Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --without-K --rewriting #-}
module lib.groupoids.Groupoids where
open import lib.groupoids.FundamentalPreGroupoid public
| {
"alphanum_fraction": 0.7794117647,
"avg_line_length": 19.4285714286,
"ext": "agda",
"hexsha": "f6f8e183f9c3ae7099f88c66b55dc2e7c23d8dc3",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/groupoids/Groupoids.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/groupoids/Groupoids.agda",
"max_line_length": 55,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/groupoids/Groupoids.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 31,
"size": 136
} |
module Luau.Syntax where
open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.Bool using (Bool; true; false)
open import Agda.Builtin.Float using (Float)
open import Agda.Builtin.String using (String)
open import Luau.Var using (Var)
open import Luau.Addr using (Addr)
open import Luau.Type using (Type)
open import FFI.Data.Maybe using (Maybe; just; nothing)
infixr 5 _∙_
data Annotated : Set where
maybe : Annotated
yes : Annotated
data VarDec : Annotated → Set where
var : Var → VarDec maybe
var_∈_ : ∀ {a} → Var → Type → VarDec a
name : ∀ {a} → VarDec a → Var
name (var x) = x
name (var x ∈ T) = x
data FunDec : Annotated → Set where
_⟨_⟩∈_ : ∀ {a} → Var → VarDec a → Type → FunDec a
_⟨_⟩ : Var → VarDec maybe → FunDec maybe
fun : ∀ {a} → FunDec a → VarDec a
fun (f ⟨ x ⟩∈ T) = (var f ∈ T)
fun (f ⟨ x ⟩) = (var f)
arg : ∀ {a} → FunDec a → VarDec a
arg (f ⟨ x ⟩∈ T) = x
arg (f ⟨ x ⟩) = x
data BinaryOperator : Set where
+ : BinaryOperator
- : BinaryOperator
* : BinaryOperator
/ : BinaryOperator
< : BinaryOperator
> : BinaryOperator
== : BinaryOperator
~= : BinaryOperator
<= : BinaryOperator
>= : BinaryOperator
·· : BinaryOperator
data Value : Set where
nil : Value
addr : Addr → Value
number : Float → Value
bool : Bool → Value
string : String → Value
data Block (a : Annotated) : Set
data Stat (a : Annotated) : Set
data Expr (a : Annotated) : Set
data Block a where
_∙_ : Stat a → Block a → Block a
done : Block a
data Stat a where
function_is_end : FunDec a → Block a → Stat a
local_←_ : VarDec a → Expr a → Stat a
return : Expr a → Stat a
data Expr a where
var : Var → Expr a
val : Value → Expr a
_$_ : Expr a → Expr a → Expr a
function_is_end : FunDec a → Block a → Expr a
block_is_end : VarDec a → Block a → Expr a
binexp : Expr a → BinaryOperator → Expr a → Expr a
isAnnotatedᴱ : ∀ {a} → Expr a → Maybe (Expr yes)
isAnnotatedᴮ : ∀ {a} → Block a → Maybe (Block yes)
isAnnotatedᴱ (var x) = just (var x)
isAnnotatedᴱ (val v) = just (val v)
isAnnotatedᴱ (M $ N) with isAnnotatedᴱ M | isAnnotatedᴱ N
isAnnotatedᴱ (M $ N) | just M′ | just N′ = just (M′ $ N′)
isAnnotatedᴱ (M $ N) | _ | _ = nothing
isAnnotatedᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) with isAnnotatedᴮ B
isAnnotatedᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) | just B′ = just (function f ⟨ var x ∈ T ⟩∈ U is B′ end)
isAnnotatedᴱ (function f ⟨ var x ∈ T ⟩∈ U is B end) | _ = nothing
isAnnotatedᴱ (function _ is B end) = nothing
isAnnotatedᴱ (block var b ∈ T is B end) with isAnnotatedᴮ B
isAnnotatedᴱ (block var b ∈ T is B end) | just B′ = just (block var b ∈ T is B′ end)
isAnnotatedᴱ (block var b ∈ T is B end) | _ = nothing
isAnnotatedᴱ (block _ is B end) = nothing
isAnnotatedᴱ (binexp M op N) with isAnnotatedᴱ M | isAnnotatedᴱ N
isAnnotatedᴱ (binexp M op N) | just M′ | just N′ = just (binexp M′ op N′)
isAnnotatedᴱ (binexp M op N) | _ | _ = nothing
isAnnotatedᴮ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) with isAnnotatedᴮ B | isAnnotatedᴮ C
isAnnotatedᴮ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) | just B′ | just C′ = just (function f ⟨ var x ∈ T ⟩∈ U is C′ end ∙ B′)
isAnnotatedᴮ (function f ⟨ var x ∈ T ⟩∈ U is C end ∙ B) | _ | _ = nothing
isAnnotatedᴮ (function _ is C end ∙ B) = nothing
isAnnotatedᴮ (local var x ∈ T ← M ∙ B) with isAnnotatedᴱ M | isAnnotatedᴮ B
isAnnotatedᴮ (local var x ∈ T ← M ∙ B) | just M′ | just B′ = just (local var x ∈ T ← M′ ∙ B′)
isAnnotatedᴮ (local var x ∈ T ← M ∙ B) | _ | _ = nothing
isAnnotatedᴮ (local _ ← M ∙ B) = nothing
isAnnotatedᴮ (return M ∙ B) with isAnnotatedᴱ M | isAnnotatedᴮ B
isAnnotatedᴮ (return M ∙ B) | just M′ | just B′ = just (return M′ ∙ B′)
isAnnotatedᴮ (return M ∙ B) | _ | _ = nothing
isAnnotatedᴮ done = just done
| {
"alphanum_fraction": 0.644989339,
"avg_line_length": 33.8018018018,
"ext": "agda",
"hexsha": "d9175067dac11a4e08c47a45757e18977f7a8ace",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "XanderYZZ/luau",
"max_forks_repo_path": "prototyping/Luau/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "XanderYZZ/luau",
"max_issues_repo_path": "prototyping/Luau/Syntax.agda",
"max_line_length": 127,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "TheGreatSageEqualToHeaven/luau",
"max_stars_repo_path": "prototyping/Luau/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z",
"num_tokens": 1444,
"size": 3752
} |
------------------------------------------------------------------------------
-- All the common modules
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Common.Everything where
open import Common.DefinitionsATP
open import Common.DefinitionsI
open import Common.FOL.FOL
open import Common.FOL.FOL-Eq
open import Common.FOL.Relation.Binary.EqReasoning
open import Common.FOL.Relation.Binary.PropositionalEquality
open import Common.Relation.Binary.PreorderReasoning
open import Common.Relation.Unary
| {
"alphanum_fraction": 0.5658263305,
"avg_line_length": 32.4545454545,
"ext": "agda",
"hexsha": "7eeebd1eb5118a21d709abebc3c655bd977ada4c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/Common/Everything.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/Common/Everything.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/Common/Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 129,
"size": 714
} |
module Structure.Category.Monoidal where
import Lvl
open import Data.Tuple as Tuple using (_,_ ; _⨯_)
open import Data.Tuple.Category
open import Data.Tuple.Equivalence
import Functional as Fn
open import Logic.Predicate
open import Structure.Setoid
open import Structure.Category
open import Structure.Category.Functor
import Structure.Category.Functor.Functors as Functors
open import Structure.Category.NaturalTransformation
open import Syntax.Function
open import Type
private variable ℓ ℓₒ ℓₘ ℓₑ ℓₒ₁ ℓₘ₁ ℓₑ₁ ℓₒ₂ ℓₘ₂ ℓₑ₂ : Lvl.Level
private variable Obj : Type{ℓ}
private variable Morphism : Obj → Obj → Type{ℓ}
open Functors.Wrapped
module _
{C : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}}
(product@([∃]-intro _) : (C ⨯ᶜᵃᵗ C) →ᶠᵘⁿᶜᵗᵒʳ C)
(𝟏 : CategoryObject.Object(C))
where
open CategoryObject(C)
open Category.ArrowNotation(category)
open Category(category)
open Functor
record MonoidalCategory : Type{Lvl.of(Type.of C)} where
constructor intro
field
associator : (((product ∘ᶠᵘⁿᶜᵗᵒʳ (Tupleᶜᵃᵗ.mapLeft product))) ∘ᶠᵘⁿᶜᵗᵒʳ Tupleᶜᵃᵗ.associateLeft) ↔ᴺᵀ (product ∘ᶠᵘⁿᶜᵗᵒʳ (Tupleᶜᵃᵗ.mapRight product))
unitorₗ : (product ∘ᶠᵘⁿᶜᵗᵒʳ Tupleᶜᵃᵗ.constₗ 𝟏) ↔ᴺᵀ idᶠᵘⁿᶜᵗᵒʳ
unitorᵣ : (product ∘ᶠᵘⁿᶜᵗᵒʳ Tupleᶜᵃᵗ.constᵣ 𝟏) ↔ᴺᵀ idᶠᵘⁿᶜᵗᵒʳ
_⊗_ : Object → Object → Object
_⊗_ = Tuple.curry([∃]-witness product)
_<⊗>_ : ∀{x₁ x₂ y₁ y₂} → (x₁ ⟶ x₂) → (y₁ ⟶ y₂) → ((x₁ ⊗ y₁) ⟶ (x₂ ⊗ y₂))
_<⊗>_ = Tuple.curry(map([∃]-proof product))
α : ∀(x)(y)(z) → (((x ⊗ y) ⊗ z) ⟶ (x ⊗ (y ⊗ z)))
α x y z = [∃]-witness associator (x , (y , z))
υₗ : ∀(x) → ((𝟏 ⊗ x) ⟶ x)
υₗ = [∃]-witness unitorₗ
υᵣ : ∀(x) → ((x ⊗ 𝟏) ⟶ x)
υᵣ = [∃]-witness unitorᵣ
α⁻¹ : ∀(x)(y)(z) → ((x ⊗ (y ⊗ z)) ⟶ ((x ⊗ y) ⊗ z))
α⁻¹ x y z = [∃]-witness (invᴺᵀ associator) (x , (y , z))
υₗ⁻¹ : ∀(x) → (x ⟶ (𝟏 ⊗ x))
υₗ⁻¹ = [∃]-witness (invᴺᵀ unitorₗ)
υᵣ⁻¹ : ∀(x) → (x ⟶ (x ⊗ 𝟏))
υᵣ⁻¹ = [∃]-witness (invᴺᵀ unitorᵣ)
α-natural : ∀{(x₁ , (x₂ , x₃)) (y₁ , (y₂ , y₃)) : Object ⨯ (Object ⨯ Object)}
{(f₁ , f₂ , f₃) : ((x₁ ⟶ y₁) ⨯ ((x₂ ⟶ y₂) ⨯ (x₃ ⟶ y₃)))} →
((α y₁ y₂ y₃) ∘ ((f₁ <⊗> f₂) <⊗> f₃) ≡ (f₁ <⊗> (f₂ <⊗> f₃)) ∘ (α x₁ x₂ x₃))
α-natural = NaturalTransformation.natural(NaturalIsomorphism.naturalTransformation([∃]-proof associator))
υₗ-natural : ∀{x y}{f : x ⟶ y} → (υₗ(y) ∘ (id <⊗> f) ≡ f ∘ υₗ(x))
υₗ-natural = NaturalTransformation.natural(NaturalIsomorphism.naturalTransformation([∃]-proof unitorₗ))
υᵣ-natural : ∀{x y}{f : x ⟶ y} → (υᵣ(y) ∘ (f <⊗> id) ≡ f ∘ υᵣ(x))
υᵣ-natural = NaturalTransformation.natural(NaturalIsomorphism.naturalTransformation([∃]-proof unitorᵣ))
α⁻¹-natural : ∀{((x₁ , x₂) , x₃) ((y₁ , y₂) , y₃) : (Object ⨯ Object) ⨯ Object}
{(f₁ , f₂ , f₃) : ((x₁ ⟶ y₁) ⨯ ((x₂ ⟶ y₂) ⨯ (x₃ ⟶ y₃)))} →
((α⁻¹ y₁ y₂ y₃) ∘ (f₁ <⊗> (f₂ <⊗> f₃)) ≡ ((f₁ <⊗> f₂) <⊗> f₃) ∘ (α⁻¹ x₁ x₂ x₃))
α⁻¹-natural = NaturalTransformation.natural(NaturalIsomorphism.naturalTransformation([∃]-proof (invᴺᵀ associator)))
υₗ⁻¹-natural : ∀{x y}{f : x ⟶ y} → (υₗ⁻¹(y) ∘ f ≡ (id <⊗> f) ∘ υₗ⁻¹(x))
υₗ⁻¹-natural = NaturalTransformation.natural(NaturalIsomorphism.naturalTransformation([∃]-proof (invᴺᵀ unitorₗ)))
υᵣ⁻¹-natural : ∀{x y}{f : x ⟶ y} → (υᵣ⁻¹(y) ∘ f ≡ (f <⊗> id) ∘ υᵣ⁻¹(x))
υᵣ⁻¹-natural = NaturalTransformation.natural(NaturalIsomorphism.naturalTransformation([∃]-proof (invᴺᵀ unitorᵣ)))
-- TODO: And the coherence conditions?
record Monoidalᶜᵃᵗ{ℓₒ}{ℓₘ}{ℓₑ} (C : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}) : Type{Lvl.𝐒(ℓₒ Lvl.⊔ ℓₘ Lvl.⊔ ℓₑ)} where
constructor intro
field
productFunctor : (C ⨯ᶜᵃᵗ C) →ᶠᵘⁿᶜᵗᵒʳ C
unitObject : CategoryObject.Object(C)
⦃ monoidalCategory ⦄ : MonoidalCategory(productFunctor)(unitObject)
module _
{C₁ : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}} ⦃ (intro product₁ 𝟏₁) : Monoidalᶜᵃᵗ(C₁) ⦄
{C₂ : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}} ⦃ (intro product₂ 𝟏₂) : Monoidalᶜᵃᵗ(C₂) ⦄
(functor@([∃]-intro F) : (C₁ →ᶠᵘⁿᶜᵗᵒʳ C₂))
where
instance _ = C₁
instance _ = C₂
open CategoryObject ⦃ … ⦄
open Category ⦃ … ⦄
open Category.ArrowNotation ⦃ … ⦄
open Functor ⦃ … ⦄
open MonoidalCategory ⦃ … ⦄
-- Also called: Lax monoidal functor, applicative functor, idiom.
record MonoidalFunctor : Type{Lvl.of(Type.of C₁)} where
constructor intro
field
ε : 𝟏₂ ⟶ F(𝟏₁)
Μ : (product₂ ∘ᶠᵘⁿᶜᵗᵒʳ Tupleᶜᵃᵗ.map functor functor) →ᴺᵀ (functor ∘ᶠᵘⁿᶜᵗᵒʳ product₁)
μ : ∀{x y} → ((F(x) ⊗ F(y)) ⟶ F(x ⊗ y))
μ{x}{y} = [∃]-witness Μ (x , y)
μ-natural : ∀{(x₁ , x₂) (y₁ , y₂) : Object ⦃ C₁ ⦄ ⨯ Object ⦃ C₁ ⦄}
{(f₁ , f₂) : ((x₁ ⟶ y₁) ⨯ (x₂ ⟶ y₂))} →
(μ ∘ (map(f₁) <⊗> map(f₂)) ≡ map(f₁ <⊗> f₂) ∘ μ)
μ-natural = NaturalTransformation.natural([∃]-proof Μ)
-- TODO: Coherence conditions
module _
{C : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}} ⦃ (intro product 𝟏) : Monoidalᶜᵃᵗ(C) ⦄
(functor@([∃]-intro F) : (⟲ᶠᵘⁿᶜᵗᵒʳ C))
where
instance _ = C
open CategoryObject ⦃ … ⦄
open Category ⦃ … ⦄
open Category.ArrowNotation ⦃ … ⦄
open Functor ⦃ … ⦄
open MonoidalCategory ⦃ … ⦄
record TensorialStrength : Type{Lvl.of(Type.of C)} where
constructor intro
field
Β : (product ∘ᶠᵘⁿᶜᵗᵒʳ Tupleᶜᵃᵗ.mapRight functor) →ᴺᵀ (functor ∘ᶠᵘⁿᶜᵗᵒʳ product)
β : ∀{x y} → ((x ⊗ F(y)) ⟶ F(x ⊗ y))
β{x}{y} = [∃]-witness Β (x , y)
β-natural : ∀{(x₁ , x₂) (y₁ , y₂) : Object ⦃ C ⦄ ⨯ Object ⦃ C ⦄}
{(f₁ , f₂) : ((x₁ ⟶ y₁) ⨯ (x₂ ⟶ y₂))} →
(β ∘ (f₁ <⊗> map(f₂)) ≡ map(f₁ <⊗> f₂) ∘ β)
β-natural = NaturalTransformation.natural([∃]-proof Β)
module TensorialStrengthenedMonoidalEndofunctor ⦃ monoidal : MonoidalFunctor(functor) ⦄ ⦃ strength : TensorialStrength ⦄ where
open MonoidalFunctor(monoidal)
open TensorialStrength(strength)
Ι : idᶠᵘⁿᶜᵗᵒʳ →ᴺᵀ functor
∃.witness Ι x = {!!} ∘ μ{x}{𝟏} ∘ {!!}
∃.proof Ι = {!!}
ι : ∀{x} → (x ⟶ F(x))
ι{x} = [∃]-witness Ι x
| {
"alphanum_fraction": 0.5871421396,
"avg_line_length": 36.2,
"ext": "agda",
"hexsha": "02fc6f0ed21cebdb82b505d9efeae9188dcec54c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Category/Monoidal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Category/Monoidal.agda",
"max_line_length": 151,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Category/Monoidal.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 3084,
"size": 5973
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Adjunction where
open import Level
open import Relation.Binary using (Rel; IsEquivalence)
open import Data.Sum
open import Data.Product
open import Function using (flip)
open import Categories.Category
open import Categories.Functor hiding (equiv; assoc; identityˡ; identityʳ; ∘-resp-≡) renaming (id to idF; _≡_ to _≡F_; _∘_ to _∘F_)
open import Categories.NaturalTransformation hiding (equiv; setoid) renaming (id to idT; _≡_ to _≡T_)
open import Categories.Monad
open import Categories.Support.Equivalence
record Adjunction {o ℓ e} {o₁ ℓ₁ e₁} {C : Category o ℓ e} {D : Category o₁ ℓ₁ e₁} (F : Functor D C) (G : Functor C D) : Set (o ⊔ ℓ ⊔ e ⊔ o₁ ⊔ ℓ₁ ⊔ e₁) where
field
unit : NaturalTransformation idF (G ∘F F)
counit : NaturalTransformation (F ∘F G) idF
.zig : idT ≡T (counit ∘ʳ F) ∘₁ (F ∘ˡ unit)
.zag : idT ≡T (G ∘ˡ counit) ∘₁ (unit ∘ʳ G)
private module C = Category C
private module D = Category D
private module F = Functor F
private module G = Functor G renaming (F₀ to G₀; F₁ to G₁; F-resp-≡ to G-resp-≡)
open F hiding (op)
open G hiding (op)
private module unit = NaturalTransformation unit
private module counit = NaturalTransformation counit
monad : Monad D
monad = record
{ F = G ∘F F
; η = unit
; μ = G ∘ˡ (counit ∘ʳ F)
; assoc = assoc′
; identityˡ = identityˡ′
; identityʳ = identityʳ′
}
where
.assoc′ : ∀ {x}
→ G₁ (counit.η (F₀ x)) D.∘ G₁ (F₁ (G₁ (counit.η (F₀ x)))) D.≡ G₁ (counit.η (F₀ x)) D.∘ G₁ (counit.η (F₀ (G₀ (F₀ x))))
assoc′ {x} =
begin
G₁ (counit.η (F₀ x)) D.∘ G₁ (F₁ (G₁ (counit.η (F₀ x))))
↑⟨ G.homomorphism ⟩
G₁ ((counit.η (F₀ x)) C.∘ (F₁ (G₁ (counit.η (F₀ x)))))
↓⟨ G-resp-≡ (NaturalTransformation.commute counit (counit.η (F₀ x))) ⟩
G₁ (counit.η (F₀ x) C.∘ counit.η (F₀ (G₀ (F₀ x))))
↓⟨ G.homomorphism ⟩
G₁ (counit.η (F₀ x)) D.∘ G₁ (counit.η (F₀ (G₀ (F₀ x))))
∎
where
open D.HomReasoning
.identityˡ′ : ∀ {x} → G₁ (counit.η (F₀ x)) D.∘ G₁ (F₁ (unit.η x)) D.≡ D.id
identityˡ′ {x} =
begin
G₁ (counit.η (F₀ x)) D.∘ G₁ (F₁ (unit.η x))
↑⟨ G.homomorphism ⟩
G₁ ((counit.η (F₀ x)) C.∘ (F₁ (unit.η x)))
↑⟨ G-resp-≡ zig ⟩
G₁ C.id
↓⟨ G.identity ⟩
D.id
∎
where
open D.HomReasoning
.identityʳ′ : ∀ {x} → G₁ (counit.η (F₀ x)) D.∘ unit.η (G₀ (F₀ x)) D.≡ D.id
identityʳ′ = D.Equiv.sym zag
op : Adjunction {C = D.op} {D = C.op} G.op F.op
op = record { unit = counit.op; counit = unit.op; zig = zag; zag = zig }
infixr 5 _⊣_
_⊣_ = Adjunction
id : ∀ {o ℓ e} {C : Category o ℓ e} → Adjunction (idF {C = C}) (idF {C = C})
id {C = C} = record
{ unit = idT
; counit = idT
; zig = Equiv.sym C.identityˡ
; zag = Equiv.sym C.identityˡ
}
where
module C = Category C
open C
infix 4 _≡_
_≡_ : ∀ {o ℓ e} {o₁ ℓ₁ e₁} {C : Category o ℓ e} {D : Category o₁ ℓ₁ e₁} {F : Functor D C} {G : Functor C D} → Rel (F ⊣ G) (o ⊔ e ⊔ o₁ ⊔ e₁)
_≡_ {C = C} {D} {F} {G} X Y = Adjunction.unit X ≡T Adjunction.unit Y ×
Adjunction.counit X ≡T Adjunction.counit Y
.equiv : ∀ {o ℓ e} {o₁ ℓ₁ e₁} {C : Category o ℓ e} {D : Category o₁ ℓ₁ e₁} {F : Functor D C} {G : Functor C D} → IsEquivalence (_≡_ {F = F} {G})
equiv {C = C} {D} {F} {G} = record
{ refl = (D.Equiv.refl), (C.Equiv.refl)
; sym = λ {T U : F ⊣ G} → sym' {T = T} {U = U}
; trans = λ {T U V : F ⊣ G} → trans' {T = T} {U = U} {V = V}
}
where
module C = Category C
module D = Category D
sym' : {T U : F ⊣ G} → (H : T ≡ U) → flip _≡_ T U
sym' {T} {U} (H₁ , H₂) = (λ {x} → D.Equiv.sym H₁) , (λ {x} → C.Equiv.sym H₂)
trans' : {T U V : F ⊣ G} → T ≡ U → U ≡ V → T ≡ V
trans' {T} {U} {V} (H₁ , H₂) (H₃ , H₄) = (λ {x} → D.Equiv.trans H₁ H₃) , (C.Equiv.trans H₂ H₄)
setoid : ∀ {o ℓ e} {o₁ ℓ₁ e₁} {C : Category o ℓ e} {D : Category o₁ ℓ₁ e₁} {F : Functor D C} {G : Functor C D}
→ Setoid (o ⊔ ℓ ⊔ e ⊔ o₁ ⊔ ℓ₁ ⊔ e₁) (o ⊔ e ⊔ o₁ ⊔ e₁)
setoid {C = C} {D} {F} {G} = record
{ Carrier = Adjunction F G
; _≈_ = _≡_
; isEquivalence = equiv {F = F} {G = G}
}
| {
"alphanum_fraction": 0.5320571956,
"avg_line_length": 34.688,
"ext": "agda",
"hexsha": "7d7fdca14f9df0bb002dcbbfba0a9ed3b50da017",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Adjunction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Adjunction.agda",
"max_line_length": 156,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "p-pavel/categories",
"max_stars_repo_path": "Categories/Adjunction.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-29T21:51:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-12-29T21:51:57.000Z",
"num_tokens": 1847,
"size": 4336
} |
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Lemmas
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Definition
open import Groups.Lemmas
open import Fields.Fields
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Functions.Definition
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Naturals.Order
open import Semirings.Definition
module Fields.CauchyCompletion.Setoid {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {R : Ring S _+_ _*_} {pRing : PartiallyOrderedRing R pOrder} (order : TotallyOrderedRing pRing) (F : Field R) where
open Setoid S
open SetoidTotalOrder (TotallyOrderedRing.total order)
open SetoidPartialOrder pOrder
open Equivalence eq
open PartiallyOrderedRing pRing
open Ring R
open Group additiveGroup
open Field F
open import Fields.Lemmas F
open import Fields.CauchyCompletion.Definition order F
open import Fields.CauchyCompletion.Addition order F
open import Rings.Orders.Partial.Lemmas pRing
open import Rings.Orders.Total.Lemmas order
open import Rings.Orders.Total.AbsoluteValue order
open import Rings.InitialRing R
open import Fields.Orders.Total.Lemmas {F = F} (record { oRing = order })
isZero : CauchyCompletion → Set (m ⊔ o)
isZero record { elts = elts ; converges = converges } = ∀ ε → 0R < ε → Sg ℕ (λ N → ∀ {m : ℕ} → (N <N m) → (abs (index elts m)) < ε)
private
transitiveLemma : {a b c e/2 : A} → abs (a + inverse b) < e/2 → abs (b + inverse c) < e/2 → (abs (a + inverse c)) < (e/2 + e/2)
transitiveLemma {a} {b} {c} {e/2} a-b<e/2 b-c<e/2 with triangleInequality (a + inverse b) (b + inverse c)
transitiveLemma {a} {b} {c} {e/2} a-b<e/2 b-c<e/2 | inl x = SetoidPartialOrder.<Transitive pOrder (<WellDefined (absWellDefined _ _ (Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq +Associative (Equivalence.transitive eq (+WellDefined invLeft (Equivalence.reflexive eq)) identLeft))))) (Equivalence.reflexive eq) x) (ringAddInequalities a-b<e/2 b-c<e/2)
transitiveLemma {a} {b} {c} {e/2} a-b<e/2 b-c<e/2 | inr x = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ (Equivalence.symmetric eq ((Equivalence.transitive eq (Equivalence.symmetric eq +Associative) (+WellDefined (Equivalence.reflexive eq) (Equivalence.transitive eq +Associative (Equivalence.transitive eq (+WellDefined invLeft (Equivalence.reflexive eq)) identLeft))))))) x)) (Equivalence.reflexive eq) (ringAddInequalities a-b<e/2 b-c<e/2)
cauchyCompletionSetoid : Setoid CauchyCompletion
(cauchyCompletionSetoid Setoid.∼ a) b = isZero (a +C (-C b))
Equivalence.reflexive (Setoid.eq cauchyCompletionSetoid) {x} ε 0<e = 0 , t
where
t : {m : ℕ} → (0 <N m) → abs (index (apply _+_ (CauchyCompletion.elts x) (map inverse (CauchyCompletion.elts x))) m) < ε
t {m} 0<m rewrite indexAndApply (CauchyCompletion.elts x) (map inverse (CauchyCompletion.elts x)) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts x) inverse m) = <WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (absWellDefined _ _ invRight) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) absZero))) (Equivalence.reflexive eq) 0<e
Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {x} {y} x=y ε 0<e with x=y ε 0<e
Equivalence.symmetric (Setoid.eq cauchyCompletionSetoid) {x} {y} x=y ε 0<e | N , pr = N , t
where
t : {m : ℕ} → N <N m → abs (index (apply _+_ (CauchyCompletion.elts y) (map inverse (CauchyCompletion.elts x))) m) < ε
t {m} N<m = <WellDefined (Equivalence.transitive eq (absNegation _) (absWellDefined _ _ (identityOfIndiscernablesRight _∼_ (identityOfIndiscernablesLeft _∼_ (identityOfIndiscernablesLeft _∼_ (Equivalence.transitive eq (inverseDistributes) (Equivalence.transitive eq groupIsAbelian (+WellDefined (Equivalence.transitive eq (inverseWellDefined additiveGroup (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (mapAndIndex _ inverse m))) (invTwice additiveGroup (index (CauchyCompletion.elts y) m))) (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (equalityCommutative (mapAndIndex (CauchyCompletion.elts x) inverse m)))))) (equalityCommutative (mapAndApply (CauchyCompletion.elts x) (map inverse (CauchyCompletion.elts y)) _+_ inverse m))) (equalityCommutative (mapAndIndex _ inverse m))) (equalityCommutative (indexAndApply (CauchyCompletion.elts y) (map inverse (CauchyCompletion.elts x)) _+_ {m}))))) (Equivalence.reflexive eq) (pr N<m)
Equivalence.transitive (Setoid.eq cauchyCompletionSetoid) {x} {y} {z} x=y y=z ε 0<e with halve charNot2 ε
... | e/2 , prHalf with x=y e/2 (halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prHalf) 0<e))
... | Nx , prX with y=z e/2 (halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prHalf) 0<e))
... | Ny , prY = (Nx +N Ny) , t
where
t : {m : ℕ} → (Nx +N Ny <N m) → abs (index (apply _+_ (CauchyCompletion.elts x) (map inverse (CauchyCompletion.elts z))) m) < ε
t {m} nsPr with prX {m} (le (_<N_.x nsPr +N Ny) (transitivity (applyEquality succ (transitivity (equalityCommutative (Semiring.+Associative ℕSemiring _ Ny Nx)) (applyEquality ( λ i → (_<N_.x nsPr) +N i) (Semiring.commutative ℕSemiring Ny Nx)))) (_<N_.proof nsPr)))
... | x-y<e/2 with prY {m} (le (_<N_.x nsPr +N Nx) (transitivity (applyEquality succ (equalityCommutative (Semiring.+Associative ℕSemiring _ Nx Ny))) (_<N_.proof nsPr)))
... | y-z<e/2 rewrite indexAndApply (CauchyCompletion.elts x) (map inverse (CauchyCompletion.elts z)) _+_ {m} | indexAndApply (CauchyCompletion.elts x) (map inverse (CauchyCompletion.elts y)) _+_ {m} | indexAndApply (CauchyCompletion.elts y) (map inverse (CauchyCompletion.elts z)) _+_ {m} | equalityCommutative (mapAndIndex (CauchyCompletion.elts z) inverse m) | equalityCommutative (mapAndIndex (CauchyCompletion.elts y) inverse m) = <WellDefined (Equivalence.reflexive eq) prHalf (transitiveLemma x-y<e/2 y-z<e/2)
injectionPreservesSetoid : (a b : A) → (a ∼ b) → Setoid._∼_ cauchyCompletionSetoid (injection a) (injection b)
injectionPreservesSetoid a b a=b ε 0<e = 0 , t
where
t : {m : ℕ} → 0 <N m → abs (index (apply _+_ (constSequence a) (map inverse (constSequence b))) m) < ε
t {m} 0<m = <WellDefined (identityOfIndiscernablesLeft _∼_ (absWellDefined 0G _ (identityOfIndiscernablesRight _∼_ (Equivalence.transitive eq (Equivalence.symmetric eq (transferToRight'' additiveGroup a=b)) (+WellDefined (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (indexAndConst a m)) (identityOfIndiscernablesRight _∼_ (Equivalence.reflexive eq) (transitivity (applyEquality inverse (equalityCommutative (indexAndConst _ m))) (mapAndIndex _ inverse m))))) (equalityCommutative (indexAndApply (constSequence a) _ _+_ {m})))) absZero) (Equivalence.reflexive eq) 0<e
infinitesimalImplies0 : (a : A) → ({ε : A} → (0R < ε) → a < ε) → (a ∼ 0R) || (a < 0R)
infinitesimalImplies0 a pr with totality 0R a
infinitesimalImplies0 a pr | inl (inl 0<a) with halve charNot2 a
infinitesimalImplies0 a pr | inl (inl 0<a) | a/2 , prA/2 with pr {a/2} (halvePositive a/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prA/2) 0<a))
... | bl with halvePositive a/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prA/2) 0<a)
... | 0<a/2 = exFalso (irreflexive {a} (<WellDefined identLeft prA/2 (ringAddInequalities 0<a/2 bl)))
infinitesimalImplies0 a pr | inl (inr a<0) = inr a<0
infinitesimalImplies0 a pr | inr 0=a = inl (Equivalence.symmetric eq 0=a)
injectionPreservesSetoid' : (a b : A) → Setoid._∼_ cauchyCompletionSetoid (injection a) (injection b) → a ∼ b
injectionPreservesSetoid' a b a=b = transferToRight additiveGroup (absZeroImpliesZero ans)
where
infinitesimal : {ε : A} → 0G < ε → abs (a + inverse b) < ε
infinitesimal {ε} 0<e with a=b ε 0<e
... | N , pr with pr {succ N} (le 0 refl)
... | bl rewrite indexAndApply (constSequence a) (map inverse (constSequence b)) _+_ {N} | indexAndConst a N | equalityCommutative (mapAndIndex (constSequence b) inverse N) | indexAndConst b N = bl
ans : (abs (a + inverse b)) ∼ 0G
ans with infinitesimalImplies0 _ infinitesimal
... | inl x = x
... | inr x = exFalso (absNonnegative x)
CInjection : SetoidInjection S cauchyCompletionSetoid injection
SetoidInjection.wellDefined CInjection {x} {y} x=y = injectionPreservesSetoid x y x=y
SetoidInjection.injective CInjection {x} {y} x=y = injectionPreservesSetoid' x y x=y
trivialIfInputTrivial : (0R ∼ 1R) → (a : CauchyCompletion) → Setoid._∼_ cauchyCompletionSetoid (injection 0R) a
trivialIfInputTrivial 0=1 a ε 0<e = exFalso (irreflexive {0G} (<WellDefined (Equivalence.reflexive eq) (oneZeroImpliesAllZero R 0=1) 0<e))
| {
"alphanum_fraction": 0.7350185226,
"avg_line_length": 87.4095238095,
"ext": "agda",
"hexsha": "304ed5d1d42d3a9b7c081a1ea154ca29ee66e1ad",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Fields/CauchyCompletion/Setoid.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Fields/CauchyCompletion/Setoid.agda",
"max_line_length": 964,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Fields/CauchyCompletion/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 3053,
"size": 9178
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import LogicalFormulae
open import Functions.Definition
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Order
open import Sets.FinSet.Definition
open import Sets.FinSet.Lemmas
open import Setoids.Setoids
open import Setoids.Cardinality.Infinite.Definition
open import Sets.Cardinality.Infinite.Lemmas
open import Setoids.Subset
open import Sets.EquivalenceRelations
module Setoids.Cardinality.Infinite.Lemmas where
finsetNotInfiniteSetoid : {n : ℕ} → InfiniteSetoid (reflSetoid (FinSet n)) → False
finsetNotInfiniteSetoid {n} isInfinite = isInfinite n id (record { inj = record { wellDefined = id ; injective = id } ; surj = record { wellDefined = id ; surjective = λ {x} → x , refl } })
dedekindInfiniteImpliesInfiniteSetoid : {a b : _} {A : Set a} (S : Setoid {a} {b} A) → DedekindInfiniteSetoid S → InfiniteSetoid S
dedekindInfiniteImpliesInfiniteSetoid S record { inj = inj ; isInjection = isInj } zero f isBij with SetoidInvertible.inverse (setoidBijectiveImpliesInvertible isBij) (inj 0)
... | ()
dedekindInfiniteImpliesInfiniteSetoid {A = A} S record { inj = inj ; isInjection = isInj } (succ n) f isBij = noInjectionNToFinite {f = t} tInjective
where
t : ℕ → FinSet (succ n)
t n = SetoidInvertible.inverse (setoidBijectiveImpliesInvertible isBij) (inj n)
tInjective : Injection t
tInjective pr = SetoidInjection.injective isInj (SetoidInjection.injective (SetoidBijection.inj (setoidInvertibleImpliesBijective (inverseInvertible (setoidBijectiveImpliesInvertible isBij)))) pr)
| {
"alphanum_fraction": 0.7723676202,
"avg_line_length": 54.7666666667,
"ext": "agda",
"hexsha": "1b73c694290d1618e51c1cbd81ade4f211038340",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Setoids/Cardinality/Infinite/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Setoids/Cardinality/Infinite/Lemmas.agda",
"max_line_length": 200,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Setoids/Cardinality/Infinite/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 497,
"size": 1643
} |
module SystemF.BigStep.Extrinsic.Semantics where
open import Prelude hiding (⊥; id)
open import Function as Fun using ()
open import Data.List hiding ([_]; monad)
open import Data.List.Properties as ListProp using ()
open import Data.Fin.Substitution
open import Extensions.List
open import SystemF.BigStep.Types
open import SystemF.BigStep.Extrinsic.Terms
open import SystemF.BigStep.Extrinsic.Welltyped
-- environments
mutual
Env : Set
Env = List Val
data Val : Set where
unit : Val
clos : Env → (t : Term) → Val
tclos : Env → (t : Term) → Val
open import Relation.Binary.List.Pointwise hiding (refl; map)
mutual
-- welltypedness relations between typing contexts and environmets
-- is just the pointwise extension of value-welltypedness
_⊢_ : ∀ {n} → Ctx n → Env → Set
Γ ⊢ E = Rel (λ{ a v → ⊢̬ v ∶ a}) Γ E
data ⊢̬_∶_ {n} : Val → Type n → Set where
unit : -------------------
⊢̬ unit ∶ Unit
clos : ∀ {b t}{Γ : Ctx n}{E a} →
(a ∷ Γ) ⊢ t ∶ b →
Γ ⊢ E →
-------------------
⊢̬ clos E t ∶ (a ⇒ b)
tclos : ∀ {a t}{Γ : Ctx n}{E} →
(Γ ctx/ wk) ⊢ t ∶ a →
Γ ⊢ E →
---------------------
⊢̬ tclos E t ∶ ∀' a
module UglyBits where
_wt/_ : ∀ {n m}{Γ : Ctx n}{t a} → Γ ⊢ t ∶ a → (ρ : Sub Type n m) → (Γ ctx/ ρ) ⊢ t ∶ (a / ρ)
unit wt/ ρ = unit
ƛ a t wt/ ρ = ƛ (a / ρ) (t wt/ ρ)
var x wt/ ρ = var ([]=-map x)
(f · e) wt/ ρ = (f wt/ ρ) · (e wt/ ρ)
Λ t wt/ ρ = Λ (subst (λ Γ → Γ ⊢ _ ∶ _) (sym $ CtxLemmas.ctx/-wk-comm _ ρ) (t wt/ (ρ ↑)))
(_[_] {a = a} t b) wt/ ρ =
subst (λ a → _ ⊢ _ ∶ a) (sym $ Lemmas.sub-commutes a) ((t wt/ ρ) [ (b / ρ) ])
module StepIndexed where
open UglyBits
open import Level as Lev using ()
open import Data.Maybe
open import Category.Monad
open RawMonad (monad {f = Lev.zero})
-- quadratic return through the layered monad
pattern just² x = just (just x)
-- substitution-free semantics in double-layered maybe monad;
-- distinguishing semantic errors from timeouts
_⊢_⇓_ : ∀ (μ : Env) → Term → ℕ → Maybe (Maybe Val)
μ ⊢ x ⇓ zero = nothing
μ ⊢ unit ⇓ (suc n) = just² unit
μ ⊢ ƛ t ⇓ (suc n) = just² (clos μ t)
μ ⊢ Λ t ⇓ (suc n) = just² (tclos μ t )
μ ⊢ f · e ⇓ (suc n) with (μ ⊢ f ⇓ n) | μ ⊢ e ⇓ n
-- timeout
... | nothing | _ = nothing
... | _ | nothing = nothing
-- success
... | just² (clos μ' t) | just² v = (v ∷ μ') ⊢ t ⇓ n
-- semantic errors & semantic error propagation
... | _ | _ = just nothing
μ ⊢ t [-] ⇓ (suc n) with (μ ⊢ t ⇓ n)
-- timeout
... | nothing = nothing
-- success
... | just² (tclos μ' t') = μ' ⊢ t' ⇓ n
-- semantic error (propagation)
... | _ = just nothing
μ ⊢ var x ⇓ (suc n) = just (maybe-lookup x μ)
-- extrinsic safety
_⊢_⇓_ok : ∀ {n}{Γ : Ctx n}{μ : Env}{t a} →
Γ ⊢ μ → Γ ⊢ t ∶ a → ∀ n → All (Any (λ v → ⊢̬ v ∶ a)) (μ ⊢ t ⇓ n)
μ ⊢ x ⇓ zero ok = nothing
μ ⊢ unit ⇓ suc n ok = just² unit
μ ⊢ ƛ a x ⇓ suc n ok = just² (clos x μ)
μ ⊢ Λ x ⇓ suc n ok = just² (tclos x μ)
_⊢_⇓_ok {μ = E} μ (_·_ {f = f}{e = e} wtf wte) (suc n) with
E ⊢ f ⇓ n | E ⊢ e ⇓ n | μ ⊢ wtf ⇓ n ok | μ ⊢ wte ⇓ n ok
-- timeout
... | nothing | _ | _ | _ = nothing
... | just _ | nothing | _ | _ = nothing
-- success
... | just² (clos μ' t) | just² v | just² (clos wtt wtμ') | just² px = (px ∷ wtμ') ⊢ wtt ⇓ n ok
-- semantic error propagation
... | just nothing | _ | (just ()) | _
... | _ | just nothing | _ | (just ())
-- semantic errors
... | just² (tclos _ _) | _ | just² () | _
... | just² unit | _ | just² () | _
_⊢_⇓_ok {μ = E} μ (_[_] {f = f} wtf b) (suc n) with E ⊢ f ⇓ n | μ ⊢ wtf ⇓ n ok
-- timeout
... | nothing | _ = nothing
-- semantic errors
... | just nothing | (just ())
... | just² unit | just² ()
... | just² (clos x t) | just² ()
-- success
... | just² (tclos μ' t) | just² (tclos tok μ'ok) =
μ'ok ⊢ subst (λ Γ → Γ ⊢ _ ∶ _) (CtxLemmas.ctx/-wk-sub≡id _ b) (tok wt/ (sub b)) ⇓ n ok
μ ⊢ var x ⇓ suc n ok with pointwise-maybe-lookup μ x
μ ⊢ var x ⇓ suc n ok | _ , is-just , p rewrite is-just = just² p
module DelayMonad where
open import Coinduction
open import Category.Monad.Partiality
open import Data.Maybe
module _ where
open Workaround
_⊢lookup_ : Env → ℕ → Maybe Val
[] ⊢lookup n = nothing
(x ∷ μ) ⊢lookup zero = just x
(x ∷ μ) ⊢lookup suc n = μ ⊢lookup n
ret : ∀ {a} {A : Set a} → A → (Maybe A) ⊥P
ret x = now (just x)
-- substitution free semantics for SystemF
_⊢_⇓P : ∀ (μ : Env) → Term → (Maybe Val) ⊥P
μ ⊢ unit ⇓P = ret unit
μ ⊢ ƛ t ⇓P = ret (clos μ t)
μ ⊢ Λ t ⇓P = ret (tclos μ t )
μ ⊢ f · e ⇓P = μ ⊢ f ⇓P >>= λ{
(just (clos μ' t)) → μ ⊢ e ⇓P >>= (λ{
(just v) → later (♯ ((v ∷ μ') ⊢ t ⇓P))
; nothing → now nothing
}) ;
_ → now nothing
}
μ ⊢ t [-] ⇓P = μ ⊢ t ⇓P >>= λ{
(just (tclos μ' t')) → later (♯ (μ' ⊢ t' ⇓P)) ;
_ → now nothing
}
μ ⊢ var x ⇓P = now (μ ⊢lookup x)
_⊢_⇓ : ∀ (μ : Env) → Term → (Maybe Val) ⊥
μ ⊢ t ⇓ = ⟦ μ ⊢ t ⇓P ⟧P
{-}
open import Category.Monad.Partiality.All
open Alternative
{-}
module Compositional where
private
module Eq = Equality (_≡_)
open import Level as Level
open import Category.Monad
open Eq hiding (_⇓)
open RawMonad (monad {f = Level.zero})
_·⇓_ : ∀ (f e : Val ⊥) → Val ⊥
f ·⇓ e = f >>= λ{ (clos x t) → {!!} ; _ → now error }
·-comp : ∀ {μ f e} → (μ ⊢ f · e ⇓) ≅ ((μ ⊢ f ⇓) ·⇓ (μ ⊢ e ⇓))
·-comp = {!!}
-}
module Safety where
_⊢_⇓okP : ∀ {n}{Γ : Ctx n}{μ : Env}{t a} → Γ ⊢ μ → Γ ⊢ t ∶ a → AllP (λ v → ⊢̬ v ∶ a) (μ ⊢ t ⇓)
μ ⊢ unit ⇓okP = now unit
μ ⊢ ƛ a t₁ ⇓okP = now (clos t₁ μ)
μ ⊢ var x ⇓okP = now {!!}
μ ⊢ f · e ⇓okP = {!μ ⊢ f ⇓okP!}
μ ⊢ Λ t₁ ⇓okP = {!!}
μ ⊢ t [ b ] ⇓okP = {!!}
-}
| {
"alphanum_fraction": 0.5016891892,
"avg_line_length": 28.5990338164,
"ext": "agda",
"hexsha": "46fb737ffaecbb4074808f8f994255047d5767bd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/SystemF/BigStep/Extrinsic/Semantics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/SystemF/BigStep/Extrinsic/Semantics.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/SystemF/BigStep/Extrinsic/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2424,
"size": 5920
} |
{-# OPTIONS --allow-unsolved-metas #-}
open import Level
open import Ordinals
module ODUtil {n : Level } (O : Ordinals {n} ) where
open import zf
open import Data.Nat renaming ( zero to Zero ; suc to Suc ; ℕ to Nat ; _⊔_ to _n⊔_ )
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Data.Nat.Properties
open import Data.Empty
open import Relation.Nullary
open import Relation.Binary hiding ( _⇔_ )
open import logic
open import nat
open Ordinals.Ordinals O
open Ordinals.IsOrdinals isOrdinal
open Ordinals.IsNext isNext
import OrdUtil
open OrdUtil O
import OD
open OD O
open OD.OD
open ODAxiom odAxiom
open HOD
open _⊆_
open _∧_
open _==_
cseq : HOD → HOD
cseq x = record { od = record { def = λ y → odef x (osuc y) } ; odmax = osuc (odmax x) ; <odmax = lemma } where
lemma : {y : Ordinal} → def (od x) (osuc y) → y o< osuc (odmax x)
lemma {y} lt = ordtrans <-osuc (ordtrans (<odmax x lt) <-osuc )
pair-xx<xy : {x y : HOD} → & (x , x) o< osuc (& (x , y) )
pair-xx<xy {x} {y} = ⊆→o≤ lemma where
lemma : {z : Ordinal} → def (od (x , x)) z → def (od (x , y)) z
lemma {z} (case1 refl) = case1 refl
lemma {z} (case2 refl) = case1 refl
pair-<xy : {x y : HOD} → {n : Ordinal} → & x o< next n → & y o< next n → & (x , y) o< next n
pair-<xy {x} {y} {o} x<nn y<nn with trio< (& x) (& y) | inspect (omax (& x)) (& y)
... | tri< a ¬b ¬c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (sym eq1) (osuc<nx y<nn)) ho<
... | tri> ¬a ¬b c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (sym eq1) (osuc<nx x<nn)) ho<
... | tri≈ ¬a b ¬c | record { eq = eq1 } = next< (subst (λ k → k o< next o ) (omax≡ _ _ b) (subst (λ k → osuc k o< next o) b (osuc<nx x<nn))) ho<
-- another form of infinite
-- pair-ord< : {x : Ordinal } → Set n
pair-ord< : {x : HOD } → ( {y : HOD } → & y o< next (odmax y) ) → & ( x , x ) o< next (& x)
pair-ord< {x} ho< = subst (λ k → & (x , x) o< k ) lemmab0 lemmab1 where
lemmab0 : next (odmax (x , x)) ≡ next (& x)
lemmab0 = trans (cong (λ k → next k) (omxx _)) (sym nexto≡)
lemmab1 : & (x , x) o< next ( odmax (x , x))
lemmab1 = ho<
trans-⊆ : { A B C : HOD} → A ⊆ B → B ⊆ C → A ⊆ C
trans-⊆ A⊆B B⊆C = record { incl = λ x → incl B⊆C (incl A⊆B x) }
refl-⊆ : {A : HOD} → A ⊆ A
refl-⊆ {A} = record { incl = λ x → x }
od⊆→o≤ : {x y : HOD } → x ⊆ y → & x o< osuc (& y)
od⊆→o≤ {x} {y} lt = ⊆→o≤ {x} {y} (λ {z} x>z → subst (λ k → def (od y) k ) &iso (incl lt (d→∋ x x>z)))
subset-lemma : {A x : HOD } → ( {y : HOD } → x ∋ y → (A ∩ x ) ∋ y ) ⇔ ( x ⊆ A )
subset-lemma {A} {x} = record {
proj1 = λ lt → record { incl = λ x∋z → proj1 (lt x∋z) }
; proj2 = λ x⊆A lt → ⟪ incl x⊆A lt , lt ⟫
}
ω<next-o∅ : {y : Ordinal} → infinite-d y → y o< next o∅
ω<next-o∅ {y} lt = <odmax infinite lt
nat→ω : Nat → HOD
nat→ω Zero = od∅
nat→ω (Suc y) = Union (nat→ω y , (nat→ω y , nat→ω y))
ω→nato : {y : Ordinal} → infinite-d y → Nat
ω→nato iφ = Zero
ω→nato (isuc lt) = Suc (ω→nato lt)
ω→nat : (n : HOD) → infinite ∋ n → Nat
ω→nat n = ω→nato
ω∋nat→ω : {n : Nat} → def (od infinite) (& (nat→ω n))
ω∋nat→ω {Zero} = subst (λ k → def (od infinite) k) (sym ord-od∅) iφ
ω∋nat→ω {Suc n} = subst (λ k → def (od infinite) k) lemma (isuc ( ω∋nat→ω {n})) where
lemma : & (Union (* (& (nat→ω n)) , (* (& (nat→ω n)) , * (& (nat→ω n))))) ≡ & (nat→ω (Suc n))
lemma = subst (λ k → & (Union (k , ( k , k ))) ≡ & (nat→ω (Suc n))) (sym *iso) refl
pair1 : { x y : HOD } → (x , y ) ∋ x
pair1 = case1 refl
pair2 : { x y : HOD } → (x , y ) ∋ y
pair2 = case2 refl
single : {x y : HOD } → (x , x ) ∋ y → x ≡ y
single (case1 eq) = ==→o≡ ( ord→== (sym eq) )
single (case2 eq) = ==→o≡ ( ord→== (sym eq) )
open import Relation.Binary.HeterogeneousEquality as HE using (_≅_ )
-- postulate f-extensionality : { n m : Level} → HE.Extensionality n m
ω-prev-eq1 : {x y : Ordinal} → & (Union (* y , (* y , * y))) ≡ & (Union (* x , (* x , * x))) → ¬ (x o< y)
ω-prev-eq1 {x} {y} eq x<y = eq→ (ord→== eq) {& (* y)} (λ not2 → not2 (& (* y , * y))
⟪ case2 refl , subst (λ k → odef k (& (* y))) (sym *iso) (case1 refl)⟫ ) (λ u → lemma u ) where
lemma : (u : Ordinal) → ¬ def (od (* x , (* x , * x))) u ∧ def (od (* u)) (& (* y))
lemma u t with proj1 t
lemma u t | case1 u=x = o<> (c<→o< {* y} {* u} (proj2 t)) (subst₂ (λ j k → j o< k )
(trans (sym &iso) (trans (sym u=x) (sym &iso)) ) (sym &iso) x<y ) -- x ≡ & (* u)
lemma u t | case2 u=xx = o<¬≡ (lemma1 (subst (λ k → odef k (& (* y)) ) (trans (cong (λ k → * k ) u=xx) *iso ) (proj2 t))) x<y where
lemma1 : {x y : Ordinal } → (* x , * x ) ∋ * y → x ≡ y -- y = x ∈ ( x , x ) = u
lemma1 (case1 eq) = subst₂ (λ j k → j ≡ k ) &iso &iso (sym eq)
lemma1 (case2 eq) = subst₂ (λ j k → j ≡ k ) &iso &iso (sym eq)
ω-prev-eq : {x y : Ordinal} → & (Union (* y , (* y , * y))) ≡ & (Union (* x , (* x , * x))) → x ≡ y
ω-prev-eq {x} {y} eq with trio< x y
ω-prev-eq {x} {y} eq | tri< a ¬b ¬c = ⊥-elim (ω-prev-eq1 eq a)
ω-prev-eq {x} {y} eq | tri≈ ¬a b ¬c = b
ω-prev-eq {x} {y} eq | tri> ¬a ¬b c = ⊥-elim (ω-prev-eq1 (sym eq) c)
ω-∈s : (x : HOD) → Union ( x , (x , x)) ∋ x
ω-∈s x not = not (& (x , x)) ⟪ case2 refl , subst (λ k → odef k (& x) ) (sym *iso) (case1 refl) ⟫
ωs≠0 : (x : HOD) → ¬ ( Union ( x , (x , x)) ≡ od∅ )
ωs≠0 y eq = ⊥-elim ( ¬x<0 (subst (λ k → & y o< k ) ord-od∅ (c<→o< (subst (λ k → odef k (& y )) eq (ω-∈s y) ))) )
nat→ω-iso : {i : HOD} → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i
nat→ω-iso {i} = ε-induction {λ i → (lt : infinite ∋ i ) → nat→ω ( ω→nat i lt ) ≡ i } ind i where
ind : {x : HOD} → ({y : HOD} → x ∋ y → (lt : infinite ∋ y) → nat→ω (ω→nat y lt) ≡ y) →
(lt : infinite ∋ x) → nat→ω (ω→nat x lt) ≡ x
ind {x} prev lt = ind1 lt *iso where
ind1 : {ox : Ordinal } → (ltd : infinite-d ox ) → * ox ≡ x → nat→ω (ω→nato ltd) ≡ x
ind1 {o∅} iφ refl = sym o∅≡od∅
ind1 (isuc {x₁} ltd) ox=x = begin
nat→ω (ω→nato (isuc ltd) )
≡⟨⟩
Union (nat→ω (ω→nato ltd) , (nat→ω (ω→nato ltd) , nat→ω (ω→nato ltd)))
≡⟨ cong (λ k → Union (k , (k , k ))) lemma ⟩
Union (* x₁ , (* x₁ , * x₁))
≡⟨ trans ( sym *iso) ox=x ⟩
x
∎ where
open ≡-Reasoning
lemma0 : x ∋ * x₁
lemma0 = subst (λ k → odef k (& (* x₁))) (trans (sym *iso) ox=x) (λ not → not
(& (* x₁ , * x₁)) ⟪ pair2 , subst (λ k → odef k (& (* x₁))) (sym *iso) pair1 ⟫ )
lemma1 : infinite ∋ * x₁
lemma1 = subst (λ k → odef infinite k) (sym &iso) ltd
lemma3 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ltd ≅ ltd1
lemma3 iφ iφ refl = HE.refl
lemma3 iφ (isuc {y} ltd1) eq = ⊥-elim ( ¬x<0 (subst₂ (λ j k → j o< k ) &iso eq (c<→o< (ω-∈s (* y)) )))
lemma3 (isuc {y} ltd) iφ eq = ⊥-elim ( ¬x<0 (subst₂ (λ j k → j o< k ) &iso (sym eq) (c<→o< (ω-∈s (* y)) )))
lemma3 (isuc {x} ltd) (isuc {y} ltd1) eq with lemma3 ltd ltd1 (ω-prev-eq (sym eq))
... | t = HE.cong₂ (λ j k → isuc {j} k ) (HE.≡-to-≅ (ω-prev-eq eq)) t
lemma2 : {x y : Ordinal} → (ltd : infinite-d x ) (ltd1 : infinite-d y ) → y ≡ x → ω→nato ltd ≡ ω→nato ltd1
lemma2 {x} {y} ltd ltd1 eq = lemma6 eq (lemma3 {x} {y} ltd ltd1 eq) where
lemma6 : {x y : Ordinal} → {ltd : infinite-d x } {ltd1 : infinite-d y } → y ≡ x → ltd ≅ ltd1 → ω→nato ltd ≡ ω→nato ltd1
lemma6 refl HE.refl = refl
lemma : nat→ω (ω→nato ltd) ≡ * x₁
lemma = trans (cong (λ k → nat→ω k) (lemma2 {x₁} {_} ltd (subst (λ k → infinite-d k ) (sym &iso) ltd) &iso ) ) ( prev {* x₁} lemma0 lemma1 )
ω→nat-iso : {i : Nat} → ω→nat ( nat→ω i ) (ω∋nat→ω {i}) ≡ i
ω→nat-iso {i} = lemma i (ω∋nat→ω {i}) *iso where
lemma : {x : Ordinal } → ( i : Nat ) → (ltd : infinite-d x ) → * x ≡ nat→ω i → ω→nato ltd ≡ i
lemma {x} Zero iφ eq = refl
lemma {x} (Suc i) iφ eq = ⊥-elim ( ωs≠0 (nat→ω i) (trans (sym eq) o∅≡od∅ )) -- Union (nat→ω i , (nat→ω i , nat→ω i)) ≡ od∅
lemma Zero (isuc {x} ltd) eq = ⊥-elim ( ωs≠0 (* x) (subst (λ k → k ≡ od∅ ) *iso eq ))
lemma (Suc i) (isuc {x} ltd) eq = cong (λ k → Suc k ) (lemma i ltd (lemma1 eq) ) where -- * x ≡ nat→ω i
lemma1 : * (& (Union (* x , (* x , * x)))) ≡ Union (nat→ω i , (nat→ω i , nat→ω i)) → * x ≡ nat→ω i
lemma1 eq = subst (λ k → * x ≡ k ) *iso (cong (λ k → * k)
( ω-prev-eq (subst (λ k → _ ≡ k ) &iso (cong (λ k → & k ) (sym
(subst (λ k → _ ≡ Union ( k , ( k , k ))) (sym *iso ) eq ))))))
| {
"alphanum_fraction": 0.4753037357,
"avg_line_length": 48.9277777778,
"ext": "agda",
"hexsha": "f2201ab226fc431f31e91b94ebab871b10912796",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/zf-in-agda",
"max_forks_repo_path": "src/ODUtil.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/zf-in-agda",
"max_issues_repo_path": "src/ODUtil.agda",
"max_line_length": 159,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/zf-in-agda",
"max_stars_repo_path": "src/ODUtil.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z",
"num_tokens": 3838,
"size": 8807
} |
{-# OPTIONS --sized-types #-}
module SNat.Order.Properties where
open import Data.Sum renaming (_⊎_ to _∨_)
open import Relation.Binary.PropositionalEquality
open import Size
open import SNat
open import SNat.Order
tot≤ : {ι ι' : Size} → (m : SNat {ι}) → (n : SNat {ι'}) → m ≤ n ∨ n ≤ m
tot≤ zero n = inj₁ (z≤n n)
tot≤ m zero = inj₂ (z≤n m)
tot≤ (succ m) (succ n)
with tot≤ m n
...| inj₁ m≤n = inj₁ (s≤s m≤n)
...| inj₂ n≤m = inj₂ (s≤s n≤m)
refl≤ : {n : SNat} → n ≤ n
refl≤ {n}
with tot≤ n n
... | inj₁ n≤n = n≤n
... | inj₂ n≤n = n≤n
trans≤ : {ι ι' ι'' : Size}{n : SNat {ι}}{n' : SNat {ι'}}{n'' : SNat {ι''}} → n ≤ n' → n' ≤ n'' → n ≤ n''
trans≤ {n'' = n''} (z≤n n') _ = z≤n n''
trans≤ (s≤s n≤n') (s≤s n'≤n'') = s≤s (trans≤ n≤n' n'≤n'')
refl≅ : {n : SNat} → n ≅ n
refl≅ {zero} = z≅z
refl≅ {succ _} = s≅s refl≅
trans≅ : {ι ι' ι'' : Size}{n : SNat {ι}}{n' : SNat {ι'}}{n'' : SNat {ι''}} → n ≅ n' → n' ≅ n'' → n ≅ n''
trans≅ z≅z z≅z = z≅z
trans≅ (s≅s n≅n') (s≅s n'≅n'') = s≅s (trans≅ n≅n' n'≅n'')
lemma-z≤′n : {ι ι' : Size}(n : SNat {ι}) → zero {ι'} ≤′ n
lemma-z≤′n zero = ≤′-eq z≅z
lemma-z≤′n (succ n) = ≤′-step (lemma-z≤′n n)
lemma-s≤′s : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤′ n → succ m ≤′ succ n
lemma-s≤′s (≤′-eq m≅n) = ≤′-eq (s≅s m≅n)
lemma-s≤′s (≤′-step m≤′n) = ≤′-step (lemma-s≤′s m≤′n)
lemma-≤-≤′ : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤ n → m ≤′ n
lemma-≤-≤′ (z≤n n) = lemma-z≤′n n
lemma-≤-≤′ (s≤s m≤n) = lemma-s≤′s (lemma-≤-≤′ m≤n)
lemma-≅-≤ : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≅ n → m ≤ n
lemma-≅-≤ z≅z = z≤n zero
lemma-≅-≤ (s≅s m≅n) = s≤s (lemma-≅-≤ m≅n)
lemma-≡-≤′ : {a b c : SNat} → b ≡ a → a ≤′ c → b ≤′ c
lemma-≡-≤′ b≡a a≤′c rewrite b≡a = a≤′c
lemma-n≤sn : {ι : Size}(n : SNat {ι}) → n ≤ succ n
lemma-n≤sn zero = z≤n (succ zero)
lemma-n≤sn (succ n) = s≤s (lemma-n≤sn n)
lemma-≤′-≤ : {ι ι' : Size}{m : SNat {ι}}{n : SNat {ι'}} → m ≤′ n → m ≤ n
lemma-≤′-≤ (≤′-eq m≅n) = lemma-≅-≤ m≅n
lemma-≤′-≤ (≤′-step {n = n} m≤′n) = trans≤ (lemma-≤′-≤ m≤′n) (lemma-n≤sn n)
refl≤′ : {n : SNat} → n ≤′ n
refl≤′ = lemma-≤-≤′ refl≤
trans≤′ : {ι ι' ι'' : Size}{n : SNat {ι}}{n' : SNat {ι'}}{n'' : SNat {ι''}} → n ≤′ n' → n' ≤′ n'' → n ≤′ n''
trans≤′ n≤′n' n'≤′n'' = lemma-≤-≤′ (trans≤ (lemma-≤′-≤ n≤′n') (lemma-≤′-≤ n'≤′n''))
| {
"alphanum_fraction": 0.4554973822,
"avg_line_length": 33.7058823529,
"ext": "agda",
"hexsha": "185ff58fbf22fac284855fa63fd4c78bb1676ae6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/SNat/Order/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/SNat/Order/Properties.agda",
"max_line_length": 109,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/SNat/Order/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 1337,
"size": 2292
} |
------------------------------------------------------------------------
-- Modules that can (perhaps) not be type-checked in safe mode, and
-- do not use --sized-types
------------------------------------------------------------------------
{-# OPTIONS --without-K #-}
module README.Unsafe where
-- Strings.
import String
-- IO.
import IO-monad
| {
"alphanum_fraction": 0.3977272727,
"avg_line_length": 20.7058823529,
"ext": "agda",
"hexsha": "d45e63e64ce8c8458bbd5b615ec6e6fb98dcf01b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "README/Unsafe.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "README/Unsafe.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "README/Unsafe.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 56,
"size": 352
} |
-- Issue #1842, __IMPOSSIBLE__ showed up in debug output
{-# OPTIONS -v interaction.case:65 #-} -- KEEP
data Bool : Set where
true false : Bool
test : Bool → Bool
test x = {!x!} -- C-c C-c
-- Splitting here with debug output turned on
-- should not crash.
| {
"alphanum_fraction": 0.6641221374,
"avg_line_length": 20.1538461538,
"ext": "agda",
"hexsha": "a2f8d07d5b77524c0b2b19da14325b4d7263931b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pthariensflame/agda",
"max_forks_repo_path": "test/interaction/Issue1842.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pthariensflame/agda",
"max_issues_repo_path": "test/interaction/Issue1842.agda",
"max_line_length": 56,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pthariensflame/agda",
"max_stars_repo_path": "test/interaction/Issue1842.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 77,
"size": 262
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommMonoid.CommMonoidProd where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Algebra.CommMonoid.Base
open CommMonoidStr
private
variable
ℓ ℓ' : Level
CommMonoidProd : CommMonoid ℓ → CommMonoid ℓ' → CommMonoid (ℓ-max ℓ ℓ')
CommMonoidProd M N = makeCommMonoid ε× _·×_ is-set× assoc× ·IdR× comm×
where
ε× : (fst M) × (fst N)
ε× = (ε (snd M)) , (ε (snd N))
_·×_ : (fst M) × (fst N) → (fst M) × (fst N) → (fst M) × (fst N)
(x₁ , x₂) ·× (y₁ , y₂) = (_·_ (snd M) x₁ y₁) , (_·_ (snd N) x₂ y₂)
is-set× : isSet ((fst M) × (fst N))
is-set× = isSet× (is-set (snd M)) (is-set (snd N))
assoc× : ∀ x y z → x ·× (y ·× z) ≡ (x ·× y) ·× z
assoc× _ _ _ = cong₂ (_,_) (·Assoc (snd M) _ _ _) (·Assoc (snd N) _ _ _)
·IdR× : ∀ x → x ·× ε× ≡ x
·IdR× _ = cong₂ (_,_) (·IdR (snd M) _) (·IdR (snd N) _)
comm× : ∀ x y → x ·× y ≡ y ·× x
comm× _ _ = cong₂ (_,_) (·Comm (snd M) _ _) (·Comm (snd N) _ _)
| {
"alphanum_fraction": 0.5624404194,
"avg_line_length": 27.6052631579,
"ext": "agda",
"hexsha": "9a73a6dbfb367b517e825b9ac607ebe43478c431",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommMonoid/CommMonoidProd.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommMonoid/CommMonoidProd.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommMonoid/CommMonoidProd.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 445,
"size": 1049
} |
open import Common.Prelude
test : List Char → Char
test [] = 'a'
test ('a' ∷ []) = 'b'
-- test (c ∷ cs) = c
| {
"alphanum_fraction": 0.4833333333,
"avg_line_length": 15,
"ext": "agda",
"hexsha": "2bc8f214cc9a52933117bfb293a76e2080d17a4c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue708b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue708b.agda",
"max_line_length": 26,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue708b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 44,
"size": 120
} |
{-# OPTIONS --rewriting --allow-unsolved-metas #-}
open import Agda.Builtin.Equality using (_≡_)
open import Agda.Builtin.Equality.Rewrite
postulate
cast : (A B : Set) → A → B
cast-rew : (A : Set) (x : A) → cast A A x ≡ x
{-# REWRITE cast-rew #-}
postulate
A : Set
x y : A
data D (B : A → Set) (b : B y) : Set where
con : cast (B x) (B y) ? ≡ b → D B b
record R (B : A → Set) (b : B y) : Set where
field
eq : cast (B x) (B y) ? ≡ b
| {
"alphanum_fraction": 0.5562913907,
"avg_line_length": 21.5714285714,
"ext": "agda",
"hexsha": "1dc5c4e0373b86e05aee18611cf973c54436e6a8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue4721b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue4721b.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue4721b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 179,
"size": 453
} |
module ShowNat where
open import IO
open import Data.Unit
open import Data.Nat.Show
main = run (putStrLn (Data.Nat.Show.show 10))
| {
"alphanum_fraction": 0.7651515152,
"avg_line_length": 16.5,
"ext": "agda",
"hexsha": "d5430a5d8f0f35bc0110c8cd627ae3ca07ed91f2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/with-stdlib/ShowNat.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-09-08T13:47:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-08T00:32:04.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/with-stdlib/ShowNat.agda",
"max_line_length": 45,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/with-stdlib/ShowNat.agda",
"max_stars_repo_stars_event_max_datetime": "2018-11-06T16:38:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-05T22:13:36.000Z",
"num_tokens": 36,
"size": 132
} |
module nat where
open import product
open import bool
open import maybe
open import eq
----------------------------------------------------------------------
-- datatypes
----------------------------------------------------------------------
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
nat = ℕ
----------------------------------------------------------------------
-- syntax
----------------------------------------------------------------------
infixl 10 _*_
infixl 9 _+_ _∸_
infixl 8 _<_ _=ℕ_ _≤_ _>_ _≥_
-- pragmas to get decimal notation:
{-# BUILTIN NATURAL ℕ #-}
----------------------------------------------------------------------
-- operations
----------------------------------------------------------------------
---------------------------------------
-- basic arithmetic operations
---------------------------------------
_+_ : ℕ → ℕ → ℕ
zero + n = n
suc m + n = suc (m + n)
{-# BUILTIN NATPLUS _+_ #-}
_*_ : ℕ → ℕ → ℕ
zero * n = zero
suc m * n = n + (m * n)
{-# BUILTIN NATTIMES _*_ #-}
pred : ℕ → ℕ
pred 0 = 0
pred (suc n) = n
_∸_ : ℕ → ℕ → ℕ
m ∸ zero = m
zero ∸ suc n = zero
suc m ∸ suc n = m ∸ n
-- see nat-division.agda for division function
{-# BUILTIN NATMINUS _∸_ #-}
square : ℕ → ℕ
square x = x * x
--------------------------------------------------
-- comparisons
--------------------------------------------------
_<_ : ℕ → ℕ → 𝔹
0 < 0 = ff
0 < (suc y) = tt
(suc x) < (suc y) = x < y
(suc x) < 0 = ff
_=ℕ_ : ℕ → ℕ → 𝔹
0 =ℕ 0 = tt
suc x =ℕ suc y = x =ℕ y
_ =ℕ _ = ff
_≤_ : ℕ → ℕ → 𝔹
x ≤ y = (x < y) || x =ℕ y
_>_ : ℕ → ℕ → 𝔹
a > b = b < a
_≥_ : ℕ → ℕ → 𝔹
a ≥ b = b ≤ a
min : ℕ → ℕ → ℕ
min x y = if x < y then x else y
max : ℕ → ℕ → ℕ
max x y = if x < y then y else x
data compare-t : Set where
compare-lt : compare-t
compare-eq : compare-t
compare-gt : compare-t
compare : ℕ → ℕ → compare-t
compare 0 0 = compare-eq
compare 0 (suc y) = compare-lt
compare (suc x) 0 = compare-gt
compare (suc x) (suc y) = compare x y
iszero : ℕ → 𝔹
iszero 0 = tt
iszero _ = ff
parity : ℕ → 𝔹
parity 0 = ff
parity (suc x) = ~ (parity x)
_pow_ : ℕ → ℕ → ℕ
x pow 0 = 1
x pow (suc y) = x * (x pow y)
factorial : ℕ → ℕ
factorial 0 = 1
factorial (suc x) = (suc x) * (factorial x)
is-even : ℕ → 𝔹
is-odd : ℕ → 𝔹
is-even 0 = tt
is-even (suc x) = is-odd x
is-odd 0 = ff
is-odd (suc x) = is-even x
| {
"alphanum_fraction": 0.408023901,
"avg_line_length": 18.1627906977,
"ext": "agda",
"hexsha": "cae4676847dd3fdbfdfdeccc66bc03166e8803e6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "nat.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 781,
"size": 2343
} |
module ctxt where
open import cedille-types
open import ctxt-types public
open import subst
open import general-util
open import syntax-util
open import type-util
open import free-vars
new-sym-info-trie : trie sym-info
new-sym-info-trie = trie-insert empty-trie compileFail-qual ((term-decl compileFailType) , "missing" , "missing")
new-qualif : qualif
new-qualif = trie-insert empty-trie compileFail (compileFail-qual , [])
qualif-nonempty : qualif → 𝔹
qualif-nonempty q = trie-nonempty (trie-remove q compileFail)
qualif-insert-params : qualif → var → var → params → qualif
qualif-insert-params σ qv v ps = trie-insert σ v (qv , params-to-args ps)
qualif-insert-import : qualif → var → maybe import-as → 𝕃 string → args → qualif
qualif-insert-import σ mn oa [] as = σ
qualif-insert-import σ mn oa (v :: vs) as = qualif-insert-import (trie-insert σ (maybe-else v (λ {(ImportAs _ pfx) → pfx # v}) oa) (mn # v , as)) mn oa vs as
new-ctxt : (filename modname : string) → ctxt
new-ctxt fn mn =
record {
fn = fn;
mn = mn;
ps = [];
qual = new-qualif;
syms = empty-trie;
mod-map = empty-trie;
id-map = empty-trie;
id-current = 0;
id-list = [];
i = empty-trie;
μ = empty-trie;
μ' = empty-trie;
Is/μ = empty-trie;
μ~ = empty-trie;
μᵤ = nothing;
μ̲ = empty-stringset
}
empty-ctxt : ctxt
empty-ctxt = new-ctxt "" ""
ctxt-get-info : var → ctxt → maybe sym-info
ctxt-get-info v Γ = trie-lookup (ctxt.i Γ) v
ctxt-get-qi : ctxt → var → maybe qualif-info
ctxt-get-qi = trie-lookup ∘ ctxt.qual
ctxt-qualif-args-length : ctxt → erased? → var → maybe ℕ
ctxt-qualif-args-length Γ me v =
ctxt-get-qi Γ v >>= λ qv →
just (if me then length (snd qv) else length (erase-args (snd qv)))
qi-var-if : maybe qualif-info → var → var
qi-var-if (just (v , _)) _ = v
qi-var-if nothing v = v
--ctxt-restore-info : ctxt → var → maybe qualif-info → maybe sym-info → ctxt
--ctxt-restore-info (mk-ctxt (fn , mn , ps , q , ) syms i Δ) v qi si =
-- mk-ctxt (fn , mn , ps , f qi v q) syms (f si (qi-var-if qi v) (trie-remove i (qi-var-if (trie-lookup q v) v))) Δ
-- where
-- f : ∀{A : Set} → maybe A → string → trie A → trie A
-- f (just a) s t = trie-insert t s a
-- f nothing s t = trie-remove t s
--ctxt-restore-info* : ctxt → 𝕃 (string × maybe qualif-info × maybe sym-info) → ctxt
--ctxt-restore-info* Γ [] = Γ
--ctxt-restore-info* Γ ((v , qi , m) :: ms) = ctxt-restore-info* (ctxt-restore-info Γ v qi m) ms
def-params : defScope → params → defParams
def-params tt ps = nothing
def-params ff ps = just ps
inst-term : ctxt → params → args → term → term
inst-term Γ ps as t with subst-params-args ps as
...| σ , ps' , as' = lam-expand-term (substs-params Γ σ ps') (substs Γ σ t)
-- TODO add renamectxt to avoid capture bugs?
inst-type : ctxt → params → args → type → type
inst-type Γ ps as T with subst-params-args ps as
...| σ , ps' , as' = abs-expand-type (substs-params Γ σ ps') (substs Γ σ T)
inst-kind : ctxt → params → args → kind → kind
inst-kind Γ ps as k with subst-params-args ps as
...| σ , ps' , as' = abs-expand-kind (substs-params Γ σ ps') (substs Γ σ k)
inst-ctrs : ctxt → params → args → ctrs → ctrs
inst-ctrs Γ ps as c with subst-params-args ps as
...| σ , ps' , as' = flip map c λ where
(Ctr x T) → Ctr x (abs-expand-type (substs-params Γ σ ps') (substs Γ σ T))
maybe-inst-type = maybe-else (λ as T → T) ∘ inst-type
maybe-inst-kind = maybe-else (λ as T → T) ∘ inst-kind
maybe-inst-ctrs = maybe-else (λ as c → c) ∘ inst-ctrs
ctxt-term-decl : posinfo → var → type → ctxt → ctxt
ctxt-term-decl pi v T Γ =
let v' = pi % v in
record Γ {
qual = qualif-insert-params (ctxt.qual Γ) v' v [];
i = trie-insert (ctxt.i Γ) v' (term-decl T , ctxt.fn Γ , pi)
}
ctxt-type-decl : posinfo → var → kind → ctxt → ctxt
ctxt-type-decl pi v k Γ =
let v' = pi % v in
record Γ {
qual = qualif-insert-params (ctxt.qual Γ) v' v [];
i = trie-insert (ctxt.i Γ) v' (type-decl k , ctxt.fn Γ , pi)
}
ctxt-tk-decl : posinfo → var → tpkd → ctxt → ctxt
ctxt-tk-decl p x (Tkt t) Γ = ctxt-term-decl p x t Γ
ctxt-tk-decl p x (Tkk k) Γ = ctxt-type-decl p x k Γ
infix 4 _,_-_:`_
_,_-_:`_ : ctxt → posinfo → var → tpkd → ctxt
Γ , pi - x :` tk = ctxt-tk-decl pi x tk Γ
-- TODO not sure how this and renaming interacts with module scope
ctxt-var-decl-if : var → ctxt → ctxt
ctxt-var-decl-if v Γ with trie-lookup (ctxt.i Γ) v
... | just (rename-def _ , _) = Γ
... | just (var-decl , _) = Γ
... | _ = ctxt-var-decl v Γ
add-indices-to-ctxt : indices → ctxt → ctxt
add-indices-to-ctxt = flip $ foldr λ {(Index x _) → ctxt-var-decl x}
add-params-to-ctxt : params → ctxt → ctxt
add-params-to-ctxt = flip $ foldr λ {(Param me x _) Γ → if ctxt-binds-var Γ (unqual-local x) then Γ else (ctxt-var-decl x ∘ ctxt-var-decl (unqual-local x)) Γ}
add-caseArgs-to-ctxt : case-args → ctxt → ctxt
add-caseArgs-to-ctxt = flip $ foldr λ {(CaseArg me x _) → ctxt-var-decl x}
add-ctrs-to-ctxt : ctrs → ctxt → ctxt
add-ctrs-to-ctxt = flip $ foldr λ {(Ctr x T) → ctxt-var-decl x}
ctxt-rename-rep : ctxt → var → var
ctxt-rename-rep Γ v with trie-lookup (ctxt.i Γ) v
...| just (rename-def v' , _) = v'
...| _ = v
-- we assume that only the left variable might have been renamed
ctxt-eq-rep : ctxt → var → var → 𝔹
ctxt-eq-rep Γ x y = (ctxt-rename-rep Γ x) =string y
{- add a renaming mapping the first variable to the second, unless they are equal.
Notice that adding a renaming for v will overwrite any other declarations for v. -}
ctxt-rename : var → var → ctxt → ctxt
ctxt-rename v v' Γ =
record Γ {
qual = trie-insert (ctxt.qual Γ) v (v' , []);
i = trie-insert (ctxt.i Γ) v (rename-def v' , missing-location)
}
----------------------------------------------------------------------
-- lookup functions
----------------------------------------------------------------------
-- lookup mod params from filename
lookup-mod-params : ctxt → var → maybe params
lookup-mod-params Γ fn =
trie-lookup (ctxt.syms Γ) fn >>=c λ mn _ →
trie-lookup (ctxt.mod-map Γ) mn >>=c λ fn' → just
-- look for a defined kind for the given var, which is assumed to be a type,
-- then instantiate its parameters
qual-lookup : ctxt → var → maybe (var × args × sym-info)
qual-lookup Γ v =
trie-lookup (ctxt.qual Γ) v >>=c λ qv as →
trie-lookup (ctxt.i Γ) qv >>= λ si →
just (qv , as , si)
env-lookup : ctxt → var → maybe sym-info
env-lookup = trie-lookup ∘ ctxt.i
ctxt-lookup-tpkd-var : ctxt → var → maybe (var × args × tpkd)
ctxt-lookup-tpkd-var Γ v with qual-lookup Γ v
... | just (qv , as , term-decl T , _) = just $ qv , as , Tkt T
... | just (qv , as , type-decl k , _) = just $ qv , as , Tkk k
... | just (qv , as , term-def mps _ t T , _) = just $ qv , as , Tkt (maybe-inst-type Γ mps as T)
... | just (qv , as , ctr-def ps T _ _ _ , _) = just $ qv , as , Tkt (inst-type Γ ps as T)
... | just (qv , as , type-def mps _ T k , _) = just $ qv , as , Tkk (maybe-inst-kind Γ mps as k)
... | _ = nothing
ctxt-lookup-type-var : ctxt → var → maybe (var × args × kind)
ctxt-lookup-type-var Γ v = ctxt-lookup-tpkd-var Γ v >>= λ where
(qv , as , Tkt T) → nothing
(qv , as , Tkk k) → just (qv , as , k)
ctxt-lookup-term-var : ctxt → var → maybe (var × args × type)
ctxt-lookup-term-var Γ v = ctxt-lookup-tpkd-var Γ v >>= λ where
(qv , as , Tkt T) → just (qv , as , T)
(qv , as , Tkk k) → nothing
ctxt-lookup-term-var-def : ctxt → var → maybe term
ctxt-lookup-term-var-def Γ v with env-lookup Γ v
... | just (term-def mps opacity-open (just t) _ , _) = just $ maybe-else id lam-expand-term mps t
... | just (term-udef mps opacity-open t , _) = just $ maybe-else id lam-expand-term mps t
... | _ = nothing
ctxt-lookup-type-var-def : ctxt → var → maybe type
ctxt-lookup-type-var-def Γ v with env-lookup Γ v
... | just (type-def mps opacity-open (just T) _ , _) = just $ maybe-else id lam-expand-type mps T
... | _ = nothing
ctxt-lookup-kind-var-def : ctxt → var → maybe (params × kind)
ctxt-lookup-kind-var-def Γ x with qual-lookup Γ x
...| just (_ , as , kind-def ps k , _) = case subst-params-args' Γ ps as k of λ where
(k' , ps' , as') → just (ps' , k')
...| _ = nothing
ctxt-binds-term-var : ctxt → var → maybe (var × args)
ctxt-binds-term-var Γ x with qual-lookup Γ x
...| just (qx , as , term-def _ _ _ _ , _) = just (qx , as)
...| just (qx , as , term-udef _ _ _ , _) = just (qx , as)
...| just (qx , as , term-decl _ , _) = just (qx , as)
...| just (qx , as , ctr-def _ _ _ _ _ , _) = just (qx , as)
--...| just (qx , as , var-decl , _) = just (qx , as)
...| _ = nothing
ctxt-binds-type-var : ctxt → var → maybe (var × args)
ctxt-binds-type-var Γ x with qual-lookup Γ x
...| just (qx , as , type-def _ _ _ _ , _) = just (qx , as)
...| just (qx , as , type-decl _ , _) = just (qx , as)
...| _ = nothing
{-
inst-enc-defs : ctxt → params → args → encoding-defs → encoding-defs
inst-enc-defs Γ ps as (mk-enc-defs ecs gcs Cast cast-in cast-out cast-is Functor functor-in functor-out Fix fix-in fix-out lambek1 lambek2 fix-ind) =
let as = arg-set-erased tt <$> as in
mk-enc-defs ecs gcs
(inst-type Γ ps as Cast)
(inst-term Γ ps as cast-in)
(inst-term Γ ps as cast-out)
(inst-term Γ ps as cast-is)
(inst-type Γ ps as Functor)
(inst-term Γ ps as functor-in)
(inst-term Γ ps as functor-out)
(inst-type Γ ps as Fix)
(inst-term Γ ps as fix-in)
(inst-term Γ ps as fix-out)
(inst-term Γ ps as lambek1)
(inst-term Γ ps as lambek2)
(inst-term Γ ps as fix-ind)
-}
data-lookup' : ctxt → var → var → 𝕃 tmtp → maybe datatype-info
data-lookup' Γ xₒ x as =
(maybe-else'
{B = maybe (var × args × 𝕃 tmtp ×
params × kind × kind × ctrs × encoding-defs × encoded-defs)}
(trie-lookup (ctxt.μ' Γ) x) -- Is x known locally to be a datatype?
(trie-lookup (ctxt.μ Γ) x >>=c λ ps rest → -- No, so is it a global datatype?
let asₚ = tmtps-to-args-for-params nothing ps as
asᵢ = drop (length ps) as in
just (x , asₚ , asᵢ , ps , rest))
λ where
(x' , as') → -- Yes, it is a local datatype of x', and gives as' as parameters to x'
trie-lookup (ctxt.μ Γ) x' >>= λ rest → just (x' , as' , as , rest))
>>= λ where
(x' , asₚ , asᵢ , ps , kᵢ , k , cs , eds , gds) →
just $ mk-data-info x' xₒ asₚ asᵢ ps
(inst-kind Γ ps asₚ kᵢ)
(inst-kind Γ ps asₚ k)
cs
(inst-ctrs Γ ps asₚ (map-snd (subst Γ (params-to-tpapps ps (TpVar x')) x') <$> cs))
eds {-(inst-enc-defs Γ ps asₚ eds)-}
gds
--λ y → inst-ctrs Γ ps asₚ (map-snd (rename-var {TYPE} Γ x' y) <$> cs)
data-lookup : ctxt → var → 𝕃 tmtp → maybe datatype-info
data-lookup Γ x = data-lookup' Γ x x
data-lookup-mu : ctxt → var → var → 𝕃 tmtp → maybe datatype-info
data-lookup-mu Γ xₒ x as =
trie-lookup (ctxt.Is/μ Γ) x >>= λ x' → data-lookup' Γ xₒ x' as
data-highlight : ctxt → var → ctxt
data-highlight Γ x = record Γ { μ̲ = stringset-insert (ctxt.μ̲ Γ) x }
ctxt-lookup-term-loc : ctxt → var → maybe location
ctxt-lookup-term-loc Γ x = qual-lookup Γ x >>= λ where
(_ , _ , term-decl _ , loc) → just loc
(_ , _ , term-def _ _ _ _ , loc) → just loc
(_ , _ , term-udef _ _ _ , loc) → just loc
(_ , _ , ctr-def _ _ _ _ _ , loc) → just loc
(_ , _ , var-decl , loc) → just loc
_ → nothing
ctxt-lookup-type-loc : ctxt → var → maybe location
ctxt-lookup-type-loc Γ x = qual-lookup Γ x >>= λ where
(_ , _ , type-decl _ , loc) → just loc
(_ , _ , type-def _ _ _ _ , loc) → just loc
(_ , _ , var-decl , loc) → just loc
_ → nothing
----------------------------------------------------------------------
ctxt-var-location : ctxt → var → location
ctxt-var-location Γ x with trie-lookup (ctxt.i Γ) x
... | just (_ , l) = l
... | nothing = missing-location
ctxt-clarify-def : ctxt → opacity → var → maybe ctxt
ctxt-clarify-def Γ o x with qual-lookup Γ x
...| just (qx , as , type-def ps o' T? k , loc) =
maybe-if (o xor o') >>
just (record Γ { i = trie-insert (ctxt.i Γ) qx (type-def ps o T? k , loc) })
...| just (qx , as , term-def ps o' t? T , loc) =
maybe-if (o xor o') >>
just (record Γ { i = trie-insert (ctxt.i Γ) qx (term-def ps o t? T , loc) })
...| just (qx , as , term-udef ps o' t , loc) =
maybe-if (o xor o') >>
just (record Γ { i = trie-insert (ctxt.i Γ) qx (term-udef ps o t , loc) })
...| _ = nothing
ctxt-set-current-file : ctxt → string → string → ctxt
ctxt-set-current-file Γ fn mn = record Γ { fn = fn; mn = mn; ps = []; qual = new-qualif }
ctxt-set-current-mod : ctxt → string × string × params × qualif → ctxt
ctxt-set-current-mod Γ (fn , mn , ps , qual) = record Γ { fn = fn; mn = mn; ps = ps; qual = qual }
ctxt-add-current-params : ctxt → ctxt
ctxt-add-current-params Γ =
record Γ {
syms = trie-insert (ctxt.syms Γ) (ctxt.fn Γ) (ctxt.mn Γ , []);
mod-map = trie-insert (ctxt.mod-map Γ) (ctxt.mn Γ) (ctxt.fn Γ , ctxt.ps Γ)
}
ctxt-clear-symbol : ctxt → string → ctxt
ctxt-clear-symbol Γ x =
let qx = qualif-var Γ x in
record Γ {
qual = trie-remove (ctxt.qual Γ) x;
syms = trie-map (λ ss → fst ss , remove _=string_ x (snd ss)) (ctxt.syms Γ);
i = trie-remove (ctxt.i Γ) qx;
μ = trie-remove (ctxt.μ Γ) qx;
Is/μ = trie-remove (ctxt.Is/μ Γ) qx;
μ̲ = trie-remove (ctxt.μ̲ Γ) qx
}
ctxt-clear-symbols : ctxt → 𝕃 string → ctxt
ctxt-clear-symbols Γ [] = Γ
ctxt-clear-symbols Γ (v :: vs) = ctxt-clear-symbols (ctxt-clear-symbol Γ v) vs
ctxt-clear-symbols-of-file : ctxt → (filename : string) → ctxt
ctxt-clear-symbols-of-file Γ fn =
elim-pair (trie-lookup𝕃2 (ctxt.syms Γ) fn) λ mn xs →
let ps = maybe-else' (trie-lookup (ctxt.mod-map Γ) mn) [] snd in
record Γ {
syms = trie-insert (ctxt.syms Γ) fn (mn , []);
mod-map = trie-insert (ctxt.mod-map Γ) mn (fn , ps);
i = hremove (ctxt.i Γ) mn xs;
μ = hremove (ctxt.μ Γ) mn xs;
Is/μ = hremove (ctxt.Is/μ Γ) mn xs;
μ̲ = hremove (ctxt.μ̲ Γ) mn xs
}
where
hremove : ∀ {A : Set} → trie A → var → 𝕃 string → trie A
hremove i mn [] = i
hremove i mn (x :: xs) = hremove (trie-remove i (mn # x)) mn xs
ctxt-add-current-id : ctxt → ctxt
ctxt-add-current-id Γ with trie-contains (ctxt.id-map Γ) (ctxt.fn Γ)
...| tt = Γ
...| ff =
record Γ {
id-map = trie-insert (ctxt.id-map Γ) (ctxt.fn Γ) (suc (ctxt.id-current Γ));
id-current = suc (ctxt.id-current Γ);
id-list = ctxt.fn Γ :: ctxt.id-list Γ
}
ctxt-initiate-file : ctxt → (filename modname : string) → ctxt
ctxt-initiate-file Γ fn mn = ctxt-add-current-id (ctxt-set-current-file (ctxt-clear-symbols-of-file Γ fn) fn mn)
unqual : ctxt → var → string
unqual Γ v =
if qualif-nonempty (ctxt.qual Γ)
then unqual-local (unqual-all (ctxt.qual Γ) v)
else v
qualified-ctxt : ctxt → ctxt
qualified-ctxt Γ = -- use ctxt.i so we bring ALL defs (even from cousin modules, etc...) into scope
record Γ {qual = for trie-strings (ctxt.i Γ) accum empty-trie use λ x q → trie-insert q x (x , [])}
| {
"alphanum_fraction": 0.6046058816,
"avg_line_length": 37.328320802,
"ext": "agda",
"hexsha": "83eeb09a1331fe641a25822df8e0a70405973fe1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "zmthy/cedille",
"max_forks_repo_path": "src/ctxt.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "zmthy/cedille",
"max_issues_repo_path": "src/ctxt.agda",
"max_line_length": 158,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9df4b85b55b57f97466242fdbb499adbd3bca893",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "zmthy/cedille",
"max_stars_repo_path": "src/ctxt.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4952,
"size": 14894
} |
module nat-division-wf where
open import bool
open import bool-thms
open import eq
open import neq
open import nat
open import nat-thms
open import product
open import product-thms
open import sum
open import termination
----------------------------------------------------------------------
-- syntax
----------------------------------------------------------------------
infixl 10 _÷_!_
----------------------------------------------------------------------
-- operations
----------------------------------------------------------------------
{- a div-result for dividend x and divisor d consists of the quotient q, remainder r,
a proof that q * d + r = x, and a proof that the remainder is less than the divisor. -}
div-result : ℕ → ℕ → Set
div-result x d = Σ ℕ (λ q → Σ ℕ (λ r → q * d + r ≡ x ∧ r < d ≡ tt))
-- this uses well-founded recursion. The approach in nat-division.agda is arguably simpler.
div-helper : ∀ (x : ℕ) → ↓𝔹 _>_ x → (d : ℕ) → d =ℕ 0 ≡ ff → div-result x d
div-helper x ↓x 0 ()
div-helper 0 (pf↓ fx) (suc d) _ = 0 , 0 , refl , refl
div-helper (suc x) (pf↓ fx) (suc d) _ with keep (x < d)
div-helper (suc x) (pf↓ fx) (suc d) _ | tt , p = 0 , suc x , refl , p
div-helper (suc x) (pf↓ fx) (suc d) _ | ff , p
with div-helper (x ∸ d) (fx (∸<1 {x} {d})) (suc d) refl
div-helper (suc x) (pf↓ fx) (suc d) _ | ff , p | q , r , u , v =
suc q , r , lem{q * suc d} (∸eq-swap{x}{d}{q * suc d + r} (<ff{x} p) u) , v
where lem : ∀ {a b c : ℕ} → a + b + c ≡ x → suc (c + a + b) ≡ suc x
lem{a}{b}{c} p' rewrite +comm c a | sym (+assoc a c b)
| +comm c b | +assoc a b c | p' = refl
_÷_!_ : (x : ℕ) → (d : ℕ) → d =ℕ 0 ≡ ff → div-result x d
x ÷ d ! p = div-helper x (↓-> x) d p
_÷_!!_ : ℕ → (d : ℕ) → d =ℕ 0 ≡ ff → ℕ × ℕ
x ÷ d !! p with x ÷ d ! p
... | q , r , p' = q , r
-- return quotient only
_÷_div_ : ℕ → (d : ℕ) → d =ℕ 0 ≡ ff → ℕ
x ÷ d div p with x ÷ d ! p
... | q , r , p' = q
| {
"alphanum_fraction": 0.4592933948,
"avg_line_length": 35.5090909091,
"ext": "agda",
"hexsha": "c3e7b3fa845e49382ea1513d858b04ededbc2477",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "nat-division-wf.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "nat-division-wf.agda",
"max_line_length": 92,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "nat-division-wf.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 688,
"size": 1953
} |
------------------------------------------------------------------------------
-- Agda-Prop Library.
-- Useful views.
------------------------------------------------------------------------------
open import Data.Nat using (ℕ)
module Data.PropFormula.Views (n : ℕ) where
------------------------------------------------------------------------------
open import Data.PropFormula.Syntax n
------------------------------------------------------------------------------
data nView : PropFormula → Set where
conj : (φ₁ φ₂ : PropFormula) → nView (φ₁ ∧ φ₂)
disj : (φ₁ φ₂ : PropFormula) → nView (φ₁ ∨ φ₂)
impl : (φ₁ φ₂ : PropFormula) → nView (φ₁ ⊃ φ₂)
biimpl : (φ₁ φ₂ : PropFormula) → nView (φ₁ ⇔ φ₂)
nconj : (φ₁ φ₂ : PropFormula) → nView (¬ (φ₁ ∧ φ₂))
ndisj : (φ₁ φ₂ : PropFormula) → nView (¬ (φ₁ ∨ φ₂))
nneg : (φ₁ : PropFormula) → nView (¬ ¬ φ₁)
nimpl : (φ₁ φ₂ : PropFormula) → nView (¬ (φ₁ ⊃ φ₂))
nbiim : (φ₁ φ₂ : PropFormula) → nView (¬ (φ₁ ⇔ φ₂))
ntop : nView (¬ ⊤)
nbot : nView (¬ ⊥)
other : (φ₁ : PropFormula) → nView φ₁
n-view : (φ : PropFormula) → nView φ
n-view (φ₁ ∧ φ₂) = conj _ _
n-view (φ₁ ∨ φ₂) = disj _ _
n-view (φ₁ ⊃ φ₂) = impl _ _
n-view (φ₁ ⇔ φ₂) = biimpl _ _
n-view (¬ (φ₁ ∧ φ₂)) = nconj _ _
n-view (¬ (φ₁ ∨ φ₂)) = ndisj _ _
n-view (¬ (φ₁ ⊃ φ₂)) = nimpl _ _
n-view (¬ (φ₁ ⇔ φ₂)) = nbiim _ _
n-view (¬ (¬ φ₁)) = nneg _
n-view (¬ ⊤) = ntop
n-view (¬ ⊥) = nbot
n-view φ₁ = other _
data ConjView : PropFormula → Set where
conj : (φ₁ φ₂ : PropFormula) → ConjView (φ₁ ∧ φ₂)
other : (φ : PropFormula) → ConjView φ
conj-view : (φ : PropFormula) → ConjView φ
conj-view (φ₁ ∧ φ₂) = conj _ _
conj-view φ = other _
data DisjView : PropFormula → Set where
disj : (φ₁ φ₂ : PropFormula) → DisjView (φ₁ ∨ φ₂)
other : (φ : PropFormula) → DisjView φ
disj-view : (φ : PropFormula) → DisjView φ
disj-view (φ₁ ∨ φ₂) = disj _ _
disj-view φ = other _
data dView : PropFormula → Set where
conj : (φ₁ φ₂ : PropFormula) → dView (φ₁ ∧ φ₂)
disj : (φ₁ φ₂ : PropFormula) → dView (φ₁ ∨ φ₂)
other : (φ : PropFormula) → dView φ
d-view : (φ : PropFormula) → dView φ
d-view (φ₁ ∧ φ₂) = conj _ _
d-view (φ₁ ∨ φ₂) = disj _ _
d-view φ = other _
data dViewAux : PropFormula → Set where
case₁ : (φ₁ φ₂ φ₃ : PropFormula) → dViewAux ((φ₁ ∨ φ₂) ∧ φ₃)
case₂ : (φ₁ φ₂ φ₃ : PropFormula) → dViewAux (φ₁ ∧ (φ₂ ∨ φ₃))
other : (φ : PropFormula) → dViewAux φ
d-view-aux : (φ : PropFormula) → dViewAux φ
d-view-aux ((φ₁ ∨ φ₂) ∧ φ₃) = case₁ _ _ _
d-view-aux (φ₁ ∧ (φ₂ ∨ φ₃)) = case₂ _ _ _
d-view-aux φ = other _
data cViewAux : PropFormula → Set where
case₁ : (φ₁ φ₂ φ₃ : PropFormula) → cViewAux ((φ₁ ∧ φ₂) ∨ φ₃)
case₂ : (φ₁ φ₂ φ₃ : PropFormula) → cViewAux (φ₁ ∨ (φ₂ ∧ φ₃))
other : (φ : PropFormula) → cViewAux φ
c-view-aux : (φ : PropFormula) → cViewAux φ
c-view-aux ((φ ∧ ψ) ∨ φ₃) = case₁ _ _ _
c-view-aux (φ ∨ (ψ ∧ φ₃)) = case₂ _ _ _
c-view-aux φ = other _
data ImplView : PropFormula → Set where
impl : (φ₁ φ₂ : PropFormula) → ImplView (φ₁ ⊃ φ₂)
other : (φ : PropFormula) → ImplView φ
impl-view : (φ : PropFormula) → ImplView φ
impl-view (φ₁ ⊃ φ₂) = impl _ _
impl-view φ = other _
data BiimplView : PropFormula → Set where
biimpl : (φ₁ φ₂ : PropFormula) → BiimplView (φ₁ ⇔ φ₂)
other : (φ : PropFormula) → BiimplView φ
biimpl-view : (φ : PropFormula) → BiimplView φ
biimpl-view (φ₁ ⇔ φ₂) = biimpl _ _
biimpl-view φ = other _
data NegView : PropFormula → Set where
neg : (φ : PropFormula) → NegView (¬ φ)
pos : (φ : PropFormula) → NegView φ
neg-view : (φ : PropFormula) → NegView φ
neg-view (¬ φ) = neg _
neg-view φ = pos _
data PushNegView : PropFormula → Set where
yes : (φ : PropFormula) → PushNegView φ
no-∧ : (φ₁ φ₂ : PropFormula) → PushNegView (φ₁ ∧ φ₂)
no-∨ : (φ₁ φ₂ : PropFormula) → PushNegView (φ₁ ∨ φ₂)
no : (φ : PropFormula) → PushNegView φ
push-neg-view : (φ : PropFormula) → PushNegView φ
push-neg-view φ with n-view φ
push-neg-view .(φ₁ ∧ φ₂) | conj φ₁ φ₂ = no-∧ _ _
push-neg-view .(φ₁ ∨ φ₂) | disj φ₁ φ₂ = no-∨ _ _
push-neg-view .(φ₁ ⊃ φ₂) | impl φ₁ φ₂ = yes _
push-neg-view .(φ₁ ⇔ φ₂) | biimpl φ₁ φ₂ = yes _
push-neg-view .(¬ (φ₁ ∧ φ₂)) | nconj φ₁ φ₂ = yes _
push-neg-view .(¬ (φ₁ ∨ φ₂)) | ndisj φ₁ φ₂ = yes _
push-neg-view .(¬ (¬ φ₁)) | nneg φ₁ = yes _
push-neg-view .(¬ (φ₁ ⊃ φ₂)) | nimpl φ₁ φ₂ = yes _
push-neg-view .(¬ (φ₁ ⇔ φ₂)) | nbiim φ₁ φ₂ = yes _
push-neg-view .(¬ ⊤) | ntop = yes _
push-neg-view .(¬ ⊥) | nbot = yes _
push-neg-view φ | other .φ = no _
data LiteralView : PropFormula → Set where
yes : (φ : PropFormula) → LiteralView φ
no : (φ : PropFormula) → LiteralView φ
literal-view : (φ : PropFormula) → LiteralView φ
literal-view φ with n-view φ
literal-view .(φ₁ ∧ φ₂) | conj φ₁ φ₂ = no _
literal-view .(φ₁ ∨ φ₂) | disj φ₁ φ₂ = no _
literal-view .(φ₁ ⊃ φ₂) | impl φ₁ φ₂ = no _
literal-view .(φ₁ ⇔ φ₂) | biimpl φ₁ φ₂ = no _
literal-view .(¬ (φ₁ ∧ φ₂)) | nconj φ₁ φ₂ = no _
literal-view .(¬ (φ₁ ∨ φ₂)) | ndisj φ₁ φ₂ = no _
literal-view .(¬ (¬ φ₁)) | nneg φ₁ = no _
literal-view .(¬ (φ₁ ⊃ φ₂)) | nimpl φ₁ φ₂ = no _
literal-view .(¬ (φ₁ ⇔ φ₂)) | nbiim φ₁ φ₂ = no _
literal-view .(¬ ⊤) | ntop = yes _
literal-view .(¬ ⊥) | nbot = yes _
literal-view φ | other _ = yes _
| {
"alphanum_fraction": 0.5301248417,
"avg_line_length": 35.4294871795,
"ext": "agda",
"hexsha": "47b9b5eadc7d9d02d46f9dc62b21c656246701d5",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z",
"max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jonaprieto/agda-prop",
"max_forks_repo_path": "src/Data/PropFormula/Views.agda",
"max_issues_count": 18,
"max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jonaprieto/agda-prop",
"max_issues_repo_path": "src/Data/PropFormula/Views.agda",
"max_line_length": 78,
"max_stars_count": 13,
"max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jonaprieto/agda-prop",
"max_stars_repo_path": "src/Data/PropFormula/Views.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z",
"num_tokens": 2109,
"size": 5527
} |
open import Agda.Builtin.Nat
f : Nat → Nat
f 0 = zero
f 0 = 0 -- All -- But Only
f (suc n) = n -- These
f 0 = 0 -- Lines -- These Two
-- Used to be highlighted -- Should be!
g : Nat → Nat
g 0 = zero
g 0 -- The highlihting should still
= 0 -- span multiple lines if the clause does
g (suc n) = n
g 0 -- Even
-- With
-- A Lot
= 0 -- Of Empty Lines in between
| {
"alphanum_fraction": 0.4709677419,
"avg_line_length": 22.1428571429,
"ext": "agda",
"hexsha": "eeee76fb8200dbe34f5860f7a03eab7123149766",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/LaTeXAndHTML/succeed/Issue3965.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/LaTeXAndHTML/succeed/Issue3965.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/LaTeXAndHTML/succeed/Issue3965.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 148,
"size": 465
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
open import lib.NType2
open import lib.types.Empty
open import lib.types.Group
open import lib.types.Int
open import lib.types.List
open import lib.types.Nat
open import lib.types.Pi
open import lib.types.SetQuotient
open import lib.types.Sigma
open import lib.types.Word
open import lib.groups.GroupProduct
open import lib.groups.Homomorphism
open import lib.groups.Isomorphism
module lib.groups.FreeAbelianGroup {i} where
-- the relation for making the quotient.
-- [fsr-sym] is not needed, but it seems more principled to
-- make [FormalSumRel] an equivalence relation.
data FormalSumRel {A : Type i} : Word A → Word A → Type i where
fsr-refl : ∀ {l₁ l₂} → l₁ == l₂ → FormalSumRel l₁ l₂
fsr-trans : ∀ {l₁ l₂ l₃} → FormalSumRel l₁ l₂ → FormalSumRel l₂ l₃ → FormalSumRel l₁ l₃
fsr-sym : ∀ {l₁ l₂} → FormalSumRel l₁ l₂ → FormalSumRel l₂ l₁
fsr-cons : ∀ x {l₁ l₂} → FormalSumRel l₁ l₂ → FormalSumRel (x :: l₁) (x :: l₂)
fsr-swap : ∀ x₁ x₂ l → FormalSumRel (x₁ :: x₂ :: l) (x₂ :: x₁ :: l)
fsr-flip : ∀ x₁ l → FormalSumRel (x₁ :: flip x₁ :: l) l
-- The quotient
FormalSum : Type i → Type i
FormalSum A = SetQuot (FormalSumRel {A})
module _ {A : Type i} where
fs[_] : Word A → FormalSum A
fs[_] = q[_]
module FormalSumElim {k} {P : FormalSum A → Type k}
{{p : {x : FormalSum A} → is-set (P x)}} (incl* : (a : Word A) → P fs[ a ])
(rel* : ∀ {a₁ a₂} (r : FormalSumRel a₁ a₂) → incl* a₁ == incl* a₂ [ P ↓ quot-rel r ])
= SetQuotElim incl* rel*
open FormalSumElim public using () renaming (f to FormalSum-elim)
module FormalSumRec {k} {B : Type k} {{p : is-set B}} (incl* : Word A → B)
(rel* : ∀ {a₁ a₂} (r : FormalSumRel a₁ a₂) → incl* a₁ == incl* a₂)
= SetQuotRec incl* rel*
open FormalSumRec public using () renaming (f to FormalSum-rec)
module _ {A : Type i} where
-- useful properties that remain public
abstract
FormalSumRel-cong-++-l :
∀ {l₁ l₁'} → FormalSumRel {A} l₁ l₁'
→ (l₂ : Word A)
→ FormalSumRel (l₁ ++ l₂) (l₁' ++ l₂)
FormalSumRel-cong-++-l (fsr-refl idp) l₂ = fsr-refl idp
FormalSumRel-cong-++-l (fsr-trans fsr₁ fsr₂) l₂ = fsr-trans (FormalSumRel-cong-++-l fsr₁ l₂) (FormalSumRel-cong-++-l fsr₂ l₂)
FormalSumRel-cong-++-l (fsr-sym fsr) l₂ = fsr-sym (FormalSumRel-cong-++-l fsr l₂)
FormalSumRel-cong-++-l (fsr-cons x fsr₁) l₂ = fsr-cons x (FormalSumRel-cong-++-l fsr₁ l₂)
FormalSumRel-cong-++-l (fsr-swap x₁ x₂ l₁) l₂ = fsr-swap x₁ x₂ (l₁ ++ l₂)
FormalSumRel-cong-++-l (fsr-flip x₁ l₁) l₂ = fsr-flip x₁ (l₁ ++ l₂)
FormalSumRel-cong-++-r :
∀ (l₁ : Word A)
→ ∀ {l₂ l₂'} → FormalSumRel l₂ l₂'
→ FormalSumRel (l₁ ++ l₂) (l₁ ++ l₂')
FormalSumRel-cong-++-r nil fsr₂ = fsr₂
FormalSumRel-cong-++-r (x :: l₁) fsr₂ = fsr-cons x (FormalSumRel-cong-++-r l₁ fsr₂)
FormalSumRel-swap1 : ∀ x l₁ l₂ → FormalSumRel {A} (l₁ ++ (x :: l₂)) (x :: l₁ ++ l₂)
FormalSumRel-swap1 x nil l₂ = fsr-refl idp
FormalSumRel-swap1 x (x₁ :: l₁) l₂ = fsr-trans (fsr-cons x₁ (FormalSumRel-swap1 x l₁ l₂)) (fsr-swap x₁ x (l₁ ++ l₂))
module _ (A : Type i) where
private
infixl 80 _⊞_
_⊞_ : FormalSum A → FormalSum A → FormalSum A
_⊞_ = FormalSum-rec
(λ l₁ → FormalSum-rec (λ l₂ → fs[ l₁ ++ l₂ ])
(λ r → quot-rel $ FormalSumRel-cong-++-r l₁ r))
(λ {l₁} {l₁'} r → λ= $ FormalSum-elim
(λ l₂ → quot-rel $ FormalSumRel-cong-++-l r l₂)
(λ _ → prop-has-all-paths-↓))
abstract
FormalSumRel-cong-flip : ∀ {l₁ l₂}
→ FormalSumRel {A} l₁ l₂ → FormalSumRel (Word-flip l₁) (Word-flip l₂)
FormalSumRel-cong-flip (fsr-refl idp) = fsr-refl idp
FormalSumRel-cong-flip (fsr-trans fsr₁ fsr₂) = fsr-trans (FormalSumRel-cong-flip fsr₁) (FormalSumRel-cong-flip fsr₂)
FormalSumRel-cong-flip (fsr-sym fsr) = fsr-sym (FormalSumRel-cong-flip fsr)
FormalSumRel-cong-flip (fsr-cons x fsr₁) = fsr-cons (flip x) (FormalSumRel-cong-flip fsr₁)
FormalSumRel-cong-flip (fsr-swap x₁ x₂ l) = fsr-swap (flip x₁) (flip x₂) (Word-flip l)
FormalSumRel-cong-flip (fsr-flip (inl x) l) = fsr-flip (inr x) (Word-flip l)
FormalSumRel-cong-flip (fsr-flip (inr x) l) = fsr-flip (inl x) (Word-flip l)
⊟ : FormalSum A → FormalSum A
⊟ = FormalSum-rec (fs[_] ∘ Word-flip)
(λ r → quot-rel $ FormalSumRel-cong-flip r)
⊞-unit : FormalSum A
⊞-unit = fs[ nil ]
abstract
⊞-unit-l : ∀ g → ⊞-unit ⊞ g == g
⊞-unit-l = FormalSum-elim
(λ _ → idp)
(λ _ → prop-has-all-paths-↓)
⊞-assoc : ∀ g₁ g₂ g₃ → (g₁ ⊞ g₂) ⊞ g₃ == g₁ ⊞ (g₂ ⊞ g₃)
⊞-assoc = FormalSum-elim
(λ l₁ → FormalSum-elim
(λ l₂ → FormalSum-elim
(λ l₃ → ap fs[_] $ ++-assoc l₁ l₂ l₃)
(λ _ → prop-has-all-paths-↓))
(λ _ → prop-has-all-paths-↓))
(λ _ → prop-has-all-paths-↓)
Word-inv-l : ∀ l → FormalSumRel {A} (Word-flip l ++ l) nil
Word-inv-l nil = fsr-refl idp
Word-inv-l (x :: l) =
fsr-trans (FormalSumRel-swap1 x (flip x :: Word-flip l) l) $
fsr-trans (fsr-flip x (Word-flip l ++ l)) (Word-inv-l l)
⊟-inv-l : ∀ g → (⊟ g) ⊞ g == ⊞-unit
⊟-inv-l = FormalSum-elim
(λ l → quot-rel (Word-inv-l l))
(λ _ → prop-has-all-paths-↓)
FormalSumRel-swap : ∀ l₁ l₂ → FormalSumRel {A} (l₁ ++ l₂) (l₂ ++ l₁)
FormalSumRel-swap l₁ nil = fsr-refl (++-unit-r l₁)
FormalSumRel-swap l₁ (x :: l₂) = fsr-trans (FormalSumRel-swap1 x l₁ l₂) (fsr-cons x (FormalSumRel-swap l₁ l₂))
⊞-comm : ∀ g₁ g₂ → g₁ ⊞ g₂ == g₂ ⊞ g₁
⊞-comm = FormalSum-elim
(λ l₁ → FormalSum-elim
(λ l₂ → quot-rel $ FormalSumRel-swap l₁ l₂)
(λ _ → prop-has-all-paths-↓))
(λ _ → prop-has-all-paths-↓)
FormalSum-group-structure : GroupStructure (FormalSum A)
FormalSum-group-structure = record
{ ident = ⊞-unit
; inv = ⊟
; comp = _⊞_
; unit-l = ⊞-unit-l
; assoc = ⊞-assoc
; inv-l = ⊟-inv-l
}
FreeAbGroup : AbGroup i
FreeAbGroup = group _ FormalSum-group-structure , ⊞-comm
module FreeAbGroup = AbGroup FreeAbGroup
{- Freeness (universal properties) -}
module _ {A : Type i} {j} (G : AbGroup j) where
private
module G = AbGroup G
abstract
Word-extendᴳ-emap : ∀ f {l₁ l₂}
→ FormalSumRel {A} l₁ l₂
→ Word-extendᴳ G.grp f l₁ == Word-extendᴳ G.grp f l₂
Word-extendᴳ-emap f (fsr-refl idp) = idp
Word-extendᴳ-emap f (fsr-trans fsr fsr₁) = (Word-extendᴳ-emap f fsr) ∙ (Word-extendᴳ-emap f fsr₁)
Word-extendᴳ-emap f (fsr-sym fsr) = ! (Word-extendᴳ-emap f fsr)
Word-extendᴳ-emap f (fsr-cons x fsr) = ap (G.comp (PlusMinus-extendᴳ G.grp f x)) (Word-extendᴳ-emap f fsr)
Word-extendᴳ-emap f (fsr-swap x₁ x₂ l) =
! (G.assoc (PlusMinus-extendᴳ G.grp f x₁) (PlusMinus-extendᴳ G.grp f x₂) (Word-extendᴳ G.grp f l))
∙ ap (λ g → G.comp g (Word-extendᴳ G.grp f l)) (G.comm (PlusMinus-extendᴳ G.grp f x₁) (PlusMinus-extendᴳ G.grp f x₂))
∙ G.assoc (PlusMinus-extendᴳ G.grp f x₂) (PlusMinus-extendᴳ G.grp f x₁) (Word-extendᴳ G.grp f l)
Word-extendᴳ-emap f (fsr-flip (inl x) l) =
! (G.assoc (f x) (G.inv (f x)) (Word-extendᴳ G.grp f l))
∙ ap (λ g → G.comp g (Word-extendᴳ G.grp f l)) (G.inv-r (f x)) ∙ G.unit-l _
Word-extendᴳ-emap f (fsr-flip (inr x) l) =
! (G.assoc (G.inv (f x)) (f x) (Word-extendᴳ G.grp f l))
∙ ap (λ g → G.comp g (Word-extendᴳ G.grp f l)) (G.inv-l (f x)) ∙ G.unit-l _
FormalSum-extend : (A → G.El) → FormalSum A → G.El
FormalSum-extend f = FormalSum-rec (Word-extendᴳ G.grp f)
(λ r → Word-extendᴳ-emap f r)
FreeAbGroup-extend : (A → G.El) → (FreeAbGroup.grp A →ᴳ G.grp)
FreeAbGroup-extend f' = record {M} where
module M where
f : FreeAbGroup.El A → G.El
f = FormalSum-extend f'
abstract
pres-comp : preserves-comp (FreeAbGroup.comp A) G.comp f
pres-comp =
FormalSum-elim
(λ l₁ → FormalSum-elim
(λ l₂ → Word-extendᴳ-++ G.grp f' l₁ l₂)
(λ _ → prop-has-all-paths-↓))
(λ _ → prop-has-all-paths-↓)
private
module Lemma (hom : FreeAbGroup.grp A →ᴳ G.grp) where
open GroupHom hom
f* : A → G.El
f* a = f fs[ inl a :: nil ]
abstract
PlusMinus-extend-hom : ∀ x → PlusMinus-extendᴳ G.grp f* x == f fs[ x :: nil ]
PlusMinus-extend-hom (inl x) = idp
PlusMinus-extend-hom (inr x) = ! $ pres-inv fs[ inl x :: nil ]
Word-extend-hom : ∀ l → Word-extendᴳ G.grp f* l == f fs[ l ]
Word-extend-hom nil = ! pres-ident
Word-extend-hom (x :: l) = ap2 G.comp (PlusMinus-extend-hom x) (Word-extend-hom l) ∙ ! (pres-comp _ _)
open Lemma
FreeAbGroup-extend-is-equiv : is-equiv FreeAbGroup-extend
FreeAbGroup-extend-is-equiv = is-eq _ from to-from from-to where
to = FreeAbGroup-extend
from = f*
abstract
to-from : ∀ h → to (from h) == h
to-from h = group-hom= $ λ= $ FormalSum-elim
(λ l → Word-extend-hom h l)
(λ _ → prop-has-all-paths-↓)
from-to : ∀ f → from (to f) == f
from-to f = λ= λ a → G.unit-r (f a)
FreeAbGroup-extend-hom : Πᴳ A (λ _ → G.grp) →ᴳ hom-group (FreeAbGroup.grp A) G
FreeAbGroup-extend-hom = record {M} where
module M where
f : (A → G.El) → (FreeAbGroup.grp A →ᴳ G.grp)
f = FreeAbGroup-extend
abstract
pres-comp : preserves-comp (Group.comp (Πᴳ A (λ _ → G.grp))) (Group.comp (hom-group (FreeAbGroup.grp A) G)) f
pres-comp = λ f₁ f₂ → group-hom= $ λ= $
FormalSum-elim
(Word-extendᴳ-comp G f₁ f₂)
(λ _ → prop-has-all-paths-↓)
FreeAbGroup-extend-iso : Πᴳ A (λ _ → G.grp) ≃ᴳ hom-group (FreeAbGroup.grp A) G
FreeAbGroup-extend-iso = FreeAbGroup-extend-hom , FreeAbGroup-extend-is-equiv
{- relation with [Word-exp] -}
module _ {A : Type i} where
abstract
FormalSumRel-pres-exp : ∀ (a : A) z →
fs[ Word-exp a z ] == GroupStructure.exp (FormalSum-group-structure A) fs[ inl a :: nil ] z
FormalSumRel-pres-exp a (pos O) = idp
FormalSumRel-pres-exp a (pos (S O)) = idp
FormalSumRel-pres-exp a (pos (S (S n))) =
ap (Group.comp (FreeAbGroup.grp A) fs[ inl a :: nil ]) (FormalSumRel-pres-exp a (pos (S n)))
FormalSumRel-pres-exp a (negsucc O) = idp
FormalSumRel-pres-exp a (negsucc (S n)) =
ap (Group.comp (FreeAbGroup.grp A) fs[ inr a :: nil ]) (FormalSumRel-pres-exp a (negsucc n))
| {
"alphanum_fraction": 0.5931349244,
"avg_line_length": 40.2950191571,
"ext": "agda",
"hexsha": "ae3104fcd724509185c5ea2e81501ae78994a043",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/groups/FreeAbelianGroup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/groups/FreeAbelianGroup.agda",
"max_line_length": 129,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/groups/FreeAbelianGroup.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4034,
"size": 10517
} |
open import Agda.Builtin.IO
open import Agda.Builtin.Reflection
open import Agda.Builtin.String
open import Agda.Builtin.Unit
_>>=_ : {A B : Set} → TC A → (A → TC B) → TC B
_>>=_ = λ x f → bindTC x f
postulate
putStr : String → IO ⊤
{-# FOREIGN GHC import qualified Data.Text.IO #-}
{-# COMPILE GHC putStr = Data.Text.IO.putStr #-}
{-# COMPILE JS putStr =
function (x) {
return function(cb) {
process.stdout.write(x); cb(0); }; } #-}
main : IO ⊤
main = putStr "Success\n"
| {
"alphanum_fraction": 0.6290322581,
"avg_line_length": 23.619047619,
"ext": "agda",
"hexsha": "7a824db17164d9b57d25ea2fc6ad9b82befb4173",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue5420.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue5420.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue5420.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 150,
"size": 496
} |
{- trying (and failing) to create a univesal "successor" -}
-- types with and without payloads defined dependently, those w/o payloads in terms of those with (using ⊤ as a trivial payload)
-- this complicates the successor constructor, `!`, so we use use pattern (OR function?), `¡`
module Oscar.Data3 where
record ⊤ : Set where
constructor tt
infixr 20 _∷_
-- List
data ⟦_⟧ {a} (A : Set a) : Set a where
∅ : ⟦ A ⟧
_∷_ : A → ⟦ A ⟧ → ⟦ A ⟧
-- Nat
⟦⟧ = ⟦ ⊤ ⟧
infix 21 ¡_
pattern ¡_ ⟦A⟧ = tt ∷ ⟦A⟧
--¡ : ⟦⟧ → ⟦⟧
--¡ ⟦A⟧ = tt ∷ ⟦A⟧
-- Fin, with payload
data ⟦_⟧[_] {a} (A : ⟦⟧ → Set a) : ⟦⟧ → Set a where
∅ : ∀ {n} → ⟦ A ⟧[ ¡ n ]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ n ] → ⟦ A ⟧[ ¡ n ]
data ⟦_⟧[_₀] {a} (A : ⟦⟧ → Set a) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[ ∅ ₀]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ n ₀] → ⟦ A ⟧[ ¡ n ₀]
Const_ : ∀ {a} {A : Set a} {b} {B : Set b} → B → A → B
Const_ x _ = x
⟦⟧[_₀] = ⟦ Const ⊤ ⟧[_₀]
-- Fin
⟦⟧[_] = ⟦ Const ⊤ ⟧[_]
-- m ≤ n, counting down from n-1 to m
data ⟦_⟧[_≤↓_] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[ m ≤↓ m ]
_∷_ : ∀ {n} → A n → ⟦ A ⟧[ m ≤↓ n ] → ⟦ A ⟧[ m ≤↓ ¡ n ]
infix 21 ‼_
pattern ‼_ ⟦A⟧ = tt ∷ ⟦A⟧ -- tricky, works for all above _∷_ constructors only because it is defined afterwards, won't work for later-defined constructors
testNat : ⟦⟧
testNat = ¡ ∅
testListNat : ⟦ ⟦⟧ ⟧
testListNat = ¡ ∅ ∷ ‼ ∅ ∷ ‼ ‼ ∅ ∷ ∅ ∷ ¡ ¡ ¡ ∅ ∷ ∅
testFin : ⟦⟧[ ¡ ¡ ∅ ]
testFin = ‼ ∅
⟦⟧[_≤↓_] = ⟦ Const ⊤ ⟧[_≤↓_]
test≤↓ : ⟦⟧[ ‼ ‼ ‼ ∅ ≤↓ ‼ ‼ ‼ ‼ ‼ ∅ ]
test≤↓ = ‼ ‼ ∅
-- m ≤ n, counting up from m to n-1
data ⟦_⟧[_↑≤_] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set a where
∅ : ⟦ A ⟧[ m ↑≤ m ]
_∷_ : ∀ {n} → A m → ⟦ A ⟧[ ¡ m ↑≤ n ] → ⟦ A ⟧[ m ↑≤ n ]
⟦⟧[_↑≤_] = ⟦ Const ⊤ ⟧[_↑≤_]
-- Inj (almost)
data ⟦_⟧[_↓≤↓_] {a} (A : ⟦⟧ → ⟦⟧ → Set a) : ⟦⟧ → ⟦⟧ → Set a where
∅ : ∀ {n} → ⟦ A ⟧[ ∅ ↓≤↓ n ]
_∷_ : ∀ {m n} → A m n → ⟦ A ⟧[ m ↓≤↓ n ] → ⟦ A ⟧[ ¡ m ↓≤↓ ¡ n ]
⟦⟧[_↓≤↓_] = ⟦ Const Const ⊤ ⟧[_↓≤↓_]
⓪ ⑴ ⑵ : ⟦⟧
⓪ = ∅
⑴ = ‼ ∅
⑵ = ‼ ⑴
data D : ⟦⟧ → ⟦⟧ → Set where
List : D ⓪ ⓪
Fin : D ⑴ ⑴
Vec : D ⑴ ⑴
Descend : D ⑴ ⑵
Ascend : D ⑴ ⑵
Inj : D ⑵ ⑵
open import Oscar.Level
theA : ∀ ℓ → ⟦⟧ → Set (lsuc ℓ)
theA ℓ ∅ = Set ℓ
theA ℓ (tt ∷ x₁) = ⟦⟧ → theA ℓ x₁
theIndices : ⟦⟧ → Set
theIndices x = ⟦ Const ⟦⟧ ⟧[ x ₀]
μ : ∀ {p i} → D p i → ∀ {a} → theA a p → theIndices i → Set a
μ List A _ = ⟦ A ⟧
μ Fin A (n ∷ _) = ⟦ A ⟧[ n ]
μ Vec A (n ∷ _) = ⟦ A ⟧[ n ₀]
μ Descend A (m ∷ n ∷ _) = ⟦ A ⟧[ m ≤↓ n ]
μ Ascend A (m ∷ n ∷ _) = ⟦ A ⟧[ m ↑≤ n ]
μ Inj A (m ∷ n ∷ ∅) = ⟦ A ⟧[ m ↓≤↓ n ]
μ¡ : ∀ {p i} → D p i → theIndices i → Set
μ¡ List _ = ⟦⟧ → ⟦⟧
μ¡ Fin (n ∷ _) = ⟦⟧[ n ] → ⟦⟧[ ¡ n ]
μ¡ Vec (n ∷ _) = ⟦⟧[ n ₀] → ⟦⟧[ ¡ n ₀]
μ¡ Descend (m ∷ n ∷ _) = ⟦⟧[ m ≤↓ n ] → ⟦⟧[ m ≤↓ ¡ n ]
μ¡ Ascend (m ∷ n ∷ _) = ⟦⟧[ ¡ m ↑≤ n ] → ⟦⟧[ m ↑≤ n ]
μ¡ Inj (m ∷ n ∷ _) = ⟦⟧[ m ↓≤↓ n ] → ⟦⟧[ ¡ m ↓≤↓ ¡ n ]
μ¡↑ : ∀ {p i} → D p i → Set
μ¡↑ List = ⟦⟧ → ⟦⟧
μ¡↑ Fin = {!!}
μ¡↑ Vec = {!!}
μ¡↑ Descend = {!!}
μ¡↑ Ascend = {!!}
μ¡↑ Inj = {!!}
theArguments : ∀ {p i} → (d : D p i) → Set
theArguments List = μ¡ List ∅
theArguments Fin = {n : ⟦⟧} → μ¡ Fin (n ∷ ∅)
theArguments Vec = {n : ⟦⟧} → μ¡ Vec (n ∷ ∅)
theArguments Descend = {m : ⟦⟧} → {n : ⟦⟧} → μ¡ Descend (m ∷ n ∷ ∅)
theArguments Ascend = {m : ⟦⟧} → {n : ⟦⟧} → μ¡ Ascend (m ∷ n ∷ ∅)
theArguments Inj = {m : ⟦⟧} → {n : ⟦⟧} → μ¡ Inj (m ∷ n ∷ ∅)
infix 21 ↑_
↑_ : ∀ {p i} → {d : D p i} → {I : theIndices i} → μ¡ d I
↑_ {d = List} = ‼_
↑_ {d = Fin} {x ∷ I} = ‼_
↑_ {d = Vec} {x ∷ I} = ‼_
↑_ {d = Descend} {x ∷ x₁ ∷ I} = ‼_
↑_ {d = Ascend} {x ∷ x₁ ∷ I} = tt ∷_
↑_ {d = Inj} {x ∷ x₁ ∷ I} = tt ∷_
↑↑ : ∀ {p i} → {d : D p i} → theArguments d
↑↑ {d = List} = {!‼_!}
↑↑ {d = Fin} = ‼_
↑↑ {d = Vec} = ‼_
↑↑ {d = Descend} = ‼_
↑↑ {d = Ascend} = tt ∷_
↑↑ {d = Inj} = tt ∷_
record BANG {p i} (d : D p i) : Set where
field
⟰ : theArguments d
open BANG ⦃ … ⦄
instance BANGFin : BANG Fin
BANG.⟰ BANGFin {n} = ‼_
testμ : μ Fin (Const ⊤) (‼ ‼ ‼ ‼ ∅ ∷ ∅)
testμ = ⟰ {d = Fin} {!!} -- ↑↑ {d = Fin} {!!}
-- ↑_ {d = Fin} {I = _ ∷ {!!}} ∅
-- ↑_ {d = Fin} {I = {!!} ∷ {!!}} {!!}
{-
data ⟦_⟧ {a} (A : Set a) : Set a where
data ⟦_⟧[_] {a} (A : ⟦⟧ → Set a) : ⟦⟧ → Set a where
data ⟦_⟧[_≤↓_] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set a where
data ⟦_⟧[_↑≤_] {a} (A : ⟦⟧ → Set a) (m : ⟦⟧) : ⟦⟧ → Set a where
data ⟦_⟧[_↓≤↓_] {a} (A : ⟦⟧ → ⟦⟧ → Set a) : ⟦⟧ → ⟦⟧ → Set a where
-}
| {
"alphanum_fraction": 0.4065172175,
"avg_line_length": 25.755952381,
"ext": "agda",
"hexsha": "c1e93497fd18d54b62222a5ed78880e720c1445e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Data3.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Data3.agda",
"max_line_length": 154,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Data3.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2465,
"size": 4327
} |
module SimpleTT where
data 𝟘 : Set where
absurd : ∀ {ℓ} {A : Set ℓ} → 𝟘 → A
absurd ()
data _⁺ (A : Set) : Set where
Z : A ⁺
S : A → A ⁺
record Signature : Set₁ where
field
ty-op : Set
tm-op : Set
ty-ty-arg : ty-op → Set
-- ty-tm-arg : ty-op → Set
-- tm-ty-arg : tm-op → Set
tm-tm-arg : tm-op → Set
open Signature
data Theory : Set₁
thy-signature : Theory → Signature
data Ty (T : Theory) : Set
data Tm (T : Theory) (A : Ty T) : Set
data Theory where
thy-empty : Theory
th-type : ∀ (T : Theory) → (α : Set) → (α → Ty T) → Theory
th-term : ∀ (T : Theory) → (α : Set) → (α → Ty T) → Ty T → Theory
thy-signature thy-empty =
record { ty-op = 𝟘
; tm-op = 𝟘
; ty-ty-arg = absurd
; tm-tm-arg = absurd
}
thy-signature (th-type T α x) =
record { ty-op = (ty-op Σ) ⁺
; tm-op = tm-op Σ
; ty-ty-arg = t
; tm-tm-arg = tm-tm-arg Σ
}
where
Σ = thy-signature T
t : ∀ (f : (ty-op Σ) ⁺) → Set
t Z = α
t (S f) = ty-ty-arg (thy-signature T) f
thy-signature (th-term T α ts t) =
record { ty-op = ty-op Σ
; tm-op = (tm-op Σ) ⁺
; ty-ty-arg = ty-ty-arg Σ
; tm-tm-arg = tm
}
where
Σ = thy-signature T
tm : ∀ (f : (tm-op Σ) ⁺) → Set
tm Z = {!!}
tm (S x) = {!!}
data Ty T where
ty-expr : ∀ (f : ty-op (thy-signature T)) → (ty-ty-arg (thy-signature T) f → Ty T) → Ty T
data Tm T A where
| {
"alphanum_fraction": 0.4585459184,
"avg_line_length": 23.0588235294,
"ext": "agda",
"hexsha": "c7ade1a29356fc1999a888784079d6a94bf3ec05",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z",
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/Experimental/SimpleTT.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/Experimental/SimpleTT.agda",
"max_line_length": 93,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cilinder/formaltt",
"max_stars_repo_path": "src/Experimental/SimpleTT.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z",
"num_tokens": 590,
"size": 1568
} |
-- Copyright: (c) 2016 Ertugrul Söylemez
-- License: BSD3
-- Maintainer: Ertugrul Söylemez <[email protected]>
module Algebra.Category.Category where
open import Algebra.Category.Semigroupoid
open import Core
-- A category is a semigroupoid with an identity morphism on every
-- object.
record Category {c h r} : Set (lsuc (c ⊔ h ⊔ r)) where
field semigroupoid : Semigroupoid {c} {h} {r}
open Semigroupoid semigroupoid public
field
id : ∀ {A} → Hom A A
left-id : ∀ {A B} (f : Hom A B) → id ∘ f ≈ f
right-id : ∀ {A B} (f : Hom A B) → f ∘ id ≈ f
-- The identity morphism is unique for each object.
id-unique :
∀ {A} {id' : Hom A A}
→ id' ∘ id ≈ id
→ id' ≈ id
id-unique {id' = id'} left-id' =
begin
id' ≈[ sym (right-id _) ]
id' ∘ id ≈[ left-id' ]
id
qed
private
∘-monic :
∀ {A B C} {f : Hom B C} {g : Hom A B}
→ Monic f
→ Monic g
→ Monic (f ∘ g)
∘-monic {f = f} {g} pf pg {g1 = g1} {g2} p =
pg $ pf $
begin
f ∘ (g ∘ g1) ≈[ sym (assoc f g g1) ]
f ∘ g ∘ g1 ≈[ p ]
f ∘ g ∘ g2 ≈[ assoc f g g2 ]
f ∘ (g ∘ g2)
qed
BimonicEq : Equiv Ob
BimonicEq =
record {
_≈_ = _bimonic_;
refl = record {
to = id;
from = id;
to-monic = id-monic;
from-monic = id-monic
};
sym = λ m →
let module m = _bimonic_ m in
record {
to = m.from;
from = m.to;
to-monic = m.from-monic;
from-monic = m.to-monic
};
trans = λ m1 m2 →
let module m1 = _bimonic_ m1
module m2 = _bimonic_ m2 in
record {
to = m2.to ∘ m1.to;
from = m1.from ∘ m2.from;
to-monic = ∘-monic m2.to-monic m1.to-monic;
from-monic = ∘-monic m1.from-monic m2.from-monic
}
}
where
id-monic : ∀ {A} → Monic (id {A})
id-monic {g1 = g1} {g2} p =
begin
g1 ≈[ sym (left-id g1) ]
id ∘ g1 ≈[ p ]
id ∘ g2 ≈[ left-id g2 ]
g2
qed
module BimonicEq = Equiv BimonicEq
-- Isomorphisms
record Iso {A B} (f : Hom A B) : Set (h ⊔ r) where
field
inv : Hom B A
left-inv : inv ∘ f ≈ id
right-inv : f ∘ inv ≈ id
-- Inverses are unique for each morphism.
inv-unique : ∀ g → f ∘ g ≈ id → g ≈ inv
inv-unique g right-inv' =
begin
g ≈[ sym (left-id g) ]
id ∘ g ≈[ ∘-cong (sym left-inv) refl ]
(inv ∘ f) ∘ g ≈[ assoc inv f g ]
inv ∘ (f ∘ g) ≈[ ∘-cong refl right-inv' ]
inv ∘ id ≈[ right-id inv ]
inv
qed
inv-iso : Iso inv
inv-iso =
record {
inv = f;
left-inv = right-inv;
right-inv = left-inv
}
inv-invol : ∀ g h → g ∘ f ≈ id → h ∘ g ≈ id → f ≈ h
inv-invol g h g-left-inv h-left-inv =
begin
f ≈[ sym (left-id f) ]
id ∘ f ≈[ ∘-cong (sym h-left-inv) refl ]
(h ∘ g) ∘ f ≈[ assoc h g f ]
h ∘ (g ∘ f) ≈[ ∘-cong refl g-left-inv ]
h ∘ id ≈[ right-id h ]
h
qed
record _≃_ A B : Set (h ⊔ r) where
field
to : Hom A B
iso : Iso to
open Iso iso public
IsoEq : Equiv Ob
IsoEq =
record {
_≈_ = _≃_;
refl = irefl;
sym = isym;
trans = itrans
}
where
irefl : ∀ {A} → A ≃ A
irefl =
record {
to = id;
iso = record {
inv = id;
left-inv = left-id id;
right-inv = left-id id
}
}
isym : ∀ {A B} → A ≃ B → B ≃ A
isym iso =
record {
to = iso.inv;
iso = record {
inv = iso.to;
left-inv = iso.right-inv;
right-inv = iso.left-inv
}
}
where
module iso = _≃_ iso
itrans : ∀ {A B C} → A ≃ B → B ≃ C → A ≃ C
itrans iso1 iso2 =
record {
to = iso2.to ∘ iso1.to;
iso = record {
inv = iso1.inv ∘ iso2.inv;
left-inv =
begin
iso1.inv ∘ iso2.inv ∘ (iso2.to ∘ iso1.to) ≈[ assoc iso1.inv iso2.inv (iso2.to ∘ iso1.to) ]
iso1.inv ∘ (iso2.inv ∘ (iso2.to ∘ iso1.to)) ≈[ ∘-cong refl (sym (assoc iso2.inv iso2.to iso1.to)) ]
iso1.inv ∘ (iso2.inv ∘ iso2.to ∘ iso1.to) ≈[ ∘-cong refl (∘-cong iso2.left-inv refl) ]
iso1.inv ∘ (id ∘ iso1.to) ≈[ ∘-cong refl (left-id iso1.to) ]
iso1.inv ∘ iso1.to ≈[ iso1.left-inv ]
id
qed;
right-inv =
begin
iso2.to ∘ iso1.to ∘ (iso1.inv ∘ iso2.inv) ≈[ assoc iso2.to iso1.to (iso1.inv ∘ iso2.inv) ]
iso2.to ∘ (iso1.to ∘ (iso1.inv ∘ iso2.inv)) ≈[ ∘-cong refl (sym (assoc iso1.to iso1.inv iso2.inv)) ]
iso2.to ∘ (iso1.to ∘ iso1.inv ∘ iso2.inv) ≈[ ∘-cong refl (∘-cong iso1.right-inv refl) ]
iso2.to ∘ (id ∘ iso2.inv) ≈[ ∘-cong refl (left-id iso2.inv) ]
iso2.to ∘ iso2.inv ≈[ iso2.right-inv ]
id
qed
}
}
where
module iso1 = _≃_ iso1
module iso2 = _≃_ iso2
Iso→Epic : ∀ {A B} {f : Hom A B} → Iso f → Epic f
Iso→Epic {f = f} iso {g1 = g1} {g2} p =
begin
g1 ≈[ sym (right-id g1) ]
g1 ∘ id ≈[ ∘-cong refl (sym iso.right-inv) ]
g1 ∘ (f ∘ iso.inv) ≈[ sym (assoc g1 f iso.inv) ]
g1 ∘ f ∘ iso.inv ≈[ ∘-cong p refl ]
g2 ∘ f ∘ iso.inv ≈[ assoc g2 f iso.inv ]
g2 ∘ (f ∘ iso.inv) ≈[ ∘-cong refl iso.right-inv ]
g2 ∘ id ≈[ right-id g2 ]
g2
qed
where
module iso = Iso iso
Iso→Monic : ∀ {A B} {f : Hom A B} → Iso f → Monic f
Iso→Monic {f = f} iso {g1 = g1} {g2} p =
begin
g1 ≈[ sym (left-id g1) ]
id ∘ g1 ≈[ ∘-cong (sym iso.left-inv) refl ]
iso.inv ∘ f ∘ g1 ≈[ assoc iso.inv f g1 ]
iso.inv ∘ (f ∘ g1) ≈[ ∘-cong refl p ]
iso.inv ∘ (f ∘ g2) ≈[ sym (assoc iso.inv f g2) ]
iso.inv ∘ f ∘ g2 ≈[ ∘-cong iso.left-inv refl ]
id ∘ g2 ≈[ left-id g2 ]
g2
qed
where
module iso = Iso iso
MonicOrd : PartialOrder Ob
MonicOrd =
record {
Eq = BimonicEq;
_≤_ = _≤_;
antisym = antisym;
refl' = refl';
trans = mtrans
}
where
_≤_ : Ob → Ob → Set _
A ≤ B = ∃ (λ (f : Hom A B) → Monic f)
antisym : ∀ {A B} → A ≤ B → B ≤ A → A bimonic B
antisym A≤B B≤A =
record {
to = fst A≤B;
from = fst B≤A;
to-monic = snd A≤B;
from-monic = snd B≤A
}
refl' : ∀ {A B} → A bimonic B → A ≤ B
refl' bi = _bimonic_.to bi , _bimonic_.to-monic bi
mtrans : ∀ {A B C} → A ≤ B → B ≤ C → A ≤ C
mtrans (f , p) (g , q) = g ∘ f , ∘-monic q p
-- A functor is a structure-preserving mapping from one category to
-- another.
record Functor
{cc ch cr dc dh dr}
(C : Category {cc} {ch} {cr})
(D : Category {dc} {dh} {dr})
: Set (cc ⊔ ch ⊔ cr ⊔ dc ⊔ dh ⊔ dr)
where
private
module C = Category C
module D = Category D
field semifunctor : Semifunctor C.semigroupoid D.semigroupoid
open Semifunctor semifunctor public
field
id-preserving : ∀ {A} → map (C.id {A}) D.≈ D.id {F A}
Iso-preserving : ∀ {A B} {f : C.Hom A B} → C.Iso f → D.Iso (map f)
Iso-preserving {f = f} p =
record {
inv = map inv;
left-inv =
D.begin
map inv D.∘ map f D.≈[ D.sym (∘-preserving inv f) ]
map (inv C.∘ f) D.≈[ map-cong left-inv ]
map C.id D.≈[ id-preserving ]
D.id
D.qed;
right-inv =
D.begin
map f D.∘ map inv D.≈[ D.sym (∘-preserving f inv) ]
map (f C.∘ inv) D.≈[ map-cong right-inv ]
map C.id D.≈[ id-preserving ]
D.id
D.qed
}
where
open Category.Iso p
-- Category of types and functions.
Sets : ∀ {r} → Category
Sets {r} =
record {
semigroupoid = record {
Ob = Set r;
Hom = λ A B → A → B;
Eq = λ {A B} → FuncEq A B;
_∘_ = _∘_;
∘-cong = ∘-cong;
assoc = λ _ _ _ _ → PropEq.refl
};
id = λ x → x;
left-id = λ _ _ → PropEq.refl;
right-id = λ _ _ → PropEq.refl
}
where
open module MyEquiv {A} {B} = Equiv (FuncEq A B)
_∘_ : {A B C : Set r} (f : B → C) (g : A → B) → A → C
(f ∘ g) x = f (g x)
infixl 6 _∘_
∘-cong :
∀ {A B C}
{f1 f2 : B → C} {g1 g2 : A → B}
→ f1 ≈ f2 → g1 ≈ g2 → f1 ∘ g1 ≈ f2 ∘ g2
∘-cong {f1 = f1} f1≈f2 g1≈g2 x =
PropEq.trans (cong f1 (g1≈g2 _)) (f1≈f2 _)
module Sets {r} = Category (Sets {r})
injective→monic :
∀ {a} {A B : Set a}
{f : A → B}
→ (∀ {x y} → f x ≡ f y → x ≡ y)
→ Sets.Monic f
injective→monic inj p x = inj (p x)
monic→injective :
∀ {a} {A B : Set a}
{f : A → B}
→ Sets.Monic f
→ ∀ {x y} → f x ≡ f y → x ≡ y
monic→injective monic p = monic Sets.id p
surjective→epic :
∀ {a} {A B : Set a}
{f : A → B}
→ (∀ y → ∃ (λ x → f x ≡ y))
→ Sets.Epic f
surjective→epic {f = f} surj {g1 = g1} {g2} p y with surj y
surjective→epic {f = f} surj {g1 = g1} {g2} p y | x , q =
begin
g1 y ≈[ cong g1 (sym q) ]
g1 (f x) ≈[ p x ]
g2 (f x) ≈[ cong g2 q ]
g2 y
qed
where
open module MyEquiv {A} = Equiv (PropEq A)
| {
"alphanum_fraction": 0.4519614013,
"avg_line_length": 25.3563829787,
"ext": "agda",
"hexsha": "6317f9e884bb0cc1415a03c123a03e8b0ce3a8e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "esoeylemez/agda-simple",
"max_forks_repo_path": "Algebra/Category/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "esoeylemez/agda-simple",
"max_issues_repo_path": "Algebra/Category/Category.agda",
"max_line_length": 114,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "esoeylemez/agda-simple",
"max_stars_repo_path": "Algebra/Category/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z",
"num_tokens": 3641,
"size": 9534
} |
{-# OPTIONS --safe #-}
{-
Properties of nullary relations, i.e. structures on types.
Includes several results from [Notions of Anonymous Existence in Martin-Löf Type Theory](https://lmcs.episciences.org/3217)
by Altenkirch, Coquand, Escardo, Kraus.
-}
module Cubical.Relation.Nullary.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Functions.Fixpoint
open import Cubical.Data.Empty as ⊥
open import Cubical.Relation.Nullary.Base
open import Cubical.HITs.PropositionalTruncation.Base
private
variable
ℓ : Level
A : Type ℓ
IsoPresDiscrete : ∀ {ℓ ℓ'}{A : Type ℓ} {B : Type ℓ'} → Iso A B
→ Discrete A → Discrete B
IsoPresDiscrete e dA x y with dA (Iso.inv e x) (Iso.inv e y)
... | yes p = subst Dec (λ i → Iso.rightInv e x i ≡ Iso.rightInv e y i)
(yes (cong (Iso.fun e) p))
... | no p = subst Dec (λ i → Iso.rightInv e x i ≡ Iso.rightInv e y i)
(no λ q → p (sym (Iso.leftInv e (Iso.inv e x))
∙∙ cong (Iso.inv e) q
∙∙ Iso.leftInv e (Iso.inv e y)))
EquivPresDiscrete : ∀ {ℓ ℓ'}{A : Type ℓ} {B : Type ℓ'} → A ≃ B
→ Discrete A → Discrete B
EquivPresDiscrete e = IsoPresDiscrete (equivToIso e)
isProp¬ : (A : Type ℓ) → isProp (¬ A)
isProp¬ A p q i x = isProp⊥ (p x) (q x) i
Stable¬ : Stable (¬ A)
Stable¬ ¬¬¬a a = ¬¬¬a ¬¬a
where
¬¬a = λ ¬a → ¬a a
fromYes : A → Dec A → A
fromYes _ (yes a) = a
fromYes a (no _) = a
discreteDec : (Adis : Discrete A) → Discrete (Dec A)
discreteDec Adis (yes p) (yes p') = decideYes (Adis p p') -- TODO: monad would simply stuff
where
decideYes : Dec (p ≡ p') → Dec (yes p ≡ yes p')
decideYes (yes eq) = yes (cong yes eq)
decideYes (no ¬eq) = no λ eq → ¬eq (cong (fromYes p) eq)
discreteDec Adis (yes p) (no ¬p) = ⊥.rec (¬p p)
discreteDec Adis (no ¬p) (yes p) = ⊥.rec (¬p p)
discreteDec {A = A} Adis (no ¬p) (no ¬p') = yes (cong no (isProp¬ A ¬p ¬p'))
isPropDec : (Aprop : isProp A) → isProp (Dec A)
isPropDec Aprop (yes a) (yes a') = cong yes (Aprop a a')
isPropDec Aprop (yes a) (no ¬a) = ⊥.rec (¬a a)
isPropDec Aprop (no ¬a) (yes a) = ⊥.rec (¬a a)
isPropDec {A = A} Aprop (no ¬a) (no ¬a') = cong no (isProp¬ A ¬a ¬a')
mapDec : ∀ {B : Type ℓ} → (A → B) → (¬ A → ¬ B) → Dec A → Dec B
mapDec f _ (yes p) = yes (f p)
mapDec _ f (no ¬p) = no (f ¬p)
EquivPresDec : ∀ {ℓ ℓ'}{A : Type ℓ} {B : Type ℓ'} → A ≃ B
→ Dec A → Dec B
EquivPresDec p = mapDec (p .fst) (λ f → f ∘ invEq p)
¬→¬∥∥ : ¬ A → ¬ ∥ A ∥
¬→¬∥∥ ¬p ∣ a ∣ = ¬p a
¬→¬∥∥ ¬p (squash x y i) = isProp⊥ (¬→¬∥∥ ¬p x) (¬→¬∥∥ ¬p y) i
Dec∥∥ : Dec A → Dec ∥ A ∥
Dec∥∥ = mapDec ∣_∣ ¬→¬∥∥
-- we have the following implications
-- X ── ∣_∣ ─→ ∥ X ∥
-- ∥ X ∥ ── populatedBy ─→ ⟪ X ⟫
-- ⟪ X ⟫ ── notEmptyPopulated ─→ NonEmpty X
-- reexport propositional truncation for uniformity
open Cubical.HITs.PropositionalTruncation.Base
using (∣_∣) public
populatedBy : ∥ A ∥ → ⟪ A ⟫
populatedBy {A = A} a (f , fIsConst) = h a where
h : ∥ A ∥ → Fixpoint f
h ∣ a ∣ = f a , fIsConst (f a) a
h (squash a b i) = 2-Constant→isPropFixpoint f fIsConst (h a) (h b) i
notEmptyPopulated : ⟪ A ⟫ → NonEmpty A
notEmptyPopulated {A = A} pop u = u (fixpoint (pop (h , hIsConst))) where
h : A → A
h a = ⊥.elim (u a)
hIsConst : ∀ x y → h x ≡ h y
hIsConst x y i = ⊥.elim (isProp⊥ (u x) (u y) i)
-- these implications induce the following for different kinds of stability, gradually weakening the assumption
Dec→Stable : Dec A → Stable A
Dec→Stable (yes x) = λ _ → x
Dec→Stable (no x) = λ f → ⊥.elim (f x)
Stable→PStable : Stable A → PStable A
Stable→PStable st = st ∘ notEmptyPopulated
PStable→SplitSupport : PStable A → SplitSupport A
PStable→SplitSupport pst = pst ∘ populatedBy
-- Although SplitSupport and Collapsible are not properties, their path versions, HSeparated and Collapsible≡, are.
-- Nevertheless they are logically equivalent
SplitSupport→Collapsible : SplitSupport A → Collapsible A
SplitSupport→Collapsible {A = A} hst = h , hIsConst where
h : A → A
h p = hst ∣ p ∣
hIsConst : 2-Constant h
hIsConst p q i = hst (squash ∣ p ∣ ∣ q ∣ i)
Collapsible→SplitSupport : Collapsible A → SplitSupport A
Collapsible→SplitSupport f x = fixpoint (populatedBy x f)
HSeparated→Collapsible≡ : HSeparated A → Collapsible≡ A
HSeparated→Collapsible≡ hst x y = SplitSupport→Collapsible (hst x y)
Collapsible≡→HSeparated : Collapsible≡ A → HSeparated A
Collapsible≡→HSeparated col x y = Collapsible→SplitSupport (col x y)
-- stability of path space under truncation or path collapsability are necessary and sufficient properties
-- for a a type to be a set.
Collapsible≡→isSet : Collapsible≡ A → isSet A
Collapsible≡→isSet {A = A} col a b p q = p≡q where
f : (x : A) → a ≡ x → a ≡ x
f x = col a x .fst
fIsConst : (x : A) → (p q : a ≡ x) → f x p ≡ f x q
fIsConst x = col a x .snd
rem : (p : a ≡ b) → PathP (λ i → a ≡ p i) (f a refl) (f b p)
rem p j = f (p j) (λ i → p (i ∧ j))
p≡q : p ≡ q
p≡q j i = hcomp (λ k → λ { (i = i0) → f a refl k
; (i = i1) → fIsConst b p q j k
; (j = i0) → rem p i k
; (j = i1) → rem q i k }) a
HSeparated→isSet : HSeparated A → isSet A
HSeparated→isSet = Collapsible≡→isSet ∘ HSeparated→Collapsible≡
isSet→HSeparated : isSet A → HSeparated A
isSet→HSeparated setA x y = extract where
extract : ∥ x ≡ y ∥ → x ≡ y
extract ∣ p ∣ = p
extract (squash p q i) = setA x y (extract p) (extract q) i
-- by the above more sufficient conditions to inhibit isSet A are given
PStable≡→HSeparated : PStable≡ A → HSeparated A
PStable≡→HSeparated pst x y = PStable→SplitSupport (pst x y)
PStable≡→isSet : PStable≡ A → isSet A
PStable≡→isSet = HSeparated→isSet ∘ PStable≡→HSeparated
Separated→PStable≡ : Separated A → PStable≡ A
Separated→PStable≡ st x y = Stable→PStable (st x y)
Separated→isSet : Separated A → isSet A
Separated→isSet = PStable≡→isSet ∘ Separated→PStable≡
-- Proof of Hedberg's theorem: a type with decidable equality is an h-set
Discrete→Separated : Discrete A → Separated A
Discrete→Separated d x y = Dec→Stable (d x y)
Discrete→isSet : Discrete A → isSet A
Discrete→isSet = Separated→isSet ∘ Discrete→Separated
| {
"alphanum_fraction": 0.6251379909,
"avg_line_length": 35.2277777778,
"ext": "agda",
"hexsha": "0c6dd66cadb5b8c812f27e44367a17065fd9fde7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Relation/Nullary/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Relation/Nullary/Properties.agda",
"max_line_length": 123,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Relation/Nullary/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2432,
"size": 6341
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Properties.Setoids where
open import Categories.Category.Instance.Properties.Setoids.Complete
using (Setoids-Complete)
public
open import Categories.Category.Instance.Properties.Setoids.Cocomplete
using (Setoids-Cocomplete)
public
open import Categories.Category.Instance.Properties.Setoids.LCCC
using (Setoids-LCCC)
public
| {
"alphanum_fraction": 0.802919708,
"avg_line_length": 25.6875,
"ext": "agda",
"hexsha": "bd3080c292ad05ece55205d6e5dd9a545bc117a4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bond15/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Properties/Setoids.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bond15/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Properties/Setoids.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6cbfdf3f1be15ef513435e3b85faae92cb1ac36f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bond15/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Properties/Setoids.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 82,
"size": 411
} |
open import Relation.Binary.PropositionalEquality using ( refl )
open import Web.Semantic.DL.ABox.Interp using ( _*_ ; ⌊_⌋ ; ind )
open import Web.Semantic.DL.ABox.Interp.Morphism using ( _,_ )
open import Web.Semantic.DL.ABox.Model using
( _⊨a_ ; on-bnode ; bnodes ; ⊨a-resp-≲ ; ⊨a-resp-≡³ ; _,_ )
open import Web.Semantic.DL.Category.Object using
( Object ; IN ; iface )
open import Web.Semantic.DL.Category.Morphism using
( _⇒_ ; BN ; impl ; _≣_ ; _⊑_ ; _,_ )
open import Web.Semantic.DL.Category.Composition using ( _∙_ )
open import Web.Semantic.DL.Category.Properties.Composition.Lemmas using
( compose-left ; compose-right ; compose-resp-⊨a )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using ( TBox )
open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ; ≈-refl ; ≈-sym )
open import Web.Semantic.DL.TBox.Interp.Morphism using ( ≲-refl )
open import Web.Semantic.Util using
( _∘_ ; _⊕_⊕_ ; False ; inode ; bnode ; enode ; left ; right )
module Web.Semantic.DL.Category.Properties.Composition.Assoc
{Σ : Signature} {S T : TBox Σ} where
compose-assoc : ∀ {A B C D : Object S T} (F : A ⇒ B) (G : B ⇒ C) (H : C ⇒ D) →
((F ∙ G) ∙ H ≣ F ∙ (G ∙ H))
compose-assoc {A} {B} {C} {D} F G H = (LHS⊑RHS , RHS⊑LHS) where
LHS⊑RHS : (F ∙ G) ∙ H ⊑ F ∙ (G ∙ H)
LHS⊑RHS I I⊨STA I⊨LHS = (f , I⊨RHS) where
f : (BN F ⊕ IN B ⊕ (BN G ⊕ IN C ⊕ BN H)) → Δ ⌊ I ⌋
f (inode u) = ind I (bnode (inode (inode u)))
f (bnode y) = ind I (bnode (inode (bnode y)))
f (enode (inode v)) = ind I (bnode (inode (enode v)))
f (enode (bnode z)) = ind I (bnode (bnode z))
f (enode (enode w)) = ind I (bnode (enode w))
I⊨F : left * bnodes I f ⊨a impl F
I⊨F = ⊨a-resp-≡³ (left * left * I) (on-bnode f (ind I) ∘ left) refl
(impl F) (compose-left F G (left * I) (compose-left (F ∙ G) H I I⊨LHS))
I⊨G : left * right * bnodes I f ⊨a impl G
I⊨G = ⊨a-resp-≡³ (right * left * I) (on-bnode f (ind I) ∘ right ∘ left) refl
(impl G) (compose-right F G (left * I) (compose-left (F ∙ G) H I I⊨LHS))
I⊨H : right * right * bnodes I f ⊨a impl H
I⊨H = ⊨a-resp-≡³ (right * I) (on-bnode f (ind I) ∘ right ∘ right) refl
(impl H) (compose-right (F ∙ G) H I I⊨LHS)
I⊨RHS : bnodes I f ⊨a impl (F ∙ (G ∙ H))
I⊨RHS = compose-resp-⊨a F (G ∙ H) (bnodes I f) I⊨F
(compose-resp-⊨a G H (right * bnodes I f) I⊨G I⊨H)
RHS⊑LHS : F ∙ (G ∙ H) ⊑ (F ∙ G) ∙ H
RHS⊑LHS I I⊨STA I⊨RHS = (f , I⊨LHS) where
f : ((BN F ⊕ IN B ⊕ BN G) ⊕ IN C ⊕ BN H) → Δ ⌊ I ⌋
f (inode (inode u)) = ind I (bnode (inode u))
f (inode (bnode y)) = ind I (bnode (bnode y))
f (inode (enode v)) = ind I (bnode (enode (inode v)))
f (bnode z) = ind I (bnode (enode (bnode z)))
f (enode w) = ind I (bnode (enode (enode w)))
I⊨F : left * left * bnodes I f ⊨a impl F
I⊨F = ⊨a-resp-≡³ (left * I) (on-bnode f (ind I) ∘ left ∘ left) refl
(impl F) (compose-left F (G ∙ H) I I⊨RHS)
I⊨G : right * left * bnodes I f ⊨a impl G
I⊨G = ⊨a-resp-≡³ (left * right * I) (on-bnode f (ind I) ∘ left ∘ right) refl
(impl G) (compose-left G H (right * I) (compose-right F (G ∙ H) I I⊨RHS))
I⊨H : right * bnodes I f ⊨a impl H
I⊨H = ⊨a-resp-≡³ (right * right * I) (on-bnode f (ind I) ∘ right) refl
(impl H) (compose-right G H (right * I) (compose-right F (G ∙ H) I I⊨RHS))
I⊨LHS : bnodes I f ⊨a impl ((F ∙ G) ∙ H)
I⊨LHS = compose-resp-⊨a (F ∙ G) H (bnodes I f)
(compose-resp-⊨a F G (left * bnodes I f) I⊨F I⊨G) I⊨H
| {
"alphanum_fraction": 0.5714285714,
"avg_line_length": 44.746835443,
"ext": "agda",
"hexsha": "2120ef948c5d250ba46266473651865fd2f17a8d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/Assoc.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/Assoc.agda",
"max_line_length": 80,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Category/Properties/Composition/Assoc.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1591,
"size": 3535
} |
module Esterel.Variable.Shared where
open import Data.Nat
using (ℕ) renaming (_≟_ to _≟ℕ_)
open import Function
using (_∘_)
open import Relation.Nullary
using (Dec ; yes ; no ; ¬_)
open import Relation.Binary
using (Decidable)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; cong ; trans ; sym)
data SharedVar : Set where
_ₛₕ : ℕ → SharedVar
unwrap : SharedVar → ℕ
unwrap (n ₛₕ) = n
unwrap-inverse : ∀ {s} → (unwrap s) ₛₕ ≡ s
unwrap-inverse {_ ₛₕ} = refl
unwrap-injective : ∀ {s t} → unwrap s ≡ unwrap t → s ≡ t
unwrap-injective s'≡t' = trans (sym unwrap-inverse) (trans (cong _ₛₕ s'≡t') unwrap-inverse)
-- for backward compatibility
unwrap-neq : ∀{k1 : SharedVar} → ∀{k2 : SharedVar} → ¬ k1 ≡ k2 → ¬ (unwrap k1) ≡ (unwrap k2)
unwrap-neq = (_∘ unwrap-injective)
wrap : ℕ → SharedVar
wrap = _ₛₕ
bijective : ∀{x} → unwrap (wrap x) ≡ x
bijective = refl
_≟_ : Decidable {A = SharedVar} _≡_
(s ₛₕ) ≟ (t ₛₕ) with s ≟ℕ t
... | yes p = yes (cong _ₛₕ p)
... | no ¬p = no (¬p ∘ cong unwrap)
data Status : Set where
ready : Status
new : Status
old : Status
_≟ₛₜ_ : Decidable {A = Status} _≡_
ready ≟ₛₜ ready = yes refl
ready ≟ₛₜ new = no λ()
ready ≟ₛₜ old = no λ()
new ≟ₛₜ ready = no λ()
new ≟ₛₜ new = yes refl
new ≟ₛₜ old = no λ()
old ≟ₛₜ ready = no λ()
old ≟ₛₜ new = no λ()
old ≟ₛₜ old = yes refl
| {
"alphanum_fraction": 0.6273792094,
"avg_line_length": 23.5517241379,
"ext": "agda",
"hexsha": "8c8213a141a08228c69d6c0738b68ee3987b4902",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/Esterel/Variable/Shared.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/Esterel/Variable/Shared.agda",
"max_line_length": 92,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/Esterel/Variable/Shared.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 553,
"size": 1366
} |
open import Relation.Binary using (IsDecEquivalence)
open import Agda.Builtin.Equality
module UnifyMguL (A : Set) ⦃ isDecEquivalenceA : IsDecEquivalence (_≡_ {A = A}) ⦄ where
open import UnifyTermL A
open import Data.Product using (∃; _,_)
open import Data.Maybe using (Maybe; just; nothing)
open import Category.Monad using (RawMonad)
import Level
open RawMonad (Data.Maybe.monad {Level.zero})
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary
open IsDecEquivalence isDecEquivalenceA
amgu : ∀ {m} (s t : Term m) (acc : ∃ (AList m)) -> Maybe (∃ (AList m))
amgu (leaf l₁) (leaf l₂) acc with l₁ ≟ l₂
… | yes _ = just acc
… | no _ = nothing
amgu (leaf l) (s' fork t') acc = nothing
amgu (s' fork t') (leaf l) acc = nothing
amgu (s1 fork s2) (t1 fork t2) acc =
amgu s2 t2 =<< amgu s1 t1 acc
amgu (i x) (i y) (m , anil) = just (flexFlex x y)
amgu (i x) t (m , anil) = flexRigid x t
amgu t (i x) (m , anil) = flexRigid x t
amgu s t (n , σ asnoc r / z) =
(λ σ -> σ ∃asnoc r / z) <$>
amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ)
mgu : ∀ {m} -> (s t : Term m) -> Maybe (∃ (AList m))
mgu {m} s t = amgu s t (m , anil)
| {
"alphanum_fraction": 0.6192468619,
"avg_line_length": 33.1944444444,
"ext": "agda",
"hexsha": "a7c6e6d5b2705f08073583aa02895e2a1cc70724",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/UnifyMguL.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/UnifyMguL.agda",
"max_line_length": 87,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/UnifyMguL.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 441,
"size": 1195
} |
module Proof.Setup where
import LF
import IIRD
import IIRDr
import DefinitionalEquality
import Identity
open LF
open IIRD
open IIRDr
open DefinitionalEquality
open Identity
-- Given a code for a general IIRD we should give a code for a restricted IIRD.
ε : {I : Set}{D : I -> Set1} -> OPg I D -> OPr I D
ε {I}{D} (ι < j | e >') = \i -> σ (j == i) \p -> ι (subst₁ D p e)
ε (σ A γ) = \i -> σ A \a -> ε (γ a) i
ε (δ A j γ) = \i -> δ A j \g -> ε (γ g) i
G→H : {I : Set}{D : I -> Set1}(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(a : Gu γ U T) ->
Hu (ε γ) U T (Gi γ U T a)
G→H (ι < i | e >') U T ★ = < refl | ★ >
G→H (σ A γ) U T < a | b > = < a | G→H (γ a) U T b >
G→H (δ A i γ) U T < g | b > = < g | G→H (γ (T « i × g »)) U T b >
H→G : {I : Set}{D : I -> Set1}(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(i : I) -> Hu (ε γ) U T i -> Gu γ U T
H→G (ι < j | e >') U T i < p | ★ > = ★
H→G (σ A γ) U T i < a | b > = < a | H→G (γ a) U T i b >
H→G (δ A j γ) U T i < g | b > = < g | H→G (γ (T « j × g »)) U T i b >
-- We can turn an inductive argument of the general IIRD to an inductive
-- argument of the restricted version.
H→G∘G→H-identity : {I : Set}{D : I -> Set1}
(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(a : Gu γ U T) ->
H→G γ U T (Gi γ U T a) (G→H γ U T a) ≡ a
H→G∘G→H-identity (ι < i | e >') U T ★ = refl-≡
H→G∘G→H-identity (σ A γ) U T < a | b > = cong-≡ (\z -> < a | z >) (H→G∘G→H-identity (γ a) U T b)
H→G∘G→H-identity (δ A i γ) U T < g | b > = cong-≡ (\z -> < g | z >)
(H→G∘G→H-identity (γ (T « i × g »)) U T b)
{-
Gi∘H→G-identity : {I : Set}{D : I -> Set1}
(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(i : I)(b : Hu (ε γ) U T i) ->
Gi γ U T (H→G γ U T i b) == i
Gi∘H→G-identity (ι < j | e >') U T i < p | ★ > = p
Gi∘H→G-identity (σ A γ) U T i < a | b > = Gi∘H→G-identity (γ a) U T i b
Gi∘H→G-identity (δ A j γ) U T i < g | b > = Gi∘H→G-identity (γ (T « j × g »)) U T i b
Gt∘H→G-identity : {I : Set}{D : I -> Set1}
(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(i : I)(b : Hu (ε γ) U T i) ->
Gt γ U T (H→G γ U T i b) ≡₁ Ht (ε γ) U T i b
Gt∘H→G-identity γ U T i b = ?
-- This one ain't true! p ≢ refl : x == y
G→H∘H→G-identity : {I : Set}{D : I -> Set1}
(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(i : I)(b : Hu (ε γ) U T i) ->
G→H γ U T (H→G γ U T i b) ≡ b
G→H∘H→G-identity (ι < j | e >') U T i < p | ★ > = ?
G→H∘H→G-identity (σ A γ) U T i < a | b > = ?
G→H∘H→G-identity (δ A j γ) U T i < g | b > = ?
-}
-- Rather than proving equalities (which doesn't hold anyway) we provide
-- substitution rules.
G→H∘H→G-subst : {I : Set}{D : I -> Set1}
(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(F : (i : I)(a : Hu (ε γ) U T i) -> Set1)
(i : I)(a : Hu (ε γ) U T i)
(h : F (Gi γ U T (H→G γ U T i a)) (G→H γ U T (H→G γ U T i a))) ->
F i a
G→H∘H→G-subst (ι < j | e >') U T F i < p | ★ > h = elim==₁ j (\z q -> F z < q | ★ >) h i p
G→H∘H→G-subst (σ A γ) U T F i < a | b > h =
G→H∘H→G-subst (γ a) U T (\j c -> F j < a | c >) i b h
G→H∘H→G-subst (δ A j γ) U T F i < g | b > h =
G→H∘H→G-subst (γ (T « j × g »)) U T (\j c -> F j < g | c >) i b h
-- Q. When can we remove a G→H∘H→G-subst ?
-- A. When a = G→H γ U T i a'
G→H∘H→G-identity : {I : Set}{D : I -> Set1}
(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(F : (i : I)(a : Hu (ε γ) U T i) -> Set1)
(a : Gu γ U T)
(h : F (Gi γ U T (H→G γ U T (Gi γ U T a) (G→H γ U T a)))
(G→H γ U T (H→G γ U T (Gi γ U T a) (G→H γ U T a)))
) ->
G→H∘H→G-subst γ U T F (Gi γ U T a) (G→H γ U T a) h ≡₁ h
G→H∘H→G-identity (ι < i | e >') U T F ★ h = refl-≡₁
G→H∘H→G-identity (σ A γ) U T F < a | b > h =
G→H∘H→G-identity (γ a) U T (\j c -> F j < a | c >) b h
G→H∘H→G-identity (δ A i γ) U T F < g | b > h =
G→H∘H→G-identity (γ (T « i × g »)) U T (\j c -> F j < g | c >) b h
εIArg : {I : Set}{D : I -> Set1}(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(i : I)(a : Hu (ε γ) U T i) ->
KIArg γ U T (H→G γ U T i a) -> KIArg (ε γ i) U T a
εIArg (ι < j | e >') U T i < h | ★ > ()
εIArg (σ A γ) U T i < a | b > v = εIArg (γ a) U T i b v
εIArg (δ A j γ) U T i < g | b > (inl a) = inl a
εIArg (δ A j γ) U T i < g | b > (inr v) = inr (εIArg (γ (T « j × g »)) U T i b v)
εIArg→I-identity : {I : Set}{D : I -> Set1}(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(i : I)(a : Hu (ε γ) U T i)(v : KIArg γ U T (H→G γ U T i a)) ->
KIArg→I (ε γ i) U T a (εIArg γ U T i a v)
≡ KIArg→I γ U T (H→G γ U T i a) v
εIArg→I-identity (ι < j | e >') U T i < p | ★ > ()
εIArg→I-identity (σ A γ) U T i < a | b > v = εIArg→I-identity (γ a) U T i b v
εIArg→I-identity (δ A j γ) U T i < g | b > (inl a) = refl-≡
εIArg→I-identity (δ A j γ) U T i < g | b > (inr v) = εIArg→I-identity (γ (T « j × g »)) U T i b v
εIArg→U-identity : {I : Set}{D : I -> Set1}(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(i : I)(a : Hu (ε γ) U T i)(v : KIArg γ U T (H→G γ U T i a)) ->
KIArg→U (ε γ i) U T a (εIArg γ U T i a v)
≡ KIArg→U γ U T (H→G γ U T i a) v
εIArg→U-identity (ι < j | e >') U T i < p | ★ > ()
εIArg→U-identity (σ A γ) U T i < a | b > v = εIArg→U-identity (γ a) U T i b v
εIArg→U-identity (δ A j γ) U T i < g | b > (inl a) = refl-≡
εIArg→U-identity (δ A j γ) U T i < g | b > (inr v) = εIArg→U-identity (γ (T « j × g »)) U T i b v
εIArg-subst : {I : Set}{D : I -> Set1}(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(F : (i : I)(u : U i) -> Set1)
(i : I)(a : Hu (ε γ) U T i)(v : KIArg γ U T (H→G γ U T i a)) ->
F (KIArg→I (ε γ i) U T a (εIArg γ U T i a v))
(KIArg→U (ε γ i) U T a (εIArg γ U T i a v)) ->
F (KIArg→I γ U T (H→G γ U T i a) v)
(KIArg→U γ U T (H→G γ U T i a) v)
εIArg-subst (ι < j | e >') U T F i < p | ★ > () h
εIArg-subst (σ A γ) U T F i < a | b > v h = εIArg-subst (γ a) U T F i b v h
εIArg-subst (δ A j γ) U T F i < g | b > (inl a) h = h
εIArg-subst (δ A j γ) U T F i < g | b > (inr v) h = εIArg-subst (γ (T « j × g »)) U T F i b v h
εIArg-identity : {I : Set}{D : I -> Set1}
(γ : OPg I D)(U : I -> Set)(T : (i : I) -> U i -> D i)
(F : (i : I)(u : U i) -> Set1)
(a : Gu γ U T)
(v : KIArg γ U T (H→G γ U T (Gi γ U T a) (G→H γ U T a)))
(h : F (KIArg→I (ε γ (Gi γ U T a)) U T (G→H γ U T a) (εIArg γ U T (Gi γ U T a) (G→H γ U T a) v))
(KIArg→U (ε γ (Gi γ U T a)) U T (G→H γ U T a) (εIArg γ U T (Gi γ U T a) (G→H γ U T a) v))
) ->
εIArg-subst γ U T F (Gi γ U T a) (G→H γ U T a) v h ≡₁ h
εIArg-identity (ι < i | e >') U T F ★ () h
εIArg-identity (σ A γ) U T F < a | b > v h = εIArg-identity (γ a) U T F b v h
εIArg-identity (δ A i γ) U T F < g | b > (inl a) h = refl-≡₁
εIArg-identity (δ A i γ) U T F < g | b > (inr v) h = εIArg-identity (γ (T « i × g »)) U T F b v h
| {
"alphanum_fraction": 0.3881060116,
"avg_line_length": 50.2272727273,
"ext": "agda",
"hexsha": "60c399fb0abec811253c643dbd71487021d551f8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/iird/Proof/Setup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/iird/Proof/Setup.agda",
"max_line_length": 113,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/iird/Proof/Setup.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 3488,
"size": 7735
} |
-- I decided that I wanted my Eq development to be separate from my HT one,
-- which means that I prove Kleene is reflexive through logical equivalence
-- being reflexive
module Eq.KleeneTheoryEarly where
open import Prelude
open import T
open import DynTheory
open import Eq.Defs
-- Theory about Kleene equality
kleene-sym : Symmetric KleeneEq
kleene-sym (kleeneq n val S1 S2) = kleeneq n val S2 S1
kleene-trans : Transitive KleeneEq
kleene-trans {z = e''} (kleeneq n val e-eval e'-eval) (kleeneq n' val' e'-eval2 e''-eval)
with eval-deterministic e'-eval e'-eval2 val val'
... | eq = kleeneq _ val e-eval (ID.coe1 (λ x → e'' ~>* x) (symm eq) e''-eval)
kleene-converse-evaluation : ∀{e e' d : TNat} →
e ≃ e' → d ~>* e → d ≃ e'
kleene-converse-evaluation (kleeneq n val S1 S2) eval =
kleeneq n val (eval-trans eval S1) S2
| {
"alphanum_fraction": 0.6790266512,
"avg_line_length": 33.1923076923,
"ext": "agda",
"hexsha": "cfee9eb0be20374ac86e2d1acbd2c598e859c98a",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-05-04T22:37:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-26T11:39:14.000Z",
"max_forks_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msullivan/godels-t",
"max_forks_repo_path": "Eq/KleeneTheoryEarly.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msullivan/godels-t",
"max_issues_repo_path": "Eq/KleeneTheoryEarly.agda",
"max_line_length": 90,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7412725cf27873b2b23f7e411a236a97dd99ef91",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msullivan/godels-t",
"max_stars_repo_path": "Eq/KleeneTheoryEarly.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-22T00:28:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-25T01:52:57.000Z",
"num_tokens": 283,
"size": 863
} |
open import Functional hiding (Domain)
import Structure.Logic.Classical.NaturalDeduction
import Structure.Logic.Classical.SetTheory.ZFC
module Structure.Logic.Classical.SetTheory.ZFC.FunctionSet {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic : _ ⦄ (_∈_ : Domain → Domain → Formula) ⦃ signature : _ ⦄ where
open Structure.Logic.Classical.NaturalDeduction.ClassicalLogic {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} (classicLogic)
open Structure.Logic.Classical.SetTheory.ZFC.Signature {ℓₗ} {Formula} {ℓₘₗ} {Proof} {ℓₒ} {Domain} ⦃ classicLogic ⦄ {_∈_} (signature)
open import Structure.Logic.Classical.SetTheory.SetBoundedQuantification ⦃ classicLogic ⦄ (_∈_)
open import Structure.Logic.Classical.SetTheory.ZFC.BinaryRelatorSet ⦃ classicLogic ⦄ (_∈_) ⦃ signature ⦄
-- The set s can be interpreted as a function.
FunctionSet : Domain → Formula
FunctionSet(s) = ∀ₗ(x ↦ Unique(y ↦ (x , y) ∈ s))
-- TODO: Maybe also define something that states ∀ₗ(x ↦ (x ∈ A) ↔ ∃ₗ(y ↦ (x , y) ∈ s)) so that a set representation of a function with domains becomes unique? But I think when (s ∈ (B ^ A)) is satisfied, this is implied? So try to prove that (FunctionSet(f) ∧ Total(A)(f) ∧ (the thing I mentioned earlier)) ↔ (f ∈ (B ^ A))
-- The set s can be interpreted as a function with a specified domain.
-- The following describes the relation to the standard notation of functions:
-- • ∀(x∊A)∀y. ((x,y) ∈ S) ⇔ (S(x) = y)
Total : Domain → Domain → Formula
Total(A)(s) = ∀ₛ(A)(x ↦ ∃ₗ(y ↦ (x , y) ∈ s))
Injective' : Domain → Formula
Injective'(f) = ∀ₗ(y ↦ Unique(x ↦ (x , y) ∈ f))
Surjective' : Domain → Domain → Formula
Surjective'(B)(f) = ∀ₛ(B)(y ↦ ∃ₗ(x ↦ (x , y) ∈ f))
Bijective' : Domain → Domain → Formula
Bijective'(B)(f) =
Injective'(f)
∧ Surjective'(B)(f)
-- The set of total function sets. All sets which can be interpreted as a total function.
_^_ : Domain → Domain → Domain
B ^ A = filter(℘(A ⨯ B)) (f ↦ FunctionSet(f) ∧ Total(A)(f))
_→ₛₑₜ_ = swap _^_
⊷ : Domain → Domain
⊷ = lefts
⊶ : Domain → Domain
⊶ = rights
map' : Domain → Domain → Domain
map' = rightsOfMany
unmap' : Domain → Domain → Domain
unmap' = leftsOfMany
apply-set : Domain → Domain → Domain
apply-set = rightsOf
unapply-set : Domain → Domain → Domain
unapply-set = leftsOf
_∘'_ : Domain → Domain → Domain
_∘'_ f g = filter((⊷ f) ⨯ (⊶ g)) (a ↦ ∃ₗ(x ↦ ∃ₗ(y ↦ ∃ₗ(a₁ ↦ ((a₁ , y) ∈ f) ∧ ((x , a₁) ∈ g)) ∧ (a ≡ (x , y)))))
-- inv : Domain → Domain
-- inv f = filter(?) (yx ↦ ∃ₗ(x ↦ ∃ₗ(y ↦ ((x , y) ∈ f) ∧ (yx ≡ (y , x)))))
module Cardinality where
-- Injection
_≼_ : Domain → Domain → Formula
_≼_ (a)(b) = ∃ₛ(a →ₛₑₜ b)(Injective')
-- Surjection
_≽_ : Domain → Domain → Formula
_≽_ (a)(b) = ∃ₛ(a →ₛₑₜ b)(Surjective'(b))
-- Bijection
_≍_ : Domain → Domain → Formula
_≍_ (a)(b) = ∃ₛ(a →ₛₑₜ b)(Bijective'(b))
-- Strict injection
_≺_ : Domain → Domain → Formula
_≺_ A B = (A ≼ B) ∧ ¬(A ≍ B)
-- Strict surjection
_≻_ : Domain → Domain → Formula
_≻_ A B = (A ≽ B) ∧ ¬(A ≍ B)
-- TODO: Definition of a "cardinality object" requires ordinals, which requires axiom of choice
-- # : Domain → Domain
| {
"alphanum_fraction": 0.632607303,
"avg_line_length": 35.8850574713,
"ext": "agda",
"hexsha": "d118426f8f5a0856957f99009daafb49e55c83b6",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/FunctionSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/FunctionSet.agda",
"max_line_length": 322,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/FunctionSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1164,
"size": 3122
} |
import AssocFree.STLambdaC.Typ
import AssocFree.STLambdaC.Exp
module AssocFree.STLambdaC.NF
(TConst : Set)
(Const : AssocFree.STLambdaC.Typ.Typ TConst → Set) where
open module Typ = AssocFree.STLambdaC.Typ TConst using
( Typ ; Ctxt ; const ; _⇝_ ; [_] ; [] ; _∷_ ; _++_ ; case ; singleton ; _≪_ )
open module Exp = AssocFree.STLambdaC.Exp TConst Const using
( Exp ; const ; abs ; app ; var ; var₀ ; weaken+ ; weaken* ; xweaken+ )
mutual
-- Normal forms
data Atom {Γ : Ctxt} {T : Typ} : Exp Γ T → Set where
const : ∀ c → Atom (const c)
var : ∀ x → Atom (var x)
app : ∀ {U M} {N : Exp Γ U} → Atom M → NF N → Atom (app M N)
data NF {Γ : Ctxt} : ∀ {T} → Exp Γ T → Set where
atom : ∀ {C} {M : Exp Γ (const C)} → Atom M → NF M
abs : ∀ T {U} {M : Exp (T ∷ Γ) U} → NF M → NF (abs {Γ} T M)
-- Shorthand
atom₀ : ∀ {Γ T} → Atom (var₀ {Γ} {T})
atom₀ {Γ} {T} = var (singleton T ≪ Γ)
-- Weakening
mutual
aweaken+ : ∀ B Γ Δ {T M} → Atom M → Atom (weaken+ B Γ Δ {T} M)
aweaken+ B Γ Δ (const c) = const c
aweaken+ B Γ Δ (app M N) = app (aweaken+ B Γ Δ M) (nweaken+ B Γ Δ N)
aweaken+ B Γ Δ (var x) = var (xweaken+ B Γ Δ x)
nweaken+ : ∀ B Γ Δ {T M} → NF M → NF (weaken+ B Γ Δ {T} M)
nweaken+ B Γ Δ (atom N) = atom (aweaken+ B Γ Δ N)
nweaken+ B Γ Δ (abs T N) = abs T (nweaken+ (T ∷ B) Γ Δ N)
aweaken* : ∀ Γ {Δ T M} → Atom M → Atom (weaken* Γ {Δ} {T} M)
aweaken* Γ {Δ} = aweaken+ [] Γ Δ
| {
"alphanum_fraction": 0.5550139276,
"avg_line_length": 29.306122449,
"ext": "agda",
"hexsha": "1bc53938be4c17d8c0c758258456c9314a778160",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:38:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-03-03T04:39:31.000Z",
"max_forks_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-assoc-free",
"max_forks_repo_path": "src/AssocFree/STLambdaC/NF.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-assoc-free",
"max_issues_repo_path": "src/AssocFree/STLambdaC/NF.agda",
"max_line_length": 79,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-assoc-free",
"max_stars_repo_path": "src/AssocFree/STLambdaC/NF.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-27T20:56:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-11-22T11:48:31.000Z",
"num_tokens": 594,
"size": 1436
} |
{-# OPTIONS --warning=error #-}
module Issue278 where
open import Agda.Builtin.Equality
abstract
module A where
Foo : Set₁
Foo = Set
module B where
open A
Foo≡Set : Foo ≡ Set
Foo≡Set = refl
| {
"alphanum_fraction": 0.6405529954,
"avg_line_length": 14.4666666667,
"ext": "agda",
"hexsha": "ad2ba4620ee7437960024a8898ab0b065024167c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue278.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue278.agda",
"max_line_length": 33,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue278.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 67,
"size": 217
} |
{-# OPTIONS --rewriting --confluence-check #-}
open import Agda.Builtin.Nat using (Nat; zero; suc)
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Rewrite
variable
k l m n : Nat
postulate
max : Nat → Nat → Nat
max-0l : max 0 n ≡ n
max-0r : max m 0 ≡ m
max-diag : max m m ≡ m
max-ss : max (suc m) (suc n) ≡ suc (max m n)
max-diag-s : max (suc m) (suc m) ≡ suc m -- for global confluence
max-assoc : max (max k l) m ≡ max k (max l m)
{-# REWRITE max-0l max-0r #-}
{-# REWRITE max-ss max-diag max-diag-s #-}
--{-# REWRITE max-assoc #-} -- not confluent!
postulate
_+_ : Nat → Nat → Nat
plus-0l : 0 + n ≡ n
plus-0r : m + 0 ≡ m
plus-00 : 0 + 0 ≡ 0 -- for global confluence
plus-suc-l : (suc m) + n ≡ suc (m + n)
plus-suc-0 : (suc m) + 0 ≡ suc m -- for global confluence
plus-suc-r : m + (suc n) ≡ suc (m + n)
plus-0-suc : 0 + (suc n) ≡ suc n
plus-suc-suc : (suc m) + (suc n) ≡ suc (suc (m + n))
plus-assoc : (k + l) + m ≡ k + (l + m) -- not accepted by global confluence check
{-# REWRITE plus-00 plus-0l plus-0r
plus-suc-l plus-suc-0
plus-suc-r plus-0-suc
plus-suc-suc #-}
postulate
_*_ : Nat → Nat → Nat
mult-0l : 0 * n ≡ 0
mult-0r : m * 0 ≡ 0
mult-00 : 0 * 0 ≡ 0
mult-suc-l : (suc m) * n ≡ n + (m * n)
mult-suc-l-0 : (suc m) * 0 ≡ 0
mult-suc-r : m * (suc n) ≡ (m * n) + m
plus-mult-distr-l : k * (l + m) ≡ (k * l) + (k * m)
plus-mult-distr-r : (k + l) * m ≡ (k * m) + (l * m)
mult-assoc : (k * l) * m ≡ k * (l * m)
{-# REWRITE mult-0l mult-0r mult-00
mult-suc-l mult-suc-l-0 #-}
--{-# REWRITE mult-suc-r #-} -- requires rule plus-assoc!
--{-# REWRITE plus-mult-distr-l #-}
--{-# REWRITE plus-mult-distr-r #-}
--{-# REWRITE mult-assoc #-}
| {
"alphanum_fraction": 0.5387224421,
"avg_line_length": 30.5,
"ext": "agda",
"hexsha": "5ddf8367cadb409422036bf9e4620512fe164a2f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/RewritingGlobalConfluence.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/RewritingGlobalConfluence.agda",
"max_line_length": 83,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/RewritingGlobalConfluence.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 744,
"size": 1769
} |
module Text.Greek.SBLGNT where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.SBLGNT.Matt
open import Text.Greek.SBLGNT.Mark
open import Text.Greek.SBLGNT.Luke
open import Text.Greek.SBLGNT.John
open import Text.Greek.SBLGNT.Acts
open import Text.Greek.SBLGNT.Rom
open import Text.Greek.SBLGNT.1Cor
open import Text.Greek.SBLGNT.2Cor
open import Text.Greek.SBLGNT.Gal
open import Text.Greek.SBLGNT.Eph
open import Text.Greek.SBLGNT.Phil
open import Text.Greek.SBLGNT.Col
open import Text.Greek.SBLGNT.1Thess
open import Text.Greek.SBLGNT.2Thess
open import Text.Greek.SBLGNT.1Tim
open import Text.Greek.SBLGNT.2Tim
open import Text.Greek.SBLGNT.Titus
open import Text.Greek.SBLGNT.Phlm
open import Text.Greek.SBLGNT.Heb
open import Text.Greek.SBLGNT.Jas
open import Text.Greek.SBLGNT.1Pet
open import Text.Greek.SBLGNT.2Pet
open import Text.Greek.SBLGNT.1John
open import Text.Greek.SBLGNT.2John
open import Text.Greek.SBLGNT.3John
open import Text.Greek.SBLGNT.Jude
open import Text.Greek.SBLGNT.Rev
books : List (List (Word))
books =
ΚΑΤΑ-ΜΑΘΘΑΙΟΝ
∷ ΚΑΤΑ-ΜΑΡΚΟΝ
∷ ΚΑΤΑ-ΛΟΥΚΑΝ
∷ ΚΑΤΑ-ΙΩΑΝΝΗΝ
∷ ΠΡΑΞΕΙΣ-ΑΠΟΣΤΟΛΩΝ
∷ ΠΡΟΣ-ΡΩΜΑΙΟΥΣ
∷ ΠΡΟΣ-ΚΟΡΙΝΘΙΟΥΣ-Α
∷ ΠΡΟΣ-ΚΟΡΙΝΘΙΟΥΣ-Β
∷ ΠΡΟΣ-ΓΑΛΑΤΑΣ
∷ ΠΡΟΣ-ΕΦΕΣΙΟΥΣ
∷ ΠΡΟΣ-ΦΙΛΙΠΠΗΣΙΟΥΣ
∷ ΠΡΟΣ-ΚΟΛΟΣΣΑΕΙΣ
∷ ΠΡΟΣ-ΘΕΣΣΑΛΟΝΙΚΕΙΣ-Α
∷ ΠΡΟΣ-ΘΕΣΣΑΛΟΝΙΚΕΙΣ-Β
∷ ΠΡΟΣ-ΤΙΜΟΘΕΟΝ-Α
∷ ΠΡΟΣ-ΤΙΜΟΘΕΟΝ-Β
∷ ΠΡΟΣ-ΤΙΤΟΝ
∷ ΠΡΟΣ-ΦΙΛΗΜΟΝΑ
∷ ΠΡΟΣ-ΕΒΡΑΙΟΥΣ
∷ ΙΑΚΩΒΟΥ
∷ ΠΕΤΡΟΥ-Α
∷ ΠΕΤΡΟΥ-Β
∷ ΙΩΑΝΝΟΥ-Α
∷ ΙΩΑΝΝΟΥ-Β
∷ ΙΩΑΝΝΟΥ-Γ
∷ ΙΟΥΔΑ
∷ ΑΠΟΚΑΛΥΨΙΣ-ΙΩΑΝΝΟΥ
∷ []
| {
"alphanum_fraction": 0.7657657658,
"avg_line_length": 24.6666666667,
"ext": "agda",
"hexsha": "5ee4851cfcf99d209bb4f1cf4ecfff0ab56ba03d",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z",
"max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "scott-fleischman/GreekGrammar",
"max_forks_repo_path": "agda/Text/Greek/SBLGNT.agda",
"max_issues_count": 13,
"max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "scott-fleischman/GreekGrammar",
"max_issues_repo_path": "agda/Text/Greek/SBLGNT.agda",
"max_line_length": 36,
"max_stars_count": 44,
"max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "scott-fleischman/GreekGrammar",
"max_stars_repo_path": "agda/Text/Greek/SBLGNT.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z",
"num_tokens": 1141,
"size": 1554
} |
{-# OPTIONS --with-K #-}
open import Axiom.UniquenessOfIdentityProofs.WithK using (uip)
open import Relation.Binary.PropositionalEquality hiding (Extensionality)
open ≡-Reasoning
open import Level using (Level)
open import Data.Nat using (ℕ)
open import Data.Vec using (Vec)
open import FLA.Axiom.Extensionality.Propositional
open import FLA.Algebra.Structures
open import FLA.Algebra.Properties.Field
open import FLA.Algebra.LinearMap
open import FLA.Algebra.LinearMap.Properties
open import FLA.Algebra.LinearAlgebra
open import FLA.Algebra.LinearAlgebra.Matrix
module FLA.Algebra.LinearAlgebra.Properties.Matrix where
private
variable
ℓ : Level
A : Set ℓ
m n p q : ℕ
⦃ F ⦄ : Field A
-------------------------------------------------------------------------------
-- M without the inner product proof: Mat↓ --
-------------------------------------------------------------------------------
private
data Mat↓_∶_×_ (A : Set ℓ) ⦃ F : Field A ⦄ (m n : ℕ) : Set ℓ where
⟦_,_⟧ : (M : n ⊸ m ) → (Mᵀ : m ⊸ n ) → Mat↓ A ∶ m × n
_·↓_ : ⦃ F : Field A ⦄ → Mat↓ A ∶ m × n → Vec A n → Vec A m
⟦ f , a ⟧ ·↓ x = f ·ˡᵐ x
_ᵀ↓ : ⦃ F : Field A ⦄ → Mat↓ A ∶ m × n → Mat↓ A ∶ n × m
⟦ f , a ⟧ ᵀ↓ = ⟦ a , f ⟧
infixr 20 _·↓_
infixl 25 _ᵀ↓
Mat→Mat↓ : ⦃ F : Field A ⦄ → Mat m × n → Mat↓ A ∶ m × n
Mat→Mat↓ ⟦ M , Mᵀ , p ⟧ = ⟦ M , Mᵀ ⟧
Mat↓→Mat : ⦃ F : Field A ⦄
→ (Mat↓ : Mat↓ A ∶ m × n)
→ (p : (x : Vec A m) → (y : Vec A n)
→ ⟨ x , Mat↓ ·↓ y ⟩ ≡ ⟨ y , Mat↓ ᵀ↓ ·↓ x ⟩ )
→ Mat m × n
Mat↓→Mat ⟦ M , Mᵀ ⟧ p = ⟦ M , Mᵀ , p ⟧
⟨x,Ay⟩≡⟨y,Aᵀx⟩-UIP : {ℓ : Level} → {A : Set ℓ} → ⦃ F : Field A ⦄
→ (C : n ⊸ m) → (Cᵀ : m ⊸ n)
→ (p q : (x : Vec A m) (y : Vec A n)
→ ⟨ x , C ·ˡᵐ y ⟩ ≡ ⟨ y , Cᵀ ·ˡᵐ x ⟩)
→ p ≡ q
⟨x,Ay⟩≡⟨y,Aᵀx⟩-UIP {m} {n} {ℓ} {A} C Cᵀ p q =
extensionality (λ x → extensionality (λ y → f C Cᵀ p q x y))
where
f : {m n : ℕ}
→ {A : Set ℓ}
→ ⦃ F : Field A ⦄
→ (C : n ⊸ m) → (Cᵀ : m ⊸ n)
→ (p q : (x : Vec A m) (y : Vec A n)
→ ⟨ x , C ·ˡᵐ y ⟩ ≡ ⟨ y , Cᵀ ·ˡᵐ x ⟩)
→ (x : Vec A m) → (y : Vec A n) → p x y ≡ q x y
f C Cᵀ p q (x) (y) = uip (p x y) (q x y)
Mat↓≡→Mat≡ : ⦃ F : Field A ⦄ → (C D : Mat m × n) → (Mat→Mat↓ C ≡ Mat→Mat↓ D) → C ≡ D
Mat↓≡→Mat≡ ⟦ C , Cᵀ , p ⟧ ⟦ .C , .Cᵀ , q ⟧ refl rewrite
⟨x,Ay⟩≡⟨y,Aᵀx⟩-UIP C Cᵀ p q = refl
-------------------------------------------------------------------------------
-- Proofs on M --
-------------------------------------------------------------------------------
module _ {ℓ : Level} {A : Set ℓ} ⦃ F : Field A ⦄ where
open Field F
ᵀᵀ : (B : Mat m × n) → B ᵀ ᵀ ≡ B
ᵀᵀ B = Mat↓≡→Mat≡ (B ᵀ ᵀ) B (ᵀᵀ↓ B)
where
ᵀᵀ↓ : (B : Mat m × n) → Mat→Mat↓ (B ᵀ ᵀ) ≡ Mat→Mat↓ B
ᵀᵀ↓ ⟦ M , Mᵀ , p ⟧ = refl
ᵀ-distr-* : (L : Mat m × n) (R : Mat n × p)
→ (L *ᴹ R) ᵀ ≡ (R ᵀ *ᴹ L ᵀ)
ᵀ-distr-* L R = Mat↓≡→Mat≡ ((L *ᴹ R) ᵀ) (R ᵀ *ᴹ L ᵀ) (ᵀ-distr-*↓ L R)
where
ᵀ-distr-*↓ : (L : Mat m × n) (R : Mat n × p)
→ Mat→Mat↓ ((L *ᴹ R) ᵀ) ≡ Mat→Mat↓ (R ᵀ *ᴹ L ᵀ)
ᵀ-distr-*↓ ⟦ L , Lᵀ , p ⟧ ⟦ R , Rᵀ₁ , q ⟧ = refl
ᵀ-distr-+ : (L R : Mat m × n) → (L +ᴹ R) ᵀ ≡ L ᵀ +ᴹ R ᵀ
ᵀ-distr-+ L R = Mat↓≡→Mat≡ ((L +ᴹ R) ᵀ) (L ᵀ +ᴹ R ᵀ) (ᵀ-distr-+↓ L R)
where
ᵀ-distr-+↓ : (L R : Mat m × n)
→ Mat→Mat↓ ((L +ᴹ R) ᵀ) ≡ Mat→Mat↓ (L ᵀ +ᴹ R ᵀ)
ᵀ-distr-+↓ ⟦ L , Lᵀ , p ⟧ ⟦ R , Rᵀ , q ⟧ = refl
*ᴹ-distr-+ᴹₗ : (X : Mat m × n) (Y Z : Mat n × p)
→ X *ᴹ (Y +ᴹ Z) ≡ X *ᴹ Y +ᴹ X *ᴹ Z
*ᴹ-distr-+ᴹₗ X Y Z = Mat↓≡→Mat≡ (X *ᴹ (Y +ᴹ Z)) (X *ᴹ Y +ᴹ X *ᴹ Z)
(*ᴹ-distr-+ᴹ↓ₗ X Y Z)
where
*ᴹ-distr-+ᴹ↓ₗ : (X : Mat m × n) (Y Z : Mat n × p)
→ Mat→Mat↓ (X *ᴹ (Y +ᴹ Z)) ≡ Mat→Mat↓ (X *ᴹ Y +ᴹ X *ᴹ Z)
*ᴹ-distr-+ᴹ↓ₗ ⟦ X , Xᵀ , Xₚ ⟧ ⟦ Y , Yᵀ , Yₚ ⟧ ⟦ Z , Zᵀ , Zₚ ⟧ rewrite
*ˡᵐ-distr-+ˡᵐₗ X Y Z
| *ˡᵐ-distr-+ˡᵐᵣ Yᵀ Zᵀ Xᵀ
= refl
*ᴹ-distr-+ᴹᵣ : (X Y : Mat m × n) (Z : Mat n × p)
→ (X +ᴹ Y) *ᴹ Z ≡ X *ᴹ Z +ᴹ Y *ᴹ Z
*ᴹ-distr-+ᴹᵣ X Y Z = Mat↓≡→Mat≡ ((X +ᴹ Y) *ᴹ Z) (X *ᴹ Z +ᴹ Y *ᴹ Z)
(*ᴹ-distr-+ᴹ↓ᵣ X Y Z)
where
*ᴹ-distr-+ᴹ↓ᵣ : (X Y : Mat m × n) (Z : Mat n × p)
→ Mat→Mat↓ ((X +ᴹ Y) *ᴹ Z) ≡ Mat→Mat↓ (X *ᴹ Z +ᴹ Y *ᴹ Z)
*ᴹ-distr-+ᴹ↓ᵣ ⟦ X , Xᵀ , Xₚ ⟧ ⟦ Y , Yᵀ , Yₚ ⟧ ⟦ Z , Zᵀ , Zₚ ⟧ rewrite
*ˡᵐ-distr-+ˡᵐᵣ X Y Z
| *ˡᵐ-distr-+ˡᵐₗ Zᵀ Xᵀ Yᵀ
= refl
| {
"alphanum_fraction": 0.3889479277,
"avg_line_length": 35.9160305344,
"ext": "agda",
"hexsha": "a07c02d178cfb3d5a69139ca23804642e0bde73d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-09-07T19:55:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-12T20:34:17.000Z",
"max_forks_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "turion/functional-linear-algebra",
"max_forks_repo_path": "src/FLA/Algebra/LinearAlgebra/Properties/Matrix.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_issues_repo_issues_event_max_datetime": "2022-01-07T05:27:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-09-01T01:42:12.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "turion/functional-linear-algebra",
"max_issues_repo_path": "src/FLA/Algebra/LinearAlgebra/Properties/Matrix.agda",
"max_line_length": 86,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "turion/functional-linear-algebra",
"max_stars_repo_path": "src/FLA/Algebra/LinearAlgebra/Properties/Matrix.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-07T05:28:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-22T20:49:34.000Z",
"num_tokens": 2347,
"size": 4705
} |
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
module Category.Monad.Monotone.Identity {i}(pre : Preorder i i i) where
open Preorder pre renaming (Carrier to I; _∼_ to _≤_; refl to ≤-refl)
open import Relation.Unary.PredicateTransformer using (Pt)
open import Category.Monad.Monotone pre
open RawMPMonad
Identity : Pt I i
Identity = λ P i → P i
instance
id-monad : RawMPMonad Identity
return id-monad px = px
_≥=_ id-monad c f = f ≤-refl c
| {
"alphanum_fraction": 0.7531120332,
"avg_line_length": 25.3684210526,
"ext": "agda",
"hexsha": "1ceb60596b9e9e96fa6e550243f5bea2f706296b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/Category/Monad/Monotone/Identity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/Category/Monad/Monotone/Identity.agda",
"max_line_length": 71,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/Category/Monad/Monotone/Identity.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 139,
"size": 482
} |
-- A variant of LostTypeError.
module LostTypeError2 where
postulate
Wrap : (A : Set) → (A → Set) → A → Set
wrap : (A : Set) (P : A → Set) (x : A) → P x → Wrap A P x
rewrap : (A : Set) (P : A → Set) (x : A) → Wrap A P x → Wrap A P x
postulate A : Set
data Box : Set where
box : A → Box
data Dummy : Set where
box : Dummy
postulate
x y : A
P : Box → Set
Px : P (box x)
bad : Wrap Box P (box y)
bad =
rewrap _ (λ a → P _) (box y)
(wrap _ (λ a → P _) (box x) Px)
| {
"alphanum_fraction": 0.5303643725,
"avg_line_length": 19,
"ext": "agda",
"hexsha": "08feb7b64d086ed2525a093daa5498baff41f862",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/LostTypeError2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/LostTypeError2.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/LostTypeError2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 195,
"size": 494
} |
module InstanceMetaType where
⟨⟩ : {A : Set} {{a : A}} → A
⟨⟩ {{a}} = a
postulate
A : Set
instance a : A
f : (a : A) → Set
test₁ : Set
test₁ = f ⟨⟩
postulate
B : Set
b : B
g : (b : B) → Set
instance
b' : _
b' = b
test₂ : Set
test₂ = g ⟨⟩
| {
"alphanum_fraction": 0.4809160305,
"avg_line_length": 9.7037037037,
"ext": "agda",
"hexsha": "e9e8edf324748afb21f66769a88966183d8f43c2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/InstanceMetaType.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/InstanceMetaType.agda",
"max_line_length": 29,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/InstanceMetaType.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 118,
"size": 262
} |
{-# OPTIONS --safe --without-K #-}
open import Algebra.Bundles using (Group)
module Categories.Category.Construction.GroupAsCategory o {c ℓ} (G : Group c ℓ) where
open import Level
open import Categories.Category.Groupoid
open Group G
-- A group is a groupoid with a single object
open import Categories.Category.Construction.MonoidAsCategory o monoid
renaming (MonoidAsCategory to GroupAsCategory) public
GroupIsGroupoid : IsGroupoid GroupAsCategory
GroupIsGroupoid = record
{ iso = record
{ isoˡ = inverseˡ _
; isoʳ = inverseʳ _
}
}
GroupAsGroupoid : Groupoid o c ℓ
GroupAsGroupoid = record { isGroupoid = GroupIsGroupoid }
| {
"alphanum_fraction": 0.757296467,
"avg_line_length": 25.0384615385,
"ext": "agda",
"hexsha": "e7eafbbb5fca935866ea2e83e165cb4220e01642",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/GroupAsCategory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/GroupAsCategory.agda",
"max_line_length": 85,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/GroupAsCategory.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z",
"num_tokens": 173,
"size": 651
} |
open import Agda.Builtin.IO
open import Agda.Builtin.String
open import Agda.Builtin.Unit
postulate
putStr : String → IO ⊤
{-# FOREIGN GHC import qualified Data.Text.IO #-}
{-# COMPILE GHC putStr = Data.Text.IO.putStr #-}
{-# COMPILE JS putStr =
function (x) {
return function(cb) {
process.stdout.write(x); cb(0); }; } #-}
F : Set → Set
F A = A → A
data D : Set where
c₀ : D
c₁ : F D
f : D → String
f c₀ = "OK\n"
f (c₁ x) = f x
main = putStr (f (c₁ c₀))
| {
"alphanum_fraction": 0.5991820041,
"avg_line_length": 18.1111111111,
"ext": "agda",
"hexsha": "689daaa9b932c842758d4aa47c5eb986232eb053",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Compiler/simple/Issue5602.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Compiler/simple/Issue5602.agda",
"max_line_length": 49,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Compiler/simple/Issue5602.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 160,
"size": 489
} |
-- Andreas, 2015-08-27, issue reported by Jesper Cockx
-- {-# OPTIONS -v tc.lhs:10 #-}
-- {-# OPTIONS -v tc:10 #-}
-- {-# OPTIONS -v tc.lhs.imp:100 #-}
data Bool : Set where true false : Bool
T : Set → Bool → Set
T A true = {x : A} → A
T A false = (x : A) → A
test : (A : Set) (b : Bool) → T A b
test A true {x} = x
test A false x = x
| {
"alphanum_fraction": 0.5457227139,
"avg_line_length": 21.1875,
"ext": "agda",
"hexsha": "7e1e964d3a81c01a2091de966e20e67f5bc4ccdf",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1634.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1634.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1634.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 129,
"size": 339
} |
module _ where
postulate
A : Set
data Box : Set where
box : A → Box
unbox : Box → A
unbox (box {x}) = x
| {
"alphanum_fraction": 0.5892857143,
"avg_line_length": 9.3333333333,
"ext": "agda",
"hexsha": "9d4b5ce0986be30ac4281a0c70d47f7e65fea6b5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3074.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3074.agda",
"max_line_length": 20,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3074.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 43,
"size": 112
} |
module rename where
open import cedille-types
open import constants
open import ctxt-types
open import free-vars
open import syntax-util
open import general-util
renamectxt : Set
renamectxt = stringset × trie string {- the trie maps vars to their renamed versions,
and the stringset stores all those renamed versions -}
empty-renamectxt : renamectxt
empty-renamectxt = empty-stringset , empty-trie
renamectxt-contains : renamectxt → string → 𝔹
renamectxt-contains (_ , r) s = trie-contains r s
renamectxt-insert : renamectxt → (s1 s2 : string) → renamectxt
renamectxt-insert (ranr , r) s x = stringset-insert ranr x , trie-insert r s x
renamectxt-single : var → var → renamectxt
renamectxt-single = renamectxt-insert empty-renamectxt
renamectxt-lookup : renamectxt → string → maybe string
renamectxt-lookup (ranr , r) s = trie-lookup r s
renamectxt-remove : renamectxt → string → renamectxt
renamectxt-remove (ranr , r) s with trie-lookup r s
renamectxt-remove (ranr , r) s | nothing = ranr , r
renamectxt-remove (ranr , r) s | just s' = stringset-remove ranr s' , trie-remove r s
renamectxt-in-range : renamectxt → string → 𝔹
renamectxt-in-range (ranr , r) s = stringset-contains ranr s
renamectxt-in-field : renamectxt → string → 𝔹
renamectxt-in-field m s = renamectxt-contains m s || renamectxt-in-range m s
renamectxt-rep : renamectxt → string → string
renamectxt-rep r x with renamectxt-lookup r x
renamectxt-rep r x | nothing = x
renamectxt-rep r x | just x' = x'
eq-var : renamectxt → string → string → 𝔹
eq-var r x y = renamectxt-rep r x =string renamectxt-rep r y
{-# NON_TERMINATING #-}
fresh' : (var → 𝔹) → ℕ → var → var
fresh' bound n base with base ^ ℕ-to-string n
...| x with bound x
...| tt = fresh' bound (suc n) base
...| ff = x
fresh-h : (var → 𝔹) → var → var
fresh-h bound ignored-var = ignored-var
fresh-h bound x =
if ~ bound x'
then x'
else uncurry (fresh' bound) (fresh-split [] (reverse (string-to-𝕃char x')))
where
x' = unqual-local x
to-num : 𝕃 char → ℕ
to-num [] = 1
to-num ns = string-to-ℕ0 (𝕃char-to-string ns)
fresh-split : 𝕃 char → 𝕃 char → ℕ × var
fresh-split ns [] = to-num ns , ""
fresh-split ns (c :: cs) with is-digit c
...| tt = fresh-split (c :: ns) cs
...| ff = to-num ns , 𝕃char-to-string (reverse (c :: cs))
fresh-var : ctxt → var → var
fresh-var = fresh-h ∘' ctxt-binds-var
fresh-var-renamectxt : ctxt → renamectxt → var → var
fresh-var-renamectxt Γ ρ ignored-var = ignored-var
fresh-var-renamectxt Γ ρ x = fresh-h (λ x → ctxt-binds-var Γ x || renamectxt-in-field ρ x) x
fresh-var-new : ctxt → var → var
fresh-var-new Γ ignored-var = fresh-var Γ "x"
fresh-var-new Γ x = fresh-var Γ x
rename-var-if : {ed : exprd} → ctxt → renamectxt → var → ⟦ ed ⟧ → var
rename-var-if Γ ρ y t =
if is-free-in y t || renamectxt-in-range ρ y then
fresh-var-renamectxt Γ ρ y
else
y
renamectxt-insert* : renamectxt → 𝕃 (var × var) → renamectxt
renamectxt-insert* ρ [] = ρ
renamectxt-insert* ρ ((x , y) :: vs) = renamectxt-insert* (renamectxt-insert ρ x y) vs
| {
"alphanum_fraction": 0.6752994497,
"avg_line_length": 32.5157894737,
"ext": "agda",
"hexsha": "bacfc48a27471fd042cfe8dd3c63163ebda7f781",
"lang": "Agda",
"max_forks_count": 34,
"max_forks_repo_forks_event_max_datetime": "2022-02-20T18:33:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-17T11:51:36.000Z",
"max_forks_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mudathirmahgoub/cedille",
"max_forks_repo_path": "src/rename.agda",
"max_issues_count": 123,
"max_issues_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947",
"max_issues_repo_issues_event_max_datetime": "2022-01-12T03:51:28.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-09-17T10:53:20.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mudathirmahgoub/cedille",
"max_issues_repo_path": "src/rename.agda",
"max_line_length": 95,
"max_stars_count": 328,
"max_stars_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mudathirmahgoub/cedille",
"max_stars_repo_path": "src/rename.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T10:33:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-14T20:06:09.000Z",
"num_tokens": 956,
"size": 3089
} |
------------------------------------------------------------------------
-- Rice's theorem
------------------------------------------------------------------------
open import Equality.Propositional
open import Prelude hiding (const; Decidable)
-- To simplify the development, let's work with actual natural numbers
-- as variables and constants (see
-- Atom.one-can-restrict-attention-to-χ-ℕ-atoms).
open import Atom
open import Chi χ-ℕ-atoms
open import Coding χ-ℕ-atoms
open import Free-variables χ-ℕ-atoms
import Coding.Instances.Nat
-- The theorem is stated and proved under the assumption that a
-- correct self-interpreter can be implemented.
module Rices-theorem
(eval : Exp)
(cl-eval : Closed eval)
(eval₁ : ∀ p v → Closed p → p ⇓ v → apply eval ⌜ p ⌝ ⇓ ⌜ v ⌝)
(eval₂ : ∀ p v → Closed p → apply eval ⌜ p ⌝ ⇓ v →
∃ λ v′ → p ⇓ v′ × v ≡ ⌜ v′ ⌝)
where
open import H-level.Truncation.Propositional as Trunc hiding (rec)
open import Logical-equivalence using (_⇔_)
open import Tactic.By.Propositional
open import Double-negation equality-with-J
open import Equality.Decision-procedures equality-with-J
open import Function-universe equality-with-J as F hiding (id; _∘_)
open import H-level equality-with-J
open import H-level.Closure equality-with-J
open import Monad equality-with-J
open import Cancellation χ-ℕ-atoms
open import Compatibility χ-ℕ-atoms
open import Computability χ-ℕ-atoms hiding (_∘_)
open import Constants χ-ℕ-atoms
open import Deterministic χ-ℕ-atoms
open import Propositional χ-ℕ-atoms
open import Reasoning χ-ℕ-atoms
open import Termination χ-ℕ-atoms
open import Values χ-ℕ-atoms
open χ-atoms χ-ℕ-atoms
open import Combinators as χ hiding (id; if_then_else_)
open import Halting-problem
open import Internal-coding
------------------------------------------------------------------------
-- The theorem
-- Definition of "pointwise semantically equivalent".
Pointwise-semantically-equivalent : Closed-exp → Closed-exp → Type
Pointwise-semantically-equivalent e₁ e₂ =
∀ e v → semantics [ apply-cl e₁ e ]= v ⇔
semantics [ apply-cl e₂ e ]= v
-- This relation is symmetric.
symmetric :
∀ e₁ e₂ →
Pointwise-semantically-equivalent e₁ e₂ →
Pointwise-semantically-equivalent e₂ e₁
symmetric _ _ eq = λ e v → inverse (eq e v)
-- Rice's theorem.
module _
(P : Closed-exp →Bool)
(let P′ = proj₁ P)
(e∈ : Closed-exp)
(Pe∈ : P′ [ e∈ ]= true)
(e∉ : Closed-exp)
(¬Pe∉ : P′ [ e∉ ]= false)
(resp : ∀ e₁ e₂ {b} →
Pointwise-semantically-equivalent e₁ e₂ →
P′ [ e₁ ]= b → P′ [ e₂ ]= b)
where
private
module Helper
(p : Exp) (cl-p : Closed p)
(hyp : ∀ e b → P′ [ e ]= b → apply p ⌜ e ⌝ ⇓ ⌜ b ⌝)
where
arg : Closed-exp → Closed-exp → Closed-exp
arg e p =
lambda v-x
(apply (lambda v-underscore (apply (proj₁ e) (var v-x)))
(apply eval (proj₁ p)))
, (Closed′-closed-under-lambda $
Closed′-closed-under-apply
(Closed′-closed-under-lambda $
Closed′-closed-under-apply
(Closed→Closed′ $ proj₂ e)
(Closed′-closed-under-var (inj₂ (inj₁ refl))))
(Closed′-closed-under-apply
(Closed→Closed′ cl-eval)
(Closed→Closed′ (proj₂ p))))
coded-arg : Closed-exp → Exp
coded-arg e =
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⌜ eval ⌝ ∷
apply internal-code (var v-p) ∷
[]) ∷ []) ∷ [])
branches : List Br
branches =
branch c-false [] (apply p (coded-arg e∈)) ∷
branch c-true [] (χ.not (apply p (coded-arg e∉))) ∷
[]
const-loop : Closed-exp
const-loop =
lambda v-underscore loop
, (Closed′-closed-under-lambda $
Closed→Closed′ loop-closed)
⌜const-loop⌝ : Closed-exp
⌜const-loop⌝ = ⌜ proj₁ const-loop ⌝
halts : Exp
halts =
lambda v-p (case (apply p (proj₁ ⌜const-loop⌝)) branches)
cl-coded-arg : ∀ e → Closed′ (v-p ∷ []) (coded-arg e)
cl-coded-arg e =
Closed′-closed-under-const λ where
_ (inj₂ (inj₂ ()))
_ (inj₁ refl) →
Closed→Closed′ (rep-closed v-x)
_ (inj₂ (inj₁ refl)) →
Closed′-closed-under-const λ where
_ (inj₂ (inj₂ ()))
_ (inj₁ refl) →
Closed→Closed′ $
rep-closed (Exp.lambda v-underscore (apply (proj₁ e) (var v-x)))
_ (inj₂ (inj₁ refl)) →
Closed′-closed-under-const λ where
_ (inj₂ (inj₂ ()))
_ (inj₁ refl) →
Closed→Closed′ $
rep-closed eval
_ (inj₂ (inj₁ refl)) →
Closed′-closed-under-apply
(Closed→Closed′ internal-code-closed)
(Closed′-closed-under-var (inj₁ refl))
cl-halts : Closed halts
cl-halts =
Closed′-closed-under-lambda $
Closed′-closed-under-case
(Closed′-closed-under-apply
(Closed→Closed′ cl-p)
(Closed→Closed′ $ proj₂ ⌜const-loop⌝))
(λ where
(inj₁ refl) →
Closed′-closed-under-apply
(Closed→Closed′ cl-p)
(cl-coded-arg e∈)
(inj₂ (inj₁ refl)) →
not-closed $
Closed′-closed-under-apply
(Closed→Closed′ cl-p)
(cl-coded-arg e∉)
(inj₂ (inj₂ ())))
coded-arg⇓⌜arg⌝ :
(e p : Closed-exp) →
coded-arg e [ v-p ← ⌜ p ⌝ ] ⇓ ⌜ arg e ⌜ p ⌝ ⌝
coded-arg⇓⌜arg⌝ e p =
coded-arg e [ v-p ← ⌜ p ⌝ ] ⟶⟨⟩
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝
[ v-p ← ⌜ p ⌝ ] ∷
const c-apply (
⌜ eval ⌝ [ v-p ← ⌜ p ⌝ ] ∷
apply (internal-code [ v-p ← ⌜ p ⌝ ]) ⌜ p ⌝ ∷
[]) ∷ []) ∷ []) ≡⟨ cong (λ e → const _ (_ ∷ const _ (const _ (_ ∷
const _ (e ∷ _) ∷ _) ∷ _) ∷ _))
(subst-rep (proj₁ e)) ⟩⟶
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⟨ ⌜ eval ⌝ [ v-p ← ⌜ p ⌝ ] ⟩ ∷
apply (internal-code [ v-p ← ⌜ p ⌝ ]) ⌜ p ⌝ ∷
[]) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-rep eval) ⟩⟶
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⌜ eval ⌝ ∷
apply ⟨ internal-code [ v-p ← ⌜ p ⌝ ] ⟩ ⌜ p ⌝ ∷
[]) ∷ []) ∷ []) ≡⟨ ⟨by⟩ (subst-closed _ _ internal-code-closed) ⟩⟶
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⌜ eval ⌝ ∷
apply internal-code ⌜ p ⌝ ∷
[]) ∷ []) ∷ []) ⟶⟨ []⇓ (const (there (here (const (there (here
(const (there (here ∙)))))))))
(internal-code-correct (proj₁ p)) ⟩
const c-lambda (⌜ v-x ⌝ ∷
const c-apply (
⌜ Exp.lambda v-underscore (apply (proj₁ e) (var v-x)) ⌝ ∷
const c-apply (
⌜ eval ⌝ ∷
⌜ ⌜ p ⌝ ⦂ Exp ⌝ ∷
[]) ∷ []) ∷ []) ⟶⟨⟩
⌜ arg e ⌜ p ⌝ ⌝ ■⟨ rep-value (arg e ⌜ p ⌝) ⟩
arg-lemma-⇓ :
(e p : Closed-exp) →
Terminates (proj₁ p) →
Pointwise-semantically-equivalent (arg e ⌜ p ⌝) e
arg-lemma-⇓ (e , cl-e) (p , cl-p) (vp , p⇓vp)
(e′ , cl-e′) (v , _) = record
{ to = λ where
(apply {v₂ = ve′} lambda q₁
(apply {v₂ = vp} lambda _
(apply {x = x} {e = e-body} {v₂ = ve″} q₂ q₃ q₄))) →
apply ⟨ e ⟩ e′ ≡⟨ ⟨by⟩ (substs-closed e cl-e ((v-underscore , vp) ∷ (v-x , ve′) ∷ [])) ⟩⟶
apply (e [ v-x ← ve′ ] [ v-underscore ← vp ]) e′ ⟶⟨ apply q₂ q₁ ⟩
e-body [ x ← ⟨ ve′ ⟩ ] ≡⟨ ⟨by⟩ (values-only-compute-to-themselves (⇓-Value q₁) (
ve′ ≡⟨ sym $ subst-closed _ _ (closed⇓closed q₁ cl-e′) ⟩⟶
ve′ [ v-underscore ← vp ] ⇓⟨ q₃ ⟩■
ve″ )) ⟩⟶
e-body [ x ← ve″ ] ⇓⟨ q₄ ⟩■
v
; from = λ where
(apply {v₂ = ve′} q₁ q₂ q₃) →
proj₁ (apply-cl (arg (e , cl-e) ⌜ p ⌝) (e′ , cl-e′)) ⟶⟨ apply lambda q₂ ⟩
apply (lambda v-underscore (apply ⟨ e [ v-x ← ve′ ] ⟩ ve′))
(apply eval ⌜ p ⌝ [ v-x ← ve′ ]) ≡⟨ ⟨by⟩ (subst-closed _ _ cl-e) ⟩⟶
apply (lambda v-underscore (apply e ve′))
⟨ apply eval ⌜ p ⌝ [ v-x ← ve′ ] ⟩ ≡⟨ ⟨by⟩ (subst-closed _ _ $
Closed′-closed-under-apply cl-eval (rep-closed p)) ⟩⟶
apply (lambda v-underscore (apply e ve′))
(apply eval ⌜ p ⌝) ⟶⟨ apply lambda (eval₁ p _ cl-p p⇓vp) ⟩
apply e ve′ [ v-underscore ← ⌜ vp ⌝ ] ≡⟨ subst-closed _ _ $
Closed′-closed-under-apply cl-e (closed⇓closed q₂ cl-e′) ⟩⟶
apply e ve′ ⇓⟨ apply q₁ (values-compute-to-themselves (⇓-Value q₂)) q₃ ⟩■
v
}
arg-lemma-⇓-true :
(e : Closed-exp) →
Terminates (proj₁ e) →
P′ [ arg e∈ ⌜ e ⌝ ]= true
arg-lemma-⇓-true e e⇓ = $⟨ Pe∈ ⟩
P′ [ e∈ ]= true ↝⟨ resp _ _ (symmetric (arg e∈ ⌜ e ⌝) e∈ (arg-lemma-⇓ e∈ e e⇓)) ⟩□
P′ [ arg e∈ ⌜ e ⌝ ]= true □
arg-lemma-⇓-false :
(e : Closed-exp) →
Terminates (proj₁ e) →
P′ [ arg e∉ ⌜ e ⌝ ]= false
arg-lemma-⇓-false e e⇓ = $⟨ ¬Pe∉ ⟩
P′ [ e∉ ]= false ↝⟨ resp _ _ (symmetric (arg e∉ ⌜ e ⌝) e∉ (arg-lemma-⇓ e∉ e e⇓)) ⟩□
P′ [ arg e∉ ⌜ e ⌝ ]= false □
arg-lemma-¬⇓′ :
(e p : Closed-exp) →
¬ Terminates (proj₁ p) →
Pointwise-semantically-equivalent (arg e ⌜ p ⌝) const-loop
arg-lemma-¬⇓′ (e , cl-e) (p , cl-p) ¬p⇓
(e′ , cl-e′) (v , _) = record
{ to = λ where
(apply {v₂ = ve′} lambda _ (apply {v₂ = vp} _ q _)) →
⊥-elim $ ¬p⇓ $ Σ-map id proj₁ $
eval₂ p vp cl-p (
apply eval ⌜ p ⌝ ≡⟨ sym $ subst-closed _ _ $ Closed′-closed-under-apply cl-eval (rep-closed p) ⟩⟶
apply eval ⌜ p ⌝ [ v-x ← ve′ ] ⇓⟨ q ⟩■
vp)
; from = λ where
(apply lambda _ loop⇓) → ⊥-elim $ ¬loop⇓ (_ , loop⇓)
}
arg-lemma-¬⇓ :
∀ {b} (e₀ e : Closed-exp) →
¬ Terminates (proj₁ e) →
P′ [ const-loop ]= b →
P′ [ arg e₀ ⌜ e ⌝ ]= b
arg-lemma-¬⇓ {b} e₀ e ¬e⇓ =
P′ [ const-loop ]= b ↝⟨ resp _ _ (symmetric (arg e₀ ⌜ e ⌝) const-loop (arg-lemma-¬⇓′ e₀ e ¬e⇓)) ⟩□
P′ [ arg e₀ ⌜ e ⌝ ]= b □
∃Bool : Type
∃Bool = ∃ λ (b : Bool) →
apply p (proj₁ ⌜const-loop⌝) ⇓ ⌜ b ⌝
×
P′ [ const-loop ]= b
¬¬∃ : ¬¬ ∃Bool
¬¬∃ =
excluded-middle {A = P′ [ const-loop ]= true} >>= λ where
(inj₁ P-const-loop) → return ( true
, hyp const-loop true
P-const-loop
, P-const-loop
)
(inj₂ ¬P-const-loop) →
proj₂ P const-loop >>= λ where
(true , P-const-loop) → ⊥-elim (¬P-const-loop
P-const-loop)
(false , ¬P-const-loop) →
return ( false
, hyp const-loop false ¬P-const-loop
, ¬P-const-loop
)
halts⇓-lemma :
∀ {v} →
∃Bool →
(e : Closed-exp) →
(P′ [ const-loop ]= false →
apply p (⌜ arg e∈ ⌜ e ⌝ ⌝) ⇓ v) →
(P′ [ const-loop ]= true →
χ.not (apply p (⌜ arg e∉ ⌜ e ⌝ ⌝)) ⇓ v) →
apply halts ⌜ e ⌝ ⇓ v
halts⇓-lemma {v} ∃bool e e∈⇓v e∉⇓v =
apply halts ⌜ e ⌝ ⟶⟨ apply lambda (rep⇓rep e) ⟩
case (apply ⟨ p [ v-p ← ⌜ e ⌝ ] ⟩ (proj₁ ⌜const-loop⌝))
(branches [ v-p ← ⌜ e ⌝ ]B⋆) ≡⟨ ⟨by⟩ (subst-closed _ _ cl-p) ⟩⟶
case (apply p (proj₁ ⌜const-loop⌝)) (branches [ v-p ← ⌜ e ⌝ ]B⋆) ⇓⟨ lemma ∃bool ⟩■
v
where
lemma : ∃Bool → _
lemma (true , p⌜const-loop⌝⇓true , P-const-loop) =
case (apply p (proj₁ ⌜const-loop⌝)) (branches [ v-p ← ⌜ e ⌝ ]B⋆) ⟶⟨ case p⌜const-loop⌝⇓true (there (λ ()) here) [] ⟩
χ.not (apply ⟨ p [ v-p ← ⌜ e ⌝ ] ⟩ (coded-arg e∉ [ v-p ← ⌜ e ⌝ ])) ≡⟨ ⟨by⟩ (subst-closed _ _ cl-p) ⟩⟶
χ.not (apply p (coded-arg e∉ [ v-p ← ⌜ e ⌝ ])) ⟶⟨ []⇓ (case (apply→ ∙)) (coded-arg⇓⌜arg⌝ e∉ e) ⟩
χ.not (apply p (⌜ arg e∉ ⌜ e ⌝ ⌝)) ⇓⟨ e∉⇓v P-const-loop ⟩■
v
lemma (false , p⌜const-loop⌝⇓false , ¬P-const-loop) =
case (apply p (proj₁ ⌜const-loop⌝)) (branches [ v-p ← ⌜ e ⌝ ]B⋆) ⟶⟨ case p⌜const-loop⌝⇓false here [] ⟩
apply ⟨ p [ v-p ← ⌜ e ⌝ ] ⟩ (coded-arg e∈ [ v-p ← ⌜ e ⌝ ]) ≡⟨ ⟨by⟩ (subst-closed _ _ cl-p) ⟩⟶
apply p (coded-arg e∈ [ v-p ← ⌜ e ⌝ ]) ⟶⟨ []⇓ (apply→ ∙) (coded-arg⇓⌜arg⌝ e∈ e) ⟩
apply p (⌜ arg e∈ ⌜ e ⌝ ⌝) ⇓⟨ e∈⇓v ¬P-const-loop ⟩■
v
⇓-lemma :
∃Bool →
(e : Closed-exp) →
Terminates (proj₁ e) →
apply halts ⌜ e ⌝ ⇓ ⌜ true ⦂ Bool ⌝
⇓-lemma ∃bool e e⇓ = halts⇓-lemma ∃bool e
(λ _ →
apply p (⌜ arg e∈ ⌜ e ⌝ ⌝) ⇓⟨ hyp (arg e∈ ⌜ e ⌝) true (arg-lemma-⇓-true e e⇓) ⟩■
⌜ true ⦂ Bool ⌝)
(λ _ →
χ.not (apply p (⌜ arg e∉ ⌜ e ⌝ ⌝)) ⟶⟨ []⇓ (case ∙) (hyp (arg e∉ ⌜ e ⌝) false (arg-lemma-⇓-false e e⇓)) ⟩
χ.not ⌜ false ⦂ Bool ⌝ ⇓⟨ not-correct false (rep⇓rep (false ⦂ Bool)) ⟩■
⌜ true ⦂ Bool ⌝)
¬⇓-lemma :
∃Bool →
(e : Closed-exp) →
¬ Terminates (proj₁ e) →
apply halts ⌜ e ⌝ ⇓ ⌜ false ⦂ Bool ⌝
¬⇓-lemma ∃bool e ¬e⇓ = halts⇓-lemma ∃bool e
(λ ¬P-const-loop →
apply p (⌜ arg e∈ ⌜ e ⌝ ⌝) ⇓⟨ hyp (arg e∈ ⌜ e ⌝) false (arg-lemma-¬⇓ e∈ e ¬e⇓ ¬P-const-loop) ⟩■
⌜ false ⦂ Bool ⌝)
(λ P-const-loop →
χ.not (apply p (⌜ arg e∉ ⌜ e ⌝ ⌝)) ⟶⟨ []⇓ (case ∙) (hyp (arg e∉ ⌜ e ⌝) true (arg-lemma-¬⇓ e∉ e ¬e⇓ P-const-loop)) ⟩
χ.not ⌜ true ⦂ Bool ⌝ ⇓⟨ not-correct true (rep⇓rep (true ⦂ Bool)) ⟩■
⌜ false ⦂ Bool ⌝)
rice's-theorem : ¬ Decidable P
rice's-theorem (p , cl-p , hyp , _) = ¬¬¬⊥ $
¬¬∃ >>= λ ∃bool →
return (intensional-halting-problem₀
( halts
, cl-halts
, λ e cl-e → ⇓-lemma ∃bool (e , cl-e)
, ¬⇓-lemma ∃bool (e , cl-e)
))
where
open Helper p cl-p hyp
-- A variant of the theorem.
rice's-theorem′ :
(P : Closed-exp → Type)
(e∈ : Closed-exp) →
P e∈ →
(e∉ : Closed-exp) →
¬ P e∉ →
(∀ e₁ e₂ →
Pointwise-semantically-equivalent e₁ e₂ →
P e₁ → P e₂) →
¬ Decidable (as-function-to-Bool₁ P)
rice's-theorem′ P e∈ Pe∈ e∉ ¬Pe∉ resp =
rice's-theorem
(as-function-to-Bool₁ P)
e∈
((λ _ → refl) , ⊥-elim ∘ (_$ Pe∈))
e∉
(⊥-elim ∘ ¬Pe∉ , (λ _ → refl))
(λ e₁ e₂ eq →
Σ-map (_∘ resp e₂ e₁ (symmetric e₁ e₂ eq))
(_∘ (_∘ resp e₁ e₂ eq)))
------------------------------------------------------------------------
-- Examples
-- The problem of deciding whether an expression implements the
-- successor function is undecidable.
Equal-to-suc : Closed-exp →Bool
Equal-to-suc =
as-function-to-Bool₁ λ e →
(n : ℕ) → apply (proj₁ e) ⌜ n ⌝ ⇓ ⌜ suc n ⌝
equal-to-suc-not-decidable : ¬ Decidable Equal-to-suc
equal-to-suc-not-decidable =
rice's-theorem′
_
(s , from-⊎ (closed? s))
(λ n → apply lambda (rep⇓rep n) (rep⇓rep (suc n)))
(z , from-⊎ (closed? z))
(λ z⌜n⌝⇓ → case z⌜n⌝⇓ 0 of λ { (apply () _ _) })
(λ e₁ e₂ e₁∼e₂ Pe₁ n →
apply (proj₁ e₂) ⌜ n ⌝ ⇓⟨ _⇔_.to (e₁∼e₂ ⌜ n ⌝ ⌜ suc n ⌝) (Pe₁ n) ⟩■
⌜ suc n ⌝)
where
z = const c-zero []
s = lambda v-n (const c-suc (var v-n ∷ []))
-- The problem of deciding whether an expression always terminates
-- with the same value when applied to an arbitrary argument is
-- undecidable.
Is-constant : Closed-exp →Bool
Is-constant = as-function-to-Bool₁ λ e →
∃ λ v → (n : ℕ) → apply (proj₁ e) ⌜ n ⌝ ⇓ v
is-constant-not-decidable : ¬ Decidable Is-constant
is-constant-not-decidable =
rice's-theorem′
_
(c , from-⊎ (closed? c))
((⌜ 0 ⌝ ⦂ Exp) , λ n →
apply c ⌜ n ⌝ ⇓⟨ apply lambda (rep⇓rep n) (const []) ⟩■
⌜ 0 ⌝)
(f , from-⊎ (closed? f))
not-constant
(λ e₁ e₂ e₁∼e₂ → Σ-map id λ {v} ⇓v n →
let v-closed : Closed v
v-closed = closed⇓closed (⇓v n) $
Closed′-closed-under-apply
(proj₂ e₁)
(rep-closed n)
in
apply (proj₁ e₂) ⌜ n ⌝ ⇓⟨ _⇔_.to (e₁∼e₂ ⌜ n ⌝ (v , v-closed)) (⇓v n) ⟩■
v)
where
c = lambda v-underscore ⌜ 0 ⌝
f = lambda v-n (var v-n)
not-constant : ¬ ∃ λ v → (n : ℕ) → apply f ⌜ n ⌝ ⇓ v
not-constant (v , constant) = impossible
where
v≡0 : v ≡ ⌜ 0 ⌝
v≡0 with constant 0
... | apply lambda (const []) (const []) = refl
v≡1 : v ≡ ⌜ 1 ⌝
v≡1 with constant 1
... | apply lambda (const (const [] ∷ [])) (const (const [] ∷ [])) =
refl
0≡1 =
⌜ 0 ⌝ ≡⟨ sym v≡0 ⟩
v ≡⟨ v≡1 ⟩∎
⌜ 1 ⌝ ∎
impossible : ⊥
impossible with 0≡1
... | ()
| {
"alphanum_fraction": 0.4225439504,
"avg_line_length": 36.9083969466,
"ext": "agda",
"hexsha": "2ee421578a38b40ded6688817307ecd0a91916ab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/chi",
"max_forks_repo_path": "src/Rices-theorem.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/chi",
"max_issues_repo_path": "src/Rices-theorem.agda",
"max_line_length": 138,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/chi",
"max_stars_repo_path": "src/Rices-theorem.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z",
"num_tokens": 6905,
"size": 19340
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some Vec-related properties
------------------------------------------------------------------------
module Data.Vec.Properties where
open import Algebra
open import Category.Applicative.Indexed
open import Category.Monad
open import Category.Monad.Identity
open import Data.Vec
open import Data.List.Any
using (here; there) renaming (module Membership-≡ to List)
open import Data.Nat
open import Data.Empty using (⊥-elim)
import Data.Nat.Properties as Nat
open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ)
open import Data.Fin.Properties using (_+′_)
open import Data.Empty using (⊥-elim)
open import Data.Product using (_×_ ; _,_)
open import Function
open import Function.Inverse using (_↔_)
open import Relation.Binary
module UsingVectorEquality {s₁ s₂} (S : Setoid s₁ s₂) where
private module SS = Setoid S
open SS using () renaming (Carrier to A)
import Data.Vec.Equality as VecEq
open VecEq.Equality S
replicate-lemma : ∀ {m} n x (xs : Vec A m) →
replicate {n = n} x ++ (x ∷ xs) ≈
replicate {n = 1 + n} x ++ xs
replicate-lemma zero x xs = refl (x ∷ xs)
replicate-lemma (suc n) x xs = SS.refl ∷-cong replicate-lemma n x xs
xs++[]=xs : ∀ {n} (xs : Vec A n) → xs ++ [] ≈ xs
xs++[]=xs [] = []-cong
xs++[]=xs (x ∷ xs) = SS.refl ∷-cong xs++[]=xs xs
map-++-commute : ∀ {b m n} {B : Set b}
(f : B → A) (xs : Vec B m) {ys : Vec B n} →
map f (xs ++ ys) ≈ map f xs ++ map f ys
map-++-commute f [] = refl _
map-++-commute f (x ∷ xs) = SS.refl ∷-cong map-++-commute f xs
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; _≗_)
open import Relation.Binary.HeterogeneousEquality using (_≅_; refl)
∷-injective : ∀ {a n} {A : Set a} {x y : A} {xs ys : Vec A n} →
(x ∷ xs) ≡ (y ∷ ys) → x ≡ y × xs ≡ ys
∷-injective refl = refl , refl
-- lookup is an applicative functor morphism.
lookup-morphism :
∀ {a n} (i : Fin n) →
Morphism (applicative {a = a})
(RawMonad.rawIApplicative IdentityMonad)
lookup-morphism i = record
{ op = lookup i
; op-pure = lookup-replicate i
; op-⊛ = lookup-⊛ i
}
where
lookup-replicate : ∀ {a n} {A : Set a} (i : Fin n) →
lookup i ∘ replicate {A = A} ≗ id {A = A}
lookup-replicate zero = λ _ → refl
lookup-replicate (suc i) = lookup-replicate i
lookup-⊛ : ∀ {a b n} {A : Set a} {B : Set b}
i (fs : Vec (A → B) n) (xs : Vec A n) →
lookup i (fs ⊛ xs) ≡ (lookup i fs $ lookup i xs)
lookup-⊛ zero (f ∷ fs) (x ∷ xs) = refl
lookup-⊛ (suc i) (f ∷ fs) (x ∷ xs) = lookup-⊛ i fs xs
-- tabulate is an inverse of flip lookup.
lookup∘tabulate : ∀ {a n} {A : Set a} (f : Fin n → A) (i : Fin n) →
lookup i (tabulate f) ≡ f i
lookup∘tabulate f zero = refl
lookup∘tabulate f (suc i) = lookup∘tabulate (f ∘ suc) i
tabulate∘lookup : ∀ {a n} {A : Set a} (xs : Vec A n) →
tabulate (flip lookup xs) ≡ xs
tabulate∘lookup [] = refl
tabulate∘lookup (x ∷ xs) = P.cong (_∷_ x) $ tabulate∘lookup xs
-- If you look up an index in allFin n, then you get the index.
lookup-allFin : ∀ {n} (i : Fin n) → lookup i (allFin n) ≡ i
lookup-allFin = lookup∘tabulate id
-- Various lemmas relating lookup and _++_.
lookup-++-< : ∀ {a} {A : Set a} {m n}
(xs : Vec A m) (ys : Vec A n) i (i<m : toℕ i < m) →
lookup i (xs ++ ys) ≡ lookup (Fin.fromℕ≤ i<m) xs
lookup-++-< [] ys i ()
lookup-++-< (x ∷ xs) ys zero (s≤s z≤n) = refl
lookup-++-< (x ∷ xs) ys (suc i) (s≤s (s≤s i<m)) =
lookup-++-< xs ys i (s≤s i<m)
lookup-++-≥ : ∀ {a} {A : Set a} {m n}
(xs : Vec A m) (ys : Vec A n) i (i≥m : toℕ i ≥ m) →
lookup i (xs ++ ys) ≡ lookup (Fin.reduce≥ i i≥m) ys
lookup-++-≥ [] ys i i≥m = refl
lookup-++-≥ (x ∷ xs) ys zero ()
lookup-++-≥ (x ∷ xs) ys (suc i) (s≤s i≥m) = lookup-++-≥ xs ys i i≥m
lookup-++-inject+ : ∀ {a} {A : Set a} {m n}
(xs : Vec A m) (ys : Vec A n) i →
lookup (Fin.inject+ n i) (xs ++ ys) ≡ lookup i xs
lookup-++-inject+ [] ys ()
lookup-++-inject+ (x ∷ xs) ys zero = refl
lookup-++-inject+ (x ∷ xs) ys (suc i) = lookup-++-inject+ xs ys i
lookup-++-+′ : ∀ {a} {A : Set a} {m n}
(xs : Vec A m) (ys : Vec A n) i →
lookup (fromℕ m +′ i) (xs ++ ys) ≡ lookup i ys
lookup-++-+′ [] ys zero = refl
lookup-++-+′ [] (y ∷ xs) (suc i) = lookup-++-+′ [] xs i
lookup-++-+′ (x ∷ xs) ys i = lookup-++-+′ xs ys i
-- Properties relating lookup and _[_]≔_.
lookup∘update : ∀ {a} {A : Set a} {n}
(i : Fin n) (xs : Vec A n) x →
lookup i (xs [ i ]≔ x) ≡ x
lookup∘update zero (_ ∷ xs) x = refl
lookup∘update (suc i) (_ ∷ xs) x = lookup∘update i xs x
lookup∘update′ : ∀ {a} {A : Set a} {n} {i j : Fin n} →
i ≢ j → ∀ (xs : Vec A n) y →
lookup i (xs [ j ]≔ y) ≡ lookup i xs
lookup∘update′ {i = zero} {zero} i≢j xs y = ⊥-elim (i≢j refl)
lookup∘update′ {i = zero} {suc j} i≢j (x ∷ xs) y = refl
lookup∘update′ {i = suc i} {zero} i≢j (x ∷ xs) y = refl
lookup∘update′ {i = suc i} {suc j} i≢j (x ∷ xs) y =
lookup∘update′ (i≢j ∘ P.cong suc) xs y
-- map is a congruence.
map-cong : ∀ {a b n} {A : Set a} {B : Set b} {f g : A → B} →
f ≗ g → _≗_ {A = Vec A n} (map f) (map g)
map-cong f≗g [] = refl
map-cong f≗g (x ∷ xs) = P.cong₂ _∷_ (f≗g x) (map-cong f≗g xs)
-- map is functorial.
map-id : ∀ {a n} {A : Set a} → _≗_ {A = Vec A n} (map id) id
map-id [] = refl
map-id (x ∷ xs) = P.cong (_∷_ x) (map-id xs)
map-∘ : ∀ {a b c n} {A : Set a} {B : Set b} {C : Set c}
(f : B → C) (g : A → B) →
_≗_ {A = Vec A n} (map (f ∘ g)) (map f ∘ map g)
map-∘ f g [] = refl
map-∘ f g (x ∷ xs) = P.cong (_∷_ (f (g x))) (map-∘ f g xs)
-- tabulate can be expressed using map and allFin.
tabulate-∘ : ∀ {n a b} {A : Set a} {B : Set b}
(f : A → B) (g : Fin n → A) →
tabulate (f ∘ g) ≡ map f (tabulate g)
tabulate-∘ {zero} f g = refl
tabulate-∘ {suc n} f g =
P.cong (_∷_ (f (g zero))) (tabulate-∘ f (g ∘ suc))
tabulate-allFin : ∀ {n a} {A : Set a} (f : Fin n → A) →
tabulate f ≡ map f (allFin n)
tabulate-allFin f = tabulate-∘ f id
-- The positive case of allFin can be expressed recursively using map.
allFin-map : ∀ n → allFin (suc n) ≡ zero ∷ map suc (allFin n)
allFin-map n = P.cong (_∷_ zero) $ tabulate-∘ suc id
-- If you look up every possible index, in increasing order, then you
-- get back the vector you started with.
map-lookup-allFin : ∀ {a} {A : Set a} {n} (xs : Vec A n) →
map (λ x → lookup x xs) (allFin n) ≡ xs
map-lookup-allFin {n = n} xs = begin
map (λ x → lookup x xs) (allFin n) ≡⟨ P.sym $ tabulate-∘ (λ x → lookup x xs) id ⟩
tabulate (λ x → lookup x xs) ≡⟨ tabulate∘lookup xs ⟩
xs ∎
where open P.≡-Reasoning
-- tabulate f contains f i.
∈-tabulate : ∀ {n a} {A : Set a} (f : Fin n → A) i → f i ∈ tabulate f
∈-tabulate f zero = here
∈-tabulate f (suc i) = there (∈-tabulate (f ∘ suc) i)
-- allFin n contains all elements in Fin n.
∈-allFin : ∀ {n} (i : Fin n) → i ∈ allFin n
∈-allFin = ∈-tabulate id
-- sum commutes with _++_.
sum-++-commute : ∀ {m n} (xs : Vec ℕ m) {ys : Vec ℕ n} →
sum (xs ++ ys) ≡ sum xs + sum ys
sum-++-commute [] = refl
sum-++-commute (x ∷ xs) {ys} = begin
x + sum (xs ++ ys)
≡⟨ P.cong (λ p → x + p) (sum-++-commute xs) ⟩
x + (sum xs + sum ys)
≡⟨ P.sym (+-assoc x (sum xs) (sum ys)) ⟩
sum (x ∷ xs) + sum ys
∎
where
open P.≡-Reasoning
open CommutativeSemiring Nat.commutativeSemiring hiding (_+_; sym)
-- foldr is a congruence.
foldr-cong : ∀ {a b} {A : Set a}
{B₁ : ℕ → Set b}
{f₁ : ∀ {n} → A → B₁ n → B₁ (suc n)} {e₁}
{B₂ : ℕ → Set b}
{f₂ : ∀ {n} → A → B₂ n → B₂ (suc n)} {e₂} →
(∀ {n x} {y₁ : B₁ n} {y₂ : B₂ n} →
y₁ ≅ y₂ → f₁ x y₁ ≅ f₂ x y₂) →
e₁ ≅ e₂ →
∀ {n} (xs : Vec A n) →
foldr B₁ f₁ e₁ xs ≅ foldr B₂ f₂ e₂ xs
foldr-cong _ e₁=e₂ [] = e₁=e₂
foldr-cong {B₁ = B₁} f₁=f₂ e₁=e₂ (x ∷ xs) =
f₁=f₂ (foldr-cong {B₁ = B₁} f₁=f₂ e₁=e₂ xs)
-- foldl is a congruence.
foldl-cong : ∀ {a b} {A : Set a}
{B₁ : ℕ → Set b}
{f₁ : ∀ {n} → B₁ n → A → B₁ (suc n)} {e₁}
{B₂ : ℕ → Set b}
{f₂ : ∀ {n} → B₂ n → A → B₂ (suc n)} {e₂} →
(∀ {n x} {y₁ : B₁ n} {y₂ : B₂ n} →
y₁ ≅ y₂ → f₁ y₁ x ≅ f₂ y₂ x) →
e₁ ≅ e₂ →
∀ {n} (xs : Vec A n) →
foldl B₁ f₁ e₁ xs ≅ foldl B₂ f₂ e₂ xs
foldl-cong _ e₁=e₂ [] = e₁=e₂
foldl-cong {B₁ = B₁} f₁=f₂ e₁=e₂ (x ∷ xs) =
foldl-cong {B₁ = B₁ ∘ suc} f₁=f₂ (f₁=f₂ e₁=e₂) xs
-- The (uniqueness part of the) universality property for foldr.
foldr-universal : ∀ {a b} {A : Set a} (B : ℕ → Set b)
(f : ∀ {n} → A → B n → B (suc n)) {e}
(h : ∀ {n} → Vec A n → B n) →
h [] ≡ e →
(∀ {n} x → h ∘ _∷_ x ≗ f {n} x ∘ h) →
∀ {n} → h ≗ foldr B {n} f e
foldr-universal B f h base step [] = base
foldr-universal B f {e} h base step (x ∷ xs) = begin
h (x ∷ xs)
≡⟨ step x xs ⟩
f x (h xs)
≡⟨ P.cong (f x) (foldr-universal B f h base step xs) ⟩
f x (foldr B f e xs)
∎
where open P.≡-Reasoning
-- A fusion law for foldr.
foldr-fusion : ∀ {a b c} {A : Set a}
{B : ℕ → Set b} {f : ∀ {n} → A → B n → B (suc n)} e
{C : ℕ → Set c} {g : ∀ {n} → A → C n → C (suc n)}
(h : ∀ {n} → B n → C n) →
(∀ {n} x → h ∘ f {n} x ≗ g x ∘ h) →
∀ {n} → h ∘ foldr B {n} f e ≗ foldr C g (h e)
foldr-fusion {B = B} {f} e {C} h fuse =
foldr-universal C _ _ refl (λ x xs → fuse x (foldr B f e xs))
-- The identity function is a fold.
idIsFold : ∀ {a n} {A : Set a} → id ≗ foldr (Vec A) {n} _∷_ []
idIsFold = foldr-universal _ _ id refl (λ _ _ → refl)
-- The _∈_ predicate is equivalent (in the following sense) to the
-- corresponding predicate for lists.
∈⇒List-∈ : ∀ {a} {A : Set a} {n x} {xs : Vec A n} →
x ∈ xs → x List.∈ toList xs
∈⇒List-∈ here = here P.refl
∈⇒List-∈ (there x∈) = there (∈⇒List-∈ x∈)
List-∈⇒∈ : ∀ {a} {A : Set a} {x : A} {xs} →
x List.∈ xs → x ∈ fromList xs
List-∈⇒∈ (here P.refl) = here
List-∈⇒∈ (there x∈) = there (List-∈⇒∈ x∈)
-- Proof irrelevance for _[_]=_.
proof-irrelevance-[]= : ∀ {a} {A : Set a} {n} {xs : Vec A n} {i x} →
(p q : xs [ i ]= x) → p ≡ q
proof-irrelevance-[]= here here = refl
proof-irrelevance-[]= (there xs[i]=x) (there xs[i]=x') =
P.cong there (proof-irrelevance-[]= xs[i]=x xs[i]=x')
-- _[_]=_ can be expressed using lookup and _≡_.
[]=↔lookup : ∀ {a n i} {A : Set a} {x} {xs : Vec A n} →
xs [ i ]= x ↔ lookup i xs ≡ x
[]=↔lookup {i = i} {x = x} {xs} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ (from i xs)
; inverse-of = record
{ left-inverse-of = λ _ → proof-irrelevance-[]= _ _
; right-inverse-of = λ _ → P.proof-irrelevance _ _
}
}
where
to : ∀ {n xs} {i : Fin n} → xs [ i ]= x → lookup i xs ≡ x
to here = refl
to (there xs[i]=x) = to xs[i]=x
from : ∀ {n} (i : Fin n) xs → lookup i xs ≡ x → xs [ i ]= x
from zero (.x ∷ _) refl = here
from (suc i) (_ ∷ xs) p = there (from i xs p)
------------------------------------------------------------------------
-- Some properties related to _[_]≔_
[]≔-idempotent :
∀ {n a} {A : Set a} (xs : Vec A n) (i : Fin n) {x₁ x₂ : A} →
(xs [ i ]≔ x₁) [ i ]≔ x₂ ≡ xs [ i ]≔ x₂
[]≔-idempotent [] ()
[]≔-idempotent (x ∷ xs) zero = refl
[]≔-idempotent (x ∷ xs) (suc i) = P.cong (_∷_ x) $ []≔-idempotent xs i
[]≔-commutes :
∀ {n a} {A : Set a} (xs : Vec A n) (i j : Fin n) {x y : A} →
i ≢ j → (xs [ i ]≔ x) [ j ]≔ y ≡ (xs [ j ]≔ y) [ i ]≔ x
[]≔-commutes [] () () _
[]≔-commutes (x ∷ xs) zero zero 0≢0 = ⊥-elim $ 0≢0 refl
[]≔-commutes (x ∷ xs) zero (suc i) _ = refl
[]≔-commutes (x ∷ xs) (suc i) zero _ = refl
[]≔-commutes (x ∷ xs) (suc i) (suc j) i≢j =
P.cong (_∷_ x) $ []≔-commutes xs i j (i≢j ∘ P.cong suc)
[]≔-updates : ∀ {n a} {A : Set a} (xs : Vec A n) (i : Fin n) {x : A} →
(xs [ i ]≔ x) [ i ]= x
[]≔-updates [] ()
[]≔-updates (x ∷ xs) zero = here
[]≔-updates (x ∷ xs) (suc i) = there ([]≔-updates xs i)
[]≔-minimal :
∀ {n a} {A : Set a} (xs : Vec A n) (i j : Fin n) {x y : A} →
i ≢ j → xs [ i ]= x → (xs [ j ]≔ y) [ i ]= x
[]≔-minimal [] () () _ _
[]≔-minimal (x ∷ xs) .zero zero 0≢0 here = ⊥-elim $ 0≢0 refl
[]≔-minimal (x ∷ xs) .zero (suc j) _ here = here
[]≔-minimal (x ∷ xs) (suc i) zero _ (there loc) = there loc
[]≔-minimal (x ∷ xs) (suc i) (suc j) i≢j (there loc) =
there ([]≔-minimal xs i j (i≢j ∘ P.cong suc) loc)
map-[]≔ : ∀ {n a b} {A : Set a} {B : Set b}
(f : A → B) (xs : Vec A n) (i : Fin n) {x : A} →
map f (xs [ i ]≔ x) ≡ map f xs [ i ]≔ f x
map-[]≔ f [] ()
map-[]≔ f (x ∷ xs) zero = refl
map-[]≔ f (x ∷ xs) (suc i) = P.cong (_∷_ _) $ map-[]≔ f xs i
[]≔-lookup : ∀ {a} {A : Set a} {n} (xs : Vec A n) (i : Fin n) →
xs [ i ]≔ lookup i xs ≡ xs
[]≔-lookup [] ()
[]≔-lookup (x ∷ xs) zero = refl
[]≔-lookup (x ∷ xs) (suc i) = P.cong (_∷_ x) $ []≔-lookup xs i
[]≔-++-inject+ : ∀ {a} {A : Set a} {m n x}
(xs : Vec A m) (ys : Vec A n) i →
(xs ++ ys) [ Fin.inject+ n i ]≔ x ≡ xs [ i ]≔ x ++ ys
[]≔-++-inject+ [] ys ()
[]≔-++-inject+ (x ∷ xs) ys zero = refl
[]≔-++-inject+ (x ∷ xs) ys (suc i) =
P.cong (_∷_ x) $ []≔-++-inject+ xs ys i
| {
"alphanum_fraction": 0.4704049844,
"avg_line_length": 36.6857142857,
"ext": "agda",
"hexsha": "c327b4c51c120486d6e58092eb916129e0823e62",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Data/Vec/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Data/Vec/Properties.agda",
"max_line_length": 83,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Data/Vec/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 5827,
"size": 14124
} |
module Numeral.Finite.Relation.Order where
import Lvl
open import Data
open import Data.Boolean.Stmt
open import Functional
open import Numeral.Finite
open import Numeral.Finite.Oper.Comparisons
open import Numeral.Natural
open import Type
private variable an bn cn n : ℕ
private variable a : 𝕟(an)
private variable b : 𝕟(bn)
private variable c : 𝕟(cn)
_≤_ : 𝕟(an) → 𝕟(bn) → Type
_≤_ = IsTrue ∘₂ (_≤?_)
_≥_ : 𝕟(an) → 𝕟(bn) → Type
_≥_ = IsTrue ∘₂ (_≥?_)
_<_ : 𝕟(an) → 𝕟(bn) → Type
_<_ = IsTrue ∘₂ (_<?_)
_>_ : 𝕟(an) → 𝕟(bn) → Type
_>_ = IsTrue ∘₂ (_>?_)
_≡_ : 𝕟(an) → 𝕟(bn) → Type
_≡_ = IsTrue ∘₂ (_≡?_)
_≢_ : 𝕟(an) → 𝕟(bn) → Type
_≢_ = IsTrue ∘₂ (_≢?_)
-- TODO: open import Structure.Relator.Properties
import Numeral.Natural.Relation.Order as ℕ
[≤]-minimum : (𝟎{n} ≤ a)
[≤]-minimum {a = 𝟎} = <>
[≤]-minimum {a = 𝐒 _} = <>
-- [≤]-maximum : (bound a ℕ.≤ n) → (a ≤ maximum{n})
-- [≤]-maximum {_} {𝟎} ℕ.[≤]-with-[𝐒] = <>
-- [≤]-maximum {𝐒 an} {𝐒 a} {.(𝐒 n)} (ℕ.[≤]-with-[𝐒] {y = n} ⦃ p ⦄) = [≤]-maximum {an}{a}{n} p
[≤]-maximum : (bound a ℕ.≤ 𝐒(n)) → (a ≤ maximum{n})
[≤]-maximum {a = 𝟎} {𝟎} (ℕ.succ _) = <>
[≤]-maximum {a = 𝟎} {𝐒 _} (ℕ.succ _) = <>
[≤]-maximum {a = 𝐒 a} {𝐒 x} (ℕ.succ p) = [≤]-maximum {a = a} p
[≤]-maximum {a = 𝐒 {𝟎} ()} {𝟎} (ℕ.succ _)
[≤]-maximum {a = 𝐒 {𝐒 n} a} {𝟎} (ℕ.succ ())
[≤]-reflexivity-raw : (a ≤ a)
[≤]-reflexivity-raw {a = 𝟎} = <>
[≤]-reflexivity-raw {a = 𝐒 a} = [≤]-reflexivity-raw {a = a}
[≤]-asymmetry-raw : (a ≤ b) → (b ≤ a) → (a ≡ b)
[≤]-asymmetry-raw {a = 𝟎} {b = 𝟎} _ _ = <>
[≤]-asymmetry-raw {a = 𝐒 a} {b = 𝐒 b} p q = [≤]-asymmetry-raw {a = a}{b = b} p q
[≤]-transitivity-raw : (a ≤ b) → (b ≤ c) → (a ≤ c)
[≤]-transitivity-raw {a = 𝟎} {b = 𝟎} {c = 𝟎} p q = <>
[≤]-transitivity-raw {a = 𝟎} {b = 𝟎} {c = 𝐒 c} p q = <>
[≤]-transitivity-raw {a = 𝟎} {b = 𝐒 b} {c = 𝐒 c} p q = <>
[≤]-transitivity-raw {a = 𝐒 a} {b = 𝐒 b} {c = 𝐒 c} p q = [≤]-transitivity-raw {a = a} {b = b} {c = c} p q
| {
"alphanum_fraction": 0.4977667494,
"avg_line_length": 30.5303030303,
"ext": "agda",
"hexsha": "826ef12c1695c995f467bc64ce820bcddf124b85",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Numeral/Finite/Relation/Order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Numeral/Finite/Relation/Order.agda",
"max_line_length": 105,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Numeral/Finite/Relation/Order.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1047,
"size": 2015
} |
-- This file just tests that the options --no-save-metas and
-- --save-metas are parsed correctly.
{-# OPTIONS --no-save-metas --save-metas #-}
| {
"alphanum_fraction": 0.6827586207,
"avg_line_length": 29,
"ext": "agda",
"hexsha": "1d26dfcb13e0c514cd08dfbdbda8de28cc3fa023",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "Seanpm2001-Agda-lang/agda",
"max_forks_repo_path": "test/Succeed/Issue5731.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "Seanpm2001-Agda-lang/agda",
"max_issues_repo_path": "test/Succeed/Issue5731.agda",
"max_line_length": 60,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "sseefried/agda",
"max_stars_repo_path": "test/Succeed/Issue5731.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z",
"num_tokens": 36,
"size": 145
} |
module Type.Category.IntensionalFunctionsCategory.LvlUpFunctor where
import Lvl
open import Relator.Equals
open import Relator.Equals.Proofs.Equiv
open import Structure.Category
open import Structure.Category.Functor
open import Type
open import Type.Category.IntensionalFunctionsCategory
private variable ℓ₁ ℓ₂ : Lvl.Level
instance
LvlUp-functor : Functor(typeIntensionalFnCategory)(typeIntensionalFnCategory)(Lvl.Up{ℓ₁}{ℓ₂})
Functor.map LvlUp-functor f(Lvl.up x) = Lvl.up(f(x))
Functor.op-preserving LvlUp-functor = [≡]-intro
Functor.id-preserving LvlUp-functor = [≡]-intro
| {
"alphanum_fraction": 0.7956448911,
"avg_line_length": 33.1666666667,
"ext": "agda",
"hexsha": "8e3e49d1d8ed56dbc93c9bb88e91d4d8f791e4a7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Category/IntensionalFunctionsCategory/LvlUpFunctor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Category/IntensionalFunctionsCategory/LvlUpFunctor.agda",
"max_line_length": 95,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Category/IntensionalFunctionsCategory/LvlUpFunctor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 171,
"size": 597
} |
------------------------------------------------------------------------
-- Some results related to expansion for the delay monad
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Prelude
module Expansion.Delay-monad {a} {A : Type a} where
open import Delay-monad
open import Delay-monad.Bisimilarity as D using (force)
import Delay-monad.Bisimilarity.Negative as DN
open import Equality.Propositional
open import Logical-equivalence using (_⇔_)
open import Prelude.Size
open import Function-universe equality-with-J hiding (id; _∘_)
open import Function-universe.Size equality-with-J
import Bisimilarity.Delay-monad as SD
open import Equational-reasoning
import Expansion.Equational-reasoning-instances
open import Labelled-transition-system.Delay-monad A
open import Bisimilarity delay-monad using ([_]_∼_)
open import Expansion delay-monad
------------------------------------------------------------------------
-- The direct and the indirect definitions of expansion are pointwise
-- logically equivalent
-- Emulations of the constructors D.later and D.laterˡ.
later-cong : ∀ {i x y} →
[ i ] force x ≳′ force y → [ i ] later x ≳ later y
later-cong x≳′y =
⟨ (λ { later → _ , ⟶→⟶̂ later , x≳′y })
, (λ { later → _ , ⟶→[]⇒ later , x≳′y })
⟩
laterˡ : ∀ {i x y} → [ i ] force x ≳ y → [ i ] later x ≳ y
laterˡ x≳y =
⟨ (λ { later → _ , done _ , convert {a = a} x≳y })
, Σ-map id (Σ-map later[]⇒ id) ∘ right-to-left x≳y
⟩
-- The direct definition of expansion is contained in the one
-- obtained from the transition relation.
direct→indirect : ∀ {i x y} →
D.[ i ] x ≳ y → [ i ] x ≳ y
direct→indirect D.now = reflexive
direct→indirect (D.later p) = later-cong λ { .force →
direct→indirect (force p) }
direct→indirect (D.laterˡ p) = laterˡ (direct→indirect p)
-- If x makes a sequence of zero or more silent transitions to y, then
-- x is an expansion of y.
⇒→≳ : ∀ {i x y} → x ⇒ y → D.[ i ] x ≳ y
⇒→≳ done = D.reflexive _
⇒→≳ (step _ later tr) = D.laterˡ (⇒→≳ tr)
⇒→≳ (step () now tr)
-- If x makes a non-silent transition with the label y, then x is an
-- expansion of now y.
[just]⟶→≳now : ∀ {i x x′ y} → x [ just y ]⟶ x′ → D.[ i ] x ≳ now y
[just]⟶→≳now now = D.reflexive _
[just]⇒→≳now : ∀ {i x x′ y} → x [ just y ]⇒ x′ → D.[ i ] x ≳ now y
[just]⇒→≳now (steps tr now _) = ⇒→≳ tr
[just]⇒̂→≳now : ∀ {i x x′ y} → x [ just y ]⇒̂ x′ → D.[ i ] x ≳ now y
[just]⇒̂→≳now (silent () _)
[just]⇒̂→≳now (non-silent _ tr) = [just]⇒→≳now tr
[just]⟶̂→≳now : ∀ {i x x′ y} → x [ just y ]⟶̂ x′ → D.[ i ] x ≳ now y
[just]⟶̂→≳now (done ())
[just]⟶̂→≳now (step tr) = [just]⇒̂→≳now (⟶→⇒̂ tr)
-- The definition of expansion obtained from the transition relation
-- is contained in the direct one.
indirect→direct : ∀ {i} x y → [ i ] x ≳ y → D.[ i ] x ≳ y
indirect→direct {i} (now x) y =
([ i ] now x ≳ y) ↝⟨ (λ p → left-to-right p now) ⟩
(∃ λ y′ → y [ just x ]⟶̂ y′ × [ i ] now x ≳′ y′) ↝⟨ sym ∘ [just]⟶̂→≡now ∘ proj₁ ∘ proj₂ ⟩
now x ≡ y ↝⟨ (λ { refl → D.reflexive _ }) ⟩□
D.[ i ] now x ≳ y □
indirect→direct {i} x (now y) =
[ i ] x ≳ now y ↝⟨ (λ p → right-to-left p now) ⟩
(∃ λ x′ → x [ just y ]⇒ x′ × [ i ] x′ ≳′ now y) ↝⟨ [just]⇒→≳now ∘ proj₁ ∘ proj₂ ⟩□
D.[ i ] x ≳ now y □
indirect→direct (later x) (later y) lx≳ly =
case left-to-right lx≳ly later of λ where
(_ , step later , x≳′y) → D.later λ { .force {j} →
indirect→direct _ _
(force x≳′y {j = j}) }
(_ , done _ , x≳′ly) →
let x′ , lx⇒x′ , x′≳′y = right-to-left lx≳ly later
in lemma x≳′ly ([]⇒→⇒ _ lx⇒x′) x′≳′y
where
indirect→direct′ : ∀ {i x x′ y} →
x ⇒ x′ → [ i ] x′ ≳ y → D.[ i ] x ≳ y
indirect→direct′ done p = indirect→direct _ _ p
indirect→direct′ (step _ later tr) p = D.laterˡ
(indirect→direct′ tr p)
indirect→direct′ (step () now _)
lemma :
∀ {i x x′} →
[ i ] force x ≳′ later y →
later x ⇒ x′ → [ i ] x′ ≳′ force y →
D.[ i ] later x ≳ later y
lemma x≳′ly done lx≳′y =
D.later λ { .force →
D.laterˡʳ⁻¹
(indirect→direct _ _ (force lx≳′y))
(indirect→direct _ _ (force x≳′ly)) }
lemma x≳′ly (step _ later x⇒x′) x′≳′y =
D.later λ { .force →
indirect→direct′ x⇒x′ (force x′≳′y) }
-- The direct definition of the expansion relation is logically
-- equivalent to the one obtained from the transition relation.
--
-- TODO: Are the two definitions isomorphic?
direct⇔indirect : ∀ {i x y} → D.[ i ] x ≳ y ⇔ [ i ] x ≳ y
direct⇔indirect = record
{ to = direct→indirect
; from = indirect→direct _ _
}
------------------------------------------------------------------------
-- Some non-existence results
Now≳later-now = ∀ x → now x ≳ later (record { force = now x })
now≳later-now⇔uninhabited : Now≳later-now ⇔ ¬ A
now≳later-now⇔uninhabited =
Now≳later-now ↝⟨ inverse $ ∀-cong _ (λ _ → direct⇔indirect) ⟩
DN.Now≳later-now ↝⟨ DN.now≳later-now⇔uninhabited ⟩□
¬ A □
Laterˡ⁻¹ = ∀ {x y} → later x ≳ y → force x ≳ y
laterˡ⁻¹⇔uninhabited : Laterˡ⁻¹ ⇔ ¬ A
laterˡ⁻¹⇔uninhabited =
Laterˡ⁻¹ ↝⟨ inverse $ implicit-∀-cong _ $ implicit-∀-cong _ $ →-cong _ direct⇔indirect direct⇔indirect ⟩
DN.Laterˡ⁻¹-≳ ↝⟨ DN.laterˡ⁻¹-≳⇔uninhabited ⟩□
¬ A □
Laterʳ⁻¹-∼≳ =
∀ {i x} →
[ i ] never ∼ later (record { force = now x }) →
[ i ] never ≳ now x
size-preserving-laterʳ⁻¹-∼≳⇔uninhabited : Laterʳ⁻¹-∼≳ ⇔ ¬ A
size-preserving-laterʳ⁻¹-∼≳⇔uninhabited =
Laterʳ⁻¹-∼≳ ↝⟨ inverse $ implicit-∀-size-cong _ $ implicit-∀-cong _ $ →-cong _ SD.direct⇔indirect direct⇔indirect ⟩
DN.Laterʳ⁻¹-∼≳ ↝⟨ DN.size-preserving-laterʳ⁻¹-∼≳⇔uninhabited ⟩□
¬ A □
Laterʳ⁻¹ = ∀ {i x y} → [ i ] x ≳ later y → [ i ] x ≳ force y
size-preserving-laterʳ⁻¹⇔uninhabited : Laterʳ⁻¹ ⇔ ¬ A
size-preserving-laterʳ⁻¹⇔uninhabited =
Laterʳ⁻¹ ↝⟨ inverse $ implicit-∀-size-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ →-cong _ direct⇔indirect direct⇔indirect ⟩
DN.Laterʳ⁻¹-≳ ↝⟨ DN.size-preserving-laterʳ⁻¹-≳⇔uninhabited ⟩□
¬ A □
Transitivity-∼≳ˡ =
∀ {i} {x y z : Delay A ∞} →
[ i ] x ∼ y → y ≳ z → [ i ] x ≳ z
size-preserving-transitivity-∼≳ˡ⇔uninhabited : Transitivity-∼≳ˡ ⇔ ¬ A
size-preserving-transitivity-∼≳ˡ⇔uninhabited =
Transitivity-∼≳ˡ ↝⟨ inverse $ implicit-∀-size-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $
→-cong _ SD.direct⇔indirect (→-cong _ direct⇔indirect direct⇔indirect) ⟩
DN.Transitivity-∼≳ˡ ↝⟨ DN.size-preserving-transitivity-∼≳ˡ⇔uninhabited ⟩□
¬ A □
Transitivityˡ =
∀ {i} {x y z : Delay A ∞} →
[ i ] x ≳ y → y ≳ z → [ i ] x ≳ z
size-preserving-transitivityˡ⇔uninhabited : Transitivityˡ ⇔ ¬ A
size-preserving-transitivityˡ⇔uninhabited =
Transitivityˡ ↝⟨ inverse $ implicit-∀-size-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $
→-cong _ direct⇔indirect (→-cong _ direct⇔indirect direct⇔indirect) ⟩
DN.Transitivity-≳ˡ ↝⟨ DN.size-preserving-transitivity-≳ˡ⇔uninhabited ⟩□
¬ A □
Transitivity =
∀ {i} {x y z : Delay A ∞} →
[ i ] x ≳ y → [ i ] y ≳ z → [ i ] x ≳ z
size-preserving-transitivity⇔uninhabited : Transitivity ⇔ ¬ A
size-preserving-transitivity⇔uninhabited =
Transitivity ↝⟨ inverse $ implicit-∀-size-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $ implicit-∀-cong _ $
→-cong _ direct⇔indirect $ →-cong _ direct⇔indirect direct⇔indirect ⟩
DN.Transitivity-≳ ↝⟨ DN.size-preserving-transitivity-≳⇔uninhabited ⟩□
¬ A □
| {
"alphanum_fraction": 0.538934941,
"avg_line_length": 38.0956937799,
"ext": "agda",
"hexsha": "0d235a3849a4ddc0efb40c1097c2729721a8e050",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Expansion/Delay-monad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Expansion/Delay-monad.agda",
"max_line_length": 137,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Expansion/Delay-monad.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3156,
"size": 7962
} |
module Data.Proofs where
import Lvl
open import Data
open import Logic
open import Logic.Propositional
open import Structure.Setoid renaming (_≡_ to _≡ₛ_)
open import Structure.Function
open import Structure.Function.Domain
open import Structure.Function.Domain.Proofs
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Type
open import Type.Properties.Empty
open import Type.Properties.Singleton
private variable ℓ ℓₑ ℓₑ₁ ℓₑ₂ ℓ₁ ℓ₂ : Lvl.Level
private variable T : Type{ℓ}
module General where
module _ {_▫_ : Empty{ℓ} → Empty{ℓ} → Stmt{ℓₑ}} where
Empty-equiv : Equiv(Empty)
Equiv._≡_ Empty-equiv = _▫_
Reflexivity.proof (Equivalence.reflexivity (Equiv.equivalence Empty-equiv)) {}
Symmetry.proof (Equivalence.symmetry (Equiv.equivalence Empty-equiv)) {}
Transitivity.proof (Equivalence.transitivity (Equiv.equivalence Empty-equiv)) {}
-- Any binary relation on Unit is an equivalence given that it is reflexive.
module _ {_▫_ : Unit{ℓ} → Unit{ℓ} → Stmt{ℓ}} ⦃ proof : (<> ▫ <>) ⦄ where
Unit-equiv : Equiv(Unit)
Equiv._≡_ Unit-equiv = (_▫_)
Reflexivity.proof (Equivalence.reflexivity (Equiv.equivalence Unit-equiv)) = proof
Symmetry.proof (Equivalence.symmetry (Equiv.equivalence Unit-equiv)) _ = proof
Transitivity.proof (Equivalence.transitivity (Equiv.equivalence Unit-equiv)) _ _ = proof
module _ where
open import Relator.Equals
instance
Empty-equiv : Equiv(Empty{ℓ})
Empty-equiv = General.Empty-equiv {_▫_ = _≡_}
instance
Unit-equiv : Equiv(Unit{ℓ})
Unit-equiv = General.Unit-equiv ⦃ [≡]-intro {x = <>} ⦄
{- TODO: So, why is this unprovable but Unit-IsUnit is? UIP? What is the difference?
module _ where
open import Relator.Equals.Proofs.Equiv
testee : ∀{T : Type{ℓ}}{a : T} → IsUnit{ℓ}(a ≡ a)
IsUnit.unit testee = [≡]-intro
IsUnit.uniqueness testee {x} = {!!}
-}
instance
-- `Unit` is an unit type.
Unit-IsUnit : ⦃ equiv : Equiv{ℓₑ}(Unit) ⦄ → IsUnit{ℓ}(Unit)
IsUnit.unit Unit-IsUnit = <>
IsUnit.uniqueness Unit-IsUnit = reflexivity(_≡ₛ_)
instance
-- `Empty` is an empty type.
Empty-IsEmpty : IsEmpty{ℓ}(Empty)
Empty-IsEmpty = intro(empty)
module _ ⦃ _ : Equiv{ℓₑ₁}(T) ⦄ ⦃ empty-equiv : Equiv{ℓₑ₂}(Empty{ℓ₂}) ⦄ where
instance
empty-injective : Injective ⦃ empty-equiv ⦄(empty{T = T})
Injective.proof(empty-injective) {}
instance
empty-function : Function ⦃ empty-equiv ⦄(empty{T = T})
Function.congruence empty-function {()}
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where -- TODO: Duplicated in Type.Properties.Singleton.Proofs
Unit-fn-unique-value : ∀{f : Unit{ℓ} → T} → (∀{x y} → (f(x) ≡ₛ f(y)))
Unit-fn-unique-value {x = <>} {y = <>} = reflexivity(_≡ₛ_)
module _ ⦃ equiv : Equiv{ℓₑ}(Unit{ℓ₁}) ⦄ where
Unit-fn-unique-fn : ∀{f g : T → Unit{ℓ₁}} → (∀{x y} → (_≡ₛ_ ⦃ equiv ⦄ (f(x)) (g(y))))
Unit-fn-unique-fn {f = f}{g = g}{x = x}{y = y} with f(x) | g(y)
... | <> | <> = reflexivity(_≡ₛ_ ⦃ equiv ⦄)
| {
"alphanum_fraction": 0.6618468616,
"avg_line_length": 36.6626506024,
"ext": "agda",
"hexsha": "f19370d415969c18171f847f772714f1fe142e19",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/Proofs.agda",
"max_line_length": 95,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1041,
"size": 3043
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2020, 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Prelude
open import LibraBFT.ImplShared.Consensus.Types
open import LibraBFT.ImplShared.Interface.Output
-- This module defines the LBFT monad used by our (fake/simple,
-- for now) "implementation", along with some utility functions
-- to facilitate reasoning about it.
module LibraBFT.ImplShared.Util.Util where
open import Optics.All
open import LibraBFT.ImplShared.Util.Dijkstra.Syntax public
open import LibraBFT.ImplShared.Util.Dijkstra.RWS public
open import LibraBFT.ImplShared.Util.Dijkstra.RWS.Syntax public
open import LibraBFT.ImplShared.Util.Dijkstra.EitherD public
open import LibraBFT.ImplShared.Util.Dijkstra.EitherD.Syntax public
----------------
-- LBFT Monad --
----------------
-- Global 'LBFT'; works over the whole state.
LBFT : Set → Set₁
LBFT = RWS Unit Output RoundManager
LBFT-run : ∀ {A} → LBFT A → RoundManager → (A × RoundManager × List Output)
LBFT-run m = RWS-run m unit
LBFT-result : ∀ {A} → LBFT A → RoundManager → A
LBFT-result m rm = proj₁ (LBFT-run m rm)
LBFT-post : ∀ {A} → LBFT A → RoundManager → RoundManager
LBFT-post m rm = proj₁ (proj₂ (LBFT-run m rm))
LBFT-outs : ∀ {A} → LBFT A → RoundManager → List Output
LBFT-outs m rm = proj₂ (proj₂ (LBFT-run m rm))
LBFT-Pre = RoundManager → Set
LBFT-Post = RWS-Post Output RoundManager
LBFT-Post-True : ∀ {A} → LBFT-Post A → LBFT A → RoundManager → Set
LBFT-Post-True Post m pre =
let (x , post , outs) = LBFT-run m pre in
Post x post outs
LBFT-weakestPre : ∀ {A} (m : LBFT A)
→ LBFT-Post A → LBFT-Pre
LBFT-weakestPre m Post pre = RWS-weakestPre m Post unit pre
LBFT-Contract : ∀ {A} (m : LBFT A) → Set₁
LBFT-Contract{A} m =
(Post : RWS-Post Output RoundManager A)
→ (pre : RoundManager) → LBFT-weakestPre m Post pre
→ LBFT-Post-True Post m pre
LBFT-contract : ∀ {A} (m : LBFT A) → LBFT-Contract m
LBFT-contract m Post pre pf = RWS-contract m Post unit pre pf
LBFT-⇒
: ∀ {A} (P Q : LBFT-Post A) → (RWS-Post-⇒ P Q)
→ ∀ m pre → LBFT-weakestPre m P pre → LBFT-weakestPre m Q pre
LBFT-⇒ Post₁ Post₂ f m pre pf = RWS-⇒ Post₁ Post₂ f m unit pre pf
LBFT-⇒-bind
: ∀ {A B} (P : LBFT-Post A) (Q : LBFT-Post B) (f : A → LBFT B)
→ (RWS-Post-⇒ P (RWS-weakestPre-bindPost unit f Q))
→ ∀ m st → LBFT-weakestPre m P st → LBFT-weakestPre (m >>= f) Q st
LBFT-⇒-bind Post Q f pf m st con = RWS-⇒-bind Post Q f unit pf m st con
LBFT-⇒-ebind
: ∀ {A B C} (P : LBFT-Post (Either C A)) (Q : LBFT-Post (Either C B))
→ (f : A → LBFT (Either C B))
→ RWS-Post-⇒ P (RWS-weakestPre-ebindPost unit f Q)
→ ∀ m st → LBFT-weakestPre m P st
→ LBFT-weakestPre (m ∙?∙ f) Q st
LBFT-⇒-ebind Post Q f pf m st con =
RWS-⇒-ebind Post Q f unit pf m st con
| {
"alphanum_fraction": 0.6519028871,
"avg_line_length": 37.6296296296,
"ext": "agda",
"hexsha": "bacca6b4dd2622565738875c79be923c03db2724",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z",
"max_forks_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "oracle/bft-consensus-agda",
"max_forks_repo_path": "LibraBFT/ImplShared/Util/Util.agda",
"max_issues_count": 72,
"max_issues_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92",
"max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z",
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "oracle/bft-consensus-agda",
"max_issues_repo_path": "LibraBFT/ImplShared/Util/Util.agda",
"max_line_length": 111,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "49f8b1b70823be805d84ffc3157c3b880edb1e92",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "oracle/bft-consensus-agda",
"max_stars_repo_path": "LibraBFT/ImplShared/Util/Util.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z",
"num_tokens": 1072,
"size": 3048
} |
{-# OPTIONS --without-K #-}
module README where
-- This is a self-contained repository of basic results and utilities for
-- Homotopy Type Theory.
--
-- Modules are structured in a hierarchy, where all top-level modules are
-- imported in this file, and each module only imports and re-exports all
-- sub-modules. The most basic definitions for a submodule collection are
-- defined in the `core` submodule.
--
-- For example, in the case of equality, the module called `equality` is
-- composed of a number of submodules: `core` (containing the basic
-- definitions), `groupoid` (groupoid laws), `calculus` (for calculations
-- involving equality proofs) and `reasoning` (for equational reasoning).
-- Σ types and related utilities
import sum
-- Propositional equality
import equality
-- Basic types
import sets
-- Algebra
import algebra
-- Decidable predicates
import decidable
-- Pointed types and maps
import pointed
-- Functions, isomorphisms and properties thereof
import function
-- Overloading system
import overloading
-- Universe levels
import level
-- Container functors, W and M types
import container
-- Homotopy type theory infrastructure and results
import hott
-- Higher Inductive Types
import higher
| {
"alphanum_fraction": 0.7634146341,
"avg_line_length": 23.6538461538,
"ext": "agda",
"hexsha": "51e100fef2ea45864adff645b8ffcf1309746842",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z",
"max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "pcapriotti/agda-base",
"max_forks_repo_path": "README.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "pcapriotti/agda-base",
"max_issues_repo_path": "README.agda",
"max_line_length": 73,
"max_stars_count": 20,
"max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "pcapriotti/agda-base",
"max_stars_repo_path": "README.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z",
"num_tokens": 276,
"size": 1230
} |
{-# OPTIONS --cubical --guarded -W ignore #-}
module combinations-of-lift-and-multiset where
open import Clocked.Primitives
open import Cubical.Foundations.Everything
open import Cubical.Data.List as List
open import Cubical.Data.List.Properties
open import Cubical.Data.Sum using (_⊎_; inl; inr)
open import combinations-of-lift-and-list
--**************************************************************************--
--**************************************************************************--
-- Combining the monads Lift and Multiset freely and via a distributive law --
--**************************************************************************--
--**************************************************************************--
-- In this document I want to define a monad, called MultiLift, that is the free combination of the Lift monad and the Multiset monad.
-- In order to do so, I will first define the the Multiset monad, and check that it is indeed a monad (Step 1).
-- Then I define the LiftMulti monad, check that it is a monad (Step 2), and finally check that it is the free monad on the algebra
-- structures of a delay algebra and a monoid (Step 3).
-- The Lift monad has aleady been defined in my earlier work, combinations-of-lift-and-list.
-- In the same file I check that lift is indeed a monad, and define various usefull functions, such as a map function for Lift.
-- In addition to the free combination of the Multiset and the Lift monads, I also compose the two monads to form the monad
-- LcM : A → Lift(Multiset A). This composition uses a distributive law, which I prove does indeed satisfy all the axioms for a
-- distributive law.
--****************************--
-- Step 1: The Multiset monad --
--****************************--
--This code is based on the finite powerset example from:
--https://github.com/niccoloveltri/final-pfin/blob/main/Pfin/AsFreeJoinSemilattice.agda
--We define the multiset monad as the free commutative monoid monad on A.
--This is a HIT.
data Multiset {ℓ} (A : Type ℓ) : Type ℓ where
m∅ : Multiset A
unitM : A → Multiset A
_∪ₘ_ : Multiset A → Multiset A → Multiset A
ass : ∀ x y z → x ∪ₘ (y ∪ₘ z) ≡ (x ∪ₘ y) ∪ₘ z
com : ∀ x y → x ∪ₘ y ≡ y ∪ₘ x
unitr : ∀ x → x ∪ₘ m∅ ≡ x
trunc : isSet (Multiset A)
-- map function for Multiset
mapM : {A B : Set} → (A → B) → Multiset A → Multiset B
mapM f m∅ = m∅
mapM f (unitM x) = unitM (f x)
mapM f (M ∪ₘ N) = (mapM f M) ∪ₘ (mapM f N)
mapM f (ass M M₁ M₂ i) = ass (mapM f M) (mapM f M₁) (mapM f M₂) i
mapM f (com M N i) = com (mapM f M) (mapM f N) i
mapM f (unitr M i) = unitr (mapM f M) i
mapM f (trunc M N x y i i₁) = trunc (mapM f M) (mapM f N) (λ j → mapM f (x j)) (λ j → mapM f (y j)) i i₁
-- Bind and multiplication functions for Multiset
Multiset-bind : {A B : Set} → (A → Multiset B) → Multiset A → Multiset B
Multiset-bind f m∅ = m∅
Multiset-bind f (unitM a) = f a
Multiset-bind f (x ∪ₘ y) = (Multiset-bind f x) ∪ₘ (Multiset-bind f y)
Multiset-bind f (ass x y z i) = ass (Multiset-bind f x) (Multiset-bind f y) (Multiset-bind f z) i
Multiset-bind f (com x y i) = com (Multiset-bind f x) (Multiset-bind f y) i
Multiset-bind f (unitr x i) = unitr (Multiset-bind f x) i
Multiset-bind f (trunc s₁ s₂ x y i i₁) = trunc (Multiset-bind f s₁) (Multiset-bind f s₂) (\ j → Multiset-bind f (x j)) (\ j → Multiset-bind f (y j)) i i₁
Multiset-mult : {A : Set} → Multiset (Multiset A) → Multiset A
Multiset-mult m∅ = m∅
Multiset-mult (unitM x) = x
Multiset-mult (x ∪ₘ y) = (Multiset-mult x) ∪ₘ (Multiset-mult y)
Multiset-mult (ass x y z i) = ass (Multiset-mult x) (Multiset-mult y) (Multiset-mult z) i
Multiset-mult (com x y i) = com (Multiset-mult x) (Multiset-mult y) i
Multiset-mult (unitr x i) = unitr (Multiset-mult x) i
Multiset-mult (trunc s₁ s₂ x y i i₁) = trunc (Multiset-mult s₁) (Multiset-mult s₂) (\ j → Multiset-mult (x j)) (\ j → Multiset-mult (y j)) i i₁
-- Elimination principle for Multiset
-- module to make the inputs more readable
-- no name for the module to make the use of it more readable
module _ {ℓ}{A : Type ℓ}
(P : Multiset A → hProp ℓ)
(P∅ : fst (P m∅))
(Pη : ∀ m → fst (P (unitM m)))
(P∪ : ∀ {m n} → fst(P m) → fst(P n) → fst(P (m ∪ₘ n)))
where
elimM : ∀ M → fst(P M)
elimM m∅ = P∅
elimM (unitM x) = Pη x
elimM (M ∪ₘ N) = P∪ (elimM M) (elimM N)
elimM (ass M N O i) = isProp→PathP (λ j → snd (P (ass M N O j)))
((P∪ (elimM M) (P∪ (elimM N) (elimM O))))
((P∪ (P∪ (elimM M) (elimM N)) (elimM O) ))
i
elimM (com M N i) = isProp→PathP (λ j → snd (P (com M N j))) (P∪ (elimM M) (elimM N)) (P∪ (elimM N) (elimM M)) i
elimM (unitr M i) = isProp→PathP (λ j → snd (P (unitr M j))) (P∪ (elimM M) (P∅)) (elimM M) i
elimM (trunc M N x y i j) = isOfHLevel→isOfHLevelDep 2 (λ k → isProp→isSet (snd (P k))) (elimM M) (elimM N) (cong elimM x) (cong elimM y)
(trunc M N x y) i j
-- Proving that the Multiset forms a monad
-- Multiset-mult (unitM M) = M
Multiset-unitlaw1 : {A : Set} → ∀(M : Multiset A) → Multiset-mult (unitM M) ≡ M
Multiset-unitlaw1 M = refl
-- Multiset-mult (map unitM M) = M
Multiset-unitlaw2 : {A : Set} → ∀(M : Multiset A) → Multiset-mult (mapM unitM M) ≡ M
Multiset-unitlaw2 m∅ = refl
Multiset-unitlaw2 (unitM x) = refl
Multiset-unitlaw2 (M ∪ₘ N) = cong₂ (_∪ₘ_) (Multiset-unitlaw2 M) (Multiset-unitlaw2 N)
Multiset-unitlaw2 (ass M N P i) = λ j → ass (Multiset-unitlaw2 M j) (Multiset-unitlaw2 N j) (Multiset-unitlaw2 P j) i
Multiset-unitlaw2 (com M N i) = λ j → com (Multiset-unitlaw2 M j) (Multiset-unitlaw2 N j) i
Multiset-unitlaw2 (unitr M i) = λ j → unitr (Multiset-unitlaw2 M j) i
Multiset-unitlaw2 (trunc M N x y i i₁) = λ k → trunc (Multiset-unitlaw2 M k) (Multiset-unitlaw2 N k) (λ j → (Multiset-unitlaw2 (x j)) k) ((λ j → (Multiset-unitlaw2 (y j)) k)) i i₁
--proving the same with elimM:
Multiset-unitlaw2' : {A : Set} → ∀(M : Multiset A) → Multiset-mult (mapM unitM M) ≡ M
Multiset-unitlaw2' M = elimM
(λ N → (Multiset-mult (mapM unitM N) ≡ N) , trunc (Multiset-mult (mapM unitM N)) N)
refl
(λ N → refl)
(λ eq1 → λ eq2 → cong₂ _∪ₘ_ eq1 eq2 )
M
-- Multiset-mult (Multiset-mult M) = Multiset-mult (map Multiset-mult M)
Multiset-multlaw : {A : Set} → ∀(M : Multiset (Multiset (Multiset A))) → Multiset-mult (Multiset-mult M) ≡ Multiset-mult (mapM Multiset-mult M)
Multiset-multlaw m∅ = refl
Multiset-multlaw (unitM M) = refl
Multiset-multlaw (M ∪ₘ N) = cong₂ (_∪ₘ_) (Multiset-multlaw M) (Multiset-multlaw N)
Multiset-multlaw (ass M N P i) = λ j → ass (Multiset-multlaw M j) (Multiset-multlaw N j) (Multiset-multlaw P j) i
Multiset-multlaw (com M N i) = λ j → com (Multiset-multlaw M j) (Multiset-multlaw N j) i
Multiset-multlaw (unitr M i) = λ j → unitr (Multiset-multlaw M j) i
Multiset-multlaw (trunc M N x y i i₁) = λ k → trunc (Multiset-multlaw M k) (Multiset-multlaw N k) (λ j → (Multiset-multlaw (x j)) k) ((λ j → (Multiset-multlaw (y j)) k)) i i₁
--proving the same with Elim:
Multiset-multlaw' : {A : Set} → ∀(M : Multiset (Multiset (Multiset A))) → Multiset-mult (Multiset-mult M) ≡ Multiset-mult (mapM Multiset-mult M)
Multiset-multlaw' M = elimM
(λ N → (Multiset-mult (Multiset-mult N) ≡ Multiset-mult (mapM Multiset-mult N))
, trunc (Multiset-mult (Multiset-mult N)) (Multiset-mult (mapM Multiset-mult N)))
refl
(λ N → refl)
(λ eq1 → λ eq2 → cong₂ (_∪ₘ_) eq1 eq2)
M
-- the unit is a natural transformation:
nattrans-Multunit : {A B : Set} → ∀(f : A → B) → ∀(x : A) → mapM f (unitM x) ≡ unitM (f x)
nattrans-Multunit f x = refl
-- the multiplication is a natural transformation:
nattrans-MultisetMult : {A B : Set} → ∀(f : A → B) → ∀(MM : Multiset (Multiset A)) → mapM f (Multiset-mult MM) ≡ Multiset-mult (mapM (mapM f) MM)
nattrans-MultisetMult f MM = elimM
((λ NN → (mapM f (Multiset-mult NN) ≡ Multiset-mult (mapM (mapM f) NN))
, trunc (mapM f (Multiset-mult NN)) (Multiset-mult (mapM (mapM f) NN))))
refl
(λ M → refl)
(λ eq1 → λ eq2 → cong₂ (_∪ₘ_) eq1 eq2)
MM
--*****************************--
-- Step 2: The MultiLift monad --
--*****************************--
--Now that we have a multiset monad and a lift monad, I want to show that the following combination of the two is again a monad:
--MultiLift : (A : Set) → (κ : Cl) → Set
--MultiLift A κ = Multiset (A ⊎ (▹ κ (MultiLift A κ)))
data MultiLift (A : Set) (κ : Cl) : Set where
conML : Multiset (A ⊎ (▹ κ (MultiLift A κ))) -> MultiLift A κ
-- Elimination principle for MultiLift
-- module to make the inputs more readable
-- no name for the module to make the use of it more readable
module _ {ℓ}{A : Set}{κ : Cl}
(P : MultiLift A κ → hProp ℓ)
(P∅ : fst (P (conML m∅)))
(Pη1 : ∀ x → fst (P (conML (unitM (inl x)))))
(Pη2 : ∀ {x} → (∀ α → fst (P (x α))) → fst (P (conML (unitM (inr x)))))
(P∪ : ∀ {m n} → fst(P (conML m)) → fst(P (conML n)) → fst(P (conML (m ∪ₘ n))))
where
elimML : ∀ M → fst(P M)
elimML (conML m∅) = P∅
elimML (conML (unitM (inl x))) = Pη1 x
elimML (conML (unitM (inr x))) = Pη2 λ α → elimML (x α)
elimML (conML (x ∪ₘ y)) = P∪ (elimML (conML x)) (elimML (conML y))
elimML (conML (ass M N O i)) = isProp→PathP (λ j → snd (P (conML (ass M N O j))))
((P∪ (elimML (conML M)) (P∪ (elimML (conML N)) (elimML (conML O)))))
((P∪ (P∪ (elimML (conML M)) (elimML (conML N))) (elimML (conML O)) ))
i
elimML (conML (com M N i)) = isProp→PathP (λ j → snd (P (conML (com M N j)))) (P∪ (elimML (conML M)) (elimML (conML N))) (P∪ (elimML (conML N)) (elimML (conML M))) i
elimML (conML (unitr M i)) = isProp→PathP (λ j → snd (P (conML (unitr M j)))) (P∪ (elimML (conML M)) (P∅)) (elimML (conML M)) i
elimML (conML (trunc M N x y i j)) = isOfHLevel→isOfHLevelDep 2 (λ z → isProp→isSet (snd (P (conML z)))) (elimML (conML M)) (elimML (conML N))
(cong elimML (cong conML x)) (cong elimML (cong conML y)) (trunc M N x y ) i j
--***proof that MultiLift is a set***--
-- strategy: build isomorphism, then make equivalence, then use univalence to turn equivalence into equality, then transport.
isoML : {A : Set}{κ : Cl} → Iso (Multiset (A ⊎ (▹ κ (MultiLift A κ)))) (MultiLift A κ)
Iso.fun isoML = conML
Iso.inv isoML (conML x) = x
Iso.rightInv isoML (conML x) = refl
Iso.leftInv isoML a = refl
equivML : {A : Set}{κ : Cl} → (Multiset (A ⊎ (▹ κ (MultiLift A κ)))) ≃ (MultiLift A κ)
equivML = isoToEquiv isoML
equalML : {A : Set}{κ : Cl} → (Multiset (A ⊎ (▹ κ (MultiLift A κ)))) ≡ (MultiLift A κ)
equalML = ua equivML
truncML : {A : Set} {κ : Cl} → isSet (MultiLift A κ)
truncML = subst⁻ isSet (sym equalML) trunc
--IsotoPath as shortcut for this bit of code
--***algebraic structure for MultiLift***--
--nowML and stepML turn MultiLift into a delay algebra structure:
nowML : {A : Set} (κ : Cl) → A → (MultiLift A κ)
nowML κ a = conML (unitM (inl a))
stepML : {A : Set} (κ : Cl) → ▹ κ (MultiLift A κ) → (MultiLift A κ)
stepML κ a = conML (unitM (inr a))
--the union is derived from the multiset union, and turns MultiLift into a monoid:
_∪ₘₗ_ : {A : Set} {κ : Cl} → (MultiLift A κ) → (MultiLift A κ) → (MultiLift A κ)
_∪ₘₗ_ {A} {κ} (conML m) (conML n) = conML (m ∪ₘ n)
--proof that this union does indeed provide a commutative monoid structure:
assoc∪ₘₗ : {A : Set} {κ : Cl} → ∀(ml nl ol : (MultiLift A κ)) → (ml ∪ₘₗ nl) ∪ₘₗ ol ≡ ml ∪ₘₗ (nl ∪ₘₗ ol)
assoc∪ₘₗ {A} {κ} (conML m) (conML n) (conML o) = cong conML (sym (ass m n o))
comm∪ₘₗ : {A : Set} {κ : Cl} → ∀(ml nl : (MultiLift A κ)) → ml ∪ₘₗ nl ≡ nl ∪ₘₗ ml
comm∪ₘₗ {A} {κ} (conML m) (conML n) = cong conML (com m n)
unitr∪ₘₗ : {A : Set} {κ : Cl} → ∀ (ml : (MultiLift A κ)) → ml ∪ₘₗ conML m∅ ≡ ml
unitr∪ₘₗ {A} {κ} (conML m) = cong conML (unitr m )
--***monadic structure for MultiLift***--
--a map function to turn MultiLift into a functor
mapML : {A B : Set} (κ : Cl) → (f : A → B) → (MultiLift A κ) → (MultiLift B κ)
mapML κ f (conML m∅) = conML m∅
mapML κ f (conML (unitM (inl x))) = conML (unitM (inl (f x)))
mapML κ f (conML (unitM (inr x))) = stepML κ (λ α → mapML κ f (x α))
mapML κ f (conML (x ∪ₘ y)) = (mapML κ f (conML x)) ∪ₘₗ (mapML κ f (conML y))
mapML κ f (conML (ass x y z i)) = sym (assoc∪ₘₗ (mapML κ f (conML x)) (mapML κ f (conML y)) (mapML κ f (conML z))) i
mapML κ f (conML (com x y i)) = comm∪ₘₗ (mapML κ f (conML x)) (mapML κ f (conML y)) i
mapML κ f (conML (unitr x i)) = unitr∪ₘₗ (mapML κ f (conML x)) i
mapML κ f (conML (trunc x y z w i i₁)) = truncML (mapML κ f (conML x)) (mapML κ f (conML y)) (\ j → mapML κ f (conML (z j))) (\ j → mapML κ f (conML (w j))) i i₁
--a bind operator to make MultiLift into a monad
bindML : {A B : Set} (κ : Cl) → (A → (MultiLift B κ)) → MultiLift A κ → MultiLift B κ
bindML κ f (conML m∅) = conML m∅
bindML κ f (conML (unitM (inl x))) = f x
bindML κ f (conML (unitM (inr x))) = stepML κ (\ α → bindML κ f (x α))
bindML κ f (conML (x ∪ₘ y)) = (bindML κ f (conML x)) ∪ₘₗ (bindML κ f (conML y))
bindML κ f (conML (ass x y z i)) = sym (assoc∪ₘₗ (bindML κ f (conML x)) (bindML κ f (conML y)) (bindML κ f (conML z))) i
bindML κ f (conML (com x y i)) = comm∪ₘₗ (bindML κ f (conML x)) (bindML κ f (conML y)) i
bindML κ f (conML (unitr x i)) = unitr∪ₘₗ (bindML κ f (conML x)) i
bindML κ f (conML (trunc x y z w i i₁)) = truncML (bindML κ f (conML x)) (bindML κ f (conML y)) (\ j → bindML κ f (conML (z j))) (\ j → bindML κ f (conML (w j))) i i₁
--bindML commutes with ∪ₘₗ
bindML-∪ₘₗ : {A B : Set} (κ : Cl) → ∀(f : A → (MultiLift B κ)) → ∀(ml nl : (MultiLift A κ)) → bindML κ f (ml ∪ₘₗ nl) ≡ (bindML κ f ml) ∪ₘₗ (bindML κ f nl)
bindML-∪ₘₗ κ f (conML x) (conML y) = refl
--***proof that MultiLift is a monad***--
--bindML and nowML need to be natural transformations
nattrans-nowML : {A B : Set} (κ : Cl) → ∀(f : A → B) → ∀(x : A) → mapML κ f (nowML κ x) ≡ nowML κ (f x)
nattrans-nowML {A}{B} κ f x = refl
-- TODO: bindML
-- bindML and nowML also need to satisfy three monad laws:
-- unit is a left-identity for bind
unitlawML1 : {A B : Set} (κ : Cl) → ∀ (f : A → (MultiLift B κ)) → ∀ (x : A) → (bindML {A} κ f (nowML κ x)) ≡ f x
unitlawML1 κ f x = refl
-- unit is a right-identity for bind
unitlawML2 : {A : Set}(κ : Cl) → ∀(x : (MultiLift A κ)) → (bindML κ (nowML κ) x) ≡ x
unitlawML2 κ x = elimML ((λ y → ((bindML κ (nowML κ) y) ≡ y)
, truncML (bindML κ (nowML κ) y) y))
refl
(λ y → refl)
(λ p → cong conML (cong unitM (cong inr (later-ext (λ β → p β)))))
(λ eq1 → λ eq2 → cong₂ _∪ₘₗ_ eq1 eq2)
x
-- bind is associative
assoclawML : {A B C : Set}(κ : Cl) → ∀(f : A → (MultiLift B κ)) → ∀ (g : B → (MultiLift C κ)) → ∀ (x : (MultiLift A κ))
→ (bindML κ (\ y → (bindML κ g (f y))) x) ≡ (bindML κ g (bindML κ f x))
assoclawML {A} {B} {C} κ f g x = elimML ((λ z → ((bindML κ (\ y → (bindML κ g (f y))) z) ≡ (bindML κ g (bindML κ f z)))
, truncML ((bindML κ (\ y → (bindML κ g (f y))) z)) (bindML κ g (bindML κ f z))))
refl
(λ y → refl)
(λ p → cong conML (cong unitM (cong inr (later-ext (λ α → p α)))))
(λ {m n} → λ eq1 → λ eq2 → (bindML κ (λ y → bindML κ g (f y)) (conML m) ∪ₘₗ
bindML κ (λ y → bindML κ g (f y)) (conML n))
≡⟨ cong₂ (_∪ₘₗ_) eq1 eq2 ⟩
(bindML κ g (bindML κ f (conML m)) ∪ₘₗ bindML κ g (bindML κ f (conML n)))
≡⟨ sym (bindML-∪ₘₗ κ g (bindML κ f (conML m)) (bindML κ f (conML n))) ⟩
bindML κ g (bindML κ f (conML m) ∪ₘₗ bindML κ f (conML n)) ∎)
x
--*************************************************************************************--
-- Step 3: The MultiLift monad as the free delay-algebra and commutiative monoid monad --
--*************************************************************************************--
-- We already know that (MultiLift, stepML) forms a delay algebra structure,
-- and (Multilift, conML m∅ , ∪ₘₗ) forms a commutative monoid.
-- What we need to show is that MultiLift is the free monad with these properties.
-- That is, for a set A, and any other structure (B, δ, ε, _·_) where (B, δ) is a delay algebra and (B, ε, _·_) a commutative monoid
-- given a function f : A → B, there is a unique function MultiLift A → B extending f that preserves the algebra structures.
record IsComMonoid {A : Set} (ε : A) (_·_ : A → A → A) : Set where
constructor iscommonoid
field
asso : (x y z : A) → (x · y) · z ≡ x · (y · z)
comm : (x y : A) → (x · y) ≡ (y · x)
uniteq : (x : A) → x · ε ≡ x
record IsDelayComMonoid {A : Set}(κ : Cl) (dm : DelayMonoidData A κ) : Set where
constructor isdelaycommonoid
open DelayMonoidData dm
field
isComMonoid : IsComMonoid (ε) (_·_)
isDelayalg : IsDelayalg κ (nextA)
open IsComMonoid isComMonoid public
open IsDelayalg isDelayalg public
record IsExtendingML {A B : Set}{κ : Cl} (f : A → B) (h : (MultiLift A κ) → B) : Set where
constructor isextendingML
field
extends : (x : A) → h (nowML κ x) ≡ (f x)
--foldML defines the function we are after
foldML : {A B : Set}{κ : Cl} → isSet A → isSet B → ∀ dm → IsDelayComMonoid {B} κ dm → (A → B) → (MultiLift A κ) → B
foldML setA setB (dmdata nextB ε _·_) isDMB f (conML m∅) = ε
foldML setA setB (dmdata nextB ε _·_) isDMB f (conML (unitM (inl x))) = f x
foldML setA setB dm@(dmdata nextB ε _·_) isDMB f (conML (unitM (inr x))) = nextB (λ α → foldML setA setB dm isDMB f (x α))
foldML setA setB dm@(dmdata nextB ε _·_) isDMB f (conML (x ∪ₘ y)) = (foldML setA setB dm isDMB f (conML x)) · (foldML setA setB dm isDMB f (conML y))
foldML setA setB dm@(dmdata nextB ε _·_) isDMB f (conML (ass x y z i)) = sym (IsDelayComMonoid.asso isDMB (foldML setA setB dm isDMB f (conML x))
(foldML setA setB dm isDMB f (conML y))
(foldML setA setB dm isDMB f (conML z))) i
foldML setA setB dm@(dmdata nextB ε _·_) isDMB f (conML (com x y i)) = IsDelayComMonoid.comm isDMB (foldML setA setB dm isDMB f (conML x)) (foldML setA setB dm isDMB f (conML y)) i
foldML setA setB dm@(dmdata nextB ε _·_) isDMB f (conML (unitr x i)) = IsDelayComMonoid.uniteq isDMB (foldML setA setB dm isDMB f (conML x)) i
foldML setA setB dm@(dmdata nextB ε _·_) isDMB f (conML (trunc x y x₁ y₁ i i₁)) = setB (foldML setA setB dm isDMB f (conML x))
(foldML setA setB dm isDMB f (conML y))
(λ j → (foldML setA setB dm isDMB f (conML (x₁ j))))
(λ j → (foldML setA setB dm isDMB f (conML (y₁ j))))
i i₁
--foldML extends the function f : A → B
foldML-extends : {A B : Set}{κ : Cl} → ∀(setA : isSet A) → ∀(setB : isSet B) → ∀ dm → ∀(isDMB : IsDelayComMonoid {B} κ dm) →
∀ (f : A → B) → IsExtendingML f (foldML setA setB dm isDMB f)
IsExtendingML.extends (foldML-extends setA setB dm isDMB f) x = refl
-- or a more direct proof of the same fact:
foldML-extends-f : {A B : Set}{κ : Cl} → ∀(setA : isSet A) → ∀(setB : isSet B) → ∀ dm → ∀(isDMB : IsDelayComMonoid {B} κ dm) →
∀ (f : A → B) → ∀ (x : A) → foldML setA setB dm isDMB f (nowML κ x) ≡ f x
foldML-extends-f setA setB dm isDMB f x = refl
--foldML preseves the DelayMonoid structure
module _ {A B : Set}{κ : Cl} (setA : isSet A) (setB : isSet B) (dm : _) (isDMB : IsDelayComMonoid {B} κ dm)
(f : A → B)
where
open IsPreservingDM
open DelayMonoidData dm renaming (nextA to nextB)
foldML-preserves : IsPreservingDM {MultiLift A κ}{B} κ (dmdata (stepML κ) (conML m∅) _∪ₘₗ_) dm (foldML setA setB dm isDMB f)
unit-preserve foldML-preserves = refl
next-preserve foldML-preserves x = cong nextB (later-ext (λ α → refl))
union-preserve foldML-preserves (conML x) (conML y) = refl
--and foldML is unique in doing so.
--That is, for any function h that both preserves the algebra structure
--and extends the function f : A → B,
-- h is equivalent to fold.
module _ {A B : Set} {κ : Cl} (h : MultiLift A κ → B)
(setA : isSet A) (setB : isSet B) (dm : _) (isDMB : IsDelayComMonoid {B} κ dm)
(f : A → B) (isPDM : IsPreservingDM {MultiLift A κ}{B} κ (dmdata (stepML κ) (conML m∅) _∪ₘₗ_ ) dm h)
(isExt : IsExtendingML f h) where
open DelayMonoidData dm renaming (nextA to nextB)
fold-uniquenessML : (x : (MultiLift A κ)) → h x ≡ (foldML setA setB dm isDMB f x)
fold-uniquenessML x = elimML
((λ x → (h x ≡ (foldML setA setB dm isDMB f x)) , setB (h x) ((foldML setA setB dm isDMB f x))))
(IsPreservingDM.unit-preserve isPDM)
(λ a → h (conML (unitM (inl a)))
≡⟨ refl ⟩
h (nowML κ a)
≡⟨ IsExtendingML.extends isExt a ⟩
f a ∎)
(λ {x} → λ eq → h (conML (unitM (inr x)))
≡⟨ refl ⟩
h (stepML κ x)
≡⟨ IsPreservingDM.next-preserve isPDM x ⟩
nextB (λ α → h (x α))
≡⟨ cong nextB (later-ext (λ α → (eq α))) ⟩
nextB (λ α → foldML setA setB (dmdata nextB ε _·_) isDMB f (x α)) ∎)
(λ {x y} → λ eqx eqy → h (conML (x ∪ₘ y))
≡⟨ refl ⟩
h ((conML x) ∪ₘₗ (conML y))
≡⟨ IsPreservingDM.union-preserve isPDM (conML x) (conML y) ⟩
(h (conML x) · h (conML y))
≡⟨ cong₂ _·_ eqx eqy ⟩
(foldML setA setB (dmdata nextB ε _·_) isDMB f (conML x) ·
foldML setA setB (dmdata nextB ε _·_) isDMB f (conML y)) ∎)
x
--****************************************************--
-- Composing Lift and Multiset via a distributive law --
--****************************************************--
--We now define a composite monad of the Multiset and Lift monads, formed via a distributive law.
LcM : (A : Set) → (κ : Cl) → Set
LcM A κ = myLift (Multiset A) κ
-- the unit of this monad is simply the composit of the units for Lift (nowL x) and Multiset (unitM)
nowLcM : {A : Set} {κ : Cl} → A → (LcM A κ)
nowLcM x = nowL (unitM x)
--LcM is a set.
truncLcM : {A : Set} {κ : Cl} → isSet (LcM A κ)
truncLcM = MyLiftSet.isSetmyLift trunc
--LLCM is a set
truncLLcM : {A : Set} {κ : Cl} → isSet (myLift (LcM A κ) κ)
truncLLcM = MyLiftSet.isSetmyLift truncLcM
-- we define a union on LcM, which will help in defining the distributive law.
_l∪m_ : {A : Set} {κ : Cl} → (LcM A κ) → (LcM A κ) → (LcM A κ)
nowL x l∪m nowL y = nowL (x ∪ₘ y)
nowL x l∪m stepL y = stepL (λ α → (nowL x l∪m (y α)))
stepL x l∪m y = stepL (λ α → ((x α) l∪m y))
--l∪m is associative, commutative, and nowL m∅ is a unit for l∪m
assoc-l∪m : {A : Set} {κ : Cl} → ∀(x y z : LcM A κ) → (x l∪m y) l∪m z ≡ x l∪m (y l∪m z)
assoc-l∪m (nowL x) (nowL y) (nowL z) = cong nowL (sym (ass x y z))
assoc-l∪m (nowL x) (nowL y) (stepL z) = cong stepL (later-ext λ α → assoc-l∪m (nowL x) (nowL y) (z α))
assoc-l∪m (nowL x) (stepL y) z = cong stepL (later-ext λ α → assoc-l∪m (nowL x) (y α) z)
assoc-l∪m (stepL x) y z = cong stepL (later-ext λ α → assoc-l∪m (x α) y z)
comm-l∪m : {A : Set} {κ : Cl} → ∀(x y : LcM A κ) → (x l∪m y) ≡ y l∪m x
comm-l∪m (nowL x) (nowL y) = cong nowL (com x y)
comm-l∪m (nowL x) (stepL y) = cong stepL (later-ext λ α → comm-l∪m (nowL x) (y α))
comm-l∪m (stepL x) (nowL y) = cong stepL (later-ext λ α → comm-l∪m (x α) (nowL y))
comm-l∪m (stepL x) (stepL y) = stepL (λ α → x α l∪m stepL y)
≡⟨ cong stepL (later-ext λ α → comm-l∪m (x α) (stepL y)) ⟩
stepL (λ α → stepL y l∪m x α)
≡⟨ refl ⟩
stepL (λ α → stepL (λ β → (y β) l∪m (x α)))
≡⟨ cong stepL (later-ext λ α → cong stepL (later-ext λ β → cong₂ _l∪m_ (sym (tick-irr y α β)) (tick-irr x α β) )) ⟩
stepL (λ α → stepL (λ β → (y α) l∪m (x β)))
≡⟨ cong stepL (later-ext λ α → cong stepL (later-ext λ β → comm-l∪m (y α) (x β))) ⟩
stepL (λ α → stepL (λ β → (x β) l∪m (y α)))
≡⟨ refl ⟩
stepL (λ α → (stepL x) l∪m (y α))
≡⟨ cong stepL (later-ext λ α → comm-l∪m (stepL x) (y α)) ⟩
stepL (λ α → y α l∪m stepL x) ∎
unit-l∪m : {A : Set} {κ : Cl} → ∀(x : LcM A κ) → x l∪m (nowL m∅) ≡ x
unit-l∪m (nowL x) = cong nowL (unitr x)
unit-l∪m (stepL x) = cong stepL (later-ext λ α → unit-l∪m (x α))
lemma-nowL-l∪m-mapL : {A : Set} {κ : Cl} → ∀(x : LcM A κ) → ∀(M : Multiset A) → nowL M l∪m x ≡ mapL κ (M ∪ₘ_) x
lemma-nowL-l∪m-mapL (nowL x) M = refl
lemma-nowL-l∪m-mapL (stepL x) M = cong stepL (later-ext (λ α → lemma-nowL-l∪m-mapL (x α) M))
--mapL κ f distributes over l∪m if f distributes over ∪ₘ
dist-mapL-l∪m : {A B : Set} {κ : Cl} → ∀(f : (Multiset A) → (Multiset B)) → ∀(fdist : ∀(m n : Multiset A) → f (m ∪ₘ n) ≡ f m ∪ₘ f n)
→ ∀(x y : (LcM A κ)) → mapL κ f (x l∪m y) ≡ (mapL κ f x) l∪m (mapL κ f y)
dist-mapL-l∪m f fdist (nowL x) (nowL y) = cong nowL (fdist x y)
dist-mapL-l∪m f fdist (nowL x) (stepL y) = cong stepL (later-ext λ α → dist-mapL-l∪m f fdist (nowL x) (y α))
dist-mapL-l∪m f fdist (stepL x) y = cong stepL (later-ext λ α → dist-mapL-l∪m f fdist (x α) y)
-- and why not, I also need a ll∪m:
_ll∪m_ : {A : Set} {κ : Cl} → (myLift (LcM A κ) κ) → (myLift (LcM A κ) κ) → (myLift (LcM A κ) κ)
nowL x ll∪m nowL y = nowL (x l∪m y)
nowL x ll∪m stepL y = stepL (λ α → (nowL x ll∪m (y α)))
stepL x ll∪m y = stepL (λ α → ((x α) ll∪m y))
assoc-ll∪m : {A : Set} {κ : Cl} → ∀(x y z : (myLift (LcM A κ) κ)) → (x ll∪m y) ll∪m z ≡ x ll∪m (y ll∪m z)
assoc-ll∪m (nowL x) (nowL y) (nowL z) = cong nowL (assoc-l∪m x y z)
assoc-ll∪m (nowL x) (nowL y) (stepL z) = cong stepL (later-ext λ α → assoc-ll∪m (nowL x) (nowL y) (z α))
assoc-ll∪m (nowL x) (stepL y) z = cong stepL (later-ext λ α → assoc-ll∪m (nowL x) (y α) z)
assoc-ll∪m (stepL x) y z = cong stepL (later-ext λ α → assoc-ll∪m (x α) y z)
unit-ll∪m : {A : Set} {κ : Cl} → ∀(x : myLift (LcM A κ) κ) → nowL (nowL m∅) ll∪m x ≡ x
unit-ll∪m (nowL x) = nowL (nowL m∅ l∪m x)
≡⟨ cong nowL (comm-l∪m (nowL m∅) x) ⟩
nowL (x l∪m nowL m∅)
≡⟨ cong nowL (unit-l∪m x) ⟩
nowL x ∎
unit-ll∪m (stepL x) = cong stepL (later-ext λ α → unit-ll∪m (x α))
lemma-nowL-ll∪m-mapL : {A : Set} {κ : Cl} → ∀(x : myLift (LcM A κ) κ) → ∀(M : LcM A κ) → nowL M ll∪m x ≡ mapL κ (M l∪m_) x
lemma-nowL-ll∪m-mapL (nowL x) M = refl
lemma-nowL-ll∪m-mapL (stepL x) M = cong stepL (later-ext (λ α → lemma-nowL-ll∪m-mapL (x α) M))
multL-ll∪m-l∪m : {A : Set} (κ : Cl) → ∀(x y : myLift (LcM A κ) κ) → MultL κ (x ll∪m y) ≡ MultL κ x l∪m MultL κ y
multL-ll∪m-l∪m κ (nowL x) (nowL y) = refl
multL-ll∪m-l∪m κ (nowL x) (stepL y) = stepL (λ α → MultL κ (nowL x ll∪m y α))
≡⟨ cong stepL (later-ext(λ α → multL-ll∪m-l∪m κ (nowL x) (y α) )) ⟩
stepL (λ α → MultL κ (nowL x) l∪m MultL κ (y α))
≡⟨ refl ⟩
stepL (λ α → x l∪m MultL κ (y α))
≡⟨ cong stepL (later-ext (λ α → comm-l∪m x (MultL κ (y α)))) ⟩
(stepL (λ α → MultL κ (y α)) l∪m x)
≡⟨ refl ⟩
(stepL (λ α → MultL κ (y α)) l∪m x)
≡⟨ comm-l∪m (stepL (λ α → MultL κ (y α))) x ⟩
(x l∪m stepL (λ α → MultL κ (y α))) ∎
multL-ll∪m-l∪m κ (stepL x) y = cong stepL (later-ext (λ α → multL-ll∪m-l∪m κ (x α) y))
-- LcM is a monad via a distributive law, distributing Multiset over Lift.
-- Here is the distributive law:
distlawLcM : {A : Set} {κ : Cl} → Multiset (myLift A κ) → (LcM A κ)
distlawLcM m∅ = nowL m∅
distlawLcM (unitM (nowL x)) = nowL (unitM x)
distlawLcM (unitM (stepL x)) = stepL (λ α → distlawLcM (unitM (x α)))
distlawLcM (x ∪ₘ y) = (distlawLcM x) l∪m (distlawLcM y)
distlawLcM (ass x y z i) = assoc-l∪m (distlawLcM x) (distlawLcM y) (distlawLcM z) (~ i)
distlawLcM (com x y i) = comm-l∪m (distlawLcM x) (distlawLcM y) i
distlawLcM (unitr x i) = unit-l∪m (distlawLcM x) i
distlawLcM (trunc x y x₁ y₁ i i₁) = truncLcM (distlawLcM x) (distlawLcM y) (λ j → distlawLcM (x₁ j)) (λ j → distlawLcM (y₁ j)) i i₁
--proof that distlawLcM is indeed a distributive law:
--unit laws:
unitlawLcM1 : {A : Set} {κ : Cl} → ∀(x : myLift A κ) → (distlawLcM (unitM x)) ≡ mapL κ unitM x
unitlawLcM1 (nowL x) = refl
unitlawLcM1 (stepL x) = cong stepL (later-ext λ α → unitlawLcM1 (x α))
unitlawLcM2 : {A : Set} {κ : Cl} → ∀(M : Multiset A) → (distlawLcM {A}{κ} (mapM nowL M)) ≡ nowL M
unitlawLcM2 M = elimM
(λ N → ((distlawLcM (mapM nowL N) ≡ nowL N) , truncLcM (distlawLcM (mapM nowL N)) (nowL N)))
refl
(λ N → refl)
(λ {M N} → λ eqM eqN → distlawLcM (mapM nowL M) l∪m distlawLcM (mapM nowL N)
≡⟨ cong₂ (_l∪m_) eqM eqN ⟩
((nowL M) l∪m (nowL N))
≡⟨ refl ⟩
nowL (M ∪ₘ N) ∎ )
M
--multiplication laws:
multlawLcM1 : {A : Set} (κ : Cl) → ∀(M : Multiset (Multiset (myLift A κ))) → distlawLcM (Multiset-mult M) ≡
mapL κ Multiset-mult (distlawLcM (mapM distlawLcM M))
multlawLcM1 κ M = elimM
(λ N → ((distlawLcM (Multiset-mult N) ≡ mapL κ Multiset-mult (distlawLcM (mapM distlawLcM N))) ,
truncLcM (distlawLcM (Multiset-mult N)) (mapL κ Multiset-mult (distlawLcM (mapM distlawLcM N))) ))
refl
(λ N → distlawLcM N
≡⟨ sym (mapL-identity (distlawLcM N)) ⟩
mapL κ (λ y → y) (distlawLcM N)
≡⟨ cong₂ (mapL κ) (funExt (λ y → sym (Multiset-unitlaw1 y))) refl ⟩
mapL κ (λ y → Multiset-mult (unitM y)) (distlawLcM N)
≡⟨ sym (mapmapL κ unitM Multiset-mult (distlawLcM N)) ⟩
mapL κ Multiset-mult (mapL κ unitM (distlawLcM N))
≡⟨ cong (mapL κ Multiset-mult) (sym (unitlawLcM1 (distlawLcM N))) ⟩
mapL κ Multiset-mult (distlawLcM (unitM (distlawLcM N))) ∎)
(λ {M N} → λ eqM eqN → (distlawLcM (Multiset-mult M) l∪m distlawLcM (Multiset-mult N))
≡⟨ cong₂ _l∪m_ eqM eqN ⟩
(mapL κ Multiset-mult (distlawLcM (mapM distlawLcM M)) l∪m mapL κ Multiset-mult (distlawLcM (mapM distlawLcM N)))
≡⟨ sym (dist-mapL-l∪m Multiset-mult (λ x y → refl) (distlawLcM (mapM distlawLcM M)) (distlawLcM (mapM distlawLcM N))) ⟩
mapL κ Multiset-mult (distlawLcM (mapM distlawLcM M) l∪m distlawLcM (mapM distlawLcM N)) ∎)
M
-- lemma before we can do the second multiplication law:
-- I don't know hot to split cases within elimM, so here is a lemma for the unitM case of the unitM case for the lemma-llum, split into nowL and stepL:
lemma-llum-unit-unitcase : {A : Set} (κ : Cl) → ∀(x : myLift A κ) → ∀(y : (myLift (myLift A κ) κ)) →
(mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) ll∪m (mapL κ distlawLcM (distlawLcM (unitM y)))
≡ mapL κ distlawLcM (distlawLcM (unitM (nowL x)) l∪m distlawLcM (unitM y))
lemma-llum-unit-unitcase κ x (nowL y) = refl
lemma-llum-unit-unitcase κ x (stepL y) = cong stepL (later-ext λ α → lemma-llum-unit-unitcase κ x (y α))
-- I don't know how to split cases within elimM, so here a lemma for the unitM case of elimM for lemma-llum, split into nowL and stepL:
lemma-llum-unitcase : {A : Set} (κ : Cl) → ∀(x : (myLift (myLift A κ) κ))→ ∀(N : Multiset (myLift (myLift A κ) κ)) →
(mapL κ distlawLcM (distlawLcM (unitM x))) ll∪m (mapL κ distlawLcM (distlawLcM N))
≡ mapL κ distlawLcM (distlawLcM (unitM x) l∪m distlawLcM N)
lemma-llum-unitcase κ (nowL x) N = elimM
(λ N → ((mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) ll∪m (mapL κ distlawLcM (distlawLcM N))
≡ mapL κ distlawLcM (distlawLcM (unitM (nowL x)) l∪m distlawLcM N)) ,
truncLLcM ((mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) ll∪m (mapL κ distlawLcM (distlawLcM N)))
( mapL κ distlawLcM (distlawLcM (unitM (nowL x)) l∪m distlawLcM N)))
refl
(λ y → lemma-llum-unit-unitcase κ x y)
(λ {M N} → λ eqM eqN → (nowL (distlawLcM (unitM x)) ll∪m mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N))
≡⟨ lemma-nowL-ll∪m-mapL (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N)) (distlawLcM (unitM x)) ⟩
mapL κ (distlawLcM (unitM x) l∪m_) (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N))
≡⟨ mapmapL κ distlawLcM (distlawLcM (unitM x) l∪m_) (distlawLcM M l∪m distlawLcM N) ⟩
mapL κ (λ y → distlawLcM (unitM x) l∪m distlawLcM y) (distlawLcM M l∪m distlawLcM N)
≡⟨ refl ⟩
mapL κ (λ y → distlawLcM ((unitM x) ∪ₘ y)) (distlawLcM M l∪m distlawLcM N)
≡⟨ sym (mapmapL κ (unitM x ∪ₘ_) distlawLcM (distlawLcM M l∪m distlawLcM N)) ⟩
mapL κ distlawLcM (mapL κ ((unitM x) ∪ₘ_) (distlawLcM M l∪m distlawLcM N))
≡⟨ cong (mapL κ distlawLcM) (sym (lemma-nowL-l∪m-mapL (distlawLcM M l∪m distlawLcM N) (unitM x))) ⟩
mapL κ distlawLcM (nowL (unitM x) l∪m (distlawLcM M l∪m distlawLcM N)) ∎)
N
lemma-llum-unitcase κ (stepL x) N = cong stepL (later-ext (λ α → lemma-llum-unitcase κ (x α) N))
lemma-llum' : {A : Set} (κ : Cl) → ∀(M N : Multiset (myLift (myLift A κ) κ)) → (mapL κ distlawLcM (distlawLcM M)) ll∪m (mapL κ distlawLcM (distlawLcM N))
≡ mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N)
lemma-llum' κ M = elimM
(λ M₁ → (( ∀ N → (mapL κ distlawLcM (distlawLcM M₁)) ll∪m (mapL κ distlawLcM (distlawLcM N)) ≡ mapL κ distlawLcM (distlawLcM M₁ l∪m distlawLcM N)) ,
λ x y i N → truncLLcM ((mapL κ distlawLcM (distlawLcM M₁)) ll∪m (mapL κ distlawLcM (distlawLcM N)))
(mapL κ distlawLcM (distlawLcM M₁ l∪m distlawLcM N))
(x N)
(y N)
i))
(λ N → ((nowL (nowL m∅) ll∪m mapL κ distlawLcM (distlawLcM N))
≡⟨ unit-ll∪m (mapL κ distlawLcM (distlawLcM N)) ⟩
(mapL κ distlawLcM (distlawLcM N))
≡⟨ cong (mapL κ distlawLcM) (sym (unit-l∪m (distlawLcM N))) ⟩
mapL κ distlawLcM (distlawLcM N l∪m nowL m∅)
≡⟨ cong (mapL κ distlawLcM) (comm-l∪m (distlawLcM N) (nowL m∅)) ⟩
mapL κ distlawLcM (nowL m∅ l∪m distlawLcM N) ∎))
(λ x → λ N → lemma-llum-unitcase κ x N)
(λ {M M₁} → λ eqM eqM₁ → λ N → (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM M₁) ll∪m mapL κ distlawLcM (distlawLcM N))
≡⟨ cong (_ll∪m mapL κ distlawLcM (distlawLcM N)) (sym (eqM M₁)) ⟩
(((mapL κ distlawLcM (distlawLcM M)) ll∪m (mapL κ distlawLcM (distlawLcM M₁))) ll∪m mapL κ distlawLcM (distlawLcM N))
≡⟨ assoc-ll∪m ((mapL κ distlawLcM (distlawLcM M))) ((mapL κ distlawLcM (distlawLcM M₁))) ((mapL κ distlawLcM (distlawLcM N))) ⟩
((mapL κ distlawLcM (distlawLcM M)) ll∪m ((mapL κ distlawLcM (distlawLcM M₁)) ll∪m mapL κ distlawLcM (distlawLcM N)))
≡⟨ cong (mapL κ distlawLcM (distlawLcM M) ll∪m_) (eqM₁ N) ⟩
((mapL κ distlawLcM (distlawLcM M) ll∪m mapL κ distlawLcM (distlawLcM M₁ l∪m distlawLcM N)))
≡⟨ refl ⟩
(mapL κ distlawLcM (distlawLcM M) ll∪m mapL κ distlawLcM (distlawLcM (M₁ ∪ₘ N)))
≡⟨ eqM (M₁ ∪ₘ N) ⟩
mapL κ distlawLcM (distlawLcM M l∪m (distlawLcM M₁ l∪m distlawLcM N))
≡⟨ cong (mapL κ distlawLcM) (sym (assoc-l∪m (distlawLcM M) (distlawLcM M₁) (distlawLcM N))) ⟩
mapL κ distlawLcM ((distlawLcM M l∪m distlawLcM M₁) l∪m distlawLcM N) ∎)
M
-- then now the second multiplication law:
-- I don't know how to split cases within elimM, so here a lemma for the unitM case of elimM for multlawLcM2, split into nowL and stepL:
multlawLcM2-unitMcase : {A : Set} {κ : Cl} → ∀(x : (myLift (myLift A κ) κ)) →
distlawLcM (mapM (MultL κ) (unitM x)) ≡ MultL κ (mapL κ distlawLcM (distlawLcM (unitM x)))
multlawLcM2-unitMcase (nowL x) = refl
multlawLcM2-unitMcase (stepL x) = cong stepL (later-ext λ α → multlawLcM2-unitMcase (x α))
-- and here the full proof of the second multiplication law:
multlawLcM2 : {A : Set} (κ : Cl) → ∀(M : Multiset (myLift (myLift A κ) κ)) →
distlawLcM (mapM (MultL κ) M) ≡ MultL κ (mapL κ distlawLcM (distlawLcM M))
multlawLcM2 κ M = elimM
(λ N → ((distlawLcM (mapM (MultL κ) N) ≡ MultL κ (mapL κ distlawLcM (distlawLcM N))) ,
truncLcM (distlawLcM (mapM (MultL κ) N)) (MultL κ (mapL κ distlawLcM (distlawLcM N)))))
refl
(λ x → multlawLcM2-unitMcase x )
(λ {M N} → λ eqM eqN → distlawLcM (mapM (MultL κ) M) l∪m distlawLcM (mapM (MultL κ) N)
≡⟨ cong₂ (_l∪m_) eqM eqN ⟩
(MultL κ (mapL κ distlawLcM (distlawLcM M)) l∪m MultL κ (mapL κ distlawLcM (distlawLcM N)))
≡⟨ sym (multL-ll∪m-l∪m κ (mapL κ distlawLcM (distlawLcM M)) (mapL κ distlawLcM (distlawLcM N))) ⟩
MultL κ ((mapL κ distlawLcM (distlawLcM M)) ll∪m (mapL κ distlawLcM (distlawLcM N)))
≡⟨ cong (MultL κ) (lemma-llum' κ M N) ⟩
MultL κ (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N)) ∎)
M
--some random proofs that did not work, or work partially, that I'm not ready to through away yet:
-- lemma-llum : {A : Set} (κ : Cl) → ∀(M N : Multiset (myLift (myLift A κ) κ)) → (mapL κ distlawLcM (distlawLcM M)) ll∪m (mapL κ distlawLcM (distlawLcM N))
-- ≡ mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N)
-- lemma-llum κ m∅ N = (nowL (nowL m∅) ll∪m mapL κ distlawLcM (distlawLcM N))
-- ≡⟨ unit-ll∪m (mapL κ distlawLcM (distlawLcM N)) ⟩
-- (mapL κ distlawLcM (distlawLcM N))
-- ≡⟨ cong (mapL κ distlawLcM) (sym (unit-l∪m (distlawLcM N))) ⟩
-- mapL κ distlawLcM (distlawLcM N l∪m nowL m∅)
-- ≡⟨ cong (mapL κ distlawLcM) (comm-l∪m (distlawLcM N) (nowL m∅)) ⟩
-- mapL κ distlawLcM (nowL m∅ l∪m distlawLcM N) ∎
-- lemma-llum κ (unitM (nowL x)) m∅ = refl
-- lemma-llum κ (unitM (nowL x)) (unitM (nowL y)) = refl
-- lemma-llum κ (unitM (nowL x)) (unitM (stepL y)) = cong stepL (later-ext (λ α → lemma-llum κ (unitM (nowL x)) (unitM (y α))))
-- lemma-llum κ (unitM (nowL x)) (M ∪ₘ N) = (nowL (distlawLcM (unitM x)) ll∪m
-- mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N))
-- ≡⟨ lemma-nowL-ll∪m-mapL (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N)) (distlawLcM (unitM x)) ⟩
-- mapL κ (distlawLcM (unitM x) l∪m_) (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N))
-- ≡⟨ mapmapL κ distlawLcM (distlawLcM (unitM x) l∪m_) ((distlawLcM M l∪m distlawLcM N)) ⟩
-- mapL κ (λ y → distlawLcM (unitM x) l∪m (distlawLcM y)) (distlawLcM M l∪m distlawLcM N)
-- ≡⟨ cong₂ (mapL κ) (funExt (λ y → refl)) refl ⟩
-- mapL κ (λ y → distlawLcM ((unitM x) ∪ₘ y)) (distlawLcM M l∪m distlawLcM N)
-- ≡⟨ sym (mapmapL κ ((unitM x) ∪ₘ_) distlawLcM (distlawLcM M l∪m distlawLcM N)) ⟩
-- mapL κ distlawLcM (mapL κ ((unitM x) ∪ₘ_) (distlawLcM M l∪m distlawLcM N))
-- ≡⟨ cong (mapL κ distlawLcM) (sym (lemma-nowL-l∪m-mapL (distlawLcM M l∪m distlawLcM N) (unitM x))) ⟩
-- mapL κ distlawLcM (nowL (unitM x) l∪m (distlawLcM M l∪m distlawLcM N)) ∎
-- lemma-llum κ (unitM (nowL x)) (ass N N₁ N₂ i) = {!!}
-- lemma-llum κ (unitM (nowL x)) (com N N₁ i) = {!!}
-- lemma-llum κ (unitM (nowL x)) (unitr N i) = {!!}
-- lemma-llum κ (unitM (nowL x)) (trunc N N₁ x₁ y i i₁) = {!!}
-- lemma-llum κ (unitM (stepL x)) N = cong stepL (later-ext (λ α → lemma-llum κ (unitM (x α)) N))
-- lemma-llum κ (M ∪ₘ M₁) N = (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM M₁) ll∪m mapL κ distlawLcM (distlawLcM N))
-- ≡⟨ cong (_ll∪m mapL κ distlawLcM (distlawLcM N)) (sym (lemma-llum κ M M₁)) ⟩
-- (((mapL κ distlawLcM (distlawLcM M)) ll∪m (mapL κ distlawLcM (distlawLcM M₁))) ll∪m mapL κ distlawLcM (distlawLcM N))
-- ≡⟨ assoc-ll∪m ((mapL κ distlawLcM (distlawLcM M))) ((mapL κ distlawLcM (distlawLcM M₁))) ((mapL κ distlawLcM (distlawLcM N))) ⟩
-- ((mapL κ distlawLcM (distlawLcM M)) ll∪m ((mapL κ distlawLcM (distlawLcM M₁)) ll∪m mapL κ distlawLcM (distlawLcM N)))
-- ≡⟨ cong (mapL κ distlawLcM (distlawLcM M) ll∪m_) (lemma-llum κ M₁ N) ⟩
-- ((mapL κ distlawLcM (distlawLcM M) ll∪m mapL κ distlawLcM (distlawLcM M₁ l∪m distlawLcM N)))
-- ≡⟨ refl ⟩
-- (mapL κ distlawLcM (distlawLcM M) ll∪m mapL κ distlawLcM (distlawLcM (M₁ ∪ₘ N)))
-- ≡⟨ lemma-llum κ M (M₁ ∪ₘ N) ⟩
-- mapL κ distlawLcM (distlawLcM M l∪m (distlawLcM M₁ l∪m distlawLcM N))
-- ≡⟨ cong (mapL κ distlawLcM) (sym (assoc-l∪m (distlawLcM M) (distlawLcM M₁) (distlawLcM N))) ⟩
-- mapL κ distlawLcM ((distlawLcM M l∪m distlawLcM M₁) l∪m distlawLcM N) ∎
-- lemma-llum κ (ass M M₁ M₂ i) N = {!!}
-- lemma-llum κ (com M M₁ i) N = {!!}
-- lemma-llum κ (unitr M i) N = {!!}
-- lemma-llum κ (trunc M M₁ x y i i₁) N = {!!}
-- -- lemma-multlawLcM2-unitMcase-unitMcase : {A : Set} (κ : Cl) → ∀(x : (myLift A κ)) → ∀(y : (myLift (myLift A κ) κ)) →
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) l∪m MultL κ (mapL κ distlawLcM (distlawLcM (unitM y))))
-- -- ≡ MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)) l∪m distlawLcM (unitM y)))
-- -- lemma-multlawLcM2-unitMcase-unitMcase κ x (nowL y) = refl
-- -- lemma-multlawLcM2-unitMcase-unitMcase κ x (stepL y) = (distlawLcM (unitM x) l∪m
-- -- stepL (λ α → MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α))))))
-- -- ≡⟨ comm-l∪m (distlawLcM (unitM x))
-- -- (stepL (λ α → MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α)))))) ⟩
-- -- (stepL (λ α → MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α))))) l∪m
-- -- distlawLcM (unitM x))
-- -- ≡⟨ refl ⟩
-- -- stepL (λ α → (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α)))) l∪m
-- -- distlawLcM (unitM x)))
-- -- ≡⟨ cong stepL (later-ext λ α → comm-l∪m (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α)))))
-- -- (distlawLcM (unitM x)) ) ⟩
-- -- stepL (λ α → (distlawLcM (unitM x) l∪m
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α)))))))
-- -- ≡⟨ refl ⟩
-- -- stepL (λ α → (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x))))) l∪m
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α))))))
-- -- ≡⟨ cong stepL (later-ext λ α → lemma-multlawLcM2-unitMcase-unitMcase κ x (y α)) ⟩
-- -- stepL (λ α → MultL κ (mapL κ distlawLcM (nowL (unitM x) l∪m distlawLcM (unitM (y α))))) ∎
-- -- lemma-multlawLcM2-unitMcase : {A : Set} (κ : Cl) → ∀(x : (myLift (myLift A κ) κ)) → ∀ (N : Multiset (myLift (myLift A κ) κ)) →
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM x))) l∪m MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- -- ≡ MultL κ (mapL κ distlawLcM (distlawLcM (unitM x) l∪m distlawLcM N))
-- -- lemma-multlawLcM2 : {A : Set} (κ : Cl) → ∀(M N : Multiset (myLift (myLift A κ) κ)) →
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM M)) l∪m MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- -- ≡ MultL κ (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N))
-- -- lemma-multlawLcM2-unitMcase κ (nowL x) N = elimM
-- -- (λ N → (((MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) l∪m MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- -- ≡ (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)) l∪m distlawLcM N)))) ,
-- -- truncLcM (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) l∪m MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)) l∪m distlawLcM N)))
-- -- ))
-- -- refl
-- -- (λ y → lemma-multlawLcM2-unitMcase-unitMcase κ x y)
-- -- (λ {M N} → λ eqM eqN →
-- -- MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) l∪m
-- -- MultL κ (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N))
-- -- ≡⟨ cong (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) l∪m_)
-- -- (sym (lemma-multlawLcM2 κ M N)) ⟩
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) l∪m
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM M)) l∪m
-- -- MultL κ (mapL κ distlawLcM (distlawLcM N))))
-- -- ≡⟨ sym (assoc-l∪m (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))))
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM M)))
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM N)))) ⟩
-- -- ((MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) l∪m
-- -- MultL κ (mapL κ distlawLcM (distlawLcM M))) l∪m
-- -- MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- -- ≡⟨ cong (_l∪m MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- -- (lemma-multlawLcM2-unitMcase κ (nowL x) M) ⟩
-- -- (MultL κ (mapL κ distlawLcM (nowL (unitM x) l∪m (distlawLcM M))) l∪m
-- -- MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- -- ≡⟨ refl ⟩
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)) l∪m (distlawLcM M))) l∪m
-- -- MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- -- ≡⟨ refl ⟩
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x) ∪ₘ M))) l∪m
-- -- MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- -- ≡⟨ lemma-multlawLcM2 κ (unitM (nowL x) ∪ₘ M) N ⟩
-- -- MultL κ (mapL κ distlawLcM ((distlawLcM (unitM (nowL x) ∪ₘ M)) l∪m distlawLcM N))
-- -- ≡⟨ refl ⟩
-- -- MultL κ (mapL κ distlawLcM ((nowL (unitM x) l∪m distlawLcM M) l∪m distlawLcM N))
-- -- ≡⟨ cong (MultL κ) (cong (mapL κ distlawLcM)
-- -- (assoc-l∪m (nowL (unitM x)) (distlawLcM M) (distlawLcM N))) ⟩
-- -- MultL κ (mapL κ distlawLcM (nowL (unitM x) l∪m (distlawLcM M l∪m distlawLcM N))) ∎)
-- -- N
-- -- lemma-multlawLcM2-unitMcase κ (stepL x) N = cong stepL (later-ext λ α → lemma-multlawLcM2-unitMcase κ (x α) N)
-- -- lemma-multlawLcM2 κ M N = elimM
-- -- (λ M → ((MultL κ (mapL κ distlawLcM (distlawLcM M)) l∪m MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- -- ≡ MultL κ (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N))) ,
-- -- truncLcM (MultL κ (mapL κ distlawLcM (distlawLcM M)) l∪m MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N))) )
-- -- (nowL m∅ l∪m MultL κ (mapL κ distlawLcM (distlawLcM N))
-- -- ≡⟨ comm-l∪m (nowL m∅) (MultL κ (mapL κ distlawLcM (distlawLcM N))) ⟩
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM N)) l∪m nowL m∅)
-- -- ≡⟨ unit-l∪m (MultL κ (mapL κ distlawLcM (distlawLcM N))) ⟩
-- -- MultL κ (mapL κ distlawLcM (distlawLcM N))
-- -- ≡⟨ cong (MultL κ) (cong (mapL κ distlawLcM) (sym (unit-l∪m (distlawLcM N)))) ⟩
-- -- MultL κ (mapL κ distlawLcM (distlawLcM N l∪m nowL m∅ ))
-- -- ≡⟨ cong (MultL κ) (cong (mapL κ distlawLcM) (comm-l∪m (distlawLcM N) (nowL m∅))) ⟩
-- -- MultL κ (mapL κ distlawLcM (nowL m∅ l∪m distlawLcM N)) ∎ )
-- -- (λ x → lemma-multlawLcM2-unitMcase κ x N )
-- -- (λ {M₁ M₂} → λ eq1 eq2 → MultL κ (mapL κ distlawLcM (distlawLcM M₁ l∪m distlawLcM M₂)) l∪m
-- -- MultL κ (mapL κ distlawLcM (distlawLcM N))
-- -- ≡⟨ cong (_l∪m MultL κ (mapL κ distlawLcM (distlawLcM N))) (sym (lemma-multlawLcM2 κ M₁ M₂)) ⟩
-- -- ((MultL κ (mapL κ distlawLcM (distlawLcM M₁))l∪m MultL κ (mapL κ distlawLcM (distlawLcM M₂))) l∪m
-- -- MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- -- ≡⟨ assoc-l∪m (MultL κ (mapL κ distlawLcM (distlawLcM M₁)))
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM M₂)))
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM N))) ⟩
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM M₁))l∪m (MultL κ (mapL κ distlawLcM (distlawLcM M₂)) l∪m
-- -- MultL κ (mapL κ distlawLcM (distlawLcM N))))
-- -- ≡⟨ cong (MultL κ (mapL κ distlawLcM (distlawLcM M₁)) l∪m_) (lemma-multlawLcM2 κ M₂ N) ⟩
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM M₁)) l∪m MultL κ (mapL κ distlawLcM (distlawLcM M₂ l∪m distlawLcM N)) )
-- -- ≡⟨ cong (MultL κ (mapL κ distlawLcM (distlawLcM M₁)) l∪m_) refl ⟩
-- -- (MultL κ (mapL κ distlawLcM (distlawLcM M₁)) l∪m MultL κ (mapL κ distlawLcM (distlawLcM (M₂ ∪ₘ N))) )
-- -- ≡⟨ lemma-multlawLcM2 κ M₁ ((M₂ ∪ₘ N)) ⟩
-- -- MultL κ (mapL κ distlawLcM (distlawLcM M₁ l∪m (distlawLcM M₂ l∪m distlawLcM N)))
-- -- ≡⟨ cong (MultL κ) (cong (mapL κ distlawLcM) (sym (assoc-l∪m (distlawLcM M₁) (distlawLcM M₂) (distlawLcM N)))) ⟩
-- -- MultL κ (mapL κ distlawLcM ((distlawLcM M₁ l∪m distlawLcM M₂) l∪m distlawLcM N)) ∎)
-- -- M
-- --
-- lemma-lum : {A : Set} (κ : Cl) → ∀(M N : Multiset (myLift (myLift A κ) κ)) →
-- (MultL κ (mapL κ distlawLcM (distlawLcM M)) l∪m MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- ≡ MultL κ (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N))
-- lemma-lum κ m∅ N = nowL m∅ l∪m MultL κ (mapL κ distlawLcM (distlawLcM N))
-- ≡⟨ comm-l∪m (nowL m∅) (MultL κ (mapL κ distlawLcM (distlawLcM N))) ⟩
-- (MultL κ (mapL κ distlawLcM (distlawLcM N)) l∪m nowL m∅)
-- ≡⟨ unit-l∪m (MultL κ (mapL κ distlawLcM (distlawLcM N))) ⟩
-- MultL κ (mapL κ distlawLcM (distlawLcM N))
-- ≡⟨ cong (MultL κ) (cong (mapL κ distlawLcM) (sym (unit-l∪m (distlawLcM N)))) ⟩
-- MultL κ (mapL κ distlawLcM (distlawLcM N l∪m nowL m∅ ))
-- ≡⟨ cong (MultL κ) (cong (mapL κ distlawLcM) (comm-l∪m (distlawLcM N) (nowL m∅))) ⟩
-- MultL κ (mapL κ distlawLcM (nowL m∅ l∪m distlawLcM N)) ∎
-- lemma-lum κ (unitM (nowL x)) m∅ = refl
-- lemma-lum κ (unitM (nowL x)) (unitM (nowL y)) = refl
-- lemma-lum κ (unitM (nowL x)) (unitM (stepL y)) = (distlawLcM (unitM x) l∪m
-- stepL (λ α → MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α))))))
-- ≡⟨ comm-l∪m (distlawLcM (unitM x))
-- (stepL (λ α → MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α)))))) ⟩
-- (stepL (λ α → MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α))))) l∪m
-- distlawLcM (unitM x))
-- ≡⟨ refl ⟩
-- stepL (λ α → (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α)))) l∪m
-- distlawLcM (unitM x)))
-- ≡⟨ cong stepL (later-ext λ α → comm-l∪m (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α)))))
-- (distlawLcM (unitM x)) ) ⟩
-- stepL (λ α → (distlawLcM (unitM x) l∪m
-- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α)))))))
-- ≡⟨ refl ⟩
-- stepL (λ α → (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x))))) l∪m
-- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (y α))))))
-- ≡⟨ cong stepL (later-ext λ α → lemma-lum κ (unitM (nowL x)) (unitM (y α))) ⟩
-- stepL (λ α → MultL κ (mapL κ distlawLcM (nowL (unitM x) l∪m distlawLcM (unitM (y α))))) ∎
-- lemma-lum κ (unitM (nowL x)) (M ∪ₘ N) = MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) l∪m
-- MultL κ (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N))
-- ≡⟨ cong (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) l∪m_)
-- (sym (lemma-lum κ M N)) ⟩
-- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) l∪m
-- (MultL κ (mapL κ distlawLcM (distlawLcM M)) l∪m
-- MultL κ (mapL κ distlawLcM (distlawLcM N))))
-- ≡⟨ sym (assoc-l∪m (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))))
-- (MultL κ (mapL κ distlawLcM (distlawLcM M)))
-- (MultL κ (mapL κ distlawLcM (distlawLcM N)))) ⟩
-- ((MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)))) l∪m
-- MultL κ (mapL κ distlawLcM (distlawLcM M))) l∪m
-- MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- ≡⟨ cong (_l∪m MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- (lemma-lum κ (unitM (nowL x)) M) ⟩
-- (MultL κ (mapL κ distlawLcM (nowL (unitM x) l∪m (distlawLcM M))) l∪m
-- MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- ≡⟨ refl ⟩
-- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x)) l∪m (distlawLcM M))) l∪m
-- MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- ≡⟨ refl ⟩
-- (MultL κ (mapL κ distlawLcM (distlawLcM (unitM (nowL x) ∪ₘ M))) l∪m
-- MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- ≡⟨ {!lemma-lum κ (unitM (nowL x) ∪ₘ M) N!} ⟩
-- MultL κ (mapL κ distlawLcM ((distlawLcM (unitM (nowL x) ∪ₘ M)) l∪m distlawLcM N))
-- ≡⟨ refl ⟩
-- MultL κ (mapL κ distlawLcM ((nowL (unitM x) l∪m distlawLcM M) l∪m distlawLcM N))
-- ≡⟨ cong (MultL κ) (cong (mapL κ distlawLcM)
-- (assoc-l∪m (nowL (unitM x)) (distlawLcM M) (distlawLcM N))) ⟩
-- MultL κ (mapL κ distlawLcM (nowL (unitM x) l∪m (distlawLcM M l∪m distlawLcM N))) ∎
-- lemma-lum κ (unitM (nowL x)) (ass M N O i) = isProp→PathP {!!} {!!} {!!} {!!}
-- lemma-lum κ (unitM (nowL x)) (com M N i) = {!!}
-- lemma-lum κ (unitM (nowL x)) (unitr N i) = {!!}
-- lemma-lum κ (unitM (nowL x)) (trunc M N y z i i₁) = {!!}
-- lemma-lum κ (unitM (stepL x)) N = cong stepL (later-ext λ α → lemma-lum κ (unitM (x α)) N )
-- lemma-lum κ (M₁ ∪ₘ M₂) N = MultL κ (mapL κ distlawLcM (distlawLcM M₁ l∪m distlawLcM M₂)) l∪m
-- MultL κ (mapL κ distlawLcM (distlawLcM N))
-- ≡⟨ cong (_l∪m MultL κ (mapL κ distlawLcM (distlawLcM N))) (sym (lemma-lum κ M₁ M₂)) ⟩
-- ((MultL κ (mapL κ distlawLcM (distlawLcM M₁))l∪m MultL κ (mapL κ distlawLcM (distlawLcM M₂))) l∪m
-- MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- ≡⟨ assoc-l∪m (MultL κ (mapL κ distlawLcM (distlawLcM M₁)))
-- (MultL κ (mapL κ distlawLcM (distlawLcM M₂)))
-- (MultL κ (mapL κ distlawLcM (distlawLcM N))) ⟩
-- (MultL κ (mapL κ distlawLcM (distlawLcM M₁))l∪m (MultL κ (mapL κ distlawLcM (distlawLcM M₂)) l∪m
-- MultL κ (mapL κ distlawLcM (distlawLcM N))))
-- ≡⟨ cong (MultL κ (mapL κ distlawLcM (distlawLcM M₁)) l∪m_) (lemma-lum κ M₂ N) ⟩
-- (MultL κ (mapL κ distlawLcM (distlawLcM M₁)) l∪m MultL κ (mapL κ distlawLcM (distlawLcM M₂ l∪m distlawLcM N)) )
-- ≡⟨ cong (MultL κ (mapL κ distlawLcM (distlawLcM M₁)) l∪m_) refl ⟩
-- (MultL κ (mapL κ distlawLcM (distlawLcM M₁)) l∪m MultL κ (mapL κ distlawLcM (distlawLcM (M₂ ∪ₘ N))) )
-- ≡⟨ lemma-lum κ M₁ ((M₂ ∪ₘ N)) ⟩
-- MultL κ (mapL κ distlawLcM (distlawLcM M₁ l∪m (distlawLcM M₂ l∪m distlawLcM N)))
-- ≡⟨ cong (MultL κ) (cong (mapL κ distlawLcM) (sym (assoc-l∪m (distlawLcM M₁) (distlawLcM M₂) (distlawLcM N)))) ⟩
-- MultL κ (mapL κ distlawLcM ((distlawLcM M₁ l∪m distlawLcM M₂) l∪m distlawLcM N)) ∎
-- lemma-lum κ (ass M M₁ M₂ i) N = isProp→PathP (λ j → {!!}) (lemma-lum κ ((M ∪ₘ M₁) ∪ₘ M₂) N) (lemma-lum κ (M ∪ₘ (M₁ ∪ₘ M₂)) N) i
-- lemma-lum κ (com M M₁ i) N = λ j → comm-l∪m {!!} {!!} i
-- lemma-lum κ (unitr M i) N = λ j → {!!}
-- lemma-lum κ (trunc M M₁ x y i i₁) N = {!!}
-- --λ j → unitr (Multiset-unitlaw2 M j) i
-- -- I don't know how to split cases within elimM, so here a lemma for the unitM case of elimM for multlawLcM2, split into nowL and stepL:
-- multlawLcM2-unitMcase : {A : Set} {κ : Cl} → ∀(x : (myLift (myLift A κ) κ)) →
-- distlawLcM (mapM (MultL κ) (unitM x)) ≡ MultL κ (mapL κ distlawLcM (distlawLcM (unitM x)))
-- multlawLcM2-unitMcase (nowL x) = refl
-- multlawLcM2-unitMcase (stepL x) = cong stepL (later-ext λ α → multlawLcM2-unitMcase (x α))
-- -- and here the full proof of the second multiplication law:
-- multlawLcM2 : {A : Set} (κ : Cl) → ∀(M : Multiset (myLift (myLift A κ) κ)) →
-- distlawLcM (mapM (MultL κ) M) ≡ MultL κ (mapL κ distlawLcM (distlawLcM M))
-- multlawLcM2 κ M = elimM
-- (λ N → ((distlawLcM (mapM (MultL κ) N) ≡ MultL κ (mapL κ distlawLcM (distlawLcM N))) ,
-- truncLcM (distlawLcM (mapM (MultL κ) N)) (MultL κ (mapL κ distlawLcM (distlawLcM N)))))
-- refl
-- (λ x → multlawLcM2-unitMcase x )
-- (λ {M N} → λ eqM eqN → distlawLcM (mapM (MultL κ) M) l∪m distlawLcM (mapM (MultL κ) N)
-- ≡⟨ cong₂ (_l∪m_) eqM eqN ⟩
-- (MultL κ (mapL κ distlawLcM (distlawLcM M)) l∪m MultL κ (mapL κ distlawLcM (distlawLcM N)))
-- ≡⟨ lemma-lum κ M N ⟩
-- MultL κ (mapL κ distlawLcM (distlawLcM M l∪m distlawLcM N)) ∎)
-- M
| {
"alphanum_fraction": 0.4686859882,
"avg_line_length": 72.0031380753,
"ext": "agda",
"hexsha": "8d9a8992cf881f7854a7b4ec2f60cf8a406d481c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-01-13T15:22:51.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-13T15:22:51.000Z",
"max_forks_repo_head_hexsha": "7859ab574c093f3bf0212ea685f405d1a2cee343",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "maaikezwart/Agda-proofs",
"max_forks_repo_path": "combinations-of-lift-and-multiset.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7859ab574c093f3bf0212ea685f405d1a2cee343",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "maaikezwart/Agda-proofs",
"max_issues_repo_path": "combinations-of-lift-and-multiset.agda",
"max_line_length": 180,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7859ab574c093f3bf0212ea685f405d1a2cee343",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "maaikezwart/Agda-proofs",
"max_stars_repo_path": "combinations-of-lift-and-multiset.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 24039,
"size": 68835
} |
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary.Core
module Magma.Definitions
{a ℓ} {A : Set a} -- The underlying set
(_≈_ : Rel A ℓ) -- The underlying equality
where
open import Algebra.Core
open import Data.Product
Alternativeˡ : Op₂ A → Set _
Alternativeˡ _∙_ = ∀ x y → ((x ∙ x) ∙ y) ≈ (x ∙ (y ∙ y))
Alternativeʳ : Op₂ A → Set _
Alternativeʳ _∙_ = ∀ x y → (x ∙ (y ∙ y)) ≈ ((x ∙ y) ∙ y)
Alternative : Op₂ A → Set _
Alternative _∙_ = (Alternativeˡ _∙_ ) × ( Alternativeʳ _∙_)
Flexible : Op₂ A → Set _
Flexible _∙_ = ∀ x y → ((x ∙ y) ∙ x) ≈ (x ∙ (y ∙ x))
Medial : Op₂ A → Set _
Medial _∙_ = ∀ x y u z → ((x ∙ y) ∙ (u ∙ z)) ≈ ((x ∙ u) ∙ (y ∙ z))
LeftSemimedial : Op₂ A → Set _
LeftSemimedial _∙_ = ∀ x y z → ((x ∙ x) ∙ (y ∙ z)) ≈ ((x ∙ y) ∙ (x ∙ z))
RightSemimedial : Op₂ A → Set _
RightSemimedial _∙_ = ∀ x y z → ((y ∙ z) ∙ (x ∙ x)) ≈ ((y ∙ x) ∙ (z ∙ x))
Semimedial : Op₂ A → Set _
Semimedial _∙_ = (LeftSemimedial _∙_) × (RightSemimedial _∙_)
| {
"alphanum_fraction": 0.5508130081,
"avg_line_length": 27.3333333333,
"ext": "agda",
"hexsha": "cbe32c4ec982b9fc110d1ff852861ac63600c976",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_forks_repo_path": "src/Magma/Definitions.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_issues_repo_issues_event_max_datetime": "2021-10-09T08:24:56.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-04T05:30:30.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_issues_repo_path": "src/Magma/Definitions.agda",
"max_line_length": 73,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "443e831e536b756acbd1afd0d6bae7bc0d288048",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Akshobhya1234/agda-NonAssociativeAlgebra",
"max_stars_repo_path": "src/Magma/Definitions.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-17T09:14:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-08-15T06:16:13.000Z",
"num_tokens": 431,
"size": 984
} |
module Luau.Type.FromJSON where
open import Luau.Type using (Type; nil; _⇒_; _∪_; _∩_; any; number)
open import Agda.Builtin.List using (List; _∷_; [])
open import FFI.Data.Aeson using (Value; Array; Object; object; array; string; fromString; lookup)
open import FFI.Data.Bool using (true; false)
open import FFI.Data.Either using (Either; Left; Right)
open import FFI.Data.Maybe using (Maybe; nothing; just)
open import FFI.Data.String using (String; _++_)
open import FFI.Data.Vector using (head; tail; null; empty)
name = fromString "name"
type = fromString "type"
argTypes = fromString "argTypes"
returnTypes = fromString "returnTypes"
types = fromString "types"
{-# TERMINATING #-}
typeFromJSON : Value → Either String Type
compoundFromArray : (Type → Type → Type) → Array → Either String Type
typeFromJSON (object o) with lookup type o
typeFromJSON (object o) | just (string "AstTypeFunction") with lookup argTypes o | lookup returnTypes o
typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) with lookup types argsSet | lookup types retsSet
typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) with head args | head rets
typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) | just argValue | just retValue with typeFromJSON argValue | typeFromJSON retValue
typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) | just argValue | just retValue | Right arg | Right ret = Right (arg ⇒ ret)
typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) | just argValue | just retValue | Left err | _ = Left err
typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) | just argValue | just retValue | _ | Left err = Left err
typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) | _ | nothing = Left "No return type"
typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just (array args) | just (array rets) | nothing | _ = Left "No argument type"
typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | just _ | _ = Left "argTypes.types is not an array"
typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | _ | just _ = Left "retTypes.types is not an array"
typeFromJSON (object o) | just (string "AstTypeFunction") | just (object argsSet) | just (object retsSet) | nothing | _ = Left "argTypes.types does not exist"
typeFromJSON (object o) | just (string "AstTypeFunction") | _ | just _ = Left "argTypes is not an object"
typeFromJSON (object o) | just (string "AstTypeFunction") | just _ | _ = Left "returnTypes is not an object"
typeFromJSON (object o) | just (string "AstTypeFunction") | nothing | nothing = Left "Missing argTypes and returnTypes"
typeFromJSON (object o) | just (string "AstTypeReference") with lookup name o
typeFromJSON (object o) | just (string "AstTypeReference") | just (string "nil") = Right nil
typeFromJSON (object o) | just (string "AstTypeReference") | just (string "any") = Right any
typeFromJSON (object o) | just (string "AstTypeReference") | just (string "number") = Right number
typeFromJSON (object o) | just (string "AstTypeReference") | _ = Left "Unknown referenced type"
typeFromJSON (object o) | just (string "AstTypeUnion") with lookup types o
typeFromJSON (object o) | just (string "AstTypeUnion") | just (array types) = compoundFromArray _∪_ types
typeFromJSON (object o) | just (string "AstTypeUnion") | _ = Left "`types` field must be an array"
typeFromJSON (object o) | just (string "AstTypeIntersection") with lookup types o
typeFromJSON (object o) | just (string "AstTypeIntersection") | just (array types) = compoundFromArray _∩_ types
typeFromJSON (object o) | just (string "AstTypeIntersection") | _ = Left "`types` field must be an array"
typeFromJSON (object o) | just (string ty) = Left ("Unsupported type " ++ ty)
typeFromJSON (object o) | just _ = Left "`type` field must be a string"
typeFromJSON (object o) | nothing = Left "No `type` field"
typeFromJSON _ = Left "Unsupported JSON type"
compoundFromArray ctor ts with head ts | tail ts
compoundFromArray ctor ts | just hd | tl with null tl
compoundFromArray ctor ts | just hd | tl | true = typeFromJSON hd
compoundFromArray ctor ts | just hd | tl | false with typeFromJSON hd | compoundFromArray ctor tl
compoundFromArray ctor ts | just hd | tl | false | Right hdTy | Right tlTy = Right (ctor hdTy tlTy)
compoundFromArray ctor ts | just hd | tl | false | Left err | _ = Left err
compoundFromArray ctor ts | just hd | tl | false | _ | Left Err = Left Err
compoundFromArray ctor ts | nothing | empty = Left "Empty types array?"
| {
"alphanum_fraction": 0.726487524,
"avg_line_length": 76.6176470588,
"ext": "agda",
"hexsha": "c585c3f3719dd8ee046345859cece21b5bffda30",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Tr4shh/Roblox-Luau",
"max_forks_repo_path": "prototyping/Luau/Type/FromJSON.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Tr4shh/Roblox-Luau",
"max_issues_repo_path": "prototyping/Luau/Type/FromJSON.agda",
"max_line_length": 228,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cd18adc20ecb805b8eeb770a9e5ef8e0cd123734",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Tr4shh/Roblox-Luau",
"max_stars_repo_path": "prototyping/Luau/Type/FromJSON.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1452,
"size": 5210
} |
-- Andreas, 2015-05-06 issue reported by Jesper Cockx
{-# OPTIONS --copatterns #-}
record Foo (A : Set) : Set where
field
foo : A
open Foo {{...}} public
record ⊤ : Set where
instance
Foo⊤ : Foo ⊤
foo Foo⊤ = {!!}
-- foo {{Foo⊤}} = {!!}
-- Error WAS:
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/TypeChecking/Rules/LHS/Split.hs:103
-- Better error:
-- Not a valid projection for a copattern: foo
-- when checking that the clause foo Foo⊤ = ? has type Foo ⊤
| {
"alphanum_fraction": 0.6423220974,
"avg_line_length": 21.36,
"ext": "agda",
"hexsha": "05a79558cb9fcda0b74adf1a03ecd1db4c440499",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Fail/Issue1413.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Fail/Issue1413.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/Issue1413.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 168,
"size": 534
} |
{-# OPTIONS --safe #-}
module Cubical.Data.Vec.DepVec where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Unit
open import Cubical.Data.Nat
open import Cubical.Data.Sigma
open import Cubical.Data.Vec
open import Cubical.Relation.Nullary
open Iso
private
variable
ℓ : Level
data depVec (G : (n : ℕ) → Type ℓ) : ℕ → Type ℓ where
⋆ : depVec G 0
_□_ : {n : ℕ} → (a : G n) → (v : depVec G n) → depVec G (suc n)
module depVecPath (G : (n : ℕ) → Type ℓ)
where
code : {n : ℕ} → (v v' : depVec G n) → Type ℓ
code ⋆ ⋆ = Unit*
code (a □ v) (a' □ v') = (a ≡ a') × (v ≡ v')
-- encode
reflEncode : {n : ℕ} → (v : depVec G n) → code v v
reflEncode ⋆ = tt*
reflEncode (a □ v) = refl , refl
encode : {n : ℕ} → (v v' : depVec G n) → (v ≡ v') → code v v'
encode v v' p = J (λ v' _ → code v v') (reflEncode v) p
encodeRefl : {n : ℕ} → (v : depVec G n) → encode v v refl ≡ reflEncode v
encodeRefl v = JRefl (λ v' _ → code v v') (reflEncode v)
-- decode
decode : {n : ℕ} → (v v' : depVec G n) → (r : code v v') → (v ≡ v')
decode ⋆ ⋆ _ = refl
decode (a □ v) (a' □ v') (p , q) = cong₂ _□_ p q
decodeRefl : {n : ℕ} → (v : depVec G n) → decode v v (reflEncode v) ≡ refl
decodeRefl ⋆ = refl
decodeRefl (a □ v) = refl
-- equiv
≡Vec≃codeVec : {n : ℕ} → (v v' : depVec G n) → (v ≡ v') ≃ (code v v')
≡Vec≃codeVec v v' = isoToEquiv is
where
is : Iso (v ≡ v') (code v v')
fun is = encode v v'
inv is = decode v v'
rightInv is = sect v v'
where
sect : {n : ℕ} → (v v' : depVec G n) → (r : code v v')
→ encode v v' (decode v v' r) ≡ r
sect ⋆ ⋆ tt* = encodeRefl ⋆
sect (a □ v) (a' □ v') (p , q) = J (λ a' p → encode (a □ v) (a' □ v') (decode (a □ v) (a' □ v') (p , q)) ≡ (p , q))
(J (λ v' q → encode (a □ v) (a □ v') (decode (a □ v) (a □ v') (refl , q)) ≡ (refl , q))
(encodeRefl (a □ v)) q) p
leftInv is = retr v v'
where
retr : {n : ℕ} → (v v' : depVec G n) → (p : v ≡ v')
→ decode v v' (encode v v' p) ≡ p
retr v v' p = J (λ v' p → decode v v' (encode v v' p) ≡ p)
(cong (decode v v) (encodeRefl v) ∙ decodeRefl v) p
| {
"alphanum_fraction": 0.5027345393,
"avg_line_length": 31.6933333333,
"ext": "agda",
"hexsha": "9e507180e7ea3c320d1679dc6a909280f304b154",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Data/Vec/DepVec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Data/Vec/DepVec.agda",
"max_line_length": 126,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Data/Vec/DepVec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 976,
"size": 2377
} |
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS -v tc.record.eta:20 -v tc.eta:100 -v tc.constr:50 #-}
-- Andreas, 2013-05-15 reported by nomeata
module Issue846 where
open import Issue846.Imports
opt-is-opt2 : ∀ n s → n mod 7 ≡ 1' → winner n s opt ≡ false
opt-is-opt2 0 s ()
opt-is-opt2 (suc n) s eq =
let (pick k 1≤k k≤6) = s (suc n)
in
cong not (opt-is-opt (suc n ∸ k) s (lem-sub-p n k eq {!1≤k!} {!!} ))
-- The problem here was that the first hole was solved by
-- 'nonEmpty' by the instance finder,
-- which is called since the first hole is an unused argument.
-- 'nonEmpty' of course does not fit, but the instance finder
-- did not see it and produced constraints.
-- The eta-contractor broke on something ill-typed.
-- Now, the instance finder is a bit smarter due to
-- improved equality checking for dependent function types.
-- Unequal domains now do not block comparison of
-- codomains, only block the domain type.
| {
"alphanum_fraction": 0.6849315068,
"avg_line_length": 33.8928571429,
"ext": "agda",
"hexsha": "a35bb1eeef845a0c690cabeebf682eeb8c21deb6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/LibSucceed/Issue846.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/LibSucceed/Issue846.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/LibSucceed/Issue846.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 287,
"size": 949
} |
module DecidableOrder where
open import Logic.Relations
open import Logic.Identity using (_≡_)
open module Antisym = PolyEq _≡_ using (Antisymmetric)
record DecidableOrder (A : Set) : Set1 where
field
_≤_ : Rel A
refl : Reflexive _≤_
antisym : Antisymmetric _≤_
trans : Transitive _≤_
total : Total _≤_
decide : forall x y -> Decidable (x ≤ y)
infix 80 _≤_ _≥_
_≥_ = \(x y : A) -> y ≤ x
| {
"alphanum_fraction": 0.633640553,
"avg_line_length": 21.7,
"ext": "agda",
"hexsha": "6710b704fb102be30e4787387e9800cfab5f1801",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/order/DecidableOrder.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/order/DecidableOrder.agda",
"max_line_length": 54,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/order/DecidableOrder.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 151,
"size": 434
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties, related to products, that rely on the K rule
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe #-}
module Data.Product.Properties.WithK where
open import Data.Bool.Base
open import Data.Product
open import Data.Product.Properties using (,-injectiveˡ)
open import Function
open import Relation.Binary using (Decidable)
open import Relation.Binary.PropositionalEquality
open import Relation.Nullary.Reflects
open import Relation.Nullary using (Dec; _because_; yes; no)
open import Relation.Nullary.Decidable using (map′)
------------------------------------------------------------------------
-- Equality
module _ {a b} {A : Set a} {B : Set b} where
,-injective : ∀ {a c : A} {b d : B} → (a , b) ≡ (c , d) → a ≡ c × b ≡ d
,-injective refl = refl , refl
module _ {a b} {A : Set a} {B : A → Set b} where
,-injectiveʳ : ∀ {a} {b c : B a} → (Σ A B ∋ (a , b)) ≡ (a , c) → b ≡ c
,-injectiveʳ refl = refl
-- Note: this is not an instance of `_×-dec_`, because we need `x` and `y`
-- to have the same type before we can test them for equality.
≡-dec : Decidable _≡_ → (∀ {a} → Decidable {A = B a} _≡_) →
Decidable {A = Σ A B} _≡_
≡-dec dec₁ dec₂ (a , x) (b , y) with dec₁ a b
... | false because [a≢b] = no (invert [a≢b] ∘ ,-injectiveˡ)
... | yes refl = map′ (cong (a ,_)) ,-injectiveʳ (dec₂ x y)
| {
"alphanum_fraction": 0.5373831776,
"avg_line_length": 36.5365853659,
"ext": "agda",
"hexsha": "0b4d117d685182d62c12f31b02d1603938b14df1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Product/Properties/WithK.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Product/Properties/WithK.agda",
"max_line_length": 76,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Product/Properties/WithK.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 448,
"size": 1498
} |
-- Andreas, 2022-06-14, issue #5953 reported by Szumi Xi
-- Cubical Agda switches dot-pattern termination off (#4606).
-- However, this breaks also some benign cases.
--
-- In this example with inductive-inductive types,
-- dotted variables should still be recognized
-- as variable patterns for termination certification.
{-# OPTIONS --cubical #-} -- worked with --without-K but not --cubical
-- Debugging:
-- {-# OPTIONS -v term.check.clause:25 #-}
-- {-# OPTIONS -v term:20 #-}
data Con : Set
data Ty : Con → Set
data Con where
nil : Con
ext : (Γ : Con) → Ty Γ → Con
data Ty where
univ : (Γ : Con) → Ty Γ
pi : (Γ : Con) (A : Ty Γ) → Ty (ext Γ A) → Ty Γ
module _
(A : Set)
(B : A → Set)
(n : A)
(e : (a : A) → B a → A)
(u : (a : A) → B a)
(p : (a : A) (b : B a) → B (e a b) → B a)
where
recCon : Con → A
recTy : (Γ : Con) → Ty Γ → B (recCon Γ)
recCon nil = n
recCon (ext Γ A) = e (recCon Γ) (recTy Γ A)
recTy Γ (univ Γ) = u (recCon Γ)
recTy Γ (pi Γ A B) = p (recCon Γ) (recTy Γ A) (recTy (ext Γ A) B)
-- Should pass the termination checker.
| {
"alphanum_fraction": 0.5832566697,
"avg_line_length": 24.7045454545,
"ext": "agda",
"hexsha": "ded35b8e86eb6e0170fcfd892b3d81970c3f7ef1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue5953.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue5953.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue5953.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 393,
"size": 1087
} |
open import Nat
open import Prelude
open import dynamics-core
open import contexts
module htype-decidable where
arr-lemma : ∀{t1 t2 t3 t4} → t1 ==> t2 == t3 ==> t4 → t1 == t3 × t2 == t4
arr-lemma refl = refl , refl
sum-lemma : ∀{t1 t2 t3 t4} → t1 ⊕ t2 == t3 ⊕ t4 → t1 == t3 × t2 == t4
sum-lemma refl = refl , refl
prod-lemma : ∀{t1 t2 t3 t4} → t1 ⊠ t2 == t3 ⊠ t4 → t1 == t3 × t2 == t4
prod-lemma refl = refl , refl
htype-dec : (t1 t2 : htyp) → t1 == t2 + (t1 == t2 → ⊥)
htype-dec num num = Inl refl
htype-dec num ⦇-⦈ = Inr (λ ())
htype-dec num (t1 ==> t2) = Inr (λ ())
htype-dec num (t1 ⊕ t2) = Inr (λ ())
htype-dec ⦇-⦈ num = Inr (λ ())
htype-dec ⦇-⦈ ⦇-⦈ = Inl refl
htype-dec ⦇-⦈ (t1 ==> t2) = Inr (λ ())
htype-dec ⦇-⦈ (t1 ⊕ t2) = Inr (λ ())
htype-dec (t1 ==> t2) num = Inr (λ ())
htype-dec (t1 ==> t2) ⦇-⦈ = Inr (λ ())
htype-dec (t1 ==> t2) (t3 ==> t4)
with htype-dec t1 t3 | htype-dec t2 t4
... | Inl refl | Inl refl = Inl refl
... | Inl refl | Inr x₁ = Inr (λ x → x₁ (π2 (arr-lemma x)))
... | Inr x | Inl refl = Inr (λ x₁ → x (π1 (arr-lemma x₁)))
... | Inr x | Inr x₁ = Inr (λ x₂ → x (π1 (arr-lemma x₂)))
htype-dec (t1 ==> t2) (t3 ⊕ t4) = Inr (λ ())
htype-dec (t1 ⊕ t2) num = Inr (λ ())
htype-dec (t1 ⊕ t2) ⦇-⦈ = Inr (λ ())
htype-dec (t1 ⊕ t2) (t3 ==> t4) = Inr (λ ())
htype-dec (t1 ⊕ t2) (t3 ⊕ t4)
with htype-dec t1 t3 | htype-dec t2 t4
... | Inl refl | Inl refl = Inl refl
... | Inl refl | Inr x₁ = Inr (λ x → x₁ (π2 (sum-lemma x)))
... | Inr x | Inl refl = Inr (λ x₁ → x (π1 (sum-lemma x₁)))
... | Inr x | Inr x₁ = Inr (λ x₂ → x (π1 (sum-lemma x₂)))
htype-dec num (t3 ⊠ t4) = Inr (λ ())
htype-dec ⦇-⦈ (t3 ⊠ t4) = Inr (λ ())
htype-dec (t1 ==> t2) (t3 ⊠ t4) = Inr (λ ())
htype-dec (t1 ⊕ t2) (t3 ⊠ t4) = Inr (λ ())
htype-dec (t1 ⊠ t2) num = Inr (λ ())
htype-dec (t1 ⊠ t2) ⦇-⦈ = Inr (λ ())
htype-dec (t1 ⊠ t2) (t3 ==> t4) = Inr (λ ())
htype-dec (t1 ⊠ t2) (t3 ⊕ t4) = Inr (λ ())
htype-dec (t1 ⊠ t2) (t3 ⊠ t4)
with htype-dec t1 t3 | htype-dec t2 t4
... | Inl refl | Inl refl = Inl refl
... | Inl refl | Inr x₁ = Inr (λ x → x₁ (π2 (prod-lemma x)))
... | Inr x | Inl refl = Inr (λ x₁ → x (π1 (prod-lemma x₁)))
... | Inr x | Inr x₁ = Inr (λ x₂ → x (π1 (prod-lemma x₂)))
| {
"alphanum_fraction": 0.4924078091,
"avg_line_length": 40.4385964912,
"ext": "agda",
"hexsha": "29fcc758cfa468078601af31b98873fef1e934fe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hazelgrove/hazelnut-agda",
"max_forks_repo_path": "htype-decidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hazelgrove/hazelnut-agda",
"max_issues_repo_path": "htype-decidable.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3640d7b0f76cdac193afd382694197729ed6d57",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hazelgrove/hazelnut-agda",
"max_stars_repo_path": "htype-decidable.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1160,
"size": 2305
} |
module Sets.PredicateSet.Filter {ℓₒ} {ℓₒₗ} where
import Lvl
open import Functional
open import Logic.Propositional
-- open import Sets.PredicateSet
open import Type{ℓₒ Lvl.⊔ ℓₒₗ}
-- An element in Filter(T) is in the subset of T.
-- Something of type Filter(T) is of a restricted part of T.
-- Note: The level of Stmt inside P is lower than Type.
-- TODO: Is this the same as (⊤ ∩ P) in "Sets.PredicateSet"?
record Filter {T : Type} (P : T → Stmt{ℓₒₗ}) : Type where
constructor subelem
field
elem : T
⦃ satisfaction ⦄ : P(elem)
-- postulate nested-subset : ∀{T}{φ₁}{φ₂} → (Tₛ₁ : Filter{T}(φ₁)) → (Tₛ₂ : Filter{Filter{T}(φ₁)}(φ₂)) → Filter{T}(x ↦ φ₁(x) ∧ φ₂(subelem (x) ⦃ ⦄))
-- postulate nested-subset : ∀{T}{φ₁}{φ₂} → (Tₛ₁ : Filter{T}(φ₁)) → (Tₛ₂ : Filter{Filter{T}(φ₁)}(φ₂ ∘ Filter.elem)) → Filter{T}(x ↦ φ₁(x) ∧ φ₂(x))
-- postulate nested-subset : ∀{T}{φ₁}{φ₂} → (Filter{Filter{T}(φ₁)}(φ₂ ∘ Filter.elem) ≡ Filter{T}(x ↦ φ₁(x) ∧ φ₂(x)))
| {
"alphanum_fraction": 0.6251287333,
"avg_line_length": 42.2173913043,
"ext": "agda",
"hexsha": "9481a0944bea2b6788a8034fa710acdff1aa4b0e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Sets/PredicateSet/Filter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Sets/PredicateSet/Filter.agda",
"max_line_length": 146,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Sets/PredicateSet/Filter.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 379,
"size": 971
} |
------------------------------------------------------------------------
-- "Equational" reasoning combinator setup
------------------------------------------------------------------------
{-# OPTIONS --sized-types #-}
open import Labelled-transition-system
module Bisimilarity.Weak.Alternative.Equational-reasoning-instances
{ℓ} {lts : LTS ℓ} where
open import Prelude
open import Bisimilarity lts
import Bisimilarity.Equational-reasoning-instances
open import Bisimilarity.Weak.Alternative lts
open import Equational-reasoning
instance
trans∼≈ : ∀ {i} → Transitive _∼_ [ i ]_≈_
trans∼≈ = is-transitive (transitive {a = ℓ} ∘ ∼⇒≈)
trans∼′≈ : ∀ {i} → Transitive _∼′_ [ i ]_≈_
trans∼′≈ = is-transitive (transitive {a = ℓ} ∘ ∼⇒≈″)
trans∼′≈′ : ∀ {i} → Transitive _∼′_ [ i ]_≈′_
trans∼′≈′ = is-transitive (transitive {a = ℓ} ∘ ∼⇒≈″)
trans∼≈′ : ∀ {i} → Transitive _∼_ [ i ]_≈′_
trans∼≈′ {i} = is-transitive (transitive {a = ℓ} ∘ ∼⇒≈ {i})
convert∼≈ : Convertible _∼_ _≈_
convert∼≈ = is-convertible ∼⇒≈
convert∼′≈ : Convertible _∼′_ _≈_
convert∼′≈ = is-convertible (convert {a = ℓ} ∘ ∼⇒≈″)
convert∼≈′ : Convertible _∼_ _≈′_
convert∼≈′ = is-convertible ∼⇒≈′
convert∼′≈′ : Convertible _∼′_ _≈′_
convert∼′≈′ = is-convertible ∼⇒≈″
open Bisimilarity.Equational-reasoning-instances
{lts = weak lts} public
| {
"alphanum_fraction": 0.563099631,
"avg_line_length": 28.829787234,
"ext": "agda",
"hexsha": "093a455f868b27d393d2825f6db7de2a5aa9fa37",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/up-to",
"max_forks_repo_path": "src/Bisimilarity/Weak/Alternative/Equational-reasoning-instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/up-to",
"max_issues_repo_path": "src/Bisimilarity/Weak/Alternative/Equational-reasoning-instances.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/up-to",
"max_stars_repo_path": "src/Bisimilarity/Weak/Alternative/Equational-reasoning-instances.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 537,
"size": 1355
} |
module monad where
open import eq
open import functor
open import functions
record Triple (T : Set → Set) : Set₁ where
constructor MkTriple
field
η : ∀{A : Set} → A → T A
μ : ∀{A : Set} → T (T A) → T A
η-inv : ∀{A : Set} → T A → A
-- triple-func : Functor T
-- triple-assoc : ∀{A : Set} → μ {A} ∘ (fmap triple-func μ) ≡ (μ ∘ μ)
-- triple-id₁ : ∀{A : Set} → μ ∘ η {T A} ≡ id
-- triple-id₂ : ∀{A : Set} → (μ {A} ∘ fmap triple-func (η {A})) ≡ id
record Monad (M : Set → Set) : Set₁ where
constructor MkMonad
field
return : ∀{A : Set} → A → M A
bind : ∀{A B : Set} → M A → (A → M B) → M B
-- monad-funct : Functor M
-- monad-left-id : ∀{A B : Set}{a : A}{f : A → M B}
-- → bind (return a) f ≡ f a
-- monad-right-id : ∀{A : Set}{c : M A}
-- → bind c return ≡ c
-- monad-assoc : ∀{A B C : Set}{c : M A}{f : A → M B}{g : B → M C}
-- → bind (bind c f) g ≡ bind c (λ a → bind (f a) g)
| {
"alphanum_fraction": 0.4759467758,
"avg_line_length": 27.1388888889,
"ext": "agda",
"hexsha": "447ac82803c439fcb97555896df247b671bc76c5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "monad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "monad.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "monad.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 394,
"size": 977
} |
open import Relation.Binary.PropositionalEquality using ( _≡_ ; refl ; sym ; trans ; cong )
open import AssocFree.DList using ( List )
open import AssocFree.DNat using ( ℕ )
module AssocFree.STLambdaC.Typ (TConst : Set) where
infixr 2 _⇝_
data Typ : Set where
const : TConst → Typ
_⇝_ : Typ → Typ → Typ
Var : Set
Var = ℕ
Ctxt : Set
Ctxt = List Typ
open AssocFree.DList public using
( [] ; [_] ; _++_ ; _∷_ ; _∈_ ; _≪_ ; _≫_ ; _⋙_ ; uniq ; singleton
; Case ; case ; inj₁ ; inj₂ ; inj₃ ; case-≪ ; case-≫ ; case-⋙
; Case₃ ; case₃ ; caseˡ ; caseʳ ; caseˡ₃ ; caseʳ₃ ; case⁻¹ ; case-iso )
| {
"alphanum_fraction": 0.6295681063,
"avg_line_length": 25.0833333333,
"ext": "agda",
"hexsha": "c8326fdd6663db66f1101060d2c7ead5bdabe2da",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:38:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-03-03T04:39:31.000Z",
"max_forks_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-assoc-free",
"max_forks_repo_path": "src/AssocFree/STLambdaC/Typ.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-assoc-free",
"max_issues_repo_path": "src/AssocFree/STLambdaC/Typ.agda",
"max_line_length": 91,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-assoc-free",
"max_stars_repo_path": "src/AssocFree/STLambdaC/Typ.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-27T20:56:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-11-22T11:48:31.000Z",
"num_tokens": 235,
"size": 602
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some derivable properties
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Algebra
module Algebra.Properties.Semilattice {l₁ l₂} (L : Semilattice l₁ l₂) where
open Semilattice L
open import Algebra.Structures
open import Relation.Binary
import Relation.Binary.Construct.NaturalOrder.Left as LeftNaturalOrder
import Relation.Binary.Lattice as R
import Relation.Binary.Properties.Poset as R
open import Relation.Binary.EqReasoning setoid
open import Function
open import Data.Product
------------------------------------------------------------------------
-- Every semilattice can be turned into a poset via the left natural
-- order.
poset : Poset _ _ _
poset = LeftNaturalOrder.poset _≈_ _∧_ isSemilattice
open Poset poset using (_≤_; isPartialOrder)
------------------------------------------------------------------------
-- Every algebraic semilattice can be turned into an order-theoretic one.
isOrderTheoreticMeetSemilattice : R.IsMeetSemilattice _≈_ _≤_ _∧_
isOrderTheoreticMeetSemilattice = record
{ isPartialOrder = isPartialOrder
; infimum = LeftNaturalOrder.infimum _≈_ _∧_ isSemilattice
}
orderTheoreticMeetSemilattice : R.MeetSemilattice _ _ _
orderTheoreticMeetSemilattice = record
{ isMeetSemilattice = isOrderTheoreticMeetSemilattice }
isOrderTheoreticJoinSemilattice : R.IsJoinSemilattice _≈_ (flip _≤_) _∧_
isOrderTheoreticJoinSemilattice = record
{ isPartialOrder = R.invIsPartialOrder poset
; supremum = R.IsMeetSemilattice.infimum
isOrderTheoreticMeetSemilattice
}
orderTheoreticJoinSemilattice : R.JoinSemilattice _ _ _
orderTheoreticJoinSemilattice = record
{ isJoinSemilattice = isOrderTheoreticJoinSemilattice }
| {
"alphanum_fraction": 0.6664893617,
"avg_line_length": 34.1818181818,
"ext": "agda",
"hexsha": "b7e29a0ecf8421123df7d15ba5cf810e3ffb3c01",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/Semilattice.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/Semilattice.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Properties/Semilattice.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 462,
"size": 1880
} |
module lambdasyntax where
open import Data.Nat using (ℕ)
open import Data.Bool using (Bool; true; false)
open import Data.Vec using (Vec; []; lookup)
open import Relation.Nullary
open import Data.Empty hiding (⊥)
open import Relation.Binary.PropositionalEquality
data Label : Set where
⊤ ⊥ ✭ : Label
data GType : Set where
bool : Label → GType
_⇒_ : GType → Label → GType → GType
err : GType
infixr 4 _∙_
infixl 6 _∨_ _∧_
data Term : Set where
var : ℕ → Term
litBool : Bool → Label → Term
lam : GType → Term → Label → Term
_∧_ : Term → Term → Term
_∨_ : Term → Term → Term
_∙_ : Term → Term → Term
if_then_else_ : Term → Term → Term → Term
error : Term
Ctx : ℕ → Set
Ctx = Vec GType
getLabel : GType → Label
getLabel (bool ℓ) = ℓ
getLabel ((g ⇒ ℓ) g₁) = ℓ
getLabel err = ✭ -- lazy propagation
setLabel : GType → Label → GType
setLabel (bool _) ℓ = bool ℓ
setLabel ((t ⇒ x) t₁) ℓ = (t ⇒ ℓ) t₁
setLabel err _ = err
-- gradual join
_~⋎~_ : (ℓ₁ ℓ₂ : Label) → Label
⊤ ~⋎~ ⊤ = ⊤
⊤ ~⋎~ ⊥ = ⊤
⊤ ~⋎~ ✭ = ⊤
⊥ ~⋎~ ⊤ = ⊤
⊥ ~⋎~ ⊥ = ⊥
⊥ ~⋎~ ✭ = ✭
✭ ~⋎~ ⊤ = ⊤
✭ ~⋎~ ⊥ = ✭
✭ ~⋎~ ✭ = ✭
-- gradual meet
_~⋏~_ : ∀ (ℓ₁ ℓ₂ : Label) → Label
⊥ ~⋏~ ✭ = ⊥
✭ ~⋏~ ⊥ = ⊥
ℓ₁ ~⋏~ ✭ = ✭
✭ ~⋏~ ℓ₂ = ✭
⊤ ~⋏~ ⊤ = ⊤
⊤ ~⋏~ ⊥ = ⊥
⊥ ~⋏~ ⊤ = ⊥
⊥ ~⋏~ ⊥ = ⊥
_:∧:_ : ∀ (t₁ t₂ : GType) → GType
_:∨:_ : ∀ (t₁ t₂ : GType) → GType
bool ℓ₁ :∧: bool ℓ₂ = bool (ℓ₁ ~⋏~ ℓ₂)
(s₁₁ ⇒ ℓ₁) s₁₂ :∧: (s₂₁ ⇒ ℓ₂) s₂₂ = ((s₁₁ :∨: s₂₁) ⇒ (ℓ₁ ~⋏~ ℓ₂)) (s₁₂ :∧: s₂₂)
_ :∧: _ = err
-- _:∨:_ : ∀ (t₁ t₂ : gtype) → gtype
bool ℓ₁ :∨: bool ℓ₂ = bool (ℓ₁ ~⋎~ ℓ₂)
(s₁₁ ⇒ ℓ₁) s₁₂ :∨: (s₂₁ ⇒ ℓ₂) s₂₂ = ((s₁₁ :∧: s₂₁) ⇒ (ℓ₁ ~⋎~ ℓ₂)) (s₁₂ :∨: s₂₂)
_ :∨: _ = err
data _≤_ : Label → Label → Set where
⊥≤⊤ : ⊥ ≤ ⊤
⊤≤⊤ : ⊤ ≤ ⊤
⊥≤⊥ : ⊥ ≤ ⊥
ℓ≤✭ : ∀ {ℓ} → ℓ ≤ ✭
✭≤ℓ : ∀ {ℓ} → ✭ ≤ ℓ
_≤?_ : (ℓ₁ ℓ₂ : Label) → Dec (ℓ₁ ≤ ℓ₂)
⊤ ≤? ⊤ = yes ⊤≤⊤
⊤ ≤? ⊥ = no (λ ())
⊤ ≤? ✭ = yes (ℓ≤✭)
⊥ ≤? ⊤ = yes ⊥≤⊤
⊥ ≤? ⊥ = yes ⊥≤⊥
⊥ ≤? ✭ = yes (ℓ≤✭)
✭ ≤? ⊤ = yes (✭≤ℓ)
✭ ≤? ⊥ = yes (✭≤ℓ)
✭ ≤? ✭ = yes (ℓ≤✭)
data _≾_ : GType → GType → Set where
yes : (t₁ t₂ : GType) → t₁ ≾ t₂
no : (t₁ t₂ : GType) → t₁ ≾ t₂
_≾?_ : (t₁ t₂ : GType) → t₁ ≾ t₂
bool ℓ ≾? bool ℓ₁ with ℓ ≤? ℓ₁
... | yes p = yes (bool ℓ) (bool ℓ₁)
... | no ¬p = no (bool ℓ) (bool ℓ₁)
(t₁ ⇒ ℓ) t₂ ≾? (t₃ ⇒ ℓ₁) t₄ with t₃ ≾? t₁ | t₂ ≾? t₄ | ℓ ≤? ℓ₁
(t₁ ⇒ ℓ) t₂ ≾? (t₃ ⇒ ℓ₁) t₄ | yes .t₃ .t₁ | (yes .t₂ .t₄) | (yes p) = yes ((t₁ ⇒ ℓ) t₂) ((t₃ ⇒ ℓ₁) t₄)
(t₁ ⇒ ℓ) t₂ ≾? (t₃ ⇒ ℓ₁) t₄ | yes .t₃ .t₁ | (yes .t₂ .t₄) | (no ¬p) = no ((t₁ ⇒ ℓ) t₂) ((t₃ ⇒ ℓ₁) t₄)
(t₁ ⇒ ℓ) t₂ ≾? (t₃ ⇒ ℓ₁) t₄ | yes .t₃ .t₁ | (no .t₂ .t₄) | (yes p) = no ((t₁ ⇒ ℓ) t₂) ((t₃ ⇒ ℓ₁) t₄)
(t₁ ⇒ ℓ) t₂ ≾? (t₃ ⇒ ℓ₁) t₄ | yes .t₃ .t₁ | (no .t₂ .t₄) | (no ¬p) = no ((t₁ ⇒ ℓ) t₂) ((t₃ ⇒ ℓ₁) t₄)
(t₁ ⇒ ℓ) t₂ ≾? (t₃ ⇒ ℓ₁) t₄ | no .t₃ .t₁ | (yes .t₂ .t₄) | (yes p) = no ((t₁ ⇒ ℓ) t₂) ((t₃ ⇒ ℓ₁) t₄)
(t₁ ⇒ ℓ) t₂ ≾? (t₃ ⇒ ℓ₁) t₄ | no .t₃ .t₁ | (yes .t₂ .t₄) | (no ¬p) = no ((t₁ ⇒ ℓ) t₂) ((t₃ ⇒ ℓ₁) t₄)
(t₁ ⇒ ℓ) t₂ ≾? (t₃ ⇒ ℓ₁) t₄ | no .t₃ .t₁ | (no .t₂ .t₄) | (yes p) = no ((t₁ ⇒ ℓ) t₂) ((t₃ ⇒ ℓ₁) t₄)
(t₁ ⇒ ℓ) t₂ ≾? (t₃ ⇒ ℓ₁) t₄ | no .t₃ .t₁ | (no .t₂ .t₄) | (no ¬p) = no ((t₁ ⇒ ℓ) t₂) ((t₃ ⇒ ℓ₁) t₄)
-- everything else is no
t₁ ≾? t₂ = no t₁ t₂
| {
"alphanum_fraction": 0.439628483,
"avg_line_length": 28.0869565217,
"ext": "agda",
"hexsha": "431ed2e02cd9c50e22c0d25dec8c03d334ba0802",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "kellino/TypeSystems",
"max_forks_repo_path": "Agda/Gradual Security/lambdasyntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "kellino/TypeSystems",
"max_issues_repo_path": "Agda/Gradual Security/lambdasyntax.agda",
"max_line_length": 102,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "acf5a153e14a7bdc0c9332fa602fa369fe7add46",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "kellino/TypeSystems",
"max_stars_repo_path": "Agda/Gradual Security/lambdasyntax.agda",
"max_stars_repo_stars_event_max_datetime": "2017-05-26T23:06:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-27T08:05:40.000Z",
"num_tokens": 1957,
"size": 3230
} |
module examplesPaperJFP.StackBisim where
open import Data.Product
open import Function
open import Data.Nat.Base as N
open import Data.Vec as Vec using (Vec; []; _∷_; head; tail)
open import Relation.Binary.PropositionalEquality
open import examplesPaperJFP.StatefulObject
module _ {S : Set} {M : S → Set} {R : (s : S) → (m : M s) → Set} {next : (s : S) → (m : M s) → R s m → S} (let
I = record { Stateˢ = S; Methodˢ = M; Resultˢ = R; nextˢ = next }
) (let
O = Objectˢ I
) where
module Bisim (I : Interfaceˢ)
(let S = Stateˢ I)
(let M = Methodˢ I)
(let R = Resultˢ I)
(let next = nextˢ I)
(let O = Objectˢ I) where
data ΣR {A : Set} {B : A → Set} (R : ∀{a} (b b′ : B a) → Set)
: (p p′ : Σ[ a ∈ A ] B a) → Set
where
eqΣ : ∀{a}{b b′ : B a} → R b b′ → ΣR R (a , b) (a , b′)
record _≅_ {s : S} (o o′ : O s) : Set where
coinductive
field bisimMethod : (m : M s) →
ΣR (_≅_) (objectMethod o m) (objectMethod o′ m)
open _≅_ public
refl≅ : ∀{s} (o : O s) → o ≅ o
bisimMethod (refl≅ o) m = let (r , o′) = objectMethod o m
in eqΣ (refl≅ o′)
module _ {E : Set} where
private
I = StackInterfaceˢ E
S = Stateˢ I
O = Objectˢ I
open Bisim I
pop-after-push : ∀{n} {v : Vec E n} {e : E} →
let st = stack v
(_ , st₁) = objectMethod st (push e)
(e₂ , st₂) = objectMethod st₁ pop
in (e ≡ e₂) × (st ≅ st₂)
pop-after-push = refl , refl≅ _
push-after-pop : ∀{n} {v : Vec E n} {e : E} →
let st = stack (e ∷ v)
(e₁ , st₁) = objectMethod st pop
(_ , st₂) = objectMethod st₁ (push e₁)
in st ≅ st₂
push-after-pop = refl≅ _
tabulate : ∀ (n : ℕ) (f : ℕ → E) → Vec E n
tabulate 0 f = []
tabulate (suc n) f = f 0 ∷ tabulate n (f ∘ suc)
stackF : ∀ (n : ℕ) (f : ℕ → E) → Objectˢ (StackInterfaceˢ E) n
objectMethod (stackF n f) (push e) = _ , stackF (suc n) λ
{ 0 → e
; (suc m) → f m }
objectMethod (stackF (suc n) f) pop = f 0 , stackF n (f ∘ suc)
impl-bisim : ∀{n f} v (p : tabulate n f ≡ v) → stackF n f ≅ stack v
bisimMethod (impl-bisim v p) (push e) =
eqΣ (impl-bisim (e ∷ v) (cong (_∷_ e) p))
bisimMethod (impl-bisim (e ∷ v) p) pop rewrite cong head p =
eqΣ (impl-bisim v (cong tail p))
| {
"alphanum_fraction": 0.4911717496,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "61facd798400fadf71720699132de0eb61d89fd2",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "examples/examplesPaperJFP/StackBisim.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "examples/examplesPaperJFP/StackBisim.agda",
"max_line_length": 119,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "examples/examplesPaperJFP/StackBisim.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 1034,
"size": 2492
} |
module STLC.Semantics where
-- This file contains the definitional interpreter for STLC described
-- in Section 2 of the paper.
open import Data.Nat
open import Data.Integer
open import Data.List
open import Data.List.Membership.Propositional
open import Data.List.Relation.Unary.All as All
open import Data.Maybe.Base hiding (_>>=_)
------------
-- SYNTAX --
------------
-- These definitions correspond to Section 2.1, except we have
-- included numbers (integers) and integer operations in the language.
data Ty : Set where
unit : Ty
_⇒_ : (a b : Ty) → Ty
int : Ty
Ctx = List Ty
-- Below, `Expr` uses `_∈_` from `Relation.Binary` in the Agda
-- Standard Library to represent typed de Bruijn indices which witness
-- the existence of an entry in the type context.
data Expr (Γ : Ctx) : Ty → Set where
unit : Expr Γ unit
var : ∀ {t} → t ∈ Γ → Expr Γ t
ƛ : ∀ {a b} → Expr (a ∷ Γ) b → Expr Γ (a ⇒ b)
_·_ : ∀ {a b} → Expr Γ (a ⇒ b) → Expr Γ a → Expr Γ b
num : ℤ → Expr Γ int
iop : (ℤ → ℤ → ℤ) → (l r : Expr Γ int) → Expr Γ int
-----------------------------
-- VALUES AND ENVIRONMENTS --
-----------------------------
-- These definitions correspond to Section 2.2.
--
-- Note that the `All` type described in Section 2.2 of the paper (for
-- simplicity) does not mention universe levels, whereas the `All`
-- definition below refers to `Data.List.All` in the Agda Standard
-- Library which is defined in a universe polymorphic manner.
mutual
data Val : Ty → Set where
unit : Val unit
⟨_,_⟩ : ∀ {Γ a b} → Expr (a ∷ Γ) b → Env Γ → Val (a ⇒ b)
num : ℤ → Val int
Env : Ctx → Set
Env Γ = All Val Γ
-- The `lookup` function described in Section 2.2 of the paper is also
-- defined in `Data.List.All` in the Agda Standard Library.
-----------
-- MONAD --
-----------
-- These definitions correspond to Section 2.3.
M : Ctx → Set → Set
M Γ a = Env Γ → Maybe a
_>>=_ : ∀ {Γ a b} → M Γ a → (a → M Γ b) → M Γ b
(f >>= c) E with (f E)
... | just x = c x E
... | nothing = nothing
return : ∀ {Γ a} → a → M Γ a
return x E = just x
getEnv : ∀ {Γ} → M Γ (Env Γ)
getEnv E = return E E
usingEnv : ∀ {Γ Γ' a} → Env Γ → M Γ a → M Γ' a
usingEnv E f _ = f E
timeout : ∀ {Γ a} → M Γ a
timeout = λ _ → nothing
-----------------
-- INTERPRETER --
-----------------
-- These definitions correspond to Section 2.4.
eval : ℕ → ∀ {Γ t} → Expr Γ t → M Γ (Val t)
eval zero _ =
timeout
eval (suc k) unit =
return unit
eval (suc k) (var x) =
getEnv >>= λ E →
return (All.lookup E x)
eval (suc k) (ƛ b) =
getEnv >>= λ E →
return ⟨ b , E ⟩
eval (suc k) (l · r) =
eval k l >>= λ{ ⟨ e , E ⟩ →
eval k r >>= λ v →
usingEnv (v ∷ E) (eval k e) }
eval (suc k) (num x) =
return (num x)
eval (suc k) (iop f l r) =
eval k l >>= λ{ (num vₗ) →
eval k r >>= λ{ (num vᵣ) →
return (num (f vₗ vᵣ)) }}
| {
"alphanum_fraction": 0.5616626589,
"avg_line_length": 24.4621848739,
"ext": "agda",
"hexsha": "d830d4e7eb181b4bb4952aaa3f0dc00f6652bae1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/STLC/Semantics.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/STLC/Semantics.agda",
"max_line_length": 70,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/STLC/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 983,
"size": 2911
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Adjoint
open import Categories.Category
open import Categories.Functor renaming (id to idF)
-- The crude monadicity theorem. This proof is based off of the version
-- provided in "Sheaves In Geometry and Logic" by Maclane and Moerdijk.
module Categories.Adjoint.Monadic.Crude {o ℓ e o′ ℓ′ e′} {𝒞 : Category o ℓ e} {𝒟 : Category o′ ℓ′ e′}
{L : Functor 𝒞 𝒟} {R : Functor 𝒟 𝒞} (adjoint : L ⊣ R) where
open import Level
open import Function using (_$_)
open import Data.Product using (Σ-syntax; _,_)
open import Categories.Adjoint.Properties
open import Categories.Adjoint.Monadic
open import Categories.Adjoint.Monadic.Properties
open import Categories.Category.Equivalence using (StrongEquivalence)
open import Categories.Category.Equivalence.Properties using (pointwise-iso-equivalence)
open import Categories.Functor.Properties
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism)
open import Categories.NaturalTransformation
open import Categories.Monad
open import Categories.Diagram.Coequalizer
open import Categories.Diagram.ReflexivePair
open import Categories.Adjoint.Construction.EilenbergMoore
open import Categories.Category.Construction.EilenbergMoore
open import Categories.Category.Construction.Properties.EilenbergMoore
open import Categories.Morphism
open import Categories.Morphism.Notation
open import Categories.Morphism.Properties
import Categories.Morphism.Reasoning as MR
private
module L = Functor L
module R = Functor R
module 𝒞 = Category 𝒞
module 𝒟 = Category 𝒟
module adjoint = Adjoint adjoint
T : Monad 𝒞
T = adjoint⇒monad adjoint
𝒞ᵀ : Category _ _ _
𝒞ᵀ = EilenbergMoore T
Comparison : Functor 𝒟 𝒞ᵀ
Comparison = ComparisonF adjoint
module Comparison = Functor Comparison
open Coequalizer
-- We could do this with limits, but this is far easier.
PreservesReflexiveCoequalizers : (F : Functor 𝒟 𝒞) → Set _
PreservesReflexiveCoequalizers F = ∀ {A B} {f g : 𝒟 [ A , B ]} → ReflexivePair 𝒟 f g → (coeq : Coequalizer 𝒟 f g) → IsCoequalizer 𝒞 (F.F₁ f) (F.F₁ g) (F.F₁ (arr coeq))
where
module F = Functor F
module _ {F : Functor 𝒟 𝒞} (preserves-reflexive-coeq : PreservesReflexiveCoequalizers F) where
open Functor F
-- Unfortunately, we need to prove that the 'coequalize' arrows are equal as a lemma
preserves-coequalizer-unique : ∀ {A B C} {f g : 𝒟 [ A , B ]} {h : 𝒟 [ B , C ]} {eq : 𝒟 [ 𝒟 [ h ∘ f ] ≈ 𝒟 [ h ∘ g ] ]}
→ (reflexive-pair : ReflexivePair 𝒟 f g) → (coe : Coequalizer 𝒟 f g)
→ 𝒞 [ F₁ (coequalize coe eq) ≈ IsCoequalizer.coequalize (preserves-reflexive-coeq reflexive-pair coe) ([ F ]-resp-square eq) ]
preserves-coequalizer-unique reflexive-pair coe = IsCoequalizer.unique (preserves-reflexive-coeq reflexive-pair coe) (F-resp-≈ (universal coe) ○ homomorphism)
where
open 𝒞.HomReasoning
-- If 𝒟 has coequalizers of reflexive pairs, then the comparison functor has a left adjoint.
module _ (has-reflexive-coequalizers : ∀ {A B} {f g : 𝒟 [ A , B ]} → ReflexivePair 𝒟 f g → Coequalizer 𝒟 f g) where
private
reflexive-pair : (M : Module T) → ReflexivePair 𝒟 (L.F₁ (Module.action M)) (adjoint.counit.η (L.₀ (Module.A M)))
reflexive-pair M = record
{ s = L.F₁ (adjoint.unit.η (Module.A M))
; isReflexivePair = record
{ sectionₗ = begin
𝒟 [ L.F₁ (Module.action M) ∘ L.F₁ (adjoint.unit.η (Module.A M)) ] ≈˘⟨ L.homomorphism ⟩
L.F₁ (𝒞 [ Module.action M ∘ adjoint.unit.η (Module.A M) ] ) ≈⟨ L.F-resp-≈ (Module.identity M) ⟩
L.F₁ 𝒞.id ≈⟨ L.identity ⟩
𝒟.id ∎
; sectionᵣ = begin
𝒟 [ adjoint.counit.η (L.₀ (Module.A M)) ∘ L.F₁ (adjoint.unit.η (Module.A M)) ] ≈⟨ adjoint.zig ⟩
𝒟.id ∎
}
}
where
open 𝒟.HomReasoning
-- The key part of the proof. As we have all reflexive coequalizers, we can create the following coequalizer.
-- We can think of this as identifying the action of the algebra lifted to a "free" structure
-- and the counit of the adjunction, as the unit of the adjunction (also lifted to the "free structure") is a section of both.
has-coequalizer : (M : Module T) → Coequalizer 𝒟 (L.F₁ (Module.action M)) (adjoint.counit.η (L.₀ (Module.A M)))
has-coequalizer M = has-reflexive-coequalizers (reflexive-pair M)
module Comparison⁻¹ = Functor (Comparison⁻¹ adjoint has-coequalizer)
module Comparison⁻¹⊣Comparison = Adjoint (Comparison⁻¹⊣Comparison adjoint has-coequalizer)
-- We have one interesting coequalizer in 𝒞 built out of a T-module's action.
coequalizer-action : (M : Module T) → Coequalizer 𝒞 (R.F₁ (L.F₁ (Module.action M))) (R.F₁ (adjoint.counit.η (L.₀ (Module.A M))))
coequalizer-action M = record
{ arr = Module.action M
; isCoequalizer = record
{ equality = Module.commute M
; coequalize = λ {X} {h} eq → 𝒞 [ h ∘ adjoint.unit.η (Module.A M) ]
; universal = λ {C} {h} {eq} → begin
h ≈⟨ introʳ adjoint.zag ○ 𝒞.sym-assoc ⟩
𝒞 [ 𝒞 [ h ∘ R.F₁ (adjoint.counit.η (L.₀ (Module.A M))) ] ∘ adjoint.unit.η (R.F₀ (L.F₀ (Module.A M))) ] ≈⟨ pushˡ (⟺ eq) ⟩
𝒞 [ h ∘ 𝒞 [ R.F₁ (L.F₁ (Module.action M)) ∘ adjoint.unit.η (R.F₀ (L.F₀ (Module.A M))) ] ] ≈⟨ pushʳ (adjoint.unit.sym-commute (Module.action M)) ⟩
𝒞 [ 𝒞 [ h ∘ adjoint.unit.η (Module.A M) ] ∘ Module.action M ] ∎
; unique = λ {X} {h} {i} {eq} eq′ → begin
i ≈⟨ introʳ (Module.identity M) ⟩
𝒞 [ i ∘ 𝒞 [ Module.action M ∘ adjoint.unit.η (Module.A M) ] ] ≈⟨ pullˡ (⟺ eq′) ⟩
𝒞 [ h ∘ adjoint.unit.η (Module.A M) ] ∎
}
}
where
open 𝒞.HomReasoning
open MR 𝒞
-- If 'R' preserves reflexive coequalizers, then the unit of the adjunction is a pointwise isomorphism
unit-iso : PreservesReflexiveCoequalizers R → (X : Module T) → Σ[ h ∈ 𝒞ᵀ [ Comparison.F₀ (Comparison⁻¹.F₀ X) , X ] ] (Iso 𝒞ᵀ (Comparison⁻¹⊣Comparison.unit.η X) h)
unit-iso preserves-reflexive-coeq X =
let
coequalizerˣ = has-coequalizer X
coequalizerᴿˣ = ((IsCoequalizer⇒Coequalizer 𝒞 (preserves-reflexive-coeq (reflexive-pair X) (has-coequalizer X))))
coequalizer-iso = up-to-iso 𝒞 (coequalizer-action X) coequalizerᴿˣ
module coequalizer-iso = _≅_ coequalizer-iso
open 𝒞
open 𝒞.HomReasoning
open MR 𝒞
α = record
{ arr = coequalizer-iso.to
; commute = begin
coequalizer-iso.to ∘ R.F₁ (adjoint.counit.η _) ≈⟨ introʳ (R.F-resp-≈ L.identity ○ R.identity) ⟩
(coequalizer-iso.to ∘ R.F₁ (adjoint.counit.η _)) ∘ R.F₁ (L.F₁ 𝒞.id) ≈⟨ pushʳ (R.F-resp-≈ (L.F-resp-≈ (⟺ coequalizer-iso.isoʳ)) ○ R.F-resp-≈ L.homomorphism ○ R.homomorphism) ⟩
((coequalizer-iso.to ∘ R.F₁ (adjoint.counit.η _)) ∘ R.F₁ (L.F₁ (R.F₁ (arr coequalizerˣ) ∘ adjoint.unit.η _))) ∘ R.F₁ (L.F₁ coequalizer-iso.to) ≈⟨ (refl⟩∘⟨ (R.F-resp-≈ L.homomorphism ○ R.homomorphism)) ⟩∘⟨refl ⟩
((coequalizer-iso.to ∘ R.F₁ (adjoint.counit.η _)) ∘ R.F₁ (L.F₁ (R.F₁ (arr coequalizerˣ))) ∘ R.F₁ (L.F₁ (adjoint.unit.η _))) ∘ R.F₁ (L.F₁ coequalizer-iso.to) ≈⟨ center ([ R ]-resp-square (adjoint.counit.commute _)) ⟩∘⟨refl ⟩
((coequalizer-iso.to ∘ (R.F₁ (arr coequalizerˣ) ∘ R.F₁ (adjoint.counit.η (L.F₀ _))) ∘ R.F₁ (L.F₁ (adjoint.unit.η _))) ∘ R.F₁ (L.F₁ coequalizer-iso.to)) ≈⟨ (refl⟩∘⟨ cancelʳ (⟺ R.homomorphism ○ R.F-resp-≈ adjoint.zig ○ R.identity)) ⟩∘⟨refl ⟩
(coequalizer-iso.to ∘ R.F₁ (arr coequalizerˣ)) ∘ R.F₁ (L.F₁ coequalizer-iso.to) ≈˘⟨ universal coequalizerᴿˣ ⟩∘⟨refl ⟩
Module.action X ∘ R.F₁ (L.F₁ coequalizer-iso.to) ∎
}
in α , record { isoˡ = coequalizer-iso.isoˡ ; isoʳ = coequalizer-iso.isoʳ }
-- If 'R' preserves reflexive coequalizers and reflects isomorphisms, then the counit of the adjunction is a pointwise isomorphism.
counit-iso : PreservesReflexiveCoequalizers R → Conservative R → (X : 𝒟.Obj) → Σ[ h ∈ 𝒟 [ X , Comparison⁻¹.F₀ (Comparison.F₀ X) ] ] Iso 𝒟 (Comparison⁻¹⊣Comparison.counit.η X) h
counit-iso preserves-reflexive-coeq conservative X =
let coequalizerᴿᴷˣ = IsCoequalizer⇒Coequalizer 𝒞 (preserves-reflexive-coeq (reflexive-pair (Comparison.F₀ X)) (has-coequalizer (Comparison.F₀ X)))
coequalizerᴷˣ = has-coequalizer (Comparison.F₀ X)
coequalizer-iso = up-to-iso 𝒞 coequalizerᴿᴷˣ (coequalizer-action (Comparison.F₀ X))
module coequalizer-iso = _≅_ coequalizer-iso
open 𝒞.HomReasoning
open 𝒞.Equiv
in conservative (Iso-resp-≈ 𝒞 coequalizer-iso.iso (⟺ (preserves-coequalizer-unique {R} preserves-reflexive-coeq (reflexive-pair (Comparison.F₀ X)) coequalizerᴷˣ)) refl)
-- Now, for the final result. Both the unit and counit of the adjunction between the comparison functor and it's inverse are isomorphisms,
-- so therefore they form natural isomorphism. Therfore, we have an equivalence of categories.
crude-monadicity : PreservesReflexiveCoequalizers R → Conservative R → StrongEquivalence 𝒞ᵀ 𝒟
crude-monadicity preserves-reflexlive-coeq conservative = record
{ F = Comparison⁻¹ adjoint has-coequalizer
; G = Comparison
; weak-inverse = pointwise-iso-equivalence (Comparison⁻¹⊣Comparison adjoint has-coequalizer)
(counit-iso preserves-reflexlive-coeq conservative)
(unit-iso preserves-reflexlive-coeq)
}
| {
"alphanum_fraction": 0.6217361316,
"avg_line_length": 57.9942857143,
"ext": "agda",
"hexsha": "490348ea017fc2fbe6367258a414fffbde6f1a7e",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Adjoint/Monadic/Crude.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Adjoint/Monadic/Crude.agda",
"max_line_length": 276,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Adjoint/Monadic/Crude.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 3353,
"size": 10149
} |
open import Categories
open import Monads
module Monads.Kleisli {a b}{C : Cat {a}{b}}(M : Monad C) where
open import Library
open Cat C
open Monad M
Kl : Cat
Kl = record{
Obj = Obj;
Hom = λ X Y → Hom X (T Y);
iden = η;
comp = λ f g → comp (bind f) g;
idl = λ{X}{Y}{f} →
proof
comp (bind η) f
≅⟨ cong (λ g → comp g f) law1 ⟩
comp iden f
≅⟨ idl ⟩
f
∎;
idr = law2;
ass = λ{_}{_}{_}{_}{f}{g}{h} →
proof
comp (bind (comp (bind f) g)) h
≅⟨ cong (λ f → comp f h) law3 ⟩
comp (comp (bind f) (bind g)) h
≅⟨ ass ⟩
comp (bind f) (comp (bind g) h)
∎}
| {
"alphanum_fraction": 0.5,
"avg_line_length": 18.9696969697,
"ext": "agda",
"hexsha": "688e8e6c71a1c6df9991fcb5d24f0e6521138b09",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "Monads/Kleisli.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "Monads/Kleisli.agda",
"max_line_length": 62,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "Monads/Kleisli.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 275,
"size": 626
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Construction.SetoidDiscrete where
open import Data.Unit using (⊤; tt)
open import Function using (flip)
open import Level using (Lift; lift)
open import Relation.Binary using (Setoid; IsEquivalence)
open import Categories.Category.Core using (Category)
open import Categories.Category.Discrete using (DiscreteCategory)
open import Categories.Morphism using (_≅_; ≅-isEquivalence)
{-
This is a better version of Discrete, which is more in line with
the rest of this library, and makes a Category out of a Setoid.
It is still 'wrong' as the equivalence is completely uninformative.
-}
Discrete : ∀ {o ℓ e} (A : Setoid o ℓ) → DiscreteCategory o ℓ e
Discrete {o} {ℓ} {e} A = record
{ category = C
; isDiscrete = record
{ isGroupoid = record { _⁻¹ = sym }
}
}
where
open Setoid A
C : Category o ℓ e
C = record
{ Obj = Carrier
; _⇒_ = _≈_
; _≈_ = λ _ _ → Lift e ⊤
; id = Setoid.refl A
; _∘_ = flip trans
}
| {
"alphanum_fraction": 0.6519285042,
"avg_line_length": 30.3714285714,
"ext": "agda",
"hexsha": "d0aa5d3a1c8e276aa299609e1fdc7a075408468e",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Construction/SetoidDiscrete.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Construction/SetoidDiscrete.agda",
"max_line_length": 68,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Construction/SetoidDiscrete.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 311,
"size": 1063
} |
-- Reported by nils.anders.danielsson, Feb 7 2014
-- The code below is accepted by Agda 2.3.2.2.
module Issue1048 where
module M (_ : Set) where
data D : Set where
c₁ : D
c₂ : D → D
postulate A : Set
open M A
postulate
♭ : D → D
♯ : D → D
data S : D → Set where
s : (d : D) → S (♭ d) → S (c₂ d)
postulate
f : S (♭ (♯ c₁)) → S c₁
Foo : S (c₂ (♯ c₁)) → Set₁
Foo (s ._ x) with f x
... | _ = Set
-- Bug.agda:24,1-25,14
-- The constructor c₁ does not construct an element of D
-- when checking that the type (x : S (♭ (♯ c₁))) → S M.c₁ → Set₁ of
-- the generated with function is well-formed
-- Fixed. Need to normalize constructor in checkInternal.
| {
"alphanum_fraction": 0.5955555556,
"avg_line_length": 18.75,
"ext": "agda",
"hexsha": "05bd7c07660692f7dbc7da478ad14d211b41841b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1048.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1048.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1048.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 259,
"size": 675
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Data.Nat.Coprime where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Data.Sigma
open import Cubical.Data.NatPlusOne
open import Cubical.HITs.PropositionalTruncation as PropTrunc
open import Cubical.Data.Nat.Base
open import Cubical.Data.Nat.Properties
open import Cubical.Data.Nat.Divisibility
open import Cubical.Data.Nat.GCD
areCoprime : ℕ × ℕ → Type₀
areCoprime (m , n) = isGCD m n 1
-- Any pair (m , n) can be converted to a coprime pair (m' , n') s.t.
-- m' ∣ m, n' ∣ n if and only if one of m or n is nonzero
module ToCoprime ((m , n) : ℕ × ℕ₊₁) where
d = gcd m (ℕ₊₁→ℕ n)
d∣m = gcdIsGCD m (ℕ₊₁→ℕ n) .fst .fst
d∣n = gcdIsGCD m (ℕ₊₁→ℕ n) .fst .snd
gr = gcdIsGCD m (ℕ₊₁→ℕ n) .snd
c₁ : ℕ
p₁ : c₁ · d ≡ m
c₁ = ∣-untrunc d∣m .fst; p₁ = ∣-untrunc d∣m .snd
c₂ : ℕ₊₁
p₂ : (ℕ₊₁→ℕ c₂) · d ≡ (ℕ₊₁→ℕ n)
c₂ = 1+ (∣s-untrunc d∣n .fst); p₂ = ∣s-untrunc d∣n .snd
toCoprime : ℕ × ℕ₊₁
toCoprime = (c₁ , c₂)
private
lem : ∀ a {b c d e} → a · b ≡ c → c · d ≡ e → a · (b · d) ≡ e
lem a p q = ·-assoc a _ _ ∙ cong (_· _) p ∙ q
gr' : ∀ d' → prediv d' c₁ → prediv d' (ℕ₊₁→ℕ c₂) → (d' · d) ∣ d
gr' d' (b₁ , q₁) (b₂ , q₂) = gr (d' · d) ((∣ b₁ , lem b₁ q₁ p₁ ∣) ,
(∣ b₂ , lem b₂ q₂ p₂ ∣))
d-1 = m∣sn→z<m d∣n .fst
q : d ≡ suc d-1
q = sym (+-comm 1 d-1 ∙ m∣sn→z<m d∣n .snd)
private
-- this only works because d > 0 (<=> m > 0 or n > 0)
d-cancelʳ : ∀ d' → (d' · d) ∣ d → d' ∣ 1
d-cancelʳ d' div = ∣-cancelʳ d-1 (∣-trans (subst (λ x → (d' · x) ∣ x) q div)
(∣-refl (sym (·-identityˡ _))))
toCoprimeAreCoprime : areCoprime (c₁ , ℕ₊₁→ℕ c₂)
fst toCoprimeAreCoprime = ∣-oneˡ c₁ , ∣-oneˡ (ℕ₊₁→ℕ c₂)
snd toCoprimeAreCoprime d' (d'∣c₁ , d'∣c₂) = PropTrunc.rec isProp∣ (λ a →
PropTrunc.rec isProp∣ (λ b →
d-cancelʳ d' (gr' d' a b)) d'∣c₂) d'∣c₁
toCoprime∣ : (c₁ ∣ m) × (ℕ₊₁→ℕ c₂ ∣ ℕ₊₁→ℕ n)
toCoprime∣ = ∣ d , ·-comm d c₁ ∙ p₁ ∣ , ∣ d , ·-comm d (ℕ₊₁→ℕ c₂) ∙ p₂ ∣
toCoprime-idem : areCoprime (m , ℕ₊₁→ℕ n) → (c₁ , c₂) ≡ (m , n)
toCoprime-idem cp i = q₁ i , ℕ₊₁→ℕ-inj q₂ i
where q₁ = sym (·-identityʳ c₁) ∙ cong (c₁ ·_) (sym (isGCD→gcd≡ cp)) ∙ p₁
q₂ = sym (·-identityʳ (ℕ₊₁→ℕ c₂)) ∙ cong (ℕ₊₁→ℕ c₂ ·_) (sym (isGCD→gcd≡ cp)) ∙ p₂
open ToCoprime using (toCoprime; toCoprimeAreCoprime; toCoprime∣; toCoprime-idem) public
toCoprime-cancelʳ : ∀ ((m , n) : ℕ × ℕ₊₁) k
→ toCoprime (m · ℕ₊₁→ℕ k , n ·₊₁ k) ≡ toCoprime (m , n)
toCoprime-cancelʳ (m , n) (1+ k) i =
inj-·sm {c₁'} {d-1} {c₁} r₁ i , ℕ₊₁→ℕ-inj (inj-·sm {ℕ₊₁→ℕ c₂'} {d-1} {ℕ₊₁→ℕ c₂} r₂) i
where open ToCoprime (m , n)
open ToCoprime (m · suc k , n ·₊₁ (1+ k)) using ()
renaming (c₁ to c₁'; p₁ to p₁'; c₂ to c₂'; p₂ to p₂')
q₁ : c₁' · d · suc k ≡ m · suc k
q₁ = sym (·-assoc c₁' (ToCoprime.d (m , n)) (suc k))
∙ cong (c₁' ·_) (sym (gcd-factorʳ m (ℕ₊₁→ℕ n) (suc k)))
∙ p₁'
q₂ : ℕ₊₁→ℕ c₂' · (ToCoprime.d (m , n)) · suc k ≡ ℕ₊₁→ℕ n · suc k
q₂ = sym (·-assoc (ℕ₊₁→ℕ c₂') (ToCoprime.d (m , n)) (suc k))
∙ cong (ℕ₊₁→ℕ c₂' ·_) (sym (gcd-factorʳ m (ℕ₊₁→ℕ n) (suc k)))
∙ p₂'
r₁ : c₁' · suc d-1 ≡ c₁ · suc d-1
r₁ = subst (λ z → c₁' · z ≡ c₁ · z) q (inj-·sm q₁ ∙ sym p₁)
r₂ : ℕ₊₁→ℕ c₂' · suc d-1 ≡ ℕ₊₁→ℕ c₂ · suc d-1
r₂ = subst (λ z → ℕ₊₁→ℕ c₂' · z ≡ ℕ₊₁→ℕ c₂ · z) q (inj-·sm q₂ ∙ sym p₂)
| {
"alphanum_fraction": 0.5,
"avg_line_length": 38.3125,
"ext": "agda",
"hexsha": "8c578162d2db91140e9de4640ddc5b1151555cbf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/Nat/Coprime.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/Nat/Coprime.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/Nat/Coprime.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1812,
"size": 3678
} |
{-# OPTIONS --cubical #-}
module Issue4606 where
open import Agda.Builtin.Cubical.Path
open import Agda.Primitive.Cubical
-- Test case from Andrew Pitts.
----------------------------------------------------------------------
-- Well-Founded Recursion
----------------------------------------------------------------------
data Acc {A : Set}(R : A → A → Set)(x : A) : Set where
acc : (∀ y → R y x → Acc R y) → Acc R x
iswf : {A : Set}(R : A → A → Set) → Set
iswf R = ∀ x → Acc R x
----------------------------------------------------------------------
-- A logical contradiction
----------------------------------------------------------------------
data A : Set where
O : A
S : A → A
E : ∀ x → S x ≡ x
data _<_ (x : A) : A → Set where
<S : x < S x
O<O : O < O
O<O = primTransp (\ i → O < E O i) i0 <S
-- Given that O < O holds, we should not be able to prove that < is
-- well-founded, but we can!
iswf< : iswf _<_
iswf< i = acc (α i)
where
α : ∀ x y → y < x → Acc _<_ y
-- I don't think the following clause should pass
-- the termination checker
α .(S y) y <S = acc (α y)
data ⊥ : Set where
AccO→⊥ : Acc _<_ O → ⊥
AccO→⊥ (acc f) = AccO→⊥ (f O O<O)
contradiction : ⊥
contradiction = AccO→⊥ (iswf< O)
| {
"alphanum_fraction": 0.4411047929,
"avg_line_length": 25.1224489796,
"ext": "agda",
"hexsha": "b47277eb2590ae4169ac50f6f82a1ed2c142854e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Fail/Issue4606.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue4606.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue4606.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 377,
"size": 1231
} |
module Type.Lemmas where
open import Context
open import Type.Core
open import Function
open import Data.Unit.Base
open import Relation.Binary.PropositionalEquality
foldlᶜ-▻-ε : ∀ {α} {A : Set α} -> (Θ : Con A) -> foldlᶜ _▻_ ε Θ ≡ Θ
foldlᶜ-▻-ε ε = refl
foldlᶜ-▻-ε (Γ ▻ σ) = cong (_▻ σ) (foldlᶜ-▻-ε Γ)
-- Same as `mapᶜ f (Γ ▻▻ Δ) ≡ mapᶜ f Γ ▻▻ mapᶜ f Δ`, but we fully inline the definitions,
-- because the REWRITE pragma requires that.
mapᶜ-▻▻
: ∀ {α β} {A : Set α} {B : Set β} {f : A -> B} {Γ : Con A}
-> ∀ Δ ->
foldlᶜ (λ Ξ σ -> Ξ ▻ f σ) ε (foldlᶜ _▻_ Γ Δ)
≡ foldlᶜ _▻_ (foldlᶜ (λ Ξ σ -> Ξ ▻ f σ) ε Γ) (foldlᶜ (λ Ξ σ -> Ξ ▻ f σ) ε Δ)
mapᶜ-▻▻ ε = refl
mapᶜ-▻▻ (Δ ▻ τ) = cong (_▻ _) (mapᶜ-▻▻ Δ)
keep-id : ∀ {α} {A : Set α} {Γ : Con A} {σ τ} -> (v : σ ∈ Γ ▻ τ) -> keep id v ≡ v
keep-id vz = refl
keep-id (vs v) = refl
keep-keep
: ∀ {α} {A : Set α} {Γ Δ Ξ : Con A} {σ τ}
-> (κ : Δ ⊆ Ξ) -> (ι : Γ ⊆ Δ) -> (v : σ ∈ Γ ▻ τ) -> keep κ (keep ι v) ≡ keep (κ ∘ ι) v
keep-keep κ ι vz = refl
keep-keep κ ι (vs v) = refl
dupl-keep-vs
: ∀ {α} {A : Set α} {Γ Δ : Con A} {σ τ}
-> (ι : Γ ⊆ Δ) -> (v : σ ∈ Γ ▻ τ) -> dupl (keep (vs_ ∘ ι) v) ≡ keep ι v
dupl-keep-vs ι vz = refl
dupl-keep-vs ι (vs v) = refl
inject-foldr-poly
: ∀ {α β γ} {A : Set α} {B : Set β} {yᶠ yᵍ}
-> (C : B -> Set γ)
-> (h : ∀ {yʰ} -> C yʰ -> C yʰ -> C yʰ)
-> (g : C yᶠ -> C yᵍ)
-> (∀ {y z} -> h (g y) (g z) ≡ g (h y z))
-> (f : A -> C yᶠ)
-> (Γ : Con A)
-> (z : C yᶠ)
-> g (foldrᶜ (h ∘ f) z Γ) ≡ foldrᶜ (h ∘ g ∘ f) (g z) Γ
inject-foldr-poly C h g dist f ε y = refl
inject-foldr-poly C h g dist f (Γ ▻ x) y
rewrite dist {f x} {y} = inject-foldr-poly C h g dist f Γ (h (f x) y)
inject-foldr-mono
: ∀ {α β} {A : Set α} {B : Set β}
-> (h : B -> B -> B)
-> (g : B -> B)
-> (∀ {y z} -> h (g y) (g z) ≡ g (h y z))
-> (f : A -> B)
-> (Γ : Con A)
-> (y : B)
-> g (foldrᶜ (h ∘ f) y Γ) ≡ foldrᶜ (h ∘ g ∘ f) (g y) Γ
inject-foldr-mono h g dist f Γ y = inject-foldr-poly {B = ⊤} _ h g dist f Γ y
keep-eq
: ∀ {α} {A : Set α} {Θ Ξ : Con A} {σ} (ι κ : Θ ⊆ Ξ)
-> (∀ {τ} -> (v : τ ∈ Θ) -> renᵛ ι v ≡ renᵛ κ v)
-> (∀ {τ} -> (v : τ ∈ Θ ▻ σ) -> renᵛ (keep ι) v ≡ renᵛ (keep κ) v)
keep-eq ι κ q vz = refl
keep-eq ι κ q (vs v) = cong vs_ (q v)
renᵗ-ext
: ∀ {Θ Ξ σ} (ι κ : Θ ⊆ Ξ) (α : Θ ⊢ᵗ σ)
-> (∀ {τ} -> (v : τ ∈ Θ) -> renᵛ ι v ≡ renᵛ κ v)
-> renᵗ ι α ≡ renᵗ κ α
renᵗ-ext ι κ (Var v) q = cong Var (q v)
renᵗ-ext ι κ (Lam β) q = cong Lam_ (renᵗ-ext (keep ι) (keep κ) β (keep-eq ι κ q))
renᵗ-ext ι κ (φ ∙ α) q = cong₂ _∙_ (renᵗ-ext ι κ φ q) (renᵗ-ext ι κ α q)
renᵗ-ext ι κ (α ⇒ β) q = cong₂ _⇒_ (renᵗ-ext ι κ α q) (renᵗ-ext ι κ β q)
renᵗ-ext ι κ (π σ β) q = cong (π σ) (renᵗ-ext (keep ι) (keep κ) β (keep-eq ι κ q))
renᵗ-ext ι κ (μ ψ α) q = cong₂ μ (renᵗ-ext ι κ ψ q) (renᵗ-ext ι κ α q)
renᵗ-keep-keep
: ∀ {Θ Ξ Ω σ τ} (κ : Ξ ⊆ Ω) (ι : Θ ⊆ Ξ) (β : Θ ▻ σ ⊢ᵗ τ)
-> renᵗ (keep κ ∘ keep ι) β ≡ renᵗ (keep (κ ∘ ι)) β
renᵗ-keep-keep κ ι β = renᵗ-ext (keep κ ∘ keep ι) (keep (κ ∘ ι)) β λ
{ vz -> refl
; (vs v) -> refl
}
renᵗ-∘
: ∀ {Θ Ξ Ω σ} (κ : Ξ ⊆ Ω) (ι : Θ ⊆ Ξ) (α : Θ ⊢ᵗ σ)
-> renᵗ κ (renᵗ ι α) ≡ renᵗ (κ ∘ ι) α
renᵗ-∘ κ ι (Var v) = refl
renᵗ-∘ κ ι (Lam β) = cong Lam_ (trans (renᵗ-∘ (keep κ) (keep ι) β) (renᵗ-keep-keep κ ι β))
renᵗ-∘ κ ι (f ∙ α) = cong₂ _∙_ (renᵗ-∘ κ ι f) (renᵗ-∘ κ ι α)
renᵗ-∘ κ ι (α ⇒ β) = cong₂ _⇒_ (renᵗ-∘ κ ι α) (renᵗ-∘ κ ι β)
renᵗ-∘ κ ι (π σ β) = cong (π σ) (trans (renᵗ-∘ (keep κ) (keep ι) β) (renᵗ-keep-keep κ ι β))
renᵗ-∘ κ ι (μ ψ α) = cong₂ μ (renᵗ-∘ κ ι ψ) (renᵗ-∘ κ ι α)
renᵗ-keep-id
: ∀ {Θ σ τ} (β : Θ ▻ σ ⊢ᵗ τ)
-> renᵗ (keep id) β ≡ renᵗ id β
renᵗ-keep-id β = renᵗ-ext (keep id) id β λ
{ vz -> refl
; (vs v) -> refl
}
renᵗ-id : ∀ {Θ σ} (α : Θ ⊢ᵗ σ) -> renᵗ id α ≡ α
renᵗ-id (Var v) = refl
renᵗ-id (Lam β) = cong Lam_ (trans (renᵗ-keep-id β) (renᵗ-id β))
renᵗ-id (φ ∙ α) = cong₂ _∙_ (renᵗ-id φ) (renᵗ-id α)
renᵗ-id (α ⇒ β) = cong₂ _⇒_ (renᵗ-id α) (renᵗ-id β)
renᵗ-id (π σ β) = cong (π σ) (trans (renᵗ-keep-id β) (renᵗ-id β))
renᵗ-id (μ ψ α) = cong₂ μ (renᵗ-id ψ) (renᵗ-id α)
module EnvironmentLemmas
{α β} {A : Set α} {_◆_ : Con A -> A -> Set β}
(environment : Environment _◆_) where
open Environment environment
keepᵉ-eq
: ∀ {Θ Ξ : Con A} {σ} (ρ χ : Ξ ⊢ᵉ Θ)
-> (∀ {τ} -> (v : τ ∈ Θ) -> lookupᵉ v ρ ≡ lookupᵉ v χ )
-> (∀ {τ} -> (v : τ ∈ Θ ▻ σ) -> lookupᵉ v (keepᵉ ρ) ≡ lookupᵉ v (keepᵉ χ))
keepᵉ-eq ρ χ q vz = refl
keepᵉ-eq ρ χ q (vs v) = cong (renᵈ vs_) (q v)
module _ where
open TypeEnv
open EnvironmentLemmas environmentᵗ
subᵗ-ext
: ∀ {Θ Ξ σ} (ρ χ : Ξ ⊢ᵗᵉ Θ) (α : Θ ⊢ᵗ σ)
-> (∀ {τ} -> (v : τ ∈ Θ) -> lookupᵉ v ρ ≡ lookupᵉ v χ)
-> subᵗ ρ α ≡ subᵗ χ α
subᵗ-ext ρ χ (Var v) q = q v
subᵗ-ext ρ χ (Lam β) q = cong Lam_ (subᵗ-ext (keepᵉ ρ) (keepᵉ χ) β (keepᵉ-eq ρ χ q))
subᵗ-ext ρ χ (φ ∙ α) q = cong₂ _∙_ (subᵗ-ext ρ χ φ q) (subᵗ-ext ρ χ α q)
subᵗ-ext ρ χ (α ⇒ β) q = cong₂ _⇒_ (subᵗ-ext ρ χ α q) (subᵗ-ext ρ χ β q)
subᵗ-ext ρ χ (π σ β) q = cong (π σ) (subᵗ-ext (keepᵉ ρ) (keepᵉ χ) β (keepᵉ-eq ρ χ q))
subᵗ-ext ρ χ (μ ψ α) q = cong₂ μ (subᵗ-ext ρ χ ψ q) (subᵗ-ext ρ χ α q)
subᵗ-keepᵉ-keep
: ∀ {Θ Ξ Ω σ τ} (ρ : Ω ⊢ᵗᵉ Ξ) (ι : Θ ⊆ Ξ) (β : Θ ▻ σ ⊢ᵗ τ)
-> subᵗ (keepᵉ ρ ∘ᵉ keep ι) β ≡ subᵗ (keepᵉ (ρ ∘ᵉ ι)) β
subᵗ-keepᵉ-keep ρ ι β = subᵗ-ext (keepᵉ ρ ∘ᵉ keep ι) (keepᵉ (ρ ∘ᵉ ι)) β λ
{ vz -> refl
; (vs v) -> refl
}
subᵗ-renᵗ
: ∀ {Θ Ξ Ω σ} (ρ : Ω ⊢ᵗᵉ Ξ) (ι : Θ ⊆ Ξ) (α : Θ ⊢ᵗ σ)
-> subᵗ ρ (renᵗ ι α) ≡ subᵗ (ρ ∘ᵉ ι) α
subᵗ-renᵗ ρ ι (Var v) = refl
subᵗ-renᵗ ρ ι (Lam β) = cong Lam_ (trans (subᵗ-renᵗ (keepᵉ ρ) (keep ι) β) (subᵗ-keepᵉ-keep ρ ι β))
subᵗ-renᵗ ρ ι (φ ∙ α) = cong₂ _∙_ (subᵗ-renᵗ ρ ι φ) (subᵗ-renᵗ ρ ι α)
subᵗ-renᵗ ρ ι (α ⇒ β) = cong₂ _⇒_ (subᵗ-renᵗ ρ ι α) (subᵗ-renᵗ ρ ι β)
subᵗ-renᵗ ρ ι (π σ β) = cong (π σ) (trans (subᵗ-renᵗ (keepᵉ ρ) (keep ι) β) (subᵗ-keepᵉ-keep ρ ι β))
subᵗ-renᵗ ρ ι (μ ψ α) = cong₂ μ (subᵗ-renᵗ ρ ι ψ) (subᵗ-renᵗ ρ ι α)
subᵗ-keepᵉ-idᵉ
: ∀ {Θ σ τ} (β : Θ ▻ σ ⊢ᵗ τ)
-> subᵗ (keepᵉ idᵉ) β ≡ subᵗ idᵉ β
subᵗ-keepᵉ-idᵉ β = subᵗ-ext (keepᵉ idᵉ) idᵉ β λ
{ vz -> refl
; (vs v) -> refl
}
subᵗ-idᵉ
: ∀ {Θ σ} (α : Θ ⊢ᵗ σ)
-> subᵗ idᵉ α ≡ α
subᵗ-idᵉ (Var v) = refl
subᵗ-idᵉ (Lam β) = cong Lam_ (trans (subᵗ-keepᵉ-idᵉ β) (subᵗ-idᵉ β))
subᵗ-idᵉ (φ ∙ α) = cong₂ _∙_ (subᵗ-idᵉ φ) (subᵗ-idᵉ α)
subᵗ-idᵉ (α ⇒ β) = cong₂ _⇒_ (subᵗ-idᵉ α) (subᵗ-idᵉ β)
subᵗ-idᵉ (π σ β) = cong (π σ) (trans (subᵗ-keepᵉ-idᵉ β) (subᵗ-idᵉ β))
subᵗ-idᵉ (μ ψ α) = cong₂ μ (subᵗ-idᵉ ψ) (subᵗ-idᵉ α)
subᵗ-keepᵉ-Var
: ∀ {Θ Ξ σ τ} (ι : Θ ⊆ Ξ) (β : Θ ▻ σ ⊢ᵗ τ)
-> subᵗ (keepᵉ (PackEnv (Var ∘ ι))) β ≡ subᵗ (PackEnv (Var ∘ keep ι)) β
subᵗ-keepᵉ-Var ι β = subᵗ-ext (keepᵉ (PackEnv (Var ∘ ι))) (PackEnv (Var ∘ keep ι)) β λ
{ vz -> refl
; (vs v) -> refl
}
subᵗ-Var
: ∀ {Θ Ξ σ} (ι : Θ ⊆ Ξ) (α : Θ ⊢ᵗ σ)
-> subᵗ (PackEnv (Var ∘ ι)) α ≡ renᵗ ι α
subᵗ-Var ι (Var v) = refl
subᵗ-Var ι (Lam β) = cong Lam_ (trans (subᵗ-keepᵉ-Var ι β) (subᵗ-Var (keep ι) β))
subᵗ-Var ι (φ ∙ α) = cong₂ _∙_ (subᵗ-Var ι φ) (subᵗ-Var ι α)
subᵗ-Var ι (α ⇒ β) = cong₂ _⇒_ (subᵗ-Var ι α) (subᵗ-Var ι β)
subᵗ-Var ι (π σ β) = cong (π σ) (trans (subᵗ-keepᵉ-Var ι β) (subᵗ-Var (keep ι) β))
subᵗ-Var ι (μ ψ α) = cong₂ μ (subᵗ-Var ι ψ) (subᵗ-Var ι α)
inject-foldr-⇒-renᵗ
: ∀ {Θ Ξ Ω} {f : Star Θ -> Star Ξ}
-> ∀ Δ
-> (ι : Ξ ⊆ Ω)
-> (β : Star Ξ)
-> renᵗ ι (conToTypeBy f Δ β) ≡ conToTypeBy (renᵗ ι ∘ f) Δ (renᵗ ι β)
inject-foldr-⇒-renᵗ Δ ι β = inject-foldr-poly Star _⇒_ (renᵗ ι) refl _ Δ β
inject-foldr-⇒-subᵗ
: ∀ {Θ Ξ Ω} {f : Star Θ -> Star Ξ}
-> ∀ Δ
-> (ρ : Ω TypeEnv.⊢ᵉ Ξ)
-> (β : Star Ξ)
-> subᵗ ρ (conToTypeBy f Δ β) ≡ conToTypeBy (subᵗ ρ ∘ f) Δ (subᵗ ρ β)
inject-foldr-⇒-subᵗ Δ ρ β = inject-foldr-poly Star _⇒_ (subᵗ ρ) refl _ Δ β
| {
"alphanum_fraction": 0.5002543882,
"avg_line_length": 36.9107981221,
"ext": "agda",
"hexsha": "fde2d227f0f6b16d9452f1d3df2dfdc3fc257148",
"lang": "Agda",
"max_forks_count": 399,
"max_forks_repo_forks_event_max_datetime": "2022-03-31T11:18:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-10-05T09:36:10.000Z",
"max_forks_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "AriFordsham/plutus",
"max_forks_repo_path": "papers/unraveling-recursion/code/src/Type/Lemmas.agda",
"max_issues_count": 2493,
"max_issues_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T15:31:31.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-09-28T19:28:17.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "AriFordsham/plutus",
"max_issues_repo_path": "papers/unraveling-recursion/code/src/Type/Lemmas.agda",
"max_line_length": 101,
"max_stars_count": 1299,
"max_stars_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "AriFordsham/plutus",
"max_stars_repo_path": "papers/unraveling-recursion/code/src/Type/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-28T01:10:02.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-02T13:41:39.000Z",
"num_tokens": 4770,
"size": 7862
} |
module FunctionProofs where
open FunctionSet ⦃ signature ⦄
[∃]-unrelatedᵣ-[→]ᵣ-inside-[∀ₛ] : ∀{D : Domain}{P : BinaryRelator} → Proof(∀ₗ(x ↦ ∃ₗ(y ↦ (x ∈ D) ⟶ P(x)(y))) ⟷ ∀ₛ(D)(x ↦ ∃ₗ(y ↦ P(x)(y))))
[∃]-unrelatedᵣ-[→]ᵣ-inside-[∀ₛ] {D}{P} = [↔]-with-[∀] ([∃]-unrelatedᵣ-[→])
[∀ₛ∃!]-to[∀ₛ∃] : ∀{P : BinaryRelator}{D : Domain} → Proof(∀ₛ(D)(x ↦ ∃ₗ!(y ↦ P(x)(y)))) → Proof(∀ₛ(D)(x ↦ ∃ₗ(y ↦ P(x)(y))))
[∀ₛ∃!]-to[∀ₛ∃] proof =
([∀ₛ]-intro(\{x} → xinD ↦
[∧].elimₗ([∀ₛ]-elim proof {x} xinD)
))
-- The construction of a meta-function in the meta-logic from a function in the set theory
fnset-witness : ∀{D} → (f : Domain) → ⦃ _ : Proof(Total(D)(f)) ⦄ → Function
fnset-witness f ⦃ proof ⦄ = [∃]-fn-witness ⦃ [↔].elimₗ [∃]-unrelatedᵣ-[→]ᵣ-inside-[∀ₛ] (proof) ⦄
fnset-value : ∀{D} → (f : Domain) → ⦃ proof : Proof(Total(D)(f)) ⦄ → Proof(∀ₛ(D)(x ↦ (x , fnset-witness f(x)) ∈ f))
fnset-value{D} f ⦃ proof ⦄ = [∃]-fn-proof ⦃ [↔].elimₗ [∃]-unrelatedᵣ-[→]ᵣ-inside-[∀ₛ] (proof) ⦄
fnset-proof : ∀{D} → (f : Domain) → ⦃ _ : Proof(FunctionSet(f)) ⦄ → ⦃ total : Proof(Total(D)(f)) ⦄ → Proof(∀ₛ(D)(x ↦ ∀ₗ(y ↦ (fnset-witness{D} f ⦃ total ⦄ x ≡ y) ⟷ ((x , y) ∈ f))))
fnset-proof{D} f ⦃ function ⦄ ⦃ total ⦄ =
([∀ₛ]-intro(\{x} → x∈D ↦
([∀].intro(\{y} →
([↔].intro
(xy∈f ↦
([→].elim
([∀].elim([∀].elim([∀].elim function{x}) {fnset-witness f(x)}) {y})
([∧].intro
([∀ₛ]-elim(fnset-value f) {x} (x∈D))
(xy∈f)
)
)
)
(fx≡y ↦
[≡].elimᵣ (fx≡y) ([∀ₛ]-elim (fnset-value(f)) {x} (x∈D))
)
)
))
))
[→ₛₑₜ]-witness : ∀{A B} → (f : Domain) → ⦃ _ : Proof(f ∈ (A →ₛₑₜ B)) ⦄ → Function
[→ₛₑₜ]-witness f ⦃ proof ⦄ (x) =
(fnset-witness f
⦃ [∧].elimᵣ([∧].elimᵣ([↔].elimᵣ
([∀].elim([∀].elim filter-membership))
(proof)
)) ⦄
(x)
)
| {
"alphanum_fraction": 0.4588675214,
"avg_line_length": 36.7058823529,
"ext": "agda",
"hexsha": "1b02fbfbac81799074fb464e0521f87b97b6383e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/FunctionSet/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/FunctionSet/Proofs.agda",
"max_line_length": 179,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Structure/Logic/Classical/SetTheory/ZFC/FunctionSet/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 963,
"size": 1872
} |
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- Dependently typed changes (Def 3.4 and 3.5, Fig. 4b and 4e)
------------------------------------------------------------------------
import Parametric.Syntax.Type as Type
import Parametric.Denotation.Value as Value
open import Base.Change.Algebra as CA
using (ChangeAlgebraFamily)
module Parametric.Change.Validity
{Base : Type.Structure}
(⟦_⟧Base : Value.Structure Base)
where
open Type.Structure Base
open Value.Structure Base ⟦_⟧Base
open import Base.Denotation.Notation public
open import Relation.Binary.PropositionalEquality
open import Level
-- Extension Point: Change algebras for base types
Structure : Set₁
Structure = ChangeAlgebraFamily ⟦_⟧Base
module Structure {{change-algebra-base : Structure}} where
-- change algebras
open CA public renaming
-- Constructors for All′
( [] to ∅
; _∷_ to _•_
)
change-algebra : ∀ τ → ChangeAlgebra ⟦ τ ⟧Type
change-algebra (base ι) = change-algebra₍ ι ₎
change-algebra (τ₁ ⇒ τ₂) = changeAlgebraFun {{change-algebra τ₁}} {{change-algebra τ₂}}
-- We provide: change algebra for every type
instance
change-algebra-family : ChangeAlgebraFamily ⟦_⟧Type
change-algebra-family = family change-algebra
-- function changes
module _ {τ₁ τ₂ : Type} where
open FunctionChange {{change-algebra τ₁}} {{change-algebra τ₂}} public
renaming
( correct to is-valid
; apply to call-change
)
-- We also provide: change environments (aka. environment changes).
open ListChanges ⟦_⟧Type {{change-algebra-family}} public using () renaming
( changeAlgebraListChanges to environment-changes
)
after-env : ∀ {Γ : Context} → {ρ : ⟦ Γ ⟧} (dρ : Δ₍ Γ ₎ ρ) → ⟦ Γ ⟧
after-env {Γ} = after₍_₎ Γ
| {
"alphanum_fraction": 0.6413755459,
"avg_line_length": 28.625,
"ext": "agda",
"hexsha": "ff67f19b496bc9b66213a076cef6087e319f943d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Parametric/Change/Validity.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Parametric/Change/Validity.agda",
"max_line_length": 89,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Parametric/Change/Validity.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 507,
"size": 1832
} |
------------------------------------------------------------------------
-- Various constants
------------------------------------------------------------------------
open import Atom
module Constants (atoms : χ-atoms) where
open χ-atoms atoms
c-zero : Const
c-zero = C.name 0
c-suc : Const
c-suc = C.name 1
c-nil : Const
c-nil = C.name 2
c-cons : Const
c-cons = C.name 3
c-apply : Const
c-apply = C.name 4
c-case : Const
c-case = C.name 5
c-rec : Const
c-rec = C.name 6
c-lambda : Const
c-lambda = C.name 7
c-const : Const
c-const = C.name 8
c-var : Const
c-var = C.name 9
c-branch : Const
c-branch = C.name 10
c-true : Const
c-true = C.name 11
c-false : Const
c-false = C.name 12
c-pair : Const
c-pair = C.name 13
v-equal : Var
v-equal = V.name 0
v-m : Var
v-m = V.name 1
v-n : Var
v-n = V.name 2
v-x : Var
v-x = V.name 3
v-new : Var
v-new = V.name 4
v-e : Var
v-e = V.name 5
v-subst : Var
v-subst = V.name 6
v-e₁ : Var
v-e₁ = V.name 7
v-e₂ : Var
v-e₂ = V.name 8
v-bs : Var
v-bs = V.name 9
v-y : Var
v-y = V.name 10
v-c : Var
v-c = V.name 11
v-es : Var
v-es = V.name 12
v-ys : Var
v-ys = V.name 13
v-member : Var
v-member = V.name 14
v-xs : Var
v-xs = V.name 15
v-lookup : Var
v-lookup = V.name 16
v-b : Var
v-b = V.name 17
v-c′ : Var
v-c′ = V.name 18
v-underscore : Var
v-underscore = V.name 19
v-substs : Var
v-substs = V.name 20
v-e′ : Var
v-e′ = V.name 21
v-map : Var
v-map = V.name 22
v-p : Var
v-p = V.name 23
v-eval : Var
v-eval = V.name 24
v-internal-code : Var
v-internal-code = V.name 25
v-halts : Var
v-halts = V.name 26
v-z : Var
v-z = V.name 27
v-f : Var
v-f = V.name 28
v-g : Var
v-g = V.name 29
| {
"alphanum_fraction": 0.5485232068,
"avg_line_length": 11.6830985915,
"ext": "agda",
"hexsha": "41f42ed873a385ff888472abc6b590d3b833a364",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/chi",
"max_forks_repo_path": "src/Constants.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/chi",
"max_issues_repo_path": "src/Constants.agda",
"max_line_length": 72,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/chi",
"max_stars_repo_path": "src/Constants.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z",
"num_tokens": 649,
"size": 1659
} |
open import Function using () renaming ( _∘′_ to _∘_ )
open import Relation.Binary.PropositionalEquality using
( _≡_ ; refl ; sym ; cong ; cong₂ ; subst )
open import AssocFree.Util using ( subst-natural )
import AssocFree.STLambdaC.Typ
open Relation.Binary.PropositionalEquality.≡-Reasoning using ( begin_ ; _≡⟨_⟩_ ; _∎ )
module AssocFree.STLambdaC.Exp
(TConst : Set)
(Const : AssocFree.STLambdaC.Typ.Typ TConst → Set) where
open module Typ = AssocFree.STLambdaC.Typ TConst using
( Typ ; Var ; Ctxt ; const ; _⇝_
; [] ; [_] ; _++_ ; _∷_ ; _∈_ ; _≪_ ; _≫_ ; _⋙_ ; uniq ; singleton
; Case ; case ; inj₁ ; inj₂ ; inj₃ ; case-≪ ; case-≫ ; case-⋙
; Case₃ ; case₃ ; caseˡ ; caseʳ ; caseˡ₃ ; caseʳ₃ ; case⁻¹ ; case-iso )
-- Syntax
data Exp (Γ : Ctxt) : Typ → Set where
const : ∀ {T} → Const T → Exp Γ T
abs : ∀ T {U} → Exp (T ∷ Γ) U → Exp Γ (T ⇝ U)
app : ∀ {T U} → Exp Γ (T ⇝ U) → Exp Γ T → Exp Γ U
var : ∀ {T} → (T ∈ Γ) → Exp Γ T
-- Shorthand
var₀ : ∀ {Γ T} → Exp (T ∷ Γ) T
var₀ {Γ} {T} = var (singleton T ≪ Γ)
var₁ : ∀ {Γ T U} → Exp (U ∷ (T ∷ Γ)) T
var₁ {Γ} {T} {U} = var ([ U ] ≫ singleton T ≪ Γ)
var₂ : ∀ {Γ T U V} → Exp (V ∷ (U ∷ (T ∷ Γ))) T
var₂ {Γ} {T} {U} {V} = var ([ V ] ≫ [ U ] ≫ singleton T ≪ Γ)
-- Andreas Abel suggested defining substitution and renaming together, citing:
--
-- Conor McBride
-- Type Preserving Renaming and Substitution
--
-- Thorsten Altenkirch and Bernhard Reus
-- Monadic Presentations of Lambda Terms Using Generalized Inductive Types
--
-- http://www2.tcs.ifi.lmu.de/~abel/ParallelSubstitution.agda
-- The idea is to define two kinds, for expressions and variables,
-- such that the kind of variables is contained in the kind of
-- expressions (so admits recursion).
mutual
data Kind : Set where
var : Kind
exp : ∀ {k} → IsVar k → Kind
data IsVar : Kind → Set where
var : IsVar var
Thing : Kind → Ctxt → Typ → Set
Thing var Γ T = (T ∈ Γ)
Thing (exp var) Γ T = Exp Γ T
Substn : Kind → Ctxt → Ctxt → Set
Substn k Γ Δ = ∀ {T} → (T ∈ Δ) → Thing k Γ T
-- Convert between variables, things and expressions
thing : ∀ {k Γ T} → (T ∈ Γ) → Thing k Γ T
thing {var} x = x
thing {exp var} x = var x
expr : ∀ {k Γ T} → Thing k Γ T → Exp Γ T
expr {var} x = var x
expr {exp var} M = M
-- Extensional equivalence on substitutions (note: not assuming extensionality)
_≈_ : ∀ {k Γ Δ} → Substn k Γ Δ → Substn k Γ Δ → Set
ρ ≈ σ = ∀ {T} x → ρ {T} x ≡ σ {T} x
-- Identity substitution
id : ∀ {k} Γ → Substn k Γ Γ
id {var} Γ x = x
id {exp var} Γ x = var x
-- Product structure of substitutions
fst : ∀ Γ Δ → Substn var (Γ ++ Δ) Γ
fst Γ Δ x = x ≪ Δ
snd : ∀ Γ Δ → Substn var (Γ ++ Δ) Δ
snd Γ Δ x = Γ ≫ x
choose : ∀ {k Γ Δ E T} → Substn k Γ Δ → Substn k Γ E → (Case T Δ E) → Thing k Γ T
choose ρ σ (inj₁ x) = ρ x
choose ρ σ (inj₂ x) = σ x
_&&&_ : ∀ {k Γ Δ E} → Substn k Γ Δ → Substn k Γ E → Substn k Γ (Δ ++ E)
(ρ &&& σ) = choose ρ σ ∘ case _ _
-- Singleton substitution
⟨_⟩ : ∀ {k Γ T} → Thing k Γ T → Substn k Γ [ T ]
⟨ M ⟩ x = subst (Thing _ _) (uniq x) M
-- Cons on substitutions
_◁_ : ∀ {k Γ Δ T} → Thing k Γ T → Substn k Γ Δ → Substn k Γ (T ∷ Δ)
M ◁ σ = ⟨ M ⟩ &&& σ
-- Applying a substitution
mutual
substn+ : ∀ {k} B Γ Δ → Substn k Γ Δ → ∀ {T} → Exp (B ++ Δ) T → Exp (B ++ Γ) T
substn+ B Γ Δ σ (const c) = const c
substn+ B Γ Δ σ (abs T M) = abs T (substn+ (T ∷ B) Γ Δ σ M)
substn+ B Γ Δ σ (app M N) = app (substn+ B Γ Δ σ M) (substn+ B Γ Δ σ N)
substn+ B Γ Δ σ (var x) = expr (xsubstn+ B Γ Δ σ (case B Δ x))
xsubstn+ : ∀ {k} B Γ Δ → Substn k Γ Δ → ∀ {T} → (Case T B Δ) → Thing k (B ++ Γ) T
xsubstn+ B Γ Δ σ (inj₁ x) = thing (x ≪ Γ)
xsubstn+ {var} B Γ Δ σ (inj₂ x) = B ≫ σ x
xsubstn+ {exp var} B Γ Δ σ (inj₂ x) = substn+ [] (B ++ Γ) Γ (snd B Γ) (σ x) -- weaken* B (σ x)
-- Shorthands
substn* : ∀ {k Γ Δ} → Substn k Γ Δ → ∀ {T} → Exp Δ T → Exp Γ T
substn* {k} {Γ} {Δ} = substn+ [] Γ Δ
substn : ∀ {Γ T U} → Exp Γ T → Exp (T ∷ Γ) U → Exp Γ U
substn {Γ} M = substn* (M ◁ id Γ)
xweaken+ : ∀ B Γ Δ {T} → (T ∈ (B ++ Δ)) → (T ∈ (B ++ Γ ++ Δ))
xweaken+ B Γ Δ x = xsubstn+ B (Γ ++ Δ) Δ (snd Γ Δ) (case B Δ x)
weaken+ : ∀ B Γ Δ {T} → Exp (B ++ Δ) T → Exp (B ++ Γ ++ Δ) T
weaken+ B Γ Δ = substn+ B (Γ ++ Δ) Δ (snd Γ Δ)
weaken* : ∀ Γ {Δ T} → Exp Δ T → Exp (Γ ++ Δ) T
weaken* Γ {Δ} = weaken+ [] Γ Δ
weakens* : ∀ {Γ Δ} E → Substn (exp var) Γ Δ → Substn (exp var) (E ++ Γ) Δ
weakens* E σ x = weaken* E (σ x)
weaken*ʳ : ∀ {Γ} Δ {T} → Exp Γ T → Exp (Γ ++ Δ) T
weaken*ʳ {Γ} Δ = weaken+ Γ Δ []
weaken : ∀ {Γ} T {U} → Exp Γ U → Exp (T ∷ Γ) U
weaken T = weaken* [ T ]
-- Composition of substitutions
_⊔_ : Kind → Kind → Kind
k ⊔ var = k
k ⊔ exp var = exp var
_∙_ : ∀ {k l Γ Δ E} → Substn k Γ Δ → Substn l Δ E → Substn (k ⊔ l) Γ E
_∙_ {k} {var} ρ σ = ρ ∘ σ
_∙_ {k} {exp var} ρ σ = substn* ρ ∘ σ
-- Functorial action of ++ on substitutions
par : ∀ {k Γ Δ Φ Ψ T} → Substn k Γ Φ → Substn k Δ Ψ → (Case T Φ Ψ) → Thing k (Γ ++ Δ) T
par {var} {Γ} {Δ} ρ σ (inj₁ x) = ρ x ≪ Δ
par {var} {Γ} {Δ} ρ σ (inj₂ x) = Γ ≫ σ x
par {exp var} {Γ} {Δ} ρ σ (inj₁ x) = weaken*ʳ Δ (ρ x)
par {exp var} {Γ} {Δ} ρ σ (inj₂ x) = weaken* Γ (σ x)
_+++_ : ∀ {k Γ Δ Φ Ψ} → Substn k Γ Δ → Substn k Φ Ψ → Substn k (Γ ++ Φ) (Δ ++ Ψ)
(ρ +++ σ) = par ρ σ ∘ case _ _
-- Weakening a variable is a variable
weaken*-var : ∀ Γ {Δ T} (x : T ∈ Δ) →
weaken* Γ (var x) ≡ var (Γ ≫ x)
weaken*-var Γ {Δ} x = cong (expr ∘ xsubstn+ [] (Γ ++ Δ) Δ (snd Γ Δ)) (case-≫ [] x)
weaken*ʳ-var : ∀ {Γ} Δ {T} (x : T ∈ Γ) →
weaken*ʳ Δ (var x) ≡ var (x ≪ Δ)
weaken*ʳ-var {Γ} Δ x = cong (expr ∘ xsubstn+ Γ Δ [] (snd Δ [])) (case-≪ x [])
weaken+-var₀ : ∀ B Γ Δ {T} →
weaken+ (T ∷ B) Γ Δ (var₀ {B ++ Δ}) ≡ var₀ {B ++ Γ ++ Δ}
weaken+-var₀ B Γ Δ {T} =
cong (var ∘ xsubstn+ (T ∷ B) (Γ ++ Δ) Δ (snd Γ Δ)) (case-≪ (singleton T ≪ B) Δ)
-- Substitution respects extensional equality
substn+-cong : ∀ {k} B Γ Δ {σ : Substn k Γ Δ} {ρ : Substn k Γ Δ} →
(σ ≈ ρ) → ∀ {T} M → substn+ B Γ Δ σ {T} M ≡ substn+ B Γ Δ ρ M
substn+-cong B Γ Δ σ≈ρ (const c) = refl
substn+-cong B Γ Δ σ≈ρ (abs T M) = cong (abs {B ++ Γ} T) (substn+-cong (T ∷ B) Γ Δ σ≈ρ M)
substn+-cong B Γ Δ σ≈ρ (app M N) = cong₂ app (substn+-cong B Γ Δ σ≈ρ M) (substn+-cong B Γ Δ σ≈ρ N)
substn+-cong B Γ Δ σ≈ρ (var x) = cong expr (xsubstn+-cong B Γ Δ σ≈ρ (case B Δ x)) where
xsubstn+-cong : ∀ {k} B Γ Δ {σ : Substn k Γ Δ} {ρ : Substn k Γ Δ} →
(σ ≈ ρ) → ∀ {T} x → xsubstn+ B Γ Δ σ {T} x ≡ xsubstn+ B Γ Δ ρ x
xsubstn+-cong {var} B Γ Δ σ≈ρ (inj₁ x) = refl
xsubstn+-cong {exp var} B Γ Δ σ≈ρ (inj₁ x) = refl
xsubstn+-cong {var} B Γ Δ σ≈ρ (inj₂ x) = cong (_≫_ B) (σ≈ρ x)
xsubstn+-cong {exp var} B Γ Δ σ≈ρ (inj₂ x) = cong (substn+ [] (B ++ Γ) Γ (snd B Γ)) (σ≈ρ x)
substn*-cong : ∀ {k Γ Δ} {σ : Substn k Γ Δ} {ρ : Substn k Γ Δ} →
(σ ≈ ρ) → ∀ {T} M → substn* σ {T} M ≡ substn* ρ M
substn*-cong {k} {Γ} {Δ} = substn+-cong [] Γ Δ
-- Identity of substitutions
xsubstn+-id : ∀ {k} B Γ {T} (x : Case T B Γ) →
expr (xsubstn+ B Γ Γ (id {k} Γ) x) ≡ var (case⁻¹ x)
xsubstn+-id {var} B Γ (inj₁ x) = refl
xsubstn+-id {exp var} B Γ (inj₁ x) = refl
xsubstn+-id {var} B Γ (inj₂ x) = refl
xsubstn+-id {exp var} B Γ (inj₂ x) = weaken*-var B x
substn+-id : ∀ {k} B Γ {T} (M : Exp (B ++ Γ) T) → substn+ B Γ Γ (id {k} Γ) M ≡ M
substn+-id B Γ (const c) = refl
substn+-id B Γ (abs T M) = cong (abs {B ++ Γ} T) (substn+-id (T ∷ B) Γ M)
substn+-id B Γ (app M N) = cong₂ app (substn+-id B Γ M) (substn+-id B Γ N)
substn+-id {k} B Γ (var x) =
begin
substn+ B Γ Γ (id {k} Γ) (var x)
≡⟨ xsubstn+-id {k} B Γ (case B Γ x) ⟩
var (case⁻¹ (case B Γ x))
≡⟨ cong var (case-iso B Γ x) ⟩
var x
∎
substn*-id : ∀ {k Γ T} (M : Exp Γ T) → substn* (id {k} Γ) M ≡ M
substn*-id {k} {Γ} = substn+-id [] Γ
weaken*-[] : ∀ {Γ T} (M : Exp Γ T) → weaken* [] M ≡ M
weaken*-[] M = substn*-id M
mutual
-- Composition of substitutions
substn+-∙ : ∀ {k l} B Γ Δ E (σ : Substn k Γ Δ) (ρ : Substn l Δ E) {T} (M : Exp (B ++ E) T) →
(substn+ B Γ Δ σ (substn+ B Δ E ρ M) ≡ substn+ B Γ E (σ ∙ ρ) M)
substn+-∙ B Γ Δ E ρ σ (const c) = refl
substn+-∙ B Γ Δ E ρ σ (abs T M) = cong (abs {B ++ Γ} T) (substn+-∙ (T ∷ B) Γ Δ E ρ σ M)
substn+-∙ B Γ Δ E ρ σ (app M N) = cong₂ app (substn+-∙ B Γ Δ E ρ σ M) (substn+-∙ B Γ Δ E ρ σ N)
substn+-∙ B Γ Δ E ρ σ (var x) = xsubstn+-∙ B Γ Δ E ρ σ (case B E x) where
xsubstn+-∙ : ∀ {k l} B Γ Δ E (σ : Substn k Γ Δ) (ρ : Substn l Δ E) {T} (x : Case T B E) →
(substn+ B Γ Δ σ (expr (xsubstn+ B Δ E ρ x)) ≡ expr (xsubstn+ B Γ E (σ ∙ ρ) x))
xsubstn+-∙ {k} {var} B Γ Δ E σ ρ (inj₁ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≪ x Δ)
xsubstn+-∙ {var} {exp var} B Γ Δ E σ ρ (inj₁ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≪ x Δ)
xsubstn+-∙ {exp var} {exp var} B Γ Δ E σ ρ (inj₁ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≪ x Δ)
xsubstn+-∙ {var} {var} B Γ Δ E σ ρ (inj₂ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≫ B (ρ x))
xsubstn+-∙ {exp var} {var} B Γ Δ E σ ρ (inj₂ x) =
cong (expr ∘ xsubstn+ B Γ Δ σ) (case-≫ B (ρ x))
xsubstn+-∙ {var} {exp var} B Γ Δ E σ ρ (inj₂ x) =
begin
substn+ B Γ Δ σ (weaken* B (ρ x))
≡⟨ substn+* B Γ Δ σ (weaken* B (ρ x)) ⟩
substn* (id B +++ σ) (weaken* B (ρ x))
≡⟨ substn+-∙ [] (B ++ Γ) (B ++ Δ) Δ (id B +++ σ) (snd B Δ) (ρ x) ⟩
substn* ((id B +++ σ) ∙ snd B Δ) (ρ x)
≡⟨ substn*-cong (λ y → cong (par (id B) σ) (case-≫ B y)) (ρ x) ⟩
substn* (snd B Γ ∙ σ) (ρ x)
≡⟨ sym (substn+-∙ [] (B ++ Γ) Γ Δ (snd B Γ) σ (ρ x)) ⟩
weaken* B (substn* σ (ρ x))
∎
xsubstn+-∙ {exp var} {exp var} B Γ Δ E σ ρ (inj₂ x) =
begin
substn+ B Γ Δ σ (weaken* B (ρ x))
≡⟨ substn+* B Γ Δ σ (weaken* B (ρ x)) ⟩
substn* (id B +++ σ) (weaken* B (ρ x))
≡⟨ substn+-∙ [] (B ++ Γ) (B ++ Δ) Δ (id B +++ σ) (snd B Δ) (ρ x) ⟩
substn* ((id B +++ σ) ∙ snd B Δ) (ρ x)
≡⟨ substn*-cong (λ y → cong (par (id B) σ) (case-≫ B y))(ρ x) ⟩
substn* (snd B Γ ∙ σ) (ρ x)
≡⟨ sym (substn+-∙ [] (B ++ Γ) Γ Δ (snd B Γ) σ (ρ x)) ⟩
weaken* B (substn* σ (ρ x))
∎
substn*-∙ : ∀ {k l Γ Δ E} (σ : Substn k Γ Δ) (ρ : Substn l Δ E) {T} (M : Exp E T) →
(substn* σ (substn* ρ M) ≡ substn* (σ ∙ ρ) M)
substn*-∙ {k} {l} {Γ} {Δ} {E} = substn+-∙ [] Γ Δ E
-- Proof uses the fact that substn+ is an instance of substn*
substn++ : ∀ {k} A B Γ Δ (σ : Substn k Γ Δ) {T} (M : Exp (A ++ B ++ Δ) T) →
substn+ (A ++ B) Γ Δ σ M ≡ substn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ) M
substn++ A B Γ Δ σ (const c) = refl
substn++ A B Γ Δ σ (abs T M) = cong (abs {A ++ B ++ Γ} T) (substn++ (T ∷ A) B Γ Δ σ M)
substn++ A B Γ Δ σ (app M N) = cong₂ app (substn++ A B Γ Δ σ M) (substn++ A B Γ Δ σ N)
substn++ A B Γ Δ σ (var x) = cong expr (begin
xsubstn+ (A ++ B) Γ Δ σ (case (A ++ B) Δ x)
≡⟨ cong (xsubstn+ (A ++ B) Γ Δ σ) (sym (caseˡ₃ A B Δ x)) ⟩
xsubstn+ (A ++ B) Γ Δ σ (caseˡ (case₃ A B Δ x))
≡⟨ xsubstn++ A B Γ Δ σ (case₃ A B Δ x) ⟩
xsubstn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ) (caseʳ (case₃ A B Δ x))
≡⟨ cong (xsubstn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ)) (caseʳ₃ A B Δ x) ⟩
xsubstn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ) (case A (B ++ Δ) x)
∎) where
xsubstn++ : ∀ {k} A B Γ Δ (σ : Substn k Γ Δ) {T} (x : Case₃ T A B Δ) →
xsubstn+ (A ++ B) Γ Δ σ (caseˡ x) ≡ xsubstn+ A (B ++ Γ) (B ++ Δ) (id B +++ σ) (caseʳ x)
xsubstn++ A B Γ Δ σ (inj₁ x) = refl
xsubstn++ {var} A B Γ Δ σ (inj₂ x) = cong (λ X → A ≫ par (id B) σ X) (sym (case-≪ x Δ))
xsubstn++ {exp var} A B Γ Δ σ (inj₂ x) =
begin
var (A ≫ x ≪ Γ)
≡⟨ sym (weaken*-var A (x ≪ Γ)) ⟩
weaken* A (var (x ≪ Γ))
≡⟨ cong (weaken* A) (sym (weaken*ʳ-var Γ x)) ⟩
weaken* A (weaken*ʳ Γ (var x))
≡⟨ cong (weaken* A ∘ par (id B) σ) (sym (case-≪ x Δ)) ⟩
weaken* A ((id B +++ σ) (x ≪ Δ))
∎
xsubstn++ {var} A B Γ Δ σ (inj₃ x) = cong (λ X → A ≫ par (id B) σ X) (sym (case-≫ B x))
xsubstn++ {exp var} A B Γ Δ σ (inj₃ x) =
begin
weaken* (A ++ B) (σ x)
≡⟨ sym (substn*-∙ (snd A (B ++ Γ)) (snd B Γ) (σ x)) ⟩
weaken* A (weaken* B (σ x))
≡⟨ cong (weaken* A ∘ par (id B) σ) (sym (case-≫ B x)) ⟩
weaken* A ((id B +++ σ) (B ≫ x))
∎
substn+* : ∀ {k} B Γ Δ (σ : Substn k Γ Δ) {T} (M : Exp (B ++ Δ) T) →
substn+ B Γ Δ σ M ≡ substn* (id B +++ σ) M
substn+* = substn++ []
-- Weakening of weakening is weakening
weaken*-++ : ∀ A B Γ {T} (M : Exp Γ T) →
weaken* A (weaken* B M) ≡ weaken* (A ++ B) M
weaken*-++ A B Γ = substn*-∙ (snd A (B ++ Γ)) (snd B Γ)
-- Weakening commutes with weakening
weaken*-comm : ∀ A B Γ Δ {U} (M : Exp (B ++ Δ) U) →
weaken* A (weaken+ B Γ Δ M)
≡ weaken+ (A ++ B) Γ Δ (weaken* A M)
weaken*-comm A B Γ Δ M =
begin
weaken* A (weaken+ B Γ Δ M)
≡⟨ cong (substn* (snd A (B ++ Γ ++ Δ))) (substn+* B (Γ ++ Δ) Δ (snd Γ Δ) M) ⟩
substn* (snd A (B ++ Γ ++ Δ)) (substn* (id B +++ snd Γ Δ) M)
≡⟨ substn*-∙ (snd A (B ++ Γ ++ Δ)) (id B +++ snd Γ Δ) M ⟩
substn* (snd A (B ++ Γ ++ Δ) ∙ (id B +++ snd Γ Δ)) M
≡⟨ substn*-cong lemma₂ M ⟩
substn* ((id (A ++ B) +++ snd Γ Δ) ∙ snd A (B ++ Δ)) M
≡⟨ sym (substn*-∙ (id (A ++ B) +++ snd Γ Δ) (snd A (B ++ Δ)) M) ⟩
substn* (id (A ++ B) +++ snd Γ Δ) (substn* (snd A (B ++ Δ)) M)
≡⟨ sym (substn+* (A ++ B) (Γ ++ Δ) Δ (snd Γ Δ) (substn* (snd A (B ++ Δ)) M)) ⟩
weaken+ (A ++ B) Γ Δ (weaken* A M)
∎ where
lemma₁ : ∀ {T} (x : Case T B Δ) →
snd A (B ++ Γ ++ Δ) (par (id B) (snd Γ Δ) x)
≡ (par (id (A ++ B)) (snd Γ Δ) (A ⋙ x))
lemma₁ (inj₁ x) = refl
lemma₁ (inj₂ x) = refl
lemma₂ : (snd A (B ++ Γ ++ Δ) ∙ (id B +++ snd Γ Δ)) ≈ ((id (A ++ B) +++ snd Γ Δ) ∙ snd A (B ++ Δ))
lemma₂ {T} x =
begin
snd A (B ++ Γ ++ Δ) (par (id B) (snd Γ Δ) (case B Δ x))
≡⟨ lemma₁ (case B Δ x) ⟩
par (id (A ++ B)) (snd Γ Δ) (A ⋙ (case B Δ x))
≡⟨ cong (par (id (A ++ B)) (snd Γ Δ)) (case-⋙ A B Δ x) ⟩
par (id (A ++ B)) (snd Γ Δ) (case (A ++ B) Δ (A ≫ x))
∎
weaken-comm : ∀ T B Γ Δ {U} (M : Exp (B ++ Δ) U) →
weaken T (weaken+ B Γ Δ M)
≡ weaken+ (T ∷ B) Γ Δ (weaken T M)
weaken-comm T = weaken*-comm [ T ]
-- Weakening distributes through susbtn
weaken-substn : ∀ B Γ Δ {T U} (M : Exp (B ++ Δ) T) (N : Exp (T ∷ B ++ Δ) U) →
substn (weaken+ B Γ Δ M) (weaken+ (T ∷ B) Γ Δ N)
≡ weaken+ B Γ Δ (substn M N)
weaken-substn B Γ Δ {T} M N = begin
substn (weaken+ B Γ Δ M) (weaken+ (T ∷ B) Γ Δ N)
≡⟨ cong₂ substn (substn+* B (Γ ++ Δ) Δ (snd Γ Δ) M) (substn+* (T ∷ B) (Γ ++ Δ) Δ (snd Γ Δ) N) ⟩
substn (substn* (id B +++ snd Γ Δ) M) (substn* (id (T ∷ B) +++ snd Γ Δ) N)
≡⟨ substn*-∙ (substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) (id (T ∷ B) +++ snd Γ Δ) N ⟩
substn* ((substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ∙ (id (T ∷ B) +++ snd Γ Δ)) N
≡⟨ substn*-cong lemma₂ N ⟩
substn* ((id B +++ snd Γ Δ) ∙ (M ◁ id (B ++ Δ))) N
≡⟨ sym (substn*-∙ (id B +++ snd Γ Δ) (M ◁ id (B ++ Δ)) N) ⟩
substn* (id B +++ snd Γ Δ) (substn M N)
≡⟨ sym (substn+* B (Γ ++ Δ) Δ (snd Γ Δ) (substn M N)) ⟩
weaken+ B Γ Δ (substn M N)
∎ where
lemma₁ : ∀ {S} (x : Case₃ S [ T ] B Δ) →
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ))
(par (id (T ∷ B)) (snd Γ Δ) (caseˡ x))
≡ substn* (id B +++ snd Γ Δ)
(choose ⟨ M ⟩ (id (B ++ Δ)) (caseʳ x))
lemma₁ (inj₁ x) = begin
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) (x ≪ B ≪ Γ ≪ Δ)
≡⟨ cong (choose ⟨ substn* (id B +++ snd Γ Δ) M ⟩ (id (B ++ Γ ++ Δ))) (case-≪ x (B ++ Γ ++ Δ)) ⟩
⟨ substn* (id B +++ snd Γ Δ) M ⟩ x
≡⟨ subst-natural (uniq x) (substn* (id B +++ snd Γ Δ)) M ⟩
substn* (id B +++ snd Γ Δ) (⟨ M ⟩ x)
∎
lemma₁ (inj₂ x) = begin
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ([ T ] ≫ x ≪ Γ ≪ Δ)
≡⟨ cong (choose ⟨ substn* (id B +++ snd Γ Δ) M ⟩ (id (B ++ Γ ++ Δ))) (case-≫ [ T ] (x ≪ Γ ≪ Δ)) ⟩
var (x ≪ Γ ≪ Δ)
≡⟨ cong (var ∘ par (id B) (snd Γ Δ)) (sym (case-≪ x Δ)) ⟩
var ((id B +++ snd Γ Δ) (x ≪ Δ))
≡⟨ cong (var ∘ xsubstn+ [] (B ++ Γ ++ Δ) (B ++ Δ) (id B +++ snd Γ Δ)) (sym (case-≫ [] (x ≪ Δ))) ⟩
substn* (id B +++ snd Γ Δ) (var (x ≪ Δ))
∎
lemma₁ (inj₃ x) = begin
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ([ T ] ≫ B ≫ Γ ≫ x)
≡⟨ cong (choose ⟨ substn* (id B +++ snd Γ Δ) M ⟩ (id (B ++ Γ ++ Δ))) (case-≫ [ T ] (B ≫ Γ ≫ x)) ⟩
var (B ≫ Γ ≫ x)
≡⟨ cong (var ∘ par (id B) (snd Γ Δ)) (sym (case-≫ B x)) ⟩
var ((id B +++ snd Γ Δ) (B ≫ x))
≡⟨ cong (var ∘ xsubstn+ [] (B ++ Γ ++ Δ) (B ++ Δ) (id B +++ snd Γ Δ)) (sym (case-≫ [] (B ≫ x))) ⟩
substn* (id B +++ snd Γ Δ) (var (B ≫ x))
∎
lemma₂ : ((substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ∙ (id (T ∷ B) +++ snd Γ Δ))
≈ ((id B +++ snd Γ Δ) ∙ (M ◁ id (B ++ Δ)))
lemma₂ {S} x = begin
((substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ)) ∙ (id (T ∷ B) +++ snd Γ Δ)) x
≡⟨ cong (substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ) ∘ par (id (T ∷ B)) (snd Γ Δ))
(sym (caseˡ₃ [ T ] B Δ x)) ⟩
(substn* (id B +++ snd Γ Δ) M ◁ id (B ++ Γ ++ Δ))
(par (id (T ∷ B)) (snd Γ Δ) (caseˡ (case₃ [ T ] B Δ x)))
≡⟨ lemma₁ (case₃ [ T ] B Δ x) ⟩
substn* (id B +++ snd Γ Δ)
(choose ⟨ M ⟩ (id (B ++ Δ)) (caseʳ (case₃ [ T ] B Δ x)))
≡⟨ cong (substn* (id B +++ snd Γ Δ) ∘ choose ⟨ M ⟩ (id (B ++ Δ)))
(caseʳ₃ [ T ] B Δ x) ⟩
((id B +++ snd Γ Δ) ∙ (M ◁ id (B ++ Δ))) x
∎
-- Substitution into weakening discards the substitution
substn-weaken : ∀ {Γ T U} (M : Exp Γ U) (N : Exp Γ T) →
substn N (weaken T M) ≡ M
substn-weaken {Γ} {T} M N =
begin
substn N (weaken T M)
≡⟨ substn*-∙ (N ◁ id Γ) (snd [ T ] Γ) M ⟩
substn* ((N ◁ id Γ) ∙ snd [ T ] Γ) M
≡⟨ substn*-cong (λ x → cong (choose ⟨ N ⟩ (id Γ)) (case-≫ [ T ] x)) M ⟩
substn* (id Γ) M
≡⟨ substn*-id M ⟩
M
∎
-- Substitution + weakening respects ◁
substn*-◁ : ∀ Γ Δ E {T U} (M : Exp (T ∷ Γ) U) (N : Exp (E ++ Δ) T) (σ : Substn (exp var) Δ Γ) →
substn* (N ◁ weakens* E σ) M
≡ substn N (weaken+ [ T ] E Δ (substn+ [ T ] Δ Γ σ M))
substn*-◁ Γ Δ E {T} M N σ =
begin
substn* (N ◁ weakens* E σ) M
≡⟨ substn*-cong (λ x → lemma (case [ T ] Γ x)) M ⟩
substn* ((N ◁ id (E ++ Δ)) ∙ (id [ T ] +++ (snd E Δ ∙ σ))) M
≡⟨ sym (substn*-∙ (N ◁ id (E ++ Δ)) (id [ T ] +++ (snd E Δ ∙ σ)) M) ⟩
substn N (substn* (id [ T ] +++ (snd E Δ ∙ σ)) M)
≡⟨ cong (substn N) (sym (substn+* [ T ] (E ++ Δ) Γ (snd E Δ ∙ σ) M)) ⟩
substn N (substn+ [ T ] (E ++ Δ) Γ (snd E Δ ∙ σ) M)
≡⟨ cong (substn N) (sym (substn+-∙ [ T ] (E ++ Δ) Δ Γ (snd E Δ) σ M)) ⟩
substn N (weaken+ [ T ] E Δ (substn+ [ T ] Δ Γ σ M))
∎ where
lemma : ∀ {U} (x : Case U [ T ] Γ) →
choose ⟨ N ⟩ (weakens* E σ) x
≡ substn N (par (id [ T ]) (snd E Δ ∙ σ) x)
lemma (inj₁ x) =
begin
subst (Exp (E ++ Δ)) (uniq x) N
≡⟨ cong (choose ⟨ N ⟩ (id (E ++ Δ))) (sym (case-≪ x (E ++ Δ))) ⟩
(N ◁ id (E ++ Δ)) (x ≪ E ≪ Δ)
≡⟨ sym (weaken*-[] ((N ◁ id (E ++ Δ)) (x ≪ E ≪ Δ))) ⟩
weaken* [] ((N ◁ id (E ++ Δ)) (x ≪ E ≪ Δ))
≡⟨ cong (xsubstn+ [] (E ++ Δ) ([ T ] ++ E ++ Δ) (N ◁ id (E ++ Δ)))
(sym (case-≫ [] (x ≪ E ≪ Δ))) ⟩
substn N (var (x ≪ E ≪ Δ))
≡⟨ cong (substn N) (sym (weaken*ʳ-var (E ++ Δ) x)) ⟩
substn N (weaken*ʳ (E ++ Δ) (var x))
∎
lemma (inj₂ x) = sym (substn-weaken (weaken* E (σ x)) N)
| {
"alphanum_fraction": 0.4706877114,
"avg_line_length": 39.028,
"ext": "agda",
"hexsha": "ad25f3219509764ef99f57ef4887910b33c50028",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:38:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-03-03T04:39:31.000Z",
"max_forks_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-assoc-free",
"max_forks_repo_path": "src/AssocFree/STLambdaC/Exp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-assoc-free",
"max_issues_repo_path": "src/AssocFree/STLambdaC/Exp.agda",
"max_line_length": 101,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "08337fdb8375137a52cc9b3ade766305191b2394",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-assoc-free",
"max_stars_repo_path": "src/AssocFree/STLambdaC/Exp.agda",
"max_stars_repo_stars_event_max_datetime": "2020-08-27T20:56:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-11-22T11:48:31.000Z",
"num_tokens": 9190,
"size": 19514
} |
{-# OPTIONS --without-K --safe #-}
open import Level using (Level)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Data.Nat using (ℕ)
open import Data.Vec using (Vec; foldr; zipWith; map)
open import FLA.Algebra.Structures
open import FLA.Algebra.Properties.Field
module FLA.Algebra.LinearAlgebra where
private
variable
ℓ : Level
A : Set ℓ
m n p q : ℕ
module _ {ℓ : Level} {A : Set ℓ} ⦃ F : Field A ⦄ where
open Field F
-- Vector addition
_+ⱽ_ : Vec A n → Vec A n → Vec A n
_+ⱽ_ = zipWith _+_
-- Vector substraction
_-ⱽ_ : Vec A n → Vec A n → Vec A n
a -ⱽ b = a +ⱽ (map (-_) b)
-- Vector Hadamard product
_*ⱽ_ : Vec A n → Vec A n → Vec A n
_*ⱽ_ = zipWith _*_
-- Multiply vector by a constant
_∘ⱽ_ : A → Vec A n → Vec A n
c ∘ⱽ v = map (c *_) v
-- Match the fixity of Haskell
infixl 6 _+ⱽ_
infixl 6 _-ⱽ_
infixl 7 _*ⱽ_
infixl 10 _∘ⱽ_
sum : Vec A n → A
sum = foldr _ _+_ 0ᶠ
-- Inner product
⟨_,_⟩ : Vec A n → Vec A n → A
⟨ v₁ , v₂ ⟩ = sum (v₁ *ⱽ v₂)
| {
"alphanum_fraction": 0.6138519924,
"avg_line_length": 19.8867924528,
"ext": "agda",
"hexsha": "a25ad16d2b8f61cad3ee0900c1c3513fa79e3900",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-09-07T19:55:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-12T20:34:17.000Z",
"max_forks_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "turion/functional-linear-algebra",
"max_forks_repo_path": "src/FLA/Algebra/LinearAlgebra.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_issues_repo_issues_event_max_datetime": "2022-01-07T05:27:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-09-01T01:42:12.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "turion/functional-linear-algebra",
"max_issues_repo_path": "src/FLA/Algebra/LinearAlgebra.agda",
"max_line_length": 54,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "turion/functional-linear-algebra",
"max_stars_repo_path": "src/FLA/Algebra/LinearAlgebra.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-07T05:28:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-22T20:49:34.000Z",
"num_tokens": 433,
"size": 1054
} |
{-# OPTIONS --safe --without-K #-}
module Generics.HasDesc where
open import Data.String.Base
open import Generics.Prelude hiding (lookup ; pi)
open import Generics.Telescope
open import Generics.Desc
import Generics.Accessibility as Accessibility
private
variable
P : Telescope ⊤
I : ExTele P
pi : ⟦ P , I ⟧xtel
record HasDesc {ℓ} (A : Indexed P I ℓ) : Setω where
A′ : ⟦ P , I ⟧xtel → Set ℓ
A′ = uncurry P I A
field
{n} : ℕ
D : DataDesc P I n
names : Vec String n
constr : ⟦ D ⟧Data A′ pi → A′ pi
split : A′ pi → ⟦ D ⟧Data A′ pi
constr∘split : (x : A′ pi ) → constr (split x) ≡ x
split∘constr : (x : ⟦ D ⟧Data A′ pi) → split (constr x) ≡ω x
open Accessibility A D split public
field wf : (x : A′ pi) → Acc x
split-injective : ∀ {pi} {x y : A′ pi} → split x ≡ω split y → x ≡ y
split-injective {x = x} {y} sx≡sy = begin
x ≡⟨ sym (constr∘split x) ⟩
constr (split x) ≡⟨ congω constr sx≡sy ⟩
constr (split y) ≡⟨ constr∘split y ⟩
y ∎ where open ≡-Reasoning
| {
"alphanum_fraction": 0.5659340659,
"avg_line_length": 23.2340425532,
"ext": "agda",
"hexsha": "ca7c1c76e63ecf06a79ede3425cdc0379b851414",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-01-14T10:35:16.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-08T08:32:42.000Z",
"max_forks_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/generics",
"max_forks_repo_path": "src/Generics/HasDesc.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T10:48:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-09-13T07:33:50.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/generics",
"max_issues_repo_path": "src/Generics/HasDesc.agda",
"max_line_length": 69,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "db764f858d908aa39ea4901669a6bbce1525f757",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/generics",
"max_stars_repo_path": "src/Generics/HasDesc.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T09:35:17.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-08T15:10:20.000Z",
"num_tokens": 402,
"size": 1092
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some properties about subsets
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Subset.Properties where
open import Algebra
import Algebra.FunctionProperties as AlgebraicProperties
import Algebra.Structures as AlgebraicStructures
import Algebra.Properties.Lattice as L
import Algebra.Properties.DistributiveLattice as DL
import Algebra.Properties.BooleanAlgebra as BA
open import Data.Bool.Properties
open import Data.Fin using (Fin; suc; zero)
open import Data.Fin.Subset
open import Data.Fin.Properties using (any?; decFinSubset)
open import Data.Nat.Base using (ℕ; zero; suc; z≤n; s≤s; _≤_)
open import Data.Nat.Properties using (≤-step)
open import Data.Product as Product using (∃; ∄; _×_; _,_)
open import Data.Sum as Sum using (_⊎_; inj₁; inj₂)
open import Data.Vec
open import Data.Vec.Properties
open import Function using (_∘_; const; id; case_of_)
open import Function.Equivalence using (_⇔_; equivalence)
open import Relation.Binary as B hiding (Decidable)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; cong; cong₂; subst; isEquivalence)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Unary using (Pred; Decidable)
------------------------------------------------------------------------
-- Constructor mangling
drop-there : ∀ {s n x} {p : Subset n} → suc x ∈ s ∷ p → x ∈ p
drop-there (there x∈p) = x∈p
drop-∷-⊆ : ∀ {n s₁ s₂} {p₁ p₂ : Subset n} → s₁ ∷ p₁ ⊆ s₂ ∷ p₂ → p₁ ⊆ p₂
drop-∷-⊆ p₁s₁⊆p₂s₂ x∈p₁ = drop-there (p₁s₁⊆p₂s₂ (there x∈p₁))
------------------------------------------------------------------------
-- _∈_
infix 4 _∈?_
_∈?_ : ∀ {n} x (p : Subset n) → Dec (x ∈ p)
zero ∈? inside ∷ p = yes here
zero ∈? outside ∷ p = no λ()
suc n ∈? s ∷ p with n ∈? p
... | yes n∈p = yes (there n∈p)
... | no n∉p = no (n∉p ∘ drop-there)
------------------------------------------------------------------------
-- Empty
drop-∷-Empty : ∀ {n s} {p : Subset n} → Empty (s ∷ p) → Empty p
drop-∷-Empty ¬∃∈ (x , x∈p) = ¬∃∈ (suc x , there x∈p)
Empty-unique : ∀ {n} {p : Subset n} → Empty p → p ≡ ⊥
Empty-unique {_} {[]} ¬∃∈ = refl
Empty-unique {_} {inside ∷ p} ¬∃∈ = contradiction (zero , here) ¬∃∈
Empty-unique {_} {outside ∷ p} ¬∃∈ =
cong (outside ∷_) (Empty-unique (drop-∷-Empty ¬∃∈))
nonempty? : ∀ {n} → Decidable (Nonempty {n})
nonempty? p = any? (_∈? p)
------------------------------------------------------------------------
-- ∣_∣
∣p∣≤n : ∀ {n} (p : Subset n) → ∣ p ∣ ≤ n
∣p∣≤n = count≤n (_≟ inside)
------------------------------------------------------------------------
-- ⊥
∉⊥ : ∀ {n} {x : Fin n} → x ∉ ⊥
∉⊥ (there p) = ∉⊥ p
⊥⊆ : ∀ {n} {p : Subset n} → ⊥ ⊆ p
⊥⊆ x∈⊥ = contradiction x∈⊥ ∉⊥
∣⊥∣≡0 : ∀ n → ∣ ⊥ {n = n} ∣ ≡ 0
∣⊥∣≡0 zero = refl
∣⊥∣≡0 (suc n) = ∣⊥∣≡0 n
------------------------------------------------------------------------
-- ⊤
∈⊤ : ∀ {n} {x : Fin n} → x ∈ ⊤
∈⊤ {x = zero} = here
∈⊤ {x = suc x} = there ∈⊤
⊆⊤ : ∀ {n} {p : Subset n} → p ⊆ ⊤
⊆⊤ = const ∈⊤
∣⊤∣≡n : ∀ n → ∣ ⊤ {n = n} ∣ ≡ n
∣⊤∣≡n zero = refl
∣⊤∣≡n (suc n) = cong suc (∣⊤∣≡n n)
------------------------------------------------------------------------
-- ⁅_⁆
x∈⁅x⁆ : ∀ {n} (x : Fin n) → x ∈ ⁅ x ⁆
x∈⁅x⁆ zero = here
x∈⁅x⁆ (suc x) = there (x∈⁅x⁆ x)
x∈⁅y⁆⇒x≡y : ∀ {n x} (y : Fin n) → x ∈ ⁅ y ⁆ → x ≡ y
x∈⁅y⁆⇒x≡y zero here = refl
x∈⁅y⁆⇒x≡y zero (there p) = contradiction p ∉⊥
x∈⁅y⁆⇒x≡y (suc y) (there p) = cong suc (x∈⁅y⁆⇒x≡y y p)
x∈⁅y⁆⇔x≡y : ∀ {n} {x y : Fin n} → x ∈ ⁅ y ⁆ ⇔ x ≡ y
x∈⁅y⁆⇔x≡y {_} {x} {y} = equivalence
(x∈⁅y⁆⇒x≡y y)
(λ x≡y → subst (λ y → x ∈ ⁅ y ⁆) x≡y (x∈⁅x⁆ x))
∣⁅x⁆∣≡1 : ∀ {n} (i : Fin n) → ∣ ⁅ i ⁆ ∣ ≡ 1
∣⁅x⁆∣≡1 {suc n} zero = cong suc (∣⊥∣≡0 n)
∣⁅x⁆∣≡1 {_} (suc i) = ∣⁅x⁆∣≡1 i
------------------------------------------------------------------------
-- _⊆_
⊆-refl : ∀ {n} → Reflexive (_⊆_ {n})
⊆-refl = id
⊆-reflexive : ∀ {n} → _≡_ ⇒ (_⊆_ {n})
⊆-reflexive refl = ⊆-refl
⊆-trans : ∀ {n} → Transitive (_⊆_ {n})
⊆-trans p⊆q q⊆r x∈p = q⊆r (p⊆q x∈p)
⊆-antisym : ∀ {n} → Antisymmetric _≡_ (_⊆_ {n})
⊆-antisym {i = []} {[]} p⊆q q⊆p = refl
⊆-antisym {i = x ∷ xs} {y ∷ ys} p⊆q q⊆p with x | y
... | inside | inside = cong₂ _∷_ refl (⊆-antisym (drop-∷-⊆ p⊆q) (drop-∷-⊆ q⊆p))
... | inside | outside = contradiction (p⊆q here) λ()
... | outside | inside = contradiction (q⊆p here) λ()
... | outside | outside = cong₂ _∷_ refl (⊆-antisym (drop-∷-⊆ p⊆q) (drop-∷-⊆ q⊆p))
⊆-min : ∀ {n} → Minimum (_⊆_ {n}) ⊥
⊆-min [] ()
⊆-min (x ∷ xs) (there v∈⊥) = there (⊆-min xs v∈⊥)
⊆-max : ∀ {n} → Maximum (_⊆_ {n}) ⊤
⊆-max [] ()
⊆-max (inside ∷ xs) here = here
⊆-max (x ∷ xs) (there v∈xs) = there (⊆-max xs v∈xs)
infix 4 _⊆?_
_⊆?_ : ∀ {n} → B.Decidable (_⊆_ {n = n})
[] ⊆? [] = yes id
outside ∷ p ⊆? y ∷ q with p ⊆? q
... | yes p⊆q = yes λ { (there v∈p) → there (p⊆q v∈p)}
... | no p⊈q = no (p⊈q ∘ drop-∷-⊆)
inside ∷ p ⊆? outside ∷ q = no (λ p⊆q → case (p⊆q here) of λ())
inside ∷ p ⊆? inside ∷ q with p ⊆? q
... | yes p⊆q = yes λ { here → here ; (there v) → there (p⊆q v)}
... | no p⊈q = no (p⊈q ∘ drop-∷-⊆)
module _ (n : ℕ) where
⊆-isPreorder : IsPreorder _≡_ (_⊆_ {n})
⊆-isPreorder = record
{ isEquivalence = isEquivalence
; reflexive = ⊆-reflexive
; trans = ⊆-trans
}
⊆-preorder : Preorder _ _ _
⊆-preorder = record
{ isPreorder = ⊆-isPreorder
}
⊆-isPartialOrder : IsPartialOrder _≡_ (_⊆_ {n})
⊆-isPartialOrder = record
{ isPreorder = ⊆-isPreorder
; antisym = ⊆-antisym
}
⊆-poset : Poset _ _ _
⊆-poset = record
{ isPartialOrder = ⊆-isPartialOrder
}
p⊆q⇒∣p∣<∣q∣ : ∀ {n} {p q : Subset n} → p ⊆ q → ∣ p ∣ ≤ ∣ q ∣
p⊆q⇒∣p∣<∣q∣ {p = []} {[]} p⊆q = z≤n
p⊆q⇒∣p∣<∣q∣ {p = outside ∷ p} {outside ∷ q} p⊆q = p⊆q⇒∣p∣<∣q∣ (drop-∷-⊆ p⊆q)
p⊆q⇒∣p∣<∣q∣ {p = outside ∷ p} {inside ∷ q} p⊆q = ≤-step (p⊆q⇒∣p∣<∣q∣ (drop-∷-⊆ p⊆q))
p⊆q⇒∣p∣<∣q∣ {p = inside ∷ p} {outside ∷ q} p⊆q = contradiction (p⊆q here) λ()
p⊆q⇒∣p∣<∣q∣ {p = inside ∷ p} {inside ∷ q} p⊆q = s≤s (p⊆q⇒∣p∣<∣q∣ (drop-∷-⊆ p⊆q))
------------------------------------------------------------------------
-- _∩_
module _ {n : ℕ} where
open AlgebraicProperties {A = Subset n} _≡_
∩-assoc : Associative _∩_
∩-assoc = zipWith-assoc ∧-assoc
∩-comm : Commutative _∩_
∩-comm = zipWith-comm ∧-comm
∩-idem : Idempotent _∩_
∩-idem = zipWith-idem ∧-idem
∩-identityˡ : LeftIdentity ⊤ _∩_
∩-identityˡ = zipWith-identityˡ ∧-identityˡ
∩-identityʳ : RightIdentity ⊤ _∩_
∩-identityʳ = zipWith-identityʳ ∧-identityʳ
∩-identity : Identity ⊤ _∩_
∩-identity = ∩-identityˡ , ∩-identityʳ
∩-zeroˡ : LeftZero ⊥ _∩_
∩-zeroˡ = zipWith-zeroˡ ∧-zeroˡ
∩-zeroʳ : RightZero ⊥ _∩_
∩-zeroʳ = zipWith-zeroʳ ∧-zeroʳ
∩-zero : Zero ⊥ _∩_
∩-zero = ∩-zeroˡ , ∩-zeroʳ
∩-inverseˡ : LeftInverse ⊥ ∁ _∩_
∩-inverseˡ = zipWith-inverseˡ ∧-inverseˡ
∩-inverseʳ : RightInverse ⊥ ∁ _∩_
∩-inverseʳ = zipWith-inverseʳ ∧-inverseʳ
∩-inverse : Inverse ⊥ ∁ _∩_
∩-inverse = ∩-inverseˡ , ∩-inverseʳ
module _ (n : ℕ) where
open AlgebraicStructures {A = Subset n} _≡_
∩-isMagma : IsMagma _∩_
∩-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _∩_
}
∩-magma : Magma _ _
∩-magma = record
{ isMagma = ∩-isMagma
}
∩-isSemigroup : IsSemigroup _∩_
∩-isSemigroup = record
{ isMagma = ∩-isMagma
; assoc = ∩-assoc
}
∩-semigroup : Semigroup _ _
∩-semigroup = record
{ isSemigroup = ∩-isSemigroup
}
∩-isBand : IsBand _∩_
∩-isBand = record
{ isSemigroup = ∩-isSemigroup
; idem = ∩-idem
}
∩-band : Band _ _
∩-band = record
{ isBand = ∩-isBand
}
∩-isSemilattice : IsSemilattice _∩_
∩-isSemilattice = record
{ isBand = ∩-isBand
; comm = ∩-comm
}
∩-semilattice : Semilattice _ _
∩-semilattice = record
{ isSemilattice = ∩-isSemilattice
}
∩-isMonoid : IsMonoid _∩_ ⊤
∩-isMonoid = record
{ isSemigroup = ∩-isSemigroup
; identity = ∩-identity
}
∩-monoid : Monoid _ _
∩-monoid = record
{ isMonoid = ∩-isMonoid
}
∩-isCommutativeMonoid : IsCommutativeMonoid _∩_ ⊤
∩-isCommutativeMonoid = record
{ isSemigroup = ∩-isSemigroup
; identityˡ = ∩-identityˡ
; comm = ∩-comm
}
∩-commutativeMonoid : CommutativeMonoid _ _
∩-commutativeMonoid = record
{ isCommutativeMonoid = ∩-isCommutativeMonoid
}
∩-isIdempotentCommutativeMonoid : IsIdempotentCommutativeMonoid _∩_ ⊤
∩-isIdempotentCommutativeMonoid = record
{ isCommutativeMonoid = ∩-isCommutativeMonoid
; idem = ∩-idem
}
∩-idempotentCommutativeMonoid : IdempotentCommutativeMonoid _ _
∩-idempotentCommutativeMonoid = record
{ isIdempotentCommutativeMonoid = ∩-isIdempotentCommutativeMonoid
}
p∩q⊆p : ∀ {n} (p q : Subset n) → p ∩ q ⊆ p
p∩q⊆p [] [] x∈p∩q = x∈p∩q
p∩q⊆p (inside ∷ p) (inside ∷ q) here = here
p∩q⊆p (inside ∷ p) (_ ∷ q) (there ∈p∩q) = there (p∩q⊆p p q ∈p∩q)
p∩q⊆p (outside ∷ p) (_ ∷ q) (there ∈p∩q) = there (p∩q⊆p p q ∈p∩q)
p∩q⊆q : ∀ {n} (p q : Subset n) → p ∩ q ⊆ q
p∩q⊆q p q rewrite ∩-comm p q = p∩q⊆p q p
x∈p∩q⁺ : ∀ {n} {p q : Subset n} {x} → x ∈ p × x ∈ q → x ∈ p ∩ q
x∈p∩q⁺ (here , here) = here
x∈p∩q⁺ (there x∈p , there x∈q) = there (x∈p∩q⁺ (x∈p , x∈q))
x∈p∩q⁻ : ∀ {n} (p q : Subset n) {x} → x ∈ p ∩ q → x ∈ p × x ∈ q
x∈p∩q⁻ [] [] ()
x∈p∩q⁻ (inside ∷ p) (inside ∷ q) here = here , here
x∈p∩q⁻ (s ∷ p) (t ∷ q) (there x∈p∩q) =
Product.map there there (x∈p∩q⁻ p q x∈p∩q)
∩⇔× : ∀ {n} {p q : Subset n} {x} → x ∈ p ∩ q ⇔ (x ∈ p × x ∈ q)
∩⇔× = equivalence (x∈p∩q⁻ _ _) x∈p∩q⁺
------------------------------------------------------------------------
-- _∪_
module _ {n : ℕ} where
open AlgebraicProperties {A = Subset n} _≡_
∪-assoc : Associative _∪_
∪-assoc = zipWith-assoc ∨-assoc
∪-comm : Commutative _∪_
∪-comm = zipWith-comm ∨-comm
∪-idem : Idempotent _∪_
∪-idem = zipWith-idem ∨-idem
∪-identityˡ : LeftIdentity ⊥ _∪_
∪-identityˡ = zipWith-identityˡ ∨-identityˡ
∪-identityʳ : RightIdentity ⊥ _∪_
∪-identityʳ = zipWith-identityʳ ∨-identityʳ
∪-identity : Identity ⊥ _∪_
∪-identity = ∪-identityˡ , ∪-identityʳ
∪-zeroˡ : LeftZero ⊤ _∪_
∪-zeroˡ = zipWith-zeroˡ ∨-zeroˡ
∪-zeroʳ : RightZero ⊤ _∪_
∪-zeroʳ = zipWith-zeroʳ ∨-zeroʳ
∪-zero : Zero ⊤ _∪_
∪-zero = ∪-zeroˡ , ∪-zeroʳ
∪-inverseˡ : LeftInverse ⊤ ∁ _∪_
∪-inverseˡ = zipWith-inverseˡ ∨-inverseˡ
∪-inverseʳ : RightInverse ⊤ ∁ _∪_
∪-inverseʳ = zipWith-inverseʳ ∨-inverseʳ
∪-inverse : Inverse ⊤ ∁ _∪_
∪-inverse = ∪-inverseˡ , ∪-inverseʳ
∪-distribˡ-∩ : _∪_ DistributesOverˡ _∩_
∪-distribˡ-∩ = zipWith-distribˡ ∨-distribˡ-∧
∪-distribʳ-∩ : _∪_ DistributesOverʳ _∩_
∪-distribʳ-∩ = zipWith-distribʳ ∨-distribʳ-∧
∪-distrib-∩ : _∪_ DistributesOver _∩_
∪-distrib-∩ = ∪-distribˡ-∩ , ∪-distribʳ-∩
∩-distribˡ-∪ : _∩_ DistributesOverˡ _∪_
∩-distribˡ-∪ = zipWith-distribˡ ∧-distribˡ-∨
∩-distribʳ-∪ : _∩_ DistributesOverʳ _∪_
∩-distribʳ-∪ = zipWith-distribʳ ∧-distribʳ-∨
∩-distrib-∪ : _∩_ DistributesOver _∪_
∩-distrib-∪ = ∩-distribˡ-∪ , ∩-distribʳ-∪
∪-abs-∩ : _∪_ Absorbs _∩_
∪-abs-∩ = zipWith-absorbs ∨-abs-∧
∩-abs-∪ : _∩_ Absorbs _∪_
∩-abs-∪ = zipWith-absorbs ∧-abs-∨
module _ (n : ℕ) where
open AlgebraicStructures {A = Subset n} _≡_
∪-isMagma : IsMagma _∪_
∪-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _∪_
}
∪-magma : Magma _ _
∪-magma = record
{ isMagma = ∪-isMagma
}
∪-isSemigroup : IsSemigroup _∪_
∪-isSemigroup = record
{ isMagma = ∪-isMagma
; assoc = ∪-assoc
}
∪-semigroup : Semigroup _ _
∪-semigroup = record
{ isSemigroup = ∪-isSemigroup
}
∪-isBand : IsBand _∪_
∪-isBand = record
{ isSemigroup = ∪-isSemigroup
; idem = ∪-idem
}
∪-band : Band _ _
∪-band = record
{ isBand = ∪-isBand
}
∪-isSemilattice : IsSemilattice _∪_
∪-isSemilattice = record
{ isBand = ∪-isBand
; comm = ∪-comm
}
∪-semilattice : Semilattice _ _
∪-semilattice = record
{ isSemilattice = ∪-isSemilattice
}
∪-isMonoid : IsMonoid _∪_ ⊥
∪-isMonoid = record
{ isSemigroup = ∪-isSemigroup
; identity = ∪-identity
}
∪-monoid : Monoid _ _
∪-monoid = record
{ isMonoid = ∪-isMonoid
}
∪-isCommutativeMonoid : IsCommutativeMonoid _∪_ ⊥
∪-isCommutativeMonoid = record
{ isSemigroup = ∪-isSemigroup
; identityˡ = ∪-identityˡ
; comm = ∪-comm
}
∪-commutativeMonoid : CommutativeMonoid _ _
∪-commutativeMonoid = record
{ isCommutativeMonoid = ∪-isCommutativeMonoid
}
∪-isIdempotentCommutativeMonoid : IsIdempotentCommutativeMonoid _∪_ ⊥
∪-isIdempotentCommutativeMonoid = record
{ isCommutativeMonoid = ∪-isCommutativeMonoid
; idem = ∪-idem
}
∪-idempotentCommutativeMonoid : IdempotentCommutativeMonoid _ _
∪-idempotentCommutativeMonoid = record
{ isIdempotentCommutativeMonoid = ∪-isIdempotentCommutativeMonoid
}
∪-∩-isLattice : IsLattice _∪_ _∩_
∪-∩-isLattice = record
{ isEquivalence = isEquivalence
; ∨-comm = ∪-comm
; ∨-assoc = ∪-assoc
; ∨-cong = cong₂ _∪_
; ∧-comm = ∩-comm
; ∧-assoc = ∩-assoc
; ∧-cong = cong₂ _∩_
; absorptive = ∪-abs-∩ , ∩-abs-∪
}
∪-∩-lattice : Lattice _ _
∪-∩-lattice = record
{ isLattice = ∪-∩-isLattice
}
∪-∩-isDistributiveLattice : IsDistributiveLattice _∪_ _∩_
∪-∩-isDistributiveLattice = record
{ isLattice = ∪-∩-isLattice
; ∨-∧-distribʳ = ∪-distribʳ-∩
}
∪-∩-distributiveLattice : DistributiveLattice _ _
∪-∩-distributiveLattice = record
{ isDistributiveLattice = ∪-∩-isDistributiveLattice
}
∪-∩-isBooleanAlgebra : IsBooleanAlgebra _∪_ _∩_ ∁ ⊤ ⊥
∪-∩-isBooleanAlgebra = record
{ isDistributiveLattice = ∪-∩-isDistributiveLattice
; ∨-complementʳ = ∪-inverseʳ
; ∧-complementʳ = ∩-inverseʳ
; ¬-cong = cong ∁
}
∪-∩-booleanAlgebra : BooleanAlgebra _ _
∪-∩-booleanAlgebra = record
{ isBooleanAlgebra = ∪-∩-isBooleanAlgebra
}
∩-∪-isLattice : IsLattice _∩_ _∪_
∩-∪-isLattice = L.∧-∨-isLattice ∪-∩-lattice
∩-∪-lattice : Lattice _ _
∩-∪-lattice = L.∧-∨-lattice ∪-∩-lattice
∩-∪-isDistributiveLattice : IsDistributiveLattice _∩_ _∪_
∩-∪-isDistributiveLattice = DL.∧-∨-isDistributiveLattice ∪-∩-distributiveLattice
∩-∪-distributiveLattice : DistributiveLattice _ _
∩-∪-distributiveLattice = DL.∧-∨-distributiveLattice ∪-∩-distributiveLattice
∩-∪-isBooleanAlgebra : IsBooleanAlgebra _∩_ _∪_ ∁ ⊥ ⊤
∩-∪-isBooleanAlgebra = BA.∧-∨-isBooleanAlgebra ∪-∩-booleanAlgebra
∩-∪-booleanAlgebra : BooleanAlgebra _ _
∩-∪-booleanAlgebra = BA.∧-∨-booleanAlgebra ∪-∩-booleanAlgebra
p⊆p∪q : ∀ {n p} (q : Subset n) → p ⊆ p ∪ q
p⊆p∪q [] ()
p⊆p∪q (s ∷ q) here = here
p⊆p∪q (s ∷ q) (there x∈p) = there (p⊆p∪q q x∈p)
q⊆p∪q : ∀ {n} (p q : Subset n) → q ⊆ p ∪ q
q⊆p∪q p q rewrite ∪-comm p q = p⊆p∪q p
x∈p∪q⁻ : ∀ {n} (p q : Subset n) {x} → x ∈ p ∪ q → x ∈ p ⊎ x ∈ q
x∈p∪q⁻ [] [] ()
x∈p∪q⁻ (inside ∷ p) (t ∷ q) here = inj₁ here
x∈p∪q⁻ (outside ∷ p) (inside ∷ q) here = inj₂ here
x∈p∪q⁻ (s ∷ p) (t ∷ q) (there x∈p∪q) =
Sum.map there there (x∈p∪q⁻ p q x∈p∪q)
x∈p∪q⁺ : ∀ {n} {p q : Subset n} {x} → x ∈ p ⊎ x ∈ q → x ∈ p ∪ q
x∈p∪q⁺ (inj₁ x∈p) = p⊆p∪q _ x∈p
x∈p∪q⁺ (inj₂ x∈q) = q⊆p∪q _ _ x∈q
∪⇔⊎ : ∀ {n} {p q : Subset n} {x} → x ∈ p ∪ q ⇔ (x ∈ p ⊎ x ∈ q)
∪⇔⊎ = equivalence (x∈p∪q⁻ _ _) x∈p∪q⁺
------------------------------------------------------------------------
-- Lift
Lift? : ∀ {n p} {P : Pred (Fin n) p} → Decidable P → Decidable (Lift P)
Lift? P? p = decFinSubset (_∈? p) (λ {x} _ → P? x)
------------------------------------------------------------------------
-- Other
anySubset? : ∀ {n} {P : Subset n → Set} → Decidable P → Dec (∃ P)
anySubset? {zero} P? with P? []
... | yes P[] = yes (_ , P[])
... | no ¬P[] = no (λ {([] , P[]) → ¬P[] P[]})
anySubset? {suc n} P? with anySubset? (P? ∘ (inside ∷_))
... | yes (_ , Pp) = yes (_ , Pp)
... | no ¬Pp with anySubset? (P? ∘ (outside ∷_))
... | yes (_ , Pp) = yes (_ , Pp)
... | no ¬Pp' = no λ
{ (inside ∷ p , Pp) → ¬Pp (_ , Pp)
; (outside ∷ p , Pp') → ¬Pp' (_ , Pp')
}
| {
"alphanum_fraction": 0.5170145326,
"avg_line_length": 28.0553691275,
"ext": "agda",
"hexsha": "e24fa2743654833b05d579e2d01e2d5c52d8c3bf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Subset/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Subset/Properties.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Fin/Subset/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7874,
"size": 16721
} |
module Haskell.Prim.Functor where
open import Haskell.Prim
open import Haskell.Prim.Either
open import Haskell.Prim.List
open import Haskell.Prim.Maybe
open import Haskell.Prim.Tuple
--------------------------------------------------
-- Functor
record Functor (f : Set → Set) : Set₁ where
field
fmap : (a → b) → f a → f b
infixl 1 _<&>_
infixl 4 _<$>_ _<$_ _$>_
_<$>_ : (a → b) → f a → f b
_<$>_ = fmap
_<&>_ : f a → (a → b) → f b
m <&> f = fmap f m
_<$_ : a → f b → f a
x <$ m = fmap (const x) m
_$>_ : f a → b → f b
m $> x = x <$ m
void : f a → f (Tuple [])
void = [] <$_
open Functor ⦃ ... ⦄ public
instance
iFunctorList : Functor List
iFunctorList .fmap = map
iFunctorMaybe : Functor Maybe
iFunctorMaybe .fmap f Nothing = Nothing
iFunctorMaybe .fmap f (Just x) = Just (f x)
iFunctorEither : Functor (Either a)
iFunctorEither .fmap f (Left x) = Left x
iFunctorEither .fmap f (Right y) = Right (f y)
iFunctorFun : Functor (λ b → a → b)
iFunctorFun .fmap = _∘_
iFunctorTuple₂ : Functor (a ×_)
iFunctorTuple₂ .fmap f (x , y) = x , f y
iFunctorTuple₃ : Functor (a × b ×_)
iFunctorTuple₃ .fmap f (x , y , z) = x , y , f z
iFunctorTuple₄ : Functor (λ d → Tuple (a ∷ b ∷ c ∷ d ∷ []))
iFunctorTuple₄ .fmap f (x ∷ y ∷ z ∷ w ∷ []) = x ∷ y ∷ z ∷ f w ∷ []
| {
"alphanum_fraction": 0.5590669676,
"avg_line_length": 22.15,
"ext": "agda",
"hexsha": "110e22419bda3212f498bcff730e3b80eecdda9a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "flupe/agda2hs",
"max_forks_repo_path": "lib/Haskell/Prim/Functor.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "flupe/agda2hs",
"max_issues_repo_path": "lib/Haskell/Prim/Functor.agda",
"max_line_length": 68,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4cb28f1b5032948b19b977b390fa260be292abf6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "flupe/agda2hs",
"max_stars_repo_path": "lib/Haskell/Prim/Functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 516,
"size": 1329
} |
{-# OPTIONS --without-K #-}
open import lib.Base
module test.succeed.Test0 where
module _ where
private
data #I : Type₀ where
#zero : #I
#one : #I
I : Type₀
I = #I
zero : I
zero = #zero
one : I
one = #one
postulate
seg : zero == one
I-elim : ∀ {i} {P : I → Type i} (zero* : P zero) (one* : P one)
(seg* : zero* == one* [ P ↓ seg ]) → Π I P
I-elim zero* one* seg* #zero = zero*
I-elim zero* one* seg* #one = one*
postulate
I-seg-β : ∀ {i} {P : I → Type i} (zero* : P zero) (one* : P one)
(seg* : zero* == one* [ P ↓ seg ])
→ apd (I-elim zero* one* seg*) seg == seg*
test : ∀ {i} {P : I → Type i} (zero* : P zero) (one* : P one)
(seg* : zero* == one* [ P ↓ seg ]) →
(I-elim zero* one* seg*) zero == zero*
test zero* one* seg* = idp
| {
"alphanum_fraction": 0.4722550177,
"avg_line_length": 21.175,
"ext": "agda",
"hexsha": "bfed118fef3b1df941d3855b43f8059a4851ae70",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "test/succeed/Test0.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "test/succeed/Test0.agda",
"max_line_length": 68,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "test/succeed/Test0.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 317,
"size": 847
} |
{-# OPTIONS --rewriting #-}
data FALSE : Set where
CONTRADICTION : ∀ {A : Set} → FALSE → A
CONTRADICTION ()
record TRUE : Set where
{-# BUILTIN UNIT TRUE #-}
data Bool : Set where
false true : Bool
{-# BUILTIN BOOL Bool #-}
{-# BUILTIN TRUE true #-}
{-# BUILTIN FALSE false #-}
data Nat : Set where
zero : Nat
suc : Nat → Nat
{-# BUILTIN NATURAL Nat #-}
_+_ : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n + m)
{-# BUILTIN NATPLUS _+_ #-}
_-_ : Nat → Nat → Nat
n - zero = n
zero - suc m = zero
suc n - suc m = n - m
{-# BUILTIN NATMINUS _-_ #-}
_*_ : Nat → Nat → Nat
zero * m = zero
suc n * m = (n * m) + m
{-# BUILTIN NATTIMES _*_ #-}
_==_ : Nat → Nat → Bool
zero == zero = true
suc n == suc m = n == m
_ == _ = false
{-# BUILTIN NATEQUALS _==_ #-}
postulate String : Set
{-# BUILTIN STRING String #-}
primitive
primStringAppend : String → String → String
primStringEquality : String → String → Bool
_+++_ = primStringAppend
_===_ = primStringEquality
data List(A : Set) : Set where
nil : List(A)
_::_ : A → List(A) → List(A)
{-# BUILTIN LIST List #-}
data _≡_ {a} {A : Set a} (x : A) : A → Set a where
refl : x ≡ x
{-# BUILTIN EQUALITY _≡_ #-}
{-# BUILTIN REWRITE _≡_ #-}
cong : ∀ {a} {X Y : Set a} {x y : X} (f : X → Y) → (x ≡ y) → (f x ≡ f y)
cong f refl = refl
_≢_ : ∀ {a} {A : Set a} → A → A → Set a
(x ≢ y) = (x ≡ y) → FALSE
data Dec(A : Set) : Set where
yes : A → Dec(A)
no : (A → FALSE) → Dec(A)
primitive
primEraseEquality : ∀ {a} {A : Set a} {x y : A} → x ≡ y → x ≡ y
primTrustMe : ∀ {a} {A : Set a} {x y : A} → x ≡ y
primTrustMe {x = x} {y} = primEraseEquality unsafePrimTrustMe where
postulate unsafePrimTrustMe : x ≡ y
_≟String_ : (s t : String) → Dec(s ≡ t)
(s ≟String t) with primStringEquality s t
(s ≟String t) | true = yes primTrustMe
(s ≟String t) | false = no unsafeNo where
postulate unsafeNo : s ≢ t
_≟Nat_ : (m n : Nat) → Dec(m ≡ n)
(m ≟Nat n) with m == n
(m ≟Nat n) | true = yes primTrustMe
(m ≟Nat n) | false = no unsafeNo where
postulate unsafeNo : m ≢ n
data _≤_ : Nat → Nat → Set where
zero : ∀ {x} → zero ≤ x
suc : ∀ {x y} → (x ≤ y) → (suc x ≤ suc y)
_≤?_ : (x y : Nat) → Dec(x ≤ y)
zero ≤? y = yes zero
suc x ≤? zero = no (λ ())
suc x ≤? suc y with (x ≤? y)
... | yes p = yes (suc p)
... | no p = no (λ { (suc q) → p q })
_<_ : Nat → Nat → Set
m < n = (n ≤ m) → FALSE
asym : ∀ {m n} → (m ≤ n) → (n ≤ m) → (m ≡ n)
asym zero zero = refl
asym (suc p) (suc q) with asym p q
asym (suc p) (suc q) | refl = refl
if : ∀ {X Y : Set} → Dec(X) → Y → Y → Y
if (yes p) x y = x
if (no p) x y = y
+zero : ∀ {m} → (m + zero) ≡ m
+zero {zero} = refl
+zero {suc m} = cong suc +zero
+suc : ∀ {m n} → (m + suc n) ≡ suc (m + n)
+suc {zero} = refl
+suc {suc m} = cong suc +suc
{-# REWRITE +zero +suc #-}
| {
"alphanum_fraction": 0.532953331,
"avg_line_length": 22.456,
"ext": "agda",
"hexsha": "252de9cf9f1ad3f2693a1de66fa39060572263a9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "asajeffrey/tapl",
"max_forks_repo_path": "prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "asajeffrey/tapl",
"max_issues_repo_path": "prelude.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "asajeffrey/tapl",
"max_stars_repo_path": "prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-15T12:09:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-03-12T22:44:19.000Z",
"num_tokens": 1122,
"size": 2807
} |
{-# OPTIONS --safe --without-K #-}
module Categories.Examples.Functor.Sets where
import Data.List as List
import Data.List.Properties
open import Data.Nat using (ℕ)
import Data.Product as Product
import Data.Vec as Vec
import Data.Vec.Properties
open import Function using (id; λ-; _$-)
open import Relation.Binary.PropositionalEquality using (refl)
open import Categories.Category.Discrete using (Discrete)
open import Categories.Category.Instance.Sets
open import Categories.Functor using (Endofunctor)
open import Categories.Functor.Bifunctor using (Bifunctor; appʳ)
List : ∀ {o} → Endofunctor (Sets o)
List = record
{ F₀ = List.List
; F₁ = List.map
; identity = map-id $-
; homomorphism = map-compose $-
; F-resp-≈ = λ f≈g → map-cong (λ- f≈g) $-
}
where
open Data.List.Properties
Vec′ : ∀ {o} → Bifunctor (Sets o) (Discrete ℕ) (Sets o)
Vec′ = record
{ F₀ = Product.uncurry Vec.Vec
; F₁ = λ { (f , refl) → Vec.map f }
; identity = map-id $-
; homomorphism = λ { {_} {_} {_} {f , refl} {g , refl} → map-∘ g f _}
; F-resp-≈ = λ { {_} {_} {_} {_ , refl} (g , refl) → map-cong (λ- g) _}
}
where
open Product using (_,_)
open Data.Vec.Properties
Vec : ∀ {o} → ℕ → Endofunctor (Sets o)
Vec = appʳ Vec′
| {
"alphanum_fraction": 0.6567524116,
"avg_line_length": 28.9302325581,
"ext": "agda",
"hexsha": "a1a865a7319f6a4f09f4cbf6bfc1de75dce829b0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "adfa1dee4f27286a2943863d7a0302e6ba26fffd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bond15/categories-examples",
"max_forks_repo_path": "src/Categories/Examples/Functor/Sets.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "adfa1dee4f27286a2943863d7a0302e6ba26fffd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bond15/categories-examples",
"max_issues_repo_path": "src/Categories/Examples/Functor/Sets.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "adfa1dee4f27286a2943863d7a0302e6ba26fffd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bond15/categories-examples",
"max_stars_repo_path": "src/Categories/Examples/Functor/Sets.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 412,
"size": 1244
} |
{-# OPTIONS --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation.Properties {{eqrel : EqRelSet}} where
open import Definition.LogicalRelation.Properties.Reflexivity public
open import Definition.LogicalRelation.Properties.Symmetry public
open import Definition.LogicalRelation.Properties.Transitivity public
open import Definition.LogicalRelation.Properties.Conversion public
open import Definition.LogicalRelation.Properties.Escape public
open import Definition.LogicalRelation.Properties.Universe public
open import Definition.LogicalRelation.Properties.Neutral public
open import Definition.LogicalRelation.Properties.Reduction public
open import Definition.LogicalRelation.Properties.Successor public
open import Definition.LogicalRelation.Properties.MaybeEmb public
| {
"alphanum_fraction": 0.8720787208,
"avg_line_length": 45.1666666667,
"ext": "agda",
"hexsha": "453f9b49d5db60347a609bc48fb8cde3dafe36bf",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation/Properties.agda",
"max_line_length": 71,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 141,
"size": 813
} |
{-# OPTIONS --without-K #-}
open import HoTT
open import cohomology.Exactness
open import cohomology.Theory
module cohomology.Unit {i} (CT : CohomologyTheory i) where
open CohomologyTheory CT
private
⊙LU = ⊙Lift {j = i} ⊙Unit
G : fst (⊙CEl O (⊙Cof (⊙idf _)) ⊙→ ⊙CEl O ⊙LU)
G = CF O (⊙cfcod (⊙idf _))
Cof-Unit-is-Unit : ⊙Cof (⊙idf ⊙LU) == ⊙LU
Cof-Unit-is-Unit = ⊙ua e idp
where e = equiv (λ _ → lift unit)
(λ _ → cfbase (idf _))
(λ _ → idp)
(Cofiber-elim (idf _)
{P = λ c → cfbase (idf _) == c}
idp
(λ _ → cfglue (idf _) (lift unit))
(λ _ → ↓-cst=idf-in idp))
cfcod-is-idf : Path {A = Σ (Ptd i) (λ X → fst (⊙LU ⊙→ X))}
(⊙Cof (⊙idf _) , ⊙cfcod (⊙idf _))
(⊙LU , ⊙idf _)
cfcod-is-idf =
pair= Cof-Unit-is-Unit
(prop-has-all-paths-↓ (⊙→-level (Lift-level Unit-is-prop)))
C₀-Unit-is-contr : is-contr (CEl O ⊙LU)
C₀-Unit-is-contr =
(Cid O ⊙LU , λ x → lemma₂ x ∙ app= (ap GroupHom.f (CF-ident O)) x)
where
lemma₁ : (x : CEl O (⊙Cof (⊙idf _))) → Cid O ⊙LU == fst G x
lemma₁ x = ! (itok (C-exact O (⊙idf _)) (fst G x) [ x , idp ])
∙ app= (ap GroupHom.f (CF-ident O)) (fst G x)
lemma₂ : (x : CEl O ⊙LU) → Cid O ⊙LU == fst (CF O (⊙idf _)) x
lemma₂ = transport
{A = Σ (Ptd i) (λ X → fst (⊙LU ⊙→ X))}
(λ {(X , H) → (c : CEl O X) → Cid O ⊙LU == fst (CF O H) c})
cfcod-is-idf
lemma₁
Unit-is-Susp-Unit : ⊙LU == ⊙Susp ⊙LU
Unit-is-Susp-Unit = ⊙ua
(equiv (λ _ → north _)
(λ _ → lift unit)
(Suspension-elim _
{P = λ s → north _ == s}
idp
(merid _ (lift unit))
(λ _ → ↓-cst=idf-in idp))
(λ _ → idp))
idp
C-Unit-is-trivial : (n : ℤ) → C n ⊙LU == LiftUnit-Group
C-Unit-is-trivial O =
contr-is-0ᴳ _ C₀-Unit-is-contr
C-Unit-is-trivial (pos O) =
ap (C (pos O)) Unit-is-Susp-Unit ∙ C-Susp O ⊙LU
∙ (contr-is-0ᴳ _ C₀-Unit-is-contr)
C-Unit-is-trivial (pos (S m)) =
ap (C (pos (S m))) Unit-is-Susp-Unit ∙ C-Susp (pos m) ⊙LU
∙ C-Unit-is-trivial (pos m)
C-Unit-is-trivial (neg O) =
! (C-Susp (neg O) ⊙LU) ∙ ! (ap (C O) Unit-is-Susp-Unit)
∙ (contr-is-0ᴳ _ C₀-Unit-is-contr)
C-Unit-is-trivial (neg (S m)) =
! (C-Susp (neg (S m)) ⊙LU) ∙ ! (ap (C (neg m)) Unit-is-Susp-Unit)
∙ C-Unit-is-trivial (neg m)
C-Unit-is-contr : (n : ℤ) → is-contr (CEl n ⊙LU)
C-Unit-is-contr n =
transport (is-contr ∘ Group.El) (! (C-Unit-is-trivial n))
(Lift-level Unit-is-contr)
C-Unit-is-prop : (n : ℤ) → is-prop (CEl n ⊙LU)
C-Unit-is-prop n =
transport (is-prop ∘ Group.El) (! (C-Unit-is-trivial n))
(Lift-level Unit-is-prop)
| {
"alphanum_fraction": 0.4957446809,
"avg_line_length": 31.6853932584,
"ext": "agda",
"hexsha": "b18dc447d6e045abc896198d8aa31fb1f5098322",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "danbornside/HoTT-Agda",
"max_forks_repo_path": "cohomology/Unit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "danbornside/HoTT-Agda",
"max_issues_repo_path": "cohomology/Unit.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1695a7f3dc60177457855ae846bbd86fcd96983e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "danbornside/HoTT-Agda",
"max_stars_repo_path": "cohomology/Unit.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1154,
"size": 2820
} |
{-
This file contains a proof of the fact that the Brunerie number,
i.e. absolute value of the Hopf invariant of [e , e] : π₃S², is 2.
Here, e is the generator of π₂S² and [_,_] denotes the Whitehead
product. The proof follows Proposition 5.4.4. in Brunerie (2016)
closely, but, for simplicity, considers only the case n = 2.
-}
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Homotopy.HopfInvariant.Brunerie where
open import Cubical.Homotopy.HopfInvariant.Base
open import Cubical.Homotopy.Group.Pi4S3.BrunerieNumber
open import Cubical.Homotopy.Group.Pi4S3.S3PushoutIso
open import Cubical.Homotopy.Whitehead
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.ZCohomology.MayerVietorisUnreduced
open import Cubical.ZCohomology.Groups.Sn
open import Cubical.ZCohomology.Groups.Wedge
open import Cubical.ZCohomology.Groups.SphereProduct
open import Cubical.ZCohomology.RingStructure.CupProduct
open import Cubical.ZCohomology.RingStructure.RingLaws
open import Cubical.ZCohomology.RingStructure.GradedCommutativity
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Equiv
open import Cubical.Data.Sigma
open import Cubical.Data.Int hiding (_+'_)
open import Cubical.Data.Nat hiding (_+_)
open import Cubical.Data.Unit
open import Cubical.Data.Sum renaming (rec to ⊎rec)
open import Cubical.HITs.Pushout
open import Cubical.HITs.S1
open import Cubical.HITs.Sn
open import Cubical.HITs.Join
open import Cubical.HITs.Susp
open import Cubical.HITs.Wedge
open import Cubical.HITs.Truncation
open import Cubical.HITs.SetTruncation
renaming (elim to sElim ; elim2 to sElim2 ; map to sMap)
open import Cubical.HITs.PropositionalTruncation
renaming (map to pMap ; rec to pRec)
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.ZAction
open import Cubical.Algebra.Group.Exact
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Instances.Int
open import Cubical.Algebra.Group.Instances.Unit
open Iso
open IsGroupHom
open PlusBis
-- Some abstract versions of imported lemmas/definitions from
-- ZCohomology.Groups.SphereProduct for faster type checking.
abstract
H²-genₗabs : coHom 2 (S₊ 2 × S₊ 2)
H²-genₗabs = H²-S²×S²-genₗ
H²-genᵣabs : coHom 2 (S₊ 2 × S₊ 2)
H²-genᵣabs = H²-S²×S²-genᵣ
Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs : (n m : ℕ)
→ GroupIso (coHomGr ((suc n) +' (suc m))
(S₊ (suc n) × S₊ (suc m)))
ℤGroup
Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs = Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ
Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs≡ : (n m : ℕ)
→ Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs n m ≡ Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ n m
Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs≡ n m = refl
Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-⌣ :
fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1))
(H²-S²×S²-genₗ ⌣ H²-S²×S²-genᵣ)
≡ 1
Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-⌣ =
fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1)) (H²-S²×S²-genₗ ⌣ H²-S²×S²-genᵣ)
≡⟨ cong (fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1))) (sym H²-S²≅H⁴-S²×S²⌣) ⟩
fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1)) (fun (fst (H²-S²≅H⁴-S²×S²)) ∣ ∣_∣ₕ ∣₂)
≡⟨ speedUp ∣_∣ₕ ⟩
fun (fst (Hⁿ-Sⁿ≅ℤ 1)) ∣ ∣_∣ₕ ∣₂
≡⟨ refl ⟩ -- Computation! :-)
1 ∎
where
speedUp : (f : _) →
fun (fst (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1)) (fun (fst (H²-S²≅H⁴-S²×S²)) ∣ f ∣₂)
≡ fun (fst (Hⁿ-Sⁿ≅ℤ 1)) ∣ f ∣₂
speedUp f i =
fun (fst (Hⁿ-Sⁿ≅ℤ 1)) (leftInv (fst H²-S²≅H⁴-S²×S²) ∣ f ∣₂ i)
-- Some abbreviations
private
inl' : S₊ 2 × S₊ 2 → Pushout⋁↪fold⋁ (S₊∙ 2)
inl' = inl
qHom : GroupHom (coHomGr 4 (Pushout⋁↪fold⋁ (S₊∙ 2)))
(coHomGr 4 (S₊ 2 × S₊ 2))
qHom = coHomMorph 4 inl'
qHomGen : (n : ℕ) →
GroupHom (coHomGr n (Pushout⋁↪fold⋁ (S₊∙ 2)))
(coHomGr n (S₊ 2 × S₊ 2))
qHomGen n = coHomMorph n inl'
-- The type C and generator α, β in dim 2 and 4 respectively
-- Recall, the goal is to prove that α ⌣ α = ±2 β
CHopf : Type
CHopf = HopfInvariantPush 0 fold∘W
Hopfαfold∘W = Hopfα 0 (fold∘W , refl)
Hopfβfold∘W = Hopfβ 0 (fold∘W , refl)
-- Rewriting CHopf as our favourite pushout
-- S²×S² ← S²∨S² → S²
CHopfIso : Iso CHopf (Pushout⋁↪fold⋁ (S₊∙ 2))
CHopfIso =
compIso (invIso (equivToIso
(compEquiv (compEquiv pushoutSwitchEquiv
(isoToEquiv (PushoutDistr.PushoutDistrIso fold⋁ W λ _ → tt)))
pushoutSwitchEquiv)))
(equivToIso Pushout-coFibW-fold⋁≃Pushout⋁↪fold⋁)
-- Cohomology group version of the Iso
coHomCHopfIso : (n : ℕ)
→ GroupIso (coHomGr n CHopf) (coHomGr n (Pushout⋁↪fold⋁ (S₊∙ 2)))
coHomCHopfIso n = invGroupIso (coHomIso n CHopfIso)
-- We instantiate Mayer-Vietoris for the pushout
module MV-⋁↪-fold⋁ = MV _ _ (S₊∙ 2 ⋁ S₊∙ 2) ⋁↪ fold⋁
-- This give us an iso H⁴(S²×S² ← S²∨S² → S²) ≅ H⁴(S²×S²)
isEquiv-qHom : GroupEquiv (coHomGr 4 (Pushout⋁↪fold⋁ (S₊∙ 2)))
(coHomGr 4 (S₊ 2 × S₊ 2))
fst (fst isEquiv-qHom) = qHom .fst
snd (fst isEquiv-qHom) =
subst isEquiv
(funExt (sElim (λ _ → isSetPathImplicit) (λ _ → refl)))
(×UnitEquiv (isoToPath
(invIso
(fst (Hⁿ-Sᵐ≅0 3 1 λ p → snotz (cong predℕ p)))))
_ isEquiv-i)
where
×UnitEquiv : {A B C : Type}
→ Unit ≡ C
→ (f : A → B × C)
→ isEquiv f
→ isEquiv (fst ∘ f)
×UnitEquiv {A = A} {B = B} =
J (λ C _ → (f : A → B × C) → isEquiv f → isEquiv (fst ∘ f))
λ f eq → record { equiv-proof =
λ b → ((fst (fst (equiv-proof eq (b , tt))))
, cong fst (fst (equiv-proof eq (b , tt)) .snd))
, λ y → ΣPathP ((cong fst (equiv-proof eq (b , tt)
.snd ((fst y)
, ΣPathP ((snd y) , refl))))
, λ i j → equiv-proof eq (b , tt) .snd ((fst y)
, ΣPathP ((snd y) , refl)) i .snd j .fst) }
isEquiv-i : isEquiv (fst (MV-⋁↪-fold⋁.i 4))
isEquiv-i =
SES→isEquiv
(isContr→≡UnitGroup
(isOfHLevelRetractFromIso 0
(compIso
(fst (Hⁿ-⋁ (S₊∙ 2) (S₊∙ 2) 2))
(compIso
(prodIso (fst (Hⁿ-Sᵐ≅0 2 1 λ p → snotz (cong predℕ p)))
(fst (Hⁿ-Sᵐ≅0 2 1 λ p → snotz (cong predℕ p))))
rUnit×Iso))
isContrUnit))
((isContr→≡UnitGroup
(isOfHLevelRetractFromIso 0
(compIso
(fst (Hⁿ-⋁ (S₊∙ 2) (S₊∙ 2) 3))
(compIso
(prodIso (fst (Hⁿ-Sᵐ≅0 3 1 λ p → snotz (cong predℕ p)))
(fst (Hⁿ-Sᵐ≅0 3 1 λ p → snotz (cong predℕ p))))
rUnit×Iso))
isContrUnit)))
(MV-⋁↪-fold⋁.d 3)
(MV-⋁↪-fold⋁.i 4)
(MV-⋁↪-fold⋁.Δ 4)
(MV-⋁↪-fold⋁.Ker-i⊂Im-d 3)
(MV-⋁↪-fold⋁.Ker-Δ⊂Im-i 4)
snd isEquiv-qHom = qHom .snd
-- The goal now is reducing α ⌣ α = ±2 β to gₗ ⌣ gᵣ = e for
-- gₗ, gᵣ generators of H²(S²×S²) ≅ ℤ × ℤ and e generator of
-- H⁴(S²×S²) ≅ ℤ. This essentially just elementary linear algebra at
-- this point. We do it for an arbitrary (well-behaved) iso
-- H⁴(S²×S²) ≅ ℤ in order to speed up type checking.
module BrunerieNumLem
(is : GroupIso (coHomGr 4 (S₊ 2 × S₊ 2)) ℤGroup)
(isEq : (fun (fst is) (H²-S²×S²-genₗ ⌣ H²-S²×S²-genᵣ) ≡ 1)) where
x = H²-S²×S²-genₗ
y = H²-S²×S²-genᵣ
α = Hopfαfold∘W
β = Hopfβfold∘W
α' : coHom 2 (Pushout⋁↪fold⋁ (S₊∙ 2))
α' = fun (fst (coHomCHopfIso 2)) α
β' : coHom 4 (Pushout⋁↪fold⋁ (S₊∙ 2))
β' = fun (fst (coHomCHopfIso 4)) β
rewriteEquation :
(α' ⌣ α' ≡ β' +ₕ β') ⊎ (α' ⌣ α' ≡ -ₕ (β' +ₕ β'))
→ (α ⌣ α ≡ β +ₕ β) ⊎ (α ⌣ α ≡ -ₕ (β +ₕ β))
rewriteEquation (inl x) =
inl ((λ i → leftInv (fst (coHomCHopfIso 2)) α (~ i)
⌣ leftInv (fst (coHomCHopfIso 2)) α (~ i))
∙∙ cong (inv (fst (coHomCHopfIso 4))) x
∙∙ leftInv (fst (coHomCHopfIso 4)) (β +ₕ β))
rewriteEquation (inr x) =
inr ((λ i → leftInv (fst (coHomCHopfIso 2)) α (~ i)
⌣ leftInv (fst (coHomCHopfIso 2)) α (~ i))
∙∙ cong (inv (fst (coHomCHopfIso 4))) x
∙∙ leftInv (fst (coHomCHopfIso 4))
(-ₕ (β +ₕ β)))
rewriteEquation2 : (qHom .fst β' ≡ x ⌣ y) ⊎ (qHom .fst β' ≡ -ₕ (x ⌣ y))
rewriteEquation2 =
⊎rec
(λ p → inl (sym (leftInv (fst is) (qHom .fst β'))
∙∙ cong (inv (fst is)) (p ∙ sym isEq)
∙∙ leftInv (fst is) (x ⌣ y)))
(λ p → inr (sym (leftInv (fst is) (qHom .fst β'))
∙∙ cong (inv (fst is))
(p ∙ sym (cong (GroupStr.inv (snd ℤGroup)) isEq))
∙∙ (presinv (invGroupIso is .snd) (fun (fst is) (x ⌣ y))
∙ cong -ₕ_ (leftInv (fst is) (x ⌣ y)))))
eqs
where
grIso : GroupEquiv (coHomGr 4 (HopfInvariantPush 0 fold∘W)) ℤGroup
grIso = compGroupEquiv (GroupIso→GroupEquiv (coHomCHopfIso 4))
(compGroupEquiv
isEquiv-qHom
(GroupIso→GroupEquiv is))
eqs : (fst (fst grIso) β ≡ 1) ⊎ (fst (fst grIso) β ≡ -1)
eqs = groupEquivPresGen _ (GroupIso→GroupEquiv (Hopfβ-Iso 0 (fold∘W , refl)))
β (inl (Hopfβ↦1 0 (fold∘W , refl))) grIso
qpres⌣ : (x y : coHom 2 _)
→ fst qHom (x ⌣ y) ≡ fst (qHomGen 2) x ⌣ fst (qHomGen 2) y
qpres⌣ = sElim2 (λ _ _ → isSetPathImplicit) λ _ _ → refl
α'↦x+y : fst (qHomGen 2) α' ≡ x +ₕ y
α'↦x+y = lem ((coHomFun 2 (inv CHopfIso) α)) refl
where
lem : (x' : coHom 2 (Pushout⋁↪fold⋁ (S₊∙ 2)))
→ coHomFun 2 inr x' ≡ ∣ ∣_∣ ∣₂
→ fst (qHomGen 2) x' ≡ x +ₕ y
lem = sElim (λ _ → isSetΠ λ _ → isSetPathImplicit)
λ f p → Cubical.HITs.PropositionalTruncation.rec
(squash₂ _ _)
(λ r → cong ∣_∣₂ (funExt (uncurry
(wedgeconFun 1 1 (λ _ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _)
(λ x → cong f (push (inr x)) ∙∙ funExt⁻ r x ∙∙ refl)
((λ x → cong f (push (inl x)) ∙∙ funExt⁻ r x ∙∙ sym (rUnitₖ 2 ∣ x ∣ₕ)))
(cong (_∙∙ funExt⁻ r north ∙∙ refl)
(cong (cong f) λ j i → push (push tt j) i))))))
(fun PathIdTrunc₀Iso p)
mainEq : ((fst qHom) (α' ⌣ α') ≡ qHom .fst (β' +ₕ β'))
⊎ ((fst qHom) (α' ⌣ α') ≡ qHom .fst (-ₕ (β' +ₕ β')))
mainEq =
⊎rec
(λ id → inl (lem₁ ∙ lem₂
∙ cong (λ x → x +ₕ x) (sym id)
∙ sym (pres· (snd qHom) β' β')))
(λ id → inr (lem₁ ∙ lem₂
∙ ((sym (distLem (x ⌣ y))
∙ cong -ₕ_ (cong (λ x → x +ₕ x) (sym id)))
∙ cong (-ₕ_) (pres· (snd qHom) β' β'))
∙ sym (presinv (snd qHom) (β' +ₕ β'))))
rewriteEquation2
where
triv⌣ : (a : S¹)
→ cong₂ (_⌣ₖ_ {n = 2} {m = 2}) (cong ∣_∣ₕ (merid a)) (cong ∣_∣ₕ (merid a))
≡ λ _ → ∣ north ∣ₕ
triv⌣ a =
cong₂Funct (_⌣ₖ_ {n = 2} {m = 2})
(cong ∣_∣ₕ (merid a)) (cong ∣_∣ₕ (merid a))
∙ sym (rUnit λ j → _⌣ₖ_ {n = 2} {m = 2} ∣ merid a j ∣ₕ ∣ north ∣)
∙ (λ i j → ⌣ₖ-0ₖ 2 2 ∣ merid a j ∣ₕ i)
distLem : (x : coHom 4 (S₊ 2 × S₊ 2)) → -ₕ ((-ₕ x) +ₕ (-ₕ x)) ≡ x +ₕ x
distLem =
sElim (λ _ → isSetPathImplicit)
λ f → cong ∣_∣₂ (funExt λ x → cong -ₖ_ (sym (-distrₖ 4 (f x) (f x)))
∙ -ₖ^2 (f x +ₖ f x))
x⌣x≡0 : x ⌣ x ≡ 0ₕ 4
x⌣x≡0 =
cong ∣_∣₂
(funExt (uncurry λ { north y → refl
; south y → refl
; (merid a i) y j → triv⌣ a j i}))
y⌣y≡0 : y ⌣ y ≡ 0ₕ 4
y⌣y≡0 =
cong ∣_∣₂
(funExt (uncurry λ { x north → refl
; x south → refl
; x (merid a i) j → triv⌣ a j i}))
-ₕ'Id : (x : coHom 4 (S₊ 2 × S₊ 2)) → (-ₕ'^ 2 · 2) x ≡ x
-ₕ'Id =
sElim (λ _ → isSetPathImplicit)
λ f → cong ∣_∣₂ (funExt λ x → -ₖ'-gen-inl-left 2 2 tt (inl tt) (f x))
y⌣x≡x⌣y : y ⌣ x ≡ x ⌣ y
y⌣x≡x⌣y =
y ⌣ x ≡⟨ gradedComm'-⌣ 2 2 y x ⟩
(-ₕ'^ 2 · 2) (transport refl (x ⌣ y)) ≡⟨ -ₕ'Id (transport refl (x ⌣ y)) ⟩
transport refl (x ⌣ y) ≡⟨ transportRefl (x ⌣ y) ⟩
x ⌣ y ∎
lem₂ : (x +ₕ y) ⌣ (x +ₕ y) ≡ (x ⌣ y) +ₕ (x ⌣ y)
lem₂ =
(x +ₕ y) ⌣ (x +ₕ y) ≡⟨ leftDistr-⌣ 2 2 (x +ₕ y) x y ⟩
((x +ₕ y) ⌣ x) +ₕ ((x +ₕ y) ⌣ y) ≡⟨ cong₂ _+ₕ_ (rightDistr-⌣ 2 2 x y x) (rightDistr-⌣ 2 2 x y y) ⟩
((x ⌣ x +ₕ y ⌣ x)) +ₕ (x ⌣ y +ₕ y ⌣ y) ≡⟨ cong₂ _+ₕ_ (cong (_+ₕ y ⌣ x) x⌣x≡0 ∙ lUnitₕ 4 (y ⌣ x))
(cong (x ⌣ y +ₕ_) y⌣y≡0 ∙ rUnitₕ 4 (x ⌣ y)) ⟩
y ⌣ x +ₕ x ⌣ y ≡⟨ cong (_+ₕ (x ⌣ y)) y⌣x≡x⌣y ⟩
((x ⌣ y) +ₕ (x ⌣ y)) ∎
lem₁ : (fst qHom) (α' ⌣ α') ≡ (x +ₕ y) ⌣ (x +ₕ y)
lem₁ =
fst qHom (α' ⌣ α') ≡⟨ refl ⟩
fst (qHomGen 2) α' ⌣ fst (qHomGen 2) α' ≡⟨ cong (λ x → x ⌣ x) α'↦x+y ⟩
((x +ₕ y) ⌣ (x +ₕ y)) ∎
main⊎ : (HopfInvariant 0 (fold∘W , refl) ≡ 2)
⊎ (HopfInvariant 0 (fold∘W , refl) ≡ -2)
main⊎ =
⊎rec (λ p → inl (lem₁
∙ cong (fun (fst (Hopfβ-Iso 0 (fold∘W , refl)))) p
∙ pres· (Hopfβ-Iso 0 (fold∘W , refl) .snd) β β
∙ cong (λ x → x + x) (Hopfβ↦1 0 (fold∘W , refl))))
(λ p → inr (lem₁
∙ cong (fun (fst (Hopfβ-Iso 0 (fold∘W , refl)))) p
∙ presinv (Hopfβ-Iso 0 (fold∘W , refl) .snd) (β +ₕ β)
∙ cong (GroupStr.inv (snd ℤGroup))
(pres· (Hopfβ-Iso 0 (fold∘W , refl) .snd) β β
∙ cong (λ x → x + x) (Hopfβ↦1 0 (fold∘W , refl)))))
lem₂
where
lem₁ : HopfInvariant 0 (fold∘W , refl)
≡ fun (fst (Hopfβ-Iso 0 (fold∘W , refl))) (α ⌣ α)
lem₁ =
cong (fun (fst (Hopfβ-Iso 0 (fold∘W , refl)))) (transportRefl (α ⌣ α))
lem₂ : (α ⌣ α ≡ β +ₕ β) ⊎ (α ⌣ α ≡ -ₕ (β +ₕ β))
lem₂ =
rewriteEquation
(⊎rec (λ p → inl (sym (retEq (fst isEquiv-qHom) (α' ⌣ α'))
∙∙ cong (invEq (fst isEquiv-qHom)) p
∙∙ retEq (fst isEquiv-qHom) (β' +ₕ β')))
(λ p → inr ((sym (retEq (fst isEquiv-qHom) (α' ⌣ α'))
∙∙ cong (invEq (fst isEquiv-qHom)) p
∙∙ retEq (fst isEquiv-qHom) (-ₕ (β' +ₕ β')))))
mainEq)
main : abs (HopfInvariant 0 (fold∘W , refl)) ≡ 2
main = ⊎→abs _ 2 main⊎
-- We instantiate the module
Brunerie'≡2 : abs (HopfInvariant 0 (fold∘W , refl)) ≡ 2
Brunerie'≡2 = BrunerieNumLem.main (Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-abs 1 1) Hⁿ⁺ᵐ-Sⁿ×Sᵐ≅ℤ-⌣
-- We rewrite the it slightly, to get the definition of the Brunerie
-- number in Brunerie (2016)
Brunerie'≡Brunerie : [ ∣ idfun∙ (S₊∙ 2) ∣₂ ∣ ∣ idfun∙ (S₊∙ 2) ∣₂ ]π' ≡ ∣ fold∘W , refl ∣₂
Brunerie'≡Brunerie =
cong ∣_∣₂ ([]≡[]₂ (idfun∙ (S₊∙ 2)) (idfun∙ (S₊∙ 2)) )
∙ sym fold∘W≡Whitehead
∙ cong ∣_∣₂ (∘∙-idˡ (fold∘W , refl))
-- And we get the main result
Brunerie≡2 : Brunerie ≡ 2
Brunerie≡2 =
cong abs (cong (HopfInvariant-π' 0) Brunerie'≡Brunerie)
∙ Brunerie'≡2
| {
"alphanum_fraction": 0.5303654485,
"avg_line_length": 37.3449131514,
"ext": "agda",
"hexsha": "03848c103252c2ab83db2291458bf18409840d74",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Homotopy/HopfInvariant/Brunerie.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Homotopy/HopfInvariant/Brunerie.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Homotopy/HopfInvariant/Brunerie.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6907,
"size": 15050
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise equality over lists parameterised by a setoid
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid)
module Data.List.Relation.Binary.Equality.Setoid {a ℓ} (S : Setoid a ℓ) where
open import Data.Fin.Base
open import Data.List.Base
open import Data.List.Relation.Binary.Pointwise as PW using (Pointwise)
open import Data.List.Relation.Unary.Unique.Setoid S using (Unique)
open import Function using (_∘_)
open import Level
open import Relation.Binary renaming (Rel to Rel₂)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Binary.Properties.Setoid S using (≉-resp₂)
open import Relation.Unary as U using (Pred)
open Setoid S renaming (Carrier to A)
private
variable
p q : Level
------------------------------------------------------------------------
-- Definition of equality
------------------------------------------------------------------------
infix 4 _≋_
_≋_ : Rel₂ (List A) (a ⊔ ℓ)
_≋_ = Pointwise _≈_
open PW public
using ([]; _∷_)
------------------------------------------------------------------------
-- Relational properties
------------------------------------------------------------------------
≋-refl : Reflexive _≋_
≋-refl = PW.refl refl
≋-reflexive : _≡_ ⇒ _≋_
≋-reflexive P.refl = ≋-refl
≋-sym : Symmetric _≋_
≋-sym = PW.symmetric sym
≋-trans : Transitive _≋_
≋-trans = PW.transitive trans
≋-isEquivalence : IsEquivalence _≋_
≋-isEquivalence = PW.isEquivalence isEquivalence
≋-setoid : Setoid _ _
≋-setoid = PW.setoid S
------------------------------------------------------------------------
-- Relationships to predicates
------------------------------------------------------------------------
open PW public
using () renaming
( Any-resp-Pointwise to Any-resp-≋
; All-resp-Pointwise to All-resp-≋
; AllPairs-resp-Pointwise to AllPairs-resp-≋
)
Unique-resp-≋ : Unique Respects _≋_
Unique-resp-≋ = AllPairs-resp-≋ ≉-resp₂
------------------------------------------------------------------------
-- List operations
------------------------------------------------------------------------
------------------------------------------------------------------------
-- length
≋-length : ∀ {xs ys} → xs ≋ ys → length xs ≡ length ys
≋-length = PW.Pointwise-length
------------------------------------------------------------------------
-- map
module _ {b ℓ₂} (T : Setoid b ℓ₂) where
open Setoid T using () renaming (_≈_ to _≈′_)
private
_≋′_ = Pointwise _≈′_
map⁺ : ∀ {f} → f Preserves _≈_ ⟶ _≈′_ →
∀ {xs ys} → xs ≋ ys → map f xs ≋′ map f ys
map⁺ {f} pres xs≋ys = PW.map⁺ f f (PW.map pres xs≋ys)
------------------------------------------------------------------------
-- _++_
++⁺ : ∀ {ws xs ys zs} → ws ≋ xs → ys ≋ zs → ws ++ ys ≋ xs ++ zs
++⁺ = PW.++⁺
++-cancelˡ : ∀ xs {ys zs} → xs ++ ys ≋ xs ++ zs → ys ≋ zs
++-cancelˡ = PW.++-cancelˡ
++-cancelʳ : ∀ {xs} ys zs → ys ++ xs ≋ zs ++ xs → ys ≋ zs
++-cancelʳ = PW.++-cancelʳ
------------------------------------------------------------------------
-- concat
concat⁺ : ∀ {xss yss} → Pointwise _≋_ xss yss → concat xss ≋ concat yss
concat⁺ = PW.concat⁺
------------------------------------------------------------------------
-- tabulate
tabulate⁺ : ∀ {n} {f : Fin n → A} {g : Fin n → A} →
(∀ i → f i ≈ g i) → tabulate f ≋ tabulate g
tabulate⁺ = PW.tabulate⁺
tabulate⁻ : ∀ {n} {f : Fin n → A} {g : Fin n → A} →
tabulate f ≋ tabulate g → (∀ i → f i ≈ g i)
tabulate⁻ = PW.tabulate⁻
------------------------------------------------------------------------
-- filter
module _ {P : Pred A p} (P? : U.Decidable P) (resp : P Respects _≈_)
where
filter⁺ : ∀ {xs ys} → xs ≋ ys → filter P? xs ≋ filter P? ys
filter⁺ xs≋ys = PW.filter⁺ P? P? resp (resp ∘ sym) xs≋ys
------------------------------------------------------------------------
-- reverse
ʳ++⁺ : ∀{xs xs′ ys ys′} → xs ≋ xs′ → ys ≋ ys′ → xs ʳ++ ys ≋ xs′ ʳ++ ys′
ʳ++⁺ = PW.ʳ++⁺
reverse⁺ : ∀ {xs ys} → xs ≋ ys → reverse xs ≋ reverse ys
reverse⁺ = PW.reverse⁺
| {
"alphanum_fraction": 0.4377652051,
"avg_line_length": 28.8571428571,
"ext": "agda",
"hexsha": "fc955a90b7ca827d180254050823f86d97320281",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Equality/Setoid.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Equality/Setoid.agda",
"max_line_length": 77,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Equality/Setoid.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1188,
"size": 4242
} |
{-# OPTIONS --without-K --safe #-}
{-
Useful notation for Epimorphisms, Mononmorphisms, and isomorphisms
-}
module Categories.Morphism.Notation where
open import Level
open import Categories.Category.Core
open import Categories.Morphism
private
variable
o ℓ e : Level
_[_↣_] : (𝒞 : Category o ℓ e) → (A B : Category.Obj 𝒞) → Set (o ⊔ ℓ ⊔ e)
𝒞 [ A ↣ B ] = _↣_ 𝒞 A B
_[_↠_] : (𝒞 : Category o ℓ e) → (A B : Category.Obj 𝒞) → Set (o ⊔ ℓ ⊔ e)
𝒞 [ A ↠ B ] = _↠_ 𝒞 A B
_[_≅_] : (𝒞 : Category o ℓ e) → (A B : Category.Obj 𝒞) → Set (ℓ ⊔ e)
𝒞 [ A ≅ B ] = _≅_ 𝒞 A B
| {
"alphanum_fraction": 0.5964912281,
"avg_line_length": 22.8,
"ext": "agda",
"hexsha": "42449f4d218c7bfe1a91ad99fe546751909ad0f5",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/Notation.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/Notation.agda",
"max_line_length": 72,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/Notation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 246,
"size": 570
} |
open import Agda.Builtin.Nat
data V : (n : Nat) → Set where
cons : (n : Nat) → V (suc n)
-- ^ this n is forced
-- v and this n is marked shape irrelevant
g : ..(n : Nat) → V n → Nat
g _ (cons n) = n
-- ^ so we can't return n here, since we're really
-- returning the shape irrelevant one.
| {
"alphanum_fraction": 0.5468277946,
"avg_line_length": 25.4615384615,
"ext": "agda",
"hexsha": "2b00d3c8a3132b55e6d08c9fc8ecb37803fd61ca",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/BadForcedIrrelevance.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/BadForcedIrrelevance.agda",
"max_line_length": 62,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/BadForcedIrrelevance.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 103,
"size": 331
} |
module Numbers where
open import Haskell.Prelude
open import Agda.Builtin.Nat
posNatural : Nat
posNatural = 14
posInteger : Integer
posInteger = 52
negInteger : Integer
negInteger = -1001
natToPos : Nat → Integer
natToPos n = fromNat n
natToNeg : Nat → Integer
natToNeg n = fromNeg n
{-# COMPILE AGDA2HS posNatural #-}
{-# COMPILE AGDA2HS posInteger #-}
{-# COMPILE AGDA2HS negInteger #-}
{-# COMPILE AGDA2HS natToPos #-}
{-# COMPILE AGDA2HS natToNeg #-}
| {
"alphanum_fraction": 0.721627409,
"avg_line_length": 17.2962962963,
"ext": "agda",
"hexsha": "552fc7326b8ee6a2d91e8fc5831ab2bad8c56f05",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "test/Numbers.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "test/Numbers.agda",
"max_line_length": 34,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "test/Numbers.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 142,
"size": 467
} |
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Type classes following Kettelhoit's approach.
module Kettelhoit where
open import Data.Bool.Base
open import Data.Nat hiding ( equal ) renaming ( suc to succ )
record Eq (A : Set) : Set where
field equal : A → A → Bool
open Eq {{...}} public
boolEq : Bool → Bool → Bool
boolEq true true = true
boolEq false false = true
{-# CATCHALL #-}
boolEq _ _ = false
natEq : ℕ → ℕ → Bool
natEq zero zero = true
natEq (succ m) (succ n) = natEq m n
{-# CATCHALL #-}
natEq _ _ = false
instance
eqInstanceBool : Eq Bool
eqInstanceBool = record { equal = boolEq }
eqInstanceℕ : Eq ℕ
eqInstanceℕ = record { equal = natEq }
test : Bool
test = equal 5 3 ∨ equal true false
| {
"alphanum_fraction": 0.6052036199,
"avg_line_length": 22.6666666667,
"ext": "agda",
"hexsha": "a5270014792a1ad606a2716edb5a084591ba3661",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/type-classes/Kettelhoit.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/type-classes/Kettelhoit.agda",
"max_line_length": 62,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/type-classes/Kettelhoit.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 248,
"size": 884
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.