Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --cubical-compatible #-}
-- Issue raised by Martin Escardo 2012-12-13
-- on the Agda list "no longer type checks"
module WithoutKDisjointSum where
open import Common.Equality
data ⊥ : Set where
data _⊎_ (A B : Set) : Set where
inl : A → A ⊎ B
inr : B → A ⊎ B
distinct : {A B : Set} (a : A) (b : B) → inl a ≡ inr b → ⊥
distinct a b ()
| {
"alphanum_fraction": 0.6242937853,
"avg_line_length": 22.125,
"ext": "agda",
"hexsha": "9aad5ba84d664535f8ca53e35bd0c6f0c906d8f8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/WithoutKDisjointSum.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/WithoutKDisjointSum.agda",
"max_line_length": 58,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/WithoutKDisjointSum.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 129,
"size": 354
} |
{-# OPTIONS --without-K --rewriting #-}
open import PathInduction using (Type; _==_; idp; Square; !; _∙_; Coh; path-induction)
module ExPathInduction {i} where
{-<excoh>-}
coh : {A : Type i} {a : A} →
Coh ({b : A} (p : a == b)
{d : A} {s : d == b}
{c : A} {r : b == c}
{f : A} {u : f == c}
{e : A} {t : e == c}
{w : f == e} (ν : Square w idp t u)
{v : d == e} (α : Square v s t r)
{vw : d == f} (vw= : vw == v ∙ ! w)
→ Square (p ∙ ! s) p vw (r ∙ ! u))
coh = path-induction
{-</>-}
| {
"alphanum_fraction": 0.3820033956,
"avg_line_length": 29.45,
"ext": "agda",
"hexsha": "1e1d60e8f2af70b0b80f70ae0909908f74476641",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guillaumebrunerie/JamesConstruction",
"max_forks_repo_path": "ExPathInduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guillaumebrunerie/JamesConstruction",
"max_issues_repo_path": "ExPathInduction.agda",
"max_line_length": 86,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guillaumebrunerie/JamesConstruction",
"max_stars_repo_path": "ExPathInduction.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-16T22:10:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-07T04:34:52.000Z",
"num_tokens": 221,
"size": 589
} |
module exec-tc.empty where
| {
"alphanum_fraction": 0.8148148148,
"avg_line_length": 13.5,
"ext": "agda",
"hexsha": "2a8463b91d9f52dabc7d48484a67b78206096e3b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/exec-tc/empty.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/exec-tc/empty.agda",
"max_line_length": 26,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/exec-tc/empty.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 7,
"size": 27
} |
open import Prelude hiding (subst; module Fin)
module Implicits.Substitutions.Lemmas.MetaType where
open import Implicits.Syntax.Type
open import Implicits.Syntax.Term hiding (var)
open import Implicits.Syntax.Context
open import Implicits.WellTyped
open import Implicits.Substitutions
open import Data.Vec hiding ([_])
open import Data.Fin as Fin using ()
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Vec.Properties
open import Data.Nat.Properties.Simple
open import Extensions.Substitution
open import Relation.Binary.HeterogeneousEquality as H using ()
private
module HR = H.≅-Reasoning
module MetaTypeTypeLemmas where
open MetaTypeTypeSubst hiding (_/✶_)
open import Implicits.Syntax.MetaType
open import Data.Star
private module V = VarLemmas
module _ {m : ℕ} where
MT : ℕ → Set
MT = MetaType m
open MetaTypeApp hiding (_/_)
module _ {T₁ T₂} {lift₁ : MetaLift T₁} {lift₂ : MetaLift T₂} where
open Lifted {m} lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_)
open Lifted {m} lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_)
/✶-↑✶ : ∀ {n n'} (ρs₁ : Subs (T₁ m) n n') (ρs₂ : Subs (T₂ m) n n') →
(∀ k x → (simpl (tvar x)) /✶₁ ρs₁ ↑✶₁ k ≡ (simpl (tvar x)) /✶₂ ρs₂ ↑✶₂ k) →
∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k
/✶-↑✶ ρs₁ ρs₂ hyp k (a ⇒ b) = begin
(a ⇒ b) /✶₁ ρs₁ ↑✶₁ k
≡⟨ ⇒-/✶-↑✶ lift₁ k ρs₁ ⟩
((a /✶₁ ρs₁ ↑✶₁ k) ⇒ (b /✶₁ ρs₁ ↑✶₁ k))
≡⟨ cong₂ _⇒_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩
(a /✶₂ ρs₂ ↑✶₂ k) ⇒ (b /✶₂ ρs₂ ↑✶₂ k)
≡⟨ sym (⇒-/✶-↑✶ lift₂ k ρs₂) ⟩
(a ⇒ b) /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (∀' t) = begin
(∀' t) /✶₁ ρs₁ ↑✶₁ k
≡⟨ ∀'-/✶-↑✶ lift₁ k ρs₁ ⟩
∀' (t /✶₁ ρs₁ ↑✶₁ (suc k))
≡⟨ cong ∀' (/✶-↑✶ ρs₁ ρs₂ hyp (suc k) t) ⟩
∀' (t /✶₂ ρs₂ ↑✶₂ (suc k))
≡⟨ sym $ ∀'-/✶-↑✶ lift₂ k ρs₂ ⟩
(∀' t) /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tvar c)) = hyp k c
/✶-↑✶ ρs₁ ρs₂ hyp k (simpl (mvar x)) = begin
(simpl (mvar x)) /✶₁ ρs₁ ↑✶₁ k
≡⟨ mvar-/✶-↑✶ lift₁ k ρs₁ ⟩
(simpl (mvar x))
≡⟨ sym $ mvar-/✶-↑✶ lift₂ k ρs₂ ⟩
(simpl (mvar x)) /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (simpl (a →' b)) = begin
(simpl (a →' b)) /✶₁ ρs₁ ↑✶₁ k
≡⟨ →'-/✶-↑✶ lift₁ k ρs₁ ⟩
simpl ((a /✶₁ ρs₁ ↑✶₁ k) →' (b /✶₁ ρs₁ ↑✶₁ k))
≡⟨ cong₂ (λ a b → simpl (a →' b)) (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩
simpl ((a /✶₂ ρs₂ ↑✶₂ k) →' (b /✶₂ ρs₂ ↑✶₂ k))
≡⟨ sym (→'-/✶-↑✶ lift₂ k ρs₂) ⟩
(simpl (a →' b)) /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tc c)) = begin
(simpl (tc c)) /✶₁ ρs₁ ↑✶₁ k
≡⟨ tc-/✶-↑✶ lift₁ k ρs₁ ⟩
(simpl (tc c))
≡⟨ sym $ tc-/✶-↑✶ lift₂ k ρs₂ ⟩
(simpl (tc c)) /✶₂ ρs₂ ↑✶₂ k ∎
lemmas₃ : Lemmas₃ (MetaType m)
lemmas₃ = record
{ lemmas₂ = record
{ lemmas₁ = record
{ lemmas₀ = record
{ simple = simple
}
; weaken-var = λ {_ x} → begin
(simpl (tvar x)) /Var V.wk ≡⟨ refl ⟩
(simpl (tvar (lookup x V.wk))) ≡⟨ cong (λ x → simpl (tvar x)) (V.lookup-wk x) ⟩
(simpl (tvar (suc x))) ∎
}
; application = Subst.application subst
; var-/ = refl
}
; /✶-↑✶ = /✶-↑✶
}
private module L₃ = Lemmas₃ lemmas₃
lemmas₅ : Lemmas₅ (MetaType m)
lemmas₅ = record
{ lemmas₄ = record
{ lemmas₃ = lemmas₃
; /-wk = λ {_ t} → begin
t / wk ≡⟨ /✶-↑✶ (ε ▻ wk) (ε ▻ V.wk)
(λ k x → begin
(simpl (tvar x)) / wk ↑⋆ k
≡⟨ L₃.var-/-wk-↑⋆ k x ⟩
(simpl (tvar (Fin.lift k suc x)))
≡⟨ cong (λ x → (simpl (tvar x))) (sym (V.var-/-wk-↑⋆ k x)) ⟩
(simpl (tvar (lookup x (V._↑⋆_ V.wk k))))
≡⟨ refl ⟩
(simpl (tvar x)) /Var V._↑⋆_ V.wk k ∎)
zero t ⟩
t /Var V.wk ≡⟨ refl ⟩
weaken t ∎
}
}
open Lemmas₅ lemmas₅ public hiding (lemmas₃)
module MetaTypeMetaLemmas where
open MetaTypeMetaSubst using (module Lifted; MetaLift)
open import Implicits.Syntax.MetaType
open import Data.Star as Star hiding (map)
open import Data.Star.Properties
private module V = VarLemmas
module MetaTypeAppLemmas {T} (l : MetaLift T) where
open Lifted l
→'-/✶-↑✶ : ∀ k {ν n n' a b} (ρs : Subs (flip T ν) n n') →
(simpl (a →' b)) /✶ ρs ↑✶ k ≡ simpl ((a /✶ ρs ↑✶ k) →' (b /✶ ρs ↑✶ k))
→'-/✶-↑✶ k ε = refl
→'-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (→'-/✶-↑✶ k ρs) refl
⇒-/✶-↑✶ : ∀ k {ν n n' a b} (ρs : Subs (flip T ν) n n') →
(a ⇒ b) /✶ ρs ↑✶ k ≡ (a /✶ ρs ↑✶ k) ⇒ (b /✶ ρs ↑✶ k)
⇒-/✶-↑✶ k ε = refl
⇒-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (⇒-/✶-↑✶ k ρs) refl
tc-/✶-↑✶ : ∀ k {ν c n n'} (ρs : Subs (flip T ν) n n') →
(simpl (tc c)) /✶ ρs ↑✶ k ≡ simpl (tc c)
tc-/✶-↑✶ k ε = refl
tc-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (tc-/✶-↑✶ k ρs) refl
tvar-/✶-↑✶ : ∀ k {ν n n' c} (ρs : Subs (flip T ν) n n') →
(simpl (tvar c)) /✶ ρs ↑✶ k ≡ simpl (tvar c)
tvar-/✶-↑✶ k ε = refl
tvar-/✶-↑✶ k (r ◅ ρs) = cong₂ _/_ (tvar-/✶-↑✶ k ρs) refl
tpweaken-subs : ∀ {ν n n'} (ρs : Subs (flip T ν) n n') → Subs (flip T (suc ν)) n n'
tpweaken-subs ρs = Star.map (λ x → x ↑tp) ρs
comm-↑-↑tp : ∀ {ν n n'} (s : Sub (flip T ν) n n') → (s ↑) ↑tp ≡ (s ↑tp) ↑
comm-↑-↑tp s = begin
(s ↑) ↑tp
≡⟨ refl ⟩
map tpweaken (var zero ∷ map weaken s)
≡⟨ refl ⟩
(tpweaken (var zero)) ∷ (map tpweaken (map weaken s))
≡⟨ cong₂ (λ x xs → x ∷ xs) (tpweaken-var zero) (sym $ map-∘ tpweaken weaken s) ⟩
(var zero) ∷ (map (tpweaken ∘ weaken) s)
≡⟨ cong (λ u → var zero ∷ u) (sym $ map-cong comm-weaken-tpweaken s) ⟩
(var zero) ∷ (map (weaken ∘ tpweaken) s)
≡⟨ cong (λ u → (var zero) ∷ u) (map-∘ weaken tpweaken s) ⟩
(s ↑tp) ↑ ∎
comm-↑⋆-↑tp : ∀ k {ν n n'} (s : Sub (flip T ν) n n') → (s ↑⋆ k) ↑tp ≡ (s ↑tp) ↑⋆ k
comm-↑⋆-↑tp zero s = refl
comm-↑⋆-↑tp (suc k) s = begin
((s ↑⋆ k) ↑) ↑tp
≡⟨ comm-↑-↑tp (s ↑⋆ k) ⟩
((s ↑⋆ k) ↑tp) ↑
≡⟨ cong _↑ (comm-↑⋆-↑tp k s) ⟩
(s ↑tp) ↑⋆ (suc k) ∎
comm-tpweaken-↑✶ : ∀ k {ν n n'} (ρs : Subs (flip T ν) n n') →
(tpweaken-subs ρs) ↑✶ k ≡ tpweaken-subs (ρs ↑✶ k)
comm-tpweaken-↑✶ k ρs = begin
(tpweaken-subs ρs) ↑✶ k
≡⟨ refl ⟩
Star.gmap (_+_ k) (λ ρ → ρ ↑⋆ k) (Star.map _↑tp ρs)
≡⟨ gmap-∘ (_+_ k) (λ ρ₁ → ρ₁ ↑⋆ k) Prelude.id _↑tp ρs ⟩
Star.gmap (_+_ k) (λ ρ → (ρ ↑tp) ↑⋆ k) ρs
≡⟨ gmap-cong (_+_ k) (λ ρ₁ → _↑tp ρ₁ ↑⋆ k) (λ ρ₁ → _↑tp (ρ₁ ↑⋆ k))
(λ s → sym $ comm-↑⋆-↑tp k s) ρs ⟩
Star.gmap (_+_ k) (λ ρ → (ρ ↑⋆ k) ↑tp) ρs
≡⟨ sym $ gmap-∘ Prelude.id _↑tp (_+_ k) (λ ρ₁ → ρ₁ ↑⋆ k) ρs ⟩
Star.map _↑tp (Star.gmap (_+_ k) (λ ρ → ρ ↑⋆ k) ρs)
≡⟨ refl ⟩
tpweaken-subs (ρs ↑✶ k) ∎
∀'-/✶-↑✶ : ∀ k {ν n n' a} (ρs : Subs (flip T ν) n n') →
(∀' a) /✶ ρs ↑✶ k ≡ ∀' (a /✶ (tpweaken-subs ρs) ↑✶ k)
∀'-/✶-↑✶ k {a = a} ε = refl
∀'-/✶-↑✶ k {a = a} (x ◅ ρs) = begin
(∀' a) /✶ (x ◅ ρs) ↑✶ k
≡⟨ cong (flip _/_ (x ↑⋆ k)) (∀'-/✶-↑✶ k ρs) ⟩
(∀' (a /✶ (tpweaken-subs ρs) ↑✶ k)) / (x ↑⋆ k)
≡⟨ cong (λ u → ∀' (a /✶ u / _↑tp (x ↑⋆ k))) (comm-tpweaken-↑✶ k ρs) ⟩
∀' (a /✶ (tpweaken-subs ((x ◅ ρs) ↑✶ k)))
≡⟨ sym $ cong (λ u → ∀' (a /✶ u)) (comm-tpweaken-↑✶ k (x ◅ ρs)) ⟩
∀' (a /✶ (tpweaken-subs (x ◅ ρs)) ↑✶ k) ∎
module _ where
open MetaTypeTypeSubst using () renaming (weaken to mtt-weaken)
private
module MTT = MetaTypeTypeSubst
{-}↑tp-mtt-weaken : ∀ {ν m n} x (s : Sub (flip T ν) m n) →
(mtt-weaken x) / (s ↑tp) ≡ mtt-weaken (x / s)-}
postulate ↑tp-mtt-weaken : ∀ {ν m n } k x (s : Sub (flip T ν) m n) →
(x MTT./Var VarSubst.wk VarSubst.↑⋆ k) /
(Prelude.subst (λ ν → Sub (flip T ν) m n) (sym $ +-suc k ν) (s ↑tp⋆ (suc k))) ≡
(x / (s ↑tp⋆ k)) MTT./Var VarSubst.wk VarSubst.↑⋆ k
{-
↑tp-mtt-weaken k (a ⇒ b) s = cong₂ _⇒_ (↑tp-mtt-weaken k a s) (↑tp-mtt-weaken k b s)
↑tp-mtt-weaken {ν} {m} {n} k (∀' x) s = begin
(∀' (x MTT./Var VarSubst.wk VarSubst.↑⋆ (suc k))) /
(Prelude.subst (λ ν → Sub (flip T ν) m n) (sym $ +-suc k ν) (s ↑tp⋆ (suc k)))
≡⟨ refl ⟩
∀' ((x MTT./Var VarSubst.wk VarSubst.↑⋆ (suc k)) /
(Prelude.subst (λ ν → Sub (flip T ν) m n) (cong suc (sym $ +-suc k ν)) (s ↑tp⋆ (suc (suc k)))))
≡⟨ cong ∀' (↑tp-mtt-weaken (suc k) {!!} {!!}) ⟩
(∀' ((x / (s ↑tp⋆ (suc k))) MTT./Var VarSubst.wk VarSubst.↑⋆ (suc k)))
≡⟨ refl ⟩
(∀' (x / (s ↑tp⋆ (suc k)))) MTT./Var VarSubst.wk VarSubst.↑⋆ k
≡⟨ refl ⟩
(∀' x / s ↑tp⋆ k) MTT./Var VarSubst.wk VarSubst.↑⋆ k ∎
↑tp-mtt-weaken k (simpl (tvar x)) s = refl
↑tp-mtt-weaken k (simpl (mvar x)) s = {!!}
↑tp-mtt-weaken k (simpl (a →' b)) s = cong₂ (λ u v → simpl (u →' v)) (↑tp-mtt-weaken k a s)
(↑tp-mtt-weaken k b s)
↑tp-mtt-weaken k (simpl (tc x)) s = refl
-}
tpweaken-subs-var : ∀ {ν n n'} x (ρs : Subs (flip T ν) n n') →
(simpl (mvar x)) /✶ (tpweaken-subs ρs)
≡ mtt-weaken ((simpl (mvar x)) /✶ ρs)
tpweaken-subs-var x ε = refl
tpweaken-subs-var x (s ◅ ρs) = begin
(simpl (mvar x)) /✶ (Star.map _↑tp (s ◅ ρs))
≡⟨ refl ⟩
(simpl (mvar x)) /✶ (tpweaken-subs ρs) / (s ↑tp)
≡⟨ cong (flip _/_ (_↑tp s)) (tpweaken-subs-var x ρs) ⟩
(mtt-weaken ((simpl (mvar x)) /✶ ρs)) / (s ↑tp)
≡⟨ ↑tp-mtt-weaken zero (simpl (mvar x) /✶ ρs) s ⟩
mtt-weaken ((simpl (mvar x)) /✶ (s ◅ ρs)) ∎
module _ {T₁ T₂} {lift₁ : MetaLift T₁} {lift₂ : MetaLift T₂} where
open MetaTypeTypeSubst using () renaming (weaken to mtt-weaken)
open Lifted lift₁ using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_; _↑tp to _↑tp₁)
open Lifted lift₂ using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_; _↑tp to _↑tp₂)
open MetaTypeAppLemmas
weaken-hyp : ∀ {ν n n'} (ρs₁ : Subs (flip T₁ ν) n n') (ρs₂ : Subs (flip T₂ ν) n n') →
(∀ k x → (simpl (mvar x)) /✶₁ ρs₁ ↑✶₁ k ≡ (simpl (mvar x)) /✶₂ ρs₂ ↑✶₂ k) →
(∀ k x → (simpl (mvar x)) /✶₁ (tpweaken-subs lift₁ ρs₁) ↑✶₁ k ≡ (simpl (mvar x)) /✶₂ (tpweaken-subs lift₂ ρs₂) ↑✶₂ k)
weaken-hyp ρs₁ ρs₂ hyp k x = begin
simpl (mvar x) /✶₁ (tpweaken-subs lift₁ ρs₁) ↑✶₁ k
≡⟨ cong (λ u → simpl (mvar x) /✶₁ u) (comm-tpweaken-↑✶ lift₁ k ρs₁) ⟩
simpl (mvar x) /✶₁ tpweaken-subs lift₁ (ρs₁ ↑✶₁ k)
≡⟨ tpweaken-subs-var lift₁ x (ρs₁ ↑✶₁ k) ⟩
mtt-weaken (simpl (mvar x) /✶₁ (ρs₁ ↑✶₁ k))
≡⟨ cong mtt-weaken (hyp k x) ⟩
mtt-weaken (simpl (mvar x) /✶₂ (ρs₂ ↑✶₂ k))
≡⟨ sym $ tpweaken-subs-var lift₂ x (ρs₂ ↑✶₂ k) ⟩
simpl (mvar x) /✶₂ tpweaken-subs lift₂ (ρs₂ ↑✶₂ k)
≡⟨ cong (λ u → simpl (mvar x) /✶₂ u) (sym $ comm-tpweaken-↑✶ lift₂ k ρs₂) ⟩
simpl (mvar x) /✶₂ (tpweaken-subs lift₂ ρs₂) ↑✶₂ k ∎
/✶-↑✶ : ∀ {ν n n'} (ρs₁ : Subs (flip T₁ ν) n n') (ρs₂ : Subs (flip T₂ ν) n n') →
(∀ k x → (simpl (mvar x)) /✶₁ ρs₁ ↑✶₁ k ≡ (simpl (mvar x)) /✶₂ ρs₂ ↑✶₂ k) →
∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k
/✶-↑✶ ρs₁ ρs₂ hyp k (a ⇒ b) = begin
(a ⇒ b) /✶₁ ρs₁ ↑✶₁ k
≡⟨ ⇒-/✶-↑✶ lift₁ k ρs₁ ⟩
((a /✶₁ ρs₁ ↑✶₁ k) ⇒ (b /✶₁ ρs₁ ↑✶₁ k))
≡⟨ cong₂ _⇒_ (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩
(a /✶₂ ρs₂ ↑✶₂ k) ⇒ (b /✶₂ ρs₂ ↑✶₂ k)
≡⟨ sym (⇒-/✶-↑✶ lift₂ k ρs₂) ⟩
(a ⇒ b) /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (∀' t) = begin
(∀' t) /✶₁ ρs₁ ↑✶₁ k
≡⟨ ∀'-/✶-↑✶ lift₁ k ρs₁ ⟩
(∀' (t /✶₁ (tpweaken-subs lift₁ ρs₁) ↑✶₁ k))
≡⟨ cong ∀' (/✶-↑✶ (tpweaken-subs lift₁ ρs₁) (tpweaken-subs lift₂ ρs₂) (weaken-hyp ρs₁ ρs₂ hyp) k t ) ⟩
(∀' (t /✶₂ (tpweaken-subs lift₂ ρs₂) ↑✶₂ k))
≡⟨ sym $ ∀'-/✶-↑✶ lift₂ k ρs₂ ⟩
(∀' t) /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (simpl (mvar c)) = hyp k c
/✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tvar x)) = begin
(simpl (tvar x)) /✶₁ ρs₁ ↑✶₁ k
≡⟨ tvar-/✶-↑✶ lift₁ k ρs₁ ⟩
(simpl (tvar x))
≡⟨ sym $ tvar-/✶-↑✶ lift₂ k ρs₂ ⟩
(simpl (tvar x)) /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (simpl (a →' b)) = begin
(simpl (a →' b)) /✶₁ ρs₁ ↑✶₁ k
≡⟨ →'-/✶-↑✶ lift₁ k ρs₁ ⟩
simpl ((a /✶₁ ρs₁ ↑✶₁ k) →' (b /✶₁ ρs₁ ↑✶₁ k))
≡⟨ cong₂ (λ a b → simpl (a →' b)) (/✶-↑✶ ρs₁ ρs₂ hyp k a) (/✶-↑✶ ρs₁ ρs₂ hyp k b) ⟩
simpl ((a /✶₂ ρs₂ ↑✶₂ k) →' (b /✶₂ ρs₂ ↑✶₂ k))
≡⟨ sym (→'-/✶-↑✶ lift₂ k ρs₂) ⟩
(simpl (a →' b)) /✶₂ ρs₂ ↑✶₂ k ∎
/✶-↑✶ ρs₁ ρs₂ hyp k (simpl (tc c)) = begin
(simpl (tc c)) /✶₁ ρs₁ ↑✶₁ k
≡⟨ tc-/✶-↑✶ lift₁ k ρs₁ ⟩
(simpl (tc c))
≡⟨ sym $ tc-/✶-↑✶ lift₂ k ρs₂ ⟩
(simpl (tc c)) /✶₂ ρs₂ ↑✶₂ k ∎
module _ {ν : ℕ} where
open MetaTypeMetaSubst
MT : ℕ → Set
MT = flip MetaType ν
lemmas₃ : Lemmas₃ (flip MetaType ν)
lemmas₃ = record
{ lemmas₂ = record
{ lemmas₁ = record
{ lemmas₀ = record
{ simple = simple
}
; weaken-var = λ {_ x} → begin
(simpl (mvar x)) /Var V.wk ≡⟨ refl ⟩
(simpl (mvar (lookup x V.wk))) ≡⟨ cong (λ x → simpl (mvar x)) (V.lookup-wk x) ⟩
(simpl (mvar (suc x))) ∎
}
; application = Subst.application subst
; var-/ = refl
}
; /✶-↑✶ = /✶-↑✶
}
private module L₃ = Lemmas₃ lemmas₃
lemmas₅ : Lemmas₅ (flip MetaType ν)
lemmas₅ = record
{ lemmas₄ = record
{ lemmas₃ = lemmas₃
; /-wk = λ {_ t} → begin
t / wk ≡⟨ /✶-↑✶ (ε ▻ wk) (ε ▻ V.wk)
(λ k x → begin
(simpl (mvar x)) / wk ↑⋆ k
≡⟨ L₃.var-/-wk-↑⋆ k x ⟩
(simpl (mvar (Fin.lift k suc x)))
≡⟨ cong (λ x → (simpl (mvar x))) (sym (V.var-/-wk-↑⋆ k x)) ⟩
(simpl (mvar (lookup x (V._↑⋆_ V.wk k))))
≡⟨ refl ⟩
(simpl (mvar x)) /Var V._↑⋆_ V.wk k ∎)
zero t ⟩
t /Var V.wk ≡⟨ refl ⟩
weaken t ∎
}
}
open Lemmas₅ lemmas₅ public hiding (lemmas₃)
open MetaTypeMetaSubst using (open-meta-k; open-meta; _↑⋆tp_; _↑tp; _◁m; _◁m₁)
us↑-⊙-sub-u≡u∷us : ∀ {ν m} (u : MetaType zero ν) (us : Sub (flip MetaType ν) m zero) →
us ↑ ⊙ sub u ≡ u ∷ us
us↑-⊙-sub-u≡u∷us {ν} {m} u us = cong (λ v → u ∷ v) map-weaken-⊙-sub
open-mvar : ∀ {ν m} (x : Fin m) → open-meta {ν = ν} (simpl (mvar x)) ≡ simpl (mvar (suc x))
open-mvar x = weaken-var
open-tvar-suc : ∀ {ν m} (x : Fin m) → open-meta {ν} (simpl (tvar (suc x))) ≡ simpl (tvar x)
open-tvar-suc x = MetaTypeTypeLemmas.suc-/-sub {t = (simpl (tvar x))}
open import Implicits.Substitutions.Type as TS using ()
open import Implicits.Substitutions.Lemmas.Type as TSLemmas using ()
private
module MTT = MetaTypeTypeSubst
| {
"alphanum_fraction": 0.4299630086,
"avg_line_length": 42.0207253886,
"ext": "agda",
"hexsha": "0660a8cfdfc52b6dfd4d319ed0887d574624a828",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Substitutions/Lemmas/MetaType.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Substitutions/Lemmas/MetaType.agda",
"max_line_length": 141,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Substitutions/Lemmas/MetaType.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 7554,
"size": 16220
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Setoids.Setoids
open import Setoids.Functions.Definition
open import Sets.EquivalenceRelations
module Setoids.Functions.Extension where
ExtensionallyEqual : {a b c d : _} {A : Set a} {B : Set b} {S : Setoid {a} {c} A} {T : Setoid {b} {d} B} {f g : A → B} (fWd : WellDefined S T f) (gWd : WellDefined S T g) → Set (a ⊔ d)
ExtensionallyEqual {A = A} {T = T} {f = f} {g = g} fWD gWD = (∀ {x : A} → Setoid._∼_ T (f x) (g x))
extensionallyEqualReflexive : {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f : A → B) (fWD1 fWD2 : WellDefined S T f) → ExtensionallyEqual {S = S} {T} fWD1 fWD2
extensionallyEqualReflexive S T f fWD1 _ = Equivalence.reflexive (Setoid.eq T)
extensionallyEqualSymmetric : {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f g : A → B) (fWD : WellDefined S T f) (gWD : WellDefined S T g) → ExtensionallyEqual {S = S} {T = T} fWD gWD → ExtensionallyEqual {S = S} {T} gWD fWD
extensionallyEqualSymmetric S T f g fWD gWD pr = Equivalence.symmetric (Setoid.eq T) pr
extensionallyEqualTransitive : {a b c d : _} {A : Set a} {B : Set b} (S : Setoid {a} {c} A) (T : Setoid {b} {d} B) (f g h : A → B) (fWD : WellDefined S T f) (gWD : WellDefined S T g) (hWD : WellDefined S T h) → ExtensionallyEqual {S = S} {T} fWD gWD → ExtensionallyEqual {S = S} {T} gWD hWD → ExtensionallyEqual {S = S} {T} fWD hWD
extensionallyEqualTransitive S T f g h fWD gWD hWD pr1 pr2 = Equivalence.transitive (Setoid.eq T) pr1 pr2
| {
"alphanum_fraction": 0.6397285626,
"avg_line_length": 77.1904761905,
"ext": "agda",
"hexsha": "49fd828ed96a317251cf8799a76a5abd216ca989",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Setoids/Functions/Extension.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Setoids/Functions/Extension.agda",
"max_line_length": 331,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Setoids/Functions/Extension.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 639,
"size": 1621
} |
{-# OPTIONS --without-K --safe #-}
open import Level using (Level)
open import Data.Nat using (ℕ) renaming (_+_ to _+ᴺ_)
open import Data.Vec using (Vec; _++_; take; drop; replicate; map; foldr)
open import Data.Vec.Properties
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Function using (id)
open import FLA.Algebra.Structures
open import FLA.Algebra.Properties.Field
open import FLA.Algebra.LinearMap
open import FLA.Algebra.LinearAlgebra
open import FLA.Algebra.LinearAlgebra.Properties
open import FLA.Data.Vec.Properties
module FLA.Algebra.LinearAlgebra.Matrix where
private
variable
ℓ : Level
A : Set ℓ
m n p q : ℕ
-------------------------------------------------------------------------------
-- M constructor and values --
-------------------------------------------------------------------------------
data Mat_×_ {A : Set ℓ} ⦃ F : Field A ⦄ (m n : ℕ) : Set ℓ where
⟦_,_,_⟧ : (M : n ⊸ m )
→ (Mᵀ : m ⊸ n )
→ (p : (x : Vec A m) → (y : Vec A n)
→ ⟨ x , M ·ˡᵐ y ⟩ ≡ ⟨ y , Mᵀ ·ˡᵐ x ⟩ )
→ Mat m × n
module _ ⦃ F : Field A ⦄ where
_ᵀ : Mat m × n → Mat n × m
⟦ f , a , p ⟧ ᵀ = ⟦ a , f , (λ x y → sym (p y x)) ⟧
_·ᴹₗ_ : Mat m × n → Vec A n → Vec A m
⟦ f , _ , _ ⟧ ·ᴹₗ x = f ·ˡᵐ x
_·ᴹᵣ_ : Vec A m → Mat m × n → Vec A n
x ·ᴹᵣ ⟦ _ , a , _ ⟧ = a ·ˡᵐ x
infixr 20 _·ᴹᵣ_
infixr 21 _·ᴹₗ_
infixl 25 _ᵀ
module _ ⦃ F : Field A ⦄ where
open Field F
open _⊸_
_+ᴹ_ : Mat m × n → Mat m × n → Mat m × n
⟦ M₁ , M₁ᵀ , p₁ ⟧ +ᴹ ⟦ M₂ , M₂ᵀ , p₂ ⟧ =
⟦ M₁ +ˡᵐ M₂
, M₁ᵀ +ˡᵐ M₂ᵀ
, ⟨⟩-proof M₁ M₂ M₁ᵀ M₂ᵀ p₁ p₂
⟧
where
⟨⟩-proof : (M₁ M₂ : n ⊸ m) (M₁ᵀ M₂ᵀ : m ⊸ n)
→ (M₁-⟨⟩-proof : (x : Vec A m) (y : Vec A n)
→ ⟨ x , M₁ ·ˡᵐ y ⟩ ≡ ⟨ y , M₁ᵀ ·ˡᵐ x ⟩ )
→ (M₂-⟨⟩-proof : (x : Vec A m) (y : Vec A n)
→ ⟨ x , M₂ ·ˡᵐ y ⟩ ≡ ⟨ y , M₂ᵀ ·ˡᵐ x ⟩ )
→ (x : Vec A m) (y : Vec A n)
→ ⟨ x , (M₁ +ˡᵐ M₂) ·ˡᵐ y ⟩ ≡ ⟨ y , (M₁ᵀ +ˡᵐ M₂ᵀ) ·ˡᵐ x ⟩
⟨⟩-proof M₁ M₂ M₁ᵀ M₂ᵀ M₁-proof M₂-proof x y =
begin
⟨ x , (M₁ +ˡᵐ M₂) ·ˡᵐ y ⟩
≡⟨⟩
⟨ x , M₁ ·ˡᵐ y +ⱽ M₂ ·ˡᵐ y ⟩
≡⟨ ⟨x,y+z⟩≡⟨x,y⟩+⟨x,z⟩ x (M₁ ·ˡᵐ y) (M₂ ·ˡᵐ y) ⟩
⟨ x , M₁ ·ˡᵐ y ⟩ + ⟨ x , M₂ ·ˡᵐ y ⟩
≡⟨ cong₂ _+_ (M₁-proof x y) (M₂-proof x y) ⟩
⟨ y , M₁ᵀ ·ˡᵐ x ⟩ + ⟨ y , M₂ᵀ ·ˡᵐ x ⟩
≡⟨ sym (⟨x,y+z⟩≡⟨x,y⟩+⟨x,z⟩ y (M₁ᵀ ·ˡᵐ x) (M₂ᵀ ·ˡᵐ x)) ⟩
⟨ y , (M₁ᵀ +ˡᵐ M₂ᵀ) ·ˡᵐ x ⟩
∎
_-ᴹ_ : Mat m × n → Mat m × n → Mat m × n
⟦ M₁ , M₁ᵀ , p₁ ⟧ -ᴹ ⟦ M₂ , M₂ᵀ , p₂ ⟧ =
⟦ M₁ -ˡᵐ M₂
, M₁ᵀ -ˡᵐ M₂ᵀ
, ⟨⟩-proof M₁ M₂ M₁ᵀ M₂ᵀ p₁ p₂
⟧
where
⟨⟩-proof : (M₁ M₂ : n ⊸ m) (M₁ᵀ M₂ᵀ : m ⊸ n)
→ (M₁-⟨⟩-proof : (x : Vec A m) (y : Vec A n)
→ ⟨ x , M₁ ·ˡᵐ y ⟩ ≡ ⟨ y , M₁ᵀ ·ˡᵐ x ⟩ )
→ (M₂-⟨⟩-proof : (x : Vec A m) (y : Vec A n)
→ ⟨ x , M₂ ·ˡᵐ y ⟩ ≡ ⟨ y , M₂ᵀ ·ˡᵐ x ⟩ )
→ (x : Vec A m) (y : Vec A n)
→ ⟨ x , (M₁ -ˡᵐ M₂) ·ˡᵐ y ⟩ ≡ ⟨ y , (M₁ᵀ -ˡᵐ M₂ᵀ) ·ˡᵐ x ⟩
⟨⟩-proof M₁ M₂ M₁ᵀ M₂ᵀ M₁-proof M₂-proof x y = begin
⟨ x , (M₁ -ˡᵐ M₂) ·ˡᵐ y ⟩
≡⟨⟩
⟨ x , M₁ ·ˡᵐ y -ⱽ M₂ ·ˡᵐ y ⟩
≡⟨ cong (λ a → ⟨ x , M₁ ·ˡᵐ y +ⱽ a ⟩) (-ⱽ≡-1ᶠ∘ⱽ (M₂ ·ˡᵐ y)) ⟩
⟨ x , M₁ ·ˡᵐ y +ⱽ (- 1ᶠ) ∘ⱽ M₂ ·ˡᵐ y ⟩
≡⟨ ⟨x,y+z⟩≡⟨x,y⟩+⟨x,z⟩ x (M₁ ·ˡᵐ y) ((- 1ᶠ) ∘ⱽ M₂ ·ˡᵐ y) ⟩
⟨ x , M₁ ·ˡᵐ y ⟩ + ⟨ x , (- 1ᶠ) ∘ⱽ M₂ ·ˡᵐ y ⟩
≡⟨ cong (λ a → ⟨ x , M₁ ·ˡᵐ y ⟩ + ⟨ x , a ⟩ )
(sym (f[c*v]≡c*f[v] M₂ (- 1ᶠ) y)) ⟩
⟨ x , M₁ ·ˡᵐ y ⟩ + ⟨ x , (M₂ ·ˡᵐ ((- 1ᶠ) ∘ⱽ y)) ⟩
≡⟨ cong₂ _+_ (M₁-proof x y) (M₂-proof x ((- 1ᶠ) ∘ⱽ y)) ⟩
⟨ y , M₁ᵀ ·ˡᵐ x ⟩ + ⟨ (- 1ᶠ) ∘ⱽ y , M₂ᵀ ·ˡᵐ x ⟩
≡⟨⟩
⟨ y , M₁ᵀ ·ˡᵐ x ⟩ + sum ( ((- 1ᶠ) ∘ⱽ y) *ⱽ M₂ᵀ ·ˡᵐ x )
≡⟨ cong (λ a → ⟨ y , M₁ᵀ ·ˡᵐ x ⟩ + sum a)
(sym (∘ⱽ*ⱽ-assoc (- 1ᶠ) y (M₂ᵀ ·ˡᵐ x))) ⟩
⟨ y , M₁ᵀ ·ˡᵐ x ⟩ + sum ((- 1ᶠ) ∘ⱽ (y *ⱽ M₂ᵀ ·ˡᵐ x))
≡⟨ cong (λ a → ⟨ y , M₁ᵀ ·ˡᵐ x ⟩ + sum a)
(sym (*ⱽ∘ⱽ≡∘ⱽ*ⱽ (- 1ᶠ) y (M₂ᵀ ·ˡᵐ x))) ⟩
⟨ y , M₁ᵀ ·ˡᵐ x ⟩ + sum (y *ⱽ ((- 1ᶠ) ∘ⱽ M₂ᵀ ·ˡᵐ x))
≡⟨⟩
⟨ y , M₁ᵀ ·ˡᵐ x ⟩ + ⟨ y , (- 1ᶠ) ∘ⱽ M₂ᵀ ·ˡᵐ x ⟩
≡˘⟨ ⟨x,y+z⟩≡⟨x,y⟩+⟨x,z⟩ y (M₁ᵀ ·ˡᵐ x) ((- 1ᶠ) ∘ⱽ M₂ᵀ ·ˡᵐ x) ⟩
⟨ y , M₁ᵀ ·ˡᵐ x +ⱽ (- 1ᶠ) ∘ⱽ M₂ᵀ ·ˡᵐ x ⟩
≡˘⟨ cong (λ a → ⟨ y , M₁ᵀ ·ˡᵐ x +ⱽ a ⟩) (-ⱽ≡-1ᶠ∘ⱽ (M₂ᵀ ·ˡᵐ x)) ⟩
⟨ y , (M₁ᵀ -ˡᵐ M₂ᵀ) ·ˡᵐ x ⟩
∎
_*ᴹ_ : Mat m × n → Mat n × p → Mat m × p
⟦ M₁ , M₁ᵀ , p₁ ⟧ *ᴹ ⟦ M₂ , M₂ᵀ , p₂ ⟧ =
⟦ M₁ *ˡᵐ M₂
, M₂ᵀ *ˡᵐ M₁ᵀ
, ⟨⟩-proof M₁ M₂ M₁ᵀ M₂ᵀ p₁ p₂
⟧
where
⟨⟩-proof : (M₁ : n ⊸ m) (M₂ : p ⊸ n) (M₁ᵀ : m ⊸ n) (M₂ᵀ : n ⊸ p)
→ (M₁-⟨⟩-proof : (x : Vec A m) (y : Vec A n)
→ ⟨ x , M₁ ·ˡᵐ y ⟩ ≡ ⟨ y , M₁ᵀ ·ˡᵐ x ⟩ )
→ (M₂-⟨⟩-proof : (x : Vec A n) (y : Vec A p)
→ ⟨ x , M₂ ·ˡᵐ y ⟩ ≡ ⟨ y , M₂ᵀ ·ˡᵐ x ⟩ )
→ (x : Vec A m) (y : Vec A p)
→ ⟨ x , (M₁ *ˡᵐ M₂) ·ˡᵐ y ⟩ ≡ ⟨ y , (M₂ᵀ *ˡᵐ M₁ᵀ) ·ˡᵐ x ⟩
⟨⟩-proof M₁ M₂ M₁ᵀ M₂ᵀ M₁-proof M₂-proof x y =
begin
⟨ x , (M₁ *ˡᵐ M₂) ·ˡᵐ y ⟩ ≡⟨⟩
⟨ x , M₁ ·ˡᵐ M₂ ·ˡᵐ y ⟩ ≡⟨ M₁-proof x (M₂ ·ˡᵐ y) ⟩
⟨ M₂ ·ˡᵐ y , M₁ᵀ ·ˡᵐ x ⟩ ≡⟨ ⟨⟩-comm (M₂ ·ˡᵐ y) (M₁ᵀ ·ˡᵐ x) ⟩
⟨ M₁ᵀ ·ˡᵐ x , M₂ ·ˡᵐ y ⟩ ≡⟨ M₂-proof (M₁ᵀ ·ˡᵐ x) y ⟩
⟨ y , (M₂ᵀ *ˡᵐ M₁ᵀ) ·ˡᵐ x ⟩ ∎
_|ᴹ_ : Mat m × n → Mat m × p → Mat m × (n +ᴺ p)
⟦ M₁ , M₁ᵀ , p₁ ⟧ |ᴹ ⟦ M₂ , M₂ᵀ , p₂ ⟧ =
⟦ M₁ |ˡᵐ M₂
, M₁ᵀ —ˡᵐ M₂ᵀ
, ⟨⟩-proof M₁ M₂ M₁ᵀ M₂ᵀ p₁ p₂
⟧
where
⟨⟩-proof : {m n p : ℕ}
→ (M₁ : n ⊸ m) (M₂ : p ⊸ m) (M₁ᵀ : m ⊸ n) (M₂ᵀ : m ⊸ p)
→ (M₁-⟨⟩-proof : (x : Vec A m) (y : Vec A n)
→ ⟨ x , M₁ ·ˡᵐ y ⟩ ≡ ⟨ y , M₁ᵀ ·ˡᵐ x ⟩ )
→ (M₂-⟨⟩-proof : (x : Vec A m) (y : Vec A p)
→ ⟨ x , M₂ ·ˡᵐ y ⟩ ≡ ⟨ y , M₂ᵀ ·ˡᵐ x ⟩ )
→ (x : Vec A m) (y : Vec A (n +ᴺ p)) →
⟨ x , (M₁ |ˡᵐ M₂) ·ˡᵐ y ⟩ ≡ ⟨ y , (M₁ᵀ —ˡᵐ M₂ᵀ) ·ˡᵐ x ⟩
⟨⟩-proof {m} {n} {p} M₁ M₂ M₁ᵀ M₂ᵀ M₁-proof M₂-proof x y =
begin
⟨ x , (M₁ |ˡᵐ M₂) ·ˡᵐ y ⟩
≡⟨⟩
⟨ x , M₁ ·ˡᵐ take n y +ⱽ M₂ ·ˡᵐ drop n y ⟩
≡⟨ ⟨x,y+z⟩≡⟨x,y⟩+⟨x,z⟩ x (M₁ ·ˡᵐ take n y) (M₂ ·ˡᵐ drop n y) ⟩
⟨ x , M₁ ·ˡᵐ take n y ⟩ + ⟨ x , M₂ ·ˡᵐ drop n y ⟩
≡⟨ cong₂ _+_ (M₁-proof x (take n y)) (M₂-proof x (drop n y)) ⟩
⟨ take n y , M₁ᵀ ·ˡᵐ x ⟩ + ⟨ drop n y , M₂ᵀ ·ˡᵐ x ⟩
≡⟨ ⟨a,b⟩+⟨c,d⟩≡⟨a++c,b++d⟩ (take n y) (M₁ᵀ ·ˡᵐ x)
(drop n y) (M₂ᵀ ·ˡᵐ x) ⟩
⟨ take n y ++ drop n y , M₁ᵀ ·ˡᵐ x ++ M₂ᵀ ·ˡᵐ x ⟩
≡⟨ cong (λ a → ⟨ a , M₁ᵀ ·ˡᵐ x ++ M₂ᵀ ·ˡᵐ x ⟩) (take-drop-id n y) ⟩
⟨ y , M₁ᵀ ·ˡᵐ x ++ M₂ᵀ ·ˡᵐ x ⟩
≡⟨⟩
⟨ y , (M₁ᵀ —ˡᵐ M₂ᵀ) ·ˡᵐ x ⟩
∎
_—ᴹ_ : Mat m × p → Mat n × p → Mat (m +ᴺ n) × p
M —ᴹ N = (M ᵀ |ᴹ N ᵀ) ᵀ
-- Block diagonal matrix
_/ᴹ_ : Mat m × n → Mat p × q → Mat (m +ᴺ p) × (n +ᴺ q)
⟦ M₁ , M₁ᵀ , p₁ ⟧ /ᴹ ⟦ M₂ , M₂ᵀ , p₂ ⟧ =
⟦ M₁ /ˡᵐ M₂
, M₁ᵀ /ˡᵐ M₂ᵀ
, ⟨⟩-proof M₁ M₂ M₁ᵀ M₂ᵀ p₁ p₂
⟧
where
⟨⟩-proof : {m n p q : ℕ}
→ (M₁ : n ⊸ m) (M₂ : q ⊸ p) (M₁ᵀ : m ⊸ n) (M₂ᵀ : p ⊸ q)
→ (M₁-⟨⟩-proof : (x : Vec A m) (y : Vec A n)
→ ⟨ x , M₁ ·ˡᵐ y ⟩ ≡ ⟨ y , M₁ᵀ ·ˡᵐ x ⟩ )
→ (M₂-⟨⟩-proof : (x : Vec A p) (y : Vec A q)
→ ⟨ x , M₂ ·ˡᵐ y ⟩ ≡ ⟨ y , M₂ᵀ ·ˡᵐ x ⟩ )
→ (x : Vec A (m +ᴺ p)) (y : Vec A (n +ᴺ q)) →
⟨ x , (M₁ /ˡᵐ M₂) ·ˡᵐ y ⟩ ≡ ⟨ y , (M₁ᵀ /ˡᵐ M₂ᵀ) ·ˡᵐ x ⟩
⟨⟩-proof {m} {n} {p} M₁ M₂ M₁ᵀ M₂ᵀ M₁-proof M₂-proof x y =
begin
⟨ x , (M₁ /ˡᵐ M₂) ·ˡᵐ y ⟩
≡⟨⟩
⟨ x , M₁ ·ˡᵐ take n y ++ M₂ ·ˡᵐ drop n y ⟩
≡⟨ cong (λ x → ⟨ x , M₁ ·ˡᵐ take n y ++ M₂ ·ˡᵐ drop n y ⟩)
(sym (take-drop-id m x)) ⟩
⟨ take m x ++ drop m x , M₁ ·ˡᵐ (take n y) ++ M₂ ·ˡᵐ drop n y ⟩
≡⟨ ⟨a++b,c++d⟩≡⟨a,c⟩+⟨b,d⟩ (take m x) (drop m x)
(M₁ ·ˡᵐ (take n y)) (M₂ ·ˡᵐ drop n y) ⟩
⟨ take m x , M₁ ·ˡᵐ (take n y) ⟩ + ⟨ drop m x , M₂ ·ˡᵐ drop n y ⟩
≡⟨ cong₂ _+_ (M₁-proof (take m x) (take n y))
(M₂-proof (drop m x) (drop n y)) ⟩
⟨ take n y , M₁ᵀ ·ˡᵐ take m x ⟩ + ⟨ drop n y , M₂ᵀ ·ˡᵐ drop m x ⟩
≡⟨ ⟨a,b⟩+⟨c,d⟩≡⟨a++c,b++d⟩ (take n y) (M₁ᵀ ·ˡᵐ take m x)
(drop n y) (M₂ᵀ ·ˡᵐ drop m x) ⟩
⟨ take n y ++ drop n y , M₁ᵀ ·ˡᵐ take m x ++ M₂ᵀ ·ˡᵐ drop m x ⟩
≡⟨ cong (λ y → ⟨ y , M₁ᵀ ·ˡᵐ take m x ++ M₂ᵀ ·ˡᵐ drop m x ⟩)
(take-drop-id n y) ⟩
⟨ y , M₁ᵀ ·ˡᵐ (take m x) ++ M₂ᵀ ·ˡᵐ (drop m x) ⟩
≡⟨⟩
⟨ y , (M₁ᵀ /ˡᵐ M₂ᵀ) ·ˡᵐ x ⟩
∎
-- Multiply by a constant
_∘ᴹ_ : A → Mat m × n → Mat m × n
c ∘ᴹ ⟦ M , Mᵀ , p ⟧ = ⟦ c ∘ˡᵐ M , c ∘ˡᵐ Mᵀ , ⟨⟩-proof M Mᵀ c p ⟧
where
⟨⟩-proof : {m n : ℕ} (M : n ⊸ m) (Mᵀ : m ⊸ n) (c : A)
→ (M-⟨⟩-proof : (x : Vec A m) (y : Vec A n)
→ ⟨ x , M ·ˡᵐ y ⟩ ≡ ⟨ y , Mᵀ ·ˡᵐ x ⟩ )
→ (x : Vec A m) (y : Vec A n)
→ ⟨ x , (c ∘ˡᵐ M) ·ˡᵐ y ⟩ ≡ ⟨ y , (c ∘ˡᵐ Mᵀ) ·ˡᵐ x ⟩
⟨⟩-proof {m} {n} M Mᵀ c M-⟨⟩-proof x y =
begin
⟨ x , (c ∘ˡᵐ M) ·ˡᵐ y ⟩
≡⟨⟩
⟨ x , c ∘ⱽ (M ·ˡᵐ y) ⟩
≡⟨ cong (λ z → ⟨ x , z ⟩) (sym (f[c*v]≡c*f[v] M c y)) ⟩
⟨ x , M ·ˡᵐ (c ∘ⱽ y) ⟩
≡⟨ M-⟨⟩-proof x ((c ∘ⱽ y)) ⟩
⟨ c ∘ⱽ y , Mᵀ ·ˡᵐ x ⟩
≡⟨ ⟨⟩-comm (c ∘ⱽ y) (Mᵀ ·ˡᵐ x) ⟩
⟨ Mᵀ ·ˡᵐ x , c ∘ⱽ y ⟩
≡⟨ cong sum (trans (*ⱽ∘ⱽ≡∘ⱽ*ⱽ c (Mᵀ ·ˡᵐ x) y)
(∘ⱽ*ⱽ-assoc c (Mᵀ ·ˡᵐ x) y)) ⟩
⟨ (c ∘ˡᵐ Mᵀ) ·ˡᵐ x , y ⟩
≡⟨ ⟨⟩-comm ((c ∘ˡᵐ Mᵀ) ·ˡᵐ x) y ⟩
⟨ y , (c ∘ˡᵐ Mᵀ) ·ˡᵐ x ⟩
∎
infixl 2 _—ᴹ_
infixl 3 _|ᴹ_
infixl 4 _/ᴹ_
infixl 6 _+ᴹ_
infixl 6 _-ᴹ_
infixl 7 _*ᴹ_
infixl 10 _∘ᴹ_
-- Matrix Free Operators ------------------------------------------------------
module _ ⦃ F : Field A ⦄ where
open Field F
I : Mat n × n
I = ⟦ idₗₘ , idₗₘ , id-transpose ⟧
where
id-transpose : (x y : Vec A n)
→ ⟨ x , id y ⟩ ≡ ⟨ y , id x ⟩
id-transpose x y rewrite
zipWith-comm (*-comm) x y
= refl
diag : Vec A n → Mat n × n
diag d = ⟦ diagₗₘ d , diagₗₘ d , diag-transpose d ⟧
where
diag-transpose : (d : Vec A n) → (x y : Vec A n)
→ ⟨ x , diagₗₘ d ·ˡᵐ y ⟩ ≡ ⟨ y , diagₗₘ d ·ˡᵐ x ⟩
diag-transpose d x y =
begin
⟨ x , diagₗₘ d ·ˡᵐ y ⟩ ≡⟨⟩
sum (x *ⱽ (d *ⱽ y)) ≡⟨ cong (sum) (*ⱽ-comm x (d *ⱽ y)) ⟩
sum ((d *ⱽ y) *ⱽ x) ≡⟨ cong (λ dy → sum (dy *ⱽ x)) (*ⱽ-comm d y) ⟩
sum ((y *ⱽ d) *ⱽ x) ≡⟨ cong sum (*ⱽ-assoc y d x) ⟩
sum (y *ⱽ (d *ⱽ x)) ≡⟨⟩
⟨ y , diagₗₘ d ·ˡᵐ x ⟩ ∎
1ᴹ : Mat m × n
1ᴹ = ⟦ 1ₗₘ , 1ₗₘ , 1ₗₘ-transpose ⟧
where
zip-rep = zipWith-replicate₂
1ₗₘ-transpose : (x : Vec A m) (y : Vec A n)
→ ⟨ x , 1ₗₘ ·ˡᵐ y ⟩ ≡ ⟨ y , 1ₗₘ ·ˡᵐ x ⟩
1ₗₘ-transpose x y = begin
⟨ x , 1ₗₘ ·ˡᵐ y ⟩ ≡⟨⟩
sum (x *ⱽ replicate (sum y)) ≡⟨ cong sum (zip-rep _*_ x (sum y)) ⟩
sum (map (_* sum y) x) ≡⟨ cong sum (map-*c-≡c∘ⱽ (sum y) x) ⟩
sum (sum y ∘ⱽ x) ≡⟨ sum[c∘ⱽv]≡c*sum[v] (sum y) x ⟩
sum y * sum x ≡⟨ *-comm (sum y) (sum x) ⟩
sum x * sum y ≡˘⟨ sum[c∘ⱽv]≡c*sum[v] (sum x) y ⟩
sum (sum x ∘ⱽ y) ≡˘⟨ cong sum (map-*c-≡c∘ⱽ (sum x) y) ⟩
sum (map (_* sum x) y) ≡˘⟨ cong sum (zip-rep _*_ y (sum x)) ⟩
sum (y *ⱽ replicate (sum x)) ≡⟨⟩
⟨ y , 1ₗₘ ·ˡᵐ x ⟩ ∎
0ᴹ : Mat m × n
0ᴹ = ⟦ 0ₗₘ , 0ₗₘ , 0ₗₘ-transpose ⟧
where
0ₗₘ-transpose : (x : Vec A m) (y : Vec A n)
→ ⟨ x , 0ₗₘ ·ˡᵐ y ⟩ ≡ ⟨ y , 0ₗₘ ·ˡᵐ x ⟩
0ₗₘ-transpose {m = m} {n = n} x y = begin
⟨ x , 0ₗₘ ·ˡᵐ y ⟩ ≡⟨⟩
sum (x *ⱽ replicate 0ᶠ) ≡⟨ cong sum (v*ⱽ0ᶠⱽ≡0ᶠⱽ x) ⟩
sum (replicate {n = m} 0ᶠ) ≡⟨ sum[0ᶠⱽ]≡0ᶠ {n = m} ⟩
0ᶠ ≡˘⟨ sum[0ᶠⱽ]≡0ᶠ {n = n} ⟩
sum (replicate {n = n} 0ᶠ) ≡˘⟨ cong sum (v*ⱽ0ᶠⱽ≡0ᶠⱽ y) ⟩
sum (y *ⱽ replicate {n = n} 0ᶠ) ≡⟨⟩
⟨ y , 0ₗₘ ·ˡᵐ x ⟩ ∎
| {
"alphanum_fraction": 0.3592445173,
"avg_line_length": 39.4246153846,
"ext": "agda",
"hexsha": "9bc23e429446db850ca84c1f77a6cdd77f7e83f3",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-09-07T19:55:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-12T20:34:17.000Z",
"max_forks_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "turion/functional-linear-algebra",
"max_forks_repo_path": "src/FLA/Algebra/LinearAlgebra/Matrix.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_issues_repo_issues_event_max_datetime": "2022-01-07T05:27:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-09-01T01:42:12.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "turion/functional-linear-algebra",
"max_issues_repo_path": "src/FLA/Algebra/LinearAlgebra/Matrix.agda",
"max_line_length": 79,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "turion/functional-linear-algebra",
"max_stars_repo_path": "src/FLA/Algebra/LinearAlgebra/Matrix.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-07T05:28:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-22T20:49:34.000Z",
"num_tokens": 7349,
"size": 12813
} |
{-# OPTIONS --without-K --safe #-}
-- Any category can be made into a trivial restriction category
module Categories.Category.Restriction.Construction.Trivial where
open import Level using (Level)
open import Categories.Category.Core using (Category)
open import Categories.Category.Restriction using (Restriction)
open import Categories.Morphism.Reasoning.Core using (id-comm-sym)
private
variable
o ℓ e : Level
Trivial : (C : Category o ℓ e) → Restriction C
Trivial C = record
{ _↓ = λ _ → id
; pidʳ = identityʳ
; ↓-comm = Equiv.refl
; ↓-denestʳ = Equiv.sym identity²
; ↓-skew-comm = id-comm-sym C
; ↓-cong = λ _ → Equiv.refl
}
where open Category C
| {
"alphanum_fraction": 0.7092511013,
"avg_line_length": 25.2222222222,
"ext": "agda",
"hexsha": "1e2955d7e51f659cfa8a842b35c6c6c81c96b3fe",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Restriction/Construction/Trivial.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Restriction/Construction/Trivial.agda",
"max_line_length": 66,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Restriction/Construction/Trivial.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 193,
"size": 681
} |
-- basic stuff: core definitions, etc
open import statics-core
open import statics-checks
open import judgemental-erase
open import moveerase
open import examples
-- first wave theorems
open import sensibility
open import aasubsume-min
open import determinism
-- second wave theorems (checksums)
open import reachability
open import constructability
| {
"alphanum_fraction": 0.8267045455,
"avg_line_length": 22,
"ext": "agda",
"hexsha": "72508ef6332ba0246b197dec3acd165a92c6383e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "statics-all.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "statics-all.agda",
"max_line_length": 37,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "statics-all.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 83,
"size": 352
} |
{-# OPTIONS --cubical #-}
module Multidimensional.Data.Dir.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Data.Empty
open import Cubical.Relation.Nullary
open import Multidimensional.Data.Dir.Base
¬↓≡↑ : ¬ ↓ ≡ ↑
¬↓≡↑ eq = subst (caseDir Dir ⊥) eq ↓
¬↑≡↓ : ¬ ↑ ≡ ↓
¬↑≡↓ eq = subst (caseDir ⊥ Dir) eq ↓
| {
"alphanum_fraction": 0.6853333333,
"avg_line_length": 18.75,
"ext": "agda",
"hexsha": "7825e907f08ea74cd46fd95dab6a8957f6c6c55e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_forks_repo_path": "Multidimensional/Data/Dir/Properties.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_issues_repo_issues_event_max_datetime": "2019-07-02T16:24:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-19T20:40:07.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_issues_repo_path": "Multidimensional/Data/Dir/Properties.agda",
"max_line_length": 49,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "55709dd950e319c4a105ace33ddaf8b955354add",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "wrrnhttn/agda-cubical-multidimensional",
"max_stars_repo_path": "Multidimensional/Data/Dir/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 120,
"size": 375
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.Coproduct where
-- Coproduct of categories. Need to pull out some of the combinators.
-- Coproduct of Groupoid as well.
open import Level
open import Data.Sum
open import Data.Empty
open import Relation.Binary using (Rel)
open import Function using (_$_)
open import Categories.Category
open import Categories.Category.Groupoid using (IsGroupoid)
import Categories.Morphism as Morphism
private
variable
o ℓ e o′ ℓ′ e′ : Level
private
_⊞_ : {a b c d r s : Level} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
(R : A → B → Set r) (S : C → D → Set s) →
(A ⊎ C) → (B ⊎ D) → Set (r ⊔ s)
_⊞_ {r = r} {s = s} R S =
λ { (inj₁ x) (inj₁ x₁) → Lift (r ⊔ s) (R x x₁)
; (inj₁ x) (inj₂ y) → Lift (r ⊔ s) ⊥
; (inj₂ y₁) (inj₁ x) → Lift (r ⊔ s) ⊥
; (inj₂ y₁) (inj₂ y) → Lift (r ⊔ s) (S y₁ y)
}
_⊞Rel_ : {a b c d r s u v : Level} {A : Set a} {B : Set b} {C : Set c} {D : Set d}
{R : A → B → Set r} {S : C → D → Set s} →
({a₁ : A} {b₁ : B} → Rel (R a₁ b₁) u) → ({c₁ : C} {d₁ : D} → Rel (S c₁ d₁) v) →
({x : A ⊎ C} {y : B ⊎ D} → Rel (_⊞_ R S x y) (u ⊔ v))
_⊞Rel_ {u = u} {v = v} R₁ R₂ {inj₁ x} {inj₁ x₁} p q = Lift (u ⊔ v) (R₁ (lower p) (lower q))
(R₁ ⊞Rel R₂) {inj₁ x} {inj₂ y} () ()
(R₁ ⊞Rel R₂) {inj₂ y₁} {inj₁ x} () ()
_⊞Rel_ {u = u} {v = v} R₁ R₂ {inj₂ y₁} {inj₂ y} p q = Lift (u ⊔ v) (R₂ (lower p) (lower q))
Coproduct : (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′)
Coproduct C D = record
{ Obj = C.Obj ⊎ D.Obj
; _⇒_ = C._⇒_ ⊞ D._⇒_
; _≈_ = C._≈_ ⊞Rel D._≈_
; id = λ { {inj₁ _} → lift C.id ; {inj₂ _} → lift D.id }
; _∘_ = λ { {inj₁ x} {inj₁ x₁} {inj₁ x₂} → λ { (lift p) (lift q) → lift (p C.∘ q) }
; {inj₁ x} {inj₁ x₁} {inj₂ y} → λ ()
; {inj₁ x} {inj₂ y} {inj₁ x₁} → λ ()
; {inj₁ x} {inj₂ y} {inj₂ y₁} → λ _ ()
; {inj₂ y} {inj₁ x} {inj₁ x₁} → λ _ ()
; {inj₂ y} {inj₁ x} {inj₂ y₁} → λ ()
; {inj₂ y} {inj₂ y₁} {inj₁ x} → λ ()
; {inj₂ y} {inj₂ y₁} {inj₂ y₂} → λ { (lift p) (lift q) → lift (p D.∘ q) }
}
; assoc = λ { {inj₁ x} {inj₁ x₁} {inj₁ x₂} {inj₁ x₃} → lift C.assoc
; {inj₂ y} {inj₂ y₁} {inj₂ y₂} {inj₂ y₃} → lift D.assoc}
; sym-assoc = λ { {inj₁ x} {inj₁ x₁} {inj₁ x₂} {inj₁ x₃} → lift C.sym-assoc
; {inj₂ y} {inj₂ y₁} {inj₂ y₂} {inj₂ y₃} → lift D.sym-assoc}
; identityˡ = λ { {inj₁ x} {inj₁ x₁} → lift C.identityˡ
; {inj₂ y} {inj₂ y₁} → lift D.identityˡ }
; identityʳ = λ { {inj₁ x} {inj₁ x₁} → lift C.identityʳ
; {inj₂ y} {inj₂ y₁} → lift D.identityʳ}
; identity² = λ { {inj₁ x} → lift C.identity²
; {inj₂ y} → lift D.identity² }
; equiv = λ { {inj₁ x} {inj₁ x₁} → record
{ refl = lift C.Equiv.refl
; sym = λ { (lift p) → lift $ C.Equiv.sym p }
; trans = λ { (lift p) (lift q) → lift $ C.Equiv.trans p q } }
; {inj₁ x} {inj₂ y} → record { refl = λ { {()} } ; sym = λ { {()} } ; trans = λ { {()} } }
; {inj₂ y} {inj₁ x} → record { refl = λ { {()} } ; sym = λ { {()} } ; trans = λ { {()} } }
; {inj₂ y} {inj₂ y₁} → record
{ refl = lift D.Equiv.refl
; sym = λ { (lift p) → lift $ D.Equiv.sym p }
; trans = λ { (lift p) (lift q) → lift $ D.Equiv.trans p q } }
}
; ∘-resp-≈ = λ { {inj₁ x} {inj₁ x₁} {inj₁ x₂} → λ { (lift f≈h) (lift g≈i) → lift $ C.∘-resp-≈ f≈h g≈i }
; {inj₂ y} {inj₂ y₁} {inj₂ y₂} → λ { (lift f≈h) (lift g≈i) → lift $ D.∘-resp-≈ f≈h g≈i } }
}
where
module C = Category C
module D = Category D
IsGroupoid-⊎ : {C : Category o ℓ e} {D : Category o′ ℓ′ e′} → IsGroupoid C → IsGroupoid D → IsGroupoid (Coproduct C D)
IsGroupoid-⊎ G₁ G₂ = record
{ _⁻¹ = λ { {inj₁ x} {inj₁ x₁} (lift f) → lift $ IsGroupoid._⁻¹ G₁ f
; {inj₂ y} {inj₂ y₁} (lift f) → lift $ IsGroupoid._⁻¹ G₂ f
}
; iso = λ { {inj₁ x} {inj₁ x₁} {lift f} → record
{ isoˡ = lift $ Iso.isoˡ i₁
; isoʳ = lift $ Iso.isoʳ i₁
}
; {inj₂ y} {inj₂ y₁} {lift f} → record
{ isoˡ = lift $ Iso.isoˡ i₂
; isoʳ = lift $ Iso.isoʳ i₂
}
}
}
where
open Morphism
i₁ = IsGroupoid.iso G₁
i₂ = IsGroupoid.iso G₂
| {
"alphanum_fraction": 0.46401766,
"avg_line_length": 43.9805825243,
"ext": "agda",
"hexsha": "d8a3eccee851474a2eba601d38398eb4665f19cc",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/Coproduct.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/Coproduct.agda",
"max_line_length": 118,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/Coproduct.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 1991,
"size": 4530
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import homotopy.EilenbergMacLane
open import cohomology.Theory
open import cohomology.SpectrumModel
open import cohomology.WithCoefficients
module cohomology.EMModel where
module _ {i} (G : Group i) (G-abelian : is-abelian G) where
open EMExplicit G G-abelian using (⊙EM; EM-level; EM-conn; spectrum)
private
E : (n : ℤ) → Ptd i
E O = ⊙EM O
E (pos m) = ⊙EM (S m)
E (neg m) = ⊙Lift ⊙Unit
E-spectrum : (n : ℤ) → ⊙Ω (E (succ n)) == E n
E-spectrum O = spectrum O
E-spectrum (pos n) = spectrum (S n)
E-spectrum (neg O) =
⊙ua (equiv (λ _ → _) (λ _ → idp)
(λ _ → idp) (prop-has-all-paths (EM-level _ _ _) _))
idp
E-spectrum (neg (S n)) =
⊙ua (equiv (λ _ → _) (λ _ → idp)
(λ _ → idp) (prop-has-all-paths (Lift-level Unit-is-set _ _) _))
idp
EM-Cohomology : CohomologyTheory i
EM-Cohomology = spectrum-cohomology E E-spectrum
open CohomologyTheory EM-Cohomology
EM-dimension : (n : ℤ) → n ≠ O → C n (⊙Sphere O) == 0ᴳ
EM-dimension O neq = ⊥-rec (neq idp)
EM-dimension (pos n) _ =
contr-is-0ᴳ _ $ connected-at-level-is-contr
(Trunc-level {n = ⟨0⟩})
(Trunc-preserves-conn ⟨0⟩
(transport (λ B → is-connected ⟨0⟩ B)
(! (Bool⊙→-path _))
(path-conn (connected-≤T (⟨⟩-monotone-≤ (≤-ap-S (O≤ n)))
(EM-conn (S n))))))
EM-dimension (neg O) _ =
contr-is-0ᴳ _ $ Trunc-preserves-level ⟨0⟩ $ ⊙→-level $
inhab-prop-is-contr idp (EM-level O _ _)
EM-dimension (neg (S n)) _ =
contr-is-0ᴳ _ $ Trunc-preserves-level ⟨0⟩ $ ⊙→-level $
Lift-level Unit-is-prop _ _
EM-Ordinary : OrdinaryTheory i
EM-Ordinary = ordinary-theory EM-Cohomology EM-dimension
| {
"alphanum_fraction": 0.5799442897,
"avg_line_length": 31.4912280702,
"ext": "agda",
"hexsha": "73391ce051c0775667b8a5a4c0dc136d06251307",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "cohomology/EMModel.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "cohomology/EMModel.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "cohomology/EMModel.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 657,
"size": 1795
} |
import Lvl
open import Type
module Structure.Logic.Constructive.NaturalDeduction {ℓₗ} {Formula : Type{ℓₗ}} {ℓₘₗ} (Proof : Formula → Type{ℓₘₗ}) where
open import Functional
module Propositional where
-- Rules of bottom
record Bottom(⊥ : Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where
field
elim : ∀{X} → Proof(⊥) → Proof(X)
-- Rules of top
record Top(⊤ : Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where
field
intro : Proof(⊤)
-- Rules of conjunction
record Conjunction(_∧_ : Formula → Formula → Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where
field
intro : ∀{X Y} → Proof(X) → Proof(Y) → Proof(X ∧ Y)
elimₗ : ∀{X Y} → Proof(X ∧ Y) → Proof(X)
elimᵣ : ∀{X Y} → Proof(X ∧ Y) → Proof(Y)
redundancyₗ : ∀{X} → Proof(X ∧ X) ← Proof(X)
redundancyₗ x = intro x x
redundancyᵣ : ∀{X} → Proof(X ∧ X) → Proof(X)
redundancyᵣ = elimₗ
transitivity : ∀{X Y Z} → Proof(X ∧ Y) → Proof(Y ∧ Z) → Proof(X ∧ Z)
transitivity xy yz = intro(elimₗ xy) (elimᵣ yz)
commutativity : ∀{X Y} → Proof(X ∧ Y) → Proof(Y ∧ X)
commutativity xy = intro(elimᵣ xy) (elimₗ xy)
associativityₗ : ∀{X Y Z} → Proof((X ∧ Y) ∧ Z) ← Proof(X ∧ (Y ∧ Z))
associativityₗ xyz = intro (intro (elimₗ xyz) (elimₗ(elimᵣ xyz))) (elimᵣ(elimᵣ xyz))
associativityᵣ : ∀{X Y Z} → Proof((X ∧ Y) ∧ Z) → Proof(X ∧ (Y ∧ Z))
associativityᵣ xyz = intro (elimₗ(elimₗ xyz)) (intro (elimᵣ(elimₗ xyz)) (elimᵣ xyz))
-- Rules of implication
record Implication(_⟶_ : Formula → Formula → Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where
field
intro : ∀{X Y} → (Proof(X) → Proof(Y)) → Proof(X ⟶ Y)
elim : ∀{X Y} → Proof(X ⟶ Y) → Proof(X) → Proof(Y)
reflexivity : ∀{X} → Proof(X ⟶ X)
reflexivity = intro id
transitivity : ∀{X Y Z} → Proof(X ⟶ Y) → Proof(Y ⟶ Z) → Proof(X ⟶ Z)
transitivity xy yz = intro((elim yz) ∘ (elim xy))
-- Rules of reversed implication
record Consequence(_⟵_ : Formula → Formula → Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where
field
intro : ∀{X Y} → (Proof(X) → Proof(Y)) → Proof(Y ⟵ X)
elim : ∀{X Y} → Proof(Y ⟵ X) → Proof(X) → Proof(Y)
reflexivity : ∀{X} → Proof(X ⟵ X)
reflexivity = intro id
transitivity : ∀{X Y Z} → Proof(X ⟵ Y) → Proof(Y ⟵ Z) → Proof(X ⟵ Z)
transitivity xy yz = intro((elim xy) ∘ (elim yz))
-- Rules of equivalence
record Equivalence(_⟷_ : Formula → Formula → Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where
field
intro : ∀{X Y} → (Proof(X) ← Proof(Y)) → (Proof(X) → Proof(Y)) → Proof(X ⟷ Y)
elimₗ : ∀{X Y} → Proof(X ⟷ Y) → Proof(Y) → Proof(X)
elimᵣ : ∀{X Y} → Proof(X ⟷ Y) → Proof(X) → Proof(Y)
reflexivity : ∀{X} → Proof(X ⟷ X)
reflexivity = intro id id
commutativity : ∀{X Y} → Proof(X ⟷ Y) → Proof(Y ⟷ X)
commutativity xy = intro(elimᵣ xy) (elimₗ xy)
transitivity : ∀{X Y Z} → Proof(X ⟷ Y) → Proof(Y ⟷ Z) → Proof(X ⟷ Z)
transitivity xy yz = intro ((elimₗ xy) ∘ (elimₗ yz)) ((elimᵣ yz) ∘ (elimᵣ xy))
-- Rules of disjunction
record Disjunction(_∨_ : Formula → Formula → Formula) : Type{ℓₘₗ Lvl.⊔ ℓₗ} where
field
introₗ : ∀{X Y} → Proof(X) → Proof(X ∨ Y)
introᵣ : ∀{X Y} → Proof(Y) → Proof(X ∨ Y)
elim : ∀{X Y Z} → (Proof(X) → Proof(Z)) → (Proof(Y) → Proof(Z)) → Proof(X ∨ Y) → Proof(Z)
redundancyₗ : ∀{X} → Proof(X ∨ X) ← Proof(X)
redundancyₗ = introₗ
redundancyᵣ : ∀{X} → Proof(X ∨ X) → Proof(X)
redundancyᵣ = elim id id
commutativity : ∀{X Y} → Proof(X ∨ Y) → Proof(Y ∨ X)
commutativity = elim(introᵣ)(introₗ)
associativityₗ : ∀{X Y Z} → Proof((X ∨ Y) ∨ Z) ← Proof(X ∨ (Y ∨ Z))
associativityₗ = elim(introₗ ∘ introₗ) (elim (introₗ ∘ introᵣ) (introᵣ))
associativityᵣ : ∀{X Y Z} → Proof((X ∨ Y) ∨ Z) → Proof(X ∨ (Y ∨ Z))
associativityᵣ = elim(elim (introₗ) (introᵣ ∘ introₗ)) (introᵣ ∘ introᵣ)
-- Rules of negation
record Negation(¬_ : Formula → Formula) {⊥} ⦃ _ : Bottom(⊥) ⦄ : Type{ℓₘₗ Lvl.⊔ ℓₗ} where
open Bottom ⦃ ... ⦄
field
intro : ∀{X} → (Proof(X) → Proof(⊥)) → Proof(¬ X)
elim : ∀{X} → Proof(¬ X) → Proof(X) → Proof(⊥)
record Signature : Type{ℓₗ} where
infixl 1005 _∧_
infixl 1000 _⟶_
infixl 1000 _⟵_
infixl 1000 _⟷_
infixl 1004 _∨_
infixl 1010 ¬_
field
⊥ : Formula
⊤ : Formula
_∧_ : Formula → Formula → Formula
_⟶_ : Formula → Formula → Formula
_⟷_ : Formula → Formula → Formula
_∨_ : Formula → Formula → Formula
¬_ : Formula → Formula
_⟵_ : Formula → Formula → Formula
_⟵_ = swap _⟶_
-- A theory of constructive propositional logic expressed using natural deduction rules
record Theory ⦃ sign : Signature ⦄ : Type{ℓₘₗ Lvl.⊔ ℓₗ} where
open Signature(sign)
field
instance ⦃ bottom ⦄ : Bottom(⊥)
instance ⦃ top ⦄ : Top(⊤)
instance ⦃ conjunction ⦄ : Conjunction(_∧_)
instance ⦃ disjunction ⦄ : Disjunction(_∨_)
instance ⦃ implication ⦄ : Implication(_⟶_)
instance ⦃ consequence ⦄ : Consequence(_⟵_)
instance ⦃ equivalence ⦄ : Equivalence(_⟷_)
instance ⦃ negation ⦄ : Negation(¬_) ⦃ bottom ⦄
module [⊥] = Bottom (bottom)
module [⊤] = Top (top)
module [∧] = Conjunction (conjunction)
module [∨] = Disjunction (disjunction)
module [→] = Implication (implication)
module [←] = Consequence (consequence)
module [↔] = Equivalence (equivalence)
module [¬] = Negation (negation)
module Domained {ℓₒ} (Domain : Type{ℓₒ}) where
module Predicate where
record UniversalQuantification(∀ₗ : (Domain → Formula) → Formula) : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
field
intro : ∀{P : Domain → Formula} → (∀{x : Domain} → Proof(P(x))) → Proof(∀ₗ P)
elim : ∀{P : Domain → Formula} → Proof(∀ₗ P) → (∀{x : Domain} → Proof(P(x)))
record ExistentialQuantification(∃ₗ : (Domain → Formula) → Formula) : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
field
intro : ∀{P : Domain → Formula}{a} → Proof(P(a)) → Proof(∃ₗ P)
elim : ∀{P : Domain → Formula}{Z : Formula} → (∀{x : Domain} → Proof(P(x)) → Proof(Z)) → Proof(∃ₗ P) → Proof(Z)
-- These allows the creation of new symbols which points to something which exists and is unique.
-- TODO: Does this make this theory have no models? For functions, the functions in the meta-theory here (Agda-functions) represent computable things, and all unique existances are not computable. Normally in set theory, one could interpret every (f(x) = y)-formula as ((x,y) ∈ f), so normally it probably works out in the end of the day?
record ExistentialWitness(∃ₗ : (Domain → Formula) → Formula) : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
field
[∃]-witness : ∀{P : Domain → Formula} → ⦃ _ : Proof(∃ₗ P) ⦄ → Domain
[∃]-proof : ∀{P : Domain → Formula} → ⦃ p : Proof(∃ₗ P) ⦄ → Proof(P([∃]-witness{P} ⦃ p ⦄))
record Signature : Type{ℓₗ Lvl.⊔ ℓₒ} where
field
∀ₗ : (Domain → Formula) → Formula
∃ₗ : (Domain → Formula) → Formula
NonEmptyDomain = ∀{P} → Proof(P) → Proof(∃ₗ(const P))
-- A theory of constructive predicate/(first-order) logic expressed using natural deduction rules
record Theory ⦃ sign : Signature ⦄ : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
open Signature(sign)
field
instance ⦃ universalQuantification ⦄ : UniversalQuantification(∀ₗ)
instance ⦃ existentialQuantification ⦄ : ExistentialQuantification(∃ₗ)
module [∀] = UniversalQuantification (universalQuantification)
module [∃] = ExistentialQuantification (existentialQuantification)
module NonEmptyDomain ⦃ nonEmptyDomain : NonEmptyDomain ⦄ where
[∀]-redundancyₗ : ∀{φ} → Proof(∀ₗ(const φ)) ← Proof(φ)
[∀]-redundancyₗ (proof) = [∀].intro(\{_} → proof)
[∀]-redundancyᵣ : ∀{φ} → Proof(∀ₗ(const φ)) → Proof(φ)
[∀]-redundancyᵣ (proof) = [∃].elim(\{x} → _ ↦ [∀].elim(proof){x}) (nonEmptyDomain proof)
[∃]-redundancyₗ : ∀{φ} → Proof(∃ₗ(const φ)) ← Proof(φ)
[∃]-redundancyₗ (proof) = [∃].elim(\{x} → _ ↦ [∃].intro{_}{x}(proof)) (nonEmptyDomain proof)
[∃]-redundancyᵣ : ∀{φ} → Proof(∃ₗ(const φ)) → Proof(φ)
[∃]-redundancyᵣ = [∃].elim(\{_} → id)
module Equality where
-- Rules of equality
record Equality(_≡_ : Domain → Domain → Formula) : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
field
intro : ∀{x} → Proof(x ≡ x)
elimᵣ : ∀{P : Domain → Formula}{a b} → Proof(a ≡ b) → Proof(P(a)) → Proof(P(b))
symmetry : ∀{a b} → Proof(a ≡ b) → Proof(b ≡ a)
symmetry{a} (proof) = elimᵣ{x ↦ x ≡ a} (proof) (intro{a})
elimₗ : ∀{P : Domain → Formula}{a b} → Proof(a ≡ b) → Proof(P(a)) ← Proof(P(b))
elimₗ (proof) (pb) = elimᵣ (symmetry proof) (pb)
transitivity : ∀{a b c} → Proof(a ≡ b) → Proof(b ≡ c) → Proof(a ≡ c)
transitivity (ab) (bc) = elimᵣ bc ab
record Signature : Type{ℓₗ Lvl.⊔ ℓₒ} where
infixl 2000 _≡_
field
_≡_ : Domain → Domain → Formula
module PropositionallyDerivedSignature ⦃ propositional : Propositional.Signature ⦄ ⦃ sign : Signature ⦄ where
open Propositional.Signature(propositional)
open Signature(sign)
_≢_ : Domain → Domain → Formula
_≢_ a b = ¬(_≡_ a b)
record Theory ⦃ sign : Signature ⦄ : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
open Signature(sign)
field
instance ⦃ equality ⦄ : Equality(_≡_)
module [≡] = Equality(equality)
module Uniqueness ⦃ propositionalSign : Propositional.Signature ⦄ ⦃ predicateSign : Predicate.Signature ⦄ ⦃ equalitySign : Equality.Signature ⦄ where
open Propositional.Signature(propositionalSign)
open Predicate.Signature(predicateSign)
open Equality.Signature(equalitySign)
module Signature where
-- Definition of uniqueness of a property.
-- This means that there is at most one element that satisfies this property.
-- This is similiar to "Injective" for functions, but this is for statements.
Unique : (Domain → Formula) → Formula
Unique(P) = ∀ₗ(x ↦ ∀ₗ(y ↦ (P(x) ∧ P(y)) ⟶ (x ≡ y)))
-- Definition of existence of an unique element satisfying a property.
-- This means that there is one and only one element that satisfies this property.
∃ₗ! : (Domain → Formula) → Formula
∃ₗ! P = ((∃ₗ P) ∧ Unique(P))
module _ ⦃ propositional : Propositional.Theory ⦄ ⦃ predicate : Predicate.Theory ⦄ ⦃ equality : Equality.Theory ⦄ where
open Signature
open Propositional.Theory(propositional)
open Predicate.Theory(predicate)
open Equality.Theory(equality)
module WitnessTheory ⦃ existentialWitness : Predicate.ExistentialWitness(∃ₗ) ⦄ where
open Predicate.ExistentialWitness(existentialWitness)
[∃!]-witness : ∀{P : Domain → Formula} → ⦃ _ : Proof(∃ₗ! P) ⦄ → Domain
[∃!]-witness{P} ⦃ proof ⦄ = [∃]-witness{P} ⦃ [∧].elimₗ proof ⦄
[∃!]-proof : ∀{P : Domain → Formula} → ⦃ p : Proof(∃ₗ! P) ⦄ → Proof(P([∃!]-witness{P} ⦃ p ⦄))
[∃!]-proof{P} ⦃ proof ⦄ = [∃]-proof{P} ⦃ [∧].elimₗ proof ⦄
[∃!]-unique : ∀{P : Domain → Formula} → ⦃ p : Proof(∃ₗ! P) ⦄ → Proof(∀ₗ(x ↦ P(x) ⟶ (x ≡ [∃!]-witness{P} ⦃ p ⦄)))
[∃!]-unique{P} ⦃ proof ⦄ =
([∀].intro(\{x} →
([→].intro(px ↦
([→].elim
([∀].elim([∀].elim([∧].elimᵣ proof) {x}) {[∃!]-witness{P} ⦃ proof ⦄})
([∧].intro
(px)
([∃!]-proof{P} ⦃ proof ⦄)
)
)
))
))
module _ {ℓₒ} (Domain : Type{ℓₒ}) where
record ConstructiveLogicSignature : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
open Domained(Domain)
field
instance ⦃ propositionalSignature ⦄ : Propositional.Signature
instance ⦃ predicateSignature ⦄ : Predicate.Signature
instance ⦃ equalitySignature ⦄ : Equality.Signature
open Propositional.Signature(propositionalSignature) public
open Predicate.Signature(predicateSignature) public
open Equality.Signature(equalitySignature) public
open Equality.PropositionallyDerivedSignature ⦃ propositionalSignature ⦄ ⦃ equalitySignature ⦄ public
open Uniqueness.Signature ⦃ propositionalSignature ⦄ ⦃ predicateSignature ⦄ ⦃ equalitySignature ⦄ public
record ConstructiveLogic : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
open Domained(Domain)
field
instance ⦃ constructiveLogicSignature ⦄ : ConstructiveLogicSignature
open ConstructiveLogicSignature public
field
instance ⦃ propositionalTheory ⦄ : Propositional.Theory
instance ⦃ predicateTheory ⦄ : Predicate.Theory
instance ⦃ equalityTheory ⦄ : Equality.Theory
open Propositional.Theory(propositionalTheory) public
open Predicate.Theory(predicateTheory) public
open Equality.Theory(equalityTheory) public
module MultiSorted {ℓₒ} {Sorts : Type{ℓₒ}} (Domain : Sorts → Type{ℓₒ}) where
module Predicate where
record UniversalQuantification(∀ₗ : ∀{Sort} → (Domain(Sort) → Formula) → Formula) : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
field
intro : ∀{Sort}{P : Domain(Sort) → Formula} → (∀{x : Domain(Sort)} → Proof(P(x))) → Proof(∀ₗ P)
elim : ∀{Sort}{P : Domain(Sort) → Formula} → Proof(∀ₗ P) → (∀{x : Domain(Sort)} → Proof(P(x)))
record ExistentialQuantification(∃ₗ : ∀{Sort} → (Domain(Sort) → Formula) → Formula) : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
field
intro : ∀{Sort}{P : Domain(Sort) → Formula}{a} → Proof(P(a)) → Proof(∃ₗ P)
elim : ∀{Sort}{P : Domain(Sort) → Formula}{Z : Formula} → (∀{x : Domain(Sort)} → Proof(P(x)) → Proof(Z)) → Proof(∃ₗ P) → Proof(Z)
record Signature : Type{ℓₗ Lvl.⊔ ℓₒ} where
field
∀ₗ : ∀{Sort} → (Domain(Sort) → Formula) → Formula
∃ₗ : ∀{Sort} → (Domain(Sort) → Formula) → Formula
-- A theory of constructive predicate/(first-order) multi-sorted logic expressed using natural deduction rules
record Theory ⦃ sign : Signature ⦄ : Type{ℓₘₗ Lvl.⊔ (ℓₗ Lvl.⊔ ℓₒ)} where
open Signature(sign)
field
instance ⦃ universalQuantification ⦄ : UniversalQuantification(∀ₗ)
instance ⦃ existentialQuantification ⦄ : ExistentialQuantification(∃ₗ)
module [∀] = UniversalQuantification (universalQuantification)
module [∃] = ExistentialQuantification (existentialQuantification)
| {
"alphanum_fraction": 0.5940669723,
"avg_line_length": 41.1257142857,
"ext": "agda",
"hexsha": "77e3bf9cdfd5bf927888afe2ba005ca556b50b8a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Structure/Logic/Constructive/NaturalDeduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Structure/Logic/Constructive/NaturalDeduction.agda",
"max_line_length": 342,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Structure/Logic/Constructive/NaturalDeduction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 5281,
"size": 14394
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.Equivalence2
open import lib.Function2
open import lib.NType2
open import lib.types.Coproduct
open import lib.types.Fin
open import lib.types.Group
open import lib.types.Int
open import lib.types.Nat
open import lib.types.Pi
open import lib.types.Subtype
open import lib.types.Truncation
open import lib.groups.SubgroupProp
module lib.groups.Homomorphism where
{-
Group homomorphisms.
-}
preserves-comp : ∀ {i j} {A : Type i} {B : Type j}
(A-comp : A → A → A) (B-comp : B → B → B) (f : A → B)
→ Type (lmax i j)
preserves-comp Ac Bc f = ∀ a₁ a₂ → f (Ac a₁ a₂) == Bc (f a₁) (f a₂)
preserves-comp-prop : ∀ {i j} {A : Type i} {B : Type j}
{{_ : is-set B}} (A-comp : A → A → A) (B-comp : B → B → B)
→ SubtypeProp (A → B) (lmax i j)
preserves-comp-prop Ac Bc =
preserves-comp Ac Bc , ⟨⟩
abstract
∼-preserves-preserves-comp : ∀ {i j} {A : Type i} {B : Type j}
(A-comp : A → A → A) (B-comp : B → B → B) {f₀ f₁ : A → B} → f₀ ∼ f₁
→ preserves-comp A-comp B-comp f₀
→ preserves-comp A-comp B-comp f₁
∼-preserves-preserves-comp Ac Bc {f₀ = f₀} {f₁} f₀∼f₁ f₀-pc a₁ a₂ =
! (f₀∼f₁ (Ac a₁ a₂)) ∙ f₀-pc a₁ a₂ ∙ ap2 Bc (f₀∼f₁ a₁) (f₀∼f₁ a₂)
record GroupStructureHom {i j} {GEl : Type i} {HEl : Type j}
(GS : GroupStructure GEl) (HS : GroupStructure HEl) : Type (lmax i j) where
constructor group-structure-hom
private
module G = GroupStructure GS
module H = GroupStructure HS
field
f : GEl → HEl
pres-comp : preserves-comp G.comp H.comp f
abstract
pres-ident : f G.ident == H.ident
pres-ident = H.cancel-l (f G.ident) $
H.comp (f G.ident) (f G.ident)
=⟨ ! (pres-comp G.ident G.ident) ⟩
f (G.comp G.ident G.ident)
=⟨ ap f (G.unit-l G.ident) ⟩
f G.ident
=⟨ ! (H.unit-r (f G.ident)) ⟩
H.comp (f G.ident) H.ident =∎
pres-inv : ∀ g → f (G.inv g) == H.inv (f g)
pres-inv g = ! $ H.inv-unique-l _ _ $
H.comp (f (G.inv g)) (f g)
=⟨ ! (pres-comp (G.inv g) g) ⟩
f (G.comp (G.inv g) g)
=⟨ ap f (G.inv-l g) ⟩
f G.ident
=⟨ pres-ident ⟩
H.ident
=∎
pres-exp : ∀ g i → f (G.exp g i) == H.exp (f g) i
pres-exp g (pos O) = pres-ident
pres-exp g (pos (S O)) = idp
pres-exp g (pos (S (S n))) = pres-comp g (G.exp g (pos (S n))) ∙ ap (H.comp (f g)) (pres-exp g (pos (S n)))
pres-exp g (negsucc O) = pres-inv g
pres-exp g (negsucc (S n)) = pres-comp (G.inv g) (G.exp g (negsucc n)) ∙ ap2 H.comp (pres-inv g) (pres-exp g (negsucc n))
pres-conj : ∀ g h → f (G.conj g h) == H.conj (f g) (f h)
pres-conj g h = pres-comp (G.comp g h) (G.inv g) ∙ ap2 H.comp (pres-comp g h) (pres-inv g)
pres-diff : ∀ g h → f (G.diff g h) == H.diff (f g) (f h)
pres-diff g h = pres-comp g (G.inv h) ∙ ap (H.comp (f g)) (pres-inv h)
pres-sum : ∀ {I : ℕ} (g : Fin I → GEl) → f (G.sum g) == H.sum (f ∘ g)
pres-sum {I = O} _ = pres-ident
pres-sum {I = S I} g = pres-comp (G.sum (g ∘ Fin-S)) (g (_ , ltS))
∙ ap (λ h → H.comp h (f (g (_ , ltS)))) (pres-sum (g ∘ Fin-S))
pres-subsum-r : ∀ {k l} {I : ℕ} {A : Type k} {B : Type l}
→ (p : Fin I → Coprod A B) (g : B → GEl)
→ f (G.subsum-r p g) == H.subsum-r p (f ∘ g)
pres-subsum-r p g = pres-sum (Coprod-rec (λ _ → G.ident) g ∘ p)
∙ ap H.sum (λ= λ x →
Coprod-rec-post∘ f (λ _ → G.ident) g (p x)
∙ ap (λ h → Coprod-rec h (f ∘ g) (p x)) (λ= λ _ → pres-ident))
⊙f : ⊙[ GEl , G.ident ] ⊙→ ⊙[ HEl , H.ident ]
⊙f = f , pres-ident
infix 0 _→ᴳˢ_ -- [ˢ] for structures
_→ᴳˢ_ = GroupStructureHom
record GroupHom {i j} (G : Group i) (H : Group j) : Type (lmax i j) where
constructor group-hom
private
module G = Group G
module H = Group H
field
f : G.El → H.El
pres-comp : ∀ g₁ g₂ → f (G.comp g₁ g₂) == H.comp (f g₁) (f g₂)
open GroupStructureHom {GS = G.group-struct} {HS = H.group-struct}
record {f = f ; pres-comp = pres-comp} hiding (f ; pres-comp) public
infix 0 _→ᴳ_
_→ᴳ_ = GroupHom
→ᴳˢ-to-→ᴳ : ∀ {i j} {G : Group i} {H : Group j}
→ (Group.group-struct G →ᴳˢ Group.group-struct H) → (G →ᴳ H)
→ᴳˢ-to-→ᴳ (group-structure-hom f pres-comp) = group-hom f pres-comp
idhom : ∀ {i} (G : Group i) → (G →ᴳ G)
idhom G = group-hom (idf _) (λ _ _ → idp)
idshom : ∀ {i} {GEl : Type i} (GS : GroupStructure GEl) → (GS →ᴳˢ GS)
idshom GS = group-structure-hom (idf _) (λ _ _ → idp)
{- constant (zero) homomorphism -}
module _ where
cst-hom : ∀ {i j} {G : Group i} {H : Group j} → (G →ᴳ H)
cst-hom {H = H} = group-hom (cst (Group.ident H)) (λ _ _ → ! (Group.unit-l H _))
{- negation is a homomorphism in an abelian gruop -}
inv-hom : ∀ {i} (G : AbGroup i) → GroupHom (AbGroup.grp G) (AbGroup.grp G)
inv-hom G = group-hom G.inv inv-pres-comp where
module G = AbGroup G
abstract
inv-pres-comp : (g₁ g₂ : G.El) → G.inv (G.comp g₁ g₂) == G.comp (G.inv g₁) (G.inv g₂)
inv-pres-comp g₁ g₂ = G.inv-comp g₁ g₂ ∙ G.comm (G.inv g₂) (G.inv g₁)
{- equality of homomorphisms -}
abstract
group-hom= : ∀ {i j} {G : Group i} {H : Group j} {φ ψ : G →ᴳ H}
→ GroupHom.f φ == GroupHom.f ψ → φ == ψ
group-hom= {G = G} {H = H} p = ap (uncurry group-hom) $
Subtype=-out (preserves-comp-prop (Group.comp G) (Group.comp H)) p
group-hom=-↓ : ∀ {i j k} {A : Type i} {G : A → Group j} {H : A → Group k} {x y : A}
{p : x == y} {φ : G x →ᴳ H x} {ψ : G y →ᴳ H y}
→ GroupHom.f φ == GroupHom.f ψ
[ (λ a → Group.El (G a) → Group.El (H a)) ↓ p ]
→ φ == ψ [ (λ a → G a →ᴳ H a) ↓ p ]
group-hom=-↓ {p = idp} = group-hom=
abstract
instance
GroupHom-level : ∀ {i j} {G : Group i} {H : Group j} → is-set (G →ᴳ H)
GroupHom-level {G = G} {H = H} = equiv-preserves-level
(equiv (uncurry group-hom) (λ x → GroupHom.f x , GroupHom.pres-comp x)
(λ _ → idp) (λ _ → idp))
{{Subtype-level
(preserves-comp-prop (Group.comp G) (Group.comp H))}}
infixr 80 _∘ᴳˢ_ _∘ᴳ_
abstract
∘ᴳˢ-pres-comp : ∀ {i j k} {GEl : Type i} {HEl : Type j} {KEl : Type k}
{GS : GroupStructure GEl} {HS : GroupStructure HEl} {KS : GroupStructure KEl}
(ψ : HS →ᴳˢ KS) (φ : GS →ᴳˢ HS)
→ preserves-comp (GroupStructure.comp GS) (GroupStructure.comp KS) (GroupStructureHom.f ψ ∘ GroupStructureHom.f φ)
∘ᴳˢ-pres-comp ψ φ g₁ g₂ = ap (GroupStructureHom.f ψ) (GroupStructureHom.pres-comp φ g₁ g₂)
∙ GroupStructureHom.pres-comp ψ (GroupStructureHom.f φ g₁) (GroupStructureHom.f φ g₂)
∘ᴳ-pres-comp : ∀ {i j k} {G : Group i} {H : Group j} {K : Group k} (ψ : H →ᴳ K) (φ : G →ᴳ H)
→ preserves-comp (Group.comp G) (Group.comp K) (GroupHom.f ψ ∘ GroupHom.f φ)
∘ᴳ-pres-comp ψ φ g₁ g₂ = ap (GroupHom.f ψ) (GroupHom.pres-comp φ g₁ g₂)
∙ GroupHom.pres-comp ψ (GroupHom.f φ g₁) (GroupHom.f φ g₂)
_∘ᴳˢ_ : ∀ {i j k} {GEl : Type i} {HEl : Type j} {KEl : Type k}
{GS : GroupStructure GEl} {HS : GroupStructure HEl} {KS : GroupStructure KEl}
→ (HS →ᴳˢ KS) → (GS →ᴳˢ HS) → (GS →ᴳˢ KS)
ψ ∘ᴳˢ φ = group-structure-hom (GroupStructureHom.f ψ ∘ GroupStructureHom.f φ) (∘ᴳˢ-pres-comp ψ φ)
_∘ᴳ_ : ∀ {i j k} {G : Group i} {H : Group j} {K : Group k}
→ (H →ᴳ K) → (G →ᴳ H) → (G →ᴳ K)
ψ ∘ᴳ φ = group-hom (GroupHom.f ψ ∘ GroupHom.f φ) (∘ᴳ-pres-comp ψ φ)
{- algebraic properties -}
∘ᴳ-unit-r : ∀ {i j} {G : Group i} {H : Group j} (φ : G →ᴳ H)
→ φ ∘ᴳ idhom G == φ
∘ᴳ-unit-r φ = group-hom= idp
∘ᴳ-unit-l : ∀ {i j} {G : Group i} {H : Group j} (φ : G →ᴳ H)
→ idhom H ∘ᴳ φ == φ
∘ᴳ-unit-l φ = group-hom= idp
∘ᴳ-assoc : ∀ {i j k l} {G : Group i} {H : Group j} {K : Group k} {L : Group l}
(χ : K →ᴳ L) (ψ : H →ᴳ K) (φ : G →ᴳ H)
→ (χ ∘ᴳ ψ) ∘ᴳ φ == χ ∘ᴳ ψ ∘ᴳ φ
∘ᴳ-assoc χ ψ φ = group-hom= idp
is-injᴳ : ∀ {i j} {G : Group i} {H : Group j}
→ (G →ᴳ H) → Type (lmax i j)
is-injᴳ hom = is-inj (GroupHom.f hom)
is-surjᴳ : ∀ {i j} {G : Group i} {H : Group j}
→ (G →ᴳ H) → Type (lmax i j)
is-surjᴳ hom = is-surj (GroupHom.f hom)
{- subgroups -}
infix 80 _∘subᴳ_
_∘subᴳ_ : ∀ {i j k} {G : Group i} {H : Group j}
→ SubgroupProp H k → (G →ᴳ H) → SubgroupProp G k
_∘subᴳ_ {k = k} {G = G} P φ = record {M} where
module G = Group G
module P = SubgroupProp P
module φ = GroupHom φ
module M where
prop : G.El → Type k
prop = P.prop ∘ φ.f
abstract
ident : prop G.ident
ident = transport! P.prop φ.pres-ident P.ident
diff : {g₁ g₂ : G.El} → prop g₁ → prop g₂ → prop (G.diff g₁ g₂)
diff {g₁} {g₂} pφg₁ pφg₂ = transport! P.prop
(φ.pres-diff g₁ g₂)
(P.diff pφg₁ pφg₂)
infix 80 _∘nsubᴳ_
_∘nsubᴳ_ : ∀ {i j k} {G : Group i} {H : Group j}
→ NormalSubgroupProp H k → (G →ᴳ H) → NormalSubgroupProp G k
_∘nsubᴳ_ {G = G} {H} P φ = P.propᴳ ∘subᴳ φ , P-φ-is-normal
where module P = NormalSubgroupProp P
module φ = GroupHom φ
abstract
P-φ-is-normal : is-normal (P.propᴳ ∘subᴳ φ)
P-φ-is-normal g₁ {g₂} pφg₂ = transport! P.prop
(φ.pres-conj g₁ g₂)
(P.conj (φ.f g₁) pφg₂)
{- kernels and images -}
module _ {i j} {G : Group i} {H : Group j} (φ : G →ᴳ H) where
private
module G = Group G
module H = Group H
module φ = GroupHom φ
ker-propᴳ : SubgroupProp G j
ker-propᴳ = record {M} where
module M where
prop : G.El → Type j
prop g = φ.f g == H.ident
abstract
ident : prop G.ident
ident = φ.pres-ident
diff : {g₁ g₂ : G.El} → prop g₁ → prop g₂ → prop (G.diff g₁ g₂)
diff {g₁} {g₂} p₁ p₂ = φ.pres-diff g₁ g₂ ∙ ap2 H.diff p₁ p₂ ∙ H.inv-r H.ident
-- 'n' for 'normal'
ker-npropᴳ : NormalSubgroupProp G j
ker-npropᴳ = ker-propᴳ , ker-is-normal where
abstract
ker-is-normal : is-normal ker-propᴳ
ker-is-normal g₁ {g₂} pg₂ =
φ.pres-conj g₁ g₂
∙ ap (H.conj (φ.f g₁)) pg₂
∙ H.conj-ident-r (φ.f g₁)
im-propᴳ : SubgroupProp H (lmax i j)
im-propᴳ = record {M} where
module M where
prop : H.El → Type (lmax i j)
prop h = Trunc -1 (hfiber φ.f h)
level : (h : H.El) → is-prop (prop h)
level h = Trunc-level
abstract
ident : prop H.ident
ident = [ G.ident , φ.pres-ident ]
diff : {h₁ h₂ : H.El} → prop h₁ → prop h₂ → prop (H.diff h₁ h₂)
diff = Trunc-fmap2 λ {(g₁ , p₁) (g₂ , p₂)
→ G.diff g₁ g₂ , φ.pres-diff g₁ g₂ ∙ ap2 H.diff p₁ p₂}
im-npropᴳ : is-abelian H → NormalSubgroupProp H (lmax i j)
im-npropᴳ H-is-abelian = sub-abelian-normal H-is-abelian im-propᴳ
has-trivial-kerᴳ : Type (lmax i j)
has-trivial-kerᴳ = is-trivial-propᴳ ker-propᴳ
abstract
-- any homomorphism with trivial kernel is injective
has-trivial-ker-is-injᴳ : has-trivial-kerᴳ → is-injᴳ φ
has-trivial-ker-is-injᴳ tk g₁ g₂ p =
G.zero-diff-same g₁ g₂ $ tk (G.diff g₁ g₂) $
φ.pres-diff g₁ g₂ ∙ ap (λ h → H.diff h (φ.f g₂)) p ∙ H.inv-r (φ.f g₂)
ker-cst-hom-is-full : ∀ {i j} (G : Group i) (H : Group j)
→ is-fullᴳ (ker-propᴳ (cst-hom {G = G} {H}))
ker-cst-hom-is-full G H g = idp
{- exactness -}
module _ {i j k} {G : Group i} {H : Group j} {K : Group k}
(φ : G →ᴳ H) (ψ : H →ᴳ K) where
private
module G = Group G
module H = Group H
module K = Group K
module φ = GroupHom φ
module ψ = GroupHom ψ
record is-exact : Type (lmax k (lmax j i)) where
field
im-sub-ker : im-propᴳ φ ⊆ᴳ ker-propᴳ ψ
ker-sub-im : ker-propᴳ ψ ⊆ᴳ im-propᴳ φ
open is-exact public
abstract
{- an equivalent version of is-exact-ktoi -}
im-sub-ker-in : is-fullᴳ (ker-propᴳ (ψ ∘ᴳ φ)) → im-propᴳ φ ⊆ᴳ ker-propᴳ ψ
im-sub-ker-in r h = Trunc-rec (λ {(g , p) → ap ψ.f (! p) ∙ r g})
im-sub-ker-out : im-propᴳ φ ⊆ᴳ ker-propᴳ ψ → is-fullᴳ (ker-propᴳ (ψ ∘ᴳ φ))
im-sub-ker-out s g = s (φ.f g) [ g , idp ]
{- homomorphisms into an abelian group can be composed with
- the group operation and form a group -}
module _ {i j} (G : Group i) (H : AbGroup j)
where
private
module G = Group G
module H = AbGroup H
hom-comp : (G →ᴳ H.grp) → (G →ᴳ H.grp) → (G →ᴳ H.grp)
hom-comp φ ψ = group-hom (λ g → H.comp (φ.f g) (ψ.f g)) hom-comp-pres-comp where
module φ = GroupHom φ
module ψ = GroupHom ψ
abstract
hom-comp-pres-comp : ∀ g₁ g₂
→ H.comp (φ.f (G.comp g₁ g₂)) (ψ.f (G.comp g₁ g₂))
== H.comp (H.comp (φ.f g₁) (ψ.f g₁)) (H.comp (φ.f g₂) (ψ.f g₂))
hom-comp-pres-comp g₁ g₂ =
H.comp (φ.f (G.comp g₁ g₂)) (ψ.f (G.comp g₁ g₂))
=⟨ ap2 H.comp (φ.pres-comp g₁ g₂) (ψ.pres-comp g₁ g₂) ⟩
H.comp (H.comp (φ.f g₁) (φ.f g₂)) (H.comp (ψ.f g₁) (ψ.f g₂))
=⟨ H.interchange (φ.f g₁) (φ.f g₂) (ψ.f g₁) (ψ.f g₂) ⟩
H.comp (H.comp (φ.f g₁) (ψ.f g₁)) (H.comp (φ.f g₂) (ψ.f g₂)) =∎
hom-group-structure : GroupStructure (G →ᴳ H.grp)
hom-group-structure = record {M} where
module M where
ident : G →ᴳ H.grp
ident = cst-hom
comp : (G →ᴳ H.grp) → (G →ᴳ H.grp) → (G →ᴳ H.grp)
comp = hom-comp
inv : (G →ᴳ H.grp) → (G →ᴳ H.grp)
inv φ = inv-hom H ∘ᴳ φ
abstract
unit-l : ∀ φ → comp ident φ == φ
unit-l φ = group-hom= $ λ= λ _ → H.unit-l _
assoc : ∀ φ ψ ξ → comp (comp φ ψ) ξ == comp φ (comp ψ ξ)
assoc φ ψ ξ = group-hom= $ λ= λ _ → H.assoc _ _ _
inv-l : ∀ φ → comp (inv φ) φ == ident
inv-l φ = group-hom= $ λ= λ _ → H.inv-l _
hom-group : Group (lmax i j)
hom-group = group (G →ᴳ H.grp) hom-group-structure
abstract
hom-group-is-abelian : is-abelian hom-group
hom-group-is-abelian φ ψ = group-hom= $ λ= λ g → H.comm _ _
hom-abgroup : AbGroup (lmax i j)
hom-abgroup = hom-group , hom-group-is-abelian
module _ {i j} {G : Group i} {H : AbGroup j} where
app-hom : Group.El G → hom-group G H →ᴳ AbGroup.grp H
app-hom g = group-hom (λ φ → GroupHom.f φ g) lemma
where abstract lemma = λ φ ψ → idp
appᴳ = app-hom
pre∘ᴳ-hom : ∀ {i j k} {G : Group i} {H : Group j} (K : AbGroup k)
→ (G →ᴳ H) → (hom-group H K →ᴳ hom-group G K)
pre∘ᴳ-hom K φ = record { f = _∘ᴳ φ ; pres-comp = lemma}
where abstract lemma = λ _ _ → group-hom= idp
post∘ᴳ-hom : ∀ {i j k} (G : Group i) (H : AbGroup j) (K : AbGroup k)
→ (AbGroup.grp H →ᴳ AbGroup.grp K) → (hom-group G H →ᴳ hom-group G K)
post∘ᴳ-hom G H K φ = record { f = φ ∘ᴳ_ ; pres-comp = lemma}
where abstract lemma = λ _ _ → group-hom= $ λ= λ _ → GroupHom.pres-comp φ _ _
| {
"alphanum_fraction": 0.5580438119,
"avg_line_length": 34.9609756098,
"ext": "agda",
"hexsha": "ee7f0d77878f63c193f840a21d931a874cea0fd7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/Homomorphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/Homomorphism.agda",
"max_line_length": 125,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/Homomorphism.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5995,
"size": 14334
} |
module Formalization where
module Introduction where
open import Data.Product using (Σ; Σ-syntax; _×_; _,_; proj₁; proj₂)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong)
data Iso (A B : Set): Set where
iso : (f : A → B) → (g : B → A) → (((x : A) → (g (f x)) ≡ x) × ((y : B) → (f (g y)) ≡ y)) → Iso A B
open import Function using (_∘_)
-- NB: This says every [total] relation can be refined to a function.
-- Kind of ew...
-- The Hott Book notes that though the system is strong enough to sufficiently
-- dilute the consequences of AC, the law of the excluded middle is inconsistent with Univalence
-- because it acts like a "Hilbertian Choice Operator" [p 9].
axiom-of-choice : {A : Set}
→ {B : A → Set}
→ {R : (a : A) → B a → Set}
→ (∀ (x : A) → Σ[ y ∈ B x ](R x y)) -- If for every x : A, ∃ a y : B x s.t. R x y
→ Σ[ f ∈ ((x : A) → B x) ](∀ (x : A) → (R x (f x))) -- then ∃ f : A → B s.t. ∀ x : A we have R (x, f(x))
axiom-of-choice g = proj₁ ∘ g , proj₂ ∘ g
module Chapter where
-- Simple Polymorphic Functions
-- ----------------------------
id : ∀{a}{A : Set a} → A → A
id x = x
swap : ∀{a b c}{A : Set a}{B : Set b}{C : Set c} → (A → B → C) → (B → A → C)
swap g = λ b a → g a b
-- Product Types
-- -------------
-- To specify a type (a la Martin Löf's TT) we need:
-- ∘ Formation Rules ("We can form f : A → B when A : Type and B : Type")
-- ∘ Introduction Rules (Constructors)
-- ∘ Elimination Rules (How to use the type's elements)
-- ∘ Computation Rules (How Elimination Rules act on constructors)
-- OPTIONAL
-- ∘ Uniqueness Principle (Every element of the type is {uniquely} determined by the result of applying Elimination Rules)
-- Formation and Introduction of Pairs is given in Data.Product, so here's an Eliminator
{- Need function extensionality here, but I'm too lazy to postulate it right now.
elimₓ-β : {A B C : Set} → (f : (A × B) → C) → (g : (A → B → C)) → (x : A)(y : B) → (f (x , y) ≡ g x y)
elimₓ-β = λ f g x y → refl
-}
-- The projection functons also count as eliminators, but are too specific on occaision
-- so we introduce the recursor for product types.
recₓ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c} → (A → B → C) → (A × B) → C
recₓ g (a , b) = g a b
-- Then define the projection functions in terms of it.
pr₁ : ∀{a b}{A : Set a}{B : Set b} → (A × B) → A
pr₁ = recₓ λ a → λ b → a
pr₂ : ∀{a b}{A : Set a}{B : Set b} → (A × B) → B
pr₂ = recₓ λ a → λ b → b
-- The Unit Type also has a recursor:
open import Data.Unit
rec₁ : ∀{c}{C : Set c} → C → ⊤ → C
rec₁ c ⋆ = c
-- For dependent functions over the product type, we must first generalize the recursor
recₓ-general : ∀{a b c}{A : Set a}{B : Set b}{C : (A × B) → Set c} → (x : A × B) → (g : (a : A) → (b : B) → C (a , b)) → C x
recₓ-general = λ x g → g (pr₁ x) (pr₂ x)
-- Now we can prove the propositional uniqueness principle
uppt : ∀{a b}{A : Set a}{B : Set b} → (x : A × B) → ((pr₁ x) , (pr₂ x) ≡ x)
uppt x = refl
-- And compute the following equality:
reflₓ : ∀{a b}{A : Set a}{B : Set b}
→ (x : A)(y : B) -- ∀ x, y
→ ((pr₁ (x , y)) , (pr₂ (x , y)) ≡ (x , y)) -- Forming from forming then eliminating is the same as forming
reflₓ x y = refl
-- Now the induction function for product types;
indₓ : ∀{a b c}{A : Set a}{B : Set b}{C : (A × B) → Set c}
→ ((x : A) → (y : B) -- ∀ x , y
→ C (x , y)) -- and a property that holds for the product (x , y)
→ (x : A × B) → C x -- ∀ products x, C holds
indₓ g (a , b) = g a b
-- And for the unit type
ind₁ : {C : ⊤ → Set} → C tt → (x : ⊤) → C x
ind₁ c ⋆ = c
-- "Induction enables us to prove the propositional uniqueness principle for 1, which asserts that its
-- only inhabitant is ⋆. That is, we can construct"
upun : (x : ⊤) → x ≡ tt
upun x = refl
-- The uniqueness of unit can also be asserted by induction
upun-ind : (x : ⊤) → x ≡ tt
upun-ind x = ind₁ {C = λ x → x ≡ tt} refl x
-- Sigma (Dependent Pair) Types
-- ----------------------------
-- We'll use the Σ in the Agda Stdlib (because of the cool syntax).
--
-- For a constant type B rather than a B indexed by x : A, dependent pairs
-- and just cartesian products. With that in mind, the recursor for dependent
-- pairs looks much the same as the one for the cartesian product
recₚ : ∀{a b c}{A : Set a}{B : A → Set b}{C : Set c}
→ ((x : A) → B x → C) -- It suffices to define the dependent function g such that
→ Σ[ x ∈ A ](B x) → C -- ∀ Σ(x : A)B x, C holds.
recₚ g (a , b) = g a b
-- Here's Induction
indₚ : ∀{a b c}{A : Set a}{B : A → Set b}{C : Σ[ x ∈ A ](B x) → Set c}
→ ((x : A)(y : B x) -- ∀ x , y
→ C (x , y)) -- and a property that holds for the pair (x , y)
→ (p : Σ[ x ∈ A ](B x)) → C p -- ∀ pairs x, C holds
indₚ g (a , b) = g a b
-- NB: Read Π as "forall" and Σ as "exists"
record Magma (A : Set) : Set where
field
mop : A → A → A
open Magma {{...}} public
record PointedMagma (A : Set) : Set where
field
mbasepoint : A
pmop : (A → A → A)
pointedMagmaIsMagma : Magma A
pointedMagmaIsMagma = record { mop = pmop }
open PointedMagma {{...}} public
-- Coproducts
open import Data.Sum
rec₊ : ∀{a b c}{A : Set a}{B : Set b}{C : Set c} → (A → C) → (B → C) → A ⊎ B → C
rec₊ g₀ g₁ (inj₁ x) = g₀ x
rec₊ g₀ g₁ (inj₂ y) = g₁ y
-- Oh look, ⊥
open import Data.Empty
-- Any definition of the recursor would means proving 'ex falso quodlibet'.
-- Let's try not to do that...
rec₀ : ∀{c}{C : Set c} → ⊥ → C
rec₀ ()
ind₊ : ∀{a b c}{A : Set a}{B : Set b}{C : (A ⊎ B) → Set c}
→ ((x : A) → C (inj₁ x))
→ ((y : B) → C (inj₂ y))
→ (x : A ⊎ B) → C x
ind₊ g₀ g₁ (inj₁ x) = g₀ x
ind₊ g₀ g₁ (inj₂ y) = g₁ y
ind₀ : ∀{c}{C : ⊥ → Set c} → (z : ⊥) → C z
ind₀ ()
-- The type of booleans
open import Data.Bool
rec₂ : ∀{c}{C : Set c} → C → C → Bool → C
rec₂ c₀ c₁ true = c₁
rec₂ c₀ c₁ false = c₀
ind₂ : ∀{c}{C : Bool → Set c} → C false → C true → (x : Bool) → C x
ind₂ c₀ c₁ true = c₁
ind₂ c₀ c₁ false = c₀
dec₂ : (x : Bool) → (x ≡ false) ⊎ (x ≡ true)
dec₂ x = ind₂ {C = λ x → (x ≡ false) ⊎ (x ≡ true)} (inj₁ refl) (inj₂ refl) x
-- The type of Natural Numbers
open import Data.Nat
double : ℕ → ℕ
double zero = zero
double (suc n) = suc (suc (double n))
add : ℕ → ℕ → ℕ
add zero n = n
add (suc m) n = suc (add m n)
recₙ : ∀{c}{C : Set c} → C → (ℕ → C → C) → ℕ → C
recₙ c₀ cₛ zero = c₀
recₙ c₀ cₛ (suc n) = cₛ n (recₙ c₀ cₛ n)
double-recₙ : ℕ → ℕ
double-recₙ = recₙ 0 (λ n y → suc (suc y))
add-recₙ : ℕ → ℕ → ℕ
add-recₙ = recₙ {C = ℕ → ℕ} (λ n → n) (λ n → λ g m → suc (g m))
indₙ : {C : ℕ → Set} → C 0 → ((n : ℕ) → C n → C (suc n)) → (n : ℕ) → C n
indₙ c₀ cₛ zero = c₀
indₙ c₀ cₛ (suc n) = cₛ n (indₙ c₀ cₛ n)
assoc : (i j k : ℕ) → i + (j + k) ≡ (i + j) + k
assoc = indₙ {C = λ i → (j k : ℕ) → i + (j + k) ≡ (i + j) + k} assoc₀ assocₛ
where
assoc₀ : (j k : ℕ) → 0 + (j + k) ≡ (0 + j) + k
assoc₀ j k = refl
assocₛ : (i : ℕ) → ((j k : ℕ) → i + (j + k) ≡ (i + j) + k) → (j k : ℕ) → (suc i) + (j + k) ≡ ((suc i) + j) + k
assocₛ _ i j k = cong suc (i j k)
-- Propositions As Types
{-
¬_ : {A : Set} → A → ⊥
¬ x = ()
-}
-- Path Induction
open import Level
ind₌ : ∀ {i} {A : Set i} → (C : (x y : A) → (x ≡ y) → Set i) → ((x : A) → C x x refl) → {x y : A} → (p : x ≡ y) → C x y p
ind₌ C c {x}{y} p rewrite p = c y
based-ind₌ : ∀ {i} {A : Set i}{a : A} → (C : (x : A) → (a ≡ x) → Set i) → C a refl → {x : A} → (p : a ≡ x) → C x p
based-ind₌ C c p rewrite p = c
{-
ind₌-β : ∀ {i} {A : Set i}
→ (C : (x y : A) → (x ≡ y) → Set i)
→ (c : (x : A) → C x x refl)
→ (x : A)
→ (C' : (y : A) → (x ≡ y) → Set i)
→ (c' : C' x refl)
→ (y : A)
→ (p : x ≡ y)
→ ind₌ C c p <-> based-ind₌ C' c' p
ind₌-β {i} {A} C c x C' c' y p = ? where
D : (x y : A) → (x ≡ y) → Set i
D x y p = (C : (z : A) → (x ≡ z) → Set i) → C x refl → C y p
d : (x : A) → D x x refl
d = λ x₁ → λ C → (c : C x refl) → c
-}
| {
"alphanum_fraction": 0.523436513,
"avg_line_length": 29.7556390977,
"ext": "agda",
"hexsha": "e33a710e085257d244dadb044bc0baa8e257620a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CodaFi/HoTT-Exercises",
"max_forks_repo_path": "Chapter1/Formalization.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CodaFi/HoTT-Exercises",
"max_issues_repo_path": "Chapter1/Formalization.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3411b253b0a49a5f9c3301df175ae8ecdc563b12",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CodaFi/HoTT-Exercises",
"max_stars_repo_path": "Chapter1/Formalization.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3249,
"size": 7915
} |
------------------------------------------------------------------------
-- Properties of homogeneous binary relations
------------------------------------------------------------------------
-- This file contains some core definitions which are reexported by
-- Relation.Binary or Relation.Binary.PropositionalEquality.
module Relation.Binary.Core where
open import Data.Product
open import Data.Sum
open import Data.Function
open import Relation.Nullary.Core
------------------------------------------------------------------------
-- Homogeneous binary relations
Rel : Set → Set₁
Rel a = a → a → Set
------------------------------------------------------------------------
-- Simple properties of binary relations
infixr 4 _⇒_ _=[_]⇒_
-- Implication/containment. Could also be written ⊆.
_⇒_ : ∀ {a} → Rel a → Rel a → Set
P ⇒ Q = ∀ {i j} → P i j → Q i j
-- Generalised implication. If P ≡ Q it can be read as "f preserves
-- P".
_=[_]⇒_ : ∀ {a b} → Rel a → (a → b) → Rel b → Set
P =[ f ]⇒ Q = P ⇒ (Q on₁ f)
-- A synonym, along with a binary variant.
_Preserves_⟶_ : ∀ {a₁ a₂} → (a₁ → a₂) → Rel a₁ → Rel a₂ → Set
f Preserves P ⟶ Q = P =[ f ]⇒ Q
_Preserves₂_⟶_⟶_ : ∀ {a₁ a₂ a₃} →
(a₁ → a₂ → a₃) → Rel a₁ → Rel a₂ → Rel a₃ → Set
_+_ Preserves₂ P ⟶ Q ⟶ R =
∀ {x y u v} → P x y → Q u v → R (x + u) (y + v)
-- Reflexivity of _∼_ can be expressed as _≈_ ⇒ _∼_, for some
-- underlying equality _≈_. However, the following variant is often
-- easier to use.
Reflexive : {a : Set} → (_∼_ : Rel a) → Set
Reflexive _∼_ = ∀ {x} → x ∼ x
-- Irreflexivity is defined using an underlying equality.
Irreflexive : {a : Set} → (_≈_ _<_ : Rel a) → Set
Irreflexive _≈_ _<_ = ∀ {x y} → x ≈ y → ¬ (x < y)
-- Generalised symmetry.
Sym : ∀ {a} → Rel a → Rel a → Set
Sym P Q = P ⇒ flip₁ Q
Symmetric : {a : Set} → Rel a → Set
Symmetric _∼_ = Sym _∼_ _∼_
-- Generalised transitivity.
Trans : ∀ {a} → Rel a → Rel a → Rel a → Set
Trans P Q R = ∀ {i j k} → P i j → Q j k → R i k
Transitive : {a : Set} → Rel a → Set
Transitive _∼_ = Trans _∼_ _∼_ _∼_
Antisymmetric : {a : Set} → (_≈_ _≤_ : Rel a) → Set
Antisymmetric _≈_ _≤_ = ∀ {x y} → x ≤ y → y ≤ x → x ≈ y
Asymmetric : {a : Set} → (_<_ : Rel a) → Set
Asymmetric _<_ = ∀ {x y} → x < y → ¬ (y < x)
_Respects_ : {a : Set} → (a → Set) → Rel a → Set
P Respects _∼_ = ∀ {x y} → x ∼ y → P x → P y
_Respects₂_ : {a : Set} → Rel a → Rel a → Set
P Respects₂ _∼_ =
(∀ {x} → P x Respects _∼_) ×
(∀ {y} → flip₁ P y Respects _∼_)
Substitutive : {a : Set} → Rel a → Set₁
Substitutive _∼_ = ∀ P → P Respects _∼_
Congruential : ({a : Set} → Rel a) → Set₁
Congruential ∼ = ∀ {a b} → (f : a → b) → f Preserves ∼ ⟶ ∼
Congruential₂ : ({a : Set} → Rel a) → Set₁
Congruential₂ ∼ =
∀ {a b c} → (f : a → b → c) → f Preserves₂ ∼ ⟶ ∼ ⟶ ∼
Decidable : {a : Set} → Rel a → Set
Decidable _∼_ = ∀ x y → Dec (x ∼ y)
Total : {a : Set} → Rel a → Set
Total _∼_ = ∀ x y → (x ∼ y) ⊎ (y ∼ x)
data Tri (A B C : Set) : Set where
tri< : ( a : A) (¬b : ¬ B) (¬c : ¬ C) → Tri A B C
tri≈ : (¬a : ¬ A) ( b : B) (¬c : ¬ C) → Tri A B C
tri> : (¬a : ¬ A) (¬b : ¬ B) ( c : C) → Tri A B C
Trichotomous : {a : Set} → Rel a → Rel a → Set
Trichotomous _≈_ _<_ = ∀ x y → Tri (x < y) (x ≈ y) (x > y)
where _>_ = flip₁ _<_
record NonEmpty {I : Set} (T : Rel I) : Set where
field
i : I
j : I
proof : T i j
nonEmpty : ∀ {I} {T : Rel I} {i j} → T i j → NonEmpty T
nonEmpty p = record { i = _; j = _; proof = p }
------------------------------------------------------------------------
-- Propositional equality
-- This dummy module is used to avoid shadowing of the field named
-- refl defined in IsEquivalence below. The module is opened publicly
-- at the end of this file.
private
module Dummy where
infix 4 _≡_ _≢_
data _≡_ {a : Set} (x : a) : a → Set where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REFL refl #-}
-- Nonequality.
_≢_ : {a : Set} → a → a → Set
x ≢ y = ¬ x ≡ y
------------------------------------------------------------------------
-- Equivalence relations
-- The preorders of this library are defined in terms of an underlying
-- equivalence relation, and hence equivalence relations are not
-- defined in terms of preorders.
record IsEquivalence {a : Set} (_≈_ : Rel a) : Set where
field
refl : Reflexive _≈_
sym : Symmetric _≈_
trans : Transitive _≈_
reflexive : Dummy._≡_ ⇒ _≈_
reflexive Dummy.refl = refl
open Dummy public
| {
"alphanum_fraction": 0.5133809099,
"avg_line_length": 27.509202454,
"ext": "agda",
"hexsha": "14079419f605046cefb0f8b7264c84130b3f04f2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/Core.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/Core.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 1609,
"size": 4484
} |
{-# OPTIONS --safe #-}
{-
This is inspired by/copied from:
https://github.com/agda/agda-stdlib/blob/master/src/Tactic/MonoidSolver.agda
Boilerplate code for calling the ring solver is constructed automatically
with agda's reflection features.
-}
module Cubical.Algebra.NatSolver.Reflection where
open import Cubical.Foundations.Prelude hiding (Type)
open import Cubical.Functions.Logic
open import Agda.Builtin.Reflection hiding (Type)
open import Agda.Builtin.String
open import Cubical.Reflection.Base
open import Cubical.Data.Maybe
open import Cubical.Data.Sigma
open import Cubical.Data.List
open import Cubical.Data.Nat.Literals
open import Cubical.Data.Nat
open import Cubical.Data.FinData using () renaming (zero to fzero; suc to fsuc)
open import Cubical.Data.Bool
open import Cubical.Data.Bool.SwitchStatement
open import Cubical.Data.Vec using (Vec) renaming ([] to emptyVec; _∷_ to _∷vec_) public
open import Cubical.Algebra.NatSolver.NatExpression
open import Cubical.Algebra.NatSolver.Solver
open EqualityToNormalform renaming (solve to natSolve)
private
variable
ℓ : Level
_==_ = primQNameEquality
{-# INLINE _==_ #-}
record VarInfo : Type ℓ-zero where
field
varName : String
varType : Arg Term
index : ℕ
{-
`getLastTwoArgsOf` maps a term 'def n (z₁ ∷ … ∷ zₙ ∷ x ∷ y ∷ [])' to the pair '(x,y)'
non-visible arguments are ignored.
-}
getLastTwoArgsOf : Name → Term → Maybe (Term × Term)
getLastTwoArgsOf n' (def n xs) =
if n == n'
then go xs
else nothing
where
go : List (Arg Term) → Maybe (Term × Term)
go (varg x ∷ varg y ∷ []) = just (x , y)
go (x ∷ xs) = go xs
go _ = nothing
getLastTwoArgsOf n' _ = nothing
{-
`getArgs` maps a term 'x ≡ y' to the pair '(x,y)'
-}
getArgs : Term → Maybe (Term × Term)
getArgs = getLastTwoArgsOf (quote PathP)
firstVisibleArg : List (Arg Term) → Maybe Term
firstVisibleArg [] = nothing
firstVisibleArg (varg x ∷ l) = just x
firstVisibleArg (x ∷ l) = firstVisibleArg l
{-
If the solver needs to be applied during equational reasoning,
the right hand side of the equation to solve cannot be given to
the solver directly. The folllowing function extracts this term y
from a more complex expression as in:
x ≡⟨ solve ... ⟩ (y ≡⟨ ... ⟩ z ∎)
-}
getRhs : Term → Maybe Term
getRhs reasoningToTheRight@(def n xs) =
if n == (quote _∎)
then firstVisibleArg xs
else (if n == (quote _≡⟨_⟩_)
then firstVisibleArg xs
else nothing)
getRhs _ = nothing
private
solverCallAsTerm : Arg Term → Term → Term → Term
solverCallAsTerm varList lhs rhs =
def
(quote natSolve)
(varg lhs ∷ varg rhs
∷ varList
∷ varg (def (quote refl) []) ∷ [])
solverCallWithLambdas : ℕ → List VarInfo → Term → Term → Term
solverCallWithLambdas n varInfos lhs rhs =
encloseWithIteratedLambda
(map VarInfo.varName varInfos)
(solverCallAsTerm (variableList (rev varInfos)) lhs rhs)
where
encloseWithIteratedLambda : List String → Term → Term
encloseWithIteratedLambda (varName ∷ xs) t = lam visible (abs varName (encloseWithIteratedLambda xs t))
encloseWithIteratedLambda [] t = t
variableList : List VarInfo → Arg Term
variableList [] = varg (con (quote emptyVec) [])
variableList (varInfo ∷ varInfos)
= varg (con (quote _∷vec_) (varg (var (VarInfo.index varInfo) []) ∷ (variableList varInfos) ∷ []))
solverCallByVarIndices : ℕ → List ℕ → Term → Term → Term → Term
solverCallByVarIndices n varIndices R lhs rhs =
solverCallAsTerm (variableList (rev varIndices)) lhs rhs
where
variableList : List ℕ → Arg Term
variableList [] = varg (con (quote emptyVec) [])
variableList (varIndex ∷ varIndices)
= varg (con (quote _∷vec_) (varg (var (varIndex) []) ∷ (variableList varIndices) ∷ []))
module pr {n : ℕ} where
0' : Expr n
0' = K 0
1' : Expr n
1' = K 1
module _ where
open pr
`0` : List (Arg Term) → Term
`0` [] = def (quote 0') []
`0` (varg fstcring ∷ xs) = `0` xs
`0` (harg _ ∷ xs) = `0` xs
`0` _ = unknown
`1` : List (Arg Term) → Term
`1` [] = def (quote 1') []
`1` (varg fstcring ∷ xs) = `1` xs
`1` (harg _ ∷ xs) = `1` xs
`1` _ = unknown
mutual
`_·_` : List (Arg Term) → Term
`_·_` (harg _ ∷ xs) = `_·_` xs
`_·_` (varg x ∷ varg y ∷ []) =
con
(quote _·'_) (varg (buildExpression x) ∷ varg (buildExpression y) ∷ [])
`_·_` _ = unknown
`_+_` : List (Arg Term) → Term
`_+_` (harg _ ∷ xs) = `_+_` xs
`_+_` (varg x ∷ varg y ∷ []) =
con
(quote _+'_) (varg (buildExpression x) ∷ varg (buildExpression y) ∷ [])
`_+_` _ = unknown
K' : List (Arg Term) → Term
K' xs = con (quote K) xs
finiteNumberAsTerm : ℕ → Term
finiteNumberAsTerm ℕ.zero = con (quote fzero) []
finiteNumberAsTerm (ℕ.suc n) = con (quote fsuc) (varg (finiteNumberAsTerm n) ∷ [])
buildExpression : Term → Term
buildExpression (var index _) = con (quote ∣) (varg (finiteNumberAsTerm index) ∷ [])
buildExpression t@(lit n) = K' (varg t ∷ [])
buildExpression t@(def n xs) =
switch (n ==_) cases
case (quote _·_) ⇒ `_·_` xs break
case (quote _+_) ⇒ `_+_` xs break
default⇒ (K' xs)
buildExpression t@(con n xs) =
switch (n ==_) cases
case (quote _·_) ⇒ `_·_` xs break
case (quote _+_) ⇒ `_+_` xs break
default⇒ (K' xs)
buildExpression t = unknown
toAlgebraExpression : Maybe (Term × Term) → Maybe (Term × Term)
toAlgebraExpression nothing = nothing
toAlgebraExpression (just (lhs , rhs)) = just (buildExpression lhs , buildExpression rhs)
private
adjustDeBruijnIndex : (n : ℕ) → Term → Term
adjustDeBruijnIndex n (var k args) = var (k + n) args
adjustDeBruijnIndex n _ = unknown
extractVarIndices : Maybe (List Term) → Maybe (List ℕ)
extractVarIndices (just ((var index _) ∷ l)) with extractVarIndices (just l)
... | just indices = just (index ∷ indices)
... | nothing = nothing
extractVarIndices (just []) = just []
extractVarIndices _ = nothing
getVarsAndEquation : Term → Maybe (List VarInfo × Term)
getVarsAndEquation t =
let
(rawVars , equationTerm) = extractVars t
maybeVars = addIndices (length rawVars) rawVars
in map-Maybe (_, equationTerm) maybeVars
where
extractVars : Term → List (String × Arg Term) × Term
extractVars (pi argType (abs varName t)) with extractVars t
... | xs , equation
= (varName , argType) ∷ xs , equation
extractVars equation = [] , equation
addIndices : ℕ → List (String × Arg Term) → Maybe (List VarInfo)
addIndices ℕ.zero [] = just []
addIndices (ℕ.suc countVar) ((varName , argType) ∷ list) =
map-Maybe (λ varList → record { varName = varName ; varType = argType ; index = countVar }
∷ varList)
(addIndices countVar list)
addIndices _ _ = nothing
toListOfTerms : Term → Maybe (List Term)
toListOfTerms (con c []) = if (c == (quote [])) then just [] else nothing
toListOfTerms (con c (varg t ∷ varg s ∷ args)) with toListOfTerms s
... | just terms = if (c == (quote _∷_)) then just (t ∷ terms) else nothing
... | nothing = nothing
toListOfTerms (con c (harg t ∷ args)) = toListOfTerms (con c args)
toListOfTerms _ = nothing
solve-macro : Term → TC Unit
solve-macro hole =
do
hole′ ← inferType hole >>= normalise
just (varInfos , equation) ← returnTC (getVarsAndEquation hole′)
where
nothing
→ typeError (strErr "Something went wrong when getting the variable names in "
∷ termErr hole′ ∷ [])
just (lhs , rhs) ← returnTC (toAlgebraExpression (getArgs equation))
where
nothing
→ typeError(
strErr "Error while trying to build ASTs for the equation " ∷
termErr equation ∷ [])
let solution = solverCallWithLambdas (length varInfos) varInfos lhs rhs
unify hole solution
macro
solve : Term → TC _
solve = solve-macro
| {
"alphanum_fraction": 0.6113552678,
"avg_line_length": 33.4087301587,
"ext": "agda",
"hexsha": "86b26eefa8a75f000339ca6d2014a15b5fe71f03",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Seanpm2001-web/cubical",
"max_forks_repo_path": "Cubical/Algebra/NatSolver/Reflection.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58f2d0dd07e51f8aa5b348a522691097b6695d1c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Seanpm2001-web/cubical",
"max_issues_repo_path": "Cubical/Algebra/NatSolver/Reflection.agda",
"max_line_length": 109,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9acdecfa6437ec455568be4e5ff04849cc2bc13b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "FernandoLarrain/cubical",
"max_stars_repo_path": "Cubical/Algebra/NatSolver/Reflection.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:28:39.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:28:39.000Z",
"num_tokens": 2520,
"size": 8419
} |
{-# OPTIONS --exact-split #-}
module Issue1383 where
data Bool : Set where
true false : Bool
xor : Bool → Bool → Bool
xor = \ { true true -> false ;
false false -> false ;
{-# CATCHALL #-}
_ _ -> true }
| {
"alphanum_fraction": 0.5080645161,
"avg_line_length": 20.6666666667,
"ext": "agda",
"hexsha": "127cb1435e528310bf3be317fce0ffd83094544e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1383.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1383.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1383.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 65,
"size": 248
} |
open import Function using (id) renaming (_∘′_ to _∘_)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Control.Monad
module Control.Monad.Error (E : Set) where
-- The Error monad.
data Error (A : Set) : Set where
fail : (e : E) → Error A
return : (a : A) → Error A
-- The following are axiliary definitions for the constructor of errorIsMonad.
module Local where
-- Bind.
_>>=_ : ∀ {A B} (m : Error A) (k : A → Error B) → Error B
fail e >>= k = fail e
return a >>= k = k a
bind = _>>=_
-- Laws of bind.
beta : ∀ {A B} (k : A → Error B) (a : A) →
return a >>= k ≡ k a
beta k a = refl
eta : ∀ {A} (m : Error A) →
m >>= return ≡ m
eta (fail e) = refl
eta (return a) = refl
assoc : ∀ {A B C} (m : Error A) {k : A → Error B} {l : B → Error C} →
(m >>= k) >>= l ≡ m >>= λ a → (k a >>= l)
assoc (fail e) = refl
assoc (return a) = refl
open Local public
-- The monad instance of Error.
errorIsMonad : IsMonad Error
errorIsMonad = record
{ ops = record
{ return = return
; _>>=_ = bind
}
; laws = record
{ bind-β = beta
; bind-η = eta
; bind-assoc = assoc
}
}
| {
"alphanum_fraction": 0.5470441299,
"avg_line_length": 20.3559322034,
"ext": "agda",
"hexsha": "5698651c1de635ec6d2ad48e2728c37f5b32a9fd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Control/Monad/Error.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Control/Monad/Error.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Control/Monad/Error.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 423,
"size": 1201
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Ints.QuoInt.Properties where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.GroupoidLaws
open import Cubical.HITs.Ints.QuoInt.Base
renaming (_+ℤ_ to _+_)
open import Cubical.Data.Nat
hiding (+-comm; +-zero; _+_)
+-pos-0 : ∀ a → pos 0 + a ≡ a
+-pos-0 (pos zero) = refl
+-pos-0 (pos (suc n)) = cong sucℤ (+-pos-0 (pos n))
+-pos-0 (neg zero) = posneg
+-pos-0 (neg (suc n)) = cong predℤ (+-pos-0 (neg n))
+-pos-0 (posneg i) j = posneg (i ∧ j)
+-neg-0 : ∀ a → neg 0 + a ≡ a
+-neg-0 (neg zero) = refl
+-neg-0 (neg (suc n)) = cong predℤ (+-neg-0 (neg n))
+-neg-0 (pos zero) = sym posneg
+-neg-0 (pos (suc n)) = cong sucℤ (+-neg-0 (pos n))
+-neg-0 (posneg i) j = posneg (i ∨ ~ j)
+-pos-suc : ∀ a b → sucℤ (pos b + a) ≡ (pos (suc b) + a)
+-pos-suc (pos zero) b = refl
+-pos-suc (pos (suc n)) b = cong sucℤ (+-pos-suc (pos n) b)
+-pos-suc (neg zero) b = refl
+-pos-suc (posneg i) b = refl
+-pos-suc (neg (suc n)) b =
sucPredℤ (pos b + neg n) ∙∙
sym (predSucℤ (pos b + neg n)) ∙∙
cong predℤ (+-pos-suc (neg n) b)
-- the following hcomp does not termination-check:
-- hcomp (λ j → λ
-- { (i = i0) → sucPredℤ (pos b + neg n) (~ j)
-- ; (i = i1) → {!predℤ ((+-pos-suc (neg n) b) j)!}
-- }) (predSucℤ (pos b + neg n) (~ i))
+-neg-pred : ∀ a b → predℤ (neg b + a) ≡ (neg (suc b) + a)
+-neg-pred (pos zero) b = refl
+-neg-pred (neg zero) b = refl
+-neg-pred (neg (suc n)) b = cong predℤ (+-neg-pred (neg n) b)
+-neg-pred (posneg i) b = refl
+-neg-pred (pos (suc n)) b =
predSucℤ (neg b + pos n) ∙∙
sym (sucPredℤ (neg b + pos n)) ∙∙
cong sucℤ (+-neg-pred (pos n) b)
+-comm : ∀ a b → a + b ≡ b + a
+-comm a (pos zero) = sym (+-pos-0 a)
+-comm a (neg zero) = sym (+-neg-0 a)
+-comm a (pos (suc b)) = cong sucℤ (+-comm a (pos b)) ∙ +-pos-suc a b
+-comm a (neg (suc b)) = cong predℤ (+-comm a (neg b)) ∙ +-neg-pred a b
+-comm a (posneg i) = lemma a i
where
-- get some help from:
-- https://www.codewars.com/kata/reviews/5c878e3ef1abb10001e32eb1/groups/5cca3f9e840f4b0001d8ac98
lemma : ∀ a → (λ i → (a + posneg i) ≡ (posneg i + a))
[ sym (+-pos-0 a) ≡ sym (+-neg-0 a) ]
lemma (pos zero) i j = posneg (i ∧ j)
lemma (pos (suc n)) i = cong sucℤ (lemma (pos n) i)
lemma (neg zero) i j = posneg (i ∨ ~ j)
lemma (neg (suc n)) i = cong predℤ (lemma (neg n) i)
lemma (posneg i) j k = posneg ((i ∧ ~ k) ∨ (i ∧ j) ∨ (j ∧ k))
| {
"alphanum_fraction": 0.5635113269,
"avg_line_length": 35.8260869565,
"ext": "agda",
"hexsha": "96ddcf8fac7b0740347c6cf2f82bc8880e5b7e45",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/Ints/QuoInt/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/Ints/QuoInt/Properties.agda",
"max_line_length": 99,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/Ints/QuoInt/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-23T23:52:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-23T23:52:11.000Z",
"num_tokens": 1074,
"size": 2472
} |
------------------------------------------------------------------------------
-- Totality properties for Forest
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.Mirror.Forest.TotalityATP where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.List
open import FOTC.Program.Mirror.Type
------------------------------------------------------------------------------
++-Forest : ∀ {xs ys} → Forest xs → Forest ys → Forest (xs ++ ys)
++-Forest {ys = ys} fnil Fys = prf
where postulate prf : Forest ([] ++ ys)
{-# ATP prove prf #-}
++-Forest {ys = ys} (fcons {x} {xs} Tx Fxs) Fys = prf (++-Forest Fxs Fys)
where postulate prf : Forest (xs ++ ys) →
Forest ((x ∷ xs) ++ ys)
{-# ATP prove prf #-}
-- We don't use a combined proof, because it is necessary to erase a
-- proof term which we don't know how to erase.
map-Forest : ∀ {xs} f → (∀ {x} → Tree x → Tree (f · x)) →
Forest xs → Forest (map f xs)
map-Forest f fTree fnil = subst Forest (sym (map-[] f)) fnil
map-Forest f fTree (fcons {x} {xs} Tx Fxs) =
subst Forest
(sym (map-∷ f x xs))
(fcons (fTree Tx) (map-Forest f fTree Fxs))
rev-Forest : ∀ {xs ys} → Forest xs → Forest ys → Forest (rev xs ys)
rev-Forest {ys = ys} fnil Fys = prf
where postulate prf : Forest (rev [] ys)
{-# ATP prove prf #-}
rev-Forest {ys = ys} (fcons {x} {xs} Tx Fxs) Fys =
prf (rev-Forest Fxs (fcons Tx Fys))
where postulate prf : Forest (rev xs (x ∷ ys)) →
Forest (rev (x ∷ xs) ys)
{-# ATP prove prf #-}
postulate reverse-Forest : ∀ {xs} → Forest xs → Forest (reverse xs)
{-# ATP prove reverse-Forest rev-Forest #-}
| {
"alphanum_fraction": 0.5054887611,
"avg_line_length": 38.26,
"ext": "agda",
"hexsha": "f79980ba3ed801d2b176ffe0136e5b7a07d406fb",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/Mirror/Forest/TotalityATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/Mirror/Forest/TotalityATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/Mirror/Forest/TotalityATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 529,
"size": 1913
} |
{-# OPTIONS --safe --no-qualified-instances #-}
module CF.Contexts.Lexical where
open import Level
open import Data.Unit
open import Data.Product
open import Data.String using (String)
open import Data.List
open import Data.List.Properties as LP
open import Data.List.Relation.Binary.Sublist.Propositional.Properties
open import Relation.Unary hiding (_⊢_; _⊆_; _∈_)
open import Relation.Unary.PredicateTransformer using (Pt)
open import Relation.Binary.Structures
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Ternary.Core
open import Relation.Ternary.Structures
open import Relation.Ternary.Structures.Syntax
open import CF.Types
open import Data.List.Relation.Binary.Permutation.Propositional
open import Data.List.Relation.Binary.Sublist.Propositional
Ctx : Set
Ctx = List Ty
_⍮_ : Ctx → List Ty → Ctx
Γ ⍮ Δ = Γ ++ Δ
variable
K K₁ K₂ K₃ K₄ : Ctx
Δ Δ₁ Δ₂ : List Ty
module CoDeBruijn where
open import Relation.Ternary.Construct.List.Overlapping Ty public
instance list-empty : ∀ {a} {A : Set a} → Emptiness {A = List A} []
list-empty = record {}
Vars : Ctx → Pred Ctx 0ℓ
Vars Γ = Own Γ
Closed : ∀ {ℓ} → Pred Ctx ℓ → Set ℓ
Closed P = P ε
data _∼[_]_ : Ctx → Ctx → Ctx → Set where
intros : ∀ {Γ Δ Δ′ Γ′} → Δ′ ⊆ Δ → Γ′ ≡ Γ ++ Δ′ → Γ ∼[ Δ ] Γ′
open import Relation.Ternary.Monad.Possibly
open Possibly _∼[_]_
public
using (possibly; ◇; module ◇-GradedMonad; module ◇-Zip; _∼_; pack)
renaming
( ◇[_] to _⊢_)
∼-all : K ∼[ Δ ] (K ⍮ Δ)
∼-all = intros ⊆-refl refl
∼-none : K ∼[ Δ ] K
∼-none {Γ} {Δ} =
intros (minimum Δ) (sym (++-identityʳ Γ))
∼-refl : K ∼[ ε ] K
∼-refl = ∼-none
∼-trans : K₁ ∼ K₂ → K₂ ∼ K₃ → K₁ ∼ K₃
∼-trans {K₁} (Δ₁ , intros {Δ′ = Δ₁′} p refl) (Δ₂ , intros {Δ′ = Δ₂′} q refl) =
-, intros ⊆-refl (LP.++-assoc _ Δ₁′ Δ₂′)
∼-isPreorder : IsPreorder _≡_ _∼_
IsPreorder.isEquivalence ∼-isPreorder = isEquivalence
IsPreorder.reflexive ∼-isPreorder refl = -, ∼-refl
IsPreorder.trans ∼-isPreorder = ∼-trans
-- frame preserving
∼-fp : K₁ ∼ K₂ → (di₁ : K₃ ◆ K₁) → ∃ λ (di₂ : K₃ ◆ K₂) → whole di₁ ∼ whole di₂
∼-fp (_ , intros ext refl) (_ , σ₁) = (-, ∙-disjointᵣᵣ σ₁) , _ , intros ⊆-refl refl
open ◇-Monad _∼[_]_ ∼-isPreorder ∼-fp public
-- specialized version of graded join because I'm lazy
∼-goin : ∀ {p} {P : Pred Ctx p} → ∀[ Δ₁ ⊢ (Δ₂ ⊢ P) ⇒ (Δ₁ ++ Δ₂) ⊢ P ]
∼-goin (Possibly.possibly
(intros {Γ} {Δ′ = Δ₁} r₁ refl)
(Possibly.possibly (intros r₂ refl) px)) =
possibly (intros (++⁺ r₁ r₂) (++-assoc Γ Δ₁ _ )) px
module _ where
open import Relation.Ternary.Construct.List.Overlapping Ty as Ov
abstract
∼-pull : Δ₁ Ov.⊗ Δ₂ ≣ Δ
→ K₁ ∙ K₃ ≣ K
→ K₁ ∼[ Δ₁ ] K₂
→ K₃ ∼[ Δ₂ ] K₄
→ ∃ λ K' → K₂ ∙ K₄ ≣ K' × K ∼[ Δ ] K'
∼-pull δ σ₁ (intros p refl) (intros q refl) with _ , δ′ , r ← Ov.⊆-⊗ p q δ =
-, ∙-parallel σ₁ δ′ , intros r refl
open ◇-Zip ∼-pull public renaming (◇-zip to ⊢-zip)
binders : ∀ {Γ} → ε[ Γ ⊢ Vars Γ ]
binders = Possibly.possibly ∼-all refl
Var : Ty → Pred Ctx 0ℓ
Var a = Vars [ a ]
pattern vars = refl
module DeBruijn where
open import Data.List.Membership.Propositional
Var : Ty → Pred Ctx 0ℓ
Var a Γ = a ∈ Γ
_⊢_ : ∀ {ℓ} → List Ty → Pt Ctx ℓ
Δ ⊢ P = λ Γ → P (Γ ⍮ Δ)
-- ◇′ : Pt Ctx 0ℓ
-- ◇′ P = ⋃[ as ∶ _ ] as ⊢ P
open CoDeBruijn public
| {
"alphanum_fraction": 0.6050101952,
"avg_line_length": 27.685483871,
"ext": "agda",
"hexsha": "a919c1cb6dd595dfab1e970228a6b06fe1d20cde",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/CF/Contexts/Lexical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/CF/Contexts/Lexical.agda",
"max_line_length": 85,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/CF/Contexts/Lexical.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 1379,
"size": 3433
} |
------------------------------------------------------------------------
-- The Maybe type
------------------------------------------------------------------------
-- The definitions in this file are reexported by Data.Maybe.
module Data.Maybe.Core where
data Maybe (A : Set) : Set where
just : (x : A) → Maybe A
nothing : Maybe A
{-# COMPILED_DATA Maybe Maybe Just Nothing #-}
| {
"alphanum_fraction": 0.4226804124,
"avg_line_length": 29.8461538462,
"ext": "agda",
"hexsha": "e8f979e0bd2de6ffc223ff8d5503a4a6dc4502b8",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Maybe/Core.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Maybe/Core.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Maybe/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 69,
"size": 388
} |
module Structure.Categorical.Proofs where
open import Data
open import Functional
open import Logic.Propositional
import Lvl
open import Structure.Setoid
open import Structure.Categorical.Properties
import Structure.Relator.Names as Names
open import Structure.Relator.Properties
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓₘ ℓₑ : Lvl.Level
private variable Obj A B : Type{ℓ}
private variable _▫_ : Obj → Obj → Type{ℓ}
private variable f : A → B
empty-morphism : ∀{ℓₘ ℓ} → Empty{ℓ} → Empty{ℓ} → Type{ℓₘ}
empty-morphism{ℓₘ}{ℓ} = empty{T = Empty{ℓ} → Type{ℓₘ}}
empty-id : Names.Reflexivity(empty-morphism{ℓₘ}{ℓ})
empty-id {x = ()}
empty-comp : Names.SwappedTransitivity(empty-morphism{ℓₘ}{ℓ})
empty-comp {x = ()}
empty-inv : Names.Symmetry(empty-morphism{ℓₘ}{ℓ})
empty-inv {x = ()}
module _ ⦃ empty-equiv : ∀{x y} → Equiv{ℓₑ}(empty-morphism{ℓₘ}{ℓ} x y) ⦄ where
instance
empty-associativity : Morphism.Associativity{Morphism = empty-morphism} ⦃ empty-equiv ⦄ empty-comp
empty-associativity = Morphism.intro \{}
instance
empty-identityₗ : Morphism.Identityₗ{Morphism = empty-morphism} ⦃ empty-equiv ⦄ empty-comp empty-id
empty-identityₗ = Morphism.intro \{}
instance
empty-identityᵣ : Morphism.Identityᵣ{Morphism = empty-morphism} ⦃ empty-equiv ⦄ empty-comp empty-id
empty-identityᵣ = Morphism.intro \{}
empty-identity : Morphism.Identity empty-comp empty-id
empty-identity = [∧]-intro empty-identityₗ empty-identityᵣ
instance
empty-inverterₗ : Polymorphism.Inverterₗ {Morphism = empty-morphism} ⦃ empty-equiv ⦄ empty-comp empty-id empty-inv
empty-inverterₗ = Polymorphism.intro \{}
instance
empty-inverterᵣ : Polymorphism.Inverterᵣ {Morphism = empty-morphism} ⦃ empty-equiv ⦄ empty-comp empty-id empty-inv
empty-inverterᵣ = Polymorphism.intro \{}
empty-inverter : Polymorphism.Inverter empty-comp empty-id empty-inv
empty-inverter = [∧]-intro empty-inverterₗ empty-inverterᵣ
single-morphism : ∀{ℓₘ ℓ} → Unit{ℓ} → Unit{ℓ} → Type{ℓₘ}
single-morphism <> <> = Unit
single-id : Names.Reflexivity(single-morphism{ℓₘ}{ℓ})
single-id = <>
single-comp : Names.SwappedTransitivity(single-morphism{ℓₘ}{ℓ})
single-comp <> <> = <>
single-inv : Names.Symmetry(single-morphism{ℓₘ}{ℓ})
single-inv <> = <>
module _ ⦃ single-equiv : ∀{x y} → Equiv{ℓₑ}(single-morphism{ℓₘ}{ℓ} x y) ⦄ where
instance
single-associativity : Morphism.Associativity{Morphism = single-morphism{ℓₘ}{ℓ₁}} ⦃ single-equiv ⦄ (single-comp{ℓ = ℓ₂})
Morphism.Associativity.proof single-associativity {<>}{<>}{<>}{<>}{<>}{<>}{<>} = Reflexivity.proof(Equiv.reflexivity (single-equiv {<>}{<>}))
instance
single-identityₗ : Morphism.Identityₗ{Morphism = single-morphism{ℓₘ}{ℓ₁}} ⦃ single-equiv ⦄ (single-comp{ℓ = ℓ₂}) (single-id{ℓ = ℓ₃})
Morphism.Identityₗ.proof single-identityₗ {<>}{<>}{<>} = Reflexivity.proof(Equiv.reflexivity (single-equiv {<>}{<>}))
instance
single-identityᵣ : Morphism.Identityᵣ{Morphism = single-morphism{ℓₘ}{ℓ₁}} ⦃ single-equiv ⦄ (single-comp{ℓ = ℓ₂}) (single-id{ℓ = ℓ₃})
Morphism.Identityᵣ.proof single-identityᵣ {<>}{<>}{<>} = Reflexivity.proof(Equiv.reflexivity (single-equiv {<>}{<>}))
single-identity : Morphism.Identity{Morphism = single-morphism{ℓₘ}{ℓ₁}} (single-comp{ℓ = ℓ₂}) (single-id{ℓ = ℓ₃})
single-identity{ℓ₁}{ℓ₂}{ℓ₃} = [∧]-intro (single-identityₗ{ℓ₁}{ℓ₂}{ℓ₃}) (single-identityᵣ{ℓ₁}{ℓ₂}{ℓ₃})
instance
single-inverterₗ : Polymorphism.Inverterₗ {Morphism = single-morphism{ℓₘ}{ℓ₁}} ⦃ single-equiv ⦄ (single-comp{ℓ = ℓ₂}) (single-id{ℓ = ℓ₃}) (single-inv{ℓ = ℓ₄})
Polymorphism.Inverterₗ.proof single-inverterₗ {<>}{<>}{<>} = Reflexivity.proof(Equiv.reflexivity (single-equiv {<>}{<>}))
instance
single-inverterᵣ : Polymorphism.Inverterᵣ {Morphism = single-morphism{ℓₘ}{ℓ₁}} ⦃ single-equiv ⦄ (single-comp{ℓ = ℓ₂}) (single-id{ℓ = ℓ₃}) (single-inv{ℓ = ℓ₄})
Polymorphism.Inverterᵣ.proof single-inverterᵣ {<>}{<>}{<>} = Reflexivity.proof(Equiv.reflexivity (single-equiv {<>}{<>}))
single-inverter : Polymorphism.Inverter {Morphism = single-morphism{ℓₘ}{ℓ₁}} ⦃ single-equiv ⦄ (single-comp{ℓ = ℓ₂}) (single-id{ℓ = ℓ₃}) (single-inv{ℓ = ℓ₄})
single-inverter{ℓ₁}{ℓ₂}{ℓ₃}{ℓ₄} = [∧]-intro (single-inverterₗ{ℓ₁}{ℓ₂}{ℓ₃}{ℓ₄}) (single-inverterᵣ{ℓ₁}{ℓ₂}{ℓ₃}{ℓ₄})
module _ {Morphism : B → B → Type{ℓₘ}} ⦃ morphism-equiv : ∀{x y} → Equiv{ℓₑ}(Morphism x y) ⦄ (f : A → B) where
module _ {comp : Names.SwappedTransitivity(Morphism)} where
on₂-associativity : Morphism.Associativity{Morphism = Morphism} ⦃ morphism-equiv ⦄ comp → Morphism.Associativity{Morphism = Morphism on₂ f} comp
Morphism.Associativity.proof (on₂-associativity p) = Morphism.Associativity.proof p
module _ {id : Names.Reflexivity(Morphism)} where
on₂-identityₗ : Morphism.Identityₗ{Morphism = Morphism} ⦃ morphism-equiv ⦄ comp id → Morphism.Identityₗ{Morphism = Morphism on₂ f} comp id
Morphism.Identityₗ.proof (on₂-identityₗ p) = Morphism.Identityₗ.proof p
on₂-identityᵣ : Morphism.Identityᵣ{Morphism = Morphism} ⦃ morphism-equiv ⦄ comp id → Morphism.Identityᵣ{Morphism = Morphism on₂ f} comp id
Morphism.Identityᵣ.proof (on₂-identityᵣ p) = Morphism.Identityᵣ.proof p
on₂-identity : Morphism.Identity{Morphism = Morphism} ⦃ morphism-equiv ⦄ comp id → Morphism.Identity{Morphism = Morphism on₂ f} comp id
on₂-identity ([∧]-intro l r) = [∧]-intro (on₂-identityₗ l) (on₂-identityᵣ r)
module _ {inv : Names.Symmetry(Morphism)} where
on₂-inverterₗ : Polymorphism.Inverterₗ {Morphism = Morphism} ⦃ morphism-equiv ⦄ comp id inv → Polymorphism.Inverterₗ {Morphism = Morphism on₂ f} comp id inv
Polymorphism.Inverterₗ.proof (on₂-inverterₗ p) = Polymorphism.Inverterₗ.proof p
on₂-inverterᵣ : Polymorphism.Inverterᵣ {Morphism = Morphism} ⦃ morphism-equiv ⦄ comp id inv → Polymorphism.Inverterᵣ {Morphism = Morphism on₂ f} comp id inv
Polymorphism.Inverterᵣ.proof (on₂-inverterᵣ p) = Polymorphism.Inverterᵣ.proof p
on₂-inverter : Polymorphism.Inverter{Morphism = Morphism} ⦃ morphism-equiv ⦄ comp id inv → Polymorphism.Inverter{Morphism = Morphism on₂ f} comp id inv
on₂-inverter ([∧]-intro l r) = [∧]-intro (on₂-inverterₗ l) (on₂-inverterᵣ r)
| {
"alphanum_fraction": 0.7001766501,
"avg_line_length": 51.8916666667,
"ext": "agda",
"hexsha": "148173474682af919183eda62b2b4e5bcc2d957e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Categorical/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Categorical/Proofs.agda",
"max_line_length": 164,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Categorical/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2284,
"size": 6227
} |
module Lvl.Proofs where
open import Data.Tuple as Tuple using ()
open import Logic.Predicate
open import Lvl
open import Structure.Setoid
open import Structure.Function.Domain
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓₑ : Lvl.Level
private variable T : Type{ℓ}
instance
LvlUp-equiv : ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → Equiv(Lvl.Up{ℓ}(T))
Equiv._≡_ (LvlUp-equiv {ℓ = ℓ}) (up x) (up y) = Lvl.Up{ℓ}(x ≡ y)
Up.obj (Reflexivity.proof (Equivalence.reflexivity (Equiv.equivalence LvlUp-equiv))) = reflexivity(_≡_)
Up.obj (Symmetry.proof (Equivalence.symmetry (Equiv.equivalence LvlUp-equiv)) (up p)) = symmetry(_≡_) p
Up.obj (Transitivity.proof (Equivalence.transitivity (Equiv.equivalence LvlUp-equiv)) (up p) (up q)) = transitivity(_≡_) p q
instance
LvlUpObj-bijective : ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → Bijective(Lvl.Up.obj{ℓ}{T = T})
Up.obj (∃.witness (Tuple.left (Bijective.proof LvlUpObj-bijective {y}))) = y
∃.proof (Tuple.left (Bijective.proof LvlUpObj-bijective)) = reflexivity(_≡_)
Up.obj (Tuple.right (Bijective.proof LvlUpObj-bijective) p q) = transitivity(_≡_) p (symmetry(_≡_) q)
| {
"alphanum_fraction": 0.7254237288,
"avg_line_length": 43.7037037037,
"ext": "agda",
"hexsha": "253b4591f71649345259dbfb1b658ca24a374dbe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Lvl/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Lvl/Proofs.agda",
"max_line_length": 126,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Lvl/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 411,
"size": 1180
} |
------------------------------------------------------------------------
-- Simple kinding of Fω with interval kinds
------------------------------------------------------------------------
{-# OPTIONS --safe --without-K #-}
module FOmegaInt.Kinding.Simple where
open import Data.Context.WellFormed
open import Data.Fin using (Fin; zero; suc)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Fin.Substitution.Typed
open import Data.List as List using ([]; _∷_; _∷ʳ_; map)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Product as Prod using (∃; _,_; _×_)
open import Data.Vec as Vec using ([]; _∷_)
import Data.Vec.Properties as VecProps
open import Function using (_∘_)
import Level
open import Relation.Binary.PropositionalEquality as PropEq using (refl; _≡_)
open import Relation.Nullary.Negation
open import FOmegaInt.Syntax
open import FOmegaInt.Syntax.SingleVariableSubstitution
open import FOmegaInt.Syntax.HereditarySubstitution
open import FOmegaInt.Syntax.Normalization
------------------------------------------------------------------------
-- Simple kinding derivations.
--
-- TODO: explain the point of this and how "simple" kinding differs
-- from "canonical" kinding.
module Kinding where
open SimpleCtx
open Syntax
infix 4 _⊢Var_∈_ _⊢_kds _⊢Nf_∈_ _⊢Ne_∈_ _⊢_∋∙_∈_ _⊢_wfs
-- Simple kinding of variables.
data _⊢Var_∈_ {n} (Γ : Ctx n) : Fin n → SKind → Set where
∈-var : ∀ {k} x → lookup Γ x ≡ kd k → Γ ⊢Var x ∈ k
mutual
-- Simplified well-formedness of kinds: a variant of
-- well-formedness for η-long β-normal kinds based on simple
-- kinding.
data _⊢_kds {n} (Γ : Ctx n) : Kind Elim n → Set where
kds-⋯ : ∀ {a b} → Γ ⊢Nf a ∈ ★ → Γ ⊢Nf b ∈ ★ → Γ ⊢ a ⋯ b kds
kds-Π : ∀ {j k} → Γ ⊢ j kds → kd ⌊ j ⌋ ∷ Γ ⊢ k kds → Γ ⊢ Π j k kds
-- Simple kinding of η-long β-normal types.
data _⊢Nf_∈_ {n} (Γ : Ctx n) : Elim n → SKind → Set where
∈-⊥-f : Γ ⊢Nf ⊥∙ ∈ ★
∈-⊤-f : Γ ⊢Nf ⊤∙ ∈ ★
∈-∀-f : ∀ {k a} → Γ ⊢ k kds → kd ⌊ k ⌋ ∷ Γ ⊢Nf a ∈ ★ →
Γ ⊢Nf ∀∙ k a ∈ ★
∈-→-f : ∀ {a b} → Γ ⊢Nf a ∈ ★ → Γ ⊢Nf b ∈ ★ → Γ ⊢Nf a ⇒∙ b ∈ ★
∈-Π-i : ∀ {j a k} → Γ ⊢ j kds → kd ⌊ j ⌋ ∷ Γ ⊢Nf a ∈ k →
Γ ⊢Nf Λ∙ j a ∈ ⌊ j ⌋ ⇒ k
∈-ne : ∀ {a} → Γ ⊢Ne a ∈ ★ → Γ ⊢Nf a ∈ ★
-- Simple kinding of neutral types.
data _⊢Ne_∈_ {n} (Γ : Ctx n) : Elim n → SKind → Set where
∈-∙ : ∀ {x j k} {as : Spine n} → Γ ⊢Var x ∈ j →
Γ ⊢ j ∋∙ as ∈ k → Γ ⊢Ne var x ∙ as ∈ k
-- Simple spine kinding.
data _⊢_∋∙_∈_ {n} (Γ : Ctx n) : SKind → Spine n → SKind → Set where
∈-[] : ∀ {k} → Γ ⊢ k ∋∙ [] ∈ k
∈-∷ : ∀ {a as j k l} → Γ ⊢Nf a ∈ j → Γ ⊢ k ∋∙ as ∈ l →
Γ ⊢ j ⇒ k ∋∙ a ∷ as ∈ l
open ContextConversions using (⌊_⌋Ctx)
-- Simple well-formedness of ascriptions
data _⊢_wfs {n} (Γ : Ctx n) : ElimAsc n → Set where
wfs-kd : ∀ {a} → Γ ⊢ a kds → Γ ⊢ kd a wfs
wfs-tp : ∀ {a} → Γ ⊢Nf a ∈ ★ → Γ ⊢ tp a wfs
-- Simply well-formed contexts and context extensions.
module SimplyWfCtx = ContextFormation (λ Γ a → ⌊ Γ ⌋Ctx ⊢ a wfs)
open SimplyWfCtx public using () renaming (_wf to _ctxs; _⊢_wfExt to _⊢_exts)
open Syntax
open SimpleCtx
open Kinding
open PropEq
-- An admissible kinding rule for spine concatenation.
∈-++ : ∀ {n} {Γ : Ctx n} {as bs j k l} →
Γ ⊢ j ∋∙ as ∈ k → Γ ⊢ k ∋∙ bs ∈ l →
Γ ⊢ j ∋∙ as List.++ bs ∈ l
∈-++ ∈-[] k∋as∈l = k∋as∈l
∈-++ (∈-∷ b∈j₁ j₂∋as∈k) k∋as∈l = ∈-∷ b∈j₁ (∈-++ j₂∋as∈k k∋as∈l)
-- An admissible kinding rule for appending a normal form to a spine.
∈-∷ʳ : ∀ {n} {Γ : Ctx n} {as a j k l} →
Γ ⊢ j ∋∙ as ∈ k ⇒ l → Γ ⊢Nf a ∈ k →
Γ ⊢ j ∋∙ as ∷ʳ a ∈ l
∈-∷ʳ j∋as∈k⇒k a∈k = ∈-++ j∋as∈k⇒k (∈-∷ a∈k ∈-[])
-- An admissible kinding rule for post-application to neutral types.
Ne∈-Π-e : ∀ {n} {Γ : Ctx n} {a b j k} →
Γ ⊢Ne a ∈ j ⇒ k → Γ ⊢Nf b ∈ j → Γ ⊢Ne a ⌜·⌝ b ∈ k
Ne∈-Π-e (∈-∙ x∈j j∋as∈k) b∈k = ∈-∙ x∈j (∈-∷ʳ j∋as∈k b∈k)
-- An inversion lemma for _⊢_wf.
wfs-kd-inv : ∀ {n} {Γ : Ctx n} {k} → Γ ⊢ kd k wfs → Γ ⊢ k kds
wfs-kd-inv (wfs-kd k-kds) = k-kds
-- An inversion lemma for type operators.
Nf∈-⇒-inv : ∀ {n} {Γ : Ctx n} {a k₁ k₂} → Γ ⊢Nf a ∈ k₁ ⇒ k₂ →
∃ λ j → ∃ λ b →
Γ ⊢ j kds × kd k₁ ∷ Γ ⊢Nf b ∈ k₂ × ⌊ j ⌋ ≡ k₁ × a ≡ Λ∙ j b
Nf∈-⇒-inv (∈-Π-i j-kds b∈k₂) = _ , _ , j-kds , b∈k₂ , refl , refl
----------------------------------------------------------------------
-- Well-kinded substitutions (i.e. substitution lemmas) in canonical
-- types
-- Well-kinded variable substitutions (renamings).
module KindedRenaming where
open ⊤-WellFormed SimpleCtx.weakenOps
typedVarSubst : TypedVarSubst SAsc Level.zero
typedVarSubst = record
{ _⊢_wf = _⊢_wf
; typeExtension = SimpleCtx.weakenOps
; typeVarApplication = record { _/_ = λ k _ → k }
; /-wk = refl
; id-vanishes = λ _ → refl
; /-⊙ = λ _ → refl
; wf-wf = λ _ → ctx-wf _
}
open TypedVarSubst typedVarSubst public
hiding (∈-weaken)
renaming (_⊢Var_∈_ to _⊢Var′_∈_; lookup to ∈-lookup)
open Substitution hiding (subst; _/Var_) renaming (_Elim/Var_ to _/Var_)
open RenamingCommutes using (Kind[∈⌊⌋]-/Var)
open PropEq
open ≡-Reasoning
-- A helper.
∈-↑′ : ∀ {m n} {Δ : Ctx n} {Γ : Ctx m} {k ρ} →
Δ ⊢/Var ρ ∈ Γ →
kd ⌊ k Kind′/Var ρ ⌋ ∷ Δ ⊢/Var ρ VarSubst.↑ ∈ kd ⌊ k ⌋ ∷ Γ
∈-↑′ {Δ = Δ} {_} {k} ρ∈Γ =
subst (λ j → kd j ∷ Δ ⊢/Var _ ∈ _) (sym (⌊⌋-Kind′/Var k)) (∈-↑ _ ρ∈Γ)
-- Convert between well-kindedness judgments for variables.
Var∈′-Var∈ : ∀ {n} {Γ : Ctx n} {x a k} → a ≡ kd k →
Γ ⊢Var′ x ∈ a → Γ ⊢Var x ∈ k
Var∈′-Var∈ Γ[x]≡kd-k (∈-var x Γ-ctx) = ∈-var x Γ[x]≡kd-k
-- Renamings preserve synthesized kinds of variables.
Var∈-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {x k ρ} →
Γ ⊢Var x ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Var Vec.lookup ρ x ∈ k
Var∈-/Var (∈-var x Γ[x]≡kd-k) ρ∈Γ = Var∈′-Var∈ Γ[x]≡kd-k (∈-lookup ρ∈Γ x)
mutual
-- Renamings preserve well-formedness of kinds.
kds-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {k ρ} →
Γ ⊢ k kds → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ k Kind′/Var ρ kds
kds-/Var (kds-⋯ a∈★ b∈★) ρ∈Γ = kds-⋯ (Nf∈-/Var a∈★ ρ∈Γ) (Nf∈-/Var b∈★ ρ∈Γ)
kds-/Var (kds-Π j-kds k-kds) ρ∈Γ =
kds-Π (kds-/Var j-kds ρ∈Γ) (kds-/Var k-kds (∈-↑′ ρ∈Γ))
-- Renamings preserve synthesized kinds of normal types.
Nf∈-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a k ρ} →
Γ ⊢Nf a ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Nf a /Var ρ ∈ k
Nf∈-/Var ∈-⊥-f ρ∈Γ = ∈-⊥-f
Nf∈-/Var ∈-⊤-f ρ∈Γ = ∈-⊤-f
Nf∈-/Var (∈-∀-f k-kds a∈★) ρ∈Γ =
∈-∀-f (kds-/Var k-kds ρ∈Γ) (Nf∈-/Var a∈★ (∈-↑′ ρ∈Γ))
Nf∈-/Var (∈-→-f a∈★ b∈★) ρ∈Γ =
∈-→-f (Nf∈-/Var a∈★ ρ∈Γ) (Nf∈-/Var b∈★ ρ∈Γ)
Nf∈-/Var (∈-Π-i {j} {a} {k} j-kds a∈k) ρ∈Γ =
subst (λ l → _ ⊢Nf Λ∙ j a /Var _ ∈ l ⇒ k) (⌊⌋-Kind′/Var j)
(∈-Π-i (kds-/Var j-kds ρ∈Γ) (Nf∈-/Var a∈k (∈-↑′ ρ∈Γ)))
Nf∈-/Var (∈-ne a∈★) ρ∈Γ = ∈-ne (Ne∈-/Var a∈★ ρ∈Γ)
-- Renamings preserve synthesized kinds of neutral types.
Ne∈-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a k ρ} →
Γ ⊢Ne a ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢Ne a /Var ρ ∈ k
Ne∈-/Var (∈-∙ x∈j k∈as∈l) ρ∈Γ =
∈-∙ (Var∈-/Var x∈j ρ∈Γ) (Sp∈-/Var k∈as∈l ρ∈Γ)
Sp∈-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {as j k ρ} →
Γ ⊢ j ∋∙ as ∈ k → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ j ∋∙ as //Var ρ ∈ k
Sp∈-/Var ∈-[] ρ∈Γ = ∈-[]
Sp∈-/Var (∈-∷ a∈j k[a]∈as∈l) ρ∈Γ =
∈-∷ (Nf∈-/Var a∈j ρ∈Γ) (Sp∈-/Var k[a]∈as∈l ρ∈Γ)
-- Renamings preserve well-formedness of ascriptions.
wfs-/Var : ∀ {m n} {Γ : Ctx m} {Δ : Ctx n} {a ρ} →
Γ ⊢ a wfs → Δ ⊢/Var ρ ∈ Γ → Δ ⊢ a ElimAsc/Var ρ wfs
wfs-/Var (wfs-kd k-kds) ρ∈Γ = wfs-kd (kds-/Var k-kds ρ∈Γ)
wfs-/Var (wfs-tp a∈★) ρ∈Γ = wfs-tp (Nf∈-/Var a∈★ ρ∈Γ)
-- Weakening preserves simple well-formedness of kinds.
kds-weaken : ∀ {n} {Γ : Ctx n} {k a} →
Γ ⊢ k kds → a ∷ Γ ⊢ weakenKind′ k kds
kds-weaken k-kds = kds-/Var k-kds (∈-wk _)
kds-weaken⋆ : ∀ {m n} (Δ : CtxExt m n) {Γ : Ctx m} {k} →
Γ ⊢ k kds → Δ ++ Γ ⊢ weakenKind′⋆ n k kds
kds-weaken⋆ [] k-kds = k-kds
kds-weaken⋆ (_ ∷ Δ′) k-kds = kds-weaken (kds-weaken⋆ Δ′ k-kds)
-- Weakening preserves kinding of normal forms.
Nf∈-weaken : ∀ {n} {Γ : Ctx n} {a b k} →
Γ ⊢Nf b ∈ k → (a ∷ Γ) ⊢Nf weakenElim b ∈ k
Nf∈-weaken b∈k = Nf∈-/Var b∈k (∈-wk _)
Nf∈-weaken⋆ : ∀ {m n} (Δ : CtxExt m n) {Γ : Ctx m} {a k} →
Γ ⊢Nf a ∈ k → Δ ++ Γ ⊢Nf weakenElim⋆ n a ∈ k
Nf∈-weaken⋆ [] a∈k = a∈k
Nf∈-weaken⋆ (_ ∷ Δ′) a∈k = Nf∈-weaken (Nf∈-weaken⋆ Δ′ a∈k)
-- Weakening preserves kinding of neutral forms.
Ne∈-weaken : ∀ {n} {Γ : Ctx n} {a b k} →
Γ ⊢Ne b ∈ k → (a ∷ Γ) ⊢Ne weakenElim b ∈ k
Ne∈-weaken b∈k = Ne∈-/Var b∈k (∈-wk _)
-- Weakening preserves spine kinding.
Sp∈-weaken : ∀ {n} {Γ : Ctx n} {a bs j k} →
Γ ⊢ j ∋∙ bs ∈ k → (a ∷ Γ) ⊢ j ∋∙ weakenSpine bs ∈ k
Sp∈-weaken j∋bs∈k = Sp∈-/Var j∋bs∈k (∈-wk _)
-- Weakening preserves simple well-formedness of ascriptions.
wfs-weaken : ∀ {n} {Γ : Ctx n} {a b} →
Γ ⊢ b wfs → a ∷ Γ ⊢ weakenElimAsc b wfs
wfs-weaken b-wfs = wfs-/Var b-wfs (∈-wk _)
-- Operations on simply well-formed contexts that require weakening of
-- well-formedness judgments.
module WfsCtxOps where
open SimplyWfCtx
open ContextConversions using (⌊_⌋Ctx)
open KindedRenaming using (wfs-weaken)
wfsWeakenOps : WellFormedWeakenOps ElimCtx.weakenOps
wfsWeakenOps = record { wf-weaken = λ _ → wfs-weaken }
private module W = WellFormedWeakenOps wfsWeakenOps
open W public hiding (wf-weaken)
-- Lookup the kind of a type variable in a well-formed context.
lookup-kd : ∀ {m} {Γ : ElimCtx.Ctx m} {a} x →
Γ ctxs → ElimCtx.lookup Γ x ≡ kd a → ⌊ Γ ⌋Ctx ⊢ a kds
lookup-kd x Γ-ctxs Γ[x]≡kd-a =
wfs-kd-inv (subst (_ ⊢_wfs) Γ[x]≡kd-a (W.lookup Γ-ctxs x))
module KindedHereditarySubstitution where
open Data.Fin using (zero; raise; lift)
open Substitution hiding (subst; sub; _↑; _↑⋆_)
open KindedRenaming using (_⊢/Var_∈_; Nf∈-/Var; Nf∈-weaken⋆; ∈-wk)
open RenamingCommutes using (wk-/⟨⟩-↑⋆; /Var-wk-↑⋆-hsub-vanishes)
open PropEq
open ≡-Reasoning
private module V = VarSubst
infix 4 _⊢/⟨_⟩_∈_ _⊢?⟨_⟩_∈_
-- Simply well-kinded hereditary substitions and lookup results.
data _⊢/⟨_⟩_∈_ : ∀ {m n} → Ctx n → SKind → SVSub m n → Ctx m → Set where
∈-hsub : ∀ {n} {Γ : Ctx n} {k a} →
Γ ⊢Nf a ∈ k → Γ ⊢/⟨ k ⟩ sub a ∈ kd k ∷ Γ
∈-H↑ : ∀ {m n Δ k Γ} {σ : SVSub m n} {a} →
Δ ⊢/⟨ k ⟩ σ ∈ Γ → a ∷ Δ ⊢/⟨ k ⟩ σ ↑ ∈ a ∷ Γ
data _⊢?⟨_⟩_∈_ {n} (Γ : Ctx n) (k : SKind) : SVRes n → SAsc n → Set where
∈-hit : ∀ {a} → Γ ⊢Nf a ∈ k → Γ ⊢?⟨ k ⟩ hit a ∈ kd k
∈-miss : ∀ y {a} → lookup Γ y ≡ a → Γ ⊢?⟨ k ⟩ miss y ∈ a
-- A variant of `∈-H↑' that applies `σ' in the target context
∈-H↑′ : ∀ {m n Δ k Γ} {σ : SVSub m n} {j} →
Δ ⊢/⟨ k ⟩ σ ∈ Γ →
kd ⌊ j Kind/⟨ k ⟩ σ ⌋ ∷ Δ ⊢/⟨ k ⟩ σ ↑ ∈ kd ⌊ j ⌋ ∷ Γ
∈-H↑′ σ∈Γ =
subst (λ k → kd k ∷ _ ⊢/⟨ _ ⟩ _ ↑ ∈ kd _ ∷ _)
(sym (⌊⌋-Kind/⟨⟩ _)) (∈-H↑ σ∈Γ)
-- Lift a kinded hereditary substitution over multiple additional
-- variables.
∈-H↑⋆ : ∀ {m n i} (E : CtxExt m i) {Δ k Γ} {σ : SVSub m n} →
Δ ⊢/⟨ k ⟩ σ ∈ Γ → re-idx E ++ Δ ⊢/⟨ k ⟩ σ ↑⋆ i ∈ E ++ Γ
∈-H↑⋆ [] σ∈Γ = σ∈Γ
∈-H↑⋆ (a ∷ E) σ∈Γ = ∈-H↑ (∈-H↑⋆ E σ∈Γ)
-- Renamings preserve well-kinded SV results.
?∈-/Var : ∀ {m n Γ k Δ r a} {ρ : Sub Fin m n} →
Γ ⊢?⟨ k ⟩ r ∈ a → Δ ⊢/Var ρ ∈ Γ → Δ ⊢?⟨ k ⟩ r ?/Var ρ ∈ a
?∈-/Var (∈-hit a∈k) ρ∈Γ = ∈-hit (Nf∈-/Var a∈k ρ∈Γ)
?∈-/Var {Γ = Γ} {k} {Δ} (∈-miss y refl) ρ∈Γ = helper refl (TV.lookup ρ∈Γ y)
where
module TV = TypedVarSubst KindedRenaming.typedVarSubst
helper : ∀ {x a} → a ≡ lookup Γ y → Δ TV.⊢Var x ∈ a →
Δ ⊢?⟨ k ⟩ miss x ∈ lookup Γ y
helper Δ[x]≡Γ[y] (TV.∈-var x _) = ∈-miss x Δ[x]≡Γ[y]
?∈-weaken : ∀ {n} {Γ : Ctx n} {k r a b} →
Γ ⊢?⟨ k ⟩ r ∈ a → (b ∷ Γ) ⊢?⟨ k ⟩ weakenSVRes r ∈ a
?∈-weaken r∈a = ?∈-/Var r∈a (∈-wk _)
-- Look up a variable in a well-kinded hereditary substitution.
lookup-/⟨⟩∈ : ∀ {m n Δ k Γ} {σ : SVSub m n} →
Δ ⊢/⟨ k ⟩ σ ∈ Γ → (x : Fin m) →
Δ ⊢?⟨ k ⟩ lookupSV σ x ∈ lookup Γ x
lookup-/⟨⟩∈ (∈-hsub a∈k) zero = ∈-hit a∈k
lookup-/⟨⟩∈ {Γ = kd k ∷ Γ} (∈-hsub a∈k) (suc x) =
∈-miss x (cong (λ Γ → Vec.lookup Γ x) (sym (VecProps.map-id (toVec Γ))))
lookup-/⟨⟩∈ (∈-H↑ σ∈Γ) zero = ∈-miss zero refl
lookup-/⟨⟩∈ (∈-H↑ {Δ = Δ} {_} {Γ} {σ} σ∈Γ) (suc x) =
?∈-weaken (subst (λ as → Δ ⊢?⟨ _ ⟩ lookupSV σ x ∈ Vec.lookup as x)
(sym (VecProps.map-id (toVec Γ))) (lookup-/⟨⟩∈ σ∈Γ x))
-- Lookup a hit in a well-kinded hereditary substitution.
--
-- NOTE. Since `j ≡ k', we could have formulated this lemma
-- differently. In particular, given the premise `Γ ⊢Var x ∈ j', it
-- would have been more intuitive for the kinding judgment in the
-- conclusion to use the shape `j' rather than `k' (preserving the
-- kind of the variable, as usual for substitution lemmas).
-- However, it is important that the shape `k' of the normal type
-- returned by this function is syntactically equal to the shape
-- annotation of the hereditary substitution `Δ ⊢/⟨ k ⟩ σ ∈ Γ'
-- because it serves as the termination measure for the (hereditary)
-- substitution lemmas below.
lookup-/⟨⟩∈-Hit : ∀ {m n Δ k} {σ : SVSub m n} {Γ x j a} →
Δ ⊢/⟨ k ⟩ σ ∈ Γ → Γ ⊢Var x ∈ j → Hit σ x a →
Δ ⊢Nf a ∈ k × j ≡ k
lookup-/⟨⟩∈-Hit σ∈Γ (∈-var {j} x Γ[x]≡kd-j) hitP =
let a∈k , Γ[x]≡kd-k = helper (lookup-Hit hitP) (lookup-/⟨⟩∈ σ∈Γ x)
in a∈k , kd-inj′ (trans (sym Γ[x]≡kd-j) Γ[x]≡kd-k)
where
helper : ∀ {n} {Δ : Ctx n} {r a b k} →
r ≡ hit a → Δ ⊢?⟨ k ⟩ r ∈ b → Δ ⊢Nf a ∈ k × b ≡ kd k
helper refl (∈-hit a∈k) = a∈k , refl
lookup-/⟨⟩∈-Miss : ∀ {m n Δ k} {σ : SVSub m n} {Γ x y j} →
Δ ⊢/⟨ k ⟩ σ ∈ Γ → Γ ⊢Var x ∈ j → Miss σ x y →
lookup Δ y ≡ lookup Γ x
lookup-/⟨⟩∈-Miss σ∈Γ (∈-var {j} x Γ[x]≡kd-j) missP =
helper (lookup-Miss missP) (lookup-/⟨⟩∈ σ∈Γ x)
where
helper : ∀ {n} {Δ : Ctx n} {r y b k} →
r ≡ miss y → Δ ⊢?⟨ k ⟩ r ∈ b → lookup Δ y ≡ b
helper refl (∈-miss y Δ[y]≡b) = Δ[y]≡b
open KindSimpLemmas simpLemmasKind′
-- TODO: explain why this terminates.
mutual
-- Hereditary substitutions preserve simple well-formedness and
-- kinding (of kinds, normal types and spines).
kds-/⟨⟩ : ∀ {m n Γ k Δ} {σ : SVSub m n} {j} →
Γ ⊢ j kds → Δ ⊢/⟨ k ⟩ σ ∈ Γ → Δ ⊢ j Kind/⟨ k ⟩ σ kds
kds-/⟨⟩ (kds-⋯ a∈★ b∈★) σ∈Γ = kds-⋯ (Nf∈-/⟨⟩ a∈★ σ∈Γ) (Nf∈-/⟨⟩ b∈★ σ∈Γ)
kds-/⟨⟩ (kds-Π j-kds k-kds) σ∈Γ =
kds-Π (kds-/⟨⟩ j-kds σ∈Γ) (kds-/⟨⟩ k-kds (∈-H↑′ σ∈Γ))
Nf∈-/⟨⟩ : ∀ {m n Γ k Δ} {σ : SVSub m n} {a j} →
Γ ⊢Nf a ∈ j → Δ ⊢/⟨ k ⟩ σ ∈ Γ → Δ ⊢Nf a /⟨ k ⟩ σ ∈ j
Nf∈-/⟨⟩ ∈-⊥-f σ∈Γ = ∈-⊥-f
Nf∈-/⟨⟩ ∈-⊤-f σ∈Γ = ∈-⊤-f
Nf∈-/⟨⟩ (∈-∀-f k-kds a∈★) σ∈Γ =
∈-∀-f (kds-/⟨⟩ k-kds σ∈Γ) (Nf∈-/⟨⟩ a∈★ (∈-H↑′ σ∈Γ))
Nf∈-/⟨⟩ (∈-→-f a∈★ b∈★) σ∈Γ =
∈-→-f (Nf∈-/⟨⟩ a∈★ σ∈Γ) (Nf∈-/⟨⟩ b∈★ σ∈Γ)
Nf∈-/⟨⟩ (∈-Π-i {j} {a} {k} j-kds a∈k) σ∈Γ =
subst (λ l → _ ⊢Nf Λ∙ j a /⟨ _ ⟩ _ ∈ l ⇒ k) (⌊⌋-Kind/⟨⟩ j)
(∈-Π-i (kds-/⟨⟩ j-kds σ∈Γ) (Nf∈-/⟨⟩ a∈k (∈-H↑′ σ∈Γ)))
Nf∈-/⟨⟩ (∈-ne a∈★) σ∈Γ = Ne∈-/⟨⟩ a∈★ σ∈Γ
Sp∈-/⟨⟩ : ∀ {m n Γ k Δ} {σ : SVSub m n} {as j₁ j₂} →
Γ ⊢ j₁ ∋∙ as ∈ j₂ → Δ ⊢/⟨ k ⟩ σ ∈ Γ → Δ ⊢ j₁ ∋∙ as //⟨ k ⟩ σ ∈ j₂
Sp∈-/⟨⟩ ∈-[] σ∈Γ = ∈-[]
Sp∈-/⟨⟩ (∈-∷ a∈j₁ j₂[a]∈as∈j₃) σ∈Γ =
∈-∷ (Nf∈-/⟨⟩ a∈j₁ σ∈Γ) (Sp∈-/⟨⟩ j₂[a]∈as∈j₃ σ∈Γ)
-- Hereditary substitutions preserve the shapes of neutral types
-- (but not neutrality itself).
Ne∈-/⟨⟩ : ∀ {m n Γ k Δ} {σ : SVSub m n} {a} →
Γ ⊢Ne a ∈ ★ → Δ ⊢/⟨ k ⟩ σ ∈ Γ → Δ ⊢Nf a /⟨ k ⟩ σ ∈ ★
Ne∈-/⟨⟩ (∈-∙ (∈-var x Γ[x]≡kd-j) j∈as∈l) σ∈Γ =
?⟨⟩∈-?∙∙ (subst (_ ⊢?⟨ _ ⟩ _ ∈_) Γ[x]≡kd-j (lookup-/⟨⟩∈ σ∈Γ x))
(Sp∈-/⟨⟩ j∈as∈l σ∈Γ)
-- Applications in simple kinding are admissible.
?⟨⟩∈-?∙∙ : ∀ {n} {Γ : Ctx n} {r as k j} →
Γ ⊢?⟨ k ⟩ r ∈ kd j → Γ ⊢ j ∋∙ as ∈ ★ → Γ ⊢Nf r ?∙∙⟨ k ⟩ as ∈ ★
?⟨⟩∈-?∙∙ (∈-hit a∈j) j∋as∈★ = Nf∈-∙∙ a∈j j∋as∈★
?⟨⟩∈-?∙∙ (∈-miss y Γ[y]≡kd-j) j∋as∈★ = ∈-ne (∈-∙ (∈-var y Γ[y]≡kd-j) j∋as∈★)
Nf∈-∙∙ : ∀ {n} {Γ : Ctx n} {a as j k} →
Γ ⊢Nf a ∈ j → Γ ⊢ j ∋∙ as ∈ k → Γ ⊢Nf a ∙∙⟨ j ⟩ as ∈ k
Nf∈-∙∙ a∈j ∈-[] = a∈j
Nf∈-∙∙ a∈j⇒k (∈-∷ b∈j k∋as∈l) = Nf∈-∙∙ (Nf∈-Π-e a∈j⇒k b∈j) k∋as∈l
Nf∈-Π-e : ∀ {n} {Γ : Ctx n} {a b j k} →
Γ ⊢Nf a ∈ j ⇒ k → Γ ⊢Nf b ∈ j → Γ ⊢Nf a ⌜·⌝⟨ j ⇒ k ⟩ b ∈ k
Nf∈-Π-e (∈-Π-i j-kds a∈k) b∈⌊j⌋ = Nf∈-/⟨⟩ a∈k (∈-hsub b∈⌊j⌋)
-- Concatenation of simply well-formed spines results in application.
Nf∈-++-∙∙⟨⟩ : ∀ {n} {Γ : Ctx n} {a bs cs j k l} →
Γ ⊢Nf a ∈ j → Γ ⊢ j ∋∙ bs ∈ k → Γ ⊢ k ∋∙ cs ∈ l →
a ∙∙⟨ j ⟩ (bs List.++ cs) ≡ a ∙∙⟨ j ⟩ bs ∙∙⟨ k ⟩ cs
Nf∈-++-∙∙⟨⟩ a∈j ∈-[] k∋cs∈l = refl
Nf∈-++-∙∙⟨⟩ a∈j₁⇒j₂ (∈-∷ b∈j₁ j₂[b]∋bs∈k) k∋cs∈l =
Nf∈-++-∙∙⟨⟩ (Nf∈-Π-e a∈j₁⇒j₂ b∈j₁) j₂[b]∋bs∈k k∋cs∈l
-- Another admissible kinding rule for applications.
Nf∈-Π-e′ : ∀ {n} {Γ : Ctx n} {a b j k} →
Γ ⊢Nf a ∈ j ⇒ k → Γ ⊢Nf b ∈ j → Γ ⊢Nf a ↓⌜·⌝ b ∈ k
Nf∈-Π-e′ (∈-Π-i j-kds a∈k) b∈⌊j⌋ = Nf∈-/⟨⟩ a∈k (∈-hsub b∈⌊j⌋)
mutual
-- Simply well-kinded hereditary substitutions in simply
-- well-formed kinds and simply well-kinded types commute.
--
-- NOTE: this is a variant of the `sub-commutes' lemma from
-- Data.Fin.Substitution.Lemmas adapted to hereditary
-- substitutions.
kds-[]-/⟨⟩-↑⋆ : ∀ {i m n} (E : CtxExt (suc m) i) {Γ Δ}
{j b k l} {σ : SVSub m n} →
E ++ kd k ∷ Γ ⊢ j kds → Γ ⊢Nf b ∈ k → Δ ⊢/⟨ l ⟩ σ ∈ Γ →
j Kind/⟨ k ⟩ (sub b ↑⋆ i) Kind/⟨ l ⟩ σ ↑⋆ i ≡
j Kind/⟨ l ⟩ (σ ↑) ↑⋆ i Kind/⟨ k ⟩ sub (b /⟨ l ⟩ σ) ↑⋆ i
kds-[]-/⟨⟩-↑⋆ E (kds-⋯ a∈★ b∈★) c∈k σ∈Γ =
cong₂ _⋯_ (Nf∈-[]-/⟨⟩-↑⋆ E a∈★ c∈k σ∈Γ) (Nf∈-[]-/⟨⟩-↑⋆ E b∈★ c∈k σ∈Γ)
kds-[]-/⟨⟩-↑⋆ E (kds-Π j-kds k-kds) b∈k σ∈Γ =
cong₂ Π (kds-[]-/⟨⟩-↑⋆ E j-kds b∈k σ∈Γ)
(kds-[]-/⟨⟩-↑⋆ (_ ∷ E) k-kds b∈k σ∈Γ)
Nf∈-[]-/⟨⟩-↑⋆ : ∀ {i m n} (E : CtxExt (suc m) i) {Γ Δ}
{a b j k l} {σ : SVSub m n} →
E ++ kd k ∷ Γ ⊢Nf a ∈ j → Γ ⊢Nf b ∈ k → Δ ⊢/⟨ l ⟩ σ ∈ Γ →
a /⟨ k ⟩ (sub b ↑⋆ i) /⟨ l ⟩ σ ↑⋆ i ≡
a /⟨ l ⟩ (σ ↑) ↑⋆ i /⟨ k ⟩ sub (b /⟨ l ⟩ σ) ↑⋆ i
Nf∈-[]-/⟨⟩-↑⋆ E ∈-⊥-f b∈k σ∈Γ = refl
Nf∈-[]-/⟨⟩-↑⋆ E ∈-⊤-f b∈k σ∈Γ = refl
Nf∈-[]-/⟨⟩-↑⋆ E (∈-∀-f k-kds a∈★) b∈k σ∈Γ =
cong (_∙ []) (cong₂ Π (kds-[]-/⟨⟩-↑⋆ E k-kds b∈k σ∈Γ)
(Nf∈-[]-/⟨⟩-↑⋆ (_ ∷ E) a∈★ b∈k σ∈Γ))
Nf∈-[]-/⟨⟩-↑⋆ E (∈-→-f a∈★ b∈★) c∈k σ∈Γ =
cong (_∙ []) (cong₂ _⇒_ (Nf∈-[]-/⟨⟩-↑⋆ E a∈★ c∈k σ∈Γ)
(Nf∈-[]-/⟨⟩-↑⋆ E b∈★ c∈k σ∈Γ))
Nf∈-[]-/⟨⟩-↑⋆ E (∈-Π-i j-kds a∈l) b∈k σ∈Γ =
cong (_∙ []) (cong₂ Λ (kds-[]-/⟨⟩-↑⋆ E j-kds b∈k σ∈Γ)
(Nf∈-[]-/⟨⟩-↑⋆ (_ ∷ E) a∈l b∈k σ∈Γ))
Nf∈-[]-/⟨⟩-↑⋆ E (∈-ne a∈★) b∈k σ∈Γ = Ne∈-[]-/⟨⟩-↑⋆ E a∈★ b∈k σ∈Γ
Ne∈-[]-/⟨⟩-↑⋆ : ∀ {i m n} (E : CtxExt (suc m) i) {Γ Δ}
{a b j k l} {σ : SVSub m n} →
E ++ kd k ∷ Γ ⊢Ne a ∈ j → Γ ⊢Nf b ∈ k → Δ ⊢/⟨ l ⟩ σ ∈ Γ →
a /⟨ k ⟩ (sub b ↑⋆ i) /⟨ l ⟩ σ ↑⋆ i ≡
a /⟨ l ⟩ (σ ↑) ↑⋆ i /⟨ k ⟩ sub (b /⟨ l ⟩ σ) ↑⋆ i
Ne∈-[]-/⟨⟩-↑⋆ {i} E {b = b} (∈-∙ (∈-var x _) j∋as∈l) b∈k σ∈Γ
with hit? (sub b ↑⋆ i) x
Ne∈-[]-/⟨⟩-↑⋆ {i} E {_} {_} {var x ∙ as} {b} {_} {k} {l} {σ}
(∈-∙ (∈-var x Γ[x]=kd-j) j∋as∈l) b∈k σ∈Γ
| hit a hitP =
let σ₁′ = sub b ↑⋆ i
σ₂′ = sub (b /⟨ l ⟩ σ) ↑⋆ i
as₁ = as //⟨ k ⟩ σ₁′
as₂ = as //⟨ l ⟩ ((σ ↑) ↑⋆ i)
[b/i]∈E++k∷Γ = ∈-H↑⋆ E (∈-hsub b∈k)
_ , j≡k = lookup-/⟨⟩∈-Hit [b/i]∈E++k∷Γ (∈-var x Γ[x]=kd-j) hitP
k∋as∈l = subst (_ ⊢_∋∙ as ∈ _) j≡k j∋as∈l
σ↑⋆i∈E++Γ = ∈-H↑⋆ (re-idx E) σ∈Γ
in begin
lookupSV σ₁′ x ?∙∙⟨ k ⟩ as₁ /⟨ l ⟩ σ ↑⋆ i
≡⟨ cong (λ r → r ?∙∙⟨ k ⟩ as₁ /⟨ l ⟩ _)
(trans (lookup-Hit hitP) (cong hit (Hit-sub-↑⋆₂ i hitP))) ⟩
weakenElim⋆ i b ∙∙⟨ k ⟩ as₁ /⟨ l ⟩ σ ↑⋆ i
≡⟨ Nf∈-∙∙-/⟨⟩ (Nf∈-weaken⋆ (re-idx E) b∈k)
(Sp∈-/⟨⟩ k∋as∈l [b/i]∈E++k∷Γ) σ↑⋆i∈E++Γ ⟩
(weakenElim⋆ i b /⟨ l ⟩ σ ↑⋆ i) ∙∙⟨ k ⟩ (as₁ //⟨ l ⟩ σ ↑⋆ i)
≡⟨ cong₂ (_∙∙⟨ k ⟩_) (sym (weaken⋆-/⟨⟩-↑⋆ i b))
(Sp∈-[]-/⟨⟩-↑⋆ E j∋as∈l b∈k σ∈Γ) ⟩
weakenElim⋆ i (b /⟨ l ⟩ σ) ∙∙⟨ k ⟩ (as₂ //⟨ k ⟩ σ₂′)
≡˘⟨ cong (_?∙∙⟨ k ⟩ (as₂ //⟨ k ⟩ σ₂′)) (lookup-Hit (Hit-sub-↑⋆ i)) ⟩
lookupSV σ₂′ (raise i zero) ?∙∙⟨ k ⟩ (as₂ //⟨ k ⟩ σ₂′)
≡⟨⟩
miss (raise i zero) ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′
≡˘⟨ cong (λ r → r ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′)
(lookup-Miss (Miss-↑⋆ i under)) ⟩
lookupSV ((σ ↑) ↑⋆ i) (raise i zero) ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′
≡˘⟨ cong (λ y → lookupSV ((σ ↑) ↑⋆ i) y ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′)
(Hit-sub-↑⋆₁ i hitP) ⟩
lookupSV ((σ ↑) ↑⋆ i) x ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′
∎
Ne∈-[]-/⟨⟩-↑⋆ {i} E {_} {_} {var x ∙ as} {b} {_} {k} {l} {σ}
(∈-∙ (∈-var x Γ[x]=kd-j) j∋as∈l) b∈k σ∈Γ
| miss y missP-[a/i] with hit? (σ ↑⋆ i) y
... | hit a hitP =
let σ₁′ = sub b ↑⋆ i
σ₂′ = sub (b /⟨ l ⟩ σ) ↑⋆ i
as₁ = as //⟨ k ⟩ σ₁′
as₂ = as //⟨ l ⟩ ((σ ↑) ↑⋆ i)
hitP-σ↑↑⋆ = Hit-↑-↑⋆ i hitP
σ₂′∈E++Γ = ∈-H↑⋆ (re-idx E) (∈-hsub (Nf∈-/⟨⟩ b∈k σ∈Γ))
σ∈E++k∷Γ = ∈-H↑⋆ E (∈-H↑ σ∈Γ)
x≡i+1+y = Miss-sub-↑⋆′ i y missP-[a/i]
i+1+y∈j = subst (_ ⊢Var_∈ _) x≡i+1+y (∈-var x Γ[x]=kd-j)
a∈l , j≡l = lookup-/⟨⟩∈-Hit σ∈E++k∷Γ i+1+y∈j hitP-σ↑↑⋆
l∋as₂∈l = subst (_ ⊢_∋∙ as₂ ∈ _) j≡l (Sp∈-/⟨⟩ j∋as∈l σ∈E++k∷Γ)
in begin
lookupSV σ₁′ x ?∙∙⟨ k ⟩ as₁ /⟨ l ⟩ σ ↑⋆ i
≡⟨ cong (λ r → r ?∙∙⟨ k ⟩ as₁ /⟨ l ⟩ σ ↑⋆ i) (lookup-Miss missP-[a/i]) ⟩
var y ∙ as₁ /⟨ l ⟩ σ ↑⋆ i
≡⟨⟩
lookupSV (σ ↑⋆ i) y ?∙∙⟨ l ⟩ (as₁ //⟨ l ⟩ σ ↑⋆ i)
≡⟨ cong₂ (_?∙∙⟨ l ⟩_) (lookup-Hit hitP) (Sp∈-[]-/⟨⟩-↑⋆ E j∋as∈l b∈k σ∈Γ) ⟩
a ∙∙⟨ l ⟩ (as₂ //⟨ k ⟩ σ₂′)
≡˘⟨ cong (_∙∙⟨ l ⟩ (as₂ //⟨ k ⟩ σ₂′)) (/Var-wk-↑⋆-hsub-vanishes i a) ⟩
(a Elim/Var V.wk V.↑⋆ i /⟨ k ⟩ σ₂′) ∙∙⟨ l ⟩ (as₂ //⟨ k ⟩ σ₂′)
≡˘⟨ Nf∈-∙∙-/⟨⟩ a∈l l∋as₂∈l σ₂′∈E++Γ ⟩
(a Elim/Var V.wk V.↑⋆ i) ∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′
≡˘⟨ cong (λ r → r ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′) (lookup-Hit hitP-σ↑↑⋆) ⟩
lookupSV ((σ ↑) ↑⋆ i) (lift i suc y) ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′
≡˘⟨ cong (λ z → lookupSV ((σ ↑) ↑⋆ i) z ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′) x≡i+1+y ⟩
lookupSV ((σ ↑) ↑⋆ i) x ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′
∎
... | miss z missP =
let σ₁′ = sub b ↑⋆ i
σ₂′ = sub (b /⟨ l ⟩ σ) ↑⋆ i
as₁ = as //⟨ k ⟩ σ₁′
as₂ = as //⟨ l ⟩ ((σ ↑) ↑⋆ i)
missP-σ↑↑⋆ = Miss-↑-↑⋆ i missP
x≡i+1+y = Miss-sub-↑⋆′ i y missP-[a/i]
in begin
lookupSV σ₁′ x ?∙∙⟨ k ⟩ as₁ /⟨ l ⟩ σ ↑⋆ i
≡⟨ cong (λ r → r ?∙∙⟨ k ⟩ as₁ /⟨ l ⟩ σ ↑⋆ i) (lookup-Miss missP-[a/i]) ⟩
var y ∙ as₁ /⟨ l ⟩ σ ↑⋆ i
≡⟨⟩
lookupSV (σ ↑⋆ i) y ?∙∙⟨ l ⟩ (as₁ //⟨ l ⟩ σ ↑⋆ i)
≡⟨ cong₂ (_?∙∙⟨ l ⟩_) (lookup-Miss missP)
(Sp∈-[]-/⟨⟩-↑⋆ E j∋as∈l b∈k σ∈Γ) ⟩
var z ∙ (as₂ //⟨ k ⟩ σ₂′)
≡˘⟨ cong (_?∙∙⟨ k ⟩ (as₂ //⟨ k ⟩ σ₂′)) (lookup-Miss (Miss-sub-↑⋆ i z)) ⟩
lookupSV σ₂′ (lift i suc z) ?∙∙⟨ k ⟩ (as₂ //⟨ k ⟩ σ₂′)
≡⟨⟩
var (lift i suc z) ∙ as₂ /⟨ k ⟩ σ₂′
≡˘⟨ cong (λ r → r ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′) (lookup-Miss missP-σ↑↑⋆) ⟩
lookupSV ((σ ↑) ↑⋆ i) (lift i suc y) ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′
≡˘⟨ cong (λ z → lookupSV ((σ ↑) ↑⋆ i) z ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′) x≡i+1+y ⟩
lookupSV ((σ ↑) ↑⋆ i) x ?∙∙⟨ l ⟩ as₂ /⟨ k ⟩ σ₂′
∎
Sp∈-[]-/⟨⟩-↑⋆ : ∀ {i m n} (E : CtxExt (suc m) i) {Γ Δ}
{as b j₁ j₂ k l} {σ : SVSub m n} →
E ++ kd k ∷ Γ ⊢ j₁ ∋∙ as ∈ j₂ →
Γ ⊢Nf b ∈ k → Δ ⊢/⟨ l ⟩ σ ∈ Γ →
as //⟨ k ⟩ (sub b ↑⋆ i) //⟨ l ⟩ σ ↑⋆ i ≡
as //⟨ l ⟩ (σ ↑) ↑⋆ i //⟨ k ⟩ sub (b /⟨ l ⟩ σ) ↑⋆ i
Sp∈-[]-/⟨⟩-↑⋆ E ∈-[] b∈k σ∈Γ = refl
Sp∈-[]-/⟨⟩-↑⋆ E (∈-∷ a∈j₁ j₂∋as∈j₃) b∈k σ∈Γ =
cong₂ _∷_ (Nf∈-[]-/⟨⟩-↑⋆ E a∈j₁ b∈k σ∈Γ) (Sp∈-[]-/⟨⟩-↑⋆ E j₂∋as∈j₃ b∈k σ∈Γ)
-- Reducing applications commute with hereditary substitution.
Nf∈-∙∙-/⟨⟩ : ∀ {l m n Γ Δ} {σ : SVSub m n} {a as j k} →
Γ ⊢Nf a ∈ j → Γ ⊢ j ∋∙ as ∈ k → Δ ⊢/⟨ l ⟩ σ ∈ Γ →
a ∙∙⟨ j ⟩ as /⟨ l ⟩ σ ≡ (a /⟨ l ⟩ σ) ∙∙⟨ j ⟩ (as //⟨ l ⟩ σ)
Nf∈-∙∙-/⟨⟩ a∈j ∈-[] σ∈Γ = refl
Nf∈-∙∙-/⟨⟩ {l} {σ = σ} {a} {b ∷ bs} {j ⇒ k} a∈j⇒k (∈-∷ b∈j k∋bs∈l) σ∈Γ =
begin
a ⌜·⌝⟨ j ⇒ k ⟩ b ∙∙⟨ k ⟩ bs /⟨ l ⟩ σ
≡⟨ Nf∈-∙∙-/⟨⟩ (Nf∈-Π-e a∈j⇒k b∈j) k∋bs∈l σ∈Γ ⟩
(a ⌜·⌝⟨ j ⇒ k ⟩ b /⟨ l ⟩ σ) ∙∙⟨ _ ⟩ (bs //⟨ l ⟩ σ)
≡⟨ cong (_∙∙⟨ k ⟩ (bs //⟨ l ⟩ σ)) (Nf∈-Π-e-/⟨⟩ a∈j⇒k b∈j σ∈Γ) ⟩
(a /⟨ l ⟩ σ) ⌜·⌝⟨ j ⇒ k ⟩ (b /⟨ l ⟩ σ) ∙∙⟨ k ⟩ (bs //⟨ l ⟩ σ)
∎
Nf∈-Π-e-/⟨⟩ : ∀ {l m n Γ Δ} {σ : SVSub m n} {a b j k} →
Γ ⊢Nf a ∈ j ⇒ k → Γ ⊢Nf b ∈ j → Δ ⊢/⟨ l ⟩ σ ∈ Γ →
a ⌜·⌝⟨ j ⇒ k ⟩ b /⟨ l ⟩ σ ≡
(a /⟨ l ⟩ σ) ⌜·⌝⟨ j ⇒ k ⟩ (b /⟨ l ⟩ σ)
Nf∈-Π-e-/⟨⟩ (∈-Π-i j-kds a∈k) b∈⌊j⌋ σ∈Γ = Nf∈-[]-/⟨⟩-↑⋆ [] a∈k b∈⌊j⌋ σ∈Γ
-- Potentially reducing applications commute with hereditary
-- substitution.
Nf∈-Π-e-/⟨⟩′ : ∀ {l m n Γ Δ} {σ : SVSub m n} {a b j k} →
Γ ⊢Nf a ∈ j ⇒ k → Γ ⊢Nf b ∈ j → Δ ⊢/⟨ l ⟩ σ ∈ Γ →
a ↓⌜·⌝ b /⟨ l ⟩ σ ≡ (a /⟨ l ⟩ σ) ↓⌜·⌝ (b /⟨ l ⟩ σ)
Nf∈-Π-e-/⟨⟩′ {l} {σ = σ} {_} {b} (∈-Π-i {j} {a} j-kds a∈k) b∈⌊j⌋ σ∈Γ =
begin
(a [ b ∈ ⌊ j ⌋ ]) /⟨ l ⟩ σ
≡⟨ Nf∈-[]-/⟨⟩-↑⋆ [] a∈k b∈⌊j⌋ σ∈Γ ⟩
(a /⟨ l ⟩ σ ↑) [ b /⟨ l ⟩ σ ∈ ⌊ j ⌋ ]
≡⟨ cong ((a /⟨ l ⟩ σ ↑) [ b /⟨ l ⟩ σ ∈_]) (sym (⌊⌋-Kind/⟨⟩ j)) ⟩
(a /⟨ l ⟩ σ ↑) [ b /⟨ l ⟩ σ ∈ ⌊ j Kind/⟨ l ⟩ σ ⌋ ]
∎
| {
"alphanum_fraction": 0.4216123114,
"avg_line_length": 43.0064412238,
"ext": "agda",
"hexsha": "e0dd295e2dd048ef2490536a330c08eed86a40d4",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z",
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Kinding/Simple.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Kinding/Simple.agda",
"max_line_length": 81,
"max_stars_count": 12,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Kinding/Simple.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z",
"num_tokens": 14362,
"size": 26707
} |
module UselessPrivatePragma where
postulate Char : Set
private
{-# BUILTIN CHAR Char #-}
| {
"alphanum_fraction": 0.7419354839,
"avg_line_length": 13.2857142857,
"ext": "agda",
"hexsha": "a625ce81d93ec296eff8964ac38eb95445a9412a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/UselessPrivatePragma.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/UselessPrivatePragma.agda",
"max_line_length": 33,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/UselessPrivatePragma.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 23,
"size": 93
} |
-- Andreas, 2016-09-22, issue #2183, issue reported by Ulf
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
module _ (n : Nat) where
foo : (m : Nat) → n ≡ m → Nat
foo m refl = {!m!}
-- Splitting on m fails currently, as it internally is .n
-- We may be doing something about this in the future.
| {
"alphanum_fraction": 0.6813880126,
"avg_line_length": 24.3846153846,
"ext": "agda",
"hexsha": "60656c4d49ee21831d5546e3113a3dd46054759c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pthariensflame/agda",
"max_forks_repo_path": "test/interaction/Issue2183.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pthariensflame/agda",
"max_issues_repo_path": "test/interaction/Issue2183.agda",
"max_line_length": 58,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pthariensflame/agda",
"max_stars_repo_path": "test/interaction/Issue2183.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 101,
"size": 317
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Substitution.MaybeEmbed {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Substitution
open import Tools.Product
-- Any level can be embedded into the highest level (validity variant).
maybeEmbᵛ : ∀ {l A Γ}
([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ l ⟩ A / [Γ]
→ Γ ⊩ᵛ⟨ ¹ ⟩ A / [Γ]
maybeEmbᵛ {⁰} [Γ] [A] ⊢Δ [σ] =
let [σA] = proj₁ ([A] ⊢Δ [σ])
[σA]′ = maybeEmb (proj₁ ([A] ⊢Δ [σ]))
in [σA]′
, (λ [σ′] [σ≡σ′] → irrelevanceEq [σA] [σA]′ (proj₂ ([A] ⊢Δ [σ]) [σ′] [σ≡σ′]))
maybeEmbᵛ {¹} [Γ] [A] = [A]
-- The lowest level can be embedded in any level (validity variant).
maybeEmbₛ′ : ∀ {l A Γ}
([Γ] : ⊩ᵛ Γ)
→ Γ ⊩ᵛ⟨ ⁰ ⟩ A / [Γ]
→ Γ ⊩ᵛ⟨ l ⟩ A / [Γ]
maybeEmbₛ′ {⁰} [Γ] [A] = [A]
maybeEmbₛ′ {¹} [Γ] [A] ⊢Δ [σ] =
let [σA] = proj₁ ([A] ⊢Δ [σ])
[σA]′ = maybeEmb′ (proj₁ ([A] ⊢Δ [σ]))
in [σA]′
, (λ [σ′] [σ≡σ′] → irrelevanceEq [σA] [σA]′ (proj₂ ([A] ⊢Δ [σ]) [σ′] [σ≡σ′]))
| {
"alphanum_fraction": 0.5530364372,
"avg_line_length": 31.6666666667,
"ext": "agda",
"hexsha": "c3eee16849a132790b4c65ce18616d33c3e97eb5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Substitution/MaybeEmbed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Substitution/MaybeEmbed.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Substitution/MaybeEmbed.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 536,
"size": 1235
} |
F : Set → Set
F A = A → A
{-# POLARITY F ++ #-}
| {
"alphanum_fraction": 0.4081632653,
"avg_line_length": 9.8,
"ext": "agda",
"hexsha": "62834e6c38fdcb5c969ac2537f0d7c41a84837ca",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pthariensflame/agda",
"max_forks_repo_path": "test/Fail/Polarity-pragma-in-safe-mode.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pthariensflame/agda",
"max_issues_repo_path": "test/Fail/Polarity-pragma-in-safe-mode.agda",
"max_line_length": 21,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pthariensflame/agda",
"max_stars_repo_path": "test/Fail/Polarity-pragma-in-safe-mode.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 20,
"size": 49
} |
module Common.SumProperties where
open import Function as Fun
open import Data.Sum as Sum
open import Relation.Binary.PropositionalEquality as PE hiding ([_])
open ≡-Reasoning
copair-elimˡ : {A B C : Set} {f : A → C} {g : B → C} (x : A) →
([ f , g ]′ ) (inj₁ x) ≡ f x
copair-elimˡ x = refl
copair-elimʳ : {A B C : Set} {f : A → C} {g : B → C} (x : B) →
([ f , g ]′ ) (inj₂ x) ≡ g x
copair-elimʳ x = refl
copair-sum-map-merge : {A A' B B' C : Set}
{f₁ : A → A'} {f₂ : B → B'} {g₁ : A' → C} {g₂ : B' → C}
(x : A ⊎ B) →
([ g₁ , g₂ ]′ ∘ Sum.map f₁ f₂) x ≡ [ g₁ ∘ f₁ , g₂ ∘ f₂ ]′ x
copair-sum-map-merge (inj₁ x) = refl
copair-sum-map-merge (inj₂ y) = refl
copair-cong : {A B C : Set} {f f' : A → C} {g : B → C}
(p : (x : A) → f x ≡ f' x) →
(x : A ⊎ B) →
[ f , g ]′ x ≡ [ f' , g ]′ x
copair-cong {A} {B} {C} {f} {f'} {g} p (inj₁ x) =
begin
([ f , g ]′ (inj₁ x))
≡⟨ refl ⟩
f x
≡⟨ p x ⟩
f' x
≡⟨ refl ⟩
[ f' , g ]′ (inj₁ x)
∎
copair-cong p (inj₂ y) = refl
copair-distr : {A B C D : Set} {f : A → C} {g : B → C} {h : C → D}
(x : A ⊎ B) →
[ h ∘ f , h ∘ g ]′ x ≡ (h ∘ [ f , g ]′) x
copair-distr (inj₁ x) = refl
copair-distr (inj₂ y) = refl
| {
"alphanum_fraction": 0.4210128496,
"avg_line_length": 30.0681818182,
"ext": "agda",
"hexsha": "237bc90c8807ba958ed8d5a29390b7c2318c4d8b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "TypeTheory/Common/SumProperties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "TypeTheory/Common/SumProperties.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "TypeTheory/Common/SumProperties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 594,
"size": 1323
} |
module bags where
open import Data.PropFormula.Syntax 4
open import Data.PropFormula.SyntaxExperiment 4 public
open import Data.Fin using (suc; zero; #_)
open import Relation.Binary.PropositionalEquality using (_≡_)
p : PropFormula
p = Var (# 0)
q : PropFormula
q = Var (# 1)
pq : PropFormula
pq = p ∧ q
qp : PropFormula
qp = q ∧ p
listpq : List PropFormula
listpq = toList pq
listqp : List PropFormula
listqp = toList qp
| {
"alphanum_fraction": 0.7342657343,
"avg_line_length": 17.16,
"ext": "agda",
"hexsha": "9ad63527cd27cfc0bcec3ae29d8be5f1469bafcc",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z",
"max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jonaprieto/agda-prop",
"max_forks_repo_path": "test/bags.agda",
"max_issues_count": 18,
"max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jonaprieto/agda-prop",
"max_issues_repo_path": "test/bags.agda",
"max_line_length": 61,
"max_stars_count": 13,
"max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jonaprieto/agda-prop",
"max_stars_repo_path": "test/bags.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z",
"num_tokens": 126,
"size": 429
} |
module seven where
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Naturals using (ℕ; zero; suc)
seven : ℕ
seven = suc (suc (suc (suc (suc (suc (suc zero))))))
_ : seven ≡ 7
_ = refl
| {
"alphanum_fraction": 0.6926605505,
"avg_line_length": 19.8181818182,
"ext": "agda",
"hexsha": "3b4c33277a623b52f38bd958b5136a2f1933a11b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/naturals/seven.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/naturals/seven.agda",
"max_line_length": 67,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/naturals/seven.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 72,
"size": 218
} |
{-# OPTIONS --safe #-}
module Definition.Conversion.Universe where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.RedSteps
open import Definition.Conversion
open import Definition.Conversion.Reduction
open import Definition.Conversion.Lift
import Tools.PropositionalEquality as PE
-- Algorithmic equality of terms in WHNF of type U are equal as types.
univConv↓ : ∀ {A B r Γ l}
→ Γ ⊢ A [conv↓] B ∷ Univ r l ^ next l
→ Γ ⊢ A [conv↓] B ^ [ r , ι l ]
univConv↓ X = univ X
-- Algorithmic equality of terms of type U are equal as types.
univConv↑ : ∀ {A B r Γ l}
→ Γ ⊢ A [conv↑] B ∷ Univ r l ^ next l
→ Γ ⊢ A [conv↑] B ^ [ r , ι l ]
univConv↑ ([↑]ₜ B₁ t′ u′ D d d′ whnfB whnft′ whnfu′ t<>u)
rewrite PE.sym (whnfRed* D Uₙ) =
reductionConv↑ (univ* d) (univ* d′) whnft′ whnfu′ (liftConv (univConv↓ t<>u))
| {
"alphanum_fraction": 0.661987041,
"avg_line_length": 30.8666666667,
"ext": "agda",
"hexsha": "c5f39499950be1880e6ec46dcf408900c6c1a64b",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Universe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Universe.agda",
"max_line_length": 79,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Universe.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 300,
"size": 926
} |
module SizedIO.IOGraphicsLib where
{-# FOREIGN GHC import qualified Graphics.SOE #-}
{-# FOREIGN GHC import qualified Graphics.Rendering.OpenGL #-}
{-# FOREIGN GHC import qualified GHC.Int #-}
{-# FOREIGN GHC import qualified Foreign.C.Types #-}
open import Data.Bool.Base
open import Data.Char.Base
open import Data.Nat.Base hiding (_+_)
open import Data.List.Base as L
open import Data.Integer.Base
open import Data.Product
open import Data.Maybe.Base
open import Size renaming (Size to AgdaSize)
open import SizedIO.Base
open import NativeIO
open import NativeInt
AgdaPoint = (ℤ × ℤ)
postulate Window : Set
-- {-# COMPILED_TYPE Window Graphics.SOE.Window #-}
postulate Size : Set
-- {-# COMPILED_TYPE Size Graphics.SOE.Size #-}
postulate size : ℤ → ℤ → Size
-- {-# COMPILED size (\ x y -> ( (fromInteger x) :: Int, (fromInteger y) :: Int) :: Graphics.SOE.Size) #-}
postulate Point : Set
-- {-# COMPILED_TYPE Point Graphics.SOE.Point #-}
postulate nativePoint : ℤ → ℤ → Point
-- {-# COMPILED nativePoint (\ x y -> (fromInteger x, fromInteger y)::Graphics.SOE.Point) #-}
postulate nativeProj1Point : Point → ℤ
postulate nativeProj2Point : Point → ℤ
-- {-# COMPILED nativeProj1Point (\(x, y) -> toInteger x) #-}
-- {-# COMPILED nativeProj2Point (\(x, y) -> toInteger y) #-}
{-
toNativePoint : Point → NativePoint
toNativePoint (x , y) = nativePoint x y
-}
data Event : Set where
Key : Char → Bool → Event
Button : Point → Bool → Bool → Event
MouseMove : Point → Event
Resize : Event
Closed : Event
-- {-# COMPILED_DATA Event Graphics.SOE.Event Graphics.SOE.Key Graphics.SOE.Button Graphics.SOE.MouseMove Graphics.SOE.Resize Graphics.SOE.Closed #-}
postulate nativeMaybeGetWindowEvent : Window → NativeIO (Maybe Event)
-- {-# COMPILED nativeMaybeGetWindowEvent Graphics.SOE.maybeGetWindowEvent #-}
postulate nativeGetWindowEvent : Window → NativeIO (Event)
-- {-# COMPILED nativeGetWindowEvent Graphics.SOE.getWindowEvent #-}
postulate Graphic : Set
-- {-# COMPILED_TYPE Graphic Graphics.SOE.Graphic #-}
postulate nativeDrawInWindow : Window → Graphic → NativeIO Unit
-- {-# COMPILED nativeDrawInWindow Graphics.SOE.drawInWindow #-}
postulate Word32 : Set
-- {-# COMPILED_TYPE Word32 Graphics.SOE.Word32 #-}
postulate text : Point → String → Graphic
-- {-# COMPILED text (\ p s -> Graphics.SOE.text p (Data.Text.unpack s)) #-}
data RedrawMode : Set where
-- (removed from lib where: DoubleBuffered : RedrawMode, Unbuffered : RedrawMode)
-- {-# COMPILED_DATA RedrawMode Graphics.SOE.RedrawMode #-}
postulate nativeDrawGraphic : RedrawMode
-- {-# COMPILED nativeDrawGraphic Graphics.SOE.drawGraphic #-}
postulate nativeDrawBufferedGraphic : RedrawMode
-- {-# COMPILED nativeDrawBufferedGraphic Graphics.SOE.drawBufferedGraphic #-}
postulate nativeOpenWindow : String → Size → NativeIO Window
-- {-# COMPILED nativeOpenWindow (\ s -> Graphics.SOE.openWindow (Data.Text.unpack s)) #-}
postulate nativeOpenWindowEx : String → (Maybe Point) → (Maybe Size) → RedrawMode → (Maybe Word32) → NativeIO Window
-- {-# COMPILED nativeOpenWindowEx (\s -> Graphics.SOE.openWindowEx (Data.Text.unpack s)) #-}
nativeOpenWindowExNat : String → (Maybe Point) → ℕ → ℕ → RedrawMode → (Maybe Word32) → NativeIO Window
nativeOpenWindowExNat s p n1 n2 a b = nativeOpenWindowEx s p (just (size (+ n1) (+ n2))) a b
postulate nativeCloseWindow : Window → NativeIO Unit
-- {-# COMPILED nativeCloseWindow Graphics.SOE.closeWindow #-}
postulate nativeRunGraphics : NativeIO Unit → NativeIO Unit
-- {-# COMPILED nativeRunGraphics Graphics.SOE.runGraphics #-}
postulate word32ToInteger : Word32 → ℤ
-- {-# COMPILED word32ToInteger (\w -> toInteger (Graphics.SOE.word32ToInt w)) #-}
postulate nativeTimeGetTime : NativeIO Word32
-- {-# COMPILED nativeTimeGetTime Graphics.SOE.timeGetTime #-}
data Color : Set where
black : Color
blue : Color
green : Color
cyan : Color
red : Color
magenta : Color
yellow : Color
white : Color
-- {-# COMPILED_DATA Color Graphics.SOE.Color Graphics.SOE.Black Graphics.SOE.Blue Graphics.SOE.Green Graphics.SOE.Cyan Graphics.SOE.Red Graphics.SOE.Magenta Graphics.SOE.Yellow Graphics.SOE.White #-}
postulate withColor : Color → Graphic → Graphic
-- {-# COMPILED withColor Graphics.SOE.withColor #-}
postulate polygon : List Point → Graphic
-- {-# COMPILED polygon Graphics.SOE.polygon #-}
{-
polygon : List Point → Graphic
polygon l = nativePolygon (L.map toNativePoint l)
-}
data GraphicsCommands : Set where
closeWindow : Window → GraphicsCommands
maybeGetWindowEvent : Window → GraphicsCommands
getWindowEvent : Window → GraphicsCommands
openWindowNotEx : String → Size → GraphicsCommands
openWindow : String → (Maybe Point) → ℕ → ℕ
→ RedrawMode → (Maybe Word32) → GraphicsCommands
timeGetTime : GraphicsCommands
drawInWindow : Window → Graphic → GraphicsCommands
print : String → GraphicsCommands
GraphicsResponses : GraphicsCommands → Set
GraphicsResponses (maybeGetWindowEvent w) = Maybe Event
GraphicsResponses (getWindowEvent w) = Event
GraphicsResponses (closeWindow w) = Unit
GraphicsResponses (openWindowNotEx s s') = Window
GraphicsResponses (openWindow s n1 n2 s' r w) = Window
GraphicsResponses timeGetTime = Word32
GraphicsResponses _ = Unit
GraphicsInterface : IOInterface
Command GraphicsInterface = GraphicsCommands
Response GraphicsInterface = GraphicsResponses
IOGraphics : AgdaSize → Set → Set
IOGraphics i = IO GraphicsInterface i
IOGraphics+ : AgdaSize → Set → Set
IOGraphics+ i = IO+ GraphicsInterface i
translateIOGraphicsLocal : (c : GraphicsCommands) → NativeIO (GraphicsResponses c)
translateIOGraphicsLocal (maybeGetWindowEvent w) = nativeMaybeGetWindowEvent w
translateIOGraphicsLocal (getWindowEvent w) = nativeGetWindowEvent w
translateIOGraphicsLocal (closeWindow w) = nativeCloseWindow w
translateIOGraphicsLocal (openWindowNotEx str size) = nativeOpenWindow str size
translateIOGraphicsLocal (openWindow str point n1 n2 mode word) = nativeOpenWindowExNat str point n1 n2 mode word
translateIOGraphicsLocal timeGetTime = nativeTimeGetTime
translateIOGraphicsLocal (drawInWindow w g) = nativeDrawInWindow w g
translateIOGraphicsLocal (print s) = nativePutStrLn s
translateIOGraphics : {A : Set} → IOGraphics ∞ A → NativeIO A
translateIOGraphics = translateIO translateIOGraphicsLocal
| {
"alphanum_fraction": 0.7205525197,
"avg_line_length": 33.9587628866,
"ext": "agda",
"hexsha": "4e5a138fde6740e352c8207b77e1059e371861ad",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "src/SizedIO/IOGraphicsLib.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "src/SizedIO/IOGraphicsLib.agda",
"max_line_length": 201,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "src/SizedIO/IOGraphicsLib.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 1673,
"size": 6588
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use the
-- Relation.Binary.Reasoning.PartialOrder module directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.PartialOrderReasoning
{p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where
open import Relation.Binary.Reasoning.PartialOrder P public
| {
"alphanum_fraction": 0.5269461078,
"avg_line_length": 31.3125,
"ext": "agda",
"hexsha": "271afa0707575d0b00593052cc0fc4e5a2132164",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PartialOrderReasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PartialOrderReasoning.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/PartialOrderReasoning.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 95,
"size": 501
} |
module Category.Profunctor.Star where
open import Agda.Primitive using (_⊔_)
open import Category.Functor using (RawFunctor ; module RawFunctor)
open import Category.Functor.Lawful
open import Category.Applicative using (RawApplicative; module RawApplicative)
open import Data.Product using (_,_)
open import Data.Sum using (inj₁; inj₂)
open import Category.Profunctor
open import Category.Strong
open import Category.Choice
open import Relation.Binary.PropositionalEquality using (refl)
open import Axiom.Extensionality.Propositional using (Extensionality)
Star : ∀ {l₁ l₂ l₃} (F : Set l₂ → Set l₃) (A : Set l₁) (B : Set l₂) → Set (l₁ ⊔ l₃)
Star F A B = (A → F B)
starProfunctor : ∀ {l₁ l₂} {F : Set l₁ → Set l₂} → RawFunctor F → ProfunctorImp (Star F)
starProfunctor f = record
{ dimap = λ f h g z → h <$> (g (f z))
; lmap = λ f g z → g (f z)
; rmap = λ h g z → h <$> (g z)
} where open RawFunctor f
starLawfulProfunctor : ∀ {l₁ l₂} {F : Set l₁ → Set l₂} {Func : RawFunctor F} → Extensionality l₁ l₂ → LawfulFunctorImp Func → LawfulProfunctorImp (starProfunctor Func)
starLawfulProfunctor ext f = record
{ lmapId = refl
; rmapId = ext (λ _ → <$>-identity)
; dimapLmapRmap = refl
} where open LawfulFunctor f
starStrong : ∀ {l₁ l₂} {F : Set l₁ → Set l₂} → RawFunctor F → StrongImp (Star F)
starStrong f = record
{ first' = λ { f → λ { (x , z) → (_, z) <$> f x } }
; second' = λ { f → λ { (z , x) → (z ,_) <$> f x } }
; isProfunctor = starProfunctor f
} where open RawFunctor f
starChoice : ∀ {l} {F : Set l → Set l} → RawApplicative F → ChoiceImp (Star F)
starChoice f = record
{ left' = λ { f → λ { (inj₁ x) → inj₁ <$> f x ; (inj₂ z) → pure (inj₂ z) } }
; right' = λ { f → λ { (inj₁ z) → pure (inj₁ z) ; (inj₂ x) → inj₂ <$> f x } }
; isProfunctor = starProfunctor rawFunctor
} where open RawApplicative f
| {
"alphanum_fraction": 0.6515885837,
"avg_line_length": 41.2666666667,
"ext": "agda",
"hexsha": "c650c4d736405f642f8c6324fd1acd1afd69e92a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "crisoagf/agda-optics",
"max_forks_repo_path": "src/Category/Profunctor/Star.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "crisoagf/agda-optics",
"max_issues_repo_path": "src/Category/Profunctor/Star.agda",
"max_line_length": 168,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "308afeeaa905870dbf1a995fa82e8825dfaf2d74",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "crisoagf/agda-optics",
"max_stars_repo_path": "src/Category/Profunctor/Star.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 669,
"size": 1857
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.cubical.Square
open import lib.types.Bool
open import lib.types.Cofiber
open import lib.types.Lift
open import lib.types.Paths
open import lib.types.Pointed
open import lib.types.PushoutFmap
open import lib.types.Sigma
open import lib.types.Span
open import lib.types.Suspension
open import lib.types.Wedge
module lib.types.BigWedge where
module _ {i j} {A : Type i} where
{- the function for cofiber -}
bigwedge-f : (X : A → Ptd j) → A → Σ A (de⊙ ∘ X)
bigwedge-f X a = a , pt (X a)
bigwedge-span : (A → Ptd j) → Span
bigwedge-span X = cofiber-span (bigwedge-f X)
BigWedge : (A → Ptd j) → Type (lmax i j)
BigWedge X = Cofiber (bigwedge-f X)
bwbase : {X : A → Ptd j} → BigWedge X
bwbase = cfbase
bwin : {X : A → Ptd j} → (a : A) → de⊙ (X a) → BigWedge X
bwin = curry cfcod
⊙BigWedge : (A → Ptd j) → Ptd (lmax i j)
⊙BigWedge X = ⊙[ BigWedge X , bwbase ]
bwglue : {X : A → Ptd j} → (a : A) → bwbase {X} == bwin a (pt (X a))
bwglue = cfglue
⊙bwin : {X : A → Ptd j} → (a : A) → X a ⊙→ ⊙BigWedge X
⊙bwin a = (bwin a , ! (bwglue a))
module BigWedgeElim {X : A → Ptd j} {k} {P : BigWedge X → Type k}
(base* : P bwbase) (in* : (a : A) (x : de⊙ (X a)) → P (bwin a x))
(glue* : (a : A) → base* == in* a (pt (X a)) [ P ↓ bwglue a ])
= CofiberElim {f = bigwedge-f X} {P = P} base* (uncurry in*) glue*
BigWedge-elim = BigWedgeElim.f
module BigWedgeRec {X : A → Ptd j} {k} {C : Type k}
(base* : C) (in* : (a : A) → de⊙ (X a) → C)
(glue* : (a : A) → base* == in* a (pt (X a)))
= CofiberRec {f = bigwedge-f X} {C = C} base* (uncurry in*) glue*
module _ {i j₀ j₁} {A : Type i} {X₀ : A → Ptd j₀} {X₁ : A → Ptd j₁}
(Xeq : ∀ a → X₀ a ⊙≃ X₁ a) where
bigwedge-span-emap-r : SpanEquiv (cofiber-span (bigwedge-f X₀)) (cofiber-span (bigwedge-f X₁))
bigwedge-span-emap-r = span-map (idf _) (Σ-fmap-r λ a → fst (⊙–> (Xeq a))) (idf _)
(comm-sqr λ _ → idp) (comm-sqr λ a → pair= idp (⊙–>-pt (Xeq a))) ,
idf-is-equiv _ , Σ-isemap-r (λ a → snd (Xeq a)) , idf-is-equiv _
BigWedge-emap-r : BigWedge X₀ ≃ BigWedge X₁
BigWedge-emap-r = Pushout-emap bigwedge-span-emap-r
⊙BigWedge-emap-r : ⊙BigWedge X₀ ⊙≃ ⊙BigWedge X₁
⊙BigWedge-emap-r = ≃-to-⊙≃ BigWedge-emap-r idp
module _ {i₀ i₁ j} {A₀ : Type i₀} {A₁ : Type i₁}
(X : A₁ → Ptd j) (Aeq : A₀ ≃ A₁) where
bigwedge-span-emap-l : SpanEquiv (cofiber-span (bigwedge-f (X ∘ –> Aeq))) (cofiber-span (bigwedge-f X))
bigwedge-span-emap-l = span-map (idf _) (Σ-fmap-l (de⊙ ∘ X) (–> Aeq)) (–> Aeq)
(comm-sqr λ _ → idp) (comm-sqr λ _ → idp) ,
idf-is-equiv _ , Σ-isemap-l (de⊙ ∘ X) (snd Aeq) , snd Aeq
BigWedge-emap-l : BigWedge (X ∘ –> Aeq) ≃ BigWedge X
BigWedge-emap-l = Pushout-emap bigwedge-span-emap-l
⊙BigWedge-emap-l : ⊙BigWedge (X ∘ –> Aeq) ⊙≃ ⊙BigWedge X
⊙BigWedge-emap-l = ≃-to-⊙≃ BigWedge-emap-l idp
module _ {i} {A : Type i} (X : A → Ptd i) where
extract-glue-from-BigWedge-is-const :
∀ bw → extract-glue {s = bigwedge-span X} bw == north
extract-glue-from-BigWedge-is-const = BigWedge-elim
idp
(λ x y → ! (merid x))
(↓-='-from-square ∘ λ x →
ExtractGlue.glue-β x ∙v⊡
tr-square (merid x)
⊡v∙ ! (ap-cst north (cfglue x)))
{- A BigWedge indexed by Bool is just a binary Wedge -}
module _ {i} (Pick : Bool → Ptd i) where
BigWedge-Bool-equiv-Wedge : BigWedge Pick ≃ Wedge (Pick true) (Pick false)
BigWedge-Bool-equiv-Wedge = equiv f g f-g g-f
where
module F = BigWedgeRec {X = Pick}
{C = Wedge (Pick true) (Pick false)}
(winl (pt (Pick true)))
(λ {true → winl; false → winr})
(λ {true → idp; false → wglue})
module G = WedgeRec {X = Pick true} {Y = Pick false}
{C = BigWedge Pick}
(bwin true)
(bwin false)
(! (bwglue true) ∙ bwglue false)
f = F.f
g = G.f
abstract
f-g : ∀ w → f (g w) == w
f-g = Wedge-elim
(λ _ → idp)
(λ _ → idp)
(↓-∘=idf-in' f g $
ap f (ap g wglue)
=⟨ ap (ap f) G.glue-β ⟩
ap f (! (bwglue true) ∙ bwglue false)
=⟨ ap-∙ f (! (bwglue true)) (bwglue false) ⟩
ap f (! (bwglue true)) ∙ ap f (bwglue false)
=⟨ ap-! f (bwglue true)
|in-ctx (λ w → w ∙ ap f (bwglue false)) ⟩
! (ap f (bwglue true)) ∙ ap f (bwglue false)
=⟨ F.glue-β true
|in-ctx (λ w → ! w ∙ ap f (bwglue false)) ⟩
ap f (bwglue false)
=⟨ F.glue-β false ⟩
wglue =∎)
g-f : ∀ bw → g (f bw) == bw
g-f = BigWedge-elim
(! (bwglue true))
(λ {true → λ _ → idp; false → λ _ → idp})
(λ {true → ↓-∘=idf-from-square g f $
ap (ap g) (F.glue-β true) ∙v⊡
bl-square (bwglue true);
false → ↓-∘=idf-from-square g f $
(ap (ap g) (F.glue-β false) ∙ G.glue-β) ∙v⊡
lt-square (! (bwglue true)) ⊡h vid-square})
| {
"alphanum_fraction": 0.5424509411,
"avg_line_length": 33.7432432432,
"ext": "agda",
"hexsha": "8fdb3fcb9ad15f22c2f04754a6ec463f9af4f3cb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/BigWedge.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/BigWedge.agda",
"max_line_length": 105,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/BigWedge.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2069,
"size": 4994
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Indexed containers aka interaction structures aka polynomial
-- functors. The notation and presentation here is closest to that of
-- Hancock and Hyvernat in "Programming interfaces and basic topology"
-- (2006/9).
--
------------------------------------------------------------------------
module Data.Container.Indexed where
open import Level
open import Function renaming (id to ⟨id⟩; _∘_ to _⟨∘⟩_)
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse using (_↔_; module Inverse)
open import Data.Product as Prod hiding (map)
open import Relation.Unary using (Pred; _⊆_)
open import Relation.Binary as B using (Preorder; module Preorder)
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_; refl)
open import Relation.Binary.HeterogeneousEquality as H using (_≅_; refl)
open import Relation.Binary.Indexed
open import Data.W.Indexed
open import Data.M.Indexed
------------------------------------------------------------------------
-- The type and its semantics ("extension").
open import Data.Container.Indexed.Core public
open Container public
-- Abbreviation for the commonly used level one version of indexed
-- containers.
_▷_ : Set → Set → Set₁
I ▷ O = Container I O zero zero
-- The least and greatest fixpoint.
μ ν : ∀ {o c r} {O : Set o} → Container O O c r → Pred O _
μ = W
ν = M
-- Equality, parametrised on an underlying relation.
Eq : ∀ {i o c r ℓ} {I : Set i} {O : Set o} (C : Container I O c r)
(X Y : Pred I ℓ) → REL X Y ℓ → REL (⟦ C ⟧ X) (⟦ C ⟧ Y) _
Eq C _ _ _≈_ {o₁} {o₂} (c , k) (c′ , k′) =
o₁ ≡ o₂ × c ≅ c′ × (∀ r r′ → r ≅ r′ → k r ≈ k′ r′)
private
-- Note that, if propositional equality were extensional, then Eq _≅_
-- and _≅_ would coincide.
Eq⇒≅ : ∀ {i o c r ℓ} {I : Set i} {O : Set o}
{C : Container I O c r} {X : Pred I ℓ} {o₁ o₂ : O}
{xs : ⟦ C ⟧ X o₁} {ys : ⟦ C ⟧ X o₂} → H.Extensionality r ℓ →
Eq C X X (λ x₁ x₂ → x₁ ≅ x₂) xs ys → xs ≅ ys
Eq⇒≅ {xs = c , k} {.c , k′} ext (refl , refl , k≈k′) =
H.cong (_,_ c) (ext (λ _ → refl) (λ r → k≈k′ r r refl))
setoid : ∀ {i o c r} {I : Set i} {O : Set o} →
Container I O c r → Setoid I (c ⊔ r) _ → Setoid O _ _
setoid C X = record
{ Carrier = ⟦ C ⟧ X.Carrier
; _≈_ = _≈_
; isEquivalence = record
{ refl = refl , refl , λ { r .r refl → X.refl }
; sym = sym
; trans = λ { {_} {i = xs} {ys} {zs} → trans {_} {i = xs} {ys} {zs} }
}
}
where
module X = Setoid X
_≈_ : Rel (⟦ C ⟧ X.Carrier) _
_≈_ = Eq C X.Carrier X.Carrier X._≈_
sym : Symmetric (⟦ C ⟧ X.Carrier) _≈_
sym {_} {._} {_ , _} {._ , _} (refl , refl , k) =
refl , refl , λ { r .r refl → X.sym (k r r refl) }
trans : Transitive (⟦ C ⟧ X.Carrier) _≈_
trans {._} {_} {._} {_ , _} {._ , _} {._ , _}
(refl , refl , k) (refl , refl , k′) =
refl , refl , λ { r .r refl → X.trans (k r r refl) (k′ r r refl) }
------------------------------------------------------------------------
-- Functoriality
-- Indexed containers are functors.
map : ∀ {i o c r ℓ₁ ℓ₂} {I : Set i} {O : Set o}
(C : Container I O c r) {X : Pred I ℓ₁} {Y : Pred I ℓ₂} →
X ⊆ Y → ⟦ C ⟧ X ⊆ ⟦ C ⟧ Y
map _ f = Prod.map ⟨id⟩ (λ g → f ⟨∘⟩ g)
module Map where
identity : ∀ {i o c r} {I : Set i} {O : Set o} (C : Container I O c r)
(X : Setoid I _ _) → let module X = Setoid X in
∀ {o} {xs : ⟦ C ⟧ X.Carrier o} → Eq C X.Carrier X.Carrier
X._≈_ xs (map C {X.Carrier} ⟨id⟩ xs)
identity C X = Setoid.refl (setoid C X)
composition : ∀ {i o c r ℓ₁ ℓ₂} {I : Set i} {O : Set o}
(C : Container I O c r) {X : Pred I ℓ₁} {Y : Pred I ℓ₂}
(Z : Setoid I _ _) → let module Z = Setoid Z in
{f : Y ⊆ Z.Carrier} {g : X ⊆ Y} {o : O} {xs : ⟦ C ⟧ X o} →
Eq C Z.Carrier Z.Carrier Z._≈_
(map C {Y} f (map C {X} g xs))
(map C {X} (f ⟨∘⟩ g) xs)
composition C Z = Setoid.refl (setoid C Z)
------------------------------------------------------------------------
-- Container morphisms
module _ {i₁ i₂ o₁ o₂}
{I₁ : Set i₁} {I₂ : Set i₂} {O₁ : Set o₁} {O₂ : Set o₂} where
-- General container morphism.
record ContainerMorphism {c₁ c₂ r₁ r₂ ℓ₁ ℓ₂}
(C₁ : Container I₁ O₁ c₁ r₁) (C₂ : Container I₂ O₂ c₂ r₂)
(f : I₁ → I₂) (g : O₁ → O₂)
(_∼_ : B.Rel I₂ ℓ₁) (_≈_ : B.REL (Set r₂) (Set r₁) ℓ₂)
(_·_ : ∀ {A B} → A ≈ B → A → B) :
Set (i₁ ⊔ i₂ ⊔ o₁ ⊔ o₂ ⊔ c₁ ⊔ c₂ ⊔ r₁ ⊔ r₂ ⊔ ℓ₁ ⊔ ℓ₂) where
field
command : Command C₁ ⊆ Command C₂ ⟨∘⟩ g
response : ∀ {o} {c₁ : Command C₁ o} →
Response C₂ (command c₁) ≈ Response C₁ c₁
coherent : ∀ {o} {c₁ : Command C₁ o} {r₂ : Response C₂ (command c₁)} →
f (next C₁ c₁ (response · r₂)) ∼ next C₂ (command c₁) r₂
open ContainerMorphism public
-- Plain container morphism.
_⇒[_/_]_ : ∀ {c₁ c₂ r₁ r₂} →
Container I₁ O₁ c₁ r₁ → (I₁ → I₂) → (O₁ → O₂) →
Container I₂ O₂ c₂ r₂ → Set _
C₁ ⇒[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ (λ R₂ R₁ → R₂ → R₁) _$_
-- Linear container morphism.
_⊸[_/_]_ : ∀ {c₁ c₂ r₁ r₂} →
Container I₁ O₁ c₁ r₁ → (I₁ → I₂) → (O₁ → O₂) →
Container I₂ O₂ c₂ r₂ → Set _
C₁ ⊸[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ _↔_
(λ r₂↔r₁ r₂ → Inverse.to r₂↔r₁ ⟨$⟩ r₂)
-- Cartesian container morphism.
_⇒C[_/_]_ : ∀ {c₁ c₂ r} →
Container I₁ O₁ c₁ r → (I₁ → I₂) → (O₁ → O₂) →
Container I₂ O₂ c₂ r → Set _
C₁ ⇒C[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ (λ R₂ R₁ → R₂ ≡ R₁)
(λ r₂≡r₁ r₂ → P.subst ⟨id⟩ r₂≡r₁ r₂)
-- Degenerate cases where no reindexing is performed.
module _ {i o c r} {I : Set i} {O : Set o} where
_⇒_ : B.Rel (Container I O c r) _
C₁ ⇒ C₂ = C₁ ⇒[ ⟨id⟩ / ⟨id⟩ ] C₂
_⊸_ : B.Rel (Container I O c r) _
C₁ ⊸ C₂ = C₁ ⊸[ ⟨id⟩ / ⟨id⟩ ] C₂
_⇒C_ : B.Rel (Container I O c r) _
C₁ ⇒C C₂ = C₁ ⇒C[ ⟨id⟩ / ⟨id⟩ ] C₂
------------------------------------------------------------------------
-- Plain morphisms
-- Interpretation of _⇒_.
⟪_⟫ : ∀ {i o c r ℓ} {I : Set i} {O : Set o} {C₁ C₂ : Container I O c r} →
C₁ ⇒ C₂ → (X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X
⟪ m ⟫ X (c , k) = command m c , λ r₂ →
P.subst X (coherent m) (k (response m r₂))
module PlainMorphism {i o c r} {I : Set i} {O : Set o} where
-- Naturality.
Natural : ∀ {ℓ} {C₁ C₂ : Container I O c r} →
((X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X) → Set _
Natural {C₁ = C₁} {C₂} m =
∀ {X} Y → let module Y = Setoid Y in (f : X ⊆ Y.Carrier) →
∀ {o} (xs : ⟦ C₁ ⟧ X o) →
Eq C₂ Y.Carrier Y.Carrier Y._≈_
(m Y.Carrier $ map C₁ {X} f xs) (map C₂ {X} f $ m X xs)
-- Natural transformations.
NT : ∀ {ℓ} (C₁ C₂ : Container I O c r) → Set _
NT {ℓ} C₁ C₂ = ∃ λ (m : (X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X) →
Natural m
-- Container morphisms are natural.
natural : ∀ {ℓ} (C₁ C₂ : Container I O c r) (m : C₁ ⇒ C₂) → Natural {ℓ} ⟪ m ⟫
natural _ _ m {X} Y f _ = refl , refl , λ { r .r refl → lemma (coherent m) }
where
module Y = Setoid Y
lemma : ∀ {i j} (eq : i ≡ j) {x} →
P.subst Y.Carrier eq (f x) Y.≈ f (P.subst X eq x)
lemma refl = Y.refl
-- In fact, all natural functions of the right type are container
-- morphisms.
complete : ∀ {C₁ C₂ : Container I O c r} (nt : NT C₁ C₂) →
∃ λ m → (X : Setoid I _ _) →
let module X = Setoid X in
∀ {o} (xs : ⟦ C₁ ⟧ X.Carrier o) →
Eq C₂ X.Carrier X.Carrier X._≈_
(proj₁ nt X.Carrier xs) (⟪ m ⟫ X.Carrier {o} xs)
complete {C₁} {C₂} (nt , nat) = m , (λ X xs → nat X
(λ { (r , eq) → P.subst (Setoid.Carrier X) eq (proj₂ xs r) })
(proj₁ xs , (λ r → r , refl)))
where
m : C₁ ⇒ C₂
m = record
{ command = λ c₁ → proj₁ (lemma c₁)
; response = λ {_} {c₁} r₂ → proj₁ (proj₂ (lemma c₁) r₂)
; coherent = λ {_} {c₁} {r₂} → proj₂ (proj₂ (lemma c₁) r₂)
}
where
lemma : ∀ {o} (c₁ : Command C₁ o) → Σ[ c₂ ∈ Command C₂ o ]
((r₂ : Response C₂ c₂) → Σ[ r₁ ∈ Response C₁ c₁ ]
next C₁ c₁ r₁ ≡ next C₂ c₂ r₂)
lemma c₁ = nt (λ i → Σ[ r₁ ∈ Response C₁ c₁ ] next C₁ c₁ r₁ ≡ i)
(c₁ , λ r₁ → r₁ , refl)
-- Identity.
id : (C : Container I O c r) → C ⇒ C
id _ = record
{ command = ⟨id⟩
; response = ⟨id⟩
; coherent = refl
}
-- Composition.
infixr 9 _∘_
_∘_ : {C₁ C₂ C₃ : Container I O c r} →
C₂ ⇒ C₃ → C₁ ⇒ C₂ → C₁ ⇒ C₃
f ∘ g = record
{ command = command f ⟨∘⟩ command g
; response = response g ⟨∘⟩ response f
; coherent = coherent g ⟨ P.trans ⟩ coherent f
}
-- Identity and composition commute with ⟪_⟫.
id-correct : ∀ {ℓ} {C : Container I O c r} → ∀ {X : Pred I ℓ} {o} →
⟪ id C ⟫ X {o} ≗ ⟨id⟩
id-correct _ = refl
∘-correct : {C₁ C₂ C₃ : Container I O c r}
(f : C₂ ⇒ C₃) (g : C₁ ⇒ C₂) (X : Setoid I (c ⊔ r) _) →
let module X = Setoid X in
∀ {o} {xs : ⟦ C₁ ⟧ X.Carrier o} →
Eq C₃ X.Carrier X.Carrier X._≈_
(⟪ f ∘ g ⟫ X.Carrier xs)
(⟪ f ⟫ X.Carrier (⟪ g ⟫ X.Carrier xs))
∘-correct f g X = refl , refl , λ { r .r refl → lemma (coherent g)
(coherent f) }
where
module X = Setoid X
lemma : ∀ {i j k} (eq₁ : i ≡ j) (eq₂ : j ≡ k) {x} →
P.subst X.Carrier (P.trans eq₁ eq₂) x
X.≈
P.subst X.Carrier eq₂ (P.subst X.Carrier eq₁ x)
lemma refl refl = X.refl
------------------------------------------------------------------------
-- Linear container morphisms
module LinearMorphism
{i o c r} {I : Set i} {O : Set o} {C₁ C₂ : Container I O c r}
(m : C₁ ⊸ C₂)
where
morphism : C₁ ⇒ C₂
morphism = record
{ command = command m
; response = _⟨$⟩_ (Inverse.to (response m))
; coherent = coherent m
}
⟪_⟫⊸ : ∀ {ℓ} (X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X
⟪_⟫⊸ = ⟪ morphism ⟫
open LinearMorphism public using (⟪_⟫⊸)
------------------------------------------------------------------------
-- Cartesian morphisms
module CartesianMorphism
{i o c r} {I : Set i} {O : Set o} {C₁ C₂ : Container I O c r}
(m : C₁ ⇒C C₂)
where
morphism : C₁ ⇒ C₂
morphism = record
{ command = command m
; response = P.subst ⟨id⟩ (response m)
; coherent = coherent m
}
⟪_⟫C : ∀ {ℓ} (X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X
⟪_⟫C = ⟪ morphism ⟫
open CartesianMorphism public using (⟪_⟫C)
------------------------------------------------------------------------
-- All and any
-- □ and ◇ are defined in the core module.
module _ {i o c r ℓ₁ ℓ₂} {I : Set i} {O : Set o} (C : Container I O c r)
{X : Pred I ℓ₁} {P Q : Pred (Σ I X) ℓ₂} where
-- All.
□-map : P ⊆ Q → □ C P ⊆ □ C Q
□-map P⊆Q = _⟨∘⟩_ P⊆Q
-- Any.
◇-map : P ⊆ Q → ◇ C P ⊆ ◇ C Q
◇-map P⊆Q = Prod.map ⟨id⟩ P⊆Q
-- Membership.
infix 4 _∈_
_∈_ : ∀ {i o c r ℓ} {I : Set i} {O : Set o}
{C : Container I O c r} {X : Pred I (i ⊔ ℓ)} → REL X (⟦ C ⟧ X) _
_∈_ {C = C} {X} x xs = ◇ C {X = X} (_≅_ x) (, xs)
| {
"alphanum_fraction": 0.4762278636,
"avg_line_length": 32.5653409091,
"ext": "agda",
"hexsha": "cd1ab1955d90a1114ceebf2e326a431f1dc01c20",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Container/Indexed.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Container/Indexed.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Container/Indexed.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 4412,
"size": 11463
} |
-- Andreas, 2017-02-13, issue #2456 reported by identicalsnowflake
-- Introduced by fix for #1698
record Class (t : Set) : Set where
postulate
t : Set
instance Class t
-- Should give error, but not internal error.
| {
"alphanum_fraction": 0.7117117117,
"avg_line_length": 18.5,
"ext": "agda",
"hexsha": "2443107b10ea9809bf8b7def57474524368b1ccf",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2456.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2456.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2456.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 64,
"size": 222
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Indexed containers core
------------------------------------------------------------------------
module Data.Container.Indexed.Core where
open import Level
open import Data.Product
open import Relation.Unary
infix 5 _◃_/_
record Container {i o} (I : Set i) (O : Set o) (c r : Level) :
Set (i ⊔ o ⊔ suc c ⊔ suc r) where
constructor _◃_/_
field
Command : (o : O) → Set c
Response : ∀ {o} → Command o → Set r
next : ∀ {o} (c : Command o) → Response c → I
-- The semantics ("extension") of an indexed container.
⟦_⟧ : ∀ {i o c r ℓ} {I : Set i} {O : Set o} → Container I O c r →
Pred I ℓ → Pred O _
⟦ C ◃ R / n ⟧ X o = Σ[ c ∈ C o ] ((r : R c) → X (n c r))
------------------------------------------------------------------------
-- All and any
module _ {i o c r ℓ} {I : Set i} {O : Set o}
(C : Container I O c r) {X : Pred I ℓ} where
-- All.
□ : ∀ {ℓ′} → Pred (Σ I X) ℓ′ → Pred (Σ O (⟦ C ⟧ X)) _
□ P (_ , _ , k) = ∀ r → P (_ , k r)
-- Any.
◇ : ∀ {ℓ′} → Pred (Σ I X) ℓ′ → Pred (Σ O (⟦ C ⟧ X)) _
◇ P (_ , _ , k) = ∃ λ r → P (_ , k r)
| {
"alphanum_fraction": 0.4051155116,
"avg_line_length": 27.5454545455,
"ext": "agda",
"hexsha": "e6b1585919f889adf9a87a1c4ad18cca69b25d68",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Container/Indexed/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Container/Indexed/Core.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Container/Indexed/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 409,
"size": 1212
} |
-- Andreas, 2018-10-15, issue #3264 reported by Guillaume Brunerie
-- Refine should not say "cannot refine" just because of a termination error.
f : Set → Set
f A = {!f!} -- C-c C-r
-- EXPECTED ANSWER:
--
-- ?1 : Set
-- ———— Errors ————————————————————————————————————————————————
-- Termination checking failed for the following functions:
-- f
-- Problematic calls:
-- f (?1 (A = A))
-- when checking that the expression f ? has type Set
| {
"alphanum_fraction": 0.578125,
"avg_line_length": 26.3529411765,
"ext": "agda",
"hexsha": "19dee97ed338800ee5c360a55418773c431cf8d5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3264.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3264.agda",
"max_line_length": 77,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3264.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 126,
"size": 448
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Conversion of < to ≤, along with a number of properties
------------------------------------------------------------------------
-- Possible TODO: Prove that a conversion ≤ → < → ≤ returns a
-- relation equivalent to the original one (and similarly for
-- < → ≤ → <).
open import Relation.Binary
module Relation.Binary.StrictToNonStrict
{a ℓ₁ ℓ₂} {A : Set a}
(_≈_ : Rel A ℓ₁) (_<_ : Rel A ℓ₂)
where
open import Relation.Nullary
open import Relation.Binary.Consequences
open import Function
open import Data.Product
open import Data.Sum
open import Data.Empty
------------------------------------------------------------------------
-- Conversion
-- _<_ can be turned into _≤_ as follows:
_≤_ : Rel A _
x ≤ y = (x < y) ⊎ (x ≈ y)
------------------------------------------------------------------------
-- The converted relations have certain properties
-- (if the original relations have certain other properties)
reflexive : _≈_ ⇒ _≤_
reflexive = inj₂
antisym : IsEquivalence _≈_ →
Transitive _<_ →
Irreflexive _≈_ _<_ →
Antisymmetric _≈_ _≤_
antisym eq trans irrefl = as
where
module Eq = IsEquivalence eq
as : Antisymmetric _≈_ _≤_
as (inj₂ x≈y) _ = x≈y
as (inj₁ _) (inj₂ y≈x) = Eq.sym y≈x
as (inj₁ x<y) (inj₁ y<x) =
⊥-elim (trans∧irr⟶asym {_≈_ = _≈_} Eq.refl trans irrefl x<y y<x)
trans : IsEquivalence _≈_ → _<_ Respects₂ _≈_ →
Transitive _<_ → Transitive _≤_
trans eq <-resp-≈ <-trans = tr
where
module Eq = IsEquivalence eq
tr : Transitive _≤_
tr (inj₁ x<y) (inj₁ y<z) = inj₁ $ <-trans x<y y<z
tr (inj₁ x<y) (inj₂ y≈z) = inj₁ $ proj₁ <-resp-≈ y≈z x<y
tr (inj₂ x≈y) (inj₁ y<z) = inj₁ $ proj₂ <-resp-≈ (Eq.sym x≈y) y<z
tr (inj₂ x≈y) (inj₂ y≈z) = inj₂ $ Eq.trans x≈y y≈z
≤-resp-≈ : IsEquivalence _≈_ → _<_ Respects₂ _≈_ → _≤_ Respects₂ _≈_
≤-resp-≈ eq <-resp-≈ = ((λ {_ _ _} → resp₁) , (λ {_ _ _} → resp₂))
where
module Eq = IsEquivalence eq
resp₁ : ∀ {x y' y} → y' ≈ y → x ≤ y' → x ≤ y
resp₁ y'≈y (inj₁ x<y') = inj₁ (proj₁ <-resp-≈ y'≈y x<y')
resp₁ y'≈y (inj₂ x≈y') = inj₂ (Eq.trans x≈y' y'≈y)
resp₂ : ∀ {y x' x} → x' ≈ x → x' ≤ y → x ≤ y
resp₂ x'≈x (inj₁ x'<y) = inj₁ (proj₂ <-resp-≈ x'≈x x'<y)
resp₂ x'≈x (inj₂ x'≈y) = inj₂ (Eq.trans (Eq.sym x'≈x) x'≈y)
total : Trichotomous _≈_ _<_ → Total _≤_
total <-tri x y with <-tri x y
... | tri< x<y x≉y x≯y = inj₁ (inj₁ x<y)
... | tri≈ x≮y x≈y x≯y = inj₁ (inj₂ x≈y)
... | tri> x≮y x≉y x>y = inj₂ (inj₁ x>y)
decidable : Decidable _≈_ → Decidable _<_ → Decidable _≤_
decidable ≈-dec <-dec x y with ≈-dec x y | <-dec x y
... | yes x≈y | _ = yes (inj₂ x≈y)
... | no x≉y | yes x<y = yes (inj₁ x<y)
... | no x≉y | no x≮y = no helper
where
helper : x ≤ y → ⊥
helper (inj₁ x<y) = x≮y x<y
helper (inj₂ x≈y) = x≉y x≈y
decidable' : Trichotomous _≈_ _<_ → Decidable _≤_
decidable' compare x y with compare x y
... | tri< x<y _ _ = yes (inj₁ x<y)
... | tri≈ _ x≈y _ = yes (inj₂ x≈y)
... | tri> x≮y x≉y _ = no helper
where
helper : x ≤ y → ⊥
helper (inj₁ x<y) = x≮y x<y
helper (inj₂ x≈y) = x≉y x≈y
| {
"alphanum_fraction": 0.5261519303,
"avg_line_length": 30.8846153846,
"ext": "agda",
"hexsha": "85434fdcf388404262c64bc5c5e2f7b2251b5305",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/StrictToNonStrict.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/StrictToNonStrict.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/StrictToNonStrict.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 1311,
"size": 3212
} |
module Prelude.Fin where
open import Prelude.Nat
open import Prelude.Equality
open import Prelude.Decidable
open import Prelude.Ord
open import Prelude.Bool
open import Prelude.Function
open import Prelude.Number
open import Prelude.Nat.Properties using (suc-inj)
data Fin : Nat → Set where
zero : ∀ {n} → Fin (suc n)
suc : ∀ {n} (i : Fin n) → Fin (suc n)
finToNat : ∀ {@erased n} → Fin n → Nat
finToNat zero = zero
finToNat (suc i) = suc (finToNat i)
finToNat-inj : ∀ {@erased n} {i j : Fin n} → finToNat i ≡ finToNat j → i ≡ j
finToNat-inj {i = zero } {zero } p = refl
finToNat-inj {i = zero } {suc j} ()
finToNat-inj {i = suc i} {zero } ()
finToNat-inj {i = suc i} {suc j} p rewrite finToNat-inj (suc-inj p) = refl
natToFin : ∀ {n} (m : Nat) {{m<n : IsTrue (lessNat m n)}} → Fin n
natToFin {zero } _ {{}}
natToFin {suc n} zero = zero
natToFin {suc n} (suc m) = suc (natToFin m)
instance
NumberFin : ∀ {n} → Number (Fin n)
Number.Constraint (NumberFin {n}) k = IsTrue (lessNat k n)
fromNat {{NumberFin}} = natToFin
--- Equality ---
fsuc-inj : ∀ {@erased n} {i j : Fin n} → Fin.suc i ≡ suc j → i ≡ j
fsuc-inj refl = refl
private
eqFin : ∀ {@erased n} (i j : Fin n) → Dec (i ≡ j)
eqFin zero zero = yes refl
eqFin zero (suc j) = no λ ()
eqFin (suc i) zero = no λ ()
eqFin (suc i) (suc j) with eqFin i j
eqFin (suc i) (suc .i) | yes refl = yes refl
eqFin (suc i) (suc j) | no neq = no λ eq → neq (fsuc-inj eq)
instance
EqFin : ∀ {n} → Eq (Fin n)
_==_ {{EqFin}} = eqFin
--- Ord ---
instance
OrdFin : ∀ {n} → Ord (Fin n)
OrdFin = OrdBy finToNat-inj
OrdLawsFin : ∀ {n} → Ord/Laws (Fin n)
OrdLawsFin = OrdLawsBy finToNat-inj
| {
"alphanum_fraction": 0.6083627797,
"avg_line_length": 26.9523809524,
"ext": "agda",
"hexsha": "657d7566dba652024ce9c87319177f4e191b1127",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Prelude/Fin.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Prelude/Fin.agda",
"max_line_length": 76,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Prelude/Fin.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 665,
"size": 1698
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Limit where
open import Level
open import Data.Product using (Σ; _,_; Σ-syntax; uncurry; proj₂)
open import Categories.Support.PropositionalEquality
open import Categories.Category
open import Categories.Functor using (Functor; module Functor)
open import Categories.Cones
open import Categories.Object.Terminal as T using (Terminal; module Terminal)
import Categories.Morphisms as Mor
open import Categories.Cone using (module Cone; module ConeOver)
module LimitsOf {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) where
private module L = Terminal
open Category C
open Category J using () renaming (Obj to Dot)
open Functor F
open Mor C using (_≅_; _≡ⁱ_)
open Mor (Cones F) using () renaming (_≅_ to _⇿_; _≡ⁱ_ to _≜ⁱ_)
open Category (Cones F) using () renaming (Obj to Cone; _≡_ to _≜₁_; _∘_ to _▵_; _⇒_ to _⇾_; id to id▵)
open ConeOver F using (_≜_; ≜-refl; ≜-sym; ≜-trans; heterogenize; homogenize; ConeUnder; tether; untether; _≜′_) renaming (module _≜_ to ≜; module _≜′_ to ≜′)
open Heterogeneous C
-- Isomorphic to an terminal object, but worth keeping distinct in case we change its definition
record Limit : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
field
terminal : Terminal (Cones F)
private module terminal = Terminal terminal
module Fl = Float F
{-
vertex : Obj
vertex = Cone.N terminal.⊤
proj : ∀ j → vertex ⇒ F₀ j
proj = Cone.ψ terminal.⊤
proj-cone : Cone
proj-cone = terminal.⊤
-}
open terminal public using () renaming (⊤ to proj-cone)
open Cone proj-cone public using () renaming (N to vertex; ψ to proj)
rep-cone : (K : Cone) → (K ⇾ proj-cone)
rep-cone K = terminal.! {K}
rep : (K : Cone) → (Cone.N K ⇒ vertex)
rep K = ConeMorphism.f (terminal.! {K})
unrep : ∀ {X} → (X ⇒ vertex) → Cone
unrep f = record
{ N = domain f
; ψ = λ j → proj j ∘ f
; commute = λ l → Equiv.trans (Equiv.sym assoc) (∘-resp-≡ˡ (commute l))
}
where
open Cone proj-cone
conify : ∀ {X} (f : X ⇒ vertex) → (unrep f ⇾ proj-cone)
conify f = record { f = f; commute = Equiv.refl }
unrep-cone : ∀ {K : Cone} → (K ⇾ proj-cone) → Cone
unrep-cone κ = unrep (ConeMorphism.f κ)
commute-cone : ∀ {K : Cone} → unrep-cone (rep-cone K) ≜ K
commute-cone {K} = record
{ N-≣ = ≣-refl
; ψ-≡ = λ j → ≡⇒∼ (Equiv.sym (ConeMorphism.commute (rep-cone K)))
}
.commute : ∀ K j → proj j ∘ rep K ≡ Cone.ψ K j
commute K = λ j → Equiv.sym (ConeMorphism.commute (rep-cone K))
private
domain▵ : ∀ {X Y} → X ⇾ Y → Cone
domain▵ {X} _ = X
.universal-cone : ∀ {K : Cone} {i : K ⇾ proj-cone} → unrep-cone i ≜ K → Cones F [ rep-cone K ≡ i ]
universal-cone {K} {i} pf = terminal.!-unique i
.universal : ∀ {K : Cone} {i : Cone.N K ⇒ vertex} → unrep i ≜ K → rep K ≡ i
universal {K} {i} pf = terminal.!-unique (Fl.floatʳ (heterogenize (homogenize pf ≣-refl)) (conify i))
-- complicated, isn't it? but it's necessary in order to make the float
-- compute enough for the !-unique to typecheck. by replacing the
-- N-≣ in pf with ≣-refl we can make it happen!
g-η-cone₀ : ∀ {K} {κ : K ⇾ proj-cone} → K ≜ unrep-cone κ
g-η-cone₀ {K} {κ} = record { N-≣ = ≣-refl; ψ-≡ = λ j → ≡⇒∼ (ConeMorphism.commute κ) }
.g-η-cone : ∀ {K} {κ : K ⇾ proj-cone} → rep-cone (unrep-cone κ) ≜₁ Fl.floatʳ (g-η-cone₀ {κ = κ}) κ
g-η-cone {κ = κ} = terminal.!-unique (Fl.floatʳ (g-η-cone₀ {κ = κ}) κ)
.g-η : ∀ {X} {f : X ⇒ vertex} → rep (unrep f) ≡ f
g-η {f = f} = terminal.!-unique (conify f)
.η-cone : Cones F [ rep-cone proj-cone ≡ Category.id (Cones F) ]
η-cone = terminal.⊤-id (rep-cone proj-cone)
.η : rep proj-cone ≡ id
η = η-cone
.rep-cone-cong : ∀ {K₁ K₂} (K₁≜K₂ : K₁ ≜ K₂) → Cones F [ Fl.floatʳ K₁≜K₂ (rep-cone K₁) ≡ rep-cone K₂ ]
rep-cone-cong {K₁} {K₂} K₁≜K₂ =
Equiv.sym (terminal.!-unique (Fl.floatʳ K₁≜K₂ (rep-cone K₁)))
.rep-cong′ : ∀ {N} {K₁ K₂ : ConeUnder N} → K₁ ≜′ K₂ → rep (untether K₁) ≡ rep (untether K₂)
rep-cong′ {N} {K₁} {K₂} K₁≜′K₂ =
Equiv.sym (terminal.!-unique (Fl.floatʳ (heterogenize K₁≜′K₂) (rep-cone (untether K₁))))
rep-cong : ∀ {K₁ K₂} → K₁ ≜ K₂ → rep K₁ ∼ rep K₂
rep-cong K₁≜K₂ =
≡⇒∼ʳ (≜.N-≣ K₁≜K₂) (rep-cone-cong K₁≜K₂)
.rep-cone∘ : ∀ {K K′} {q : K′ ⇾ K} → Cones F [ Cones F [ rep-cone K ∘ q ] ≡ rep-cone K′ ]
rep-cone∘ {K} {q = q} = Equiv.sym (terminal.!-unique (rep-cone K ▵ q))
.rep∘ : ∀ {K K′} {q : K′ ⇾ K} → rep K ∘ ConeMorphism.f q ≡ rep K′
rep∘ {K} {K′} {q} = rep-cone∘ {K} {K′} {q}
.rep-cone-self-id : rep-cone proj-cone ≜₁ id▵
rep-cone-self-id = terminal.!-unique id▵
.rep-self-id : rep proj-cone ≡ id
rep-self-id = terminal.!-unique id▵
open Limit
-- Properties
--
-- These are a little different from the raw ones for Terminal since they
-- deal with isomorphisms in C instead of in Cones F.
-- First, a lemma:
open import Categories.Square
-- do these lemmas belong in Cones?
isos-lift-to-cones : ∀ (κ : Cone) {v : Obj} → Cone.N κ ≅ v → Σ[ κ′ ∈ Cone ] κ ⇿ κ′
isos-lift-to-cones κ {v} κ≅v =
record
{ N = v
; ψ = λ X → (Cone.ψ κ X) ∘ g
; commute = λ f' → pullˡ (Cone.commute κ f')
}
, record
{ f = record { f = f; commute = Equiv.sym (cancelRight isoˡ) }
; g = record { f = g; commute = Equiv.refl }
; iso = record { isoˡ = isoˡ; isoʳ = isoʳ }
}
where
open Mor._≅_ κ≅v
open GlueSquares C
isos-lower-from-cones : ∀ {κ₁ κ₂ : Cone} → κ₁ ⇿ κ₂ → Cone.N κ₁ ≅ Cone.N κ₂
isos-lower-from-cones κ₁⇿κ₂ = record
{ f = ConeMorphism.f f
; g = ConeMorphism.f g
; iso = record { isoˡ = isoˡ; isoʳ = isoʳ }
}
where
open Mor._≅_ κ₁⇿κ₂
≜ⁱ⇒≡ⁱ : ∀ {κ₁ κ₂} {i₁ i₂ : κ₁ ⇿ κ₂} → i₁ ≜ⁱ i₂
→ isos-lower-from-cones i₁ ≡ⁱ isos-lower-from-cones i₂
≜ⁱ⇒≡ⁱ pf = record { f-≡ = f-≡; g-≡ = g-≡ }
where open Mor._≡ⁱ_ pf
up-to-iso-cone : (L₁ L₂ : Limit) → proj-cone L₁ ⇿ proj-cone L₂
up-to-iso-cone L₁ L₂ = T.up-to-iso (Cones F) (terminal L₁) (terminal L₂)
up-to-iso : (L₁ L₂ : Limit) → vertex L₁ ≅ vertex L₂
up-to-iso L₁ L₂ = isos-lower-from-cones (up-to-iso-cone L₁ L₂)
transport-by-iso-cone : (L : Limit) {κ : Cone} → proj-cone L ⇿ κ → Limit
transport-by-iso-cone L L⇿κ = record
{ terminal = T.transport-by-iso (Cones F) (terminal L) L⇿κ
}
transport-by-iso : (L : Limit) {v : Obj} → vertex L ≅ v → Limit
transport-by-iso L L≅v = transport-by-iso-cone L (proj₂ p)
where p = isos-lift-to-cones (proj-cone L) L≅v
.up-to-iso-cone-unique : ∀ L L′ → (i : proj-cone L ⇿ proj-cone L′) → up-to-iso-cone L L′ ≜ⁱ i
up-to-iso-cone-unique L L′ i = T.up-to-iso-unique (Cones F) (terminal L) (terminal L′) i
-- XXX probably not true -- what is? only the above?
-- .up-to-iso-unique : ∀ L L′ → (i : vertex L ≅ vertex L′) → up-to-iso L L′ ≡ⁱ i
-- up-to-iso-unique L L′ i = ≜ⁱ⇒≡ⁱ {!up-to-iso-unique-cone L L′ !}
.up-to-iso-cone-invˡ : ∀ {L κ} {i : proj-cone L ⇿ κ} → up-to-iso-cone L (transport-by-iso-cone L i) ≜ⁱ i
up-to-iso-cone-invˡ {L} {i = i} = up-to-iso-cone-unique L (transport-by-iso-cone L i) i
.up-to-iso-invˡ : ∀ {L X} {i : vertex L ≅ X} → up-to-iso L (transport-by-iso L i) ≡ⁱ i
up-to-iso-invˡ {L₁} {i = i} = ≜ⁱ⇒≡ⁱ (up-to-iso-cone-invˡ {L₁} {i = proj₂ (isos-lift-to-cones (proj-cone L₁) i)})
up-to-iso-cone-invʳ : ∀ {L L′} → proj-cone (transport-by-iso-cone L (up-to-iso-cone L L′)) ≜ proj-cone L′
up-to-iso-cone-invʳ {L} {L′} = ≜-refl
up-to-iso-invʳ : ∀ {L L′} → vertex (transport-by-iso L (up-to-iso L L′)) ≣ vertex L′
up-to-iso-invʳ {t} {t′} = ≣-refl
| {
"alphanum_fraction": 0.5785475148,
"avg_line_length": 37.1578947368,
"ext": "agda",
"hexsha": "9d910ec164f13aa26608545492f59d2182da2d93",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Limit.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Limit.agda",
"max_line_length": 160,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Limit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 3203,
"size": 7766
} |
open import Data.Maybe
open import Data.Product hiding (Σ)
open import Axiom.Extensionality.Propositional
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Nullary
open import Relation.Nullary.Negation
open import EffectAnnotations
open import Types
module AEff where
-- ARITY ASSIGNMENT TO SIGNATURES OF SIGNALS, INTERRUPTS, AND BASE CONSTANTS
postulate payload : Σₛ → GType -- payload type assignment for signal and interrupt names
postulate Σ-base : Set -- set of base constants
postulate ar-base : Σ-base → BType -- arity assignment to base constants
-- SNOC LISTS FOR MODELLING CONTEXTS
infixl 30 _∷_
data SnocList (A : Set) : Set where
[] : SnocList A
_∷_ : SnocList A → A → SnocList A
-- CONTEXTS AND VARIABLES IN THEM (I.E., DE BRUIJN INDICES)
Ctx = SnocList VType
data _∈_ (X : VType) : Ctx → Set where
Hd : {Γ : Ctx} → X ∈ (Γ ∷ X)
Tl : {Γ : Ctx} {Y : VType} → X ∈ Γ → X ∈ (Γ ∷ Y)
-- DERIVATIONS OF WELL-TYPED TERMS
mutual
data _⊢V⦂_ (Γ : Ctx) : VType → Set where
`_ : {X : VType} →
X ∈ Γ →
-------------
Γ ⊢V⦂ X
``_ : (c : Σ-base) →
--------------
Γ ⊢V⦂ ``(ar-base c)
ƛ : {X : VType}
{C : CType} →
Γ ∷ X ⊢M⦂ C →
-------------
Γ ⊢V⦂ X ⇒ C
⟨_⟩ : {X : VType} →
Γ ⊢V⦂ X →
-------------
Γ ⊢V⦂ ⟨ X ⟩
infix 40 _·_
data _⊢M⦂_ (Γ : Ctx) : CType → Set where
return : {X : VType}
{o : O}
{i : I} →
Γ ⊢V⦂ X →
-----------------
Γ ⊢M⦂ X ! (o , i)
let=_`in_ : {X Y : VType}
{o : O}
{i : I} →
Γ ⊢M⦂ X ! (o , i) →
Γ ∷ X ⊢M⦂ Y ! (o , i) →
-----------------------
Γ ⊢M⦂ Y ! (o , i)
letrec_`in_ : {X : VType}
{C D : CType} →
Γ ∷ (X ⇒ C) ∷ X ⊢M⦂ C →
Γ ∷ (X ⇒ C) ⊢M⦂ D →
-----------------------
Γ ⊢M⦂ D
_·_ : {X : VType}
{C : CType} →
Γ ⊢V⦂ X ⇒ C →
Γ ⊢V⦂ X →
-------------
Γ ⊢M⦂ C
↑ : {X : VType}
{o : O}
{i : I} →
(op : Σₛ) →
op ∈ₒ o →
Γ ⊢V⦂ ``(payload op) →
Γ ⊢M⦂ X ! (o , i) →
----------------------
Γ ⊢M⦂ X ! (o , i)
↓ : {X : VType}
{o : O}
{i : I}
(op : Σₛ) →
Γ ⊢V⦂ ``(payload op) →
Γ ⊢M⦂ X ! (o , i) →
----------------------
Γ ⊢M⦂ X ! op ↓ₑ (o , i)
promise_∣_↦_`in_ : {X Y : VType}
{o o' : O}
{i i' : I} →
(op : Σₛ) →
lkpᵢ op i ≡ just (o' , i') →
Γ ∷ ``(payload op) ⊢M⦂ ⟨ X ⟩ ! (o' , i') →
Γ ∷ ⟨ X ⟩ ⊢M⦂ Y ! (o , i) →
------------------------------------------
Γ ⊢M⦂ Y ! (o , i)
await_until_ : {X : VType}
{C : CType} →
Γ ⊢V⦂ ⟨ X ⟩ →
Γ ∷ X ⊢M⦂ C →
--------------
Γ ⊢M⦂ C
coerce : {X : VType}
{o o' : O}
{i i' : I} →
o ⊑ₒ o' →
i ⊑ᵢ i' →
Γ ⊢M⦂ X ! (o , i) →
-------------------
Γ ⊢M⦂ X ! (o' , i')
-- DERIVATIONS OF WELL-TYPED PROCESSES
infix 10 _⊢P⦂_
data _⊢P⦂_ (Γ : Ctx) : {o : O} → PType o → Set where
run : {X : VType}
{o : O}
{i : I} →
Γ ⊢M⦂ X ! (o , i) →
-------------------
Γ ⊢P⦂ X ‼ o , i
_∥_ : {o o' : O}
{PP : PType o} →
{QQ : PType o'} →
Γ ⊢P⦂ PP →
Γ ⊢P⦂ QQ →
--------------
Γ ⊢P⦂ (PP ∥ QQ)
↑ : {o : O} →
{PP : PType o}
(op : Σₛ) →
op ∈ₒ o →
Γ ⊢V⦂ ``(payload op) →
Γ ⊢P⦂ PP →
----------------------
Γ ⊢P⦂ PP
↓ : {o : O}
{PP : PType o}
(op : Σₛ) →
Γ ⊢V⦂ ``(payload op) →
Γ ⊢P⦂ PP →
----------------------
Γ ⊢P⦂ op ↓ₚ PP
| {
"alphanum_fraction": 0.2751515152,
"avg_line_length": 27.1978021978,
"ext": "agda",
"hexsha": "d5e9dc772d59d3c82208742f0d47969cb1ef7acb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danelahman/aeff-agda",
"max_forks_repo_path": "AEff.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danelahman/aeff-agda",
"max_issues_repo_path": "AEff.agda",
"max_line_length": 92,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danelahman/aeff-agda",
"max_stars_repo_path": "AEff.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-22T22:48:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-17T00:15:00.000Z",
"num_tokens": 1541,
"size": 4950
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.HSpace
module homotopy.EM1HSpace where
module EM₁HSpace {i} (G : AbGroup i) where
private
module G = AbGroup G
mult-loop : (g : G.El) (x : EM₁ G.grp) → x == x
mult-loop g = EM₁-elim
{P = λ x → x == x}
(emloop g)
loop'
(λ _ _ → set-↓-has-all-paths-↓)
where
abstract
loop' : (g' : G.El) → emloop' G.grp g == emloop g [ (λ x → x == x) ↓ emloop g' ]
loop' g' = ↓-idf=idf-in' $
emloop g ∙ emloop g' =⟨ ! (emloop-comp' G.grp g g') ⟩
emloop (G.comp g g') =⟨ ap (emloop' G.grp) (G.comm g g') ⟩
emloop (G.comp g' g) =⟨ emloop-comp' G.grp g' g ⟩
emloop g' ∙ emloop g =⟨ ∙=∙' (emloop g') (emloop g) ⟩
emloop g' ∙' emloop g ∎
mult-hom : GroupHom G.grp
(Ω^S-group 0 ⊙[ (EM₁ G.grp → EM₁ G.grp) , (λ x → x) ])
mult-hom = record {f = f; pres-comp = pres-comp}
where
f = λ g → λ= (mult-loop g)
pres-comp = λ g₁ g₂ →
ap λ= (λ= (EM₁-elim
{P = λ x → mult-loop (G.comp g₁ g₂) x
== mult-loop g₁ x ∙ mult-loop g₂ x}
(emloop-comp g₁ g₂)
(λ _ → prop-has-all-paths-↓)
(λ _ _ → set-↓-has-all-paths-↓)))
∙ ! (∙-λ= _ _)
mult : EM₁ G.grp → EM₁ G.grp → EM₁ G.grp
mult = EM₁-rec {C = EM₁ G.grp → EM₁ G.grp} (λ x → x) mult-hom
H-⊙EM₁ : HSpaceStructure (⊙EM₁ G.grp)
H-⊙EM₁ = from-alt-h-space $ record { μ = mult; unit-l = unit-l; unit-r = unit-r; coh = coh }
where
unit-l : (x : EM₁ G.grp) → mult embase x == x
unit-l = EM₁-elim
{P = λ x → mult embase x == x}
idp
(λ g → ↓-app=idf-in $ ∙'-unit-l (emloop g) ∙ (! (ap-idf (emloop g)))
∙ ! (∙-unit-r (ap (mult embase) (emloop g))))
(λ _ _ → set-↓-has-all-paths-↓)
unit-r : (x : EM₁ G.grp) → mult x embase == x
unit-r = EM₁-elim
{P = λ x → mult x embase == x}
idp
(λ g → ↓-app=idf-in $
idp ∙' emloop g
=⟨ ∙'-unit-l (emloop g) ⟩
emloop g
=⟨ ! (app=-β (mult-loop g) embase) ⟩
app= (λ= (mult-loop g)) embase
=⟨ ! (EM₁Rec.emloop-β {C = EM₁ G.grp → EM₁ G.grp}
(λ x → x) mult-hom g)
|in-ctx (λ w → app= w embase) ⟩
app= (ap mult (emloop g)) embase
=⟨ ∘-ap (λ f → f embase) mult (emloop g) ⟩
ap (λ z → mult z embase) (emloop g)
=⟨ ! (∙-unit-r (ap (λ z → mult z embase) (emloop g))) ⟩
ap (λ z → mult z embase) (emloop g) ∙ idp ∎)
(λ _ _ → set-↓-has-all-paths-↓)
coh : unit-l embase == unit-r embase
coh = idp
open HSpaceStructure H-⊙EM₁
| {
"alphanum_fraction": 0.4751587598,
"avg_line_length": 32.2530120482,
"ext": "agda",
"hexsha": "b9df313dcef79828146d42b2556b1029eeac8339",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/EM1HSpace.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/EM1HSpace.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/EM1HSpace.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1068,
"size": 2677
} |
module Sigma.Renaming.Vec where
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Fin as Fin using (Fin; zero; suc)
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Data.Vec as V using (Vec; []; _∷_; map; _[_]≔_)
renaming (head to headᵥ; tail to tailᵥ; lookup to lookupᵥ; insert to insertᵥ; remove to removeᵥ; updateAt to updateAtᵥ)
open import Data.HVec as HV using (HVec; []; _∷_)
renaming (head to headₕ; tail to tailₕ; lookup to lookupₕ; insert to insertₕ; remove to removeₕ; updateAt to updateAtₕ)
open import Function as Fun using (_∘_)
open import Sigma.Renaming.Base as R using (Ren)
renaming (id to idᵣ; ↑ to ↑ᵣ; _⇑ to _⇑ᵣ)
open import Relation.Binary.PropositionalEquality as Eq
using (_≡_; refl; sym; trans; cong; cong₂; cong-app; subst)
open Eq.≡-Reasoning
-- ------------------------------------------------------------------------
-- Vectored Renaming Shape
-- A renaming ρ : 𝕀ᵐ → 𝕀ⁿ is defined by a *shape*, denoted m ↦ n.
--
-- Similarly, a vectored renaming ρs = [ρ₁ ; ...; ρₖ] : [𝕀ᵐ₁ → 𝕀ⁿ₁, ...; 𝕀ᵐₖ → 𝕀ⁿₖ]
-- is defined by a vector of renaming shapes, denoted [m₁ ↦ n₁; ...; mₖ ↦ nₖ]
module Shape where
open import Data.Vec using (lookup; replicate; _[_]%=_; _[_]≔_)
-- TODO: Implement shape for renaming?
Shape : ℕ → Set
Shape n = Vec (ℕ × ℕ) n
-- -------------------------------------------
pattern _↦_ m n = ⟨ m , n ⟩
shape : ∀ { n } → Shape n → Fin n → ℕ × ℕ
shape = lookup
dom : ∀ { n } → Shape n → Fin n → ℕ
dom s = proj₁ ∘ (shape s)
rng : ∀ { n } → Shape n → Fin n → ℕ
rng s = proj₂ ∘ (shape s)
-- -------------------------------------------
id : ∀ { m } → ℕ → Shape m
id n = replicate (n ↦ n)
↑ : ∀ { m } → ℕ → Fin m → Shape m
↑ n i = id n [ i ]≔ n ↦ (1 + n)
-- TODO: This may become a pain, used a hack to use := instead of
-- %=
infix 10 _⇑_
_⇑_ : ∀ { n } → Shape n → Fin n → Shape n
s ⇑ i = s [ i ]≔ ⇑ (lookup s i)
where
⇑ : ℕ × ℕ → ℕ × ℕ
⇑ (m ↦ n) = (1 + m) ↦ (1 + n)
open Shape using (Shape; _↦_) renaming (id to idₛ; ↑ to ↑ₛ; _⇑_ to _⇑ₛ_)
-- TODO: Move this when implementing shapes on renamings?
-- IDEA: Call it an interpretation of a shape
-- use the nice brackets ;)
⦅_⦆ : ℕ × ℕ → Set
⦅ m ↦ n ⦆ = Ren m n
-- ------------------------------------------------------------------------
-- Vectored Renaming
-- A vectored renaming ρs = [ρ₁ ; ...; ρₖ] : [𝕀ᵐ₁ → 𝕀ⁿ₁, ...; 𝕀ᵐₖ → 𝕀ⁿₖ]
-- defined by it's shape: [m₁ ↦ n₁; ...; mₖ ↦ nₖ]
-- It is implemented as a hetrogenous vector.
VRen : ∀ n → Shape n → Set
VRen n shape = HVec n (map ⦅_⦆ shape)
length : ∀ { n S } → VRen n S → ℕ
length { n = n } _ = n
shape : ∀ { n S } → VRen n S → Shape n
shape { S = shape } _ = shape
-- ------------------------------------------------------------------------
-- Basic operations (ported from HVec)
-- Anonymous module containing properties about
-- Data.Vec's map composed w/ other operations
module _ { ℓ₁ ℓ₂ } { A : Set ℓ₁ } { B : Set ℓ₂ } where
open import Data.Vec using (head; tail; insert; remove)
private
variable
m n k : ℕ
open import Data.Vec.Properties using (lookup-map; map-[]≔) public
unfold-map : (f : A → B) (x : A) (xs : Vec A n)
→ map f (x ∷ xs) ≡ f x ∷ map f xs
unfold-map f x [] = refl
unfold-map f x (_ ∷ xs) = refl
unfold-remove : (x : A) (xs : Vec A (1 + n)) (i : Fin (1 + n))
→ remove (x ∷ xs) (suc i) ≡ x ∷ remove xs i
unfold-remove x (_ ∷ xs) zero = refl
unfold-remove x (y ∷ xs) (suc i) = refl
head-map : (f : A → B) (xs : Vec A (1 + n))
→ head (map f xs) ≡ f (head xs)
head-map f (x ∷ xs) = refl
tail-map : (f : A → B) (xs : Vec A (1 + n))
→ tail (map f xs) ≡ map f (tail xs)
tail-map f (x ∷ xs) = refl
insert-map : (f : A → B) (x : A) (xs : Vec A n) (i : Fin (1 + n))
→ insert (map f xs) i (f x) ≡ map f (insert xs i x)
insert-map f x xs zero = refl
insert-map f x (_ ∷ xs) (suc i) rewrite insert-map f x xs i = refl
remove-map : (f : A → B) (xs : Vec A (1 + n)) (i : Fin (1 + n))
→ remove (map f xs) i ≡ map f (remove xs i)
remove-map f (_ ∷ xs) zero = refl
remove-map f (x ∷ y ∷ xs) (suc i) rewrite remove-map f (y ∷ xs) i = refl
module _ where
private
variable
m n k : ℕ
S : Shape m
head : VRen (1 + m) S → ⦅ headᵥ S ⦆
head ρs rewrite sym (head-map ⦅_⦆ (shape ρs)) = headₕ ρs
tail : VRen (1 + m) S → VRen m (tailᵥ S)
tail ρs rewrite sym (tail-map ⦅_⦆ (shape ρs)) = tailₕ ρs
lookup : VRen m S → (i : Fin m) → ⦅ lookupᵥ S i ⦆
lookup ρs i rewrite sym (lookup-map i ⦅_⦆ (shape ρs)) = lookupₕ ρs i
insert : VRen m S → (i : Fin (1 + m)) → Ren n k → VRen (1 + m) (insertᵥ S i (n ↦ k))
insert { n = n } { k = k } ρs i ρ rewrite sym (insert-map ⦅_⦆ (n ↦ k) (shape ρs) i) = insertₕ ρs i ρ
remove : VRen (1 + m) S → (i : Fin (1 + m)) → VRen m (removeᵥ S i)
remove ρs i rewrite sym (remove-map ⦅_⦆ (shape ρs) i) = removeₕ ρs i
updateAt : (i : Fin m) → (⦅ lookupᵥ S i ⦆ → Ren n k) → VRen m S → VRen m (S [ i ]≔ n ↦ k)
updateAt { n = n } { k = k } i f ρs rewrite map-[]≔ ⦅_⦆ (shape ρs) i { x = n ↦ k } = updateAtₕ i f' ρs
where
f' : lookupᵥ (map ⦅_⦆ (shape ρs)) i → Ren n k
f' rewrite lookup-map i ⦅_⦆ (shape ρs) = f
infixl 6 _[_]$=_
_[_]$=_ : VRen m S → (i : Fin m) → (⦅ lookupᵥ S i ⦆ → Ren n k) → VRen m (S [ i ]≔ n ↦ k)
ρs [ i ]$= f = updateAt i f ρs
infixl 6 _[_]&=_
_[_]&=_ : VRen m S → (i : Fin m) → Ren n k → VRen m (S [ i ]≔ n ↦ k)
ρs [ i ]&= ρ = ρs [ i ]$= Fun.const ρ
-- ------------------------------------------------------------------------
-- Primitives
id : ∀ m { n } → VRen m (idₛ n)
id zero = []
id (suc m) = idᵣ ∷ id m
↑ : ∀ m { n } → (i : Fin m) → VRen m (↑ₛ n i)
↑ m i = (id m) [ i ]&= ↑ᵣ
_⇑_ : ∀ { n S } → VRen n S → (i : Fin n) → VRen n (S ⇑ₛ i)
ρs ⇑ i = ρs [ i ]$= (_⇑ᵣ)
-- ------------------------------------------------------------------------
| {
"alphanum_fraction": 0.5024382041,
"avg_line_length": 31.3,
"ext": "agda",
"hexsha": "27b42ba1e2b74dde677979cbf89311540f61a7cc",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-sigma",
"max_forks_repo_path": "src/Sigma/Renaming/Vec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-sigma",
"max_issues_repo_path": "src/Sigma/Renaming/Vec.agda",
"max_line_length": 121,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bb895fa8a3ccbefbd2c4a135c79744ba06895be7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-sigma",
"max_stars_repo_path": "src/Sigma/Renaming/Vec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2394,
"size": 5947
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Issue3a where
module A where
postulate
D : Set
_≡_ : D → D → Set
a b : D
postulate p : a ≡ b
open A
{-# ATP axiom p #-}
postulate foo : a ≡ b
{-# ATP prove foo #-}
| {
"alphanum_fraction": 0.4986449864,
"avg_line_length": 17.5714285714,
"ext": "agda",
"hexsha": "94ae2aa17601c68ad60fe31476e3e9a27841000d",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Issue3a.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Issue3a.agda",
"max_line_length": 42,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Issue3a.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 104,
"size": 369
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Magma.MorphismProperties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Function using (_∘_; id)
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Functions.Embedding
open import Cubical.Data.Sigma
open import Cubical.Data.Prod using (isPropProd)
open import Cubical.Algebra
open import Cubical.Algebra.Properties
open import Cubical.Algebra.Magma.Morphism
open import Cubical.Structures.Axioms
open import Cubical.Structures.Auto
open import Cubical.Structures.Record
open import Cubical.Relation.Binary.Reasoning.Equality
open Iso
private
variable
ℓ ℓ′ ℓ′′ : Level
L : Magma ℓ
M : Magma ℓ′
N : Magma ℓ′′
isPropIsMagmaHom : ∀ (M : Magma ℓ) (N : Magma ℓ′) f → isProp (IsMagmaHom M N f)
isPropIsMagmaHom M N f = isPropHomomorphic₂ (Magma.is-set N) f (Magma._•_ M) (Magma._•_ N)
isSetMagmaHom : isSet (M ⟶ᴴ N)
isSetMagmaHom {M = M} {N = N} = isOfHLevelRespectEquiv 2 equiv
(isSetΣ (isSetΠ λ _ → is-set N)
(λ f → isProp→isSet (isPropIsMagmaHom M N f)))
where
open Magma
equiv : (Σ[ g ∈ (⟨ M ⟩ → ⟨ N ⟩) ] IsMagmaHom M N g) ≃ MagmaHom M N
equiv = isoToEquiv (iso (λ (g , m) → magmahom g m)
(λ (magmahom g m) → g , m)
(λ _ → refl) λ _ → refl)
isMagmaHomComp : {f : ⟨ L ⟩ → ⟨ M ⟩} {g : ⟨ M ⟩ → ⟨ N ⟩} →
IsMagmaHom L M f → IsMagmaHom M N g → IsMagmaHom L N (g ∘ f)
isMagmaHomComp {g = g} fHom gHom _ _ = cong g (fHom _ _) ∙ gHom _ _
private
isMagmaHomComp′ : (f : L ⟶ᴴ M) (g : M ⟶ᴴ N) →
IsMagmaHom L N (MagmaHom.fun g ∘ MagmaHom.fun f)
isMagmaHomComp′ (magmahom f fHom) (magmahom g gHom) _ _ = cong g (fHom _ _) ∙ gHom _ _
compMagmaHom : (L ⟶ᴴ M) → (M ⟶ᴴ N) → (L ⟶ᴴ N)
compMagmaHom f g = magmahom _ (isMagmaHomComp′ f g)
compMagmaEquiv : L ≃ᴴ M → M ≃ᴴ N → L ≃ᴴ N
compMagmaEquiv f g = magmaequiv (compEquiv f.eq g.eq) (isMagmaHomComp′ f.hom g.hom)
where
module f = MagmaEquiv f
module g = MagmaEquiv g
isMagmaHomId : (M : Magma ℓ) → IsMagmaHom M M id
isMagmaHomId M _ _ = refl
idMagmaHom : (M : Magma ℓ) → (M ⟶ᴴ M)
idMagmaHom M = record
{ fun = id
; isHom = isMagmaHomId M
}
idMagmaEquiv : (M : Magma ℓ) → M ≃ᴴ M
idMagmaEquiv M = record
{ eq = idEquiv ⟨ M ⟩
; isHom = isMagmaHomId M
}
-- Isomorphism inversion
isMagmaHomInv : (eqv : M ≃ᴴ N) → IsMagmaHom N M (invEq (MagmaEquiv.eq eqv))
isMagmaHomInv {M = M} {N = N} (magmaequiv eq isHom) x y = isInj-f _ _ (
f (f⁻¹ (x •ᴺ y)) ≡⟨ retEq eq _ ⟩
x •ᴺ y ≡˘⟨ cong₂ _•ᴺ_ (retEq eq x) (retEq eq y) ⟩
f (f⁻¹ x) •ᴺ f (f⁻¹ y) ≡˘⟨ isHom (f⁻¹ x) (f⁻¹ y) ⟩
f (f⁻¹ x •ᴹ f⁻¹ y) ∎)
where
_•ᴹ_ = Magma._•_ M
_•ᴺ_ = Magma._•_ N
f = equivFun eq
f⁻¹ = invEq eq
isInj-f : (x y : ⟨ M ⟩) → f x ≡ f y → x ≡ y
isInj-f x y = invEq (_ , isEquiv→isEmbedding (eq .snd) x y)
invMagmaHom : M ≃ᴴ N → (N ⟶ᴴ M)
invMagmaHom eq = record { isHom = isMagmaHomInv eq }
invMagmaEquiv : (M ≃ᴴ N) → (N ≃ᴴ M)
invMagmaEquiv eq = record
{ eq = invEquiv (MagmaEquiv.eq eq)
; isHom = isMagmaHomInv eq
}
magmaHomEq : {f g : M ⟶ᴴ N} → (MagmaHom.fun f ≡ MagmaHom.fun g) → f ≡ g
magmaHomEq {M = M} {N = N} {magmahom f fm} {magmahom g gm} p i = magmahom (p i) (p-hom i)
where
p-hom : PathP (λ i → IsMagmaHom M N (p i)) fm gm
p-hom = toPathP (isPropIsMagmaHom M N _ _ _)
magmaEquivEq : {f g : M ≃ᴴ N} → (MagmaEquiv.eq f ≡ MagmaEquiv.eq g) → f ≡ g
magmaEquivEq {M = M} {N = N} {magmaequiv f fm} {magmaequiv g gm} p i = magmaequiv (p i) (p-hom i)
where
p-hom : PathP (λ i → IsMagmaHom M N (p i .fst)) fm gm
p-hom = toPathP (isPropIsMagmaHom M N _ _ _)
module MagmaΣTheory {ℓ} where
RawMagmaStructure : Type ℓ → Type ℓ
RawMagmaStructure A = A → A → A
RawMagmaEquivStr = AutoEquivStr RawMagmaStructure
rawMagmaUnivalentStr : UnivalentStr _ RawMagmaEquivStr
rawMagmaUnivalentStr = autoUnivalentStr RawMagmaStructure
MagmaAxioms : (A : Type ℓ) → RawMagmaStructure A → Type ℓ
MagmaAxioms A _•_ = isSet A
MagmaStructure : Type ℓ → Type ℓ
MagmaStructure = AxiomsStructure RawMagmaStructure MagmaAxioms
MagmaΣ : Type (ℓ-suc ℓ)
MagmaΣ = TypeWithStr ℓ MagmaStructure
isPropMagmaAxioms : (A : Type ℓ) (_•_ : RawMagmaStructure A)
→ isProp (MagmaAxioms A _•_)
isPropMagmaAxioms _ _ = isPropIsSet
MagmaEquivStr : StrEquiv MagmaStructure ℓ
MagmaEquivStr = AxiomsEquivStr RawMagmaEquivStr MagmaAxioms
MagmaAxiomsIsoIsMagma : {A : Type ℓ} (_•_ : RawMagmaStructure A)
→ Iso (MagmaAxioms A _•_) (IsMagma A _•_)
fun (MagmaAxiomsIsoIsMagma s) x = ismagma x
inv (MagmaAxiomsIsoIsMagma s) (ismagma x) = x
rightInv (MagmaAxiomsIsoIsMagma s) _ = refl
leftInv (MagmaAxiomsIsoIsMagma s) _ = refl
MagmaAxioms≡IsMagma : {A : Type ℓ} (_•_ : RawMagmaStructure A)
→ MagmaAxioms A _•_ ≡ IsMagma A _•_
MagmaAxioms≡IsMagma s = isoToPath (MagmaAxiomsIsoIsMagma s)
Magma→MagmaΣ : Magma ℓ → MagmaΣ
Magma→MagmaΣ (mkmagma A _•_ isMagma) =
A , _•_ , MagmaAxiomsIsoIsMagma _ .inv isMagma
MagmaΣ→Magma : MagmaΣ → Magma ℓ
MagmaΣ→Magma (A , _•_ , isMagma•) =
mkmagma A _•_ (MagmaAxiomsIsoIsMagma _ .fun isMagma•)
MagmaIsoMagmaΣ : Iso (Magma ℓ) MagmaΣ
MagmaIsoMagmaΣ =
iso Magma→MagmaΣ MagmaΣ→Magma (λ _ → refl) (λ _ → refl)
magmaUnivalentStr : UnivalentStr MagmaStructure MagmaEquivStr
magmaUnivalentStr = axiomsUnivalentStr _ isPropMagmaAxioms rawMagmaUnivalentStr
MagmaΣPath : (M N : MagmaΣ) → (M ≃[ MagmaEquivStr ] N) ≃ (M ≡ N)
MagmaΣPath = SIP magmaUnivalentStr
MagmaEquivΣ : (M N : Magma ℓ) → Type ℓ
MagmaEquivΣ M N = Magma→MagmaΣ M ≃[ MagmaEquivStr ] Magma→MagmaΣ N
MagmaIsoΣPath : {M N : Magma ℓ} → Iso (MagmaEquiv M N) (MagmaEquivΣ M N)
fun MagmaIsoΣPath (magmaequiv e h) = (e , h)
inv MagmaIsoΣPath (e , h) = magmaequiv e h
rightInv MagmaIsoΣPath _ = refl
leftInv MagmaIsoΣPath _ = refl
MagmaPath : (M N : Magma ℓ) → (MagmaEquiv M N) ≃ (M ≡ N)
MagmaPath M N =
MagmaEquiv M N ≃⟨ isoToEquiv MagmaIsoΣPath ⟩
MagmaEquivΣ M N ≃⟨ MagmaΣPath _ _ ⟩
Magma→MagmaΣ M ≡ Magma→MagmaΣ N ≃⟨ isoToEquiv (invIso (congIso MagmaIsoMagmaΣ)) ⟩
M ≡ N ■
RawMagmaΣ : Type (ℓ-suc ℓ)
RawMagmaΣ = TypeWithStr ℓ RawMagmaStructure
Magma→RawMagmaΣ : Magma ℓ → RawMagmaΣ
Magma→RawMagmaΣ M = (⟨ M ⟩ , Magma._•_ M)
InducedMagma : (M : Magma ℓ) (N : RawMagmaΣ) (e : ⟨ M ⟩ ≃ ⟨ N ⟩)
→ RawMagmaEquivStr (Magma→RawMagmaΣ M) N e → Magma ℓ
InducedMagma M N e r =
MagmaΣ→Magma (inducedStructure rawMagmaUnivalentStr (Magma→MagmaΣ M) N (e , r))
InducedMagmaPath : (M : Magma ℓ) (N : RawMagmaΣ) (e : ⟨ M ⟩ ≃ ⟨ N ⟩)
(E : RawMagmaEquivStr (Magma→RawMagmaΣ M) N e)
→ M ≡ InducedMagma M N e E
InducedMagmaPath M N e E =
MagmaPath M (InducedMagma M N e E) .fst (magmaequiv e E)
open MagmaΣTheory public using (InducedMagma; InducedMagmaPath)
MagmaPath : (M ≃ᴴ N) ≃ (M ≡ N)
MagmaPath = MagmaΣTheory.MagmaPath _ _
open Magma
uaMagma : M ≃ᴴ N → M ≡ N
uaMagma = equivFun MagmaPath
carac-uaMagma : {M N : Magma ℓ} (f : M ≃ᴴ N) → cong Carrier (uaMagma f) ≡ ua (MagmaEquiv.eq f)
carac-uaMagma (magmaequiv f m) =
(refl ∙∙ ua f ∙∙ refl)
≡˘⟨ rUnit (ua f) ⟩
ua f ∎
Magma≡ : (M N : Magma ℓ) → (
Σ[ p ∈ ⟨ M ⟩ ≡ ⟨ N ⟩ ]
Σ[ q ∈ PathP (λ i → p i → p i → p i) (_•_ M) (_•_ N) ]
PathP (λ i → IsMagma (p i) (q i)) (isMagma M) (isMagma N))
≃ (M ≡ N)
Magma≡ M N = isoToEquiv (iso
(λ (p , q , r) i → mkmagma (p i) (q i) (r i))
(λ p → cong Carrier p , cong _•_ p , cong isMagma p)
(λ _ → refl) (λ _ → refl))
caracMagma≡ : (p q : M ≡ N) → cong Carrier p ≡ cong Carrier q → p ≡ q
caracMagma≡ {M = M} {N = N} p q t = cong (Magma≡ M N .fst) (Σ≡Prop (λ _ →
isPropΣ
(isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set N) _ _) λ _ →
isOfHLevelPathP 1 (λ { (ismagma x) (ismagma y) → cong ismagma (isPropIsSet x y) }) _ _)
t)
uaMagmaId : (M : Magma ℓ) → uaMagma (idMagmaEquiv M) ≡ refl
uaMagmaId M = caracMagma≡ _ _ (carac-uaMagma (idMagmaEquiv M) ∙ uaIdEquiv)
uaCompMagmaEquiv : {L M N : Magma ℓ} (f : L ≃ᴴ M) (g : M ≃ᴴ N)
→ uaMagma (compMagmaEquiv f g) ≡ uaMagma f ∙ uaMagma g
uaCompMagmaEquiv f g = caracMagma≡ _ _ (
cong Carrier (uaMagma (compMagmaEquiv f g))
≡⟨ carac-uaMagma (compMagmaEquiv f g) ⟩
ua (eq (compMagmaEquiv f g))
≡⟨ uaCompEquiv _ _ ⟩
ua (eq f) ∙ ua (eq g)
≡⟨ cong (_∙ ua (eq g)) (sym (carac-uaMagma f)) ⟩
cong Carrier (uaMagma f) ∙ ua (eq g)
≡⟨ cong (cong Carrier (uaMagma f) ∙_) (sym (carac-uaMagma g)) ⟩
cong Carrier (uaMagma f) ∙ cong Carrier (uaMagma g)
≡⟨ sym (cong-∙ Carrier (uaMagma f) (uaMagma g)) ⟩
cong Carrier (uaMagma f ∙ uaMagma g) ∎)
where open MagmaEquiv
| {
"alphanum_fraction": 0.621068505,
"avg_line_length": 35.7076923077,
"ext": "agda",
"hexsha": "523bedea1f509a50cc239b76a4b76c60ae95976c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Magma/MorphismProperties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Magma/MorphismProperties.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Magma/MorphismProperties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3959,
"size": 9284
} |
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.TruncatedHIT
open import Sets.Quotient
module Sets.QuotientUP {i j} (A : Set i) ⦃ A-set : is-set A ⦄
(R : A → A → Set j) ⦃ R-prop : (x y : A) → is-prop (R x y) ⦄ where
-- [X →→ Y ~ R] is the set of functions [X → Y] respecting the relation [R]
_→→_~_ : ∀ {i j k}
(X : Set i) ⦃ X-set : is-set X ⦄
(Y : Set j) ⦃ Y-set : is-set Y ⦄
(R : X → X → Set k) ⦃ R-prop : (x x' : X) → is-prop (R x x')⦄
→ Set _
X →→ Y ~ R = Σ (X → Y) (λ f → (x x' : X) → (R x x' → f x ≡ f x'))
module UP {k} (B : Set k) (B-set : is-set B) where
factor : ((A →→ B ~ R) → (A / R → B))
factor (f , p) = /-rec-nondep A R B f p B-set
extend : ((A / R → B) → (A →→ B ~ R))
extend f = ((f ◯ proj A R) , (λ x x' p₁ → ap f (eq A R x x' p₁)))
extend-factor : (f : A →→ B ~ R) → extend (factor f) ≡ f
extend-factor (f , p) = ap (λ x → f , x)
(funext (λ x →
funext (λ x' →
funext (λ p₁ → π₁ (B-set _ _ _ _)))))
factor-extend : (f : A / R → B) → factor (extend f) ≡ f
factor-extend f =
funext (/-rec A R (λ x → factor (extend f) x ≡ f x)
(λ x → refl)
(λ x y _ → π₁ (B-set _ _ _ _))
(λ x → truncated-is-truncated-S _ (B-set _ _)))
| {
"alphanum_fraction": 0.4511450382,
"avg_line_length": 34.4736842105,
"ext": "agda",
"hexsha": "97db760c9385a8babc18b04a09f753b5985863c9",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Sets/QuotientUP.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Sets/QuotientUP.agda",
"max_line_length": 75,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Sets/QuotientUP.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 535,
"size": 1310
} |
module Issue1168 where
id : {A : Set} → A → A
id {A = A} a = a
| {
"alphanum_fraction": 0.53125,
"avg_line_length": 12.8,
"ext": "agda",
"hexsha": "c757cd254a50a642ef0a76dba21e607cadac36e5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/api/Issue1168.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/api/Issue1168.agda",
"max_line_length": 22,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/api/Issue1168.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 28,
"size": 64
} |
module Compilation.Encode.Core where
open import Context
open import Type.Core
open import Compilation.Data
open import Function
open import Data.List.Base as List
{- Note [Compilation]
We compile data descriptions to System Fωμ in two steps:
1. Lambda-bind
a) a tag to distinguish between the data types from the family
b) a variable for each of the data types from the family
then apply the tag to all of the data types after Scott-encoding them in order to be able to
choose one particular data type from the family later. This way we get a valid System Fωμ type,
but it's not a legal pattern functor yet, as it binds one tag and `n` variables responsible for
recursion and we need to have only one variable responsible for recursion and one tag in order
to be able to feed a type function to `μ` and actually tie the knot. Thus the next step is
2. Instantiate all the variables responsible for recursion using a single variable applied to
distinct tags. This way we transform `1` (tag) + `n` (recursion) variables into
`1` (recursion) + `1` (tag) variables, i.e. just two variables of right kinds, thus the result
can be passed to `μ`.
We can now look at the `ProdTree`/`Tree` example.
After the first step (which is performed by the `encodeDataN` function, which calls `scottEncode`
internally) we get the following type (I'll save you from the De Bruijn reverse Turing test and
use the Agda notation instead, but note that this is still a System Fωμ type):
> prodTreeTreeReprN =
> λ (tag : (Set -> Set -> Set) -> (Set -> Set) -> Set)
> (prodTree : Set -> Set -> Set) (tree : Set -> Set) ->
> ∀ (R : Set) -> -- Binding the result variable.
> tag -- Choosing between the two data types.
> (λ A B -- The two types that `ProdTree` binds.
> -> (tree (∀ Q -> (A -> B -> Q) -> Q) -> R) -- Case over the `Prod` constructor.
> -> R)
> (λ A -- The type that `Tree` binds.
> -> (A -> R) -- Case over the `Leaf` constructor.
> -> (prodTree A A -> R) -- Case over the `Fork` constructor.
> -> R)
Here we lambda-bind `prodTree` and `tree` directly, Scott-encode the definition of the data types
and use `tag` in order to choose between the two data types.
At the next step we instantiate `prodTree` and `tree` (`instantiations` computes the instantiations)
using a single `rec` (`packEncodedDataN` does this):
> prodTreeTreeRepr1 =
> λ (rec : ((Set -> Set -> Set) -> (Set -> Set) -> Set) -> Set)
> (tag : (Set -> Set -> Set) -> (Set -> Set) -> Set) ->
> prodTreeTreeReptN
> tag
> (λ A B -> rec λ prodTree tree -> prodTree A B)
> (λ A -> rec λ prodTree tree -> tree A)
It only remains to take the fixed point of this pattern functor:
> prodTreeTree = λ tag -> μ prodTreeTreeRepr1 tag
And that's it, `prodTreeTree` is a valid System Fωμ type that encodes the `ProdTree`/`Tree` family.
-}
{- Note [Data description denotations]
Once we compile a data description to a System Fωμ type, we could already take the denotation of
the latter, but then we'd just get an Agda type that encodes the whole family of mutually recursive
data types, while what we really want is getting all the separate data types, not the whole family
at once.
Hence rather than take the denotation directly, we first instantiate the resulting System Fωμ type
using the tags that the data types from the family correspond to. I.e. we call `instantiations` once
again, get an environment of System Fωμ types and take denotations of those. The result then is an
environment of Agda types, each of which represents a data type from the original family of data
types. We only need to extract them from the environment. Unfortunately, Agda lacks top-level
matches, so we do it like this:
> ProdTreeTree′ = Encoded.⟦ prodTreeTree ⟧ᵈ
>
> ProdTree′ : Set -> Set -> Set
> ProdTree′ with ProdTreeTree′
> ... | ∅ ▷ PT′ ▷ T′ = PT′
>
> Tree′ : Set -> Set
> Tree′ with ProdTreeTree′
> ... | ∅ ▷ PT′ ▷ T′ = T′
-}
-- | Get the kind of tags from the context of a data description.
--
-- > dataConToTagKind (ε ▻ (σ¹₁ ▻ … ▻ σ¹ₙ₁) ▻ … ▻ (σ¹ₘ ▻ … ▻ σᵐₙₘ)) τ =
-- > (σ¹₁ ⇒ᵏ … ⇒ᵏ σ¹ₙ₁ ⇒ᵏ ⋆) ⇒ᵏ … ⇒ᵏ (σ¹₁ ⇒ᵏ … ⇒ᵏ σᵐₙₘ ⇒ᵏ ⋆) ⇒ᵏ τ
dataConToTagKind : Con Conᵏ -> Kind -> Kind
dataConToTagKind = conToKindBy $ λ Θ -> conToKind Θ ⋆
-- | Scott-encode a single data type. The type variable (denoted as `ρ`) that represents
-- the result is assumed to be in scope, because we Scott-encode a bunch of data types
-- at the same time and hence the resulting type variable has to be bound outside of all of them,
-- which is why we keep it implicit while encoding a single data type.
--
-- > scottEncode (ε ▻ α₁ ▻ … ▻ αₙ) [(β¹₁ ⇒ᶜ … ⇒ᶜ β¹ₙ₁ ⇒ᶜ endᶜ) , … , (βᵐ₁ ⇒ᶜ … ⇒ᶜ βᵐₙₘ ⇒ᶜ endᶜ)] =
-- > λ α₁ … αₙ → (β¹₁ ⇒ … ⇒ β¹ₙ₁ ⇒ ρ) ⇒ … ⇒ (βᵐ₁ ⇒ … ⇒ βᵐₙₘ ⇒ ρ) ⇒ ρ
scottEncode : ∀ {Ξ} Θ -> List (Cons (Ξ ▻▻ Θ)) -> Ξ ▻ ⋆ ⊢ᵗ conToKind Θ ⋆
scottEncode Θ = Lamⁿ' Θ ∘ foldr (λ ξ γ -> consToType (renᶜ (keepⁿ Θ topᵒ) ξ) ρ ⇒ γ) ρ where
ρ = renᵗ (extʳ Θ) $ Var vz
-- | Encode a `Data` description as an n-ary type function.
--
-- > encodeDataN (PackData [data¹ , … , dataᵐ]) =
-- > λ tag δ¹ … δᵐ → tag (scott data¹) … (scott dataᵐ)
--
-- (`δᵢ` is the name of `dataᵢ` that is potentially used internally in any `dataⱼ`,
-- because the data types are allowed to be mutually recursive).
encodeDataN : ∀ {Ξ Θs} -> Data Ξ Θs -> Ξ ⊢ᵗ dataConToTagKind Θs ⋆ ⇒ᵏ dataConToTagKind Θs ⋆
encodeDataN {Ξ} {Θs} (PackData datas) =
Lam_ ∘′ Lamⁿ Θs ∘′ π ⋆ $′
applyᵗⁿ Θs
(Var ∘ vsⁿ $ mapᶜ _ Θs ▻ ⋆)
(mapˢ (λ {Θ} -> renᵗ (keepⁿ (mapᶜ _ Θs ▻ ⋆) topᵒ) ∘ scottEncode Θ) datas)
-- | Compute all instantiations of a thing of kind `dataConToTagKind Θs ⋆ ⇒ᵏ ⋆`, which is either
-- the first variable that a packed pattern functor binds (i.e. the one responsible for recursion)
-- or the final data type representing a family of mutually recursive data types.
-- "Instantiations" then are particular data types from a family of mutually recursive data types
-- (or represent them if we're are inside a pattern functor).
-- For example, the instantiations of `treeForest` are `tree` and `forest`, i.e. precisely those
-- data types that form the family.
--
-- > instantiations ψ
-- > = ∅
-- > ▷ (λ α¹₁ … α¹ₙ₁ → ψ λ β¹ … βᵐ → β¹ α¹₁ … α¹ₙ₁)
-- > ▷ …
-- > ▷ (λ αᵐ₁ … αᵐₙₘ → ψ λ β¹ … βᵐ → βᵐ αᵐ₁ … αᵐₙₘ)
instantiations : ∀ {Θs Ξ} -> Ξ ⊢ᵗ dataConToTagKind Θs ⋆ ⇒ᵏ ⋆ -> Seq (λ Θ -> Ξ ⊢ᵗ conToKind Θ ⋆) Θs
instantiations {ε} ψ = ø
instantiations {Θs ▻ Θ} ψ
= instantiations {Θs} (Lam_ $ shiftᵗ ψ ∙
Lamⁿ (Θs ▻ Θ) (applyᵗⁿ Θs (Var (vsⁿ (mapᶜ _ (Θs ▻ Θ)))) (mapˢ shiftᵗ subVars)))
▶ Lamⁿ' Θ (shiftᵗⁿ Θ ψ ∙
Lamⁿ (Θs ▻ Θ) (applyᵗⁿ Θ (Var vz) (mapˢ (shiftᵗⁿ (mapᶜ _ $ Θs ▻ Θ)) subVars')))
-- | Pack an encoded family of mutually recursive data types as an 1-ary pattern functor.
-- The encoded family is of this form (see `encodeDataN`):
--
-- > φ : ((σ¹₁ ⇒ᵏ … ⇒ᵏ σ¹ₙ₁ ⇒ᵏ ⋆) ⇒ᵏ … ⇒ᵏ (σᵐ₁ ⇒ᵏ … ⇒ᵏ σᵐₙₘ ⇒ᵏ ⋆) ⇒ᵏ ⋆)
-- > ⇒ᵏ (σ¹₁ ⇒ᵏ … ⇒ᵏ σ¹ₙ₁ ⇒ᵏ ⋆) ⇒ᵏ … ⇒ᵏ (σᵐ₁ ⇒ᵏ … ⇒ᵏ σᵐₙₘ ⇒ᵏ ⋆) ⇒ᵏ ⋆
-- > φ = λ tag δ¹ … δᵐ → <body>
--
-- Where `tag` is a tag and `δʲ` is a variable that stands for a data type from the family.
--
-- The definition of `packEncodedDataN` then is
--
-- > packEncodedDataN _ φ =
-- > λ rec tag → φ tag
-- > (λ α¹₁ … α¹ₙ₁ → rec λ ψ¹ … ψᵐ → ψ¹ α¹₁ … α¹ₙ₁)
-- > …
-- > (λ αᵐ₁ … αᵐₙₘ → rec λ ψ¹ … ψᵐ → ψᵐ αᵐ₁ … αᵐₙₘ)
--
-- where `αʲᵢ` is a parameter of a data type and `λ ψ¹ … ψᵐ → ψʲ αʲ₁ … αʲᵢ` is the tag of
-- the data type. That is, we put parameters of data types into their corresponding tags.
--
-- So we instantiate each data type argument of `φ` as `rec` applied to an appropriate tag. This
-- way we represent all of the data types using just a single `rec` applied to different tags.
packEncodedDataN
: ∀ {Ξ} Θs
-> Ξ ⊢ᵗ dataConToTagKind Θs ⋆ ⇒ᵏ dataConToTagKind Θs ⋆
-> Ξ ⊢ᵗ (dataConToTagKind Θs ⋆ ⇒ᵏ ⋆) ⇒ᵏ dataConToTagKind Θs ⋆ ⇒ᵏ ⋆
packEncodedDataN Θs φ =
Lam_ ∘′ Lam_ ∘′ applyᵗⁿ Θs (shiftᵗⁿ (ε ▻ _ ▻ _) φ ∙ Var vz) ∘′ instantiations $ Var (vs vz)
-- | Encode a `Data` as a 1-ary pattern functor.
encodeData1
: ∀ {Ξ Θs} -> Data Ξ Θs -> Ξ ⊢ᵗ (dataConToTagKind Θs ⋆ ⇒ᵏ ⋆) ⇒ᵏ dataConToTagKind Θs ⋆ ⇒ᵏ ⋆
encodeData1 {Θs = Θs} = packEncodedDataN Θs ∘ encodeDataN
-- | Compile a `Data` to System Fωμ.
compileData : ∀ {Ξ Θs} -> Data Ξ Θs -> Ξ ⊢ᵗ dataConToTagKind Θs ⋆ ⇒ᵏ ⋆
compileData d = Lam μ (shiftᵗ $ encodeData1 d) (Var vz)
compileDatas : ∀ {Ξ Θs} -> Data Ξ Θs -> Seq (λ Θ -> Ξ ⊢ᵗ conToKind Θ ⋆) Θs
compileDatas = instantiations ∘ compileData
-- | Return the denotations of all the data types from a family of mutually recursive data types
-- encoded as a `Data`.
⟦_⟧ᵈ : ∀ {Θs} -> Data ε Θs -> Seq (λ Θ -> ⟦ conToKind Θ ⋆ ⟧ᵏ) Θs
⟦_⟧ᵈ = mapˢ ⟦_⟧ᵗ ∘ compileDatas
module Unused where
constructorTypes : ∀ {Θs Ξ} -> Data Ξ Θs -> Con (Star (Ξ ▻▻ mapᶜ (λ Θᵢ -> conToKind Θᵢ ⋆) Θs))
constructorTypes {Θs} {Ξ} (PackData constructors) =
joinᶜ ∘′ eraseˢ $′ mapElˢ consesToCon constructors where
consesToCon
: ∀ {Θ}
-> Θ ∈ Θs
-> List (Cons (Ξ ▻▻ mapᶜ (λ Θᵢ -> conToKind Θᵢ ⋆) Θs ▻▻ Θ))
-> Con (Star (Ξ ▻▻ mapᶜ (λ Θᵢ -> conToKind Θᵢ ⋆) Θs))
consesToCon {Θ} v = listToCon ∘ List.map (λ ξ -> πⁿ' Θ $ consToType ξ ρ) where
ρ = applyᵗⁿ Θ (Var ∘ renᵛ (skipⁿ Θ extˡ) $ mapᵛ v) subVars'
constructorFullTypes : ∀ {Θs Ξ} -> Data Ξ Θs -> Con (Star Ξ)
constructorFullTypes δ = mapᶜ (instᵗⁿ $ compileDatas δ) $ constructorTypes δ
| {
"alphanum_fraction": 0.6253182605,
"avg_line_length": 48.3694581281,
"ext": "agda",
"hexsha": "807d7531715012ebda1c1846e38e4d1eeb5e060b",
"lang": "Agda",
"max_forks_count": 399,
"max_forks_repo_forks_event_max_datetime": "2022-03-31T11:18:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-10-05T09:36:10.000Z",
"max_forks_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "AriFordsham/plutus",
"max_forks_repo_path": "papers/unraveling-recursion/code/src/Compilation/Encode/Core.agda",
"max_issues_count": 2493,
"max_issues_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T15:31:31.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-09-28T19:28:17.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "AriFordsham/plutus",
"max_issues_repo_path": "papers/unraveling-recursion/code/src/Compilation/Encode/Core.agda",
"max_line_length": 100,
"max_stars_count": 1299,
"max_stars_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "AriFordsham/plutus",
"max_stars_repo_path": "papers/unraveling-recursion/code/src/Compilation/Encode/Core.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-28T01:10:02.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-02T13:41:39.000Z",
"num_tokens": 3752,
"size": 9819
} |
module Issue1760e where
-- Skipping a single record definition in a private block.
private
{-# NO_POSITIVITY_CHECK #-}
record U : Set where
field ap : U → U
| {
"alphanum_fraction": 0.7048192771,
"avg_line_length": 20.75,
"ext": "agda",
"hexsha": "ea74c4e2980e40040df49b3ec4f9203e8bd2bb2a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1760e.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1760e.agda",
"max_line_length": 58,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1760e.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 44,
"size": 166
} |
{-# OPTIONS --safe #-}
module STLC.Typing where
open import STLC.Syntax
open import Data.Nat using (ℕ)
open import Data.Fin using (Fin) renaming (zero to fzero; suc to fsuc)
open import Data.Product using (∃-syntax; _,_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong; subst)
open import Relation.Nullary using (Dec; yes; no; ¬_)
private
variable
m n : ℕ
v : Fin n
Γ : Ctx n
A B : Type
a b f x p : Term n
data _∋_⦂_ : Ctx n → Fin n → Type → Set where
vzero : (Γ ,- A) ∋ fzero ⦂ A
vsuc : (Γ ∋ v ⦂ A) → (Γ ,- B) ∋ fsuc v ⦂ A
lookup : (Γ : Ctx n) → (v : Fin n) → Γ ∋ v ⦂ find Γ v
lookup (Γ ,- A) fzero = vzero
lookup (Γ ,- B) (fsuc v) = vsuc (lookup Γ v)
data _⊢_⦂_ : Ctx n → Term n → Type → Set where
ty-abs : (Γ ,- A) ⊢ b ⦂ B → Γ ⊢ abs A b ⦂ (A ⇒ B)
ty-app : Γ ⊢ f ⦂ (A ⇒ B) → Γ ⊢ x ⦂ A → Γ ⊢ app f x ⦂ B
ty-var : Γ ∋ v ⦂ A → Γ ⊢ var v ⦂ A
ty-⋆ : Γ ⊢ ⋆ ⦂ unit
ty-pair : Γ ⊢ a ⦂ A → Γ ⊢ b ⦂ B → Γ ⊢ pair a b ⦂ (A ×' B)
ty-projₗ : Γ ⊢ p ⦂ (A ×' B) → Γ ⊢ projₗ p ⦂ A
ty-projᵣ : Γ ⊢ p ⦂ (A ×' B) → Γ ⊢ projᵣ p ⦂ B
principal-var : (Γ ∋ v ⦂ A) → (Γ ∋ v ⦂ B) → A ≡ B
principal-var vzero vzero = refl
principal-var (vsuc u) (vsuc v) rewrite principal-var u v = refl
principal : Γ ⊢ x ⦂ A → Γ ⊢ x ⦂ B → A ≡ B
principal (ty-abs {A = A} body₁) (ty-abs {A = (.A)} body₂) =
cong (λ B → A ⇒ B) (principal body₁ body₂)
principal (ty-app f x) (ty-app g y) with principal f g
... | refl = refl
principal (ty-var u) (ty-var v) rewrite principal-var u v = refl
principal ty-⋆ ty-⋆ = refl
principal (ty-pair a₁ b₁) (ty-pair a₂ b₂) rewrite principal a₁ a₂ | principal b₁ b₂ = refl
principal (ty-projₗ p₁) (ty-projₗ p₂) with principal p₁ p₂
... | refl = refl
principal (ty-projᵣ p₁) (ty-projᵣ p₂) with principal p₁ p₂
... | refl = refl
ill-typed-fun
: (Γ ⊢ f ⦂ A)
→ ¬ (∃[ B ] ∃[ C ] (A ≡ B ⇒ C))
→ ¬ (∃[ T ] (Γ ⊢ app f x ⦂ T))
ill-typed-fun f-ill-typed ineq (_ , ty-app {A = A} {B = B} f-typing _)
with principal f-ill-typed f-typing
... | eq = ineq (A , B , eq)
ill-typed-pairₗ
: (Γ ⊢ p ⦂ A)
→ ¬ (∃[ B ] ∃[ C ] (A ≡ B ×' C))
→ ¬ (∃[ T ] (Γ ⊢ projₗ p ⦂ T))
ill-typed-pairₗ pair-ill-typed ineq (_ , ty-projₗ {A = A} {B = B} pair-typing)
with principal pair-ill-typed pair-typing
... | eq = ineq (A , B , eq)
ill-typed-pairᵣ
: (Γ ⊢ p ⦂ A)
→ ¬ (∃[ B ] ∃[ C ] (A ≡ B ×' C))
→ ¬ (∃[ T ] (Γ ⊢ projᵣ p ⦂ T))
ill-typed-pairᵣ pair-ill-typed ineq (_ , ty-projᵣ {A = A} {B = B} pair-typing)
with principal pair-ill-typed pair-typing
... | eq = ineq (A , B , eq)
typecheck : (Γ : Ctx n) → (t : Term n) → Dec (∃[ T ] (Γ ⊢ t ⦂ T))
typecheck Γ (var v) = yes (find Γ v , ty-var (lookup Γ v))
typecheck Γ (abs A t) with typecheck (Γ ,- A) t
... | yes (B , well-typed) = yes (A ⇒ B , ty-abs well-typed)
... | no ill-typed = no λ { (ty , ty-abs {B = B} ty-body) → ill-typed ((B , ty-body)) }
typecheck Γ (app f x) with typecheck Γ f | typecheck Γ x
... | yes (_ ×' _ , f-wrong-typing) | _ = no (ill-typed-fun f-wrong-typing λ ())
... | yes (unit , f-wrong-typing) | _ = no (ill-typed-fun f-wrong-typing λ ())
... | yes (_ ⇒ _ , _) | no ill-typed =
no λ { (_ , ty-app {A = A} _ x) → ill-typed (A , x)}
... | no ill-typed | _ =
no λ { (_ , ty-app {A = A} {B = B} f _) → ill-typed (A ⇒ B , f)}
... | yes (A ⇒ B , f-typing) | yes (A' , x-typing) with A' =?= A
... | yes eq = yes (B , ty-app f-typing (subst (λ A → Γ ⊢ x ⦂ A) eq x-typing))
... | no neq = no (helper neq)
where helper : ¬ A' ≡ A → ¬ (∃[ B ] (Γ ⊢ app f x ⦂ B))
helper neq (B'' , ty-app {A = A''} f'' x'')
with principal f-typing f'' | principal x-typing x''
... | refl | refl = neq refl
typecheck _ ⋆ = yes (unit , ty-⋆)
typecheck Γ (pair l r) with typecheck Γ l | typecheck Γ r
... | yes (A , l-typing) | yes (B , r-typing) = yes (A ×' B , ty-pair l-typing r-typing)
... | yes _ | no ill-typed = no λ { (A ×' B , ty-pair _ r) → ill-typed (B , r) }
... | no ill-typed | _ = no λ { (A ×' B , ty-pair l _) → ill-typed (A , l)}
typecheck Γ (projₗ p) with typecheck Γ p
... | yes (A ×' _ , typing) = yes (A , ty-projₗ typing)
... | yes (_ ⇒ _ , typing) = no (ill-typed-pairₗ typing λ ())
... | yes (unit , typing) = no (ill-typed-pairₗ typing λ ())
... | no ill-typed = no λ { (_ , ty-projₗ {A = A} {B = B} p) → ill-typed ((A ×' B) , p) }
typecheck Γ (projᵣ p) with typecheck Γ p
... | yes (_ ×' B , typing) = yes (B , ty-projᵣ typing)
... | yes (_ ⇒ _ , typing) = no (ill-typed-pairᵣ typing λ ())
... | yes (unit , typing) = no (ill-typed-pairᵣ typing λ ())
... | no ill-typed = no λ { (_ , ty-projᵣ {A = A} {B = B} p) → ill-typed ((A ×' B) , p) }
| {
"alphanum_fraction": 0.5296665223,
"avg_line_length": 41.6036036036,
"ext": "agda",
"hexsha": "81c6c3f359d96fb566c0337cc9560b734e730e0e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "TrulyNonstrict/STLC",
"max_forks_repo_path": "STLC/Typing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "TrulyNonstrict/STLC",
"max_issues_repo_path": "STLC/Typing.agda",
"max_line_length": 90,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "59bc9648f326b7359801fb31ff6f957a166876fc",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TypesLogicsCats/STLC",
"max_stars_repo_path": "STLC/Typing.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-16T23:53:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-03-16T23:53:48.000Z",
"num_tokens": 1990,
"size": 4618
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommMonoid.CommMonoidProd where
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Prelude
open import Cubical.Data.Sigma
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.CommMonoid.Base
open CommMonoidStr
open IsCommMonoid hiding (rid ; lid)
open IsMonoid hiding (rid ; lid)
open IsSemigroup
private
variable
ℓ ℓ' : Level
CommMonoidProd : CommMonoid ℓ → CommMonoid ℓ' → CommMonoid (ℓ-max ℓ ℓ')
CommMonoidProd M N = makeCommMonoid ε× _·×_ is-set× assoc× rid× comm×
where
ε× : (fst M) × (fst N)
ε× = (ε (snd M)) , (ε (snd N))
_·×_ : (fst M) × (fst N) → (fst M) × (fst N) → (fst M) × (fst N)
(x₁ , x₂) ·× (y₁ , y₂) = (_·_ (snd M) x₁ y₁) , (_·_ (snd N) x₂ y₂)
is-set× : isSet ((fst M) × (fst N))
is-set× = isSet× (is-set (snd M)) (is-set (snd N))
assoc× : ∀ x y z → x ·× (y ·× z) ≡ (x ·× y) ·× z
assoc× _ _ _ = cong₂ (_,_) (assoc (snd M) _ _ _) (assoc (snd N) _ _ _)
rid× : ∀ x → x ·× ε× ≡ x
rid× _ = cong₂ (_,_) (rid (snd M) _) (rid (snd N) _)
comm× : ∀ x y → x ·× y ≡ y ·× x
comm× _ _ = cong₂ (_,_) (comm (snd M) _ _) (comm (snd N) _ _)
| {
"alphanum_fraction": 0.5990016639,
"avg_line_length": 26.7111111111,
"ext": "agda",
"hexsha": "c6e11fc4939477edb678725d1a6ed3ff8beaa632",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommMonoid/CommMonoidProd.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommMonoid/CommMonoidProd.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommMonoid/CommMonoidProd.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 476,
"size": 1202
} |
-- Andreas, 2014-10-05, code by Jesper Cockx
{-# OPTIONS --cubical-compatible --guardedness #-}
open import Common.Coinduction
open import Common.Equality
data False : Set where
data Pandora : Set where
C : ∞ False → Pandora
postulate
ext : (False → Pandora) → (Pandora → False) → False ≡ Pandora
f : False → Pandora
f ()
g : Pandora → False
g (C x) = ♭ x
foo : False ≡ Pandora
foo = ext f g
-- should be rejected
loop : (A : Set) → A ≡ Pandora → A
loop .Pandora refl = C (♯ (loop False foo))
absurd : False
absurd = loop False foo
| {
"alphanum_fraction": 0.6575091575,
"avg_line_length": 17.6129032258,
"ext": "agda",
"hexsha": "b4dab4c2bafdc9100ab4899b1abcc7637b9ba976",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/Issue1023-22.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/Issue1023-22.agda",
"max_line_length": 63,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/Issue1023-22.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 173,
"size": 546
} |
{-# OPTIONS --without-K #-}
module Truncation_Level_Criteria where
open import lib.Basics hiding (_⊔_)
open import lib.NType2
open import lib.types.Nat hiding (_+_)
open import lib.types.Pi
open import lib.types.Sigma
open import lib.types.Unit
open import lib.types.Empty
open import lib.types.TLevel
open import Preliminaries
open import Pointed
-- Chapter 3: Truncation Level Criteria
-- Chapter 3.1: Hedberg's Theorem Revisited
-- Proposition 3.1.1 is below.
-- Definition 3.1.2
const : ∀{i j} {X : Type i} {Y : Type j} → (f : X → Y) → Type (i ⊔ j)
const {X = X} f = (x₁ x₂ : X) → (f x₁) == (f x₂)
coll : ∀{i} → Type i → Type i
coll X = Σ (X → X) const
pathColl : ∀ {i} → Type i → Type i
pathColl X = (x₁ x₂ : X) → coll (x₁ == x₂)
-- Lemma 3.1.3
discr→pathColl : ∀ {i} {X : Type i} → has-dec-eq X → pathColl X
discr→pathColl dec x₁ x₂ with (dec x₁ x₂)
discr→pathColl dec x₁ x₂ | inl p = (λ _ → p) , (λ _ _ → idp)
discr→pathColl dec x₁ x₂ | inr np = idf _ , λ p → Empty-elim (np p)
-- Lemma 3.1.4
pathColl→isSet : ∀ {i} {X : Type i} → pathColl X → is-set X
pathColl→isSet {X = X} pc x₁ x₂ = all-paths-is-prop paths-equal where
claim : (y₁ y₂ : X) → (p : y₁ == y₂) → p == ! (fst (pc _ _) idp) ∙ fst (pc _ _) p
claim x₁ .x₁ idp = ! (!-inv-l (fst (pc x₁ x₁) idp))
paths-equal : (p₁ p₂ : x₁ == x₂) → p₁ == p₂
paths-equal p₁ p₂ =
p₁ =⟨ claim _ _ p₁ ⟩
! (fst (pc _ _) idp) ∙ fst (pc _ _) p₁ =⟨ ap (λ q → (! (fst (pc x₁ x₁) idp)) ∙ q) (snd (pc _ _) p₁ p₂) ⟩ -- whiskering
! (fst (pc _ _) idp) ∙ fst (pc _ _) p₂ =⟨ ! (claim _ _ p₂) ⟩
p₂ ∎
-- Proposition 3.1.1
hedberg : ∀ {i} {X : Type i} → has-dec-eq X → is-set X
hedberg = pathColl→isSet ∘ discr→pathColl
-- Definition 3.1.5
stable : ∀ {i} → Type i → Type i
stable X = ¬ (¬ X) → X
separated : ∀ {i} → Type i → Type i
separated X = (x₁ x₂ : X) → stable (x₁ == x₂)
-- Proposition 3.1.6
sep→set : ∀ {i} {X : Type i} → (separated X) → is-set X
sep→set {X = X} sep = pathColl→isSet isPc where
isPc : pathColl X
isPc x₁ x₂ = f , c where
f : x₁ == x₂ → x₁ == x₂
f = (sep x₁ x₂) ∘ (λ p np → np p)
c : const f
c p₁ p₂ =
f p₁ =⟨ idp ⟩
(sep x₁ x₂) (λ np → np p₁) =⟨ ap (sep x₁ x₂)
(λ= λ np → Empty-elim {P = λ _ → np p₁ == np p₂} (np p₁)) ⟩
(sep x₁ x₂) (λ np → np p₂) =⟨ idp ⟩
f p₂ ∎
-- Lemma 3.1.7
-- first: definition of 'reflexive propositional relation that implies identity'
rel-ref-id : ∀ {i} → Type i → Type (lsucc i)
rel-ref-id {i} X = Σ (X → X → Type i)
λ R →
((x : X) → R x x)
× ((x₁ x₂ : X) → (R x₁ x₂) → x₁ == x₂)
× ((x₁ x₂ : X) → is-prop (R x₁ x₂))
-- the actual Lemma 3.1.7
module lem317 {i : _} (X : Type i) (Rrip : rel-ref-id X) where
R : X → X → Type i
R = fst Rrip
ref : (x : X) → R x x
ref = fst (snd (Rrip)) -- fst (fst (snd Rrip))
ii : (x₁ x₂ : X) → (R x₁ x₂) → x₁ == x₂
ii = fst (snd (snd (Rrip))) -- snd (fst (snd Rrip))
pr : (x₁ x₂ : X) → is-prop (R x₁ x₂)
pr = snd (snd (snd Rrip))
f : (x₁ x₂ : X) → x₁ == x₂ → R x₁ x₂
f x₁ .x₁ idp = ref x₁
id↔R : (x₁ x₂ : X) → (x₁ == x₂) ↔ R x₁ x₂
id↔R x₁ x₂ = f _ _ , ii _ _
pc : pathColl X
pc x₁ x₂ = ii _ _ ∘ f _ _ , λ p₁ p₂ → ap (ii x₁ x₂) (prop-has-all-paths (pr x₁ x₂) _ _)
isSet : is-set X
isSet = pathColl→isSet pc
open wtrunc
-- Definition 3.1.9
splitSup : ∀ {i} → (X : Type i) → Type i
splitSup X = ∣∣ X ∣∣ → X
hSeparated : ∀ {i} → (X : Type i) → Type i
hSeparated X = (x₁ x₂ : X) → splitSup (x₁ == x₂)
-- Proposition 3.1.10
-- we show "2->1", "1->3", "3->2" as in the thesis.
-- for the last part, we show "1->4" and "4->3
set-characterisations : ∀ {i} → (X : Type i) →
(pathColl X → is-set X)
× (is-set X → rel-ref-id X)
× (rel-ref-id X → pathColl X)
× (is-set X → hSeparated X)
× (hSeparated X → rel-ref-id X)
set-characterisations X =
pathColl→isSet ,
(λ ss → _==_ , (λ _ → idp) , (λ _ _ p → p) , ss) ,
(lem317.pc X) ,
(λ ss x₁ x₂ → tr-rec (ss x₁ x₂) (λ p → p)) ,
(λ hsep → ((λ x₁ x₂ → ∣∣ x₁ == x₂ ∣∣) , (λ _ → ∣ idp ∣) , hsep , λ _ _ → tr-is-prop))
-- The rest of this section is only a replication of the arguments that we have given so far (for that reason, the proofs are not given in the article).
-- They do not directly follow from the propositions that we have proved before, but they directly imply them.
-- Of course, replication of arguments is not a good style for a formalization -
-- we chose this "disadvantageous" order purely as we believe it led to a better presentation in the article.
-- Lemma 3.1.11
pathColl→isSet-local : ∀ {i} {X : Type i} → {x₀ : X} → ((y : X) → coll (x₀ == y)) → (y : X) → is-prop (x₀ == y)
pathColl→isSet-local {X = X} {x₀} pc y = all-paths-is-prop paths-equal where
claim : (y : X) → (p : x₀ == y) → p == ! (fst (pc _) idp) ∙ fst (pc _) p
claim .x₀ idp = ! (!-inv-l (fst (pc _) idp))
paths-equal : (p₁ p₂ : x₀ == y) → p₁ == p₂
paths-equal p₁ p₂ =
p₁ =⟨ claim _ p₁ ⟩
! (fst (pc _) idp) ∙ fst (pc _) p₁ =⟨ ap (λ q → (! (fst (pc x₀) idp)) ∙ q) (snd (pc y) p₁ p₂) ⟩ -- whiskering
! (fst (pc _) idp) ∙ fst (pc _) p₂ =⟨ ! (claim _ p₂) ⟩
p₂ ∎
-- Proposition 3.11.12
hedberg-local : ∀ {i} {X : Type i} → {x₀ : X} → ((y : X) → Coprod (x₀ == y) (¬(x₀ == y))) → (y : X) → is-prop (x₀ == y)
hedberg-local {X = X} {x₀ = x₀} dec = pathColl→isSet-local local-pathColl where
local-pathColl : (y : X) → coll (x₀ == y)
local-pathColl y with (dec y)
local-pathColl y₁ | inl p = (λ _ → p) , (λ _ _ → idp)
local-pathColl y₁ | inr np = idf _ , (λ p → Empty-elim (np p))
-- Lemma 3.1.13. This needs function extensionality.
sep→set-local : ∀ {i} {X : Type i} {x₀ : X} → ((y : X) → stable (x₀ == y)) → (y : X) → is-prop (x₀ == y)
sep→set-local {X = X} {x₀ = x₀} sep = pathColl→isSet-local is-pathColl where
is-pathColl : (y : X) → coll (x₀ == y)
is-pathColl y = f , c where
f : x₀ == y → x₀ == y
f = (sep y) ∘ (λ p np → np p)
c : const f
c p₁ p₂ =
f p₁ =⟨ idp ⟩
(sep _) (λ np → np p₁) =⟨ ap (sep y)
(λ= (λ np → prop-has-all-paths Empty-is-prop _ _)) ⟩
(sep _) (λ np → np p₂) =⟨ idp ⟩
f p₂ ∎
-- Chapter 3.2: Generalisations to Higher Levels
-- first: some lemmata.
-- If A -> B -> A is the identity, then
-- a₁ == a₂ → s a₁ == s a₂ → r(s a₁) == r(s a₂)
-- is also the identity in an appropriate sense
retract-path-retract : ∀ {i j} {A : Type i} {B : Type j}
→ (s : A → B) → (r : B → A) → (s-r : (a : A) → r (s a) == a)
→ (a₁ a₂ : A)
→ (p : a₁ == a₂) → ! (s-r a₁) ∙ (ap r (ap s p)) ∙ (s-r a₂) == p
retract-path-retract s r s-r a₁ .a₁ idp = !-inv-l (s-r a₁)
-- retracts of n-types are n-truncated
retract-is-truncated : ∀ {n : ℕ₋₂} {i j} {A : Type i} {B : Type j}
→ (has-level n B) → (s : A → B) → (r : B → A) → ((a : A) → r (s a) == a) → has-level n A
retract-is-truncated {⟨-2⟩} h s r s-r = inhab-prop-is-contr (r (fst h)) (all-paths-is-prop (λ a₁ a₂ →
a₁ =⟨ ! (s-r a₁) ⟩
r(s(a₁)) =⟨ ap r (contr-has-all-paths h _ _) ⟩
r(s(a₂)) =⟨ s-r a₂ ⟩
a₂ ∎
))
retract-is-truncated {S n} h s r s-r a₁ a₂ =
retract-is-truncated {n} {A = a₁ == a₂} {B = s a₁ == s a₂}
(h (s a₁) (s a₂))
(ap s)
(λ p → ! (s-r a₁) ∙ (ap r p) ∙ (s-r a₂))
(retract-path-retract s r s-r a₁ a₂)
-- this is essentially one direction of a local version of the lemma which says that
-- a type is n-truncated iff its loop spaces are (n-1)-truncated
trunclevel-aux₁ : ∀ {i} {X : Type i} {x₀ : X} → (n : ℕ) → ((x : X) → has-level (n -2) (x₀ == x))
→ is-contr (fst ((Ω ^ n) (X , x₀)))
trunclevel-aux₁ {x₀ = x₀} O h = x₀ , λ x → fst (h x)
trunclevel-aux₁ {X = X} {x₀ = x₀} (S n) h = trunclevel-aux₁ n (h x₀ idp)
-- the other direction...
trunclevel-aux₂ : ∀ {i} {X : Type i} {x₀ : X} → (n : ℕ) → is-contr (fst ((Ω ^ n) (X , x₀)))
→ ((x : X) → has-level (n -2) (x₀ == x))
trunclevel-aux₂ {X = X} {x₀ = x₀} O h = λ x → inhab-prop-is-contr (contr-has-all-paths h x₀ x) (contr-is-prop (contr-is-prop h x₀ x))
trunclevel-aux₂ {X = X} {x₀ = x₀} (S n) h .x₀ idp = trunclevel-aux₂ n h
-- Theorem 3.2.1
-- in the thesis, we write "let n ≥ -1 be a number".
-- As we do not want to introduce a type of number that are at least -1,
-- we use ℕ.
-- To make up for this, we reduce n everywhere by 1.
module GLHA {i : ULevel} {X : Type i} {x₀ : X} {n : ℕ} where
Ω-contr : Type i
-- loop-contr = is-contr (fst ((Ω ^ (n + 1)) (X , x₀)))
Ω-contr = is-contr (fst ((Ω ^ n) (X , x₀)))
locally-truncated : Type i
-- locally-truncated = (x : X) → has-level (n -1) (x₀ == x)
locally-truncated = (x : X) → has-level (n -2) (x₀ == x)
tr-rel-id : Type (lsucc i)
tr-rel-id = Σ (X → Type i) λ Q →
-- ((x : X) → has-level (n -1) (Q x))
((x : X) → has-level (n -2) (Q x))
× (Q x₀)
× ((x : X) → Q x → x₀ == x)
tr-rel-id→locally-truncated : tr-rel-id → locally-truncated
tr-rel-id→locally-truncated (Q , h , q₀ , ii) = λ x → retract-is-truncated {n = n -2} {A = x₀ == x} {B = Q x} (h x) s r r-s where
r : {x : X} → (Q x) → (x₀ == x)
r {x} q = ! (ii x₀ q₀) ∙ (ii x q)
s : {x : X} → (x₀ == x) → Q x
s idp = q₀
r-s : {x : X} → (p : x₀ == x) → r (s p) == p
r-s idp = !-inv-l (ii x₀ q₀)
locally-truncated→Ω-contr : locally-truncated → Ω-contr
locally-truncated→Ω-contr loctr = trunclevel-aux₁ n loctr -- trunclevel-aux n loctr
Ω-contr→tr-rel-id : Ω-contr → tr-rel-id
Ω-contr→tr-rel-id h = (λ x → x₀ == x) , (trunclevel-aux₂ n h) , idp , (λ x p → p)
module with-higher-truncs where
-- for convenience, we import truncations from the library.
open import lib.types.Truncation
-- fourth item in Theorem 3.2.1
id-stable : Type i
id-stable = (x : X) → Trunc (n -2) (x₀ == x) → x₀ == x
-- it is very easy to see that (4) and (2) are logically equivalent.
-- 2 ⇒ 4
tr-rel-id→id-stable : tr-rel-id → id-stable
tr-rel-id→id-stable (Q , h , q₀ , ii) = λ x → (ii x) ∘ (Trunc-rec (h x) (λ p → transport _ p q₀))
-- 4 ⇒ 2
id-stable→tr-rel-id : id-stable → tr-rel-id
id-stable→tr-rel-id idst = (λ x → Trunc (n -2) (x₀ == x)) , (λ _ → Trunc-level) , [ idp ] , idst
| {
"alphanum_fraction": 0.5084476804,
"avg_line_length": 37.8551236749,
"ext": "agda",
"hexsha": "fed98e74191e3c8708cdd17573abb23018eae0a3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "nicolai/thesis/Truncation_Level_Criteria.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "nicolai/thesis/Truncation_Level_Criteria.agda",
"max_line_length": 152,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nicolaikraus/HoTT-Agda",
"max_stars_repo_path": "nicolai/thesis/Truncation_Level_Criteria.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 4299,
"size": 10713
} |
open import MJ.Types
import MJ.Classtable.Core as Core
module MJ.Syntax.Typed {c}(Ct : Core.Classtable c) where
open import Prelude
open import Data.Maybe as Maybe using (Maybe; just; nothing)
open import Data.Vec as Vec
open import Data.Star as Star
open import Data.List hiding (null)
open import Data.List.Relation.Unary.All
open import Data.List.Membership.Propositional
open import Data.List.Properties.Extra as List+
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary.Decidable
open import Data.String
open Core c
open Classtable Ct
open import MJ.Classtable.Membership Ct
open import MJ.LexicalScope c
NativeBinOp = ℕ → ℕ → ℕ
{-
Expressions are indexed by a lexical context and a type.
MJ has n-ary calls for which we use All to express that an expression (of the
right type) is expected for every formal argument of the method signature.
In this nameless representation AccMember type is used to identify accessible
fields and methods on a particular class.
Here we exploit that AccMember is defined via a decision procedure: Agda
will be able to infer the membership proofs if they exist.
-}
data Expr (Γ : Ctx) : Ty c → Set where
-- irreducible expressions
unit : Expr Γ void
null : ∀ {C} → Expr Γ (ref C)
num : ℕ → Expr Γ int
-- storeless expressions
var : ∀ {a} → Var Γ a → Expr Γ a
iop : NativeBinOp → (l r : Expr Γ int) → Expr Γ int
upcast : ∀ {c c'} → Σ ⊢ c <: c' → Expr Γ (ref c) → Expr Γ (ref c')
-- storeful
new : ∀ C → All (Expr Γ) (Class.constr (Σ C)) → Expr Γ (ref C)
call : ∀ {cid} →
Expr Γ (ref cid) → ∀ m {as}{b}{acc : AccMember cid METHOD m (as , b)} → All (Expr Γ) as →
Expr Γ b
get : ∀ {cid} → Expr Γ (ref cid) → ∀ f {ty}{acc : AccMember cid FIELD f ty} → Expr Γ ty
mutual
{-
Like Java, MJ distinguishes expressions from statements.
We index the well-typed statement type Stmt
with both an input and output context to capture that the constructor
for declaration of locals loc adds to the lexical environment.
We can interpret the type Stmt as a binary relation on contexts of which we
can take the reflexive, transitive closure (Star)
to obtain a datatype for sequenced statements:
The type r represent the (possibly early) return type of a block of statements.
-}
infixl 20 if_then_else_
data Stmt (I : Ctx)(r : Ty c) : (O : Ctx) → Set where
loc : ∀ a → Stmt I r (I +local a)
asgn : ∀ {a} → Var I a → Expr I a → Stmt I r I
set : ∀ {C} → Expr I (ref C) → ∀ f {a}{acc : AccMember C FIELD f a} → Expr I a → Stmt I r I
run : ∀ {a} → Expr I a → Stmt I r I
ret : Expr I r → Stmt I r I
raise : Stmt I r I
try_catch_ : ∀ {O O'} → Stmt I r O → Stmt I r O' → Stmt I r I
while_run_ : ∀ {O} → Expr I int → Stmt I r O → Stmt I r I
block : ∀ {O} → Stmts I r O → Stmt I r I
if_then_else_ : ∀ {a} → Expr I int → Stmt I r a → Stmt I r a → Stmt I r a
Stmts : Ctx → Ty c → Ctx → Set
Stmts I r O = Star (λ I' O' → Stmt I' r O') I O
| {
"alphanum_fraction": 0.649578196,
"avg_line_length": 38.049382716,
"ext": "agda",
"hexsha": "6efb62945a8dc8a21f8f2014052c264724f48049",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/MJ/Syntax/Typed.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/MJ/Syntax/Typed.agda",
"max_line_length": 102,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/MJ/Syntax/Typed.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 925,
"size": 3082
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.FinData.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Data.Nat
open import Cubical.Data.Bool.Base
open import Cubical.Relation.Nullary
private
variable
ℓ : Level
A B : Type ℓ
data Fin : ℕ → Type₀ where
zero : {n : ℕ} → Fin (suc n)
suc : {n : ℕ} (i : Fin n) → Fin (suc n)
toℕ : ∀ {n} → Fin n → ℕ
toℕ zero = 0
toℕ (suc i) = suc (toℕ i)
fromℕ : (n : ℕ) → Fin (suc n)
fromℕ zero = zero
fromℕ (suc n) = suc (fromℕ n)
¬Fin0 : ¬ Fin 0
¬Fin0 ()
_==_ : ∀ {n} → Fin n → Fin n → Bool
zero == zero = true
zero == suc _ = false
suc _ == zero = false
suc m == suc n = m == n
foldrFin : ∀ {n} → (A → B → B) → B → (Fin n → A) → B
foldrFin {n = zero} _ b _ = b
foldrFin {n = suc n} f b l = f (l zero) (foldrFin f b (l ∘ suc))
| {
"alphanum_fraction": 0.5897727273,
"avg_line_length": 22.5641025641,
"ext": "agda",
"hexsha": "40c54b4b3a8160a7b4dc4160bc8e08e2ca7094c2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Data/FinData/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Data/FinData/Base.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Data/FinData/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 350,
"size": 880
} |
------------------------------------------------------------------------------
-- Propositional logic theorems
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOL.PropositionalLogic.TheoremsI where
-- The theorems below are valid on intuitionistic logic and with an
-- empty domain.
open import FOL.Base hiding ( D≢∅ ; pem )
------------------------------------------------------------------------------
-- Boolean laws
→-transposition : {P Q : Set} → (P → Q) → ¬ Q → ¬ P
→-transposition p→q ¬q p = ¬q (p→q p)
∧∨-dist : {P Q R : Set} → P ∧ (Q ∨ R) ↔ P ∧ Q ∨ P ∧ R
∧∨-dist {P} {Q} {R} = l→r , r→l
where
l→r : P ∧ (Q ∨ R) → P ∧ Q ∨ P ∧ R
l→r (p , inj₁ q) = inj₁ (p , q)
l→r (p , inj₂ r) = inj₂ (p , r)
r→l : P ∧ Q ∨ P ∧ R → P ∧ (Q ∨ R)
r→l (inj₁ (p , q)) = p , inj₁ q
r→l (inj₂ (p , r)) = p , inj₂ r
∧∨-dist' : {P Q R : Set} → P ∧ (Q ∨ R) ⇔ P ∧ Q ∨ P ∧ R
∧∨-dist' {P} {Q} {R} = l⇒r , r⇒l
where
l→r : P ∧ (Q ∨ R) → P ∧ Q ∨ P ∧ R
l→r (p , inj₁ q) = inj₁ (p , q)
l→r (p , inj₂ r) = inj₂ (p , r)
l⇒r : P ∧ (Q ∨ R) ⇒ P ∧ Q ∨ P ∧ R
l⇒r = fun l→r
r→l : P ∧ Q ∨ P ∧ R → P ∧ (Q ∨ R)
r→l (inj₁ (p , q)) = p , inj₁ q
r→l (inj₂ (p , r)) = p , inj₂ r
-- TODO (21 February 2015). In r⇒l we needed parenthesis in the
-- antecedent, but they aren't needed in r→l. That is, the fixity of
-- _⇒_ should be the same than the fixity of _→_.
r⇒l : (P ∧ Q ∨ P ∧ R) ⇒ P ∧ (Q ∨ R)
r⇒l = fun r→l
DM : {P Q : Set} → ¬ (P ∨ Q) ↔ ¬ P ∧ ¬ Q
DM {P} {Q} = l→r , r→l
where
l→r : ¬ (P ∨ Q) → ¬ P ∧ ¬ Q
l→r h = (λ p → h (inj₁ p)) , (λ q → h (inj₂ q))
r→l : ¬ P ∧ ¬ Q → ¬ (P ∨ Q)
r→l (¬p , ¬q) p∨q = case ¬p ¬q p∨q
-- The principle of the excluded middle implies the double negation
-- elimination
pem→¬¬-elim : ∀ {P} → (P ∨ ¬ P) → ¬ ¬ P → P
pem→¬¬-elim (inj₁ p) _ = p
pem→¬¬-elim (inj₂ ¬p) h = ⊥-elim (h ¬p)
| {
"alphanum_fraction": 0.4138604197,
"avg_line_length": 30.5820895522,
"ext": "agda",
"hexsha": "e4f31be330af625946da19571ad42154c2c83bc9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOL/PropositionalLogic/TheoremsI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOL/PropositionalLogic/TheoremsI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOL/PropositionalLogic/TheoremsI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 875,
"size": 2049
} |
{-# OPTIONS --without-K #-}
-- I've been spinning my wheels quite a bit on this proof.
-- I've chatted with several people and feel confident my
-- functions are properly defined, but I'm really struggling
-- to see how to prove they are quasi-inverses (it has been a little
-- reassuring, no one I have talked to has correctly defined
-- the functions initially, hah).
-- At the moment I'm not sure if I'm just missing something obvious in
-- the proof, or if I'm simply going about the proof wrong. I've
-- begun focusing on the eckmann-hilton proof and plan to return to this
-- after that is done.
module Circle where
open import Level using (_⊔_)
open import Data.Product using (Σ; _,_)
open import Function renaming (_∘_ to _○_)
--open import Relation.Binary.PropositionalEquality renaming (_≡_ to _≡_; refl to Eqrefl)
--open import Relation.Binary.EqReasoning
infixr 8 _∘_ -- path composition
infix 4 _≡_ -- propositional equality
infix 4 _∼_ -- homotopy between two functions
infix 4 _≃_ -- type of equivalences
-- macros from tzaikin for equational rewriting over non-standard ≡
infixr 4 _≡⟨_⟩_
infix 4 _∎
------------------------------------------------------------------------------
-- A few HoTT primitives
data _≡_ {ℓ} {A : Set ℓ} : (a b : A) → Set ℓ where
refl : (a : A) → (a ≡ a)
pathInd : ∀ {u ℓ} → {A : Set u} →
(C : {x y : A} → x ≡ y → Set ℓ) →
(c : (x : A) → C (refl x)) →
({x y : A} (p : x ≡ y) → C p)
pathInd C c (refl x) = c x
-- inverse paths
! : ∀ {u} → {A : Set u} {x y : A} → (x ≡ y) → (y ≡ x)
! = pathInd (λ {x} {y} _ → y ≡ x) refl
-- path composition
_∘_ : ∀ {u} → {A : Set u} → {x y z : A} → (x ≡ y) → (y ≡ z) → (x ≡ z)
_∘_ {u} {A} {x} {y} {z} p q =
pathInd {u}
(λ {x} {y} p → ((z : A) → (q : y ≡ z) → (x ≡ z)))
(λ x z q → pathInd (λ {x} {z} _ → x ≡ z) refl {x} {z} q)
{x} {y} p z q
-- Handy "macros" (from tzaikin)
_∎ : {A : Set} → (p : A) → p ≡ p
p ∎ = refl p
_≡⟨_⟩_ : {A : Set} → {q r : A} → (p : A) → p ≡ q → q ≡ r → p ≡ r
p ≡⟨ α ⟩ β = α ∘ β
-- (x ≡ y) ≡ ((x ≡ y) ∘ (refl y))
unitTransR : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ (p ∘ refl y))
unitTransR {A} {x} {y} p =
pathInd
(λ {x} {y} p → p ≡ (p ∘ (refl y)))
(λ x → refl (refl x))
{x} {y} p
-- (x ≡ y) ≡ ((refl x) ∘ (x ≡ y))
unitTransL : {A : Set} {x y : A} → (p : x ≡ y) → (p ≡ refl x ∘ p)
unitTransL {A} {x} {y} p =
pathInd
(λ {x} {y} p → p ≡ (refl x) ∘ p)
(λ x → refl (refl x))
{x} {y} p
-- !(x ≡ y) ∘ (x ≡ y) ≡ (refl y)
invTransL : {A : Set} {x y : A} → (p : x ≡ y) → (! p ∘ p ≡ refl y)
invTransL {A} {x} {y} p =
pathInd
(λ {x} {y} p → ! p ∘ p ≡ refl y)
(λ x → refl (refl x))
{x} {y} p
-- (x ≡ y) ∘ !(x ≡ y) ≡ (refl x)
invTransR : ∀ {ℓ} {A : Set ℓ} {x y : A} → (p : x ≡ y) → (p ∘ ! p ≡ refl x)
invTransR {ℓ} {A} {x} {y} p =
pathInd
(λ {x} {y} p → p ∘ ! p ≡ refl x)
(λ x → refl (refl x))
{x} {y} p
-- !!(x ≡ y) ≡ (x ≡ y)
invId : {A : Set} {x y : A} → (p : x ≡ y) → (! (! p) ≡ p)
invId {A} {x} {y} p =
pathInd
(λ {x} {y} p → ! (! p) ≡ p)
(λ x → refl (refl x))
{x} {y} p
-- (x ≡ y) and (y ≡ z) ⇒ (x ≡ z)
assocP : {A : Set} {x y z w : A} → (p : x ≡ y) → (q : y ≡ z) → (r : z ≡ w) →
(p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r)
assocP {A} {x} {y} {z} {w} p q r =
pathInd
(λ {x} {y} p → (z : A) → (w : A) → (q : y ≡ z) → (r : z ≡ w) →
p ∘ (q ∘ r) ≡ (p ∘ q) ∘ r)
(λ x z w q r →
pathInd
(λ {x} {z} q → (w : A) → (r : z ≡ w) →
(refl x) ∘ (q ∘ r) ≡ ((refl x) ∘ q) ∘ r)
(λ x w r →
pathInd
(λ {x} {w} r →
(refl x) ∘ ((refl x) ∘ r) ≡
((refl x) ∘ (refl x)) ∘ r)
(λ x → (refl (refl x)))
{x} {w} r)
{x} {z} q w r)
{x} {y} p z w q r
-- !(p ∘ q) ≡ !q ∘ !p
invComp : {A : Set} {x y z : A} → (p : x ≡ y) → (q : y ≡ z) →
! (p ∘ q) ≡ ! q ∘ ! p
invComp {A} {x} {y} {z} p q =
pathInd
(λ {x} {y} p → (z : A) → (q : y ≡ z) → ! (p ∘ q) ≡ ! q ∘ ! p)
(λ x z q →
pathInd
(λ {x} {z} q → ! (refl x ∘ q) ≡ ! q ∘ ! (refl x))
(λ x → refl (refl x))
{x} {z} q)
{x} {y} p z q
-- (x ≡ y) ⇒ (f x) ≡ (f y)
ap : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {x y : A} →
(f : A → B) → (x ≡ y) → (f x ≡ f y)
ap {ℓ} {ℓ'} {A} {B} {x} {y} f p =
pathInd
(λ {x} {y} p → f x ≡ f y)
(λ x → refl (f x))
{x} {y} p
-- sort of
-- p:(x ≡ y) ⇒ q:(y ≡ z) ⇒ (((f x) ≡ (f z)) ≡ (((f x) ≡ (f y)) ∘ ((f y) ≡ (f z))))
apfTrans : ∀ {u} → {A B : Set u} {x y z : A} →
(f : A → B) → (p : x ≡ y) → (q : y ≡ z) → ap f (p ∘ q) ≡ (ap f p) ∘ (ap f q)
apfTrans {u} {A} {B} {x} {y} {z} f p q =
pathInd {u}
(λ {x} {y} p → (z : A) → (q : y ≡ z) →
ap f (p ∘ q) ≡ (ap f p) ∘ (ap f q))
(λ x z q →
pathInd {u}
(λ {x} {z} q →
ap f (refl x ∘ q) ≡ (ap f (refl x)) ∘ (ap f q))
(λ x → refl (refl (f x)))
{x} {z} q)
{x} {y} p z q
-- ap f (! p) ≡ ! (ap f p)
apfInv : ∀ {u} → {A B : Set u} {x y : A} → (f : A → B) → (p : x ≡ y) →
ap f (! p) ≡ ! (ap f p)
apfInv {u} {A} {B} {x} {y} f p =
pathInd {u}
(λ {x} {y} p → ap f (! p) ≡ ! (ap f p))
(λ x → refl (ap f (refl x)))
{x} {y} p
-- ap g (ap f p) ≡ ap (g ○ f) p
apfComp : {A B C : Set} {x y : A} → (f : A → B) → (g : B → C) → (p : x ≡ y) →
ap g (ap f p) ≡ ap (g ○ f) p
apfComp {A} {B} {C} {x} {y} f g p =
pathInd
(λ {x} {y} p → ap g (ap f p) ≡ ap (g ○ f) p)
(λ x → refl (ap g (ap f (refl x))))
{x} {y} p
-- ap id p ≡ p
apfId : {A : Set} {x y : A} → (p : x ≡ y) → ap id p ≡ p
apfId {A} {x} {y} p =
pathInd
(λ {x} {y} p → ap id p ≡ p)
(λ x → refl (refl x))
{x} {y} p
-- (x ≡ y) → P x → P y
transport : ∀ {ℓ ℓ'} → {A : Set ℓ} {x y : A} →
(P : A → Set ℓ') → (p : x ≡ y) → P x → P y
transport {ℓ} {ℓ'} {A} {x} {y} P p =
pathInd -- on p
(λ {x} {y} p → (P x → P y))
(λ _ → id)
{x} {y} p
-- dependent ap
apd : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : A → Set ℓ'} {x y : A} → (f : (a : A) → B a) →
(p : x ≡ y) → (transport B p (f x) ≡ f y)
apd {ℓ} {ℓ'} {A} {B} {x} {y} f p =
pathInd
(λ {x} {y} p → transport B p (f x) ≡ f y)
(λ x → refl (f x))
{x} {y} p
-- Homotopies and equivalences
_∼_ : ∀ {ℓ ℓ'} → {A : Set ℓ} {P : A → Set ℓ'} →
(f g : (x : A) → P x) → Set (ℓ ⊔ ℓ')
_∼_ {ℓ} {ℓ'} {A} {P} f g = (x : A) → f x ≡ g x
record qinv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) :
Set (ℓ ⊔ ℓ') where
constructor mkqinv
field
g : B → A
α : (f ○ g) ∼ id
β : (g ○ f) ∼ id
record isequiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) :
Set (ℓ ⊔ ℓ') where
constructor mkisequiv
field
g : B → A
α : (f ○ g) ∼ id
h : B → A
β : (h ○ f) ∼ id
equiv₁ : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {f : A → B} → qinv f → isequiv f
equiv₁ (mkqinv qg qα qβ) = mkisequiv qg qα qg qβ
_≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ')
A ≃ B = Σ (A → B) isequiv
postulate
univalence : {A B : Set} → (A ≡ B) ≃ (A ≃ B)
------------------------------------------------------------------------------
-- Exercise: let's show that the following two definitions of the
-- circle are "the same"
module Circle1 where
private
data S¹* : Set where
base* : S¹*
S¹ : Set
S¹ = S¹*
base : S¹
base = base*
postulate
loop : base ≡ base
recS¹ : {C : Set} → (cbase : C) → (cloop : cbase ≡ cbase) → S¹ → C
recS¹ cbase cloop base* = cbase
postulate
βrecS¹ : {C : Set} → (cbase : C) → (cloop : cbase ≡ cbase) →
ap (recS¹ cbase cloop) loop ≡ cloop
indS¹ : {C : S¹ → Set} →
(cbase : C base) → (cloop : transport C loop cbase ≡ cbase) →
(circle : S¹) → C circle
indS¹ cbase cloop base* = cbase
postulate
βindS¹ : {C : S¹ → Set} →
(cbase : C base) → (cloop : transport C loop cbase ≡ cbase) →
apd (indS¹ {C} cbase cloop) loop ≡ cloop
open Circle1 public
module Circle2 where
private
data S¹'* : Set where
south* : S¹'*
north* : S¹'*
S¹' : Set
S¹' = S¹'*
south : S¹'
south = south*
north : S¹'
north = north*
postulate
east : south ≡ north
west : south ≡ north
recS¹' : {C : Set} →
(csouth cnorth : C) → (ceast cwest : csouth ≡ cnorth) → S¹' → C
recS¹' csouth cnorth ceast cwest south* = csouth
recS¹' csouth cnorth ceast cwest north* = cnorth
postulate
βreceastS¹' : {C : Set} →
(csouth cnorth : C) → (ceast cwest : csouth ≡ cnorth) →
ap (recS¹' csouth cnorth ceast cwest) east ≡ ceast
βrecwestS¹' : {C : Set} →
(csouth cnorth : C) → (ceast cwest : csouth ≡ cnorth) →
ap (recS¹' csouth cnorth ceast cwest) west ≡ cwest
indS¹' : {C : S¹' → Set} →
(csouth : C south) → (cnorth : C north) →
(ceast : transport C east csouth ≡ cnorth) →
(cwest : transport C west csouth ≡ cnorth) →
(circle : S¹') → C circle
indS¹' csouth cnorth ceast cwest south* = csouth
indS¹' csouth cnorth ceast cwest north* = cnorth
postulate
βindeastS¹' : {C : S¹' → Set} →
(csouth : C south) → (cnorth : C north) →
(ceast : transport C east csouth ≡ cnorth) →
(cwest : transport C west csouth ≡ cnorth) →
apd (indS¹' {C} csouth cnorth ceast cwest) east ≡ ceast
βindwestS¹' : {C : S¹' → Set} →
(csouth : C south) → (cnorth : C north) →
(ceast : transport C east csouth ≡ cnorth) →
(cwest : transport C west csouth ≡ cnorth) →
apd (indS¹' {C} csouth cnorth ceast cwest) west ≡ cwest
open Circle2 public
Smap : S¹ → S¹'
Smap s = recS¹ south (west ∘ (! east)) s
S'map : S¹' → S¹
S'map s = recS¹' {C = S¹} base base (refl base) loop s
S'toS≡id : S¹' -> Set
S'toS≡id = (λ s' → (Smap ○ S'map) s' ≡ id s')
StoS'≡id : S¹ -> Set
StoS'≡id = (λ s → (S'map ○ Smap) s ≡ id s)
Sqinv : qinv Smap
Sqinv = mkqinv S'map
-- P(s') = (Smap ○ S'map) s' ≡ id s'
(indS¹'
{C = S'toS≡id}
(refl south)
(transport S'toS≡id east (refl south))
((refl (transport S'toS≡id east (refl south))))
-- I've spent several hours exploring how I might
-- prove this and I'm completely lost.
-- I must be missing something obvious or I'm going about this
-- totally wrong =\
(transport S'toS≡id west (refl south) ≡⟨ {!!} ⟩
transport S'toS≡id east (refl south) ∎))
-- P(s) = (S'map ○ Smap) s ≡ id s
(indS¹
{C = (λ s → (S'map ○ Smap) s ≡ id s)} -- P
(refl base) -- P(base)
-- P()
(transport StoS'≡id loop (refl base) ≡⟨ {!!} ⟩ -- needs Thm 2.11.3, transportId
refl base ∎)) -- ap E x≡y where E is a context allows you to rewrite
sequiv : S¹ ≃ S¹' -- any E[x] to E[y]
sequiv = (Smap , equiv₁ Sqinv)
spath : S¹ ≡ S¹'
spath with univalence
... | (_ , eq) = isequiv.g eq sequiv
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.4416659171,
"avg_line_length": 29.6453333333,
"ext": "agda",
"hexsha": "cffaed8b27f31493249151bbc7a4b453a116ae66",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andmkent/misc-HoTT",
"max_forks_repo_path": "Circle.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andmkent/misc-HoTT",
"max_issues_repo_path": "Circle.agda",
"max_line_length": 96,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "b05c58ffdaed99932ca2acc632deca8d14742b04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andmkent/misc-HoTT",
"max_stars_repo_path": "Circle.agda",
"max_stars_repo_stars_event_max_datetime": "2016-01-26T18:17:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-01-26T18:17:16.000Z",
"num_tokens": 4929,
"size": 11117
} |
{-# OPTIONS --safe #-}
module Definition.Typed.Weakening where
open import Definition.Untyped as U hiding (wk)
open import Definition.Untyped.Properties
open import Definition.Typed
import Tools.PropositionalEquality as PE
-- Weakening type
data _∷_⊆_ : Wk → Con Term → Con Term → Set where
id : ∀ {Γ} → id ∷ Γ ⊆ Γ
step : ∀ {Γ Δ A r ρ} → ρ ∷ Δ ⊆ Γ → step ρ ∷ Δ ∙ A ^ r ⊆ Γ
lift : ∀ {Γ Δ A r ρ} → ρ ∷ Δ ⊆ Γ → lift ρ ∷ Δ ∙ U.wk ρ A ^ r ⊆ Γ ∙ A ^ r
-- -- Weakening composition
_•ₜ_ : ∀ {ρ ρ′ Γ Δ Δ′} → ρ ∷ Γ ⊆ Δ → ρ′ ∷ Δ ⊆ Δ′ → ρ • ρ′ ∷ Γ ⊆ Δ′
id •ₜ η′ = η′
step η •ₜ η′ = step (η •ₜ η′)
lift η •ₜ id = lift η
lift η •ₜ step η′ = step (η •ₜ η′)
_•ₜ_ {lift ρ} {lift ρ′} {Δ′ = Δ′ ∙ A ^ rA} (lift η) (lift η′) =
PE.subst (λ x → lift (ρ • ρ′) ∷ x ⊆ Δ′ ∙ A ^ rA)
(PE.cong₂ (λ x y → x ∙ y ^ rA) PE.refl (PE.sym (wk-comp ρ ρ′ A)))
(lift (η •ₜ η′))
-- Weakening of judgements
wkIndex : ∀ {Γ Δ n A r ρ} → ρ ∷ Δ ⊆ Γ →
let ρA = U.wk ρ A
ρn = wkVar ρ n
in ⊢ Δ → n ∷ A ^ r ∈ Γ → ρn ∷ ρA ^ r ∈ Δ
wkIndex id ⊢Δ i = PE.subst (λ x → _ ∷ x ^ _ ∈ _) (PE.sym (wk-id _)) i
wkIndex (step ρ) (⊢Δ ∙ A) i = PE.subst (λ x → _ ∷ x ^ _ ∈ _)
(wk1-wk _ _)
(there (wkIndex ρ ⊢Δ i))
wkIndex (lift ρ) (⊢Δ ∙ A) (there i) = PE.subst (λ x → _ ∷ x ^ _ ∈ _)
(wk1-wk≡lift-wk1 _ _)
(there (wkIndex ρ ⊢Δ i))
wkIndex (lift ρ) ⊢Δ here =
let G = _
n = _
in PE.subst (λ x → n ∷ x ^ _ ∈ G)
(wk1-wk≡lift-wk1 _ _)
here
mutual
wk : ∀ {Γ Δ A r ρ} → ρ ∷ Δ ⊆ Γ →
let ρA = U.wk ρ A
in ⊢ Δ → Γ ⊢ A ^ r → Δ ⊢ ρA ^ r
wk ρ ⊢Δ (Uⱼ ⊢Γ) = Uⱼ ⊢Δ
wk ρ ⊢Δ (univ A) = univ (wkTerm ρ ⊢Δ A)
wkTerm : ∀ {Γ Δ A t r ρ} → ρ ∷ Δ ⊆ Γ →
let ρA = U.wk ρ A
ρt = U.wk ρ t
in ⊢ Δ → Γ ⊢ t ∷ A ^ r → Δ ⊢ ρt ∷ ρA ^ r
wkTerm ρ ⊢Δ (univ <l ⊢Γ) = univ <l ⊢Δ
wkTerm ρ ⊢Δ (ℕⱼ ⊢Γ) = ℕⱼ ⊢Δ
wkTerm ρ ⊢Δ (Emptyⱼ ⊢Γ) = Emptyⱼ ⊢Δ
wkTerm ρ ⊢Δ (Πⱼ <l ▹ <l' ▹ F ▹ G) = let ρF = wkTerm ρ ⊢Δ F
in Πⱼ <l ▹ <l' ▹ ρF ▹ (wkTerm (lift ρ) (⊢Δ ∙ univ ρF) G)
wkTerm ρ ⊢Δ (∃ⱼ F ▹ G) = let ρF = wkTerm ρ ⊢Δ F
in ∃ⱼ ρF ▹ (wkTerm (lift ρ) (⊢Δ ∙ univ ρF) G)
wkTerm ρ ⊢Δ (var ⊢Γ x) = var ⊢Δ (wkIndex ρ ⊢Δ x)
wkTerm ρ ⊢Δ (lamⱼ <l <l' F t) = let ρF = wk ρ ⊢Δ F
in lamⱼ <l <l' ρF (wkTerm (lift ρ) (⊢Δ ∙ ρF) t)
wkTerm ρ ⊢Δ (_∘ⱼ_ {G = G} g a) = PE.subst (λ x → _ ⊢ _ ∷ x ^ _)
(PE.sym (wk-β G))
(wkTerm ρ ⊢Δ g ∘ⱼ wkTerm ρ ⊢Δ a)
wkTerm ρ ⊢Δ (⦅_,_,_,_⦆ⱼ {G = GG} F G t u )
= let ρF = wk ρ ⊢Δ F in ⦅ wk ρ ⊢Δ F , wk (lift ρ) (⊢Δ ∙ ρF) G , wkTerm ρ ⊢Δ t , PE.subst (λ X → _ ⊢ _ ∷ X ^ [ % , _ ]) (wk-β GG) (wkTerm ρ ⊢Δ u) ⦆ⱼ
wkTerm ρ ⊢Δ (fstⱼ F G t) = let ρF = wkTerm ρ ⊢Δ F in
let ρG = (wkTerm (lift ρ) (⊢Δ ∙ univ ρF) G) in
fstⱼ ρF ρG (wkTerm ρ ⊢Δ t)
wkTerm ρ ⊢Δ (sndⱼ {G = G} F Gⱼ t) = let ρF = wkTerm ρ ⊢Δ F in
let ρG = (wkTerm (lift ρ) (⊢Δ ∙ univ ρF) Gⱼ) in
PE.subst (λ X → _ ⊢ _ ∷ X ^ [ % , _ ]) (PE.sym (wk-β G)) (sndⱼ ρF ρG (wkTerm ρ ⊢Δ t))
wkTerm ρ ⊢Δ (zeroⱼ ⊢Γ) = zeroⱼ ⊢Δ
wkTerm ρ ⊢Δ (sucⱼ n) = sucⱼ (wkTerm ρ ⊢Δ n)
wkTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrecⱼ {G = G} {rG = rG} {lG = lG} {s = s} ⊢G ⊢z ⊢s ⊢n) =
PE.subst (λ x → _ ⊢ natrec _ _ _ _ _ ∷ x ^ _) (PE.sym (wk-β G))
(natrecⱼ (wk (lift [ρ]) (⊢Δ ∙ univ (ℕⱼ ⊢Δ)) ⊢G)
(PE.subst (λ x → _ ⊢ _ ∷ x ^ _) (wk-β G) (wkTerm [ρ] ⊢Δ ⊢z))
(PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x ^ [ rG , ι lG ])
(wk-β-natrec ρ G rG lG)
(wkTerm [ρ] ⊢Δ ⊢s))
(wkTerm [ρ] ⊢Δ ⊢n))
wkTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (Emptyrecⱼ {A = A} {e = e} ⊢A ⊢e) =
(Emptyrecⱼ (wk [ρ] ⊢Δ ⊢A) (wkTerm [ρ] ⊢Δ ⊢e))
wkTerm ρ ⊢Δ (Idⱼ A t u) = Idⱼ (wkTerm ρ ⊢Δ A) (wkTerm ρ ⊢Δ t) (wkTerm ρ ⊢Δ u)
wkTerm ρ ⊢Δ (Idreflⱼ t) = Idreflⱼ (wkTerm ρ ⊢Δ t)
wkTerm ρ ⊢Δ (transpⱼ {P = P} A Pⱼ t s u e) =
let ρA = wk ρ ⊢Δ A in
let ρP = wk (lift ρ) (⊢Δ ∙ ρA) Pⱼ in
let ρt = wkTerm ρ ⊢Δ t in
let ρs = PE.subst (λ x → _ ⊢ _ ∷ x ^ _) (wk-β P) (wkTerm ρ ⊢Δ s) in
let ρu = wkTerm ρ ⊢Δ u in
let ρe = wkTerm ρ ⊢Δ e in
PE.subst (λ x → _ ⊢ transp _ _ _ _ _ _ ∷ x ^ _) (PE.sym (wk-β P))
(transpⱼ ρA ρP ρt ρs ρu ρe)
wkTerm ρ ⊢Δ (castⱼ A B e t) =
castⱼ (wkTerm ρ ⊢Δ A) (wkTerm ρ ⊢Δ B) (wkTerm ρ ⊢Δ e) (wkTerm ρ ⊢Δ t)
wkTerm ρ ⊢Δ (castreflⱼ A t) =
castreflⱼ (wkTerm ρ ⊢Δ A) (wkTerm ρ ⊢Δ t)
wkTerm ρ ⊢Δ (conv t A≡B) = conv (wkTerm ρ ⊢Δ t) (wkEq ρ ⊢Δ A≡B)
wkEq : ∀ {Γ Δ A B r ρ} → ρ ∷ Δ ⊆ Γ →
let ρA = U.wk ρ A
ρB = U.wk ρ B
in ⊢ Δ → Γ ⊢ A ≡ B ^ r → Δ ⊢ ρA ≡ ρB ^ r
wkEq ρ ⊢Δ (univ A≡B) = univ (wkEqTerm ρ ⊢Δ A≡B)
wkEq ρ ⊢Δ (refl A) = refl (wk ρ ⊢Δ A)
wkEq ρ ⊢Δ (sym A≡B) = sym (wkEq ρ ⊢Δ A≡B)
wkEq ρ ⊢Δ (trans A≡B B≡C) = trans (wkEq ρ ⊢Δ A≡B) (wkEq ρ ⊢Δ B≡C)
wkEqTerm : ∀ {Γ Δ A t u r ρ} → ρ ∷ Δ ⊆ Γ →
let ρA = U.wk ρ A
ρt = U.wk ρ t
ρu = U.wk ρ u
in ⊢ Δ → Γ ⊢ t ≡ u ∷ A ^ r → Δ ⊢ ρt ≡ ρu ∷ ρA ^ r
wkEqTerm ρ ⊢Δ (refl t) = refl (wkTerm ρ ⊢Δ t)
wkEqTerm ρ ⊢Δ (sym t≡u) = sym (wkEqTerm ρ ⊢Δ t≡u)
wkEqTerm ρ ⊢Δ (trans t≡u u≡r) = trans (wkEqTerm ρ ⊢Δ t≡u) (wkEqTerm ρ ⊢Δ u≡r)
wkEqTerm ρ ⊢Δ (conv t≡u A≡B) = conv (wkEqTerm ρ ⊢Δ t≡u) (wkEq ρ ⊢Δ A≡B)
wkEqTerm ρ ⊢Δ (Π-cong <l <l' F F≡H G≡E) =
let ρF = wk ρ ⊢Δ F
in Π-cong <l <l' ρF (wkEqTerm ρ ⊢Δ F≡H)
(wkEqTerm (lift ρ) (⊢Δ ∙ ρF) G≡E)
wkEqTerm ρ ⊢Δ (∃-cong F F≡H G≡E) =
let ρF = wk ρ ⊢Δ F
in ∃-cong ρF (wkEqTerm ρ ⊢Δ F≡H)
(wkEqTerm (lift ρ) (⊢Δ ∙ ρF) G≡E)
wkEqTerm ρ ⊢Δ (app-cong {G = G} f≡g a≡b) =
PE.subst (λ x → _ ⊢ _ ≡ _ ∷ x ^ _)
(PE.sym (wk-β G))
(app-cong (wkEqTerm ρ ⊢Δ f≡g) (wkEqTerm ρ ⊢Δ a≡b))
wkEqTerm ρ ⊢Δ (β-red {a = a} {t = t} {G = G} l< l<' F ⊢t ⊢a) =
let ρF = wk ρ ⊢Δ F
in PE.subst (λ x → _ ⊢ _ ≡ _ ∷ x ^ _)
(PE.sym (wk-β G))
(PE.subst (λ x → _ ⊢ U.wk _ ((lam _ ▹ t ^ _) ∘ a ^ _) ≡ x ∷ _ ^ _)
(PE.sym (wk-β t))
(β-red l< l<' ρF (wkTerm (lift ρ) (⊢Δ ∙ ρF) ⊢t)
(wkTerm ρ ⊢Δ ⊢a)))
wkEqTerm ρ ⊢Δ (η-eq lF lG F f g f0≡g0) =
let ρF = wk ρ ⊢Δ F
in η-eq lF lG ρF (wkTerm ρ ⊢Δ f)
(wkTerm ρ ⊢Δ g)
(PE.subst (λ t → _ ⊢ t ∘ _ ^ _ ≡ _ ∷ _ ^ _)
(PE.sym (wk1-wk≡lift-wk1 _ _))
(PE.subst (λ t → _ ⊢ _ ≡ t ∘ _ ^ _ ∷ _ ^ _)
(PE.sym (wk1-wk≡lift-wk1 _ _))
(wkEqTerm (lift ρ) (⊢Δ ∙ ρF) f0≡g0)))
wkEqTerm ρ ⊢Δ (suc-cong m≡n) = suc-cong (wkEqTerm ρ ⊢Δ m≡n)
wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-cong {s = s} {s′ = s′} {F = F} {l = l}
F≡F′ z≡z′ s≡s′ n≡n′) =
PE.subst (λ x → Δ ⊢ natrec _ _ _ _ _ ≡ _ ∷ x ^ _) (PE.sym (wk-β F))
(natrec-cong (wkEq (lift [ρ]) (⊢Δ ∙ univ (ℕⱼ ⊢Δ)) F≡F′)
(PE.subst (λ x → Δ ⊢ _ ≡ _ ∷ x ^ _) (wk-β F)
(wkEqTerm [ρ] ⊢Δ z≡z′))
(PE.subst (λ x → Δ ⊢ U.wk ρ s
≡ U.wk ρ s′ ∷ x ^ [ ! , ι l ])
(wk-β-natrec _ F ! l)
(wkEqTerm [ρ] ⊢Δ s≡s′))
(wkEqTerm [ρ] ⊢Δ n≡n′))
wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-zero {z} {s} {F} {l = l} ⊢F ⊢z ⊢s) =
PE.subst (λ x → Δ ⊢ natrec _ (U.wk (lift _) F) _ _ _ ≡ _ ∷ x ^ _)
(PE.sym (wk-β F))
(natrec-zero (wk (lift [ρ]) (⊢Δ ∙ univ (ℕⱼ ⊢Δ)) ⊢F)
(PE.subst (λ x → Δ ⊢ U.wk ρ z ∷ x ^ _)
(wk-β F)
(wkTerm [ρ] ⊢Δ ⊢z))
(PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x ^ [ ! , ι l ])
(wk-β-natrec _ F ! l)
(wkTerm [ρ] ⊢Δ ⊢s)))
wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-suc {n} {z} {s} {F} {l = l} ⊢n ⊢F ⊢z ⊢s) =
PE.subst (λ x → Δ ⊢ natrec _ (U.wk (lift _) F) _ _ _
≡ _ ∘ (natrec _ _ _ _ _) ^ _ ∷ x ^ _)
(PE.sym (wk-β F))
(natrec-suc (wkTerm [ρ] ⊢Δ ⊢n)
(wk (lift [ρ]) (⊢Δ ∙ univ (ℕⱼ ⊢Δ)) ⊢F)
(PE.subst (λ x → Δ ⊢ U.wk ρ z ∷ x ^ _)
(wk-β F)
(wkTerm [ρ] ⊢Δ ⊢z))
(PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x ^ [ ! , ι l ])
(wk-β-natrec _ F ! l)
(wkTerm [ρ] ⊢Δ ⊢s)))
wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (Emptyrec-cong {A = A} {A' = A'} {e = e} {e' = e'} A≡A' ⊢e ⊢e') =
Emptyrec-cong (wkEq [ρ] ⊢Δ A≡A') (wkTerm [ρ] ⊢Δ ⊢e) (wkTerm [ρ] ⊢Δ ⊢e')
wkEqTerm [ρ] ⊢Δ (proof-irrelevance t u) = proof-irrelevance (wkTerm [ρ] ⊢Δ t) (wkTerm [ρ] ⊢Δ u)
wkEqTerm ρ ⊢Δ (Id-cong A t u) = Id-cong (wkEqTerm ρ ⊢Δ A) (wkEqTerm ρ ⊢Δ t) (wkEqTerm ρ ⊢Δ u)
wkEqTerm {ρ = ρ} [ρ] ⊢Δ (Id-Π {rA = rA} {t = t} {u = u} <l <l' Aⱼ Bⱼ tⱼ uⱼ) =
let ρA = wkTerm [ρ] ⊢Δ Aⱼ in
let ρB = wkTerm (lift [ρ]) (⊢Δ ∙ univ ρA) Bⱼ in
let ρt = wkTerm [ρ] ⊢Δ tⱼ in
let ρu = wkTerm [ρ] ⊢Δ uⱼ in
PE.subst
(λ x → _ ⊢ Id _ (U.wk ρ t) _ ≡ Π _ ^ _ ° _ ▹ Id _ (x ∘ _ ^ _) _ ° _ ° _ ∷ _ ^ [ ! , _ ])
(wk1-wk≡lift-wk1 ρ t)
(PE.subst
(λ x → _ ⊢ Id _ _ (U.wk ρ u) ≡ Π _ ^ _ ° _ ▹ Id _ _ (x ∘ _ ^ _) ° _ ° _ ∷ _ ^ [ ! , _ ])
(wk1-wk≡lift-wk1 ρ u)
(Id-Π <l <l' ρA ρB ρt ρu))
wkEqTerm ρ ⊢Δ (Id-ℕ-00 ⊢Γ) = Id-ℕ-00 ⊢Δ
wkEqTerm ρ ⊢Δ (Id-ℕ-SS m n) = Id-ℕ-SS (wkTerm ρ ⊢Δ m) (wkTerm ρ ⊢Δ n)
wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (Id-U-ΠΠ {A = A} {A' = A'} {rA = rA} {B = B} {B' = B'} Aⱼ Bⱼ A'ⱼ B'ⱼ) =
let ρA = wkTerm [ρ] ⊢Δ Aⱼ in
let ρA' = wkTerm [ρ] ⊢Δ A'ⱼ in
let ρB = wkTerm (lift [ρ]) (⊢Δ ∙ (univ ρA)) Bⱼ in
let ρB' = wkTerm (lift [ρ]) (⊢Δ ∙ (univ ρA')) B'ⱼ in
let l = ⁰ in
let l' = ¹ in
let pred = λ A1 A1' A2' B1 B1' → Δ ⊢ U.wk ρ (Id (U l) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° l) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° l)) ≡ ∃ U.wk ρ (Id (Univ rA l) A A') ▹ (Π A1' ^ rA ° ⁰ ▹ Id (U l) (B1 [ cast l A2' A1 (Idsym (Univ rA l) A1 A2' (var 1)) (var 0) ]↑) B1' ° l' ° l') ∷ SProp l' ^ [ ! , next l' ] in
let j1 : pred (wk1 (wk1 (U.wk ρ A))) (wk1 (U.wk ρ A')) (wk1 (wk1 (U.wk ρ A'))) (wk1d (U.wk (lift ρ) B)) (wk1d (U.wk (lift ρ) B'))
j1 = Id-U-ΠΠ ρA ρB ρA' ρB' in
let j2 = PE.subst (λ x → pred (wk1 (wk1 (U.wk ρ A))) x (wk1 (wk1 (U.wk ρ A'))) (wk1d (U.wk (lift ρ) B)) (wk1d (U.wk (lift ρ) B'))) (wk1-wk≡lift-wk1 ρ A') j1 in
let j3 = PE.subst (λ x → pred x (U.wk (lift ρ) (wk1 A')) (wk1 (wk1 (U.wk ρ A'))) (wk1d (U.wk (lift ρ) B)) (wk1d (U.wk (lift ρ) B'))) (wk1wk1-wk≡liftlift-wk1 ρ A) j2 in
let j4 = PE.subst (λ x → pred (U.wk (lift (lift ρ)) (wk1 (wk1 A))) (U.wk (lift ρ) (wk1 A')) x (wk1d (U.wk (lift ρ) B)) (wk1d (U.wk (lift ρ) B'))) (wk1wk1-wk≡liftlift-wk1 ρ A') j3 in
let j5 = PE.subst (λ x → pred (U.wk (lift (lift ρ)) (wk1 (wk1 A))) (U.wk (lift ρ) (wk1 A')) (U.wk (lift (lift ρ)) (wk1 (wk1 A'))) x (wk1d (U.wk (lift ρ) B'))) (wk1d-wk≡lift-wk1d ρ B) j4 in
let j6 = PE.subst (λ x → pred (U.wk (lift (lift ρ)) (wk1 (wk1 A))) (U.wk (lift ρ) (wk1 A')) (U.wk (lift (lift ρ)) (wk1 (wk1 A'))) (U.wk (lift (lift ρ)) (wk1d B)) x) (wk1d-wk≡lift-wk1d ρ B') j5 in
let j7 = PE.subst (λ x → Δ ⊢ U.wk ρ (Id (U l) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° l) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° l)) ≡ ∃ U.wk ρ (Id (Univ rA l) A A') ▹ (Π U.wk (lift ρ) (wk1 A') ^ rA ° ⁰ ▹ Id (U l) (U.wk (lift (lift ρ)) (wk1d B) [ (cast l (U.wk (lift (lift ρ)) (wk1 (wk1 A'))) (U.wk (lift (lift ρ)) (wk1 (wk1 A))) x (var 0)) ]↑) (U.wk (lift (lift ρ)) (wk1d B')) ° l' ° l') ∷ SProp l' ^ [ ! , next l' ]) (PE.sym (wk-Idsym (lift (lift ρ)) (Univ rA l) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1))) j6 in
PE.subst (λ x → Δ ⊢ U.wk ρ (Id (U l) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° l) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° l)) ≡ ∃ U.wk ρ (Id (Univ rA l) A A') ▹ (Π U.wk (lift ρ) (wk1 A') ^ rA ° ⁰ ▹ Id (U l) x (U.wk (lift (lift ρ)) (wk1d B')) ° l' ° l') ∷ SProp l' ^ [ ! , _ ]) (PE.sym (wk-β↑ {ρ = lift ρ} {a = cast l (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA l) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0)} (wk1d B))) j7
wkEqTerm ρ ⊢Δ (Id-U-ℕℕ ⊢Γ) = Id-U-ℕℕ ⊢Δ
wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (Id-SProp {A = A} {B = B} Aⱼ Bⱼ) =
let ρA = wkTerm [ρ] ⊢Δ Aⱼ
ρB = wkTerm [ρ] ⊢Δ Bⱼ
l = ⁰
l' = ¹
in
PE.subst
(λ x → _ ⊢ Id (SProp l) (U.wk ρ A) _ ≡ ∃ (Π U.wk ρ A ^ % ° ⁰ ▹ _ ° ⁰ ° l') ▹ (Π _ ^ % ° ⁰ ▹ x ° _ ° l') ∷ _ ^ [ ! , _ ])
(wk1d-wk≡lift-wk1d ρ (wk1 A))
(PE.subst
(λ x → _ ⊢ Id (SProp l) (U.wk ρ A) _ ≡ ∃ (Π U.wk ρ A ^ % ° ⁰ ▹ _ ° ⁰ ° l') ▹ (Π _ ^ % ° ⁰ ▹ U.wk (lift (step id)) x ° _ ° l') ∷ _ ^ [ ! , _ ])
(wk1-wk≡lift-wk1 ρ A)
(PE.subst
(λ x → _ ⊢ Id (SProp l) (U.wk ρ A) (U.wk ρ B) ≡ ∃ (Π U.wk ρ A ^ % ° ⁰ ▹ x ° ⁰ ° l') ▹ (Π x ^ % ° ⁰ ▹ _ ° ⁰ ° l') ∷ SProp ¹ ^ [ ! , _ ])
(wk1-wk≡lift-wk1 ρ B) (Id-SProp {A = U.wk ρ A} {B = U.wk ρ B} ρA ρB)))
wkEqTerm ρ ⊢Δ (Id-ℕ-0S n) = Id-ℕ-0S (wkTerm ρ ⊢Δ n)
wkEqTerm ρ ⊢Δ (Id-ℕ-S0 n) = Id-ℕ-S0 (wkTerm ρ ⊢Δ n)
wkEqTerm ρ ⊢Δ (Id-U-ℕΠ A B) =
let ρA = wkTerm ρ ⊢Δ A in
let ρB = wkTerm (lift ρ) (⊢Δ ∙ (univ ρA)) B in
Id-U-ℕΠ ρA ρB
wkEqTerm ρ ⊢Δ (Id-U-Πℕ A B) =
let ρA = wkTerm ρ ⊢Δ A in
let ρB = wkTerm (lift ρ) (⊢Δ ∙ (univ ρA)) B in
Id-U-Πℕ ρA ρB
wkEqTerm ρ ⊢Δ (Id-U-ΠΠ!% eq A B A' B') =
let ρA = wkTerm ρ ⊢Δ A
ρB = wkTerm (lift ρ) (⊢Δ ∙ (univ ρA)) B
ρA' = wkTerm ρ ⊢Δ A'
ρB' = wkTerm (lift ρ) (⊢Δ ∙ (univ ρA')) B'
in Id-U-ΠΠ!% eq ρA ρB ρA' ρB'
wkEqTerm ρ ⊢Δ (cast-cong A B t e e') = cast-cong (wkEqTerm ρ ⊢Δ A) (wkEqTerm ρ ⊢Δ B) (wkEqTerm ρ ⊢Δ t) (wkTerm ρ ⊢Δ e) (wkTerm ρ ⊢Δ e')
wkEqTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (cast-Π {A = A} {A' = A'} {rA = rA} {B = B} {B' = B'} {e = e} {f = f} Aⱼ Bⱼ A'ⱼ B'ⱼ eⱼ fⱼ) = let l = ⁰ in let lA = ⁰ in let lB = ⁰ in
let ρA = wkTerm [ρ] ⊢Δ Aⱼ in
let ρA' = wkTerm [ρ] ⊢Δ A'ⱼ in
let ρB = wkTerm (lift [ρ]) (⊢Δ ∙ (univ ρA)) Bⱼ in
let ρB' = wkTerm (lift [ρ]) (⊢Δ ∙ (univ ρA')) B'ⱼ in
let ρe = wkTerm [ρ] ⊢Δ eⱼ in
let ρf = wkTerm [ρ] ⊢Δ fⱼ in
let pred = λ A1 A1' e1 f1 → Δ ⊢ U.wk ρ (cast l (Π A ^ rA ° lA ▹ B ° lB ° l) (Π A' ^ rA ° lA ▹ B' ° lB ° l) e f) ≡ (lam (U.wk ρ A') ▹ (let a = cast l A1' A1 (Idsym (Univ rA l) A1 A1' (fst e1)) (var 0) in cast l ((U.wk (lift ρ) B) [ a ]↑) (U.wk (lift ρ) B') ((snd e1) ∘ (var 0) ^ ¹) (f1 ∘ a ^ l)) ^ l) ∷ U.wk ρ (Π A' ^ rA ° lA ▹ B' ° lB ° l) ^ [ ! , _ ] in
let j0 : pred (wk1 (U.wk ρ A)) (wk1 (U.wk ρ A')) (wk1 (U.wk ρ e)) (wk1 (U.wk ρ f))
j0 = cast-Π ρA ρB ρA' ρB' ρe ρf
in
let j1 = PE.subst (λ x → pred x (wk1 (U.wk ρ A')) (wk1 (U.wk ρ e)) (wk1 (U.wk ρ f))) (wk1-wk≡lift-wk1 ρ A) j0 in
let j2 = PE.subst (λ x → pred (U.wk (lift ρ) (wk1 A)) x (wk1 (U.wk ρ e)) (wk1 (U.wk ρ f))) (wk1-wk≡lift-wk1 ρ A') j1 in
let j3 = PE.subst (λ x → pred (U.wk (lift ρ) (wk1 A)) (U.wk (lift ρ) (wk1 A')) x (wk1 (U.wk ρ f))) (wk1-wk≡lift-wk1 ρ e) j2 in
let j4 = PE.subst (λ x → pred (U.wk (lift ρ) (wk1 A)) (U.wk (lift ρ) (wk1 A')) (U.wk (lift ρ) (wk1 e)) x) (wk1-wk≡lift-wk1 ρ f) j3 in
let j5 = PE.subst (λ x → Δ ⊢ U.wk ρ (cast l (Π A ^ rA ° lA ▹ B ° lB ° l) (Π A' ^ rA ° lA ▹ B' ° lB ° l) e f) ≡ (lam (U.wk ρ A') ▹ (let a = cast l (U.wk (lift ρ) (wk1 A')) (U.wk (lift ρ) (wk1 A)) x (var 0) in cast l ((U.wk (lift ρ) B) [ a ]↑) (U.wk (lift ρ) B') ((snd (U.wk (lift ρ) (wk1 e))) ∘ (var 0) ^ ¹) ((U.wk (lift ρ) (wk1 f)) ∘ a ^ l)) ^ l) ∷ U.wk ρ (Π A' ^ rA ° lA ▹ B' ° lB ° l) ^ [ ! , ι l ]) (PE.sym (wk-Idsym (lift ρ) (Univ rA l) (wk1 A) (wk1 A') (fst (wk1 e)))) j4 in
PE.subst (λ x → Δ ⊢ U.wk ρ (cast l (Π A ^ rA ° lA ▹ B ° lB ° l) (Π A' ^ rA ° lA ▹ B' ° lB ° l) e f) ≡ (lam (U.wk ρ A') ▹ (let a = U.wk (lift ρ) (cast l (wk1 A') (wk1 A) (Idsym (Univ rA l) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0)) in cast l x (U.wk (lift ρ) B') ((snd (U.wk (lift ρ) (wk1 e))) ∘ (var 0) ^ ¹) ((U.wk (lift ρ) (wk1 f)) ∘ a ^ l)) ^ l) ∷ U.wk ρ (Π A' ^ rA ° lA ▹ B' ° lB ° l) ^ [ ! , ι l ]) (PE.sym (wk-β↑ {ρ = ρ} {a = (cast l (wk1 A') (wk1 A) (Idsym (Univ rA l) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0))} B)) j5
wkEqTerm ρ ⊢Δ (cast-ℕ-0 e) = cast-ℕ-0 (wkTerm ρ ⊢Δ e)
wkEqTerm ρ ⊢Δ (cast-ℕ-S e n) = cast-ℕ-S (wkTerm ρ ⊢Δ e) (wkTerm ρ ⊢Δ n)
mutual
wkRed : ∀ {Γ Δ A B r ρ} → ρ ∷ Δ ⊆ Γ →
let ρA = U.wk ρ A
ρB = U.wk ρ B
in ⊢ Δ → Γ ⊢ A ⇒ B ^ r → Δ ⊢ ρA ⇒ ρB ^ r
wkRed ρ ⊢Δ (univ A⇒B) = univ (wkRedTerm ρ ⊢Δ A⇒B)
wkRedTerm : ∀ {Γ Δ A l t u ρ} → ρ ∷ Δ ⊆ Γ →
let ρA = U.wk ρ A
ρt = U.wk ρ t
ρu = U.wk ρ u
in ⊢ Δ → Γ ⊢ t ⇒ u ∷ A ^ l → Δ ⊢ ρt ⇒ ρu ∷ ρA ^ l
wkRedTerm ρ ⊢Δ (conv t⇒u A≡B) = conv (wkRedTerm ρ ⊢Δ t⇒u) (wkEq ρ ⊢Δ A≡B)
wkRedTerm ρ ⊢Δ (app-subst {B = B} t⇒u a) =
PE.subst (λ x → _ ⊢ _ ⇒ _ ∷ x ^ _) (PE.sym (wk-β B))
(app-subst (wkRedTerm ρ ⊢Δ t⇒u) (wkTerm ρ ⊢Δ a))
wkRedTerm ρ ⊢Δ (β-red {A} {B} {lF} {lG} {a} {t} l< l<' ⊢A ⊢t ⊢a) =
let ⊢ρA = wk ρ ⊢Δ ⊢A
in PE.subst (λ x → _ ⊢ _ ⇒ _ ∷ x ^ _) (PE.sym (wk-β B))
(PE.subst (λ x → _ ⊢ U.wk _ ((lam _ ▹ t ^ _) ∘ a ^ _) ⇒ x ∷ _ ^ _)
(PE.sym (wk-β t))
(β-red l< l<' ⊢ρA (wkTerm (lift ρ) (⊢Δ ∙ ⊢ρA) ⊢t)
(wkTerm ρ ⊢Δ ⊢a)))
wkRedTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-subst {s = s} {F = F} {l = l} ⊢F ⊢z ⊢s n⇒n′) =
PE.subst (λ x → _ ⊢ natrec _ _ _ _ _ ⇒ _ ∷ x ^ _) (PE.sym (wk-β F))
(natrec-subst (wk (lift [ρ]) (⊢Δ ∙ univ (ℕⱼ ⊢Δ)) ⊢F)
(PE.subst (λ x → _ ⊢ _ ∷ x ^ _) (wk-β F)
(wkTerm [ρ] ⊢Δ ⊢z))
(PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x ^ [ ! , ι l ])
(wk-β-natrec _ F ! l)
(wkTerm [ρ] ⊢Δ ⊢s))
(wkRedTerm [ρ] ⊢Δ n⇒n′))
wkRedTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-zero {s = s} {F = F} {l = l} ⊢F ⊢z ⊢s) =
PE.subst (λ x → _ ⊢ natrec _ (U.wk (lift ρ) F) _ _ _ ⇒ _ ∷ x ^ _)
(PE.sym (wk-β F))
(natrec-zero (wk (lift [ρ]) (⊢Δ ∙ univ (ℕⱼ ⊢Δ)) ⊢F)
(PE.subst (λ x → _ ⊢ _ ∷ x ^ _)
(wk-β F)
(wkTerm [ρ] ⊢Δ ⊢z))
(PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x ^ [ ! , ι l ])
(wk-β-natrec ρ F ! l)
(wkTerm [ρ] ⊢Δ ⊢s)))
wkRedTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (natrec-suc {s = s} {F = F} {l = l} ⊢n ⊢F ⊢z ⊢s) =
PE.subst (λ x → _ ⊢ natrec _ _ _ _ _ ⇒ _ ∘ natrec _ _ _ _ _ ^ _ ∷ x ^ _)
(PE.sym (wk-β F))
(natrec-suc (wkTerm [ρ] ⊢Δ ⊢n)
(wk (lift [ρ]) (⊢Δ ∙ univ (ℕⱼ ⊢Δ)) ⊢F)
(PE.subst (λ x → _ ⊢ _ ∷ x ^ _)
(wk-β F)
(wkTerm [ρ] ⊢Δ ⊢z))
(PE.subst (λ x → Δ ⊢ U.wk ρ s ∷ x ^ [ ! , ι l ])
(wk-β-natrec ρ F ! l)
(wkTerm [ρ] ⊢Δ ⊢s)))
wkRedTerm ρ ⊢Δ (Id-subst A t u) = Id-subst (wkRedTerm ρ ⊢Δ A) (wkTerm ρ ⊢Δ t) (wkTerm ρ ⊢Δ u)
wkRedTerm ρ ⊢Δ (Id-ℕ-subst m n) = Id-ℕ-subst (wkRedTerm ρ ⊢Δ m) (wkTerm ρ ⊢Δ n)
wkRedTerm ρ ⊢Δ (Id-ℕ-0-subst n) = Id-ℕ-0-subst (wkRedTerm ρ ⊢Δ n)
wkRedTerm ρ ⊢Δ (Id-ℕ-S-subst m n) = Id-ℕ-S-subst (wkTerm ρ ⊢Δ m) (wkRedTerm ρ ⊢Δ n)
wkRedTerm ρ ⊢Δ (Id-U-subst A B) = Id-U-subst (wkRedTerm ρ ⊢Δ A) (wkTerm ρ ⊢Δ B)
wkRedTerm ρ ⊢Δ (Id-U-ℕ-subst B) = Id-U-ℕ-subst (wkRedTerm ρ ⊢Δ B)
wkRedTerm ρ ⊢Δ (Id-U-Π-subst A P B) = let ρA = wkTerm ρ ⊢Δ A in Id-U-Π-subst ρA (wkTerm (lift ρ) (⊢Δ ∙ (univ ρA)) P) (wkRedTerm ρ ⊢Δ B)
wkRedTerm {ρ = ρ} [ρ] ⊢Δ (Id-Π {t = t} {u = u} <l <l' Aⱼ Bⱼ tⱼ uⱼ) =
let ρA = wkTerm [ρ] ⊢Δ Aⱼ in
let ρB = wkTerm (lift [ρ]) (⊢Δ ∙ (univ ρA)) Bⱼ in
let ρt = wkTerm [ρ] ⊢Δ tⱼ in
let ρu = wkTerm [ρ] ⊢Δ uⱼ in
PE.subst
(λ x → _ ⊢ Id _ (U.wk ρ t) _ ⇒ Π _ ^ _ ° _ ▹ Id _ (x ∘ _ ^ _) _ ° _ ° _ ∷ _ ^ _)
(wk1-wk≡lift-wk1 ρ t)
(PE.subst
(λ x → _ ⊢ Id _ _ (U.wk ρ u) ⇒ Π _ ^ _ ° _ ▹ Id _ _ (x ∘ _ ^ _) ° _ ° _ ∷ _ ^ _)
(wk1-wk≡lift-wk1 ρ u)
(Id-Π <l <l' ρA ρB ρt ρu))
wkRedTerm ρ ⊢Δ (Id-ℕ-00 ⊢Γ) = Id-ℕ-00 ⊢Δ
wkRedTerm ρ ⊢Δ (Id-ℕ-SS m n) = Id-ℕ-SS (wkTerm ρ ⊢Δ m) (wkTerm ρ ⊢Δ n)
wkRedTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (Id-U-ΠΠ {A = A} {A' = A'} {rA = rA} {B = B} {B' = B'} Aⱼ Bⱼ A'ⱼ B'ⱼ) =
let l = ⁰ in
let l' = ¹ in
let ρA = wkTerm [ρ] ⊢Δ Aⱼ in
let ρA' = wkTerm [ρ] ⊢Δ A'ⱼ in
let ρB = wkTerm (lift [ρ]) (⊢Δ ∙ (univ ρA)) Bⱼ in
let ρB' = wkTerm (lift [ρ]) (⊢Δ ∙ (univ ρA')) B'ⱼ in
let pred = λ A1 A1' A2' B1 B1' → Δ ⊢ U.wk ρ (Id (U l) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° l) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° l)) ⇒ ∃ U.wk ρ (Id (Univ rA l) A A') ▹ (Π A1' ^ rA ° ⁰ ▹ Id (U l) (B1 [ cast l A2' A1 (Idsym (Univ rA l) A1 A2' (var 1)) (var 0) ]↑) B1' ° l' ° l') ∷ SProp l' ^ next l' in
let j1 : pred (wk1 (wk1 (U.wk ρ A))) (wk1 (U.wk ρ A')) (wk1 (wk1 (U.wk ρ A'))) (wk1d (U.wk (lift ρ) B)) (wk1d (U.wk (lift ρ) B'))
j1 = Id-U-ΠΠ ρA ρB ρA' ρB' in
let j2 = PE.subst (λ x → pred (wk1 (wk1 (U.wk ρ A))) x (wk1 (wk1 (U.wk ρ A'))) (wk1d (U.wk (lift ρ) B)) (wk1d (U.wk (lift ρ) B'))) (wk1-wk≡lift-wk1 ρ A') j1 in
let j3 = PE.subst (λ x → pred x (U.wk (lift ρ) (wk1 A')) (wk1 (wk1 (U.wk ρ A'))) (wk1d (U.wk (lift ρ) B)) (wk1d (U.wk (lift ρ) B'))) (wk1wk1-wk≡liftlift-wk1 ρ A) j2 in
let j4 = PE.subst (λ x → pred (U.wk (lift (lift ρ)) (wk1 (wk1 A))) (U.wk (lift ρ) (wk1 A')) x (wk1d (U.wk (lift ρ) B)) (wk1d (U.wk (lift ρ) B'))) (wk1wk1-wk≡liftlift-wk1 ρ A') j3 in
let j5 = PE.subst (λ x → pred (U.wk (lift (lift ρ)) (wk1 (wk1 A))) (U.wk (lift ρ) (wk1 A')) (U.wk (lift (lift ρ)) (wk1 (wk1 A'))) x (wk1d (U.wk (lift ρ) B'))) (wk1d-wk≡lift-wk1d ρ B) j4 in
let j6 = PE.subst (λ x → pred (U.wk (lift (lift ρ)) (wk1 (wk1 A))) (U.wk (lift ρ) (wk1 A')) (U.wk (lift (lift ρ)) (wk1 (wk1 A'))) (U.wk (lift (lift ρ)) (wk1d B)) x) (wk1d-wk≡lift-wk1d ρ B') j5 in
let j7 = PE.subst (λ x → Δ ⊢ U.wk ρ (Id (U l) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° l) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° l)) ⇒ ∃ U.wk ρ (Id (Univ rA l) A A') ▹ (Π U.wk (lift ρ) (wk1 A') ^ rA ° ⁰ ▹ Id (U l) (U.wk (lift (lift ρ)) (wk1d B) [ (cast l (U.wk (lift (lift ρ)) (wk1 (wk1 A'))) (U.wk (lift (lift ρ)) (wk1 (wk1 A))) x (var 0)) ]↑) (U.wk (lift (lift ρ)) (wk1d B')) ° l' ° l') ∷ SProp l' ^ next l') (PE.sym (wk-Idsym (lift (lift ρ)) (Univ rA l) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1))) j6 in
PE.subst (λ x → Δ ⊢ U.wk ρ (Id (U l) (Π A ^ rA ° ⁰ ▹ B ° ⁰ ° l) (Π A' ^ rA ° ⁰ ▹ B' ° ⁰ ° l)) ⇒ ∃ U.wk ρ (Id (Univ rA l) A A') ▹ (Π U.wk (lift ρ) (wk1 A') ^ rA ° ⁰ ▹ Id (U l) x (U.wk (lift (lift ρ)) (wk1d B')) ° l' ° l') ∷ SProp l' ^ next l') (PE.sym (wk-β↑ {ρ = lift ρ} {a = cast l (wk1 (wk1 A')) (wk1 (wk1 A)) (Idsym (Univ rA l) (wk1 (wk1 A)) (wk1 (wk1 A')) (var 1)) (var 0)} (wk1d B))) j7
wkRedTerm ρ ⊢Δ (Id-U-ℕℕ ⊢Γ) = Id-U-ℕℕ ⊢Δ
wkRedTerm {ρ = ρ} [ρ] ⊢Δ (Id-SProp {A = A} {B = B} Aⱼ Bⱼ) =
let ρA = wkTerm [ρ] ⊢Δ Aⱼ
ρB = wkTerm [ρ] ⊢Δ Bⱼ
l = ⁰
l' = ¹
in
PE.subst
(λ x → _ ⊢ Id (SProp l) (U.wk ρ A) _ ⇒ ∃ (Π U.wk ρ A ^ % ° ⁰ ▹ _ ° ⁰ ° _) ▹ (Π _ ^ % ° ⁰ ▹ x ° _ ° _) ∷ _ ^ _)
(wk1d-wk≡lift-wk1d ρ (wk1 A))
(PE.subst
(λ x → _ ⊢ Id (SProp l) (U.wk ρ A) _ ⇒ ∃ (Π U.wk ρ A ^ % ° ⁰ ▹ _ ° ⁰ ° _) ▹ (Π _ ^ % ° ⁰ ▹ U.wk (lift (step id)) x ° _ ° _) ∷ _ ^ _ )
(wk1-wk≡lift-wk1 ρ A)
(PE.subst
(λ x → _ ⊢ Id (SProp l) (U.wk ρ A) (U.wk ρ B) ⇒ ∃ (Π U.wk ρ A ^ % ° ⁰ ▹ x ° ⁰ ° _) ▹ (Π x ^ % ° ⁰ ▹ _ ° ⁰ ° _) ∷ SProp ¹ ^ _ )
(wk1-wk≡lift-wk1 ρ B) (Id-SProp {A = U.wk ρ A} {B = U.wk ρ B} ρA ρB)))
wkRedTerm ρ ⊢Δ (Id-ℕ-0S n) = Id-ℕ-0S (wkTerm ρ ⊢Δ n)
wkRedTerm ρ ⊢Δ (Id-ℕ-S0 n) = Id-ℕ-S0 (wkTerm ρ ⊢Δ n)
wkRedTerm ρ ⊢Δ (Id-U-ℕΠ A B) =
let ρA = wkTerm ρ ⊢Δ A in
let ρB = wkTerm (lift ρ) (⊢Δ ∙ (univ ρA)) B in
Id-U-ℕΠ ρA ρB
wkRedTerm ρ ⊢Δ (Id-U-Πℕ A B) =
let ρA = wkTerm ρ ⊢Δ A in
let ρB = wkTerm (lift ρ) (⊢Δ ∙ (univ ρA)) B in
Id-U-Πℕ ρA ρB
wkRedTerm ρ ⊢Δ (Id-U-ΠΠ!% eq A B A' B') =
let ρA = wkTerm ρ ⊢Δ A
ρB = wkTerm (lift ρ) (⊢Δ ∙ (univ ρA)) B
ρA' = wkTerm ρ ⊢Δ A'
ρB' = wkTerm (lift ρ) (⊢Δ ∙ (univ ρA')) B'
in Id-U-ΠΠ!% eq ρA ρB ρA' ρB'
wkRedTerm ρ ⊢Δ (cast-subst A B e t) = cast-subst (wkRedTerm ρ ⊢Δ A) (wkTerm ρ ⊢Δ B) (wkTerm ρ ⊢Δ e) (wkTerm ρ ⊢Δ t)
wkRedTerm ρ ⊢Δ (cast-ℕ-subst B e t) = cast-ℕ-subst (wkRedTerm ρ ⊢Δ B) (wkTerm ρ ⊢Δ e) (wkTerm ρ ⊢Δ t)
wkRedTerm ρ ⊢Δ (cast-Π-subst A P B e t) = let ρA = wkTerm ρ ⊢Δ A in cast-Π-subst ρA (wkTerm (lift ρ) (⊢Δ ∙ (univ ρA)) P) (wkRedTerm ρ ⊢Δ B) (wkTerm ρ ⊢Δ e) (wkTerm ρ ⊢Δ t)
wkRedTerm {Δ = Δ} {ρ = ρ} [ρ] ⊢Δ (cast-Π {A = A} {A' = A'} {rA = rA} {B = B} {B' = B'} {e = e} {f = f} Aⱼ Bⱼ A'ⱼ B'ⱼ eⱼ fⱼ) = let l = ⁰ in let lA = ⁰ in let lB = ⁰ in
let ρA = wkTerm [ρ] ⊢Δ Aⱼ in
let ρA' = wkTerm [ρ] ⊢Δ A'ⱼ in
let ρB = wkTerm (lift [ρ]) (⊢Δ ∙ (univ ρA)) Bⱼ in
let ρB' = wkTerm (lift [ρ]) (⊢Δ ∙ (univ ρA')) B'ⱼ in
let ρe = wkTerm [ρ] ⊢Δ eⱼ in
let ρf = wkTerm [ρ] ⊢Δ fⱼ in
let pred = λ A1 A1' e1 f1 → Δ ⊢ U.wk ρ (cast l (Π A ^ rA ° lA ▹ B ° lB ° l) (Π A' ^ rA ° lA ▹ B' ° lB ° l) e f) ⇒ (lam (U.wk ρ A') ▹ (let a = cast l A1' A1 (Idsym (Univ rA l) A1 A1' (fst e1)) (var 0) in cast l ((U.wk (lift ρ) B) [ a ]↑) (U.wk (lift ρ) B') ((snd e1) ∘ (var 0) ^ ¹) (f1 ∘ a ^ l)) ^ l) ∷ U.wk ρ (Π A' ^ rA ° lA ▹ B' ° lB ° l) ^ _ in
let j0 : pred (wk1 (U.wk ρ A)) (wk1 (U.wk ρ A')) (wk1 (U.wk ρ e)) (wk1 (U.wk ρ f))
j0 = cast-Π ρA ρB ρA' ρB' ρe ρf
in
let j1 = PE.subst (λ x → pred x (wk1 (U.wk ρ A')) (wk1 (U.wk ρ e)) (wk1 (U.wk ρ f))) (wk1-wk≡lift-wk1 ρ A) j0 in
let j2 = PE.subst (λ x → pred (U.wk (lift ρ) (wk1 A)) x (wk1 (U.wk ρ e)) (wk1 (U.wk ρ f))) (wk1-wk≡lift-wk1 ρ A') j1 in
let j3 = PE.subst (λ x → pred (U.wk (lift ρ) (wk1 A)) (U.wk (lift ρ) (wk1 A')) x (wk1 (U.wk ρ f))) (wk1-wk≡lift-wk1 ρ e) j2 in
let j4 = PE.subst (λ x → pred (U.wk (lift ρ) (wk1 A)) (U.wk (lift ρ) (wk1 A')) (U.wk (lift ρ) (wk1 e)) x) (wk1-wk≡lift-wk1 ρ f) j3 in
let j5 = PE.subst (λ x → Δ ⊢ U.wk ρ (cast l (Π A ^ rA ° lA ▹ B ° lB ° l) (Π A' ^ rA ° lA ▹ B' ° lB ° l) e f) ⇒ (lam (U.wk ρ A') ▹ (let a = cast l (U.wk (lift ρ) (wk1 A')) (U.wk (lift ρ) (wk1 A)) x (var 0) in cast l ((U.wk (lift ρ) B) [ a ]↑) (U.wk (lift ρ) B') ((snd (U.wk (lift ρ) (wk1 e))) ∘ (var 0) ^ ¹) ((U.wk (lift ρ) (wk1 f)) ∘ a ^ l)) ^ l) ∷ U.wk ρ (Π A' ^ rA ° lA ▹ B' ° lB ° l) ^ ι l) (PE.sym (wk-Idsym (lift ρ) (Univ rA l) (wk1 A) (wk1 A') (fst (wk1 e)))) j4 in
PE.subst (λ x → Δ ⊢ U.wk ρ (cast l (Π A ^ rA ° lA ▹ B ° lB ° l) (Π A' ^ rA ° lA ▹ B' ° lB ° l) e f) ⇒ (lam (U.wk ρ A') ▹ (let a = U.wk (lift ρ) (cast l (wk1 A') (wk1 A) (Idsym (Univ rA l) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0)) in cast l x (U.wk (lift ρ) B') ((snd (U.wk (lift ρ) (wk1 e))) ∘ (var 0) ^ ¹) ((U.wk (lift ρ) (wk1 f)) ∘ a ^ l)) ^ l) ∷ U.wk ρ (Π A' ^ rA ° lA ▹ B' ° lB ° l) ^ ι l) (PE.sym (wk-β↑ {ρ = ρ} {a = (cast l (wk1 A') (wk1 A) (Idsym (Univ rA l) (wk1 A) (wk1 A') (fst (wk1 e))) (var 0))} B)) j5
wkRedTerm ρ ⊢Δ (cast-ℕ-0 e) = cast-ℕ-0 (wkTerm ρ ⊢Δ e)
wkRedTerm ρ ⊢Δ (cast-ℕ-S e n) = cast-ℕ-S (wkTerm ρ ⊢Δ e) (wkTerm ρ ⊢Δ n)
wkRedTerm ρ ⊢Δ (cast-ℕ-cong e n) = cast-ℕ-cong (wkTerm ρ ⊢Δ e) (wkRedTerm ρ ⊢Δ n)
wkRed* : ∀ {Γ Δ A B r ρ} → ρ ∷ Δ ⊆ Γ →
let ρA = U.wk ρ A
ρB = U.wk ρ B
in ⊢ Δ → Γ ⊢ A ⇒* B ^ r → Δ ⊢ ρA ⇒* ρB ^ r
wkRed* ρ ⊢Δ (id A) = id (wk ρ ⊢Δ A)
wkRed* ρ ⊢Δ (A⇒A′ ⇨ A′⇒*B) = wkRed ρ ⊢Δ A⇒A′ ⇨ wkRed* ρ ⊢Δ A′⇒*B
wkRed*Term : ∀ {Γ Δ A l t u ρ} → ρ ∷ Δ ⊆ Γ →
let ρA = U.wk ρ A
ρt = U.wk ρ t
ρu = U.wk ρ u
in ⊢ Δ → Γ ⊢ t ⇒* u ∷ A ^ l → Δ ⊢ ρt ⇒* ρu ∷ ρA ^ l
wkRed*Term ρ ⊢Δ (id t) = id (wkTerm ρ ⊢Δ t)
wkRed*Term ρ ⊢Δ (t⇒t′ ⇨ t′⇒*u) = wkRedTerm ρ ⊢Δ t⇒t′ ⇨ wkRed*Term ρ ⊢Δ t′⇒*u
wkRed:*: : ∀ {Γ Δ A B r ρ} → ρ ∷ Δ ⊆ Γ →
let ρA = U.wk ρ A
ρB = U.wk ρ B
in ⊢ Δ → Γ ⊢ A :⇒*: B ^ r → Δ ⊢ ρA :⇒*: ρB ^ r
wkRed:*: ρ ⊢Δ [[ ⊢A , ⊢B , D ]] = [[ wk ρ ⊢Δ ⊢A , wk ρ ⊢Δ ⊢B , wkRed* ρ ⊢Δ D ]]
wkRed:*:Term : ∀ {Γ Δ A l t u ρ} → ρ ∷ Δ ⊆ Γ →
let ρA = U.wk ρ A
ρt = U.wk ρ t
ρu = U.wk ρ u
in ⊢ Δ → Γ ⊢ t :⇒*: u ∷ A ^ l → Δ ⊢ ρt :⇒*: ρu ∷ ρA ^ l
wkRed:*:Term ρ ⊢Δ [[ ⊢t , ⊢u , d ]] =
[[ wkTerm ρ ⊢Δ ⊢t , wkTerm ρ ⊢Δ ⊢u , wkRed*Term ρ ⊢Δ d ]]
| {
"alphanum_fraction": 0.424544517,
"avg_line_length": 63.5152838428,
"ext": "agda",
"hexsha": "57fbc059fb8dd56fc39c273f8dd89d264fed30e5",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Weakening.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Weakening.agda",
"max_line_length": 525,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Weakening.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 16119,
"size": 29090
} |
{-# OPTIONS --safe #-}
module Tools.Function where
-- Identity function
idᶠ : {A : Set} → A → A
idᶠ x = x
-- Function composition (simply typed variant)
_∘ᶠ_ : {A B C : Set} → (B → C) → (A → B) → A → C
_∘ᶠ_ f g a = f (g a)
| {
"alphanum_fraction": 0.5575221239,
"avg_line_length": 18.8333333333,
"ext": "agda",
"hexsha": "9dfab7e81d19e85e0b8206bf12eac511ace7d9b1",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Tools/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Tools/Function.agda",
"max_line_length": 48,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Tools/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 94,
"size": 226
} |
{-# OPTIONS --without-K --safe #-}
module Function.Reasoning where
open import Level
infixr 2 _⟨⟩⇒_ ⟨∙⟩⇒-syntax
⟨∙⟩⇒-syntax : ∀ (A : Type a) → (B → C) → (A → B) → A → C
⟨∙⟩⇒-syntax _ f g x = f (g x)
syntax ⟨∙⟩⇒-syntax A f g = A ⟨ g ⟩⇒ f
_⟨⟩⇒_ : ∀ (A : Type a) → (A → B) → A → B
_ ⟨⟩⇒ f = f
infix 2.5 _⇒∎
_⇒∎ : (A : Type a) → A → A
_⇒∎ _ x = x
infixr 1.5 [_]⇒_
[_]⇒_ : A → (A → B) → B
[ x ]⇒ f = f x
-- infix 2.5 _⇒[_]
-- _⇒[_] : (A : Type a) → A → A
-- _ ⇒[ x ] = x
| {
"alphanum_fraction": 0.4294736842,
"avg_line_length": 16.9642857143,
"ext": "agda",
"hexsha": "22d694b9633a3da5a503439f497916890553fbb2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Function/Reasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Function/Reasoning.agda",
"max_line_length": 56,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Function/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 281,
"size": 475
} |
-- Andreas, 2016-04-13 display forms do not work for projection patterns
-- {-# OPTIONS -v tc.display:100 #-}
postulate B : Set
module M (A : Set) where
record R : Set where
field f : A
open M B
test : R
test = {!!} -- C-c C-c RET split on result here
-- Is:
-- M.R.f test = ?
--
-- Expected:
-- R.f test = ?
| {
"alphanum_fraction": 0.5882352941,
"avg_line_length": 15.380952381,
"ext": "agda",
"hexsha": "8dda439865dc543616bb7588fa351f381debd323",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue1932.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue1932.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue1932.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 103,
"size": 323
} |
module Arithmetic where
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + b = b
(succ a) + b = succ (a + b)
-- ℕ + ℕ = succ (succ ℕ))
_*_ : ℕ → ℕ → ℕ
zero * b = zero
(succ a) * b = a + b * a
| {
"alphanum_fraction": 0.4180327869,
"avg_line_length": 15.25,
"ext": "agda",
"hexsha": "66edb106b94b242fd862048d46a5e50abf479e1c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cf10911d8f8c4dcc0ced16f39f7f8d4588bd84ff",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "haskellcamargo/agda-arithmetic-operations",
"max_forks_repo_path": "Arithmetic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cf10911d8f8c4dcc0ced16f39f7f8d4588bd84ff",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "haskellcamargo/agda-arithmetic-operations",
"max_issues_repo_path": "Arithmetic.agda",
"max_line_length": 29,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cf10911d8f8c4dcc0ced16f39f7f8d4588bd84ff",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "haskellcamargo/agda-arithmetic-operations",
"max_stars_repo_path": "Arithmetic.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 100,
"size": 244
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.CofiberSequence
open import cohomology.Exactness
open import cohomology.FunctionOver
open import cohomology.Theory
open import cohomology.ProductRepr
open import cohomology.WedgeCofiber
{- Finite additivity is provable (and in a stronger form) without using
- the additivity axiom. We have
Cⁿ(X ∨ Y) == Cⁿ(X) × Cⁿ(Y)
- and over this path
- ∙ Cⁿ(winl) corresponds to fst : Cⁿ(X) × Cⁿ(Y) → Cⁿ(X),
- ∙ Cⁿ(winr) corresponds to snd : Cⁿ(X) × Cⁿ(Y) → Cⁿ(Y),
- ∙ Cⁿ(Wedge-rec winl* winr* wglue*) : Cⁿ(Z) → Cⁿ(X ∨ Y)
corresponds to Cⁿ(winl*) × Cⁿ(winr*).
- ∙ Cⁿ(f) : Cⁿ(X ∨ Y) → Cⁿ(Z)
corresponds to Cⁿ(projl ∘ f) + Cⁿ(projr ∘ f) : Cⁿ(X) × Cⁿ(Y) → Cⁿ(Z)
-}
module cohomology.Wedge {i} (CT : CohomologyTheory i) where
module CWedge (n : ℤ) (X Y : Ptd i) where
open WedgeCofiber X Y
open CohomologyTheory CT
open import cohomology.Functor CT
private
βl : CF-hom n ⊙winl ∘ᴳ CF-hom n (⊙projl X Y) == idhom _
βl = ! (CF-comp n (⊙projl X Y) ⊙winl) ∙ CF-ident n
βr : CF-hom n ⊙winr ∘ᴳ CF-hom n (⊙projr X Y) == idhom _
βr = ! (CF-comp n (⊙projr X Y) ⊙winr)
∙ ap (CF-hom n) ⊙projr-winr
∙ CF-ident n
where
⊙projr-winr : ⊙projr X Y ⊙∘ ⊙winr == ⊙idf _
⊙projr-winr = ⊙λ= (λ _ → idp) $
∙-unit-r _ ∙ ap-! (projr X Y) wglue ∙ ap ! (Projr.glue-β X Y)
open ProductRepr
(CF-hom n (⊙projl X Y)) (CF-hom n (⊙projr X Y))
(CF-hom n ⊙winl) (CF-hom n ⊙winr)
(app= (ap GroupHom.f βl)) (app= (ap GroupHom.f βr))
(transport
(λ {(_ , g) → is-exact (CF-hom n g) (CF-hom n ⊙winr)})
(pair= CofWinr.⊙path CofWinr.cfcod-over)
(C-exact n ⊙winr))
(transport
(λ {(_ , g) → is-exact (CF-hom n g) (CF-hom n ⊙winl)})
(pair= CofWinl.⊙path CofWinl.cfcod-over)
(C-exact n ⊙winl))
public
⊙wedge-rec-over : {Z : Ptd i} (winl* : fst (X ⊙→ Z)) (winr* : fst (Y ⊙→ Z))
→ CF-hom n (⊙wedge-rec winl* winr*)
== ×ᴳ-hom-in (CF-hom n winl*) (CF-hom n (winr*))
[ (λ K → C n Z →ᴳ K) ↓ path ]
⊙wedge-rec-over winl* winr* = codomain-over-iso $
codomain-over-equiv (CF n R.⊙f) _
▹ ap2 (λ f g z → (f z , g z))
(ap GroupHom.f $ ! (CF-comp n R.⊙f ⊙winl) ∙ ap (CF-hom n) R.⊙winl-β)
(ap GroupHom.f $ ! (CF-comp n R.⊙f ⊙winr) ∙ ap (CF-hom n) R.⊙winr-β)
where
module R = ⊙WedgeRec winl* winr*
wedge-hom-η : {Z : Ptd i} (φ : C n (⊙Wedge X Y) →ᴳ C n Z)
→ φ == ×ᴳ-sum-hom (C-abelian n _) (φ ∘ᴳ CF-hom n (⊙projl X Y))
(φ ∘ᴳ CF-hom n (⊙projr X Y))
[ (λ G → G →ᴳ C n Z) ↓ path ]
wedge-hom-η φ =
lemma (C-abelian n _) (C-abelian n _) inl-over inr-over
where
lemma : {G H K L : Group i}
(aG : is-abelian G) (aL : is-abelian L) {p : G == H ×ᴳ K}
{φ : H →ᴳ G} {ψ : K →ᴳ G} {χ : G →ᴳ L}
→ φ == ×ᴳ-inl [ (λ J → H →ᴳ J) ↓ p ]
→ ψ == ×ᴳ-inr {G = H} [ (λ J → K →ᴳ J) ↓ p ]
→ χ == ×ᴳ-sum-hom aL (χ ∘ᴳ φ) (χ ∘ᴳ ψ) [ (λ J → J →ᴳ L) ↓ p ]
lemma {H = H} {K = K} aG aL {p = idp} {χ = χ} idp idp =
ap (λ α → χ ∘ᴳ α) (×ᴳ-sum-hom-η H K aG)
∙ ! (∘-×ᴳ-sum-hom aG aL χ (×ᴳ-inl {G = H}) (×ᴳ-inr {G = H}))
wedge-in-over : {Z : Ptd i} (f : fst (Z ⊙→ ⊙Wedge X Y))
→ CF-hom n f
== ×ᴳ-sum-hom (C-abelian n _) (CF-hom n (⊙projl X Y ⊙∘ f))
(CF-hom n (⊙projr X Y ⊙∘ f))
[ (λ G → G →ᴳ C n Z) ↓ path ]
wedge-in-over f =
wedge-hom-η (CF-hom n f)
▹ ap2 (×ᴳ-sum-hom (C-abelian n _))
(! (CF-comp n (⊙projl X Y) f))
(! (CF-comp n (⊙projr X Y) f))
| {
"alphanum_fraction": 0.5097931034,
"avg_line_length": 36.25,
"ext": "agda",
"hexsha": "08e2081441ad0f0ec27cee924f5b5715f6a6507d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "cohomology/Wedge.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "cohomology/Wedge.agda",
"max_line_length": 78,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "cohomology/Wedge.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 1695,
"size": 3625
} |
module Model where
open import Data.Product
open import Data.Char
open import Data.String
open import Data.Container.Indexed
open import IO.Primitive
open import Signature
postulate
Model : Set
initialModel : Model
moveModel : Dir → Model → Model
setMode : Mode → Model → Model
getPrompt : Model → Prompt
addCharToBuffer : Char → Model → Model
getBuffer : Model → String
setCurrentFeed : Model → Feed → Model
getCurrentFeedsUrl : Model → String
searchModel : String → Model → Model
searchNextModel : String → Model → Model
addFeedToModel : String → Model → Model
cmdToResp : ∀ {m} (c : Command Hårss m) → Model → IO (Response Hårss c)
cmdToResp (moveP d) m = return _
cmdToResp (promptP p) m = return _
cmdToResp (putCharP c) m = return _
cmdToResp doneP m = return (getBuffer m , getPrompt m)
cmdToResp fetchP m = fetchUrl (getCurrentFeedsUrl m)
where
postulate
fetchUrl : String → IO Feed
cmdToResp searchNextP m = return (getBuffer m)
| {
"alphanum_fraction": 0.6704438149,
"avg_line_length": 29.4166666667,
"ext": "agda",
"hexsha": "f4277cc5748cfd9d29fcb739fd8725eded80171c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f767dbfbd82ce667b7cea667c4da76fe97f761eb",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "stevana/haarss",
"max_forks_repo_path": "prototype/command-response/Model.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f767dbfbd82ce667b7cea667c4da76fe97f761eb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "stevana/haarss",
"max_issues_repo_path": "prototype/command-response/Model.agda",
"max_line_length": 71,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f767dbfbd82ce667b7cea667c4da76fe97f761eb",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "stevana/haarss",
"max_stars_repo_path": "prototype/command-response/Model.agda",
"max_stars_repo_stars_event_max_datetime": "2015-07-30T11:43:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T11:43:26.000Z",
"num_tokens": 294,
"size": 1059
} |
{-# OPTIONS --without-K #-}
module sets.fin where
open import sets.fin.core public
-- open import sets.fin.properties public
-- open import sets.fin.ordering public
-- open import sets.fin.universe public
| {
"alphanum_fraction": 0.7487922705,
"avg_line_length": 25.875,
"ext": "agda",
"hexsha": "790de06042bc84d867372a66db4d99d206989249",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z",
"max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "HoTT/M-types",
"max_forks_repo_path": "sets/fin.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "HoTT/M-types",
"max_issues_repo_path": "sets/fin.agda",
"max_line_length": 41,
"max_stars_count": 27,
"max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "HoTT/M-types",
"max_stars_repo_path": "sets/fin.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z",
"num_tokens": 45,
"size": 207
} |
import Lvl
open import Structure.Category
open import Structure.Setoid
open import Type
-- TODO: Deprecate this file and use Relator.Equals.Category instead
module Structure.Category.Morphism.IdTransport where
import Functional.Dependent as Fn
import Function.Equals
open Function.Equals.Dependent
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Relator.Equals using ([≡]-intro) renaming (_≡_ to _≡ₑ_)
open import Relator.Equals.Proofs
import Structure.Categorical.Names as Names
open import Structure.Category.Functor
open import Structure.Categorical.Properties
open import Structure.Function
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Syntax.Transitivity
module _
{ℓₒ ℓₘ ℓₑ : Lvl.Level}
(cat : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ})
where
open CategoryObject(cat)
open Category(category) using (_∘_ ; id ; identityₗ ; identityᵣ)
open Category.ArrowNotation(category)
open Morphism.OperModule ⦃ morphism-equiv ⦄ (\{x} → _∘_ {x})
open Morphism.IdModule ⦃ morphism-equiv ⦄ (\{x} → _∘_ {x})(id)
private variable a b c : Object
-- Essentially the identity morphism masquerading as a morphism between two arbitrary but identical objects.
transport : (a ≡ₑ b) → (a ⟶ b)
transport = sub₂(_≡ₑ_)(_⟶_) ⦃ [≡]-sub-of-reflexive ⦃ intro id ⦄ ⦄
transport-function : Function ⦃ [≡]-equiv ⦄ ⦃ morphism-equiv ⦄ (transport {a = a}{b = b})
Function.congruence transport-function xy = sub₂(_≡ₑ_)(_≡_) ⦃ [≡]-sub-of-reflexive ⦃ Equiv.reflexivity(morphism-equiv) ⦄ ⦄ ([≡]-with(transport) xy)
transport-of-reflexivity : (transport(reflexivity(_≡ₑ_)) ≡ id{a})
transport-of-reflexivity = reflexivity(_≡_) ⦃ Equiv.reflexivity morphism-equiv ⦄
-- transport-of-symmetry : ∀{ab : (a ≡ₑ b)}{ba : (b ≡ₑ a)} → (transitivity(_≡ₑ_) ab ba ≡ reflexivity(_≡ₑ_)) → (transport(symmetry(_≡ₑ_) ab) ≡ transport ba)
transport-of-transitivity : ∀{ab : (a ≡ₑ b)}{bc : (b ≡ₑ c)} → (transport(transitivity(_≡ₑ_) ab bc) ≡ transport(bc) ∘ transport(ab))
transport-of-transitivity {ab = [≡]-intro} {bc = [≡]-intro} = symmetry(_≡_) ⦃ Equiv.symmetry morphism-equiv ⦄ (Morphism.identityₗ(_∘_)(id))
[∘]-on-transport-inverseₗ : ∀{ab : (a ≡ₑ b)} → ((transport (symmetry(_≡ₑ_) ab)) ∘ (transport ab) ≡ id)
[∘]-on-transport-inverseₗ {ab = [≡]-intro} = Morphism.identityₗ(_∘_)(id)
instance
transport-inverseₗ : ∀{ab : (a ≡ₑ b)} → Inverseₗ(transport ab) (transport(symmetry(_≡ₑ_) ab))
transport-inverseₗ {ab = ab} = Morphism.intro ([∘]-on-transport-inverseₗ {ab = ab})
[∘]-on-transport-inverseᵣ : ∀{ab : (a ≡ₑ b)} → ((transport ab) ∘ (transport (symmetry(_≡ₑ_) ab)) ≡ id)
[∘]-on-transport-inverseᵣ {ab = [≡]-intro} = Morphism.identityᵣ(_∘_)(id)
instance
transport-inverseᵣ : ∀{ab : (a ≡ₑ b)} → Inverseᵣ(transport ab) (transport(symmetry(_≡ₑ_) ab))
transport-inverseᵣ {ab = ab} = Morphism.intro ([∘]-on-transport-inverseᵣ {ab = ab})
instance
transport-isomorphism : ∀{ab : (a ≡ₑ b)} → Isomorphism(transport ab)
transport-isomorphism {ab = ab} = [∃]-intro (transport(symmetry(_≡_) ab)) ⦃ [∧]-intro (transport-inverseₗ {ab = ab}) (transport-inverseᵣ {ab = ab}) ⦄
transport-congruence-symmetry-involution : ∀{ab : (a ≡ₑ b)} → ((transport Fn.∘ symmetry(_≡ₑ_) Fn.∘ symmetry(_≡ₑ_)) ab ≡ transport ab)
transport-congruence-symmetry-involution {ab = [≡]-intro} = reflexivity(_≡_) ⦃ Equiv.reflexivity morphism-equiv ⦄
module _
{ℓₒₗ ℓₘₗ ℓₑₗ ℓₒᵣ ℓₘᵣ ℓₑᵣ : Lvl.Level}
{catₗ : CategoryObject{ℓₒₗ}{ℓₘₗ}{ℓₑₗ}}
{catᵣ : CategoryObject{ℓₒᵣ}{ℓₘᵣ}{ℓₑᵣ}}
where
open CategoryObject
open Category using (_∘_ ; id ; identityₗ ; identityᵣ)
open Category.ArrowNotation
private open module Equivᵣ {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv(catᵣ){x}{y} ⦄) using ()
transport-of-congruenced-functor : (([∃]-intro F ⦃ intro map ⦄) : catₗ →ᶠᵘⁿᶜᵗᵒʳ catᵣ) → ∀{a b : Object(catₗ)}{ab : (a ≡ₑ b)} → (transport(catᵣ)(congruence₁ F ab) ≡ map(transport(catₗ)(ab)))
transport-of-congruenced-functor ([∃]-intro F functor@⦃ intro map ⦄) {ab = [≡]-intro} =
transport catᵣ (congruence₁ F [≡]-intro) 🝖[ _≡_ ]-[]
transport catᵣ [≡]-intro 🝖[ _≡_ ]-[]
id(category(catᵣ)) 🝖[ _≡_ ]-[ Functor.id-preserving functor ]-sym
map(id(category(catₗ))) 🝖[ _≡_ ]-[]
map(transport catₗ [≡]-intro) 🝖-end
-- transport-of-congruenced-bifunctor : ∀{ab : (a ≡ₑ b)}{[∃]-intro F : Bifunctor} → (F(transport(ab)(cd)) ≡ transport(congruence₂ F ab cd))
| {
"alphanum_fraction": 0.6650570676,
"avg_line_length": 47.9578947368,
"ext": "agda",
"hexsha": "f5d3ee566a64066a123dffc61601f67b34135300",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Category/Morphism/IdTransport.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Category/Morphism/IdTransport.agda",
"max_line_length": 191,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Category/Morphism/IdTransport.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1732,
"size": 4556
} |
{-# OPTIONS --rewriting --confluence-check #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
module _ where
data Unit : Set where
unit : Unit
sym : {A : Set} {x y : A} → x ≡ y → y ≡ x
sym refl = refl
subst : {A : Set} (P : A → Set) {x y : A} → x ≡ y → P x → P y
subst P refl p = p
module _ (p : false ≡ true) where
block : {A : Set} → Unit → A → A
block unit x = x
r : ∀ u → block u false ≡ true
r unit = p
{-# REWRITE r #-}
r′ : ∀ u → block u false ≡ true
r′ u = refl
lazy : false ≡ true
lazy = r′ unit
T : Bool → Set
T true = Bool
T false = Bool → Bool
module _ (p : false ≡ true) where
bool : (Bool → Bool) → Bool
bool = subst T (lazy p)
fun : Bool → (Bool → Bool)
fun = subst T (sym (lazy p))
omega : Bool → Bool
omega = λ x → fun x x
loop : Bool
loop = omega (bool omega)
-- omega = λ p x → x x
-- loop = λ p → <BLACKHOLE>
| {
"alphanum_fraction": 0.5652173913,
"avg_line_length": 17.462962963,
"ext": "agda",
"hexsha": "08be2c4e8fba3db09a48efca453ba7d6d8004ec8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue1445-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue1445-2.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue1445-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 341,
"size": 943
} |
module Lemmachine.Default.Proofs where
open import Lemmachine
import Lemmachine.Default
import Lemmachine.Lemmas
open import Lemmachine.Default.Lemmas
open Lemmachine.Lemmas Lemmachine.Default.resource
open import Relation.Binary.PropositionalEquality
open import Data.Empty
open import Data.Maybe
open import Data.Product hiding (map)
open import Data.Function using (const)
open import Data.List.Any
methodNotAllowed : ∀ r → method r ∉ allowedMethods r
→ resolveStatus r ≡ MethodNotAllowed
methodNotAllowed r p with methodAlwaysKnown r | methodIsntAllowed r p
... | p₂ | p₃ rewrite p₂ | p₃ = refl
optionsOK : ∀ r → method r ∈ allowedMethods r
→ method r ≡ OPTIONS
→ resolveStatus r ≡ OK
optionsOK r p p₂ with methodAlwaysKnown r | methodIsAllowed r p
... | p₃ | p₄ rewrite p₃ | p₄ | p₂ = refl
| {
"alphanum_fraction": 0.7327080891,
"avg_line_length": 35.5416666667,
"ext": "agda",
"hexsha": "15e7acb5cd310c8620f882f8ed350ea29b599101",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "src/Lemmachine/Default/Proofs.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "src/Lemmachine/Default/Proofs.agda",
"max_line_length": 69,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "src/Lemmachine/Default/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 217,
"size": 853
} |
open import Common.Prelude
⟨_⟩_ : Bool → Bool → Bool
⟨ _ ⟩_ = λ b → b
| {
"alphanum_fraction": 0.5915492958,
"avg_line_length": 14.2,
"ext": "agda",
"hexsha": "5e3a2aa49ae0ca7bd705722c9d6214f6d34fdfb6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Sections-9.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Sections-9.agda",
"max_line_length": 26,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Sections-9.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 30,
"size": 71
} |
-- Andreas, 2017-12-16, issue #2870
-- Nicer error for non-printable character in lexer.
postulate
beforeHyphenafterHyphen : Set
-- Expected something like:
-- Lexical error (unprintable character)
| {
"alphanum_fraction": 0.7536945813,
"avg_line_length": 22.5555555556,
"ext": "agda",
"hexsha": "154be524646f9cf7fc2cd2ef61fc73e560c0f575",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2870.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2870.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2870.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 57,
"size": 203
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Rings.Definition
open import Sets.EquivalenceRelations
open import Rings.IntegralDomains.Definition
module Rings.Primes.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (intDom : IntegralDomain R) where
open import Rings.Divisible.Definition R
open import Rings.IntegralDomains.Lemmas intDom
open import Rings.Ideals.Definition R
open import Rings.Primes.Definition intDom
open import Rings.Ideals.Prime.Definition {R = R}
open import Rings.Irreducibles.Definition intDom
open Ring R
open Setoid S
open Equivalence eq
primeImpliesPrimeIdeal : {a : A} → Prime a → PrimeIdeal (generatedIdeal a)
primeImpliesPrimeIdeal {a} record { isPrime = isPrime ; nonzero = nonzero ; nonunit = nonunit } = record { isPrime = λ {r} {s} → isPrime r s ; notContained = 1R ; notContainedIsNotContained = bad }
where
bad : a ∣ 1R → False
bad (c , ac=1) = nonunit (c , ac=1)
primeIdealImpliesPrime : {a : A} → ((a ∼ 0R) → False) → PrimeIdeal (generatedIdeal a) → Prime a
Prime.isPrime (primeIdealImpliesPrime {a} a!=0 record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) r s a|rs aNot|r = isPrime a|rs aNot|r
Prime.nonzero (primeIdealImpliesPrime {a} a!=0 record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) = a!=0
Prime.nonunit (primeIdealImpliesPrime {a} a!=0 record { isPrime = isPrime ; notContained = notContained ; notContainedIsNotContained = notContainedIsNotContained }) (c , ac=1) = notContainedIsNotContained ((c * notContained) , transitive *Associative (transitive (*WellDefined ac=1 reflexive) identIsIdent))
primeIsIrreducible : {a : A} → Prime a → Irreducible a
Irreducible.nonzero (primeIsIrreducible {a} prime) = Prime.nonzero prime
Irreducible.nonunit (primeIsIrreducible {a} prime) = Prime.nonunit prime
Irreducible.irreducible (primeIsIrreducible {a} prime) x y xy=a xNonunit = underlying pr , yUnit
where
a|xy : a ∣ (x * y)
a|xy = 1R , transitive *Commutative (transitive identIsIdent (symmetric xy=a))
a|yFalse : (a ∣ y) → False
a|yFalse (c , ac=y) = xNonunit (c , transitive *Commutative t)
where
s : (a * (c * x)) ∼ a
s = transitive *Associative (transitive (*WellDefined ac=y reflexive) (transitive *Commutative xy=a))
t : (c * x) ∼ 1R
t = cancelIntDom {a} {c * x} {1R} (transitive s (symmetric (transitive *Commutative identIsIdent))) (Prime.nonzero prime)
pr : Sg A (λ c → (a * c) ∼ x)
pr = Prime.isPrime prime y x (divisibleWellDefined reflexive *Commutative a|xy) a|yFalse
yUnit : (y * underlying pr) ∼ 1R
yUnit with pr
... | c , ac=x = transitive *Commutative (cancelIntDom {a} {c * y} {1R} (transitive *Associative (transitive (*WellDefined ac=x reflexive) (transitive xy=a (symmetric (transitive *Commutative identIsIdent))))) (Prime.nonzero prime))
| {
"alphanum_fraction": 0.7125532612,
"avg_line_length": 58.6730769231,
"ext": "agda",
"hexsha": "8857d35f792bdf128eb0ed83fb908309d8f65ac2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Primes/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Primes/Lemmas.agda",
"max_line_length": 307,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Primes/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 957,
"size": 3051
} |
{-# OPTIONS --without-K --safe #-}
open import Level
open import Categories.Category
open import Categories.Monad
module Categories.Monad.Morphism {o ℓ e} {C D : Category o ℓ e} where
open import Categories.NaturalTransformation
open import Categories.Functor
open NaturalTransformation
-- monad morphism in the sense of the nLab
-- https://ncatlab.org/nlab/show/monad#the_bicategory_of_monads
-- between generic monads t : a -> a & s : b -> b
record Monad⇒ (M : Monad C) (N : Monad D) : Set (o ⊔ ℓ ⊔ e) where
private
module M = Monad M
module N = Monad N
open module D = Category D using (_∘_; _≈_)
field
X : Functor C D
α : NaturalTransformation (N.F ∘F X) (X ∘F M.F)
module X = Functor X
module α = NaturalTransformation α
field
unit-comp : ∀ {U} → α.η U ∘ (N.η.η (X.₀ U)) ≈ X.₁ (M.η.η U)
mult-comp : ∀ {U} → α.η U ∘ (N.μ.η (X.₀ U)) ≈ X.₁ (M.μ.η U) ∘ α.η (M.F.₀ U) ∘ N.F.₁ (α.η U)
-- monad morphism in a different sense:
-- monads are on the same category, X is the identity
record Monad⇒-id (M N : Monad C) : Set (o ⊔ ℓ ⊔ e) where
private
module M = Monad M
module N = Monad N
field
α : NaturalTransformation N.F M.F
module α = NaturalTransformation α
open module C = Category C using (_∘_; _≈_)
field
unit-comp : ∀ {U} → α.η U ∘ N.η.η U ≈ M.η.η U
mult-comp : ∀ {U} → α.η U ∘ (N.μ.η U) ≈ M.μ.η U ∘ α.η (M.F.₀ U) ∘ N.F.₁ (α.η U)
-- monad 2-cell in the sense of https://ncatlab.org/nlab/show/monad#the_bicategory_of_monads
record Monad²⇒ {M : Monad C} {N : Monad D} (Γ Δ : Monad⇒ M N) : Set (o ⊔ ℓ ⊔ e) where
private
module M = Monad M
module N = Monad N
module Γ = Monad⇒ Γ
module Δ = Monad⇒ Δ
field
m : NaturalTransformation Γ.X Δ.X
module m = NaturalTransformation m
open module D = Category D using (_∘_; _≈_)
field
comm : ∀ {U} → Δ.α.η U ∘ N.F.₁ (m.η U) ≈ m.η (M.F.₀ U) ∘ Γ.α.η U | {
"alphanum_fraction": 0.6137316562,
"avg_line_length": 26.5,
"ext": "agda",
"hexsha": "72bb06a9c6d30a0383dcfa8636db2d4717238724",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Monad/Morphism.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Monad/Morphism.agda",
"max_line_length": 95,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Monad/Morphism.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z",
"num_tokens": 727,
"size": 1908
} |
module Issue679a where
data ty : Set where
_`→_ : ty → ty → ty
⟦_⟧ : ty → Set
⟦ A `→ B ⟧ = ⟦ A ⟧ → ⟦ B ⟧
eq : ∀ (σ : ty) (a b : ⟦ σ ⟧) → Set
eq (A `→ B) f g = ∀ {a : ⟦ A ⟧} → eq B (f a) (g a)
eq-sym : ∀ σ {f g} (h : eq σ f g) → eq σ g f
eq-sym (A `→ B) h with B
... | B' = {!!}
| {
"alphanum_fraction": 0.3908450704,
"avg_line_length": 18.9333333333,
"ext": "agda",
"hexsha": "ae4bce086beeaf698e8cfb05e3508a9d3309a2ad",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue679a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue679a.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue679a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 151,
"size": 284
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Coinductive vectors
------------------------------------------------------------------------
{-# OPTIONS --without-K --guardedness --sized-types #-}
module Codata.Musical.Covec where
open import Codata.Musical.Notation
open import Codata.Musical.Conat as Coℕ using (Coℕ; zero; suc; _+_)
open import Codata.Musical.Cofin using (Cofin; zero; suc)
open import Codata.Musical.Colist as Colist using (Colist; []; _∷_)
open import Data.Nat.Base using (ℕ; zero; suc)
open import Data.Vec using (Vec; []; _∷_)
open import Data.Product using (_,_)
open import Function using (_∋_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P using (_≡_)
------------------------------------------------------------------------
-- The type
infixr 5 _∷_
data Covec {a} (A : Set a) : Coℕ → Set a where
[] : Covec A zero
_∷_ : ∀ {n} (x : A) (xs : ∞ (Covec A (♭ n))) → Covec A (suc n)
module _ {a} {A : Set a} where
∷-injectiveˡ : ∀ {a b} {n} {as bs} → (Covec A (suc n) ∋ a ∷ as) ≡ b ∷ bs → a ≡ b
∷-injectiveˡ P.refl = P.refl
∷-injectiveʳ : ∀ {a b} {n} {as bs} → (Covec A (suc n) ∋ a ∷ as) ≡ b ∷ bs → as ≡ bs
∷-injectiveʳ P.refl = P.refl
------------------------------------------------------------------------
-- Some operations
map : ∀ {a b} {A : Set a} {B : Set b} {n} → (A → B) → Covec A n → Covec B n
map f [] = []
map f (x ∷ xs) = f x ∷ ♯ map f (♭ xs)
module _ {a} {A : Set a} where
fromVec : ∀ {n} → Vec A n → Covec A (Coℕ.fromℕ n)
fromVec [] = []
fromVec (x ∷ xs) = x ∷ ♯ fromVec xs
fromColist : (xs : Colist A) → Covec A (Colist.length xs)
fromColist [] = []
fromColist (x ∷ xs) = x ∷ ♯ fromColist (♭ xs)
take : ∀ m {n} → Covec A (m + n) → Covec A m
take zero xs = []
take (suc n) (x ∷ xs) = x ∷ ♯ take (♭ n) (♭ xs)
drop : ∀ m {n} → Covec A (Coℕ.fromℕ m + n) → Covec A n
drop zero xs = xs
drop (suc n) (x ∷ xs) = drop n (♭ xs)
replicate : ∀ n → A → Covec A n
replicate zero x = []
replicate (suc n) x = x ∷ ♯ replicate (♭ n) x
lookup : ∀ {n} → Cofin n → Covec A n → A
lookup zero (x ∷ xs) = x
lookup (suc n) (x ∷ xs) = lookup n (♭ xs)
infixr 5 _++_
_++_ : ∀ {m n} → Covec A m → Covec A n → Covec A (m + n)
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ ♯ (♭ xs ++ ys)
[_] : A → Covec A (suc (♯ zero))
[ x ] = x ∷ ♯ []
------------------------------------------------------------------------
-- Equality and other relations
-- xs ≈ ys means that xs and ys are equal.
infix 4 _≈_
data _≈_ : ∀ {n} (xs ys : Covec A n) → Set a where
[] : [] ≈ []
_∷_ : ∀ {n} x {xs ys}
(xs≈ : ∞ (♭ xs ≈ ♭ ys)) → _≈_ {n = suc n} (x ∷ xs) (x ∷ ys)
-- x ∈ xs means that x is a member of xs.
infix 4 _∈_
data _∈_ : ∀ {n} → A → Covec A n → Set a where
here : ∀ {n x } {xs} → _∈_ {n = suc n} x (x ∷ xs)
there : ∀ {n x y} {xs} (x∈xs : x ∈ ♭ xs) → _∈_ {n = suc n} x (y ∷ xs)
-- xs ⊑ ys means that xs is a prefix of ys.
infix 4 _⊑_
data _⊑_ : ∀ {m n} → Covec A m → Covec A n → Set a where
[] : ∀ {n} {ys : Covec A n} → [] ⊑ ys
_∷_ : ∀ {m n} x {xs ys} (p : ∞ (♭ xs ⊑ ♭ ys)) →
_⊑_ {m = suc m} {suc n} (x ∷ xs) (x ∷ ys)
------------------------------------------------------------------------
-- Some proofs
setoid : ∀ {a} → Set a → Coℕ → Setoid _ _
setoid A n = record
{ Carrier = Covec A n
; _≈_ = _≈_
; isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
}
where
refl : ∀ {n} → Reflexive (_≈_ {n = n})
refl {x = []} = []
refl {x = x ∷ xs} = x ∷ ♯ refl
sym : ∀ {n} → Symmetric (_≈_ {A = A} {n})
sym [] = []
sym (x ∷ xs≈) = x ∷ ♯ sym (♭ xs≈)
trans : ∀ {n} → Transitive (_≈_ {A = A} {n})
trans [] [] = []
trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈)
poset : ∀ {a} → Set a → Coℕ → Poset _ _ _
poset A n = record
{ Carrier = Covec A n
; _≈_ = _≈_
; _≤_ = _⊑_
; isPartialOrder = record
{ isPreorder = record
{ isEquivalence = Setoid.isEquivalence (setoid A n)
; reflexive = reflexive
; trans = trans
}
; antisym = antisym
}
}
where
reflexive : ∀ {n} → _≈_ {n = n} ⇒ _⊑_
reflexive [] = []
reflexive (x ∷ xs≈) = x ∷ ♯ reflexive (♭ xs≈)
trans : ∀ {n} → Transitive (_⊑_ {n = n})
trans [] _ = []
trans (x ∷ xs≈) (.x ∷ ys≈) = x ∷ ♯ trans (♭ xs≈) (♭ ys≈)
tail : ∀ {n x y xs ys} →
_∷_ {n = n} x xs ⊑ _∷_ {n = n} y ys → ♭ xs ⊑ ♭ ys
tail (_ ∷ p) = ♭ p
antisym : ∀ {n} → Antisymmetric (_≈_ {n = n}) _⊑_
antisym [] [] = []
antisym (x ∷ p₁) p₂ = x ∷ ♯ antisym (♭ p₁) (tail p₂)
map-cong : ∀ {a b} {A : Set a} {B : Set b} {n} (f : A → B) → _≈_ {n = n} =[ map f ]⇒ _≈_
map-cong f [] = []
map-cong f (x ∷ xs≈) = f x ∷ ♯ map-cong f (♭ xs≈)
take-⊑ : ∀ {a} {A : Set a} m {n} (xs : Covec A (m + n)) → take m xs ⊑ xs
take-⊑ zero xs = []
take-⊑ (suc n) (x ∷ xs) = x ∷ ♯ take-⊑ (♭ n) (♭ xs)
------------------------------------------------------------------------
-- Legacy
import Codata.Covec as C
open import Codata.Thunk
import Size
module _ {a} {A : Set a} where
fromMusical : ∀ {i n} → Covec A n → C.Covec A i (Coℕ.fromMusical n)
fromMusical [] = C.[]
fromMusical (x ∷ xs) = x C.∷ λ where .force → fromMusical (♭ xs)
toMusical : ∀ {n} → C.Covec A Size.∞ n → Covec A (Coℕ.toMusical n)
toMusical C.[] = []
toMusical (x C.∷ xs) = x ∷ ♯ toMusical (xs .force)
| {
"alphanum_fraction": 0.4438302425,
"avg_line_length": 29.5157894737,
"ext": "agda",
"hexsha": "52efad9a42f317f46d66fe5a0b435b5702dc001b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Covec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Covec.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Musical/Covec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2244,
"size": 5608
} |
open import FRP.JS.Behaviour using ( Beh ; map ; [_] )
open import FRP.JS.DOM using ( DOM ; text ; _++_ )
open import FRP.JS.RSet using ( ⟦_⟧ )
open import FRP.JS.Maybe using ( Maybe ; just ; nothing )
open import FRP.JS.String using ( String )
open import FRP.JS.Geolocation using ( geolocation )
open import FRP.JS.Geolocation.Coords using ( Coords ; toString )
module FRP.JS.Demo.Geolocation where
show : Maybe Coords → String
show nothing = "unknown"
show (just coords) = toString coords
main : ∀ {w} → ⟦ Beh (DOM w) ⟧
main =
text ["Current location: "] ++
text (map show geolocation) ++
text ["."] | {
"alphanum_fraction": 0.6763754045,
"avg_line_length": 32.5263157895,
"ext": "agda",
"hexsha": "19a8a25724487f2160f1a039e860666c860c1c68",
"lang": "Agda",
"max_forks_count": 7,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z",
"max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_forks_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_forks_repo_name": "agda/agda-frp-js",
"max_forks_repo_path": "demo/agda/FRP/JS/Demo/Geolocation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_issues_repo_name": "agda/agda-frp-js",
"max_issues_repo_path": "demo/agda/FRP/JS/Demo/Geolocation.agda",
"max_line_length": 65,
"max_stars_count": 63,
"max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72",
"max_stars_repo_licenses": [
"MIT",
"BSD-3-Clause"
],
"max_stars_repo_name": "agda/agda-frp-js",
"max_stars_repo_path": "demo/agda/FRP/JS/Demo/Geolocation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z",
"num_tokens": 183,
"size": 618
} |
{-# OPTIONS --rewriting #-}
module _ where
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
open import Agda.Builtin.Bool
data D (A : Set) : Set where
con : (a : A) → D A
pr : ∀ {A} → D A → A
pr (con a) = a
postulate
f : D Bool → Bool
prf : pr ≡ f
{-# REWRITE prf #-}
| {
"alphanum_fraction": 0.6209150327,
"avg_line_length": 16.1052631579,
"ext": "agda",
"hexsha": "40fe2ec31aebf646c551ad6ff106246e93ec6ec7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4994.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4994.agda",
"max_line_length": 41,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4994.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 108,
"size": 306
} |
{-
This file proves the monotonicity of potential function over reductions.
CorrectBinding is required in order to guarantee that SI and SC introduced
by the loop never accidentally capture signals in the loop body.
canₖ-monotonic : ∀ {BV FV} θ r r' →
CorrectBinding r BV FV →
r sn⟶₁ r' →
∀ k →
k ∈ Canₖ r' θ →
k ∈ Canₖ r θ
canₛ-monotonic : ∀ {BV FV} θ r r' →
CorrectBinding r BV FV →
r sn⟶₁ r' →
∀ S' →
Signal.unwrap S' ∈ Canₛ r' θ →
Signal.unwrap S' ∈ Canₛ r θ
canₛₕ-monotonic : ∀ {BV FV} θ r r' →
CorrectBinding r BV FV →
r sn⟶₁ r' →
∀ s' →
SharedVar.unwrap s' ∈ Canₛₕ r' θ →
SharedVar.unwrap s' ∈ Canₛₕ r θ
In addition to the main lemmas, there are various random small propositions
dealing with the computatin of the calculation of Can in the loop body
(the big ρ-θ-emit-present term introduced by the loop-unroll rule).
-}
module can-function-preserve where
open import sn-calculus
open import utility
open import Esterel.Lang
open import Esterel.Lang.Binding
open import Esterel.Lang.Properties
open import Esterel.Lang.CanFunction
open import Esterel.Lang.CanFunction.Properties
open import Esterel.Context
using (EvaluationContext1 ; EvaluationContext ; _⟦_⟧e ; _≐_⟦_⟧e)
open import Esterel.Context.Properties
using (unplug ; Erefl)
open import Esterel.Environment as Env
using (Env ; Θ ; _←_ ; Dom ; module SigMap ; module ShrMap ; module VarMap)
open import Esterel.CompletionCode as Code
using () renaming (CompletionCode to Code)
open import Esterel.Variable.Signal as Signal
using (Signal ; _ₛ)
open import Esterel.Variable.Shared as SharedVar
using (SharedVar ; _ₛₕ)
open import Esterel.Variable.Sequential as SeqVar
using (SeqVar)
open import Data.Bool
using (Bool ; true ; false ; if_then_else_)
open import Data.Empty
using (⊥ ; ⊥-elim)
open import Data.List
using (List ; [] ; _∷_ ; _++_ ; map ; concatMap ; foldr)
open import Data.List.Any
using (Any ; any ; here ; there)
open import Data.List.Any.Properties
using (++⁻)
renaming (++⁺ˡ to ++ˡ ; ++⁺ʳ to ++ʳ)
open import Data.Maybe
using (Maybe ; just ; nothing)
open import Data.Nat
using (ℕ ; zero ; suc ; _≟_ ; _+_)
open import Data.Product
using (Σ ; proj₁ ; proj₂ ; ∃ ; _,_ ; _,′_ ; _×_)
open import Data.Sum
using (_⊎_ ; inj₁ ; inj₂)
open import Function
using (_∘_ ; _∋_ ; id)
open import Relation.Nullary
using (¬_ ; Dec ; yes ; no)
open import Relation.Nullary.Decidable
using (⌊_⌋)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; _≢_ ; refl ; trans ; sym ; cong ; subst
; inspect ; Reveal_·_is_ ; [_] ; module ≡-Reasoning)
open EvaluationContext1
open _≐_⟦_⟧e
open import Data.OrderedListMap Signal Signal.unwrap Signal.Status as SigM
open import Data.OrderedListMap SharedVar SharedVar.unwrap (Σ SharedVar.Status (λ _ → ℕ)) as ShrM
open import Data.OrderedListMap SeqVar SeqVar.unwrap ℕ as SeqM
open ListSet Data.Nat._≟_
using (set-subtract ; set-subtract-[] ; set-subtract-split ; set-subtract-merge
; set-subtract-notin ; set-subtract-[a]≡set-remove
; set-remove-mono-∈ ; set-remove-removed ; set-remove-not-removed)
canₛ-present-lemma : ∀ S p q θ →
∀ S' →
Signal.unwrap S' ∈ Canₛ (present S ∣⇒ p ∣⇒ q) θ →
Signal.unwrap S' ∈ Canₛ p θ ⊎ Signal.unwrap S' ∈ Canₛ q θ
canₛ-present-lemma S p q θ S' S'∈can-present with Env.Sig∈ S θ
canₛ-present-lemma S p q θ S' S'∈can-present | yes S∈
with Env.sig-stats {S} θ S∈
... | Signal.present = inj₁ S'∈can-present
... | Signal.absent = inj₂ S'∈can-present
... | Signal.unknown = ++⁻ (Canₛ p θ) S'∈can-present
canₛ-present-lemma S p q θ S' S'∈can-present | no S∉ =
++⁻ (Canₛ p θ) S'∈can-present
canₛₕ-present-lemma : ∀ S p q θ →
Canₛₕ p θ ≡ [] → Canₛₕ q θ ≡ [] →
Canₛₕ (present S ∣⇒ p ∣⇒ q) θ ≡ []
canₛₕ-present-lemma S p q θ can-p≡[] can-q≡[] with Env.Sig∈ S θ
canₛₕ-present-lemma S p q θ can-p≡[] can-q≡[] | yes S∈
with Env.sig-stats {S} θ S∈
... | Signal.present = can-p≡[]
... | Signal.absent = can-q≡[]
... | Signal.unknown rewrite can-p≡[] | can-q≡[] = refl
canₛₕ-present-lemma S p q θ can-p≡[] can-q≡[] | no S∉
rewrite can-p≡[] | can-q≡[] = refl
canₖ-monotonic : ∀ {BV FV} θ r r' →
CorrectBinding r BV FV →
r sn⟶₁ r' →
∀ k →
k ∈ Canₖ r' θ →
k ∈ Canₖ r θ
canₛ-monotonic : ∀ {BV FV} θ r r' →
CorrectBinding r BV FV →
r sn⟶₁ r' →
∀ S' →
Signal.unwrap S' ∈ Canₛ r' θ →
Signal.unwrap S' ∈ Canₛ r θ
canₛₕ-monotonic : ∀ {BV FV} θ r r' →
CorrectBinding r BV FV →
r sn⟶₁ r' →
∀ s' →
SharedVar.unwrap s' ∈ Canₛₕ r' θ →
SharedVar.unwrap s' ∈ Canₛₕ r θ
canθₖ-monotonic : ∀ sigs S' → ∀ {BV FV} θ r r' →
CorrectBinding r BV FV →
r sn⟶₁ r' →
∀ k →
k ∈ Canθₖ sigs S' r' θ →
k ∈ Canθₖ sigs S' r θ
canθₛ-monotonic : ∀ sigs S'' → ∀ {BV FV} θ r r' →
CorrectBinding r BV FV →
r sn⟶₁ r' →
∀ S' →
Signal.unwrap S' ∈ Canθₛ sigs S'' r' θ →
Signal.unwrap S' ∈ Canθₛ sigs S'' r θ
canθₛₕ-monotonic : ∀ sigs S' → ∀ {BV FV} θ r r' →
CorrectBinding r BV FV →
r sn⟶₁ r' →
∀ s' →
SharedVar.unwrap s' ∈ Canθₛₕ sigs S' r' θ →
SharedVar.unwrap s' ∈ Canθₛₕ sigs S' r θ
canθₖ-monotonic [] S' cb red = canₖ-monotonic cb red
canθₖ-monotonic (nothing ∷ sigs) S' = canθₖ-monotonic sigs (suc S')
canθₖ-monotonic (just Signal.present ∷ sigs) S' θ
= canθₖ-monotonic sigs (suc S') (θ ← _)
canθₖ-monotonic (just Signal.absent ∷ sigs) S' θ
= canθₖ-monotonic sigs (suc S') (θ ← _)
canθₖ-monotonic (just Signal.unknown ∷ sigs) S' θ r r' cb red
with any (_≟_ S') (Canθₛ sigs (suc S') r (θ ← ([S]-env (S' ₛ))))
| any (_≟_ S') (Canθₛ sigs (suc S') r' (θ ← ([S]-env (S' ₛ))))
... | yes S'∈Canr | yes S'∈Canr' = canθₖ-monotonic sigs (suc S') (θ ← [S]-env (S' ₛ)) r r' cb red
... | no S'∉Canr | no S'∉Canr' = canθₖ-monotonic sigs (suc S') (θ ← [S]-env-absent (S' ₛ)) r r' cb red
... | no S'∉Canr | yes S'∈Canr'
= ⊥-elim (S'∉Canr (canθₛ-monotonic sigs (suc S') (θ ← [S]-env (S' ₛ)) r r' cb red (S' ₛ) S'∈Canr'))
... | yes S'∈Canr | no S'∉Canr'
with (canθₖ-monotonic sigs (suc S') (θ ← [S]-env-absent (S' ₛ)) r r' cb red)
... | rec rewrite sym (Env.sig-set-clobber-single-as-← (S' ₛ) Signal.absent Signal.unknown θ (Env.sig-∈-single-right-← (S' ₛ) Signal.unknown θ))
= λ k k∈ → canθₖ-set-sig-monotonic sigs (suc S') r (S' ₛ) (θ ← [S]-env (S' ₛ))
(Env.sig-∈-single-right-← (S' ₛ) Signal.unknown θ) Signal.absent
(Env.sig-stats-1map-right-← (S' ₛ) Signal.unknown θ (Env.sig-∈-single-right-← (S' ₛ) Signal.unknown θ))
(n∉map-suc-n-+ S' (SigM.Dom' sigs))
k (rec k k∈)
canθₛ-monotonic [] S' cb red = canₛ-monotonic cb red
canθₛ-monotonic (nothing ∷ sigs) S' = canθₛ-monotonic sigs (suc S')
canθₛ-monotonic (just Signal.present ∷ sigs) S' θ
= canθₛ-monotonic sigs (suc S') (θ ← _)
canθₛ-monotonic (just Signal.absent ∷ sigs) S' θ
= canθₛ-monotonic sigs (suc S') (θ ← _)
canθₛ-monotonic (just Signal.unknown ∷ sigs) S' θ r r' cb red
with any (_≟_ S') (Canθₛ sigs (suc S') r (θ ← ([S]-env (S' ₛ))))
| any (_≟_ S') (Canθₛ sigs (suc S') r' (θ ← ([S]-env (S' ₛ))))
... | yes S'∈Canr | yes S'∈Canr' = canθₛ-monotonic sigs (suc S') (θ ← [S]-env (S' ₛ)) r r' cb red
... | no S'∉Canr | no S'∉Canr' = canθₛ-monotonic sigs (suc S') (θ ← [S]-env-absent (S' ₛ)) r r' cb red
... | no S'∉Canr | yes S'∈Canr'
= ⊥-elim (S'∉Canr (canθₛ-monotonic sigs (suc S') (θ ← [S]-env (S' ₛ)) r r' cb red (S' ₛ) S'∈Canr'))
... | yes S'∈Canr | no S'∉Canr'
with (canθₛ-monotonic sigs (suc S') (θ ← [S]-env-absent (S' ₛ)) r r' cb red)
... | rec rewrite sym (Env.sig-set-clobber-single-as-← (S' ₛ) Signal.absent Signal.unknown θ (Env.sig-∈-single-right-← (S' ₛ) Signal.unknown θ))
= λ k k∈ → canθₛ-set-sig-monotonic sigs (suc S') r (S' ₛ) (θ ← [S]-env (S' ₛ))
(Env.sig-∈-single-right-← (S' ₛ) Signal.unknown θ) Signal.absent
(Env.sig-stats-1map-right-← (S' ₛ) Signal.unknown θ (Env.sig-∈-single-right-← (S' ₛ) Signal.unknown θ))
(n∉map-suc-n-+ S' (SigM.Dom' sigs))
(Signal.unwrap k) (rec k k∈)
canθₛₕ-monotonic [] S' cb red = canₛₕ-monotonic cb red
canθₛₕ-monotonic (nothing ∷ sigs) S' = canθₛₕ-monotonic sigs (suc S')
canθₛₕ-monotonic (just Signal.present ∷ sigs) S' θ
= canθₛₕ-monotonic sigs (suc S') (θ ← _)
canθₛₕ-monotonic (just Signal.absent ∷ sigs) S' θ
= canθₛₕ-monotonic sigs (suc S') (θ ← _)
canθₛₕ-monotonic (just Signal.unknown ∷ sigs) S' θ r r' cb red
with any (_≟_ S') (Canθₛ sigs (suc S') r (θ ← ([S]-env (S' ₛ))))
| any (_≟_ S') (Canθₛ sigs (suc S') r' (θ ← ([S]-env (S' ₛ))))
... | yes S'∈Canr | yes S'∈Canr' = canθₛₕ-monotonic sigs (suc S') (θ ← [S]-env (S' ₛ)) r r' cb red
... | no S'∉Canr | no S'∉Canr' = canθₛₕ-monotonic sigs (suc S') (θ ← [S]-env-absent (S' ₛ)) r r' cb red
... | no S'∉Canr | yes S'∈Canr'
= ⊥-elim (S'∉Canr (canθₛ-monotonic sigs (suc S') (θ ← [S]-env (S' ₛ)) r r' cb red (S' ₛ) S'∈Canr'))
... | yes S'∈Canr | no S'∉Canr'
with (canθₛₕ-monotonic sigs (suc S') (θ ← [S]-env-absent (S' ₛ)) r r' cb red)
... | rec rewrite sym (Env.sig-set-clobber-single-as-← (S' ₛ) Signal.absent Signal.unknown θ (Env.sig-∈-single-right-← (S' ₛ) Signal.unknown θ))
= λ k k∈ → canθₛₕ-set-sig-monotonic sigs (suc S') r (S' ₛ) (θ ← [S]-env (S' ₛ))
(Env.sig-∈-single-right-← (S' ₛ) Signal.unknown θ) Signal.absent
(Env.sig-stats-1map-right-← (S' ₛ) Signal.unknown θ (Env.sig-∈-single-right-← (S' ₛ) Signal.unknown θ))
(n∉map-suc-n-+ S' (SigM.Dom' sigs))
(SharedVar.unwrap k) (rec k k∈)
canₖ-monotonic θ (p ∥ q) _ cb
(rpar-done-right hnothin q/done) k k∈can-r'-θ =
any-map⁺² {xs = Code.nothin ∷ []} (λ k' → map (Code._⊔_ k') (Canₖ q θ))
(here refl) (any-map⁺ (Code._⊔_ Code.nothin) k∈can-r'-θ)
canₖ-monotonic θ (p ∥ q) _ cb
(rpar-done-right (hexit n) (dhalted hnothin)) k k∈can-r'-θ =
k∈can-r'-θ
canₖ-monotonic θ (p ∥ q) _ cb
(rpar-done-right (hexit n) (dhalted (hexit m))) k k∈can-r'-θ =
k∈can-r'-θ
canₖ-monotonic θ (p ∥ q) _ cb
(rpar-done-right (hexit n) (dpaused q/paused)) k k∈can-r'-θ
rewrite canₖ-paused θ q/paused
= k∈can-r'-θ
canₖ-monotonic θ (p ∥ q) _ cb
(rpar-done-left (dhalted hnothin) q/halted) k k∈can-r'-θ =
any-map⁺² {xs = Code.nothin ∷ []} (λ k' → map (Code._⊔_ k') (Canₖ q θ))
(here refl) (any-map⁺ (Code._⊔_ Code.nothin) k∈can-r'-θ)
canₖ-monotonic θ (p ∥ q) _ cb
(rpar-done-left (dhalted (hexit n)) hnothin) k k∈can-r'-θ =
k∈can-r'-θ
canₖ-monotonic θ (p ∥ q) _ cb
(rpar-done-left (dhalted (hexit n)) (hexit m)) k k∈can-r'-θ =
k∈can-r'-θ
canₖ-monotonic θ (p ∥ q) _ cb
(rpar-done-left (dpaused p/paused) hnothin) k k∈can-r'-θ
rewrite canₖ-paused θ p/paused =
k∈can-r'-θ
canₖ-monotonic θ (p ∥ q) _ cb
(rpar-done-left (dpaused p/paused) (hexit m)) k k∈can-r'-θ
rewrite canₖ-paused θ p/paused =
k∈can-r'-θ
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(ris-present {S = S} {p = p} {E = E} S∈ θ'S≡present r≐E⟦present⟧) k k∈can-r'-θ
rewrite canθ-is-present (Env.sig θ') S∈ θ r≐E⟦present⟧ θ'S≡present
= k∈can-r'-θ
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(ris-absent {S = S} S∈ θ'S≡absent r≐E⟦present⟧) k k∈can-r'-θ
rewrite canθ-is-absent (Env.sig θ') S∈ θ r≐E⟦present⟧ θ'S≡absent
= k∈can-r'-θ
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(remit {S = S} {E = E} S∈ θ'S≢absent r≐E⟦emit⟧) k k∈can-r'-θ
= canθₖ-emit θ' S∈ θ r≐E⟦emit⟧ θ'S≢absent ((canθₛ-membership (Env.sig θ') 0 r θ S
(λ θ* → canₛ-capture-emit-signal θ* r≐E⟦emit⟧)))
k k∈can-r'-θ
canₖ-monotonic θ (loop r) r' cb rloop-unroll k k∈can-r'-θ = k∈can-r'-θ
canₖ-monotonic θ .(nothin >> r') r' cb
rseq-done k k∈can-r'-θ = k∈can-r'-θ
canₖ-monotonic θ .(exit _ >> _) .(exit _) cb
rseq-exit k k∈can-r'-θ = k∈can-r'-θ
canₖ-monotonic θ .(loopˢ (exit _) _) .(exit _) cb
rloopˢ-exit k k∈can-r'-θ = k∈can-r'-θ
canₖ-monotonic θ (suspend r S) .r cb
(rsuspend-done r/halted) k k∈can-r'-θ = k∈can-r'-θ
canₖ-monotonic θ (trap r) .nothin cb
(rtrap-done hnothin) k k∈can-r'-θ = k∈can-r'-θ
canₖ-monotonic θ (trap r) .nothin cb
(rtrap-done (hexit zero)) k k∈can-r'-θ = k∈can-r'-θ
canₖ-monotonic θ (trap r) .(exit n) cb
(rtrap-done (hexit (suc n))) k k∈can-r'-θ = k∈can-r'-θ
canₖ-monotonic θ (signl S r) r' cb
rraise-signal k k∈can-r'-θ = k∈can-r'-θ
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(rraise-shared {s = s} {e = e} {p = p} {E = E} e' r≐E⟦shared⟧) k k∈can-r'-θ
rewrite sym (unplug r≐E⟦shared⟧)
| sym (canθₖ-raise-lemma{A = WAIT} (Env.sig θ') 0 θ E (tshared (δ e') s e p))
= k∈can-r'-θ
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(rset-shared-value-old {s = s} {e = e} {E = E} e' s∈ θ's≡old r≐E⟦s⇐e⟧) k k∈can-r'-θ
rewrite canθ-shr-var-irr (Env.sig (Env.set-shr {s} θ' s∈ SharedVar.new (δ e'))) 0 r θ θ refl
| sym (unplug r≐E⟦s⇐e⟧)
= canθₖ-term-nothin-lemma
(Env.sig (Env.set-shr {s} θ' s∈ SharedVar.new (δ e')))
0
θ
E (tset-shr s e) k k∈can-r'-θ
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(rset-shared-value-new {s = s} {e = e} {E = E} e' s∈ θ's≡new r≐E⟦s⇐e⟧) k k∈can-r'-θ
rewrite canθ-shr-var-irr (Env.sig (Env.set-shr {s} θ' s∈ SharedVar.new (Env.shr-vals {s} θ' s∈ + δ e')))
0 r θ θ refl
| sym (unplug r≐E⟦s⇐e⟧)
= canθₖ-term-nothin-lemma
(Env.sig (Env.set-shr {s} θ' s∈ SharedVar.new (Env.shr-vals {s} θ' s∈ + δ e')))
0
θ
E (tset-shr s e) k k∈can-r'-θ
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(rraise-var {x = x} {p = p} {e = e} {E = E} e' r≐E⟦var⟧) k k∈can-r'-θ
rewrite sym (unplug r≐E⟦var⟧)
| (canθₖ-raise-lemma (Env.sig θ') 0 θ E (tvar (δ e') x e p))
= k∈can-r'-θ
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(rset-var {x = x} {e = e} {E = E} x∈ e' r≐E⟦x≔e⟧) k k∈can-r'-θ
rewrite canθ-shr-var-irr (Env.sig (Env.set-var {x} θ' x∈ (δ e'))) 0 r θ θ refl
| sym (unplug r≐E⟦x≔e⟧)
= canθₖ-term-nothin-lemma
(Env.sig (Env.set-var {x} θ' x∈ (δ e')))
0
θ
E (tset-var x e) k k∈can-r'-θ
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(rif-false {p = p} {q = q} {x = x} {E = E} x∈ θ'x≡zero r≐E⟦if⟧) k k∈can-r'-θ
rewrite sym (unplug r≐E⟦if⟧)
= canθₖ-if-false-lemma (Env.sig θ' ) 0 x p q θ E k k∈can-r'-θ
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(rif-true {p = p} {q = q} {x = x} {E = E} x∈ θ'x≡suc r≐E⟦if⟧) k k∈can-r'-θ
rewrite sym (unplug r≐E⟦if⟧)
= canθₖ-if-true-lemma (Env.sig θ') 0 x p q θ E k k∈can-r'-θ
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(rabsence {S = S} S∈ θ'S≡unknown S∉can-r-θ') k k∈can-r'-θ
rewrite Env.sig-switch-right S Signal.absent θ θ' S∈ (Env.sig-←-monoʳ S θ' θ S∈)
= canθₖ-set-sig-monotonic-absence-lemma (Env.sig θ') 0 r S θ S∈
θ'S≡unknown k k∈can-r'-θ
where
θ←θ' = θ ← θ'
S∈Domθ←θ' = Env.sig-←-monoʳ S θ' θ S∈
⟨θ←θ'⟩S≡θ'S = Env.sig-stats-←-right-irr' S θ θ' S∈ S∈Domθ←θ'
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(rreadyness {s = s} s∈ θ's≡old⊎θ's≡new s∉can-r-θ') k k∈can-r'-θ
rewrite can-shr-var-irr r (θ ← θ')
(θ ← Env.set-shr {s} θ' s∈ SharedVar.ready (Env.shr-vals {s} θ' s∈)) refl
= k∈can-r'-θ
canₖ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb@(CBρ cb')
(rmerge {θ₁ = .θ'} {θ₂ = θ''} {p = rin} {E = E} r≐E⟦ρθ''·rin⟧) k k∈can-r'-θ
= canθₖ-mergeˡ (Env.sig θ') θ cb' r≐E⟦ρθ''·rin⟧ k k∈can-r'-θ
canₛ-monotonic θ (p ∥ q) _ cb
(rpar-done-right p/halted q/done) S' S'∈can-r'-θ
rewrite canₛ-done θ (value-max-done (dhalted p/halted) q/done (inj₁ p/halted))
with S'∈can-r'-θ
... | ()
canₛ-monotonic θ (p ∥ q) _ cb
(rpar-done-left p/done q/halted) S' S'∈can-r'-θ
rewrite canₛ-done θ (value-max-done p/done (dhalted q/halted) (inj₂ q/halted))
with S'∈can-r'-θ
... | ()
canₛ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(ris-present {S = S} S∈ θ'S≡present r≐E⟦present⟧) S' S'∈can-r'-θ
rewrite canθ-is-present (Env.sig θ') S∈ θ r≐E⟦present⟧ θ'S≡present
= S'∈can-r'-θ
canₛ-monotonic θ (ρ⟨ θ' , A ⟩· r) r' cb
(ris-absent {S = S} S∈ θ'S≡absent r≐E⟦absent⟧) S' S'∈can-r'-θ
rewrite canθ-is-absent (Env.sig θ') S∈ θ r≐E⟦absent⟧ θ'S≡absent
= S'∈can-r'-θ
canₛ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ θ'' , A'' ⟩· r') cb
(remit {S = S} {E = E} S∈ θ'S≢absent r≐E⟦emit⟧) S' S'∈can-ρθ''·r'-θ
with set-subtract-merge
{xs = Canθₛ (Env.sig (Env.set-sig {S} θ' S∈ Signal.present)) 0 r' θ}
{ys = proj₁ (Dom θ'')}
S'∈can-ρθ''·r'-θ
... | S'∈can-r'-θ←θ'' , S'∉Domθ''
with set-subtract-split {ys = proj₁ (Dom θ')}
(canθₛ-emit θ' S∈ θ r≐E⟦emit⟧ θ'S≢absent
(canθₛ-membership (Env.sig θ') 0 r θ S
(λ θ* → canₛ-capture-emit-signal θ* r≐E⟦emit⟧))
S' S'∈can-r'-θ←θ'')
... | inj₁ S'∈can-r-θ←θ'-θ' = S'∈can-r-θ←θ'-θ'
... | inj₂ S'∈Domθ' =
⊥-elim (S'∉Domθ'' (Env.sig-set-mono' {S'} {S} {θ'} {Signal.present} {S∈} S'∈Domθ'))
canₛ-monotonic θ (loop r) r' cb rloop-unroll S' S'∈can-r'-θ = S'∈can-r'-θ
canₛ-monotonic θ .(nothin >> r') r' cb
rseq-done S' S'∈can-r'-θ = S'∈can-r'-θ
canₛ-monotonic θ .(exit _ >> _) .(exit _) cb
rseq-exit S' S'∈can-r'-θ = S'∈can-r'-θ
canₛ-monotonic θ .(loopˢ (exit _) _) .(exit _) cb
rloopˢ-exit S' S'∈can-r'-θ = S'∈can-r'-θ
canₛ-monotonic θ (suspend r S) .r cb
(rsuspend-done r/halted) S' S'∈can-r'-θ
rewrite canₛ-done θ (dhalted r/halted) with S'∈can-r'-θ
... | ()
canₛ-monotonic θ (trap r) r' cb
(rtrap-done r/halted) S' S'∈can-r'-θ
rewrite canₛ-done θ (dhalted (↓-well-behaved _ r/halted)) with S'∈can-r'-θ
... | ()
canₛ-monotonic θ (signl S r) r' cb
rraise-signal S' S'∈can-r'-θ
rewrite SigMap.keys-1map S Signal.unknown
| set-subtract-[a]≡set-remove (Canθₛ (Env.sig ([S]-env S)) 0 r θ) (Signal.unwrap S)
= S'∈can-r'-θ
canₛ-monotonic θ (ρ⟨ θ' , A ⟩· r) (ρ⟨ .θ' , .A ⟩· r') cb
(rraise-shared {s = s} {e = e} {p = p} {E = E} e' r≐E⟦shared⟧) S' S'∈can-ρθ'·r'-θ
rewrite sym (unplug r≐E⟦shared⟧)
| sym (canθₛ-raise-lemma{A = WAIT} (Env.sig θ') 0 θ E (tshared (δ e') s e p))
= S'∈can-ρθ'·r'-θ
canₛ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ θ'' , A'' ⟩· r') cb
(rset-shared-value-old{s = s}{e = e}{E = E} e' s∈ θ's≡old r≐E⟦s⇐e⟧) S' S'∈can-ρθ''·r'-θ
with set-subtract-merge{xs = Canθₛ (Env.sig θ'') 0 r' θ}{ys = proj₁ (Dom θ'')} S'∈can-ρθ''·r'-θ
... | S'∈can-r'-θ←θ'' , S'∉Domθ''
with set-subtract-split {xs = Canθₛ (Env.sig θ') 0 r θ} {ys = proj₁ (Dom θ')} {z = Signal.unwrap S'}
(subst
(λ x → _ ∈ Canθₛ (Env.sig θ') 0 x θ)
(unplug r≐E⟦s⇐e⟧)
(canθₛ-term-nothin-lemma (Env.sig θ'') 0 θ E (tset-shr s e)
(Signal.unwrap S') S'∈can-r'-θ←θ'' ) )
... | inj₁ S'∈can-r-θ←θ'-θ' = S'∈can-r-θ←θ'-θ' -- θ' and θ'' differ only by shared var Dom
... | inj₂ S'∈Domθ' = ⊥-elim (S'∉Domθ'' S'∈Domθ')
canₛ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ θ'' , A'' ⟩· r') cb
(rset-shared-value-new{s = s}{e = e}{E = E} e' s∈ θ's≡new r≐E⟦s⇐e⟧) S' S'∈can-ρθ''·r'-θ
with set-subtract-merge{xs = Canθₛ (Env.sig θ'') 0 r' θ}{ys = proj₁ (Dom θ'')} S'∈can-ρθ''·r'-θ
... | S'∈can-r'-θ←θ'' , S'∉Domθ''
with set-subtract-split {xs = Canθₛ (Env.sig θ') 0 r θ} {ys = proj₁ (Dom θ')} {z = Signal.unwrap S'}
(subst
(λ x → _ ∈ Canθₛ (Env.sig θ') 0 x θ)
(unplug r≐E⟦s⇐e⟧)
(canθₛ-term-nothin-lemma (Env.sig θ'') 0 θ E (tset-shr s e)
(Signal.unwrap S') S'∈can-r'-θ←θ'' ))
... | inj₁ S'∈can-r-θ←θ'-θ' = S'∈can-r-θ←θ'-θ'
... | inj₂ S'∈Domθ' = ⊥-elim (S'∉Domθ'' S'∈Domθ')
canₛ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ .θ' , .A' ⟩· r') cb
(rraise-var {x = x} {p = p} {e = e} {E = E} e' r≐E⟦var⟧) S' S'∈can-ρθ'·r'-θ
rewrite sym (canθₛ-raise-lemma{A = WAIT} (Env.sig θ') 0 θ E (tvar (δ e') x e p)) | (unplug r≐E⟦var⟧) = S'∈can-ρθ'·r'-θ
canₛ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ θ'' , A'' ⟩· r') cb
(rset-var {x = x} {e = e} {E = E} x∈ e' r≐E⟦x≔e⟧) S' S'∈can-ρθ''·r'-θ
with set-subtract-merge {xs = Canθₛ (Env.sig θ'') 0 r' θ}{ys = proj₁ (Dom θ'')} S'∈can-ρθ''·r'-θ
... | S'∈can-r'-θ←θ'' , S'∉Domθ''
with set-subtract-split {xs = Canθₛ (Env.sig θ') 0 r θ} {ys = proj₁ (Dom θ')}{z = Signal.unwrap S'}
( (subst
(λ x → _ ∈ Canθₛ (Env.sig θ') 0 x θ)
(unplug r≐E⟦x≔e⟧)
(canθₛ-term-nothin-lemma (Env.sig θ'') 0 θ E (tset-var x e)
(Signal.unwrap S') S'∈can-r'-θ←θ'' )) )
... | inj₁ S'∈can-r-θ←θ'-θ' = S'∈can-r-θ←θ'-θ' -- θ' and θ'' differ only by seq var Dom
... | inj₂ S'∈Domθ' = ⊥-elim (S'∉Domθ'' S'∈Domθ')
canₛ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ .θ' , .A' ⟩· r') cb
(rif-false {p = p} {q = q} {x = x} {E = E} x∈ θ'x≡zero r≐E⟦if⟧) S' S'∈can-ρθ'·r'-θ
with set-subtract-merge{xs = (proj₁ (Canθ (Env.sig θ') 0 r' θ))} {ys = proj₁ (Dom θ')}{z = (Signal.unwrap S')} S'∈can-ρθ'·r'-θ
... | S'∈can-r'-θ←θ' , S'∉Domθ' rewrite sym (unplug r≐E⟦if⟧) =
set-subtract-notin (canθₛ-if-false-lemma (Env.sig θ') 0 x p q θ E (Signal.unwrap S') S'∈can-r'-θ←θ') S'∉Domθ'
canₛ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ .θ' , .A' ⟩· r') cb
(rif-true {p = p} {q = q} {x = x} {E = E} x∈ θ'x≡suc r≐E⟦if⟧) S' S'∈can-ρθ'·r'-θ
with set-subtract-merge{xs = (proj₁ (Canθ (Env.sig θ') 0 r' θ))} {ys = proj₁ (Dom θ')}{z = (Signal.unwrap S')} S'∈can-ρθ'·r'-θ
... | S'∈can-r'-θ←θ' , S'∉Domθ' rewrite sym (unplug r≐E⟦if⟧) =
set-subtract-notin (canθₛ-if-true-lemma (Env.sig θ') 0 x p q θ E (Signal.unwrap S') S'∈can-r'-θ←θ') S'∉Domθ'
canₛ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ θ'' , A'' ⟩· .r) cb
(rabsence {S = S} S∈ θ'S≡unknown S∉can-r-θ') S' S'∈can-ρθ''·r-θ
rewrite Env.sig-switch-right S Signal.absent θ θ' S∈ (Env.sig-←-monoʳ S θ' θ S∈)
with set-subtract-merge{xs = Canθₛ (Env.sig θ'') 0 r θ } {ys = proj₁ (Dom θ'')} S'∈can-ρθ''·r-θ
... | S'∈can-r-θ←θ'' , S'∉Domθ''
with set-subtract-split{xs = (Canθₛ (Env.sig θ') 0 r θ)}{ys = fst (Dom θ')}
(canθₛ-set-sig-monotonic-absence-lemma (Env.sig θ') 0 r S θ S∈
θ'S≡unknown (Signal.unwrap S') S'∈can-r-θ←θ'')
where
θ←θ' = θ ← θ'
S∈Domθ←θ' = Env.sig-←-monoʳ S θ' θ S∈
⟨θ←θ'⟩S≡θ'S = Env.sig-stats-←-right-irr' S θ θ' S∈ S∈Domθ←θ'
... | inj₁ S'∈can-r-θ←θ'-θ' = S'∈can-r-θ←θ'-θ'
... | inj₂ S'∈Domθ' =
⊥-elim
(S'∉Domθ''
(Env.sig-set-mono' {S'} {S} {θ'} {Signal.absent} {S∈}
S'∈Domθ'))
canₛ-monotonic θ (ρ⟨ θ' , A' ⟩· r) r' cb
(rreadyness {s = s} s∈ θ's≡old⊎θ's≡new s∉can-r-θ') S' S'∈can-r'-θ
= S'∈can-r'-θ
canₛ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ .(θ' ← θ'') , .(A-max A' _) ⟩· r') cb@(CBρ cb')
(rmerge {θ₁ = .θ'} {θ₂ = θ''} {p = rin} {E = E} r≐E⟦ρθ''·rin⟧) S' S'∈can-ρθ'←θ''·r'-θ
with set-subtract-merge
{xs = Canθₛ (Env.sig (θ' ← θ'')) 0 r' θ}
{ys = proj₁ (Dom (θ' ← θ''))}
S'∈can-ρθ'←θ''·r'-θ
... | S'∈can-r'-θ←θ'←θ'' , S'∉Domθ'←θ''
= set-subtract-notin
(canθₛ-mergeˡ (Env.sig θ') θ cb' r≐E⟦ρθ''·rin⟧
S' (S'∉Domθ'←θ'' ∘ Env.sig-←-monoʳ S' θ'' θ') S'∈can-r'-θ←θ'←θ'')
(S'∉Domθ'←θ'' ∘ Env.sig-←-monoˡ S' θ' θ'')
canₛₕ-monotonic θ (p ∥ q) _ cb
(rpar-done-right p/halted q/done) s' s'∈can-r'-θ
rewrite canₛₕ-done θ (value-max-done (dhalted p/halted) q/done (inj₁ p/halted))
with s'∈can-r'-θ
... | ()
canₛₕ-monotonic θ (p ∥ q) _ cb
(rpar-done-left p/done q/halted) s' s'∈can-r'-θ
rewrite canₛₕ-done θ (value-max-done p/done (dhalted q/halted) (inj₂ q/halted))
with s'∈can-r'-θ
... | ()
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) r' cb
(ris-present {S = S} S∈ θ'S≡present r≐E⟦present⟧) s' s'∈can-r'-θ
rewrite canθ-is-present (Env.sig θ') S∈ θ r≐E⟦present⟧ θ'S≡present
= s'∈can-r'-θ
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) r' cb
(ris-absent {S = S} S∈ θ'S≡absent r≐E⟦present⟧) s' s'∈can-r'-θ
rewrite canθ-is-absent (Env.sig θ') S∈ θ r≐E⟦present⟧ θ'S≡absent
= s'∈can-r'-θ
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ θ'' , A'' ⟩· r') cb
(remit {S = S} {E = E} S∈ θ'S≢absent r≐E⟦emit⟧) s' s'∈can-ρθ''·r'-θ
with set-subtract-merge
{xs = Canθₛₕ (Env.sig (Env.set-sig {S} θ' S∈ Signal.present)) 0 r' θ}
{ys = proj₁ (proj₂ (Dom θ''))}
s'∈can-ρθ''·r'-θ
... | s'∈can-r'-θ←θ'' , s'∉Domθ''
with set-subtract-split {ys = proj₁ (proj₂ (Dom θ'))}
(canθₛₕ-emit θ' S∈ θ r≐E⟦emit⟧ θ'S≢absent
(canθₛ-membership (Env.sig θ') 0 r θ S
(λ θ* → canₛ-capture-emit-signal θ* r≐E⟦emit⟧))
s' s'∈can-r'-θ←θ'')
... | inj₁ s'∈can-r-θ←θ'-θ' = s'∈can-r-θ←θ'-θ'
... | inj₂ s'∈Domθ' = ⊥-elim (s'∉Domθ'' s'∈Domθ') -- θ' and θ'' differ only by sig
canₛₕ-monotonic θ (loop r) r' cb rloop-unroll s' s'∈can-r'-θ = s'∈can-r'-θ
canₛₕ-monotonic θ .(nothin >> r') r' cb
rseq-done s' s'∈can-r'-θ = s'∈can-r'-θ
canₛₕ-monotonic θ .(exit _ >> _) .(exit _) cb
rseq-exit s' s'∈can-r'-θ = s'∈can-r'-θ
canₛₕ-monotonic θ .(loopˢ (exit _) _) .(exit _) cb
rloopˢ-exit s' s'∈can-r'-θ = s'∈can-r'-θ
canₛₕ-monotonic θ (suspend r S) .r cb
(rsuspend-done r/halted) s' s'∈can-r'-θ
rewrite canₛₕ-done θ (dhalted r/halted) with s'∈can-r'-θ
... | ()
canₛₕ-monotonic θ (trap r) r' cb
(rtrap-done r/halted) s' s'∈can-r'-θ
rewrite canₛₕ-done θ (dhalted (↓-well-behaved _ r/halted)) with s'∈can-r'-θ
... | ()
canₛₕ-monotonic θ (signl S r) r' cb
rraise-signal s' s'∈can-r'-θ
rewrite set-subtract-[] (Canθₛₕ (Env.sig ([S]-env S)) 0 r θ)
= s'∈can-r'-θ
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ .θ' , .A' ⟩· r') cb
(rraise-shared {s = s} {e = e} {p = p} {E = E} e' r≐E⟦shared⟧) s' s'∈can-ρθ'·r'-θ
with set-subtract-merge {ys = proj₁ (proj₂ (Dom θ'))} s'∈can-ρθ'·r'-θ
... | s'∈can-r'-θ←θ' , s'∉Domθ' =
set-subtract-notin
(canθₛₕ-subset (Env.sig θ') 0 (E ⟦ ρ⟨ [s,δe]-env s (δ e') , WAIT ⟩· p ⟧e) r
θ (λ θ* S* → canₛ-raise θ* (tshared (δ e') s e p) r≐E⟦shared⟧ S*)
(λ θ* s* → canₛₕ-raise θ* (tshared (δ e') s e p) r≐E⟦shared⟧ s*) s'
s'∈can-r'-θ←θ')
s'∉Domθ'
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ θ'' , A'' ⟩· r') cb
(rset-shared-value-old {s = s} {e = e} {E = E} e' s∈ θ's≡old r≐E⟦s⇐e⟧) s' s'∈can-ρθ''·r'-θ
with set-subtract-merge {ys = proj₁ (proj₂ (Dom θ''))} s'∈can-ρθ''·r'-θ
... | s'∈can-r'-θ←θ'' , s'∉Domθ''
with set-subtract-split {ys = proj₁ (proj₂ (Dom θ'))}
(canθₛₕ-subset (Env.sig θ') 0 (E ⟦ nothin ⟧e) r θ
(λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-shr s e) r≐E⟦s⇐e⟧ S*)
(λ θ* s* → canₛₕ-term-nothin θ* θ* refl (tset-shr s e) r≐E⟦s⇐e⟧ s*)
s' s'∈can-r'-θ←θ'')
... | inj₁ s'∈can-r-θ←θ'-θ' = s'∈can-r-θ←θ'-θ'
... | inj₂ s'∈Domθ' =
⊥-elim
(s'∉Domθ''
(Env.shr-set-mono' {s'} {s} {θ'} {SharedVar.new} {δ e'} {s∈}
s'∈Domθ'))
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ θ'' , A'' ⟩· r') cb
(rset-shared-value-new {s = s} {e = e} {E = E} e' s∈ θ's≡new r≐E⟦s⇐e⟧) s' s'∈can-ρθ''·r'-θ
with set-subtract-merge {ys = proj₁ (proj₂ (Dom θ''))} s'∈can-ρθ''·r'-θ
... | s'∈can-r'-θ←θ'' , s'∉Domθ''
with set-subtract-split {ys = proj₁ (proj₂ (Dom θ'))}
(canθₛₕ-subset (Env.sig θ') 0 (E ⟦ nothin ⟧e) r θ
(λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-shr s e) r≐E⟦s⇐e⟧ S*)
(λ θ* s* → canₛₕ-term-nothin θ* θ* refl (tset-shr s e) r≐E⟦s⇐e⟧ s*)
s' s'∈can-r'-θ←θ'')
... | inj₁ s'∈can-r-θ←θ'-θ' = s'∈can-r-θ←θ'-θ'
... | inj₂ s'∈Domθ' =
⊥-elim
(s'∉Domθ''
(Env.shr-set-mono' {s'} {s} {θ'} {SharedVar.new}
{Env.shr-vals {s} θ' s∈ + δ e'} {s∈}
s'∈Domθ'))
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ .θ' , .A' ⟩· r') cb
(rraise-var {x = x} {p = p} {e = e} {E = E} e' r≐E⟦var⟧) s' s'∈can-ρθ'·r'-θ
with set-subtract-merge {ys = proj₁ (proj₂ (Dom θ'))} s'∈can-ρθ'·r'-θ
... | s'∈can-r'-θ←θ' , s'∉Domθ' =
set-subtract-notin
(canθₛₕ-subset (Env.sig θ') 0 (E ⟦ ρ⟨ [x,δe]-env x (δ e') , WAIT ⟩· p ⟧e) r θ
(λ θ* S* → canₛ-raise θ* (tvar (δ e') x e p) r≐E⟦var⟧ S*)
(λ θ* s* → canₛₕ-raise θ* (tvar (δ e') x e p) r≐E⟦var⟧ s*)
s' s'∈can-r'-θ←θ')
s'∉Domθ'
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ θ'' , A'' ⟩· r') cb
(rset-var {x = x} {e = e} {E = E} x∈ e' r≐E⟦x≔e⟧) s' s'∈can-ρθ''·r'-θ
with set-subtract-merge {ys = proj₁ (proj₂ (Dom θ''))} s'∈can-ρθ''·r'-θ
... | s'∈can-r'-θ←θ'' , s'∉Domθ''
with set-subtract-split {ys = proj₁ (proj₂ (Dom θ'))}
(canθₛₕ-subset (Env.sig θ') 0 (E ⟦ nothin ⟧e) r θ
(λ θ* S* → canₛ-term-nothin θ* θ* refl (tset-var x e) r≐E⟦x≔e⟧ S*)
(λ θ* s* → canₛₕ-term-nothin θ* θ* refl (tset-var x e) r≐E⟦x≔e⟧ s*)
s' s'∈can-r'-θ←θ'')
... | inj₁ s'∈can-r-θ←θ'-θ' = s'∈can-r-θ←θ'-θ' -- θ' and θ'' differ only by seq var Dom
... | inj₂ s'∈Domθ' = ⊥-elim (s'∉Domθ'' s'∈Domθ')
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ .θ' , .A' ⟩· r') cb
(rif-false {p = p} {q = q} {x = x} {E = E} x∈ θ'x≡zero r≐E⟦if⟧) s' s'∈can-ρθ'·r'-θ
with set-subtract-merge{xs = (thd (Canθ (Env.sig θ') 0 r' θ))} {ys = snd (Dom θ')}{z = (SharedVar.unwrap s')} s'∈can-ρθ'·r'-θ
... | s'∈can-r'-θ←θ' , s'∉Domθ'
rewrite sym (unplug r≐E⟦if⟧)
= set-subtract-notin
(canθₛₕ-if-false-lemma (Env.sig θ' ) 0 x p q θ E (SharedVar.unwrap s') s'∈can-r'-θ←θ' )
s'∉Domθ'
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ .θ' , .A' ⟩· r') cb
(rif-true {p = p} {q = q} {x = x} {E = E} x∈ θ'x≡suc r≐E⟦if⟧) s' s'∈can-ρθ'·r'-θ
with set-subtract-merge{xs = (thd (Canθ (Env.sig θ') 0 r' θ))} {ys = snd (Dom θ')}{z = (SharedVar.unwrap s')} s'∈can-ρθ'·r'-θ
... | s'∈can-r'-θ←θ' , s'∉Domθ'
rewrite sym (unplug r≐E⟦if⟧)
= set-subtract-notin
(canθₛₕ-if-true-lemma (Env.sig θ' ) 0 x p q θ E (SharedVar.unwrap s') s'∈can-r'-θ←θ' )
s'∉Domθ'
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ θ'' , A'' ⟩· .r) cb
(rabsence {S = S} S∈ θ'S≡unknown S∉can-r-θ') s' s'∈can-ρθ''·r-θ
rewrite Env.sig-switch-right S Signal.absent θ θ' S∈ (Env.sig-←-monoʳ S θ' θ S∈)
with set-subtract-merge {xs = Canθₛₕ (Env.sig θ'') 0 r θ }{ys = proj₁ (proj₂ (Dom θ''))} s'∈can-ρθ''·r-θ
... | s'∈can-r-θ←θ'' , s'∉Domθ''
with set-subtract-split
(canθₛₕ-set-sig-monotonic-absence-lemma (Env.sig θ') 0 r S θ S∈
θ'S≡unknown (SharedVar.unwrap s') s'∈can-r-θ←θ'')
where
θ←θ' = θ ← θ'
S∈Domθ←θ' = Env.sig-←-monoʳ S θ' θ S∈
⟨θ←θ'⟩S≡θ'S = Env.sig-stats-←-right-irr' S θ θ' S∈ S∈Domθ←θ'
... | inj₁ s'∈can-r-θ←θ'-θ' = s'∈can-r-θ←θ'-θ'
... | inj₂ s'∈Domθ' = ⊥-elim (s'∉Domθ'' s'∈Domθ') -- θ' and θ'' differ only by sig
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) r' cb
(rreadyness {s = s} s∈ θ's≡old⊎θ's≡new s∉can-r-θ') s' s'∈can-r'-θ
rewrite cong (proj₁ ∘ proj₂)
(Env.shr-set-dom-eq s SharedVar.ready (Env.shr-vals {s} θ' s∈) θ' s∈)
| can-shr-var-irr r (θ ← θ')
(θ ← Env.set-shr {s} θ' s∈ SharedVar.ready (Env.shr-vals {s} θ' s∈)) refl
= s'∈can-r'-θ
canₛₕ-monotonic θ (ρ⟨ θ' , A' ⟩· r) (ρ⟨ .(θ' ← θ'') , .(A-max A' _) ⟩· r') cb@(CBρ cb')
(rmerge {θ₁ = .θ'} {θ₂ = θ''} {p = rin} {E = E} r≐E⟦ρθ''·rin⟧) s' s'∈can-ρθ'←θ''·r'-θ
with set-subtract-merge
{xs = Canθₛₕ (Env.sig (θ' ← θ'')) 0 r' θ}
{ys = proj₁ (proj₂ (Dom (θ' ← θ'')))}
s'∈can-ρθ'←θ''·r'-θ
-- rewrite Env.←-assoc θ θ' θ''
... | s'∈can-r'-θ←θ'←θ'' , s'∉Domθ'←θ'' =
set-subtract-notin
(canθₛₕ-mergeˡ (Env.sig θ') θ cb' r≐E⟦ρθ''·rin⟧
s' (s'∉Domθ'←θ'' ∘ Env.shr-←-monoʳ s' θ'' θ')
s'∈can-r'-θ←θ'←θ'')
(s'∉Domθ'←θ'' ∘ Env.shr-←-monoˡ s' θ' θ'')
infix 4 _⊑₃_
_⊑₃_ : SigSet.ST × CodeSet.ST × ShrSet.ST -> SigSet.ST × CodeSet.ST × ShrSet.ST -> Set
_⊑₃_ (Ss , ks , ss) (Ss' , ks' , ss') =
((∀ S → (Signal.unwrap S) ∈ Ss → (Signal.unwrap S) ∈ Ss') ×
(∀ k → k ∈ ks → k ∈ ks') ×
(∀ s → (SharedVar.unwrap s) ∈ ss → (SharedVar.unwrap s) ∈ ss'))
can-antimonotonic :
∀ θ p q →
CB p →
p sn⟶₁ q →
Can q θ ⊑₃ Can p θ
can-antimonotonic θ r r' CBr rsn⟶₁r' =
(canₛ-monotonic θ r r' CBr rsn⟶₁r' ,′
canₖ-monotonic θ r r' CBr rsn⟶₁r' ,′
canₛₕ-monotonic θ r r' CBr rsn⟶₁r')
| {
"alphanum_fraction": 0.5409065262,
"avg_line_length": 46.1011560694,
"ext": "agda",
"hexsha": "0a6a865996f0359dccf677f30c4887e44bf133df",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/can-function-preserve.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/can-function-preserve.agda",
"max_line_length": 144,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/can-function-preserve.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 16064,
"size": 31902
} |
module Lib.Eq where
open import Lib.Prelude as P hiding (String)
open import Lib.Nat renaming (_==_ to _=Nat=_)
open import Lib.Fin
open import Lib.List
open import Lib.Bool
-- Wrapper type, used to ensure that El is constructor-headed.
record String : Set where
constructor string
field unString : P.String
-- Codes for types supporting equality
data EqU : Set where
nat : EqU
bool : EqU
string : EqU
unit : EqU
fin : Nat -> EqU
list : EqU -> EqU
pair : EqU -> EqU -> EqU
El : EqU -> Set
El nat = Nat
El bool = Bool
El string = String
El unit = Unit
El (fin n) = Fin n
El (list u) = List (El u)
El (pair u v) = El u × El v
primitive primStringEquality : P.String -> P.String -> Bool
infix 30 _==_
_==_ : {u : EqU} -> El u -> El u -> Bool
_==_ {nat} n m = n =Nat= m
_==_ {fin n} i j = finEq i j
_==_ {bool} false y = not y
_==_ {bool} true y = y
_==_ {string} (string x) (string y) = primStringEquality x y
_==_ {unit} _ _ = true
_==_ {list u} [] [] = true
_==_ {list u} (x :: xs) (y :: ys) = x == y && xs == ys
_==_ {list u} _ _ = false
_==_ {pair u v} (x₁ , y₁) (x₂ , y₂) = x₁ == x₂ && y₁ == y₂
| {
"alphanum_fraction": 0.5174772036,
"avg_line_length": 25.8039215686,
"ext": "agda",
"hexsha": "90df297661d963d4c8d3c6989f635104ccfa31f7",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "examples/simple-lib/Lib/Eq.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "examples/simple-lib/Lib/Eq.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "examples/simple-lib/Lib/Eq.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 455,
"size": 1316
} |
------------------------------------------------------------------------
-- Strict ω-continuous functions
------------------------------------------------------------------------
{-# OPTIONS --erased-cubical --safe #-}
module Partiality-algebra.Strict-omega-continuous where
open import Equality.Propositional.Cubical
open import Prelude hiding (⊥)
open import Bijection equality-with-J using (_↔_)
import Equivalence equality-with-J as Eq
open import Function-universe equality-with-J hiding (_∘_)
open import H-level.Closure equality-with-J
open import Monad equality-with-J
open import Partiality-algebra as PA
open import Partiality-algebra.Monotone
open import Partiality-algebra.Omega-continuous
-- Definition of strict ω-continuous functions.
record [_⟶_]⊥
{a₁ p₁ q₁} {A₁ : Type a₁} (P₁ : Partiality-algebra p₁ q₁ A₁)
{a₂ p₂ q₂} {A₂ : Type a₂} (P₂ : Partiality-algebra p₂ q₂ A₂) :
Type (p₁ ⊔ p₂ ⊔ q₁ ⊔ q₂) where
private
module P₁ = Partiality-algebra P₁
module P₂ = Partiality-algebra P₂
field
ω-continuous-function : [ P₁ ⟶ P₂ ]
open [_⟶_] ω-continuous-function public
field
strict : function P₁.never ≡ P₂.never
open [_⟶_]⊥
-- Identity.
id⊥ : ∀ {a p q} {A : Type a} {P : Partiality-algebra p q A} →
[ P ⟶ P ]⊥
ω-continuous-function id⊥ = idω
strict id⊥ = refl
-- Composition.
infixr 40 _∘⊥_
_∘⊥_ :
∀ {a₁ p₁ q₁} {A₁ : Type a₁} {P₁ : Partiality-algebra p₁ q₁ A₁}
{a₂ p₂ q₂} {A₂ : Type a₂} {P₂ : Partiality-algebra p₂ q₂ A₂}
{a₃ p₃ q₃} {A₃ : Type a₃} {P₃ : Partiality-algebra p₃ q₃ A₃} →
[ P₂ ⟶ P₃ ]⊥ → [ P₁ ⟶ P₂ ]⊥ → [ P₁ ⟶ P₃ ]⊥
ω-continuous-function (f ∘⊥ g) =
ω-continuous-function f ∘ω ω-continuous-function g
strict (_∘⊥_ {P₁ = P₁} {P₂ = P₂} {P₃ = P₃} f g) =
function f (function g P₁.never) ≡⟨ cong (function f) (strict g) ⟩
function f P₂.never ≡⟨ strict f ⟩∎
P₃.never ∎
where
module P₁ = Partiality-algebra P₁
module P₂ = Partiality-algebra P₂
module P₃ = Partiality-algebra P₃
-- Equality characterisation lemma for strict ω-continuous functions.
equality-characterisation-strict :
∀ {a₁ p₁ q₁} {A₁ : Type a₁} {P₁ : Partiality-algebra p₁ q₁ A₁}
{a₂ p₂ q₂} {A₂ : Type a₂} {P₂ : Partiality-algebra p₂ q₂ A₂}
{f g : [ P₁ ⟶ P₂ ]⊥} →
(∀ x → function f x ≡ function g x) ↔ f ≡ g
equality-characterisation-strict {P₁ = P₁} {P₂ = P₂} {f} {g} =
(∀ x → function f x ≡ function g x) ↝⟨ equality-characterisation-continuous ⟩
ω-continuous-function f ≡ ω-continuous-function g ↝⟨ ignore-propositional-component P₂.T-is-set ⟩
_↔_.to rearrange f ≡ _↔_.to rearrange g ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ rearrange) ⟩□
f ≡ g □
where
module P₁ = Partiality-algebra P₁
module P₂ = Partiality-algebra P₂
rearrange :
[ P₁ ⟶ P₂ ]⊥
↔
∃ λ (h : [ P₁ ⟶ P₂ ]) → [_⟶_].function h P₁.never ≡ P₂.never
rearrange = record
{ surjection = record
{ logical-equivalence = record
{ to = λ f → ω-continuous-function f , strict f
; from = uncurry λ f c → record { ω-continuous-function = f
; strict = c
}
}
; right-inverse-of = λ _ → refl
}
; left-inverse-of = λ _ → refl
}
where
open Partiality-algebra
-- Composition is associative.
∘⊥-assoc :
∀ {a₁ p₁ q₁} {A₁ : Type a₁} {P₁ : Partiality-algebra p₁ q₁ A₁}
{a₂ p₂ q₂} {A₂ : Type a₂} {P₂ : Partiality-algebra p₂ q₂ A₂}
{a₃ p₃ q₃} {A₃ : Type a₃} {P₃ : Partiality-algebra p₃ q₃ A₃}
{a₄ p₄ q₄} {A₄ : Type a₄} {P₄ : Partiality-algebra p₄ q₄ A₄}
(f : [ P₃ ⟶ P₄ ]⊥) (g : [ P₂ ⟶ P₃ ]⊥) (h : [ P₁ ⟶ P₂ ]⊥) →
f ∘⊥ (g ∘⊥ h) ≡ (f ∘⊥ g) ∘⊥ h
∘⊥-assoc _ _ _ =
_↔_.to equality-characterisation-strict λ _ → refl
| {
"alphanum_fraction": 0.5668822768,
"avg_line_length": 33.3189655172,
"ext": "agda",
"hexsha": "ef46cedfd60c37744cd17b29207dbc74712ffe4c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/partiality-monad",
"max_forks_repo_path": "src/Partiality-algebra/Strict-omega-continuous.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/partiality-monad",
"max_issues_repo_path": "src/Partiality-algebra/Strict-omega-continuous.agda",
"max_line_length": 100,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/partiality-monad",
"max_stars_repo_path": "src/Partiality-algebra/Strict-omega-continuous.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z",
"num_tokens": 1449,
"size": 3865
} |
open import FRP.LTL.Time using ( Time ; _,_ )
open import FRP.LTL.Time.Bound using
( Time∞ ; _≼_ ; _≺_ ; fin ; +∞ ; +∞-top ; t≺+∞ ; ≼-refl ; _≼-trans_
; ≡-impl-≼ ; ≺-impl-≼ ; _≺-trans_ ; _≺-transʳ_ ; ≺-impl-⋡ ; t≺t+1 )
open import FRP.LTL.Util using ( irrelevant ; ⊥-elim )
open import Relation.Unary using ( _∈_ )
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym )
module FRP.LTL.Time.Interval where
infixr 2 _⊑_ _~_
infixr 4 _,_ _⌢_∵_
-- Semi-open intervals, with possibly infinite bounds
-- Previous versions of Interval used ≼ rather than ≺
-- (that is, empty intervals were supported) but
-- MSet has been written to avoid requiring empty intervals.
data Interval : Set where
[_⟩ : ∀ {s t} → .(s ≺ t) → Interval
lb : Interval → Time∞
lb ([_⟩ {s} {t} s≺t) = s
ub : Interval → Time∞
ub ([_⟩ {s} {t} s≺t) = t
.lb≺ub : ∀ i → (lb i ≺ ub i)
lb≺ub [ s≺t ⟩ = irrelevant s≺t
-- Semantics of intervals
data Int∞ (i : Interval) (t : Time∞) : Set where
_,_ : .(lb i ≼ t) → .(t ≺ ub i) → (t ∈ Int∞ i)
Int : Interval → Time → Set
Int i t = fin t ∈ Int∞ i
.lb≼ : ∀ {t i} → (t ∈ Int i) → (lb i ≼ fin t)
lb≼ (s≼t , t≺u) = irrelevant s≼t
.≺ub : ∀ {t i} → (t ∈ Int i) → (fin t ≺ ub i)
≺ub (s≼t , t≺u) = irrelevant t≺u
-- Ordering on intervals
data _⊑_ (i j : Interval) : Set where
_,_ : .(lb j ≼ lb i) → .(ub i ≼ ub j) → (i ⊑ j)
⊑-refl : ∀ {i} → (i ⊑ i)
⊑-refl = (≼-refl , ≼-refl)
_⊑-trans_ : ∀ {i j k} → (i ⊑ j) → (j ⊑ k) → (i ⊑ k)
(sj≼si , ui≼uj) ⊑-trans (sk≼sj , uj≼uk) =
(sk≼sj ≼-trans sj≼si , ui≼uj ≼-trans uj≼uk)
.⊑-impl-≼ : ∀ {i j} → (i ⊑ j) → (ub i ≼ ub j)
⊑-impl-≼ (lj≼li , ui≼uj) = irrelevant ui≼uj
.⊑-impl-≽ : ∀ {i j} → (i ⊑ j) → (lb j ≼ lb i)
⊑-impl-≽ (lj≼li , ui≼uj) = irrelevant lj≼li
-- When do two intervals abut?
_~_ : Interval → Interval → Set
i ~ j = ub i ≡ lb j
-- Concatenation of intervals
_⌢_∵_ : ∀ i j → (i ~ j) → Interval
i ⌢ j ∵ i~j = [ lb≺ub i ≺-trans ≡-impl-≼ i~j ≺-transʳ lb≺ub j ⟩
⌢-inj₁ : ∀ i j i~j → (i ⊑ (i ⌢ j ∵ i~j))
⌢-inj₁ [ s≺t ⟩ [ t≺u ⟩ refl = (≼-refl , ≺-impl-≼ t≺u)
⌢-inj₂ : ∀ i j i~j → (j ⊑ (i ⌢ j ∵ i~j))
⌢-inj₂ [ s≺t ⟩ [ t≺u ⟩ refl = (≺-impl-≼ s≺t , ≼-refl)
-- Up-closure of a time
↑ : Time → Interval
↑ t = [ t≺+∞ {t} ⟩
-- Singleton interval
sing : Time → Interval
sing t = [ t≺t+1 {t} ⟩ | {
"alphanum_fraction": 0.5323426573,
"avg_line_length": 26,
"ext": "agda",
"hexsha": "7914e4de7abcc6836bc7fe5d51882f5113f63d06",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/Time/Interval.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/Time/Interval.agda",
"max_line_length": 76,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/Time/Interval.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 1134,
"size": 2288
} |
------------------------------------------------------------------------
-- Laws related to _>>=_
------------------------------------------------------------------------
module TotalParserCombinators.Laws.Monad where
open import Algebra
open import Category.Monad
open import Codata.Musical.Notation
open import Data.List
open import Data.List.Categorical
using () renaming (module MonadProperties to ListMonad)
import Data.List.Relation.Binary.BagAndSetEquality as BSEq
open import Function
open import Level
private
module BagMonoid {k} {A : Set} =
CommutativeMonoid (BSEq.commutativeMonoid k A)
open RawMonad {f = zero} Data.List.Categorical.monad
using () renaming (_>>=_ to _>>=′_)
open import TotalParserCombinators.Derivative
open import TotalParserCombinators.Congruence as Eq
hiding (return; fail) renaming (_∣_ to _∣′_)
import TotalParserCombinators.Laws.AdditiveMonoid as AdditiveMonoid
open import TotalParserCombinators.Laws.Derivative as Derivative
open import TotalParserCombinators.Laws.ReturnStar as Return⋆
open import TotalParserCombinators.Lib
open import TotalParserCombinators.Parser
------------------------------------------------------------------------
-- _>>=_, return, _∣_ and fail form a monad with a zero and a plus
-- If the laws below are combined with the additive monoid laws this
-- means that we have something which resembles an idempotent semiring
-- (if we restrict ourselves to language equivalence).
-- The zero laws are proved elsewhere.
open Derivative public
using () renaming (left-zero->>= to left-zero;
right-zero->>= to right-zero)
left-distributive : ∀ {Tok R₁ R₂ xs} {f g : R₁ → List R₂}
(p₁ : Parser Tok R₁ xs)
(p₂ : (x : R₁) → Parser Tok R₂ (f x))
(p₃ : (x : R₁) → Parser Tok R₂ (g x)) →
p₁ >>= (λ x → p₂ x ∣ p₃ x) ≅P p₁ >>= p₂ ∣ p₁ >>= p₃
left-distributive {xs = xs} {f} {g} p₁ p₂ p₃ =
BSEq.>>=-left-distributive xs {f = f} ∷ λ t → ♯ (
D t (p₁ >>= (λ x → p₂ x ∣ p₃ x)) ≅⟨ D->>= p₁ (λ x → p₂ x ∣ p₃ x) ⟩
D t p₁ >>= (λ x → p₂ x ∣ p₃ x) ∣
return⋆ xs >>= (λ x → D t (p₂ x) ∣ D t (p₃ x)) ≅⟨ left-distributive (D t p₁) p₂ p₃ ∣′
left-distributive (return⋆ xs)
(λ x → D t (p₂ x)) (λ x → D t (p₃ x)) ⟩
(D t p₁ >>= p₂ ∣ D t p₁ >>= p₃) ∣
(return⋆ xs >>= (λ x → D t (p₂ x)) ∣
return⋆ xs >>= (λ x → D t (p₃ x))) ≅⟨ AdditiveMonoid.swap
(D t p₁ >>= p₂) (D t p₁ >>= p₃)
(return⋆ xs >>= (λ x → D t (p₂ x)))
(return⋆ xs >>= (λ x → D t (p₃ x))) ⟩
(D t p₁ >>= p₂ ∣ return⋆ xs >>= (λ x → D t (p₂ x))) ∣
(D t p₁ >>= p₃ ∣ return⋆ xs >>= (λ x → D t (p₃ x))) ≅⟨ sym (D->>= p₁ p₂ ∣′ D->>= p₁ p₃) ⟩
D t (p₁ >>= p₂) ∣ D t (p₁ >>= p₃) ∎)
right-distributive : ∀ {Tok R₁ R₂ xs₁ xs₂} {f : R₁ → List R₂}
(p₁ : Parser Tok R₁ xs₁)
(p₂ : Parser Tok R₁ xs₂)
(p₃ : (x : R₁) → Parser Tok R₂ (f x)) →
(p₁ ∣ p₂) >>= p₃ ≅P p₁ >>= p₃ ∣ p₂ >>= p₃
right-distributive {xs₁ = xs₁} {xs₂} {f} p₁ p₂ p₃ =
BagMonoid.reflexive (ListMonad.right-distributive xs₁ xs₂ f) ∷ λ t → ♯ (
D t ((p₁ ∣ p₂) >>= p₃) ≅⟨ D->>= (p₁ ∣ p₂) p₃ ⟩
(D t p₁ ∣ D t p₂) >>= p₃ ∣
return⋆ (xs₁ ++ xs₂) >>= (λ x → D t (p₃ x)) ≅⟨ ((D t p₁ ∣ D t p₂) >>= p₃ ∎) ∣′
[ ○ - ○ - ○ - ○ ] Return⋆.distrib-∣ xs₁ xs₂ >>=
(λ x → D t (p₃ x) ∎) ⟩
(D t p₁ ∣ D t p₂) >>= p₃ ∣
(return⋆ xs₁ ∣ return⋆ xs₂) >>= (λ x → D t (p₃ x)) ≅⟨ right-distributive (D t p₁) (D t p₂) p₃ ∣′
right-distributive (return⋆ xs₁) (return⋆ xs₂)
(λ x → D t (p₃ x)) ⟩
((D t p₁ >>= p₃) ∣ (D t p₂ >>= p₃)) ∣
(return⋆ xs₁ >>= (λ x → D t (p₃ x)) ∣
return⋆ xs₂ >>= (λ x → D t (p₃ x))) ≅⟨ AdditiveMonoid.swap
(D t p₁ >>= p₃) (D t p₂ >>= p₃)
(return⋆ xs₁ >>= (λ x → D t (p₃ x)))
(return⋆ xs₂ >>= (λ x → D t (p₃ x))) ⟩
(D t p₁ >>= p₃ ∣ return⋆ xs₁ >>= (λ x → D t (p₃ x))) ∣
(D t p₂ >>= p₃ ∣ return⋆ xs₂ >>= (λ x → D t (p₃ x))) ≅⟨ sym (D->>= p₁ p₃ ∣′ D->>= p₂ p₃) ⟩
D t (p₁ >>= p₃) ∣ D t (p₂ >>= p₃) ∎)
left-identity : ∀ {Tok R₁ R₂} {f : R₁ → List R₂}
(x : R₁) (p : (x : R₁) → Parser Tok R₂ (f x)) →
return x >>= p ≅P p x
left-identity {f = f} x p =
BagMonoid.reflexive (ListMonad.left-identity x f) ∷ λ t → ♯ (
D t (return x >>= p) ≅⟨ D->>= (return x) p ⟩
fail >>= p ∣ return⋆ [ x ] >>= (λ x → D t (p x)) ≅⟨ left-zero p ∣′
[ ○ - ○ - ○ - ○ ] AdditiveMonoid.right-identity (return x) >>=
(λ x → D t (p x) ∎) ⟩
fail ∣ return x >>= (λ x → D t (p x)) ≅⟨ AdditiveMonoid.left-identity (return x >>= (λ x → D t (p x))) ⟩
return x >>= (λ x → D t (p x)) ≅⟨ left-identity x (λ x → D t (p x)) ⟩
D t (p x) ∎)
right-identity : ∀ {Tok R xs}
(p : Parser Tok R xs) → p >>= return ≅P p
right-identity {xs = xs} p =
BagMonoid.reflexive (ListMonad.right-identity xs) ∷ λ t → ♯ (
D t (p >>= return) ≅⟨ D->>= p return ⟩
D t p >>= return ∣ return⋆ xs >>= (λ _ → fail) ≅⟨ right-identity (D t p) ∣′ right-zero (return⋆ xs) ⟩
D t p ∣ fail ≅⟨ AdditiveMonoid.right-identity (D t p) ⟩
D t p ∎)
associative : ∀ {Tok R₁ R₂ R₃ xs}
{f : R₁ → List R₂} {g : R₂ → List R₃}
(p₁ : Parser Tok R₁ xs)
(p₂ : (x : R₁) → Parser Tok R₂ (f x))
(p₃ : (x : R₂) → Parser Tok R₃ (g x)) →
p₁ >>= (λ x → p₂ x >>= p₃) ≅P p₁ >>= p₂ >>= p₃
associative {xs = xs} {f} {g} p₁ p₂ p₃ =
BagMonoid.reflexive (ListMonad.associative xs f g) ∷ λ t → ♯ (
D t (p₁ >>= λ x → p₂ x >>= p₃) ≅⟨ D->>= p₁ (λ x → p₂ x >>= p₃) ⟩
D t p₁ >>= (λ x → p₂ x >>= p₃) ∣
return⋆ xs >>= (λ x → D t (p₂ x >>= p₃)) ≅⟨ associative (D t p₁) p₂ p₃ ∣′
[ ○ - ○ - ○ - ○ ] return⋆ xs ∎ >>= (λ x → D->>= (p₂ x) p₃) ⟩
D t p₁ >>= p₂ >>= p₃ ∣
return⋆ xs >>=
(λ x → D t (p₂ x) >>= p₃ ∣
return⋆ (f x) >>= λ x → D t (p₃ x)) ≅⟨ (D t p₁ >>= p₂ >>= p₃ ∎) ∣′
left-distributive (return⋆ xs)
(λ x → D t (p₂ x) >>= p₃)
(λ x → return⋆ (f x) >>= (λ x → D t (p₃ x))) ⟩
D t p₁ >>= p₂ >>= p₃ ∣
(return⋆ xs >>= (λ x → D t (p₂ x) >>= p₃) ∣
return⋆ xs >>= (λ x → return⋆ (f x) >>= λ x → D t (p₃ x))) ≅⟨ (D t p₁ >>= p₂ >>= p₃ ∎) ∣′
(associative (return⋆ xs) (λ x → D t (p₂ x)) p₃ ∣′
associative (return⋆ xs) (return⋆ ∘ f) (λ x → D t (p₃ x))) ⟩
D t p₁ >>= p₂ >>= p₃ ∣
(return⋆ xs >>= (λ x → D t (p₂ x)) >>= p₃ ∣
return⋆ xs >>= (return⋆ ∘ f) >>= λ x → D t (p₃ x)) ≅⟨ sym $ AdditiveMonoid.associative
(D t p₁ >>= p₂ >>= p₃)
(return⋆ xs >>= (λ x → D t (p₂ x)) >>= p₃)
(return⋆ xs >>= (return⋆ ∘ f) >>= (λ x → D t (p₃ x))) ⟩
D t p₁ >>= p₂ >>= p₃ ∣
return⋆ xs >>= (λ x → D t (p₂ x)) >>= p₃ ∣
return⋆ xs >>= (return⋆ ∘ f) >>= (λ x → D t (p₃ x)) ≅⟨ sym (right-distributive
(D t p₁ >>= p₂)
(return⋆ xs >>= (λ x → D t (p₂ x)))
p₃) ∣′
[ ○ - ○ - ○ - ○ ] sym (Return⋆.distrib->>= xs f) >>=
(λ x → D t (p₃ x) ∎) ⟩
(D t p₁ >>= p₂ ∣
return⋆ xs >>= (λ x → D t (p₂ x))) >>= p₃ ∣
return⋆ (xs >>=′ f) >>= (λ x → D t (p₃ x)) ≅⟨ [ ○ - ○ - ○ - ○ ] sym (D->>= p₁ p₂) >>= (λ x → p₃ x ∎) ∣′
(return⋆ (xs >>=′ f) >>= (λ x → D t (p₃ x)) ∎) ⟩
D t (p₁ >>= p₂) >>= p₃ ∣
return⋆ (xs >>=′ f) >>= (λ x → D t (p₃ x)) ≅⟨ sym $ D->>= (p₁ >>= p₂) p₃ ⟩
D t (p₁ >>= p₂ >>= p₃) ∎)
| {
"alphanum_fraction": 0.3491075982,
"avg_line_length": 59.0662650602,
"ext": "agda",
"hexsha": "4c918f7bef70e728c552a93f130f86c487035e7f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "TotalParserCombinators/Laws/Monad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "TotalParserCombinators/Laws/Monad.agda",
"max_line_length": 132,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "TotalParserCombinators/Laws/Monad.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 3270,
"size": 9805
} |
{-# OPTIONS --cubical --no-import-sorts #-}
module MoreAlgebra where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
private
variable
ℓ ℓ' ℓ'' : Level
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base -- ¬_
open import Cubical.Relation.Binary.Base
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma.Base renaming (_×_ to infixr 4 _×_)
open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim`
open import Cubical.Foundations.Logic renaming (¬_ to ¬ᵖ_; inl to inlᵖ; inr to inrᵖ)
open import Utils
hPropRel : ∀ {ℓ} (A B : Type ℓ) (ℓ' : Level) → Type (ℓ-max ℓ (ℓ-suc ℓ'))
hPropRel A B ℓ' = A → B → hProp ℓ'
module Definitions where
-- NOTE: one needs these "all-lowercase constructors" to make use of copatterns
_Preserves_⟶_ : ∀{Aℓ Bℓ ℓ ℓ'} {A : Type Aℓ} {B : Type Bℓ} → (A → B) → Rel A A ℓ → Rel B B ℓ' → Set _
f Preserves P ⟶ Q = ∀{x y} → P x y → Q (f x) (f y)
_Reflects_⟶_ : ∀{Aℓ Bℓ ℓ ℓ'} {A : Type Aℓ} {B : Type Bℓ} → (A → B) → Rel A A ℓ → Rel B B ℓ' → Set _
f Reflects P ⟶ Q = ∀{x y} → Q (f x) (f y) → P x y
-- https://en.wikipedia.org/wiki/Complete_partial_order
-- A partially ordered set is a directed-complete partial order (dcpo) if each of its directed subsets has a supremum.
-- A subset of a partial order is directed if it is non-empty and every pair of elements has an upper bound in the subset.
-- In the literature, dcpos sometimes also appear under the label up-complete poset.
-- https://ncatlab.org/nlab/show/dcpo
-- A DCPO, or directed-complete partial order, is a poset with all directed joins.
-- Often a DCPO is required to have a bottom element ⊥\bot; then it is called a pointed DCPO or a CPO (but this term is ambiguous).
-- In this chapter we develop the theory of directed-complete partial orders (dcpo), namely
-- partially ordered sets in which only certain joins are required to exist.
--
-- ...
--
-- 3.1 Dcpos
--
-- We start by defining partial orders. By a binary relation R on a set X , we mean a map X → X → HProp, as in Definition 2.7.1.
-- We can specify which universe the binary relation lands in by saying that R is HPropᵢ-valued or is a relation in universe i if R : X → X → HPropᵢ.
--
-- Definition 3.1.1. A binary relation R on a set X is
--
-- 1. reflexive if (∀ x : X) R x x;
-- 2. irreflexive if (∀ x : X) ¬ R x x;
-- 3. symmetric if (∀ x, y : X) R x y ⇒ R y x;
-- 4. antisymmetric if (∀ x, y : X) R x y ⇒ R y x ⇒ x = y;
-- 5. transitive if (∀ x, y, z : X) R x y ⇒ R y z ⇒ R x z;
-- 6. cotransitive if (∀ x, y, z : X) R x y ⇒ (R x z) ∨ (R z y).
--
-- Remark 3.1.2. Cotransitivity is also known as weak linearity [91, Definition 11.2.7] or the approximate splitting principle [84].
--
-- Definition 3.1.3.
--
-- A preorder, denoted by ≤, is a reflexive transitive relation.
-- A partial order is an antisymmetric preorder.
-- Definition 4.1.4.
-- - An apartness relation, denoted by #, is an irreflexive symmetric cotransitive relation.
-- - A strict partial order, denoted by <, is an irreflexive transitive cotransitive relation.
IsIrrefl : {ℓ ℓ' : Level} {A : Type ℓ} → (R : Rel A A ℓ') → Type (ℓ-max ℓ ℓ')
IsIrrefl {A = A} R = (a : A) → ¬(R a a)
IsCotrans : {ℓ ℓ' : Level} {A : Type ℓ} → (R : Rel A A ℓ') → Type (ℓ-max ℓ ℓ')
IsCotrans {A = A} R = (a b : A) → R a b → (∀(x : A) → (R a x) ⊎ (R x b))
-- NOTE: see Cubical.Algebra.Poset
IsSymᵖ : {ℓ ℓ' : Level} {A : Type ℓ} → (R : hPropRel A A ℓ') → Type (ℓ-max ℓ ℓ')
IsSymᵖ {A = A} R = (a b : A) → [ R a b ] → [ R b a ]
IsIrreflᵖ : {ℓ ℓ' : Level} {A : Type ℓ} → (R : hPropRel A A ℓ') → Type (ℓ-max ℓ ℓ')
IsIrreflᵖ {A = A} R = (a : A) → [ ¬ᵖ(R a a) ]
IsCotransᵖ : {ℓ ℓ' : Level} {A : Type ℓ} → (R : hPropRel A A ℓ') → Type (ℓ-max ℓ ℓ')
IsCotransᵖ {A = A} R = (a b : A) → [ R a b ] → (∀(x : A) → [ (R a x) ⊔ (R x b) ])
{- NOTE: formulating the properties on witnesses with `[_]` is similar to the previous Propositions-as-types formalism
but it is not the way to proceed with hProps
the idea is, to produce an hProp again
e.g. from `Cubical.Algebra.Poset`
isTransitive : {A : Type ℓ₀} → Order ℓ₁ A → hProp (ℓ-max ℓ₀ ℓ₁)
isTransitive {ℓ₀ = ℓ₀} {ℓ₁ = ℓ₁} {A = X} _⊑_ = φ , φ-prop
where
φ : Type (ℓ-max ℓ₀ ℓ₁)
φ = ((x y z : X) → [ x ⊑ y ⇒ y ⊑ z ⇒ x ⊑ z ])
φ-prop : isProp φ
φ-prop = isPropΠ3 λ x y z → snd (x ⊑ y ⇒ y ⊑ z ⇒ x ⊑ z)
-}
IsTransᵖ : {ℓ ℓ' : Level} {A : Type ℓ} → (R : hPropRel A A ℓ') → Type (ℓ-max ℓ ℓ')
IsTransᵖ {A = A} R = (a b c : A) → [ R a b ] → [ R b c ] → [ R a c ]
-- NOTE: this is starting with a lower-case, because `hProp (ℓ-max ℓ ℓ')` is not a type but an element
isTransᵖ : {ℓ ℓ' : Level} {A : Type ℓ} → (R : hPropRel A A ℓ') → hProp (ℓ-max ℓ ℓ')
isTransᵖ {ℓ} {ℓ'} {A = A} R = φ , φ-prop
where
φ : Type (ℓ-max ℓ ℓ')
φ = (a b c : A) → [ R a b ⇒ R b c ⇒ R a c ]
φ-prop : isProp φ
φ-prop = isPropΠ3 λ a b c → snd (R a b ⇒ R b c ⇒ R a c)
isIrreflᵖ : {ℓ ℓ' : Level} {A : Type ℓ} → (R : hPropRel A A ℓ') → hProp (ℓ-max ℓ ℓ')
isIrreflᵖ {ℓ} {ℓ'} {A = A} R = φ , φ-prop
where
φ : Type (ℓ-max ℓ ℓ')
φ = (a : A) → [ ¬ᵖ (R a a) ]
φ-prop : isProp φ
φ-prop = isPropΠ λ a → snd (¬ᵖ (R a a))
isCotransᵖ : {ℓ ℓ' : Level} {A : Type ℓ} → (R : hPropRel A A ℓ') → hProp (ℓ-max ℓ ℓ')
isCotransᵖ {ℓ} {ℓ'} {A = A} R = φ , φ-prop
where
φ : Type (ℓ-max ℓ ℓ')
φ = (a b : A) → [ R a b ⇒ (∀[ x ∶ A ] (R a x) ⊔ (R x b)) ]
φ-prop : isProp φ
φ-prop = isPropΠ2 λ a b → snd (R a b ⇒ (∀[ x ∶ A ] (R a x) ⊔ (R x b)))
record IsApartnessRel {ℓ ℓ' : Level} {A : Type ℓ} (R : Rel A A ℓ') : Type (ℓ-max ℓ ℓ') where
field
isIrrefl : IsIrrefl R
isSym : BinaryRelation.isSym R
isCotrans : IsCotrans R
record IsApartnessRelᵖ {ℓ ℓ' : Level} {A : Type ℓ} (R : hPropRel A A ℓ') : Type (ℓ-max ℓ ℓ') where
field
isIrrefl : IsIrreflᵖ R
isSym : IsSymᵖ R
isCotrans : IsCotransᵖ R
record IsStrictPartialOrder {ℓ ℓ' : Level} {A : Type ℓ} (R : Rel A A ℓ') : Type (ℓ-max ℓ ℓ') where
constructor isstrictpartialorder
field
isIrrefl : IsIrrefl R
isTrans : BinaryRelation.isTrans R
isCotrans : IsCotrans R
record IsStrictPartialOrderᵖ {ℓ ℓ' : Level} {A : Type ℓ} (R : hPropRel A A ℓ') : Type (ℓ-max ℓ ℓ') where
constructor isstrictpartialorderᵖ
field
isIrrefl : IsIrreflᵖ R
isTrans : IsTransᵖ R
isCotrans : IsCotransᵖ R
{- NOTE: here again, the previous-way-interpretation would be to put witnesses into the struct with `[_]`
but with hProps, we would have `isStrictPartialOrder : hProp`
and use `[ isStrictPartialOrder ]` as the witness type
with hProps we would need to make heavy use of `Cubical.Foundations.HLevels`
isProp×, isProp×2, isProp×3
to show the record's `isProp`
do we have pathes on records? in order to use `isProp` on records?
yes, with record constructors
-}
record [IsStrictPartialOrder] {ℓ ℓ' : Level} {A : Type ℓ} (R : hPropRel A A ℓ') : Type (ℓ-max ℓ ℓ') where
constructor isstrictpartialorderᵖ
field
isIrrefl : [ isIrreflᵖ R ]
isTrans : [ isTransᵖ R ]
isCotrans : [ isCotransᵖ R ]
isStrictParialOrder : {ℓ ℓ' : Level} {A : Type ℓ} (R : hPropRel A A ℓ') → hProp (ℓ-max ℓ ℓ')
isStrictParialOrder R = [IsStrictPartialOrder] R , φ-prop where
φ-prop : isProp ([IsStrictPartialOrder] R)
φ-prop (isstrictpartialorderᵖ isIrrefl₀ isTrans₀ isCotrans₀)
(isstrictpartialorderᵖ isIrrefl₁ isTrans₁ isCotrans₁) =
λ i → isstrictpartialorderᵖ (isProp[] (isIrreflᵖ R) isIrrefl₀ isIrrefl₁ i)
(isProp[] (isTransᵖ R) isTrans₀ isTrans₁ i)
(isProp[] (isCotransᵖ R) isCotrans₀ isCotrans₁ i)
record IsPreorder {ℓ ℓ' : Level} {A : Type ℓ} (R : Rel A A ℓ') : Type (ℓ-max ℓ ℓ') where
constructor ispreorder
field
isRefl : BinaryRelation.isRefl R
isTrans : BinaryRelation.isTrans R
-- NOTE: there is already
-- isAntisym : {A : Type ℓ₀} → isSet A → Order ℓ₁ A → hProp (ℓ-max ℓ₀ ℓ₁)
-- in Cubical.Algebra.Poset. Can we use this?
-- import Cubical.Algebra.Poset
IsAntisym : {ℓ ℓ' : Level} {A : Type ℓ} → (R : Rel A A ℓ') → Type (ℓ-max ℓ ℓ')
IsAntisym {A = A} R = ∀ a b → R a b → R b a → a ≡ b
record IsPartialOrder {ℓ ℓ' : Level} {A : Type ℓ} (R : Rel A A ℓ') : Type (ℓ-max ℓ ℓ') where
constructor ispartialorder
field
isRefl : BinaryRelation.isRefl R
isAntisym : IsAntisym R
isTrans : BinaryRelation.isTrans R
_#'_ : ∀{X : Type ℓ} {_<_ : Rel X X ℓ'} → Rel X X ℓ'
_#'_ {_<_ = _<_} x y = (x < y) ⊎ (y < x)
_≤'_ : ∀{X : Type ℓ} {_<_ : Rel X X ℓ'} → Rel X X ℓ'
_≤'_ {_<_ = _<_} x y = ¬ (y < x)
-- NOTE: there is `Properties` and `Consequences`
-- the difference somehow is, that we do want to open `Consequences` directly
-- but we do not want to open `Properties` directly, because it might have a name clash
-- e.g. there is `Properties.Group` which clashes with `Cubical.Algebra.Group.Group` when opening `Properties`
-- but it is totally fine to open `Properties.Group` directly because it does not export a `Group`
-- TODO: check whether this matches the wording of the (old) standard library
module Consequences where
open Definitions
-- Lemma 4.1.7.
-- Given a strict partial order < on a set X:
-- 1. we have an apartness relation defined by
-- x # y := (x < y) ∨ (y < x), and
#'-isApartnessRel : ∀{X : Type ℓ} {_<_ : Rel X X ℓ'} → (isSPO : IsStrictPartialOrder _<_) → IsApartnessRel (_#'_ {_<_ = _<_})
#'-isApartnessRel {X = X} {_<_ = _<_} isSPO =
let (isstrictpartialorder <-irrefl <-trans <-cotrans) = isSPO
in λ where
.IsApartnessRel.isIrrefl a (inl a<a) → <-irrefl _ a<a
.IsApartnessRel.isIrrefl a (inr a<a) → <-irrefl _ a<a
.IsApartnessRel.isSym a b p → ⊎-swap p
.IsApartnessRel.isCotrans a b (inl a<b) x → case (<-cotrans _ _ a<b x) of λ where -- case x of f = f x
(inl a<x) → inl (inl a<x)
(inr x<b) → inr (inl x<b)
.IsApartnessRel.isCotrans a b (inr b<a) x → case (<-cotrans _ _ b<a x) of λ where
(inl b<x) → inr (inr b<x)
(inr x<a) → inl (inr x<a)
-- variant without copatterns: "just" move the `λ where` "into" the record
#'-isApartnessRel' : ∀{X : Type ℓ} {_<_ : Rel X X ℓ'} → {IsStrictPartialOrder _<_} → IsApartnessRel (_#'_ {_<_ = _<_})
#'-isApartnessRel' {X = X} {_<_ = _<_} {isSPO} =
let (isstrictpartialorder <-irrefl <-trans <-cotrans) = isSPO
in record
{ isIrrefl = λ where a (inl a<a) → <-irrefl _ a<a
a (inr a<a) → <-irrefl _ a<a
; isSym = λ where a b p → ⊎-swap p
; isCotrans = λ where
a b (inl a<b) x → case (<-cotrans _ _ a<b x) of λ where
(inl a<x) → inl (inl a<x)
(inr x<b) → inr (inl x<b)
a b (inr b<a) x → case (<-cotrans _ _ b<a x) of λ where
(inl b<x) → inr (inr b<x)
(inr x<a) → inl (inr x<a)
}
-- 2. we have a preorder defined by
-- x ≤ y := ¬(y < x).
≤-isPreorder' : ∀{X : Type ℓ} {_<_ : Rel X X ℓ'} → {IsStrictPartialOrder _<_} → IsPreorder (_≤'_ {_<_ = _<_})
≤-isPreorder' {X = X} {_<_ = _<_} {isSPO} =
let (isstrictpartialorder <-irrefl <-trans <-cotrans) = isSPO
in λ where
.IsPreorder.isRefl → <-irrefl
.IsPreorder.isTrans a b c ¬b<a ¬c<b c<a → case (<-cotrans _ _ c<a b) of λ where
(inl c<b) → ¬c<b c<b
(inr b<a) → ¬b<a b<a
module _
{X : Type ℓ} (_<_ : Rel X X ℓ')
(isSPO : IsStrictPartialOrder _<_)
(<-isProp : ∀ x y → isProp (x < y))
(let _#_ = _#'_ {_<_ = _<_})
(let (isstrictpartialorder <-irrefl <-trans <-cotrans) = isSPO)
where
-- open IsStrictPartialOrder isSPO
#-from-<-isProp : ∀ x y → isProp (x # y)
#-from-<-isProp x y (inl x<y₁) (inl x<y₂) = cong inl (<-isProp x y x<y₁ x<y₂)
-- NOTE: ⊥-elim could not resolve the level here and needed some hint on `A`
#-from-<-isProp x y (inl x<y ) (inr y<x ) = ⊥-elim {A = λ _ → inl x<y ≡ inr y<x} (<-irrefl y (<-trans y x y y<x x<y))
#-from-<-isProp x y (inr y<x ) (inl x<y ) = ⊥-elim {A = λ _ → inr y<x ≡ inl x<y} (<-irrefl y (<-trans y x y y<x x<y))
#-from-<-isProp x y (inr y<x₁) (inr y<x₂) = cong inr (<-isProp y x y<x₁ y<x₂)
module Properties where
module _ where
open import Cubical.Algebra.Group
-- import Cubical.Algebra.Group.Properties
module GroupProperties (G : Group {ℓ}) where
open Group G
private
simplR = GroupLemmas.simplR G
invUniqueL : {g h : Carrier} → g + h ≡ 0g → g ≡ - h
invUniqueL {g} {h} p = simplR h (p ∙ sym (invl h))
-- ported from `Algebra.Properties.Group`
right-helper : ∀ x y → y ≡ - x + (x + y)
right-helper x y = (
y ≡⟨ sym (snd (identity y)) ⟩
0g + y ≡⟨ cong₂ _+_ (sym (snd (inverse x))) refl ⟩
((- x) + x) + y ≡⟨ sym (assoc (- x) x y) ⟩
(- x) + (x + y) ∎)
-- alternative:
-- follows from uniqueness of -
-- (a + -a) ≡ 0
-- ∃! b . a + b = 0
-- show that a is an additive inverse of - a then it must be THE additive inverse of - a and has to be called - - a which is a by uniqueness
-involutive : ∀ x → - - x ≡ x
-involutive x = (
(- (- x)) ≡⟨ sym (fst (identity _)) ⟩
(- (- x)) + 0g ≡⟨ cong₂ _+_ refl (sym (snd (inverse _))) ⟩
(- (- x)) + (- x + x) ≡⟨ sym (right-helper (- x) x) ⟩
x ∎)
module _ where
open import Cubical.Algebra.Ring
module RingProperties (R : Ring {ℓ}) where
open Ring R
open Cubical.Algebra.Ring.Theory R
-- NOTE: a few facts about rings that might be collected from elsewhere
a+b-b≡a : ∀ a b → a ≡ (a + b) - b
a+b-b≡a a b = let P = sym (fst (+-inv b))
Q = sym (fst (+-identity a))
R = transport (λ i → a ≡ a + P i) Q
S = transport (λ i → a ≡ (+-assoc a b (- b)) i ) R
in S
-- NOTE: this is called `simplL` and `simplL` in `Cubical.Algebra.Group.Properties.GroupLemmas`
+-preserves-≡ : ∀{a b} → ∀ c → a ≡ b → a + c ≡ b + c
+-preserves-≡ c a≡b i = a≡b i + c
+-preserves-≡-l : ∀{a b} → ∀ c → a ≡ b → c + a ≡ c + b
+-preserves-≡-l c a≡b i = c + a≡b i
a+b≡0→a≡-b : ∀{a b} → a + b ≡ 0r → a ≡ - b
a+b≡0→a≡-b {a} {b} a+b≡0 = transport
(λ i →
let RHS = snd (+-identity (- b))
LHS₁ : a + (b + - b) ≡ a + 0r
LHS₁ = +-preserves-≡-l a (fst (+-inv b))
LHS₂ : (a + b) - b ≡ a
LHS₂ = transport (λ j → (+-assoc a b (- b)) j ≡ fst (+-identity a) j) LHS₁
in LHS₂ i ≡ RHS i
) (+-preserves-≡ (- b) a+b≡0)
-- NOTE: there is already
-- -commutesWithRight-· : (x y : R) → x · (- y) ≡ - (x · y)
a·-b≡-a·b : ∀ a b → a · (- b) ≡ - (a · b)
a·-b≡-a·b a b =
let P : a · 0r ≡ 0r
P = 0-rightNullifies a
Q : a · (- b + b) ≡ 0r
Q = transport (λ i → a · snd (+-inv b) (~ i) ≡ 0r) P
R : a · (- b) + a · b ≡ 0r
R = transport (λ i → ·-rdist-+ a (- b) b i ≡ 0r) Q
in a+b≡0→a≡-b R
a·b-a·c≡a·[b-c] : ∀ a b c → a · b - (a · c) ≡ a · (b - c)
a·b-a·c≡a·[b-c] a b c =
let P : a · b + a · (- c) ≡ a · (b + - c)
P = sym (·-rdist-+ a b (- c))
Q : a · b - a · c ≡ a · (b + - c)
Q = transport (λ i → a · b + a·-b≡-a·b a c i ≡ a · (b + - c) ) P
in Q
-- exports
module Group = GroupProperties
module Ring = RingProperties
| {
"alphanum_fraction": 0.5406089803,
"avg_line_length": 43.7594594595,
"ext": "agda",
"hexsha": "e354936abe4d91062b7915d1b4c9910bbd5a5233",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MoreAlgebra.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MoreAlgebra.agda",
"max_line_length": 151,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MoreAlgebra.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 6312,
"size": 16191
} |
open import Coinduction using ( ♯_ )
open import Data.Maybe using ( Maybe ; just ; nothing ; maybe )
open import Data.Nat using ( ℕ ; _+_ )
open import Data.Integer using ( ℤ ; +_ ; _⊖_ )
open import System.IO.Transducers using ( inp ; out ; done ; _⇒_ ; Inp_⇒_ ; C⟦_⟧ ; _⟨¿⟩_ )
open import System.IO.Transducers.Trace using ( [] ; _∷_ )
open import System.IO.Transducers.Session using ( ⟨_⟩ ; _&_ ; ¡ ; ¿ )
open import System.IO.Transducers.Stateful using ( loop )
module System.IO.Examples.Transducers where
add : ⟨ ℕ ⟩ & ⟨ ℕ ⟩ ⇒ ⟨ ℕ ⟩
add = inp (♯ λ x → inp (♯ λ y → out (x + y) done))
-- runAdd == 8 ∷ []
runAdd = C⟦ add ⟧ ( 3 ∷ 5 ∷ [] )
nat? : ¡ ⟨ ℤ ⟩ ⇒ ¿ ⟨ ℕ ⟩ & ¡ ⟨ ℤ ⟩
nat? = inp (♯ rest) where
rest : Inp ¡ ⟨ ℤ ⟩ ⇒ ¿ ⟨ ℕ ⟩ & ¡ ⟨ ℤ ⟩
rest nothing = out nothing (out nothing done)
rest (just (+ n)) = out (just n) done
rest (just x) = out nothing (out (just x) done)
-- runNat? == ( just 5 ∷ just (+ 7) ∷ just (0 ⊖ 3) ∷ just (+ 8) ∷ nothing ∷ [])
runNat? = C⟦ nat? ⟧ ( just (+ 5) ∷ just (+ 7) ∷ just (0 ⊖ 3) ∷ just (+ 8) ∷ nothing ∷ [])
nat! : ¡ ⟨ ℤ ⟩ ⇒ ¡ ⟨ ℕ ⟩ & ¡ ⟨ ℤ ⟩
nat! = loop {⟨ ℕ ⟩} nat?
-- runNat! == ( just 5 ∷ just 7 ∷ nothing ∷ just (0 ⊖ 3) ∷ just (+ 8) ∷ nothing ∷ [])
runNat! = C⟦ nat! ⟧ ( just (+ 5) ∷ just (+ 7) ∷ just (0 ⊖ 3) ∷ just (+ 8) ∷ nothing ∷ [])
| {
"alphanum_fraction": 0.5245398773,
"avg_line_length": 39.5151515152,
"ext": "agda",
"hexsha": "9d471d53cbe56967b95a7a5fa9cbd650e1f54c1c",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:23.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-08-10T06:12:54.000Z",
"max_forks_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ilya-fiveisky/agda-system-io",
"max_forks_repo_path": "src/System/IO/Examples/Transducers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ilya-fiveisky/agda-system-io",
"max_issues_repo_path": "src/System/IO/Examples/Transducers.agda",
"max_line_length": 90,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "d06c219c7b7afc85aae3b1d4d66951b889aa7371",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ilya-fiveisky/agda-system-io",
"max_stars_repo_path": "src/System/IO/Examples/Transducers.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-15T04:35:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T13:45:16.000Z",
"num_tokens": 537,
"size": 1304
} |
module Structure.Operator.Field where
import Lvl
open import Logic
open import Logic.Propositional
open import Structure.Setoid
open import Structure.Operator.Properties
open import Structure.Operator.Ring
open import Type
record Field {ℓ ℓₑ} {T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ (_+_ : T → T → T) (_⋅_ : T → T → T) : Stmt{ℓ Lvl.⊔ ℓₑ} where
field
⦃ divisionRing ⦄ : DivisionRing(_+_)(_⋅_)
⦃ [⋅]-commutativity ⦄ : Commutativity(_⋅_)
open DivisionRing(divisionRing) public
field
-- Note: This excludes the trivial ring and is unprovable from the other field axioms, and models where this is true are always "trivial/singleton rings".
⦃ distinct-identities ⦄ : DistinctIdentities
record FieldObject {ℓ ℓₑ} : Stmt{Lvl.𝐒(ℓ Lvl.⊔ ℓₑ)} where
constructor intro
field
{T} : Type{ℓ}
⦃ equiv ⦄ : Equiv{ℓₑ}(T)
_+_ : T → T → T
_⋅_ : T → T → T
⦃ structure ⦄ : Field(_+_)(_⋅_)
open Field(structure) public
| {
"alphanum_fraction": 0.664921466,
"avg_line_length": 30.8064516129,
"ext": "agda",
"hexsha": "af0bd9c62da276a5ad43e84450f0e46ee14723f1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Field.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Field.agda",
"max_line_length": 159,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Field.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 356,
"size": 955
} |
{-# OPTIONS --without-K --safe #-}
-- Bundled version of a Cartesian Category
module Categories.Category.Cartesian.Bundle where
open import Level
open import Categories.Category.Core using (Category)
open import Categories.Category.Cartesian using (Cartesian)
open import Categories.Category.Cartesian.Monoidal using (module CartesianMonoidal)
open import Categories.Category.Monoidal using (MonoidalCategory)
record CartesianCategory o ℓ e : Set (suc (o ⊔ ℓ ⊔ e)) where
field
U : Category o ℓ e -- U for underlying
cartesian : Cartesian U
open Category U public
open Cartesian cartesian public
monoidalCategory : MonoidalCategory o ℓ e
monoidalCategory = record
{ U = U
; monoidal = CartesianMonoidal.monoidal cartesian
}
| {
"alphanum_fraction": 0.7432258065,
"avg_line_length": 29.8076923077,
"ext": "agda",
"hexsha": "38ed2e84eb287722a86f03b1e6feb7c4359e5281",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Cartesian/Bundle.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Cartesian/Bundle.agda",
"max_line_length": 83,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Cartesian/Bundle.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 177,
"size": 775
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Weakening {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped as U hiding (wk)
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Weakening as T hiding (wk; wkEq; wkTerm; wkEqTerm)
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Irrelevance
open import Tools.Product
import Tools.PropositionalEquality as PE
-- Weakening of neutrals in WHNF
wkTermNe : ∀ {ρ Γ Δ k A} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Γ ⊩neNf k ∷ A → Δ ⊩neNf U.wk ρ k ∷ U.wk ρ A
wkTermNe {ρ} [ρ] ⊢Δ (neNfₜ neK ⊢k k≡k) =
neNfₜ (wkNeutral ρ neK) (T.wkTerm [ρ] ⊢Δ ⊢k) (~-wk [ρ] ⊢Δ k≡k)
wkEqTermNe : ∀ {ρ Γ Δ k k′ A} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Γ ⊩neNf k ≡ k′ ∷ A → Δ ⊩neNf U.wk ρ k ≡ U.wk ρ k′ ∷ U.wk ρ A
wkEqTermNe {ρ} [ρ] ⊢Δ (neNfₜ₌ neK neM k≡m) =
neNfₜ₌ (wkNeutral ρ neK) (wkNeutral ρ neM) (~-wk [ρ] ⊢Δ k≡m)
-- Weakening of reducible natural numbers
mutual
wkTermℕ : ∀ {ρ Γ Δ n} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Γ ⊩ℕ n ∷ℕ → Δ ⊩ℕ U.wk ρ n ∷ℕ
wkTermℕ {ρ} [ρ] ⊢Δ (ℕₜ n d n≡n prop) =
ℕₜ (U.wk ρ n) (wkRed:*:Term [ρ] ⊢Δ d)
(≅ₜ-wk [ρ] ⊢Δ n≡n)
(wkNatural-prop [ρ] ⊢Δ prop)
wkNatural-prop : ∀ {ρ Γ Δ n} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Natural-prop Γ n
→ Natural-prop Δ (U.wk ρ n)
wkNatural-prop ρ ⊢Δ (sucᵣ n) = sucᵣ (wkTermℕ ρ ⊢Δ n)
wkNatural-prop ρ ⊢Δ zeroᵣ = zeroᵣ
wkNatural-prop ρ ⊢Δ (ne nf) = ne (wkTermNe ρ ⊢Δ nf)
mutual
wkEqTermℕ : ∀ {ρ Γ Δ t u} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Γ ⊩ℕ t ≡ u ∷ℕ
→ Δ ⊩ℕ U.wk ρ t ≡ U.wk ρ u ∷ℕ
wkEqTermℕ {ρ} [ρ] ⊢Δ (ℕₜ₌ k k′ d d′ t≡u prop) =
ℕₜ₌ (U.wk ρ k) (U.wk ρ k′) (wkRed:*:Term [ρ] ⊢Δ d)
(wkRed:*:Term [ρ] ⊢Δ d′) (≅ₜ-wk [ρ] ⊢Δ t≡u)
(wk[Natural]-prop [ρ] ⊢Δ prop)
wk[Natural]-prop : ∀ {ρ Γ Δ n n′} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ [Natural]-prop Γ n n′
→ [Natural]-prop Δ (U.wk ρ n) (U.wk ρ n′)
wk[Natural]-prop ρ ⊢Δ (sucᵣ [n≡n′]) = sucᵣ (wkEqTermℕ ρ ⊢Δ [n≡n′])
wk[Natural]-prop ρ ⊢Δ zeroᵣ = zeroᵣ
wk[Natural]-prop ρ ⊢Δ (ne x) = ne (wkEqTermNe ρ ⊢Δ x)
-- Empty
wkTermEmpty : ∀ {ρ Γ Δ n} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Γ ⊩Empty n ∷Empty → Δ ⊩Empty U.wk ρ n ∷Empty
wkTermEmpty {ρ} [ρ] ⊢Δ (Emptyₜ n d n≡n (ne prop)) =
Emptyₜ (U.wk ρ n) (wkRed:*:Term [ρ] ⊢Δ d)
(≅ₜ-wk [ρ] ⊢Δ n≡n)
(ne (wkTermNe [ρ] ⊢Δ prop))
wk[Empty]-prop : ∀ {ρ Γ Δ n n′} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ [Empty]-prop Γ n n′
→ [Empty]-prop Δ (U.wk ρ n) (U.wk ρ n′)
wk[Empty]-prop ρ ⊢Δ (ne x) = ne (wkEqTermNe ρ ⊢Δ x)
wkEqTermEmpty : ∀ {ρ Γ Δ t u} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Γ ⊩Empty t ≡ u ∷Empty
→ Δ ⊩Empty U.wk ρ t ≡ U.wk ρ u ∷Empty
wkEqTermEmpty {ρ} [ρ] ⊢Δ (Emptyₜ₌ k k′ d d′ t≡u prop) =
Emptyₜ₌ (U.wk ρ k) (U.wk ρ k′) (wkRed:*:Term [ρ] ⊢Δ d)
(wkRed:*:Term [ρ] ⊢Δ d′) (≅ₜ-wk [ρ] ⊢Δ t≡u)
(wk[Empty]-prop [ρ] ⊢Δ prop)
-- Unit
wkTermUnit : ∀ {ρ Γ Δ n} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Γ ⊩Unit n ∷Unit → Δ ⊩Unit U.wk ρ n ∷Unit
wkTermUnit {ρ} [ρ] ⊢Δ (Unitₜ n d prop) =
Unitₜ (U.wk ρ n) (wkRed:*:Term [ρ] ⊢Δ d) (wkWhnf ρ prop)
wkEqTermUnit : ∀ {ρ Γ Δ t u} → ρ ∷ Δ ⊆ Γ → (⊢Δ : ⊢ Δ)
→ Γ ⊩Unit t ≡ u ∷Unit
→ Δ ⊩Unit U.wk ρ t ≡ U.wk ρ u ∷Unit
wkEqTermUnit {ρ} [ρ] ⊢Δ (Unitₜ₌ ⊢t ⊢u) =
Unitₜ₌ (T.wkTerm [ρ] ⊢Δ ⊢t) (T.wkTerm [ρ] ⊢Δ ⊢u)
-- Weakening of the logical relation
wk : ∀ {ρ Γ Δ A l} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Γ ⊩⟨ l ⟩ A → Δ ⊩⟨ l ⟩ U.wk ρ A
wk ρ ⊢Δ (Uᵣ′ l′ l< ⊢Γ) = Uᵣ′ l′ l< ⊢Δ
wk ρ ⊢Δ (ℕᵣ D) = ℕᵣ (wkRed:*: ρ ⊢Δ D)
wk ρ ⊢Δ (Emptyᵣ D) = Emptyᵣ (wkRed:*: ρ ⊢Δ D)
wk ρ ⊢Δ (Unitᵣ D) = Unitᵣ (wkRed:*: ρ ⊢Δ D)
wk {ρ} [ρ] ⊢Δ (ne′ K D neK K≡K) =
ne′ (U.wk ρ K) (wkRed:*: [ρ] ⊢Δ D) (wkNeutral ρ neK) (~-wk [ρ] ⊢Δ K≡K)
wk {ρ} {Γ} {Δ} {A} {l} [ρ] ⊢Δ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) =
let ⊢ρF = T.wk [ρ] ⊢Δ ⊢F
[F]′ : ∀ {ρ ρ′ E} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E)
→ E ⊩⟨ l ⟩ U.wk ρ (U.wk ρ′ F)
[F]′ {ρ} {ρ′} [ρ] [ρ′] ⊢E = irrelevance′
(PE.sym (wk-comp ρ ρ′ F))
([F] ([ρ] •ₜ [ρ′]) ⊢E)
[a]′ : ∀ {ρ ρ′ E a} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E)
([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) / [F]′ [ρ] [ρ′] ⊢E)
→ E ⊩⟨ l ⟩ a ∷ U.wk (ρ • ρ′) F / [F] ([ρ] •ₜ [ρ′]) ⊢E
[a]′ {ρ} {ρ′} [ρ] [ρ′] ⊢E [a] = irrelevanceTerm′ (wk-comp ρ ρ′ F)
([F]′ [ρ] [ρ′] ⊢E) ([F] ([ρ] •ₜ [ρ′]) ⊢E) [a]
[G]′ : ∀ {ρ ρ′ E a} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E)
([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) / [F]′ [ρ] [ρ′] ⊢E)
→ E ⊩⟨ l ⟩ U.wk (lift (ρ • ρ′)) G [ a ]
[G]′ η η′ ⊢E [a] = [G] (η •ₜ η′) ⊢E ([a]′ η η′ ⊢E [a])
in Πᵣ′ (U.wk ρ F) (U.wk (lift ρ) G) (T.wkRed:*: [ρ] ⊢Δ D) ⊢ρF
(T.wk (lift [ρ]) (⊢Δ ∙ ⊢ρF) ⊢G)
(≅-wk [ρ] ⊢Δ A≡A)
(λ {ρ₁} [ρ₁] ⊢Δ₁ → irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁))
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → irrelevance′ (wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] ⊢Δ₁ [a]))
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] [b] [a≡b] →
let [a≡b]′ = irrelevanceEqTerm′ (wk-comp ρ₁ ρ F)
([F]′ [ρ₁] [ρ] ⊢Δ₁)
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)
[a≡b]
in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G)
(wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] ⊢Δ₁ [a])
(irrelevance′
(wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] ⊢Δ₁ [a]))
(G-ext ([ρ₁] •ₜ [ρ]) ⊢Δ₁
([a]′ [ρ₁] [ρ] ⊢Δ₁ [a])
([a]′ [ρ₁] [ρ] ⊢Δ₁ [b])
[a≡b]′))
wk {ρ} {Γ} {Δ} {A} {l} [ρ] ⊢Δ (Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) =
let ⊢ρF = T.wk [ρ] ⊢Δ ⊢F
[F]′ : ∀ {ρ ρ′ E} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E)
→ E ⊩⟨ l ⟩ U.wk ρ (U.wk ρ′ F)
[F]′ {ρ} {ρ′} [ρ] [ρ′] ⊢E = irrelevance′
(PE.sym (wk-comp ρ ρ′ F))
([F] ([ρ] •ₜ [ρ′]) ⊢E)
[a]′ : ∀ {ρ ρ′ E a} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E)
([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) / [F]′ [ρ] [ρ′] ⊢E)
→ E ⊩⟨ l ⟩ a ∷ U.wk (ρ • ρ′) F / [F] ([ρ] •ₜ [ρ′]) ⊢E
[a]′ {ρ} {ρ′} [ρ] [ρ′] ⊢E [a] = irrelevanceTerm′ (wk-comp ρ ρ′ F)
([F]′ [ρ] [ρ′] ⊢E) ([F] ([ρ] •ₜ [ρ′]) ⊢E) [a]
[G]′ : ∀ {ρ ρ′ E a} ([ρ] : ρ ∷ E ⊆ Δ) ([ρ′] : ρ′ ∷ Δ ⊆ Γ) (⊢E : ⊢ E)
([a] : E ⊩⟨ l ⟩ a ∷ U.wk ρ (U.wk ρ′ F) / [F]′ [ρ] [ρ′] ⊢E)
→ E ⊩⟨ l ⟩ U.wk (lift (ρ • ρ′)) G [ a ]
[G]′ η η′ ⊢E [a] = [G] (η •ₜ η′) ⊢E ([a]′ η η′ ⊢E [a])
in Σᵣ′ (U.wk ρ F) (U.wk (lift ρ) G) (T.wkRed:*: [ρ] ⊢Δ D) ⊢ρF
(T.wk (lift [ρ]) (⊢Δ ∙ ⊢ρF) ⊢G)
(≅-wk [ρ] ⊢Δ A≡A)
(λ {ρ₁} [ρ₁] ⊢Δ₁ → irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁))
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] → irrelevance′ (wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] ⊢Δ₁ [a]))
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] [b] [a≡b] →
let [a≡b]′ = irrelevanceEqTerm′ (wk-comp ρ₁ ρ F)
([F]′ [ρ₁] [ρ] ⊢Δ₁)
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)
[a≡b]
in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G)
(wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] ⊢Δ₁ [a])
(irrelevance′
(wk-comp-subst ρ₁ ρ G)
([G]′ [ρ₁] [ρ] ⊢Δ₁ [a]))
(G-ext ([ρ₁] •ₜ [ρ]) ⊢Δ₁
([a]′ [ρ₁] [ρ] ⊢Δ₁ [a])
([a]′ [ρ₁] [ρ] ⊢Δ₁ [b])
[a≡b]′))
wk ρ ⊢Δ (emb 0<1 x) = emb 0<1 (wk ρ ⊢Δ x)
wkEq : ∀ {ρ Γ Δ A B l} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ A ≡ B / [A]
→ Δ ⊩⟨ l ⟩ U.wk ρ A ≡ U.wk ρ B / wk [ρ] ⊢Δ [A]
wkEq ρ ⊢Δ (Uᵣ′ _ _ _) PE.refl = PE.refl
wkEq ρ ⊢Δ (ℕᵣ D) A≡B = wkRed* ρ ⊢Δ A≡B
wkEq ρ ⊢Δ (Emptyᵣ D) A≡B = wkRed* ρ ⊢Δ A≡B
wkEq ρ ⊢Δ (Unitᵣ D) A≡B = wkRed* ρ ⊢Δ A≡B
wkEq {ρ} [ρ] ⊢Δ (ne′ _ _ _ _) (ne₌ M D′ neM K≡M) =
ne₌ (U.wk ρ M) (wkRed:*: [ρ] ⊢Δ D′)
(wkNeutral ρ neM) (~-wk [ρ] ⊢Δ K≡M)
wkEq {ρ} [ρ] ⊢Δ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
B₌ (U.wk ρ F′) (U.wk (lift ρ) G′) (T.wkRed* [ρ] ⊢Δ D′) (≅-wk [ρ] ⊢Δ A≡B)
(λ {ρ₁} [ρ₁] ⊢Δ₁ → irrelevanceEq″ (PE.sym (wk-comp ρ₁ ρ F))
(PE.sym (wk-comp ρ₁ ρ F′))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)
(irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁))
([F≡F′] ([ρ₁] •ₜ [ρ]) ⊢Δ₁))
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] →
let [a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F)
(irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁) [a]
in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G)
(wk-comp-subst ρ₁ ρ G′)
([G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)
(irrelevance′ (wk-comp-subst ρ₁ ρ G)
([G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′))
([G≡G′] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′))
wkEq {ρ} [ρ] ⊢Δ (Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(B₌ F′ G′ D′ A≡B [F≡F′] [G≡G′]) =
B₌ (U.wk ρ F′) (U.wk (lift ρ) G′) (T.wkRed* [ρ] ⊢Δ D′) (≅-wk [ρ] ⊢Δ A≡B)
(λ {ρ₁} [ρ₁] ⊢Δ₁ → irrelevanceEq″ (PE.sym (wk-comp ρ₁ ρ F))
(PE.sym (wk-comp ρ₁ ρ F′))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁)
(irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁))
([F≡F′] ([ρ₁] •ₜ [ρ]) ⊢Δ₁))
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] →
let [a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F)
(irrelevance′ (PE.sym (wk-comp ρ₁ ρ F))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁))
([F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁) [a]
in irrelevanceEq″ (wk-comp-subst ρ₁ ρ G)
(wk-comp-subst ρ₁ ρ G′)
([G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′)
(irrelevance′ (wk-comp-subst ρ₁ ρ G)
([G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′))
([G≡G′] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′))
wkEq ρ ⊢Δ (emb 0<1 x) A≡B = wkEq ρ ⊢Δ x A≡B
wkTerm : ∀ {ρ Γ Δ A t l} ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ t ∷ A / [A]
→ Δ ⊩⟨ l ⟩ U.wk ρ t ∷ U.wk ρ A / wk [ρ] ⊢Δ [A]
wkTerm {ρ} [ρ] ⊢Δ (Uᵣ′ .⁰ 0<1 ⊢Γ) (Uₜ A d typeA A≡A [t]) =
Uₜ (U.wk ρ A) (wkRed:*:Term [ρ] ⊢Δ d)
(wkType ρ typeA) (≅ₜ-wk [ρ] ⊢Δ A≡A) (wk [ρ] ⊢Δ [t])
wkTerm ρ ⊢Δ (ℕᵣ D) [t] = wkTermℕ ρ ⊢Δ [t]
wkTerm ρ ⊢Δ (Emptyᵣ D) [t] = wkTermEmpty ρ ⊢Δ [t]
wkTerm ρ ⊢Δ (Unitᵣ D) [t] = wkTermUnit ρ ⊢Δ [t]
wkTerm {ρ} [ρ] ⊢Δ (ne′ K D neK K≡K) (neₜ k d nf) =
neₜ (U.wk ρ k) (wkRed:*:Term [ρ] ⊢Δ d) (wkTermNe [ρ] ⊢Δ nf)
wkTerm {ρ} [ρ] ⊢Δ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) (Πₜ f d funcF f≡f [f] [f]₁) =
Πₜ (U.wk ρ f) (wkRed:*:Term [ρ] ⊢Δ d) (wkFunction ρ funcF)
(≅ₜ-wk [ρ] ⊢Δ f≡f)
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] [b] [a≡b] →
let F-compEq = wk-comp ρ₁ ρ F
G-compEq = wk-comp-subst ρ₁ ρ G
[F]₁ = [F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁
[F]₂ = irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) [F]₁
[a]′ = irrelevanceTerm′ F-compEq [F]₂ [F]₁ [a]
[b]′ = irrelevanceTerm′ F-compEq [F]₂ [F]₁ [b]
[G]₁ = [G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′
[G]₂ = irrelevance′ G-compEq [G]₁
[a≡b]′ = irrelevanceEqTerm′ F-compEq [F]₂ [F]₁ [a≡b]
in irrelevanceEqTerm″ (PE.cong (λ x → x ∘ _) (PE.sym (wk-comp ρ₁ ρ _)))
(PE.cong (λ x → x ∘ _) (PE.sym (wk-comp ρ₁ ρ _)))
G-compEq
[G]₁ [G]₂
([f] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′ [b]′ [a≡b]′))
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] →
let [F]₁ = [F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁
[F]₂ = irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) [F]₁
[a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F) [F]₂ [F]₁ [a]
[G]₁ = [G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′
[G]₂ = irrelevance′ (wk-comp-subst ρ₁ ρ G) [G]₁
in irrelevanceTerm″ (wk-comp-subst ρ₁ ρ G)
(PE.cong (λ x → x ∘ _) (PE.sym (wk-comp ρ₁ ρ _)))
[G]₁ [G]₂ ([f]₁ ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′))
wkTerm {ρ} [ρ] ⊢Δ [A]@(Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Σₜ p d pProd p≅p [fst] [snd]) =
let [ρF] = irrelevance′ (PE.sym (wk-comp id ρ F)) ([F] [ρ] (wf (T.wk [ρ] ⊢Δ ⊢F)))
[ρfst] = wkTerm [ρ] ⊢Δ ([F] id (wf ⊢F)) [fst]
[ρfst]′ = (irrelevanceTerm′
(PE.begin
U.wk ρ (U.wk id F)
PE.≡⟨ PE.cong (U.wk ρ) (wk-id F) ⟩
U.wk ρ F
PE.≡⟨ PE.sym (wk-id (U.wk ρ F)) ⟩
U.wk id (U.wk ρ F)
PE.∎)
(wk [ρ] ⊢Δ ([F] id (wf ⊢F)))
[ρF]
[ρfst])
[ρsnd] = wkTerm [ρ] ⊢Δ ([G] id (wf ⊢F) [fst]) [snd]
[ρG]′ = (irrelevance′ (wk-comp-subst id ρ G)
([G] [ρ] (wf (T.wk [ρ] ⊢Δ ⊢F))
(irrelevanceTerm′ (wk-comp id ρ F)
[ρF]
([F] [ρ] (wf (T.wk [ρ] ⊢Δ ⊢F)))
[ρfst]′)))
[ρsnd]′ = irrelevanceTerm′
(PE.begin
U.wk ρ (U.wk (lift id) G [ fst p ])
PE.≡⟨ PE.cong (λ x → U.wk ρ (x [ fst p ])) (wk-lift-id G) ⟩
U.wk ρ (G [ fst p ])
PE.≡⟨ wk-β G ⟩
(U.wk (lift ρ) G) [ fst (U.wk ρ p) ]
PE.≡⟨ PE.cong (λ x → x [ fst (U.wk ρ p) ]) (PE.sym (wk-lift-id (U.wk (lift ρ) G))) ⟩
(U.wk (lift id) (U.wk (lift ρ) G)) [ fst (U.wk ρ p) ]
PE.∎)
(wk [ρ] ⊢Δ ([G] id (wf ⊢F) [fst])) [ρG]′
[ρsnd]
in Σₜ (U.wk ρ p) (wkRed:*:Term [ρ] ⊢Δ d) (wkProduct ρ pProd) (≅ₜ-wk [ρ] ⊢Δ p≅p)
[ρfst]′ [ρsnd]′
wkTerm ρ ⊢Δ (emb 0<1 x) t = wkTerm ρ ⊢Δ x t
wkEqTerm : ∀ {ρ Γ Δ A t u l} ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([A] : Γ ⊩⟨ l ⟩ A)
→ Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A]
→ Δ ⊩⟨ l ⟩ U.wk ρ t ≡ U.wk ρ u ∷ U.wk ρ A / wk [ρ] ⊢Δ [A]
wkEqTerm {ρ} [ρ] ⊢Δ (Uᵣ′ .⁰ 0<1 ⊢Γ) (Uₜ₌ A B d d′ typeA typeB A≡B [t] [u] [t≡u]) =
Uₜ₌ (U.wk ρ A) (U.wk ρ B) (wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′)
(wkType ρ typeA) (wkType ρ typeB) (≅ₜ-wk [ρ] ⊢Δ A≡B)
(wk [ρ] ⊢Δ [t]) (wk [ρ] ⊢Δ [u]) (wkEq [ρ] ⊢Δ [t] [t≡u])
wkEqTerm ρ ⊢Δ (ℕᵣ D) [t≡u] = wkEqTermℕ ρ ⊢Δ [t≡u]
wkEqTerm ρ ⊢Δ (Emptyᵣ D) [t≡u] = wkEqTermEmpty ρ ⊢Δ [t≡u]
wkEqTerm ρ ⊢Δ (Unitᵣ D) [t≡u] = wkEqTermUnit ρ ⊢Δ [t≡u]
wkEqTerm {ρ} [ρ] ⊢Δ (ne′ K D neK K≡K) (neₜ₌ k m d d′ nf) =
neₜ₌ (U.wk ρ k) (U.wk ρ m)
(wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′)
(wkEqTermNe [ρ] ⊢Δ nf)
wkEqTerm {ρ} [ρ] ⊢Δ (Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Πₜ₌ f g d d′ funcF funcG f≡g [t] [u] [f≡g]) =
let [A] = Πᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext
in Πₜ₌ (U.wk ρ f) (U.wk ρ g) (wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′)
(wkFunction ρ funcF) (wkFunction ρ funcG)
(≅ₜ-wk [ρ] ⊢Δ f≡g) (wkTerm [ρ] ⊢Δ [A] [t]) (wkTerm [ρ] ⊢Δ [A] [u])
(λ {ρ₁} [ρ₁] ⊢Δ₁ [a] →
let [F]₁ = [F] ([ρ₁] •ₜ [ρ]) ⊢Δ₁
[F]₂ = irrelevance′ (PE.sym (wk-comp ρ₁ ρ F)) [F]₁
[a]′ = irrelevanceTerm′ (wk-comp ρ₁ ρ F) [F]₂ [F]₁ [a]
[G]₁ = [G] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′
[G]₂ = irrelevance′ (wk-comp-subst ρ₁ ρ G) [G]₁
in irrelevanceEqTerm″ (PE.cong (λ y → y ∘ _) (PE.sym (wk-comp ρ₁ ρ _)))
(PE.cong (λ y → y ∘ _) (PE.sym (wk-comp ρ₁ ρ _)))
(wk-comp-subst ρ₁ ρ G)
[G]₁ [G]₂
([f≡g] ([ρ₁] •ₜ [ρ]) ⊢Δ₁ [a]′))
wkEqTerm {ρ} [ρ] ⊢Δ [A]@(Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext)
(Σₜ₌ p r d d′ pProd rProd p≅r [t] [u] [fstp] [fstr] [fst≡] [snd≡]) =
let [A] = Σᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext
⊢Γ = wf ⊢F
ρidF≡idρF = PE.begin
U.wk ρ (U.wk id F)
PE.≡⟨ PE.cong (U.wk ρ) (wk-id F) ⟩
U.wk ρ F
PE.≡⟨ PE.sym (wk-id (U.wk ρ F)) ⟩
U.wk id (U.wk ρ F)
PE.∎
[ρF] = irrelevance′ (PE.sym (wk-comp id ρ F)) ([F] [ρ] (wf (T.wk [ρ] ⊢Δ ⊢F)))
[ρfstp] = wkTerm [ρ] ⊢Δ ([F] id ⊢Γ) [fstp]
[ρfstp]′ = irrelevanceTerm′
ρidF≡idρF
(wk [ρ] ⊢Δ ([F] id ⊢Γ)) [ρF]
[ρfstp]
[ρfstr] = wkTerm [ρ] ⊢Δ ([F] id ⊢Γ) [fstr]
[ρfstr]′ = irrelevanceTerm′
ρidF≡idρF
(wk [ρ] ⊢Δ ([F] id ⊢Γ)) [ρF]
[ρfstr]
[ρfst≡] = wkEqTerm [ρ] ⊢Δ ([F] id ⊢Γ) [fst≡]
[ρfst≡]′ = irrelevanceEqTerm′
ρidF≡idρF
(wk [ρ] ⊢Δ ([F] id ⊢Γ)) [ρF]
[ρfst≡]
[ρsnd≡] = wkEqTerm [ρ] ⊢Δ ([G] id ⊢Γ [fstp]) [snd≡]
[ρG]′ = (irrelevance′ (wk-comp-subst id ρ G)
([G] [ρ] (wf (T.wk [ρ] ⊢Δ ⊢F))
(irrelevanceTerm′ (wk-comp id ρ F)
[ρF]
([F] [ρ] (wf (T.wk [ρ] ⊢Δ ⊢F)))
[ρfstp]′)))
[ρsnd≡]′ = irrelevanceEqTerm′
(PE.begin
U.wk ρ (U.wk (lift id) G [ fst p ])
PE.≡⟨ PE.cong (λ x → U.wk ρ (x [ fst p ])) (wk-lift-id G) ⟩
U.wk ρ (G [ fst p ])
PE.≡⟨ wk-β G ⟩
(U.wk (lift ρ) G) [ fst (U.wk ρ p) ]
PE.≡⟨ PE.cong (λ x → x [ fst (U.wk ρ p) ]) (PE.sym (wk-lift-id (U.wk (lift ρ) G))) ⟩
(U.wk (lift id) (U.wk (lift ρ) G)) [ fst (U.wk ρ p) ]
PE.∎)
(wk [ρ] ⊢Δ ([G] id (wf ⊢F) [fstp])) [ρG]′
[ρsnd≡]
in Σₜ₌ (U.wk ρ p) (U.wk ρ r) (wkRed:*:Term [ρ] ⊢Δ d) (wkRed:*:Term [ρ] ⊢Δ d′)
(wkProduct ρ pProd) (wkProduct ρ rProd)
(≅ₜ-wk [ρ] ⊢Δ p≅r) (wkTerm [ρ] ⊢Δ [A] [t]) (wkTerm [ρ] ⊢Δ [A] [u])
[ρfstp]′ [ρfstr]′ [ρfst≡]′ [ρsnd≡]′
wkEqTerm ρ ⊢Δ (emb 0<1 x) t≡u = wkEqTerm ρ ⊢Δ x t≡u
| {
"alphanum_fraction": 0.359954482,
"avg_line_length": 48.5753768844,
"ext": "agda",
"hexsha": "fe532f3f0b073427751287f9437af3cbae157ce8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Weakening.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Weakening.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Weakening.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 9552,
"size": 19333
} |
module FlexInterpreter where
data Ty : Set where
nat : Ty
arr : Ty -> Ty -> Ty
data Exp : Ty -> Set where
zero : Exp nat
suc : Exp (arr nat nat)
pred : Exp (arr nat nat)
app : {a b : Ty} -> Exp (arr a b) -> Exp a -> Exp b
data Nat : Set where
zero : Nat
suc : Nat -> Nat
Sem : Ty -> Set
Sem nat = Nat
Sem (arr a b) = Sem a -> Sem b
eval : {a : Ty} -> Exp a -> Sem a
eval zero = zero
eval suc = suc
eval pred zero = zero
eval pred (suc n) = n
eval (app f e) = eval f (eval e)
| {
"alphanum_fraction": 0.568,
"avg_line_length": 18.5185185185,
"ext": "agda",
"hexsha": "f46b7a2b81db5c1f6372e86d6d214c9ff82695a2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dagit/agda",
"max_forks_repo_path": "test/features/FlexInterpreter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dagit/agda",
"max_issues_repo_path": "test/features/FlexInterpreter.agda",
"max_line_length": 54,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dagit/agda",
"max_stars_repo_path": "test/features/FlexInterpreter.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z",
"num_tokens": 179,
"size": 500
} |
-- Ordinals as defined in the HoTT book.
{-# OPTIONS --without-K --safe #-}
module Ordinal.HoTT where
open import Data.Empty using (⊥)
open import Data.Unit using (⊤)
open import Induction.WellFounded using (Acc ; acc ; WellFounded)
open import Level using (Level ; _⊔_ ; 0ℓ) renaming (suc to lsuc)
open import Relation.Binary using (Rel ; IsEquivalence ; Transitive)
private
variable
α β γ ρ ε : Level
A B C : Set α
record _↔_ (A : Set α) (B : Set β) : Set (α ⊔ β) where
field
forth : A → B
back : B → A
open _↔_ public
IsExtensional : ∀ {α} {A : Set α} (_≈_ : Rel A ε) (_<_ : Rel A ρ) → Set (α ⊔ ε ⊔ ρ)
IsExtensional _≈_ _<_ = ∀ {a b} → (∀ c → (c < a) ↔ (c < b)) → a ≈ b
record IsOrdinal (A : Set α) ε ρ : Set (α ⊔ lsuc (ε ⊔ ρ)) where
field
_≈_ : Rel A ε
≈-equiv : IsEquivalence _≈_
_<_ : Rel A ρ
<-wf : WellFounded _<_
<-ext : IsExtensional _≈_ _<_
<-trans : Transitive _<_
open IsEquivalence ≈-equiv public using () renaming
( refl to ≈-refl
; sym to ≈-sym
; trans to ≈-trans)
open IsOrdinal public
record Ordinal α ε ρ : Set (lsuc (α ⊔ ε ⊔ ρ)) where
field
_↓ : Set α
isOrdinal : IsOrdinal _↓ ε ρ
open Ordinal public
zero : Ordinal 0ℓ 0ℓ 0ℓ
zero = record
{ _↓ = ⊤
; isOrdinal = record
{ _≈_ = λ _ _ → ⊤
; ≈-equiv = _
; _<_ = λ _ _ → ⊥
; <-wf = λ _ → acc λ y ()
; <-ext = _
; <-trans = λ()
}
}
| {
"alphanum_fraction": 0.5644820296,
"avg_line_length": 20.8676470588,
"ext": "agda",
"hexsha": "86025d0dccc730b841a70e564bd012ec173515d7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JLimperg/msc-thesis-code",
"max_forks_repo_path": "src/Ordinal/HoTT.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JLimperg/msc-thesis-code",
"max_issues_repo_path": "src/Ordinal/HoTT.agda",
"max_line_length": 83,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "104cddc6b65386c7e121c13db417aebfd4b7a863",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JLimperg/msc-thesis-code",
"max_stars_repo_path": "src/Ordinal/HoTT.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-26T06:37:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-13T21:31:17.000Z",
"num_tokens": 551,
"size": 1419
} |
module Part2_Agda_in_a_Nutshell where
{-
https://serokell.io/blog/agda-in-nutshell
Danya Rogozin
Monday, November 26th, 2018
Theorem proving in Agda based on a constructive logical framework.
Dependently typed programming and theorem proving in Agda.
Example use of Agda in the formalisation of algebra.
------------------------------------------------------------------------------
General
dependently typed : based on variant of Martin-Löf type theory.
Martin-Löf is constructive, so Agda doesn’t have default features for writing classical
(in contrast to HOL or Isabelle).
Agda : proof-assistant based on propositions-as-types.
------------------------------------------------------------------------------
Types in Agda
datatypes introduced via GADTs
-}
data Writers : Set where Wilde Shelley Byron Sartre Camus : Writers
data Literature : Set where DorianGrey Alastor ChildeHarold LaNausée L’Étranger : Literature
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-
Parameterized and indexed datatypes
see: https://agda.readthedocs.io/en/latest/language/data-types.html#indexed-datatypes
parameterized datatype
- depends on parameter that should remain the same in the types of constructors
-}
data List (A : Set) : Set where
Nil : List A
Cons : A → List A → List A
-- can have indexes that could differ from constructor to constructor
-- Vec is parameterized by A and indexed by ℕ.
data Vec (A : Set) : ℕ → Set where
Nil : Vec A zero
-- n is an implicit argument of the constructor.
-- Cons is an example of a dependent function.
Cons : {n : ℕ} → A → Vec A n → Vec A (suc n)
-- defines types of finite cardinality
-- Fin is a datatype indexed by a natural number.
data Fin : ℕ → Set where
-- zero reflects an empty set which is an element of any finite set
zero : {n : ℕ} → Fin (suc n)
-- suc applies the finite set i and yields a new finite set, larger than i on one element.
suc : {n : ℕ} → Fin n → Fin (suc n)
-- Vec and Fin in Agda are examples of dependent types,
-- types that depend on values (e.g., natural numbers), not only on types.
------------------------------------------------------------------------------
-- Functions
bookToWriter : Literature → Writers
bookToWriter DorianGrey = Wilde
bookToWriter Alastor = Shelley
bookToWriter ChildeHarold = Byron
bookToWriter LaNausée = Sartre
bookToWriter L’Étranger = Camus
-- A dependent function is a function that
-- takes a term a of type A and
-- returns some result of type B, where a may appear in B
-- Here types A and B are explicit arguments.
const₁ : (A B : Set) → A → B → A
const₁ A B x y = x
-- may take them implicitly:
const₂ : {A B : Set} → A → B → A
const₂ x y = x
data Ireland : Set where Dublin : Ireland
data England : Set where London : England
data France : Set where Paris : France
WriterToCountry : Writers → Set
WriterToCountry Wilde = Ireland
WriterToCountry Shelley = England
WriterToCountry Byron = England
WriterToCountry Sartre = France
WriterToCountry Camus = France
WriterToCity : (w : Writers) → WriterToCountry w
WriterToCity Wilde = Dublin
WriterToCity Shelley = London
WriterToCity Byron = London
WriterToCity Sartre = Paris
WriterToCity Camus = Paris
{-
WriterToCity is a dependent function, because the type of the result depends on the argument.
The type of a dependent function is called a Π-type.
Generally, given function P: A → Set,
then Π-type is a type of the function that assigns
to every term t : A
some object of type P t.
In Agda : (t : A) → P t for some {A : Set} {P : A → Set} in context.
Logically Π-type encodes intuitionistic universal quantifier.
P is a predicate and
some function of a type (t : A) → P t
is a proof that
for each t : A the property P has established.
------------------------------------------------------------------------------
Dependent pairs : Σ-type
inductive predicate on two lists:
-}
data IsReverse {A : Set} : (xs ys : List A) → Set where
ReverseNil : IsReverse [] []
ReverseCons : (x : A) (xs ys : List A)
→ IsReverse xs ys
→ IsReverse (x ∷ xs) (ys ++ [ x ])
{-
IsReverse xs ys denotes that the list ys is equal to reversed xs.
IsReverse is a datatype parameterized over a type A and
indexed over two lists of elements of type A.
prove theorem : for all list xs there exists list ys such that ys is a reversed list xs,
i.e., produce a dependent pair, where
the first projection of this pair is some list ys and
the second one is a proof that ys is reversed list xs.
Use the dependent pair type to prove existence:
-}
theoremReverse₁ : {A : Set} (xs : List A) → Σ (List A) (λ ys → IsReverse xs ys)
theoremReverse₁ [] = [] , ReverseNil
theoremReverse₁ (z ∷ zs) =
let ys = proj₁ (theoremReverse₁ zs) in
let ysProof = proj₂ (theoremReverse₁ zs) in
ys ++ [ x ] , ReverseCons z zs ys ysProof
{-
Read the theoremReverse₁ signature as
let A be type and
xs be a list with elements of the type A,
then there exists list ys, such that ys is the reversed list xs.
proved by induction on xs and build ys for every case.
Base case: if xs is empty,
then we present an empty list as the desired list ys and
ReverseNil is a proof that ys is equal to reversed list xs, because both of them are empty.
Inductive step : xs is a non-empty
List zs is smaller than z :: zs,
so apply induction hypothesis to zs and
show that :: preserves the desired property using the ReverseCons constructor.
Generally, Σ-type is defined in Agda:
-}
record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
constructor _,_
field
fst : A
snd : B fst -- apply B to arg from first field
{-
Defined for arbitrary universes (see below).
logical point of view : Σ A B
there exists some element of a type A, such that this element satisfies property B
i.e. Σ-type encodes constructive existential quantifier.
To prove the existence of some object with desired property constructively,
present the particular object and prove that object satisfies the property.
------------------------------------------------------------------------------
Universes
Hierarchy of types : initiated by Bertrand Russell.
Basic types (e.g., Nat, Bool) have a type called Set (i.e., Set₁)
Universe polymorphism enables defining functions that can be called on types of arbitrary levels. E.g.,
-}
s : {A B C : Set} → (A → B → C) → (A → B) → A → C
s f g x = f x (g x)
-- indicate that types A, B, C are types of arbitrary level a:
s₁ : {a : Level} {A B C : Set a} → (A → B → C) → (A → B) → A → C
s₁ f g x = f x (g x)
-- generalize s further, because A, B and C in s₁ belong to the same level above,
-- but these types may generally belong to different levels :
s₂ : {a b c : Level} {A : Set a} {B : Set b} {C : Set c}
→ (A → B → C) → (A → B) → A → C
s₂ f g x = f x (g x)
-- most general version of s : a universe polymorphic dependent function
S : {a b c : Level} {A : Set a} {B : A → Set b} {C : (x : A) → B x → Set c}
→ (f : (x : A) → (y : B x) → C x y) → (g : (x : A) → B x)
→ (x : A) → C x (g x)
S f g x = f x (g x)
------------------------------------------------------------------------------
-- Records
record Person : Set where
field
name : String
country : String
age : Int
------------------------------------------------------------------------------
-- Typeclasses are introduced in Agda as records. E.g.,
record Functor {a} (F : Set a → Set a) : Set (suc a) where
field
fmap : ∀ {A B} → (A → B) → F A → F B
-- Instances may be declared either
-- by constructing a record explicitly:
instance
ListFunctor₁ : Functor List
ListFunctor₁ = record { fmap = map }
-- or by using copatterns:
instance
ListFunctor₂ : Functor List
fmap {{ListFunctor₂}} = map
------------------------------------------------------------------------------
-- Propositional equality
-- The identity type is a datatype that reflects equality of terms in predicate logic.
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
-- examples using propositional equality:
-- proof of distributivity of natural number multiplication over addition
*-+-distr : ∀ a b c → (b + c) * a ≡ b * a + c * a
*-+-distr a zero c = refl
*-+-distr a (suc b) c =
begin
(suc b + c) * a ≡⟨ refl ⟩
a + (b + c) * a ≡⟨ cong (_+_ a) (*-+-distr a b c) ⟩
a + (b * a + c * a) ≡⟨ sym (+-assoc a (b * a) (c * a)) ⟩
suc b * a + c * a
∎
-- Proved by induction on b.
-- When b equals zero, the equality holds trivially.
-- Otherwise, equality is proved using the induction hypothesis.
{-
------------------------------------------------------------------------------
Algebraic example
A ring is an algebraic system
⟨R, +, ⋅, −, 0⟩
, where
R is a non-empty set,
0 ∈ R,
+, ⋅ are binary operations on R
and
− is a unary operation on R
such that:
1. ∀a,b,c ∈ R, (a+b)+c=a+(b+c);
2. ∀a,b ∈ R, a+b=b+a;
3. ∀a ∈ R, −a + a = 0;
4. ∀a ∈ R, a + 0 = a;
5. ∀a,b,c ∈ R, (a+b)⋅c=(a⋅c)+(b⋅c);
6. ∀a,b,c ∈ R, a⋅(b+c)=(a⋅b)+(a⋅c).
-}
record Ring (R : Set) : Set₁ where
constructor mkRing
infixr 7 _·_
infixr 6 _+_
field
θ : R
-_ : R → R
_+_ : R → R → R
_·_ : R → R → R
+-assoc : (a b c : R) → (a + b) + c ≡ a + (b + c)
+-commute : (a b : R) → a + b ≡ b + a
+-inv₁ : (a : R) → - a + a ≡ θ
+-θ : (a : R) → a + θ ≡ a
·-distr-right : (a b c : R) → (a + b) · c ≡ (a · c) + (b · c)
·-distr-left : (a b c : R) → a · (b + c) ≡ (a · b) + (a · c)
open Ring {{...}} public
| {
"alphanum_fraction": 0.5987794787,
"avg_line_length": 31.28802589,
"ext": "agda",
"hexsha": "a361115046bf251aa33a9515522f0969206c0987",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/paper/2018-11-danya-rogozin-serokell-constructive-and-non-cons-proofs-in-agda/src/Part2_Agda_in_a_Nutshell.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/paper/2018-11-danya-rogozin-serokell-constructive-and-non-cons-proofs-in-agda/src/Part2_Agda_in_a_Nutshell.agda",
"max_line_length": 103,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/paper/2018-11-danya-rogozin-serokell-constructive-and-non-cons-proofs-in-agda/src/Part2_Agda_in_a_Nutshell.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 2790,
"size": 9668
} |
open import Agda.Primitive
variable
ℓ : Level
A : Set ℓ
postulate
w/e : ∀ {a} {A : Set a} → A
Sub : {a : Level} (A : Set a) → (Set → A) → Set
hcomp-equivFillerSub : Sub A (λ { _ → w/e {_} {_} })
| {
"alphanum_fraction": 0.5263157895,
"avg_line_length": 16.0769230769,
"ext": "agda",
"hexsha": "53a208c1ecb43b3d8b98c68d26b2329a8b9d7c3d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue5007-easteregg.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue5007-easteregg.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue5007-easteregg.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 87,
"size": 209
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Sn where
open import Cubical.HITs.Sn.Base public
open import Cubical.HITs.Sn.Properties public
| {
"alphanum_fraction": 0.7604790419,
"avg_line_length": 27.8333333333,
"ext": "agda",
"hexsha": "51c5313e64522d9c31a15701ee0822d6b4ef985c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Sn.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Sn.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Sn.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 45,
"size": 167
} |
module Luau.Run where
open import Agda.Builtin.Equality using (_≡_; refl)
open import Luau.Heap using (Heap; ∅)
open import Luau.Syntax using (Block; return; _∙_; done)
open import Luau.OpSem using (_⊢_⟶*_⊣_; refl; step)
open import Luau.Value using (val)
open import Properties.Step using (stepᴮ; step; return; done; error)
open import Luau.RuntimeError using (RuntimeErrorᴮ)
data RunResult {a} (H : Heap a) (B : Block a) : Set where
return : ∀ V {B′ H′} → (H ⊢ B ⟶* (return (val V) ∙ B′) ⊣ H′) → RunResult H B
done : ∀ {H′} → (H ⊢ B ⟶* done ⊣ H′) → RunResult H B
error : ∀ {B′ H′} → (RuntimeErrorᴮ H′ B′) → (H ⊢ B ⟶* B′ ⊣ H′) → RunResult H B
{-# TERMINATING #-}
run′ : ∀ {a} H B → RunResult {a} H B
run′ H B with stepᴮ H B
run′ H B | step H′ B′ D with run′ H′ B′
run′ H B | step H′ B′ D | return V D′ = return V (step D D′)
run′ H B | step H′ B′ D | done D′ = done (step D D′)
run′ H B | step H′ B′ D | error E D′ = error E (step D D′)
run′ H _ | return V refl = return V refl
run′ H _ | done refl = done refl
run′ H B | error E = error E refl
run : ∀ {a} B → RunResult {a} ∅ B
run = run′ ∅
| {
"alphanum_fraction": 0.6014492754,
"avg_line_length": 38.0689655172,
"ext": "agda",
"hexsha": "d84f75de4a64d99816bc5154179fe552a7bf5591",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Luau/Run.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Luau/Run.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Luau/Run.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 440,
"size": 1104
} |
{-# OPTIONS --without-K #-}
-- Definition of Pi with fractionals
module PiFrac2 where
-- From the standard library:
open import Data.Empty using (⊥)
open import Data.Unit using (⊤; tt)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; cong; cong₂)
-- The basic types we add:
open import Singleton
infix 80 ●_ 𝟙/●_
infixr 70 _×ᵤ_
infixr 60 _+ᵤ_
infixr 50 _⊚_
------------------------------------------------------------------------------
-- Pi with fractionals
-- The following are all mutually dependent:
data 𝕌 : Set -- 𝕌niverse of types
⟦_⟧ : (A : 𝕌) → Set -- denotation of types
data _⟷_ : 𝕌 → 𝕌 → Set -- type equivalences
eval : {A B : 𝕌} → (A ⟷ B) → ⟦ A ⟧ → ⟦ B ⟧ -- evaluating an equivalence
data 𝕌 where
𝟘 : 𝕌
𝟙 : 𝕌
_+ᵤ_ : 𝕌 → 𝕌 → 𝕌
_×ᵤ_ : 𝕌 → 𝕌 → 𝕌
●_ : {A : 𝕌} → ⟦ A ⟧ → 𝕌
𝟙/●_ : {A : 𝕌} → ⟦ A ⟧ → 𝕌
⟦ 𝟘 ⟧ = ⊥
⟦ 𝟙 ⟧ = ⊤
⟦ t₁ +ᵤ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧
⟦ t₁ ×ᵤ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧
⟦ ● v ⟧ = Singleton _ v
⟦ 𝟙/● v ⟧ = Recip _ v
data _⟷_ where
unite₊l : {t : 𝕌} → 𝟘 +ᵤ t ⟷ t
uniti₊l : {t : 𝕌} → t ⟷ 𝟘 +ᵤ t
unite₊r : {t : 𝕌} → t +ᵤ 𝟘 ⟷ t
uniti₊r : {t : 𝕌} → t ⟷ t +ᵤ 𝟘
swap₊ : {t₁ t₂ : 𝕌} → t₁ +ᵤ t₂ ⟷ t₂ +ᵤ t₁
assocl₊ : {t₁ t₂ t₃ : 𝕌} → t₁ +ᵤ (t₂ +ᵤ t₃) ⟷ (t₁ +ᵤ t₂) +ᵤ t₃
assocr₊ : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) +ᵤ t₃ ⟷ t₁ +ᵤ (t₂ +ᵤ t₃)
unite⋆l : {t : 𝕌} → 𝟙 ×ᵤ t ⟷ t
uniti⋆l : {t : 𝕌} → t ⟷ 𝟙 ×ᵤ t
unite⋆r : {t : 𝕌} → t ×ᵤ 𝟙 ⟷ t
uniti⋆r : {t : 𝕌} → t ⟷ t ×ᵤ 𝟙
swap⋆ : {t₁ t₂ : 𝕌} → t₁ ×ᵤ t₂ ⟷ t₂ ×ᵤ t₁
assocl⋆ : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) ×ᵤ t₃
assocr⋆ : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₂) ×ᵤ t₃ ⟷ t₁ ×ᵤ (t₂ ×ᵤ t₃)
absorbr : {t : 𝕌} → 𝟘 ×ᵤ t ⟷ 𝟘
absorbl : {t : 𝕌} → t ×ᵤ 𝟘 ⟷ 𝟘
factorzr : {t : 𝕌} → 𝟘 ⟷ t ×ᵤ 𝟘
factorzl : {t : 𝕌} → 𝟘 ⟷ 𝟘 ×ᵤ t
dist : {t₁ t₂ t₃ : 𝕌} → (t₁ +ᵤ t₂) ×ᵤ t₃ ⟷ (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃)
factor : {t₁ t₂ t₃ : 𝕌} → (t₁ ×ᵤ t₃) +ᵤ (t₂ ×ᵤ t₃) ⟷ (t₁ +ᵤ t₂) ×ᵤ t₃
distl : {t₁ t₂ t₃ : 𝕌} → t₁ ×ᵤ (t₂ +ᵤ t₃) ⟷ (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃)
factorl : {t₁ t₂ t₃ : 𝕌 } → (t₁ ×ᵤ t₂) +ᵤ (t₁ ×ᵤ t₃) ⟷ t₁ ×ᵤ (t₂ +ᵤ t₃)
id⟷ : {t : 𝕌} → t ⟷ t
_⊚_ : {t₁ t₂ t₃ : 𝕌} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
_⊕_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ +ᵤ t₂ ⟷ t₃ +ᵤ t₄)
_⊗_ : {t₁ t₂ t₃ t₄ : 𝕌} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (t₁ ×ᵤ t₂ ⟷ t₃ ×ᵤ t₄)
-- new operations on Singleton
{--
lift : {t₁ t₂ : 𝕌} → {v₁ : ⟦ t₁ ⟧} →
(c : t₁ ⟷ t₂) →
((● v₁) ⟷ (● (eval c v₁)))
tensorl : {t₁ t₂ : 𝕌} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} →
●_ {A = t₁ ×ᵤ t₂} (v₁ , v₂) ⟷ ● v₁ ×ᵤ ● v₂
tensorr : {t₁ t₂ : 𝕌} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} →
● v₁ ×ᵤ ● v₂ ⟷ ●_ {A = t₁ ×ᵤ t₂} (v₁ , v₂)
plusll : {t₁ t₂ : 𝕌} {v : ⟦ t₁ ⟧} →
●_ {A = t₁ +ᵤ t₂} (inj₁ v) ⟷ ● v
pluslr : {t₁ t₂ : 𝕌} {v : ⟦ t₁ ⟧} →
● v ⟷ ●_ {A = t₁ +ᵤ t₂} (inj₁ v)
plusrl : {t₁ t₂ : 𝕌} {v : ⟦ t₂ ⟧} →
●_ {A = t₁ +ᵤ t₂} (inj₂ v) ⟷ ● v
plusrr : {t₁ t₂ : 𝕌} {v : ⟦ t₂ ⟧} →
● v ⟷ ●_ {A = t₁ +ᵤ t₂} (inj₂ v)
fracl : {t₁ t₂ : 𝕌} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} →
𝟙/●_ {A = t₁ ×ᵤ t₂} (v₁ , v₂) ⟷ 𝟙/● v₁ ×ᵤ 𝟙/● v₂
fracr : {t₁ t₂ : 𝕌} {v₁ : ⟦ t₁ ⟧} {v₂ : ⟦ t₂ ⟧} →
𝟙/● v₁ ×ᵤ 𝟙/● v₂ ⟷ 𝟙/●_ {A = t₁ ×ᵤ t₂} (v₁ , v₂)
--}
-- fractionals
η : {t : 𝕌} → (v : ⟦ t ⟧) → 𝟙 ⟷ ● v ×ᵤ 𝟙/● v
ε : {t : 𝕌} → (v : ⟦ t ⟧) → ● v ×ᵤ 𝟙/● v ⟷ 𝟙
-- double lift prop eq
{--
ll : ∀ {t : 𝕌} {v : ⟦ t ⟧} {w : ⟦ ● v ⟧} →
●_ {A = ● v} w ⟷ ● v
== : ∀ {t₁ t₂ : 𝕌} {v : ⟦ t₁ ⟧} {w w' : ⟦ t₂ ⟧} →
(● v ⟷ ● w) → (w ≡ w') → (● v ⟷ ● w')
--}
eval unite₊l (inj₂ v) = v
eval uniti₊l v = inj₂ v
eval unite₊r (inj₁ v) = v
eval uniti₊r v = inj₁ v
eval swap₊ (inj₁ v) = inj₂ v
eval swap₊ (inj₂ v) = inj₁ v
eval assocl₊ (inj₁ v) = inj₁ (inj₁ v)
eval assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v)
eval assocl₊ (inj₂ (inj₂ v)) = inj₂ v
eval assocr₊ (inj₁ (inj₁ v)) = inj₁ v
eval assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v)
eval assocr₊ (inj₂ v) = inj₂ (inj₂ v)
eval unite⋆l (tt , v) = v
eval uniti⋆l v = (tt , v)
eval unite⋆r (v , tt) = v
eval uniti⋆r v = (v , tt)
eval swap⋆ (v₁ , v₂) = (v₂ , v₁)
eval assocl⋆ (v₁ , (v₂ , v₃)) = ((v₁ , v₂) , v₃)
eval assocr⋆ ((v₁ , v₂) , v₃) = (v₁ , (v₂ , v₃))
eval absorbl ()
eval absorbr ()
eval factorzl ()
eval factorzr ()
eval dist (inj₁ v₁ , v₃) = inj₁ (v₁ , v₃)
eval dist (inj₂ v₂ , v₃) = inj₂ (v₂ , v₃)
eval factor (inj₁ (v₁ , v₃)) = (inj₁ v₁ , v₃)
eval factor (inj₂ (v₂ , v₃)) = (inj₂ v₂ , v₃)
eval distl (v , inj₁ v₁) = inj₁ (v , v₁)
eval distl (v , inj₂ v₂) = inj₂ (v , v₂)
eval factorl (inj₁ (v , v₁)) = (v , inj₁ v₁)
eval factorl (inj₂ (v , v₂)) = (v , inj₂ v₂)
eval id⟷ v = v
eval (c₁ ⊚ c₂) v = eval c₂ (eval c₁ v)
eval (c₁ ⊕ c₂) (inj₁ v) = inj₁ (eval c₁ v)
eval (c₁ ⊕ c₂) (inj₂ v) = inj₂ (eval c₂ v)
eval (c₁ ⊗ c₂) (v₁ , v₂) = (eval c₁ v₁ , eval c₂ v₂)
{--
eval (lift c) (w , v≡w) = eval c w , cong (eval c) v≡w
eval tensorl ((w₁ , w₂) , vp≡wp) =
(w₁ , cong proj₁ vp≡wp) , (w₂ , cong proj₂ vp≡wp)
eval tensorr ((w₁ , p₁) , (w₂ , p₂)) =
(w₁ , w₂) , cong₂ _,_ p₁ p₂
--}
eval (η v) tt = (v , refl) , λ _ → tt
eval (ε v) (p , f) = f p
{--
eval (plusll {v = .w₁}) (inj₁ w₁ , refl) = w₁ , refl
eval pluslr (v₁ , refl) = inj₁ v₁ , refl
eval (plusrl {v = .w₂}) (inj₂ w₂ , refl) = w₂ , refl
eval plusrr (v₂ , refl) = inj₂ v₂ , refl
eval (fracl {v₁ = v₁} {v₂ = v₂}) f = (λ _ → f ((v₁ , v₂) , refl)) , (λ _ → f ((v₁ , v₂) , refl))
eval fracr (f₁ , f₂) ((w₁ , w₂) , refl) = let _ = f₁ (w₁ , refl) ; _ = f₂ (w₂ , refl) in tt
eval (ll {t} {v} {.w}) (w , refl) = v , refl
eval (== c eq) s₁ = let (w₂ , p) = eval c s₁ in w₂ , trans (sym eq) p
--}
-- monad/comonad pair
{--
focus : {t : 𝕌} → (v : ⟦ t ⟧) → Singleton ⟦ t ⟧ v
focus v = (v , refl)
unfocus : {t : 𝕌} {v : ⟦ t ⟧} → Singleton ⟦ t ⟧ v → ⟦ t ⟧
unfocus (v , refl) = v
open import Data.Empty using (⊥)
open import Data.Unit using (⊤; tt)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; cong; subst)
------------------------------------------------------------------------------
-- Useful for examples
infixr 2 _⟷⟨_⟩_
infix 3 _□
_⟷⟨_⟩_ : (t₁ : 𝕌) {t₂ : 𝕌} {t₃ : 𝕌} →
(t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
_ ⟷⟨ α ⟩ β = α ⊚ β
_□ : (t : 𝕌) → {t : 𝕌} → (t ⟷ t)
_□ t = id⟷
------------------------------------------------------------------------------
𝔹 : 𝕌
𝔹 = 𝟙 +ᵤ 𝟙
𝔹² : 𝕌
𝔹² = 𝔹 ×ᵤ 𝔹
𝔽 𝕋 : ⟦ 𝔹 ⟧
𝔽 = inj₁ tt
𝕋 = inj₂ tt
not : ⟦ 𝔹 ⟧ → ⟦ 𝔹 ⟧
not (inj₁ tt) = inj₂ tt
not (inj₂ tt) = inj₁ tt
-- this version might look more contrived that the fully expanded
-- one via pattern matching, but it generalizes better.
controlled : ∀ {A} → (⟦ A ⟧ → ⟦ A ⟧) → ⟦ 𝔹 ⟧ × ⟦ A ⟧ → ⟦ 𝔹 ⟧ × ⟦ A ⟧
controlled f (b , a) = (b , [ (λ _ → a) , (λ _ → f a) ]′ b)
-- controlled f (inj₁ tt , a) = (inj₁ tt , a )
-- controlled f (inj₂ tt , a) = (inj₂ tt , f a)
------------------------------------------------------------------------------
-- Examples
zigzag : ∀ b → ●_ {𝔹} b ⟷ ● b
zigzag b =
uniti⋆l ⊚ -- ONE * POINTED TWO
(η b ⊗ id⟷) ⊚ -- (POINTED TWO * RECIP TWO) * POINTED TWO
assocr⋆ ⊚ -- POINTED TWO * (RECIP TWO * POINTED TWO)
(id⟷ ⊗ swap⋆) ⊚ -- POINTED TWO * (POINTED TWO * RECIP TWO)
(id⟷ ⊗ ε b) ⊚ -- POINTED TWO * ONE
unite⋆r
test1 = eval (zigzag 𝔽) (𝔽 , refl) -- (⇑ #f refl)
-- test2 = eval (zigzag 𝔽) (𝕋 , refl) -- typechecks if given proof #f=#t
-- test3 = eval (zigzag 𝕋) (𝔽 , refl) -- typechecks if given proof #f=#t
test4 = eval (zigzag 𝕋) (𝕋 , refl) -- (⇑ #t refl)
zigzagU : ⟦ 𝔹 ⟧ → ⟦ 𝔹 ⟧
zigzagU b = unfocus (eval (zigzag b) (focus b))
-- Conventional PI examples
NOT : 𝔹 ⟷ 𝔹
NOT = swap₊
NEG1 NEG2 NEG3 NEG4 NEG5 : 𝔹 ⟷ 𝔹
NEG1 = swap₊
NEG2 = id⟷ ⊚ NOT
NEG3 = NOT ⊚ NOT ⊚ NOT
NEG4 = NOT ⊚ id⟷
NEG5 = uniti⋆l ⊚ swap⋆ ⊚ (NOT ⊗ id⟷) ⊚ swap⋆ ⊚ unite⋆l
NEG6 = uniti⋆r ⊚ (NOT ⊗ id⟷) ⊚ unite⋆r -- same as above, but shorter
CNOT : 𝔹² ⟷ 𝔹²
CNOT =
𝔹 ×ᵤ 𝔹 ⟷⟨ id⟷ ⟩
(x +ᵤ y) ×ᵤ 𝔹 ⟷⟨ dist ⟩
(x ×ᵤ 𝔹) +ᵤ (y ×ᵤ 𝔹) ⟷⟨ id⟷ ⊕ (id⟷ ⊗ NOT) ⟩
(x ×ᵤ 𝔹) +ᵤ (y ×ᵤ 𝔹) ⟷⟨ factor ⟩
(x +ᵤ y) ×ᵤ 𝔹 ⟷⟨ id⟷ ⟩
𝔹 ×ᵤ 𝔹 □
where x = 𝟙; y = 𝟙
TOFFOLI : 𝔹 ×ᵤ 𝔹² ⟷ 𝔹 ×ᵤ 𝔹²
TOFFOLI =
𝔹 ×ᵤ 𝔹² ⟷⟨ id⟷ ⟩
(x +ᵤ y) ×ᵤ 𝔹² ⟷⟨ dist ⟩
(x ×ᵤ 𝔹²) +ᵤ (y ×ᵤ 𝔹²) ⟷⟨ id⟷ ⊕ (id⟷ ⊗ CNOT) ⟩
(x ×ᵤ 𝔹²) +ᵤ (y ×ᵤ 𝔹²) ⟷⟨ factor ⟩
(x +ᵤ y) ×ᵤ 𝔹² ⟷⟨ id⟷ ⟩
𝔹 ×ᵤ 𝔹² □
where x = 𝟙; y = 𝟙
PERES : (𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹 ⟷ (𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹
PERES = (id⟷ ⊗ NOT) ⊚ assocr⋆ ⊚ (id⟷ ⊗ swap⋆) ⊚
TOFFOLI ⊚
(id⟷ ⊗ (NOT ⊗ id⟷)) ⊚
TOFFOLI ⊚
(id⟷ ⊗ swap⋆) ⊚ (id⟷ ⊗ (NOT ⊗ id⟷)) ⊚
TOFFOLI ⊚
(id⟷ ⊗ (NOT ⊗ id⟷)) ⊚ assocl⋆
SWAP12 SWAP23 SWAP13 ROTL ROTR : 𝟙 +ᵤ 𝟙 +ᵤ 𝟙 ⟷ 𝟙 +ᵤ 𝟙 +ᵤ 𝟙
SWAP12 = assocl₊ ⊚ (swap₊ ⊕ id⟷) ⊚ assocr₊
SWAP23 = id⟷ ⊕ swap₊
SWAP13 = SWAP23 ⊚ SWAP12 ⊚ SWAP23
ROTR = SWAP12 ⊚ SWAP23
ROTL = SWAP13 ⊚ SWAP23
t3 : ∀ {b₁ b₂} →
● (𝔽 , (b₁ , b₂)) ⟷
● (𝔽 , (b₁ , b₂))
t3 = lift TOFFOLI
{--
The following do not typecheck. Good
t4 : ● (𝔹 ×ᵤ 𝔹²) [ 𝕋 , (𝔽 , 𝔽) ] ⟷
● (𝔹 ×ᵤ 𝔹²) [ 𝕋 , (𝔽 , 𝕋) ]
t4 = lift TOFFOLI
t5 : ∀ {b₁ b₂} →
● (𝔹 ×ᵤ 𝔹²) [ b₁ , (𝔽 , b₂) ] ⟷
● (𝔹 ×ᵤ 𝔹²) [ b₁ , (𝔽 , b₂) ]
t5 = lift TOFFOLI
--}
t6 : ∀ {b} →
● (𝕋 , (𝕋 , b)) ⟷
● (𝕋 , (𝕋 , eval NOT b))
t6 = lift TOFFOLI
-- Ancilla examples from literature
-- Fig. 2 in Ricercar
CONTROLLED : {A : 𝕌} → (A ⟷ A) → 𝔹 ×ᵤ A ⟷ 𝔹 ×ᵤ A
CONTROLLED c = dist ⊚ (id⟷ ⊕ (id⟷ ⊗ c)) ⊚ factor
fig2a : 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ⟷
𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹
fig2a = CONTROLLED (CONTROLLED (CONTROLLED NOT))
-- first write the circuit with the additional ancilla
fig2b' : ((𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹) ⟷ ((𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹)
fig2b' =
(swap⋆ ⊗ id⟷) ⊚
assocr⋆ ⊚
(swap⋆ ⊗ id⟷) ⊚
assocr⋆ ⊚
(id⟷ ⊗ CONTROLLED (CONTROLLED NOT)) -- first ccnot
⊚
assocl⋆ ⊚
(swap⋆ ⊗ id⟷) ⊚
assocl⋆ ⊚
(swap⋆ ⊗ id⟷) -- move it back
⊚
(assocl⋆ ⊗ id⟷) ⊚
assocr⋆ ⊚
(id⟷ ⊗ swap⋆) ⊚
(id⟷ ⊗ CONTROLLED (CONTROLLED NOT)) -- second ccnot
⊚
(id⟷ ⊗ swap⋆) ⊚
assocl⋆ ⊚
(assocr⋆ ⊗ id⟷) -- move it back
⊚
(swap⋆ ⊗ id⟷) ⊚
assocr⋆ ⊚
(swap⋆ ⊗ id⟷) ⊚
assocr⋆ ⊚
(id⟷ ⊗ CONTROLLED (CONTROLLED NOT)) -- third ccnot
⊚
assocl⋆ ⊚
(swap⋆ ⊗ id⟷) ⊚
assocl⋆ ⊚
(swap⋆ ⊗ id⟷) -- move it back
-- then prove a theorem that specifies its semantics
fig2b'≡ : (a b c d : ⟦ 𝔹 ⟧) →
proj₂ (eval fig2b' ((a , b , c , d) , 𝔽)) ≡ 𝔽
fig2b'≡ a (inj₁ tt) c d = refl
fig2b'≡ (inj₁ tt) (inj₂ tt) c d = refl
fig2b'≡ (inj₂ tt) (inj₂ tt) c d = refl
-- generalize above? Method:
-- for 'dist' to evaluate, need to split on b first
-- in first case, split on e (same reason)
-- in second case, split on a (same reason)
-- split on e
-- split on e
foo : (a b c d e : ⟦ 𝔹 ⟧) →
proj₂ (eval fig2b' ((a , b , c , d) , e)) ≡ e
foo a (inj₁ x) c d (inj₁ x₁) = refl
foo a (inj₁ x) c d (inj₂ y) = refl
foo (inj₁ x) (inj₂ y) c d (inj₁ x₁) = refl
foo (inj₁ x) (inj₂ y) c d (inj₂ y₁) = refl
foo (inj₂ y₁) (inj₂ y) c d (inj₁ x) = refl
foo (inj₂ y₁) (inj₂ y) c d (inj₂ y₂) = refl
postulate
-- boring...
tensor4 : ∀ {a b c d e} →
(●_ {𝔹} a ×ᵤ ●_ {𝔹} b ×ᵤ ●_ {𝔹} c ×ᵤ ●_ {𝔹} d) ×ᵤ ●_ {𝔹} e ⟷
●_ {(𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹} ((a , b , c , d) , e)
itensor4 : ∀ {a b c d e} →
●_ {(𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹} ((a , b , c , d) , e) ⟷
(● a ×ᵤ ● b ×ᵤ ● c ×ᵤ ● d) ×ᵤ ● e
-- now lift it
fig2b : ∀ {a b c d e} →
let ((x , y , z , w) , u) = eval fig2b' ((a , b , c , d) , e)
in
● a ×ᵤ ● b ×ᵤ ● c ×ᵤ ● d ⟷
● x ×ᵤ ● y ×ᵤ ● z ×ᵤ ● w
fig2b {a} {b} {c} {d} {e} =
let ((x , y , z , w) , u) = eval fig2b' ((a , b , c , d) , e)
in uniti⋆r ⊚
-- (●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × ●𝟙[e]
(id⟷ ⊗ η e) ⊚
-- (●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × (●𝔹[e] x ●1/𝔹[e])
assocl⋆ ⊚
-- ((●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × ●𝔹[e) x ●1/𝔹[e]
(tensor4 ⊗ id⟷) ⊚
-- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (a,b,c,d),e ] x ●1/𝔹[e]
(lift fig2b' ⊗ id⟷) ⊚
-- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (x,y,z,w),e ] x ●1/𝔹[e]
(((== id⟷ (cong (λ H → ((x , y , z , w)) , H) (foo a b c d e))) ⊗ id⟷)) ⊚
-- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (x,y,z,w),e ] x ●1/𝔹[e]
(itensor4 ⊗ id⟷) ⊚
-- ((●𝔹[x] × ●𝔹[y] × ●𝔹[z] × ●𝔹[w]) × ●𝔹[e]) x ●1/𝔹[e]
assocr⋆ ⊚
(id⟷ ⊗ ε e) ⊚
unite⋆r
-- This is mostly to show that == is really 'subst' in hiding.
fig2b₂ : ∀ {a b c d e} →
let ((x , y , z , w) , u) = eval fig2b' ((a , b , c , d) , e)
in
● a ×ᵤ ● b ×ᵤ ● c ×ᵤ ● d ⟷
● x ×ᵤ ● y ×ᵤ ● z ×ᵤ ● w
fig2b₂ {a} {b} {c} {d} {e} =
let ((x , y , z , w) , u) = eval fig2b' ((a , b , c , d) , e)
in uniti⋆r ⊚
-- (●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × ●𝟙[e]
(id⟷ ⊗ η e) ⊚
-- (●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × (●𝔹[e] x ●1/𝔹[e])
assocl⋆ ⊚
-- ((●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × ●𝔹[e) x ●1/𝔹[e]
(tensor4 ⊗ id⟷) ⊚
-- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (a,b,c,d),e ] x ●1/𝔹[e]
(lift fig2b' ⊗ id⟷) ⊚
-- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (x,y,z,w),e ] x ●1/𝔹[e]
(itensor4 ⊗ id⟷) ⊚
-- ((●𝔹[x] × ●𝔹[y] × ●𝔹[z] × ●𝔹[w]) × ●𝔹[e]) x ●1/𝔹[e]
assocr⋆ ⊚
(id⟷ ⊗ (subst (λ ee → ● ee ×ᵤ 𝟙/● e ⟷ 𝟙) (sym (foo a b c d e)) (ε e))) ⊚
unite⋆r
open import Data.Empty using (⊥)
open import Data.Unit using (⊤; tt)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; cong; cong₂; subst; module ≡-Reasoning)
open import Data.Product using (Σ; _,_; proj₁; proj₂)
open import Relation.Binary.PropositionalEquality
using (_≡_; subst)
------------------------------------------------------------------
dual : {A B : 𝕌} → (f : A ⟷ B) → (v : ⟦ A ⟧ ) →
(𝟙/● (eval f v) ⟷ 𝟙/● v)
dual f v = uniti⋆l ⊚ (η v ⊗ id⟷) ⊚ ((lift f ⊗ id⟷) ⊗ id⟷) ⊚
assocr⋆ ⊚ (id⟷ ⊗ swap⋆) ⊚ assocl⋆ ⊚ (ε (eval f v) ⊗ id⟷) ⊚ unite⋆l
-- name, coname
name : {A B : 𝕌} → (f : A ⟷ B) → (v : ⟦ A ⟧ ) → 𝟙 ⟷ ● (eval f v) ×ᵤ 𝟙/● v
name f v = η v ⊚ (lift f ⊗ id⟷)
coname : {A B : 𝕌} → (f : A ⟷ B) → (v : ⟦ A ⟧ ) → ● v ×ᵤ 𝟙/● (eval f v) ⟷ 𝟙
coname f v = (lift f ⊗ id⟷) ⊚ ε (eval f v)
-- and 'trace' reveals something neat: we can't choose just any random 'a' and 'c'
-- to start with, but we need that make a coherence choice of a and c !!
trace : {A B C : 𝕌} (a : ⟦ A ⟧ ) → (f : A ×ᵤ C ⟷ B ×ᵤ C) →
(coh : Σ ⟦ C ⟧ (λ c → proj₂ (eval f (a , c)) ≡ c)) →
● a ⟷ ● (proj₁ (eval f (a , proj₁ coh)))
trace {A} {B} {C} a f (c , choice) =
uniti⋆r ⊚ -- A ×ᵤ 1
(id⟷ ⊗ η c) ⊚ -- A ×ᵤ (C ×ᵤ 1/C)
assocl⋆ ⊚ -- (A ×ᵤ C) ×ᵤ 1/C
(tensorr ⊗ id⟷) ⊚ -- bring in the ●
(lift f ⊗ id⟷) ⊚ -- (B ×ᵤ C) ×ᵤ 1/C
(tensorl ⊗ id⟷) ⊚ -- bring out the ●
assocr⋆ ⊚ -- B ×ᵤ (C ×ᵤ 1/C)
(id⟷ ⊗ (subst fixer choice id⟷ ⊚ ε c)) ⊚ -- B ×ᵤ 1
unite⋆r
where
fixer : ⟦ C ⟧ → Set
fixer d = (● (proj₂ (eval f (a , c))) ×ᵤ 𝟙/● d) ⟷ (● d ×ᵤ 𝟙/● d)
------------------------------------------------------------------
-- Example in Sec. 4.3 from Abramsky's paper
-- http://www.cs.ox.ac.uk/files/341/calco05.pdf
q : {A1 A2 A3 A4 B1 B2 B3 B4 : 𝕌} →
(f1 : A1 ⟷ B2) →
(f2 : A2 ⟷ B4) →
(f3 : A3 ⟷ B3) →
(f4 : A4 ⟷ B1) →
A1 ×ᵤ (A2 ×ᵤ (A3 ×ᵤ A4)) ⟷ B1 ×ᵤ (B2 ×ᵤ (B3 ×ᵤ B4))
q {A1} {A2} {A3} {A4} {B1} {B2} {B3} {B4} f1 f2 f3 f4 =
(A1 ×ᵤ A2 ×ᵤ A3 ×ᵤ A4) ⟷⟨ f1 ⊗ (f2 ⊗ (f3 ⊗ f4)) ⟩
(B2 ×ᵤ B4 ×ᵤ B3 ×ᵤ B1) ⟷⟨ assocl⋆ ⟩
(B2 ×ᵤ B4) ×ᵤ (B3 ×ᵤ B1) ⟷⟨ swap⋆ ⟩
(B3 ×ᵤ B1) ×ᵤ (B2 ×ᵤ B4) ⟷⟨ swap⋆ ⊗ id⟷ ⟩
(B1 ×ᵤ B3) ×ᵤ (B2 ×ᵤ B4) ⟷⟨ assocr⋆ ⊚ (id⟷ ⊗ assocl⋆) ⟩
B1 ×ᵤ ((B3 ×ᵤ B2) ×ᵤ B4) ⟷⟨ id⟷ ⊗ ((swap⋆ ⊗ id⟷) ⊚ assocr⋆) ⟩
B1 ×ᵤ (B2 ×ᵤ (B3 ×ᵤ B4)) □
q' : {A1 U2 U3 U4 B1 : 𝕌} →
(f1 : A1 ⟷ U2) →
(f2 : U2 ⟷ U4) →
(f3 : U3 ⟷ U3) →
(f4 : U4 ⟷ B1) → (v : ⟦ A1 ⟧) (u3 : ⟦ U3 ⟧) → (u3-fix : eval f3 u3 ≡ u3) →
let u2 = eval f1 v in
let u4 = eval f2 u2 in
● v ⟷ ● (proj₁ (eval (q f1 f2 f3 f4) (v , u2 , u3 , u4)))
q' f1 f2 f3 f4 v u3 u3fix =
trace v (q f1 f2 f3 f4) (( u2 , ( u3 , u4 ) ), cong₂ _,_ refl (cong₂ _,_ u3fix refl))
where
u2 = eval f1 v
u3′ = eval f3 u3
u4 = eval f2 u2
-- The point is that q' acts in a very particular way:
q'-closed-form : {A1 U2 U3 U4 B1 : 𝕌} →
(f1 : A1 ⟷ U2) →
(f2 : U2 ⟷ U4) →
(f3 : U3 ⟷ U3) →
(f4 : U4 ⟷ B1) → (u3 : ⟦ U3 ⟧) (u3-fix : eval f3 u3 ≡ u3) → (v : ⟦ A1 ⟧) →
proj₁ (eval (q' f1 f2 f3 f4 v u3 u3-fix) (v , refl)) ≡ eval (f1 ⊚ f2 ⊚ f4) v
q'-closed-form f1 f2 f3 f4 u3 u3fix v = refl
---------------------------------------------------------------------------------
-- I think the examples below are 'obsolete', in the sense that the one above
-- is more faithful to the original, and more general too. Delete?
p : {A1 A2 A3 A4 : 𝕌} →
(A1 ×ᵤ A2) ×ᵤ (A3 ×ᵤ A4) ⟷ (A2 ×ᵤ A4) ×ᵤ (A3 ×ᵤ A1)
p = (swap⋆ ⊗ swap⋆) ⊚
assocr⋆ ⊚ (id⟷ ⊗ assocl⋆) ⊚ (id⟷ ⊗ (swap⋆ ⊗ id⟷)) ⊚
(id⟷ ⊗ assocr⋆) ⊚ assocl⋆ ⊚ (id⟷ ⊗ swap⋆)
p' : {A1 A2 A3 A4 : 𝕌} →
((A1 ×ᵤ A2) ×ᵤ A4) ×ᵤ A3 ⟷ ((A2 ×ᵤ A4) ×ᵤ A1) ×ᵤ A3
p' = assocr⋆ ⊚ (id⟷ ⊗ swap⋆) ⊚ p ⊚ (id⟷ ⊗ swap⋆) ⊚ assocl⋆
p2 : 𝔹 ×ᵤ (𝔹 ×ᵤ (𝔹 ×ᵤ 𝔹)) ⟷ 𝔹 ×ᵤ (𝔹 ×ᵤ (𝔹 ×ᵤ 𝔹))
p2 = assocl⋆ ⊚ (swap⋆ ⊗ swap⋆) ⊚
assocr⋆ ⊚ (id⟷ ⊗ assocl⋆) ⊚ (id⟷ ⊗ (swap⋆ ⊗ id⟷)) ⊚
(id⟷ ⊗ assocr⋆) ⊚ assocl⋆ ⊚ (id⟷ ⊗ swap⋆) ⊚ assocr⋆
p2' : (v : ⟦ 𝔹 ⟧) →
● v ⟷ ● (proj₁ (proj₁ (eval p ((v , v) , (v , v)))))
p2' v = trace v p2 ((v , (v , v)) , refl)
---------------------------------------------------------------------------------
-- Examples inspired by compact closed categories and fractional numbers.
-- Intuition:
-- 1/A x B is a space transformer; takes A space and returns B space
-- denote space transformers as A ⊸ B
-- Best we can do:
-- we need Singletons, so |a ⊸ b| is 1 component of a function.
_⊸_ : {A : 𝕌} → (a : ⟦ A ⟧) → {B : 𝕌} → (b : ⟦ B ⟧) → 𝕌
_⊸_ {A} a {B} b = 𝟙/● a ×ᵤ ● b
id⊸ : {A : 𝕌} {a : ⟦ A ⟧} → (a ⊸ a) ⟷ 𝟙
id⊸ {A} {a} =
(𝟙/● a ×ᵤ ● a) ⟷⟨ swap⋆ ⟩
(● a ×ᵤ 𝟙/● a) ⟷⟨ ε a ⟩
𝟙 □
comp⊸ : {A B C : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} {c : ⟦ C ⟧} →
(a ⊸ b) ×ᵤ (b ⊸ c) ⟷ (a ⊸ c)
comp⊸ {A} {B} {C} {a} {b} {c} =
(𝟙/● a ×ᵤ ● b) ×ᵤ (𝟙/● b ×ᵤ ● c) ⟷⟨ assocr⋆ ⟩
𝟙/● a ×ᵤ (● b ×ᵤ (𝟙/● b ×ᵤ ● c)) ⟷⟨ id⟷ ⊗ assocl⋆ ⟩
𝟙/● a ×ᵤ (● b ×ᵤ 𝟙/● b) ×ᵤ ● c ⟷⟨ id⟷ ⊗ (ε b ⊗ id⟷) ⟩
𝟙/● a ×ᵤ (𝟙 ×ᵤ ● c) ⟷⟨ id⟷ ⊗ unite⋆l ⟩
𝟙/● a ×ᵤ ● c □
app : {A B : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} → (a ⊸ b) ×ᵤ ● a ⟷ ● b
app {A} {B} {a} {b} =
(𝟙/● a ×ᵤ ● b) ×ᵤ ● a ⟷⟨ swap⋆ ⊗ id⟷ ⟩
(● b ×ᵤ 𝟙/● a) ×ᵤ ● a ⟷⟨ assocr⋆ ⊚ (id⟷ ⊗ (swap⋆ ⊚ ε a)) ⟩
● b ×ᵤ 𝟙 ⟷⟨ unite⋆r ⟩
● b □
-- B/A × D/C ⟷ B × D / A × C
dist×/ : {A B C D : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} {c : ⟦ C ⟧} {d : ⟦ D ⟧}
→ (a ⊸ b) ×ᵤ (c ⊸ d) ⟷ ((a , c) ⊸ (b , d))
dist×/ {A} {B} {C} {D} {a} {b} {c} {d} =
(𝟙/● a ×ᵤ ● b) ×ᵤ (𝟙/● c ×ᵤ ● d) ⟷⟨ assocr⋆ ⊚ (id⟷ ⊗ assocl⋆) ⟩
(𝟙/● a ×ᵤ (● b ×ᵤ 𝟙/● c) ×ᵤ ● d) ⟷⟨ id⟷ ⊗ (swap⋆ ⊗ id⟷) ⟩
(𝟙/● a ×ᵤ (𝟙/● c ×ᵤ ● b) ×ᵤ ● d) ⟷⟨ (id⟷ ⊗ assocr⋆) ⊚ assocl⋆ ⟩
(𝟙/● a ×ᵤ 𝟙/● c) ×ᵤ (● b ×ᵤ ● d) ⟷⟨ fracr ⊗ tensorr ⟩
(𝟙/●_ {A ×ᵤ C} (a , c)) ×ᵤ (●_ {B ×ᵤ D} (b , d)) □
-- 1/A x 1/B <-> 1 / (A x B)
rev× : {A B : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧}
→ (a ⊸ tt) ×ᵤ (b ⊸ tt) ⟷ ((a , b) ⊸ tt)
rev× {A} {B} {a} {b} =
(𝟙/● a ×ᵤ ● tt) ×ᵤ (𝟙/● b ×ᵤ ● tt) ⟷⟨ dist×/ ⟩
(𝟙/● (a , b) ×ᵤ ● (tt , tt)) ⟷⟨ id⟷ ⊗ lift unite⋆l ⟩
(𝟙/●_ {A ×ᵤ B} (a , b) ×ᵤ ● tt) □
{--
trivial : ● 𝟙 [ tt ] ⟷ 𝟙
trivial = {!!}
--}
-- (A <-> B) -> (1/A <-> 1/B)
--rev : {A B : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧}
-- → ● A [ a ] ⟷ ● B [ b ] → (b ⊸ tt) ⟷ (a ⊸ tt)
-- (𝟙/● A [ a ] ×ᵤ ● 𝟙 [ tt ]) ⟷⟨ {!!} ⟩
-- (𝟙/● B [ b ] ×ᵤ ● 𝟙 [ tt ]) □
rev : {A B : 𝕌} {a : ⟦ A ⟧}
→ (f : A ⟷ B) → (𝟙/● (eval f a) ⟷ 𝟙/● a)
rev {A} {B} {a} f = dual f a
-- A <-> 1 / (1/A)
revrev : {A : 𝕌} {a : ⟦ A ⟧} {a⋆ : ⟦ 𝟙/● a ⟧} →
● a ⟷ 𝟙/● a⋆
revrev {A} {a} {a⋆} =
● a ⟷⟨ uniti⋆r ⟩
● a ×ᵤ 𝟙 ⟷⟨ {!id⟷ ⊗ η a⋆!} ⟩
● a ×ᵤ (𝟙/● a ×ᵤ 𝟙/● a⋆) ⟷⟨ {!!} ⟩
𝟙/● a⋆ □
-- this is strange
-- A/C + B/C <-> (A + B) / C
-- factor+/l : {A B C : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} {c : ⟦ C ⟧}
-- → (c ⊸ a) +ᵤ (c ⊸ b) ⟷ (_⊸_ {C} c {A +ᵤ B} (inj₁ a))
-- factor+/l {A} {B} {C} {a} {b} {c} =
-- (𝟙/● C [ c ] ×ᵤ ● A [ a ] +ᵤ 𝟙/● C [ c ] ×ᵤ ● B [ b ]) ⟷⟨ factorl ⟩
-- (𝟙/● C [ c ] ×ᵤ (● A [ a ] +ᵤ ● B [ b ])) ⟷⟨ id⟷ ⊗ {!!} ⟩
-- (𝟙/● C [ c ] ×ᵤ ● A +ᵤ B [ inj₁ a ]) □
-- same issue here with the +
-- A/B + C/D <-> (A x D + B x C) / (B x D)
-- SAT solver Sec. 5 from https://www.cs.indiana.edu/~sabry/papers/rational.pdf
-- can we do this?
-- curry⊸ : {A B C : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} {c : ⟦ C ⟧}
-- → (● A [ a ] ×ᵤ (b ⊸ c)) ⟷ (a ⊸ {!!}) -- what do we put here?
-- curry⊸ {A} {B} {C} {a} {b} {c} = {!!}
------------------------------------------------------------------------------
--}
| {
"alphanum_fraction": 0.4144852071,
"avg_line_length": 32.4003067485,
"ext": "agda",
"hexsha": "378932a3b97425038717a8786075fbb38692be01",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "fracGC/PiFrac2.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "fracGC/PiFrac2.agda",
"max_line_length": 96,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "fracGC/PiFrac2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 12304,
"size": 21125
} |
{-# OPTIONS --cubical --safe #-}
module Analysis where
open import Data.List using (List; []; _∷_; map)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Harmony
open import Music
open import Note
open import Pitch
-- test of analysis
accompF : List Pitch
accompF = f 4 ∷ a 4 ∷ c 5 ∷ []
xx = pitchClassListToSet (map pitchToClass accompF)
--yy = showPitchClassSet xx
zz : xx ≡ IV-maj
zz = refl
| {
"alphanum_fraction": 0.703196347,
"avg_line_length": 18.25,
"ext": "agda",
"hexsha": "dfb48363f18780b1dc698f7a2ece994f17e96416",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2020-11-10T04:04:40.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-12T17:02:36.000Z",
"max_forks_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "halfaya/MusicTools",
"max_forks_repo_path": "agda/Analysis.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_issues_repo_issues_event_max_datetime": "2020-11-17T00:58:55.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-11-13T01:26:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "halfaya/MusicTools",
"max_issues_repo_path": "agda/Analysis.agda",
"max_line_length": 67,
"max_stars_count": 28,
"max_stars_repo_head_hexsha": "04896c61b603d46011b7d718fcb47dd756e66021",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "halfaya/MusicTools",
"max_stars_repo_path": "agda/Analysis.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T18:04:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-04-21T09:08:52.000Z",
"num_tokens": 129,
"size": 438
} |
open import Everything
{-
open import Oscar.Prelude
open import Oscar.Class.HasEquivalence
open import Oscar.Class.Symmetrical
open import Oscar.Data.Term
open import Oscar.Data.Substitunction
open import Oscar.Data.Surjcollation
open import Oscar.Data.Surjextenscollation
open import Oscar.Data.Proposequality
import Oscar.Class.HasEquivalence.ExtensionṖroperty
import Oscar.Class.HasEquivalence.Ṗroperty
import Oscar.Class.Symmetrical.ExtensionalUnifies
import Oscar.Class.Symmetrical.Unifies
import Oscar.Property.Setoid.Proposequality -- FIXME see _∼⁰_ below; comment this out to observe confusing error messages
import Oscar.Property.Functor.SubstitunctionExtensionTerm
import Oscar.Class.Surjection.⋆
-}
module Test.SymmetricalSubstitunction {𝔭} (𝔓 : Ø 𝔭) (ℓ : Ł) where
open Term 𝔓 using () renaming (
Term to 𝑩;
Terms to 𝑩')
open Substitunction 𝔓 using () renaming (
Substitunction to 𝑪)
infix 18 _∼⁰_
_∼⁰_ = ≡-surjcollation⟦ 𝑪 ⟧ -- ≡-Unifies₀⟦ 𝑪 ⟧ -- FIXME gives a confusing error message
-- _∼⁰_ = ≡-SymUnifies₀⟦ 𝑪 ⟧ -- FIXME gives a more useful error message
open Surjextenscollation 𝑪 _≡̇_ renaming (_⟹_ to _∼¹_)
fact1⋆ : ∀ {𝓃} (𝓈 𝓉 : 𝑩 𝓃) → 𝓈 ∼⁰ 𝓉 ≈ 𝓉 ∼⁰ 𝓈
fact1⋆ 𝓈 𝓉 = symmetrical 𝓈 𝓉
-- fact1⋆ 𝓈 𝓉 = symmetrical ⦃ r = Oscar.Class.Symmetrical.Unifies.𝓢ymmetricalUnifies₀ ⦃ ! ⦄ ⦃ ! ⦄ ⦃ Oscar.Property.Setoid.Proposequality.𝓢ymmetryProposequality ⦄ ⦄ 𝓈 𝓉 -- FIXME I wish Agda would tell us that this is how the instances were resolved
fact1⋆s : ∀ {N 𝓃} (𝓈 𝓉 : 𝑩' N 𝓃) → 𝓈 ∼⁰ 𝓉 ≈ 𝓉 ∼⁰ 𝓈
fact1⋆s 𝓈 𝓉 = symmetrical 𝓈 𝓉
fact1 : ∀ {𝓃} (𝓈 𝓉 : 𝑩 𝓃) → 𝓈 ∼¹ 𝓉 ≈ 𝓉 ∼¹ 𝓈
fact1 𝓈 𝓉 = symmetrical 𝓈 𝓉
fact1s : ∀ {N 𝓃} (𝓈 𝓉 : 𝑩' N 𝓃) → 𝓈 ∼¹ 𝓉 ≈ 𝓉 ∼¹ 𝓈
fact1s 𝓈 𝓉 = symmetrical 𝓈 𝓉
| {
"alphanum_fraction": 0.7130484988,
"avg_line_length": 36.8510638298,
"ext": "agda",
"hexsha": "cb97bdeaf8356b7b980a769a243a1b4d0801f371",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/SymmetricalSubstitunction.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/SymmetricalSubstitunction.agda",
"max_line_length": 249,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/SymmetricalSubstitunction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 752,
"size": 1732
} |
{-# OPTIONS --no-universe-polymorphism #-}
open import Data.Product hiding (map)
open import Relation.Binary.Core
open import Function
open import Data.List
open import Data.Unit using (⊤)
open import Data.Empty
open import Equivalence
module BagEquality where
infixr 5 _⊕_
data _⊕_ (A B : Set) : Set where
inj₁ : A → A ⊕ B
inj₂ : B → A ⊕ B
uninhabited : {A : Set} → (A → ⊥) → A ↔ ⊥
uninhabited pf = record {to = pf;
from = ⊥-elim;
from-to = λ a → ⊥-elim (pf a);
to-from = λ false → ⊥-elim false}
Any : {A : Set} → (A → Set) → List A → Set
Any P [] = ⊥
Any P (x ∷ xs) = P x ⊕ Any P xs
infix 6 _∈_
_∈_ : {A : Set} → A → List A → Set
z ∈ xs = Any (λ y → z ≡ y) xs
infixr 4 _≈_
_≈_ : {A : Set} → List A → List A → Set
xs ≈ ys = ∀ z → z ∈ xs ↔ z ∈ ys
infix 10 _>>=_
_>>=_ : {A B : Set} → List A → (A → List B) → List B
xs >>= f = concat (map f xs)
⊕-left-identity : {A : Set} → ⊥ ⊕ A ↔ A
⊕-left-identity {A} = record { to = to' ;
from = inj₂ ;
from-to = from-to' ;
to-from = λ a → refl } where
to' : ⊥ ⊕ A → A
to' (inj₁ b) = ⊥-elim b
to' (inj₂ a) = a
from-to' : (s : ⊥ ⊕ A) → inj₂ (to' s) ≡ s
from-to' (inj₁ b) = ⊥-elim b
from-to' (inj₂ a) = refl
⊕-assoc : {A B C : Set} → A ⊕ (B ⊕ C) ↔ (A ⊕ B) ⊕ C
⊕-assoc {A} {B} {C} = record {to = to' ;
from = from' ;
from-to = from-to' ;
to-from = to-from' } where
to' : A ⊕ (B ⊕ C) → (A ⊕ B) ⊕ C
to' (inj₁ a) = inj₁ (inj₁ a)
to' (inj₂ (inj₁ b)) = inj₁ (inj₂ b)
to' (inj₂ (inj₂ c)) = inj₂ c
from' : (A ⊕ B) ⊕ C → A ⊕ (B ⊕ C)
from' (inj₁ (inj₁ a)) = inj₁ a
from' (inj₁ (inj₂ b)) = inj₂ (inj₁ b)
from' (inj₂ c) = inj₂ (inj₂ c)
from-to' : (x : A ⊕ (B ⊕ C)) → from' (to' x) ≡ x
from-to' (inj₁ _) = refl
from-to' (inj₂ (inj₁ _)) = refl
from-to' (inj₂ (inj₂ _)) = refl
to-from' : (y : (A ⊕ B) ⊕ C) → to' (from' y) ≡ y
to-from' (inj₁ (inj₁ _)) = refl
to-from' (inj₁ (inj₂ _)) = refl
to-from' (inj₂ _) = refl
⊕-comm : {A B : Set} → A ⊕ B ↔ B ⊕ A
⊕-comm {A} {B} = record {to = to' ;
from = from' ;
from-to = from-to' ;
to-from = to-from' } where
to' : A ⊕ B → B ⊕ A
to' (inj₁ a) = inj₂ a
to' (inj₂ b) = inj₁ b
from' : B ⊕ A → A ⊕ B
from' (inj₁ b) = inj₂ b
from' (inj₂ a) = inj₁ a
from-to' : (x : A ⊕ B) → from' (to' x) ≡ x
from-to' (inj₁ _) = refl
from-to' (inj₂ _) = refl
to-from' : (x : B ⊕ A) → to' (from' x) ≡ x
to-from' (inj₁ _) = refl
to-from' (inj₂ _) = refl
⊕-cong : {A₁ A₂ B₁ B₂ : Set} → A₁ ↔ A₂ → B₁ ↔ B₂ → A₁ ⊕ B₁ ↔ A₂ ⊕ B₂
⊕-cong {A₁} {A₂} {B₁} {B₂} A↔ B↔ = record { to = to';
from = from';
from-to = from-to';
to-from = to-from' } where
to' : A₁ ⊕ B₁ → A₂ ⊕ B₂
to' (inj₁ a) = inj₁ (_↔_.to A↔ a)
to' (inj₂ b) = inj₂ (_↔_.to B↔ b)
from' : A₂ ⊕ B₂ → A₁ ⊕ B₁
from' (inj₁ a) = inj₁ (_↔_.from A↔ a)
from' (inj₂ b) = inj₂ (_↔_.from B↔ b)
from-to' : (x : A₁ ⊕ B₁) → from' (to' x) ≡ x
from-to' (inj₁ a) = _↔_.from-to A↔ a under inj₁
from-to' (inj₂ b) = _↔_.from-to B↔ b under inj₂
to-from' : (x : A₂ ⊕ B₂) → to' (from' x) ≡ x
to-from' (inj₁ a) = _↔_.to-from A↔ a under inj₁
to-from' (inj₂ b) = _↔_.to-from B↔ b under inj₂
×-cong : {A₁ A₂ B₁ B₂ : Set} → A₁ ↔ A₂ → B₁ ↔ B₂ → (A₁ × B₁) ↔ (A₂ × B₂)
×-cong {A₁} {A₂} {B₁} {B₂} A↔ B↔ = record { to = to';
from = from';
from-to = from-to';
to-from = to-from' } where
to' : A₁ × B₁ → A₂ × B₂
to' (a , b) = (_↔_.to A↔ a , _↔_.to B↔ b)
from' : A₂ × B₂ → A₁ × B₁
from' (a , b) = (_↔_.from A↔ a , _↔_.from B↔ b)
pairEq : {A B : Set} {x y : A} {u v : B} → x ≡ y → u ≡ v → (x , u) ≡ (y , v)
pairEq refl refl = refl
from-to' : (x : A₁ × B₁) → from' (to' x) ≡ x
from-to' (a , b) = pairEq (_↔_.from-to A↔ a) (_↔_.from-to B↔ b)
to-from' : (y : A₂ × B₂) → to' (from' y) ≡ y
to-from' (a , b) = pairEq (_↔_.to-from A↔ a) (_↔_.to-from B↔ b)
Any-++ : {A : Set} (P : A → Set) (xs ys : List A) → Any P (xs ++ ys) ↔ Any P xs ⊕ Any P ys
Any-++ P [] ys = Any P ys ↔⟨ ↔sym ⊕-left-identity ⟩
⊥ ⊕ Any P ys □↔
Any-++ P (x ∷ xs) ys = P x ⊕ Any P (xs ++ ys) ↔⟨ ⊕-cong (P x □↔) (Any-++ P xs ys) ⟩
P x ⊕ (Any P xs ⊕ Any P ys) ↔⟨ ⊕-assoc ⟩
(P x ⊕ Any P xs) ⊕ Any P ys □↔
-- ++-assoc : {A : Set} (xs ys zs : List A) → ((xs ++ ys) ++ zs) ≡ (xs ++ (ys ++ zs))
++-comm : {A : Set} (xs ys : List A) → xs ++ ys ≈ ys ++ xs
++-comm xs ys z = z ∈ (xs ++ ys) ↔⟨ Any-++ (z ≡_ ) xs ys ⟩
z ∈ xs ⊕ z ∈ ys ↔⟨ ⊕-comm ⟩
z ∈ ys ⊕ z ∈ xs ↔⟨ ↔sym (Any-++ (z ≡_ ) ys xs ) ⟩
z ∈ (ys ++ xs) □↔
Any-concat : {A : Set} (P : A → Set) → (xss : List (List A)) → Any P (concat xss) ↔ Any (Any P) xss
Any-concat P [] = ⊥ □↔
Any-concat P (xs ∷ xss) = Any P (xs ++ concat xss) ↔⟨ Any-++ P xs (concat xss) ⟩
Any P xs ⊕ Any P (concat xss) ↔⟨ ⊕-cong (Any P xs □↔) (Any-concat P xss) ⟩
Any P xs ⊕ Any (Any P) xss □↔
Any-map : {A B : Set} (P : B → Set) → (f : A → B) → (xs : List A) → Any P (map f xs) ↔ Any (P ∘ f) xs
Any-map P f [] = ⊥ □↔
Any-map P f (x ∷ xs) = P (f x) ⊕ Any P (map f xs) ↔⟨ ⊕-cong (P (f x) □↔) (Any-map P f xs) ⟩
(P ∘ f) x ⊕ Any (P ∘ f) xs □↔
Any->>= : {A B : Set} (P : B → Set) → (xs : List A) → (f : A → List B) → Any P (xs >>= f) ↔ Any (Any P ∘ f) xs
Any->>= P xs f = Any P (concat (map f xs)) ↔⟨ Any-concat P (map f xs) ⟩
Any (Any P) (map f xs) ↔⟨ Any-map (Any P) f xs ⟩
Any (Any P ∘ f) xs □↔
Any-∈ : {A : Set} {P : A → Set} {xs : List A} → Any P xs ↔ (∃ λ z → P z × z ∈ xs)
Any-∈ {A} {P} {[]} = ⊥ ↔⟨ (↔sym ∘ uninhabited) (⊥-elim ∘ proj₂ ∘ proj₂) ⟩
(∃ λ z → P z × z ∈ []) □↔
Any-∈ {A} {P} {x ∷ xs} = record {to = to' ;
from = from' ;
from-to = from-to' ;
to-from = to-from' } where
to' : P x ⊕ Any P xs → ∃ (λ z → P z × z ∈ (x ∷ xs))
to' (inj₁ px) = x , (px , (inj₁ refl))
to' (inj₂ any) = (proj₁ recEx) , ( (proj₁ ∘ proj₂) recEx , (inj₂ (proj₂ (proj₂ recEx))) ) where
recEx = _↔_.to Any-∈ any
from' : ∃ (λ z → P z × z ∈ (x ∷ xs)) → P x ⊕ Any P xs
from' ex = from'' (proj₁ ex) (proj₁ (proj₂ ex)) (proj₂ (proj₂ ex)) where
from'' : (z : A) → P z → z ∈ (x ∷ xs) → P x ⊕ Any P xs
from'' .x px (inj₁ refl) = inj₁ px
from'' z pz (inj₂ z∈xs) = inj₂ recAny where
recAny = _↔_.from (Any-∈ {P = P}) (z , (pz , z∈xs))
from-to' : (pf : P x ⊕ Any P xs) → from' (to' pf) ≡ pf
from-to' (inj₁ px) = refl
from-to' (inj₂ any) = _↔_.from-to Any-∈ any under inj₂
to-from' : (ex : ∃ (λ z → P z × z ∈ (x ∷ xs))) → to' (from' ex) ≡ ex
to-from' ex = to-from'' (proj₁ ex) (proj₁ (proj₂ ex)) (proj₂ (proj₂ ex)) where
to-from'' : (z : A) → (pz : P z) → (z∈xxs : z ∈ (x ∷ xs)) →
to' (from' ( z , ( pz , z∈xxs ))) ≡ ( z , ( pz , z∈xxs ))
to-from'' .x px (inj₁ refl) = refl
to-from'' z pz (inj₂ z∈xs) = _↔_.to-from (Any-∈ {P = P}) (z , ( pz , z∈xs ) )
under (λ ex → ((proj₁ ex) , ( (proj₁ ∘ proj₂) ex , (inj₂ (proj₂ (proj₂ ex))))))
∃-cong : {A : Set} {P Q : A → Set} → (∀ x → P x ↔ Q x) → (∃ λ x → P x) ↔ (∃ λ x → Q x)
∃-cong p = record {to = λ ex → proj₁ ex , _↔_.to (p (proj₁ ex)) (proj₂ ex);
from = λ ex → proj₁ ex , _↔_.from (p (proj₁ ex)) (proj₂ ex);
from-to = λ ex → _↔_.from-to (p (proj₁ ex)) (proj₂ ex) under λ pf → (proj₁ ex) , pf;
to-from = λ ex → _↔_.to-from (p (proj₁ ex)) (proj₂ ex) under λ pf → (proj₁ ex) , pf }
Any-cong : {A : Set} (P Q : A → Set) → (xs ys : List A) → (∀ x → P x ↔ Q x) → xs ≈ ys → Any P xs ↔ Any Q ys
Any-cong P Q xs ys p eq = Any P xs ↔⟨ Any-∈ ⟩
(∃ λ z → P z × z ∈ xs) ↔⟨ ∃-cong (λ x → ×-cong (p x) (eq x)) ⟩
(∃ λ z → Q z × z ∈ ys) ↔⟨ ↔sym Any-∈ ⟩
Any Q ys □↔
All-cong : {A : Set} {P Q : A → Set} → {xs ys : List A} → (∀ x → P x ↔ Q x) → xs ≈ ys →
(∀ x → x ∈ xs → P x) ⇔ (∀ y → y ∈ ys → Q y)
All-cong {P} {Q} {xs} {ys} p eq = record {to = λ P∀x y y∈ys → _↔_.to (p y) (P∀x y (_↔_.from (eq y) y∈ys));
from = λ Q∀y x x∈xs → _↔_.from (p x) (Q∀y x (_↔_.to (eq x) x∈xs))}
| {
"alphanum_fraction": 0.3003887189,
"avg_line_length": 50.1701244813,
"ext": "agda",
"hexsha": "33b53bfd9c67ca6d5dd50499a1915729c52c1e81",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda",
"max_forks_repo_path": "BagEquality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda",
"max_issues_repo_path": "BagEquality.agda",
"max_line_length": 131,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda",
"max_stars_repo_path": "BagEquality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3931,
"size": 12091
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.