Search is not available for this dataset
text
string | meta
dict |
---|---|
open import Data.Nat hiding (_^_ ; _+_)
open import Data.List as List hiding (null)
open import Data.List.Membership.Propositional
open import Data.List.Relation.Unary.Any
open import Data.List.Relation.Unary.All as All
open import Data.List.All.Properties.Extra
open import Data.Integer
open import Data.Unit
open import Data.Empty
open import Data.Product hiding (map)
open import Relation.Binary.PropositionalEquality hiding ([_])
open ≡-Reasoning
open import Function
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Star hiding (return ; _>>=_ ; map)
module MJSF.Semantics (k : ℕ) where
open import MJSF.Syntax k
open import MJSF.Values k
open import MJSF.Monad k
open import ScopesFrames.ScopesFrames k Ty
open import Common.Weakening
-- This file contains the definitional interpreter for MJ using scopes
-- and frames, described in Section 5 of the paper.
module Semantics (g : Graph) where
open SyntaxG g
open ValuesG g
open MonadG g
open UsesVal Valᵗ valᵗ-weaken renaming (getFrame to getFrame') public
-----------------
-- AUXILIARIES --
-----------------
-- The interpreter relies on a number of auxiliary function. We
-- briefly summarize each.
-- In Java (and MJ), each field member of an object is initialized
-- to have a default value. The `default` function defines a
-- default value for each value type in MJ.
default : {Σ : List Scope} → (t : VTy) → Val t Σ
default int = num (+ 0)
default (ref s) = null
default void = void
-- An alias for mapping `default` over a list of well-typed values:
defaults : ∀ {fs : List Ty}{Σ} → All (#v (λ _ → ⊤)) fs → Slots fs Σ
defaults fs = All.map (λ{ (#v' {t} _) → vᵗ (default t) }) fs
-- `override` overrides methods in parent objects by overwriting
-- method slots in super class frames by overriding child methods.
--
-- This notion of overriding does not straightforwardly scale to
-- deal with `super`, but `super` is not a part of MJ. See the
-- paper or the MJ semantics in the appendix of this artifact for
-- discussion and inspiration for how to represent class methods
-- separately from object representations.
override : ∀ {s Σ oms} →
All (#m (λ ts t → (s ↦ (mᵗ ts t)) × Meth s ts t)) oms →
M s (λ _ → ⊤) Σ
override [] =
return tt
override (#m' (p , m) ∷ oms) =
getFrame >>= λ f →
setv p (mᵗ f m) >>= λ _ →
override oms
-- `init-obj` takes as input a class definition and a witness that
-- the class has a finite inheritance chain. The function is
-- structurally recursive over the inheritance chain finity witness.
--
-- Each object is initialized by using the `initι` function, which
-- allows us to refer to the "self" frame and store it in method
-- definitions (i.e., the `fc` passed to the method value
-- constructor `mᵗ` in `map-all` below).
--
-- Method slots are initialized using the method members in the
-- class definition. Field slots are initialized using `defaults`
-- defined above.
--
-- After frame initialization, overrides are applied by using
-- `override` defined above.
--
-- `init-obj` is assumed to be invoked in the context of the root
-- frame, which all objects are linked to (because all scopes have
-- an edge to the root scope).
init-obj : ∀ {sʳ s s' Σ} → Class sʳ s → Inherits s s' → M sʳ (Frame s) Σ
init-obj (class0 ms fs oms) (obj _)
= getFrame >>= λ f →
initι _ (λ fc → (All.map (λ{ (#m' m) → mᵗ fc m }) ms) ++-all (defaults fs)) (f ∷ []) >>= λ f' →
(usingFrame f' (override oms) ^ f') >>= λ{ (_ , f') →
return f' }
init-obj (class0 ⦃ shape ⦄ _ _ _) (super ⦃ shape' ⦄ _)
with (trans (sym shape) shape')
... | () -- absurd case: the scope shapes of `class0` and `super` do not match
init-obj (class1 p ⦃ shape ⦄ ms fs oms) (super ⦃ shape' ⦄ x)
with (trans (sym shape) shape')
... | refl =
getv p >>= λ{ (cᵗ class' ic f') →
(usingFrame f' (init-obj class' x) ^ f') >>= λ{ (f , f') →
initι _ ⦃ shape ⦄ (λ fc → (All.map (λ{ (#m' m) → mᵗ fc m }) ms) ++-all (defaults fs)) (f' ∷ f ∷ []) >>= λ f'' →
(usingFrame f'' (override oms) ^ f'') >>= λ{ (_ , f'') →
return f'' }}}
init-obj (class1 _ ⦃ shape ⦄ _ _ _) (obj _ ⦃ shape' ⦄)
with (trans (sym shape) shape')
... | () -- absurd case: the scope shapes of `class1` and `obj` do not match
-------------------------
-- EARLY RETURNS MONAD --
-------------------------
-- In order to deal with early returns, we define a specialized bind
-- which stops evaluation and returns the yielded value.
_>>=ᶜ_ : ∀ {s s' s'' r Σ} →
M s (λ Σ → Val r Σ ⊎ Frame s' Σ) Σ →
(∀ {Σ'} → Frame s' Σ' → M s (λ Σ → Val r Σ ⊎ Frame s'' Σ) Σ') →
M s (λ Σ → Val r Σ ⊎ Frame s'' Σ) Σ
(m >>=ᶜ f) = m >>= λ{
(inj₁ v) → return (inj₁ v) ;
(inj₂ fr) → f fr
}
-- Continue is used to indicate that evaluation should continue.
continue : ∀ {s r Σ} → M s (λ Σ → Val r Σ ⊎ Frame s Σ) Σ
continue = fmap inj₂ getFrame
mutual
---------------------------
-- EXPRESSION EVALUATION --
---------------------------
eval : ℕ → ∀ {t s Σ} → Expr s t → M s (Val t) Σ
eval zero _ =
timeoutᴹ
eval (suc k) (upcast σ e) =
eval k e >>= λ v →
return (upcastRef σ v)
eval (suc k) (num x) =
return (num x)
eval (suc k) (iop x l r) =
eval k l >>= λ{ (num il) →
eval k r >>= λ{ (num ir) →
return (num (il + ir)) }}
eval (suc k) null =
return null
eval (suc k) (var x) =
getv x >>= λ{ (vᵗ v) →
return v }
eval (suc k) (new x) =
getv x >>= λ{ (cᵗ class ic f) →
usingFrame f (init-obj class ic) >>= λ{ f' →
return (ref [] f') }}
eval (suc k) (get e p) =
eval k e >>= λ{
null → raise ;
(ref p' f) →
usingFrame f (getv (prepend p' p)) >>= λ{ (vᵗ v) →
return v }}
eval (suc k) (call e p args) =
eval k e >>= λ {
null → raise ;
(ref p' f) →
usingFrame f (getv (prepend p' p)) >>= λ{ (mᵗ f' (meth s b)) → -- f' is the "self"
(eval-args k args ^ f') >>= λ{ (slots , f') →
init s slots (f' ∷ []) >>= λ f'' → -- f' is the static link of the method call frame
usingFrame f'' (eval-body k b) }}}
eval (suc k) (this p e) =
getf p >>= λ f →
usingFrame f (getl e) >>= λ f' →
return (ref [] f')
eval-args : ℕ → ∀ {s ts Σ} → All (Expr s) ts → M s (Slots (List.map vᵗ ts)) Σ
eval-args zero _ = timeoutᴹ
eval-args (suc k) [] = return []
eval-args (suc k) (e ∷ es) =
eval k e >>= λ v →
(eval-args k es ^ v) >>= λ{ (slots , v) →
return (vᵗ v ∷ slots) }
--------------------------
-- STATEMENT EVALUATION --
--------------------------
-- The following functions use the early returns monadic bind and
-- `continue` operation defined above.
eval-stmt : ℕ → ∀ {s s' r Σ} → Stmt s r s' → M s (λ Σ → Val r Σ ⊎ Frame s' Σ) Σ
eval-stmt zero _ = timeoutᴹ
eval-stmt (suc k) (run e) =
eval k e >>= λ _ →
continue
eval-stmt (suc k) (ifz c t e) =
eval k c >>= λ{
(num (+ zero)) → eval-stmt k t
; (num i) → eval-stmt k e }
eval-stmt (suc k) (set e p e') =
eval k e >>= λ{
null → raise ;
(ref p' f) →
(eval k e' ^ f) >>= λ{ (v , f) →
usingFrame f (setv (prepend p' p) (vᵗ v)) >>= λ _ → continue }}
eval-stmt (suc k) (loc s t) =
getFrame >>= λ f →
fmap inj₂ (init s (vᵗ (default t) ∷ []) (f ∷ [])) -- initializes a new local variable frame
eval-stmt (suc k) (asgn x e) =
eval k e >>= λ{ v →
setv x (vᵗ v) >>= λ _ →
continue }
eval-stmt (suc k) (block stmts) =
eval-stmts k stmts >>= λ{ _ →
continue }
eval-stmt (suc k) (ret e) =
eval k e >>= λ{ v →
return (inj₁ v) }
eval-stmts : ℕ → ∀ {s r s' Σ} → Stmts s r s' → M s (λ Σ → Val r Σ ⊎ Frame s' Σ) Σ
eval-stmts zero _ =
timeoutᴹ
eval-stmts (suc k) ε =
continue
eval-stmts (suc k) (stmt ◅ stmts) =
eval-stmt k stmt >>=ᶜ λ f' →
usingFrame f' (eval-stmts k stmts)
---------------------
-- BODY EVALUATION --
---------------------
-- Defined in terms of statement evaluation; handles early returns:
eval-body : ℕ → ∀ {s t Σ} → Body s t → M s (Val t) Σ
eval-body zero _ =
timeoutᴹ
eval-body (suc k) (body stmts e) =
eval-stmts k stmts >>= λ{
(inj₁ v) → return v
; (inj₂ fr) → usingFrame fr (eval k e) }
eval-body (suc k) (body-void stmts) =
eval-stmts k stmts >>= λ _ →
return void
------------------------
-- PROGRAM EVALUATION --
------------------------
-- Program evaluation first initializes the root frame to store all
-- class definitions, and subsequently evaluates the program main
-- function in the context of this root scope.
--
-- We use `initι` to initialize the root frame since class
-- definition values (`cᵗ`) store a pointer to the root frame, i.e.,
-- slots in the root frame are self-referential.
eval-program : ℕ → ∀ {sʳ t} → Program sʳ t → Res (∃ λ Σ' → (Heap Σ' × Val t Σ'))
eval-program k (program _ cs b) =
let (f₀ , h₀) = initFrameι _ (λ f → All.map (λ{ (#c' (c , _ , ic)) → cᵗ c ic f }) cs) [] []
in case (eval-body k b f₀ h₀) of λ{
(ok (Σ' , h' , v , _)) → ok (Σ' , h' , v)
; timeout → timeout
; nullpointer → nullpointer }
-- For the purpose of running the interpreter on test programs, we
-- introduce some short-hand notation:
-- The program will terminate succesfully in a state where p holds
_⇓⟨_⟩_ : ∀ {sʳ a} → Program sʳ a → ℕ → (p : ∀ {Σ} → Val a Σ → Set) → Set
p ⇓⟨ k ⟩ P with eval-program k p
... | nullpointer = ⊥
... | timeout = ⊥
... | ok (_ , _ , v) = P v
-- The program will raise an exception in a state where p holds
_⇓⟨_⟩!_ : ∀ {sʳ a} → Program sʳ a → ℕ → (p : ∀ {Σ} → Val a Σ → Set) → Set
p ⇓⟨ k ⟩! P with eval-program k p
... | nullpointer = ⊤
... | timeout = ⊥
... | ok (_ , _ , v) = ⊥
| {
"alphanum_fraction": 0.5475628931,
"avg_line_length": 34.612244898,
"ext": "agda",
"hexsha": "90940a26e452435f68af11c7b5ac3f9d9f8a7e91",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/MJSF/Semantics.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/MJSF/Semantics.agda",
"max_line_length": 115,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/MJSF/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 3406,
"size": 10176
} |
------------------------------------------------------------------------
-- A terminating parser data type and the accompanying interpreter
------------------------------------------------------------------------
module RecursiveDescent.Coinductive.Internal where
open import RecursiveDescent.Index
open import Data.Bool
open import Data.Product.Record
open import Data.Maybe
open import Data.BoundedVec.Inefficient
import Data.List as L
open import Data.Nat
open import Category.Applicative.Indexed
open import Category.Monad.Indexed
open import Category.Monad.State
open import Utilities
------------------------------------------------------------------------
-- Parser data type
-- A type for parsers which can be implemented using recursive
-- descent. The types used ensure that the implementation below is
-- structurally recursive.
codata Parser (tok : Set) : ParserType₁ where
symbol : Parser tok (false , leaf) tok
ret : forall {r} -> r -> Parser tok (true , leaf) r
fail : forall {r} -> Parser tok (false , leaf) r
bind₀ : forall {c₁ e₂ c₂ r₁ r₂}
-> Parser tok (true , c₁) r₁
-> (r₁ -> Parser tok (e₂ , c₂) r₂)
-> Parser tok (e₂ , node c₁ c₂) r₂
bind₁ : forall {c₁ r₁ r₂} {i₂ : r₁ -> Index}
-> Parser tok (false , c₁) r₁
-> ((x : r₁) -> Parser tok (i₂ x) r₂)
-> Parser tok (false , step c₁) r₂
alt₀ : forall {c₁ e₂ c₂ r}
-> Parser tok (true , c₁) r
-> Parser tok (e₂ , c₂) r
-> Parser tok (true , node c₁ c₂) r
alt₁ : forall {c₁} e₂ {c₂ r}
-> Parser tok (false , c₁) r
-> Parser tok (e₂ , c₂) r
-> Parser tok (e₂ , node c₁ c₂) r
------------------------------------------------------------------------
-- Run function for the parsers
-- Parser monad.
P : Set -> IFun ℕ
P tok = IStateT (BoundedVec tok) L.List
PIMonadPlus : (tok : Set) -> RawIMonadPlus (P tok)
PIMonadPlus tok = StateTIMonadPlus (BoundedVec tok) L.monadPlus
PIMonadState : (tok : Set) -> RawIMonadState (BoundedVec tok) (P tok)
PIMonadState tok = StateTIMonadState (BoundedVec tok) L.monad
private
open module LM {tok} = RawIMonadPlus (PIMonadPlus tok)
open module SM {tok} = RawIMonadState (PIMonadState tok)
using (get; put; modify)
-- For every successful parse the run function returns the remaining
-- string. (Since there can be several successful parses a list of
-- strings is returned.)
-- This function is structurally recursive with respect to the
-- following lexicographic measure:
--
-- 1) The upper bound of the length of the input string.
-- 2) The parser's proper left corner tree.
mutual
parse : forall n {tok e c r} ->
Parser tok (e , c) r ->
P tok n (if e then n else pred n) r
parse zero symbol = ∅
parse (suc n) symbol = eat =<< get
parse n (ret x) = return x
parse n fail = ∅
parse n (bind₀ p₁ p₂) = parse n p₁ >>= parse n ∘′ p₂
parse zero (bind₁ p₁ p₂) = ∅
parse (suc n) (bind₁ p₁ p₂) = parse (suc n) p₁ >>= parse↑ n ∘′ p₂
parse n (alt₀ p₁ p₂) = parse n p₁ ∣ parse↑ n p₂
parse n (alt₁ true p₁ p₂) = parse↑ n p₁ ∣ parse n p₂
parse n (alt₁ false p₁ p₂) = parse n p₁ ∣ parse n p₂
parse↑ : forall n {e tok c r} -> Parser tok (e , c) r -> P tok n n r
parse↑ n {true} p = parse n p
parse↑ zero {false} p = ∅
parse↑ (suc n) {false} p = parse (suc n) p >>= \r ->
modify ↑ >>
return r
eat : forall {tok n} -> BoundedVec tok (suc n) -> P tok (suc n) n tok
eat [] = ∅
eat (c ∷ s) = put s >> return c
| {
"alphanum_fraction": 0.5403628714,
"avg_line_length": 37.2843137255,
"ext": "agda",
"hexsha": "7254776f934f2269f74941fd45e84fb4aa45a481",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/RecursiveDescent/Coinductive/Internal.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/RecursiveDescent/Coinductive/Internal.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/RecursiveDescent/Coinductive/Internal.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 1123,
"size": 3803
} |
-- Exploit by Jesper Cockx
open import Agda.Builtin.Equality
data Bool : Set where
tt ff : Bool
const : Bool → (Bool → Bool)
const = λ x _ → x
mutual
Bool→cBool : Set
Bool→cBool = _
const-tt : Bool→cBool
const-tt = const tt
constant : (f : Bool→cBool) (x y : Bool) → f x ≡ f y
constant f x y = refl
constant' : (f : Bool → Bool) (x y : Bool) → f x ≡ f y
constant' = constant
swap : Bool → Bool
swap tt = ff
swap ff = tt
fireworks : tt ≡ ff
fireworks = constant' swap ff tt
| {
"alphanum_fraction": 0.6280487805,
"avg_line_length": 16.4,
"ext": "agda",
"hexsha": "c780d14c3775dfa076deb51d20ddf11a14e60521",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2480false2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2480false2.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2480false2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 176,
"size": 492
} |
{- 2010-09-28 Andreas, example from Alan Jeffery, see Issue 336 -}
module WhyWeNeedTypedLambda where
data Bool : Set where
true false : Bool
F : Bool -> Set
F true = Bool -> Bool
F false = Bool
bool : {b : Bool} -> F b -> Bool
bool {b} _ = b
{-
-- untyped lambda leaves some yellow
-- the problem \ x -> x : F ?b is postponed
bla : Bool
bla = bool (\ x -> x)
-}
-- typed lambda succeeds
-- \ (x : _) -> x infers as ?X -> ?X, yielding constraint F ?b = ?X -> ?X
bla' : Bool
bla' = bool (\ (x : _) -> x)
| {
"alphanum_fraction": 0.5875486381,
"avg_line_length": 19.7692307692,
"ext": "agda",
"hexsha": "f8f08211bab0436ac5913cb3a7e40b5603acf054",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/succeed/WhyWeNeedTypedLambda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/succeed/WhyWeNeedTypedLambda.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/WhyWeNeedTypedLambda.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 173,
"size": 514
} |
-- Andreas, 2019-12-03, issue #4200 reported and testcase by nad
open import Agda.Builtin.Bool
data D : Set where
c₁ : D
@0 c₂ : D -- Not allowed
d : D
d = c₂
f : D → Bool
f c₁ = true
f c₂ = false
-- Expected error:
-- Erased constructors are not supported
-- when checking the constructor c₂ in the declaration of D
| {
"alphanum_fraction": 0.6768292683,
"avg_line_length": 16.4,
"ext": "agda",
"hexsha": "539dd551767b316d6b1938e4b721fba997870b14",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-06-14T11:07:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-14T11:07:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue4200.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4200.agda",
"max_line_length": 64,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4200.agda",
"max_stars_repo_stars_event_max_datetime": "2019-09-27T06:54:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-09-27T06:54:44.000Z",
"num_tokens": 105,
"size": 328
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Many properties which hold for `∼` also hold for `flip ∼`. Unlike
-- the module `Relation.Binary.Construct.Converse` this module flips
-- both the relation and the underlying equality.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Construct.Flip where
open import Function
open import Data.Product
------------------------------------------------------------------------
-- Properties
module _ {a ℓ} {A : Set a} (∼ : Rel A ℓ) where
reflexive : Reflexive ∼ → Reflexive (flip ∼)
reflexive refl = refl
symmetric : Symmetric ∼ → Symmetric (flip ∼)
symmetric sym = sym
transitive : Transitive ∼ → Transitive (flip ∼)
transitive trans = flip trans
asymmetric : Asymmetric ∼ → Asymmetric (flip ∼)
asymmetric asym = asym
total : Total ∼ → Total (flip ∼)
total total x y = total y x
respects : ∀ {p} (P : A → Set p) → Symmetric ∼ →
P Respects ∼ → P Respects flip ∼
respects _ sym resp ∼ = resp (sym ∼)
max : ∀ {⊥} → Minimum ∼ ⊥ → Maximum (flip ∼) ⊥
max min = min
min : ∀ {⊤} → Maximum ∼ ⊤ → Minimum (flip ∼) ⊤
min max = max
module _ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
(≈ : REL A B ℓ₁) (∼ : REL A B ℓ₂) where
implies : ≈ ⇒ ∼ → flip ≈ ⇒ flip ∼
implies impl = impl
irreflexive : Irreflexive ≈ ∼ → Irreflexive (flip ≈) (flip ∼)
irreflexive irrefl = irrefl
module _ {a ℓ₁ ℓ₂} {A : Set a} (≈ : Rel A ℓ₁) (∼ : Rel A ℓ₂) where
antisymmetric : Antisymmetric ≈ ∼ → Antisymmetric (flip ≈) (flip ∼)
antisymmetric antisym = antisym
trichotomous : Trichotomous ≈ ∼ → Trichotomous (flip ≈) (flip ∼)
trichotomous compare x y = compare y x
module _ {a ℓ₁ ℓ₂} {A : Set a} (∼₁ : Rel A ℓ₁) (∼₂ : Rel A ℓ₂) where
respects₂ : Symmetric ∼₂ → ∼₁ Respects₂ ∼₂ → flip ∼₁ Respects₂ flip ∼₂
respects₂ sym (resp₁ , resp₂) = (resp₂ ∘ sym , resp₁ ∘ sym)
module _ {a b ℓ} {A : Set a} {B : Set b} (∼ : REL A B ℓ) where
decidable : Decidable ∼ → Decidable (flip ∼)
decidable dec x y = dec y x
module _ {a ℓ} {A : Set a} {≈ : Rel A ℓ} where
isEquivalence : IsEquivalence ≈ → IsEquivalence (flip ≈)
isEquivalence eq = record
{ refl = reflexive ≈ Eq.refl
; sym = symmetric ≈ Eq.sym
; trans = transitive ≈ Eq.trans
}
where module Eq = IsEquivalence eq
isDecEquivalence : IsDecEquivalence ≈ → IsDecEquivalence (flip ≈)
isDecEquivalence dec = record
{ isEquivalence = isEquivalence Dec.isEquivalence
; _≟_ = decidable ≈ Dec._≟_
}
where module Dec = IsDecEquivalence dec
------------------------------------------------------------------------
-- Structures
module _ {a ℓ₁ ℓ₂} {A : Set a} {≈ : Rel A ℓ₁} {∼ : Rel A ℓ₂} where
isPreorder : IsPreorder ≈ ∼ → IsPreorder (flip ≈) (flip ∼)
isPreorder O = record
{ isEquivalence = isEquivalence O.isEquivalence
; reflexive = implies ≈ ∼ O.reflexive
; trans = transitive ∼ O.trans
}
where module O = IsPreorder O
isPartialOrder : IsPartialOrder ≈ ∼ → IsPartialOrder (flip ≈) (flip ∼)
isPartialOrder O = record
{ isPreorder = isPreorder O.isPreorder
; antisym = antisymmetric ≈ ∼ O.antisym
}
where module O = IsPartialOrder O
isTotalOrder : IsTotalOrder ≈ ∼ → IsTotalOrder (flip ≈) (flip ∼)
isTotalOrder O = record
{ isPartialOrder = isPartialOrder O.isPartialOrder
; total = total ∼ O.total
}
where module O = IsTotalOrder O
isDecTotalOrder : IsDecTotalOrder ≈ ∼ → IsDecTotalOrder (flip ≈) (flip ∼)
isDecTotalOrder O = record
{ isTotalOrder = isTotalOrder O.isTotalOrder
; _≟_ = decidable ≈ O._≟_
; _≤?_ = decidable ∼ O._≤?_
}
where module O = IsDecTotalOrder O
isStrictPartialOrder : IsStrictPartialOrder ≈ ∼ →
IsStrictPartialOrder (flip ≈) (flip ∼)
isStrictPartialOrder O = record
{ isEquivalence = isEquivalence O.isEquivalence
; irrefl = irreflexive ≈ ∼ O.irrefl
; trans = transitive ∼ O.trans
; <-resp-≈ = respects₂ ∼ ≈ O.Eq.sym O.<-resp-≈
}
where module O = IsStrictPartialOrder O
isStrictTotalOrder : IsStrictTotalOrder ≈ ∼ →
IsStrictTotalOrder (flip ≈) (flip ∼)
isStrictTotalOrder O = record
{ isEquivalence = isEquivalence O.isEquivalence
; trans = transitive ∼ O.trans
; compare = trichotomous ≈ ∼ O.compare
} where module O = IsStrictTotalOrder O
module _ {a ℓ} where
setoid : Setoid a ℓ → Setoid a ℓ
setoid S = record
{ _≈_ = flip S._≈_
; isEquivalence = isEquivalence S.isEquivalence
}
where module S = Setoid S
decSetoid : DecSetoid a ℓ → DecSetoid a ℓ
decSetoid S = record
{ _≈_ = flip S._≈_
; isDecEquivalence = isDecEquivalence S.isDecEquivalence
}
where module S = DecSetoid S
module _ {a ℓ₁ ℓ₂} where
preorder : Preorder a ℓ₁ ℓ₂ → Preorder a ℓ₁ ℓ₂
preorder O = record
{ isPreorder = isPreorder O.isPreorder
}
where module O = Preorder O
poset : Poset a ℓ₁ ℓ₂ → Poset a ℓ₁ ℓ₂
poset O = record
{ isPartialOrder = isPartialOrder O.isPartialOrder
}
where module O = Poset O
totalOrder : TotalOrder a ℓ₁ ℓ₂ → TotalOrder a ℓ₁ ℓ₂
totalOrder O = record
{ isTotalOrder = isTotalOrder O.isTotalOrder
}
where module O = TotalOrder O
decTotalOrder : DecTotalOrder a ℓ₁ ℓ₂ → DecTotalOrder a ℓ₁ ℓ₂
decTotalOrder O = record
{ isDecTotalOrder = isDecTotalOrder O.isDecTotalOrder
}
where module O = DecTotalOrder O
strictPartialOrder : StrictPartialOrder a ℓ₁ ℓ₂ →
StrictPartialOrder a ℓ₁ ℓ₂
strictPartialOrder O = record
{ isStrictPartialOrder = isStrictPartialOrder O.isStrictPartialOrder
}
where module O = StrictPartialOrder O
strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂ →
StrictTotalOrder a ℓ₁ ℓ₂
strictTotalOrder O = record
{ isStrictTotalOrder = isStrictTotalOrder O.isStrictTotalOrder
}
where module O = StrictTotalOrder O
| {
"alphanum_fraction": 0.6041027298,
"avg_line_length": 30.955,
"ext": "agda",
"hexsha": "b193ea50674bf40c272741c91a202b007e51215d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Flip.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Flip.agda",
"max_line_length": 75,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Flip.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 2017,
"size": 6191
} |
module Issue148 where
data I : Set where
i : I
F : I → Set → Set
F i A = A
data T (p : I) : Set where
t₁ : T p → T p
t₂ : F p (T p) → T p
fold : ((x : T i) → T i) → T i → T i
fold f (t₁ x) = f (fold f x)
fold f (t₂ x) = f (fold f x)
data E : T i → Set where
e : ∀ x → E x
postulate
t₂′ : ∀ {p} → F p (T p) → T p
foo : (x : T i) → E (fold t₂ x)
foo x with x
foo x | x′ = e (fold t₂ x′)
| {
"alphanum_fraction": 0.466992665,
"avg_line_length": 15.1481481481,
"ext": "agda",
"hexsha": "d3b7e98b433780f3b4467de3f30ad24b11403bb0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/succeed/Issue148.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/succeed/Issue148.agda",
"max_line_length": 36,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue148.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 191,
"size": 409
} |
module Named where
open import Data.String
open import Data.Nat hiding (_≟_)
open import Data.Bool using (T; not)
open import Data.Product
open import Data.Sum
-- open import Data.Nat.Properties using (strictTotalOrder)
-- open import Relation.Binary using (StrictTotalOrder)
-- open import Relation.Binary.Core
open import Function using (id)
open import Function.Equivalence using (_⇔_; equivalence)
open import Relation.Nullary
open import Relation.Unary
open import Relation.Nullary.Negation
open import Data.Unit using (⊤)
open import Function using (_∘_)
-- open import Level renaming (zero to Lzero)
open import Relation.Binary.PropositionalEquality
-- open ≡-Reasoning
-- open ≡-Reasoning
-- renaming (begin_ to beginEq_; _≡⟨_⟩_ to _≡Eq⟨_⟩_; _∎ to _∎Eq)
open import Data.Collection
open import Data.Collection.Properties
open import Data.Collection.Equivalence
open import Data.Collection.Inclusion
open import Relation.Binary.PartialOrderReasoning ⊆-Poset
Variable = String
data PreTerm : Set where
Var : (w : Variable) → PreTerm
App : (P : PreTerm) → (Q : PreTerm) → PreTerm
Abs : (w : Variable) → (Q : PreTerm) → PreTerm
showPreTerm : PreTerm → String
showPreTerm (Var x) = x
showPreTerm (App P Q) = "(" ++ showPreTerm P ++ " " ++ showPreTerm Q ++ ")"
showPreTerm (Abs x M) = "(λ" ++ x ++ "." ++ showPreTerm M ++ ")"
I : PreTerm
I = Abs "x" (Var "x")
S : PreTerm
S = Abs "x" (App (Var "y") (Var "x"))
FV : PreTerm → Collection
FV (Var x ) = singleton x
FV (App f x) = union (FV f) (FV x)
FV (Abs x m) = delete x (FV m)
-- a = singleton "x" ∋ (elem "x" ∪ elem "y")
-- b = C[ singleton "x" ] ∩ C[ singleton "x" ]
-- M = FV S
-- neither∈ : ∀ {x A B} → x ∉ C[ A union B ] →
_[_≔_] : PreTerm → Variable → PreTerm → PreTerm
Var x [ v ≔ N ] with x ≟ v
Var x [ v ≔ N ] | yes p = N
Var x [ v ≔ N ] | no ¬p = Var x
App P Q [ v ≔ N ] = App (P [ v ≔ N ]) (Q [ v ≔ N ])
Abs x P [ v ≔ N ] with x ≟ v
Abs x P [ v ≔ N ] | yes p = Abs v P
Abs x P [ v ≔ N ] | no ¬p = Abs x (P [ v ≔ N ])
-- If v ∉ FV(M) then M[v≔N] is defined and M[v≔N] ≡ M
lem-1-2-5-a : ∀ M N v → v ∉ c[ FV M ] → M [ v ≔ N ] ≡ M
lem-1-2-5-a (Var x) N v v∉M with x ≟ v
lem-1-2-5-a (Var x) N .x v∉M | yes refl = contradiction here v∉M
lem-1-2-5-a (Var x) N v v∉M | no ¬p = refl
lem-1-2-5-a (App P Q) N v v∉M = cong₂
App
(lem-1-2-5-a P N v (not-in-left-union (FV P) (FV Q) v∉M))
(lem-1-2-5-a Q N v (not-in-right-union (FV P) (FV Q) v∉M))
lem-1-2-5-a (Abs x M) N v v∉M with x ≟ v
lem-1-2-5-a (Abs x M) N v v∉M | yes p = cong (λ z → Abs z M) (sym p)
lem-1-2-5-a (Abs x M) N v v∉M | no ¬p = cong (Abs x) (lem-1-2-5-a M N v (still-∉-after-recovered x (FV M) ¬p v∉M))
-- begin
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ∎
-- begin
-- {! !}
-- ≤⟨ {! !} ⟩
-- {! !}
-- ≤⟨ {! !} ⟩
-- {! !}
-- ∎
-- If M[v≔N] is defined, v ≠ x and x ∈ FV(M) iff x ∈ FV(M[v≔N])
lem-1-2-5-b-i : ∀ {v N} M → c[ FV M ] ≋[ _≢_ v ] c[ FV (M [ v ≔ N ]) ]
lem-1-2-5-b-i {v} {N} M v≢x = equivalence (to M v≢x) (from M v≢x)
where
to : ∀ {v N} M → c[ FV M ] ⊆[ _≢_ v ] c[ FV (M [ v ≔ N ]) ]
to {v} (Var w) v≢x ∈FV-M with w ≟ v
to (Var w) v≢x ∈FV-M | yes p = contradiction (sym (trans (nach singleton-≡ ∈FV-M) p)) v≢x
to (Var w) v≢x ∈FV-M | no ¬p = ∈FV-M
to {v} {N} (App P Q) v≢x = begin
c[ union (FV P) (FV Q) ]
≤⟨ union-monotone {! !} {! !} {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
{! !}
≤⟨ {! !} ⟩
c[ union (FV (P [ v ≔ N ])) (FV (Q [ v ≔ N ])) ]
∎
to (Abs w M) v≢x ∈FV-M = {! !}
-- to (Var w) ∈FV-M with w ≟ v
-- to (Var w) ∈FV-M | yes p = contradiction (sym (trans (nach singleton-≡ ∈FV-M) p)) v≢x
-- to (Var w) ∈FV-M | no ¬p = ∈FV-M
-- to (App P Q) = begin
-- c[ union (FV P) (FV Q) ]
-- ≤⟨ union-monotone {! !} {! !} {! !} ⟩
-- {! !}
-- ≤⟨ {! !} ⟩
-- {! !}
-- ≤⟨ {! !} ⟩
-- c[ union (FV (P [ v ≔ N ])) (FV (Q [ v ≔ N ])) ]
-- ∎
-- to (Abs w M) ∈FV-M = {! !}
from : ∀ {v N} M → c[ FV (M [ v ≔ N ]) ] ⊆[ _≢_ v ] c[ FV M ]
from M = {! !}
-- lem-1-2-5-b-i : ∀ {x v N} M → v ≢ x → x ∈ c[ FV M ] ⇔ x ∈ c[ FV (M [ v ≔ N ]) ]
-- lem-1-2-5-b-i {x} {v} {N} (Var w) v≢x with w ≟ v -- x ≡ w
-- lem-1-2-5-b-i {x} {v} {N} (Var w) v≢x | yes p =
-- equivalence
-- (λ ∈[w] → contradiction (sym (trans (nach singleton-≡ ∈[w]) p)) v≢x)
-- from
-- where to : x ∈ c[ w ∷ [] ] → x ∈ c[ FV N ]
-- to ∈[w] = {! !}
-- from : x ∈ c[ FV N ] → x ∈ c[ w ∷ [] ] -- x ∈ c[ FV (N [ v ≔ N ]) ]
-- from ∈FV-N = {! !}
-- lem-1-2-5-b-i {x} {v} {N} (Var w) v≢x | no ¬p = equivalence id id
-- lem-1-2-5-b-i {x} {v} {N} (App P Q) v≢x = equivalence to {! !}
-- where to : c[ union (FV P) (FV Q) ] ⊆ c[ union (FV (P [ v ≔ N ])) (FV (Q [ v ≔ N ])) ]
-- to = map-⊆-union {FV P} {FV Q} {FV (P [ v ≔ N ])} {FV (Q [ v ≔ N ])} (_≢_ v) {! !} {! !} {! !}
--
--
-- lem-1-2-5-b-i (Abs w M) v≢x = {! !}
-- lem-1-2-5-b-i : ∀ {x v N} M → v ≢ x → (x ∈ FV M) ⇔ (x ∈ FV (M [ v ≔ N ]))
-- lem-1-2-5-b-i : ∀ {x v N} M → v ≢ x → (x ∈ FV M) ≡ (x ∈ FV (M [ v ≔ N ]))
-- lem-1-2-5-b-i : ∀ {x v N} M → v ≢ x → (x ∈ c[ FV M ]) ≡ (x ∈ c[ FV (M [ v ≔ N ]) ])
-- lem-1-2-5-b-i {v = v} (Var w) v≢x with w ≟ v
-- lem-1-2-5-b-i (Var v) v≢x | yes refl = {! !}
-- lem-1-2-5-b-i {x} (Var w) v≢x | no ¬p = refl -- cong (_∈_ x) refl
-- lem-1-2-5-b-i {x} {v} {N} (App P Q) v≢x =
-- begin
-- x ∈ c[ union (FV P) (FV Q) ]
-- ≡⟨ sym {! ∪-union !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- x ∈ c[ union (FV (P [ v ≔ N ])) (FV (Q [ v ≔ N ])) ]
-- ∎
-- lem-1-2-5-b-i (Abs w P) v≢x = {! !}
-- lem-1-2-5-b-i {v = v} (Var w) v≢x x∈FV-M with w ≟ v
-- lem-1-2-5-b-i (Var w) v≢x x∈FV-M | yes p = ? -- contradiction (trans (singleton-≡ x∈FV-M) p) (v≢x ∘ sym)
-- lem-1-2-5-b-i (Var w) v≢x x∈FV-M | no ¬p = ? -- x∈FV-M
-- lem-1-2-5-b-i (App P Q) v≢x x∈FV-M = ? -- ∈-respects-≡ {! !} x∈FV-M
-- lem-1-2-5-b-i (App P Q) v≢x x∈FV-M = ∈-respects-≡ (cong₂ union (cong FV {! !}) (cong FV {! !})) x∈FV-M
-- lem-1-2-5-b-i (App P Q) v≢x x∈FV-M = ∈-respects-≡ (cong₂ union ({! !}) {! !}) x∈FV-M
-- lem-1-2-5-b-i (Abs w P) v≢x x∈FV-M = {! !}
-- If M[v≔N] is defined then y ∈ FV(M[v≔N]) iff either y ∈ FV(M) and v ≠ y
-- or y ∈ FV(N) and x ∈ FV(M)
-- lem-1-2-5-b-i : ∀ {x y N} M v → y ∈ FV (M [ v ≔ N ]) → y ∈ FV M × x ≢ y ⊎ y ∈ FV N × x ∈ FV M
-- lem-1-2-5-b⇒ (Var w) v y∈Applied with w ≟ v
-- lem-1-2-5-b⇒ (Var w) v y∈Applied | yes p = {! !}
-- lem-1-2-5-b⇒ (Var w) v y∈Applied | no ¬p = inj₁ (y∈Applied , {! singleton-≡ ∈ !})
-- lem-1-2-5-b⇒ (App P Q) v y∈Applied = {! !}
-- lem-1-2-5-b⇒ (Abs w P) v y∈Applied = {! !}
--
-- lem-1-2-5-b⇐ : ∀ {x y v M N} → y ∈ FV M × x ≢ y ⊎ y ∈ FV N × x ∈ FV M → y ∈ FV (M [ v ≔ N ])
-- lem-1-2-5-b⇐ = {! !}
lem-1-2-5-c : (M : PreTerm) → (x : Variable) → M [ x ≔ Var x ] ≡ M
lem-1-2-5-c (Var x ) y with x ≟ y
lem-1-2-5-c (Var x ) y | yes p = sym (cong Var p)
lem-1-2-5-c (Var x ) y | no ¬p = refl
lem-1-2-5-c (App P Q) y = cong₂ App (lem-1-2-5-c P y) (lem-1-2-5-c Q y)
lem-1-2-5-c (Abs x M) y with x ≟ y
lem-1-2-5-c (Abs x M) y | yes p = cong (λ w → Abs w M) (sym p)
lem-1-2-5-c (Abs x M) y | no ¬p = cong (Abs x) (lem-1-2-5-c M y)
length : PreTerm → ℕ
length (Var x) = 1
length (App P Q) = length P + length Q
length (Abs x M) = 1 + length M
-- lem-1-2-5-c : (M : PreTerm) → (x : Variable) → (N : PreTerm) → T (not (x ∈? FV M)) → M [ x ≔ N ] ≡ M
-- lem-1-2-5-c (Var x') x N x∉M with x' ≟ x
-- lem-1-2-5-c (Var x') x N x∉M | yes p =
-- begin
-- N
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- Var x'
-- ∎
-- lem-1-2-5-c (Var x') x N x∉M | no ¬p = {! !}
-- lem-1-2-5-c (App P Q) x N x∉M =
-- begin
-- App (P [ x ≔ N ]) (Q [ x ≔ N ])
-- ≡⟨ refl ⟩
-- App P Q [ x ≔ N ]
-- ≡⟨ {! !} ⟩
-- App P Q
-- ∎
-- lem-1-2-5-c (Abs x' M) x N x∉M = {! !}
-- begin
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ≡⟨ {! !} ⟩
-- {! !}
-- ∎
| {
"alphanum_fraction": 0.4167243368,
"avg_line_length": 34.5418326693,
"ext": "agda",
"hexsha": "2d69c386e669dbe811ee187861fb83d0537544dc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/lambda-calculus",
"max_forks_repo_path": "Named.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/lambda-calculus",
"max_issues_repo_path": "Named.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f81b116473582ab7956adc4bf1d7ebf1ae2a213a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/lambda-calculus",
"max_stars_repo_path": "Named.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4000,
"size": 8670
} |
module Rationals.Add.Comm where
open import Equality
open import Function
open import Nats using (zero; ℕ)
renaming (suc to s; _+_ to _:+:_; _*_ to _:*:_)
open import Rationals
open import Rationals.Properties
open import Nats.Add.Comm
open import Nats.Multiply.Distrib
open import Nats.Multiply.Comm
------------------------------------------------------------------------
-- internal stuffs
private
a/c+b/c=a*b/c : ∀ a b c → a ÷ c + b ÷ c ≡ (a :+: b) ÷ c
a/c+b/c=a*b/c a b c
rewrite (a :+: b) ÷ c ↑ c
| sym $ nat-multiply-distrib a b c
= refl
a+b=b+a : ∀ x y → x + y ≡ y + x
a+b=b+a (a ÷ c) (b ÷ d)
rewrite a ÷ c ↑ d
| b ÷ d ↑ c
| a/c+b/c=a*b/c (a :*: d) (b :*: c) $ d :*: c
| nat-add-comm (a :*: d) $ b :*: c
| nat-multiply-comm c d
= refl
------------------------------------------------------------------------
-- public aliases
rational-add-comm : ∀ x y → x + y ≡ y + x
rational-add-comm = a+b=b+a
| {
"alphanum_fraction": 0.4474975466,
"avg_line_length": 26.1282051282,
"ext": "agda",
"hexsha": "09d99b99e8b689037045bc7f1db4c62df5ecae1d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ice1k/Theorems",
"max_forks_repo_path": "src/Rationals/Add/Comm.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ice1k/Theorems",
"max_issues_repo_path": "src/Rationals/Add/Comm.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "7dc0ea4782a5ff960fe31bdcb8718ce478eaddbc",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ice1k/Theorems",
"max_stars_repo_path": "src/Rationals/Add/Comm.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-15T15:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-15T15:28:03.000Z",
"num_tokens": 315,
"size": 1019
} |
{- Jesper Cockx, 26-05-2014
Issue 1023
Example by Maxime Denes, adapted by Andreas Abel
-}
{-# OPTIONS --cubical-compatible --guardedness #-}
module CoinductionAndUnivalence where
open import Common.Coinduction
open import Common.Equality
prop = Set
data False : prop where
magic : ∀ {a} {A : Set a} → False → A
magic ()
data Pandora : prop where
C : ∞ False → Pandora
postulate
ext : (f : False → Pandora) → (g : Pandora → False) →
(∀ x → f (g x) ≡ x) → (∀ y → g (f y) ≡ y) →
False ≡ Pandora
foo : False ≡ Pandora
foo = ext f g fg gf
where
f : False → Pandora
f ()
g : Pandora → False
g (C c) = ♭ c
fg : ∀ x → f (g x) ≡ x
fg x = magic (g x)
gf : ∀ y → g (f y) ≡ y
gf ()
loop : False
loop rewrite foo = C (♯ loop)
| {
"alphanum_fraction": 0.5667090216,
"avg_line_length": 17.4888888889,
"ext": "agda",
"hexsha": "63624c2ef762ef67411066979f573b6d9ae87db7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/CoinductionAndUnivalence.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/CoinductionAndUnivalence.agda",
"max_line_length": 55,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/CoinductionAndUnivalence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 273,
"size": 787
} |
module Untyped.Monads where
open import Function
open import Data.Unit
open import Data.Product as Prod
open import Data.Sum
open import Data.Sum public using () renaming (_⊎_ to Exceptional; inj₁ to exc; inj₂ to ✓)
open import Category.Monad
id-monad : ∀ {ℓ} → RawMonad {ℓ} id
id-monad = record
{ return = id
; _>>=_ = λ a f → f a }
record MonadReader (m : Set → Set) (e : Set) : Set₁ where
field
ask : m e
local : ∀ {a} → (e → e) → m a → m a
asks : ∀ ⦃ _ : RawMonad m ⦄ {a} → (e → a) → m a
asks ⦃ m ⦄ f = let open RawMonad m in do
e ← ask
return $ f (e)
ReaderT : Set → (M : Set → Set) → Set → Set
ReaderT E M A = E → M A
module _ (E : Set) (M : Set → Set) ⦃ mon : RawMonad M ⦄ where
open RawMonad mon
reader-monad : RawMonad (ReaderT E M)
reader-monad = record
{ return = const ∘ return
; _>>=_ = λ m f e → m e >>= λ x → f x e }
reader-monad-reader : MonadReader (ReaderT E M) E
reader-monad-reader = record
{ ask = return
; local = λ f c e → c (f e) }
record MonadWriter (m : Set → Set) (w : Set) : Set₁ where
field
write : w → m ⊤
record MonadState (m : Set → Set) (s : Set) : Set₁ where
field
state : ∀ {a} → (s → s × a) → m a
put : s → m ⊤
put s = state λ _ → (s , tt)
get : m s
get = state λ s → (s , s)
gets : ∀ {a} → (s → a) → m a
gets f = state λ s → (s , f s)
modify : ⦃ _ : RawMonad m ⦄ → (s → s) → m ⊤
modify ⦃ M ⦄ f = let open RawMonad M in do
s ← get
put (f s)
StateT : Set → (M : Set → Set) → Set → Set
StateT S M A = S → M (S × A)
module _ (S : Set) (M : Set → Set) ⦃ mon : RawMonad M ⦄ where
state-monad : RawMonad (StateT S M)
state-monad = record
{ return = λ a s → return (s , a)
; _>>=_ = λ m f s → m s >>= λ where (s' , a) → f a s' }
where open RawMonad mon
state-monad-state : MonadState (StateT S M) S
state-monad-state = record
{ state = λ f s → return (f s) }
where open RawMonad mon
open MonadState state-monad-state
{- State focussing -}
module _ {S F M} (focus : S → F) (update : F → S → S)
⦃ mon : RawMonad M ⦄
(st : MonadState M S)
where
focus-monad-state : MonadState M F
focus-monad-state = record
{ state = λ f →
MonadState.state st λ s →
Prod.map₁ (λ f → update f s) (f (focus s))
}
module _ {M S} ⦃ m : RawMonad M ⦄ (stm : MonadState M S) where
open RawMonad m
open MonadState stm
state-monad-reader : MonadReader M S
state-monad-reader = record
{ ask = get
; local = λ f m → do
backup ← get
modify f
a ← m
put backup
return a
}
state-monad-writer : MonadWriter M S
state-monad-writer = record
{ write = put }
ExceptT : Set → (Set → Set) → Set → Set
ExceptT E M A = M (E ⊎ A)
record MonadExcept (m : Set → Set) (e : Set) : Set₁ where
field
throw : ∀ {a} → e → m a
module _ {E : Set} {M : Set → Set} ⦃ mon : RawMonad M ⦄ where
open RawMonad mon
except-monad : RawMonad (ExceptT E M)
except-monad = record
{ return = λ a → return (✓ a)
; _>>=_ = λ where
c f → c >>= λ where
(exc x) → return $ exc x
(✓ y) → f y }
except-monad-except : MonadExcept (ExceptT E M) E
except-monad-except = record
{ throw = λ e → return (exc e) }
record MonadResumption (m : Set → Set) (c h : Set) : Set₁ where
field
yield : m ⊤
fork : c → m h
record MonadComm (m : Set → Set) (c v : Set) : Set₁ where
field
recv : c → m v
send : c → v → m ⊤
close : c → m ⊤
module _ c (r : c → Set) where
mutual
Cont = λ cmd a → (r cmd → Free a)
data Free a : Set where
pure : a → Free a
impure : (cmd : c) → Cont cmd a → Free a
free-monad : ∀ {c r} → RawMonad (Free c r)
free-monad = record
{ return = pure
; _>>=_ = bind }
where
bind : ∀ {c r a b} → Free c r a → (a → Free c r b) → Free c r b
bind = λ where
(pure a) f → f a
(impure c k) f → impure c (flip bind f ∘ k)
-- one cannot easily define instances like free-monad-comm generically
-- for some command type and interpretation, because MonadComm
-- requires that the recv return type is fixed a priori, whereas
-- free allows it to be dependent on the command payload.
module M where
open RawMonad ⦃...⦄ public
open MonadReader ⦃...⦄ public
open MonadWriter ⦃...⦄ public renaming (write to schedule)
open MonadResumption ⦃...⦄ public
open MonadComm ⦃...⦄ public
open MonadExcept ⦃...⦄ public
open MonadState ⦃...⦄ public
| {
"alphanum_fraction": 0.5619889503,
"avg_line_length": 25.2793296089,
"ext": "agda",
"hexsha": "9daefe6eea147d2028aeab82aab1987a157a72bb",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Untyped/Monads.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Untyped/Monads.agda",
"max_line_length": 90,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Untyped/Monads.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 1623,
"size": 4525
} |
{-# OPTIONS --without-K #-}
open import library.Basics hiding (Type ; Σ)
open import library.types.Sigma
module Sec2preliminaries where
-- is-prop, is-contr, is-set, has-dec-eq exist in library.Basicss
-- Let us redefine Type and Σ so that they only refer to the lowest universe.
Type = Type₀
Σ = library.Basics.Σ {lzero} {lzero}
_+_ : Type → Type → Type
X + Y = Coprod X Y
const : {X Y : Type} → (f : X → Y) → Type
const {X} f = (x₁ x₂ : X) → (f x₁) == (f x₂)
hasConst : Type → Type
hasConst X = Σ (X → X) const
pathHasConst : Type → Type
pathHasConst X = (x₁ x₂ : X) → hasConst (x₁ == x₂)
LEM : Type₁
LEM = (P : Type) → is-prop P → P + (¬ P)
LEM∞ : Type₁
LEM∞ = (X : Type) → X + (¬ X)
Funext : {X Y : Type} → Type
Funext {X} {Y} = (f g : X → Y) → ((x : X) → (f x) == (g x)) → f == g
-- In the rest of this file, we define several auxiliary notations or lemmata that are not mentioned
-- explicitly in the article but are somewhat self-explaining.
-- for convenience, we also define ↔ to mean logical equivalence (maps in both directions)
_↔_ : Type → Type → Type
X ↔ Y = (X → Y) × (Y → X)
-- we define it for types in the higher universe separately
-- (because most of the time, we only need the lowest universe and do not want to carry around indices)
_↔₀₁_ : Type → Type₁ → Type₁
A ↔₀₁ B = (A → B) × (B → A)
_↔₁₁_ : Type₁ → Type₁ → Type₁
X ↔₁₁ Y = (X → Y) × (Y → X)
-- composition of ↔
_◎_ : {X Y Z : Type} → (X ↔ Y) → (Y ↔ Z) → (X ↔ Z)
e₁ ◎ e₂ = fst e₂ ∘ fst e₁ , snd e₁ ∘ snd e₂
-- A trivial, but useful lemma. The only thing we do is hiding the arguments.
prop-eq-triv : {P : Type} → {p₁ p₂ : P} → is-prop P → p₁ == p₂
prop-eq-triv h = prop-has-all-paths h _ _
-- A second such useful lemma
second-comp-triv : {X : Type} → {P : X → Type} → ((x : X) → is-prop (P x)) → (a b : Σ X P) → (fst a == fst b) → a == b
second-comp-triv {X} {P} h a b q = pair= q (from-transp P q (prop-eq-triv (h (fst b))))
open import library.types.Pi
-- Note that this lemma needs function extensionality (we use Π-level).
neutral-codomain : {X : Type} → {Y : X → Type} → ((x : X) → is-contr (Y x)) → Π X Y ≃ Unit
neutral-codomain = contr-equiv-Unit ∘ Π-level
-- the following is the function which the univalence axiom postulates to be an equivalence
-- (we define it ourselves as we do not want to implicitly import the whole univalence library)
path-to-equiv : {X Y : Type} → X == Y → X ≃ Y
path-to-equiv {X} idp = ide X
-- some rather silly lemmata
delete-idp : {X : Type} → {x₁ x₂ : X} → (p q : x₁ == x₂) → (p ∙ idp == q) ≃ (p == q)
delete-idp idp q = ide _
add-path : {X : Type} → {x₁ x₂ x₃ : X} → (p q : x₁ == x₂) → (r : x₂ == x₃) → (p == q) == (p ∙ r == q ∙ r)
add-path idp q idp = transport (λ q₁ → (idp == q₁) == (idp == q ∙ idp)) {x = q ∙ idp} {y = q} (∙-unit-r _) idp
open import library.types.Paths
reverse-paths : {X : Type} → {x₁ x₂ : X} → (p : x₂ == x₁) → (q : x₁ == x₂) → (! p == q) ≃ (p == ! q)
reverse-paths p idp =
! p == idp ≃⟨ path-to-equiv (add-path _ _ _) ⟩
! p ∙ p == p ≃⟨ path-to-equiv (transport (λ p₁ → (! p ∙ p == p) == (p₁ == p)) (!-inv-l p) idp) ⟩
idp == p ≃⟨ !-equiv ⟩
p == idp ≃∎
switch-args : {X Y : Type} → {Z : X → Y → Type} → ((x : X) → (y : Y) → Z x y) ≃ ((y : Y) → (x : X) → Z x y)
switch-args = equiv f g h₁ h₂ where
f = λ k y x → k x y
g = λ i x y → i y x
h₁ = λ _ → idp
h₂ = λ _ → idp
-- another useful (but simple) lemma: if we have a proof of (x , y₁) == (x , y₂) and the type of x is a set, we get a proof of y₁ == y₂.
set-lemma : {X : Type} → (is-set X) → {Y : X → Type} → (x₀ : X) → (y₁ y₂ : Y x₀) → _==_ {A = Σ X Y} (x₀ , y₁) (x₀ , y₂) → y₁ == y₂
set-lemma {X} h {Y} x₀ y₁ y₂ p =
y₁ =⟨ idp ⟩
transport Y idp y₁ =⟨ transport {A = x₀ == x₀} (λ q → y₁ == transport Y q y₁)
{x = idp} {y = ap fst p}
(prop-has-all-paths (h x₀ x₀) _ _)
idp ⟩
transport Y (ap fst p) y₁ =⟨ snd-of-p ⟩
y₂ ∎ where
pairs : =Σ {B = Y} (x₀ , y₁) (x₀ , y₂)
pairs = <– (=Σ-eqv _ _) p
paov : y₁ == y₂ [ Y ↓ fst (pairs) ]
paov = snd pairs
snd-of-p : transport Y (ap fst p) y₁ == y₂
snd-of-p = to-transp paov
| {
"alphanum_fraction": 0.5445262408,
"avg_line_length": 35.686440678,
"ext": "agda",
"hexsha": "e4e02fbf7bff5ab38c4ed56ab5b712c784d19ebc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "nicolai/anonymousExistence/Sec2preliminaries.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "nicolai/anonymousExistence/Sec2preliminaries.agda",
"max_line_length": 136,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nicolaikraus/HoTT-Agda",
"max_stars_repo_path": "nicolai/anonymousExistence/Sec2preliminaries.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 1656,
"size": 4211
} |
{-# OPTIONS --safe #-}
module Issue2442-terminating where
{-# NON_TERMINATING #-}
f : Set
f = f
| {
"alphanum_fraction": 0.6428571429,
"avg_line_length": 12.25,
"ext": "agda",
"hexsha": "638e9579bb1cfaf4b69af70842db96d5e370b82c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2442-terminating.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2442-terminating.agda",
"max_line_length": 34,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2442-terminating.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 27,
"size": 98
} |
open import Theory
module Categories.Category.Construction.Classifying {ℓ₁ ℓ₂ ℓ₃} (Th : Theory ℓ₁ ℓ₂ ℓ₃) where
open import Relation.Binary using (Rel)
open import Data.List using ([]; _∷_)
open import Data.Fin using () renaming (zero to fzero; suc to fsuc)
open import Level using (_⊔_)
open import Categories.Category
open import Syntax
open Theory.Theory Th
open Signature Sg
open Term Sg
private
arr : Rel Type (ℓ₁ ⊔ ℓ₂)
arr A B = A ∷ [] ⊢ B
identityʳ : forall {A B} {e : A ∷ [] ⊢ B}
-> A ∷ [] ⊢ e [ ext ! var ] ≡ e
identityʳ {A} {e = e} = trans (cong/sub (trans (cong/ext !-unique refl) η-pair) refl) sub/id
assoc : {A B C D : Type} {f : arr A B} {g : arr B C} {h : arr C D}
-> A ∷ [] ⊢ h [ ext ! g ] [ ext ! f ] ≡ h [ ext ! (g [ ext ! f ]) ]
assoc {f = f} {g = g} {h = h} = trans (sym sub/∙)
(cong/sub (trans ext∙ (cong/ext (sym !-unique) refl)) refl)
Cl : Category ℓ₁ (ℓ₁ ⊔ ℓ₂) (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃)
Cl = record
{ Obj = Type
; _⇒_ = arr
; _≈_ = λ e₁ e₂ → _ ∷ [] ⊢ e₁ ≡ e₂
; id = var
; _∘_ = λ e₁ e₂ → e₁ [ ext ! e₂ ]
; assoc = assoc
; sym-assoc = sym assoc
; identityˡ = λ {A} {B} {f} -> var/ext ! f
; identityʳ = identityʳ
; identity² = var/ext ! var
; equiv = record { refl = refl ; sym = sym ; trans = trans }
; ∘-resp-≈ = λ x x₁ → cong/sub (cong/ext refl x₁) x
}
open import Categories.Category.BinaryProducts Cl
module M where
open import Categories.Category.CartesianClosed.Canonical Cl
CC : CartesianClosed
CC = record
{ ⊤ = Unit
; _×_ = _*_
; ! = unit
; π₁ = fst var
; π₂ = snd var
; ⟨_,_⟩ = pair
; !-unique = eta/Unit
; π₁-comp = trans comm/fst (trans (cong/fst (var/ext ! (pair _ _))) (beta/*₁ _ _))
; π₂-comp = trans comm/snd (trans (cong/snd (var/ext ! (pair _ _))) (beta/*₂ _ _))
; ⟨,⟩-unique = ⟨,⟩-unique
; _^_ = λ A B → B => A
; eval = app (fst var) (snd var)
; curry = λ e → abs (e [ ext ! (pair (var [ weaken ]) var) ])
; eval-comp = eval-comp
; curry-resp-≈ = λ x → cong/abs (cong/sub refl x)
; curry-unique = λ x → curry-unique x
}
where
⟨,⟩-unique : forall {A B C} {h : C ∷ [] ⊢ A * B} {i : C ∷ [] ⊢ A} {j : C ∷ [] ⊢ B}
-> C ∷ [] ⊢ fst var [ ext ! h ] ≡ i
-> C ∷ [] ⊢ snd var [ ext ! h ] ≡ j
-> C ∷ [] ⊢ pair i j ≡ h
⟨,⟩-unique x y = trans
(cong/pair
(sym (trans (cong/fst (sym (var/ext ! _))) (trans (sym comm/fst) x)))
(sym (trans (cong/snd (sym (var/ext ! _))) (trans (sym comm/snd) y)))
)
(eta/* _)
open import Categories.Object.Product.Morphisms Cl using ([_⇒_]_×_)
open import Categories.Object.Product Cl using (Product)
product : forall {A B} -> Product A B
product {A} {B} = record
{ A×B = A * B
; π₁ = fst var
; π₂ = snd var
; ⟨_,_⟩ = pair
; project₁ = trans comm/fst (trans (cong/fst (var/ext ! (pair _ _))) (beta/*₁ _ _))
; project₂ = trans comm/snd (trans (cong/snd (var/ext ! (pair _ _))) (beta/*₂ _ _))
; unique = ⟨,⟩-unique
}
eval-comp : forall {B A C} {f : arr (C * A) B}
-> C * A ∷ [] ⊢
app (fst var) (snd var)
[ ext ! ([ product ⇒ product ] (abs (f [ ext ! (pair (var [ weaken ]) var)])) × var) ]
≡
f
eval-comp = trans comm/app (trans (cong/app (trans comm/fst (cong/fst (var/ext _ _))) (trans comm/snd (cong/snd (var/ext _ _)))) (trans (cong/app (trans (beta/*₁ _ _) comm/abs) (beta/*₂ _ _)) (trans (beta/=> _ _) (trans (sym sub/∙) (trans (cong/sub (trans ext∙ (cong/ext (trans (cong/∙ (trans ext∙ (cong/ext (sym !-unique) comm/fst)) refl) (trans ext∙ (cong/ext (sym !-unique) (trans comm/fst (cong/fst (trans (sym sub/∙) (cong/sub weaken/ext refl))))))) (trans (var/ext _ _) (var/ext _ _)))) refl) (trans (sym sub/∙) (trans (cong/sub (trans ext∙ (trans (cong/ext (sym !-unique) (trans comm/pair (cong/pair (trans (sym sub/∙) (trans (cong/sub weaken/ext refl) (trans (var/ext _ _) (cong/fst sub/id)))) (var/ext _ _)))) (trans (cong/ext !-unique (eta/* _)) η-pair))) refl) sub/id)))))))
open BinaryProducts (record { product = product })
open Category Cl
helper : forall {A B C} {f : A ⇒ B => C}
-> B ∷ A ∷ [] ⊨ ext ! (var [ weaken ]) ≡ weaken
helper = trans (cong/ext (!-unique {γ = weaken ∙ weaken}) refl) (trans (sym ext∙) (trans (cong/∙ η-pair refl) id∙ˡ))
curry-unique : forall {A B C} {f : A ⇒ B => C} {g : A × B ⇒ C}
-> app (fst var) (snd var) ∘ (f ⁂ Category.id Cl) ≈ g
-> f ≈ abs (g [ ext ! (pair (var [ weaken ]) var) ])
curry-unique {A} {B} {C} {f = f} {g = g} x =
begin
f
≈˘⟨ eta/=> _ ⟩
abs (app (f [ weaken ]) var)
≈˘⟨ cong/abs (cong/app (cong/sub (helper {f = f}) refl) refl) ⟩
abs (app (f [ ext ! (var [ weaken ]) ]) var)
≈˘⟨ cong/abs (cong/app (beta/*₁ _ _) (beta/*₂ _ _)) ⟩
abs (app (fst (pair (f [ ext ! (var [ weaken ]) ]) var)) (snd (pair (f [ ext ! (var [ weaken ]) ]) var)))
≈˘⟨ cong/abs (cong/app (trans comm/fst (cong/fst (var/ext _ _))) (trans comm/snd (cong/snd (var/ext _ _)))) ⟩
abs (app (fst var [ ext ! (pair (f [ ext ! (var [ weaken ]) ]) var) ]) (snd var [ ext ! (pair (f [ ext ! (var [ weaken ]) ]) var) ]))
≈˘⟨ cong/abs comm/app ⟩
abs (app (fst var) (snd var) [ ext ! (pair (f [ ext ! (var [ weaken ]) ]) var) ])
≈˘⟨ cong/abs (cong/sub (cong/ext refl (cong/pair (cong/sub (cong/ext refl (trans comm/fst (trans (cong/fst (var/ext _ _)) (beta/*₁ _ _)))) refl) refl)) refl) ⟩
abs (app (fst var) (snd var) [ ext ! (pair (f [ ext ! (fst var [ ext ! (pair (var [ weaken ]) var)]) ]) var) ])
≈˘⟨ cong/abs (cong/sub (cong/ext refl (cong/pair (cong/sub (trans ext∙ (cong/ext (sym !-unique) refl)) refl) (trans (cong/snd (var/ext _ _)) (beta/*₂ _ _)))) refl) ⟩
abs (app (fst var) (snd var) [ ext ! (pair (f [ ext ! (fst var) ∙ ext ! (pair (var [ weaken ]) var) ]) (snd (var [ ext ! (pair (var [ weaken ]) var) ]))) ])
≈˘⟨ cong/abs (cong/sub (cong/ext refl (cong/pair (sym sub/∙) comm/snd)) refl) ⟩
abs (app (fst var) (snd var) [ ext ! (pair (f [ ext ! (fst var) ] [ ext ! (pair (var [ weaken ]) var) ]) (snd var [ ext ! (pair (var [ weaken ]) var) ])) ])
≈˘⟨ cong/abs (cong/sub (cong/ext refl comm/pair) refl) ⟩
abs (app (fst var) (snd var) [ ext ! (pair (f [ ext ! (fst var) ]) (snd var) [ ext ! (pair (var [ weaken ]) var) ]) ])
≈⟨ cong/abs (cong/sub (cong/ext !-unique (cong/sub refl (cong/pair refl (sym (var/ext _ _))))) refl) ⟩
abs (app (fst var) (snd var) [ ext (! ∙ ext ! (pair (var [ weaken ]) var)) (pair (f [ ext ! (fst var) ]) (var [ ext ! (snd var) ]) [ ext ! (pair (var [ weaken ]) var) ]) ])
≈˘⟨ cong/abs (cong/sub ext∙ refl) ⟩
abs (app (fst var) (snd var) [ ext ! (pair (f [ ext ! (fst var) ]) (var [ ext ! (snd var) ])) ∙ ext ! (pair (var [ weaken ]) var) ])
≡⟨⟩
abs (app (fst var) (snd var) [ ext ! ⟨ f ∘ fst var , Category.id Cl ∘ snd var ⟩ ∙ ext ! (pair (var [ weaken ]) var) ])
≈⟨ cong/abs sub/∙ ⟩
abs ((app (fst var) (snd var) ∘ ⟨ f ∘ fst var , Category.id Cl ∘ snd var ⟩) [ ext ! (pair (var [ weaken ]) var) ])
≡⟨⟩
abs ((app (fst var) (snd var) ∘ (f ⁂ Category.id Cl)) [ ext ! (pair (var [ weaken ]) var) ])
≈⟨ cong/abs (cong/sub refl x) ⟩
abs (g [ ext ! (pair (var [ weaken ]) var) ])
∎
where
open import Relation.Binary.Reasoning.Setoid TermSetoid
open import Categories.Category.CartesianClosed Cl
import Categories.Category.CartesianClosed.Canonical Cl as Can
CC : CartesianClosed
CC = Can.Equivalence.fromCanonical M.CC
open import Semantics Cl CC Sg
open Category Cl
private
open import Data.Product using (_,_)
open import Categories.Morphism Cl using (Iso; _≅_)
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Functor
open import Categories.Functor.Properties using ([_]-resp-∘)
open import Categories.Functor.Construction.Product using (Product)
open import Categories.Functor.Construction.Exponential using (Exp)
open import Categories.Functor.Bifunctor using (Bifunctor)
open CartesianClosed CC
open BinaryProducts (Cartesian.products cartesian)
open I ⌊_⌋
P : Bifunctor Cl Cl Cl
P = Product Cl cartesian
E : Bifunctor Cl op Cl
E = Exp Cl CC
from/⟦⟧T : forall (A : Type) -> ⟦ A ⟧T ⇒ A
to/⟦⟧T : forall (A : Type) -> A ⇒ ⟦ A ⟧T
from/⟦⟧T ⌊ x ⌋ = Category.id Cl
from/⟦⟧T Unit = Category.id Cl
from/⟦⟧T (A * A₁) = from/⟦⟧T A ⁂ from/⟦⟧T A₁
from/⟦⟧T (A => A₁) = λg (from/⟦⟧T A₁ ∘ eval′ ∘ (Category.id Cl ⁂ to/⟦⟧T A))
to/⟦⟧T ⌊ x ⌋ = Category.id Cl
to/⟦⟧T Unit = Category.id Cl
to/⟦⟧T (A * A₁) = to/⟦⟧T A ⁂ to/⟦⟧T A₁
to/⟦⟧T (A => A₁) = λg (to/⟦⟧T A₁ ∘ eval′ ∘ (Category.id Cl ⁂ from/⟦⟧T A))
to∘from : forall {A} -> ⟦ A ⟧T ∷ [] ⊢ to/⟦⟧T A [ ext ! (from/⟦⟧T A) ] ≡ var
to∘from {⌊ x ⌋} = var/ext _ _
to∘from {Unit} = var/ext _ _
to∘from {A * A₁} = trans ([ P ]-resp-∘ (to∘from , to∘from)) (Functor.identity P)
to∘from {A => A₁} = trans ([ E ]-resp-∘ (to∘from , to∘from)) (Functor.identity E)
from∘to : forall {A} -> A ∷ [] ⊢ from/⟦⟧T A [ ext ! (to/⟦⟧T A) ] ≡ var
from∘to {⌊ x ⌋} = var/ext _ _
from∘to {Unit} = var/ext _ _
from∘to {A * A₁} = trans ([ P ]-resp-∘ (from∘to , from∘to)) (Functor.identity P)
from∘to {A => A₁} = trans ([ E ]-resp-∘ (from∘to , from∘to)) (Functor.identity E)
Iso/⟦⟧T : forall {A : Type} -> ⟦ A ⟧T ≅ A
Iso/⟦⟧T {A} = record
{ from = from/⟦⟧T A
; to = to/⟦⟧T A
; iso = record { isoˡ = to∘from ; isoʳ = from∘to }
}
⟦_⟧F : (f : Func) -> ⟦ dom f ⟧T ⇒ ⟦ cod f ⟧T
⟦_⟧F f = _≅_.to Iso/⟦⟧T ∘ x ∘ _≅_.from Iso/⟦⟧T
where
x : dom f ⇒ cod f
x = func f var
S : Structure
S = record { ⟦_⟧G = ⌊_⌋ ; ⟦_⟧F = λ f → ⟦ f ⟧F }
open Structure S
private
γC : forall {Γ} -> ⟦ Γ ⟧C ∷ [] ⊨ Γ
γC {[]} = !
γC {A ∷ Γ} = ext (γC {Γ} ∙ ext ! π₁) (from/⟦⟧T A ∘ π₂)
open HomReasoning
open import Categories.Morphism.Reasoning Cl
import Categories.Object.Product Cl as Prod
open import Categories.Object.Terminal Cl using (Terminal)
module T = Terminal (Cartesian.terminal cartesian)
helper : forall {Γ} {A} {e : Γ ⊢ A} -> ⟦ e ⟧ ≈ to/⟦⟧T A ∘ (e [ γC ])
helperS : forall {Γ Γ′} {γ : Γ ⊨ Γ′} -> _ ⊨ γC ∙ ext ! ⟦ γ ⟧S ≡ γ ∙ γC
helper {e = func f e} =
begin
(to/⟦⟧T (cod f) ∘ func f var ∘ from/⟦⟧T (dom f)) ∘ ⟦ e ⟧
≈⟨ ∘-resp-≈ʳ (helper {e = e}) ⟩
(to/⟦⟧T (cod f) ∘ func f var ∘ from/⟦⟧T (dom f)) ∘ to/⟦⟧T _ ∘ (e [ γC ])
≈⟨ assoc²' ⟩
to/⟦⟧T (cod f) ∘ func f var ∘ from/⟦⟧T (dom f) ∘ to/⟦⟧T (dom f) ∘ (e [ γC ])
≈⟨ ∘-resp-≈ʳ (∘-resp-≈ʳ (cancelˡ from∘to)) ⟩
to/⟦⟧T (cod f) ∘ func f var ∘ (e [ γC ])
≈⟨ ∘-resp-≈ʳ (comm/func _ _ _ _ _) ⟩
to/⟦⟧T (cod f) ∘ func f (var ∘ (e [ γC ]))
≈⟨ ∘-resp-≈ʳ (cong/func identityˡ) ⟩
to/⟦⟧T (cod f) ∘ func f (e [ γC ])
≈˘⟨ ∘-resp-≈ʳ (comm/func _ _ _ _ _) ⟩
to/⟦⟧T (cod f) ∘ (func f e [ γC ])
∎
helper {e = var} =
begin
π₂
≈⟨ insertˡ to∘from ⟩
to/⟦⟧T _ ∘ (from/⟦⟧T _ ∘ π₂)
≈˘⟨ ∘-resp-≈ʳ (var/ext _ _) ⟩
to/⟦⟧T _ ∘ (var [ ext _ (from/⟦⟧T _ ∘ π₂) ])
∎
helper {e = unit} = T.!-unique _
helper {e = pair e₁ e₂} =
begin
⟨ ⟦ e₁ ⟧ , ⟦ e₂ ⟧ ⟩
≈⟨ ⟨⟩-cong₂ (helper {e = e₁}) (helper {e = e₂}) ⟩
⟨ to/⟦⟧T _ ∘ (e₁ [ γC ]) , to/⟦⟧T _ ∘ (e₂ [ γC ]) ⟩
≈˘⟨ ⁂∘⟨⟩ ⟩
(to/⟦⟧T _ ⁂ to/⟦⟧T _) ∘ (pair (e₁ [ γC ]) (e₂ [ γC ]))
≈˘⟨ ∘-resp-≈ʳ comm/pair ⟩
(to/⟦⟧T _ ⁂ to/⟦⟧T _) ∘ (pair e₁ e₂ [ γC ])
∎
helper {e = fst {A = A} {B = B} e} = switch-fromtoˡ Iso/⟦⟧T (
begin
from/⟦⟧T _ ∘ π₁ ∘ ⟦ e ⟧
≈⟨ ∘-resp-≈ʳ (∘-resp-≈ʳ (helper {e = e})) ⟩
from/⟦⟧T A ∘ π₁ ∘ to/⟦⟧T (A * B) ∘ (e [ γC ])
≈⟨ ∘-resp-≈ʳ (pullˡ π₁∘⁂) ⟩
from/⟦⟧T A ∘ (to/⟦⟧T A ∘ π₁) ∘ (e [ γC ])
≈⟨ assoc²'' ⟩
(from/⟦⟧T A ∘ to/⟦⟧T A) ∘ π₁ ∘ (e [ γC ])
≈⟨ elimˡ from∘to ⟩
π₁ ∘ (e [ γC ])
≈⟨ comm/fst ⟩
fst (var [ ext ! (e [ γC ]) ])
≈⟨ cong/fst (var/ext _ _) ⟩
fst (e [ γC ])
≈˘⟨ comm/fst ⟩
fst e [ γC ]
∎)
helper {e = snd e} =
begin
π₂ ∘ ⟦ e ⟧
≈⟨ ∘-resp-≈ʳ (helper {e = e}) ⟩
π₂ ∘ (to/⟦⟧T _ ∘ (e [ γC ]))
≈⟨ pullˡ π₂∘⁂ ⟩
(to/⟦⟧T _ ∘ snd var) ∘ (e [ γC ])
≈⟨ pullʳ comm/snd ⟩
to/⟦⟧T _ ∘ snd (var ∘ (e [ γC ]))
≈⟨ ∘-resp-≈ʳ (cong/snd identityˡ) ⟩
to/⟦⟧T _ ∘ snd (e [ γC ])
≈˘⟨ ∘-resp-≈ʳ comm/snd ⟩
to/⟦⟧T _ ∘ (snd e [ γC ])
∎
helper {e = abs e} =
begin
λg ⟦ e ⟧
≈⟨ λ-cong (helper {e = e}) ⟩
λg (to/⟦⟧T _ ∘ (e [ γC ]))
≈⟨ refl ⟩
λg (to/⟦⟧T _ ∘ (e [ ext (γC ∙ ext ! π₁) (from/⟦⟧T _ ∘ π₂) ]))
≈˘⟨ λ-cong (∘-resp-≈ʳ (cong/sub (cong/ext id∙ʳ refl) refl)) ⟩
λg (to/⟦⟧T _ ∘ (e [ ext ((γC ∙ ext ! π₁) ∙ _⊨_.id) (from/⟦⟧T _ ∘ π₂) ]))
≈˘⟨ λ-cong (∘-resp-≈ʳ (cong/sub ×id′-ext refl)) ⟩
λg (to/⟦⟧T _ ∘ (e [ (γC ∙ ext ! π₁) ×id′ ∙ ext _⊨_.id (from/⟦⟧T _ ∘ π₂)]))
≈⟨ λ-cong (∘-resp-≈ʳ sub/∙) ⟩
λg (to/⟦⟧T _ ∘ (e [ (γC ∙ ext ! π₁) ×id′ ] [ ext _⊨_.id (from/⟦⟧T _ ∘ π₂)]))
≈˘⟨ λ-cong (∘-resp-≈ʳ (cong/sub refl (cong/sub ×id′-∙ refl))) ⟩
λg (to/⟦⟧T _ ∘ (e [ γC ×id′ ∙ ext ! π₁ ×id′ ] [ ext _⊨_.id (from/⟦⟧T _ ∘ π₂)]))
≈⟨ λ-cong (∘-resp-≈ʳ (cong/sub refl sub/∙)) ⟩
λg (to/⟦⟧T _ ∘ (e [ ext (γC ∙ weaken) var ] [ ext (ext ! π₁ ∙ weaken) var ] [ ext _⊨_.id (from/⟦⟧T _ ∘ π₂)]))
≈˘⟨ λ-cong (∘-resp-≈ʳ (beta/=> _ _)) ⟩
λg (to/⟦⟧T _ ∘ app (abs (e [ ext (γC ∙ weaken) var ] [ ext (ext ! π₁ ∙ weaken) var ])) (from/⟦⟧T _ ∘ π₂))
≈˘⟨ λ-cong (∘-resp-≈ʳ (cong/app comm/abs refl)) ⟩
λg (to/⟦⟧T _ ∘ app (abs (e [ ext (γC ∙ weaken) var ]) ∘ π₁) (from/⟦⟧T _ ∘ π₂))
≈˘⟨ λ-cong (∘-resp-≈ʳ (cong/app (beta/*₁ _ _) (beta/*₂ _ _))) ⟩
λg (to/⟦⟧T _ ∘ app (fst (abs (e [ ext (γC ∙ weaken) var ]) ⁂ from/⟦⟧T _)) (snd (abs (e [ ext (γC ∙ weaken) var ]) ⁂ from/⟦⟧T _)))
≈˘⟨ λ-cong (∘-resp-≈ʳ (trans comm/app (cong/app (trans comm/fst (cong/fst (var/ext _ _))) (trans comm/snd (cong/snd (var/ext _ _)))))) ⟩
λg (to/⟦⟧T _ ∘ (app π₁ π₂) ∘ (abs (e [ ext (γC ∙ weaken) var ]) ⁂ from/⟦⟧T _))
≈˘⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ˡ (cong/app (beta/*₁ _ _) (beta/*₂ _ _)))) ⟩
λg (to/⟦⟧T _ ∘ (app (fst (pair π₁ π₂)) (snd (pair π₁ π₂))) ∘ (abs (e [ ext (γC ∙ weaken) var ]) ⁂ from/⟦⟧T _))
≈˘⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ˡ (cong/app (trans comm/fst (cong/fst (var/ext _ _))) (trans comm/snd (cong/snd (var/ext _ _)))))) ⟩
λg (to/⟦⟧T _ ∘ (app (fst var ∘ pair π₁ π₂) (snd var ∘ pair π₁ π₂)) ∘ (abs (e [ ext (γC ∙ weaken) var ]) ⁂ from/⟦⟧T _))
≈˘⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ˡ comm/app)) ⟩
λg (to/⟦⟧T _ ∘ (app (fst var) (snd var) ∘ (pair π₁ π₂)) ∘ (abs (e [ ext (γC ∙ weaken) var ]) ⁂ from/⟦⟧T _))
≈⟨ refl ⟩
λg (to/⟦⟧T _ ∘ (eval ∘ Prod.repack product exp.product) ∘ (abs (e [ ext (γC ∙ weaken) var ]) ⁂ from/⟦⟧T _))
≈⟨ refl ⟩
λg (to/⟦⟧T _ ∘ eval′ ∘ (abs (e [ ext (γC ∙ weaken) var ]) ⁂ from/⟦⟧T _))
≈˘⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ (⁂-cong₂ comm/abs refl))) ⟩
λg (to/⟦⟧T _ ∘ eval′ ∘ ((abs e [ γC ]) ⁂ from/⟦⟧T _))
≈˘⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ (⁂-cong₂ identityˡ (Category.identityʳ Cl)))) ⟩
λg (to/⟦⟧T _ ∘ eval′ ∘ (var ∘ (abs e [ γC ]) ⁂ from/⟦⟧T _ ∘ var))
≈˘⟨ λ-cong (∘-resp-≈ʳ (∘-resp-≈ʳ ⁂∘⁂)) ⟩
λg (to/⟦⟧T _ ∘ eval′ ∘ (var ⁂ from/⟦⟧T _) ∘ ((abs e [ γC ]) ⁂ var))
≈˘⟨ λ-cong assoc²' ⟩
λg ((to/⟦⟧T _ ∘ eval′ ∘ (var ⁂ from/⟦⟧T _)) ∘ ((abs e [ γC ]) ⁂ var))
≈˘⟨ exp.subst product product ⟩
(λg (to/⟦⟧T _ ∘ eval′ ∘ (var ⁂ from/⟦⟧T _))) ∘ (abs e [ γC ])
≈⟨ refl ⟩
to/⟦⟧T (_ => _) ∘ (abs e [ γC ])
∎
helper {e = app e₁ e₂} =
begin
eval′ ∘ ⟨ ⟦ e₁ ⟧ , ⟦ e₂ ⟧ ⟩
≈⟨ refl ⟩
(app (fst var) (snd var) ∘ _) ∘ ⟨ ⟦ e₁ ⟧ , ⟦ e₂ ⟧ ⟩
≈⟨ ∘-resp-≈ˡ (elimʳ η) ⟩
app (fst var) (snd var) ∘ ⟨ ⟦ e₁ ⟧ , ⟦ e₂ ⟧ ⟩
≈⟨ ∘-resp-≈ʳ (⟨⟩-cong₂ (helper {e = e₁}) (helper {e = e₂})) ⟩
app (fst var) (snd var) ∘ ⟨ to/⟦⟧T _ ∘ (e₁ [ γC ]) , to/⟦⟧T _ ∘ (e₂ [ γC ]) ⟩
≈⟨ comm/app ⟩
app (fst var ∘ ⟨ to/⟦⟧T _ ∘ (e₁ [ γC ]) , to/⟦⟧T _ ∘ (e₂ [ γC ]) ⟩)
(snd var ∘ ⟨ to/⟦⟧T _ ∘ (e₁ [ γC ]) , to/⟦⟧T _ ∘ (e₂ [ γC ]) ⟩)
≈⟨ cong/app comm/fst comm/snd ⟩
app (fst (var ∘ ⟨ to/⟦⟧T _ ∘ (e₁ [ γC ]) , to/⟦⟧T _ ∘ (e₂ [ γC ]) ⟩))
(snd (var ∘ ⟨ to/⟦⟧T _ ∘ (e₁ [ γC ]) , to/⟦⟧T _ ∘ (e₂ [ γC ]) ⟩))
≈⟨ cong/app (cong/fst (var/ext _ _)) (cong/snd (var/ext _ _)) ⟩
app (fst ⟨ to/⟦⟧T _ ∘ (e₁ [ γC ]) , to/⟦⟧T _ ∘ (e₂ [ γC ]) ⟩)
(snd ⟨ to/⟦⟧T _ ∘ (e₁ [ γC ]) , to/⟦⟧T _ ∘ (e₂ [ γC ]) ⟩)
≈⟨ cong/app (beta/*₁ _ _) (beta/*₂ _ _) ⟩
app (to/⟦⟧T (_ => _) ∘ (e₁ [ γC ]))
(to/⟦⟧T _ ∘ (e₂ [ γC ]))
≈⟨ refl ⟩
app (λg (to/⟦⟧T _ ∘ eval′ ∘ (var ⁂ from/⟦⟧T _)) ∘ (e₁ [ γC ]))
(to/⟦⟧T _ ∘ (e₂ [ γC ]))
≈⟨ refl ⟩
app (curry ((to/⟦⟧T _ ∘ eval′ ∘ (var ⁂ from/⟦⟧T _)) ∘ Prod.repack product product) ∘ (e₁ [ γC ]))
(to/⟦⟧T _ ∘ (e₂ [ γC ]))
≈⟨ refl ⟩
app (abs (((to/⟦⟧T _ ∘ eval′ ∘ (var ⁂ from/⟦⟧T _)) ∘ Prod.repack product product) [ ext ! (pair (var [ weaken ]) var) ]) ∘ (e₁ [ γC ]))
(to/⟦⟧T _ ∘ (e₂ [ γC ]))
≈⟨ cong/app (cong/sub refl (cong/abs (cong/sub refl (elimʳ η)))) refl ⟩
app (abs ((to/⟦⟧T _ ∘ eval′ ∘ (var ⁂ from/⟦⟧T _)) [ ext ! (pair (var [ weaken ]) var) ]) ∘ (e₁ [ γC ]))
(to/⟦⟧T _ ∘ (e₂ [ γC ]))
≈⟨ cong/app comm/abs refl ⟩
app (abs ((to/⟦⟧T _ ∘ eval′ ∘ (var ⁂ from/⟦⟧T _)) [ ext ! (pair (var [ weaken ]) var) ] [ ext ! (e₁ [ γC ]) ×id′ ]))
(to/⟦⟧T _ ∘ (e₂ [ γC ]))
≈⟨ beta/=> _ _ ⟩
(to/⟦⟧T _ ∘ eval′ ∘ (var ⁂ from/⟦⟧T _)) [ ext ! (pair (var [ weaken ]) var) ] [ ext ! (e₁ [ γC ]) ×id′ ] [ ext _⊨_.id (to/⟦⟧T _ ∘ (e₂ [ γC ])) ]
≈⟨ refl ⟩
(to/⟦⟧T _ ∘ (eval ∘ Prod.repack product product) ∘ (var ⁂ from/⟦⟧T _)) [ ext ! (pair (var [ weaken ]) var) ] [ ext ! (e₁ [ γC ]) ×id′ ] [ ext _⊨_.id (to/⟦⟧T _ ∘ (e₂ [ γC ])) ]
≈⟨ cong/sub refl (cong/sub refl (cong/sub refl (∘-resp-≈ʳ (∘-resp-≈ˡ (elimʳ η))))) ⟩
(to/⟦⟧T _ ∘ (app (fst var) (snd var)) ∘ (var ⁂ from/⟦⟧T _)) [ ext ! (pair (var [ weaken ]) var) ] [ ext ! (e₁ [ γC ]) ×id′ ] [ ext _⊨_.id (to/⟦⟧T _ ∘ (e₂ [ γC ])) ]
≈˘⟨ sub/∙ ⟩
(to/⟦⟧T _ ∘ (app (fst var) (snd var)) ∘ (var ⁂ from/⟦⟧T _)) [ ext ! (pair (var [ weaken ]) var) ] [ ext ! (e₁ [ γC ]) ×id′ ∙ ext _⊨_.id (to/⟦⟧T _ ∘ (e₂ [ γC ])) ]
≈⟨ cong/sub (×id′-ext) refl ⟩
(to/⟦⟧T _ ∘ (app (fst var) (snd var)) ∘ (var ⁂ from/⟦⟧T _)) [ ext ! (pair (var [ weaken ]) var) ] [ ext (ext ! (e₁ [ γC ]) ∙ _⊨_.id) (to/⟦⟧T _ ∘ (e₂ [ γC ])) ]
≈⟨ cong/sub (cong/ext id∙ʳ refl) refl ⟩
(to/⟦⟧T _ ∘ (app (fst var) (snd var)) ∘ (var ⁂ from/⟦⟧T _)) [ ext ! (pair (var [ weaken ]) var) ] [ ext (ext ! (e₁ [ γC ])) (to/⟦⟧T _ ∘ (e₂ [ γC ])) ]
≈˘⟨ sub/∙ ⟩
(to/⟦⟧T _ ∘ (app (fst var) (snd var)) ∘ (var ⁂ from/⟦⟧T _)) [ ext ! (pair (var [ weaken ]) var) ∙ ext (ext ! (e₁ [ γC ])) (to/⟦⟧T _ ∘ (e₂ [ γC ])) ]
≈⟨ cong/sub (trans ext∙ (cong/ext (sym !-unique) refl)) refl ⟩
(to/⟦⟧T _ ∘ (app (fst var) (snd var)) ∘ (var ⁂ from/⟦⟧T _)) ∘ (pair (var [ weaken ]) var [ ext (ext ! (e₁ [ γC ])) (to/⟦⟧T _ ∘ (e₂ [ γC ])) ])
≈⟨ ∘-resp-≈ʳ (trans comm/pair (cong/pair (trans (sym sub/∙) (cong/sub weaken/ext refl)) (var/ext _ _))) ⟩
(to/⟦⟧T _ ∘ (app (fst var) (snd var)) ∘ (var ⁂ from/⟦⟧T _)) ∘ (pair (var [ (ext ! (e₁ [ γC ])) ]) (to/⟦⟧T _ ∘ (e₂ [ γC ])))
≈⟨ ∘-resp-≈ʳ (cong/pair (var/ext _ _) refl) ⟩
(to/⟦⟧T _ ∘ (app (fst var) (snd var)) ∘ (var ⁂ from/⟦⟧T _)) ∘ (pair (e₁ [ γC ]) (to/⟦⟧T _ ∘ (e₂ [ γC ])))
≈⟨ pull-last ⁂∘⟨⟩ ⟩
to/⟦⟧T _ ∘ (app (fst var) (snd var)) ∘ (pair (var ∘ (e₁ [ γC ])) (from/⟦⟧T _ ∘ to/⟦⟧T _ ∘ (e₂ [ γC ])))
≈⟨ ∘-resp-≈ʳ (cong/sub (cong/ext refl (cong/pair identityˡ (cancelˡ from∘to))) refl) ⟩
to/⟦⟧T _ ∘ (app (fst var) (snd var)) ∘ (pair (e₁ [ γC ]) (e₂ [ γC ]))
≈⟨ ∘-resp-≈ʳ (trans comm/app (cong/app (trans comm/fst (trans (cong/fst (var/ext _ _)) (beta/*₁ _ _))) (trans comm/snd (trans (cong/snd (var/ext _ _)) (beta/*₂ _ _))))) ⟩
to/⟦⟧T _ ∘ (app (e₁ [ γC ]) (e₂ [ γC ]))
≈˘⟨ ∘-resp-≈ʳ (comm/app) ⟩
to/⟦⟧T _ ∘ (app e₁ e₂ [ γC ])
∎
where
curry : _ -> _
curry e = abs (e [ ext ! (pair (var [ weaken ]) var) ])
helper {e = e [ γ ]} =
begin
⟦ e ⟧ ∘ ⟦ γ ⟧S
≈⟨ pushˡ (helper {e = e}) ⟩
to/⟦⟧T _ ∘ (e [ γC ]) ∘ ⟦ γ ⟧S
≈⟨ refl ⟩
to/⟦⟧T _ ∘ (e [ γC ] [ ext ! ⟦ γ ⟧S ])
≈˘⟨ ∘-resp-≈ʳ sub/∙ ⟩
to/⟦⟧T _ ∘ (e [ γC ∙ ext ! ⟦ γ ⟧S ])
≈⟨ ∘-resp-≈ʳ (cong/sub (helperS {γ = γ}) refl) ⟩
to/⟦⟧T _ ∘ (e [ γ ∙ γC ])
≈⟨ ∘-resp-≈ʳ sub/∙ ⟩
to/⟦⟧T _ ∘ (e [ γ ] [ γC ])
∎
helperS {γ = id} = trans (trans (cong/∙ refl (cong/ext !-unique refl)) (trans (cong/∙ refl η-pair) id∙ʳ)) (sym id∙ˡ)
helperS {γ = γ ∙ γ₁} =
S.begin
γC ∙ ext ! (⟦ γ ⟧S ∘ ⟦ γ₁ ⟧S)
S.≈˘⟨ cong/∙ refl (trans ext∙ (cong/ext (sym !-unique) refl)) ⟩
γC ∙ (ext ! ⟦ γ ⟧S ∙ ext ! ⟦ γ₁ ⟧S)
S.≈˘⟨ assoc∙ ⟩
(γC ∙ ext ! ⟦ γ ⟧S) ∙ ext ! ⟦ γ₁ ⟧S
S.≈⟨ cong/∙ (helperS {γ = γ}) refl ⟩
(γ ∙ γC) ∙ ext ! ⟦ γ₁ ⟧S
S.≈⟨ assoc∙ ⟩
γ ∙ (γC ∙ ext ! ⟦ γ₁ ⟧S)
S.≈⟨ cong/∙ refl (helperS {γ = γ₁}) ⟩
γ ∙ (γ₁ ∙ γC)
S.≈˘⟨ assoc∙ ⟩
(γ ∙ γ₁) ∙ γC
S.∎
where import Relation.Binary.Reasoning.Setoid SubstSetoid as S
helperS {γ = weaken} = sym weaken/ext
helperS {γ = ext γ e} =
S.begin
γC {_ ∷ _} ∙ (ext ! ⟨ ⟦ γ ⟧S , ⟦ e ⟧ ⟩)
S.≡⟨⟩
ext (γC ∙ ext ! π₁) (from/⟦⟧T _ ∘ π₂) ∙ (ext ! ⟨ ⟦ γ ⟧S , ⟦ e ⟧ ⟩)
S.≈⟨ ext∙ ⟩
ext ((γC ∙ ext ! π₁) ∙ (ext ! ⟨ ⟦ γ ⟧S , ⟦ e ⟧ ⟩)) ((from/⟦⟧T _ ∘ π₂) ∘ ⟨ ⟦ γ ⟧S , ⟦ e ⟧ ⟩)
S.≈⟨ cong/ext assoc∙ (pullʳ project₂) ⟩
ext (γC ∙ (ext ! π₁ ∙ (ext ! ⟨ ⟦ γ ⟧S , ⟦ e ⟧ ⟩))) (from/⟦⟧T _ ∘ ⟦ e ⟧)
S.≈⟨ cong/ext (cong/∙ refl (trans ext∙ (cong/ext (sym !-unique) refl))) refl ⟩
ext (γC ∙ (ext ! (π₁ [ ext ! ⟨ ⟦ γ ⟧S , ⟦ e ⟧ ⟩ ]))) (from/⟦⟧T _ ∘ ⟦ e ⟧)
S.≈⟨ cong/ext (cong/∙ refl (cong/ext refl project₁)) refl ⟩
ext (γC ∙ ext ! ⟦ γ ⟧S) (from/⟦⟧T _ ∘ ⟦ e ⟧)
S.≈⟨ cong/ext (helperS {γ = γ}) (sym (switch-tofromˡ Iso/⟦⟧T (sym (helper {e = e})))) ⟩
ext (γ ∙ γC) (e [ γC ])
S.≈˘⟨ ext∙ ⟩
ext γ e ∙ γC
S.∎
where import Relation.Binary.Reasoning.Setoid SubstSetoid as S
helperS {γ = !} = trans (sym !-unique) !-unique
satisfyAxiom : forall {Γ} {A} {e₁ e₂ : Γ ⊢ A} -> Ax Γ A e₁ e₂ -> ⟦ e₁ ⟧ ≈ ⟦ e₂ ⟧
satisfyAxiom {Γ} {A} {e₁} {e₂} x = trans (helper {e = e₁}) (trans (∘-resp-≈ʳ a) (sym (helper {e = e₂})))
where
a : (e₁ [ γC ]) ≈ (e₂ [ γC ])
a = cong/sub refl (ax x)
M : Model Cl CC Th
M = S , satisfyAxiom
| {
"alphanum_fraction": 0.4662097684,
"avg_line_length": 47.4362139918,
"ext": "agda",
"hexsha": "4b58aca47fafa37795962b8271751a06b1f51cbb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "elpinal/exsub-ccc",
"max_forks_repo_path": "Categories/Category/Construction/Classifying.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "elpinal/exsub-ccc",
"max_issues_repo_path": "Categories/Category/Construction/Classifying.agda",
"max_line_length": 791,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "7541ab22debdfe9d529ac7a210e5bd102c788ad9",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "elpinal/exsub-ccc",
"max_stars_repo_path": "Categories/Category/Construction/Classifying.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T13:30:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-05T06:16:32.000Z",
"num_tokens": 11021,
"size": 23054
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.Bouquet
open import homotopy.FinWedge
open import homotopy.SphereEndomorphism
open import groups.SphereEndomorphism
open import cw.CW
open import cw.FinCW
open import cw.WedgeOfCells
open import cw.FinBoundary
open import cohomology.Theory
module cw.cohomology.cochainequiv.HigherCoboundary (OT : OrdinaryTheory lzero)
{n} (⊙fin-skel : ⊙FinSkeleton (S (S n))) where
open OrdinaryTheory OT
open import cohomology.SubFinBouquet OT
open import cohomology.RephraseSubFinCoboundary OT
private
fin-skel = ⊙FinSkeleton.skel ⊙fin-skel
I = AttachedFinSkeleton.numCells fin-skel
ac = ⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero
dec = ⊙FinSkeleton-has-cells-with-dec-eq ⊙fin-skel
⊙fin-skel₋₁ = ⊙fcw-init ⊙fin-skel
fin-skel₋₁ = ⊙FinSkeleton.skel ⊙fin-skel₋₁
I₋₁ = AttachedFinSkeleton.numCells fin-skel₋₁
ac₋₁ = ⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel₋₁ lzero
dec₋₁ = ⊙FinSkeleton-has-cells-with-dec-eq ⊙fin-skel₋₁
open import cw.cohomology.WedgeOfCells OT
open import cw.cohomology.reconstructed.HigherCoboundary OT ⊙⦉ ⊙fin-skel ⦊
open import cw.cohomology.cochainequiv.HigherCoboundaryAbstractDefs OT ⊙fin-skel
abstract
rephrase-cw-co∂-last-in-degree : ∀ g
→ GroupIso.f (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel ⦊ ac) (GroupHom.f cw-co∂-last (GroupIso.g (CXₙ/Xₙ₋₁-diag-β ⊙⦉ ⊙fin-skel₋₁ ⦊ ac₋₁) g))
∼ λ <I → Group.sum (C2 0) (λ <I₋₁ → Group.exp (C2 0) (g <I₋₁) (fdegree-last fin-skel <I <I₋₁))
rephrase-cw-co∂-last-in-degree g <I =
GroupIso.f (C-FinBouquet-diag (S (S n)) I)
(CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊))
(GroupHom.f cw-co∂-last
(CEl-fmap (ℕ-to-ℤ (S n)) (⊙<– (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊))
(GroupIso.g (C-FinBouquet-diag (S n) I₋₁)
g)))) <I
=⟨ ap
(λ g →
GroupIso.f (C-FinBouquet-diag (S (S n)) I)
(CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊)) g) <I) $
cw-co∂-last-β
(CEl-fmap (ℕ-to-ℤ (S n)) (⊙<– (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊))
(GroupIso.g (C-FinBouquet-diag (S n) I₋₁)
g)) ⟩
GroupIso.f (C-FinBouquet-diag (S (S n)) I)
(CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊))
(CEl-fmap (ℕ-to-ℤ (S (S n))) ⊙cw-∂-before-Susp
(<– (CEl-Susp (ℕ-to-ℤ (S n)) (⊙Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊))
(CEl-fmap (ℕ-to-ℤ (S n)) (⊙<– (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊))
(GroupIso.g (C-FinBouquet-diag (S n) I₋₁)
g))))) <I
=⟨ ap
(λ g →
GroupIso.f (C-FinBouquet-diag (S (S n)) I)
(CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊))
(CEl-fmap (ℕ-to-ℤ (S (S n))) ⊙cw-∂-before-Susp g)) <I) $
C-Susp-fmap' (ℕ-to-ℤ (S n)) (⊙<– (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊)) □$ᴳ
(GroupIso.g (C-FinBouquet-diag (S n) I₋₁)
g) ⟩
GroupIso.f (C-FinBouquet-diag (S (S n)) I)
(CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊))
(CEl-fmap (ℕ-to-ℤ (S (S n))) ⊙cw-∂-before-Susp
(CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙Susp-fmap (⊙<– (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊)))
(<– (CEl-Susp (ℕ-to-ℤ (S n)) (⊙FinBouquet _ (S n)))
(GroupIso.g (C-FinBouquet-diag (S n) I₋₁)
g))))) <I
=⟨ ap (λ g → GroupIso.f (C-FinBouquet-diag (S (S n)) I) g <I) $
∘-CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊)) ⊙cw-∂-before-Susp
(CEl-fmap (ℕ-to-ℤ (S (S n))) (⊙Susp-fmap (⊙<– (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊)))
(<– (CEl-Susp (ℕ-to-ℤ (S n)) (⊙FinBouquet _ (S n)))
(GroupIso.g (C-FinBouquet-diag (S n) I₋₁)
g)))
∙ ∘-CEl-fmap (ℕ-to-ℤ (S (S n)))
(⊙cw-∂-before-Susp ⊙∘ ⊙–> (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel ⦊))
(⊙Susp-fmap (⊙<– (Bouquet-⊙equiv-Xₙ/Xₙ₋₁ ⦉ fin-skel₋₁ ⦊)))
(<– (CEl-Susp (ℕ-to-ℤ (S n)) (⊙FinBouquet _ (S n)))
(GroupIso.g (C-FinBouquet-diag (S n) I₋₁)
g))
∙ ap (λ f → CEl-fmap (ℕ-to-ℤ (S (S n))) f
(<– (CEl-Susp (ℕ-to-ℤ (S n)) (⊙FinBouquet _ (S n)))
(GroupIso.g (C-FinBouquet-diag (S n) I₋₁)
g)))
(! ⊙function₀'-β) ⟩
GroupIso.f (C-FinBouquet-diag (S (S n)) I)
(CEl-fmap (ℕ-to-ℤ (S (S n))) ⊙function₀'
(<– (CEl-Susp (ℕ-to-ℤ (S n)) (⊙FinBouquet _ (S n)))
(GroupIso.g (C-FinBouquet-diag (S n) I₋₁)
g))) <I
=⟨ rephrase-in-degree' (S n) {I = I} {J = I₋₁} ⊙function₀' g <I ⟩
Group.sum (C2 0)
(λ <I₋₁ → Group.exp (C2 0) (g <I₋₁)
(⊙SphereS-endo-degree (S n)
(⊙Susp-fmap (⊙fwproj <I₋₁) ⊙∘ ⊙function₀' ⊙∘ ⊙fwin <I)))
=⟨ ap (Group.sum (C2 0))
(λ= λ <I₋₁ → ap (Group.exp (C2 0) (g <I₋₁)) $
⊙SphereS-endo-degree-base-indep (S n)
{f = ( ⊙Susp-fmap (⊙fwproj <I₋₁)
⊙∘ ⊙function₀'
⊙∘ ⊙fwin <I)}
{g = (Susp-fmap (function₁' <I <I₋₁) , idp)}
(mega-reduction <I <I₋₁)) ⟩
Group.sum (C2 0)
(λ <I₋₁ → Group.exp (C2 0) (g <I₋₁)
(⊙SphereS-endo-degree (S n)
(Susp-fmap (function₁' <I <I₋₁) , idp)))
=⟨ ap (Group.sum (C2 0))
(λ= λ <I₋₁ → ap (Group.exp (C2 0) (g <I₋₁)) $
⊙SphereS-endo-degree-Susp' n (function₁' <I <I₋₁)) ⟩
Group.sum (C2 0)
(λ <I₋₁ → Group.exp (C2 0) (g <I₋₁)
(Trunc-⊙SphereS-endo-degree n
(Trunc-⊙SphereS-endo-in n
[ function₁' <I <I₋₁ ])))
=⟨ ap (Group.sum (C2 0))
(λ= λ <I₋₁ → ap
(λ f → Group.exp (C2 0) (g <I₋₁)
(Trunc-⊙SphereS-endo-degree n
(Trunc-⊙SphereS-endo-in n
[ f ])))
(function₁'-β <I <I₋₁)) ⟩
Group.sum (C2 0)
(λ <I₋₁ → Group.exp (C2 0) (g <I₋₁)
(Trunc-⊙SphereS-endo-degree n
(Trunc-⊙SphereS-endo-in n
[ function₁ <I <I₋₁ ])))
=∎
| {
"alphanum_fraction": 0.5062882941,
"avg_line_length": 44.9420289855,
"ext": "agda",
"hexsha": "6f2f18c5fe7207ce455281d03d3ca0ead42fc963",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/cochainequiv/HigherCoboundary.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/cochainequiv/HigherCoboundary.agda",
"max_line_length": 132,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/cochainequiv/HigherCoboundary.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2895,
"size": 6202
} |
module UnSized.Parrot where
open import Data.Product
open import Data.String.Base
open import UnSizedIO.IOObject
open import UnSizedIO.Base hiding (main)
open import UnSizedIO.Console hiding (main)
open import NativeIO
open import UnSized.SimpleCell hiding (program; main)
--ParrotC : Set
--ParrotC = ConsoleObject (cellI String)
-- but reusing cellC from SimpleCell, as interface is ident!
-- class Parrot implements Cell {
-- Cell cell;
-- Parrot (Cell c) { cell = c; }
-- public String get() {
-- return "(" + cell.get() + ") is what parrot got";
-- }
-- public void put (String s) {
-- cell.put("parrot puts (" + s + ")");
-- }
-- }
-- parrotP is constructor for the consoleObject for interface (cellI String)
{-# NON_TERMINATING #-}
parrotP : (c : CellC) → CellC
(method (parrotP c) get) =
exec1 (putStrLn "printing works") >>
method c get >>= λ { (s , c') →
return ("(" ++ s ++ ") is what parrot got" , parrotP c') }
(method (parrotP c) (put s)) =
method c (put ("parrot puts (" ++ s ++ ")"))
-- public static void main (String[] args) {
-- Parrot c = new Parrot(new SimpleCell("Start"));
-- System.out.println(c.get());
-- c.put(args[1]);
-- System.out.println(c.get());
-- }
-- }
program : String → IOConsole Unit
program arg =
let c₀ = parrotP (cellP "Start") in
method c₀ get >>= λ{ (s , c₁) →
exec1 (putStrLn s) >>
method c₁ (put arg) >>= λ{ (_ , c₂) →
method c₂ get >>= λ{ (s' , c₃) →
exec1 (putStrLn s') }}}
main : NativeIO Unit
main = translateIOConsole (program "hello")
| {
"alphanum_fraction": 0.6059082338,
"avg_line_length": 24.859375,
"ext": "agda",
"hexsha": "49a7b6ba263721bd63e7c44226baef38b0f11689",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/UnSized/Parrot.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/UnSized/Parrot.agda",
"max_line_length": 76,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/UnSized/Parrot.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 480,
"size": 1591
} |
module ExtendedLam where
data Bool
: Set
where
false
: Bool
true
: Bool
f
: Bool
→ Bool
→ Bool
f
= λ
{ x false
→ true
; y true
→ y
}
| {
"alphanum_fraction": 0.4914285714,
"avg_line_length": 7.2916666667,
"ext": "agda",
"hexsha": "170bf666a7b88e0560788975a745837704d25f92",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msuperdock/agda-unused",
"max_forks_repo_path": "data/expression/ExtendedLam.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msuperdock/agda-unused",
"max_issues_repo_path": "data/expression/ExtendedLam.agda",
"max_line_length": 24,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msuperdock/agda-unused",
"max_stars_repo_path": "data/expression/ExtendedLam.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z",
"num_tokens": 70,
"size": 175
} |
{-
This file contains:
- The quotient of finite sets by decidable equivalence relation is still finite, by using equivalence class.
-}
{-# OPTIONS --safe #-}
module Cubical.Data.FinSet.Quotients where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv renaming (_∙ₑ_ to _⋆_)
open import Cubical.Foundations.Equiv.Properties
open import Cubical.Foundations.Univalence
open import Cubical.HITs.PropositionalTruncation as Prop
open import Cubical.HITs.SetQuotients as SetQuot
open import Cubical.HITs.SetQuotients.EqClass
open import Cubical.Data.Nat
open import Cubical.Data.Bool
open import Cubical.Data.Sigma
open import Cubical.Data.SumFin
open import Cubical.Data.FinSet.Base
open import Cubical.Data.FinSet.Properties
open import Cubical.Data.FinSet.DecidablePredicate
open import Cubical.Data.FinSet.Constructors
open import Cubical.Data.FinSet.Cardinality
open import Cubical.Relation.Nullary
open import Cubical.Relation.Nullary.DecidablePropositions
open import Cubical.Relation.Binary
private
variable
ℓ ℓ' ℓ'' : Level
LiftDecProp : {ℓ ℓ' : Level}{P : Type ℓ} → (p : isDecProp P) → P ≃ Bool→Type* {ℓ'} (p .fst)
LiftDecProp p = p .snd ⋆ BoolProp≃BoolProp*
open Iso
module _
(X : Type ℓ) where
ℙEff : Type ℓ
ℙEff = X → Bool
isSetℙEff : isSet ℙEff
isSetℙEff = isSetΠ (λ _ → isSetBool)
ℙEff→ℙDec : ℙEff → ℙDec {ℓ' = ℓ'} X
ℙEff→ℙDec f .fst x = Bool→Type* (f x) , isPropBool→Type*
ℙEff→ℙDec f .snd x = DecBool→Type*
Iso-ℙEff-ℙDec : Iso ℙEff (ℙDec {ℓ' = ℓ'} X)
Iso-ℙEff-ℙDec .fun = ℙEff→ℙDec
Iso-ℙEff-ℙDec .inv (P , dec) x = Dec→Bool (dec x)
Iso-ℙEff-ℙDec {ℓ' = ℓ'} .leftInv f i x = Bool≡BoolDec* {ℓ = ℓ'} {a = f x} (~ i)
Iso-ℙEff-ℙDec .rightInv (P , dec) i .fst x .fst = ua (Dec≃DecBool* (P x .snd) (dec x)) (~ i)
Iso-ℙEff-ℙDec .rightInv (P , dec) i .fst x .snd =
isProp→PathP {B = λ i → isProp (Iso-ℙEff-ℙDec .rightInv (P , dec) i .fst x .fst)}
(λ i → isPropIsProp)
(Iso-ℙEff-ℙDec .fun (Iso-ℙEff-ℙDec .inv (P , dec)) .fst x .snd) (P x .snd) i
Iso-ℙEff-ℙDec .rightInv (P , dec) i .snd x =
isProp→PathP {B = λ i → Dec (Iso-ℙEff-ℙDec .rightInv (P , dec) i .fst x .fst)}
(λ i → isPropDec (Iso-ℙEff-ℙDec .rightInv (P , dec) i .fst x .snd))
(Iso-ℙEff-ℙDec .fun (Iso-ℙEff-ℙDec .inv (P , dec)) .snd x) (dec x) i
ℙEff≃ℙDec : ℙEff ≃ (ℙDec {ℓ' = ℓ'} X)
ℙEff≃ℙDec = isoToEquiv Iso-ℙEff-ℙDec
module _
(X : Type ℓ)(p : isFinOrd X) where
private
e = p .snd
isFinOrdℙEff : isFinOrd (ℙEff X)
isFinOrdℙEff = _ , preCompEquiv (invEquiv e) ⋆ SumFinℙ≃ _
module _
(X : FinSet ℓ) where
isFinSetℙEff : isFinSet (ℙEff (X .fst))
isFinSetℙEff = 2 ^ (card X) ,
Prop.elim (λ _ → isPropPropTrunc {A = _ ≃ Fin _})
(λ p → ∣ isFinOrdℙEff (X .fst) (_ , p) .snd ∣)
(X .snd .snd)
module _
(X : FinSet ℓ)
(R : X .fst → X .fst → Type ℓ')
(dec : (x x' : X .fst) → isDecProp (R x x')) where
isEqClassEff : ℙEff (X .fst) → Type ℓ
isEqClassEff f = ∥ Σ[ x ∈ X .fst ] ((a : X .fst) → f a ≡ dec a x .fst) ∥
isDecPropIsEqClassEff : {f : ℙEff (X .fst)} → isDecProp (isEqClassEff f)
isDecPropIsEqClassEff = isDecProp∃ X (λ _ → _ , isDecProp∀ X (λ _ → _ , _ , Bool≡≃ _ _))
isEqClassEff→isEqClass' : (f : ℙEff (X .fst))(x : X .fst)
→ ((a : X .fst) → f a ≡ dec a x .fst)
→ (a : X .fst) → Bool→Type* {ℓ = ℓ'} (f a) ≃ ∥ R a x ∥
isEqClassEff→isEqClass' f x h a =
pathToEquiv (cong Bool→Type* (h a))
⋆ invEquiv (LiftDecProp (dec a x))
⋆ invEquiv (propTruncIdempotent≃ (isDecProp→isProp (dec a x)))
isEqClass→isEqClassEff' : (f : ℙEff (X .fst))(x : X .fst)
→ ((a : X .fst) → Bool→Type* {ℓ = ℓ'} (f a) ≃ ∥ R a x ∥)
→ (a : X .fst) → f a ≡ dec a x .fst
isEqClass→isEqClassEff' f x h a =
Bool→TypeInj* _ _
(h a ⋆ propTruncIdempotent≃ (isDecProp→isProp (dec a x)) ⋆ LiftDecProp (dec a x))
isEqClassEff→isEqClass : (f : ℙEff (X .fst)) → isEqClassEff f ≃ isEqClass {ℓ' = ℓ'} _ R (ℙEff→ℙDec _ f .fst)
isEqClassEff→isEqClass f =
propBiimpl→Equiv isPropPropTrunc isPropPropTrunc
(Prop.map (λ (x , p) → x , isEqClassEff→isEqClass' f x p))
(Prop.map (λ (x , p) → x , isEqClass→isEqClassEff' f x p))
_∥Eff_ : Type ℓ
_∥Eff_ = Σ[ f ∈ ℙEff (X .fst) ] isEqClassEff f
∥Eff≃∥Dec : _∥Eff_ ≃ _∥Dec_ (X .fst) R (λ x x' → isDecProp→Dec (dec x x'))
∥Eff≃∥Dec = Σ-cong-equiv (ℙEff≃ℙDec (X .fst)) isEqClassEff→isEqClass
isFinSet∥Eff : isFinSet _∥Eff_
isFinSet∥Eff = isFinSetSub (_ , isFinSetℙEff X) (λ _ → _ , isDecPropIsEqClassEff)
open BinaryRelation
module _
(X : FinSet ℓ)
(R : X .fst → X .fst → Type ℓ')
(h : isEquivRel R)
(dec : (x x' : X .fst) → isDecProp (R x x')) where
isFinSetQuot : isFinSet (X .fst / R)
isFinSetQuot =
EquivPresIsFinSet
( ∥Eff≃∥Dec X _ dec
⋆ ∥Dec≃∥ _ _ (λ x x' → isDecProp→Dec (dec x x'))
⋆ invEquiv (equivQuot {ℓ' = ℓ'} _ _ h))
(isFinSet∥Eff X _ dec)
| {
"alphanum_fraction": 0.6334669339,
"avg_line_length": 33.2666666667,
"ext": "agda",
"hexsha": "d376366b6d9ccf172cfbacdd6b6bf0e24fc14093",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Data/FinSet/Quotients.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Data/FinSet/Quotients.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Data/FinSet/Quotients.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2130,
"size": 4990
} |
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
open import Data.Product using (∃; _,_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym)
+-identity : ∀ (m : ℕ) → m + zero ≡ m
+-identity zero = refl
+-identity (suc m) rewrite +-identity m = refl
+-suc : ∀ (m n : ℕ) → n + suc m ≡ suc (n + m)
+-suc m zero = refl
+-suc m (suc n) rewrite +-suc m n = refl
+-comm : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm zero n rewrite +-identity n = refl
+-comm (suc m) n rewrite +-suc m n | +-comm m n = refl
mutual
data even : ℕ → Set where
zero : even zero
suc : ∀ {n : ℕ} → odd n → even (suc n)
data odd : ℕ → Set where
suc : ∀ {n : ℕ} → even n → odd (suc n)
+-lemma : ∀ (m : ℕ) → suc (suc (m + (m + 0))) ≡ suc m + suc (m + 0)
+-lemma m rewrite +-identity m | +-suc m m = refl
mutual
is-even : ∀ (n : ℕ) → even n → ∃(λ (m : ℕ) → n ≡ 2 * m)
is-even zero zero = zero , refl
is-even (suc n) (suc oddn) with is-odd n oddn
... | m , n≡1+2*m rewrite n≡1+2*m | +-lemma m = suc m , refl
is-odd : ∀ (n : ℕ) → odd n → ∃(λ (m : ℕ) → n ≡ 1 + 2 * m)
is-odd (suc n) (suc evenn) with is-even n evenn
... | m , n≡2*m rewrite n≡2*m = m , refl
+-lemma′ : ∀ (m : ℕ) → suc (suc (m + (m + 0))) ≡ suc m + suc (m + 0)
+-lemma′ m rewrite +-suc (m + 0) m = refl
is-even′ : ∀ (n : ℕ) → even n → ∃(λ (m : ℕ) → n ≡ 2 * m)
is-even′ zero zero = zero , refl
is-even′ (suc n) (suc oddn) with is-odd n oddn
... | m , n≡1+2*m rewrite n≡1+2*m | +-identity m | +-suc m m = suc m , {!!}
| {
"alphanum_fraction": 0.5206666667,
"avg_line_length": 33.3333333333,
"ext": "agda",
"hexsha": "a36e33cd3976ebca247d1e9b37e900187db2559a",
"lang": "Agda",
"max_forks_count": 304,
"max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z",
"max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "manikdv/plfa.github.io",
"max_forks_repo_path": "extra/extra/EvenOdd.agda",
"max_issues_count": 323,
"max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "manikdv/plfa.github.io",
"max_issues_repo_path": "extra/extra/EvenOdd.agda",
"max_line_length": 75,
"max_stars_count": 1003,
"max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "manikdv/plfa.github.io",
"max_stars_repo_path": "extra/extra/EvenOdd.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z",
"num_tokens": 634,
"size": 1500
} |
open import Relation.Binary.Core
module Mergesort.Everything {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import Mergesort.Impl1.Correctness.Order _≤_ tot≤
open import Mergesort.Impl1.Correctness.Permutation _≤_ tot≤
open import Mergesort.Impl2.Correctness.Order _≤_ tot≤
open import Mergesort.Impl2.Correctness.Permutation _≤_ tot≤
| {
"alphanum_fraction": 0.7002583979,
"avg_line_length": 32.25,
"ext": "agda",
"hexsha": "f67258cee666bd4e1fedbf6dec9533442885941b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/Mergesort/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/Mergesort/Everything.agda",
"max_line_length": 60,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/Mergesort/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 132,
"size": 387
} |
import Data.Bool
import Relation.Nullary.Negation
import Relation.Nullary.Decidable
| {
"alphanum_fraction": 0.8390804598,
"avg_line_length": 12.4285714286,
"ext": "agda",
"hexsha": "09af6fb8f97068857d12991e937e79613651d0d7",
"lang": "Agda",
"max_forks_count": 304,
"max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z",
"max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "manikdv/plfa.github.io",
"max_forks_repo_path": "extra/extra/Dummy.agda",
"max_issues_count": 323,
"max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "manikdv/plfa.github.io",
"max_issues_repo_path": "extra/extra/Dummy.agda",
"max_line_length": 33,
"max_stars_count": 1003,
"max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "manikdv/plfa.github.io",
"max_stars_repo_path": "extra/extra/Dummy.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z",
"num_tokens": 19,
"size": 87
} |
------------------------------------------------------------------------
-- Library parsers which do not require the complicated setup used in
-- RecursiveDescent.Inductive.Lib
------------------------------------------------------------------------
-- This module also provides more examples of parsers for which the
-- indices cannot be inferred.
module RecursiveDescent.Inductive.SimpleLib where
open import RecursiveDescent.Inductive
open import RecursiveDescent.Index
open import Data.Nat
open import Data.Vec hiding (_⊛_; _>>=_)
open import Data.Vec1 using (Vec₁; []; _∷_)
open import Data.List using (List; []; _∷_)
open import Relation.Nullary
open import Data.Product.Record hiding (_×_)
open import Data.Product using (_×_) renaming (_,_ to pair)
open import Data.Bool
open import Data.Function
open import Data.Maybe
open import Data.Unit
open import Data.Bool.Properties as Bool
open import Algebra
private
module BCS = CommutativeSemiring Bool.commutativeSemiring-∨-∧
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Applicative functor parsers
-- We could get these for free with better library support.
infixl 50 _⊛_ _⊛!_ _<⊛_ _⊛>_ _<$>_ _<$_ _⊗_ _⊗!_
_⊛_ : forall {tok nt i₁ i₂ r₁ r₂} ->
Parser tok nt i₁ (r₁ -> r₂) ->
Parser tok nt i₂ r₁ ->
Parser tok nt _ r₂
p₁ ⊛ p₂ = p₁ >>= \f -> p₂ >>= \x -> return (f x)
-- A variant: If the second parser does not accept the empty string,
-- then neither does the combination. (This is immediate for the first
-- parser, but for the second one a small lemma is needed, hence this
-- variant.)
_⊛!_ : forall {tok nt i₁ c₂ r₁ r₂} ->
Parser tok nt i₁ (r₁ -> r₂) ->
Parser tok nt (false , c₂) r₁ ->
Parser tok nt (false , _) r₂
_⊛!_ {i₁ = i₁} p₁ p₂ = cast (BCS.*-comm (proj₁ i₁) false) refl
(p₁ ⊛ p₂)
_<$>_ : forall {tok nt i r₁ r₂} ->
(r₁ -> r₂) ->
Parser tok nt i r₁ ->
Parser tok nt _ r₂
f <$> x = return f ⊛ x
_<⊛_ : forall {tok nt i₁ i₂ r₁ r₂} ->
Parser tok nt i₁ r₁ ->
Parser tok nt i₂ r₂ ->
Parser tok nt _ r₁
x <⊛ y = const <$> x ⊛ y
_⊛>_ : forall {tok nt i₁ i₂ r₁ r₂} ->
Parser tok nt i₁ r₁ ->
Parser tok nt i₂ r₂ ->
Parser tok nt _ r₂
x ⊛> y = flip const <$> x ⊛ y
_<$_ : forall {tok nt i r₁ r₂} ->
r₁ ->
Parser tok nt i r₂ ->
Parser tok nt _ r₁
x <$ y = const x <$> y
_⊗_ : forall {tok nt i₁ i₂ r₁ r₂} ->
Parser tok nt i₁ r₁ -> Parser tok nt i₂ r₂ ->
Parser tok nt _ (r₁ × r₂)
p₁ ⊗ p₂ = pair <$> p₁ ⊛ p₂
_⊗!_ : forall {tok nt i₁ c₂ r₁ r₂} ->
Parser tok nt i₁ r₁ -> Parser tok nt (false , c₂) r₂ ->
Parser tok nt (false , _) (r₁ × r₂)
p₁ ⊗! p₂ = pair <$> p₁ ⊛! p₂
------------------------------------------------------------------------
-- Parsing sequences
-- Note that the resulting index here cannot be inferred...
private
exactly'-corners : Corners -> ℕ -> Corners
exactly'-corners c zero = _
exactly'-corners c (suc n) = _
exactly' : forall {tok nt c r} n ->
Parser tok nt (false , c) r ->
Parser tok nt (false , exactly'-corners c n)
(Vec r (suc n))
exactly' zero p = [_] <$> p
exactly' (suc n) p = _∷_ <$> p ⊛ exactly' n p
-- ...so we might as well generalise the function a little.
-- exactly n p parses n occurrences of p.
exactly-index : Index -> ℕ -> Index
exactly-index i zero = _
exactly-index i (suc n) = _
exactly : forall {tok nt i r} n ->
Parser tok nt i r ->
Parser tok nt (exactly-index i n) (Vec r n)
exactly zero p = return []
exactly (suc n) p = _∷_ <$> p ⊛ exactly n p
-- A function with a similar type:
sequence : forall {tok nt i r n} ->
Vec₁ (Parser tok nt i r) n ->
Parser tok nt (exactly-index i n) (Vec r n)
sequence [] = return []
sequence (p ∷ ps) = _∷_ <$> p ⊛ sequence ps
-- p between ps parses p repeatedly, between the elements of ps:
-- ∙ between (x ∷ y ∷ z ∷ []) ≈ x ∙ y ∙ z.
between-corners : Corners -> ℕ -> Corners
between-corners c′ zero = _
between-corners c′ (suc n) = _
_between_ : forall {tok nt i r c′ r′ n} ->
Parser tok nt i r ->
Vec₁ (Parser tok nt (false , c′) r′) (suc n) ->
Parser tok nt (false , between-corners c′ n) (Vec r n)
p between (x ∷ []) = [] <$ x
p between (x ∷ y ∷ xs) = _∷_ <$> (x ⊛> p) ⊛ (p between (y ∷ xs))
------------------------------------------------------------------------
-- N-ary variants of _∣_
-- choice ps parses one of the elements in ps.
choice-corners : Corners -> ℕ -> Corners
choice-corners c zero = _
choice-corners c (suc n) = _
choice : forall {tok nt c r n} ->
Vec₁ (Parser tok nt (false , c) r) n ->
Parser tok nt (false , choice-corners c n) r
choice [] = fail
choice (p ∷ ps) = p ∣ choice ps
-- choiceMap f xs ≈ choice (map f xs), but avoids use of Vec₁ and
-- fromList.
choiceMap-corners : forall {a} -> (a -> Corners) -> List a -> Corners
choiceMap-corners c [] = _
choiceMap-corners c (x ∷ xs) = _
choiceMap : forall {tok nt r a} {c : a -> Corners} ->
((x : a) -> Parser tok nt (false , c x) r) ->
(xs : List a) ->
Parser tok nt (false , choiceMap-corners c xs) r
choiceMap f [] = fail
choiceMap f (x ∷ xs) = f x ∣ choiceMap f xs
------------------------------------------------------------------------
-- sat and friends
sat : forall {tok nt r} ->
(tok -> Maybe r) -> Parser tok nt (0I ·I 1I) r
sat {tok} {nt} {r} p = symbol !>>= \c -> ok (p c)
where
okIndex : Maybe r -> Index
okIndex nothing = _
okIndex (just _) = _
ok : (x : Maybe r) -> Parser tok nt (okIndex x) r
ok nothing = fail
ok (just x) = return x
sat' : forall {tok nt} -> (tok -> Bool) -> Parser tok nt _ ⊤
sat' p = sat (boolToMaybe ∘ p)
any : forall {tok nt} -> Parser tok nt _ tok
any = sat just
| {
"alphanum_fraction": 0.5456823117,
"avg_line_length": 31.1822916667,
"ext": "agda",
"hexsha": "d557577f214eccc3980bfa2a327257a9a9f6f621",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/RecursiveDescent/Inductive/SimpleLib.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/RecursiveDescent/Inductive/SimpleLib.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/RecursiveDescent/Inductive/SimpleLib.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 1833,
"size": 5987
} |
------------------------------------------------------------------------------
-- The Collatz function: A function without a termination proof
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Collatz.Collatz where
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.UnaryNumbers
open import FOTC.Program.Collatz.Data.Nat
------------------------------------------------------------------------------
-- The Collatz function.
postulate
collatz : D → D
collatz-0 : collatz 0' ≡ 1'
collatz-1 : collatz 1' ≡ 1'
collatz-even : ∀ {n} → Even (succ₁ (succ₁ n)) →
collatz (succ₁ (succ₁ n)) ≡
collatz (div (succ₁ (succ₁ n)) 2')
collatz-noteven : ∀ {n} → NotEven (succ₁ (succ₁ n)) →
collatz (succ₁ (succ₁ n)) ≡
collatz (3' * (succ₁ (succ₁ n)) + 1')
{-# ATP axioms collatz-0 collatz-1 collatz-even collatz-noteven #-}
| {
"alphanum_fraction": 0.4543125534,
"avg_line_length": 39.0333333333,
"ext": "agda",
"hexsha": "ffc351e62e9cadd0ac38262e252ff480344f036e",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/Collatz/Collatz.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/Collatz/Collatz.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/Collatz/Collatz.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 285,
"size": 1171
} |
open import Signature
import Program
module Observations (Σ : Sig) (V : Set) (P : Program.Program Σ V) where
open import Terms Σ
open import Program Σ V
open import Rewrite Σ V P
open import Relation.Nullary
open import Relation.Unary
open import Data.Product as Prod renaming (Σ to ⨿)
NonTrivial : T V → Pred (Subst V V) _
NonTrivial t σ = ∃ λ v → (v ∈ fv t) × ¬ isVar (σ v)
{- |
We can make an observation according to the following rule.
t ↓ s fv(s) ≠ ∅ ∃ k, σ. s ~[σ]~ Pₕ(k)
--------------------------------------------
t ----> t[σ]
-}
data _↦_ (t : T V) : T V → Set where
obs-step : {s : T V} → t ↓ s → ¬ Empty (fv s) →
(cl : dom P) {σ : Subst V V} → mgu s (geth P cl) σ →
t ↦ app σ t
GroundTerm : Pred (T V) _
GroundTerm t = Empty (fv t)
--------
-- FLAW: This does not allow us to distinguish between inductive
-- and coinductive definitions on the clause level.
-- The following definitions are _global_ for a derivation!
-------
data IndDerivable (t : T V) : Set where
ground : GroundTerm t → Valid t → IndDerivable t
der-step : (s : T V) → t ↦ s → IndDerivable s → IndDerivable t
record CoindDerivable (t : T V) : Set where
coinductive
field
term-SN : SN t
der-obs : ⨿ (T V) λ s → t ↦ s × CoindDerivable s
open CoindDerivable
record _↥[_]_ (t : T V) (σ : Subst∞ V V) (s : T∞ V) : Set where
coinductive
field
conv-match : app∞ σ (χ t) ~ s
conv-step : ⨿ (T V) λ t₁ → t ↦ t₁ × t₁ ↥[ ? ] s
coind-converges-to : (t : T V) → CoindDerivable t → T∞ V
out (coind-converges-to t p) with der-obs p
... | (._ , obs-step t↓s _ cl {σ} _ , q) = {!!}
coind-converges : (t : T V) → CoindDerivable t →
∃₂ λ s σ → Empty (fv∞ s) × t ↥[ σ ] s
coind-converges = {!!}
| {
"alphanum_fraction": 0.5738636364,
"avg_line_length": 28.8524590164,
"ext": "agda",
"hexsha": "8d5c253d90e494bf35e72fb32f757e9a22f3a749",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "LP2/Observations.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "LP2/Observations.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "LP2/Observations.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 630,
"size": 1760
} |
module Categories.Functor.Coalgebras where
| {
"alphanum_fraction": 0.8837209302,
"avg_line_length": 21.5,
"ext": "agda",
"hexsha": "730e93306eb706ef52ae4bdc83d78ceccf701683",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Functor/Coalgebras.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Functor/Coalgebras.agda",
"max_line_length": 42,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Functor/Coalgebras.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 11,
"size": 43
} |
-- Andreas, 2015-11-19 Issue 1692
-- With-abstract also in types of variables mentioned in with-expressions
-- unless they are also mentioned in the types of the with-expressions.
-- {-# OPTIONS -v tc.with:40 #-}
open import Common.Equality
postulate
A : Set
a : A
test : (dummy : A) (f : ∀ x → a ≡ x) (b : A) → b ≡ a
test dummy f b rewrite f b = f b
-- WAS:
-- The `a` is not with-abstracted in the type of `f`, as `f` occurs
-- in the rewrite expression `f b : a ≡ b`.
-- NOW: with abstracts also in type of f, changing it to (f : ∀ x → b ≡ x)
test-with : (f : ∀ x → a ≡ x) (b : A) → b ≡ a
test-with f b with a | f b
test-with f b | .b | refl = f b
-- WAS:
-- Manually, we can construct what `magic with` DID not do:
-- abstract `a` also in the type of `f`, even though `f` is part of the
-- rewrite expression.
bla : (f : ∀ x → a ≡ x) (b : A) → b ≡ a
bla f b = aux b a (f b) f
where
aux : (b w : A) (p : w ≡ b) (f : ∀ x → w ≡ x) → b ≡ w
aux b .b refl f = f b
| {
"alphanum_fraction": 0.5776649746,
"avg_line_length": 27.3611111111,
"ext": "agda",
"hexsha": "f69457802d5299c0cbe746fcc1eecc6a143cfb51",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1692a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1692a.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1692a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 361,
"size": 985
} |
module STLC4 where
open import Data.Nat
open import Data.Nat.Properties using (≤-antisym; ≤-trans; ≰⇒>; ≤-step)
-- open import Data.List
open import Data.Empty using (⊥-elim)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong₂; subst)
open import Relation.Nullary.Decidable using (map)
open import Relation.Nullary
open import Data.Product
-- de Bruijn indexed lambda calculus
infix 5 ƛ_
infixl 7 _∙_
infix 9 var_
data Term : Set where
var_ : (x : ℕ) → Term
ƛ_ : Term → Term
_∙_ : Term → Term → Term
shift : (n i : ℕ) → Term → Term
shift free i (var x) with x ≥? free
shift free i (var x) | yes p = var (x + i) -- free
shift free i (var x) | no ¬p = var x -- bound
shift free i (ƛ M) = ƛ shift (suc free) i M
shift free i (M ∙ N) = shift free i M ∙ shift free i N
infixl 10 _[_/_]
_[_/_] : Term → Term → ℕ → Term
(var x) [ N / i ] with compare x i
((var x) [ N / .(suc (x + k)) ]) | less .x k = var x
((var x) [ N / .x ]) | equal .x = shift 0 x N
((var .(suc (i + k))) [ N / i ]) | greater .i k = var (i + k)
(ƛ M) [ N / i ] = ƛ (M [ N / suc i ])
(L ∙ M) [ N / i ] = L [ N / i ] ∙ M [ N / i ]
-- substitute the 0th var in M for N
infixl 10 _[_]
_[_] : Term → Term → Term
M [ N ] = M [ N / 0 ]
-- β reduction
infix 3 _β→_
data _β→_ : Term → Term → Set where
β-ƛ-∙ : ∀ {M N} → ((ƛ M) ∙ N) β→ (M [ N ])
β-ƛ : ∀ {M N} → M β→ N → ƛ M β→ ƛ N
β-∙-l : ∀ {L M N} → M β→ N → M ∙ L β→ N ∙ L
β-∙-r : ∀ {L M N} → M β→ N → L ∙ M β→ L ∙ N
module TransRefl where
-- the reflexive and transitive closure of _β→_
infix 2 _β→*_
infixr 2 _→*_
data _β→*_ : Term → Term → Set where
∎ : ∀ {M} → M β→* M
_→*_
: ∀ {L M N}
→ L β→ M
→ M β→* N
--------------
→ L β→* N
infixl 3 _<β>_
_<β>_ : ∀ {M N O} → M β→* N → N β→* O → M β→* O
_<β>_ {M} {.M} {O} ∎ N→O = N→O
_<β>_ {M} {N} {O} (L→M →* M→N) N→O = L→M →* M→N <β> N→O
infixr 2 _→⟨⟩_
_→⟨⟩_
: ∀ {M}
→ ∀ N
→ N β→* M
--------------
→ N β→* M
M →⟨⟩ Q = Q
infixr 2 _→⟨_⟩_
_→⟨_⟩_
: ∀ {M N}
→ ∀ L
→ L β→ M
→ M β→* N
--------------
→ L β→* N
L →⟨ P ⟩ Q = P →* Q
infixr 2 _→*⟨_⟩_
_→*⟨_⟩_
: ∀ {M N}
→ ∀ L
→ L β→* M
→ M β→* N
--------------
→ L β→* N
L →*⟨ P ⟩ Q = P <β> Q
infix 3 _→∎
_→∎ : ∀ M → M β→* M
M →∎ = ∎
hop : ∀ {M N} → M β→ N → M β→* N
hop {M} {N} M→N = M→N →* ∎
open TransRefl
-- the symmetric closure of _β→*_
module Eq where
infix 1 _β≡_
data _β≡_ : Term → Term → Set where
β-sym : ∀ {M N}
→ M β→* N
→ N β→* M
-------
→ M β≡ N
infixr 2 _=*⟨_⟩_
_=*⟨_⟩_
: ∀ {M N}
→ ∀ L
→ L β≡ M
→ M β≡ N
--------------
→ L β≡ N
L =*⟨ β-sym A B ⟩ β-sym C D = β-sym (A <β> C) (D <β> B)
infixr 2 _=*⟨⟩_
_=*⟨⟩_
: ∀ {N}
→ ∀ L
→ L β≡ N
--------------
→ L β≡ N
L =*⟨⟩ β-sym C D = β-sym C D
infix 3 _=∎
_=∎ : ∀ M → M β≡ M
M =∎ = β-sym ∎ ∎
forward : ∀ {M N} → M β≡ N → M β→* N
forward (β-sym A _) = A
backward : ∀ {M N} → M β≡ N → N β→* M
backward (β-sym _ B) = B
module Example where
test-1 : ƛ (ƛ var 1) ∙ var 0 β→* ƛ var 0
test-1 =
ƛ (ƛ var 1) ∙ var 0
→⟨ β-ƛ β-ƛ-∙ ⟩
ƛ var 0
→∎
test-0 : ƛ (ƛ var 0 ∙ var 1) ∙ (ƛ var 0 ∙ var 1) β→* ƛ var 0 ∙ var 0
test-0 =
ƛ (ƛ var 0 ∙ var 1) ∙ (ƛ var 0 ∙ var 1)
→⟨ β-ƛ β-ƛ-∙ ⟩
ƛ (var 0 ∙ var 1) [ ƛ var 0 ∙ var 1 ]
→⟨⟩
ƛ (var 0 ∙ var 1) [ ƛ var 0 ∙ var 1 / 0 ]
→⟨⟩
ƛ (var 0) [ ƛ var 0 ∙ var 1 / 0 ] ∙ (var 1) [ ƛ var 0 ∙ var 1 / 0 ]
→⟨⟩
ƛ shift 0 0 (ƛ var 0 ∙ var 1) ∙ var 0
→⟨⟩
ƛ (ƛ shift 1 0 (var 0 ∙ var 1)) ∙ var 0
→⟨⟩
ƛ (ƛ shift 1 0 (var 0) ∙ shift 1 0 (var 1)) ∙ var 0
→⟨⟩
ƛ ((ƛ var 0 ∙ var 1) ∙ var 0)
→⟨ β-ƛ β-ƛ-∙ ⟩
ƛ (var 0 ∙ var 1) [ var 0 / 0 ]
→⟨⟩
ƛ var 0 ∙ var 0
→∎
Z : Term
Z = ƛ ƛ var 0
SZ : Term
SZ = ƛ ƛ var 1 ∙ var 0
PLUS : Term
PLUS = ƛ ƛ ƛ ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0)
test-2 : PLUS ∙ Z ∙ SZ β→* SZ
test-2 =
PLUS ∙ Z ∙ SZ
→⟨ β-∙-l β-ƛ-∙ ⟩
(ƛ ƛ ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0)) [ ƛ ƛ var 0 / 0 ] ∙ SZ
→⟨⟩
(ƛ ((ƛ ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0)) [ ƛ ƛ var 0 / 1 ])) ∙ SZ
→⟨⟩
(ƛ (ƛ (ƛ var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0)) [ ƛ ƛ var 0 / 2 ])) ∙ SZ
→⟨⟩
(ƛ (ƛ (ƛ ((var 3 ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0)) [ ƛ ƛ var 0 / 3 ])))) ∙ SZ
→⟨⟩
(ƛ (ƛ (ƛ (ƛ (ƛ var 0)) ∙ var 1 ∙ (var 2 ∙ var 1 ∙ var 0)))) ∙ SZ
→⟨ β-∙-l (β-ƛ (β-ƛ (β-ƛ (β-∙-l β-ƛ-∙)))) ⟩
(ƛ (ƛ (ƛ (ƛ var 0) [ var 1 / 0 ] ∙ (var 2 ∙ var 1 ∙ var 0)))) ∙ SZ
→⟨⟩
(ƛ (ƛ (ƛ (ƛ (var 0) [ var 1 / 1 ]) ∙ (var 2 ∙ var 1 ∙ var 0)))) ∙ SZ
→⟨⟩
(ƛ (ƛ (ƛ (ƛ var 0) ∙ (var 2 ∙ var 1 ∙ var 0)))) ∙ SZ
→⟨ β-∙-l (β-ƛ (β-ƛ (β-ƛ β-ƛ-∙))) ⟩
(ƛ (ƛ (ƛ (var 0) [ var 2 ∙ var 1 ∙ var 0 / 0 ]))) ∙ SZ
→⟨⟩
(ƛ (ƛ (ƛ (var 2 ∙ var 1 ∙ var 0)))) ∙ SZ
→⟨ β-ƛ-∙ ⟩
(ƛ (ƛ (var 2 ∙ var 1 ∙ var 0))) [ SZ / 0 ]
→⟨⟩
ƛ (ƛ (var 2 ∙ var 1 ∙ var 0) [ SZ / 2 ])
→⟨⟩
ƛ (ƛ shift 0 2 SZ ∙ var 1 ∙ var 0)
→⟨⟩
ƛ (ƛ (ƛ ƛ var 1 ∙ var 0) ∙ var 1 ∙ var 0)
→⟨ β-ƛ (β-ƛ (β-∙-l β-ƛ-∙)) ⟩
ƛ (ƛ (ƛ var 1 ∙ var 0) [ var 1 / 0 ] ∙ var 0)
→⟨⟩
ƛ (ƛ (ƛ ((var 1 ∙ var 0) [ var 1 / 1 ])) ∙ var 0)
→⟨⟩
ƛ (ƛ (ƛ ((var 1) [ var 1 / 1 ] ∙ (var 0) [ var 1 / 1 ])) ∙ var 0)
→⟨⟩
ƛ (ƛ (ƛ (shift 0 1 (var 1) ∙ var 0)) ∙ var 0)
→⟨⟩
ƛ (ƛ (ƛ (var 2 ∙ var 0)) ∙ var 0)
→⟨ β-ƛ (β-ƛ β-ƛ-∙) ⟩
ƛ (ƛ (var 2 ∙ var 0) [ var 0 / 0 ])
→⟨⟩
ƛ (ƛ (var 2) [ var 0 / 0 ] ∙ var 0)
→⟨⟩
ƛ (ƛ var 1 ∙ var 0)
→∎
-- lemmas
cong-ƛ : {M N : Term} → M β→* N → ƛ M β→* ƛ N
cong-ƛ ∎ = ∎
cong-ƛ (M→N →* N→O) = β-ƛ M→N →* cong-ƛ N→O
cong-∙-l : {L M N : Term} → M β→* N → M ∙ L β→* N ∙ L
cong-∙-l ∎ = ∎
cong-∙-l (M→N →* N→O) = β-∙-l M→N →* cong-∙-l N→O
cong-∙-r : {L M N : Term} → M β→* N → L ∙ M β→* L ∙ N
cong-∙-r ∎ = ∎
cong-∙-r (M→N →* N→O) = β-∙-r M→N →* cong-∙-r N→O
-- shift-subst : ∀ freeM i n M N → (shift (suc (suc free)) i M) [ shift free i N / n ] β→* shift (suc free) i (M [ N / n ])
--
-- N ---- shfit n ---> N'
-- | |
-- M[_] shfit n+2 [_]
-- | |
-- M[N] ---- shfit n+1 ---> N'
--
shift-subst : ∀ free i n M N → (shift (suc (suc free)) i M) [ shift free i N / n ] β→* shift (suc free) i (M [ N / n ])
shift-subst free i n (var x) N with compare x n
shift-subst free i .(suc (x + k)) (var x) N | less .x k with x ≥? suc free
shift-subst free i .(suc (x + k)) (var x) N | less .x k | yes p with suc (suc free) ≤? x
shift-subst free i .(suc (x + k)) (var x) N | less .x k | yes p | yes q = {! !}
shift-subst free i .(suc (x + k)) (var x) N | less .x k | yes p | no ¬q = {! !}
shift-subst free i .(suc (x + k)) (var x) N | less .x k | no ¬p = {! !}
shift-subst free i n (var .n) N | equal .n = {! !}
shift-subst free i n (var .(suc (n + k))) N | greater .n k = {! !}
shift-subst free i n (ƛ M) N =
ƛ (shift (suc (suc (suc free))) i M [ shift free i N / suc n ])
→*⟨ cong-ƛ {! shift-subst (suc free) i (suc n) M N !} ⟩
{! !}
→*⟨ {! !} ⟩
ƛ (shift (suc (suc (suc free))) i M [ shift (suc free) i N / suc n ])
→*⟨ cong-ƛ (shift-subst (suc free) i (suc n) M N) ⟩
ƛ (shift (suc (suc free)) i (M [ N / suc n ]))
→∎
shift-subst free i n (M ∙ L) N =
shift (suc (suc free)) i M [ shift free i N / n ] ∙ shift (suc (suc free)) i L [ shift free i N / n ]
→*⟨ cong-∙-l (shift-subst free i n M N) ⟩
shift (suc free) i (M [ N / n ]) ∙ shift (suc (suc free)) i L [ shift free i N / n ]
→*⟨ cong-∙-r (shift-subst free i n L N) ⟩
shift (suc free) i (M [ N / n ]) ∙ shift (suc free) i (L [ N / n ])
→∎
cong-shift-app0 : (free i : ℕ) → (M N : Term) → shift free i ((ƛ M) ∙ N) β→* shift free i (M [ N ])
cong-shift-app0 free i (var x) N = {! !}
cong-shift-app0 free i (ƛ M) N =
(ƛ (ƛ shift (suc (suc free)) i M)) ∙ shift free i N
→*⟨ hop β-ƛ-∙ ⟩
(ƛ shift (suc (suc free)) i M) [ shift free i N / 0 ]
→⟨⟩
ƛ (shift (suc (suc free)) i M) [ shift free i N / 1 ]
→*⟨ cong-ƛ (shift-subst free i _ M N) ⟩
ƛ shift (suc free) i (M [ N / 1 ])
→∎
cong-shift-app0 free i (M ∙ L) N =
(ƛ shift (suc free) i M ∙ shift (suc free) i L) ∙ shift free i N
→*⟨ cong-∙-l {! cong-shift-app0 free i M L !} ⟩
{! !} ∙ shift free i N
→*⟨ {! !} ⟩
{! !}
→*⟨ {! !} ⟩
{! !}
→*⟨ {! !} ⟩
shift free i (M [ N ]) ∙ shift free i (L [ N ])
→∎
-- cong-shift-app : (free i : ℕ) → (M N : Term) → shift free i ((ƛ M) ∙ N) β→* shift free i (M [ N ])
-- cong-shift-app free i (var x) (var y) = {! !}
-- cong-shift-app free i (var x) (ƛ N) = {! !}
-- cong-shift-app free i (var x) (N ∙ O) = {! !}
-- cong-shift-app free i (ƛ M) (var y) = {! !}
-- cong-shift-app free i (ƛ M) (ƛ N) = {! !}
-- cong-shift-app free i (ƛ M) (N ∙ O) = {! !}
-- cong-shift-app free i (M ∙ L) (var y) = {! !}
-- cong-shift-app free i (M ∙ L) (ƛ N) = {! !}
-- cong-shift-app free i (M ∙ L) (N ∙ O) = {! !}
cong-shift : (free i : ℕ) → (M N : Term) → M β→ N → shift free i M β→* shift free i N
cong-shift free i (ƛ M) (ƛ N) (β-ƛ M→N) = cong-ƛ (cong-shift (suc free) i M N M→N)
cong-shift free i (.(ƛ M) ∙ N) .(M [ N / 0 ]) (β-ƛ-∙ {M}) = cong-shift-app0 free i M N
cong-shift free i (M ∙ L) .(N ∙ L) (β-∙-l {N = N} M→N) = cong-∙-l (cong-shift free i M N M→N)
cong-shift free i (M ∙ L) .(M ∙ N) (β-∙-r {N = N} M→N) = cong-∙-r (cong-shift free i L N M→N)
cong-[] : ∀ {i M N} (L : Term) → M β→ N → L [ M / i ] β→* L [ N / i ]
cong-[] {i} (var x) M→N with compare x i
cong-[] {.(suc (x + k))} (var x) M→N | less .x k = ∎
cong-[] {.x} {M} {N} (var x) M→N | equal .x = cong-shift 0 x M N M→N
cong-[] {.m} (var .(suc (m + k))) M→N | greater m k = ∎
cong-[] (ƛ L) M→N = cong-ƛ (cong-[] L M→N)
cong-[] {i} {M} {N} (L ∙ K) M→N =
L [ M / i ] ∙ K [ M / i ]
→*⟨ cong-∙-l (cong-[] L M→N) ⟩
L [ N / i ] ∙ K [ M / i ]
→*⟨ cong-∙-r (cong-[] K M→N) ⟩
L [ N / i ] ∙ K [ N / i ]
→∎
lemma : ∀ {M N O} → ƛ M β→ N → M [ O ] β→* N ∙ O
lemma {ƛ M} (β-ƛ {N = ƛ N} M→N) = {! !}
lemma {M ∙ L} (β-ƛ {N = var x} M→N) = {! !}
lemma {M ∙ L} (β-ƛ {N = ƛ N} M→N) = {! !}
lemma {M ∙ L} (β-ƛ {N = N ∙ K} M→N) = {! !}
-- single-step
β→confluent : ∀ {M N O} → (M β→ N) → (M β→ O) → ∃ (λ P → (N β→* P) × (O β→* P))
β→confluent (β-ƛ-∙ {M} {N}) β-ƛ-∙ = M [ N ] , ∎ , ∎
β→confluent (β-ƛ-∙ {M} {N}) (β-∙-l {N = O} M→O) = {! !}
-- O ∙ N , lemma M→O , ∎
β→confluent (β-ƛ-∙ {M} {N}) (β-∙-r {N = O} M→O) = M [ O ] , cong-[] M M→O , hop β-ƛ-∙
β→confluent (β-ƛ {M} {N} M→N) (β-ƛ {N = O} M→O) with β→confluent M→N M→O
β→confluent (β-ƛ {M} {N} M→N) (β-ƛ {N = O} M→O) | P , N→P , O→P = ƛ P , cong-ƛ N→P , cong-ƛ O→P
β→confluent (β-∙-l {L} {N = N} M→N) (β-ƛ-∙ {M}) = N ∙ L , ∎ , lemma M→N
β→confluent (β-∙-l {L} {M} {N} M→N) (β-∙-l {N = O} M→O) with β→confluent M→N M→O
β→confluent (β-∙-l {L} {M} {N} M→N) (β-∙-l {N = O} M→O) | P , N→P , O→P = P ∙ L , cong-∙-l N→P , cong-∙-l O→P
β→confluent (β-∙-l {L} {M} {N} M→N) (β-∙-r {N = O} L→O) = N ∙ O , hop (β-∙-r L→O) , hop (β-∙-l M→N)
β→confluent (β-∙-r {M = M} {N} M→N) (β-ƛ-∙ {L}) = L [ N ] , (hop β-ƛ-∙) , cong-[] L M→N
β→confluent (β-∙-r {L} {M} {N} M→N) (β-∙-l {N = O} M→O) = O ∙ N , hop (β-∙-l M→O) , hop (β-∙-r M→N)
β→confluent (β-∙-r {M = M} {N} M→N) (β-∙-r {N = O} M→O) with β→confluent M→N M→O
β→confluent (β-∙-r {L} {M} {N} M→N) (β-∙-r {N = O} M→O) | P , N→P , O→P = (L ∙ P) , cong-∙-r N→P , cong-∙-r O→P
-- β→confluent : (M N O : Term) → (M β→ N) → (M β→ O) → ∃ (λ P → (N β→* P) × (O β→* P))
-- β→confluent .((ƛ _) ∙ _) ._ ._ β-ƛ-∙ β-ƛ-∙ = {! !}
-- β→confluent .((ƛ _) ∙ _) ._ .(_ ∙ _) β-ƛ-∙ (β-∙-l M→O) = {! !}
-- β→confluent .((ƛ _) ∙ _) ._ .((ƛ _) ∙ _) β-ƛ-∙ (β-∙-r M→O) = {! !}
-- β→confluent .(ƛ _) .(ƛ _) .(ƛ _) (β-ƛ M→N) (β-ƛ M→O) = {! !}
-- β→confluent .((ƛ _) ∙ _) .(_ ∙ _) ._ (β-∙-l M→N) β-ƛ-∙ = {! !}
-- β→confluent .(_ ∙ _) .(_ ∙ _) .(_ ∙ _) (β-∙-l M→N) (β-∙-l M→O) = {! !}
-- β→confluent .(_ ∙ _) .(_ ∙ _) .(_ ∙ _) (β-∙-l M→N) (β-∙-r M→O) = {! !}
-- β→confluent .((ƛ _) ∙ _) .((ƛ _) ∙ _) ._ (β-∙-r M→N) β-ƛ-∙ = {! !}
-- β→confluent .(_ ∙ _) .(_ ∙ _) .(_ ∙ _) (β-∙-r M→N) (β-∙-l M→O) = {! !}
-- β→confluent .(_ ∙ M) .(_ ∙ N) .(_ ∙ O) (β-∙-r {M = M} {N} M→N) (β-∙-r {N = O} M→O) with β→confluent M N O M→N M→O
-- β→confluent .(_ ∙ M) .(_ ∙ N) .(_ ∙ O) (β-∙-r {M = M} {N} M→N) (β-∙-r {N = O} M→O) | P , N→P , O→P = {! !} | {
"alphanum_fraction": 0.3949567067,
"avg_line_length": 33.3316455696,
"ext": "agda",
"hexsha": "d155a61bc5577c54e1f0e97a5bc5b60a0c4c9e68",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/bidirectional",
"max_forks_repo_path": "LC/stash/STLC4.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/bidirectional",
"max_issues_repo_path": "LC/stash/STLC4.agda",
"max_line_length": 130,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/bidirectional",
"max_stars_repo_path": "LC/stash/STLC4.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z",
"num_tokens": 6965,
"size": 13166
} |
{-# OPTIONS --without-K --safe #-}
module Definition.Typed.Consequences.Reduction where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.EqRelInstance
open import Definition.Typed.Consequences.Syntactic
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Fundamental.Reducibility
open import Tools.Product
-- Helper function where all reducible types can be reduced to WHNF.
whNorm′ : ∀ {A Γ l} ([A] : Γ ⊩⟨ l ⟩ A)
→ ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B
whNorm′ (Uᵣ′ .⁰ 0<1 ⊢Γ) = U , Uₙ , idRed:*: (Uⱼ ⊢Γ)
whNorm′ (ℕᵣ D) = ℕ , ℕₙ , D
whNorm′ (Emptyᵣ D) = Empty , Emptyₙ , D
whNorm′ (Unitᵣ D) = Unit , Unitₙ , D
whNorm′ (ne′ K D neK K≡K) = K , ne neK , D
whNorm′ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = Π F ▹ G , Πₙ , D
whNorm′ (Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) = Σ F ▹ G , Σₙ , D
whNorm′ (emb 0<1 [A]) = whNorm′ [A]
-- Well-formed types can all be reduced to WHNF.
whNorm : ∀ {A Γ} → Γ ⊢ A → ∃ λ B → Whnf B × Γ ⊢ A :⇒*: B
whNorm A = whNorm′ (reducible A)
-- Helper function where reducible all terms can be reduced to WHNF.
whNormTerm′ : ∀ {a A Γ l} ([A] : Γ ⊩⟨ l ⟩ A) → Γ ⊩⟨ l ⟩ a ∷ A / [A]
→ ∃ λ b → Whnf b × Γ ⊢ a :⇒*: b ∷ A
whNormTerm′ (Uᵣ x) (Uₜ A d typeA A≡A [t]) = A , typeWhnf typeA , d
whNormTerm′ (ℕᵣ x) (ℕₜ n d n≡n prop) =
let natN = natural prop
in n , naturalWhnf natN , convRed:*: d (sym (subset* (red x)))
whNormTerm′ (Emptyᵣ x) (Emptyₜ n d n≡n prop) =
let emptyN = empty prop
in n , ne emptyN , convRed:*: d (sym (subset* (red x)))
whNormTerm′ (Unitᵣ x) (Unitₜ n d prop) =
n , prop , convRed:*: d (sym (subset* (red x)))
whNormTerm′ (ne (ne K D neK K≡K)) (neₜ k d (neNfₜ neK₁ ⊢k k≡k)) =
k , ne neK₁ , convRed:*: d (sym (subset* (red D)))
whNormTerm′ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) =
f , functionWhnf funcF , convRed:*: d (sym (subset* (red D)))
whNormTerm′ (Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Σₜ p d pProd p≡p [fst] [snd]) =
p , productWhnf pProd , convRed:*: d (sym (subset* (red D)))
whNormTerm′ (emb 0<1 [A]) [a] = whNormTerm′ [A] [a]
-- Well-formed terms can all be reduced to WHNF.
whNormTerm : ∀ {a A Γ} → Γ ⊢ a ∷ A → ∃ λ b → Whnf b × Γ ⊢ a :⇒*: b ∷ A
whNormTerm {a} {A} ⊢a =
let [A] , [a] = reducibleTerm ⊢a
in whNormTerm′ [A] [a]
redMany : ∀ {t u A Γ} → Γ ⊢ t ⇒ u ∷ A → Γ ⊢ t ⇒* u ∷ A
redMany d =
let _ , _ , ⊢u = syntacticEqTerm (subsetTerm d)
in d ⇨ id ⊢u
| {
"alphanum_fraction": 0.592183182,
"avg_line_length": 40.2063492063,
"ext": "agda",
"hexsha": "60eb4f17e15e05209dd0ef78b6ee78b0205a61b4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/Reduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/Reduction.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/Reduction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1127,
"size": 2533
} |
------------------------------------------------------------------------
-- Asymmetric choice
------------------------------------------------------------------------
module TotalParserCombinators.AsymmetricChoice where
open import Data.Bool
open import Data.Empty
open import Data.List
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Properties
open import Data.List.Relation.Binary.BagAndSetEquality
using () renaming (_∼[_]_ to _List-∼[_]_)
open import Data.List.Relation.Unary.Any using (here)
open import Data.Product
import Data.Product.Function.Dependent.Propositional as Σ
open import Data.Unit
open import Function.Base
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence as Equiv
using (module Equivalence; _⇔_)
open import Function.Inverse as Inv using (_↔_)
open import Function.Related as Related
open import Function.Related.TypeIsomorphisms
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_)
open import Relation.Nullary
open import TotalParserCombinators.Congruence using (_∼[_]P_; _≅P_)
open import TotalParserCombinators.Derivative using (D)
open import TotalParserCombinators.Parser
import TotalParserCombinators.Pointwise as Pointwise
open import TotalParserCombinators.Semantics using (_∈_·_)
open import TotalParserCombinators.Semantics.Continuation as S
using (_⊕_∈_·_)
------------------------------------------------------------------------
-- An initial bag operator
-- first-nonempty returns the left-most non-empty initial bag, if any.
first-nonempty : {R : Set} → List R → List R → List R
first-nonempty [] ys = ys
first-nonempty xs ys = xs
-- first-nonempty preserves equality.
first-nonempty-cong :
∀ {k R} {xs₁ xs₁′ xs₂ xs₂′ : List R} →
xs₁ List-∼[ ⌊ k ⌋⇔ ] xs₁′ → xs₂ List-∼[ ⌊ k ⌋⇔ ] xs₂′ →
first-nonempty xs₁ xs₂ List-∼[ ⌊ k ⌋⇔ ] first-nonempty xs₁′ xs₂′
first-nonempty-cong {xs₁ = []} {[]} eq₁ eq₂ = eq₂
first-nonempty-cong {xs₁ = _ ∷ _} {_ ∷ _} eq₁ eq₂ = eq₁
first-nonempty-cong {xs₁ = []} {_ ∷ _} eq₁ eq₂
with Equivalence.from (⇒⇔ eq₁) ⟨$⟩ here P.refl
... | ()
first-nonempty-cong {xs₁ = _ ∷ _} {[]} eq₁ eq₂
with Equivalence.to (⇒⇔ eq₁) ⟨$⟩ here P.refl
... | ()
-- first-nonempty is correct.
first-nonempty-left :
∀ {k R} {xs₁ xs₂ : List R} →
(∃ λ y → y ∈ xs₁) → first-nonempty xs₁ xs₂ List-∼[ k ] xs₁
first-nonempty-left {xs₁ = []} (_ , ())
first-nonempty-left {xs₁ = _ ∷ _} _ = _ ∎
where open Related.EquationalReasoning
first-nonempty-right :
∀ {k R} {xs₁ xs₂ : List R} →
(∄ λ y → y ∈ xs₁) → first-nonempty xs₁ xs₂ List-∼[ k ] xs₂
first-nonempty-right {xs₁ = x ∷ _} ∉x∷ = ⊥-elim $ ∉x∷ (x , here P.refl)
first-nonempty-right {xs₁ = []} _ = _ ∎
where open Related.EquationalReasoning
------------------------------------------------------------------------
-- Asymmetric choice
-- _◃_ is defined as a pointwise lifting of first-nonempty. Note that
-- _◃_ preserves parser and language equality, but not the
-- sub-/superparser and sub-/superlanguage relations.
private
module AC {R} = Pointwise R R ⌊_⌋⇔ first-nonempty first-nonempty-cong
-- p₁ ◃ p₂ returns a result if either p₁ or p₂ does. For a given
-- string results are returned either from p₁ or from p₂, not both.
infixl 5 _◃_ _◃-cong_
_◃_ : ∀ {Tok R xs₁ xs₂} →
Parser Tok R xs₁ → Parser Tok R xs₂ →
Parser Tok R (first-nonempty xs₁ xs₂)
_◃_ = AC.lift
-- D distributes over _◃_.
D-◃ : ∀ {Tok R xs₁ xs₂ t}
(p₁ : Parser Tok R xs₁) (p₂ : Parser Tok R xs₂) →
D t (p₁ ◃ p₂) ≅P D t p₁ ◃ D t p₂
D-◃ = AC.D-lift
-- _◃_ preserves equality.
_◃-cong_ : ∀ {k Tok R xs₁ xs₁′ xs₂ xs₂′}
{p₁ : Parser Tok R xs₁} {p₁′ : Parser Tok R xs₁′}
{p₂ : Parser Tok R xs₂} {p₂′ : Parser Tok R xs₂′} →
p₁ ∼[ ⌊ k ⌋⇔ ]P p₁′ → p₂ ∼[ ⌊ k ⌋⇔ ]P p₂′ →
p₁ ◃ p₂ ∼[ ⌊ k ⌋⇔ ]P p₁′ ◃ p₂′
_◃-cong_ = AC.lift-cong
-- If p₁ accepts s, then p₁ ◃ p₂ behaves as p₁ when applied to s.
left : ∀ {Tok R xs₁ xs₂ x s}
(p₁ : Parser Tok R xs₁) (p₂ : Parser Tok R xs₂) →
(∃ λ y → y ∈ p₁ · s) → x ∈ p₁ ◃ p₂ · s ↔ x ∈ p₁ · s
left {x = x} =
AC.lift-property
(λ F _ H → ∃ F → H x ↔ F x)
(λ F↔F′ _ H↔H′ →
Σ.cong Inv.id (λ {x} → ↔⇒ (F↔F′ x))
→-cong-⇔
Related-cong (H↔H′ x) (F↔F′ x))
(λ ∈xs₁ → first-nonempty-left ∈xs₁)
-- If p₁ does not accept s, then p₁ ◃ p₂ behaves as p₂ when applied to
-- s.
right : ∀ {Tok R xs₁ xs₂ x s}
(p₁ : Parser Tok R xs₁) (p₂ : Parser Tok R xs₂) →
(∄ λ y → y ∈ p₁ · s) → x ∈ p₁ ◃ p₂ · s ↔ x ∈ p₂ · s
right {x = x} =
AC.lift-property
(λ F G H → ∄ F → H x ↔ G x)
(λ F↔F′ G↔G′ H↔H′ →
((Σ.cong Inv.id λ {x} → ↔⇒ (F↔F′ x)) →-cong-⇔ Equiv.id)
→-cong-⇔
Related-cong (H↔H′ x) (G↔G′ x))
(λ ∉xs₁ → first-nonempty-right ∉xs₁)
-- In "Parsing with First-Class Derivatives" Brachthäuser, Rendel and
-- Ostermann state that "[...] and biased alternative cannot be
-- expressed as user defined combinators". Here I give a formal proof
-- of a variant of this statement (in the present setting): it is not
-- possible to construct an asymmetric choice operator that, in a
-- certain sense, is more like the prioritised choice of parsing
-- expression grammars (see Ford's "Parsing Expression Grammars: A
-- Recognition-Based Syntactic Foundation") without changing the
-- interface of the parser combinator library.
not-PEG-choice :
¬ ∃₂ λ (_◅-bag_ : {R : Set} → List R → List R → List R)
(_◅_ : ∀ {Tok R xs₁ xs₂} →
Parser Tok R xs₁ → Parser Tok R xs₂ →
Parser Tok R (xs₁ ◅-bag xs₂)) →
∀ {Tok R xs₁ xs₂ s₁}
(p₁ : Parser Tok R xs₁)
(p₂ : Parser Tok R xs₂) →
((∃₂ λ y s₂ → y ⊕ s₂ ∈ p₁ · s₁) →
∀ {x s₂} → x ⊕ s₂ ∈ p₁ ◅ p₂ · s₁ ⇔ x ⊕ s₂ ∈ p₁ · s₁)
×
(¬ (∃₂ λ y s₂ → y ⊕ s₂ ∈ p₁ · s₁) →
∀ {x s₂} → x ⊕ s₂ ∈ p₁ ◅ p₂ · s₁ ⇔ x ⊕ s₂ ∈ p₂ · s₁)
not-PEG-choice (_ , _◅_ , correct) = false∉p₁⊛·[-] false∈p₁⊛·[-]
where
p₁ p₂ : Parser ⊤ Bool _
p₁ = const true <$> token
p₂ = return false
false∈p₂·[] : false ⊕ [] ∈ p₂ · []
false∈p₂·[] = S.return
∄∈p₁·[] : ¬ ∃₂ (λ b s → b ⊕ s ∈ p₁ · [])
∄∈p₁·[] (_ , _ , S.<$> ())
false∈p₁◅p₂·[] : false ⊕ [] ∈ p₁ ◅ p₂ · []
false∈p₁◅p₂·[] =
Equivalence.from (proj₂ (correct _ _) ∄∈p₁·[]) ⟨$⟩ false∈p₂·[]
false∈p₁◅p₂·[-] : false ⊕ [ _ ] ∈ p₁ ◅ p₂ · [ _ ]
false∈p₁◅p₂·[-] = S.extend false∈p₁◅p₂·[]
true∈p₁·[-] : true ⊕ [] ∈ p₁ · [ _ ]
true∈p₁·[-] = S.<$> S.token
false∈p₁·[-] : false ⊕ [ _ ] ∈ p₁ · [ _ ]
false∈p₁·[-] =
Equivalence.to (proj₁ (correct _ _) (-, -, true∈p₁·[-])) ⟨$⟩
false∈p₁◅p₂·[-]
false∈p₁⊛·[-] :
false ⊕ [] ∈ const <$> p₁ ⊛ (return _ ∣ token) · [ _ ]
false∈p₁⊛·[-] = S.[ _ - _ ] S.<$> false∈p₁·[-] ⊛ S.∣-right _ S.token
false∉p₁⊛·[-] :
¬ false ⊕ [] ∈ const <$> p₁ ⊛ (return _ ∣ token) · [ _ ]
false∉p₁⊛·[-] = flip lemma P.refl
where
lemma :
∀ {b} →
b ⊕ [] ∈ const <$> p₁ ⊛ (return _ ∣ token) · [ _ ] → b ≢ false
lemma (S.[ _ - _ ] S.<$> (S.<$> S.token) ⊛ _) ()
| {
"alphanum_fraction": 0.5643928673,
"avg_line_length": 34.8078817734,
"ext": "agda",
"hexsha": "79ec5c233840f115f3fa7fc4ee70090a6266bdc7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators/AsymmetricChoice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators/AsymmetricChoice.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators/AsymmetricChoice.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 2703,
"size": 7066
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module provides alternative ways of providing instances of
-- structures in the Algebra.Module hierarchy.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Rel; Setoid; IsEquivalence)
module Algebra.Module.Structures.Biased where
open import Algebra.Bundles
open import Algebra.Core
open import Algebra.Module.Consequences
open import Algebra.Module.Structures
open import Function.Base using (flip)
open import Level using (Level; _⊔_)
private
variable
m ℓm r ℓr s ℓs : Level
M : Set m
module _ (commutativeSemiring : CommutativeSemiring r ℓr) where
open CommutativeSemiring commutativeSemiring renaming (Carrier to R)
-- A left semimodule over a commutative semiring is already a semimodule.
record IsSemimoduleFromLeft (≈ᴹ : Rel {m} M ℓm) (+ᴹ : Op₂ M) (0ᴹ : M)
(*ₗ : Opₗ R M) : Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where
field
isLeftSemimodule : IsLeftSemimodule semiring ≈ᴹ +ᴹ 0ᴹ *ₗ
open IsLeftSemimodule isLeftSemimodule
isBisemimodule : IsBisemimodule semiring semiring ≈ᴹ +ᴹ 0ᴹ *ₗ (flip *ₗ)
isBisemimodule = record
{ +ᴹ-isCommutativeMonoid = +ᴹ-isCommutativeMonoid
; isPreleftSemimodule = isPreleftSemimodule
; isPrerightSemimodule = record
{ *ᵣ-cong = flip *ₗ-cong
; *ᵣ-zeroʳ = *ₗ-zeroˡ
; *ᵣ-distribˡ = *ₗ-distribʳ
; *ᵣ-identityʳ = *ₗ-identityˡ
; *ᵣ-assoc =
*ₗ-assoc+comm⇒*ᵣ-assoc _≈_ ≈ᴹ-setoid *ₗ-congʳ *ₗ-assoc *-comm
; *ᵣ-zeroˡ = *ₗ-zeroʳ
; *ᵣ-distribʳ = *ₗ-distribˡ
}
; *ₗ-*ᵣ-assoc =
*ₗ-assoc+comm⇒*ₗ-*ᵣ-assoc _≈_ ≈ᴹ-setoid *ₗ-congʳ *ₗ-assoc *-comm
}
isSemimodule : IsSemimodule commutativeSemiring ≈ᴹ +ᴹ 0ᴹ *ₗ (flip *ₗ)
isSemimodule = record { isBisemimodule = isBisemimodule }
-- Similarly, a right semimodule over a commutative semiring
-- is already a semimodule.
record IsSemimoduleFromRight (≈ᴹ : Rel {m} M ℓm) (+ᴹ : Op₂ M) (0ᴹ : M)
(*ᵣ : Opᵣ R M) : Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where
field
isRightSemimodule : IsRightSemimodule semiring ≈ᴹ +ᴹ 0ᴹ *ᵣ
open IsRightSemimodule isRightSemimodule
isBisemimodule : IsBisemimodule semiring semiring ≈ᴹ +ᴹ 0ᴹ (flip *ᵣ) *ᵣ
isBisemimodule = record
{ +ᴹ-isCommutativeMonoid = +ᴹ-isCommutativeMonoid
; isPreleftSemimodule = record
{ *ₗ-cong = flip *ᵣ-cong
; *ₗ-zeroˡ = *ᵣ-zeroʳ
; *ₗ-distribʳ = *ᵣ-distribˡ
; *ₗ-identityˡ = *ᵣ-identityʳ
; *ₗ-assoc =
*ᵣ-assoc+comm⇒*ₗ-assoc _≈_ ≈ᴹ-setoid *ᵣ-congˡ *ᵣ-assoc *-comm
; *ₗ-zeroʳ = *ᵣ-zeroˡ
; *ₗ-distribˡ = *ᵣ-distribʳ
}
; isPrerightSemimodule = isPrerightSemimodule
; *ₗ-*ᵣ-assoc =
*ᵣ-assoc+comm⇒*ₗ-*ᵣ-assoc _≈_ ≈ᴹ-setoid *ᵣ-congˡ *ᵣ-assoc *-comm
}
isSemimodule : IsSemimodule commutativeSemiring ≈ᴹ +ᴹ 0ᴹ (flip *ᵣ) *ᵣ
isSemimodule = record { isBisemimodule = isBisemimodule }
module _ (commutativeRing : CommutativeRing r ℓr) where
open CommutativeRing commutativeRing renaming (Carrier to R)
-- A left module over a commutative ring is already a module.
record IsModuleFromLeft (≈ᴹ : Rel {m} M ℓm)
(+ᴹ : Op₂ M) (0ᴹ : M) (-ᴹ : Op₁ M) (*ₗ : Opₗ R M)
: Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where
field
isLeftModule : IsLeftModule ring ≈ᴹ +ᴹ 0ᴹ -ᴹ *ₗ
open IsLeftModule isLeftModule
isModule : IsModule commutativeRing ≈ᴹ +ᴹ 0ᴹ -ᴹ *ₗ (flip *ₗ)
isModule = record
{ isBimodule = record
{ isBisemimodule = IsSemimoduleFromLeft.isBisemimodule
{commutativeSemiring = commutativeSemiring}
(record { isLeftSemimodule = isLeftSemimodule })
; -ᴹ‿cong = -ᴹ‿cong
; -ᴹ‿inverse = -ᴹ‿inverse
}
}
-- Similarly, a right module over a commutative ring is already a module.
record IsModuleFromRight (≈ᴹ : Rel {m} M ℓm)
(+ᴹ : Op₂ M) (0ᴹ : M) (-ᴹ : Op₁ M) (*ᵣ : Opᵣ R M)
: Set (r ⊔ m ⊔ ℓr ⊔ ℓm) where
field
isRightModule : IsRightModule ring ≈ᴹ +ᴹ 0ᴹ -ᴹ *ᵣ
open IsRightModule isRightModule
isModule : IsModule commutativeRing ≈ᴹ +ᴹ 0ᴹ -ᴹ (flip *ᵣ) *ᵣ
isModule = record
{ isBimodule = record
{ isBisemimodule = IsSemimoduleFromRight.isBisemimodule
{commutativeSemiring = commutativeSemiring}
(record { isRightSemimodule = isRightSemimodule })
; -ᴹ‿cong = -ᴹ‿cong
; -ᴹ‿inverse = -ᴹ‿inverse
}
}
| {
"alphanum_fraction": 0.5976256095,
"avg_line_length": 34.9407407407,
"ext": "agda",
"hexsha": "e1bad86c4582c5b0ed35619703a1a45f8c9b0a3d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Algebra/Module/Structures/Biased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Algebra/Module/Structures/Biased.agda",
"max_line_length": 76,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Algebra/Module/Structures/Biased.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1862,
"size": 4717
} |
{-
Freudenthal suspension theorem
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Homotopy.Freudenthal where
open import Cubical.Foundations.Everything
open import Cubical.Data.HomotopyGroup
open import Cubical.Data.Nat
open import Cubical.Data.Sigma
open import Cubical.HITs.Nullification
open import Cubical.HITs.Susp
open import Cubical.HITs.Truncation as Trunc renaming (rec to trRec)
open import Cubical.Homotopy.Connected
open import Cubical.Homotopy.WedgeConnectivity
open import Cubical.Homotopy.Loopspace
module _ {ℓ} (n : HLevel) {A : Pointed ℓ} (connA : isConnected (suc (suc n)) (typ A)) where
σ : typ A → typ (Ω (∙Susp (typ A)))
σ a = merid a ∙ merid (pt A) ⁻¹
private
2n+2 = suc n + suc n
module WC (p : north ≡ north) =
WedgeConnectivity (suc n) (suc n) A connA A connA
(λ a b →
( (σ b ≡ p → hLevelTrunc 2n+2 (fiber (λ x → merid x ∙ merid a ⁻¹) p))
, isOfHLevelΠ 2n+2 λ _ → isOfHLevelTrunc 2n+2
))
(λ a r → ∣ a , (rCancel' (merid a) ∙ rCancel' (merid (pt A)) ⁻¹) ∙ r ∣)
(λ b r → ∣ b , r ∣)
(funExt λ r →
cong′ (λ w → ∣ pt A , w ∣)
(cong (_∙ r) (rCancel' (rCancel' (merid (pt A))))
∙ lUnit r ⁻¹))
fwd : (p : north ≡ north) (a : typ A)
→ hLevelTrunc 2n+2 (fiber σ p)
→ hLevelTrunc 2n+2 (fiber (λ x → merid x ∙ merid a ⁻¹) p)
fwd p a = Trunc.rec (isOfHLevelTrunc 2n+2) (uncurry (WC.extension p a))
isEquivFwd : (p : north ≡ north) (a : typ A) → isEquiv (fwd p a)
isEquivFwd p a .equiv-proof =
elim.isEquivPrecompose (λ _ → pt A) (suc n)
(λ a →
( (∀ t → isContr (fiber (fwd p a) t))
, isProp→isOfHLevelSuc n (isPropΠ λ _ → isPropIsContr)
))
(isConnectedPoint (suc n) connA (pt A))
.equiv-proof
(λ _ → Trunc.elim
(λ _ → isProp→isOfHLevelSuc (n + suc n) isPropIsContr)
(λ fib →
subst (λ k → isContr (fiber k ∣ fib ∣))
(cong (Trunc.rec (isOfHLevelTrunc 2n+2) ∘ uncurry)
(funExt (WC.right p) ⁻¹))
(subst isEquiv
(funExt (Trunc.mapId) ⁻¹)
(idIsEquiv _)
.equiv-proof ∣ fib ∣)
))
.fst .fst a
interpolate : (a : typ A)
→ PathP (λ i → typ A → north ≡ merid a i) (λ x → merid x ∙ merid a ⁻¹) merid
interpolate a i x j = compPath-filler (merid x) (merid a ⁻¹) (~ i) j
Code : (y : Susp (typ A)) → north ≡ y → Type ℓ
Code north p = hLevelTrunc 2n+2 (fiber σ p)
Code south q = hLevelTrunc 2n+2 (fiber merid q)
Code (merid a i) p =
Glue
(hLevelTrunc 2n+2 (fiber (interpolate a i) p))
(λ
{ (i = i0) → _ , (fwd p a , isEquivFwd p a)
; (i = i1) → _ , idEquiv _
})
encode : (y : Susp (typ A)) (p : north ≡ y) → Code y p
encode y = J Code ∣ pt A , rCancel' (merid (pt A)) ∣
encodeMerid : (a : typ A) → encode south (merid a) ≡ ∣ a , refl ∣
encodeMerid a =
cong (transport (λ i → gluePath i))
(funExt⁻ (WC.left refl a) _ ∙ cong ∣_∣ (cong (a ,_) (lem _ _)))
∙ transport (PathP≡Path gluePath _ _)
(λ i → ∣ a , (λ j k → rCancel-filler' (merid a) i j k) ∣)
where
gluePath : I → Type _
gluePath i = hLevelTrunc 2n+2 (fiber (interpolate a i) (λ j → merid a (i ∧ j)))
lem : ∀ {ℓ} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : z ≡ y) → (p ∙ q ⁻¹) ∙ q ≡ p
lem p q = assoc p (q ⁻¹) q ⁻¹ ∙ cong (p ∙_) (lCancel q) ∙ rUnit p ⁻¹
contractCodeSouth : (p : north ≡ south) (c : Code south p) → encode south p ≡ c
contractCodeSouth p =
Trunc.elim
(λ _ → isOfHLevelPath 2n+2 (isOfHLevelTrunc 2n+2) _ _)
(uncurry λ a →
J (λ p r → encode south p ≡ ∣ a , r ∣) (encodeMerid a))
isConnectedMerid : isConnectedFun 2n+2 (merid {A = typ A})
isConnectedMerid p = encode south p , contractCodeSouth p
isConnectedσ : isConnectedFun 2n+2 σ
isConnectedσ =
transport (λ i → isConnectedFun 2n+2 (interpolate (pt A) (~ i))) isConnectedMerid
FreudenthalEquiv : ∀ {ℓ} (n : HLevel) (A : Pointed ℓ)
→ isConnected (2 + n) (typ A)
→ hLevelTrunc ((suc n) + (suc n)) (typ A)
≃ hLevelTrunc ((suc n) + (suc n)) (typ (Ω (Susp (typ A) , north)))
FreudenthalEquiv n A iscon = connectedTruncEquiv _
(σ n {A = A} iscon)
(isConnectedσ _ iscon)
FreudenthalIso : ∀ {ℓ} (n : HLevel) (A : Pointed ℓ)
→ isConnected (2 + n) (typ A)
→ Iso (hLevelTrunc ((suc n) + (suc n)) (typ A))
(hLevelTrunc ((suc n) + (suc n)) (typ (Ω (Susp (typ A) , north))))
FreudenthalIso n A iscon = connectedTruncIso _ (σ n {A = A} iscon) (isConnectedσ _ iscon)
| {
"alphanum_fraction": 0.5420386132,
"avg_line_length": 37.9291338583,
"ext": "agda",
"hexsha": "106267de5a732725944dce5b45735e41ac08c5c7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "knrafto/cubical",
"max_forks_repo_path": "Cubical/Homotopy/Freudenthal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "knrafto/cubical",
"max_issues_repo_path": "Cubical/Homotopy/Freudenthal.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f6771617374bfe65a7043d00731fed5a673aa729",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "knrafto/cubical",
"max_stars_repo_path": "Cubical/Homotopy/Freudenthal.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1801,
"size": 4817
} |
-- A formalised proof of the soundness and completeness of
-- a simply typed lambda-calculus with explicit substitutions
--
-- Catarina Coquand
--
-- Higher-Order and Symbolic Computation, 15, 57-90, 2002
--
-- http://dx.doi.org/10.1023/A:1019964114625
module Everything where
-- 1. Introduction
import Section1
-- 2. The proof editor
-- NOTE: Not relevant to this formalisation
-- 3. The calculus of proof trees
import Section3
-- 4. The semantic model
import Section4a
import Section4b
-- 5. Normal form
import Section5
-- 6. Application to terms
import Section6
-- 7. Correspondence between proof trees and terms
import Section7
-- 8. Correctness of conversion between terms
import Section8
-- 9. A decision algorithm for terms
import Section9
-- 10. Conclusions
import Section10
| {
"alphanum_fraction": 0.7569269521,
"avg_line_length": 18.9047619048,
"ext": "agda",
"hexsha": "6d0168c56579c53659e9fe2acb918ed773288058",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand",
"max_forks_repo_path": "src/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand",
"max_issues_repo_path": "src/Everything.agda",
"max_line_length": 61,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7c000654c4f97024d2939c412702f64dc821d4ec",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand",
"max_stars_repo_path": "src/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2017-09-07T12:44:40.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-27T01:29:58.000Z",
"num_tokens": 220,
"size": 794
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Finding the maximum/minimum values in a list, specialised for Nat
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- This specialised module is needed as `m < n` for Nat is not
-- implemented as `m ≤ n × m ≢ n`.
module Data.List.Extrema.Nat where
open import Data.Nat.Base using (ℕ; _≤_; _<_)
open import Data.Nat.Properties as ℕₚ using (≤∧≢⇒<; <⇒≤; <⇒≢)
open import Data.Sum.Base as Sum using (_⊎_)
open import Data.List.Base using (List)
import Data.List.Extrema
open import Data.List.Relation.Unary.Any as Any using (Any)
open import Data.List.Relation.Unary.All as All using (All)
open import Data.Product using (_×_; _,_; uncurry′)
open import Level using (Level)
open import Relation.Binary.PropositionalEquality using (_≢_)
private
variable
a : Level
A : Set a
<⇒<× : ∀ {x y} → x < y → x ≤ y × x ≢ y
<⇒<× x<y = <⇒≤ x<y , <⇒≢ x<y
<×⇒< : ∀ {x y} → x ≤ y × x ≢ y → x < y
<×⇒< (x≤y , x≢y) = ≤∧≢⇒< x≤y x≢y
module Extrema = Data.List.Extrema ℕₚ.≤-totalOrder
------------------------------------------------------------------------
-- Re-export the contents of Extrema
open Extrema public
hiding
( f[argmin]<v⁺; v<f[argmin]⁺; argmin[xs]<argmin[ys]⁺
; f[argmax]<v⁺; v<f[argmax]⁺; argmax[xs]<argmax[ys]⁺
; min<v⁺; v<min⁺; min[xs]<min[ys]⁺
; max<v⁺; v<max⁺; max[xs]<max[ys]⁺
)
------------------------------------------------------------------------
-- New versions of the proofs involving _<_
-- Argmin
f[argmin]<v⁺ : ∀ {f : A → ℕ} {v} ⊤ xs →
(f ⊤ < v) ⊎ (Any (λ x → f x < v) xs) →
f (argmin f ⊤ xs) < v
f[argmin]<v⁺ ⊤ xs arg =
<×⇒< (Extrema.f[argmin]<v⁺ ⊤ xs (Sum.map <⇒<× (Any.map <⇒<×) arg))
v<f[argmin]⁺ : ∀ {f : A → ℕ} {v ⊤ xs} →
v < f ⊤ → All (λ x → v < f x) xs →
v < f (argmin f ⊤ xs)
v<f[argmin]⁺ {v} v<f⊤ v<fxs =
<×⇒< (Extrema.v<f[argmin]⁺ (<⇒<× v<f⊤) (All.map <⇒<× v<fxs))
argmin[xs]<argmin[ys]⁺ : ∀ {f g : A → ℕ} ⊤₁ {⊤₂} xs {ys} →
(f ⊤₁ < g ⊤₂) ⊎ Any (λ x → f x < g ⊤₂) xs →
All (λ y → (f ⊤₁ < g y) ⊎ Any (λ x → f x < g y) xs) ys →
f (argmin f ⊤₁ xs) < g (argmin g ⊤₂ ys)
argmin[xs]<argmin[ys]⁺ ⊤₁ xs xs<⊤₂ xs<ys =
v<f[argmin]⁺ (f[argmin]<v⁺ ⊤₁ _ xs<⊤₂) (All.map (f[argmin]<v⁺ ⊤₁ xs) xs<ys)
-- Argmax
v<f[argmax]⁺ : ∀ {f : A → ℕ} {v} ⊥ xs → (v < f ⊥) ⊎ (Any (λ x → v < f x) xs) →
v < f (argmax f ⊥ xs)
v<f[argmax]⁺ ⊥ xs leq = <×⇒< (Extrema.v<f[argmax]⁺ ⊥ xs (Sum.map <⇒<× (Any.map <⇒<×) leq))
f[argmax]<v⁺ : ∀ {f : A → ℕ} {v ⊥ xs} → f ⊥ < v → All (λ x → f x < v) xs →
f (argmax f ⊥ xs) < v
f[argmax]<v⁺ ⊥<v xs<v = <×⇒< (Extrema.f[argmax]<v⁺ (<⇒<× ⊥<v) (All.map <⇒<× xs<v))
argmax[xs]<argmax[ys]⁺ : ∀ {f g : A → ℕ} {⊥₁} ⊥₂ {xs} ys →
(f ⊥₁ < g ⊥₂) ⊎ Any (λ y → f ⊥₁ < g y) ys →
All (λ x → (f x < g ⊥₂) ⊎ Any (λ y → f x < g y) ys) xs →
f (argmax f ⊥₁ xs) < g (argmax g ⊥₂ ys)
argmax[xs]<argmax[ys]⁺ ⊥₂ ys ⊥₁<ys xs<ys =
f[argmax]<v⁺ (v<f[argmax]⁺ ⊥₂ _ ⊥₁<ys) (All.map (v<f[argmax]⁺ ⊥₂ ys) xs<ys)
-- Min
min<v⁺ : ∀ {v} ⊤ xs → ⊤ < v ⊎ Any (_< v) xs → min ⊤ xs < v
min<v⁺ = f[argmin]<v⁺
v<min⁺ : ∀ {v ⊤ xs} → v < ⊤ → All (v <_) xs → v < min ⊤ xs
v<min⁺ = v<f[argmin]⁺
min[xs]<min[ys]⁺ : ∀ ⊤₁ {⊤₂} xs {ys} → (⊤₁ < ⊤₂) ⊎ Any (_< ⊤₂) xs →
All (λ y → (⊤₁ < y) ⊎ Any (λ x → x < y) xs) ys →
min ⊤₁ xs < min ⊤₂ ys
min[xs]<min[ys]⁺ = argmin[xs]<argmin[ys]⁺
-- Max
max<v⁺ : ∀ {v ⊥ xs} → ⊥ < v → All (_< v) xs → max ⊥ xs < v
max<v⁺ = f[argmax]<v⁺
v<max⁺ : ∀ {v} ⊥ xs → v < ⊥ ⊎ Any (v <_) xs → v < max ⊥ xs
v<max⁺ = v<f[argmax]⁺
max[xs]<max[ys]⁺ : ∀ {⊥₁} ⊥₂ {xs} ys → ⊥₁ < ⊥₂ ⊎ Any (⊥₁ <_) ys →
All (λ x → x < ⊥₂ ⊎ Any (x <_) ys) xs →
max ⊥₁ xs < max ⊥₂ ys
max[xs]<max[ys]⁺ = argmax[xs]<argmax[ys]⁺
| {
"alphanum_fraction": 0.4360119048,
"avg_line_length": 35.0608695652,
"ext": "agda",
"hexsha": "6fc0d7f82cd7a90fd685834d2a7ad4e65da07518",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Extrema/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Extrema/Nat.agda",
"max_line_length": 90,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Extrema/Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1787,
"size": 4032
} |
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.HITs.InfNat.Base where
open import Cubical.Core.Everything
open import Cubical.Data.Maybe
open import Cubical.Data.Nat
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
data ℕ+∞ : Type₀ where
zero : ℕ+∞
suc : ℕ+∞ → ℕ+∞
∞ : ℕ+∞
suc-inf : ∞ ≡ suc ∞
| {
"alphanum_fraction": 0.704787234,
"avg_line_length": 22.1176470588,
"ext": "agda",
"hexsha": "742803f049a9ecfaa62d575426cf5c3154278ddb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/InfNat/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/InfNat/Base.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/InfNat/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 127,
"size": 376
} |
module Data.Integer where
import Prelude
import Data.Nat as Nat
import Data.Bool
open Nat using (Nat; suc; zero)
renaming ( _+_ to _+'_
; _*_ to _*'_
; _<_ to _<'_
; _-_ to _-'_
; _==_ to _=='_
; div to div'
; mod to mod'
; gcd to gcd'
; lcm to lcm'
)
open Data.Bool
open Prelude
data Int : Set where
pos : Nat -> Int
neg : Nat -> Int -- neg n = -(n + 1)
infix 40 _==_ _<_ _>_ _≤_ _≥_
infixl 60 _+_ _-_
infixl 70 _*_
infix 90 -_
-_ : Int -> Int
- pos zero = pos zero
- pos (suc n) = neg n
- neg n = pos (suc n)
_+_ : Int -> Int -> Int
pos n + pos m = pos (n +' m)
neg n + neg m = neg (n +' m +' 1)
pos n + neg m =
! m <' n => pos (n -' m -' 1)
! otherwise neg (m -' n)
neg n + pos m = pos m + neg n
_-_ : Int -> Int -> Int
x - y = x + - y
!_! : Int -> Nat
! pos n ! = n
! neg n ! = suc n
_*_ : Int -> Int -> Int
pos 0 * _ = pos 0
_ * pos 0 = pos 0
pos n * pos m = pos (n *' m)
neg n * neg m = pos (suc n *' suc m)
pos n * neg m = neg (n *' suc m -' 1)
neg n * pos m = neg (suc n *' m -' 1)
div : Int -> Int -> Int
div _ (pos 0) = pos 0
div (pos n) (pos m) = pos (div' n m)
div (neg n) (neg m) = pos (div' (suc n) (suc m))
div (pos 0) (neg _) = pos 0
div (pos (suc n)) (neg m) = neg (div' n (suc m))
div (neg n) (pos (suc m)) = div (pos (suc n)) (neg m)
mod : Int -> Int -> Int
mod _ (pos 0) = pos 0
mod (pos n) (pos m) = pos (mod' n m)
mod (neg n) (pos m) = adjust (mod' (suc n) m)
where
adjust : Nat -> Int
adjust 0 = pos 0
adjust n = pos (m -' n)
mod n (neg m) = adjust (mod n (pos (suc m)))
where
adjust : Int -> Int
adjust (pos 0) = pos 0
adjust (neg n) = neg n -- impossible
adjust x = x + neg m
gcd : Int -> Int -> Int
gcd a b = pos (gcd' ! a ! ! b !)
lcm : Int -> Int -> Int
lcm a b = pos (lcm' ! a ! ! b !)
_==_ : Int -> Int -> Bool
pos n == pos m = n ==' m
neg n == neg m = n ==' m
pos _ == neg _ = false
neg _ == pos _ = false
_<_ : Int -> Int -> Bool
pos _ < neg _ = false
neg _ < pos _ = true
pos n < pos m = n <' m
neg n < neg m = m <' n
_≤_ : Int -> Int -> Bool
x ≤ y = x == y || x < y
_≥_ = flip _≤_
_>_ = flip _<_
| {
"alphanum_fraction": 0.4468802698,
"avg_line_length": 22.3773584906,
"ext": "agda",
"hexsha": "eb2c43b839c22d699b035e2512244d762761de52",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Integer.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Integer.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/outdated-and-incorrect/AIM6/Cat/lib/Data/Integer.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 910,
"size": 2372
} |
------------------------------------------------------------------------
-- Groups
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Group
{e⁺} (eq : ∀ {a p} → Equality-with-J a p e⁺) where
open Derived-definitions-and-properties eq
open import Logical-equivalence using (_⇔_)
open import Prelude as P hiding (id; _∘_) renaming (_×_ to _⊗_)
import Bijection eq as B
open import Equivalence eq as Eq using (_≃_)
open import Function-universe eq as F hiding (id; _∘_)
open import Groupoid eq using (Groupoid)
open import H-level eq
open import H-level.Closure eq
open import Integer.Basics eq using (+_; -[1+_])
open import Univalence-axiom eq
private
variable
a g₁ g₂ : Level
A : Type a
g x y : A
k : Kind
------------------------------------------------------------------------
-- Groups
-- Groups.
--
-- Note that the carrier type is required to be a set (following the
-- HoTT book).
record Group g : Type (lsuc g) where
infix 8 _⁻¹
infixr 7 _∘_
field
Carrier : Type g
Carrier-is-set : Is-set Carrier
_∘_ : Carrier → Carrier → Carrier
id : Carrier
_⁻¹ : Carrier → Carrier
left-identity : ∀ x → (id ∘ x) ≡ x
right-identity : ∀ x → (x ∘ id) ≡ x
assoc : ∀ x y z → (x ∘ (y ∘ z)) ≡ ((x ∘ y) ∘ z)
left-inverse : ∀ x → ((x ⁻¹) ∘ x) ≡ id
right-inverse : ∀ x → (x ∘ (x ⁻¹)) ≡ id
-- Groups are groupoids.
groupoid : Groupoid lzero g
groupoid = record
{ Object = ⊤
; _∼_ = λ _ _ → Carrier
; id = id
; _∘_ = _∘_
; _⁻¹ = _⁻¹
; left-identity = left-identity
; right-identity = right-identity
; assoc = assoc
; left-inverse = left-inverse
; right-inverse = right-inverse
}
open Groupoid groupoid public
hiding (Object; _∼_; id; _∘_; _⁻¹; left-identity; right-identity;
assoc; left-inverse; right-inverse)
private
variable
G G₁ G₁′ G₂ G₂′ G₃ : Group g
-- The type of groups can be expressed using a nested Σ-type.
Group-as-Σ :
Group g ≃
∃ λ (A : Set g) →
let A = ⌞ A ⌟ in
∃ λ (_∘_ : A → A → A) →
∃ λ (id : A) →
∃ λ (_⁻¹ : A → A) →
(∀ x → (id ∘ x) ≡ x) ⊗
(∀ x → (x ∘ id) ≡ x) ⊗
(∀ x y z → (x ∘ (y ∘ z)) ≡ ((x ∘ y) ∘ z)) ⊗
(∀ x → ((x ⁻¹) ∘ x) ≡ id) ⊗
(∀ x → (x ∘ (x ⁻¹)) ≡ id)
Group-as-Σ =
Eq.↔→≃
(λ G → let open Group G in
(Carrier , Carrier-is-set)
, _∘_
, id
, _⁻¹
, left-identity
, right-identity
, assoc
, left-inverse
, right-inverse)
_
refl
refl
------------------------------------------------------------------------
-- Group homomorphisms and isomorphisms
-- Group homomorphisms (generalised to several kinds of underlying
-- "functions").
record Homomorphic (k : Kind) (G₁ : Group g₁) (G₂ : Group g₂) :
Type (g₁ ⊔ g₂) where
private
module G₁ = Group G₁
module G₂ = Group G₂
field
related : G₁.Carrier ↝[ k ] G₂.Carrier
to : G₁.Carrier → G₂.Carrier
to = to-implication related
field
homomorphic :
∀ x y → to (x G₁.∘ y) ≡ to x G₂.∘ to y
open Homomorphic public using (related; homomorphic)
open Homomorphic using (to)
-- The type of (generalised) group homomorphisms can be expressed
-- using a nested Σ-type.
Homomorphic-as-Σ :
{G₁ : Group g₁} {G₂ : Group g₂} →
Homomorphic k G₁ G₂ ≃
let module G₁ = Group G₁
module G₂ = Group G₂
in
∃ λ (f : G₁.Carrier ↝[ k ] G₂.Carrier) →
∀ x y →
to-implication f (x G₁.∘ y) ≡
to-implication f x G₂.∘ to-implication f y
Homomorphic-as-Σ =
Eq.↔→≃
(λ G₁↝G₂ → G₁↝G₂ .related , G₁↝G₂ .homomorphic)
_
refl
refl
-- A variant of Homomorphic.
infix 4 _↝[_]ᴳ_ _→ᴳ_ _≃ᴳ_
_↝[_]ᴳ_ : Group g₁ → Kind → Group g₂ → Type (g₁ ⊔ g₂)
_↝[_]ᴳ_ = flip Homomorphic
-- Group homomorphisms.
_→ᴳ_ : Group g₁ → Group g₂ → Type (g₁ ⊔ g₂)
_→ᴳ_ = _↝[ implication ]ᴳ_
-- Group isomorphisms.
_≃ᴳ_ : Group g₁ → Group g₂ → Type (g₁ ⊔ g₂)
_≃ᴳ_ = _↝[ equivalence ]ᴳ_
-- "Functions" of type G₁ ↝[ k ]ᴳ G₂ can be converted to group
-- homomorphisms.
↝ᴳ→→ᴳ : G₁ ↝[ k ]ᴳ G₂ → G₁ →ᴳ G₂
↝ᴳ→→ᴳ f .related = to f
↝ᴳ→→ᴳ f .homomorphic = f .homomorphic
-- _↝[ k ]ᴳ_ is reflexive.
↝ᴳ-refl : G ↝[ k ]ᴳ G
↝ᴳ-refl .related = F.id
↝ᴳ-refl {G = G} {k = k} .homomorphic x y =
to-implication {k = k} F.id (x ∘ y) ≡⟨ cong (_$ _) $ to-implication-id k ⟩
x ∘ y ≡⟨ sym $ cong₂ (λ f g → f _ ∘ g _)
(to-implication-id k)
(to-implication-id k) ⟩∎
to-implication {k = k} F.id x ∘
to-implication {k = k} F.id y ∎
where
open Group G
-- _↝[ k ]ᴳ_ is transitive.
↝ᴳ-trans : G₁ ↝[ k ]ᴳ G₂ → G₂ ↝[ k ]ᴳ G₃ → G₁ ↝[ k ]ᴳ G₃
↝ᴳ-trans {G₁ = G₁} {k = k} {G₂ = G₂} {G₃ = G₃}
G₁↝G₂ G₂↝G₃ = λ where
.related → G₂↝G₃ .related F.∘ G₁↝G₂ .related
.homomorphic x y →
to-implication (G₂↝G₃ .related F.∘ G₁↝G₂ .related) (x G₁.∘ y) ≡⟨ cong (_$ _) $ to-implication-∘ k ⟩
to G₂↝G₃ (to G₁↝G₂ (x G₁.∘ y)) ≡⟨ cong (to G₂↝G₃) $ homomorphic G₁↝G₂ _ _ ⟩
to G₂↝G₃ (to G₁↝G₂ x G₂.∘ to G₁↝G₂ y) ≡⟨ homomorphic G₂↝G₃ _ _ ⟩
to G₂↝G₃ (to G₁↝G₂ x) G₃.∘ to G₂↝G₃ (to G₁↝G₂ y) ≡⟨ sym $ cong₂ (λ f g → f _ G₃.∘ g _)
(to-implication-∘ k)
(to-implication-∘ k) ⟩∎
to-implication (G₂↝G₃ .related F.∘ G₁↝G₂ .related) x G₃.∘
to-implication (G₂↝G₃ .related F.∘ G₁↝G₂ .related) y ∎
where
module G₁ = Group G₁
module G₂ = Group G₂
module G₃ = Group G₃
-- _≃ᴳ_ is symmetric.
≃ᴳ-sym : G₁ ≃ᴳ G₂ → G₂ ≃ᴳ G₁
≃ᴳ-sym {G₁ = G₁} {G₂ = G₂} G₁≃G₂ = λ where
.related → inverse (G₁≃G₂ .related)
.homomorphic x y → _≃_.injective (G₁≃G₂ .related)
(to G₁≃G₂ (_≃_.from (G₁≃G₂ .related) (x G₂.∘ y)) ≡⟨ _≃_.right-inverse-of (G₁≃G₂ .related) _ ⟩
x G₂.∘ y ≡⟨ sym $ cong₂ G₂._∘_
(_≃_.right-inverse-of (G₁≃G₂ .related) _)
(_≃_.right-inverse-of (G₁≃G₂ .related) _) ⟩
to G₁≃G₂ (_≃_.from (G₁≃G₂ .related) x) G₂.∘
to G₁≃G₂ (_≃_.from (G₁≃G₂ .related) y) ≡⟨ sym $ G₁≃G₂ .homomorphic _ _ ⟩∎
to G₁≃G₂
(_≃_.from (G₁≃G₂ .related) x G₁.∘ _≃_.from (G₁≃G₂ .related) y) ∎)
where
module G₁ = Group G₁
module G₂ = Group G₂
-- Group homomorphisms preserve identity elements.
→ᴳ-id :
(G₁↝G₂ : G₁ ↝[ k ]ᴳ G₂) →
to G₁↝G₂ (Group.id G₁) ≡ Group.id G₂
→ᴳ-id {G₁ = G₁} {G₂ = G₂} G₁↝G₂ =
G₂.idempotent⇒≡id
(to G₁↝G₂ G₁.id G₂.∘ to G₁↝G₂ G₁.id ≡⟨ sym $ G₁↝G₂ .homomorphic _ _ ⟩
to G₁↝G₂ (G₁.id G₁.∘ G₁.id) ≡⟨ cong (to G₁↝G₂) $ G₁.left-identity _ ⟩∎
to G₁↝G₂ G₁.id ∎)
where
module G₁ = Group G₁
module G₂ = Group G₂
-- Group homomorphisms are homomorphic with respect to the inverse
-- operators.
→ᴳ-⁻¹ :
∀ (G₁↝G₂ : G₁ ↝[ k ]ᴳ G₂) x →
to G₁↝G₂ (Group._⁻¹ G₁ x) ≡ Group._⁻¹ G₂ (to G₁↝G₂ x)
→ᴳ-⁻¹ {G₁ = G₁} {G₂ = G₂} G₁↝G₂ x = G₂.⁻¹∘≡id→≡
(to G₁↝G₂ x G₂.⁻¹ G₂.⁻¹ G₂.∘ to G₁↝G₂ (x G₁.⁻¹) ≡⟨ cong (G₂._∘ to G₁↝G₂ (x G₁.⁻¹)) $ G₂.involutive _ ⟩
to G₁↝G₂ x G₂.∘ to G₁↝G₂ (x G₁.⁻¹) ≡⟨ sym $ G₁↝G₂ .homomorphic _ _ ⟩
to G₁↝G₂ (x G₁.∘ x G₁.⁻¹) ≡⟨ cong (to G₁↝G₂) (G₁.right-inverse _) ⟩
to G₁↝G₂ G₁.id ≡⟨ →ᴳ-id G₁↝G₂ ⟩∎
G₂.id ∎)
where
module G₁ = Group G₁
module G₂ = Group G₂
-- Group homomorphisms are homomorphic with respect to exponentiation.
→ᴳ-^ :
∀ (G₁↝G₂ : G₁ ↝[ k ]ᴳ G₂) x i →
to G₁↝G₂ (Group._^_ G₁ x i) ≡
Group._^_ G₂ (to G₁↝G₂ x) i
→ᴳ-^ {G₁ = G₁} {G₂ = G₂} G₁↝G₂ x = lemma₂
where
module G₁ = Group G₁
module G₂ = Group G₂
lemma₁ : ∀ n → to G₁↝G₂ (y G₁.^+ n) ≡ to G₁↝G₂ y G₂.^+ n
lemma₁ zero =
to G₁↝G₂ G₁.id ≡⟨ →ᴳ-id G₁↝G₂ ⟩∎
G₂.id ∎
lemma₁ {y = y} (suc n) =
to G₁↝G₂ (y G₁.∘ y G₁.^+ n) ≡⟨ G₁↝G₂ .homomorphic _ _ ⟩
to G₁↝G₂ y G₂.∘ to G₁↝G₂ (y G₁.^+ n) ≡⟨ cong (_ G₂.∘_) $ lemma₁ n ⟩∎
to G₁↝G₂ y G₂.∘ to G₁↝G₂ y G₂.^+ n ∎
lemma₂ : ∀ i → to G₁↝G₂ (x G₁.^ i) ≡ to G₁↝G₂ x G₂.^ i
lemma₂ (+ n) = lemma₁ n
lemma₂ -[1+ n ] =
to G₁↝G₂ ((x G₁.⁻¹) G₁.^+ suc n) ≡⟨ lemma₁ (suc n) ⟩
to G₁↝G₂ (x G₁.⁻¹) G₂.^+ suc n ≡⟨ cong (G₂._^+ suc n) $ →ᴳ-⁻¹ G₁↝G₂ _ ⟩∎
(to G₁↝G₂ x G₂.⁻¹) G₂.^+ suc n ∎
-- Group equality can be expressed in terms of equality of pairs of
-- carrier types and binary operators (assuming extensionality).
≡≃,∘≡,∘ :
{G₁ G₂ : Group g} →
Extensionality g g →
let module G₁ = Group G₁
module G₂ = Group G₂
in
(G₁ ≡ G₂) ≃ ((G₁.Carrier , G₁._∘_) ≡ (G₂.Carrier , G₂._∘_))
≡≃,∘≡,∘ {g = g} {G₁ = G₁} {G₂ = G₂} ext =
G₁ ≡ G₂ ↝⟨ inverse $ Eq.≃-≡ Group≃ ⟩
((G₁.Carrier , G₁._∘_) , _) ≡ ((G₂.Carrier , G₂._∘_) , _) ↔⟨ (inverse $
ignore-propositional-component $
The-rest-propositional _) ⟩□
(G₁.Carrier , G₁._∘_) ≡ (G₂.Carrier , G₂._∘_) □
where
module G₁ = Group G₁
module G₂ = Group G₂
Carrier-∘ = ∃ λ (C : Type g) → (C → C → C)
The-rest : Carrier-∘ → Type g
The-rest (C , _∘_) =
∃ λ ((id , _⁻¹) : C ⊗ (C → C)) →
Is-set C ⊗
(∀ x → (id ∘ x) ≡ x) ⊗
(∀ x → (x ∘ id) ≡ x) ⊗
(∀ x y z → (x ∘ (y ∘ z)) ≡ ((x ∘ y) ∘ z)) ⊗
(∀ x → ((x ⁻¹) ∘ x) ≡ id) ⊗
(∀ x → (x ∘ (x ⁻¹)) ≡ id)
Group≃ : Group g ≃ Σ Carrier-∘ The-rest
Group≃ = Eq.↔→≃
(λ G → let open Group G in
(Carrier , _∘_)
, (id , _⁻¹)
, Carrier-is-set , left-identity , right-identity , assoc
, left-inverse , right-inverse)
_
refl
refl
The-rest-propositional : ∀ C → Is-proposition (The-rest C)
The-rest-propositional C R₁ R₂ =
Σ-≡,≡→≡
(cong₂ _,_ id-unique inverse-unique)
((×-closure 1 (H-level-propositional ext 2) $
×-closure 1 (Π-closure ext 1 λ _ →
G₂′.Carrier-is-set) $
×-closure 1 (Π-closure ext 1 λ _ →
G₂′.Carrier-is-set) $
×-closure 1 (Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
Π-closure ext 1 λ _ →
G₂′.Carrier-is-set) $
×-closure 1 (Π-closure ext 1 λ _ →
G₂′.Carrier-is-set) $
(Π-closure ext 1 λ _ →
G₂′.Carrier-is-set))
_ _)
where
module G₁′ = Group (_≃_.from Group≃ (C , R₁))
module G₂′ = Group (_≃_.from Group≃ (C , R₂))
id-unique : G₁′.id ≡ G₂′.id
id-unique = G₂′.idempotent⇒≡id (G₁′.left-identity G₁′.id)
inverse-unique : G₁′._⁻¹ ≡ G₂′._⁻¹
inverse-unique = apply-ext ext λ x → G₂′.⁻¹-unique-right
(x G₁′.∘ x G₁′.⁻¹ ≡⟨ G₁′.right-inverse _ ⟩
G₁′.id ≡⟨ id-unique ⟩∎
G₂′.id ∎)
-- Group isomorphisms are equivalent to equalities (assuming
-- extensionality and univalence).
≃ᴳ≃≡ :
{G₁ G₂ : Group g} →
Extensionality g g →
Univalence g →
(G₁ ≃ᴳ G₂) ≃ (G₁ ≡ G₂)
≃ᴳ≃≡ {G₁ = G₁} {G₂ = G₂} ext univ =
G₁ ≃ᴳ G₂ ↝⟨ Homomorphic-as-Σ ⟩
(∃ λ (eq : G₁.Carrier ≃ G₂.Carrier) →
∀ x y →
_≃_.to eq (x G₁.∘ y) ≡ _≃_.to eq x G₂.∘ _≃_.to eq y) ↝⟨ (∃-cong λ eq → Π-cong ext eq λ _ → Π-cong ext eq λ _ →
≡⇒≃ $ sym $ cong (_≡ _≃_.to eq _ G₂.∘ _≃_.to eq _) $ cong (_≃_.to eq) $
cong₂ G₁._∘_
(_≃_.left-inverse-of eq _)
(_≃_.left-inverse-of eq _)) ⟩
(∃ λ (eq : G₁.Carrier ≃ G₂.Carrier) →
∀ x y → _≃_.to eq (_≃_.from eq x G₁.∘ _≃_.from eq y) ≡ x G₂.∘ y) ↝⟨ (∃-cong λ _ → ∀-cong ext λ _ →
Eq.extensionality-isomorphism ext) ⟩
(∃ λ (eq : G₁.Carrier ≃ G₂.Carrier) →
∀ x →
(λ y → _≃_.to eq (_≃_.from eq x G₁.∘ _≃_.from eq y)) ≡ (x G₂.∘_)) ↝⟨ (∃-cong λ _ →
Eq.extensionality-isomorphism ext) ⟩
(∃ λ (eq : G₁.Carrier ≃ G₂.Carrier) →
(λ x y → _≃_.to eq (_≃_.from eq x G₁.∘ _≃_.from eq y)) ≡ G₂._∘_) ↝⟨ (∃-cong λ eq → ≡⇒≃ $ cong (_≡ _) $ sym $ lemma eq) ⟩
(∃ λ (eq : G₁.Carrier ≃ G₂.Carrier) →
subst (λ A → A → A → A) (≃⇒≡ univ eq) G₁._∘_ ≡ G₂._∘_) ↝⟨ (Σ-cong (inverse $ ≡≃≃ univ) λ _ → Eq.id) ⟩
(∃ λ (eq : G₁.Carrier ≡ G₂.Carrier) →
subst (λ A → A → A → A) eq G₁._∘_ ≡ G₂._∘_) ↔⟨ B.Σ-≡,≡↔≡ ⟩
((G₁.Carrier , G₁._∘_) ≡ (G₂.Carrier , G₂._∘_)) ↝⟨ inverse $ ≡≃,∘≡,∘ ext ⟩□
G₁ ≡ G₂ □
where
module G₁ = Group G₁
module G₂ = Group G₂
lemma : ∀ _ → _
lemma = λ eq → apply-ext ext λ x → apply-ext ext λ y →
subst (λ A → A → A → A) (≃⇒≡ univ eq) G₁._∘_ x y ≡⟨ cong (_$ y) subst-→ ⟩
subst (λ A → A → A) (≃⇒≡ univ eq)
(subst P.id (sym (≃⇒≡ univ eq)) x G₁.∘_) y ≡⟨ subst-→ ⟩
subst P.id (≃⇒≡ univ eq)
(subst P.id (sym (≃⇒≡ univ eq)) x G₁.∘
subst P.id (sym (≃⇒≡ univ eq)) y) ≡⟨ cong₂ (λ f g → f (g x G₁.∘ g y))
(trans (apply-ext ext λ _ → subst-id-in-terms-of-≡⇒↝ equivalence) $
cong _≃_.to $ _≃_.right-inverse-of (≡≃≃ univ) _)
(trans (apply-ext ext λ _ → subst-id-in-terms-of-inverse∘≡⇒↝ equivalence) $
cong _≃_.from $ _≃_.right-inverse-of (≡≃≃ univ) _) ⟩∎
_≃_.to eq (_≃_.from eq x G₁.∘ _≃_.from eq y) ∎
------------------------------------------------------------------------
-- Abelian groups
-- The property of being abelian.
Abelian : Group g → Type g
Abelian G =
∀ x y → x ∘ y ≡ y ∘ x
where
open Group G
-- If two groups are isomorphic, and one is abelian, then the other
-- one is abelian.
≃ᴳ→Abelian→Abelian : G₁ ≃ᴳ G₂ → Abelian G₁ → Abelian G₂
≃ᴳ→Abelian→Abelian {G₁ = G₁} {G₂ = G₂} G₁≃G₂ ∘-comm x y =
_≃_.injective (G₂≃G₁ .related)
(to G₂≃G₁ (x G₂.∘ y) ≡⟨ G₂≃G₁ .homomorphic _ _ ⟩
to G₂≃G₁ x G₁.∘ to G₂≃G₁ y ≡⟨ ∘-comm _ _ ⟩
to G₂≃G₁ y G₁.∘ to G₂≃G₁ x ≡⟨ sym $ G₂≃G₁ .homomorphic _ _ ⟩∎
to G₂≃G₁ (y G₂.∘ x) ∎)
where
module G₁ = Group G₁
module G₂ = Group G₂
G₂≃G₁ = ≃ᴳ-sym G₁≃G₂
------------------------------------------------------------------------
-- A group construction
-- The direct product of two groups.
infixr 2 _×_
_×_ : Group g₁ → Group g₂ → Group (g₁ ⊔ g₂)
G₁ × G₂ = λ where
.Carrier → G₁.Carrier ⊗ G₂.Carrier
.Carrier-is-set → ×-closure 2 G₁.Carrier-is-set G₂.Carrier-is-set
._∘_ → Σ-zip G₁._∘_ G₂._∘_
.id → G₁.id , G₂.id
._⁻¹ → Σ-map G₁._⁻¹ G₂._⁻¹
.left-identity _ → cong₂ _,_
(G₁.left-identity _) (G₂.left-identity _)
.right-identity _ → cong₂ _,_
(G₁.right-identity _) (G₂.right-identity _)
.assoc _ _ _ → cong₂ _,_ (G₁.assoc _ _ _) (G₂.assoc _ _ _)
.left-inverse _ → cong₂ _,_
(G₁.left-inverse _) (G₂.left-inverse _)
.right-inverse _ → cong₂ _,_
(G₁.right-inverse _) (G₂.right-inverse _)
where
open Group
module G₁ = Group G₁
module G₂ = Group G₂
-- The direct product operator preserves group homomorphisms.
↝-× :
G₁ ↝[ k ]ᴳ G₂ → G₁′ ↝[ k ]ᴳ G₂′ →
(G₁ × G₁′) ↝[ k ]ᴳ (G₂ × G₂′)
↝-× {G₁ = G₁} {k = k} {G₂ = G₂} {G₁′ = G₁′} {G₂′ = G₂′}
G₁↝G₂ G₁′↝G₂′ = λ where
.related →
G₁↝G₂ .related ×-cong G₁′↝G₂′ .related
.homomorphic x@(x₁ , x₂) y@(y₁ , y₂) →
to-implication (G₁↝G₂ .related ×-cong G₁′↝G₂′ .related)
(Σ-zip (Group._∘_ G₁) (Group._∘_ G₁′) x y) ≡⟨ cong (_$ _) $ to-implication-×-cong k ⟩
Σ-map (to G₁↝G₂) (to G₁′↝G₂′)
(Σ-zip (Group._∘_ G₁) (Group._∘_ G₁′) x y) ≡⟨⟩
to G₁↝G₂ (Group._∘_ G₁ x₁ y₁) ,
to G₁′↝G₂′ (Group._∘_ G₁′ x₂ y₂) ≡⟨ cong₂ _,_
(G₁↝G₂ .homomorphic _ _)
(G₁′↝G₂′ .homomorphic _ _) ⟩
Group._∘_ G₂ (to G₁↝G₂ x₁) (to G₁↝G₂ y₁) ,
Group._∘_ G₂′ (to G₁′↝G₂′ x₂) (to G₁′↝G₂′ y₂) ≡⟨⟩
Group._∘_ (G₂ × G₂′)
(to G₁↝G₂ x₁ , to G₁′↝G₂′ x₂)
(to G₁↝G₂ y₁ , to G₁′↝G₂′ y₂) ≡⟨ sym $ cong₂ (λ f g → Group._∘_ (G₂ × G₂′) (f _) (g _))
(to-implication-×-cong k)
(to-implication-×-cong k) ⟩∎
Group._∘_ (G₂ × G₂′)
(to-implication (G₁↝G₂ .related ×-cong G₁′↝G₂′ .related) x)
(to-implication (G₁↝G₂ .related ×-cong G₁′↝G₂′ .related) y) ∎
-- Exponentiation for the direct product of G₁ and G₂ can be expressed
-- in terms of exponentiation for G₁ and exponentiation for G₂.
^-× :
∀ (G₁ : Group g₁) (G₂ : Group g₂) {x y} i →
Group._^_ (G₁ × G₂) (x , y) i ≡
(Group._^_ G₁ x i , Group._^_ G₂ y i)
^-× G₁ G₂ = helper
where
module G₁ = Group G₁
module G₂ = Group G₂
module G₁₂ = Group (G₁ × G₂)
+-helper : ∀ n → (x , y) G₁₂.^+ n ≡ (x G₁.^+ n , y G₂.^+ n)
+-helper zero = refl _
+-helper {x = x} {y = y} (suc n) =
(x , y) G₁₂.∘ (x , y) G₁₂.^+ n ≡⟨ cong (_ G₁₂.∘_) $ +-helper n ⟩
(x , y) G₁₂.∘ (x G₁.^+ n , y G₂.^+ n) ≡⟨⟩
(x G₁.∘ x G₁.^+ n , y G₂.∘ y G₂.^+ n) ∎
helper : ∀ i → (x , y) G₁₂.^ i ≡ (x G₁.^ i , y G₂.^ i)
helper (+ n) = +-helper n
helper -[1+ n ] = +-helper (suc n)
------------------------------------------------------------------------
-- The centre of a group
-- Centre ext G is the centre of the group G, sometimes denoted Z(G).
Centre :
Extensionality g g →
Group g → Group g
Centre ext G = λ where
.Carrier → ∃ λ (x : Carrier) → ∀ y → x ∘ y ≡ y ∘ x
.Carrier-is-set → Σ-closure 2 Carrier-is-set λ _ →
Π-closure ext 2 λ _ →
mono₁ 2 Carrier-is-set
._∘_ → Σ-zip _∘_ λ {x y} hyp₁ hyp₂ z →
(x ∘ y) ∘ z ≡⟨ sym $ assoc _ _ _ ⟩
x ∘ (y ∘ z) ≡⟨ cong (x ∘_) $ hyp₂ z ⟩
x ∘ (z ∘ y) ≡⟨ assoc _ _ _ ⟩
(x ∘ z) ∘ y ≡⟨ cong (_∘ y) $ hyp₁ z ⟩
(z ∘ x) ∘ y ≡⟨ sym $ assoc _ _ _ ⟩∎
z ∘ (x ∘ y) ∎
.id → id
, λ x →
id ∘ x ≡⟨ left-identity _ ⟩
x ≡⟨ sym $ right-identity _ ⟩∎
x ∘ id ∎
._⁻¹ → Σ-map _⁻¹ λ {x} hyp y →
x ⁻¹ ∘ y ≡⟨ cong (x ⁻¹ ∘_) $ sym $ involutive _ ⟩
x ⁻¹ ∘ y ⁻¹ ⁻¹ ≡⟨ sym ∘⁻¹ ⟩
(y ⁻¹ ∘ x) ⁻¹ ≡⟨ cong _⁻¹ $ sym $ hyp (y ⁻¹) ⟩
(x ∘ y ⁻¹) ⁻¹ ≡⟨ ∘⁻¹ ⟩
y ⁻¹ ⁻¹ ∘ x ⁻¹ ≡⟨ cong (_∘ x ⁻¹) $ involutive _ ⟩∎
y ∘ x ⁻¹ ∎
.left-identity → λ _ →
Σ-≡,≡→≡ (left-identity _)
((Π-closure ext 1 λ _ → Carrier-is-set) _ _)
.right-identity → λ _ →
Σ-≡,≡→≡ (right-identity _)
((Π-closure ext 1 λ _ → Carrier-is-set) _ _)
.assoc → λ _ _ _ →
Σ-≡,≡→≡ (assoc _ _ _)
((Π-closure ext 1 λ _ → Carrier-is-set) _ _)
.left-inverse → λ _ →
Σ-≡,≡→≡ (left-inverse _)
((Π-closure ext 1 λ _ → Carrier-is-set) _ _)
.right-inverse → λ _ →
Σ-≡,≡→≡ (right-inverse _)
((Π-closure ext 1 λ _ → Carrier-is-set) _ _)
where
open Group G
-- The centre of an abelian group is isomorphic to the group.
Abelian→Centre≃ :
(ext : Extensionality g g) (G : Group g) →
Abelian G → Centre ext G ≃ᴳ G
Abelian→Centre≃ ext G abelian = ≃ᴳ-sym λ where
.Homomorphic.related → inverse equiv
.Homomorphic.homomorphic _ _ →
cong (_ ,_) ((Π-closure ext 1 λ _ → Carrier-is-set) _ _)
where
open Group G
equiv =
(∃ λ (x : Carrier) → ∀ y → x ∘ y ≡ y ∘ x) ↔⟨ (drop-⊤-right λ _ →
_⇔_.to contractible⇔↔⊤ $
Π-closure ext 0 λ _ →
propositional⇒inhabited⇒contractible
Carrier-is-set
(abelian _ _)) ⟩□
Carrier □
| {
"alphanum_fraction": 0.4346118721,
"avg_line_length": 35.960591133,
"ext": "agda",
"hexsha": "68a5b529d6bf7f0e484fab197dd411a859882011",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Group.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Group.agda",
"max_line_length": 147,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Group.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 8775,
"size": 21900
} |
module examplesPaperJFP.CatNonTerm where
open import examplesPaperJFP.BasicIO hiding (main)
open import examplesPaperJFP.Console hiding (main)
open import examplesPaperJFP.NativeIOSafe
module _ where
{-# NON_TERMINATING #-}
cat : IO ConsoleInterface Unit
cat = exec getLine λ{ nothing → return unit ;
(just line) →
exec (putStrLn line) λ _ →
cat }
| {
"alphanum_fraction": 0.5447316103,
"avg_line_length": 38.6923076923,
"ext": "agda",
"hexsha": "f12a58bf861e6683fda924b93e1a86f4929c0841",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/CatNonTerm.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/CatNonTerm.agda",
"max_line_length": 76,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/CatNonTerm.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 105,
"size": 503
} |
open import Data.Nat
open import Data.Bool
open import Data.Product
open import Function
open import Data.List hiding (lookup)
open import Data.List.All
open import Data.List.Membership.Propositional
open import Data.Maybe.Categorical
open import Category.Monad
open import Agda.Primitive
open import Size
open import Codata.Thunk
open import Codata.Delay
open import Codata.Delay.Categorical
module Typed.STLC.Delay where
data Ty : Set where
numt boolt : Ty
_⟶_ : Ty → Ty → Ty
data Expr : List Ty → Ty → Set where
add : ∀ {Γ} →
Expr Γ numt → Expr Γ numt →
Expr Γ numt
num : ∀ {Γ} →
ℕ →
Expr Γ numt
true′ false′ : ∀ {Γ} →
Expr Γ boolt
if′_then_else : ∀ {Γ} →
∀ {t} → Expr Γ boolt → Expr Γ t → Expr Γ t →
Expr Γ t
ƛ_ : ∀ {Γ t₁ t₂} →
Expr (t₁ ∷ Γ) t₂ →
Expr Γ (t₁ ⟶ t₂)
_∙_ : ∀ {Γ t₁ t₂} →
Expr Γ (t₁ ⟶ t₂) → Expr Γ t₁ →
Expr Γ t₂
var : ∀ {Γ t} →
t ∈ Γ →
Expr Γ t
mutual
data Val : Ty → Set where
numv : ℕ → Val numt
boolv : Bool → Val boolt
⟨ƛ_,_⟩ : ∀ {Γ t₁ t₂} → Expr (t₁ ∷ Γ) t₂ → Env Γ → Val (t₁ ⟶ t₂)
Env : List Ty → Set
Env Γ = All Val Γ
ReaderT : ∀ {a} {M : Set a → Set a} (R : Set a) → RawMonad M → RawMonad (λ A → R → M A)
ReaderT _ M = record { return = λ a _ → return a ;
_>>=_ = λ f k r → f r >>= λ x → k x r }
where open RawMonad M
module _ {Γ : List Ty} {i} where
open RawMonad {lzero} (ReaderT (Env Γ) (Sequential.monad {i})) public
M : List Ty → Size → Set → Set
M Γ i A = Env Γ → Delay A i
getEnv : ∀ {Γ i} → M Γ i (Env Γ)
getEnv E = now E
withEnv : ∀ {Γ Γ' i A} → Env Γ → M Γ i A → M Γ' i A
withEnv E m _ = m E
get : ∀ {Γ t i} → t ∈ Γ → M Γ i (Val t)
get x E = now (lookup E x)
mutual
eval : ∀ {Γ t} → Expr Γ t → ∀ {i} → M Γ i (Val t)
eval (add e₁ e₂) = do
numv n₁ ← eval e₁
numv n₂ ← eval e₁
return (numv (n₁ + n₂))
eval (num n) = do
return (numv n)
eval true′ = do
return (boolv true)
eval false′ = do
return (boolv false)
eval (if′ c then t else e) = do
(boolv b) ← eval c
if b then eval t else eval e
eval (ƛ e) = do
E ← getEnv
return ⟨ƛ e , E ⟩
eval (f ∙ a) = do
⟨ƛ e , E ⟩ ← eval f
v ← eval a
withEnv (v ∷ E) (▹eval e)
eval (var x) = do
get x
▹eval : ∀ {Γ i t} → Expr Γ t → M Γ i (Val t)
▹eval e E = later λ where .force → eval e E
| {
"alphanum_fraction": 0.555179704,
"avg_line_length": 23.1862745098,
"ext": "agda",
"hexsha": "317a8de5a527d5dc51a7e69e0bbbeef029ecfdb0",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z",
"max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "laMudri/linear.agda",
"max_forks_repo_path": "src/Typed/STLC/Delay.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "laMudri/linear.agda",
"max_issues_repo_path": "src/Typed/STLC/Delay.agda",
"max_line_length": 87,
"max_stars_count": 34,
"max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "laMudri/linear.agda",
"max_stars_repo_path": "src/Typed/STLC/Delay.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z",
"num_tokens": 942,
"size": 2365
} |
{-# OPTIONS --cubical --safe --postfix-projections #-}
open import Prelude hiding (_×_)
module Categories.HSets {ℓ : Level} where
open import Categories
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Data.Sigma.Properties
open import Categories.Product
open import Categories.Exponential
hSetPreCategory : PreCategory (ℓsuc ℓ) ℓ
hSetPreCategory .PreCategory.Ob = hSet _
hSetPreCategory .PreCategory.Hom (X , _) (Y , _) = X → Y
hSetPreCategory .PreCategory.Id = id
hSetPreCategory .PreCategory.Comp f g = f ∘ g
hSetPreCategory .PreCategory.assoc-Comp _ _ _ = refl
hSetPreCategory .PreCategory.Comp-Id _ = refl
hSetPreCategory .PreCategory.Id-Comp _ = refl
hSetPreCategory .PreCategory.Hom-Set {X} {Y} = hLevelPi 2 λ _ → Y .snd
open PreCategory hSetPreCategory
_⟨×⟩_ : isSet A → isSet B → isSet (A Prelude.× B)
xs ⟨×⟩ ys = isOfHLevelΣ 2 xs (const ys)
module _ {X Y : Ob} where
iso-iso : (X ≅ Y) ⇔ (fst X ⇔ fst Y)
iso-iso .fun (f , g , f∘g , g∘f) = iso f g (λ x i → g∘f i x) (λ x i → f∘g i x)
iso-iso .inv (iso f g g∘f f∘g) = f , g , (λ i x → f∘g x i) , (λ i x → g∘f x i)
iso-iso .rightInv _ = refl
iso-iso .leftInv _ = refl
univ⇔ : (X ≡ Y) ⇔ (X ≅ Y)
univ⇔ = equivToIso (≃ΣProp≡ (λ _ → isPropIsSet)) ⟨ trans-⇔ ⟩
equivToIso univalence ⟨ trans-⇔ ⟩
sym-⇔ (iso⇔equiv (snd X)) ⟨ trans-⇔ ⟩
sym-⇔ iso-iso
hSetCategory : Category (ℓsuc ℓ) ℓ
hSetCategory .Category.preCategory = hSetPreCategory
hSetCategory .Category.univalent = isoToEquiv univ⇔
hSetProd : HasProducts hSetCategory
hSetProd .HasProducts.product X Y .Product.obj = (X .fst Prelude.× Y .fst) , X .snd ⟨×⟩ Y .snd
hSetProd .HasProducts.product X Y .Product.proj₁ = fst
hSetProd .HasProducts.product X Y .Product.proj₂ = snd
hSetProd .HasProducts.product X Y .Product.ump f g .fst z = f z , g z
hSetProd .HasProducts.product X Y .Product.ump f g .snd .fst .fst = refl
hSetProd .HasProducts.product X Y .Product.ump f g .snd .fst .snd = refl
hSetProd .HasProducts.product X Y .Product.ump f g .snd .snd (f≡ , g≡) i x = f≡ (~ i) x , g≡ (~ i) x
hSetExp : HasExponentials hSetCategory hSetProd
hSetExp X Y .Exponential.obj = (X .fst → Y .fst) , hLevelPi 2 λ _ → Y .snd
hSetExp X Y .Exponential.eval (f , x) = f x
hSetExp X Y .Exponential.uniq X₁ f .fst = curry f
hSetExp X Y .Exponential.uniq X₁ f .snd .fst = refl
hSetExp X Y .Exponential.uniq X₁ f .snd .snd {y} x = cong curry (sym x)
open import Categories.Pullback
hSetHasPullbacks : HasPullbacks hSetCategory
hSetHasPullbacks {X = X} {Y = Y} {Z = Z} f g .Pullback.P = ∃[ ab ] (f (fst ab) ≡ g (snd ab)) , isOfHLevelΣ 2 (X .snd ⟨×⟩ Y .snd) λ xy → isProp→isSet (Z .snd (f (xy .fst)) (g (xy .snd)))
hSetHasPullbacks f g .Pullback.p₁ ((x , _) , _) = x
hSetHasPullbacks f g .Pullback.p₂ ((_ , y) , _) = y
hSetHasPullbacks f g .Pullback.commute = funExt snd
hSetHasPullbacks f g .Pullback.ump {A = A} h₁ h₂ p .fst x = (h₁ x , h₂ x) , λ i → p i x
hSetHasPullbacks f g .Pullback.ump {A = A} h₁ h₂ p .snd .fst .fst = refl
hSetHasPullbacks f g .Pullback.ump {A = A} h₁ h₂ p .snd .fst .snd = refl
hSetHasPullbacks {Z = Z} f g .Pullback.ump {A = A} h₁ h₂ p .snd .snd {i} (p₁e , p₂e) = funExt (λ x → ΣProp≡ (λ _ → Z .snd _ _) λ j → p₁e (~ j) x , p₂e (~ j) x)
hSetTerminal : Terminal
hSetTerminal .fst = Lift _ ⊤ , isProp→isSet λ _ _ → refl
hSetTerminal .snd .fst x .lower = tt
hSetTerminal .snd .snd y = funExt λ _ → refl
hSetInitial : Initial
hSetInitial .fst = Lift _ ⊥ , λ ()
hSetInitial .snd .fst ()
hSetInitial .snd .snd y i ()
open import HITs.PropositionalTruncation
open import Categories.Coequalizer
∃!′ : (A : Type a) → (A → Type b) → Type (a ℓ⊔ b)
∃!′ A P = ∥ Σ A P ∥ Prelude.× AtMostOne P
lemma23 : ∀ {p} {P : A → hProp p} → ∃!′ A (fst ∘ P) → Σ A (fst ∘ P)
lemma23 {P = P} (x , y) = rec (λ xs ys → ΣProp≡ (snd ∘ P) (y (xs .fst) (ys .fst) (xs .snd) (ys .snd))) id x
module _ {A : Type a} {P : A → Type b} (R : ∀ x → P x → hProp c) where
uniqueChoice : (Π[ x ⦂ A ] (∃!′ (P x) (λ u → R x u .fst))) →
Σ[ f ⦂ Π[ x ⦂ A ] P x ] Π[ x ⦂ A ] (R x (f x) .fst)
uniqueChoice H = fst ∘ mid , snd ∘ mid
where
mid : Π[ x ⦂ A ] Σ[ u ⦂ P x ] (R x u .fst)
mid x = lemma23 {P = R x} (H x)
open import HITs.PropositionalTruncation.Sugar
module CoeqProofs {X Y : Ob} (f : X ⟶ Y) where
KernelPair : Pullback hSetCategory {X = X} {Z = Y} {Y = X} f f
KernelPair = hSetHasPullbacks f f
Im : Ob
Im = ∃[ b ] ∥ fiber f b ∥ , isOfHLevelΣ 2 (Y .snd) λ _ → isProp→isSet squash
im : X ⟶ Im
im x = f x , ∣ x , refl ∣
open Pullback KernelPair
lem : ∀ {H : Ob} (h : X ⟶ H) → h ∘ p₁ ≡ h ∘ p₂ → Σ[ f ⦂ (Im ⟶ H) ] Π[ x ⦂ Im .fst ] (∀ y → im y ≡ x → h y ≡ f x)
lem {H = H} h eq = uniqueChoice R prf
where
R : Im .fst → H .fst → hProp _
R w x .fst = ∀ y → im y ≡ w → h y ≡ x
R w x .snd = hLevelPi 1 λ _ → hLevelPi 1 λ _ → H .snd _ _
prf : Π[ x ⦂ Im .fst ] ∃!′ (H .fst) (λ u → ∀ y → im y ≡ x → h y ≡ u)
prf (xy , p) .fst = (λ { (z , r) → h z , λ y imy≡xyp → cong (_$ ((y , z) , cong fst imy≡xyp ; sym r)) eq }) ∥$∥ p
prf (xy , p) .snd x₁ x₂ Px₁ Px₂ = rec (H .snd x₁ x₂) (λ { (z , zs) → sym (Px₁ z (ΣProp≡ (λ _ → squash) zs)) ; Px₂ z (ΣProp≡ (λ _ → squash) zs) } ) p
lem₂ : ∀ (H : Ob) (h : X ⟶ H) (i : Im ⟶ H) (x : Im .fst) (hi : h ≡ i ∘ im) (eq : h ∘ p₁ ≡ h ∘ p₂) → i x ≡ lem {H = H} h eq .fst x
lem₂ H h i x hi eq = rec (H .snd _ _) (λ { (y , ys) → (cong i (ΣProp≡ (λ _ → squash) (sym ys)) ; sym (cong (_$ y) hi)) ; lem {H = H} h eq .snd x y (ΣProp≡ (λ _ → squash) ys) }) (x .snd)
hSetCoeq : Coequalizer hSetCategory {X = P} {Y = X} p₁ p₂
hSetCoeq .Coequalizer.obj = Im
hSetCoeq .Coequalizer.arr = im
hSetCoeq .Coequalizer.equality = funExt λ x → ΣProp≡ (λ _ → squash) λ i → commute i x
hSetCoeq .Coequalizer.coequalize {H = H} {h = h} eq = lem {H = H} h eq .fst
hSetCoeq .Coequalizer.universal {H = H} {h = h} {eq = eq} = funExt λ x → lem {H = H} h eq .snd (im x) x refl
hSetCoeq .Coequalizer.unique {H = H} {h = h} {i = i} {eq = eq} prf = funExt λ x → lem₂ H h i x prf eq
open CoeqProofs using (hSetCoeq) public
module PullbackSurjProofs {X Y : Ob} (f : X ⟶ Y) (fSurj : Surjective f) where
KernelPair : Pullback hSetCategory {X = X} {Z = Y} {Y = X} f f
KernelPair = hSetHasPullbacks f f
open Pullback KernelPair
p₁surj : Surjective p₁
p₁surj y = ∣ ((y , y) , refl) , refl ∣
p₂surj : Surjective p₂
p₂surj y = ∣ ((y , y) , refl) , refl ∣
open import Relation.Binary
open import Cubical.HITs.SetQuotients
module _ {A : Type a} {R : A → A → Type b} {C : Type c}
(isSetC : isSet C)
(f : A → C)
(coh : ∀ x y → R x y → f x ≡ f y)
where
recQuot : A / R → C
recQuot [ a ] = f a
recQuot (eq/ a b r i) = coh a b r i
recQuot (squash/ xs ys x y i j) = isSetC (recQuot xs) (recQuot ys) (cong recQuot x) (cong recQuot y) i j
open import Path.Reasoning
module ExtactProofs {X : Ob} {R : X .fst → X .fst → hProp ℓ}
(symR : Symmetric (λ x y → R x y .fst))
(transR : Transitive (λ x y → R x y .fst))
(reflR : Reflexive (λ x y → R x y .fst))
where
ℛ : X .fst → X .fst → Type ℓ
ℛ x y = R x y .fst
Src : Ob
Src .fst = ∃[ x,y ] (uncurry ℛ x,y)
Src .snd = isOfHLevelΣ 2 (X .snd ⟨×⟩ X .snd) λ _ → isProp→isSet (R _ _ .snd)
pr₁ pr₂ : Src ⟶ X
pr₁ = fst ∘ fst
pr₂ = snd ∘ fst
ROb : Ob
ROb = X .fst / ℛ , squash/
CR : Coequalizer hSetCategory {X = Src} {Y = X} pr₁ pr₂
CR .Coequalizer.obj = ROb
CR .Coequalizer.arr = [_]
CR .Coequalizer.equality = funExt λ { ((x , y) , x~y) → eq/ x y x~y}
CR .Coequalizer.coequalize {H = H} {h = h} e = recQuot (H .snd) h λ x y x~y → cong (_$ ((x , y) , x~y)) e
CR .Coequalizer.universal {H = H} {h = h} {eq = e} = refl
CR .Coequalizer.unique {H = H} {h = h} {i = i} {eq = e} p = funExt (elimSetQuotientsProp (λ _ → H .snd _ _) λ x j → p (~ j) x)
| {
"alphanum_fraction": 0.5928508049,
"avg_line_length": 40.6649484536,
"ext": "agda",
"hexsha": "d6f33987df2b69b48fb71291479a132bee2329f3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Categories/HSets.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Categories/HSets.agda",
"max_line_length": 187,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Categories/HSets.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3382,
"size": 7889
} |
{-# OPTIONS --type-in-type #-}
module Record where
infixr 2 _,_
record Σ (A : Set)(B : A → Set) : Set where
constructor _,_
field fst : A
snd : B fst
open Σ
data ⊤ : Set where
tt : ⊤
∃ : {A : Set}(B : A → Set) → Set
∃ B = Σ _ B
infix 10 _≡_
data _≡_ {A : Set}(a : A) : {B : Set} → B → Set where
refl : a ≡ a
trans : ∀ {A B C}{a : A}{b : B}{c : C} → a ≡ b → b ≡ c → a ≡ c
trans refl p = p
sym : ∀ {A B}{a : A}{b : B} → a ≡ b → b ≡ a
sym refl = refl
resp : ∀ {A}{B : A → Set}{a a' : A} →
(f : (a : A) → B a) → a ≡ a' → f a ≡ f a'
resp f refl = refl
Cat : Set
Cat =
∃ λ (Obj : Set) →
∃ λ (Hom : Obj → Obj → Set) →
∃ λ (id : ∀ X → Hom X X) →
∃ λ (_○_ : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z) →
∃ λ (idl : ∀ {X Y}{f : Hom X Y} → id Y ○ f ≡ f) →
∃ λ (idr : ∀ {X Y}{f : Hom X Y} → f ○ id X ≡ f) →
∃ λ (assoc : ∀ {W X Y Z}{f : Hom W X}{g : Hom X Y}{h : Hom Y Z} →
(h ○ g) ○ f ≡ h ○ (g ○ f)) →
⊤
Obj : (C : Cat) → Set
Obj C = fst C
Hom : (C : Cat) → Obj C → Obj C → Set
Hom C = fst (snd C)
id : (C : Cat) → ∀ X → Hom C X X
id C = fst (snd (snd C))
comp : (C : Cat) → ∀ {X Y Z} → Hom C Y Z → Hom C X Y → Hom C X Z
comp C = fst (snd (snd (snd C)))
idl : (C : Cat) → ∀ {X Y}{f : Hom C X Y} → comp C (id C Y) f ≡ f
idl C = fst (snd (snd (snd (snd C))))
idr : (C : Cat) → ∀ {X Y}{f : Hom C X Y} → comp C f (id C X) ≡ f
idr C = fst (snd (snd (snd (snd (snd C)))))
assoc : (C : Cat) → ∀ {W X Y Z}{f : Hom C W X}{g : Hom C X Y}{h : Hom C Y Z} →
comp C (comp C h g) f ≡ comp C h (comp C g f)
assoc C = fst (snd (snd (snd (snd (snd (snd C))))))
| {
"alphanum_fraction": 0.4322139303,
"avg_line_length": 24.3636363636,
"ext": "agda",
"hexsha": "84a1b075c7942e5b2c8d205309391741af76db6c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "benchmark/proj/Record.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "benchmark/proj/Record.agda",
"max_line_length": 78,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "benchmark/proj/Record.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 748,
"size": 1608
} |
module Basics where
data Zero : Set where
record One : Set where constructor <>
data Two : Set where tt ff : Two
data Nat : Set where
ze : Nat
su : Nat -> Nat
data _+_ (S T : Set) : Set where
inl : S -> S + T
inr : T -> S + T
record Sg (S : Set)(T : S -> Set) : Set where
constructor _,_
field
fst : S
snd : T fst
open Sg public
_*_ : Set -> Set -> Set
S * T = Sg S \ _ -> T
infixr 4 _,_ _*_
data _==_ {X : Set}(x : X) : X -> Set where
refl : x == x
| {
"alphanum_fraction": 0.55,
"avg_line_length": 17.1428571429,
"ext": "agda",
"hexsha": "7d271c2a3a62e4c4e50e16dbf03f42e645f228d0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-06-09T05:39:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-09T05:39:02.000Z",
"max_forks_repo_head_hexsha": "21ac5be5a0a04fc75699d595c08b5ae4b7d7712d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "pigworker/WhatRTypes4",
"max_forks_repo_path": "Basics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "21ac5be5a0a04fc75699d595c08b5ae4b7d7712d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "pigworker/WhatRTypes4",
"max_issues_repo_path": "Basics.agda",
"max_line_length": 45,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "21ac5be5a0a04fc75699d595c08b5ae4b7d7712d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "pigworker/WhatRTypes4",
"max_stars_repo_path": "Basics.agda",
"max_stars_repo_stars_event_max_datetime": "2019-06-09T05:38:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-11T09:12:25.000Z",
"num_tokens": 176,
"size": 480
} |
-- Homotopy type theory
-- https://github.com/agda/cubical
{-# OPTIONS --without-K --safe #-}
module TypeTheory.HoTT.Base where
-- agda-stdlib
open import Level renaming (zero to lzero; suc to lsuc)
open import Data.Product
open import Relation.Binary.PropositionalEquality
private
variable
a b : Level
fiber : {A : Set a} {B : Set b} (f : A → B) (y : B) → Set (a ⊔ b)
fiber f y = ∃ λ x → f x ≡ y
isContr : Set a → Set a
isContr A = Σ A λ x → ∀ y → x ≡ y
isProp : Set a → Set a
isProp A = (x y : A) → x ≡ y
isSet : Set a → Set a
isSet A = (x y : A) → isProp (x ≡ y)
| {
"alphanum_fraction": 0.6110154905,
"avg_line_length": 20.0344827586,
"ext": "agda",
"hexsha": "04df4be4123e9c59cba694108c3632fae1325abf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "TypeTheory/HoTT/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "TypeTheory/HoTT/Base.agda",
"max_line_length": 65,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "TypeTheory/HoTT/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 210,
"size": 581
} |
{-# OPTIONS --without-K --safe #-}
module Dodo.Binary.Equality where
-- Stdlib imports
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open import Level using (Level; _⊔_)
open import Function using (_∘_)
open import Relation.Unary using (Pred)
open import Relation.Binary using (Rel; REL)
open import Relation.Binary using (Symmetric)
-- Local imports
open import Dodo.Unary.Equality
infix 4 _⊆₂'_ _⊆₂_ _⇔₂_ _⊇₂_
-- | Binary relation subset helper. Generally, use `_⊆₂_` (below).
--
--
-- # Design decision: Explicit variables
--
-- `x` and `y` are passed /explicitly/. If they were implicit, Agda tries (and often fails) to
-- instantiate them at inappropriate applications.
_⊆₂'_ : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b}
→ (P : REL A B ℓ₁)
→ (R : REL A B ℓ₂)
→ Set _
_⊆₂'_ {A = A} {B = B} P R = ∀ (x : A) (y : B) → P x y → R x y
-- | Binary relation subset
--
-- Note that this does /not/ describe structural equality between inhabitants, only
-- "(directed) co-inhabitation".
-- `P ⊆₂ Q` denotes: If `P x y` is inhabited, then `Q x y` is inhabited.
--
-- Whatever these inhabitants are, is irrelevant w.r.t. the subset constraint.
--
--
-- # Design decision: Include P and R in the type
--
-- Somehow, Agda cannot infer P and R from `P ⇒ R`, and requires them explicitly passed.
-- For proof convenience, wrap the proof in this structure, which explicitly conveys P and R
-- to the type-checker.
data _⊆₂_ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} (P : REL A B ℓ₁) (R : REL A B ℓ₂) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
⊆: : P ⊆₂' R → P ⊆₂ R
-- | Binary relation equality
--
-- Note that this does /not/ describe structural equality between inhabitants, only
-- "co-inhabitation".
-- `P ⇔₂ Q` denotes: `P x y` is inhabited iff `Q x y` is inhabited.
--
-- Whatever these inhabitants are, is irrelevant w.r.t. the equality constraint.
--
--
-- # Design decision: Include P and R in the type
--
-- Somehow, Agda cannot infer P and R from `P ⇔ R`, and requires them explicitly passed.
-- For proof convenience, wrap the proof in this structure, which explicitly conveys P and R
-- to the type-checker.
data _⇔₂_ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} (P : REL A B ℓ₁) (R : REL A B ℓ₂) : Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂) where
⇔: : P ⊆₂' R → R ⊆₂' P → P ⇔₂ R
-- | Binary relation superset
_⊇₂_ : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} (P : REL A B ℓ₁) (R : REL A B ℓ₂) → Set (a ⊔ b ⊔ ℓ₁ ⊔ ℓ₂)
P ⊇₂ R = R ⊆₂ P
-- # Helpers
-- | Unwraps the `⊆:` constructor
un-⊆₂ : ∀ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {R : REL A B ℓ₂}
→ P ⊆₂ R
-------
→ P ⊆₂' R
un-⊆₂ (⊆: P⊆R) = P⊆R
-- | Unlifts a function over `⊆₂` to its unwrapped variant over `⊆₂'`.
unlift-⊆₂ : ∀ {a b c d ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL C D ℓ₃} {S : REL C D ℓ₄}
→ ( P ⊆₂ Q → R ⊆₂ S )
---------------------
→ ( P ⊆₂' Q → R ⊆₂' S )
unlift-⊆₂ f P⊆Q = un-⊆₂ (f (⊆: P⊆Q))
-- | Lifts a function over `⊆₂'` to its wrapped variant over `⊆₂`.
lift-⊆₂ : ∀ {a b c d ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL C D ℓ₃} {S : REL C D ℓ₄}
→ ( P ⊆₂' Q → R ⊆₂' S )
---------------------
→ ( P ⊆₂ Q → R ⊆₂ S )
lift-⊆₂ f (⊆: P⊆Q) = ⊆: (f P⊆Q)
-- | Introduces an equality `⇔₂` from both bi-directional components.
⇔₂-intro : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b}
→ {P : REL A B ℓ₁} {R : REL A B ℓ₂}
→ P ⊆₂ R
→ R ⊆₂ P
------
→ P ⇔₂ R
⇔₂-intro (⊆: P⊆R) (⊆: R⊆P) = ⇔: P⊆R R⊆P
-- | Construct an equality `⇔₂` from a mapping over both bi-directional components.
⇔₂-compose : ∀ {a b c d ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL C D ℓ₃} {S : REL C D ℓ₄}
→ ( P ⊆₂ Q → R ⊆₂ S )
→ ( Q ⊆₂ P → S ⊆₂ R )
→ P ⇔₂ Q
-------------------
→ R ⇔₂ S
⇔₂-compose ⊆-proof ⊇-proof (⇔: P⊆Q R⊆S) = ⇔₂-intro (⊆-proof (⊆: P⊆Q)) (⊇-proof (⊆: R⊆S))
-- | Construct a /binary/ equality `⇔₂` from a mapping over both bi-directional components of a /unary/ relation.
⇔₂-compose-⇔₁ : ∀ {a b c ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {A : Set a} {B : Set b} {C : Set c}
{P : Pred A ℓ₁} {Q : Pred A ℓ₂} {R : REL B C ℓ₃} {S : REL B C ℓ₄}
→ ( P ⊆₁ Q → R ⊆₂ S )
→ ( Q ⊆₁ P → S ⊆₂ R )
→ P ⇔₁ Q
-------------------
→ R ⇔₂ S
⇔₂-compose-⇔₁ ⊆-proof ⊇-proof (⇔: P⊆Q R⊆S) = ⇔₂-intro (⊆-proof (⊆: P⊆Q)) (⊇-proof (⊆: R⊆S))
-- | Construct a /unary/ equalty `⇔₁` from a mapping over both bi-directional components of a /binary/ relation.
⇔₁-compose-⇔₂ : ∀ {a b c ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level} {A : Set a} {B : Set b} {C : Set c}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : Pred C ℓ₃} {S : Pred C ℓ₄}
→ ( P ⊆₂ Q → R ⊆₁ S )
→ ( Q ⊆₂ P → S ⊆₁ R )
→ P ⇔₂ Q
-------------------
→ R ⇔₁ S
⇔₁-compose-⇔₂ ⊆-proof ⊇-proof (⇔: P⊆Q R⊆S) = ⇔₁-intro (⊆-proof (⊆: P⊆Q)) (⊇-proof (⊆: R⊆S))
-- # Properties
-- ## Properties: ⊆₂
module _ {a b ℓ : Level} {A : Set a} {B : Set b} {R : REL A B ℓ} where
⊆₂-refl : R ⊆₂ R
⊆₂-refl = ⊆: (λ _ _ Rxy → Rxy)
module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where
⊆₂-trans : P ⊆₂ Q → Q ⊆₂ R → P ⊆₂ R
⊆₂-trans (⊆: P⊆Q) (⊆: Q⊆R) = ⊆: (λ x y Pxy → Q⊆R x y (P⊆Q x y Pxy))
-- ## Properties: ⇔₂
module _ {a b ℓ : Level} {A : Set a} {B : Set b} {R : REL A B ℓ} where
⇔₂-refl : R ⇔₂ R
⇔₂-refl = ⇔₂-intro ⊆₂-refl ⊆₂-refl
module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {Q : REL A B ℓ₁} {R : REL A B ℓ₂} where
-- | Symmetry of the `_⇔₂_` operation.
--
--
-- # Design decision: No Symmetric
--
-- Do /not/ use `Symmetric _⇔₂_` as its type. It messes up the universe levels.
⇔₂-sym : Q ⇔₂ R → R ⇔₂ Q
⇔₂-sym (⇔: Q⊆R R⊆Q) = ⇔: R⊆Q Q⊆R
module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where
⇔₂-trans : P ⇔₂ Q → Q ⇔₂ R → P ⇔₂ R
⇔₂-trans (⇔: P⊆Q Q⊆P) (⇔: Q⊆R R⊆Q) =
⇔₂-intro (⊆₂-trans (⊆: P⊆Q) (⊆: Q⊆R)) (⊆₂-trans (⊆: R⊆Q) (⊆: Q⊆P))
-- # Operations
-- ## Operations: ⇔₂ and ⊆₂ conversion
⇔₂-to-⊆₂ : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂}
→ P ⇔₂ Q
------
→ P ⊆₂ Q
⇔₂-to-⊆₂ (⇔: P⊆Q _) = ⊆: P⊆Q
⇔₂-to-⊇₂ : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂}
→ P ⇔₂ Q
------
→ Q ⊆₂ P
⇔₂-to-⊇₂ (⇔: _ Q⊆P) = ⊆: Q⊆P
-- ## Operations: ⊆₂
⊆₂-apply : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂}
→ P ⊆₂ Q
→ {x : A} {y : B}
→ P x y
---------------
→ Q x y
⊆₂-apply (⊆: P⊆Q) {x} {y} = P⊆Q x y
-- | Substitute an equal relation (under `⇔₂`) for the left-hand side of a subset definition.
⊆₂-substˡ : ∀ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃}
→ P ⇔₂ Q
→ P ⊆₂ R
------
→ Q ⊆₂ R
⊆₂-substˡ (⇔: _ Q⊆P) P⊆R = ⊆₂-trans (⊆: Q⊆P) P⊆R
-- | Substitute an equal relation (under `⇔₂`) for the right-hand side of a subset definition.
⊆₂-substʳ : ∀ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃}
→ Q ⇔₂ R
→ P ⊆₂ Q
------
→ P ⊆₂ R
⊆₂-substʳ (⇔: Q⊆R _) P⊆Q = ⊆₂-trans P⊆Q (⊆: Q⊆R)
-- | Weaken intentional equality of relations to their subset `⊆₂` definition.
≡-to-⊆₂ : {a b ℓ : Level} {A : Set a} {B : Set b}
{P Q : REL A B ℓ}
→ P ≡ Q
------
→ P ⊆₂ Q
≡-to-⊆₂ refl = ⊆: (λ _ _ Pxy → Pxy)
-- | Weaken intentional equality of relations to their superset definition (inverted `⊆₂`).
≡-to-⊇₂ : {a b ℓ : Level} {A : Set a} {B : Set b}
{P Q : REL A B ℓ}
→ P ≡ Q
------
→ Q ⊆₂ P
≡-to-⊇₂ refl = ⊆: (λ _ _ Qxy → Qxy)
-- | Substitute both elements of the relation's instantiation.
subst-rel : {a b ℓ : Level} → {A : Set a} {B : Set b}
→ (R : REL A B ℓ)
→ {x₁ x₂ : A}
→ x₁ ≡ x₂
→ {y₁ y₂ : B}
→ y₁ ≡ y₂
→ R x₁ y₁
-----------------------
→ R x₂ y₂
subst-rel _ refl refl Rxy = Rxy
-- ## Operations: ⇔₂
⇔₂-apply-⊆₂ : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂}
→ P ⇔₂ Q
→ {x : A} {y : B}
→ P x y
---------------
→ Q x y
⇔₂-apply-⊆₂ = ⊆₂-apply ∘ ⇔₂-to-⊆₂
⇔₂-apply-⊇₂ : {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b}
{P : REL A B ℓ₁} {Q : REL A B ℓ₂}
→ P ⇔₂ Q
→ {x : A} {y : B}
→ Q x y
---------------
→ P x y
⇔₂-apply-⊇₂ = ⊆₂-apply ∘ ⇔₂-to-⊇₂
≡-to-⇔₂ : {a b ℓ : Level} {A : Set a} {B : Set b}
{P Q : REL A B ℓ}
→ P ≡ Q
------
→ P ⇔₂ Q
≡-to-⇔₂ refl = ⇔₂-intro ⊆₂-refl ⊆₂-refl
-- # Reasoning
-- ## Reasoning: ⊆₂
-- | A collection of functions for writing subset proofs over binary relations.
--
--
-- # Example
--
-- ```
-- proof P Q R S =
-- begin⊆₂
-- (P ⨾ Q) ⨾ (R ⨾ S)
-- ⊆₂⟨ ⇔₂-to-⊇₂ ⨾-assoc ⟩
-- ((P ⨾ Q) ⨾ R) ⨾ S
-- ⊆₂⟨ ⨾-substˡ-⊆₂ (⇔₂-to-⊆₂ ⨾-assoc) ⟩
-- P ⨾ (Q ⨾ R) ⨾ S
-- ⊆₂∎
-- ```
module ⊆₂-Reasoning {a b ℓ₁ : Level} {A : Set a} {B : Set b} where
infix 3 _⊆₂∎
infixr 2 step-⊆₂
infix 1 begin⊆₂_
begin⊆₂_ : {ℓ₂ : Level} {P : REL A B ℓ₁} {Q : REL A B ℓ₂}
→ P ⊆₂ Q
→ P ⊆₂ Q
begin⊆₂_ P⊆Q = P⊆Q
step-⊆₂ : ∀ {ℓ₂ ℓ₃ : Level}
→ (P : REL A B ℓ₁)
→ {Q : REL A B ℓ₂}
→ {R : REL A B ℓ₃}
→ Q ⊆₂ R
→ P ⊆₂ Q
→ P ⊆₂ R
step-⊆₂ P Q⊆R P⊆Q = ⊆₂-trans P⊆Q Q⊆R
_⊆₂∎ : ∀ (P : REL A B ℓ₁) → P ⊆₂ P
_⊆₂∎ P = ⊆: (λ _ _ z → z)
syntax step-⊆₂ P Q⊆R P⊆Q = P ⊆₂⟨ P⊆Q ⟩ Q⊆R
-- ## Reasoning: ⇔₂
-- | A collection of functions for writing equality proofs over binary relations.
--
--
-- # Example
--
-- ```
-- proof P Q R S =
-- begin⇔₂
-- (P ⨾ Q) ⨾ (R ⨾ S)
-- ⇔₂⟨ ⇔₂-sym ⨾-assoc ⟩
-- ((P ⨾ Q) ⨾ R) ⨾ S
-- ⇔₂⟨ ⨾-substˡ ⨾-assoc ⟩
-- P ⨾ (Q ⨾ R) ⨾ S
-- ⇔₂∎
-- ```
module ⇔₂-Reasoning {a b ℓ₁ : Level} {A : Set a} {B : Set b} where
infix 3 _⇔₂∎
infixr 2 _⇔₂⟨⟩_ step-⇔₂
infix 1 begin⇔₂_
begin⇔₂_ : {ℓ₂ : Level} {P : REL A B ℓ₁} {Q : REL A B ℓ₂}
→ P ⇔₂ Q
→ P ⇔₂ Q
begin⇔₂_ P⇔Q = P⇔Q
_⇔₂⟨⟩_ : {ℓ₂ : Level}
(P : REL A B ℓ₁)
→ {Q : REL A B ℓ₂}
→ P ⇔₂ Q
→ P ⇔₂ Q
_ ⇔₂⟨⟩ x≡y = x≡y
step-⇔₂ : ∀ {ℓ₂ ℓ₃ : Level}
→ (P : REL A B ℓ₁)
→ {Q : REL A B ℓ₂}
→ {R : REL A B ℓ₃}
→ Q ⇔₂ R
→ P ⇔₂ Q
→ P ⇔₂ R
step-⇔₂ _ Q⇔R P⇔Q = ⇔₂-trans P⇔Q Q⇔R
_⇔₂∎ : ∀ (P : REL A B ℓ₁) → P ⇔₂ P
_⇔₂∎ _ = ⇔₂-refl
syntax step-⇔₂ P Q⇔R P⇔Q = P ⇔₂⟨ P⇔Q ⟩ Q⇔R
| {
"alphanum_fraction": 0.479527266,
"avg_line_length": 28.579787234,
"ext": "agda",
"hexsha": "cbe61913d82833189df3f3392c87b8f791b84e1b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "sourcedennis/agda-dodo",
"max_forks_repo_path": "src/Dodo/Binary/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "sourcedennis/agda-dodo",
"max_issues_repo_path": "src/Dodo/Binary/Equality.agda",
"max_line_length": 118,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "sourcedennis/agda-dodo",
"max_stars_repo_path": "src/Dodo/Binary/Equality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5322,
"size": 10746
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Implementation.Action where
open import Light.Library.Action using (Library ; Dependencies)
open import Light.Level using (++_ ; 0ℓ)
open import Light.Library.Data.Unit using (Unit)
open import Light.Library.Data.Natural using (ℕ)
open import Light.Variable.Sets
open import Light.Variable.Levels
import Light.Package
import Light.Implementation.Data.Natural
import Light.Implementation.Data.Unit
instance dependencies : Dependencies
dependencies = record {}
instance library : Library dependencies
library = record { Implementation }
where
module Implementation where
postulate Main : Set
private
postulate
pure′ : 𝕒 → Main
bind′ : Main → (𝕒 → Main) → Main
follow : Main → Main → Main
{-# COMPILE JS pure′ = () => () => () => a => () => a #-}
{-# COMPILE JS bind′ = () => () => () => m => f => f(m()) #-}
{-# COMPILE JS follow = () => () => m => m2 => () => (m(), m2()) #-}
{-# NO_UNIVERSE_CHECK #-}
data Action (𝕒 : Set ℓ) : Set ℓ where
pure : 𝕒 → Action 𝕒
_>>=_ : Action 𝕓 → (𝕓 → Action 𝕒) → Action 𝕒
_>>_ : Action 𝕓 → Action 𝕒 → Action 𝕒
lift : Main → Action 𝕒
run : Action 𝕒 → Main
run (pure a) = pure′ a
run (a >>= f) = bind′ (run a) (λ a → run (f a))
run (a >> b) = follow (run a) (run b)
run (lift m) = m
private
postulate log′ alert′ : 𝕒 → Main
postulate prompt′ : Main
log : 𝕒 → Action Unit
log a = lift (log′ a)
prompt = lift prompt′
alert : 𝕒 → Action Unit
alert a = lift (alert′ a)
{-# COMPILE JS log′ = () => () => a => () => console.log(a) #-}
{-# COMPILE JS prompt′ = () => () => BigInt(prompt()) #-}
{-# COMPILE JS alert′ = () => () => () => a => alert(a) #-}
| {
"alphanum_fraction": 0.4678571429,
"avg_line_length": 36.7213114754,
"ext": "agda",
"hexsha": "a2beaa866a7ebe9871800ee0e8409277909dbde9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Implementation/Action.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Implementation/Action.agda",
"max_line_length": 80,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Implementation/Action.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 553,
"size": 2240
} |
module Impure.LFRef.Properties.Soundness where
open import Data.Nat
open import Data.Sum
open import Data.Product as Pr
open import Data.List as List hiding (monad)
open import Data.Fin using (fromℕ≤; Fin)
open import Data.Vec hiding (_∷ʳ_; _>>=_)
open import Data.Star hiding (_>>=_)
open import Function
open import Extensions.List as L
open import Relation.Binary.PropositionalEquality as P
open import Relation.Binary.Core using (REL; Reflexive)
open import Relation.Binary.List.Pointwise as PRel hiding (refl)
open import Impure.LFRef.Syntax
open import Impure.LFRef.Welltyped
open import Impure.LFRef.Eval
open import Impure.LFRef.Properties.Decidable
progress : ∀ {𝕊 Σ A} {e : Exp 0} {μ} →
𝕊 , Σ ⊢ μ →
𝕊 , Σ , [] ⊢ₑ e ∶ A →
--------------------------------------
(ExpVal e) ⊎ (∃₂ λ e' μ' → (𝕊 ⊢ e , μ ≻ e' , μ'))
progress p (tm (con k ts _)) = inj₁ (tm con)
progress p (tm unit) = inj₁ (tm unit)
progress p (tm (var ()))
progress p (tm (loc x)) = inj₁ (tm loc)
progress p (fn ·★[ q ] ts) = inj₂ (, (, funapp-β fn (tele-fit-length ts)))
progress p (ref e) with progress p e
progress p (ref {_} {tm _} (tm _)) | inj₁ (tm v) = inj₂ (, (, ref-val v))
progress p (ref {_} {_ ·★ _} e) | inj₁ ()
progress p (ref {_} {ref x} e) | inj₁ ()
progress p (ref {_} { ! x } e) | inj₁ ()
progress p (ref {_} {x ≔ x₁} e) | inj₁ ()
progress p (ref e) | inj₂ (e' , μ' , step) = inj₂ (, (, ref-clos step))
progress p (!_ {x = x} e) with progress p e
progress p (!_ {_} {tm .(loc _)} (tm (loc x))) | inj₁ (tm _) =
inj₂ (, (, !-val (P.subst (_<_ _) (pointwise-length p) ([]=-length x))))
progress p (!_ {_} {tm (var ())} e) | _
progress p (!_ {_} {_ ·★ _} e) | inj₁ ()
progress p (!_ {_} {ref x} e) | inj₁ ()
progress p (!_ {_} { ! x } e) | inj₁ ()
progress p (!_ {_} {x ≔ x₁} e) | inj₁ ()
progress p (! e) | inj₂ (e' , μ' , step) = inj₂ (, (, !-clos step))
progress p (l ≔ e) with progress p l | progress p e
progress p (tm () ≔ e) | inj₁ (tm unit) | (inj₁ (tm x₁))
progress p (tm () ≔ e) | inj₁ (tm con) | (inj₁ (tm x₁))
progress p (tm (loc x) ≔ e) | inj₁ (tm loc) | (inj₁ (tm v)) =
inj₂ (, (, ≔-val (P.subst (_<_ _) (pointwise-length p) ([]=-length x)) v))
progress p (l ≔ e) | inj₂ (_ , _ , step) | _ = inj₂ (, (, ≔-clos₁ step))
progress p (l ≔ e) | inj₁ v | (inj₂ (_ , _ , step)) = inj₂ (, (, ≔-clos₂ v step))
progress-seq : ∀ {𝕊 Σ A} {e : SeqExp 0} {μ} →
𝕊 , Σ ⊢ μ →
𝕊 , Σ , [] ⊢ₛ e ∶ A →
--------------------------------------
SeqExpVal e ⊎ ∃₂ λ e' μ' → (𝕊 ⊢ e , μ ≻ₛ e' , μ')
progress-seq p (ret e) with progress p e
... | inj₁ (tm v) = inj₁ (ret-tm v)
... | inj₂ (e' , μ' , step) = inj₂ (, , ret-clos step)
progress-seq p (lett x e) with progress p x
progress-seq p (lett x e) | inj₁ (tm v) = inj₂ (, (, lett-β))
progress-seq p (lett x e) | inj₂ (x' , μ' , step) = inj₂ (, (, lett-clos step))
postulate
lem₂ : ∀ {n 𝕊 Σ e a b t} {Γ : Ctx n} →
𝕊 , Σ , (a :+: Γ) ⊢ₑ e ∶ weaken₁-tp b →
𝕊 , Σ , Γ ⊢ t ∶ a →
𝕊 , Σ , Γ ⊢ₑ (e exp/ (sub t)) ∶ b
lem₃ : ∀ {n 𝕊 Σ e a b t} {Γ : Ctx n} →
𝕊 , Σ , (a :+: Γ) ⊢ₛ e ∶ weaken₁-tp b →
𝕊 , Σ , Γ ⊢ t ∶ a →
𝕊 , Σ , Γ ⊢ₛ (e seq/ (sub t)) ∶ b
lem₁ : ∀ {n 𝕊 Σ φ ts} {Γ : Ctx n} →
𝕊 ⊢ φ fnOk →
(p : 𝕊 , Σ , Γ ⊢ ts ∶ⁿ weaken+-tele n (Fun.args φ)) →
(q : length ts ≡ (Fun.m φ)) →
𝕊 , Σ , Γ ⊢ₑ (!call (Fun.body φ) ts q) ∶ ((Fun.returntype φ) fun[ ts / q ])
-- loading from a welltyped store results in a welltyped term
!load-ok : ∀ {Σ Σ' A μ i 𝕊} →
-- store-welltypedness type (strengthened for induction)
Rel (λ A x → 𝕊 , Σ , [] ⊢ (proj₁ x) ∶ A) Σ' μ →
Σ' L.[ i ]= A → (l : i < length μ) →
𝕊 , Σ , [] ⊢ (!load μ l) ∶ A
!load-ok [] ()
!load-ok (x∼y ∷ p) here (s≤s z≤n) = x∼y
!load-ok (x∼y ∷ p) (there q) (s≤s l) = !load-ok p q l
mutual
⊒-preserves-tm : ∀ {n Γ Σ Σ' A 𝕊} {t : Term n} → Σ' ⊒ Σ → 𝕊 , Σ , Γ ⊢ t ∶ A → 𝕊 , Σ' , Γ ⊢ t ∶ A
⊒-preserves-tm ext unit = unit
⊒-preserves-tm ext (var x) = var x
⊒-preserves-tm ext (con x p q) = con x (⊒-preserves-tele ext p) q
⊒-preserves-tm ext (loc x) = loc (xs⊒ys[i] x ext)
⊒-preserves-tele : ∀ {n m Γ Σ Σ' 𝕊} {ts : List (Term n)} {T : Tele n m} → Σ' ⊒ Σ →
𝕊 , Σ , Γ ⊢ ts ∶ⁿ T →
𝕊 , Σ' , Γ ⊢ ts ∶ⁿ T
⊒-preserves-tele ext ε = ε
⊒-preserves-tele ext (x ⟶ p) = ⊒-preserves-tm ext x ⟶ (⊒-preserves-tele ext p)
-- welltypedness is preseved under store extensions
⊒-preserves : ∀ {n Γ Σ Σ' A 𝕊} {e : Exp n} → Σ' ⊒ Σ → 𝕊 , Σ , Γ ⊢ₑ e ∶ A → 𝕊 , Σ' , Γ ⊢ₑ e ∶ A
⊒-preserves ext (tm x) = tm (⊒-preserves-tm ext x)
⊒-preserves ext (x ·★[ refl ] p) with ⊒-preserves-tele ext p
... | p' = x ·★[ refl ] p'
⊒-preserves ext (ref p) = ref (⊒-preserves ext p)
⊒-preserves ext (! p) = ! (⊒-preserves ext p)
⊒-preserves ext (p ≔ q) = ⊒-preserves ext p ≔ ⊒-preserves ext q
⊒-preserves-seq : ∀ {n Γ Σ Σ' A 𝕊} {e : SeqExp n} → Σ' ⊒ Σ → 𝕊 , Σ , Γ ⊢ₛ e ∶ A → 𝕊 , Σ' , Γ ⊢ₛ e ∶ A
⊒-preserves-seq ext (ret e) = ret (⊒-preserves ext e)
⊒-preserves-seq ext (lett e c) = lett (⊒-preserves ext e) (⊒-preserves-seq ext c)
-- helper for lifting preserving reductions into their closure
clos-cong : ∀ {Σ μ 𝕊 A B} {e : Exp 0} (c : Exp 0 → Exp 0) →
(f : ∀ {Σ'} (ext : Σ' ⊒ Σ) → 𝕊 , Σ' , [] ⊢ₑ e ∶ A → 𝕊 , Σ' , [] ⊢ₑ c e ∶ B) →
(∃ λ Σ' → 𝕊 , Σ' , [] ⊢ₑ e ∶ A × Σ' ⊒ Σ × 𝕊 , Σ' ⊢ μ) →
∃ λ Σ' → 𝕊 , Σ' , [] ⊢ₑ c e ∶ B × Σ' ⊒ Σ × 𝕊 , Σ' ⊢ μ
clos-cong _ f (Σ , wte , ext , μ-wt) = Σ , f ext wte , ext , μ-wt
≻-preserves : ∀ {𝕊 Σ A} {e : Exp 0} {e' μ' μ} →
𝕊 , [] ⊢ok →
𝕊 , Σ , [] ⊢ₑ e ∶ A →
𝕊 , Σ ⊢ μ →
𝕊 ⊢ e , μ ≻ e' , μ' →
----------------------------------------------------
∃ λ Σ' → 𝕊 , Σ' , [] ⊢ₑ e' ∶ A × Σ' ⊒ Σ × 𝕊 , Σ' ⊢ μ'
-- variables
≻-preserves ok (tm x) q ()
-- function application
≻-preserves {Σ = Σ} ok (fn ·★[ refl ] ts) q (funapp-β x refl) with
[]=-functional _ _ fn x | all-lookup fn (_,_⊢ok.funs-ok ok)
... | refl | fn-ok = Σ , (lem₁ fn-ok ts refl) , ⊑-refl , q
-- new references
≻-preserves {Σ = Σ} ok (ref {A = A} (tm x)) q (ref-val v) = let ext = (∷ʳ-⊒ A Σ) in
Σ ∷ʳ A ,
(tm (loc (P.subst (λ i → _ L.[ i ]= _) (pointwise-length q) (∷ʳ[length] Σ A)))) ,
ext ,
pointwise-∷ʳ (PRel.map (⊒-preserves-tm ext) q) (⊒-preserves-tm ext x)
≻-preserves ok (ref p) q (ref-clos step) =
clos-cong
ref (const ref)
(≻-preserves ok p q step)
-- dereferencing
≻-preserves {Σ = Σ₁} ok (! tm (loc x)) q (!-val p)
= Σ₁ , tm (!load-ok q x p) , ⊑-refl , q
≻-preserves ok (! p) q (!-clos step) =
clos-cong
!_ (const !_)
(≻-preserves ok p q step)
-- assignment
≻-preserves {Σ = Σ₁} ok (_≔_ (tm (loc x)) (tm y)) q (≔-val p v) =
Σ₁ , tm unit , ⊑-refl , pointwise-[]≔ q x p y
≻-preserves ok (p ≔ p₁) q (≔-clos₁ step) =
clos-cong
(λ p' → p' ≔ _) (λ ext p' → p' ≔ ⊒-preserves ext p₁)
(≻-preserves ok p q step)
≻-preserves ok (p ≔ p₁) q (≔-clos₂ v step) =
clos-cong
(λ p' → _ ≔ p') (λ ext p' → ⊒-preserves ext p ≔ p')
(≻-preserves ok p₁ q step)
-- let binding
≻ₛ-preserves : ∀ {𝕊 Σ A} {e : SeqExp 0} {e' μ' μ} →
𝕊 , [] ⊢ok →
𝕊 , Σ , [] ⊢ₛ e ∶ A →
𝕊 , Σ ⊢ μ →
𝕊 ⊢ e , μ ≻ₛ e' , μ' →
-------------------------------------------------------
∃ λ Σ' → 𝕊 , Σ' , [] ⊢ₛ e' ∶ A × Σ' ⊒ Σ × 𝕊 , Σ' ⊢ μ'
≻ₛ-preserves {Σ = Σ} ok (lett (tm x) p) q lett-β = Σ , lem₃ p x , ⊑-refl , q
≻ₛ-preserves ok (lett p p₁) q (lett-clos step) with ≻-preserves ok p q step
... | Σ₂ , wte' , Σ₂⊒Σ₁ , q' = Σ₂ , lett wte' ((⊒-preserves-seq Σ₂⊒Σ₁ p₁)) , Σ₂⊒Σ₁ , q'
≻ₛ-preserves ok (ret e) q (ret-clos step) with ≻-preserves ok e q step
... | Σ₂ , wte' , Σ₂⊒Σ₁ , q' = Σ₂ , ret wte' , Σ₂⊒Σ₁ , q'
module SafeEval where
open import Category.Monad.Partiality
open import Category.Monad
open import Coinduction
open import Level as Lev
open RawMonad {f = Lev.zero} monad
-- typesafe evaluation in the partiality/delay-monad;
-- or "soundness" modulo non-trivial divergence
eval : ∀ {𝕊 Σ a μ} {e : SeqExp 0} →
𝕊 , [] ⊢ok → -- given an ok signature context,
𝕊 , Σ , [] ⊢ₛ e ∶ a → -- a welltyped closed expression,
𝕊 , Σ ⊢ μ → -- and a welltyped store
---------------------------------------------------------------------------------------
-- eval will either diverge or provide evidence of a term v, store μ' and storetype Σ'
(∃ λ v → ∃ λ μ' → ∃ λ Σ' →
-- such that v is a value,
(SeqExpVal v) ×
-- ...there is a sequence of small steps from e to v
(𝕊 ⊢ e , μ ≻⋆ v , μ') ×
-- ...v has the same type as e
(𝕊 , Σ' , [] ⊢ₛ v ∶ a) ×
-- ...μ' is typed by Σ'
(𝕊 , Σ' ⊢ μ') ×
-- ...and finally, Σ' is an extension of Σ
(Σ' ⊒ Σ)) ⊥
eval 𝕊-ok wte μ-ok with progress-seq μ-ok wte
eval 𝕊-ok wte μ-ok | inj₁ v = now (_ , _ , _ , v , ε , wte , μ-ok , ⊑-refl)
eval 𝕊-ok wte μ-ok | inj₂ (e' , μ' , step) with ≻ₛ-preserves 𝕊-ok wte μ-ok step
... | (Σ' , wte' , ext₁ , μ'-ok) with later (♯ (eval 𝕊-ok wte' μ'-ok))
... | (now (v' , μ'' , Σ'' , val , steps , wte'' , μ''-ok , ext₂)) =
now (v' , (μ'' , (Σ'' , val , ((steps ▻ step) , (wte'' , μ''-ok , ⊑-trans ext₁ ext₂)))))
... | (later x) = later (♯ (♭ x >>=
λ{ (v' , μ'' , Σ'' , val , steps , wte'' , μ''-ok , ext₂) →
now (v' , μ'' , Σ'' , val , steps ▻ step , wte'' , μ''-ok , ⊑-trans ext₁ ext₂)
}))
| {
"alphanum_fraction": 0.4791147132,
"avg_line_length": 40.7796610169,
"ext": "agda",
"hexsha": "40514b81bea072bb8e4abf50f28aa30c0206edf8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Impure/LFRef/Properties/Soundness.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Impure/LFRef/Properties/Soundness.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Impure/LFRef/Properties/Soundness.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4199,
"size": 9624
} |
{-# OPTIONS --cubical --safe --postfix-projections #-}
module HITs.PropositionalTruncation.Properties where
open import HITs.PropositionalTruncation
open import Prelude
open import Data.Empty.Properties using (isProp⊥)
refute-trunc : ¬ A → ¬ ∥ A ∥
refute-trunc = rec isProp⊥
recompute : Dec A → ∥ A ∥ → A
recompute (yes p) _ = p
recompute (no ¬p) p = ⊥-elim (rec isProp⊥ ¬p p)
open import HITs.PropositionalTruncation.Sugar
bij-iso : A ↔ B → ∥ A ∥ ⇔ ∥ B ∥
bij-iso A↔B .fun = _∥$∥_ (A↔B .fun)
bij-iso A↔B .inv = _∥$∥_ (A↔B .inv)
bij-iso A↔B .rightInv x = squash _ x
bij-iso A↔B .leftInv x = squash _ x
bij-eq : A ↔ B → ∥ A ∥ ≡ ∥ B ∥
bij-eq = isoToPath ∘ bij-iso
| {
"alphanum_fraction": 0.646359584,
"avg_line_length": 25.8846153846,
"ext": "agda",
"hexsha": "e8dc60d6314f007388b72a5f094dfb7b9bce32d1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "HITs/PropositionalTruncation/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "HITs/PropositionalTruncation/Properties.agda",
"max_line_length": 54,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "HITs/PropositionalTruncation/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 284,
"size": 673
} |
open import Relation.Binary using (Decidable; Setoid; DecSetoid)
open import Level
module CP.Session3 {a} {b} (ChanDecSetoid : DecSetoid zero a) (TypeDecSetoid : DecSetoid zero b) where
module TS = DecSetoid TypeDecSetoid
Type : Set
Type = DecSetoid.Carrier TypeDecSetoid
open DecSetoid ChanDecSetoid
Chan : Set
Chan = Carrier
module _ where
-- type of
infix 6 _∶_
data TypeOf : Set a where
_∶_ : (x : Chan) → (A : Type) → TypeOf
chanOf : TypeOf → Chan
chanOf (x ∶ _) = x
import Relation.Binary.Construct.On as On
decSetoid : DecSetoid _ _
decSetoid = On.decSetoid ChanDecSetoid chanOf
open import Data.List.Relation.Binary.Subset.DecSetoid decSetoid
open import Data.List
Session : Set a
Session = List TypeOf
open import Relation.Nullary
open import Relation.Nullary.Decidable
open import Data.Product
open import Data.Maybe
seperate : (Γ : Session) → (x : Chan) → Maybe (∃[ Δ ] ∃[ A ] (Γ ≋ x ∶ A ∷ Δ))
seperate [] x = nothing
seperate (y ∶ A ∷ Γ) x with y ≟ x
... | yes P = just (Γ , A , ∷-cong P ≋-refl)
... | no ¬P with seperate Γ x
... | just (Δ , B , eq) = just (y ∶ A ∷ Δ , B , reasoning)
where
open EqReasoning
reasoning : y ∶ A ∷ Γ ≋ x ∶ B ∷ y ∶ A ∷ Δ
reasoning =
begin
y ∶ A ∷ Γ
≈⟨ ∷-cong refl eq ⟩
y ∶ A ∷ x ∶ B ∷ Δ
≈⟨ ≋-swap ⟩
x ∶ B ∷ y ∶ A ∷ Δ
∎
... | nothing = nothing
-- insertion
infixl 5 _#_
_#_ : Session → TypeOf → Session
Γ # (x ∶ A) with seperate Γ x
... | nothing = x ∶ A ∷ Γ
... | just (Δ , _ , _) = x ∶ A ∷ Δ
insert-idempotent : ∀ Γ x A → Γ # x ∶ A # x ∶ A ≋ Γ # x ∶ A
insert-idempotent Γ x A with seperate Γ x
insert-idempotent Γ x A | nothing with seperate (x ∶ A ∷ Γ) x
... | nothing = {! !}
... | just x₁ = {! !}
insert-idempotent Γ x A | just x₁ = {! !}
| {
"alphanum_fraction": 0.5936123348,
"avg_line_length": 23.2820512821,
"ext": "agda",
"hexsha": "76d7fc9ff4e4a0c0d0bba0081fe246008f8a3a43",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/bidirectional",
"max_forks_repo_path": "CP/Session3.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/bidirectional",
"max_issues_repo_path": "CP/Session3.agda",
"max_line_length": 103,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/bidirectional",
"max_stars_repo_path": "CP/Session3.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z",
"num_tokens": 668,
"size": 1816
} |
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Data.Binary.Isomorphism where
open import Data.Binary.Definition
open import Data.Binary.Conversion
open import Data.Binary.Increment
open import Prelude
import Data.Nat as ℕ
inc-suc : ∀ x → ⟦ inc x ⇓⟧ ≡ suc ⟦ x ⇓⟧
inc-suc 0ᵇ i = 1
inc-suc (1ᵇ x) i = 2 ℕ.+ ⟦ x ⇓⟧ ℕ.* 2
inc-suc (2ᵇ x) i = suc (inc-suc x i ℕ.* 2)
inc-2*-1ᵇ : ∀ n → inc ⟦ n ℕ.* 2 ⇑⟧ ≡ 1ᵇ ⟦ n ⇑⟧
inc-2*-1ᵇ zero i = 1ᵇ 0ᵇ
inc-2*-1ᵇ (suc n) i = inc (inc (inc-2*-1ᵇ n i))
𝔹-rightInv : ∀ x → ⟦ ⟦ x ⇑⟧ ⇓⟧ ≡ x
𝔹-rightInv zero = refl
𝔹-rightInv (suc x) = inc-suc ⟦ x ⇑⟧ ; cong suc (𝔹-rightInv x)
𝔹-leftInv : ∀ x → ⟦ ⟦ x ⇓⟧ ⇑⟧ ≡ x
𝔹-leftInv 0ᵇ = refl
𝔹-leftInv (1ᵇ x) = inc-2*-1ᵇ ⟦ x ⇓⟧ ; cong 1ᵇ_ (𝔹-leftInv x)
𝔹-leftInv (2ᵇ x) = cong inc (inc-2*-1ᵇ ⟦ x ⇓⟧) ; cong 2ᵇ_ (𝔹-leftInv x)
𝔹⇔ℕ : 𝔹 ⇔ ℕ
𝔹⇔ℕ .fun = ⟦_⇓⟧
𝔹⇔ℕ .inv = ⟦_⇑⟧
𝔹⇔ℕ .rightInv = 𝔹-rightInv
𝔹⇔ℕ .leftInv = 𝔹-leftInv
| {
"alphanum_fraction": 0.5685005394,
"avg_line_length": 27.2647058824,
"ext": "agda",
"hexsha": "f5b3696f145cc2f107a7a9b206925aa37cc3ba8e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Binary/Isomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Binary/Isomorphism.agda",
"max_line_length": 71,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Binary/Isomorphism.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 538,
"size": 927
} |
module Numeral.Natural.Prime.Proofs where
import Lvl
open import Data
open import Data.Boolean.Stmt
open import Data.Either as Either using ()
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
open import Lang.Instance
open import Logic
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Logic.Predicate
open import Numeral.Natural
open import Numeral.Natural.Relation.Divisibility
open import Numeral.Natural.Relation.Divisibility.Proofs
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.Comparisons
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Prime
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Function.Domain
open import Structure.Operator.Properties
open import Structure.Relator.Properties
open import Type
[0]-nonprime : ¬ Prime(0)
[0]-nonprime ()
[1]-nonprime : ¬ Prime(1)
[1]-nonprime ()
[0]-noncomposite : ¬ Composite(0)
[0]-noncomposite ()
[1]-noncomposite : ¬ Composite(1)
[1]-noncomposite ()
[2]-prime : Prime(2)
[2]-prime = intro p where
p : PrimeProof
p {0} _ = [∨]-introₗ [≡]-intro
p {1} _ = [∨]-introᵣ [≡]-intro
[3]-prime : Prime(3)
[3]-prime = intro p where
p : PrimeProof
p {0} _ = [∨]-introₗ [≡]-intro
p {1} (Div𝐒 ())
p {2} _ = [∨]-introᵣ [≡]-intro
[4]-composite : Composite(4)
[4]-composite = intro 0 0
[5]-prime : Prime(5)
[5]-prime = intro p where
p : PrimeProof
p {0} _ = [∨]-introₗ [≡]-intro
p {1} (Div𝐒 (Div𝐒 ()))
p {2} (Div𝐒 ())
p {3} (Div𝐒 ())
p {4} _ = [∨]-introᵣ [≡]-intro
[6]-composite : Composite(6)
[6]-composite = Composite-intro 2 3
[7]-prime : Prime(7)
[7]-prime = intro p where
p : PrimeProof
p {0} _ = [∨]-introₗ [≡]-intro
p {1} (Div𝐒 (Div𝐒 (Div𝐒 ())))
p {2} (Div𝐒 (Div𝐒 ()))
p {3} (Div𝐒 ())
p {4} (Div𝐒 ())
p {5} (Div𝐒 ())
p {6} d = [∨]-introᵣ [≡]-intro
[8]-composite : Composite(8)
[8]-composite = Composite-intro 2 4
[9]-composite : Composite(9)
[9]-composite = Composite-intro 3 3
[10]-composite : Composite(10)
[10]-composite = Composite-intro 2 5
[11]-prime : Prime(11)
[11]-prime = intro p where
p : PrimeProof
p {0} _ = [∨]-introₗ [≡]-intro
p {1} (Div𝐒 (Div𝐒 (Div𝐒 (Div𝐒 (Div𝐒 ())))))
p {2} (Div𝐒 (Div𝐒 (Div𝐒 ())))
p {3} (Div𝐒 (Div𝐒 ()))
p {4} (Div𝐒 (Div𝐒 ()))
p {5} (Div𝐒 ())
p {6} (Div𝐒 ())
p {7} (Div𝐒 ())
p {8} (Div𝐒 ())
p {9} (Div𝐒 ())
p {10} d = [∨]-introᵣ [≡]-intro
prime-only-divisors : ∀{n} → Prime(n) → (∀{x} → (x ∣ n) → ((x ≡ 1) ∨ (x ≡ n)))
prime-only-divisors {𝐒 (𝐒 n)} (intro prime) {𝟎} = [⊥]-elim ∘ [0]-divides-not
prime-only-divisors {𝐒 (𝐒 n)} (intro prime) {𝐒 x} = Either.map ([≡]-with(𝐒)) ([≡]-with(𝐒)) ∘ prime
prime-when-only-divisors : ∀{n} → (n ≥ 2) → (∀{x} → (x ∣ n) → ((x ≡ 1) ∨ (x ≡ n))) → Prime(n)
prime-when-only-divisors {𝐒(𝐒 n)} (succ _) proof = intro p where
p : PrimeProof
p {𝟎} _ = [∨]-introₗ [≡]-intro
p {𝐒 x} = Either.map (injective(𝐒)) (injective(𝐒)) ∘ proof
prime-prime-divisor : ∀{a b} → Prime(a) → Prime(b) → (a ∣ b) → (a ≡ b)
prime-prime-divisor pa pb div with prime-only-divisors pb div
... | [∨]-introₗ [≡]-intro with () ← [1]-nonprime pa
... | [∨]-introᵣ ab = ab
module _ where
open import Sets.PredicateSet renaming (_≡_ to _≡ₛ_)
private variable a b n p : ℕ
-- All prime numbers are prime factors of 0.
[0]-primeFactors : PrimeFactor(0) ⊇ Prime
[0]-primeFactors prime = intro where
instance _ = prime
instance _ = Div𝟎
-- There are no prime factors of 1.
[1]-primeFactors : PrimeFactor(1) ⊆ ∅ {Lvl.𝟎}
[1]-primeFactors {𝐒 𝟎} (intro ⦃ () ⦄)
[1]-primeFactors {𝐒 (𝐒 x)} (intro ⦃ factor = factor ⦄) with succ() ← divides-upper-limit factor
-- The only prime factors of a prime number is itself.
prime-primeFactors : ⦃ _ : Prime(p) ⦄ → (PrimeFactor(p) ≡ₛ (• p))
prime-primeFactors {p}{x} = [↔]-intro (\{[≡]-intro → intro}) (\{intro → symmetry(_≡_) (prime-prime-divisor infer infer infer)})
-- When a number is a prime factor of itself, it is a prime number.
-- A very obvious fact (it follows by definition).
reflexive-primeFactor-is-prime : (n ∈ PrimeFactor(n)) → Prime(n)
reflexive-primeFactor-is-prime intro = infer
divisor-primeFactors : ∀{a b} → (a ∣ b) → (PrimeFactor(a) ⊆ PrimeFactor(b))
divisor-primeFactors div (intro ⦃ p ⦄ ⦃ xa ⦄) = intro ⦃ p ⦄ ⦃ transitivity(_∣_) xa div ⦄
composite-existence : ∀{n} → Composite(n) ↔ ∃{Obj = ℕ ⨯ ℕ}(\(a , b) → (a + 2) ⋅ (b + 2) ≡ n)
composite-existence = [↔]-intro (\{([∃]-intro (a , b) ⦃ [≡]-intro ⦄) → intro a b}) \{(intro a b) → [∃]-intro (a , b) ⦃ [≡]-intro ⦄}
| {
"alphanum_fraction": 0.621731676,
"avg_line_length": 31.1066666667,
"ext": "agda",
"hexsha": "81155ff7df6368a9586e73e2cf3cbe4bba680820",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Prime/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Prime/Proofs.agda",
"max_line_length": 131,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Prime/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1874,
"size": 4666
} |
{-# OPTIONS --rewriting #-}
--{-# OPTIONS -v rewriting:100 #-}
postulate
_↦_ : ∀ {i} {A : Set i} → A → A → Set i
{-# BUILTIN REWRITE _↦_ #-}
data _==_ {i} {A : Set i} (a : A) : A → Set i where
idp : a == a
ap : ∀ i j (A : Set i) (B : Set j) (f : A → B) (x y : A)
→ (x == y → f x == f y)
ap _ _ _ _ f _ ._ idp = idp
postulate
ap∘-rewr : ∀ {i j k} {A : Set i} {B : Set j} {C : Set k} (g : B → C) (f : A → B)
{x y : A} (p : x == y) →
ap j k B C g (f x) (f y) (ap i j A B f x y p) ↦ ap i k A C (λ x → g (f x)) x y p
{-# REWRITE ap∘-rewr #-}
-- This one works, rewriting the RHS to the LHS using the previous rewrite rule as expected
{-ap∘ : ∀ {i j k} {A : Set i} {B : Set j} {C : Set k} (g : B → C) (f : A → B)
{x y : A} (p : x == y) →
ap (λ x → g (f x)) p == ap g (ap f p)
ap∘ g f p = idp
-}
postulate P : ∀ i (A : Set i) (x y : A) (p : x == y) → Set
-- This one doesn’t work, although it should just have to rewrite [P (ap g (ap f p))] to [P (ap (λ x → g (f x)) p)]
test : ∀ {i j k} {A : Set i} {B : Set j} {C : Set k} (g : B → C) (f : A → B)
{x y : A} (p : x == y)
→ P k C (g (f x)) (g (f y)) (ap i k A C (λ x → g (f x)) x y p) → P k C (g (f x)) (g (f y)) (ap j k B C g (f x) (f y) (ap i j A B f x y p))
test g f p s = s
{-
.i != .j of type .Agda.Primitive.Level
when checking that the expression s has type P (ap g (ap f p))
-}
| {
"alphanum_fraction": 0.4599559148,
"avg_line_length": 33.1951219512,
"ext": "agda",
"hexsha": "55c1da3ba582f0c70b8f016bbe5625958a5a9ad6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue1553.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue1553.agda",
"max_line_length": 140,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue1553.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 616,
"size": 1361
} |
------------------------------------------------------------------------------
-- Testing the translation of definitions
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Definition01a where
postulate
D : Set
_≡_ : D → D → Set
d : D
-- We test the translation of the definition of a nullary function.
e : D
e = d
{-# ATP definition e #-}
postulate foo : e ≡ d
{-# ATP prove foo #-}
| {
"alphanum_fraction": 0.4231404959,
"avg_line_length": 25.2083333333,
"ext": "agda",
"hexsha": "9dc0a98a56f8d936f6ff2285356a67f3401de98b",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Definition01a.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Definition01a.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Definition01a.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 117,
"size": 605
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.DStructures.Structures.Action where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Functions.FunExtEquiv
open import Cubical.Data.Sigma
open import Cubical.Algebra.Group
open import Cubical.Structures.LeftAction
open import Cubical.DStructures.Base
open import Cubical.DStructures.Meta.Properties
open import Cubical.DStructures.Structures.Constant
open import Cubical.DStructures.Structures.Type
open import Cubical.DStructures.Structures.Group
private
module _ {ℓ ℓ' : Level} where
Las : ((G , H) : Group {ℓ} × Group {ℓ'}) → Type (ℓ-max ℓ ℓ')
Las (G , H) = LeftActionStructure ⟨ G ⟩ ⟨ H ⟩
module _ (ℓ ℓ' : Level) where
G²Las = Σ[ GH ∈ G² ℓ ℓ' ] Las GH
GGLas = Σ[ G ∈ Group {ℓ} ] Σ[ H ∈ Group {ℓ'} ] Las (G , H)
Action = Σ[ ((G , H) , _α_) ∈ G²Las ] (IsGroupAction G H _α_)
G²LasAct = Σ[ (G , H) ∈ G² ℓ ℓ' ] Σ[ α ∈ Las (G , H) ] IsGroupAction G H α
GGLasAct = Σ[ G ∈ Group {ℓ} ] Σ[ H ∈ Group {ℓ'} ] Σ[ α ∈ Las (G , H) ] IsGroupAction G H α
IsoAction : Iso Action GGLasAct
IsoAction = compIso Σ-assoc-Iso Σ-assoc-Iso
-- two groups with an action structure, i.e. a map ⟨ G ⟩ → ⟨ H ⟩ → ⟨ H ⟩
𝒮ᴰ-G²\Las : URGStrᴰ (𝒮-group ℓ ×𝒮 𝒮-group ℓ')
(λ GH → Las GH)
(ℓ-max ℓ ℓ')
𝒮ᴰ-G²\Las =
make-𝒮ᴰ (λ {(G , H)} _α_ (eG , eH) _β_
→ (g : ⟨ G ⟩) (h : ⟨ H ⟩)
→ GroupEquiv.eq eH .fst (g α h) ≡ (GroupEquiv.eq eG .fst g) β (GroupEquiv.eq eH .fst h))
(λ _ _ _ → refl)
λ (G , H) _α_ → isContrRespectEquiv
-- (Σ[ _β_ ∈ Las (G , H) ] (_α_ ≡ _β_)
(Σ-cong-equiv-snd (λ _β_ → invEquiv funExt₂Equiv))
(isContrSingl _α_)
𝒮-G²Las : URGStr G²Las (ℓ-max ℓ ℓ')
𝒮-G²Las = ∫⟨ 𝒮-group ℓ ×𝒮 𝒮-group ℓ' ⟩ 𝒮ᴰ-G²\Las
open ActionΣTheory
𝒮ᴰ-G²Las\Action : URGStrᴰ 𝒮-G²Las
(λ ((G , H) , _α_) → IsGroupAction G H _α_)
ℓ-zero
𝒮ᴰ-G²Las\Action = Subtype→Sub-𝒮ᴰ (λ ((G , H) , _α_) → IsGroupAction G H _α_ , isPropIsGroupAction G H _α_)
𝒮-G²Las
𝒮-G²LasAction : URGStr Action (ℓ-max ℓ ℓ')
𝒮-G²LasAction = ∫⟨ 𝒮-G²Las ⟩ 𝒮ᴰ-G²Las\Action
𝒮-Action = 𝒮-G²LasAction
𝒮ᴰ-G\GLasAction : URGStrᴰ (𝒮-group ℓ)
(λ G → Σ[ H ∈ Group {ℓ'} ] Σ[ α ∈ Las (G , H) ] IsGroupAction G H α)
(ℓ-max ℓ ℓ')
𝒮ᴰ-G\GLasAction =
splitTotal-𝒮ᴰ (𝒮-group ℓ)
(𝒮ᴰ-const (𝒮-group ℓ) (𝒮-group ℓ'))
(splitTotal-𝒮ᴰ (𝒮-group ℓ ×𝒮 𝒮-group ℓ')
𝒮ᴰ-G²\Las
𝒮ᴰ-G²Las\Action)
| {
"alphanum_fraction": 0.5414309484,
"avg_line_length": 38.5256410256,
"ext": "agda",
"hexsha": "a74b95bf19e08cbca64e6a5aa95c5ebc2503e3db",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/DStructures/Structures/Action.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/DStructures/Structures/Action.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/DStructures/Structures/Action.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1151,
"size": 3005
} |
{-# OPTIONS --without-K --safe #-}
open import Level
-- This is really a degenerate version of Categories.Category.Instance.Zero
-- Here EmptySet is not given an explicit name, it is an alias for Lift o ⊥
module Categories.Category.Instance.EmptySet where
open import Data.Empty using (⊥; ⊥-elim)
open import Relation.Binary.PropositionalEquality using (refl)
open import Categories.Category.Instance.Sets
import Categories.Object.Initial as Init
module _ {o : Level} where
open Init (Sets o)
EmptySet-⊥ : Initial
EmptySet-⊥ = record { ⊥ = Lift o ⊥ ; ! = λ { {A} (lift x) → ⊥-elim x } ; !-unique = λ { f {()} } }
| {
"alphanum_fraction": 0.7008,
"avg_line_length": 31.25,
"ext": "agda",
"hexsha": "90ffd17707a19b1d5837437c6b767124bb9d04c4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/EmptySet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/EmptySet.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/EmptySet.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 172,
"size": 625
} |
-- Andreas, 2016-02-11. Irrelevant constructors are not (yet?) supported
data D : Set where
.c : D
-- Should fail, e.g., with parse error.
| {
"alphanum_fraction": 0.6713286713,
"avg_line_length": 20.4285714286,
"ext": "agda",
"hexsha": "aad9adf88142dbcb248fe0233f0a6d5a2c56152a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/IrrelevantConstructor.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/IrrelevantConstructor.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/IrrelevantConstructor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 44,
"size": 143
} |
------------------------------------------------------------------------
-- Pretty-printing (documents and document combinators)
------------------------------------------------------------------------
{-# OPTIONS --guardedness #-}
module Pretty where
open import Data.Bool
open import Data.Char
open import Data.List hiding ([_])
open import Data.List.NonEmpty using (List⁺; _∷_; _∷⁺_)
open import Data.List.Properties
open import Data.Maybe hiding (_>>=_)
open import Data.Nat
open import Data.Product
open import Data.Unit
open import Function
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Tactic.MonoidSolver
open import Grammar.Infinite as G
hiding (_<$>_; _<$_; _⊛_; _<⊛_; _⊛>_; token; tok; if-true; sat;
tok-sat; symbol; list; list⁺)
------------------------------------------------------------------------
-- Pretty-printers
mutual
-- Pretty-printer documents, indexed by grammars and corresponding
-- values.
--
-- For convenience I have chosen to parametrise Doc by "extended"
-- grammars rather than basic ones.
infixr 20 _◇_
data Doc : ∀ {A} → Grammar A → A → Set₁ where
-- Concatenation.
_◇_ : ∀ {c₁ c₂ A B x y}
{g₁ : ∞Grammar c₁ A} {g₂ : A → ∞Grammar c₂ B} →
Doc (♭? g₁) x → Doc (♭? (g₂ x)) y → Doc (g₁ >>= g₂) y
-- A string. Note that I do /not/ enforce Wadler's convention
-- that the string does not contain newline characters.
text : ∀ {s} → Doc (string s) s
-- One or more whitespace characters.
line : Doc (tt G.<$ whitespace +) tt
-- Grouping construct.
group : ∀ {A x} {g : Grammar A} → Doc g x → Doc g x
-- Increases the nesting level. (Whatever this means. Renderers
-- are free to ignore group and nest, see ugly-renderer below.)
nest : ∀ {A x} {g : Grammar A} → ℕ → Doc g x → Doc g x
-- Embedding operator: Documents for one grammar/result also
-- work for other grammars/results, given that the semantics
-- are, in a certain sense, compatible.
emb : ∀ {A B x y} {g₁ : Grammar A} {g₂ : Grammar B} →
(∀ {s} → x ∈ g₁ · s → y ∈ g₂ · s) →
Doc g₁ x → Doc g₂ y
-- Fill operator.
fill : ∀ {A xs} {g : Grammar A} →
Docs g xs → Doc (g sep-by whitespace +) xs
-- Sequences of documents, all based on the same grammar.
infixr 5 _∷_
data Docs {A} (g : Grammar A) : List⁺ A → Set₁ where
[_] : ∀ {x} → Doc g x → Docs g (x ∷ [])
_∷_ : ∀ {x xs} → Doc g x → Docs g xs → Docs g (x ∷⁺ xs)
-- Pretty-printers. A pretty-printer is a function that for every
-- value constructs a matching document.
Pretty-printer : {A : Set} → Grammar A → Set₁
Pretty-printer g = ∀ x → Doc g x
Pretty-printer-for : {A : Set} → Grammar-for A → Set₁
Pretty-printer-for g = ∀ x → Doc (g x) (x , refl)
------------------------------------------------------------------------
-- Derived document combinators
-- A "smart" variant of emb. Can be used to avoid long chains of emb
-- constructors.
embed : ∀ {A B} {g₁ : Grammar A} {g₂ : Grammar B} {x y} →
(∀ {s} → x ∈ g₁ · s → y ∈ g₂ · s) → Doc g₁ x → Doc g₂ y
embed f (emb g d) = emb (f ∘ g) d
embed f d = emb f d
-- A document for the empty string.
nil : ∀ {A} {x : A} → Doc (return x) x
nil = embed lemma text
where
lemma : ∀ {x s} → [] ∈ string [] · s → x ∈ return x · s
lemma return-sem = return-sem
-- A document for the given character.
token : ∀ {t} → Doc G.token t
token {t} = embed lemma text
where
lemma′ : ∀ {x s} → x ∈ string (t ∷ []) · s → x ≡ t ∷ [] →
t ∈ G.token · s
lemma′ (⊛-sem (<$>-sem tok-sem) return-sem) refl = token-sem
lemma : ∀ {s} → t ∷ [] ∈ string (t ∷ []) · s → t ∈ G.token · s
lemma t∈ = lemma′ t∈ refl
-- A document for the given character.
tok : ∀ {t} → Doc (G.tok t) t
tok {t} = embed lemma token
where
lemma : ∀ {s} → t ∈ G.token · s → t ∈ G.tok t · s
lemma token-sem = tok-sem
-- Some mapping combinators.
infix 21 <$>_ <$_
<$>_ : ∀ {c A B} {f : A → B} {x} {g : ∞Grammar c A} →
Doc (♭? g) x → Doc (f G.<$> g) (f x)
<$> d = embed <$>-sem d
<$_ : ∀ {c A B} {x : A} {y} {g : ∞Grammar c B} →
Doc (♭? g) y → Doc (x G.<$ g) x
<$ d = embed <$-sem d
-- Some sequencing combinators.
infixl 20 _⊛_ _<⊛_ _⊛>_ _<⊛-tt_ _tt-⊛>_
_⊛_ : ∀ {c₁ c₂ A B f x}
{g₁ : ∞Grammar c₁ (A → B)} {g₂ : ∞Grammar c₂ A} →
Doc (♭? g₁) f → Doc (♭? g₂) x → Doc (g₁ G.⊛ g₂) (f x)
_⊛_ {g₁ = g₁} {g₂} d₁ d₂ = embed lemma (d₁ ◇ <$> d₂)
where
lemma : ∀ {x s} →
x ∈ (g₁ >>= λ f → f G.<$> g₂) · s → x ∈ g₁ G.⊛ g₂ · s
lemma (>>=-sem f∈ (<$>-sem x∈)) = ⊛-sem f∈ x∈
_<⊛_ : ∀ {c₁ c₂ A B x y} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ B} →
Doc (♭? g₁) x → Doc (♭? g₂) y → Doc (g₁ G.<⊛ g₂) x
_<⊛_ {g₁ = g₁} {g₂} d₁ d₂ = embed lemma (d₁ ◇ <$ d₂)
where
lemma : ∀ {x s} →
x ∈ (g₁ >>= λ x → x G.<$ g₂) · s → x ∈ g₁ G.<⊛ g₂ · s
lemma (>>=-sem x∈ (<$-sem y∈)) = <⊛-sem x∈ y∈
_⊛>_ : ∀ {c₁ c₂ A B x y} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ B} →
Doc (♭? g₁) x → Doc (♭? g₂) y → Doc (g₁ G.⊛> g₂) y
_⊛>_ {g₁ = g₁} {g₂} d₁ d₂ = embed lemma (d₁ ◇ d₂)
where
lemma : ∀ {y s} →
y ∈ (g₁ >>= λ _ → g₂) · s → y ∈ g₁ G.⊛> g₂ · s
lemma (>>=-sem x∈ y∈) = ⊛>-sem x∈ y∈
_<⊛-tt_ : ∀ {c₁ c₂ A B x} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ B} →
Doc (♭? g₁) x → Doc (tt G.<$ g₂) tt → Doc (g₁ G.<⊛ g₂) x
_<⊛-tt_ {g₁ = g₁} {g₂} d₁ d₂ = embed lemma (d₁ <⊛ d₂)
where
lemma : ∀ {x s} → x ∈ g₁ G.<⊛ (tt G.<$ g₂) · s → x ∈ g₁ G.<⊛ g₂ · s
lemma (<⊛-sem x∈ (<$-sem y∈)) = <⊛-sem x∈ y∈
_tt-⊛>_ : ∀ {c₁ c₂ A B x} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ B} →
Doc (tt G.<$ g₁) tt → Doc (♭? g₂) x → Doc (g₁ G.⊛> g₂) x
_tt-⊛>_ {g₁ = g₁} {g₂} d₁ d₂ = embed lemma (d₁ ⊛> d₂)
where
lemma : ∀ {x s} → x ∈ (tt G.<$ g₁) G.⊛> g₂ · s → x ∈ g₁ G.⊛> g₂ · s
lemma (⊛>-sem (<$-sem x∈) y∈) = ⊛>-sem x∈ y∈
-- Document combinators for choices.
left : ∀ {c₁ c₂ A x} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ A} →
Doc (♭? g₁) x → Doc (g₁ ∣ g₂) x
left d = embed left-sem d
right : ∀ {c₁ c₂ A x} {g₁ : ∞Grammar c₁ A} {g₂ : ∞Grammar c₂ A} →
Doc (♭? g₂) x → Doc (g₁ ∣ g₂) x
right d = embed right-sem d
-- Some Kleene star and plus combinators.
nil-⋆ : ∀ {c A} {g : ∞Grammar c A} → Doc (g ⋆) []
nil-⋆ {A = A} {g} = embed lemma nil
where
lemma : ∀ {s} → [] ∈ return {A = List A} [] · s → [] ∈ g ⋆ · s
lemma return-sem = ⋆-[]-sem
cons-⋆+ : ∀ {c A} {g : ∞Grammar c A} {x xs} →
Doc (♭? g) x → Doc (g ⋆) xs → Doc (g +) (x ∷ xs)
cons-⋆+ d₁ d₂ = <$> d₁ ⊛ d₂
cons-⋆ : ∀ {c A} {g : ∞Grammar c A} {x xs} →
Doc (♭? g) x → Doc (g ⋆) xs → Doc (g ⋆) (x ∷ xs)
cons-⋆ d₁ d₂ = embed ⋆-+-sem (cons-⋆+ d₁ d₂)
-- A document for the empty string.
if-true : ∀ b → Pretty-printer (G.if-true b)
if-true true _ = nil
if-true false ()
-- Documents for the given character.
sat : (p : Char → Bool) → Pretty-printer (G.sat p)
sat p (t , proof) = token ◇ <$> if-true (p t) proof
tok-sat : {p : Char → Bool} → Pretty-printer-for (G.tok-sat p)
tok-sat _ = <$ tok
-- A single space character.
space : Doc (whitespace ⋆) (' ' ∷ [])
space = embed lemma tok
where
lemma : ∀ {s} →
' ' ∈ G.tok ' ' · s →
(' ' ∷ []) ∈ whitespace ⋆ · s
lemma tok-sem = ⋆-+-sem single-space-sem
-- A variant of line (with _⋆ instead of _+ in the grammar).
line⋆ : Doc (tt G.<$ whitespace ⋆) tt
line⋆ = embed lemma line
where
lemma : ∀ {s} →
tt ∈ tt G.<$ whitespace + · s →
tt ∈ tt G.<$ whitespace ⋆ · s
lemma (<$-sem w+) = <$-sem (⋆-+-sem w+)
-- Combinators that add a final "line" to the document, nested i
-- steps. (The grammars have to satisfy certain predicates.)
final-line′ : ∀ {A} {g : Grammar A} {x} →
Trailing-whitespace g → Doc g x → (i : ℕ) → Doc g x
final-line′ trailing d i = embed trailing (d <⊛-tt nest i line⋆)
final-line : ∀ {A} {g : Grammar A} {x} (n : ℕ)
{trailing : T (is-just (trailing-whitespace n g))} →
Doc g x → (i : ℕ) → Doc g x
final-line n {trailing} =
final-line′ (to-witness-T (trailing-whitespace n _) trailing)
-- Trailing-whitespace never holds for grammars of the form g ⋆, but
-- if the list to be pretty-printed has at least one element, then
-- final-line may still work.
final-line-+⋆ : ∀ {c A} {g : ∞Grammar c A} {x xs} (n : ℕ)
{trailing : T (is-just (trailing-whitespace n (g +)))} →
Doc (g +) (x ∷ xs) → (i : ℕ) → Doc (g ⋆) (x ∷ xs)
final-line-+⋆ n {trailing} d i =
embed ⋆-+-sem (final-line n {trailing} d i)
-- A document for the given symbol (and no following whitespace).
symbol : ∀ {s} → Doc (G.symbol s) s
symbol = text <⊛ nil-⋆
-- A document for the given symbol plus a "line".
symbol-line : ∀ {s} → Doc (G.symbol s) s
symbol-line = final-line 1 symbol 0
-- A document for the given symbol plus a space character.
symbol-space : ∀ {s} → Doc (G.symbol s) s
symbol-space = text <⊛ space
-- A combinator for bracketed output, based on one in Wadler's "A
-- prettier printer".
bracket : ∀ {c A x s₁ s₂} {g : ∞Grammar c A} (n : ℕ) →
{trailing : T (is-just (trailing-whitespace n (♭? g)))} →
Doc (♭? g) x → Doc (G.symbol s₁ G.⊛> g G.<⊛ G.symbol s₂) x
bracket n {trailing} d =
group (nest 2 symbol-line
⊛>
final-line n {trailing = trailing} (nest 2 d) 0
<⊛
symbol)
mutual
-- Conversion of pretty-printers for elements into pretty-printers
-- for lists.
map⋆ : ∀ {c A} {g : ∞Grammar c A} →
Pretty-printer (♭? g) → Pretty-printer (g ⋆)
map⋆ p [] = nil-⋆
map⋆ p (x ∷ xs) = embed ⋆-+-sem (map+ p (x ∷ xs))
map+ : ∀ {c A} {g : ∞Grammar c A} →
Pretty-printer (♭? g) → Pretty-printer (g +)
map+ p (x ∷ xs) = cons-⋆+ (p x) (map⋆ p xs)
mutual
-- Conversion of pretty-printers for specific elements into
-- pretty-printers for specific lists.
list : ∀ {A} {elem : Grammar-for A} →
Pretty-printer-for elem →
Pretty-printer-for (G.list elem)
list e [] = nil
list e (x ∷ xs) = <$> (list⁺ e (x ∷ xs))
list⁺ : ∀ {A} {elem : Grammar-for A} →
Pretty-printer-for elem →
Pretty-printer-for (G.list⁺ elem)
list⁺ e (x ∷ xs) = <$> (e x) ⊛ list e xs
-- A variant of fill. (The grammar has to satisfy a certain
-- predicate.)
fill+ : ∀ {c A} {g : ∞Grammar c A} (n : ℕ)
{trailing : T (is-just (trailing-whitespace n (♭? g)))} →
∀ {xs} → Docs (♭? g) xs → Doc (g +) xs
fill+ {g = g} n {trailing} ds = embed lemma (fill ds)
where
trailing! = to-witness-T (trailing-whitespace n (♭? g)) trailing
lemma′ : ∀ {x xs s₁ s₂} →
x ∈ ♭? g · s₁ → xs ∈ ♭? g prec-by whitespace + · s₂ →
x ∷ xs ∈ g + · s₁ ++ s₂
lemma′ x∈ ⋆-[]-sem = +-sem x∈ ⋆-[]-sem
lemma′ {s₁ = s₁} x∈ (⋆-+-sem (⊛-sem (<$>-sem (⊛>-sem w+ x′∈)) xs∈)) =
cast lemma″
(+-∷-sem (trailing! (<⊛-sem x∈ (⋆-+-sem w+))) (lemma′ x′∈ xs∈))
where
lemma″ :
∀ {s₂ s₃ s₄} → (s₁ ++ s₂) ++ s₃ ++ s₄ ≡ s₁ ++ (s₂ ++ s₃) ++ s₄
lemma″ = solve (++-monoid Char)
lemma : ∀ {s xs} → xs ∈ ♭? g sep-by whitespace + · s → xs ∈ g + · s
lemma (⊛-sem (<$>-sem x∈) xs∈) = lemma′ x∈ xs∈
-- Variants of map+/map⋆ that use fill. (The grammars have to satisfy
-- a certain predicate.)
map+-fill : ∀ {c A} {g : ∞Grammar c A} (n : ℕ)
{trailing : T (is-just (trailing-whitespace n (♭? g)))} →
Pretty-printer (♭? g) →
Pretty-printer (g +)
map+-fill {g = g} n {trailing} p (x ∷ xs) =
fill+ n {trailing = trailing} (to-docs x xs)
where
to-docs : ∀ x xs → Docs (♭? g) (x ∷ xs)
to-docs x [] = [ p x ]
to-docs x (x′ ∷ xs) = p x ∷ to-docs x′ xs
map⋆-fill : ∀ {c A} {g : ∞Grammar c A} (n : ℕ)
{trailing : T (is-just (trailing-whitespace n (♭? g)))} →
Pretty-printer (♭? g) →
Pretty-printer (g ⋆)
map⋆-fill n p [] = nil-⋆
map⋆-fill n {trailing} p (x ∷ xs) =
embed ⋆-+-sem (map+-fill n {trailing = trailing} p (x ∷ xs))
| {
"alphanum_fraction": 0.5138346489,
"avg_line_length": 32.0079787234,
"ext": "agda",
"hexsha": "d6a6ba4afddf55700a4e3e40b6cbde28bced1037",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/pretty",
"max_forks_repo_path": "Pretty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/pretty",
"max_issues_repo_path": "Pretty.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/pretty",
"max_stars_repo_path": "Pretty.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4744,
"size": 12035
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Concrete.Properties where
open import Data.Unit.Polymorphic
open import Function.Equality using (Π; _⟨$⟩_; const; _∘_)
open import Level
open import Relation.Binary using (Setoid)
import Relation.Binary.Reasoning.Setoid as SR
open import Categories.Adjoint using (_⊣_; Adjoint)
open import Categories.Category.Core using (Category)
open import Categories.Category.Instance.Setoids using (Setoids)
open import Categories.Category.Concrete
open import Categories.Functor.Core using (Functor)
open import Categories.Functor.Representable using (Representable)
open import Categories.Functor.Properties using (Faithful)
import Categories.Morphism.Reasoning as MR
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper)
open Concrete
⊣⇒Representable : {o ℓ e : Level} (C : Category o ℓ e) (conc : Concrete C ℓ e) → (F : Functor (Setoids ℓ e) C) →
F ⊣ concretize conc → RepresentablyConcrete C
⊣⇒Representable {_} {ℓ} {e} C conc F L = record
{ conc = conc
; representable = record
{ A = F.₀ OneS
; Iso = record
{ F⇒G = ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ x → L.counit.η X C.∘ F.₁ (const x)
; cong = λ i≈j → C.∘-resp-≈ʳ (F.F-resp-≈ λ _ → i≈j)
}
; commute = λ {X} {Y} f {x} {y} x≈y →
let open C.HomReasoning in begin
L.counit.η Y C.∘ F.₁ (const (U.₁ f ⟨$⟩ x)) ≈⟨ refl⟩∘⟨ F.F-resp-≈ (λ _ → Π.cong (U.₁ f) x≈y) ⟩
L.counit.η Y C.∘ F.₁ (U.F₁ f ∘ const y) ≈⟨ pushʳ F.homomorphism ⟩
((L.counit.η Y C.∘ F.₁ (U.₁ f)) C.∘ F.₁ (const y)) ≈⟨ pushˡ (commute L.counit f) ⟩
f C.∘ L.counit.η X C.∘ F.₁ (const y) ≈˘⟨ C.identityʳ ⟩
(f C.∘ L.counit.η X C.∘ F.₁ (const y)) C.∘ C.id ∎
}
; F⇐G = ntHelper record
{ η = λ c → record
{ _⟨$⟩_ = λ 1⇒c → U.₁ 1⇒c ⟨$⟩ η1
; cong = λ i≈j → U.F-resp-≈ i≈j (Setoid.refl (U.₀ (F.₀ OneS)))
}
; commute = λ {X} {Y} f {x} {y} x≈y →
let module CH = C.HomReasoning in
let open SR (U.₀ Y) in
begin
U.₁ ((f C.∘ x) C.∘ C.id) ⟨$⟩ η1 ≈⟨ U.F-resp-≈ (C.identityʳ CH.○ (CH.refl⟩∘⟨ x≈y)) Srefl ⟩
U.₁ (f C.∘ y) ⟨$⟩ η1 ≈⟨ U.homomorphism Srefl ⟩
U.₁ f ⟨$⟩ (U.₁ y ⟨$⟩ η1) ∎
}
; iso = λ X → record
{ isoˡ = λ {x} {y} x≈y → Setoid.trans (U.₀ X) (L.LRadjunct≈id {OneS} {X} {const x} tt) x≈y
; isoʳ = λ {1⇒x} {1⇒y} x≈y →
let open C.HomReasoning in begin
L.counit.η X C.∘ F.₁ (const (U.₁ 1⇒x ⟨$⟩ η1)) ≈⟨ (refl⟩∘⟨ F.F-resp-≈ λ _ → U.F-resp-≈ x≈y Srefl) ⟩
L.counit.η X C.∘ F.₁ (U.₁ 1⇒y ∘ L.unit.η OneS) ≈⟨ L.RLadjunct≈id {OneS} {X} {1⇒y} ⟩
1⇒y ∎
}
}
}
}
where
module C = Category C
module U = Functor (concretize conc)
module F = Functor F
module L = Adjoint L
open NaturalTransformation
open MR C
-- Is this somewhere else? Should it be?
OneS : Setoid ℓ e
OneS = record { Carrier = ⊤ {ℓ} ; _≈_ = λ _ _ → ⊤ {e}}
η1 : Setoid.Carrier (U.₀ (F.₀ OneS))
η1 = L.unit.η OneS ⟨$⟩ tt
Srefl = Setoid.refl (U.₀ (F.₀ OneS))
| {
"alphanum_fraction": 0.546208167,
"avg_line_length": 40.7125,
"ext": "agda",
"hexsha": "5d305df6a1d79fa01b05db2dda252c7f827a2f87",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Concrete/Properties.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Concrete/Properties.agda",
"max_line_length": 114,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Concrete/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 1339,
"size": 3257
} |
{-# OPTIONS --without-K --exact-split #-}
module 18-circle where
import 17-groups
open 17-groups public
{- Section 11.1 The induction principle of the circle -}
free-loops :
{ l1 : Level} (X : UU l1) → UU l1
free-loops X = Σ X (λ x → Id x x)
base-free-loop :
{ l1 : Level} {X : UU l1} → free-loops X → X
base-free-loop = pr1
loop-free-loop :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
Id (base-free-loop l) (base-free-loop l)
loop-free-loop = pr2
-- Now we characterize the identity types of free loops
Eq-free-loops :
{ l1 : Level} {X : UU l1} (l l' : free-loops X) → UU l1
Eq-free-loops (pair x l) l' =
Σ (Id x (pr1 l')) (λ p → Id (l ∙ p) (p ∙ (pr2 l')))
reflexive-Eq-free-loops :
{ l1 : Level} {X : UU l1} (l : free-loops X) → Eq-free-loops l l
reflexive-Eq-free-loops (pair x l) = pair refl right-unit
Eq-free-loops-eq :
{ l1 : Level} {X : UU l1} (l l' : free-loops X) →
Id l l' → Eq-free-loops l l'
Eq-free-loops-eq l .l refl = reflexive-Eq-free-loops l
abstract
is-contr-total-Eq-free-loops :
{ l1 : Level} {X : UU l1} (l : free-loops X) →
is-contr (Σ (free-loops X) (Eq-free-loops l))
is-contr-total-Eq-free-loops (pair x l) =
is-contr-total-Eq-structure
( λ x l' p → Id (l ∙ p) (p ∙ l'))
( is-contr-total-path x)
( pair x refl)
( is-contr-is-equiv'
( Σ (Id x x) (λ l' → Id l l'))
( tot (λ l' α → right-unit ∙ α))
( is-equiv-tot-is-fiberwise-equiv
( λ l' → is-equiv-concat right-unit l'))
( is-contr-total-path l))
abstract
is-equiv-Eq-free-loops-eq :
{ l1 : Level} {X : UU l1} (l l' : free-loops X) →
is-equiv (Eq-free-loops-eq l l')
is-equiv-Eq-free-loops-eq l =
fundamental-theorem-id l
( reflexive-Eq-free-loops l)
( is-contr-total-Eq-free-loops l)
( Eq-free-loops-eq l)
{- We introduce dependent free loops, which are used in the induction principle
of the circle. -}
dependent-free-loops :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) → UU l2
dependent-free-loops l P =
Σ ( P (base-free-loop l))
( λ p₀ → Id (tr P (loop-free-loop l) p₀) p₀)
Eq-dependent-free-loops :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) →
( p p' : dependent-free-loops l P) → UU l2
Eq-dependent-free-loops (pair x l) P (pair y p) p' =
Σ ( Id y (pr1 p'))
( λ q → Id (p ∙ q) ((ap (tr P l) q) ∙ (pr2 p')))
reflexive-Eq-dependent-free-loops :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) →
( p : dependent-free-loops l P) → Eq-dependent-free-loops l P p p
reflexive-Eq-dependent-free-loops (pair x l) P (pair y p) =
pair refl right-unit
Eq-dependent-free-loops-eq :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) →
( p p' : dependent-free-loops l P) →
Id p p' → Eq-dependent-free-loops l P p p'
Eq-dependent-free-loops-eq l P p .p refl =
reflexive-Eq-dependent-free-loops l P p
abstract
is-contr-total-Eq-dependent-free-loops :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) →
( p : dependent-free-loops l P) →
is-contr (Σ (dependent-free-loops l P) (Eq-dependent-free-loops l P p))
is-contr-total-Eq-dependent-free-loops (pair x l) P (pair y p) =
is-contr-total-Eq-structure
( λ y' p' q → Id (p ∙ q) ((ap (tr P l) q) ∙ p'))
( is-contr-total-path y)
( pair y refl)
( is-contr-is-equiv'
( Σ (Id (tr P l y) y) (λ p' → Id p p'))
( tot (λ p' α → right-unit ∙ α))
( is-equiv-tot-is-fiberwise-equiv
( λ p' → is-equiv-concat right-unit p'))
( is-contr-total-path p))
abstract
is-equiv-Eq-dependent-free-loops-eq :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2)
( p p' : dependent-free-loops l P) →
is-equiv (Eq-dependent-free-loops-eq l P p p')
is-equiv-Eq-dependent-free-loops-eq l P p =
fundamental-theorem-id p
( reflexive-Eq-dependent-free-loops l P p)
( is-contr-total-Eq-dependent-free-loops l P p)
( Eq-dependent-free-loops-eq l P p)
eq-Eq-dependent-free-loops :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2)
( p p' : dependent-free-loops l P) →
Eq-dependent-free-loops l P p p' → Id p p'
eq-Eq-dependent-free-loops l P p p' =
inv-is-equiv (is-equiv-Eq-dependent-free-loops-eq l P p p')
{- We now define the induction principle of the circle. -}
ev-free-loop' :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (P : X → UU l2) →
( (x : X) → P x) → dependent-free-loops l P
ev-free-loop' (pair x₀ p) P f = pair (f x₀) (apd f p)
induction-principle-circle :
{ l1 : Level} (l2 : Level) {X : UU l1} (l : free-loops X) →
UU ((lsuc l2) ⊔ l1)
induction-principle-circle l2 {X} l =
(P : X → UU l2) → sec (ev-free-loop' l P)
{- Section 11.2 The universal property of the circle -}
{- We first state the universal property of the circle -}
ev-free-loop :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (Y : UU l2) →
( X → Y) → free-loops Y
ev-free-loop l Y f = pair (f (pr1 l)) (ap f (pr2 l))
universal-property-circle :
{ l1 : Level} (l2 : Level) {X : UU l1} (l : free-loops X) → UU _
universal-property-circle l2 l =
( Y : UU l2) → is-equiv (ev-free-loop l Y)
{- A fairly straightforward proof of the universal property of the circle
factors through the dependent universal property of the circle. -}
dependent-universal-property-circle :
{ l1 : Level} (l2 : Level) {X : UU l1} (l : free-loops X) →
UU ((lsuc l2) ⊔ l1)
dependent-universal-property-circle l2 {X} l =
( P : X → UU l2) → is-equiv (ev-free-loop' l P)
{- We first prove that the dependent universal property of the circle follows
from the induction principle of the circle. To show this, we have to show
that the section of ev-free-loop' is also a retraction. This construction
is also by the induction principle of the circle, but it requires (a minimal
amount of) preparations. -}
Eq-subst :
{ l1 l2 : Level} {X : UU l1} {P : X → UU l2} (f g : (x : X) → P x) →
X → UU _
Eq-subst f g x = Id (f x) (g x)
tr-Eq-subst :
{ l1 l2 : Level} {X : UU l1} {P : X → UU l2} (f g : (x : X) → P x)
{ x y : X} (p : Id x y) (q : Id (f x) (g x)) (r : Id (f y) (g y))→
( Id ((apd f p) ∙ r) ((ap (tr P p) q) ∙ (apd g p))) →
( Id (tr (Eq-subst f g) p q) r)
tr-Eq-subst f g refl q .((ap id q) ∙ refl) refl =
inv (right-unit ∙ (ap-id q))
dependent-free-loops-htpy :
{l1 l2 : Level} {X : UU l1} {l : free-loops X} {P : X → UU l2}
{f g : (x : X) → P x} →
( Eq-dependent-free-loops l P (ev-free-loop' l P f) (ev-free-loop' l P g)) →
( dependent-free-loops l (λ x → Id (f x) (g x)))
dependent-free-loops-htpy {l = (pair x l)} (pair p q) =
pair p (tr-Eq-subst _ _ l p p q)
isretr-ind-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
( ind-circle : induction-principle-circle l2 l) (P : X → UU l2) →
( (pr1 (ind-circle P)) ∘ (ev-free-loop' l P)) ~ id
isretr-ind-circle l ind-circle P f =
eq-htpy
( pr1
( ind-circle
( λ t → Id (pr1 (ind-circle P) (ev-free-loop' l P f) t) (f t)))
( dependent-free-loops-htpy
( Eq-dependent-free-loops-eq l P _ _
( pr2 (ind-circle P) (ev-free-loop' l P f)))))
abstract
dependent-universal-property-induction-principle-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
induction-principle-circle l2 l → dependent-universal-property-circle l2 l
dependent-universal-property-induction-principle-circle l ind-circle P =
is-equiv-has-inverse
( pr1 (ind-circle P))
( pr2 (ind-circle P))
( isretr-ind-circle l ind-circle P)
{- We use the dependent universal property to derive a uniqeness property of
dependent functions on the circle. -}
dependent-uniqueness-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
dependent-universal-property-circle l2 l →
{ P : X → UU l2} (k : dependent-free-loops l P) →
is-contr
( Σ ( (x : X) → P x)
( λ h → Eq-dependent-free-loops l P (ev-free-loop' l P h) k))
dependent-uniqueness-circle l dup-circle {P} k =
is-contr-is-equiv'
( fib (ev-free-loop' l P) k)
( tot (λ h → Eq-dependent-free-loops-eq l P (ev-free-loop' l P h) k))
( is-equiv-tot-is-fiberwise-equiv
(λ h → is-equiv-Eq-dependent-free-loops-eq l P (ev-free-loop' l P h) k))
( is-contr-map-is-equiv (dup-circle P) k)
{- Now that we have established the dependent universal property, we can
reduce the (non-dependent) universal property to the dependent case. We do
so by constructing a commuting triangle relating ev-free-loop to
ev-free-loop' via a comparison equivalence. -}
tr-const :
{i j : Level} {A : UU i} {B : UU j} {x y : A} (p : Id x y) (b : B) →
Id (tr (λ (a : A) → B) p b) b
tr-const refl b = refl
apd-const :
{i j : Level} {A : UU i} {B : UU j} (f : A → B) {x y : A}
(p : Id x y) → Id (apd f p) ((tr-const p (f x)) ∙ (ap f p))
apd-const f refl = refl
comparison-free-loops :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (Y : UU l2) →
free-loops Y → dependent-free-loops l (λ x → Y)
comparison-free-loops l Y =
tot (λ y l' → (tr-const (pr2 l) y) ∙ l')
abstract
is-equiv-comparison-free-loops :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (Y : UU l2) →
is-equiv (comparison-free-loops l Y)
is-equiv-comparison-free-loops l Y =
is-equiv-tot-is-fiberwise-equiv
( λ y → is-equiv-concat (tr-const (pr2 l) y) y)
triangle-comparison-free-loops :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) (Y : UU l2) →
( (comparison-free-loops l Y) ∘ (ev-free-loop l Y)) ~
( ev-free-loop' l (λ x → Y))
triangle-comparison-free-loops (pair x l) Y f =
eq-Eq-dependent-free-loops
( pair x l)
( λ x → Y)
( comparison-free-loops (pair x l) Y (ev-free-loop (pair x l) Y f))
( ev-free-loop' (pair x l) (λ x → Y) f)
( pair refl (right-unit ∙ (inv (apd-const f l))))
abstract
universal-property-dependent-universal-property-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
( dependent-universal-property-circle l2 l) →
( universal-property-circle l2 l)
universal-property-dependent-universal-property-circle l dup-circle Y =
is-equiv-right-factor
( ev-free-loop' l (λ x → Y))
( comparison-free-loops l Y)
( ev-free-loop l Y)
( htpy-inv (triangle-comparison-free-loops l Y))
( is-equiv-comparison-free-loops l Y)
( dup-circle (λ x → Y))
{- Now we get the universal property of the circle from the induction principle
of the circle by composing the earlier two proofs. -}
abstract
universal-property-induction-principle-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
induction-principle-circle l2 l → universal-property-circle l2 l
universal-property-induction-principle-circle l =
( universal-property-dependent-universal-property-circle l) ∘
( dependent-universal-property-induction-principle-circle l)
unique-mapping-property-circle :
{ l1 : Level} (l2 : Level) {X : UU l1} (l : free-loops X) →
UU (l1 ⊔ (lsuc l2))
unique-mapping-property-circle l2 {X} l =
( Y : UU l2) (l' : free-loops Y) →
is-contr (Σ (X → Y) (λ f → Eq-free-loops (ev-free-loop l Y f) l'))
abstract
unique-mapping-property-universal-property-circle :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
universal-property-circle l2 l →
unique-mapping-property-circle l2 l
unique-mapping-property-universal-property-circle l up-circle Y l' =
is-contr-is-equiv'
( fib (ev-free-loop l Y) l')
( tot (λ f → Eq-free-loops-eq (ev-free-loop l Y f) l'))
( is-equiv-tot-is-fiberwise-equiv
( λ f → is-equiv-Eq-free-loops-eq (ev-free-loop l Y f) l'))
( is-contr-map-is-equiv (up-circle Y) l')
{- We assume that we have a circle. -}
postulate 𝕊¹ : UU lzero
postulate base-𝕊¹ : 𝕊¹
postulate loop-𝕊¹ : Id base-𝕊¹ base-𝕊¹
free-loop-𝕊¹ : free-loops 𝕊¹
free-loop-𝕊¹ = pair base-𝕊¹ loop-𝕊¹
postulate ind-𝕊¹ : {l : Level} → induction-principle-circle l free-loop-𝕊¹
dependent-universal-property-𝕊¹ :
{l : Level} → dependent-universal-property-circle l free-loop-𝕊¹
dependent-universal-property-𝕊¹ =
dependent-universal-property-induction-principle-circle free-loop-𝕊¹ ind-𝕊¹
dependent-uniqueness-𝕊¹ :
{l : Level} {P : 𝕊¹ → UU l} (k : dependent-free-loops free-loop-𝕊¹ P) →
is-contr (Σ ((x : 𝕊¹) → P x) (λ h → Eq-dependent-free-loops free-loop-𝕊¹ P (ev-free-loop' free-loop-𝕊¹ P h) k))
dependent-uniqueness-𝕊¹ {l} {P} k =
dependent-uniqueness-circle free-loop-𝕊¹ dependent-universal-property-𝕊¹ k
universal-property-𝕊¹ :
{l : Level} → universal-property-circle l free-loop-𝕊¹
universal-property-𝕊¹ =
universal-property-dependent-universal-property-circle
free-loop-𝕊¹
dependent-universal-property-𝕊¹
-- Section 14.3 Multiplication on the circle
{- Exercises -}
-- Exercise 11.1
{- The dependent universal property of the circle (and hence also the induction
principle of the circle, implies that the circle is connected in the sense
that for any family of propositions parametrized by the circle, if the
proposition at the base holds, then it holds for any x : circle. -}
abstract
is-connected-circle' :
{ l1 l2 : Level} {X : UU l1} (l : free-loops X) →
( dup-circle : dependent-universal-property-circle l2 l)
( P : X → UU l2) (is-prop-P : (x : X) → is-prop (P x)) →
P (base-free-loop l) → (x : X) → P x
is-connected-circle' l dup-circle P is-prop-P p =
inv-is-equiv
( dup-circle P)
( pair p (center (is-prop-P _ (tr P (pr2 l) p) p)))
| {
"alphanum_fraction": 0.6125360337,
"avg_line_length": 36.2707774799,
"ext": "agda",
"hexsha": "2c02e77a280147a066ad0007d02e2a328a865737",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "hemangandhi/HoTT-Intro",
"max_forks_repo_path": "Agda/18-circle.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "hemangandhi/HoTT-Intro",
"max_issues_repo_path": "Agda/18-circle.agda",
"max_line_length": 113,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "09c710bf9c31ba88be144cc950bd7bc19c22a934",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "hemangandhi/HoTT-Intro",
"max_stars_repo_path": "Agda/18-circle.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4808,
"size": 13529
} |
open import OutsideIn.Prelude
open import OutsideIn.X
module OutsideIn.TypeSchema(x : X) where
open X(x)
open import Data.Vec hiding (_>>=_)
data NameType : Set where
Regular : NameType
Datacon : ℕ → NameType
data TypeSchema ( n : Set) : NameType → Set where
∀′_·_⇒_ : (v : ℕ) → QConstraint (n ⨁ v) → Type (n ⨁ v) → TypeSchema n Regular
DC∀′_,_·_⇒_⟶_ : (a b : ℕ){l : ℕ} → QConstraint ((n ⨁ a) ⨁ b)
→ Vec (Type ((n ⨁ a) ⨁ b)) l → n → TypeSchema n (Datacon l)
DC∀_·_⟶_ : (a : ℕ){l : ℕ} → Vec (Type (n ⨁ a)) l → n → TypeSchema n (Datacon l)
private
module PlusN-f n = Functor (Monad.is-functor (PlusN-is-monad {n}))
module Vec-f {n} = Functor (vec-is-functor {n})
module Type-f = Functor (type-is-functor)
module QC-f = Functor (qconstraint-is-functor)
private
fmap-schema : {A B : Set}{x : NameType} → (A → B) → TypeSchema A x → TypeSchema B x
fmap-schema f (∀′ n · Q ⇒ τ) = ∀′ n · QC-f.map (pn.map f) Q ⇒ Type-f.map (pn.map f) τ
where module pn = PlusN-f n
fmap-schema f (DC∀′ a , b · Q ⇒ τs ⟶ K) = DC∀′ a , b · QC-f.map (pb.map (pa.map f)) Q
⇒ map (Type-f.map (pb.map (pa.map f))) τs
⟶ f K
where module pa = PlusN-f a
module pb = PlusN-f b
fmap-schema f (DC∀ a · τs ⟶ K) = DC∀ a · map (Type-f.map (pa.map f)) τs ⟶ f K
where module pa = PlusN-f a
fmap-schema-id : {A : Set}{x : NameType} {f : A → A}
→ isIdentity f → isIdentity (fmap-schema {A}{A}{x} f)
fmap-schema-id isid {∀′ n · Q ⇒ τ} = cong₂ (∀′_·_⇒_ n) (QC-f.identity (pn.identity isid))
(Type-f.identity (pn.identity isid))
where module pn = PlusN-f n
fmap-schema-id isid {DC∀′ a , b · Q ⇒ τs ⟶ K}
= cong₃ (DC∀′_,_·_⇒_⟶_ a b)
(QC-f.identity (pb.identity (pa.identity isid)))
(Vec-f.identity (Type-f.identity (pb.identity (pa.identity isid))))
isid
where module pa = PlusN-f a
module pb = PlusN-f b
fmap-schema-id isid {DC∀ a · τs ⟶ K}
= cong₂ (DC∀_·_⟶_ a)
(Vec-f.identity (Type-f.identity (pa.identity isid)))
isid
where module pa = PlusN-f a
fmap-schema-comp : {A B C : Set}{s : NameType} {f : A → B} {g : B → C} {x : TypeSchema A s}
→ fmap-schema (g ∘ f) x ≡ fmap-schema g (fmap-schema f x)
fmap-schema-comp {x = ∀′ n · Q ⇒ τ} = cong₂ (∀′_·_⇒_ n)
(Functor.composite (qconstraint-is-functor ∘f pnf))
(Functor.composite (type-is-functor ∘f pnf))
where pnf = Monad.is-functor (PlusN-is-monad {n})
fmap-schema-comp {x = DC∀′ a , b · Q ⇒ τs ⟶ K}
= cong₃ (DC∀′_,_·_⇒_⟶_ a b)
(Functor.composite (qconstraint-is-functor ∘f pbf ∘f paf ))
(Functor.composite (vec-is-functor ∘f type-is-functor ∘f pbf ∘f paf))
refl
where module pa = PlusN-f a
module pb = PlusN-f b
paf = Monad.is-functor (PlusN-is-monad {a})
pbf = Monad.is-functor (PlusN-is-monad {b})
fmap-schema-comp {x = DC∀ a · τs ⟶ K}
= cong₂ (DC∀_·_⟶_ a)
(Functor.composite (vec-is-functor ∘f type-is-functor ∘f paf))
refl
where module pa = PlusN-f a
paf = Monad.is-functor (PlusN-is-monad {a})
type-schema-is-functor : ∀{s} → Functor (λ x → TypeSchema x s)
type-schema-is-functor = record { map = fmap-schema
; identity = fmap-schema-id
; composite = fmap-schema-comp
}
| {
"alphanum_fraction": 0.488372093,
"avg_line_length": 46.0714285714,
"ext": "agda",
"hexsha": "03d5881b8b1194f2b27a29fe135248dfdde7e6ab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "liamoc/outside-in",
"max_forks_repo_path": "OutsideIn/TypeSchema.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "liamoc/outside-in",
"max_issues_repo_path": "OutsideIn/TypeSchema.agda",
"max_line_length": 100,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "liamoc/outside-in",
"max_stars_repo_path": "OutsideIn/TypeSchema.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z",
"num_tokens": 1269,
"size": 3870
} |
{-# OPTIONS --allow-unsolved-metas #-}
open import Level
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Ordinals
module partfunc {n : Level } (O : Ordinals {n}) where
open import logic
open import Relation.Binary
open import Data.Empty
open import Data.List hiding (filter)
open import Data.Maybe
open import Relation.Binary
open import Relation.Binary.Core
open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
open import filter O
open _∧_
open _∨_
open Bool
----
--
-- Partial Function without ZF
--
record PFunc (Dom : Set n) (Cod : Set n) : Set (suc n) where
field
dom : Dom → Set n
pmap : (x : Dom ) → dom x → Cod
meq : {x : Dom } → { p q : dom x } → pmap x p ≡ pmap x q
----
--
-- PFunc (Lift n Nat) Cod is equivalent to List (Maybe Cod)
--
data Findp : {Cod : Set n} → List (Maybe Cod) → (x : Nat) → Set where
v0 : {Cod : Set n} → {f : List (Maybe Cod)} → ( v : Cod ) → Findp ( just v ∷ f ) Zero
vn : {Cod : Set n} → {f : List (Maybe Cod)} {d : Maybe Cod} → {x : Nat} → Findp f x → Findp (d ∷ f) (Suc x)
open PFunc
find : {Cod : Set n} → (f : List (Maybe Cod) ) → (x : Nat) → Findp f x → Cod
find (just v ∷ _) 0 (v0 v) = v
find (_ ∷ n) (Suc i) (vn p) = find n i p
findpeq : {Cod : Set n} → (f : List (Maybe Cod)) → {x : Nat} {p q : Findp f x } → find f x p ≡ find f x q
findpeq n {0} {v0 _} {v0 _} = refl
findpeq [] {Suc x} {()}
findpeq (just x₁ ∷ n) {Suc x} {vn p} {vn q} = findpeq n {x} {p} {q}
findpeq (nothing ∷ n) {Suc x} {vn p} {vn q} = findpeq n {x} {p} {q}
List→PFunc : {Cod : Set n} → List (Maybe Cod) → PFunc (Lift n Nat) Cod
List→PFunc fp = record { dom = λ x → Lift n (Findp fp (lower x))
; pmap = λ x y → find fp (lower x) (lower y)
; meq = λ {x} {p} {q} → findpeq fp {lower x} {lower p} {lower q}
}
----
--
-- to List (Maybe Two) is a Latice
--
_3⊆b_ : (f g : List (Maybe Two)) → Bool
[] 3⊆b [] = true
[] 3⊆b (nothing ∷ g) = [] 3⊆b g
[] 3⊆b (_ ∷ g) = true
(nothing ∷ f) 3⊆b [] = f 3⊆b []
(nothing ∷ f) 3⊆b (_ ∷ g) = f 3⊆b g
(just i0 ∷ f) 3⊆b (just i0 ∷ g) = f 3⊆b g
(just i1 ∷ f) 3⊆b (just i1 ∷ g) = f 3⊆b g
_ 3⊆b _ = false
_3⊆_ : (f g : List (Maybe Two)) → Set
f 3⊆ g = (f 3⊆b g) ≡ true
_3∩_ : (f g : List (Maybe Two)) → List (Maybe Two)
[] 3∩ (nothing ∷ g) = nothing ∷ ([] 3∩ g)
[] 3∩ g = []
(nothing ∷ f) 3∩ [] = nothing ∷ f 3∩ []
f 3∩ [] = []
(just i0 ∷ f) 3∩ (just i0 ∷ g) = just i0 ∷ ( f 3∩ g )
(just i1 ∷ f) 3∩ (just i1 ∷ g) = just i1 ∷ ( f 3∩ g )
(_ ∷ f) 3∩ (_ ∷ g) = nothing ∷ ( f 3∩ g )
3∩⊆f : { f g : List (Maybe Two) } → (f 3∩ g ) 3⊆ f
3∩⊆f {[]} {[]} = refl
3∩⊆f {[]} {just _ ∷ g} = refl
3∩⊆f {[]} {nothing ∷ g} = 3∩⊆f {[]} {g}
3∩⊆f {just _ ∷ f} {[]} = refl
3∩⊆f {nothing ∷ f} {[]} = 3∩⊆f {f} {[]}
3∩⊆f {just i0 ∷ f} {just i0 ∷ g} = 3∩⊆f {f} {g}
3∩⊆f {just i1 ∷ f} {just i1 ∷ g} = 3∩⊆f {f} {g}
3∩⊆f {just i0 ∷ f} {just i1 ∷ g} = 3∩⊆f {f} {g}
3∩⊆f {just i1 ∷ f} {just i0 ∷ g} = 3∩⊆f {f} {g}
3∩⊆f {nothing ∷ f} {just _ ∷ g} = 3∩⊆f {f} {g}
3∩⊆f {just i0 ∷ f} {nothing ∷ g} = 3∩⊆f {f} {g}
3∩⊆f {just i1 ∷ f} {nothing ∷ g} = 3∩⊆f {f} {g}
3∩⊆f {nothing ∷ f} {nothing ∷ g} = 3∩⊆f {f} {g}
3∩sym : { f g : List (Maybe Two) } → (f 3∩ g ) ≡ (g 3∩ f )
3∩sym {[]} {[]} = refl
3∩sym {[]} {just _ ∷ g} = refl
3∩sym {[]} {nothing ∷ g} = cong (λ k → nothing ∷ k) (3∩sym {[]} {g})
3∩sym {just _ ∷ f} {[]} = refl
3∩sym {nothing ∷ f} {[]} = cong (λ k → nothing ∷ k) (3∩sym {f} {[]})
3∩sym {just i0 ∷ f} {just i0 ∷ g} = cong (λ k → just i0 ∷ k) (3∩sym {f} {g})
3∩sym {just i0 ∷ f} {just i1 ∷ g} = cong (λ k → nothing ∷ k) (3∩sym {f} {g})
3∩sym {just i1 ∷ f} {just i0 ∷ g} = cong (λ k → nothing ∷ k) (3∩sym {f} {g})
3∩sym {just i1 ∷ f} {just i1 ∷ g} = cong (λ k → just i1 ∷ k) (3∩sym {f} {g})
3∩sym {just i0 ∷ f} {nothing ∷ g} = cong (λ k → nothing ∷ k) (3∩sym {f} {g})
3∩sym {just i1 ∷ f} {nothing ∷ g} = cong (λ k → nothing ∷ k) (3∩sym {f} {g})
3∩sym {nothing ∷ f} {just i0 ∷ g} = cong (λ k → nothing ∷ k) (3∩sym {f} {g})
3∩sym {nothing ∷ f} {just i1 ∷ g} = cong (λ k → nothing ∷ k) (3∩sym {f} {g})
3∩sym {nothing ∷ f} {nothing ∷ g} = cong (λ k → nothing ∷ k) (3∩sym {f} {g})
3⊆-[] : { h : List (Maybe Two) } → [] 3⊆ h
3⊆-[] {[]} = refl
3⊆-[] {just _ ∷ h} = refl
3⊆-[] {nothing ∷ h} = 3⊆-[] {h}
3⊆trans : { f g h : List (Maybe Two) } → f 3⊆ g → g 3⊆ h → f 3⊆ h
3⊆trans {[]} {[]} {[]} f<g g<h = refl
3⊆trans {[]} {[]} {just _ ∷ h} f<g g<h = refl
3⊆trans {[]} {[]} {nothing ∷ h} f<g g<h = 3⊆trans {[]} {[]} {h} refl g<h
3⊆trans {[]} {nothing ∷ g} {[]} f<g g<h = refl
3⊆trans {[]} {just _ ∷ g} {just _ ∷ h} f<g g<h = refl
3⊆trans {[]} {nothing ∷ g} {just _ ∷ h} f<g g<h = refl
3⊆trans {[]} {nothing ∷ g} {nothing ∷ h} f<g g<h = 3⊆trans {[]} {g} {h} f<g g<h
3⊆trans {nothing ∷ f} {[]} {[]} f<g g<h = f<g
3⊆trans {nothing ∷ f} {[]} {just _ ∷ h} f<g g<h = 3⊆trans {f} {[]} {h} f<g (3⊆-[] {h})
3⊆trans {nothing ∷ f} {[]} {nothing ∷ h} f<g g<h = 3⊆trans {f} {[]} {h} f<g g<h
3⊆trans {nothing ∷ f} {nothing ∷ g} {[]} f<g g<h = 3⊆trans {f} {g} {[]} f<g g<h
3⊆trans {nothing ∷ f} {nothing ∷ g} {just _ ∷ h} f<g g<h = 3⊆trans {f} {g} {h} f<g g<h
3⊆trans {nothing ∷ f} {nothing ∷ g} {nothing ∷ h} f<g g<h = 3⊆trans {f} {g} {h} f<g g<h
3⊆trans {[]} {just i0 ∷ g} {[]} f<g ()
3⊆trans {[]} {just i1 ∷ g} {[]} f<g ()
3⊆trans {[]} {just x ∷ g} {nothing ∷ h} f<g g<h = 3⊆-[] {h}
3⊆trans {just i0 ∷ f} {[]} {h} () g<h
3⊆trans {just i1 ∷ f} {[]} {h} () g<h
3⊆trans {just x ∷ f} {just i0 ∷ g} {[]} f<g ()
3⊆trans {just x ∷ f} {just i1 ∷ g} {[]} f<g ()
3⊆trans {just i0 ∷ f} {just i0 ∷ g} {just i0 ∷ h} f<g g<h = 3⊆trans {f} {g} {h} f<g g<h
3⊆trans {just i1 ∷ f} {just i1 ∷ g} {just i1 ∷ h} f<g g<h = 3⊆trans {f} {g} {h} f<g g<h
3⊆trans {just x ∷ f} {just i0 ∷ g} {nothing ∷ h} f<g ()
3⊆trans {just x ∷ f} {just i1 ∷ g} {nothing ∷ h} f<g ()
3⊆trans {just i0 ∷ f} {nothing ∷ g} {_} () g<h
3⊆trans {just i1 ∷ f} {nothing ∷ g} {_} () g<h
3⊆trans {nothing ∷ f} {just i0 ∷ g} {[]} f<g ()
3⊆trans {nothing ∷ f} {just i1 ∷ g} {[]} f<g ()
3⊆trans {nothing ∷ f} {just i0 ∷ g} {just i0 ∷ h} f<g g<h = 3⊆trans {f} {g} {h} f<g g<h
3⊆trans {nothing ∷ f} {just i1 ∷ g} {just i1 ∷ h} f<g g<h = 3⊆trans {f} {g} {h} f<g g<h
3⊆trans {nothing ∷ f} {just i0 ∷ g} {nothing ∷ h} f<g ()
3⊆trans {nothing ∷ f} {just i1 ∷ g} {nothing ∷ h} f<g ()
3⊆∩f : { f g h : List (Maybe Two) } → f 3⊆ g → f 3⊆ h → f 3⊆ (g 3∩ h )
3⊆∩f {[]} {[]} {[]} f<g f<h = refl
3⊆∩f {[]} {[]} {x ∷ h} f<g f<h = 3⊆-[] {[] 3∩ (x ∷ h)}
3⊆∩f {[]} {x ∷ g} {h} f<g f<h = 3⊆-[] {(x ∷ g) 3∩ h}
3⊆∩f {nothing ∷ f} {[]} {[]} f<g f<h = 3⊆∩f {f} {[]} {[]} f<g f<h
3⊆∩f {nothing ∷ f} {[]} {just _ ∷ h} f<g f<h = f<g
3⊆∩f {nothing ∷ f} {[]} {nothing ∷ h} f<g f<h = 3⊆∩f {f} {[]} {h} f<g f<h
3⊆∩f {just i0 ∷ f} {just i0 ∷ g} {just i0 ∷ h} f<g f<h = 3⊆∩f {f} {g} {h} f<g f<h
3⊆∩f {just i1 ∷ f} {just i1 ∷ g} {just i1 ∷ h} f<g f<h = 3⊆∩f {f} {g} {h} f<g f<h
3⊆∩f {nothing ∷ f} {just _ ∷ g} {[]} f<g f<h = f<h
3⊆∩f {nothing ∷ f} {just i0 ∷ g} {just i0 ∷ h} f<g f<h = 3⊆∩f {f} {g} {h} f<g f<h
3⊆∩f {nothing ∷ f} {just i0 ∷ g} {just i1 ∷ h} f<g f<h = 3⊆∩f {f} {g} {h} f<g f<h
3⊆∩f {nothing ∷ f} {just i1 ∷ g} {just i0 ∷ h} f<g f<h = 3⊆∩f {f} {g} {h} f<g f<h
3⊆∩f {nothing ∷ f} {just i1 ∷ g} {just i1 ∷ h} f<g f<h = 3⊆∩f {f} {g} {h} f<g f<h
3⊆∩f {nothing ∷ f} {just i0 ∷ g} {nothing ∷ h} f<g f<h = 3⊆∩f {f} {g} {h} f<g f<h
3⊆∩f {nothing ∷ f} {just i1 ∷ g} {nothing ∷ h} f<g f<h = 3⊆∩f {f} {g} {h} f<g f<h
3⊆∩f {nothing ∷ f} {nothing ∷ g} {[]} f<g f<h = 3⊆∩f {f} {g} {[]} f<g f<h
3⊆∩f {nothing ∷ f} {nothing ∷ g} {just _ ∷ h} f<g f<h = 3⊆∩f {f} {g} {h} f<g f<h
3⊆∩f {nothing ∷ f} {nothing ∷ g} {nothing ∷ h} f<g f<h = 3⊆∩f {f} {g} {h} f<g f<h
3↑22 : (f : Nat → Two) (i j : Nat) → List (Maybe Two)
3↑22 f Zero j = []
3↑22 f (Suc i) j = just (f j) ∷ 3↑22 f i (Suc j)
_3↑_ : (Nat → Two) → Nat → List (Maybe Two)
_3↑_ f i = 3↑22 f i 0
3↑< : {f : Nat → Two} → { x y : Nat } → x ≤ y → (_3↑_ f x) 3⊆ (_3↑_ f y)
3↑< {f} {x} {y} x<y = lemma x y 0 x<y where
lemma : (x y i : Nat) → x ≤ y → (3↑22 f x i ) 3⊆ (3↑22 f y i )
lemma 0 y i z≤n with f i
lemma Zero Zero i z≤n | i0 = refl
lemma Zero (Suc y) i z≤n | i0 = 3⊆-[] {3↑22 f (Suc y) i}
lemma Zero Zero i z≤n | i1 = refl
lemma Zero (Suc y) i z≤n | i1 = 3⊆-[] {3↑22 f (Suc y) i}
lemma (Suc x) (Suc y) i (s≤s x<y) with f i
lemma (Suc x) (Suc y) i (s≤s x<y) | i0 = lemma x y (Suc i) x<y
lemma (Suc x) (Suc y) i (s≤s x<y) | i1 = lemma x y (Suc i) x<y
Finite3b : (p : List (Maybe Two) ) → Bool
Finite3b [] = true
Finite3b (just _ ∷ f) = Finite3b f
Finite3b (nothing ∷ f) = false
finite3cov : (p : List (Maybe Two) ) → List (Maybe Two)
finite3cov [] = []
finite3cov (just y ∷ x) = just y ∷ finite3cov x
finite3cov (nothing ∷ x) = just i0 ∷ finite3cov x
Dense-3 : F-Dense (List (Maybe Two) ) (λ x → One) _3⊆_ _3∩_
Dense-3 = record {
dense = λ x → Finite3b x ≡ true
; d⊆P = OneObj
; dense-f = λ x → finite3cov x
; dense-d = λ {p} d → lemma1 p
; dense-p = λ {p} d → lemma2 p
} where
lemma1 : (p : List (Maybe Two) ) → Finite3b (finite3cov p) ≡ true
lemma1 [] = refl
lemma1 (just i0 ∷ p) = lemma1 p
lemma1 (just i1 ∷ p) = lemma1 p
lemma1 (nothing ∷ p) = lemma1 p
lemma2 : (p : List (Maybe Two)) → p 3⊆ finite3cov p
lemma2 [] = refl
lemma2 (just i0 ∷ p) = lemma2 p
lemma2 (just i1 ∷ p) = lemma2 p
lemma2 (nothing ∷ p) = lemma2 p
-- min = Data.Nat._⊓_
-- m≤m⊔n = Data.Nat._⊔_
-- open import Data.Nat.Properties
| {
"alphanum_fraction": 0.4838137009,
"avg_line_length": 42,
"ext": "agda",
"hexsha": "48d67d08f9f8e97d14e13d052555f46038a609b4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/zf-in-agda",
"max_forks_repo_path": "src/partfunc.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/zf-in-agda",
"max_issues_repo_path": "src/partfunc.agda",
"max_line_length": 111,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/zf-in-agda",
"max_stars_repo_path": "src/partfunc.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z",
"num_tokens": 4991,
"size": 9576
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise lifting of a predicate to a binary tree
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Tree.Binary.Relation.Unary.All where
open import Level
open import Data.Tree.Binary as Tree using (Tree; leaf; node)
open import Relation.Unary
private
variable
a b p q : Level
A : Set a
B : Set b
data All {A : Set a} (P : A → Set p) : Tree A → Set (a ⊔ p) where
leaf : All P leaf
node : ∀ {l m r} → All P l → P m → All P r → All P (node l m r)
module _ {P : A → Set p} {Q : A → Set q} where
map : ∀[ P ⇒ Q ] → ∀[ All P ⇒ All Q ]
map f leaf = leaf
map f (node l m r) = node (map f l) (f m) (map f r)
| {
"alphanum_fraction": 0.4810281518,
"avg_line_length": 27.2333333333,
"ext": "agda",
"hexsha": "3af499e8b8ed0bc88742c299068ad93c8b69c9d4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Tree/Binary/Relation/Unary/All.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Tree/Binary/Relation/Unary/All.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Tree/Binary/Relation/Unary/All.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 229,
"size": 817
} |
{-# OPTIONS --without-K #-}
--
-- Implementation of Sets using lists
--
open import Prelude
module Sets {i} (A : Set i) (eqdecA : eqdec A) where
valid : list A → Set i
valid l = ∀ x → has-all-paths (x ∈-list l)
set = Σ (list A) (λ l → valid l)
valid-nil : valid nil
valid-nil _ ()
Ø : set
Ø = nil , valid-nil
valid-singleton : ∀ (x : A) → valid (nil :: x)
valid-singleton x y (inr p) (inr q) = ap inr (is-prop-has-all-paths (eqdec-is-set eqdecA y x) p q)
singleton : ∀ A → set
singleton x = (nil :: x) , valid-singleton x
add-carrier : list A → A → list A
add-carrier l a with dec-∈-list eqdecA a l
... | inl _ = l
... | inr _ = l :: a
add-valid : ∀ (s : set) a → valid (add-carrier (fst s) a)
add-valid (l , valid-l) a x b b' with dec-∈-list eqdecA a l
... | inl x∈l = valid-l x b b'
... | inr x∉l with eqdecA x a
add-valid (l , valid-l) a .a (inl x∈l) b' | inr x∉l | inl idp = ⊥-elim (x∉l x∈l)
add-valid (l , valid-l) a .a (inr _) (inl x∈l) | inr x∉l | inl idp = ⊥-elim (x∉l x∈l)
add-valid (l , valid-l) a .a (inr p) (inr q) | inr x∉l | inl idp = ap inr (is-prop-has-all-paths (eqdec-is-set eqdecA a a) p q)
add-valid (l , valid-l) a x (inl x∈l) (inl x∈'l) | inr x∉l | inr _ = ap inl (valid-l x x∈l x∈'l)
add-valid (l , valid-l) a x (inl x∈l) (inr x=a) | inr x∉l | inr x≠a = ⊥-elim (x≠a x=a)
add-valid (l , valid-l) a x (inr x=a) b' | inr x∉l | inr x≠a = ⊥-elim (x≠a x=a)
add : ∀ (s : set) → A → set
add s a = add-carrier (fst s) a , add-valid s a
_∈-set_ : A → set → Set i
a ∈-set s = a ∈-list (fst s)
has-all-paths-∈-set : ∀ a s → has-all-paths (a ∈-set s)
has-all-paths-∈-set a s = snd s a
is-prop-∈-set : ∀ a s → is-prop (a ∈-set s)
is-prop-∈-set a s = has-all-paths-is-prop (has-all-paths-∈-set a s)
add+ : set → list A → set
add+ s nil = s
add+ s (l :: a) = add (add+ s l) a
-- -- Very inefficient implementation of the union of sets
-- _∪-set_ : set → set → set
-- s ∪-set s' = add+ s (fst s')
set-of-list : list A → set
set-of-list l = add+ Ø l
-- -- being in the list or in its set are logically equivalent
-- -- but being in the set is a proposition
-- -- achieves the construction of propositional truncation in a reduced way
∈-set-∈-list : ∀ a l → a ∈-set set-of-list l → a ∈-list l
∈-set-∈-list a (l :: b) a∈s with dec-∈-list eqdecA b (fst (add+ Ø l))
... | inl _ = inl (∈-set-∈-list a l a∈s)
... | inr _ with eqdecA a b
... | inl idp = inr idp
∈-set-∈-list a (l :: b) (inl a∈s) | inr _ | inr _ = inl (∈-set-∈-list a l a∈s)
∈-set-∈-list a (l :: b) (inr idp) | inr _ | inr b≠b = inl (⊥-elim (b≠b idp))
∈-list-∈-set : ∀ a l → a ∈-list l → a ∈-set (set-of-list l)
∈-list-∈-set a (l :: b) a∈l+ with eqdecA a b
∈-list-∈-set a (l :: b) (inr a=b) | inr a≠b = ⊥-elim (a≠b a=b)
∈-list-∈-set a (l :: b) (inl a∈l) | inr a≠b with dec-∈-list eqdecA b (fst (add+ Ø l))
... | inl _ = ∈-list-∈-set a l a∈l
... | inr _ = inl (∈-list-∈-set a l a∈l)
∈-list-∈-set a (l :: b) a∈l+ | inl idp with dec-∈-list eqdecA b (fst (add+ Ø l))
... | inl a∈l = a∈l
... | inr _ = inr idp
-- Note that these are not *really* sets : the order matters
-- In particular the identity types are not correct
_∪-set_ : set → set → set
(s , _) ∪-set (s' , _) = set-of-list (s ++ s')
_⊂_ : set → set → Set i
A ⊂ B = ∀ x → x ∈-set A → x ∈-set B
has-all-paths-→ : ∀ {i} (A B : Set i) → has-all-paths B → has-all-paths (A → B)
has-all-paths-→ A B paths-B f g = funext f g (λ x → paths-B (f x) (g x))
has-all-paths-∀ : ∀ {i} (A : Set i) (B : A → Set i) → (∀ a → has-all-paths (B a)) → has-all-paths (∀ a → B a)
has-all-paths-∀ A B paths-B f g = funext-dep f g λ a → paths-B a (f a) (g a)
is-prop-→ : ∀ {i} A B → is-prop {i} B → is-prop (A → B)
is-prop-→ A B prop-B = has-all-paths-is-prop (has-all-paths-→ A B (is-prop-has-all-paths prop-B))
is-prop-∀ : ∀ {i} (A : Set i) (B : A → Set i) → (∀ a → is-prop (B a)) → is-prop (∀ a → B a)
is-prop-∀ A B prop-B = has-all-paths-is-prop (has-all-paths-∀ A B (λ a → is-prop-has-all-paths (prop-B a)))
is-prop-⊂ : ∀ A B → is-prop (A ⊂ B)
is-prop-⊂ A B = is-prop-∀ _ _ λ a → is-prop-→ _ _ (is-prop-∈-set a B)
_≗_ : set → set → Set i
A ≗ B = (A ⊂ B) × (B ⊂ A)
has-all-paths-≗ : ∀ A B → has-all-paths (A ≗ B)
has-all-paths-≗ A B (A⊂B , B⊂A) (A⊂'B , B⊂'A) = ,= (is-prop-has-all-paths (is-prop-⊂ A B) A⊂B A⊂'B) ((is-prop-has-all-paths (is-prop-⊂ B A) B⊂A B⊂'A))
is-prop-≗ : ∀ A B → is-prop (A ≗ B)
is-prop-≗ A B = has-all-paths-is-prop (has-all-paths-≗ A B)
dec-∈ : ∀ A a → dec (a ∈-set A)
dec-∈ (A , _) a with dec-∈-list eqdecA a A
... | inl a∈A = inl a∈A
... | inr a∉A = inr a∉A
∈++₁ : ∀ l l' (a : A) → a ∈-list l → a ∈-list (l ++ l')
∈++₁ l nil a x = x
∈++₁ l (l' :: a₁) a x = inl (∈++₁ l l' a x)
∈++₂ : ∀ l l' (a : A) → a ∈-list l' → a ∈-list (l ++ l')
∈++₂ l (l' :: a₁) a (inl a∈l') = inl (∈++₂ l l' a a∈l')
∈++₂ l (l' :: a₁) a (inr idp) = inr idp
∈++ : ∀ l l' (a : A) → a ∈-list (l ++ l') → (a ∈-list l) + (a ∈-list l')
∈++ l nil a x = inl x
∈++ l (l' :: a₁) a (inl x) with ∈++ l l' a x
... | inl a∈l = inl a∈l
... | inr a∈l' = inr (inl a∈l')
∈++ l (l' :: a₁) a (inr p) = inr (inr p)
∈-∪₁ : ∀ {A B a} → a ∈-set A → (a ∈-set (A ∪-set B))
∈-∪₁ {A , _} {B = nil , _} {a} a∈A = ∈-list-∈-set a (A ++ nil) a∈A
∈-∪₁ {A , _} {(B :: b) , _} {a} a∈A = ∈-list-∈-set a (A ++ (B :: b)) (inl (∈++₁ A B a a∈A))
∈-∪₂ : ∀ {A B a} → a ∈-set B → (a ∈-set (A ∪-set B))
∈-∪₂ {A , _} {B = nil , _} {a} ()
∈-∪₂ {A , _} {(B :: b) , _} {a} (inl a∈B) = ∈-list-∈-set a (A ++ (B :: b)) (inl (∈++₂ A B a a∈B))
∈-∪₂ {A , _} {(B :: b) , _} {a} (inr idp) = ∈-list-∈-set a (A ++ (B :: b)) (inr idp)
∉-∪ : ∀ {A B a} → ¬ (a ∈-set A) → ¬ (a ∈-set B) → ¬ (a ∈-set (A ∪-set B))
∉-∪ {A , _} {B , _} {a} a∉A a∉B a∈A∪B with ∈++ A B a (∈-set-∈-list _ _ a∈A∪B)
... | inl x = a∉A x
... | inr x = a∉B x
∈-∪ : ∀ {A B a} → a ∈-set (A ∪-set B) → (a ∈-set A) + (a ∈-set B)
∈-∪ {A , _} {B , _} {a} a∈A∪B with ∈++ A B a (∈-set-∈-list _ _ a∈A∪B)
... | inl x = inl x
... | inr x = inr x
⊂-∪ : ∀ {A B C D} → A ⊂ B → C ⊂ D → (A ∪-set C) ⊂ (B ∪-set D)
⊂-∪ {A} {B} {C} {D} A⊂B C⊂D a a∈A∪C with dec-∈ A a | dec-∈ C a
... | inl a∈A | _ = ∈-∪₁ {B} {D} {a} (A⊂B _ a∈A)
... | inr a∉A | inl a∈C = ∈-∪₂ {B} {D} {a} (C⊂D _ a∈C)
... | inr a∉A | inr a∉C = ⊥-elim (∉-∪ {A} {C} {a} a∉A a∉C a∈A∪C)
∪-factor : ∀ A B C → (A ∪-set (B ∪-set C)) ≗ ((A ∪-set B) ∪-set (A ∪-set C))
fst (∪-factor A B C) x x∈A∪B∪C with ∈-∪ {A} {B ∪-set C} {x} x∈A∪B∪C
... | inl x∈A = ∈-∪₁ {A ∪-set B} {A ∪-set C} {x} (∈-∪₁ {A} {B} {x} x∈A)
... | inr x∈A∪B with ∈-∪ {B} {C} {x} x∈A∪B
... | inl x∈B = ∈-∪₁ {A ∪-set B} {A ∪-set C} {x} (∈-∪₂ {A} {B} {x} x∈B)
... | inr x∈C = ∈-∪₂ {A ∪-set B} {A ∪-set C} {x} (∈-∪₂ {A} {C} {x} x∈C)
snd (∪-factor A B C) x x∈A∪B∪A∪C with ∈-∪ {A ∪-set B} {A ∪-set C} {x} x∈A∪B∪A∪C
snd (∪-factor A B C) x x∈A∪B∪A∪C | inl x∈A∪B with ∈-∪ {A} {B} {x} x∈A∪B
... | inl x∈A = ∈-∪₁ {A} {B ∪-set C} {x} x∈A
... | inr x∈B = ∈-∪₂ {A} {B ∪-set C} {x} (∈-∪₁ {B} {C} {x} x∈B)
snd (∪-factor A B C) x x∈A∪B∪A∪C | inr x∈A∪C with ∈-∪ {A} {C} {x} x∈A∪C
... | inl x∈A = ∈-∪₁ {A} {B ∪-set C} {x} x∈A
... | inr x∈C = ∈-∪₂ {A} {B ∪-set C} {x} (∈-∪₂ {B} {C} {x} x∈C)
≗-⊂ : ∀ {A B C} → A ≗ B → B ⊂ C → A ⊂ C
≗-⊂ (A⊂B , _) B⊂C _ a∈A = B⊂C _ (A⊂B _ a∈A)
⊂-trans : ∀ {A B C} → A ⊂ B → B ⊂ C → A ⊂ C
⊂-trans A⊂B B⊂C _ a∈A = B⊂C _ (A⊂B _ a∈A)
∈-singleton : ∀ a → a ∈-set (singleton a)
∈-singleton a = inr idp
∈-Ø : ∀ {x} → ¬ (x ∈-set Ø)
∈-Ø ()
A∪B⊂A∪B∪C : ∀ A B C → (A ∪-set B) ⊂ (A ∪-set (B ∪-set C))
A∪B⊂A∪B∪C A B C x x∈A∪B with ∈-∪ {A} {B} x∈A∪B
... | inl x∈A = ∈-∪₁ {A} {B ∪-set C} x∈A
... | inr x∈B = ∈-∪₂ {A} {B ∪-set C} (∈-∪₁ {B} {C} x∈B)
| {
"alphanum_fraction": 0.4356836297,
"avg_line_length": 40.775,
"ext": "agda",
"hexsha": "4ab95ea4ae4ba111765a0cb55f592176ba0ff27c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ed45935b38d6a86fa662f561866140122ee3dcef",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ThiBen/catt-formalization",
"max_forks_repo_path": "Sets.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ed45935b38d6a86fa662f561866140122ee3dcef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ThiBen/catt-formalization",
"max_issues_repo_path": "Sets.agda",
"max_line_length": 152,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "Sets.agda",
"max_stars_repo_stars_event_max_datetime": "2020-05-20T00:41:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-01T08:26:53.000Z",
"num_tokens": 4248,
"size": 8155
} |
{-# OPTIONS --cubical --safe #-}
module Algebra.Construct.Free.Semilattice.Relation.Unary.Membership where
open import Prelude hiding (⊥; ⊤)
open import Algebra.Construct.Free.Semilattice.Eliminators
open import Algebra.Construct.Free.Semilattice.Definition
open import Cubical.Foundations.HLevels
open import Data.Empty.UniversePolymorphic
open import HITs.PropositionalTruncation.Sugar
open import HITs.PropositionalTruncation.Properties
open import HITs.PropositionalTruncation
open import Data.Unit.UniversePolymorphic
open import Algebra.Construct.Free.Semilattice.Relation.Unary.Any.Def
private
variable p : Level
infixr 5 _∈_
_∈_ : {A : Type a} → A → 𝒦 A → Type a
x ∈ xs = ◇ (_≡ x) xs
| {
"alphanum_fraction": 0.7994269341,
"avg_line_length": 31.7272727273,
"ext": "agda",
"hexsha": "e8172ffbdadc89cbf7770c3232fbc56d27956f27",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Algebra/Construct/Free/Semilattice/Relation/Unary/Membership.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Algebra/Construct/Free/Semilattice/Relation/Unary/Membership.agda",
"max_line_length": 73,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Algebra/Construct/Free/Semilattice/Relation/Unary/Membership.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 201,
"size": 698
} |
{-# OPTIONS --cubical --save-metas #-}
open import Agda.Builtin.IO
open import Agda.Builtin.String
open import Agda.Builtin.Unit
open import Erased-cubical-Pattern-matching-Cubical
open import Erased-cubical-Pattern-matching-Erased
postulate
putStr : String → IO ⊤
{-# FOREIGN GHC import qualified Data.Text.IO #-}
{-# COMPILE GHC putStr = Data.Text.IO.putStr #-}
{-# COMPILE JS putStr =
function (x) {
return function(cb) {
process.stdout.write(x); cb(0); }; } #-}
main : IO ⊤
main = putStr (f c₁)
| {
"alphanum_fraction": 0.6832061069,
"avg_line_length": 23.8181818182,
"ext": "agda",
"hexsha": "a6a7c65e596440845524405ba172fd9fcfc85c35",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "Seanpm2001-Agda-lang/agda",
"max_forks_repo_path": "test/Compiler/simple/Erased-cubical-Pattern-matching.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "Seanpm2001-Agda-lang/agda",
"max_issues_repo_path": "test/Compiler/simple/Erased-cubical-Pattern-matching.agda",
"max_line_length": 51,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Compiler/simple/Erased-cubical-Pattern-matching.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z",
"num_tokens": 147,
"size": 524
} |
------------------------------------------------------------------------------
-- Unary naturales numbers
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.UnaryNumbers where
open import FOTC.Base
------------------------------------------------------------------------------
0' = zero
1' = succ₁ 0'
2' = succ₁ 1'
3' = succ₁ 2'
4' = succ₁ 3'
5' = succ₁ 4'
6' = succ₁ 5'
7' = succ₁ 6'
8' = succ₁ 7'
9' = succ₁ 8'
{-# ATP definitions 0' 1' 2' 3' 4' 5' 6' 7' 8' 9' #-}
10' = succ₁ 9'
11' = succ₁ 10'
12' = succ₁ 11'
13' = succ₁ 12'
14' = succ₁ 13'
15' = succ₁ 14'
16' = succ₁ 15'
17' = succ₁ 16'
18' = succ₁ 17'
19' = succ₁ 18'
{-# ATP definition 10' 11' 12' 13' 14' 15' 16' 17' 18' 19' #-}
20' = succ₁ 19'
21' = succ₁ 20'
22' = succ₁ 21'
23' = succ₁ 22'
24' = succ₁ 23'
25' = succ₁ 24'
26' = succ₁ 25'
27' = succ₁ 26'
28' = succ₁ 27'
29' = succ₁ 28'
{-# ATP definition 20' 21' 22' 23' 24' 25' 26' 27' 28' 29' #-}
30' = succ₁ 29'
31' = succ₁ 30'
32' = succ₁ 31'
33' = succ₁ 32'
34' = succ₁ 33'
35' = succ₁ 34'
36' = succ₁ 35'
37' = succ₁ 36'
38' = succ₁ 37'
39' = succ₁ 38'
{-# ATP definition 30' 31' 32' 33' 34' 35' 36' 37' 38' 39' #-}
40' = succ₁ 39'
41' = succ₁ 40'
42' = succ₁ 41'
43' = succ₁ 42'
44' = succ₁ 43'
45' = succ₁ 44'
46' = succ₁ 45'
47' = succ₁ 46'
48' = succ₁ 47'
49' = succ₁ 48'
{-# ATP definition 40' 41' 42' 43' 44' 45' 46' 47' 48' 49' #-}
50' = succ₁ 49'
51' = succ₁ 50'
52' = succ₁ 51'
53' = succ₁ 52'
54' = succ₁ 53'
55' = succ₁ 54'
56' = succ₁ 55'
57' = succ₁ 56'
58' = succ₁ 57'
59' = succ₁ 58'
{-# ATP definition 50' 51' 52' 53' 54' 55' 56' 57' 58' 59' #-}
60' = succ₁ 59'
61' = succ₁ 60'
62' = succ₁ 61'
63' = succ₁ 62'
64' = succ₁ 63'
65' = succ₁ 64'
66' = succ₁ 65'
67' = succ₁ 66'
68' = succ₁ 67'
69' = succ₁ 68'
{-# ATP definition 60' 61' 62' 63' 64' 65' 66' 67' 68' 69' #-}
70' = succ₁ 69'
71' = succ₁ 70'
72' = succ₁ 71'
73' = succ₁ 72'
74' = succ₁ 73'
75' = succ₁ 74'
76' = succ₁ 75'
77' = succ₁ 76'
78' = succ₁ 77'
79' = succ₁ 78'
{-# ATP definition 70' 71' 72' 73' 74' 75' 76' 77' 78' 79' #-}
80' = succ₁ 79'
81' = succ₁ 80'
82' = succ₁ 81'
83' = succ₁ 82'
84' = succ₁ 83'
85' = succ₁ 84'
86' = succ₁ 85'
87' = succ₁ 86'
88' = succ₁ 87'
89' = succ₁ 88'
{-# ATP definition 80' 81' 82' 83' 84' 85' 86' 87' 88' 89' #-}
90' = succ₁ 89'
91' = succ₁ 90'
92' = succ₁ 91'
93' = succ₁ 92'
94' = succ₁ 93'
95' = succ₁ 94'
96' = succ₁ 95'
97' = succ₁ 96'
98' = succ₁ 97'
99' = succ₁ 98'
{-# ATP definition 90' 91' 92' 93' 94' 95' 96' 97' 98' 99' #-}
100' = succ₁ 99'
101' = succ₁ 100'
102' = succ₁ 101'
103' = succ₁ 102'
104' = succ₁ 103'
105' = succ₁ 104'
106' = succ₁ 105'
107' = succ₁ 106'
108' = succ₁ 107'
109' = succ₁ 108'
{-# ATP definition 100' 101' 102' 103' 104' 105' 106' 107' 108' 109' #-}
110' = succ₁ 109'
111' = succ₁ 110'
{-# ATP definition 110' 111' #-}
| {
"alphanum_fraction": 0.505897772,
"avg_line_length": 18.8395061728,
"ext": "agda",
"hexsha": "04540d89c7520754acbc944ffa8586e5afc8a01a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/UnaryNumbers.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/UnaryNumbers.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/UnaryNumbers.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1350,
"size": 3052
} |
{-# OPTIONS --universe-polymorphism #-}
module Support.FinSet where
open import Support
open import Support.Nat
unbound : ∀ {n} (m : Fin n) → ℕ
unbound zero = zero
unbound {suc n} (suc y) = suc (unbound {n} y)
.Fin-is-bounded : ∀ (n : ℕ) (m : Fin n) → (unbound m < n)
Fin-is-bounded .(suc n) (zero {n}) = Z<Sn
Fin-is-bounded .(suc n) (suc {n} y) = raise< (Fin-is-bounded n y)
enlarge : ∀ {a} (b : Fin (suc a)) (c : Fin (unbound b)) → Fin a
enlarge {zero} zero ()
enlarge {zero} (suc ()) c
enlarge {suc a′} zero ()
enlarge {suc a′} (suc b′) zero = zero
enlarge {suc a′} (suc b′) (suc c′) = suc (enlarge b′ c′)
widen-by : ∀ {a} {b} (a≤b : a < suc b) (c : Fin a) → Fin b
widen-by Z<Sn ()
widen-by (raise< Z<Sn) zero = zero
widen-by (raise< (raise< n<m)) zero = zero
widen-by (raise< Z<Sn) (suc ())
widen-by (raise< (raise< n<m)) (suc y') = suc (widen-by (raise< n<m) y')
widen-+ : (b : ℕ) → ∀ {a} (c : Fin a) → Fin (a + b)
widen-+ b zero = zero
widen-+ b (suc y) = suc (widen-+ b y)
shift : (a : ℕ) → ∀ {b} (c : Fin b) → Fin (a + b)
shift zero c = c
shift (suc y) c = suc (shift y c)
_bounded-by_ : (m : ℕ) → ∀ {n} (m<n : m < n) → Fin n
.0 bounded-by Z<Sn = zero
.(suc n) bounded-by (raise< {n} n<m) = suc (n bounded-by n<m)
unbound-unbounds-bounded-by : ∀ (m n : ℕ) (m<n : m < n) → unbound (m bounded-by m<n) ≣ m
unbound-unbounds-bounded-by .0 .(suc n) (Z<Sn {n}) = ≣-refl
unbound-unbounds-bounded-by .(suc n) .(suc m) (raise< {n} {m} n<m) = ≣-cong suc (unbound-unbounds-bounded-by n m n<m)
_lessen_ : (n : ℕ) → (m : Fin (suc n)) → ℕ
n lessen zero = n
.0 lessen suc {zero} ()
.(suc y) lessen suc {suc y} y' = y lessen y'
lessen-is-subtraction₁ : ∀ (n : ℕ) (m : Fin (suc n)) → (unbound m + (n lessen m)) ≣ n
lessen-is-subtraction₁ n zero = ≣-refl
lessen-is-subtraction₁ .0 (suc {zero} ())
lessen-is-subtraction₁ .(suc y) (suc {suc y} y') = ≣-cong suc (lessen-is-subtraction₁ y y')
lessen-is-subtraction₂ : ∀ (n m : ℕ) → ((n + m) lessen (n bounded-by (+-is-nondecreasingʳ n m)) ≣ m)
lessen-is-subtraction₂ zero m = ≣-refl
lessen-is-subtraction₂ (suc y) m = lessen-is-subtraction₂ y m
_split_ : ∀ {n} (k : Fin n) (m : Fin (suc n)) → Either (Fin (unbound m)) (Fin (n lessen m))
k split zero = inr k
zero split suc y = inl zero
suc y split suc y' = left suc (y split y')
_chops_ : (n : ℕ) → ∀ {m} (k : Fin (n + m)) → Either (Fin n) (Fin m)
0 chops k = inr k
suc n chops zero = inl zero
suc n chops suc k = left suc (n chops k)
rejoin-chops : (n m : ℕ) (k : Fin (n + m)) → either₀ (widen-+ m) (shift n) (n chops k) ≣ k
rejoin-chops zero _ _ = ≣-refl
rejoin-chops (suc _) _ zero = ≣-refl
rejoin-chops (suc n') m (suc k') with n' chops k' | rejoin-chops n' m k'
rejoin-chops (suc _) _ (suc ._) | inl _ | ≣-refl = ≣-refl
rejoin-chops (suc _) _ (suc ._) | inr _ | ≣-refl = ≣-refl
chop-widen-+ : (n m : ℕ) (k : Fin n) → n chops widen-+ m k ≣ inl k
chop-widen-+ zero _ ()
chop-widen-+ (suc n') _ zero = ≣-refl
chop-widen-+ (suc n') m (suc k') with n' chops widen-+ m k' | chop-widen-+ n' m k'
chop-widen-+ (suc n') m (suc ._) | inl k' | ≣-refl = ≣-refl
chop-widen-+ (suc n') m (suc _) | inr _ | ()
chop-shift : (n m : ℕ) (k : Fin m) → n chops shift n k ≣ inr k
chop-shift zero m k = ≣-refl
chop-shift (suc n') m k = ≣-cong (left suc) (chop-shift n' m k)
_cat₀_ : ∀ {ℓ} {n m} {A : Set ℓ} (f : Fin n → A) (g : Fin m → A) → Fin (n + m) → A
_cat₀_ {n = n} {m} f g i = either₀ f g (n chops i)
∙-dist-cat₀ : ∀ {ℓ ℓ′} {n m} {A : Set ℓ} {A′ : Set ℓ′} (f : Fin n → A) (g : Fin m → A) (h : A → A′) {i : Fin (n + m)} → (h ∙ (f cat₀ g)) i ≣ ((h ∙ f) cat₀ (h ∙ g)) i
∙-dist-cat₀ {n = n} {A′ = A′} f g h {i} = answer
where
open ≣-reasoning A′
split-i = n chops i
answer = begin
((h ∙ (f cat₀ g)) i)
≈⟨ ≣-refl ⟩
(h ((f cat₀ g) i))
≈⟨ ≣-cong h ≣-refl ⟩
h (either₀ f g split-i)
≈⟨ ≣-refl ⟩
(h ∙ either₀ f g) split-i
≈⟨ ∙-dist-either₀ f g h {split-i} ⟩
either₀ (h ∙ f) (h ∙ g) split-i
≈⟨ ≣-refl ⟩
((h ∙ f) cat₀ (h ∙ g)) i
∎
_cat_ : ∀ {ℓ} {n m} {A : Fin n → Set ℓ} {B : Fin m → Set ℓ} (f : (i : Fin n) → A i) (g : (j : Fin m) → B j) → (k : Fin (n + m)) → (A cat₀ B) k
_cat_ {n = n} f g i = either f g (n chops i)
_cat′_ : ∀ {ℓ} {n m} {A : Fin (n + m) → Set ℓ} (f : (i : Fin n) → A (widen-+ m i)) (g : (j : Fin m) → A (shift n j)) → (k : Fin (n + m)) → A k
_cat′_ {n = n} {m = m} {A = T} f g k = ≣-subst T (rejoin-chops n m k) (either′ {A = T ∙ either₀ (widen-+ m) (shift n)} f g (n chops k))
_✂_ : ∀ {n} (m : Fin (suc n)) {ℓ} {A : Set ℓ} (f : Fin n → A) → (Fin (unbound m) → A) × (Fin (n lessen m) → A)
_✂_ {n = n} m f = f ∙ enlarge m , f ∙ (≣-subst Fin (lessen-is-subtraction₁ n m) ∙ shift (unbound m))
_✂₀′_ : (m : ℕ) → ∀ {ℓ} {A : Set ℓ} {n} (f : Fin (m + n) → A) → (Fin m → A) × (Fin n → A)
_✂₀′_ m {n = n} f = f ∙ widen-+ n , f ∙ shift m
_✂′_ : (m : ℕ) → ∀ {ℓ} {n} {A : Fin (m + n) → Set ℓ} (f : (k : Fin (m + n)) → A k) → uncurry₀ _×_ (⟨ (λ Aˡ → (i : Fin m) → Aˡ i) , (λ Aʳ → (j : Fin n) → Aʳ j) ⟩ (m ✂₀′ A))
_✂′_ m {n = n} f = f ∙ widen-+ n , f ∙ shift m
| {
"alphanum_fraction": 0.5219988055,
"avg_line_length": 40.5080645161,
"ext": "agda",
"hexsha": "325b1c857aed11ec840e159d94dcbea6332c8070",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Support/FinSet.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Support/FinSet.agda",
"max_line_length": 171,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Support/FinSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 2356,
"size": 5023
} |
------------------------------------------------------------------------------
-- Miscellaneous properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.SortList.Properties.MiscellaneousI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.Bool
open import FOTC.Data.Bool.PropertiesI
open import FOTC.Data.Nat.Inequalities
open import FOTC.Data.Nat.List.PropertiesI
open import FOTC.Data.Nat.List.Type
open import FOTC.Data.Nat.Type
open import FOTC.Data.List
open import FOTC.Data.List.PropertiesI
open import FOTC.Program.SortList.Properties.Totality.BoolI
open import FOTC.Program.SortList.SortList
------------------------------------------------------------------------------
-- This is a weird result but recall that "the relation ≤ between
-- lists is only an ordering if nil is excluded" (Burstall 1969,
-- p. 46).
-- xs≤[] : ∀ {is} → ListN is → OrdList is → LE-Lists is []
-- xs≤[] lnnil _ = ≤-Lists-[] []
-- xs≤[] (lncons {i} {is} Ni LNis) LOconsL =
-- begin
-- ≤-Lists (i ∷ is) []
-- ≡⟨ ≤-Lists-∷ i is [] ⟩
-- ≤-ItemList i [] && ≤-Lists is []
-- ≡⟨ subst (λ t → ≤-ItemList i [] && ≤-Lists is [] ≡ t && ≤-Lists is [])
-- (≤-ItemList-[] i)
-- refl
-- ⟩
-- true && ≤-Lists is []
-- ≡⟨ subst (λ t → true && ≤-Lists is [] ≡ true && t)
-- (xs≤[] LNis (subList-OrdList Ni LNis LOconsL))
-- refl
-- ⟩
-- true && true
-- ≡⟨ &&-tt ⟩
-- true
-- ∎
x≤ys++zs→x≤zs : ∀ {i js ks} → N i → ListN js → ListN ks →
≤-ItemList i (js ++ ks) → ≤-ItemList i ks
x≤ys++zs→x≤zs {i} {ks = ks} Ni lnnil LNks i≤[]++ks =
subst (≤-ItemList i) (++-leftIdentity ks) i≤[]++ks
x≤ys++zs→x≤zs {i} {ks = ks} Ni (lncons {j} {js} Nj LNjs) LNks i≤j∷js++ks =
x≤ys++zs→x≤zs Ni LNjs LNks lemma₂
where
lemma₁ : le i j && le-ItemList i (js ++ ks) ≡ true
lemma₁ =
le i j && le-ItemList i (js ++ ks)
≡⟨ sym (le-ItemList-∷ i j (js ++ ks)) ⟩
le-ItemList i (j ∷ (js ++ ks))
≡⟨ subst (λ t → le-ItemList i (j ∷ (js ++ ks)) ≡ le-ItemList i t)
(sym (++-∷ j js ks))
refl
⟩
le-ItemList i ((j ∷ js) ++ ks) ≡⟨ i≤j∷js++ks ⟩
true ∎
lemma₂ : ≤-ItemList i (js ++ ks)
lemma₂ = &&-list₂-t₂ (le-Bool Ni Nj)
(le-ItemList-Bool Ni (++-ListN LNjs LNks))
lemma₁
xs++ys-OrdList→xs≤ys : ∀ {is js} → ListN is → ListN js →
OrdList (is ++ js) → ≤-Lists is js
xs++ys-OrdList→xs≤ys {js = js} lnnil LNjs OLis++js = le-Lists-[] js
xs++ys-OrdList→xs≤ys {js = js} (lncons {i} {is} Ni LNis) LNjs OLis++js =
le-Lists (i ∷ is) js
≡⟨ le-Lists-∷ i is js ⟩
le-ItemList i js && le-Lists is js
≡⟨ subst (λ t → le-ItemList i js && le-Lists is js ≡
t && le-Lists is js)
(x≤ys++zs→x≤zs Ni LNis LNjs lemma₁)
refl
⟩
true && le-Lists is js
≡⟨ subst (λ t → true && le-Lists is js ≡ true && t)
(xs++ys-OrdList→xs≤ys LNis LNjs lemma₂) --IH.
refl
⟩
true && true
≡⟨ t&&x≡x true ⟩
true ∎
where
lemma₀ : le-ItemList i (is ++ js) && ordList (is ++ js) ≡ true
lemma₀ = trans (sym (ordList-∷ i (is ++ js)))
(trans (subst (λ t → ordList (i ∷ is ++ js) ≡ ordList t)
(sym (++-∷ i is js))
refl)
OLis++js)
helper₁ : Bool (le-ItemList i (is ++ js))
helper₁ = le-ItemList-Bool Ni (++-ListN LNis LNjs)
helper₂ : Bool (ordList (is ++ js))
helper₂ = ordList-Bool (++-ListN LNis LNjs)
lemma₁ : le-ItemList i (is ++ js) ≡ true
lemma₁ = &&-list₂-t₁ helper₁ helper₂ lemma₀
lemma₂ : ordList (is ++ js) ≡ true
lemma₂ = &&-list₂-t₂ helper₁ helper₂ lemma₀
x≤ys→x≤zs→x≤ys++zs : ∀ {i js ks} → N i → ListN js → ListN ks →
≤-ItemList i js →
≤-ItemList i ks →
≤-ItemList i (js ++ ks)
x≤ys→x≤zs→x≤ys++zs {i} {ks = ks} Ni lnnil LNks _ i≤k =
subst (≤-ItemList i) (sym (++-leftIdentity ks)) i≤k
x≤ys→x≤zs→x≤ys++zs {i} {ks = ks} Ni (lncons {j} {js} Nj LNjs) LNks i≤j∷js i≤k =
le-ItemList i ((j ∷ js) ++ ks)
≡⟨ subst (λ t → le-ItemList i ((j ∷ js) ++ ks) ≡
le-ItemList i t)
(++-∷ j js ks)
refl
⟩
le-ItemList i (j ∷ (js ++ ks))
≡⟨ le-ItemList-∷ i j (js ++ ks) ⟩
le i j && le-ItemList i (js ++ ks)
≡⟨ subst₂ (λ t₁ t₂ → le i j && le-ItemList i (js ++ ks) ≡ t₁ && t₂)
(&&-list₂-t₁ helper₁ helper₂ helper₃)
(x≤ys→x≤zs→x≤ys++zs Ni LNjs LNks
(&&-list₂-t₂ helper₁ helper₂ helper₃)
i≤k)
refl
⟩
true && true
≡⟨ t&&x≡x true ⟩
true ∎
where
helper₁ : Bool (le i j)
helper₁ = le-Bool Ni Nj
helper₂ : Bool (le-ItemList i js)
helper₂ = le-ItemList-Bool Ni LNjs
helper₃ : le i j && (le-ItemList i js) ≡ true
helper₃ = trans (sym (le-ItemList-∷ i j js)) i≤j∷js
xs≤ys→xs≤zs→xs≤ys++zs : ∀ {is js ks} → ListN is → ListN js → ListN ks →
≤-Lists is js →
≤-Lists is ks →
≤-Lists is (js ++ ks)
xs≤ys→xs≤zs→xs≤ys++zs lnnil LNjs LNks _ _ = le-Lists-[] _
xs≤ys→xs≤zs→xs≤ys++zs {js = js} {ks} (lncons {i} {is} Ni LNis)
LNjs LNks i∷is≤js i∷is≤ks =
le-Lists (i ∷ is) (js ++ ks)
≡⟨ le-Lists-∷ i is (js ++ ks) ⟩
le-ItemList i (js ++ ks) && le-Lists is (js ++ ks)
≡⟨ subst (λ t → le-ItemList i (js ++ ks) && le-Lists is (js ++ ks) ≡
t && le-Lists is (js ++ ks))
(x≤ys→x≤zs→x≤ys++zs Ni LNjs LNks
(&&-list₂-t₁ helper₁ helper₂ helper₃)
(&&-list₂-t₁ helper₄ helper₅ helper₆))
refl
⟩
true && le-Lists is (js ++ ks)
≡⟨ subst (λ t → true && le-Lists is (js ++ ks) ≡ true && t)
(xs≤ys→xs≤zs→xs≤ys++zs LNis LNjs LNks
(&&-list₂-t₂ helper₁ helper₂ helper₃)
(&&-list₂-t₂ helper₄ helper₅ helper₆))
refl
⟩
true && true
≡⟨ t&&x≡x true ⟩
true ∎
where
helper₁ = le-ItemList-Bool Ni LNjs
helper₂ = le-Lists-Bool LNis LNjs
helper₃ = trans (sym (le-Lists-∷ i is js)) i∷is≤js
helper₄ = le-ItemList-Bool Ni LNks
helper₅ = le-Lists-Bool LNis LNks
helper₆ = trans (sym (le-Lists-∷ i is ks)) i∷is≤ks
xs≤zs→ys≤zs→xs++ys≤zs : ∀ {is js ks} → ListN is → ListN js → ListN ks →
≤-Lists is ks →
≤-Lists js ks →
≤-Lists (is ++ js) ks
xs≤zs→ys≤zs→xs++ys≤zs {js = js} {ks} lnnil LNjs LNks is≤ks js≤ks =
subst (λ t → ≤-Lists t ks)
(sym (++-leftIdentity js))
js≤ks
xs≤zs→ys≤zs→xs++ys≤zs {js = js} {ks}
(lncons {i} {is} Ni LNis) LNjs LNks i∷is≤ks js≤ks =
le-Lists ((i ∷ is) ++ js) ks
≡⟨ subst (λ t → le-Lists ((i ∷ is) ++ js) ks ≡ le-Lists t ks)
(++-∷ i is js)
refl
⟩
le-Lists (i ∷ (is ++ js)) ks
≡⟨ le-Lists-∷ i (is ++ js) ks ⟩
le-ItemList i ks && le-Lists (is ++ js) ks
≡⟨ subst₂ (λ x y → le-ItemList i ks && le-Lists (is ++ js) ks ≡ x && y)
≤-ItemList-i-ks
≤-Lists-is++js-ks
refl
⟩
true && true
≡⟨ t&&x≡x true ⟩
true ∎
where
helper₁ = le-ItemList-Bool Ni LNks
helper₂ = le-Lists-Bool LNis LNks
helper₃ = trans (sym (le-Lists-∷ i is ks)) i∷is≤ks
≤-ItemList-i-ks : ≤-ItemList i ks
≤-ItemList-i-ks = &&-list₂-t₁ helper₁ helper₂ helper₃
≤-Lists-is++js-ks : ≤-Lists (is ++ js) ks
≤-Lists-is++js-ks =
xs≤zs→ys≤zs→xs++ys≤zs LNis LNjs LNks
(&&-list₂-t₂ helper₁ helper₂ helper₃)
js≤ks
------------------------------------------------------------------------------
-- References
--
-- Burstall, R. M. (1969). Proving properties of programs by
-- structural induction. The Computer Journal 12.1, pp. 41–48.
| {
"alphanum_fraction": 0.4748510131,
"avg_line_length": 36.008583691,
"ext": "agda",
"hexsha": "1dd786b98dec4a0fbd57f028c21054090a0789eb",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/SortList/Properties/MiscellaneousI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/SortList/Properties/MiscellaneousI.agda",
"max_line_length": 79,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/SortList/Properties/MiscellaneousI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 3058,
"size": 8390
} |
-- We use Kalmar's lemma to show completeness. See
-- https://iep.utm.edu/prop-log/
-- http://comet.lehman.cuny.edu/mendel/Adlogic/sem5.pdf
{-# OPTIONS --without-K --safe #-}
module Kalmar where
-- imports from stdlib.
import Data.Empty as DE
open import Data.Bool using (Bool ; not ; false ; true)
open import Data.Nat using (ℕ ; _≟_)
open import Data.Nat.Properties using (≡-decSetoid)
open import Data.Product renaming (_,_ to _,'_) using (_×_)
open import Data.List using (List ; map ; _++_ ; deduplicate ; _∷_ ; [])
open import Data.List.Relation.Unary.Unique.DecSetoid ≡-decSetoid using (Unique ; [] ; _∷_)
open import Data.List.Membership.DecPropositional _≟_ renaming (_∈_ to _∈ℕ_) using (_∉_)
open import Relation.Nullary as RN using (yes ; no)
open import Data.List.Relation.Unary.Any using (Any ; here ; there)
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl ; cong₂)
-- imports from my files.
open import PropLogic
-- ----------------------------------------------------------------------
-- Inspect.
-- When "f x" evaluates to some "y", pattern matching on "Inspect (f
-- x)" gives "y" and the proof that "f x ≡ y". We use this vesion of
-- inspect instead of the one in PropositionalEquality for convenience.
data Inspect {A : Set}(x : A) : Set where
it : (y : A) -> x ≡ y -> Inspect x
inspect : {A : Set}(x : A) -> Inspect x
inspect x = it x refl
-- ----------------------------------------------------------------------
-- Definitons and lemmas.
-- Fix a formula by possibly negating it such that under the given
-- assignment, the fixed formula is true.
fix-formula : Assign -> Formula -> Formula
fix-formula a f with interp a f
... | true = f
... | false = ¬ f
-- Fix a symbol by possibly negating it such that under the given
-- assignment, the fixed symbol is true. We call a natural number a
-- "symbol". (Recall P n is the nth propositional symbol)
fix-sym : Assign -> ℕ -> Formula
fix-sym a n with a n
... | true = P n
... | false = ¬ (P n)
-- Given an assignment and a list of symbols, return a context
-- consisting of "fixed symbols". We call a list of natural numbers
-- "symbol context" or "sctx". (recall context is a list of
-- formulas)
fix-sctx : Assign -> List ℕ -> Context
fix-sctx a = map (fix-sym a)
-- Given an assignment "a", and a symbol "v", return an new
-- assignment that negate "a v", and is the same as "a" in all other
-- symbols.
negate-assign-at : Assign -> ℕ -> (ℕ -> Bool)
negate-assign-at a m n with m ≟ n
... | no ¬p = a n
... | yes p = not (a n)
-- Lemmas about negate-assign-at.
lemma1-negate-assign-at : ∀ {a m n} -> RN.¬ (m ≡ n) -> negate-assign-at a m n ≡ a n
lemma1-negate-assign-at {a} {m} {n} neq with (m ≟ n)
... | yes p = DE.⊥-elim (neq p)
... | no _ = refl
lemma2-negate-assign-at : ∀ {a m n} -> (m ≡ n) -> negate-assign-at a m n ≡ not (a n)
lemma2-negate-assign-at {a} {m} {.m} refl with m ≟ m
... | no ¬p = DE.⊥-elim (¬p refl)
... | yes p = refl
lemma-fix-sym : ∀ {a m n} -> RN.¬ m ≡ n -> fix-sym (negate-assign-at a m) n ≡ fix-sym a n
lemma-fix-sym {a} {m} {n} neq rewrite lemma1-negate-assign-at {a} {m} {n} neq = refl
lemma-fix-sym-neg : ∀ {a n} -> (a n ≡ false) -> fix-sym (negate-assign-at a n) n ≡ (P n)
lemma-fix-sym-neg {a} {n} eq with lemma2-negate-assign-at {a} {n} {n} refl
... | hyp rewrite hyp | eq = refl
lemma-fix-sym-pos : ∀ {a n} -> (a n ≡ true) -> fix-sym (negate-assign-at a n) n ≡ ¬ (P n)
lemma-fix-sym-pos {a} {n} eq with lemma2-negate-assign-at {a} {n} {n} refl
... | hyp rewrite hyp | eq = refl
-- A lemma about fix-sctx.
lemma-fix-sctx : ∀ {a ns n} -> n ∉ ns -> fix-sctx (negate-assign-at a n) ns ≡ fix-sctx a ns
lemma-fix-sctx {a} {Empty} {n} nin = refl
lemma-fix-sctx {a} {ns , x} {n} nin = cong₂ _,_ (lemma-fix-sctx n∉ns) (lemma-fix-sym claim)
where
open import Data.List.Relation.Unary.Any using (there ; here)
n∉ns : n ∉ ns
n∉ns = λ x₁ → nin (there x₁)
claim : RN.¬ n ≡ x
claim = λ x₁ → nin (here x₁)
-- Given a formula, return the list of all the symbol in it
-- (allowing repeation).
syms-of-formula : Formula -> List ℕ
syms-of-formula (P x) = x ∷ []
syms-of-formula (A ∧ B) = (syms-of-formula A) ++ (syms-of-formula B)
syms-of-formula (A ⇒ B) = (syms-of-formula A) ++ (syms-of-formula B)
syms-of-formula ⊥ = []
syms-of-formula ⊤ = []
syms-of-formula (¬ f) = syms-of-formula f
syms-of-formula (A ∨ B) = (syms-of-formula A) ++ (syms-of-formula B)
-- De Morgan's law.
demorg : ∀ {Γ A B} -> Γ ⊢ (¬ A) ∧ (¬ B) -> Γ ⊢ ¬ (A ∨ B)
demorg der = ¬-intro (∨-elim (assump ∈-base) (¬-elim (∧-elim1 (weakening der (λ z → ∈-step (∈-step z)))) (assump ∈-base)) ((¬-elim (∧-elim2 (weakening der (λ z → ∈-step (∈-step z)))) (assump ∈-base))))
demorg1 : ∀ {Γ A B} -> Γ ⊢ (¬ A) ∨ (¬ B) -> Γ ⊢ ¬ (A ∧ B)
demorg1 der = ¬-intro (∨-elim (weakening der ∈-step) (¬-elim (assump ∈-base) (∧-elim1 (assump (∈-step ∈-base)))) ((¬-elim (assump ∈-base) (∧-elim2 (assump (∈-step ∈-base))))))
-- Implication with a null hypothesis is always syntactically valid.
null-hyp : ∀ {Γ A B} -> Γ ⊢ (¬ A) -> Γ ⊢ A ⇒ B
null-hyp der = ⇒-intro (⊥-elim (¬-elim (weakening der ∈-step) (assump ∈-base)))
-- Implication with a null conclusion is always syntactically invalid.
null-conclusion : ∀ {Γ A B} -> Γ ⊢ A -> Γ ⊢ (¬ B) -> Γ ⊢ ¬ (A ⇒ B)
null-conclusion der1 der2 = ¬-intro (¬-elim (weakening der2 ∈-step) (⇒-elim (assump ∈-base) (weakening der1 ∈-step)))
-- Double negation of "A" is valid if "A" is valid.
double-negate : ∀ {Γ A} -> Γ ⊢ A -> Γ ⊢ ¬ (¬ A)
double-negate der = ¬-intro (¬-elim (assump ∈-base) (weakening der ∈-step))
-- ----------------------------------------------------------------------
-- List containment.
-- In file "Logic", membership and context containment are defined
-- similarly but differently from the one in stdlib. we have to do a
-- translation.
infix 3 _⊂_
_⊂_ : List ℕ -> List ℕ -> Set
xs ⊂ ys = ∀ {x} -> x ∈ℕ xs -> x ∈ℕ ys
-- Lemma: membership is functorial.
lemma-fix-sym-∈ : ∀ {ρ} {x} {ys} -> x ∈ℕ ys -> fix-sym ρ x ∈ fix-sctx ρ ys
lemma-fix-sym-∈ {ρ} {x} {.(_ , x₁)} (here {x₁} px) rewrite px = ∈-base
lemma-fix-sym-∈ {ρ} {x} {.(xs , x₁)} (there {x₁} {xs} hyp) = ∈-step (lemma-fix-sym-∈ hyp)
-- Lemma: removing the head element preserves containment.
lemma-⊂-rh : ∀ {x : ℕ} {xs ys} -> (x ∷ xs) ⊂ ys -> xs ⊂ ys
lemma-⊂-rh {x} {.(_ , _)} {ys} sub (here px) rewrite px = sub (there (here refl))
lemma-⊂-rh {x} {.(_ , _)} {ys} sub (there hyp) = sub (there (there hyp))
-- Lemma: List containment is functorial.
lemma-map : ∀ {ρ xs ys} -> xs ⊂ ys -> fix-sctx ρ xs ⊆ fix-sctx ρ ys
lemma-map {ρ} {Empty} {ys} sub = λ {()}
lemma-map {ρ} {xs , x} {ys} sub = λ { ∈-base → lemma-fix-sym-∈ (sub (here refl)) ; (∈-step x₁) → lemma-map (lemma-⊂-rh sub) x₁}
-- ----------------------------------------------------------------------
-- Kalmar's Lemma.
mutual
-- We use aux to abstract over similar codes.
aux : ∀ ρ F G ->
let Γ = fix-sctx ρ (syms-of-formula F ++ syms-of-formula G) in
Γ ⊢ (fix-formula ρ F) × Γ ⊢ (fix-formula ρ G)
aux ρ F G = let vl = syms-of-formula F in let vr = syms-of-formula G in
weakening (lemma-Kalmar {F} ρ) (lemma-map {ρ} {vl} {vl ++ vr} ∈-++⁺ˡ)
,' weakening (lemma-Kalmar {G} ρ) (lemma-map {ρ} {vr} {vl ++ vr} (∈-++⁺ʳ vl {ys = vr}))
where
open import Data.List.Membership.Propositional.Properties using (∈-++⁺ˡ ; ∈-++⁺ʳ)
lemma-Kalmar : ∀ {F} ρ -> fix-sctx ρ (syms-of-formula F) ⊢ fix-formula ρ F
lemma-Kalmar {P x} ρ with ρ x
... | true = assump ∈-base
... | false = assump ∈-base
lemma-Kalmar {F ∧ F₁} ρ with inspect (interp ρ F) | inspect (interp ρ F₁) | aux ρ F F₁
... | it false x | it false x₁ | iha ,' ihb rewrite x | x₁ = demorg1 (∨-intro2 ihb)
... | it false x | it true x₁ | iha ,' ihb rewrite x | x₁ = demorg1 (∨-intro1 iha)
... | it true x | it false x₁ | iha ,' ihb rewrite x | x₁ = demorg1 (∨-intro2 ihb)
... | it true x | it true x₁ | iha ,' ihb rewrite x | x₁ = ∧-intro iha ihb
lemma-Kalmar {F ⇒ F₁} ρ with inspect (interp ρ F) | inspect (interp ρ F₁) | aux ρ F F₁
... | it true x | it true x₁ | iha ,' ihb rewrite x | x₁ = ⇒-intro (weakening ihb ∈-step)
... | it false x | it true x₁ | iha ,' ihb rewrite x | x₁ = ⇒-intro (weakening ihb ∈-step)
... | it true x | it false x₁ | iha ,' ihb rewrite x | x₁ = null-conclusion iha ihb
... | it false x | it false x₁ | iha ,' ihb rewrite x | x₁ = null-hyp iha
lemma-Kalmar {F ∨ F₁} ρ with inspect (interp ρ F) | inspect (interp ρ F₁) | aux ρ F F₁
... | it true x | it true x₁ | iha ,' ihb rewrite x | x₁ = ∨-intro1 iha
... | it false x | it true x₁ | iha ,' ihb rewrite x | x₁ = ∨-intro2 ihb
... | it true x | it false x₁ | iha ,' ihb rewrite x | x₁ = ∨-intro1 iha
... | it false x | it false x₁ | iha ,' ihb rewrite x | x₁ = demorg (∧-intro iha ihb)
lemma-Kalmar {⊥} ρ = ¬-intro (assump ∈-base)
lemma-Kalmar {⊤} ρ = ⊤-intro
lemma-Kalmar {¬ F} ρ with inspect (interp ρ F) | lemma-Kalmar {F} ρ
... | it false x | ih rewrite x = ih
... | it true x | ih rewrite x = double-negate ih
-- ----------------------------------------------------------------------
-- Unique symbol context.
-- The idea is that the deduplicated symbol context is as strong as
-- the original one. For the former, we can make two assignments such
-- that they only differs at one symbol, i.e. the head symbol. Then by
-- using ∨-elim we can reduce the symbol context by removing the head.
-- Lemma: "symbol context version" of weakening.
weakening-sym : ∀ {ρ xs ys F} -> xs ⊂ ys -> fix-sctx ρ xs ⊢ F -> fix-sctx ρ ys ⊢ F
weakening-sym {ρ} {xs} {ys} {F} sub hyp = weakening hyp (lemma-map sub)
-- Lemma: Deduplicated symbol ctx is as strong as the original ctx.
lemma-dedup : ∀ {ρ xs F} -> fix-sctx ρ xs ⊢ F -> fix-sctx ρ (deduplicate _≟_ xs) ⊢ F
lemma-dedup {xs = xs} = weakening-sym λ x → ∈-deduplicate⁺ _≟_ {xs} x
where
open import Data.List.Membership.Propositional.Properties using (∈-deduplicate⁺)
-- law of excluded middle is derivable.
ex-mid : ∀ {A} -> Empty ⊢ (¬ A) ∨ A
ex-mid {A} = ∨-elim step (∨-intro1 (¬-intro (⇒-elim (assump (∈-step ∈-base)) (assump ∈-base)))) (∨-intro2 (double-negation (⇒-intro (⇒-elim (assump (∈-step ∈-base)) (¬-intro (⇒-elim (assump (∈-step ∈-base)) (assump ∈-base)))))))
where
demorgan : ∀ {A B} -> Empty ⊢ ((A ∧ B) ⇒ ⊥) ⇒ (A ⇒ ⊥) ∨ (B ⇒ ⊥)
demorgan = ⇒-intro (double-negation (⇒-intro (⇒-elim (assump ∈-base) (∨-intro1 (⇒-intro (⇒-elim (assump (∈-step ∈-base)) (∨-intro2 (⇒-intro (⇒-elim (assump (∈-step (∈-step (∈-step ∈-base)))) (∧-intro (assump (∈-step ∈-base)) (assump ∈-base)))))))))))
step : Empty ⊢ ((A ⇒ ⊥) ∨ ((¬ A) ⇒ ⊥))
step = ⇒-elim (demorgan {A} {¬ A}) (⇒-intro (¬-elim (∧-elim2 (assump ∈-base)) (∧-elim1 (assump ∈-base))))
-- ∨-elim instantiated using excluded middle.
∨-elim-exmid : ∀ {Γ A B} -> Γ , ¬ A ⊢ B -> Γ , A ⊢ B -> Γ ⊢ B
∨-elim-exmid {Γ} {A} {b} d e = ∨-elim (weakening ex-mid lemma-⊆-empty) d e
-- Lemma: Removing one symbol from symbol context.
lemma-sctx-reduce : ∀ {ρ ns n F} -> (n ∉ ns) ->
fix-sctx ρ (n ∷ ns) ⊢ F ->
fix-sctx (negate-assign-at ρ n) (n ∷ ns) ⊢ F ->
fix-sctx ρ ns ⊢ F
lemma-sctx-reduce {ρ} {ns} {n} {F} nin h1 h2 with inspect (ρ n)
... | it false pf rewrite (lemma-fix-sctx {a = ρ} nin) | lemma-fix-sym-neg {ρ} {n} pf | pf = ∨-elim-exmid h1 h2
... | it true pf rewrite (lemma-fix-sctx {a = ρ} nin) | lemma-fix-sym-pos {ρ} {n} pf | pf = ∨-elim-exmid h2 h1
-- lemma: if the symbol ctx is unique, we can repeatedly use
-- lemma-sctx-reduce to get an Empty context.
lemma-unique-ctx-reduce : ∀ {F} {ns : List ℕ} -> Unique (ns) -> (∀ ρ -> fix-sctx ρ ns ⊢ F) -> Empty ⊢ F
lemma-unique-ctx-reduce {F} {.Empty} [] hyp = hyp (λ _ → false)
lemma-unique-ctx-reduce {F} {.(xs , x₁)} (_∷_ {x = x₁} {xs = xs} x uns) hyp = ih
where
open import Data.List.Relation.Unary.All
open import Function
anyAll : ∀ {ys : List ℕ} {Pd : ℕ -> Set} -> Any Pd ys -> RN.¬ (All (RN.¬_ ∘ Pd) ys)
anyAll {.(_ , _)} {Pd} (here px) (px₁ ∷ all₁) = px₁ px
anyAll {.(xs , _)} {Pd} (there {xs = xs} any₁) (px ∷ all₁) = anyAll {xs} {Pd} any₁ all₁
x₁∉xs : x₁ ∉ xs
x₁∉xs h = anyAll h x
ih : Empty ⊢ F
ih = lemma-unique-ctx-reduce {F} {xs} uns λ ρ → lemma-sctx-reduce {ρ} {xs} {x₁} {F} x₁∉xs (hyp ρ) (hyp (negate-assign-at ρ x₁))
-- ----------------------------------------------------------------------
-- Completeness.
-- lemma-Kalmar instantiated with semantical entailment.
lemma-Kalmar-⊧ : ∀ {ρ F} -> Empty ⊧ F -> fix-sctx ρ (syms-of-formula F) ⊢ F
lemma-Kalmar-⊧ {ρ} {F} st with lemma-Kalmar {F} ρ | st ρ refl
... | kal | Ft rewrite Ft = kal
-- lemma-dedup instantiated with semantical entailment.
lemma-dedup-⊧ : ∀ {F} -> Empty ⊧ F -> (∀ ρ -> fix-sctx ρ (deduplicate _≟_ (syms-of-formula F)) ⊢ F)
lemma-dedup-⊧ st = λ ρ → lemma-dedup (lemma-Kalmar-⊧ (λ ρ _ → st ρ refl))
-- | Completeness in empty context.
completeness-empty : ∀ {F} -> Empty ⊧ F -> Empty ⊢ F
completeness-empty {F} st = lemma-unique-ctx-reduce (deduplicate-! ≡-decSetoid (syms-of-formula F)) (lemma-dedup-⊧ {F} st)
where
open import Data.List.Relation.Unary.Unique.DecSetoid.Properties using (deduplicate-!)
-- | completeness-property.
completeness : ∀ Γ A -> Γ ⊧ A -> Γ ⊢ A
completeness Empty A hyp = completeness-empty {A} hyp
completeness (Γ , B) A hyp = ⇒-elim (weakening (completeness Γ (B ⇒ A) (lemma-⇒-intro Γ B A hyp)) ∈-step) (assump ∈-base)
| {
"alphanum_fraction": 0.5815893349,
"avg_line_length": 47.6134751773,
"ext": "agda",
"hexsha": "4833ce2c8de838964884390028e0855fb06cc2b1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "646ccb162cf01fa0d1edafcc830db6750099ed21",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "onestruggler/Kalmar",
"max_forks_repo_path": "Kalmar.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "646ccb162cf01fa0d1edafcc830db6750099ed21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "onestruggler/Kalmar",
"max_issues_repo_path": "Kalmar.agda",
"max_line_length": 256,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "646ccb162cf01fa0d1edafcc830db6750099ed21",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "onestruggler/Kalmar",
"max_stars_repo_path": "Kalmar.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4989,
"size": 13427
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.ZCohomology.Groups.Sn where
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.Groups.Unit
open import Cubical.ZCohomology.Groups.Connected
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.Groups.Prelims
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.HITs.Pushout
open import Cubical.HITs.Sn
open import Cubical.HITs.S1
open import Cubical.HITs.Susp
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; elim to sElim ; elim2 to sElim2 ; map to sMap)
open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim ; elim2 to pElim2 ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁) hiding (map)
open import Cubical.Data.Bool
open import Cubical.Data.Sigma
open import Cubical.Data.Int renaming (_+_ to _+ℤ_; +-comm to +ℤ-comm ; +-assoc to +ℤ-assoc)
open import Cubical.Data.Nat
open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec)
open import Cubical.Data.Unit
open import Cubical.Homotopy.Connected
open import Cubical.Algebra.Group
infixr 31 _□_
_□_ : _
_□_ = compGroupIso
open GroupEquiv
open vSES
open GroupIso
open GroupHom
open BijectionIso
Sn-connected : (n : ℕ) (x : typ (S₊∙ (suc n))) → ∥ pt (S₊∙ (suc n)) ≡ x ∥₁
Sn-connected zero = toPropElim (λ _ → propTruncIsProp) ∣ refl ∣₁
Sn-connected (suc zero) = suspToPropElim base (λ _ → propTruncIsProp) ∣ refl ∣₁
Sn-connected (suc (suc n)) = suspToPropElim north (λ _ → propTruncIsProp) ∣ refl ∣₁
H⁰-Sⁿ≅ℤ : (n : ℕ) → GroupIso (coHomGr 0 (S₊ (suc n))) intGroup
H⁰-Sⁿ≅ℤ zero = H⁰-connected base (Sn-connected 0)
H⁰-Sⁿ≅ℤ (suc n) = H⁰-connected north (Sn-connected (suc n))
-- -- ----------------------------------------------------------------------
--- We will need to switch between Sⁿ defined using suspensions and using pushouts
--- in order to apply Mayer Vietoris.
S1Iso : Iso S¹ (Pushout {A = Bool} (λ _ → tt) λ _ → tt)
S1Iso = S¹IsoSuspBool ⋄ invIso PushoutSuspIsoSusp
coHomPushout≅coHomSn : (n m : ℕ) → GroupIso (coHomGr m (S₊ (suc n)))
(coHomGr m (Pushout {A = S₊ n} (λ _ → tt) λ _ → tt))
coHomPushout≅coHomSn zero m =
Iso+Hom→GrIso (setTruncIso (domIso S1Iso))
(sElim2 (λ _ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ _ → refl))
coHomPushout≅coHomSn (suc n) m =
Iso+Hom→GrIso (setTruncIso (domIso (invIso PushoutSuspIsoSusp)))
(sElim2 (λ _ _ → isSet→isGroupoid setTruncIsSet _ _) (λ _ _ → refl))
-------------------------- H⁰(S⁰) -----------------------------
S0→Int : (a : Int × Int) → S₊ 0 → Int
S0→Int a true = fst a
S0→Int a false = snd a
H⁰-S⁰≅ℤ×ℤ : GroupIso (coHomGr 0 (S₊ 0)) (dirProd intGroup intGroup)
fun (map H⁰-S⁰≅ℤ×ℤ) = sRec (isSet× isSetInt isSetInt) λ f → (f true) , (f false)
isHom (map H⁰-S⁰≅ℤ×ℤ) = sElim2 (λ _ _ → isSet→isGroupoid (isSet× isSetInt isSetInt) _ _)
λ a b → refl
inv H⁰-S⁰≅ℤ×ℤ a = ∣ S0→Int a ∣₂
rightInv H⁰-S⁰≅ℤ×ℤ _ = refl
leftInv H⁰-S⁰≅ℤ×ℤ = sElim (λ _ → isSet→isGroupoid setTruncIsSet _ _)
λ f → cong ∣_∣₂ (funExt (λ {true → refl ; false → refl}))
------------------------- H¹(S⁰) ≅ 0 -------------------------------
private
Hⁿ-S0≃Kₙ×Kₙ : (n : ℕ) → Iso (S₊ 0 → coHomK (suc n)) (coHomK (suc n) × coHomK (suc n))
Iso.fun (Hⁿ-S0≃Kₙ×Kₙ n) f = (f true) , (f false)
Iso.inv (Hⁿ-S0≃Kₙ×Kₙ n) (a , b) true = a
Iso.inv (Hⁿ-S0≃Kₙ×Kₙ n) (a , b) false = b
Iso.rightInv (Hⁿ-S0≃Kₙ×Kₙ n) a = refl
Iso.leftInv (Hⁿ-S0≃Kₙ×Kₙ n) b = funExt λ {true → refl ; false → refl}
isContrHⁿ-S0 : (n : ℕ) → isContr (coHom (suc n) (S₊ 0))
isContrHⁿ-S0 n = isContrRetract (Iso.fun (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n)))
(Iso.inv (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n)))
(Iso.leftInv (setTruncIso (Hⁿ-S0≃Kₙ×Kₙ n)))
(isContrHelper n)
where
isContrHelper : (n : ℕ) → isContr (∥ (coHomK (suc n) × coHomK (suc n)) ∥₂)
fst (isContrHelper zero) = ∣ (0₁ , 0₁) ∣₂
snd (isContrHelper zero) = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ y → elim2 {B = λ x y → ∣ (0₁ , 0₁) ∣₂ ≡ ∣(x , y) ∣₂ }
(λ _ _ → isOfHLevelPlus {n = 2} 2 setTruncIsSet _ _)
(toPropElim2 (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y)
isContrHelper (suc zero) = ∣ (0₂ , 0₂) ∣₂
, sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ y → elim2 {B = λ x y → ∣ (0₂ , 0₂) ∣₂ ≡ ∣(x , y) ∣₂ }
(λ _ _ → isOfHLevelPlus {n = 2} 3 setTruncIsSet _ _)
(suspToPropElim2 base (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y)
isContrHelper (suc (suc n)) = ∣ (0ₖ (3 + n) , 0ₖ (3 + n)) ∣₂
, sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ y → elim2 {B = λ x y → ∣ (0ₖ (3 + n) , 0ₖ (3 + n)) ∣₂ ≡ ∣(x , y) ∣₂ }
(λ _ _ → isProp→isOfHLevelSuc (4 + n) (setTruncIsSet _ _))
(suspToPropElim2 north (λ _ _ → setTruncIsSet _ _) refl) (fst y) (snd y)
H¹-S⁰≅0 : (n : ℕ) → GroupIso (coHomGr (suc n) (S₊ 0)) trivialGroup
H¹-S⁰≅0 n = IsoContrGroupTrivialGroup (isContrHⁿ-S0 n)
------------------------- H²(S¹) ≅ 0 -------------------------------
Hⁿ-S¹≅0 : (n : ℕ) → GroupIso (coHomGr (2 + n) (S₊ 1)) trivialGroup
Hⁿ-S¹≅0 n = IsoContrGroupTrivialGroup
(isOfHLevelRetractFromIso 0 helper
(_ , helper2))
where
helper : Iso ⟨ coHomGr (2 + n) (S₊ 1)⟩ ∥ Σ (hLevelTrunc (4 + n) (S₊ (2 + n))) (λ x → ∥ x ≡ x ∥₂) ∥₂
helper = compIso (setTruncIso IsoFunSpaceS¹) IsoSetTruncateSndΣ
helper2 : (x : ∥ Σ (hLevelTrunc (4 + n) (S₊ (2 + n))) (λ x → ∥ x ≡ x ∥₂) ∥₂) → ∣ ∣ north ∣ , ∣ refl ∣₂ ∣₂ ≡ x
helper2 =
sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
(uncurry
(trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isProp→isOfHLevelSuc (3 + n) (setTruncIsSet _ _))
(suspToPropElim (ptSn (suc n)) (λ _ → isPropΠ λ _ → setTruncIsSet _ _)
(sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ p
→ cong ∣_∣₂ (ΣPathP (refl , isContr→isProp helper3 _ _))))))
where
helper4 : isConnected (n + 3) (hLevelTrunc (4 + n) (S₊ (2 + n)))
helper4 = subst (λ m → isConnected m (hLevelTrunc (4 + n) (S₊ (2 + n)))) (+-comm 3 n)
(isOfHLevelRetractFromIso 0 (invIso (truncOfTruncIso (3 + n) 1)) (sphereConnected (2 + n)))
helper3 : isContr ∥ ∣ north ∣ ≡ ∣ north ∣ ∥₂
helper3 = isOfHLevelRetractFromIso 0 setTruncTrunc2Iso
(isConnectedPath 2 (isConnectedSubtr 3 n helper4) _ _)
-- --------------- H¹(Sⁿ), n ≥ 1 --------------------------------------------
H¹-Sⁿ≅0 : (n : ℕ) → GroupIso (coHomGr 1 (S₊ (2 + n))) trivialGroup
H¹-Sⁿ≅0 zero = IsoContrGroupTrivialGroup isContrH¹S²
where
isContrH¹S² : isContr ⟨ coHomGr 1 (S₊ 2) ⟩
isContrH¹S² = ∣ (λ _ → ∣ base ∣) ∣₂
, coHomPointedElim 0 north (λ _ → setTruncIsSet _ _)
λ f p → cong ∣_∣₂ (funExt λ x → sym p ∙∙ sym (spoke f north) ∙∙ spoke f x)
H¹-Sⁿ≅0 (suc n) = IsoContrGroupTrivialGroup isContrH¹S³⁺ⁿ
where
anIso : Iso ⟨ coHomGr 1 (S₊ (3 + n)) ⟩ ∥ (S₊ (3 + n) → hLevelTrunc (4 + n) (coHomK 1)) ∥₂
anIso =
setTruncIso
(codomainIso
(invIso (truncIdempotentIso (4 + n) (isOfHLevelPlus' {n = 1 + n} 3 (isOfHLevelTrunc 3)))))
isContrH¹S³⁺ⁿ-ish : (f : (S₊ (3 + n) → hLevelTrunc (4 + n) (coHomK 1)))
→ ∣ (λ _ → ∣ ∣ base ∣ ∣) ∣₂ ≡ ∣ f ∣₂
isContrH¹S³⁺ⁿ-ish f = ind (f north) refl
where
ind : (x : hLevelTrunc (4 + n) (coHomK 1))
→ x ≡ f north
→ ∣ (λ _ → ∣ ∣ base ∣ ∣) ∣₂ ≡ ∣ f ∣₂
ind = trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelPlus' {n = (3 + n)} 1 (setTruncIsSet _ _))
(trElim (λ _ → isOfHLevelΠ 3 λ _ → isOfHLevelPlus {n = 1} 2 (setTruncIsSet _ _))
(toPropElim (λ _ → isPropΠ λ _ → setTruncIsSet _ _)
λ p → cong ∣_∣₂ (funExt λ x → p ∙∙ sym (spoke f north) ∙∙ spoke f x)))
isContrH¹S³⁺ⁿ : isContr ⟨ coHomGr 1 (S₊ (3 + n)) ⟩
isContrH¹S³⁺ⁿ =
isOfHLevelRetractFromIso 0
anIso
(∣ (λ _ → ∣ ∣ base ∣ ∣) ∣₂
, sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _) isContrH¹S³⁺ⁿ-ish)
--------- H¹(S¹) ≅ ℤ -------
{-
Idea :
H¹(S¹) := ∥ S¹ → K₁ ∥₂
≃ ∥ S¹ → S¹ ∥₂
≃ ∥ S¹ × ℤ ∥₂
≃ ∥ S¹ ∥₂ × ∥ ℤ ∥₂
≃ ℤ
-}
coHom1S1≃ℤ : GroupIso (coHomGr 1 (S₊ 1)) intGroup
coHom1S1≃ℤ = theIso
where
F = Iso.fun S¹→S¹≡S¹×Int
F⁻ = Iso.inv S¹→S¹≡S¹×Int
theIso : GroupIso (coHomGr 1 (S₊ 1)) intGroup
fun (map theIso) = sRec isSetInt (λ f → snd (F f))
isHom (map theIso) =
coHomPointedElimS¹2 _ (λ _ _ → isSetInt _ _)
λ p q → (λ i → winding (guy ∣ base ∣ (cong S¹map (help p q i))))
∙∙ (λ i → winding (guy ∣ base ∣ (congFunct S¹map p q i)))
∙∙ winding-hom (guy ∣ base ∣ (cong S¹map p))
(guy ∣ base ∣ (cong S¹map q))
where
guy = basechange2⁻ ∘ S¹map
help : (p q : Path (coHomK 1) ∣ base ∣ ∣ base ∣) → cong₂ _+ₖ_ p q ≡ p ∙ q
help p q = cong₂Funct _+ₖ_ p q ∙ (λ i → cong (λ x → rUnitₖ 1 x i) p ∙ cong (λ x → lUnitₖ 1 x i) q)
inv theIso a = ∣ (F⁻ (base , a)) ∣₂
rightInv theIso a = cong snd (Iso.rightInv S¹→S¹≡S¹×Int (base , a))
leftInv theIso = sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f → cong ((sRec setTruncIsSet ∣_∣₂)
∘ sRec setTruncIsSet λ x → ∣ F⁻ (x , (snd (F f))) ∣₂)
(Iso.inv PathIdTrunc₀Iso (isConnectedS¹ (fst (F f))))
∙ cong ∣_∣₂ (Iso.leftInv S¹→S¹≡S¹×Int f)
---------------------------- Hⁿ(Sⁿ) ≅ ℤ , n ≥ 1 -------------------
{-
The proof of the inductive step below is a compact version of the following equations. Let n ≥ 1.
Hⁿ⁺¹(Sⁿ⁺¹) := ∥ Sⁿ⁺¹ → Kₙ₊₁ ∥₂
≅ ∥ Σ[ (a , b) ∈ Kₙ₊₁ ] (Sⁿ → a ≡ b) ∥₂ (characterisation of functions from suspensions)
≅ ∥ Kₙ₊₁ × Kₙ₊₁ × (Sⁿ → ΩKₙ₊₁) ∥₂ (base change in ΩKₙ₊₁)
≅ ∥ Kₙ₊₁ ∥₂ × ∥ Kₙ₊₁ ∥₂ × ∥ (Sⁿ → ΩKₙ₊₁) ∥₂
≅ ∥ Sⁿ → ΩKₙ₊₁ ∥₂ (connectivity of Kₙ₊₁)
≅ ∥ Sⁿ → Kₙ ∥₂ (ΩKₙ₊₁ ≃ Kₙ)
:= Hⁿ(Sⁿ)
≅ ℤ (ind. hyp)
The inverse function Hⁿ(Sⁿ) → Hⁿ⁺¹(Sⁿ⁺¹) is just the function d from Mayer-Vietoris.
However, we can construct d⁻¹ directly in this case, thus avoiding computationally
heavier proofs concerning exact sequences. -}
Hⁿ-Sⁿ≅ℤ : (n : ℕ) → GroupIso (coHomGr (suc n) (S₊ (suc n))) intGroup
Hⁿ-Sⁿ≅ℤ zero = coHom1S1≃ℤ
Hⁿ-Sⁿ≅ℤ (suc n) = invGroupIso helper □ invGroupIso (coHom≅coHomΩ (suc n) _) □ (Hⁿ-Sⁿ≅ℤ n)
where
basePointInd : (p : _) (a : _)
→ (p (ptSn (suc n)) ≡ refl) → sym (rCancelₖ (2 + n) ∣ north ∣)
∙∙ (λ i → (elimFunSⁿ (suc n) n p) ((merid a ∙ sym (merid (ptSn (suc n)))) i) +ₖ ∣ north ∣)
∙∙ rCancelₖ (2 + n) ∣ north ∣
≡ p a
basePointInd p a prefl =
cong (λ z → sym z ∙∙ ((λ i → (elimFunSⁿ (suc n) n p) ((merid a ∙ sym (merid (ptSn (suc n)))) i) +ₖ ∣ north ∣)) ∙∙ z)
(transportRefl refl)
∙∙ sym (rUnit _)
∙∙ (λ j i → rUnitₖ (2 + n) (elimFunSⁿ (suc n) n p ((merid a ∙ sym (merid (ptSn (suc n)))) i)) j)
∙∙ congFunct (elimFunSⁿ (suc n) n p) (merid a) (sym (merid (ptSn (suc n))))
∙∙ (cong (p a ∙_) (cong sym prefl)
∙ sym (rUnit (p a)))
helper : GroupIso (coHomGrΩ (suc n) (S₊ (suc n))) (coHomGr (2 + n) (S₊ (2 + n)))
fun (map helper) = sMap λ f → λ { north → ∣ north ∣
; south → ∣ north ∣
; (merid a i) → f a i}
isHom (map helper) =
sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f g → cong ∣_∣₂ (funExt λ { north → refl
; south → refl
; (merid a i) j → ∙≡+₂ n (f a) (g a) j i})
inv helper = sMap λ f x → sym (rCancelₖ (2 + n) (f north))
∙∙ (λ i → f ((merid x ∙ sym (merid (ptSn (suc n)))) i) -ₖ f north)
∙∙ rCancelₖ (2 + n) (f north)
rightInv helper =
coHomPointedElimSⁿ (suc n) n (λ _ → setTruncIsSet _ _)
λ p → trRec (isProp→isOfHLevelSuc n (setTruncIsSet _ _))
(λ prefl → cong ∣_∣₂ (funExt λ {north → refl
; south → refl
; (merid a i) j → basePointInd p a prefl j i}))
(Iso.fun (PathIdTruncIso _)
(isOfHLevelSuc 0 (isConnectedPathKn _ ∣ north ∣ ∣ north ∣)
(∣ p (ptSn (suc n)) ∣) ∣ refl ∣))
leftInv helper =
sElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f → (trRec (isProp→isOfHLevelSuc n (setTruncIsSet _ _))
(λ frefl → cong ∣_∣₂ (funExt λ x → basePointInd f x frefl))
((Iso.fun (PathIdTruncIso _)
(isOfHLevelSuc 0 (isConnectedPathKn _ ∣ north ∣ ∣ north ∣)
(∣ f (ptSn (suc n)) ∣) ∣ refl ∣))))
| {
"alphanum_fraction": 0.5234589288,
"avg_line_length": 48.1041666667,
"ext": "agda",
"hexsha": "78cf91d4390713b4dabcfb1ff16ff90509926f0c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/Groups/Sn.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/Groups/Sn.agda",
"max_line_length": 146,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/Groups/Sn.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5544,
"size": 13854
} |
id : Set → Set
id A = A
F : Set → Set → Set
F _*_ = G
where
G : Set → Set
G _*_ = id _*_
G : Set → Set → Set
G _*_ = λ _*_ → id _*_
H : Set → Set → Set
H = λ _*_ _*_ → id _*_
| {
"alphanum_fraction": 0.4619565217,
"avg_line_length": 12.2666666667,
"ext": "agda",
"hexsha": "7c18ea75d2def7a16365ddf4b875c080a1dee45f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1681.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1681.agda",
"max_line_length": 22,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1681.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 84,
"size": 184
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra where
open import Cubical.Algebra.Base public
open import Cubical.Algebra.Definitions public
open import Cubical.Algebra.Structures public
open import Cubical.Algebra.Bundles public
open import Cubical.Classes public
| {
"alphanum_fraction": 0.8122866894,
"avg_line_length": 29.3,
"ext": "agda",
"hexsha": "58d75b6bec6ef57052224f17c24f5ad4b02de611",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 68,
"size": 293
} |
open import agdaExamples public
open import Blockchain public
open import Crypto public
open import examples public
open import lambdaCalculus
open import Ledger public
open import proofsTXTree public
open import RawTransactions public
open import RawTXTree public
open import Transactions public
open import TXTree public
open import Utils public
| {
"alphanum_fraction": 0.8649425287,
"avg_line_length": 26.7692307692,
"ext": "agda",
"hexsha": "529bc807a19aec7ce946f4cacc59f8debc74e052",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ac91e00abca9a26678d0cbc1bedecf8abef6b703",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/cripto-agda",
"max_forks_repo_path": "src/Everything.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ac91e00abca9a26678d0cbc1bedecf8abef6b703",
"max_issues_repo_issues_event_max_datetime": "2019-11-03T14:31:16.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-01T11:36:06.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/cripto-agda",
"max_issues_repo_path": "src/Everything.agda",
"max_line_length": 34,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "ac91e00abca9a26678d0cbc1bedecf8abef6b703",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/crypto-agda",
"max_stars_repo_path": "src/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-22T19:27:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-13T16:56:47.000Z",
"num_tokens": 69,
"size": 348
} |
------------------------------------------------------------------------
-- Parallel substitutions (defined using an inductive family)
------------------------------------------------------------------------
open import Data.Universe.Indexed
module deBruijn.Substitution.Data
{i u e} {Uni : IndexedUniverse i u e} where
import deBruijn.Context; open deBruijn.Context Uni
open import Function as F using (_$_)
open import Level using (_⊔_)
import Relation.Binary.PropositionalEquality as P
open P.≡-Reasoning
-- This module reexports some other modules.
open import deBruijn.Substitution.Data.Application public
open import deBruijn.Substitution.Data.Basics public
open import deBruijn.Substitution.Data.Map public
open import deBruijn.Substitution.Data.Simple public
------------------------------------------------------------------------
-- Instantiations and code for facilitating instantiations
-- Renamings (variable substitutions).
module Renaming where
-- Variables support all of the operations above.
simple : Simple Var
simple = record
{ weaken = weaken∋
; var = [id]
; weaken-var = λ _ → P.refl
}
application : Application Var Var
application = record { app = app∋ }
application₁ : Application₁ Var
application₁ = record
{ simple = simple
; application₂₂ = record
{ application₂₁ = record
{ application = application
; trans-weaken = λ _ → P.refl
; trans-var = λ _ → P.refl
; var-/⊢ = λ _ _ → P.refl
}
; var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ = λ _ _ hyp → hyp
; /⊢-wk = Simple./∋-wk simple
}
}
open Application₁ application₁ public hiding (simple; application)
≅-∋-⇒-≅-⊢ : ∀ {Γ₁ σ₁} {x₁ : Γ₁ ∋ σ₁}
{Γ₂ σ₂} {x₂ : Γ₂ ∋ σ₂} →
x₁ ≅-∋ x₂ → Term-like._≅-⊢_ Var x₁ x₂
≅-∋-⇒-≅-⊢ P.refl = P.refl
≅-⊢-⇒-≅-∋ : ∀ {Γ₁ σ₁} {x₁ : Γ₁ ∋ σ₁}
{Γ₂ σ₂} {x₂ : Γ₂ ∋ σ₂} →
Term-like._≅-⊢_ Var x₁ x₂ → x₁ ≅-∋ x₂
≅-⊢-⇒-≅-∋ P.refl = P.refl
-- A translation of T₁'s to T₂'s, plus a bit more.
record _↦_ {t₁} (T₁ : Term-like t₁)
{t₂} (T₂ : Term-like t₂) : Set (i ⊔ u ⊔ e ⊔ t₁ ⊔ t₂) where
field
-- Translates T₁'s to T₂'s.
trans : [ T₁ ⟶⁼ T₂ ]
-- Simple substitutions for T₁'s.
simple : Simple T₁
open Simple simple public
open Term-like T₁ renaming (⟦_⟧ to ⟦_⟧₁)
open Term-like T₂ renaming (⟦_⟧ to ⟦_⟧₂)
/̂∋-⟦⟧⇨ : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ σ) (ρ : Sub T₁ ρ̂) →
x /̂∋ ⟦ ρ ⟧⇨ ≅-Value ⟦ trans · (x /∋ ρ) ⟧₂
/̂∋-⟦⟧⇨ x ρ = begin
[ x /̂∋ ⟦ ρ ⟧⇨ ] ≡⟨ corresponds (app∋ ρ) x ⟩
[ ⟦ x /∋ ρ ⟧₁ ] ≡⟨ corresponds trans (x /∋ ρ) ⟩
[ ⟦ trans · (x /∋ ρ) ⟧₂ ] ∎
-- "Term" substitutions.
-- For simplicity I have chosen to use the universe level (i ⊔ u ⊔ e)
-- here; this is the level of Var. The code could perhaps be made more
-- general.
record Substitution₁ (T : Term-like (i ⊔ u ⊔ e))
: Set (Level.suc (i ⊔ u ⊔ e)) where
open Term-like T
field
-- Takes variables to terms.
var : [ Var ⟶⁼ T ]
-- Applies substitutions, which contain things which can be
-- translated to terms, to terms.
app′ : {T′ : Term-like (i ⊔ u ⊔ e)} → T′ ↦ T →
∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub T′ ρ̂ → [ T ⟶ T ] ρ̂
-- A property relating app′ and var.
app′-var :
∀ {T′ : Term-like (i ⊔ u ⊔ e)} {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ}
(T′↦T : T′ ↦ T) (x : Γ ∋ σ) (ρ : Sub T′ ρ̂) →
app′ T′↦T ρ · (var · x) ≅-⊢ _↦_.trans T′↦T · (x /∋ ρ)
-- Variables can be translated into terms.
private
Var-↦′ : Var ↦ T
Var-↦′ = record
{ trans = var
; simple = Renaming.simple
}
-- Renamings can be applied to terms.
app-renaming : ∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} → Sub Var ρ̂ → [ T ⟶ T ] ρ̂
app-renaming = app′ Var-↦′
-- This gives us a way to define the weakening operation.
simple : Simple T
simple = record
{ weaken = app-renaming Renaming.wk
; var = var
; weaken-var = weaken-var
}
where
abstract
weaken-var : ∀ {Γ σ τ} (x : Γ ∋ τ) →
app-renaming (Renaming.wk[_] σ) · (var · x) ≅-⊢
var · suc[ σ ] x
weaken-var x = begin
[ app-renaming Renaming.wk · (var · x) ] ≡⟨ app′-var Var-↦′ x Renaming.wk ⟩
[ var · (x /∋ Renaming.wk) ] ≡⟨ ·-cong (var ∎-⟶) (Renaming./∋-wk x) ⟩
[ var · suc x ] ∎
-- A translation of T′'s to T's, plus a bit more.
record Translation-from (T′ : Term-like (i ⊔ u ⊔ e))
: Set (i ⊔ u ⊔ e) where
field
translation : T′ ↦ T
open _↦_ translation
using (trans)
renaming (simple to simple′; var to var′; weaken[_] to weaken′[_])
field
trans-weaken : ∀ {Γ σ τ} (t : Term-like._⊢_ T′ Γ τ) →
trans · (weaken′[ σ ] · t) ≅-⊢
Simple.weaken[_] simple σ · (trans · t)
trans-var : ∀ {Γ σ} (x : Γ ∋ σ) →
trans · (var′ · x) ≅-⊢ var · x
-- An Application₂₁ record.
application₂₁ : Application₂₁ simple′ simple trans
application₂₁ = record
{ application = record { app = app′ translation }
; trans-weaken = trans-weaken
; trans-var = trans-var
; var-/⊢ = app′-var translation
}
open _↦_ translation public
open Application₂₁ application₂₁ public
hiding (trans-weaken; trans-var)
-- Variables can be translated into terms.
Var-↦ : Translation-from Var
Var-↦ = record
{ translation = Var-↦′
; trans-weaken = trans-weaken
; trans-var = λ _ → P.refl
}
where
abstract
trans-weaken :
∀ {Γ σ τ} (x : Γ ∋ τ) →
var · suc[ σ ] x ≅-⊢
Simple.weaken[_] simple σ · (var · x)
trans-weaken x = P.sym $ Simple.weaken-var simple x
-- Terms can be translated into terms.
no-translation : Translation-from T
no-translation = record
{ translation = record { trans = [id]; simple = simple }
; trans-weaken = λ _ → P.refl
; trans-var = λ _ → P.refl
}
record Substitution₂ (T : Term-like (i ⊔ u ⊔ e))
: Set (Level.suc (i ⊔ u ⊔ e)) where
open Term-like T
field
substitution₁ : Substitution₁ T
open Substitution₁ substitution₁
field
-- Lifts equalities valid for all variables and liftings to
-- arbitrary terms.
var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆′ :
{T₁ T₂ : Term-like (i ⊔ u ⊔ e)}
(T₁↦T : Translation-from T₁) (T₂↦T : Translation-from T₂) →
let open Translation-from T₁↦T
using () renaming (_↑⁺⋆_ to _↑⁺⋆₁_; _/⊢⋆_ to _/⊢⋆₁_)
open Translation-from T₂↦T
using () renaming (_↑⁺⋆_ to _↑⁺⋆₂_; _/⊢⋆_ to _/⊢⋆₂_) in
∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρs₁ : Subs T₁ ρ̂) (ρs₂ : Subs T₂ ρ̂) →
(∀ Γ⁺ {σ} (x : Γ ++⁺ Γ⁺ ∋ σ) →
var · x /⊢⋆₁ ρs₁ ↑⁺⋆₁ Γ⁺ ≅-⊢ var · x /⊢⋆₂ ρs₂ ↑⁺⋆₂ Γ⁺) →
∀ Γ⁺ {σ} (t : Γ ++⁺ Γ⁺ ⊢ σ) →
t /⊢⋆₁ ρs₁ ↑⁺⋆₁ Γ⁺ ≅-⊢ t /⊢⋆₂ ρs₂ ↑⁺⋆₂ Γ⁺
-- Given a well-behaved translation from something with simple
-- substitutions one can define an Application₂₂ record.
application₂₂ :
{T′ : Term-like (i ⊔ u ⊔ e)} (T′↦T : Translation-from T′) →
let open Translation-from T′↦T
using (trans) renaming (simple to simple′) in
Application₂₂ simple′ simple trans
application₂₂ T′↦T = record
{ application₂₁ = Translation-from.application₂₁ T′↦T
; var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ = var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆′ T′↦T T′↦T
; /⊢-wk = /⊢-wk
}
where
open Translation-from T′↦T
using ()
renaming ( _↑⁺_ to _↑⁺′_; _↑⁺⋆_ to _↑⁺⋆′_
; wk to wk′; wk[_] to wk′[_]
; _/⊢_ to _/⊢′_; _/⊢⋆_ to _/⊢⋆′_
)
open Translation-from Var-↦
using ()
renaming ( _↑⁺_ to _↑⁺-renaming_; _↑⁺⋆_ to _↑⁺⋆-renaming_
; _/⊢_ to _/⊢-renaming_; _/⊢⋆_ to _/⊢⋆-renaming_
)
abstract
/⊢-wk : ∀ {Γ σ τ} (t : Γ ⊢ τ) →
t /⊢′ wk′[ σ ] ≅-⊢ t /⊢-renaming Renaming.wk[_] σ
/⊢-wk =
var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆′ T′↦T Var-↦ (ε ▻ wk′) (ε ▻ Renaming.wk)
(λ Γ⁺ x → begin
[ var · x /⊢⋆′ (ε ▻ wk′) ↑⁺⋆′ Γ⁺ ] ≡⟨ Translation-from./⊢⋆-ε-▻-↑⁺⋆ T′↦T Γ⁺ (var · x) wk′ ⟩
[ var · x /⊢′ wk′ ↑⁺′ Γ⁺ ] ≡⟨ Translation-from.var-/⊢-wk-↑⁺ T′↦T Γ⁺ x ⟩
[ var · (lift weaken∋ Γ⁺ · x) ] ≡⟨ P.sym $ Translation-from.var-/⊢-wk-↑⁺ Var-↦ Γ⁺ x ⟩
[ var · x /⊢-renaming Renaming.wk ↑⁺-renaming Γ⁺ ] ≡⟨ P.sym $ Translation-from./⊢⋆-ε-▻-↑⁺⋆
Var-↦ Γ⁺ (var · x) Renaming.wk ⟩
[ var · x /⊢⋆-renaming (ε ▻ Renaming.wk) ↑⁺⋆-renaming Γ⁺ ] ∎)
ε
-- An Application₂₂ record for renamings.
application₂₂-renaming : Application₂₂ Renaming.simple simple var
application₂₂-renaming = application₂₂ Var-↦
-- We can apply substitutions to terms.
application₁ : Application₁ T
application₁ = record
{ simple = simple
; application₂₂ = application₂₂ no-translation
}
open Application₁ application₁ public
hiding (var; simple; application₂₂)
open Substitution₁ substitution₁ public
| {
"alphanum_fraction": 0.4982437467,
"avg_line_length": 31.9557823129,
"ext": "agda",
"hexsha": "72a5687361b4c4efeac6d7387720e60782c37e3c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependently-typed-syntax",
"max_forks_repo_path": "deBruijn/Substitution/Data.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependently-typed-syntax",
"max_issues_repo_path": "deBruijn/Substitution/Data.agda",
"max_line_length": 128,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependently-typed-syntax",
"max_stars_repo_path": "deBruijn/Substitution/Data.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z",
"num_tokens": 3645,
"size": 9395
} |
module Issue493 where
module M where
postulate A B C : Set
module M₁ = M renaming (B to Y) hiding (A)
module M₂ = M using (A) using (B)
module M₃ = M hiding (A) hiding (B)
open M using (A) public
| {
"alphanum_fraction": 0.6683168317,
"avg_line_length": 16.8333333333,
"ext": "agda",
"hexsha": "5dd590a75d142fcd1bd46262deb0e6f3ae1e4c32",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue493.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue493.agda",
"max_line_length": 42,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue493.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 69,
"size": 202
} |
{-# OPTIONS --without-K #-}
module well-typed-syntax-helpers where
open import common
open import well-typed-syntax
infixl 3 _‘'’ₐ_
infixr 1 _‘→'’_
infixl 3 _‘t’_
infixl 3 _‘t’₁_
infixl 3 _‘t’₂_
infixr 2 _‘∘’_
WS∀ : ∀ {Γ T T' A B} {a : Term {Γ = Γ} T} → Term {Γ = Γ ▻ T'} (W ((A ‘→’ B) ‘’ a)) → Term {Γ ▻ T'} (W ((A ‘’ a) ‘→’ (B ‘’₁ a)))
WS∀ = weakenTyp-substTyp-tProd
_‘→'’_ : ∀ {Γ} → Typ Γ → Typ Γ → Typ Γ
_‘→'’_ {Γ = Γ} A B = _‘→’_ {Γ = Γ} A (W {Γ = Γ} {A = A} B)
_‘'’ₐ_ : ∀ {Γ A B} → Term {Γ} (A ‘→'’ B) → Term A → Term B
_‘'’ₐ_ {Γ} {A} {B} f x = SW (_‘’ₐ_ {Γ} {A} {W B} f x)
_‘t’_ : ∀ {Γ A} {B : Typ (Γ ▻ A)} → (b : Term {Γ = Γ ▻ A} B) → (a : Term {Γ} A) → Term {Γ} (B ‘’ a)
b ‘t’ a = ‘λ∙’ b ‘’ₐ a
substTyp-tProd : ∀ {Γ T A B} {a : Term {Γ} T} →
Term {Γ} ((A ‘→’ B) ‘’ a)
→ Term {Γ} (_‘→’_ {Γ = Γ} (A ‘’ a) (B ‘’₁ a))
substTyp-tProd {Γ} {T} {A} {B} {a} x = SW ((WS∀ (w x)) ‘t’ a)
S∀ = substTyp-tProd
‘λ'∙’ : ∀ {Γ A B} → Term {Γ ▻ A} (W B) -> Term (A ‘→'’ B)
‘λ'∙’ f = ‘λ∙’ f
SW1V : ∀ {Γ A T} → Term {Γ ▻ A} (W1 T ‘’ ‘VAR₀’) → Term {Γ ▻ A} T
SW1V = substTyp-weakenTyp1-VAR₀
S₁∀ : ∀ {Γ T T' A B} {a : Term {Γ} T} → Term {Γ ▻ T' ‘’ a} ((A ‘→’ B) ‘’₁ a) → Term {Γ ▻ T' ‘’ a} ((A ‘’₁ a) ‘→’ (B ‘’₂ a))
S₁∀ = substTyp1-tProd
un‘λ∙’ : ∀ {Γ A B} → Term (A ‘→’ B) → Term {Γ ▻ A} B
un‘λ∙’ f = SW1V (weakenTyp-tProd (w f) ‘’ₐ ‘VAR₀’)
weakenProd : ∀ {Γ A B C} →
Term {Γ} (A ‘→’ B)
→ Term {Γ = Γ ▻ C} (W A ‘→’ W1 B)
weakenProd {Γ} {A} {B} {C} x = weakenTyp-tProd (w x)
w∀ = weakenProd
w1 : ∀ {Γ A B C} → Term {Γ = Γ ▻ B} C → Term {Γ = Γ ▻ A ▻ W {Γ = Γ} {A = A} B} (W1 {Γ = Γ} {A = A} {B = B} C)
w1 x = un‘λ∙’ (weakenTyp-tProd (w (‘λ∙’ x)))
_‘t’₁_ : ∀ {Γ A B C} → (c : Term {Γ = Γ ▻ A ▻ B} C) → (a : Term {Γ} A) → Term {Γ = Γ ▻ B ‘’ a} (C ‘’₁ a)
f ‘t’₁ x = un‘λ∙’ (S∀ (‘λ∙’ (‘λ∙’ f) ‘’ₐ x))
_‘t’₂_ : ∀ {Γ A B C D} → (c : Term {Γ = Γ ▻ A ▻ B ▻ C} D) → (a : Term {Γ} A) → Term {Γ = Γ ▻ B ‘’ a ▻ C ‘’₁ a} (D ‘’₂ a)
f ‘t’₂ x = un‘λ∙’ (S₁∀ (un‘λ∙’ (S∀ (‘λ∙’ (‘λ∙’ (‘λ∙’ f)) ‘’ₐ x))))
S₁₀W' : ∀ {Γ C T A} {a : Term {Γ} C} {b : Term {Γ} (T ‘’ a)} → Term {Γ} (A ‘’ a) → Term {Γ} (W A ‘’₁ a ‘’ b)
S₁₀W' = substTyp1-substTyp-weakenTyp-inv
S₁₀W : ∀ {Γ C T A} {a : Term {Γ} C} {b : Term {Γ} (T ‘’ a)} → Term {Γ} (W A ‘’₁ a ‘’ b) → Term {Γ} (A ‘’ a)
S₁₀W = substTyp1-substTyp-weakenTyp
substTyp1-substTyp-weakenTyp-weakenTyp : ∀ {Γ T A} {B : Typ (Γ ▻ A)}
→ {a : Term {Γ} A}
→ {b : Term {Γ} (B ‘’ a)}
→ Term {Γ} (W (W T) ‘’₁ a ‘’ b)
→ Term {Γ} T
substTyp1-substTyp-weakenTyp-weakenTyp x = SW (S₁₀W x)
S₁₀WW = substTyp1-substTyp-weakenTyp-weakenTyp
S₂₁₀W : ∀ {Γ A B C T} {a : Term {Γ} A} {b : Term {Γ} (B ‘’ a)} {c : Term {Γ} (C ‘’₁ a ‘’ b)}
→ Term {Γ} (W T ‘’₂ a ‘’₁ b ‘’ c)
→ Term {Γ} (T ‘’₁ a ‘’ b)
S₂₁₀W = substTyp2-substTyp1-substTyp-weakenTyp
substTyp2-substTyp1-substTyp-weakenTyp-weakenTyp : ∀ {Γ A B C T}
{a : Term {Γ} A}
{b : Term {Γ} (B ‘’ a)}
{c : Term {Γ} (C ‘’₁ a ‘’ b)} →
Term {Γ} (W (W T) ‘’₂ a ‘’₁ b ‘’ c)
→ Term {Γ} (T ‘’ a)
substTyp2-substTyp1-substTyp-weakenTyp-weakenTyp x = S₁₀W (S₂₁₀W x)
S₂₁₀WW = substTyp2-substTyp1-substTyp-weakenTyp-weakenTyp
W1W : ∀ {Γ A B C} → Term {Γ ▻ A ▻ W B} (W1 (W C)) → Term {Γ ▻ A ▻ W B} (W (W C))
W1W = weakenTyp1-weakenTyp
W1W1W : ∀ {Γ A B C T} → Term {Γ ▻ A ▻ B ▻ W (W C)} (W1 (W1 (W T))) → Term {Γ ▻ A ▻ B ▻ W (W C)} (W1 (W (W T)))
W1W1W = weakenTyp1-weakenTyp1-weakenTyp
weakenTyp-tProd-nd : ∀ {Γ A B C} →
Term {Γ = Γ ▻ C} (W (A ‘→'’ B))
→ Term {Γ = Γ ▻ C} (W A ‘→'’ W B)
weakenTyp-tProd-nd x = ‘λ'∙’ (W1W (SW1V (weakenTyp-tProd (w (weakenTyp-tProd x)) ‘’ₐ ‘VAR₀’)))
weakenProd-nd : ∀ {Γ A B C} →
Term (A ‘→'’ B)
→ Term {Γ = Γ ▻ C} (W A ‘→'’ W B)
weakenProd-nd {Γ} {A} {B} {C} x = weakenTyp-tProd-nd (w x)
weakenTyp-tProd-nd-tProd-nd : ∀ {Γ A B C D} →
Term {Γ = Γ ▻ D} (W (A ‘→'’ B ‘→'’ C))
→ Term {Γ = Γ ▻ D} (W A ‘→'’ W B ‘→'’ W C)
weakenTyp-tProd-nd-tProd-nd x = ‘λ∙’ (weakenTyp-tProd-inv (‘λ∙’ (W1W1W (SW1V (w∀ (weakenTyp-tProd (weakenTyp-weakenTyp-tProd (w→ (weakenTyp-tProd-nd x) ‘'’ₐ ‘VAR₀’))) ‘’ₐ ‘VAR₀’)))))
weakenProd-nd-Prod-nd : ∀ {Γ A B C D} →
Term (A ‘→'’ B ‘→'’ C)
→ Term {Γ = Γ ▻ D} (W A ‘→'’ W B ‘→'’ W C)
weakenProd-nd-Prod-nd {Γ} {A} {B} {C} {D} x = weakenTyp-tProd-nd-tProd-nd (w x)
w→→ = weakenProd-nd-Prod-nd
S₁W1 : ∀ {Γ A B C} {a : Term {Γ} A} → Term {Γ ▻ W B ‘’ a} (W1 C ‘’₁ a) → Term {Γ ▻ B} C
S₁W1 = substTyp1-weakenTyp1
W1S₁W' : ∀ {Γ A T'' T' T} {a : Term {Γ} A}
→ Term {Γ ▻ T'' ▻ W (T' ‘’ a)} (W1 (W (T ‘’ a)))
→ Term {Γ ▻ T'' ▻ W (T' ‘’ a)} (W1 (W T ‘’₁ a))
W1S₁W' = weakenTyp1-substTyp-weakenTyp1-inv
substTyp-weakenTyp1-inv : ∀ {Γ A T' T}
{a : Term {Γ} A} →
Term {Γ = (Γ ▻ T' ‘’ a)} (W (T ‘’ a))
→ Term {Γ = (Γ ▻ T' ‘’ a)} (W T ‘’₁ a)
substTyp-weakenTyp1-inv {a = a} x = S₁W1 (W1S₁W' (w1 x) ‘t’₁ a)
S₁W' = substTyp-weakenTyp1-inv
_‘∘’_ : ∀ {Γ A B C}
→ Term {Γ} (A ‘→'’ B)
→ Term {Γ} (B ‘→'’ C)
→ Term {Γ} (A ‘→'’ C)
g ‘∘’ f = ‘λ∙’ (w→ f ‘'’ₐ (w→ g ‘'’ₐ ‘VAR₀’))
WS₀₀W1 : ∀ {Γ T' B A} {b : Term {Γ} B} {a : Term {Γ ▻ B} (W A)} {T : Typ (Γ ▻ A)}
→ Term {Γ ▻ T'} (W (W1 T ‘’ a ‘’ b))
→ Term {Γ ▻ T'} (W (T ‘’ (SW (a ‘t’ b))))
WS₀₀W1 = weakenTyp-substTyp-substTyp-weakenTyp1
WS₀₀W1' : ∀ {Γ T' B A} {b : Term {Γ} B} {a : Term {Γ ▻ B} (W A)} {T : Typ (Γ ▻ A)}
→ Term {Γ ▻ T'} (W (T ‘’ (SW (a ‘t’ b))))
→ Term {Γ ▻ T'} (W (W1 T ‘’ a ‘’ b))
WS₀₀W1' = weakenTyp-substTyp-substTyp-weakenTyp1-inv
substTyp-substTyp-weakenTyp1-inv-arr : ∀ {Γ B A}
{b : Term {Γ} B}
{a : Term {Γ ▻ B} (W A)}
{T : Typ (Γ ▻ A)}
{X} →
Term {Γ} (T ‘’ (SW (a ‘t’ b)) ‘→'’ X)
→ Term {Γ} (W1 T ‘’ a ‘’ b ‘→'’ X)
substTyp-substTyp-weakenTyp1-inv-arr x = ‘λ∙’ (w→ x ‘'’ₐ WS₀₀W1 ‘VAR₀’)
S₀₀W1'→ = substTyp-substTyp-weakenTyp1-inv-arr
substTyp-substTyp-weakenTyp1-arr-inv : ∀ {Γ B A}
{b : Term {Γ} B}
{a : Term {Γ ▻ B} (W A)}
{T : Typ (Γ ▻ A)}
{X} →
Term {Γ} (X ‘→'’ T ‘’ (SW (a ‘t’ b)))
→ Term {Γ} (X ‘→'’ W1 T ‘’ a ‘’ b)
substTyp-substTyp-weakenTyp1-arr-inv x = ‘λ∙’ (WS₀₀W1' (un‘λ∙’ x))
S₀₀W1'← = substTyp-substTyp-weakenTyp1-arr-inv
substTyp-substTyp-weakenTyp1 : ∀ {Γ B A}
{b : Term {Γ} B}
{a : Term {Γ ▻ B} (W A)}
{T : Typ (Γ ▻ A)} →
Term {Γ} (W1 T ‘’ a ‘’ b)
→ Term {Γ} (T ‘’ (SW (a ‘t’ b)))
substTyp-substTyp-weakenTyp1 x = (SW (WS₀₀W1 (w x) ‘t’ x))
S₀₀W1 = substTyp-substTyp-weakenTyp1
SW1W : ∀ {Γ T} {A : Typ Γ} {B : Typ Γ}
→ {a : Term {Γ = Γ ▻ T} (W {Γ = Γ} {A = T} B)}
→ Term {Γ = Γ ▻ T} (W1 (W A) ‘’ a)
→ Term {Γ = Γ ▻ T} (W A)
SW1W = substTyp-weakenTyp1-weakenTyp
S₂₀₀W1WW : ∀ {Γ A} {T : Typ (Γ ▻ A)} {T' C B} {a : Term {Γ} A} {b : Term {Γ = (Γ ▻ C ‘’ a)} (B ‘’₁ a)}
{c : Term {Γ = (Γ ▻ T')} (W (C ‘’ a))}
→ Term {Γ = (Γ ▻ T')} (W1 (W (W T) ‘’₂ a ‘’ b) ‘’ c)
→ Term {Γ = (Γ ▻ T')} (W (T ‘’ a))
S₂₀₀W1WW = substTyp2-substTyp-substTyp-weakenTyp1-weakenTyp-weakenTyp
S₁₀W2W : ∀ {Γ T' A B T} {a : Term {Γ ▻ T'} (W A)} {b : Term {Γ ▻ T'} (W1 B ‘’ a)}
→ Term {Γ ▻ T'} (W2 (W T) ‘’₁ a ‘’ b)
→ Term {Γ ▻ T'} (W1 T ‘’ a)
S₁₀W2W = substTyp1-substTyp-weakenTyp2-weakenTyp
| {
"alphanum_fraction": 0.4450914015,
"avg_line_length": 36.2009803922,
"ext": "agda",
"hexsha": "348bc3af20658c44ab7b200f21dd5da326e860a7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-17T18:53:37.000Z",
"max_forks_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JasonGross/lob",
"max_forks_repo_path": "internal/well-typed-syntax-helpers.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_issues_repo_issues_event_max_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-17T20:20:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JasonGross/lob",
"max_issues_repo_path": "internal/well-typed-syntax-helpers.agda",
"max_line_length": 182,
"max_stars_count": 19,
"max_stars_repo_head_hexsha": "716129208eaf4fe3b5f629f95dde4254805942b3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JasonGross/lob",
"max_stars_repo_path": "internal/well-typed-syntax-helpers.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-17T14:04:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-17T17:53:30.000Z",
"num_tokens": 3908,
"size": 7385
} |
module Pi-.AuxLemmas where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Relation.Binary.Core
open import Relation.Binary
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Data.Nat
open import Data.Nat.Properties
open import Data.List as L
open import Function using (_∘_)
open import Pi-.Syntax
open import Pi-.Opsem
Lemma₁ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D}
→ [ c ∣ v ∣ κ ]◁ ↦ ⟨ c' ∣ v' ∣ κ' ⟩◁
→ A ≡ C × B ≡ D
Lemma₁ ↦⃖₁ = refl , refl
Lemma₁ ↦⃖₂ = refl , refl
Lemma₂ : ∀ {A B v v' κ κ'} {c c' : A ↔ B}
→ [ c ∣ v ∣ κ ]◁ ↦ ⟨ c' ∣ v' ∣ κ' ⟩◁
→ c ≡ c' × κ ≡ κ'
Lemma₂ ↦⃖₁ = refl , refl
Lemma₂ ↦⃖₂ = refl , refl
Lemma₃ : ∀ {A B v v' κ} {c : A ↔ B}
→ [ c ∣ v ∣ κ ]◁ ↦ ⟨ c ∣ v' ∣ κ ⟩◁
→ base c ⊎ A ≡ B
Lemma₃ (↦⃖₁ {b = b}) = inj₁ b
Lemma₃ ↦⃖₂ = inj₂ refl
Lemma₄ : ∀ {A v v' κ} {c : A ↔ A}
→ [ c ∣ v ∣ κ ]◁ ↦ ⟨ c ∣ v' ∣ κ ⟩◁
→ base c ⊎ c ≡ id↔
Lemma₄ (↦⃖₁ {b = b}) = inj₁ b
Lemma₄ ↦⃖₂ = inj₂ refl
Lemma₅ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D}
→ [ c ∣ v ∣ κ ]◁ ↦ [ c' ∣ v' ∣ κ' ]▷
→ A ≡ C × B ≡ D
Lemma₅ ↦η₁ = refl , refl
Lemma₅ ↦η₂ = refl , refl
Lemma₆ : ∀ {A B v v' κ κ'} {c c' : A ↔ B}
→ [ c ∣ v ∣ κ ]◁ ↦ [ c' ∣ v' ∣ κ' ]▷
→ c ≡ c' × κ ≡ κ'
Lemma₆ ↦η₁ = refl , refl
Lemma₆ ↦η₂ = refl , refl
Lemma₇ : ∀ {A B v v' κ} {c : A ↔ B}
→ [ c ∣ v ∣ κ ]◁ ↦ [ c ∣ v' ∣ κ ]▷
→ A ≡ 𝟘
Lemma₇ ↦η₁ = refl
Lemma₇ ↦η₂ = refl
Lemma₈ : ∀ {A B C D v v' κ κ'} {c : A ↔ B} {c' : C ↔ D}
→ ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c' ∣ v' ∣ κ' ]▷
→ A ≡ C × B ≡ D
Lemma₈ ↦⃗₁ = refl , refl
Lemma₈ ↦⃗₂ = refl , refl
Lemma₉ : ∀ {A B v v' κ κ'} {c c' : A ↔ B}
→ ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c' ∣ v' ∣ κ' ]▷
→ c ≡ c' × κ ≡ κ'
Lemma₉ ↦⃗₁ = refl , refl
Lemma₉ ↦⃗₂ = refl , refl
Lemma₁₀ : ∀ {A B v v' κ} {c : A ↔ B}
→ (r : ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c ∣ v' ∣ κ ]▷)
→ base c ⊎ A ≡ B
Lemma₁₀ (↦⃗₁ {b = b}) = inj₁ b
Lemma₁₀ ↦⃗₂ = inj₂ refl
Lemma₁₁ : ∀ {A v v' κ} {c : A ↔ A}
→ (r : ⟨ c ∣ v ∣ κ ⟩▷ ↦ [ c ∣ v' ∣ κ ]▷)
→ base c ⊎ c ≡ id↔
Lemma₁₁ (↦⃗₁ {b = b}) = inj₁ b
Lemma₁₁ ↦⃗₂ = inj₂ refl
| {
"alphanum_fraction": 0.4397291196,
"avg_line_length": 27.012195122,
"ext": "agda",
"hexsha": "13760a127671ba6c32015c0ec9e146366d4dbeae",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "Pi-/AuxLemmas.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "Pi-/AuxLemmas.agda",
"max_line_length": 55,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "Pi-/AuxLemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1162,
"size": 2215
} |
module Logic.Classical where
import Lvl
open import Data
open import Data.Boolean
open import Data.Boolean.Stmt
open import Data.Boolean.Stmt.Proofs using (module IsTrue ; module IsFalse)
open import Data.Boolean.Proofs
open import Data.Either as Either using (_‖_)
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
open import Lang.Instance
open import Logic
open import Logic.Names
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Logic.Predicate
open import Logic.Predicate.Theorems
open import Relator.Equals
open import Syntax.Type
open import Type
open import Type.Properties.Inhabited
private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓₒ ℓₒ₁ ℓₒ₂ ℓₒ₃ ℓₗ : Lvl.Level
private variable X Y Z : Type{ℓ}
-- A proposition is behaving classically when excluded middle holds for it.
-- In other words: For the proposition or its negation, if one of them is provable.
-- It could be interpreted as: The proposition is either true or false.
-- In classical logic, this is always the case for any proposition.
-- Note: (∀x. Classical(P(x))) is also called: P is decidable.
module _ (P : Stmt{ℓ}) where
record Classical : Stmt{ℓ} where -- TODO: Rename to ExcludedMiddle. Define WeakExcludedMiddle = ExcludedMiddle ∘ ¬_ and Classical = ∀ₗ(ExcludedMiddle)
constructor intro
field
⦃ excluded-middle ⦄ : ExcludedMiddleOn(P)
excluded-middle = inst-fn Classical.excluded-middle
open Classical ⦃ ... ⦄ hiding (excluded-middle) public
------------------------------------------
-- Classical on predicates.
Classical₁ : (X → Stmt{ℓₗ}) → Stmt
Classical₁(P) = ∀¹(Classical ∘₁ P)
Classical₂ : (X → Y → Stmt{ℓₗ}) → Stmt
Classical₂(P) = ∀²(Classical ∘₂ P)
Classical₃ : (X → Y → Z → Stmt{ℓₗ}) → Stmt
Classical₃(P) = ∀³(Classical ∘₃ P)
------------------------------------------
-- Well-known classical rules.
module _ {P : Stmt{ℓ}} ⦃ classical-P : Classical(P) ⦄ where
-- Double negation elimination.
[¬¬]-elim : (¬¬ P) → P
[¬¬]-elim = [¬¬]-elim-from-excluded-middle (excluded-middle(P))
-- A double negated proposition is equivalent to the positive.
double-negation : P ↔ (¬¬ P)
double-negation = [↔]-intro [¬¬]-elim [¬¬]-intro
-- The type signature of the "call/cc or "call-with-current-continuation" subroutine in the programming language Scheme.
-- Also known as: "Peirce's law"
call-cc-rule : ∀{Q : Stmt{ℓ₂}} → (((P → Q) → P) → P)
call-cc-rule (pqp) with excluded-middle(P)
... | ([∨]-introₗ p ) = p
... | ([∨]-introᵣ np) = pqp([⊥]-elim ∘ np)
-- When the negative implies the positive, thus implying a contradiction, the positive is true.
-- Also called: "Clavius's Law".
negative-implies-positive : ((¬ P) → P) → P
negative-implies-positive npp with excluded-middle(P)
... | ([∨]-introₗ p ) = p
... | ([∨]-introᵣ np) = npp np
module _ (P : Stmt{ℓ}) ⦃ classical : Classical(P) ⦄ where
-- Elimination rule for the disjunction in excluded middle.
excluded-middle-elim : ∀{Q : Stmt{ℓ₂}} → (P → Q) → ((¬ P) → Q) → Q
excluded-middle-elim pq npq = [∨]-elim pq npq (excluded-middle(P))
------------------------------------------
-- Contraposition rules on implication.
module _ {P : Stmt{ℓ₁}} {Q : Stmt{ℓ₂}} ⦃ classical : Classical(Q) ⦄ where
-- Contraposition rule in reverse removing negations.
contrapositiveₗ : (P → Q) ← ((¬ P) ← (¬ Q))
contrapositiveₗ (npnq) = [¬¬]-elim ∘ (contrapositiveᵣ (npnq)) ∘ [¬¬]-intro
contrapositive : (P → Q) ↔ ((¬ P) ← (¬ Q))
contrapositive = [↔]-intro contrapositiveₗ contrapositiveᵣ
contrapositive-variant2ᵣ : (P ← (¬ Q)) → ((¬ P) → Q)
contrapositive-variant2ᵣ = [¬¬]-elim ∘₂ (swap _∘_)
module _ {P : Stmt{ℓ₁}} ⦃ classical : Classical(P) ⦄ {Q : Stmt{ℓ₂}} where
contrapositive-variant2ₗ : ((¬ P) → Q) → (P ← (¬ Q))
contrapositive-variant2ₗ = contrapositiveₗ ∘ ([¬¬]-intro ∘_)
module _ {P : Stmt{ℓ₁}} ⦃ classic-p : Classical(P) ⦄ {Q : Stmt{ℓ₂}} ⦃ classic-q : Classical(Q) ⦄ where
contrapositive-variant2 : (P ← (¬ Q)) ↔ ((¬ P) → Q)
contrapositive-variant2 = [↔]-intro contrapositive-variant2ₗ contrapositive-variant2ᵣ
one-direction-implication : (P ← Q) ∨ (P → Q)
one-direction-implication with excluded-middle(P) | excluded-middle(Q)
one-direction-implication | [∨]-introₗ p | [∨]-introₗ q = [∨]-introₗ (const p)
one-direction-implication | [∨]-introₗ p | [∨]-introᵣ nq = [∨]-introₗ (const p)
one-direction-implication | [∨]-introᵣ np | [∨]-introₗ q = [∨]-introᵣ (const q)
one-direction-implication | [∨]-introᵣ np | [∨]-introᵣ nq = [∨]-introᵣ ([⊥]-elim ∘ np)
[¬]-injective : (P ↔ Q) ← ((¬ P) ↔ (¬ Q))
[¬]-injective ([↔]-intro nqnp npnq) = [↔]-intro (contrapositiveₗ ⦃ classic-p ⦄ npnq) (contrapositiveₗ ⦃ classic-q ⦄ nqnp)
[↔]-negation : (P ↔ Q) ↔ ((¬ P) ↔ (¬ Q))
[↔]-negation = [↔]-intro [¬]-injective [¬]-unaryOperator
------------------------------------------
-- XOR.
module _ (P : Stmt{ℓ}) ⦃ classical : Classical(P) ⦄ where
xor-negation : P ⊕ (¬ P)
xor-negation with excluded-middle(P)
... | [∨]-introₗ p = [⊕]-introₗ p ([¬¬]-intro p)
... | [∨]-introᵣ np = [⊕]-introᵣ np np
module _ {P : Stmt{ℓ₁}} {Q : Stmt{ℓ₂}} where
classical-from-xorₗ : ⦃ xor : (P ⊕ Q) ⦄ → Classical(P)
classical-from-xorₗ ⦃ xor ⦄ = intro ⦃ [⊕]-excluded-middleₗ xor ⦄
classical-from-xorᵣ : ⦃ xor : (P ⊕ Q) ⦄ → Classical(Q)
classical-from-xorᵣ ⦃ xor ⦄ = intro ⦃ [⊕]-excluded-middleᵣ xor ⦄
------------------------------------------
-- Introduction/elimination rules for Classical when combined with logical connectives.
module _ {P : Stmt{ℓ}} where
[¬]-classical-intro : ⦃ classical : Classical(P) ⦄ → Classical(¬ P)
[¬]-classical-intro ⦃ classical-p ⦄ = intro ⦃ proof ⦄ where
proof : (¬ P) ∨ (¬¬ P)
proof = Either.swap(Either.mapLeft [¬¬]-intro (excluded-middle(P)))
excluded-middle-classical-intro : ⦃ _ : Classical(P) ⦄ → Classical(P ∨ (¬ P))
excluded-middle-classical-intro = intro ⦃ [∨]-introₗ (excluded-middle(P)) ⦄
-- [¬]-classical-elim : ⦃ _ : Classical(¬ P) ⦄ → Classical(P)
-- [¬]-classical-elim ⦃ classical ⦄ = intro ⦃ excluded-middle-elim(¬ P) ⦃ classical ⦄ [∨]-introᵣ (nnp ↦ [∨]-introₗ {!!}) ⦄
module _ {P : Stmt{ℓ₁}} {Q : Stmt{ℓ₂}} where
classical-by-equivalence : (P ↔ Q) → (Classical(P) ↔ Classical(Q))
classical-by-equivalence (xy) = [↔]-intro (cy ↦ intro ⦃ proofₗ(cy) ⦄) (cx ↦ intro ⦃ proofᵣ(cx) ⦄) where
proofᵣ : Classical(P) → (Q ∨ (¬ Q))
proofᵣ (classical-p) with excluded-middle(P) ⦃ classical-p ⦄
... | [∨]-introₗ(p) = [∨]-introₗ([↔]-to-[→] xy p)
... | [∨]-introᵣ(nx) = [∨]-introᵣ(nx ∘ ([↔]-to-[←] xy))
proofₗ : Classical(Q) → (P ∨ (¬ P))
proofₗ (classical-q) with excluded-middle(Q) ⦃ classical-q ⦄
... | [∨]-introₗ(q) = [∨]-introₗ([↔]-to-[←] xy q)
... | [∨]-introᵣ(ny) = [∨]-introᵣ(ny ∘ ([↔]-to-[→] xy))
instance
[∧]-classical-intro : ⦃ classical-p : Classical(P) ⦄ → ⦃ classical-q : Classical(Q) ⦄ → Classical(P ∧ Q)
[∧]-classical-intro ⦃ classical-p ⦄ ⦃ classical-q ⦄ = intro ⦃ proof ⦄ where
proof : (P ∧ Q) ∨ (¬ (P ∧ Q))
proof with (excluded-middle(P) , excluded-middle(Q))
... | ([∨]-introₗ(p) , [∨]-introₗ(q)) = [∨]-introₗ([∧]-intro(p)(q))
... | ([∨]-introₗ(p) , [∨]-introᵣ(ny)) = [∨]-introᵣ(xy ↦ ny([∧]-elimᵣ(xy)))
... | ([∨]-introᵣ(nx) , [∨]-introₗ(q)) = [∨]-introᵣ(xy ↦ nx([∧]-elimₗ(xy)))
... | ([∨]-introᵣ(nx) , [∨]-introᵣ(ny)) = [∨]-introᵣ(xy ↦ nx([∧]-elimₗ(xy)))
instance
[∨]-classical-intro : ⦃ classical-p : Classical(P) ⦄ → ⦃ classical-q : Classical(Q) ⦄ → Classical(P ∨ Q)
[∨]-classical-intro ⦃ classical-p ⦄ ⦃ classical-q ⦄ = intro ⦃ proof ⦄ where
proof : (P ∨ Q) ∨ (¬ (P ∨ Q))
proof with (excluded-middle(P) , excluded-middle(Q))
... | ([∨]-introₗ(p) , [∨]-introₗ(q)) = [∨]-introₗ([∨]-introₗ(p))
... | ([∨]-introₗ(p) , [∨]-introᵣ(ny)) = [∨]-introₗ([∨]-introₗ(p))
... | ([∨]-introᵣ(nx) , [∨]-introₗ(q)) = [∨]-introₗ([∨]-introᵣ(q))
... | ([∨]-introᵣ(nx) , [∨]-introᵣ(ny)) = [∨]-introᵣ(xy ↦ [∨]-elim(nx)(ny) (xy))
instance
[→]-classical-intro : ⦃ classical-p : Classical(P) ⦄ → ⦃ classical-q : Classical(Q) ⦄ → Classical(P → Q)
[→]-classical-intro ⦃ classical-p ⦄ ⦃ classical-q ⦄ = intro ⦃ proof ⦄ where
proof : (P → Q) ∨ (¬ (P → Q))
proof with (excluded-middle(P) , excluded-middle(Q))
... | ([∨]-introₗ(p) , [∨]-introₗ(q)) = [∨]-introₗ(const(q))
... | ([∨]-introₗ(p) , [∨]-introᵣ(ny)) = [∨]-introᵣ([¬→][∧]ₗ ([∧]-intro p ny))
... | ([∨]-introᵣ(nx) , [∨]-introₗ(q)) = [∨]-introₗ(const(q))
... | ([∨]-introᵣ(nx) , [∨]-introᵣ(ny)) = [∨]-introₗ([⊥]-elim ∘ nx)
instance
[↔]-classical-intro : ⦃ _ : Classical(P) ⦄ → ⦃ _ : Classical(Q) ⦄ → Classical(P ↔ Q)
[↔]-classical-intro ⦃ classical-p ⦄ ⦃ classical-q ⦄ = intro ⦃ proof ⦄ where
proof : (P ↔ Q) ∨ (¬ (P ↔ Q))
proof with (excluded-middle(P) , excluded-middle(Q))
... | ([∨]-introₗ(p) , [∨]-introₗ(q)) = [∨]-introₗ([↔]-intro (const(p)) (const(q)))
... | ([∨]-introₗ(p) , [∨]-introᵣ(ny)) = [∨]-introᵣ(([¬→][∧]ₗ ([∧]-intro p ny)) ∘ [↔]-to-[→])
... | ([∨]-introᵣ(nx) , [∨]-introₗ(q)) = [∨]-introᵣ(([¬→][∧]ₗ ([∧]-intro q nx)) ∘ [↔]-to-[←])
... | ([∨]-introᵣ(nx) , [∨]-introᵣ(ny)) = [∨]-introₗ([↔]-intro ([⊥]-elim ∘ ny) ([⊥]-elim ∘ nx))
instance
[⊤]-classical-intro : Classical(⊤)
[⊤]-classical-intro = intro ⦃ [∨]-introₗ ([⊤]-intro) ⦄
instance
[⊥]-classical-intro : Classical(⊥)
[⊥]-classical-intro = intro ⦃ [∨]-introᵣ (id) ⦄
module _ {X : Type{ℓ₁}} ⦃ _ : (◊ X) ⦄ {P : X → Stmt{ℓ₂}} where
instance
[∃]-classical-elim : ⦃ _ : Classical(∃ P) ⦄ → ∃(x ↦ Classical(P(x)))
[∃]-classical-elim ⦃ classical-expx ⦄ with excluded-middle(∃ P)
... | [∨]-introₗ(expx) = [∃]-intro([∃]-witness(expx)) ⦃ intro ⦃ [∨]-introₗ([∃]-proof(expx)) ⦄ ⦄
... | [∨]-introᵣ(nexpx) = [∃]-intro([◊]-existence) ⦃ intro ⦃ [∨]-introᵣ([¬∃]-to-[∀¬] (nexpx) {[◊]-existence}) ⦄ ⦄
------------------------------------------
-- ???
module _ {P : Stmt{ℓ}} {Q : Stmt{ℓ₂}} ⦃ classical-Q : Classical(Q) ⦄ where
-- One direction of the equivalence of implication using conjunction
[→][∧]ₗ : (P → Q) ← ¬(P ∧ (¬ Q))
[→][∧]ₗ (nqnp) = [¬¬]-elim ∘ (Tuple.curry(nqnp))
-- ¬(A ∧ ¬B) → (A → ¬¬B)
-- ¬(A ∧ (¬ B)) //assumption
-- ((A ∧ (B → ⊥)) → ⊥) //Definition: (¬)
-- (A → (B → ⊥) → ⊥) //Tuple.curry
-- (A → ¬(B → ⊥)) //Definition: (¬)
-- (A → ¬(¬ B)) //Definition: (¬)
[→][∧] : (P → Q) ↔ ¬(P ∧ (¬ Q))
[→][∧] = [↔]-intro [→][∧]ₗ [→][∧]ᵣ
module _ {P : Stmt{ℓ}} ⦃ classical-P : Classical(P) ⦄ where
-- One direction of the equivalence of implication using disjunction
[→]-disjunctive-formᵣ : ∀{Q : Stmt{ℓ₂}} → (P → Q) → ((¬ P) ∨ Q)
[→]-disjunctive-formᵣ (pq) with excluded-middle(P)
... | [∨]-introₗ(p) = [∨]-introᵣ(pq(p))
... | [∨]-introᵣ(np) = [∨]-introₗ(np)
[→]-disjunctive-form : ∀{Q : Stmt{ℓ₂}} → (P → Q) ↔ ((¬ P) ∨ Q)
[→]-disjunctive-form = [↔]-intro [→]-disjunctive-formₗ [→]-disjunctive-formᵣ
[→]-from-contrary : ∀{Q : Stmt{ℓ₂}} → (Q → (¬ P) → ⊥) → (Q → P)
[→]-from-contrary = [¬¬]-elim ∘_
[¬→]-disjunctive-formᵣ : ∀{Q : Stmt{ℓ₂}} → ((¬ P) → Q) → (P ∨ Q)
[¬→]-disjunctive-formᵣ npq = excluded-middle-elim P [∨]-introₗ ([∨]-introᵣ ∘ npq)
[¬→]-disjunctive-form : ∀{Q : Stmt{ℓ₂}} → ((¬ P) → Q) ↔ (P ∨ Q)
[¬→]-disjunctive-form = [↔]-intro [¬→]-disjunctive-formₗ [¬→]-disjunctive-formᵣ
-- [↔]-disjunctive-form : ∀{Q : Stmt{ℓ₂}} → (P ↔ Q) ↔ (P ∧ Q) ∨ ((¬ P) ∧ (¬ Q))
-- [↔]-disjunctive-form = [↔]-intro [↔]-disjunctive-formₗ ?
module _ {Q : Stmt{ℓ₂}} {R : Stmt{ℓ₃}} where
[→][∨]-distributivityₗ : (P → (Q ∨ R)) ↔ ((P → Q) ∨ (P → R))
[→][∨]-distributivityₗ = [↔]-intro [→][∨]-distributivityₗₗ r where
r : (P → (Q ∨ R)) → ((P → Q) ∨ (P → R))
r pqr = excluded-middle-elim P ([∨]-elim2 const const ∘ pqr) ([∨]-introₗ ∘ ([⊥]-elim ∘_))
module _ {P : Stmt{ℓ₁}} ⦃ classic-p : Classical(P) ⦄ {Q : Stmt{ℓ₂}} ⦃ classic-q : Classical(Q) ⦄ where
[¬→][∧]ᵣ : ¬(P → Q) → (P ∧ (¬ Q))
[¬→][∧]ᵣ = contrapositive-variant2ₗ ⦃ [∧]-classical-intro {P = P}{Q = ¬ Q} ⦃ classical-q = [¬]-classical-intro ⦄ ⦄ ([→][∧]ₗ {Q = Q})
[¬→][∧] : ¬(P → Q) ↔ (P ∧ (¬ Q))
[¬→][∧] = [↔]-intro [¬→][∧]ₗ [¬→][∧]ᵣ
classical-topOrBottom : ∀{P : Stmt{ℓ}} → (Classical(P) ↔ TopOrBottom(_↔_)(P))
_⨯_.left (classical-topOrBottom {P = P}) tb = intro ⦃ [∨]-elim2 ([↔]-elimₗ [⊤]-intro) [↔]-to-[→] tb ⦄
_⨯_.right (classical-topOrBottom {P = P}) classical = excluded-middle-elim P ⦃ classical ⦄ ([∨]-introₗ ∘ provable-top-equivalence) (([∨]-introᵣ ∘ unprovable-bottom-equivalence))
------------------------------------------
-- Negation is almost preserved over the conjunction-dijunction dual (De-morgan's laws).
module _ {P : Stmt{ℓ₁}} ⦃ classic-p : Classical(P) ⦄ {Q : Stmt{ℓ₂}} ⦃ classic-q : Classical(Q) ⦄ where
[¬]-preserves-[∧][∨]ᵣ : ¬(P ∧ Q) → ((¬ P) ∨ (¬ Q))
[¬]-preserves-[∧][∨]ᵣ npq = [→]-disjunctive-formᵣ {P = P} {Q = ¬ Q} ([→][∧]ₗ ⦃ [¬]-classical-intro ⦄ (npq ∘ (Tuple.mapRight ([¬¬]-elim {P = Q}))))
[¬]-preserves-[∧][∨] : ¬(P ∧ Q) ↔ ((¬ P) ∨ (¬ Q))
[¬]-preserves-[∧][∨] = [↔]-intro [¬]-preserves-[∧][∨]ₗ [¬]-preserves-[∧][∨]ᵣ
{- TODO: Organize Logic.Classical.DoubleNegated, and this is already proven in there, though this result is more general.
module _ {P : Stmt{ℓ₁}} {Q : Stmt{ℓ₂}} where
[¬]-preserves-[∧][∨]ᵣ-weak-excluded-middle : (¬(P ∧ Q) → ((¬ P) ∨ (¬ Q))) ← (Classical(¬ P) ∧ Classical(¬ Q))
[¬]-preserves-[∧][∨]ᵣ-weak-excluded-middle ([↔]-intro (intro ⦃ pex ⦄) (intro ⦃ qex ⦄)) npq with pex | qex
... | [∨]-introₗ np | [∨]-introₗ nq = [∨]-introₗ np
... | [∨]-introₗ np | [∨]-introᵣ nnq = [∨]-introₗ np
... | [∨]-introᵣ nnp | [∨]-introₗ nq = [∨]-introᵣ nq
... | [∨]-introᵣ nnp | [∨]-introᵣ nnq with () ← (DoubleNegated.[∧]-intro nnp nnq) npq
-}
-- TODO: See TODO directly above
weak-excluded-middle-[¬]-preserves-[∧][∨]ᵣ : (∀{P : Stmt{ℓ}} → Classical(¬ P)) ↔ (∀{P : Stmt{ℓ}}{Q : Stmt{ℓ}} → ¬(P ∧ Q) → ((¬ P) ∨ (¬ Q)))
weak-excluded-middle-[¬]-preserves-[∧][∨]ᵣ = [↔]-intro l r where
l : (∀{P} → Classical(¬ P)) ← (∀{P}{Q} → ¬(P ∧ Q) → ((¬ P) ∨ (¬ Q)))
l pres {P} = intro ⦃ pres{P}{¬ P} non-contradiction ⦄
r : (∀{P} → Classical(¬ P)) → (∀{P}{Q} → ¬(P ∧ Q) → ((¬ P) ∨ (¬ Q)))
r wem {P}{Q} npq with excluded-middle(¬ P) ⦃ wem ⦄ | excluded-middle(¬ Q) ⦃ wem ⦄
... | [∨]-introₗ np | [∨]-introₗ nq = [∨]-introₗ np
... | [∨]-introₗ np | [∨]-introᵣ nnq = [∨]-introₗ np
... | [∨]-introᵣ nnp | [∨]-introₗ nq = [∨]-introᵣ nq
... | [∨]-introᵣ nnp | [∨]-introᵣ nnq = [∨]-introₗ (p ↦ nnq(q ↦ npq([∧]-intro p q)))
------------------------------------------
-- Predicate logic.
module _ {P : Stmt{ℓ}} ⦃ classical-P : Classical(P) ⦄ {X : Type{ℓ₂}} ⦃ pos@(intro ⦃ x ⦄) : (◊ X) ⦄ {Q : X → Stmt{ℓ₃}} where
[∃]-unrelatedᵣ-[→]ₗ : ∃(x ↦ (P → Q(x))) ← (P → ∃(x ↦ Q(x)))
[∃]-unrelatedᵣ-[→]ₗ pexqx with excluded-middle(P)
... | ([∨]-introₗ p) = [∃]-map-proof (const) (pexqx(p))
... | ([∨]-introᵣ np) = [∃]-intro(x) ⦃ [⊥]-elim {P = Q(x)} ∘ np ⦄
[∃]-unrelatedᵣ-[→] : ∃(x ↦ (P → Q(x))) ↔ (P → ∃(x ↦ Q(x)))
[∃]-unrelatedᵣ-[→] = [↔]-intro [∃]-unrelatedᵣ-[→]ₗ [∃]-unrelatedᵣ-[→]ᵣ
module _ {X : Type{ℓ₁}} ⦃ _ : (◊ X) ⦄ {P : X → Stmt{ℓ₂}} ⦃ classical-expx : Classical(∃ P) ⦄ {Q : X → Stmt{ℓ₃}} where
[∃][←]-distributivity : ∃(x ↦ (P(x) → Q(x))) ← (∃(x ↦ P(x)) → ∃(x ↦ Q(x)))
[∃][←]-distributivity (expx-exqx) =
(([∃]-map-proof (\{x} → proof ↦ proof{x})
(([∃]-map-proof (\{x} → [↔]-to-[←] ([∀]-unrelatedₗ-[→] {X = X}{P}{Q(x)}))
(([∃]-unrelatedᵣ-[→]ₗ ⦃ classical-expx ⦄
(expx-exqx :of: (∃(x ↦ P(x)) → ∃(x ↦ Q(x))))
) :of: (∃(x ↦ (∃(x ↦ P(x)) → Q(x)))))
) :of: (∃(x ↦ ∀ₗ(y ↦ (P(y) → Q(x))))))
) :of: (∃(x ↦ (P(x) → Q(x)))))
{-
module _ {X : Type{ℓ₁}} ⦃ _ : (◊ X) ⦄ {P : X → Stmt{ℓ₂}} where
[¬∀¬]-to-[∃] : (∃ P) ← ¬(∀ₗ(¬_ ∘ P))
[¬∀¬]-to-[∃] x = {!!} -- TODO: When is this true?
[∃]-classical-intro : ⦃ _ : Classical(∀ₗ P) ⦄ ⦃ _ : Classical(∀ₗ(¬_ ∘ P)) ⦄ → Classical(∃ P)
Classical.excluded-middle ([∃]-classical-intro ⦃ classical-pa ⦄ ⦃ classical-npa ⦄) with excluded-middle(∀ₗ P) | excluded-middle(∀ₗ(¬_ ∘ P))
... | [∨]-introₗ ap | [∨]-introₗ nap with () ← nap(ap {[◊]-existence})
... | [∨]-introₗ ap | [∨]-introᵣ nanp = [∨]-introₗ ([∃]-intro [◊]-existence ⦃ ap ⦄)
... | [∨]-introᵣ npa | [∨]-introₗ nap = [∨]-introᵣ ([∀¬]-to-[¬∃] nap)
... | [∨]-introᵣ npa | [∨]-introᵣ nanp = [∨]-introₗ ([¬∀¬]-to-[∃] nanp)
-}
-- TODO: Maybe try to get rid of the second instance assumption? Idea: Only [¬¬]-elim is needed for that one, so if possible and true, prove: (∀{x} → Classic(P(x)) → P(x)) → (Classic(∃ P) → (∃ P)). No, that is probably not true
module _ {X : Type{ℓ₁}}{P : X → Stmt{ℓ₂}} ⦃ classical-proof1 : ∀{x} → Classical(P(x)) ⦄ ⦃ classical-proof2 : Classical(∃(¬_ ∘ P)) ⦄ where
[¬∀]-to-[∃¬] : ∃(x ↦ ¬(P(x))) ← ¬(∀ₗ(x ↦ P(x)))
[¬∀]-to-[∃¬] (naxpx) =
([¬¬]-elim ⦃ classical-proof2 ⦄
([¬]-intro {P = ¬ ∃(x ↦ ¬(P(x)))} (nexnpx ↦
(naxpx
([∀][→]-distributivity {X = X}{¬¬_ ∘ P}
((\{x} → [¬¬]-elim ⦃ classical-proof1{x} ⦄) :of: ∀ₗ(x ↦ (¬¬ P(x) → P(x))))
([¬∃]-to-[∀¬] (nexnpx) :of: ∀ₗ(x ↦ ¬¬ P(x)))
:of: ∀ₗ(x ↦ P(x)))
) :of: ⊥
) :of: (¬¬ ∃(x ↦ ¬ P(x))))
) :of: ∃(x ↦ ¬ P(x))
-- ¬∀x. P(x)
-- • ¬∃x. ¬P(x)
-- ¬∃x. ¬P(x)
-- ⇒ ∀x. ¬¬P(x)
-- ⇒ ∀x. P(x)
-- ⇒ ⊥
-- ⇒ ¬¬∃x. ¬P(x)
-- ⇒ ∃x. ¬P(x)
[∃]-unrelatedₗ-[→]ₗ : ⦃ _ : ◊ X ⦄ → ⦃ _ : Classical(∀ₗ P) ⦄ → ∀{Q : Stmt{ℓ₃}} → ∃(x ↦ (P(x) → Q)) ← (∀ₗ(x ↦ P(x)) → Q)
[∃]-unrelatedₗ-[→]ₗ ⦃ pos-x ⦄ ⦃ classical-axpx ⦄ {Q} axpxq with excluded-middle(∀ₗ P)
... | ([∨]-introₗ axpx) = [∃]-intro([◊]-existence) ⦃ const(axpxq (axpx)) ⦄
... | ([∨]-introᵣ naxpx) = [∃]-map-proof ([⊥]-elim ∘_) ([¬∀]-to-[∃¬] (naxpx))
-- (∀x. P(x)) → Q
-- • ∀x. P(x)
-- ∀x. P(x)
-- ⇒ ∀x. P(x)
-- ⇒ Q
-- ⇒ P(a) → Q
-- ⇒ ∃x. P(x) → Q
-- • ¬∀x. P(x)
-- ¬∀x. P(x)
-- ⇒ ∃x. ¬P(x)
-- ⇒ ∃x. P(x) → Q
-- Also known as: Drinker paradox
drinker-ambiguity : ⦃ _ : ◊ X ⦄ → ⦃ _ : Classical(∀ₗ P) ⦄ → ∃(x ↦ (P(x) → ∀{y} → P(y)))
drinker-ambiguity = [∃]-map-proof (\pxap px {y} → pxap px {y}) ([∃]-unrelatedₗ-[→]ₗ id)
drinker-ambiguity-equiv : ⦃ _ : Classical(∀ₗ P) ⦄ → ((◊ X) ↔ ∃(x ↦ (P(x) → ∀{y} → P(y))))
drinker-ambiguity-equiv ⦃ classical-axpx ⦄ =
[↔]-intro
(\ex → intro ⦃ [∃]-witness ex ⦄)
(\pos-x → drinker-ambiguity ⦃ pos-x ⦄ ⦃ classical-axpx ⦄)
| {
"alphanum_fraction": 0.5131458187,
"avg_line_length": 47.616966581,
"ext": "agda",
"hexsha": "1f128298e993db11634af5bc063e29619aa90888",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Logic/Classical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Logic/Classical.agda",
"max_line_length": 227,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Logic/Classical.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 8321,
"size": 18523
} |
module SignedBy where
open import Data.String
open import Relation.Binary.PropositionalEquality
open import Data.Nat
-- this is easy to write
--- but ignoring for now
postulate Word512 : Set
{-
signed by val with noncing by identity ==
really needs to be part of a freshly generated challenge /uuid string mixed into the response to
ensure it can be MIM'd and rerouted to unrelated transactions
a related issue is making sure the signeatures at values and on the overall module/transaction unit are
'entangled' together so that manipulations wont validate
for manny applications it'd suffice to just do a signed by of a module/program as a whole
-}
postulate signed_nonced_by_ : {a : Set} -> a -> Word512 -> String -> Set
postulate canonicalHash : {a : Set} -> a -> Word512
postulate canonicalNoncedHash : { a : Set} -> a -> Word512 -> Word512
postulate getSignedVal : {a : Set} -> {nonce : Word512 } { sig : String } {v : a} (sigVal : signed v nonced nonce by sig ) -> a
postulate getSignedValEta : {a : Set} {v : a} { n : Word512} {i : String} -> (x : signed v nonced n by i ) -> ( v ≡ getSignedVal x )
{-
-}
| {
"alphanum_fraction": 0.7121346324,
"avg_line_length": 36.4193548387,
"ext": "agda",
"hexsha": "b84e118df18a4e0844a0913b74742dd988907a75",
"lang": "Agda",
"max_forks_count": 10,
"max_forks_repo_forks_event_max_datetime": "2016-09-21T15:11:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-26T20:09:07.000Z",
"max_forks_repo_head_hexsha": "9dd16246800cf093157a2817ddbbed82d0f20b3d",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "hopper-lang/hopper",
"max_forks_repo_path": "models/agda/SignedBy.agda",
"max_issues_count": 21,
"max_issues_repo_head_hexsha": "9dd16246800cf093157a2817ddbbed82d0f20b3d",
"max_issues_repo_issues_event_max_datetime": "2016-06-02T22:26:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-03-03T16:47:57.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "hopper-lang/hopper",
"max_issues_repo_path": "models/agda/SignedBy.agda",
"max_line_length": 136,
"max_stars_count": 99,
"max_stars_repo_head_hexsha": "9dd16246800cf093157a2817ddbbed82d0f20b3d",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "hopper-lang/hopper",
"max_stars_repo_path": "models/agda/SignedBy.agda",
"max_stars_repo_stars_event_max_datetime": "2017-03-02T11:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-02-26T19:35:15.000Z",
"num_tokens": 313,
"size": 1129
} |
-- Andreas, 2014-10-09, issue reported by Matteo Acerbi
module _ where
module A where
module B (let module F = A) where
module C (let module F = A) where
-- Complains about duplicate F
-- Should work
| {
"alphanum_fraction": 0.712195122,
"avg_line_length": 15.7692307692,
"ext": "agda",
"hexsha": "250ff475253c8cf4aec41475d062e7cd5b88a0eb",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1299.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1299.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1299.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 61,
"size": 205
} |
-- Andreas, 2012-05-04 Example from Jason Reed, LFMTP 2009
{-# OPTIONS --allow-unsolved-metas #-}
-- The option is supplied to force a real error to pass the regression test.
module JasonReedPruning where
open import Common.Equality
open import Common.Product
data o : Set where
f : o -> o
test :
let U : o → o
U = _
V : o → o
V = _
W : o → o
W = _
in (x y : o) → U x ≡ f (V (W y))
× V x ≡ U (W y)
test x y = refl , refl
{-
Considering U (W y) = V x, we can prune x from V
V x = V'
After instantiation
U x = f V' (solved)
V' = U (W y) (not solved)
U = \ x → f V'
V' = f V'
occurs check fails
-}
| {
"alphanum_fraction": 0.5324675325,
"avg_line_length": 19.25,
"ext": "agda",
"hexsha": "5e304c0d650de105fbec8223391d5945652814c4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dagit/agda",
"max_forks_repo_path": "test/fail/JasonReedPruning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dagit/agda",
"max_issues_repo_path": "test/fail/JasonReedPruning.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dagit/agda",
"max_stars_repo_path": "test/fail/JasonReedPruning.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z",
"num_tokens": 237,
"size": 693
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Decidable.Relations where
DecidableRelation : {a b : _} {A : Set a} (f : A → Set b) → Set (a ⊔ b)
DecidableRelation {A = A} f = (x : A) → (f x) || (f x → False)
orDecidable : {a b c : _} {A : Set a} {f : A → Set b} {g : A → Set c} → DecidableRelation f → DecidableRelation g → DecidableRelation (λ x → (f x) || (g x))
orDecidable fDec gDec x with fDec x
orDecidable fDec gDec x | inl fx = inl (inl fx)
orDecidable fDec gDec x | inr !fx with gDec x
orDecidable fDec gDec x | inr !fx | inl gx = inl (inr gx)
orDecidable {f = f} {g} fDec gDec x | inr !fx | inr !gx = inr t
where
t : (f x || g x) → False
t (inl x) = !fx x
t (inr x) = !gx x
andDecidable : {a b c : _} {A : Set a} {f : A → Set b} {g : A → Set c} → DecidableRelation f → DecidableRelation g → DecidableRelation (λ x → (f x) && (g x))
andDecidable fDec gDec x with fDec x
andDecidable fDec gDec x | inl fx with gDec x
andDecidable fDec gDec x | inl fx | inl gx = inl (fx ,, gx)
andDecidable fDec gDec x | inl fx | inr !gx = inr (λ x → !gx (_&&_.snd x))
andDecidable fDec gDec x | inr !fx = inr (λ x → !fx (_&&_.fst x))
notDecidable : {a b : _} {A : Set a} {f : A → Set b} → DecidableRelation f → DecidableRelation (λ x → (f x) → False)
notDecidable fDec x with fDec x
notDecidable fDec x | inl fx = inr (λ x → x fx)
notDecidable fDec x | inr !fx = inl !fx
doubleNegation : {a b : _} {A : Set a} {f : A → Set b} → DecidableRelation f → (x : A) → (((f x) → False) → False) → f x
doubleNegation fDec x with fDec x
doubleNegation fDec x | inl fx = λ _ → fx
doubleNegation fDec x | inr !fx = λ p → exFalso (p !fx)
| {
"alphanum_fraction": 0.6190201729,
"avg_line_length": 45.6578947368,
"ext": "agda",
"hexsha": "cbd245ea512ae0a440fdcead7e60e43266b0b957",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Decidable/Relations.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Decidable/Relations.agda",
"max_line_length": 157,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Decidable/Relations.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 679,
"size": 1735
} |
-- 2013-06-15 Andreas, issue reported by Stevan Andjelkovic
module Issue854 where
infixr 1 _⊎_
infixr 2 _×_
infixr 4 _,_
infix 4 _≡_
data ⊥ : Set where
⊥-elim : {A : Set} → ⊥ → A
⊥-elim ()
record ⊤ : Set where
constructor tt
data Bool : Set where
true false : Bool
data ℕ : Set where
zero : ℕ
suc : (n : ℕ) → ℕ
data Maybe (A : Set) : Set where
nothing : Maybe A
just : (x : A) → Maybe A
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
data _⊎_ (A : Set) (B : Set) : Set where
inj₁ : (x : A) → A ⊎ B
inj₂ : (y : B) → A ⊎ B
[_,_] : ∀ {A : Set} {B : Set} {C : A ⊎ B → Set} →
((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) →
((x : A ⊎ B) → C x)
[ f , g ] (inj₁ x) = f x
[ f , g ] (inj₂ y) = g y
[_,_]₁ : ∀ {A : Set} {B : Set} {C : A ⊎ B → Set₁} →
((x : A) → C (inj₁ x)) → ((x : B) → C (inj₂ x)) →
((x : A ⊎ B) → C x)
[ f , g ]₁ (inj₁ x) = f x
[ f , g ]₁ (inj₂ y) = g y
record Σ (A : Set) (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
_×_ : Set → Set → Set
A × B = Σ A λ _ → B
uncurry₁ : {A : Set} {B : A → Set} {C : Σ A B → Set₁} →
((x : A) → (y : B x) → C (x , y)) →
((p : Σ A B) → C p)
uncurry₁ f (x , y) = f x y
------------------------------------------------------------------------
infix 5 _◃_
infixr 1 _⊎C_
infixr 2 _×C_
record Container : Set₁ where
constructor _◃_
field
Shape : Set
Position : Shape → Set
open Container public
⟦_⟧ : Container → (Set → Set)
⟦ S ◃ P ⟧ X = Σ S λ s → P s → X
idC : Container
idC = ⊤ ◃ λ _ → ⊤
constC : Set → Container
constC X = X ◃ λ _ → ⊥
𝟘 = constC ⊥
𝟙 = constC ⊤
_⊎C_ : Container → Container → Container
S ◃ P ⊎C S′ ◃ P′ = (S ⊎ S′) ◃ [ P , P′ ]₁
_×C_ : Container → Container → Container
S ◃ P ×C S′ ◃ P′ = (S × S′) ◃ uncurry₁ (λ s s′ → P s ⊎ P′ s′)
data μ (C : Container) : Set where
⟨_⟩ : ⟦ C ⟧ (μ C) → μ C
_⋆C_ : Container → Set → Container
C ⋆C X = constC X ⊎C C
_⋆_ : Container → Set → Set
C ⋆ X = μ (C ⋆C X)
AlgIter : Container → Set → Set
AlgIter C X = ⟦ C ⟧ X → X
iter : ∀ {C X} → AlgIter C X → μ C → X
iter φ ⟨ s , k ⟩ = φ (s , λ p → iter φ (k p))
AlgRec : Container → Set → Set
AlgRec C X = ⟦ C ⟧ (μ C × X) → X
rec : ∀ {C X} → AlgRec C X → μ C → X
rec φ ⟨ s , k ⟩ = φ (s , λ p → (k p , rec φ (k p)))
return : ∀ {C X} → X → C ⋆ X
return x = ⟨ inj₁ x , ⊥-elim ⟩
do : ∀ {C X} → ⟦ C ⟧ (C ⋆ X) → C ⋆ X
do (s , k) = ⟨ inj₂ s , k ⟩
_>>=_ : ∀ {C X Y} → C ⋆ X → (X → C ⋆ Y) → C ⋆ Y
_>>=_ {C}{X}{Y} m k = iter φ m
where
φ : AlgIter (C ⋆C X) (C ⋆ Y)
φ (inj₁ x , _) = k x
φ (inj₂ s , k) = do (s , k)
------------------------------------------------------------------------
_↠_ : Set → Set → Container
I ↠ O = I ◃ λ _ → O
State : Set → Container
State S = (⊤ ↠ S) -- get
⊎C (S ↠ ⊤) -- put
get : ∀ {S} → State S ⋆ S
get = do (inj₁ tt , return)
put : ∀ {S} → S → State S ⋆ ⊤
put s = do (inj₂ s , return)
Homo : Container → Set → Set → Container → Set → Set
Homo Σ X I Σ′ Y = AlgRec (Σ ⋆C X) (I → Σ′ ⋆ Y)
Pseudohomo : Container → Set → Set → Container → Set → Set
Pseudohomo Σ X I Σ′ Y =
⟦ Σ ⋆C X ⟧ (((Σ ⊎C Σ′) ⋆ X) × (I → Σ′ ⋆ Y)) → I → Σ′ ⋆ Y
state : ∀ {Σ S X} → Pseudohomo (State S) X S Σ (X × S)
state (inj₁ x , _) = λ s → return (x , s) -- return
state (inj₂ (inj₁ _) , k) = λ s → proj₂ (k s) s -- get
state (inj₂ (inj₂ s) , k) = λ _ → proj₂ (k tt) s -- put
Abort : Container
Abort = ⊤ ↠ ⊥
aborting : ∀ {X} → Abort ⋆ X
aborting = do (tt , ⊥-elim)
abort : ∀ {Σ X} → Pseudohomo Abort X ⊤ Σ (Maybe X)
abort (inj₁ x , _) _ = return (just x) -- return
abort (inj₂ _ , _) _ = return nothing -- abort
------------------------------------------------------------------------
record _⇒_ (C C′ : Container) : Set where
field
shape : Shape C → Shape C′
position : ∀ {s} → Position C′ (shape s) → Position C s
open _⇒_ public
idMorph : ∀ {C} → C ⇒ C
idMorph = record { shape = λ s → s; position = λ p → p }
inlMorph : ∀ {C C′ : Container} → C ⇒ (C ⊎C C′)
inlMorph = record
{ shape = inj₁
; position = λ p → p
}
swapMorph : ∀ {C C′} → (C ⊎C C′) ⇒ (C′ ⊎C C)
swapMorph {C}{C′}= record
{ shape = sh
; position = λ {s} p → pos {s} p
}
where
sh : Shape C ⊎ Shape C′ → Shape C′ ⊎ Shape C
sh (inj₁ s) = inj₂ s
sh (inj₂ s′) = inj₁ s′
pos : ∀ {s} → Position (C′ ⊎C C) (sh s) → Position (C ⊎C C′) s
pos {inj₁ s} p = p
pos {inj₂ s′} p′ = p′
⟪_⟫ : ∀ {C C′ X} → C ⇒ C′ → ⟦ C ⟧ X → ⟦ C′ ⟧ X
⟪ m ⟫ xs = shape m (proj₁ xs) , λ p′ → proj₂ xs (position m p′)
⟪_⟫Homo : ∀ {C C′ X} → C ⇒ C′ → Homo C X ⊤ C′ X
⟪ m ⟫Homo (inj₁ x , _) _ = return x
⟪ m ⟫Homo (inj₂ s , k) _ = let (s′ , k′) = ⟪ m ⟫ (s , k)
in do (s′ , λ p′ → proj₂ (k′ p′) tt)
natural : ∀ {C C′ X} → C ⇒ C′ → C ⋆ X → C′ ⋆ X
natural f m = rec ⟪ f ⟫Homo m tt
inl : ∀ {C C′ X} → C ⋆ X → (C ⊎C C′) ⋆ X
inl = natural inlMorph
squeeze : ∀ {Σ Σ′ X} → ((Σ ⊎C Σ′) ⊎C Σ′) ⋆ X → (Σ ⊎C Σ′) ⋆ X
squeeze = natural m
where
m = record
{ shape = [ (λ x → x) , inj₂ ]
; position = λ { {inj₁ x} p → p ; {inj₂ x} p → p}
}
lift : ∀ {Σ Σ′ X Y I} → Pseudohomo Σ X I Σ′ Y →
Pseudohomo (Σ ⊎C Σ′) X I Σ′ Y
lift φ (inj₁ x , _) i = φ (inj₁ x , ⊥-elim) i
lift φ (inj₂ (inj₁ s) , k) i = φ (inj₂ s , λ p →
let (w , ih) = k p in squeeze w , ih) i
lift φ (inj₂ (inj₂ s′) , k′) i = do (s′ , λ p′ → proj₂ (k′ p′) i)
weaken : ∀ {Σ Σ′ Σ″ Σ‴ X Y I} → Homo Σ′ X I Σ″ Y →
Σ ⇒ Σ′ → Σ″ ⇒ Σ‴ → Homo Σ X I Σ‴ Y
weaken {Σ}{Σ′}{Σ″}{Σ‴}{X}{Y} φ f g (s , k) i = w‴
where
w : Σ ⋆ X
w = ⟨ s , (λ p → proj₁ (k p)) ⟩
w′ : Σ′ ⋆ X
w′ = natural f w
w″ : Σ″ ⋆ Y
w″ = rec φ w′ i
w‴ : Σ‴ ⋆ Y
w‴ = natural g w″
⌈_⌉Homo : ∀ {Σ Σ′ X Y I} → Pseudohomo Σ X I Σ′ Y → Homo Σ X I Σ′ Y
⌈ φ ⌉Homo (inj₁ x , _) = φ (inj₁ x , ⊥-elim)
⌈ φ ⌉Homo (inj₂ s , k) = φ (inj₂ s , λ p → let (w , ih) = k p
in inl w , ih)
run : ∀ {Σ Σ′ Σ″ Σ‴ X Y I} → Pseudohomo Σ X I Σ′ Y →
Σ″ ⇒ (Σ ⊎C Σ′) → Σ′ ⇒ Σ‴ →
Σ″ ⋆ X → I → Σ‴ ⋆ Y
run φ p q = rec (weaken ⌈ lift φ ⌉Homo p q)
------------------------------------------------------------------------
prog : (State ℕ ⊎C Abort) ⋆ Bool
prog =
⟨ inj₂ (inj₁ (inj₁ tt)) , (λ n → -- get >>= λ n →
⟨ inj₂ (inj₁ (inj₂ (suc n))) , (λ _ → -- put (suc n)
⟨ inj₂ (inj₂ tt) , (λ _ → -- aborting
return true) ⟩) ⟩) ⟩
progA : State ℕ ⋆ Maybe Bool
progA = run abort swapMorph idMorph prog tt
progS : ℕ → Abort ⋆ (Bool × ℕ)
progS = run state idMorph idMorph prog
progAS : ℕ → 𝟘 ⋆ (Maybe Bool × ℕ)
progAS = run state inlMorph idMorph progA
progSA : ℕ → 𝟘 ⋆ Maybe (Bool × ℕ)
progSA n = run abort inlMorph idMorph (progS n) tt
testSA : progSA zero ≡ return nothing
testSA = refl
testAS : progAS zero ≡ return (nothing , suc zero)
testAS = refl
-- The last statement seemed to make the type checker loop.
-- But it just created huge terms during the conversion check
-- and never finished.
-- These terms contained many projection redexes
-- (projection applied to record value).
-- After changing the strategy, such that these redexes are,
-- like beta-redexes, removed immediately in internal syntax,
-- the code checks instantaneously.
| {
"alphanum_fraction": 0.4646464646,
"avg_line_length": 25.2620689655,
"ext": "agda",
"hexsha": "3914404ba70d090a90d46cc2444d16f2b9167834",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Succeed/Issue854.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Succeed/Issue854.agda",
"max_line_length": 76,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue854.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 3322,
"size": 7326
} |
-- Andreas, 2018-09-08, issue #3211
--
-- Bug with parametrized module and constructor rewriting.
{-# OPTIONS --rewriting #-}
-- {-# OPTIONS -v rewriting.match:90 -v rewriting:90 #-}
-- {-# OPTIONS -v tc.getConType:50 #-}
module _ (Base : Set) where
open import Agda.Builtin.Equality
{-# BUILTIN REWRITE _≡_ #-}
cong : ∀ {a b} {A : Set a} {B : Set b}
(f : A → B) {x y} → x ≡ y → f x ≡ f y
cong f refl = refl
data Form : Set where
Atom : (P : Base) → Form
_⇒_ : (A B : Form) → Form
data Cxt : Set where
ε : Cxt
_∙_ : (Γ : Cxt) (A : Form) → Cxt
infixl 4 _∙_
infix 3 _≤_
data _≤_ : (Γ Δ : Cxt) → Set where
id≤ : ∀{Γ} → Γ ≤ Γ
weak : ∀{A Γ Δ} (τ : Γ ≤ Δ) → Γ ∙ A ≤ Δ
lift : ∀{A Γ Δ} (τ : Γ ≤ Δ) → Γ ∙ A ≤ Δ ∙ A
postulate lift-id≤ : ∀{Γ A} → lift id≤ ≡ id≤ {Γ ∙ A}
{-# REWRITE lift-id≤ #-}
Mon : (P : Cxt → Set) → Set
Mon P = ∀{Γ Δ} (τ : Γ ≤ Δ) → P Δ → P Γ
infix 2 _⊢_
data _⊢_ (Γ : Cxt) : (A : Form) → Set where
impI : ∀{A B} (t : Γ ∙ A ⊢ B) → Γ ⊢ A ⇒ B
Tm = λ A Γ → Γ ⊢ A
monD : ∀{A} → Mon (Tm A)
-- monD : ∀{A Γ Δ} (τ : Γ ≤ Δ) → Tm A Δ → Tm A Γ -- Works
-- monD : ∀{A Γ Δ} (τ : Γ ≤ Δ) → Δ ⊢ A → Γ ⊢ A -- Works
monD τ (impI t) = impI (monD (lift τ) t)
monD-id : ∀{Γ A} (t : Γ ⊢ A) → monD id≤ t ≡ t
monD-id (impI t) = cong impI (monD-id t) -- REWRITE lift-id≤
-- -}
| {
"alphanum_fraction": 0.4916030534,
"avg_line_length": 23.3928571429,
"ext": "agda",
"hexsha": "a63c103e735e0bf523d1c9e96f27abea9120b1d5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3211a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3211a.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3211a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 615,
"size": 1310
} |
{-# OPTIONS --cubical #-}
module Type.Cubical.Equiv where
import Lvl
open import Type.Cubical
open import Type.Cubical.Path.Equality
import Type.Equiv as Type
open import Type
private variable ℓ₁ ℓ₂ : Lvl.Level
-- `Type.Equiv._≍_` specialized to Path.
_≍_ : (A : Type{ℓ₁}) → (B : Type{ℓ₂}) → Type
A ≍ B = A Type.≍ B
{-# BUILTIN EQUIV _≍_ #-}
instance
[≍]-reflexivity = \{ℓ} → Type.[≍]-reflexivity {ℓ} ⦃ Path-equiv ⦄
instance
[≍]-symmetry = \{ℓ} → Type.[≍]-symmetry {ℓ} ⦃ Path-equiv ⦄
instance
[≍]-transitivity = \{ℓ} → Type.[≍]-transitivity {ℓ} ⦃ Path-equiv ⦄ ⦃ Path-congruence₁ ⦄
instance
[≍]-equivalence = \{ℓ} → Type.[≍]-equivalence {ℓ} ⦃ Path-equiv ⦄ ⦃ Path-congruence₁ ⦄
| {
"alphanum_fraction": 0.6296296296,
"avg_line_length": 24.2068965517,
"ext": "agda",
"hexsha": "a684813675219e3b9927fd6a0a132ca6fb8bccf7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Cubical/Equiv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Cubical/Equiv.agda",
"max_line_length": 89,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Cubical/Equiv.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 296,
"size": 702
} |
open import bool
open import level
open import eq
open import product
open import product-thms
open import relations
-- module closures where
-- module basics {ℓ ℓ' : level}{A : Set ℓ} (_>A_ : A → A → Set ℓ') where
-- data tc : A → A → Set (ℓ ⊔ ℓ') where
-- tc-step : ∀{a b : A} → a >A b → tc a b
-- tc-trans : ∀{a b c : A} → tc a b → tc b c → tc a c
-- data rc : A → A → Set (ℓ ⊔ ℓ') where
-- rc-step : ∀{a b : A} → a >A b → rc a b
-- rc-refl : ∀{a : A} → rc a a
-- tc-transitive : transitive tc
-- tc-transitive = tc-trans
-- module combinations {ℓ ℓ' : level}{A : Set ℓ} (_>A_ : A → A → Set ℓ') where
-- open basics public
-- rtc : A → A → Set (ℓ ⊔ ℓ')
-- rtc = rc (tc _>A_)
-- rtc-refl : reflexive rtc
-- rtc-refl = rc-refl
-- rtc-trans : transitive rtc
-- rtc-trans (rc-step{a}{b} x) (rc-step{.b}{c} x') = rc-step (tc-trans x x')
-- rtc-trans (rc-step x) rc-refl = rc-step x
-- rtc-trans rc-refl (rc-step x) = rc-step x
-- rtc-trans rc-refl rc-refl = rc-refl
| {
"alphanum_fraction": 0.5195895522,
"avg_line_length": 28.2105263158,
"ext": "agda",
"hexsha": "14c90209b52176a4d7353a32356eeef956ca13bb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "closures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "closures.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "closures.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 392,
"size": 1072
} |
------------------------------------------------------------------------
-- Typing and kinding of Fω with interval kinds
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module FOmegaInt.Typing where
open import Data.Context.WellFormed
open import Data.Fin using (Fin; zero)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Fin.Substitution.Typed
open import Data.Nat using (ℕ)
open import Data.Product using (_,_; _×_)
open import Level using () renaming (zero to lzero)
open import Relation.Binary.PropositionalEquality as PropEq hiding ([_])
open import FOmegaInt.Syntax
------------------------------------------------------------------------
-- Typing derivations.
module Typing where
open TermCtx
open Syntax
open Substitution using (_[_]; _Kind[_]; weaken)
infix 4 _ctx _⊢_kd _⊢_wf
infix 4 _⊢Tp_∈_ _⊢Tm_∈_ _⊢_∈_
infix 4 _⊢_<:_∈_ _⊢_<∷_ _⊢_≤_
infix 4 _⊢_≃_∈_ _⊢_≅_ _⊢_≃_wf _≃_ctx
mutual
-- Well-formed typing contexts.
_ctx : ∀ {n} → Ctx n → Set
_ctx = ContextFormation._wf _⊢_wf
-- Well-formed type/kind ascriptions in typing contexts.
data _⊢_wf {n} (Γ : Ctx n) : TermAsc n → Set where
wf-kd : ∀ {a} → Γ ⊢ a kd → Γ ⊢ (kd a) wf
wf-tp : ∀ {a} → Γ ⊢Tp a ∈ * → Γ ⊢ (tp a) wf
-- Well-formed kinds.
data _⊢_kd {n} (Γ : Ctx n) : Kind Term n → Set where
kd-⋯ : ∀ {a b} → Γ ⊢Tp a ∈ * → Γ ⊢Tp b ∈ * → Γ ⊢ a ⋯ b kd
kd-Π : ∀ {j k} → Γ ⊢ j kd → kd j ∷ Γ ⊢ k kd → Γ ⊢ Π j k kd
-- Kinding derivations.
data _⊢Tp_∈_ {n} (Γ : Ctx n) : Term n → Kind Term n → Set where
∈-var : ∀ {k} x → Γ ctx → lookup Γ x ≡ kd k → Γ ⊢Tp var x ∈ k
∈-⊥-f : Γ ctx → Γ ⊢Tp ⊥ ∈ *
∈-⊤-f : Γ ctx → Γ ⊢Tp ⊤ ∈ *
∈-∀-f : ∀ {k a} → Γ ⊢ k kd → kd k ∷ Γ ⊢Tp a ∈ * → Γ ⊢Tp Π k a ∈ *
∈-→-f : ∀ {a b} → Γ ⊢Tp a ∈ * → Γ ⊢Tp b ∈ * → Γ ⊢Tp a ⇒ b ∈ *
∈-Π-i : ∀ {j a k} → Γ ⊢ j kd → kd j ∷ Γ ⊢Tp a ∈ k →
Γ ⊢Tp Λ j a ∈ Π j k
∈-Π-e : ∀ {a b j k} → Γ ⊢Tp a ∈ Π j k → Γ ⊢Tp b ∈ j →
Γ ⊢Tp a · b ∈ k Kind[ b ]
∈-s-i : ∀ {a b c} → Γ ⊢Tp a ∈ b ⋯ c → Γ ⊢Tp a ∈ a ⋯ a
∈-⇑ : ∀ {a j k} → Γ ⊢Tp a ∈ j → Γ ⊢ j <∷ k → Γ ⊢Tp a ∈ k
-- Subkinding derivations.
data _⊢_<∷_ {n} (Γ : Ctx n) : Kind Term n → Kind Term n → Set where
<∷-⋯ : ∀ {a₁ a₂ b₁ b₂} →
Γ ⊢ a₂ <: a₁ ∈ * → Γ ⊢ b₁ <: b₂ ∈ * → Γ ⊢ a₁ ⋯ b₁ <∷ a₂ ⋯ b₂
<∷-Π : ∀ {j₁ j₂ k₁ k₂} →
Γ ⊢ j₂ <∷ j₁ → kd j₂ ∷ Γ ⊢ k₁ <∷ k₂ → Γ ⊢ Π j₁ k₁ kd →
Γ ⊢ Π j₁ k₁ <∷ Π j₂ k₂
-- Subtyping derivations.
data _⊢_<:_∈_ {n} (Γ : Ctx n) : Term n → Term n → Kind Term n → Set where
<:-refl : ∀ {a k} → Γ ⊢Tp a ∈ k → Γ ⊢ a <: a ∈ k
<:-trans : ∀ {a b c k} → Γ ⊢ a <: b ∈ k → Γ ⊢ b <: c ∈ k → Γ ⊢ a <: c ∈ k
<:-β₁ : ∀ {j a k b} → kd j ∷ Γ ⊢Tp a ∈ k → Γ ⊢Tp b ∈ j →
Γ ⊢ (Λ j a) · b <: a [ b ] ∈ k Kind[ b ]
<:-β₂ : ∀ {j a k b} → kd j ∷ Γ ⊢Tp a ∈ k → Γ ⊢Tp b ∈ j →
Γ ⊢ a [ b ] <: (Λ j a) · b ∈ k Kind[ b ]
<:-η₁ : ∀ {a j k} → Γ ⊢Tp a ∈ Π j k →
Γ ⊢ Λ j (weaken a · var zero) <: a ∈ Π j k
<:-η₂ : ∀ {a j k} → Γ ⊢Tp a ∈ Π j k →
Γ ⊢ a <: Λ j (weaken a · var zero) ∈ Π j k
<:-⊥ : ∀ {a b c} → Γ ⊢Tp a ∈ b ⋯ c → Γ ⊢ ⊥ <: a ∈ *
<:-⊤ : ∀ {a b c} → Γ ⊢Tp a ∈ b ⋯ c → Γ ⊢ a <: ⊤ ∈ *
<:-∀ : ∀ {k₁ k₂ a₁ a₂} →
Γ ⊢ k₂ <∷ k₁ → kd k₂ ∷ Γ ⊢ a₁ <: a₂ ∈ * → Γ ⊢Tp Π k₁ a₁ ∈ * →
Γ ⊢ Π k₁ a₁ <: Π k₂ a₂ ∈ *
<:-→ : ∀ {a₁ a₂ b₁ b₂} → Γ ⊢ a₂ <: a₁ ∈ * → Γ ⊢ b₁ <: b₂ ∈ * →
Γ ⊢ a₁ ⇒ b₁ <: a₂ ⇒ b₂ ∈ *
<:-λ : ∀ {j₁ j₂ a₁ a₂ j k} → kd j ∷ Γ ⊢ a₁ <: a₂ ∈ k →
Γ ⊢Tp Λ j₁ a₁ ∈ Π j k → Γ ⊢Tp Λ j₂ a₂ ∈ Π j k →
Γ ⊢ Λ j₁ a₁ <: Λ j₂ a₂ ∈ Π j k
<:-· : ∀ {a₁ a₂ b₁ b₂ j k} → Γ ⊢ a₁ <: a₂ ∈ Π j k → Γ ⊢ b₁ ≃ b₂ ∈ j →
Γ ⊢ a₁ · b₁ <: a₂ · b₂ ∈ k Kind[ b₁ ]
<:-⟨| : ∀ {a b c} → Γ ⊢Tp a ∈ b ⋯ c → Γ ⊢ b <: a ∈ *
<:-|⟩ : ∀ {a b c} → Γ ⊢Tp a ∈ b ⋯ c → Γ ⊢ a <: c ∈ *
<:-⋯-i : ∀ {a b c d} → Γ ⊢ a <: b ∈ c ⋯ d → Γ ⊢ a <: b ∈ a ⋯ b
<:-⇑ : ∀ {a b j k} → Γ ⊢ a <: b ∈ j → Γ ⊢ j <∷ k → Γ ⊢ a <: b ∈ k
-- Type equality.
data _⊢_≃_∈_ {n} (Γ : Ctx n) : Term n → Term n → Kind Term n → Set where
<:-antisym : ∀ {a b k} → Γ ⊢ a <: b ∈ k → Γ ⊢ b <: a ∈ k → Γ ⊢ a ≃ b ∈ k
-- Kind equality.
data _⊢_≅_ {n} (Γ : Ctx n) : Kind Term n → Kind Term n → Set where
<∷-antisym : ∀ {j k} → Γ ⊢ j <∷ k → Γ ⊢ k <∷ j → Γ ⊢ j ≅ k
-- Typing derivations.
data _⊢Tm_∈_ {n} (Γ : Ctx n) : Term n → Term n → Set where
∈-var : ∀ {a} x → Γ ctx → lookup Γ x ≡ tp a → Γ ⊢Tm var x ∈ a
∈-∀-i : ∀ {k a b} → Γ ⊢ k kd → kd k ∷ Γ ⊢Tm a ∈ b →
Γ ⊢Tm Λ k a ∈ Π k b
∈-→-i : ∀ {a b c} → Γ ⊢Tp a ∈ * → tp a ∷ Γ ⊢Tm b ∈ weaken c →
-- NOTE. The following premise is a redundant validity
-- condition that could be avoided by proving a context
-- strengthening lemma (showing that unused variables,
-- i.e. variables not appearing freely to the right of the
-- turnstyle, can be eliminated from the context).
Γ ⊢Tp c ∈ * →
Γ ⊢Tm ƛ a b ∈ a ⇒ c
∈-∀-e : ∀ {a b k c} → Γ ⊢Tm a ∈ Π k c → Γ ⊢Tp b ∈ k →
Γ ⊢Tm a ⊡ b ∈ c [ b ]
∈-→-e : ∀ {a b c d} → Γ ⊢Tm a ∈ c ⇒ d → Γ ⊢Tm b ∈ c →
Γ ⊢Tm a · b ∈ d
∈-⇑ : ∀ {a b c} → Γ ⊢Tm a ∈ b → Γ ⊢ b <: c ∈ * → Γ ⊢Tm a ∈ c
-- Combined typing and kinding of terms and types.
data _⊢_∈_ {n} (Γ : Ctx n) : Term n → TermAsc n → Set where
∈-tp : ∀ {a k} → Γ ⊢Tp a ∈ k → Γ ⊢ a ∈ kd k
∈-tm : ∀ {a b} → Γ ⊢Tm a ∈ b → Γ ⊢ a ∈ tp b
-- Combined subtyping and subkinding.
data _⊢_≤_ {n} (Γ : Ctx n) : TermAsc n → TermAsc n → Set where
≤-<∷ : ∀ {j k} → Γ ⊢ j <∷ k → Γ ⊢ kd j ≤ kd k
≤-<: : ∀ {a b} → Γ ⊢ a <: b ∈ * → Γ ⊢ tp a ≤ tp b
mutual
-- Combined kind and type equality, i.e. equality of well-formed
-- ascriptions.
data _⊢_≃_wf {n} (Γ : Ctx n) : TermAsc n → TermAsc n → Set where
≃wf-≅ : ∀ {j k} → Γ ⊢ j ≅ k → Γ ⊢ kd j ≃ kd k wf
≃wf-≃ : ∀ {a b} → Γ ⊢ a ≃ b ∈ * → Γ ⊢ tp a ≃ tp b wf
-- Equality of well-formed contexts.
data _≃_ctx : ∀ {n} → Ctx n → Ctx n → Set where
≃-[] : [] ≃ [] ctx
≃-∷ : ∀ {n a b} {Γ Δ : Ctx n} →
Γ ⊢ a ≃ b wf → Γ ≃ Δ ctx → a ∷ Γ ≃ b ∷ Δ ctx
open PropEq using ([_])
-- A derived variable rule.
∈-var′ : ∀ {n} {Γ : Ctx n} x → Γ ctx → Γ ⊢ var x ∈ lookup Γ x
∈-var′ {Γ = Γ} x Γ-ctx with lookup Γ x | inspect (lookup Γ) x
∈-var′ x Γ-ctx | kd k | [ Γ[x]≡kd-k ] = ∈-tp (∈-var x Γ-ctx Γ[x]≡kd-k)
∈-var′ x Γ-ctx | tp a | [ Γ[x]≡tp-a ] = ∈-tm (∈-var x Γ-ctx Γ[x]≡tp-a)
-- A derived subsumption rule.
∈-⇑′ : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢ a ∈ b → Γ ⊢ b ≤ c → Γ ⊢ a ∈ c
∈-⇑′ (∈-tp a∈b) (≤-<∷ b<∷c) = ∈-tp (∈-⇑ a∈b b<∷c)
∈-⇑′ (∈-tm a∈b) (≤-<: b<:c) = ∈-tm (∈-⇑ a∈b b<:c)
open ContextFormation _⊢_wf public
hiding (_wf) renaming (_⊢_wfExt to _⊢_ext)
------------------------------------------------------------------------
-- Properties of typings
open Syntax
open TermCtx
open Typing
-- Inversion lemmas for _⊢_wf.
wf-kd-inv : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ kd k wf → Γ ⊢ k kd
wf-kd-inv (wf-kd k-kd) = k-kd
wf-tp-inv : ∀ {n} {Γ : Ctx n} {a} → Γ ⊢ tp a wf → Γ ⊢Tp a ∈ *
wf-tp-inv (wf-tp a∈*) = a∈*
-- An inversion lemma for _⊢_≃_wf.
≃wf-kd-inv : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ kd j ≃ kd k wf → Γ ⊢ j ≅ k
≃wf-kd-inv (≃wf-≅ j≅k) = j≅k
-- Kind and type equality imply subkinding and subtyping, respectively.
≅⇒<∷ : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ⊢ j <∷ k
≅⇒<∷ (<∷-antisym j<∷k k<∷j) = j<∷k
≃⇒<: : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ∈ k → Γ ⊢ a <: b ∈ k
≃⇒<: (<:-antisym a<:b b<:a) = a<:b
-- Reflexivity of subkinding.
<∷-refl : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢ k <∷ k
<∷-refl (kd-⋯ a∈* b∈*) = <∷-⋯ (<:-refl a∈*) (<:-refl b∈*)
<∷-refl (kd-Π j-kd k-kd) = <∷-Π (<∷-refl j-kd) (<∷-refl k-kd) (kd-Π j-kd k-kd)
-- Reflexivity of kind equality.
≅-refl : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ⊢ k ≅ k
≅-refl k-kd = <∷-antisym (<∷-refl k-kd) (<∷-refl k-kd)
-- Symmetry of kind equality.
≅-sym : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ⊢ k ≅ j
≅-sym (<∷-antisym j<∷k k<∷j) = <∷-antisym k<∷j j<∷k
-- An admissible kind equality rule for interval kinds.
≅-⋯ : ∀ {n} {Γ : Ctx n} {a₁ a₂ b₁ b₂} →
Γ ⊢ a₁ ≃ a₂ ∈ * → Γ ⊢ b₁ ≃ b₂ ∈ * → Γ ⊢ a₁ ⋯ b₁ ≅ a₂ ⋯ b₂
≅-⋯ (<:-antisym a₁<:a₂ a₂<:a₁) (<:-antisym b₁<:b₂ b₂<:b₁) =
<∷-antisym (<∷-⋯ a₂<:a₁ b₁<:b₂) (<∷-⋯ a₁<:a₂ b₂<:b₁)
-- Type equality is reflexive.
≃-refl : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ ⊢ a ≃ a ∈ k
≃-refl a∈k = <:-antisym (<:-refl a∈k) (<:-refl a∈k)
-- Type equality is transitive.
≃-trans : ∀ {n} {Γ : Ctx n} {a b c k} →
Γ ⊢ a ≃ b ∈ k → Γ ⊢ b ≃ c ∈ k → Γ ⊢ a ≃ c ∈ k
≃-trans (<:-antisym a<:b b<:a) (<:-antisym b<:c c<:b) =
<:-antisym (<:-trans a<:b b<:c) (<:-trans c<:b b<:a)
-- Type equality is symmetric.
≃-sym : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ∈ k → Γ ⊢ b ≃ a ∈ k
≃-sym (<:-antisym a<:b b<:a) = <:-antisym b<:a a<:b
-- Types inhabiting interval kinds are proper Types.
Tp∈-⋯-* : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢Tp a ∈ b ⋯ c → Γ ⊢Tp a ∈ *
Tp∈-⋯-* a∈b⋯c = ∈-⇑ (∈-s-i a∈b⋯c) (<∷-⋯ (<:-⊥ a∈b⋯c) (<:-⊤ a∈b⋯c))
-- Well-formedness of the * kind.
*-kd : ∀ {n} {Γ : Ctx n} → Γ ctx → Γ ⊢ * kd
*-kd Γ-ctx = kd-⋯ (∈-⊥-f Γ-ctx) (∈-⊤-f Γ-ctx)
module _ where
open Substitution
-- An admissible β-rule for type equality.
≃-β : ∀ {n} {Γ : Ctx n} {j a k b} → kd j ∷ Γ ⊢Tp a ∈ k → Γ ⊢Tp b ∈ j →
Γ ⊢ (Λ j a) · b ≃ a [ b ] ∈ k Kind[ b ]
≃-β a∈k b∈j = <:-antisym (<:-β₁ a∈k b∈j) (<:-β₂ a∈k b∈j)
-- An admissible η-rule for type equality.
≃-η : ∀ {n} {Γ : Ctx n} {a j k} →
Γ ⊢Tp a ∈ Π j k → Γ ⊢ Λ j (weaken a · var zero) ≃ a ∈ Π j k
≃-η a∈Πjk = <:-antisym (<:-η₁ a∈Πjk) (<:-η₂ a∈Πjk)
-- An admissible congruence rule for type equality w.r.t. formation of
-- arrow types.
≃-→ : ∀ {n} {Γ : Ctx n} {a₁ a₂ b₁ b₂} →
Γ ⊢ a₁ ≃ a₂ ∈ * → Γ ⊢ b₁ ≃ b₂ ∈ * → Γ ⊢ a₁ ⇒ b₁ ≃ a₂ ⇒ b₂ ∈ *
≃-→ (<:-antisym a₁<:a₂∈* a₂<:a₁∈*) (<:-antisym b₁<:b₂∈* b₂<:b₁∈*) =
<:-antisym (<:-→ a₂<:a₁∈* b₁<:b₂∈*) (<:-→ a₁<:a₂∈* b₂<:b₁∈*)
-- An admissible congruence rule for type equality w.r.t. operator
-- abstraction.
≃-λ : ∀ {n} {Γ : Ctx n} {j₁ j₂ a₁ a₂ j k} →
kd j ∷ Γ ⊢ a₁ ≃ a₂ ∈ k → Γ ⊢Tp Λ j₁ a₁ ∈ Π j k → Γ ⊢Tp Λ j₂ a₂ ∈ Π j k →
Γ ⊢ Λ j₁ a₁ ≃ Λ j₂ a₂ ∈ Π j k
≃-λ (<:-antisym a₁<:a₂∈k a₂<:a₁∈k) Λj₁a₁∈Πjk Λj₂a₂∈Πjk =
<:-antisym (<:-λ a₁<:a₂∈k Λj₁a₁∈Πjk Λj₂a₂∈Πjk)
(<:-λ a₂<:a₁∈k Λj₂a₂∈Πjk Λj₁a₁∈Πjk)
-- An admissible subsumption rule for type equality.
≃-⇑ : ∀ {n} {Γ : Ctx n} {a b j k} → Γ ⊢ a ≃ b ∈ j → Γ ⊢ j <∷ k → Γ ⊢ a ≃ b ∈ k
≃-⇑ (<:-antisym a<:b b<:a) j<∷k = <:-antisym (<:-⇑ a<:b j<∷k) (<:-⇑ b<:a j<∷k)
-- NOTE. There are more admissible rules one might want to prove
-- here, such as congruence lemmas for type and kind equality
-- w.r.t. the remaining type constructors (e.g. Π and _·_) or
-- transitivity of subkinding and kind equality. But the proofs of
-- these lemmas require context narrowing and/or validity lemmas which
-- we have not yet established. We will prove these lemmas once we
-- have established validity of the declarative judgments (see the
-- Typing.Validity module).
-- The contexts of all the above judgments are well-formed.
mutual
kd-ctx : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ k kd → Γ ctx
kd-ctx (kd-⋯ a∈* b∈*) = Tp∈-ctx a∈*
kd-ctx (kd-Π j-kd k-kd) = kd-ctx j-kd
Tp∈-ctx : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢Tp a ∈ k → Γ ctx
Tp∈-ctx (∈-var x Γ-ctx Γ[x]≡kd-k) = Γ-ctx
Tp∈-ctx (∈-⊥-f Γ-ctx) = Γ-ctx
Tp∈-ctx (∈-⊤-f Γ-ctx) = Γ-ctx
Tp∈-ctx (∈-∀-f k-kd a∈*) = kd-ctx k-kd
Tp∈-ctx (∈-→-f a∈* b∈*) = Tp∈-ctx a∈*
Tp∈-ctx (∈-Π-i j-kd a∈k) = kd-ctx j-kd
Tp∈-ctx (∈-Π-e a∈Πjk b∈j) = Tp∈-ctx a∈Πjk
Tp∈-ctx (∈-s-i a∈b⋯c) = Tp∈-ctx a∈b⋯c
Tp∈-ctx (∈-⇑ a∈j j<∷k) = Tp∈-ctx a∈j
wf-ctx : ∀ {n} {Γ : Ctx n} {a} → Γ ⊢ a wf → Γ ctx
wf-ctx (wf-kd k-kd) = kd-ctx k-kd
wf-ctx (wf-tp a∈*) = Tp∈-ctx a∈*
<:-ctx : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a <: b ∈ k → Γ ctx
<:-ctx (<:-refl a∈k) = Tp∈-ctx a∈k
<:-ctx (<:-trans a<:b∈k b<:c∈k) = <:-ctx a<:b∈k
<:-ctx (<:-β₁ a∈j b∈k) = Tp∈-ctx b∈k
<:-ctx (<:-β₂ a∈j b∈k) = Tp∈-ctx b∈k
<:-ctx (<:-η₁ a∈Πjk) = Tp∈-ctx a∈Πjk
<:-ctx (<:-η₂ a∈Πjk) = Tp∈-ctx a∈Πjk
<:-ctx (<:-⊥ a∈b⋯c) = Tp∈-ctx a∈b⋯c
<:-ctx (<:-⊤ a∈b⋯c) = Tp∈-ctx a∈b⋯c
<:-ctx (<:-∀ k₂<∷k₁ a₁<:a₂ ∀k₁a₁∈*) = Tp∈-ctx ∀k₁a₁∈*
<:-ctx (<:-→ a₂<:a₁ b₁<:b₂) = <:-ctx a₂<:a₁
<:-ctx (<:-λ a₂<:a₁∈Πjk Λa₁k₁∈Πjk Λa₂k₂∈Πjk) = Tp∈-ctx Λa₁k₁∈Πjk
<:-ctx (<:-· a₂<:a₁∈Πjk b₂≃b₁∈j) = <:-ctx a₂<:a₁∈Πjk
<:-ctx (<:-⟨| a∈b⋯c) = Tp∈-ctx a∈b⋯c
<:-ctx (<:-|⟩ a∈b⋯c) = Tp∈-ctx a∈b⋯c
<:-ctx (<:-⋯-i a<:b∈c⋯d) = <:-ctx a<:b∈c⋯d
<:-ctx (<:-⇑ a<:b∈j j<∷k) = <:-ctx a<:b∈j
<∷-ctx : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j <∷ k → Γ ctx
<∷-ctx (<∷-⋯ a₂<:a₁ b₁<:b₂) = <:-ctx a₂<:a₁
<∷-ctx (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) = <∷-ctx j₂<∷j₁
≅-ctx : ∀ {n} {Γ : Ctx n} {j k} → Γ ⊢ j ≅ k → Γ ctx
≅-ctx (<∷-antisym j<∷k k<∷j) = <∷-ctx j<∷k
≃-ctx : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a ≃ b ∈ k → Γ ctx
≃-ctx (<:-antisym a<:b∈k b<:a∈k) = <:-ctx a<:b∈k
Tm∈-ctx : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢Tm a ∈ b → Γ ctx
Tm∈-ctx (∈-var x Γ-ctx Γ[x]≡tp-a) = Γ-ctx
Tm∈-ctx (∈-∀-i k-kd a∈b) = kd-ctx k-kd
Tm∈-ctx (∈-→-i a∈* b∈c c∈*) = Tp∈-ctx a∈*
Tm∈-ctx (∈-∀-e a∈∀kc b∈k) = Tm∈-ctx a∈∀kc
Tm∈-ctx (∈-→-e a∈c⇒d b∈c) = Tm∈-ctx a∈c⇒d
Tm∈-ctx (∈-⇑ a∈b b<:c) = Tm∈-ctx a∈b
∈-ctx : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a ∈ b → Γ ctx
∈-ctx (∈-tp a∈k) = Tp∈-ctx a∈k
∈-ctx (∈-tm a∈b) = Tm∈-ctx a∈b
----------------------------------------------------------------------
-- Well-typed substitutions (i.e. substitution lemmas)
-- A shorthand for kindings and typings of Ts by kind or type
-- ascriptions.
TermAscTyping : (ℕ → Set) → Set₁
TermAscTyping T = Typing TermAsc T TermAsc lzero
-- Liftings from well-typed Ts to well-typed/kinded terms/types.
LiftTo-∈ : ∀ {T} → TermAscTyping T → Set₁
LiftTo-∈ _⊢T_∈_ = LiftTyped Substitution.termAscTermSubst _⊢_wf _⊢T_∈_ _⊢_∈_
-- Helper lemmas about untyped T-substitutions in raw terms and kinds.
record TypedSubstAppHelpers {T} (rawLift : Lift T Term) : Set where
open Substitution using (weaken; _[_]; _Kind[_])
module A = SubstApp rawLift
module L = Lift rawLift
field
-- Substitutions in kinds and types commute.
Kind/-sub-↑ : ∀ {m n} k a (σ : Sub T m n) →
k Kind[ a ] A.Kind/ σ ≡ (k A.Kind/ σ L.↑) Kind[ a A./ σ ]
/-sub-↑ : ∀ {m n} b a (σ : Sub T m n) →
b [ a ] A./ σ ≡ (b A./ σ L.↑) [ a A./ σ ]
-- Weakening of terms commutes with substitution in terms.
weaken-/ : ∀ {m n} {σ : Sub T m n} a →
weaken (a A./ σ) ≡ weaken a A./ σ L.↑
-- Application of generic well-typed T-substitutions to all the judgments.
module TypedSubstApp {T : ℕ → Set} (_⊢T_∈_ : TermAscTyping T)
(liftTyped : LiftTo-∈ _⊢T_∈_)
(helpers : TypedSubstAppHelpers
(LiftTyped.rawLift liftTyped))
where
open LiftTyped liftTyped renaming (lookup to /∈-lookup)
open TypedSubstAppHelpers helpers
-- Lift well-kinded Ts to well-kinded types.
liftTp : ∀ {n} {Γ : Ctx n} {a k kd-k} →
kd-k ≡ kd k → Γ ⊢T a ∈ kd-k → Γ ⊢Tp L.lift a ∈ k
liftTp refl a∈kd-k with ∈-lift a∈kd-k
liftTp refl a∈kd-k | ∈-tp a∈k = a∈k
-- Lift well-typed Ts to well-typed terms.
liftTm : ∀ {n} {Γ : Ctx n} {a b tp-b} →
tp-b ≡ tp b → Γ ⊢T a ∈ tp-b → Γ ⊢Tm L.lift a ∈ b
liftTm refl a∈tp-b with ∈-lift a∈tp-b
liftTm refl a∈tp-b | ∈-tm a∈b = a∈b
mutual
-- Substitutions preserve well-formedness of kinds and
-- well-kindedness of types.
kd-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {k σ} →
Γ ⊢ k kd → Δ ⊢/ σ ∈ Γ → Δ ⊢ k A.Kind/ σ kd
kd-/ (kd-⋯ a∈* b∈*) σ∈Γ = kd-⋯ (Tp∈-/ a∈* σ∈Γ) (Tp∈-/ b∈* σ∈Γ)
kd-/ (kd-Π j-kd k-kd) σ∈Γ =
kd-Π j/σ-kd (kd-/ k-kd (∈-↑ (wf-kd j/σ-kd) σ∈Γ))
where j/σ-kd = kd-/ j-kd σ∈Γ
Tp∈-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a k σ} →
Γ ⊢Tp a ∈ k → Δ ⊢/ σ ∈ Γ → Δ ⊢Tp a A./ σ ∈ k A.Kind/ σ
Tp∈-/ (∈-var x Γ-ctx Γ[x]≡kd-k) σ∈Γ =
liftTp (cong (_/ _) Γ[x]≡kd-k) (/∈-lookup σ∈Γ x)
Tp∈-/ (∈-⊥-f Γ-ctx) σ∈Γ = ∈-⊥-f (/∈-wf σ∈Γ)
Tp∈-/ (∈-⊤-f Γ-ctx) σ∈Γ = ∈-⊤-f (/∈-wf σ∈Γ)
Tp∈-/ (∈-∀-f k-kd a∈*) σ∈Γ =
∈-∀-f k/σ-kd (Tp∈-/ a∈* (∈-↑ (wf-kd k/σ-kd) σ∈Γ))
where k/σ-kd = kd-/ k-kd σ∈Γ
Tp∈-/ (∈-→-f a∈* b∈*) σ∈Γ = ∈-→-f (Tp∈-/ a∈* σ∈Γ) (Tp∈-/ b∈* σ∈Γ)
Tp∈-/ (∈-Π-i j-kd a∈k) σ∈Γ =
∈-Π-i j/σ-kd (Tp∈-/ a∈k (∈-↑ (wf-kd j/σ-kd) σ∈Γ))
where j/σ-kd = kd-/ j-kd σ∈Γ
Tp∈-/ (∈-Π-e {_} {b} {_} {k} a∈Πjk b∈j) σ∈Γ =
subst (_ ⊢Tp _ ∈_) (sym (Kind/-sub-↑ k b _))
(∈-Π-e (Tp∈-/ a∈Πjk σ∈Γ) (Tp∈-/ b∈j σ∈Γ))
Tp∈-/ (∈-s-i a∈b⋯c) σ∈Γ = ∈-s-i (Tp∈-/ a∈b⋯c σ∈Γ)
Tp∈-/ (∈-⇑ a∈j j<∷k) σ∈Γ = ∈-⇑ (Tp∈-/ a∈j σ∈Γ) (<∷-/ j<∷k σ∈Γ)
-- Substitutions commute with subkinding, subtyping and type
-- equality.
<∷-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k σ} →
Γ ⊢ j <∷ k → Δ ⊢/ σ ∈ Γ → Δ ⊢ j A.Kind/ σ <∷ k A.Kind/ σ
<∷-/ (<∷-⋯ a₂<:a₁ b₁<:b₂) σ∈Γ = <∷-⋯ (<:-/ a₂<:a₁ σ∈Γ) (<:-/ b₁<:b₂ σ∈Γ)
<∷-/ (<∷-Π j₂<∷j₁ k₁<∷k₂ Πj₁k₁-kd) σ∈Γ =
<∷-Π (<∷-/ j₂<∷j₁ σ∈Γ) (<∷-/ k₁<∷k₂ (∈-↑ (<∷-/-wf k₁<∷k₂ σ∈Γ) σ∈Γ))
(kd-/ Πj₁k₁-kd σ∈Γ)
<:-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b k σ} →
Γ ⊢ a <: b ∈ k → Δ ⊢/ σ ∈ Γ → Δ ⊢ a A./ σ <: b A./ σ ∈ k A.Kind/ σ
<:-/ (<:-refl a∈k) σ∈Γ = <:-refl (Tp∈-/ a∈k σ∈Γ)
<:-/ (<:-trans a<:b∈k b<:c∈k) σ∈Γ =
<:-trans (<:-/ a<:b∈k σ∈Γ) (<:-/ b<:c∈k σ∈Γ)
<:-/ (<:-β₁ {j} {a} {k} {b} a∈k b∈j) σ∈Γ =
subst₂ (_ ⊢ (Λ j a) · b A./ _ <:_∈_)
(sym (/-sub-↑ a b _)) (sym (Kind/-sub-↑ k b _))
(<:-β₁ (Tp∈-/ a∈k (∈-↑ (Tp∈-/-wf a∈k σ∈Γ) σ∈Γ)) (Tp∈-/ b∈j σ∈Γ))
<:-/ (<:-β₂ {j} {a} {k} {b} a∈k b∈j) σ∈Γ =
subst₂ (_ ⊢_<: (Λ j a) · b A./ _ ∈_)
(sym (/-sub-↑ a b _)) (sym (Kind/-sub-↑ k b _))
(<:-β₂ (Tp∈-/ a∈k (∈-↑ (Tp∈-/-wf a∈k σ∈Γ) σ∈Γ)) (Tp∈-/ b∈j σ∈Γ))
<:-/ {Δ = Δ} {σ = σ} (<:-η₁ {a} {j} {k} a∈Πjk) σ∈Γ =
subst (Δ ⊢_<: a A./ σ ∈ Π j k A.Kind/ σ)
(cong (Λ _) (cong₂ _·_ (weaken-/ a) (sym (lift-var zero))))
(<:-η₁ (Tp∈-/ a∈Πjk σ∈Γ))
<:-/ {Δ = Δ} {σ = σ} (<:-η₂ {a} {j} {k} a∈Πjk) σ∈Γ =
subst (Δ ⊢ a A./ σ <:_∈ Π j k A.Kind/ σ)
(cong (Λ _) (cong₂ _·_ (weaken-/ a) (sym (lift-var zero))))
(<:-η₂ (Tp∈-/ a∈Πjk σ∈Γ))
<:-/ (<:-⊥ a∈b⋯c) σ∈Γ = <:-⊥ (Tp∈-/ a∈b⋯c σ∈Γ)
<:-/ (<:-⊤ a∈b⋯c) σ∈Γ = <:-⊤ (Tp∈-/ a∈b⋯c σ∈Γ)
<:-/ (<:-∀ k₂<∷k₁ a₁<:a₂∈* ∀j₁k₁∈*) σ∈Γ =
<:-∀ (<∷-/ k₂<∷k₁ σ∈Γ) (<:-/ a₁<:a₂∈* (∈-↑ (<:-/-wf a₁<:a₂∈* σ∈Γ) σ∈Γ))
(Tp∈-/ ∀j₁k₁∈* σ∈Γ)
<:-/ (<:-→ a₂<:a₁∈* b₁<:b₂∈*) σ∈Γ =
<:-→ (<:-/ a₂<:a₁∈* σ∈Γ) (<:-/ b₁<:b₂∈* σ∈Γ)
<:-/ (<:-λ a₁<:a₂∈k Λj₁a₁∈Πjk Λj₂a₂∈Πjk) σ∈Γ =
<:-λ (<:-/ a₁<:a₂∈k (∈-↑ (<:-/-wf a₁<:a₂∈k σ∈Γ) σ∈Γ))
(Tp∈-/ Λj₁a₁∈Πjk σ∈Γ) (Tp∈-/ Λj₂a₂∈Πjk σ∈Γ)
<:-/ (<:-· {k = k} a₁<:a₂∈Πjk b₁≃b₂∈j) σ∈Γ =
subst (_ ⊢ _ <: _ ∈_) (sym (Kind/-sub-↑ k _ _))
(<:-· (<:-/ a₁<:a₂∈Πjk σ∈Γ) (≃-/ b₁≃b₂∈j σ∈Γ))
<:-/ (<:-⟨| a∈b⋯c) σ∈Γ = <:-⟨| (Tp∈-/ a∈b⋯c σ∈Γ)
<:-/ (<:-|⟩ a∈b⋯c) σ∈Γ = <:-|⟩ (Tp∈-/ a∈b⋯c σ∈Γ)
<:-/ (<:-⋯-i a<:b∈c⋯d) σ∈Γ = <:-⋯-i (<:-/ a<:b∈c⋯d σ∈Γ)
<:-/ (<:-⇑ a<:b∈j j<∷k) σ∈Γ = <:-⇑ (<:-/ a<:b∈j σ∈Γ) (<∷-/ j<∷k σ∈Γ)
≃-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b k σ} →
Γ ⊢ a ≃ b ∈ k → Δ ⊢/ σ ∈ Γ → Δ ⊢ a A./ σ ≃ b A./ σ ∈ k A.Kind/ σ
≃-/ (<:-antisym a<:b∈k b<:a∈k) σ∈Γ =
<:-antisym (<:-/ a<:b∈k σ∈Γ) (<:-/ b<:a∈k σ∈Γ)
-- Helpers (to satisfy the termination checker).
kd-/-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k σ} →
kd j ∷ Γ ⊢ k kd → Δ ⊢/ σ ∈ Γ → Δ ⊢ kd (j A.Kind/ σ) wf
kd-/-wf (kd-⋯ a∈* _) σ∈Γ = Tp∈-/-wf a∈* σ∈Γ
kd-/-wf (kd-Π j-kd _) σ∈Γ = kd-/-wf j-kd σ∈Γ
Tp∈-/-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a j k σ} →
kd j ∷ Γ ⊢Tp a ∈ k → Δ ⊢/ σ ∈ Γ → Δ ⊢ kd (j A.Kind/ σ) wf
Tp∈-/-wf (∈-var x (wf-kd k-kd ∷ Γ-ctx) _) σ∈Γ = wf-kd (kd-/ k-kd σ∈Γ)
Tp∈-/-wf (∈-⊥-f (wf-kd j-kd ∷ Γ-ctx)) σ∈Γ = wf-kd (kd-/ j-kd σ∈Γ)
Tp∈-/-wf (∈-⊤-f (wf-kd j-kd ∷ Γ-ctx)) σ∈Γ = wf-kd (kd-/ j-kd σ∈Γ)
Tp∈-/-wf (∈-∀-f k-kd _) σ∈Γ = kd-/-wf k-kd σ∈Γ
Tp∈-/-wf (∈-→-f a∈* _) σ∈Γ = Tp∈-/-wf a∈* σ∈Γ
Tp∈-/-wf (∈-Π-i j-kd _) σ∈Γ = kd-/-wf j-kd σ∈Γ
Tp∈-/-wf (∈-Π-e a∈Πjk _) σ∈Γ = Tp∈-/-wf a∈Πjk σ∈Γ
Tp∈-/-wf (∈-s-i a∈b⋯c) σ∈Γ = Tp∈-/-wf a∈b⋯c σ∈Γ
Tp∈-/-wf (∈-⇑ a∈b _) σ∈Γ = Tp∈-/-wf a∈b σ∈Γ
<:-/-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b j k σ} →
kd j ∷ Γ ⊢ a <: b ∈ k → Δ ⊢/ σ ∈ Γ → Δ ⊢ kd (j A.Kind/ σ) wf
<:-/-wf (<:-refl a∈k) σ∈Γ = Tp∈-/-wf a∈k σ∈Γ
<:-/-wf (<:-trans a<:b _) σ∈Γ = <:-/-wf a<:b σ∈Γ
<:-/-wf (<:-β₁ _ b∈j) σ∈Γ = Tp∈-/-wf b∈j σ∈Γ
<:-/-wf (<:-β₂ _ b∈j) σ∈Γ = Tp∈-/-wf b∈j σ∈Γ
<:-/-wf (<:-η₁ a∈Πjk) σ∈Γ = Tp∈-/-wf a∈Πjk σ∈Γ
<:-/-wf (<:-η₂ a∈Πjk) σ∈Γ = Tp∈-/-wf a∈Πjk σ∈Γ
<:-/-wf (<:-⊥ a∈b⋯c) σ∈Γ = Tp∈-/-wf a∈b⋯c σ∈Γ
<:-/-wf (<:-⊤ a∈b⋯c) σ∈Γ = Tp∈-/-wf a∈b⋯c σ∈Γ
<:-/-wf (<:-∀ j₂<∷j₁ _ _) σ∈Γ = <∷-/-wf j₂<∷j₁ σ∈Γ
<:-/-wf (<:-→ a₂<:a₁∈* _) σ∈Γ = <:-/-wf a₂<:a₁∈* σ∈Γ
<:-/-wf (<:-λ _ Λj₁a₂∈Πjk _) σ∈Γ = Tp∈-/-wf Λj₁a₂∈Πjk σ∈Γ
<:-/-wf (<:-· a₁<:a₂∈Πjk _) σ∈Γ = <:-/-wf a₁<:a₂∈Πjk σ∈Γ
<:-/-wf (<:-⟨| a∈b⋯c) σ∈Γ = Tp∈-/-wf a∈b⋯c σ∈Γ
<:-/-wf (<:-|⟩ a∈b⋯c) σ∈Γ = Tp∈-/-wf a∈b⋯c σ∈Γ
<:-/-wf (<:-⋯-i a<:b∈c⋯d) σ∈Γ = <:-/-wf a<:b∈c⋯d σ∈Γ
<:-/-wf (<:-⇑ a<:b∈k _) σ∈Γ = <:-/-wf a<:b∈k σ∈Γ
<∷-/-wf : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k l σ} →
kd j ∷ Γ ⊢ k <∷ l → Δ ⊢/ σ ∈ Γ → Δ ⊢ kd (j A.Kind/ σ) wf
<∷-/-wf (<∷-⋯ j₂<:j₁ _) σ∈Γ = <:-/-wf j₂<:j₁ σ∈Γ
<∷-/-wf (<∷-Π j₂<∷j₁ _ _) σ∈Γ = <∷-/-wf j₂<∷j₁ σ∈Γ
-- Substitutions preserve well-formedness of ascriptions.
wf-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a σ} →
Γ ⊢ a wf → Δ ⊢/ σ ∈ Γ → Δ ⊢ a A.TermAsc/ σ wf
wf-/ (wf-kd k-kd) σ∈Γ = wf-kd (kd-/ k-kd σ∈Γ)
wf-/ (wf-tp a∈b) σ∈Γ = wf-tp (Tp∈-/ a∈b σ∈Γ)
-- Substitutions commute with kind equality.
≅-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {j k σ} →
Γ ⊢ j ≅ k → Δ ⊢/ σ ∈ Γ → Δ ⊢ j A.Kind/ σ ≅ k A.Kind/ σ
≅-/ (<∷-antisym j<∷k k<∷j) σ∈Γ = <∷-antisym (<∷-/ j<∷k σ∈Γ) (<∷-/ k<∷j σ∈Γ)
-- Substitutions preserve well-typedness of terms.
Tm∈-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b σ} →
Γ ⊢Tm a ∈ b → Δ ⊢/ σ ∈ Γ → Δ ⊢Tm a A./ σ ∈ b A./ σ
Tm∈-/ (∈-var x Γ-ctx Γ[x]=tp-k) σ∈Γ =
liftTm (cong (_/ _) Γ[x]=tp-k) (/∈-lookup σ∈Γ x)
Tm∈-/ (∈-∀-i k-kd a∈*) σ∈Γ =
∈-∀-i k/σ-kd (Tm∈-/ a∈* (∈-↑ (wf-kd k/σ-kd) σ∈Γ))
where k/σ-kd = kd-/ k-kd σ∈Γ
Tm∈-/ (∈-→-i {c = c} a∈* b∈c c∈*) σ∈Γ =
∈-→-i a/σ∈* (subst (_ ⊢Tm _ ∈_) (sym (weaken-/ c) ) b/σ↑∈c)
(Tp∈-/ c∈* σ∈Γ)
where
a/σ∈* = Tp∈-/ a∈* σ∈Γ
b/σ↑∈c = Tm∈-/ b∈c (∈-↑ (wf-tp a/σ∈*) σ∈Γ)
Tm∈-/ (∈-∀-e {c = c} a∈∀kc b∈k) σ∈Γ =
subst (_ ⊢Tm _ ∈_) (sym (/-sub-↑ c _ _))
(∈-∀-e (Tm∈-/ a∈∀kc σ∈Γ) (Tp∈-/ b∈k σ∈Γ))
Tm∈-/ (∈-→-e a∈c→d b∈c) σ∈Γ = ∈-→-e (Tm∈-/ a∈c→d σ∈Γ) (Tm∈-/ b∈c σ∈Γ)
Tm∈-/ (∈-⇑ a∈b b<:c) σ∈Γ = ∈-⇑ (Tm∈-/ a∈b σ∈Γ) (<:-/ b<:c σ∈Γ)
-- Substitutions preserve well-kindedness and well-typedness.
∈-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b σ} →
Γ ⊢ a ∈ b → Δ ⊢/ σ ∈ Γ → Δ ⊢ a A./ σ ∈ b A.TermAsc/ σ
∈-/ (∈-tp a∈b) σ∈Γ = ∈-tp (Tp∈-/ a∈b σ∈Γ)
∈-/ (∈-tm a∈b) σ∈Γ = ∈-tm (Tm∈-/ a∈b σ∈Γ)
-- Substitutions preserve subkinding and subtyping.
≤-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b σ} →
Γ ⊢ a ≤ b → Δ ⊢/ σ ∈ Γ → Δ ⊢ a A.TermAsc/ σ ≤ b A.TermAsc/ σ
≤-/ (≤-<∷ a<∷b) σ∈Γ = ≤-<∷ (<∷-/ a<∷b σ∈Γ)
≤-/ (≤-<: a<:b∈k) σ∈Γ = ≤-<: (<:-/ a<:b∈k σ∈Γ)
-- Substitutions preserve equality of kind and type ascriptions.
≃wf-/ : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a b σ} →
Γ ⊢ a ≃ b wf → Δ ⊢/ σ ∈ Γ → Δ ⊢ a A.TermAsc/ σ ≃ b A.TermAsc/ σ wf
≃wf-/ (≃wf-≅ j≅k) σ∈Γ = ≃wf-≅ (≅-/ j≅k σ∈Γ)
≃wf-/ (≃wf-≃ a≃b) σ∈Γ = ≃wf-≃ (≃-/ a≃b σ∈Γ)
-- Well-kinded/typed type and term substitutions.
module TypedSubstitution where
open Substitution using (simple; termSubst)
open SimpleExt simple using (extension)
open TermSubst termSubst using (varLift; termLift)
private
module S = Substitution
module KL = TermLikeLemmas S.termLikeLemmasKind
-- Helper lemmas about untyped renamings and substitutions in terms
-- and kinds.
varHelpers : TypedSubstAppHelpers varLift
varHelpers = record
{ Kind/-sub-↑ = KL./-sub-↑
; /-sub-↑ = LiftSubLemmas./-sub-↑ S.varLiftSubLemmas
; weaken-/ = LiftAppLemmas.wk-commutes S.varLiftAppLemmas
}
termHelpers : TypedSubstAppHelpers termLift
termHelpers = record
{ Kind/-sub-↑ = λ k _ _ → KL.sub-commutes k
; /-sub-↑ = λ a _ _ → S.sub-commutes a
; weaken-/ = S.weaken-/
}
-- Typed term substitutions.
typedTermSubst : TypedTermSubst TermAsc Term lzero TypedSubstAppHelpers
typedTermSubst = record
{ _⊢_wf = _⊢_wf
; _⊢_∈_ = _⊢_∈_
; termLikeLemmas = S.termLikeLemmasTermAsc
; varHelpers = varHelpers
; termHelpers = termHelpers
; wf-wf = wf-ctx
; ∈-wf = ∈-ctx
; ∈-var = ∈-var′
; typedApp = TypedSubstApp.∈-/
}
open TypedTermSubst typedTermSubst public
hiding (_⊢_wf; _⊢_∈_; varHelpers; termHelpers; ∈-var; ∈-/Var; ∈-/)
renaming (lookup to /∈-lookup)
open TypedSubstApp _⊢Var_∈_ varLiftTyped varHelpers public using () renaming
( wf-/ to wf-/Var
; kd-/ to kd-/Var
; Tp∈-/ to Tp∈-/Var
; <∷-/ to <∷-/Var
; <:-/ to <:-/Var
; ∈-/ to ∈-/Var
; ≤-/ to ≤-/Var
; ≃wf-/ to ≃wf-/Var
)
open Substitution using (weaken; weakenKind; weakenTermAsc)
-- Weakening preserves the various judgments.
wf-weaken : ∀ {n} {Γ : Ctx n} {a b} → Γ ⊢ a wf → Γ ⊢ b wf →
(a ∷ Γ) ⊢ weakenTermAsc b wf
wf-weaken a-wf b-wf = wf-/Var b-wf (Var∈-wk a-wf)
kd-weaken : ∀ {n} {Γ : Ctx n} {a k} → Γ ⊢ a wf → Γ ⊢ k kd →
(a ∷ Γ) ⊢ weakenKind k kd
kd-weaken a-wf k-kd = kd-/Var k-kd (Var∈-wk a-wf)
Tp∈-weaken : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢ a wf → Γ ⊢Tp b ∈ k →
(a ∷ Γ) ⊢Tp weaken b ∈ weakenKind k
Tp∈-weaken a-wf b∈k = Tp∈-/Var b∈k (Var∈-wk a-wf)
<∷-weaken : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢ a wf → Γ ⊢ j <∷ k →
(a ∷ Γ) ⊢ weakenKind j <∷ weakenKind k
<∷-weaken a-wf j<∷k = <∷-/Var j<∷k (Var∈-wk a-wf)
<:-weaken : ∀ {n} {Γ : Ctx n} {a b c k} → Γ ⊢ a wf → Γ ⊢ b <: c ∈ k →
(a ∷ Γ) ⊢ weaken b <: weaken c ∈ weakenKind k
<:-weaken a-wf b<:c∈k = <:-/Var b<:c∈k (Var∈-wk a-wf)
∈-weaken : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢ a wf → Γ ⊢ b ∈ c →
(a ∷ Γ) ⊢ weaken b ∈ weakenTermAsc c
∈-weaken a-wf b∈c = ∈-/Var b∈c (Var∈-wk a-wf)
≤-weaken : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢ a wf → Γ ⊢ b ≤ c →
(a ∷ Γ) ⊢ weakenTermAsc b ≤ weakenTermAsc c
≤-weaken a-wf b≤c = ≤-/Var b≤c (Var∈-wk a-wf)
≃wf-weaken : ∀ {n} {Γ : Ctx n} {a b c} → Γ ⊢ a wf → Γ ⊢ b ≃ c wf →
(a ∷ Γ) ⊢ weakenTermAsc b ≃ weakenTermAsc c wf
≃wf-weaken a-wf b≃c = ≃wf-/Var b≃c (Var∈-wk a-wf)
open TypedSubstApp _⊢_∈_ termLiftTyped termHelpers public
open Substitution using (_/_; _Kind/_; id; sub; _↑⋆_; _[_]; _Kind[_])
-- Substitution of a single well-typed term or well-kinded type
-- preserves the various judgments.
kd-[] : ∀ {n} {Γ : Ctx n} {a b k} →
b ∷ Γ ⊢ k kd → Γ ⊢ a ∈ b → Γ ⊢ k Kind[ a ] kd
kd-[] k-kd a∈b = kd-/ k-kd (∈-sub a∈b)
Tp∈-[] : ∀ {n} {Γ : Ctx n} {a b k c} →
c ∷ Γ ⊢Tp a ∈ k → Γ ⊢ b ∈ c → Γ ⊢Tp a [ b ] ∈ k Kind[ b ]
Tp∈-[] a∈k b∈c = Tp∈-/ a∈k (∈-sub b∈c)
Tm∈-[] : ∀ {n} {Γ : Ctx n} {a b c d} →
d ∷ Γ ⊢Tm a ∈ c → Γ ⊢ b ∈ d → Γ ⊢Tm a [ b ] ∈ c [ b ]
Tm∈-[] a∈c b∈d = Tm∈-/ a∈c (∈-sub b∈d)
<:-[] : ∀ {n} {Γ : Ctx n} {a b c d k} →
d ∷ Γ ⊢ a <: b ∈ k → Γ ⊢ c ∈ d → Γ ⊢ a [ c ] <: b [ c ] ∈ k Kind[ c ]
<:-[] a<:b c∈d = <:-/ a<:b (∈-sub c∈d)
-- Operations on well-formed contexts that require weakening of
-- well-formedness judgments.
module WfCtxOps where
wfWeakenOps : WellFormedWeakenOps weakenOps
wfWeakenOps = record { wf-weaken = TypedSubstitution.wf-weaken }
open WellFormedWeakenOps wfWeakenOps public renaming (lookup to lookup-wf)
-- Lookup the kind of a type variable in a well-formed context.
lookup-kd : ∀ {m} {Γ : Ctx m} {k} x →
Γ ctx → TermCtx.lookup Γ x ≡ kd k → Γ ⊢ k kd
lookup-kd x Γ-ctx Γ[x]≡kd-k =
wf-kd-inv (subst (_ ⊢_wf) Γ[x]≡kd-k (lookup-wf Γ-ctx x))
-- Lookup the type of a term variable in a well-formed context.
lookup-tp : ∀ {m} {Γ : Ctx m} {a} x →
Γ ctx → TermCtx.lookup Γ x ≡ tp a → Γ ⊢Tp a ∈ *
lookup-tp x Γ-ctx Γ[x]≡tp-a =
wf-tp-inv (subst (_ ⊢_wf) Γ[x]≡tp-a (lookup-wf Γ-ctx x))
open TypedSubstitution
open WfCtxOps
----------------------------------------------------------------------
-- Generation lemmas for kinding
-- A generation lemma for kinding of universals.
Tp∈-∀-inv : ∀ {n} {Γ : Ctx n} {a j k} → Γ ⊢Tp Π j a ∈ k →
Γ ⊢ j kd × kd j ∷ Γ ⊢Tp a ∈ *
Tp∈-∀-inv (∈-∀-f j-kd a∈*) = j-kd , a∈*
Tp∈-∀-inv (∈-s-i ∀ka∈b⋯c) = Tp∈-∀-inv ∀ka∈b⋯c
Tp∈-∀-inv (∈-⇑ ∀ja∈k k<∷l) = Tp∈-∀-inv ∀ja∈k
-- A generation lemma for kinding of arrows.
Tp∈-→-inv : ∀ {n} {Γ : Ctx n} {a b k} → Γ ⊢Tp a ⇒ b ∈ k →
Γ ⊢Tp a ∈ * × Γ ⊢Tp b ∈ *
Tp∈-→-inv (∈-→-f a∈* b∈*) = a∈* , b∈*
Tp∈-→-inv (∈-s-i a⇒b∈c⋯d) = Tp∈-→-inv a⇒b∈c⋯d
Tp∈-→-inv (∈-⇑ a⇒b∈j j<∷k) = Tp∈-→-inv a⇒b∈j
| {
"alphanum_fraction": 0.437765087,
"avg_line_length": 39.9773030708,
"ext": "agda",
"hexsha": "3915a009c16b36f12099e7bdf0b8140d893b6279",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Typing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Typing.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Typing.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 16022,
"size": 29943
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Paths
module lib.types.Torus where
{-
data Torus : Type₀ where
baseT : Torus
loopT1 : baseT == baseT
loopT2 : baseT == baseT
surfT : loopT1 ∙ loopT2 == loopT2 ∙ loopT1
-}
module _ where
private
data #Torus-aux : Type₀ where
#baseT : #Torus-aux
data #Torus : Type₀ where
#torus : #Torus-aux → (Unit → Unit) → #Torus
Torus : Type₀
Torus = #Torus
baseT : Torus
baseT = #torus #baseT _
postulate -- HIT
loopT1 : baseT == baseT
loopT2 : baseT == baseT
surfT : loopT1 ∙ loopT2 == loopT2 ∙ loopT1
{- Dependent elimination and computation rules -}
module TorusElim {i} {P : Torus → Type i} (baseT* : P baseT)
(loopT1* : baseT* == baseT* [ P ↓ loopT1 ])
(loopT2* : baseT* == baseT* [ P ↓ loopT2 ])
(surfT* : loopT1* ∙ᵈ loopT2* == loopT2* ∙ᵈ loopT1*
[ (λ p → baseT* == baseT* [ P ↓ p ]) ↓ surfT ]) where
f : Π Torus P
f = f-aux phantom where
f-aux : Phantom surfT* → Π Torus P
f-aux phantom (#torus #baseT _) = baseT*
postulate -- HIT
loopT1-β : apd f loopT1 == loopT1*
loopT2-β : apd f loopT2 == loopT2*
private
lhs : apd f (loopT1 ∙ loopT2) == loopT1* ∙ᵈ loopT2*
lhs =
apd f (loopT1 ∙ loopT2) =⟨ apd-∙ f loopT1 loopT2 ⟩
apd f loopT1 ∙ᵈ apd f loopT2 =⟨ loopT1-β |in-ctx (λ u → u ∙ᵈ apd f loopT2) ⟩
loopT1* ∙ᵈ apd f loopT2 =⟨ loopT2-β |in-ctx (λ u → loopT1* ∙ᵈ u) ⟩
loopT1* ∙ᵈ loopT2* ∎
rhs : apd f (loopT2 ∙ loopT1) == loopT2* ∙ᵈ loopT1*
rhs =
apd f (loopT2 ∙ loopT1) =⟨ apd-∙ f loopT2 loopT1 ⟩
apd f loopT2 ∙ᵈ apd f loopT1 =⟨ loopT2-β |in-ctx (λ u → u ∙ᵈ apd f loopT1) ⟩
loopT2* ∙ᵈ apd f loopT1 =⟨ loopT1-β |in-ctx (λ u → loopT2* ∙ᵈ u) ⟩
loopT2* ∙ᵈ loopT1* ∎
postulate -- HIT
surfT-β : apd (apd f) surfT == lhs ◃ (surfT* ▹! rhs)
module TorusRec {i} {A : Type i} (baseT* : A) (loopT1* loopT2* : baseT* == baseT*)
(surfT* : loopT1* ∙ loopT2* == loopT2* ∙ loopT1*) where
private
module M = TorusElim {P = λ _ → A} baseT* (↓-cst-in loopT1*) (↓-cst-in loopT2*)
(↓-cst-in-∙ loopT1 loopT2 loopT1* loopT2*
!◃ (↓-cst-in2 surfT* ▹ (↓-cst-in-∙ loopT2 loopT1 loopT2* loopT1*)))
f : Torus → A
f = M.f
loopT1-β : ap f loopT1 == loopT1*
loopT1-β = apd=cst-in {f = f} M.loopT1-β
loopT2-β : ap f loopT2 == loopT2*
loopT2-β = apd=cst-in {f = f} M.loopT2-β
private
lhs : ap f (loopT1 ∙ loopT2) == loopT1* ∙ loopT2*
lhs =
ap f (loopT1 ∙ loopT2) =⟨ ap-∙ f loopT1 loopT2 ⟩
ap f loopT1 ∙ ap f loopT2 =⟨ loopT1-β |in-ctx (λ u → u ∙ ap f loopT2) ⟩
loopT1* ∙ ap f loopT2 =⟨ loopT2-β |in-ctx (λ u → loopT1* ∙ u) ⟩
loopT1* ∙ loopT2* ∎
rhs : ap f (loopT2 ∙ loopT1) == loopT2* ∙ loopT1*
rhs =
ap f (loopT2 ∙ loopT1) =⟨ ap-∙ f loopT2 loopT1 ⟩
ap f loopT2 ∙ ap f loopT1 =⟨ loopT2-β |in-ctx (λ u → u ∙ ap f loopT1) ⟩
loopT2* ∙ ap f loopT1 =⟨ loopT1-β |in-ctx (λ u → loopT2* ∙ u) ⟩
loopT2* ∙ loopT1* ∎
postulate -- Does not look easy
surfT-β : ap (ap f) surfT == (lhs ∙ surfT*) ∙ (! rhs)
-- surfT-β = {!M.surfT-β!}
-- module TorusRecType {i} (baseT* : Type i) (loopT1* loopT2* : baseT* ≃ baseT*)
-- (surfT* : (x : baseT*) → –> loopT2* (–> loopT2* x) == –> loopT1* (–> loopT2* x)) where
-- open TorusRec baseT* (ua loopT1*) (ua loopT2*) {!!} public
-- -- TODO
| {
"alphanum_fraction": 0.5278779473,
"avg_line_length": 32.4774774775,
"ext": "agda",
"hexsha": "565b6d599c8d4a66610b95c9f20cd69c199ab19a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "lib/types/Torus.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "lib/types/Torus.agda",
"max_line_length": 95,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "lib/types/Torus.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 1608,
"size": 3605
} |
{-# OPTIONS --without-K --safe #-}
module Experiment.SumFin where
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Nat
open import Data.Nat.Properties
open import Relation.Binary.PropositionalEquality
private
variable
k : ℕ
Fin : ℕ → Set
Fin zero = ⊥
Fin (suc n) = ⊤ ⊎ (Fin n)
pattern fzero = inj₁ tt
pattern fsuc n = inj₂ n
finj : Fin k → Fin (suc k)
finj {suc k} fzero = fzero
finj {suc k} (fsuc n) = fsuc (finj {k} n)
toℕ : Fin k → ℕ
toℕ {suc k} (inj₁ tt) = zero
toℕ {suc k} (inj₂ x) = suc (toℕ {k} x)
toℕ-injective : {m n : Fin k} → toℕ m ≡ toℕ n → m ≡ n
toℕ-injective {suc k} {fzero} {fzero} _ = refl
toℕ-injective {suc k} {fzero} {fsuc x} ()
toℕ-injective {suc k} {fsuc m} {fzero} ()
toℕ-injective {suc k} {fsuc m} {fsuc x} p = cong fsuc (toℕ-injective (suc-injective p))
| {
"alphanum_fraction": 0.6427718041,
"avg_line_length": 22.6216216216,
"ext": "agda",
"hexsha": "0b3c84ad9b409d3f9033c713da6b0db852c9914a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Experiment/SumFin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Experiment/SumFin.agda",
"max_line_length": 87,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Experiment/SumFin.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 341,
"size": 837
} |
{-# OPTIONS --without-K #-}
open import HoTT
module homotopy.TorusIsProductCircles where
surfT' : loopT1 ∙ loopT2 == loopT2 ∙' loopT1
surfT' = surfT ∙ (∙=∙' loopT2 loopT1)
private
to-surfT : (pair×= loop idp) ∙ (pair×= idp loop)
== (pair×= idp loop) ∙ (pair×= loop idp)
to-surfT =
pair×= loop idp ∙ pair×= idp loop =⟨ ×-∙ loop idp idp loop ⟩
pair×= (loop ∙ idp) (idp ∙ loop) =⟨ ∙-unit-r loop |in-ctx (λ u → pair×= u loop) ⟩
pair×= loop loop =⟨ ! (∙-unit-r loop) |in-ctx (λ u → pair×= loop u) ⟩
pair×= (idp ∙ loop) (loop ∙ idp) =⟨ ! (×-∙ idp loop loop idp) ⟩
pair×= idp loop ∙ pair×= loop idp ∎
module To = TorusRec (base , base) (pair×= loop idp) (pair×= idp loop) to-surfT
{- First map -}
to : Torus → S¹ × S¹
to = To.f
{- Second map -}
from-c : S¹ → (S¹ → Torus)
from-c = FromC.f module M2 where
module FromCBase = S¹Rec baseT loopT2
from-c-base : S¹ → Torus
from-c-base = FromCBase.f
from-c-loop-loop' : loopT1 ∙ ap from-c-base loop =-= ap from-c-base loop ∙' loopT1
from-c-loop-loop' =
loopT1 ∙ ap from-c-base loop =⟪ FromCBase.loop-β |in-ctx (λ u → loopT1 ∙ u) ⟫
loopT1 ∙ loopT2 =⟪ surfT' ⟫
loopT2 ∙' loopT1 =⟪ ! FromCBase.loop-β |in-ctx (λ u → u ∙' loopT1) ⟫
ap from-c-base loop ∙' loopT1 ∎∎
from-c-loop-loop : loopT1 == loopT1 [ (λ x → from-c-base x == from-c-base x) ↓ loop ]
from-c-loop-loop = ↓-='-in (↯ from-c-loop-loop')
module FromCLoop = S¹Elim loopT1 from-c-loop-loop
from-c-loop' = FromCLoop.f
from-c-loop = λ= from-c-loop'
module FromC = S¹Rec from-c-base from-c-loop
from : S¹ × S¹ → Torus
from (x , y) = from-c x y
open M2
{- First composition -}
thing : (y : S¹) → ap (λ x → from-c x y) loop == from-c-loop' y
thing y =
ap ((λ u → u y) ∘ from-c) loop =⟨ ap-∘ (λ u → u y) from-c loop ⟩
app= (ap from-c loop) y =⟨ FromC.loop-β |in-ctx (λ u → app= u y)⟩
app= (λ= from-c-loop') y =⟨ app=-β from-c-loop' y ⟩
from-c-loop' y ∎
to-from-c : (x y : S¹) → to (from-c x y) == (x , y)
to-from-c = {!!} --S¹-elim to-from-c-base (↓-cst→app-in to-from-c-loop)
where
to-from-c-base-loop' : ap (to ∘ from-c-base) loop =-= ap (λ y → (base , y)) loop
to-from-c-base-loop' =
ap (to ∘ from-c-base) loop =⟪ ap-∘ to from-c-base loop ⟫
ap to (ap from-c-base loop) =⟪ FromCBase.loop-β |in-ctx ap to ⟫
ap to loopT2 =⟪ To.loopT2-β ⟫
pair×= idp loop =⟪ ! (ap-cst,id _ loop) ⟫
ap (λ y → (base , y)) loop ∎∎
to-from-c-base-loop : idp == idp [ (λ z → to (from-c-base z) == (base , z)) ↓ loop ]
to-from-c-base-loop = ↓-='-in (! (↯ to-from-c-base-loop'))
module ToFromCBase = S¹Elim idp to-from-c-base-loop
-- 1!to-from-c-base-loop : idp == idp [ (λ z → to (from-c-base (fst z)) == z) ↓ (pair×= loop idp) ]
-- 1!to-from-c-base-loop = ↓-='-in (! (↯ 1! to-from-c-base-loop'))
-- module 1!ToFromCBase!1 = S¹Elim idp 1!to-from-c-base-loop
to-from-c-base : (y : S¹) → to (from-c-base y) == (base , y)
to-from-c-base = ToFromCBase.f
thing2 : (y : S¹) → ap to (from-c-loop' y) == to-from-c-base y ∙ pair×= loop idp ∙' (! (to-from-c-base y))
thing2 = {!S¹-elim To.loopT1-β {!To.loopT1-β!}!}
to-from-c-loop : (y : S¹) → to-from-c-base y == to-from-c-base y [ (λ x → to (from-c x y) == (x , y)) ↓ loop ]
to-from-c-loop = {!S¹-elim to-from-c-loop-base ?!} where
to-from-c-loop-base2 : ap (λ x → (x , base)) loop =-= ap (λ x → to (from-c x base)) loop
to-from-c-loop-base2 =
ap (λ z → z , base) loop =⟪ {!ap-id,cst _ loop!} ⟫
pair×= loop idp =⟪ ! To.loopT1-β ⟫
ap to loopT1 =⟪ ! (thing base) |in-ctx ap to ⟫
ap to (ap (λ z → from-c z base) loop) =⟪ ! (ap-∘ to (λ z → from-c z base) loop) ⟫
ap (λ z → to (from-c z base)) loop ∎∎
to-from-c-loop-base : idp == idp [ (λ x → to (from-c x base) == (x , base)) ↓ loop ]
to-from-c-loop-base = ↓-='-in (↯ to-from-c-loop-base2)
lemma : ↯ to-from-c-loop-base2 == ↯ to-from-c-loop-base2 [ (λ y → to-from-c-base y ∙ ap (λ x → x , y) loop == ap (λ x → to (from-c x y)) loop ∙' to-from-c-base y) ↓ loop ]
lemma = ↓-=-in (
(↯ to-from-c-loop-base2) ◃ apd (λ y → ap (λ x → to (from-c x y)) loop ∙' to-from-c-base y) loop =⟨ {!!} ⟩
(↯ to-from-c-loop-base2) ◃ ((apd (λ y → ap (λ x → to (from-c x y)) loop) loop) ∙'2 (apd to-from-c-base loop)) =⟨ {!!} ⟩
((↯ to-from-c-loop-base2) ◃ (apd (λ y → ap (λ x → to (from-c x y)) loop) loop)) ∙'2 (apd to-from-c-base loop) =⟨ {!!} ⟩
((↯ (to-from-c-loop-base2 !1)) ◃ ((apd (λ y → ap to (ap (λ x → from-c x y) loop)) loop) ▹ (↯ to-from-c-loop-base2 #1))) ∙'2 (apd to-from-c-base loop) =⟨ {!!} ⟩
((↯ (to-from-c-loop-base2 !2)) ◃ ((apd (λ y → ap to (from-c-loop' y)) loop) ▹ (↯ to-from-c-loop-base2 #2))) ∙'2 (apd to-from-c-base loop) =⟨ {!!} ⟩
((↯ (to-from-c-loop-base2 !2)) ◃ ((ap↓ (ap to) (apd from-c-loop' loop)) ▹ (↯ to-from-c-loop-base2 #2))) ∙'2 (apd to-from-c-base loop) =⟨ {!!} ⟩
((↯ (to-from-c-loop-base2 !2)) ◃ ((ap↓ (ap to) from-c-loop-loop) ▹ (↯ to-from-c-loop-base2 #2))) ∙'2 (apd to-from-c-base loop) =⟨ {!!} ⟩
apd (λ y → to-from-c-base y ∙ ap (λ x → x , y) loop) loop ▹ (↯ to-from-c-loop-base2) ∎)
{-
Have: PathOver (λ z → to (from-c-base z) == to (from-c-base z))
loop (ap (λ x → x , base) loop)
(ap (λ x → to (from-c x base)) loop)
-}
-- lemma2 : apd (λ y → ap (λ x → to (from-c x y)) loop) loop == {!!}
-- lemma2 =
-- apd (λ y → ap (λ x → to (from-c x y)) loop) loop =⟨ {!!} ⟩
-- apd (λ y → ap to (ap (λ x → from-c x y) loop)) loop =⟨ {!!} ⟩
-- apd (λ y → ap to (from-c-loop' y)) loop =⟨ {!!} ⟩
-- api2 (ap to) (apd from-c-loop' loop) =⟨ {!!} ⟩
-- apd (ap to) surfT =⟨ {!!} ⟩
-- ? ∎
to-from : (x : S¹ × S¹) → to (from x) == x
to-from (x , y) = to-from-c x y
{- Second composition -}
from-to : (x : Torus) → from (to x) == x
from-to = {!Torus-elim idp from-to-loopT1 from-to-loopT2 {!!}!}
where
from-to-loopT1 : idp == idp [ (λ z → from (to z) == z) ↓ loopT1 ]
from-to-loopT1 = ↓-∘=idf-in from to
(ap from (ap to loopT1) =⟨ To.loopT1-β |in-ctx ap from ⟩
ap from (pair×= loop idp) =⟨ lemma from loop (idp {a = base}) ⟩
ap (λ u → u base) (ap from-c loop) =⟨ FromC.loop-β |in-ctx ap (λ u → u base) ⟩
ap (λ u → u base) (λ= from-c-loop') =⟨ app=-β from-c-loop' base ⟩
loopT1 ∎) where
lemma : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A × B → C)
{x y : A} (p : x == y) {z t : B} (q : z == t)
→ ap f (pair×= p q) == app= (ap (curry f) p) z ∙' ap (curry f y) q
lemma f idp idp = idp
from-to-loopT2 : idp == idp [ (λ z → from (to z) == z) ↓ loopT2 ]
from-to-loopT2 = ↓-∘=idf-in from to
(ap from (ap to loopT2) =⟨ To.loopT2-β |in-ctx ap from ⟩
ap from (pair×= idp loop) =⟨ lemma' from (idp {a = base}) loop ⟩
ap from-c-base loop =⟨ FromCBase.loop-β ⟩
loopT2 ∎) where
lemma' : ∀ {i j k} {A : Type i} {B : Type j} {C : Type k} (f : A × B → C)
{x y : A} (p : x == y) {z t : B} (q : z == t)
→ ap f (pair×= p q) == ap (curry f x) q ∙' app= (ap (curry f) p) t
lemma' f idp idp = idp
-- to-from-c-app-base : (y : S¹) → to (from-c y base) == (y , base)
-- to-from-c-app-base = S¹-elim {!to (from-c base base) == base , base!} {!!}
| {
"alphanum_fraction": 0.5028731792,
"avg_line_length": 43.0057471264,
"ext": "agda",
"hexsha": "4294a1586645c0480685341ee9a5aa19b3ed09d7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "homotopy/TorusIsProductCircles.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "homotopy/TorusIsProductCircles.agda",
"max_line_length": 175,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "homotopy/TorusIsProductCircles.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 3097,
"size": 7483
} |
open import Common.Prelude
open import Common.Reflection
{-# NON_TERMINATING #-}
-- Note that in the body of the unquote, 'loop' really means 'quote loop'.
unquoteDecl loop =
define (vArg loop)
(funDef (def (quote Nat) [])
(clause [] (def loop []) ∷ []))
| {
"alphanum_fraction": 0.6175438596,
"avg_line_length": 25.9090909091,
"ext": "agda",
"hexsha": "cf7de701f56a5e84905544dc6c9e9d64df19a399",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1218.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/Issue1218.agda",
"max_line_length": 74,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/Issue1218.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 72,
"size": 285
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.types.Empty
open import lib.types.Sigma
open import lib.types.Paths
module lib.types.Pi where
instance
Π-level : ∀ {i j} {A : Type i} {B : A → Type j} {n : ℕ₋₂}
→ ((x : A) → has-level n (B x)) → has-level n (Π A B)
Π-level {n = ⟨-2⟩} p = has-level-in ((λ x → contr-center (p x)) , lemma)
where abstract lemma = λ f → λ= (λ x → contr-path (p x) (f x))
Π-level {n = S n} p = has-level-in lemma where
abstract
lemma = λ f g →
equiv-preserves-level λ=-equiv {{Π-level (λ x → has-level-apply (p x) (f x) (g x))}}
Πi-level : ∀ {i j} {A : Type i} {B : A → Type j} {n : ℕ₋₂}
→ ((x : A) → has-level n (B x)) → has-level n ({x : A} → B x)
Πi-level {A = A} {B} p = equiv-preserves-level e {{Π-level p}} where
e : Π A B ≃ ({x : A} → B x)
fst e f {x} = f x
is-equiv.g (snd e) f x = f
is-equiv.f-g (snd e) _ = idp
is-equiv.g-f (snd e) _ = idp
is-equiv.adj (snd e) _ = idp
{- Equivalences in a Π-type -}
Π-emap-l : ∀ {i j k} {A : Type i} {B : Type j} (P : B → Type k)
→ (e : A ≃ B) → Π A (P ∘ –> e) ≃ Π B P
Π-emap-l {A = A} {B = B} P e = equiv f g f-g g-f where
f : Π A (P ∘ –> e) → Π B P
f u b = transport P (<–-inv-r e b) (u (<– e b))
g : Π B P → Π A (P ∘ –> e)
g v a = v (–> e a)
abstract
f-g : ∀ v → f (g v) == v
f-g v = λ= λ b → to-transp (apd v (<–-inv-r e b))
g-f : ∀ u → g (f u) == u
g-f u = λ= λ a → to-transp $ transport (λ p → u _ == _ [ P ↓ p ])
(<–-inv-adj e a)
(↓-ap-in P (–> e)
(apd u $ <–-inv-l e a))
Π-emap-r : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
→ (∀ x → B x ≃ C x) → Π A B ≃ Π A C
Π-emap-r {A = A} {B = B} {C = C} k = equiv f g f-g g-f
where f : Π A B → Π A C
f c x = –> (k x) (c x)
g : Π A C → Π A B
g d x = <– (k x) (d x)
abstract
f-g : ∀ d → f (g d) == d
f-g d = λ= (λ x → <–-inv-r (k x) (d x))
g-f : ∀ c → g (f c) == c
g-f c = λ= (λ x → <–-inv-l (k x) (c x))
{-
favonia: This part is not used.
module _ {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁}
{B₀ : A₀ → Type j₀} {B₁ : A₁ → Type j₁} where
Π-emap : (u : A₀ ≃ A₁) (v : ∀ a → B₀ (<– u a) ≃ B₁ a) → Π A₀ B₀ ≃ Π A₁ B₁
Π-emap u v = Π A₀ B₀ ≃⟨ Π-emap-l _ (u ⁻¹) ⁻¹ ⟩
Π A₁ (B₀ ∘ <– u) ≃⟨ Π-emap-r v ⟩
Π A₁ B₁ ≃∎
Π-emap' : (u : A₀ ≃ A₁) (v : ∀ a → B₀ a ≃ B₁ (–> u a)) → Π A₀ B₀ ≃ Π A₁ B₁
Π-emap' u v = Π A₀ B₀ ≃⟨ Π-emap-r v ⟩
Π A₀ (B₁ ∘ –> u) ≃⟨ Π-emap-l _ u ⟩
Π A₁ B₁ ≃∎
-}
{- Coversions between functions with implicit and explicit arguments -}
expose-equiv : ∀ {i j} {A : Type i} {B : A → Type j}
→ ({x : A} → B x) ≃ ((x : A) → B x)
expose-equiv = (λ f a → f {a}) , is-eq
_
(λ f {a} → f a)
(λ _ → idp)
(λ _ → idp)
{- Dependent paths in a Π-type -}
module _ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k}
where
↓-Π-in : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ uncurry C ↓ pair= p q ])
→ (u == u' [ (λ x → Π (B x) (C x)) ↓ p ])
↓-Π-in {p = idp} f = λ= (λ x → f (idp {a = x}))
↓-Π-out : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ (u == u' [ (λ x → Π (B x) (C x)) ↓ p ])
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ uncurry C ↓ pair= p q ])
↓-Π-out {p = idp} q idp = app= q _
↓-Π-β : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ (f : {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ uncurry C ↓ pair= p q ])
→ {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ ↓-Π-out (↓-Π-in f) q == f q
↓-Π-β {p = idp} f idp = app=-β (λ x → f (idp {a = x})) _
↓-Π-η : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ (q : (u == u' [ (λ x → Π (B x) (C x)) ↓ p ]))
→ ↓-Π-in (↓-Π-out q) == q
↓-Π-η {p = idp} q = ! (λ=-η q)
↓-Π-equiv : {x x' : A} {p : x == x'} {u : Π (B x) (C x)} {u' : Π (B x') (C x')}
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ uncurry C ↓ pair= p q ])
≃ (u == u' [ (λ x → Π (B x) (C x)) ↓ p ])
↓-Π-equiv {p = idp} = equiv ↓-Π-in ↓-Π-out ↓-Π-η
(λ u → <– (ap-equiv expose-equiv _ _)
(λ= (λ t → <– (ap-equiv expose-equiv _ _)
(λ= (λ t' → λ= (↓-Π-β u))))))
{- Dependent paths in a Π-type where the codomain is not dependent on anything
Right now, this is defined in terms of the previous one. Maybe it’s a good idea,
maybe not.
-}
module _ {i j k} {A : Type i} {B : A → Type j} {C : Type k} {x x' : A}
{p : x == x'} {u : B x → C} {u' : B x' → C} where
↓-app→cst-in :
({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t')
→ (u == u' [ (λ x → B x → C) ↓ p ])
↓-app→cst-in f = ↓-Π-in (λ q → ↓-cst-in (f q))
↓-app→cst-out :
(u == u' [ (λ x → B x → C) ↓ p ])
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t')
↓-app→cst-out r q = ↓-cst-out (↓-Π-out r q)
↓-app→cst-β :
(f : ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t'))
→ {t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ ↓-app→cst-out (↓-app→cst-in f) q == f q
↓-app→cst-β f q =
↓-app→cst-out (↓-app→cst-in f) q
=⟨ idp ⟩
↓-cst-out (↓-Π-out (↓-Π-in (λ qq → ↓-cst-in (f qq))) q)
=⟨ ↓-Π-β (λ qq → ↓-cst-in (f qq)) q |in-ctx
↓-cst-out ⟩
↓-cst-out (↓-cst-in {p = pair= p q} (f q))
=⟨ ↓-cst-β (pair= p q) (f q) ⟩
f q =∎
{- favonia: these lemmas are not used anywhere
{- Similar to above, with domain being the identity function. -}
{- These lemmas were in homotopy.FunctionOver and in different conventions. -}
module _ {i j} {A B : Type i} {C : Type j}
{u : A → C} {v : B → C} where
↓-idf→cst-in : ∀ (p : A == B)
→ u == v ∘ coe p
→ u == v [ (λ x → x → C) ↓ p ]
↓-idf→cst-in idp q = q
↓-idf→cst-ua-in : ∀ (e : A ≃ B)
→ u == v ∘ –> e
→ u == v [ (λ x → x → C) ↓ ua e ]
↓-idf→cst-ua-in e q = ↓-idf→cst-in (ua e) (q ∙ ap (v ∘_) (λ= λ a → ! (coe-β e a)))
↓-idf→cst-in' : ∀ (p : A == B)
→ u ∘ coe! p == v
→ u == v [ (λ x → x → C) ↓ p ]
↓-idf→cst-in' idp q = q
↓-idf→cst-ua-in' : ∀ (e : A ≃ B)
→ u ∘ <– e == v
→ u == v [ (λ x → x → C) ↓ ua e ]
↓-idf→cst-ua-in' e q = ↓-idf→cst-in' (ua e) (ap (u ∘_) (λ= λ a → coe!-β e a) ∙ q)
module _ {i j} {A B : Type i} {C : Type j}
{u : C → A} {v : C → B} where
↓-cst→idf-in : ∀ (p : A == B)
→ coe p ∘ u == v
→ u == v [ (λ x → C → x) ↓ p ]
↓-cst→idf-in idp q = q
↓-cst→idf-ua-in : ∀ (e : A ≃ B)
→ –> e ∘ u == v
→ u == v [ (λ x → C → x) ↓ ua e ]
↓-cst→idf-ua-in e q = ↓-cst→idf-in (ua e) (ap (_∘ u) (λ= λ a → coe-β e a) ∙ q)
↓-cst→idf-in' : ∀ (p : A == B)
→ u == coe! p ∘ v
→ u == v [ (λ x → C → x) ↓ p ]
↓-cst→idf-in' idp q = q
↓-cst→idf-ua-in' : ∀ (e : A ≃ B)
→ u == <– e ∘ v
→ u == v [ (λ x → C → x) ↓ ua e ]
↓-cst→idf-ua-in' e q = ↓-cst→idf-in' (ua e) (q ∙ ap (_∘ v) (λ= λ a → ! (coe!-β e a)))
-}
{- Dependent paths in an arrow type -}
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
{x x' : A} {p : x == x'} {u : B x → C x} {u' : B x' → C x'} where
↓-→-in :
({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ C ↓ p ])
→ (u == u' [ (λ x → B x → C x) ↓ p ])
↓-→-in f = ↓-Π-in (λ q → ↓-cst2-in p q (f q))
↓-→-out :
(u == u' [ (λ x → B x → C x) ↓ p ])
→ ({t : B x} {t' : B x'} (q : t == t' [ B ↓ p ])
→ u t == u' t' [ C ↓ p ])
↓-→-out r q = ↓-cst2-out p q (↓-Π-out r q)
{- Transport form of dependent path in an arrow type -}
module _ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} where
↓-→-from-transp : {x x' : A} {p : x == x'}
{u : B x → C x} {u' : B x' → C x'}
→ transport C p ∘ u == u' ∘ transport B p
→ u == u' [ (λ x → B x → C x) ↓ p ]
↓-→-from-transp {p = idp} q = q
↓-→-to-transp : {x x' : A} {p : x == x'}
{u : B x → C x} {u' : B x' → C x'}
→ u == u' [ (λ x → B x → C x) ↓ p ]
→ transport C p ∘ u == u' ∘ transport B p
↓-→-to-transp {p = idp} q = q
-- Dependent paths in a Π-type where the domain is constant
module _ {i j k} {A : Type i} {B : Type j} {C : A → B → Type k} where
↓-Π-cst-app-in : {x x' : A} {p : x == x'}
{u : (b : B) → C x b} {u' : (b : B) → C x' b}
→ ((b : B) → u b == u' b [ (λ x → C x b) ↓ p ])
→ (u == u' [ (λ x → (b : B) → C x b) ↓ p ])
↓-Π-cst-app-in {p = idp} f = λ= f
↓-Π-cst-app-out : {x x' : A} {p : x == x'}
{u : (b : B) → C x b} {u' : (b : B) → C x' b}
→ (u == u' [ (λ x → (b : B) → C x b) ↓ p ])
→ ((b : B) → u b == u' b [ (λ x → C x b) ↓ p ])
↓-Π-cst-app-out {p = idp} q = app= q
split-ap2 : ∀ {i j k} {A : Type i} {B : A → Type j} {C : Type k} (f : Σ A B → C)
{x y : A} (p : x == y)
{u : B x} {v : B y} (q : u == v [ B ↓ p ])
→ ap f (pair= p q) == ↓-app→cst-out (apd (curry f) p) q
split-ap2 f idp idp = idp
{-
Interaction of [apd] with function composition.
The basic idea is that [apd (g ∘ f) p == apd g (apd f p)] but the version here
is well-typed. Note that we assume a propositional equality [r] between
[apd f p] and [q].
-}
apd-∘ : ∀ {i j k} {A : Type i} {B : A → Type j} {C : (a : A) → B a → Type k}
(g : {a : A} → Π (B a) (C a)) (f : Π A B) {x y : A} (p : x == y)
{q : f x == f y [ B ↓ p ]} (r : apd f p == q)
→ apd (g ∘ f) p == ↓-apd-out C r (apd↓ g q)
apd-∘ g f idp idp = idp
{- When [g] is nondependent, it’s much simpler -}
apd-∘' : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
(g : {a : A} → B a → C a) (f : Π A B) {x y : A} (p : x == y)
→ apd (g ∘ f) p == ap↓ g (apd f p)
apd-∘' g f idp = idp
∘'-apd : ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k}
(g : {a : A} → B a → C a) (f : Π A B) {x y : A} (p : x == y)
→ ap↓ g (apd f p) == apd (g ∘ f) p
∘'-apd g f idp = idp
{- And when [f] is nondependent, it’s also a bit simpler -}
apd-∘'' : ∀ {i j k} {A : Type i} {B : Type j} {C : (b : B) → Type k}
(g : Π B C) (f : A → B) {x y : A} (p : x == y)
{q : f x == f y} (r : ap f p == q)
→ apd (g ∘ f) p == ↓-ap-out= C f p r (apd g q) --(apd↓ g q)
apd-∘'' g f idp idp = idp
{- 2-dimensional coherence conditions -}
-- lhs :
-- ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B}
-- {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
-- (k : (u ◃ apd g p) == (apd f p ▹ v))
-- (h : {a : A} → B a → C a)
-- → ap h u ◃ apd (h ∘ g) p == ap↓ h (u ◃ apd g p)
-- rhs :
-- ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B}
-- {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
-- (k : (u ◃ apd g p) == (apd f p ▹ v))
-- (h : {a : A} → B a → C a)
-- → ap↓ h (apd f p ▹ v) == apd (h ∘ f) p ▹ ap h v
-- ap↓-↓-=-in :
-- ∀ {i j k} {A : Type i} {B : A → Type j} {C : A → Type k} {f g : Π A B}
-- {x y : A} {p : x == y} {u : f x == g x} {v : f y == g y}
-- (k : (u ◃ apd g p) == (apd f p ▹ v))
-- (h : {a : A} → B a → C a)
-- → ap↓ (λ {a} → ap (h {a = a})) (↓-=-in {p = p} {u = u} {v = v} k)
-- == ↓-=-in (lhs {f = f} {g = g} k h ∙ ap (ap↓ (λ {a} → h {a = a})) k
-- ∙ rhs {f = f} {g = g} k h)
{-
Commutation of [ap↓ (ap h)] and [↓-swap!]. This is "just" J, but it’s not as
easy as it seems.
-}
-- module Ap↓-swap! {i j k ℓ} {A : Type i} {B : Type j} {C : Type k}
-- {D : Type ℓ} (h : C → D) (f : A → C) (g : B → C)
-- {a a' : A} {p : a == a'} {b b' : B} {q : b == b'}
-- (r : f a == g b') (s : f a' == g b)
-- (t : r == s ∙ ap g q [ (λ x → f x == g b') ↓ p ])
-- where
-- lhs : ap h (ap f p ∙' s) == ap (h ∘ f) p ∙' ap h s
-- lhs = ap-∙' h (ap f p) s ∙ (ap (λ u → u ∙' ap h s) (∘-ap h f p))
-- rhs : ap h (s ∙ ap g q) == ap h s ∙ ap (h ∘ g) q
-- rhs = ap-∙ h s (ap g q) ∙ (ap (λ u → ap h s ∙ u) (∘-ap h g q))
-- β : ap↓ (ap h) (↓-swap! f g r s t) ==
-- lhs ◃ ↓-swap! (h ∘ f) (h ∘ g) (ap h r) (ap h s) (ap↓ (ap h) t ▹ rhs)
-- β with a | a' | p | b | b' | q | r | s | t
-- β | a | .a | idp | b | .b | idp | r | s | t = coh r s t where
-- T : {x x' : C} (r s : x == x') (t : r == s ∙ idp) → Type _
-- T r s t =
-- ap (ap h) (∙'-unit-l s ∙ ! (∙-unit-r s) ∙ ! t) ==
-- (ap-∙' h idp s ∙ idp)
-- ∙
-- (∙'-unit-l (ap h s) ∙
-- ! (∙-unit-r (ap h s)) ∙
-- !
-- (ap (ap h) t ∙'
-- (ap-∙ h s idp ∙ idp)))
-- coh' : {x x' : C} {r s : x == x'} (t : r == s) → T r s (t ∙ ! (∙-unit-r s))
-- coh' {r = idp} {s = .idp} idp = idp
-- coh : {x x' : C} (r s : x == x') (t : r == s ∙ idp) → T r s t
-- coh r s t = transport (λ t → T r s t) (coh2 t (∙-unit-r s)) (coh' (t ∙ ∙-unit-r s)) where
-- coh2 : ∀ {i} {A : Type i} {x y z : A} (p : x == y) (q : y == z) → (p ∙ q) ∙ ! q == p
-- coh2 idp idp = idp
-- module _ {i j k} {A : Type i} {B B' : Type j} {C : Type k} (f : A → C) (g' : B' → B) (g : B → C) where
-- abc : {a a' : A} {p : a == a'} {c c' : B'} {q' : c == c'} {q : g' c == g' c'}
-- (r : f a == g (g' c')) (s : f a' == g (g' c))
-- (t : q == ap g' q')
-- (α : r == s ∙ ap g q [ (λ x → f x == g (g' c')) ↓ p ])
-- → {!(↓-swap! f g r s α ▹ ?) ∙'2ᵈ ?!} == ↓-swap! f (g ∘ g') {p = p} {q = q'} r s (α ▹ ap (λ u → s ∙ u) (ap (ap g) t ∙ ∘-ap g g' q'))
-- abc = {!!}
{- Functoriality of application and function extensionality -}
∙-app= : ∀ {i j} {A : Type i} {B : A → Type j} {f g h : Π A B}
(α : f == g) (β : g == h)
→ α ∙ β == λ= (λ x → app= α x ∙ app= β x)
∙-app= idp β = λ=-η β
∙-λ= : ∀ {i j} {A : Type i} {B : A → Type j} {f g h : Π A B}
(α : f ∼ g) (β : g ∼ h)
→ λ= α ∙ λ= β == λ= (λ x → α x ∙ β x)
∙-λ= α β = ∙-app= (λ= α) (λ= β)
∙ ap λ= (λ= (λ x → ap (λ w → w ∙ app= (λ= β) x) (app=-β α x)
∙ ap (λ w → α x ∙ w) (app=-β β x)))
| {
"alphanum_fraction": 0.3740441801,
"avg_line_length": 35.7569620253,
"ext": "agda",
"hexsha": "f7969b418d30211ded8ad2ddd93d12fd6b81e4b5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Pi.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Pi.agda",
"max_line_length": 138,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Pi.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6854,
"size": 14124
} |
open import Data.Nat
module OpenTheory where
----------------------------------------------------------------------
data Vec (A : Set) : ℕ → Set₁ where
nil : Vec A zero
cons : (n : ℕ) (x : A) (xs : Vec A n) → Vec A (suc n)
data Vec2 : Set → ℕ → Set₁ where
nil : (A : Set) → Vec2 A zero
cons : (A : Set) (n : ℕ) (x : A) (xs : Vec2 A n) → Vec2 A (suc n)
elimVec : {A : Set} (P : (n : ℕ) → Vec A n → Set)
(pnil : P zero nil)
(pcnons : (n : ℕ) (x : A) (xs : Vec A n) → P n xs → P (suc n) (cons n x xs))
(n : ℕ) (xs : Vec A n) → P n xs
elimVec P pnil pcons .zero nil = pnil
elimVec P pnil pcons .(suc n) (cons n x xs) = pcons n x xs (elimVec P pnil pcons n xs)
----------------------------------------------------------------------
data Tree (A B : Set) : ℕ → ℕ → Set where
leaf₁ : A → Tree A B (suc zero) zero
leaf₂ : B → Tree A B zero (suc zero)
branch : (m n x y : ℕ)
→ Tree A B m n → Tree A B x y
→ Tree A B (m + x) (n + y)
----------------------------------------------------------------------
| {
"alphanum_fraction": 0.4198250729,
"avg_line_length": 33.1935483871,
"ext": "agda",
"hexsha": "bd0c4360a3b86223a2e8d8c79e8afbfbf22ed737",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:31:22.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-02T08:56:15.000Z",
"max_forks_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/generic-elim",
"max_forks_repo_path": "slides/OpenTheory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/generic-elim",
"max_issues_repo_path": "slides/OpenTheory.agda",
"max_line_length": 86,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "832383d7adf37aa2364213fb0aeb67e9f61a248f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/generic-elim",
"max_stars_repo_path": "slides/OpenTheory.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-09T08:46:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-02T14:05:20.000Z",
"num_tokens": 353,
"size": 1029
} |
module PiQ.Everything where
open import PiQ.Syntax -- Syntax of PiQ
open import PiQ.Opsem -- Abstract machine semantics of PiQ
open import PiQ.AuxLemmas -- Some auxiliary lemmas about opsem for forward/backward deterministic proof
open import PiQ.NoRepeat -- Forward/backward deterministic lemmas and Non-repeating lemma
open import PiQ.Invariants -- Some invariants about abstract machine semantics
open import PiQ.Eval -- Evaluator for PiQ
open import PiQ.Interp -- Big-step intepreter
open import PiQ.Properties -- Properties of PiQ
open import PiQ.Examples -- Examples
open import PiQ.SAT -- SAT solver
| {
"alphanum_fraction": 0.7664576803,
"avg_line_length": 53.1666666667,
"ext": "agda",
"hexsha": "15385a79cdc61bb360f2fe2f6b14c224c4b7c380",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "PiQ/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "PiQ/Everything.agda",
"max_line_length": 104,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "PiQ/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 156,
"size": 638
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Rings.Definition
open import Sets.EquivalenceRelations
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.IntegralDomains.Definition {m n : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
open Setoid S
open Equivalence eq
open Ring R
record IntegralDomain : Set (lsuc m ⊔ n) where
field
intDom : {a b : A} → (a * b) ∼ (Ring.0R R) → ((a ∼ (Ring.0R R)) → False) → b ∼ (Ring.0R R)
nontrivial : Setoid._∼_ S (Ring.1R R) (Ring.0R R) → False
decidedIntDom : ({a b : A} → (a * b) ∼ (Ring.0R R) → (a ∼ 0R) || (b ∼ 0R)) → ({a b : A} → (a * b) ∼ 0R → ((a ∼ (Ring.0R R)) → False) → b ∼ (Ring.0R R))
decidedIntDom f ab=0 a!=0 with f ab=0
decidedIntDom f ab=0 a!=0 | inl x = exFalso (a!=0 x)
decidedIntDom f ab=0 a!=0 | inr x = x
| {
"alphanum_fraction": 0.6085526316,
"avg_line_length": 36.48,
"ext": "agda",
"hexsha": "c38e53f700d1fad0e773740873e513a30b6a6f4f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/IntegralDomains/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/IntegralDomains/Definition.agda",
"max_line_length": 151,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/IntegralDomains/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 376,
"size": 912
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.HSpace renaming (HSpaceStructure to HSS)
open import homotopy.WedgeExtension
module homotopy.Pi2HSusp where
module Pi2HSusp {i} (A : Type i) (gA : has-level 1 A)
(cA : is-connected 0 A) (A-H : HSS A)
where
{- TODO this belongs somewhere else, but where? -}
private
Type=-ext : ∀ {i} {A B : Type i} (p q : A == B)
→ ((x : A) → coe p x == coe q x) → p == q
Type=-ext p q α =
! (ua-η p)
∙ ap ua (pair= (λ= α) (prop-has-all-paths-↓ (is-equiv-is-prop (coe q))))
∙ ua-η q
open HSS A-H
open ConnectedHSpace A cA A-H
P : Suspension A → Type i
P x = Trunc 1 (north == x)
module Codes = SuspensionRec A A (λ a → ua (μ-e-r-equiv a))
Codes : Suspension A → Type i
Codes = Codes.f
Codes-level : (x : Suspension A) → has-level 1 (Codes x)
Codes-level = Suspension-elim gA gA
(λ _ → prop-has-all-paths-↓ has-level-is-prop)
encode₀ : {x : Suspension A} → (north == x) → Codes x
encode₀ α = transport Codes α e
encode : {x : Suspension A} → P x → Codes x
encode {x} = Trunc-rec (Codes-level x) encode₀
decode' : A → P north
decode' a = [ (merid a ∙ ! (merid e)) ]
abstract
transport-Codes-mer : (a a' : A)
→ transport Codes (merid a) a' == μ a a'
transport-Codes-mer a a' =
coe (ap Codes (merid a)) a'
=⟨ Codes.merid-β a |in-ctx (λ w → coe w a') ⟩
coe (ua (μ-e-r-equiv a)) a'
=⟨ coe-β (μ-e-r-equiv a) a' ⟩
μ a a' ∎
transport-Codes-mer-e-! : (a : A)
→ transport Codes (! (merid e)) a == a
transport-Codes-mer-e-! a =
coe (ap Codes (! (merid e))) a
=⟨ ap-! Codes (merid e) |in-ctx (λ w → coe w a) ⟩
coe (! (ap Codes (merid e))) a
=⟨ Codes.merid-β e |in-ctx (λ w → coe (! w) a) ⟩
coe (! (ua (μ-e-r-equiv e))) a
=⟨ Type=-ext (ua (μ-e-r-equiv e)) idp (λ x → coe-β _ x ∙ μ-e-l x)
|in-ctx (λ w → coe (! w) a) ⟩
coe (! idp) a ∎
abstract
encode-decode' : (a : A) → encode (decode' a) == a
encode-decode' a =
transport Codes (merid a ∙ ! (merid e)) e
=⟨ trans-∙ {B = Codes} (merid a) (! (merid e)) e ⟩
transport Codes (! (merid e)) (transport Codes (merid a) e)
=⟨ transport-Codes-mer a e ∙ μ-e-r a
|in-ctx (λ w → transport Codes (! (merid e)) w) ⟩
transport Codes (! (merid e)) a
=⟨ transport-Codes-mer-e-! a ⟩
a ∎
abstract
homomorphism : (a a' : A)
→ Path {A = Trunc 1 (north == south)}
[ merid (μ a a' ) ] [ merid a' ∙ ! (merid e) ∙ merid a ]
homomorphism = WedgeExt.ext args
where
args : WedgeExt.args {a₀ = e} {b₀ = e}
args = record {m = -2; n = -2; cA = cA; cB = cA;
P = λ a a' → (_ , Trunc-level {n = 1} _ _);
f = λ a → ap [_] $
merid (μ a e)
=⟨ ap merid (μ-e-r a) ⟩
merid a
=⟨ ap (λ w → w ∙ merid a) (! (!-inv-r (merid e)))
∙ ∙-assoc (merid e) (! (merid e)) (merid a) ⟩
merid e ∙ ! (merid e) ∙ merid a ∎;
g = λ a' → ap [_] $
merid (μ e a')
=⟨ ap merid (μ-e-l a') ⟩
merid a'
=⟨ ! (∙-unit-r (merid a'))
∙ ap (λ w → merid a' ∙ w) (! (!-inv-l (merid e))) ⟩
merid a' ∙ ! (merid e) ∙ merid e ∎ ;
p = ap (λ {(p₁ , p₂) → ap [_] $
merid (μ e e) =⟨ p₁ ⟩
merid e =⟨ p₂ ⟩
merid e ∙ ! (merid e) ∙ merid e ∎})
(pair×= (ap (λ x → ap merid x) (! μ-coh)) (coh (merid e)))}
where coh : {B : Type i} {b b' : B} (p : b == b')
→ ap (λ w → w ∙ p) (! (!-inv-r p)) ∙ ∙-assoc p (! p) p
== ! (∙-unit-r p) ∙ ap (λ w → p ∙ w) (! (!-inv-l p))
coh idp = idp
decode : {x : Suspension A} → Codes x → P x
decode {x} = Suspension-elim {P = λ x → Codes x → P x}
decode'
(λ a → [ merid a ])
(λ a → ↓-→-from-transp (λ= $ STS a))
x
where
abstract
STS : (a a' : A) → transport P (merid a) (decode' a')
== [ merid (transport Codes (merid a) a') ]
STS a a' =
transport P (merid a) [ merid a' ∙ ! (merid e) ]
=⟨ transport-Trunc (north ==_) (merid a) _ ⟩
[ transport (north ==_) (merid a) (merid a' ∙ ! (merid e)) ]
=⟨ ap [_] (trans-pathfrom {A = Suspension A} (merid a) _) ⟩
[ (merid a' ∙ ! (merid e)) ∙ merid a ]
=⟨ ap [_] (∙-assoc (merid a') (! (merid e)) (merid a)) ⟩
[ merid a' ∙ ! (merid e) ∙ merid a ]
=⟨ ! (homomorphism a a') ⟩
[ merid (μ a a') ]
=⟨ ap ([_] ∘ merid) (! (transport-Codes-mer a a')) ⟩
[ merid (transport Codes (merid a) a') ] ∎
abstract
decode-encode : {x : Suspension A} (tα : P x)
→ decode {x} (encode {x} tα) == tα
decode-encode {x} = Trunc-elim
{P = λ tα → decode {x} (encode {x} tα) == tα}
(λ _ → =-preserves-level 1 Trunc-level)
(J (λ y p → decode {y} (encode {y} [ p ]) == [ p ])
(ap [_] (!-inv-r (merid e))))
main-lemma-eq : Trunc 1 (north' A == north) ≃ A
main-lemma-eq = equiv encode decode' encode-decode' decode-encode
⊙main-lemma : ⊙Trunc 1 (⊙Ω (⊙Susp (A , e))) == (A , e)
⊙main-lemma = ⊙ua (⊙≃-in main-lemma-eq idp)
abstract
main-lemma-iso : Ω^S-group 0 (⊙Trunc 1 (⊙Ω (⊙Susp (A , e)))) Trunc-level
≃ᴳ Ω^S-group 0 (⊙Trunc 1 (A , e)) Trunc-level
main-lemma-iso = (record {f = f; pres-comp = pres-comp} , ie)
where
h : fst (⊙Trunc 1 (⊙Ω (⊙Susp (A , e)))
⊙→ ⊙Trunc 1 (A , e))
h = (λ x → [ encode x ]) , idp
f : Ω (⊙Trunc 1 (⊙Ω (⊙Susp (A , e)))) → Ω (⊙Trunc 1 (A , e))
f = fst (ap^ 1 h)
pres-comp : (p q : Ω^ 1 (⊙Trunc 1 (⊙Ω (⊙Susp (A , e)))))
→ f (conc^S 0 p q) == conc^S 0 (f p) (f q)
pres-comp = ap^S-conc^S 0 h
ie : is-equiv f
ie = is-equiv-ap^ 1 h (snd $ ((unTrunc-equiv A gA)⁻¹ ∘e main-lemma-eq))
abstract
π₂-Suspension : πS 1 (⊙Susp (A , e)) == πS 0 (A , e)
π₂-Suspension =
πS 1 (⊙Susp (A , e))
=⟨ πS-inner-iso 0 (⊙Susp (A , e)) ⟩
πS 0 (⊙Ω (⊙Susp (A , e)))
=⟨ ! (πS-Trunc-shift-iso 0 (⊙Ω (⊙Susp (A , e)))) ⟩
Ω^S-group 0 (⊙Trunc 1 (⊙Ω (⊙Susp (A , e)))) Trunc-level
=⟨ group-ua main-lemma-iso ⟩
Ω^S-group 0 (⊙Trunc 1 (A , e)) Trunc-level
=⟨ πS-Trunc-shift-iso 0 (A , e) ⟩
πS 0 (A , e) ∎
| {
"alphanum_fraction": 0.4596083231,
"avg_line_length": 35.9120879121,
"ext": "agda",
"hexsha": "8231c90cdf4c5aa3abf650e8a9e9e088f026a538",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/Pi2HSusp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/Pi2HSusp.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/Pi2HSusp.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2640,
"size": 6536
} |
open import Prelude
open import RW.Language.RTerm
open import RW.Language.FinTerm
module RW.Language.RTermIdx where
open Eq {{...}}
data RTermᵢ {a}(A : Set a) : Set a where
ovarᵢ : (x : A) → RTermᵢ A
ivarᵢ : (n : ℕ) → RTermᵢ A
rlitᵢ : (l : Literal) → RTermᵢ A
rlamᵢ : RTermᵢ A
rappᵢ : (n : RTermName) → RTermᵢ A
ovarᵢ-inj : ∀{a}{A : Set a}{x y : A} → ovarᵢ x ≡ ovarᵢ y → x ≡ y
ovarᵢ-inj refl = refl
ivarᵢ-inj : ∀{a}{A : Set a}{x y : ℕ} → ivarᵢ {a} {A} x ≡ ivarᵢ {a} y → x ≡ y
ivarᵢ-inj refl = refl
rlitᵢ-inj : ∀{a}{A : Set a}{x y : Literal} → rlitᵢ {a} {A} x ≡ rlitᵢ {a} y → x ≡ y
rlitᵢ-inj refl = refl
rappᵢ-inj : ∀{a}{A : Set a}{x y : RTermName} → rappᵢ {a} {A} x ≡ rappᵢ {a} y → x ≡ y
rappᵢ-inj refl = refl
_≟-RTermᵢ_ : {A : Set}{{eqA : Eq A}}
→ (t₁ t₂ : RTermᵢ A) → Dec (t₁ ≡ t₂)
_≟-RTermᵢ_ {{eq _≟_}} (ovarᵢ x) (ovarᵢ y)
with x ≟ y
...| yes x≡y = yes (cong ovarᵢ x≡y)
...| no x≢y = no (x≢y ∘ ovarᵢ-inj)
_≟-RTermᵢ_ (ovarᵢ _) (ivarᵢ _) = no (λ ())
_≟-RTermᵢ_ (ovarᵢ _) (rlitᵢ _) = no (λ ())
_≟-RTermᵢ_ (ovarᵢ _) (rlamᵢ ) = no (λ ())
_≟-RTermᵢ_ (ovarᵢ _) (rappᵢ _) = no (λ ())
_≟-RTermᵢ_ (ivarᵢ _) (ovarᵢ _) = no (λ ())
_≟-RTermᵢ_ (ivarᵢ x) (ivarᵢ y)
with x ≟-ℕ y
...| yes x≡y = yes (cong ivarᵢ x≡y)
...| no x≢y = no (x≢y ∘ ivarᵢ-inj)
_≟-RTermᵢ_ (ivarᵢ _) (rlitᵢ _) = no (λ ())
_≟-RTermᵢ_ (ivarᵢ _) (rlamᵢ ) = no (λ ())
_≟-RTermᵢ_ (ivarᵢ _) (rappᵢ _) = no (λ ())
_≟-RTermᵢ_ (rlitᵢ _) (ivarᵢ _) = no (λ ())
_≟-RTermᵢ_ (rlitᵢ _) (ovarᵢ _) = no (λ ())
_≟-RTermᵢ_ (rlitᵢ x) (rlitᵢ y)
with x ≟-Lit y
...| yes x≡y = yes (cong rlitᵢ x≡y)
...| no x≢y = no (x≢y ∘ rlitᵢ-inj)
_≟-RTermᵢ_ (rlitᵢ _) (rlamᵢ ) = no (λ ())
_≟-RTermᵢ_ (rlitᵢ _) (rappᵢ _) = no (λ ())
_≟-RTermᵢ_ (rlamᵢ ) (ovarᵢ _) = no (λ ())
_≟-RTermᵢ_ (rlamᵢ ) (ivarᵢ _) = no (λ ())
_≟-RTermᵢ_ (rlamᵢ ) (rlitᵢ _) = no (λ ())
_≟-RTermᵢ_ (rlamᵢ ) (rlamᵢ ) = yes refl
_≟-RTermᵢ_ (rlamᵢ ) (rappᵢ _) = no (λ ())
_≟-RTermᵢ_ (rappᵢ _) (ovarᵢ _) = no (λ ())
_≟-RTermᵢ_ (rappᵢ _) (ivarᵢ _) = no (λ ())
_≟-RTermᵢ_ (rappᵢ _) (rlitᵢ _) = no (λ ())
_≟-RTermᵢ_ (rappᵢ _) (rlamᵢ ) = no (λ ())
_≟-RTermᵢ_ (rappᵢ x) (rappᵢ y)
with x ≟-RTermName y
...| yes x≡y = yes (cong rappᵢ x≡y)
...| no x≢y = no (x≢y ∘ rappᵢ-inj)
-----------------------------------
-- Utilities
out : ∀{a}{A : Set a} → RTerm A → RTermᵢ A × List (RTerm A)
out (ovar x) = ovarᵢ x , []
out (ivar n) = ivarᵢ n , []
out (rlit l) = rlitᵢ l , []
out (rlam t) = rlamᵢ , t ∷ []
out (rapp n ts) = rappᵢ n , ts
toSymbol : ∀{a}{A : Set a} → RTermᵢ A → Maybe A
toSymbol (ovarᵢ a) = just a
toSymbol _ = nothing
idx-cast : ∀{a b}{A : Set a}{B : Set b}
→ (i : RTermᵢ A) → (toSymbol i ≡ nothing)
→ RTermᵢ B
idx-cast (ovarᵢ x) ()
idx-cast (ivarᵢ n) _ = ivarᵢ n
idx-cast (rlitᵢ l) _ = rlitᵢ l
idx-cast (rlamᵢ ) _ = rlamᵢ
idx-cast (rappᵢ n) _ = rappᵢ n
instance
eq-RTermᵢ : {A : Set}{{eqA : Eq A}} → Eq (RTermᵢ A)
eq-RTermᵢ = eq _≟-RTermᵢ_
{-
instance
RTerm-isTrie : {A : Set}{{eqA : Eq A}}{{enA : Enum A}}
→ IsTrie (RTerm A)
RTerm-isTrie {A} {{enA = enum aℕ ℕa}} = record
{ Idx = RTermᵢ A
; idx≡ = eq _≟-RTermᵢ_
; toSym = toSymAux
; fromSym = fromSymAux
; inₜ = inAux
; outₜ = outAux
}
where
postulate
fixme : ∀{a}{A : Set a} → A
toSymAux : RTermᵢ A → Maybe ℕ
toSymAux (ovarᵢ n) = aℕ n
toSymAux _ = nothing
fromSymAux : ℕ → Maybe (RTermᵢ A)
fromSymAux n = maybe (λ x → just (ovarᵢ x)) nothing (ℕa n)
inAux : RTermᵢ A × List (RTerm A) → RTerm A
inAux (ovarᵢ x , []) = ovar x
inAux (ivarᵢ x , []) = ivar x
inAux (rlitᵢ l , []) = rlit l
inAux (rlamᵢ , t ∷ []) = rlam t
inAux (rappᵢ n , ts) = rapp n ts
inAux _ = fixme -- maybe using vectors of the correct arity...
outAux : RTerm A → RTermᵢ A × List (RTerm A)
outAux (ovar x) = ovarᵢ x , []
outAux (ivar n) = ivarᵢ n , []
outAux (rlit l) = rlitᵢ l , []
outAux (rlam t) = rlamᵢ , t ∷ []
outAux (rapp n ts) = rappᵢ n , ts
{-
RTerm-isTrie : IsTrie (RTerm ⊥)
RTerm-isTrie = record
{ Idx = RTermᵢ ⊥
; idx≡ = eq _≟-RTermᵢ_
; toSym = toSymAux
; fromSym = fromSymAux
; inₜ = inAux
; outₜ = outAux
} where
postulate
fixme : ∀{a}{A : Set a} → A
toSymAux : RTermᵢ ⊥ → Maybe ℕ
toSymAux (ovarᵢ ())
toSymAux (ivarᵢ n) = just n
toSymAux _ = nothing
fromSymAux : ℕ → Maybe (RTermᵢ ⊥)
fromSymAux x = just (ivarᵢ x)
inAux : RTermᵢ ⊥ × List (RTerm ⊥) → RTerm ⊥
inAux (ovarᵢ () , [])
inAux (ivarᵢ x , []) = ivar x
inAux (rlitᵢ l , []) = rlit l
inAux (rlamᵢ , t ∷ []) = rlam t
inAux (rappᵢ n , ts) = rapp n ts
inAux _ = fixme -- maybe using vectors of the correct arity...
outAux : RTerm ⊥ → RTermᵢ ⊥ × List (RTerm ⊥)
outAux (ovar ()) -- = ovarᵢ x , []
outAux (ivar n) = ivarᵢ n , []
outAux (rlit l) = rlitᵢ l , []
outAux (rlam t) = rlamᵢ , t ∷ []
outAux (rapp n ts) = rappᵢ n , ts
-}
RTermTrie : (A : Set){{eqA : Eq A}}{{enA : Enum A}} → Set
RTermTrie A = BTrie (RTerm A) Name
insertTerm : {A : Set}{{eqA : Eq A}}{{enA : Enum A}}
→ Name → RTerm A → ℕ × RTermTrie A → ℕ × RTermTrie A
insertTerm {A} = insert
where
open import RW.Data.BTrie.Insert (RTerm A) Name
lookupTerm : {A : Set}{{eqA : Eq A}}{{enA : Enum A}}
→ RTerm ⊥ → RTermTrie A → List (ℕmap.to (RTerm A) × Name)
lookupTerm {A} t = lookup (replace-A ⊥-elim t)
where
open import RW.Data.BTrie.Lookup (RTerm A) Name
-}
| {
"alphanum_fraction": 0.497470489,
"avg_line_length": 31.8817204301,
"ext": "agda",
"hexsha": "8042fde841f1438c68d3d62a320e0176c4cf0224",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "VictorCMiraldo/agda-rw",
"max_forks_repo_path": "RW/Language/RTermIdx.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "VictorCMiraldo/agda-rw",
"max_issues_repo_path": "RW/Language/RTermIdx.agda",
"max_line_length": 86,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "VictorCMiraldo/agda-rw",
"max_stars_repo_path": "RW/Language/RTermIdx.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z",
"num_tokens": 2908,
"size": 5930
} |
module Syntax2 where
import Level
open import Data.Empty
open import Data.Unit as Unit renaming (tt to ∗)
open import Data.Nat
open import Data.List as List renaming ([] to Ø) hiding ([_])
open import NonEmptyList as NList
open import Data.Vec as Vec hiding ([_]; _++_)
open import Data.Product as Prod
open import Categories.Category using (Category)
open import Function
open import Relation.Binary.PropositionalEquality as PE hiding ([_])
open import Relation.Binary using (module IsEquivalence; Setoid; module Setoid)
open ≡-Reasoning
open import Common.Context as Context
Univ = ⊤
length' : {A : Set} → List A → ℕ
length' Ø = 0
length' (x ∷ xs) = suc (length' xs)
data FP : Set where
μ : FP
ν : FP
RawCtx : Set
RawCtx = Ctx ⊤
RawVar : RawCtx → Set
RawVar Γ = Var Γ ∗
TyCtx : Set
TyCtx = Ctx RawCtx
TyVar : TyCtx → RawCtx → Set
TyVar = Var
CtxMor : (TyCtx → RawCtx → RawCtx → Set) → RawCtx → RawCtx → Set
CtxMor R Γ₁ Γ₂ = Vec (R Ø Γ₁ Ø) (length' Γ₂)
FpData : (TyCtx → RawCtx → RawCtx → Set) → TyCtx → RawCtx → Set
FpData R Θ Γ = NList (Σ RawCtx (λ Γ' → CtxMor R Γ' Γ × R (Γ ∷ Θ) Γ' Ø))
FpMapData : (TyCtx → RawCtx → RawCtx → Set) → Set
FpMapData R = NList (Σ RawCtx λ Γ' → R Ø (∗ ∷ Γ') Ø)
-- | Types and objects with their corresponding (untyped) type, object
-- variable contexts and parameter contexts.
data Raw : TyCtx → RawCtx → RawCtx → Set where
----- Common constructors
instRaw : {Θ : TyCtx} {Γ₁ Γ₂ : RawCtx} →
Raw Θ Γ₁ (∗ ∷ Γ₂) → Raw Ø Γ₁ Ø → Raw Θ Γ₁ Γ₂
----- Object constructors
unitRaw : (Γ : RawCtx) → Raw Ø Γ Ø
objVarRaw : (Γ : RawCtx) → RawVar Γ → Raw Ø Γ Ø
dialgRaw : {Γ Γ' : RawCtx} (Δ : RawCtx) →
CtxMor Raw Γ' Γ → Raw (Γ ∷ Ø) Γ' Ø → FP → Raw Ø Δ (∗ ∷ Γ')
mappingRaw : (Γ Δ : RawCtx) →
FpMapData Raw → FP → Raw Ø Δ Γ
----- Type constructors
⊤-Raw : (Θ : TyCtx) (Γ : RawCtx) → Raw Θ Γ Ø
tyVarRaw : {Θ : TyCtx} (Γ₁ : RawCtx) {Γ₂ : RawCtx} → TyVar Θ Γ₂ → Raw Θ Γ₁ Γ₂
paramAbstrRaw : {Θ : TyCtx} {Γ₂ : RawCtx} (Γ₁ : RawCtx) →
Raw Θ (∗ ∷ Γ₁) Γ₂ → Raw Θ Γ₁ (Γ₂ ++ ∗ ∷ Ø)
-- | Constructor for fixed points. The first component is intended to be
-- the context morphism, the second is the type.
fpRaw : {Θ : TyCtx} {Γ₂ : RawCtx} (Γ₁ : RawCtx) →
FP → FpData Raw Θ Γ₂ → Raw Θ Γ₁ Γ₂
weaken : {Θ : TyCtx} {Γ₁ Γ₂ : RawCtx} → Raw Θ Γ₁ Γ₂ → Raw Θ (∗ ∷ Γ₁) Γ₂
weaken (instRaw t s) = instRaw (weaken t) (weaken s)
weaken (unitRaw Γ) = unitRaw (∗ ∷ Γ)
weaken (objVarRaw Γ x) = objVarRaw (∗ ∷ Γ) (succ ∗ x)
weaken (dialgRaw Δ f t ρ) = dialgRaw (∗ ∷ Δ) f t ρ
weaken (mappingRaw Γ Δ gs ρ) = mappingRaw Γ (∗ ∷ Δ) gs ρ
weaken (⊤-Raw Θ Γ) = ⊤-Raw Θ (∗ ∷ Γ)
weaken (tyVarRaw Γ₁ X) = tyVarRaw (∗ ∷ Γ₁) X
weaken (paramAbstrRaw Γ₁ A) = paramAbstrRaw (∗ ∷ Γ₁) (weaken A)
weaken (fpRaw Γ₁ ρ D) = fpRaw (∗ ∷ Γ₁) ρ D
ctxid : (Γ : RawCtx) → CtxMor Raw Γ Γ
ctxid Ø = []
ctxid (x ∷ Γ) = (objVarRaw (∗ ∷ Γ) zero) ∷ (Vec.map weaken (ctxid Γ))
-- | Build the instantiation "t f" of a raw term t by a context morphism f
instWCtxMor : {Θ : TyCtx} {Γ₁ Γ₂ : RawCtx} →
Raw Θ Γ₁ Γ₂ → CtxMor Raw Γ₁ Γ₂ → Raw Θ Γ₁ Ø
instWCtxMor {Γ₂ = Ø} t [] = t
instWCtxMor {Γ₂ = x ∷ Γ₂} t (s ∷ f) = instWCtxMor (instRaw t s) f
-- | Retrieve the term to be substituted for a variable from a context morphism
get : {R : TyCtx → RawCtx → RawCtx → Set} {Γ₁ Γ₂ : RawCtx} →
CtxMor R Γ₂ Γ₁ → RawVar Γ₁ → R Ø Γ₂ Ø
get {R} {Ø} [] ()
get {R} {_ ∷ Γ₁} (M ∷ f) zero = M
get {R} {_ ∷ Γ₁} (M ∷ f) (succ .∗ x) = get {R} f x
-- | Extends a context morphism to be the identity on a new variable
extend : {Γ₁ Γ₂ : RawCtx} → CtxMor Raw Γ₂ Γ₁ → CtxMor Raw (∗ ∷ Γ₂) (∗ ∷ Γ₁)
extend f = (objVarRaw _ zero) ∷ (Vec.map weaken f)
-- | Substitution on raw terms
substRaw : ∀ {Θ Γ₁ Γ Γ₂} → Raw Θ Γ₁ Γ → CtxMor Raw Γ₂ Γ₁ → Raw Θ Γ₂ Γ
substRaw (instRaw M N) f = instRaw (substRaw M f) (substRaw N f)
substRaw (unitRaw Γ) f = unitRaw _
substRaw (objVarRaw Γ₁ x) f = get {Raw} f x
substRaw (dialgRaw Δ g A ρ) f = dialgRaw _ g A ρ
substRaw (mappingRaw Γ Δ gs ρ) f = mappingRaw _ _ gs ρ
substRaw (⊤-Raw Θ Γ) f = ⊤-Raw Θ _
substRaw (tyVarRaw Γ₁ X) f = tyVarRaw _ X
substRaw (paramAbstrRaw Γ₁ A) f = paramAbstrRaw _ (substRaw A (extend f))
substRaw (fpRaw Γ₁ ρ D) f = fpRaw _ ρ D
substTyRaw₀ : ∀ {Θ Γ₁ Γ Γ₂} →
Raw (Γ ∷ Θ) Γ₁ Γ₂ → Raw Ø Ø Γ → Raw Θ Γ₁ Γ₂
substTyRaw₀ (instRaw A t) B = instRaw (substTyRaw₀ A B) t
substTyRaw₀ (⊤-Raw ._ Γ₁) B = ⊤-Raw _ _
substTyRaw₀ (tyVarRaw Γ₁ zero) B = {!!}
substTyRaw₀ (tyVarRaw Γ₁ (succ Γ₂ X)) B = {!!}
substTyRaw₀ (paramAbstrRaw Γ₁ A) B = {!!}
substTyRaw₀ (fpRaw Γ₁ x x₁) B = {!!}
-- | Substitute into for type variables
substTyRaw : ∀ {Θ₁ Θ₂ Γ₁ Γ Γ₂} →
Raw (Θ₁ ++ (Γ ∷ Θ₂)) Γ₁ Γ₂ → Raw Ø Ø Γ → Raw (Θ₁ ++ Θ₂) Γ₁ Γ₂
substTyRaw {Ø} A B = {!!}
substTyRaw {x ∷ Θ₁} A B = {!!}
-- | Context morphism that projects on arbitrary prefix of a context
ctxProjRaw : (Γ₁ Γ₂ : RawCtx) → CtxMor Raw (Γ₂ ++ Γ₁) Γ₁
ctxProjRaw Γ₁ Ø = ctxid Γ₁
ctxProjRaw Γ₁ (x ∷ Γ₂) = Vec.map weaken (ctxProjRaw Γ₁ Γ₂)
-- | Extend one step weakening to weakening by arbitrary contexts
weaken' : ∀ {Θ Γ₁ Γ₃} →
(Γ₂ : RawCtx) → Raw Θ Γ₁ Γ₃ → Raw Θ (Γ₂ ++ Γ₁) Γ₃
weaken' {Γ₁ = Γ₁} Γ₂ t = substRaw t (ctxProjRaw Γ₁ Γ₂)
-----------------------------------------
--- Examples
-----------------------------------------
_︵_ : {A : Set} → A → A → List A
a ︵ b = a ∷ b ∷ Ø
-- | Binary product type
Prod : (Γ : RawCtx) → Raw (Γ ︵ Γ) Ø Γ
Prod Γ = fpRaw {Δ} {Γ} Ø ν D
where
Δ = Γ ︵ Γ
A : TyVar (Γ ∷ Δ) Γ
A = succ Γ zero
B : TyVar (Γ ∷ Δ) Γ
B = succ Γ (succ Γ zero)
D₁ = (Γ , ctxid Γ , instWCtxMor (tyVarRaw Γ A) (ctxid Γ))
D₂ = (Γ , ctxid Γ , instWCtxMor (tyVarRaw Γ B) (ctxid Γ))
D : FpData Raw Δ Γ
D = D₁ ∷ [ D₂ ]
-----------------------------------------
--- Separate types and terms
-----------------------------------------
mutual
data DecentType : {Θ : TyCtx} {Γ₁ Γ₂ : RawCtx} → Raw Θ Γ₁ Γ₂ → Set where
DT-⊤ : (Θ : TyCtx) (Γ : RawCtx) → DecentType (⊤-Raw Θ Γ)
DT-tyVar : {Θ : TyCtx} (Γ₁ : RawCtx) {Γ₂ : RawCtx} →
(X : TyVar Θ Γ₂) → DecentType (tyVarRaw Γ₁ X)
DT-inst : ∀{Θ Γ₁ Γ₂} →
(A : Raw Θ Γ₁ (∗ ∷ Γ₂)) → (t : Raw Ø Γ₁ Ø) →
DecentType A → DecentTerm t →
DecentType (instRaw A t)
DT-paramAbstr : ∀{Θ Γ₂} (Γ₁ : RawCtx) →
(A : Raw Θ (∗ ∷ Γ₁) Γ₂) →
DecentType A →
DecentType (paramAbstrRaw Γ₁ A)
DT-fp : ∀{Θ Γ₂} (Γ₁ : RawCtx) →
(ρ : FP) → (D : FpData Raw Θ Γ₂) →
DecentFpData D →
DecentType (fpRaw Γ₁ ρ D)
data DecentTerm : {Γ₁ Γ₂ : RawCtx} → Raw Ø Γ₁ Γ₂ → Set where
DO-unit : (Γ : RawCtx) → DecentTerm (unitRaw Γ)
DO-objVar : (Γ : RawCtx) → (x : RawVar Γ) → DecentTerm (objVarRaw Γ x)
DO-inst : {Γ₁ Γ₂ : RawCtx} →
(t : Raw Ø Γ₁ (∗ ∷ Γ₂)) → (s : Raw Ø Γ₁ Ø) →
DecentTerm t → DecentTerm s →
DecentTerm (instRaw t s)
DO-dialg : {Γ Γ' : RawCtx} (Δ : RawCtx) →
(f : CtxMor Raw Γ' Γ) → (A : Raw (Γ ∷ Ø) Γ' Ø) → (ρ : FP) →
DecentCtxMor f → DecentType A →
DecentTerm (dialgRaw Δ f A ρ)
DO-mapping : {Γ : RawCtx} (Δ : RawCtx) →
(gs : FpMapData Raw) → (ρ : FP) →
DecentTermList gs →
DecentTerm (mappingRaw Γ Δ gs ρ)
DecentTermList : FpMapData Raw → Set
DecentTermList [ (Γ' , t) ] = DecentTerm t
DecentTermList ((Γ' , t) ∷ ts) = DecentTerm t × DecentTermList ts
DecentCtxMor : {Γ₁ Γ₂ : RawCtx} → CtxMor Raw Γ₁ Γ₂ → Set
DecentCtxMor {Γ₂ = Ø} [] = ⊤
DecentCtxMor {Γ₂ = x ∷ Γ₂} (t ∷ f) = DecentTerm t × DecentCtxMor f
DecentFpData : ∀{Θ Γ₂} → FpData Raw Θ Γ₂ → Set
DecentFpData [ Γ , f , A ] = DecentCtxMor f × DecentType A
DecentFpData ((Γ , f , A) ∷ D)
= (DecentCtxMor f × DecentType A) × DecentFpData D
weakenDO : {Γ₁ Γ₂ : RawCtx} {t : Raw Ø Γ₁ Γ₂} →
DecentTerm t → DecentTerm (weaken t)
weakenDT : ∀ {Θ Γ₁ Γ₂} {A : Raw Θ Γ₁ Γ₂} →
DecentType A → DecentType (weaken A)
weakenDT (DT-⊤ Θ Γ) = DT-⊤ Θ _
weakenDT (DT-tyVar Γ₁ X) = DT-tyVar _ X
weakenDT (DT-inst A t p q) = DT-inst _ _ (weakenDT p) (weakenDO q)
weakenDT (DT-paramAbstr Γ₁ A p) = DT-paramAbstr _ _ (weakenDT p)
weakenDT (DT-fp Γ₁ ρ D p) = DT-fp _ ρ D p
weakenDO (DO-unit Γ) = DO-unit _
weakenDO (DO-objVar Γ x) = DO-objVar _ (succ ∗ x)
weakenDO (DO-inst t s p q) = DO-inst _ _ (weakenDO p) (weakenDO q)
weakenDO (DO-dialg Δ f A ρ p q) = DO-dialg _ f _ ρ p q
weakenDO (DO-mapping Δ gs ρ p) = DO-mapping _ gs ρ p
weakenDecentCtxMor : {Γ₁ Γ₂ : RawCtx} {f : CtxMor Raw Γ₁ Γ₂} →
DecentCtxMor f → DecentCtxMor (Vec.map weaken f)
weakenDecentCtxMor {Γ₂ = Ø} {f} p = ∗
weakenDecentCtxMor {Γ₂ = x ∷ Γ₂} {t ∷ f} (p , ps) =
(weakenDO p , weakenDecentCtxMor ps)
-------------------------------------
------- Pre-types and terms
-------------------------------------
PreType : (Θ : TyCtx) (Γ₁ Γ₂ : RawCtx) → Set
PreType Θ Γ₁ Γ₂ = Σ (Raw Θ Γ₁ Γ₂) λ A → DecentType A
mkPreType : ∀ {Θ Γ₁ Γ₂} {A : Raw Θ Γ₁ Γ₂} → DecentType A → PreType Θ Γ₁ Γ₂
mkPreType {A = A} p = (A , p)
PreTerm : (Γ₁ Γ₂ : RawCtx) → Set
PreTerm Γ₁ Γ₂ = Σ (Raw Ø Γ₁ Γ₂) λ t → DecentTerm t
mkPreTerm : ∀ {Γ₁ Γ₂} {t : Raw Ø Γ₁ Γ₂} → DecentTerm t → PreTerm Γ₁ Γ₂
mkPreTerm {t = t} p = (t , p)
CtxMorP = CtxMor (λ _ → PreTerm)
FpMapDataP = FpMapData (λ _ → PreTerm)
mkCtxMorP : {Γ₁ Γ₂ : RawCtx} {f : CtxMor Raw Γ₁ Γ₂} →
DecentCtxMor f → CtxMorP Γ₁ Γ₂
mkCtxMorP {Γ₂ = Ø} p = []
mkCtxMorP {Γ₂ = x ∷ Γ₂} {t ∷ f} (p , ps) = (t , p) ∷ (mkCtxMorP ps)
projCtxMor₁ : {Γ₁ Γ₂ : RawCtx} → CtxMorP Γ₂ Γ₁ → CtxMor Raw Γ₂ Γ₁
projCtxMor₁ = Vec.map proj₁
projCtxMor₂ : {Γ₁ Γ₂ : RawCtx} →
(f : CtxMorP Γ₂ Γ₁) → DecentCtxMor (projCtxMor₁ f)
projCtxMor₂ {Ø} [] = ∗
projCtxMor₂ {x ∷ Γ₁} ((t , p) ∷ f) = (p , projCtxMor₂ f)
projPTList₁ : FpMapDataP → FpMapData Raw
projPTList₁ = NList.map (Prod.map id proj₁)
projPTList₂ : (gs : FpMapDataP) → DecentTermList (projPTList₁ gs)
projPTList₂ [ (Γ' , t , p) ] = p
projPTList₂ ((Γ' , t , p) ∷ gs) = (p , projPTList₂ gs)
-----------------------------------------
----- Constructors for pre terms
-----------------------------------------
unitPT : (Γ : RawCtx) → PreTerm Γ Ø
unitPT Γ = mkPreTerm (DO-unit _)
varPT : (Γ : RawCtx) → RawVar Γ → PreTerm Γ Ø
varPT Γ x = mkPreTerm (DO-objVar _ x)
instPT : {Γ₁ : RawCtx} {Γ₂ : RawCtx} →
PreTerm Γ₁ (∗ ∷ Γ₂) → PreTerm Γ₁ Ø → PreTerm Γ₁ Γ₂
instPT (t , p) (s , q) = mkPreTerm (DO-inst _ _ p q)
dialgPT : {Γ Γ' : RawCtx} (Δ : RawCtx) →
CtxMorP Γ' Γ → PreType (Γ ∷ Ø) Γ' Ø → FP → PreTerm Δ (∗ ∷ Γ')
dialgPT Δ f (A , p) ρ = mkPreTerm (DO-dialg _ _ _ ρ (projCtxMor₂ f) p)
mappingPT : {Γ : RawCtx} (Δ : RawCtx) →
FpMapDataP → FP → PreTerm Δ Γ
mappingPT Δ gs ρ = mkPreTerm (DO-mapping _ _ ρ (projPTList₂ gs))
instWCtxMorP : {Γ₁ Γ₂ : RawCtx} →
PreTerm Γ₁ Γ₂ → CtxMorP Γ₁ Γ₂ → PreTerm Γ₁ Ø
instWCtxMorP {Γ₂ = Ø} M [] = M
instWCtxMorP {Γ₂ = x ∷ Γ₂} M (N ∷ f) = instWCtxMorP (instPT M N) f
-----------------------------------------------------
------ Meta operations on pre-terms and pre-types
-----------------------------------------------------
weakenPT : ∀ {Θ Γ₁ Γ₂} → PreType Θ Γ₁ Γ₂ → PreType Θ (∗ ∷ Γ₁) Γ₂
weakenPT (A , p) = (weaken A , weakenDT p)
weakenPO : {Γ₁ Γ₂ : RawCtx} → PreTerm Γ₁ Γ₂ → PreTerm (∗ ∷ Γ₁) Γ₂
weakenPO (t , p) = (weaken t , weakenDO p)
get' : {Γ₁ Γ₂ : RawCtx} →
(f : CtxMor (λ _ → PreTerm) Γ₂ Γ₁) →
(x : RawVar Γ₁) →
DecentTerm (get {Raw} (projCtxMor₁ f) x)
get' (t ∷ f) zero = proj₂ t
get' (t ∷ f) (succ {b = ∗} .∗ x) = get' f x
-- | Lift substitutions to DecentTerm predicate
substDO : {Γ₁ Γ Γ₂ : RawCtx} {t : Raw Ø Γ₁ Γ} →
(f : CtxMorP Γ₂ Γ₁) →
DecentTerm t → DecentTerm (substRaw t (projCtxMor₁ f))
substDO f (DO-unit Γ₁) = DO-unit _
substDO f (DO-objVar Γ₁ x) = get' f x
substDO f (DO-inst t s p q) = DO-inst _ _ (substDO f p) (substDO f q)
substDO f (DO-dialg Γ₁ g A ρ p q) = DO-dialg _ _ _ _ p q
substDO f (DO-mapping Γ₁ gs ρ p) = DO-mapping _ _ _ p
-- | Lift substRaw to pre terms
substP : {Γ₁ Γ Γ₂ : RawCtx} →
PreTerm Γ₁ Γ → CtxMorP Γ₂ Γ₁ → PreTerm Γ₂ Γ
substP (t , p) f = (substRaw t (projCtxMor₁ f) , substDO f p)
-- | Context identity is a decent context morphism
ctxidDO : (Γ : RawCtx) → DecentCtxMor (ctxid Γ)
ctxidDO Ø = ∗
ctxidDO (x ∷ Γ) = (DO-objVar _ zero , weakenDecentCtxMor (ctxidDO Γ))
mkCtxMorP₁ : {Γ₁ Γ₂ : RawCtx} {f : CtxMor Raw Γ₁ Γ₂} →
(p : DecentCtxMor f) → projCtxMor₁ (mkCtxMorP p) ≡ f
mkCtxMorP₁ {Γ₂ = Ø} {[]} p = refl
mkCtxMorP₁ {Γ₂ = x ∷ Γ₂} {t ∷ f} (p , ps) =
begin
projCtxMor₁ ((t , p) ∷ mkCtxMorP ps)
≡⟨ refl ⟩
t ∷ projCtxMor₁ (mkCtxMorP ps)
≡⟨ cong (λ u → t ∷ u) (mkCtxMorP₁ ps) ⟩
t ∷ f
∎
ctxidP : (Γ : RawCtx) → CtxMorP Γ Γ
ctxidP Γ = mkCtxMorP (ctxidDO Γ)
-- | Context projection is a decent context morphism
ctxProjDO : (Γ₁ Γ₂ : RawCtx) → DecentCtxMor (ctxProjRaw Γ₁ Γ₂)
ctxProjDO Γ₁ Ø = ctxidDO Γ₁
ctxProjDO Γ₁ (x ∷ Γ₂) = weakenDecentCtxMor (ctxProjDO Γ₁ Γ₂)
ctxProjP : (Γ₁ Γ₂ : RawCtx) → CtxMorP (Γ₂ ++ Γ₁) Γ₁
ctxProjP Γ₁ Γ₂ = mkCtxMorP (ctxProjDO Γ₁ Γ₂)
weakenDO' : {Γ₁ Γ₃ : RawCtx} {t : Raw Ø Γ₁ Γ₃} →
(Γ₂ : RawCtx) → DecentTerm t → DecentTerm (weaken' Γ₂ t)
weakenDO' {Γ₁} {t = t} Γ₂ p =
subst DecentTerm
(cong (substRaw t) (mkCtxMorP₁ (ctxProjDO Γ₁ Γ₂)))
(substDO (ctxProjP Γ₁ Γ₂) p)
weakenPO' : {Γ₁ Γ₃ : RawCtx} →
(Γ₂ : RawCtx) → PreTerm Γ₁ Γ₃ → PreTerm (Γ₂ ++ Γ₁) Γ₃
weakenPO' Γ₂ (t , p) = (weaken' Γ₂ t , weakenDO' Γ₂ p)
weakenPO'' : {Γ₁ Γ₃ : RawCtx} →
(Γ₂ Γ₂' : RawCtx) → PreTerm Γ₁ Γ₃ → PreTerm (Γ₂' ++ Γ₁ ++ Γ₂) Γ₃
weakenPO'' = {!!}
-- | Project a specific variable out
projVar : (Γ₁ Γ₂ : RawCtx) → PreTerm (Γ₂ ++ ∗ ∷ Γ₁) Ø
projVar Γ₁ Ø = varPT _ zero
projVar Γ₁ (∗ ∷ Γ₂) = weakenPO (projVar Γ₁ Γ₂)
-----------------------------------------------------
---- Action of types on terms
-----------------------------------------------------
shift-lemma : {A : Set} → (x y : List A) → (a : A) →
x ++ (a ∷ y) ≡ (x ++ a ∷ Ø) ++ y
shift-lemma Ø y a = refl
shift-lemma (b ∷ x) y a = cong (_∷_ b) (shift-lemma x y a)
Args : TyCtx → Set
Args Ø = ⊥
Args (Γ ∷ Θ) = (PreTerm (∗ ∷ Γ) Ø) × (Args Θ)
getArg : ∀ {Θ Γ₁} → TyVar Θ Γ₁ → Args Θ → PreTerm (∗ ∷ Γ₁) Ø
getArg zero (t , ts) = t
getArg (succ Γ₁ X) (t , ts) = getArg X ts
substArgCodomTypes : ∀ {Θ Γ Γ₁} →
Args Θ → PreType (Γ ∷ Θ) Γ₁ Ø → PreType (Γ ∷ Ø) Γ₁ Ø
substArgCodomTypes {Ø} () A
substArgCodomTypes {Γ ∷ Θ} (M , a) A = {!!}
{-# NON_TERMINATING #-}
⟪_⟫ : ∀ {Θ Γ₁ Γ₂} → PreType Θ Γ₁ Γ₂ → Args Θ → PreTerm (∗ ∷ Γ₂ ++ Γ₁) Ø
⟪_⟫ {Θ} {Γ₁} (instRaw {Γ₂ = Γ₂} A t , DT-inst .A .t dt-A do-t) ts =
substP (⟪ A , dt-A ⟫ ts) f
where
-- | Substitute t for the second variable, i.e., f = (id, t, x).
f : CtxMorP (∗ ∷ Γ₂ ++ Γ₁) (∗ ∷ ∗ ∷ Γ₂ ++ Γ₁)
f = (varPT (∗ ∷ Γ₂ ++ Γ₁) zero)
∷ weakenPO' (∗ ∷ Γ₂) (t , do-t)
∷ ctxProjP (Γ₂ ++ Γ₁) (∗ ∷ Ø)
⟪ unitRaw Γ , () ⟫ ts
⟪ objVarRaw Γ x , () ⟫ ts
⟪ dialgRaw Δ x A x₁ , () ⟫ ts
⟪ mappingRaw Γ Δ x x₁ , () ⟫ ts
⟪ ⊤-Raw Θ Γ , DT-⊤ .Θ .Γ ⟫ ts = ((objVarRaw (∗ ∷ Γ) zero) , (DO-objVar _ _))
⟪ tyVarRaw Γ₁ X , DT-tyVar .Γ₁ .X ⟫ ts = weakenPO'' Γ₁ Ø (getArg X ts)
⟪ paramAbstrRaw {Γ₂ = Γ₂} Γ₁ A , DT-paramAbstr .Γ₁ .A p ⟫ ts =
subst (λ u → PreTerm u Ø)
(cong (_∷_ ∗) (shift-lemma Γ₂ Γ₁ ∗))
(⟪ A , p ⟫ ts)
⟪ fpRaw {Θ} {Γ₂} Γ₁ μ D , DT-fp .Γ₁ .μ .D p ⟫ ts =
instWCtxMorP (mappingPT _ (gs D p) μ) (ctxidP _)
where
-- Construction of gₖ = αₖ id (⟪ Bₖ ⟫ (ts, id))
mkBase : ∀{Γ'} (x : CtxMor Raw Γ' Γ₂ × Raw (Γ₂ ∷ Θ) Γ' Ø) →
(f : DecentCtxMor (proj₁ x)) →
(A : DecentType (proj₂ x)) →
Σ RawCtx (λ Γ' → PreTerm (∗ ∷ Γ') Ø)
mkBase {Γ'} x f A = (Γ' , instWCtxMorP α r)
where
B : PreType (Γ₂ ∷ Θ) Γ' Ø
B = mkPreType A
A₂ : PreType (Γ₂ ∷ Ø) Γ' Ø
A₂ = substArgCodomTypes ts B
α : PreTerm (∗ ∷ Γ') (∗ ∷ Γ')
α = dialgPT _ (mkCtxMorP f) A₂ μ
r : CtxMorP (∗ ∷ Γ') (∗ ∷ Γ')
r = (⟪ B ⟫ ((varPT _ zero) , ts)) ∷ ctxProjP Γ' (∗ ∷ Ø)
-- Construct the g₁, ..., gₙ used in the recursion
gs : (D : FpData Raw Θ Γ₂) → DecentFpData D → FpMapDataP
gs [ Γ' , x ] (f , A) = [ mkBase x f A ]
gs ((Γ' , x) ∷ D₁) ((f , A) , p₁) = mkBase x f A ∷ gs D₁ p₁
⟪_⟫ (fpRaw Γ₁ ν x₁ , DT-fp .Γ₁ .ν .x₁ x) ts = {!!}
-----------------------------------------------------
---- Reduction relation on pre-types and pre-terms
-----------------------------------------------------
data _≻_ : {Γ₁ Γ₂ : RawCtx} → (t s : PreTerm Γ₁ Γ₂) → Set where
contract-rec : {Γ : RawCtx} → (gs : NList (PreTerm (∗ ∷ Γ) Ø)) →
instPT
(mappingPT {!!} {!!} μ)
(instPT (dialgPT {!!} {!!} {!!} μ) {!!})
≻ {!!}
| {
"alphanum_fraction": 0.5366887263,
"avg_line_length": 36.2652631579,
"ext": "agda",
"hexsha": "f65b72521dee2ca5354015a84fc39d6c7974ec9d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "TypeTheory/FibDataTypes/Syntax2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "TypeTheory/FibDataTypes/Syntax2.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "TypeTheory/FibDataTypes/Syntax2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7166,
"size": 17226
} |
open import Nat
open import Prelude
open import contexts
open import core
module dynamics-core where
open core public
mutual
-- identity substitution, substitition environments
data env : Set where
Id : (Γ : tctx) → env
Subst : (d : ihexp) → (y : Nat) → env → env
-- internal expressions
data ihexp : Set where
N : Nat → ihexp
_·+_ : ihexp → ihexp → ihexp
X : Nat → ihexp
·λ_·[_]_ : Nat → htyp → ihexp → ihexp
_∘_ : ihexp → ihexp → ihexp
inl : htyp → ihexp → ihexp
inr : htyp → ihexp → ihexp
case : ihexp → Nat → ihexp → Nat → ihexp → ihexp
⟨_,_⟩ : ihexp → ihexp → ihexp
fst : ihexp → ihexp
snd : ihexp → ihexp
⦇-⦈⟨_⟩ : (Nat × env) → ihexp
⦇⌜_⌟⦈⟨_⟩ : ihexp → (Nat × env) → ihexp
_⟨_⇒_⟩ : ihexp → htyp → htyp → ihexp
_⟨_⇒⦇-⦈⇏_⟩ : ihexp → htyp → htyp → ihexp
-- convenient notation for chaining together two agreeable casts
_⟨_⇒_⇒_⟩ : ihexp → htyp → htyp → htyp → ihexp
d ⟨ t1 ⇒ t2 ⇒ t3 ⟩ = d ⟨ t1 ⇒ t2 ⟩ ⟨ t2 ⇒ t3 ⟩
-- notation for a triple to match the CMTT syntax
_::_[_] : Nat → htyp → tctx → (Nat × (tctx × htyp))
u :: τ [ Γ ] = u , (Γ , τ)
-- the hole name u does not appear in the term e
data hole-name-new : hexp → Nat → Set where
HNNum : ∀{n u} → hole-name-new (N n) u
HNPlus : ∀{e1 e2 u} →
hole-name-new e1 u →
hole-name-new e2 u →
hole-name-new (e1 ·+ e2) u
HNAsc : ∀{e τ u} →
hole-name-new e u →
hole-name-new (e ·: τ) u
HNVar : ∀{x u} → hole-name-new (X x) u
HNLam1 : ∀{x e u} →
hole-name-new e u →
hole-name-new (·λ x e) u
HNLam2 : ∀{x e u τ} →
hole-name-new e u →
hole-name-new (·λ x ·[ τ ] e) u
HNAp : ∀{e1 e2 u} →
hole-name-new e1 u →
hole-name-new e2 u →
hole-name-new (e1 ∘ e2) u
HNInl : ∀{e u} →
hole-name-new e u →
hole-name-new (inl e) u
HNInr : ∀{e u} →
hole-name-new e u →
hole-name-new (inr e) u
HNCase : ∀{e x e1 y e2 u} →
hole-name-new e u →
hole-name-new e1 u →
hole-name-new e2 u →
hole-name-new (case e x e1 y e2) u
HNPair : ∀{e1 e2 u} →
hole-name-new e1 u →
hole-name-new e2 u →
hole-name-new ⟨ e1 , e2 ⟩ u
HNFst : ∀{e u} →
hole-name-new e u →
hole-name-new (fst e) u
HNSnd : ∀{e u} →
hole-name-new e u →
hole-name-new (snd e) u
HNHole : ∀{u u'} →
u' ≠ u →
hole-name-new (⦇-⦈[ u' ]) u
HNNEHole : ∀{u u' e} →
u' ≠ u →
hole-name-new e u →
hole-name-new (⦇⌜ e ⌟⦈[ u' ]) u
-- two terms that do not share any hole names
data holes-disjoint : hexp → hexp → Set where
HDNum : ∀{n e} → holes-disjoint (N n) e
HDPlus : ∀{e1 e2 e3} →
holes-disjoint e1 e3 →
holes-disjoint e2 e3 →
holes-disjoint (e1 ·+ e2) e3
HDAsc : ∀{e1 e2 τ} →
holes-disjoint e1 e2 →
holes-disjoint (e1 ·: τ) e2
HDVar : ∀{x e} → holes-disjoint (X x) e
HDLam1 : ∀{x e1 e2} →
holes-disjoint e1 e2 →
holes-disjoint (·λ x e1) e2
HDLam2 : ∀{x e1 e2 τ} →
holes-disjoint e1 e2 →
holes-disjoint (·λ x ·[ τ ] e1) e2
HDAp : ∀{e1 e2 e3} →
holes-disjoint e1 e3 →
holes-disjoint e2 e3 →
holes-disjoint (e1 ∘ e2) e3
HDInl : ∀{e1 e2} →
holes-disjoint e1 e2 →
holes-disjoint (inl e1) e2
HDInr : ∀{e1 e2} →
holes-disjoint e1 e2 →
holes-disjoint (inr e1) e2
HDCase : ∀{e x e1 y e2 e3} →
holes-disjoint e e3 →
holes-disjoint e1 e3 →
holes-disjoint e2 e3 →
holes-disjoint (case e x e1 y e2) e3
HDPair : ∀{e1 e2 e3} →
holes-disjoint e1 e3 →
holes-disjoint e2 e3 →
holes-disjoint ⟨ e1 , e2 ⟩ e3
HDFst : ∀{e1 e2} →
holes-disjoint e1 e2 →
holes-disjoint (fst e1) e2
HDSnd : ∀{e1 e2} →
holes-disjoint e1 e2 →
holes-disjoint (snd e1) e2
HDHole : ∀{u e2} →
hole-name-new e2 u →
holes-disjoint (⦇-⦈[ u ]) e2
HDNEHole : ∀{u e1 e2} →
hole-name-new e2 u →
holes-disjoint e1 e2 →
holes-disjoint (⦇⌜ e1 ⌟⦈[ u ]) e2
-- all hole names in the term are unique
data holes-unique : hexp → Set where
HUNum : ∀{n} →
holes-unique (N n)
HUPlus : ∀{e1 e2} →
holes-unique e1 →
holes-unique e2 →
holes-disjoint e1 e2 →
holes-unique (e1 ·+ e2)
HUAsc : ∀{e τ} →
holes-unique e →
holes-unique (e ·: τ)
HUVar : ∀{x} →
holes-unique (X x)
HULam1 : ∀{x e} →
holes-unique e →
holes-unique (·λ x e)
HULam2 : ∀{x e τ} →
holes-unique e →
holes-unique (·λ x ·[ τ ] e)
HUAp : ∀{e1 e2} →
holes-unique e1 →
holes-unique e2 →
holes-disjoint e1 e2 →
holes-unique (e1 ∘ e2)
HUInl : ∀{e} →
holes-unique e →
holes-unique (inl e)
HUInr : ∀{e} →
holes-unique e →
holes-unique (inr e)
HUCase : ∀{e x e1 y e2} →
holes-unique e →
holes-unique e1 →
holes-unique e2 →
holes-disjoint e e1 →
holes-disjoint e e2 →
holes-disjoint e1 e2 →
holes-unique (case e x e1 y e2)
HUPair : ∀{e1 e2} →
holes-unique e1 →
holes-unique e2 →
holes-disjoint e1 e2 →
holes-unique ⟨ e1 , e2 ⟩
HUFst : ∀{e} →
holes-unique e →
holes-unique (fst e)
HUSnd : ∀{e} →
holes-unique e →
holes-unique (snd e)
HUHole : ∀{u} →
holes-unique (⦇-⦈[ u ])
HUNEHole : ∀{u e} →
holes-unique e →
hole-name-new e u →
holes-unique (⦇⌜ e ⌟⦈[ u ])
-- freshness for external expressions
data freshh : Nat → hexp → Set where
FRHNum : ∀{x n} →
freshh x (N n)
FRHPlus : ∀{x d1 d2} →
freshh x d1 →
freshh x d2 →
freshh x (d1 ·+ d2)
FRHAsc : ∀{x e τ} →
freshh x e →
freshh x (e ·: τ)
FRHVar : ∀{x y} →
x ≠ y →
freshh x (X y)
FRHLam1 : ∀{x y e} →
x ≠ y →
freshh x e →
freshh x (·λ y e)
FRHLam2 : ∀{x τ e y} →
x ≠ y →
freshh x e →
freshh x (·λ y ·[ τ ] e)
FRHAp : ∀{x e1 e2} →
freshh x e1 →
freshh x e2 →
freshh x (e1 ∘ e2)
FRHInl : ∀{x d} →
freshh x d →
freshh x (inl d)
FRHInr : ∀{x d} →
freshh x d →
freshh x (inr d)
FRHCase : ∀{x d y d1 z d2} →
freshh x d →
x ≠ y →
freshh x d1 →
x ≠ z →
freshh x d2 →
freshh x (case d y d1 z d2)
FRHPair : ∀{x d1 d2} →
freshh x d1 →
freshh x d2 →
freshh x ⟨ d1 , d2 ⟩
FRHFst : ∀{x d} →
freshh x d →
freshh x (fst d)
FRHSnd : ∀{x d} →
freshh x d →
freshh x (snd d)
FRHEHole : ∀{x u} →
freshh x (⦇-⦈[ u ])
FRHNEHole : ∀{x u e} →
freshh x e →
freshh x (⦇⌜ e ⌟⦈[ u ])
-- those internal expressions without holes
data _dcomplete : ihexp → Set where
DCNum : ∀{n} →
(N n) dcomplete
DCPlus : ∀{d1 d2} →
d1 dcomplete →
d2 dcomplete →
(d1 ·+ d2) dcomplete
DCVar : ∀{x} →
(X x) dcomplete
DCLam : ∀{x τ d} →
d dcomplete →
τ tcomplete →
(·λ x ·[ τ ] d) dcomplete
DCAp : ∀{d1 d2} →
d1 dcomplete →
d2 dcomplete →
(d1 ∘ d2) dcomplete
DCInl : ∀{τ d} →
τ tcomplete →
d dcomplete →
(inl τ d) dcomplete
DCInr : ∀{τ d} →
τ tcomplete →
d dcomplete →
(inr τ d) dcomplete
DCCase : ∀{d x d1 y d2} →
d dcomplete →
d1 dcomplete →
d2 dcomplete →
(case d x d1 y d2) dcomplete
DCPair : ∀{d1 d2} →
d1 dcomplete →
d2 dcomplete →
⟨ d1 , d2 ⟩ dcomplete
DCFst : ∀{d} →
d dcomplete →
(fst d) dcomplete
DCSnd : ∀{d} →
d dcomplete →
(snd d) dcomplete
DCCast : ∀{d τ1 τ2} →
d dcomplete →
τ1 tcomplete →
τ2 tcomplete →
(d ⟨ τ1 ⇒ τ2 ⟩) dcomplete
-- expansion
mutual
-- synthesis
data _⊢_⇒_~>_⊣_ : (Γ : tctx) (e : hexp) (τ : htyp) (d : ihexp) (Δ : hctx) → Set where
ESNum : ∀{Γ n} →
Γ ⊢ (N n) ⇒ num ~> (N n) ⊣ ∅
ESPlus : ∀{Γ e1 e2 d1 d2 Δ1 Δ2 τ1 τ2} →
holes-disjoint e1 e2 →
Δ1 ## Δ2 →
Γ ⊢ e1 ⇐ num ~> d1 :: τ1 ⊣ Δ1 →
Γ ⊢ e2 ⇐ num ~> d2 :: τ2 ⊣ Δ2 →
Γ ⊢ e1 ·+ e2 ⇒ num ~> (d1 ⟨ τ1 ⇒ num ⟩) ·+ (d2 ⟨ τ2 ⇒ num ⟩) ⊣ (Δ1 ∪ Δ2)
ESAsc : ∀{Γ e τ d τ' Δ} →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ →
Γ ⊢ (e ·: τ) ⇒ τ ~> d ⟨ τ' ⇒ τ ⟩ ⊣ Δ
ESVar : ∀{Γ x τ} →
(x , τ) ∈ Γ →
Γ ⊢ X x ⇒ τ ~> X x ⊣ ∅
ESLam : ∀{Γ x τ1 τ2 e d Δ} →
x # Γ →
(Γ ,, (x , τ1)) ⊢ e ⇒ τ2 ~> d ⊣ Δ →
Γ ⊢ ·λ x ·[ τ1 ] e ⇒ (τ1 ==> τ2) ~> ·λ x ·[ τ1 ] d ⊣ Δ
ESAp : ∀{Γ e1 τ τ1 τ1' τ2 τ2' d1 Δ1 e2 d2 Δ2} →
holes-disjoint e1 e2 →
Δ1 ## Δ2 →
Γ ⊢ e1 => τ1 →
τ1 ▸arr τ2 ==> τ →
Γ ⊢ e1 ⇐ (τ2 ==> τ) ~> d1 :: τ1' ⊣ Δ1 →
Γ ⊢ e2 ⇐ τ2 ~> d2 :: τ2' ⊣ Δ2 →
Γ ⊢ e1 ∘ e2 ⇒ τ ~> (d1 ⟨ τ1' ⇒ τ2 ==> τ ⟩) ∘ (d2 ⟨ τ2' ⇒ τ2 ⟩) ⊣ (Δ1 ∪ Δ2)
ESPair : ∀{Γ e1 τ1 d1 Δ1 e2 τ2 d2 Δ2} →
holes-disjoint e1 e2 →
Δ1 ## Δ2 →
Γ ⊢ e1 ⇒ τ1 ~> d1 ⊣ Δ1 →
Γ ⊢ e2 ⇒ τ2 ~> d2 ⊣ Δ2 →
Γ ⊢ ⟨ e1 , e2 ⟩ ⇒ τ1 ⊠ τ2 ~> ⟨ d1 , d2 ⟩ ⊣ (Δ1 ∪ Δ2)
ESFst : ∀{Γ e τ τ' d τ1 τ2 Δ} →
Γ ⊢ e => τ →
τ ▸prod τ1 ⊠ τ2 →
Γ ⊢ e ⇐ τ1 ⊠ τ2 ~> d :: τ' ⊣ Δ →
Γ ⊢ fst e ⇒ τ1 ~> fst (d ⟨ τ' ⇒ τ1 ⊠ τ2 ⟩) ⊣ Δ
ESSnd : ∀{Γ e τ τ' d τ1 τ2 Δ} →
Γ ⊢ e => τ →
τ ▸prod τ1 ⊠ τ2 →
Γ ⊢ e ⇐ τ1 ⊠ τ2 ~> d :: τ' ⊣ Δ →
Γ ⊢ snd e ⇒ τ2 ~> snd (d ⟨ τ' ⇒ τ1 ⊠ τ2 ⟩) ⊣ Δ
ESEHole : ∀{Γ u} →
Γ ⊢ ⦇-⦈[ u ] ⇒ ⦇-⦈ ~> ⦇-⦈⟨ u , Id Γ ⟩ ⊣ ■ (u :: ⦇-⦈ [ Γ ])
ESNEHole : ∀{Γ e τ d u Δ} →
Δ ## (■ (u , Γ , ⦇-⦈)) →
Γ ⊢ e ⇒ τ ~> d ⊣ Δ →
Γ ⊢ ⦇⌜ e ⌟⦈[ u ] ⇒ ⦇-⦈ ~> ⦇⌜ d ⌟⦈⟨ u , Id Γ ⟩ ⊣ (Δ ,, u :: ⦇-⦈ [ Γ ])
-- analysis
data _⊢_⇐_~>_::_⊣_ : (Γ : tctx) (e : hexp) (τ : htyp)
(d : ihexp) (τ' : htyp) (Δ : hctx) → Set where
EASubsume : ∀{e Γ τ' d Δ τ} →
((u : Nat) → e ≠ ⦇-⦈[ u ]) →
((e' : hexp) (u : Nat) → e ≠ ⦇⌜ e' ⌟⦈[ u ]) →
Γ ⊢ e ⇒ τ' ~> d ⊣ Δ →
τ ~ τ' →
Γ ⊢ e ⇐ τ ~> d :: τ' ⊣ Δ
EALam : ∀{Γ x τ τ1 τ2 e d τ2' Δ} →
x # Γ →
τ ▸arr τ1 ==> τ2 →
(Γ ,, (x , τ1)) ⊢ e ⇐ τ2 ~> d :: τ2' ⊣ Δ →
Γ ⊢ ·λ x e ⇐ τ ~> ·λ x ·[ τ1 ] d :: τ1 ==> τ2' ⊣ Δ
EAInl : ∀{Γ τ τ1 τ2 e d τ1' Δ} →
τ ▸sum τ1 ⊕ τ2 →
Γ ⊢ e ⇐ τ1 ~> d :: τ1' ⊣ Δ →
Γ ⊢ inl e ⇐ τ ~> inl τ2 d :: τ1' ⊕ τ2 ⊣ Δ
EAInr : ∀{Γ τ τ1 τ2 e d τ2' Δ} →
τ ▸sum τ1 ⊕ τ2 →
Γ ⊢ e ⇐ τ2 ~> d :: τ2' ⊣ Δ →
Γ ⊢ inr e ⇐ τ ~> inr τ1 d :: τ1 ⊕ τ2' ⊣ Δ
EACase : ∀{Γ e τ+ d Δ τ1 τ2 τ x e1 d1 τr1 Δ1 y e2 d2 τr2 Δ2} →
holes-disjoint e e1 →
holes-disjoint e e2 →
holes-disjoint e1 e2 →
Δ ## Δ1 →
Δ ## Δ2 →
Δ1 ## Δ2 →
x # Γ →
y # Γ →
Γ ⊢ e ⇒ τ+ ~> d ⊣ Δ →
τ+ ▸sum τ1 ⊕ τ2 →
(Γ ,, (x , τ1)) ⊢ e1 ⇐ τ ~> d1 :: τr1 ⊣ Δ1 →
(Γ ,, (y , τ2)) ⊢ e2 ⇐ τ ~> d2 :: τr2 ⊣ Δ2 →
Γ ⊢ case e x e1 y e2 ⇐ τ ~>
case (d ⟨ τ+ ⇒ τ1 ⊕ τ2 ⟩) x (d1 ⟨ τr1 ⇒ τ ⟩) y (d2 ⟨ τr2 ⇒ τ ⟩) :: τ
⊣ (Δ ∪ (Δ1 ∪ Δ2))
EAEHole : ∀{Γ u τ} →
Γ ⊢ ⦇-⦈[ u ] ⇐ τ ~> ⦇-⦈⟨ u , Id Γ ⟩ :: τ ⊣ ■ (u :: τ [ Γ ])
EANEHole : ∀{Γ e u τ d τ' Δ} →
Δ ## (■ (u , Γ , τ)) →
Γ ⊢ e ⇒ τ' ~> d ⊣ Δ →
Γ ⊢ ⦇⌜ e ⌟⦈[ u ] ⇐ τ ~> ⦇⌜ d ⌟⦈⟨ u , Id Γ ⟩ :: τ ⊣ (Δ ,, u :: τ [ Γ ])
mutual
-- substitution typing
data _,_⊢_:s:_ : hctx → tctx → env → tctx → Set where
STAId : ∀{Γ Γ' Δ} →
((x : Nat) (τ : htyp) →
(x , τ) ∈ Γ' → (x , τ) ∈ Γ) →
Δ , Γ ⊢ Id Γ' :s: Γ'
STASubst : ∀{Γ Δ σ y Γ' d τ} →
Δ , Γ ,, (y , τ) ⊢ σ :s: Γ' →
Δ , Γ ⊢ d :: τ →
Δ , Γ ⊢ Subst d y σ :s: Γ'
-- type assignment
data _,_⊢_::_ : (Δ : hctx) (Γ : tctx) (d : ihexp) (τ : htyp) → Set where
TANum : ∀{Δ Γ n} →
Δ , Γ ⊢ (N n) :: num
TAPlus : ∀{Δ Γ d1 d2} →
Δ , Γ ⊢ d1 :: num →
Δ , Γ ⊢ d2 :: num →
Δ , Γ ⊢ (d1 ·+ d2) :: num
TAVar : ∀{Δ Γ x τ} →
(x , τ) ∈ Γ →
Δ , Γ ⊢ X x :: τ
TALam : ∀{Δ Γ x τ1 d τ2} →
x # Γ →
Δ , (Γ ,, (x , τ1)) ⊢ d :: τ2 →
Δ , Γ ⊢ ·λ x ·[ τ1 ] d :: (τ1 ==> τ2)
TAAp : ∀{Δ Γ d1 d2 τ1 τ} →
Δ , Γ ⊢ d1 :: τ1 ==> τ →
Δ , Γ ⊢ d2 :: τ1 →
Δ , Γ ⊢ d1 ∘ d2 :: τ
TAInl : ∀{Δ Γ d τ1 τ2} →
Δ , Γ ⊢ d :: τ1 →
Δ , Γ ⊢ inl τ2 d :: τ1 ⊕ τ2
TAInr : ∀{Δ Γ d τ1 τ2} →
Δ , Γ ⊢ d :: τ2 →
Δ , Γ ⊢ inr τ1 d :: τ1 ⊕ τ2
TACase : ∀{Δ Γ d τ1 τ2 τ x d1 y d2} →
Δ , Γ ⊢ d :: τ1 ⊕ τ2 →
x # Γ →
Δ , (Γ ,, (x , τ1)) ⊢ d1 :: τ →
y # Γ →
Δ , (Γ ,, (y , τ2)) ⊢ d2 :: τ →
Δ , Γ ⊢ case d x d1 y d2 :: τ
TAPair : ∀{Δ Γ d1 d2 τ1 τ2} →
Δ , Γ ⊢ d1 :: τ1 →
Δ , Γ ⊢ d2 :: τ2 →
Δ , Γ ⊢ ⟨ d1 , d2 ⟩ :: τ1 ⊠ τ2
TAFst : ∀{Δ Γ d τ1 τ2} →
Δ , Γ ⊢ d :: τ1 ⊠ τ2 →
Δ , Γ ⊢ fst d :: τ1
TASnd : ∀{Δ Γ d τ1 τ2} →
Δ , Γ ⊢ d :: τ1 ⊠ τ2 →
Δ , Γ ⊢ snd d :: τ2
TAEHole : ∀{Δ Γ σ u Γ' τ} →
(u , (Γ' , τ)) ∈ Δ →
Δ , Γ ⊢ σ :s: Γ' →
Δ , Γ ⊢ ⦇-⦈⟨ u , σ ⟩ :: τ
TANEHole : ∀{Δ Γ d τ' Γ' u σ τ} →
(u , (Γ' , τ)) ∈ Δ →
Δ , Γ ⊢ d :: τ' →
Δ , Γ ⊢ σ :s: Γ' →
Δ , Γ ⊢ ⦇⌜ d ⌟⦈⟨ u , σ ⟩ :: τ
TACast : ∀{Δ Γ d τ1 τ2} →
Δ , Γ ⊢ d :: τ1 →
τ1 ~ τ2 →
Δ , Γ ⊢ d ⟨ τ1 ⇒ τ2 ⟩ :: τ2
TAFailedCast : ∀{Δ Γ d τ1 τ2} →
Δ , Γ ⊢ d :: τ1 →
τ1 ground →
τ2 ground →
τ1 ≠ τ2 →
Δ , Γ ⊢ d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ :: τ2
-- substitution
[_/_]_ : ihexp → Nat → ihexp → ihexp
[ d / y ] (N n) = N n
[ d / y ] (d1 ·+ d2) = ([ d / y ] d1) ·+ ([ d / y ] d2)
[ d / y ] X x
with natEQ x y
[ d / y ] X .y | Inl refl = d
[ d / y ] X x | Inr neq = X x
[ d / y ] (·λ x ·[ x₁ ] d')
with natEQ x y
[ d / y ] (·λ .y ·[ τ ] d') | Inl refl = ·λ y ·[ τ ] d'
[ d / y ] (·λ x ·[ τ ] d') | Inr x₁ = ·λ x ·[ τ ] ( [ d / y ] d')
[ d / y ] (d1 ∘ d2) = ([ d / y ] d1) ∘ ([ d / y ] d2)
[ d / y ] (inl τ d') = inl τ ([ d / y ] d')
[ d / y ] (inr τ d') = inr τ ([ d / y ] d')
[ d / y ] (case d' x d1 z d2)
with natEQ x y | natEQ z y
... | Inl refl | Inl refl = case ([ d / y ] d') x d1 z d2
... | Inl refl | Inr neq = case ([ d / y ] d') x d1 z ([ d / y ] d2)
... | Inr neq | Inl refl = case ([ d / y ] d') x ([ d / y ] d1) z d2
... | Inr neq1 | Inr neq2 = case ([ d / y ] d') x ([ d / y ] d1) z ([ d / y ] d2)
[ d / y ] ⟨ d1 , d2 ⟩ = ⟨ [ d / y ] d1 , [ d / y ] d2 ⟩
[ d / y ] (fst d') = fst ([ d / y ] d')
[ d / y ] (snd d') = snd ([ d / y ] d')
[ d / y ] ⦇-⦈⟨ u , σ ⟩ = ⦇-⦈⟨ u , Subst d y σ ⟩
[ d / y ] ⦇⌜ d' ⌟⦈⟨ u , σ ⟩ = ⦇⌜ [ d / y ] d' ⌟⦈⟨ u , Subst d y σ ⟩
[ d / y ] (d' ⟨ τ1 ⇒ τ2 ⟩ ) = ([ d / y ] d') ⟨ τ1 ⇒ τ2 ⟩
[ d / y ] (d' ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ ) = ([ d / y ] d') ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩
-- applying an environment to an expression
apply-env : env → ihexp → ihexp
apply-env (Id Γ) d = d
apply-env (Subst d y σ) d' = [ d / y ] ( apply-env σ d')
-- values
data _val : (d : ihexp) → Set where
VNum : ∀{n} → (N n) val
VLam : ∀{x τ d} → (·λ x ·[ τ ] d) val
VInl : ∀{d τ} → d val → (inl τ d) val
VInr : ∀{d τ} → d val → (inr τ d) val
VPair : ∀{d1 d2} → d1 val → d2 val → ⟨ d1 , d2 ⟩ val
-- boxed values
data _boxedval : (d : ihexp) → Set where
BVVal : ∀{d} →
d val →
d boxedval
BVInl : ∀{d τ} →
d boxedval →
(inl τ d) boxedval
BVInr : ∀{d τ} →
d boxedval →
(inr τ d) boxedval
BVPair : ∀{d1 d2} →
d1 boxedval →
d2 boxedval →
⟨ d1 , d2 ⟩ boxedval
BVArrCast : ∀{d τ1 τ2 τ3 τ4} →
τ1 ==> τ2 ≠ τ3 ==> τ4 →
d boxedval →
d ⟨ (τ1 ==> τ2) ⇒ (τ3 ==> τ4) ⟩ boxedval
BVSumCast : ∀{d τ1 τ2 τ3 τ4} →
τ1 ⊕ τ2 ≠ τ3 ⊕ τ4 →
d boxedval →
d ⟨ (τ1 ⊕ τ2) ⇒ (τ3 ⊕ τ4) ⟩ boxedval
BVProdCast : ∀{d τ1 τ2 τ3 τ4} →
τ1 ⊠ τ2 ≠ τ3 ⊠ τ4 →
d boxedval →
d ⟨ (τ1 ⊠ τ2) ⇒ (τ3 ⊠ τ4) ⟩ boxedval
BVHoleCast : ∀{τ d} →
τ ground →
d boxedval →
d ⟨ τ ⇒ ⦇-⦈ ⟩ boxedval
mutual
-- indeterminate forms
data _indet : (d : ihexp) → Set where
IPlus1 : ∀{d1 d2} →
d1 indet →
d2 final →
(d1 ·+ d2) indet
IPlus2 : ∀{d1 d2} →
d1 final →
d2 indet →
(d1 ·+ d2) indet
IAp : ∀{d1 d2} →
((τ1 τ2 τ3 τ4 : htyp) (d1' : ihexp) →
d1 ≠ (d1' ⟨(τ1 ==> τ2) ⇒ (τ3 ==> τ4)⟩)) →
d1 indet →
d2 final →
(d1 ∘ d2) indet
IInl : ∀{d τ} →
d indet →
(inl τ d) indet
IInr : ∀{d τ} →
d indet →
(inr τ d) indet
ICase : ∀{d x d1 y d2} →
((τ : htyp) (d' : ihexp) →
d ≠ inl τ d') →
((τ : htyp) (d' : ihexp) →
d ≠ inr τ d') →
((τ1 τ2 τ1' τ2' : htyp) (d' : ihexp) →
d ≠ (d' ⟨(τ1 ⊕ τ2) ⇒ (τ1' ⊕ τ2')⟩)) →
d indet →
(case d x d1 y d2) indet
IPair1 : ∀{d1 d2} →
d1 indet →
d2 final →
⟨ d1 , d2 ⟩ indet
IPair2 : ∀{d1 d2} →
d1 final →
d2 indet →
⟨ d1 , d2 ⟩ indet
IFst : ∀{d} →
((d1 d2 : ihexp) →
d ≠ ⟨ d1 , d2 ⟩) →
((τ1 τ2 τ1' τ2' : htyp) (d' : ihexp) →
d ≠ (d' ⟨(τ1 ⊠ τ2) ⇒ (τ1' ⊠ τ2')⟩)) →
d indet →
(fst d) indet
ISnd : ∀{d} →
((d1 d2 : ihexp) →
d ≠ ⟨ d1 , d2 ⟩) →
((τ1 τ2 τ1' τ2' : htyp) (d' : ihexp) →
d ≠ (d' ⟨(τ1 ⊠ τ2) ⇒ (τ1' ⊠ τ2')⟩)) →
d indet →
(snd d) indet
IEHole : ∀{u σ} →
⦇-⦈⟨ u , σ ⟩ indet
INEHole : ∀{d u σ} →
d final →
⦇⌜ d ⌟⦈⟨ u , σ ⟩ indet
ICastArr : ∀{d τ1 τ2 τ3 τ4} →
τ1 ==> τ2 ≠ τ3 ==> τ4 →
d indet →
d ⟨ (τ1 ==> τ2) ⇒ (τ3 ==> τ4) ⟩ indet
ICastSum : ∀{d τ1 τ2 τ3 τ4} →
τ1 ⊕ τ2 ≠ τ3 ⊕ τ4 →
d indet →
d ⟨ (τ1 ⊕ τ2) ⇒ (τ3 ⊕ τ4) ⟩ indet
ICastProd : ∀{d τ1 τ2 τ3 τ4} →
τ1 ⊠ τ2 ≠ τ3 ⊠ τ4 →
d indet →
d ⟨ (τ1 ⊠ τ2) ⇒ (τ3 ⊠ τ4) ⟩ indet
ICastGroundHole : ∀{τ d} →
τ ground →
d indet →
d ⟨ τ ⇒ ⦇-⦈ ⟩ indet
ICastHoleGround : ∀{d τ} →
((d' : ihexp) (τ' : htyp) → d ≠ (d' ⟨ τ' ⇒ ⦇-⦈ ⟩)) →
d indet →
τ ground →
d ⟨ ⦇-⦈ ⇒ τ ⟩ indet
IFailedCast : ∀{d τ1 τ2} →
d final →
τ1 ground →
τ2 ground →
τ1 ≠ τ2 →
d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ indet
-- final expressions
data _final : (d : ihexp) → Set where
FBoxedVal : ∀{d} → d boxedval → d final
FIndet : ∀{d} → d indet → d final
-- contextual dynamics
-- evaluation contexts
data ectx : Set where
⊙ : ectx
_·+₁_ : ectx → ihexp → ectx
_·+₂_ : ihexp → ectx → ectx
_∘₁_ : ectx → ihexp → ectx
_∘₂_ : ihexp → ectx → ectx
inl : htyp → ectx → ectx
inr : htyp → ectx → ectx
case : ectx → Nat → ihexp → Nat → ihexp → ectx
⟨_,_⟩₁ : ectx → ihexp → ectx
⟨_,_⟩₂ : ihexp → ectx → ectx
fst : ectx → ectx
snd : ectx → ectx
⦇⌜_⌟⦈⟨_⟩ : ectx → (Nat × env ) → ectx
_⟨_⇒_⟩ : ectx → htyp → htyp → ectx
_⟨_⇒⦇-⦈⇏_⟩ : ectx → htyp → htyp → ectx
-- note: this judgement is redundant: in the absence of the premises in
-- the red brackets, all syntactically well formed ectxs are valid. with
-- finality premises, that's not true, and that would propagate through
-- additions to the calculus. so we leave it here for clarity but note
-- that, as written, in any use case it's either trival to prove or
-- provides no additional information
--ε is an evaluation context
data _evalctx : (ε : ectx) → Set where
ECDot : ⊙ evalctx
ECPlus1 : ∀{d ε} →
ε evalctx →
(ε ·+₁ d) evalctx
ECPlus2 : ∀{d ε} →
-- d final → -- red brackets
ε evalctx →
(d ·+₂ ε) evalctx
ECAp1 : ∀{d ε} →
ε evalctx →
(ε ∘₁ d) evalctx
ECAp2 : ∀{d ε} →
-- d final → -- red brackets
ε evalctx →
(d ∘₂ ε) evalctx
ECInl : ∀{τ ε} →
ε evalctx →
(inl τ ε) evalctx
ECInr : ∀{τ ε} →
ε evalctx →
(inr τ ε) evalctx
ECCase : ∀{ε x d1 y d2} →
ε evalctx →
(case ε x d1 y d2) evalctx
ECPair1 : ∀{d ε} →
ε evalctx →
⟨ ε , d ⟩₁ evalctx
ECPair2 : ∀{d ε} →
-- d final → -- red brackets
ε evalctx →
⟨ d , ε ⟩₂ evalctx
ECFst : ∀{ε} →
(fst ε) evalctx
ECSnd : ∀{ε} →
(snd ε) evalctx
ECNEHole : ∀{ε u σ} →
ε evalctx →
⦇⌜ ε ⌟⦈⟨ u , σ ⟩ evalctx
ECCast : ∀{ε τ1 τ2} →
ε evalctx →
(ε ⟨ τ1 ⇒ τ2 ⟩) evalctx
ECFailedCast : ∀{ε τ1 τ2} →
ε evalctx →
ε ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩ evalctx
-- d is the result of filling the hole in ε with d'
data _==_⟦_⟧ : (d : ihexp) (ε : ectx) (d' : ihexp) → Set where
FHOuter : ∀{d} → d == ⊙ ⟦ d ⟧
FHPlus1 : ∀{d1 d1' d2 ε} →
d1 == ε ⟦ d1' ⟧ →
(d1 ·+ d2) == (ε ·+₁ d2) ⟦ d1' ⟧
FHPlus2 : ∀{d1 d2 d2' ε} →
-- d1 final → -- red brackets
d2 == ε ⟦ d2' ⟧ →
(d1 ·+ d2) == (d1 ·+₂ ε) ⟦ d2' ⟧
FHAp1 : ∀{d1 d1' d2 ε} →
d1 == ε ⟦ d1' ⟧ →
(d1 ∘ d2) == (ε ∘₁ d2) ⟦ d1' ⟧
FHAp2 : ∀{d1 d2 d2' ε} →
-- d1 final → -- red brackets
d2 == ε ⟦ d2' ⟧ →
(d1 ∘ d2) == (d1 ∘₂ ε) ⟦ d2' ⟧
FHInl : ∀{d d' ε τ} →
d == ε ⟦ d' ⟧ →
(inl τ d) == (inl τ ε) ⟦ d' ⟧
FHInr : ∀{d d' ε τ} →
d == ε ⟦ d' ⟧ →
(inr τ d) == (inr τ ε) ⟦ d' ⟧
FHCase : ∀{d d' x d1 y d2 ε} →
d == ε ⟦ d' ⟧ →
(case d x d1 y d2) == (case ε x d1 y d2) ⟦ d' ⟧
FHPair1 : ∀{d1 d1' d2 ε} →
d1 == ε ⟦ d1' ⟧ →
⟨ d1 , d2 ⟩ == ⟨ ε , d2 ⟩₁ ⟦ d1' ⟧
FHPair2 : ∀{d1 d2 d2' ε} →
d2 == ε ⟦ d2' ⟧ →
⟨ d1 , d2 ⟩ == ⟨ d1 , ε ⟩₂ ⟦ d2' ⟧
FHFst : ∀{d d' ε} →
d == ε ⟦ d' ⟧ →
fst d == (fst ε) ⟦ d' ⟧
FHSnd : ∀{d d' ε} →
d == ε ⟦ d' ⟧ →
snd d == (snd ε) ⟦ d' ⟧
FHNEHole : ∀{d d' ε u σ} →
d == ε ⟦ d' ⟧ →
⦇⌜ d ⌟⦈⟨ (u , σ ) ⟩ == ⦇⌜ ε ⌟⦈⟨ (u , σ ) ⟩ ⟦ d' ⟧
FHCast : ∀{d d' ε τ1 τ2} →
d == ε ⟦ d' ⟧ →
d ⟨ τ1 ⇒ τ2 ⟩ == ε ⟨ τ1 ⇒ τ2 ⟩ ⟦ d' ⟧
FHFailedCast : ∀{d d' ε τ1 τ2} →
d == ε ⟦ d' ⟧ →
(d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) == (ε ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) ⟦ d' ⟧
-- matched ground types
data _▸gnd_ : htyp → htyp → Set where
MGArr : ∀{τ1 τ2} →
(τ1 ==> τ2) ≠ (⦇-⦈ ==> ⦇-⦈) →
(τ1 ==> τ2) ▸gnd (⦇-⦈ ==> ⦇-⦈)
MGSum : ∀{τ1 τ2} →
(τ1 ⊕ τ2) ≠ (⦇-⦈ ⊕ ⦇-⦈) →
(τ1 ⊕ τ2) ▸gnd (⦇-⦈ ⊕ ⦇-⦈)
MGProd : ∀{τ1 τ2} →
(τ1 ⊠ τ2) ≠ (⦇-⦈ ⊠ ⦇-⦈) →
(τ1 ⊠ τ2) ▸gnd (⦇-⦈ ⊠ ⦇-⦈)
-- instruction transition judgement
data _→>_ : (d d' : ihexp) → Set where
ITPlus : ∀{n1 n2 n3} →
(n1 nat+ n2) == n3 →
((N n1) ·+ (N n2)) →> (N n3)
ITLam : ∀{x τ d1 d2} →
-- d2 final → -- red brackets
((·λ x ·[ τ ] d1) ∘ d2) →> ([ d2 / x ] d1)
ITApCast : ∀{d1 d2 τ1 τ2 τ1' τ2'} →
-- d1 final → -- red brackets
-- d2 final → -- red brackets
((d1 ⟨ (τ1 ==> τ2) ⇒ (τ1' ==> τ2')⟩) ∘ d2) →>
((d1 ∘ (d2 ⟨ τ1' ⇒ τ1 ⟩)) ⟨ τ2 ⇒ τ2' ⟩)
ITCaseInl : ∀{d τ x d1 y d2} →
-- d final → -- red brackets,
(case (inl τ d) x d1 y d2) →> ([ d / x ] d1)
ITCaseInr : ∀{d τ x d1 y d2} →
-- d final → -- red brackets,
(case (inr τ d) x d1 y d2) →> ([ d / y ] d2)
ITCaseCast : ∀{d τ1 τ2 τ1' τ2' x d1 y d2} →
-- d final → -- red brackets
(case (d ⟨ τ1 ⊕ τ2 ⇒ τ1' ⊕ τ2' ⟩) x d1 y d2) →>
(case d x ([ (X x) ⟨ τ1 ⇒ τ1' ⟩ / x ] d1) y ([ (X y) ⟨ τ2 ⇒ τ2' ⟩ / y ] d2))
ITFstPair : ∀{d1 d2} →
-- d1 final → -- red brackets
-- d2 final → -- red brackets
fst ⟨ d1 , d2 ⟩ →> d1
ITFstCast : ∀{d τ1 τ2 τ1' τ2' } →
-- d final → -- red brackets
fst (d ⟨ τ1 ⊠ τ2 ⇒ τ1' ⊠ τ2' ⟩) →> ((fst d) ⟨ τ1 ⇒ τ1' ⟩)
ITSndPair : ∀{d1 d2} →
-- d1 final → -- red brackets
-- d2 final → -- red brackets
snd ⟨ d1 , d2 ⟩ →> d2
ITSndCast : ∀{d τ1 τ2 τ1' τ2' } →
-- d final → -- red brackets
snd (d ⟨ τ1 ⊠ τ2 ⇒ τ1' ⊠ τ2' ⟩) →> ((snd d) ⟨ τ2 ⇒ τ2' ⟩)
ITCastID : ∀{d τ} →
-- d final → -- red brackets
(d ⟨ τ ⇒ τ ⟩) →> d
ITCastSucceed : ∀{d τ} →
-- d final → -- red brackets
τ ground →
(d ⟨ τ ⇒ ⦇-⦈ ⇒ τ ⟩) →> d
ITCastFail : ∀{d τ1 τ2} →
-- d final → -- red brackets
τ1 ground →
τ2 ground →
τ1 ≠ τ2 →
(d ⟨ τ1 ⇒ ⦇-⦈ ⇒ τ2 ⟩) →> (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩)
ITGround : ∀{d τ τ'} →
-- d final → -- red brackets
τ ▸gnd τ' →
(d ⟨ τ ⇒ ⦇-⦈ ⟩) →> (d ⟨ τ ⇒ τ' ⇒ ⦇-⦈ ⟩)
ITExpand : ∀{d τ τ'} →
-- d final → -- red brackets
τ ▸gnd τ' →
(d ⟨ ⦇-⦈ ⇒ τ ⟩) →> (d ⟨ ⦇-⦈ ⇒ τ' ⇒ τ ⟩)
-- single step (in contextual evaluation sense)
data _↦_ : (d d' : ihexp) → Set where
Step : ∀{d d0 d' d0' ε} →
d == ε ⟦ d0 ⟧ →
d0 →> d0' →
d' == ε ⟦ d0' ⟧ →
d ↦ d'
-- reflexive transitive closure of single steps into multi steps
data _↦*_ : (d d' : ihexp) → Set where
MSRefl : ∀{d} → d ↦* d
MSStep : ∀{d d' d''} →
d ↦ d' →
d' ↦* d'' →
d ↦* d''
-- those internal expressions where every cast is the identity cast and
-- there are no failed casts
data cast-id : ihexp → Set where
CINum : ∀{n} →
cast-id (N n)
CIPlus : ∀{d1 d2} →
cast-id d1 →
cast-id d2 →
cast-id (d1 ·+ d2)
CIVar : ∀{x} →
cast-id (X x)
CILam : ∀{x τ d} →
cast-id d →
cast-id (·λ x ·[ τ ] d)
CIAp : ∀{d1 d2} →
cast-id d1 →
cast-id d2 →
cast-id (d1 ∘ d2)
CIInl : ∀{τ d} →
cast-id d →
cast-id (inl τ d)
CIInr : ∀{τ d} →
cast-id d →
cast-id (inr τ d)
CICase : ∀{d x d1 y d2} →
cast-id d →
cast-id d1 →
cast-id d2 →
cast-id (case d x d1 y d2)
CIPair : ∀{d1 d2} →
cast-id d1 →
cast-id d2 →
cast-id ⟨ d1 , d2 ⟩
CIFst : ∀{d} →
cast-id d →
cast-id (fst d)
CISnd : ∀{d} →
cast-id d →
cast-id (snd d)
CIHole : ∀{u} →
cast-id (⦇-⦈⟨ u ⟩)
CINEHole : ∀{d u} →
cast-id d →
cast-id (⦇⌜ d ⌟⦈⟨ u ⟩)
CICast : ∀{d τ} →
cast-id d →
cast-id (d ⟨ τ ⇒ τ ⟩)
-- freshness
mutual
-- ... with respect to a hole context
data envfresh : Nat → env → Set where
EFId : ∀{x Γ} →
x # Γ →
envfresh x (Id Γ)
EFSubst : ∀{x d σ y} →
fresh x d →
envfresh x σ →
x ≠ y →
envfresh x (Subst d y σ)
-- ... for internal expressions
data fresh : Nat → ihexp → Set where
FNum : ∀{x n} →
fresh x (N n)
FPlus : ∀{x d1 d2} →
fresh x d1 →
fresh x d2 →
fresh x (d1 ·+ d2)
FVar : ∀{x y} →
x ≠ y →
fresh x (X y)
FLam : ∀{x y τ d} →
x ≠ y →
fresh x d →
fresh x (·λ y ·[ τ ] d)
FAp : ∀{x d1 d2} →
fresh x d1 →
fresh x d2 →
fresh x (d1 ∘ d2)
FInl : ∀{x d τ} →
fresh x d →
fresh x (inl τ d)
FInr : ∀{x d τ} →
fresh x d →
fresh x (inr τ d)
FCase : ∀{x d y d1 z d2} →
fresh x d →
x ≠ y →
fresh x d1 →
x ≠ z →
fresh x d2 →
fresh x (case d y d1 z d2)
FPair : ∀{x d1 d2} →
fresh x d1 →
fresh x d2 →
fresh x ⟨ d1 , d2 ⟩
FFst : ∀{x d} →
fresh x d →
fresh x (fst d)
FSnd : ∀{x d} →
fresh x d →
fresh x (snd d)
FHole : ∀{x u σ} →
envfresh x σ →
fresh x (⦇-⦈⟨ u , σ ⟩)
FNEHole : ∀{x d u σ} →
envfresh x σ →
fresh x d →
fresh x (⦇⌜ d ⌟⦈⟨ u , σ ⟩)
FCast : ∀{x d τ1 τ2} →
fresh x d →
fresh x (d ⟨ τ1 ⇒ τ2 ⟩)
FFailedCast : ∀{x d τ1 τ2} →
fresh x d →
fresh x (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩)
-- x is not used in a binding site in d
mutual
data unbound-in-σ : Nat → env → Set where
UBσId : ∀{x Γ} → unbound-in-σ x (Id Γ)
UBσSubst : ∀{x d y σ} →
unbound-in x d →
unbound-in-σ x σ →
x ≠ y →
unbound-in-σ x (Subst d y σ)
data unbound-in : (x : Nat) (d : ihexp) → Set where
UBNum : ∀{x n} → unbound-in x (N n)
UBPlus : ∀{x d1 d2} →
unbound-in x d1 →
unbound-in x d2 →
unbound-in x (d1 ·+ d2)
UBVar : ∀{x y} → unbound-in x (X y)
UBLam2 : ∀{x d y τ} →
x ≠ y →
unbound-in x d →
unbound-in x (·λ y ·[ τ ] d)
UBAp : ∀{x d1 d2} →
unbound-in x d1 →
unbound-in x d2 →
unbound-in x (d1 ∘ d2)
UBInl : ∀{x d τ} →
unbound-in x d →
unbound-in x (inl τ d)
UBInr : ∀{x d τ} →
unbound-in x d →
unbound-in x (inr τ d)
UBCase : ∀{x d y d1 z d2} →
unbound-in x d →
x ≠ y →
unbound-in x d1 →
x ≠ z →
unbound-in x d2 →
unbound-in x (case d y d1 z d2)
UBPair : ∀{x d1 d2} →
unbound-in x d1 →
unbound-in x d2 →
unbound-in x ⟨ d1 , d2 ⟩
UBFst : ∀{x d} →
unbound-in x d →
unbound-in x (fst d)
UBSnd : ∀{x d} →
unbound-in x d →
unbound-in x (snd d)
UBHole : ∀{x u σ} →
unbound-in-σ x σ →
unbound-in x (⦇-⦈⟨ u , σ ⟩)
UBNEHole : ∀{x u σ d} →
unbound-in-σ x σ →
unbound-in x d →
unbound-in x (⦇⌜ d ⌟⦈⟨ u , σ ⟩)
UBCast : ∀{x d τ1 τ2} →
unbound-in x d →
unbound-in x (d ⟨ τ1 ⇒ τ2 ⟩)
UBFailedCast : ∀{x d τ1 τ2} →
unbound-in x d →
unbound-in x (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩)
mutual
data binders-disjoint-σ : env → ihexp → Set where
BDσId : ∀{Γ d} → binders-disjoint-σ (Id Γ) d
BDσSubst : ∀{d1 d2 y σ} →
binders-disjoint d2 d1 →
binders-disjoint-σ σ d2 →
unbound-in y d2 →
binders-disjoint-σ (Subst d1 y σ) d2
-- two terms that do not share any binders
data binders-disjoint : ihexp → ihexp → Set where
BDNum : ∀{d n} → binders-disjoint (N n) d
BDPlus : ∀{d1 d2 d3} →
binders-disjoint d1 d3 →
binders-disjoint d2 d3 →
binders-disjoint (d1 ·+ d2) d3
BDVar : ∀{x d} → binders-disjoint (X x) d
BDLam : ∀{x τ d1 d2} →
binders-disjoint d1 d2 →
unbound-in x d2 →
binders-disjoint (·λ x ·[ τ ] d1) d2
BDAp : ∀{d1 d2 d3} →
binders-disjoint d1 d3 →
binders-disjoint d2 d3 →
binders-disjoint (d1 ∘ d2) d3
BDInl : ∀{d1 d2 τ} →
binders-disjoint d1 d2 →
binders-disjoint (inl τ d1) d2
BDInr : ∀{d1 d2 τ} →
binders-disjoint d1 d2 →
binders-disjoint (inr τ d1) d2
BDCase : ∀{d x d1 y d2 d3} →
binders-disjoint d d3 →
unbound-in x d3 →
binders-disjoint d1 d3 →
unbound-in y d3 →
binders-disjoint d2 d3 →
binders-disjoint (case d x d1 y d2) d3
BDPair : ∀{d1 d2 d3} →
binders-disjoint d1 d3 →
binders-disjoint d2 d3 →
binders-disjoint ⟨ d1 , d2 ⟩ d3
BDFst : ∀{d1 d2} →
binders-disjoint d1 d2 →
binders-disjoint (fst d1) d2
BDSnd : ∀{d1 d2} →
binders-disjoint d1 d2 →
binders-disjoint (snd d1) d2
BDHole : ∀{u σ d2} →
binders-disjoint-σ σ d2 →
binders-disjoint (⦇-⦈⟨ u , σ ⟩) d2
BDNEHole : ∀{u σ d1 d2} →
binders-disjoint-σ σ d2 →
binders-disjoint d1 d2 →
binders-disjoint (⦇⌜ d1 ⌟⦈⟨ u , σ ⟩) d2
BDCast : ∀{d1 d2 τ1 τ2} →
binders-disjoint d1 d2 →
binders-disjoint (d1 ⟨ τ1 ⇒ τ2 ⟩) d2
BDFailedCast : ∀{d1 d2 τ1 τ2} →
binders-disjoint d1 d2 →
binders-disjoint (d1 ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩) d2
mutual
-- each term has to be binders unique, and they have to be pairwise
-- disjoint with the collection of bound vars
data binders-unique-σ : env → Set where
BUσId : ∀{Γ} →
binders-unique-σ (Id Γ)
BUσSubst : ∀{d y σ} →
binders-unique d →
binders-unique-σ σ →
binders-disjoint-σ σ d →
binders-unique-σ (Subst d y σ)
-- all the variable names in the term are unique
data binders-unique : ihexp → Set where
BUNum : ∀{n} →
binders-unique (N n)
BUPlus : ∀{d1 d2} →
binders-unique d1 →
binders-unique d2 →
binders-disjoint d1 d2 →
binders-unique (d1 ·+ d2)
BUVar : ∀{x} →
binders-unique (X x)
BULam : {x : Nat} {τ : htyp} {d : ihexp} →
binders-unique d →
unbound-in x d →
binders-unique (·λ x ·[ τ ] d)
BUEHole : ∀{u σ} →
binders-unique-σ σ →
binders-unique (⦇-⦈⟨ u , σ ⟩)
BUNEHole : ∀{u σ d} →
binders-unique d →
binders-unique-σ σ →
binders-unique (⦇⌜ d ⌟⦈⟨ u , σ ⟩)
BUAp : ∀{d1 d2} →
binders-unique d1 →
binders-unique d2 →
binders-disjoint d1 d2 →
binders-unique (d1 ∘ d2)
BUInl : ∀{d τ} →
binders-unique d →
binders-unique (inl τ d)
BUInr : ∀{d τ} →
binders-unique d →
binders-unique (inr τ d)
BUCase : ∀{d x d1 y d2} →
binders-unique d →
binders-unique d1 →
binders-unique d2 →
binders-disjoint d d1 →
binders-disjoint d d2 →
binders-disjoint d1 d2 →
unbound-in x d →
unbound-in x d1 →
unbound-in x d2 →
unbound-in y d →
unbound-in y d1 →
unbound-in y d2 →
binders-unique (case d x d1 y d2)
BUPair : ∀{d1 d2} →
binders-unique d1 →
binders-unique d2 →
binders-disjoint d1 d2 →
binders-unique ⟨ d1 , d2 ⟩
BUFst : ∀{d} →
binders-unique d →
binders-unique (fst d)
BUSnd : ∀{d} →
binders-unique d →
binders-unique (snd d)
BUCast : ∀{d τ1 τ2} →
binders-unique d →
binders-unique (d ⟨ τ1 ⇒ τ2 ⟩)
BUFailedCast : ∀{d τ1 τ2} →
binders-unique d →
binders-unique (d ⟨ τ1 ⇒⦇-⦈⇏ τ2 ⟩)
| {
"alphanum_fraction": 0.3491270611,
"avg_line_length": 35.3687821612,
"ext": "agda",
"hexsha": "d5a791bfdab3364d8978b31c3a530399d55e39fe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "dynamics-core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "dynamics-core.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "dynamics-core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 15873,
"size": 41240
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Group.Base where
import Cubical.Core.Glue as G
open import Cubical.Foundations.Prelude hiding ( comp )
import Cubical.Foundations.Isomorphism as I
import Cubical.Foundations.Equiv as E
import Cubical.Foundations.HAEquiv as HAE
record isGroup {ℓ} (A : Type ℓ) : Type ℓ where
constructor group-struct
field
id : A
inv : A → A
comp : A → A → A
lUnit : ∀ a → comp id a ≡ a
rUnit : ∀ a → comp a id ≡ a
assoc : ∀ a b c → comp (comp a b) c ≡ comp a (comp b c)
lCancel : ∀ a → comp (inv a) a ≡ id
rCalcel : ∀ a → comp a (inv a) ≡ id
record Group {ℓ} : Type (ℓ-suc ℓ) where
constructor group
field
type : Type ℓ
setStruc : isSet type
groupStruc : isGroup type
isMorph : ∀ {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) → (f : (Group.type G → Group.type H)) → Type (ℓ-max ℓ ℓ')
isMorph (group G Gset (group-struct _ _ _⊙_ _ _ _ _ _))
(group H Hset (group-struct _ _ _∘_ _ _ _ _ _)) f
= (g0 g1 : G) → f (g0 ⊙ g1) ≡ (f g0) ∘ (f g1)
morph : ∀ {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) → Type (ℓ-max ℓ ℓ')
morph G H = Σ (Group.type G → Group.type H) (isMorph G H)
record Iso {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where
constructor iso
field
fun : morph G H
inv : morph H G
rightInv : I.section (fun .fst) (inv .fst)
leftInv : I.retract (fun .fst) (inv .fst)
record Iso' {ℓ ℓ'} (G : Group {ℓ}) (H : Group {ℓ'}) : Type (ℓ-max ℓ ℓ') where
constructor iso'
field
isoSet : I.Iso (Group.type G) (Group.type H)
isoSetMorph : isMorph G H (I.Iso.fun isoSet)
_≃_ : ∀ {ℓ ℓ'} (A : Group {ℓ}) (B : Group {ℓ'}) → Type (ℓ-max ℓ ℓ')
A ≃ B = Σ (morph A B) \ f → (G.isEquiv (f .fst))
Iso'→Iso : ∀ {ℓ ℓ'} {G : Group {ℓ}} {H : Group {ℓ'}} → Iso' G H → Iso G H
Iso'→Iso {G = group G Gset Ggroup} {H = group H Hset Hgroup} i = iso (fun , funMorph) (inv , invMorph) rightInv leftInv
where
G_ : Group
G_ = (group G Gset Ggroup)
H_ : Group
H_ = (group H Hset Hgroup)
open Iso'
fun : G → H
fun = I.Iso.fun (isoSet i)
inv : H → G
inv = I.Iso.inv (isoSet i)
rightInv : I.section fun inv
rightInv = I.Iso.rightInv (isoSet i)
leftInv : I.retract fun inv
leftInv = I.Iso.leftInv (isoSet i)
e' : G G.≃ H
e' = E.isoToEquiv (I.iso fun inv rightInv leftInv)
funMorph : isMorph G_ H_ fun
funMorph = isoSetMorph i
_∘_ : H → H → H
_∘_ = isGroup.comp Hgroup
_⊙_ : G → G → G
_⊙_ = isGroup.comp Ggroup
invMorph : isMorph H_ G_ inv
invMorph h0 h1 = E.invEq (HAE.congEquiv e')
(fun (inv (h0 ∘ h1)) ≡⟨ rightInv (h0 ∘ h1) ⟩
h0 ∘ h1 ≡⟨ cong (λ x → x ∘ h1) (sym (rightInv h0)) ⟩
(fun (inv h0)) ∘ h1 ≡⟨ cong (λ x → fun (inv h0) ∘ x) (sym (rightInv h1)) ⟩
(fun (inv h0)) ∘ (fun (inv h1)) ≡⟨ sym (funMorph (inv h0) (inv h1)) ⟩
fun ((inv h0) ⊙ (inv h1)) ∎ )
Equiv→Iso' : ∀ {ℓ ℓ'} {G : Group {ℓ}} {H : Group {ℓ'}} → G ≃ H → Iso' G H
Equiv→Iso' {G = group G Gset Ggroup}
{H = group H Hset Hgroup}
e = iso' i' (e .fst .snd)
where
e' : G G.≃ H
e' = (e .fst .fst) , (e .snd)
i' : I.Iso G H
i' = E.equivToIso e'
compMorph : ∀ {ℓ} {F G H : Group {ℓ}} (I : morph F G) (J : morph G H) → morph F H
compMorph {ℓ} {group F Fset (group-struct _ _ _⊙_ _ _ _ _ _)}
{group G Gset (group-struct _ _ _∙_ _ _ _ _ _)}
{group H Hset (group-struct _ _ _∘_ _ _ _ _ _)}
(i , ic) (j , jc) = k , kc
where
k : F → H
k f = j (i f)
kc : (g0 g1 : F) → k (g0 ⊙ g1) ≡ (k g0) ∘ (k g1)
kc g0 g1 = j (i (g0 ⊙ g1)) ≡⟨ cong j (ic _ _) ⟩
j (i g0 ∙ i g1) ≡⟨ jc _ _ ⟩
j (i g0) ∘ j (i g1) ∎
compIso : ∀ {ℓ} {F G H : Group {ℓ}} (I : Iso F G) (J : Iso G H) → Iso F H
compIso {ℓ} {F} {G} {H}
(iso F→G G→F fg gf) (iso G→H H→G gh hg ) = iso F→H H→F sec ret
where
F→H : morph F H
F→H = compMorph {ℓ} {F} {G} {H} F→G G→H
H→F : morph H F
H→F = compMorph {ℓ} {H} {G} {F} H→G G→F
open Group
f→h : F .type → H .type
f→h = F→H .fst
f→g : F .type → G .type
f→g = F→G .fst
g→h : G .type → H .type
g→h = G→H .fst
h→f : H .type → F .type
h→f = H→F .fst
h→g : H .type → G .type
h→g = H→G .fst
g→f : G .type → F .type
g→f = G→F .fst
sec : I.section f→h h→f
sec h = f→h (h→f h) ≡⟨ cong g→h (fg (h→g h)) ⟩
g→h (h→g h) ≡⟨ gh _ ⟩
h ∎
ret : I.retract f→h h→f
ret f = h→f (f→h f) ≡⟨ cong g→f (hg (f→g f)) ⟩
g→f (f→g f) ≡⟨ gf _ ⟩
f ∎
| {
"alphanum_fraction": 0.502693385,
"avg_line_length": 28.1272727273,
"ext": "agda",
"hexsha": "75e97b4e8c15e5fcd82ed8fc9904ce556646fe17",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/Data/Group/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/Data/Group/Base.agda",
"max_line_length": 119,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/Data/Group/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2043,
"size": 4641
} |
{-# OPTIONS --safe --without-K #-}
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; sym)
open import Relation.Nullary using (Dec; yes; no)
import Data.Bool as Bool
import Data.Empty as Empty
import Data.Unit as Unit
import Data.Sum as Sum
import Data.Product as Product
import Data.Nat as ℕ
import Data.Nat.Properties as ℕₚ
open Empty using (⊥)
open Unit using (⊤; tt)
open Sum using (inj₁; inj₂)
open Product using (∃-syntax; _×_; _,_)
open ℕ using (ℕ)
open import PiCalculus.LinearTypeSystem.Algebras
module PiCalculus.LinearTypeSystem.Algebras.Linear where
open Bool using (Bool; true; false) public
pattern zero = false
pattern one = true
data _≔_∙_ : Bool → Bool → Bool → Set where
skip : zero ≔ zero ∙ zero
right : one ≔ zero ∙ one
left : one ≔ one ∙ zero
∙-computeʳ : ∀ x y → Dec (∃[ z ] (x ≔ y ∙ z))
∙-computeʳ zero zero = yes (zero , skip)
∙-computeʳ zero one = no λ ()
∙-computeʳ one zero = yes (one , right)
∙-computeʳ one one = yes (zero , left)
∙-unique : ∀ {x' x y z} → x' ≔ y ∙ z → x ≔ y ∙ z → x' ≡ x
∙-unique skip skip = refl
∙-unique right right = refl
∙-unique left left = refl
∙-uniqueˡ : ∀ {x y' y z} → x ≔ y' ∙ z → x ≔ y ∙ z → y' ≡ y
∙-uniqueˡ skip skip = refl
∙-uniqueˡ right right = refl
∙-uniqueˡ left left = refl
∙-idˡ : ∀ {x} → x ≔ zero ∙ x
∙-idˡ {zero} = skip
∙-idˡ {one} = right
∙-comm : ∀ {x y z} → x ≔ y ∙ z → x ≔ z ∙ y
∙-comm skip = skip
∙-comm right = left
∙-comm left = right
∙-assoc : ∀ {x y z u v} → x ≔ y ∙ z → y ≔ u ∙ v → ∃-syntax (λ w → (x ≔ u ∙ w) × (w ≔ v ∙ z))
∙-assoc skip skip = zero , skip , skip
∙-assoc right skip = one , right , right
∙-assoc left right = one , right , left
∙-assoc left left = zero , left , skip
Linear : Algebra Bool
Algebra.1∙ Linear = true
Algebra.0∙ Linear = false
Algebra._≔_∙_ Linear = _≔_∙_
Algebra.∙-computeʳ Linear = ∙-computeʳ
Algebra.∙-unique Linear = ∙-unique
Algebra.∙-uniqueˡ Linear = ∙-uniqueˡ
Algebra.0∙-minˡ Linear skip = refl
Algebra.∙-idˡ Linear = ∙-idˡ
Algebra.∙-comm Linear = ∙-comm
Algebra.∙-assoc Linear = ∙-assoc
| {
"alphanum_fraction": 0.6374269006,
"avg_line_length": 27.36,
"ext": "agda",
"hexsha": "6352ddf253dbe76775f0257f0d7f67318d204057",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z",
"max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/typing-linear-pi",
"max_forks_repo_path": "src/PiCalculus/LinearTypeSystem/Algebras/Linear.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/typing-linear-pi",
"max_issues_repo_path": "src/PiCalculus/LinearTypeSystem/Algebras/Linear.agda",
"max_line_length": 92,
"max_stars_count": 26,
"max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/typing-linear-pi",
"max_stars_repo_path": "src/PiCalculus/LinearTypeSystem/Algebras/Linear.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z",
"num_tokens": 817,
"size": 2052
} |
{-# OPTIONS --safe #-}
module Cubical.Data.Nat.Order.Recursive where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Data.Empty as Empty
open import Cubical.Data.Sigma
open import Cubical.Data.Sum as Sum
open import Cubical.Data.Unit
open import Cubical.Data.Nat.Base
open import Cubical.Data.Nat.Properties
open import Cubical.Induction.WellFounded
open import Cubical.Relation.Nullary
infix 4 _≤_ _<_
_≤_ : ℕ → ℕ → Type₀
zero ≤ _ = Unit
suc m ≤ zero = ⊥
suc m ≤ suc n = m ≤ n
_<_ : ℕ → ℕ → Type₀
m < n = suc m ≤ n
_≤?_ : (m n : ℕ) → Dec (m ≤ n)
zero ≤? _ = yes tt
suc m ≤? zero = no λ ()
suc m ≤? suc n = m ≤? n
data Trichotomy (m n : ℕ) : Type₀ where
lt : m < n → Trichotomy m n
eq : m ≡ n → Trichotomy m n
gt : n < m → Trichotomy m n
private
variable
ℓ : Level
R : Type ℓ
P : ℕ → Type ℓ
k l m n : ℕ
isProp≤ : isProp (m ≤ n)
isProp≤ {zero} = isPropUnit
isProp≤ {suc m} {zero} = isProp⊥
isProp≤ {suc m} {suc n} = isProp≤ {m} {n}
≤-k+ : m ≤ n → k + m ≤ k + n
≤-k+ {k = zero} m≤n = m≤n
≤-k+ {k = suc k} m≤n = ≤-k+ {k = k} m≤n
≤-+k : m ≤ n → m + k ≤ n + k
≤-+k {m} {n} {k} m≤n
= transport (λ i → +-comm k m i ≤ +-comm k n i) (≤-k+ {m} {n} {k} m≤n)
≤-refl : ∀ m → m ≤ m
≤-refl zero = _
≤-refl (suc m) = ≤-refl m
≤-trans : k ≤ m → m ≤ n → k ≤ n
≤-trans {zero} _ _ = _
≤-trans {suc k} {suc m} {suc n} = ≤-trans {k} {m} {n}
≤-antisym : m ≤ n → n ≤ m → m ≡ n
≤-antisym {zero} {zero} _ _ = refl
≤-antisym {suc m} {suc n} m≤n n≤m = cong suc (≤-antisym m≤n n≤m)
≤-k+-cancel : k + m ≤ k + n → m ≤ n
≤-k+-cancel {k = zero} m≤n = m≤n
≤-k+-cancel {k = suc k} m≤n = ≤-k+-cancel {k} m≤n
≤-+k-cancel : m + k ≤ n + k → m ≤ n
≤-+k-cancel {m} {k} {n}
= ≤-k+-cancel {k} {m} {n} ∘ transport λ i → +-comm m k i ≤ +-comm n k i
¬m<m : ¬ m < m
¬m<m {suc m} = ¬m<m {m}
≤0→≡0 : n ≤ 0 → n ≡ 0
≤0→≡0 {zero} _ = refl
¬m+n<m : ¬ m + n < m
¬m+n<m {suc m} = ¬m+n<m {m}
<-weaken : m < n → m ≤ n
<-weaken {zero} _ = _
<-weaken {suc m} {suc n} = <-weaken {m}
<-trans : k < m → m < n → k < n
<-trans {k} {m} {n} k<m m<n
= ≤-trans {suc k} {m} {n} k<m (<-weaken {m} m<n)
<-asym : m < n → ¬ n < m
<-asym {m} m<n n<m = ¬m<m {m} (<-trans {m} {_} {m} m<n n<m)
<→≢ : n < m → ¬ n ≡ m
<→≢ {n} {m} p q = ¬m<m {m = m} (subst {x = n} (_< m) q p)
Trichotomy-suc : Trichotomy m n → Trichotomy (suc m) (suc n)
Trichotomy-suc (lt m<n) = lt m<n
Trichotomy-suc (eq m≡n) = eq (cong suc m≡n)
Trichotomy-suc (gt n<m) = gt n<m
_≟_ : ∀ m n → Trichotomy m n
zero ≟ zero = eq refl
zero ≟ suc n = lt _
suc m ≟ zero = gt _
suc m ≟ suc n = Trichotomy-suc (m ≟ n)
k≤k+n : ∀ k → k ≤ k + n
k≤k+n zero = _
k≤k+n (suc k) = k≤k+n k
n≤k+n : ∀ n → n ≤ k + n
n≤k+n {k} n = transport (λ i → n ≤ +-comm n k i) (k≤k+n n)
≤-split : m ≤ n → (m < n) ⊎ (m ≡ n)
≤-split {zero} {zero} m≤n = inr refl
≤-split {zero} {suc n} m≤n = inl _
≤-split {suc m} {suc n} m≤n
= Sum.map (idfun _) (cong suc) (≤-split {m} {n} m≤n)
module WellFounded where
wf-< : WellFounded _<_
wf-rec-< : ∀ n → WFRec _<_ (Acc _<_) n
wf-< n = acc (wf-rec-< n)
wf-rec-< (suc n) m m≤n with ≤-split {m} {n} m≤n
... | inl m<n = wf-rec-< n m m<n
... | inr m≡n = subst⁻ (Acc _<_) m≡n (wf-< n)
wf-elim : (∀ n → (∀ m → m < n → P m) → P n) → ∀ n → P n
wf-elim = WFI.induction WellFounded.wf-<
wf-rec : (∀ n → (∀ m → m < n → R) → R) → ℕ → R
wf-rec {R = R} = wf-elim {P = λ _ → R}
module Minimal where
Least : ∀{ℓ} → (ℕ → Type ℓ) → (ℕ → Type ℓ)
Least P m = P m × (∀ n → n < m → ¬ P n)
isPropLeast : (∀ m → isProp (P m)) → ∀ m → isProp (Least P m)
isPropLeast pP m
= isPropΣ (pP m) (λ _ → isPropΠ3 λ _ _ _ → isProp⊥)
Least→ : Σ _ (Least P) → Σ _ P
Least→ = map-snd fst
search
: (∀ m → Dec (P m))
→ ∀ n → (Σ[ m ∈ ℕ ] Least P m) ⊎ (∀ m → m < n → ¬ P m)
search dec zero = inr (λ _ b _ → b)
search {P = P} dec (suc n) with search dec n
... | inl tup = inl tup
... | inr ¬P<n with dec n
... | yes Pn = inl (n , Pn , ¬P<n)
... | no ¬Pn = inr λ m m≤n
→ case ≤-split m≤n of λ where
(inl m<n) → ¬P<n m m<n
(inr m≡n) → subst⁻ (¬_ ∘ P) m≡n ¬Pn
→Least : (∀ m → Dec (P m)) → Σ _ P → Σ _ (Least P)
→Least dec (n , Pn) with search dec n
... | inl least = least
... | inr ¬P<n = n , Pn , ¬P<n
Least-unique : ∀ m n → Least P m → Least P n → m ≡ n
Least-unique m n (Pm , ¬P<m) (Pn , ¬P<n) with m ≟ n
... | lt m<n = Empty.rec (¬P<n m m<n Pm)
... | eq m≡n = m≡n
... | gt n<m = Empty.rec (¬P<m n n<m Pn)
isPropΣLeast : (∀ m → isProp (P m)) → isProp (Σ _ (Least P))
isPropΣLeast pP (m , LPm) (n , LPn)
= ΣPathP λ where
.fst → Least-unique m n LPm LPn
.snd → isOfHLevel→isOfHLevelDep 1 (isPropLeast pP)
LPm LPn (Least-unique m n LPm LPn)
Decidable→Collapsible
: (∀ m → isProp (P m)) → (∀ m → Dec (P m)) → Collapsible (Σ ℕ P)
Decidable→Collapsible pP dP = λ where
.fst → Least→ ∘ →Least dP
.snd x y → cong Least→ (isPropΣLeast pP (→Least dP x) (→Least dP y))
open Minimal using (Decidable→Collapsible) public
| {
"alphanum_fraction": 0.5136292835,
"avg_line_length": 26.6113989637,
"ext": "agda",
"hexsha": "f35d5674b8ed81a77385d8b9fb3a04f9dbfb911d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Data/Nat/Order/Recursive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Data/Nat/Order/Recursive.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Data/Nat/Order/Recursive.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 2418,
"size": 5136
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.