Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --cubical #-} module Cubical.Experiments.Brunerie where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Data.Bool open import Cubical.Data.Nat open import Cubical.Data.Int open import Cubical.HITs.S1 open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.HITs.Join open import Cubical.HITs.Hopf open import Cubical.HITs.SetTruncation open import Cubical.HITs.GroupoidTruncation open import Cubical.HITs.2GroupoidTruncation -- This code is adapted from examples/brunerie3.ctt on the pi4s3_nobug branch of cubicaltt ptType : Type₁ ptType = Σ[ A ∈ Type₀ ] A pt : ∀ (A : ptType) → A .fst pt A = A .snd ptBool ptS¹ ptS² ptS³ : ptType ptBool = (Bool , true) ptS¹ = (S¹ , base) ptS² = (S² , base) ptS³ = (S³ , base) pt∥_∥₁ pt∥_∥₂ : ptType → ptType pt∥ A , a ∥₁ = ∥ A ∥₁ , ∣ a ∣₁ pt∥ A , a ∥₂ = ∥ A ∥₂ , ∣ a ∣₂ ptjoin : ptType → Type₀ → ptType ptjoin (A , a) B = join A B , inl a Ω Ω² Ω³ : ptType → ptType Ω (A , a) = (Path A a a) , refl Ω² A = Ω (Ω A) Ω³ A = Ω (Ω² A) mapΩrefl : {A : ptType} {B : Type₀} (f : A .fst → B) → Ω A .fst → Ω (B , f (pt A)) .fst mapΩrefl f p i = f (p i) mapΩ²refl : {A : ptType} {B : Type₀} (f : A .fst → B) → Ω² A .fst → Ω² (B , f (pt A)) .fst mapΩ²refl f p i j = f (p i j) mapΩ³refl : {A : ptType} {B : Type₀} (f : A .fst → B) → Ω³ A .fst → Ω³ (B , f (pt A)) .fst mapΩ³refl f p i j k = f (p i j k) PROP SET GROUPOID TWOGROUPOID : ∀ ℓ → Type (ℓ-suc ℓ) PROP ℓ = Σ (Type ℓ) isProp SET ℓ = Σ (Type ℓ) isSet GROUPOID ℓ = Σ (Type ℓ) isGroupoid TWOGROUPOID ℓ = Σ (Type ℓ) is2Groupoid meridS² : S¹ → Path S² base base meridS² base _ = base meridS² (loop i) j = surf i j alpha : join S¹ S¹ → S² alpha (inl x) = base alpha (inr y) = base alpha (push x y i) = (meridS² y ∙ meridS² x) i connectionBoth : {A : Type₀} {a : A} (p : Path A a a) → PathP (λ i → Path A (p i) (p i)) p p connectionBoth {a = a} p i j = hcomp (λ k → λ { (i = i0) → p (j ∨ ~ k) ; (i = i1) → p (j ∧ k) ; (j = i0) → p (i ∨ ~ k) ; (j = i1) → p (i ∧ k) }) a data PostTotalHopf : Type₀ where base : S¹ → PostTotalHopf loop : (x : S¹) → PathP (λ i → Path PostTotalHopf (base x) (base (rotLoop x (~ i)))) refl refl tee12 : (x : S²) → HopfS² x → PostTotalHopf tee12 base y = base y tee12 (surf i j) y = hcomp (λ k → λ { (i = i0) → base y ; (i = i1) → base y ; (j = i0) → base y ; (j = i1) → base (rotLoopInv y (~ i) k) }) (loop (unglue (i ∨ ~ i ∨ j ∨ ~ j) y) i j) tee34 : PostTotalHopf → join S¹ S¹ tee34 (base x) = inl x tee34 (loop x i j) = hcomp (λ k → λ { (i = i0) → push x x (j ∧ ~ k) ; (i = i1) → push x x (j ∧ ~ k) ; (j = i0) → inl x ; (j = i1) → push (rotLoop x (~ i)) x (~ k) }) (push x x j) tee : (x : S²) → HopfS² x → join S¹ S¹ tee x y = tee34 (tee12 x y) fibΩ : {B : ptType} (P : B .fst → Type₀) → P (pt B) → Ω B .fst → Type₀ fibΩ P f p = PathP (λ i → P (p i)) f f fibΩ² : {B : ptType} (P : B .fst → Type₀) → P (pt B) → Ω² B .fst → Type₀ fibΩ² P f = fibΩ (fibΩ P f) refl fibΩ³ : {B : ptType} (P : B .fst → Type₀) → P (pt B) → Ω³ B .fst → Type₀ fibΩ³ P f = fibΩ² (fibΩ P f) refl Ω³Hopf : Ω³ ptS² .fst → Type₀ Ω³Hopf = fibΩ³ HopfS² base fibContrΩ³Hopf : ∀ p → Ω³Hopf p fibContrΩ³Hopf p i j k = hcomp (λ m → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base ; (k = i0) → base ; (k = i1) → isSetΩS¹ refl refl (λ i j → transp (λ n → HopfS² (p i j n)) (i ∨ ~ i ∨ j ∨ ~ j) base) (λ _ _ → base) m i j }) (transp (λ n → HopfS² (p i j (k ∧ n))) (i ∨ ~ i ∨ j ∨ ~ j ∨ ~ k) base) h : Ω³ ptS² .fst → Ω³ (ptjoin ptS¹ S¹) .fst h p i j k = tee (p i j k) (fibContrΩ³Hopf p i j k) multTwoAux : (x : S²) → Path (Path ∥ S² ∥₂ ∣ x ∣₂ ∣ x ∣₂) refl refl multTwoAux base i j = ∣ surf i j ∣₂ multTwoAux (surf k l) i j = hcomp (λ m → λ { (i = i0) → ∣ surf k l ∣₂ ; (i = i1) → ∣ surf k l ∣₂ ; (j = i0) → ∣ surf k l ∣₂ ; (j = i1) → ∣ surf k l ∣₂ ; (k = i0) → ∣ surf i j ∣₂ ; (k = i1) → ∣ surf i j ∣₂ ; (l = i0) → ∣ surf i j ∣₂ ; (l = i1) → squash₂ _ _ _ _ _ _ (λ k i j → step₁ k i j) refl m k i j }) (step₁ k i j) where step₁ : I → I → I → ∥ S² ∥₂ step₁ k i j = hcomp {A = ∥ S² ∥₂} (λ m → λ { (i = i0) → ∣ surf k (l ∧ m) ∣₂ ; (i = i1) → ∣ surf k (l ∧ m) ∣₂ ; (j = i0) → ∣ surf k (l ∧ m) ∣₂ ; (j = i1) → ∣ surf k (l ∧ m) ∣₂ ; (k = i0) → ∣ surf i j ∣₂ ; (k = i1) → ∣ surf i j ∣₂ ; (l = i0) → ∣ surf i j ∣₂ }) ∣ surf i j ∣₂ multTwoTildeAux : (t : ∥ S² ∥₂) → Path (Path ∥ S² ∥₂ t t) refl refl multTwoTildeAux ∣ x ∣₂ = multTwoAux x multTwoTildeAux (squash₂ _ _ _ _ _ _ t u k l m n) i j = squash₂ _ _ _ _ _ _ (λ k l m → multTwoTildeAux (t k l m) i j) (λ k l m → multTwoTildeAux (u k l m) i j) k l m n multTwoEquivAux : Path (Path (∥ S² ∥₂ ≃ ∥ S² ∥₂) (idEquiv _) (idEquiv _)) refl refl multTwoEquivAux i j = ( f i j , hcomp (λ l → λ { (i = i0) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (i = i1) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (j = i0) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (j = i1) → isPropIsEquiv _ (transp (λ k → isEquiv (f i k)) (i ∨ ~ i) (idIsEquiv _)) (idIsEquiv _) l }) (transp (λ k → isEquiv (f i (j ∧ k))) (i ∨ ~ i ∨ ~ j) (idIsEquiv _)) ) where f : I → I → ∥ S² ∥₂ → ∥ S² ∥₂ f i j t = multTwoTildeAux t i j tHopf³ : S³ → Type₀ tHopf³ base = ∥ S² ∥₂ tHopf³ (surf i j k) = Glue ∥ S² ∥₂ (λ { (i = i0) → (∥ S² ∥₂ , idEquiv _) ; (i = i1) → (∥ S² ∥₂ , idEquiv _) ; (j = i0) → (∥ S² ∥₂ , idEquiv _) ; (j = i1) → (∥ S² ∥₂ , idEquiv _) ; (k = i0) → (∥ S² ∥₂ , multTwoEquivAux i j) ; (k = i1) → (∥ S² ∥₂ , idEquiv _) }) π₃S³ : Ω³ ptS³ .fst → Ω² pt∥ ptS² ∥₂ .fst π₃S³ p i j = transp (λ k → tHopf³ (p j k i)) i0 ∣ base ∣₂ postulate is2GroupoidGROUPOID : ∀ {ℓ} → is2Groupoid (GROUPOID ℓ) isGroupoidSET : ∀ {ℓ} → isGroupoid (SET ℓ) codeS² : S² → GROUPOID _ codeS² s = ∥ HopfS² s ∥₁ , squash₁ codeTruncS² : ∥ S² ∥₂ → GROUPOID _ codeTruncS² = rec2GroupoidTrunc is2GroupoidGROUPOID codeS² encodeTruncS² : Ω pt∥ ptS² ∥₂ .fst → ∥ S¹ ∥₁ encodeTruncS² p = transp (λ i → codeTruncS² (p i) .fst) i0 ∣ base ∣₁ codeS¹ : S¹ → SET _ codeS¹ s = ∥ helix s ∥₀ , squash₀ codeTruncS¹ : ∥ S¹ ∥₁ → SET _ codeTruncS¹ = recGroupoidTrunc isGroupoidSET codeS¹ encodeTruncS¹ : Ω pt∥ ptS¹ ∥₁ .fst → ∥ Int ∥₀ encodeTruncS¹ p = transp (λ i → codeTruncS¹ (p i) .fst) i0 ∣ pos zero ∣₀ -- THE BIG GAME f3 : Ω³ ptS³ .fst → Ω³ (ptjoin ptS¹ S¹) .fst f3 = mapΩ³refl S³→joinS¹S¹ f4 : Ω³ (ptjoin ptS¹ S¹) .fst → Ω³ ptS² .fst f4 = mapΩ³refl alpha f5 : Ω³ ptS² .fst → Ω³ (ptjoin ptS¹ S¹) .fst f5 = h f6 : Ω³ (ptjoin ptS¹ S¹) .fst → Ω³ ptS³ .fst f6 = mapΩ³refl joinS¹S¹→S³ f7 : Ω³ ptS³ .fst → Ω² pt∥ ptS² ∥₂ .fst f7 = π₃S³ g8 : Ω² pt∥ ptS² ∥₂ .fst → Ω pt∥ ptS¹ ∥₁ .fst g8 = mapΩrefl encodeTruncS² g9 : Ω pt∥ ptS¹ ∥₁ .fst → ∥ Int ∥₀ g9 = encodeTruncS¹ g10 : ∥ Int ∥₀ → Int g10 = elimSetTrunc (λ _ → isSetInt) (idfun Int) -- don't run me brunerie : Int brunerie = g10 (g9 (g8 (f7 (f6 (f5 (f4 (f3 (λ i j k → surf i j k)))))))) -- simpler tests test63 : ℕ → Int test63 n = g10 (g9 (g8 (f7 (63n n)))) where 63n : ℕ → Ω³ ptS³ .fst 63n zero i j k = surf i j k 63n (suc n) = f6 (f3 (63n n)) foo : Ω³ ptS² .fst foo i j k = hcomp (λ l → λ { (i = i0) → surf l l ; (i = i1) → surf l l ; (j = i0) → surf l l ; (j = i1) → surf l l ; (k = i0) → surf l l ; (k = i1) → surf l l }) base sorghum : Ω³ ptS² .fst sorghum i j k = hcomp (λ l → λ { (i = i0) → surf j l ; (i = i1) → surf k (~ l) ; (j = i0) → surf k (i ∧ ~ l) ; (j = i1) → surf k (i ∧ ~ l) ; (k = i0) → surf j (i ∨ l) ; (k = i1) → surf j (i ∨ l) }) (hcomp (λ l → λ { (i = i0) → base ; (i = i1) → surf j l ; (j = i0) → surf k i ; (j = i1) → surf k i ; (k = i0) → surf j (i ∧ l) ; (k = i1) → surf j (i ∧ l) }) (surf k i)) goo : Ω³ ptS² .fst → Int goo x = g10 (g9 (g8 (f7 (f6 (f5 x)))))
{ "alphanum_fraction": 0.5161366872, "avg_line_length": 26.5031446541, "ext": "agda", "hexsha": "cf6ecd02982b540fe46f52fbac0763fa8c4248dc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cj-xu/cubical", "max_forks_repo_path": "Cubical/Experiments/Brunerie.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cj-xu/cubical", "max_issues_repo_path": "Cubical/Experiments/Brunerie.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cj-xu/cubical", "max_stars_repo_path": "Cubical/Experiments/Brunerie.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4037, "size": 8428 }
{-# OPTIONS --cubical-compatible #-} postulate A : Set B : A → Set T = (@0 x : A) → B x
{ "alphanum_fraction": 0.5161290323, "avg_line_length": 13.2857142857, "ext": "agda", "hexsha": "1b2f42291f295f715615122d9b6c334a62f58840", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue4784a.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue4784a.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue4784a.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 35, "size": 93 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The basic code for equational reasoning with a partial relation ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Binary.Reasoning.Base.Partial {a ℓ} {A : Set a} (_∼_ : Rel A ℓ) (trans : Transitive _∼_) where open import Level using (_⊔_) open import Relation.Binary.PropositionalEquality.Core as P using (_≡_) infix 4 _IsRelatedTo_ infix 3 _∎⟨_⟩ infixr 2 step-∼ step-≡ step-≡˘ infixr 2 _≡⟨⟩_ infix 1 begin_ ------------------------------------------------------------------------ -- Definition of "related to" -- This seemingly unnecessary type is used to make it possible to -- infer arguments even if the underlying equality evaluates. data _IsRelatedTo_ (x y : A) : Set ℓ where relTo : (x∼y : x ∼ y) → x IsRelatedTo y ------------------------------------------------------------------------ -- Reasoning combinators -- Note that the arguments to the `step`s are not provided in their -- "natural" order and syntax declarations are later used to re-order -- them. This is because the `step` ordering allows the type-checker to -- better infer the middle argument `y` from the `_IsRelatedTo_` -- argument (see issue 622). -- -- This has two practical benefits. First it speeds up type-checking by -- approximately a factor of 5. Secondly it allows the combinators to be -- used with macros that use reflection, e.g. `Tactic.RingSolver`, where -- they need to be able to extract `y` using reflection. -- Beginning of a proof begin_ : ∀ {x y} → x IsRelatedTo y → x ∼ y begin relTo x∼y = x∼y -- Standard step with the relation step-∼ : ∀ x {y z} → y IsRelatedTo z → x ∼ y → x IsRelatedTo z step-∼ _ (relTo y∼z) x∼y = relTo (trans x∼y y∼z) -- Step with a non-trivial propositional equality step-≡ : ∀ x {y z} → y IsRelatedTo z → x ≡ y → x IsRelatedTo z step-≡ _ x∼z P.refl = x∼z -- Step with a flipped non-trivial propositional equality step-≡˘ : ∀ x {y z} → y IsRelatedTo z → y ≡ x → x IsRelatedTo z step-≡˘ _ x∼z P.refl = x∼z -- Step with a trivial propositional equality _≡⟨⟩_ : ∀ x {y} → x IsRelatedTo y → x IsRelatedTo y _ ≡⟨⟩ x∼y = x∼y -- Termination step _∎⟨_⟩ : ∀ x → x ∼ x → x IsRelatedTo x _ ∎⟨ x∼x ⟩ = relTo x∼x -- Syntax declarations syntax step-∼ x y∼z x∼y = x ∼⟨ x∼y ⟩ y∼z syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z syntax step-≡˘ x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z
{ "alphanum_fraction": 0.593092497, "avg_line_length": 30.3493975904, "ext": "agda", "hexsha": "43ca14ec597e30df0002bb96e55a214a4600ce3f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Relation/Binary/Reasoning/Base/Partial.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Relation/Binary/Reasoning/Base/Partial.agda", "max_line_length": 72, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Relation/Binary/Reasoning/Base/Partial.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 824, "size": 2519 }
{-# OPTIONS --universe-polymorphism #-} open import Data.Bool using ( Bool ; true ; false ; _∧_ ) open import Data.Empty using () open import Data.List using ( List ; [] ; _∷_ ; _++_ ; map ) open import Data.List.Any using ( here ; there ) open import Data.List.Membership.Propositional using () open import Data.Sum using ( _⊎_ ; inj₁ ; inj₂ ) open import Data.Product using ( ∃ ; ∄ ; _×_ ; _,_ ) open import Data.Unit using () open import Level using ( zero ) open import Relation.Binary using () open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ) open import Relation.Nullary using ( Dec ; yes ; no ) open import Relation.Unary using ( _∈_ ; _⊆_ ) module Web.Semantic.Util where infixr 9 _∘_ id : ∀ {X : Set} → X → X id x = x _∘_ : ∀ {X Y Z : Set} → (Y → Z) → (X → Y) → (X → Z) (f ∘ g) = λ x → f (g x) Setoid : Set₁ Setoid = Relation.Binary.Setoid zero zero Subset : Set → Set₁ Subset X = X → Set ⁅_⁆ : ∀ {X} → X → Subset X ⁅ x ⁆ y = x ≡ y ⊆-refl : ∀ {X} (P : Subset X) → (P ⊆ P) ⊆-refl P x∈P = x∈P _⁻¹ : ∀ {X Y : Set} → Subset (X × Y) → Subset (Y × X) (R ⁻¹) (y , x) = R (x , y) -- Some proofs are classical, and depend on excluded middle. ExclMiddle : Set₁ ExclMiddle = ∀ (X : Set) → Dec X ExclMiddle₁ : Set₂ ExclMiddle₁ = ∀ (X : Set₁) → Dec X smaller-excl-middle : ExclMiddle₁ → ExclMiddle smaller-excl-middle excl-middle₁ X = X? where data Large : Set₁ where large : X → Large X? : Dec X X? with excl-middle₁ Large X? | yes (large x) = yes x X? | no ¬x = no (λ x → ¬x (large x)) -- Some nameclashes between the standard library and semantic web terminology: -- ⊤ and ⊥ are used for concepts, and T is used to range over T-Boxes. open Data.Bool public using () renaming ( T to □ ) open Data.Empty public using () renaming ( ⊥ to False ; ⊥-elim to elim ) open Data.Unit public using ( tt ) renaming ( ⊤ to True ) □-proj₁ : ∀ {b c} → □(b ∧ c) → □ b □-proj₁ {true} □c = tt □-proj₁ {false} () □-proj₂ : ∀ {b c} → □(b ∧ c) → □ c □-proj₂ {true} □c = □c □-proj₂ {false} () -- Convert back and forth from Dec and Bool. is : ∀ {ℓ} {X : Set ℓ} → Dec X → Bool is (yes _) = true is (no _) = false is✓ : ∀ {ℓ} {X : Set ℓ} {x : Dec X} → □(is x) → X is✓ {ℓ} {X} {yes x} _ = x is✓ {ℓ} {X} {no _} () is! : ∀ {ℓ} {X : Set ℓ} {x : Dec X} → X → □(is x) is! {ℓ} {X} {yes _} x = tt is! {ℓ} {X} {no ¬x} x = ¬x x -- Finite sets are ones backed by a list open Data.List.Membership.Propositional public using () renaming ( _∈_ to _∈ˡ_ ) Finite : Set → Set Finite X = ∃ λ xs → ∀ (x : X) → (x ∈ˡ xs) False∈Fin : False ∈ Finite False∈Fin = ([] , λ ()) ⊎-resp-Fin : ∀ {X Y} → (X ∈ Finite) → (Y ∈ Finite) → ((X ⊎ Y) ∈ Finite) ⊎-resp-Fin {X} {Y} (xs , ∀x∙x∈xs) (ys , ∀y∙y∈ys) = ((map inj₁ xs ++ map inj₂ ys) , lemma) where lemma₁ : ∀ {x : X} {xs : List X} → (x ∈ˡ xs) → (inj₁ x ∈ˡ (map inj₁ xs ++ map inj₂ ys)) lemma₁ (here refl) = here refl lemma₁ (there x∈xs) = there (lemma₁ x∈xs) lemma₂ : ∀ (xs : List X) {y : Y} {ys : List Y} → (y ∈ˡ ys) → (inj₂ y ∈ˡ (map inj₁ xs ++ map inj₂ ys)) lemma₂ [] (here refl) = here refl lemma₂ [] (there y∈ys) = there (lemma₂ [] y∈ys) lemma₂ (x ∷ xs) y∈ys = there (lemma₂ xs y∈ys) lemma : ∀ x → (x ∈ˡ (map inj₁ xs ++ map inj₂ ys)) lemma (inj₁ x) = lemma₁ (∀x∙x∈xs x) lemma (inj₂ y) = lemma₂ xs (∀y∙y∈ys y) -- symmetric monoidal structure of sum _⟨⊎⟩_ : ∀ {W X Y Z : Set} → (W → X) → (Y → Z) → (W ⊎ Y) → (X ⊎ Z) _⟨⊎⟩_ f g (inj₁ x) = inj₁ (f x) _⟨⊎⟩_ f g (inj₂ y) = inj₂ (g y) _≡⊎≡_ : ∀ {X Y Z : Set} {f g : (X ⊎ Y) → Z} → (∀ x → (f (inj₁ x) ≡ g (inj₁ x))) → (∀ x → (f (inj₂ x) ≡ g (inj₂ x))) → ∀ x → (f x ≡ g x) (f₁≡g₁ ≡⊎≡ f₂≡g₂) (inj₁ x) = f₁≡g₁ x (f₁≡g₁ ≡⊎≡ f₂≡g₂) (inj₂ y) = f₂≡g₂ y ⊎-swap : ∀ {X Y : Set} → (X ⊎ Y) → (Y ⊎ X) ⊎-swap (inj₁ x) = inj₂ x ⊎-swap (inj₂ y) = inj₁ y ⊎-assoc : ∀ {X Y Z : Set} → ((X ⊎ Y) ⊎ Z) → (X ⊎ (Y ⊎ Z)) ⊎-assoc (inj₁ (inj₁ x)) = inj₁ x ⊎-assoc (inj₁ (inj₂ y)) = inj₂ (inj₁ y) ⊎-assoc (inj₂ z) = inj₂ (inj₂ z) ⊎-assoc⁻¹ : ∀ {X Y Z : Set} → (X ⊎ (Y ⊎ Z)) → ((X ⊎ Y) ⊎ Z) ⊎-assoc⁻¹ (inj₁ x) = inj₁ (inj₁ x) ⊎-assoc⁻¹ (inj₂ (inj₁ y)) = inj₁ (inj₂ y) ⊎-assoc⁻¹ (inj₂ (inj₂ z)) = inj₂ z ⊎-unit₁ : ∀ {X : Set} → (False ⊎ X) → X ⊎-unit₁ (inj₁ ()) ⊎-unit₁ (inj₂ x) = x ⊎-unit₂ : ∀ {X : Set} → (X ⊎ False) → X ⊎-unit₂ (inj₁ x) = x ⊎-unit₂ (inj₂ ()) inj⁻¹ : ∀ {X : Set} → (X ⊎ X) → X inj⁻¹ (inj₁ x) = x inj⁻¹ (inj₂ x) = x -- A set divided, like Gaul, into three parts infix 6 _⊕_⊕_ data _⊕_⊕_ (X V Y : Set) : Set where inode : (x : X) → (X ⊕ V ⊕ Y) -- Imported node bnode : (v : V) → (X ⊕ V ⊕ Y) -- Blank node enode : (y : Y) → (X ⊕ V ⊕ Y) -- Exported node _⟨⊕⟩_⟨⊕⟩_ : ∀ {U V W X Y Z} → (W → X) → (U → V) → (Y → Z) → (W ⊕ U ⊕ Y) → (X ⊕ V ⊕ Z) (f ⟨⊕⟩ g ⟨⊕⟩ h) (inode w) = inode (f w) (f ⟨⊕⟩ g ⟨⊕⟩ h) (bnode u) = bnode (g u) (f ⟨⊕⟩ g ⟨⊕⟩ h) (enode y) = enode (h y) _[⊕]_[⊕]_ : ∀ {X V Y Z : Set} → (X → Z) → (V → Z) → (Y → Z) → (X ⊕ V ⊕ Y) → Z (f [⊕] g [⊕] h) (inode x) = f x (f [⊕] g [⊕] h) (bnode v) = g v (f [⊕] g [⊕] h) (enode y) = h y left : ∀ {V W X Y Z} → (X ⊕ V ⊕ Y) → (X ⊕ (V ⊕ Y ⊕ W) ⊕ Z) left (inode x) = inode x left (bnode v) = bnode (inode v) left (enode y) = bnode (bnode y) right : ∀ {V W X Y Z} → (Y ⊕ W ⊕ Z) → (X ⊕ (V ⊕ Y ⊕ W) ⊕ Z) right (inode y) = bnode (bnode y) right (bnode w) = bnode (enode w) right (enode z) = enode z hmerge : ∀ {V W X Y Z A : Set} → ((X ⊕ V ⊕ Y) → A) → ((Y ⊕ W ⊕ Z) → A) → (X ⊕ (V ⊕ Y ⊕ W) ⊕ Z) → A hmerge f g (inode x) = f (inode x) hmerge f g (bnode (inode v)) = f (bnode v) hmerge f g (bnode (bnode y)) = g (inode y) hmerge f g (bnode (enode w)) = g (bnode w) hmerge f g (enode z) = g (enode z) →-dist-⊕ : ∀ {V X Y Z : Set} → ((X ⊕ V ⊕ Y) → Z) → ((X → Z) × (V → Z) × (Y → Z)) →-dist-⊕ i = ((i ∘ inode) , (i ∘ bnode) , (i ∘ enode)) up : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (X₁ ⊕ V₁ ⊕ Y₁) → ((X₁ ⊎ X₂) ⊕ (V₁ ⊎ V₂) ⊕ (Y₁ ⊎ Y₂)) up (inode x) = inode (inj₁ x) up (bnode v) = bnode (inj₁ v) up (enode y) = enode (inj₁ y) down : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂} → (X₂ ⊕ V₂ ⊕ Y₂) → ((X₁ ⊎ X₂) ⊕ (V₁ ⊎ V₂) ⊕ (Y₁ ⊎ Y₂)) down (inode x) = inode (inj₂ x) down (bnode v) = bnode (inj₂ v) down (enode y) = enode (inj₂ y) vmerge : ∀ {V₁ V₂ X₁ X₂ Y₁ Y₂ A : Set} → ((X₁ ⊕ V₁ ⊕ Y₁) → A) → ((X₂ ⊕ V₂ ⊕ Y₂) → A) → ((X₁ ⊎ X₂) ⊕ (V₁ ⊎ V₂) ⊕ (Y₁ ⊎ Y₂)) → A vmerge j k (inode (inj₁ x)) = j (inode x) vmerge j k (inode (inj₂ x)) = k (inode x) vmerge j k (bnode (inj₁ v)) = j (bnode v) vmerge j k (bnode (inj₂ v)) = k (bnode v) vmerge j k (enode (inj₁ y)) = j (enode y) vmerge j k (enode (inj₂ y)) = k (enode y)
{ "alphanum_fraction": 0.51149954, "avg_line_length": 29.3783783784, "ext": "agda", "hexsha": "8c4b7f25fcd927e19824c90d5ba8f95d3152999d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z", "max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z", "max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-web-semantic", "max_forks_repo_path": "src/Web/Semantic/Util.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-web-semantic", "max_issues_repo_path": "src/Web/Semantic/Util.agda", "max_line_length": 81, "max_stars_count": 9, "max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-web-semantic", "max_stars_repo_path": "src/Web/Semantic/Util.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z", "num_tokens": 3192, "size": 6522 }
module Fail.TuplePat where open import Haskell.Prelude fst₃ : a × b × c → a fst₃ (x ∷ xs) = x {-# COMPILE AGDA2HS fst₃ #-}
{ "alphanum_fraction": 0.6377952756, "avg_line_length": 12.7, "ext": "agda", "hexsha": "ed5504e28a7270f882977aa7ae2969792e9a6629", "lang": "Agda", "max_forks_count": 18, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z", "max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z", "max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "seanpm2001/agda2hs", "max_forks_repo_path": "test/Fail/TuplePat.agda", "max_issues_count": 63, "max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6", "max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z", "max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "seanpm2001/agda2hs", "max_issues_repo_path": "test/Fail/TuplePat.agda", "max_line_length": 28, "max_stars_count": 55, "max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dxts/agda2hs", "max_stars_repo_path": "test/Fail/TuplePat.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z", "num_tokens": 49, "size": 127 }
{- This second-order signature was created from the following second-order syntax description: syntax Lens | L type S : 0-ary A : 0-ary term get : S -> A put : S A -> S theory (PG) s : S a : A |> get (put (s, a)) = a (GP) s : S |> put (s, get(s)) = s (PP) s : S a b : A |> put (put(s, a), b) = put (s, a) -} module Lens.Signature where open import SOAS.Context -- Type declaration data LT : Set where S : LT A : LT open import SOAS.Syntax.Signature LT public open import SOAS.Syntax.Build LT public -- Operator symbols data Lₒ : Set where getₒ putₒ : Lₒ -- Term signature L:Sig : Signature Lₒ L:Sig = sig λ { getₒ → (⊢₀ S) ⟼₁ A ; putₒ → (⊢₀ S) , (⊢₀ A) ⟼₂ S } open Signature L:Sig public
{ "alphanum_fraction": 0.5822281167, "avg_line_length": 16.3913043478, "ext": "agda", "hexsha": "bbc6478ef3e8cec4c59571ed096da0d9774213a8", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Lens/Signature.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Lens/Signature.agda", "max_line_length": 91, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Lens/Signature.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 291, "size": 754 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.HITs.Modulo.Properties where open import Cubical.Data.Nat open import Cubical.Data.Nat.Order open import Cubical.Data.Fin open import Cubical.Data.Sigma open import Cubical.Foundations.Function open import Cubical.Foundations.HLevels open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.HITs.Modulo.Base open import Cubical.HITs.Modulo.FinEquiv public private variable ℓ : Level k : ℕ -- `Modulo 0` is easily shown equivalent to `ℕ`, because we don't need -- to account for the path constructor at all. Modulo0≡ℕ : Modulo 0 ≡ ℕ Modulo0≡ℕ = isoToPath lemma where open Iso lemma : Iso (Modulo 0) ℕ fun lemma (embed n) = n inv lemma = embed rightInv lemma n = refl leftInv lemma (embed n) = refl isSetModulo0 : isSet (Modulo 0) isSetModulo0 = subst isSet (sym Modulo0≡ℕ) isSetℕ -- `Modulo 1` is contractible just like `Fin 1` isContrModulo1 : isContr (Modulo 1) isContrModulo1 = value , λ { (embed n) → universal n ; (step n i) → universal-path n i } where value : Modulo 1 value = embed 0 universal : ∀ n → value ≡ embed n universal zero = refl universal (suc n) = universal n ∙ step n universal-path : ∀ n → PathP (λ i → value ≡ step n i) (universal n) (universal (suc n)) universal-path n i j = compPath-filler (universal n) (step n) i j -- `expand o k m` is congruent to `m` modulo `k`, so there is a path -- between their image in `Modulo k`. steps : ∀ m o → embed {k = k} m ≡ embed (expand o k m) steps m zero = refl steps {k} m (suc o) = steps m o ∙ ztep (expand o k m) steps≡ : ∀ m n → PathP (λ i → embed {k} m ≡ ztep (expand n k m) i) (steps m n) (steps m (suc n)) steps≡ m n = λ i j → compPath-filler (steps m n) (ztep (expand n _ m)) i j stepOver : ∀ m n o → expand o k m ≡ n → embed {k = k} m ≡ embed n stepOver m n o p = steps m o ∙ cong embed p -- `Modulo k` is a set for all `k`, because we can transport the -- evidence from either `ℕ` or `Fin k`. isSetModulo : isSet (Modulo k) isSetModulo {0} = isSetModulo0 isSetModulo {suc k} = subst isSet (sym Modulo≡Fin) isSetFin
{ "alphanum_fraction": 0.6809180918, "avg_line_length": 27.4320987654, "ext": "agda", "hexsha": "734ebc505cc580d33eded3e8446da911cab43fa8", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/HITs/Modulo/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/HITs/Modulo/Properties.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/HITs/Modulo/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 767, "size": 2222 }
open import OutsideIn.Prelude open import OutsideIn.X module OutsideIn.Constraints( x : X) where open X(x) data Strata : Set where Flat : Strata Extended : Strata data Implication (knot : Set → Set)(n : Set) : Set where ∃_·_⊃_ : (v : ℕ) → QConstraint n → knot (n ⨁ v) → Implication knot n {- SYNTAX -} data Constraint (n : Set) : Strata → Set where QC : ∀ {x} → QConstraint n → Constraint n x Imp : Implication (λ n → Constraint n Flat) n → Constraint n Flat Imp′ : QConstraint n → Constraint n Extended → Constraint n Extended _∧′_ : ∀ {x} → Constraint n x → Constraint n x → Constraint n x Ⅎ_ : Constraint (Ⓢ n) Extended → Constraint n Extended ε′ : ∀ {n}{x} → Constraint n x ε′ = QC ε _∼′_ : ∀ {n}{x} → Type n → Type n → Constraint n x τ₁ ∼′ τ₂ = QC (τ₁ ∼ τ₂) Ⅎ′_·_ : {n : Set}(v : ℕ) → Constraint (n ⨁ v) Extended → Constraint n Extended Ⅎ′ (suc n) · c = Ⅎ (Ⅎ′ n · c) Ⅎ′ zero · c = c infixl 6 Ⅎ′_·_ {- toAE : {n : Set}{s : Strata} → Constraint n s → Constraint n Extended toAE (QC x) = QC x toAE (a ∧′ b) = toAE a ∧′ toAE b toAE (Imp (∃ n · Q ⊃ C)) = Imp (∃ n · Q ⊃ toAE C) toAE (Ⅎ c) = Ⅎ c -} infixl 6 Ⅎ_ infixl 7 _∧′_ {- INSTANCES -} private pn-is-functor = λ {n} → Monad.is-functor (PlusN-is-monad {n}) module PlusN-f n = Functor (Monad.is-functor (PlusN-is-monad {n})) module Ⓢ-f = Functor Ⓢ-is-functor module Type-f = Functor (type-is-functor) module QC-f = Functor (qconstraint-is-functor) private fmap-c : ∀ {s}{a b} → (a → b) → Constraint a s → Constraint b s fmap-c f (QC x) = QC (QC-f.map f x) fmap-c f (C₁ ∧′ C₂) = (fmap-c f C₁) ∧′ (fmap-c f C₂) fmap-c f (Imp′ Q C) = Imp′ (QC-f.map f Q) (fmap-c f C) fmap-c f (Imp (∃ n · Q ⊃ C)) = Imp (∃ n · (QC-f.map f Q) ⊃ (fmap-c (pn.map f) C)) where module pn = PlusN-f n fmap-c f (Ⅎ C) = Ⅎ (fmap-c (Ⓢ-f.map f) C) fmap-c-id : ∀{s}{A : Set} {f : A → A} → isIdentity f → isIdentity (fmap-c {s} f) fmap-c-id {f = f} isid {QC x } = cong QC (QC-f.identity isid) fmap-c-id {f = f} isid {Imp′ Q C } = cong₂ Imp′ (QC-f.identity isid) (fmap-c-id isid) fmap-c-id {f = f} isid {Imp(∃ n · Q ⊃ C)} = cong Imp (cong₂ (∃_·_⊃_ n) (QC-f.identity isid) (fmap-c-id (pn.identity isid))) where module pn = PlusN-f n fmap-c-id {f = f} isid {C₁ ∧′ C₂} = cong₂ _∧′_ (fmap-c-id isid) (fmap-c-id isid) fmap-c-id {f = f} isid {Ⅎ C } = cong Ⅎ_ (fmap-c-id (Ⓢ-f.identity isid)) fmap-c-comp : {s : Strata}{A B C : Set} {f : A → B} {g : B → C} {x : Constraint A s} → fmap-c (g ∘ f) x ≡ fmap-c g (fmap-c f x) fmap-c-comp {x = QC x} = cong QC QC-f.composite fmap-c-comp {x = Imp′ Q C} = cong₂ Imp′ (QC-f.composite) (fmap-c-comp) fmap-c-comp {x = C₁ ∧′ C₂} = cong₂ _∧′_ (fmap-c-comp {x = C₁}) (fmap-c-comp {x = C₂}) fmap-c-comp {x = Ⅎ C} = cong Ⅎ_ (combine-composite′ ⦃ Ⓢ-is-functor ⦄ fmap-c fmap-c-comp) fmap-c-comp {x = Imp(∃ n · Q ⊃ C)} = cong Imp (cong₂ (∃_·_⊃_ n) QC-f.composite (combine-composite′ ⦃ pn-is-functor {n}⦄ fmap-c fmap-c-comp)) where module pn = PlusN-f n constraint-is-functor : ∀ {s : Strata} → Functor (λ n → Constraint n s) constraint-is-functor = record { map = fmap-c ; identity = fmap-c-id ; composite = fmap-c-comp }
{ "alphanum_fraction": 0.490310592, "avg_line_length": 40.5053763441, "ext": "agda", "hexsha": "17e5e368a02181747daea0ad0e159bddbd6a4bef", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "liamoc/outside-in", "max_forks_repo_path": "OutsideIn/Constraints.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "liamoc/outside-in", "max_issues_repo_path": "OutsideIn/Constraints.agda", "max_line_length": 94, "max_stars_count": 2, "max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "liamoc/outside-in", "max_stars_repo_path": "OutsideIn/Constraints.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z", "num_tokens": 1350, "size": 3767 }
module Agda.Builtin.TrustMe where open import Agda.Builtin.Equality open import Agda.Builtin.Equality.Erase private postulate unsafePrimTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y primTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y primTrustMe = primEraseEquality unsafePrimTrustMe {-# DISPLAY primEraseEquality unsafePrimTrustMe = primTrustMe #-}
{ "alphanum_fraction": 0.7122905028, "avg_line_length": 25.5714285714, "ext": "agda", "hexsha": "71507197c48cddcddc19316e9c94a352cd54805e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bennn/agda", "max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/TrustMe.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bennn/agda", "max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/TrustMe.agda", "max_line_length": 65, "max_stars_count": null, "max_stars_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bennn/agda", "max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/TrustMe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 118, "size": 358 }
{- This second-order term syntax was created from the following second-order syntax description: syntax Ring | R type * : 0-ary term zero : * | 𝟘 add : * * -> * | _⊕_ l20 one : * | 𝟙 mult : * * -> * | _⊗_ l30 neg : * -> * | ⊖_ r50 theory (𝟘U⊕ᴸ) a |> add (zero, a) = a (𝟘U⊕ᴿ) a |> add (a, zero) = a (⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c)) (⊕C) a b |> add(a, b) = add(b, a) (𝟙U⊗ᴸ) a |> mult (one, a) = a (𝟙U⊗ᴿ) a |> mult (a, one) = a (⊗A) a b c |> mult (mult(a, b), c) = mult (a, mult(b, c)) (⊗D⊕ᴸ) a b c |> mult (a, add (b, c)) = add (mult(a, b), mult(a, c)) (⊗D⊕ᴿ) a b c |> mult (add (a, b), c) = add (mult(a, c), mult(b, c)) (𝟘X⊗ᴸ) a |> mult (zero, a) = zero (𝟘X⊗ᴿ) a |> mult (a, zero) = zero (⊖N⊕ᴸ) a |> add (neg (a), a) = zero (⊖N⊕ᴿ) a |> add (a, neg (a)) = zero -} module Ring.Syntax where open import SOAS.Common open import SOAS.Context open import SOAS.Variable open import SOAS.Families.Core open import SOAS.Construction.Structure open import SOAS.ContextMaps.Inductive open import SOAS.Metatheory.Syntax open import Ring.Signature private variable Γ Δ Π : Ctx α : *T 𝔛 : Familyₛ -- Inductive term declaration module R:Terms (𝔛 : Familyₛ) where data R : Familyₛ where var : ℐ ⇾̣ R mvar : 𝔛 α Π → Sub R Π Γ → R α Γ 𝟘 : R * Γ _⊕_ : R * Γ → R * Γ → R * Γ 𝟙 : R * Γ _⊗_ : R * Γ → R * Γ → R * Γ ⊖_ : R * Γ → R * Γ infixl 20 _⊕_ infixl 30 _⊗_ infixr 50 ⊖_ open import SOAS.Metatheory.MetaAlgebra ⅀F 𝔛 Rᵃ : MetaAlg R Rᵃ = record { 𝑎𝑙𝑔 = λ where (zeroₒ ⋮ _) → 𝟘 (addₒ ⋮ a , b) → _⊕_ a b (oneₒ ⋮ _) → 𝟙 (multₒ ⋮ a , b) → _⊗_ a b (negₒ ⋮ a) → ⊖_ a ; 𝑣𝑎𝑟 = var ; 𝑚𝑣𝑎𝑟 = λ 𝔪 mε → mvar 𝔪 (tabulate mε) } module Rᵃ = MetaAlg Rᵃ module _ {𝒜 : Familyₛ}(𝒜ᵃ : MetaAlg 𝒜) where open MetaAlg 𝒜ᵃ 𝕤𝕖𝕞 : R ⇾̣ 𝒜 𝕊 : Sub R Π Γ → Π ~[ 𝒜 ]↝ Γ 𝕊 (t ◂ σ) new = 𝕤𝕖𝕞 t 𝕊 (t ◂ σ) (old v) = 𝕊 σ v 𝕤𝕖𝕞 (mvar 𝔪 mε) = 𝑚𝑣𝑎𝑟 𝔪 (𝕊 mε) 𝕤𝕖𝕞 (var v) = 𝑣𝑎𝑟 v 𝕤𝕖𝕞 𝟘 = 𝑎𝑙𝑔 (zeroₒ ⋮ tt) 𝕤𝕖𝕞 (_⊕_ a b) = 𝑎𝑙𝑔 (addₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 𝟙 = 𝑎𝑙𝑔 (oneₒ ⋮ tt) 𝕤𝕖𝕞 (_⊗_ a b) = 𝑎𝑙𝑔 (multₒ ⋮ 𝕤𝕖𝕞 a , 𝕤𝕖𝕞 b) 𝕤𝕖𝕞 (⊖_ a) = 𝑎𝑙𝑔 (negₒ ⋮ 𝕤𝕖𝕞 a) 𝕤𝕖𝕞ᵃ⇒ : MetaAlg⇒ Rᵃ 𝒜ᵃ 𝕤𝕖𝕞 𝕤𝕖𝕞ᵃ⇒ = record { ⟨𝑎𝑙𝑔⟩ = λ{ {t = t} → ⟨𝑎𝑙𝑔⟩ t } ; ⟨𝑣𝑎𝑟⟩ = refl ; ⟨𝑚𝑣𝑎𝑟⟩ = λ{ {𝔪 = 𝔪}{mε} → cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-tab mε)) } } where open ≡-Reasoning ⟨𝑎𝑙𝑔⟩ : (t : ⅀ R α Γ) → 𝕤𝕖𝕞 (Rᵃ.𝑎𝑙𝑔 t) ≡ 𝑎𝑙𝑔 (⅀₁ 𝕤𝕖𝕞 t) ⟨𝑎𝑙𝑔⟩ (zeroₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (addₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (oneₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (multₒ ⋮ _) = refl ⟨𝑎𝑙𝑔⟩ (negₒ ⋮ _) = refl 𝕊-tab : (mε : Π ~[ R ]↝ Γ)(v : ℐ α Π) → 𝕊 (tabulate mε) v ≡ 𝕤𝕖𝕞 (mε v) 𝕊-tab mε new = refl 𝕊-tab mε (old v) = 𝕊-tab (mε ∘ old) v module _ (g : R ⇾̣ 𝒜)(gᵃ⇒ : MetaAlg⇒ Rᵃ 𝒜ᵃ g) where open MetaAlg⇒ gᵃ⇒ 𝕤𝕖𝕞! : (t : R α Γ) → 𝕤𝕖𝕞 t ≡ g t 𝕊-ix : (mε : Sub R Π Γ)(v : ℐ α Π) → 𝕊 mε v ≡ g (index mε v) 𝕊-ix (x ◂ mε) new = 𝕤𝕖𝕞! x 𝕊-ix (x ◂ mε) (old v) = 𝕊-ix mε v 𝕤𝕖𝕞! (mvar 𝔪 mε) rewrite cong (𝑚𝑣𝑎𝑟 𝔪) (dext (𝕊-ix mε)) = trans (sym ⟨𝑚𝑣𝑎𝑟⟩) (cong (g ∘ mvar 𝔪) (tab∘ix≈id mε)) 𝕤𝕖𝕞! (var v) = sym ⟨𝑣𝑎𝑟⟩ 𝕤𝕖𝕞! 𝟘 = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (_⊕_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! 𝟙 = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (_⊗_ a b) rewrite 𝕤𝕖𝕞! a | 𝕤𝕖𝕞! b = sym ⟨𝑎𝑙𝑔⟩ 𝕤𝕖𝕞! (⊖_ a) rewrite 𝕤𝕖𝕞! a = sym ⟨𝑎𝑙𝑔⟩ -- Syntax instance for the signature R:Syn : Syntax R:Syn = record { ⅀F = ⅀F ; ⅀:CS = ⅀:CompatStr ; mvarᵢ = R:Terms.mvar ; 𝕋:Init = λ 𝔛 → let open R:Terms 𝔛 in record { ⊥ = R ⋉ Rᵃ ; ⊥-is-initial = record { ! = λ{ {𝒜 ⋉ 𝒜ᵃ} → 𝕤𝕖𝕞 𝒜ᵃ ⋉ 𝕤𝕖𝕞ᵃ⇒ 𝒜ᵃ } ; !-unique = λ{ {𝒜 ⋉ 𝒜ᵃ} (f ⋉ fᵃ⇒) {x = t} → 𝕤𝕖𝕞! 𝒜ᵃ f fᵃ⇒ t } } } } -- Instantiation of the syntax and metatheory open Syntax R:Syn public open R:Terms public open import SOAS.Families.Build public open import SOAS.Syntax.Shorthands Rᵃ public open import SOAS.Metatheory R:Syn public
{ "alphanum_fraction": 0.4965260546, "avg_line_length": 26.1688311688, "ext": "agda", "hexsha": "6bc95c421b5892229c3d00b214c0635a9056342d", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z", "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "out/Ring/Syntax.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "out/Ring/Syntax.agda", "max_line_length": 93, "max_stars_count": 39, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "out/Ring/Syntax.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z", "max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z", "num_tokens": 2662, "size": 4030 }
module Issue826-2 where open import Common.Coinduction data _≡_ {A : Set} (x y : A) : Set where data D : Set where c : ∞ D → D delay : D → ∞ D delay x = ♯ x data P : D → Set where o : (x : ∞ D) → P (♭ x) → P (c x) postulate h : (x : D) → P x → P x f : (x : D) → P (c (delay x)) → P x f x (o .(delay x) p) = h x p g : (x : D) → P x → P (c (delay x)) g x p = h (c (delay x)) (o (delay x) p) postulate bar : (x : ∞ D) (p : P (♭ x)) → h (c x) (o x (h (♭ x) p)) ≡ o x p foo : (x : D) (p : P (c (delay x))) → g x (f x p) ≡ p foo x (o .(delay x) p) = goal where x′ = _ goal : _ ≡ o x′ p goal = bar x′ p -- The following error message seems to indicate that an expression is -- not forced properly: -- -- Bug.agda:30,26-30 -- ♭ (.Bug.♯-0 x) != x of type D -- when checking that the expression goal has type -- g x (f x (o (.Bug.♯-0 x) p)) ≡ o (.Bug.♯-0 x) p -- -- Thus it seems as if this problem affects plain type-checking as -- well.
{ "alphanum_fraction": 0.5097636177, "avg_line_length": 20.7021276596, "ext": "agda", "hexsha": "0ef9241cac1dfc31468ddf49de11acb4d652493c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue826-2.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue826-2.agda", "max_line_length": 70, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue826-2.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 417, "size": 973 }
{- 2010-09-17 a small case study to test irrelevance -} module IrrelevanceCaseStudyPartialFunctions where data _≡_ {A : Set}(a : A) : A → Set where refl : a ≡ a record ⊤ : Set where record Sigma (A : Set)(B : A → Set) : Set where constructor _,_ field fst : A snd : B fst syntax Sigma A (λ x → B) = Σ x ∈ A , B data Subset (A : Set)(P : A → Set) : Set where _#_ : (elem : A) → .(P elem) → Subset A P elimSubset : ∀ {A C : Set} {P} → Subset A P → ((a : A) → .(P a) → C) → C elimSubset (a # p) k = k a p syntax Subset A (λ x → P) = ⁅ x ∈ A ∣ P ⁆ elem : {A : Set}{P : A → Set} → ⁅ x ∈ A ∣ P x ⁆ → A elem (x # p) = x elim₂ : ∀ {A C : Set} {P Q : A → Set} → Subset A (λ x → Sigma (P x) (λ _ → Q x)) → ((a : A) → .(P a) → .(Q a) → C) → C elim₂ (a # (p , q)) k = k a p q record _⇀_ (A B : Set) : Set1 where constructor mkParFun field dom : A → Set _′_ : ⁅ x ∈ A ∣ dom x ⁆ → B open _⇀_ public syntax mkParFun dom f = f ↾ dom pure : {A B : Set} → (A → B) → A ⇀ B pure f = record { dom = λ x → ⊤ ; _′_ = λ a → f (elem a) } _∘_ : {A B C : Set} → (B ⇀ C) → (A ⇀ B) → A ⇀ C (g ↾ Q) ∘ (f ↾ P) = gf ↾ QP where QP : _ → Set QP x = Σ x∈P ∈ P x , Q (f (x # x∈P)) gf : Subset _ QP → _ gf (x # (p , q)) = g (f (x # p) # q) _⊑_ : {A B : Set} → (f f' : A ⇀ B) → Set (f ↾ P) ⊑ (f' ↾ P') = Σ φ ∈ (∀ {x} → P x → P' x) , (∀ {x} (p : P x) → f (x # p) ≡ f' (x # φ p))
{ "alphanum_fraction": 0.4423611111, "avg_line_length": 24, "ext": "agda", "hexsha": "858f75e485818197067557665f092a4b33e4dcaf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/IrrelevanceCaseStudyPartialFunctions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/IrrelevanceCaseStudyPartialFunctions.agda", "max_line_length": 58, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/IrrelevanceCaseStudyPartialFunctions.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 670, "size": 1440 }
-- P: <E[new s]> --> (vcd) <E[(c,d)]> module Properties.StepNew where open import Data.Maybe hiding (All) open import Data.List open import Data.List.All open import Data.Product open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Typing open import Syntax open import Global open import Channel open import Values open import Session open import Schedule open import ProcessSyntax open import ProcessRun open import Properties.Base tch : SType → Type tch s = (TPair (TChan (SType.force s)) (TChan (SType.force (dual s)))) mknew : ∀ {Φ} → (s : SType) → Expr (tch s ∷ Φ) TUnit → Expr Φ TUnit mknew s E = letbind (split-all-right _) (new [] s) E mklhs : ∀ {Φ} → (s : SType) → Expr (tch s ∷ Φ) TUnit → Proc Φ mklhs s E = exp (mknew s E) mkrhs : ∀ {Φ} → (s : SType) → Expr (tch s ∷ Φ) TUnit → Proc Φ mkrhs s E = res s (exp (letbind (left (left (split-all-right _))) (pair (left (rght [])) (here []) (here [])) E)) reduction : (s : SType) (E : Expr (tch s ∷ []) TUnit) → let lhs = (runProc [] (mklhs s E) (vnil []-inactive)) in let rhs = (runProc [] (mkrhs s E) (vnil []-inactive)) in one-step lhs ≡ (New , proj₁ rhs , proj₂ rhs) reduction s E with ssplit-refl-left-inactive [] ... | G' , ina-G' , ss-GG' = refl -- reduction in open context open-reduction-type : Set open-reduction-type = ∀ {Φ} (s : SType) (E : Expr (tch s ∷ Φ) TUnit) (ϱ : VEnv [] Φ) → let lhs = (runProc [] (mklhs s E) ϱ) in let rhs = (runProc [] (mkrhs s E) ϱ) in one-step lhs ≡ (New , proj₁ rhs , proj₂ rhs) open-reduction : open-reduction-type open-reduction{Φ} s E ϱ with runProc [] (exp (mknew s E)) ϱ ... | rpse rewrite split-env-right-lemma0 ϱ | split-rotate-lemma {Φ} | split-env-right-lemma ϱ with ssplit-compose (ss-left{(SType.force s) , POSNEG} ss-[]) (ss-left ss-[]) ... | ssc = refl {- -- reduction in open context with further resources pairs : ∀ {A : Set} {B : A → Set} {p1 p2 : Σ A λ x → B x } → p1 ≡ p2 → Σ (proj₁ p1 ≡ proj₁ p2) λ { refl → proj₂ p1 ≡ proj₂ p2 } pairs {A} {B} refl = refl , refl split-env-right-lemma0' : ∀ {Φ G} (ϱ : VEnv G Φ) → let gis = ssplit-refl-right-inactive G in (split-env (split-all-right Φ) ϱ ≡ ((proj₁ gis , G) , proj₂ (proj₂ gis) , vnil (proj₁ (proj₂ gis)) , ϱ)) split-env-right-lemma0' (vnil []-inactive) = refl split-env-right-lemma0' (vnil (::-inactive ina)) with split-env-right-lemma0' (vnil ina) ... | ih with pairs ih ... | p1== , p2== = {!!} split-env-right-lemma0'{t ∷ Φ} (vcons ssp v ϱ) with split-env-right-lemma0' ϱ ... | ih with split-env (split-all-right Φ) ϱ ... | sesar = {!!} full-reduction-type : Set full-reduction-type = ∀ {Φ G} (s : SType) (E : Expr (tch s ∷ Φ) TUnit) (ϱ : VEnv G Φ) → let lhs = runProc G (mklhs s E) ϱ in let rhs = runProc G (mkrhs s E) ϱ in single-step (proj₁ lhs ++ G , proj₂ lhs) ≡ (New , proj₁ rhs ++ G , proj₂ rhs) full-reduction : full-reduction-type full-reduction{Φ}{G} s E ϱ with ssplit-refl-left-inactive G ... | ssrli rewrite split-env-right-lemma0' ϱ | split-rotate-lemma {Φ} = {!!} -}
{ "alphanum_fraction": 0.6171171171, "avg_line_length": 28, "ext": "agda", "hexsha": "6a7a481b8ccb30d32860cbc6c2dd6f5ef3b07cf8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "peterthiemann/definitional-session", "max_forks_repo_path": "src/Properties/StepNew.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "peterthiemann/definitional-session", "max_issues_repo_path": "src/Properties/StepNew.agda", "max_line_length": 113, "max_stars_count": 9, "max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "peterthiemann/definitional-session", "max_stars_repo_path": "src/Properties/StepNew.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z", "num_tokens": 1173, "size": 3108 }
-- Andreas, 2019-06-17, LAIM 2019, issue #3855 -- Only allow erased definitions in erased context. open import Common.IO open import Common.Unit open import Common.String open import Common.Bool @0 noWorld : String noWorld = "Hallo, Welt!" -- Illegal definition, should raise a type error. world : Bool → String world true = "Hello world!" world false = noWorld main = putStrLn (world false)
{ "alphanum_fraction": 0.7386934673, "avg_line_length": 20.9473684211, "ext": "agda", "hexsha": "cde55f068fe5c3b8d32155a81dd66ce4aaadbd2e", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue3855a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue3855a.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue3855a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 103, "size": 398 }
{-# OPTIONS --copatterns #-} open import Common.Size record R (i : Size) : Set where inductive constructor delay field force : (j : Size< i) → R j open R inh : (i : Size) → R i force (inh i) j = inh j -- Should give termination error data ⊥ : Set where elim : R ∞ → ⊥ elim (delay f) = elim (f ∞) -- Gives termination error, as expected.
{ "alphanum_fraction": 0.614084507, "avg_line_length": 14.7916666667, "ext": "agda", "hexsha": "f72a0bf33ca3b7defdb5076efaa8a8dbc84a4248", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "hborum/agda", "max_forks_repo_path": "test/Fail/Issue1015OnlyRecord.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/Issue1015OnlyRecord.agda", "max_line_length": 40, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/Issue1015OnlyRecord.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 115, "size": 355 }
module WrongNamedArgument where postulate f : {A : Set₁} → A → A test : Set → Set test = f {B = Set} -- Good error: -- Function does not accept argument {B = _} -- when checking that {B = Set} are valid arguments to a function of -- type {A : Set₁} → A → A
{ "alphanum_fraction": 0.6311787072, "avg_line_length": 18.7857142857, "ext": "agda", "hexsha": "29f7a5ef7fe115b95bcce393438d8586ec3f3aad", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/WrongNamedArgument.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/WrongNamedArgument.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/WrongNamedArgument.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 82, "size": 263 }
----------------------------------- -- First order logic ----------------------------------- module sv20.assign2.SetTheory.Logic where infix 4 _,_ infix 3 ¬_ infix 1 _∧_ infix 1 _∨_ infix 0 _⇔_ -- Some First order logic I need. -- ∧ data type (conjunction). data _∧_ (A B : Set) : Set where _,_ : A → B → A ∧ B ∧-proj₁ : ∀ {A B} → A ∧ B → A ∧-proj₁ (a , _) = a ∧-proj₂ : ∀ {A B} → A ∧ B → B ∧-proj₂ (_ , b) = b -- ∨ data type (disjunction), with many useful properties. data _∨_ (A B : Set) : Set where inj₁ : A → A ∨ B inj₂ : B → A ∨ B ∨-e : (A B C : Set) → A ∨ B → (A → C) → (B → C) → C ∨-e A B C (inj₁ a) i₁ i₂ = i₁ a ∨-e A B C (inj₂ b) i₁ i₂ = i₂ b ∨-sym : (A B : Set) → A ∨ B → B ∨ A ∨-sym A B (inj₁ a) = inj₂ a ∨-sym A B (inj₂ b) = inj₁ b trivial : (A : Set) → A → A trivial _ A = A ∨-idem : (A : Set) → A ∨ A → A ∨-idem A (inj₁ a) = a ∨-idem A (inj₂ a) = a ∨-prop₁ : {A B C : Set} → (A ∨ B → C) → A → C ∨-prop₁ i a = i (inj₁ a) ∨-prop₂ : {A B C : Set} → (A ∨ B → C) → B → C ∨-prop₂ i b = i (inj₂ b) ∨-prop₃ : {A B C : Set} → A ∨ B → (A → C) → C ∨ B ∨-prop₃ (inj₁ x) i = inj₁ (i x) ∨-prop₃ (inj₂ x) i = inj₂ x ∨-prop₄ : {A B C : Set} → A ∨ B → (B → C) → A ∨ C ∨-prop₄ (inj₁ x) x₁ = inj₁ x ∨-prop₄ (inj₂ x) x₁ = inj₂ (x₁ x) ∨-prop₅ : {A B C D : Set} → A ∨ B → (A → C) → (B → D) → C ∨ D ∨-prop₅ (inj₁ a) a→c b→d = inj₁ (a→c a) ∨-prop₅ (inj₂ b) a→c b→d = inj₂ (b→d b) ∨-∧ : {A B : Set} → (A ∧ B) ∨ (B ∧ A) → A ∧ B ∨-∧ (inj₁ (a , b)) = a , b ∨-∧ (inj₂ (b , a)) = a , b -- Bi-implication. _⇔_ : Set → Set → Set A ⇔ B = (A → B) ∧ (B → A) ⇔-p : (A B C : Set) → A ⇔ (B ∧ C) → (C → B) → A ⇔ C ⇔-p A B C (h₁ , h₂) h₃ = prf₁ , prf₂ where prf₁ : A → C prf₁ A = ∧-proj₂ (h₁ A) prf₂ : C → A prf₂ C = h₂ ((h₃ C) , C) -- Empty data type. data ⊥ : Set where ⊥-elim : {A : Set} → ⊥ → A ⊥-elim () data ⊤ : Set where tt : ⊤ -- Negation ¬_ : Set → Set ¬ A = A → ⊥ cont : (A : Set) → A ∧ ¬ A → ⊥ cont _ (x , ¬x) = ¬x x
{ "alphanum_fraction": 0.4380122951, "avg_line_length": 19.52, "ext": "agda", "hexsha": "a0a65543b5fa08ad7fa234224d55a8fde2d3e285", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Logic.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Logic.agda", "max_line_length": 61, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/sv20/assign2/SetTheory/Logic.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1041, "size": 1952 }
module Issue690a where postulate A : Set data T : Set → Set where c : T (T A)
{ "alphanum_fraction": 0.6463414634, "avg_line_length": 11.7142857143, "ext": "agda", "hexsha": "9fa795a8375959a076a4e25b304d2b2a55ceae34", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue690a.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue690a.agda", "max_line_length": 24, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/fail/Issue690a.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 28, "size": 82 }
open import Oscar.Prelude open import Oscar.Class module Oscar.Class.Hmap where module Hmap {𝔵₁} {𝔛₁ : Ø 𝔵₁} {𝔵₂} {𝔛₂ : Ø 𝔵₂} {𝔯₁} {𝔯₂} (ℜ₁ : 𝔛₁ → 𝔛₂ → Ø 𝔯₁) (ℜ₂ : 𝔛₁ → 𝔛₂ → Ø 𝔯₂) = ℭLASS (ℜ₁ , ℜ₂) (∀ x y → ℜ₁ x y → ℜ₂ x y) module _ {𝔵₁} {𝔛₁ : Ø 𝔵₁} {𝔵₂} {𝔛₂ : Ø 𝔵₂} {𝔯₁} {𝔯₂} {ℜ₁ : 𝔛₁ → 𝔛₂ → Ø 𝔯₁} {ℜ₂ : 𝔛₁ → 𝔛₂ → Ø 𝔯₂} where hmap = Hmap.method ℜ₁ ℜ₂ module _ {𝔵} {𝔛 : Ø 𝔵} {𝔯₁} {𝔯₂} {ℜ₁ : 𝔛 → 𝔛 → Ø 𝔯₁} {ℜ₂ : 𝔛 → 𝔛 → Ø 𝔯₂} where smap : ⦃ _ : Hmap.class ℜ₁ ℜ₂ ⦄ → ∀ {x y} → ℜ₁ x y → ℜ₂ x y smap = Hmap.method ℜ₁ ℜ₂ _ _ § = smap module _ {𝔵} {𝔛 : Ø 𝔵} {𝔯₁} {𝔯₂} {ℜ₁ : 𝔛 → 𝔛 → Ø 𝔯₁} (ℜ₂ : 𝔛 → 𝔛 → Ø 𝔯₂) where smap[_] : ⦃ _ : Hmap.class ℜ₁ ℜ₂ ⦄ → ∀ {x y} → ℜ₁ x y → ℜ₂ x y smap[_] = Hmap.method ℜ₁ ℜ₂ _ _ §[_] = smap[_]
{ "alphanum_fraction": 0.4657534247, "avg_line_length": 17.8444444444, "ext": "agda", "hexsha": "1a1afcc01ab3d9596da8ef301c83e6bb363ee0ee", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Hmap.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Hmap.agda", "max_line_length": 64, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Hmap.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 544, "size": 803 }
------------------------------------------------------------------------ -- The Agda standard library -- -- This module is DEPRECATED. Please use -- Data.List.Relation.Binary.Equality.DecSetoid directly. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Data.List.Relation.Equality.DecSetoid {a ℓ} (DS : DecSetoid a ℓ) where open import Data.List.Relation.Binary.Equality.DecSetoid DS public
{ "alphanum_fraction": 0.5274949084, "avg_line_length": 30.6875, "ext": "agda", "hexsha": "9496fada128a0ec5356b780ae6c06a1df8a8b379", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Equality/DecSetoid.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Equality/DecSetoid.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Equality/DecSetoid.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 92, "size": 491 }
{-# OPTIONS --safe --warning=error --cubical --without-K #-} open import Agda.Primitive open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Naturals open import Basic module File1 where {- Let's define the integers. Answers can be found in commit 4d7aad52e014daeb48fe5fb6854d3b6e0080012a. If you want to learn how to type something, remember the Emacs action is M-x describe-char with the cursor on a character. -} data ℤ : Set where pos : ℕ → ℤ neg : ℕ → ℤ congZero : pos 0 ≡ neg 0 {- A bit odd! We defined an integer to be "a natural tagged as positive", "a natural tagged as negative", or "a witness that pos 0 = neg 0". This is obvious nonsense (how can two things be equal if they were made from different constructors?! what even does it mean for "pos 0 ≡ neg 0" to be an integer?!) until you let go of your preconceptions about what it means for two things to be equal. -} -- Just to help you realise how odd this is, we'll use some new Cubical definitions to manifest a really weird element of ℤ which is neither a `pos` nor a `neg`. Don't worry too much about this for now. oddThing : ℤ oddThing = congZero i1 -- Even odder, the integer we just made is equal to 0. Think how strange this is: it's not built using the only constructor that could build `pos 0`, but it's still equal to `pos 0`. oddThing2 : pos 0 ≡ oddThing oddThing2 = congZero {- Add 1 to an integer. The first cases are easy, but the last case is very odd and we will discuss it in detail. -} incr : ℤ → ℤ incr (pos x) = pos (succ x) incr (neg zero) = pos 1 incr (neg (succ x)) = neg x -- First of all, we have in scope an "integer" `congZero` which is of type `pos 0 ≡ neg 0` - huh?! incr (congZero i) = {!!} {- This one looks different from the non-cubical world. Goal: ℤ ———— Boundary —————————————————————————————————————————————— i = i0 ⊢ pos 1 i = i1 ⊢ pos 1 ———————————————————————————————————————————————————————————— i : I ———— Constraints ——————————————————————————————————————————— pos 1 = ?0 (i = i1) : ℤ pos 1 = ?0 (i = i0) : ℤ The constraints look pretty normal, telling you that goal 0 needs to be equal to `pos 1`. But there's stuff about this `i : I` here. What's that? Recall that Cubical alters the definition of ≡. Given any element of X, an element of X ≡ Y contains content for how that element corresponds to a Y, and vice versa. Homotopy type theory, and Cubical Agda, prefer to think of a more general structure on top of that data, though: not only can we go from an X to a Y, but we also store *how* we get there. More abstractly, we store how to traverse a path from X to Y. The `i` here is telling us where along that path we are; the template goes from the special symbol `i0` to the special symbol `i1`, and `i` is notionally somewhere between those two points. This gives some nice composability properties: if we know that X ≡ Y and that Y ≡ Z, we can compose the two paths to get a path X ≡ Z. Cubical Agda's great innovation is that all this has computational content: proofs about X can be transported along the path to obtain for free proofs about Z. Having told Agda that `incr (pos x) = pos (succ x)`, it can infer that `incr (pos 0) = pos 1`. So our goal of constructing a path `incr congZero : incr (pos 0) ≡ incr (neg 0)` is in fact the requirement to construct a path `pos 1 ≡ incr (neg 0)`. Similarly, we told it that `incr (neg 0) = pos 1`, so our path `incr congZero` is actually of type `pos 1 ≡ pos 1` The `I` from the goal is the template of the path `congZero n` which we are trying to construct from `pos 1` to `pos 1`. The `i0` and `i1` are the templates for the start and end points of the path, i.e. they both indicate `pos 1`. What we really wanted to write here was `incr congZero`. For reasons I don't understand, Agda doesn't accept this. We are forced to descend to the level of actually implementing the path from `pos 1` to `pos 1` by telling Agda where each `i` goes, even though there's an obvious way (`refl`) to specify the entire path at once. Agda can automatically infer the correct hole-fill, but you can try it with `pos 1`. -} {- Let's show that successors of naturals are nonzero. We do this using a new technique that only makes sense in Cubical-land. Given a path from `succ a` to `0`, we need to show False. The assumed member of `succ a ≡ 0` is a path that tells us how to get from `succ a` to `0` in a way that is preserved by function application. That is, it tells us how to show `f (succ a) ≡ f 0` for any `f`. (The function `subst` captures this ability to move functions from one end of a path to the other.) So if we pick `f` appropriately so that it outputs `False` at 0 but something else (anything else, as long as we can construct it!) at `succ a`, we will be done. -} succNonzero : {a : ℕ} → succ a ≡ 0 → False succNonzero {a} sa=0 = subst f sa=0 {!!} where f : ℕ → Set f zero = False f (succ i) = {!!} {- Let's show that these equality things aren't *too* weird. We'll show that even though `pos 0` is equal to `congZero i1`, it's actually the *only* other `pos` which is equal to `congZero i1`. (You'd hope this would be the case; otherwise we'd have several `pos` being equal to each other.) Cubical Agda gives us a magical way to do this. Recall that we can move functions along paths (the `subst` from above, which lets us take an `x ≡ y` and an `f` to get `f x → f y`); we can actually also do the same thing viewed as transforming the *entire path* `x ≡ y` using `f` into `f x ≡ f y`. This is the function `cong`. If we can somehow create a function that "strips off `pos`", then that function can transform the path `pos a ≡ pos b` into a path `a ≡ b`. -} toNat : ℤ → ℕ toNat z = {!!} posInjective : {a b : ℕ} → pos a ≡ pos b → a ≡ b posInjective pr = cong toNat pr {- Finally, we can use the injectivity of `pos` in the obvious way to prove that only `pos 0` is `congZero i1`. -} notTooOdd : (n : ℕ) → (pos n ≡ congZero i1) → n ≡ 0 notTooOdd zero pr = refl notTooOdd (succ n) pr = posInjective (pr ∙ sym congZero) {- Let's show that `pos` is injective in a different way, inspired by how you might do this kind of thing in a non-Cubical world. We'll go by induction, which means the interesting case will be `pos (succ a) ≡ pos (succ b) → pos a ≡ pos b`. This is a classic example of moving a path wholesale along a function; in this case, the function is "decrement". -} decr : ℤ → ℤ -- TODO hole this decr z = {!!} posDecr : {a b : ℕ} → pos (succ a) ≡ pos (succ b) → pos a ≡ pos b posDecr {a} {b} pr = cong decr pr posInjective' : {a b : ℕ} → pos a ≡ pos b → a ≡ b -- The two easy cases first posInjective' {zero} {zero} x = refl posInjective' {succ a} {succ b} x = cong succ (posInjective (posDecr x)) {- We need to transform `pos zero ≡ pos (succ b)` into `zero ≡ succ b`. We could do this using the proof of `posInjective` - moving the path along `toNat` - but it is also interesting to construct the path `zero ≡ succ b` manually using `subst`. To use `subst`, we need to construct a function from ℤ which is "a type we can populate" at `pos zero` (i.e. at one end of the path), and `zero ≡ succ b` at `pos (succ b)` (i.e. at the other end of the path); then we will be able to move from the populated type to `zero ≡ succ b` using that function. These two are quite hard! -} posInjective' {zero} {succ b} x = subst t x {!!} where t : ℤ → Set t z = {!!} posInjective' {succ a} {zero} x = subst t x {!!} where t : ℤ → Set t z = {!!} {- What does equality mean on the level of types, rather than values? Univalence, the axiom which Cubical provides computational meaning to, basically says "identity really means isomorphism". I will gloss over a lot of detail there, but here is a witness to `ℤ ≡ ℤ` that is not `refl`! -} incrDecrInverse1 : (a : ℤ) → incr (decr a) ≡ a incrDecrInverse1 (pos zero) = sym congZero incrDecrInverse1 (pos (succ x)) = refl incrDecrInverse1 (neg x) = refl {- The remaining case is worth talking about. We need a path from incr (decr (congZero j)) to congZero j. That is, we need a path from incr (neg 1) to congZero j; i.e. from neg 0 to congZero j. We already have a path from neg 0 to pos 0 - namely `sym congZero`. But `sym congZero` goes from `neg 0` to every point along `sym congZero` - and `congZero j` is also a point along `sym congZero`, because `sym` just means "reverse the path"! So we can get the path we need by truncating `sym congZero`, using the `∧` ("min") operation (a special builtin primitive in Cubical). The path, parameterised by `i` with `j` fixed, is "go backwards (`sym`) along `congZero` to the min of `i` and where `j` lies on this path (`~ j`), but then don't go any further". Here, `~` means essentially "negate"; if you got to position `i` travelling forward on path `p`, then you got to position `~ i` travelling backward on path `sym p`. This is probably best done if you draw a little picture. -} incrDecrInverse1 (congZero j) i = sym congZero (i ∧ (~ j)) incrDecrInverse2 : (a : ℤ) → decr (incr a) ≡ a incrDecrInverse2 x = {!!} incrIso : ℤ ≡ ℤ incrIso = isoToPath (iso incr decr incrDecrInverse1 incrDecrInverse2) {- Unexpected! Cubical has let us prove that ℤ ≡ ℤ in a very nonstandard way. What use is this? Who knows. -}
{ "alphanum_fraction": 0.691234846, "avg_line_length": 51.4972375691, "ext": "agda", "hexsha": "3e3babfca4e48f46e5e0acdf3fb6e9479d564333", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "3d56e649152d2cd906281943860ca19da1d1f344", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/CubicalTutorial", "max_forks_repo_path": "File1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3d56e649152d2cd906281943860ca19da1d1f344", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/CubicalTutorial", "max_issues_repo_path": "File1.agda", "max_line_length": 301, "max_stars_count": 3, "max_stars_repo_head_hexsha": "3d56e649152d2cd906281943860ca19da1d1f344", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/CubicalTutorial", "max_stars_repo_path": "File1.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-16T23:14:13.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-26T17:02:42.000Z", "num_tokens": 2795, "size": 9321 }
module Issue2845 where open import Agda.Builtin.Nat open import Agda.Primitive.Cubical open import Agda.Builtin.Equality Ex1 : Nat Ex1 = primComp (λ i → Nat) i0 (λ i → isOneEmpty) zero test1 : Ex1 ≡ zero test1 = refl Ex2 : (i : I) → Nat Ex2 i = primComp (λ i → Nat) i (λ { _ (i = i1) → zero}) zero test2 : ∀ i → Ex2 i ≡ zero test2 i = refl Ex3 : (i : I) (p : I → Nat) → Nat Ex3 i p = primComp (λ i → Nat) i (λ { k (i = i1) → suc (p k)}) (suc (p i0)) test3 : ∀ i p → Ex3 i p ≡ suc _ test3 i p = refl
{ "alphanum_fraction": 0.5968379447, "avg_line_length": 21.0833333333, "ext": "agda", "hexsha": "fe914c88c71a258a3d42187d261e30adb1ddd74c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue2845.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue2845.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue2845.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 212, "size": 506 }
{-# OPTIONS --without-K --exact-split --safe #-} module Universes where open import Agda.Primitive public renaming ( Level to Universe -- We speak of universes rather than of levels. ; lzero to 𝓤₀ -- Our first universe is called 𝓤₀ ; lsuc to _⁺ -- The universe after 𝓤 is 𝓤 ⁺ ; Setω to 𝓤ω -- There is a universe 𝓤ω strictly above 𝓤₀, 𝓤₁, ⋯ , 𝓤ₙ, ⋯ ) using (_⊔_) -- Least upper bound of two universes, e.g. 𝓤₀ ⊔ 𝓤₁ is 𝓤₁ Type = λ ℓ → Set ℓ _̇ : (𝓤 : Universe) → Type (𝓤 ⁺) 𝓤 ̇ = Type 𝓤 𝓤₁ = 𝓤₀ ⁺ 𝓤₂ = 𝓤₁ ⁺ 𝓤₃ = 𝓤₂ ⁺ _⁺⁺ : Universe → Universe 𝓤 ⁺⁺ = 𝓤 ⁺ ⁺ universe-of : {𝓤 : Universe} (X : 𝓤 ̇ ) → Universe universe-of {𝓤} X = 𝓤 infix 1 _̇
{ "alphanum_fraction": 0.5397039031, "avg_line_length": 23.21875, "ext": "agda", "hexsha": "c33d26199d60e5e09deb692930e2e0847855c716", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "sym-cereal/proofs", "max_forks_repo_path": "HoTT-UT-Agda/Universes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "sym-cereal/proofs", "max_issues_repo_path": "HoTT-UT-Agda/Universes.agda", "max_line_length": 88, "max_stars_count": 6, "max_stars_repo_head_hexsha": "275ecc582b3a6a1da1af387251c6b4d74d9a5203", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UnsoundWitch/proofs", "max_stars_repo_path": "HoTT-UT-Agda/Universes.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T10:58:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-03T03:29:40.000Z", "num_tokens": 324, "size": 743 }
{-# OPTIONS --cubical --safe #-} module Lemmas where open import Cubical.Core.Everything using (_≡_; Level; Type) open import Data.Fin using (Fin; toℕ; fromℕ<; zero; suc) open import Data.Integer using (ℤ; +_; -[1+_]) open import Data.Nat open import Data.Nat.Properties using (≤-step) open import Relation.Nullary.Decidable using (False) open import Relation.Nullary using (yes; no) k≤n⇒n-k≤n : (k n : ℕ) → k ≤ n → n ∸ k ≤ n k≤n⇒n-k≤n zero zero z≤n = z≤n k≤n⇒n-k≤n zero (suc n) z≤n = s≤s (k≤n⇒n-k≤n zero n z≤n) k≤n⇒n-k≤n (suc k) zero () k≤n⇒n-k≤n (suc k) (suc n) (s≤s p) = ≤-step (k≤n⇒n-k≤n k n p) finN<N : {n : ℕ} → (k : Fin n) → toℕ k < n finN<N zero = s≤s z≤n finN<N (suc k) = s≤s (finN<N k) suc≤-injective : ∀ {m n : ℕ} → suc m ≤ suc n → m ≤ n suc≤-injective (s≤s p) = p -- revMod k = n - k revMod : ∀ {n : ℕ} → Fin (suc n) → Fin (suc n) revMod {n} k = fromℕ< (s≤s (k≤n⇒n-k≤n (toℕ k) n (suc≤-injective (finN<N k))))
{ "alphanum_fraction": 0.5438247012, "avg_line_length": 32.3870967742, "ext": "agda", "hexsha": "167087aa2feda043d7c36f9573fec80a6a0d96b5", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z", "max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z", "max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "halfaya/MusicTools", "max_forks_repo_path": "agda/Lemmas.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z", "max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "halfaya/MusicTools", "max_issues_repo_path": "agda/Lemmas.agda", "max_line_length": 77, "max_stars_count": 28, "max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "halfaya/MusicTools", "max_stars_repo_path": "agda/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z", "max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z", "num_tokens": 475, "size": 1004 }
open import Data.ByteString.Primitive using ( ByteStringStrict ; ByteStringStrict² ; ByteStringLazy ; ByteStringLazy² ) open import Data.Bool using ( Bool ) open import Data.Char using ( Char ) open import Data.Natural using ( Natural ) open import Data.String using ( String ) module Data.ByteString.UTF8.Primitive where postulate fromStringStrict : String → ByteStringStrict toStringStrict : ByteStringStrict → String lengthStrict : ByteStringStrict → Natural spanStrict : (Char → Bool) → ByteStringStrict → ByteStringStrict² breakStrict : (Char → Bool) → ByteStringStrict → ByteStringStrict² {-# IMPORT Data.ByteString.UTF8 #-} {-# COMPILED fromStringStrict Data.ByteString.UTF8.fromString #-} {-# COMPILED toStringStrict Data.ByteString.UTF8.toString #-} {-# COMPILED lengthStrict fromIntegral . Data.ByteString.UTF8.length #-} {-# COMPILED spanStrict Data.ByteString.UTF8.span #-} {-# COMPILED breakStrict Data.ByteString.UTF8.break #-} postulate fromStringLazy : String → ByteStringLazy toStringLazy : ByteStringLazy → String lengthLazy : ByteStringLazy → Natural spanLazy : (Char → Bool) → ByteStringLazy → ByteStringLazy² breakLazy : (Char → Bool) → ByteStringLazy → ByteStringLazy² {-# IMPORT Data.ByteString.Lazy.UTF8 #-} {-# COMPILED fromStringLazy Data.ByteString.Lazy.UTF8.fromString #-} {-# COMPILED toStringLazy Data.ByteString.Lazy.UTF8.toString #-} {-# COMPILED lengthLazy fromIntegral . Data.ByteString.Lazy.UTF8.length #-} {-# COMPILED spanLazy Data.ByteString.Lazy.UTF8.span #-} {-# COMPILED breakLazy Data.ByteString.Lazy.UTF8.break #-}
{ "alphanum_fraction": 0.7613065327, "avg_line_length": 43.027027027, "ext": "agda", "hexsha": "829164f7b92c07a3d49bccb972e48e03c673ed88", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z", "max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z", "max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ilya-fiveisky/agda-system-io", "max_forks_repo_path": "src/Data/ByteString/UTF8/Primitive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ilya-fiveisky/agda-system-io", "max_issues_repo_path": "src/Data/ByteString/UTF8/Primitive.agda", "max_line_length": 120, "max_stars_count": 10, "max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ilya-fiveisky/agda-system-io", "max_stars_repo_path": "src/Data/ByteString/UTF8/Primitive.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z", "num_tokens": 355, "size": 1592 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommSemiring where open import Cubical.Algebra.CommSemiring.Base public
{ "alphanum_fraction": 0.7899159664, "avg_line_length": 23.8, "ext": "agda", "hexsha": "9e2d02243761be451109f067d3da71ba996e0747", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommSemiring.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommSemiring.agda", "max_line_length": 52, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommSemiring.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 27, "size": 119 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cw.CW open import cw.FinCW open import cw.FinBoundary open import cohomology.Theory {- The reason that RephraseDualizedFirstFinBoundary did not handle this case is because [FinSkeleton n] does not compute. -} module cw.cohomology.cochainequiv.DualizedFirstBoundary (OT : OrdinaryTheory lzero) (⊙fin-skel : ⊙FinSkeleton 1) where open OrdinaryTheory OT open FreeAbelianGroup private fin-skel = ⊙FinSkeleton.skel ⊙fin-skel I = AttachedFinSkeleton.numCells fin-skel I₋₁ = AttachedFinSkeleton.skel fin-skel module FAG = FreeAbelianGroup (Fin I) module FAG₋₁ = FreeAbelianGroup (Fin I₋₁) open FAG renaming (FreeAbGroup to G) using () open FAG₋₁ renaming (FreeAbGroup to G₋₁) using () abstract rephrase-dualized-first-boundary-in-degree : ∀ g <I → GroupHom.f (Freeness.extend _ (C2-abgroup 0) g) (GroupHom.f (fboundary-last fin-skel) (FAG.insert <I)) == Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (fdegree-last fin-skel <I <I₋₁)) rephrase-dualized-first-boundary-in-degree g <I = γ.f (GroupHom.f (fboundary-last fin-skel) (FAG.insert <I)) =⟨ ap γ.f $ app= (is-equiv.g-f (FAG.Freeness.extend-is-equiv G₋₁) (fboundary'-last fin-skel)) <I ⟩ γ.f (G₋₁.sum (λ <I₋₁ → G₋₁.exp (FAG₋₁.insert <I₋₁) (fdegree-last fin-skel <I <I₋₁))) =⟨ γ.pres-sum (λ <I₋₁ → G₋₁.exp (FAG₋₁.insert <I₋₁) (fdegree-last fin-skel <I <I₋₁)) ⟩ C⁰2.sum (λ <I₋₁ → (γ.f (G₋₁.exp (FAG₋₁.insert <I₋₁) (fdegree-last fin-skel <I <I₋₁)))) =⟨ ap C⁰2.sum (λ= λ <I₋₁ → γ.pres-exp (FAG₋₁.insert <I₋₁) (fdegree-last fin-skel <I <I₋₁)) ⟩ C⁰2.sum (λ <I₋₁ → (C⁰2.exp (γ.f (FAG₋₁.insert <I₋₁)) (fdegree-last fin-skel <I <I₋₁))) =⟨ ap C⁰2.sum (λ= λ <I₋₁ → ap (λ g → C⁰2.exp g (fdegree-last fin-skel <I <I₋₁)) $ app= (is-equiv.g-f (FAG₋₁.Freeness.extend-is-equiv C⁰2) g) <I₋₁) ⟩ C⁰2.sum (λ <I₋₁ → (C⁰2.exp (g <I₋₁) (fdegree-last fin-skel <I <I₋₁))) =∎ where C⁰2 : AbGroup lzero C⁰2 = C2-abgroup 0 module C⁰2 = AbGroup C⁰2 γ : G₋₁.grp →ᴳ C⁰2.grp γ = FAG₋₁.Freeness.extend C⁰2 g module γ = GroupHom γ
{ "alphanum_fraction": 0.6334405145, "avg_line_length": 40.3148148148, "ext": "agda", "hexsha": "ec3e9b0b30c45e004e2b3a594677b84e6837b469", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/cochainequiv/DualizedFirstBoundary.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/cochainequiv/DualizedFirstBoundary.agda", "max_line_length": 109, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/cochainequiv/DualizedFirstBoundary.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 900, "size": 2177 }
-- Andreas, 2021-12-22, issue #5705 reported by ksqsf open import Agda.Builtin.Equality crash : Set ≡ Set9223372036854775808 crash = refl -- This should fail, but crashes in Agda 2.6.2 due to Int overflow.
{ "alphanum_fraction": 0.7464114833, "avg_line_length": 23.2222222222, "ext": "agda", "hexsha": "d5d5e19192615ae96f742ad6321c05c2ad8e4865", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Fail/Issue5705.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Fail/Issue5705.agda", "max_line_length": 67, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue5705.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 71, "size": 209 }
module Categories.Coend where
{ "alphanum_fraction": 0.8666666667, "avg_line_length": 15, "ext": "agda", "hexsha": "5edc0a66c5ba822281f697fd6402be082df1b71f", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Coend.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Coend.agda", "max_line_length": 29, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Coend.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 6, "size": 30 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.DStructures.Structures.Type where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.HLevels open import Cubical.Functions.FunExtEquiv open import Cubical.Foundations.Univalence open import Cubical.Data.Sigma open import Cubical.Data.Unit open import Cubical.Relation.Binary open import Cubical.DStructures.Base open import Cubical.DStructures.Meta.Properties private variable ℓ ℓ' ℓ'' ℓ₁ ℓ₁' ℓ₁'' ℓ₂ ℓA ℓ≅A ℓB ℓ≅B ℓ≅ᴰ ℓP : Level -- a type is a URGStr with the relation given by its identity type 𝒮-type : (A : Type ℓ) → URGStr A ℓ 𝒮-type A = make-𝒮 {_≅_ = _≡_} (λ _ → refl) isContrSingl 𝒮ᴰ-type : {A : Type ℓA} (B : A → Type ℓB) → URGStrᴰ (𝒮-type A) B ℓB 𝒮ᴰ-type {A = A} B = make-𝒮ᴰ (λ b p b' → PathP (λ i → B (p i)) b b') (λ _ → refl) λ _ b → isContrSingl b -- subtypes are displayed structures 𝒮ᴰ-subtype : {A : Type ℓ} (P : A → hProp ℓ') → URGStrᴰ (𝒮-type A) (λ a → P a .fst) ℓ-zero 𝒮ᴰ-subtype P = make-𝒮ᴰ (λ _ _ _ → Unit) (λ _ → tt) λ a p → isContrRespectEquiv (invEquiv (Σ-contractSnd (λ _ → isContrUnit))) (inhProp→isContr p (P a .snd)) -- a subtype induces a URG structure on itself Subtype→Sub-𝒮ᴰ : {A : Type ℓA} (P : A → hProp ℓP) (StrA : URGStr A ℓ≅A) → URGStrᴰ StrA (λ a → P a .fst) ℓ-zero Subtype→Sub-𝒮ᴰ P StrA = make-𝒮ᴰ (λ _ _ _ → Unit) (λ _ → tt) (λ a p → isContrRespectEquiv (invEquiv (Σ-contractSnd (λ _ → isContrUnit))) (inhProp→isContr p (P a .snd))) -- uniqueness of small URG structures private module _ {A : Type ℓA} (𝒮 : URGStr A ℓA) where open URGStr 𝒮' = 𝒮-type A ≅-≡ : _≅_ 𝒮' ≡ _≅_ 𝒮 ≅-≡ = funExt₂ (λ a a' → ua (isUnivalent→isUnivalent' (_≅_ 𝒮) (ρ 𝒮) (uni 𝒮) a a')) ρ-≡ : PathP (λ i → isRefl (≅-≡ i)) (ρ 𝒮') (ρ 𝒮) ρ-≡ = funExt (λ a → toPathP (p a)) where p : (a : A) → transport (λ i → ≅-≡ i a a) refl ≡ (ρ 𝒮 a) p a = uaβ (isUnivalent→isUnivalent' (_≅_ 𝒮) (ρ 𝒮) (uni 𝒮) a a) refl ∙ transportRefl (ρ 𝒮 a) u : (a : A) → (transport (λ i → ≅-≡ i a a) refl) ≡ (subst (λ a' → (_≅_ 𝒮) a a') refl (ρ 𝒮 a)) u a = uaβ (isUnivalent→isUnivalent' (_≅_ 𝒮) (ρ 𝒮) (uni 𝒮) a a) refl uni-≡ : PathP (λ i → isUnivalent (≅-≡ i) (ρ-≡ i)) (uni 𝒮') (uni 𝒮) uni-≡ = isProp→PathP (λ i → isPropΠ2 (λ a a' → isPropIsEquiv (≡→R (≅-≡ i) (ρ-≡ i)))) (uni 𝒮') (uni 𝒮) 𝒮-uniqueness : (A : Type ℓA) → isContr (URGStr A ℓA) 𝒮-uniqueness A .fst = 𝒮-type A 𝒮-uniqueness A .snd 𝒮 = sym (η-URGStr (𝒮-type A)) ∙∙ (λ i → p i) ∙∙ η-URGStr 𝒮 where p = λ (i : I) → urgstr (≅-≡ 𝒮 i) (ρ-≡ 𝒮 i) (uni-≡ 𝒮 i)
{ "alphanum_fraction": 0.5483200554, "avg_line_length": 33.9647058824, "ext": "agda", "hexsha": "409f0bffb6b2fedf9e1aef5ff1f649f30d3cac2a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Schippmunk/cubical", "max_forks_repo_path": "Cubical/DStructures/Structures/Type.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Schippmunk/cubical", "max_issues_repo_path": "Cubical/DStructures/Structures/Type.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Schippmunk/cubical", "max_stars_repo_path": "Cubical/DStructures/Structures/Type.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1271, "size": 2887 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Rational numbers ------------------------------------------------------------------------ module Data.Rational where import Algebra import Data.Bool.Properties as Bool open import Function open import Data.Integer as ℤ using (ℤ; ∣_∣; +_; -_) open import Data.Integer.Divisibility as ℤDiv using (Coprime) import Data.Integer.Properties as ℤ open import Data.Nat.Divisibility as ℕDiv using (_∣_) import Data.Nat.Coprimality as C open import Data.Nat as ℕ using (ℕ; zero; suc) open import Data.Sum import Level open import Relation.Nullary.Decidable open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_; refl; cong; cong₂) open P.≡-Reasoning ------------------------------------------------------------------------ -- The definition -- Rational numbers in reduced form. Note that there is exactly one -- representative for every rational number. (This is the reason for -- using "True" below. If Agda had proof irrelevance, then it would -- suffice to use "isCoprime : Coprime numerator denominator".) record ℚ : Set where field numerator : ℤ denominator-1 : ℕ isCoprime : True (C.coprime? ∣ numerator ∣ (suc denominator-1)) denominator : ℤ denominator = + suc denominator-1 coprime : Coprime numerator denominator coprime = toWitness isCoprime -- Constructs rational numbers. The arguments have to be in reduced -- form. infixl 7 _÷_ _÷_ : (numerator : ℤ) (denominator : ℕ) {coprime : True (C.coprime? ∣ numerator ∣ denominator)} {≢0 : False (ℕ._≟_ denominator 0)} → ℚ (n ÷ zero) {≢0 = ()} (n ÷ suc d) {c} = record { numerator = n; denominator-1 = d; isCoprime = c } private -- Note that the implicit arguments do not need to be given for -- concrete inputs: 0/1 : ℚ 0/1 = + 0 ÷ 1 -½ : ℚ -½ = - + 1 ÷ 2 ------------------------------------------------------------------------ -- Equality -- Equality of rational numbers. infix 4 _≃_ _≃_ : Rel ℚ Level.zero p ≃ q = numerator p ℤ.* denominator q ≡ numerator q ℤ.* denominator p where open ℚ -- _≃_ coincides with propositional equality. ≡⇒≃ : _≡_ ⇒ _≃_ ≡⇒≃ refl = refl ≃⇒≡ : _≃_ ⇒ _≡_ ≃⇒≡ {i = p} {j = q} = helper (numerator p) (denominator-1 p) (isCoprime p) (numerator q) (denominator-1 q) (isCoprime q) where open ℚ helper : ∀ n₁ d₁ c₁ n₂ d₂ c₂ → n₁ ℤ.* + suc d₂ ≡ n₂ ℤ.* + suc d₁ → (n₁ ÷ suc d₁) {c₁} ≡ (n₂ ÷ suc d₂) {c₂} helper n₁ d₁ c₁ n₂ d₂ c₂ eq with Poset.antisym ℕDiv.poset 1+d₁∣1+d₂ 1+d₂∣1+d₁ where 1+d₁∣1+d₂ : suc d₁ ∣ suc d₂ 1+d₁∣1+d₂ = ℤDiv.coprime-divisor (+ suc d₁) n₁ (+ suc d₂) (C.sym $ toWitness c₁) $ ℕDiv.divides ∣ n₂ ∣ (begin ∣ n₁ ℤ.* + suc d₂ ∣ ≡⟨ cong ∣_∣ eq ⟩ ∣ n₂ ℤ.* + suc d₁ ∣ ≡⟨ ℤ.abs-*-commute n₂ (+ suc d₁) ⟩ ∣ n₂ ∣ ℕ.* suc d₁ ∎) 1+d₂∣1+d₁ : suc d₂ ∣ suc d₁ 1+d₂∣1+d₁ = ℤDiv.coprime-divisor (+ suc d₂) n₂ (+ suc d₁) (C.sym $ toWitness c₂) $ ℕDiv.divides ∣ n₁ ∣ (begin ∣ n₂ ℤ.* + suc d₁ ∣ ≡⟨ cong ∣_∣ (P.sym eq) ⟩ ∣ n₁ ℤ.* + suc d₂ ∣ ≡⟨ ℤ.abs-*-commute n₁ (+ suc d₂) ⟩ ∣ n₁ ∣ ℕ.* suc d₂ ∎) helper n₁ d c₁ n₂ .d c₂ eq | refl with ℤ.cancel-*-right n₁ n₂ (+ suc d) (λ ()) eq helper n d c₁ .n .d c₂ eq | refl | refl with Bool.proof-irrelevance c₁ c₂ helper n d c .n .d .c eq | refl | refl | refl = refl ------------------------------------------------------------------------ -- Equality is decidable infix 4 _≟_ _≟_ : Decidable {A = ℚ} _≡_ p ≟ q with ℚ.numerator p ℤ.* ℚ.denominator q ℤ.≟ ℚ.numerator q ℤ.* ℚ.denominator p p ≟ q | yes pq≃qp = yes (≃⇒≡ pq≃qp) p ≟ q | no ¬pq≃qp = no (¬pq≃qp ∘ ≡⇒≃) ------------------------------------------------------------------------ -- Ordering infix 4 _≤_ _≤?_ data _≤_ : ℚ → ℚ → Set where *≤* : ∀ {p q} → ℚ.numerator p ℤ.* ℚ.denominator q ℤ.≤ ℚ.numerator q ℤ.* ℚ.denominator p → p ≤ q drop-*≤* : ∀ {p q} → p ≤ q → ℚ.numerator p ℤ.* ℚ.denominator q ℤ.≤ ℚ.numerator q ℤ.* ℚ.denominator p drop-*≤* (*≤* pq≤qp) = pq≤qp _≤?_ : Decidable _≤_ p ≤? q with ℚ.numerator p ℤ.* ℚ.denominator q ℤ.≤? ℚ.numerator q ℤ.* ℚ.denominator p p ≤? q | yes pq≤qp = yes (*≤* pq≤qp) p ≤? q | no ¬pq≤qp = no (λ { (*≤* pq≤qp) → ¬pq≤qp pq≤qp }) decTotalOrder : DecTotalOrder _ _ _ decTotalOrder = record { Carrier = ℚ ; _≈_ = _≡_ ; _≤_ = _≤_ ; isDecTotalOrder = record { isTotalOrder = record { isPartialOrder = record { isPreorder = record { isEquivalence = P.isEquivalence ; reflexive = refl′ ; trans = trans } ; antisym = antisym } ; total = total } ; _≟_ = _≟_ ; _≤?_ = _≤?_ } } where module ℤO = DecTotalOrder ℤ.decTotalOrder refl′ : _≡_ ⇒ _≤_ refl′ refl = *≤* ℤO.refl trans : Transitive _≤_ trans {i = p} {j = q} {k = r} (*≤* le₁) (*≤* le₂) = *≤* (ℤ.cancel-*-+-right-≤ _ _ _ (lemma (ℚ.numerator p) (ℚ.denominator p) (ℚ.numerator q) (ℚ.denominator q) (ℚ.numerator r) (ℚ.denominator r) (ℤ.*-+-right-mono (ℚ.denominator-1 r) le₁) (ℤ.*-+-right-mono (ℚ.denominator-1 p) le₂))) where open Algebra.CommutativeRing ℤ.commutativeRing lemma : ∀ n₁ d₁ n₂ d₂ n₃ d₃ → n₁ ℤ.* d₂ ℤ.* d₃ ℤ.≤ n₂ ℤ.* d₁ ℤ.* d₃ → n₂ ℤ.* d₃ ℤ.* d₁ ℤ.≤ n₃ ℤ.* d₂ ℤ.* d₁ → n₁ ℤ.* d₃ ℤ.* d₂ ℤ.≤ n₃ ℤ.* d₁ ℤ.* d₂ lemma n₁ d₁ n₂ d₂ n₃ d₃ rewrite *-assoc n₁ d₂ d₃ | *-comm d₂ d₃ | sym (*-assoc n₁ d₃ d₂) | *-assoc n₃ d₂ d₁ | *-comm d₂ d₁ | sym (*-assoc n₃ d₁ d₂) | *-assoc n₂ d₁ d₃ | *-comm d₁ d₃ | sym (*-assoc n₂ d₃ d₁) = ℤO.trans antisym : Antisymmetric _≡_ _≤_ antisym (*≤* le₁) (*≤* le₂) = ≃⇒≡ (ℤO.antisym le₁ le₂) total : Total _≤_ total p q = [ inj₁ ∘′ *≤* , inj₂ ∘′ *≤* ]′ (ℤO.total (ℚ.numerator p ℤ.* ℚ.denominator q) (ℚ.numerator q ℤ.* ℚ.denominator p))
{ "alphanum_fraction": 0.4956254797, "avg_line_length": 29.8853211009, "ext": "agda", "hexsha": "66be57e0141ea0b7418a1ed2bd05c42ae5c90a10", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Data/Rational.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Data/Rational.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Data/Rational.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 2397, "size": 6515 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.Properties.Presheaves.CartesianClosed where open import Level open import Data.Unit open import Data.Product using (_,_; proj₁; proj₂) open import Function.Equality using (Π) renaming (_∘_ to _∙_) open import Relation.Binary open import Categories.Category.Core using (Category) open import Categories.Category.CartesianClosed open import Categories.Category.CartesianClosed.Canonical renaming (CartesianClosed to CCartesianClosed) open import Categories.Category.Construction.Presheaves open import Categories.Category.Instance.Setoids open import Categories.Functor open import Categories.Functor.Hom open import Categories.Functor.Properties open import Categories.Functor.Presheaf open import Categories.NaturalTransformation import Categories.Category.Construction.Properties.Presheaves.Cartesian as Preₚ import Categories.Morphism.Reasoning as MR import Relation.Binary.Reasoning.Setoid as SetoidR open Π using (_⟨$⟩_) module HasClosed {o ℓ e} (C : Category o ℓ e) where private module C = Category C open C module _ (F G : Presheaf C (Setoids ℓ e)) where private module F = Functor F module G = Functor G open Preₚ C open IsCartesian o o Presheaf^ : Presheaf C (Setoids (o ⊔ ℓ ⊔ e) (o ⊔ ℓ ⊔ e)) Presheaf^ = record { F₀ = λ X → Hom[ Presheaves C ][ Presheaves× Hom[ C ][-, X ] G , F ] ; F₁ = λ {A B} f → record { _⟨$⟩_ = λ α → let module α = NaturalTransformation α using (η; commute) in ntHelper record { η = λ X → record { _⟨$⟩_ = λ where (g , S) → α.η X ⟨$⟩ (f ∘ g , S) ; cong = λ where (eq₁ , eq₂) → Π.cong (α.η X) (∘-resp-≈ʳ eq₁ , eq₂) } ; commute = λ { {Z} {W} g {h , x} {i , y} (eq₁ , eq₂) → let open SetoidR (F.₀ W) in begin α.η W ⟨$⟩ (f ∘ C.id ∘ h ∘ g , G.₁ g ⟨$⟩ x) ≈⟨ Π.cong (α.η W) (Equiv.trans (pullˡ id-comm) (center Equiv.refl) , Setoid.refl (G.₀ W)) ⟩ α.η W ⟨$⟩ (C.id ∘ (f ∘ h) ∘ g , G.₁ g ⟨$⟩ x) ≈⟨ α.commute g (∘-resp-≈ʳ eq₁ , eq₂) ⟩ F.₁ g ⟨$⟩ (α.η Z ⟨$⟩ (f ∘ i , y)) ∎ } } ; cong = λ eq (eq₁ , eq₂) → eq (∘-resp-≈ʳ eq₁ , eq₂) } ; identity = λ eq (eq₁ , eq₂) → eq (Equiv.trans identityˡ eq₁ , eq₂) ; homomorphism = λ eq (eq₁ , eq₂) → eq (pullʳ (∘-resp-≈ʳ eq₁) , eq₂) ; F-resp-≈ = λ where eq eq′ (eq₁ , eq₂) → eq′ (∘-resp-≈ eq eq₁ , eq₂) } where open MR C module IsCartesianClosed {o} (C : Category o o o) where private module C = Category C using (id; _∘_; _≈_; identityˡ; identityʳ; module Equiv) P = Presheaves′ o o C open HasClosed C using (Presheaf^) open Preₚ.IsCartesian C o o using (Presheaves-Cartesian) open MR C CanonicalCCC : CCartesianClosed P CanonicalCCC = record { ⊤ = PC.terminal.⊤ ; _×_ = PC._×_ ; ! = PC.! ; π₁ = PC.π₁ ; π₂ = PC.π₂ ; ⟨_,_⟩ = PC.⟨_,_⟩ ; !-unique = PC.!-unique ; π₁-comp = λ {_ _ f} {_ g} → PC.project₁ {h = f} {g} ; π₂-comp = λ {_ _ f} {_ g} → PC.project₂ {h = f} {g} ; ⟨,⟩-unique = λ {_ _ _ f g h} → PC.unique {h = h} {i = f} {j = g} ; _^_ = Presheaf^ ; eval = λ {F G} → let module F = Functor F module G = Functor G in ntHelper record { η = λ X → record { _⟨$⟩_ = λ { (α , x) → let module α = NaturalTransformation α in α.η X ⟨$⟩ (C.id , x) } ; cong = λ where (eq₁ , eq₂) → eq₁ (C.Equiv.refl , eq₂) } ; commute = λ { {Y} {Z} f {α , x} {β , y} (eq₁ , eq₂) → let module α = NaturalTransformation α module β = NaturalTransformation β open SetoidR (F.₀ Z) in begin α.η Z ⟨$⟩ (f C.∘ C.id , G.₁ f ⟨$⟩ x) ≈⟨ eq₁ ((C.Equiv.trans id-comm (C.Equiv.sym C.identityˡ)) , Setoid.refl (G.₀ Z)) ⟩ β.η Z ⟨$⟩ (C.id C.∘ C.id C.∘ f , G.₁ f ⟨$⟩ x) ≈⟨ β.commute f (C.Equiv.refl , eq₂) ⟩ F.₁ f ⟨$⟩ (β.η Y ⟨$⟩ (C.id , y)) ∎ } } ; curry = λ {F G H} α → let module F = Functor F module G = Functor G module H = Functor H module α = NaturalTransformation α in ntHelper record { η = λ X → record { _⟨$⟩_ = λ x → ntHelper record { η = λ Y → record { _⟨$⟩_ = λ where (f , y) → α.η Y ⟨$⟩ (F.₁ f ⟨$⟩ x , y) ; cong = λ where (eq₁ , eq₂) → Π.cong (α.η _) (F.F-resp-≈ eq₁ (Setoid.refl (F.₀ _)) , eq₂) } ; commute = λ { {Y} {Z} f {g , y} {h , z} (eq₁ , eq₂) → let open SetoidR (H.₀ Z) open Setoid (G.₀ Z) in begin α.η Z ⟨$⟩ (F.F₁ (C.id C.∘ g C.∘ f) ⟨$⟩ x , G.F₁ f ⟨$⟩ y) ≈⟨ Π.cong (α.η Z) (F.F-resp-≈ C.identityˡ (Setoid.refl (F.₀ X)) , refl) ⟩ α.η Z ⟨$⟩ (F.F₁ (g C.∘ f) ⟨$⟩ x , G.F₁ f ⟨$⟩ y) ≈⟨ Π.cong (α.η Z) (F.homomorphism (Setoid.refl (F.₀ X)) , refl) ⟩ α.η Z ⟨$⟩ (F.F₁ f ⟨$⟩ (F.F₁ g ⟨$⟩ x) , G.F₁ f ⟨$⟩ y) ≈⟨ α.commute f (F.F-resp-≈ eq₁ (Setoid.refl (F.₀ X)) , eq₂) ⟩ H.F₁ f ⟨$⟩ (α.η Y ⟨$⟩ (F.F₁ h ⟨$⟩ x , z)) ∎ } } ; cong = λ where eq (eq₁ , eq₂) → Π.cong (α.η _) (F.F-resp-≈ eq₁ eq , eq₂) } ; commute = λ { {X} {Y} f {x} {y} eq {Z} {g , z} {h , w} (eq₁ , eq₂) → let open SetoidR (F.₀ Z) helper : g C.≈ h → Setoid._≈_ (F.₀ X) x y → Setoid._≈_ (F.₀ Z) (F.₁ g ⟨$⟩ (F.₁ f ⟨$⟩ x)) (F.₁ (f C.∘ h) ⟨$⟩ y) helper eq eq′ = begin F.₁ g ⟨$⟩ (F.₁ f ⟨$⟩ x) ≈⟨ F.F-resp-≈ eq (Setoid.refl (F.₀ Y)) ⟩ F.₁ h ⟨$⟩ (F.₁ f ⟨$⟩ x) ≈˘⟨ F.homomorphism (Setoid.sym (F.₀ X) eq′) ⟩ F.₁ (f C.∘ h) ⟨$⟩ y ∎ in Π.cong (α.η _) (helper eq₁ eq , eq₂) } } ; eval-comp = λ {F G H} {α} → λ { (eq₁ , eq₂) → let module H = Functor H module α = NaturalTransformation α in Π.cong (α.η _) (H.identity eq₁ , eq₂) } ; curry-resp-≈ = λ { {F} {G} eq eq₁ (eq₂ , eq₃) → let module G = Functor G in eq (G.F-resp-≈ eq₂ eq₁ , eq₃) } ; curry-unique = λ {F G H} {α β} eq {X} {x y} eq₁ → λ { {Y} {f , z} {g , w} (eq₂ , eq₃) → let module F = Functor F module G = Functor G module H = Functor H module α = NaturalTransformation α module β = NaturalTransformation β module αXx = NaturalTransformation (α.η X ⟨$⟩ x) open Setoid (H.₀ Y) open SetoidR (G.₀ Y) in begin αXx.η Y ⟨$⟩ (f , z) ≈⟨ Π.cong (αXx.η _) (C.Equiv.sym C.identityʳ , refl) ⟩ αXx.η Y ⟨$⟩ (f C.∘ C.id , z) ≈⟨ α.sym-commute f (Setoid.refl (F.₀ X)) (C.Equiv.refl , refl) ⟩ NaturalTransformation.η (α.η Y ⟨$⟩ (F.F₁ f ⟨$⟩ x)) Y ⟨$⟩ (C.id , z) ≈⟨ eq (F.F-resp-≈ eq₂ eq₁ , eq₃) ⟩ β.η Y ⟨$⟩ (F.F₁ g ⟨$⟩ y , w) ∎ } } where module PC = Presheaves-Cartesian Presheaves-CartesianClosed : CartesianClosed P Presheaves-CartesianClosed = Equivalence.fromCanonical P CanonicalCCC
{ "alphanum_fraction": 0.4925373134, "avg_line_length": 42.4593023256, "ext": "agda", "hexsha": "5e331f24778a8cbb58e3adf33a9015b8a038f13a", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bblfish/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/CartesianClosed.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bblfish/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/CartesianClosed.agda", "max_line_length": 150, "max_stars_count": 5, "max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bblfish/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Properties/Presheaves/CartesianClosed.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2789, "size": 7303 }
------------------------------------------------------------------------ -- The delay monad, defined using increasing sequences of potential -- values ------------------------------------------------------------------------ {-# OPTIONS --safe #-} module Delay-monad.Alternative where open import Equality.Propositional open import Prelude hiding (↑) ------------------------------------------------------------------------ -- _↓_ and _↑ module _ {a} {A : Type a} where infix 4 _↑ _↓_ -- x ↓ y means that the computation x has the value y. _↓_ : Maybe A → A → Type a x ↓ y = x ≡ just y -- x ↑ means that the computation x does not have a value. _↑ : Maybe A → Type a x ↑ = x ≡ nothing ------------------------------------------------------------------------ -- An alternative definition of the delay monad module _ {a} {A : Type a} where -- The property of being an increasing sequence. LE : Maybe A → Maybe A → Type a LE x y = x ≡ y ⊎ (x ↑ × ¬ y ↑) Increasing-at : ℕ → (ℕ → Maybe A) → Type a Increasing-at n f = LE (f n) (f (suc n)) Increasing : (ℕ → Maybe A) → Type a Increasing f = ∀ n → Increasing-at n f -- An alternative definition of the delay monad. Delay : ∀ {a} → Type a → Type a Delay A = ∃ λ (f : ℕ → Maybe A) → Increasing f
{ "alphanum_fraction": 0.4781591264, "avg_line_length": 25.64, "ext": "agda", "hexsha": "19c97ea31ef76b20a904aeeb89e318a475315945", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Delay-monad/Alternative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Delay-monad/Alternative.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Delay-monad/Alternative.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 324, "size": 1282 }
module Issue481InstantiatedImportOnly where import Common.Issue481ParametrizedModule Set -- pointless, should yield error
{ "alphanum_fraction": 0.8699186992, "avg_line_length": 24.6, "ext": "agda", "hexsha": "5ed9d8834e7bb2887b13275384609c242450cb5b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/Issue481InstantiatedImportOnly.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/Issue481InstantiatedImportOnly.agda", "max_line_length": 44, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/Issue481InstantiatedImportOnly.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 27, "size": 123 }
{-# OPTIONS --cubical --safe #-} module HITs.PropositionalTruncation where open import Cubical.HITs.PropositionalTruncation using (squash; ∥_∥; ∣_∣; rec) renaming (rec→Set to rec→set) public
{ "alphanum_fraction": 0.7236180905, "avg_line_length": 22.1111111111, "ext": "agda", "hexsha": "f27c27d28ca9e65ce397b7e11f536a606b784455", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "9c5e8b6f546bee952e92db0b73bfc12592bf3152", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/masters-thesis", "max_forks_repo_path": "agda/HITs/PropositionalTruncation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9c5e8b6f546bee952e92db0b73bfc12592bf3152", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/masters-thesis", "max_issues_repo_path": "agda/HITs/PropositionalTruncation.agda", "max_line_length": 48, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "HITs/PropositionalTruncation.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 68, "size": 199 }
------------------------------------------------------------------------ -- Lists with fast append ------------------------------------------------------------------------ module Data.DifferenceList where open import Data.List as L using (List) open import Data.Function open import Data.Nat infixr 5 _∷_ _++_ DiffList : Set → Set DiffList a = List a → List a lift : ∀ {a} → (List a → List a) → (DiffList a → DiffList a) lift f xs = λ k → f (xs k) [] : ∀ {a} → DiffList a [] = λ k → k _∷_ : ∀ {a} → a → DiffList a → DiffList a _∷_ x = lift (L._∷_ x) [_] : ∀ {a} → a → DiffList a [ x ] = x ∷ [] _++_ : ∀ {a} → DiffList a → DiffList a → DiffList a xs ++ ys = λ k → xs (ys k) toList : ∀ {a} → DiffList a → List a toList xs = xs L.[] -- fromList xs is linear in the length of xs. fromList : ∀ {a} → List a → DiffList a fromList xs = λ k → xs ⟨ L._++_ ⟩ k -- It is OK to use L._++_ here, since map is linear in the length of -- the list anyway. map : ∀ {a b} → (a → b) → DiffList a → DiffList b map f xs = λ k → L.map f (toList xs) ⟨ L._++_ ⟩ k -- concat is linear in the length of the outer list. concat : ∀ {a} → DiffList (DiffList a) → DiffList a concat xs = concat' (toList xs) where concat' : ∀ {a} → List (DiffList a) → DiffList a concat' = L.foldr _++_ [] take : ∀ {a} → ℕ → DiffList a → DiffList a take n = lift (L.take n) drop : ∀ {a} → ℕ → DiffList a → DiffList a drop n = lift (L.drop n)
{ "alphanum_fraction": 0.5246826516, "avg_line_length": 24.4482758621, "ext": "agda", "hexsha": "d51cfa30100810f58db56bcf3cb79907944b5d2d", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/DifferenceList.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/DifferenceList.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/DifferenceList.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 474, "size": 1418 }
module FStream.Core where ------------------------------------------------------------------------ -- Core module of effectful streams ------------------------------------------------------------------------ open import Library mutual record FStream {i : Size} {ℓ₁ ℓ₂} (C : Container ℓ₁) (A : Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where inductive field inF : ⟦ C ⟧ (FStream' {i} C A) record FStream' {i : Size} {ℓ₁ ℓ₂} (C : Container ℓ₁) (A : Set ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where constructor _≺_ coinductive field head : A tail : {j : Size< i} → FStream {j} C A open FStream public open FStream' public -- TODO Remove nonworking things and put all auxiliary functions in Util.agda postulate _►_ : ∀ {ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} → ⟦ C ⟧ A → FStream C A → FStream C A --inF (a ► as) = fmap (λ x → x ≺ as) a -- Caution, this one pushes the side effects down one tick mutual _►'_ : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} → A → FStream {i} C A → FStream {i} C A inF (a ►' as) = fmap (aux a) (inF as) aux : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} → A → FStream' {i} C A → FStream' {i} C A head (aux a as) = a tail (aux a as) = head as ►' tail as -- TODO Write without the direct recursion {-# TERMINATING #-} _►⋯' : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} → A → FStream {i} C A a ►⋯' = a ►' (a ►⋯') mutual map : ∀ {i ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁} {A : Set ℓ₂} {B : Set ℓ₃} → (A → B) → FStream {i} C A → FStream {i} C B inF (map f as) = fmap (map' f) (inF as) map' : ∀ {i ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁} {A : Set ℓ₂} {B : Set ℓ₃} → (A → B) → FStream' {i} C A → FStream' {i} C B head (map' f as) = f (head as) tail (map' f as) = map f (tail as) mutual constantly : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} → ⟦ C ⟧ A → FStream {i} C A inF (constantly ca) = fmap (constantly' ca) ca constantly' : ∀ {i ℓ₁ ℓ₂} {C : Container ℓ₁} {A : Set ℓ₂} → ⟦ C ⟧ A → A → FStream' {i} C A head (constantly' ca a) = a tail (constantly' ca a) = constantly ca repeat : {A : Set} → {C : Container ℓ₀} → ⟦ C ⟧ A -> FStream C A proj₁ (inF (repeat (proj₁ , proj₂))) = proj₁ head (proj₂ (inF (repeat (proj₁ , proj₂))) x) = proj₂ x tail (proj₂ (inF (repeat (proj₁ , proj₂))) x) = repeat (proj₁ , proj₂) mutual corec : ∀ {i ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁} {A : Set ℓ₂} {X : Set ℓ₃} → (X → A × ⟦ C ⟧ X) → ⟦ C ⟧ X → FStream {i} C A inF (corec f x) = fmap (corec' f) x corec' : ∀ {i ℓ₁ ℓ₂ ℓ₃} {C : Container ℓ₁} {A : Set ℓ₂} {X : Set ℓ₃} → (X → A × ⟦ C ⟧ X) → X → FStream' {i} C A head (corec' f x) = proj₁ (f x) tail (corec' f x) = corec f (proj₂ (f x)) {- Stuff that doesn't obviously work: * drop, _at_ (Since side effects would have to be thrown away) (One could at most delay the side effects somehow?) * _▸⋯ (Only if the given value is effectful or the functor is pointed, i.e. has a null effect (like Applicative or Monad), or by delaying the side effects) -}
{ "alphanum_fraction": 0.5386424731, "avg_line_length": 31.3263157895, "ext": "agda", "hexsha": "b9a295e749962b1d7c140da4fd638bf2d5e10975", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-13T15:56:38.000Z", "max_forks_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "zimbatm/condatis", "max_forks_repo_path": "FStream/Core.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_issues_repo_issues_event_max_datetime": "2020-09-01T16:52:07.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-03T20:02:22.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "zimbatm/condatis", "max_issues_repo_path": "FStream/Core.agda", "max_line_length": 156, "max_stars_count": 1, "max_stars_repo_head_hexsha": "64d95885579395f641e9a9cb1b9487cf79280446", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Aerate/condatis", "max_stars_repo_path": "FStream/Core.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-13T16:52:28.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-13T16:52:28.000Z", "num_tokens": 1242, "size": 2976 }
module lift-tests where open import lib open import cedille-types open import convervsion open import ctxt open import lift open import syntax-util open import to-string t0 = Lft posinfo-gen "X" (Parens posinfo-gen (mlam "x" (mlam "y" (mvar "y"))) posinfo-gen) (LiftArrow (LiftStar posinfo-gen) (LiftArrow (LiftStar posinfo-gen) (LiftStar posinfo-gen))) t = TpApp (TpApp t0 (mall "X" (Tkk star) (TpArrow (mtpvar "X") (mtpvar "X")))) (mtpvar "False") s = type-to-string t s1 = type-to-string (hnf new-ctxt tt t)
{ "alphanum_fraction": 0.6988636364, "avg_line_length": 27.7894736842, "ext": "agda", "hexsha": "1fa110a74b8795b815fab0476aecd29d2cd680d5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xoltar/cedille", "max_forks_repo_path": "src/lift-tests.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xoltar/cedille", "max_issues_repo_path": "src/lift-tests.agda", "max_line_length": 99, "max_stars_count": null, "max_stars_repo_head_hexsha": "acf691e37210607d028f4b19f98ec26c4353bfb5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xoltar/cedille", "max_stars_repo_path": "src/lift-tests.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 181, "size": 528 }
-- 2012-03-08 Andreas module NoTerminationCheck3 where data Bool : Set where true false : Bool f : Bool -> Bool f true = true {-# NO_TERMINATION_CHECK #-} f false = false -- error: cannot place pragma inbetween clauses
{ "alphanum_fraction": 0.71875, "avg_line_length": 17.2307692308, "ext": "agda", "hexsha": "0ddfa2177f55a154962e3a8da3fb1530578fac88", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/NoTerminationCheck3.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/NoTerminationCheck3.agda", "max_line_length": 47, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/NoTerminationCheck3.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 62, "size": 224 }
module Foundation.Primitive where open import Agda.Primitive infix -65536 ℞_ ℞_ : ∀ ℓ → Set _ ℞_ ℓ = Set ℓ ⟰ : Level → Level ⟰ = lsuc infix -65536 ℞₁_ ℞₁_ : ∀ ℓ → Set _ ℞₁_ ℓ = ℞ ⟰ ℓ 𝟘 : Level 𝟘 = lzero open import Agda.Primitive using (_⊔_) public
{ "alphanum_fraction": 0.62890625, "avg_line_length": 12.1904761905, "ext": "agda", "hexsha": "319b5160941f08a0daf129896412ac392349b0a5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Foundation/Primitive.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Foundation/Primitive.agda", "max_line_length": 45, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Foundation/Primitive.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 116, "size": 256 }
{-# OPTIONS --safe #-} module Cubical.Codata.EverythingSafe where
{ "alphanum_fraction": 0.7424242424, "avg_line_length": 22, "ext": "agda", "hexsha": "0f7a3646886040b88f65b1d84ab1296f0be00a43", "lang": "Agda", "max_forks_count": 134, "max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z", "max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "marcinjangrzybowski/cubical", "max_forks_repo_path": "Cubical/Codata/EverythingSafe.agda", "max_issues_count": 584, "max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "marcinjangrzybowski/cubical", "max_issues_repo_path": "Cubical/Codata/EverythingSafe.agda", "max_line_length": 42, "max_stars_count": 301, "max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "marcinjangrzybowski/cubical", "max_stars_repo_path": "Cubical/Codata/EverythingSafe.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z", "num_tokens": 16, "size": 66 }
module OscarEverything where open import OscarPrelude
{ "alphanum_fraction": 0.8727272727, "avg_line_length": 13.75, "ext": "agda", "hexsha": "e55fa379ec049e066147403eb9922ed104a341dc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Everything.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Everything.agda", "max_line_length": 28, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 11, "size": 55 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.SphereEndomorphism open import groups.Pointed open import groups.SphereEndomorphism open import groups.FromSusp open import cohomology.Theory module cohomology.SphereEndomorphism (CT : CohomologyTheory lzero) (n : ℤ) (m : ℕ) where open CohomologyTheory CT open import cohomology.Cogroup CT n (Susp-cogroup-structure (⊙Sphere m)) (⊙Sphere (S m)) private C-fmap' : Trunc-⊙Sphere-endo (S m) → (C n (⊙Sphere (S m)) →ᴳ C n (⊙Sphere (S m))) C-fmap' = Trunc-rec λ f → C-fmap n f CEl-fmap' : Trunc-⊙Sphere-endo (S m) → (CEl n (⊙Sphere (S m)) → CEl n (⊙Sphere (S m))) CEl-fmap' f = GroupHom.f (C-fmap' f) C-fmap'-hom : Trunc-⊙SphereS-endo-group m →ᴳ (hom-group (C n (⊙Sphere (S m))) (C-abgroup n (⊙Sphere (S m)))) C-fmap'-hom = group-hom C-fmap' (Trunc-elim λ f → Trunc-elim λ g → C-fmap-preserves-comp f g) CEl-fmap'-η : ∀ (f : Trunc-⊙Sphere-endo (S m)) (g : CEl n (⊙Sphere (S m))) → CEl-fmap' f g == Group.exp (C n (⊙Sphere (S m))) g (Trunc-⊙SphereS-endo-degree m f) CEl-fmap'-η f g = CEl-fmap' f g =⟨ ! $ ap (λ f → CEl-fmap' f g) $ is-equiv.f-g (Trunc-⊙SphereS-endo-⊙group-is-infinite-cyclic m) f ⟩ CEl-fmap' (Group.exp (Trunc-⊙SphereS-endo-group m) [ ⊙idf _ ] (Trunc-⊙SphereS-endo-degree m f)) g =⟨ GroupHom.pres-exp (app-hom g ∘ᴳ C-fmap'-hom) [ ⊙idf _ ] (Trunc-⊙SphereS-endo-degree m f) ⟩ Group.exp (C n (⊙Sphere (S m))) (CEl-fmap' [ ⊙idf _ ] g) (Trunc-⊙SphereS-endo-degree m f) =⟨ ap (λ g → Group.exp (C n (⊙Sphere (S m))) g (Trunc-⊙SphereS-endo-degree m f)) $ CEl-fmap-idf n g ⟩ Group.exp (C n (⊙Sphere (S m))) g (Trunc-⊙SphereS-endo-degree m f) =∎ abstract CEl-fmap-⊙Sphere-endo-η : ∀ (f : ⊙Sphere-endo (S m)) (g : CEl n (⊙Sphere (S m))) → CEl-fmap n f g == Group.exp (C n (⊙Sphere (S m))) g (⊙SphereS-endo-degree m f) CEl-fmap-⊙Sphere-endo-η f = CEl-fmap'-η [ f ]
{ "alphanum_fraction": 0.5707410972, "avg_line_length": 39.2075471698, "ext": "agda", "hexsha": "51b26c1a81e3c9074fc9ff774516d90023f54716", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cohomology/SphereEndomorphism.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cohomology/SphereEndomorphism.agda", "max_line_length": 108, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cohomology/SphereEndomorphism.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 855, "size": 2078 }
{-# OPTIONS --rewriting #-} module CF.Contexts.Rewriting where open import Data.List open import Data.List.Properties open import Agda.Builtin.Equality.Rewrite open import Relation.Binary.PropositionalEquality open import CF.Types ++-assoc-← : ∀ (xs ys zs : List Ty) → xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs ++-assoc-← = λ x y z → sym (++-assoc x y z) ++-identityʳ-← : ∀ (xs : List Ty) → xs ++ [] ≡ xs ++-identityʳ-← xs = ++-identityʳ xs {-# REWRITE ++-assoc-← #-} {-# REWRITE ++-identityʳ-← #-}
{ "alphanum_fraction": 0.6224899598, "avg_line_length": 26.2105263158, "ext": "agda", "hexsha": "8d3f39fdcb797ddc11ef96e1b98e1d8deb1b38ab", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/CF/Contexts/Rewriting.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/CF/Contexts/Rewriting.agda", "max_line_length": 73, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/CF/Contexts/Rewriting.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 163, "size": 498 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Examples showing how the reflective ring solver may be used. ------------------------------------------------------------------------ module README.Tactic.RingSolver where -- You can ignore this bit! We're just overloading the literals Agda uses for -- numbers. This bit isn't necessary if you're just using Nats, or if you -- construct your type directly. We only really do it here so that we can use -- different numeric types in the same file. open import Agda.Builtin.FromNat open import Data.Nat using (ℕ) open import Data.Integer using (ℤ) import Data.Nat.Literals as ℕ import Data.Integer.Literals as ℤ instance numberNat : Number ℕ numberNat = ℕ.number instance numberInt : Number ℤ numberInt = ℤ.number ------------------------------------------------------------------------------ -- Imports! open import Data.List as List using (List; _∷_; []) open import Function open import Relation.Binary.PropositionalEquality as ≡ using (subst; _≡_; module ≡-Reasoning) open import Data.Bool as Bool using (Bool; true; false; if_then_else_) open import Data.Unit using (⊤; tt) open import Tactic.RingSolver.Core.AlmostCommutativeRing using (AlmostCommutativeRing) ------------------------------------------------------------------------------ -- Integer examples ------------------------------------------------------------------------------ module IntegerExamples where open import Data.Integer.Tactic.RingSolver open AlmostCommutativeRing ring -- Everything is automatic: you just ask Agda to solve it and it does! lemma₁ : ∀ x y → x + y * 1 + 3 ≈ 3 + 1 + y + x + - 1 lemma₁ = solve-∀ lemma₂ : ∀ x y → (x + y) ^ 2 ≈ x ^ 2 + 2 * x * y + y ^ 2 lemma₂ = solve-∀ -- It can interact with manual proofs as well. lemma₃ : ∀ x y → x + y * 1 + 3 ≈ 2 + 1 + y + x lemma₃ x y = begin x + y * 1 + 3 ≡⟨ +-comm x (y * 1) ⟨ +-cong ⟩ refl ⟩ y * 1 + x + 3 ≡⟨ solve (x ∷ y ∷ []) ⟩ 3 + y + x ≡⟨⟩ 2 + 1 + y + x ∎ where open ≡-Reasoning ------------------------------------------------------------------------------ -- Natural examples ------------------------------------------------------------------------------ module NaturalExamples where open import Data.Nat.Tactic.RingSolver open AlmostCommutativeRing ring -- The solver is flexible enough to work with ℕ (even though it asks -- for rings!) lemma₁ : ∀ x y → x + y * 1 + 3 ≈ 2 + 1 + y + x lemma₁ = solve-∀ ------------------------------------------------------------------------------ -- Checking invariants ------------------------------------------------------------------------------ -- The solver makes it easy to prove invariants, without having to rewrite -- proof code every time something changes in the data structure. module _ {a} {A : Set a} (_≤_ : A → A → Bool) where open import Data.Nat.Tactic.RingSolver open AlmostCommutativeRing ring -- A Skew Heap, indexed by its size. data Tree : ℕ → Set a where leaf : Tree 0 node : ∀ {n m} → A → Tree n → Tree m → Tree (1 + n + m) -- A substitution operator, to clean things up. infixr 1 _⇒_ _⇒_ : ∀ {n} → Tree n → ∀ {m} → n ≈ m → Tree m x ⇒ n≈m = subst Tree n≈m x open ≡-Reasoning _∪_ : ∀ {n m} → Tree n → Tree m → Tree (n + m) leaf ∪ ys = ys node {a} {b} x xl xr ∪ leaf = node x xl xr ⇒ solve (a ∷ b ∷ []) node {a} {b} x xl xr ∪ node {c} {d} y yl yr = if x ≤ y then node x (node y yl yr ∪ xr) xl ⇒ begin 1 + (1 + c + d + b) + a ≡⟨ solve (a ∷ b ∷ c ∷ d ∷ []) ⟩ 1 + a + b + (1 + c + d) ∎ else node y (node x xl xr ∪ yr) yl ⇒ begin 1 + (1 + a + b + d) + c ≡⟨ solve (a ∷ b ∷ c ∷ d ∷ []) ⟩ 1 + a + b + (1 + c + d) ∎
{ "alphanum_fraction": 0.493513233, "avg_line_length": 34.1061946903, "ext": "agda", "hexsha": "333e51c26acd622199c10dae5ed80ee4ee06cac5", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/README/Tactic/RingSolver.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/README/Tactic/RingSolver.agda", "max_line_length": 86, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/README/Tactic/RingSolver.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 1111, "size": 3854 }
{-# OPTIONS --sized-types #-} -- {-# OPTIONS -v tc.size.solve:100 -v tc.meta.new:50 #-} module CheckSizeMetaBounds where open import Common.Size postulate Size< : (_ : Size) → Set {-# BUILTIN SIZELT Size< #-} data Nat {i : Size} : Set where zero : Nat suc : {j : Size< i} → Nat {j} → Nat one : Nat one = suc {i = ∞} zero data ⊥ : Set where record ⊤ : Set where NonZero : Nat → Set NonZero zero = ⊥ NonZero (suc n) = ⊤ -- magic conversion must of course fail magic : {i : Size} → Nat {∞} → Nat {i} magic zero = zero magic (suc n) = suc (magic n) lem : (n : Nat) → NonZero n → NonZero (magic n) lem (zero) () lem (suc n) _ = _ -- otherwise, we exploit it for an infinite loop loop : {i : Size} → (x : Nat {i}) → NonZero x → ⊥ loop zero () loop (suc {j} n) p = loop {j} (magic one) (lem one _) bot : ⊥ bot = loop one _
{ "alphanum_fraction": 0.5894988067, "avg_line_length": 19.9523809524, "ext": "agda", "hexsha": "07372ac028f746f29b491ec60b001e59100f4347", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/CheckSizeMetaBounds.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/CheckSizeMetaBounds.agda", "max_line_length": 57, "max_stars_count": 1, "max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "np/agda-git-experiment", "max_stars_repo_path": "test/fail/CheckSizeMetaBounds.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 299, "size": 838 }
-- The bug documented below was exposed by the fix to issue 274. module Issue274 where open import Common.Level record Q a : Set (a ⊔ a) where record R a : Set a where field q : Q a A : Set₁ A = Set postulate ℓ : Level r : R (ℓ ⊔ ℓ) foo : R ℓ foo = r -- Issue274.agda:32,7-8 -- ℓ ⊔ ℓ !=< ℓ of type Level -- when checking that the expression r has type R ℓ
{ "alphanum_fraction": 0.6363636364, "avg_line_length": 14.96, "ext": "agda", "hexsha": "40a38978e55aaf4bc9d3d9452bbb692b86e3ac07", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue274.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue274.agda", "max_line_length": 64, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue274.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 135, "size": 374 }
{-# OPTIONS --copatterns #-} module SplitResult where open import Common.Product test : {A B : Set} (a : A) (b : B) → A × B test a b = {!!} -- expected: -- proj₁ (test a b) = {!!} -- proj₂ (test a b) = {!!} testFun : {A B : Set} (a : A) (b : B) → A × B testFun = {!!} -- expected: -- testFun a b = {!!} record FunRec A : Set where field funField : A → A open FunRec testFunRec : ∀{A} → FunRec A testFunRec = {!!} -- expected (since 2016-05-03): -- funField testFunRec = {!!}
{ "alphanum_fraction": 0.5548654244, "avg_line_length": 18.5769230769, "ext": "agda", "hexsha": "4e326e7794ecc5a14305ba5e2d8645644608004f", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/interaction/SplitResult.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/interaction/SplitResult.agda", "max_line_length": 45, "max_stars_count": 3, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/interaction/SplitResult.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 172, "size": 483 }
{-# OPTIONS --without-K --rewriting #-} module lib.types.Suspension where open import lib.types.Suspension.Core public open import lib.types.Suspension.Flip public open import lib.types.Suspension.Iterated public open import lib.types.Suspension.IteratedFlip public open import lib.types.Suspension.IteratedTrunc public open import lib.types.Suspension.IteratedEquivs public open import lib.types.Suspension.Trunc public
{ "alphanum_fraction": 0.829787234, "avg_line_length": 35.25, "ext": "agda", "hexsha": "d9278d3e6c1a161a355293e3f5d8dcf4829c5409", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/types/Suspension.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/types/Suspension.agda", "max_line_length": 54, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/types/Suspension.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 99, "size": 423 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Rational numbers ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Rational where open import Data.Integer as ℤ using (ℤ; +_) open import Data.String using (String; _++_) ------------------------------------------------------------------------ -- Publicly re-export contents of core module open import Data.Rational.Base public ------------------------------------------------------------------------ -- Publicly re-export queries open import Data.Nat.Properties public using (_≟_; _≤?_) ------------------------------------------------------------------------ -- Method for displaying rationals show : ℚ → String show p = ℤ.show (↥ p) ++ "/" ++ ℤ.show (↧ p) ------------------------------------------------------------------------ -- Deprecated -- Version 1.0 open import Data.Rational.Properties public using (drop-*≤*; ≃⇒≡; ≡⇒≃)
{ "alphanum_fraction": 0.38791423, "avg_line_length": 27, "ext": "agda", "hexsha": "d6e4deb6b8f03f967852f64c17268cae2114e97e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Rational.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Rational.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Rational.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 188, "size": 1026 }
module Data.Num.Redundant.Properties where open import Data.Num.Bij open import Data.Num.Redundant renaming (_+_ to _+R_) open import Data.Nat renaming (_<_ to _<ℕ_) open import Data.Nat.Etc open import Data.Nat.Properties.Simple open import Data.Sum open import Data.List hiding ([_]) open import Relation.Nullary open import Relation.Nullary.Negation using (contradiction; contraposition) open import Relation.Binary open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; _≢_; refl; cong; cong₂; trans; sym; inspect) open PropEq.≡-Reasoning -------------------------------------------------------------------------------- -- Digits -------------------------------------------------------------------------------- ⊕-comm : (a b : Digit) → a ⊕ b ≡ b ⊕ a ⊕-comm zero zero = refl ⊕-comm zero one = refl ⊕-comm zero two = refl ⊕-comm one zero = refl ⊕-comm one one = refl ⊕-comm one two = refl ⊕-comm two zero = refl ⊕-comm two one = refl ⊕-comm two two = refl ⊕-assoc : (a b c : Digit) → (a ⊕ b) ⊕ c ≡ a ⊕ (b ⊕ c) ⊕-assoc zero b c = refl ⊕-assoc one zero c = refl ⊕-assoc one one zero = refl ⊕-assoc one one one = refl ⊕-assoc one one two = refl ⊕-assoc one two zero = refl ⊕-assoc one two one = refl ⊕-assoc one two two = refl ⊕-assoc two zero c = refl ⊕-assoc two one zero = refl ⊕-assoc two one one = refl ⊕-assoc two one two = refl ⊕-assoc two two zero = refl ⊕-assoc two two one = refl ⊕-assoc two two two = refl ⊕-right-identity : (a : Digit) → a ⊕ zero ≡ a ⊕-right-identity zero = refl ⊕-right-identity one = refl ⊕-right-identity two = refl ⊙-comm : (a b : Digit) → a ⊙ b ≡ b ⊙ a ⊙-comm zero zero = refl ⊙-comm zero one = refl ⊙-comm zero two = refl ⊙-comm one zero = refl ⊙-comm one one = refl ⊙-comm one two = refl ⊙-comm two zero = refl ⊙-comm two one = refl ⊙-comm two two = refl -------------------------------------------------------------------------------- -- Sequence of Digits -------------------------------------------------------------------------------- {- [x∷xs≡0⇒xs≡0] : (d : Digit) → (xs : Redundant) → [ d ∷ xs ] ≡ [ zero ∷ [] ] → [ xs ] ≡ [ zero ∷ [] ] [x∷xs≡0⇒xs≡0] d [] _ = refl [x∷xs≡0⇒xs≡0] zero (zero ∷ xs) p = {! no-zero-divisor 2 (0 + 2 * [ xs ]) (λ ()) p !} [x∷xs≡0⇒xs≡0] zero (one ∷ xs) p = {! !} [x∷xs≡0⇒xs≡0] zero (two ∷ xs) p = {! !} -- no-zero-divisor 2 ([ x ] + 2 * [ xs ]) (λ ()) p [x∷xs≡0⇒xs≡0] one (x ∷ xs) p = contradiction p (λ ()) [x∷xs≡0⇒xs≡0] two (x ∷ xs) p = contradiction p (λ ()) [>>xs]≡2*[xs] : (xs : Redundant) → [ >> xs ] ≡ *2 [ xs ] [>>xs]≡2*[xs] xs = refl [n>>>xs]≡2^n*[xs] : (n : ℕ) → (xs : Redundant) → [ n >>> xs ] ≡ 2 ^ n *Bij [ xs ] [n>>>xs]≡2^n*[xs] zero xs = sym (+-right-identity [ xs ]) [n>>>xs]≡2^n*[xs] (suc n) xs = begin [ n >>> (zero ∷ xs) ] ≡⟨ [n>>>xs]≡2^n*[xs] n (zero ∷ xs) ⟩ 2 ^ n * [ zero ∷ xs ] ≡⟨ sym (*-assoc (2 ^ n) 2 [ xs ]) ⟩ 2 ^ n * 2 * [ xs ] ≡⟨ cong (λ x → x * [ xs ]) (*-comm (2 ^ n) 2) ⟩ 2 * 2 ^ n * [ xs ] ∎ -- >> 0 ≈ 0 >>-zero : (xs : Redundant) → xs ≈ zero ∷ [] → >> xs ≈ zero ∷ [] >>-zero [] _ = eq refl >>-zero (x ∷ xs) (eq x∷xs≈0) = eq (begin *2 [ x ∷ xs ] ≡⟨ cong (λ w → 2 * w) x∷xs≈0 ⟩ 2 * 0 ≡⟨ *-right-zero 2 ⟩ 0 ∎) -- << 0 ≈ 0 <<-zero : (xs : Redundant) → xs ≈ zero ∷ [] → << xs ≈ zero ∷ [] <<-zero [] _ = eq refl <<-zero (x ∷ xs) (eq x∷xs≡0) = eq ([x∷xs≡0⇒xs≡0] x xs x∷xs≡0) -} {- >>>-zero : ∀ {n} (xs : Redundant) → {xs≈0 : xs ≈ zero ∷ []} → n >>> xs ≈ zero ∷ [] >>>-zero {n} xs {eq xs≡0} = eq ( begin [ n >>> xs ] ≡⟨ [n>>>xs]≡2^n*[xs] n xs ⟩ 2 ^ n * [ xs ] ≡⟨ cong (λ x → 2 ^ n * x) xs≡0 ⟩ 2 ^ n * 0 ≡⟨ *-right-zero (2 ^ n) ⟩ 0 ∎) <<<-zero : (n : ℕ) (xs : Redundant) → {xs≈0 : xs ≈ zero ∷ []} → n <<< xs ≈ zero ∷ [] <<<-zero zero [] = eq refl <<<-zero (suc n) [] = eq refl <<<-zero zero (x ∷ xs) {x∷xs≈0} = x∷xs≈0 <<<-zero (suc n) (x ∷ xs) {eq x∷xs≡0} = <<<-zero n xs {eq ([x∷xs≡0⇒xs≡0] x xs x∷xs≡0)} -} -------------------------------------------------------------------------------- -- Properties of the relations on Redundant -------------------------------------------------------------------------------- ≈-Setoid : Setoid _ _ ≈-Setoid = record { Carrier = Redundant ; _≈_ = _≈_ ; isEquivalence = record { refl = ≈-refl ; sym = ≈-sym ; trans = ≈-trans } } where ≈-refl : Reflexive _≈_ ≈-refl = eq refl ≈-sym : Symmetric _≈_ ≈-sym (eq a≈b) = eq (sym a≈b) ≈-trans : Transitive _≈_ ≈-trans (eq a≈b) (eq b≈c) = eq (trans a≈b b≈c) private ≤-isDecTotalOrder = DecTotalOrder.isDecTotalOrder decTotalOrder ≤-isTotalOrder = IsDecTotalOrder.isTotalOrder ≤-isDecTotalOrder ≤-total = IsTotalOrder.total ≤-isTotalOrder ≤-isPartialOrder = IsTotalOrder.isPartialOrder ≤-isTotalOrder ≤-antisym = IsPartialOrder.antisym ≤-isPartialOrder ≤-isPreorder = IsPartialOrder.isPreorder ≤-isPartialOrder ≤-isEquivalence = IsPreorder.isEquivalence ≤-isPreorder ≤-reflexive = IsPreorder.reflexive ≤-isPreorder ≤-trans = IsPreorder.trans ≤-isPreorder ≲-refl : _≈_ ⇒ _≲_ ≲-refl (eq [x]≡[y]) = {! !} -- le (≤-reflexive [x]≡[y]) ≲-trans : Transitive _≲_ ≲-trans [a]≤[b] [b]≤[c] = {! !} -- le (≤-trans [a]≤[b] [b]≤[c]) ≲-antisym : Antisymmetric _≈_ _≲_ ≲-antisym [x]≤[y] [y]≤[x] = {! !} -- eq (≤-antisym [x]≤[y] [y]≤[x]) ≲-isPreorder : IsPreorder _ _ ≲-isPreorder = record { isEquivalence = Setoid.isEquivalence ≈-Setoid ; reflexive = ≲-refl ; trans = ≲-trans } ≲-isPartialOrder : IsPartialOrder _ _ ≲-isPartialOrder = record { isPreorder = ≲-isPreorder ; antisym = ≲-antisym } {- ≲-total : Total _≲_ ≲-total x y with ≤-total [ x ] [ y ] ≲-total x y | inj₁ [x]≤[y] = inj₁ ? -- (le [x]≤[y]) ≲-total x y | inj₂ [y]≤[x] = inj₂ ? -- (le [y]≤[x]) ≲-isTotalOrder : IsTotalOrder _ _ ≲-isTotalOrder = record { isPartialOrder = ≲-isPartialOrder ; total = ≲-total } ≲-isDecTotalOrder : IsDecTotalOrder _ _ ≲-isDecTotalOrder = record { isTotalOrder = ≲-isTotalOrder ; _≟_ = _≈?_ ; _≤?_ = _≲?_ } ≲-decTotalOrder : DecTotalOrder _ _ _ ≲-decTotalOrder = record { Carrier = Redundant ; _≈_ = _≈_ ; _≤_ = _≲_ ; isDecTotalOrder = ≲-isDecTotalOrder } a≲a+1 : (a : Redundant) → a ≲ incr one a a≲a+1 [] = le z≤n a≲a+1 (x ∷ xs) = le {! !} <-asym : Asymmetric _<_ <-asym {[]} {[]} (le ()) (le [y]<[[]]) <-asym {[]} {y ∷ ys} (le [x]<[y]) (le [y]<[[]]) = {! !} <-asym {x ∷ xs} {[]} (le [x]<[y]) (le [y]<[x∷xs]) = {! !} <-asym {x ∷ xs} {y ∷ ys} (le [x]<[y]) (le [y]<[x∷xs]) = {! !} <-irr : Irreflexive _≈_ _<_ -- goal: ¬ (x < y) <-irr {a} {b} (eq [a]≡[b]) (le [a]<[b]) = {! !} trichotomous : Trichotomous _≈_ _<_ trichotomous x y with x ≈? y trichotomous x y | yes p = tri≈ {! !} p {! !} trichotomous x y | no ¬p with incr one x ≲? y trichotomous x y | no ¬p | yes q = tri< q ¬p {! !} trichotomous x y | no ¬p | no ¬q = tri> ¬q ¬p {! !} -} {- begin {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ≡⟨ {! !} ⟩ {! !} ∎ -}
{ "alphanum_fraction": 0.4740057011, "avg_line_length": 29.2341269841, "ext": "agda", "hexsha": "ffb9c156687a9a457171e4d46bb2dba5e8f56d13", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/Data/Num/Redundant/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/Data/Num/Redundant/Properties.agda", "max_line_length": 100, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/Data/Num/Redundant/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 3129, "size": 7367 }
-- Andreas, 2018-03-03, issue #2989 -- Internal error, fixable with additional 'reduce'. -- {-# OPTIONS --show-implicit --show-irrelevant #-} -- {-# OPTIONS -v tc.rec:70 -v tc:10 #-} postulate N : Set P : N → Set record Σ (A : Set) (B : A → Set) : Set where constructor pair field fst : A snd : B fst Σ' : (A : Set) → (A → Set) → Set Σ' = Σ record R : Set where constructor mkR field .p : Σ' N P f : R → Set f x = let mkR (pair k p) = x in N -- WAS: -- Internal error in Agda.TypeChecking.Records.getRecordTypeFields -- Error goes away if Σ' is replaced by Σ -- or field is made relevant -- SAME Problem: -- f x = let record { p = pair k p } = x in N -- f x = let record { p = record { fst = k ; snd = p }} = x in N
{ "alphanum_fraction": 0.5855614973, "avg_line_length": 20.7777777778, "ext": "agda", "hexsha": "672ca6ab225cc49124243249acc8f26cfd3277cf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue2989.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue2989.agda", "max_line_length": 66, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue2989.agda", "max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z", "max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z", "num_tokens": 265, "size": 748 }
module Derivative where open import Sets open import Functor import Isomorphism ∂ : U -> U ∂ (K A) = K [0] ∂ Id = K [1] ∂ (F + G) = ∂ F + ∂ G ∂ (F × G) = ∂ F × G + F × ∂ G open Semantics -- Plugging a hole plug-∂ : {X : Set}(F : U) -> ⟦ ∂ F ⟧ X -> X -> ⟦ F ⟧ X plug-∂ (K _) () x plug-∂ Id <> x = x plug-∂ (F + G) (inl c) x = inl (plug-∂ F c x) plug-∂ (F + G) (inr c) x = inr (plug-∂ G c x) plug-∂ (F × G) (inl < c , g >) x = < plug-∂ F c x , g > plug-∂ (F × G) (inr < f , c >) x = < f , plug-∂ G c x >
{ "alphanum_fraction": 0.4097472924, "avg_line_length": 22.16, "ext": "agda", "hexsha": "3159287729235ebbe5a1dc33490e5fdd2c8f6d80", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/outdated-and-incorrect/clowns/Derivative.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/outdated-and-incorrect/clowns/Derivative.agda", "max_line_length": 57, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/outdated-and-incorrect/clowns/Derivative.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 285, "size": 554 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra where open import Cubical.Algebra.CommAlgebra.Base public open import Cubical.Algebra.CommAlgebra.Properties public
{ "alphanum_fraction": 0.8171428571, "avg_line_length": 29.1666666667, "ext": "agda", "hexsha": "d150261beb9346de59555b4368514fda9a50b4f9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Seanpm2001-web/cubical", "max_forks_repo_path": "Cubical/Algebra/CommAlgebra.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Seanpm2001-web/cubical", "max_issues_repo_path": "Cubical/Algebra/CommAlgebra.agda", "max_line_length": 57, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FernandoLarrain/cubical", "max_stars_repo_path": "Cubical/Algebra/CommAlgebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z", "max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z", "num_tokens": 39, "size": 175 }
-- Andreas, 2012-01-12 module Common.Irrelevance where open import Common.Level postulate .irrAxiom : ∀ {a}{A : Set a} → .A → A {-# BUILTIN IRRAXIOM irrAxiom #-} record Squash {a}(A : Set a) : Set a where constructor squash field .unsquash : A open Squash public
{ "alphanum_fraction": 0.6714801444, "avg_line_length": 17.3125, "ext": "agda", "hexsha": "ce3712cb82f877d7c137bdc8c0c7da4cf5eeeaf9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/agda-kanso", "max_forks_repo_path": "test/Common/Irrelevance.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/agda-kanso", "max_issues_repo_path": "test/Common/Irrelevance.agda", "max_line_length": 42, "max_stars_count": null, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/Common/Irrelevance.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 99, "size": 277 }
-- define ∑ and ∏ as the bigOps of a Ring when interpreted -- as an additive/multiplicative monoid {-# OPTIONS --safe #-} module Cubical.Algebra.Ring.BigOps where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Data.Bool open import Cubical.Data.Nat using (ℕ ; zero ; suc) open import Cubical.Data.Sigma open import Cubical.Data.FinData open import Cubical.Algebra.Monoid.BigOp open import Cubical.Algebra.Ring.Base open import Cubical.Algebra.Ring.Properties private variable ℓ ℓ' : Level module KroneckerDelta (R' : Ring ℓ) where private R = fst R' open RingStr (snd R') δ : {n : ℕ} (i j : Fin n) → R δ i j = if i == j then 1r else 0r module Sum (R' : Ring ℓ) where private R = fst R' open RingStr (snd R') open MonoidBigOp (Ring→AddMonoid R') open RingTheory R' open KroneckerDelta R' ∑ = bigOp ∑Ext = bigOpExt ∑0r = bigOpε ∑Last = bigOpLast ∑Split : ∀ {n} → (V W : FinVec R n) → ∑ (λ i → V i + W i) ≡ ∑ V + ∑ W ∑Split = bigOpSplit +Comm ∑Split++ : ∀ {n m : ℕ} (V : FinVec R n) (W : FinVec R m) → ∑ (V ++Fin W) ≡ ∑ V + ∑ W ∑Split++ = bigOpSplit++ +Comm ∑Mulrdist : ∀ {n} → (x : R) → (V : FinVec R n) → x · ∑ V ≡ ∑ λ i → x · V i ∑Mulrdist {n = zero} x _ = 0RightAnnihilates x ∑Mulrdist {n = suc n} x V = x · (V zero + ∑ (V ∘ suc)) ≡⟨ ·DistR+ _ _ _ ⟩ x · V zero + x · ∑ (V ∘ suc) ≡⟨ (λ i → x · V zero + ∑Mulrdist x (V ∘ suc) i) ⟩ x · V zero + ∑ (λ i → x · V (suc i)) ∎ ∑Mulldist : ∀ {n} → (x : R) → (V : FinVec R n) → (∑ V) · x ≡ ∑ λ i → V i · x ∑Mulldist {n = zero} x _ = 0LeftAnnihilates x ∑Mulldist {n = suc n} x V = (V zero + ∑ (V ∘ suc)) · x ≡⟨ ·DistL+ _ _ _ ⟩ V zero · x + (∑ (V ∘ suc)) · x ≡⟨ (λ i → V zero · x + ∑Mulldist x (V ∘ suc) i) ⟩ V zero · x + ∑ (λ i → V (suc i) · x) ∎ ∑Mulr0 : ∀ {n} → (V : FinVec R n) → ∑ (λ i → V i · 0r) ≡ 0r ∑Mulr0 V = sym (∑Mulldist 0r V) ∙ 0RightAnnihilates _ ∑Mul0r : ∀ {n} → (V : FinVec R n) → ∑ (λ i → 0r · V i) ≡ 0r ∑Mul0r V = sym (∑Mulrdist 0r V) ∙ 0LeftAnnihilates _ ∑Mulr1 : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → V i · δ i j) ≡ V j ∑Mulr1 (suc n) V zero = (λ k → ·IdR (V zero) k + ∑Mulr0 (V ∘ suc) k) ∙ +IdR (V zero) ∑Mulr1 (suc n) V (suc j) = (λ i → 0RightAnnihilates (V zero) i + ∑ (λ x → V (suc x) · δ x j)) ∙∙ +IdL _ ∙∙ ∑Mulr1 n (V ∘ suc) j ∑Mul1r : (n : ℕ) (V : FinVec R n) → (j : Fin n) → ∑ (λ i → (δ j i) · V i) ≡ V j ∑Mul1r (suc n) V zero = (λ k → ·IdL (V zero) k + ∑Mul0r (V ∘ suc) k) ∙ +IdR (V zero) ∑Mul1r (suc n) V (suc j) = (λ i → 0LeftAnnihilates (V zero) i + ∑ (λ i → (δ j i) · V (suc i))) ∙∙ +IdL _ ∙∙ ∑Mul1r n (V ∘ suc) j ∑Dist- : ∀ {n : ℕ} (V : FinVec R n) → ∑ (λ i → - V i) ≡ - ∑ V ∑Dist- V = ∑Ext (λ i → -IsMult-1 (V i)) ∙ sym (∑Mulrdist _ V) ∙ sym (-IsMult-1 _) module SumMap (Ar@(A , Astr) : Ring ℓ) (Br@(B , Bstr) : Ring ℓ') (f'@(f , fstr) : RingHom Ar Br) where open IsRingHom fstr open RingStr Astr using () renaming ( _+_ to _+A_ ) open RingStr Bstr using () renaming ( _+_ to _+B_ ) ∑Map : {n : ℕ} → (V : FinVec A n) → f (Sum.∑ Ar V) ≡ Sum.∑ Br (λ k → f (V k)) ∑Map {n = zero} V = pres0 ∑Map {n = suc n} V = f ((V zero) +A helper) ≡⟨ pres+ (V zero) helper ⟩ ((f (V zero)) +B (f helper)) ≡⟨ cong (λ X → f (V zero) +B X) (∑Map (λ k → (V ∘ suc) k)) ⟩ Sum.∑ Br (λ k → f (V k)) ∎ where helper : _ helper = foldrFin _+A_ (RingStr.0r (snd Ar)) (λ x → V (suc x)) -- anything interesting to prove here? module Product (R' : Ring ℓ) where private R = fst R' open RingStr (snd R') open RingTheory R' open MonoidBigOp (Ring→MultMonoid R') ∏ = bigOp ∏Ext = bigOpExt ∏0r = bigOpε ∏Last = bigOpLast -- only holds in CommRings! -- ∏Split : ∀ {n} → (V W : FinVec R n) → ∏ (λ i → V i · W i) ≡ ∏ V · ∏ W -- ∏Split = bigOpSplit MultR' ·-comm
{ "alphanum_fraction": 0.5108128262, "avg_line_length": 30.4772727273, "ext": "agda", "hexsha": "d9526ea343e1e14a5b5fdaad368cbfa48cb84b89", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/Ring/BigOps.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/Ring/BigOps.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/Ring/BigOps.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1770, "size": 4023 }
module UpTo where open import Level open import Relation.Binary using (Rel; IsEquivalence) open import Data.Product open import Categories.Support.Equivalence open import Categories.Category open import Categories.2-Category open import Categories.Functor open import Categories.NaturalTransformation renaming (id to natId; _≡_ to _≡N_; setoid to natSetoid) hiding (_∘ˡ_; _∘ʳ_) open import Categories.Support.EqReasoning open import NaturalTransFacts Cat₀ = Category zero zero zero EndoFunctor : Cat₀ → Set zero EndoFunctor C = Functor C C record Endo⇒ (C₁ : Cat₀) (F₁ : EndoFunctor C₁) (C₂ : Cat₀) (F₂ : EndoFunctor C₂) : Set zero where field T : Functor C₁ C₂ ρ : NaturalTransformation (T ∘ F₁) (F₂ ∘ T) record UpTo⇒ {C₁ : Cat₀} {F : EndoFunctor C₁} {C₂ : Cat₀} {G : EndoFunctor C₂} (S₁ S₂ : Endo⇒ C₁ F C₂ G) : Set zero where module S₁ = Endo⇒ S₁ module S₂ = Endo⇒ S₂ field γ : NaturalTransformation S₁.T S₂.T -- The following diagram must commute -- T₁F - ρ₁ -> GT₁ -- | | -- γF Gγ -- | | -- v v -- T₂G - ρ₂ -> GT₂ .square : S₂.ρ ∘₁ (γ ∘ʳ F) ≡N (G ∘ˡ γ) ∘₁ S₁.ρ record _≡U_ {C₁ : Cat₀} {C₂ : Cat₀} {F : EndoFunctor C₁} {G : EndoFunctor C₂} {T₁ T₂ : Endo⇒ C₁ F C₂ G} (A : UpTo⇒ T₁ T₂) (B : UpTo⇒ T₁ T₂) : Set where field ≡U-proof : UpTo⇒.γ A ≡N UpTo⇒.γ B open _≡U_ infix 4 _≡U_ .≡U-equiv : {C₁ : Cat₀} {C₂ : Cat₀} {F : EndoFunctor C₁} {G : EndoFunctor C₂} → {A B : Endo⇒ C₁ F C₂ G} → IsEquivalence {A = UpTo⇒ A B} (_≡U_ {C₁} {C₂} {F} {G}) ≡U-equiv = record { refl = λ {A} → record { ≡U-proof = Setoid.refl natSetoid {UpTo⇒.γ A} } ; sym = λ {A} {B} p → record { ≡U-proof = Setoid.sym natSetoid {UpTo⇒.γ A} {UpTo⇒.γ B} (≡U-proof p) } ; trans = λ {A} {B} {C} p₁ p₂ → record { ≡U-proof = Setoid.trans natSetoid {UpTo⇒.γ A} {UpTo⇒.γ B} {UpTo⇒.γ C} (≡U-proof p₁) (≡U-proof p₂) } } id-UpTo⇒ : {C₁ : Cat₀} {F : EndoFunctor C₁} {C₂ : Cat₀} {G : EndoFunctor C₂} {A : Endo⇒ C₁ F C₂ G} → UpTo⇒ A A id-UpTo⇒ {C₁} {F} {C₂} {G} {A} = record { γ = natId ; square = begin Endo⇒.ρ A ∘₁ (natId {F = Endo⇒.T A} ∘ʳ F) ↓⟨ ∘₁-resp-≡ {f = Endo⇒.ρ A} {h = Endo⇒.ρ A} {g = natId {F = Endo⇒.T A} ∘ʳ F} {i = natId {F = Endo⇒.T A ∘ F}} (Setoid.refl natSetoid {Endo⇒.ρ A}) (identityNatʳ {F = Endo⇒.T A} F) ⟩ Endo⇒.ρ A ∘₁ (natId {F = Endo⇒.T A ∘ F}) ↓⟨ identity₁ʳ {X = Endo⇒.ρ A} ⟩ Endo⇒.ρ A ↑⟨ identity₁ˡ {X = Endo⇒.ρ A} ⟩ natId {F = G ∘ Endo⇒.T A} ∘₁ Endo⇒.ρ A ↑⟨ ∘₁-resp-≡ {f = G ∘ˡ natId {F = Endo⇒.T A}} {h = natId {F = G ∘ Endo⇒.T A}} {g = Endo⇒.ρ A} {i = Endo⇒.ρ A} (identityNatˡ {F = Endo⇒.T A} G) (Setoid.refl natSetoid {Endo⇒.ρ A}) ⟩ (G ∘ˡ natId {F = Endo⇒.T A}) ∘₁ Endo⇒.ρ A ∎ } where open SetoidReasoning (natSetoid {F = Endo⇒.T A ∘ F} {G ∘ Endo⇒.T A}) _•_ : {C₁ : Cat₀} {F : EndoFunctor C₁} {C₂ : Cat₀} {G : EndoFunctor C₂} {A B C : Endo⇒ C₁ F C₂ G} → UpTo⇒ B C → UpTo⇒ A B → UpTo⇒ A C _•_ {F = F} {G = G} {A = A} {B} {C} g f = record { γ = γ ∘₁ φ ; square = -- AF - A.ρ -> GA -- | | -- φF Gφ -- | | -- v v -- BF - B.ρ -> GB -- | | -- γF Gγ -- | | -- v v -- CF - C.ρ -> GC begin C.ρ ∘₁ ((γ ∘₁ φ) ∘ʳ F) ↓⟨ ∘₁-resp-≡ʳ {f = C.ρ} {(γ ∘₁ φ) ∘ʳ F} {(γ ∘ʳ F) ∘₁ (φ ∘ʳ F)} (∘ʳ-distr-∘₁ γ φ F) ⟩ C.ρ ∘₁ ((γ ∘ʳ F) ∘₁ (φ ∘ʳ F)) ↑⟨ assoc₁ {X = (φ ∘ʳ F)} {(γ ∘ʳ F)} {C.ρ} ⟩ (C.ρ ∘₁ (γ ∘ʳ F)) ∘₁ (φ ∘ʳ F) ↓⟨ ∘₁-resp-≡ˡ {f = C.ρ ∘₁ (γ ∘ʳ F)} {G ∘ˡ γ ∘₁ B.ρ} {φ ∘ʳ F} (UpTo⇒.square g) ⟩ (G ∘ˡ γ ∘₁ B.ρ) ∘₁ (φ ∘ʳ F) ↓⟨ assoc₁ {X = (φ ∘ʳ F)} {B.ρ} {G ∘ˡ γ} ⟩ (G ∘ˡ γ) ∘₁ (B.ρ ∘₁ (φ ∘ʳ F)) ↓⟨ ∘₁-resp-≡ʳ {f = G ∘ˡ γ} {B.ρ ∘₁ (φ ∘ʳ F)} {(G ∘ˡ φ) ∘₁ A.ρ} (UpTo⇒.square f) ⟩ (G ∘ˡ γ) ∘₁ ((G ∘ˡ φ) ∘₁ A.ρ) ↑⟨ assoc₁ {X = A.ρ} {G ∘ˡ φ} {G ∘ˡ γ} ⟩ ((G ∘ˡ γ) ∘₁ (G ∘ˡ φ)) ∘₁ A.ρ ↑⟨ ∘₁-resp-≡ˡ {f = G ∘ˡ (γ ∘₁ φ)} {(G ∘ˡ γ) ∘₁ (G ∘ˡ φ)} {A.ρ} (∘ˡ-distr-∘₁ G γ φ) ⟩ (G ∘ˡ (γ ∘₁ φ)) ∘₁ A.ρ ∎ } where module A = Endo⇒ A module B = Endo⇒ B module C = Endo⇒ C open SetoidReasoning (natSetoid {F = A.T ∘ F} {G ∘ C.T}) φ : A.T ⇒ B.T φ = UpTo⇒.γ f γ : B.T ⇒ C.T γ = UpTo⇒.γ g -- | Category of morphisms between endofunctors, where the morphisms -- are certain natural transformations (see UpTo⇒). -- This category will be the the setting in which we can talk about -- properties of up-to techniques. EndoMor : Σ Cat₀ (λ C → Functor C C) → Σ Cat₀ (λ C → Functor C C) → Cat₀ EndoMor (C₁ , F) (C₂ , G) = record { Obj = Endo⇒ C₁ F C₂ G ; _⇒_ = UpTo⇒ ; _≡_ = _≡U_ ; id = id-UpTo⇒ ; _∘_ = _•_ ; assoc = λ {_} {_} {_} {_} {f} {g} {h} → record { ≡U-proof = assoc₁ {X = UpTo⇒.γ f} {UpTo⇒.γ g} {UpTo⇒.γ h} } ; identityˡ = λ {_} {_} {f} → record { ≡U-proof = identity₁ˡ {X = UpTo⇒.γ f} } ; identityʳ = λ {_} {_} {f} → record { ≡U-proof = identity₁ʳ {X = UpTo⇒.γ f} } ; equiv = ≡U-equiv ; ∘-resp-≡ = λ {_} {_} {_} {f} {h} {g} {i} f≡h g≡i → record { ≡U-proof = ∘₁-resp-≡ {f = UpTo⇒.γ f} {UpTo⇒.γ h} {UpTo⇒.γ g} {UpTo⇒.γ i} (≡U-proof f≡h) (≡U-proof g≡i) } } -- | The 2-category of endofunctors, their morphisms and UpTo⇒ as 2-cells. -- This is the 2-category of endofunctors defined by Lenisa, Power and Watanabe. {- Endo : 2-Category (suc zero) zero zero zero Endo = record { Obj = Σ Cat₀ (λ C → Functor C C) ; _⇒_ = EndoMor ; id = record { F₀ = λ _ → record { T = id ; ρ = natId } ; F₁ = λ _ → id-UpTo⇒ ; identity = IsEquivalence.refl ≡U-equiv ; homomorphism = λ {_} {_} {_} {_} {F} → {!!} ; F-resp-≡ = {!!} } ; —∘— = {!!} ; assoc = {!!} ; identityˡ = {!!} ; identityʳ = {!!} } -}
{ "alphanum_fraction": 0.4430863254, "avg_line_length": 31.1666666667, "ext": "agda", "hexsha": "a81d3601a3a0343d5279799a141cf3c6fd47fd94", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hbasold/Sandbox", "max_forks_repo_path": "UpTo-Properties/UpTo.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hbasold/Sandbox", "max_issues_repo_path": "UpTo-Properties/UpTo.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hbasold/Sandbox", "max_stars_repo_path": "UpTo-Properties/UpTo.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 3028, "size": 6545 }
open import Oscar.Prelude open import Oscar.Class.IsDecidable open import Oscar.Data.Fin open import Oscar.Data.Decidable open import Oscar.Data.Proposequality module Oscar.Class.IsDecidable.Fin where instance IsDecidableFin : ∀ {n} → IsDecidable (Fin n) IsDecidableFin .IsDecidable._≟_ ∅ ∅ = ↑ ∅ IsDecidableFin .IsDecidable._≟_ ∅ (↑ _) = ↓ λ () IsDecidableFin .IsDecidable._≟_ (↑ _) ∅ = ↓ λ () IsDecidableFin .IsDecidable._≟_ (↑ x) (↑ y) with x ≟ y … | ↑ ∅ = ↑ ∅ … | ↓ x≢y = ↓ λ {∅ → x≢y ∅}
{ "alphanum_fraction": 0.6549019608, "avg_line_length": 26.8421052632, "ext": "agda", "hexsha": "e611d3e046f20abbb37fdde5f2ed96c230276329", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/IsDecidable/Fin.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/IsDecidable/Fin.agda", "max_line_length": 56, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/IsDecidable/Fin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 193, "size": 510 }
------------------------------------------------------------------------------ -- Even predicate ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Even where open import FOTC.Base open import FOTC.Data.Nat.Type ------------------------------------------------------------------------------ data Even : D → Set where ezero : Even zero enext : ∀ {n} → Even n → Even (succ₁ (succ₁ n)) Even-ind : (A : D → Set) → A zero → (∀ {n} → A n → A (succ₁ (succ₁ n))) → ∀ {n} → Even n → A n Even-ind A A0 h ezero = A0 Even-ind A A0 h (enext En) = h (Even-ind A A0 h En) Even→N : ∀ {n} → Even n → N n Even→N ezero = nzero Even→N (enext En) = nsucc (nsucc (Even→N En))
{ "alphanum_fraction": 0.3820704376, "avg_line_length": 30.2258064516, "ext": "agda", "hexsha": "1c10510d44e0775ad2a859ad05a6d61731b10add", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/thesis/report/FOTC/Even.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/thesis/report/FOTC/Even.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/thesis/report/FOTC/Even.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 234, "size": 937 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.LawvereTheories where -- Category of Lawvere Theories open import Level open import Categories.Category.Core using (Category) open import Categories.Functor.Cartesian using (CartesianF) open import Categories.NaturalTransformation.NaturalIsomorphism using (_≃_; associator; sym-associator; unitorˡ; unitorʳ; unitor²; refl; sym; trans; _ⓘₕ_) open import Categories.Theory.Lawvere using (LawvereTheory; LT-Hom; LT-id; LT-∘) LawvereTheories : (ℓ e : Level) → Category (suc (ℓ ⊔ e)) (ℓ ⊔ e) (ℓ ⊔ e) LawvereTheories ℓ e = record { Obj = LawvereTheory ℓ e ; _⇒_ = LT-Hom ; _≈_ = λ H₁ H₂ → cartF.F H₁ ≃ cartF.F H₂ ; id = LT-id ; _∘_ = LT-∘ ; assoc = λ { {f = f} {g} {h} → associator (cartF.F f) (cartF.F g) (cartF.F h) } ; sym-assoc = λ { {f = f} {g} {h} → sym-associator (cartF.F f) (cartF.F g) (cartF.F h) } ; identityˡ = unitorˡ ; identityʳ = unitorʳ ; identity² = unitor² ; equiv = record { refl = refl ; sym = sym ; trans = trans } ; ∘-resp-≈ = _ⓘₕ_ } where open LT-Hom
{ "alphanum_fraction": 0.6585820896, "avg_line_length": 35.7333333333, "ext": "agda", "hexsha": "483337ef5c464b698d715bdd7fcdab40c577bfed", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/LawvereTheories.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/LawvereTheories.agda", "max_line_length": 91, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/LawvereTheories.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 403, "size": 1072 }
module Oscar.Data.Maybe where open import Data.Maybe public using (Maybe; nothing; just) -- open import Oscar.Data.Maybe.Core public -- --open import Data.Maybe public using (maybe) -- -- open import Relation.Binary.PropositionalEquality -- -- open import Data.Empty -- -- unMaybe : ∀ {A : Set} {x y : A} {B : Set} {m : Maybe B} → maybe (λ _ → x) y m ≡ y → x ≢ y → m ≡ nothing -- -- unMaybe {m = just x₁} x₂ x₃ = ⊥-elim (x₃ x₂) -- -- unMaybe {m = nothing} x₁ x₂ = refl -- -- unMaybe' : ∀ {A : Set} {y : A} {B : Set} {x : B → A} {m : Maybe B} → maybe (λ b → x b) y m ≡ y → (∀ b → x b ≢ y) → m ≡ nothing -- -- unMaybe' {m = just x₁} x₂ x₃ = ⊥-elim (x₃ x₁ x₂) -- -- unMaybe' {m = nothing} x₁ x₂ = refl -- -- just≢nothing : ∀ {A B : Set} → (x : B → A) → ∀ b → Maybe.just (x b) ≢ nothing -- -- just≢nothing x b () -- -- unMaybeJust' : ∀ {A B : Set} {P : B → A} {m : Maybe B} {n : A} {x : B} → maybe (λ b → P b) n m ≡ P x → (∀ b → P b ≢ n) → (∀ {y y'} → P y ≡ P y' → y ≡ y') → m ≡ just x -- -- unMaybeJust' {m = just x} x₂ x₃ inj rewrite inj x₂ = refl -- -- unMaybeJust' {m = nothing} x₁ x₂ _ = ⊥-elim (x₂ _ (sym x₁))
{ "alphanum_fraction": 0.5254237288, "avg_line_length": 41.5185185185, "ext": "agda", "hexsha": "6f298e69a2760d9bbe17790a895f75ea87cd48ba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/Maybe.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/Maybe.agda", "max_line_length": 172, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/Maybe.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 459, "size": 1121 }
{-# OPTIONS --rewriting #-} module CF.Transform.Compile.ToJVM.Rewriting where open import Data.List.Properties open import Data.List.Relation.Binary.Permutation.Propositional open import Agda.Builtin.Equality.Rewrite {-# REWRITE map-++-commute #-}
{ "alphanum_fraction": 0.7777777778, "avg_line_length": 22.9090909091, "ext": "agda", "hexsha": "5a8b70fca07cc98c4cc8796951125d4632aee751", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z", "max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "ajrouvoet/jvm.agda", "max_forks_repo_path": "src/CF/Transform/Compile/ToJVM/Rewriting.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "ajrouvoet/jvm.agda", "max_issues_repo_path": "src/CF/Transform/Compile/ToJVM/Rewriting.agda", "max_line_length": 63, "max_stars_count": 6, "max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "ajrouvoet/jvm.agda", "max_stars_repo_path": "src/CF/Transform/Compile/ToJVM/Rewriting.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z", "num_tokens": 60, "size": 252 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Algebra.RingSolver.RawRing where open import Cubical.Foundations.Prelude open import Cubical.Data.Sigma open import Cubical.Data.Nat using (ℕ) open import Cubical.Algebra.RingSolver.AlmostRing hiding (⟨_⟩) private variable ℓ : Level record RawRing : Type (ℓ-suc ℓ) where constructor rawring field Carrier : Type ℓ 0r : Carrier 1r : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier infixl 8 _·_ infixl 7 -_ infixl 6 _+_ ⟨_⟩ : RawRing → Type ℓ ⟨_⟩ = RawRing.Carrier AlmostRing→RawRing : AlmostRing {ℓ} → RawRing {ℓ} AlmostRing→RawRing (almostring Carrier 0r 1r _+_ _·_ -_ isAlmostRing) = rawring Carrier 0r 1r _+_ _·_ -_
{ "alphanum_fraction": 0.6598062954, "avg_line_length": 22.9444444444, "ext": "agda", "hexsha": "c5377cf237faa5689a72495ec211827055529fe5", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Algebra/RingSolver/RawRing.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Algebra/RingSolver/RawRing.agda", "max_line_length": 71, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Algebra/RingSolver/RawRing.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 273, "size": 826 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Finite.Fin.Construction.Poset where open import Data.Nat using (ℕ; z≤n; s≤s) open import Data.Sum open import Data.Product using (Σ; _,_; _×_) open import Data.Fin open import Data.Fin.Patterns open import Relation.Binary.PropositionalEquality as ≡ open import Categories.Category.Finite.Fin open import Categories.Category private card : ∀ {n} → Fin n → Fin n → ℕ card {ℕ.suc n} zero y = 1 card {ℕ.suc n} (suc x) zero = 0 card {ℕ.suc n} (suc x) (suc y) = card x y id : ∀ n {a : Fin n} → Fin (card a a) id .(ℕ.suc _) {zero} = 0F id (ℕ.suc n) {suc a} = id n comp : ∀ n {a b c : Fin n} → Fin (card b c) → Fin (card a b) → Fin (card a c) comp (ℕ.suc n) {0F} {b} {c} f g = 0F comp (ℕ.suc n) {suc a} {suc b} {suc c} f g = comp n f g assoc : ∀ n {a b c d : Fin n} {f : Fin (card a b)} {g : Fin (card b c)} {h : Fin (card c d)} → comp n (comp n h g) f ≡ comp n h (comp n g f) assoc (ℕ.suc n) {0F} {b} {c} {d} {f} {g} {h} = refl assoc (ℕ.suc n) {suc a} {suc b} {suc c} {suc d} {f} {g} {h} = assoc n identityˡ : ∀ n {a b : Fin n} {f : Fin (card a b)} → comp n (id n) f ≡ f identityˡ (ℕ.suc n) {0F} {b} {0F} = refl identityˡ (ℕ.suc n) {suc a} {suc b} {f} = identityˡ n identityʳ : ∀ n {a b : Fin n} {f : Fin (card a b)} → comp n f (id n) ≡ f identityʳ (ℕ.suc n) {0F} {b} {0F} = refl identityʳ (ℕ.suc n) {suc a} {suc b} {f} = identityʳ n card-rel : ∀ {n} (x y : Fin n) → card x y ≡ 1 × x ≤ y ⊎ card x y ≡ 0 × y < x card-rel {ℕ.suc n} 0F y = inj₁ (refl , z≤n) card-rel {ℕ.suc n} (suc x) 0F = inj₂ (refl , s≤s z≤n) card-rel {ℕ.suc n} (suc x) (suc y) with card-rel x y ... | inj₁ (eq , x≤y) = inj₁ (eq , s≤s x≤y) ... | inj₂ (eq , y<x) = inj₂ (eq , s≤s y<x) card-sound₁ : ∀ {n} (x y : Fin n) → card x y ≡ 1 → x ≤ y card-sound₁ 0F 0F eq = z≤n card-sound₁ 0F (suc y) eq = z≤n card-sound₁ (suc x) (suc y) eq = s≤s (card-sound₁ x y eq) card-sound₂ : ∀ {n} (x y : Fin n) → card x y ≡ 0 → y ≤ x card-sound₂ (suc x) 0F eq = z≤n card-sound₂ (suc x) (suc y) eq = s≤s (card-sound₂ x y eq) card-complete₁ : ∀ {n} {x y : Fin n} → x ≤ y → card x y ≡ 1 card-complete₁ {.(ℕ.suc _)} {0F} {0F} x≤y = refl card-complete₁ {.(ℕ.suc _)} {0F} {suc y} x≤y = refl card-complete₁ {.(ℕ.suc _)} {suc x} {suc y} (s≤s x≤y) = card-complete₁ x≤y card-complete₂ : ∀ {n} {x y : Fin n} → y < x → card x y ≡ 0 card-complete₂ {.(ℕ.suc _)} {suc x} {0F} y<x = refl card-complete₂ {.(ℕ.suc _)} {suc x} {suc y} (s≤s y<x) = card-complete₂ y<x module _ (size : ℕ) where PosetShape : FinCatShape PosetShape = record { size = size ; ∣_⇒_∣ = card ; hasShape = record { id = id size ; _∘_ = comp size ; assoc = assoc size ; identityˡ = identityˡ size ; identityʳ = identityʳ size } } Poset : ℕ → Category _ _ _ Poset size = FinCategory (PosetShape size) module Poset size = Category (Poset size)
{ "alphanum_fraction": 0.535866361, "avg_line_length": 35.091954023, "ext": "agda", "hexsha": "c21ee8c4becdaf26b9c012e1f45531b5ce22d922", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Finite/Fin/Construction/Poset.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Finite/Fin/Construction/Poset.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Finite/Fin/Construction/Poset.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1347, "size": 3053 }
-- Andreas, 2017-01-05, issue #2376 -- Ensure correct printing for termination error -- {-# OPTIONS -v term.clause:30 #-} postulate id : ∀{a}{A : Set a} → A → A A : Set P : A → Set f : {a : A} → P a → {b : A} → P b → Set f = λ p → f (id p) -- id to prevent eta-contration before termination checking -- Expected termination error: -- ... -- Problematic calls: -- f (id p)
{ "alphanum_fraction": 0.5818181818, "avg_line_length": 21.3888888889, "ext": "agda", "hexsha": "90efa55186abdfb221c8f0c3c99508ee21e9bef1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue2376Lambda.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2376Lambda.agda", "max_line_length": 79, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2376Lambda.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 132, "size": 385 }
{-# OPTIONS --cubical --safe #-} module Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Properties where open import Prelude hiding (⊥; ⊤) open import Algebra.Construct.Free.Semilattice.Eliminators open import Algebra.Construct.Free.Semilattice.Definition open import Cubical.Foundations.HLevels open import Data.Empty.UniversePolymorphic open import HITs.PropositionalTruncation.Sugar open import HITs.PropositionalTruncation.Properties open import HITs.PropositionalTruncation open import Data.Unit.UniversePolymorphic open import Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Def open import Relation.Nullary open import Relation.Nullary.Decidable open import Relation.Nullary.Decidable.Properties open import Relation.Nullary.Decidable.Logic private variable p : Level P∃◇ : ∀ {p} {P : A → Type p} → ∀ xs → ◇ P xs → ∥ ∃ P ∥ P∃◇ {A = A} {P = P} = ∥ P∃◇′ ∥⇓ where P∃◇′ : xs ∈𝒦 A ⇒∥ (◇ P xs → ∥ ∃ P ∥) ∥ ∥ P∃◇′ ∥-prop p q i ◇Pxs = squash (p ◇Pxs) (q ◇Pxs) i ∥ P∃◇′ ∥[] () ∥ P∃◇′ ∥ x ∷ xs ⟨ Pxs ⟩ ◇Pxs = ◇Pxs >>= either′ (λ Px → ∣ x , Px ∣ ) (λ ◇Pxxs → Pxs ◇Pxxs)
{ "alphanum_fraction": 0.6875, "avg_line_length": 32.9411764706, "ext": "agda", "hexsha": "bac9ba89dde59b31cb66b098ce3d33427306d827", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z", "max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/combinatorics-paper", "max_forks_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/Any/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/combinatorics-paper", "max_issues_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/Any/Properties.agda", "max_line_length": 77, "max_stars_count": 4, "max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/combinatorics-paper", "max_stars_repo_path": "agda/Algebra/Construct/Free/Semilattice/Relation/Unary/Any/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z", "max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z", "num_tokens": 408, "size": 1120 }
{-# OPTIONS --cubical --safe #-} module Cubical.Structures.NAryOp where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Functions.FunExtEquiv open import Cubical.Data.Nat open import Cubical.Data.Vec open import Cubical.Foundations.SIP renaming (SNS-PathP to SNS) private variable ℓ ℓ' : Level -- TODO: generalize to different target type? nAryFunStructure : (n : ℕ) → Type (ℓ-max (ℓ-suc ℓ) (nAryLevel ℓ ℓ n)) nAryFunStructure {ℓ = ℓ} n = TypeWithStr _ (λ (X : Type ℓ) → nAryOp n X X) -- iso for n-ary functions nAryFunIso : (n : ℕ) → StrIso (λ (X : Type ℓ) → nAryOp n X X) ℓ nAryFunIso n (X , fX) (Y , fY) f = (xs : Vec X n) → equivFun f (fX $ⁿ xs) ≡ fY $ⁿ map (equivFun f) xs nAryFunSNS : (n : ℕ) → SNS {ℓ} _ (nAryFunIso n) nAryFunSNS n = SNS-≡→SNS-PathP (nAryFunIso n) (nAryFunExtEquiv n) -- Some specializations that are not used at the moment, but kept as -- they might become useful later. private -- unary unaryFunIso : StrIso (λ (X : Type ℓ) → nAryOp 1 X X) ℓ unaryFunIso (A , f) (B , g) e = (x : A) → equivFun e (f x) ≡ g (equivFun e x) unaryFunSNS : SNS {ℓ} _ unaryFunIso unaryFunSNS = SNS-≡→SNS-PathP unaryFunIso (λ s t → compEquiv lem (nAryFunExtEquiv 1 s t)) where lem : ∀ {X} → {s t : X → X} → ((x : X) → s x ≡ t x) ≃ ((xs : Vec X 1) → (s $ⁿ xs) ≡ (t $ⁿ map (λ x → x) xs)) lem {X} {s} {t} = isoToEquiv f where f : Iso ((x : X) → s x ≡ t x) ((xs : Vec X 1) → (s $ⁿ xs) ≡ (t $ⁿ map (λ x → x) xs)) Iso.fun f p (x ∷ []) = p x Iso.inv f p x = p (x ∷ []) Iso.rightInv f p _ xs@(x ∷ []) = p xs Iso.leftInv f p _ = p -- binary binaryFunIso : StrIso (λ (X : Type ℓ) → nAryOp 2 X X) ℓ binaryFunIso (A , f) (B , g) e = (x y : A) → equivFun e (f x y) ≡ g (equivFun e x) (equivFun e y) binaryFunSNS : SNS {ℓ} _ binaryFunIso binaryFunSNS = SNS-≡→SNS-PathP binaryFunIso (λ s t → compEquiv lem (nAryFunExtEquiv 2 s t)) where lem : ∀ {X} → {s t : X → X → X} → ((x y : X) → s x y ≡ t x y) ≃ ((xs : Vec X 2) → (s $ⁿ xs) ≡ (t $ⁿ map (λ x → x) xs)) lem {X} {s} {t} = isoToEquiv f where f : Iso ((x y : X) → s x y ≡ t x y) ((xs : Vec X 2) → (s $ⁿ xs) ≡ (t $ⁿ map (λ x → x) xs)) Iso.fun f p (x ∷ y ∷ []) = p x y Iso.inv f p x y = p (x ∷ y ∷ []) Iso.rightInv f p _ xs@(x ∷ y ∷ []) = p xs Iso.leftInv f p _ = p
{ "alphanum_fraction": 0.5336150595, "avg_line_length": 35.1756756757, "ext": "agda", "hexsha": "aaf38af83e21d72252e41d58aa802511e34e0ee1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmester0/cubical", "max_forks_repo_path": "Cubical/Structures/NAryOp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmester0/cubical", "max_issues_repo_path": "Cubical/Structures/NAryOp.agda", "max_line_length": 93, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c67854d2e11aafa5677e25a09087e176fafd3e43", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmester0/cubical", "max_stars_repo_path": "Cubical/Structures/NAryOp.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z", "num_tokens": 1071, "size": 2603 }
{-# OPTIONS --safe #-} module STLC.Denotational where open import STLC.Syntax open import STLC.Typing open import Data.Nat using (ℕ; suc) open import Data.Fin using (Fin) renaming (zero to fzero; suc to fsuc) open import Data.Product using (_×_; _,_; proj₁; proj₂) open import Data.Unit using (⊤; tt) private variable n : ℕ Γ : Ctx n A : Type ⟦_⟧ : Type → Set ⟦ A ⇒ B ⟧ = ⟦ A ⟧ → ⟦ B ⟧ ⟦ unit ⟧ = ⊤ ⟦ A ×' B ⟧ = ⟦ A ⟧ × ⟦ B ⟧ data Env : Ctx n → Set where ∅ : Env ● ⟨_,_⟩ : Env Γ → ⟦ A ⟧ → Env (Γ ,- A) lookup : Env {n} Γ → (v : Fin n) → ⟦ find Γ v ⟧ lookup ⟨ ρ , term ⟩ fzero = term lookup ⟨ ρ , term ⟩ (fsuc n) = lookup ρ n ⟦_⟧⟨_⟩ : ∀ {term : Term n} {type : Type} → (Γ ⊢ term ∈ type) → Env Γ → ⟦ type ⟧ ⟦ ty-abs body ⟧⟨ ρ ⟩ = λ x → ⟦ body ⟧⟨ ⟨ ρ , x ⟩ ⟩ ⟦ ty-app f x ⟧⟨ ρ ⟩ = ⟦ f ⟧⟨ ρ ⟩ ⟦ x ⟧⟨ ρ ⟩ ⟦ ty-var v ⟧⟨ ρ ⟩ = lookup ρ v ⟦ ty-⋆ ⟧⟨ _ ⟩ = tt ⟦ ty-pair l r ⟧⟨ ρ ⟩ = ⟦ l ⟧⟨ ρ ⟩ , ⟦ r ⟧⟨ ρ ⟩ ⟦ ty-projₗ p ⟧⟨ ρ ⟩ = proj₁ ⟦ p ⟧⟨ ρ ⟩ ⟦ ty-projᵣ p ⟧⟨ ρ ⟩ = proj₂ ⟦ p ⟧⟨ ρ ⟩
{ "alphanum_fraction": 0.5005005005, "avg_line_length": 26.2894736842, "ext": "agda", "hexsha": "817839b92ff66406a26a0751abe5fe8260ce5bb1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "TrulyNonstrict/STLC", "max_forks_repo_path": "STLC/Denotational.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "TrulyNonstrict/STLC", "max_issues_repo_path": "STLC/Denotational.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TypesLogicsCats/STLC", "max_stars_repo_path": "STLC/Denotational.agda", "max_stars_repo_stars_event_max_datetime": "2020-03-16T23:53:48.000Z", "max_stars_repo_stars_event_min_datetime": "2020-03-16T23:53:48.000Z", "num_tokens": 518, "size": 999 }
module Types.Tail1 where open import Data.Fin open import Data.Nat open import Function using (_∘_) open import Types.Direction import Types.IND1 as IND private variable n : ℕ -- session types restricted to tail recursion -- can be recognized by type of TChan constructor data Type : Set data SType (n : ℕ) : Set data GType (n : ℕ) : Set data Type where TUnit TInt : Type TPair : (t₁ t₂ : Type) → Type TChan : (s : IND.SType 0) → Type data SType n where gdd : (g : GType n) → SType n rec : (g : GType (suc n)) → SType n var : (x : Fin n) → SType n data GType n where transmit : (d : Dir) (t : Type) (s : SType n) → GType n choice : (d : Dir) (m : ℕ) (alt : Fin m → SType n) → GType n end : GType n -- naive definition of duality for tail recursive session types -- message types are ignored as they are closed dualS : SType n → SType n dualG : GType n → GType n dualS (gdd g) = gdd (dualG g) dualS (rec g) = rec (dualG g) dualS (var x) = var x dualG (transmit d t s) = transmit (dual-dir d) t (dualS s) dualG (choice d m alt) = choice (dual-dir d) m (dualS ∘ alt) dualG end = end
{ "alphanum_fraction": 0.6523297491, "avg_line_length": 22.7755102041, "ext": "agda", "hexsha": "4a52f6dbb766b93c52da45e147f606debea3cbde", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-12-07T16:12:50.000Z", "max_forks_repo_forks_event_min_datetime": "2019-12-07T16:12:50.000Z", "max_forks_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "peterthiemann/dual-session", "max_forks_repo_path": "src/Types/Tail1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "peterthiemann/dual-session", "max_issues_repo_path": "src/Types/Tail1.agda", "max_line_length": 63, "max_stars_count": 1, "max_stars_repo_head_hexsha": "7a8bc1f6b2f808bd2a22c592bd482dbcc271979c", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "peterthiemann/dual-session", "max_stars_repo_path": "src/Types/Tail1.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-13T05:43:25.000Z", "max_stars_repo_stars_event_min_datetime": "2022-02-13T05:43:25.000Z", "num_tokens": 406, "size": 1116 }
-- A Beth model of normal forms open import Library hiding (_∈_; All) module NfModel (Base : Set) where import Formulas ; open module Form = Formulas Base import Derivations; open module Der = Derivations Base -- Beth model -- A cover for Γ is the skeleton of a case tree that can be formed in Γ. -- It contains the (neutral) scrutinees we case over and the markers (hole) -- for the leaves that have to be filled by the branches of the case statement. data Cover (Γ : Cxt) : Set where hole : Cover Γ falseC : (t : Ne Γ False) → Cover Γ orC : ∀{A B} (t : Ne Γ (A ∨ B)) (c : Cover (Γ ∙ A)) (d : Cover (Γ ∙ B)) → Cover Γ -- Choice of names. -- hole : has the same role as the hole-evaluation context (identity). -- falseC: basically falseE. -- orC : basically orE. -- Given c : Cover Γ, a path p : Δ ∈ c leads us from the root to one of the leaves (hole) -- of the case tree. Δ is the context at the leaf. data _∈_ Δ : ({Γ} : Cxt) (c : Cover Γ) → Set where here : Δ ∈ hole {Δ} left : ∀{Γ A B c d} {t : Ne Γ (A ∨ B)} (e : Δ ∈ c) → Δ ∈ orC t c d right : ∀{Γ A B c d} {t : Ne Γ (A ∨ B)} (e : Δ ∈ d) → Δ ∈ orC t c d -- Given a case tree c : Cover Γ and a context-indexed set P, -- f : All c P is an assignment of things in P Δ to holes -- of type Δ reached by pathes e : Δ ∈ c. All : ∀{Γ} (c : Cover Γ) (P : (Δ : Cxt) → Set) → Set All c P = ∀{Δ} (e : Δ ∈ c) → P Δ -- We can also use All c P with a property P on context, -- to express that all holes of c satify P. -- We might want to depend on the path e : Δ ∈ c also: All' : ∀{Γ} (c : Cover Γ) (P : ∀ {Δ} (e : Δ ∈ c) → Set) → Set All' c P = ∀{Δ} (e : Δ ∈ c) → P e -- If c : Cover Γ and e : Δ ∈ C, then Δ must be an extension of Γ. -- Here, we only prove that it is a thinning. coverWk : ∀{Γ} {c : Cover Γ} → All c (_≤ Γ) coverWk here = id≤ coverWk (left e) = coverWk e • weak id≤ coverWk (right e) = coverWk e • weak id≤ -- We can substitute leaves in the case tree by case trees in turn. -- The following is a ``parallel substitution'' operations for covers. -- If c : Cover Γ and f is a mapping from the leaves of c to case trees -- we can graft f onto c to get a new case tree transC c f. -- Here, the case tree substitution is given as a function from pathes -- p : Δ ∈ c to covers. transC : ∀{Γ} (c : Cover Γ) (f : All c Cover) → Cover Γ transC hole f = f here transC (falseC t) f = falseC t transC (orC t c d) f = orC t (transC c (f ∘ left)) (transC d (f ∘ right)) -- Composition of pathes. -- Assume a c : Cover Γ and a substitution f : Δ ∈ c → ∁over Δ and a path e : Δ ∈ c. -- Then any path p : Φ ∈ f e can be extended to a path q : Φ ∈ transC c f -- by essentially concatenating e and p. -- Note that we maintain f only for the sake of typing. -- trans∈ : ∀{Γ} (c : Cover Γ) (f : All c Cover) → -- ∀ {Δ} (e : Δ ∈ c) {Φ} → Φ ∈ f e → Φ ∈ transC c f trans∈ : ∀{Γ} (c : Cover Γ) (f : All c Cover) → All' c λ {Δ} (e : Δ ∈ c) → All (f e) (_∈ transC c f) trans∈ hole f here = id trans∈ (falseC t) f () trans∈ (orC t c d) f (left e) = left ∘ trans∈ c (f ∘ left ) e trans∈ (orC t c d) f (right e) = right ∘ trans∈ d (f ∘ right) e -- Splitting of pathes. -- In a situation similar to the previous lemma: -- If we have a path q : Φ ∈ transC c f we can split it into some -- e : Δ ∈ c and p : Φ ∈ f e. split∈ : ∀{Γ} (c : Cover Γ) (f : All c Cover) {Φ} (q : Φ ∈ transC c f) → ∃ λ Δ → ∃ λ (e : Δ ∈ c) → Φ ∈ f e split∈ hole f q = _ , _ , q split∈ (falseC t) f () split∈ (orC t c d) f (left q) with split∈ c (f ∘ left) q ... | Δ , e₁ , e₂ = Δ , left e₁ , e₂ split∈ (orC t c d) f (right q) with split∈ d (f ∘ right) q ... | Δ , e₁ , e₂ = Δ , right e₁ , e₂ -- Syntactic paste (from Thorsten). -- If for each leave e : Δ ∈ c of a case tree c : Cover Γ we have a normal form -- f e : Nf Δ A of type A, grafting these nfs onto c gives us a Nf Γ A. pasteNf : ∀{A Γ} (c : Cover Γ) (f : All c λ Δ → Nf Δ A) → Nf Γ A pasteNf hole f = f here pasteNf (falseC t) f = falseE t pasteNf (orC t c d) f = orE t (pasteNf c (f ∘ left)) (pasteNf d (f ∘ right)) -- Weakening covers: A case tree in Γ can be transported to a thinning Δ -- by weakening all the scrutinees. -- monC : ∀{Γ Δ} (τ : Δ ≤ Γ) (c : Cover Γ) → Cover Δ monC : Mon Cover monC τ hole = hole monC τ (falseC t) = falseC (monNe τ t) monC τ (orC t c d) = orC (monNe τ t) (monC (lift τ) c) (monC (lift τ) d) -- Undoing a weakening on a path. -- -- If we have a path e : Φ ∈ monC τ c in a case tree c : Cover Γ transported -- to Δ via thinning τ : Δ ≤ Γ, we also get a path e' : Ψ ∈ c in the original -- case tree c such that Ψ is a strenthening of Φ (Φ ≤ Ψ). mon∈ : ∀{Γ Δ Φ} (c : Cover Γ) (τ : Δ ≤ Γ) (e : Φ ∈ monC τ c) → ∃ λ Ψ → Ψ ∈ c × Φ ≤ Ψ mon∈ hole τ here = _ , here , τ mon∈ (falseC t) τ () mon∈ (orC t c d) τ (left e) with mon∈ c (lift τ) e ... | Ψ , e' , σ = Ψ , left e' , σ mon∈ (orC t c d) τ (right e) with mon∈ d (lift τ) e ... | Ψ , e' , σ = Ψ , right e' , σ -- Packaging a case tree with its valuation. CovExt : (Γ : Cxt) (P : Cxt → Set) → Set CovExt Γ P = Σ (Cover Γ) λ c → All c P transCE : ∀ {P Γ} (c : Cover Γ) (f : All c λ Δ → CovExt Δ P) → CovExt Γ P transCE c f = transC c (proj₁ ∘ f) , λ e → let _ , e₁ , e₂ = split∈ c (proj₁ ∘ f) e in f e₁ .proj₂ e₂ monCE : ∀{P} → Mon P → Mon λ Γ → CovExt Γ P monCE monP τ (c , f) = monC τ c , λ {Φ} e → let Ψ , e' , σ = mon∈ c τ e in monP σ (f {Ψ} e') -- The syntactic Beth model. -- We interpret base propositions Atom P by their normal deriviations. -- ("Normal" is important; "neutral is not sufficient since we need case trees here.) -- The negative connectives True, ∧, and ⇒ are explained as usual by η-expansion -- and the meta-level connective. -- The positive connectives False and ∨ are inhabited by case trees. -- In case False, the tree has no leaves. -- In case A ∨ B, each leaf must be in the semantics of either A or B. T⟦_⟧ : (A : Form) (Γ : Cxt) → Set T⟦ Atom P ⟧ Γ = Nf Γ (Atom P) T⟦ True ⟧ Γ = ⊤ T⟦ False ⟧ Γ = CovExt Γ λ Δ → ⊥ T⟦ A ∨ B ⟧ Γ = CovExt Γ λ Δ → T⟦ A ⟧ Δ ⊎ T⟦ B ⟧ Δ T⟦ A ∧ B ⟧ Γ = T⟦ A ⟧ Γ × T⟦ B ⟧ Γ T⟦ A ⇒ B ⟧ Γ = ∀{Δ} (τ : Δ ≤ Γ) → T⟦ A ⟧ Δ → T⟦ B ⟧ Δ -- Monotonicity of the model is proven by induction on the proposition, -- using monotonicity of covers and the built-in monotonicity at implication. -- monT : ∀ A {Γ Δ} (τ : Δ ≤ Γ) → T⟦ A ⟧ Γ → T⟦ A ⟧ Δ monT : ∀ A → Mon T⟦ A ⟧ monT (Atom P) = monNf monT True = _ monT False = monCE λ τ () monT (A ∨ B) = monCE λ τ → map-⊎ (monT A τ) (monT B τ) monT (A ∧ B) τ (a , b) = monT A τ a , monT B τ b monT (A ⇒ B) τ f σ = f (σ • τ) -- Reflection / reification, proven simultaneously by induction on the proposition. -- Reflection is η-expansion (and recursively reflection); -- at positive connections we build a case tree with a single scrutinee: the neutral -- we are reflecting. -- At implication, we need reification, which produces introductions -- and reifies the stored case trees. mutual reflect : ∀{Γ} A (t : Ne Γ A) → T⟦ A ⟧ Γ reflect (Atom P) t = ne t reflect True t = _ reflect False t = falseC t , λ() reflect (A ∨ B) t = orC t hole hole , λ where (left here) → inj₁ (reflect A (hyp top)) (right here) → inj₂ (reflect B (hyp top)) reflect (A ∧ B) t = reflect A (andE₁ t) , reflect B (andE₂ t) reflect (A ⇒ B) t τ a = reflect B (impE (monNe τ t) (reify A a)) reify : ∀{Γ} A (⟦f⟧ : T⟦ A ⟧ Γ) → Nf Γ A reify (Atom P) t = t reify True _ = trueI reify False (c , f) = pasteNf c (⊥-elim ∘ f) reify (A ∨ B) (c , f) = pasteNf c ([ orI₁ ∘ reify A , orI₂ ∘ reify B ] ∘ f) reify (A ∧ B) (a , b) = andI (reify A a) (reify B b) reify (A ⇒ B) ⟦f⟧ = impI (reify B (⟦f⟧ (weak id≤) (reflect A (hyp top)))) -- Semantic paste. -- This grafts semantic values f onto a case tree c : Cover Γ. -- For atomic propositions, this is grafting of normal forms (defined before). paste : ∀ A {Γ} (c : Cover Γ) (f : All c (T⟦ A ⟧)) → T⟦ A ⟧ Γ paste (Atom P) = pasteNf paste True = _ paste False = transCE paste (A ∨ B) = transCE paste (A ∧ B) c f = paste A c (proj₁ ∘ f) , paste B c (proj₂ ∘ f) paste (A ⇒ B) c f τ a = paste B (monC τ c) λ {Δ} e → let Ψ , e' , σ = mon∈ c τ e in f e' σ (monT A (coverWk e) a) -- Fundamental theorem -- Extension of T⟦_⟧ to contexts G⟦_⟧ : ∀ (Γ Δ : Cxt) → Set G⟦ ε ⟧ Δ = ⊤ G⟦ Γ ∙ A ⟧ Δ = G⟦ Γ ⟧ Δ × T⟦ A ⟧ Δ -- monG : ∀{Γ Δ Φ} (τ : Φ ≤ Δ) → G⟦ Γ ⟧ Δ → G⟦ Γ ⟧ Φ monG : ∀{Γ} → Mon G⟦ Γ ⟧ monG {ε} τ _ = _ monG {Γ ∙ A} τ (γ , a) = monG τ γ , monT A τ a -- Variable case. fundH : ∀{Γ Δ A} (x : Hyp A Γ) (γ : G⟦ Γ ⟧ Δ) → T⟦ A ⟧ Δ fundH top = proj₂ fundH (pop x) = fundH x ∘ proj₁ -- A lemma for the orE case. orElim : ∀ {Γ A B E} → T⟦ A ∨ B ⟧ Γ → (∀{Δ} (τ : Δ ≤ Γ) → T⟦ A ⟧ Δ → T⟦ E ⟧ Δ) → (∀{Δ} (τ : Δ ≤ Γ) → T⟦ B ⟧ Δ → T⟦ E ⟧ Δ) → T⟦ E ⟧ Γ orElim (c , f) g h = paste _ c λ e → case f e of [ g (coverWk e) , h (coverWk e) ] -- A lemma for the falseE case. -- Casts an empty cover into any semantic value (by contradiction). falseElim : ∀{Γ A} → T⟦ False ⟧ Γ → T⟦ A ⟧ Γ falseElim (c , f) = paste _ c (⊥-elim ∘ f) -- The fundamental theorem fund : ∀{Γ A} (t : Γ ⊢ A) {Δ} (γ : G⟦ Γ ⟧ Δ) → T⟦ A ⟧ Δ fund (hyp x) = fundH x fund (impI t) γ τ a = fund t (monG τ γ , a) fund (impE t u) γ = fund t γ id≤ (fund u γ) fund (andI t u) γ = fund t γ , fund u γ fund (andE₁ t) = proj₁ ∘ fund t fund (andE₂ t) = proj₂ ∘ fund t fund (orI₁ t) γ = hole , inj₁ ∘ λ{ here → fund t γ } fund (orI₂ t) γ = hole , inj₂ ∘ λ{ here → fund t γ } fund (orE t u v) γ = orElim (fund t γ) (λ τ a → fund u (monG τ γ , a)) (λ τ b → fund v (monG τ γ , b)) fund (falseE t) γ = falseElim (fund t γ) fund trueI γ = _ -- Identity environment ide : ∀ Γ → G⟦ Γ ⟧ Γ ide ε = _ ide (Γ ∙ A) = monG (weak id≤) (ide Γ) , reflect A (hyp top) -- Normalization norm : ∀{Γ A} (t : Γ ⊢ A) → Nf Γ A norm t = reify _ (fund t (ide _)) -- Q.E.D. -}
{ "alphanum_fraction": 0.5617517957, "avg_line_length": 34.3287671233, "ext": "agda", "hexsha": "4c9b0b610f4093388dedad35b2e4c3c1b5b27445", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-02-25T20:39:03.000Z", "max_forks_repo_forks_event_min_datetime": "2018-11-13T16:01:46.000Z", "max_forks_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "andreasabel/ipl", "max_forks_repo_path": "src/NfModel.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "andreasabel/ipl", "max_issues_repo_path": "src/NfModel.agda", "max_line_length": 89, "max_stars_count": 19, "max_stars_repo_head_hexsha": "9a6151ad1f0977674b8cc9e9cefb49ae83e8a42a", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "andreasabel/ipl", "max_stars_repo_path": "src/NfModel.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-27T19:10:49.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-16T08:08:51.000Z", "num_tokens": 4066, "size": 10024 }
module Computability.Enumeration.Diagonal where open import Computability.Prelude open import Computability.Function open import Computability.Data.Fin.Opposite open import Computability.Data.Nat.Iteration open import Computability.Enumeration.Base open import Data.Nat using (_∸_; pred; ⌊_/2⌋; _≤_; _<_; s≤s; z≤n) open import Data.Nat.Properties using (+-suc; +-assoc; +-comm; +-identityʳ) open import Data.Nat.Properties using (*-suc; *-assoc; *-comm; *-zeroʳ) open import Data.Nat.Properties using (≤-step) open import Data.Fin using (Fin; zero; suc; inject₁; fromℕ; fromℕ<; toℕ; opposite) open import Data.Fin.Properties using (toℕ<n; toℕ-fromℕ; toℕ-inject₁; fromℕ<-toℕ) open import Relation.Binary.PropositionalEquality using (_≢_; cong; sym) open Relation.Binary.PropositionalEquality.≡-Reasoning Diagonal : Set Diagonal = Σ[ k ∈ ℕ ] Fin (suc k) step-Diag : Diagonal → Diagonal step-Diag (k , zero) = suc k , fromℕ (suc k) step-Diag (k , suc i) = k , inject₁ i triangle : ℕ → ℕ triangle k = ⌊ suc k * k /2⌋ enum-Diag : ℕ → Diagonal enum-Diag n = iterate step-Diag n (zero , zero) code-Diag : Diagonal → ℕ code-Diag (k , i) = toℕ (opposite i) + triangle k module TriangleProperties where elim-⌊/2⌋ : ∀ k i → ⌊ i * 2 + k /2⌋ ≡ i + ⌊ k /2⌋ elim-⌊/2⌋ k zero = refl elim-⌊/2⌋ k (suc i) rewrite elim-⌊/2⌋ k i = refl rewrite-triangle : (k : ℕ) → suc (k + suc (k + k * suc k)) ≡ suc k * 2 + (k + k * k) rewrite-triangle k rewrite *-comm k (suc k) | +-suc k (k + (k + k * k)) | *-comm k 2 | +-identityʳ k | +-assoc k k (k + k * k) = refl triangle-relation : ∀ k → triangle (suc k) ≡ suc k + triangle k triangle-relation k = begin ⌊ suc (suc k) * suc k /2⌋ ≡⟨ cong ⌊_/2⌋ (rewrite-triangle k) ⟩ ⌊ suc k * 2 + suc k * k /2⌋ ≡⟨ elim-⌊/2⌋ (suc k * k) (suc k) ⟩ suc k + ⌊ suc k * k /2⌋ ∎ open TriangleProperties step-Diag-suc : ∀ d → code-Diag (step-Diag d) ≡ suc (code-Diag d) step-Diag-suc (k , zero) rewrite opposite-fromℕ k | toℕ-fromℕ k | triangle-relation k = refl step-Diag-suc (k , suc i) rewrite opposite-inject₁-suc i | toℕ-inject₁ (opposite i) = refl code-Diag-LInv : ∀ n → code-Diag (enum-Diag n) ≡ n code-Diag-LInv zero = refl code-Diag-LInv (suc n) = begin code-Diag (step-Diag (enum-Diag n)) ≡⟨ step-Diag-suc (enum-Diag n) ⟩ suc (code-Diag (enum-Diag n)) ≡⟨ cong suc (code-Diag-LInv n) ⟩ suc n ∎ enum-Diag-Fin-Order : ∀ k i → (lt : i < suc k) → iterate step-Diag i (k , fromℕ k) ≡ (k , opposite (fromℕ< lt)) enum-Diag-Fin-Order k zero lt = refl enum-Diag-Fin-Order k (suc i) (s≤s lt) rewrite enum-Diag-Fin-Order k i (≤-step lt) | opposite-fromℕ< i k lt = refl enum-Diag-Fin : ∀ k (i : Fin (suc k)) → iterate step-Diag (toℕ i) (k , fromℕ k) ≡ (k , opposite i) enum-Diag-Fin k i = begin iterate step-Diag (toℕ i) (k , fromℕ k) ≡⟨ enum-Diag-Fin-Order k (toℕ i) (toℕ<n i)⟩ (k , opposite (fromℕ< (toℕ<n i))) ≡⟨ cong (λ e → k , opposite e) (fromℕ<-toℕ i (toℕ<n i)) ⟩ (k , opposite i) ∎ enum-Diag-triangle : ∀ k → enum-Diag (triangle k) ≡ (k , fromℕ k) enum-Diag-triangle zero = refl enum-Diag-triangle (suc k) = begin enum-Diag (triangle (suc k)) ≡⟨ cong enum-Diag (triangle-relation k) ⟩ enum-Diag (suc k + triangle k) ≡⟨ split-iterate step-Diag (zero , zero) (suc k) (triangle k) ⟩ iterate step-Diag (suc k) (enum-Diag (triangle k)) ≡⟨ cong (iterate step-Diag (suc k)) (enum-Diag-triangle k) ⟩ iterate step-Diag (suc k) (k , fromℕ k) ≡⟨ sym (cong (λ e → iterate step-Diag (suc e) (k , fromℕ k)) (toℕ-fromℕ k)) ⟩ iterate step-Diag (suc (toℕ (fromℕ k))) (k , fromℕ k) ≡⟨ cong step-Diag (enum-Diag-Fin k (fromℕ k)) ⟩ step-Diag (k , opposite (fromℕ k)) ≡⟨ cong (λ e → step-Diag (k , e)) (opposite-fromℕ k) ⟩ step-Diag (k , zero) ∎ code-Diag-RInv : ∀ d → enum-Diag (code-Diag d) ≡ d code-Diag-RInv (k , i) = begin enum-Diag (toℕ (opposite i) + triangle k) ≡⟨ split-iterate step-Diag (zero , zero) (toℕ (opposite i)) (triangle k) ⟩ iterate step-Diag (toℕ (opposite i)) (enum-Diag (triangle k)) ≡⟨ cong (iterate step-Diag (toℕ (opposite i))) (enum-Diag-triangle k) ⟩ iterate step-Diag (toℕ (opposite i)) (k , fromℕ k) ≡⟨ enum-Diag-Fin k (opposite i) ⟩ k , opposite (opposite i) ≡⟨ cong (λ e → k , e) (opposite-opposite i) ⟩ k , i ∎ open Enumerable Diag-Enumerable : Enumerable Diagonal enum Diag-Enumerable = enum-Diag proj₁ (bijective Diag-Enumerable) {x = n₀} {y = n₁} eq = begin n₀ ≡⟨ sym (code-Diag-LInv n₀) ⟩ code-Diag (enum-Diag n₀) ≡⟨ cong code-Diag eq ⟩ code-Diag (enum-Diag n₁) ≡⟨ code-Diag-LInv n₁ ⟩ n₁ ∎ proj₁ (proj₂ (bijective Diag-Enumerable) d) = code-Diag d proj₂ (proj₂ (bijective Diag-Enumerable) d) = code-Diag-RInv d
{ "alphanum_fraction": 0.6152570481, "avg_line_length": 33.5, "ext": "agda", "hexsha": "7690257a97be5e823e91fe61e97f7ebba6a5b549", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jesyspa/computability-in-agda", "max_forks_repo_path": "Computability/Enumeration/Diagonal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jesyspa/computability-in-agda", "max_issues_repo_path": "Computability/Enumeration/Diagonal.agda", "max_line_length": 111, "max_stars_count": 2, "max_stars_repo_head_hexsha": "1b5cf338eb0adb90c1897383e05251ddd954efff", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jesyspa/computability-in-agda", "max_stars_repo_path": "Computability/Enumeration/Diagonal.agda", "max_stars_repo_stars_event_max_datetime": "2021-04-30T11:15:51.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-19T15:51:22.000Z", "num_tokens": 2039, "size": 4824 }
module Issue4869 where open import Agda.Builtin.Nat infix 4 _≤_ data _≤_ : Nat → Nat → Set where z≤n : ∀ {n} → zero ≤ n s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n foo : 2 ≤ 1 → Nat foo (s≤s ()) = 123
{ "alphanum_fraction": 0.5358851675, "avg_line_length": 16.0769230769, "ext": "agda", "hexsha": "10f352792f855416f21635744ca67c55dfb4696b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue4869.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue4869.agda", "max_line_length": 45, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue4869.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 100, "size": 209 }
module RecursiveInstanceSearch where open import Common.Prelude open import Common.Product _&&_ : Bool → Bool → Bool true && b = b false && _ = false record Eq (A : Set) : Set where constructor eq field _==_ : A → A → Bool open Eq {{...}} public instance eq-Bool : Eq Bool eq-Bool = eq aux where aux : Bool → Bool → Bool aux true true = true aux false false = true aux _ _ = false eq-Nat : Eq Nat eq-Nat = eq aux where aux : Nat → Nat → Bool aux zero zero = true aux (suc n) (suc m) = aux n m aux _ _ = false eq-Maybe : {A : Set} {{_ : Eq A}} → Eq (Maybe A) eq-Maybe {A} = eq aux where aux : Maybe A → Maybe A → Bool aux nothing nothing = true aux (just y) (just z) = (y == z) aux _ _ = false eq-List : {A : Set} {{_ : Eq A}} → Eq (List A) eq-List {A} = eq aux where aux : List A → List A → Bool aux [] [] = true aux (x ∷ l) (y ∷ l') = (x == y) && (aux l l') aux _ _ = false eq-× : {A B : Set} {{_ : Eq A}} {{_ : Eq B}} → Eq (A × B) eq-× {A} {B} = eq (λ x y → (proj₁ x == proj₁ y) && (proj₂ x == proj₂ y)) test₂ : Bool test₂ = (3 == 4) test₃ : Bool test₃ = ((just 9) == nothing) test₃' : Bool test₃' = (nothing == just 6) test₄ : Bool test₄ = (true ∷ []) == (false ∷ []) test₅ : Bool test₅ = (just ((true ,′ (1 ,′ just 0)) ∷ []) == just ((true , (1 , just 0)) ∷ []))
{ "alphanum_fraction": 0.5202898551, "avg_line_length": 20.9090909091, "ext": "agda", "hexsha": "c913059c7e79291f02c443404a1592085f3fc3bf", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/RecursiveInstanceSearch.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/RecursiveInstanceSearch.agda", "max_line_length": 82, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/RecursiveInstanceSearch.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 526, "size": 1380 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Nullary relations (some core definitions) ------------------------------------------------------------------------ -- The definitions in this file are reexported by Relation.Nullary. module Relation.Nullary.Core where open import Data.Empty open import Level -- Negation. infix 3 ¬_ ¬_ : ∀ {ℓ} → Set ℓ → Set ℓ ¬ P = P → ⊥ -- Decidable relations. data Dec {p} (P : Set p) : Set p where yes : ( p : P) → Dec P no : (¬p : ¬ P) → Dec P
{ "alphanum_fraction": 0.4666666667, "avg_line_length": 21.3461538462, "ext": "agda", "hexsha": "d8b07577332150a3feaa3e519906ed1e04614879", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "qwe2/try-agda", "max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Nullary/Core.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "qwe2/try-agda", "max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Nullary/Core.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "qwe2/try-agda", "max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Nullary/Core.agda", "max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z", "num_tokens": 136, "size": 555 }
{-# OPTIONS --safe --warning=error --without-K #-} open import Groups.Definition open import Setoids.Orders.Partial.Definition open import Setoids.Setoids open import Functions.Definition open import Agda.Primitive using (Level; lzero; lsuc; _⊔_) module Groups.Orders.Partial.Definition {n m : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ : A → A → A} (G : Group S _+_) where open Group G open Setoid S record PartiallyOrderedGroup {p : _} {_<_ : Rel {_} {p} A} (pOrder : SetoidPartialOrder S _<_) : Set (lsuc n ⊔ m ⊔ p) where field orderRespectsAddition : {a b : A} → (a < b) → (c : A) → (a + c) < (b + c)
{ "alphanum_fraction": 0.6542207792, "avg_line_length": 34.2222222222, "ext": "agda", "hexsha": "093b2184ae52017bc92201b38ff2c4b255fc1470", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Groups/Orders/Partial/Definition.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Groups/Orders/Partial/Definition.agda", "max_line_length": 126, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Groups/Orders/Partial/Definition.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 211, "size": 616 }
-- This test case is aimed at checking that one can give RTS options -- (as well as other options) using the Emacs mode. It does not test -- backend options.
{ "alphanum_fraction": 0.7405063291, "avg_line_length": 39.5, "ext": "agda", "hexsha": "9c63f5823c95ed37091abcf146c7018edba5037c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/interaction/Issue3235.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue3235.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue3235.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 37, "size": 158 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.ZCohomology.MayerVietorisUnreduced where open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.GroupStructure open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Prelude open import Cubical.Foundations.Structure open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Data.Sigma open import Cubical.HITs.Pushout open import Cubical.HITs.Sn open import Cubical.HITs.S1 open import Cubical.HITs.Susp open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim ; elim2 to pElim2 ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁) open import Cubical.Data.Nat open import Cubical.Algebra.Group open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec ; elim3 to trElim3) open GroupHom module MV {ℓ ℓ' ℓ''} (A : Type ℓ) (B : Type ℓ') (C : Type ℓ'') (f : C → A) (g : C → B) where -- Proof from Brunerie 2016. -- We first define the three morphisms involved: i, Δ and d. private i* : (n : ℕ) → coHom n (Pushout f g) → coHom n A × coHom n B i* n = sRec (isSet× setTruncIsSet setTruncIsSet) λ δ → ∣ (λ x → δ (inl x)) ∣₂ , ∣ (λ x → δ (inr x)) ∣₂ iIsHom : (n : ℕ) → isGroupHom (coHomGr n (Pushout f g)) (×coHomGr n A B) (i* n) iIsHom n = sElim2 (λ _ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ _ _ → refl i : (n : ℕ) → GroupHom (coHomGr n (Pushout f g)) (×coHomGr n A B) GroupHom.fun (i n) = i* n GroupHom.isHom (i n) = iIsHom n private distrLem : (n : ℕ) (x y z w : coHomK n) → (x +[ n ]ₖ y) -[ n ]ₖ (z +[ n ]ₖ w) ≡ (x -[ n ]ₖ z) +[ n ]ₖ (y -[ n ]ₖ w) distrLem n x y z w = cong (λ z → (x +[ n ]ₖ y) +[ n ]ₖ z) (-distrₖ n z w) ∙∙ sym (assocₖ n x y ((-[ n ]ₖ z) +[ n ]ₖ (-[ n ]ₖ w))) ∙∙ cong (λ y → x +[ n ]ₖ y) (commₖ n y ((-[ n ]ₖ z) +[ n ]ₖ (-[ n ]ₖ w)) ∙ sym (assocₖ n _ _ _)) ∙∙ assocₖ n _ _ _ ∙∙ cong (λ y → (x -[ n ]ₖ z) +[ n ]ₖ y) (commₖ n (-[ n ]ₖ w) y) Δ' : (n : ℕ) → coHom n A × coHom n B → coHom n C Δ' n (α , β) = coHomFun n f α -[ n ]ₕ coHomFun n g β Δ'-isMorph : (n : ℕ) → isGroupHom (×coHomGr n A B) (coHomGr n C) (Δ' n) Δ'-isMorph n = prodElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _ ) λ f' x1 g' x2 i → ∣ (λ x → distrLem n (f' (f x)) (g' (f x)) (x1 (g x)) (x2 (g x)) i) ∣₂ Δ : (n : ℕ) → GroupHom (×coHomGr n A B) (coHomGr n C) GroupHom.fun (Δ n) = Δ' n GroupHom.isHom (Δ n) = Δ'-isMorph n d-pre : (n : ℕ) → (C → coHomK n) → Pushout f g → coHomK (suc n) d-pre n γ (inl x) = 0ₖ (suc n) d-pre n γ (inr x) = 0ₖ (suc n) d-pre n γ (push a i) = Kn→ΩKn+1 n (γ a) i dHomHelper : (n : ℕ) (h l : C → coHomK n) (x : Pushout f g) → d-pre n (λ x → h x +[ n ]ₖ l x) x ≡ d-pre n h x +[ suc n ]ₖ d-pre n l x dHomHelper n h l (inl x) = sym (rUnitₖ (suc n) (0ₖ (suc n))) dHomHelper n h l (inr x) = sym (lUnitₖ (suc n) (0ₖ (suc n))) dHomHelper n h l (push a i) j = hcomp (λ k → λ { (i = i0) → rUnitₖ (suc n) (0ₖ (suc n)) (~ j) ; (i = i1) → lUnitₖ (suc n) (0ₖ (suc n)) (~ j) ; (j = i0) → Kn→ΩKn+1-hom n (h a) (l a) (~ k) i ; (j = i1) → cong₂Funct (λ x y → x +[ (suc n) ]ₖ y) (Kn→ΩKn+1 n (h a)) (Kn→ΩKn+1 n (l a)) (~ k) i }) (hcomp (λ k → λ { (i = i0) → rUnitₖ (suc n) (0ₖ (suc n)) (~ j) ; (i = i1) → lUnitₖ (suc n) (Kn→ΩKn+1 n (l a) k) (~ j)}) (hcomp (λ k → λ { (i = i0) → rUnitₖ (suc n) (0ₖ (suc n)) (~ j) ; (i = i1) → lUnitₖ≡rUnitₖ (suc n) (~ k) (~ j) ; (j = i0) → Kn→ΩKn+1 n (h a) i ; (j = i1) → (Kn→ΩKn+1 n (h a) i) +[ (suc n) ]ₖ coHom-pt (suc n)}) (rUnitₖ (suc n) (Kn→ΩKn+1 n (h a) i) (~ j)))) dIsHom : (n : ℕ) → isGroupHom (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (sRec setTruncIsSet λ a → ∣ d-pre n a ∣₂) dIsHom n = sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ f g i → ∣ funExt (λ x → dHomHelper n f g x) i ∣₂ d : (n : ℕ) → GroupHom (coHomGr n C) (coHomGr (suc n) (Pushout f g)) GroupHom.fun (d n) = sRec setTruncIsSet λ a → ∣ d-pre n a ∣₂ GroupHom.isHom (d n) = dIsHom n -- The long exact sequence Im-d⊂Ker-i : (n : ℕ) (x : ⟨ (coHomGr (suc n) (Pushout f g)) ⟩) → isInIm (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (d n) x → isInKer (coHomGr (suc n) (Pushout f g)) (×coHomGr (suc n) A B) (i (suc n)) x Im-d⊂Ker-i n = sElim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ a → pRec (isOfHLevelPath' 1 (isSet× setTruncIsSet setTruncIsSet) _ _) (sigmaElim (λ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ δ b i → sRec (isSet× setTruncIsSet setTruncIsSet) (λ δ → ∣ (λ x → δ (inl x)) ∣₂ , ∣ (λ x → δ (inr x)) ∣₂ ) (b (~ i))) Ker-i⊂Im-d : (n : ℕ) (x : ⟨ coHomGr (suc n) (Pushout f g) ⟩) → isInKer (coHomGr (suc n) (Pushout f g)) (×coHomGr (suc n) A B) (i (suc n)) x → isInIm (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (d n) x Ker-i⊂Im-d n = sElim (λ _ → isSetΠ λ _ → isProp→isSet propTruncIsProp) λ a p → pRec {A = (λ x → a (inl x)) ≡ λ _ → 0ₖ (suc n)} (isProp→ propTruncIsProp) (λ p1 → pRec propTruncIsProp λ p2 → ∣ ∣ (λ c → ΩKn+1→Kn n (sym (cong (λ F → F (f c)) p1) ∙∙ cong a (push c) ∙∙ cong (λ F → F (g c)) p2)) ∣₂ , cong ∣_∣₂ (funExt (λ δ → helper a p1 p2 δ)) ∣₁) (Iso.fun PathIdTrunc₀Iso (cong fst p)) (Iso.fun PathIdTrunc₀Iso (cong snd p)) where helper : (F : (Pushout f g) → coHomK (suc n)) (p1 : Path (_ → coHomK (suc n)) (λ a₁ → F (inl a₁)) (λ _ → coHom-pt (suc n))) (p2 : Path (_ → coHomK (suc n)) (λ a₁ → F (inr a₁)) (λ _ → coHom-pt (suc n))) → (δ : Pushout f g) → d-pre n (λ c → ΩKn+1→Kn n ((λ i₁ → p1 (~ i₁) (f c)) ∙∙ cong F (push c) ∙∙ cong (λ F → F (g c)) p2)) δ ≡ F δ helper F p1 p2 (inl x) = sym (cong (λ f → f x) p1) helper F p1 p2 (inr x) = sym (cong (λ f → f x) p2) helper F p1 p2 (push a i) j = hcomp (λ k → λ { (i = i0) → p1 (~ j) (f a) ; (i = i1) → p2 (~ j) (g a) ; (j = i0) → Iso.rightInv (Iso-Kn-ΩKn+1 n) ((λ i₁ → p1 (~ i₁) (f a)) ∙∙ cong F (push a) ∙∙ cong (λ F₁ → F₁ (g a)) p2) (~ k) i ; (j = i1) → F (push a i)}) (doubleCompPath-filler (sym (cong (λ F → F (f a)) p1)) (cong F (push a)) (cong (λ F → F (g a)) p2) (~ j) i) open GroupHom Im-i⊂Ker-Δ : (n : ℕ) (x : ⟨ ×coHomGr n A B ⟩) → isInIm (coHomGr n (Pushout f g)) (×coHomGr n A B) (i n) x → isInKer (×coHomGr n A B) (coHomGr n C) (Δ n) x Im-i⊂Ker-Δ n (Fa , Fb) = sElim {B = λ Fa → (Fb : _) → isInIm (coHomGr n (Pushout f g)) (×coHomGr n A B) (i n) (Fa , Fb) → isInKer (×coHomGr n A B) (coHomGr n C) (Δ n) (Fa , Fb)} (λ _ → isSetΠ2 λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _) (λ Fa → sElim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ Fb → pRec (setTruncIsSet _ _) (sigmaElim (λ x → isProp→isSet (setTruncIsSet _ _)) λ Fd p → helper n Fa Fb Fd p)) Fa Fb where helper : (n : ℕ) (Fa : A → coHomK n) (Fb : B → coHomK n) (Fd : (Pushout f g) → coHomK n) → (fun (i n) ∣ Fd ∣₂ ≡ (∣ Fa ∣₂ , ∣ Fb ∣₂)) → (fun (Δ n)) (∣ Fa ∣₂ , ∣ Fb ∣₂) ≡ 0ₕ n helper n Fa Fb Fd p = cong (fun (Δ n)) (sym p) ∙∙ (λ i → ∣ (λ x → Fd (inl (f x))) ∣₂ -[ n ]ₕ ∣ (λ x → Fd (push x (~ i))) ∣₂ ) ∙∙ rCancelₕ n ∣ (λ x → Fd (inl (f x))) ∣₂ Ker-Δ⊂Im-i : (n : ℕ) (a : ⟨ ×coHomGr n A B ⟩) → isInKer (×coHomGr n A B) (coHomGr n C) (Δ n) a → isInIm (coHomGr n (Pushout f g)) (×coHomGr n A B) (i n) a Ker-Δ⊂Im-i n = prodElim (λ _ → isSetΠ (λ _ → isProp→isSet propTruncIsProp)) (λ Fa Fb p → pRec propTruncIsProp (λ q → ∣ ∣ helpFun Fa Fb q ∣₂ , refl ∣₁) (helper Fa Fb p)) where helper : (Fa : A → coHomK n) (Fb : B → coHomK n) → fun (Δ n) (∣ Fa ∣₂ , ∣ Fb ∣₂) ≡ 0ₕ n → ∥ Path (_ → _) (λ c → Fa (f c)) (λ c → Fb (g c)) ∥₁ helper Fa Fb p = Iso.fun PathIdTrunc₀Iso (sym (cong ∣_∣₂ (funExt (λ x → sym (assocₖ n _ _ _) ∙∙ cong (λ y → Fa (f x) +[ n ]ₖ y) (lCancelₖ n (Fb (g x))) ∙∙ rUnitₖ n (Fa (f x))))) ∙∙ cong (λ x → x +[ n ]ₕ ∣ (λ c → Fb (g c)) ∣₂) p ∙∙ lUnitₕ n _) helpFun : (Fa : A → coHomK n) (Fb : B → coHomK n) → ((λ c → Fa (f c)) ≡ (λ c → Fb (g c))) → Pushout f g → coHomK n helpFun Fa Fb p (inl x) = Fa x helpFun Fa Fb p (inr x) = Fb x helpFun Fa Fb p (push a i) = p i a private distrHelper : (n : ℕ) (p q : _) → ΩKn+1→Kn n p +[ n ]ₖ (-[ n ]ₖ ΩKn+1→Kn n q) ≡ ΩKn+1→Kn n (p ∙ sym q) distrHelper n p q = cong (λ x → ΩKn+1→Kn n p +[ n ]ₖ x) helper ∙ sym (ΩKn+1→Kn-hom n _ _) where helper : -[ n ]ₖ ΩKn+1→Kn n q ≡ ΩKn+1→Kn n (sym q) helper = sym (rUnitₖ n _) ∙∙ cong (λ x → (-[ n ]ₖ (ΩKn+1→Kn n q)) +[ n ]ₖ x) (sym helper2) ∙∙ (assocₖ n _ _ _ ∙∙ cong (λ x → x +[ n ]ₖ (ΩKn+1→Kn n (sym q))) (lCancelₖ n _) ∙∙ lUnitₖ n _) where helper2 : ΩKn+1→Kn n q +[ n ]ₖ (ΩKn+1→Kn n (sym q)) ≡ coHom-pt n helper2 = sym (ΩKn+1→Kn-hom n q (sym q)) ∙∙ cong (ΩKn+1→Kn n) (rCancel q) ∙∙ ΩKn+1→Kn-refl n Ker-d⊂Im-Δ : (n : ℕ) (a : coHom n C) → isInKer (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (d n) a → isInIm (×coHomGr n A B) (coHomGr n C) (Δ n) a Ker-d⊂Im-Δ n = sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp) λ Fc p → pRec propTruncIsProp (λ p → ∣ (∣ (λ a → ΩKn+1→Kn n (cong (λ f → f (inl a)) p)) ∣₂ , ∣ (λ b → ΩKn+1→Kn n (cong (λ f → f (inr b)) p)) ∣₂) , Iso.inv (PathIdTrunc₀Iso) ∣ funExt (λ c → helper2 Fc p c) ∣₁ ∣₁) (Iso.fun (PathIdTrunc₀Iso) p) where helper2 : (Fc : C → coHomK n) (p : d-pre n Fc ≡ (λ _ → coHom-pt (suc n))) (c : C) → ΩKn+1→Kn n (λ i₁ → p i₁ (inl (f c))) -[ n ]ₖ (ΩKn+1→Kn n (λ i₁ → p i₁ (inr (g c)))) ≡ Fc c helper2 Fc p c = distrHelper n _ _ ∙∙ cong (ΩKn+1→Kn n) helper3 ∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 n) (Fc c) where helper3 : (λ i₁ → p i₁ (inl (f c))) ∙ sym (λ i₁ → p i₁ (inr (g c))) ≡ Kn→ΩKn+1 n (Fc c) helper3 = cong ((λ i₁ → p i₁ (inl (f c))) ∙_) (lUnit _) ∙ sym (PathP→compPathR (cong (λ f → cong f (push c)) p)) Im-Δ⊂Ker-d : (n : ℕ) (a : coHom n C) → isInIm (×coHomGr n A B) (coHomGr n C) (Δ n) a → isInKer (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (d n) a Im-Δ⊂Ker-d n = sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ Fc → pRec (isOfHLevelPath' 1 setTruncIsSet _ _) (sigmaProdElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) λ Fa Fb p → pRec (isOfHLevelPath' 1 setTruncIsSet _ _) (λ q → ((λ i → fun (d n) ∣ (q (~ i)) ∣₂) ∙ dΔ-Id n Fa Fb)) (Iso.fun (PathIdTrunc₀Iso) p)) where d-preLeftId : (n : ℕ) (Fa : A → coHomK n)(d : (Pushout f g)) → d-pre n (Fa ∘ f) d ≡ 0ₖ (suc n) d-preLeftId n Fa (inl x) = Kn→ΩKn+1 n (Fa x) d-preLeftId n Fa (inr x) = refl d-preLeftId n Fa (push a i) j = Kn→ΩKn+1 n (Fa (f a)) (j ∨ i) d-preRightId : (n : ℕ) (Fb : B → coHomK n) (d : (Pushout f g)) → d-pre n (Fb ∘ g) d ≡ 0ₖ (suc n) d-preRightId n Fb (inl x) = refl d-preRightId n Fb (inr x) = sym (Kn→ΩKn+1 n (Fb x)) d-preRightId n Fb (push a i) j = Kn→ΩKn+1 n (Fb (g a)) (~ j ∧ i) dΔ-Id : (n : ℕ) (Fa : A → coHomK n) (Fb : B → coHomK n) → fun (d n) (fun (Δ n) (∣ Fa ∣₂ , ∣ Fb ∣₂)) ≡ 0ₕ (suc n) dΔ-Id n Fa Fb = -distrLemma n (suc n) (d n) ∣ Fa ∘ f ∣₂ ∣ Fb ∘ g ∣₂ ∙∙ (λ i → ∣ (λ x → d-preLeftId n Fa x i) ∣₂ -[ (suc n) ]ₕ ∣ (λ x → d-preRightId n Fb x i) ∣₂) ∙∙ rCancelₕ (suc n) (0ₕ (suc n))
{ "alphanum_fraction": 0.4502625438, "avg_line_length": 55.2903225806, "ext": "agda", "hexsha": "881f65fb3e82620a7c11a105c53191f31604e787", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/ZCohomology/MayerVietorisUnreduced.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/ZCohomology/MayerVietorisUnreduced.agda", "max_line_length": 133, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/ZCohomology/MayerVietorisUnreduced.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 5691, "size": 13712 }
module Lib where open import Data.List open import Relation.Binary.PropositionalEquality data _∧_ (A : Set) (B : Set) : Set where ∧-intro : A → B → (A ∧ B) -------------------------------- -- Extension with Pairs and Sums -------------------------------- -------------------------------- -- Basic Set-up -------------------------------- record Sg (S : Set) (T : S → Set) : Set where constructor _,_ field ffst : S ssnd : T ffst open Sg public --pair type on the agda level _*_ : Set → Set → Set S * T = Sg S \ _ → T --proj functions on the agda level fst : {A B : Set} → A * B → A fst (a , b) = a snd : {A B : Set} → A * B → B snd (a , b) = b --sum type on the agda level data _⨄_ (A : Set) (B : Set) : Set where tl : (a : A) → A ⨄ B tr : (b : B) → A ⨄ B --typeofSum : ∀ {A B : Set} (sum : A ⨄ B) → Set --typeofSum {A = A} (tl _) = A --typeofSum {B = B} (tr _) = B -- Pointer into a list. It is similar to list membership as defined in -- Data.List.AnyMembership, rather than going through propositional -- equality, it asserts the existence of the referenced element -- directly. module ListReference where infix 4 _∈_ data _∈_ {A : Set} : A → List A → Set where hd : ∀ {x xs} → x ∈ (x ∷ xs) tl : ∀ {x y xs} → x ∈ xs → x ∈ (y ∷ xs) open ListReference public mapIdx : {A B : Set} → (f : A → B) → {x : A} {xs : List A} → x ∈ xs → f x ∈ map f xs mapIdx f hd = hd mapIdx f (tl x₁) = tl (mapIdx f x₁) -- Extension of lists at the front and, as a generalization, extension -- of lists somewhere in the middle. module ListExtension where open import Relation.Binary.PropositionalEquality -- Extension of a list by consing elements at the front. data _↝_ {A : Set} : List A → List A → Set where ↝-refl : ∀ {Γ} → Γ ↝ Γ ↝-extend : ∀ {Γ Γ' τ} → Γ ↝ Γ' → Γ ↝ (τ ∷ Γ') -- Combining two transitive extensions. ↝-trans : ∀ {A : Set}{Γ Γ' Γ'' : List A} → Γ ↝ Γ' → Γ' ↝ Γ'' → Γ ↝ Γ'' ↝-trans Γ↝Γ' ↝-refl = Γ↝Γ' ↝-trans Γ↝Γ' (↝-extend Γ'↝Γ'') = ↝-extend (↝-trans Γ↝Γ' Γ'↝Γ'') -- Of course, ↝-refl is the identity for combining two extensions. lem-↝-refl-id : ∀ {A : Set} {Γ Γ' : List A} → (Γ↝Γ' : Γ ↝ Γ') → Γ↝Γ' ≡ (↝-trans ↝-refl Γ↝Γ') lem-↝-refl-id ↝-refl = refl lem-↝-refl-id (↝-extend Γ↝Γ') = cong ↝-extend (lem-↝-refl-id Γ↝Γ') -- Extending a list in the middle: data _↝_↝_ {A : Set} : List A → List A → List A → Set where -- First prepend the extension list to the common suffix ↝↝-base : ∀ {Γ Γ''} → Γ ↝ Γ'' → Γ ↝ [] ↝ Γ'' -- ... and then add the common prefix ↝↝-extend : ∀ {Γ Γ' Γ'' τ} → Γ ↝ Γ' ↝ Γ'' → (τ ∷ Γ) ↝ (τ ∷ Γ') ↝ (τ ∷ Γ'') open ListExtension public --------------------------------- -- helper functions for rewriting --------------------------------- →tl : ∀ {A B x' y'} (x y : A ⨄ B)→ x ≡ y → x ≡ tl x' → y ≡ tl y' → x' ≡ y' →tl {x' = x'} px py a b c rewrite b | c with py | a ... | H | refl = refl -- →tl {α} {α'} {.y'} {y'} px py a b c | refl | ._ | refl | ._ | refl = ? -- rewrite b | c = {!!} →tr : ∀ {A B x' y'} (x y : A ⨄ B)→ x ≡ y → x ≡ tr x' → y ≡ tr y' → x' ≡ y' →tr px py a b c rewrite c | b with px | a ... | H | refl = refl ---------------------------------
{ "alphanum_fraction": 0.4727810651, "avg_line_length": 33.137254902, "ext": "agda", "hexsha": "7ab7a85a449e7a4c39b6f797b931c67c11ed97f1", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-10-15T09:01:37.000Z", "max_forks_repo_forks_event_min_datetime": "2019-10-15T09:01:37.000Z", "max_forks_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "luminousfennell/polybta", "max_forks_repo_path": "Lib.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "luminousfennell/polybta", "max_issues_repo_path": "Lib.agda", "max_line_length": 97, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ef878f7fa5afa51fb7a14cd8f7f75da0af1b9deb", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "luminousfennell/polybta", "max_stars_repo_path": "Lib.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-15T04:35:29.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-15T04:35:29.000Z", "num_tokens": 1263, "size": 3380 }
module Base where module Classes where record LeastUpperBound {ℓ} (A : Set ℓ) : Set ℓ where infixl 6 _⊔_ field _⊔_ : A → A → A open LeastUpperBound ⦃ … ⦄ public record Successor {ℓ} (A : Set ℓ) : Set ℓ where field ↑ : A → A open Successor ⦃ … ⦄ public module Primitive where import Agda.Primitive as P open Classes instance LeastUpperBoundLevel : LeastUpperBound P.Level LeastUpperBound._⊔_ LeastUpperBoundLevel = P._⊔_ instance SuccessorLevel : Successor P.Level Successor.↑ SuccessorLevel = P.lsuc open Primitive open Classes infix -65536 ℞_ ℞_ : ∀ ℓ → Set _ ℞_ ℓ = Set ℓ record IsIndexedReflexive {𝔵} {𝔛 : Set 𝔵} {𝔞} (𝔄 : 𝔛 → Set 𝔞) {ℓ} (ėq : ∀ {𝑥} → 𝔄 𝑥 → 𝔄 𝑥 → Set ℓ) : ℞ 𝔵 ⊔ 𝔞 ⊔ ℓ where private infix 4 _≈̇_ _≈̇_ = ėq field ṙeflexivity : ∀ {𝑥} (a : 𝔄 𝑥) → a ≈̇ a open IsIndexedReflexive ⦃ … ⦄ public record IsIndexedSymmetric {𝔵} {𝔛 : Set 𝔵} {𝔞} (𝔄 : 𝔛 → Set 𝔞) {ℓ} (ėq : ∀ {𝑥} → 𝔄 𝑥 → 𝔄 𝑥 → Set ℓ) : ℞ 𝔵 ⊔ 𝔞 ⊔ ℓ where private infix 4 _≈̇_ _≈̇_ = ėq field ṡymmetry : ∀ {𝑥} (a b : 𝔄 𝑥) → a ≈̇ b → b ≈̇ a open IsIndexedSymmetric ⦃ … ⦄ public record IsIndexedTransitive {𝔵} {𝔛 : Set 𝔵} {𝔞} (𝔄 : 𝔛 → Set 𝔞) {ℓ} (ėq : ∀ {𝑥} → 𝔄 𝑥 → 𝔄 𝑥 → Set ℓ) : ℞ 𝔵 ⊔ 𝔞 ⊔ ℓ where private infix 4 _≈̇_ _≈̇_ = ėq field ṫransitivity : ∀ {𝑥} (a b c : 𝔄 𝑥) → a ≈̇ b → b ≈̇ c → a ≈̇ c open IsIndexedTransitive ⦃ … ⦄ public record IsIndexedEquivalence {𝔵} {𝔛 : Set 𝔵} {𝔞} (𝔄 : 𝔛 → Set 𝔞) {ℓ} (ėq : ∀ {𝑥 : 𝔛} → 𝔄 𝑥 → 𝔄 𝑥 → Set ℓ) : ℞ 𝔵 ⊔ 𝔞 ⊔ ℓ where field ⦃ isReflexive ⦄ : IsIndexedReflexive 𝔄 ėq ⦃ isSymmetric ⦄ : IsIndexedSymmetric 𝔄 ėq ⦃ isTransitive ⦄ : IsIndexedTransitive 𝔄 ėq open IsIndexedEquivalence ⦃ … ⦄ public record IndexedEquivalence {𝔵} {𝔛 : Set 𝔵} {𝔞} (𝔄 : 𝔛 → Set 𝔞) ℓ : ℞ 𝔵 ⊔ 𝔞 ⊔ ↑ ℓ where infix 4 _≈̇_ field _≈̇_ : ∀ {𝑥 : 𝔛} → 𝔄 𝑥 → 𝔄 𝑥 → Set ℓ ⦃ isIndexedEquivalence ⦄ : IsIndexedEquivalence 𝔄 _≈̇_ open import Prelude.Nat open import Prelude.Fin open import Prelude.Equality open import Prelude.Function postulate eFin : ∀ {n} → Fin n → Fin n → Set eqFin : ∀ {n} → Fin n → Fin n → Set eqFin = _≡_ module IndexedEquivalence₁ = IndexedEquivalence open IndexedEquivalence₁ ⦃ … ⦄ renaming (_≈̇_ to _≈̇₁_) module IndexedEquivalence₂ = IndexedEquivalence open IndexedEquivalence₂ ⦃ … ⦄ renaming (_≈̇_ to _≈̇₂_) postulate instance IndexedEquivalenceFinProp : IndexedEquivalence Fin _ -- instance IsIndexedReflexiveEqFin : IsIndexedReflexive Fin _≡_ -- IsIndexedReflexive.ṙeflexivity IsIndexedReflexiveEqFin a = it -- {- -- instance IndexedEquivalenceProp : ∀ {𝔵} {𝔛 : Set 𝔵} {𝔞} {𝔄 : 𝔛 → Set 𝔞} → IndexedEquivalence 𝔄 𝔞 -- IndexedEquivalence._≈̇_ IndexedEquivalenceProp = _≡_ -- IsIndexedEquivalence.isReflexive (IndexedEquivalence.isIndexedEquivalence IndexedEquivalenceProp) = {!!} -- IsIndexedEquivalence.isSymmetric (IndexedEquivalence.isIndexedEquivalence IndexedEquivalenceProp) = {!!} -- IsIndexedEquivalence.isTransitive (IndexedEquivalence.isIndexedEquivalence IndexedEquivalenceProp) = {!!} -- -} -- instance IndexedEquivalenceFinProp : IndexedEquivalence Fin _ -- IndexedEquivalence._≈̇_ IndexedEquivalenceFinProp = _≡_ -- IsIndexedEquivalence.isReflexive (IndexedEquivalence.isIndexedEquivalence IndexedEquivalenceFinProp) = it -- IsIndexedEquivalence.isSymmetric (IndexedEquivalence.isIndexedEquivalence IndexedEquivalenceFinProp) = {!!} -- IsIndexedEquivalence.isTransitive (IndexedEquivalence.isIndexedEquivalence IndexedEquivalenceFinProp) = {!!} -- someFin : Fin 5 -- someFin = suc (suc zero) -- eqFinLemma : someFin ≈̇ someFin -- eqFinLemma = ṙeflexivity someFin -- record IsReflexive {𝔞} {𝔄 : Set 𝔞} {ℓ} (eq : 𝔄 → 𝔄 → Set ℓ) : ℞ 𝔞 ⊔ ℓ where -- private -- infix 4 _≈_ -- _≈_ = eq -- field -- reflexivity : ∀ a → a ≈ a -- open IsReflexive ⦃ … ⦄ -- record IsSymmetric {𝔞} {𝔄 : Set 𝔞} {ℓ} (eq : 𝔄 → 𝔄 → Set ℓ) : ℞ 𝔞 ⊔ ℓ where -- private -- infix 4 _≈_ -- _≈_ = eq -- field -- symmetry : ∀ a b → a ≈ b → b ≈ a -- open IsReflexive ⦃ … ⦄ -- record IsTransitive {𝔞} {𝔄 : Set 𝔞} {ℓ} (eq : 𝔄 → 𝔄 → Set ℓ) : ℞ 𝔞 ⊔ ℓ where -- private -- infix 4 _≈_ -- _≈_ = eq -- field -- transitivity : ∀ a b c → a ≈ b → b ≈ c → a ≈ c -- open IsTransitive ⦃ … ⦄ -- record IsEquivalence {𝔞} {𝔄 : Set 𝔞} {ℓ} (eq : 𝔄 → 𝔄 → Set ℓ) : ℞ 𝔞 ⊔ ℓ where -- field -- ⦃ isReflexive ⦄ : IsReflexive eq -- ⦃ isSymmetric ⦄ : IsSymmetric eq -- ⦃ isTransitive ⦄ : IsTransitive eq -- open IsEquivalence ⦃ … ⦄ -- record Equivalence {𝔞} {𝔄 : Set 𝔞} ℓ : ℞ 𝔞 ⊔ ↑ ℓ where -- infix 4 _≈_ -- field -- _≈_ : 𝔄 → 𝔄 → Set ℓ -- ⦃ isEquivalence ⦄ : IsEquivalence _≈_ -- open Equivalence ⦃ … ⦄ -- data IndexedTree {𝔵} {𝔛 : Set 𝔵} {𝔞} (𝔄 : 𝔛 → Set 𝔞) : ℞ 𝔵 ⊔ 𝔞 where -- leaf : IndexedTree 𝔄 -- _fork_ : IndexedTree 𝔄 → IndexedTree 𝔄 → IndexedTree 𝔄 -- variable : ∀ {𝑥} → 𝔄 𝑥 → IndexedTree 𝔄 -- infix 4 _≈ᵗ_ -- data _≈ᵗ_ {𝔵} {𝔛 : Set 𝔵} {𝔞} {𝔄 : 𝔛 → Set 𝔞} ⦃ _ : IndexedEquivalence 𝔄 𝔞 ⦄ : IndexedTree 𝔄 → IndexedTree 𝔄 → ℞ 𝔵 ⊔ 𝔞 where -- leaf : leaf ≈ᵗ leaf -- _fork_ : ∀ {left-t₁ left-t₂ right-t₁ right-t₂} → -- left-t₁ ≈ᵗ left-t₂ → -- right-t₁ ≈ᵗ right-t₂ → -- left-t₁ fork right-t₁ ≈ᵗ left-t₂ fork right-t₂ -- variable : ∀ {a} → {left-x right-x : 𝔄 a} → left-x ≈̇ right-x → variable left-x ≈ᵗ variable right-x -- -- reflexivityIndexedTreeEquality : ∀ {𝔵} {𝔛 : Set 𝔵} {𝔞} (𝔄 : 𝔛 → Set 𝔞) ⦃ _ : IndexedEquivalence 𝔄 𝔞 ⦄ (a : IndexedTree 𝔄) → a ≈ᵗ a -- -- reflexivityIndexedTreeEquality 𝔄 leaf = leaf -- -- reflexivityIndexedTreeEquality 𝔄 (a fork a₁) = (reflexivityIndexedTreeEquality 𝔄 _≈_ a) fork (reflexivityIndexedTreeEquality 𝔄 _≈_ a₁) -- -- reflexivityIndexedTreeEquality 𝔄 (variable x₁) = variable (ṙeflexivity _) -- -- -- instance IsEquivalenceIndexedTreeEquality : ∀ {𝔵} {𝔛 : Set 𝔵} {𝔞} (𝔄 : 𝔛 → Set 𝔞) {ℓ} (_≈_ : ∀ {𝑥} → 𝔄 𝑥 → 𝔄 𝑥 → Set ℓ) ⦃ _ : IsIndexedEquivalence 𝔄 _≈_ ⦄ → IsEquivalence ((IndexedTreeEquality 𝔄 _≈_)) -- -- -- IsReflexive.reflexivity (IsEquivalence.isReflexive (IsEquivalenceIndexedTreeEquality 𝔄 _≈_)) a = reflexivityIndexedTreeEquality 𝔄 _≈_ a -- -- -- IsEquivalence.isSymmetric (IsEquivalenceIndexedTreeEquality 𝔄 _≈_) = {!!} -- -- -- IsEquivalence.isTransitive (IsEquivalenceIndexedTreeEquality 𝔄 _≈_) = {!!} -- -- -- data Tree {𝔞} (𝔄 : Set 𝔞) : ℞ 𝔞 where -- -- -- leaf : Tree 𝔄 -- -- -- _fork_ : Tree 𝔄 → Tree 𝔄 → Tree 𝔄 -- -- -- variable : 𝔄 → Tree 𝔄
{ "alphanum_fraction": 0.6251548947, "avg_line_length": 33.625, "ext": "agda", "hexsha": "5f496c95a40402c5bb2c8be45039fb24f83752a0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/Base.agda", "max_line_length": 209, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2830, "size": 6456 }
-- exercises-01-monday.agda open import Data.Nat variable A B C : Set -- Exercise 1 add3 : ℕ → ℕ add3 x = x + 3 tw : (A → A) → A → A tw f n = f (f n) -- tw = λ f n → f (f n) -- evaluate: "tw tw add3 1"; derive the result (in a comment) step by step {- tw tw add3 1 = = tw (tw add3) 1 = = (tw add3) (tw add3 1) = = (tw add3) (add3 (add3 1)) = tw add3 7 = = add3 (add3 7) = = 13 -} -- Exercise 2 -- derive lambda terms with the following types f₀ : (A → B) → (B → C) → (A → C) f₀ f g a = g (f a) f₁ : (A → B) → ((A → C) → C) → ((B → C) → C) f₁ f g h = g λ a -> h (f a) f₂ : (A → B → C) → B → A → C f₂ f b a = f a b -- Exercise 3 -- derive a function tw-c which behaves the same as tw using only S, K (and I -- which is defined using S and K below). K : A → B → A K = λ a b → a S : (A → B → C) → (A → B) → A → C S = λ f g x → f x (g x) -- I = λ x → x I : A → A I {A} = S K (K {B = A}) {- λ f n → f (f n) = = λ f → λ n → f (f n) = = λ f → S (λ n → f) (λ n → f n) = = λ f → S (K f) f = = S (λ f → S (K f) (λ f → f) = = S (S (λ f → S) (λ f → (K f)) I = = S (S (K S) K) I = -} tw-c : (A → A) → A → A tw-c = S (S (K S) K) I
{ "alphanum_fraction": 0.4409246575, "avg_line_length": 17.4328358209, "ext": "agda", "hexsha": "3b8af5ba63501576f184f8c91471b6c2573831c7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "FoxySeta/mgs-2021", "max_forks_repo_path": "Type Theory/exercises-01-monday.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_issues_repo_issues_event_max_datetime": "2021-07-14T20:35:48.000Z", "max_issues_repo_issues_event_min_datetime": "2021-07-14T20:34:53.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "FoxySeta/mgs-2021", "max_issues_repo_path": "Type Theory/exercises-01-monday.agda", "max_line_length": 77, "max_stars_count": null, "max_stars_repo_head_hexsha": "f328e596d98a7d052b34144447dd14de0f57e534", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "FoxySeta/mgs-2021", "max_stars_repo_path": "Type Theory/exercises-01-monday.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 546, "size": 1168 }
module Issue840a where ------------------------------------------------------------------------ -- Prelude record ⊤ : Set where data ⊥ : Set where data _≡_ {A : Set} (x : A) : A → Set where refl : x ≡ x data Bool : Set where true false : Bool {-# BUILTIN BOOL Bool #-} {-# BUILTIN TRUE true #-} {-# BUILTIN FALSE false #-} postulate String : Set {-# BUILTIN STRING String #-} primitive primStringEquality : String → String → Bool infixr 4 _,_ record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : B proj₁ ------------------------------------------------------------------------ -- Other stuff mutual infixl 5 _,_∶_ data Signature : Set₁ where ∅ : Signature _,_∶_ : (Sig : Signature) (ℓ : String) (A : Record Sig → Set) → Signature record Record (Sig : Signature) : Set where constructor rec field fun : Record-fun Sig Record-fun : Signature → Set Record-fun ∅ = ⊤ Record-fun (Sig , ℓ ∶ A) = Σ (Record Sig) A _∈_ : String → Signature → Set ℓ ∈ ∅ = ⊥ ℓ ∈ (Sig , ℓ′ ∶ A) with primStringEquality ℓ ℓ′ ... | true = ⊤ ... | false = ℓ ∈ Sig Restrict : (Sig : Signature) (ℓ : String) → ℓ ∈ Sig → Signature Restrict ∅ ℓ () Restrict (Sig , ℓ′ ∶ A) ℓ ℓ∈ with primStringEquality ℓ ℓ′ ... | true = Sig ... | false = Restrict Sig ℓ ℓ∈ Proj : (Sig : Signature) (ℓ : String) {ℓ∈ : ℓ ∈ Sig} → Record (Restrict Sig ℓ ℓ∈) → Set Proj ∅ ℓ {} Proj (Sig , ℓ′ ∶ A) ℓ {ℓ∈} with primStringEquality ℓ ℓ′ ... | true = A ... | false = Proj Sig ℓ {ℓ∈} _∣_ : {Sig : Signature} → Record Sig → (ℓ : String) {ℓ∈ : ℓ ∈ Sig} → Record (Restrict Sig ℓ ℓ∈) _∣_ {Sig = ∅} r ℓ {} _∣_ {Sig = Sig , ℓ′ ∶ A} (rec r) ℓ {ℓ∈} with primStringEquality ℓ ℓ′ ... | true = Σ.proj₁ r ... | false = _∣_ (Σ.proj₁ r) ℓ {ℓ∈} infixl 5 _·_ _·_ : {Sig : Signature} (r : Record Sig) (ℓ : String) {ℓ∈ : ℓ ∈ Sig} → Proj Sig ℓ {ℓ∈} (r ∣ ℓ) _·_ {Sig = ∅} r ℓ {} _·_ {Sig = Sig , ℓ′ ∶ A} (rec r) ℓ {ℓ∈} with primStringEquality ℓ ℓ′ ... | true = Σ.proj₂ r ... | false = _·_ (Σ.proj₁ r) ℓ {ℓ∈} R : Set → Signature R A = ∅ , "f" ∶ (λ _ → A → A) , "x" ∶ (λ _ → A) , "lemma" ∶ (λ r → ∀ y → (r · "f") y ≡ y) record GS (A B : Set) : Set where field get : A → B set : A → B → A get-set : ∀ a b → get (set a b) ≡ b set-get : ∀ a → set a (get a) ≡ a f : {A : Set} → GS (Record (R A)) (Record (∅ , "f" ∶ (λ _ → A → A) , "lemma" ∶ (λ r → ∀ x → (r · "f") x ≡ x))) f = record { set = λ r f-lemma → rec (rec (rec (rec _ , f-lemma · "f") , r · "x") , f-lemma · "lemma") ; get-set = λ { (rec (rec (rec (_ , _) , _) , _)) (rec (rec (_ , _) , _)) → refl } ; set-get = λ { (rec (rec (rec (rec _ , _) , _) , _)) → refl } }
{ "alphanum_fraction": 0.4480892797, "avg_line_length": 25.2735042735, "ext": "agda", "hexsha": "adfa205c1c9019600de5ef946dcfa148f9e57912", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue840a.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue840a.agda", "max_line_length": 72, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue840a.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 1117, "size": 2957 }
open import Relation.Binary.Core module PLRTree.Insert.Heap {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import Data.Sum open import Order.Total _≤_ tot≤ open import PLRTree {A} open import PLRTree.Compound {A} open import PLRTree.Insert _≤_ tot≤ open import PLRTree.Insert.Properties _≤_ tot≤ open import PLRTree.Heap _≤_ open import PLRTree.Heap.Properties _≤_ trans≤ lemma-insert-≤* : {x y : A}{t : PLRTree} → x ≤ y → x ≤* t → x ≤* insert y t lemma-insert-≤* {y = y} x≤y (lf≤* x) = nd≤* x≤y (lf≤* x) (lf≤* x) lemma-insert-≤* {y = y} x≤y (nd≤* {perfect} {x} {z} {l} {r} x≤z x≤*l x≤*r) with tot≤ y z | l | r ... | inj₁ y≤z | leaf | leaf = nd≤* x≤y (nd≤* x≤z x≤*r x≤*r) x≤*r ... | inj₁ y≤z | node _ _ _ _ | leaf = nd≤* x≤y (lemma-insert-≤* x≤z x≤*l) x≤*r ... | inj₁ y≤z | leaf | node _ _ _ _ = nd≤* x≤y (nd≤* x≤z x≤*l x≤*l) x≤*r ... | inj₁ y≤z | node _ _ _ _ | node _ _ _ _ = nd≤* x≤y (lemma-insert-≤* x≤z x≤*l) x≤*r ... | inj₂ z≤y | leaf | leaf = nd≤* x≤z (nd≤* x≤y x≤*r x≤*r) x≤*r ... | inj₂ z≤y | node _ _ _ _ | leaf = nd≤* x≤z (lemma-insert-≤* x≤y x≤*l) x≤*r ... | inj₂ z≤y | leaf | node _ _ _ _ = nd≤* x≤z (nd≤* x≤y x≤*l x≤*l) x≤*r ... | inj₂ z≤y | node _ _ _ _ | node _ _ _ _ = nd≤* x≤z (lemma-insert-≤* x≤y x≤*l) x≤*r lemma-insert-≤* {y = y} x≤y (nd≤* {left} {x} {z} {l} {r} x≤z x≤*l x≤*r) with tot≤ y z ... | inj₁ y≤z with insert z l | lemma-insert-≤* (trans≤ x≤y y≤z) x≤*l | lemma-insert-compound z l ... | node perfect z' l' r' | x≤*lᵢ | compound = nd≤* x≤y x≤*lᵢ x≤*r ... | node right z' l' r' | x≤*lᵢ | compound = nd≤* x≤y x≤*lᵢ x≤*r ... | node left z' l' r' | x≤*lᵢ | compound = nd≤* x≤y x≤*lᵢ x≤*r lemma-insert-≤* {y = y} x≤y (nd≤* {left} {x} {z} {l} {r} x≤z x≤*l x≤*r) | inj₂ z≤y with insert y l | lemma-insert-≤* x≤y x≤*l | lemma-insert-compound y l ... | node perfect y' l' r' | x≤*lᵢ | compound = nd≤* x≤z x≤*lᵢ x≤*r ... | node right y' l' r' | x≤*lᵢ | compound = nd≤* x≤z x≤*lᵢ x≤*r ... | node left y' l' r' | x≤*lᵢ | compound = nd≤* x≤z x≤*lᵢ x≤*r lemma-insert-≤* {y = y} x≤y (nd≤* {right} {x} {z} {l} {r} x≤z x≤*l x≤*r) with tot≤ y z ... | inj₁ y≤z with insert z r | lemma-insert-≤* (trans≤ x≤y y≤z) x≤*r | lemma-insert-compound z r ... | node perfect z' l' r' | x≤*rᵢ | compound = nd≤* x≤y x≤*l x≤*rᵢ ... | node right z' l' r' | x≤*rᵢ | compound = nd≤* x≤y x≤*l x≤*rᵢ ... | node left z' l' r' | x≤*rᵢ | compound = nd≤* x≤y x≤*l x≤*rᵢ lemma-insert-≤* {y = y} x≤y (nd≤* {right} {x} {z} {l} {r} x≤z x≤*l x≤*r) | inj₂ z≤y with insert y r | lemma-insert-≤* x≤y x≤*r | lemma-insert-compound y r ... | node perfect y' l' r' | x≤*rᵢ | compound = nd≤* x≤z x≤*l x≤*rᵢ ... | node right y' l' r' | x≤*rᵢ | compound = nd≤* x≤z x≤*l x≤*rᵢ ... | node left y' l' r' | x≤*rᵢ | compound = nd≤* x≤z x≤*l x≤*rᵢ lemma-insert-≤*' : {x y : A}{t : PLRTree} → x ≤ y → y ≤* t → x ≤* insert y t lemma-insert-≤*' x≤y y≤*t = lemma-≤-≤* x≤y (lemma-insert-≤* refl≤ y≤*t) lemma-insert-heap : {t : PLRTree}(x : A) → Heap t → Heap (insert x t) lemma-insert-heap x leaf = node (lf≤* x) (lf≤* x) leaf leaf lemma-insert-heap x (node {perfect} {y} {l} {r} y≤*l y≤*r hl hr) with tot≤ x y | l | r ... | inj₁ x≤y | leaf | leaf = node (nd≤* x≤y (lf≤* x) (lf≤* x)) (lf≤* x) (node (lf≤* y) (lf≤* y) leaf leaf) leaf ... | inj₁ x≤y | node _ _ _ _ | leaf = node (lemma-insert-≤*' x≤y y≤*l) (lf≤* x) (lemma-insert-heap y hl) hr ... | inj₁ x≤y | leaf | node _ _ _ _ = node (nd≤* x≤y (lf≤* x) (lf≤* x)) (lemma-≤-≤* x≤y y≤*r) (node y≤*l y≤*l hl hl) hr ... | inj₁ x≤y | node _ _ _ _ | node _ _ _ _ = node (lemma-insert-≤*' x≤y y≤*l) (lemma-≤-≤* x≤y y≤*r) (lemma-insert-heap y hl) hr ... | inj₂ y≤x | leaf | leaf = node (nd≤* y≤x (lf≤* y) (lf≤* y)) (lf≤* y) (node (lf≤* x) (lf≤* x) leaf leaf) leaf ... | inj₂ y≤x | node _ _ _ _ | leaf = node (lemma-insert-≤* y≤x y≤*l) y≤*r (lemma-insert-heap x hl) hr ... | inj₂ y≤x | leaf | node _ _ _ _ = node (nd≤* y≤x y≤*l y≤*l) y≤*r (lemma-insert-heap x hl) hr ... | inj₂ y≤x | node _ _ _ _ | node _ _ _ _ = node (lemma-insert-≤* y≤x y≤*l) y≤*r (lemma-insert-heap x hl) hr lemma-insert-heap x (node {left} {y} {l} {r} y≤*l y≤*r hl hr) with tot≤ x y ... | inj₁ x≤y with insert y l | lemma-insert-heap y hl | lemma-insert-≤*' x≤y y≤*l | lemma-insert-compound y l ... | node perfect y' l' r' | hlᵢ | x≤*lᵢ | compound = node x≤*lᵢ (lemma-≤-≤* x≤y y≤*r) hlᵢ hr ... | node right y' l' r' | hlᵢ | x≤*lᵢ | compound = node x≤*lᵢ (lemma-≤-≤* x≤y y≤*r) hlᵢ hr ... | node left y' l' r' | hlᵢ | x≤*lᵢ | compound = node x≤*lᵢ (lemma-≤-≤* x≤y y≤*r) hlᵢ hr lemma-insert-heap x (node {left} {y} {l} {r} y≤*l y≤*r hl hr) | inj₂ y≤x with insert x l | lemma-insert-heap x hl | lemma-insert-≤* y≤x y≤*l | lemma-insert-compound x l ... | node perfect y' l' r' | hlᵢ | y≤*lᵢ | compound = node y≤*lᵢ y≤*r hlᵢ hr ... | node right y' l' r' | hlᵢ | y≤*lᵢ | compound = node y≤*lᵢ y≤*r hlᵢ hr ... | node left y' l' r' | hlᵢ | y≤*lᵢ | compound = node y≤*lᵢ y≤*r hlᵢ hr lemma-insert-heap x (node {right} {y} {l} {r} y≤*l y≤*r hl hr) with tot≤ x y ... | inj₁ x≤y with insert y r | lemma-insert-heap y hr | lemma-insert-≤*' x≤y y≤*r | lemma-insert-compound y r ... | node perfect y' l' r' | hrᵢ | x≤*rᵢ | compound = node (lemma-≤-≤* x≤y y≤*l) x≤*rᵢ hl hrᵢ ... | node right y' l' r' | hrᵢ | x≤*rᵢ | compound = node (lemma-≤-≤* x≤y y≤*l) x≤*rᵢ hl hrᵢ ... | node left y' l' r' | hrᵢ | x≤*rᵢ | compound = node (lemma-≤-≤* x≤y y≤*l) x≤*rᵢ hl hrᵢ lemma-insert-heap x (node {right} {y} {l} {r} y≤*l y≤*r hl hr) | inj₂ y≤x with insert x r | lemma-insert-heap x hr | lemma-insert-≤* y≤x y≤*r | lemma-insert-compound x r ... | node perfect y' l' r' | hrᵢ | y≤*rᵢ | compound = node y≤*l y≤*rᵢ hl hrᵢ ... | node right y' l' r' | hrᵢ | y≤*rᵢ | compound = node y≤*l y≤*rᵢ hl hrᵢ ... | node left y' l' r' | hrᵢ | y≤*rᵢ | compound = node y≤*l y≤*rᵢ hl hrᵢ
{ "alphanum_fraction": 0.5255758808, "avg_line_length": 63.4838709677, "ext": "agda", "hexsha": "7b9a2ff731578e47c3e897a381bee56374bf23fd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/Insert/Heap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/Insert/Heap.agda", "max_line_length": 129, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/Insert/Heap.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 3239, "size": 5904 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Categories.Yoneda where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence using (ua) open import Cubical.Foundations.Function renaming (_∘_ to _◍_) open import Cubical.Data.Sigma open import Cubical.Foundations.Equiv open import Cubical.HITs.PropositionalTruncation open import Cubical.Categories.Category open import Cubical.Categories.Instances.Sets open import Cubical.Categories.Instances.Functors open import Cubical.Categories.NaturalTransformation open import Cubical.Categories.Functor open import Cubical.Categories.Presheaf private variable ℓ ℓ' ℓ'' : Level -- THE YONEDA LEMMA open NatTrans open NatTransP open Functor open Iso module _ (A B : Type ℓ) (f : A → B) where isInj = ∀ (x y : A) → (f x ≡ f y) → x ≡ y isSurj = ∀ (b : B) → Σ[ a ∈ A ] f a ≡ b bijectionToIso : isInj × isSurj → isIso f bijectionToIso (i , s) = (λ b → fst (s b)) , (λ b → snd (s b)) , λ a → i (fst (s (f a))) a (snd (s (f a))) module _ {C : Precategory ℓ ℓ'} ⦃ isCatC : isCategory C ⦄ where open Precategory yoneda : (F : Functor C (SET ℓ')) → (c : C .ob) → Iso ((FUNCTOR C (SET ℓ')) [ C [ c ,-] , F ]) (fst (F ⟅ c ⟆)) yoneda F c = theIso where natType = (FUNCTOR C (SET ℓ')) [ C [ c ,-] , F ] setType = fst (F ⟅ c ⟆) -- takes a natural transformation to what it does on id ϕ : natType → setType ϕ α = (α ⟦ _ ⟧) (C .id c) -- takes an element x of F c and sends it to the (only) natural transformation -- which takes the identity to x Ψ : setType → natType Ψ x .N-ob c = λ f → (F ⟪ f ⟫) x Ψ x .N-hom g = funExt (λ f → (F ⟪ f ⋆⟨ C ⟩ g ⟫) x ≡[ i ]⟨ (F .F-seq f g) i x ⟩ (F ⟪ g ⟫) ((F ⟪ f ⟫) x) ∎) theIso : Iso natType setType theIso .fun = ϕ theIso .inv = Ψ theIso .rightInv x i = F .F-id i x theIso .leftInv α@(natTrans αo αh) = NatTrans-≡-intro (sym αo≡βo) (symP αh≡βh) where β = Ψ (ϕ α) βo = β .N-ob βh = β .N-hom -- equivalence of action on objects follows -- from simple equational reasoning using naturality αo≡βo : αo ≡ βo αo≡βo = funExt λ x → funExt λ f → αo x f ≡[ i ]⟨ αo x (C .⋆IdL f (~ i)) ⟩ -- expand into the bottom left of the naturality diagram αo x (C .id c ⋆⟨ C ⟩ f) ≡[ i ]⟨ αh f i (C .id c) ⟩ -- apply naturality (F ⟪ f ⟫) ((αo _) (C .id c)) ∎ -- type aliases for natural transformation NOType = N-ob-Type (C [ c ,-]) F NHType = N-hom-Type (C [ c ,-]) F -- equivalence of commutative squares follows from SET being a Category αh≡βh : PathP (λ i → NHType (αo≡βo i)) αh βh -- αh βh αh≡βh = isPropHomP αh βh αo≡βo where isProp-hom : ⦃ isCatSET : isCategory (SET ℓ') ⦄ → (ϕ : NOType) → isProp (NHType ϕ) isProp-hom ⦃ isCatSET ⦄ γ = isPropImplicitΠ λ x → isPropImplicitΠ λ y → isPropΠ λ f → isCatSET .isSetHom {x = (C [ c , x ]) , (isCatC .isSetHom)} {F ⟅ y ⟆} _ _ isPropHomP : isOfHLevelDep 1 (λ ηo → NHType ηo) isPropHomP = isOfHLevel→isOfHLevelDep 1 λ a → isProp-hom a -- Naturality of the bijection -- in the functor -- it's equivalent to apply ϕ to α then do β ⟦ c ⟧ -- or apply ϕ the the composite nat trans α ◍ β -- where ϕ takes a natural transformation to its representing element yonedaIsNaturalInFunctor : ∀ {F G : Functor C (SET ℓ')} (c : C .ob) → (β : F ⇒ G) → (fun (yoneda G c) ◍ compTrans β) ≡ (β ⟦ c ⟧ ◍ fun (yoneda F c)) yonedaIsNaturalInFunctor {F = F} {G} c β = funExt λ α → refl -- in the object -- it's equivalent to apply ϕ and then F ⟪ f ⟫ -- or to apply ϕ to the natural transformation obtained by precomposing with f yonedaIsNaturalInOb : ∀ {F : Functor C (SET ℓ')} → (c c' : C .ob) → (f : C [ c , c' ]) → yoneda F c' .fun ◍ preComp f ≡ F ⟪ f ⟫ ◍ yoneda F c .fun yonedaIsNaturalInOb {F = F} c c' f = funExt (λ α → (yoneda F c' .fun ◍ preComp f) α ≡⟨ refl ⟩ (α ⟦ c' ⟧) (f ⋆⟨ C ⟩ C .id c') ≡[ i ]⟨ (α ⟦ c' ⟧) (C .⋆IdR f i) ⟩ (α ⟦ c' ⟧) f ≡[ i ]⟨ (α ⟦ c' ⟧) (C .⋆IdL f (~ i)) ⟩ (α ⟦ c' ⟧) (C .id c ⋆⟨ C ⟩ f) ≡[ i ]⟨ (α .N-hom f i) (C .id c) ⟩ (F ⟪ f ⟫) ((α ⟦ c ⟧) (C .id c)) ≡⟨ refl ⟩ ((F ⟪ f ⟫) ◍ yoneda F c .fun) α ∎) -- Yoneda embedding -- TODO: probably want to rename/refactor module _ {C : Precategory ℓ ℓ} ⦃ C-cat : isCategory C ⦄ where open Functor open NatTrans open Precategory C yo : ob → Functor (C ^op) (SET ℓ) yo x .F-ob y .fst = C [ y , x ] yo x .F-ob y .snd = C-cat .isSetHom yo x .F-hom f g = f ⋆⟨ C ⟩ g yo x .F-id i f = ⋆IdL f i yo x .F-seq f g i h = ⋆Assoc g f h i YO : Functor C (PreShv C ℓ) YO .F-ob = yo YO .F-hom f .N-ob z g = g ⋆⟨ C ⟩ f YO .F-hom f .N-hom g i h = ⋆Assoc g h f i YO .F-id = makeNatTransPath λ i _ → λ f → ⋆IdR f i YO .F-seq f g = makeNatTransPath λ i _ → λ h → ⋆Assoc h f g (~ i) module _ {x} (F : Functor (C ^op) (SET ℓ)) where yo-yo-yo : NatTrans (yo x) F → F .F-ob x .fst yo-yo-yo α = α .N-ob _ (id _) no-no-no : F .F-ob x .fst → NatTrans (yo x) F no-no-no a .N-ob y f = F .F-hom f a no-no-no a .N-hom f = funExt λ g i → F .F-seq g f i a yoIso : Iso (NatTrans (yo x) F) (F .F-ob x .fst) yoIso .Iso.fun = yo-yo-yo yoIso .Iso.inv = no-no-no yoIso .Iso.rightInv b i = F .F-id i b yoIso .Iso.leftInv a = makeNatTransPath (funExt λ _ → funExt rem) where rem : ∀ {z} (x₁ : C [ z , x ]) → F .F-hom x₁ (yo-yo-yo a) ≡ (a .N-ob z) x₁ rem g = F .F-hom g (yo-yo-yo a) ≡[ i ]⟨ a .N-hom g (~ i) (id x) ⟩ a .N-hom g i0 (id x) ≡[ i ]⟨ a .N-ob _ (⋆IdR g i) ⟩ (a .N-ob _) g ∎ yoEquiv : NatTrans (yo x) F ≃ F .F-ob x .fst yoEquiv = isoToEquiv yoIso isFullYO : isFull YO isFullYO x y F[f] = ∣ yo-yo-yo _ F[f] , yoIso {x} (yo y) .Iso.leftInv F[f] ∣ isFaithfulYO : isFaithful YO isFaithfulYO x y f g p i = hcomp (λ j → λ{ (i = i0) → ⋆IdL f j; (i = i1) → ⋆IdL g j}) (yo-yo-yo _ (p i))
{ "alphanum_fraction": 0.4936164108, "avg_line_length": 36.1191709845, "ext": "agda", "hexsha": "70c58bc9f8d153a532676fd3c245caea4fee5a9e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Edlyr/cubical", "max_forks_repo_path": "Cubical/Categories/Yoneda.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Edlyr/cubical", "max_issues_repo_path": "Cubical/Categories/Yoneda.agda", "max_line_length": 115, "max_stars_count": null, "max_stars_repo_head_hexsha": "5de11df25b79ee49d5c084fbbe6dfc66e4147a2e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Edlyr/cubical", "max_stars_repo_path": "Cubical/Categories/Yoneda.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2602, "size": 6971 }
open import Relation.Binary.Core module PLRTree.Push.Complete {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) where open import Data.Sum open import Induction.WellFounded open import PLRTree {A} open import PLRTree.Drop _≤_ tot≤ open import PLRTree.Complete {A} open import PLRTree.Equality {A} open import PLRTree.Equality.Properties {A} open import PLRTree.Order {A} open import PLRTree.Order.Properties {A} mutual lemma-≃-push : {t t' : PLRTree} → t ≃ t' → (acc : Acc _≺_ t) → t ≃ push t acc lemma-≃-push ≃lf _ = ≃lf lemma-≃-push (≃nd x x' ≃lf ≃lf ≃lf) _ = ≃nd x x ≃lf ≃lf ≃lf lemma-≃-push (≃nd x x' (≃nd {l₁} {r₁} {l₂} {r₂} x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) l'≃r' (≃nd .x₁ x'₁ _ l'₁≃r'₁ l₁≃l'₁)) (acc rs) with tot≤ x x₁ | tot≤ x x₂ | tot≤ x₁ x₂ ... | inj₁ x≤x₁ | inj₁ x≤x₂ | _ = let l₁≃l₁ = lemma-≃-≃ l₁≃r₁ in ≃nd x x (≃nd x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) (≃nd x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) (≃nd x₁ x₁ l₁≃r₁ l₁≃r₁ l₁≃l₁) ... | inj₁ x≤x₁ | inj₂ x₂≤x | _ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁≃x₂l₂r₂ = lemma-≃-push (sym≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂)) acc-xl₂r₂ ; x₁l₁r₁≃push-xl₂r₂ = trans≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂) push-xl₁r₁≃x₂l₂r₂ ; x₁l₁r₁≃x₁l₁r₁ = lemma-≃-≃ (≃nd x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) in ≃nd x x₂ (≃nd x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) x₁l₁r₁≃push-xl₂r₂ x₁l₁r₁≃x₁l₁r₁ ... | inj₂ x₁≤x | inj₁ x≤x₂ | _ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁≃x₂l₂r₂ = trans≃ (lemma-push-≃ (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) acc-xl₁r₁) (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) ; l₁≃l₁ = lemma-≃-≃ l₁≃r₁ ; x₁l₁r₁≃xl₁r₁ = ≃nd x₁ x l₁≃r₁ l₁≃r₁ l₁≃l₁ ; xl₁r₁≃push-xl₁r₁ = lemma-≃-push (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) acc-xl₁r₁ ; x₁l₁r₁≃push-xl₁r₁ = trans≃ x₁l₁r₁≃xl₁r₁ xl₁r₁≃push-xl₁r₁ in ≃nd x x₁ (≃nd x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) push-xl₁r₁≃x₂l₂r₂ x₁l₁r₁≃push-xl₁r₁ ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₁ x₁≤x₂ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁≃x₂l₂r₂ = trans≃ (lemma-push-≃ (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) acc-xl₁r₁) (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) ; l₁≃l₁ = lemma-≃-≃ l₁≃r₁ ; x₁l₁r₁≃xl₁r₁ = ≃nd x₁ x l₁≃r₁ l₁≃r₁ l₁≃l₁ ; xl₁r₁≃push-xl₁r₁ = lemma-≃-push (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) acc-xl₁r₁ ; x₁l₁r₁≃push-xl₁r₁ = trans≃ x₁l₁r₁≃xl₁r₁ xl₁r₁≃push-xl₁r₁ in ≃nd x x₁ (≃nd x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) push-xl₁r₁≃x₂l₂r₂ x₁l₁r₁≃push-xl₁r₁ ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₂ x₂≤x₁ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁≃x₂l₂r₂ = lemma-≃-push (sym≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂)) acc-xl₂r₂ ; x₁l₁r₁≃push-xl₂r₂ = trans≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂) push-xl₁r₁≃x₂l₂r₂ ; x₁l₁r₁≃x₁l₁r₁ = lemma-≃-≃ (≃nd x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) in ≃nd x x₂ (≃nd x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) x₁l₁r₁≃push-xl₂r₂ x₁l₁r₁≃x₁l₁r₁ lemma-push-≃ : {t t' : PLRTree} → t ≃ t' → (acc : Acc _≺_ t) → push t acc ≃ t lemma-push-≃ t≃t' at = sym≃ (lemma-≃-push t≃t' at) lemma-push-⋗ : {t t' : PLRTree} → t ⋗ t' → (acc : Acc _≺_ t) → push t acc ⋗ t' lemma-push-⋗ (⋗lf x) _ = ⋗lf x lemma-push-⋗ (⋗nd _ _ ≃lf _ ()) _ lemma-push-⋗ (⋗nd x x' (≃nd x₁ x₂ ≃lf ≃lf ≃lf) ≃lf (⋗lf .x₁)) (acc rs) with tot≤ x x₁ | tot≤ x x₂ | tot≤ x₁ x₂ ... | inj₁ x≤x₁ | inj₁ x≤x₂ | _ = ⋗nd x x' (≃nd x₁ x₂ ≃lf ≃lf ≃lf) ≃lf (⋗lf x₁) ... | inj₁ x≤x₁ | inj₂ x₂≤x | _ = ⋗nd x₂ x' (≃nd x₁ x ≃lf ≃lf ≃lf) ≃lf (⋗lf x₁) ... | inj₂ x₁≤x | inj₁ x≤x₂ | _ = ⋗nd x₁ x' (≃nd x x₂ ≃lf ≃lf ≃lf) ≃lf (⋗lf x) ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₁ x₁≤x₂ = ⋗nd x₁ x' (≃nd x x₂ ≃lf ≃lf ≃lf) ≃lf (⋗lf x) ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₂ x₂≤x₁ = ⋗nd x₂ x' (≃nd x₁ x ≃lf ≃lf ≃lf) ≃lf (⋗lf x₁) lemma-push-⋗ (⋗nd _ _ (≃nd x₁ _ ≃lf (≃nd _ _ _ _ _) ()) ≃lf (⋗lf .x₁)) _ lemma-push-⋗ (⋗nd x x' (≃nd {l₁} {r₁} {l₂} {r₂} x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) l'≃r' (⋗nd .x₁ x'₁ _ l'₁≃r'₁ l₁⋗l'₁)) (acc rs) with tot≤ x x₁ | tot≤ x x₂ | tot≤ x₁ x₂ ... | inj₁ x≤x₁ | inj₁ x≤x₂ | _ = ⋗nd x x' (≃nd x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) l'≃r' (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) ... | inj₁ x≤x₁ | inj₂ x₂≤x | _ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁≃x₂l₂r₂ = lemma-≃-push (sym≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂)) acc-xl₂r₂ ; x₁l₁r₁≃push-xl₂r₂ = trans≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂) push-xl₁r₁≃x₂l₂r₂ in ⋗nd x₂ x' x₁l₁r₁≃push-xl₂r₂ l'≃r' (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) ... | inj₂ x₁≤x | inj₁ x≤x₂ | _ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁≃x₂l₂r₂ = trans≃ (lemma-push-≃ (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) acc-xl₁r₁) (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) ; push-xl₁r₁⋗x'₁l'₁r'₁ = lemma-push-⋗ (⋗nd x x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) acc-xl₁r₁ in ⋗nd x₁ x' push-xl₁r₁≃x₂l₂r₂ l'≃r' push-xl₁r₁⋗x'₁l'₁r'₁ ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₁ x₁≤x₂ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁≃x₂l₂r₂ = trans≃ (lemma-push-≃ (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) acc-xl₁r₁) (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) ; push-xl₁r₁⋗x'₁l'₁r'₁ = lemma-push-⋗ (⋗nd x x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) acc-xl₁r₁ in ⋗nd x₁ x' push-xl₁r₁≃x₂l₂r₂ l'≃r' push-xl₁r₁⋗x'₁l'₁r'₁ ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₂ x₂≤x₁ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁≃x₂l₂r₂ = lemma-≃-push (sym≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂)) acc-xl₂r₂ ; x₁l₁r₁≃push-xl₂r₂ = trans≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂) push-xl₁r₁≃x₂l₂r₂ in ⋗nd x₂ x' x₁l₁r₁≃push-xl₂r₂ l'≃r' (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) lemma-⋗-push : {t t' : PLRTree} → t ⋗ t' → (acc : Acc _≺_ t') → t ⋗ push t' acc lemma-⋗-push (⋗lf x) _ = ⋗lf x lemma-⋗-push (⋗nd x x' l≃r ≃lf l⋗l') _ = ⋗nd x x' l≃r ≃lf l⋗l' lemma-⋗-push (⋗nd x x' l≃r (≃nd {l'₁} {r'₁} {l'₂} {r'₂} x'₁ x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) (⋗nd x₁ .x'₁ l₁≃r₁ _ l₁⋗l'₁)) (acc rs) with tot≤ x' x'₁ | tot≤ x' x'₂ | tot≤ x'₁ x'₂ ... | inj₁ x'≤x'₁ | inj₁ x'≤x'₂ | _ = ⋗nd x x' l≃r (≃nd x'₁ x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) ... | inj₁ x'≤x'₁ | inj₂ x'₂≤x' | _ rewrite lemma-≡-height perfect x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node perfect x' l'₂ r'₂) (lemma-≺-right perfect x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁≃push-x'l'₂r'₂ = trans≃ (≃nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) (lemma-≃-push (sym≃ (≃nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂)) acc-x'l'₂r'₂) in ⋗nd x x'₂ l≃r x'₁l'₁r'₁≃push-x'l'₂r'₂ (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) ... | inj₂ x'₁≤x' | inj₁ x'≤x'₂ | _ rewrite lemma-≡-height perfect x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node perfect x' l'₁ r'₁) (lemma-≺-left perfect x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁≃x'₂l'₂r'₂ = trans≃ (lemma-push-≃ (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) acc-x'l'₁r'₁) (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) ; x₁l₁r₁⋗push-x'l'₁r'₁ = lemma-⋗-push (⋗nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) acc-x'l'₁r'₁ in ⋗nd x x'₁ l≃r push-x'l'₁r'₁≃x'₂l'₂r'₂ x₁l₁r₁⋗push-x'l'₁r'₁ ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₁ x'₁≤x'₂ rewrite lemma-≡-height perfect x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node perfect x' l'₁ r'₁) (lemma-≺-left perfect x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁≃x'₂l'₂r'₂ = trans≃ (lemma-push-≃ (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) acc-x'l'₁r'₁) (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) ; x₁l₁r₁⋗push-x'l'₁r'₁ = lemma-⋗-push (⋗nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) acc-x'l'₁r'₁ in ⋗nd x x'₁ l≃r push-x'l'₁r'₁≃x'₂l'₂r'₂ x₁l₁r₁⋗push-x'l'₁r'₁ ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₂ x'₂≤x'₁ rewrite lemma-≡-height perfect x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node perfect x' l'₂ r'₂) (lemma-≺-right perfect x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁≃push-x'l'₂r'₂ = trans≃ (≃nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) (lemma-≃-push (sym≃ (≃nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂)) acc-x'l'₂r'₂) in ⋗nd x x'₂ l≃r x'₁l'₁r'₁≃push-x'l'₂r'₂ (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) lemma-⋘-push : {t t' : PLRTree} → t ⋘ t' → (acc : Acc _≺_ t') → t ⋘ push t' acc lemma-⋘-push (x⋘ x y z) _ = x⋘ x y z lemma-⋘-push (l⋘ _ _ () ≃lf ≃lf) _ lemma-⋘-push (l⋘ x x' l⋘r (≃nd {l'₁} {r'₁} {l'₂} {r'₂} x'₁ x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) (≃nd x₂ .x'₁ l₂≃r₂ _ l₂≃l'₁)) (acc rs) with tot≤ x' x'₁ | tot≤ x' x'₂ | tot≤ x'₁ x'₂ ... | inj₁ x'≤x'₁ | inj₁ x'≤x'₂ | _ = l⋘ x x' l⋘r (≃nd x'₁ x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) (≃nd x₂ x'₁ l₂≃r₂ l'₁≃r'₁ l₂≃l'₁) ... | inj₁ x'≤x'₁ | inj₂ x'₂≤x' | _ rewrite lemma-≡-height perfect x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node perfect x' l'₂ r'₂) (lemma-≺-right perfect x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁≃push-x'l'₂r'₂ = trans≃ (≃nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) (lemma-≃-push (sym≃ (≃nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂)) acc-x'l'₂r'₂) in l⋘ x x'₂ l⋘r x'₁l'₁r'₁≃push-x'l'₂r'₂ (≃nd x₂ x'₁ l₂≃r₂ l'₁≃r'₁ l₂≃l'₁) ... | inj₂ x'₁≤x' | inj₁ x'≤x'₂ | _ rewrite lemma-≡-height perfect x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node perfect x' l'₁ r'₁) (lemma-≺-left perfect x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁≃x'₂l'₂r'₂ = trans≃ (lemma-push-≃ (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) acc-x'l'₁r'₁) (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) ; x₂l₂r₂≃push-x'l'₁r'₁ = trans≃ (≃nd x₂ x' l₂≃r₂ l'₁≃r'₁ l₂≃l'₁) (lemma-≃-push (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) acc-x'l'₁r'₁) in l⋘ x x'₁ l⋘r push-x'l'₁r'₁≃x'₂l'₂r'₂ x₂l₂r₂≃push-x'l'₁r'₁ ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₁ x'₁≤x'₂ rewrite lemma-≡-height perfect x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node perfect x' l'₁ r'₁) (lemma-≺-left perfect x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁≃x'₂l'₂r'₂ = trans≃ (lemma-push-≃ (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) acc-x'l'₁r'₁) (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) ; x₂l₂r₂≃push-x'l'₁r'₁ = trans≃ (≃nd x₂ x' l₂≃r₂ l'₁≃r'₁ l₂≃l'₁) (lemma-≃-push (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) acc-x'l'₁r'₁) in l⋘ x x'₁ l⋘r push-x'l'₁r'₁≃x'₂l'₂r'₂ x₂l₂r₂≃push-x'l'₁r'₁ ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₂ x'₂≤x'₁ rewrite lemma-≡-height perfect x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node perfect x' l'₂ r'₂) (lemma-≺-right perfect x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁≃push-x'l'₂r'₂ = trans≃ (≃nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) (lemma-≃-push (sym≃ (≃nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂)) acc-x'l'₂r'₂) in l⋘ x x'₂ l⋘r x'₁l'₁r'₁≃push-x'l'₂r'₂ (≃nd x₂ x'₁ l₂≃r₂ l'₁≃r'₁ l₂≃l'₁) lemma-⋘-push (r⋘ x x' l⋙r ≃lf (⋗lf x₁)) _ = r⋘ x x' l⋙r ≃lf (⋗lf x₁) lemma-⋘-push (r⋘ x x' l⋙r (≃nd {l'₁} {r'₁} {l'₂} {r'₂} x'₁ x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) (⋗nd x₁ .x'₁ l₁≃r₁ _ l₁⋗l'₁)) (acc rs) with tot≤ x' x'₁ | tot≤ x' x'₂ | tot≤ x'₁ x'₂ ... | inj₁ x'≤x'₁ | inj₁ x'≤x'₂ | _ = r⋘ x x' l⋙r (≃nd x'₁ x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) ... | inj₁ x'≤x'₁ | inj₂ x'₂≤x' | _ rewrite lemma-≡-height perfect x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node perfect x' l'₂ r'₂) (lemma-≺-right perfect x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁≃push-x'l'₂r'₂ = trans≃ (≃nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) (lemma-≃-push (sym≃ (≃nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂)) acc-x'l'₂r'₂) in r⋘ x x'₂ l⋙r x'₁l'₁r'₁≃push-x'l'₂r'₂ (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) ... | inj₂ x'₁≤x' | inj₁ x'≤x'₂ | _ rewrite lemma-≡-height perfect x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node perfect x' l'₁ r'₁) (lemma-≺-left perfect x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁≃x'₂l'₂r'₂ = trans≃ (lemma-push-≃ (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) acc-x'l'₁r'₁) (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) in r⋘ x x'₁ l⋙r push-x'l'₁r'₁≃x'₂l'₂r'₂ (lemma-⋗-push (⋗nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) acc-x'l'₁r'₁) ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₁ x'₁≤x'₂ rewrite lemma-≡-height perfect x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node perfect x' l'₁ r'₁) (lemma-≺-left perfect x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁≃x'₂l'₂r'₂ = trans≃ (lemma-push-≃ (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) acc-x'l'₁r'₁) (≃nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) in r⋘ x x'₁ l⋙r push-x'l'₁r'₁≃x'₂l'₂r'₂ (lemma-⋗-push (⋗nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) acc-x'l'₁r'₁) ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₂ x'₂≤x'₁ rewrite lemma-≡-height perfect x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node perfect x' l'₂ r'₂) (lemma-≺-right perfect x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁≃push-x'l'₂r'₂ = trans≃ (≃nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂) (lemma-≃-push (sym≃ (≃nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁≃l'₂)) acc-x'l'₂r'₂) in r⋘ x x'₂ l⋙r x'₁l'₁r'₁≃push-x'l'₂r'₂ (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) lemma-push-⋙ : {t t' : PLRTree} → t ⋙ t' → (acc : Acc _≺_ t) → push t acc ⋙ t' lemma-push-⋙ (⋙p l⋗r) (acc rs) = ⋙p (lemma-push-⋗ l⋗r (acc rs)) lemma-push-⋙ (⋙l _ _ ≃lf _ ()) _ lemma-push-⋙ (⋙l _ _ (≃nd x₁ _ ≃lf _ _) () (⋗lf .x₁)) _ lemma-push-⋙ (⋙l x x' (≃nd {l₁} {r₁} {l₂} {r₂} x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) l'⋘r' (⋗nd .x₁ x₄ _ l₄≃r₄ l₁⋗r₄)) (acc rs) with tot≤ x x₁ | tot≤ x x₂ | tot≤ x₁ x₂ ... | inj₁ x≤x₁ | inj₁ x≤x₂ | _ = ⋙l x x' (≃nd x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) l'⋘r' (⋗nd x₁ x₄ l₁≃r₁ l₄≃r₄ l₁⋗r₄) ... | inj₁ x≤x₁ | inj₂ x₂≤x | _ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; x₁l₁r₁≃push-xl₂r₂ = trans≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂) (lemma-≃-push (sym≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂)) acc-xl₂r₂) in ⋙l x₂ x' x₁l₁r₁≃push-xl₂r₂ l'⋘r' (⋗nd x₁ x₄ l₁≃r₁ l₄≃r₄ l₁⋗r₄) ... | inj₂ x₁≤x | inj₁ x≤x₂ | _ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁≃x₂l₂r₂ = trans≃ (lemma-push-≃ (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) acc-xl₁r₁) (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) in ⋙l x₁ x' push-xl₁r₁≃x₂l₂r₂ l'⋘r' (lemma-push-⋗ (⋗nd x x₄ l₁≃r₁ l₄≃r₄ l₁⋗r₄) acc-xl₁r₁) ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₁ x₁≤x₂ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁≃x₂l₂r₂ = trans≃ (lemma-push-≃ (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) acc-xl₁r₁) (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) in ⋙l x₁ x' push-xl₁r₁≃x₂l₂r₂ l'⋘r' (lemma-push-⋗ (⋗nd x x₄ l₁≃r₁ l₄≃r₄ l₁⋗r₄) acc-xl₁r₁) ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₂ x₂≤x₁ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; x₁l₁r₁≃push-xl₂r₂ = trans≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂) (lemma-≃-push (sym≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂)) acc-xl₂r₂) in ⋙l x₂ x' x₁l₁r₁≃push-xl₂r₂ l'⋘r' (⋗nd x₁ x₄ l₁≃r₁ l₄≃r₄ l₁⋗r₄) lemma-push-⋙ (⋙r _ _ ≃lf (⋙p ()) ≃lf) _ lemma-push-⋙ (⋙r x x' (≃nd {l₁} {r₁} {l₂} {r₂} x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) l'⋙r' (≃nd .x₁ x₃ _ l₃≃r₃ l₁≃l₃)) (acc rs) with tot≤ x x₁ | tot≤ x x₂ | tot≤ x₁ x₂ ... | inj₁ x≤x₁ | inj₁ x≤x₂ | _ = ⋙r x x' (≃nd x₁ x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) l'⋙r' (≃nd x₁ x₃ l₁≃r₁ l₃≃r₃ l₁≃l₃) ... | inj₁ x≤x₁ | inj₂ x₂≤x | _ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; x₁l₁r₁≃push-xl₂r₂ = trans≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂) (lemma-≃-push (sym≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂)) acc-xl₂r₂) in ⋙r x₂ x' x₁l₁r₁≃push-xl₂r₂ l'⋙r' (≃nd x₁ x₃ l₁≃r₁ l₃≃r₃ l₁≃l₃) ... | inj₂ x₁≤x | inj₁ x≤x₂ | _ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁≃x₂l₂r₂ = trans≃ (lemma-push-≃ (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) acc-xl₁r₁) (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) ; push-xl₁r₁≃x₃l₃r₃ = trans≃ (lemma-push-≃ (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) acc-xl₁r₁) (≃nd x x₃ l₁≃r₁ l₃≃r₃ l₁≃l₃) in ⋙r x₁ x' push-xl₁r₁≃x₂l₂r₂ l'⋙r' push-xl₁r₁≃x₃l₃r₃ ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₁ x₁≤x₂ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁≃x₂l₂r₂ = trans≃ (lemma-push-≃ (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) acc-xl₁r₁) (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) ; push-xl₁r₁≃x₃l₃r₃ = trans≃ (lemma-push-≃ (≃nd x x₂ l₁≃r₁ l₂≃r₂ l₁≃l₂) acc-xl₁r₁) (≃nd x x₃ l₁≃r₁ l₃≃r₃ l₁≃l₃) in ⋙r x₁ x' push-xl₁r₁≃x₂l₂r₂ l'⋙r' push-xl₁r₁≃x₃l₃r₃ ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₂ x₂≤x₁ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; x₁l₁r₁≃push-xl₂r₂ = trans≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂) (lemma-≃-push (sym≃ (≃nd x₁ x l₁≃r₁ l₂≃r₂ l₁≃l₂)) acc-xl₂r₂) in ⋙r x₂ x' x₁l₁r₁≃push-xl₂r₂ l'⋙r' (≃nd x₁ x₃ l₁≃r₁ l₃≃r₃ l₁≃l₃) mutual lemma-⋙r-push : {l r l' r' : PLRTree}(x x' : A) → l ≃ r → l' ⋙ r' → l ≃ l' → (acc : Acc _≺_ (node right x' l' r')) → (node perfect x l r) ⋙ push (node right x' l' r') acc lemma-⋙r-push x x' l≃r (⋙p (⋗lf x'₁)) (≃nd x₁ .x'₁ ≃lf ≃lf ≃lf) (acc rs) with tot≤ x' x'₁ ... | inj₁ x'≤x'₁ = ⋙r x x' l≃r (⋙p (⋗lf x'₁)) (≃nd x₁ x'₁ ≃lf ≃lf ≃lf) ... | inj₂ x'₁≤x' = ⋙r x x'₁ l≃r (⋙p (⋗lf x')) (≃nd x₁ x' ≃lf ≃lf ≃lf) lemma-⋙r-push x x' l≃r (⋙p (⋗nd {l'₁} {r'₁} {l'₂} {r'₂} x'₁ x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁⋗l'₂)) (≃nd x₁ .x'₁ l₁≃r₁ _ l₁≃l'₁) (acc rs) with tot≤ x' x'₁ | tot≤ x' x'₂ | tot≤ x'₁ x'₂ ... | inj₁ x'≤x'₁ | inj₁ x'≤x'₂ | _ = ⋙r x x' l≃r (⋙p (⋗nd x'₁ x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁⋗l'₂)) (≃nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) ... | inj₁ x'≤x'₁ | inj₂ x'₂≤x' | _ rewrite lemma-≡-height perfect x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node perfect x' l'₂ r'₂) (lemma-≺-right right x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁⋗push-x'l'₂r'₂ = lemma-⋗-push (⋗nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁⋗l'₂) acc-x'l'₂r'₂ in ⋙r x x'₂ l≃r (⋙p x'₁l'₁r'₁⋗push-x'l'₂r'₂) (≃nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) ... | inj₂ x'₁≤x' | inj₁ x'≤x'₂ | _ rewrite lemma-≡-height perfect x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node perfect x' l'₁ r'₁) (lemma-≺-left right x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁⋗x'₂l'₂r'₂ = lemma-push-⋗ (⋗nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁⋗l'₂) acc-x'l'₁r'₁ ; x₁l₁r₁≃push-x'l'₁r'₁ = trans≃ (≃nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) (lemma-≃-push (sym≃ (≃nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁≃l'₁)) acc-x'l'₁r'₁) in ⋙r x x'₁ l≃r (⋙p push-x'l'₁r'₁⋗x'₂l'₂r'₂) x₁l₁r₁≃push-x'l'₁r'₁ ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₁ x'₁≤x'₂ rewrite lemma-≡-height perfect x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node perfect x' l'₁ r'₁) (lemma-≺-left right x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁⋗x'₂l'₂r'₂ = lemma-push-⋗ (⋗nd x' x'₂ l'₁≃r'₁ l'₂≃r'₂ l'₁⋗l'₂) acc-x'l'₁r'₁ ; x₁l₁r₁≃push-x'l'₁r'₁ = trans≃ (≃nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) (lemma-≃-push (sym≃ (≃nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁≃l'₁)) acc-x'l'₁r'₁) in ⋙r x x'₁ l≃r (⋙p push-x'l'₁r'₁⋗x'₂l'₂r'₂) x₁l₁r₁≃push-x'l'₁r'₁ ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₂ x'₂≤x'₁ rewrite lemma-≡-height perfect x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node perfect x' l'₂ r'₂) (lemma-≺-right right x' (node perfect x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁⋗push-x'l'₂r'₂ = lemma-⋗-push (⋗nd x'₁ x' l'₁≃r'₁ l'₂≃r'₂ l'₁⋗l'₂) acc-x'l'₂r'₂ in ⋙r x x'₂ l≃r (⋙p x'₁l'₁r'₁⋗push-x'l'₂r'₂) (≃nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) lemma-⋙r-push x x' l≃r (⋙l {l'₁} {r'₁} {l'₂} {r'₂} x'₁ x'₂ l'₁≃r'₁ l'₂⋘r'₂ l'₁⋗r'₂) (≃nd x₁ .x'₁ l₁≃r₁ _ l₁≃l'₁) (acc rs) with tot≤ x' x'₁ | tot≤ x' x'₂ | tot≤ x'₁ x'₂ ... | inj₁ x'≤x'₁ | inj₁ x'≤x'₂ | _ = ⋙r x x' l≃r (⋙l x'₁ x'₂ l'₁≃r'₁ l'₂⋘r'₂ l'₁⋗r'₂) (≃nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) ... | inj₁ x'≤x'₁ | inj₂ x'₂≤x' | _ rewrite lemma-≡-height left x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node left x' l'₂ r'₂) (lemma-≺-right right x' (node perfect x'₁ l'₁ r'₁) (node left x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁⋙push-x'l'₂r'₂ = lemma-⋙l-push x'₁ x' l'₁≃r'₁ l'₂⋘r'₂ l'₁⋗r'₂ acc-x'l'₂r'₂ in ⋙r x x'₂ l≃r x'₁l'₁r'₁⋙push-x'l'₂r'₂ (≃nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) ... | inj₂ x'₁≤x' | inj₁ x'≤x'₂ | _ rewrite lemma-≡-height perfect x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node perfect x' l'₁ r'₁) (lemma-≺-left right x' (node perfect x'₁ l'₁ r'₁) (node left x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁⋙x'₂l'₂r'₂ = lemma-push-⋙ (⋙l x' x'₂ l'₁≃r'₁ l'₂⋘r'₂ l'₁⋗r'₂) acc-x'l'₁r'₁ ; x₁l₁r₁≃push-x'l'₁r'₁ = trans≃ (≃nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) (lemma-≃-push (sym≃ (≃nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁≃l'₁)) acc-x'l'₁r'₁) in ⋙r x x'₁ l≃r push-x'l'₁r'₁⋙x'₂l'₂r'₂ x₁l₁r₁≃push-x'l'₁r'₁ ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₁ x'₁≤x'₂ rewrite lemma-≡-height perfect x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node perfect x' l'₁ r'₁) (lemma-≺-left right x' (node perfect x'₁ l'₁ r'₁) (node left x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁⋙x'₂l'₂r'₂ = lemma-push-⋙ (⋙l x' x'₂ l'₁≃r'₁ l'₂⋘r'₂ l'₁⋗r'₂) acc-x'l'₁r'₁ ; x₁l₁r₁≃push-x'l'₁r'₁ = trans≃ (≃nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) (lemma-≃-push (sym≃ (≃nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁≃l'₁)) acc-x'l'₁r'₁) in ⋙r x x'₁ l≃r push-x'l'₁r'₁⋙x'₂l'₂r'₂ x₁l₁r₁≃push-x'l'₁r'₁ ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₂ x'₂≤x'₁ rewrite lemma-≡-height left x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node left x' l'₂ r'₂) (lemma-≺-right right x' (node perfect x'₁ l'₁ r'₁) (node left x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁⋙push-x'l'₂r'₂ = lemma-⋙l-push x'₁ x' l'₁≃r'₁ l'₂⋘r'₂ l'₁⋗r'₂ acc-x'l'₂r'₂ in ⋙r x x'₂ l≃r x'₁l'₁r'₁⋙push-x'l'₂r'₂ (≃nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) lemma-⋙r-push x x' l≃r (⋙r {l'₁} {r'₁} {l'₂} {r'₂} x'₁ x'₂ l'₁≃r'₁ l'₂⋙r'₂ l'₁≃l'₂) (≃nd x₁ .x'₁ l₁≃r₁ _ l₁≃l'₁) (acc rs) with tot≤ x' x'₁ | tot≤ x' x'₂ | tot≤ x'₁ x'₂ ... | inj₁ x'≤x'₁ | inj₁ x'≤x'₂ | _ = ⋙r x x' l≃r (⋙r x'₁ x'₂ l'₁≃r'₁ l'₂⋙r'₂ l'₁≃l'₂) (≃nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) ... | inj₁ x'≤x'₁ | inj₂ x'₂≤x' | _ rewrite lemma-≡-height right x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node right x' l'₂ r'₂) (lemma-≺-right right x' (node perfect x'₁ l'₁ r'₁) (node right x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁⋙push-x'l'₂r'₂ = lemma-⋙r-push x'₁ x' l'₁≃r'₁ l'₂⋙r'₂ l'₁≃l'₂ acc-x'l'₂r'₂ in ⋙r x x'₂ l≃r x'₁l'₁r'₁⋙push-x'l'₂r'₂ (≃nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) ... | inj₂ x'₁≤x' | inj₁ x'≤x'₂ | _ rewrite lemma-≡-height perfect x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node perfect x' l'₁ r'₁) (lemma-≺-left right x' (node perfect x'₁ l'₁ r'₁) (node right x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁⋙x'₂l'₂r'₂ = lemma-push-⋙ (⋙r x' x'₂ l'₁≃r'₁ l'₂⋙r'₂ l'₁≃l'₂) acc-x'l'₁r'₁ ; x₁l₁r₁≃push-x'l'₁r'₁ = trans≃ (≃nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) (lemma-≃-push (sym≃ (≃nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁≃l'₁)) acc-x'l'₁r'₁) in ⋙r x x'₁ l≃r push-x'l'₁r'₁⋙x'₂l'₂r'₂ x₁l₁r₁≃push-x'l'₁r'₁ ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₁ x'₁≤x'₂ rewrite lemma-≡-height perfect x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node perfect x' l'₁ r'₁) (lemma-≺-left right x' (node perfect x'₁ l'₁ r'₁) (node right x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁⋙x'₂l'₂r'₂ = lemma-push-⋙ (⋙r x' x'₂ l'₁≃r'₁ l'₂⋙r'₂ l'₁≃l'₂) acc-x'l'₁r'₁ ; x₁l₁r₁≃push-x'l'₁r'₁ = trans≃ (≃nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) (lemma-≃-push (sym≃ (≃nd x₁ x' l₁≃r₁ l'₁≃r'₁ l₁≃l'₁)) acc-x'l'₁r'₁) in ⋙r x x'₁ l≃r push-x'l'₁r'₁⋙x'₂l'₂r'₂ x₁l₁r₁≃push-x'l'₁r'₁ ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₂ x'₂≤x'₁ rewrite lemma-≡-height right x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node right x' l'₂ r'₂) (lemma-≺-right right x' (node perfect x'₁ l'₁ r'₁) (node right x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁⋙push-x'l'₂r'₂ = lemma-⋙r-push x'₁ x' l'₁≃r'₁ l'₂⋙r'₂ l'₁≃l'₂ acc-x'l'₂r'₂ in ⋙r x x'₂ l≃r x'₁l'₁r'₁⋙push-x'l'₂r'₂ (≃nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁≃l'₁) lemma-push-l⋘ : {l r l' r' : PLRTree}(x x' : A) → l ⋘ r → l' ≃ r' → r ≃ l' → (acc : Acc _≺_ (node left x l r)) → push (node left x l r) acc ⋘ node perfect x' l' r' lemma-push-l⋘ x x' (x⋘ x₁ x₂ x₃) l'≃r' (≃nd .x₃ x'₁ ≃lf ≃lf ≃lf) (acc rs) with tot≤ x x₁ | tot≤ x x₃ | tot≤ x₁ x₃ ... | inj₁ x≤x₁ | inj₁ x≤x₃ | _ = l⋘ x x' (x⋘ x₁ x₂ x₃) l'≃r' (≃nd x₃ x'₁ ≃lf ≃lf ≃lf) ... | inj₁ x≤x₁ | inj₂ x₃≤x | _ = l⋘ x₃ x' (x⋘ x₁ x₂ x) l'≃r' (≃nd x x'₁ ≃lf ≃lf ≃lf) ... | inj₂ x₁≤x | inj₁ x≤x₃ | _ with tot≤ x x₂ ... | inj₁ x≤x₂ = l⋘ x₁ x' (x⋘ x x₂ x₃) l'≃r' (≃nd x₃ x'₁ ≃lf ≃lf ≃lf) ... | inj₂ x₂≤x = l⋘ x₁ x' (x⋘ x₂ x x₃) l'≃r' (≃nd x₃ x'₁ ≃lf ≃lf ≃lf) lemma-push-l⋘ x x' (x⋘ x₁ x₂ x₃) l'≃r' (≃nd .x₃ x'₁ ≃lf ≃lf ≃lf) (acc rs) | inj₂ x₁≤x | inj₂ x₃≤x | inj₁ x₁≤x₃ with tot≤ x x₂ ... | inj₁ x≤x₂ = l⋘ x₁ x' (x⋘ x x₂ x₃) l'≃r' (≃nd x₃ x'₁ ≃lf ≃lf ≃lf) ... | inj₂ x₂≤x = l⋘ x₁ x' (x⋘ x₂ x x₃) l'≃r' (≃nd x₃ x'₁ ≃lf ≃lf ≃lf) lemma-push-l⋘ x x' (x⋘ x₁ x₂ x₃) l'≃r' (≃nd .x₃ x'₁ ≃lf ≃lf ≃lf) (acc rs) | inj₂ x₁≤x | inj₂ x₃≤x | inj₂ x₃≤x₁ = l⋘ x₃ x' (x⋘ x₁ x₂ x) l'≃r' (≃nd x x'₁ ≃lf ≃lf ≃lf) lemma-push-l⋘ x x' (l⋘ {l₁} {r₁} {l₂} {r₂} x₁ x₂ l₁⋘r₁ l₂≃r₂ r₁≃l₂) l'≃r' (≃nd .x₂ x'₁ _ l'₁≃r'₁ r₂≃l'₁) (acc rs) with tot≤ x x₁ | tot≤ x x₂ | tot≤ x₁ x₂ ... | inj₁ x≤x₁ | inj₁ x≤x₂ | _ = l⋘ x x' (l⋘ x₁ x₂ l₁⋘r₁ l₂≃r₂ r₁≃l₂) l'≃r' (≃nd x₂ x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) ... | inj₁ x≤x₁ | inj₂ x₂≤x | _ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right left x (node left x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; x₁l₁r₁⋘push-xl₂r₂ = lemma-⋘-push (l⋘ x₁ x l₁⋘r₁ l₂≃r₂ r₁≃l₂) acc-xl₂r₂ ; push-xl₂r₂≃x'₁l'₁r'₁ = trans≃ (lemma-push-≃ (≃nd x x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) acc-xl₂r₂) (≃nd x x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) in l⋘ x₂ x' x₁l₁r₁⋘push-xl₂r₂ l'≃r' push-xl₂r₂≃x'₁l'₁r'₁ ... | inj₂ x₁≤x | inj₁ x≤x₂ | _ rewrite lemma-≡-height left x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node left x l₁ r₁) (lemma-≺-left left x (node left x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁⋘x₂l₂r₂ = lemma-push-l⋘ x x₂ l₁⋘r₁ l₂≃r₂ r₁≃l₂ acc-xl₁r₁ in l⋘ x₁ x' push-xl₁r₁⋘x₂l₂r₂ l'≃r' (≃nd x₂ x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₁ x₁≤x₂ rewrite lemma-≡-height left x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node left x l₁ r₁) (lemma-≺-left left x (node left x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁⋘x₂l₂r₂ = lemma-push-l⋘ x x₂ l₁⋘r₁ l₂≃r₂ r₁≃l₂ acc-xl₁r₁ in l⋘ x₁ x' push-xl₁r₁⋘x₂l₂r₂ l'≃r' (≃nd x₂ x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₂ x₂≤x₁ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right left x (node left x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; x₁l₁r₁⋘push-xl₂r₂ = lemma-⋘-push (l⋘ x₁ x l₁⋘r₁ l₂≃r₂ r₁≃l₂) acc-xl₂r₂ ; push-xl₂r₂≃x'₁l'₁r'₁ = trans≃ (lemma-push-≃ (≃nd x x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) acc-xl₂r₂) (≃nd x x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) in l⋘ x₂ x' x₁l₁r₁⋘push-xl₂r₂ l'≃r' push-xl₂r₂≃x'₁l'₁r'₁ lemma-push-l⋘ x x' (r⋘ {l₁} {r₁} {l₂} {r₂} x₁ x₂ l₁⋙r₁ l₂≃r₂ l₁⋗l₂) l'≃r' (≃nd .x₂ x'₁ _ l'₁≃r'₁ r₂≃l'₁) (acc rs) with tot≤ x x₁ | tot≤ x x₂ | tot≤ x₁ x₂ ... | inj₁ x≤x₁ | inj₁ x≤x₂ | _ = l⋘ x x' (r⋘ x₁ x₂ l₁⋙r₁ l₂≃r₂ l₁⋗l₂) l'≃r' (≃nd x₂ x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) ... | inj₁ x≤x₁ | inj₂ x₂≤x | _ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right left x (node right x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; x₁l₁r₁⋘push-xl₂r₂ = lemma-⋘-push (r⋘ x₁ x l₁⋙r₁ l₂≃r₂ l₁⋗l₂) acc-xl₂r₂ ; push-xl₂r₂≃x'₁l'₁r'₁ = trans≃ (lemma-push-≃ (≃nd x x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) acc-xl₂r₂) (≃nd x x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) in l⋘ x₂ x' x₁l₁r₁⋘push-xl₂r₂ l'≃r' push-xl₂r₂≃x'₁l'₁r'₁ ... | inj₂ x₁≤x | inj₁ x≤x₂ | _ rewrite lemma-≡-height right x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node right x l₁ r₁) (lemma-≺-left left x (node right x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁⋘x₂l₂r₂ = lemma-push-r⋘ x x₂ l₁⋙r₁ l₂≃r₂ l₁⋗l₂ acc-xl₁r₁ in l⋘ x₁ x' push-xl₁r₁⋘x₂l₂r₂ l'≃r' (≃nd x₂ x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₁ x₁≤x₂ rewrite lemma-≡-height right x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node right x l₁ r₁) (lemma-≺-left left x (node right x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁⋘x₂l₂r₂ = lemma-push-r⋘ x x₂ l₁⋙r₁ l₂≃r₂ l₁⋗l₂ acc-xl₁r₁ in l⋘ x₁ x' push-xl₁r₁⋘x₂l₂r₂ l'≃r' (≃nd x₂ x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₂ x₂≤x₁ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right left x (node right x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; x₁l₁r₁⋘push-xl₂r₂ = lemma-⋘-push (r⋘ x₁ x l₁⋙r₁ l₂≃r₂ l₁⋗l₂) acc-xl₂r₂ ; push-xl₂r₂≃x'₁l'₁r'₁ = trans≃ (lemma-push-≃ (≃nd x x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) acc-xl₂r₂) (≃nd x x'₁ l₂≃r₂ l'₁≃r'₁ r₂≃l'₁) in l⋘ x₂ x' x₁l₁r₁⋘push-xl₂r₂ l'≃r' push-xl₂r₂≃x'₁l'₁r'₁ lemma-push-r⋘ : {l r l' r' : PLRTree}(x x' : A) → l ⋙ r → l' ≃ r' → l ⋗ l' → (acc : Acc _≺_ (node right x l r)) → push (node right x l r) acc ⋘ node perfect x' l' r' lemma-push-r⋘ x x' (⋙p (⋗lf x₁)) ≃lf (⋗lf .x₁) (acc rs) with tot≤ x x₁ ... | inj₁ x≤x₁ = x⋘ x x₁ x' ... | inj₂ x₁≤x = x⋘ x₁ x x' lemma-push-r⋘ _ _ (⋙p (⋗lf x₁)) _ (⋗nd .x₁ _ _ _ ()) _ lemma-push-r⋘ _ _ (⋙p (⋗nd x₁ _ _ _ ())) ≃lf (⋗lf .x₁) _ lemma-push-r⋘ x x' (⋙p (⋗nd {l₁} {r₁} {l₂} {r₂} x₁ x₂ l₁≃r₁ l₂≃r₂ l₁⋗l₂)) l'≃r' (⋗nd .x₁ x'₁ _ l'₁≃r'₁ l₁⋗l'₁) (acc rs) with tot≤ x x₁ | tot≤ x x₂ | tot≤ x₁ x₂ ... | inj₁ x≤x₁ | inj₁ x≤x₂ | _ = r⋘ x x' (⋙p (⋗nd x₁ x₂ l₁≃r₁ l₂≃r₂ l₁⋗l₂)) l'≃r' (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) ... | inj₁ x≤x₁ | inj₂ x₂≤x | _ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; x₁l₁r₁⋗push-xl₂r₂ = lemma-⋗-push (⋗nd x₁ x l₁≃r₁ l₂≃r₂ l₁⋗l₂) acc-xl₂r₂ in r⋘ x₂ x' (⋙p x₁l₁r₁⋗push-xl₂r₂) l'≃r' (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) ... | inj₂ x₁≤x | inj₁ x≤x₂ | _ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁⋗x₂l₂r₂ = lemma-push-⋗ (⋗nd x x₂ l₁≃r₁ l₂≃r₂ l₁⋗l₂) acc-xl₁r₁ ; push-xl₁r₁⋗x'₁l'₁r'₁ = lemma-push-⋗ (⋗nd x x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) acc-xl₁r₁ in r⋘ x₁ x' (⋙p push-xl₁r₁⋗x₂l₂r₂) l'≃r' push-xl₁r₁⋗x'₁l'₁r'₁ ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₁ x₁≤x₂ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; push-xl₁r₁⋗x₂l₂r₂ = lemma-push-⋗ (⋗nd x x₂ l₁≃r₁ l₂≃r₂ l₁⋗l₂) acc-xl₁r₁ ; push-xl₁r₁⋗x'₁l'₁r'₁ = lemma-push-⋗ (⋗nd x x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) acc-xl₁r₁ in r⋘ x₁ x' (⋙p push-xl₁r₁⋗x₂l₂r₂) l'≃r' push-xl₁r₁⋗x'₁l'₁r'₁ ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₂ x₂≤x₁ rewrite lemma-≡-height perfect x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node perfect x l₂ r₂) (lemma-≺-right perfect x (node perfect x₁ l₁ r₁) (node perfect x₂ l₂ r₂)) ; x₁l₁r₁⋗push-xl₂r₂ = lemma-⋗-push (⋗nd x₁ x l₁≃r₁ l₂≃r₂ l₁⋗l₂) acc-xl₂r₂ in r⋘ x₂ x' (⋙p x₁l₁r₁⋗push-xl₂r₂) l'≃r' (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) lemma-push-r⋘ _ _ (⋙l x₁ _ _ _ ()) _ (⋗lf .x₁) _ lemma-push-r⋘ x x' (⋙l {l₁} {r₁} {l₂} {r₂} x₁ x₂ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) l'≃r' (⋗nd .x₁ x'₁ _ l'₁≃r'₁ l₁⋗l'₁) (acc rs) with tot≤ x x₁ | tot≤ x x₂ | tot≤ x₁ x₂ ... | inj₁ x≤x₁ | inj₁ x≤x₂ | _ = r⋘ x x' (⋙l x₁ x₂ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) l'≃r' (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) ... | inj₁ x≤x₁ | inj₂ x₂≤x | _ rewrite lemma-≡-height left x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node left x l₂ r₂) (lemma-≺-right right x (node perfect x₁ l₁ r₁) (node left x₂ l₂ r₂)) ; x₁l₁r₁⋙push-xl₂r₂ = lemma-⋙l-push x₁ x l₁≃r₁ l₂⋘r₂ l₁⋗r₂ acc-xl₂r₂ in r⋘ x₂ x' x₁l₁r₁⋙push-xl₂r₂ l'≃r' (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) ... | inj₂ x₁≤x | inj₁ x≤x₂ | _ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left right x (node perfect x₁ l₁ r₁) (node left x₂ l₂ r₂)) ; push-xl₁r₁⋙x₂l₂r₂ = lemma-push-⋙ (⋙l x x₂ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) acc-xl₁r₁ ; push-xl₁r₁⋗x'₁l'₁r'₁ = lemma-push-⋗ (⋗nd x x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) acc-xl₁r₁ in r⋘ x₁ x' push-xl₁r₁⋙x₂l₂r₂ l'≃r' push-xl₁r₁⋗x'₁l'₁r'₁ ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₁ x₁≤x₂ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left right x (node perfect x₁ l₁ r₁) (node left x₂ l₂ r₂)) ; push-xl₁r₁⋙x₂l₂r₂ = lemma-push-⋙ (⋙l x x₂ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) acc-xl₁r₁ ; push-xl₁r₁⋗x'₁l'₁r'₁ = lemma-push-⋗ (⋗nd x x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) acc-xl₁r₁ in r⋘ x₁ x' push-xl₁r₁⋙x₂l₂r₂ l'≃r' push-xl₁r₁⋗x'₁l'₁r'₁ ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₂ x₂≤x₁ rewrite lemma-≡-height left x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node left x l₂ r₂) (lemma-≺-right right x (node perfect x₁ l₁ r₁) (node left x₂ l₂ r₂)) ; x₁l₁r₁⋙push-xl₂r₂ = lemma-⋙l-push x₁ x l₁≃r₁ l₂⋘r₂ l₁⋗r₂ acc-xl₂r₂ in r⋘ x₂ x' x₁l₁r₁⋙push-xl₂r₂ l'≃r' (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) lemma-push-r⋘ _ _ (⋙r x₁ _ ≃lf (⋙p ()) ≃lf) ≃lf (⋗lf .x₁) _ lemma-push-r⋘ _ _ (⋙r x₁ x₂ ≃lf (⋙l _ _ _ _ _) ()) ≃lf (⋗lf .x₁) _ lemma-push-r⋘ _ _ (⋙r x₁ x₂ ≃lf (⋙r _ _ _ _ _) ()) ≃lf (⋗lf .x₁) _ lemma-push-r⋘ x x' (⋙r {l₁} {r₁} {l₂} {r₂} x₁ x₂ l₁≃r₁ l₂⋙r₂ l₁≃l₂) l'≃r' (⋗nd .x₁ x'₁ _ l'₁≃r'₁ l₁⋗l'₁) (acc rs) with tot≤ x x₁ | tot≤ x x₂ | tot≤ x₁ x₂ ... | inj₁ x≤x₁ | inj₁ x≤x₂ | _ = r⋘ x x' (⋙r x₁ x₂ l₁≃r₁ l₂⋙r₂ l₁≃l₂) l'≃r' (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) ... | inj₁ x≤x₁ | inj₂ x₂≤x | _ rewrite lemma-≡-height right x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node right x l₂ r₂) (lemma-≺-right right x (node perfect x₁ l₁ r₁) (node right x₂ l₂ r₂)) ; x₁l₁r₁⋙push-xl₂r₂ = lemma-⋙r-push x₁ x l₁≃r₁ l₂⋙r₂ l₁≃l₂ acc-xl₂r₂ in r⋘ x₂ x' x₁l₁r₁⋙push-xl₂r₂ l'≃r' (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) ... | inj₂ x₁≤x | inj₁ x≤x₂ | _ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left right x (node perfect x₁ l₁ r₁) (node right x₂ l₂ r₂)) ; push-xl₁r₁⋙x₂l₂r₂ = lemma-push-⋙ (⋙r x x₂ l₁≃r₁ l₂⋙r₂ l₁≃l₂) acc-xl₁r₁ ; push-xl₁r₁⋗x'₁l'₁r'₁ = lemma-push-⋗ (⋗nd x x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) acc-xl₁r₁ in r⋘ x₁ x' push-xl₁r₁⋙x₂l₂r₂ l'≃r' push-xl₁r₁⋗x'₁l'₁r'₁ ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₁ x₁≤x₂ rewrite lemma-≡-height perfect x x₁ l₁ r₁ = let acc-xl₁r₁ = rs (node perfect x l₁ r₁) (lemma-≺-left right x (node perfect x₁ l₁ r₁) (node right x₂ l₂ r₂)) ; push-xl₁r₁⋙x₂l₂r₂ = lemma-push-⋙ (⋙r x x₂ l₁≃r₁ l₂⋙r₂ l₁≃l₂) acc-xl₁r₁ ; push-xl₁r₁⋗x'₁l'₁r'₁ = lemma-push-⋗ (⋗nd x x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) acc-xl₁r₁ in r⋘ x₁ x' push-xl₁r₁⋙x₂l₂r₂ l'≃r' push-xl₁r₁⋗x'₁l'₁r'₁ ... | inj₂ x₁≤x | inj₂ x₂≤x | inj₂ x₂≤x₁ rewrite lemma-≡-height right x x₂ l₂ r₂ = let acc-xl₂r₂ = rs (node right x l₂ r₂) (lemma-≺-right right x (node perfect x₁ l₁ r₁) (node right x₂ l₂ r₂)) ; x₁l₁r₁⋙push-xl₂r₂ = lemma-⋙r-push x₁ x l₁≃r₁ l₂⋙r₂ l₁≃l₂ acc-xl₂r₂ in r⋘ x₂ x' x₁l₁r₁⋙push-xl₂r₂ l'≃r' (⋗nd x₁ x'₁ l₁≃r₁ l'₁≃r'₁ l₁⋗l'₁) lemma-⋙l-push : {l r l' r' : PLRTree}(x x' : A) → l ≃ r → l' ⋘ r' → l ⋗ r' → (acc : Acc _≺_ (node left x' l' r')) → node perfect x l r ⋙ push (node left x' l' r') acc lemma-⋙l-push x x' l≃r (x⋘ x'₁ x'₂ x'₃) (⋗nd x₁ .x'₃ x₂≃x₃ ≃lf (⋗lf x₂)) (acc rs) with tot≤ x' x'₁ | tot≤ x' x'₃ | tot≤ x'₁ x'₃ ... | inj₁ x'≤x'₁ | inj₁ x'≤x'₃ | _ = ⋙l x x' l≃r (x⋘ x'₁ x'₂ x'₃) (⋗nd x₁ x'₃ x₂≃x₃ ≃lf (⋗lf x₂)) ... | inj₁ x'≤x'₁ | inj₂ x'₃≤x' | _ = ⋙l x x'₃ l≃r (x⋘ x'₁ x'₂ x') (⋗nd x₁ x' x₂≃x₃ ≃lf (⋗lf x₂)) ... | inj₂ x'₁≤x' | inj₁ x'≤x'₃ | _ with tot≤ x' x'₂ ... | inj₁ x'≤x'₂ = ⋙l x x'₁ l≃r (x⋘ x' x'₂ x'₃) (⋗nd x₁ x'₃ x₂≃x₃ ≃lf (⋗lf x₂)) ... | inj₂ x'₂≤x' = ⋙l x x'₁ l≃r (x⋘ x'₂ x' x'₃) (⋗nd x₁ x'₃ x₂≃x₃ ≃lf (⋗lf x₂)) lemma-⋙l-push x x' l≃r (x⋘ x'₁ x'₂ x'₃) (⋗nd x₁ .x'₃ x₂≃x₃ ≃lf (⋗lf x₂)) (acc rs) | inj₂ x'₁≤x' | inj₂ x'₃≤x' | inj₁ x'₁≤x'₃ with tot≤ x' x'₂ ... | inj₁ x'≤x'₂ = ⋙l x x'₁ l≃r (x⋘ x' x'₂ x'₃) (⋗nd x₁ x'₃ x₂≃x₃ ≃lf (⋗lf x₂)) ... | inj₂ x'₂≤x' = ⋙l x x'₁ l≃r (x⋘ x'₂ x' x'₃) (⋗nd x₁ x'₃ x₂≃x₃ ≃lf (⋗lf x₂)) lemma-⋙l-push x x' l≃r (x⋘ x'₁ x'₂ x'₃) (⋗nd x₁ .x'₃ x₂≃x₃ ≃lf (⋗lf x₂)) (acc rs) | inj₂ x'₁≤x' | inj₂ x'₃≤x' | inj₂ x'₃≤x'₁ = ⋙l x x'₃ l≃r (x⋘ x'₁ x'₂ x') (⋗nd x₁ x' x₂≃x₃ ≃lf (⋗lf x₂)) lemma-⋙l-push x x' l≃r (l⋘ {l'₁} {r'₁} {l'₂} {r'₂} x'₁ x'₂ l'₁⋘r'₁ l'₂≃r'₂ r'₁≃l'₂) (⋗nd x₁ .x'₂ l₁≃r₁ _ l₁⋗l'₂) (acc rs) with tot≤ x' x'₁ | tot≤ x' x'₂ | tot≤ x'₁ x'₂ ... | inj₁ x'≤x'₁ | inj₁ x'≤x'₂ | _ = ⋙l x x' l≃r (l⋘ x'₁ x'₂ l'₁⋘r'₁ l'₂≃r'₂ r'₁≃l'₂) (⋗nd x₁ x'₂ l₁≃r₁ l'₂≃r'₂ l₁⋗l'₂) ... | inj₁ x'≤x'₁ | inj₂ x'₂≤x' | _ rewrite lemma-≡-height perfect x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node perfect x' l'₂ r'₂) (lemma-≺-right left x' (node left x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁⋘push-x'l'₂r'₂ = lemma-⋘-push (l⋘ x'₁ x' l'₁⋘r'₁ l'₂≃r'₂ r'₁≃l'₂) acc-x'l'₂r'₂ ; x₁l₁r₁⋗push-x'l'₂r'₂ = lemma-⋗-push (⋗nd x₁ x' l₁≃r₁ l'₂≃r'₂ l₁⋗l'₂) acc-x'l'₂r'₂ in ⋙l x x'₂ l≃r x'₁l'₁r'₁⋘push-x'l'₂r'₂ x₁l₁r₁⋗push-x'l'₂r'₂ ... | inj₂ x'₁≤x' | inj₁ x'≤x'₂ | _ rewrite lemma-≡-height left x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node left x' l'₁ r'₁) (lemma-≺-left left x' (node left x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁⋘x'₂l'₂r'₂ = lemma-push-l⋘ x' x'₂ l'₁⋘r'₁ l'₂≃r'₂ r'₁≃l'₂ acc-x'l'₁r'₁ in ⋙l x x'₁ l≃r push-x'l'₁r'₁⋘x'₂l'₂r'₂ (⋗nd x₁ x'₂ l₁≃r₁ l'₂≃r'₂ l₁⋗l'₂) ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₁ x'₁≤x'₂ rewrite lemma-≡-height left x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node left x' l'₁ r'₁) (lemma-≺-left left x' (node left x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁⋘x'₂l'₂r'₂ = lemma-push-l⋘ x' x'₂ l'₁⋘r'₁ l'₂≃r'₂ r'₁≃l'₂ acc-x'l'₁r'₁ in ⋙l x x'₁ l≃r push-x'l'₁r'₁⋘x'₂l'₂r'₂ (⋗nd x₁ x'₂ l₁≃r₁ l'₂≃r'₂ l₁⋗l'₂) ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₂ x'₂≤x'₁ rewrite lemma-≡-height perfect x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node perfect x' l'₂ r'₂) (lemma-≺-right left x' (node left x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁⋘push-x'l'₂r'₂ = lemma-⋘-push (l⋘ x'₁ x' l'₁⋘r'₁ l'₂≃r'₂ r'₁≃l'₂) acc-x'l'₂r'₂ ; x₁l₁r₁⋗push-x'l'₂r'₂ = lemma-⋗-push (⋗nd x₁ x' l₁≃r₁ l'₂≃r'₂ l₁⋗l'₂) acc-x'l'₂r'₂ in ⋙l x x'₂ l≃r x'₁l'₁r'₁⋘push-x'l'₂r'₂ x₁l₁r₁⋗push-x'l'₂r'₂ lemma-⋙l-push x x' l≃r (r⋘ {l'₁} {r'₁} {l'₂} {r'₂} x'₁ x'₂ l'₁⋙r'₁ l'₂≃r'₂ l'₁⋗l'₂) (⋗nd x₁ .x'₂ l₁≃r₁ _ l₁⋗l'₂) (acc rs) with tot≤ x' x'₁ | tot≤ x' x'₂ | tot≤ x'₁ x'₂ ... | inj₁ x'≤x'₁ | inj₁ x'≤x'₂ | _ = ⋙l x x' l≃r (r⋘ x'₁ x'₂ l'₁⋙r'₁ l'₂≃r'₂ l'₁⋗l'₂) (⋗nd x₁ x'₂ l₁≃r₁ l'₂≃r'₂ l₁⋗l'₂) ... | inj₁ x'≤x'₁ | inj₂ x'₂≤x' | _ rewrite lemma-≡-height perfect x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node perfect x' l'₂ r'₂) (lemma-≺-right left x' (node right x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁⋘push-x'l'₂r'₂ = lemma-⋘-push (r⋘ x'₁ x' l'₁⋙r'₁ l'₂≃r'₂ l'₁⋗l'₂) acc-x'l'₂r'₂ ; x₁l₁r₁⋗push-x'l'₂r'₂ = lemma-⋗-push (⋗nd x₁ x' l₁≃r₁ l'₂≃r'₂ l₁⋗l'₂) acc-x'l'₂r'₂ in ⋙l x x'₂ l≃r x'₁l'₁r'₁⋘push-x'l'₂r'₂ x₁l₁r₁⋗push-x'l'₂r'₂ ... | inj₂ x'₁≤x' | inj₁ x'≤x'₂ | _ rewrite lemma-≡-height right x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node right x' l'₁ r'₁) (lemma-≺-left left x' (node right x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁⋘x'₂l'₂r'₂ = lemma-push-r⋘ x' x'₂ l'₁⋙r'₁ l'₂≃r'₂ l'₁⋗l'₂ acc-x'l'₁r'₁ in ⋙l x x'₁ l≃r push-x'l'₁r'₁⋘x'₂l'₂r'₂ (⋗nd x₁ x'₂ l₁≃r₁ l'₂≃r'₂ l₁⋗l'₂) ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₁ x'₁≤x'₂ rewrite lemma-≡-height right x' x'₁ l'₁ r'₁ = let acc-x'l'₁r'₁ = rs (node right x' l'₁ r'₁) (lemma-≺-left left x' (node right x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; push-x'l'₁r'₁⋘x'₂l'₂r'₂ = lemma-push-r⋘ x' x'₂ l'₁⋙r'₁ l'₂≃r'₂ l'₁⋗l'₂ acc-x'l'₁r'₁ in ⋙l x x'₁ l≃r push-x'l'₁r'₁⋘x'₂l'₂r'₂ (⋗nd x₁ x'₂ l₁≃r₁ l'₂≃r'₂ l₁⋗l'₂) ... | inj₂ x'₁≤x' | inj₂ x'₂≤x' | inj₂ x'₂≤x'₁ rewrite lemma-≡-height perfect x' x'₂ l'₂ r'₂ = let acc-x'l'₂r'₂ = rs (node perfect x' l'₂ r'₂) (lemma-≺-right left x' (node right x'₁ l'₁ r'₁) (node perfect x'₂ l'₂ r'₂)) ; x'₁l'₁r'₁⋘push-x'l'₂r'₂ = lemma-⋘-push (r⋘ x'₁ x' l'₁⋙r'₁ l'₂≃r'₂ l'₁⋗l'₂) acc-x'l'₂r'₂ ; x₁l₁r₁⋗push-x'l'₂r'₂ = lemma-⋗-push (⋗nd x₁ x' l₁≃r₁ l'₂≃r'₂ l₁⋗l'₂) acc-x'l'₂r'₂ in ⋙l x x'₂ l≃r x'₁l'₁r'₁⋘push-x'l'₂r'₂ x₁l₁r₁⋗push-x'l'₂r'₂ lemma-⋙-push : {t t' : PLRTree} → t ⋙ t' → (acc : Acc _≺_ t') → t ⋙ push t' acc lemma-⋙-push (⋙p l⋗r) (acc rs) = ⋙p (lemma-⋗-push l⋗r (acc rs)) lemma-⋙-push (⋙l x x' l≃r l'⋘r' l⋗r') (acc rs) = lemma-⋙l-push x x' l≃r l'⋘r' l⋗r' (acc rs) lemma-⋙-push (⋙r x x' l≃r l'⋙r' l≃l') (acc rs) = lemma-⋙r-push x x' l≃r l'⋙r' l≃l' (acc rs) lemma-push-⋘ : {t t' : PLRTree} → t ⋘ t' → (acc : Acc _≺_ t) → push t acc ⋘ t' lemma-push-⋘ (x⋘ x y z) _ with tot≤ x y ... | inj₁ x≤y = x⋘ x y z ... | inj₂ y≤x = x⋘ y x z lemma-push-⋘ (l⋘ x x' l⋘r l'≃r' r≃l') (acc rs) = lemma-push-l⋘ x x' l⋘r l'≃r' r≃l' (acc rs) lemma-push-⋘ (r⋘ x x' l⋙r l'≃r' l⋗l') (acc rs) = lemma-push-r⋘ x x' l⋙r l'≃r' l⋗l' (acc rs) lemma-push-complete-≃ : {l r : PLRTree}(x : A) → Complete l → Complete r → l ≃ r → (acc : Acc _≺_ (node perfect x l r)) → Complete (push (node perfect x l r) acc) lemma-push-complete-≃ {l} {r} x cl cr l≃r (acc rs) with l | r | l≃r | cl | cr ... | leaf | leaf | ≃lf | _ | _ = perfect x leaf leaf ≃lf ... | node perfect x' l' r' | node perfect x'' l'' r'' | ≃nd .x' .x'' l'≃r' l''≃r'' l'≃l'' | perfect .x' cl' cr' _ | perfect .x'' cl'' cr'' _ with tot≤ x x' | tot≤ x x'' | tot≤ x' x'' ... | inj₁ x≤x' | inj₁ x≤x'' | _ = perfect x (perfect x' cl' cr' l'≃r') (perfect x'' cl'' cr'' l''≃r'') (≃nd x' x'' l'≃r' l''≃r'' l'≃l'') ... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height perfect x x'' l'' r'' = let acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right perfect x (node perfect x' l' r') (node perfect x'' l'' r'')) ; xl''r''≃push-xl''r'' = lemma-≃-push (sym≃ (≃nd x x l'≃r' l''≃r'' l'≃l'')) acc-xl''r'' ; x'l'r'≃push-xl''r'' = trans≃ (≃nd x' x l'≃r' l''≃r'' l'≃l'') xl''r''≃push-xl''r'' in perfect x'' (perfect x' cl' cr' l'≃r') (lemma-push-complete-≃ x cl'' cr'' l''≃r'' acc-xl''r'') x'l'r'≃push-xl''r'' ... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height perfect x x' l' r' = let acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left perfect x (node perfect x' l' r') (node perfect x'' l'' r'')) ; push-xl'r'≃xl'r' = lemma-push-≃ (≃nd x x l'≃r' l''≃r'' l'≃l'') acc-xl'r' ; push-xl'r'≃x''l''r'' = trans≃ push-xl'r'≃xl'r' (≃nd x x'' l'≃r' l''≃r'' l'≃l'') in perfect x' (lemma-push-complete-≃ x cl' cr' l'≃r' acc-xl'r') (perfect x'' cl'' cr'' l''≃r'') push-xl'r'≃x''l''r'' ... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height perfect x x' l' r' = let acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left perfect x (node perfect x' l' r') (node perfect x'' l'' r'')) ; push-xl'r'≃xl'r' = lemma-push-≃ (≃nd x x l'≃r' l''≃r'' l'≃l'') acc-xl'r' ; push-xl'r'≃x''l''r'' = trans≃ push-xl'r'≃xl'r' (≃nd x x'' l'≃r' l''≃r'' l'≃l'') in perfect x' (lemma-push-complete-≃ x cl' cr' l'≃r' acc-xl'r') (perfect x'' cl'' cr'' l''≃r'') push-xl'r'≃x''l''r'' ... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height perfect x x'' l'' r'' = let acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right perfect x (node perfect x' l' r') (node perfect x'' l'' r'')) ; xl''r''≃push-xl''r'' = lemma-≃-push (sym≃ (≃nd x x l'≃r' l''≃r'' l'≃l'')) acc-xl''r'' ; x'l'r'≃push-xl''r'' = trans≃ (≃nd x' x l'≃r' l''≃r'' l'≃l'') xl''r''≃push-xl''r'' in perfect x'' (perfect x' cl' cr' l'≃r') (lemma-push-complete-≃ x cl'' cr'' l''≃r'' acc-xl''r'') x'l'r'≃push-xl''r'' lemma-push-complete-⋗ : {l r : PLRTree}(x : A) → Complete l → Complete r → l ⋗ r → (acc : Acc _≺_ (node right x l r)) → Complete (push (node right x l r) acc) lemma-push-complete-⋗ {l} {r} x cl cr l⋗r (acc rs) with l | r | l⋗r | cl | cr ... | leaf | _ | () | _ | _ ... | node perfect x' leaf leaf | leaf | ⋗lf .x' | perfect .x' leaf leaf ≃lf | leaf with tot≤ x x' ... | inj₁ x≤x' = right x (perfect x' leaf leaf ≃lf) leaf (⋙p (⋗lf x')) ... | inj₂ x'≤x = right x' (perfect x leaf leaf ≃lf) leaf (⋙p (⋗lf x)) lemma-push-complete-⋗ x cl cr l⋗r (acc rs) | node perfect x' l' r' | node perfect x'' l'' r'' | ⋗nd .x' .x'' l'≃r' l''≃r'' l'⋗l'' | perfect .x' cl' cr' _ | perfect .x'' cl'' cr'' _ with tot≤ x x' | tot≤ x x'' | tot≤ x' x'' ... | inj₁ x≤x' | inj₁ x≤x'' | _ = right x (perfect x' cl' cr' l'≃r') (perfect x'' cl'' cr'' l''≃r'') (⋙p (⋗nd x' x'' l'≃r' l''≃r'' l'⋗l'')) ... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height perfect x x'' l'' r'' = let acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right right x (node perfect x' l' r') (node perfect x'' l'' r'')) ; x'l'r'⋗push-xl''r'' = lemma-⋗-push (⋗nd x' x l'≃r' l''≃r'' l'⋗l'') acc-xl''r'' in right x'' (perfect x' cl' cr' l'≃r') (lemma-push-complete-≃ x cl'' cr'' l''≃r'' acc-xl''r'') (⋙p x'l'r'⋗push-xl''r'') ... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height perfect x x' l' r' = let acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left right x (node perfect x' l' r') (node perfect x'' l'' r'')) ; push-xl'r'⋗x''l''r'' = lemma-push-⋗ (⋗nd x x'' l'≃r' l''≃r'' l'⋗l'') acc-xl'r' in right x' (lemma-push-complete-≃ x cl' cr' l'≃r' acc-xl'r') (perfect x'' cl'' cr'' l''≃r'') (⋙p push-xl'r'⋗x''l''r'') ... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height perfect x x' l' r' = let acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left right x (node perfect x' l' r') (node perfect x'' l'' r'')) ; push-xl'r'⋗x''l''r'' = lemma-push-⋗ (⋗nd x x'' l'≃r' l''≃r'' l'⋗l'') acc-xl'r' in right x' (lemma-push-complete-≃ x cl' cr' l'≃r' acc-xl'r') (perfect x'' cl'' cr'' l''≃r'') (⋙p push-xl'r'⋗x''l''r'') ... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height perfect x x'' l'' r'' = let acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right right x (node perfect x' l' r') (node perfect x'' l'' r'')) ; x'l'r'⋗push-xl''r'' = lemma-⋗-push (⋗nd x' x l'≃r' l''≃r'' l'⋗l'') acc-xl''r'' in right x'' (perfect x' cl' cr' l'≃r') (lemma-push-complete-≃ x cl'' cr'' l''≃r'' acc-xl''r'') (⋙p x'l'r'⋗push-xl''r'') mutual lemma-push-complete-⋙ : {l r : PLRTree}(x : A) → Complete l → Complete r → l ⋙ r → (acc : Acc _≺_ (node right x l r)) → Complete (push (node right x l r) acc) lemma-push-complete-⋙ {l} {r} x cl cr l⋙r (acc rs) with l | r | l⋙r | cl | cr ... | leaf | _ | ⋙p () | _ | _ ... | node perfect x' leaf leaf | leaf | ⋙p (⋗lf .x') | perfect .x' leaf leaf ≃lf | leaf = lemma-push-complete-⋗ x (perfect x' leaf leaf ≃lf) leaf (⋗lf x') (acc rs) ... | node perfect x' l' r' | node perfect x'' l'' r'' | ⋙p (⋗nd .x' .x'' l'≃r' l''≃r'' l'⋗l'') | perfect .x' cl' cr' _ | perfect .x'' cl'' cr'' _ = lemma-push-complete-⋗ x (perfect x' cl' cr' l'≃r') (perfect x'' cl'' cr'' l''≃r'') (⋗nd x' x'' l'≃r' l''≃r'' l'⋗l'') (acc rs) ... | node perfect x' leaf leaf | node left _ _ _ | ⋙p () | _ | _ ... | node perfect x' leaf leaf | node right _ _ _ | ⋙p () | _ | _ ... | node perfect x' l' r' | node left x'' l'' r'' | ⋙l .x' .x'' l'≃r' l''⋘r'' l'⋗r'' | perfect .x' cl' cr' _ | left .x'' cl'' cr'' _ with tot≤ x x' | tot≤ x x'' | tot≤ x' x'' ... | inj₁ x≤x' | inj₁ x≤x'' | _ = right x (perfect x' cl' cr' l'≃r') (left x'' cl'' cr'' l''⋘r'') (⋙l x' x'' l'≃r' l''⋘r'' l'⋗r'') ... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height left x x'' l'' r'' = let acc-xl''r'' = rs (node left x l'' r'') (lemma-≺-right right x (node perfect x' l' r') (node left x'' l'' r'')) ; x'l'r'⋙push-xl''r'' = lemma-⋙-push (⋙l x' x l'≃r' l''⋘r'' l'⋗r'') acc-xl''r'' in right x'' (perfect x' cl' cr' l'≃r') (lemma-push-complete-⋘ x cl'' cr'' l''⋘r'' acc-xl''r'') x'l'r'⋙push-xl''r'' ... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height perfect x x' l' r' = let acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left right x (node perfect x' l' r') (node left x'' l'' r'')) ; push-xl'r'⋙x''l''r'' = lemma-push-⋙ (⋙l x x'' l'≃r' l''⋘r'' l'⋗r'') acc-xl'r' in right x' (lemma-push-complete-≃ x cl' cr' l'≃r' acc-xl'r') (left x'' cl'' cr'' l''⋘r'') push-xl'r'⋙x''l''r'' ... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height perfect x x' l' r' = let acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left right x (node perfect x' l' r') (node left x'' l'' r'')) ; push-xl'r'⋙x''l''r'' = lemma-push-⋙ (⋙l x x'' l'≃r' l''⋘r'' l'⋗r'') acc-xl'r' in right x' (lemma-push-complete-≃ x cl' cr' l'≃r' acc-xl'r') (left x'' cl'' cr'' l''⋘r'') push-xl'r'⋙x''l''r'' ... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height left x x'' l'' r'' = let acc-xl''r'' = rs (node left x l'' r'') (lemma-≺-right right x (node perfect x' l' r') (node left x'' l'' r'')) ; x'l'r'⋙push-xl''r'' = lemma-⋙-push (⋙l x' x l'≃r' l''⋘r'' l'⋗r'') acc-xl''r'' in right x'' (perfect x' cl' cr' l'≃r') (lemma-push-complete-⋘ x cl'' cr'' l''⋘r'' acc-xl''r'') x'l'r'⋙push-xl''r'' lemma-push-complete-⋙ x cl cr l⋙r (acc rs)| node perfect x' l' r' | node right x'' l'' r'' | ⋙r .x' .x'' l'≃r' l''⋙r'' l'≃l'' | perfect .x' cl' cr' _ | right .x'' cl'' cr'' _ with tot≤ x x' | tot≤ x x'' | tot≤ x' x'' ... | inj₁ x≤x' | inj₁ x≤x'' | _ = right x (perfect x' cl' cr' l'≃r') (right x'' cl'' cr'' l''⋙r'') (⋙r x' x'' l'≃r' l''⋙r'' l'≃l'') ... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height right x x'' l'' r'' = let acc-xl''r'' = rs (node right x l'' r'') (lemma-≺-right right x (node perfect x' l' r') (node right x'' l'' r'')) ; x'l'r'⋙push-xl''r'' = lemma-⋙-push (⋙r x' x l'≃r' l''⋙r'' l'≃l'') acc-xl''r'' in right x'' (perfect x' cl' cr' l'≃r') (lemma-push-complete-⋙ x cl'' cr'' l''⋙r'' acc-xl''r'') x'l'r'⋙push-xl''r'' ... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height perfect x x' l' r' = let acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left right x (node perfect x' l' r') (node right x'' l'' r'')) ; push-xl'r'⋙x''l''r'' = lemma-push-⋙ (⋙r x x'' l'≃r' l''⋙r'' l'≃l'') acc-xl'r' in right x' (lemma-push-complete-≃ x cl' cr' l'≃r' acc-xl'r') (right x'' cl'' cr'' l''⋙r'') push-xl'r'⋙x''l''r'' ... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height perfect x x' l' r' = let acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left right x (node perfect x' l' r') (node right x'' l'' r'')) ; push-xl'r'⋙x''l''r'' = lemma-push-⋙ (⋙r x x'' l'≃r' l''⋙r'' l'≃l'') acc-xl'r' in right x' (lemma-push-complete-≃ x cl' cr' l'≃r' acc-xl'r') (right x'' cl'' cr'' l''⋙r'') push-xl'r'⋙x''l''r'' ... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height right x x'' l'' r'' = let acc-xl''r'' = rs (node right x l'' r'') (lemma-≺-right right x (node perfect x' l' r') (node right x'' l'' r'')) ; x'l'r'⋙push-xl''r'' = lemma-⋙-push (⋙r x' x l'≃r' l''⋙r'' l'≃l'') acc-xl''r'' in right x'' (perfect x' cl' cr' l'≃r') (lemma-push-complete-⋙ x cl'' cr'' l''⋙r'' acc-xl''r'') x'l'r'⋙push-xl''r'' lemma-push-complete-⋙ x cl cr l⋙r (acc rs) | node left _ _ _ | _ | ⋙p () | _ | _ lemma-push-complete-⋙ x cl cr l⋙r (acc rs) | node right _ _ _ | _ | ⋙p () | _ | _ lemma-push-complete-⋘ : {l r : PLRTree}(x : A) → Complete l → Complete r → l ⋘ r → (acc : Acc _≺_ (node left x l r)) → Complete (push (node left x l r) acc) lemma-push-complete-⋘ {l} {r} x cl cr l⋘r (acc rs) with l | r | l⋘r | cl | cr ... | node left x' l' r' | node perfect x'' l'' r'' | l⋘ .x' .x'' l'⋘r' l''≃r'' r'≃l'' | left .x' cl' cr' _ | perfect .x'' cl'' cr'' _ with tot≤ x x' | tot≤ x x'' | tot≤ x' x'' ... | inj₁ x≤x' | inj₁ x≤x'' | _ = left x (left x' cl' cr' l'⋘r') (perfect x'' cl'' cr'' l''≃r'') (l⋘ x' x'' l'⋘r' l''≃r'' r'≃l'') ... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height perfect x x'' l'' r'' = let acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right left x (node left x' l' r') (node perfect x'' l'' r'')) ; xl''r''≃push-xl''r'' = lemma-≃-push (≃nd x x l''≃r'' l''≃r'' (lemma-≃-≃ l''≃r'')) acc-xl''r'' ; x''l''r''≃push-xl''r'' = trans≃ (≃nd x'' x l''≃r'' l''≃r'' (lemma-≃-≃ l''≃r'')) xl''r''≃push-xl''r'' ; x'l'r'⋘push-xl''r'' = lemma-⋘-push (l⋘ x' x l'⋘r' l''≃r'' r'≃l'') acc-xl''r'' in left x'' (left x' cl' cr' l'⋘r') (lemma-push-complete-≃ x cl'' cr'' l''≃r'' acc-xl''r'') x'l'r'⋘push-xl''r'' ... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height left x x' l' r' = let acc-xl'r' = rs (node left x l' r') (lemma-≺-left left x (node left x' l' r') (node perfect x'' l'' r'')) ; push-xl'r'⋘x''l''r'' = lemma-push-⋘ (l⋘ x x'' l'⋘r' l''≃r'' r'≃l'') acc-xl'r' in left x' (lemma-push-complete-⋘ x cl' cr' l'⋘r' acc-xl'r') (perfect x'' cl'' cr'' l''≃r'') push-xl'r'⋘x''l''r'' ... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height left x x' l' r' = let acc-xl'r' = rs (node left x l' r') (lemma-≺-left left x (node left x' l' r') (node perfect x'' l'' r'')) ; push-xl'r'⋘x''l''r'' = lemma-push-⋘ (l⋘ x x'' l'⋘r' l''≃r'' r'≃l'') acc-xl'r' in left x' (lemma-push-complete-⋘ x cl' cr' l'⋘r' acc-xl'r') (perfect x'' cl'' cr'' l''≃r'') push-xl'r'⋘x''l''r'' ... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height perfect x x'' l'' r'' = let acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right left x (node left x' l' r') (node perfect x'' l'' r'')) ; xl''r''≃push-xl''r'' = lemma-≃-push (≃nd x x l''≃r'' l''≃r'' (lemma-≃-≃ l''≃r'')) acc-xl''r'' ; x''l''r''≃push-xl''r'' = trans≃ (≃nd x'' x l''≃r'' l''≃r'' (lemma-≃-≃ l''≃r'')) xl''r''≃push-xl''r'' ; x'l'r'⋘push-xl''r'' = lemma-⋘-push (l⋘ x' x l'⋘r' l''≃r'' r'≃l'') acc-xl''r'' in left x'' (left x' cl' cr' l'⋘r') (lemma-push-complete-≃ x cl'' cr'' l''≃r'' acc-xl''r'') x'l'r'⋘push-xl''r'' lemma-push-complete-⋘ x cl cr l⋘r (acc rs) | node right x' (node perfect x'' leaf leaf) leaf | node perfect x''' leaf leaf | x⋘ .x' .x'' .x''' | right .x' (perfect .x'' leaf leaf ≃lf) leaf (⋙p (⋗lf .x'')) | perfect .x''' leaf leaf ≃lf with tot≤ x x' | tot≤ x x''' | tot≤ x' x''' ... | inj₁ x≤x' | inj₁ x≤x''' | _ = left x (right x' (perfect x'' leaf leaf ≃lf) leaf (⋙p (⋗lf x''))) (perfect x''' leaf leaf ≃lf) (x⋘ x' x'' x''') ... | inj₁ x≤x' | inj₂ x'''≤x | _ = left x''' (right x' (perfect x'' leaf leaf ≃lf) leaf (⋙p (⋗lf x''))) (perfect x leaf leaf ≃lf) (x⋘ x' x'' x) ... | inj₂ x'≤x | inj₁ x≤x''' | _ = let acc-xx'' = rs (node right x (node perfect x'' leaf leaf) leaf) (lemma-≺-left left x (node right x' (node perfect x'' leaf leaf) leaf) (node perfect x''' leaf leaf)) ; cdl = lemma-push-complete-⋙ x (perfect x'' leaf leaf ≃lf) leaf (⋙p (⋗lf x'')) acc-xx'' in left x' cdl (perfect x''' leaf leaf ≃lf) (lemma-push-⋘ (x⋘ x x'' x''') acc-xx'') ... | inj₂ x'≤x | inj₂ x'''≤x | inj₁ x'≤x''' = let acc-xx'' = rs (node right x (node perfect x'' leaf leaf) leaf) (lemma-≺-left left x (node right x' (node perfect x'' leaf leaf) leaf) (node perfect x''' leaf leaf)) ; cdl = lemma-push-complete-⋙ x (perfect x'' leaf leaf ≃lf) leaf (⋙p (⋗lf x'')) acc-xx'' in left x' cdl (perfect x''' leaf leaf ≃lf) (lemma-push-⋘ (x⋘ x x'' x''') acc-xx'') ... | inj₂ x'≤x | inj₂ x'''≤x | inj₂ x'''≤x' = left x''' (right x' (perfect x'' leaf leaf ≃lf) leaf (⋙p (⋗lf x''))) (perfect x leaf leaf ≃lf) (x⋘ x' x'' x) lemma-push-complete-⋘ x cl cr l⋘r (acc rs) | node right x' l' r' | node perfect x'' l'' r'' | r⋘ .x' .x'' l'⋙r' l''≃r'' l'⋗l'' | right .x' cl' cr' _ | perfect .x'' cl'' cr'' _ with tot≤ x x' | tot≤ x x'' | tot≤ x' x'' ... | inj₁ x≤x' | inj₁ x≤x'' | _ = left x (right x' cl' cr' l'⋙r') (perfect x'' cl'' cr'' l''≃r'') (r⋘ x' x'' l'⋙r' l''≃r'' l'⋗l'') ... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height perfect x x'' l'' r'' = let acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right left x (node right x' l' r') (node perfect x'' l'' r'')) ; x'lr'⋘push-xl''r'' = lemma-⋘-push (r⋘ x' x l'⋙r' l''≃r'' l'⋗l'') acc-xl''r'' in left x'' (right x' cl' cr' l'⋙r') (lemma-push-complete-≃ x cl'' cr'' l''≃r'' acc-xl''r'') x'lr'⋘push-xl''r'' ... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height right x x' l' r' = let acc-xl'r' = rs (node right x l' r') (lemma-≺-left left x (node right x' l' r') (node perfect x'' l'' r'')) ; push-xl'r'⋘x''l''r'' = lemma-push-⋘ (r⋘ x x'' l'⋙r' l''≃r'' l'⋗l'') acc-xl'r' in left x' (lemma-push-complete-⋙ x cl' cr' l'⋙r' acc-xl'r') (perfect x'' cl'' cr'' l''≃r'') push-xl'r'⋘x''l''r'' ... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height right x x' l' r' = let acc-xl'r' = rs (node right x l' r') (lemma-≺-left left x (node right x' l' r') (node perfect x'' l'' r'')) ; push-xl'r'⋘x''l''r'' = lemma-push-⋘ (r⋘ x x'' l'⋙r' l''≃r'' l'⋗l'') acc-xl'r' in left x' (lemma-push-complete-⋙ x cl' cr' l'⋙r' acc-xl'r') (perfect x'' cl'' cr'' l''≃r'') push-xl'r'⋘x''l''r'' ... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height perfect x x'' l'' r'' = let acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right left x (node right x' l' r') (node perfect x'' l'' r'')) ; x'lr'⋘push-xl''r'' = lemma-⋘-push (r⋘ x' x l'⋙r' l''≃r'' l'⋗l'') acc-xl''r'' in left x'' (right x' cl' cr' l'⋙r') (lemma-push-complete-≃ x cl'' cr'' l''≃r'' acc-xl''r'') x'lr'⋘push-xl''r'' lemma-push-complete : {t : PLRTree} → Complete t → (acc : Acc _≺_ t) → Complete (push t acc) lemma-push-complete leaf _ = leaf lemma-push-complete (perfect {l} {r}x cl cr l≃r) (acc rs) = lemma-push-complete-≃ x cl cr l≃r (acc rs) lemma-push-complete (left {l} {r}x cl cr l⋘r) (acc rs) = lemma-push-complete-⋘ x cl cr l⋘r (acc rs) lemma-push-complete (right {l} {r}x cl cr l⋙r) (acc rs) = lemma-push-complete-⋙ x cl cr l⋙r (acc rs)
{ "alphanum_fraction": 0.510608916, "avg_line_length": 94.1162079511, "ext": "agda", "hexsha": "f16a590e5f9d2dcbc64319b99695afbbe252729c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/PLRTree/Push/Complete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/PLRTree/Push/Complete.agda", "max_line_length": 238, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/PLRTree/Push/Complete.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 34738, "size": 61552 }
{-# OPTIONS --experimental-irrelevance #-} module ShapeIrrelevantIndexNoBecauseOfRecursion where data ⊥ : Set where record ⊤ : Set where constructor trivial data Bool : Set where true false : Bool True : Bool → Set True false = ⊥ True true = ⊤ data D : ..(b : Bool) → Set where c : {b : Bool} → True b → D b -- because of the irrelevant index, -- D is in essence an existental type D : Set -- with constructor c : {b : Bool} → True b → D fromD : {b : Bool} → D b → True b fromD (c p) = p -- should fail cast : .(a b : Bool) → D a → D b cast _ _ x = x bot : ⊥ bot = fromD (cast true false (c trivial))
{ "alphanum_fraction": 0.6288492707, "avg_line_length": 20.5666666667, "ext": "agda", "hexsha": "df08a5a68aa923693641cb02d52c6e56bf6f38f1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/ShapeIrrelevantIndexNoBecauseOfRecursion.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/ShapeIrrelevantIndexNoBecauseOfRecursion.agda", "max_line_length": 53, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/ShapeIrrelevantIndexNoBecauseOfRecursion.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 202, "size": 617 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category.Monoidal.Structure using (BraidedMonoidalCategory) module Categories.Functor.Monoidal.Braided {o o′ ℓ ℓ′ e e′} (C : BraidedMonoidalCategory o ℓ e) (D : BraidedMonoidalCategory o′ ℓ′ e′) where open import Level open import Data.Product using (_,_) open import Categories.Category using (module Commutation) open import Categories.Functor using (Functor) open import Categories.Functor.Monoidal open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) open NaturalIsomorphism private module C = BraidedMonoidalCategory C module D = BraidedMonoidalCategory D module Lax where -- Lax braided monoidal functors. record IsBraidedMonoidalFunctor (F : Functor C.U D.U) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where open Functor F field isMonoidal : IsMonoidalFunctor C.monoidalCategory D.monoidalCategory F open IsMonoidalFunctor isMonoidal public open D open Commutation D.U -- coherence condition field braiding-compat : ∀ {X Y} → [ F₀ X ⊗₀ F₀ Y ⇒ F₀ (Y C.⊗₀ X) ]⟨ ⊗-homo.η (X , Y) ⇒⟨ F₀ (X C.⊗₀ Y) ⟩ F₁ (C.braiding.⇒.η (X , Y)) ≈ D.braiding.⇒.η (F₀ X , F₀ Y) ⇒⟨ F₀ Y ⊗₀ F₀ X ⟩ ⊗-homo.η (Y , X) ⟩ record BraidedMonoidalFunctor : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field F : Functor C.U D.U isBraidedMonoidal : IsBraidedMonoidalFunctor F open Functor F public open IsBraidedMonoidalFunctor isBraidedMonoidal public monoidalFunctor : MonoidalFunctor C.monoidalCategory D.monoidalCategory monoidalFunctor = record { isMonoidal = isMonoidal } module Strong where -- Strong braided monoidal functors. record IsBraidedMonoidalFunctor (F : Functor C.U D.U) : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where open Functor F field isStrongMonoidal : IsStrongMonoidalFunctor C.monoidalCategory D.monoidalCategory F open IsStrongMonoidalFunctor isStrongMonoidal public open D open Commutation D.U -- coherence condition field braiding-compat : ∀ {X Y} → [ F₀ X ⊗₀ F₀ Y ⇒ F₀ (Y C.⊗₀ X) ]⟨ ⊗-homo.⇒.η (X , Y) ⇒⟨ F₀ (X C.⊗₀ Y) ⟩ F₁ (C.braiding.⇒.η (X , Y)) ≈ D.braiding.⇒.η (F₀ X , F₀ Y) ⇒⟨ F₀ Y ⊗₀ F₀ X ⟩ ⊗-homo.⇒.η (Y , X) ⟩ isLaxBraidedMonoidal : Lax.IsBraidedMonoidalFunctor F isLaxBraidedMonoidal = record { isMonoidal = isMonoidal ; braiding-compat = braiding-compat } record BraidedMonoidalFunctor : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where field F : Functor C.U D.U isBraidedMonoidal : IsBraidedMonoidalFunctor F open Functor F public open IsBraidedMonoidalFunctor isBraidedMonoidal public monoidalFunctor : StrongMonoidalFunctor C.monoidalCategory D.monoidalCategory monoidalFunctor = record { isStrongMonoidal = isStrongMonoidal }
{ "alphanum_fraction": 0.5841375151, "avg_line_length": 31.2830188679, "ext": "agda", "hexsha": "c3f2f5a6d00916bfdca300f793fac6d0932208d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "TOTBWF/agda-categories", "max_forks_repo_path": "src/Categories/Functor/Monoidal/Braided.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "TOTBWF/agda-categories", "max_issues_repo_path": "src/Categories/Functor/Monoidal/Braided.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "f8a33de12956c729c7fb00a302f166a643eb6052", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TOTBWF/agda-categories", "max_stars_repo_path": "src/Categories/Functor/Monoidal/Braided.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1027, "size": 3316 }
------------------------------------------------------------------------ -- The Agda standard library -- -- The reflexive transitive closures of McBride, Norell and Jansson -- -- This module is DEPRECATED. Please use the -- Relation.Binary.Construct.Closure.ReflexiveTransitive module directly ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.Star where open import Relation.Binary.Construct.Closure.ReflexiveTransitive public
{ "alphanum_fraction": 0.5528942116, "avg_line_length": 33.4, "ext": "agda", "hexsha": "5c95e015d9c95d68beeb5829c94f21e008906ac6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Star.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Star.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Star.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 86, "size": 501 }
{-# OPTIONS --without-K --rewriting #-} open import lib.Basics open import lib.types.Truncation open import lib.types.TwoSemiCategory open import lib.two-semi-categories.Functor open import lib.two-semi-categories.FunctorInverse open import lib.two-semi-categories.GroupToCategory module lib.two-semi-categories.FundamentalCategory where module _ {i} (A : Type i) where 2-type-fundamental-cat : {{_ : has-level 2 A}} → TwoSemiCategory i i 2-type-fundamental-cat = record { El = A ; Arr = _==_ ; Arr-level = λ _ _ → ⟨⟩ ; two-semi-cat-struct = record { comp = _∙_ ; assoc = ∙-assoc ; pentagon-identity = ∙-assoc-pentagon } } =ₜ-fundamental-cat : TwoSemiCategory i i =ₜ-fundamental-cat = record { El = Trunc 2 A ; Arr = _=ₜ_ ; Arr-level = =ₜ-level ; two-semi-cat-struct = record { comp = λ {ta} → _∙ₜ_ {ta = ta} ; assoc = λ {ta} → ∙ₜ-assoc {ta = ta} ; pentagon-identity = λ {ta} → ∙ₜ-assoc-pentagon {ta = ta} } } module _ {i} (A : Type i) where 2-type-to-=ₜ-fundamental-cat : TwoSemiFunctor (2-type-fundamental-cat (Trunc 2 A)) (=ₜ-fundamental-cat A) 2-type-to-=ₜ-fundamental-cat = record { F₀ = idf (Trunc 2 A) ; F₁ = λ {ta} {tb} → –> (=ₜ-equiv ta tb) ; pres-comp = –>-=ₜ-equiv-pres-∙ -- TODO: The following line takes a really long time to check. -- Can we optimize this somehow? ; pres-comp-coh = λ {ta} → –>-=ₜ-equiv-pres-∙-coh {ta = ta} } private module FunctorInv = FunctorInverse 2-type-to-=ₜ-fundamental-cat (idf-is-equiv (Trunc 2 A)) (λ ta tb → snd (=ₜ-equiv ta tb)) module InvFunctor = TwoSemiFunctor FunctorInv.functor =ₜ-to-2-type-fundamental-cat : TwoSemiFunctor (=ₜ-fundamental-cat A) (2-type-fundamental-cat (Trunc 2 A)) =ₜ-to-2-type-fundamental-cat = record { F₀ = idf (Trunc 2 A) ; F₁ = λ {ta} {tb} → <– (=ₜ-equiv ta tb) ; pres-comp = InvFunctor.pres-comp ; pres-comp-coh = InvFunctor.pres-comp-coh } module =ₜ-to-2-type-fundamental-cat = TwoSemiFunctor =ₜ-to-2-type-fundamental-cat =ₜ-to-2-type-fundamental-cat-pres-comp-β : {a b c : A} (p : a == b) (q : b == c) → =ₜ-to-2-type-fundamental-cat.pres-comp {x = [ a ]} {y = [ b ]} {z = [ c ]} [ p ]₁ [ q ]₁ == ap-∙ [_] p q =ₜ-to-2-type-fundamental-cat-pres-comp-β {a} p@idp q@idp = =ₛ-out (FunctorInv.pres-comp-β {[ a ]} {[ a ]} {[ a ]} [ idp ]₁ [ idp ]₁) module _ {i} (C : Type i) (c₀ : C) {{C-level : has-level 1 C}} where open import lib.groups.LoopSpace fundamental-group-to-fundamental-groupoid : TwoSemiFunctor (group-to-cat (Ω^S-group 0 ⊙[ C , c₀ ])) (2-type-fundamental-cat C {{raise-level 1 C-level}}) fundamental-group-to-fundamental-groupoid = record { F₀ = λ _ → c₀ ; F₁ = λ p → p ; pres-comp = λ p q → idp ; pres-comp-coh = λ p q r → =ₛ-in $ prop-path (has-level-apply (has-level-apply C-level _ _) _ _) _ _ }
{ "alphanum_fraction": 0.5762214984, "avg_line_length": 31.3265306122, "ext": "agda", "hexsha": "3fe8b4b34ea5120a40ead56259e2319d7df7c83f", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AntoineAllioux/HoTT-Agda", "max_forks_repo_path": "core/lib/two-semi-categories/FundamentalCategory.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AntoineAllioux/HoTT-Agda", "max_issues_repo_path": "core/lib/two-semi-categories/FundamentalCategory.agda", "max_line_length": 94, "max_stars_count": 294, "max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AntoineAllioux/HoTT-Agda", "max_stars_repo_path": "core/lib/two-semi-categories/FundamentalCategory.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 1075, "size": 3070 }
module Basic.SmallStep where import Data.Bool as Bool using (not) open import Data.Bool hiding (not; if_then_else_) open import Data.Empty open import Data.Fin using (Fin; suc; zero; #_) open import Data.Nat open import Data.Nat.Properties.Simple open import Data.Vec open import Function open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import Data.Unit hiding (_≤?_) open import Data.Product open import Data.Maybe import Level as L open import Basic.AST open import Utils.Decidable open import Utils.NatOrdLemmas {- Small-step semantics for While; see chapter 2.2 of the book. The book uses the notational convenience of omitting the state on the right hand side of the transition if there is no such state. We must define the same shorthand explicitly. Since the book seems to do it, I also decided to index derivation sequences by their length. This means also more cases for notatitonal shorthands. Otherwise, the definitions follow the book faithfully. Here I omit some commentary, since most of the things follow the same pattern as with big-step semantics. However, I also include some lemmas specific to small-step semantics, which are also included in the book. -} infixr 5 _∷_ mutual -- Notational shorthands for derivation sequences: -- Sequences with specified number of steps: ⟨_,_⟩_⟶_ : ∀ {n} → St n → State n → ℕ → State n → Set ⟨_,_⟩_⟶_ S s k s' = ⟨ S , s ⟩ k ⟶[ nothing , s' ] ⟨_,_⟩_⟶⟨_,_⟩ : ∀ {n} → St n → State n → ℕ → St n → State n → Set ⟨_,_⟩_⟶⟨_,_⟩ S s k S' s' = ⟨ S , s ⟩ k ⟶[ just S' , s' ] -- Sequences with unspecified number of steps: ⟨_,_⟩⟶*⟨_,_⟩ : ∀ {n} → St n → State n → St n → State n → Set ⟨_,_⟩⟶*⟨_,_⟩ S s S' s' = ∃ λ n → ⟨ S , s ⟩ n ⟶[ just S' , s' ] ⟨_,_⟩⟶*_ : ∀ {n} → St n → State n → State n → Set ⟨_,_⟩⟶*_ S s s' = ∃ λ n → ⟨ S , s ⟩ n ⟶[ nothing , s' ] -- Single-step transitions: ⟨_,_⟩⟶_ : ∀ {n} → St n → State n → State n → Set ⟨_,_⟩⟶_ S s s' = ⟨ S , s ⟩⟶[ nothing , s' ] ⟨_,_⟩⟶⟨_,_⟩ : ∀ {n} → St n → State n → St n → State n → Set ⟨_,_⟩⟶⟨_,_⟩ S s S' s' = ⟨ S , s ⟩⟶[ just S' , s' ] data ⟨_,_⟩⟶[_,_] {n : ℕ} : St n → State n → Maybe (St n) → State n → Set where ass : ∀ {x a s} → -------------------------------------- ⟨ x := a , s ⟩⟶ ( s [ x ]≔ ⟦ a ⟧ᵉ s ) skip : ∀ {s} → ---------------- ⟨ skip , s ⟩⟶ s _◄ : ∀ {s s' S₁ S₂ S₁'} → ⟨ S₁ , s ⟩⟶⟨ S₁' , s' ⟩ → -------------------------------------- ⟨ (S₁ , S₂) , s ⟩⟶⟨ (S₁' , S₂) , s' ⟩ _∙ : ∀ {s s' S₁ S₂} → ⟨ S₁ , s ⟩⟶ s' → ------------------------------ ⟨ (S₁ , S₂) , s ⟩⟶⟨ S₂ , s' ⟩ if-true : ∀ {b s S₁ S₂} → T (⟦ b ⟧ᵉ s) → --------------------------------------- ⟨ if b then S₁ else S₂ , s ⟩⟶⟨ S₁ , s ⟩ if-false : ∀ {b s S₁ S₂} → F (⟦ b ⟧ᵉ s) → --------------------------------------- ⟨ if b then S₁ else S₂ , s ⟩⟶⟨ S₂ , s ⟩ while : ∀ {b s S} → ---------------------------------------------------------------------- ⟨ while b do S , s ⟩⟶⟨ (if b then (S , while b do S) else skip) , s ⟩ -- Derivation sequences data ⟨_,_⟩_⟶[_,_] {n : ℕ} : St n → State n → ℕ → Maybe (St n) → State n → Set where pause : ∀ {s S} → ----------------------- ⟨ S , s ⟩ 0 ⟶⟨ S , s ⟩ _stop : ∀ {s s' S} → ⟨ S , s ⟩⟶ s' → ----------------- ⟨ S , s ⟩ 1 ⟶ s' _∷_ : ∀ {k s₁ s₂ s₃ S₁ S₂ S₃} → ⟨ S₁ , s₁ ⟩⟶⟨ S₂ , s₂ ⟩ → ⟨ S₂ , s₂ ⟩ k ⟶[ S₃ , s₃ ] → -------------------------------------------------------- ⟨ S₁ , s₁ ⟩ suc k ⟶[ S₃ , s₃ ] -- Example program derivation (very slow to check!) private prog : St 3 prog = # 2 := lit 0 , while lte (var (# 1)) (var (# 0)) do ( # 2 := add (var (# 2)) (lit 1) , # 0 := sub (var (# 0)) (var (# 1)) ) -- -- Uncomment if you dare -- prog-deriv : -- ∀ {z} → ⟨ prog , 17 ∷ 5 ∷ z ∷ [] ⟩ _ ⟶ (2 ∷ 5 ∷ 3 ∷ []) -- prog-deriv = -- ass ∙ ∷ -- while ∷ if-true tt ∷ ass ∙ ◄ ∷ ass ∙ ∷ -- while ∷ if-true tt ∷ ass ∙ ◄ ∷ ass ∙ ∷ -- while ∷ if-true tt ∷ ass ∙ ◄ ∷ ass ∙ ∷ -- while ∷ if-false tt ∷ skip stop -- Divergence _divergesOnₛ_ : ∀ {n} → St n → State n → Set prog divergesOnₛ s = ∀ {n s'} → ¬ ⟨ prog , s ⟩ n ⟶ s' Divergentₛ : ∀ {n} → St n → Set Divergentₛ prog = ∀ {s} → prog divergesOnₛ s private inf-loopₛ : ∀ {n} → Divergentₛ {n} (while tt do skip) inf-loopₛ (() stop) inf-loopₛ (while ∷ (() stop)) inf-loopₛ (while ∷ (if-true tt ∷ (() stop))) inf-loopₛ (while ∷ (if-true tt ∷ ((() ◄) ∷ p))) inf-loopₛ (while ∷ (if-true tt ∷ ((skip ∙) ∷ p))) = inf-loopₛ p inf-loopₛ (while ∷ (if-false () ∷ p)) deterministicₛ : ∀ {n}{S : St n}{S' S'' s s' s''} → ⟨ S , s ⟩⟶[ S' , s' ] → ⟨ S , s ⟩⟶[ S'' , s'' ] → S' ≡ S'' × s' ≡ s'' deterministicₛ {n} = go where go : ∀ {S : St n}{S' S'' s s' s''} → ⟨ S , s ⟩⟶[ S' , s' ] → ⟨ S , s ⟩⟶[ S'' , s'' ] → S' ≡ S'' × s' ≡ s'' go ass ass = refl , refl go skip skip = refl , refl go (p1 ◄) (p2 ◄) with go p1 p2 ... | refl , refl = refl , refl go (p1 ◄) (p2 ∙) with go p1 p2 ... | () , _ go (p1 ∙) (p2 ◄) with go p1 p2 ... | () , _ go (p1 ∙) (p2 ∙) with go p1 p2 ... | refl , refl = refl , refl go (if-true x) (if-true x₁) = refl , refl go (if-true x) (if-false x₁) rewrite T→≡true x = ⊥-elim x₁ go (if-false x) (if-true x₁) rewrite T→≡true x₁ = ⊥-elim x go (if-false x) (if-false x₁) = refl , refl go while while = refl , refl {- Lemma 2.19 of the book: if we have a derivation over the composition of statements, then there exists two derivations over the substatements, such that their lenghts add up to the length of the original derivation. -} seq-split : ∀ {n k S₁ S₂}{s₁ s₃ : State n} → ⟨ (S₁ , S₂) , s₁ ⟩ k ⟶ s₃ → Σ (State n × ℕ × ℕ) λ {(s₂ , k₁ , k₂) → ⟨ S₁ , s₁ ⟩ k₁ ⟶ s₂ × ⟨ S₂ , s₂ ⟩ k₂ ⟶ s₃ × k₁ + k₂ ≡ k} seq-split (() stop) seq-split (x ◄ ∷ p) with seq-split p ... | _ , p1 , p2 , prf = _ , x ∷ p1 , p2 , cong suc prf seq-split (x ∙ ∷ p) = _ , x stop , p , refl {- Exercise 2.20. -} ex2-20 : ∃ λ n → ∃₂ λ (s s' : State n) → ∃₂ λ A B → ⟨ (A , B) , s ⟩⟶*⟨ B , s' ⟩ × ¬ ⟨ A , s ⟩⟶* s' ex2-20 = 1 , (0 ∷ []) , (2 ∷ []) , A , (while b do A) , Deriv , ¬Deriv where A = zero := add (lit 1) (var zero) b = lt (var zero) (lit 2) Deriv = , ass ∙ ∷ while ∷ if-true tt ∷ ass ∙ ∷ pause ¬Deriv : ¬ ⟨ A , 0 ∷ [] ⟩⟶* (2 ∷ []) ¬Deriv (._ , () stop) ¬Deriv (._ , () ∷ proj₂) {- The converse of seq-split: two derivations can be appended to a single derivation over the composition of the programs. -} append : ∀ {n k₁ k₂}{s s' s'' : State n}{A B} → ⟨ A , s ⟩ k₁ ⟶ s' → ⟨ B , s' ⟩ k₂ ⟶ s'' → ⟨ (A , B) , s ⟩ (k₁ + k₂) ⟶ s'' append (x stop) p2 = (x ∙) ∷ p2 append (x ∷ p1) p2 = (x ◄) ∷ append p1 p2 -- Correctness of factorial (exactly the same proof as with big-step semantics) private ⟦fac⟧ : ℕ → ℕ ⟦fac⟧ zero = 1 ⟦fac⟧ (suc n) = suc n * ⟦fac⟧ n fac-loop : St 3 fac-loop = while lt (var (# 1)) (var (# 0)) do ( # 1 := add (lit 1) (var (# 1)) , # 2 := mul (var (# 1)) (var (# 2)) ) fac : St 3 fac = # 1 := lit 0 , # 2 := lit 1 , fac-loop fac-loop-ok : ∀ d i → ⟨ fac-loop , d + i ∷ i ∷ ⟦fac⟧ i ∷ [] ⟩⟶* (d + i ∷ d + i ∷ ⟦fac⟧ (d + i) ∷ []) fac-loop-ok zero i = , while ∷ if-false (¬A→FalseA $ a≮a i) ∷ skip stop fac-loop-ok (suc d) i with fac-loop-ok d (suc i) ... | _ , next rewrite +-suc d i = , while ∷ if-true (A→TrueA $ a<sb+a i d) ∷ ass ∙ ◄ ∷ ass ∙ ∷ next fac-ok : ∀ n {i lim} → ⟨ fac , n ∷ i ∷ lim ∷ [] ⟩⟶* (n ∷ n ∷ ⟦fac⟧ n ∷ []) fac-ok n with fac-loop-ok n 0 ... | _ , loop-ok rewrite +-comm n 0 = , ass ∙ ∷ ass ∙ ∷ loop-ok
{ "alphanum_fraction": 0.4605902129, "avg_line_length": 30.1917293233, "ext": "agda", "hexsha": "92b7389210e65f6c0441cea0d8fe372b7d4976bf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_forks_repo_path": "Basic/SmallStep.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_issues_repo_path": "Basic/SmallStep.agda", "max_line_length": 97, "max_stars_count": 8, "max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications", "max_stars_repo_path": "Basic/SmallStep.agda", "max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z", "max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z", "num_tokens": 3232, "size": 8031 }
-- Andreas, 2015-09-18 Andreas, reported by Andrea -- {-# OPTIONS -v impossible:10 #-} -- {-# OPTIONS -v tc.cover.splittree:10 #-} -- {-# OPTIONS -v tc.cc:30 #-} open import Common.Bool open import Common.Product open import Common.Equality postulate A : Set a : A Works : A × A → Bool → A Works (x , y) true = y Works d false = a works : ∀{x y} → Works (x , y) false ≡ a works = refl Test : A × (A × A) → Bool → A Test (x , (y , z)) true = z Test d false = a test : ∀{x y z} → Test (x , (y , z)) false ≡ a test = refl -- ERROR WAS: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/TypeChecking/CompiledClause/Match.hs:189 -- Behavior of clause compiler WAS: -- splitting on 0 after expandCatchAlls True: -- (x,(y,z)) true -> z -- (_,_) false -> a -- _ false -> a -- splitting on 1 after expandCatchAlls False: -- d false -> a -- splitting on 1 after expandCatchAlls False: <== NOW: True -- x (y,z) true -> z -- _ (_,_) false -> a <== WAS MISSING -- _ _ false -> a -- splitting on 2 after expandCatchAlls False: -- _ _ false -> a -- splitting on 3 after expandCatchAlls False: -- x y z true -> z -- x y z false -> a <== WAS MISSING
{ "alphanum_fraction": 0.6033925687, "avg_line_length": 25.7916666667, "ext": "agda", "hexsha": "3fc4d0c890498829ab692d62671ae7183cd0ab63", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1650.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1650.agda", "max_line_length": 80, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1650.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 406, "size": 1238 }
-- Andreas, 2013-10-30 -- Test whether verbosity options are honored before file is loaded. -- See Issue641.flags module Issue641 where -- Provoke a scope checking error. open NoSuchModule -- Expected output is some debug messages about importing, plus the error, -- like: -- Getting interface for Issue641 -- Check for cycle -- Issue641 is not up-to-date. -- Creating interface for Issue641. -- visited: -- Issue641.agda:9,6-18 -- No such module NoSuchModule -- when scope checking the declaration -- open NoSuchModule
{ "alphanum_fraction": 0.7345794393, "avg_line_length": 23.2608695652, "ext": "agda", "hexsha": "fa9be556ddb35f0508a913986df4ec7403ea853c", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Issue641.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue641.agda", "max_line_length": 74, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue641.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 130, "size": 535 }
{-# OPTIONS --no-positivity-check #-} module STLC.Coquand.Completeness where open import STLC.Coquand.Normalisation public open import STLC.Coquand.Convertibility public -------------------------------------------------------------------------------- data CV : ∀ {Γ A} → Γ ⊢ A → Γ ⊩ A → Set where cv⎵ : ∀ {Γ} → {M : Γ ⊢ ⎵} {f : Γ ⊩ ⎵} → (h : ∀ {Γ′} → (η : Γ′ ∋⋆ Γ) → sub ⌊ η ⌋ M ∼ ⟦g⟧⟨ η ⟩ f) → CV M f cv⊃ : ∀ {Γ A B} → {M : Γ ⊢ A ⇒ B} {f : Γ ⊩ A ⇒ B} → (h : ∀ {Γ′ N a} → (η : Γ′ ∋⋆ Γ) → CV N a → CV (sub ⌊ η ⌋ M ∙ N) (f ⟦∙⟧⟨ η ⟩ a)) → CV M f data CV⋆ : ∀ {Γ Ξ} → Γ ⊢⋆ Ξ → Γ ⊩⋆ Ξ → Set where ∅ : ∀ {Γ} → {σ : Γ ⊢⋆ ∅} → CV⋆ σ ∅ _,_ : ∀ {Γ Ξ A} → {σ : Γ ⊢⋆ Ξ , A} {ρ : Γ ⊩⋆ Ξ} {a : Γ ⊩ A} → (κ : CV⋆ (σ ◐ wkᵣ {A} idᵣ) ρ) (k : CV (sub σ 0) a) → CV⋆ σ (ρ , a) -------------------------------------------------------------------------------- postulate congCV : ∀ {Γ A} → {M₁ M₂ : Γ ⊢ A} {a : Γ ⊩ A} → M₁ ∼ M₂ → CV M₁ a → CV M₂ a -- (cong↑⟨_⟩CV) postulate accCV : ∀ {Γ Γ′ A} → {M : Γ ⊢ A} {a : Γ ⊩ A} → (η : Γ′ ∋⋆ Γ) → CV M a → CV (sub ⌊ η ⌋ M) (acc η a) -- (conglookupCV) postulate getCV : ∀ {Γ Ξ A} → {σ : Γ ⊢⋆ Ξ} {ρ : Γ ⊩⋆ Ξ} → (i : Ξ ∋ A) → CV⋆ σ ρ → CV (sub σ (𝓋 i)) (getᵥ ρ i) -- (cong↑⟨_⟩CV⋆) postulate accCV⋆ : ∀ {Γ Γ′ Ξ} → {σ : Γ ⊢⋆ Ξ} {ρ : Γ ⊩⋆ Ξ} → (η : Γ′ ∋⋆ Γ) → CV⋆ σ ρ → CV⋆ (η ◑ σ) (η ⬗ ρ) -- (cong↓⟨_⟩CV⋆) postulate getCV⋆ : ∀ {Γ Ξ Ξ′} → {σ : Γ ⊢⋆ Ξ′} {ρ : Γ ⊩⋆ Ξ′} → (η : Ξ′ ∋⋆ Ξ) → CV⋆ σ ρ → CV⋆ (σ ◐ η) (ρ ⬖ η) -------------------------------------------------------------------------------- -- Lemma 8. postulate ⟦_⟧CV : ∀ {Γ Ξ A} → {σ : Γ ⊢⋆ Ξ} {ρ : Γ ⊩⋆ Ξ} → (M : Ξ ⊢ A) → CV⋆ σ ρ → CV (sub σ M) (⟦ M ⟧ ρ) postulate ⟦_⟧CV⋆ : ∀ {Γ Ξ Φ} → {σ₁ : Γ ⊢⋆ Ξ} {ρ : Γ ⊩⋆ Ξ} → (σ₂ : Ξ ⊢⋆ Φ) → CV⋆ σ₁ ρ → CV⋆ (σ₁ ● σ₂) (⟦ σ₂ ⟧⋆ ρ) -------------------------------------------------------------------------------- -- Lemma 9. mutual postulate lem₉ : ∀ {Γ A} → {M : Γ ⊢ A} {a : Γ ⊩ A} → CV M a → M ∼ reify a postulate aux₄₆₈ : ∀ {A Γ} → {M : Γ ⊢ A} {f : ∀ {Γ′} → Γ′ ∋⋆ Γ → Γ′ ⊢ A} → (∀ {Γ′} → (η : Γ′ ∋⋆ Γ) → sub ⌊ η ⌋ M ∼ f η) → CV M (⟪ f ⟫) postulate ⌊_⌋CV⋆ : ∀ {Γ Γ′} → (η : Γ′ ∋⋆ Γ) → CV⋆ ⌊ η ⌋ ⌊ η ⌋ᵥ idCV⋆ : ∀ {Γ} → CV⋆ ⌊ idᵣ ⌋ (idᵥ {Γ}) idCV⋆ = ⌊ idᵣ ⌋CV⋆ postulate aux₄₆₉ : ∀ {Γ A} → (M : Γ ⊢ A) → sub ⌊ idᵣ ⌋ M ∼ nf M -------------------------------------------------------------------------------- -- Theorem 2. postulate thm₂ : ∀ {Γ A} → (M : Γ ⊢ A) → M ∼ nf M -- Theorem 3. thm₃ : ∀ {Γ A} → (M₁ M₂ : Γ ⊢ A) → Eq (⟦ M₁ ⟧ idᵥ) (⟦ M₂ ⟧ idᵥ) → M₁ ∼ M₂ thm₃ M₁ M₂ e = thm₂ M₁ ⦙ ≡→∼ (cor₁ M₁ M₂ e) ⦙ thm₂ M₂ ⁻¹ --------------------------------------------------------------------------------
{ "alphanum_fraction": 0.2562574493, "avg_line_length": 26.4251968504, "ext": "agda", "hexsha": "8607dd7ee6b2e4fc528bd19c23ce9631d0ce8830", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/coquand-kovacs", "max_forks_repo_path": "src/STLC/Coquand/Completeness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/coquand-kovacs", "max_issues_repo_path": "src/STLC/Coquand/Completeness.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/coquand-kovacs", "max_stars_repo_path": "src/STLC/Coquand/Completeness.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1531, "size": 3356 }
{-# OPTIONS --warning=error #-} module UselessPrivatePragma where postulate Char : Set private {-# BUILTIN CHAR Char #-}
{ "alphanum_fraction": 0.6984126984, "avg_line_length": 14, "ext": "agda", "hexsha": "2375116b1379765e3650ecafb09a94cdbefcd21a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/UselessPrivatePragma.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/UselessPrivatePragma.agda", "max_line_length": 33, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/UselessPrivatePragma.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 30, "size": 126 }
{- SAMPLE PROGRAMS IN SOURCE LANGUAGE -} open import Preliminaries open import Source open import Pilot2 open import Translation open import Interp open import Preorder module Samples where s2r : ∀ {Γ τ} → Γ Source.|- τ → (el ([ (⟨⟨ Γ ⟩⟩c) ]c ->p [ (|| τ ||) ]t)) s2r p = interpE || p ||e -- this works {- dbl (n : nat) : nat = 2 * n -} dbl : ∀ {Γ} → Γ Source.|- (nat ->s nat) dbl = lam (rec (var i0) z (suc (suc (force (var (iS i0)))))) -- this works {- add (m n : nat) : nat = m + n -} add : ∀ {Γ} → Γ Source.|- (nat ->s (nat ->s nat)) add = lam (lam (rec (var (iS i0)) (var i0) (suc (force (var (iS i0)))))) -- this works {- mult (m n : nat) : nat = m * n -} mult : ∀ {Γ} → Γ Source.|- (nat ->s (nat ->s nat)) mult = lam (lam (rec (var (iS i0)) z (app (app add (var (iS (iS i0)))) (force (var (iS i0)))))) -- this works {- pred (n : nat) : nat = predecessor of n -} pred : ∀ {Γ} → Γ Source.|- (nat ->s nat) pred = lam (rec (var i0) z (var i0)) -- uhhhh fastfib : ∀ {Γ} → Γ Source.|- (nat ->s (nat ×s nat)) fastfib = lam (rec (var i0) (prod z (suc z)) (prod (split (force (var (iS i0))) (var (iS i0))) (app (app add (split (force (var (iS i0))) (var i0))) (split (force (var (iS i0))) (var (iS i0)))))) -- hack : instead of having bool case analysis just do natural number recursion and return 1/0 -- this works {- iszero (n : nat) : nat = z -> 1 | _ -> 0 -} isz : ∀ {Γ} → Γ Source.|- (nat ->s nat) isz = lam (rec (var i0) (suc z) z) -- this works {- leq (m n : nat) : nat = m ≤ n -} leq : ∀ {Γ} → Γ Source.|- (nat ->s (nat ->s nat)) leq = lam (rec (var i0) (lam (suc z)) (lam (rec (var i0) z (app (force (var (iS (iS (iS (iS i0)))))) (var i0))))) -- this works {- eq (m n : nat) : nat = m = n -} eq : ∀ {Γ} → Γ Source.|- (nat ->s (nat ->s nat)) eq = lam (rec (var i0) (lam (app isz (var i0))) (lam (rec (var i0) z (app (force (var (iS (iS (iS (iS i0)))))) (var i0))))) -- this works {- len (l : list τ) : nat = [] -> z | x :: xs -> 1 + len xs -} len : ∀ {Γ τ} → Γ Source.|- (list τ ->s nat) len = lam (listrec (var i0) z (suc (force (var (iS (iS i0)))))) -- this works {- nth (n : nat) (l : list τ) : nat = [] -> 1 (return 1+len(l) if element not in list) | x :: xs -> if n = x then 0 else 1 + (nth n xs) -} nth : ∀ {Γ} → Γ Source.|- (list nat ->s (nat ->s nat)) nth = lam (lam (listrec (var (iS i0)) (suc z) (rec (app (app eq (var (iS (iS (iS i0))))) (var i0)) (suc (force (var (iS (iS i0))))) z))) -- this works {- append (l1 l2 : list τ) : list τ = match l1 with [] -> l2 | x :: xs -> x :: (append xs ys) -} append : ∀ {Γ τ} → Γ Source.|- (list τ ->s (list τ ->s list τ)) append = lam (lam (listrec (var (iS i0)) (var i0) (var i0 ::s force (var (iS (iS i0)))))) -- this works {- rev (l : list τ) : list τ = [] -> [] | x :: xs -> append (rev xs) [x] -} rev : ∀ {Γ τ} → Γ Source.|- (list τ ->s list τ) rev = lam (listrec (var i0) nil (app (app append (force (var (iS (iS i0))))) (var i0 ::s nil))) {- {- fast rev -} rev2piles : ∀ {Γ τ} → Γ Source.|- (list τ ->s (list τ ->s list τ)) rev2piles = lam (lam (listrec (var (iS i0)) (var i0) (app (app rev2piles (var (iS i0))) (var i0 ::s var (iS (iS (iS i0))))))) fastrev : ∀ {Γ τ} → Γ Source.|- (list τ ->s list τ) fastrev = lam (app (app rev2piles (var i0)) nil) -} -- this works {- insert (l : list nat) (el : nat) : list nat = [] -> [el] | x :: xs -> (leq el x -> el :: x :: xs | x :: (insert el xs)) -} insert : ∀ {Γ} → Γ Source.|- (list nat ->s (nat ->s list nat)) insert = lam (lam (listrec (var (iS i0)) (var i0 ::s nil) (rec (app (app leq (var (iS (iS (iS i0))))) (var i0)) (var i0 ::s force (var (iS (iS i0)))) (var (iS (iS (iS (iS (iS i0))))) ::s (var (iS (iS i0)) ::s var (iS (iS (iS i0)))))))) -- this works {- insertion sort (l : list nat) : list nat = [] -> [] | x :: xs -> insert x (isort xs) -} isort : ∀ {Γ} → Γ Source.|- (list nat ->s list nat) isort = lam (listrec (var i0) nil (app (app insert (force (var (iS (iS i0))))) (var i0))) -- this works {- map (l : list τ) (f : τ → τ') : list τ = [] -> [] | x :: xs -> f x :: map f xs -} map : ∀ {Γ τ τ'} → Γ Source.|- ((τ ->s τ') ->s (list τ ->s list τ')) map = lam (lam (listrec (var i0) nil (app (var (iS (iS (iS (iS i0))))) (var i0) ::s force (var (iS (iS i0)))))) dbl-trans : ∀ {Γ τ} → {!!} --el ([ (⟨⟨ Γ ⟩⟩c) ]c ->p [ (|| τ ||) ]t) dbl-trans {Γ} = {!|| dbl ||e!} example1 : ∀ {Γ τ} → {!!} example1 {Γ} {τ} = {!!} --copy and paste from this goal to the thing below {- dbl-trans : ∀ {Γ} → ⟨⟨ Γ ⟩⟩c Pilot2.|- || nat ->s nat || dbl-trans = prod 0C (lam (prod (plusC (l-proj (prod 0C (var i0))) (l-proj (rec (r-proj (prod 0C (var i0))) (prod (plusC 1C (l-proj (prod 0C z))) (r-proj (prod 0C z))) (prod (plusC 1C (l-proj (prod (l-proj (prod (l-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0))))))) (s (r-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0)))))))))) (s (r-proj (prod (l-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0))))))) (s (r-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0)))))))))))))) (r-proj (prod (l-proj (prod (l-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0))))))) (s (r-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0)))))))))) (s (r-proj (prod (l-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0))))))) (s (r-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0))))))))))))))))) (r-proj (rec (r-proj (prod 0C (var i0))) (prod (plusC 1C (l-proj (prod 0C z))) (r-proj (prod 0C z))) (prod (plusC 1C (l-proj (prod (l-proj (prod (l-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0))))))) (s (r-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0)))))))))) (s (r-proj (prod (l-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0))))))) (s (r-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0)))))))))))))) (r-proj (prod (l-proj (prod (l-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0))))))) (s (r-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0)))))))))) (s (r-proj (prod (l-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0))))))) (s (r-proj (prod (plusC (l-proj (prod 0C (var (iS i0)))) (l-proj (r-proj (prod 0C (var (iS i0)))))) (r-proj (r-proj (prod 0C (var (iS i0)))))))))))))))))) aaa : ∀ {Γ} → interpE (r-proj (dbl-trans {Γ})) == {!!} aaa = {!!} interp-dbl-trans : ∀ {Γ} → Monotone (fst [ ⟨⟨ Γ ⟩⟩c ]c) (fst [ ⟨⟨ nat ->s nat ⟩⟩ ]t) (snd [ ⟨⟨ Γ ⟩⟩c ]c) (snd [ ⟨⟨ nat ->s nat ⟩⟩ ]t) interp-dbl-trans {Γ} = monotone (λ x → monotone (λ p₁ → (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) p₁)) (λ a b c → nat-trans (fst (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) a)) (fst (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) b)) (fst (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) b)) (fst (♭h-fix-args (monotone (λ x₁ → 1 , 0) (λ x₁ y z₁ → <> , <>)) (monotone (λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁))))) (λ x₁ y z₁ → fst (snd (fst z₁)) , snd (snd (fst z₁)))) ((x , a) , a) ((x , b) , b) c)) (fst (♭h-fix-el (monotone (λ x₁ → 1 , 0) (λ x₁ y z₁ → <> , <>)) (monotone (λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁))))) (λ x₁ y z₁ → fst (snd (fst z₁)) , snd (snd (fst z₁)))) ((x , a) , a) ((x , b) , b) ((Preorder-str.refl (snd [ ⟨⟨ Γ ⟩⟩c ]c) x , c) , c))) , ♭nat-trans (snd (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) a)) (snd (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) b)) (snd (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) b)) (snd (♭h-fix-args (monotone (λ x₁ → 1 , 0) (λ x₁ y z₁ → <> , <>)) (monotone (λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁))))) (λ x₁ y z₁ → fst (snd (fst z₁)) , snd (snd (fst z₁)))) ((x , a) , a) ((x , b) , b) c)) (snd (♭h-fix-el (monotone (λ x₁ → 1 , 0) (λ x₁ y z₁ → <> , <>)) (monotone (λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁))))) (λ x₁ y z₁ → fst (snd (fst z₁)) , snd (snd (fst z₁)))) ((x , a) , a) ((x , b) , b) ((Preorder-str.refl (snd [ ⟨⟨ Γ ⟩⟩c ]c) x , c) , c))))) (λ x y z₁ w → nat-trans (fst (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) w)) (fst (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) w)) (fst (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) w)) (fst (♭h-fix-args (monotone (λ x₁ → 1 , 0) (λ x₁ y₁ z₂ → <> , <>)) (monotone (λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁))))) (λ x₁ y₁ z₂ → fst (snd (fst z₂)) , snd (snd (fst z₂)))) ((x , w) , w) ((y , w) , w) (♭nat-refl w))) (fst (♭h-fix-el (monotone (λ x₁ → 1 , 0) (λ x₁ y₁ z₂ → <> , <>)) (monotone (λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁))))) (λ x₁ y₁ z₂ → fst (snd (fst z₂)) , snd (snd (fst z₂)))) ((x , w) , w) ((y , w) , w) ((z₁ , ♭nat-refl w) , ♭nat-refl w))) , ♭nat-trans (snd (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) w)) (snd (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) w)) (snd (natrec (1 , 0) (λ n x₂ → S (fst x₂) , S (S (snd x₂))) w)) (snd (♭h-fix-args (monotone (λ x₁ → 1 , 0) (λ x₁ y₁ z₂ → <> , <>)) (monotone (λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁))))) (λ x₁ y₁ z₂ → fst (snd (fst z₂)) , snd (snd (fst z₂)))) ((x , w) , w) ((y , w) , w) (♭nat-refl w))) (snd (♭h-fix-el (monotone (λ x₁ → 1 , 0) (λ x₁ y₁ z₂ → <> , <>)) (monotone (λ x₁ → S (fst (snd (fst x₁))) , S (S (snd (snd (fst x₁))))) (λ x₁ y₁ z₂ → fst (snd (fst z₂)) , snd (snd (fst z₂)))) ((x , w) , w) ((y , w) , w) ((z₁ , ♭nat-refl w) , ♭nat-refl w)))) -} {- {- halve (l : list nat) : (list nat * list nat) = splits a list in half -} halve : ∀ {Γ} → Γ Source.|- (list nat ->s (list nat ×s list nat)) halve = lam (listrec (var i0) (prod nil nil) (listrec (var (iS i0)) (prod (var i0 ::s nil) nil) (prod (var (iS (iS (iS i0))) ::s split (force (var (iS (iS i0)))) (var i0)) (var i0 ::s split (force (var (iS (iS i0)))) (var (iS i0)))))) test : ∀ {Γ τ} → {!!} test {Γ} = {!s2r (app halve (z ::s (z ::s (z ::s nil))))!} {- merge (l1 l2 : list nat) : list nat = match l1 with [] -> l2 x :: xs -> match l2 with [] -> x :: xs y :: ys -> x <= y -> x :: merge xs l2 _ -> y :: merge l1 ys -} merge : ∀ {Γ} → Γ Source.|- ((list nat ×s list nat) ->s list nat) merge = lam (listrec (split (var i0) (var i0)) (split (var i0) (var (iS i0))) (listrec (split (var (iS (iS (iS i0)))) (var (iS i0))) (split (var (iS (iS (iS i0)))) (var i0)) (rec (app (app leq (var (iS (iS (iS i0))))) (var i0)) (var (iS (iS (iS i0))) ::s force (var (iS (iS (iS (iS (iS i0))))))) (var i0 ::s app merge (prod (split (var (iS (iS (iS (iS (iS (iS (iS (iS i0))))))))) (var (iS i0))) (var (iS (iS (iS i0))))))))) {- mergesort (l : list nat) : list nat -} msort : ∀ {Γ} → Γ Source.|- (list nat ->s list nat) msort = lam (listrec (var i0) nil (listrec (var (iS i0)) (var i0 ::s nil) (app merge (prod (app msort (split (app halve (var (iS (iS (iS (iS (iS (iS i0)))))))) (var i0))) (app msort (split (app halve (var (iS (iS (iS (iS (iS (iS i0)))))))) (var (iS i0)))))))) -}
{ "alphanum_fraction": 0.2888687524, "avg_line_length": 57.7630853994, "ext": "agda", "hexsha": "3d595415869ccc7844dd2e89a931aed5f4b70ab1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "benhuds/Agda", "max_forks_repo_path": "complexity/complexity-final/Samples.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_issues_repo_issues_event_max_datetime": "2020-05-12T00:32:45.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-23T08:39:04.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "benhuds/Agda", "max_issues_repo_path": "complexity/complexity-final/Samples.agda", "max_line_length": 152, "max_stars_count": 2, "max_stars_repo_head_hexsha": "2404a6ef2688f879bda89860bb22f77664ad813e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "benhuds/Agda", "max_stars_repo_path": "complexity/complexity-final/Samples.agda", "max_stars_repo_stars_event_max_datetime": "2019-08-08T12:27:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-04-26T20:22:22.000Z", "num_tokens": 5916, "size": 20968 }
{-# OPTIONS --without-K #-} open import HoTT module homotopy.HopfJunior where -- We define the negation function and prove that it’s an equivalence not : Bool → Bool not true = false not false = true not-not : (b : Bool) → not (not b) == b not-not true = idp not-not false = idp not-equiv : Bool ≃ Bool not-equiv = equiv not not not-not not-not -- Definition of the junior Hopf fibration module HopfJunior = S¹RecType Bool not-equiv open HopfJunior using (module Wt; Wt; cct; ppt; flattening-S¹) HopfJunior : S¹ → Type₀ HopfJunior = HopfJunior.f -- We get that the total space is the type Wt defined in the flattening lemma. tot-is-Wt : Σ S¹ HopfJunior == Wt tot-is-Wt = flattening-S¹ -- Now we prove that Wt is equivalent to S¹ private -- Map from [Wt] to [S¹] to-cct : Unit × Bool → S¹ to-cct _ = base to-ppt : (x : Unit × Bool) → to-cct x == to-cct x to-ppt (_ , true) = loop to-ppt (_ , false) = idp module To = Wt.Rec to-cct to-ppt to : Wt → S¹ to = To.f -- Map from [S¹] to [Wt] from-base : Wt from-base = cct tt true from-loop : from-base == from-base from-loop = ppt tt true ∙ ppt tt false module From = S¹Rec from-base from-loop from : S¹ → Wt from = From.f -- First composite abstract to-from : (x : S¹) → to (from x) == x to-from = S¹-elim idp (↓-∘=idf-in to from (ap to (ap from loop) =⟨ From.loop-β |in-ctx ap to ⟩ ap to (ppt tt true ∙ ppt tt false) =⟨ ap-∙ to (ppt tt true) (ppt tt false) ⟩ ap to (ppt tt true) ∙ ap to (ppt tt false) =⟨ To.pp-β (tt , true) |in-ctx (λ u → u ∙ ap to (ppt tt false)) ⟩ loop ∙ ap to (ppt tt false) =⟨ To.pp-β (tt , false) |in-ctx (λ u → loop ∙ u) ⟩ loop ∙ idp =⟨ ∙-unit-r loop ⟩ loop ∎)) -- Second composite from-to-cct : (b : Bool) → from (to (cct tt b)) == cct tt b from-to-cct true = idp from-to-cct false = ! (ppt tt false) abstract from-to-ppt : (b : Bool) → ap from (ap to (ppt tt b)) ∙' from-to-cct (not b) == from-to-cct b ∙ ppt tt b from-to-ppt true = ap from (ap to (ppt tt true)) ∙' ! (ppt tt false) =⟨ To.pp-β (tt , true) |in-ctx (λ u → ap from u ∙' ! (ppt tt false)) ⟩ ap from loop ∙' ! (ppt tt false) =⟨ From.loop-β |in-ctx (λ u → u ∙' ! (ppt tt false)) ⟩ (ppt tt true ∙ ppt tt false) ∙' ! (ppt tt false) =⟨ lemma (ppt tt true) (ppt tt false) ⟩ ppt tt true ∎ where lemma : ∀ {i} {A : Type i} {a b c : A} (p : a == b) (q : b == c) → (p ∙ q) ∙' (! q) == p lemma idp idp = idp from-to-ppt false = ap from (ap to (ppt tt false)) =⟨ To.pp-β (tt , false) |in-ctx ap from ⟩ ap from (idp {a = base}) =⟨ ! (!-inv-l (ppt tt false)) ⟩ ! (ppt tt false) ∙ ppt tt false ∎ from-to : (x : Wt) → from (to x) == x from-to = Wt.elim (from-to-cct ∘ snd) (λ b → ↓-∘=idf-in from to (from-to-ppt (snd b))) -- Conclusion subresult : Wt ≃ S¹ subresult = equiv to from to-from from-to -- Conclusion result : Σ S¹ HopfJunior ≃ S¹ result = subresult ∘e (coe-equiv tot-is-Wt)
{ "alphanum_fraction": 0.5535771065, "avg_line_length": 31.7676767677, "ext": "agda", "hexsha": "29197dd72afd681d132a35c9cc34bef69b0dceec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "homotopy/HopfJunior.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "homotopy/HopfJunior.agda", "max_line_length": 126, "max_stars_count": 1, "max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda", "max_stars_repo_path": "homotopy/HopfJunior.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 1151, "size": 3145 }
-- Andreas, Jesper, 2015-07-02 Error in copyScope -- To trigger the bug, it is important that -- the main module is in a subdirectory of the imported module. module Issue1597.Main where open import Issue1597 -- external import is needed module B where open A public -- public is needed module C = B postulate p : C.M.Nat -- ERROR WAS: not in scope C.M.Nat
{ "alphanum_fraction": 0.7247956403, "avg_line_length": 21.5882352941, "ext": "agda", "hexsha": "8f03a00753e3dde5427df401a067c373e99447ad", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1597/Main.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1597/Main.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1597/Main.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 102, "size": 367 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lists where at least one element satisfies a given property ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.Any {a} {A : Set a} where open import Data.Empty open import Data.Fin open import Data.List.Base as List using (List; []; [_]; _∷_) open import Data.Product as Prod using (∃; _,_) open import Data.Sum as Sum using (_⊎_; inj₁; inj₂) open import Level using (_⊔_) open import Relation.Nullary using (¬_; yes; no) import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Negation using (contradiction) open import Relation.Unary hiding (_∈_) ------------------------------------------------------------------------ -- Any P xs means that at least one element in xs satisfies P. data Any {p} (P : A → Set p) : List A → Set (a ⊔ p) where here : ∀ {x xs} (px : P x) → Any P (x ∷ xs) there : ∀ {x xs} (pxs : Any P xs) → Any P (x ∷ xs) ------------------------------------------------------------------------ -- Operations on Any module _ {p} {P : A → Set p} {x xs} where head : ¬ Any P xs → Any P (x ∷ xs) → P x head ¬pxs (here px) = px head ¬pxs (there pxs) = contradiction pxs ¬pxs tail : ¬ P x → Any P (x ∷ xs) → Any P xs tail ¬px (here px) = ⊥-elim (¬px px) tail ¬px (there pxs) = pxs map : ∀ {p q} {P : A → Set p} {Q : A → Set q} → P ⊆ Q → Any P ⊆ Any Q map g (here px) = here (g px) map g (there pxs) = there (map g pxs) module _ {p} {P : A → Set p} where -- `index x∈xs` is the list position (zero-based) which `x∈xs` points to. index : ∀ {xs} → Any P xs → Fin (List.length xs) index (here px) = zero index (there pxs) = suc (index pxs) lookup : ∀ {xs} → Any P xs → A lookup {xs} p = List.lookup xs (index p) _∷=_ : ∀ {xs} → Any P xs → A → List A _∷=_ {xs} x∈xs v = xs List.[ index x∈xs ]∷= v infixl 4 _─_ _─_ : ∀ xs → Any P xs → List A xs ─ x∈xs = xs List.─ index x∈xs -- If any element satisfies P, then P is satisfied. satisfied : ∀ {p} {P : A → Set p} {xs} → Any P xs → ∃ P satisfied (here px) = _ , px satisfied (there pxs) = satisfied pxs module _ {p} {P : A → Set p} {x xs} where toSum : Any P (x ∷ xs) → P x ⊎ Any P xs toSum (here px) = inj₁ px toSum (there pxs) = inj₂ pxs fromSum : P x ⊎ Any P xs → Any P (x ∷ xs) fromSum (inj₁ px) = here px fromSum (inj₂ pxs) = there pxs ------------------------------------------------------------------------ -- Properties of predicates preserved by Any module _ {p} {P : A → Set p} where any : Decidable P → Decidable (Any P) any P? [] = no λ() any P? (x ∷ xs) with P? x ... | yes px = yes (here px) ... | no ¬px = Dec.map′ there (tail ¬px) (any P? xs) satisfiable : Satisfiable P → Satisfiable (Any P) satisfiable (x , Px) = [ x ] , here Px
{ "alphanum_fraction": 0.5177960301, "avg_line_length": 32.1098901099, "ext": "agda", "hexsha": "3f8f337ce9f29d37c14648c697750edf28095c97", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/Any.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/Any.agda", "max_line_length": 75, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/Any.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 963, "size": 2922 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Posets where -- The category of partially ordered sets and order-preserving maps. open import Level open import Relation.Binary using (Poset; IsEquivalence; _Preserves_⟶_) open import Relation.Binary.OrderMorphism using (_⇒-Poset_; id; _∘_) open import Categories.Category open Poset renaming (_≈_ to ₍_₎_≈_; _≤_ to ₍_₎_≤_) open _⇒-Poset_ module _ {a₁ a₂ a₃ b₁ b₂ b₃} {A : Poset a₁ a₂ a₃} {B : Poset b₁ b₂ b₃} where infix 4 _≗_ -- Order morphisms preserve equality. fun-resp-≈ : (f : A ⇒-Poset B) → fun f Preserves ₍ A ₎_≈_ ⟶ ₍ B ₎_≈_ fun-resp-≈ f x≈y = antisym B (monotone f (reflexive A x≈y)) (monotone f (reflexive A (Eq.sym A x≈y))) -- Pointwise equality (on order preserving maps). _≗_ : (f g : A ⇒-Poset B) → Set (a₁ ⊔ b₂) f ≗ g = ∀ {x} → ₍ B ₎ fun f x ≈ fun g x ≗-isEquivalence : IsEquivalence _≗_ ≗-isEquivalence = record { refl = Eq.refl B ; sym = λ f≈g → Eq.sym B f≈g ; trans = λ f≈g g≈h → Eq.trans B f≈g g≈h } module ≗ = IsEquivalence ≗-isEquivalence -- The category of posets and order-preserving maps. Posets : ∀ c ℓ₁ ℓ₂ → Category (suc (c ⊔ ℓ₁ ⊔ ℓ₂)) (c ⊔ ℓ₂) (c ⊔ ℓ₁) Posets c ℓ₁ ℓ₂ = record { Obj = Poset c ℓ₁ ℓ₂ ; _⇒_ = _⇒-Poset_ ; _≈_ = _≗_ ; id = id ; _∘_ = _∘_ ; assoc = λ {_ _ _ D} → Eq.refl D ; sym-assoc = λ {_ _ _ D} → Eq.refl D ; identityˡ = λ {_ B} → Eq.refl B ; identityʳ = λ {_ B} → Eq.refl B ; identity² = λ {A} → Eq.refl A ; equiv = ≗-isEquivalence ; ∘-resp-≈ = λ {_ _ C _ h} f≈h g≈i → Eq.trans C f≈h (fun-resp-≈ h g≈i) } where
{ "alphanum_fraction": 0.5752369668, "avg_line_length": 29.1034482759, "ext": "agda", "hexsha": "eaa6e7c656c620a7b9a4356d3442aa9286f43e81", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Posets.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Posets.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Posets.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 725, "size": 1688 }
module Automaton.NonDeterministic where import Lvl open import Data.Boolean import Data.Boolean.Operators open Data.Boolean.Operators.Programming open import Data.List using (List) renaming (∅ to ε ; _⊰_ to _·_) open import Functional open import Logic open import Sets.ExtensionalPredicateSet open import Structure.Setoid open import Type -- Non-deterministic Automata -- `State` (Q) is the set of states. -- `Alphabet` (Σ) is the set of symbols/the alphabet. -- `transition` (δ) is the transition function. -- `start` (q₀) is the start state. -- `Final` (F) is the subset of State which are the final/accepting states. record NonDeterministic {ℓₚ ℓₛ ℓₑ ℓₐ} (State : Type{ℓₛ}) ⦃ equiv-state : Equiv{ℓₑ}(State) ⦄ (Alphabet : Type{ℓₐ}) : Type{ℓₛ Lvl.⊔ ℓₑ Lvl.⊔ ℓₐ Lvl.⊔ Lvl.𝐒(ℓₚ)} where constructor nondeterministic field transition : State → Alphabet → PredSet{ℓₚ}(State) start : State Final : PredSet{ℓₚ}(State) Word = List(Alphabet) -- Chained transition using a word (list of characters). wordTransition : State → Word → PredSet{ℓₑ}(State) wordTransition initialState ε = • initialState wordTransition initialState (a · l) = {!⋃ ?!} -- wordTransition (transition initialState a) l {- module LetterNotation where Q = State Σ = Alphabet δ = transition δ̂ = wordTransition q₀ = start F = Final -- A word is accepted by the automaton when it can transition from the start state to a final state. AcceptsWord : Word → Stmt AcceptsWord = (_∈ Final) ∘ wordTransition start -- The subset of State which are the accessible states from the start state by chained transitions. Accessible : PredSet(State) Accessible = ⊶(wordTransition start) automatonTransition : Alphabet → NonDeterministic(State)(Alphabet) transition (automatonTransition _) = transition start (automatonTransition c) = transition start c Final (automatonTransition _) = Final automatonTransitionWord : Word → NonDeterministic(State)(Alphabet) transition (automatonTransitionWord _) = transition start (automatonTransitionWord w) = wordTransition start w Final (automatonTransitionWord _) = Final -}
{ "alphanum_fraction": 0.7069120287, "avg_line_length": 37.1333333333, "ext": "agda", "hexsha": "e718bcd244899efea71637f16ace86f60742b25b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Automaton/NonDeterministic.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Automaton/NonDeterministic.agda", "max_line_length": 164, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Automaton/NonDeterministic.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 648, "size": 2228 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Monoidal.Construction.Product where -- The product A × B of (braided/symmetric) monoidal categories -- A and B is again (braided/symmetric) monoidal. open import Level using (_⊔_) open import Data.Product using (_,_; dmap; zip; curry′; uncurry′) open import Categories.Category using (Category) open import Categories.Category.Product using (Product) open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Braided using (Braided) open import Categories.Category.Monoidal.Symmetric using (Symmetric) open import Categories.Functor using (Functor) open import Categories.Functor.Bifunctor using (Bifunctor) open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper) open Category using (Obj) module _ {o o′ ℓ ℓ′ e e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} (M : Monoidal C) (N : Monoidal D) where private module M = Monoidal M module N = Monoidal N module ⊗₁ = Functor M.⊗ module ⊗₂ = Functor N.⊗ ⊗ : Bifunctor (Product C D) (Product C D) (Product C D) ⊗ = record { F₀ = uncurry′ (zip (curry′ ⊗₁.₀) (curry′ ⊗₂.₀)) ; F₁ = uncurry′ (zip (curry′ ⊗₁.₁) (curry′ ⊗₂.₁)) ; identity = ⊗₁.identity , ⊗₂.identity ; homomorphism = ⊗₁.homomorphism , ⊗₂.homomorphism ; F-resp-≈ = uncurry′ (zip (curry′ ⊗₁.F-resp-≈) (curry′ ⊗₂.F-resp-≈)) } unit : Obj (Product C D) unit = M.unit , N.unit Product-Monoidal : Monoidal (Product C D) Product-Monoidal = record { ⊗ = ⊗ ; unit = unit ; unitorˡ = record { from = M.unitorˡ.from , N.unitorˡ.from ; to = M.unitorˡ.to , N.unitorˡ.to ; iso = record { isoˡ = M.unitorˡ.isoˡ , N.unitorˡ.isoˡ ; isoʳ = M.unitorˡ.isoʳ , N.unitorˡ.isoʳ } } ; unitorʳ = record { from = M.unitorʳ.from , N.unitorʳ.from ; to = M.unitorʳ.to , N.unitorʳ.to ; iso = record { isoˡ = M.unitorʳ.isoˡ , N.unitorʳ.isoˡ ; isoʳ = M.unitorʳ.isoʳ , N.unitorʳ.isoʳ } } ; associator = record { from = M.associator.from , N.associator.from ; to = M.associator.to , N.associator.to ; iso = record { isoˡ = M.associator.isoˡ , N.associator.isoˡ ; isoʳ = M.associator.isoʳ , N.associator.isoʳ } } ; unitorˡ-commute-from = M.unitorˡ-commute-from , N.unitorˡ-commute-from ; unitorˡ-commute-to = M.unitorˡ-commute-to , N.unitorˡ-commute-to ; unitorʳ-commute-from = M.unitorʳ-commute-from , N.unitorʳ-commute-from ; unitorʳ-commute-to = M.unitorʳ-commute-to , N.unitorʳ-commute-to ; assoc-commute-from = M.assoc-commute-from , N.assoc-commute-from ; assoc-commute-to = M.assoc-commute-to , N.assoc-commute-to ; triangle = M.triangle , N.triangle ; pentagon = M.pentagon , N.pentagon } module _ {o o′ ℓ ℓ′ e e′} {C : Category o ℓ e} {D : Category o′ ℓ′ e′} {M : Monoidal C} {N : Monoidal D} where Product-Braided : Braided M → Braided N → Braided (Product-Monoidal M N) Product-Braided BM BN = record { braiding = niHelper (record { η = λ{ ((W , X) , (Y , Z)) → BM.braiding.⇒.η (W , Y) , BN.braiding.⇒.η (X , Z) } ; η⁻¹ = λ{ ((W , X) , (Y , Z)) → BM.braiding.⇐.η (W , Y) , BN.braiding.⇐.η (X , Z) } ; commute = λ{ ((f , g) , (h , i)) → BM.braiding.⇒.commute (f , h) , BN.braiding.⇒.commute (g , i) } ; iso = λ{ ((W , X) , (Y , Z)) → record { isoˡ = BM.braiding.iso.isoˡ (W , Y) , BN.braiding.iso.isoˡ (X , Z) ; isoʳ = BM.braiding.iso.isoʳ (W , Y) , BN.braiding.iso.isoʳ (X , Z) } } }) ; hexagon₁ = BM.hexagon₁ , BN.hexagon₁ ; hexagon₂ = BM.hexagon₂ , BN.hexagon₂ } where module BM = Braided BM module BN = Braided BN Product-Symmetric : Symmetric M → Symmetric N → Symmetric (Product-Monoidal M N) Product-Symmetric SM SN = record { braided = Product-Braided SM.braided SN.braided ; commutative = SM.commutative , SN.commutative } where module SM = Symmetric SM module SN = Symmetric SN Product-MonoidalCategory : ∀ {o o′ ℓ ℓ′ e e′} → MonoidalCategory o ℓ e → MonoidalCategory o′ ℓ′ e′ → MonoidalCategory (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) Product-MonoidalCategory C D = record { U = Product (C.U) (D.U) ; monoidal = Product-Monoidal (C.monoidal) (D.monoidal) } where module C = MonoidalCategory C module D = MonoidalCategory D Product-BraidedMonoidalCategory : ∀ {o o′ ℓ ℓ′ e e′} → BraidedMonoidalCategory o ℓ e → BraidedMonoidalCategory o′ ℓ′ e′ → BraidedMonoidalCategory (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) Product-BraidedMonoidalCategory C D = record { U = Product (C.U) (D.U) ; monoidal = Product-Monoidal (C.monoidal) (D.monoidal) ; braided = Product-Braided (C.braided) (D.braided) } where module C = BraidedMonoidalCategory C module D = BraidedMonoidalCategory D Product-SymmetricMonoidalCategory : ∀ {o o′ ℓ ℓ′ e e′} → SymmetricMonoidalCategory o ℓ e → SymmetricMonoidalCategory o′ ℓ′ e′ → SymmetricMonoidalCategory (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) Product-SymmetricMonoidalCategory C D = record { U = Product (C.U) (D.U) ; monoidal = Product-Monoidal (C.monoidal) (D.monoidal) ; symmetric = Product-Symmetric (C.symmetric) (D.symmetric) } where module C = SymmetricMonoidalCategory C module D = SymmetricMonoidalCategory D
{ "alphanum_fraction": 0.5990081474, "avg_line_length": 38.1486486486, "ext": "agda", "hexsha": "7a070452786cf2d49d1a5f26bb07890aeba951b2", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Monoidal/Construction/Product.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Monoidal/Construction/Product.agda", "max_line_length": 82, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Monoidal/Construction/Product.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1988, "size": 5646 }