ PATH t₁ t₂ , path c ] lidr : ∀ {t₁ t₂} → {c : t₁ ⟷ t₂} → 1•[ PATH t₁ t₂ , path c ] ⇔ 1•[ PATH t₁ t₂ , path (id⟷ ◎ c) ] ridl : ∀ {t₁ t₂} → {c : t₁ ⟷ t₂} → 1•[ PATH t₁ t₂ , path (c ◎ id⟷) ] ⇔ 1•[ PATH t₁ t₂ , path c ] ridr : ∀ {t₁ t₂} → {c : t₁ ⟷ t₂} → 1•[ PATH t₁ t₂ , path c ] ⇔ 1•[ PATH t₁ t₂ , path (c ◎ id⟷) ] assocl : ∀ {t₁ t₂ t₃ t₄} → {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → 1•[ PATH t₁ t₄ , path (c₁ ◎ (c₂ ◎ c₃)) ] ⇔ 1•[ PATH t₁ t₄ , path ((c₁ ◎ c₂) ◎ c₃) ] assocr : ∀ {t₁ t₂ t₃ t₄} → {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₃ ⟷ t₄} → 1•[ PATH t₁ t₄ , path ((c₁ ◎ c₂) ◎ c₃) ] ⇔ 1•[ PATH t₁ t₄ , path (c₁ ◎ (c₂ ◎ c₃)) ] linv◎l : ∀ {t₁ t₂} → {c : t₁ ⟷ t₂ } → 1•[ PATH t₁ t₁ , path (c ◎ ! c)] ⇔ 1•[ PATH t₁ t₁ , path id⟷ ] linv◎r : ∀ {t₁ t₂} → {c : t₁ ⟷ t₂ } → 1•[ PATH t₁ t₁ , path id⟷ ] ⇔ 1•[ PATH t₁ t₁ , path (c ◎ ! c) ] rinv◎l : ∀ {t₁ t₂} → {c : t₁ ⟷ t₂ } → 1•[ PATH t₂ t₂ , path (! c ◎ c)] ⇔ 1•[ PATH t₂ t₂ , path id⟷ ] rinv◎r : ∀ {t₁ t₂} → {c : t₁ ⟷ t₂ } → 1•[ PATH t₂ t₂ , path id⟷ ] ⇔ 1•[ PATH t₂ t₂ , path (! c ◎ c) ] resp◎ : ∀ {t₁ t₂ t₃} → {c₁ : t₁ ⟷ t₂} {c₂ : t₂ ⟷ t₃} {c₃ : t₁ ⟷ t₂} {c₄ : t₂ ⟷ t₃} → (1•[ PATH t₁ t₂ , path c₁ ] ⇔ 1•[ PATH t₁ t₂ , path c₃ ]) → (1•[ PATH t₂ t₃ , path c₂ ] ⇔ 1•[ PATH t₂ t₃ , path c₄ ]) → 1•[ PATH t₁ t₃ , path (c₁ ◎ c₂) ] ⇔ 1•[ PATH t₁ t₃ , path (c₃ ◎ c₄) ] 1! : {t₁ t₂ : 1U•} → (t₁ ⇔ t₂) → (t₂ ⇔ t₁) 1! unite₊ = uniti₊ 1! uniti₊ = unite₊ 1! swap1₊ = swap2₊ 1! swap2₊ = swap1₊ 1! assocl1₊ = assocr1₊ 1! assocl2₊ = assocr2₊ 1! assocl3₊ = assocr3₊ 1! assocr1₊ = assocl1₊ 1! assocr2₊ = assocl2₊ 1! assocr3₊ = assocl3₊ 1! unite⋆ = uniti⋆ 1! uniti⋆ = unite⋆ 1! swap⋆ = swap⋆ 1! assocl⋆ = assocr⋆ 1! assocr⋆ = assocl⋆ 1! distz = factorz 1! factorz = distz 1! dist1 = factor1 1! dist2 = factor2 1! factor1 = dist1 1! factor2 = dist2 1! id⇔ = id⇔ 1! (c₁ ◎ c₂) = 1! c₂ ◎ 1! c₁ 1! (⊕1 c₁) = ⊕1 (1! c₁) 1! (⊕2 c₂) = ⊕2 (1! c₂) 1! (c₁ ⊗ c₂) = 1! c₁ ⊗ 1! c₂ 1! (resp◎ c₁ c₂) = resp◎ (1! c₁) (1! c₂) 1! ridl = ridr 1! ridr = ridl 1! lidl = lidr 1! lidr = lidl 1! assocl = assocr 1! assocr = assocl 1! linv◎l = linv◎r 1! linv◎r = linv◎l 1! rinv◎l = rinv◎r 1! rinv◎r = rinv◎l 1!≡ : {t₁ t₂ : 1U•} → (c : t₁ ⇔ t₂) → 1! (1! c) ≡ c 1!≡ unite₊ = refl 1!≡ uniti₊ = refl 1!≡ swap1₊ = refl 1!≡ swap2₊ = refl 1!≡ assocl1₊ = refl 1!≡ assocl2₊ = refl 1!≡ assocl3₊ = refl 1!≡ assocr1₊ = refl 1!≡ assocr2₊ = refl 1!≡ assocr3₊ = refl 1!≡ unite⋆ = refl 1!≡ uniti⋆ = refl 1!≡ swap⋆ = refl 1!≡ assocl⋆ = refl 1!≡ assocr⋆ = refl 1!≡ distz = refl 1!≡ factorz = refl 1!≡ dist1 = refl 1!≡ dist2 = refl 1!≡ factor1 = refl 1!≡ factor2 = refl 1!≡ id⇔ = refl 1!≡ (c₁ ◎ c₂) = cong₂ (λ c₁ c₂ → c₁ ◎ c₂) (1!≡ c₁) (1!≡ c₂) 1!≡ (⊕1 c₁) = cong (λ c₁ → ⊕1 c₁) (1!≡ c₁) 1!≡ (⊕2 c₂) = cong (λ c₂ → ⊕2 c₂) (1!≡ c₂) 1!≡ (c₁ ⊗ c₂) = cong₂ (λ c₁ c₂ → c₁ ⊗ c₂) (1!≡ c₁) (1!≡ c₂) 1!≡ lidl = refl 1!≡ lidr = refl 1!≡ ridl = refl 1!≡ ridr = refl 1!≡ (resp◎ c₁ c₂) = cong₂ (λ c₁ c₂ → resp◎ c₁ c₂) (1!≡ c₁) (1!≡ c₂) 1!≡ assocl = refl 1!≡ assocr = refl 1!≡ linv◎l = refl 1!≡ linv◎r = refl 1!≡ rinv◎l = refl 1!≡ rinv◎r = refl -- better syntax for writing 2paths _⇔⟨_⟩_ : {t₁ t₂ : U•} (c₁ : t₁ ⟷ t₂) {c₂ : t₁ ⟷ t₂} {c₃ : t₁ ⟷ t₂} → (1•[ PATH t₁ t₂ , path c₁ ] ⇔ 1•[ PATH t₁ t₂ , path c₂ ]) → (1•[ PATH t₁ t₂ , path c₂ ] ⇔ 1•[ PATH t₁ t₂ , path c₃ ]) → (1•[ PATH t₁ t₂ , path c₁ ] ⇔ 1•[ PATH t₁ t₂ , path c₃ ]) _ ⇔⟨ α ⟩ β = α ◎ β _▤ : {t₁ t₂ : U•} → (c : t₁ ⟷ t₂) → 1•[ PATH t₁ t₂ , path c ] ⇔ 1•[ PATH t₁ t₂ , path c ] _▤ c = id⇔ α₁ : 1•[ PATH BOOL•T BOOL•F , p₁ ] ⇔ 1•[ PATH BOOL•T BOOL•F , p₁ ] α₁ = id⇔ α₂ : 1•[ PATH BOOL•T BOOL•F , p₁ ] ⇔ 1•[ PATH BOOL•T BOOL•F , p₂ ] α₂ = lidr -- level 0 is a groupoid with a non-trivial path equivalence the various inv* -- rules are not justified by the groupoid proof; they are justified by the -- need for computational rules. So it is important to have not just a -- groupoid structure but a groupoid structure that we can compute with. So -- if we say that we want p ◎ p⁻¹ to be id, we must have computational rules -- that allow us to derive this for any path p, and similarly for all the -- other groupoid rules. (cf. The canonicity for 2D type theory by Licata and -- Harper) G : 1Groupoid G = record { set = U• ; _↝_ = _⟷_ ; _≈_ = λ {t₁} {t₂} c₀ c₁ → 1•[ PATH t₁ t₂ , path c₀ ] ⇔ 1•[ PATH t₁ t₂ , path c₁ ] ; id = id⟷ ; _∘_ = λ c₀ c₁ → c₁ ◎ c₀ ; _⁻¹ = ! ; lneutr = λ _ → ridl ; rneutr = λ _ → lidl ; assoc = λ _ _ _ → assocl ; equiv = record { refl = id⇔ ; sym = λ c → 1! c ; trans = λ c₀ c₁ → c₀ ◎ c₁ } ; linv = λ {t₁} {t₂} c → linv◎l ; rinv = λ {t₁} {t₂} c → rinv◎l ; ∘-resp-≈ = λ f⟷h g⟷i → resp◎ g⟷i f⟷h } -- We can now ask whether a given space is a set (Def. 3.1.1) isSet : U → Set isSet t = (v v' : ⟦ t ⟧) → (p q : •[ t , v ] ⟷ •[ t , v' ]) → (1•[ PATH •[ t , v ] •[ t , v' ] , path p ] ⇔ 1•[ PATH •[ t , v ] •[ t , v' ] , path q ]) 0isSet : isSet ZERO 0isSet () 1isSet : isSet ONE 1isSet tt tt id⟷ id⟷ = id⇔ 1isSet tt tt id⟷ (uniti₊ ◎ unite₊) = id⟷ ⇔⟨ rinv◎r ⟩ uniti₊ ◎ unite₊ ▤ 1isSet tt tt id⟷ (uniti₊ ◎ (q₂ ◎ q₃)) = id⟷ ⇔⟨ {!!} ⟩ (uniti₊ ◎ (q₂ ◎ q₃)) ▤ 1isSet tt tt id⟷ (uniti⋆ ◎ unite⋆) = {!!} 1isSet tt tt id⟷ (uniti⋆ ◎ (q₂ ◎ q₃)) = {!!} 1isSet tt tt id⟷ (id⟷ ◎ id⟷) = {!!} 1isSet tt tt id⟷ (id⟷ ◎ (q₂ ◎ q₃)) = {!!} 1isSet tt tt id⟷ ((q₁ ◎ q₂) ◎ unite₊) = {!!} 1isSet tt tt id⟷ ((q₁ ◎ q₂) ◎ unite⋆) = {!!} 1isSet tt tt id⟷ ((q₁ ◎ q₂) ◎ id⟷) = {!!} 1isSet tt tt id⟷ ((q₁ ◎ q₂) ◎ (q₃ ◎ q₄)) = {!!} 1isSet tt tt (p₁ ◎ p₂) id⟷ = {!!} 1isSet tt tt (p₁ ◎ p₂) (q₁ ◎ q₂) = {!!} ------------------------------------------------------------------------------ -- Level 2 etc. data 2U : Set where 2ZERO : 2U 2ONE : 2U 2PLUS : 2U → 2U → 2U 2TIMES : 2U → 2U → 2U 1PATH : (t₁ t₂ : 1U•) → 2U data 1Path (t₁ t₂ : 1U•) : Set where 1path : (c : t₁ ⇔ t₂) → 1Path t₁ t₂ 2⟦_⟧ : 2U → Set 2⟦ 2ZERO ⟧ = ⊥ 2⟦ 2ONE ⟧ = ⊤ 2⟦ 2PLUS t₁ t₂ ⟧ = 2⟦ t₁ ⟧ ⊎ 2⟦ t₂ ⟧ 2⟦ 2TIMES t₁ t₂ ⟧ = 2⟦ t₁ ⟧ × 2⟦ t₂ ⟧ 2⟦ 1PATH t₁ t₂ ⟧ = 1Path t₁ t₂ record 2U• : Set where constructor 2•[_,_] field 2∣_∣ : 2U 2• : 2⟦ 2∣_∣ ⟧ data _2⇔_ : 2U• → 2U• → Set where id2⇔ : ∀ {t v} → 2•[ t , v ] 2⇔ 2•[ t , v ] -- and all the remaining combinators... -- Eckmann-Hilton Ω : (t : U) → {v : ⟦ t ⟧} → 1U• Ω t {v} = 1•[ PATH t• t• , path id⟷ ] where t• = •[ t , v ] Ω² : (t : U) → {v : ⟦ t ⟧} → 2U• Ω² t {v} = 2•[ 1PATH t• t• , 1path id⇔ ] where t• = Ω t {v} eckmann-hilton : {t : U} {v : ⟦ t ⟧} (α β : (Ω t {v}) ⇔ (Ω t {v})) → (2•[ 1PATH (Ω t {v}) (Ω t {v}) , 1path (α ◎ β) ] 2⇔ 2•[ 1PATH (Ω t {v}) (Ω t {v}) , 1path (β ◎ α) ]) eckmann-hilton {t} {v} α β = {!!} ------------------------------------------------------------------------------ -- Int construction -- Types are of the form t - t' record Uℤ : Set where constructor _-_ field pos : U neg : U open Uℤ ZEROℤ ONEℤ : Uℤ ZEROℤ = ZERO - ZERO ONEℤ = ONE - ZERO PLUSℤ : Uℤ → Uℤ → Uℤ PLUSℤ (pos₁ - neg₁) (pos₂ - neg₂) = PLUS pos₁ pos₂ - PLUS neg₁ neg₂ TIMESℤ : Uℤ → Uℤ → Uℤ TIMESℤ (pos₁ - neg₁) (pos₂ - neg₂) = PLUS (TIMES pos₁ pos₂) (TIMES neg₁ neg₂) - PLUS (TIMES pos₁ neg₂) (TIMES neg₁ pos₂) FLIPℤ : Uℤ → Uℤ FLIPℤ (pos - neg) = neg - pos LOLLIℤ : Uℤ → Uℤ → Uℤ LOLLIℤ (pos₁ - neg₁) (pos₂ - neg₂) = PLUS neg₁ pos₂ - PLUS pos₁ neg₂ -- Pointed types data Uℤ• : Set where pos• : (t : Uℤ) → ⟦ pos t ⟧ → Uℤ• neg• : (t : Uℤ) → ⟦ neg t ⟧ → Uℤ• ZEROℤ+• : {t : U} {v : ⟦ t ⟧} → Uℤ• ZEROℤ+• {t} {v} = pos• (t - t) v ZEROℤ-• : {t : U} {v : ⟦ t ⟧} → Uℤ• ZEROℤ-• {t} {v} = neg• (t - t) v PLUS1ℤ• : Uℤ• → Uℤ → Uℤ• PLUS1ℤ• (pos• t₁ v₁) t₂ = pos• (PLUSℤ t₁ t₂) (inj₁ v₁) PLUS1ℤ• (neg• t₁ v₁) t₂ = neg• (PLUSℤ t₁ t₂) (inj₁ v₁) PLUS2ℤ• : Uℤ → Uℤ• → Uℤ• PLUS2ℤ• t₁ (pos• t₂ v₂) = pos• (PLUSℤ t₁ t₂) (inj₂ v₂) PLUS2ℤ• t₁ (neg• t₂ v₂) = neg• (PLUSℤ t₁ t₂) (inj₂ v₂) -- Combinators on pointed types data _⇄_ : Uℤ• → Uℤ• → Set where Fwd : ∀ {t₁ t₂ t₃ t₄ v₁ v₃} → •[ PLUS t₁ t₄ , inj₁ v₁ ] ⟷ •[ PLUS t₂ t₃ , inj₂ v₃ ] → pos• (t₁ - t₂) v₁ ⇄ pos• (t₃ - t₄) v₃ Bck : ∀ {t₁ t₂ t₃ t₄ v₂ v₄} → •[ PLUS t₁ t₄ , inj₂ v₄ ] ⟷ •[ PLUS t₂ t₃ , inj₁ v₂ ] → neg• (t₁ - t₂) v₂ ⇄ neg• (t₃ - t₄) v₄ B2F : ∀ {t v} → neg• (t - t) v ⇄ pos• (t - t) v F2B : ∀ {t v} → pos• (t - t) v ⇄ neg• (t - t) v unite₊⇄ : {t : Uℤ•} → PLUS2ℤ• ZEROℤ t ⇄ t unite₊⇄ {pos• t v} = Fwd (•[ PLUS (PLUS ZERO (pos t)) (neg t) , inj₁ (inj₂ v) ] ⟷⟨ assocr2₊ ⟩ •[ PLUS ZERO (PLUS (pos t) (neg t)) , inj₂ (inj₁ v) ] ⟷⟨ unite₊ ◎ swap1₊ ⟩ •[ PLUS (neg t) (pos t) , inj₂ v ] ⟷⟨ uniti₊ ⟩ •[ PLUS ZERO (PLUS (neg t) (pos t)) , inj₂ (inj₂ v) ] ⟷⟨ assocl3₊ ⟩ •[ PLUS (PLUS ZERO (neg t)) (pos t) , inj₂ v ] □) unite₊⇄ {neg• t v} = Bck (•[ PLUS (PLUS ZERO (pos t)) (neg t) , inj₂ v ] ⟷⟨ assocr3₊ ⟩ •[ PLUS ZERO (PLUS (pos t) (neg t)) , inj₂ (inj₂ v) ] ⟷⟨ unite₊ ◎ swap2₊ ◎ uniti₊ ⟩ •[ PLUS ZERO (PLUS (neg t) (pos t)) , inj₂ (inj₁ v) ] ⟷⟨ assocl2₊ ⟩ •[ PLUS (PLUS ZERO (neg t)) (pos t) , inj₁ (inj₂ v) ] □) uniti₊⇄ : {t : Uℤ•} → t ⇄ PLUS2ℤ• ZEROℤ t uniti₊⇄ {pos• t v} = Fwd (•[ PLUS (pos t) (PLUS ZERO (neg t)) , inj₁ v ] ⟷⟨ assocl1₊ ⟩ •[ PLUS (PLUS (pos t) ZERO) (neg t) , inj₁ (inj₁ v) ] ⟷⟨ swap1₊ ⟩ •[ PLUS (neg t) (PLUS (pos t) ZERO) , inj₂ (inj₁ v) ] ⟷⟨ ⊕2 swap1₊ ⟩ •[ PLUS (neg t) (PLUS ZERO (pos t)) , inj₂ (inj₂ v) ] □) uniti₊⇄ {neg• t v} = Bck (•[ PLUS (pos t) (PLUS ZERO (neg t)) , inj₂ (inj₂ v) ] ⟷⟨ ⊕2 swap2₊ ⟩ •[ PLUS (pos t) (PLUS (neg t) ZERO) , inj₂ (inj₁ v) ] ⟷⟨ swap2₊ ⟩ •[ PLUS (PLUS (neg t) ZERO) (pos t) , inj₁ (inj₁ v) ] ⟷⟨ assocr1₊ ⟩ •[ PLUS (neg t) (PLUS ZERO (pos t)) , inj₁ v ] □) swap1₊⇄ : {t₁ : Uℤ•} {t₂ : Uℤ} → PLUS1ℤ• t₁ t₂ ⇄ PLUS2ℤ• t₂ t₁ swap1₊⇄ {pos• t₁ v₁} {t₂} = Fwd (•[ PLUS (PLUS (pos t₁) (pos t₂)) (PLUS (neg t₂) (neg t₁)) , inj₁ (inj₁ v₁) ] ⟷⟨ {!!} ⟩ •[ PLUS (PLUS (neg t₁) (neg t₂)) (PLUS (pos t₂) (pos t₁)) , inj₂ (inj₂ v₁) ] □) swap1₊⇄ {neg• t₁ v₁} {t₂} = Bck (•[ PLUS (PLUS (pos t₁) (pos t₂)) (PLUS (neg t₂) (neg t₁)) , inj₂ (inj₂ v₁) ] ⟷⟨ {!!} ⟩ •[ PLUS (PLUS (neg t₁) (neg t₂)) (PLUS (pos t₂) (pos t₁)) , inj₁ (inj₁ v₁) ] □) swap2₊⇄ : {t₁ : Uℤ} {t₂ : Uℤ•} → PLUS2ℤ• t₁ t₂ ⇄ PLUS1ℤ• t₂ t₁ swap2₊⇄ {t₁} {pos• t₂ v₂} = Fwd (•[ PLUS (PLUS (pos t₁) (pos t₂)) (PLUS (neg t₂) (neg t₁)) , inj₁ (inj₂ v₂) ] ⟷⟨ {!!} ⟩ •[ PLUS (PLUS (neg t₁) (neg t₂)) (PLUS (pos t₂) (pos t₁)) , inj₂ (inj₁ v₂) ] □) swap2₊⇄ {t₁} {neg• t₂ v₂} = Bck (•[ PLUS (PLUS (pos t₁) (pos t₂)) (PLUS (neg t₂) (neg t₁)) , inj₂ (inj₁ v₂) ] ⟷⟨ {!!} ⟩ •[ PLUS (PLUS (neg t₁) (neg t₂)) (PLUS (pos t₂) (pos t₁)) , inj₁ (inj₂ v₂) ] □) assocl1₊⇄ : {t₁ : Uℤ•} {t₂ t₃ : Uℤ} → PLUS1ℤ• t₁ (PLUSℤ t₂ t₃) ⇄ PLUS1ℤ• (PLUS1ℤ• t₁ t₂) t₃ assocl1₊⇄ {pos• t₁ v₁} {t₂} {t₃} = Fwd (•[ PLUS (PLUS (pos t₁) (pos (PLUSℤ t₂ t₃))) (PLUS (neg (PLUSℤ t₁ t₂)) (neg t₃)) , inj₁ (inj₁ v₁) ] ⟷⟨ {!!} ⟩ •[ PLUS (PLUS (neg t₁) (neg (PLUSℤ t₂ t₃))) (PLUS (pos (PLUSℤ t₁ t₂)) (pos t₃)) , inj₂ (inj₁ (inj₁ v₁)) ] □) assocl1₊⇄ {neg• t₁ v₁} {t₂} {t₃} = Bck (•[ PLUS (PLUS (pos t₁) (pos (PLUSℤ t₂ t₃))) (PLUS (neg (PLUSℤ t₁ t₂)) (neg t₃)) , inj₂ (inj₁ (inj₁ v₁)) ] ⟷⟨ {!!} ⟩ •[ PLUS (PLUS (neg t₁) (neg (PLUSℤ t₂ t₃))) (PLUS (pos (PLUSℤ t₁ t₂)) (pos t₃)) , inj₁ (inj₁ v₁) ] □) {-- assocl2₊ : ∀ {t₁ t₂ t₃ v₂} → •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₁ v₂) ] ⟷ •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ] assocl3₊ : ∀ {t₁ t₂ t₃ v₃} → •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₂ v₃) ] ⟷ •[ PLUS (PLUS t₁ t₂) t₃ , inj₂ v₃ ] assocr1₊ : ∀ {t₁ t₂ t₃ v₁} → •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₁ v₁) ] ⟷ •[ PLUS t₁ (PLUS t₂ t₃) , inj₁ v₁ ] assocr2₊ : ∀ {t₁ t₂ t₃ v₂} → •[ PLUS (PLUS t₁ t₂) t₃ , inj₁ (inj₂ v₂) ] ⟷ •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₁ v₂) ] assocr3₊ : ∀ {t₁ t₂ t₃ v₃} → •[ PLUS (PLUS t₁ t₂) t₃ , inj₂ v₃ ] ⟷ •[ PLUS t₁ (PLUS t₂ t₃) , inj₂ (inj₂ v₃) ] unite⋆ : ∀ {t v} → •[ TIMES ONE t , (tt , v) ] ⟷ •[ t , v ] uniti⋆ : ∀ {t v} → •[ t , v ] ⟷ •[ TIMES ONE t , (tt , v) ] swap⋆ : ∀ {t₁ t₂ v₁ v₂} → •[ TIMES t₁ t₂ , (v₁ , v₂) ] ⟷ •[ TIMES t₂ t₁ , (v₂ , v₁) ] assocl⋆ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → •[ TIMES t₁ (TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ] ⟷ •[ TIMES (TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ] assocr⋆ : ∀ {t₁ t₂ t₃ v₁ v₂ v₃} → •[ TIMES (TIMES t₁ t₂) t₃ , ((v₁ , v₂) , v₃) ] ⟷ •[ TIMES t₁ (TIMES t₂ t₃) , (v₁ , (v₂ , v₃)) ] distz : ∀ {t v absurd} → •[ TIMES ZERO t , (absurd , v) ] ⟷ •[ ZERO , absurd ] factorz : ∀ {t v absurd} → •[ ZERO , absurd ] ⟷ •[ TIMES ZERO t , (absurd , v) ] dist1 : ∀ {t₁ t₂ t₃ v₁ v₃} → •[ TIMES (PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ] ⟷ •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₁ (v₁ , v₃) ] dist2 : ∀ {t₁ t₂ t₃ v₂ v₃} → •[ TIMES (PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ] ⟷ •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₂ (v₂ , v₃) ] factor1 : ∀ {t₁ t₂ t₃ v₁ v₃} → •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₁ (v₁ , v₃) ] ⟷ •[ TIMES (PLUS t₁ t₂) t₃ , (inj₁ v₁ , v₃) ] factor2 : ∀ {t₁ t₂ t₃ v₂ v₃} → •[ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) , inj₂ (v₂ , v₃) ] ⟷ •[ TIMES (PLUS t₁ t₂) t₃ , (inj₂ v₂ , v₃) ] --} id⇄ : {t : Uℤ•} → t ⇄ t id⇄ {pos• t p} = Fwd swap1₊ id⇄ {neg• t n} = Bck swap2₊ {-- _◎⇄_ : {t₁ t₂ t₃ : Uℤ•} → (t₁ ⇄ t₂) → (t₂ ⇄ t₃) → (t₁ ⇄ t₃) _◎⇄_ {pos• t₁ v₁} {pos• t₂ v₂} {pos• t₃ v₃} (Fwd c₁) (Fwd c₂) = Fwd (•[ PLUS (pos t₁) (neg t₃) , inj₁ v₁ ] ⟷⟨ {!!} ⟩ •[ PLUS (neg t₁) (pos t₃) , inj₂ v₃ ] □) -- c₁ : •[ PLUS (pos t₁) (neg t₂) , inj₁ v₁ ] ⟷ -- •[ PLUS (neg t₁) (pos t₂) , inj₂ v₂ ] -- c₂ : •[ PLUS (pos t₂) (neg t₃) , inj₁ v₂ ] ⟷ -- •[ PLUS (neg t₂) (pos t₃) , inj₂ v₃ ] _◎⇄_ {pos• (t₁ - t₂) v₁} {pos• (t₃ - .t₃) v₃} {neg• (.t₃ - .t₃) .v₃} (Fwd c) F2B = {!!} -- ?7 : pos• (t₁ - t₂) v₁ ⇄ neg• (t₃ - t₃) v₃ Bck c₁ ◎⇄ Bck c₂ = Bck {!!} Bck c ◎⇄ B2F = {!!} B2F ◎⇄ Fwd c = {!!} B2F ◎⇄ F2B = id⇄ F2B ◎⇄ Bck c = {!!} F2B ◎⇄ B2F = id⇄ --} {-- _⊕1_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} → (•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₄ , v₄ ]) → (•[ PLUS t₁ t₂ , inj₁ v₁ ] ⟷ •[ PLUS t₃ t₄ , inj₁ v₃ ]) _⊕2_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} → (•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₄ , v₄ ]) → (•[ PLUS t₁ t₂ , inj₂ v₂ ] ⟷ •[ PLUS t₃ t₄ , inj₂ v₄ ]) _⊗_ : ∀ {t₁ t₂ t₃ t₄ v₁ v₂ v₃ v₄} → (•[ t₁ , v₁ ] ⟷ •[ t₃ , v₃ ]) → (•[ t₂ , v₂ ] ⟷ •[ t₄ , v₄ ]) → (•[ TIMES t₁ t₂ , (v₁ , v₂) ] ⟷ •[ TIMES t₃ t₄ , (v₃ , v₄) ]) --} -- trace η : ∀ {t v} → ZEROℤ+• {t} {v} ⇄ ZEROℤ-• {t} {v} η = F2B ε : ∀ {t v} → ZEROℤ-• {t} {v} ⇄ ZEROℤ+• {t} {v} ε = B2F ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4568382437, "avg_line_length": 34.3087512291, "ext": "agda", "hexsha": "b3c1b56981849b1bd3b5803aa5bac655af30aeaf", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/PiWithLevels/Pi1.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/PiWithLevels/Pi1.agda", "max_line_length": 80, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/PiWithLevels/Pi1.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 18065, "size": 34892 }
open import Agda.Primitive open import Agda.Builtin.Nat open import Agda.Builtin.Equality variable ℓ : Level A : Set ℓ n : Nat infixr 4 _∷_ data Vec (A : Set) : Nat → Set where [] : Vec A 0 _∷_ : A → Vec A n → Vec A (suc n) variable xs : Vec A n data T (n : Nat) (f : Nat → Nat) : Set where it : T n f appT : ∀ {f} → T n f → Nat appT {n = n} {f = f} it = f n length : Vec A n → Nat length {n = n} _ = n -- This should not break. bar : (xs : Vec Nat n) → T n λ { m → m + length xs } bar xs = it ys : Vec Nat 5 ys = 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ [] -- Check that it doesn't no-fail : appT (bar ys) ≡ 10 no-fail = refl
{ "alphanum_fraction": 0.5552050473, "avg_line_length": 16.2564102564, "ext": "agda", "hexsha": "c50cb5a45ba8ed82b7884f0c17686cb25d6c85b6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/GeneralizeWithPatternLambda.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/GeneralizeWithPatternLambda.agda", "max_line_length": 52, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/GeneralizeWithPatternLambda.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 271, "size": 634 }
{-# OPTIONS --allow-unsolved-metas #-} postulate Foo : Set record BaseT : Set₁ where field f : Foo record ParamT (p : Foo) : Set₁ where field f : Foo instance postulate asBaseT : ∀ {p} → ParamT p → BaseT -- BaseT.f (asBaseT p) = ParamT.f p data Bar : Set where o : Bar data Baz {{_ : BaseT}} : Bar → Set where t1 : Baz o t2 : Baz o → Baz o t3 : Baz o → Baz o → Baz o t4 : Baz o → Baz o → Baz o → Baz o
{ "alphanum_fraction": 0.5938967136, "avg_line_length": 18.5217391304, "ext": "agda", "hexsha": "24b7ff5b3260c72c642e152593389a57eaa91414", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue1998.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue1998.agda", "max_line_length": 46, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue1998.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 160, "size": 426 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Experiments.NatMinusTwo.ToNatMinusOne where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Data.NatMinusOne as ℕ₋₁ using (ℕ₋₁) open import Cubical.Experiments.NatMinusTwo.Base as ℕ₋₂ using (ℕ₋₂; -2+_) -- Conversions to/from ℕ₋₁ -1+_ : ℕ₋₁ → ℕ₋₂ -1+ (ℕ₋₁.-1+ n) = -2+ n 1+_ : ℕ₋₂ → ℕ₋₁ 1+ (-2+ n) = ℕ₋₁.-1+ n ℕ₋₁→ℕ₋₂ : ℕ₋₁ → ℕ₋₂ ℕ₋₁→ℕ₋₂ (ℕ₋₁.-1+ n) = ℕ₋₂.-1+ n -- Properties -1+Path : ℕ₋₁ ≡ ℕ₋₂ -1+Path = isoToPath (iso -1+_ 1+_ (λ _ → refl) (λ _ → refl))
{ "alphanum_fraction": 0.64013267, "avg_line_length": 24.12, "ext": "agda", "hexsha": "7c30b3b38ae98d64d3da06147806cb7464a413fb", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Experiments/NatMinusTwo/ToNatMinusOne.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Experiments/NatMinusTwo/ToNatMinusOne.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Experiments/NatMinusTwo/ToNatMinusOne.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 280, "size": 603 }
-- Andreas, 2016-06-26, issue #2059 reported by IanOrton -- An irrelevant parameter in a rewrite rule should still -- be bound by the lhs. {-# OPTIONS --rewriting #-} -- {-# OPTIONS -v tc.pos:10 #-} -- {-# OPTIONS -v tc.polarity:10 #-} open import Common.Equality open import Common.Bool data ⊥ : Set where ⊥-elim : ∀{a}{A : Set a} → .⊥ → A ⊥-elim () _∧_ : (a b : Bool) → Bool true ∧ b = b false ∧ _ = false obvious : (b b' : Bool) .(p : b ≡ b' → ⊥) → (b ∧ b') ≡ false obvious false b' notEq = refl obvious true false notEq = refl obvious true true notEq = ⊥-elim (notEq refl) {-# BUILTIN REWRITE _≡_ #-} {-# REWRITE obvious #-} -- Should give error: -- obvious is not a legal rewrite rule, -- since the following variables are not bound by the left hand side: p -- when checking the pragma REWRITE obvious oops : (b : Bool) → b ∧ b ≡ false oops b = refl true≢false : true ≡ false → ⊥ true≢false () bot : ⊥ bot = true≢false (oops true)
{ "alphanum_fraction": 0.6201873049, "avg_line_length": 21.3555555556, "ext": "agda", "hexsha": "382280e6e83b50aa3aedf2c953473e64356b8f7e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue2059i.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue2059i.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue2059i.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 324, "size": 961 }
module Data.Num.Surjection where open import Data.Num.Core open import Data.Num.Continuous open import Data.Nat open import Data.Nat.Properties open import Data.Nat.Properties.Simple open import Data.Nat.Properties.Extra open import Data.Fin as Fin using (Fin; fromℕ≤; inject≤) renaming (zero to z; suc to s) open import Data.Fin.Properties using (toℕ-fromℕ≤; bounded) open import Data.Product open import Data.Empty using (⊥) open import Data.Unit using (⊤; tt) open import Function open import Function.Surjection hiding (_∘_) open Surjective open import Function.Equality using (_⟶_; _⟨$⟩_) open import Relation.Nullary.Decidable open import Relation.Nullary open import Relation.Nullary.Negation open import Relation.Binary open import Relation.Binary.PropositionalEquality open ≡-Reasoning open ≤-Reasoning renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≈⟨_⟩_) open DecTotalOrder decTotalOrder using (reflexive) renaming (refl to ≤-refl) -- fromℕ that preserves equality -- ℕ⟶Num : ∀ {b d o} -- → (True (Continuous? b (suc d) o)) -- → (val : ℕ) -- → (True (o ≤? val)) -- → Num b (suc d) o -- ℕ⟶Num : ∀ b d o → True (Continuous? b (suc d) o) → setoid ℕ ⟶ setoid (Num b (suc d) o) -- ℕ⟶Num b d o cont = record -- { _⟨$⟩_ = fromℕ cont -- ; cong = cong (fromℕ cont) -- } -- -- -- Surjective? : ∀ b d o → (True (Continuous? b (suc d) o)) → Dec (Surjective (ℕ⟶Num b d o)) -- -- Surjective? b d o with Continuous? b (suc d) o -- -- Surjective? b d o | yes cont = {! !} -- -- Surjective? b d o | no ¬cont = {! !} -- -- Num⟶ℕ-Surjective : ∀ b d o → (cont : True (Continuous? b (suc d) o)) → Surjective (Num⟶ℕ b (suc d) o) -- Num⟶ℕ-Surjective b d o cont = record -- { from = ℕ⟶Num b d o cont -- ; right-inverse-of = {! toℕ-fromℕ cont !} -- } -- Surjective? : ∀ b d o → Dec (Surjective (Num⟶ℕ b d o)) -- Surjective? b d o with surjectionView b d o -- Surjective? b d o | Surj cond = yes (record -- { from = ℕ⟶Num b d o -- ; right-inverse-of = toℕ-fromℕ {b} {d} {o} {SurjCond⇒IsSurj cond} -- }) -- Surjective? b d o | NonSurj reason = no (NonSurjCond⇏Surjective reason) -- -- Conditions of surjectiveness -- data SurjCond : ℕ → ℕ → ℕ → Set where -- WithZerosUnary : ∀ { d} → (d≥2 : d ≥ 2) → SurjCond 1 d 0 -- WithZeros : ∀ {b d} (b≥2 : b ≥ 2) → (d≥b : d ≥ b) → SurjCond b d 0 -- Zeroless : ∀ {b d} (b≥1 : b ≥ 1) → (d≥b : d ≥ b) → SurjCond b d 1 -- -- -- Conditions of non-surjectiveness -- data NonSurjCond : ℕ → ℕ → ℕ → Set where -- Base≡0 : ∀ { d o} → NonSurjCond 0 d o -- NoDigits : ∀ {b o} → NonSurjCond b 0 o -- Offset≥2 : ∀ {b d o} → o ≥ 2 → NonSurjCond b d o -- UnaryWithOnlyZeros : NonSurjCond 1 1 0 -- NotEnoughDigits : ∀ {b d o} → d ≥ 1 → d ≱ b → NonSurjCond b d o -- -- data SurjectionView : ℕ → ℕ → ℕ → Set where -- Surj : ∀ {b d o} → SurjCond b d o → SurjectionView b d o -- NonSurj : ∀ {b d o} → NonSurjCond b d o → SurjectionView b d o -- -- -- surjectionView : (b d o : ℕ) → SurjectionView b d o -- surjectionView 0 d o = NonSurj Base≡0 -- surjectionView (suc b) 0 o = NonSurj NoDigits -- surjectionView (suc b) (suc d) o with suc b ≤? suc d -- surjectionView 1 1 0 | yes p = NonSurj UnaryWithOnlyZeros -- surjectionView 1 (suc (suc d)) 0 | yes p = Surj (WithZerosUnary (s≤s (s≤s z≤n))) -- surjectionView (suc (suc b)) (suc d) 0 | yes p = Surj (WithZeros (s≤s (s≤s z≤n)) p) -- surjectionView (suc b) (suc d) 1 | yes p = Surj (Zeroless (s≤s z≤n) p) -- surjectionView (suc b) (suc d) (suc (suc o)) | yes p = NonSurj (Offset≥2 (s≤s (s≤s z≤n))) -- surjectionView (suc b) (suc d) o | no ¬p = NonSurj (NotEnoughDigits (s≤s z≤n) ¬p) -- -- IsSurjective : ℕ → ℕ → ℕ → Set -- IsSurjective b d o with surjectionView b d o -- IsSurjective b d o | Surj _ = ⊤ -- IsSurjective b d o | NonSurj _ = ⊥ -- -- SurjCond⇒b≥1 : ∀ {b d o} → SurjCond b d o → b ≥ 1 -- SurjCond⇒b≥1 (WithZerosUnary d≥2) = s≤s z≤n -- SurjCond⇒b≥1 (WithZeros (s≤s b≥1) d≥b) = s≤s z≤n -- SurjCond⇒b≥1 (Zeroless b≥1 d≥b) = b≥1 -- -- SurjCond⇒d≥b : ∀ {b d o} → SurjCond b d o → d ≥ b -- SurjCond⇒d≥b (WithZerosUnary (s≤s d≥1)) = s≤s z≤n -- SurjCond⇒d≥b (WithZeros b≥2 d≥b) = d≥b -- SurjCond⇒d≥b (Zeroless b≥1 d≥b) = d≥b -- -- SurjCond⇒IsSurj : ∀ {b d o} → SurjCond b d o → IsSurjective b d o -- SurjCond⇒IsSurj {b} {d} {o} cond with surjectionView b d o -- SurjCond⇒IsSurj cond | Surj x = tt -- SurjCond⇒IsSurj (WithZeros () d≥b) | NonSurj Base≡0 -- SurjCond⇒IsSurj (Zeroless () d≥b) | NonSurj Base≡0 -- SurjCond⇒IsSurj (WithZerosUnary ()) | NonSurj NoDigits -- SurjCond⇒IsSurj (WithZeros () z≤n) | NonSurj NoDigits -- SurjCond⇒IsSurj (Zeroless () z≤n) | NonSurj NoDigits -- SurjCond⇒IsSurj (WithZerosUnary _) | NonSurj (Offset≥2 ()) -- SurjCond⇒IsSurj (WithZeros _ _) | NonSurj (Offset≥2 ()) -- SurjCond⇒IsSurj (Zeroless _ _) | NonSurj (Offset≥2 (s≤s ())) -- SurjCond⇒IsSurj (WithZerosUnary (s≤s ())) | NonSurj UnaryWithOnlyZeros -- SurjCond⇒IsSurj (WithZeros (s≤s ()) _) | NonSurj UnaryWithOnlyZeros -- SurjCond⇒IsSurj (WithZerosUnary _) | NonSurj (NotEnoughDigits d≥1 d≱1) = contradiction d≥1 d≱1 -- SurjCond⇒IsSurj (WithZeros _ d≥b) | NonSurj (NotEnoughDigits _ d≱b) = contradiction d≥b d≱b -- SurjCond⇒IsSurj (Zeroless _ d≥b) | NonSurj (NotEnoughDigits _ d≱b) = contradiction d≥b d≱b -- -- ------------------------------------------------------------------------ -- -- Operations on Num (which does not necessary needs to be Surj) -- ------------------------------------------------------------------------ -- -- starting-digit : ∀ {b d o} → SurjCond b d o → Digit d -- starting-digit (WithZerosUnary d≥2) = fromℕ≤ {1} d≥2 -- starting-digit (WithZeros b≥2 d≥b) = fromℕ≤ {1} (≤-trans b≥2 d≥b) -- starting-digit (Zeroless b≥1 d≥b) = fromℕ≤ {0} (≤-trans b≥1 d≥b) -- 1+ : ∀ {b d o} → Num b d o → Num b d o -- 1+ {b} {d} {o} xs with surjectionView b d o -- 1+ ∙ | Surj cond = starting-digit cond ∷ ∙ -- 1+ (x ∷ xs) | Surj cond with greatest x -- 1+ (x ∷ xs) | Surj cond | yes p = digit+1-b-legacy x (SurjCond⇒b≥1 cond) p ∷ 1+ xs -- carry -- 1+ (x ∷ xs) | Surj cond | no ¬p = digit+1 x ¬p ∷ xs -- 1+ ∙ | NonSurj reason = ∙ -- 1+ (x ∷ xs) | NonSurj reason = xs -- -- -- n+ : ∀ {b d o} → ℕ → Num b d o → Num b d o -- n+ zero xs = xs -- n+ (suc n) xs = 1+ (n+ n xs) -- -- fromℕ : ∀ {b d o} → ℕ → Num b d o -- fromℕ {b} {d} {o} n with surjectionView b d o -- fromℕ n | Surj x = n+ n ∙ -- fromℕ n | NonSurj x = ∙ -- -- -- -- fromℕ that preserves equality -- ℕ⟶Num : ∀ b d o → setoid ℕ ⟶ setoid (Num b d o) -- ℕ⟶Num b d o = record -- { _⟨$⟩_ = fromℕ -- ; cong = cong fromℕ -- } -- -- toℕ-digit+1-b : ∀ {d b} (x : Digit d) -- → (b≥1 : b ≥ 1) → (p : suc (Fin.toℕ x) ≡ d) -- required props -- → Fin.toℕ (digit+1-b-legacy x b≥1 p) ≡ suc (Fin.toℕ x) ∸ b -- toℕ-digit+1-b {d} {b} x b≥1 p = toℕ-fromℕ≤ $ start -- suc (suc (Fin.toℕ x) ∸ b) -- ≤⟨ s≤s (∸-mono ≤-refl b≥1) ⟩ -- suc (Fin.toℕ x) -- ≈⟨ p ⟩ -- d -- □ -- -- ------------------------------------------------------------------------ -- -- toℕ-1+ : toℕ (1+ xs) ≡ suc (toℕ xs) -- ------------------------------------------------------------------------ -- -- toℕ-1+-x∷xs-greatest-lemma : ∀ {b d o} -- → (x : Digit d) → (xs : Num b d o) -- → (cond : SurjCond b d o) -- → (p : suc (Fin.toℕ x) ≡ d) -- → (toℕ-1+-xs : toℕ (1+ xs) ≡ suc (toℕ xs)) -- → toℕ (digit+1-b-legacy x (SurjCond⇒b≥1 cond) p ∷ 1+ xs) ≡ suc (toℕ (x ∷ xs)) -- toℕ-1+-x∷xs-greatest-lemma {b} {d} {o} x xs cond p toℕ-1+-xs = -- begin -- toℕ (digit+1-b-legacy x (SurjCond⇒b≥1 cond) p ∷ 1+ xs) -- -- toℕ-fromℕ≤ : toℕ (fromℕ≤ m<n) ≡ m -- ≡⟨ cong (λ w → o + w + toℕ (1+ xs) * b) (toℕ-fromℕ≤ ((digit+1-b-legacy-lemma x (SurjCond⇒b≥1 cond) p))) ⟩ -- o + (suc (Fin.toℕ x) ∸ b) + toℕ (1+ xs) * b -- -- induction hypothesis -- ≡⟨ cong (λ w → o + (suc (Fin.toℕ x) ∸ b) + w * b) toℕ-1+-xs ⟩ -- o + (suc (Fin.toℕ x) ∸ b) + (b + toℕ xs * b) -- ≡⟨ +-assoc o (suc (Fin.toℕ x) ∸ b) (b + toℕ xs * b) ⟩ -- o + (suc (Fin.toℕ x) ∸ b + (b + toℕ xs * b)) -- ≡⟨ cong (λ w → o + w) (sym (+-assoc (suc (Fin.toℕ x) ∸ b) b (toℕ xs * b))) ⟩ -- o + (suc (Fin.toℕ x) ∸ b + b + toℕ xs * b) -- ≡⟨ cong (λ w → o + (w + toℕ xs * b)) (+-comm (suc (Fin.toℕ x) ∸ b) b) ⟩ -- o + (b + (suc (Fin.toℕ x) ∸ b) + toℕ xs * b) -- -- m+n∸m≡n : m + (n ∸ m) ≡ n -- ≡⟨ cong (λ w → o + (w + toℕ xs * b)) (m+n∸m≡n ( -- start -- b -- ≤⟨ SurjCond⇒d≥b cond ⟩ -- d -- ≈⟨ sym p ⟩ -- suc (Fin.toℕ x) -- □)) ⟩ -- o + suc (Fin.toℕ x + toℕ xs * b) -- ≡⟨ +-suc o (Fin.toℕ x + toℕ xs * b) ⟩ -- suc (o + (Fin.toℕ x + toℕ xs * b)) -- ≡⟨ cong suc (sym (+-assoc o (Fin.toℕ x) (toℕ xs * b))) ⟩ -- suc (o + Fin.toℕ x + toℕ xs * b) -- ∎ -- -- toℕ-1+-x∷xs-not-greatest-lemma : ∀ {b d o} -- → (x : Digit d) → (xs : Num b d o) -- → (¬p : suc (Fin.toℕ x) ≢ d) -- → toℕ (digit+1 x ¬p ∷ xs) ≡ suc (toℕ (x ∷ xs)) -- toℕ-1+-x∷xs-not-greatest-lemma {b} {d} {o} x xs ¬p = -- begin -- o + Fin.toℕ (fromℕ≤ (≤∧≢⇒< (bounded x) ¬p)) + toℕ xs * b -- -- toℕ-fromℕ≤ -- ≡⟨ cong (λ w → o + w + toℕ xs * b) (toℕ-fromℕ≤ (≤∧≢⇒< (bounded x) ¬p)) ⟩ -- o + suc (Fin.toℕ x) + toℕ xs * b -- ≡⟨ +-assoc o (suc (Fin.toℕ x)) (toℕ xs * b) ⟩ -- o + suc (Fin.toℕ x + toℕ xs * b) -- ≡⟨ +-suc o (Fin.toℕ x + toℕ xs * b) ⟩ -- suc (o + (Fin.toℕ x + toℕ xs * b)) -- ≡⟨ cong suc (sym (+-assoc o (Fin.toℕ x) (toℕ xs * b))) ⟩ -- suc (o + Fin.toℕ x + toℕ xs * b) -- ∎ -- -- toℕ-1+ : ∀ {b d o} -- → {isSurj : IsSurjective b d o} -- → (xs : Num b d o) -- → toℕ (1+ xs) ≡ suc (toℕ xs) -- toℕ-1+ {b} {d} {o} xs with surjectionView b d o -- toℕ-1+ {1} {d} {0} ∙ | Surj (WithZerosUnary d≥2) = -- begin -- Fin.toℕ (fromℕ≤ d≥2) + zero -- ≡⟨ +-right-identity (Fin.toℕ (fromℕ≤ d≥2)) ⟩ -- Fin.toℕ (fromℕ≤ d≥2) -- ≡⟨ toℕ-fromℕ≤ d≥2 ⟩ -- suc zero -- ∎ -- toℕ-1+ {b} {d} {0} ∙ | Surj (WithZeros b≥2 d≥b) = -- begin -- Fin.toℕ (fromℕ≤ (≤-trans b≥2 d≥b)) + zero * b -- ≡⟨ +-right-identity (Fin.toℕ (fromℕ≤ (≤-trans b≥2 d≥b))) ⟩ -- Fin.toℕ (fromℕ≤ (≤-trans b≥2 d≥b)) -- ≡⟨ toℕ-fromℕ≤ (≤-trans b≥2 d≥b) ⟩ -- suc zero -- ∎ -- toℕ-1+ {b} {d} {_} ∙ | Surj (Zeroless b≥1 d≥b) = -- begin -- suc (Fin.toℕ (fromℕ≤ (≤-trans b≥1 d≥b)) + zero) -- ≡⟨ +-right-identity (suc (Fin.toℕ (fromℕ≤ (≤-trans b≥1 d≥b)))) ⟩ -- suc (Fin.toℕ (fromℕ≤ (≤-trans b≥1 d≥b))) -- ≡⟨ cong suc (toℕ-fromℕ≤ (≤-trans b≥1 d≥b)) ⟩ -- suc zero -- ∎ -- toℕ-1+ {b} {d} {o} (x ∷ xs) | Surj condition with greatest x -- toℕ-1+ {b} {d} {o} (x ∷ xs) | Surj condition | yes p = toℕ-1+-x∷xs-greatest-lemma x xs condition p (toℕ-1+ {isSurj = SurjCond⇒IsSurj condition} xs) -- toℕ-1+ {b} {d} {o} (x ∷ xs) | Surj condition | no ¬p = toℕ-1+-x∷xs-not-greatest-lemma x xs ¬p -- toℕ-1+ {isSurj = ()} xs | NonSurj reason -- -- ------------------------------------------------------------------------ -- -- toℕ-n+ : toℕ (n+ n xs) ≡ n + (toℕ xs) -- ------------------------------------------------------------------------ -- -- toℕ-n+ : ∀ {b d o} -- → {isSurj : IsSurjective b d o} -- → (n : ℕ) -- → (xs : Num b d o) -- → toℕ (n+ n xs) ≡ n + (toℕ xs) -- toℕ-n+ {b} {d} {o} n xs with surjectionView b d o -- toℕ-n+ zero xs | Surj cond = refl -- toℕ-n+ (suc n) xs | Surj cond = -- begin -- toℕ (n+ (suc n) xs) -- ≡⟨ refl ⟩ -- toℕ (1+ (n+ n xs)) -- ≡⟨ toℕ-1+ {isSurj = SurjCond⇒IsSurj cond} (n+ n xs) ⟩ -- suc (toℕ (n+ n xs)) -- ≡⟨ cong suc (toℕ-n+ {isSurj = SurjCond⇒IsSurj cond} n xs) ⟩ -- suc (n + toℕ xs) -- ∎ -- toℕ-n+ {isSurj = ()} n xs | NonSurj reason -- -- ------------------------------------------------------------------------ -- -- toℕ-fromℕ : toℕ (fromℕ n) ≡ n -- ------------------------------------------------------------------------ -- -- toℕ-fromℕ : ∀ {b d o} -- → {isSurjective : IsSurjective b d o} -- → (n : ℕ) -- → toℕ (fromℕ {b} {d} {o} n) ≡ n -- toℕ-fromℕ {b} {d} {o} n with surjectionView b d o -- toℕ-fromℕ zero | Surj (WithZerosUnary d≥2) = refl -- toℕ-fromℕ {_} {d} {_} (suc n) | Surj (WithZerosUnary d≥2) = -- begin -- toℕ (1+ (n+ {1} {d} {0} n ∙)) -- ≡⟨ toℕ-1+ {1} {d} {0} {SurjCond⇒IsSurj (WithZerosUnary d≥2)} (n+ n ∙) ⟩ -- suc (toℕ (n+ n ∙)) -- ≡⟨ cong suc (toℕ-n+ {1} {d} {0} {SurjCond⇒IsSurj (WithZerosUnary d≥2)} n ∙) ⟩ -- suc (n + zero) -- ≡⟨ cong suc (+-right-identity n) ⟩ -- suc n -- ∎ -- toℕ-fromℕ zero | Surj (WithZeros b≥2 d≥b) = refl -- toℕ-fromℕ {b} {d} {_} (suc n) | Surj (WithZeros b≥2 d≥b) = -- begin -- toℕ (1+ (n+ {b} {d} {0} n ∙)) -- ≡⟨ toℕ-1+ {b} {d} {0} {SurjCond⇒IsSurj (WithZeros b≥2 d≥b)} (n+ n ∙) ⟩ -- suc (toℕ (n+ n ∙)) -- ≡⟨ cong suc (toℕ-n+ {b} {d} {0} {SurjCond⇒IsSurj (WithZeros b≥2 d≥b)} n ∙) ⟩ -- suc (n + zero) -- ≡⟨ cong suc (+-right-identity n) ⟩ -- suc n -- ∎ -- toℕ-fromℕ {b} {d} {_} zero | Surj (Zeroless b≥1 d≥b) = refl -- toℕ-fromℕ {b} {d} {_} (suc n) | Surj (Zeroless b≥1 d≥b) = -- begin -- toℕ (1+ (n+ {b} {d} {1} n ∙)) -- ≡⟨ toℕ-1+ {b} {d} {1} {SurjCond⇒IsSurj (Zeroless b≥1 d≥b)} (n+ n ∙) ⟩ -- suc (toℕ (n+ n ∙)) -- ≡⟨ cong suc (toℕ-n+ {b} {d} {1} {SurjCond⇒IsSurj (Zeroless b≥1 d≥b)} n ∙) ⟩ -- suc (n + zero) -- ≡⟨ cong suc (+-right-identity n) ⟩ -- suc n -- ∎ -- toℕ-fromℕ {isSurjective = ()} n | NonSurj x -- -- -- ------------------------------------------------------------------------ -- -- Lemmata for proving Spurious cases not surjective -- ------------------------------------------------------------------------ -- -- NonSurjCond-Base≡0 : ∀ {d o} → (xs : Num 0 d o) → toℕ xs ≢ suc (o + d) -- NonSurjCond-Base≡0 {d} {o} ∙ () -- NonSurjCond-Base≡0 {d} {o} (x ∷ xs) p = contradiction p (<⇒≢ ⟦x∷xs⟧<1+o+d) -- where -- ⟦x∷xs⟧<1+o+d : o + Fin.toℕ x + toℕ xs * 0 < suc (o + d) -- ⟦x∷xs⟧<1+o+d = s≤s $ -- start -- o + Fin.toℕ x + toℕ xs * zero -- ≈⟨ cong (λ w → o + Fin.toℕ x + w) (*-right-zero (toℕ xs)) ⟩ -- o + Fin.toℕ x + zero -- ≈⟨ +-right-identity (o + Fin.toℕ x) ⟩ -- o + Fin.toℕ x -- ≤⟨ n+-mono o ( -- start -- Fin.toℕ x -- ≤⟨ n≤1+n (Fin.toℕ x) ⟩ -- suc (Fin.toℕ x) -- ≤⟨ bounded x ⟩ -- d -- □ -- )⟩ -- o + d -- □ -- -- NonSurjCond-NoDigits : ∀ {b o} → (xs : Num b 0 o) → toℕ xs ≢ 1 -- NonSurjCond-NoDigits ∙ () -- NonSurjCond-NoDigits (() ∷ xs) -- -- NonSurjCond-Offset≥2 : ∀ {b d o} → o ≥ 2 → (xs : Num b d o) → toℕ xs ≢ 1 -- NonSurjCond-Offset≥2 o≥2 ∙ () -- NonSurjCond-Offset≥2 {o = 0} () (x ∷ xs) p -- NonSurjCond-Offset≥2 {o = 1} (s≤s ()) (x ∷ xs) p -- NonSurjCond-Offset≥2 {o = suc (suc o)} o≥2 (x ∷ xs) () -- -- NonSurjCond-UnaryWithOnlyZeros : (xs : Num 1 1 0) → toℕ xs ≢ 1 -- NonSurjCond-UnaryWithOnlyZeros ∙ () -- NonSurjCond-UnaryWithOnlyZeros (z ∷ xs) p = contradiction ( -- begin -- toℕ xs -- ≡⟨ sym (*-right-identity (toℕ xs)) ⟩ -- toℕ xs * 1 -- ≡⟨ p ⟩ -- suc zero -- ∎) (NonSurjCond-UnaryWithOnlyZeros xs) -- NonSurjCond-UnaryWithOnlyZeros (s () ∷ xs) -- -- NonSurjCond-NotEnoughDigits : ∀ {b d o} → d ≥ 1 → b ≰ d → (xs : Num b d o) → toℕ xs ≢ o + d -- NonSurjCond-NotEnoughDigits {_} {_} {o} d≥1 b≰d ∙ = <⇒≢ (≤-steps o d≥1) -- NonSurjCond-NotEnoughDigits {b} {d} {o} d≥1 b≰d (x ∷ xs) p with toℕ xs ≤? 0 -- NonSurjCond-NotEnoughDigits {b} {d} {o} d≥1 b≰d (x ∷ xs) p | yes q = -- contradiction p (<⇒≢ ⟦x∷xs⟧>o+d) -- where -- ⟦xs⟧≡0 : toℕ xs ≡ 0 -- ⟦xs⟧≡0 = ≤0⇒≡0 (toℕ xs) q -- ⟦x∷xs⟧>o+d : o + Fin.toℕ x + toℕ xs * b < o + d -- ⟦x∷xs⟧>o+d = start -- suc (o + Fin.toℕ x + toℕ xs * b) -- ≈⟨ begin -- suc (o + Fin.toℕ x + toℕ xs * b) -- ≡⟨ cong (λ w → suc (o + Fin.toℕ x + w * b)) ⟦xs⟧≡0 ⟩ -- suc (o + Fin.toℕ x + zero) -- ≡⟨ +-right-identity (suc (o + Fin.toℕ x)) ⟩ -- suc (o + Fin.toℕ x) -- ≡⟨ sym (+-suc o (Fin.toℕ x)) ⟩ -- o + suc (Fin.toℕ x) -- ∎ ⟩ -- o + suc (Fin.toℕ x) -- ≤⟨ n+-mono o (bounded x) ⟩ -- o + d -- □ -- -- NonSurjCond-NotEnoughDigits {b} {d} {o} d≥1 b≰d (x ∷ xs) p | no ¬q = -- contradiction p (>⇒≢ ⟦x∷xs⟧>o+d) -- where -- ⟦x∷xs⟧>o+d : o + Fin.toℕ x + toℕ xs * b > o + d -- ⟦x∷xs⟧>o+d = start -- suc (o + d) -- ≈⟨ sym (+-suc o d) ⟩ -- o + suc d -- ≤⟨ n+-mono o ( -- start -- suc d -- ≤⟨ ≰⇒> b≰d ⟩ -- b -- ≈⟨ sym (*-left-identity b) ⟩ -- 1 * b -- ≤⟨ _*-mono_ {1} {toℕ xs} {b} {b} (≰⇒> ¬q) ≤-refl ⟩ -- toℕ xs * b -- ≤⟨ n≤m+n (Fin.toℕ x) (toℕ xs * b) ⟩ -- Fin.toℕ x + toℕ xs * b -- □ -- ) ⟩ -- o + (Fin.toℕ x + toℕ xs * b) -- ≈⟨ sym (+-assoc o (Fin.toℕ x) (toℕ xs * b)) ⟩ -- o + Fin.toℕ x + toℕ xs * b -- □ -- -- NonSurjCond⇏Surjective : ∀ {b} {d} {o} → NonSurjCond b d o → ¬ (Surjective (Num⟶ℕ b d o)) -- NonSurjCond⇏Surjective {_} {d} {o} Base≡0 claim = -- NonSurjCond-Base≡0 -- (from claim ⟨$⟩ suc o + d) -- (right-inverse-of claim (suc (o + d))) -- NonSurjCond⇏Surjective NoDigits claim = -- NonSurjCond-NoDigits -- (from claim ⟨$⟩ 1) -- (right-inverse-of claim 1) -- NonSurjCond⇏Surjective (Offset≥2 p) claim = -- NonSurjCond-Offset≥2 p -- (from claim ⟨$⟩ 1) -- (right-inverse-of claim 1) -- NonSurjCond⇏Surjective UnaryWithOnlyZeros claim = -- NonSurjCond-UnaryWithOnlyZeros -- (from claim ⟨$⟩ 1) -- (right-inverse-of claim 1) -- NonSurjCond⇏Surjective {_} {d} {o} (NotEnoughDigits p q) claim = -- NonSurjCond-NotEnoughDigits p q -- (from claim ⟨$⟩ o + d) -- (right-inverse-of claim (o + d)) -- -- SurjCond⇒Surjective : ∀ {b} {d} {o} → SurjCond b d o → Surjective (Num⟶ℕ b d o) -- SurjCond⇒Surjective {b} {d} {o} cond = record -- { from = ℕ⟶Num b d o -- ; right-inverse-of = toℕ-fromℕ {b} {d} {o} {SurjCond⇒IsSurj cond} -- } -- -- Surjective? : ∀ b d o → Dec (Surjective (Num⟶ℕ b d o)) -- Surjective? b d o with surjectionView b d o -- Surjective? b d o | Surj cond = yes (record -- { from = ℕ⟶Num b d o -- ; right-inverse-of = toℕ-fromℕ {b} {d} {o} {SurjCond⇒IsSurj cond} -- }) -- Surjective? b d o | NonSurj reason = no (NonSurjCond⇏Surjective reason) -- -- ------------------------------------------------------------------------ -- -- -- ------------------------------------------------------------------------ -- -- -- Surjective⇒SurjCond {b} {d} {o} surj = {! !} -- Surjective⇒SurjCond : ∀ {b} {d} {o} -- → Surjective (Num⟶ℕ b d o) -- → SurjCond b d o -- Surjective⇒SurjCond {b} {d} {o} surj with surjectionView b d o -- Surjective⇒SurjCond surj | Surj condition = condition -- Surjective⇒SurjCond surj | NonSurj reason = contradiction surj (NonSurjCond⇏Surjective reason) -- -- Surjective⇒IsSurj : ∀ {b} {d} {o} → Surjective (Num⟶ℕ b d o) → IsSurjective b d o -- Surjective⇒IsSurj = SurjCond⇒IsSurj ∘ Surjective⇒SurjCond -- -- Surjective⇒b≥1 : ∀ {b} {d} {o} → Surjective (Num⟶ℕ b d o) → b ≥ 1 -- Surjective⇒b≥1 = SurjCond⇒b≥1 ∘ Surjective⇒SurjCond -- -- Surjective⇒d≥b : ∀ {b} {d} {o} → Surjective (Num⟶ℕ b d o) → b ≤ d -- Surjective⇒d≥b = SurjCond⇒d≥b ∘ Surjective⇒SurjCond
{ "alphanum_fraction": 0.4581064804, "avg_line_length": 41.8447580645, "ext": "agda", "hexsha": "9af709a0e290294633aaaaf0495a181a59ba7008", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "Data/Num/Surjection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "Data/Num/Surjection.agda", "max_line_length": 150, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "Data/Num/Surjection.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 8865, "size": 20755 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Localization where open import Cubical.HITs.Localization.Base public open import Cubical.HITs.Localization.Properties public
{ "alphanum_fraction": 0.7929292929, "avg_line_length": 28.2857142857, "ext": "agda", "hexsha": "763525ee34fe4122e77834c4cd8388f8a540f941", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Localization.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Localization.agda", "max_line_length": 55, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Localization.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 45, "size": 198 }
data ⊥ : Set where postulate ∞ : ∀ {a} → Set a → Set a ♯_ : ∀ {a} {A : Set a} → (A → ⊥) → ∞ A ♭ : ∀ {a} {A : Set a} → ∞ A → A → ⊥ {-# BUILTIN INFINITY ∞ #-} {-# BUILTIN SHARP ♯_ #-} {-# BUILTIN FLAT ♭ #-} -- Issue #5610: with these bad types for sharp and flat, we can prove -- false. The reason is that ∞ is assumed to be strictly-positive in -- the positivity checker (even guarding positive). So making ∞ A -- isomorphic to A → ⊥ will be contradictory to this assumption. data D : Set where wrap : ∞ D → D lam : (D → ⊥) → D lam f = wrap (♯ f) app : D → D → ⊥ app (wrap g) d = ♭ g d delta : D delta = lam (λ x → app x x) omega : ⊥ omega = app delta delta
{ "alphanum_fraction": 0.5518248175, "avg_line_length": 21.40625, "ext": "agda", "hexsha": "481db3934a50decc157510aa0bedecfc4fa63e8e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Fail/BuiltinSharpBadType.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Fail/BuiltinSharpBadType.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Fail/BuiltinSharpBadType.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 256, "size": 685 }
-- Andreas, 2021-08-19, issue #5283, reported by guilhermehas -- 'tactic' should only appear in attributes and 'C.Tactic' is converted to -- 'TacticAttribute' there. -- Other occurrences of 'C.Tactic' should be a scope error. -- At the time of writing, the scope checker passes it as A.Tactic to the type -- checker, and that loops on it. open import Agda.Builtin.Reflection A : Set A = tactic ? -- Should be syntax error.
{ "alphanum_fraction": 0.7259953162, "avg_line_length": 28.4666666667, "ext": "agda", "hexsha": "4279d9993ad38ce914b601d6fd3d49ac4d4c0206", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue5283.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue5283.agda", "max_line_length": 78, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue5283.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 119, "size": 427 }
{-# OPTIONS --allow-unsolved-metas #-} open import Agda.Builtin.Equality postulate @0 A : Set @0 f : (X : Set) → A ≡ X → Set f X refl = {!!}
{ "alphanum_fraction": 0.5902777778, "avg_line_length": 16, "ext": "agda", "hexsha": "74ff270fb8a37a6ca37ea3adf88d46104e83dd8a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/Succeed/Issue5765.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/Succeed/Issue5765.agda", "max_line_length": 38, "max_stars_count": 1, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue5765.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z", "num_tokens": 50, "size": 144 }
{-# OPTIONS --no-positivity-check --no-termination-check #-} -- A universe setoids module Setoid where import Chain record True : Set where data False : Set where Rel : Set -> Set1 Rel A = A -> A -> Set Pred : Set -> Set1 Pred A = A -> Set Resp : {A : Set} -> Rel A -> {B : Set} -> Rel B -> Pred (A -> B) Resp _R_ _S_ f = forall x y -> x R y -> f x S f y mutual infix 40 _=El=_ _=S=_ _=Fam=_ infix 60 _!_ data Setoid : Set where nat : Setoid Π : (A : Setoid)(F : Fam A) -> Setoid Σ : (A : Setoid)(F : Fam A) -> Setoid data Fam (A : Setoid) : Set where fam : (F : El A -> Setoid) -> Resp _=El=_ _=S=_ F -> Fam A data El : Setoid -> Set where zero : El nat suc : El nat -> El nat ƛ : {A : Setoid}{F : Fam A} (f : (x : El A) -> El (F ! x)) -> ((x y : El A) -> x =El= y -> f x =El= f y) -> El (Π A F) _,_ : {A : Setoid}{F : Fam A}(x : El A) -> El (F ! x) -> El (Σ A F) data _=S=_ : (A B : Setoid) -> Set where eqNat : nat =S= nat eqΠ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} -> A₂ =S= A₁ -> F₁ =Fam= F₂ -> Π A₁ F₁ =S= Π A₂ F₂ eqΣ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} -> A₁ =S= A₂ -> F₁ =Fam= F₂ -> Σ A₁ F₁ =S= Σ A₂ F₂ data _=El=_ : {A B : Setoid} -> El A -> El B -> Set where eqInNat : {n : El nat} -> n =El= n eqInΠ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} {f₁ : (x : El A₁) -> El (F₁ ! x)} {pf₁ : (x y : El A₁) -> x =El= y -> f₁ x =El= f₁ y} {f₂ : (x : El A₂) -> El (F₂ ! x)} -> {pf₂ : (x y : El A₂) -> x =El= y -> f₂ x =El= f₂ y} -> A₂ =S= A₁ -> ((x : El A₁)(y : El A₂) -> x =El= y -> f₁ x =El= f₂ y) -> ƛ f₁ pf₁ =El= ƛ f₂ pf₂ eqInΣ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} {x₁ : El A₁}{y₁ : El (F₁ ! x₁)} {x₂ : El A₂}{y₂ : El (F₂ ! x₂)} -> F₁ =Fam= F₂ -> x₁ =El= x₂ -> y₁ =El= y₂ -> (x₁ , y₁) =El= (x₂ , y₂) data _=Fam=_ {A B : Setoid}(F : Fam A)(G : Fam B) : Set where eqFam : B =S= A -> (forall x y -> x =El= y -> F ! x =S= G ! y) -> F =Fam= G _!_ : {A : Setoid} -> Fam A -> El A -> Setoid fam F _ ! x = F x -- Inversions famEqDom : {A B : Setoid}{F : Fam A}{G : Fam B} -> F =Fam= G -> B =S= A famEqDom (eqFam p _) = p famEqCodom : {A B : Setoid}{F : Fam A}{G : Fam B} -> F =Fam= G -> (x : El A)(y : El B) -> x =El= y -> F ! x =S= G ! y famEqCodom (eqFam _ p) = p eqΠ-inv₁ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} -> Π A₁ F₁ =S= Π A₂ F₂ -> A₂ =S= A₁ eqΠ-inv₁ (eqΠ p _) = p eqΠ-inv₂ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} -> Π A₁ F₁ =S= Π A₂ F₂ -> F₁ =Fam= F₂ eqΠ-inv₂ (eqΠ _ p) = p eqΣ-inv₁ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} -> Σ A₁ F₁ =S= Σ A₂ F₂ -> A₁ =S= A₂ eqΣ-inv₁ (eqΣ p _) = p eqΣ-inv₂ : {A₁ A₂ : Setoid}{F₁ : Fam A₁}{F₂ : Fam A₂} -> Σ A₁ F₁ =S= Σ A₂ F₂ -> F₁ =Fam= F₂ eqΣ-inv₂ (eqΣ _ p) = p -- Equivalence proofs and casts mutual -- _=Fam=_ is an equivalence =Fam=-refl : {A : Setoid}{F : Fam A} -> F =Fam= F =Fam=-refl {F = fam _ p} = eqFam =S=-refl p =Fam=-sym : {A B : Setoid}{F : Fam A}{G : Fam B} -> F =Fam= G -> G =Fam= F =Fam=-sym (eqFam B=A F=G) = eqFam (=S=-sym B=A) \x y x=y -> =S=-sym (F=G _ _ (=El=-sym x=y)) =Fam=-trans : {A B C : Setoid}{F : Fam A}{G : Fam B}{H : Fam C} -> F =Fam= G -> G =Fam= H -> F =Fam= H =Fam=-trans (eqFam B=A F=G) (eqFam C=B G=H) = eqFam (=S=-trans C=B B=A) \x y x=y -> =S=-trans (F=G x (B=A << x) (cast-id _)) (G=H _ y (=El=-trans (=El=-sym (cast-id _)) x=y)) -- _=S=_ is an equivalence =S=-refl : {A : Setoid} -> A =S= A =S=-refl {nat} = eqNat =S=-refl {Π A F} = eqΠ =S=-refl =Fam=-refl =S=-refl {Σ A F} = eqΣ =S=-refl =Fam=-refl =S=-sym : {A B : Setoid} -> A =S= B -> B =S= A =S=-sym eqNat = eqNat =S=-sym (eqΠ pA pF) = eqΠ (=S=-sym pA) (=Fam=-sym pF) =S=-sym (eqΣ pA pF) = eqΣ (=S=-sym pA) (=Fam=-sym pF) =S=-trans : {A B C : Setoid} -> A =S= B -> B =S= C -> A =S= C =S=-trans eqNat eqNat = eqNat =S=-trans (eqΠ B=A F=G) (eqΠ C=B G=H) = eqΠ (=S=-trans C=B B=A) (=Fam=-trans F=G G=H) =S=-trans (eqΣ A=B F=G) (eqΣ B=C G=H) = eqΣ (=S=-trans A=B B=C) (=Fam=-trans F=G G=H) -- _=El=_ is an equivalence =El=-refl : {A : Setoid}{x : El A} -> x =El= x =El=-refl {nat} = eqInNat =El=-refl {Π A F}{ƛ f pf} = eqInΠ =S=-refl pf =El=-refl {Σ A F}{x , y} = eqInΣ =Fam=-refl =El=-refl =El=-refl =El=-sym : {A B : Setoid}{x : El A}{y : El B} -> x =El= y -> y =El= x =El=-sym eqInNat = eqInNat =El=-sym (eqInΠ B=A p) = eqInΠ (=S=-sym B=A) \x y x=y -> =El=-sym (p y x (=El=-sym x=y)) =El=-sym (eqInΣ pF px py) = eqInΣ (=Fam=-sym pF) (=El=-sym px) (=El=-sym py) =El=-trans : {A B C : Setoid}{x : El A}{y : El B}{z : El C} -> x =El= y -> y =El= z -> x =El= z =El=-trans eqInNat eqInNat = eqInNat =El=-trans (eqInΠ B=A f=g) (eqInΠ C=B g=h) = eqInΠ (=S=-trans C=B B=A) \x y x=y -> =El=-trans (f=g x (B=A << x) (cast-id _)) (g=h _ y (=El=-trans (=El=-sym (cast-id _)) x=y)) =El=-trans (eqInΣ F₁=F₂ x₁=x₂ y₁=y₂) (eqInΣ F₂=F₃ x₂=x₃ y₂=y₃) = eqInΣ (=Fam=-trans F₁=F₂ F₂=F₃) (=El=-trans x₁=x₂ x₂=x₃) (=El=-trans y₁=y₂ y₂=y₃) -- Casting. Important: don't look at the proof! infix 50 _<<_ _>>_ _<<_ : {A B : Setoid} -> A =S= B -> El B -> El A _<<_ {nat}{Π _ _} () _ _<<_ {nat}{Σ _ _} () _ _<<_ {Π _ _}{nat} () _ _<<_ {Π _ _}{Σ _ _} () _ _<<_ {Σ _ _}{nat} () _ _<<_ {Σ _ _}{Π _ _} () _ _<<_ {nat}{nat} p x = x _<<_ {Π A₁ F₁}{Π A₂ F₂} p (ƛ f pf) = ƛ g pg where g : (x : El A₁) -> El (F₁ ! x) g x = let A₂=A₁ = eqΠ-inv₁ p F₁=F₂ = famEqCodom (eqΠ-inv₂ p) x _ (cast-id _) in F₁=F₂ << f (A₂=A₁ << x) pg : (x y : El A₁) -> x =El= y -> g x =El= g y pg x y x=y = cast-irr _ _ (pf _ _ (cast-irr _ _ x=y)) _<<_ {Σ A₁ F₁}{Σ A₂ F₂} p (x , y) = eqΣ-inv₁ p << x , F₁=F₂ << y where F₁=F₂ : F₁ ! (eqΣ-inv₁ p << x) =S= F₂ ! x F₁=F₂ = famEqCodom (eqΣ-inv₂ p) _ _ (=El=-sym (cast-id _)) _>>_ : {A B : Setoid} -> Fam A -> A =S= B -> Fam B fam F pF >> A=B = fam G pG where G : El _ -> Setoid G y = F (A=B << y) pG : forall x y -> x =El= y -> G x =S= G y pG x y x=y = pF _ _ (cast-irr _ _ x=y) cast-id : {A B : Setoid}{x : El A}(p : B =S= A) -> x =El= p << x cast-id eqNat = eqInNat cast-id {x = x , y } (eqΣ A=B F=G) = eqInΣ (=Fam=-sym F=G) (cast-id _) (cast-id _) cast-id {x = ƛ f pf} (eqΠ B=A F=G) = eqInΠ (=S=-sym B=A) \x y x=y -> proof f x ≡ f (_ << y) by pf _ _ (=El=-trans x=y (cast-id _)) ≡ _ << f (_ << y) by cast-id _ qed where open Chain El _=El=_ (\x -> =El=-refl) (\x y z -> =El=-trans) cast-irr : {A₁ A₂ B₁ B₂ : Setoid}{x : El A₁}{y : El A₂} (p₁ : B₁ =S= A₁)(p₂ : B₂ =S= A₂) -> x =El= y -> p₁ << x =El= p₂ << y cast-irr {x = x}{y = y} p q x=y = proof p << x ≡ x by =El=-sym (cast-id _) ≡ y by x=y ≡ q << y by cast-id _ qed where open Chain El _=El=_ (\x -> =El=-refl) (\x y z -> =El=-trans) -- Let's do some overloading data EqFam : Set -> Set where el : EqFam Setoid setoid : EqFam True fam : EqFam Setoid [_] : {I : Set} -> EqFam I -> I -> Set [ el ] A = El A [ setoid ] _ = Setoid [ fam ] A = Fam A _==_ : {I : Set}{eqf : EqFam I}{i j : I} -> [ eqf ] i -> [ eqf ] j -> Set _==_ {eqf = el } x y = x =El= y _==_ {eqf = setoid} A B = A =S= B _==_ {eqf = fam } F G = F =Fam= G refl : {I : Set}{eqf : EqFam I}{i : I}{x : [ eqf ] i} -> x == x refl {eqf = el} = =El=-refl refl {eqf = setoid} = =S=-refl refl {eqf = fam} = =Fam=-refl sym : {I : Set}{eqf : EqFam I}{i j : I}{x : [ eqf ] i}{y : [ eqf ] j} -> x == y -> y == x sym {eqf = el} = =El=-sym sym {eqf = setoid} = =S=-sym sym {eqf = fam} = =Fam=-sym trans : {I : Set}{eqf : EqFam I}{i j k : I}{x : [ eqf ] i}{y : [ eqf ] j}{z : [ eqf ] k} -> x == y -> y == z -> x == z trans {eqf = el} = =El=-trans trans {eqf = setoid} = =S=-trans trans {eqf = fam} = =Fam=-trans open module EqChain {I : Set}{eqf : EqFam I} = Chain ([ eqf ]) _==_ (\x -> refl) (\x y z -> trans) homo : {A B : Setoid}{x : El A}{y : El B} -> x == y -> A == B homo eqInNat = eqNat homo (eqInΠ B=A p) = eqΠ B=A (eqFam B=A \x y x=y -> homo (p x y x=y)) homo (eqInΣ F=G p q) = eqΣ (homo p) F=G cast-id' : {A B C : Setoid}{x : El A}{y : El B}(p : C == B) -> x == y -> x == p << y cast-id' C=B x=y = trans x=y (cast-id _) -- Some helper stuff K : {A : Setoid} -> Setoid -> Fam A K B = fam (\_ -> B) (\_ _ _ -> refl) infixr 20 _==>_ infixl 70 _·_ _∘_ _○_ infixl 90 _#_ !-cong : {A B : Setoid}(F : Fam A)(G : Fam B){x : El A}{y : El B} -> F == G -> x == y -> F ! x == G ! y !-cong F G (eqFam B=A F=G) x=y = F=G _ _ x=y !-cong-R : {A : Setoid}(F : Fam A){x y : El A} -> x == y -> F ! x == F ! y !-cong-R F x=y = !-cong F F refl x=y _==>_ : Setoid -> Setoid -> Setoid A ==> B = Π A (K B) _#_ : {A : Setoid}{F : Fam A} -> El (Π A F) -> (x : El A) -> El (F ! x) ƛ f _ # x = f x #-cong : {A B : Setoid}{F : Fam A}{G : Fam B} (f : El (Π A F))(g : El (Π B G)){x : El A}{y : El B} -> f == g -> x == y -> f # x == g # y #-cong ._ ._ (eqInΠ _ f=g) x=y = f=g _ _ x=y #-cong-R : {A : Setoid}{F : Fam A}(f : El (Π A F)){x y : El A} -> x == y -> f # x == f # y #-cong-R f p = #-cong f f refl p id : {A : Setoid} -> El (A ==> A) id = ƛ (\x -> x) (\_ _ p -> p) -- Family composition _○_ : {A B : Setoid} -> Fam A -> El (B ==> A) -> Fam B F ○ f = fam (\x -> F ! (f # x)) (\x y x=y -> !-cong-R F (#-cong-R f x=y)) lem-○-id : {A : Setoid}{F : Fam A} -> F ○ id == F lem-○-id {F = F} = eqFam refl \x y x=y -> !-cong-R F x=y _∘_ : {A B : Setoid}{F : Fam B} -> El (Π B F) -> (g : El (A ==> B)) -> El (Π A (F ○ g)) f ∘ g = ƛ (\x -> f # (g # x)) \x y x=y -> #-cong-R f (#-cong-R g x=y) lem-∘-id : {A : Setoid}{F : Fam A}(f : El (Π A F)) -> f ∘ id == f lem-∘-id (ƛ f pf) = eqInΠ refl pf lem-id-∘ : {A B : Setoid}(f : El (A ==> B)) -> id ∘ f == f lem-id-∘ (ƛ f pf) = eqInΠ refl pf -- Simply type composition (not quite a special case of ∘ because of proof relevance) _·_ : {A B C : Setoid} -> El (B ==> C) -> El (A ==> B) -> El (A ==> C) f · g = eqΠ refl (eqFam refl \_ _ _ -> refl) << f ∘ g fst : {A : Setoid}{F : Fam A} -> El (Σ A F) -> El A fst (x , y) = x snd : {A : Setoid}{F : Fam A}(p : El (Σ A F)) -> El (F ! fst p) snd (x , y) = y fst-eq : {A B : Setoid}{F : Fam A}{G : Fam B} {x : El (Σ A F)}{y : El (Σ B G)} -> x == y -> fst x == fst y fst-eq (eqInΣ _ x₁=x₂ _) = x₁=x₂ snd-eq : {A B : Setoid}{F : Fam A}{G : Fam B} {x : El (Σ A F)}{y : El (Σ B G)} -> x == y -> snd x == snd y snd-eq (eqInΣ _ _ y₁=y₂) = y₁=y₂ η : {A : Setoid}{F : Fam A}(f : El (Π A F)){pf : (x y : El A) -> x == y -> f # x == f # y} -> f == ƛ {F = F} (_#_ f) pf η (ƛ f pf) = eqInΠ refl pf
{ "alphanum_fraction": 0.4482851986, "avg_line_length": 34.3034055728, "ext": "agda", "hexsha": "cc1caf4d96789ab2eab6caae1b2681b0976b1d78", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "larrytheliquid/agda", "max_forks_repo_path": "benchmark/cwf/Setoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/agda", "max_issues_repo_path": "benchmark/cwf/Setoid.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "benchmark/cwf/Setoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5222, "size": 11080 }
module Tactic.Reflection.DeBruijn where open import Prelude hiding (abs) open import Builtin.Reflection open import Container.Traversable record DeBruijn {a} (A : Set a) : Set a where field strengthenFrom : (from n : Nat) → A → Maybe A weakenFrom : (from n : Nat) → A → A strengthen : Nat → A → Maybe A strengthen 0 = just strengthen n = strengthenFrom 0 n weaken : Nat → A → A weaken zero = id weaken n = weakenFrom 0 n open DeBruijn {{...}} public patternBindings : List (Arg Pattern) → Nat patternBindings = binds where binds : List (Arg Pattern) → Nat bind : Pattern → Nat binds [] = 0 binds (arg _ a ∷ as) = bind a + binds as bind (con c ps) = binds ps bind dot = 1 bind (var _) = 1 bind (lit l) = 0 bind (proj x) = 0 bind absurd = 0 private Str : Set → Set Str A = Nat → Nat → A → Maybe A strVar : Str Nat strVar lo n x = if x <? lo then just x else if x <? lo + n then nothing else just (x - n) strArgs : Str (List (Arg Term)) strArg : Str (Arg Term) strSort : Str Sort strClauses : Str (List Clause) strClause : Str Clause strAbsTerm : Str (Abs Term) strAbsType : Str (Abs Type) strTerm : Str Term strTerm lo n (var x args) = var <$> strVar lo n x <*> strArgs lo n args strTerm lo n (con c args) = con c <$> strArgs lo n args strTerm lo n (def f args) = def f <$> strArgs lo n args strTerm lo n (meta x args) = meta x <$> strArgs lo n args strTerm lo n (lam v t) = lam v <$> strAbsTerm lo n t strTerm lo n (pi a b) = pi <$> strArg lo n a <*> strAbsType lo n b strTerm lo n (agda-sort s) = agda-sort <$> strSort lo n s strTerm lo n (lit l) = just (lit l) strTerm lo n (pat-lam _ _) = just unknown -- todo strTerm lo n unknown = just unknown strAbsTerm lo n (abs s t) = abs s <$> strTerm (suc lo) n t strAbsType lo n (abs s t) = abs s <$> strTerm (suc lo) n t strArgs lo n [] = just [] strArgs lo n (x ∷ args) = _∷_ <$> strArg lo n x <*> strArgs lo n args strArg lo n (arg i v) = arg i <$> strTerm lo n v strSort lo n (set t) = set <$> strTerm lo n t strSort lo n (lit l) = just (lit l) strSort lo n unknown = just unknown strClauses lo k [] = just [] strClauses lo k (c ∷ cs) = _∷_ <$> strClause lo k c <*> strClauses lo k cs strClause lo k (clause ps b) = clause ps <$> strTerm (lo + patternBindings ps) k b strClause lo k (absurd-clause ps) = just (absurd-clause ps) private Wk : Set → Set Wk A = Nat → Nat → A → A wkVar : Wk Nat wkVar lo k x = if x <? lo then x else x + k wkArgs : Wk (List (Arg Term)) wkArg : Wk (Arg Term) wkSort : Wk Sort wkClauses : Wk (List Clause) wkClause : Wk Clause wkAbsTerm : Wk (Abs Term) wk : Wk Term wk lo k (var x args) = var (wkVar lo k x) (wkArgs lo k args) wk lo k (con c args) = con c (wkArgs lo k args) wk lo k (def f args) = def f (wkArgs lo k args) wk lo k (meta x args) = meta x (wkArgs lo k args) wk lo k (lam v t) = lam v (wkAbsTerm lo k t) wk lo k (pi a b) = pi (wkArg lo k a) (wkAbsTerm lo k b) wk lo k (agda-sort s) = agda-sort (wkSort lo k s) wk lo k (lit l) = lit l wk lo k (pat-lam cs args) = pat-lam (wkClauses lo k cs) (wkArgs lo k args) wk lo k unknown = unknown wkAbsTerm lo k (abs s t) = abs s (wk (suc lo) k t) wkArgs lo k [] = [] wkArgs lo k (x ∷ args) = wkArg lo k x ∷ wkArgs lo k args wkArg lo k (arg i v) = arg i (wk lo k v) wkSort lo k (set t) = set (wk lo k t) wkSort lo k (lit n) = lit n wkSort lo k unknown = unknown wkClauses lo k [] = [] wkClauses lo k (c ∷ cs) = wkClause lo k c ∷ wkClauses lo k cs wkClause lo k (clause ps b) = clause ps (wk (lo + patternBindings ps) k b) wkClause lo k (absurd-clause ps) = absurd-clause ps -- Instances -- DeBruijnTraversable : ∀ {a} {F : Set a → Set a} {{_ : Traversable F}} {A : Set a} {{_ : DeBruijn A}} → DeBruijn (F A) strengthenFrom {{DeBruijnTraversable}} lo k = traverse (strengthenFrom lo k) weakenFrom {{DeBruijnTraversable}} lo k = fmap (weakenFrom lo k) instance DeBruijnNat : DeBruijn Nat strengthenFrom {{DeBruijnNat}} = strVar weakenFrom {{DeBruijnNat}} = wkVar DeBruijnTerm : DeBruijn Term strengthenFrom {{DeBruijnTerm}} = strTerm weakenFrom {{DeBruijnTerm}} = wk DeBruijnList : ∀ {a} {A : Set a} {{_ : DeBruijn A}} → DeBruijn (List A) DeBruijnList = DeBruijnTraversable DeBruijnVec : ∀ {a} {A : Set a} {{_ : DeBruijn A}} {n : Nat} → DeBruijn (Vec A n) DeBruijnVec = DeBruijnTraversable DeBruijnArg : {A : Set} {{_ : DeBruijn A}} → DeBruijn (Arg A) DeBruijnArg = DeBruijnTraversable DeBruijnMaybe : {A : Set} {{_ : DeBruijn A}} → DeBruijn (Maybe A) DeBruijnMaybe = DeBruijnTraversable -- Strip bound names (to ensure _==_ checks α-equality) -- Doesn't touch pattern variables in pattern lambdas. mutual stripBoundNames : Term → Term stripBoundNames (var x args) = var x (stripArgs args) stripBoundNames (con c args) = con c (stripArgs args) stripBoundNames (def f args) = def f (stripArgs args) stripBoundNames (lam v t) = lam v (stripAbs t) stripBoundNames (pat-lam cs args) = pat-lam (stripClauses cs) (stripArgs args) stripBoundNames (pi a b) = pi (stripArg a) (stripAbs b) stripBoundNames (agda-sort s) = agda-sort (stripSort s) stripBoundNames (lit l) = lit l stripBoundNames (meta x args) = meta x (stripArgs args) stripBoundNames unknown = unknown private stripArgs : List (Arg Term) → List (Arg Term) stripArgs [] = [] stripArgs (x ∷ xs) = stripArg x ∷ stripArgs xs stripArg : Arg Term → Arg Term stripArg (arg i t) = arg i (stripBoundNames t) stripAbs : Abs Term → Abs Term stripAbs (abs _ t) = abs "" (stripBoundNames t) stripClauses : List Clause → List Clause stripClauses [] = [] stripClauses (x ∷ xs) = stripClause x ∷ stripClauses xs stripClause : Clause → Clause stripClause (clause ps t) = clause ps (stripBoundNames t) stripClause (absurd-clause ps) = absurd-clause ps stripSort : Sort → Sort stripSort (set t) = set (stripBoundNames t) stripSort (lit n) = lit n stripSort unknown = unknown
{ "alphanum_fraction": 0.6026356589, "avg_line_length": 33.59375, "ext": "agda", "hexsha": "1f04ad447dc6403fa8370b2de18fd6ef1db97fd2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "lclem/agda-prelude", "max_forks_repo_path": "src/Tactic/Reflection/DeBruijn.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "lclem/agda-prelude", "max_issues_repo_path": "src/Tactic/Reflection/DeBruijn.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "lclem/agda-prelude", "max_stars_repo_path": "src/Tactic/Reflection/DeBruijn.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2216, "size": 6450 }
{- A Cubical proof of Blakers-Massey Theorem (KANG Rongji, Oct. 2021) Based on the previous type-theoretic proof described in Kuen-Bang Hou (Favonia), Eric Finster, Dan Licata, Peter LeFanu Lumsdaine, "A Mechanization of the Blakers–Massey Connectivity Theorem in Homotopy Type Theory" (https://arxiv.org/abs/1605.03227) Also the HoTT-Agda formalization by Favonia: (https://github.com/HoTT/HoTT-Agda/blob/master/theorems/homotopy/BlakersMassey.agda) Using cubes explicitly as much as possible. -} {-# OPTIONS --safe #-} module Cubical.Homotopy.BlakersMassey where open import Cubical.Foundations.Prelude open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Foundations.Equiv open import Cubical.Foundations.Equiv.Properties open import Cubical.Foundations.Isomorphism open Iso open import Cubical.Foundations.Univalence open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv.HalfAdjoint open import Cubical.Data.Nat hiding (elim) open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.HITs.Truncation renaming (hLevelTrunc to Trunc) open import Cubical.HITs.Pushout hiding (PushoutGenFib) open import Cubical.Homotopy.Connected open import Cubical.Homotopy.WedgeConnectivity module BlakersMassey {ℓ₁ ℓ₂ ℓ₃ : Level} (X : Type ℓ₁)(Y : Type ℓ₂)(Q : X → Y → Type ℓ₃) {m : HLevel} (leftConn : (x : X) → isConnected (1 + m) (Σ[ y ∈ Y ] Q x y)) {n : HLevel} (rightConn : (y : Y) → isConnected (1 + n) (Σ[ x ∈ X ] Q x y)) where ℓ : Level ℓ = ℓ-max (ℓ-max ℓ₁ ℓ₂) ℓ₃ leftFiber : X → Type (ℓ-max ℓ₂ ℓ₃) leftFiber x = Σ[ y ∈ Y ] Q x y rightFiber : Y → Type (ℓ-max ℓ₁ ℓ₃) rightFiber y = Σ[ x ∈ X ] Q x y {- We use the alternative formulation of pushout with fewer parameters -} PushoutQ = PushoutGen Q {- Some preliminary definitions for convenience -} fiberSquare : {x₀ x₁ : X}{y₀ : Y}{p : PushoutQ}(q₀₀ : Q x₀ y₀)(q₁₀ : Q x₁ y₀) → inl x₁ ≡ p → inl x₀ ≡ p → Type ℓ fiberSquare q₀₀ q₁₀ r' r = PathP (λ i → push q₀₀ (~ i) ≡ r' i) (sym (push q₁₀)) r fiberSquarePush : {x₀ x₁ : X}{y₀ y₁ : Y}(q₀₀ : Q x₀ y₀)(q₁₀ : Q x₁ y₀)(q₁₁ : Q x₁ y₁) → inl x₀ ≡ inr y₁ → Type ℓ fiberSquarePush q₀₀ q₁₀ q₁₁ = fiberSquare q₀₀ q₁₀ (push q₁₁) fiber' : {x₀ : X}{y₀ : Y}(q₀₀ : Q x₀ y₀){x₁ : X}{p : PushoutQ} → inl x₁ ≡ p → inl x₀ ≡ p → Type ℓ fiber' {y₀ = y₀} q₀₀ {x₁ = x₁} r' r = Σ[ q₁₀ ∈ Q x₁ y₀ ] fiberSquare q₀₀ q₁₀ r' r fiber'Push : {x₀ x₁ : X}{y₀ y₁ : Y}(q₀₀ : Q x₀ y₀)(q₁₁ : Q x₁ y₁) → inl x₀ ≡ inr y₁ → Type ℓ fiber'Push q₀₀ q₁₁ = fiber' q₀₀ (push q₁₁) leftCodeExtended : {x₀ : X}{y₀ : Y}(q₀₀ : Q x₀ y₀) → (x₁ : X){p : PushoutQ} → inl x₁ ≡ p → inl x₀ ≡ p → Type ℓ leftCodeExtended {y₀ = y₀} q₀₀ x₁ r' r = Trunc (m + n) (fiber' q₀₀ r' r) rightCode : {x₀ : X}(y : Y) → Path PushoutQ (inl x₀) (inr y) → Type ℓ rightCode y r = Trunc (m + n) (fiber push r) {- Bunch of coherence data that will be used to construct Code -} {- Definitions of fiber→ -} module _ {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) where {- (x₀ , q₀₀) = (x₁ , q₁₀) -} module _ {y₁ : Y}(q₁₁ : Q x₁ y₁) (r : inl x₁ ≡ inr y₁) (p : fiberSquarePush q₁₀ q₁₀ q₁₁ r) where fiber→[q₀₀=q₁₀]-filler : (i j k : I) → PushoutQ fiber→[q₀₀=q₁₀]-filler i j k' = hfill (λ k → λ { (i = i0) → push q₁₁ (j ∧ k) ; (i = i1) → p k j ; (j = i0) → push q₁₀ (i ∧ ~ k) ; (j = i1) → push q₁₁ k }) (inS (push q₁₀ (i ∧ ~ j))) k' fiber→[q₀₀=q₁₀] : fiber push r fiber→[q₀₀=q₁₀] .fst = q₁₁ fiber→[q₀₀=q₁₀] .snd i j = fiber→[q₀₀=q₁₀]-filler i j i1 ∣fiber→[q₀₀=q₁₀]∣ : rightCode _ r ∣fiber→[q₀₀=q₁₀]∣ = ∣ fiber→[q₀₀=q₁₀] ∣ₕ {- (y₁ , q₁₁) = (y₀ , q₁₀) -} module _ {x₀ : X}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₀) (p : fiberSquarePush q₀₀ q₁₀ q₁₀ r) where fiber→[q₁₁=q₁₀]-filler : (i j k : I) → PushoutQ fiber→[q₁₁=q₁₀]-filler i j k' = hfill (λ k → λ { (i = i0) → push q₀₀ (j ∨ ~ k) ; (i = i1) → p k j ; (j = i0) → push q₀₀ (~ k) ; (j = i1) → push q₁₀ (~ i ∨ k) }) (inS (push q₁₀ (~ i ∨ ~ j))) k' fiber→[q₁₁=q₁₀] : fiber push r fiber→[q₁₁=q₁₀] .fst = q₀₀ fiber→[q₁₁=q₁₀] .snd i j = fiber→[q₁₁=q₁₀]-filler i j i1 ∣fiber→[q₁₁=q₁₀]∣ : rightCode _ r ∣fiber→[q₁₁=q₁₀]∣ = ∣ fiber→[q₁₁=q₁₀] ∣ₕ {- q₀₀ = q₁₁ = q₁₀ -} fiber→[q₀₀=q₁₀=q₁₁]-filler : (r : inl x₁ ≡ inr y₀) → (p : fiberSquarePush q₁₀ q₁₀ q₁₀ r) → (i j k l : I) → PushoutQ fiber→[q₀₀=q₁₀=q₁₁]-filler r p i j k l' = hfill (λ l → λ { (i = i0) → fiber→[q₀₀=q₁₀]-filler q₁₀ r p j k l ; (i = i1) → fiber→[q₁₁=q₁₀]-filler q₁₀ r p j k l ; (j = i0) → push q₁₀ ((i ∨ (k ∧ l)) ∧ (k ∨ (i ∧ ~ l))) ; (j = i1) → p l k ; (k = i0) → push q₁₀ ((i ∨ j) ∧ ~ l) ; (k = i1) → push q₁₀ ((i ∧ ~ j) ∨ l) }) (inS (push q₁₀ ((i ∨ (~ k ∧ j)) ∧ (~ k ∨ (i ∧ ~ j))))) l' fiber→[q₀₀=q₁₀=q₁₁] : fiber→[q₀₀=q₁₀] q₁₀ ≡ fiber→[q₁₁=q₁₀] q₁₀ fiber→[q₀₀=q₁₀=q₁₁] i r p .fst = q₁₀ fiber→[q₀₀=q₁₀=q₁₁] i r p .snd j k = fiber→[q₀₀=q₁₀=q₁₁]-filler r p i j k i1 ∣fiber→[q₀₀=q₁₀=q₁₁]∣ : ∣fiber→[q₀₀=q₁₀]∣ q₁₀ ≡ ∣fiber→[q₁₁=q₁₀]∣ q₁₀ ∣fiber→[q₀₀=q₁₀=q₁₁]∣ i r p = ∣ fiber→[q₀₀=q₁₀=q₁₁] i r p ∣ₕ {- Definitions of fiber← -} module _ {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) where {- (x₁ , q₁₁) = (x₀ , q₀₁) -} module _ {y₀ : Y}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where fiber←[q₁₁=q₀₁]-filler : (i j k : I) → PushoutQ fiber←[q₁₁=q₀₁]-filler i j k' = hfill (λ k → λ { (i = i0) → push q₀₀ (~ j ∧ k) ; (i = i1) → p k j ; (j = i0) → push q₀₀ (~ i ∧ k) ; (j = i1) → push q₀₁ i }) (inS (push q₀₁ (i ∧ j))) k' fiber←[q₁₁=q₀₁] : fiber'Push q₀₀ q₀₁ r fiber←[q₁₁=q₀₁] .fst = q₀₀ fiber←[q₁₁=q₀₁] .snd i j = fiber←[q₁₁=q₀₁]-filler i j i1 ∣fiber←[q₁₁=q₀₁]∣ : leftCodeExtended q₀₀ _ (push q₀₁) r ∣fiber←[q₁₁=q₀₁]∣ = ∣ fiber←[q₁₁=q₀₁] ∣ₕ {- (y₀ , q₀₀) = (y₁ , q₀₁) -} module _ {x₁ : X}(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where fiber←[q₀₀=q₀₁]-filler : (i j k : I) → PushoutQ fiber←[q₀₀=q₀₁]-filler i j k' = hfill (λ k → λ { (i = i0) → push q₁₁ (~ j ∨ ~ k) ; (i = i1) → p k j ; (j = i0) → push q₀₁ (~ i) ; (j = i1) → push q₁₁ (i ∨ ~ k) }) (inS (push q₀₁ (~ i ∨ j))) k' fiber←[q₀₀=q₀₁] : fiber'Push q₀₁ q₁₁ r fiber←[q₀₀=q₀₁] .fst = q₁₁ fiber←[q₀₀=q₀₁] .snd i j = fiber←[q₀₀=q₀₁]-filler i j i1 ∣fiber←[q₀₀=q₀₁]∣ : leftCodeExtended q₀₁ _ (push q₁₁) r ∣fiber←[q₀₀=q₀₁]∣ = ∣ fiber←[q₀₀=q₀₁] ∣ₕ {- q₀₀ = q₀₁ = q₁₁ -} fiber←[q₀₀=q₀₁=q₁₁]-filler : (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r) → (i j k l : I) → PushoutQ fiber←[q₀₀=q₀₁=q₁₁]-filler r p i j k l' = hfill (λ l → λ { (i = i0) → fiber←[q₁₁=q₀₁]-filler q₀₁ r p j k l ; (i = i1) → fiber←[q₀₀=q₀₁]-filler q₀₁ r p j k l ; (j = i0) → push q₀₁ ((i ∨ (~ k ∧ l)) ∧ (~ k ∨ (i ∧ ~ l))) ; (j = i1) → p l k ; (k = i0) → push q₀₁ ((i ∨ l) ∧ ~ j) ; (k = i1) → push q₀₁ ((i ∧ ~ l) ∨ j) }) (inS (push q₀₁ ((i ∨ (k ∧ j)) ∧ (k ∨ (i ∧ ~ j))))) l' fiber←[q₀₀=q₀₁=q₁₁] : fiber←[q₁₁=q₀₁] q₀₁ ≡ fiber←[q₀₀=q₀₁] q₀₁ fiber←[q₀₀=q₀₁=q₁₁] i r p .fst = q₀₁ fiber←[q₀₀=q₀₁=q₁₁] i r p .snd j k = fiber←[q₀₀=q₀₁=q₁₁]-filler r p i j k i1 ∣fiber←[q₀₀=q₀₁=q₁₁]∣ : ∣fiber←[q₁₁=q₀₁]∣ q₀₁ ≡ ∣fiber←[q₀₀=q₀₁]∣ q₀₁ ∣fiber←[q₀₀=q₀₁=q₁₁]∣ i r p = ∣ fiber←[q₀₀=q₀₁=q₁₁] i r p ∣ₕ {- Definitions of fiber→← -} module _ {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) where {- (x₀ , q₀₀) = (x₁ , q₁₀) -} module _ {y₁ : Y}(q₁₁ : Q x₁ y₁) (r : inl x₁ ≡ inr y₁) (p : fiberSquarePush q₁₀ q₁₀ q₁₁ r) where fiber→←[q₀₀=q₁₀]-filler : (i j k l : I) → PushoutQ fiber→←[q₀₀=q₁₀]-filler i j k l' = let p' = fiber→[q₀₀=q₁₀] q₁₀ q₁₁ r p .snd in hfill (λ l → λ { (i = i0) → fiber←[q₁₁=q₀₁]-filler q₁₁ q₁₀ r p' j k l ; (i = i1) → fiber→[q₀₀=q₁₀]-filler q₁₀ q₁₁ r p l k j ; (j = i0) → push q₁₀ (~ k ∧ l) ; (j = i1) → p' l k ; (k = i0) → push q₁₀ (~ j ∧ l) ; (k = i1) → push q₁₁ j }) (inS (push q₁₁ (j ∧ k))) l' fiber→←[q₀₀=q₁₀] : fiber←[q₁₁=q₀₁] q₁₁ q₁₀ r (fiber→[q₀₀=q₁₀] q₁₀ q₁₁ r p .snd) .snd ≡ p fiber→←[q₀₀=q₁₀] i j k = fiber→←[q₀₀=q₁₀]-filler i j k i1 {- (y₁ , q₁₁) = (y₀ , q₁₀) -} module _ {x₀ : X}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₀) (p : fiberSquarePush q₀₀ q₁₀ q₁₀ r) where fiber→←[q₁₁=q₁₀]-filler : (i j k l : I) → PushoutQ fiber→←[q₁₁=q₁₀]-filler i j k l' = let p' = fiber→[q₁₁=q₁₀] q₁₀ q₀₀ r p .snd in hfill (λ l → λ { (i = i0) → fiber←[q₀₀=q₀₁]-filler q₀₀ q₁₀ r p' j k l ; (i = i1) → fiber→[q₁₁=q₁₀]-filler q₁₀ q₀₀ r p l k j ; (j = i0) → push q₁₀ (~ k ∨ ~ l) ; (j = i1) → p' l k ; (k = i0) → push q₀₀ (~ j) ; (k = i1) → push q₁₀ (j ∨ ~ l) }) (inS (push q₀₀ (~ j ∨ k))) l' fiber→←[q₁₁=q₁₀] : fiber←[q₀₀=q₀₁] q₀₀ q₁₀ r (fiber→[q₁₁=q₁₀] q₁₀ q₀₀ r p .snd) .snd ≡ p fiber→←[q₁₁=q₁₀] i j k = fiber→←[q₁₁=q₁₀]-filler i j k i1 {- q₀₀ = q₁₀ = q₁₁ -} fiber→←hypercube : (r : inl x₁ ≡ inr y₀) → (p : fiberSquarePush q₁₀ q₁₀ q₁₀ r) → PathP (λ i → fiber←[q₀₀=q₀₁=q₁₁] q₁₀ i r (fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd) .snd ≡ p) (fiber→←[q₀₀=q₁₀] q₁₀ r p) (fiber→←[q₁₁=q₁₀] q₁₀ r p) fiber→←hypercube r p i j u v = hcomp (λ l → λ { (i = i0) → fiber→←[q₀₀=q₁₀]-filler q₁₀ r p j u v l ; (i = i1) → fiber→←[q₁₁=q₁₀]-filler q₁₀ r p j u v l ; (j = i0) → fiber←[q₀₀=q₀₁=q₁₁]-filler q₁₀ r (fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd) i u v l ; (j = i1) → fiber→[q₀₀=q₁₀=q₁₁]-filler q₁₀ r p i l v u ; (u = i0) → push q₁₀ ((i ∨ (~ v ∧ l)) ∧ (~ v ∨ (i ∧ ~ l))) ; (u = i1) → fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd l v ; (v = i0) → push q₁₀ ((i ∨ l) ∧ ~ u) ; (v = i1) → push q₁₀ ((i ∧ ~ l) ∨ u) }) (push q₁₀ ((i ∨ (v ∧ u)) ∧ (v ∨ (i ∧ ~ u)))) {- Definitions of fiber←→ -} module _ {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) where {- (x₁ , q₁₁) = (x₀ , q₀₁) -} module _ {y₀ : Y}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where fiber←→[q₁₁=q₀₁]-filler : (i j k l : I) → PushoutQ fiber←→[q₁₁=q₀₁]-filler i j k l' = let p' = fiber←[q₁₁=q₀₁] q₀₁ q₀₀ r p .snd in hfill (λ l → λ { (i = i0) → fiber→[q₀₀=q₁₀]-filler q₀₀ q₀₁ r p' j k l ; (i = i1) → fiber←[q₁₁=q₀₁]-filler q₀₁ q₀₀ r p l k j ; (j = i0) → push q₀₁ (k ∧ l) ; (j = i1) → p' l k ; (k = i0) → push q₀₀ (j ∧ ~ l) ; (k = i1) → push q₀₁ l }) (inS (push q₀₀ (j ∧ ~ k))) l' fiber←→[q₁₁=q₀₁] : fiber→[q₀₀=q₁₀] q₀₀ q₀₁ r (fiber←[q₁₁=q₀₁] q₀₁ q₀₀ r p .snd) .snd ≡ p fiber←→[q₁₁=q₀₁] i j k = fiber←→[q₁₁=q₀₁]-filler i j k i1 {- (y₀ , q₀₀) = (y₁ , q₀₁) -} module _ {x₁ : X}(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where fiber←→[q₀₀=q₀₁]-filler : (i j k l : I) → PushoutQ fiber←→[q₀₀=q₀₁]-filler i j k l' = let p' = fiber←[q₀₀=q₀₁] q₀₁ q₁₁ r p .snd in hfill (λ l → λ { (i = i0) → fiber→[q₁₁=q₁₀]-filler q₁₁ q₀₁ r p' j k l ; (i = i1) → fiber←[q₀₀=q₀₁]-filler q₀₁ q₁₁ r p l k j ; (j = i0) → push q₀₁ (k ∨ ~ l) ; (j = i1) → p' l k ; (k = i0) → push q₀₁ (~ l) ; (k = i1) → push q₁₁ (~ j ∨ l) }) (inS (push q₁₁ (~ j ∨ ~ k))) l' fiber←→[q₀₀=q₀₁] : fiber→[q₁₁=q₁₀] q₁₁ q₀₁ r (fiber←[q₀₀=q₀₁] q₀₁ q₁₁ r p .snd) .snd ≡ p fiber←→[q₀₀=q₀₁] i j k = fiber←→[q₀₀=q₀₁]-filler i j k i1 {- q₀₀ = q₀₁ = q₁₁ -} fiber←→hypercube : (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r) → PathP (λ i → fiber→[q₀₀=q₁₀=q₁₁] q₀₁ i r (fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd) .snd ≡ p) (fiber←→[q₁₁=q₀₁] q₀₁ r p) (fiber←→[q₀₀=q₀₁] q₀₁ r p) fiber←→hypercube r p i j u v = hcomp (λ l → λ { (i = i0) → fiber←→[q₁₁=q₀₁]-filler q₀₁ r p j u v l ; (i = i1) → fiber←→[q₀₀=q₀₁]-filler q₀₁ r p j u v l ; (j = i0) → fiber→[q₀₀=q₁₀=q₁₁]-filler q₀₁ r (fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd) i u v l ; (j = i1) → fiber←[q₀₀=q₀₁=q₁₁]-filler q₀₁ r p i l v u ; (u = i0) → push q₀₁ ((i ∨ (v ∧ l)) ∧ (v ∨ (i ∧ ~ l))) ; (u = i1) → fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd l v ; (v = i0) → push q₀₁ ((i ∨ u) ∧ ~ l) ; (v = i1) → push q₀₁ ((i ∧ ~ u) ∨ l) }) (push q₀₁ ((i ∨ (~ v ∧ u)) ∧ (~ v ∨ (i ∧ ~ u)))) module Fiber→ {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) = WedgeConnectivity m n (leftFiber x₁ , (y₀ , q₁₀)) (leftConn x₁) (rightFiber y₀ , (x₁ , q₁₀)) (rightConn y₀) (λ (y₁ , q₁₁) (x₀ , q₀₀) → (((r : inl x₀ ≡ inr y₁) → fiberSquarePush q₀₀ q₁₀ q₁₁ r → rightCode _ r) , isOfHLevelΠ2 _ (λ x y → isOfHLevelTrunc _))) (λ (y₁ , q₁₁) → ∣fiber→[q₀₀=q₁₀]∣ q₁₀ q₁₁) (λ (x₀ , q₀₀) → ∣fiber→[q₁₁=q₁₀]∣ q₁₀ q₀₀) (∣fiber→[q₀₀=q₁₀=q₁₁]∣ q₁₀) fiber→ : {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) → {x₀ : X}(q₀₀ : Q x₀ y₀) → {y₁ : Y}(q₁₁ : Q x₁ y₁) → (r : inl x₀ ≡ inr y₁) → fiberSquarePush q₀₀ q₁₀ q₁₁ r → rightCode _ r fiber→ q₁₀ q₀₀ q₁₁ = Fiber→.extension q₁₀ (_ , q₁₁) (_ , q₀₀) module Fiber← {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) = WedgeConnectivity m n (leftFiber x₀ , (y₁ , q₀₁)) (leftConn x₀) (rightFiber y₁ , (x₀ , q₀₁)) (rightConn y₁) (λ (y₀ , q₀₀) (x₁ , q₁₁) → (((r : inl x₀ ≡ inr y₁) → push q₀₁ ≡ r → leftCodeExtended q₀₀ _ (push q₁₁) r) , isOfHLevelΠ2 _ (λ x y → isOfHLevelTrunc _))) (λ (y₀ , q₀₀) → ∣fiber←[q₁₁=q₀₁]∣ q₀₁ q₀₀) (λ (x₁ , q₁₁) → ∣fiber←[q₀₀=q₀₁]∣ q₀₁ q₁₁) (∣fiber←[q₀₀=q₀₁=q₁₁]∣ q₀₁) fiber← : {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) → {y₀ : Y}(q₀₀ : Q x₀ y₀) → {x₁ : X}(q₁₁ : Q x₁ y₁) → (r : inl x₀ ≡ inr y₁) → push q₀₁ ≡ r → leftCodeExtended q₀₀ _ (push q₁₁) r fiber← q₀₁ q₀₀ q₁₁ = Fiber←.extension q₀₁ (_ , q₀₀) (_ , q₁₁) module _ {x₀ x₁ : X}{y₀ y₁ : Y} (q₀₀ : Q x₀ y₀)(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) where left→rightCodeExtended : leftCodeExtended q₀₀ _ (push q₁₁) r → rightCode _ r left→rightCodeExtended = rec (isOfHLevelTrunc _) (λ (q₁₀ , p) → fiber→ q₁₀ q₀₀ q₁₁ r p) right→leftCodeExtended : rightCode _ r → leftCodeExtended q₀₀ _ (push q₁₁) r right→leftCodeExtended = rec (isOfHLevelTrunc _) (λ (q₀₁ , p) → fiber← q₀₁ q₀₀ q₁₁ r p) {- Definition of one-side homotopy -} module _ {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) where {- (x₀ , q₀₀) = (x₁ , q₁₀) -} module _ {y₁ : Y}(q₁₁ : Q x₁ y₁) (r : inl x₁ ≡ inr y₁) (p : fiberSquarePush q₁₀ q₁₀ q₁₁ r) where ∣fiber→←[q₀₀=q₁₀]∣ : right→leftCodeExtended q₁₀ q₁₁ r (fiber→ q₁₀ q₁₀ q₁₁ r p) ≡ ∣ q₁₀ , p ∣ₕ ∣fiber→←[q₀₀=q₁₀]∣ = (λ i → right→leftCodeExtended q₁₀ q₁₁ r (Fiber→.left q₁₀ (_ , q₁₁) i r p)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i → Fiber←.left q₁₁ (_ , q₁₀) i r (fiber→[q₀₀=q₁₀] q₁₀ q₁₁ r p .snd)) ∙ (λ i → ∣ q₁₀ , fiber→←[q₀₀=q₁₀] q₁₀ q₁₁ r p i ∣ₕ) {- (y₁ , q₁₁) = (y₀ , q₁₀) -} module _ {x₀ : X}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₀) (p : fiberSquarePush q₀₀ q₁₀ q₁₀ r) where ∣fiber→←[q₁₁=q₁₀]∣ : right→leftCodeExtended q₀₀ q₁₀ r (fiber→ q₁₀ q₀₀ q₁₀ r p) ≡ ∣ q₁₀ , p ∣ₕ ∣fiber→←[q₁₁=q₁₀]∣ = (λ i → right→leftCodeExtended q₀₀ q₁₀ r (Fiber→.right q₁₀ (_ , q₀₀) i r p)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i → Fiber←.right q₀₀ (_ , q₁₀) i r (fiber→[q₁₁=q₁₀] q₁₀ q₀₀ r p .snd)) ∙ (λ i → ∣ q₁₀ , fiber→←[q₁₁=q₁₀] q₁₀ q₀₀ r p i ∣ₕ) {- q₀₀ = q₁₁ = q₁₀ -} module _ (r : inl x₁ ≡ inr y₀) (p : fiberSquarePush q₁₀ q₁₀ q₁₀ r) where path→←Square = (λ i j → right→leftCodeExtended q₁₀ q₁₀ r (Fiber→.homSquare q₁₀ i j r p)) ∙₂ (λ i → recUniq {n = m + n} _ _ _) ∙₂ (λ i j → Fiber←.homSquare q₁₀ i j r (fiber→[q₀₀=q₁₀=q₁₁] q₁₀ i r p .snd)) ∙₂ (λ i j → ∣ (q₁₀ , fiber→←hypercube q₁₀ r p i j) ∣ₕ) ∣fiber→←[q₀₀=q₁₀=q₁₁]∣ : ∣fiber→←[q₀₀=q₁₀]∣ q₁₀ ≡ ∣fiber→←[q₁₁=q₁₀]∣ q₁₀ ∣fiber→←[q₀₀=q₁₀=q₁₁]∣ i r p = path→←Square r p i fiber→← : {x₁ : X}{y₀ : Y}(q₁₀ : Q x₁ y₀) → {x₀ : X}(q₀₀ : Q x₀ y₀) → {y₁ : Y}(q₁₁ : Q x₁ y₁) → (r : inl x₀ ≡ inr y₁) → (p : fiberSquarePush q₀₀ q₁₀ q₁₁ r) → right→leftCodeExtended q₀₀ q₁₁ r (fiber→ q₁₀ q₀₀ q₁₁ r p) ≡ ∣ q₁₀ , p ∣ₕ fiber→← {x₁ = x₁} {y₀ = y₀} q₁₀ q₀₀' q₁₁' = WedgeConnectivity.extension m n (leftFiber x₁ , (y₀ , q₁₀)) (leftConn x₁) (rightFiber y₀ , (x₁ , q₁₀)) (rightConn y₀) (λ (y₁ , q₁₁) (x₀ , q₀₀) → (( (r : inl x₀ ≡ inr y₁) → (p : fiberSquarePush q₀₀ q₁₀ q₁₁ r) → right→leftCodeExtended q₀₀ q₁₁ r (fiber→ q₁₀ q₀₀ q₁₁ r p) ≡ ∣ q₁₀ , p ∣ₕ ) , isOfHLevelΠ2 _ (λ x y → isOfHLevelTruncPath))) (λ (y₁ , q₁₁) → ∣fiber→←[q₀₀=q₁₀]∣ q₁₀ q₁₁) (λ (x₀ , q₀₀) → ∣fiber→←[q₁₁=q₁₀]∣ q₁₀ q₀₀) (∣fiber→←[q₀₀=q₁₀=q₁₁]∣ q₁₀) (_ , q₁₁') (_ , q₀₀') {- Definition of the other side homotopy -} module _ {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) where {- (x₁ , q₁₁) = (x₀ , q₀₁) -} module _ {y₀ : Y}(q₀₀ : Q x₀ y₀) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where ∣fiber←→[q₁₁=q₀₁]∣ : left→rightCodeExtended q₀₀ q₀₁ r (fiber← q₀₁ q₀₀ q₀₁ r p) ≡ ∣ q₀₁ , p ∣ₕ ∣fiber←→[q₁₁=q₀₁]∣ = (λ i → left→rightCodeExtended q₀₀ q₀₁ r (Fiber←.left q₀₁ (_ , q₀₀) i r p)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i → Fiber→.left q₀₀ (_ , q₀₁) i r (fiber←[q₁₁=q₀₁] q₀₁ q₀₀ r p .snd)) ∙ (λ i → ∣ q₀₁ , fiber←→[q₁₁=q₀₁] q₀₁ q₀₀ r p i ∣ₕ) {- (y₀ , q₀₀) = (y₁ , q₀₁) -} module _ {x₁ : X}(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where ∣fiber←→[q₀₀=q₀₁]∣ : left→rightCodeExtended q₀₁ q₁₁ r (fiber← q₀₁ q₀₁ q₁₁ r p) ≡ ∣ q₀₁ , p ∣ₕ ∣fiber←→[q₀₀=q₀₁]∣ = (λ i → left→rightCodeExtended q₀₁ q₁₁ r (Fiber←.right q₀₁ (_ , q₁₁) i r p)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i → Fiber→.right q₁₁ (_ , q₀₁) i r (fiber←[q₀₀=q₀₁] q₀₁ q₁₁ r p .snd)) ∙ (λ i → ∣ q₀₁ , fiber←→[q₀₀=q₀₁] q₀₁ q₁₁ r p i ∣ₕ) {- q₀₀ = q₀₁ = q₁₁ -} module _ (r : inl x₀ ≡ inr y₁) (p : push q₀₁ ≡ r) where path←→Square = (λ i j → left→rightCodeExtended q₀₁ q₀₁ r (Fiber←.homSquare q₀₁ i j r p)) ∙₂ (λ i → recUniq {n = m + n} _ _ _) ∙₂ (λ i j → Fiber→.homSquare q₀₁ i j r (fiber←[q₀₀=q₀₁=q₁₁] q₀₁ i r p .snd)) ∙₂ (λ i j → ∣ q₀₁ , fiber←→hypercube q₀₁ r p i j ∣ₕ) ∣fiber←→[q₀₀=q₀₁=q₁₁]∣ : ∣fiber←→[q₁₁=q₀₁]∣ q₀₁ ≡ ∣fiber←→[q₀₀=q₀₁]∣ q₀₁ ∣fiber←→[q₀₀=q₀₁=q₁₁]∣ i r p = path←→Square r p i fiber←→ : {x₀ : X}{y₁ : Y}(q₀₁ : Q x₀ y₁) → {y₀ : Y}(q₀₀ : Q x₀ y₀) → {x₁ : X}(q₁₁ : Q x₁ y₁) → (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r) → left→rightCodeExtended q₀₀ q₁₁ r (fiber← q₀₁ q₀₀ q₁₁ r p) ≡ ∣ q₀₁ , p ∣ₕ fiber←→ {x₀ = x₀} {y₁ = y₁} q₀₁ q₀₀' q₁₁' = WedgeConnectivity.extension m n (leftFiber x₀ , (y₁ , q₀₁)) (leftConn x₀) (rightFiber y₁ , (x₀ , q₀₁)) (rightConn y₁) (λ (y₀ , q₀₀) (x₁ , q₁₁) → (( (r : inl x₀ ≡ inr y₁) → (p : push q₀₁ ≡ r) → left→rightCodeExtended q₀₀ q₁₁ r (fiber← q₀₁ q₀₀ q₁₁ r p) ≡ ∣ q₀₁ , p ∣ₕ ) , isOfHLevelΠ2 _ (λ x y → isOfHLevelTruncPath))) (λ (y₀ , q₀₀) → ∣fiber←→[q₁₁=q₀₁]∣ q₀₁ q₀₀) (λ (x₁ , q₁₁) → ∣fiber←→[q₀₀=q₀₁]∣ q₀₁ q₁₁) (∣fiber←→[q₀₀=q₀₁=q₁₁]∣ q₀₁) (_ , q₀₀') (_ , q₁₁') module _ {x₀ x₁ : X}{y₀ y₁ : Y} (q₀₀ : Q x₀ y₀)(q₁₁ : Q x₁ y₁) (r : inl x₀ ≡ inr y₁) where left→right→leftCodeExtended : (a : leftCodeExtended q₀₀ _ (push q₁₁) r) → right→leftCodeExtended q₀₀ q₁₁ r (left→rightCodeExtended q₀₀ q₁₁ r a) ≡ a left→right→leftCodeExtended a = sym (∘rec _ _ _ (right→leftCodeExtended q₀₀ q₁₁ r) a) ∙ (λ i → recId _ (λ (q₁₀ , p) → fiber→← q₁₀ q₀₀ q₁₁ r p) i a) right→left→rightCodeExtended : (a : rightCode _ r) → left→rightCodeExtended q₀₀ q₁₁ r (right→leftCodeExtended q₀₀ q₁₁ r a) ≡ a right→left→rightCodeExtended a = sym (∘rec _ _ _ (left→rightCodeExtended q₀₀ q₁₁ r) a) ∙ (λ i → recId _ (λ (q₀₁ , p) → fiber←→ q₀₁ q₀₀ q₁₁ r p) i a) left≃rightCodeExtended : leftCodeExtended q₀₀ _ (push q₁₁) r ≃ rightCode y₁ r left≃rightCodeExtended = isoToEquiv (iso (left→rightCodeExtended _ _ _) (right→leftCodeExtended _ _ _) right→left→rightCodeExtended left→right→leftCodeExtended) {- Definition and properties of Code -} module _ (x₀ : X)(y₀ : Y)(q₀₀ : Q x₀ y₀) where leftCode' : (x : X){p : PushoutQ} → inl x ≡ p → inl x₀ ≡ p → Type ℓ leftCode' x r' = leftCodeExtended q₀₀ x r' leftCode : (x : X) → inl x₀ ≡ inl x → Type ℓ leftCode x = leftCode' x refl fiberPath : {x : X}{y : Y} → (q : Q x y) → leftCode' x (push q) ≡ rightCode y fiberPath q i r = ua (left≃rightCodeExtended q₀₀ q r) i pushCode : {x : X}{y : Y} → (q : Q x y) → PathP (λ i → inl x₀ ≡ push q i → Type ℓ) (leftCode x) (rightCode y) pushCode q i = hcomp (λ j → λ { (i = i0) → leftCode _ ; (i = i1) → fiberPath q j }) (leftCode' _ (λ j → push q (i ∧ j))) Code : (p : PushoutQ) → inl x₀ ≡ p → Type ℓ Code (inl x) = leftCode x Code (inr y) = rightCode y Code (push q i) = pushCode q i {- Transportation rule of pushCode -} transpLeftCode : (y : Y) → (q : Q x₀ y) → (q' : leftCodeExtended q₀₀ _ refl refl) → leftCode' _ (push q) (push q) transpLeftCode y q q' = transport (λ i → leftCode' _ (λ j → push q (i ∧ j)) (λ j → push q (i ∧ j))) q' transpPushCodeβ' : (y : Y) → (q : Q x₀ y) → (q' : leftCodeExtended q₀₀ _ refl refl) → transport (λ i → pushCode q i (λ j → push q (i ∧ j))) q' ≡ left→rightCodeExtended _ _ _ (transpLeftCode y q q') transpPushCodeβ' y q q' i = transportRefl (left→rightCodeExtended _ _ _ (transpLeftCode y q (transportRefl q' i))) i module _ {p : PushoutQ}(r : inl x₀ ≡ p) where fiber-filler : I → Type ℓ fiber-filler i = fiber' q₀₀ (λ j → r (i ∧ j)) (λ j → r (i ∧ j)) module _ (q : fiberSquare q₀₀ q₀₀ refl refl) where transpLeftCode-filler : (i j k : I) → PushoutQ transpLeftCode-filler i j k' = hfill (λ k → λ { (i = i0) → push q₀₀ (~ j) ; (i = i1) → r (j ∧ k) ; (j = i0) → push q₀₀ (~ i) ; (j = i1) → r (i ∧ k) }) (inS (q i j)) k' transpLeftCodeβ' : {p : PushoutQ} → (r : inl x₀ ≡ p) → (q : fiberSquare q₀₀ q₀₀ refl refl) → transport (λ i → fiber-filler r i) (q₀₀ , q) ≡ (q₀₀ , λ i j → transpLeftCode-filler r q i j i1) transpLeftCodeβ' r q = J (λ p r → transport (λ i → fiber-filler r i) (q₀₀ , q) ≡ (q₀₀ , λ i j → transpLeftCode-filler r q i j i1)) (transportRefl _ ∙ (λ k → (q₀₀ , λ i j → transpLeftCode-filler refl q i j k))) r transpLeftCodeβ : (y : Y) → (q : Q x₀ y) → (q' : fiberSquare q₀₀ q₀₀ refl refl) → transpLeftCode y q ∣ q₀₀ , q' ∣ₕ ≡ ∣ q₀₀ , (λ i j → transpLeftCode-filler (push q) q' i j i1) ∣ₕ transpLeftCodeβ y q q' = transportTrunc _ ∙ (λ i → ∣ transpLeftCodeβ' _ q' i ∣ₕ) transpPushCodeβ : (y : Y) → (q : Q x₀ y) → (q' : fiberSquare q₀₀ q₀₀ refl refl) → transport (λ i → pushCode q i (λ j → push q (i ∧ j))) ∣ q₀₀ , q' ∣ₕ ≡ ∣fiber→[q₀₀=q₁₀]∣ q₀₀ q (push q) (λ i j → transpLeftCode-filler (push q) q' i j i1) transpPushCodeβ y q q' = transpPushCodeβ' _ _ _ ∙ (λ i → left→rightCodeExtended _ _ _ (transpLeftCodeβ _ _ q' i)) ∙ recUniq {n = m + n} _ _ _ ∙ (λ i' → Fiber→.left q₀₀ (_ , q) i' (push q) (λ i j → transpLeftCode-filler (push q) q' i j i1)) {- The contractibility of Code -} centerCode : {p : PushoutQ} → (r : inl x₀ ≡ p) → Code p r centerCode r = transport (λ i → Code _ (λ j → r (i ∧ j))) ∣ q₀₀ , (λ i j → push q₀₀ (~ i ∧ ~ j)) ∣ₕ module _ (y : Y)(q : Q x₀ y) where transp-filler : (i j k : I) → PushoutQ transp-filler = transpLeftCode-filler (push q) (λ i' j' → push q₀₀ (~ i' ∧ ~ j')) transp-square : fiberSquare q₀₀ q₀₀ (push q) (push q) transp-square i j = transp-filler i j i1 contractionCodeRefl' : fiber→[q₀₀=q₁₀] q₀₀ q (push q) transp-square .snd ≡ refl contractionCodeRefl' i j k = hcomp (λ l → λ { (i = i0) → fiber→[q₀₀=q₁₀]-filler q₀₀ q (push q) transp-square j k l ; (i = i1) → transp-square (~ j ∨ l) k ; (j = i0) → push q (k ∧ (i ∨ l)) ; (j = i1) → transp-square l k ; (k = i0) → push q₀₀ (j ∧ ~ l) ; (k = i1) → push q ((i ∧ ~ j) ∨ l) }) (transp-filler (~ j) k i) contractionCodeRefl : centerCode (push q) ≡ ∣ q , refl ∣ₕ contractionCodeRefl = transpPushCodeβ _ _ _ ∙ (λ i → ∣ q , contractionCodeRefl' i ∣ₕ) module _ (y : Y)(r : inl x₀ ≡ inr y) where contractionCode' : (a : fiber push r) → centerCode r ≡ ∣ a ∣ₕ contractionCode' (q , p') = J (λ r' p → centerCode r' ≡ ∣ q , p ∣ₕ) (contractionCodeRefl _ q) p' contractionCode : (a : Code _ r) → centerCode r ≡ a contractionCode = elim (λ _ → isOfHLevelTruncPath) contractionCode' isContrCode : isContr (Code _ r) isContrCode = centerCode r , contractionCode excision-helper : (x : X) → Trunc (1 + m) (Σ[ y₀ ∈ Y ] Q x y₀) → (y : Y) → (r : inl x ≡ inr y) → isContr (Trunc (m + n) (fiber push r)) excision-helper x y' y r = rec (isProp→isOfHLevelSuc m isPropIsContr) (λ (y₀ , q₀₀) → isContrCode x y₀ q₀₀ y r ) y' {- The Main Result : Blakers-Massey Homotopy Excision Theorem -} Excision : (x : X)(y : Y) → isConnectedFun (m + n) (push {x = x} {y = y}) Excision x y = excision-helper x (leftConn x .fst) y {- We also give the following version of the theorem: Given a square g A --------------> B |\ ↗ | | \ ↗ | | \ ↗ | f | X | inr | / | | / | | / | v / v B -----------> Pushout f g inl where X is the pullback of inl and inr (X := Σ[ (b , c) ∈ B × C ] (inl b ≡ inr c)). If f in n-connected and g in m-connected, then the diagonal map A → X is (n+m)-connected -} private shuffleFibIso₁ : {ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} (f : A → B) (g : A → C) (b : B) → Iso (Σ[ c ∈ C ] Σ[ a ∈ A ] (f a ≡ b) × (g a ≡ c)) (Σ[ a ∈ A ] ((Σ[ c ∈ C ] (g a ≡ c)) × (f a ≡ b))) shuffleFibIso₁ f g b = compIso (invIso Σ-assoc-Iso) (compIso (Σ-cong-iso-fst Σ-swap-Iso) (compIso (Σ-cong-iso-snd (λ y → Σ-swap-Iso)) (compIso Σ-assoc-Iso (Σ-cong-iso-snd λ a → invIso Σ-assoc-Iso)))) shuffleFibIso₂ : {ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} (f : A → B) (g : A → C) (x : _) → Iso (Σ[ a ∈ A ] ((Σ[ c ∈ C ] (g a ≡ c)) × (f a ≡ x))) (fiber f x) shuffleFibIso₂ f g x = Σ-cong-iso-snd λ a → compIso (Σ-cong-iso-fst (isContr→Iso (isContrSingl (g a)) isContrUnit)) lUnit×Iso module BlakersMassey□ {ℓ ℓ' ℓ'' : Level} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} (f : A → B) (g : A → C) (n m : ℕ) (con-f : isConnectedFun (suc n) f) (con-g : isConnectedFun (suc m) g) where {- Some abbreviations and connectivity -} private fib = doubleFib f g B-con : (x : B) → isConnected (suc n) (Σ[ c ∈ C ] (fib x c)) B-con x = isConnectedRetractFromIso (suc n) (compIso (shuffleFibIso₁ f g x) (shuffleFibIso₂ f g x)) (con-f x) C-con : (c : C) → isConnected (suc m) (Σ[ b ∈ B ] (fib b c)) C-con c = isConnectedRetractFromIso (suc m) (compIso (compIso (Σ-cong-iso-snd (λ _ → Σ-cong-iso-snd λ _ → Σ-swap-Iso)) (shuffleFibIso₁ g f c)) (shuffleFibIso₂ g f c)) (con-g c) open module BM-f-g = BlakersMassey B C fib {m = n} B-con {n = m} C-con fib× : (B × C) → Type _ fib× (b , c) = fib b c PushoutGenPath× : B × C → Type _ PushoutGenPath× (b , c) = Path (PushoutGen fib) (inl b) (inr c) PushoutPath× : B × C → Type _ PushoutPath× (b , c) = Path (Pushout f g) (inl b) (inr c) {- The function in question -} toPullback : A → Σ (B × C) PushoutPath× toPullback a = (f a , g a) , push a {- We redescribe toPullback as a composition of three maps, two of which are equivs and one of which is (n+m)-connected -} Totalfib×→Total : Σ (B × C) fib× → Σ (B × C) PushoutGenPath× Totalfib×→Total = TotalFun {A = B × C} {B = fib×} {C = PushoutGenPath×} (λ a → push) isConnectedTotalFun : isConnectedFun (n + m) Totalfib×→Total isConnectedTotalFun = FunConnected→TotalFunConnected (λ _ → push) (n + m) (uncurry BM-f-g.Excision) TotalPathGen×Iso : Iso (Σ (B × C) PushoutGenPath×) (Σ (B × C) PushoutPath×) TotalPathGen×Iso = Σ-cong-iso-snd λ x → congIso (invIso (IsoPushoutPushoutGen f g)) Totalfib×Iso : Iso (Σ (B × C) fib×) A fun Totalfib×Iso ((b , c) , a , p) = a inv Totalfib×Iso a = (f a , g a) , a , refl , refl rightInv Totalfib×Iso _ = refl leftInv Totalfib×Iso ((b , c) , a , (p , q)) i = ((p i) , (q i)) , (a , ((λ j → p (i ∧ j)) , (λ j → q (i ∧ j)))) toPullback' : A → Σ (B × C) PushoutPath× toPullback' = (fun TotalPathGen×Iso ∘ Totalfib×→Total) ∘ inv Totalfib×Iso toPullback'≡toPullback : toPullback' ≡ toPullback toPullback'≡toPullback = funExt λ x → ΣPathP (refl , (sym (rUnit (push x)))) isConnected-toPullback : isConnectedFun (n + m) toPullback isConnected-toPullback = subst (isConnectedFun (n + m)) toPullback'≡toPullback (isConnectedComp (fun TotalPathGen×Iso ∘ Totalfib×→Total) (inv Totalfib×Iso) (n + m) (isConnectedComp (fun TotalPathGen×Iso) Totalfib×→Total (n + m) (isEquiv→isConnected _ (isoToIsEquiv TotalPathGen×Iso) (n + m)) isConnectedTotalFun) (isEquiv→isConnected _ (isoToIsEquiv (invIso Totalfib×Iso)) (n + m)))
{ "alphanum_fraction": 0.5023937098, "avg_line_length": 38.9395061728, "ext": "agda", "hexsha": "102791ab74cb8a13c7e30b0781353639f6bb5391", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FernandoLarrain/cubical", "max_forks_repo_path": "Cubical/Homotopy/BlakersMassey.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FernandoLarrain/cubical", "max_issues_repo_path": "Cubical/Homotopy/BlakersMassey.agda", "max_line_length": 120, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Homotopy/BlakersMassey.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T21:49:23.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-05T21:49:23.000Z", "num_tokens": 14004, "size": 31541 }
-- Andreas, 2012-10-09 -- Testcase to ensure we do not fire catch all clause on neutrals in literal matching module DoNotFireLiteralCatchAllForNeutrals where {-# BUILTIN STRING String #-} data ⊥ : Set where record ⊤ : Set where constructor trivial NotNull : String → Set NotNull "" = ⊥ NotNull s = ⊤ -- never reduces on open terms allNull : (s : String) → NotNull s allNull s = trivial -- should fail bot : ⊥ bot = allNull ""
{ "alphanum_fraction": 0.7050691244, "avg_line_length": 21.7, "ext": "agda", "hexsha": "e6cd9e9c3f8c946bb065dadcd6b0d9fe50836539", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Fail/DoNotFireLiteralCatchAllForNeutrals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Fail/DoNotFireLiteralCatchAllForNeutrals.agda", "max_line_length": 85, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Fail/DoNotFireLiteralCatchAllForNeutrals.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-07T10:49:57.000Z", "max_stars_repo_stars_event_min_datetime": "2021-07-07T10:49:57.000Z", "num_tokens": 124, "size": 434 }
-- Hurkens' paradox [1]. -- [1] A. Hurkens, A simplification of Girard's paradox. {-# OPTIONS --type-in-type #-} module Hurkens where ⊥ : Set ⊥ = (A : Set) -> A ¬_ : Set -> Set ¬ A = A -> ⊥ P : Set -> Set P A = A -> Set U : Set U = (X : Set) -> (P (P X) -> X) -> P (P X) τ : P (P U) -> U τ t = \X f p -> t \x -> p (f (x X f)) σ : U -> P (P U) σ s = s U \t -> τ t Δ : P U Δ = \y -> ¬ ((p : P U) -> σ y p -> p (τ (σ y))) Ω : U Ω = τ \p -> (x : U) -> σ x p -> p x D : Set D = (p : P U) -> σ Ω p -> p (τ (σ Ω)) lem₁ : (p : P U) -> ((x : U) -> σ x p -> p x) -> p Ω lem₁ p H1 = H1 Ω \x -> H1 (τ (σ x)) lem₂ : ¬ D lem₂ = lem₁ Δ \x H2 H3 -> H3 Δ H2 \p -> H3 \y -> p (τ (σ y)) lem₃ : D lem₃ p = lem₁ \y -> p (τ (σ y)) loop : ⊥ loop = lem₂ lem₃
{ "alphanum_fraction": 0.406374502, "avg_line_length": 15.6875, "ext": "agda", "hexsha": "411c77fb15c95db9c0c3ad1d95e1cf3b752b26d5", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Hurkens.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Hurkens.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Hurkens.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 372, "size": 753 }