Search is not available for this dataset
text
string | meta
dict |
---|---|
-- Andreas, 2015-05-06 issue reported by [email protected]
record CoList : Set
data CoList : Set where
record CoList where
-- Error WAS:
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/Syntax/Concrete/Definitions.hs:479
-- Error should be:
-- Duplicate definition of CoList
| {
"alphanum_fraction": 0.7426900585,
"avg_line_length": 22.8,
"ext": "agda",
"hexsha": "89369c1707f7f8d1833f2739251afc744e3b3779",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1500.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1500.agda",
"max_line_length": 74,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1500.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 93,
"size": 342
} |
------------------------------------------------------------------------
-- Sequential colimits
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
-- The definition of sequential colimits and the statement of the
-- non-dependent universal property are based on those in van Doorn's
-- "Constructing the Propositional Truncation using Non-recursive
-- HITs".
-- The module is parametrised by a notion of equality. The higher
-- constructor of the HIT defining sequential colimits uses path
-- equality, but the supplied notion of equality is used for many
-- other things.
import Equality.Path as P
module Colimit.Sequential
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
open P.Derived-definitions-and-properties eq hiding (elim)
open import Prelude
open import Bijection equality-with-J using (_↔_)
import Colimit.Sequential.Erased eq as E
import Colimit.Sequential.Very-erased eq as VE
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq using (_≃_)
import Equivalence P.equality-with-J as PEq
open import Function-universe equality-with-J hiding (id; _∘_)
private
variable
a b p q : Level
A B : Type a
P : A → Type p
n : ℕ
e x : A
------------------------------------------------------------------------
-- The type
-- Sequential colimits.
data Colimit (P : ℕ → Type p) (step : ∀ {n} → P n → P (suc n)) :
Type p where
∣_∣ : P n → Colimit P step
∣∣≡∣∣ᴾ : (x : P n) → ∣ step x ∣ P.≡ ∣ x ∣
-- A variant of ∣∣≡∣∣ᴾ.
∣∣≡∣∣ : {step : ∀ {n} → P n → P (suc n)} (x : P n) →
_≡_ {A = Colimit P step} ∣ step x ∣ ∣ x ∣
∣∣≡∣∣ x = _↔_.from ≡↔≡ (∣∣≡∣∣ᴾ x)
------------------------------------------------------------------------
-- Eliminators
-- A dependent eliminator, expressed using paths.
record Elimᴾ
{P : ℕ → Type p} {step : ∀ {n} → P n → P (suc n)}
(Q : Colimit P step → Type q) : Type (p ⊔ q) where
no-eta-equality
field
∣∣ʳ : (x : P n) → Q ∣ x ∣
∣∣≡∣∣ʳ :
(x : P n) →
P.[ (λ i → Q (∣∣≡∣∣ᴾ x i)) ] ∣∣ʳ (step x) ≡ ∣∣ʳ x
open Elimᴾ public
elimᴾ :
{step : ∀ {n} → P n → P (suc n)} {Q : Colimit P step → Type q} →
Elimᴾ Q → (x : Colimit P step) → Q x
elimᴾ {P = P} {step = step} {Q = Q} e = helper
where
module E′ = Elimᴾ e
helper : (x : Colimit P step) → Q x
helper ∣ x ∣ = E′.∣∣ʳ x
helper (∣∣≡∣∣ᴾ x i) = E′.∣∣≡∣∣ʳ x i
-- A non-dependent eliminator, expressed using paths.
record Recᴾ
(P : ℕ → Type p) (step : ∀ {n} → P n → P (suc n))
(B : Type b) : Type (p ⊔ b) where
no-eta-equality
field
∣∣ʳ : P n → B
∣∣≡∣∣ʳ : (x : P n) → ∣∣ʳ (step x) P.≡ ∣∣ʳ x
open Recᴾ public
recᴾ :
{step : ∀ {n} → P n → P (suc n)} →
Recᴾ P step B → Colimit P step → B
recᴾ r = elimᴾ λ where
.∣∣ʳ → R.∣∣ʳ
.∣∣≡∣∣ʳ → R.∣∣≡∣∣ʳ
where
module R = Recᴾ r
-- A dependent eliminator.
record Elim
{P : ℕ → Type p} {step : ∀ {n} → P n → P (suc n)}
(Q : Colimit P step → Type q) : Type (p ⊔ q) where
no-eta-equality
field
∣∣ʳ : (x : P n) → Q ∣ x ∣
∣∣≡∣∣ʳ : (x : P n) → subst Q (∣∣≡∣∣ x) (∣∣ʳ (step x)) ≡ ∣∣ʳ x
open Elim public
elim :
{step : ∀ {n} → P n → P (suc n)} {Q : Colimit P step → Type q} →
Elim Q → (x : Colimit P step) → Q x
elim e = elimᴾ λ where
.∣∣ʳ → E′.∣∣ʳ
.∣∣≡∣∣ʳ x → subst≡→[]≡ (E′.∣∣≡∣∣ʳ x)
where
module E′ = Elim e
-- A "computation" rule.
elim-∣∣≡∣∣ : dcong (elim e) (∣∣≡∣∣ x) ≡ Elim.∣∣≡∣∣ʳ e x
elim-∣∣≡∣∣ = dcong-subst≡→[]≡ (refl _)
-- A non-dependent eliminator.
record Rec
(P : ℕ → Type p) (step : ∀ {n} → P n → P (suc n))
(B : Type b) : Type (p ⊔ b) where
no-eta-equality
field
∣∣ʳ : P n → B
∣∣≡∣∣ʳ : (x : P n) → ∣∣ʳ (step x) ≡ ∣∣ʳ x
open Rec public
rec :
{step : ∀ {n} → P n → P (suc n)} →
Rec P step B → Colimit P step → B
rec r = recᴾ λ where
.∣∣ʳ → R.∣∣ʳ
.∣∣≡∣∣ʳ x → _↔_.to ≡↔≡ (R.∣∣≡∣∣ʳ x)
where
module R = Rec r
-- A "computation" rule.
rec-∣∣≡∣∣ :
{step : ∀ {n} → P n → P (suc n)} {r : Rec P step B} {x : P n} →
cong (rec r) (∣∣≡∣∣ x) ≡ Rec.∣∣≡∣∣ʳ r x
rec-∣∣≡∣∣ = cong-≡↔≡ (refl _)
------------------------------------------------------------------------
-- The universal property
-- The universal property of the sequential colimit.
universal-property :
{step : ∀ {n} → P n → P (suc n)} →
(Colimit P step → B) ≃
(∃ λ (f : ∀ n → P n → B) → ∀ n x → f (suc n) (step x) ≡ f n x)
universal-property {P = P} {B = B} {step = step} =
Eq.↔→≃ to from to∘from from∘to
where
to :
(Colimit P step → B) →
∃ λ (f : ∀ n → P n → B) → ∀ n x → f (suc n) (step x) ≡ f n x
to h = (λ _ → h ∘ ∣_∣)
, (λ _ x →
h ∣ step x ∣ ≡⟨ cong h (∣∣≡∣∣ x) ⟩∎
h ∣ x ∣ ∎)
from :
(∃ λ (f : ∀ n → P n → B) → ∀ n x → f (suc n) (step x) ≡ f n x) →
Colimit P step → B
from (f , g) = rec λ where
.∣∣ʳ → f _
.∣∣≡∣∣ʳ → g _
to∘from : ∀ p → to (from p) ≡ p
to∘from (f , g) = cong (f ,_) $ ⟨ext⟩ λ n → ⟨ext⟩ λ x →
cong (rec _) (∣∣≡∣∣ x) ≡⟨ rec-∣∣≡∣∣ ⟩∎
g n x ∎
from∘to : ∀ h → from (to h) ≡ h
from∘to h = ⟨ext⟩ $ elim λ where
.∣∣ʳ _ → refl _
.∣∣≡∣∣ʳ x →
subst (λ z → from (to h) z ≡ h z) (∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (from (to h)) (∣∣≡∣∣ x)))
(trans (refl _) (cong h (∣∣≡∣∣ x))) ≡⟨ cong₂ (λ p q → trans (sym p) q)
rec-∣∣≡∣∣
(trans-reflˡ _) ⟩
trans (sym (cong h (∣∣≡∣∣ x))) (cong h (∣∣≡∣∣ x)) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎
-- A dependently typed variant of the sequential colimit's universal
-- property.
universal-property-Π :
{step : ∀ {n} → P n → P (suc n)} →
{Q : Colimit P step → Type q} →
((x : Colimit P step) → Q x) ≃
(∃ λ (f : ∀ n (x : P n) → Q ∣ x ∣) →
∀ n x → subst Q (∣∣≡∣∣ x) (f (suc n) (step x)) ≡ f n x)
universal-property-Π {P = P} {step = step} {Q = Q} =
Eq.↔→≃ to from to∘from from∘to
where
to :
((x : Colimit P step) → Q x) →
∃ λ (f : ∀ n (x : P n) → Q ∣ x ∣) →
∀ n x → subst Q (∣∣≡∣∣ x) (f (suc n) (step x)) ≡ f n x
to h = (λ _ → h ∘ ∣_∣)
, (λ _ x →
subst Q (∣∣≡∣∣ x) (h ∣ step x ∣) ≡⟨ dcong h (∣∣≡∣∣ x) ⟩∎
h ∣ x ∣ ∎)
from :
(∃ λ (f : ∀ n (x : P n) → Q ∣ x ∣) →
∀ n x → subst Q (∣∣≡∣∣ x) (f (suc n) (step x)) ≡ f n x) →
(x : Colimit P step) → Q x
from (f , g) = elim λ where
.∣∣ʳ → f _
.∣∣≡∣∣ʳ → g _
to∘from : ∀ p → to (from p) ≡ p
to∘from (f , g) = cong (f ,_) $ ⟨ext⟩ λ n → ⟨ext⟩ λ x →
dcong (elim _) (∣∣≡∣∣ x) ≡⟨ elim-∣∣≡∣∣ ⟩∎
g n x ∎
from∘to : ∀ h → from (to h) ≡ h
from∘to h = ⟨ext⟩ $ elim λ where
.∣∣ʳ _ → refl _
.∣∣≡∣∣ʳ x →
subst (λ z → from (to h) z ≡ h z) (∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-dcong ⟩
trans (sym (dcong (from (to h)) (∣∣≡∣∣ x)))
(trans (cong (subst Q (∣∣≡∣∣ x)) (refl _))
(dcong h (∣∣≡∣∣ x))) ≡⟨ cong₂ (λ p q → trans (sym p) q)
elim-∣∣≡∣∣
(trans (cong (flip trans _) $
cong-refl _) $
trans-reflˡ _) ⟩
trans (sym (dcong h (∣∣≡∣∣ x))) (dcong h (∣∣≡∣∣ x)) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎
------------------------------------------------------------------------
-- Some conversion functions
-- E.Colimitᴱ P step implies Colimit P step.
Colimitᴱ→Colimit :
{step : ∀ {n} → P n → P (suc n)} →
E.Colimitᴱ P step → Colimit P step
Colimitᴱ→Colimit = E.rec λ where
.E.∣∣ʳ → ∣_∣
.E.∣∣≡∣∣ʳ → ∣∣≡∣∣
-- In erased contexts E.Colimitᴱ P step is equivalent to
-- Colimit P step.
@0 Colimitᴱ≃Colimit :
{step : ∀ {n} → P n → P (suc n)} →
E.Colimitᴱ P step ≃ Colimit P step
Colimitᴱ≃Colimit = Eq.↔→≃
Colimitᴱ→Colimit
Colimit→Colimitᴱ
(elim λ @0 where
.∣∣ʳ _ → refl _
.∣∣≡∣∣ʳ x →
subst (λ x → Colimitᴱ→Colimit (Colimit→Colimitᴱ x) ≡ x)
(∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (Colimitᴱ→Colimit ∘ Colimit→Colimitᴱ)
(∣∣≡∣∣ x)))
(trans (refl _) (cong id (∣∣≡∣∣ x))) ≡⟨ cong₂ (trans ∘ sym)
(trans (sym $ cong-∘ _ _ _) $
trans (cong (cong Colimitᴱ→Colimit) rec-∣∣≡∣∣) $
E.rec-∣∣≡∣∣)
(trans (trans-reflˡ _) $
sym $ cong-id _) ⟩
trans (sym (∣∣≡∣∣ x)) (∣∣≡∣∣ x) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
(E.elim λ where
.E.∣∣ʳ _ → refl _
.E.∣∣≡∣∣ʳ x →
subst (λ x → Colimit→Colimitᴱ (Colimitᴱ→Colimit x) ≡ x)
(E.∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (Colimit→Colimitᴱ ∘ Colimitᴱ→Colimit)
(E.∣∣≡∣∣ x)))
(trans (refl _) (cong id (E.∣∣≡∣∣ x))) ≡⟨ cong₂ (trans ∘ sym)
(trans (sym $ cong-∘ _ _ _) $
trans (cong (cong Colimit→Colimitᴱ) E.rec-∣∣≡∣∣) $
rec-∣∣≡∣∣)
(trans (trans-reflˡ _) $
sym $ cong-id _) ⟩
trans (sym (E.∣∣≡∣∣ x)) (E.∣∣≡∣∣ x) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
where
Colimit→Colimitᴱ = rec λ @0 where
.∣∣ʳ → E.∣_∣
.∣∣≡∣∣ʳ → E.∣∣≡∣∣
-- Some instances of VE.Colimitᴱ can be converted to instances of
-- Colimit. Note that P₀ and P₊ target the same universe.
Very-Colimitᴱ→Colimit :
{P₀ : Type p}
{P₊ : ℕ → Type p}
{step₀ : P₀ → P₊ zero} →
{step₊ : ∀ {n} → P₊ n → P₊ (suc n)} →
VE.Colimitᴱ P₀ P₊ step₀ step₊ →
Colimit
(ℕ-rec P₀ (λ n _ → P₊ n))
(λ {n} → ℕ-rec {P = λ n → ℕ-rec P₀ (λ n _ → P₊ n) n → P₊ n}
step₀ (λ _ _ → step₊) n)
Very-Colimitᴱ→Colimit = VE.rec λ where
.VE.∣∣₀ʳ → ∣_∣ {n = 0}
.VE.∣∣₊ʳ → ∣_∣
.VE.∣∣₊≡∣∣₀ʳ → ∣∣≡∣∣
.VE.∣∣₊≡∣∣₊ʳ → ∣∣≡∣∣
-- In erased contexts there are equivalences between some instances of
-- VE.Colimitᴱ and some instances of Colimit.
@0 Very-Colimitᴱ≃Colimit :
{P₀ : Type p}
{P₊ : ℕ → Type p}
{step₀ : P₀ → P₊ zero} →
{step₊ : ∀ {n} → P₊ n → P₊ (suc n)} →
VE.Colimitᴱ P₀ P₊ step₀ step₊ ≃
Colimit
(ℕ-rec P₀ (λ n _ → P₊ n))
(λ {n} → ℕ-rec {P = λ n → ℕ-rec P₀ (λ n _ → P₊ n) n → P₊ n}
step₀ (λ _ _ → step₊) n)
Very-Colimitᴱ≃Colimit = Eq.↔→≃
Very-Colimitᴱ→Colimit
Colimit→Colimitᴱ
(elim λ @0 where
.∣∣ʳ {n = zero} _ → refl _
.∣∣ʳ {n = suc _} _ → refl _
.∣∣≡∣∣ʳ {n = zero} x →
subst (λ x → Very-Colimitᴱ→Colimit (Colimit→Colimitᴱ x) ≡ x)
(∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (Very-Colimitᴱ→Colimit ∘ Colimit→Colimitᴱ)
(∣∣≡∣∣ x)))
(trans (refl _) (cong id (∣∣≡∣∣ x))) ≡⟨ cong₂ (trans ∘ sym)
(trans (sym $ cong-∘ _ _ _) $
trans (cong (cong Very-Colimitᴱ→Colimit) rec-∣∣≡∣∣) $
VE.rec-∣∣₊≡∣∣₀)
(trans (trans-reflˡ _) $
sym $ cong-id _) ⟩
trans (sym (∣∣≡∣∣ x)) (∣∣≡∣∣ x) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎
.∣∣≡∣∣ʳ {n = suc _} x →
subst (λ x → Very-Colimitᴱ→Colimit (Colimit→Colimitᴱ x) ≡ x)
(∣∣≡∣∣ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (Very-Colimitᴱ→Colimit ∘ Colimit→Colimitᴱ)
(∣∣≡∣∣ x)))
(trans (refl _) (cong id (∣∣≡∣∣ x))) ≡⟨ cong₂ (trans ∘ sym)
(trans (sym $ cong-∘ _ _ _) $
trans (cong (cong Very-Colimitᴱ→Colimit) rec-∣∣≡∣∣) $
VE.rec-∣∣₊≡∣∣₊)
(trans (trans-reflˡ _) $
sym $ cong-id _) ⟩
trans (sym (∣∣≡∣∣ x)) (∣∣≡∣∣ x) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
(VE.elim λ where
.VE.∣∣₀ʳ _ → refl _
.VE.∣∣₊ʳ _ → refl _
.VE.∣∣₊≡∣∣₀ʳ x →
subst (λ x → Colimit→Colimitᴱ (Very-Colimitᴱ→Colimit x) ≡ x)
(VE.∣∣₊≡∣∣₀ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (Colimit→Colimitᴱ ∘ Very-Colimitᴱ→Colimit)
(VE.∣∣₊≡∣∣₀ x)))
(trans (refl _) (cong id (VE.∣∣₊≡∣∣₀ x))) ≡⟨ cong₂ (trans ∘ sym)
(trans (sym $ cong-∘ _ _ _) $
trans (cong (cong Colimit→Colimitᴱ) VE.rec-∣∣₊≡∣∣₀) $
rec-∣∣≡∣∣)
(trans (trans-reflˡ _) $
sym $ cong-id _) ⟩
trans (sym (VE.∣∣₊≡∣∣₀ x)) (VE.∣∣₊≡∣∣₀ x) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎
.VE.∣∣₊≡∣∣₊ʳ x →
subst (λ x → Colimit→Colimitᴱ (Very-Colimitᴱ→Colimit x) ≡ x)
(VE.∣∣₊≡∣∣₊ x) (refl _) ≡⟨ subst-in-terms-of-trans-and-cong ⟩
trans (sym (cong (Colimit→Colimitᴱ ∘ Very-Colimitᴱ→Colimit)
(VE.∣∣₊≡∣∣₊ x)))
(trans (refl _) (cong id (VE.∣∣₊≡∣∣₊ x))) ≡⟨ cong₂ (trans ∘ sym)
(trans (sym $ cong-∘ _ _ _) $
trans (cong (cong Colimit→Colimitᴱ) VE.rec-∣∣₊≡∣∣₊) $
rec-∣∣≡∣∣)
(trans (trans-reflˡ _) $
sym $ cong-id _) ⟩
trans (sym (VE.∣∣₊≡∣∣₊ x)) (VE.∣∣₊≡∣∣₊ x) ≡⟨ trans-symˡ _ ⟩∎
refl _ ∎)
where
Colimit→Colimitᴱ = rec λ @0 where
.∣∣ʳ {n = zero} → VE.∣_∣₀
.∣∣ʳ {n = suc _} → VE.∣_∣₊
.∣∣≡∣∣ʳ {n = zero} → VE.∣∣₊≡∣∣₀
.∣∣≡∣∣ʳ {n = suc _} → VE.∣∣₊≡∣∣₊
| {
"alphanum_fraction": 0.3633509787,
"avg_line_length": 37.519630485,
"ext": "agda",
"hexsha": "121568bb204132ab3fa7bc08e0f216b2da6e095e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Colimit/Sequential.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Colimit/Sequential.agda",
"max_line_length": 128,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Colimit/Sequential.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 6375,
"size": 16246
} |
{-# OPTIONS --without-K #-}
{-
Adapted from Ulrik's work in Lean (released under Apache License 2.0)
https://github.com/leanprover/lean/blob/master/hott/homotopy/cellcomplex.hlean
-}
open import HoTT
module cw.CW where
open import cw.Attached public
{-
Naming convension: most of them have the "cw-" prefix
-}
-- skeleton
Skeleton : ∀ {i} → ℕ → Type (lsucc i)
Realizer : ∀ {i} {n : ℕ} → Skeleton {i} n → Type i
Skeleton {i} O = Type i
Skeleton {i} (S n) =
Σ (Skeleton {i} n)
(λ s → Σ (Type i) λ A → Attaching (Realizer s) A (Sphere n))
Realizer {n = O} A = A
Realizer {n = S n} (s , (A , attaching)) = Attached attaching
⟦_⟧ = Realizer
-- Take a prefix of a skeleton
cw-take : ∀ {i} {m n : ℕ} (m≤n : m ≤ n) → Skeleton {i} n → Skeleton {i} m
cw-take (inl idp) skel = skel
cw-take (inr ltS) (skel , _) = skel
cw-take (inr (ltSR m≤n)) (skel , _) = cw-take (inr m≤n) skel
cw-head : ∀ {i} {n : ℕ} → Skeleton {i} n → Type i
cw-head {n = O} = cw-take (inl idp)
cw-head {n = S n} = cw-take (inr (O<S n))
incl^ : ∀ {i} {n : ℕ} (skel : Skeleton {i} n)
→ cw-head skel → ⟦ skel ⟧
incl^ {n = O} skel c = c
incl^ {n = S O} (skel , _) c = incl c
incl^ {n = S (S n)} (skel , _) c = incl (incl^ skel c)
-- Pointedness
⊙Skeleton : ∀ {i} (n : ℕ) → Type (lsucc i)
⊙Skeleton n = Σ (Skeleton n) cw-head
⊙Realizer : ∀ {i} {n : ℕ} → ⊙Skeleton {i} n → Ptd i
⊙Realizer (skel , pt) = ⟦ skel ⟧ , incl^ skel pt
⊙⟦_⟧ = ⊙Realizer
-- Access the [m]th cells
cells-last : ∀ {i} {n : ℕ} → Skeleton {i} n → Type i
cells-last {n = O} skel = skel
cells-last {n = S n} (_ , cells , _) = cells
cells-nth : ∀ {i} {m n : ℕ} (m≤n : m ≤ n) → Skeleton {i} n → Type i
cells-nth m≤n = cells-last ∘ cw-take m≤n
-- Access the [m]th dimensional attaching map
Sphere₋₁ : ℕ → Type₀
Sphere₋₁ O = Empty
Sphere₋₁ (S n) = Sphere n
Realizer₋₁ : ∀ {i} {n : ℕ} → Skeleton {i} n → Type i
Realizer₋₁ {n = O} _ = Lift Empty
Realizer₋₁ {n = S n} (skel , _) = ⟦ skel ⟧
⟦_⟧₋₁ = Realizer₋₁
attaching-last : ∀ {i} {n : ℕ} (s : Skeleton {i} n)
→ cells-last s → (Sphere₋₁ n → ⟦ s ⟧₋₁)
attaching-last {n = O} _ = λ{_ ()}
attaching-last {n = S n} (_ , _ , attaching) = attaching
attaching-nth : ∀ {i} {m n : ℕ} (m≤n : m ≤ n) (skel : Skeleton {i} n)
→ cells-nth m≤n skel → Sphere₋₁ m → ⟦ cw-take m≤n skel ⟧₋₁
attaching-nth m≤n = attaching-last ∘ cw-take m≤n
-- Misc
-- Extra conditions on CW complexes
-- XXX Needs a better name
has-dec-cells : ∀ {i} {n} → Skeleton {i} n → Type i
has-dec-cells {n = 0} skel = has-dec-eq skel
has-dec-cells {n = S n} (skel , cells , _) = has-dec-cells skel × has-dec-eq cells
-- Extra conditions on CW complexes for constructive degrees
-- The ideas is that boundaries maps need to be pointed after contraction
-- XXX Needs a better name
is-aligned : ∀ {i} {n} → Skeleton {i} n → Type i
is-aligned {n = 0} _ = Lift ⊤
is-aligned {n = 1} _ = Lift ⊤
is-aligned {n = S (S n)} (skel , _ , boundary) =
is-aligned skel × (∀ c → hfiber incl (boundary c north))
{- Some basic CWs -}
-- Empty
CWEmpty-skel : Skeleton {lzero} 0
CWEmpty-skel = Empty
CWEmpty = ⟦ CWEmpty-skel ⟧
CWEmpty≃Empty : CWEmpty ≃ Empty
CWEmpty≃Empty = ide _
CWEmpty-is-aligned : is-aligned CWEmpty-skel
CWEmpty-is-aligned = lift tt
-- Unit
CWUnit-skel : Skeleton {lzero} 0
CWUnit-skel = Unit
CWUnit = ⟦ CWUnit-skel ⟧
CWUnit≃Unit : CWUnit ≃ Unit
CWUnit≃Unit = ide _
CWUnit-is-aligned : is-aligned CWUnit-skel
CWUnit-is-aligned = lift tt
{- Basic transformation -}
-- dimension lifting
cw-lift₁ : ∀ {i} {n : ℕ} → Skeleton {i} n → Skeleton {i} (S n)
cw-lift₁ skel = skel , Lift Empty , λ{(lift ()) _}
-- This slightly extends the naming convension
-- to two skeletons being extensionally equal.
cw-lift₁-equiv : ∀ {i} {n} (skel : Skeleton {i} n)
→ ⟦ cw-lift₁ skel ⟧ ≃ ⟦ skel ⟧
cw-lift₁-equiv skel = equiv to incl to-incl incl-to
where
to : ⟦ cw-lift₁ skel ⟧ → ⟦ skel ⟧
to = Attached-rec (idf ⟦ skel ⟧) (λ{(lift ())}) (λ{(lift ()) _})
to-incl : ∀ x → to (incl x) == x
to-incl _ = idp
incl-to : ∀ x → incl (to x) == x
incl-to = Attached-elim (λ _ → idp) (λ{(lift ())}) (λ{(lift ()) _})
cw-lift : ∀ {i} {n m : ℕ} → n < m → Skeleton {i} n → Skeleton {i} m
cw-lift ltS = cw-lift₁
cw-lift (ltSR lt) = cw-lift₁ ∘ cw-lift lt
| {
"alphanum_fraction": 0.5842800835,
"avg_line_length": 27.2974683544,
"ext": "agda",
"hexsha": "bcf4bed14ff07394bdd81be33bdedce99113de44",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cmknapp/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/CW.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cmknapp/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/CW.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cmknapp/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/CW.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1697,
"size": 4313
} |
module Inductive.Examples.Unit where
open import Inductive
open import Tuple
open import Data.Fin
open import Data.Product
open import Data.List
open import Data.Vec
⊤ : Set
⊤ = Inductive (([] , []) ∷ [])
unit : ⊤
unit = construct zero [] []
| {
"alphanum_fraction": 0.6991869919,
"avg_line_length": 15.375,
"ext": "agda",
"hexsha": "cbfd8af310ac7adbb38daa45aa5038b64fa18b41",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mr-ohman/general-induction",
"max_forks_repo_path": "Inductive/Examples/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mr-ohman/general-induction",
"max_issues_repo_path": "Inductive/Examples/Unit.agda",
"max_line_length": 36,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mr-ohman/general-induction",
"max_stars_repo_path": "Inductive/Examples/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 69,
"size": 246
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" using a preorder
------------------------------------------------------------------------
-- I think that the idea behind this library is originally Ulf
-- Norell's. I have adapted it to my tastes and mixfix operators,
-- though.
-- If you need to use several instances of this module in a given
-- file, then you can use the following approach:
--
-- import Relation.Binary.PreorderReasoning as Pre
--
-- f x y z = begin
-- ...
-- ∎
-- where open Pre preorder₁
--
-- g i j = begin
-- ...
-- ∎
-- where open Pre preorder₂
open import Relation.Binary
module Relation.Binary.PreorderReasoning
{p₁ p₂ p₃} (P : Preorder p₁ p₂ p₃) where
open Preorder P
infix 4 _IsRelatedTo_
infix 2 _∎
infixr 2 _∼⟨_⟩_ _≈⟨_⟩_ _≈⟨⟩_
infix 1 begin_
-- This seemingly unnecessary type is used to make it possible to
-- infer arguments even if the underlying equality evaluates.
data _IsRelatedTo_ (x y : Carrier) : Set p₃ where
relTo : (x∼y : x ∼ y) → x IsRelatedTo y
begin_ : ∀ {x y} → x IsRelatedTo y → x ∼ y
begin relTo x∼y = x∼y
_∼⟨_⟩_ : ∀ x {y z} → x ∼ y → y IsRelatedTo z → x IsRelatedTo z
_ ∼⟨ x∼y ⟩ relTo y∼z = relTo (trans x∼y y∼z)
_≈⟨_⟩_ : ∀ x {y z} → x ≈ y → y IsRelatedTo z → x IsRelatedTo z
_ ≈⟨ x≈y ⟩ relTo y∼z = relTo (trans (reflexive x≈y) y∼z)
_≈⟨⟩_ : ∀ x {y} → x IsRelatedTo y → x IsRelatedTo y
_ ≈⟨⟩ x∼y = x∼y
_∎ : ∀ x → x IsRelatedTo x
_∎ _ = relTo refl
| {
"alphanum_fraction": 0.5770953295,
"avg_line_length": 26.9482758621,
"ext": "agda",
"hexsha": "2bd974aa8a2edbad2580f77405a21cd8a91c843b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PreorderReasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PreorderReasoning.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/PreorderReasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 541,
"size": 1563
} |
{-# OPTIONS --without-K --safe #-}
open import Algebra.Structures.Bundles.Field
module Algebra.Linear.Structures.GL
{k ℓᵏ} (K : Field k ℓᵏ)
{a ℓ}
where
open import Relation.Binary using (Setoid)
open import Algebra.Linear.Structures.Bundles
open import Algebra.Linear.Morphism.Bundles K
open import Categories.Category
open LinearMap
| {
"alphanum_fraction": 0.7645348837,
"avg_line_length": 21.5,
"ext": "agda",
"hexsha": "4eafe2d8c371814a80ff54d241b73b73a757d212",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "felko/linear-algebra",
"max_forks_repo_path": "src/Algebra/Linear/Structures/GL.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "felko/linear-algebra",
"max_issues_repo_path": "src/Algebra/Linear/Structures/GL.agda",
"max_line_length": 45,
"max_stars_count": 15,
"max_stars_repo_head_hexsha": "d87c5a1eb5dd0569238272e67bce1899616b789a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "felko/linear-algebra",
"max_stars_repo_path": "src/Algebra/Linear/Structures/GL.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-30T06:18:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-02T14:11:00.000Z",
"num_tokens": 90,
"size": 344
} |
module Imports.TheWrongName where
| {
"alphanum_fraction": 0.8823529412,
"avg_line_length": 17,
"ext": "agda",
"hexsha": "59ae61b3338e1a5cac3db115c61d21d04ea990e7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Imports/WronglyNamedModule.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Imports/WronglyNamedModule.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Imports/WronglyNamedModule.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 7,
"size": 34
} |
-- Prop has been removed from the language
module PropNoMore where
postulate
X : Prop
| {
"alphanum_fraction": 0.7640449438,
"avg_line_length": 14.8333333333,
"ext": "agda",
"hexsha": "63b231dc0040a3ca1b85f86599753ac8ee124ca6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/PropNoMore.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/PropNoMore.agda",
"max_line_length": 42,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/PropNoMore.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 23,
"size": 89
} |
{-A
Polynomials over commutative rings
==================================
-}
{-# OPTIONS --safe #-}
----------------------------------
module Cubical.Algebra.Polynomials where
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Data.Nat renaming (_+_ to _Nat+_; _·_ to _Nat·_) hiding (·-comm)
open import Cubical.Data.Nat.Order
open import Cubical.Data.Empty.Base renaming (rec to ⊥rec )
open import Cubical.Data.Bool
open import Cubical.Algebra.Group hiding (Bool)
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
------------------------------------------------------------------------------------
private
variable
ℓ ℓ' : Level
A : Type ℓ
module PolyMod (R' : CommRing ℓ) where
private
R = fst R'
open CommRingStr (snd R') public
-------------------------------------------------------------------------------------------
-- First definition of a polynomial.
-- A polynomial a₁ + a₂x + ... + aⱼxʲ of degree j is represented as a list [a₁, a₂, ...,aⱼ]
-- modulo trailing zeros.
-------------------------------------------------------------------------------------------
data Poly : Type ℓ where
[] : Poly
_∷_ : (a : R) → (p : Poly) → Poly
drop0 : 0r ∷ [] ≡ []
infixr 5 _∷_
module Elim (B : Poly → Type ℓ')
([]* : B [])
(cons* : (r : R) (p : Poly) (b : B p) → B (r ∷ p))
(drop0* : PathP (λ i → B (drop0 i)) (cons* 0r [] []*) []*) where
f : (p : Poly) → B p
f [] = []*
f (x ∷ p) = cons* x p (f p)
f (drop0 i) = drop0* i
-- Given a proposition (as type) ϕ ranging over polynomials, we prove it by:
-- ElimProp.f ϕ ⌜proof for base case []⌝ ⌜proof for induction case a ∷ p⌝
-- ⌜proof that ϕ actually is a proposition over the domain of polynomials⌝
module ElimProp (B : Poly → Type ℓ')
([]* : B [])
(cons* : (r : R) (p : Poly) (b : B p) → B (r ∷ p))
(BProp : {p : Poly} → isProp (B p)) where
f : (p : Poly) → B p
f = Elim.f B []* cons* (toPathP (BProp (transport (λ i → B (drop0 i)) (cons* 0r [] []*)) []*))
module Rec (B : Type ℓ')
([]* : B)
(cons* : R → B → B)
(drop0* : cons* 0r []* ≡ []*)
(Bset : isSet B) where
f : Poly → B
f = Elim.f (λ _ → B) []* (λ r p b → cons* r b) drop0*
module RecPoly ([]* : Poly) (cons* : R → Poly → Poly) (drop0* : cons* 0r []* ≡ []*) where
f : Poly → Poly
f [] = []*
f (a ∷ p) = cons* a (f p)
f (drop0 i) = drop0* i
--------------------------------------------------------------------------------------------------
-- Second definition of a polynomial. The purpose of this second definition is to
-- facilitate the proof that the first definition is a set. The two definitions are
-- then shown to be equivalent.
-- A polynomial a₀ + a₁x + ... + aⱼxʲ of degree j is represented as a function f
-- such that for i ∈ ℕ we have f(i) = aᵢ if i ≤ j, and 0 for i > j
--------------------------------------------------------------------------------------------------
PolyFun : Type ℓ
PolyFun = Σ[ p ∈ (ℕ → R) ] (∃[ n ∈ ℕ ] ((m : ℕ) → n ≤ m → p m ≡ 0r))
isSetPolyFun : isSet PolyFun
isSetPolyFun = isSetΣSndProp (isSetΠ (λ x → isSetCommRing R')) λ f x y → squash x y
--construction of the function that represents the polynomial
Poly→Fun : Poly → (ℕ → R)
Poly→Fun [] = (λ _ → 0r)
Poly→Fun (a ∷ p) = (λ n → if isZero n then a else Poly→Fun p (predℕ n))
Poly→Fun (drop0 i) = lemma i
where
lemma : (λ n → if isZero n then 0r else 0r) ≡ (λ _ → 0r)
lemma i zero = 0r
lemma i (suc n) = 0r
Poly→Prf : (p : Poly) → ∃[ n ∈ ℕ ] ((m : ℕ) → n ≤ m → (Poly→Fun p m ≡ 0r))
Poly→Prf = ElimProp.f (λ p → ∃[ n ∈ ℕ ] ((m : ℕ) → n ≤ m → (Poly→Fun p m ≡ 0r)))
∣ 0 , (λ m ineq → refl) ∣
(λ r p → map ( λ (n , ineq) → (suc n) ,
λ { zero h → ⊥rec (znots (sym (≤0→≡0 h))) ;
(suc m) h → ineq m (pred-≤-pred h)
}
)
)
squash
Poly→PolyFun : Poly → PolyFun
Poly→PolyFun p = (Poly→Fun p) , (Poly→Prf p)
----------------------------------------------------
-- Start of code by Anders Mörtberg and Evan Cavallo
at0 : (ℕ → R) → R
at0 f = f 0
atS : (ℕ → R) → (ℕ → R)
atS f n = f (suc n)
polyEq : (p p' : Poly) → Poly→Fun p ≡ Poly→Fun p' → p ≡ p'
polyEq [] [] _ = refl
polyEq [] (a ∷ p') α =
sym drop0 ∙∙ cong₂ _∷_ (cong at0 α) (polyEq [] p' (cong atS α)) ∙∙ refl
polyEq [] (drop0 j) α k =
hcomp
(λ l → λ
{ (j = i1) → drop0 l
; (k = i0) → drop0 l
; (k = i1) → drop0 (j ∧ l)
})
(is-set 0r 0r (cong at0 α) refl j k ∷ [])
polyEq (a ∷ p) [] α =
refl ∙∙ cong₂ _∷_ (cong at0 α) (polyEq p [] (cong atS α)) ∙∙ drop0
polyEq (a ∷ p) (a₁ ∷ p') α =
cong₂ _∷_ (cong at0 α) (polyEq p p' (cong atS α))
polyEq (a ∷ p) (drop0 j) α k =
hcomp -- filler
(λ l → λ
{ (k = i0) → a ∷ p
; (k = i1) → drop0 (j ∧ l)
; (j = i0) → at0 (α k) ∷ polyEq p [] (cong atS α) k
})
(at0 (α k) ∷ polyEq p [] (cong atS α) k)
polyEq (drop0 i) [] α k =
hcomp
(λ l → λ
{ (i = i1) → drop0 l
; (k = i0) → drop0 (i ∧ l)
; (k = i1) → drop0 l
})
(is-set 0r 0r (cong at0 α) refl i k ∷ [])
polyEq (drop0 i) (a ∷ p') α k =
hcomp -- filler
(λ l → λ
{ (k = i0) → drop0 (i ∧ l)
; (k = i1) → a ∷ p'
; (i = i0) → at0 (α k) ∷ polyEq [] p' (cong atS α) k
})
(at0 (α k) ∷ polyEq [] p' (cong atS α) k)
polyEq (drop0 i) (drop0 j) α k =
hcomp
(λ l → λ
{ (k = i0) → drop0 (i ∧ l)
; (k = i1) → drop0 (j ∧ l)
; (i = i0) (j = i0) → at0 (α k) ∷ []
; (i = i1) (j = i1) → drop0 l
})
(is-set 0r 0r (cong at0 α) refl (i ∧ j) k ∷ [])
PolyFun→Poly+ : (q : PolyFun) → Σ[ p ∈ Poly ] Poly→Fun p ≡ q .fst
PolyFun→Poly+ (f , pf) = rec lem (λ x → rem1 f (x .fst) (x .snd) ,
funExt (rem2 f (fst x) (snd x))
) pf
where
lem : isProp (Σ[ p ∈ Poly ] Poly→Fun p ≡ f)
lem (p , α) (p' , α') =
ΣPathP (polyEq p p' (α ∙ sym α'), isProp→PathP (λ i → (isSetΠ λ _ → is-set) _ _) _ _)
rem1 : (p : ℕ → R) (n : ℕ) → ((m : ℕ) → n ≤ m → p m ≡ 0r) → Poly
rem1 p zero h = []
rem1 p (suc n) h = p 0 ∷ rem1 (λ x → p (suc x)) n (λ m x → h (suc m) (suc-≤-suc x))
rem2 : (f : ℕ → R) (n : ℕ) → (h : (m : ℕ) → n ≤ m → f m ≡ 0r) (m : ℕ) →
Poly→Fun (rem1 f n h) m ≡ f m
rem2 f zero h m = sym (h m zero-≤)
rem2 f (suc n) h zero = refl
rem2 f (suc n) h (suc m) = rem2 (λ x → f (suc x)) n (λ k p → h (suc k) (suc-≤-suc p)) m
PolyFun→Poly : PolyFun → Poly
PolyFun→Poly q = PolyFun→Poly+ q .fst
PolyFun→Poly→PolyFun : (p : Poly) → PolyFun→Poly (Poly→PolyFun p) ≡ p
PolyFun→Poly→PolyFun p = polyEq _ _ (PolyFun→Poly+ (Poly→PolyFun p) .snd)
--End of code by Mörtberg and Cavallo
-------------------------------------
isSetPoly : isSet Poly
isSetPoly = isSetRetract Poly→PolyFun
PolyFun→Poly
PolyFun→Poly→PolyFun
isSetPolyFun
-------------------------------------------------
-- The rest of the file uses the first definition
-------------------------------------------------
open CommRingTheory R'
open RingTheory (CommRing→Ring R')
open GroupTheory (Ring→Group (CommRing→Ring R'))
pattern [_] x = x ∷ []
---------------------------------------
-- Definition
-- Identity for addition of polynomials
---------------------------------------
0P : Poly
0P = []
--ReplicatePoly(n,p) returns 0 ∷ 0 ∷ ... ∷ [] (n zeros)
ReplicatePoly0 : (n : ℕ) → Poly
ReplicatePoly0 zero = 0P
ReplicatePoly0 (suc n) = 0r ∷ ReplicatePoly0 n
--The empty polynomial has multiple equal representations on the form 0 + 0x + 0 x² + ...
replicatePoly0Is0P : ∀ (n : ℕ) → ReplicatePoly0 n ≡ 0P
replicatePoly0Is0P zero = refl
replicatePoly0Is0P (suc n) = (cong (0r ∷_) (replicatePoly0Is0P n)) ∙ drop0
-----------------------------
-- Definition
-- subtraction of polynomials
-----------------------------
Poly- : Poly → Poly
Poly- [] = []
Poly- (a ∷ p) = (- a) ∷ (Poly- p)
Poly- (drop0 i) = (cong (_∷ []) (inv1g) ∙ drop0) i
-- Double negation (of subtraction of polynomials) is the identity mapping
Poly-Poly- : (p : Poly) → Poly- (Poly- p) ≡ p
Poly-Poly- = ElimProp.f (λ x → Poly- (Poly- x) ≡ x)
refl
(λ a p e → cong (_∷ (Poly- (Poly- p)))
(-Idempotent a) ∙ cong (a ∷_ ) (e))
(isSetPoly _ _)
---------------------------
-- Definition
-- addition for polynomials
---------------------------
_Poly+_ : Poly → Poly → Poly
p Poly+ [] = p
[] Poly+ (drop0 i) = drop0 i
[] Poly+ (b ∷ q) = b ∷ q
(a ∷ p) Poly+ (b ∷ q) = (a + b) ∷ (p Poly+ q)
(a ∷ p) Poly+ (drop0 i) = +Rid a i ∷ p
(drop0 i) Poly+ (a ∷ q) = lem q i where
lem : ∀ q → (0r + a) ∷ ([] Poly+ q) ≡ a ∷ q
lem = ElimProp.f (λ q → (0r + a) ∷ ([] Poly+ q) ≡ a ∷ q)
(λ i → (+Lid a i ∷ []))
(λ r p _ → λ i → +Lid a i ∷ r ∷ p )
(isSetPoly _ _)
(drop0 i) Poly+ (drop0 j) = isSet→isSet' isSetPoly (cong ([_] ) (+Rid 0r)) drop0
(cong ([_] ) (+Lid 0r)) drop0 i j
-- [] is the left identity for Poly+
Poly+Lid : ∀ p → ([] Poly+ p ≡ p)
Poly+Lid = ElimProp.f (λ p → ([] Poly+ p ≡ p) )
refl
(λ r p prf → refl)
(λ x y → isSetPoly _ _ x y)
-- [] is the right identity for Poly+
Poly+Rid : ∀ p → (p Poly+ [] ≡ p)
Poly+Rid p = refl
--Poly+ is Associative
Poly+Assoc : ∀ p q r → p Poly+ (q Poly+ r) ≡ (p Poly+ q) Poly+ r
Poly+Assoc =
ElimProp.f (λ p → (∀ q r → p Poly+ (q Poly+ r) ≡ (p Poly+ q) Poly+ r))
(λ q r → Poly+Lid (q Poly+ r) ∙ cong (_Poly+ r) (sym (Poly+Lid q)))
(λ a p prf → ElimProp.f ((λ q → ∀ r → ((a ∷ p) Poly+ (q Poly+ r)) ≡
(((a ∷ p) Poly+ q) Poly+ r)))
(λ r → cong ((a ∷ p) Poly+_) (Poly+Lid r))
(λ b q prf2 →
ElimProp.f
(λ r → ((a ∷ p) Poly+ ((b ∷ q) Poly+ r)) ≡
((a + b ∷ (p Poly+ q)) Poly+ r))
refl
(λ c r prfp → cong ((a + (b + c))∷_)
(prf q r) ∙
(cong (_∷ ((p Poly+ q) Poly+ r))
(+Assoc a b c)))
(isSetPoly _ _))
λ x y i r → isSetPoly (x r i0) (y r i1) (x r) (y r) i)
λ x y i q r → isSetPoly _ _ (x q r) (y q r) i
-- for any polynomial, p, the additive inverse is given by Poly- p
Poly+Inverses : ∀ p → p Poly+ (Poly- p) ≡ []
Poly+Inverses = ElimProp.f ( λ p → p Poly+ (Poly- p) ≡ [])
refl --(Poly+Lid (Poly- []))
(λ r p prf → cong (r + - r ∷_) prf ∙
(cong (_∷ []) (+Rinv r) ∙ drop0))
(isSetPoly _ _)
--Poly+ is commutative
Poly+Comm : ∀ p q → p Poly+ q ≡ q Poly+ p
Poly+Comm = ElimProp.f (λ p → (∀ q → p Poly+ q ≡ q Poly+ p))
(λ q → Poly+Lid q)
(λ a p prf → ElimProp.f (λ q → ((a ∷ p) Poly+ q) ≡ (q Poly+ (a ∷ p)))
refl
(λ b q prf2 → cong (_∷ (p Poly+ q)) (+Comm a b) ∙
cong ((b + a) ∷_) (prf q))
(isSetPoly _ _)
)
(λ {p} → isPropΠ (λ q → isSetPoly (p Poly+ q) (q Poly+ p)))
--------------------------------------------------------------
-- Definition
-- multiplication of a polynomial by a (constant) ring element
--------------------------------------------------------------
_PolyConst*_ : (R) → Poly → Poly
r PolyConst* [] = []
r PolyConst* (a ∷ p) = (r · a) ∷ (r PolyConst* p)
r PolyConst* (drop0 i) = lem r i where
lem : ∀ r → [ r · 0r ] ≡ []
lem = λ r → [ r · 0r ] ≡⟨ cong (_∷ []) (0RightAnnihilates r) ⟩
[ 0r ] ≡⟨ drop0 ⟩
[] ∎
-- For any polynomial p we have: 0 _PolyConst*_ p = []
0rLeftAnnihilatesPoly : ∀ q → 0r PolyConst* q ≡ [ 0r ]
0rLeftAnnihilatesPoly = ElimProp.f (λ q → 0r PolyConst* q ≡ [ 0r ])
(sym drop0)
(λ r p prf → cong ((0r · r) ∷_) prf ∙
cong (_∷ [ 0r ]) (0LeftAnnihilates r) ∙
cong (0r ∷_) drop0 )
λ x y → isSetPoly _ _ x y
-- For any polynomial p we have: 1 _PolyConst*_ p = p
PolyConst*Lid : ∀ q → 1r PolyConst* q ≡ q
PolyConst*Lid = ElimProp.f (λ q → 1r PolyConst* q ≡ q ) refl
(λ a p prf → cong (_∷ (1r PolyConst* p)) (·Lid a) ∙
cong (a ∷_) (prf) )
λ x y → isSetPoly _ _ x y
--------------------------------
-- Definition
-- Multiplication of polynomials
--------------------------------
_Poly*_ : Poly → Poly → Poly
[] Poly* q = []
(a ∷ p) Poly* q = (a PolyConst* q) Poly+ (0r ∷ (p Poly* q))
(drop0 i) Poly* q = lem q i where
lem : ∀ q → (0r PolyConst* q) Poly+ [ 0r ] ≡ []
lem = λ q → ((0r PolyConst* q) Poly+ [ 0r ]) ≡⟨ cong ( _Poly+ [ 0r ] ) (0rLeftAnnihilatesPoly q)⟩
([ 0r ] Poly+ [ 0r ]) ≡⟨ cong (_∷ []) 0Idempotent ∙ drop0 ⟩
[] ∎
--------------------
--Definition
--Identity for Poly*
--------------------
1P : Poly
1P = [ 1r ]
-- For any polynomial p we have: p Poly* [] = []
0PRightAnnihilates : ∀ q → 0P Poly* q ≡ 0P
0PRightAnnihilates = ElimProp.f (λ q → 0P Poly* q ≡ 0P)
refl
(λ r p prf → prf)
λ x y → isSetPoly _ _ x y
-- For any polynomial p we have: [] Poly* p = []
0PLeftAnnihilates : ∀ p → p Poly* 0P ≡ 0P
0PLeftAnnihilates = ElimProp.f (λ p → p Poly* 0P ≡ 0P )
refl
(λ r p prf → cong (0r ∷_) prf ∙ drop0)
λ x y → isSetPoly _ _ x y
-- For any polynomial p we have: p Poly* [ 1r ] = p
Poly*Lid : ∀ q → 1P Poly* q ≡ q
Poly*Lid =
ElimProp.f (λ q → 1P Poly* q ≡ q)
drop0
(λ r p prf → lemma r p)
(λ x y → isSetPoly _ _ x y)
where
lemma : ∀ r p → 1r · r + 0r ∷ (1r PolyConst* p) ≡ r ∷ p
lemma =
λ r p → 1r · r + 0r ∷ (1r PolyConst* p) ≡⟨ cong (_∷ (1r PolyConst* p) )
(+Rid (1r · r)) ⟩
1r · r ∷ (1r PolyConst* p) ≡⟨ cong (_∷ 1r PolyConst* p) (·Lid r) ⟩
r ∷ (1r PolyConst* p) ≡⟨ cong (r ∷_) (PolyConst*Lid p) ⟩
r ∷ p ∎
-- Distribution of indeterminate: (p + q)x = px + qx
XLDistrPoly+ : ∀ p q → (0r ∷ (p Poly+ q)) ≡ ((0r ∷ p) Poly+ (0r ∷ q))
XLDistrPoly+ =
ElimProp.f (λ p → ∀ q → (0r ∷ (p Poly+ q)) ≡ ((0r ∷ p) Poly+ (0r ∷ q)) )
(λ q → (cong (0r ∷_) (Poly+Lid q)) ∙
cong (0r ∷_) (sym (Poly+Lid q)) ∙
sym (cong (_∷ [] Poly+ q) (+Lid 0r)))
(λ a p prf → ElimProp.f (λ q → 0r ∷ ((a ∷ p) Poly+ q) ≡
((0r ∷ a ∷ p) Poly+ (0r ∷ q)))
(cong (_∷ a ∷ p ) (sym (+Lid 0r)))
(λ b q prf2 → cong (_∷ a + b ∷ (p Poly+ q)) (sym (+Lid 0r)))
(λ x y i → isSetPoly (x i0) (x i1) x y i))
(λ x y i q → isSetPoly (x q i0) (x q i1) (x q) (y q) i)
-- Distribution of a constant ring element over added polynomials p, q: a (p + q) = ap + aq
PolyConst*LDistrPoly+ : ∀ a p q → a PolyConst* (p Poly+ q) ≡
(a PolyConst* p) Poly+ (a PolyConst* q)
PolyConst*LDistrPoly+ =
λ a → ElimProp.f (λ p → ∀ q → a PolyConst* (p Poly+ q) ≡
(a PolyConst* p) Poly+ (a PolyConst* q))
(λ q → cong (a PolyConst*_) (Poly+Lid q) ∙
(sym (Poly+Lid (a PolyConst* q))))
(λ b p prf → ElimProp.f (λ q → (a PolyConst* ((b ∷ p) Poly+ q)) ≡
(a PolyConst* (b ∷ p)) Poly+ (a PolyConst* q))
refl
(λ c q prf2 → cong (_∷ (a PolyConst* (p Poly+ q)))
(·Rdist+ a b c) ∙
cong (a · b + a · c ∷_) (prf q))
(isSetPoly _ _))
(λ x y i q → isSetPoly (x q i0) (x q i1) (x q) (y q) i)
--Poly* left distributes over Poly+
Poly*LDistrPoly+ : ∀ p q r → p Poly* (q Poly+ r) ≡ (p Poly* q) Poly+ (p Poly* r)
Poly*LDistrPoly+ =
ElimProp.f
(λ p → ∀ q r → p Poly* (q Poly+ r) ≡ (p Poly* q) Poly+ (p Poly* r))
(λ _ _ → refl)
(λ a p prf q r → ((a PolyConst* (q Poly+ r)) Poly+
(0r ∷(p Poly*(q Poly+ r)))) ≡⟨
cong (_Poly+ (0r ∷ (p Poly* (q Poly+ r))))
(PolyConst*LDistrPoly+ a q r)
⟩
(((a PolyConst* q) Poly+ (a PolyConst* r)) Poly+
(0r ∷ (p Poly* (q Poly+ r)))) ≡⟨
cong (((a PolyConst* q) Poly+ (a PolyConst* r)) Poly+_)
(cong (0r ∷_) (prf q r))
⟩
(((a PolyConst* q) Poly+ (a PolyConst* r)) Poly+
(0r ∷ ((p Poly* q) Poly+ (p Poly* r)))) ≡⟨
cong (((a PolyConst* q) Poly+
(a PolyConst* r)) Poly+_)
(XLDistrPoly+ (p Poly* q) (p Poly* r))
⟩
(((a PolyConst* q) Poly+ (a PolyConst* r)) Poly+
((0r ∷ (p Poly* q)) Poly+ (0r ∷ (p Poly* r)))) ≡⟨
Poly+Assoc ((a PolyConst* q) Poly+
(a PolyConst* r))
(0r ∷ (p Poly* q))
(0r ∷ (p Poly* r))
⟩
(((a PolyConst* q) Poly+ (a PolyConst* r)) Poly+
(0r ∷ (p Poly* q))) Poly+ (0r ∷ (p Poly* r)) ≡⟨ cong (_Poly+ (0r ∷ (p Poly* r)))
(sym (Poly+Assoc (a PolyConst* q)
(a PolyConst* r)
(0r ∷ (p Poly* q))))
⟩
(((a PolyConst* q) Poly+ ((a PolyConst* r) Poly+
(0r ∷ (p Poly* q)))) Poly+ (0r ∷ (p Poly* r))) ≡⟨
cong (_Poly+ (0r ∷ (p Poly* r)))
(cong ((a PolyConst* q) Poly+_)
(Poly+Comm (a PolyConst* r)
(0r ∷ (p Poly* q))))
⟩
(((a PolyConst* q) Poly+ ((0r ∷ (p Poly* q)) Poly+
(a PolyConst* r))) Poly+ (0r ∷ (p Poly* r))) ≡⟨
cong (_Poly+ (0r ∷ (p Poly* r)))
(Poly+Assoc (a PolyConst* q)
(0r ∷ (p Poly* q))
(a PolyConst* r))
⟩
((((a PolyConst* q) Poly+ (0r ∷ (p Poly* q))) Poly+
(a PolyConst* r)) Poly+ (0r ∷ (p Poly* r))) ≡⟨
sym (Poly+Assoc ((a PolyConst* q) Poly+
(0r ∷ (p Poly* q)))
((a PolyConst* r))
((0r ∷ (p Poly* r))))
⟩
((a PolyConst* q) Poly+ (0r ∷ (p Poly* q))) Poly+
((a PolyConst* r) Poly+ (0r ∷ (p Poly* r))) ∎)
(λ x y i q r → isSetPoly _ _ (x q r) (y q r) i)
-- The constant multiplication of a ring element, a, with a polynomial, p, can be
-- expressed by polynomial multiplication with the singleton polynomial [ a ]
PolyConst*r=Poly*[r] : ∀ a p → a PolyConst* p ≡ p Poly* [ a ]
PolyConst*r=Poly*[r] =
λ a → ElimProp.f (λ p → a PolyConst* p ≡ p Poly* [ a ])
refl
( λ r p prf → a · r ∷ (a PolyConst* p) ≡⟨
cong (a · r ∷_) prf
⟩
a · r ∷ (p Poly* [ a ]) ≡⟨
cong (a · r ∷_)
(sym (Poly+Lid (p Poly* [ a ])))
⟩
a · r ∷ ([] Poly+ (p Poly* [ a ])) ≡⟨
cong (_∷ ([] Poly+ (p Poly* [ a ])))
(·Comm a r )
⟩
r · a ∷ ([] Poly+ (p Poly* [ a ])) ≡⟨
cong (_∷ ([] Poly+ (p Poly* [ a ])))
(sym (+Rid (r · a)))
⟩
r · a + 0r ∷ ([] Poly+ (p Poly* [ a ])) ∎)
( λ x y i → isSetPoly (x i0) (x i1) x y i)
-- Connection between the constant multiplication and the multiplication in the ring
PolyConst*Nested· : ∀ a b p → a PolyConst* (b PolyConst* p) ≡ (a · b) PolyConst* p
PolyConst*Nested· =
λ a b → ElimProp.f (λ p → a PolyConst* (b PolyConst* p) ≡ (a · b) PolyConst* p)
refl
(λ c p prf → cong ((a · (b · c)) ∷_) prf ∙
cong (_∷ ((a · b) PolyConst* p)) (·Assoc a b c))
(isSetPoly _ _)
-- We can move the indeterminate from left to outside: px * q = (p * q)x
0r∷LeftAssoc : ∀ p q → (0r ∷ p) Poly* q ≡ 0r ∷ (p Poly* q)
0r∷LeftAssoc =
ElimProp.f (λ p → ∀ q → (0r ∷ p) Poly* q ≡ 0r ∷ (p Poly* q))
(λ q → cong (_Poly+ [ 0r ])((cong (_Poly+ []) (0rLeftAnnihilatesPoly q))) ∙
cong (_∷ []) (+Lid 0r))
(λ r p b q → cong (_Poly+ (0r ∷ ((r PolyConst* q) Poly+ (0r ∷ (p Poly* q)))))
((0rLeftAnnihilatesPoly q) ∙ drop0))
(λ x y i q → isSetPoly _ _ (x q) (y q) i)
--Associativity of constant multiplication in relation to polynomial multiplication
PolyConst*AssocPoly* : ∀ a p q → a PolyConst* (p Poly* q) ≡ (a PolyConst* p) Poly* q
PolyConst*AssocPoly* =
λ a → ElimProp.f (λ p → ∀ q → a PolyConst* (p Poly* q) ≡ (a PolyConst* p) Poly* q)
(λ q → refl)
(λ b p prf q → a PolyConst* ((b PolyConst* q) Poly+
(0r ∷ (p Poly* q))) ≡⟨
PolyConst*LDistrPoly+ a
(b PolyConst* q)
(0r ∷ (p Poly* q))
⟩
(a PolyConst* (b PolyConst* q)) Poly+
(a PolyConst* (0r ∷ (p Poly* q))) ≡⟨
cong (_Poly+ (a · 0r ∷ (a PolyConst* (p Poly* q))))
(PolyConst*Nested· a b q)
⟩
((a · b) PolyConst* q) Poly+
(a PolyConst* (0r ∷ (p Poly* q))) ≡⟨
cong (((a · b) PolyConst* q) Poly+_)
(cong (a · 0r ∷_)
(PolyConst*r=Poly*[r] a
(p Poly* q)))
⟩
((a · b) PolyConst* q) Poly+
(a · 0r ∷ ((p Poly* q) Poly* [ a ])) ≡⟨
cong (((a · b) PolyConst* q) Poly+_)
(cong (_∷ ((p Poly* q) Poly* [ a ]))
(0RightAnnihilates a)) ⟩
((a · b) PolyConst* q) Poly+
(0r ∷ ((p Poly* q) Poly* [ a ])) ≡⟨
cong (((a · b) PolyConst* q) Poly+_)
(cong (0r ∷_)
(sym (PolyConst*r=Poly*[r] a (p Poly* q))))
⟩
((a · b) PolyConst* q) Poly+
(0r ∷ (a PolyConst* (p Poly* q))) ≡⟨
cong (((a · b) PolyConst* q) Poly+_)
(cong (0r ∷_) (prf q))
⟩
((a · b) PolyConst* q) Poly+
(0r ∷ ((a PolyConst* p) Poly* q)) ∎)
(λ x y i q → isSetPoly (x q i0) (x q i1) (x q) (y q) i)
-- We can move the indeterminate from left to outside: p * qx = (p * q)x
0r∷RightAssoc : ∀ p q → p Poly* (0r ∷ q) ≡ 0r ∷ (p Poly* q)
0r∷RightAssoc =
ElimProp.f (λ p → ∀ q → p Poly* (0r ∷ q) ≡ 0r ∷ (p Poly* q))
(λ q → sym drop0)
(λ a p prf q → ((a ∷ p) Poly* (0r ∷ q)) ≡⟨
cong ( a · 0r + 0r ∷_)
(cong ((a PolyConst* q) Poly+_ )
(prf q))
⟩
a · 0r + 0r ∷ ((a PolyConst* q) Poly+
(0r ∷ (p Poly* q))) ≡⟨
cong (_∷ ((a PolyConst* q) Poly+ (0r ∷ (p Poly* q))))
((+Rid (a · 0r)))
⟩
a · 0r ∷ ((a PolyConst* q) Poly+
(0r ∷ (p Poly* q))) ≡⟨
cong (_∷ ((a PolyConst* q) Poly+ (0r ∷ (p Poly* q))))
(0RightAnnihilates a) ⟩
0r ∷ ((a PolyConst* q) Poly+ (0r ∷ (p Poly* q))) ∎)
(λ x y i q → isSetPoly (x q i0) (x q i1) (x q) (y q) i)
-- We can move the indeterminate around: px * q = p * qx
0r∷Comm : ∀ p q → (0r ∷ p) Poly* q ≡ p Poly* (0r ∷ q)
0r∷Comm = ElimProp.f (λ p → ∀ q → (0r ∷ p) Poly* q ≡ p Poly* (0r ∷ q))
(λ q → (cong ((0r PolyConst* q) Poly+_) drop0) ∙
0rLeftAnnihilatesPoly q ∙
drop0 )
(λ a p prf q → ((0r ∷ a ∷ p) Poly* q) ≡⟨ 0r∷LeftAssoc (a ∷ p) q ⟩
0r ∷ ((a ∷ p) Poly* q) ≡⟨ sym (0r∷RightAssoc (a ∷ p) q) ⟩
((a ∷ p) Poly* (0r ∷ q)) ∎
)
λ x y i q → isSetPoly (x q i0) (x q i1) (x q) (y q) i
--Poly* is commutative
Poly*Commutative : ∀ p q → p Poly* q ≡ q Poly* p
Poly*Commutative =
ElimProp.f (λ p → ∀ q → p Poly* q ≡ q Poly* p)
(λ q → sym (0PLeftAnnihilates q))
(λ a p prf q → (a PolyConst* q) Poly+ (0r ∷ (p Poly* q)) ≡⟨
cong ((a PolyConst* q) Poly+_)
(cong (0r ∷_) (prf q)) ⟩
((a PolyConst* q) Poly+ (0r ∷ (q Poly* p))) ≡⟨
cong ((a PolyConst* q) Poly+_)
(sym (0r∷LeftAssoc q p))
⟩
((a PolyConst* q) Poly+ ((0r ∷ q) Poly* p)) ≡⟨
cong (_Poly+ ((0r PolyConst* p) Poly+ (0r ∷ (q Poly* p))))
(PolyConst*r=Poly*[r] a q) ⟩
((q Poly* [ a ]) Poly+ ((0r ∷ q) Poly* p)) ≡⟨
cong ((q Poly* [ a ]) Poly+_)
(0r∷Comm q p)
⟩
((q Poly* [ a ]) Poly+ (q Poly* (0r ∷ p))) ≡⟨
sym (Poly*LDistrPoly+ q [ a ] (0r ∷ p))
⟩
(((q Poly* ([ a ] Poly+ (0r ∷ p))))) ≡⟨
cong (q Poly*_)
(Poly+Comm [ a ] (0r ∷ p))
⟩
((q Poly* ((0r ∷ p) Poly+ [ a ]))) ≡⟨
refl
⟩
(q Poly* ((0r + a) ∷ p)) ≡⟨ cong (q Poly*_)
(cong (_∷ p) (+Lid a))
⟩
(q Poly* (a ∷ p)) ∎)
(λ x y i q → isSetPoly _ _ (x q ) (y q) i)
--1P is the right identity of Poly*.
Poly*Rid : ∀ p → p Poly* 1P ≡ p
Poly*Rid = λ p → (Poly*Commutative p 1P ∙ Poly*Lid p)
--Polynomial multiplication right distributes over polynomial addition.
Poly*RDistrPoly+ : ∀ p q r → (p Poly+ q) Poly* r ≡ (p Poly* r) Poly+ (q Poly* r)
Poly*RDistrPoly+ = λ p q r → sym (Poly*Commutative r (p Poly+ q)) ∙
Poly*LDistrPoly+ r p q ∙
cong (_Poly+ (r Poly* q)) (Poly*Commutative r p) ∙
cong ((p Poly* r) Poly+_) (Poly*Commutative r q)
--Polynomial multiplication is associative
Poly*Associative : ∀ p q r → p Poly* (q Poly* r) ≡ (p Poly* q) Poly* r
Poly*Associative =
ElimProp.f (λ p → ∀ q r → p Poly* (q Poly* r) ≡ (p Poly* q) Poly* r )
(λ _ _ → refl)
(λ a p prf q r →
((a ∷ p) Poly* (q Poly* r)) ≡⟨
cong (_Poly+ (0r ∷ (p Poly* (q Poly* r))))
(PolyConst*AssocPoly* a q r)
⟩
(((a PolyConst* q) Poly* r) Poly+
(0r ∷ (p Poly* (q Poly* r)))) ≡⟨
sym (cong (((a PolyConst* q) Poly* r) Poly+_)
(cong (_∷ (p Poly* (q Poly* r)))
(+Lid 0r)))
⟩
(((a PolyConst* q) Poly* r) Poly+
(0r + 0r ∷ (p Poly* (q Poly* r)))) ≡⟨
cong (((a PolyConst* q) Poly* r) Poly+_)
(cong (0r + 0r ∷_)
(sym (Poly+Lid (p Poly* (q Poly* r)))))
⟩
(((a PolyConst* q) Poly* r) Poly+
(0r + 0r ∷ ([] Poly+ (p Poly* (q Poly* r))))) ≡⟨
cong (((a PolyConst* q) Poly* r) Poly+_)
(cong (0r + 0r ∷_)
(cong ([] Poly+_)
(prf q r)))
⟩
(((a PolyConst* q) Poly* r) Poly+
(0r + 0r ∷ ([] Poly+ ((p Poly* q) Poly* r)))) ≡⟨
cong (((a PolyConst* q) Poly* r) Poly+_)
(cong (_Poly+ (0r ∷ ((p Poly* q) Poly* r)))
(sym (0rLeftAnnihilatesPoly r)))
⟩
(((a PolyConst* q) Poly* r) Poly+
((0r PolyConst* r) Poly+ (0r ∷ ((p Poly* q) Poly* r)))) ≡⟨
sym (Poly*RDistrPoly+ (a PolyConst* q)
(0r ∷ (p Poly* q)) r)
⟩
((((a ∷ p) Poly* q) Poly* r)) ∎)
(λ x y i q r → isSetPoly _ _ (x q r) (y q r) i)
----------------------------------------------------------------------------------------------
-- An instantiation of Polynomials as a commutative ring can be found in CommRing/Instances --
----------------------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.3290365229,
"avg_line_length": 47.335071708,
"ext": "agda",
"hexsha": "6f5700c8447b865747686e60fa1440a53d1dc234",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "038bcaff93d278c627ccdcec34a4f6df2b56ad5a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AkermanRydbeck/cubical",
"max_forks_repo_path": "Cubical/Algebra/Polynomials.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "038bcaff93d278c627ccdcec34a4f6df2b56ad5a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AkermanRydbeck/cubical",
"max_issues_repo_path": "Cubical/Algebra/Polynomials.agda",
"max_line_length": 128,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "038bcaff93d278c627ccdcec34a4f6df2b56ad5a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AkermanRydbeck/cubical",
"max_stars_repo_path": "Cubical/Algebra/Polynomials.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 10353,
"size": 36306
} |
------------------------------------------------------------------------
-- Empty type
------------------------------------------------------------------------
module Data.Empty where
data ⊥ : Set where
⊥-elim : {whatever : Set} → ⊥ → whatever
⊥-elim ()
| {
"alphanum_fraction": 0.2645914397,
"avg_line_length": 23.3636363636,
"ext": "agda",
"hexsha": "8022ccfedd51384dd25898efdbc96d4dcb727272",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Empty.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Empty.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Empty.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 43,
"size": 257
} |
------------------------------------------------------------------------------
-- Testing the translation of wild card patterns
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module WildCardPattern where
infix 4 _≡_
postulate
D : Set
zero : D
succ : D → D
-- The identity type.
data _≡_ (x : D) : D → Set where
refl : x ≡ x
-- The LTC natural numbers type.
data N : D → Set where
zN : N zero
sN : ∀ {n} → N n → N (succ n)
foo : ∀ m n → N m → N n → n ≡ n
foo m n _ _ = prf
where
postulate prf : n ≡ n
{-# ATP prove prf #-}
| {
"alphanum_fraction": 0.4270557029,
"avg_line_length": 22.8484848485,
"ext": "agda",
"hexsha": "40d896210fbd4671704909ca3911acfd88119697",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/WildCardPattern.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/WildCardPattern.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/WildCardPattern.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 196,
"size": 754
} |
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.Transitivity
open import Oscar.Class.Reflexivity
open import Oscar.Class.Transleftidentity
open import Oscar.Class.Transrightidentity
open import Oscar.Class.Symmetry
open import Oscar.Class.Hmap
open import Oscar.Class.Leftunit
module Oscar.Class.Hmap.Transleftidentity where
instance
Relprop'idFromTransleftidentity : ∀
{𝔵} {𝔛 : Ø 𝔵}
{𝔞} {𝔄 : 𝔛 → Ø 𝔞}
{𝔟} {𝔅 : 𝔛 → Ø 𝔟}
(let _∼_ = Arrow 𝔄 𝔅)
{ℓ̇} {_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ̇}
{transitivity : Transitivity.type _∼_}
{reflexivity : Reflexivity.type _∼_}
{ℓ}
⦃ _ : Transleftidentity.class _∼_ _∼̇_ reflexivity transitivity ⦄
⦃ _ : ∀ {x y} → Symmetry.class (_∼̇_ {x} {y}) ⦄
→ ∀ {m n}
→ Hmap.class (λ (f : m ∼ n) (P : LeftExtensionṖroperty ℓ _∼_ _∼̇_ m) → π₀ (π₀ P) f)
(λ f P → π₀ (π₀ P) (transitivity f reflexivity))
Relprop'idFromTransleftidentity .⋆ _ (_ , P₁) = P₁ $ symmetry transleftidentity
| {
"alphanum_fraction": 0.6460618146,
"avg_line_length": 33.4333333333,
"ext": "agda",
"hexsha": "16433051f01bc9d8704b7f6e1da1919396ea1bdc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Hmap/Transleftidentity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Hmap/Transleftidentity.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Hmap/Transleftidentity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 385,
"size": 1003
} |
module Subset where
data Subset (A : Set) (P : A -> Set) : Set where
inn : (a : A) -> .(P a) -> Subset A P
out : forall {A P} -> Subset A P -> A
out (inn a p) = a
| {
"alphanum_fraction": 0.5238095238,
"avg_line_length": 18.6666666667,
"ext": "agda",
"hexsha": "2504096de7478508c400260afef81024e9051920",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Subset.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Subset.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Subset.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 64,
"size": 168
} |
module Bool where
import Logic
open Logic
data Bool : Set where
false : Bool
true : Bool
infixr 5 _&&_
_&&_ : Bool -> Bool -> Bool
true && x = x
false && _ = false
not : Bool -> Bool
not true = false
not false = true
IsTrue : Bool -> Set
IsTrue true = True
IsTrue false = False
IsFalse : Bool -> Set
IsFalse x = IsTrue (not x)
module BoolEq where
_==_ : Bool -> Bool -> Bool
true == x = x
false == x = not x
subst : {x y : Bool}(P : Bool -> Set) -> IsTrue (x == y) -> P x -> P y
subst {true}{true} _ _ px = px
subst {false}{false} _ _ px = px
subst {true}{false} _ () _
subst {false}{true} _ () _
isTrue== : {x : Bool} -> IsTrue x -> IsTrue (x == true)
isTrue== {true} _ = tt
isTrue== {false} ()
infix 1 if_then_else_
if_then_else_ : {A : Set} -> Bool -> A -> A -> A
if true then x else y = x
if false then x else y = y
open BoolEq
if'_then_else_ : {A : Set} -> (x : Bool) -> (IsTrue x -> A) -> (IsFalse x -> A) -> A
if' true then f else g = f tt
if' false then f else g = g tt
isTrue&&₁ : {x y : Bool} -> IsTrue (x && y) -> IsTrue x
isTrue&&₁ {true} _ = tt
isTrue&&₁ {false} ()
isTrue&&₂ : {x y : Bool} -> IsTrue (x && y) -> IsTrue y
isTrue&&₂ {true} p = p
isTrue&&₂ {false} ()
| {
"alphanum_fraction": 0.5622977346,
"avg_line_length": 19.3125,
"ext": "agda",
"hexsha": "08b9633353d66a3a359381e624b096c0f3a9e6e4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/tactics/ac/Bool.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/tactics/ac/Bool.agda",
"max_line_length": 84,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/tactics/ac/Bool.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 461,
"size": 1236
} |
-- {-# OPTIONS -v tc.term.let.pattern:20 #-}
-- Andreas, 2013-05-06 deep let-bound patterns were translated wrongly
module Issue843 {A B C : Set} (a : A) (b : B) (c : C) where
open import Common.Product
open import Common.Equality
T : Set
T = A × B × C
val : T
val = a , (b , c)
-- This was translated wrongly:
ap : {R : Set} (f : T → R) → R
ap f =
let x , (y , z) = a , (b , c) -- val
in f (x , (y , z))
works : {R : Set} (f : T → R) → R
works f =
let x , yz = val
in let y , z = yz
in f (x , (y , z))
ap′ : {R : Set} (f : T → R) → R
ap′ f = f (proj₁ val , (proj₁ (proj₂ val) , proj₂ (proj₂ val)))
test : ∀ {R} (f : T → R) → ap f ≡ f (a , (b , c))
test f = refl
{- WAS:
The type of test f reduces to
Goal: f (a , proj₂ a , c) ≡ f (a , b , c)
even though it should reduce to
f (a , b , c) ≡ f (a , b , c)
And indeed, refl doesn't fit there. Typechecking the example where the hole has been replaced with refl produces:
D:\Agda\Strange.agda:21,10-14
proj₂ a != b of type B
when checking that the expression refl has type
ap f ≡ f (a , b , c)
With ap′, the goal reduces correctly and refl is accepted.
I'm using a development version of Agda, about one day old. 64bit Windows 7, if it matters.
-}
| {
"alphanum_fraction": 0.5849673203,
"avg_line_length": 22.6666666667,
"ext": "agda",
"hexsha": "da5c04bd6c03106a3eab0862e92d82d8b71bbd5b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "hborum/agda",
"max_forks_repo_path": "test/Succeed/Issue843.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Succeed/Issue843.agda",
"max_line_length": 113,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Succeed/Issue843.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 447,
"size": 1224
} |
{-# OPTIONS --without-K --allow-unsolved-metas #-}
module subuniverses where
import 14-univalence
open 14-univalence public
{-
is-local :
{l1 l2 l3 l4 : Level}
{I : UU l1} {A : I → UU l2} {B : I → UU l3} (f : (i : I) → A i → B i)
(X : UU l4) → UU (l1 ⊔ (l2 ⊔ (l3 ⊔ l4)))
is-local {I = I} {B = B} f X =
(i : I) → is-equiv (λ (h : B i → X) → h ∘ (f i))
is-subuniverse-is-local :
{l1 l2 l3 l4 : Level}
{I : UU l1} {A : I → UU l2} {B : I → UU l3} (f : (i : I) → A i → B i) →
is-subuniverse (is-local {l4 = l4} f)
is-subuniverse-is-local f X = is-prop-Π (λ i → is-subtype-is-equiv _)
-}
universal-property-localization :
{l1 l2 : Level} (P : subuniverse l1 l2)
(X : UU l1) (Y : total-subuniverse P) (l : X → pr1 Y) →
UU ((lsuc l1) ⊔ l2)
universal-property-localization {l1} (pair P H) X (pair Y p) l =
(Z : UU l1) (q : P Z) → is-equiv (λ (h : Y → Z) → h ∘ l)
universal-property-localization' :
(l : Level) (α : Level → Level) (P : (l : Level) → subuniverse l (α l))
(g : (l1 l2 : Level) → is-global-subuniverse α P l1 l2)
{l1 l2 : Level} (X : UU l1) (Y : total-subuniverse (P l2)) (f : X → pr1 Y) →
UU ((lsuc l) ⊔ ((α l) ⊔ (l1 ⊔ l2)))
universal-property-localization' l α P g X Y f =
(Z : total-subuniverse (P l)) → is-equiv (λ (h : (pr1 Y) → (pr1 Z)) → h ∘ f)
is-prop-universal-property-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1)
(Y : total-subuniverse P) (l : X → pr1 Y) →
is-prop (universal-property-localization P X Y l)
is-prop-universal-property-localization (pair P H) X (pair Y p) l =
is-prop-Π (λ Z → is-prop-Π (λ q → is-subtype-is-equiv _))
has-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
UU ((lsuc l1) ⊔ l2)
has-localization {l1} P X =
Σ ( total-subuniverse P)
( λ Y → Σ (X → pr1 Y) (universal-property-localization P X Y))
Eq-localizations :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
( s t : has-localization P X) → UU l1
Eq-localizations (pair P H) X
(pair (pair Y p) (pair l up)) t =
let Y' = pr1 (pr1 t)
p' = pr1 (pr1 t)
l' = pr1 (pr2 t)
up' = pr2 (pr2 t)
in
Σ ( Y ≃ Y')
( λ e → ((map-equiv e) ∘ l) ~ l' )
reflexive-Eq-localizations :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
(s : has-localization P X) → Eq-localizations P X s s
reflexive-Eq-localizations (pair P H) X (pair (pair Y p) (pair l up)) =
pair (equiv-id Y) (htpy-refl l)
Eq-localizations-eq :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
( s t : has-localization P X) → Id s t → Eq-localizations P X s t
Eq-localizations-eq P X s s refl = reflexive-Eq-localizations P X s
is-contr-total-Eq-localizations :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1)
(s : has-localization P X) →
is-contr (Σ (has-localization P X) (Eq-localizations P X s))
is-contr-total-Eq-localizations
(pair P H) X (pair (pair Y p) (pair l up)) =
is-contr-total-Eq-structure
( λ Y' l' e → ((map-equiv e) ∘ l) ~ (pr1 l'))
( is-contr-total-Eq-total-subuniverse (pair P H) (pair Y p))
( pair (pair Y p) (equiv-id Y))
( is-contr-total-Eq-substructure
( is-contr-total-htpy l)
( is-prop-universal-property-localization (pair P H) X (pair Y p))
( l)
( htpy-refl _)
( up))
is-equiv-Eq-localizations-eq :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
( s t : has-localization P X) → is-equiv (Eq-localizations-eq P X s t)
is-equiv-Eq-localizations-eq P X s =
fundamental-theorem-id s
( reflexive-Eq-localizations P X s)
( is-contr-total-Eq-localizations P X s)
( Eq-localizations-eq P X s)
eq-Eq-localizations :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1)
( s t : has-localization P X) → (Eq-localizations P X s t) → Id s t
eq-Eq-localizations P X s t =
inv-is-equiv (is-equiv-Eq-localizations-eq P X s t)
uniqueness-localizations :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
( s t : has-localization P X) → Eq-localizations P X s t
uniqueness-localizations (pair P H) X
(pair (pair Y p) (pair l up)) (pair (pair Y' p') (pair l' up')) =
pair
( pair
( inv-is-equiv (up Y' p') l')
( is-equiv-has-inverse
( pair
( inv-is-equiv (up' Y p) l)
( pair
( htpy-eq
( ap
( pr1 {B = λ h → Id (h ∘ l') l'})
( center
( is-prop-is-contr
( is-contr-map-is-equiv (up' Y' p') l')
( pair
( ( inv-is-equiv (up Y' p') l') ∘
( inv-is-equiv (up' Y p) l))
( ( ap
( λ t → (inv-is-equiv (up Y' p') l') ∘ t)
( issec-inv-is-equiv (up' Y p) l)) ∙
( issec-inv-is-equiv (up Y' p') l')))
( pair id refl)))))
( htpy-eq
( ap
( pr1 {B = λ h → Id (h ∘ l) l})
( center
( is-prop-is-contr
( is-contr-map-is-equiv (up Y p) l)
( pair
( ( inv-is-equiv (up' Y p) l) ∘
( inv-is-equiv (up Y' p') l'))
( ( ap
( λ t → (inv-is-equiv (up' Y p) l) ∘ t)
( issec-inv-is-equiv (up Y' p') l')) ∙
issec-inv-is-equiv (up' Y p) l))
( pair id refl)))))))))
( htpy-eq (issec-inv-is-equiv (up Y' p') l'))
is-prop-localizations :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
is-prop (has-localization P X)
is-prop-localizations P X =
is-prop-is-prop'
( λ Y Y' → eq-Eq-localizations P X Y Y'
( uniqueness-localizations P X Y Y'))
universal-property-localization-equiv-is-local :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
(Y : UU l1) (p : (pr1 P) Y) (l : X → Y) →
is-equiv l → universal-property-localization P X (pair Y p) l
universal-property-localization-equiv-is-local
(pair P H) X Y p l is-equiv-l Z q =
is-equiv-precomp-is-equiv l is-equiv-l Z
universal-property-localization-id-is-local :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) (q : (pr1 P) X) →
universal-property-localization P X (pair X q) id
universal-property-localization-id-is-local P X q =
universal-property-localization-equiv-is-local P X X q id (is-equiv-id X)
is-equiv-localization-is-local :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
( Y : has-localization P X) → (pr1 P) X → is-equiv (pr1 (pr2 Y))
is-equiv-localization-is-local
(pair P H) X (pair (pair Y p) (pair l up)) q =
is-equiv-right-factor
( id)
( inv-is-equiv (up X q) id)
( l)
( htpy-eq (inv (issec-inv-is-equiv (up X q) id)))
( pr2
( pr1
( uniqueness-localizations (pair P H) X
( pair (pair Y p) (pair l up))
( pair
( pair X q)
( pair id
( universal-property-localization-id-is-local
(pair P H) X q))))))
( is-equiv-id X)
is-local-is-equiv-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
( Y : has-localization P X) → is-equiv (pr1 (pr2 Y)) → (pr1 P) X
is-local-is-equiv-localization
(pair P H) X (pair (pair Y p) (pair l up)) is-equiv-l =
in-subuniverse-equiv' P (pair l is-equiv-l) p
strong-retraction-property-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
(Y : total-subuniverse P) (l : X → pr1 Y) → UU l1
strong-retraction-property-localization (pair P H) X (pair Y p) l =
is-equiv (λ (h : Y → X) → h ∘ l)
retraction-property-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
(Y : total-subuniverse P) (l : X → pr1 Y) → UU l1
retraction-property-localization (pair P H) X (pair Y p) l =
retr l
strong-retraction-property-localization-is-equiv-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
(Y : total-subuniverse P) (l : X → pr1 Y) →
is-equiv l → strong-retraction-property-localization P X Y l
strong-retraction-property-localization-is-equiv-localization
(pair P H) X (pair Y p) l is-equiv-l =
is-equiv-precomp-is-equiv l is-equiv-l X
retraction-property-localization-strong-retraction-property-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
(Y : total-subuniverse P) (l : X → pr1 Y) →
strong-retraction-property-localization P X Y l →
retraction-property-localization P X Y l
retraction-property-localization-strong-retraction-property-localization
(pair P H) X (pair Y p) l s =
tot (λ h → htpy-eq) (center (is-contr-map-is-equiv s id))
is-equiv-localization-retraction-property-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
(Y : has-localization P X) →
retraction-property-localization P X (pr1 Y) (pr1 (pr2 Y)) →
is-equiv (pr1 (pr2 Y))
is-equiv-localization-retraction-property-localization
(pair P H) X (pair (pair Y p) (pair l up)) (pair g isretr-g) =
is-equiv-has-inverse
( pair g
( pair
( htpy-eq
( ap
( pr1 {B = λ (h : Y → Y) → Id (h ∘ l) l})
( center
( is-prop-is-contr
( is-contr-map-is-equiv (up Y p) l)
( pair (l ∘ g) (ap (λ t → l ∘ t) (eq-htpy isretr-g)))
( pair id refl)))))
( isretr-g)))
is-local-retraction-property-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
(Y : has-localization P X) →
retraction-property-localization P X (pr1 Y) (pr1 (pr2 Y)) →
(pr1 P) X
is-local-retraction-property-localization P X Y r =
is-local-is-equiv-localization P X Y
( is-equiv-localization-retraction-property-localization P X Y r)
is-local-has-localization-is-contr :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
is-contr X → has-localization P X → (pr1 P) X
is-local-has-localization-is-contr
(pair P H) X is-contr-X (pair (pair Y p) (pair l up)) =
is-local-retraction-property-localization (pair P H) X
( pair (pair Y p) (pair l up))
( pair
( λ _ → center is-contr-X)
( contraction is-contr-X))
has-localization-is-local-is-contr :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
is-contr X → (pr1 P) X → has-localization P X
has-localization-is-local-is-contr (pair P H) X is-contr-X p =
pair
( pair X p)
( pair id (universal-property-localization-id-is-local (pair P H) X p))
is-contr-raise-unit :
(l : Level) → is-contr (raise l unit)
is-contr-raise-unit l =
is-contr-is-equiv' unit
( map-raise l unit)
( is-equiv-map-raise l unit)
( is-contr-unit)
is-local-unit-localization-unit :
{l1 l2 : Level} (P : subuniverse l1 l2) →
(Y : has-localization P (raise l1 unit)) →
(pr1 P) (raise l1 unit)
is-local-unit-localization-unit P Y =
is-local-has-localization-is-contr P (raise _ unit) (is-contr-raise-unit _) Y
toto-dependent-elimination-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
(has-loc-X : has-localization P X) →
let Y = pr1 (pr1 has-loc-X)
l = pr1 (pr2 has-loc-X)
in
(Z : Y → UU l1) →
Σ (Y → Y) (λ h → (y : Y) → Z (h y)) →
Σ (X → Y) (λ h → (x : X) → Z (h x))
toto-dependent-elimination-localization (pair P H) X
(pair (pair Y p) (pair l up)) Z =
toto
( λ (h : X → Y) → (x : X) → Z (h x))
( λ h → h ∘ l)
( λ h h' x → h' (l x))
square-dependent-elimination-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
(has-loc-X : has-localization P X) →
let Y = pr1 (pr1 has-loc-X)
l = pr1 (pr2 has-loc-X)
in
(Z : Y → UU l1) (q : (pr1 P) (Σ _ Z)) →
( ( λ (h : Y → Σ Y Z) → h ∘ l) ∘
( inv-choice-∞)) ~
( ( inv-choice-∞) ∘
( toto-dependent-elimination-localization P X has-loc-X Z))
square-dependent-elimination-localization
(pair P H) X (pair (pair Y p) (pair l up)) Z q =
htpy-refl
is-equiv-toto-dependent-elimination-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) (X : UU l1) →
(has-loc-X : has-localization P X)
(Z : pr1 (pr1 has-loc-X) → UU l1) (q : (pr1 P) (Σ _ Z)) →
is-equiv (toto-dependent-elimination-localization P X has-loc-X Z)
is-equiv-toto-dependent-elimination-localization
(pair P H) X (pair (pair Y p) (pair l up)) Z q =
is-equiv-top-is-equiv-bottom-square
( inv-choice-∞)
( inv-choice-∞)
( toto-dependent-elimination-localization
(pair P H) X (pair (pair Y p) (pair l up)) Z)
( λ h → h ∘ l)
( square-dependent-elimination-localization
(pair P H) X (pair (pair Y p) (pair l up)) Z q)
( is-equiv-inv-choice-∞)
( is-equiv-inv-choice-∞)
( up (Σ Y Z) q)
dependent-elimination-localization :
{l1 l2 : Level} (P : subuniverse l1 l2) →
(X : UU l1) (Y : has-localization P X) →
(Z : (pr1 (pr1 Y)) → UU l1) (q : (pr1 P) (Σ _ Z)) →
is-equiv (λ (h : (y : (pr1 (pr1 Y))) → (Z y)) → λ x → h (pr1 (pr2 Y) x))
dependent-elimination-localization (pair P H) X (pair (pair Y p) (pair l up)) Z q =
is-fiberwise-equiv-is-equiv-toto-is-equiv-base-map
( λ (h : X → Y) → (x : X) → Z (h x))
( λ (h : Y → Y) → h ∘ l)
( λ (h : Y → Y) (h' : (y : Y) → Z (h y)) (x : X) → h' (l x))
( up Y p)
( is-equiv-toto-dependent-elimination-localization
(pair P H) X (pair (pair Y p) (pair l up)) Z q)
( id)
is-reflective-subuniverse :
{l1 l2 : Level} (P : subuniverse l1 l2) → UU ((lsuc l1) ⊔ l2)
is-reflective-subuniverse {l1} P = (X : UU l1) → has-localization P X
reflective-subuniverse :
(l1 l2 : Level) → UU ((lsuc l1) ⊔ (lsuc l2))
reflective-subuniverse l1 l2 = Σ (subuniverse l1 l2) is-reflective-subuniverse
is-local :
{l1 l2 : Level} (L : reflective-subuniverse l1 l2) →
UU l1 → UU l2
is-local L = pr1 (pr1 L)
is-prop-is-local :
{l1 l2 : Level} (L : reflective-subuniverse l1 l2) →
(X : UU l1) → is-prop (is-local L X)
is-prop-is-local L = pr2 (pr1 L)
total-reflective-subuniverse :
{l1 l2 : Level} (L : reflective-subuniverse l1 l2) → UU ((lsuc l1) ⊔ l2)
total-reflective-subuniverse L = total-subuniverse (pr1 L)
local-type-localization :
{l1 l2 : Level} (L : reflective-subuniverse l1 l2)
(X : UU l1) → total-reflective-subuniverse L
local-type-localization L X = pr1 ((pr2 L) X)
type-localization :
{l1 l2 : Level} (L : reflective-subuniverse l1 l2) →
UU l1 → UU l1
type-localization L X = pr1 (local-type-localization L X)
is-local-type-localization :
{l1 l2 : Level} (L : reflective-subuniverse l1 l2)
(X : UU l1) → is-local L (type-localization L X)
is-local-type-localization L X = pr2 (local-type-localization L X)
universal-map-localization :
{l1 l2 : Level} (L : reflective-subuniverse l1 l2) (X : UU l1) →
Σ ( X → type-localization L X)
( universal-property-localization (pr1 L) X (local-type-localization L X))
universal-map-localization L X = pr2 ((pr2 L) X)
unit-localization :
{l1 l2 : Level} (L : reflective-subuniverse l1 l2)
(X : UU l1) → X → type-localization L X
unit-localization L X = pr1 (universal-map-localization L X)
universal-property-map-localization :
{l1 l2 : Level} (L : reflective-subuniverse l1 l2) (X : UU l1) →
universal-property-localization (pr1 L) X
( local-type-localization L X)
( unit-localization L X)
universal-property-map-localization L X = pr2 (universal-map-localization L X)
dependent-elimination-reflective-subuniverse :
{l1 l2 : Level} (L : reflective-subuniverse l1 l2) (X : UU l1) →
(Y : type-localization L X → UU l1)
(is-loc-total-Y : is-local L (Σ _ Y)) →
is-equiv
( λ (h : (x' : type-localization L X) → Y x') x → h (unit-localization L X x))
dependent-elimination-reflective-subuniverse L X =
dependent-elimination-localization (pr1 L) X ((pr2 L) X)
is-contr-square-localization :
{l1 l2 : Level} (L : reflective-subuniverse l1 l2) {X Y : UU l1} (f : X → Y) →
is-contr
( Σ (type-localization L X → type-localization L Y)
( λ Lf → coherence-square (unit-localization L X) f Lf (unit-localization L Y)))
is-contr-square-localization L f = {!!}
| {
"alphanum_fraction": 0.5829104805,
"avg_line_length": 37.3840749415,
"ext": "agda",
"hexsha": "ada21654d68355a2e75f39555392b669c1a413e0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "tmoux/HoTT-Intro",
"max_forks_repo_path": "Agda/subuniverses.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "tmoux/HoTT-Intro",
"max_issues_repo_path": "Agda/subuniverses.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "22023fd35023cb6804424ce12cd10d252b80fd29",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "tmoux/HoTT-Intro",
"max_stars_repo_path": "Agda/subuniverses.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5811,
"size": 15963
} |
open import Relation.Binary.Core
module PLRTree.Push.Permutation {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_) where
open import Data.List
open import Data.Sum
open import Induction.WellFounded
open import List.Permutation.Base A
open import List.Permutation.Base.Concatenation A
open import List.Permutation.Base.Equivalence A
open import PLRTree {A}
open import PLRTree.Complete {A}
open import PLRTree.Drop _≤_ tot≤
open import PLRTree.Equality {A}
open import PLRTree.Order {A}
open import PLRTree.Order.Properties {A}
lemma-push-∼-≃ : {l r : PLRTree}(x : A) → Complete l → Complete r → l ≃ r → (acc : Acc _≺_ (node perfect x l r)) → flatten (push (node perfect x l r) acc) ∼ flatten (node right x l r)
lemma-push-∼-≃ {l} {r} x cl cr l≃r (acc rs)
with l | r | l≃r | cl | cr
... | leaf | leaf | ≃lf | _ | _ = ∼x /head /head ∼[]
... | node perfect x' l' r' | node perfect x'' l'' r'' | ≃nd .x' .x'' l'≃r' l''≃r'' l'≃l'' | perfect .x' cl' cr' _ | perfect .x'' cl'' cr'' _
with tot≤ x x' | tot≤ x x'' | tot≤ x' x''
... | inj₁ x≤x' | inj₁ x≤x'' | _ = refl∼
... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height perfect x x'' l'' r'' =
let _l = node perfect x' l' r' ;
acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right perfect x _l (node perfect x'' l'' r'')) ;
x''flfpxl''r''∼x''flxfl''fr'' = lemma++∼l {x'' ∷ flatten _l} (lemma-push-∼-≃ x cl'' cr'' l''≃r'' acc-xl''r'') ;
flxfr/x''⟶flxfl''fr'' = lemma++/l {x''} {flatten _l} (/tail /head) ;
x''flxfl''fr''∼flxfr = ∼x /head flxfr/x''⟶flxfl''fr'' refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x''flxfl''fr''∼xflfr = trans∼ x''flxfl''fr''∼flxfr flxfr∼xflfr
in trans∼ x''flfpxl''r''∼x''flxfl''fr'' x''flxfl''fr''∼xflfr
... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height perfect x x' l' r' =
let _r = node perfect x'' l'' r'' ;
acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left perfect x (node perfect x' l' r') _r) ;
fpxl'r'fr∼xfl'fr'fr = lemma++∼r (lemma-push-∼-≃ x cl' cr' l'≃r' acc-xl'r') ;
x'fpxl'r'fr∼x'xfl'fr'fr = ∼x /head /head fpxl'r'fr∼xfl'fr'fr ;
x'xfl'fr'fr∼xflfr = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxl'r'fr∼x'xfl'fr'fr x'xfl'fr'fr∼xflfr
... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height perfect x x' l' r' =
let _r = node perfect x'' l'' r'' ;
acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left perfect x (node perfect x' l' r') _r) ;
fpxl'r'fr∼xfl'fr'fr = lemma++∼r (lemma-push-∼-≃ x cl' cr' l'≃r' acc-xl'r') ;
x'fpxl'r'fr∼x'xfl'fr'fr = ∼x /head /head fpxl'r'fr∼xfl'fr'fr ;
x'xfl'fr'fr∼xflfr = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxl'r'fr∼x'xfl'fr'fr x'xfl'fr'fr∼xflfr
... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height perfect x x'' l'' r'' =
let _l = node perfect x' l' r' ;
acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right perfect x _l (node perfect x'' l'' r'')) ;
x''flfpxl''r''∼x''flxfl''fr'' = lemma++∼l {x'' ∷ flatten _l} (lemma-push-∼-≃ x cl'' cr'' l''≃r'' acc-xl''r'') ;
flxfr/x''⟶flxfl''fr'' = lemma++/l {x''} {flatten _l} (/tail /head) ;
x''flxfl''fr''∼flxfr = ∼x /head flxfr/x''⟶flxfl''fr'' refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x''flxfl''fr''∼xflfr = trans∼ x''flxfl''fr''∼flxfr flxfr∼xflfr
in trans∼ x''flfpxl''r''∼x''flxfl''fr'' x''flxfl''fr''∼xflfr
lemma-push-∼-⋗ : {l r : PLRTree}(x : A) → Complete l → Complete r → l ⋗ r → (acc : Acc _≺_ (node right x l r)) → flatten (push (node right x l r) acc) ∼ flatten (node right x l r)
lemma-push-∼-⋗ {l} {r} x cl cr l⋗r (acc rs)
with l | r | l⋗r | cl | cr
... | leaf | _ | () | _ | _
... | node perfect x' leaf leaf | leaf | ⋗lf .x' | perfect .x' leaf leaf ≃lf | leaf
with tot≤ x x'
... | inj₁ x≤x' = ∼x /head /head (∼x /head /head ∼[])
... | inj₂ x'≤x = ∼x (/tail /head) /head (∼x /head /head ∼[])
lemma-push-∼-⋗ x cl cr l⋗r (acc rs) | node perfect x' l' r' | node perfect x'' l'' r'' | ⋗nd .x' .x'' l'≃r' l''≃r'' l'⋗l'' | perfect .x' cl' cr' _ | perfect .x'' cl'' cr'' _
with tot≤ x x' | tot≤ x x'' | tot≤ x' x''
... | inj₁ x≤x' | inj₁ x≤x'' | _ = refl∼
... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height perfect x x'' l'' r'' =
let _l = node perfect x' l' r' ;
acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right perfect x _l (node perfect x'' l'' r'')) ;
x''flfpxl''r''∼x''flxfl''fr'' = lemma++∼l {x'' ∷ flatten _l} (lemma-push-∼-≃ x cl'' cr'' l''≃r'' acc-xl''r'') ;
flxfr/x''⟶flxfl''fr'' = lemma++/l {x''} {flatten _l} (/tail /head) ;
x''flxfl''fr''∼flxfr = ∼x /head flxfr/x''⟶flxfl''fr'' refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x''flxfl''fr''∼xflfr = trans∼ x''flxfl''fr''∼flxfr flxfr∼xflfr
in trans∼ x''flfpxl''r''∼x''flxfl''fr'' x''flxfl''fr''∼xflfr
... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height perfect x x' l' r' =
let _r = node perfect x'' l'' r'' ;
acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left perfect x (node perfect x' l' r') _r) ;
fpxl'r'fr∼xfl'fr'fr = lemma++∼r (lemma-push-∼-≃ x cl' cr' l'≃r' acc-xl'r') ;
x'fpxl'r'fr∼x'xfl'fr'fr = ∼x /head /head fpxl'r'fr∼xfl'fr'fr ;
x'xfl'fr'fr∼xflfr = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxl'r'fr∼x'xfl'fr'fr x'xfl'fr'fr∼xflfr
... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height perfect x x' l' r' =
let _r = node perfect x'' l'' r'' ;
acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left perfect x (node perfect x' l' r') _r) ;
fpxl'r'fr∼xfl'fr'fr = lemma++∼r (lemma-push-∼-≃ x cl' cr' l'≃r' acc-xl'r') ;
x'fpxl'r'fr∼x'xfl'fr'fr = ∼x /head /head fpxl'r'fr∼xfl'fr'fr ;
x'xfl'fr'fr∼xflfr = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxl'r'fr∼x'xfl'fr'fr x'xfl'fr'fr∼xflfr
... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height perfect x x'' l'' r'' =
let _l = node perfect x' l' r' ;
acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right perfect x _l (node perfect x'' l'' r'')) ;
x''flfpxl''r''∼x''flxfl''fr'' = lemma++∼l {x'' ∷ flatten _l} (lemma-push-∼-≃ x cl'' cr'' l''≃r'' acc-xl''r'') ;
flxfr/x''⟶flxfl''fr'' = lemma++/l {x''} {flatten _l} (/tail /head) ;
x''flxfl''fr''∼flxfr = ∼x /head flxfr/x''⟶flxfl''fr'' refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x''flxfl''fr''∼xflfr = trans∼ x''flxfl''fr''∼flxfr flxfr∼xflfr
in trans∼ x''flfpxl''r''∼x''flxfl''fr'' x''flxfl''fr''∼xflfr
mutual
lemma-push-∼-⋙ : {l r : PLRTree}(x : A) → Complete l → Complete r → l ⋙ r → (acc : Acc _≺_ (node right x l r)) → flatten (push (node right x l r) acc) ∼ flatten (node right x l r)
lemma-push-∼-⋙ {l} {r} x cl cr l⋙r (acc rs)
with l | r | l⋙r | cl | cr
... | leaf | _ | ⋙p () | _ | _
... | node perfect x' leaf leaf | leaf | ⋙p (⋗lf .x') | perfect .x' leaf leaf ≃lf | leaf = lemma-push-∼-⋗ x (perfect x' leaf leaf ≃lf) leaf (⋗lf x') (acc rs)
... | node perfect x' l' r' | node perfect x'' l'' r'' | ⋙p (⋗nd .x' .x'' l'≃r' l''≃r'' l'⋗l'') | perfect .x' cl' cr' _ | perfect .x'' cl'' cr'' _ =
lemma-push-∼-⋗ x (perfect x' cl' cr' l'≃r') (perfect x'' cl'' cr'' l''≃r'') (⋗nd x' x'' l'≃r' l''≃r'' l'⋗l'') (acc rs)
... | node perfect x' leaf leaf | node left _ _ _ | ⋙p () | _ | _
... | node perfect x' leaf leaf | node right _ _ _ | ⋙p () | _ | _
... | node perfect x' l' r' | node left x'' l'' r'' | ⋙l .x' .x'' l'≃r' l''⋘r'' l'⋗r'' | perfect .x' cl' cr' _ | left .x'' cl'' cr'' _
with tot≤ x x' | tot≤ x x'' | tot≤ x' x''
... | inj₁ x≤x' | inj₁ x≤x'' | _ = refl∼
... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height left x x'' l'' r'' =
let _l = node perfect x' l' r' ;
acc-xl''r'' = rs (node left x l'' r'') (lemma-≺-right perfect x _l (node left x'' l'' r'')) ;
x''flfpxl''r''∼x''flxfl''fr'' = lemma++∼l {x'' ∷ flatten _l} (lemma-push-∼-⋘ x cl'' cr'' l''⋘r'' acc-xl''r'') ;
flxfr/x''⟶flxfl''fr'' = lemma++/l {x''} {flatten _l} (/tail /head) ;
x''flxfl''fr''∼flxfr = ∼x /head flxfr/x''⟶flxfl''fr'' refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x''flxfl''fr''∼xflfr = trans∼ x''flxfl''fr''∼flxfr flxfr∼xflfr
in trans∼ x''flfpxl''r''∼x''flxfl''fr'' x''flxfl''fr''∼xflfr
... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height perfect x x' l' r' =
let _r = node left x'' l'' r'' ;
acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left perfect x (node perfect x' l' r') _r) ;
fpxl'r'fr∼xfl'fr'fr = lemma++∼r (lemma-push-∼-≃ x cl' cr' l'≃r' acc-xl'r') ;
x'fpxl'r'fr∼x'xfl'fr'fr = ∼x /head /head fpxl'r'fr∼xfl'fr'fr ;
x'xfl'fr'fr∼xflfr = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxl'r'fr∼x'xfl'fr'fr x'xfl'fr'fr∼xflfr
... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height perfect x x' l' r' =
let _r = node left x'' l'' r'' ;
acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left perfect x (node perfect x' l' r') _r) ;
fpxl'r'fr∼xfl'fr'fr = lemma++∼r (lemma-push-∼-≃ x cl' cr' l'≃r' acc-xl'r') ;
x'fpxl'r'fr∼x'xfl'fr'fr = ∼x /head /head fpxl'r'fr∼xfl'fr'fr ;
x'xfl'fr'fr∼xflfr = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxl'r'fr∼x'xfl'fr'fr x'xfl'fr'fr∼xflfr
... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height left x x'' l'' r'' =
let _l = node perfect x' l' r' ;
acc-xl''r'' = rs (node left x l'' r'') (lemma-≺-right perfect x _l (node left x'' l'' r'')) ;
x''flfpxl''r''∼x''flxfl''fr'' = lemma++∼l {x'' ∷ flatten _l} (lemma-push-∼-⋘ x cl'' cr'' l''⋘r'' acc-xl''r'') ;
flxfr/x''⟶flxfl''fr'' = lemma++/l {x''} {flatten _l} (/tail /head) ;
x''flxfl''fr''∼flxfr = ∼x /head flxfr/x''⟶flxfl''fr'' refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x''flxfl''fr''∼xflfr = trans∼ x''flxfl''fr''∼flxfr flxfr∼xflfr
in trans∼ x''flfpxl''r''∼x''flxfl''fr'' x''flxfl''fr''∼xflfr
lemma-push-∼-⋙ x cl cr l⋙r (acc rs)| node perfect x' l' r' | node right x'' l'' r'' | ⋙r .x' .x'' l'≃r' l''⋙r'' l'≃l'' | perfect .x' cl' cr' _ | right .x'' cl'' cr'' _
with tot≤ x x' | tot≤ x x'' | tot≤ x' x''
... | inj₁ x≤x' | inj₁ x≤x'' | _ = refl∼
... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height right x x'' l'' r'' =
let _l = node perfect x' l' r' ;
acc-xl''r'' = rs (node right x l'' r'') (lemma-≺-right perfect x _l (node right x'' l'' r'')) ;
x''flfpxl''r''∼x''flxfl''fr'' = lemma++∼l {x'' ∷ flatten _l} (lemma-push-∼-⋙ x cl'' cr'' l''⋙r'' acc-xl''r'') ;
flxfr/x''⟶flxfl''fr'' = lemma++/l {x''} {flatten _l} (/tail /head) ;
x''flxfl''fr''∼flxfr = ∼x /head flxfr/x''⟶flxfl''fr'' refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x''flxfl''fr''∼xflfr = trans∼ x''flxfl''fr''∼flxfr flxfr∼xflfr
in trans∼ x''flfpxl''r''∼x''flxfl''fr'' x''flxfl''fr''∼xflfr
... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height perfect x x' l' r' =
let _r = node right x'' l'' r'' ;
acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left perfect x (node perfect x' l' r') _r) ;
fpxl'r'fr∼xfl'fr'fr = lemma++∼r (lemma-push-∼-≃ x cl' cr' l'≃r' acc-xl'r') ;
x'fpxl'r'fr∼x'xfl'fr'fr = ∼x /head /head fpxl'r'fr∼xfl'fr'fr ;
x'xfl'fr'fr∼xflfr = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxl'r'fr∼x'xfl'fr'fr x'xfl'fr'fr∼xflfr
... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height perfect x x' l' r' =
let _r = node right x'' l'' r'' ;
acc-xl'r' = rs (node perfect x l' r') (lemma-≺-left perfect x (node perfect x' l' r') _r) ;
fpxl'r'fr∼xfl'fr'fr = lemma++∼r (lemma-push-∼-≃ x cl' cr' l'≃r' acc-xl'r') ;
x'fpxl'r'fr∼x'xfl'fr'fr = ∼x /head /head fpxl'r'fr∼xfl'fr'fr ;
x'xfl'fr'fr∼xflfr = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxl'r'fr∼x'xfl'fr'fr x'xfl'fr'fr∼xflfr
... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height right x x'' l'' r'' =
let _l = node perfect x' l' r' ;
acc-xl''r'' = rs (node right x l'' r'') (lemma-≺-right perfect x _l (node right x'' l'' r'')) ;
x''flfpxl''r''∼x''flxfl''fr'' = lemma++∼l {x'' ∷ flatten _l} (lemma-push-∼-⋙ x cl'' cr'' l''⋙r'' acc-xl''r'') ;
flxfr/x''⟶flxfl''fr'' = lemma++/l {x''} {flatten _l} (/tail /head) ;
x''flxfl''fr''∼flxfr = ∼x /head flxfr/x''⟶flxfl''fr'' refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x''flxfl''fr''∼xflfr = trans∼ x''flxfl''fr''∼flxfr flxfr∼xflfr
in trans∼ x''flfpxl''r''∼x''flxfl''fr'' x''flxfl''fr''∼xflfr
lemma-push-∼-⋙ x cl cr l⋙r (acc rs) | node left _ _ _ | _ | ⋙p () | _ | _
lemma-push-∼-⋙ x cl cr l⋙r (acc rs) | node right _ _ _ | _ | ⋙p () | _ | _
lemma-push-∼-⋘ : {l r : PLRTree}(x : A) → Complete l → Complete r → l ⋘ r → (acc : Acc _≺_ (node left x l r)) → flatten (push (node left x l r) acc) ∼ flatten (node left x l r)
lemma-push-∼-⋘ {l} {r} x cl cr l⋘r (acc rs)
with l | r | l⋘r | cl | cr
... | node left x' l' r' | node perfect x'' l'' r'' | l⋘ .x' .x'' l'⋘r' l''≃r'' r'≃l'' | left .x' cl' cr' _ | perfect .x'' cl'' cr'' _
with tot≤ x x' | tot≤ x x'' | tot≤ x' x''
... | inj₁ x≤x' | inj₁ x≤x'' | _ = refl∼
... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height perfect x x'' l'' r'' =
let _l = node left x' l' r' ;
acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right perfect x _l (node perfect x'' l'' r'')) ;
x''flfpxl''r''∼x''flxfl''fr'' = lemma++∼l {x'' ∷ flatten _l} (lemma-push-∼-≃ x cl'' cr'' l''≃r'' acc-xl''r'') ;
flxfr/x''⟶flxfl''fr'' = lemma++/l {x''} {flatten _l} (/tail /head) ;
x''flxfl''fr''∼flxfr = ∼x /head flxfr/x''⟶flxfl''fr'' refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x''flxfl''fr''∼xflfr = trans∼ x''flxfl''fr''∼flxfr flxfr∼xflfr
in trans∼ x''flfpxl''r''∼x''flxfl''fr'' x''flxfl''fr''∼xflfr
... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height left x x' l' r' =
let _r = node perfect x'' l'' r'' ;
acc-xl'r' = rs (node left x l' r') (lemma-≺-left perfect x (node left x' l' r') _r) ;
fpxl'r'fr∼xfl'fr'fr = lemma++∼r (lemma-push-∼-⋘ x cl' cr' l'⋘r' acc-xl'r') ;
x'fpxl'r'fr∼x'xfl'fr'fr = ∼x /head /head fpxl'r'fr∼xfl'fr'fr ;
x'xfl'fr'fr∼xflfr = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxl'r'fr∼x'xfl'fr'fr x'xfl'fr'fr∼xflfr
... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height left x x' l' r' =
let _r = node perfect x'' l'' r'' ;
acc-xl'r' = rs (node left x l' r') (lemma-≺-left perfect x (node left x' l' r') _r) ;
fpxl'r'fr∼xfl'fr'fr = lemma++∼r (lemma-push-∼-⋘ x cl' cr' l'⋘r' acc-xl'r') ;
x'fpxl'r'fr∼x'xfl'fr'fr = ∼x /head /head fpxl'r'fr∼xfl'fr'fr ;
x'xfl'fr'fr∼xflfr = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxl'r'fr∼x'xfl'fr'fr x'xfl'fr'fr∼xflfr
... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height perfect x x'' l'' r'' =
let _l = node left x' l' r' ;
acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right perfect x _l (node perfect x'' l'' r'')) ;
x''flfpxl''r''∼x''flxfl''fr'' = lemma++∼l {x'' ∷ flatten _l} (lemma-push-∼-≃ x cl'' cr'' l''≃r'' acc-xl''r'') ;
flxfr/x''⟶flxfl''fr'' = lemma++/l {x''} {flatten _l} (/tail /head) ;
x''flxfl''fr''∼flxfr = ∼x /head flxfr/x''⟶flxfl''fr'' refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x''flxfl''fr''∼xflfr = trans∼ x''flxfl''fr''∼flxfr flxfr∼xflfr
in trans∼ x''flfpxl''r''∼x''flxfl''fr'' x''flxfl''fr''∼xflfr
lemma-push-∼-⋘ x cl cr l⋘r (acc rs) | node right x' (node perfect x'' leaf leaf) leaf | node perfect x''' leaf leaf | x⋘ .x' .x'' .x''' | right .x' (perfect .x'' leaf leaf ≃lf) leaf (⋙p (⋗lf .x'')) | perfect .x''' leaf leaf ≃lf
with tot≤ x x' | tot≤ x x''' | tot≤ x' x'''
... | inj₁ x≤x' | inj₁ x≤x''' | _ = refl∼
... | inj₁ x≤x' | inj₂ x'''≤x | _ =
let _l = node perfect x' (node perfect x'' leaf leaf) leaf ;
acc-x = rs (node perfect x leaf leaf) (lemma-≺-right perfect x _l (node perfect x''' leaf leaf)) ;
x'''flfpx∼x'''flx = lemma++∼l {x''' ∷ flatten _l} (lemma-push-∼-≃ x leaf leaf ≃lf acc-x) ;
flxfr/x'''⟶flx = lemma++/l {x'''} {flatten _l} (/tail /head) ;
x'''flx∼flxfr = ∼x /head flxfr/x'''⟶flx refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x'''flx∼xflfr = trans∼ x'''flx∼flxfr flxfr∼xflfr
in trans∼ x'''flfpx∼x'''flx x'''flx∼xflfr
... | inj₂ x'≤x | inj₁ x≤x''' | _ =
let _r = node perfect x''' leaf leaf ;
acc-xx'' = rs (node right x (node perfect x'' leaf leaf) leaf) (lemma-≺-left perfect x (node right x' (node perfect x'' leaf leaf) leaf) _r) ;
fpxx''x'''∼xx''x''' = lemma++∼r (lemma-push-∼-⋗ x (perfect x'' leaf leaf ≃lf) leaf (⋗lf x'') acc-xx'') ;
x'fpxx''x'''∼x'xx''x''' = ∼x /head /head fpxx''x'''∼xx''x''' ;
x'xx''x'''∼xx'x''x''' = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxx''x'''∼x'xx''x''' x'xx''x'''∼xx'x''x'''
... | inj₂ x'≤x | inj₂ x'''≤x | inj₁ x'≤x''' =
let _r = node perfect x''' leaf leaf ;
acc-xx'' = rs (node right x (node perfect x'' leaf leaf) leaf) (lemma-≺-left perfect x (node right x' (node perfect x'' leaf leaf) leaf) _r) ;
fpxx''x'''∼xx''x''' = lemma++∼r (lemma-push-∼-⋗ x (perfect x'' leaf leaf ≃lf) leaf (⋗lf x'') acc-xx'') ;
x'fpxx''x'''∼x'xx''x''' = ∼x /head /head fpxx''x'''∼xx''x''' ;
x'xx''x'''∼xx'x''x''' = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxx''x'''∼x'xx''x''' x'xx''x'''∼xx'x''x'''
... | inj₂ x'≤x | inj₂ x'''≤x | inj₂ x'''≤x' =
let _l = node perfect x' (node perfect x'' leaf leaf) leaf ;
acc-x = rs (node perfect x leaf leaf) (lemma-≺-right perfect x _l (node perfect x''' leaf leaf)) ;
x'''flfpx∼x'''flx = lemma++∼l {x''' ∷ flatten _l} (lemma-push-∼-≃ x leaf leaf ≃lf acc-x) ;
flxfr/x'''⟶flx = lemma++/l {x'''} {flatten _l} (/tail /head) ;
x'''flx∼flxfr = ∼x /head flxfr/x'''⟶flx refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x'''flx∼xflfr = trans∼ x'''flx∼flxfr flxfr∼xflfr
in trans∼ x'''flfpx∼x'''flx x'''flx∼xflfr
lemma-push-∼-⋘ x cl cr l⋘r (acc rs) | node right x' l' r' | node perfect x'' l'' r'' | r⋘ .x' .x'' l'⋙r' l''≃r'' l'⋗l'' | right .x' cl' cr' _ | perfect .x'' cl'' cr'' _
with tot≤ x x' | tot≤ x x'' | tot≤ x' x''
... | inj₁ x≤x' | inj₁ x≤x'' | _ = refl∼
... | inj₁ x≤x' | inj₂ x''≤x | _ rewrite lemma-≡-height perfect x x'' l'' r'' =
let _l = node right x' l' r' ;
acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right perfect x _l (node perfect x'' l'' r'')) ;
x''flfpxl''r''∼x''flxfl''fr'' = lemma++∼l {x'' ∷ flatten _l} (lemma-push-∼-≃ x cl'' cr'' l''≃r'' acc-xl''r'') ;
flxfr/x''⟶flxfl''fr'' = lemma++/l {x''} {flatten _l} (/tail /head) ;
x''flxfl''fr''∼flxfr = ∼x /head flxfr/x''⟶flxfl''fr'' refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x''flxfl''fr''∼xflfr = trans∼ x''flxfl''fr''∼flxfr flxfr∼xflfr
in trans∼ x''flfpxl''r''∼x''flxfl''fr'' x''flxfl''fr''∼xflfr
... | inj₂ x'≤x | inj₁ x≤x'' | _ rewrite lemma-≡-height right x x' l' r' =
let _r = node perfect x'' l'' r'' ;
acc-xl'r' = rs (node right x l' r') (lemma-≺-left perfect x (node right x' l' r') _r) ;
fpxl'r'fr∼xfl'fr'fr = lemma++∼r (lemma-push-∼-⋙ x cl' cr' l'⋙r' acc-xl'r') ;
x'fpxl'r'fr∼x'xfl'fr'fr = ∼x /head /head fpxl'r'fr∼xfl'fr'fr ;
x'xfl'fr'fr∼xflfr = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxl'r'fr∼x'xfl'fr'fr x'xfl'fr'fr∼xflfr
... | inj₂ x'≤x | inj₂ x''≤x | inj₁ x'≤x'' rewrite lemma-≡-height right x x' l' r' =
let _r = node perfect x'' l'' r'' ;
acc-xl'r' = rs (node right x l' r') (lemma-≺-left perfect x (node right x' l' r') _r) ;
fpxl'r'fr∼xfl'fr'fr = lemma++∼r (lemma-push-∼-⋙ x cl' cr' l'⋙r' acc-xl'r') ;
x'fpxl'r'fr∼x'xfl'fr'fr = ∼x /head /head fpxl'r'fr∼xfl'fr'fr ;
x'xfl'fr'fr∼xflfr = ∼x /head (/tail /head) refl∼
in trans∼ x'fpxl'r'fr∼x'xfl'fr'fr x'xfl'fr'fr∼xflfr
... | inj₂ x'≤x | inj₂ x''≤x | inj₂ x''≤x' rewrite lemma-≡-height perfect x x'' l'' r'' =
let _l = node right x' l' r' ;
acc-xl''r'' = rs (node perfect x l'' r'') (lemma-≺-right perfect x _l (node perfect x'' l'' r'')) ;
x''flfpxl''r''∼x''flxfl''fr'' = lemma++∼l {x'' ∷ flatten _l} (lemma-push-∼-≃ x cl'' cr'' l''≃r'' acc-xl''r'') ;
flxfr/x''⟶flxfl''fr'' = lemma++/l {x''} {flatten _l} (/tail /head) ;
x''flxfl''fr''∼flxfr = ∼x /head flxfr/x''⟶flxfl''fr'' refl∼ ;
flxfr/x⟶flfr = lemma++/ {x} {flatten _l} ;
flxfr∼xflfr = ∼x flxfr/x⟶flfr /head refl∼ ;
x''flxfl''fr''∼xflfr = trans∼ x''flxfl''fr''∼flxfr flxfr∼xflfr
in trans∼ x''flfpxl''r''∼x''flxfl''fr'' x''flxfl''fr''∼xflfr
lemma-push-∼ : {t : PLRTree} → Complete t → (acc : Acc _≺_ t) → flatten (push t acc) ∼ flatten t
lemma-push-∼ leaf _ = ∼[]
lemma-push-∼ (perfect {l} {r}x cl cr l≃r) (acc rs) = lemma-push-∼-≃ x cl cr l≃r (acc rs)
lemma-push-∼ (left {l} {r}x cl cr l⋘r) (acc rs) = lemma-push-∼-⋘ x cl cr l⋘r (acc rs)
lemma-push-∼ (right {l} {r}x cl cr l⋙r) (acc rs) = lemma-push-∼-⋙ x cl cr l⋙r (acc rs)
| {
"alphanum_fraction": 0.472022299,
"avg_line_length": 76.0664556962,
"ext": "agda",
"hexsha": "7e33002b460afcd6abf192c2705b1ad8e4740849",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/PLRTree/Push/Permutation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/PLRTree/Push/Permutation.agda",
"max_line_length": 231,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/PLRTree/Push/Permutation.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 10521,
"size": 24037
} |
{-# OPTIONS --rewriting --prop --confluence-check #-}
open import Agda.Primitive
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
open import Agda.Builtin.Sigma
open import Agda.Builtin.Unit
open import Data.Vec.Base
open import Data.Bool
open import Data.Sum
variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level
record Top ℓ : Set ℓ where
constructor ⟨⟩
{-
Axiomatisation of ExTT
-}
postulate raise : (A : Set ℓ) → A
-- we now state rewrite rules for raise
postulate raise-Pi : (A : Set ℓ) (B : A → Set ℓ₁) →
raise ((a : A) → B a) ≡ λ a → raise (B a)
{-# REWRITE raise-Pi #-}
postulate raise-Sigma : (A : Set ℓ) (B : A → Set ℓ₁) →
raise (Σ A B) ≡ (raise A , raise (B (raise A)))
{-# REWRITE raise-Sigma #-}
nat-rec : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) → (n : Nat) → P n
nat-rec P P0 PS zero = P0
nat-rec P P0 PS (suc n) = PS n (nat-rec P P0 PS n)
postulate raise-nat-rec : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
nat-rec P P0 PS (raise Nat) ≡ raise (P (raise Nat))
{-# REWRITE raise-nat-rec #-}
postulate catch-nat : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
(Praise : P (raise Nat)) → (n : Nat) → P n
postulate catch-nat-zero : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
(Praise : P (raise Nat)) → catch-nat P P0 PS Praise 0 ≡ P0
postulate catch-nat-suc : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
(Praise : P (raise Nat)) → (n : Nat) →
catch-nat P P0 PS Praise (suc n) ≡ PS n (catch-nat P P0 PS Praise n)
postulate catch-nat-raise : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
(Praise : P (raise Nat)) → catch-nat P P0 PS Praise (raise Nat) ≡ Praise
{-# REWRITE catch-nat-zero #-}
{-# REWRITE catch-nat-suc #-}
{-# REWRITE catch-nat-raise #-}
postulate raise-Top : raise (Top ℓ) ≡ ⟨⟩
{-# REWRITE raise-Top #-}
postulate raise-Set : raise (Set ℓ) ≡ Top ℓ
{-# REWRITE raise-Set #-}
{-
Axiomatisation of unk
-}
postulate unk : (A : Set ℓ) → A
-- we now state rewrite rules for unk
postulate unk-Pi : (A : Set ℓ) (B : A → Set ℓ₁) →
unk ((a : A) → B a) ≡ λ a → unk (B a)
{-# REWRITE unk-Pi #-}
postulate unk-Sigma : (A : Set ℓ) (B : A → Set ℓ₁) →
unk (Σ A B) ≡ (unk A , unk (B (unk A)))
{-# REWRITE unk-Sigma #-}
postulate unk-nat-rec : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
nat-rec P P0 PS (unk Nat) ≡ unk (P (unk Nat))
{-# REWRITE unk-nat-rec #-}
postulate catch-unk-nat : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
(Punk : P (unk Nat)) → (n : Nat) → P n
postulate catch-unk-nat-zero : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
(Punk : P (unk Nat)) → catch-unk-nat P P0 PS Punk 0 ≡ P0
postulate catch-unk-nat-suc : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
(Punk : P (unk Nat)) → (n : Nat) →
catch-unk-nat P P0 PS Punk (suc n) ≡ PS n (catch-unk-nat P P0 PS Punk n)
postulate catch-unk-nat-unk : (P : Nat → Set ℓ) (P0 : P 0) (PS : (n : Nat) → P n → P (suc n)) →
(Punk : P (unk Nat)) → catch-unk-nat P P0 PS Punk (unk Nat) ≡ Punk
{-# REWRITE catch-unk-nat-zero #-}
{-# REWRITE catch-unk-nat-suc #-}
{-# REWRITE catch-unk-nat-unk #-}
postulate unk-Top : unk (Top ℓ) ≡ ⟨⟩
{-# REWRITE unk-Top #-}
Unk : ∀ ℓ → Set ℓ
Unk ℓ = unk (Set ℓ)
-- postulate Unk : ∀ ℓ → Set (lsuc ℓ)
-- -- record Unk ℓ : Set (lsuc ℓ) where
-- -- constructor box
-- -- field
-- -- type : Set ℓ
-- -- elem : type
-- postulate raise-Unk : ∀ ℓ → raise (Unk ℓ) ≡ box (raise (Set ℓ)) (raise _)
-- {-# REWRITE raise-Unk #-}
| {
"alphanum_fraction": 0.5098277117,
"avg_line_length": 30.7537313433,
"ext": "agda",
"hexsha": "c2386552d8fb61489c8ad9ba9d99530c0ed2399c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-01-06T13:36:28.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-04-23T17:34:44.000Z",
"max_forks_repo_head_hexsha": "c93256a11d59038998f09a01c5b42f6ffe42d5c4",
"max_forks_repo_licenses": [
"WTFPL"
],
"max_forks_repo_name": "CoqHott/exceptional-tt",
"max_forks_repo_path": "agda-rr/ett-rr.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "c93256a11d59038998f09a01c5b42f6ffe42d5c4",
"max_issues_repo_issues_event_max_datetime": "2019-02-28T18:28:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-02-28T16:35:41.000Z",
"max_issues_repo_licenses": [
"WTFPL"
],
"max_issues_repo_name": "CoqHott/exceptional-tt",
"max_issues_repo_path": "agda-rr/ett-rr.agda",
"max_line_length": 100,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "c93256a11d59038998f09a01c5b42f6ffe42d5c4",
"max_stars_repo_licenses": [
"WTFPL"
],
"max_stars_repo_name": "CoqHott/exceptional-tt",
"max_stars_repo_path": "agda-rr/ett-rr.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-23T12:45:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-10-13T01:31:56.000Z",
"num_tokens": 1515,
"size": 4121
} |
{-# OPTIONS --without-K --safe #-}
open import Algebra.Solver.Ring.AlmostCommutativeRing
-- Some specialised tools for equaltional reasoning.
module Polynomial.Reasoning
{a ℓ}
(ring : AlmostCommutativeRing a ℓ)
where
open AlmostCommutativeRing ring
open import Relation.Binary.Reasoning.Inference setoid public
infixr 1 ≪+_ +≫_ ≪*_ *≫_
≪+_ : ∀ {x₁ x₂ y} → x₁ ≈ x₂ → x₁ + y ≈ x₂ + y
≪+ prf = +-cong prf refl
+≫_ : ∀ {x y₁ y₂} → y₁ ≈ y₂ → x + y₁ ≈ x + y₂
+≫_ = +-cong refl
≪*_ : ∀ {x₁ x₂ y} → x₁ ≈ x₂ → x₁ * y ≈ x₂ * y
≪* prf = *-cong prf refl
*≫_ : ∀ {x y₁ y₂} → y₁ ≈ y₂ → x * y₁ ≈ x * y₂
*≫_ = *-cong refl
{-# INLINE ≪*_ #-}
{-# INLINE ≪+_ #-}
{-# INLINE *≫_ #-}
{-# INLINE +≫_ #-}
-- transitivity as an operator
infixr 0 _⊙_
_⊙_ : ∀ {x y z} → x ≈ y → y ≈ z → x ≈ z
_⊙_ = trans
{-# INLINE _⊙_ #-}
| {
"alphanum_fraction": 0.5672009864,
"avg_line_length": 22.5277777778,
"ext": "agda",
"hexsha": "d95b216d5114f74b7388a131ed18a2b4ad4fd5b9",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z",
"max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/agda-ring-solver",
"max_forks_repo_path": "src/Polynomial/Reasoning.agda",
"max_issues_count": 5,
"max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/agda-ring-solver",
"max_issues_repo_path": "src/Polynomial/Reasoning.agda",
"max_line_length": 61,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/agda-ring-solver",
"max_stars_repo_path": "src/Polynomial/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z",
"num_tokens": 361,
"size": 811
} |
module Logic.Propositional where
open import Data
open import Data.Either as Either using (_‖_)
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Functional
open import Logic
import Lvl
open import Type
infixl 1010 ¬_ ¬¬_
infixl 1005 _∧_
infixl 1004 _∨_
infixl 1000 _↔_
------------------------------------------
-- Conjunction (AND)
_∧_ : ∀{ℓ₁ ℓ₂} → Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
_∧_ = _⨯_
pattern [∧]-intro p q = p , q
[∧]-elimₗ : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → (P ∧ Q) → P
[∧]-elimₗ = Tuple.left
[∧]-elimᵣ : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → (P ∧ Q) → Q
[∧]-elimᵣ = Tuple.right
[∧]-map = Tuple.map
------------------------------------------
-- Implication
[→]-elim : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → P → (P → Q) → Q
[→]-elim p f = f(p)
[→]-intro : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → (P → Q) → (P → Q)
[→]-intro f(p) = f(p)
------------------------------------------
-- Reverse implication
open Functional using (_←_) public
[←]-intro : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → (P → Q) → (Q ← P)
[←]-intro = [→]-intro
[←]-elim : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → P → (Q ← P) → Q
[←]-elim = [→]-elim
------------------------------------------
-- Equivalence
_↔_ : ∀{ℓ₁ ℓ₂} → Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
P ↔ Q = ((P ← Q) ⨯ (P → Q))
pattern [↔]-intro l r = l , r
[↔]-elimₗ : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → Q → (P ↔ Q) → P
[↔]-elimₗ = swap Tuple.left
[↔]-elimᵣ : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → P → (P ↔ Q) → Q
[↔]-elimᵣ = swap Tuple.right
[↔]-to-[←] : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → (P ↔ Q) → (Q → P)
[↔]-to-[←] = Tuple.left
[↔]-to-[→] : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → (P ↔ Q) → (P → Q)
[↔]-to-[→] = Tuple.right
------------------------------------------
-- Disjunction (OR)
_∨_ : ∀{ℓ₁ ℓ₂} → Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
_∨_ = _‖_
pattern [∨]-introₗ l = Either.Left l
pattern [∨]-introᵣ r = Either.Right r
[∨]-elim : ∀{ℓ₁ ℓ₂ ℓ₃}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}}{R : Stmt{ℓ₃}} → (P → R) → (Q → R) → (P ∨ Q) → R
[∨]-elim = Either.map1
[∨]-elim2 = Either.map
------------------------------------------
-- Bottom (false, absurdity, empty, contradiction)
⊥ : Stmt{Lvl.𝟎}
⊥ = Empty
[⊥]-intro : ∀{ℓ}{P : Stmt{ℓ}} → P → (P → ⊥) → ⊥
[⊥]-intro = apply
[⊥]-elim : ∀{ℓ}{P : Stmt{ℓ}} → ⊥ → P
[⊥]-elim = empty
------------------------------------------
-- Top (true, truth, unit, validity)
⊤ : Stmt{Lvl.𝟎}
⊤ = Unit
pattern [⊤]-intro = <>
------------------------------------------
-- Negation
¬_ : ∀{ℓ} → Stmt{ℓ} → Stmt
¬_ {ℓ} T = (T → ⊥)
[¬]-intro : ∀{ℓ}{P : Stmt{ℓ}} → (P → ⊥) → (¬ P)
[¬]-intro = id
[¬]-elim : ∀{ℓ}{P : Stmt{ℓ}} → (¬ P) → (P → ⊥) -- written like (P → (¬ P) → ⊥) looks like a [⊥]-intro
[¬]-elim = id
¬¬_ : ∀{ℓ} → Stmt{ℓ} → Stmt
¬¬ p = ¬(¬ p)
------------------------------------------
-- Exclusive disjunction (XOR)
data _⊕_ {ℓ₁ ℓ₂} (P : Stmt{ℓ₁}) (Q : Stmt{ℓ₂}) : Stmt{ℓ₁ Lvl.⊔ ℓ₂} where
[⊕]-introₗ : P → (¬ Q) → (P ⊕ Q)
[⊕]-introᵣ : Q → (¬ P) → (P ⊕ Q)
------------------------------------------
-- Negative disjunction (NOR)
_⊽_ : ∀{ℓ₁ ℓ₂} → Stmt{ℓ₁} → Stmt{ℓ₂} → Stmt
p ⊽ q = (¬ p) ∧ (¬ q)
[⊽]-intro : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → (¬ P) → (¬ Q) → (P ⊽ Q)
[⊽]-intro = [∧]-intro
[⊽]-elimₗ : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → (P ⊽ Q) → ¬ P
[⊽]-elimₗ = [∧]-elimₗ
[⊽]-elimᵣ : ∀{ℓ₁ ℓ₂}{P : Stmt{ℓ₁}}{Q : Stmt{ℓ₂}} → (P ⊽ Q) → ¬ Q
[⊽]-elimᵣ = [∧]-elimᵣ
------------------------------------------
-- Negative conjunction (NAND)
-- data _⊼_ {P : Stmt} {Q : Stmt} : Stmt where
-- [⊼]-intro ¬(P ∧ Q) → (P ⊼ Q)
--
-- [⊼]-elim : {P Q : Stmt} → (P ⨯ Q ⨯ (P ⊼ Q)) → ⊥
-- [⊼]-elim(p , q , nand)
| {
"alphanum_fraction": 0.4161370544,
"avg_line_length": 23.9668874172,
"ext": "agda",
"hexsha": "3e0d402ebf25a9271d818772403035a275fc9074",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Logic/Propositional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Logic/Propositional.agda",
"max_line_length": 101,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Logic/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1741,
"size": 3619
} |
{- Basic theory about transport:
- transport is invertible
- transport is an equivalence ([transportEquiv])
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.Transport where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
-- Direct definition of transport filler, note that we have to
-- explicitly tell Agda that the type is constant (like in CHM)
transpFill : ∀ {ℓ} {A : Type ℓ}
(φ : I)
(A : (i : I) → Type ℓ [ φ ↦ (λ _ → A) ])
(u0 : outS (A i0))
→ --------------------------------------
PathP (λ i → outS (A i)) u0 (transp (λ i → outS (A i)) φ u0)
transpFill φ A u0 i = transp (λ j → outS (A (i ∧ j))) (~ i ∨ φ) u0
transport⁻ : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → B → A
transport⁻ p = transport (λ i → p (~ i))
transport⁻Transport : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (a : A) →
transport⁻ p (transport p a) ≡ a
transport⁻Transport p a j =
transp (λ i → p (~ i ∧ ~ j)) j (transp (λ i → p (i ∧ ~ j)) j a)
transportTransport⁻ : ∀ {ℓ} {A B : Type ℓ} → (p : A ≡ B) → (b : B) →
transport p (transport⁻ p b) ≡ b
transportTransport⁻ p b j =
transp (λ i → p (i ∨ j)) j (transp (λ i → p (~ i ∨ j)) j b)
-- Transport is an equivalence
isEquivTransport : ∀ {ℓ} {A B : Type ℓ} (p : A ≡ B) → isEquiv (transport p)
isEquivTransport {A = A} {B = B} p =
transport (λ i → isEquiv (λ x → transp (λ j → p (i ∧ j)) (~ i) x)) (idIsEquiv A)
transportEquiv : ∀ {ℓ} {A B : Type ℓ} → A ≡ B → A ≃ B
transportEquiv p = (transport p , isEquivTransport p)
| {
"alphanum_fraction": 0.541003672,
"avg_line_length": 36.3111111111,
"ext": "agda",
"hexsha": "e6711488e753acbe3532788270bcaa6d40b2aa20",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/Foundations/Transport.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/Foundations/Transport.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/Foundations/Transport.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 582,
"size": 1634
} |
------------------------------------------------------------------------
-- Injections
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Equality
module Injection
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open Derived-definitions-and-properties eq
open import Prelude as P hiding (id) renaming (_∘_ to _⊚_)
------------------------------------------------------------------------
-- Injections
-- The property of being injective.
Injective : ∀ {a b} {A : Type a} {B : Type b} → (A → B) → Type (a ⊔ b)
Injective f = ∀ {x y} → f x ≡ f y → x ≡ y
infix 0 _↣_
-- Injections.
record _↣_ {f t} (From : Type f) (To : Type t) : Type (f ⊔ t) where
field
to : From → To
injective : Injective to
------------------------------------------------------------------------
-- Preorder
-- _↣_ is a preorder.
id : ∀ {a} {A : Type a} → A ↣ A
id = record
{ to = P.id
; injective = P.id
}
infixr 9 _∘_
_∘_ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} →
B ↣ C → A ↣ B → A ↣ C
f ∘ g = record
{ to = to′
; injective = injective′
}
where
open _↣_
to′ = to f ⊚ to g
injective′ : Injective to′
injective′ = injective g ⊚ injective f
-- "Equational" reasoning combinators.
infix -1 finally-↣
infixr -2 step-↣
-- For an explanation of why step-↣ is defined in this way, see
-- Equality.step-≡.
step-↣ : ∀ {a b c} (A : Type a) {B : Type b} {C : Type c} →
B ↣ C → A ↣ B → A ↣ C
step-↣ _ = _∘_
syntax step-↣ A B↣C A↣B = A ↣⟨ A↣B ⟩ B↣C
finally-↣ : ∀ {a b} (A : Type a) (B : Type b) → A ↣ B → A ↣ B
finally-↣ _ _ A↣B = A↣B
syntax finally-↣ A B A↣B = A ↣⟨ A↣B ⟩□ B □
| {
"alphanum_fraction": 0.4513325608,
"avg_line_length": 22.4155844156,
"ext": "agda",
"hexsha": "2ecbfe82fc6d1a52646995066d65f7af709df2c8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Injection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Injection.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Injection.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 610,
"size": 1726
} |
module Negation where
-- Imports
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_)
-- open import plfa.part1.Isomorphism using (_≃_; extensionality)
-- 同型 (isomorphism)
infix 0 _≃_
record _≃_ (A B : Set) : Set where
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
to∘from : ∀ (y : B) → to (from y) ≡ y
open _≃_
postulate
-- 外延性の公理
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
-- Negation (否定)
infix 3 ¬_
¬_ : Set → Set
¬ A = A → ⊥
¬-elim : ∀ {A : Set}
→ ¬ A
→ A
---
→ ⊥
¬-elim ¬x x = ¬x x
-- 二重否定の導入則
¬¬-intro : ∀ {A : Set}
→ A
-----
→ ¬ ¬ A
¬¬-intro x = λ{¬x → ¬x x}
-- 二重否定の導入則
¬¬-intro′ : ∀ {A : Set}
→ A
-----
→ ¬ ¬ A
¬¬-intro′ x ¬x = ¬x x
-- 三重否定の除去則
¬¬¬-elim : ∀ {A : Set}
→ ¬ ¬ ¬ A
-------
→ ¬ A
¬¬¬-elim ¬¬¬x = λ x → ¬¬¬x (¬¬-intro x)
-- 対偶 (contraposition)
contraposition : ∀ {A B : Set}
→ (A → B)
-----------
→ (¬ B → ¬ A)
contraposition f ¬y x = ¬y (f x)
-- 不等号(inequality)
_≢_ : ∀ {A : Set} → A → A → Set
x ≢ y = ¬ (x ≡ y)
_ : 1 ≢ 2
_ = λ()
peano : ∀ {m : ℕ} → zero ≢ suc m
peano = λ()
id : ⊥ → ⊥
id x = x
id′ : ⊥ → ⊥
id′ ()
id≡id′ : id ≡ id′
id≡id′ = extensionality (λ())
-- 同化
assimilation : ∀ {A : Set} (¬x ¬x′ : ¬ A) → ¬x ≡ ¬x′
assimilation ¬x ¬x′ = extensionality (λ x → ⊥-elim (¬x x))
-- Excluded middle is irrefutable
-- 排中律 (excluded middle)
postulate
em : ∀ {A : Set} → A ⊎ ¬ A
-- 排中律は反駁できない
em-irrefutable : ∀ {A : Set} → ¬ ¬ (A ⊎ ¬ A)
em-irrefutable k = k (inj₂ λ{ x → k (inj₁ x) })
| {
"alphanum_fraction": 0.4791666667,
"avg_line_length": 17.4117647059,
"ext": "agda",
"hexsha": "09f3184d917c67acda7441a98a345efa2e385daa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/negation/Negation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/negation/Negation.agda",
"max_line_length": 67,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/negation/Negation.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 820,
"size": 1776
} |
{-# OPTIONS --copatterns #-}
module Control.Functor.NaturalTransformation where
open import Function using (id; _∘_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; cong; cong₂; module ≡-Reasoning)
open ≡-Reasoning
open import Control.Functor using (Functor; module Functor; Const)
open import Control.Category using (Category; module Category)
-- Natural transformations.
IsNatTrans : (F! G! : Functor) →
let open Functor F! using () renaming (F to F; map to mapF)
open Functor G! using () renaming (F to G; map to mapG)
in
(n : ∀ {A} → F A → G A) → Set₁
IsNatTrans F! G! eta = ∀ {A B} (f : A → B) →
let open Functor F! using () renaming (F to F; map to mapF)
open Functor G! using () renaming (F to G; map to mapG)
in
eta ∘ mapF f ≡ mapG f ∘ eta
-- Constant-Constant natural transformation.
KKNat : ∀ {A B} (η : A → B) → IsNatTrans (Const A) (Const B) η
KKNat η = λ f → refl
-- Natural transformations (packaged).
record NatTrans (F! G! : Functor) : Set₁ where
open Functor F! using () renaming (F to F; map to mapF)
open Functor G! using () renaming (F to G; map to mapG)
field
eta : ∀ {A} → F A → G A
naturality : ∀ {A B} (f : A → B) →
eta ∘ mapF f ≡ mapG f ∘ eta
-- To use naturality in applications:
postulate
app-naturality : ∀ {A : Set} {B C : A → Set}
(f : (x : A) → B x → C x)
(g : (x : A) → F (B x))
(x : A) →
eta (mapF (f x) (g x)) ≡ mapG (f x) (eta (g x))
-- app-naturality g f x = {!!}
open NatTrans
-- The identity natural transformation.
Id : ∀ {F! : Functor} → NatTrans F! F!
Id {F! = F!} = record { eta = λ x → x ; naturality = λ f → refl }
-- Natural transformations compose.
Comp : ∀ {F! G! H! : Functor} → NatTrans F! G! → NatTrans G! H! → NatTrans F! H!
Comp {F! = F!}{G! = G!}{H! = H!} n m = record { eta = nm ; naturality = snm }
where
open Functor F! using () renaming (F to F; map to mapF)
open Functor G! using () renaming (F to G; map to mapG)
open Functor H! using () renaming (F to H; map to mapH)
nm : ∀ {A} → F A → H A
nm = λ x → eta m (eta n x)
snm : ∀ {A B} (f : A → B) →
nm ∘ mapF f ≡ mapH f ∘ nm
snm f = begin
nm ∘ mapF f ≡⟨⟩
eta m ∘ eta n ∘ mapF f ≡⟨ cong (λ z → eta m ∘ z) (naturality n f) ⟩
eta m ∘ mapG f ∘ eta n ≡⟨ cong (λ z → z ∘ eta n) (naturality m f) ⟩
mapH f ∘ eta m ∘ eta n ≡⟨⟩
mapH f ∘ nm
∎
-- Natural transformation between constant functors.
ConstNat : ∀ {A B} (η : A → B) → NatTrans (Const A) (Const B)
ConstNat η = record
{ eta = η
; naturality = λ f → refl
}
-- Functor category.
FunctorHom : ∀ (F G : Functor) → Setoid _ _
FunctorHom F G = record
{ Carrier = NatTrans F G
; _≈_ = λ n m → ∀ {A} → eta n {A} ≡ eta m {A}
; isEquivalence = record
{ refl = refl
; sym = λ p → sym p
; trans = λ p q → trans p q
}
}
FUNCTOR : Category _ _ _
FUNCTOR = record
{ Hom = FunctorHom
; isCategory = record
{ ops = record
{ id = Id
; _⟫_ = Comp
}
; laws = record
{ id-first = refl
; id-last = refl
; ∘-assoc = λ f → refl
; ∘-cong = λ n≡n' m≡m' → cong₂ (λ m n x → m (n x)) m≡m' n≡n' }
}
}
| {
"alphanum_fraction": 0.5472547255,
"avg_line_length": 26.4523809524,
"ext": "agda",
"hexsha": "787593912f22098d49b63d4d5b8f8215d7abbd74",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Control/Functor/NaturalTransformation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Control/Functor/NaturalTransformation.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Control/Functor/NaturalTransformation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1199,
"size": 3333
} |
module Test2 where
open import Test
-- Testing the inter-file goto facility.
test : ℕ
test = 12 + 34 + 56
-- Testing qualified names.
Eq = Test.Equiv {Test.ℕ}
| {
"alphanum_fraction": 0.6890243902,
"avg_line_length": 12.6153846154,
"ext": "agda",
"hexsha": "c5e85d09da68cfcddf1da4c74fa4e1a6cb60b776",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/syntax/highlighting/Test2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/syntax/highlighting/Test2.agda",
"max_line_length": 40,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/syntax/highlighting/Test2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 48,
"size": 164
} |
module Sort (A : Set)(_<_ : A → A → Set) where | {
"alphanum_fraction": 0.5652173913,
"avg_line_length": 46,
"ext": "agda",
"hexsha": "b7ab4339122de797aebe3af99a2dc894af49cce6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "neosimsim/merkdas",
"max_forks_repo_path": "dependently-typed-programming-in-agda_norell-chapman/Sort.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "neosimsim/merkdas",
"max_issues_repo_path": "dependently-typed-programming-in-agda_norell-chapman/Sort.agda",
"max_line_length": 46,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "112a706f266941d6ec8cb107d18476f9d7ffbbc6",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "neosimsim/merkdas",
"max_stars_repo_path": "dependently-typed-programming-in-agda_norell-chapman/Sort.agda",
"max_stars_repo_stars_event_max_datetime": "2020-05-26T08:08:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-26T08:08:13.000Z",
"num_tokens": 16,
"size": 46
} |
module Everything where
open import Relation.Binary.Core
postulate A : Set
postulate _≤_ : A → A → Set
postulate tot≤ : Total _≤_
postulate trans≤ : Transitive _≤_
open import BBHeap.Everything _≤_ tot≤ trans≤
open import BHeap.Everything _≤_ tot≤
open import BTree.Complete.Alternative.Correctness {A}
open import BubbleSort.Everything _≤_ tot≤ trans≤
open import Heapsort.Everything _≤_ tot≤ trans≤
open import InsertSort.Everything _≤_ tot≤
open import List.Permutation.Base.Bag A
open import Mergesort.Everything _≤_ tot≤
open import PLRTree.Everything _≤_ tot≤ trans≤
open import Quicksort.Everything _≤_ tot≤ trans≤
open import SelectSort.Everything _≤_ tot≤ trans≤
open import TreeSort.Everything _≤_ tot≤ trans≤
| {
"alphanum_fraction": 0.7752043597,
"avg_line_length": 22.2424242424,
"ext": "agda",
"hexsha": "4a696337d00519e048501af3c107c0f237dc46cb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/Everything.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/Everything.agda",
"max_line_length": 54,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 253,
"size": 734
} |
-----------------------------------------------------------------------
-- This file defines DC₂(Sets) and its SMC structure. --
-----------------------------------------------------------------------
module DC2Sets where
open import prelude
-- The objects:
Obj : Set₁
Obj = Σ[ U ∈ Set ] (Σ[ X ∈ Set ] (U → X → Set))
-- The morphisms:
Hom : Obj → Obj → Set
Hom (U , X , α) (V , Y , β) =
Σ[ f ∈ (U → V) ]
(Σ[ F ∈ (U → Y → X) ] (∀{u : U}{y : Y} → α u (F u y) → β (f u) y))
-- Composition:
comp : {A B C : Obj} → Hom A B → Hom B C → Hom A C
comp {(U , X , α)} {(V , Y , β)} {(W , Z , γ)} (f , F , p₁) (g , G , p₂) =
(g ∘ f , (λ u z → F u (G (f u) z)), (λ {u} {y} p₃ → p₂ (p₁ p₃)))
infixl 5 _○_
_○_ = comp
-- The contravariant hom-functor:
Homₐ : {A' A B B' : Obj} → Hom A' A → Hom B B' → Hom A B → Hom A' B'
Homₐ f h g = comp f (comp g h)
-- The identity function:
id : {A : Obj} → Hom A A
id {(U , V , α)} = (id-set , curry snd , id-set)
-- In this formalization we will only worry about proving that the
-- data of morphisms are equivalent, and not worry about the morphism
-- conditions. This will make proofs shorter and faster.
--
-- If we have parallel morphisms (f,F) and (g,G) in which we know that
-- f = g and F = G, then the condition for (f,F) will imply the
-- condition of (g,G) and vice versa. Thus, we can safely ignore it.
infix 4 _≡h_
_≡h_ : {A B : Obj} → (f g : Hom A B) → Set
_≡h_ {(U , X , α)}{(V , Y , β)} (f , F , p₁) (g , G , p₂) = f ≡ g × F ≡ G
≡h-refl : {A B : Obj}{f : Hom A B} → f ≡h f
≡h-refl {U , X , α}{V , Y , β}{f , F , _} = refl , refl
≡h-trans : ∀{A B}{f g h : Hom A B} → f ≡h g → g ≡h h → f ≡h h
≡h-trans {U , X , α}{V , Y , β}{f , F , _}{g , G , _}{h , H , _} (p₁ , p₂) (p₃ , p₄) rewrite p₁ | p₂ | p₃ | p₄ = refl , refl
≡h-sym : ∀{A B}{f g : Hom A B} → f ≡h g → g ≡h f
≡h-sym {U , X , α}{V , Y , β}{f , F , _}{g , G , _} (p₁ , p₂) rewrite p₁ | p₂ = refl , refl
≡h-subst-○ : ∀{A B C}{f₁ f₂ : Hom A B}{g₁ g₂ : Hom B C}{j : Hom A C}
→ f₁ ≡h f₂
→ g₁ ≡h g₂
→ f₂ ○ g₂ ≡h j
→ f₁ ○ g₁ ≡h j
≡h-subst-○ {U , X , α}
{V , Y , β}
{W , Z , γ}
{f₁ , F₁ , _}
{f₂ , F₂ , _}
{g₁ , G₁ , _}
{g₂ , G₂ , _}
{j , J , _}
(p₅ , p₆) (p₇ , p₈) (p₉ , p₁₀) rewrite p₅ | p₆ | p₇ | p₈ | p₉ | p₁₀ = refl , refl
○-assoc : ∀{A B C D}{f : Hom A B}{g : Hom B C}{h : Hom C D}
→ f ○ (g ○ h) ≡h (f ○ g) ○ h
○-assoc {U , X , α}{V , Y , β}{W , Z , γ}{S , T , ι}
{f , F , _}{g , G , _}{h , H , _} = refl , refl
○-idl : ∀{A B}{f : Hom A B} → id ○ f ≡h f
○-idl {U , X , _}{V , Y , _}{f , F , _} = refl , refl
○-idr : ∀{A B}{f : Hom A B} → f ○ id ≡h f
○-idr {U , X , _}{V , Y , _}{f , F , _} = refl , refl
-----------------------------------------------------------------------
-- DC₂(Sets) is a SMC --
-----------------------------------------------------------------------
-- The tensor functor: ⊗
_⊗ᵣ_ : ∀{U X V Y : Set} → (U → X → Set) → (V → Y → Set) → ((U × V) → (X × Y) → Set)
_⊗ᵣ_ α β (u , v) (x , y) = (α u x) × (β v y)
_⊗ₒ_ : (A B : Obj) → Obj
(U , X , α) ⊗ₒ (V , Y , β) = ((U × V) , (X × Y) , α ⊗ᵣ β)
F⊗ : ∀{Z T V X U Y : Set}{F : U → Z → X}{G : V → T → Y} → (U × V) → (Z × T) → (X × Y)
F⊗ {F = F}{G} (u , v) (z , t) = F u z , G v t
_⊗ₐ_ : {A B C D : Obj} → Hom A C → Hom B D → Hom (A ⊗ₒ B) (C ⊗ₒ D)
_⊗ₐ_ {(U , X , α)}{(V , Y , β)}{(W , Z , γ)}{(S , T , δ)} (f , F , p₁) (g , G , p₂) = ⟨ f , g ⟩ , F⊗ {F = F}{G} , p⊗
where
p⊗ : {u : Σ U (λ x → V)} {y : Σ Z (λ x → T)} → (α ⊗ᵣ β) u (F⊗ {F = F}{G} u y) → (γ ⊗ᵣ δ) (⟨ f , g ⟩ u) y
p⊗ {u , v}{z , t} (p₃ , p₄) = p₁ p₃ , p₂ p₄
-- The unit for tensor:
ι : ⊤ → ⊤ → Set
ι triv triv = ⊤
I : Obj
I = (⊤ , ⊤ , ι)
J : Obj
J = (⊤ , ⊤ , (λ x y → ⊥))
-- The left-unitor:
λ⊗-p : ∀{U X α}{u : Σ ⊤ (λ x → U)} {y : X} → (ι ⊗ᵣ α) u (triv , y) → α (snd u) y
λ⊗-p {U}{X}{α}{(triv , u)}{x} = snd
λ⊗ : ∀{A : Obj} → Hom (I ⊗ₒ A) A
λ⊗ {(U , X , α)} = snd , (λ _ x → triv , x) , λ⊗-p
λ⊗-inv : ∀{A : Obj} → Hom A (I ⊗ₒ A)
λ⊗-inv {(U , X , α)} = (λ u → triv , u) , (λ _ r → snd r) , λ⊗-inv-p
where
λ⊗-inv-p : ∀{U X α}{u : U} {y : Σ ⊤ (λ x → X)} → α u (snd y) → (ι ⊗ᵣ α) (triv , u) y
λ⊗-inv-p {U}{X}{α}{u}{triv , x} p = triv , p
-- The right-unitor:
ρ⊗ : ∀{A : Obj} → Hom (A ⊗ₒ I) A
ρ⊗ {(U , X , α)} = fst , (λ r x → x , triv) , ρ⊗-p
where
ρ⊗-p : ∀{U X α}{u : Σ U (λ x → ⊤)} {y : X} → (α ⊗ᵣ ι) u (y , triv) → α (fst u) y
ρ⊗-p {U}{X}{α}{(u , _)}{x} (p , _) = p
ρ⊗-inv : ∀{A : Obj} → Hom A (A ⊗ₒ I)
ρ⊗-inv {(U , X , α)} = (λ u → u , triv) , (λ u r → fst r) , ρ⊗-p-inv
where
ρ⊗-p-inv : ∀{U X α}{u : U} {y : Σ X (λ x → ⊤)} → α u (fst y) → (α ⊗ᵣ ι) (u , triv) y
ρ⊗-p-inv {U}{X}{α}{u}{x , triv} p = p , triv
-- Symmetry:
β⊗ : ∀{A B : Obj} → Hom (A ⊗ₒ B) (B ⊗ₒ A)
β⊗ {(U , X , α)}{(V , Y , β)} = twist-× , (λ r₁ r₂ → twist-× r₂) , β⊗-p
where
β⊗-p : ∀{U V Y X α β}{u : Σ U (λ x → V)} {y : Σ Y (λ x → X)} → (α ⊗ᵣ β) u (twist-× y) → (β ⊗ᵣ α) (twist-× u) y
β⊗-p {U}{V}{Y}{X}{α}{β}{u , v}{y , x} = twist-×
-- The associator:
Fα-inv : ∀{ℓ}{U V W X Y Z : Set ℓ} → (U × (V × W)) → ((X × Y) × Z) → (X × (Y × Z))
Fα-inv (u , (v , w)) ((x , y) , z) = x , y , z
α⊗-inv : ∀{A B C : Obj} → Hom (A ⊗ₒ (B ⊗ₒ C)) ((A ⊗ₒ B) ⊗ₒ C)
α⊗-inv {(U , X , α)}{(V , Y , β)}{(W , Z , γ)} = rl-assoc-× , Fα-inv , α-inv-cond
where
α-inv-cond : {u : Σ U (λ x → Σ V (λ x₁ → W))}{y : Σ (Σ X (λ x → Y)) (λ x → Z)}
→ (α ⊗ᵣ (β ⊗ᵣ γ)) u (Fα-inv u y)
→ ((α ⊗ᵣ β) ⊗ᵣ γ) (rl-assoc-× u) y
α-inv-cond {u , (v , w)}{(x , y) , z} (p₁ , (p₂ , p₃)) = (p₁ , p₂) , p₃
Fα : ∀{V W X Y U Z : Set} → ((U × V) × W) → (X × (Y × Z)) → ((X × Y) × Z)
Fα {V}{W}{X}{Y}{U}{Z} ((u , v) , w) (x , (y , z)) = (x , y) , z
α⊗ : ∀{A B C : Obj} → Hom ((A ⊗ₒ B) ⊗ₒ C) (A ⊗ₒ (B ⊗ₒ C))
α⊗ {(U , X , α)}{(V , Y , β)}{(W , Z , γ)} = (lr-assoc-× , Fα , α-cond)
where
α-cond : {u : Σ (Σ U (λ x → V)) (λ x → W)}
{y : Σ X (λ x → Σ Y (λ x₁ → Z))} →
((α ⊗ᵣ β) ⊗ᵣ γ) u (Fα u y) → (α ⊗ᵣ (β ⊗ᵣ γ)) (lr-assoc-× u) y
α-cond {(u , v) , w}{x , (y , z)} ((p₁ , p₂) , p₃) = p₁ , p₂ , p₃
α⊗-id₁ : ∀{A B C} → (α⊗ {A}{B}{C}) ○ α⊗-inv ≡h id
α⊗-id₁ {U , X , α}{V , Y , β}{W , Z , γ} = ext-set aux , ext-set aux'
where
aux : {a : Σ (Σ U (λ x → V)) (λ x → W)} → rl-assoc-× (lr-assoc-× a) ≡ a
aux {(u , v) , w} = refl
aux' : {a : Σ (Σ U (λ x → V)) (λ x → W)} → (λ z → Fα {V}{W}{X}{Y}{U}{Z} a (Fα-inv (lr-assoc-× a) z)) ≡ (λ y → y)
aux' {(u , v), w} = ext-set aux''
where
aux'' : {a : Σ (Σ X (λ x → Y)) (λ x → Z)} → Fα ((u , v) , w) (Fα-inv (u , v , w) a) ≡ a
aux'' {(x , y) , z} = refl
α⊗-id₂ : ∀{A B C} → (α⊗-inv {A}{B}{C}) ○ α⊗ ≡h id
α⊗-id₂ {U , X , α}{V , Y , β}{W , Z , γ} = ext-set aux , ext-set aux'
where
aux : {a : Σ U (λ x → Σ V (λ x₁ → W))} → lr-assoc-× (rl-assoc-× a) ≡ a
aux {u , (v , w)} = refl
aux' : {a : Σ U (λ x → Σ V (λ x₁ → W))} → (λ z → Fα-inv {_}{U}{V}{W}{X}{Y}{Z} a (Fα (rl-assoc-× a) z)) ≡ (λ y → y)
aux' {u , (v , w)} = ext-set aux''
where
aux'' : {a : Σ X (λ x → Σ Y (λ x₁ → Z))} → Fα-inv (u , v , w) (Fα ((u , v) , w) a) ≡ a
aux'' {x , (y , z)} = refl
-- Internal hom:
⊸-cond : ∀{U V X Y : Set}{α : U → X → Set}{β : V → Y → Set}
→ Σ (U → V) (λ x → U → Y → X)
→ Σ U (λ x → Y)
→ Set
⊸-cond {α = α}{β} (f , F) (u , y) = α u (F u y) → β (f u) y
_⊸ₒ_ : Obj → Obj → Obj
(U , X , α) ⊸ₒ (V , Y , β) = ((U → V) × (U → Y → X)) , ((U × Y) , ⊸-cond {α = α}{β})
_⊸ₐ_ : {A B C D : Obj} → Hom C A → Hom B D → Hom (A ⊸ₒ B) (C ⊸ₒ D)
_⊸ₐ_ {(U , X , α)}{(V , Y , β)}{(W , Z , γ)}{(S , T , δ)} (f , F , p₁) (g , G , p₂) =
h , H , cond
where
h : Σ (U → V) (λ x → U → Y → X) → Σ (W → S) (λ x → W → T → Z)
h (i , I) = (λ w → g (i (f w))) , (λ w t → F w (I (f w) (G (i (f w)) t)))
H : Σ (U → V) (λ x → U → Y → X) → Σ W (λ x → T) → Σ U (λ x → Y)
H (i , I) (w , t) = f w , G (i (f w)) t
cond : {u : Σ (U → V) (λ x → U → Y → X)} {y : Σ W (λ x → T)} → ⊸-cond {α = α}{β} u (H u y) → ⊸-cond {α = γ}{δ} (h u) y
cond {i , I}{w , y} p₃ p₄ = p₂ (p₃ (p₁ p₄))
cur : {A B C : Obj}
→ Hom (A ⊗ₒ B) C
→ Hom A (B ⊸ₒ C)
cur {U , X , α}{V , Y , β}{W , Z , γ} (f , F , p₁)
= (λ u → (λ v → f (u , v)) , (λ v z → snd (F (u , v) z))) , (λ u r → fst (F (u , (fst r)) (snd r))) , cond
where
cond : {u : U} {y : Σ V (λ x → Z)}
→ α u (fst (F (u , fst y) (snd y)))
→ ⊸-cond {α = β}{γ} ((λ v → f (u , v)) , (λ v z → snd (F (u , v) z))) y
cond {u}{v , z} p₂ p₃ with (p₁ {u , v}{z})
... | p₄ with F (u , v) z
... | (x , y) = p₄ (p₂ , p₃)
cur-≡h : ∀{A B C}{f₁ f₂ : Hom (A ⊗ₒ B) C}
→ f₁ ≡h f₂
→ cur f₁ ≡h cur f₂
cur-≡h {U , X , α}{V , Y , β}{W , Z , γ}
{f₁ , F₁ , p₁}{f₂ , F₂ , p₂} (p₃ , p₄)
rewrite p₃ | p₄ = refl , refl
cur-cong : ∀{A B C}{f₁ f₂ : Hom (A ⊗ₒ B) C} → f₁ ≡h f₂ → cur f₁ ≡h cur f₂
cur-cong {(U , X , α)} {(V , Y , β)} {(W , Z , γ)}{f₁ , F₁ , _}{f₂ , F₂ , _} (p₁ , p₂) rewrite p₁ | p₂ = refl , refl
uncur : {A B C : Obj}
→ Hom A (B ⊸ₒ C)
→ Hom (A ⊗ₒ B) C
uncur {U , X , α}{V , Y , β}{W , Z , γ} (f , F , p₁)
= let h = λ r → fst (f (fst r)) (snd r)
H = λ r z → F (fst r) (snd r , z) , snd (f (fst r)) (snd r) z
in h , (H , cond)
where
cond : {u : Σ U (λ x → V)} {y : Z} →
(α ⊗ᵣ β) u (F (fst u) (snd u , y) , snd (f (fst u)) (snd u) y) →
γ (fst (f (fst u)) (snd u)) y
cond {u , v}{z} (p₂ , p₃) with p₁ {u} {v , z}
... | p₄ with f u
... | i , I = p₄ p₂ p₃
cur-uncur-bij₁ : ∀{A B C}{f : Hom (A ⊗ₒ B) C}
→ uncur (cur f) ≡h f
cur-uncur-bij₁ {U , X , α}{V , Y , β}{W , Z , γ}{f , F , p₁} = ext-set aux₁ , ext-set aux₂
where
aux₁ : {a : Σ U (λ x → V)} → f (fst a , snd a) ≡ f a
aux₁ {u , v} = refl
aux₂ : {a : Σ U (λ x → V)} → (λ z → fst (F (fst a , snd a) z) , snd (F (fst a , snd a) z)) ≡ F a
aux₂ {u , v} = ext-set aux₃
where
aux₃ : {a : Z} → (fst (F (u , v) a) , snd (F (u , v) a)) ≡ F (u , v) a
aux₃ {z} with F (u , v) z
... | x , y = refl
cur-uncur-bij₂ : ∀{A B C}{g : Hom A (B ⊸ₒ C)}
→ cur (uncur g) ≡h g
cur-uncur-bij₂ {U , X , α}{V , Y , β}{W , Z , γ}{g , G , p₁} = (ext-set aux) , ext-set (ext-set aux')
where
aux : {a : U} → ((λ v → fst (g a) v) , (λ v z → snd (g a) v z)) ≡ g a
aux {u} with g u
... | i , I = refl
aux' : {u : U}{r : Σ V (λ x → Z)} → G u (fst r , snd r) ≡ G u r
aux' {u}{v , z} = refl
-- The of-course exponential:
!ₒ-cond : ∀{U X : Set} → (α : U → X → Set) → U → 𝕃 X → Set
!ₒ-cond {U}{X} α u [] = ⊤
!ₒ-cond {U}{X} α u (x :: xs) = (α u x) × (!ₒ-cond α u xs)
!ₒ-cond-++ : ∀{U X : Set}{α : U → X → Set}{u : U}{l₁ l₂ : 𝕃 X}
→ !ₒ-cond α u (l₁ ++ l₂) ≡ ((!ₒ-cond α u l₁) × (!ₒ-cond α u l₂))
!ₒ-cond-++ {U}{X}{α}{u}{[]}{l₂} = ∧-unit
!ₒ-cond-++ {U}{X}{α}{u}{x :: xs}{l₂} rewrite !ₒ-cond-++ {U}{X}{α}{u}{xs}{l₂} = ∧-assoc
!ₒ : Obj → Obj
!ₒ (U , X , α) = U , X * , !ₒ-cond α
!ₐ-s : ∀{U Y X : Set}
→ (U → Y → X)
→ (U → Y * → X *)
!ₐ-s f u l = map (f u) l
!ₐ : {A B : Obj} → Hom A B → Hom (!ₒ A) (!ₒ B)
!ₐ {U , X , α}{V , Y , β} (f , F , p) = f , (!ₐ-s F , aux)
where
aux : {u : U} {y : 𝕃 Y} → !ₒ-cond α u (!ₐ-s F u y) → !ₒ-cond β (f u) y
aux {u}{[]} p₁ = triv
aux {u}{y :: ys} (p₁ , p₂) = p p₁ , aux p₂
-- Of-course is a comonad:
ε : ∀{A} → Hom (!ₒ A) A
ε {U , X , α} = id-set , (λ u x → [ x ]) , fst
δ-s : {U X : Set} → U → 𝕃 (𝕃 X) → 𝕃 X
δ-s u xs = foldr _++_ [] xs
δ : ∀{A} → Hom (!ₒ A) (!ₒ (!ₒ A))
δ {U , X , α} = id-set , δ-s , cond
where
cond : {u : U} {y : 𝕃 (𝕃 X)} → !ₒ-cond α u (foldr _++_ [] y) → !ₒ-cond (!ₒ-cond α) u y
cond {u}{[]} p = triv
cond {u}{l :: ls} p with !ₒ-cond-++ {U}{X}{α}{u}{l}{foldr _++_ [] ls}
... | p' rewrite p' with p
... | p₂ , p₃ = p₂ , cond {u}{ls} p₃
comonand-diag₁ : ∀{A}
→ (δ {A}) ○ (!ₐ (δ {A})) ≡h (δ {A}) ○ (δ { !ₒ A})
comonand-diag₁ {U , X , α} = refl , ext-set (λ {x} → ext-set (λ {l} → aux {x} {l}))
where
aux : ∀{x : U}{l : 𝕃 (𝕃 (𝕃 X))}
→ foldr _++_ [] (!ₐ-s (λ u xs
→ foldr _++_ [] xs) x l) ≡ foldr _++_ [] (foldr _++_ [] l)
aux {u}{[]} = refl
aux {u}{x :: xs} rewrite aux {u}{xs} = foldr-append {_}{_}{X}{X}{x}{foldr _++_ [] xs}
comonand-diag₂ : ∀{A}
→ (δ {A}) ○ (ε { !ₒ A}) ≡h (δ {A}) ○ (!ₐ (ε {A}))
comonand-diag₂ {U , X , α} =
refl , ext-set (λ {u} → ext-set (λ {l} → aux {l}))
where
aux : ∀{a : 𝕃 X} → a ++ [] ≡ foldr _++_ [] (map (λ x → x :: []) a)
aux {[]} = refl
aux {x :: xs} rewrite (++[] xs) | sym (foldr-map {_}{X}{xs}) = refl
| {
"alphanum_fraction": 0.380553092,
"avg_line_length": 36.2660818713,
"ext": "agda",
"hexsha": "925bd0b10d3da9a1ec85960964873cec8b2205e1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "dialectica-cats/DC2Sets.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "dialectica-cats/DC2Sets.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "dialectica-cats/DC2Sets.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6539,
"size": 12403
} |
module Esterel.Lang.CanFunction.MergePotentialRuleLeftBase where
open import utility
renaming (_U̬_ to _∪_ ; _|̌_ to _-_)
open import Esterel.Lang
open import Esterel.Lang.Binding
open import Esterel.Lang.CanFunction
open import Esterel.Lang.CanFunction.Base
open import Esterel.Lang.CanFunction.CanThetaContinuation
open import Esterel.Lang.CanFunction.MergePotentialRuleCan
open import Esterel.Context
using (EvaluationContext1 ; EvaluationContext ; _⟦_⟧e ; _≐_⟦_⟧e)
open import Esterel.Context.Properties
using (plug ; unplug)
open import Esterel.Environment as Env
using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap)
open import Esterel.CompletionCode as Code
using () renaming (CompletionCode to Code)
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar ; _ₛₕ)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar)
open EvaluationContext1
open _≐_⟦_⟧e
open import Data.Bool
using (Bool ; not ; if_then_else_)
open import Data.Empty
using (⊥ ; ⊥-elim)
open import Data.List
using (List ; [] ; _∷_ ; _++_ ; map ; concatMap ; foldr)
open import Data.List.Properties
using (map-id)
open import Data.List.Any
using (Any ; any ; here ; there)
open import Data.List.Any.Properties
using (++⁻)
renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ)
open import Data.Maybe
using (Maybe ; maybe ; just ; nothing)
open import Data.Nat
using (ℕ ; zero ; suc ; _≟_ ; _+_)
open import Data.Nat.Properties.Simple
using (+-comm)
open import Data.Product
using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂)
open import Function
using (_∘_ ; id ; _∋_)
open import Relation.Nullary
using (¬_ ; Dec ; yes ; no)
open import Relation.Nullary.Decidable
using (⌊_⌋)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; _≢_ ; refl ; trans ; sym ; cong ; subst ; module ≡-Reasoning)
open ListSet Data.Nat._≟_
using (set-subtract ; set-subtract-[] ; set-subtract-split ; set-subtract-merge
; set-subtract-notin
; set-remove ; set-remove-mono-∈ ; set-remove-removed ; set-remove-not-removed
; set-subtract-[a]≡set-remove)
open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM
open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM
open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM
open ≡-Reasoning
distinct'-S∷Ss⇒[S] : ∀ {xs S Ss} status →
distinct' xs (S ∷ Ss) →
distinct' xs (proj₁ (Dom [ (S ₛ) ↦ status ] ))
distinct'-S∷Ss⇒[S] {xs} {S} {Ss} status xs≠S∷Ss S' S'∈xs S'∈[S]
rewrite Env.sig-single-∈-eq (S' ₛ) (S ₛ) status S'∈[S]
= xs≠S∷Ss S S'∈xs (here refl)
canθₖ-mergeˡ-E-induction-base-par₁ : ∀ {E q E⟦nothin⟧∥q BV FV} sigs' S' r θ →
E⟦nothin⟧∥q ≐ (epar₁ q ∷ E) ⟦ nothin ⟧e →
CorrectBinding E⟦nothin⟧∥q BV FV →
distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) →
Canθₖ sigs' S' ((E ⟦ r ⟧e) ∥ q) θ ≡
concatMap (λ k → map (Code._⊔_ k) (Canₖ q θ)) (Canθₖ sigs' S' (E ⟦ r ⟧e) θ)
canθₖ-mergeˡ-E-induction-base-par₁ [] S' r θ
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
= refl
canθₖ-mergeˡ-E-induction-base-par₁ (nothing ∷ sigs') S' r θ
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
rewrite map-+-compose-suc S' (SigMap.keys sigs')
= canθₖ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (depar₁ E⟦nothin⟧) cb FV≠sigs'
canθₖ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.present ∷ sigs') S' r θ
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| can-irr θ ([S]-env-present (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.present FV≠sigs'))
| canθₖ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r
(θ ← [S]-env-present (S' ₛ)) (depar₁ E⟦nothin⟧)
cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')
= refl
canθₖ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.absent ∷ sigs') S' r θ
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| can-irr θ ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| canθₖ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r
(θ ← [S]-env-absent (S' ₛ)) (depar₁ E⟦nothin⟧)
cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')
= refl
canθₖ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) ∥ q) (θ ← [S]-env (S' ₛ)))
| any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) (θ ← [S]-env (S' ₛ)))
... | yes S'∈canθ-sigs'-E⟦r⟧∥q-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S']
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| can-irr θ ([S]-env (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs'))
| canθₖ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r
(θ ← [S]-env (S' ₛ)) (depar₁ E⟦nothin⟧)
cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')
= refl
... | no S'∉canθ-sigs'-E⟦r⟧∥q-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S']
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| can-irr θ ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| canθₖ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r
(θ ← [S]-env-absent (S' ₛ)) (depar₁ E⟦nothin⟧)
cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')
= refl
... | yes S'∈canθ-sigs'-E⟦r⟧∥q-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S']
rewrite map-+-compose-suc S' (SigMap.keys sigs')
| +-comm S' 0
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧-θ←[S']
(canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← [S]-env (S' ₛ))
(depar₁ dehole) (CBpar CBnothing cbq distinct-empty-left distinct-empty-left
distinct-empty-left (λ _ ()))
(dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')))
(S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl))
S'∈canθ-sigs'-E⟦r⟧∥q-θ←[S']))
... | no S'∉canθ-sigs'-E⟦r⟧∥q-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S'] =
⊥-elim
(S'∉canθ-sigs'-E⟦r⟧∥q-θ←[S']
(canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← [S]-env (S' ₛ))
(epar₁ q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←[S']))
canθₖ-mergeˡ-E-induction-base-par₂ : ∀ {E q q∥E⟦nothin⟧ BV FV} sigs' S' r θ →
q∥E⟦nothin⟧ ≐ (epar₂ q ∷ E) ⟦ nothin ⟧e →
CorrectBinding q∥E⟦nothin⟧ BV FV →
distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) →
Canθₖ sigs' S' (q ∥ (E ⟦ r ⟧e)) θ ≡
concatMap (λ k → map (Code._⊔_ k) (Canθₖ sigs' S' (E ⟦ r ⟧e) θ)) (Canₖ q θ)
canθₖ-mergeˡ-E-induction-base-par₂ [] S' r θ
(depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs'
= refl
canθₖ-mergeˡ-E-induction-base-par₂ (nothing ∷ sigs') S' r θ
(depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs'
rewrite map-+-compose-suc S' (SigMap.keys sigs')
= canθₖ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (depar₂ E⟦nothin⟧) cb FV≠sigs'
canθₖ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.present ∷ sigs') S' r θ
(depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs'
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| can-irr θ ([S]-env-present (S' ₛ)) q cbq
(distinct'-to-left dist'++ˡ
(distinct'-S∷Ss⇒[S] Signal.present FV≠sigs'))
| canθₖ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r
(θ ← [S]-env-present (S' ₛ)) (depar₂ E⟦nothin⟧)
cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')
= refl
canθₖ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.absent ∷ sigs') S' r θ
(depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs'
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| can-irr θ ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left dist'++ˡ
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| canθₖ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r
(θ ← [S]-env-absent (S' ₛ)) (depar₂ E⟦nothin⟧)
cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')
= refl
canθₖ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ
(depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs'
with any (_≟_ S') (Canθₛ sigs' (suc S') (q ∥ (E ⟦ r ⟧e)) (θ ← [S]-env (S' ₛ)))
| any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) (θ ← [S]-env (S' ₛ)))
... | yes S'∈canθ-sigs'-q∥E⟦r⟧-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S']
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| can-irr θ ([S]-env (S' ₛ)) q cbq
(distinct'-to-left dist'++ˡ
(distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs'))
| canθₖ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r
(θ ← [S]-env (S' ₛ)) (depar₂ E⟦nothin⟧)
cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')
= refl
... | no S'∉canθ-sigs'-q∥E⟦r⟧-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S']
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| can-irr θ ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left dist'++ˡ
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| canθₖ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r
(θ ← [S]-env-absent (S' ₛ)) (depar₂ E⟦nothin⟧)
cb (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')
= refl
... | yes S'∈canθ-sigs'-q∥E⟦r⟧-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S']
rewrite map-+-compose-suc S' (SigMap.keys sigs')
| +-comm S' 0
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧-θ←[S']
(canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← [S]-env (S' ₛ))
(depar₂ dehole) (CBpar cbq CBnothing distinct-empty-right distinct-empty-right
distinct-empty-right (λ _ _ ()))
(λ S' S'∈map-+-suc-S'-sigs' S'∈FVq++[] →
FV≠sigs' S' (++ˡ (x∈xs++[]→x∈xs {xs = proj₁ FVp} S'∈FVq++[]))
(there S'∈map-+-suc-S'-sigs'))
(S' ₛ)
(λ S'∈FVq++[] →
FV≠sigs' S' (++ˡ (x∈xs++[]→x∈xs {xs = proj₁ FVp} S'∈FVq++[])) (here refl))
S'∈canθ-sigs'-q∥E⟦r⟧-θ←[S']))
... | no S'∉canθ-sigs'-q∥E⟦r⟧-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S'] =
⊥-elim
(S'∉canθ-sigs'-q∥E⟦r⟧-θ←[S']
(canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← [S]-env (S' ₛ))
(epar₂ q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←[S']))
canθₖ-mergeˡ-E-induction-base-seq-notin : ∀ {E q E⟦nothin⟧>>q BV FV} sigs' S' r θ →
E⟦nothin⟧>>q ≐ (eseq q ∷ E) ⟦ nothin ⟧e →
CorrectBinding E⟦nothin⟧>>q BV FV →
distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) →
Code.nothin ∉ Canθₖ sigs' S' (E ⟦ r ⟧e) θ →
Canθₖ sigs' S' ((E ⟦ r ⟧e) >> q) θ ≡
Canθₖ sigs' S' (E ⟦ r ⟧e) θ
canθₖ-mergeˡ-E-induction-base-seq-notin {E} [] S' r θ
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∉canθ-sigs'-E⟦r⟧-θ
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) θ)
... | no nothin∉can-E⟦r⟧-θ = refl
... | yes nothin∈can-E⟦r⟧-θ = ⊥-elim (nothin∉canθ-sigs'-E⟦r⟧-θ nothin∈can-E⟦r⟧-θ)
canθₖ-mergeˡ-E-induction-base-seq-notin (nothing ∷ sigs') S' r θ
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∉canθ-sigs'-E⟦r⟧-θ
rewrite map-+-compose-suc S' (SigMap.keys sigs')
| canθₖ-mergeˡ-E-induction-base-seq-notin sigs' (suc S') r
θ (deseq E⟦nothin⟧) cb FV≠sigs' nothin∉canθ-sigs'-E⟦r⟧-θ
= refl
canθₖ-mergeˡ-E-induction-base-seq-notin {E} (just Signal.present ∷ sigs') S' r θ
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∉canθ-sigs'-E⟦r⟧-θ
rewrite map-+-compose-suc S' (SigMap.keys sigs')
| canθₖ-mergeˡ-E-induction-base-seq-notin sigs' (suc S') r
(θ ← [S]-env-present (S' ₛ)) (deseq E⟦nothin⟧) cb
(dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') nothin∉canθ-sigs'-E⟦r⟧-θ
= refl
canθₖ-mergeˡ-E-induction-base-seq-notin {E} (just Signal.absent ∷ sigs') S' r θ
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∉canθ-sigs'-E⟦r⟧-θ
rewrite map-+-compose-suc S' (SigMap.keys sigs')
| canθₖ-mergeˡ-E-induction-base-seq-notin sigs' (suc S') r
(θ ← [S]-env-absent (S' ₛ)) (deseq E⟦nothin⟧) cb
(dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') nothin∉canθ-sigs'-E⟦r⟧-θ
= refl
canθₖ-mergeˡ-E-induction-base-seq-notin {E} {q} (just Signal.unknown ∷ sigs') S' r θ
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∉canθ-sigs'-E⟦r⟧-θ
with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) >> q) (θ ← [S]-env (S' ₛ)))
| any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) (θ ← [S]-env (S' ₛ)))
... | yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S']
rewrite map-+-compose-suc S' (SigMap.keys sigs')
| canθₖ-mergeˡ-E-induction-base-seq-notin sigs' (suc S') r
(θ ← [S]-env (S' ₛ)) (deseq E⟦nothin⟧) cb
(dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') nothin∉canθ-sigs'-E⟦r⟧-θ
= refl
... | no S'∉canθ-sigs'-E⟦r⟧>>q-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S']
rewrite map-+-compose-suc S' (SigMap.keys sigs')
| canθₖ-mergeˡ-E-induction-base-seq-notin sigs' (suc S') r
(θ ← [S]-env-absent (S' ₛ)) (deseq E⟦nothin⟧) cb
(dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs') nothin∉canθ-sigs'-E⟦r⟧-θ
= refl
... | yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S']
rewrite map-+-compose-suc S' (SigMap.keys sigs')
| +-comm S' 0
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧-θ←[S']
(canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← [S]-env (S' ₛ))
(deseq dehole) (CBseq CBnothing cbq distinct-empty-left)
(dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')))
(S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl))
S'∈canθ-sigs'-E⟦r⟧>>q-θ←[S']))
... | no S'∉canθ-sigs'-E⟦r⟧>>q-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S'] =
⊥-elim
(S'∉canθ-sigs'-E⟦r⟧>>q-θ←[S']
(canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← [S]-env (S' ₛ))
(eseq q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←[S']))
canθₖ-mergeˡ-E-induction-base-seq-in : ∀ {E q E⟦nothin⟧>>q BV FV} sigs' S' r θ →
E⟦nothin⟧>>q ≐ (eseq q ∷ E) ⟦ nothin ⟧e →
CorrectBinding E⟦nothin⟧>>q BV FV →
distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) →
Code.nothin ∈ Canθₖ sigs' S' (E ⟦ r ⟧e) θ →
Canθₖ sigs' S' ((E ⟦ r ⟧e) >> q) θ ≡
CodeSet.set-remove (Canθₖ sigs' S' (E ⟦ r ⟧e) θ) Code.nothin ++ Canₖ q θ
canθₖ-mergeˡ-E-induction-base-seq-in {E} [] S' r θ
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∈canθ-sigs'-E⟦r⟧-θ
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) θ)
... | no nothin∉can-E⟦r⟧-θ = ⊥-elim (nothin∉can-E⟦r⟧-θ nothin∈canθ-sigs'-E⟦r⟧-θ)
... | yes nothin∈can-E⟦r⟧-θ = refl
canθₖ-mergeˡ-E-induction-base-seq-in (nothing ∷ sigs') S' r θ
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∈canθ-sigs'-E⟦r⟧-θ
rewrite map-+-compose-suc S' (SigMap.keys sigs')
| canθₖ-mergeˡ-E-induction-base-seq-in sigs' (suc S') r
θ (deseq E⟦nothin⟧) cb FV≠sigs' nothin∈canθ-sigs'-E⟦r⟧-θ
= refl
canθₖ-mergeˡ-E-induction-base-seq-in {E} {q} (just Signal.present ∷ sigs') S' r θ
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∈canθ-sigs'-E⟦r⟧-θ
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| can-irr θ ([S]-env-present (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.present FV≠sigs'))
| canθₖ-mergeˡ-E-induction-base-seq-in sigs' (suc S') r
(θ ← [S]-env-present (S' ₛ)) (deseq E⟦nothin⟧) cb
(dist'++ʳ {V2 = S' ∷ []} FV≠sigs') nothin∈canθ-sigs'-E⟦r⟧-θ
= refl
canθₖ-mergeˡ-E-induction-base-seq-in {E} {q} (just Signal.absent ∷ sigs') S' r θ
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∈canθ-sigs'-E⟦r⟧-θ
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| can-irr θ ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| canθₖ-mergeˡ-E-induction-base-seq-in sigs' (suc S') r
(θ ← [S]-env-absent (S' ₛ)) (deseq E⟦nothin⟧) cb
(dist'++ʳ {V2 = S' ∷ []} FV≠sigs') nothin∈canθ-sigs'-E⟦r⟧-θ
= refl
canθₖ-mergeˡ-E-induction-base-seq-in {E} {q} (just Signal.unknown ∷ sigs') S' r θ
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} cbp cbq _) FV≠sigs' nothin∈canθ-sigs'-E⟦r⟧-θ
with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) >> q) (θ ← [S]-env (S' ₛ)))
| any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) (θ ← [S]-env (S' ₛ)))
... | yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S']
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| can-irr θ ([S]-env (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs'))
| canθₖ-mergeˡ-E-induction-base-seq-in sigs' (suc S') r
(θ ← [S]-env (S' ₛ)) (deseq E⟦nothin⟧) cb
(dist'++ʳ {V2 = S' ∷ []} FV≠sigs') nothin∈canθ-sigs'-E⟦r⟧-θ
= refl
... | no S'∉canθ-sigs'-E⟦r⟧>>q-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S']
rewrite +-comm S' 0
| map-+-compose-suc S' (SigMap.keys sigs')
| can-irr θ ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| canθₖ-mergeˡ-E-induction-base-seq-in sigs' (suc S') r
(θ ← [S]-env-absent (S' ₛ)) (deseq E⟦nothin⟧) cb
(dist'++ʳ {V2 = S' ∷ []} FV≠sigs') nothin∈canθ-sigs'-E⟦r⟧-θ
= refl
... | yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←[S']
rewrite map-+-compose-suc S' (SigMap.keys sigs')
| +-comm S' 0
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧-θ←[S']
(canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← [S]-env (S' ₛ))
(deseq dehole) (CBseq CBnothing cbq distinct-empty-left)
(dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')))
(S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl))
S'∈canθ-sigs'-E⟦r⟧>>q-θ←[S']))
... | no S'∉canθ-sigs'-E⟦r⟧>>q-θ←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←[S'] =
⊥-elim
(S'∉canθ-sigs'-E⟦r⟧>>q-θ←[S']
(canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← [S]-env (S' ₛ))
(eseq q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←[S']))
canθₛ-mergeˡ-E-induction-base-par₁ : ∀ {E q E⟦nothin⟧∥q BV FV} sigs' S' r θ θo →
E⟦nothin⟧∥q ≐ (epar₁ q ∷ E) ⟦ nothin ⟧e →
CorrectBinding E⟦nothin⟧∥q BV FV →
distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) →
∀ S'' →
S'' ∈ Canθₛ sigs' S' ((E ⟦ r ⟧e) ∥ q) (θ ← θo) →
S'' ∈ Canθₛ sigs' S' (E ⟦ r ⟧e) (θ ← θo) ⊎ S'' ∈ Canₛ q (θ ← θo)
canθₛ-mergeˡ-E-induction-base-par₁ {E} [] S' r θ θo
E⟦nothin⟧∥q cb FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
with ++⁻ (Canₛ (E ⟦ r ⟧e) (θ ← θo)) S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
... | inj₁ S''∈can-E⟦r⟧-θ←θo = inj₁ S''∈can-E⟦r⟧-θ←θo
... | inj₂ S''∈can-q-θ←θo = inj₂ S''∈can-q-θ←θo
canθₛ-mergeˡ-E-induction-base-par₁ (nothing ∷ sigs') S' r θ θo
E⟦nothin⟧∥q cb FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
rewrite map-+-compose-suc S' (SigMap.keys sigs')
= canθₛ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ θo E⟦nothin⟧∥q cb
FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.present ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
rewrite sym (Env.←-assoc θ θo ([S]-env-present (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env-present (S' ₛ))
(depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] =
inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present]
... | inj₂ S''∈can-q-θ←θo←[S'↦present]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-present (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.present FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-present (S' ₛ))
= inj₂ S''∈can-q-θ←θo←[S'↦present]
canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.absent ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ))
(depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] =
inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent]
... | inj₂ S''∈can-q-θ←θo←[S'↦absent]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-absent (S' ₛ))
= inj₂ S''∈can-q-θ←θo←[S'↦absent]
canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) ∥ q) ((θ ← θo) ← [S]-env (S' ₛ)))
| any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) ((θ ← θo) ← [S]-env (S' ₛ)))
canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
| yes S'∈canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env (S' ₛ))
(depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] =
inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown]
... | inj₂ S''∈can-q-θ←θo←[S'↦unknown]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs'))
| Env.←-assoc θ θo ([S]-env (S' ₛ))
= inj₂ S''∈can-q-θ←θo←[S'↦unknown]
canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
| no S'∉canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ))
(depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] =
inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent]
... | inj₂ S''∈can-q-θ←θo←[S'↦absent]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-absent (S' ₛ))
= inj₂ S''∈can-q-θ←θo←[S'↦absent]
canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
| no S'∉canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧∥q-θ←θo←[S]
(canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ)))
(epar₁ q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S]))
canθₛ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbp cbq _ _ _ _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
| yes S'∈canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
| +-comm S' 0
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S]
(canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ)))
(depar₁ dehole) (CBpar CBnothing cbq distinct-empty-left distinct-empty-left
distinct-empty-left (λ _ ()))
(dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')))
(S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl))
S'∈canθ-sigs'-E⟦r⟧∥q-θ←θo←[S]))
canθₛ-mergeˡ-E-induction-base-par₂ : ∀ {E q q∥E⟦nothin⟧ BV FV} sigs' S' r θ θo →
q∥E⟦nothin⟧ ≐ (epar₂ q ∷ E) ⟦ nothin ⟧e →
CorrectBinding q∥E⟦nothin⟧ BV FV →
distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) →
∀ S'' →
S'' ∈ Canθₛ sigs' S' (q ∥ (E ⟦ r ⟧e)) (θ ← θo) →
S'' ∈ Canθₛ sigs' S' (E ⟦ r ⟧e) (θ ← θo) ⊎ S'' ∈ Canₛ q (θ ← θo)
canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} [] S' r θ θo
q∥E⟦nothin⟧ cb FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
with ++⁻ (Canₛ q (θ ← θo)) S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
... | inj₂ S''∈can-E⟦r⟧-θ←θo = inj₁ S''∈can-E⟦r⟧-θ←θo
... | inj₁ S''∈can-q-θ←θo = inj₂ S''∈can-q-θ←θo
canθₛ-mergeˡ-E-induction-base-par₂ (nothing ∷ sigs') S' r θ θo
q∥E⟦nothin⟧ cb FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
rewrite map-+-compose-suc S' (SigMap.keys sigs')
= canθₛ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ θo q∥E⟦nothin⟧ cb
FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.present ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs'
S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
rewrite sym (Env.←-assoc θ θo ([S]-env-present (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env-present (S' ₛ))
(depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] =
inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present]
... | inj₂ S''∈can-q-θ←θo←[S'↦present]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-present (S' ₛ)) q cbq
(distinct'-to-left (dist'++ˡ)
(distinct'-S∷Ss⇒[S] Signal.present FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-present (S' ₛ))
= inj₂ S''∈can-q-θ←θo←[S'↦present]
canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.absent ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs'
S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ))
(depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] =
inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent]
... | inj₂ S''∈can-q-θ←θo←[S'↦absent]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ˡ)
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-absent (S' ₛ))
= inj₂ S''∈can-q-θ←θo←[S'↦absent]
canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb FV≠sigs' S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
with any (_≟_ S') (Canθₛ sigs' (suc S') (q ∥ (E ⟦ r ⟧e)) ((θ ← θo) ← [S]-env (S' ₛ)))
| any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) ((θ ← θo) ← [S]-env (S' ₛ)))
canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs'
S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
| yes S'∈canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env (S' ₛ))
(depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] =
inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown]
... | inj₂ S''∈can-q-θ←θo←[S'↦unknown]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env (S' ₛ)) q cbq
(distinct'-to-left (dist'++ˡ)
(distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs'))
| Env.←-assoc θ θo ([S]-env (S' ₛ))
= inj₂ S''∈can-q-θ←θo←[S'↦unknown]
canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs'
S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
| no S'∉canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ))
(depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] =
inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent]
... | inj₂ S''∈can-q-θ←θo←[S'↦absent]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ˡ)
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-absent (S' ₛ))
= inj₂ S''∈can-q-θ←θo←[S'↦absent]
canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs'
S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
| no S'∉canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
= ⊥-elim
(S'∉canθ-sigs'-q∥E⟦r⟧-θ←θo←[S]
(canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ)))
(epar₂ q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S]))
canθₛ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs'
S'' S''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
| yes S'∈canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
| +-comm S' 0
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S]
(canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ)))
(depar₂ dehole) (CBpar cbq CBnothing distinct-empty-right distinct-empty-right
distinct-empty-right (λ _ _ ()))
(λ S''' S'''∈map-+-suc-S'-sigs' S'''∈FVq++[] →
FV≠sigs' S''' (++ˡ (x∈xs++[]→x∈xs {xs = proj₁ FVp} S'''∈FVq++[]))
(there S'''∈map-+-suc-S'-sigs'))
(S' ₛ) (λ S'∈FVq++[] → FV≠sigs' S' (++ˡ (x∈xs++[]→x∈xs {xs = proj₁ FVp} S'∈FVq++[])) (here refl))
S'∈canθ-sigs'-q∥E⟦r⟧-θ←θo←[S]))
canθₛ-mergeˡ-E-induction-base-seq : ∀ {E q E⟦nothin⟧>>q BV FV} sigs' S' r θ θo →
E⟦nothin⟧>>q ≐ (eseq q ∷ E) ⟦ nothin ⟧e →
CorrectBinding E⟦nothin⟧>>q BV FV →
distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) →
∀ S'' →
S'' ∈ Canθₛ sigs' S' ((E ⟦ r ⟧e) >> q) (θ ← θo) →
S'' ∈ Canθₛ sigs' S' (E ⟦ r ⟧e) (θ ← θo) ⊎
(S'' ∈ Canₛ q (θ ← θo) × Code.nothin ∈ Canθₖ sigs' S' (E ⟦ r ⟧e) (θ ← θo))
canθₛ-mergeˡ-E-induction-base-seq {E} {q} [] S' r θ θo
E⟦nothin⟧>>q cb FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) (θ ← θo))
... | no nothin∉can-E⟦r⟧-θ←θo = inj₁ S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
... | yes nothin∈can-E⟦r⟧-θ←θo
with ++⁻ (Canₛ (E ⟦ r ⟧e) (θ ← θo)) S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
... | inj₁ S''∈can-E⟦r⟧-θ←θo = inj₁ S''∈can-E⟦r⟧-θ←θo
... | inj₂ S''∈can-q-θ←θo = inj₂ (S''∈can-q-θ←θo ,′ nothin∈can-E⟦r⟧-θ←θo)
canθₛ-mergeˡ-E-induction-base-seq {E} {q} (nothing ∷ sigs') S' r θ θo E⟦nothin⟧>>q
cb FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
rewrite map-+-compose-suc S' (SigMap.keys sigs')
= canθₛ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ θo
E⟦nothin⟧>>q cb FV≠sigs' S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.present ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
rewrite sym (Env.←-assoc θ θo ([S]-env-present (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env-present (S' ₛ))
(deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] =
inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present]
... | inj₂ (S''∈can-q-θ←θo←[S'↦present] , nothin∈can-E⟦r⟧-θ←θo←[S'↦present])
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-present (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.present FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-present (S' ₛ))
= inj₂ (S''∈can-q-θ←θo←[S'↦present] , nothin∈can-E⟦r⟧-θ←θo←[S'↦present])
canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.absent ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ))
(deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] =
inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent]
... | inj₂ (S''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent])
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-absent (S' ₛ))
= inj₂ (S''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent])
canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) >> q) ((θ ← θo) ← [S]-env (S' ₛ)))
| any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) ((θ ← θo) ← [S]-env (S' ₛ)))
canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
| yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S']
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env (S' ₛ))
(deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] =
inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown]
... | inj₂ (S''∈can-q-θ←θo←[S'↦unknown] , nothin∈can-E⟦r⟧-θ←θo←[S'↦unknown])
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs'))
| Env.←-assoc θ θo ([S]-env (S' ₛ))
= inj₂ (S''∈can-q-θ←θo←[S'↦unknown] , nothin∈can-E⟦r⟧-θ←θo←[S'↦unknown])
canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
| no S'∉canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S']
rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ))
(deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
... | inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] =
inj₁ S''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent]
... | inj₂ (S''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent])
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-absent (S' ₛ))
= inj₂ (S''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent])
canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
| no S'∉canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S']
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧>>q-θ←θo←[S']
(canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ)))
(eseq q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S']))
canθₛ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
S'' S''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
| yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S']
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
| +-comm S' 0
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S']
(canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ)))
(deseq dehole) (CBseq CBnothing cbq distinct-empty-left)
(dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')))
(S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl))
S'∈canθ-sigs'-E⟦r⟧>>q-θ←θo←[S']))
canθₛₕ-mergeˡ-E-induction-base-par₁ : ∀ {E q E⟦nothin⟧∥q BV FV} sigs' S' r θ θo →
E⟦nothin⟧∥q ≐ (epar₁ q ∷ E) ⟦ nothin ⟧e →
CorrectBinding E⟦nothin⟧∥q BV FV →
distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) →
∀ s'' →
s'' ∈ Canθₛₕ sigs' S' ((E ⟦ r ⟧e) ∥ q) (θ ← θo) →
s'' ∈ Canθₛₕ sigs' S' (E ⟦ r ⟧e) (θ ← θo) ⊎ s'' ∈ Canₛₕ q (θ ← θo)
canθₛₕ-mergeˡ-E-induction-base-par₁ {E} [] S' r θ θo
E⟦nothin⟧∥q cb FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
with ++⁻ (Canₛₕ (E ⟦ r ⟧e) (θ ← θo)) s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
... | inj₁ s''∈can-E⟦r⟧-θ←θo = inj₁ s''∈can-E⟦r⟧-θ←θo
... | inj₂ s''∈can-q-θ←θo = inj₂ s''∈can-q-θ←θo
canθₛₕ-mergeˡ-E-induction-base-par₁ (nothing ∷ sigs') S' r θ θo
E⟦nothin⟧∥q cb FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
rewrite map-+-compose-suc S' (SigMap.keys sigs')
= canθₛₕ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ θo E⟦nothin⟧∥q cb
FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.present ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
rewrite sym (Env.←-assoc θ θo ([S]-env-present (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛₕ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env-present (S' ₛ))
(depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] =
inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present]
... | inj₂ s''∈can-q-θ←θo←[S'↦present]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-present (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.present FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-present (S' ₛ))
= inj₂ s''∈can-q-θ←θo←[S'↦present]
canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.absent ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛₕ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ))
(depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] =
inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent]
... | inj₂ s''∈can-q-θ←θo←[S'↦absent]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-absent (S' ₛ))
= inj₂ s''∈can-q-θ←θo←[S'↦absent]
canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) ∥ q) ((θ ← θo) ← [S]-env (S' ₛ)))
| any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) ((θ ← θo) ← [S]-env (S' ₛ)))
canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
| yes S'∈canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛₕ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env (S' ₛ))
(depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] =
inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown]
... | inj₂ s''∈can-q-θ←θo←[S'↦unknown]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs'))
| Env.←-assoc θ θo ([S]-env (S' ₛ))
= inj₂ s''∈can-q-θ←θo←[S'↦unknown]
canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
| no S'∉canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛₕ-mergeˡ-E-induction-base-par₁ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ))
(depar₁ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] =
inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent]
... | inj₂ s''∈can-q-θ←θo←[S'↦absent]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-absent (S' ₛ))
= inj₂ s''∈can-q-θ←θo←[S'↦absent]
canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} _ cbq _ _ _ _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
| no S'∉canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧∥q-θ←θo←[S]
(canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ)))
(epar₁ q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S]))
canθₛₕ-mergeˡ-E-induction-base-par₁ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₁ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbp cbq _ _ _ _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧∥q-θ←θo
| yes S'∈canθ-sigs'-E⟦r⟧∥q-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
| +-comm S' 0
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S]
(canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ)))
(depar₁ dehole) (CBpar CBnothing cbq distinct-empty-left distinct-empty-left
distinct-empty-left (λ _ ()))
(dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')))
(S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl))
S'∈canθ-sigs'-E⟦r⟧∥q-θ←θo←[S]))
canθₛₕ-mergeˡ-E-induction-base-par₂ : ∀ {E q q∥E⟦nothin⟧ BV FV} sigs' S' r θ θo →
q∥E⟦nothin⟧ ≐ (epar₂ q ∷ E) ⟦ nothin ⟧e →
CorrectBinding q∥E⟦nothin⟧ BV FV →
distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) →
∀ s'' →
s'' ∈ Canθₛₕ sigs' S' (q ∥ (E ⟦ r ⟧e)) (θ ← θo) →
s'' ∈ Canθₛₕ sigs' S' (E ⟦ r ⟧e) (θ ← θo) ⊎ s'' ∈ Canₛₕ q (θ ← θo)
canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} [] S' r θ θo
q∥E⟦nothin⟧ cb FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
with ++⁻ (Canₛₕ q (θ ← θo)) s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
... | inj₂ s''∈can-E⟦r⟧-θ←θo = inj₁ s''∈can-E⟦r⟧-θ←θo
... | inj₁ s''∈can-q-θ←θo = inj₂ s''∈can-q-θ←θo
canθₛₕ-mergeˡ-E-induction-base-par₂ (nothing ∷ sigs') S' r θ θo
q∥E⟦nothin⟧ cb FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
rewrite map-+-compose-suc S' (SigMap.keys sigs')
= canθₛₕ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ θo q∥E⟦nothin⟧ cb
FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.present ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs'
s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
rewrite sym (Env.←-assoc θ θo ([S]-env-present (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛₕ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env-present (S' ₛ))
(depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] =
inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present]
... | inj₂ s''∈can-q-θ←θo←[S'↦present]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-present (S' ₛ)) q cbq
(distinct'-to-left (dist'++ˡ)
(distinct'-S∷Ss⇒[S] Signal.present FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-present (S' ₛ))
= inj₂ s''∈can-q-θ←θo←[S'↦present]
canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.absent ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs'
s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛₕ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ))
(depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] =
inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent]
... | inj₂ s''∈can-q-θ←θo←[S'↦absent]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ˡ)
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-absent (S' ₛ))
= inj₂ s''∈can-q-θ←θo←[S'↦absent]
canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb FV≠sigs' s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
with any (_≟_ S') (Canθₛ sigs' (suc S') (q ∥ (E ⟦ r ⟧e)) ((θ ← θo) ← [S]-env (S' ₛ)))
| any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) ((θ ← θo) ← [S]-env (S' ₛ)))
canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs'
s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
| yes S'∈canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛₕ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env (S' ₛ))
(depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] =
inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown]
... | inj₂ s''∈can-q-θ←θo←[S'↦unknown]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env (S' ₛ)) q cbq
(distinct'-to-left (dist'++ˡ)
(distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs'))
| Env.←-assoc θ θo ([S]-env (S' ₛ))
= inj₂ s''∈can-q-θ←θo←[S'↦unknown]
canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs'
s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
| no S'∉canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛₕ-mergeˡ-E-induction-base-par₂ sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ))
(depar₂ E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] =
inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent]
... | inj₂ s''∈can-q-θ←θo←[S'↦absent]
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ˡ)
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-absent (S' ₛ))
= inj₂ s''∈can-q-θ←θo←[S'↦absent]
canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb@(CBpar cbq _ _ _ _ _) FV≠sigs'
s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
| no S'∉canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
= ⊥-elim
(S'∉canθ-sigs'-q∥E⟦r⟧-θ←θo←[S]
(canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ)))
(epar₂ q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S]))
canθₛₕ-mergeˡ-E-induction-base-par₂ {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(depar₂ E⟦nothin⟧) cb@(CBpar {FVp = FVp} cbq _ _ _ _ _) FV≠sigs'
s'' s''∈canθ-sigs'-q∥E⟦r⟧-θ←θo
| yes S'∈canθ-sigs'-q∥E⟦r⟧-θ←θo←[S] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S]
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
| +-comm S' 0
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S]
(canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ)))
(depar₂ dehole) (CBpar cbq CBnothing distinct-empty-right distinct-empty-right
distinct-empty-right (λ _ _ ()))
(λ s''' s'''∈map-+-suc-S'-sigs' s'''∈FVq++[] →
FV≠sigs' s''' (++ˡ (x∈xs++[]→x∈xs {xs = proj₁ FVp} s'''∈FVq++[]))
(there s'''∈map-+-suc-S'-sigs'))
(S' ₛ) (λ S'∈FVq++[] → FV≠sigs' S' (++ˡ (x∈xs++[]→x∈xs {xs = proj₁ FVp} S'∈FVq++[])) (here refl))
S'∈canθ-sigs'-q∥E⟦r⟧-θ←θo←[S]))
canθₛₕ-mergeˡ-E-induction-base-seq : ∀ {E q E⟦nothin⟧>>q BV FV} sigs' S' r θ θo →
E⟦nothin⟧>>q ≐ (eseq q ∷ E) ⟦ nothin ⟧e →
CorrectBinding E⟦nothin⟧>>q BV FV →
distinct' (proj₁ FV) (map (_+_ S') (SigMap.keys sigs')) →
∀ s'' →
s'' ∈ Canθₛₕ sigs' S' ((E ⟦ r ⟧e) >> q) (θ ← θo) →
s'' ∈ Canθₛₕ sigs' S' (E ⟦ r ⟧e) (θ ← θo) ⊎
(s'' ∈ Canₛₕ q (θ ← θo) × Code.nothin ∈ Canθₖ sigs' S' (E ⟦ r ⟧e) (θ ← θo))
canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} [] S' r θ θo
E⟦nothin⟧>>q cb FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
with any (Code._≟_ Code.nothin) (Canₖ (E ⟦ r ⟧e) (θ ← θo))
... | no nothin∉can-E⟦r⟧-θ←θo = inj₁ s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
... | yes nothin∈can-E⟦r⟧-θ←θo
with ++⁻ (Canₛₕ (E ⟦ r ⟧e) (θ ← θo)) s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
... | inj₁ s''∈can-E⟦r⟧-θ←θo = inj₁ s''∈can-E⟦r⟧-θ←θo
... | inj₂ s''∈can-q-θ←θo = inj₂ (s''∈can-q-θ←θo ,′ nothin∈can-E⟦r⟧-θ←θo)
canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (nothing ∷ sigs') S' r θ θo E⟦nothin⟧>>q
cb FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
rewrite map-+-compose-suc S' (SigMap.keys sigs')
= canθₛₕ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ θo
E⟦nothin⟧>>q cb FV≠sigs' s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.present ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
rewrite sym (Env.←-assoc θ θo ([S]-env-present (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛₕ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env-present (S' ₛ))
(deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present] =
inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦present]
... | inj₂ (s''∈can-q-θ←θo←[S'↦present] , nothin∈can-E⟦r⟧-θ←θo←[S'↦present])
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-present (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.present FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-present (S' ₛ))
= inj₂ (s''∈can-q-θ←θo←[S'↦present] , nothin∈can-E⟦r⟧-θ←θo←[S'↦present])
canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.absent ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛₕ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ))
(deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] =
inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent]
... | inj₂ (s''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent])
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-absent (S' ₛ))
= inj₂ (s''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent])
canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
with any (_≟_ S') (Canθₛ sigs' (suc S') ((E ⟦ r ⟧e) >> q) ((θ ← θo) ← [S]-env (S' ₛ)))
| any (_≟_ S') (Canθₛ sigs' (suc S') (E ⟦ r ⟧e) ((θ ← θo) ← [S]-env (S' ₛ)))
canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
| yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S']
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛₕ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env (S' ₛ))
(deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown] =
inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦unknown]
... | inj₂ (s''∈can-q-θ←θo←[S'↦unknown] , nothin∈can-E⟦r⟧-θ←θo←[S'↦unknown])
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.unknown FV≠sigs'))
| Env.←-assoc θ θo ([S]-env (S' ₛ))
= inj₂ (s''∈can-q-θ←θo←[S'↦unknown] , nothin∈can-E⟦r⟧-θ←θo←[S'↦unknown])
canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
| no S'∉canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S']
rewrite sym (Env.←-assoc θ θo ([S]-env-absent (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
with canθₛₕ-mergeˡ-E-induction-base-seq sigs' (suc S') r θ (θo ← [S]-env-absent (S' ₛ))
(deseq E⟦nothin⟧) cb (dist'++ʳ {V2 = S' + 0 ∷ []} FV≠sigs')
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
... | inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent] =
inj₁ s''∈canθ-sigs'-E⟦r⟧-θ←θo←[S'↦absent]
... | inj₂ (s''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent])
rewrite +-comm S' 0
| can-irr (θ ← θo) ([S]-env-absent (S' ₛ)) q cbq
(distinct'-to-left (dist'++ʳ {V2 = proj₁ FVp})
(distinct'-S∷Ss⇒[S] Signal.absent FV≠sigs'))
| Env.←-assoc θ θo ([S]-env-absent (S' ₛ))
= inj₂ (s''∈can-q-θ←θo←[S'↦absent] , nothin∈can-E⟦r⟧-θ←θo←[S'↦absent])
canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
| no S'∉canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | yes S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S']
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧>>q-θ←θo←[S']
(canθₛ-p⊆canθₛ-E₁⟦p⟧ sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ)))
(eseq q) (E ⟦ r ⟧e) (S' ₛ) S'∈canθ-sigs'-E⟦r⟧-θ←θo←[S']))
canθₛₕ-mergeˡ-E-induction-base-seq {E} {q} (just Signal.unknown ∷ sigs') S' r θ θo
(deseq E⟦nothin⟧) cb@(CBseq {FVp = FVp} _ cbq _) FV≠sigs'
s'' s''∈canθ-sigs'-E⟦r⟧>>q-θ←θo
| yes S'∈canθ-sigs'-E⟦r⟧>>q-θ←θo←[S'] | no S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S']
rewrite sym (Env.←-assoc θ θo ([S]-env (S' ₛ)))
| map-+-compose-suc S' (SigMap.keys sigs')
| +-comm S' 0
= ⊥-elim
(S'∉canθ-sigs'-E⟦r⟧-θ←θo←[S']
(canθₛ-E₁⟦p⟧⊆canθₛ-p sigs' (suc S') (θ ← (θo ← [S]-env (S' ₛ)))
(deseq dehole) (CBseq CBnothing cbq distinct-empty-left)
(dist'++ʳ {V2 = proj₁ FVp} (distinct'-sym (dist'++ʳ {V2 = S' ∷ []} FV≠sigs')))
(S' ₛ) (λ S'∈FVq → FV≠sigs' S' (++ʳ (proj₁ FVp) S'∈FVq) (here refl))
S'∈canθ-sigs'-E⟦r⟧>>q-θ←θo←[S']))
| {
"alphanum_fraction": 0.5338397671,
"avg_line_length": 52.6319129646,
"ext": "agda",
"hexsha": "43cac2311917d4521e62c669b58257bd6a55cfeb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/Esterel/Lang/CanFunction/MergePotentialRuleLeftBase.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/Esterel/Lang/CanFunction/MergePotentialRuleLeftBase.agda",
"max_line_length": 107,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/Esterel/Lang/CanFunction/MergePotentialRuleLeftBase.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 31203,
"size": 58053
} |
{-
This second-order signature was created from the following second-order syntax description:
syntax CommMonoid | CM
type
* : 0-ary
term
unit : * | ε
add : * * -> * | _⊕_ l20
theory
(εU⊕ᴸ) a |> add (unit, a) = a
(εU⊕ᴿ) a |> add (a, unit) = a
(⊕A) a b c |> add (add(a, b), c) = add (a, add(b, c))
(⊕C) a b |> add(a, b) = add(b, a)
-}
module CommMonoid.Signature where
open import SOAS.Context
open import SOAS.Common
open import SOAS.Syntax.Signature *T public
open import SOAS.Syntax.Build *T public
-- Operator symbols
data CMₒ : Set where
unitₒ addₒ : CMₒ
-- Term signature
CM:Sig : Signature CMₒ
CM:Sig = sig λ
{ unitₒ → ⟼₀ *
; addₒ → (⊢₀ *) , (⊢₀ *) ⟼₂ *
}
open Signature CM:Sig public
| {
"alphanum_fraction": 0.6054421769,
"avg_line_length": 17.5,
"ext": "agda",
"hexsha": "dfb4b5a097619506a081a43efa0942a44795b63e",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/CommMonoid/Signature.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/CommMonoid/Signature.agda",
"max_line_length": 91,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/CommMonoid/Signature.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 292,
"size": 735
} |
{-# OPTIONS --type-in-type #-}
module AgdaPrelude where
data Nat : Set where
Zero : Nat
Succ : Nat -> Nat
natElim : (m : Nat -> Set) -> (mz : m Zero) -> (ms : (l : Nat) -> m l -> m (Succ l)) -> (k : Nat) -> m k
natElim m mz ms Zero = mz
natElim m mz ms (Succ k) = ms k (natElim m mz ms k)
data Vec : Set -> Nat -> Set where
Nil : (a : Set) -> Vec a Zero
Cons : (a : Set) -> (n : Nat) -> (x : a) -> (xs : Vec a n) -> Vec a (Succ n)
data Eq : (a : Set) -> a -> a -> Set where
Refl : (a : Set) -> (x : a) -> Eq a x x
| {
"alphanum_fraction": 0.4990548204,
"avg_line_length": 29.3888888889,
"ext": "agda",
"hexsha": "25de0f71e3ac7e054743e65d1db4f7c457ab24ad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "JoeyEremondi/lambda-pi-constraint",
"max_forks_repo_path": "thesisExamples/AgdaPrelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "JoeyEremondi/lambda-pi-constraint",
"max_issues_repo_path": "thesisExamples/AgdaPrelude.agda",
"max_line_length": 104,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "64a1b4c6632153d75cba540f7c91f40b49375e2f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "JoeyEremondi/lambda-pi-constraint",
"max_stars_repo_path": "thesisExamples/AgdaPrelude.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-05T20:21:46.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-03-16T11:14:56.000Z",
"num_tokens": 206,
"size": 529
} |
module TypeSig where
f
: {A : Set}
→ A
→ A
f x
= x
g
: {A : Set}
→ A
→ A
g x
= x
h
: {A : Set}
→ A
→ A
h x
= f x
_
: {A : Set}
→ A
→ A
_
= λ x → x
| {
"alphanum_fraction": 0.3260869565,
"avg_line_length": 5.935483871,
"ext": "agda",
"hexsha": "7f3db954ff34e9c950502620f1c96db619da3aa4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msuperdock/agda-unused",
"max_forks_repo_path": "data/declaration/TypeSig.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msuperdock/agda-unused",
"max_issues_repo_path": "data/declaration/TypeSig.agda",
"max_line_length": 20,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msuperdock/agda-unused",
"max_stars_repo_path": "data/declaration/TypeSig.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z",
"num_tokens": 102,
"size": 184
} |
module Issue317 (A : Set) where
postulate F : Set → Set
-- Try evaluating F A at the top-level:
--
-- 1,3-4
-- Not in scope:
-- A at 1,3-4
-- when scope checking A
--
-- OK, in that case the inferred type of F should be
-- (A : Set) → Set → Set, right? No, it isn't, it's Set → Set.
--
-- I think the parameters should be in scope when "top-level" commands
-- are executed, because these commands should behave in the same way
-- as commands executed in a top-level goal at the end of the module.
-- It seems as if the implementation of
-- Agda.Interaction.BasicOps.atTopLevel has to be modified.
| {
"alphanum_fraction": 0.68718802,
"avg_line_length": 30.05,
"ext": "agda",
"hexsha": "a3de895e0cea02780ea6295789431769b72347fc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue317.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue317.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue317.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 170,
"size": 601
} |
-- In this document we'll consider various encodings of mutual data types,
-- including those that are System Fω compatible.
module MutualData where
open import Function
open import Data.Unit.Base
open import Data.Sum
open import Data.Product
-- In the first part of this document we'll demostrate how various encodings work taking
-- the rose tree data type as an example:
mutual
data Tree₀ (A : Set) : Set where
node₀ : A -> Forest₀ A -> Tree₀ A
data Forest₀ (A : Set) : Set where
nil₀ : Forest₀ A
cons₀ : Tree₀ A -> Forest₀ A -> Forest₀ A
module Joined where
-- For encoding a family of mutually recursive data types in terms of a single data type we can
-- create the type of tags each of which denotes a particular data type from the family, then
-- merge all constructors of the original data types together into a single data type and index
-- each of the constructors by the tag representing the data type it constructs.
-- Since we encode a family consisting of two data types, the type of tags has two inhabitants:
data TreeForestᵗ : Set where
Treeᵗ Forestᵗ : TreeForestᵗ
-- The encoding:
mutual
-- There is nothing inherently mutual about these data types.
-- `Tree` and `Forest` are just aliases defined for convenience and readability.
Tree : Set -> Set
Tree A = TreeForest A Treeᵗ
Forest : Set -> Set
Forest A = TreeForest A Forestᵗ
-- Now we have one big data type that contains all constructors of the `Tree`-`Forest` family:
data TreeForest (A : Set) : TreeForestᵗ -> Set where
node : A -> Forest A -> Tree A
nil : Forest A
cons : Tree A -> Forest A -> Forest A
-- Note that the constructors have exactly the same type signatures as before,
-- but now `Tree` and `Forest` are instances of the same data type.
-- As a sanity check we show one side (just to save space and because it's demonstrative enough)
-- of the isomorphism between the original family and its encoded version:
mutual
toTree₀ : ∀ {A} -> Tree A -> Tree₀ A
toTree₀ (node x forest) = node₀ x (toForest₀ forest)
toForest₀ : ∀ {A} -> Forest A -> Forest₀ A
toForest₀ nil = nil₀
toForest₀ (cons tree forest) = cons₀ (toTree₀ tree) (toForest₀ forest)
-- The encoding technique described in this module is fairly well-known.
module JoinedCompute where
-- In this section we'll make `TreeForest` a data type with a single constructor,
-- the contents of which depends on the type being constructed.
data TreeForestᵗ : Set where
Treeᵗ Forestᵗ : TreeForestᵗ
mutual
-- Again, `Tree` and `Forest` are just aliases.
Tree : Set -> Set
Tree A = TreeForest A Treeᵗ
Forest : Set -> Set
Forest A = TreeForest A Forestᵗ
-- `TreeForestF` matches on the `TreeForestᵗ` index in order to figure out which data type
-- from the original family is being constructed.
-- Like in the previous section `TreeForest` defines both the `Tree` and `Forest` data types,
-- but now it contains a single constructor that only captures the notion of recursion.
-- What data to store in this constructor is determined by the `TreeForestF` function.
TreeForestF : Set -> TreeForestᵗ -> Set
TreeForestF A Treeᵗ = A × Forest A -- The only constructor of `Tree` is `node` which
-- carries an `A` and a `Forest A`.
TreeForestF A Forestᵗ = ⊤ ⊎ Tree A × Forest A -- There are two constructors of `Forest`:
-- `nil` and `cons`. The former one doesn't
-- carry any information while the latter one
-- receives a `Tree` and a `Forest`.
data TreeForest (A : Set) (tfᵗ : TreeForestᵗ) : Set where
treeForest : TreeForestF A tfᵗ -> TreeForest A tfᵗ
-- For convenience, we'll be using pattern synonyms in this module and the modules below.
pattern node x forest = treeForest (x , forest)
pattern nil = treeForest (inj₁ tt)
pattern cons tree forest = treeForest (inj₂ (tree , forest))
-- The sanity check.
mutual
toTree₀ : ∀ {A} -> Tree A -> Tree₀ A
toTree₀ (node x forest) = node₀ x (toForest₀ forest)
toForest₀ : ∀ {A} -> Forest A -> Forest₀ A
toForest₀ nil = nil₀
toForest₀ (cons tree forest) = cons₀ (toTree₀ tree) (toForest₀ forest)
-- In the previous section we had the `TreeForest` data type and its `treeForest` constructor
-- which together captured the notion of recursion. This pattern can be abstracted, so that we can
-- tie knots in arbitrary other data types -- not just `Tree` and `Forest`. Enter `IFix`:
{-# NO_POSITIVITY_CHECK #-}
data IFix {α β} {A : Set α} (B : (A -> Set β) -> A -> Set β) (x : A) : Set β where
wrap : B (IFix B) x -> IFix B x
module JoinedComputeIFix where
-- In this module we define the `TreeForest` data type using `IFix`.
-- The type of tags is as before:
data TreeForestᵗ : Set where
Treeᵗ Forestᵗ : TreeForestᵗ
-- The definition of `TreeForest` is similar to the definition from the previous section:
-- we again have the `Tree` and `Forest` type aliases, they're just local now,
-- and as before we dispatch on `tfᵗ` and describe the constructors of the `Tree` and `Forest`
-- data types using the sum-of-products representation:
TreeForest : Set -> TreeForestᵗ -> Set
TreeForest A =
IFix λ Rec tfᵗ ->
let Tree = Rec Treeᵗ
Forest = Rec Forestᵗ
in case tfᵗ of λ
{ Treeᵗ -> A × Forest
; Forestᵗ -> ⊤ ⊎ Tree × Forest
}
-- We've cheated a little bit here by keeping `A` outside of the pattern functor.
-- That's just for simplicity, there is no fundamental limitation that prevents us
-- from taking fixed points of pattern functors of arbitrary arity.
-- Which is a topic for another document.
Tree : Set -> Set
Tree A = TreeForest A Treeᵗ
Forest : Set -> Set
Forest A = TreeForest A Forestᵗ
pattern node x forest = wrap (x , forest)
pattern nil = wrap (inj₁ tt)
pattern cons tree forest = wrap (inj₂ (tree , forest))
-- The sanity check.
mutual
toTree₀ : ∀ {A} -> Tree A -> Tree₀ A
toTree₀ (node x forest) = node₀ x (toForest₀ forest)
toForest₀ : ∀ {A} -> Forest A -> Forest₀ A
toForest₀ nil = nil₀
toForest₀ (cons tree forest) = cons₀ (toTree₀ tree) (toForest₀ forest)
module JoinedComputeIFixFω where
-- The types we had previously are not System Fω compatible, because we matched on tags at the
-- type level. Can we avoid this? Yes, easily. Instead of defining data types representing tags
-- we can just lambda-encode them, because we do have lambdas at the type level in System Fω.
-- The Church-encoded version of `TreeForestᵗ` at the type level looks like this:
-- ∀ R -> (Set -> Set -> R) -> R
-- However this is still not System Fω compatible, because here we quantify over `R` which in
-- System Fω is a kind and we can't quatify over kinds there. But looking at
-- TreeForestF : Set -> TreeForestᵗ -> Set
-- TreeForestF A Treeᵗ = A × Forest A
-- TreeForestF A Forestᵗ = ⊤ ⊎ Tree A × Forest A
-- we see that we match on a `TreeForestᵗ` only to return a `Set`. Hence we can just instantiate
-- `R` to `Set` right away as we do not do anything else with tags. We arrive at
TreeForestᵗ : Set₁
TreeForestᵗ = Set -> Set -> Set
Treeᵗ : TreeForestᵗ
Treeᵗ A B = A
Forestᵗ : TreeForestᵗ
Forestᵗ A B = B
-- Where `TreeForestᵗ` is the type of inlined matchers which always return a `Set` and
-- `Treeᵗ` and `Forestᵗ` are such matchers. The rest is straightforward:
TreeForest : Set -> TreeForestᵗ -> Set
TreeForest A =
IFix λ Rec tfᵗ ->
let Tree = Rec Treeᵗ
Forest = Rec Forestᵗ
in tfᵗ
(A × Forest) -- Returned when `tfᵗ` is `Treeᵗ`.
(⊤ ⊎ Tree × Forest) -- Returned when `tfᵗ` is `Forestᵗ`.
Tree : Set -> Set
Tree A = TreeForest A Treeᵗ
Forest : Set -> Set
Forest A = TreeForest A Forestᵗ
-- All types are System Fω compatible (except the definition of `TreeForestᵗ` has to be inlined)
-- as System Fω does not support kind aliases.
pattern node x forest = wrap (x , forest)
pattern nil = wrap (inj₁ tt)
pattern cons tree forest = wrap (inj₂ (tree , forest))
-- The sanity check.
mutual
toTree₀ : ∀ {A} -> Tree A -> Tree₀ A
toTree₀ (node x forest) = node₀ x (toForest₀ forest)
toForest₀ : ∀ {A} -> Forest A -> Forest₀ A
toForest₀ nil = nil₀
toForest₀ (cons tree forest) = cons₀ (toTree₀ tree) (toForest₀ forest)
-- An additional test:
mutual
mapTree : ∀ {A B} -> (A -> B) -> Tree A -> Tree B
mapTree f (node x forest) = node (f x) (mapForest f forest)
mapForest : ∀ {A B} -> (A -> B) -> Forest A -> Forest B
mapForest f nil = nil
mapForest f (cons tree forest) = cons (mapTree f tree) (mapForest f forest)
-- The first part ends here. We've just seen how to encode mutual data types in pure System Fω
-- with build-in isorecursive `IFix :: ((k -> *) -> k -> *) -> k -> *`.
-- In the second part we'll see how to encode mutual data types with distinct kind signatures.
-- Due to my lack of imagination, we'll take the following family as an example:
mutual
data M₀ (A : Set) : Set where
p₀ : A -> M₀ A
n₀ : N₀ -> M₀ A
data N₀ : Set where
m₀ : M₀ ⊤ -> N₀
-- `M₀` is of kind `Set -> Set` while `N₀` is of kind `Set`.
module DistinctParamsJoined where
-- As in the first part we start with a single data type that contains all the constructors of
-- the family of data types being encoded.
-- The only thing we need to do, is to add all the parameters to the constructors of the type
-- of tags. The rest just follows.
data MNᵗ : Set₁ where
Mᵗ : Set -> MNᵗ -- `M` is parameterized by a `Set`, hence one `Set` argument.
Nᵗ : MNᵗ -- `N` is not parameterized, hence no arguments.
-- The encoding itself follows the same pattern we've seen previously:
mutual
M : Set -> Set
M A = MN (Mᵗ A)
N : Set
N = MN Nᵗ
data MN : MNᵗ -> Set where
-- `∀ {A} -> ...` is an artifact of this particular encoding, it'll disappear later.
p : ∀ {A} -> A -> M A
n : ∀ {A} -> N -> M A
m : M ⊤ -> N
-- The sanity check.
mutual
toM₀ : ∀ {A} -> M A -> M₀ A
toM₀ (p x) = p₀ x
toM₀ (n y) = n₀ (toN₀ y)
toN₀ : N -> N₀
toN₀ (m y) = m₀ (toM₀ y)
module DistinctParamsJoinedComputeIFix where
-- We skip the `JoinedCompute` stage and jump straight to `JoinedComputeIFix`.
-- Again, we just add arguments to tags and the rest follows:
data MNᵗ : Set₁ where
Mᵗ : Set -> MNᵗ
Nᵗ : MNᵗ
MN : MNᵗ -> Set
MN =
IFix λ Rec mnᵗ ->
let M A = Rec (Mᵗ A)
N = Rec Nᵗ
in case mnᵗ of λ
{ (Mᵗ A) -> A ⊎ N -- `M` has two constructors: one receives an `A` and
-- the other receives an `N`.
; Nᵗ -> M ⊤ -- `N` has one constructor which receives an `M ⊤`.
}
M : Set -> Set
M A = MN (Mᵗ A)
N : Set
N = MN Nᵗ
pattern p x = wrap (inj₁ x)
pattern n y = wrap (inj₂ y)
pattern m y = wrap y
-- The sanity check.
mutual
toM₀ : ∀ {A} -> M A -> M₀ A
toM₀ (p x) = p₀ x
toM₀ (n y) = n₀ (toN₀ y)
toN₀ : N -> N₀
toN₀ (m y) = m₀ (toM₀ y)
module DistinctParamsJoinedComputeIFixFω where
-- Mechanically performing the restricted Church-encoding transformation that allows to bring
-- the types into the realms of System Fω, we get
MNᵗ : Set₁
MNᵗ = (Set -> Set) -> Set -> Set
Mᵗ : Set -> MNᵗ
Mᵗ A = λ rM rN -> rM A
Nᵗ : MNᵗ
Nᵗ = λ rM rN -> rN
-- Nothing new here:
MN : MNᵗ -> Set
MN =
IFix λ Rec mnᵗ ->
let M A = Rec (Mᵗ A)
N = Rec Nᵗ
in mnᵗ (λ A -> A ⊎ N) (M ⊤)
M : Set -> Set
M A = MN (Mᵗ A)
N : Set
N = MN Nᵗ
pattern p x = wrap (inj₁ x)
pattern n y = wrap (inj₂ y)
pattern m y = wrap y
-- The sanity check.
mutual
toM₀ : ∀ {A} -> M A -> M₀ A
toM₀ (p x) = p₀ x
toM₀ (n y) = n₀ (toN₀ y)
toN₀ : N -> N₀
toN₀ (m y) = m₀ (toM₀ y)
module FakingFix where
-- We can look at encoding mutual data types from entirely distinct perspective.
-- One of the standard approaches is to have kind-level products and use `Fix :: (k -> k) -> k`
-- over them. There is no such `Fix` in Agda, but we can pretend it exists:
postulate
Fix : ∀ {α} {A : Set α} -> (A -> A) -> A
-- Then we can encode `MN` as
MN : (Set -> Set) × Set
MN =
Fix λ Rec ->
let M A = proj₁ Rec A
N = proj₂ Rec
in (λ A -> A ⊎ N) , M ⊤
-- This all is very similar to what we've seen in the previous section: the local definitions
-- of `M` and `N` differ and we construct a type-level tuple rather than a `Set`, but the
-- pattern is the same.
-- The global definitions of `M` and `N` are
M : Set -> Set
M = proj₁ MN
N : Set
N = proj₂ MN
-- And now we can perform the same restricted Church-encoding trick again and use
-- `((Set -> Set) -> Set -> Set) -> Set` instead of `(Set -> Set) × Set`.
-- Note that the new type then is exactly the same as the one of `MN` from the previous section:
-- MN : MNᵗ -> Set
-- which being inlined becomes:
-- MN : ((Set -> Set) -> Set -> Set) -> Set
-- Hence we arrived at the same encoding taking a folklore technique as a starting point.
| {
"alphanum_fraction": 0.6227202813,
"avg_line_length": 32.584725537,
"ext": "agda",
"hexsha": "0bf2bce784d25e884f8d7332c8915cf08369e137",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "727151dcf8bce8d7b7ef50b63652c926b3a722ef",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "robkorn/plutus",
"max_forks_repo_path": "docs/fomega/mutual-type-level-recursion/MutualData.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "727151dcf8bce8d7b7ef50b63652c926b3a722ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "robkorn/plutus",
"max_issues_repo_path": "docs/fomega/mutual-type-level-recursion/MutualData.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "727151dcf8bce8d7b7ef50b63652c926b3a722ef",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "robkorn/plutus",
"max_stars_repo_path": "docs/fomega/mutual-type-level-recursion/MutualData.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4149,
"size": 13653
} |
module Luau.RuntimeError.ToString where
open import Agda.Builtin.Float using (primShowFloat)
open import FFI.Data.String using (String; _++_)
open import Luau.RuntimeError using (RuntimeErrorᴮ; RuntimeErrorᴱ; local; return; TypeMismatch; UnboundVariable; SEGV; app₁; app₂; block; bin₁; bin₂)
open import Luau.RuntimeType.ToString using (runtimeTypeToString)
open import Luau.Addr.ToString using (addrToString)
open import Luau.Syntax.ToString using (exprToString)
open import Luau.Var.ToString using (varToString)
open import Luau.Value.ToString using (valueToString)
open import Luau.Syntax using (name; _$_)
errToStringᴱ : ∀ {a H B} → RuntimeErrorᴱ {a} H B → String
errToStringᴮ : ∀ {a H B} → RuntimeErrorᴮ {a} H B → String
errToStringᴱ (UnboundVariable x) = "variable " ++ varToString x ++ " is unbound"
errToStringᴱ (SEGV a x) = "address " ++ addrToString a ++ " is unallocated"
errToStringᴱ (app₁ E) = errToStringᴱ E
errToStringᴱ (app₂ E) = errToStringᴱ E
errToStringᴱ (bin₁ E) = errToStringᴱ E
errToStringᴱ (bin₂ E) = errToStringᴱ E
errToStringᴱ (block b E) = errToStringᴮ E ++ "\n in call of function " ++ varToString b
errToStringᴱ (TypeMismatch t v _) = "value " ++ valueToString v ++ " is not a " ++ runtimeTypeToString t
errToStringᴮ (local x E) = errToStringᴱ E ++ "\n in definition of " ++ varToString (name x)
errToStringᴮ (return E) = errToStringᴱ E ++ "\n in return statement"
| {
"alphanum_fraction": 0.7448325018,
"avg_line_length": 50.1071428571,
"ext": "agda",
"hexsha": "d5528c8b19cf38aaedb518c2c55edfe4d4d323af",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Luau/RuntimeError/ToString.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Luau/RuntimeError/ToString.agda",
"max_line_length": 149,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Luau/RuntimeError/ToString.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 442,
"size": 1403
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.DStructures.Structures.SplitEpi where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Functions.FunExtEquiv
open import Cubical.Homotopy.Base
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary
open import Cubical.Algebra.Group
open import Cubical.Structures.LeftAction
open import Cubical.DStructures.Base
open import Cubical.DStructures.Meta.Properties
open import Cubical.DStructures.Structures.Type
open import Cubical.DStructures.Structures.Constant
open import Cubical.DStructures.Structures.Group
private
variable
ℓ ℓ' : Level
open URGStr
---------------------------------------------
-- URG structures on the type of split epis,
-- and displayed structures over that
--
-- B
-- |
-- isSplit
-- |
-- G²FB
---------------------------------------------
module _ (ℓ ℓ' : Level) where
-- type of Split epimorphisms
SplitEpi = Σ[ ((G , H) , f , b) ∈ G²FB ℓ ℓ' ] isGroupSplitEpi f b
SplitEpi' = Σ[ G ∈ Group {ℓ} ] Σ[ H ∈ Group {ℓ'} ] Σ[ (f , b) ∈ (GroupHom G H) × (GroupHom H G) ] isGroupSplitEpi f b
IsoSplitEpi' : Iso SplitEpi' SplitEpi
IsoSplitEpi' = compIso (invIso Σ-assoc-Iso)
(invIso Σ-assoc-Iso)
-- split epimorphisms + a map back
SplitEpiB = Σ[ (((G , H) , f , b) , isRet) ∈ SplitEpi ] GroupHom H G
-- split epimorphisms displayed over pairs of groups
𝒮ᴰ-SplitEpi : URGStrᴰ (𝒮-G²FB ℓ ℓ')
(λ ((G , H) , (f , b)) → isGroupSplitEpi f b)
ℓ-zero
𝒮ᴰ-SplitEpi =
Subtype→Sub-𝒮ᴰ (λ ((G , H) , (f , b)) → isGroupSplitEpi f b , isPropIsGroupSplitEpi f b)
(𝒮-G²FB ℓ ℓ')
-- URG structure on type of split epimorphisms
𝒮-SplitEpi : URGStr SplitEpi (ℓ-max ℓ ℓ')
𝒮-SplitEpi = ∫⟨ 𝒮-G²FB ℓ ℓ' ⟩ 𝒮ᴰ-SplitEpi
-- morphisms back displayed over split epimorphisms,
-- obtained by lifting the morphisms back over
-- 𝒮-G² twice
𝒮ᴰ-G²FBSplit\B : URGStrᴰ 𝒮-SplitEpi
(λ (((G , H) , _) , _) → GroupHom H G)
(ℓ-max ℓ ℓ')
𝒮ᴰ-G²FBSplit\B =
VerticalLift2-𝒮ᴰ (𝒮-group ℓ ×𝒮 𝒮-group ℓ')
(𝒮ᴰ-G²\B ℓ ℓ')
(𝒮ᴰ-G²\FB ℓ ℓ')
𝒮ᴰ-SplitEpi
-- URG structure on split epis with an extra
-- morphism back
𝒮-SplitEpiB : URGStr SplitEpiB (ℓ-max ℓ ℓ')
𝒮-SplitEpiB = ∫⟨ 𝒮-SplitEpi ⟩ 𝒮ᴰ-G²FBSplit\B
𝒮ᴰ-G\GFBSplitEpi : URGStrᴰ (𝒮-group ℓ)
(λ G → Σ[ H ∈ Group {ℓ'} ] Σ[ (f , b) ∈ (GroupHom G H) × (GroupHom H G) ] isGroupSplitEpi f b )
(ℓ-max ℓ ℓ')
𝒮ᴰ-G\GFBSplitEpi =
splitTotal-𝒮ᴰ (𝒮-group ℓ)
(𝒮ᴰ-const (𝒮-group ℓ) (𝒮-group ℓ'))
(splitTotal-𝒮ᴰ (𝒮-group ℓ ×𝒮 𝒮-group ℓ')
(𝒮ᴰ-G²\FB ℓ ℓ')
𝒮ᴰ-SplitEpi)
--------------------------------------------------
-- This module introduces convenient notation
-- when working with a single split epimorphism
---------------------------------------------------
module SplitEpiNotation {G₀ : Group {ℓ}} {G₁ : Group {ℓ'}}
(ι : GroupHom G₀ G₁) (σ : GroupHom G₁ G₀)
(split : isGroupSplitEpi ι σ) where
open GroupNotation₀ G₀
open GroupNotation₁ G₁
ι∘σ : GroupHom G₁ G₁
ι∘σ = compGroupHom σ ι
s = GroupHom.fun σ
-- i is reserved for an interval variable (i : I) so we use 𝒾 instead
𝒾 = GroupHom.fun ι
-i = λ (x : ⟨ G₀ ⟩) → -₁ (𝒾 x)
s- = λ (x : ⟨ G₁ ⟩) → s (-₁ x)
si = λ (x : ⟨ G₀ ⟩) → s (𝒾 x)
is = λ (x : ⟨ G₁ ⟩) → 𝒾 (s x)
-si = λ (x : ⟨ G₀ ⟩) → -₀ (si x)
-is = λ (x : ⟨ G₁ ⟩) → -₁ (is x)
si- = λ (x : ⟨ G₀ ⟩) → si (-₀ x)
is- = λ (x : ⟨ G₁ ⟩) → is (-₁ x)
s-i = λ (x : ⟨ G₀ ⟩) → s (-₁ (𝒾 x))
isi = λ (x : ⟨ G₀ ⟩) → 𝒾 (s (𝒾 x))
| {
"alphanum_fraction": 0.5476249689,
"avg_line_length": 33.2314049587,
"ext": "agda",
"hexsha": "c81ea2543261f2aa47c634a3c5b50d8165b389e9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/DStructures/Structures/SplitEpi.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/DStructures/Structures/SplitEpi.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/DStructures/Structures/SplitEpi.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1523,
"size": 4021
} |
open import Relation.Binary.PropositionalEquality using (_≡_; refl; subst)
open import Data.Sum
import SingleSorted.AlgebraicTheory as SS
module SingleSorted.Combinators where
module Sum {𝓈} (Σ₁ Σ₂ : SS.Signature) (T₁ : SS.Theory 𝓈 Σ₁) (T₂ : SS.Theory 𝓈 Σ₂) where
-- disjoint sum of signatures
S : SS.Signature
S = record { oper = SS.Signature.oper Σ₁ ⊎ SS.Signature.oper Σ₂
; oper-arity = [ SS.Signature.oper-arity Σ₁ , SS.Signature.oper-arity Σ₂ ]
}
inj-term-l : ∀ {Γ : SS.Context} → SS.Signature.Term Σ₁ Γ → SS.Signature.Term S Γ
inj-term-l {Γ} (SS.Signature.tm-var x) = SS.Signature.tm-var x
inj-term-l {Γ} (SS.Signature.tm-oper f ts) = SS.Signature.tm-oper (inj₁ f) λ{ i → inj-term-l (ts i)}
inj-term-r : ∀ {Γ : SS.Context} → SS.Signature.Term Σ₂ Γ → SS.Signature.Term S Γ
inj-term-r {Γ} (SS.Signature.tm-var x) = SS.Signature.tm-var x
inj-term-r {Γ} (SS.Signature.tm-oper f ts) = SS.Signature.tm-oper (inj₂ f) λ{ i → inj-term-r (ts i)}
coerce₁ : SS.Signature.Equation Σ₁ → SS.Signature.Equation S
coerce₁ eq = record { eq-ctx = SS.Signature.Equation.eq-ctx eq
; eq-lhs = inj-term-l (SS.Signature.Equation.eq-lhs eq)
; eq-rhs = inj-term-l (SS.Signature.Equation.eq-rhs eq)
}
coerce₂ : SS.Signature.Equation Σ₂ → SS.Signature.Equation S
coerce₂ eq = record { eq-ctx = SS.Signature.Equation.eq-ctx eq
; eq-lhs = inj-term-r (SS.Signature.Equation.eq-lhs eq)
; eq-rhs = inj-term-r (SS.Signature.Equation.eq-rhs eq)
}
-- define a theory with the set of axioms a union of the axioms of both theories
T : SS.Theory 𝓈 S
T = record { ax = SS.Theory.ax T₁ ⊎ SS.Theory.ax T₂
; ax-eq = [ (λ a → coerce₁ (SS.Theory.ax-eq T₁ a)) , (λ a → coerce₂ (SS.Theory.ax-eq T₂ a)) ]
}
| {
"alphanum_fraction": 0.6121372032,
"avg_line_length": 45.119047619,
"ext": "agda",
"hexsha": "3c53b1d074db999c6dd5a0098696b17100128487",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SingleSorted/Combinators.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SingleSorted/Combinators.agda",
"max_line_length": 106,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/SingleSorted/Combinators.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 624,
"size": 1895
} |
{-# OPTIONS --cubical #-}
module Type.Cubical.Path.Proofs where
import Lvl
open import Type
open import Type.Cubical
open import Type.Cubical.Path
private variable ℓ ℓ₁ ℓ₂ : Lvl.Level
module _ where
private variable A B : Type{ℓ}
private variable P : Interval → Type{ℓ}
private variable x y z w : A
-- The full path from the starting point to the end.
path : (point : Interval → A) → Path(point(Interval.𝟎)) (point(Interval.𝟏))
path point i = point i
-- The point on the path, given a point of the interval indexing the path.
pointOn : ∀{x y : A} → Path x y → (Interval → A)
pointOn p i = p i
-- The path from a point to itself.
-- This path only consists of the point itself.
point : Path x x
point{x = x} _ = x
-- The reverse path of a path.
-- Reverses the direction of a path by flipping all points around the point of symmetry.
reverseP : PathP(P) x y → PathP(\i → P(Interval.flip i)) y x
reverseP p(i) = p(Interval.flip i)
reverse : Path x y → Path y x
reverse = reverseP
-- A function mapping points between two spaces, given a path between the spaces.
spaceMap : Path A B → (A → B)
spaceMap p = Interval.transp (pointOn p) Interval.𝟎
-- TODO: Move
module _ {A : Type{ℓ}} where
private variable a₀ a₁ a₂ a₃ : A
private variable a₀₀ a₀₁ a₁₀ a₁₁ : A
private variable a₀₀₀ a₀₀₁ a₀₁₀ a₀₁₁ a₁₀₀ a₁₀₁ a₁₁₀ a₁₁₁ : A
private variable p₀₀₋ p₀₁₋ p₀₋₀ p₀₋₁ p₁₀₋ p₁₁₋ p₁₋₀ p₁₋₁ p₋₀₀ p₋₀₁ p₋₁₀ p₋₁₁ : Path a₀ a₁
Path-missingSide : A → A
Path-missingSide a = Interval.hComp diag a where
diag : Interval → Interval.Partial Interval.𝟎 A
diag i ()
module _
(p₀₋ : Path a₀₀ a₀₁)
(p₁₋ : Path a₁₀ a₁₁)
(p₋₀ : Path a₀₀ a₁₀)
(p₋₁ : Path a₀₁ a₁₁)
where
-- a₀₁ → p₋₁ → a₁₁
-- ↑ ↑
-- p₀₋ p₁₋
-- ↑ ↑
-- a₀₀ → p₋₀ → a₁₀
Square : Type
Square = PathP (\i → Path (p₋₀ i) (p₋₁ i)) p₀₋ p₁₋
module Square where
missingSide : Path a₀₀ a₀₁ → Path a₁₀ a₁₁ → Path a₀₀ a₁₀ → Path a₀₁ a₁₁
missingSide p₀₋ p₁₋ p₋₀ ix = Interval.hComp diagram (p₋₀ ix) where
diagram : Interval → Interval.Partial(Interval.max ix (Interval.flip ix)) A
diagram iy (ix = Interval.𝟎) = p₀₋ iy
diagram iy (ix = Interval.𝟏) = p₁₋ iy
module _
{p₀₋ : Path a₀₀ a₀₁}
{p₁₋ : Path a₁₀ a₁₁}
{p₋₀ : Path a₀₀ a₁₀}
{p₋₁ : Path a₀₁ a₁₁}
(s : Square p₀₋ p₁₋ p₋₀ p₋₁)
where
diagonal : Path a₀₀ a₁₁
diagonal i = s i i
rotate₊ : Square p₋₁ p₋₀ (reverse p₀₋) (reverse p₁₋)
rotate₊ iy ix = s ix (Interval.flip iy)
rotate₋ : Square (reverse p₋₀) (reverse p₋₁) p₁₋ p₀₋
rotate₋ iy ix = s (Interval.flip ix) iy
flipX : Square p₁₋ p₀₋ (reverse p₋₀) (reverse p₋₁)
flipX iy ix = s (Interval.flip iy) ix
flipY : Square (reverse p₀₋) (reverse p₁₋) p₋₁ p₋₀
flipY iy ix = s iy (Interval.flip ix)
module _
{a₀ a₁ : A}
(p : Path a₀ a₁)
where
lineX : Square point point p p
lineX ix iy = p ix
lineY : Square p p point point
lineY ix iy = p iy
min : Square point p point p
min ix iy = p(Interval.min ix iy)
max : Square p point p point
max ix iy = p(Interval.max ix iy)
module _
(p₀₋₋ : Square p₀₀₋ p₀₁₋ p₀₋₀ p₀₋₁)
(p₁₋₋ : Square p₁₀₋ p₁₁₋ p₁₋₀ p₁₋₁)
(p₋₀₋ : Square p₀₀₋ p₁₀₋ p₋₀₀ p₋₀₁)
(p₋₁₋ : Square p₀₁₋ p₁₁₋ p₋₁₀ p₋₁₁)
(p₋₋₀ : Square p₀₋₀ p₁₋₀ p₋₀₀ p₋₁₀)
(p₋₋₁ : Square p₀₋₁ p₁₋₁ p₋₀₁ p₋₁₁)
where
Cube : Type
Cube = PathP (\i → Square (p₋₀₋ i) (p₋₁₋ i) (p₋₋₀ i) (p₋₋₁ i)) p₀₋₋ p₁₋₋
{-
module Cube where
module _
(p₀₋₋ : Square p₀₀₋ p₀₁₋ p₀₋₀ p₀₋₁)
(p₁₋₋ : Square p₁₀₋ p₁₁₋ p₁₋₀ p₁₋₁)
(p₋₀₋ : Square p₀₀₋ p₁₀₋ p₋₀₀ p₋₀₁)
(p₋₁₋ : Square p₀₁₋ p₁₁₋ p₋₁₀ p₋₁₁)
(p₋₋₀ : Square p₀₋₀ p₁₋₀ p₋₀₀ p₋₁₀)
where
missingSide : Square p₀₋₁ p₁₋₁ p₋₀₁ p₋₁₁
missingSide ix iy = Interval.hComp diagram (p₋₋₀ ix iy) where -- (Square.max {!!} ix iy)
diagram : Interval → Interval.Partial {!!} A
{-diagram : (i : Interval) → Interval.Partial (Interval.max (Interval.max ix (Interval.flip ix)) (Interval.max iy (Interval.flip iy))) _
diagram iz (ix = Interval.𝟎) = Square.max p₀₋₁ ix iy
diagram iz (ix = Interval.𝟏) = Square.min p₁₋₁ ix iy
diagram iz (iy = Interval.𝟎) = Square.max p₋₀₁ ix iy
diagram iz (iy = Interval.𝟏) = Square.min p₋₁₁ ix iy-}
-}
-- Concatenates (joins the ends of) two paths.
concat : Path x y → Path y z → Path x z
concat xy yz = Square.missingSide point yz xy
module _ where
private variable X : Type{ℓ}
private variable Y : X → Type{ℓ}
-- Maps a path into another space.
mapP : (f : (x : X) → Y(x)) → ∀{x y} → (path : Path x y) → PathP(\i → Y(path(i))) (f(x)) (f(y))
mapP(f) p(i) = f(p(i))
-- When there is a path between two space mappings.
mapping : ∀{f g : (x : X) → Y(x)} → (∀{x} → Path(f(x)) (g(x))) → Path f g
mapping ppt i x = ppt{x} i
mappingPoint : ∀{f g : (x : X) → Y(x)} → Path f g → (∀{x} → Path(f(x)) (g(x)))
mappingPoint pfg {x} i = pfg i x
module _ where
private variable X : Type{ℓ}
private variable Y : X → Type{ℓ}
private variable Z : (x : X) → Y(x) → Type{ℓ}
-- mapP₂' : (f : (x : X) → (y : Y(x)) → Z(x)(y)) → ∀{a₁ b₁ : X}{a₂ : Y(a₁)}{b₂ : Y(b₁)} → (path₁ : Path a₁ b₁) → (path₂ : Path a₂ b₂) → PathP(\i → Z(path₁(i))(?)) (f a₁ a₂) (f b₁ b₂)
mapP₂ : (f : (x : X) → (y : (x : X) → Y(x)) → Z(x)(y)) → ∀{a₁ b₁ : X}{a₂ b₂ : (x : X) → Y(x)} → (path₁ : Path a₁ b₁) → (path₂ : Path a₂ b₂) → PathP(\i → Z(path₁(i))(path₂(i))) (f a₁ a₂) (f b₁ b₂)
mapP₂ f ab1 ab2 i = mapP (mapP f ab1 i) ab2 i
-- mapP₂ : (f : (x : X) → (y : Y(x)) → Z(x)(y)) → ∀{x₁ x₂} → (path : Path x₁ x₂) → PathP(\i → Y(path(i))) (f(x)) (f(y))
-- mapP₂(f) = ?
module _ where
private variable X X₁ X₂ Y Y₁ Y₂ : Type{ℓ}
map : (f : X → Y) → ∀{a b} → Path a b → Path (f(a)) (f(b))
map = mapP
map₂ : (f : X₁ → X₂ → Y) → ∀{a₁ b₁}{a₂ b₂} → Path a₁ b₁ → Path a₂ b₂ → Path (f a₁ a₂) (f b₁ b₂)
map₂ f ab1 ab2 i = mapP (mapP f ab1 i) ab2 i
liftedSpaceMap : (S : X → Type{ℓ}) → ∀{a b} → Path a b → S(a) → S(b)
liftedSpaceMap S p = spaceMap(map S p)
liftedSpaceMap₂ : (S : X → Y → Type{ℓ}) → ∀{a₁ b₁}{a₂ b₂} → Path a₁ b₁ → Path a₂ b₂ → S a₁ a₂ → S b₁ b₂
liftedSpaceMap₂ S p q = spaceMap(map₂ S p q)
-- TODO: Move
data Loop{ℓ} : Type{ℓ} where
base : Loop
loop : Path base base
| {
"alphanum_fraction": 0.5516148506,
"avg_line_length": 33.9794871795,
"ext": "agda",
"hexsha": "aec8e1e22ba94c1980ffaa3e6a71af3276da9efe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Cubical/Path/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Cubical/Path/Proofs.agda",
"max_line_length": 197,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Cubical/Path/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2750,
"size": 6626
} |
open import lib
open import eq-reas-nouni
equiv = _≡_
Val = nat
data Expn : Set where
val : Val -> Expn
plus : Expn -> Expn -> Expn
eval : Expn -> Val
eval (val v) = v
eval (plus e1 e2) = (eval e1) + (eval e2)
data evalsTo : Expn -> Val -> Set where
e-val : forall {v : Val}
------------------------
-> (evalsTo (val v) v)
e-add : forall {e1 e2 : Expn}{v1 v2 : Val}
-> (evalsTo e1 v1)
-> (evalsTo e2 v2)
-------------------------------------
-> (evalsTo (plus e1 e2) (v1 + v2))
e-thm-fwd : forall {e : Expn}{v : Val}
-> evalsTo e v -> equiv (eval e) v
e-thm-fwd (e-val{v}) =
begin
eval (val v)
equiv[ refl ]
v
qed
e-thm-fwd (e-add{e1}{e2}{v1}{v2} e1-evalsTo-v1 e2-evalsTo-v2) =
let
eval-e1-is-v1 = e-thm-fwd e1-evalsTo-v1
eval-e2-is-v2 = e-thm-fwd e2-evalsTo-v2
in begin
eval (plus e1 e2)
equiv[ refl ]
(eval e1) + (eval e2)
equiv[ cong2 _+_ eval-e1-is-v1 eval-e2-is-v2 ]
v1 + v2
qed
e-thm-alt : forall (e : Expn) -> evalsTo e (eval e)
e-thm-alt (val v) = e-val
e-thm-alt (plus e1 e2) = (e-add (e-thm-alt e1) (e-thm-alt e2))
| {
"alphanum_fraction": 0.5098882201,
"avg_line_length": 20.7678571429,
"ext": "agda",
"hexsha": "4a9428b6926ffbce01225be45746be59e3ef8cd1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JimFixGroupResearch/imper-ial",
"max_forks_repo_path": "expn-eval-holds.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JimFixGroupResearch/imper-ial",
"max_issues_repo_path": "expn-eval-holds.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "80d9411b2869614cae488cd4a6272894146c9f3c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JimFixGroupResearch/imper-ial",
"max_stars_repo_path": "expn-eval-holds.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 464,
"size": 1163
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.PropositionalTruncation where
open import Cubical.HITs.PropositionalTruncation.Base public
open import Cubical.HITs.PropositionalTruncation.Properties public
| {
"alphanum_fraction": 0.8349056604,
"avg_line_length": 35.3333333333,
"ext": "agda",
"hexsha": "77134fa396fcfb7c1d990117f7198a72601270ca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/PropositionalTruncation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/PropositionalTruncation.agda",
"max_line_length": 66,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/PropositionalTruncation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 55,
"size": 212
} |
-- Kleene's three-valued logic
module bool-kleene where
open import bool
open import eq
data 𝔹ₖ : Set where
tt : 𝔹ₖ
ff : 𝔹ₖ
uu : 𝔹ₖ
infix 7 ~ₖ_
infixr 6 _&&ₖ_
infixr 5 _||ₖ_
--infixr 4 _impₖ_
~ₖ_ : 𝔹ₖ → 𝔹ₖ
~ₖ tt = ff
~ₖ ff = tt
~ₖ uu = uu
-- and
_&&ₖ_ : 𝔹ₖ → 𝔹ₖ → 𝔹ₖ
tt &&ₖ b = b
ff &&ₖ b = ff
uu &&ₖ ff = ff
uu &&ₖ b = uu
-- or
_||ₖ_ : 𝔹ₖ → 𝔹ₖ → 𝔹ₖ
ff ||ₖ b = b
tt ||ₖ b = tt
uu ||ₖ tt = tt
uu ||ₖ b = uu
-- implication
_impₖ_ : 𝔹ₖ → 𝔹ₖ → 𝔹ₖ
tt impₖ b2 = b2
ff impₖ b2 = tt
uu impₖ tt = tt
uu impₖ b = uu
knownₖ : 𝔹ₖ → 𝔹
knownₖ tt = tt
knownₖ ff = tt
knownₖ uu = ff
to-𝔹 : (b : 𝔹ₖ) → knownₖ b ≡ tt → 𝔹
to-𝔹 tt p = tt
to-𝔹 ff p = ff
to-𝔹 uu () | {
"alphanum_fraction": 0.5518796992,
"avg_line_length": 12.7884615385,
"ext": "agda",
"hexsha": "24e7f6080b8e119a71121ea8f5e6950d428d20c1",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "bool-kleene.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "bool-kleene.agda",
"max_line_length": 35,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "bool-kleene.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 411,
"size": 665
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Wedge.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.HITs.Pushout.Base
open import Cubical.Data.Unit
_⋁_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Type (ℓ-max ℓ ℓ')
_⋁_ (A , ptA) (B , ptB) = Pushout {A = Unit} {B = A} {C = B} (λ _ → ptA) (λ _ → ptB)
-- pointed versions
_⋁∙ₗ_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Pointed (ℓ-max ℓ ℓ')
A ⋁∙ₗ B = (A ⋁ B) , (inl (snd A))
_⋁∙ᵣ_ : ∀ {ℓ ℓ'} → Pointed ℓ → Pointed ℓ' → Pointed (ℓ-max ℓ ℓ')
A ⋁∙ᵣ B = (A ⋁ B) , (inr (snd B))
| {
"alphanum_fraction": 0.597359736,
"avg_line_length": 28.8571428571,
"ext": "agda",
"hexsha": "f63ab6138e76a210f2c6d21559a06bad035a263c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Schippmunk/cubical",
"max_forks_repo_path": "Cubical/HITs/Wedge/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Schippmunk/cubical",
"max_issues_repo_path": "Cubical/HITs/Wedge/Base.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c345dc0c49d3950dc57f53ca5f7099bb53a4dc3a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Schippmunk/cubical",
"max_stars_repo_path": "Cubical/HITs/Wedge/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 283,
"size": 606
} |
module Numeral.Natural.Oper.FlooredDivision.Proofs.Inverse where
import Lvl
open import Data
open import Functional
open import Logic.Propositional
open import Numeral.Natural
open import Numeral.Natural.Oper
open import Numeral.Natural.Oper.DivMod.Proofs
open import Numeral.Natural.Oper.FlooredDivision
open import Numeral.Natural.Oper.Modulo
open import Numeral.Natural.Oper.Modulo.Proofs
open import Numeral.Natural.Oper.Proofs
open import Numeral.Natural.Oper.Proofs.Multiplication
open import Numeral.Natural.Relation
open import Numeral.Natural.Relation.Divisibility
open import Numeral.Natural.Relation.Divisibility.Proofs
open import Numeral.Natural.Relation.Order
open import Relator.Equals
open import Relator.Equals.Proofs
open import Structure.Function
open import Structure.Operator
open import Structure.Operator.Properties
open import Structure.Relator.Properties
open import Syntax.Transitivity
[⋅][⌊/⌋]-inverseOperatorᵣ : ∀{x y} ⦃ pos : Positive(y) ⦄ → (y ∣ x) → (x ⌊/⌋ y ⋅ y ≡ x)
[⋅][⌊/⌋]-inverseOperatorᵣ {x}{𝐒 y} div =
x ⌊/⌋ 𝐒(y) ⋅ 𝐒(y) 🝖[ _≡_ ]-[]
x ⌊/⌋ 𝐒(y) ⋅ 𝐒(y) + 𝟎 🝖[ _≡_ ]-[ congruence₂ᵣ(_+_)(_) ([↔]-to-[←] mod-divisibility div) ]-sym
(x ⌊/⌋ 𝐒(y) ⋅ 𝐒(y)) + (x mod 𝐒(y)) 🝖[ _≡_ ]-[ [⌊/⌋][mod]-is-division-with-remainder {x}{y} ]
x 🝖-end
[⌊/⌋][⋅]-inverseOperatorᵣ : ∀{x y} ⦃ pos : Positive(y) ⦄ → ((x ⋅ y) ⌊/⌋ y ≡ x)
[⌊/⌋][⋅]-inverseOperatorᵣ {x}{𝐒 y} = [⋅]-cancellationᵣ {𝐒(y)} ([⋅][⌊/⌋]-inverseOperatorᵣ (divides-with-[⋅] {𝐒(y)}{x} ([∨]-introᵣ (reflexivity(_∣_)))))
[⌊/⌋][swap⋅]-inverseOperatorᵣ : ∀{x y} ⦃ pos : Positive(x) ⦄ → ((x ⋅ y) ⌊/⌋ x ≡ y)
[⌊/⌋][swap⋅]-inverseOperatorᵣ {x}{y} = congruence₁(_⌊/⌋ x) (commutativity(_⋅_) {x}{y}) 🝖 [⌊/⌋][⋅]-inverseOperatorᵣ {y}{x}
[⋅][⌊/⌋₀]-inverseOperatorᵣ : ∀{x y} → (y > 0) → (y ∣ x) → ((x ⌊/⌋₀ y) ⋅ y ≡ x)
[⋅][⌊/⌋₀]-inverseOperatorᵣ {x}{𝐒 y} _ = [⋅][⌊/⌋]-inverseOperatorᵣ {x}{𝐒 y}
| {
"alphanum_fraction": 0.6414507772,
"avg_line_length": 45.9523809524,
"ext": "agda",
"hexsha": "fea72b2dfd50ac6a023dd11d02d93740f7045d58",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Natural/Oper/FlooredDivision/Proofs/Inverse.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Natural/Oper/FlooredDivision/Proofs/Inverse.agda",
"max_line_length": 150,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Natural/Oper/FlooredDivision/Proofs/Inverse.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 881,
"size": 1930
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Properties.Posets where
open import Level using (_⊔_; Lift; lift)
open import Data.Unit using (⊤; tt)
open import Data.Product as Prod using (_,_; <_,_>) renaming (_×_ to _|×|_)
open import Function using (flip)
open import Relation.Binary using (IsPartialOrder; Poset)
open import Relation.Binary.OrderMorphism
using (id; _∘_) renaming (_⇒-Poset_ to _⇒_)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
open import Categories.Category
import Categories.Category.CartesianClosed as CCC
import Categories.Category.CartesianClosed.Canonical as Canonical
open import Categories.Category.Instance.Posets
open import Categories.Functor using (Functor; Endofunctor)
open import Categories.Utils.Product
open Poset renaming (_≈_ to ₍_₎_≈_; _≤_ to ₍_₎_≤_)
open _⇒_
-- The pointwise partial order on order preserving maps.
--
-- (See the Exponential module below for the definition of the
-- exponential/hom object based on this order.)
module Pointwise {a₁ a₂ a₃ b₁ b₂ b₃} {A : Poset a₁ a₂ a₃} {B : Poset b₁ b₂ b₃}
where
infix 4 _≤°_
_≤°_ : (f g : A ⇒ B) → Set (a₁ ⊔ b₃)
f ≤° g = ∀ {x} → ₍ B ₎ fun f x ≤ fun g x
≤°-isPartialOrder : IsPartialOrder _≗_ _≤°_
≤°-isPartialOrder = record
{ isPreorder = record
{ isEquivalence = ≗-isEquivalence
; reflexive = λ f≗g → reflexive B f≗g
; trans = λ f≤g g≤h → trans B f≤g g≤h
}
; antisym = λ f≤g g≤f → antisym B f≤g g≤f
}
module ≤° = IsPartialOrder ≤°-isPartialOrder
open Pointwise
-- Poset has a duality involution: the poset obtained by reversing the
-- partial order is again a poset.
module Opposite where
-- NOTE: we flip the direction of the underlying equality _≈_ as
-- well, so that |op (op A) ≡ A| definitionally.
op : ∀ {a₁ a₂ a₃} → Poset a₁ a₂ a₃ → Poset a₁ a₂ a₃
op A = record
{ Carrier = Carrier A
; _≈_ = flip ₍ A ₎_≈_
; _≤_ = flip ₍ A ₎_≤_
; isPartialOrder = record
{ isPreorder = record
{ isEquivalence = record
{ refl = Eq.refl A
; sym = Eq.sym A
; trans = flip (Eq.trans A)
}
; reflexive = reflexive A
; trans = flip (trans A)
}
; antisym = antisym A
}
}
module _ {a₁ a₂ a₃} {A : Poset a₁ a₂ a₃} where
op-involutive : op (op A) ≡ A
op-involutive = ≡.refl
module _ {b₁ b₂ b₃} {B : Poset b₁ b₂ b₃} where
op₁ : A ⇒ B → op A ⇒ op B
op₁ f = record { fun = fun f ; monotone = monotone f }
op₂ : {f g : A ⇒ B} → f ≤° g → op₁ g ≤° op₁ f
op₂ f≤g = f≤g
-- op induces an endofunctor on Posets
op-functor : ∀ {a₁ a₂ a₃} → Endofunctor (Posets a₁ a₂ a₃)
op-functor = record
{ F₀ = op
; F₁ = op₁
; identity = λ {A} → Eq.refl A
; homomorphism = λ {_ _ C} → Eq.refl C
; F-resp-≈ = λ {_ B} x≈y → Eq.sym B x≈y
}
module op {a₁ a₂ a₃} = Functor (op-functor {a₁} {a₂} {a₃})
-- The category of posets has terminal objects.
module Terminals where
unit : ∀ a₁ a₂ a₃ → Poset a₁ a₂ a₃
unit a₁ a₂ a₃ = record
{ Carrier = Lift a₁ ⊤
; _≈_ = λ _ _ → Lift a₂ ⊤
; _≤_ = λ _ _ → Lift a₃ ⊤
}
module _ {a₁ a₂ a₃ b₁ b₂ b₃} {B : Poset b₁ b₂ b₃} where
! : B ⇒ unit a₁ a₂ a₃
! = _
!-unique : (f : B ⇒ unit a₁ a₂ a₃) → ! ≗ f
!-unique f = _
open Terminals
-- The category of posets has products.
module Products where
infixr 2 _×_
_×_ : ∀ {a₁ a₂ a₃ b₁ b₂ b₃} →
Poset a₁ a₂ a₃ → Poset b₁ b₂ b₃ → Poset (a₁ ⊔ b₁) (a₂ ⊔ b₂) (a₃ ⊔ b₃)
A × B = record
{ Carrier = Carrier A |×| Carrier B
; _≈_ = ₍ A ₎_≈_ -< _|×|_ >- ₍ B ₎_≈_
; _≤_ = ₍ A ₎_≤_ -< _|×|_ >- ₍ B ₎_≤_
; isPartialOrder = record
{ isPreorder = record
{ isEquivalence = record
{ refl = Eq.refl A , Eq.refl B
; sym = Prod.map (Eq.sym A) (Eq.sym B)
; trans = Prod.zip (Eq.trans A) (Eq.trans B)
}
; reflexive = Prod.map (reflexive A) (reflexive B)
; trans = Prod.zip (trans A) (trans B)
}
; antisym = Prod.zip (antisym A) (antisym B)
}
}
module _ {a₁ a₂ a₃ b₁ b₂ b₃} {A : Poset a₁ a₂ a₃} {B : Poset b₁ b₂ b₃} where
π₁ : (A × B) ⇒ A
π₁ = record { fun = Prod.proj₁ ; monotone = Prod.proj₁ }
π₂ : (A × B) ⇒ B
π₂ = record { fun = Prod.proj₂ ; monotone = Prod.proj₂ }
module _ {c₁ c₂ c₃} {C : Poset c₁ c₂ c₃} where
infix 11 ⟨_,_⟩
⟨_,_⟩ : C ⇒ A → C ⇒ B → C ⇒ (A × B)
⟨ f , g ⟩ = record
{ fun = < fun f , fun g >
; monotone = < monotone f , monotone g >
}
π₁-comp : {f : C ⇒ A} {g : C ⇒ B} → π₁ ∘ ⟨ f , g ⟩ ≗ f
π₁-comp = Eq.refl A
π₂-comp : {f : C ⇒ A} {g : C ⇒ B} → π₂ ∘ ⟨ f , g ⟩ ≗ g
π₂-comp = Eq.refl B
⟨,⟩-unique : {f : C ⇒ A} {g : C ⇒ B} {h : C ⇒ (A × B)} →
π₁ ∘ h ≗ f → π₂ ∘ h ≗ g → ⟨ f , g ⟩ ≗ h
⟨,⟩-unique hyp₁ hyp₂ {x} = Eq.sym A hyp₁ , Eq.sym B hyp₂
infixr 2 _×₁_
_×₁_ : ∀ {a₁ a₂ a₃ b₁ b₂ b₃ c₁ c₂ c₃ d₁ d₂ d₃}
{A : Poset a₁ a₂ a₃} {B : Poset b₁ b₂ b₃}
{C : Poset c₁ c₂ c₃} {D : Poset d₁ d₂ d₃} →
A ⇒ C → B ⇒ D → (A × B) ⇒ (C × D)
f ×₁ g = ⟨ f ∘ π₁ , g ∘ π₂ ⟩
open Products
-- The category of posets has exponential objects.
--
-- It's easier to define exponentials with respect to the *canonical*
-- product. The more generic version can then be given by appealing
-- to uniqueness (up to iso) of products.
module Exponentials where
-- Use arrow rather than exponential notation for readability.
infixr 9 _⇨_
_⇨_ : ∀ {a₁ a₂ a₃ b₁ b₂ b₃} → Poset a₁ a₂ a₃ → Poset b₁ b₂ b₃ →
Poset (a₁ ⊔ a₃ ⊔ b₁ ⊔ b₃) (a₁ ⊔ b₂) (a₁ ⊔ b₃)
A ⇨ B = record
{ Carrier = A ⇒ B
; _≈_ = _≗_
; _≤_ = _≤°_
; isPartialOrder = ≤°-isPartialOrder
}
module _ {a₁ a₂ a₃ b₁ b₂ b₃} {A : Poset a₁ a₂ a₃} {B : Poset b₁ b₂ b₃} where
eval : (A ⇨ B × A) ⇒ B
eval = record
{ fun = λ{ (f , x) → fun f x }
; monotone = λ{ {f , _} (f≤g , x≤y) → trans B (monotone f x≤y) f≤g }
}
module _ {c₁ c₂ c₃} {C : Poset c₁ c₂ c₃} where
curry : (C × A) ⇒ B → C ⇒ (A ⇨ B)
curry f = record
{ fun = λ x → record
{ fun = Prod.curry (fun f) x
; monotone = Prod.curry (monotone f) (refl C)
}
; monotone = λ x≤y → monotone f (x≤y , refl A)
}
eval-comp : {f : (C × A) ⇒ B} → eval ∘ (curry f ×₁ id) ≗ f
eval-comp = Eq.refl B
curry-resp-≗ : {f g : (C × A) ⇒ B} → f ≗ g → curry f ≗ curry g
curry-resp-≗ hyp = hyp
curry-unique : {f : C ⇒ (A ⇨ B)} {g : (C × A) ⇒ B} →
eval ∘ (f ×₁ id) ≗ g → f ≗ curry g
curry-unique hyp = hyp
open Exponentials
-- The category of posets is cartesian closed.
Posets-CanonicallyCCC : ∀ {a} → Canonical.CartesianClosed (Posets a a a)
Posets-CanonicallyCCC = record
{ ! = !
; π₁ = π₁
; π₂ = π₂
; ⟨_,_⟩ = ⟨_,_⟩
; !-unique = !-unique
; π₁-comp = λ {_ _ f _ g} → π₁-comp {f = f} {g}
; π₂-comp = λ {_ _ f _ g} → π₂-comp {f = f} {g}
; ⟨,⟩-unique = λ {_ _ f _ h g} → ⟨,⟩-unique {f = f} {g} {h}
; eval = eval
; curry = curry
; eval-comp = λ {_ _ _ f} → eval-comp {f = f}
; curry-resp-≈ = λ {_ _ _ f g} → curry-resp-≗ {f = f} {g}
; curry-unique = λ {_ _ _ f g} → curry-unique {f = f} {g}
}
module CanonicallyCartesianClosed {a} =
Canonical.CartesianClosed (Posets-CanonicallyCCC {a})
Posets-CCC : ∀ {a} → CCC.CartesianClosed (Posets a a a)
Posets-CCC = Canonical.Equivalence.fromCanonical _ Posets-CanonicallyCCC
module CartesianClosed {a} = CCC.CartesianClosed (Posets-CCC {a})
| {
"alphanum_fraction": 0.5230961298,
"avg_line_length": 30,
"ext": "agda",
"hexsha": "3fe1ffd7ae94eae4f140521d80481a8e4cbb10c7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Taneb/agda-categories",
"max_forks_repo_path": "Categories/Category/Instance/Properties/Posets.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Taneb/agda-categories",
"max_issues_repo_path": "Categories/Category/Instance/Properties/Posets.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Taneb/agda-categories",
"max_stars_repo_path": "Categories/Category/Instance/Properties/Posets.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3104,
"size": 8010
} |
------------------------------------------------------------------------------
-- Totality properties respect to Bool
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.SortList.Properties.Totality.BoolI where
open import FOTC.Base
open import FOTC.Data.Bool.Type
open import FOTC.Data.Bool.PropertiesI
open import FOTC.Data.Nat.List.Type
open import FOTC.Data.Nat.Type
open import FOTC.Program.SortList.SortList
------------------------------------------------------------------------------
le-ItemList-Bool : ∀ {item is} → N item → ListN is → Bool (le-ItemList item is)
le-ItemList-Bool {item} Nitem lnnil = subst Bool (sym (le-ItemList-[] item)) btrue
le-ItemList-Bool {item} Nitem (lncons {i} {is} Ni Lis) =
subst Bool
(sym (le-ItemList-∷ item i is))
(&&-Bool (le-Bool Nitem Ni) (le-ItemList-Bool Nitem Lis))
-- See the ATP version.
postulate le-Lists-Bool : ∀ {is js} → ListN is → ListN js → Bool (le-Lists is js)
-- See the ATP version.
postulate ordList-Bool : ∀ {is} → ListN is → Bool (ordList is)
le-ItemTree-Bool : ∀ {item t} → N item → Tree t →
Bool (le-ItemTree item t)
le-ItemTree-Bool {item} _ tnil = subst Bool (sym (le-ItemTree-nil item)) btrue
le-ItemTree-Bool {item} Nitem (ttip {i} Ni) =
subst Bool (sym (le-ItemTree-tip item i)) (le-Bool Nitem Ni)
le-ItemTree-Bool {item} Nitem (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) =
subst Bool
(sym (le-ItemTree-node item t₁ i t₂))
(&&-Bool (le-ItemTree-Bool Nitem Tt₁) (le-ItemTree-Bool Nitem Tt₂))
le-TreeItem-Bool : ∀ {t item} → Tree t → N item → Bool (le-TreeItem t item)
le-TreeItem-Bool {item = item} tnil _ =
subst Bool (sym (le-TreeItem-nil item)) btrue
le-TreeItem-Bool {item = item} (ttip {i} Ni) Nitem =
subst Bool (sym (le-TreeItem-tip i item)) (le-Bool Ni Nitem)
le-TreeItem-Bool {item = item} (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) Nitem =
subst Bool
(sym (le-TreeItem-node t₁ i t₂ item))
(&&-Bool (le-TreeItem-Bool Tt₁ Nitem) (le-TreeItem-Bool Tt₂ Nitem))
ordTree-Bool : ∀ {t} → Tree t → Bool (ordTree t)
ordTree-Bool tnil = subst Bool (sym ordTree-nil) btrue
ordTree-Bool (ttip {i} Ni) = subst Bool (sym (ordTree-tip i)) btrue
ordTree-Bool (tnode {t₁} {i} {t₂} Tt₁ Ni Tt₂) =
subst Bool
(sym (ordTree-node t₁ i t₂))
(&&-Bool (ordTree-Bool Tt₁)
(&&-Bool (ordTree-Bool Tt₂)
(&&-Bool (le-TreeItem-Bool Tt₁ Ni)
(le-ItemTree-Bool Ni Tt₂))))
| {
"alphanum_fraction": 0.5683241252,
"avg_line_length": 42.421875,
"ext": "agda",
"hexsha": "9eabe8b99fab85c333e42e267c1a10d72c866e76",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/BoolI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/BoolI.agda",
"max_line_length": 82,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/SortList/Properties/Totality/BoolI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 844,
"size": 2715
} |
module Issue279 where
record Unit : Set where
constructor tt
open Unit tt -- this no longer brings tt into scope
test : Unit
test = tt
| {
"alphanum_fraction": 0.7253521127,
"avg_line_length": 12.9090909091,
"ext": "agda",
"hexsha": "1d5ff5bba48410ad4a766691584139a07e979d36",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue279.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue279.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue279.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 37,
"size": 142
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- Disabled to prevent warnings from deprecated monoid solver
{-# OPTIONS --warn=noUserWarning #-}
module Data.List.Solver where
{-# WARNING_ON_IMPORT
"Data.List.Solver was deprecated in v1.3.
Use the new reflective Tactic.MonoidSolver instead."
#-}
import Algebra.Solver.Monoid as Solver
open import Data.List.Properties using (++-monoid)
------------------------------------------------------------------------
-- A module for automatically solving propositional equivalences
-- containing _++_
module ++-Solver {a} {A : Set a} =
Solver (++-monoid A) renaming (id to nil)
| {
"alphanum_fraction": 0.5338983051,
"avg_line_length": 29.5,
"ext": "agda",
"hexsha": "7054ac71182fe948580f9faa2a71992aca151ca2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Solver.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Solver.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Solver.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 151,
"size": 826
} |
open import Common.Prelude
open import Common.Reflection
postulate
X Y : Set
isX : QName → Bool
isX (quote X) = true
isX _ = false
main : IO Unit
main = putStrLn ((if isX (quote X) then "yes" else "no") +S+
(if isX (quote Y) then "yes" else "no"))
| {
"alphanum_fraction": 0.6176470588,
"avg_line_length": 17,
"ext": "agda",
"hexsha": "e94d433a6342b41c641de9824e995b41d47f88b8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/CompilingQNamePats.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/CompilingQNamePats.agda",
"max_line_length": 60,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/CompilingQNamePats.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 87,
"size": 272
} |
{-# OPTIONS --safe #-}
module Cubical.Categories.Instances.TypePrecategory where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category.Precategory
open Precategory
-- TYPE precategory has types as objects
module _ ℓ where
TYPE : Precategory (ℓ-suc ℓ) ℓ
TYPE .ob = Type ℓ
TYPE .Hom[_,_] A B = A → B
TYPE .id = λ x → x
TYPE ._⋆_ f g = λ x → g (f x)
TYPE .⋆IdL f = refl
TYPE .⋆IdR f = refl
TYPE .⋆Assoc f g h = refl
| {
"alphanum_fraction": 0.627016129,
"avg_line_length": 24.8,
"ext": "agda",
"hexsha": "41f62ef709d3b05ef63a8bf2b20616547562bc5d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Categories/Instances/TypePrecategory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Categories/Instances/TypePrecategory.agda",
"max_line_length": 57,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Categories/Instances/TypePrecategory.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 164,
"size": 496
} |
open import Type
module Graph.Category {ℓ₁ ℓ₂} {V : Type{ℓ₁}} where
open import Data.Tuple as Tuple using ()
open import Functional
open import Logic.Propositional
import Lvl
open import Graph{ℓ₁}{ℓ₂}(V)
open import Graph.Walk{ℓ₁}{ℓ₂}{V}
open import Graph.Walk.Proofs{ℓ₁}{ℓ₂}{V}
open import Relator.Equals
open import Relator.Equals.Proofs
open import Relator.Equals.Proofs.Equiv
open import Structure.Category
import Structure.Categorical.Names as Names
open import Structure.Categorical.Properties
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Properties
open import Syntax.Transitivity
module _ (_⟶_ : Graph) where
private variable a b c d : V
private variable e e₁ e₂ e₃ : a ⟶ b
private variable w w₁ w₂ w₃ : Walk(_⟶_) a b
Walk-transitivity-raw-identityₗ-raw : (Walk-transitivity-raw at w ≡ w)
Walk-transitivity-raw-identityₗ-raw = [≡]-intro
Walk-transitivity-raw-identityᵣ-raw : (Walk-transitivity-raw w at ≡ w)
Walk-transitivity-raw-identityᵣ-raw {a}{.a} {Walk.at} = [≡]-intro
Walk-transitivity-raw-identityᵣ-raw {a}{c} {Walk.prepend {b = b} e w} = congruence₁(prepend e) (Walk-transitivity-raw-identityᵣ-raw {b}{c} {w})
Walk-transitivity-raw-associativity-raw : Names.Morphism.Associativity{Obj = V}(\{w} → Walk-transitivity-raw{_⟶_ = _⟶_}{z = w})
Walk-transitivity-raw-associativity-raw {a}{b}{c}{d} {Walk.at} {w₂}{w₃} = [≡]-intro
Walk-transitivity-raw-associativity-raw {a}{b}{c}{d} {Walk.prepend e w₁}{w₂}{w₃} = congruence₁(prepend e) (Walk-transitivity-raw-associativity-raw {a}{b}{c}{_} {w₁}{w₂}{w₃})
instance
Walk-transitivity-raw-identityₗ : Morphism.Identityₗ{Obj = V}(\{w} → Walk-transitivity-raw{z = w})(at)
Walk-transitivity-raw-identityₗ = Morphism.intro Walk-transitivity-raw-identityₗ-raw
instance
Walk-transitivity-raw-identityᵣ : Morphism.Identityᵣ{Obj = V}(\{w} → Walk-transitivity-raw{z = w})(at)
Walk-transitivity-raw-identityᵣ = Morphism.intro Walk-transitivity-raw-identityᵣ-raw
instance
Walk-transitivity-raw-identity : Morphism.Identity{Obj = V}(\{w} → Walk-transitivity-raw{_⟶_ = _⟶_}{z = w})(at)
Walk-transitivity-raw-identity = [∧]-intro Walk-transitivity-raw-identityₗ Walk-transitivity-raw-identityᵣ
-- The category arising from a graph by its vertices and walks.
-- Note that `Walk` is defined so that every sequence of edges have an unique walk. For example `ReflexitiveTransitiveClosure` (a relation equivalent to a walk) would not work.
free-category : Category(Walk(_⟶_))
Category._∘_ free-category = swap(transitivity(Walk(_⟶_)))
Category.id free-category = reflexivity(Walk(_⟶_))
BinaryOperator.congruence (Category.binaryOperator free-category) [≡]-intro [≡]-intro = [≡]-intro
Morphism.Associativity.proof (Category.associativity free-category) {a}{b}{c}{d} {w₁}{w₂}{w₃} = symmetry(_≡_) (Walk-transitivity-raw-associativity-raw {d}{c}{b}{a} {w₃}{w₂}{w₁})
Morphism.Identityₗ.proof (Tuple.left (Category.identity free-category)) = Walk-transitivity-raw-identityᵣ-raw
Morphism.Identityᵣ.proof (Tuple.right (Category.identity free-category)) = Walk-transitivity-raw-identityₗ-raw
| {
"alphanum_fraction": 0.7281858129,
"avg_line_length": 53.1,
"ext": "agda",
"hexsha": "12fdb2b52721fb5010c8eabd62f2f95bb8652185",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Graph/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Graph/Category.agda",
"max_line_length": 179,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Graph/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1036,
"size": 3186
} |
{-# OPTIONS --universe-polymorphism #-}
-- {-# OPTIONS --verbose tc.constr.findInScope:15 #-}
-- {-# OPTIONS --verbose tc.term.args.ifs:15 #-}
-- {-# OPTIONS --verbose tc.checkArgs:15 #-}
module 12-constraintFamilies where
open import Level
open import Function
open import Data.Unit
open import Data.List
open import Data.Product hiding (map)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
record ConstrainedFunctor {c} (Constraint : Set → Set c)
(f : (A : Set) → Set) : Set (suc c) where
field
fmap : ∀ {A B : Set} → {{cA : Constraint A}} → {{cB : Constraint B}} →
(A → B) → f A → f B
listConstrainedFunctor : ConstrainedFunctor (const ⊤) List
listConstrainedFunctor = record { fmap = map }
postulate
sort : {A : Set} → {{ordA : ∃ λ (_<_ : A → A → Set) → IsStrictTotalOrder {A = A} _≡_ _<_}} →
List A → List A
⋯ : ∀ {a} {A : Set a} {{a : A}} → A
⋯ {{a}} = a
sortedListConstrainedFunctor : ConstrainedFunctor (λ A → ∃ λ (_<_ : A → A → Set) → IsStrictTotalOrder _≡_ _<_) List
sortedListConstrainedFunctor = record { fmap = λ {{x}} {{y}} → map' {{x}} {{y}} } where
map' : {A B : Set} → {{ordA : ∃ λ (_<_ : A → A → Set) → (IsStrictTotalOrder _≡_ _<_)}} →
{{ordB : ∃ λ (_<_ : B → B → Set) → (IsStrictTotalOrder _≡_ _<_)}} →
(A → B) → List A → List B
map' f = sort ∘′ map f
| {
"alphanum_fraction": 0.6022140221,
"avg_line_length": 35.6578947368,
"ext": "agda",
"hexsha": "01e6cff6eb138b7b2c372c495036a2ef49c4d407",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/instance-arguments/12-constraintFamilies.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/instance-arguments/12-constraintFamilies.agda",
"max_line_length": 115,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/instance-arguments/12-constraintFamilies.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 466,
"size": 1355
} |
{-# OPTIONS --without-K #-}
module NTypes.Nat where
open import NTypes
open import PathOperations
open import PathStructure.Nat
open import Types
ℕ-isSet : isSet ℕ
ℕ-isSet = ind
(λ m → (n : ℕ) (p q : m ≡ n) → p ≡ q)
(λ m-1 r → ind (λ n → (p q : suc m-1 ≡ n) → p ≡ q)
(λ n-1 r′ p′ q′
→ split-eq p′ ⁻¹
· ap (ap suc)
(r _
(merge-path m-1 n-1
(tr (F (suc m-1)) p′ (F-lemma (suc m-1))))
(merge-path m-1 n-1
(tr (F (suc m-1)) q′ (F-lemma (suc m-1)))))
· split-eq q′
)
(λ p q → 0-elim (split-path _ _ p)))
(ind (λ n → (p q : 0 ≡ n) → p ≡ q)
(λ _ _ p q → 0-elim (split-path _ _ p))
(λ p q → split-eq p ⁻¹ · split-eq q))
where
split-eq : {x y : ℕ} → _
split-eq {x} {y} = π₂ (π₂ (π₂ (split-merge-eq {x} {y})))
| {
"alphanum_fraction": 0.4716049383,
"avg_line_length": 27,
"ext": "agda",
"hexsha": "365051c0e586ad822dbd487df395080f9d9524e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "vituscze/HoTT-lectures",
"max_forks_repo_path": "src/NTypes/Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "vituscze/HoTT-lectures",
"max_issues_repo_path": "src/NTypes/Nat.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7730385adfdbdda38ee8b124be3cdeebb7312c65",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "vituscze/HoTT-lectures",
"max_stars_repo_path": "src/NTypes/Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 350,
"size": 810
} |
{-# OPTIONS --without-K --safe #-}
open import Algebra
module Data.FingerTree.Measures
{r m}
(ℳ : Monoid r m)
where
open import Level using (_⊔_)
open Monoid ℳ renaming (Carrier to 𝓡)
open import Data.List as List using (List; _∷_; [])
open import Data.Product
open import Function
-- | A measure.
record σ {a} (Σ : Set a) : Set (a ⊔ r) where field μ : Σ → 𝓡
open σ ⦃ ... ⦄
{-# DISPLAY σ.μ _ = μ #-}
instance
σ-List : ∀ {a} {Σ : Set a} → ⦃ _ : σ Σ ⦄ → σ (List Σ)
μ ⦃ σ-List ⦄ = List.foldr (_∙_ ∘ μ) ε
-- A "fiber" (I think) from the μ function.
--
-- μ⟨ Σ ⟩≈ 𝓂 means "There exists a Σ such that μ Σ ≈ 𝓂"
infixl 2 _⇑[_]
record μ⟨_⟩≈_ {a} (Σ : Set a) ⦃ _ : σ Σ ⦄ (𝓂 : 𝓡) : Set (a ⊔ r ⊔ m) where
constructor _⇑[_]
field
𝓢 : Σ
.𝒻 : μ 𝓢 ≈ 𝓂
open μ⟨_⟩≈_ public
-- Construct a measured value without any transformations of the measure.
infixl 2 _⇑
_⇑ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ (𝓢 : Σ) → μ⟨ Σ ⟩≈ μ 𝓢
𝓢 (x ⇑) = x
𝒻 (x ⇑) = refl
{-# INLINE _⇑ #-}
-- These combinators allow for a kind of easoning syntax over the measures.
-- The first is used like so:
--
-- xs ≈[ assoc _ _ _ ]
--
-- Which will have the type:
--
-- μ⟨ Σ ⟩≈ x ∙ y ∙ z → μ⟨ Σ ⟩≈ (x ∙ y) ∙ z
--
-- The second does the same:
--
-- xs ≈[ assoc _ _ _ ]′
--
-- However, when used in a chain, it typechecks after the ones used to its
-- left. This means you can call the solver on the left.
--
-- xs ≈[ ℳ ↯ ] ≈[ assoc _ _ _ ]′
infixl 2 _≈[_] ≈-rev
_≈[_] : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ {x : 𝓡} → μ⟨ Σ ⟩≈ x → ∀ {y} → .(x ≈ y) → μ⟨ Σ ⟩≈ y
𝓢 (xs ≈[ y≈z ]) = 𝓢 xs
𝒻 (xs ≈[ y≈z ]) = trans (𝒻 xs) y≈z
{-# INLINE _≈[_] #-}
≈-rev : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ {x : 𝓡} → ∀ {y} → .(x ≈ y) → μ⟨ Σ ⟩≈ x → μ⟨ Σ ⟩≈ y
𝓢 (≈-rev y≈z xs) = 𝓢 xs
𝒻 (≈-rev y≈z xs) = trans (𝒻 xs) y≈z
{-# INLINE ≈-rev #-}
syntax ≈-rev y≈z x↦y = x↦y ≈[ y≈z ]′
infixr 2 ≈-right
≈-right : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ {x : 𝓡} → μ⟨ Σ ⟩≈ x → ∀ {y} → .(x ≈ y) → μ⟨ Σ ⟩≈ y
≈-right (x ⇑[ x≈y ]) y≈z = x ⇑[ trans x≈y y≈z ]
syntax ≈-right x x≈ = [ x≈ ]≈ x
infixr 1 _↤_
-- A memoized application of μ
record ⟪_⟫ {a} (Σ : Set a) ⦃ _ : σ Σ ⦄ : Set (a ⊔ r ⊔ m) where
constructor _↤_
field
𝔐 : 𝓡
𝓕 : μ⟨ Σ ⟩≈ 𝔐
open ⟪_⟫ public
-- Construct the memoized version
⟪_⇓⟫ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → Σ → ⟪ Σ ⟫
𝔐 ⟪ x ⇓⟫ = μ x
𝓕 ⟪ x ⇓⟫ = x ⇑
instance
σ-⟪⟫ : ∀ {a} {Σ : Set a} ⦃ _ : σ Σ ⦄ → σ ⟪ Σ ⟫
μ ⦃ σ-⟪⟫ ⦄ = 𝔐
open import Algebra.FunctionProperties _≈_
-- This section allows us to use the do-notation to clean up proofs.
-- First, we construct arguments:
infixl 2 arg-syntax
record Arg {a} (Σ : Set a) ⦃ _ : σ Σ ⦄ (𝓂 : 𝓡) (f : 𝓡 → 𝓡) : Set (m ⊔ r ⊔ a) where
constructor arg-syntax
field
.⟨f⟩ : Congruent₁ f
arg : μ⟨ Σ ⟩≈ 𝓂
open Arg
syntax arg-syntax (λ sz → e₁) xs = xs [ e₁ ⟿ sz ]
-- This syntax is meant to be used like so:
--
-- do x ← xs [ a ∙> (s <∙ b) ⟿ s ]
--
-- And it means "the size of the variable I'm binding here will be stored in this
-- part of the expression". See, for example, the listToTree function:
--
-- listToTree [] = empty ⇑
-- listToTree (x ∷ xs) = [ ℳ ↯ ]≈ do
-- ys ← listToTree xs [ μ x ∙> s ⟿ s ]
-- x ◂ ys
--
infixl 1 _>>=_
_>>=_ : ∀ {a b} {Σ₁ : Set a} {Σ₂ : Set b} ⦃ _ : σ Σ₁ ⦄ ⦃ _ : σ Σ₂ ⦄ {𝓂 f}
→ Arg Σ₁ 𝓂 f
→ ((x : Σ₁) → .⦃ x≈ : μ x ≈ 𝓂 ⦄ → μ⟨ Σ₂ ⟩≈ f (μ x))
→ μ⟨ Σ₂ ⟩≈ f 𝓂
arg-syntax cng xs >>= k = k (𝓢 xs) ⦃ 𝒻 xs ⦄ ≈[ cng (𝒻 xs) ]
{-# INLINE _>>=_ #-}
-- Inside the lambda generated by do notation, we can only pass one argument.
-- So, to provide the proof (if needed)
_≈?_ : ∀ x y → ⦃ x≈y : x ≈ y ⦄ → x ≈ y
_≈?_ _ _ ⦃ x≈y ⦄ = x≈y
| {
"alphanum_fraction": 0.5098968497,
"avg_line_length": 26.375,
"ext": "agda",
"hexsha": "74d6e55a02865afce8f7faeb530945d13d2b82ce",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-indexed-fingertree",
"max_forks_repo_path": "src/Data/FingerTree/Measures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-indexed-fingertree",
"max_issues_repo_path": "src/Data/FingerTree/Measures.agda",
"max_line_length": 90,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "39c3d96937384b052b782ffddf4fdec68c5d139f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-indexed-fingertree",
"max_stars_repo_path": "src/Data/FingerTree/Measures.agda",
"max_stars_repo_stars_event_max_datetime": "2019-02-26T07:04:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-26T07:04:54.000Z",
"num_tokens": 1831,
"size": 3587
} |
{-# OPTIONS --allow-unsolved-metas #-}
open import Everything
module Test.ProblemWithSym where
module _ {a} {A : ¶ → Set a} where
private AList = Descender⟨ A ⟩
instance
test-works : Transassociativity.class (flip AList) Proposequality transitivity
test-works .⋆ f g h = symmetry (transassociativity h g f)
test-fails : Transassociativity.class (flip AList) Proposequality transitivity
test-fails .⋆ f g h = symmetry (transassociativity h g f) -- FIXME this was problematic when using a version of symmetry which did not include a negative argument in .⋆ It deserves explanation.
test-hole : Transassociativity.class (flip AList) Proposequality transitivity
test-hole .⋆ f g h = symmetry {!!}
| {
"alphanum_fraction": 0.7283950617,
"avg_line_length": 34.7142857143,
"ext": "agda",
"hexsha": "499265e5a2cdf0cf92bd214f9245749ca74828a2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/ProblemWithSym.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/ProblemWithSym.agda",
"max_line_length": 197,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/ProblemWithSym.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 195,
"size": 729
} |
module Ag01 where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _∎)
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n)
_*_ : ℕ → ℕ → ℕ
zero * n = zero
suc m * n = n + (m * n)
_ : 3 * 4 ≡ 12
_ = refl
_^_ : ℕ → ℕ → ℕ
m ^ 0 = 1
m ^ (suc n) = m * (m ^ n)
_ : 3 ^ 4 ≡ 81
_ = refl
_∸_ : ℕ → ℕ → ℕ
m ∸ zero = m
zero ∸ suc n = zero
suc m ∸ suc n = m ∸ n
infixl 6 _+_ _∸_
infixl 7 _*_
data Bin : Set where
nil : Bin
x0_ : Bin → Bin
x1_ : Bin → Bin
inc : Bin → Bin
inc nil = nil
inc (x1 b) = x0 (inc b)
inc (x0 b) = x1 b
_ : inc (x0 nil) ≡ (x1 nil)
_ = refl
_ : inc (x1 x1 x0 x1 nil) ≡ x0 x0 x1 x1 nil
_ = refl
to : ℕ → Bin
to zero = x0 nil
to (suc m) = inc (to m)
from : Bin → ℕ
from nil = zero
from (x1 b) = suc (2 * (from b))
from (x0 b) = 2 * (from b)
| {
"alphanum_fraction": 0.5149892934,
"avg_line_length": 14.59375,
"ext": "agda",
"hexsha": "5e40f7f6d4e6031abd3795ed3ffc5e6fa2095d7c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/Ag01.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/Ag01.agda",
"max_line_length": 50,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/Ag01.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 434,
"size": 934
} |
module Kind (Gnd : Set)(U : Set)(T : U -> Set) where
open import Basics
open import Pr
open import Nom
data Kind : Set where
Ty : Gnd -> Kind
_|>_ : Kind -> Kind -> Kind
Pi : (u : U) -> (T u -> Kind) -> Kind
infixr 60 _|>_
| {
"alphanum_fraction": 0.5606694561,
"avg_line_length": 18.3846153846,
"ext": "agda",
"hexsha": "78db45f89497915f20229e335df5386470cb8359",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "benchmark/Syntacticosmos/Kind.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "benchmark/Syntacticosmos/Kind.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "benchmark/Syntacticosmos/Kind.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 85,
"size": 239
} |
{-# OPTIONS --cubical #-}
module Miscellaneous.FiniteMultiset where
import Lvl
open import Data.List using (List)
import Data.List.Functions as List
open import Data.List.Relation.Permutation
open import Functional as Fn
open import Type.Cubical
open import Type.Cubical.Quotient
open import Type
open import Type.Identity
private variable ℓ : Lvl.Level
private variable T : Type{ℓ}
private variable x y z : T
FiniteMultiset : Type{ℓ} → Type
FiniteMultiset(T) = Quotient(_permutes_ {T = T})
pattern ∅ = class List.∅
add : T → FiniteMultiset(T) → FiniteMultiset(T)
add x = Quotient-recursion (class ∘ (x List.⊰_)) (class-extensionalityₗ ∘ prepend)
_∪•_ : FiniteMultiset(T) → T → FiniteMultiset(T)
_∪•_ = Fn.swap add
infixr 1000 _∪•_
open import Data.Boolean
open import Data.List.Relation.Membership as List using (use ; skip)
open import Numeral.Natural
open import Relator.Equals.Proofs.Equivalence
open import Type.Cubical.Path.Equality
private variable l : FiniteMultiset(T)
count : (T → Bool) → FiniteMultiset(T) → ℕ
count f = Quotient-function(List.count f) ⦃ Proofs.permutes-countᵣ-function ⦄
satisfiesAny : (T → Bool) → FiniteMultiset(T) → Bool
satisfiesAny f = Quotient-function(List.satisfiesAny f) ⦃ Proofs.permutes-satisfiesAny-functionᵣ ⦄
-- _∈_ : T → FiniteMultiset(T) → Type
-- _∈_ x = Quotient-function (List._∈_ x) ⦃ {!!} ⦄
| {
"alphanum_fraction": 0.7378854626,
"avg_line_length": 28.9787234043,
"ext": "agda",
"hexsha": "1646e4f85ee05d046d9b5ed060d2cf8ca1008b32",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Miscellaneous/FiniteMultiset.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Miscellaneous/FiniteMultiset.agda",
"max_line_length": 98,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Miscellaneous/FiniteMultiset.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 431,
"size": 1362
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Diagram.Duality {o ℓ e} (C : Category o ℓ e) where
open Category C
open import Level
open import Function using (_$_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Categories.Functor
open import Categories.Functor.Bifunctor
open import Categories.NaturalTransformation.Dinatural
open import Categories.Object.Initial
open import Categories.Object.Terminal
open import Categories.Object.Duality
open import Categories.Diagram.Equalizer op
open import Categories.Diagram.Coequalizer C
open import Categories.Diagram.Pullback op
open import Categories.Diagram.Pushout C
open import Categories.Diagram.Cone as Cone
open import Categories.Diagram.Cocone as Cocone
open import Categories.Diagram.End as End
open import Categories.Diagram.Coend as Coend
open import Categories.Diagram.Limit as Limit
open import Categories.Diagram.Colimit as Colimit
open import Categories.Category.Construction.Cocones using (Cocones)
private
variable
o′ ℓ′ e′ : Level
D J : Category o′ ℓ′ e′
A B : Obj
f g : A ⇒ B
Coequalizer⇒coEqualizer : Coequalizer f g → Equalizer f g
Coequalizer⇒coEqualizer coe = record
{ arr = arr
; equality = equality
; equalize = coequalize
; universal = universal
; unique = unique
}
where open Coequalizer coe
coEqualizer⇒Coequalizer : Equalizer f g → Coequalizer f g
coEqualizer⇒Coequalizer e = record
{ arr = arr
; equality = equality
; coequalize = equalize
; universal = universal
; unique = unique
}
where open Equalizer e
coPullback⇒Pushout : Pullback f g → Pushout f g
coPullback⇒Pushout p = record
{ i₁ = p₁
; i₂ = p₂
; commute = commute
; universal = universal
; unique = unique
; universal∘i₁≈h₁ = p₁∘universal≈h₁
; universal∘i₂≈h₂ = p₂∘universal≈h₂
}
where open Pullback p
Pushout⇒coPullback : Pushout f g → Pullback f g
Pushout⇒coPullback p = record
{ p₁ = i₁
; p₂ = i₂
; isPullback = record
{ commute = commute
; universal = universal
; unique = unique
; p₁∘universal≈h₁ = universal∘i₁≈h₁
; p₂∘universal≈h₂ = universal∘i₂≈h₂
}
}
where open Pushout p
module _ {F : Functor J C} where
open Functor F renaming (op to Fop)
coApex⇒Coapex : ∀ X → Apex Fop X → Coapex F X
coApex⇒Coapex X apex = record
{ ψ = ψ
; commute = commute
}
where open Cone.Apex apex
coCone⇒Cocone : Cone Fop → Cocone F
coCone⇒Cocone c = record
{ coapex = coApex⇒Coapex _ apex
}
where open Cone.Cone c
Coapex⇒coApex : ∀ X → Coapex F X → Apex Fop X
Coapex⇒coApex X coapex = record
{ ψ = ψ
; commute = commute
}
where open Cocone.Coapex coapex
Cocone⇒coCone : Cocone F → Cone Fop
Cocone⇒coCone c = record
{ apex = Coapex⇒coApex _ coapex
}
where open Cocone.Cocone c
coCone⇒⇒Cocone⇒ : ∀ {K K′} → Cone⇒ Fop K K′ → Cocone⇒ F (coCone⇒Cocone K′) (coCone⇒Cocone K)
coCone⇒⇒Cocone⇒ f = record
{ arr = arr
; commute = commute
}
where open Cone⇒ f
Cocone⇒⇒coCone⇒ : ∀ {K K′} → Cocone⇒ F K K′ → Cone⇒ Fop (Cocone⇒coCone K′) (Cocone⇒coCone K)
Cocone⇒⇒coCone⇒ f = record
{ arr = arr
; commute = commute
}
where open Cocone⇒ f
coLimit⇒Colimit : Limit Fop → Colimit F
coLimit⇒Colimit lim = record
{ initial = op⊤⇒⊥ (Cocones F) $ record
{ ⊤ = coCone⇒Cocone ⊤
; ⊤-is-terminal = record
{ ! = coCone⇒⇒Cocone⇒ !
; !-unique = λ f → !-unique (Cocone⇒⇒coCone⇒ f)
}
}
}
where open Limit.Limit lim
open Terminal terminal
Colimit⇒coLimit : Colimit F → Limit Fop
Colimit⇒coLimit colim = record
{ terminal = record
{ ⊤ = Cocone⇒coCone ⊥
; ⊤-is-terminal = record
{ ! = Cocone⇒⇒coCone⇒ !
; !-unique = λ f → !-unique (coCone⇒⇒Cocone⇒ f)
}
}
}
where open Colimit.Colimit colim
open Initial initial
module _ {F : Bifunctor (Category.op D) D C} where
open HomReasoning
open Functor F renaming (op to Fop)
coWedge⇒Cowedge : Wedge Fop → Cowedge F
coWedge⇒Cowedge W = record
{ E = E
; dinatural = DinaturalTransformation.op dinatural
}
where open Wedge W
Cowedge⇒coWedge : Cowedge F → Wedge Fop
Cowedge⇒coWedge W = record
{ E = E
; dinatural = DinaturalTransformation.op dinatural
}
where open Cowedge W
coEnd⇒Coend : End Fop → Coend F
coEnd⇒Coend e = record
{ cowedge = coWedge⇒Cowedge wedge
; factor = λ W → factor (Cowedge⇒coWedge W)
; universal = universal
; unique = unique
}
where open End.End e
Coend⇒coEnd : Coend F → End Fop
Coend⇒coEnd e = record
{ wedge = Cowedge⇒coWedge cowedge
; factor = λ W → factor (coWedge⇒Cowedge W)
; universal = universal
; unique = unique
}
where open Coend.Coend e
module DiagramDualityConversionProperties where
private
Coequalizer⇔coEqualizer : ∀ (coequalizer : Coequalizer f g) →
coEqualizer⇒Coequalizer (Coequalizer⇒coEqualizer coequalizer) ≡ coequalizer
Coequalizer⇔coEqualizer _ = refl
coPullback⇔Pushout : ∀ (coPullback : Pullback f g) →
Pushout⇒coPullback (coPullback⇒Pushout coPullback) ≡ coPullback
coPullback⇔Pushout _ = refl
module _ {F : Functor J C} where
open Functor F renaming (op to Fop)
coApex⇔Coapex : ∀ X → (coApex : Apex Fop X) →
Coapex⇒coApex X (coApex⇒Coapex X coApex) ≡ coApex
coApex⇔Coapex _ _ = refl
coCone⇔Cocone : ∀ (coCone : Cone Fop) →
Cocone⇒coCone (coCone⇒Cocone coCone) ≡ coCone
coCone⇔Cocone _ = refl
coCone⇒⇔Cocone⇒ : ∀ {K K′} → (coCone⇒ : Cone⇒ Fop K K′) →
Cocone⇒⇒coCone⇒ (coCone⇒⇒Cocone⇒ coCone⇒) ≡ coCone⇒
coCone⇒⇔Cocone⇒ _ = refl
coLimit⇔Colimit : ∀ (coLimit : Limit Fop) →
Colimit⇒coLimit (coLimit⇒Colimit coLimit) ≡ coLimit
coLimit⇔Colimit _ = refl
module _ {F : Bifunctor (Category.op D) D C} where
open Functor F renaming (op to Fop)
coWedge⇔Cowedge : ∀ (coWedge : Wedge Fop) →
Cowedge⇒coWedge (coWedge⇒Cowedge coWedge) ≡ coWedge
coWedge⇔Cowedge _ = refl
coEnd⇔Coend : ∀ (coEnd : End Fop) →
Coend⇒coEnd (coEnd⇒Coend coEnd) ≡ coEnd
coEnd⇔Coend _ = refl
| {
"alphanum_fraction": 0.6241641337,
"avg_line_length": 28.1196581197,
"ext": "agda",
"hexsha": "62da72411f27e4183f08f3498709ce17ce30bffa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b813fa3e685eb4713bace6204b8084a343d549a3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bolt12/agda-categories",
"max_forks_repo_path": "src/Categories/Diagram/Duality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b813fa3e685eb4713bace6204b8084a343d549a3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bolt12/agda-categories",
"max_issues_repo_path": "src/Categories/Diagram/Duality.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b813fa3e685eb4713bace6204b8084a343d549a3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bolt12/agda-categories",
"max_stars_repo_path": "src/Categories/Diagram/Duality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2415,
"size": 6580
} |
{-# OPTIONS --cubical --safe #-}
module Data.Binary.Base where
open import Prelude
import Data.Nat as ℕ
infixr 5 1ᵇ∷_ 2ᵇ∷_
data 𝔹 : Type₀ where
[] : 𝔹
1ᵇ∷_ : 𝔹 → 𝔹
2ᵇ∷_ : 𝔹 → 𝔹
inc : 𝔹 → 𝔹
inc [] = 1ᵇ∷ []
inc (1ᵇ∷ xs) = 2ᵇ∷ xs
inc (2ᵇ∷ xs) = 1ᵇ∷ inc xs
⟦_⇑⟧ : ℕ → 𝔹
⟦ zero ⇑⟧ = []
⟦ suc n ⇑⟧ = inc ⟦ n ⇑⟧
⟦_⇓⟧ : 𝔹 → ℕ
⟦ [] ⇓⟧ = 0
⟦ 1ᵇ∷ xs ⇓⟧ = 1 ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2
⟦ 2ᵇ∷ xs ⇓⟧ = 2 ℕ.+ ⟦ xs ⇓⟧ ℕ.* 2
add₁ : 𝔹 → 𝔹 → 𝔹
add₂ : 𝔹 → 𝔹 → 𝔹
add₁ [] ys = inc ys
add₁ xs [] = inc xs
add₁ (1ᵇ∷ xs) (1ᵇ∷ ys) = 1ᵇ∷ add₁ xs ys
add₁ (1ᵇ∷ xs) (2ᵇ∷ ys) = 2ᵇ∷ add₁ xs ys
add₁ (2ᵇ∷ xs) (1ᵇ∷ ys) = 2ᵇ∷ add₁ xs ys
add₁ (2ᵇ∷ xs) (2ᵇ∷ ys) = 1ᵇ∷ add₂ xs ys
add₂ [] [] = 2ᵇ∷ []
add₂ [] (1ᵇ∷ ys) = 1ᵇ∷ inc ys
add₂ [] (2ᵇ∷ ys) = 2ᵇ∷ inc ys
add₂ (1ᵇ∷ xs) [] = 1ᵇ∷ inc xs
add₂ (2ᵇ∷ xs) [] = 2ᵇ∷ inc xs
add₂ (1ᵇ∷ xs) (1ᵇ∷ ys) = 2ᵇ∷ add₁ xs ys
add₂ (1ᵇ∷ xs) (2ᵇ∷ ys) = 1ᵇ∷ add₂ xs ys
add₂ (2ᵇ∷ xs) (1ᵇ∷ ys) = 1ᵇ∷ add₂ xs ys
add₂ (2ᵇ∷ xs) (2ᵇ∷ ys) = 2ᵇ∷ add₂ xs ys
infixl 6 _+_
_+_ : 𝔹 → 𝔹 → 𝔹
[] + ys = ys
xs + [] = xs
(1ᵇ∷ xs) + (1ᵇ∷ ys) = 2ᵇ∷ xs + ys
(1ᵇ∷ xs) + (2ᵇ∷ ys) = 1ᵇ∷ add₁ xs ys
(2ᵇ∷ xs) + (1ᵇ∷ ys) = 1ᵇ∷ add₁ xs ys
(2ᵇ∷ xs) + (2ᵇ∷ ys) = 2ᵇ∷ add₁ xs ys
double : 𝔹 → 𝔹
double [] = []
double (1ᵇ∷ xs) = 2ᵇ∷ double xs
double (2ᵇ∷ xs) = 2ᵇ∷ 1ᵇ∷ xs
infixl 7 _*_
_*_ : 𝔹 → 𝔹 → 𝔹
xs * [] = []
xs * (1ᵇ∷ ys) = go xs
where
go : 𝔹 → 𝔹
go [] = []
go (1ᵇ∷ xs) = 1ᵇ∷ ys + go xs
go (2ᵇ∷ xs) = 2ᵇ∷ double ys + go xs
xs * (2ᵇ∷ ys) = go xs
where
go : 𝔹 → 𝔹
go [] = []
go (1ᵇ∷ xs) = 2ᵇ∷ ys + go xs
go (2ᵇ∷ xs) = 2ᵇ∷ (1ᵇ∷ ys) + go xs
dec′ : 𝔹 → 𝔹
dec : 𝔹 → 𝔹
dec′ [] = []
dec′ (1ᵇ∷ xs) = 2ᵇ∷ dec′ xs
dec′ (2ᵇ∷ xs) = 2ᵇ∷ 1ᵇ∷ xs
dec [] = []
dec (2ᵇ∷ xs) = 1ᵇ∷ xs
dec (1ᵇ∷ xs) = dec′ xs
sub₄ : (𝔹 → 𝔹) → (𝔹 → 𝔹) → 𝔹 → 𝔹 → 𝔹
sub₃ : (𝔹 → 𝔹) → (𝔹 → 𝔹) → 𝔹 → 𝔹 → 𝔹
sub₄ o k [] ys = []
sub₄ o k (1ᵇ∷ xs) (1ᵇ∷ ys) = sub₄ (o ∘ k) 2ᵇ∷_ xs ys
sub₄ o k (2ᵇ∷ xs) (2ᵇ∷ ys) = sub₄ (o ∘ k) 2ᵇ∷_ xs ys
sub₄ o k (1ᵇ∷ xs) (2ᵇ∷ ys) = sub₄ o (k ∘ 1ᵇ∷_) xs ys
sub₄ o k (2ᵇ∷ xs) (1ᵇ∷ ys) = sub₃ o (k ∘ 1ᵇ∷_) xs ys
sub₄ o k (1ᵇ∷ []) [] = o []
sub₄ o k (1ᵇ∷ 1ᵇ∷ xs) [] = o (k (1ᵇ∷ (dec′ xs)))
sub₄ o k (1ᵇ∷ 2ᵇ∷ xs) [] = o (k (1ᵇ∷ (1ᵇ∷ xs)))
sub₄ o k (2ᵇ∷ xs) [] = o (k (dec′ xs))
sub₃ o k [] [] = o []
sub₃ o k [] (1ᵇ∷ ys) = []
sub₃ o k [] (2ᵇ∷ ys) = []
sub₃ o k (1ᵇ∷ xs) [] = o (k (dec′ xs))
sub₃ o k (2ᵇ∷ xs) [] = o (k (1ᵇ∷ xs))
sub₃ o k (1ᵇ∷ xs) (1ᵇ∷ ys) = sub₃ o (k ∘ 1ᵇ∷_) xs ys
sub₃ o k (2ᵇ∷ xs) (2ᵇ∷ ys) = sub₃ o (k ∘ 1ᵇ∷_) xs ys
sub₃ o k (1ᵇ∷ xs) (2ᵇ∷ ys) = sub₄ (o ∘ k) 2ᵇ∷_ xs ys
sub₃ o k (2ᵇ∷ xs) (1ᵇ∷ ys) = sub₃ (o ∘ k) 2ᵇ∷_ xs ys
sub₂ : (𝔹 → 𝔹) → 𝔹 → 𝔹 → 𝔹
sub₂ k [] ys = []
sub₂ k (1ᵇ∷ xs) [] = k (dec′ xs)
sub₂ k (2ᵇ∷ xs) [] = k (1ᵇ∷ xs)
sub₂ k (1ᵇ∷ xs) (1ᵇ∷ ys) = sub₂ (1ᵇ∷_ ∘ k) xs ys
sub₂ k (2ᵇ∷ xs) (2ᵇ∷ ys) = sub₂ (1ᵇ∷_ ∘ k) xs ys
sub₂ k (1ᵇ∷ xs) (2ᵇ∷ ys) = sub₄ k 2ᵇ∷_ xs ys
sub₂ k (2ᵇ∷ xs) (1ᵇ∷ ys) = sub₃ k 2ᵇ∷_ xs ys
sub₁ : (𝔹 → 𝔹) → 𝔹 → 𝔹 → 𝔹
sub₁ k xs [] = k xs
sub₁ k [] (1ᵇ∷ ys) = []
sub₁ k [] (2ᵇ∷ ys) = []
sub₁ k (1ᵇ∷ xs) (1ᵇ∷ ys) = sub₃ k 2ᵇ∷_ xs ys
sub₁ k (2ᵇ∷ xs) (2ᵇ∷ ys) = sub₃ k 2ᵇ∷_ xs ys
sub₁ k (2ᵇ∷ xs) (1ᵇ∷ ys) = sub₁ (1ᵇ∷_ ∘ k) xs ys
sub₁ k (1ᵇ∷ xs) (2ᵇ∷ ys) = sub₂ (1ᵇ∷_ ∘ k) xs ys
infixl 6 _-_
_-_ : 𝔹 → 𝔹 → 𝔹
_-_ = sub₁ id
_≡ᵇ_ : 𝔹 → 𝔹 → Bool
[] ≡ᵇ [] = true
[] ≡ᵇ (1ᵇ∷ ys) = false
[] ≡ᵇ (2ᵇ∷ ys) = false
(1ᵇ∷ xs) ≡ᵇ [] = false
(1ᵇ∷ xs) ≡ᵇ (1ᵇ∷ ys) = xs ≡ᵇ ys
(1ᵇ∷ xs) ≡ᵇ (2ᵇ∷ ys) = false
(2ᵇ∷ xs) ≡ᵇ [] = false
(2ᵇ∷ xs) ≡ᵇ (1ᵇ∷ ys) = false
(2ᵇ∷ xs) ≡ᵇ (2ᵇ∷ ys) = xs ≡ᵇ ys
-- testers : ℕ → Type₀
-- testers n = bins n n ≡ nats n n
-- where
-- open import Data.List
-- open import Data.List.Syntax
-- open import Data.List.Sugar
-- import Agda.Builtin.Nat as Nat
-- upTo : (ℕ → A) → ℕ → List A
-- upTo f zero = []
-- upTo f (suc n) = f zero List.∷ upTo (f ∘ suc) n
-- bins : ℕ → ℕ → List 𝔹
-- bins ns ms = do
-- n ← upTo id ns
-- m ← upTo id ms
-- pure (⟦ n ⇑⟧ - ⟦ m ⇑⟧)
-- nats : ℕ → ℕ → List 𝔹
-- nats ns ms = do
-- n ← upTo id ns
-- m ← upTo id ms
-- pure ⟦ n Nat.- m ⇑⟧
-- _ : testers 100
-- _ = refl
| {
"alphanum_fraction": 0.4517299782,
"avg_line_length": 24.0290697674,
"ext": "agda",
"hexsha": "8d0ab2b05fa86b53e59db387c4209cd39d249544",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Data/Binary/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Data/Binary/Base.agda",
"max_line_length": 56,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Data/Binary/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 2849,
"size": 4133
} |
-- 2011-11-24 Andreas, James
{-# OPTIONS --copatterns #-}
module CopatternWithoutFieldName where
record R : Set2 where
field
f : Set1
open R
test : (f : R -> Set1) -> R
test f = bla where
bla : R
f bla = Set
-- not a copattern, since f not a field name
| {
"alphanum_fraction": 0.6428571429,
"avg_line_length": 16.625,
"ext": "agda",
"hexsha": "58ff8b2eeff5fc46e7ba67f1157ed45146733138",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/CopatternWithoutFieldName.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/CopatternWithoutFieldName.agda",
"max_line_length": 44,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/CopatternWithoutFieldName.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 88,
"size": 266
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Rose trees
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Data.Tree.Rose where
open import Level using (Level)
open import Size
open import Data.List.Base as List using (List; []; _∷_)
open import Data.Nat.Base as ℕ using (ℕ; zero; suc)
import Data.Nat.Properties as ℕₚ
open import Data.List.Extrema.Nat
open import Function.Base using (_∘_)
private
variable
a b : Level
A : Set a
B : Set b
i : Size
------------------------------------------------------------------------
-- Type and basic constructions
data Rose (A : Set a) : Size → Set a where
node : (a : A) (ts : List (Rose A i)) → Rose A (↑ i)
leaf : A → Rose A ∞
leaf a = node a []
------------------------------------------------------------------------
-- Transforming rose trees
map : (A → B) → Rose A i → Rose B i
map f (node a ts) = node (f a) (List.map (map f) ts)
------------------------------------------------------------------------
-- Reducing rose trees
foldr : (A → List B → B) → Rose A i → B
foldr n (node a ts) = n a (List.map (foldr n) ts)
depth : Rose A i → ℕ
depth (node a ts) = suc (max 0 (List.map depth ts))
| {
"alphanum_fraction": 0.4526717557,
"avg_line_length": 26.7346938776,
"ext": "agda",
"hexsha": "c3bc5f2ee857ba23af44d59f510b42c950a50506",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Tree/Rose.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Tree/Rose.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Tree/Rose.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 318,
"size": 1310
} |
postulate
A : Set
x : A
f : A → A → A
_●_ : A → A → A
infix 20 _●_
syntax f x y = x ○ y
doesn't-parse : A
doesn't-parse = x ○ x ● x
-- Default fixity for syntax is no longer -666, but 20 as for normal operators.
| {
"alphanum_fraction": 0.5652173913,
"avg_line_length": 15.3333333333,
"ext": "agda",
"hexsha": "ab3881de998245a265160c0564f13ac890a42e1a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1109-1.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1109-1.agda",
"max_line_length": 79,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1109-1.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 90,
"size": 230
} |
data Nat : Set where
zero : Nat
suc : Nat → Nat
data Zero : Nat → Set where
instance
isZero : Zero zero
data NonZero : Nat → Set where
instance
isSuc : ∀ {n : Nat} → NonZero (suc n)
pred : ∀ t {{_ : NonZero t}} → Nat
pred ._ {{isSuc {n}}} = n
test : Nat
test = pred (suc zero)
data Test (x : Nat) : Set where
here : {{_ : Zero x}} → Test x
there : {{nz : NonZero x}} → Test (pred x) → Test x
broken : Test (suc zero)
broken = there here
| {
"alphanum_fraction": 0.5784946237,
"avg_line_length": 18.6,
"ext": "agda",
"hexsha": "0c7b7066667296b14c0e9e56bc715f0a26e89dfc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1377.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1377.agda",
"max_line_length": 53,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1377.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 162,
"size": 465
} |
{-
Defines groups and adds some smart constructors
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Data.Sigma
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Semigroup
private
variable
ℓ : Level
record IsGroup {G : Type ℓ}
(1g : G) (_·_ : G → G → G) (inv : G → G) : Type ℓ where
constructor isgroup
field
isMonoid : IsMonoid 1g _·_
inverse : (x : G) → (x · inv x ≡ 1g) × (inv x · x ≡ 1g)
open IsMonoid isMonoid public
infixl 6 _-_
-- Useful notation for additive groups
_-_ : G → G → G
x - y = x · inv y
invl : (x : G) → inv x · x ≡ 1g
invl x = inverse x .snd
invr : (x : G) → x · inv x ≡ 1g
invr x = inverse x .fst
record GroupStr (G : Type ℓ) : Type ℓ where
constructor groupstr
field
1g : G
_·_ : G → G → G
inv : G → G
isGroup : IsGroup 1g _·_ inv
infixr 7 _·_
open IsGroup isGroup public
Group : ∀ ℓ → Type (ℓ-suc ℓ)
Group ℓ = TypeWithStr ℓ GroupStr
Group₀ : Type₁
Group₀ = Group ℓ-zero
group : (G : Type ℓ) (1g : G) (_·_ : G → G → G) (inv : G → G) (h : IsGroup 1g _·_ inv) → Group ℓ
group G 1g _·_ inv h = G , groupstr 1g _·_ inv h
isSetGroup : (G : Group ℓ) → isSet ⟨ G ⟩
isSetGroup G = GroupStr.isGroup (snd G) .IsGroup.isMonoid .IsMonoid.isSemigroup .IsSemigroup.is-set
makeIsGroup : {G : Type ℓ} {e : G} {_·_ : G → G → G} { inv : G → G}
(is-setG : isSet G)
(assoc : (x y z : G) → x · (y · z) ≡ (x · y) · z)
(rid : (x : G) → x · e ≡ x)
(lid : (x : G) → e · x ≡ x)
(rinv : (x : G) → x · inv x ≡ e)
(linv : (x : G) → inv x · x ≡ e)
→ IsGroup e _·_ inv
IsGroup.isMonoid (makeIsGroup is-setG assoc rid lid rinv linv) = makeIsMonoid is-setG assoc rid lid
IsGroup.inverse (makeIsGroup is-setG assoc rid lid rinv linv) = λ x → rinv x , linv x
makeGroup : {G : Type ℓ} (e : G) (_·_ : G → G → G) (inv : G → G)
(is-setG : isSet G)
(assoc : (x y z : G) → x · (y · z) ≡ (x · y) · z)
(rid : (x : G) → x · e ≡ x)
(lid : (x : G) → e · x ≡ x)
(rinv : (x : G) → x · inv x ≡ e)
(linv : (x : G) → inv x · x ≡ e)
→ Group ℓ
makeGroup e _·_ inv is-setG assoc rid lid rinv linv = _ , helper
where
helper : GroupStr _
GroupStr.1g helper = e
GroupStr._·_ helper = _·_
GroupStr.inv helper = inv
GroupStr.isGroup helper = makeIsGroup is-setG assoc rid lid rinv linv
makeGroup-right : {A : Type ℓ}
→ (1g : A)
→ (_·_ : A → A → A)
→ (inv : A → A)
→ (set : isSet A)
→ (assoc : ∀ a b c → a · (b · c) ≡ (a · b) · c)
→ (rUnit : ∀ a → a · 1g ≡ a)
→ (rCancel : ∀ a → a · inv a ≡ 1g)
→ Group ℓ
makeGroup-right 1g _·_ inv set assoc rUnit rCancel =
makeGroup 1g _·_ inv set assoc rUnit lUnit rCancel lCancel
where
abstract
lCancel : ∀ a → inv a · a ≡ 1g
lCancel a =
inv a · a
≡⟨ sym (rUnit _) ⟩
(inv a · a) · 1g
≡⟨ cong (_·_ _) (sym (rCancel (inv a))) ⟩
(inv a · a) · (inv a · (inv (inv a)))
≡⟨ assoc _ _ _ ⟩
((inv a · a) · (inv a)) · (inv (inv a))
≡⟨ cong (λ □ → □ · _) (sym (assoc _ _ _)) ⟩
(inv a · (a · inv a)) · (inv (inv a))
≡⟨ cong (λ □ → (inv a · □) · (inv (inv a))) (rCancel a) ⟩
(inv a · 1g) · (inv (inv a))
≡⟨ cong (λ □ → □ · (inv (inv a))) (rUnit (inv a)) ⟩
inv a · (inv (inv a))
≡⟨ rCancel (inv a) ⟩
1g
∎
lUnit : ∀ a → 1g · a ≡ a
lUnit a =
1g · a
≡⟨ cong (λ b → b · a) (sym (rCancel a)) ⟩
(a · inv a) · a
≡⟨ sym (assoc _ _ _) ⟩
a · (inv a · a)
≡⟨ cong (a ·_) (lCancel a) ⟩
a · 1g
≡⟨ rUnit a ⟩
a
∎
makeGroup-left : {A : Type ℓ}
→ (1g : A)
→ (_·_ : A → A → A)
→ (inv : A → A)
→ (set : isSet A)
→ (assoc : ∀ a b c → a · (b · c) ≡ (a · b) · c)
→ (lUnit : ∀ a → 1g · a ≡ a)
→ (lCancel : ∀ a → (inv a) · a ≡ 1g)
→ Group ℓ
makeGroup-left 1g _·_ inv set assoc lUnit lCancel =
makeGroup 1g _·_ inv set assoc rUnit lUnit rCancel lCancel
where
abstract
rCancel : ∀ a → a · inv a ≡ 1g
rCancel a =
a · inv a
≡⟨ sym (lUnit _) ⟩
1g · (a · inv a)
≡⟨ cong (λ b → b · (a · inv a)) (sym (lCancel (inv a))) ⟩
(inv (inv a) · inv a) · (a · inv a)
≡⟨ sym (assoc (inv (inv a)) (inv a) _) ⟩
inv (inv a) · (inv a · (a · inv a))
≡⟨ cong (inv (inv a) ·_) (assoc (inv a) a (inv a)) ⟩
(inv (inv a)) · ((inv a · a) · (inv a))
≡⟨ cong (λ b → (inv (inv a)) · (b · (inv a))) (lCancel a) ⟩
inv (inv a) · (1g · inv a)
≡⟨ cong (inv (inv a) ·_) (lUnit (inv a)) ⟩
inv (inv a) · inv a
≡⟨ lCancel (inv a) ⟩
1g
∎
rUnit : ∀ a → a · 1g ≡ a
rUnit a =
a · 1g
≡⟨ cong (a ·_) (sym (lCancel a)) ⟩
a · (inv a · a)
≡⟨ assoc a (inv a) a ⟩
(a · inv a) · a
≡⟨ cong (λ b → b · a) (rCancel a) ⟩
1g · a
≡⟨ lUnit a ⟩
a
∎
| {
"alphanum_fraction": 0.4613627712,
"avg_line_length": 28.5543478261,
"ext": "agda",
"hexsha": "f6efd7f7758aafb9e53cf15f9399d382bb498a59",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-03-12T20:08:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-03-12T20:08:45.000Z",
"max_forks_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jespercockx/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jespercockx/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/Base.agda",
"max_line_length": 99,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "94b474af2909727d04706d562d949928c19faf7b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jespercockx/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2137,
"size": 5254
} |
----------------------------------------------------------------
-- This file contains the definition natural transformations. --
----------------------------------------------------------------
module Category.NatTrans where
open import Level
open import Category.Category public
open import Category.Funct public
open import Category.CatEq public
record NatTrans {l₁ l₂ : Level}
{ℂ₁ : Cat {l₁}}
{ℂ₂ : Cat {l₂}}
(F G : Functor ℂ₁ ℂ₂) : Set (l₁ ⊔ l₂) where
field
-- The family of components.
η : (A : Obj ℂ₁) → el (Hom ℂ₂ (omap F A) (omap G A))
-- The natural transformation law.
η-ax : ∀{A B}{f : el (Hom ℂ₁ A B)} → comm-square {ℂ = ℂ₂} (appT (fmap F) f) (η B) (η A) (appT (fmap G) f)
open NatTrans public
| {
"alphanum_fraction": 0.5044814341,
"avg_line_length": 32.5416666667,
"ext": "agda",
"hexsha": "a3967c348d0dcb957b06f0f7fde81a109675ce1d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "setoid-cats/Category/NatTrans.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "setoid-cats/Category/NatTrans.agda",
"max_line_length": 109,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "setoid-cats/Category/NatTrans.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 218,
"size": 781
} |
open import Data.Bool as Bool using (Bool; false; true; if_then_else_; not)
open import Data.String using (String)
open import Data.Nat using (ℕ; _+_; _≟_; suc; _>_; _<_; _∸_)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Data.List as l using (List; filter; map; take; foldl; length; []; _∷_)
open import Data.List.Properties
-- open import Data.List.Extrema using (max)
open import Data.Maybe using (to-witness)
open import Data.Fin using (fromℕ; _-_; zero; Fin)
open import Data.Fin.Properties using (≤-totalOrder)
open import Data.Product as Prod using (∃; ∃₂; _×_; _,_; Σ)
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong)
open Eq.≡-Reasoning
open import Level using (Level)
open import Data.Vec as v using (Vec; fromList; toList; last; length; []; _∷_; [_]; _∷ʳ_; _++_; lookup; head; initLast; filter; map)
open import Data.Vec.Bounded as vb using ([]; _∷_; fromVec; filter; Vec≤)
open import Agda.Builtin.Nat public
using () renaming (_==_ to _≡ᵇ_)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; _≗_; cong₂; inspect; [_])
open import Data.Nat.Properties using (+-comm)
open import Relation.Unary using (Pred; Decidable)
open import Relation.Nullary using (does)
open import Data.Vec.Bounded.Base using (padRight; ≤-cast)
import Data.Nat.Properties as ℕₚ
open import Relation.Nullary.Decidable.Core using (dec-false)
open import Function using (_∘_)
open import Data.List.Extrema ℕₚ.≤-totalOrder
open import Data.Empty using (⊥)
-- TODO add to std-lib
open import Relation.Nullary
dec-¬ : ∀ {a} {P : Set a} → Dec P → Dec (¬ P)
dec-¬ (yes p) = no λ prf → prf p
dec-¬ (no ¬p) = yes ¬p
-- TODO switch to Vec init?
allButLast : ∀ {a} {A : Set a} → List A → List A
allButLast [] = l.[]
allButLast (_ ∷ []) = l.[]
allButLast (x ∷ x₁ ∷ l) = x l.∷ (allButLast (x₁ l.∷ l))
allButLast-∷ʳ : ∀ {a} {A : Set a} {l : List A} {x} → allButLast (l l.∷ʳ x) ≡ l
allButLast-∷ʳ {l = []} = refl
allButLast-∷ʳ {l = _ ∷ []} = refl
allButLast-∷ʳ {l = x ∷ x₁ ∷ l} = cong (x l.∷_) (allButLast-∷ʳ {l = x₁ l.∷ l})
filter' : {A : Set} → (A → Bool) → List A → List A
filter' p [] = l.[]
filter' p (x ∷ xs) with (p x)
... | true = x l.∷ filter' p xs
... | false = filter' p xs
record Todo : Set where
field
text : String
completed : Bool
id : ℕ
-- can't define this for (List any) since (last []) must be defined for each carrier type
TodoListLast : List Todo → Todo
TodoListLast [] = record {}
TodoListLast (x ∷ []) = x
TodoListLast (_ ∷ y ∷ l) = TodoListLast (y l.∷ l)
AddTodo : List Todo → String → List Todo
AddTodo todos text =
todos l.∷ʳ
record
{ id = 1
; completed = false
; text = text
}
-- AddTodo is well-defined
AddTodoAddsNewListItem :
(todos : List Todo) (text : String) →
l.length (AddTodo todos text) ≡ l.length todos + 1
AddTodoAddsNewListItem todos text = length-++ todos
AddTodoSetsNewCompletedToFalse :
(todos : List Todo) (text : String) →
Todo.completed (TodoListLast (AddTodo todos text)) ≡ false
AddTodoSetsNewCompletedToFalse [] text = refl
AddTodoSetsNewCompletedToFalse (_ ∷ []) text = refl
AddTodoSetsNewCompletedToFalse (_ ∷ _ ∷ l) text = AddTodoSetsNewCompletedToFalse (_ l.∷ l) text
-- TODO can't prove this until AddTodo definition changed
AddTodoSetsNewIdToNonExistingId :
(todos : List Todo) (text : String) →
l.length (l.filter (λ todo → dec-¬ (Todo.id todo ≟ Todo.id (TodoListLast (AddTodo todos text)))) (AddTodo todos text)) ≡ 1
AddTodoSetsNewIdToNonExistingId todos text = {! !}
AddTodoSetsNewTextToText :
(todos : List Todo) (text : String) →
Todo.text (TodoListLast (AddTodo todos text)) ≡ text
AddTodoSetsNewTextToText [] text = refl
AddTodoSetsNewTextToText (_ ∷ []) text = refl
AddTodoSetsNewTextToText (_ ∷ _ ∷ l) text = AddTodoSetsNewTextToText (_ l.∷ l) text
AddTodoDoesntChangeOtherTodos :
(todos : List Todo) (text : String) →
l.length todos > 0 →
allButLast (AddTodo todos text) ≡ todos
AddTodoDoesntChangeOtherTodos (x l.∷ xs) text _<_ = allButLast-∷ʳ
-- END AddTodo is well-defined
-- TODO text1 ≠ text2
AddTodo-not-comm :
(todos : List Todo) →
(text1 : String) →
(text2 : String) →
(AddTodo (AddTodo todos text1) text2 ≢ AddTodo (AddTodo todos text2) text1)
AddTodo-not-comm todos text1 text2 = {! !}
-- {-# COMPILE JS AddTodo =
-- function (todos) {
-- return function (text) {
-- return [
-- ...todos,
-- {
-- id: todos.reduce((maxId, todo) => Math.max(todo.id, maxId), -1) + 1,
-- completed: false,
-- text: text
-- }
-- ]
-- }
-- }
-- #-}
DeleteTodo : (List Todo) → ℕ → (List Todo)
DeleteTodo todos id = l.filter (λ todo → dec-¬ (Todo.id todo ≟ id)) todos
DeleteTodo' : (List Todo) → ℕ → (List Todo)
DeleteTodo' todos id = filter' (λ todo → not (Todo.id todo ≡ᵇ id)) todos
DeleteTodo'RemoveTodoWithId :
(todos : List Todo) (id : ℕ) →
filter' (λ todo → Todo.id todo ≡ᵇ id) (DeleteTodo' todos id) ≡ l.[]
DeleteTodo'RemoveTodoWithId [] id = refl
DeleteTodo'RemoveTodoWithId (x ∷ xs) id with (Todo.id x ≡ᵇ id) | inspect (_≡ᵇ id) (Todo.id x)
... | true | P.[ eq ] = DeleteTodo'RemoveTodoWithId xs id
... | false | P.[ eq ] rewrite eq = DeleteTodo'RemoveTodoWithId xs id
-- TODO this one needs Todo to specify that it can only have one unique id
DeleteTodo'Removes1Element :
(todos : List Todo) (id : ℕ) →
l.length (DeleteTodo' todos id) ≡ l.length todos ∸ 1
DeleteTodo'Removes1Element [] id = refl
DeleteTodo'Removes1Element (x ∷ xs) id with (Todo.id x ≡ᵇ id) | inspect (_≡ᵇ id) (Todo.id x)
... | true | P.[ eq ] rewrite eq = {! !} -- DeleteTodo'Removes1Element xs id
... | false | P.[ eq ] rewrite eq = {! !}
DeleteTodoDoesntChangeOtherTodos :
(todos : List Todo) (id : ℕ) →
DeleteTodo todos id ≡ l.filter (λ todo → dec-¬ (Todo.id todo ≟ id)) todos
DeleteTodoDoesntChangeOtherTodos todos id = refl
-- END DeleteTodo is well-defined
DeleteTodo-idem :
(todos : List Todo) (id : ℕ) →
DeleteTodo (DeleteTodo todos id) id ≡ DeleteTodo todos id
DeleteTodo-idem todos id = filter-idem (λ e → dec-¬ (Todo.id e ≟ id)) todos
-- {-# COMPILE JS DeleteTodo =
-- function (todos) {
-- return function (id) {
-- return todos.filter(function (todo) {
-- return todo.id !== id
-- });
-- }
-- }
-- #-}
-- EditTodo: can't use updateAt since id doesn't necessarily correspond to Vec index
EditTodo : (List Todo) → ℕ → String → (List Todo)
EditTodo todos id text =
l.map (λ todo →
if (⌊ Todo.id todo ≟ id ⌋)
then record todo { text = text }
else todo)
todos
EditTodo' : (List Todo) → ℕ → String → (List Todo)
EditTodo' todos id text =
l.map (λ todo →
if (Todo.id todo ≡ᵇ id)
then record todo { text = text }
else todo)
todos
-- EditTodo is well-defined
-- EditTodoChangesText :
-- (todos : List Todo) (id : ℕ) (text : String) →
-- l.map Todo.text (l.filter (λ todo → Todo.id todo ≟ id) (EditTodo todos id text)) ≡ l.[ text ]
-- EditTodoChangesText todos id text = {! !}
-- -- TODO not necessarily true
-- EditTodo'ChangesText :
-- (todos : List Todo) (id : ℕ) (text : String) →
-- l.map Todo.text (EditTodo' (filter' (λ todo → Todo.id todo ≡ᵇ id) todos) id text) ≡ l.map Todo.text (filter' (λ todo → Todo.id todo ≡ᵇ id) todos)
-- EditTodo'ChangesText [] id text = refl
-- EditTodo'ChangesText (x ∷ xs) id text with (Todo.id x ≡ᵇ id) | inspect (_≡ᵇ id) (Todo.id x)
-- ... | true | P.[ eq ] rewrite eq = {! !} -- cong (Todo.text x l.∷_) (EditTodo'ChangesText xs id text)
-- ... | false | P.[ eq ] rewrite eq = EditTodo'ChangesText xs id text
EditTodo'DoesntChangeId :
(todos : List Todo) (id : ℕ) (text : String) →
l.map Todo.id (EditTodo' todos id text) ≡ l.map Todo.id todos
EditTodo'DoesntChangeId [] id text = refl
EditTodo'DoesntChangeId (x ∷ xs) id text with (Todo.id x ≡ᵇ id)
... | true = cong ((Todo.id x) l.∷_) (EditTodo'DoesntChangeId xs id text)
... | false = cong ((Todo.id x) l.∷_) (EditTodo'DoesntChangeId xs id text)
EditTodo'DoesntChangeCompleted :
(todos : List Todo) (id : ℕ) (text : String) →
l.map Todo.completed (EditTodo' todos id text) ≡ l.map Todo.completed todos
EditTodo'DoesntChangeCompleted [] id text = refl
EditTodo'DoesntChangeCompleted (x ∷ xs) id text with (Todo.id x ≡ᵇ id)
... | true = cong ((Todo.completed x) l.∷_) (EditTodo'DoesntChangeCompleted xs id text)
... | false = cong ((Todo.completed x) l.∷_) (EditTodo'DoesntChangeCompleted xs id text)
EditTodo'DoesntChangeOtherTodos :
(todos : List Todo) (id : ℕ) (text : String) →
filter' (λ todo → not (Todo.id todo ≡ᵇ id)) (EditTodo' todos id text) ≡ filter' (λ todo → not (Todo.id todo ≡ᵇ id)) todos
EditTodo'DoesntChangeOtherTodos [] id text = refl
EditTodo'DoesntChangeOtherTodos (x ∷ xs) id text with (Todo.id x ≡ᵇ id) | inspect (_≡ᵇ id) (Todo.id x)
... | true | P.[ eq ] rewrite eq = EditTodo'DoesntChangeOtherTodos xs id text
... | false | P.[ eq ] rewrite eq = cong (x l.∷_) (EditTodo'DoesntChangeOtherTodos xs id text)
EditTodoLengthUnchanged :
(todos : List Todo) (id' : ℕ) (text : String) →
l.length (EditTodo todos id' text) ≡ l.length todos
EditTodoLengthUnchanged todos id' text = length-map (λ todo → if (⌊ Todo.id todo ≟ id' ⌋) then record todo { text = text } else todo) todos
-- END EditTodo is well-defined
EditTodo'-idem :
(todos : List Todo) (id : ℕ) (text : String) →
EditTodo' (EditTodo' todos id text) id text ≡ EditTodo' todos id text
EditTodo'-idem [] id text = refl
EditTodo'-idem (x ∷ xs) id text with (Todo.id x ≡ᵇ id) | inspect (_≡ᵇ id) (Todo.id x)
... | true | P.[ eq ] rewrite eq = cong (record x { text = text } List.∷_) (EditTodo'-idem xs id text)
... | false | P.[ eq ] rewrite eq = cong (x List.∷_) (EditTodo'-idem xs id text)
-- {-# COMPILE JS EditTodo =
-- function (todos) {
-- return function (id) {
-- return function (text) {
-- return todos.map(function (todo) {
-- if (todo.id === id) {
-- todo.text = text;
-- }
-- return todo;
-- });
-- }
-- }
-- }
-- #-}
CompleteTodo : (List Todo) → ℕ → (List Todo)
CompleteTodo todos id =
l.map (λ todo →
if (⌊ Todo.id todo ≟ id ⌋)
then record todo { completed = true }
else todo)
todos
CompleteTodo' : (List Todo) → ℕ → (List Todo)
CompleteTodo' todos id =
l.map (λ todo →
if (Todo.id todo ≡ᵇ id)
then record todo { completed = true }
else todo)
todos
-- CompleteTodo is well-defined
-- TODO don't know if there is only one instance of Todo with that id
CompleteTodo'ChangesCompleted :
(todos : List Todo) (id : ℕ) →
l.map Todo.completed (filter' (λ todo → Todo.id todo ≡ᵇ id) (CompleteTodo' todos id)) ≡ l.map (λ todo → true) (filter' (λ todo → Todo.id todo ≡ᵇ id) todos)
CompleteTodo'ChangesCompleted [] id = refl
CompleteTodo'ChangesCompleted (x ∷ xs) id with Todo.id x ≡ᵇ id | inspect (_≡ᵇ id) (Todo.id x)
... | true | P.[ eq ] rewrite eq = cong (true l.∷_) (CompleteTodo'ChangesCompleted xs id)
... | false | P.[ eq ] rewrite eq = CompleteTodo'ChangesCompleted xs id
CompleteTodoDoesntChangeIds :
(todos : List Todo) (id : ℕ) →
l.map Todo.id (CompleteTodo todos id) ≡ l.map Todo.id todos
CompleteTodoDoesntChangeIds [] id = refl
CompleteTodoDoesntChangeIds (x ∷ []) id = cong (l._∷ l.[]) (helper x id)
where
helper :
(x : Todo) (id : ℕ) →
Todo.id (if ⌊ Todo.id x ≟ id ⌋ then record { text = Todo.text x ; completed = true ; id = Todo.id x } else x) ≡ Todo.id x
helper x id with (⌊ Todo.id x ≟ id ⌋)
... | true = refl
... | false = refl
CompleteTodoDoesntChangeIds (x ∷ xs) id =
begin
l.map Todo.id (CompleteTodo (x l.∷ xs) id)
≡⟨⟩
(l.map Todo.id (CompleteTodo l.[ x ] id)) l.++ l.map Todo.id (CompleteTodo xs id)
≡⟨ cong (l._++ l.map Todo.id (CompleteTodo xs id)) (CompleteTodoDoesntChangeIds (x l.∷ l.[]) id) ⟩
l.map Todo.id (l.[ x ]) l.++ l.map Todo.id (CompleteTodo xs id)
≡⟨⟩
l.[ Todo.id x ] l.++ l.map Todo.id (CompleteTodo xs id)
≡⟨⟩
Todo.id x l.∷ l.map Todo.id (CompleteTodo xs id)
≡⟨ cong (Todo.id x l.∷_) (CompleteTodoDoesntChangeIds xs id) ⟩
Todo.id x l.∷ l.map Todo.id xs
≡⟨⟩
l.map Todo.id (x l.∷ xs)
∎
CompleteTodoDoesntChangeText :
(todos : List Todo) (id : ℕ) →
l.map Todo.text (CompleteTodo todos id) ≡ l.map Todo.text todos
CompleteTodoDoesntChangeText [] id = refl
CompleteTodoDoesntChangeText (x ∷ []) id = cong (l._∷ l.[]) (helper x id)
where
helper :
(x : Todo) (id : ℕ) →
Todo.text (if ⌊ Todo.id x ≟ id ⌋ then record { text = Todo.text x ; completed = true ; id = Todo.id x } else x) ≡ Todo.text x
helper x id with (⌊ Todo.id x ≟ id ⌋)
... | true = refl
... | false = refl
CompleteTodoDoesntChangeText (x ∷ xs) id =
begin
l.map Todo.text (CompleteTodo (x l.∷ xs) id)
≡⟨⟩
(l.map Todo.text (CompleteTodo l.[ x ] id)) l.++ l.map Todo.text (CompleteTodo xs id)
≡⟨ cong (l._++ l.map Todo.text (CompleteTodo xs id)) (CompleteTodoDoesntChangeText (x l.∷ l.[]) id) ⟩
l.map Todo.text (l.[ x ]) l.++ l.map Todo.text (CompleteTodo xs id)
≡⟨⟩
l.[ Todo.text x ] l.++ l.map Todo.text (CompleteTodo xs id)
≡⟨⟩
Todo.text x l.∷ l.map Todo.text (CompleteTodo xs id)
≡⟨ cong (Todo.text x l.∷_) (CompleteTodoDoesntChangeText xs id) ⟩
Todo.text x l.∷ l.map Todo.text xs
≡⟨⟩
l.map Todo.text (x l.∷ xs)
∎
CompleteTodo'DoesntChangeOthersCompleted :
(todos : List Todo) (id : ℕ) →
l.map Todo.completed (CompleteTodo' (filter' (λ todo → not (Todo.id todo ≡ᵇ id)) todos) id) ≡ l.map Todo.completed (filter' (λ todo → not (Todo.id todo ≡ᵇ id)) todos)
CompleteTodo'DoesntChangeOthersCompleted [] id = refl
CompleteTodo'DoesntChangeOthersCompleted (x ∷ xs) id with Todo.id x ≡ᵇ id | inspect (_≡ᵇ id) (Todo.id x)
... | true | P.[ eq ] rewrite eq = CompleteTodo'DoesntChangeOthersCompleted xs id --
... | false | P.[ eq ] rewrite eq = cong (Todo.completed x l.∷_) (CompleteTodo'DoesntChangeOthersCompleted xs id)
CompleteTodoLengthUnchanged :
(todos : List Todo) (id : ℕ) →
l.length (CompleteTodo todos id) ≡ l.length todos
CompleteTodoLengthUnchanged todos id = length-map (λ todo → if (⌊ Todo.id todo ≟ id ⌋) then record todo { completed = true } else todo) todos
-- END CompleteTodo is well-defined
CompleteTodo'-idem :
(todos : List Todo) (id : ℕ) →
CompleteTodo' (CompleteTodo' todos id) id ≡ CompleteTodo' todos id
CompleteTodo'-idem [] id = refl
CompleteTodo'-idem (x ∷ xs) id with Todo.id x ≡ᵇ id | inspect (_≡ᵇ id) (Todo.id x)
... | true | P.[ eq ] rewrite eq = cong (record x { completed = true } l.∷_) (CompleteTodo'-idem xs id)
... | false | P.[ eq ] rewrite eq = cong (x l.∷_) (CompleteTodo'-idem xs id)
-- {-# COMPILE JS CompleteTodo =
-- function (todos) {
-- return function (id) {
-- return todos.map(function (todo) {
-- if (todo.id === id) {
-- todo.completed = true;
-- }
-- return todo;
-- });
-- }
-- }
-- #-}
CompleteAllTodos : List Todo → List Todo
CompleteAllTodos todos =
l.map (λ todo →
record todo { completed = true })
todos
-- CompleteAllTodos is well-defined
CompleteAllTodosAllCompleted :
(todos : List Todo) →
l.filter (λ todo → (Todo.completed todo) Bool.≟ false) (CompleteAllTodos todos) ≡ l.[]
CompleteAllTodosAllCompleted [] = refl
CompleteAllTodosAllCompleted (x ∷ xs) = CompleteAllTodosAllCompleted xs
CompleteAllTodosDoesntChangeIds :
(todos : List Todo) →
l.map Todo.id (CompleteAllTodos todos) ≡ l.map Todo.id todos
CompleteAllTodosDoesntChangeIds [] = refl
CompleteAllTodosDoesntChangeIds (x ∷ []) = cong (l._∷ l.[]) (helper x)
where
helper :
(x : Todo) →
Todo.id (record x { completed = true }) ≡ Todo.id x
helper x = refl
CompleteAllTodosDoesntChangeIds (x ∷ xs) =
begin
l.map Todo.id (CompleteAllTodos (x l.∷ xs))
≡⟨⟩
(l.map Todo.id (CompleteAllTodos l.[ x ])) l.++ l.map Todo.id (CompleteAllTodos xs)
≡⟨ cong (l._++ l.map Todo.id (CompleteAllTodos xs)) (CompleteAllTodosDoesntChangeIds (x l.∷ l.[])) ⟩
l.map Todo.id (l.[ x ]) l.++ l.map Todo.id (CompleteAllTodos xs)
≡⟨⟩
l.[ Todo.id x ] l.++ l.map Todo.id (CompleteAllTodos xs)
≡⟨⟩
Todo.id x l.∷ l.map Todo.id (CompleteAllTodos xs)
≡⟨ cong (Todo.id x l.∷_) (CompleteAllTodosDoesntChangeIds xs) ⟩
Todo.id x l.∷ l.map Todo.id xs
≡⟨⟩
l.map Todo.id (x l.∷ xs)
∎
CompleteAllTodosDoesntChangeText :
(todos : List Todo) →
l.map Todo.text (CompleteAllTodos todos) ≡ l.map Todo.text todos
CompleteAllTodosDoesntChangeText [] = refl
CompleteAllTodosDoesntChangeText (x ∷ []) = cong (l._∷ l.[]) (helper x)
where
helper :
(x : Todo) →
Todo.text (record x { completed = true }) ≡ Todo.text x
helper x = refl
CompleteAllTodosDoesntChangeText (x ∷ xs) =
begin
l.map Todo.text (CompleteAllTodos (x l.∷ xs))
≡⟨⟩
(l.map Todo.text (CompleteAllTodos l.[ x ])) l.++ l.map Todo.text (CompleteAllTodos xs)
≡⟨ cong (l._++ l.map Todo.text (CompleteAllTodos xs)) (CompleteAllTodosDoesntChangeText (x l.∷ l.[])) ⟩
l.map Todo.text (l.[ x ]) l.++ l.map Todo.text (CompleteAllTodos xs)
≡⟨⟩
l.[ Todo.text x ] l.++ l.map Todo.text (CompleteAllTodos xs)
≡⟨⟩
Todo.text x l.∷ l.map Todo.text (CompleteAllTodos xs)
≡⟨ cong (Todo.text x l.∷_) (CompleteAllTodosDoesntChangeText xs) ⟩
Todo.text x l.∷ l.map Todo.text xs
≡⟨⟩
l.map Todo.text (x l.∷ xs)
∎
CompleteAllTodosLengthUnchanged :
(todos : List Todo) →
l.length (CompleteAllTodos todos) ≡ l.length todos
CompleteAllTodosLengthUnchanged todos = length-map (λ todo → record todo { completed = true }) todos
-- END CompleteAllTodos is well-defined
-- CompleteAllTodos-idem
-- {-# COMPILE JS CompleteAllTodos =
-- function (todos) {
-- return todos.map(function(todo) {
-- todo.completed = true;
-- return todo;
-- });
-- }
-- #-}
ClearCompleted : (List Todo) → (List Todo)
ClearCompleted todos =
(l.filter (λ todo → dec-¬ ((Todo.completed todo) Bool.≟ true)) todos)
-- ClearCompleted is well-defined
ClearCompletedRemovesOnlyCompleted :
(todos : List Todo) →
l.map Todo.completed (ClearCompleted todos) ≡ l.map Todo.completed (l.filter (λ todo → dec-¬ ((Todo.completed todo) Bool.≟ true)) todos)
ClearCompletedRemovesOnlyCompleted todos = refl
ClearCompletedDoesntChangeCompleted :
(todos : List Todo) →
l.map Todo.completed (ClearCompleted todos) ≡ l.map Todo.completed (l.filter (λ todo → dec-¬ ((Todo.completed todo) Bool.≟ true)) todos)
ClearCompletedDoesntChangeCompleted todos = refl
ClearCompletedDoesntChangeIds :
(todos : List Todo) →
l.map Todo.id (ClearCompleted todos) ≡ l.map Todo.id (l.filter (λ todo → dec-¬ ((Todo.completed todo) Bool.≟ true)) todos)
ClearCompletedDoesntChangeIds todos = refl
ClearCompletedDoesntChangeText :
(todos : List Todo) →
l.map Todo.text (ClearCompleted todos) ≡ l.map Todo.text (l.filter (λ todo → dec-¬ ((Todo.completed todo) Bool.≟ true)) todos)
ClearCompletedDoesntChangeText todos = refl
-- END ClearCompleted is well-defined
ClearCompleted-idem :
(todos : List Todo) →
ClearCompleted (ClearCompleted todos) ≡ ClearCompleted todos
ClearCompleted-idem todos = filter-idem (λ e → dec-¬ (Todo.completed e Bool.≟ true)) todos
-- {-# COMPILE JS ClearCompleted =
-- function (todos) {
-- return todos.filter(function(todo) {
-- return !todo.completed;
-- });
-- }
-- #-}
-- interactions
-- AddTodo-AddTodo
-- DeleteTodo-DeleteTodo
-- AddTodo-DeleteTodo
-- DeleteTodo-AddTodo
-- EditTodo-EditTodo
-- AddTodo-EditTodo
-- EditTodo-AddTodo
-- ...
| {
"alphanum_fraction": 0.6347022793,
"avg_line_length": 38.0114503817,
"ext": "agda",
"hexsha": "36117ea339b0ad7aa634f685cc7b43839f09e0c1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "506fba1e27d8c1527f06c285762391b00ed03ced",
"max_forks_repo_licenses": [
"CC0-1.0",
"MIT"
],
"max_forks_repo_name": "frankymacster/redux",
"max_forks_repo_path": "examples/todomvc/src/logic/todos.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "506fba1e27d8c1527f06c285762391b00ed03ced",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0",
"MIT"
],
"max_issues_repo_name": "frankymacster/redux",
"max_issues_repo_path": "examples/todomvc/src/logic/todos.agda",
"max_line_length": 170,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "506fba1e27d8c1527f06c285762391b00ed03ced",
"max_stars_repo_licenses": [
"CC0-1.0",
"MIT"
],
"max_stars_repo_name": "frankymacster/redux",
"max_stars_repo_path": "examples/todomvc/src/logic/todos.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6475,
"size": 19918
} |
module aux where
open import Data.Nat
open import Level renaming (zero to lzero)
open import Data.Fin
open import Data.Fin.Properties
open import Data.Fin.Subset renaming (∣_∣ to ∣_∣ˢ)
open import Data.Fin.Subset.Properties
open import Data.Vec
open import Data.Bool
open import Data.Bool.Properties
open import Data.Product
open import Data.Sum
open import Relation.Unary hiding (_∈_ ; _⊆_)
open import Relation.Nullary
open import Relation.Nullary.Negation
open import Relation.Nullary.Sum
open import Relation.Nullary.Decidable
open import Relation.Binary.PropositionalEquality hiding (Extensionality)
open import Data.Empty renaming (⊥ to ⊥')
postulate
ext : {A : Set}{B : A → Set}{f : (x : A) → B x} {g : (x : A) → B x} →
(∀ x → f x ≡ g x) → f ≡ g
sum-eq : {A B : Set} {x y : A} → (inj₁{B = B} x) ≡ (inj₁{B = B} y) → x ≡ y
sum-eq {A} {B} {x} {.x} refl = refl
in-subset-eq : {n : ℕ} {x : Fin n} {s : Subset n} → (l l' : x ∈ s) → l ≡ l'
in-subset-eq {.(ℕ.suc _)} {.zero} here here = refl
in-subset-eq {.(ℕ.suc _)} {.(Fin.suc _)} (there l) (there l') = cong there (in-subset-eq l l')
dec-manipulate : {n : ℕ} {A : Set} → (dec : (a a' : A) → Dec (a ≡ a')) → ((a a' : A ⊎ Fin 1) → Dec (a ≡ a'))
dec-manipulate {n} {A} dec (inj₁ x) (inj₁ x₁)
with dec x x₁
... | yes p = yes (cong inj₁ p)
... | no ¬p = no λ x₂ → contradiction (sum-eq x₂) ¬p
dec-manipulate {n} {A} dec (inj₁ x) (inj₂ y) = no λ ()
dec-manipulate {n} {A} dec (inj₂ y) (inj₁ x) = no λ ()
dec-manipulate {n} {A} dec (inj₂ zero) (inj₂ zero) = yes (cong inj₂ refl)
f-manipulate : {n : ℕ} {A : Set} {s : Subset n} → ((l : Fin n) → l ∈ s → A) → (Fin n → (A ⊎ Fin 1))
f-manipulate {n} {A} {s} f l
with l ∈? s
... | yes p = inj₁ (f l p)
... | no ¬p = inj₂ zero
f-equal : {n : ℕ} {A : Set} {dec : (a a' : A) → Dec (a ≡ a')} → (f f' : (l : Fin n) → A) → Dec (f ≡ f')
f-equal {n} {A} {dec} f f'
with all?{n} λ x → dec (f x) (f' x)
... | yes p = yes (ext p)
... | no ¬p = no λ x → contradiction (cong-app x) ¬p
f-manipulate-eq⇒f-eq : {n : ℕ} {A : Set} {s : Subset n} {f f' : (l : Fin n) → l ∈ s → A} → (f-manipulate f) ≡ (f-manipulate f') → f ≡ f'
f-manipulate-eq⇒f-eq {n} {A} {s} {f} {f'} eq
with (cong-app eq)
... | eq' = ext (λ x → ext (ϱ x))
where ϱ : (l : Fin n) → (i : l ∈ s) → f l i ≡ f' l i
ϱ l i
with (eq' l)
... | eq''
with l ∈? s
... | yes p rewrite (in-subset-eq i p) = sum-eq eq''
... | no ¬p = contradiction i ¬p
f-eq⇒f-manipulate-eq : {n : ℕ} {A : Set} {s : Subset n} {f f' : (l : Fin n) → l ∈ s → A} → f ≡ f' → (f-manipulate f) ≡ (f-manipulate f')
f-eq⇒f-manipulate-eq {n} {A} {s} {f} {f'} eq
with (cong-app eq)
... | eq' = ext (λ x → ϱ x)
where ϱ : (l : Fin n) → (f-manipulate f l) ≡ (f-manipulate f' l)
ϱ l
with (eq' l)
... | eq''
with l ∈? s
... | yes p = cong inj₁ ((cong-app eq'') p)
... | no ¬p = refl
_≡ᶠ?_ : {n : ℕ} {s : Subset n} {A : Set} {dec : (a a' : A) → Dec (a ≡ a')} (f f' : (l : Fin n) → s Data.Vec.[ l ]= inside → A) → Dec (f ≡ f')
_≡ᶠ?_ {n} {s} {A} {dec} f f'
with (f-equal{dec = dec-manipulate{n} dec} (f-manipulate f) (f-manipulate f'))
... | yes p = yes (f-manipulate-eq⇒f-eq p)
... | no ¬p = no (contraposition f-eq⇒f-manipulate-eq ¬p)
x∷xs≡y∷ys⇒x≡y : {n : ℕ} {xs ys : Subset n} {x y : Bool} → (x ∷ xs) ≡ (y ∷ ys) → x ≡ y
x∷xs≡y∷ys⇒x≡y {n} {xs} {.xs} {x} {.x} refl = refl
x∷xs≡y∷ys⇒xs≡ys : {n : ℕ} {xs ys : Subset n} {x y : Bool} → (x ∷ xs) ≡ (y ∷ ys) → xs ≡ ys
x∷xs≡y∷ys⇒xs≡ys {n} {xs} {.xs} {x} {.x} refl = refl
_≡ˢ?_ : {n : ℕ} → (s s' : Subset n) → Dec (s ≡ s')
_≡ˢ?_ {zero} [] [] = yes refl
_≡ˢ?_ {suc n} (x ∷ s) (x₁ ∷ s')
with _≡ˢ?_ {n} s s' | x Data.Bool.Properties.≟ x₁
... | yes p | yes p' rewrite p | p' = yes refl
... | yes p | no ¬p' rewrite p = no λ x₂ → contradiction (x∷xs≡y∷ys⇒x≡y x₂) ¬p'
... | no ¬p | _ = no (λ x₂ → contradiction (x∷xs≡y∷ys⇒xs≡ys x₂) ¬p)
empty-subset-outside : {n : ℕ} → (x : Fin n) → ¬ (⊥ [ x ]= inside)
empty-subset-outside {.(ℕ.suc _)} zero ()
empty-subset-outside {.(ℕ.suc _)} (Fin.suc x) (there ins) = empty-subset-outside x ins
x∈[l]⇒x≡l : {n : ℕ} {x l : Fin n} → x ∈ ⁅ l ⁆ → x ≡ l
x∈[l]⇒x≡l {.(ℕ.suc _)} {zero} {zero} ins = refl
x∈[l]⇒x≡l {.(ℕ.suc _)} {Fin.suc x} {zero} (there ins) = contradiction ins (empty-subset-outside x)
x∈[l]⇒x≡l {.(ℕ.suc _)} {Fin.suc x} {Fin.suc l} (there ins) = cong Fin.suc (x∈[l]⇒x≡l ins)
l∈L⇒[l]⊆L : {n : ℕ} {l : Fin n} {L : Subset n} → l ∈ L → ⁅ l ⁆ ⊆ L
l∈L⇒[l]⊆L {n} {l} {L} ins x rewrite (x∈[l]⇒x≡l x) = ins
[l]⊆L⇒l∈L : {n : ℕ} {l : Fin n} {L : Subset n} → ⁅ l ⁆ ⊆ L → l ∈ L
[l]⊆L⇒l∈L {n} {l} {L} sub = sub (x∈⁅x⁆ l)
| {
"alphanum_fraction": 0.5067854114,
"avg_line_length": 41.7345132743,
"ext": "agda",
"hexsha": "7fcc92a4c04368fb150157b5e221044514752f57",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "kcaliban/ldlc",
"max_forks_repo_path": "src/ldlc-algo/aux.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "kcaliban/ldlc",
"max_issues_repo_path": "src/ldlc-algo/aux.agda",
"max_line_length": 141,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a87fb6402639c3d2bb393cc5466426c28e7a0398",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "kcaliban/ldlc",
"max_stars_repo_path": "src/ldlc-algo/aux.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2222,
"size": 4716
} |
module Issue2486 where
open import Common.Prelude
open import Issue2486.Import
open import Issue2486.ImportB
open import Issue2486.HaskellB
f : MyList String → String
f [] = "sdf"
f (x :: _) = x
xs : MyList String
xs = "sdfg" :: []
postulate
toBList : ∀ {A} → MyList A → BList A
fromBList : ∀ {A} → BList A → MyList A
{-# COMPILE GHC toBList = \ _ xs -> xs #-}
{-# COMPILE GHC fromBList = \ _ xs -> xs #-}
{-# FOREIGN GHC import qualified MAlonzo.Code.Issue2486.HaskellB as B #-}
data Test : Set where
Con : BBool → Test
{-# COMPILE GHC Test = data B.Test ( B.Con ) #-}
{-
ff : BBool
ff = BTrue
-}
main : IO Unit
main =
putStrLn (f (fromBList (toBList xs)))
| {
"alphanum_fraction": 0.6386430678,
"avg_line_length": 18.3243243243,
"ext": "agda",
"hexsha": "ebeb9a4644afd8bfbe50c90ff7e4ee33e03afac8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue2486.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue2486.agda",
"max_line_length": 73,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue2486.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 226,
"size": 678
} |
{-# OPTIONS -v treeless.opt:20 #-}
-- Tests for case-on-case simplification.
module _ where
open import Common.Prelude
open import Common.Integer
data Cmp : Set where
less equal greater : Cmp
isLess : Cmp → Bool
isLess less = true
isLess equal = false
isLess greater = false
{-# INLINE isLess #-}
postulate _-_ : Integer → Integer → Integer
{-# COMPILED _-_ (-) #-}
{-# COMPILED_UHC _-_ UHC.Agda.Builtins.primIntegerMinus #-}
{-# COMPILED_JS _-_ function(x) { return function(y) { return agdaRTS.uprimIntegerMinus(x, y); }; } #-}
compareInt : Integer → Integer → Cmp
compareInt a b with a - b
... | pos 0 = equal
... | pos (suc _) = greater
... | negsuc _ = less
{-# INLINE compareInt #-}
_<_ : Integer → Integer → Bool
a < b = isLess (compareInt a b)
{-# INLINE _<_ #-}
cmp : Integer → Integer → String
cmp a b with a < b
... | true = "less"
... | false = "not less"
fancyCase : Nat → Cmp → Nat
fancyCase 0 _ = 0
fancyCase (suc (suc (suc n))) greater = n
fancyCase (suc (suc (suc _))) equal = 4
fancyCase 1 _ = 1
fancyCase 2 _ = 2
fancyCase (suc n) less = n
main : IO Unit
main = putStrLn (cmp (pos 31) (negsuc 5)) ,,
putStrLn (cmp (pos 5) (pos 5)) ,,
putStrLn (cmp (negsuc 4) (negsuc 2))
| {
"alphanum_fraction": 0.6334693878,
"avg_line_length": 24.5,
"ext": "agda",
"hexsha": "98ff7018b9ecdde0642445246f174e6cdd9dd8dd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pthariensflame/agda",
"max_forks_repo_path": "test/Compiler/simple/CaseOnCase.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pthariensflame/agda",
"max_issues_repo_path": "test/Compiler/simple/CaseOnCase.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pthariensflame/agda",
"max_stars_repo_path": "test/Compiler/simple/CaseOnCase.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 411,
"size": 1225
} |
-- Andreas, AIM XIII, 2011-04-07
-- {-# OPTIONS -v tc.rec.proj:50 #-}
module DependentIrrelevance where
open import Common.Irrelevance
ElimSq = {A : Set}(P : Squash A -> Set)
(ih : .(a : A) -> P (squash a)) ->
(a- : Squash A) -> P a-
elimSq : ElimSq
elimSq P ih (squash a) = ih a
elimSq' : ElimSq
elimSq' P ih a- = ih (Squash.unsquash a-)
ElimSq' = {A : Set}(P : Squash A -> Set)
(ih : forall .a -> P (squash a)) ->
(a- : Squash A) -> P a-
record Union (A : Set)(B : .A -> Set) : Set where
field
.index : A
elem : B index
makeUnion : {A : Set}{B : .A -> Set}.(index : A)(elem : B index) -> Union A B
makeUnion i e = record { index = i ; elem = e }
{- extended parsing examples (do not work yet)
postulate
A : Set
P : .A -> Set
a : A
f1 : _
f1 = λ .x -> P x
f2 : .A -> A
f2 = λ x -> a
postulate
g : forall .x -> P x
f : (.x : A) -> P x
f' : .(x : A) -> P x
f'' : forall .x .(y : A) -> P x
g1 : forall .(x y : A) -> P x
g2 : forall (.x .y : A) -> P x
g3 : forall {.x .y : A} -> P x
g4 : forall x1 {.x2} .{x3 x4} {.x y} -> P x
-}
| {
"alphanum_fraction": 0.4915254237,
"avg_line_length": 21.1509433962,
"ext": "agda",
"hexsha": "15483051c91da59ad9bb3f4528cb74d0075b8ade",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/DependentIrrelevance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/DependentIrrelevance.agda",
"max_line_length": 77,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/DependentIrrelevance.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 458,
"size": 1121
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Functor.Properties where
-- Properties valid of all Functors
open import Level
open import Data.Product using (proj₁; proj₂; _,_; _×_; Σ)
open import Function.Surjection using (Surjective)
open import Function.Equivalence using (Equivalence)
open import Function.Equality using (Π; _⟶_; _⟨$⟩_; cong)
open import Relation.Binary using (_Preserves_⟶_)
open import Relation.Nullary
open import Categories.Category
open import Categories.Functor
import Categories.Morphism as Morphism
import Categories.Morphism.Reasoning as Reas
open import Categories.Morphism.IsoEquiv as IsoEquiv
open import Categories.Morphism.Isomorphism
private
variable
o ℓ e o′ ℓ′ e′ : Level
C D : Category o ℓ e
Contravariant : ∀ (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Set _
Contravariant C D = Functor (Category.op C) D
Faithful : Functor C D → Set _
Faithful {C = C} {D = D} F = ∀ {X Y} → (f g : C [ X , Y ]) → D [ F₁ f ≈ F₁ g ] → C [ f ≈ g ]
where open Functor F
Full : Functor C D → Set _
Full {C = C} {D = D} F = ∀ {X Y} → Surjective {To = D.hom-setoid {F₀ X} {F₀ Y}} G
where
module C = Category C
module D = Category D
open Functor F
G : ∀ {X Y} → (C.hom-setoid {X} {Y}) ⟶ D.hom-setoid {F₀ X} {F₀ Y}
G = record { _⟨$⟩_ = F₁ ; cong = F-resp-≈ }
FullyFaithful : Functor C D → Set _
FullyFaithful F = Full F × Faithful F
-- Note that this is a constructive version of Essentially Surjective, which is
-- quite a strong assumption.
EssentiallySurjective : Functor C D → Set _
EssentiallySurjective {C = C} {D = D} F = (d : Category.Obj D) → Σ C.Obj (λ c → Functor.F₀ F c ≅ d)
where
open Morphism D
module C = Category C
-- a series of [ Functor ]-respects-Thing combinators (with respects -> resp)
module _ (F : Functor C D) where
private
module C = Category C using (Obj; _∘_; _⇒_; id; module HomReasoning)
module D = Category D
module IsoC = IsoEquiv C
module IsoD = IsoEquiv D
open C hiding (_∘_)
open Functor F
open Morphism
private
variable
A B E : Obj
f g h i : A ⇒ B
[_]-resp-∘ : C [ C [ f ∘ g ] ≈ h ] → D [ D [ F₁ f ∘ F₁ g ] ≈ F₁ h ]
[_]-resp-∘ {f = f} {g = g} {h = h} eq = begin
F₁ f D.∘ F₁ g ≈˘⟨ homomorphism ⟩
F₁ (C [ f ∘ g ]) ≈⟨ F-resp-≈ eq ⟩
F₁ h ∎
where open D.HomReasoning
[_]-resp-square : Definitions.CommutativeSquare C f g h i →
Definitions.CommutativeSquare D (F₁ f) (F₁ g) (F₁ h) (F₁ i)
[_]-resp-square {f = f} {g = g} {h = h} {i = i} sq = begin
D [ F₁ h ∘ F₁ f ] ≈˘⟨ homomorphism ⟩
F₁ (C [ h ∘ f ]) ≈⟨ F-resp-≈ sq ⟩
F₁ (C [ i ∘ g ]) ≈⟨ homomorphism ⟩
D [ F₁ i ∘ F₁ g ] ∎
where open D.HomReasoning
[_]-resp-Iso : Iso C f g → Iso D (F₁ f) (F₁ g)
[_]-resp-Iso {f = f} {g = g} iso = record
{ isoˡ = begin
F₁ g D.∘ F₁ f ≈⟨ [ isoˡ ]-resp-∘ ⟩
F₁ C.id ≈⟨ identity ⟩
D.id ∎
; isoʳ = begin
F₁ f D.∘ F₁ g ≈⟨ [ isoʳ ]-resp-∘ ⟩
F₁ C.id ≈⟨ identity ⟩
D.id ∎
}
where open Iso iso
open D.HomReasoning
[_]-resp-≅ : F₀ Preserves _≅_ C ⟶ _≅_ D
[_]-resp-≅ i≅j = record
{ from = F₁ from
; to = F₁ to
; iso = [ iso ]-resp-Iso
}
where open _≅_ i≅j
[_]-resp-≃ : ∀ {f g : _≅_ C A B} → f IsoC.≃ g → [ f ]-resp-≅ IsoD.≃ [ g ]-resp-≅
[_]-resp-≃ ⌞ eq ⌟ = ⌞ F-resp-≈ eq ⌟
homomorphismᵢ : ∀ {f : _≅_ C B E} {g : _≅_ C A B} → [ _∘ᵢ_ C f g ]-resp-≅ IsoD.≃ (_∘ᵢ_ D [ f ]-resp-≅ [ g ]-resp-≅ )
homomorphismᵢ = ⌞ homomorphism ⌟
-- Uses a strong version of Essential Surjectivity.
EssSurj×Full×Faithful⇒Invertible : EssentiallySurjective F → Full F → Faithful F → Functor D C
EssSurj×Full×Faithful⇒Invertible surj full faith = record
{ F₀ = λ d → proj₁ (surj d)
; F₁ = λ {A} {B} f →
let (a , sa) = surj A in
let (b , sb) = surj B in
let module S = Surjective (full {a} {b}) in
S.from ⟨$⟩ (_≅_.to sb) ∘ f ∘ (_≅_.from sa)
; identity = λ {A} →
let ff = from full
(a , sa) = surj A in begin
ff ⟨$⟩ _≅_.to sa ∘ D.id ∘ _≅_.from sa ≈⟨ cong ff (E.refl⟩∘⟨ D.identityˡ) ⟩
ff ⟨$⟩ _≅_.to sa ∘ _≅_.from sa ≈⟨ cong ff (_≅_.isoˡ sa) ⟩
ff ⟨$⟩ D.id ≈˘⟨ cong ff identity ⟩
ff ⟨$⟩ F₁ C.id ≈⟨ faith _ _ (right-inverse-of full (F₁ C.id)) ⟩
C.id ∎
; homomorphism = λ {X} {Y} {Z} {f} {g} →
let
(x , sx) = surj X
(y , sy) = surj Y
(z , sz) = surj Z
fsx = from sx
tsz = to sz
ff {T₁} {T₂} = from (full {T₁} {T₂}) in
faith _ _ (E.begin
F₁ (ff ⟨$⟩ tsz ∘ (g ∘ f) ∘ fsx) E.≈⟨ right-inverse-of full _ ⟩
(tsz ∘ (g ∘ f) ∘ fsx) E.≈⟨ pullˡ (E.refl⟩∘⟨ (E.refl⟩∘⟨ introˡ (isoʳ sy))) ⟩
(tsz ∘ g ∘ ((from sy ∘ to sy) ∘ f)) ∘ fsx E.≈⟨ pushʳ (E.refl⟩∘⟨ D.assoc) E.⟩∘⟨refl ⟩
((tsz ∘ g) ∘ (from sy ∘ (to sy ∘ f))) ∘ fsx E.≈⟨ D.sym-assoc E.⟩∘⟨refl ⟩
(((tsz ∘ g) ∘ from sy) ∘ (to sy ∘ f)) ∘ fsx E.≈⟨ D.assoc ⟩
((tsz ∘ g) ∘ from sy) ∘ ((to sy ∘ f) ∘ fsx) E.≈⟨ D.assoc E.⟩∘⟨ D.assoc ⟩
(tsz ∘ g ∘ from sy) ∘ (to sy ∘ f ∘ fsx) E.≈˘⟨ right-inverse-of full _ E.⟩∘⟨ right-inverse-of full _ ⟩
F₁ (ff ⟨$⟩ tsz ∘ g ∘ from sy) ∘ F₁ (ff ⟨$⟩ to sy ∘ f ∘ fsx) E.≈˘⟨ homomorphism ⟩
F₁ ((ff ⟨$⟩ tsz ∘ g ∘ from sy) C.∘ (ff ⟨$⟩ to sy ∘ f ∘ fsx)) E.∎)
; F-resp-≈ = λ f≈g → cong (from full) (D.∘-resp-≈ʳ (D.∘-resp-≈ˡ f≈g))
}
where
open Morphism._≅_
open Morphism D
open Reas D
open Category D
open Surjective
open C.HomReasoning
module E = D.HomReasoning
-- Functor Composition is Associative and the unit laws are found in
-- NaturalTransformation.NaturalIsomorphism, reified as associator, unitorˡ and unitorʳ.
| {
"alphanum_fraction": 0.526026026,
"avg_line_length": 37.2298136646,
"ext": "agda",
"hexsha": "34c0754d6361ae622518d530e63cb8a2e0eff41a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Properties.agda",
"max_line_length": 126,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 2448,
"size": 5994
} |
module RandomAccessList.Standard where
open import RandomAccessList.Standard.Core
open import RandomAccessList.Standard.Core.Properties
open import BuildingBlock.BinaryLeafTree using (BinaryLeafTree; Node; Leaf)
import BuildingBlock.BinaryLeafTree as BLT
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Unit using (⊤; tt)
open import Data.Fin using (Fin; fromℕ≤; reduce≥; toℕ)
import Data.Fin as Fin
open import Data.Nat
open import Data.Nat.Properties.Simple
open import Data.Nat.Etc
open import Data.Product as Prod
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Negation using (contraposition)
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; cong; trans; sym; inspect)
open PropEq.≡-Reasoning
--------------------------------------------------------------------------------
-- Operations
consₙ : ∀ {n A} → BinaryLeafTree A n → 0-1-RAL A n → 0-1-RAL A n
consₙ a [] = a 1∷ []
consₙ a ( 0∷ xs) = a 1∷ xs
consₙ a (x 1∷ xs) = 0∷ (consₙ (Node a x) xs)
cons : ∀ {A} → A → 0-1-RAL A 0 → 0-1-RAL A 0
cons a xs = consₙ (Leaf a) xs
headₙ : ∀ {n A} → (xs : 0-1-RAL A n) → ⟦ xs ⟧ ≢ 0 → BinaryLeafTree A n
headₙ {n} {A} [] p = ⊥-elim (p (⟦[]⟧≡0 ([] {A} {n}) refl))
headₙ ( 0∷ xs) p = proj₁ (BLT.split (headₙ xs (contraposition (trans (⟦0∷xs⟧≡⟦xs⟧ xs)) p)))
headₙ (x 1∷ xs) p = x
head : ∀ {A} → (xs : 0-1-RAL A 0) → ⟦ xs ⟧ ≢ 0 → A
head xs p = BLT.head (headₙ xs p)
tailₙ : ∀ {n A} → (xs : 0-1-RAL A n) → ⟦ xs ⟧ ≢ 0 → 0-1-RAL A n
tailₙ {n} {A} [] p = ⊥-elim (p (⟦[]⟧≡0 ([] {A} {n}) refl))
tailₙ ( 0∷ xs) p = proj₂ (BLT.split (headₙ xs (contraposition (trans (⟦0∷xs⟧≡⟦xs⟧ xs)) p))) 1∷ tailₙ xs (contraposition (trans (⟦0∷xs⟧≡⟦xs⟧ xs)) p)
tailₙ (x 1∷ xs) p = 0∷ xs
tail : ∀ {A} → (xs : 0-1-RAL A 0) → ⟦ xs ⟧ ≢ 0 → 0-1-RAL A 0
tail = tailₙ
--------------------------------------------------------------------------------
-- Searching
transportFin : ∀ {a b} → a ≡ b → Fin a → Fin b
transportFin refl i = i
splitIndex : ∀ {n A} → (x : BinaryLeafTree A n) → (xs : 0-1-RAL A (suc n)) → ⟦ x 1∷ xs ⟧ ≡ (2 ^ n) + ⟦ xs ⟧
splitIndex {n} x xs =
begin
2 ^ n * suc (2 * ⟦ xs ⟧ₙ)
≡⟨ +-*-suc (2 ^ n) (2 * ⟦ xs ⟧ₙ) ⟩
2 ^ n + 2 ^ n * (2 * ⟦ xs ⟧ₙ)
≡⟨ cong (_+_ (2 ^ n)) (sym (*-assoc (2 ^ n) 2 ⟦ xs ⟧ₙ)) ⟩
2 ^ n + 2 ^ n * 2 * ⟦ xs ⟧ₙ
≡⟨ cong (λ w → 2 ^ n + w * ⟦ xs ⟧ₙ) (*-comm (2 ^ n) 2) ⟩
2 ^ n + (2 * 2 ^ n) * ⟦ xs ⟧ₙ
∎
elemAt : ∀ {n A} → (xs : 0-1-RAL A n) → Fin ⟦ xs ⟧ → A
elemAt {zero} ( []) ()
elemAt {suc n} {A} ( []) i = elemAt {n} ([] {n = n}) (transportFin (⟦[]⟧≡⟦[]⟧ {n} {A}) i)
elemAt ( 0∷ xs) i with ⟦ 0∷ xs ⟧ | inspect ⟦_⟧ (0∷ xs)
elemAt ( 0∷ xs) () | zero | _
elemAt {n} ( 0∷ xs) i | suc z | PropEq.[ eq ] = elemAt xs (transportFin (trans (sym eq) (⟦0∷xs⟧≡⟦xs⟧ xs)) i)
elemAt {n} (x 1∷ xs) i with (2 ^ n) ≤? toℕ i
elemAt {n} (x 1∷ xs) i | yes p rewrite splitIndex x xs = elemAt xs (reduce≥ i p)
elemAt (x 1∷ xs) i | no ¬p = BLT.elemAt x (fromℕ≤ (BLT.¬a≤b⇒b<a ¬p))
| {
"alphanum_fraction": 0.5166232073,
"avg_line_length": 39.8441558442,
"ext": "agda",
"hexsha": "ceb6891ee36d1494644cb0c82b3c5cda2b815cfd",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "legacy/RandomAccessList/Standard.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "legacy/RandomAccessList/Standard.agda",
"max_line_length": 149,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "legacy/RandomAccessList/Standard.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 1376,
"size": 3068
} |
module LearnYouAn2 where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + n = n
(suc n) + n′ = suc (n + n′)
data _even : ℕ → Set where
ZERO : zero even
STEP : ∀ x → x even → (suc (suc x)) even
-- To prove four is even
proof₁ : suc (suc (suc (suc zero))) even
proof₁ = STEP (suc (suc zero)) (STEP zero ZERO)
proof₂′ : (A : Set) → A → A
proof₂′ _ a = a
proof₂ : ℕ → ℕ
proof₂ = proof₂′ ℕ
| {
"alphanum_fraction": 0.5558194774,
"avg_line_length": 15.5925925926,
"ext": "agda",
"hexsha": "eb970e92d23f52ae1e76844d9a677dc85401d545",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2017-06-03T06:32:26.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-12-02T02:10:26.000Z",
"max_forks_repo_head_hexsha": "a6fc111e02dc631f56302bb059d855446792bebc",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shouya/thinking-dumps",
"max_forks_repo_path": "learyouanagda/LearnYouAn2.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "a6fc111e02dc631f56302bb059d855446792bebc",
"max_issues_repo_issues_event_max_datetime": "2015-08-04T22:05:11.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-06-14T06:07:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shouya/thinking-dumps",
"max_issues_repo_path": "learyouanagda/LearnYouAn2.agda",
"max_line_length": 47,
"max_stars_count": 24,
"max_stars_repo_head_hexsha": "a6fc111e02dc631f56302bb059d855446792bebc",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shouya/thinking-dumps",
"max_stars_repo_path": "learyouanagda/LearnYouAn2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T01:02:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-14T17:18:34.000Z",
"num_tokens": 169,
"size": 421
} |
-- Andreas, 2019-08-10
record R : Set₁ where
indutive
field A : Set
-- The error message is strange:
-- This declaration is illegal in a record before the last field
-- when scope checking the declaration
-- record R where
-- indutive
-- field A : Set
| {
"alphanum_fraction": 0.6802973978,
"avg_line_length": 19.2142857143,
"ext": "agda",
"hexsha": "872308c75ab62822192799250b750e3fe9fb0c17",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Bugs/MisspelledKeywordInRecord.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Bugs/MisspelledKeywordInRecord.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Bugs/MisspelledKeywordInRecord.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 73,
"size": 269
} |
{-# OPTIONS --cubical --safe --postfix-projections #-}
module Categories where
open import Prelude
open import Cubical.Foundations.HLevels
record PreCategory ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where
no-eta-equality
field
Ob : Type ℓ₁
Hom : Ob → Ob → Type ℓ₂
Id : ∀ {X} → Hom X X
Comp : ∀ {X Y Z} → Hom Y Z → Hom X Y → Hom X Z
assoc-Comp : ∀ {W X Y Z}
(f : Hom Y Z)
(g : Hom X Y)
(h : Hom W X) →
Comp f (Comp g h) ≡ Comp (Comp f g) h
Comp-Id : ∀ {X Y} (f : Hom X Y) → Comp f Id ≡ f
Id-Comp : ∀ {X Y} (f : Hom X Y) → Comp Id f ≡ f
Hom-Set : ∀ {X Y} → isSet (Hom X Y)
infixr 0 _⟶_
_⟶_ = Hom
infixl 0 _⟵_
_⟵_ = flip Hom
infixr 9 _·_
_·_ = Comp
variable
X Y Z : Ob
infix 4 _≅_
_≅_ : Ob → Ob → Type _
Isomorphism : (X ⟶ Y) → Type ℓ₂
Isomorphism {X} {Y} f = Σ[ g ⦂ Y ⟶ X ] × (g · f ≡ Id) × (f · g ≡ Id)
X ≅ Y = Σ (X ⟶ Y) Isomorphism
Domain : (X ⟶ Y) → Ob
Domain {X} {Y} _ = X
Codomain : (X ⟶ Y) → Ob
Codomain {X} {Y} _ = Y
module _ {X Y : Ob} where
Monic : (X ⟶ Y) → Type _
Monic f = ∀ {Z} → (g₁ g₂ : Z ⟶ X) → f · g₁ ≡ f · g₂ → g₁ ≡ g₂
Epic : (X ⟶ Y) → Type _
Epic f = ∀ {Z} → (g₁ g₂ : Y ⟶ Z) → g₁ · f ≡ g₂ · f → g₁ ≡ g₂
IsInitial : Ob → Type _
IsInitial I = ∀ {X} → isContr (I ⟶ X)
IsTerminal : Ob → Type _
IsTerminal T = ∀ {X} → isContr (X ⟶ T)
Initial = ∃ x × IsInitial x
Terminal = ∃ x × IsTerminal x
refl-≅ : X ≅ X
refl-≅ .fst = Id
refl-≅ .snd .fst = Id
refl-≅ .snd .snd .fst = Comp-Id Id
refl-≅ .snd .snd .snd = Comp-Id Id
sym-≅ : X ≅ Y → Y ≅ X
sym-≅ X≅Y .fst = X≅Y .snd .fst
sym-≅ X≅Y .snd .fst = X≅Y .fst
sym-≅ X≅Y .snd .snd .fst = X≅Y .snd .snd .snd
sym-≅ X≅Y .snd .snd .snd = X≅Y .snd .snd .fst
open import Path.Reasoning
trans-≅ : X ≅ Y → Y ≅ Z → X ≅ Z
trans-≅ X≅Y Y≅Z .fst = Y≅Z .fst · X≅Y .fst
trans-≅ X≅Y Y≅Z .snd .fst = X≅Y .snd .fst · Y≅Z .snd .fst
trans-≅ X≅Y Y≅Z .snd .snd .fst =
(X≅Y .snd .fst · Y≅Z .snd .fst) · (Y≅Z .fst · X≅Y .fst) ≡⟨ assoc-Comp _ _ _ ⟩
((X≅Y .snd .fst · Y≅Z .snd .fst) · Y≅Z .fst) · X≅Y .fst ≡˘⟨ cong (_· X≅Y .fst) (assoc-Comp _ _ _) ⟩
(X≅Y .snd .fst · (Y≅Z .snd .fst · Y≅Z .fst)) · X≅Y .fst ≡⟨ cong (λ yz → (X≅Y .snd .fst · yz) · X≅Y .fst) (Y≅Z .snd .snd .fst) ⟩
(X≅Y .snd .fst · Id) · X≅Y .fst ≡⟨ cong (_· X≅Y .fst) (Comp-Id (X≅Y .snd .fst)) ⟩
X≅Y .snd .fst · X≅Y .fst ≡⟨ X≅Y .snd .snd .fst ⟩
Id ∎
trans-≅ X≅Y Y≅Z .snd .snd .snd =
(Y≅Z .fst · X≅Y .fst) · (X≅Y .snd .fst · Y≅Z .snd .fst) ≡⟨ assoc-Comp _ _ _ ⟩
((Y≅Z .fst · X≅Y .fst) · X≅Y .snd .fst) · Y≅Z .snd .fst ≡˘⟨ cong (_· Y≅Z .snd .fst) (assoc-Comp _ _ _) ⟩
(Y≅Z .fst · (X≅Y .fst · X≅Y .snd .fst)) · Y≅Z .snd .fst ≡⟨ cong (λ xy → (Y≅Z .fst · xy) · Y≅Z .snd .fst) (X≅Y .snd .snd .snd) ⟩
(Y≅Z .fst · Id) · Y≅Z .snd .fst ≡⟨ cong (_· Y≅Z .snd .fst) (Comp-Id _) ⟩
Y≅Z .fst · Y≅Z .snd .fst ≡⟨ Y≅Z .snd .snd .snd ⟩
Id ∎
idToIso : X ≡ Y → X ≅ Y
idToIso {X} {Y} X≡Y = subst (X ≅_) X≡Y refl-≅
≅-set : isSet (X ≅ Y)
≅-set = isOfHLevelΣ 2 Hom-Set
λ _ → isOfHLevelΣ 2 Hom-Set
λ _ → isOfHLevelΣ 2 (isOfHLevelSuc 2 Hom-Set _ _)
λ _ → isOfHLevelSuc 2 Hom-Set _ _
record Category ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where
no-eta-equality
field
preCategory : PreCategory ℓ₁ ℓ₂
open PreCategory preCategory public
field
univalent : {X Y : Ob} → (X ≡ Y) ≃ (X ≅ Y)
module _ {ℓ₁ ℓ₂} (C : Category ℓ₁ ℓ₂) where
open Category C
_[_,_] : Ob → Ob → Type ℓ₂
_[_,_] = Hom
{-# INLINE _[_,_] #-}
_[_∘_] : (Y ⟶ Z) → (X ⟶ Y) → (X ⟶ Z)
_[_∘_] = Comp
{-# INLINE _[_∘_] #-}
| {
"alphanum_fraction": 0.4863908547,
"avg_line_length": 29.1587301587,
"ext": "agda",
"hexsha": "8f28f759d6c28d44f373ded8c282bd5af4b0f895",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Categories.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Categories.agda",
"max_line_length": 131,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Categories.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 1852,
"size": 3674
} |
module hott.types.theorems where
open import hott.types.nat.theorems public
| {
"alphanum_fraction": 0.8311688312,
"avg_line_length": 19.25,
"ext": "agda",
"hexsha": "44f5d11cd83f440f8942e0447fc754cf883441c7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "piyush-kurur/hott",
"max_forks_repo_path": "agda/hott/types/theorems.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "piyush-kurur/hott",
"max_issues_repo_path": "agda/hott/types/theorems.agda",
"max_line_length": 42,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "876ecdcfddca1abf499e8f00db321c6dc3d5b2bc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "piyush-kurur/hott",
"max_stars_repo_path": "agda/hott/types/theorems.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 19,
"size": 77
} |
-- Issue #1130, test generation of helper function
-- {-# OPTIONS -v tc.with:40 #-}
id : (A : Set) → A → A
id A = {!id′!}
-- C-c C-h produces: id′ : ∀ {A} → A
-- when it should produce: id′ : ∀ {A} → A → A
f : (A : Set) (B : A → Set) (a : A) → B a
f A B a = {!g A a!}
-- Before: ∀ {A} {B : A → Set} A₁ (a : A₁) → B a
-- After: ∀ A (a : A) {B : A → Set} → B a
-- Andreas, 2019-10-12: ∀ {A} {B : A → Set} (a : A) → B a
open import Agda.Builtin.Bool
if_then_else : ∀{a} {A : Set a} (b : Bool) (t e : A) → A
if true then t else e = t
if false then t else e = e
-- Andreas, 2019-10-12, issue #1050: Prevent unnecessary normalization.
id₂ : (A B : Set) → if true then A else B → if false then B else A
id₂ A B x = {!id₂′ x!}
-- C-c C-h produces
-- id₂′ : ∀ {A} {B} (x : if true then A else B) →
-- if false then B else A
| {
"alphanum_fraction": 0.5070422535,
"avg_line_length": 29.3793103448,
"ext": "agda",
"hexsha": "f5e7c5c226302a3f87d7b1288d38c2739e2a9684",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue1130.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue1130.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue1130.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 351,
"size": 852
} |
module Issue117 where
Set′ = Set
record ⊤ : Set′ where
data ⊥ : Set′ where
| {
"alphanum_fraction": 0.6375,
"avg_line_length": 10,
"ext": "agda",
"hexsha": "c7741a73d121ef6afaaf365d43336418df430add",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue117.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue117.agda",
"max_line_length": 21,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue117.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 28,
"size": 80
} |
module PiNF-semantics where
open import Data.Nat hiding (_⊔_; suc; _+_; _*_)
open import Data.Vec
open import Level
open import Algebra.Structures
open import PiNF-algebra
------------------------------------------------------------------------------
-- Define module over a ring (the types bot, top, disjoint union, and product
-- do form a ring as shown in the type-iso library)
R-module : ℕ → Set → Set
R-module dim c = Vec c dim
-- The only element of (R-module 0) is the zero vector
zeroV : ∀ {A : Set} → R-module 0 A
zeroV = []
-- (R-module 1 A) is isomorphic to A
v-R1 : ∀ {A : Set} → A → R-module 1 A
v-R1 a = [ a ]
R1-v : ∀ {A : Set} → R-module 1 A → A
R1-v (a ∷ []) = a
--
module MR (C : CommutativeSemiringWithoutAnnihilatingZero Level.zero Level.zero) where
open Data.Nat using (ℕ; zero; suc; _+_; _*_)
open Data.Vec using ([]; _∷_; map; _++_)
open CommutativeSemiringWithoutAnnihilatingZero
using (Carrier; _≈_; 0#; 1#)
renaming (_+_ to _+r_; _*_ to _*r_)
{--
zeroV : ∀ {b : Set} → R-module b 0
zeroV = []
tensorV : {b₁ b₂ : Set } {m₁ m₂ : ℕ} →
R-module b₁ m₁ → R-module b₂ m₂ →
R-module (b₁ × b₂) (m₁ * m₂)
tensorV [] _ = []
tensorV (x ∷ xs) ys = (map (λ y → (x , y)) ys) ++ (tensorV xs ys)
addV : {n : ℕ} → R-module (Carrier C) n → R-module (Carrier C) n
→ R-module (Carrier C) n
addV x y = Data.Vec.zipWith (_+r_ C) x y
--}
open MR
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.5305719921,
"avg_line_length": 25.7796610169,
"ext": "agda",
"hexsha": "6c7eb0033234232f96f8daa8f7b23d4648bbb4a6",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "agda/PiNF-semantics.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "agda/PiNF-semantics.agda",
"max_line_length": 86,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "agda/PiNF-semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 498,
"size": 1521
} |
{-# OPTIONS --allow-unsolved-metas #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Nat
open import Agda.Primitive
record Graph ℓv ℓe : Set (lsuc (ℓv ⊔ ℓe)) where
field
Obj : Set ℓv
Hom : Obj → Obj → Set ℓe
open Graph public
postulate
t : Nat → Nat → Bool
ωGr : Graph lzero lzero
Obj ωGr = Nat
Hom ωGr m n with t m n
... | true = {!!} -- if n ≡ (suc m)
... | false = {!!} -- otherwise
foo : ∀ m n → Hom ωGr m n → {!!}
foo m n f with t m n
... | z = {!!}
| {
"alphanum_fraction": 0.5892116183,
"avg_line_length": 18.5384615385,
"ext": "agda",
"hexsha": "1918ce8f5cbc34c715f169533b240c6cff569a72",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4570.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4570.agda",
"max_line_length": 47,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4570.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 180,
"size": 482
} |
open import Data.Nat using (ℕ; zero; suc; _+_; _∸_; _≥_; _≤_; z≤n; s≤s)
open import Function.Equivalence using (_⇔_)
open import Relation.Binary.PropositionalEquality using (→-to-⟶)
postulate
adjoint : ∀ {x y z} → x + y ≥ z ⇔ x ≥ z ∸ y
unit : ∀ {x y} → x ≥ (x + y) ∸ y
apply : ∀ {x y} → (x ∸ y) + y ≥ x
| {
"alphanum_fraction": 0.5659163987,
"avg_line_length": 31.1,
"ext": "agda",
"hexsha": "28bba263ed57852bf4c9366fb9c60331f76fb40d",
"lang": "Agda",
"max_forks_count": 304,
"max_forks_repo_forks_event_max_datetime": "2022-03-28T11:35:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-07-16T18:24:59.000Z",
"max_forks_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "manikdv/plfa.github.io",
"max_forks_repo_path": "extra/extra/Monus.agda",
"max_issues_count": 323,
"max_issues_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T07:42:57.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-05T22:34:34.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "manikdv/plfa.github.io",
"max_issues_repo_path": "extra/extra/Monus.agda",
"max_line_length": 71,
"max_stars_count": 1003,
"max_stars_repo_head_hexsha": "8a2c2ace545092fd0e04bf5831ed458267f18ae4",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "manikdv/plfa.github.io",
"max_stars_repo_path": "extra/extra/Monus.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-27T07:03:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-07-05T18:15:14.000Z",
"num_tokens": 136,
"size": 311
} |
module _ where
open import Agda.Builtin.Nat renaming (Nat to Nombre)
open import Agda.Builtin.Equality
open import Agda.Builtin.String
open import Agda.Builtin.Reflection
check₁ : primShowQName (quote Nombre) ≡ "Agda.Builtin.Nat.Nat"
check₁ = refl
check₂ : primShowQName (quote Agda.Builtin.Nat.Nat) ≡ "Agda.Builtin.Nat.Nat"
check₂ = refl
| {
"alphanum_fraction": 0.778425656,
"avg_line_length": 24.5,
"ext": "agda",
"hexsha": "0f3ab2010a843b28ba8f6cee696c650e3c6db92b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4735.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4735.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4735.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 107,
"size": 343
} |
open import FRP.JS.Nat using ( ℕ ; _+_ ; _≤_ ; _<_ ; _≟_ )
open import FRP.JS.True using ( True ; False )
module FRP.JS.Nat.Properties where
postulate
≤-impl-≯ : ∀ {m n} → True (m ≤ n) → False (n < m)
≤≠-impl-< : ∀ {m n} → True (m ≤ n) → False (m ≟ n) → True (m < n)
<-impl-s≤ : ∀ {m n} → True (m < n) → True (1 + m ≤ n)
≤-bot : ∀ {n} → True (0 ≤ n)
| {
"alphanum_fraction": 0.4903047091,
"avg_line_length": 32.8181818182,
"ext": "agda",
"hexsha": "17d6a49e62e8e3e94cff4f1727d3c17c7855a47f",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "src/agda/FRP/JS/Nat/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "src/agda/FRP/JS/Nat/Properties.agda",
"max_line_length": 67,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "src/agda/FRP/JS/Nat/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 161,
"size": 361
} |
module _ where
open import Agda.Builtin.Reflection
open import Agda.Builtin.Equality
module M where
open import Agda.Builtin.Nat renaming (Nat to Nombre)
a = quote Nombre
fail : M.a ≡ quote Name
fail = refl
| {
"alphanum_fraction": 0.7534883721,
"avg_line_length": 16.5384615385,
"ext": "agda",
"hexsha": "bf16591bd15225e7f71b93af2ba79cb451ad123e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue5048.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue5048.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue5048.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 60,
"size": 215
} |
{-# OPTIONS --safe --without-K #-}
open import Generics.Prelude
open import Generics.Telescope
open import Generics.Desc
open import Generics.All
module Generics.Accessibility
{P I ℓ} (A : Indexed P I ℓ)
{n} (D : DataDesc P I n)
(let A′ = uncurry P I A)
(split : ∀ {pi} → A′ pi → ⟦ D ⟧Data A′ pi)
{p} where
-- | Accessibility predicate for datatype A at value x
data Acc {i} (x : A′ (p , i)) : Setω where
acc : AllDataω Acc D (split x) → Acc x
| {
"alphanum_fraction": 0.6336206897,
"avg_line_length": 27.2941176471,
"ext": "agda",
"hexsha": "de327251080cbfc10dfb81da80867c31e7072378",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/Accessibility.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/Accessibility.agda",
"max_line_length": 56,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/Accessibility.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 160,
"size": 464
} |
{-
Types Summer School 2007
Bertinoro
Aug 19 - 31, 2007
Agda
Ulf Norell
-}
-- Records are labeled sigma types.
module Records where
open import Nat
open import Bool
{-
A very simple record.
-}
record Point : Set where
field
x : Nat
y : Nat
-- A record can be seen as a one constructor datatype. In this case:
data Point' : Set where
mkPoint : (x : Nat)(y : Nat) -> Point'
-- There are a few differences, though:
-- To construct a record you use the syntax record { ..; x = e; .. }
origin : Point
origin = record { x = 0; y = 0 }
-- instead of
origin' : Point'
origin' = mkPoint 0 0
-- What's more interesting is that you get projection functions
-- for free when you declare a record. More precisely, you get a module
-- parameterised over a record, containing functions corresponding to the
-- fields. In the Point example you get:
{-
module Point (p : Point) where
x : Nat
y : Nat
-}
-- So Point.x : Point -> Nat is the projection function for the field x.
getX : Point -> Nat
getX = Point.x
-- A nifty thing with having the projection functions in a module is that
-- you can apply the module to a record value, in effect opening the record.
sum : Point -> Nat
sum p = x + y
where
open module Pp = Point p
-- The final difference between records and datatypes is that we have
-- η-equality on records.
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
η-Point : (p : Point) -> p == record { x = Point.x p; y = Point.y p }
η-Point p = refl
{-
The empty record
-}
-- One interesting benefit of this is that we get a unit type with
-- η-equality.
record True : Set where
tt : True
tt = record{}
-- Now, since any element of True is equal to tt, metavariables of
-- type True will simply disappear. The following cute example exploits
-- this:
data False : Set where
NonZero : Nat -> Set
NonZero zero = False
NonZero (suc _) = True
-- We make the proof that m is non-zero implicit.
_/_ : (n m : Nat){p : NonZero m} -> Nat
(n / zero) {}
zero / suc m = zero
suc n / suc m = div (suc n) (suc m) m
where
div : Nat -> Nat -> Nat -> Nat
div zero zero c = suc zero
div zero (suc y) c = zero
div (suc x) zero c = suc (div x c c)
div (suc x) (suc y) c = div x y c
-- Now, as long as we're dividing by things which are obviously
-- NonZero we can completely ignore the proof.
five = 17 / 3
{-
A dependent record
-}
-- Of course, records can be dependent, and have parameters.
record ∃ {A : Set}(P : A -> Set) : Set where
field
witness : A
proof : P witness
| {
"alphanum_fraction": 0.6268375424,
"avg_line_length": 20.5658914729,
"ext": "agda",
"hexsha": "1dda8aab2e493903d2c933061c4328d63f7f9156",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/SummerSchool07/Lecture/Records.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/SummerSchool07/Lecture/Records.agda",
"max_line_length": 76,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/SummerSchool07/Lecture/Records.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 771,
"size": 2653
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Data.Sigma.Base where
open import Cubical.Core.Primitives public
-- Σ-types are defined in Core/Primitives as they are needed for Glue types.
| {
"alphanum_fraction": 0.7552083333,
"avg_line_length": 27.4285714286,
"ext": "agda",
"hexsha": "22a03950b555f496baf024f561f533a76ce348de",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/Data/Sigma/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/Data/Sigma/Base.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/Data/Sigma/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 47,
"size": 192
} |
module FMSB where
data Nat : Set where
ze : Nat
su : Nat -> Nat
data Lam (X : Nat -> Set)(n : Nat) : Set where
var : X n -> Lam X n
app : Lam X n -> Lam X n -> Lam X n
lam : Lam X (su n) -> Lam X n
_->>_ : {I : Set}(X Y : I -> Set) -> Set
X ->> Y = {i : _} -> X i -> Y i
fmsub : {X Y : Nat -> Set} -> (X ->> Lam Y) -> Lam X ->> Lam Y
fmsub sb (var x) = sb x
fmsub sb (app f s) = app (fmsub sb f) (fmsub sb s)
fmsub sb (lam b) = lam (fmsub sb b)
data Fin : Nat -> Set where
ze : {n : Nat} -> Fin (su n)
su : {n : Nat} -> Fin n -> Fin (su n)
D : (Nat -> Set) -> Nat -> Set
D F n = F (su n)
weak : {F : Nat -> Set} -> (Fin ->> F) -> (F ->> D F) ->
{m n : Nat}-> (Fin m -> F n) -> D Fin m -> D F n
weak v w f ze = v ze
weak v w f (su x) = w (f x)
_+_ : Nat -> Nat -> Nat
ze + y = y
su x + y = su (x + y)
_!+_ : (Nat -> Set) -> Nat -> (Nat -> Set)
F !+ n = \ m -> F (m + n)
weaks : {F : Nat -> Set} -> (Fin ->> F) -> (F ->> D F) ->
{m n : Nat}-> (Fin m -> F n) -> (Fin !+ m) ->> (F !+ n)
weaks v w f {ze} = f
weaks v w f {su i} = weak v w (weaks v w f {i})
jing : {m n : Nat} -> Lam Fin (m + n) -> Lam (Fin !+ n) m
jing (var x) = var x
jing (app f s) = app (jing f) (jing s)
jing (lam t) = lam (jing t)
gnij : {m n : Nat} -> Lam (Fin !+ n) m -> Lam Fin (m + n)
gnij (var x) = var x
gnij (app f s) = app (gnij f) (gnij s)
gnij (lam t) = lam (gnij t)
ren : {m n : Nat} -> (Fin m -> Fin n) -> Lam Fin m -> Lam Fin n
ren f t = gnij (fmsub (\ {i} x -> var (weaks (\ z -> z) su f {i} x)) {ze} (jing t))
sub : {m n : Nat} -> (Fin m -> Lam Fin n) -> Lam Fin m -> Lam Fin n
sub {m}{n} f t = gnij {ze} (fmsub (\ {i} x -> jing {i} (weaks {Lam Fin} var (ren su) f {i} x)) (jing {ze} t)) | {
"alphanum_fraction": 0.450867052,
"avg_line_length": 29.8275862069,
"ext": "agda",
"hexsha": "e7e88d2808911e6ef956b69c8a3561d1fc94befa",
"lang": "Agda",
"max_forks_count": 12,
"max_forks_repo_forks_event_max_datetime": "2022-02-11T01:57:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-08-14T21:36:35.000Z",
"max_forks_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mietek/epigram",
"max_forks_repo_path": "models/FMSB.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mietek/epigram",
"max_issues_repo_path": "models/FMSB.agda",
"max_line_length": 109,
"max_stars_count": 48,
"max_stars_repo_head_hexsha": "8c46f766bddcec2218ddcaa79996e087699a75f2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mietek/epigram",
"max_stars_repo_path": "models/FMSB.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-11T01:55:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-01-09T17:36:19.000Z",
"num_tokens": 756,
"size": 1730
} |
{-# OPTIONS --guardedness #-}
module Iterator where
import Lvl
open import Data.Option as Option using (Option ; Some ; None)
open import Data.Tuple as Tuple using (_⨯_ ; _,_)
open import Type
private variable ℓ : Lvl.Level
private variable T A B : Type{ℓ}
private variable a x init : T
private variable f : A → B
-- A finite/infinite sequence.
record Iterator (T : Type{ℓ}) : Type{ℓ} where
coinductive
field
next : Option(T ⨯ Iterator(T))
open Iterator
empty : Iterator(T)
next empty = None
singleton : T → Iterator(T)
next(singleton x) = Some(x , empty)
prepend : T → Iterator(T) -> Iterator(T)
next(prepend x i) = Some(x , i)
import Data.Option.Functions as Option
head : Iterator(T) → Option(T)
head i = Option.map Tuple.left (next(i))
tail : Iterator(T) → Option(Iterator(T))
tail i = Option.map Tuple.right (next(i))
open import Functional
tail₀ : Iterator(T) → Iterator(T)
tail₀ = (Option._or empty) ∘ tail
open import Numeral.Natural
open import Numeral.Natural.Induction
index : ℕ → Iterator(T) → Option(T)
index n i with next(i)
index _ _ | None = None
index 𝟎 _ | Some(x , r) = Some x
index (𝐒(k)) _ | Some(x , r) = index k r
repeat : T → Iterator(T)
next(repeat(x)) = Some(x , repeat(x))
map : (A → B) → (Iterator(A) → Iterator(B))
next(map f(i)) with next(i)
... | None = None
... | Some(x , r) = Some(f(x) , map f(r))
-- Option.map (Tuple.map f (map f)) (next i)
| {
"alphanum_fraction": 0.6458333333,
"avg_line_length": 22.5,
"ext": "agda",
"hexsha": "945da420c673a646107035735634a606707b9b59",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Iterator.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Iterator.agda",
"max_line_length": 62,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Iterator.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 427,
"size": 1440
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Properties.Presheaves where
open import Categories.Category.Construction.Properties.Presheaves.Cartesian
using (module IsCartesian)
public
open import Categories.Category.Construction.Properties.Presheaves.CartesianClosed
using (module IsCCC)
public
open import Categories.Category.Construction.Properties.Presheaves.Complete
using (Presheaves-Complete; Presheaves-Cocomplete)
public
| {
"alphanum_fraction": 0.8231578947,
"avg_line_length": 29.6875,
"ext": "agda",
"hexsha": "46a8d990c1dddd98cc8b6cd6271e6452d60a4832",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/Properties/Presheaves.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/Properties/Presheaves.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/Properties/Presheaves.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 101,
"size": 475
} |
------------------------------------------------------------------------
-- An example
------------------------------------------------------------------------
module Mixfix.Acyclic.Example where
open import Codata.Musical.Notation
open import Data.Vec using ([]; _∷_; [_])
open import Data.List as List
using (List; []; _∷_) renaming ([_] to L[_])
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Unary.Any using (here; there)
import Codata.Musical.Colist as Colist
open import Data.Product using (∃₂; -,_)
open import Data.Unit.Polymorphic using (⊤)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Nat using (zero; suc)
open import Data.Fin using (#_)
import Data.List.Relation.Binary.Pointwise as ListEq
import Data.String as String
open String using (String; _++_)
import Data.String.Properties as String
open import Relation.Binary
open DecSetoid (ListEq.decSetoid String.≡-decSetoid) using (_≟_)
open import Function using (_∘_; _$_)
open import Data.Bool using (Bool; if_then_else_)
import Data.Bool.Show as Bool
open import Relation.Nullary.Decidable using (⌊_⌋)
import Relation.Binary.PropositionalEquality as P
open import IO
import Level
open import Mixfix.Fixity hiding (_≟_)
open import Mixfix.Operator
open import Mixfix.Expr
open import Mixfix.Acyclic.PrecedenceGraph
import Mixfix.Acyclic.Grammar as Grammar
import Mixfix.Acyclic.Show as Show
import StructurallyRecursiveDescentParsing.Simplified as Simplified
open Simplified using (Parser)
import StructurallyRecursiveDescentParsing.DepthFirst as DepthFirst
import TotalParserCombinators.BreadthFirst as BreadthFirst
------------------------------------------------------------------------
-- Operators
atom : Operator closed 0
atom = record { nameParts = "•" ∷ [] }
plus : Operator (infx left) 0
plus = record { nameParts = "+" ∷ [] }
ifThen : Operator prefx 1
ifThen = record { nameParts = "i" ∷ "t" ∷ [] }
ifThenElse : Operator prefx 2
ifThenElse = record { nameParts = "i" ∷ "t" ∷ "e" ∷ [] }
comma : Operator (infx left) 0
comma = record { nameParts = "," ∷ [] }
wellTyped : Operator postfx 1
wellTyped = record { nameParts = "⊢" ∷ "∶" ∷ [] }
------------------------------------------------------------------------
-- Precedence graph
prec : List (∃₂ Operator) → List Precedence → Precedence
prec ops = precedence (λ fix → List.mapMaybe (hasFixity fix) ops)
mutual
a = prec ((-, -, atom) ∷ []) []
pl = prec ((-, -, plus) ∷ []) (a ∷ [])
ii = prec ((-, -, ifThen) ∷ (-, -, ifThenElse) ∷ []) (pl ∷ a ∷ [])
c = prec ((-, -, comma) ∷ []) (ii ∷ pl ∷ a ∷ [])
wt = prec ((-, -, wellTyped) ∷ []) (c ∷ a ∷ [])
g : PrecedenceGraph
g = wt ∷ c ∷ ii ∷ pl ∷ a ∷ []
------------------------------------------------------------------------
-- Expressions
open PrecedenceCorrect acyclic g
• : ExprIn a non
• = ⟪ here P.refl ∙ [] ⟫
_+_ : Outer pl left → Expr (a ∷ []) → ExprIn pl left
e₁ + e₂ = e₁ ⟨ here P.refl ∙ [] ⟩ˡ e₂
i_t_ : Expr g → Outer ii right → ExprIn ii right
i e₁ t e₂ = ⟪ here P.refl ∙ e₁ ∷ [] ⟩ e₂
i_t_e_ : Expr g → Expr g → Outer ii right → ExprIn ii right
i e₁ t e₂ e e₃ = ⟪ there (here P.refl) ∙ e₁ ∷ e₂ ∷ [] ⟩ e₃
_,_ : Outer c left → Expr (ii ∷ pl ∷ a ∷ []) → ExprIn c left
e₁ , e₂ = e₁ ⟨ here P.refl ∙ [] ⟩ˡ e₂
_⊢_∶ : Outer wt left → Expr g → Expr g
e₁ ⊢ e₂ ∶ = here P.refl ∙ (e₁ ⟨ here P.refl ∙ [ e₂ ] ⟫)
------------------------------------------------------------------------
-- Some tests
open Show g
fromNameParts : List NamePart → String
fromNameParts = List.foldr _++_ ""
toNameParts : String → List NamePart
toNameParts = List.map (String.fromList ∘ L[_]) ∘ String.toList
data Backend : Set where
depthFirst : Backend
breadthFirst : Backend
parse : ∀ {Tok e R} → Backend → Parser Tok e R → List Tok → List R
parse depthFirst p = DepthFirst.parseComplete p
parse breadthFirst p = BreadthFirst.parse (Simplified.⟦_⟧ p)
parseExpr : Backend → String → List String
parseExpr backend = List.map (fromNameParts ∘ show) ∘
parse backend (Grammar.expression g) ∘
toNameParts
-- The breadth-first backend is considerably slower than the
-- depth-first one on these examples.
backend = depthFirst
runTest : String → List String → IO (⊤ {ℓ = Level.zero})
runTest s₁ s₂ = do
putStrLn ("Testing: " ++ s₁)
Colist.mapM′ putStrLn (Colist.fromList p₁)
putStrLn (if ⌊ p₁ ≟ s₂ ⌋ then "Passed" else "Failed")
where p₁ = parseExpr backend s₁
main = run do
runTest "•+•⊢•∶" []
runTest "•,•⊢∶" []
runTest "•⊢•∶" L[ "•⊢•∶" ]
runTest "•,i•t•+•⊢•∶" L[ "•,i•t•+•⊢•∶" ]
runTest "i•ti•t•e•" ("i•ti•t•e•" ∷ "i•ti•t•e•" ∷ [])
| {
"alphanum_fraction": 0.5834912613,
"avg_line_length": 32.5273972603,
"ext": "agda",
"hexsha": "b20e7dbabeed15fa33cf8dd6b49e693539f7af95",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "Mixfix/Acyclic/Example.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "Mixfix/Acyclic/Example.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "Mixfix/Acyclic/Example.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 1451,
"size": 4749
} |
module List.Permutation.Base (A : Set) where
open import Data.List
data _/_⟶_ : List A → A → List A → Set where
/head : {x : A}{xs : List A}
→ (x ∷ xs) / x ⟶ xs
/tail : {x y : A}{xs ys : List A}
→ xs / y ⟶ ys
→ (x ∷ xs) / y ⟶ (x ∷ ys)
data _∼_ : List A → List A → Set where
∼[] : [] ∼ []
∼x : {x : A}{xs ys xs' ys' : List A}
→ xs / x ⟶ xs'
→ ys / x ⟶ ys'
→ xs' ∼ ys'
→ xs ∼ ys
| {
"alphanum_fraction": 0.3376383764,
"avg_line_length": 27.1,
"ext": "agda",
"hexsha": "969a1f41f70d25abb6d875152664c6cc521cee79",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/List/Permutation/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/List/Permutation/Base.agda",
"max_line_length": 44,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/List/Permutation/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 192,
"size": 542
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Lemmas
open import Groups.Definition
open import Groups.Subgroups.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
module Rings.Ideals.Definition {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
open Ring R
open Setoid S
open Equivalence eq
open Group additiveGroup
open import Rings.Lemmas R
open import Rings.Divisible.Definition R
record Ideal {c : _} (pred : A → Set c) : Set (a ⊔ b ⊔ c) where
field
isSubgroup : Subgroup additiveGroup pred
accumulatesTimes : {x : A} → {y : A} → pred x → pred (x * y)
closedUnderPlus = Subgroup.closedUnderPlus isSubgroup
closedUnderInverse = Subgroup.closedUnderInverse isSubgroup
containsIdentity = Subgroup.containsIdentity isSubgroup
isSubset = Subgroup.isSubset isSubgroup
predicate = pred
generatedIdealPred : A → A → Set (a ⊔ b)
generatedIdealPred a b = a ∣ b
generatedIdeal : (a : A) → Ideal (generatedIdealPred a)
Subgroup.isSubset (Ideal.isSubgroup (generatedIdeal a)) {x} {y} x=y (c , prC) = c , transitive prC x=y
Subgroup.closedUnderPlus (Ideal.isSubgroup (generatedIdeal a)) {g} {h} (c , prC) (d , prD) = (c + d) , transitive *DistributesOver+ (+WellDefined prC prD)
Subgroup.containsIdentity (Ideal.isSubgroup (generatedIdeal a)) = 0G , timesZero
Subgroup.closedUnderInverse (Ideal.isSubgroup (generatedIdeal a)) {g} (c , prC) = inverse c , transitive ringMinusExtracts (inverseWellDefined additiveGroup prC)
Ideal.accumulatesTimes (generatedIdeal a) {x} {y} (c , prC) = (c * y) , transitive *Associative (*WellDefined prC reflexive)
| {
"alphanum_fraction": 0.7322435175,
"avg_line_length": 42.2380952381,
"ext": "agda",
"hexsha": "6db2faade03ed21dbbd56c45b19cd0466a8159ea",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Ideals/Definition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Ideals/Definition.agda",
"max_line_length": 161,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Ideals/Definition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 541,
"size": 1774
} |
-- Note that the flag --guardedness-preserving-type-constructors is
-- not (should not be) enabled in this module.
module TypeConstructorsWhichPreserveGuardedness1 where
open import Common.Coinduction
record ⊤ : Set where
data _⊎_ (A B : Set) : Set where
inj₁ : A → A ⊎ B
inj₂ : B → A ⊎ B
record ∃ {A : Set} (B : A → Set) : Set where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
data Rec (A : ∞ Set) : Set where
fold : ♭ A → Rec A
module ℕ₁ where
-- Without the flag, the following is non-terminating,
-- hence, not reduced.
{-# NON_TERMINATING #-}
ℕ : Set
ℕ = ⊤ ⊎ Rec (♯ ℕ)
zero : ℕ
zero = inj₁ _ -- yields a type error since ℕ does not reduce
suc : ℕ → ℕ
suc n = inj₂ (fold n)
ℕ-rec : (P : ℕ → Set) →
P zero →
(∀ n → P n → P (suc n)) →
∀ n → P n
ℕ-rec P z s (inj₁ _) = z
ℕ-rec P z s (inj₂ (fold n)) = s n (ℕ-rec P z s n)
module ℕ₂ where
data ℕC : Set where
′zero : ℕC
′suc : ℕC
mutual
ℕ : Set
ℕ = ∃ λ (c : ℕC) → ℕ′ c
ℕ′ : ℕC → Set
ℕ′ ′zero = ⊤
ℕ′ ′suc = Rec (♯ ℕ)
zero : ℕ
zero = (′zero , _)
suc : ℕ → ℕ
suc n = (′suc , fold n)
ℕ-rec : (P : ℕ → Set) →
P zero →
(∀ n → P n → P (suc n)) →
∀ n → P n
ℕ-rec P z s (′zero , _) = z
ℕ-rec P z s (′suc , fold n) = s n (ℕ-rec P z s n)
| {
"alphanum_fraction": 0.507703595,
"avg_line_length": 19.1971830986,
"ext": "agda",
"hexsha": "0e8739882df7d262e6d632d1ddeeca29f44c66d5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/TypeConstructorsWhichPreserveGuardedness1.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/TypeConstructorsWhichPreserveGuardedness1.agda",
"max_line_length": 67,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/TypeConstructorsWhichPreserveGuardedness1.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 535,
"size": 1363
} |
-- The same name can not be exported more than once from a module.
module Issue154 where
module A where
postulate X : Set
module B where
postulate X : Set
open A public
| {
"alphanum_fraction": 0.7344632768,
"avg_line_length": 17.7,
"ext": "agda",
"hexsha": "21ea9cd1dc6452a63386b6e2172e18bfc906f702",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue154.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue154.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue154.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 47,
"size": 177
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Homotopy.HopfInvariant.Homomorphism where
open import Cubical.Homotopy.HopfInvariant.Base
open import Cubical.Homotopy.Group.Base
open import Cubical.Homotopy.Group.SuspensionMap
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.MayerVietorisUnreduced
open import Cubical.ZCohomology.Groups.Unit
open import Cubical.ZCohomology.Groups.Wedge
open import Cubical.ZCohomology.Groups.Sn
open import Cubical.ZCohomology.RingStructure.CupProduct
open import Cubical.ZCohomology.RingStructure.GradedCommutativity
open import Cubical.ZCohomology.Gysin
open import Cubical.Foundations.Path
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Data.Sigma
open import Cubical.Data.Int hiding (_+'_)
open import Cubical.Data.Nat renaming (_+_ to _+ℕ_ ; _·_ to _·ℕ_)
open import Cubical.Data.Unit
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.DirProd
open import Cubical.Algebra.Group.ZAction
open import Cubical.Algebra.Group.Exact
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Int
open import Cubical.Algebra.Group.GroupPath
open import Cubical.HITs.Pushout
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp
open import Cubical.HITs.Wedge
open import Cubical.HITs.Truncation
open import Cubical.HITs.SetTruncation
renaming (elim to sElim ; elim2 to sElim2 ; map to sMap)
open import Cubical.HITs.PropositionalTruncation
open PlusBis
-- The pushout describing the hopf invariant of the multiplication (∙Π) of
-- two maps (S³⁺²ⁿ →∙ S²⁺ⁿ)
C·Π : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → Type _
C·Π n f g = Pushout (λ _ → tt) (∙Π f g .fst)
-- Another pushout, essentially the same, but starting with
-- S³⁺²ⁿ ∨ S³⁺²ⁿ. This will be used to break up the hopf invariant
-- of ∙Π f g.
C* : ∀ n → (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → Type _
C* n f g = Pushout (λ _ → tt) (fst (∨→∙ f g))
-- The coequaliser of ∙Π and ∨→∙
θ : ∀ {ℓ} {A : Pointed ℓ} → Susp (fst A)
→ (Susp (fst A) , north) ⋁ (Susp (fst A) , north)
θ north = inl north
θ south = inr north
θ {A = A} (merid a i₁) =
((λ i → inl ((merid a ∙ sym (merid (pt A))) i))
∙∙ push tt
∙∙ λ i → inr ((merid a ∙ sym (merid (pt A))) i)) i₁
∙Π≡∨→∘θ : ∀ n → (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ (x : _) → ∙Π f g .fst x ≡ (f ∨→ g) (θ {A = S₊∙ _} x)
∙Π≡∨→∘θ n f g north = sym (snd f)
∙Π≡∨→∘θ n f g south = sym (snd g)
∙Π≡∨→∘θ n f g (merid a i₁) j = main j i₁
where
help : cong (f ∨→ g) (cong (θ {A = S₊∙ _}) (merid a))
≡ (refl ∙∙ cong (fst f) (merid a ∙ sym (merid north)) ∙∙ snd f)
∙ (sym (snd g) ∙∙ cong (fst g) (merid a ∙ sym (merid north)) ∙∙ refl)
help = cong-∙∙ (f ∨→ g) ((λ i → inl ((merid a ∙ sym (merid north)) i)))
(push tt)
(λ i → inr ((merid a ∙ sym (merid north)) i))
∙∙ doubleCompPath≡compPath _ _ _
∙∙ cong (cong (f ∨→ g)
(λ i₂ → inl ((merid a ∙ (λ i₃ → merid north (~ i₃))) i₂)) ∙_)
(sym (assoc _ _ _))
∙∙ assoc _ _ _
∙∙ cong₂ _∙_ refl (compPath≡compPath' _ _)
main : PathP (λ i → snd f (~ i)
≡ snd g (~ i)) (λ i₁ → ∙Π f g .fst (merid a i₁))
λ i₁ → (f ∨→ g) (θ {A = S₊∙ _} (merid a i₁))
main = (λ i → ((λ j → snd f (~ i ∧ ~ j))
∙∙ cong (fst f) (merid a ∙ sym (merid north))
∙∙ snd f)
∙ (sym (snd g)
∙∙ cong (fst g) (merid a ∙ sym (merid north))
∙∙ λ j → snd g (~ i ∧ j)))
▷ sym help
private
WedgeElim : ∀ {ℓ} (n : ℕ)
{P : S₊∙ (3 +ℕ (n +ℕ n)) ⋁ S₊∙ (3 +ℕ (n +ℕ n)) → Type ℓ}
→ ((x : _) → isOfHLevel (3 +ℕ n) (P x))
→ P (inl north)
→ (x : _) → P x
WedgeElim n {P = P} x s (inl x₁) =
sphereElim _ {A = P ∘ inl}
(λ _ → isOfHLevelPlus' {n = n} (3 +ℕ n) (x _)) s x₁
WedgeElim n {P = P} x s (inr x₁) =
sphereElim _ {A = P ∘ inr}
(sphereElim _ (λ _ → isProp→isOfHLevelSuc ((suc (suc (n +ℕ n))))
(isPropIsOfHLevel (suc (suc (suc (n +ℕ n))))))
(subst (isOfHLevel ((3 +ℕ n) +ℕ n)) (cong P (push tt))
(isOfHLevelPlus' {n = n} (3 +ℕ n) (x _))))
(subst P (push tt) s) x₁
WedgeElim n {P = P} x s (push a j) =
transp (λ i → P (push tt (i ∧ j))) (~ j) s
H²C*≅ℤ : ∀ n → (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ GroupIso (coHomGr (2 +ℕ n) (C* n f g)) ℤGroup
H²C*≅ℤ n f g = compGroupIso is (Hⁿ-Sⁿ≅ℤ (suc n))
where
∘inr : (coHom (2 +ℕ n) (C* n f g)) → coHom (2 +ℕ n) (S₊ (2 +ℕ n))
∘inr = sMap λ f → f ∘ inr
invMapPrim : (S₊ (2 +ℕ n) → coHomK (2 +ℕ n))
→ C* n f g → coHomK (2 +ℕ n)
invMapPrim h (inl x) = h (ptSn _)
invMapPrim h (inr x) = h x
invMapPrim h (push a i₁) =
WedgeElim n {P = λ a → h north ≡ h (fst (∨→∙ f g) a)}
(λ _ → isOfHLevelTrunc (4 +ℕ n) _ _)
(cong h (sym (snd f))) a i₁
invMap : coHom (2 +ℕ n) (S₊ (2 +ℕ n)) → (coHom (2 +ℕ n) (C* n f g))
invMap = sMap invMapPrim
∘inrSect : (x : coHom (2 +ℕ n) (S₊ (2 +ℕ n))) → ∘inr (invMap x) ≡ x
∘inrSect = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _)
λ a → refl
∘inrRetr : (x : (coHom (2 +ℕ n) (C* n f g))) → invMap (∘inr x) ≡ x
∘inrRetr =
sElim (λ _ → isOfHLevelPath 2 squash₂ _ _)
λ h → cong ∣_∣₂ (funExt λ { (inl x) → cong h ((λ i → inr ((snd f) (~ i)))
∙ sym (push (inl north)))
; (inr x) → refl
; (push a i) → lem₁ h a i})
where
lem₁ : (h : C* n f g → coHomK (2 +ℕ n)) (a : _)
→ PathP (λ i → invMapPrim (h ∘ inr) (push a i) ≡ h (push a i))
(cong h ((λ i → inr ((snd f) (~ i)))
∙ sym (push (inl north))))
refl
lem₁ h =
WedgeElim n (λ _ → isOfHLevelPathP (3 +ℕ n)
(isOfHLevelTrunc (4 +ℕ n) _ _) _ _)
lem₂
where
lem₂ : PathP (λ i → invMapPrim (h ∘ inr) (push (inl north) i)
≡ h (push (inl north) i))
(cong h ((λ i → inr ((snd f) (~ i)))
∙ sym (push (inl north))))
refl
lem₂ i j = h (hcomp (λ k → λ { (i = i1) → inr (fst f north)
; (j = i0) → inr (snd f (~ i))
; (j = i1) → push (inl north) (i ∨ ~ k)})
(inr (snd f (~ i ∧ ~ j))))
is : GroupIso (coHomGr (2 +ℕ n) (C* n f g)) (coHomGr (2 +ℕ n) (S₊ (2 +ℕ n)))
Iso.fun (fst is) = ∘inr
Iso.inv (fst is) = invMap
Iso.rightInv (fst is) = ∘inrSect
Iso.leftInv (fst is) = ∘inrRetr
snd is = makeIsGroupHom
(sElim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _)
λ f g → refl)
H⁴-C·Π : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ GroupIso (coHomGr ((2 +ℕ n) +' (2 +ℕ n)) (C·Π n f g))
ℤGroup
H⁴-C·Π n f g = compGroupIso
(transportCohomIso (cong (3 +ℕ_) (+-suc n n))) (Hopfβ-Iso n (∙Π f g))
H²-C·Π : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ GroupIso (coHomGr (2 +ℕ n) (C·Π n f g))
ℤGroup
H²-C·Π n f g = Hopfα-Iso n (∙Π f g)
H⁴-C* : ∀ n → (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ GroupIso (coHomGr ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g))
(DirProd ℤGroup ℤGroup)
H⁴-C* n f g =
compGroupIso (GroupEquiv→GroupIso (invGroupEquiv fstIso))
(compGroupIso (transportCohomIso (cong (2 +ℕ_) (+-suc n n)))
(compGroupIso (Hⁿ-⋁ (S₊∙ (suc (suc (suc (n +ℕ n)))))
(S₊∙ (suc (suc (suc (n +ℕ n))))) _)
(GroupIsoDirProd (Hⁿ-Sⁿ≅ℤ _) (Hⁿ-Sⁿ≅ℤ _))))
where
module Ms = MV _ _ _ (λ _ → tt) (fst (∨→∙ f g))
fstIso : GroupEquiv (coHomGr ((suc (suc (n +ℕ suc n))))
(S₊∙ (3 +ℕ (n +ℕ n)) ⋁ S₊∙ (3 +ℕ (n +ℕ n))))
(coHomGr ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g))
fst (fst fstIso) = Ms.d (suc (suc (n +ℕ suc n))) .fst
snd (fst fstIso) =
SES→isEquiv
(sym (fst (GroupPath _ _)
(isContr→≃Unit
(isContrΣ (subst isContr (isoToPath (invIso (fst (Hⁿ-Unit≅0 _))))
isContrUnit)
(λ _ → subst isContr (isoToPath (invIso
(fst (Hⁿ-Sᵐ≅0 _ _ λ p →
¬lemHopf 0 ((λ _ → north) , refl)
n n (cong suc (sym (+-suc n n)) ∙ p)))))
isContrUnit))
, makeIsGroupHom λ _ _ → refl)))
(GroupPath _ _ .fst
(compGroupEquiv (invEquiv (isContr→≃Unit ((tt , tt) , (λ _ → refl)))
, makeIsGroupHom λ _ _ → refl)
(GroupEquivDirProd
(GroupIso→GroupEquiv (invGroupIso (Hⁿ-Unit≅0 _)))
(GroupIso→GroupEquiv
(invGroupIso (Hⁿ-Sᵐ≅0 _ _ λ p →
¬lemHopf 0 ((λ _ → north) , refl)
n (suc n) (cong (2 +ℕ_) (sym (+-suc n n))
∙ p)))))))
(Ms.Δ (suc (suc (n +ℕ suc n))))
(Ms.d (suc (suc (n +ℕ suc n))))
(Ms.i (suc (suc (suc (n +ℕ suc n)))))
(Ms.Ker-d⊂Im-Δ _)
(Ms.Ker-i⊂Im-d _)
snd fstIso = Ms.d (suc (suc (n +ℕ suc n))) .snd
module _ (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) where
C·Π' = C·Π n f g
-- The generators of the cohomology groups of C* and C·Π
βₗ : coHom ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g)
βₗ = Iso.inv (fst (H⁴-C* n f g)) (1 , 0)
βᵣ : coHom ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g)
βᵣ = Iso.inv (fst (H⁴-C* n f g)) (0 , 1)
β·Π : coHom ((2 +ℕ n) +' (2 +ℕ n)) C·Π'
β·Π = Iso.inv (fst (H⁴-C·Π n f g)) 1
α* : coHom (2 +ℕ n) (C* n f g)
α* = Iso.inv (fst (H²C*≅ℤ n f g)) 1
-- They can be difficult to work with in this form.
-- We give them simpler forms and prove that these are equivalent
βᵣ'-fun : C* n f g → coHomK ((4 +ℕ (n +ℕ n)))
βᵣ'-fun (inl x) = 0ₖ _
βᵣ'-fun (inr x) = 0ₖ _
βᵣ'-fun (push (inl x) i₁) = 0ₖ _
βᵣ'-fun (push (inr x) i₁) = Kn→ΩKn+1 _ ∣ x ∣ i₁
βᵣ'-fun (push (push a i₂) i₁) = Kn→ΩKn+10ₖ _ (~ i₂) i₁
βₗ'-fun : C* n f g → coHomK (4 +ℕ (n +ℕ n))
βₗ'-fun (inl x) = 0ₖ _
βₗ'-fun (inr x) = 0ₖ _
βₗ'-fun (push (inl x) i₁) = Kn→ΩKn+1 _ ∣ x ∣ i₁
βₗ'-fun (push (inr x) i₁) = 0ₖ _
βₗ'-fun (push (push a i₂) i₁) = Kn→ΩKn+10ₖ _ i₂ i₁
βₗ''-fun : coHom ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g)
βₗ''-fun = subst (λ m → coHom m (C* n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
∣ βₗ'-fun ∣₂
βᵣ''-fun : coHom ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g)
βᵣ''-fun = subst (λ m → coHom m (C* n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
∣ βᵣ'-fun ∣₂
private
0ₖ≡∨→ : (a : _) → 0ₖ (suc (suc n)) ≡ ∣ (f ∨→ g) a ∣
0ₖ≡∨→ = WedgeElim _ (λ _ → isOfHLevelTrunc (4 +ℕ n) _ _)
(cong ∣_∣ₕ (sym (snd f)))
0ₖ≡∨→-inr : 0ₖ≡∨→ (inr north) ≡ cong ∣_∣ₕ (sym (snd g))
0ₖ≡∨→-inr =
(λ j → transport (λ i → 0ₖ (2 +ℕ n)
≡ ∣ compPath-filler' (snd f) (sym (snd g)) (~ j) i ∣ₕ)
λ i → ∣ snd f (~ i ∨ j) ∣ₕ)
∙ λ j → transp (λ i → 0ₖ (2 +ℕ n) ≡ ∣ snd g (~ i ∧ ~ j) ∣ₕ) j
λ i → ∣ snd g (~ i ∨ ~ j) ∣ₕ
α*'-fun : C* n f g → coHomK (2 +ℕ n)
α*'-fun (inl x) = 0ₖ _
α*'-fun (inr x) = ∣ x ∣
α*'-fun (push a i₁) = 0ₖ≡∨→ a i₁
α*' : coHom (2 +ℕ n) (C* n f g)
α*' = ∣ α*'-fun ∣₂
-- We also need the following three maps
jₗ : HopfInvariantPush n (fst f) → C* n f g
jₗ (inl x) = inl x
jₗ (inr x) = inr x
jₗ (push a i₁) = push (inl a) i₁
jᵣ : HopfInvariantPush n (fst g) → C* n f g
jᵣ (inl x) = inl x
jᵣ (inr x) = inr x
jᵣ (push a i₁) = push (inr a) i₁
q : C·Π' → C* n f g
q (inl x) = inl x
q (inr x) = inr x
q (push a i₁) = (push (θ a) ∙ λ i → inr (∙Π≡∨→∘θ n f g a (~ i))) i₁
α↦1 : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ Iso.fun (fst (H²C*≅ℤ n f g)) (α*' n f g) ≡ 1
α↦1 n f g =
sym (cong (Iso.fun (fst (Hⁿ-Sⁿ≅ℤ (suc n)))) (Hⁿ-Sⁿ≅ℤ-nice-generator n))
∙ Iso.rightInv (fst (Hⁿ-Sⁿ≅ℤ (suc n))) (pos 1)
α≡ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ α* n f g ≡ α*' n f g
α≡ n f g = sym (Iso.leftInv (fst (H²C*≅ℤ n f g)) _)
∙∙ cong (Iso.inv (fst (H²C*≅ℤ n f g))) lem
∙∙ Iso.leftInv (fst (H²C*≅ℤ n f g)) _
where
lem : Iso.fun (fst (H²C*≅ℤ n f g)) (α* n f g)
≡ Iso.fun (fst (H²C*≅ℤ n f g)) (α*' n f g)
lem = (Iso.rightInv (fst (H²C*≅ℤ n f g)) (pos 1)) ∙ sym (α↦1 n f g)
q-α : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ coHomFun _ (q n f g) (α* n f g) ≡ Hopfα n (∙Π f g)
q-α n f g = (λ i → coHomFun _ (q n f g) (α≡ n f g i))
∙ sym (Iso.leftInv is _)
∙∙ cong (Iso.inv is) lem
∙∙ Iso.leftInv is _
where
is = fst (Hopfα-Iso n (∙Π f g))
lem : Iso.fun is (coHomFun _ (q n f g) (α*' n f g))
≡ Iso.fun is (Hopfα n (∙Π f g))
lem = sym (cong (Iso.fun (fst (Hⁿ-Sⁿ≅ℤ (suc n)))) (Hⁿ-Sⁿ≅ℤ-nice-generator n))
∙∙ Iso.rightInv (fst (Hⁿ-Sⁿ≅ℤ (suc n))) (pos 1)
∙∙ sym (Hopfα-Iso-α n (∙Π f g))
βₗ≡ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ βₗ n f g ≡ βₗ''-fun n f g
βₗ≡ n f g = cong (∨-d ∘ subber₂)
(cong (Iso.inv (fst ((Hⁿ-⋁ (S₊∙ (suc (suc (suc (n +ℕ n)))))
(S₊∙ (suc (suc (suc (n +ℕ n)))))
(((suc (suc (n +ℕ n))))))))) help
∙ lem)
∙ funExt⁻ ∨-d∘subber ∣ wedgeGen ∣₂
∙ cong subber₃ (sym βₗ'-fun≡)
where
∨-d = MV.d _ _ _ (λ _ → tt) (fst (∨→∙ f g)) (suc (suc (n +ℕ suc n))) .fst
∨-d' = MV.d _ _ _ (λ _ → tt) (fst (∨→∙ f g)) (suc (suc (suc (n +ℕ n)))) .fst
help : Iso.inv (fst (GroupIsoDirProd
(Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n))))
(Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n)))))) (1 , 0)
≡ (∣ ∣_∣ ∣₂ , 0ₕ _)
help = ΣPathP ((Hⁿ-Sⁿ≅ℤ-nice-generator _)
, IsGroupHom.pres1 (snd (invGroupIso (Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n)))))))
subber₃ = subst (λ m → coHom m (C* n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
subber₂ = (subst (λ m → coHom m (S₊∙ (suc (suc (suc (n +ℕ n))))
⋁ S₊∙ (suc (suc (suc (n +ℕ n))))))
(sym (cong (2 +ℕ_) (+-suc n n))))
∨-d∘subber : ∨-d ∘ subber₂ ≡ subber₃ ∘ ∨-d'
∨-d∘subber =
funExt (λ a →
(λ j → transp (λ i → coHom ((suc ∘ suc ∘ suc) (+-suc n n (~ i ∧ j)))
(C* n f g)) (~ j)
(MV.d _ _ _ (λ _ → tt) (fst (∨→∙ f g))
(suc (suc (+-suc n n j))) .fst
(transp (λ i → coHom (2 +ℕ (+-suc n n (j ∨ ~ i)))
(S₊∙ (suc (suc (suc (n +ℕ n))))
⋁ S₊∙ (suc (suc (suc (n +ℕ n)))))) j
a))))
wedgeGen : (S₊∙ (suc (suc (suc (n +ℕ n)))) ⋁ S₊∙ (suc (suc (suc (n +ℕ n))))
→ coHomK (suc (suc (suc (n +ℕ n)))))
wedgeGen (inl x) = ∣ x ∣
wedgeGen (inr x) = 0ₖ _
wedgeGen (push a i₁) = 0ₖ _
βₗ'-fun≡ : ∣ βₗ'-fun n f g ∣₂ ≡ ∨-d' ∣ wedgeGen ∣₂
βₗ'-fun≡ =
cong ∣_∣₂ (funExt λ { (inl x) → refl
; (inr x) → refl
; (push (inl x) i₁) → refl
; (push (inr x) i₁) j → Kn→ΩKn+10ₖ _ (~ j) i₁
; (push (push a i₂) i₁) j → Kn→ΩKn+10ₖ _ (~ j ∧ i₂) i₁})
lem : Iso.inv (fst (Hⁿ-⋁ (S₊∙ (suc (suc (suc (n +ℕ n)))))
(S₊∙ (suc (suc (suc (n +ℕ n)))))
(((suc (suc (n +ℕ n)))))))
(∣ ∣_∣ ∣₂ , 0ₕ _)
≡ ∣ wedgeGen ∣₂
lem = cong ∣_∣₂ (funExt λ { (inl x) → rUnitₖ (suc (suc (suc (n +ℕ n)))) ∣ x ∣
; (inr x) → refl
; (push a i₁) → refl})
βᵣ≡ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ βᵣ n f g ≡ βᵣ''-fun n f g
βᵣ≡ n f g =
cong (∨-d ∘ subber₂)
(cong (Iso.inv (fst (Hⁿ-⋁ (S₊∙ (suc (suc (suc (n +ℕ n)))))
(S₊∙ (suc (suc (suc (n +ℕ n)))))
(suc (suc (n +ℕ n))))))
help
∙ lem)
∙ funExt⁻ ∨-d∘subber ∣ wedgeGen ∣₂
∙ cong (subber₃) (sym βᵣ'-fun≡)
where
∨-d = MV.d _ _ _ (λ _ → tt) (fst (∨→∙ f g)) (suc (suc (n +ℕ suc n))) .fst
∨-d' = MV.d _ _ _ (λ _ → tt) (fst (∨→∙ f g)) (suc (suc (suc (n +ℕ n)))) .fst
help : Iso.inv (fst (GroupIsoDirProd
(Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n))))
(Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n)))))) (0 , 1)
≡ (0ₕ _ , ∣ ∣_∣ ∣₂)
help =
ΣPathP (IsGroupHom.pres1 (snd (invGroupIso (Hⁿ-Sⁿ≅ℤ (suc (suc (n +ℕ n))))))
, (Hⁿ-Sⁿ≅ℤ-nice-generator _))
subber₃ = subst (λ m → coHom m (C* n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
subber₂ = (subst (λ m → coHom m (S₊∙ (suc (suc (suc (n +ℕ n))))
⋁ S₊∙ (suc (suc (suc (n +ℕ n))))))
(sym (cong (2 +ℕ_) (+-suc n n))))
∨-d∘subber : ∨-d ∘ subber₂ ≡ subber₃ ∘ ∨-d'
∨-d∘subber =
funExt (λ a →
(λ j → transp (λ i → coHom ((suc ∘ suc ∘ suc) (+-suc n n (~ i ∧ j)))
(C* n f g)) (~ j)
(MV.d _ _ _ (λ _ → tt)
(fst (∨→∙ f g)) (suc (suc (+-suc n n j))) .fst
(transp (λ i → coHom (2 +ℕ (+-suc n n (j ∨ ~ i)))
(S₊∙ (suc (suc (suc (n +ℕ n))))
⋁ S₊∙ (suc (suc (suc (n +ℕ n)))))) j
a))))
wedgeGen : (S₊∙ (suc (suc (suc (n +ℕ n)))) ⋁ S₊∙ (suc (suc (suc (n +ℕ n))))
→ coHomK (suc (suc (suc (n +ℕ n)))))
wedgeGen (inl x) = 0ₖ _
wedgeGen (inr x) = ∣ x ∣
wedgeGen (push a i₁) = 0ₖ _
lem : Iso.inv (fst ((Hⁿ-⋁ (S₊∙ (suc (suc (suc (n +ℕ n)))))
(S₊∙ (suc (suc (suc (n +ℕ n)))))
(suc (suc (n +ℕ n))))))
(0ₕ _ , ∣ ∣_∣ ∣₂)
≡ ∣ wedgeGen ∣₂
lem = cong ∣_∣₂ (funExt λ { (inl x) → refl
; (inr x) → lUnitₖ (suc (suc (suc (n +ℕ n)))) ∣ x ∣
; (push a i₁) → refl})
βᵣ'-fun≡ : ∣ βᵣ'-fun n f g ∣₂ ≡ ∨-d' ∣ wedgeGen ∣₂
βᵣ'-fun≡ =
cong ∣_∣₂ (funExt
λ { (inl x) → refl
; (inr x) → refl
; (push (inl x) i₁) j → Kn→ΩKn+10ₖ _ (~ j) i₁
; (push (inr x) i₁) → refl
; (push (push a i₂) i₁) j → Kn→ΩKn+10ₖ _ (~ j ∧ ~ i₂) i₁})
q-βₗ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ coHomFun _ (q n f g) (βₗ n f g)
≡ β·Π n f g
q-βₗ n f g = cong (coHomFun _ (q n f g)) (βₗ≡ n f g)
∙ transportLem
∙ cong (subst (λ m → coHom m (C·Π' n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n))))
(sym (Iso.leftInv (fst (Hopfβ-Iso n (∙Π f g)))
(Hopfβ n (∙Π f g)))
∙ cong (Iso.inv ((fst (Hopfβ-Iso n (∙Π f g)))))
(Hopfβ↦1 n (∙Π f g)))
where
transportLem : coHomFun (suc (suc (suc (n +ℕ suc n)))) (q n f g)
(βₗ''-fun n f g)
≡ subst (λ m → coHom m (C·Π' n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
(Hopfβ n (∙Π f g))
transportLem =
natTranspLem ∣ βₗ'-fun n f g ∣₂ (λ m → coHomFun m (q n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
∙ cong (subst (λ m → coHom m (C·Π' n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n))))
(cong ∣_∣₂ (funExt λ { (inl x) → refl
; (inr x) → refl
; (push a i₁) → push-lem a i₁}))
where
push-lem : (x : fst (S₊∙ (3 +ℕ (n +ℕ n)))) →
PathP (λ i₁ → βₗ'-fun n f g ((push (θ x)
∙ λ i → inr (∙Π≡∨→∘θ n f g x (~ i))) i₁)
≡ MV.d-pre Unit (fst (S₊∙ (2 +ℕ n))) (fst (S₊∙ (3 +ℕ n +ℕ n)))
(λ _ → tt) (fst (∙Π f g)) (3 +ℕ n +ℕ n) ∣_∣ (push x i₁))
(λ _ → βₗ'-fun n f g (q n f g (inl tt)))
(λ _ → βₗ'-fun n f g (q n f g (inr (∙Π f g .fst x))))
push-lem x =
flipSquare (cong-∙ (βₗ'-fun n f g)
(push (θ x)) (λ i → inr (∙Π≡∨→∘θ n f g x (~ i)))
∙∙ sym (rUnit _)
∙∙ lem₁ x)
where
lem₁ : (x : _) → cong (βₗ'-fun n f g) (push (θ {A = S₊∙ _} x))
≡ Kn→ΩKn+1 _ ∣ x ∣
lem₁ north = refl
lem₁ south =
sym (Kn→ΩKn+10ₖ _)
∙ cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n))))) (cong ∣_∣ₕ (merid north))
lem₁ (merid a j) k = merid-lem k j
where
p = pt (S₊∙ (suc (suc (n +ℕ n))))
merid-lem :
PathP (λ k → Kn→ΩKn+1 _ ∣ north ∣ₕ
≡ (sym (Kn→ΩKn+10ₖ _)
∙ cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))))
(cong ∣_∣ₕ (merid north))) k)
(λ j → cong (βₗ'-fun n f g) (push (θ {A = S₊∙ _} (merid a j))))
(cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ) (merid a))
merid-lem =
(cong-∙∙ (cong (βₗ'-fun n f g) ∘ push)
(λ i₁ → inl ((merid a ∙ (sym (merid p))) i₁))
(push tt)
((λ i₁ → inr ((merid a ∙ (sym (merid p))) i₁)))
∙ sym (compPath≡compPath' _ _)
∙ cong (_∙ Kn→ΩKn+10ₖ _)
(cong-∙ ((Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ))
(merid a) (sym (merid north)))
∙ sym (assoc _ _ _)
∙ cong (cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ) (merid a) ∙_)
(sym (symDistr (sym ((Kn→ΩKn+10ₖ _)))
(cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))))
(cong ∣_∣ₕ (merid north))))))
◁ λ i j → compPath-filler
(cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ) (merid a))
(sym (sym (Kn→ΩKn+10ₖ _)
∙ cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))))
(cong ∣_∣ₕ (merid north))))
(~ i) j
q-βᵣ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ coHomFun _ (q n f g) (βᵣ n f g)
≡ β·Π n f g
q-βᵣ n f g = cong (coHomFun _ (q n f g)) (βᵣ≡ n f g)
∙ transportLem
∙ cong (subst (λ m → coHom m (C·Π' n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n))))
(sym (Iso.leftInv (fst (Hopfβ-Iso n (∙Π f g)))
(Hopfβ n (∙Π f g)))
∙ cong (Iso.inv ((fst (Hopfβ-Iso n (∙Π f g)))))
(Hopfβ↦1 n (∙Π f g)))
where
transportLem : coHomFun (suc (suc (suc (n +ℕ suc n)))) (q n f g)
(βᵣ''-fun n f g)
≡ subst (λ m → coHom m (C·Π' n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
(Hopfβ n (∙Π f g))
transportLem =
natTranspLem ∣ βᵣ'-fun n f g ∣₂ (λ m → coHomFun m (q n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
∙ cong (subst (λ m → coHom m (C·Π' n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n))))
(cong ∣_∣₂ (funExt λ { (inl x) → refl
; (inr x) → refl
; (push a i₁) → push-lem a i₁}))
where
push-lem : (x : fst (S₊∙ (3 +ℕ (n +ℕ n)))) →
PathP
(λ i₁ →
βᵣ'-fun n f g ((push (θ x) ∙ λ i → inr (∙Π≡∨→∘θ n f g x (~ i))) i₁) ≡
MV.d-pre Unit (fst (S₊∙ (2 +ℕ n))) (fst (S₊∙ (3 +ℕ n +ℕ n)))
(λ _ → tt) (fst (∙Π f g)) (3 +ℕ n +ℕ n) ∣_∣ (push x i₁))
(λ _ → βᵣ'-fun n f g (q n f g (inl tt)))
(λ _ → βᵣ'-fun n f g (q n f g (inr (∙Π f g .fst x))))
push-lem x = flipSquare (cong-∙ (βᵣ'-fun n f g) (push (θ x))
(λ i → inr (∙Π≡∨→∘θ n f g x (~ i)))
∙∙ sym (rUnit _)
∙∙ lem₁ x)
where
lem₁ : (x : _) → cong (βᵣ'-fun n f g) (push (θ {A = S₊∙ _} x))
≡ Kn→ΩKn+1 _ ∣ x ∣
lem₁ north = sym (Kn→ΩKn+10ₖ _)
lem₁ south = cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))))
(cong ∣_∣ₕ (merid north))
lem₁ (merid a j) k = merid-lem k j
where
p = pt (S₊∙ (suc (suc (n +ℕ n))))
merid-lem :
PathP (λ k → (Kn→ΩKn+10ₖ _) (~ k)
≡ (cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))))
(cong ∣_∣ₕ (merid north))) k)
(λ j → cong (βᵣ'-fun n f g) (push (θ {A = S₊∙ _} (merid a j))))
(cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ) (merid a))
merid-lem =
(cong-∙∙ (cong (βᵣ'-fun n f g) ∘ push)
(λ i₁ → inl ((merid a
∙ (sym (merid p))) i₁))
(push tt)
(λ i₁ → inr ((merid a
∙ (sym (merid p))) i₁))
∙∙ (cong (sym (Kn→ΩKn+10ₖ _) ∙_)
(cong-∙ (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ)
(merid a) (sym (merid (ptSn _)))))
∙∙ sym (doubleCompPath≡compPath _ _ _))
◁ symP (doubleCompPath-filler
(sym (Kn→ΩKn+10ₖ _))
(cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ)
(merid a))
(cong (Kn→ΩKn+1 (suc (suc (suc (n +ℕ n)))) ∘ ∣_∣ₕ)
(sym (merid north))))
jₗ-α : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ coHomFun _ (jₗ n f g) (α* n f g)
≡ Hopfα n f
jₗ-α n f g =
cong (coHomFun _ (jₗ n f g)) (α≡ n f g)
∙ cong ∣_∣₂ (funExt (HopfInvariantPushElim n (fst f)
(isOfHLevelPath ((suc (suc (suc (suc (n +ℕ n))))))
(isOfHLevelPlus' {n = n} (4 +ℕ n)
(isOfHLevelTrunc (4 +ℕ n))) _ _)
refl
(λ _ → refl)
λ j → refl))
jₗ-βₗ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ coHomFun _ (jₗ n f g) (βₗ n f g)
≡ subst (λ m → coHom m (HopfInvariantPush n (fst f)))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
(Hopfβ n f)
jₗ-βₗ n f g =
cong (coHomFun _ (jₗ n f g)) (βₗ≡ n f g)
∙∙ natTranspLem ∣ βₗ'-fun n f g ∣₂ (λ m → coHomFun m (jₗ n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
∙∙ cong (subst (λ m → coHom m (HopfInvariantPush n (fst f)))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n))))
(cong ∣_∣₂
(funExt λ { (inl x) → refl
; (inr x) → refl
; (push a i₁) → refl}))
jₗ-βᵣ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ coHomFun _ (jₗ n f g) (βᵣ n f g)
≡ 0ₕ _
jₗ-βᵣ n f g =
cong (coHomFun _ (jₗ n f g)) (βᵣ≡ n f g)
∙∙ natTranspLem ∣ βᵣ'-fun n f g ∣₂ (λ m → coHomFun m (jₗ n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
∙∙ cong (subst (λ m → coHom m (HopfInvariantPush n (fst f)))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n))))
cool
where
cool : coHomFun (suc (suc (suc (suc (n +ℕ n))))) (jₗ n f g)
∣ βᵣ'-fun n f g ∣₂ ≡ 0ₕ _
cool = cong ∣_∣₂ (funExt λ { (inl x) → refl
; (inr x) → refl
; (push a i₁) → refl})
jᵣ-α : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ coHomFun _ (jᵣ n f g) (α* n f g)
≡ Hopfα n g
jᵣ-α n f g = cong (coHomFun _ (jᵣ n f g)) (α≡ n f g)
∙ cong ∣_∣₂ (funExt (HopfInvariantPushElim n (fst g)
(isOfHLevelPath ((suc (suc (suc (suc (n +ℕ n))))))
(isOfHLevelPlus' {n = n} (4 +ℕ n)
(isOfHLevelTrunc (4 +ℕ n))) _ _)
refl
(λ _ → refl)
(flipSquare (0ₖ≡∨→-inr n f g))))
jᵣ-βₗ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ coHomFun _ (jᵣ n f g) (βₗ n f g) ≡ 0ₕ _
jᵣ-βₗ n f g =
cong (coHomFun _ (jᵣ n f g)) (βₗ≡ n f g)
∙∙ natTranspLem ∣ βₗ'-fun n f g ∣₂ (λ m → coHomFun m (jᵣ n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
∙∙ cong (subst (λ m → coHom m (HopfInvariantPush n (fst f)))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n))))
cool
where
cool : coHomFun (suc (suc (suc (suc (n +ℕ n))))) (jᵣ n f g)
∣ βₗ'-fun n f g ∣₂ ≡ 0ₕ _
cool = cong ∣_∣₂ (funExt λ { (inl x) → refl
; (inr x) → refl
; (push a i₁) → refl})
jᵣ-βᵣ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ coHomFun _ (jᵣ n f g) (βᵣ n f g)
≡ subst (λ m → coHom m (HopfInvariantPush n (fst g)))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
(Hopfβ n g)
jᵣ-βᵣ n f g =
cong (coHomFun _ (jᵣ n f g)) (βᵣ≡ n f g)
∙∙ natTranspLem ∣ βᵣ'-fun n f g ∣₂ (λ m → coHomFun m (jᵣ n f g))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
∙∙ cong (subst (λ m → coHom m (HopfInvariantPush n (fst g)))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n))))
(cong ∣_∣₂
(funExt λ { (inl x) → refl
; (inr x) → refl
; (push a i₁) → refl}))
genH²ⁿC* : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ gen₂-by (coHomGr ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g))
(βₗ n f g)
(βᵣ n f g)
genH²ⁿC* n f g =
Iso-pres-gen₂ (DirProd ℤGroup ℤGroup)
(coHomGr ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g))
(1 , 0)
(0 , 1)
gen₂ℤ×ℤ
(invGroupIso (H⁴-C* n f g))
private
H⁴C* : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n)) → Group _
H⁴C* n f g = coHomGr ((2 +ℕ n) +' (2 +ℕ n)) (C* n f g)
X : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ ℤ
X n f g = (genH²ⁿC* n f g) (α* n f g ⌣ α* n f g) .fst .fst
Y : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ ℤ
Y n f g = (genH²ⁿC* n f g) (α* n f g ⌣ α* n f g) .fst .snd
α*≡⌣ : (n : ℕ) (f g : S₊∙ (3 +ℕ (n +ℕ n)) →∙ S₊∙ (2 +ℕ n))
→ α* n f g ⌣ α* n f g ≡ ((X n f g) ℤ[ H⁴C* n f g ]· βₗ n f g)
+ₕ ((Y n f g) ℤ[ H⁴C* n f g ]· βᵣ n f g)
α*≡⌣ n f g = (genH²ⁿC* n f g) (α* n f g ⌣ α* n f g) .snd
coHomFun⌣ : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (f : A → B)
→ (n : ℕ) (x y : coHom n B)
→ coHomFun _ f (x ⌣ y) ≡ coHomFun _ f x ⌣ coHomFun _ f y
coHomFun⌣ f n = sElim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ _ _ → refl
isHom-HopfInvariant :
(n : ℕ) (f g : S₊∙ (suc (suc (suc (n +ℕ n)))) →∙ S₊∙ (suc (suc n)))
→ HopfInvariant n (∙Π f g) ≡ HopfInvariant n f + HopfInvariant n g
isHom-HopfInvariant n f g =
mainL
∙ sym (cong₂ _+_ f-id g-id)
where
eq₁ : (Hopfα n (∙Π f g)) ⌣ (Hopfα n (∙Π f g))
≡ ((X n f g + Y n f g) ℤ[ coHomGr _ _ ]· (β·Π n f g))
eq₁ = cong (λ x → x ⌣ x) (sym (q-α n f g)
∙ cong (coHomFun (suc (suc n)) (q n f g)) (α≡ n f g))
∙ cong ((coHomFun _) (q _ f g)) (cong (λ x → x ⌣ x) (sym (α≡ n f g))
∙ α*≡⌣ n f g)
∙ IsGroupHom.pres· (coHomMorph _ (q n f g) .snd) _ _
∙ cong₂ _+ₕ_ (homPresℤ· (coHomMorph _ (q n f g)) (βₗ n f g) (X n f g)
∙ cong (λ z → (X n f g) ℤ[ coHomGr _ _ ]· z)
(q-βₗ n f g))
(homPresℤ· (coHomMorph _ (q n f g)) (βᵣ n f g) (Y n f g)
∙ cong (λ z → (Y n f g) ℤ[ coHomGr _ _ ]· z)
(q-βᵣ n f g))
∙ sym (distrℤ· (coHomGr _ _) (β·Π n f g) (X n f g) (Y n f g))
eq₂ : Hopfα n f ⌣ Hopfα n f
≡ (X n f g ℤ[ coHomGr _ _ ]·
subst (λ m → coHom m (HopfInvariantPush n (fst f)))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
(Hopfβ n f))
eq₂ = cong (λ x → x ⌣ x) (sym (jₗ-α n f g))
∙∙ sym (coHomFun⌣ (jₗ n f g) _ _ _)
∙∙ cong (coHomFun _ (jₗ n f g)) (α*≡⌣ n f g)
∙∙ IsGroupHom.pres· (snd (coHomMorph _ (jₗ n f g))) _ _
∙∙ cong₂ _+ₕ_ (homPresℤ· (coHomMorph _ (jₗ n f g)) (βₗ n f g) (X n f g))
(homPresℤ· (coHomMorph _ (jₗ n f g)) (βᵣ n f g) (Y n f g)
∙ cong (λ z → (Y n f g) ℤ[ coHomGr _ _ ]· z)
(jₗ-βᵣ n f g))
∙∙ cong₂ _+ₕ_ refl (rUnitℤ· (coHomGr _ _) (Y n f g))
∙∙ (rUnitₕ _ _
∙ cong (X n f g ℤ[ coHomGr _ _ ]·_) (jₗ-βₗ n f g))
eq₃ : Hopfα n g ⌣ Hopfα n g
≡ (Y n f g ℤ[ coHomGr _ _ ]·
subst (λ m → coHom m (HopfInvariantPush n (fst f)))
(cong (suc ∘ suc ∘ suc) (sym (+-suc n n)))
(Hopfβ n g))
eq₃ = cong (λ x → x ⌣ x) (sym (jᵣ-α n f g))
∙∙ sym (coHomFun⌣ (jᵣ n f g) _ _ _)
∙∙ cong (coHomFun _ (jᵣ n f g)) (α*≡⌣ n f g)
∙∙ IsGroupHom.pres· (snd (coHomMorph _ (jᵣ n f g))) _ _
∙∙ cong₂ _+ₕ_ (homPresℤ· (coHomMorph _ (jᵣ n f g)) (βₗ n f g) (X n f g)
∙ cong (λ z → (X n f g) ℤ[ coHomGr _ _ ]· z)
(jᵣ-βₗ n f g))
(homPresℤ· (coHomMorph _ (jᵣ n f g)) (βᵣ n f g) (Y n f g))
∙∙ cong₂ _+ₕ_ (rUnitℤ· (coHomGr _ _) (X n f g)) refl
∙∙ ((lUnitₕ _ _) ∙ cong (Y n f g ℤ[ coHomGr _ _ ]·_) (jᵣ-βᵣ n f g))
transpLem : ∀ {ℓ} {G : ℕ → Group ℓ} (n m : ℕ) (x : ℤ) (p : m ≡ n)
(g : fst (G n))
→ subst (fst ∘ G) p (x ℤ[ G m ]· subst (fst ∘ G) (sym p) g)
≡ (x ℤ[ G n ]· g)
transpLem {G = G} n m x =
J (λ n p → (g : fst (G n))
→ subst (fst ∘ G) p (x ℤ[ G m ]· subst (fst ∘ G) (sym p) g)
≡ (x ℤ[ G n ]· g))
λ g → transportRefl _ ∙ cong (x ℤ[ G m ]·_) (transportRefl _)
mainL : HopfInvariant n (∙Π f g) ≡ X n f g + Y n f g
mainL =
cong (Iso.fun (fst (Hopfβ-Iso n (∙Π f g))))
(cong (subst (λ x → coHom x (HopfInvariantPush n (fst (∙Π f g))))
λ i₁ → suc (suc (suc (+-suc n n i₁))))
eq₁)
∙∙ cong (Iso.fun (fst (Hopfβ-Iso n (∙Π f g))))
(transpLem {G = λ x → coHomGr x
(HopfInvariantPush n (fst (∙Π f g)))} _ _
(X n f g + Y n f g)
(λ i₁ → suc (suc (suc (+-suc n n i₁))))
(Iso.inv (fst (Hopfβ-Iso n (∙Π f g))) 1))
∙∙ homPresℤ· (_ , snd (Hopfβ-Iso n (∙Π f g)))
(Iso.inv (fst (Hopfβ-Iso n (∙Π f g))) 1)
(X n f g + Y n f g)
∙∙ cong ((X n f g + Y n f g) ℤ[ ℤ , ℤGroup .snd ]·_)
(Iso.rightInv ((fst (Hopfβ-Iso n (∙Π f g)))) 1)
∙∙ rUnitℤ·ℤ (X n f g + Y n f g)
f-id : HopfInvariant n f ≡ X n f g
f-id =
cong (Iso.fun (fst (Hopfβ-Iso n f)))
(cong (subst (λ x → coHom x (HopfInvariantPush n (fst f)))
(λ i₁ → suc (suc (suc (+-suc n n i₁))))) eq₂)
∙ cong (Iso.fun (fst (Hopfβ-Iso n f)))
(transpLem {G = λ x → coHomGr x
(HopfInvariantPush n (fst f))} _ _
(X n f g)
((cong (suc ∘ suc ∘ suc) (+-suc n n)))
(Hopfβ n f))
∙ homPresℤ· (_ , snd (Hopfβ-Iso n f)) (Hopfβ n f) (X n f g)
∙ cong (X n f g ℤ[ ℤ , ℤGroup .snd ]·_) (Hopfβ↦1 n f)
∙ rUnitℤ·ℤ (X n f g)
g-id : HopfInvariant n g ≡ Y n f g
g-id =
cong (Iso.fun (fst (Hopfβ-Iso n g)))
(cong (subst (λ x → coHom x (HopfInvariantPush n (fst g)))
(λ i₁ → suc (suc (suc (+-suc n n i₁)))))
eq₃)
∙∙ cong (Iso.fun (fst (Hopfβ-Iso n g)))
(transpLem {G = λ x → coHomGr x
(HopfInvariantPush n (fst g))} _ _
(Y n f g)
((cong (suc ∘ suc ∘ suc) (+-suc n n)))
(Hopfβ n g))
∙∙ homPresℤ· (_ , snd (Hopfβ-Iso n g)) (Hopfβ n g) (Y n f g)
∙∙ cong (Y n f g ℤ[ ℤ , ℤGroup .snd ]·_) (Hopfβ↦1 n g)
∙∙ rUnitℤ·ℤ (Y n f g)
GroupHom-HopfInvariant-π' : (n : ℕ)
→ GroupHom (π'Gr (suc (suc (n +ℕ n))) (S₊∙ (suc (suc n)))) ℤGroup
fst (GroupHom-HopfInvariant-π' n) = HopfInvariant-π' n
snd (GroupHom-HopfInvariant-π' n) =
makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 isSetℤ _ _)
(isHom-HopfInvariant n))
GroupHom-HopfInvariant-π : (n : ℕ)
→ GroupHom (πGr (suc (suc (n +ℕ n))) (S₊∙ (suc (suc n)))) ℤGroup
fst (GroupHom-HopfInvariant-π n) = HopfInvariant-π n
snd (GroupHom-HopfInvariant-π n) =
makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 isSetℤ _ _)
λ p q → cong (HopfInvariant-π' n)
(IsGroupHom.pres·
(snd (invGroupIso (π'Gr≅πGr (suc (suc (n +ℕ n)))
(S₊∙ (suc (suc n))))))
∣ p ∣₂ ∣ q ∣₂)
∙ IsGroupHom.pres· (GroupHom-HopfInvariant-π' n .snd)
∣ Ω→SphereMap _ p ∣₂ ∣ Ω→SphereMap _ q ∣₂)
| {
"alphanum_fraction": 0.4230851177,
"avg_line_length": 42.1414141414,
"ext": "agda",
"hexsha": "aee1e99477314dc879ce77a3b505caa326adaa32",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Homotopy/HopfInvariant/Homomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Homotopy/HopfInvariant/Homomorphism.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Homotopy/HopfInvariant/Homomorphism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 16811,
"size": 37548
} |
{-# OPTIONS --without-K #-}
open import lib.Basics
open import lib.types.Paths
open import lib.types.Pi
open import lib.types.Sigma
module lib.types.Pointed where
Ptd : ∀ i → Type (lsucc i)
Ptd i = Σ (Type i) (λ A → A)
Ptd₀ = Ptd lzero
⊙[_,_] : ∀ {i} (A : Type i) (a : A) → Ptd i
⊙[_,_] = _,_
_⊙→_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j)
(A , a₀) ⊙→ (B , b₀) = ⊙[ Σ (A → B) (λ f → f a₀ == b₀) , ((λ _ → b₀), idp) ]
infixr 0 _⊙→_
_⊙×_ : ∀ {i j} → Ptd i → Ptd j → Ptd (lmax i j)
(A , a₀) ⊙× (B , b₀) = (A × B , (a₀ , b₀))
⊙fst : ∀ {i j} {X : Ptd i} {Y : Ptd j} → fst (X ⊙× Y ⊙→ X)
⊙fst = (fst , idp)
⊙snd : ∀ {i j} {X : Ptd i} {Y : Ptd j} → fst (X ⊙× Y ⊙→ Y)
⊙snd = (snd , idp)
⊙diag : ∀ {i} {X : Ptd i} → fst (X ⊙→ X ⊙× X)
⊙diag = ((λ x → (x , x)) , idp)
pair⊙→ : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
→ fst (X ⊙→ Y) → fst (Z ⊙→ W)
→ fst ((X ⊙× Z) ⊙→ (Y ⊙× W))
pair⊙→ (f , fpt) (g , gpt) =
((λ {(x , z) → (f x , g z)}) , pair×= fpt gpt)
infixr 4 _⊙∘_
⊙idf : ∀ {i} (X : Ptd i) → fst (X ⊙→ X)
⊙idf A = ((λ x → x) , idp)
⊙cst : ∀ {i j} {X : Ptd i} {Y : Ptd j} → fst (X ⊙→ Y)
⊙cst {Y = Y} = ((λ x → snd Y) , idp)
_⊙∘_ : ∀ {i j k} {X : Ptd i} {Y : Ptd j} {Z : Ptd k}
(g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y)) → fst (X ⊙→ Z)
(g , gpt) ⊙∘ (f , fpt) = (g ∘ f) , (ap g fpt ∙ gpt)
⊙∘-unit-l : ∀ {i j} {X : Ptd i} {Y : Ptd j} (f : fst (X ⊙→ Y))
→ ⊙idf Y ⊙∘ f == f
⊙∘-unit-l (f , idp) = idp
⊙∘-assoc : ∀ {i j k l} {X : Ptd i} {Y : Ptd j} {Z : Ptd k} {W : Ptd l}
(h : fst (Z ⊙→ W)) (g : fst (Y ⊙→ Z)) (f : fst (X ⊙→ Y))
→ ((h ⊙∘ g) ⊙∘ f) == (h ⊙∘ (g ⊙∘ f))
⊙∘-assoc (h , hpt) (g , gpt) (f , fpt) = pair= idp (lemma fpt gpt hpt)
where
lemma : ∀ {x₁ x₂} (fpt : x₁ == x₂) → ∀ gpt → ∀ hpt →
ap (h ∘ g) fpt ∙ ap h gpt ∙ hpt == ap h (ap g fpt ∙ gpt) ∙ hpt
lemma idp gpt hpt = idp
{- Obtaining equality of pointed types from an equivalence -}
⊙ua : ∀ {i} {A B : Type i} {a₀ : A} {b₀ : B}
(e : A ≃ B) → –> e a₀ == b₀ → ⊙[ A , a₀ ] == ⊙[ B , b₀ ]
⊙ua e p = pair= (ua e) (↓-idf-ua-in e p)
{- ⊙→ preserves hlevel -}
⊙→-level : ∀ {i j} {X : Ptd i} {Y : Ptd j} {n : ℕ₋₂}
→ has-level n (fst Y) → has-level n (fst (X ⊙→ Y))
⊙→-level pY = Σ-level (Π-level (λ _ → pY)) (λ _ → =-preserves-level _ pY)
{- function extensionality for pointed functions -}
⊙λ= : ∀ {i j} {X : Ptd i} {Y : Ptd j} {f g : fst (X ⊙→ Y)}
(p : ∀ x → fst f x == fst g x) (α : snd f == p (snd X) ∙ snd g)
→ f == g
⊙λ= {g = g} p α =
pair= (λ= p) (↓-app=cst-in (α ∙ ap (λ w → w ∙ snd g) (! (app=-β p _))))
{- Obtaining pointed maps from an pointed equivalence -}
module _ {i j} {X : Ptd i} {Y : Ptd j} (e : fst X ≃ fst Y)
(p : –> e (snd X) == snd Y) where
⊙–> : fst (X ⊙→ Y)
⊙–> = (–> e , p)
⊙<– : fst (Y ⊙→ X)
⊙<– = (<– e , ap (<– e) (! p) ∙ <–-inv-l e (snd X))
| {
"alphanum_fraction": 0.4293381038,
"avg_line_length": 30.3804347826,
"ext": "agda",
"hexsha": "afb5acb48cde4b1bfb251887003bde797155e45c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "lib/types/Pointed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "lib/types/Pointed.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "lib/types/Pointed.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1495,
"size": 2795
} |
data D : Set where
d : D
foo : D
foo = {!!}
-- C-c C-r gives me a weird-looking '0'
| {
"alphanum_fraction": 0.5340909091,
"avg_line_length": 11,
"ext": "agda",
"hexsha": "c0fdafd21c44f6b15d4c12605cd20b2881a3a8d7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue1892.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue1892.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue1892.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 33,
"size": 88
} |
{-# OPTIONS --without-K --safe #-}
-- Some of the obvious properties of cartesian functors
module Categories.Functor.Cartesian.Properties where
open import Data.Product using (_,_; proj₁; proj₂)
open import Level
open import Categories.Category.Core using (Category)
open import Categories.Category.Cartesian
open import Categories.Category.Product using (Product; _⁂_)
open import Categories.Functor using (Functor; _∘F_) renaming (id to idF)
open import Categories.Functor.Cartesian
open import Categories.Morphism.Reasoning
open import Categories.NaturalTransformation hiding (id)
import Categories.Object.Product as OP
private
variable
o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level
idF-Cartesian : {A : Category o ℓ e} {CA : Cartesian A} → CartesianF CA CA idF
idF-Cartesian {A = A} {CA} = record
{ ε = id
; ⊗-homo = ntHelper record
{ η = λ _ → id
; commute = λ _ → id-comm-sym A }
}
where
open Category A
∘-Cartesian : {A : Category o ℓ e} {B : Category o′ ℓ′ e′} {C : Category o″ ℓ″ e″}
{CA : Cartesian A} {CB : Cartesian B} {CC : Cartesian C}
{F : Functor B C} {G : Functor A B} (CF : CartesianF CB CC F) (CG : CartesianF CA CB G) → CartesianF CA CC (F ∘F G)
∘-Cartesian {B = B} {C} {CA} {CB} {CC} {F} {G} CF CG = record
{ ε = F.₁ CG.ε ∘ CF.ε
; ⊗-homo = ntHelper record
{ η = λ X → F.₁ (NTG.η X) ∘ NTF.η (Functor.F₀ (G ⁂ G) X)
; commute = λ { {A} {B} f →
let GGA = F₀ (G ⁂ G) A in
let GGB = F₀ (G ⁂ G) B in
let GGf = F₁ (G ⁂ G) f in
begin
(F.₁ (NTG.η B) ∘ NTF.η GGB) ∘ F₁ (⊗ CC ∘F ((F ∘F G) ⁂ (F ∘F G))) f ≈⟨ C.assoc ⟩
F.₁ (NTG.η B) ∘ NTF.η GGB ∘ F₁ (⊗ CC ∘F ((F ∘F G) ⁂ (F ∘F G))) f ≈⟨ (refl⟩∘⟨ NTF.commute GGf) ⟩
F.₁ (NTG.η B) ∘ (F.₁ (F₁ (⊗ CB) GGf) ∘ NTF.η GGA) ≈⟨ C.sym-assoc ⟩
(F.₁ (NTG.η B) ∘ F.₁ (F₁ (⊗ CB) GGf)) ∘ NTF.η GGA ≈˘⟨ (F.homomorphism ⟩∘⟨refl) ⟩
(F.₁ (NTG.η B B.∘ F₁ (⊗ CB) GGf)) ∘ NTF.η GGA ≈⟨ (F.F-resp-≈ (NTG.commute f) ⟩∘⟨refl) ⟩
F.F₁ (F₁ G (F₁ (⊗ CA) f) B.∘ NTG.η A) ∘ NTF.η GGA ≈⟨ (F.homomorphism ⟩∘⟨refl) ⟩
(F₁ ((F ∘F G) ∘F ⊗ CA) f ∘ F.₁ (NTG.η A)) ∘ NTF.η GGA ≈⟨ C.assoc ⟩
F₁ ((F ∘F G) ∘F ⊗ CA) f ∘ F.₁ (NTG.η A) ∘ NTF.η GGA ∎}
}
}
where
module CF = CartesianF CF
module CG = CartesianF CG
module NTF = NaturalTransformation CF.⊗-homo
module NTG = NaturalTransformation CG.⊗-homo
module F = Functor F
module B = Category B
module C = Category C
open C using (_≈_; _∘_)
open C.HomReasoning
open Cartesian CC using (products)
open Functor
open OP C using (Product)
open Product
open Cartesian using (⊗)
| {
"alphanum_fraction": 0.5733033371,
"avg_line_length": 38.652173913,
"ext": "agda",
"hexsha": "0d6893383c697469f9dcd04cb3b243c18e97045a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bond15/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Cartesian/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bond15/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Cartesian/Properties.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bond15/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Cartesian/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1112,
"size": 2667
} |
-- Sometimes we can't infer a record type
module InferRecordTypes-2 where
record R : Set₁ where
field
x₁ : Set
x₂ : Set
bad = record { x₃ = Set } | {
"alphanum_fraction": 0.6582278481,
"avg_line_length": 15.8,
"ext": "agda",
"hexsha": "e31aa222ad06b424c166699922f315dad3237ca2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/InferRecordTypes-2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/InferRecordTypes-2.agda",
"max_line_length": 41,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/InferRecordTypes-2.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 50,
"size": 158
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.