Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --without-K #-} open import lib.Basics open import lib.Equivalences2 open import lib.types.Paths open import lib.types.Pi open import lib.types.Sigma open import lib.types.TLevel module lib.NType2 where module _ {i j} {A : Type i} {B : A → Type j} where abstract ↓-level : {a b : A} {p : a == b} {u : B a} {v : B b} {n : ℕ₋₂} → ((x : A) → has-level (S n) (B x)) → has-level n (u == v [ B ↓ p ]) ↓-level {p = idp} k = k _ _ _ ↓-preserves-level : {a b : A} {p : a == b} {u : B a} {v : B b} (n : ℕ₋₂) → ((x : A) → has-level n (B x)) → has-level n (u == v [ B ↓ p ]) ↓-preserves-level {p = idp} n k = =-preserves-level n (k _) prop-has-all-paths-↓ : {x y : A} {p : x == y} {u : B x} {v : B y} → (is-prop (B y) → u == v [ B ↓ p ]) prop-has-all-paths-↓ {p = idp} k = prop-has-all-paths k _ _ set-↓-has-all-paths-↓ : ∀ {k} {C : Type k} {x y : C → A} {p : (t : C) → x t == y t} {u : (t : C) → B (x t)} {v : (t : C) → B (y t)} {a b : C} {q : a == b} {α : u a == v a [ B ↓ p a ]} {β : u b == v b [ B ↓ p b ]} → (is-set (B (y a)) → α == β [ (λ t → u t == v t [ B ↓ p t ]) ↓ q ]) set-↓-has-all-paths-↓ {q = idp} = lemma _ where lemma : {x y : A} (p : x == y) {u : B x} {v : B y} {α β : u == v [ B ↓ p ]} → is-set (B y) → α == β lemma idp k = fst (k _ _ _ _) abstract -- Every map between contractible types is an equivalence contr-to-contr-is-equiv : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) → (is-contr A → is-contr B → is-equiv f) contr-to-contr-is-equiv f cA cB = is-eq f (λ _ → fst cA) (λ b → ! (snd cB _) ∙ snd cB b) (snd cA) is-contr-is-prop : ∀ {i} {A : Type i} → is-prop (is-contr A) is-contr-is-prop {A = A} = all-paths-is-prop (λ x y → pair= (snd x (fst y)) (↓-cst→app-in (λ a → ↓-idf=cst-in (lemma x (fst y) a (snd y a))))) where lemma : (x : is-contr A) (b a : A) (p : b == a) → snd x a == snd x b ∙' p lemma x b ._ idp = idp has-level-is-prop : ∀ {i} {n : ℕ₋₂} {A : Type i} → is-prop (has-level n A) has-level-is-prop {n = ⟨-2⟩} = is-contr-is-prop has-level-is-prop {n = S n} = Π-level (λ x → Π-level (λ y → has-level-is-prop)) is-prop-is-prop : ∀ {i} {A : Type i} → is-prop (is-prop A) is-prop-is-prop = has-level-is-prop is-set-is-prop : ∀ {i} {A : Type i} → is-prop (is-set A) is-set-is-prop = has-level-is-prop subtype-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {P : A → Type j} → (has-level (S n) A → ((x : A) → is-prop (P x)) → has-level (S n) (Σ A P)) subtype-level p q = Σ-level p (λ x → prop-has-level-S (q x)) subtype= : ∀ {i j} {A : Type i} {P : A → Type j} → (x y : Σ A P) → Type i subtype= (a₁ , _) (a₂ , _) = a₁ == a₂ subtype=-in : ∀ {i j} {A : Type i} {P : A → Type j} → (p : (x : A) → is-prop (P x)) → {x y : Σ A P} → subtype= x y → x == y subtype=-in p idp = pair= idp (fst (p _ _ _)) -- Groupoids is-gpd : {i : ULevel} → Type i → Type i is-gpd = has-level 1 -- Type of all n-truncated types _-Type_ : (n : ℕ₋₂) (i : ULevel) → Type (lsucc i) n -Type i = Σ (Type i) (has-level n) hProp : (i : ULevel) → Type (lsucc i) hProp i = -1 -Type i hSet : (i : ULevel) → Type (lsucc i) hSet i = 0 -Type i _-Type₀ : (n : ℕ₋₂) → Type₁ n -Type₀ = n -Type lzero hProp₀ = hProp lzero hSet₀ = hSet lzero -- [n -Type] is an (n+1)-type abstract ≃-level : ∀ {i j} {n : ℕ₋₂} {A : Type i} {B : Type j} → (has-level n A → has-level n B → has-level n (A ≃ B)) ≃-level {n = ⟨-2⟩} pA pB = ((cst (fst pB) , contr-to-contr-is-equiv _ pA pB) , (λ e → pair= (λ= (λ _ → snd pB _)) (from-transp is-equiv _ (fst (is-equiv-is-prop _ _ _))))) ≃-level {n = S n} pA pB = Σ-level (→-level pB) (λ _ → prop-has-level-S (is-equiv-is-prop _)) ≃-is-set : ∀ {i j} {A : Type i} {B : Type j} → is-set A → is-set B → is-set (A ≃ B) ≃-is-set = ≃-level universe-=-level : ∀ {i} {n : ℕ₋₂} {A B : Type i} → (has-level n A → has-level n B → has-level n (A == B)) universe-=-level pA pB = equiv-preserves-level ua-equiv (≃-level pA pB) universe-=-is-set : ∀ {i} {A B : Type i} → (is-set A → is-set B → is-set (A == B)) universe-=-is-set = universe-=-level nType= : ∀ {i} {n : ℕ₋₂} (A B : n -Type i) → Type (lsucc i) nType= = subtype= nType=-in : ∀ {i} {n : ℕ₋₂} {A B : n -Type i} → fst A == fst B → A == B nType=-in = subtype=-in (λ _ → has-level-is-prop) nType=-β : ∀ {i} {n : ℕ₋₂} {A B : n -Type i} (p : fst A == fst B) → fst= (nType=-in {A = A} {B = B} p) == p nType=-β idp = fst=-β idp _ nType=-η : ∀ {i} {n : ℕ₋₂} {A B : n -Type i} (p : A == B) → nType=-in (fst= p) == p nType=-η {A = A} {B = .A} idp = ap (pair= idp) (ap fst {x = has-level-is-prop _ _} {y = (idp , (λ p → fst (prop-is-set has-level-is-prop _ _ _ _)))} (fst (is-contr-is-prop _ _))) nType=-equiv : ∀ {i} {n : ℕ₋₂} (A B : n -Type i) → (nType= A B) ≃ (A == B) nType=-equiv A B = equiv nType=-in fst= nType=-η nType=-β _-Type-level_ : (n : ℕ₋₂) (i : ULevel) → has-level (S n) (n -Type i) (n -Type-level i) A B = equiv-preserves-level (nType=-equiv A B) (universe-=-level (snd A) (snd B)) hProp-is-set : (i : ULevel) → is-set (hProp i) hProp-is-set i = -1 -Type-level i hSet-level : (i : ULevel) → has-level 1 (hSet i) hSet-level i = 0 -Type-level i {- The following two lemmas are in NType2 instead of NType because of cyclic dependencies -} module _ {i} {A : Type i} where abstract raise-level-<T : {m n : ℕ₋₂} → (m <T n) → has-level m A → has-level n A raise-level-<T ltS = raise-level _ raise-level-<T (ltSR lt) = raise-level _ ∘ raise-level-<T lt raise-level-≤T : {m n : ℕ₋₂} → (m ≤T n) → has-level m A → has-level n A raise-level-≤T (inl p) = transport (λ t → has-level t A) p raise-level-≤T (inr lt) = raise-level-<T lt
{ "alphanum_fraction": 0.4993227227, "avg_line_length": 34.9467455621, "ext": "agda", "hexsha": "d358dc939378e5420f7215b20994a0e7fa2e13a0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "core/lib/NType2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "core/lib/NType2.agda", "max_line_length": 94, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "core/lib/NType2.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2448, "size": 5906 }
-- Record expressions are translated to copattern matches. module _ where record _×_ (A B : Set) : Set where constructor _,_ field fst : A snd : B open _×_ dup : ∀ {A} → A → A × A dup x = record {fst = x; snd = x} -- dup is translated internally to -- dup x .fst = x -- dup x .snd = x -- so dup should not normalise to λ x → x , x dup' : ∀ {A} → A → A × A dup' x = x , x -- But dup' is not translated, so dup' does reduce.
{ "alphanum_fraction": 0.5807174888, "avg_line_length": 17.84, "ext": "agda", "hexsha": "62b8aaf9a6a6a0cacca737335694f4c2a7b5f7d7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/CopatternTranslation.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/CopatternTranslation.agda", "max_line_length": 58, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/CopatternTranslation.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 151, "size": 446 }
{-# OPTIONS --without-K #-} module hott.level.closure.core where open import level open import decidable open import equality open import function.isomorphism.core -- open import function.isomorphism.properties open import sum open import hott.level.core open import hott.equivalence.core open import hott.univalence open import sets.nat.core -- open import sets.nat.ordering.leq.core -- open import sets.nat.ordering.leq.decide open import sets.empty open import sets.unit Σ-contr : ∀ {i j}{X : Set i}{Y : X → Set j} → contr X → ((x : X) → contr (Y x)) → contr (Σ X Y) Σ-contr {X = X}{Y = Y} (x₀ , cx) hY = (x₀ , proj₁ (hY x₀)) , λ { (x , y) → c x y } where c : (x : X)(y : Y x) → (x₀ , proj₁ (hY x₀)) ≡ (x , y) c x y = ap (λ x → (x , proj₁ (hY x))) (cx x) · ap (_,_ x) (proj₂ (hY x) y) ×-contr : ∀ {i j}{X : Set i}{Y : Set j} → contr X → contr Y → contr (X × Y) ×-contr hX hY = Σ-contr hX (λ _ → hY) unique-contr : ∀ {i}{A B : Set i} → contr A → contr B → A ≡ B unique-contr {i}{A}{B} hA hB = ≈⇒≡ (f , f-we) where f : A → B f _ = proj₁ hB f-we : weak-equiv f f-we b = ×-contr hA (h↑ hB _ _) -- h-≤ : ∀ {i n m}{X : Set i} -- → n ≤ m → h n X → h m X -- h-≤ {m = 0} z≤n hX = hX -- h-≤ {m = suc m} z≤n hX = λ x y -- → h-≤ {m = m} z≤n (h↑ hX x y) -- h-≤ (s≤s p) hX = λ x y -- → h-≤ p (hX x y) -- -- h! : ∀ {i n m}{X : Set i} -- → {p : True (n ≤? m)} -- → h n X → h m X -- h! {p = p} = h-≤ (witness p) abstract -- retractions preserve levels retract-level : ∀ {i j n} {X : Set i}{Y : Set j} → (f : X → Y)(g : Y → X) → ((y : Y) → f (g y) ≡ y) → h n X → h n Y retract-level {n = 0}{X}{Y} f g r (x , c) = (f x , c') where c' : (y : Y) → f x ≡ y c' y = ap f (c (g y)) · r y retract-level {n = suc n}{X}{Y} f g r hX = λ y y' → retract-level f' g' r' (hX (g y) (g y')) where f' : {y y' : Y} → g y ≡ g y' → y ≡ y' f' {y}{y'} p = sym (r y) · ap f p · r y' g' : {y y' : Y} → y ≡ y' → g y ≡ g y' g' = ap g r' : {y y' : Y}(p : y ≡ y') → f' (g' p) ≡ p r' {y}{.y} refl = ap (λ α → α · r y) (left-unit (sym (r y))) · right-inverse (r y) iso-level : ∀ {i j n}{X : Set i}{Y : Set j} → X ≅ Y → h n X → h n Y iso-level (iso f g H K) = retract-level f g K
{ "alphanum_fraction": 0.4492813142, "avg_line_length": 28.6470588235, "ext": "agda", "hexsha": "693c40d24ec296db40d4f8ae61fa0ac253335ead", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-02-26T06:17:38.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-11T17:19:12.000Z", "max_forks_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "HoTT/M-types", "max_forks_repo_path": "hott/level/closure/core.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_issues_repo_issues_event_max_datetime": "2015-02-11T15:20:34.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-11T11:14:59.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "HoTT/M-types", "max_issues_repo_path": "hott/level/closure/core.agda", "max_line_length": 66, "max_stars_count": 27, "max_stars_repo_head_hexsha": "beebe176981953ab48f37de5eb74557cfc5402f4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "HoTT/M-types", "max_stars_repo_path": "hott/level/closure/core.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-09T07:26:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-14T15:47:03.000Z", "num_tokens": 1016, "size": 2435 }
{-# OPTIONS --safe #-} -- This is a file for dealing with Monuses: these are monoids that are like the -- positive half of a group. Much of my info on them comes from these papers: -- -- * Wehrung, Friedrich. ‘Injective Positively Ordered Monoids I’. Journal of -- Pure and Applied Algebra 83, no. 1 (11 November 1992): 43–82. -- https://doi.org/10.1016/0022-4049(92)90104-N. -- * Wehrung, Friedrich. ‘Embedding Simple Commutative Monoids into Simple -- Refinement Monoids’. Semigroup Forum 56, no. 1 (January 1998): 104–29. -- https://doi.org/10.1007/s00233-002-7008-0. -- * Amer, K. ‘Equationally Complete Classes of Commutative Monoids with Monus’. -- Algebra Universalis 18, no. 1 (1 February 1984): 129–31. -- https://doi.org/10.1007/BF01182254. -- * Wehrung, Friedrich. ‘Metric Properties of Positively Ordered Monoids’. -- Forum Mathematicum 5, no. 5 (1993). -- https://doi.org/10.1515/form.1993.5.183. -- * Wehrung, Friedrich. ‘Restricted Injectivity, Transfer Property and -- Decompositions of Separative Positively Ordered Monoids.’ Communications in -- Algebra 22, no. 5 (1 January 1994): 1747–81. -- https://doi.org/10.1080/00927879408824934. -- -- These monoids have a preorder defined on them, the algebraic preorder: -- -- x ≤ y = ∃ z × (y ≡ x ∙ z) -- -- The _∸_ operator extracts the z from above, if it exists. module Algebra.Monus where open import Prelude open import Algebra open import Relation.Binary open import Path.Reasoning open import Function.Reasoning -- Positively ordered monoids. -- -- These are monoids which have a preorder that respects the monoid operation -- in a straightforward way. record POM ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field commutativeMonoid : CommutativeMonoid ℓ₁ open CommutativeMonoid commutativeMonoid public field preorder : Preorder 𝑆 ℓ₂ open Preorder preorder public renaming (refl to ≤-refl) field positive : ∀ x → ε ≤ x ≤-cong : ∀ x {y z} → y ≤ z → x ∙ y ≤ x ∙ z x≤x∙y : ∀ {x y} → x ≤ x ∙ y x≤x∙y {x} {y} = subst (_≤ x ∙ y) (∙ε x) (≤-cong x (positive y)) ≤-congʳ : ∀ x {y z} → y ≤ z → y ∙ x ≤ z ∙ x ≤-congʳ x {y} {z} p = subst₂ _≤_ (comm x y) (comm x z) (≤-cong x p) alg-≤-trans : ∀ {x y z k₁ k₂} → y ≡ x ∙ k₁ → z ≡ y ∙ k₂ → z ≡ x ∙ (k₁ ∙ k₂) alg-≤-trans {x} {y} {z} {k₁} {k₂} y≡x∙k₁ z≡y∙k₂ = z ≡⟨ z≡y∙k₂ ⟩ y ∙ k₂ ≡⟨ cong (_∙ k₂) y≡x∙k₁ ⟩ (x ∙ k₁) ∙ k₂ ≡⟨ assoc x k₁ k₂ ⟩ x ∙ (k₁ ∙ k₂) ∎ infix 4 _≺_ _≺_ : 𝑆 → 𝑆 → Type _ x ≺ y = ∃ k × (y ≡ x ∙ k) × (k ≢ ε) -- Total Antisymmetric POM record TAPOM ℓ₁ ℓ₂ : Type (ℓsuc (ℓ₁ ℓ⊔ ℓ₂)) where field pom : POM ℓ₁ ℓ₂ open POM pom public using (preorder; _≤_; ≤-cong; ≤-congʳ; x≤x∙y; commutativeMonoid; positive) open CommutativeMonoid commutativeMonoid public field _≤|≥_ : Total _≤_ antisym : Antisymmetric _≤_ totalOrder : TotalOrder 𝑆 ℓ₂ ℓ₂ totalOrder = fromPartialOrder (record { preorder = preorder ; antisym = antisym }) _≤|≥_ open TotalOrder totalOrder public hiding (_≤|≥_; antisym) renaming (refl to ≤-refl) -- Every commutative monoid generates a positively ordered monoid -- called the "algebraic" or "minimal" pom module AlgebraicPOM {ℓ} (mon : CommutativeMonoid ℓ) where commutativeMonoid = mon open CommutativeMonoid mon infix 4 _≤_ _≤_ : 𝑆 → 𝑆 → Type _ x ≤ y = ∃ z × (y ≡ x ∙ z) -- The snd here is the same proof as alg-≤-trans, so could be refactored out. ≤-trans : Transitive _≤_ ≤-trans (k₁ , _) (k₂ , _) .fst = k₁ ∙ k₂ ≤-trans {x} {y} {z} (k₁ , y≡x∙k₁) (k₂ , z≡y∙k₂) .snd = z ≡⟨ z≡y∙k₂ ⟩ y ∙ k₂ ≡⟨ cong (_∙ k₂) y≡x∙k₁ ⟩ (x ∙ k₁) ∙ k₂ ≡⟨ assoc x k₁ k₂ ⟩ x ∙ (k₁ ∙ k₂) ∎ preorder : Preorder 𝑆 ℓ Preorder._≤_ preorder = _≤_ Preorder.refl preorder = ε , sym (∙ε _) Preorder.trans preorder = ≤-trans positive : ∀ x → ε ≤ x positive x = x , sym (ε∙ x) ≤-cong : ∀ x {y z} → y ≤ z → x ∙ y ≤ x ∙ z ≤-cong x (k , z≡y∙k) = k , cong (x ∙_) z≡y∙k ; sym (assoc x _ k) algebraic-pom : ∀ {ℓ} → CommutativeMonoid ℓ → POM ℓ ℓ algebraic-pom mon = record { AlgebraicPOM mon } -- Total Minimal POM record TMPOM ℓ : Type (ℓsuc ℓ) where field commutativeMonoid : CommutativeMonoid ℓ pom : POM _ _ pom = algebraic-pom commutativeMonoid open POM pom public infix 4 _≤|≥_ field _≤|≥_ : Total _≤_ <⇒≺ : ∀ x y → y ≰ x → x ≺ y <⇒≺ x y x<y with x ≤|≥ y ... | inr y≤x = ⊥-elim (x<y y≤x) ... | inl (k , y≡x∙k) = λ where .fst → k .snd .fst → y≡x∙k .snd .snd k≡ε → x<y (ε , sym (∙ε y ; y≡x∙k ; cong (x ∙_) k≡ε ; ∙ε x)) infixl 6 _∸_ _∸_ : 𝑆 → 𝑆 → 𝑆 x ∸ y = either′ (const ε) fst (x ≤|≥ y) x∸y≤x : ∀ x y → x ∸ y ≤ x x∸y≤x x y with x ≤|≥ y ... | inl (k , p) = positive x ... | inr (k , x≡y∙k) = y , x≡y∙k ; comm y k -- Total Minimal Antisymmetric POM record TMAPOM ℓ : Type (ℓsuc ℓ) where field tmpom : TMPOM ℓ open TMPOM tmpom public using (_≤_; _≤|≥_; positive; alg-≤-trans; _≺_; <⇒≺; _∸_; x∸y≤x) field antisym : Antisymmetric _≤_ tapom : TAPOM _ _ TAPOM.pom tapom = TMPOM.pom tmpom TAPOM._≤|≥_ tapom = _≤|≥_ TAPOM.antisym tapom = antisym open TAPOM tapom public hiding (antisym; _≤|≥_; _≤_; positive) zeroSumFree : ∀ x y → x ∙ y ≡ ε → x ≡ ε zeroSumFree x y x∙y≡ε = antisym (y , sym x∙y≡ε) (positive x) ≤‿∸‿cancel : ∀ x y → x ≤ y → (y ∸ x) ∙ x ≡ y ≤‿∸‿cancel x y x≤y with y ≤|≥ x ... | inl y≤x = ε∙ x ; antisym x≤y y≤x ... | inr (k , y≡x∙k) = comm k x ; sym y≡x∙k ∸‿comm : ∀ x y → x ∙ (y ∸ x) ≡ y ∙ (x ∸ y) ∸‿comm x y with y ≤|≥ x | x ≤|≥ y ... | inl y≤x | inl x≤y = cong (_∙ ε) (antisym x≤y y≤x) ... | inr (k , y≡x∙k) | inl x≤y = sym y≡x∙k ; sym (∙ε y) ... | inl y≤x | inr (k , x≥y) = ∙ε x ; x≥y ... | inr (k₁ , y≡x∙k₁) | inr (k₂ , x≡y∙k₂) = x ∙ k₁ ≡˘⟨ y≡x∙k₁ ⟩ y ≡⟨ antisym (k₂ , x≡y∙k₂) (k₁ , y≡x∙k₁) ⟩ x ≡⟨ x≡y∙k₂ ⟩ y ∙ k₂ ∎ ∸‿≺ : ∀ x y → x ≢ ε → y ≢ ε → x ∸ y ≺ x ∸‿≺ x y x≢ε y≢ε with x ≤|≥ y ... | inl _ = x , sym (ε∙ x) , x≢ε ... | inr (k , x≡y∙k) = y , x≡y∙k ; comm y k , y≢ε -- Commutative Monoids with Monus record CMM ℓ : Type (ℓsuc ℓ) where field commutativeMonoid : CommutativeMonoid ℓ pom : POM _ _ pom = algebraic-pom commutativeMonoid open POM pom public field _∸_ : 𝑆 → 𝑆 → 𝑆 infixl 6 _∸_ field ∸‿comm : ∀ x y → x ∙ (y ∸ x) ≡ y ∙ (x ∸ y) ∸‿assoc : ∀ x y z → (x ∸ y) ∸ z ≡ x ∸ (y ∙ z) ∸‿inv : ∀ x → x ∸ x ≡ ε ε∸ : ∀ x → ε ∸ x ≡ ε ∸ε : ∀ x → x ∸ ε ≡ x ∸ε x = x ∸ ε ≡˘⟨ ε∙ (x ∸ ε) ⟩ ε ∙ (x ∸ ε) ≡⟨ ∸‿comm ε x ⟩ x ∙ (ε ∸ x) ≡⟨ cong (x ∙_) (ε∸ x) ⟩ x ∙ ε ≡⟨ ∙ε x ⟩ x ∎ ∸≤ : ∀ x y → x ≤ y → x ∸ y ≡ ε ∸≤ x y (k , y≡x∙k) = x ∸ y ≡⟨ cong (x ∸_) y≡x∙k ⟩ x ∸ (x ∙ k) ≡˘⟨ ∸‿assoc x x k ⟩ (x ∸ x) ∸ k ≡⟨ cong (_∸ k) (∸‿inv x) ⟩ ε ∸ k ≡⟨ ε∸ k ⟩ ε ∎ ∣_-_∣ : 𝑆 → 𝑆 → 𝑆 ∣ x - y ∣ = (x ∸ y) ∙ (y ∸ x) _⊔₂_ : 𝑆 → 𝑆 → 𝑆 x ⊔₂ y = x ∙ y ∙ ∣ x - y ∣ _⊓₂_ : 𝑆 → 𝑆 → 𝑆 x ⊓₂ y = (x ∙ y) ∸ ∣ x - y ∣ -- Cancellative Commutative Monoids with Monus record CCMM ℓ : Type (ℓsuc ℓ) where field cmm : CMM ℓ open CMM cmm public field ∸‿cancel : ∀ x y → (x ∙ y) ∸ x ≡ y cancelˡ : Cancellativeˡ _∙_ cancelˡ x y z x∙y≡x∙z = y ≡˘⟨ ∸‿cancel x y ⟩ (x ∙ y) ∸ x ≡⟨ cong (_∸ x) x∙y≡x∙z ⟩ (x ∙ z) ∸ x ≡⟨ ∸‿cancel x z ⟩ z ∎ cancelʳ : Cancellativeʳ _∙_ cancelʳ x y z y∙x≡z∙x = y ≡˘⟨ ∸‿cancel x y ⟩ (x ∙ y) ∸ x ≡⟨ cong (_∸ x) (comm x y) ⟩ (y ∙ x) ∸ x ≡⟨ cong (_∸ x) y∙x≡z∙x ⟩ (z ∙ x) ∸ x ≡⟨ cong (_∸ x) (comm z x) ⟩ (x ∙ z) ∸ x ≡⟨ ∸‿cancel x z ⟩ z ∎ zeroSumFree : ∀ x y → x ∙ y ≡ ε → x ≡ ε zeroSumFree x y x∙y≡ε = x ≡˘⟨ ∸‿cancel y x ⟩ (y ∙ x) ∸ y ≡⟨ cong (_∸ y) (comm y x) ⟩ (x ∙ y) ∸ y ≡⟨ cong (_∸ y) x∙y≡ε ⟩ ε ∸ y ≡⟨ ε∸ y ⟩ ε ∎ antisym : Antisymmetric _≤_ antisym {x} {y} (k₁ , y≡x∙k₁) (k₂ , x≡y∙k₂) = x ≡⟨ x≡y∙k₂ ⟩ y ∙ k₂ ≡⟨ [ lemma ]⇒ y ∙ ε ≡ y ∙ (k₂ ∙ k₁) ⟨ cancelˡ y ε (k₂ ∙ k₁) ⟩⇒ ε ≡ k₂ ∙ k₁ ⟨ sym ⟩⇒ k₂ ∙ k₁ ≡ ε ⟨ zeroSumFree k₂ k₁ ⟩⇒ k₂ ≡ ε ⟨ cong (y ∙_) ⟩⇒ y ∙ k₂ ≡ y ∙ ε ⇒∎ ⟩ y ∙ ε ≡⟨ ∙ε y ⟩ y ∎ where lemma = ∙ε y ; alg-≤-trans x≡y∙k₂ y≡x∙k₁ partialOrder : PartialOrder _ _ PartialOrder.preorder partialOrder = preorder PartialOrder.antisym partialOrder = antisym ≺⇒< : ∀ x y → x ≺ y → y ≰ x ≺⇒< x y (k₁ , y≡x∙k₁ , k₁≢ε) (k₂ , x≡y∙k₂) = [ x ∙ ε ≡⟨ ∙ε x ⟩ x ≡⟨ x≡y∙k₂ ⟩ y ∙ k₂ ≡⟨ cong (_∙ k₂) y≡x∙k₁ ⟩ (x ∙ k₁) ∙ k₂ ≡⟨ assoc x k₁ k₂ ⟩ x ∙ (k₁ ∙ k₂) ∎ ]⇒ x ∙ ε ≡ x ∙ (k₁ ∙ k₂) ⟨ cancelˡ x ε (k₁ ∙ k₂) ⟩⇒ ε ≡ k₁ ∙ k₂ ⟨ sym ⟩⇒ k₁ ∙ k₂ ≡ ε ⟨ zeroSumFree k₁ k₂ ⟩⇒ k₁ ≡ ε ⟨ k₁≢ε ⟩⇒ ⊥ ⇒∎ ≤⇒<⇒≢ε : ∀ x y → (x≤y : x ≤ y) → y ≰ x → fst x≤y ≢ ε ≤⇒<⇒≢ε x y (k₁ , y≡x∙k₁) y≰x k₁≡ε = y≰x λ where .fst → ε .snd → x ≡˘⟨ ∙ε x ⟩ x ∙ ε ≡˘⟨ cong (x ∙_) k₁≡ε ⟩ x ∙ k₁ ≡˘⟨ y≡x∙k₁ ⟩ y ≡˘⟨ ∙ε y ⟩ y ∙ ε ∎ ≤-cancelʳ : ∀ x y z → y ∙ x ≤ z ∙ x → y ≤ z ≤-cancelʳ x y z (k , z∙x≡y∙x∙k) .fst = k ≤-cancelʳ x y z (k , z∙x≡y∙x∙k) .snd = cancelʳ x z (y ∙ k) $ z ∙ x ≡⟨ z∙x≡y∙x∙k ⟩ (y ∙ x) ∙ k ≡⟨ assoc y x k ⟩ y ∙ (x ∙ k) ≡⟨ cong (y ∙_) (comm x k) ⟩ y ∙ (k ∙ x) ≡˘⟨ assoc y k x ⟩ (y ∙ k) ∙ x ∎ ≤-cancelˡ : ∀ x y z → x ∙ y ≤ x ∙ z → y ≤ z ≤-cancelˡ x y z (k , x∙z≡x∙y∙k) .fst = k ≤-cancelˡ x y z (k , x∙z≡x∙y∙k) .snd = cancelˡ x z (y ∙ k) (x∙z≡x∙y∙k ; assoc x y k) ≺-irrefl : Irreflexive _≺_ ≺-irrefl {x} (k , x≡x∙k , k≢ε) = k≢ε (sym (cancelˡ x ε k (∙ε x ; x≡x∙k))) ≤∸ : ∀ x y → (x≤y : x ≤ y) → y ∸ x ≡ fst x≤y ≤∸ x y (k , y≡x∙k) = y ∸ x ≡⟨ cong (_∸ x) y≡x∙k ⟩ (x ∙ k) ∸ x ≡⟨ ∸‿cancel x k ⟩ k ∎ ≤‿∸‿cancel : ∀ x y → x ≤ y → (y ∸ x) ∙ x ≡ y ≤‿∸‿cancel x y (k , y≡x∙k) = (y ∸ x) ∙ x ≡⟨ cong (λ y → (y ∸ x) ∙ x) y≡x∙k ⟩ ((x ∙ k) ∸ x) ∙ x ≡⟨ cong (_∙ x) (∸‿cancel x k) ⟩ k ∙ x ≡⟨ comm k x ⟩ x ∙ k ≡˘⟨ y≡x∙k ⟩ y ∎ -- Cancellative total minimal antisymmetric pom (has monus) record CTMAPOM ℓ : Type (ℓsuc ℓ) where field tmapom : TMAPOM ℓ open TMAPOM tmapom public field cancel : Cancellativeˡ _∙_ module cmm where ∸≤ : ∀ x y → x ≤ y → x ∸ y ≡ ε ∸≤ x y x≤y with x ≤|≥ y ∸≤ x y x≤y | inl _ = refl ∸≤ x y (k₁ , y≡x∙k₁) | inr (k₂ , x≡y∙k₂) = [ lemma ]⇒ y ∙ ε ≡ y ∙ (k₂ ∙ k₁) ⟨ cancel y ε (k₂ ∙ k₁) ⟩⇒ ε ≡ k₂ ∙ k₁ ⟨ sym ⟩⇒ k₂ ∙ k₁ ≡ ε ⟨ zeroSumFree k₂ k₁ ⟩⇒ k₂ ≡ ε ⇒∎ where lemma = ∙ε y ; alg-≤-trans x≡y∙k₂ y≡x∙k₁ ∸‿inv : ∀ x → x ∸ x ≡ ε ∸‿inv x = ∸≤ x x ≤-refl ε∸ : ∀ x → ε ∸ x ≡ ε ε∸ x = ∸≤ ε x (positive x) ∸‿assoc : ∀ x y z → (x ∸ y) ∸ z ≡ x ∸ (y ∙ z) ∸‿assoc x y z with x ≤|≥ y ∸‿assoc x y z | inl x≤y = ε∸ z ; sym (∸≤ x (y ∙ z) (≤-trans x≤y x≤x∙y)) ∸‿assoc x y z | inr x≥y with x ≤|≥ y ∙ z ∸‿assoc x y z | inr (k₁ , x≡y∙k₁) | inl (k₂ , y∙z≡x∙k₂) = ∸≤ k₁ z (k₂ , lemma) where lemma : z ≡ k₁ ∙ k₂ lemma = cancel y z (k₁ ∙ k₂) (alg-≤-trans x≡y∙k₁ y∙z≡x∙k₂) ∸‿assoc x y z | inr (k , x≡y∙k) | inr x≥y∙z with k ≤|≥ z ∸‿assoc x y z | inr (k₁ , x≡y∙k₁) | inr (k₂ , x≡y∙z∙k₂) | inl (k₃ , z≡k₁∙k₃) = [ lemma₁ ]⇒ ε ≡ k₂ ∙ k₃ ⟨ sym ⟩⇒ k₂ ∙ k₃ ≡ ε ⟨ zeroSumFree k₂ k₃ ⟩⇒ k₂ ≡ ε ⟨ sym ⟩⇒ ε ≡ k₂ ⇒∎ where lemma₃ = y ∙ k₁ ≡˘⟨ x≡y∙k₁ ⟩ x ≡⟨ x≡y∙z∙k₂ ⟩ (y ∙ z) ∙ k₂ ≡⟨ assoc y z k₂ ⟩ y ∙ (z ∙ k₂) ∎ lemma₂ = k₁ ∙ ε ≡⟨ ∙ε k₁ ⟩ k₁ ≡⟨ alg-≤-trans z≡k₁∙k₃ (cancel y k₁ (z ∙ k₂) lemma₃) ⟩ k₁ ∙ (k₃ ∙ k₂) ∎ lemma₁ = ε ≡⟨ cancel k₁ ε (k₃ ∙ k₂) lemma₂ ⟩ k₃ ∙ k₂ ≡⟨ comm k₃ k₂ ⟩ k₂ ∙ k₃ ∎ ∸‿assoc x y z | inr (k₁ , x≡y∙k₁) | inr (k₂ , x≡y∙z∙k₂) | inr (k₃ , k₁≡z∙k₃) = cancel z k₃ k₂ lemma₂ where lemma₁ = y ∙ k₁ ≡˘⟨ x≡y∙k₁ ⟩ x ≡⟨ x≡y∙z∙k₂ ⟩ (y ∙ z) ∙ k₂ ≡⟨ assoc y z k₂ ⟩ y ∙ (z ∙ k₂) ∎ lemma₂ = z ∙ k₃ ≡˘⟨ k₁≡z∙k₃ ⟩ k₁ ≡⟨ cancel y k₁ (z ∙ k₂) lemma₁ ⟩ z ∙ k₂ ∎ open cmm public ∸‿cancel : ∀ x y → (x ∙ y) ∸ x ≡ y ∸‿cancel x y with (x ∙ y) ≤|≥ x ... | inl x∙y≤x = sym (cancel x y ε (antisym x∙y≤x x≤x∙y ; sym (∙ε x))) ... | inr (k , x∙y≡x∙k) = sym (cancel x y k x∙y≡x∙k) ccmm : CCMM _ ccmm = record { ∸‿cancel = ∸‿cancel ; cmm = record { cmm ; ∸‿comm = ∸‿comm ; commutativeMonoid = commutativeMonoid } } open CCMM ccmm public using (cancelʳ; cancelˡ; ∸ε; ≺⇒<; ≤⇒<⇒≢ε; _⊔₂_; _⊓₂_; ≺-irrefl; ≤∸) ∸‿< : ∀ x y → x ≢ ε → y ≢ ε → x ∸ y < x ∸‿< x y x≢ε y≢ε = ≺⇒< (x ∸ y) x (∸‿≺ x y x≢ε y≢ε) ∸‿<-< : ∀ x y → x < y → x ≢ ε → y ∸ x < y ∸‿<-< x y x<y x≢ε = ∸‿< y x (λ y≡ε → x<y (x , sym (cong (_∙ x) y≡ε ; ε∙ x))) x≢ε 2× : 𝑆 → 𝑆 2× x = x ∙ x open import Relation.Binary.Lattice totalOrder double-max : ∀ x y → 2× (x ⊔ y) ≡ x ⊔₂ y double-max x y with x ≤|≥ y | y ≤|≥ x double-max x y | inl x≤y | inl y≤x = x ∙ x ≡⟨ cong (x ∙_) (antisym x≤y y≤x) ⟩ x ∙ y ≡˘⟨ ∙ε (x ∙ y) ⟩ (x ∙ y) ∙ ε ≡˘⟨ cong ((x ∙ y) ∙_) (ε∙ ε) ⟩ (x ∙ y) ∙ (ε ∙ ε) ∎ double-max x y | inl x≤y | inr (k , y≡x∙k) = y ∙ y ≡⟨ cong (y ∙_) y≡x∙k ⟩ y ∙ (x ∙ k) ≡˘⟨ assoc y x k ⟩ (y ∙ x) ∙ k ≡⟨ cong (_∙ k) (comm y x) ⟩ (x ∙ y) ∙ k ≡˘⟨ cong ((x ∙ y) ∙_) (ε∙ k) ⟩ (x ∙ y) ∙ (ε ∙ k) ∎ double-max x y | inr (k , x≡y∙k) | inl y≤x = x ∙ x ≡⟨ cong (x ∙_) x≡y∙k ⟩ x ∙ (y ∙ k) ≡˘⟨ assoc x y k ⟩ (x ∙ y) ∙ k ≡˘⟨ cong ((x ∙ y) ∙_) (∙ε k) ⟩ (x ∙ y) ∙ (k ∙ ε) ∎ double-max x y | inr (k₁ , x≡y∙k₁) | inr (k₂ , y≡x∙k₂) = x ∙ x ≡⟨ cong (x ∙_) (antisym (k₂ , y≡x∙k₂) (k₁ , x≡y∙k₁)) ⟩ x ∙ y ≡⟨ cong₂ _∙_ x≡y∙k₁ y≡x∙k₂ ⟩ (y ∙ k₁) ∙ (x ∙ k₂) ≡˘⟨ assoc (y ∙ k₁) x k₂ ⟩ ((y ∙ k₁) ∙ x) ∙ k₂ ≡⟨ cong (_∙ k₂) (comm (y ∙ k₁) x) ⟩ (x ∙ (y ∙ k₁)) ∙ k₂ ≡˘⟨ cong (_∙ k₂) (assoc x y k₁) ⟩ ((x ∙ y) ∙ k₁) ∙ k₂ ≡⟨ assoc (x ∙ y) k₁ k₂ ⟩ (x ∙ y) ∙ (k₁ ∙ k₂) ∎ open import Data.Sigma.Properties ≤-prop : ∀ x y → isProp (x ≤ y) ≤-prop x y (k₁ , y≡x∙k₁) (k₂ , y≡x∙k₂) = Σ≡Prop (λ _ → total⇒isSet _ _) (cancelˡ x k₁ k₂ (sym y≡x∙k₁ ; y≡x∙k₂)) open import Cubical.Foundations.HLevels using (isProp×) open import Data.Empty.Properties using (isProp¬) ≺-prop : ∀ x y → isProp (x ≺ y) ≺-prop x y (k₁ , y≡x∙k₁ , k₁≢ε) (k₂ , y≡x∙k₂ , k₂≢ε) = Σ≡Prop (λ k → isProp× (total⇒isSet _ _) (isProp¬ _)) (cancelˡ x k₁ k₂ (sym y≡x∙k₁ ; y≡x∙k₂)) -- We can construct the viterbi semiring by adjoining a top element to -- a tapom module Viterbi {ℓ₁} {ℓ₂} (tapom : TAPOM ℓ₁ ℓ₂) where open TAPOM tapom open import Relation.Binary.Construct.UpperBound totalOrder open import Relation.Binary.Lattice totalOrder ⟨⊓⟩∙ : _∙_ Distributesˡ _⊓_ ⟨⊓⟩∙ x y z with x <? y | (x ∙ z) <? (y ∙ z) ... | yes x<y | yes xz<yz = refl ... | no x≮y | no xz≮yz = refl ... | no x≮y | yes xz<yz = ⊥-elim (<⇒≱ xz<yz (≤-congʳ z (≮⇒≥ x≮y))) ... | yes x<y | no xz≮yz = antisym (≤-congʳ z (<⇒≤ x<y)) (≮⇒≥ xz≮yz) ∙⟨⊓⟩ : _∙_ Distributesʳ _⊓_ ∙⟨⊓⟩ x y z = comm x (y ⊓ z) ; ⟨⊓⟩∙ y z x ; cong₂ _⊓_ (comm y x) (comm z x) open UBSugar module NS where 𝑅 = ⌈∙⌉ 0# 1# : 𝑅 _*_ _+_ : 𝑅 → 𝑅 → 𝑅 1# = ⌈ ε ⌉ ⌈⊤⌉ * y = ⌈⊤⌉ ⌈ x ⌉ * ⌈⊤⌉ = ⌈⊤⌉ ⌈ x ⌉ * ⌈ y ⌉ = ⌈ x ∙ y ⌉ 0# = ⌈⊤⌉ ⌈⊤⌉ + y = y ⌈ x ⌉ + ⌈⊤⌉ = ⌈ x ⌉ ⌈ x ⌉ + ⌈ y ⌉ = ⌈ x ⊓ y ⌉ *-assoc : Associative _*_ *-assoc ⌈⊤⌉ _ _ = refl *-assoc ⌈ _ ⌉ ⌈⊤⌉ _ = refl *-assoc ⌈ _ ⌉ ⌈ _ ⌉ ⌈⊤⌉ = refl *-assoc ⌈ x ⌉ ⌈ y ⌉ ⌈ z ⌉ = cong ⌈_⌉ (assoc x y z) *-com : Commutative _*_ *-com ⌈⊤⌉ ⌈⊤⌉ = refl *-com ⌈⊤⌉ ⌈ _ ⌉ = refl *-com ⌈ _ ⌉ ⌈⊤⌉ = refl *-com ⌈ x ⌉ ⌈ y ⌉ = cong ⌈_⌉ (comm x y) ⟨+⟩* : _*_ Distributesˡ _+_ ⟨+⟩* ⌈⊤⌉ _ _ = refl ⟨+⟩* ⌈ _ ⌉ ⌈⊤⌉ ⌈⊤⌉ = refl ⟨+⟩* ⌈ _ ⌉ ⌈⊤⌉ ⌈ _ ⌉ = refl ⟨+⟩* ⌈ x ⌉ ⌈ y ⌉ ⌈⊤⌉ = refl ⟨+⟩* ⌈ x ⌉ ⌈ y ⌉ ⌈ z ⌉ = cong ⌈_⌉ (⟨⊓⟩∙ x y z) +-assoc : Associative _+_ +-assoc ⌈⊤⌉ _ _ = refl +-assoc ⌈ x ⌉ ⌈⊤⌉ _ = refl +-assoc ⌈ x ⌉ ⌈ _ ⌉ ⌈⊤⌉ = refl +-assoc ⌈ x ⌉ ⌈ y ⌉ ⌈ z ⌉ = cong ⌈_⌉ (⊓-assoc x y z) 0+ : ∀ x → 0# + x ≡ x 0+ ⌈⊤⌉ = refl 0+ ⌈ _ ⌉ = refl +0 : ∀ x → x + 0# ≡ x +0 ⌈ _ ⌉ = refl +0 ⌈⊤⌉ = refl 1* : ∀ x → 1# * x ≡ x 1* ⌈⊤⌉ = refl 1* ⌈ x ⌉ = cong ⌈_⌉ (ε∙ x) *1 : ∀ x → x * 1# ≡ x *1 ⌈⊤⌉ = refl *1 ⌈ x ⌉ = cong ⌈_⌉ (∙ε x) 0* : ∀ x → 0# * x ≡ 0# 0* _ = refl open NS nearSemiring : NearSemiring _ nearSemiring = record { NS } +-comm : Commutative _+_ +-comm ⌈⊤⌉ ⌈⊤⌉ = refl +-comm ⌈⊤⌉ ⌈ _ ⌉ = refl +-comm ⌈ _ ⌉ ⌈⊤⌉ = refl +-comm ⌈ x ⌉ ⌈ y ⌉ = cong ⌈_⌉ (⊓-comm x y) *0 : ∀ x → x * ⌈⊤⌉ ≡ ⌈⊤⌉ *0 ⌈ _ ⌉ = refl *0 ⌈⊤⌉ = refl *⟨+⟩ : _*_ Distributesʳ _+_ *⟨+⟩ x y z = *-com x (y + z) ; ⟨+⟩* y z x ; cong₂ _+_ (*-com y x) (*-com z x) viterbi : ∀ {ℓ₁ ℓ₂} → TAPOM ℓ₁ ℓ₂ → Semiring ℓ₁ viterbi tapom = record { Viterbi tapom }
{ "alphanum_fraction": 0.4520532099, "avg_line_length": 30.875, "ext": "agda", "hexsha": "dcc1e1fd5be07a2e1c1c96840e0eb5f632fd81ce", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Algebra/Monus.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Algebra/Monus.agda", "max_line_length": 149, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Algebra/Monus.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 9746, "size": 17290 }
------------------------------------------------------------------------ -- Fixpoint combinators ------------------------------------------------------------------------ {-# OPTIONS --cubical --safe #-} module Partiality-monad.Inductive.Fixpoints where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude hiding (⊥) open import Bijection equality-with-J using (_↔_) import Equivalence equality-with-J as Eq open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J open import H-level.Closure equality-with-J open import Monad equality-with-J hiding (sequence) open import Univalence-axiom equality-with-J open import Partiality-algebra using (Partiality-algebra) import Partiality-algebra.Fixpoints as PAF open import Partiality-algebra.Monotone open import Partiality-algebra.Omega-continuous open import Partiality-algebra.Pi as Pi hiding (at) open import Partiality-monad.Inductive open import Partiality-monad.Inductive.Monad open import Partiality-monad.Inductive.Monotone using ([_⊥→_⊥]⊑) open import Partiality-monad.Inductive.Omega-continuous ------------------------------------------------------------------------ -- The fixpoint combinator machinery instantiated with the partiality -- monad module _ {a} {A : Type a} where open PAF.Fix {P = partiality-algebra A} public open [_⊥→_⊥] -- A variant of fix. fix′ : (A → A ⊥) → A ⊥ fix′ f = fix (monotone-function (f ∗)) -- This variant also produces a kind of least fixpoint. fix′-is-fixpoint-combinator : (f : A → A ⊥) → fix′ f ≡ fix′ f >>= f fix′-is-fixpoint-combinator f = fix′ f ≡⟨⟩ fix (monotone-function (f ∗)) ≡⟨ fix-is-fixpoint-combinator (f ∗) ⟩∎ fix (monotone-function (f ∗)) >>= f ∎ fix′-is-least : (f : A → A ⊥) → (x : A ⊥) → x >>= f ⊑ x → fix′ f ⊑ x fix′-is-least f = fix-is-least (monotone-function (f ∗)) -- Taking steps that are "twice as large" does not affect the end -- result. fix′-∘ : (f : A → A ⊥) → fix′ (λ x → f x >>= f) ≡ fix′ f fix′-∘ f = fix′ (λ x → f x >>= f) ≡⟨⟩ fix (monotone-function ((λ x → f x >>= f) ∗)) ≡⟨ cong fix (_↔_.to equality-characterisation-monotone λ (x : A ⊥) → (x >>= λ y → f y >>= f) ≡⟨ associativity x f f ⟩∎ x >>= f >>= f ∎) ⟩ fix (monotone-function (f ∗) ∘⊑ monotone-function (f ∗)) ≡⟨ fix-∘ (monotone-function (f ∗)) ⟩∎ fix′ f ∎ -- Unary Scott induction for fix′. fix′-induction₁ : ∀ {p} (P : A ⊥ → Type p) (P⊥ : P never) (P⨆ : ∀ s → (∀ n → P (s [ n ])) → P (⨆ s)) (f : A → A ⊥) → (∀ x → P x → P (x >>= f)) → P (fix′ f) fix′-induction₁ P P⊥ P⨆ f = fix-induction₁ P P⊥ P⨆ ([_⊥→_⊥].monotone-function (f ∗)) -- N-ary Scott induction. module _ {a p} n (As : Fin n → Type a) (P : (∀ i → As i ⊥) → Type p) (P⊥ : P (λ _ → never)) (P⨆ : ∀ ss → (∀ n → P (λ i → ss i [ n ])) → P (⨆ ∘ ss)) where open PAF.N-ary n As (λ i → partiality-algebra (As i)) P P⊥ P⨆ public fix′-induction : (fs : ∀ i → As i → As i ⊥) → (∀ xs → P xs → P (λ i → xs i >>= fs i)) → P (fix′ ∘ fs) fix′-induction fs = fix-induction (λ i → [_⊥→_⊥].monotone-function (fs i ∗)) ------------------------------------------------------------------------ -- The fixpoint combinator machinery instantiated with dependent -- functions to the partiality monad module _ {a b} (A : Type a) (B : A → Type b) where -- Partial function transformers. Trans : Type (a ⊔ b) Trans = ((x : A) → B x ⊥) → ((x : A) → B x ⊥) -- A partiality algebra. Pi : Partiality-algebra (a ⊔ b) (a ⊔ b) ((x : A) → B x) Pi = Π A (partiality-algebra ∘ B) -- Monotone partial function transformers. Trans-⊑ : Type (a ⊔ b) Trans-⊑ = [ Pi ⟶ Pi ]⊑ private sanity-check : Trans-⊑ → Trans sanity-check = [_⟶_]⊑.function -- Partial function transformers that are ω-continuous. Trans-ω : Type (a ⊔ b) Trans-ω = [ Pi ⟶ Pi ] module _ {a b} {A : Type a} {B : A → Type b} where module Trans-⊑ = [_⟶_]⊑ {P₁ = Pi A B} {P₂ = Pi A B} module Trans-ω = [_⟶_] {P₁ = Pi A B} {P₂ = Pi A B} private module F = PAF.Fix {P = Pi A B} -- Applies an increasing sequence of functions to a value. at : (∃ λ (f : ℕ → (x : A) → B x ⊥) → ∀ n x → f n x ⊑ f (suc n) x) → (x : A) → ∃ λ (f : ℕ → B x ⊥) → ∀ n → f n ⊑ f (suc n) at = Pi.at (partiality-algebra ∘ B) -- Repeated application of a monotone partial function transformer -- to the least element. app→ : Trans-⊑ A B → ℕ → ((x : A) → B x ⊥) app→ = F.app -- The increasing sequence fix→-sequence f consists of the elements -- const never, Trans-⊑.function f (const never), and so on. This -- sequence is used in the implementation of fix→. fix→-sequence : Trans-⊑ A B → Partiality-algebra.Increasing-sequence (Pi A B) fix→-sequence = F.fix-sequence -- A fixpoint combinator. fix→ : Trans-⊑ A B → ((x : A) → B x ⊥) fix→ = F.fix -- The fixpoint combinator produces fixpoints for ω-continuous -- arguments. fix→-is-fixpoint-combinator : (f : Trans-ω A B) → fix→ (Trans-ω.monotone-function f) ≡ Trans-ω.function f (fix→ (Trans-ω.monotone-function f)) fix→-is-fixpoint-combinator = F.fix-is-fixpoint-combinator -- The result of the fixpoint combinator is pointwise smaller than -- or equal to every "pointwise post-fixpoint". fix→-is-least : (f : Trans-⊑ A B) → ∀ g → (∀ x → Trans-⊑.function f g x ⊑ g x) → ∀ x → fix→ f x ⊑ g x fix→-is-least = F.fix-is-least -- Taking steps that are "twice as large" does not affect the end -- result. fix→-∘ : (f : Trans-⊑ A B) → fix→ (f ∘⊑ f) ≡ fix→ f fix→-∘ = F.fix-∘ -- N-ary Scott induction. module _ {a b p} n (As : Fin n → Type a) (Bs : (i : Fin n) → As i → Type b) (P : (∀ i → (x : As i) → Bs i x ⊥) → Type p) (P⊥ : P (λ _ _ → never)) (P⨆ : (ss : ∀ i (x : As i) → Increasing-sequence (Bs i x)) → (∀ n → P (λ i xs → ss i xs [ n ])) → P (λ i xs → ⨆ (ss i xs))) (fs : ∀ i → Trans-⊑ (As i) (Bs i)) where private module N = PAF.N-ary n (λ i → (x : As i) → Bs i x) (λ i → Π (As i) (partiality-algebra ∘ Bs i)) P P⊥ (λ _ → P⨆ _) fs -- Generalised. fix→-induction′ : (∀ n → P (λ i → app→ (fs i) n) → P (λ i → app→ (fs i) (suc n))) → P (λ i → fix→ (fs i)) fix→-induction′ = N.fix-induction′ -- Basic. fix→-induction : ((gs : ∀ i (x : As i) → Bs i x ⊥) → P gs → P (λ i → Trans-⊑.function (fs i) (gs i))) → P (λ i → fix→ (fs i)) fix→-induction = N.fix-induction -- Unary Scott induction. fix→-induction₁ : ∀ {a b p} {A : Type a} {B : A → Type b} (P : ((x : A) → B x ⊥) → Type p) → P (λ _ → never) → ((s : (x : A) → Increasing-sequence (B x)) → (∀ n → P (λ x → s x [ n ])) → P (λ x → ⨆ (s x))) → (f : Trans-⊑ A B) → (∀ g → P g → P (Trans-⊑.function f g)) → P (fix→ f) fix→-induction₁ P P⊥ P⨆ = PAF.fix-induction₁ P P⊥ (λ _ → P⨆ _) ------------------------------------------------------------------------ -- Some combinators that can be used to construct ω-continuous partial -- function transformers, for use with fix→ -- A type used by these combinators. record Partial {a b c} (A : Type a) (B : A → Type b) (C : Type c) : Type (a ⊔ b ⊔ lsuc c) where field -- A function that is allowed to make "recursive calls" of type -- (x : A) → B x ⊥. function : ((x : A) → B x ⊥) → C ⊥ -- The function must be monotone. monotone : ∀ {rec₁ rec₂} → (∀ x → rec₁ x ⊑ rec₂ x) → function rec₁ ⊑ function rec₂ -- The function can be turned into an increasing sequence. sequence : ((x : A) → Increasing-sequence (B x)) → Increasing-sequence C sequence recs = (λ n → function (λ x → recs x [ n ])) , (λ n → monotone (λ x → increasing (recs x) n)) field -- The function must be ω-continuous in the following sense. ω-continuous : (recs : (x : A) → Increasing-sequence (B x)) → function (⨆ ∘ recs) ≡ ⨆ (sequence recs) -- The first two arguments of Partial specify the domain and codomain -- of "recursive calls". rec : ∀ {a b} {A : Type a} {B : A → Type b} → (x : A) → Partial A B (B x) rec x = record { function = _$ x ; monotone = _$ x ; ω-continuous = λ _ → refl } -- Turns certain Partial-valued functions into monotone partial -- function transformers. transformer : ∀ {a b} {A : Type a} {B : A → Type b} → ((x : A) → Partial A B (B x)) → Trans-⊑ A B transformer f = record { function = λ g x → function (f x) g ; monotone = λ g₁⊑g₂ x → monotone (f x) g₁⊑g₂ } where open Partial -- Turns certain Partial-valued functions into ω-continuous partial -- function transformers. transformer-ω : ∀ {a b} {A : Type a} {B : A → Type b} → ((x : A) → Partial A B (B x)) → Trans-ω A B transformer-ω f = record { monotone-function = transformer f ; ω-continuous = λ _ → ⟨ext⟩ λ x → ω-continuous (f x) _ } where open Partial -- A fixpoint combinator. fixP : ∀ {a b} {A : Type a} {B : A → Type b} → ((x : A) → Partial A B (B x)) → ((x : A) → B x ⊥) fixP {A = A} {B} = ((x : A) → Partial A B (B x)) ↝⟨ transformer ⟩ Trans-⊑ A B ↝⟨ fix→ ⟩□ ((x : A) → B x ⊥) □ -- The fixpoint combinator produces fixpoints. fixP-is-fixpoint-combinator : ∀ {a b} {A : Type a} {B : A → Type b} → (f : (x : A) → Partial A B (B x)) → fixP f ≡ flip (Partial.function ∘ f) (fixP f) fixP-is-fixpoint-combinator = fix→-is-fixpoint-combinator ∘ transformer-ω -- The result of the fixpoint combinator is pointwise smaller than -- or equal to every "pointwise post-fixpoint". fixP-is-least : ∀ {a b} {A : Type a} {B : A → Type b} (f : (x : A) → Partial A B (B x)) → ∀ g → (∀ x → Partial.function (f x) g ⊑ g x) → ∀ x → fixP f x ⊑ g x fixP-is-least = fix→-is-least ∘ transformer -- Composition of certain Partial-valued functions. infixr 40 _∘P_ _∘P_ : ∀ {a b} {A : Type a} {B : A → Type b} → ((x : A) → Partial A B (B x)) → ((x : A) → Partial A B (B x)) → ((x : A) → Partial A B (B x)) Partial.function ((f ∘P g) x) = λ h → Partial.function (f x) λ y → Partial.function (g y) h Partial.monotone ((f ∘P g) x) = λ hyp → Partial.monotone (f x) λ y → Partial.monotone (g y) hyp Partial.ω-continuous ((f ∘P g) x) = λ recs → function (f x) (λ y → function (g y) (⨆ ∘ recs)) ≡⟨ cong (function (f x)) (⟨ext⟩ λ y → ω-continuous (g y) recs) ⟩ function (f x) (λ y → ⨆ (sequence (g y) recs)) ≡⟨ ω-continuous (f x) (λ y → sequence (g y) recs) ⟩∎ ⨆ (sequence (f x) λ y → sequence (g y) recs) ∎ where open Partial -- Taking steps that are "twice as large" does not affect the end -- result. fixP-∘ : ∀ {a b} {A : Type a} {B : A → Type b} (f : (x : A) → Partial A B (B x)) → fixP (f ∘P f) ≡ fixP f fixP-∘ f = fix→ (transformer (f ∘P f)) ≡⟨⟩ fix→ (transformer f ∘⊑ transformer f) ≡⟨ fix→-∘ (transformer f) ⟩∎ fix→ (transformer f) ∎ -- N-ary Scott induction. module _ {a b p} n (As : Fin n → Type a) (Bs : (i : Fin n) → As i → Type b) (P : (∀ i (x : As i) → Bs i x ⊥) → Type p) (P⊥ : P (λ _ _ → never)) (P⨆ : (ss : ∀ i (x : As i) → Increasing-sequence (Bs i x)) → (∀ n → P (λ i xs → ss i xs [ n ])) → P (λ i xs → ⨆ (ss i xs))) (fs : ∀ i (x : As i) → Partial (As i) (Bs i) (Bs i x)) where -- Generalised. fixP-induction′ : (∀ n → P (λ i → app→ (transformer (fs i)) n) → P (λ i → app→ (transformer (fs i)) (suc n))) → P (λ i → fixP (fs i)) fixP-induction′ = fix→-induction′ n As Bs P P⊥ P⨆ (transformer ∘ fs) -- Basic. fixP-induction : ((gs : ∀ i (x : As i) → Bs i x ⊥) → P gs → P (λ i xs → Partial.function (fs i xs) (gs i))) → P (λ i → fixP (fs i)) fixP-induction = fix→-induction n As Bs P P⊥ P⨆ (transformer ∘ fs) -- Unary Scott induction. fixP-induction₁ : ∀ {a b p} {A : Type a} {B : A → Type b} (P : ((x : A) → B x ⊥) → Type p) → P (λ _ → never) → ((s : (x : A) → Increasing-sequence (B x)) → (∀ n → P (λ x → s x [ n ])) → P (λ x → ⨆ (s x))) → (f : (x : A) → Partial A B (B x)) → (∀ g → P g → P (λ x → Partial.function (f x) g)) → P (fixP f) fixP-induction₁ P P⊥ P⨆ f = fix→-induction₁ P P⊥ P⨆ (transformer f) -- Equality characterisation lemma for Partial. equality-characterisation-Partial : ∀ {a b c} {A : Type a} {B : A → Type b} {C : Type c} {f g : Partial A B C} → (∀ rec → Partial.function f rec ≡ Partial.function g rec) ↔ f ≡ g equality-characterisation-Partial {f = f} {g} = (∀ rec → function f rec ≡ function g rec) ↔⟨ Eq.extensionality-isomorphism bad-ext ⟩ function f ≡ function g ↝⟨ ignore-propositional-component (Σ-closure 1 (implicit-Π-closure ext 1 λ _ → implicit-Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ⊑-propositional) λ _ → Π-closure ext 1 λ _ → ⊥-is-set) ⟩ (function f , _) ≡ (function g , _) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ lemma) ⟩□ f ≡ g □ where open Partial lemma : Partial _ _ _ ↔ ∃ λ f → ∃ λ (_ : ∀ {rec₁ rec₂} → (∀ x → rec₁ x ⊑ _) → f rec₁ ⊑ _) → _ lemma = record { surjection = record { logical-equivalence = record { to = λ x → function x , monotone x , ω-continuous x ; from = λ { (f , m , ω) → record { function = f ; monotone = λ {rec₁ rec₂} → m {rec₁ = rec₁} {rec₂ = rec₂} ; ω-continuous = ω } } } ; right-inverse-of = λ _ → refl } ; left-inverse-of = λ _ → refl } -- "Non-recursive" computations can be converted into possibly -- recursive ones. non-recursive : ∀ {a b c} {A : Type a} {B : A → Type b} {C : Type c} → C ⊥ → Partial A B C non-recursive x = record { function = const x ; monotone = const (x ■) ; ω-continuous = λ _ → x ≡⟨ sym ⨆-const ⟩∎ ⨆ (constˢ x) ∎ } instance -- Partial A B is a monad. partial-raw-monad : ∀ {a b c} {A : Type a} {B : A → Type b} → Raw-monad (Partial {c = c} A B) Raw-monad.return partial-raw-monad x = non-recursive (return x) Raw-monad._>>=_ partial-raw-monad x f = record { function = λ rec → function x rec >>=′ λ y → function (f y) rec ; monotone = λ rec⊑rec → monotone x rec⊑rec >>=-mono λ y → monotone (f y) rec⊑rec ; ω-continuous = λ recs → (function x (⨆ ∘ recs) >>=′ λ y → function (f y) (⨆ ∘ recs)) ≡⟨ cong₂ _>>=′_ (ω-continuous x recs) (⟨ext⟩ λ y → ω-continuous (f y) recs) ⟩ (⨆ (sequence x recs) >>=′ λ y → ⨆ (sequence (f y) recs)) ≡⟨ ⨆->>= ⟩ ⨆ ( (λ n → function x (λ z → recs z [ n ]) >>=′ λ y → ⨆ (sequence (f y) recs)) , _ ) ≡⟨ ⨆>>=⨆≡⨆>>= (sequence x recs) (λ y → sequence (f y) recs) ⟩∎ ⨆ ( (λ n → function x (λ z → recs z [ n ]) >>=′ λ y → function (f y) (λ z → recs z [ n ])) , _ ) ∎ } where open Partial partial-monad : ∀ {a b c} {A : Type a} {B : A → Type b} → Monad (Partial {c = c} A B) Monad.raw-monad partial-monad = partial-raw-monad Monad.left-identity partial-monad _ f = _↔_.to equality-characterisation-Partial (λ h → left-identity _ (λ y → Partial.function (f y) h)) Monad.right-identity partial-monad _ = _↔_.to equality-characterisation-Partial (λ _ → right-identity _) Monad.associativity partial-monad x _ _ = _↔_.to equality-characterisation-Partial (λ h → associativity (Partial.function x h) _ _)
{ "alphanum_fraction": 0.4875220718, "avg_line_length": 32.0566037736, "ext": "agda", "hexsha": "a47665782f9224ca0cb16c17e9d80b69a11380c4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-monad/Inductive/Fixpoints.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-monad/Inductive/Fixpoints.agda", "max_line_length": 130, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-monad/Inductive/Fixpoints.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 5946, "size": 16990 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import cw.CW open import cw.FinCW open import cw.FinBoundary open import cohomology.ChainComplex open import cohomology.Theory module cw.cohomology.AxiomaticIsoCellular (OT : OrdinaryTheory lzero) where open OrdinaryTheory OT open import cw.cohomology.cellular.ChainComplex import cw.cohomology.reconstructed.cochain.Complex OT as RCC open import cw.cohomology.ReconstructedCohomologyGroups OT open import cw.cohomology.ReconstructedCochainsEquivCellularCochains OT axiomatic-iso-cellular : ∀ m {n} (⊙fin-skel : ⊙FinSkeleton n) → C m ⊙⟦ ⊙⦉ ⊙fin-skel ⦊ ⟧ ≃ᴳ cohomology-group (cochain-complex ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ (FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel)) (FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel)) (C2-abgroup 0)) m axiomatic-iso-cellular m ⊙fin-skel = C m ⊙⟦ ⊙⦉ ⊙fin-skel ⦊ ⟧ ≃ᴳ⟨ reconstructed-cohomology-group m ⊙⦉ ⊙fin-skel ⦊ (⊙FinSkeleton-has-cells-with-choice 0 ⊙fin-skel lzero) ⟩ cohomology-group (RCC.cochain-complex ⊙⦉ ⊙fin-skel ⦊) m ≃ᴳ⟨ frc-iso-fcc ⊙fin-skel m ⟩ cohomology-group (cochain-complex ⦉ ⊙FinSkeleton.skel ⊙fin-skel ⦊ (FinSkeleton-has-cells-with-dec-eq (⊙FinSkeleton.skel ⊙fin-skel)) (FinSkeleton-has-degrees-with-finite-support (⊙FinSkeleton.skel ⊙fin-skel)) (C2-abgroup 0)) m ≃ᴳ∎
{ "alphanum_fraction": 0.6752988048, "avg_line_length": 38.6153846154, "ext": "agda", "hexsha": "19d964a3e3e98438856158bc2cbe7d1ea0f22278", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/cw/cohomology/AxiomaticIsoCellular.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/cw/cohomology/AxiomaticIsoCellular.agda", "max_line_length": 85, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/cw/cohomology/AxiomaticIsoCellular.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 546, "size": 1506 }
open import System.IO using ( _>>_ ; putStr ; commit ) module System.IO.Examples.HelloWorld where main = putStr "Hello, World\n" >> commit
{ "alphanum_fraction": 0.7163120567, "avg_line_length": 23.5, "ext": "agda", "hexsha": "08eb5614a0685c416a4b978b49af7d68efe7107b", "lang": "Agda", "max_forks_count": 3909, "max_forks_repo_forks_event_max_datetime": "2019-03-31T18:39:08.000Z", "max_forks_repo_forks_event_min_datetime": "2018-10-03T15:07:19.000Z", "max_forks_repo_head_hexsha": "def0f44737e02fb40063cd347e93e456658e2532", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "PushpneetSingh/Hello-world", "max_forks_repo_path": "Agda/Hello-world.agda", "max_issues_count": 1162, "max_issues_repo_head_hexsha": "def0f44737e02fb40063cd347e93e456658e2532", "max_issues_repo_issues_event_max_datetime": "2018-10-18T14:17:52.000Z", "max_issues_repo_issues_event_min_datetime": "2018-10-03T15:05:49.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "PushpneetSingh/Hello-world", "max_issues_repo_path": "Agda/Hello-world.agda", "max_line_length": 54, "max_stars_count": 1428, "max_stars_repo_head_hexsha": "def0f44737e02fb40063cd347e93e456658e2532", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "PushpneetSingh/Hello-world", "max_stars_repo_path": "Agda/Hello-world.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-31T18:38:36.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-03T15:15:17.000Z", "num_tokens": 38, "size": 141 }
------------------------------------------------------------------------ -- Grammars defined as functions from non-terminals to productions ------------------------------------------------------------------------ {-# OPTIONS --safe #-} module Grammar.Non-terminal where open import Algebra open import Category.Monad open import Data.Bool open import Data.Bool.Properties open import Data.Char open import Data.Empty open import Data.List hiding (unfold) open import Data.List.Properties open import Data.Maybe hiding (_>>=_) open import Data.Maybe.Categorical as MaybeC open import Data.Nat open import Data.Product as Product open import Data.Unit open import Function open import Level using (Lift; lift) open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_) open import Relation.Nullary open import Tactic.MonoidSolver private module LM {A : Set} = Monoid (++-monoid A) open module MM {f} = RawMonadPlus (MaybeC.monadPlus {f = f}) using () renaming (_<$>_ to _<$>M_; _⊛_ to _⊛M_; _>>=_ to _>>=M_; _∣_ to _∣M_) open import Utilities ------------------------------------------------------------------------ -- Grammars -- Productions. (Note that productions can contain choices.) infix 30 _⋆ infixl 20 _⊛_ _<⊛_ infixl 15 _>>=_ infixl 10 _∣_ data Prod (NT : Set → Set₁) : Set → Set₁ where ! : ∀ {A} → NT A → Prod NT A fail : ∀ {A} → Prod NT A return : ∀ {A} → A → Prod NT A token : Prod NT Char tok : Char → Prod NT Char _⊛_ : ∀ {A B} → Prod NT (A → B) → Prod NT A → Prod NT B _<⊛_ : ∀ {A B} → Prod NT A → Prod NT B → Prod NT A _>>=_ : ∀ {A B} → Prod NT A → (A → Prod NT B) → Prod NT B _∣_ : ∀ {A} → Prod NT A → Prod NT A → Prod NT A _⋆ : ∀ {A} → Prod NT A → Prod NT (List A) -- Grammars. Grammar : (Set → Set₁) → Set₁ Grammar NT = ∀ A → NT A → Prod NT A -- An empty non-terminal type. Empty-NT : Set → Set₁ Empty-NT _ = Lift _ ⊥ -- A corresponding grammar. empty-grammar : Grammar Empty-NT empty-grammar _ (lift ()) ------------------------------------------------------------------------ -- Production combinators -- Map. infixl 20 _<$>_ _<$_ _<$>_ : ∀ {NT A B} → (A → B) → Prod NT A → Prod NT B f <$> p = return f ⊛ p _<$_ : ∀ {NT A B} → A → Prod NT B → Prod NT A x <$ p = return x <⊛ p -- Various sequencing operators. infixl 20 _⊛>_ infixl 15 _>>_ _>>_ : ∀ {NT A B} → Prod NT A → Prod NT B → Prod NT B p₁ >> p₂ = (λ _ x → x) <$> p₁ ⊛ p₂ _⊛>_ : ∀ {NT A B} → Prod NT A → Prod NT B → Prod NT B _⊛>_ = _>>_ -- Kleene plus. infix 30 _+ _+ : ∀ {NT A} → Prod NT A → Prod NT (List A) p + = _∷_ <$> p ⊛ p ⋆ -- Elements separated by something. infixl 18 _sep-by_ _sep-by_ : ∀ {NT A B} → Prod NT A → Prod NT B → Prod NT (List A) g sep-by sep = _∷_ <$> g ⊛ (sep >> g) ⋆ -- A production for tokens satisfying a given predicate. if-true : ∀ {NT} (b : Bool) → Prod NT (T b) if-true true = return tt if-true false = fail sat : ∀ {NT} (p : Char → Bool) → Prod NT (∃ λ t → T (p t)) sat p = token >>= λ t → _,_ t <$> if-true (p t) -- A production for whitespace. whitespace : ∀ {NT} → Prod NT Char whitespace = tok ' ' ∣ tok '\n' -- A production for a given string. string : ∀ {NT} → List Char → Prod NT (List Char) string [] = return [] string (t ∷ s) = _∷_ <$> tok t ⊛ string s -- A production for the given string, possibly followed by some -- whitespace. symbol : ∀ {NT} → List Char → Prod NT (List Char) symbol s = string s <⊛ whitespace ⋆ ------------------------------------------------------------------------ -- Semantics infix 4 [_]_∈_·_ data [_]_∈_·_ {NT : Set → Set₁} (g : Grammar NT) : ∀ {A} → A → Prod NT A → List Char → Set₁ where !-sem : ∀ {A} {nt : NT A} {x s} → [ g ] x ∈ g A nt · s → [ g ] x ∈ ! nt · s return-sem : ∀ {A} {x : A} → [ g ] x ∈ return x · [] token-sem : ∀ {t} → [ g ] t ∈ token · [ t ] tok-sem : ∀ {t} → [ g ] t ∈ tok t · [ t ] ⊛-sem : ∀ {A B} {p₁ : Prod NT (A → B)} {p₂ : Prod NT A} {f x s₁ s₂} → [ g ] f ∈ p₁ · s₁ → [ g ] x ∈ p₂ · s₂ → [ g ] f x ∈ p₁ ⊛ p₂ · s₁ ++ s₂ <⊛-sem : ∀ {A B} {p₁ : Prod NT A} {p₂ : Prod NT B} {x y s₁ s₂} → [ g ] x ∈ p₁ · s₁ → [ g ] y ∈ p₂ · s₂ → [ g ] x ∈ p₁ <⊛ p₂ · s₁ ++ s₂ >>=-sem : ∀ {A B} {p₁ : Prod NT A} {p₂ : A → Prod NT B} {x y s₁ s₂} → [ g ] x ∈ p₁ · s₁ → [ g ] y ∈ p₂ x · s₂ → [ g ] y ∈ p₁ >>= p₂ · s₁ ++ s₂ left-sem : ∀ {A} {p₁ p₂ : Prod NT A} {x s} → [ g ] x ∈ p₁ · s → [ g ] x ∈ p₁ ∣ p₂ · s right-sem : ∀ {A} {p₁ p₂ : Prod NT A} {x s} → [ g ] x ∈ p₂ · s → [ g ] x ∈ p₁ ∣ p₂ · s ⋆-[]-sem : ∀ {A} {p : Prod NT A} → [ g ] [] ∈ p ⋆ · [] ⋆-+-sem : ∀ {A} {p : Prod NT A} {xs s} → [ g ] xs ∈ p + · s → [ g ] xs ∈ p ⋆ · s -- Cast lemma. cast : ∀ {NT g A} {p : Prod NT A} {x s₁ s₂} → s₁ ≡ s₂ → [ g ] x ∈ p · s₁ → [ g ] x ∈ p · s₂ cast P.refl = id ------------------------------------------------------------------------ -- Semantics combinators <$>-sem : ∀ {NT} {g : Grammar NT} {A B} {f : A → B} {x p s} → [ g ] x ∈ p · s → [ g ] f x ∈ f <$> p · s <$>-sem x∈ = ⊛-sem return-sem x∈ <$-sem : ∀ {NT g A B} {p : Prod NT B} {x : A} {y s} → [ g ] y ∈ p · s → [ g ] x ∈ x <$ p · s <$-sem y∈ = <⊛-sem return-sem y∈ >>-sem : ∀ {NT g A B} {p₁ : Prod NT A} {p₂ : Prod NT B} {x y s₁ s₂} → [ g ] x ∈ p₁ · s₁ → [ g ] y ∈ p₂ · s₂ → [ g ] y ∈ p₁ >> p₂ · s₁ ++ s₂ >>-sem x∈ y∈ = ⊛-sem (⊛-sem return-sem x∈) y∈ ⊛>-sem : ∀ {NT g A B} {p₁ : Prod NT A} {p₂ : Prod NT B} {x y s₁ s₂} → [ g ] x ∈ p₁ · s₁ → [ g ] y ∈ p₂ · s₂ → [ g ] y ∈ p₁ ⊛> p₂ · s₁ ++ s₂ ⊛>-sem = >>-sem +-sem : ∀ {NT g A} {p : Prod NT A} {x xs s₁ s₂} → [ g ] x ∈ p · s₁ → [ g ] xs ∈ p ⋆ · s₂ → [ g ] x ∷ xs ∈ p + · s₁ ++ s₂ +-sem x∈ xs∈ = ⊛-sem (⊛-sem return-sem x∈) xs∈ ⋆-∷-sem : ∀ {NT g A} {p : Prod NT A} {x xs s₁ s₂} → [ g ] x ∈ p · s₁ → [ g ] xs ∈ p ⋆ · s₂ → [ g ] x ∷ xs ∈ p ⋆ · s₁ ++ s₂ ⋆-∷-sem x∈ xs∈ = ⋆-+-sem (+-sem x∈ xs∈) ⋆-⋆-sem : ∀ {NT g A} {p : Prod NT A} {xs₁ xs₂ s₁ s₂} → [ g ] xs₁ ∈ p ⋆ · s₁ → [ g ] xs₂ ∈ p ⋆ · s₂ → [ g ] xs₁ ++ xs₂ ∈ p ⋆ · s₁ ++ s₂ ⋆-⋆-sem ⋆-[]-sem xs₂∈ = xs₂∈ ⋆-⋆-sem (⋆-+-sem (⊛-sem (⊛-sem {s₂ = s₁} return-sem x∈) xs₁∈)) xs₂∈ = cast (P.sym $ LM.assoc s₁ _ _) (⋆-∷-sem x∈ (⋆-⋆-sem xs₁∈ xs₂∈)) +-∷-sem : ∀ {NT g A} {p : Prod NT A} {x xs s₁ s₂} → [ g ] x ∈ p · s₁ → [ g ] xs ∈ p + · s₂ → [ g ] x ∷ xs ∈ p + · s₁ ++ s₂ +-∷-sem x∈ xs∈ = +-sem x∈ (⋆-+-sem xs∈) +-⋆-sem : ∀ {NT g A} {p : Prod NT A} {xs₁ xs₂ s₁ s₂} → [ g ] xs₁ ∈ p + · s₁ → [ g ] xs₂ ∈ p ⋆ · s₂ → [ g ] xs₁ ++ xs₂ ∈ p + · s₁ ++ s₂ +-⋆-sem (⊛-sem (⊛-sem {s₂ = s₁} return-sem x∈) xs₁∈) xs₂∈ = cast (P.sym $ LM.assoc s₁ _ _) (+-sem x∈ (⋆-⋆-sem xs₁∈ xs₂∈)) sep-by-sem-singleton : ∀ {NT g A B} {p : Prod NT A} {sep : Prod NT B} {x s} → [ g ] x ∈ p · s → [ g ] [ x ] ∈ p sep-by sep · s sep-by-sem-singleton x∈ = cast (proj₂ LM.identity _) (⊛-sem (<$>-sem x∈) ⋆-[]-sem) sep-by-sem-∷ : ∀ {NT g A B} {p : Prod NT A} {sep : Prod NT B} {x y xs s₁ s₂ s₃} → [ g ] x ∈ p · s₁ → [ g ] y ∈ sep · s₂ → [ g ] xs ∈ p sep-by sep · s₃ → [ g ] x ∷ xs ∈ p sep-by sep · s₁ ++ s₂ ++ s₃ sep-by-sem-∷ {s₂ = s₂} x∈ y∈ (⊛-sem (⊛-sem return-sem x′∈) xs∈) = ⊛-sem (<$>-sem x∈) (cast (LM.assoc s₂ _ _) (⋆-∷-sem (>>-sem y∈ x′∈) xs∈)) if-true-sem : ∀ {NT} {g : Grammar NT} {b} (t : T b) → [ g ] t ∈ if-true b · [] if-true-sem {b = true} _ = return-sem if-true-sem {b = false} () sat-sem : ∀ {NT} {g : Grammar NT} {p t} (pt : T (p t)) → [ g ] (t , pt) ∈ sat p · [ t ] sat-sem pt = >>=-sem token-sem (<$>-sem (if-true-sem pt)) whitespace-sem-space : ∀ {NT} {g : Grammar NT} → [ g ] ' ' ∈ whitespace · [ ' ' ] whitespace-sem-space = left-sem tok-sem whitespace-sem-newline : ∀ {NT} {g : Grammar NT} → [ g ] '\n' ∈ whitespace · [ '\n' ] whitespace-sem-newline = right-sem tok-sem string-sem : ∀ {NT} {g : Grammar NT} {s} → [ g ] s ∈ string s · s string-sem {s = []} = return-sem string-sem {s = t ∷ s} = ⊛-sem (<$>-sem tok-sem) string-sem symbol-sem : ∀ {NT} {g : Grammar NT} {s s′ s″} → [ g ] s″ ∈ whitespace ⋆ · s′ → [ g ] s ∈ symbol s · s ++ s′ symbol-sem s″∈ = <⊛-sem string-sem s″∈ ------------------------------------------------------------------------ -- Some production transformers -- Replaces all non-terminals with non-terminal-free productions. replace : ∀ {NT A} → (∀ {A} → NT A → Prod Empty-NT A) → Prod NT A → Prod Empty-NT A replace f (! nt) = f nt replace f fail = fail replace f (return x) = return x replace f token = token replace f (tok x) = tok x replace f (p₁ ⊛ p₂) = replace f p₁ ⊛ replace f p₂ replace f (p₁ <⊛ p₂) = replace f p₁ <⊛ replace f p₂ replace f (p₁ >>= p₂) = replace f p₁ >>= λ x → replace f (p₂ x) replace f (p₁ ∣ p₂) = replace f p₁ ∣ replace f p₂ replace f (p ⋆) = replace f p ⋆ -- A lemma relating the resulting production with the original one in -- case every non-terminal is replaced by fail. replace-fail : ∀ {NT A g} (p : Prod NT A) {x s} → [ empty-grammar ] x ∈ replace (λ _ → fail) p · s → [ g ] x ∈ p · s replace-fail (! nt) () replace-fail fail () replace-fail (return x) return-sem = return-sem replace-fail token token-sem = token-sem replace-fail (tok t) tok-sem = tok-sem replace-fail (p₁ ⊛ p₂) (⊛-sem f∈ x∈) = ⊛-sem (replace-fail p₁ f∈) (replace-fail p₂ x∈) replace-fail (p₁ <⊛ p₂) (<⊛-sem x∈ y∈) = <⊛-sem (replace-fail p₁ x∈) (replace-fail p₂ y∈) replace-fail (p₁ >>= p₂) (>>=-sem x∈ y∈) = >>=-sem (replace-fail p₁ x∈) (replace-fail (p₂ _) y∈) replace-fail (p₁ ∣ p₂) (left-sem x∈) = left-sem (replace-fail p₁ x∈) replace-fail (p₁ ∣ p₂) (right-sem x∈) = right-sem (replace-fail p₂ x∈) replace-fail (p ⋆) ⋆-[]-sem = ⋆-[]-sem replace-fail (p ⋆) (⋆-+-sem xs∈) = ⋆-+-sem (replace-fail (p +) xs∈) -- Unfolds every non-terminal. At most n /nested/ unfoldings are -- performed. unfold : ∀ {NT A} → (n : ℕ) → Grammar NT → Prod NT A → Prod NT A unfold zero g p = p unfold (suc n) g (! nt) = unfold n g (g _ nt) unfold n g fail = fail unfold n g (return x) = return x unfold n g token = token unfold n g (tok x) = tok x unfold n g (p₁ ⊛ p₂) = unfold n g p₁ ⊛ unfold n g p₂ unfold n g (p₁ <⊛ p₂) = unfold n g p₁ <⊛ unfold n g p₂ unfold n g (p₁ >>= p₂) = unfold n g p₁ >>= λ x → unfold n g (p₂ x) unfold n g (p₁ ∣ p₂) = unfold n g p₁ ∣ unfold n g p₂ unfold n g (p ⋆) = unfold n g p ⋆ -- Unfold is semantics-preserving. unfold-to : ∀ {NT A} {g : Grammar NT} {x s} n (p : Prod NT A) → [ g ] x ∈ p · s → [ g ] x ∈ unfold n g p · s unfold-to zero p x∈ = x∈ unfold-to (suc n) (! nt) (!-sem x∈) = unfold-to n _ x∈ unfold-to (suc n) fail x∈ = x∈ unfold-to (suc n) (return x) x∈ = x∈ unfold-to (suc n) token x∈ = x∈ unfold-to (suc n) (tok x) x∈ = x∈ unfold-to (suc n) (p₁ ⊛ p₂) (⊛-sem f∈ x∈) = ⊛-sem (unfold-to (suc n) p₁ f∈) (unfold-to (suc n) p₂ x∈) unfold-to (suc n) (p₁ <⊛ p₂) (<⊛-sem x∈ y∈) = <⊛-sem (unfold-to (suc n) p₁ x∈) (unfold-to (suc n) p₂ y∈) unfold-to (suc n) (p₁ >>= p₂) (>>=-sem x∈ y∈) = >>=-sem (unfold-to (suc n) p₁ x∈) (unfold-to (suc n) (p₂ _) y∈) unfold-to (suc n) (p₁ ∣ p₂) (left-sem x∈) = left-sem (unfold-to (suc n) p₁ x∈) unfold-to (suc n) (p₁ ∣ p₂) (right-sem x∈) = right-sem (unfold-to (suc n) p₂ x∈) unfold-to (suc n) (p ⋆) ⋆-[]-sem = ⋆-[]-sem unfold-to (suc n) (p ⋆) (⋆-+-sem xs∈) = ⋆-+-sem (unfold-to (suc n) (p +) xs∈) unfold-from : ∀ {NT A} {g : Grammar NT} {x s} n (p : Prod NT A) → [ g ] x ∈ unfold n g p · s → [ g ] x ∈ p · s unfold-from zero p x∈ = x∈ unfold-from (suc n) (! nt) x∈ = !-sem (unfold-from n _ x∈) unfold-from (suc n) fail x∈ = x∈ unfold-from (suc n) (return x) x∈ = x∈ unfold-from (suc n) token x∈ = x∈ unfold-from (suc n) (tok x) x∈ = x∈ unfold-from (suc n) (p₁ ⊛ p₂) (⊛-sem f∈ x∈) = ⊛-sem (unfold-from (suc n) p₁ f∈) (unfold-from (suc n) p₂ x∈) unfold-from (suc n) (p₁ <⊛ p₂) (<⊛-sem x∈ y∈) = <⊛-sem (unfold-from (suc n) p₁ x∈) (unfold-from (suc n) p₂ y∈) unfold-from (suc n) (p₁ >>= p₂) (>>=-sem x∈ y∈) = >>=-sem (unfold-from (suc n) p₁ x∈) (unfold-from (suc n) (p₂ _) y∈) unfold-from (suc n) (p₁ ∣ p₂) (left-sem x∈) = left-sem (unfold-from (suc n) p₁ x∈) unfold-from (suc n) (p₁ ∣ p₂) (right-sem x∈) = right-sem (unfold-from (suc n) p₂ x∈) unfold-from (suc n) (p ⋆) ⋆-[]-sem = ⋆-[]-sem unfold-from (suc n) (p ⋆) (⋆-+-sem xs∈) = ⋆-+-sem (unfold-from (suc n) (p +) xs∈) ------------------------------------------------------------------------ -- Nullability -- A production is nullable (with respect to a given grammar) if the -- empty string is a member of the language defined by the production. Nullable : ∀ {NT A} → Grammar NT → Prod NT A → Set₁ Nullable g p = ∃ λ x → [ g ] x ∈ p · [] -- Nullability is not decidable, not even for productions without -- non-terminals. If nullability were decidable, then we could decide -- if a given function of type ℕ → Bool always returns false. nullability-not-decidable : (∀ {A} (p : Prod Empty-NT A) → Dec (Nullable empty-grammar p)) → (f : ℕ → Bool) → Dec (∀ n → f n ≡ false) nullability-not-decidable dec f = goal where p : Prod Empty-NT ℕ p = return tt ⋆ >>= λ tts → let n = length tts in if f n then return n else fail true-lemma : ∀ {n s} → [ empty-grammar ] n ∈ p · s → f n ≡ true true-lemma (>>=-sem {x = tts} _ _) with f (length tts) | P.inspect f (length tts) true-lemma (>>=-sem _ return-sem) | true | P.[ fn≡true ] = fn≡true true-lemma (>>=-sem _ ()) | false | _ no-lemma : ∀ {n} → f n ≡ true → ¬ (∀ n → f n ≡ false) no-lemma {n} ≡true ≡false with begin true ≡⟨ P.sym ≡true ⟩ f n ≡⟨ ≡false n ⟩ false ∎ where open P.≡-Reasoning ... | () to-tts : ℕ → List ⊤ to-tts n = replicate n tt n∈₁ : ∀ n → [ empty-grammar ] to-tts n ∈ return tt ⋆ · [] n∈₁ zero = ⋆-[]-sem n∈₁ (suc n) = ⋆-∷-sem return-sem (n∈₁ n) n∈₂ : ∀ n → f n ≡ true → let n′ = length (replicate n tt) in [ empty-grammar ] n ∈ if f n′ then return n′ else fail · [] n∈₂ n fn≡true rewrite length-replicate n {x = tt} | fn≡true = return-sem yes-lemma : ∀ n → ¬ ([ empty-grammar ] n ∈ p · []) → f n ≢ true yes-lemma n n∉ fn≡true = n∉ (>>=-sem (n∈₁ n) (n∈₂ n fn≡true)) goal : Dec (∀ n → f n ≡ false) goal with dec p ... | yes (_ , n∈) = no (no-lemma (true-lemma n∈)) ... | no ¬[]∈ = yes λ n → ¬-not (yes-lemma n (¬[]∈ ∘ -,_)) -- However, we can implement a procedure that either proves that a -- production is nullable, or returns "don't know" as the answer. -- -- Note that, in the case of bind, the second argument is only applied -- to one input—the first argument could give rise to infinitely many -- results (as in the example above). -- -- Note also that no attempt is made to memoise non-terminals—the -- grammar could consist of an infinite number of non-terminals. -- Instead the grammar is unfolded a certain number of times (n). -- Memoisation still seems like a useful heuristic, but requires that -- equality of non-terminals is decidable. nullable? : ∀ {NT A} (n : ℕ) (g : Grammar NT) (p : Prod NT A) → Maybe (Nullable g p) nullable? {NT} n g p = Product.map id (unfold-from n _) <$>M null? (unfold n g p) where null? : ∀ {A} (p : Prod NT A) → Maybe (Nullable g p) null? (! nt) = nothing null? fail = nothing null? token = nothing null? (tok t) = nothing null? (return x) = just (x , return-sem) null? (p ⋆) = just ([] , ⋆-[]-sem) null? (p₁ ⊛ p₂) = Product.zip _$_ ⊛-sem <$>M null? p₁ ⊛M null? p₂ null? (p₁ <⊛ p₂) = Product.zip const <⊛-sem <$>M null? p₁ ⊛M null? p₂ null? (p₁ >>= p₂) = null? p₁ >>=M λ { (x , x∈) → null? (p₂ x) >>=M λ { (y , y∈) → just (y , >>=-sem x∈ y∈) }} null? (p₁ ∣ p₂) = (Product.map id left-sem <$>M null? p₁) ∣M (Product.map id right-sem <$>M null? p₂) ------------------------------------------------------------------------ -- Detecting the whitespace combinator -- A predicate for the whitespace combinator. data Is-whitespace {NT} : ∀ {A} → Prod NT A → Set₁ where is-whitespace : Is-whitespace whitespace -- Detects the whitespace combinator. is-whitespace? : ∀ {NT A} (p : Prod NT A) → Maybe (Is-whitespace p) is-whitespace? {NT} (tok ' ' ∣ p) = helper p P.refl where helper : ∀ {A} (p : Prod NT A) (eq : A ≡ Char) → Maybe (Is-whitespace (tok ' ' ∣ P.subst (Prod NT) eq p)) helper (tok '\n') P.refl = just is-whitespace helper _ _ = nothing is-whitespace? _ = nothing ------------------------------------------------------------------------ -- Trailing whitespace -- A predicate for productions that can "swallow" extra trailing -- whitespace. Trailing-whitespace : ∀ {NT A} → Grammar NT → Prod NT A → Set₁ Trailing-whitespace g p = ∀ {x s} → [ g ] x ∈ p <⊛ whitespace ⋆ · s → [ g ] x ∈ p · s -- A heuristic procedure that either proves that a production can -- swallow trailing whitespace, or returns "don't know" as the answer. trailing-whitespace : ∀ {NT A} (n : ℕ) (g : Grammar NT) (p : Prod NT A) → Maybe (Trailing-whitespace g p) trailing-whitespace {NT} n g p = convert ∘ unfold-lemma <$>M trailing? (unfold n g p) where -- An alternative formulation of Trailing-whitespace. Trailing-whitespace′ : ∀ {NT A} → Grammar NT → Prod NT A → Set₁ Trailing-whitespace′ g p = ∀ {x s₁ s₂ s} → [ g ] x ∈ p · s₁ → [ g ] s ∈ whitespace ⋆ · s₂ → [ g ] x ∈ p · s₁ ++ s₂ convert : ∀ {NT A} {g : Grammar NT} {p : Prod NT A} → Trailing-whitespace′ g p → Trailing-whitespace g p convert t (<⊛-sem x∈ w) = t x∈ w ++-lemma : ∀ s₁ {s₂} → (s₁ ++ s₂) ++ [] ≡ (s₁ ++ []) ++ s₂ ++-lemma _ = solve (++-monoid Char) unfold-lemma : Trailing-whitespace′ g (unfold n g p) → Trailing-whitespace′ g p unfold-lemma t x∈ white = unfold-from n _ (t (unfold-to n _ x∈) white) ⊛-return-lemma : ∀ {A B} {p : Prod NT (A → B)} {x} → Trailing-whitespace′ g p → Trailing-whitespace′ g (p ⊛ return x) ⊛-return-lemma t (⊛-sem {s₁ = s₁} f∈ return-sem) white = cast (++-lemma s₁) (⊛-sem (t f∈ white) return-sem) +-lemma : ∀ {A} {p : Prod NT A} → Trailing-whitespace′ g p → Trailing-whitespace′ g (p +) +-lemma t (⊛-sem (⊛-sem {s₂ = s₁} return-sem x∈) ⋆-[]-sem) white = cast (++-lemma s₁) (+-sem (t x∈ white) ⋆-[]-sem) +-lemma t (⊛-sem (⊛-sem {s₂ = s₁} return-sem x∈) (⋆-+-sem xs∈)) white = cast (P.sym $ LM.assoc s₁ _ _) (+-∷-sem x∈ (+-lemma t xs∈ white)) ⊛-⋆-lemma : ∀ {A B} {p₁ : Prod NT (List A → B)} {p₂ : Prod NT A} → Trailing-whitespace′ g p₁ → Trailing-whitespace′ g p₂ → Trailing-whitespace′ g (p₁ ⊛ p₂ ⋆) ⊛-⋆-lemma t₁ t₂ (⊛-sem {s₁ = s₁} f∈ ⋆-[]-sem) white = cast (++-lemma s₁) (⊛-sem (t₁ f∈ white) ⋆-[]-sem) ⊛-⋆-lemma t₁ t₂ (⊛-sem {s₁ = s₁} f∈ (⋆-+-sem xs∈)) white = cast (P.sym $ LM.assoc s₁ _ _) (⊛-sem f∈ (⋆-+-sem (+-lemma t₂ xs∈ white))) ⊛-∣-lemma : ∀ {A B} {p₁ : Prod NT (A → B)} {p₂ p₃ : Prod NT A} → Trailing-whitespace′ g (p₁ ⊛ p₂) → Trailing-whitespace′ g (p₁ ⊛ p₃) → Trailing-whitespace′ g (p₁ ⊛ (p₂ ∣ p₃)) ⊛-∣-lemma t₁₂ t₁₃ {s₂ = s₃} (⊛-sem {f = f} {x = x} {s₁ = s₁} {s₂ = s₂} f∈ (left-sem x∈)) white with f x | (s₁ ++ s₂) ++ s₃ | t₁₂ (⊛-sem f∈ x∈) white ... | ._ | ._ | ⊛-sem f∈′ x∈′ = ⊛-sem f∈′ (left-sem x∈′) ⊛-∣-lemma t₁₂ t₁₃ {s₂ = s₃} (⊛-sem {f = f} {x = x} {s₁ = s₁} {s₂ = s₂} f∈ (right-sem x∈)) white with f x | (s₁ ++ s₂) ++ s₃ | t₁₃ (⊛-sem f∈ x∈) white ... | ._ | ._ | ⊛-sem f∈′ x∈′ = ⊛-sem f∈′ (right-sem x∈′) ⊛-lemma : ∀ {A B} {p₁ : Prod NT (A → B)} {p₂ : Prod NT A} → Trailing-whitespace′ g p₂ → Trailing-whitespace′ g (p₁ ⊛ p₂) ⊛-lemma t₂ (⊛-sem {s₁ = s₁} f∈ x∈) white = cast (P.sym $ LM.assoc s₁ _ _) (⊛-sem f∈ (t₂ x∈ white)) <⊛-return-lemma : ∀ {A B} {p : Prod NT A} {x : B} → Trailing-whitespace′ g p → Trailing-whitespace′ g (p <⊛ return x) <⊛-return-lemma t (<⊛-sem {s₁ = s₁} f∈ return-sem) white = cast (++-lemma s₁) (<⊛-sem (t f∈ white) return-sem) <⊛-⋆-lemma : ∀ {A B} {p₁ : Prod NT A} {p₂ : Prod NT B} → Is-whitespace p₂ → Trailing-whitespace′ g (p₁ <⊛ p₂ ⋆) <⊛-⋆-lemma is-whitespace (<⊛-sem {s₁ = s₁} x∈ white₁) white₂ = cast (P.sym $ LM.assoc s₁ _ _) (<⊛-sem x∈ (⋆-⋆-sem white₁ white₂)) <⊛-lemma : ∀ {A B} {p₁ : Prod NT A} {p₂ : Prod NT B} → Trailing-whitespace′ g p₂ → Trailing-whitespace′ g (p₁ <⊛ p₂) <⊛-lemma t₂ (<⊛-sem {s₁ = s₁} f∈ x∈) white = cast (P.sym $ LM.assoc s₁ _ _) (<⊛-sem f∈ (t₂ x∈ white)) fail->>=-lemma : ∀ {A B} {p : A → Prod NT B} → Trailing-whitespace′ g (fail >>= p) fail->>=-lemma (>>=-sem () _) return->>=-lemma : ∀ {A B} {p : A → Prod NT B} {x} → Trailing-whitespace′ g (p x) → Trailing-whitespace′ g (return x >>= p) return->>=-lemma t (>>=-sem return-sem y∈) white = >>=-sem return-sem (t y∈ white) tok->>=-lemma : ∀ {A} {p : Char → Prod NT A} {t} → Trailing-whitespace′ g (p t) → Trailing-whitespace′ g (tok t >>= p) tok->>=-lemma t (>>=-sem tok-sem y∈) white = >>=-sem tok-sem (t y∈ white) ∣-lemma : ∀ {A} {p₁ p₂ : Prod NT A} → Trailing-whitespace′ g p₁ → Trailing-whitespace′ g p₂ → Trailing-whitespace′ g (p₁ ∣ p₂) ∣-lemma t₁ t₂ (left-sem x∈) white = left-sem (t₁ x∈ white) ∣-lemma t₁ t₂ (right-sem x∈) white = right-sem (t₂ x∈ white) trailing? : ∀ {A} (p : Prod NT A) → Maybe (Trailing-whitespace′ g p) trailing? fail = just (λ ()) trailing? (p ⊛ return x) = ⊛-return-lemma <$>M trailing? p trailing? (p₁ ⊛ p₂ ⋆) = ⊛-⋆-lemma <$>M trailing? p₁ ⊛M trailing? p₂ trailing? (p₁ ⊛ (p₂ ∣ p₃)) = ⊛-∣-lemma <$>M trailing? (p₁ ⊛ p₂) ⊛M trailing? (p₁ ⊛ p₃) trailing? (p₁ ⊛ p₂) = ⊛-lemma <$>M trailing? p₂ trailing? (p <⊛ return x) = <⊛-return-lemma <$>M trailing? p trailing? (p₁ <⊛ p₂ ⋆) = <⊛-⋆-lemma <$>M is-whitespace? p₂ trailing? (p₁ <⊛ p₂) = <⊛-lemma <$>M trailing? p₂ trailing? (fail >>= p) = just fail->>=-lemma trailing? (return x >>= p) = return->>=-lemma <$>M trailing? (p x) trailing? (tok t >>= p) = tok->>=-lemma <$>M trailing? (p t) trailing? (p₁ ∣ p₂) = ∣-lemma <$>M trailing? p₁ ⊛M trailing? p₂ trailing? _ = nothing private -- A unit test. test : T (is-just (trailing-whitespace 0 empty-grammar (tt <$ whitespace ⋆))) test = _
{ "alphanum_fraction": 0.4795025334, "avg_line_length": 37.8462757528, "ext": "agda", "hexsha": "8be867f0aeda6f13f29504777990684139a9f7ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/pretty", "max_forks_repo_path": "Grammar/Non-terminal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/pretty", "max_issues_repo_path": "Grammar/Non-terminal.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "b956803ba90b6c5f57bbbaab01bb18485d948492", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/pretty", "max_stars_repo_path": "Grammar/Non-terminal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9372, "size": 23881 }
{-# OPTIONS --without-K #-} module hott.truncation.const where open import sum open import equality open import function.overloading open import hott.truncation.core open import hott.level const-factorisation : ∀ {i j}{A : Set i}{B : Set j} → h 2 B → (f : A → B) → ((x y : A) → f x ≡ f y) → (Trunc 1 A → B) const-factorisation {A = A}{B} hB f c = f' where E : Set _ E = Σ B λ b → (a : A) → f a ≡ b p : E → B p (b , _) = b lem : (a₀ : A)(b : B)(u : (a : A) → f a ≡ b) → (_≡_ {A = E} (f a₀ , λ a → c a a₀) (b , u)) lem a₀ b u = unapΣ (u a₀ , h1⇒prop (Π-level (λ a → hB (f a) b)) _ u) hE : A → contr E hE a₀ = (f a₀ , λ a → c a a₀) , λ { (b , u) → lem a₀ b u } u : Trunc 1 A → contr E u = Trunc-elim 1 _ _ (contr-h1 E) hE s : Trunc 1 A → E s a = proj₁ (u a) f' : Trunc 1 A → B f' a = p (s a)
{ "alphanum_fraction": 0.4470338983, "avg_line_length": 24.2051282051, "ext": "agda", "hexsha": "07f78435a61f9842e9262c7247ce9436945fffdc", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/hott/truncation/const.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/hott/truncation/const.agda", "max_line_length": 72, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/hott/truncation/const.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 380, "size": 944 }
{-# OPTIONS --without-K #-} module algebra where open import algebra.semigroup public open import algebra.monoid public open import algebra.group public
{ "alphanum_fraction": 0.7870967742, "avg_line_length": 22.1428571429, "ext": "agda", "hexsha": "b10932d3bb385e1369fedbc07dda10c6ffb8a4b6", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/algebra.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/algebra.agda", "max_line_length": 36, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/algebra.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 31, "size": 155 }
{-# OPTIONS --safe #-} module Cubical.HITs.SequentialColimit where open import Cubical.HITs.SequentialColimit.Base public open import Cubical.HITs.SequentialColimit.Properties public
{ "alphanum_fraction": 0.8260869565, "avg_line_length": 30.6666666667, "ext": "agda", "hexsha": "41c17bad87ababa75a9ce56d69e140ed9e2f6656", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/SequentialColimit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/SequentialColimit.agda", "max_line_length": 60, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/SequentialColimit.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 42, "size": 184 }
open import Prelude open import Nat open import core open import contexts open import disjointness -- this module contains lemmas and properties about the holes-disjoint -- judgement that double check that it acts as we would expect module holes-disjoint-checks where -- these lemmas are all structurally recursive and quite -- mechanical. morally, they establish the properties about reduction -- that would be obvious / baked into Agda if holes-disjoint was defined -- as a function rather than a judgement (datatype), or if we had defined -- all the O(n^2) cases rather than relying on a little indirection to -- only have O(n) cases. that work has to go somewhwere, and we prefer -- that it goes here. ds-lem-asc : ∀{e1 e2 τ} → holes-disjoint e2 e1 → holes-disjoint e2 (e1 ·: τ) ds-lem-asc HDConst = HDConst ds-lem-asc (HDAsc hd) = HDAsc (ds-lem-asc hd) ds-lem-asc HDVar = HDVar ds-lem-asc (HDLam1 hd) = HDLam1 (ds-lem-asc hd) ds-lem-asc (HDLam2 hd) = HDLam2 (ds-lem-asc hd) ds-lem-asc (HDHole x) = HDHole (HNAsc x) ds-lem-asc (HDNEHole x hd) = HDNEHole (HNAsc x) (ds-lem-asc hd) ds-lem-asc (HDAp hd hd₁) = HDAp (ds-lem-asc hd) (ds-lem-asc hd₁) ds-lem-lam1 : ∀{e1 e2 x} → holes-disjoint e2 e1 → holes-disjoint e2 (·λ x e1) ds-lem-lam1 HDConst = HDConst ds-lem-lam1 (HDAsc hd) = HDAsc (ds-lem-lam1 hd) ds-lem-lam1 HDVar = HDVar ds-lem-lam1 (HDLam1 hd) = HDLam1 (ds-lem-lam1 hd) ds-lem-lam1 (HDLam2 hd) = HDLam2 (ds-lem-lam1 hd) ds-lem-lam1 (HDHole x₁) = HDHole (HNLam1 x₁) ds-lem-lam1 (HDNEHole x₁ hd) = HDNEHole (HNLam1 x₁) (ds-lem-lam1 hd) ds-lem-lam1 (HDAp hd hd₁) = HDAp (ds-lem-lam1 hd) (ds-lem-lam1 hd₁) ds-lem-lam2 : ∀{e1 e2 x τ} → holes-disjoint e2 e1 → holes-disjoint e2 (·λ x [ τ ] e1) ds-lem-lam2 HDConst = HDConst ds-lem-lam2 (HDAsc hd) = HDAsc (ds-lem-lam2 hd) ds-lem-lam2 HDVar = HDVar ds-lem-lam2 (HDLam1 hd) = HDLam1 (ds-lem-lam2 hd) ds-lem-lam2 (HDLam2 hd) = HDLam2 (ds-lem-lam2 hd) ds-lem-lam2 (HDHole x₁) = HDHole (HNLam2 x₁) ds-lem-lam2 (HDNEHole x₁ hd) = HDNEHole (HNLam2 x₁) (ds-lem-lam2 hd) ds-lem-lam2 (HDAp hd hd₁) = HDAp (ds-lem-lam2 hd) (ds-lem-lam2 hd₁) ds-lem-nehole : ∀{e e1 u} → holes-disjoint e e1 → hole-name-new e u → holes-disjoint e ⦇⌜ e1 ⌟⦈[ u ] ds-lem-nehole HDConst ν = HDConst ds-lem-nehole (HDAsc hd) (HNAsc ν) = HDAsc (ds-lem-nehole hd ν) ds-lem-nehole HDVar ν = HDVar ds-lem-nehole (HDLam1 hd) (HNLam1 ν) = HDLam1 (ds-lem-nehole hd ν) ds-lem-nehole (HDLam2 hd) (HNLam2 ν) = HDLam2 (ds-lem-nehole hd ν) ds-lem-nehole (HDHole x) (HNHole x₁) = HDHole (HNNEHole (flip x₁) x) ds-lem-nehole (HDNEHole x hd) (HNNEHole x₁ ν) = HDNEHole (HNNEHole (flip x₁) x) (ds-lem-nehole hd ν) ds-lem-nehole (HDAp hd hd₁) (HNAp ν ν₁) = HDAp (ds-lem-nehole hd ν) (ds-lem-nehole hd₁ ν₁) ds-lem-ap : ∀{e1 e2 e3} → holes-disjoint e3 e1 → holes-disjoint e3 e2 → holes-disjoint e3 (e1 ∘ e2) ds-lem-ap HDConst hd2 = HDConst ds-lem-ap (HDAsc hd1) (HDAsc hd2) = HDAsc (ds-lem-ap hd1 hd2) ds-lem-ap HDVar hd2 = HDVar ds-lem-ap (HDLam1 hd1) (HDLam1 hd2) = HDLam1 (ds-lem-ap hd1 hd2) ds-lem-ap (HDLam2 hd1) (HDLam2 hd2) = HDLam2 (ds-lem-ap hd1 hd2) ds-lem-ap (HDHole x) (HDHole x₁) = HDHole (HNAp x x₁) ds-lem-ap (HDNEHole x hd1) (HDNEHole x₁ hd2) = HDNEHole (HNAp x x₁) (ds-lem-ap hd1 hd2) ds-lem-ap (HDAp hd1 hd2) (HDAp hd3 hd4) = HDAp (ds-lem-ap hd1 hd3) (ds-lem-ap hd2 hd4) -- holes-disjoint is symmetric disjoint-sym : (e1 e2 : hexp) → holes-disjoint e1 e2 → holes-disjoint e2 e1 disjoint-sym .c c HDConst = HDConst disjoint-sym .c (e2 ·: x) HDConst = HDAsc (disjoint-sym _ _ HDConst) disjoint-sym .c (X x) HDConst = HDVar disjoint-sym .c (·λ x e2) HDConst = HDLam1 (disjoint-sym c e2 HDConst) disjoint-sym .c (·λ x [ x₁ ] e2) HDConst = HDLam2 (disjoint-sym c e2 HDConst) disjoint-sym .c ⦇-⦈[ x ] HDConst = HDHole HNConst disjoint-sym .c ⦇⌜ e2 ⌟⦈[ x ] HDConst = HDNEHole HNConst (disjoint-sym c e2 HDConst) disjoint-sym .c (e2 ∘ e3) HDConst = HDAp (disjoint-sym c e2 HDConst) (disjoint-sym c e3 HDConst) disjoint-sym _ c (HDAsc hd) = HDConst disjoint-sym _ (e2 ·: x) (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ·: x) (HDAsc hd) | HDAsc ih = HDAsc (ds-lem-asc ih) disjoint-sym _ (X x) (HDAsc hd) = HDVar disjoint-sym _ (·λ x e2) (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x e2) (HDAsc hd) | HDLam1 ih = HDLam1 (ds-lem-asc ih) disjoint-sym _ (·λ x [ x₁ ] e2) (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x [ x₁ ] e2) (HDAsc hd) | HDLam2 ih = HDLam2 (ds-lem-asc ih) disjoint-sym _ ⦇-⦈[ x ] (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇-⦈[ x ] (HDAsc hd) | HDHole x₁ = HDHole (HNAsc x₁) disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x ] (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x ] (HDAsc hd) | HDNEHole x₁ ih = HDNEHole (HNAsc x₁) (ds-lem-asc ih) disjoint-sym _ (e2 ∘ e3) (HDAsc hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ∘ e3) (HDAsc hd) | HDAp ih ih₁ = HDAp (ds-lem-asc ih) (ds-lem-asc ih₁) disjoint-sym _ c HDVar = HDConst disjoint-sym _ (e2 ·: x₁) HDVar = HDAsc (disjoint-sym _ e2 HDVar) disjoint-sym _ (X x₁) HDVar = HDVar disjoint-sym _ (·λ x₁ e2) HDVar = HDLam1 (disjoint-sym _ e2 HDVar) disjoint-sym _ (·λ x₁ [ x₂ ] e2) HDVar = HDLam2 (disjoint-sym _ e2 HDVar) disjoint-sym _ ⦇-⦈[ x₁ ] HDVar = HDHole HNVar disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x₁ ] HDVar = HDNEHole HNVar (disjoint-sym _ e2 HDVar) disjoint-sym _ (e2 ∘ e3) HDVar = HDAp (disjoint-sym _ e2 HDVar) (disjoint-sym _ e3 HDVar) disjoint-sym _ c (HDLam1 hd) = HDConst disjoint-sym _ (e2 ·: x₁) (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ·: x₁) (HDLam1 hd) | HDAsc ih = HDAsc (ds-lem-lam1 ih) disjoint-sym _ (X x₁) (HDLam1 hd) = HDVar disjoint-sym _ (·λ x₁ e2) (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x₁ e2) (HDLam1 hd) | HDLam1 ih = HDLam1 (ds-lem-lam1 ih) disjoint-sym _ (·λ x₁ [ x₂ ] e2) (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x₁ [ x₂ ] e2) (HDLam1 hd) | HDLam2 ih = HDLam2 (ds-lem-lam1 ih) disjoint-sym _ ⦇-⦈[ x₁ ] (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇-⦈[ x₁ ] (HDLam1 hd) | HDHole x = HDHole (HNLam1 x) disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x₁ ] (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x₁ ] (HDLam1 hd) | HDNEHole x ih = HDNEHole (HNLam1 x) (ds-lem-lam1 ih) disjoint-sym _ (e2 ∘ e3) (HDLam1 hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ∘ e3) (HDLam1 hd) | HDAp ih ih₁ = HDAp (ds-lem-lam1 ih) (ds-lem-lam1 ih₁) disjoint-sym _ c (HDLam2 hd) = HDConst disjoint-sym _ (e2 ·: x₁) (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ·: x₁) (HDLam2 hd) | HDAsc ih = HDAsc (ds-lem-lam2 ih) disjoint-sym _ (X x₁) (HDLam2 hd) = HDVar disjoint-sym _ (·λ x₁ e2) (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x₁ e2) (HDLam2 hd) | HDLam1 ih = HDLam1 (ds-lem-lam2 ih) disjoint-sym _ (·λ x₁ [ x₂ ] e2) (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x₁ [ x₂ ] e2) (HDLam2 hd) | HDLam2 ih = HDLam2 (ds-lem-lam2 ih) disjoint-sym _ ⦇-⦈[ x₁ ] (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇-⦈[ x₁ ] (HDLam2 hd) | HDHole x = HDHole (HNLam2 x) disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x₁ ] (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x₁ ] (HDLam2 hd) | HDNEHole x ih = HDNEHole (HNLam2 x) (ds-lem-lam2 ih) disjoint-sym _ (e2 ∘ e3) (HDLam2 hd) with disjoint-sym _ _ hd disjoint-sym _ (e2 ∘ e3) (HDLam2 hd) | HDAp ih ih₁ = HDAp (ds-lem-lam2 ih) (ds-lem-lam2 ih₁) disjoint-sym _ c (HDHole x) = HDConst disjoint-sym _ (e2 ·: x) (HDHole (HNAsc x₁)) = HDAsc (disjoint-sym ⦇-⦈[ _ ] e2 (HDHole x₁)) disjoint-sym _ (X x) (HDHole x₁) = HDVar disjoint-sym _ (·λ x e2) (HDHole (HNLam1 x₁)) = HDLam1 (disjoint-sym ⦇-⦈[ _ ] e2 (HDHole x₁)) disjoint-sym _ (·λ x [ x₁ ] e2) (HDHole (HNLam2 x₂)) = HDLam2 (disjoint-sym ⦇-⦈[ _ ] e2 (HDHole x₂)) disjoint-sym _ ⦇-⦈[ x ] (HDHole (HNHole x₁)) = HDHole (HNHole (flip x₁)) disjoint-sym _ ⦇⌜ e2 ⌟⦈[ u' ] (HDHole (HNNEHole x x₁)) = HDNEHole (HNHole (flip x)) (disjoint-sym ⦇-⦈[ _ ] e2 (HDHole x₁)) disjoint-sym _ (e2 ∘ e3) (HDHole (HNAp x x₁)) = HDAp (disjoint-sym ⦇-⦈[ _ ] e2 (HDHole x)) (disjoint-sym ⦇-⦈[ _ ] e3 (HDHole x₁)) disjoint-sym _ c (HDNEHole x hd) = HDConst disjoint-sym _ (e2 ·: x) (HDNEHole x₁ hd) with disjoint-sym _ _ hd disjoint-sym _ (e ·: x) (HDNEHole (HNAsc x₁) hd) | HDAsc ih = HDAsc (ds-lem-nehole ih x₁) disjoint-sym _ (X x) (HDNEHole x₁ hd) = HDVar disjoint-sym _ (·λ x e2) (HDNEHole x₁ hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x e2) (HDNEHole (HNLam1 x₁) hd) | HDLam1 ih = HDLam1 (ds-lem-nehole ih x₁) disjoint-sym _ (·λ x [ x₁ ] e2) (HDNEHole x₂ hd) with disjoint-sym _ _ hd disjoint-sym _ (·λ x [ x₁ ] e2) (HDNEHole (HNLam2 x₂) hd) | HDLam2 ih = HDLam2 (ds-lem-nehole ih x₂) disjoint-sym _ ⦇-⦈[ x ] (HDNEHole x₁ hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇-⦈[ x ] (HDNEHole (HNHole x₂) hd) | HDHole x₁ = HDHole (HNNEHole (flip x₂) x₁) disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x ] (HDNEHole x₁ hd) with disjoint-sym _ _ hd disjoint-sym _ ⦇⌜ e2 ⌟⦈[ x ] (HDNEHole (HNNEHole x₂ x₃) hd) | HDNEHole x₁ ih = HDNEHole (HNNEHole (flip x₂) x₁) (ds-lem-nehole ih x₃) disjoint-sym _ (e2 ∘ e3) (HDNEHole x hd) with disjoint-sym _ _ hd disjoint-sym _ (e1 ∘ e3) (HDNEHole (HNAp x x₁) hd) | HDAp ih ih₁ = HDAp (ds-lem-nehole ih x) (ds-lem-nehole ih₁ x₁) disjoint-sym _ c (HDAp hd hd₁) = HDConst disjoint-sym _ (e3 ·: x) (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (e3 ·: x) (HDAp hd hd₁) | HDAsc ih | HDAsc ih1 = HDAsc (ds-lem-ap ih ih1) disjoint-sym _ (X x) (HDAp hd hd₁) = HDVar disjoint-sym _ (·λ x e3) (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (·λ x e3) (HDAp hd hd₁) | HDLam1 ih | HDLam1 ih1 = HDLam1 (ds-lem-ap ih ih1) disjoint-sym _ (·λ x [ x₁ ] e3) (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (·λ x [ x₁ ] e3) (HDAp hd hd₁) | HDLam2 ih | HDLam2 ih1 = HDLam2 (ds-lem-ap ih ih1) disjoint-sym _ ⦇-⦈[ x ] (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ ⦇-⦈[ x ] (HDAp hd hd₁) | HDHole x₁ | HDHole x₂ = HDHole (HNAp x₁ x₂) disjoint-sym _ ⦇⌜ e3 ⌟⦈[ x ] (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ ⦇⌜ e3 ⌟⦈[ x ] (HDAp hd hd₁) | HDNEHole x₁ ih | HDNEHole x₂ ih1 = HDNEHole (HNAp x₁ x₂) (ds-lem-ap ih ih1) disjoint-sym _ (e3 ∘ e4) (HDAp hd hd₁) with disjoint-sym _ _ hd | disjoint-sym _ _ hd₁ disjoint-sym _ (e3 ∘ e4) (HDAp hd hd₁) | HDAp ih ih₁ | HDAp ih1 ih2 = HDAp (ds-lem-ap ih ih1) (ds-lem-ap ih₁ ih2) -- note that this is false, so holes-disjoint isn't transitive -- disjoint-new : ∀{e1 e2 u} → holes-disjoint e1 e2 → hole-name-new e1 u → hole-name-new e2 u -- it's also not reflexive, because ⦇-⦈[ u ] isn't hole-disjoint with -- itself since refl : u == u; it's also not anti-reflexive, because the -- expression c *is* hole-disjoint with itself (albeit vacuously)
{ "alphanum_fraction": 0.6473731884, "avg_line_length": 60.9944751381, "ext": "agda", "hexsha": "ca811d3e7677e2896aa1f74de6d61365432a0575", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "holes-disjoint-checks.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "holes-disjoint-checks.agda", "max_line_length": 135, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "holes-disjoint-checks.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 5089, "size": 11040 }
{-# OPTIONS --without-K --safe #-} module Dodo.Binary.Disjoint where -- Stdlib imports open import Level using (Level; _⊔_) renaming (suc to ℓsuc) open import Data.Empty using (⊥) open import Data.Product using (_,_) open import Relation.Unary using (Pred) open import Relation.Binary using (REL) open import Data.List using (List; _∷_; []; all; map) open import Data.List.Relation.Unary.Any using (Any; here; there) open import Relation.Nullary using (¬_) -- Local imports open import Dodo.Binary.Empty open import Dodo.Binary.Equality open import Dodo.Binary.Intersection -- # Definitions -- | Predicate stating two binary relations are never inhabited for the same elements. Disjoint₂ : ∀ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} → REL A B ℓ₁ → REL A B ℓ₂ → Set _ Disjoint₂ P Q = Empty₂ (P ∩₂ Q) -- | Given a predicate `P`, `Any₂ P xs` states that /at least two/ elements in -- `xs` satisfy `P`. data Any₂ {a ℓ : Level} {A : Set a} (P : Pred A ℓ) : Pred (List A) (a ⊔ ℓ) where here : ∀ {x xs} (px : P x) → Any P xs → Any₂ P (x ∷ xs) there : ∀ {x xs} (pxs : Any₂ P xs) → Any₂ P (x ∷ xs) -- | A predicate stating any two predicates in the list cannot be inhabitated for the same elements. PairwiseDisjoint₁ : {a ℓ : Level} {A : Set a} → List (Pred A ℓ) → Set (a ⊔ ℓsuc ℓ) PairwiseDisjoint₁ Ps = ∀ {x} → Any₂ (λ{P → P x}) Ps → ⊥ -- | A predicate stating any two binary relations in the list cannot be inhabitated for the same elements. PairwiseDisjoint₂ : {a b ℓ : Level} {A : Set a} {B : Set b} → List (REL A B ℓ) → Set (a ⊔ b ⊔ ℓsuc ℓ) PairwiseDisjoint₂ Rs = ∀ {x y} → Any₂ (λ{R → R x y}) Rs → ⊥ -- # Properties module _ {a b ℓ₁ ℓ₂ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} where -- | If P is disjoint with Q, then Q is surely also disjoint with P. disjoint₂-sym : Disjoint₂ P Q → Disjoint₂ Q P disjoint₂-sym disjointPQ x y [Q∩P]xy = let [P∩Q]xy = ⇔₂-apply-⊆₂ (∩₂-comm {P = Q} {Q = P}) [Q∩P]xy in disjointPQ x y [P∩Q]xy module _ {a b ℓ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ} where -- | Every relation is disjoint with its negation. disjoint₂-neg : Disjoint₂ P (¬₂ P) disjoint₂-neg x y (Pxy , ¬Pxy) = ¬Pxy Pxy module _ {a b ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a} {B : Set b} {P : REL A B ℓ₁} {Q : REL A B ℓ₂} {R : REL A B ℓ₃} where -- | If two relations P and Q are disjoint, then any subset R of P is also disjoint with Q. disjoint₂-⊆ˡ : R ⊆₂ P → Disjoint₂ P Q → Disjoint₂ R Q disjoint₂-⊆ˡ R⊆P disjointPQ x y [R∩Q]xy = disjointPQ x y (⊆₂-apply (∩₂-substˡ-⊆₂ {R = Q} R⊆P) [R∩Q]xy) -- | If two relations P and Q are disjoint, then any subset R of Q is also disjoint with P. disjoint₂-⊆ʳ : R ⊆₂ Q → Disjoint₂ P Q → Disjoint₂ P R disjoint₂-⊆ʳ R⊆Q disjointPQ x y [P∩R]xy = disjointPQ x y (⊆₂-apply (∩₂-substʳ-⊆₂ {R = P} R⊆Q) [P∩R]xy)
{ "alphanum_fraction": 0.6359119943, "avg_line_length": 40.8405797101, "ext": "agda", "hexsha": "3b7d002837fa4a411055d6f058efba8d58e87976", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Binary/Disjoint.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Binary/Disjoint.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Binary/Disjoint.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1097, "size": 2818 }
{-# OPTIONS --safe #-} module Cubical.Algebra.CommAlgebra.Instances.Pointwise where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Algebra.CommRing.Base open import Cubical.Algebra.CommRing.Instances.Pointwise open import Cubical.Algebra.CommAlgebra.Base private variable ℓ : Level pointwiseAlgebra : {R : CommRing ℓ} (X : Type ℓ) (A : CommAlgebra R ℓ) → CommAlgebra R ℓ pointwiseAlgebra {R = R} X A = let open CommAlgebraStr (snd A) isSetX→A = isOfHLevelΠ 2 (λ (x : X) → isSetCommRing (CommAlgebra→CommRing A)) in commAlgebraFromCommRing (pointwiseRing X (CommAlgebra→CommRing A)) (λ r f → (λ x → r ⋆ (f x))) (λ r s f i x → ⋆Assoc r s (f x) i) (λ r f g i x → ⋆DistR+ r (f x) (g x) i) (λ r s f i x → ⋆DistL+ r s (f x) i) (λ f i x → ⋆IdL (f x) i) λ r f g i x → ⋆AssocL r (f x) (g x) i
{ "alphanum_fraction": 0.6438809261, "avg_line_length": 33.5925925926, "ext": "agda", "hexsha": "2c5f417f327e2e4fe66d9e11a81c523ba1ae8827", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Pointwise.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Pointwise.agda", "max_line_length": 89, "max_stars_count": null, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Instances/Pointwise.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 336, "size": 907 }
{-# OPTIONS --safe #-} module Cubical.Experiments.Brunerie where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv open import Cubical.Foundations.Pointed open import Cubical.Foundations.HLevels open import Cubical.Foundations.Univalence open import Cubical.Data.Bool open import Cubical.Data.Nat open import Cubical.Data.Int open import Cubical.HITs.S1 hiding (encode) open import Cubical.HITs.S2 open import Cubical.HITs.S3 open import Cubical.HITs.Join open import Cubical.HITs.SetTruncation as SetTrunc open import Cubical.HITs.GroupoidTruncation as GroupoidTrunc open import Cubical.HITs.2GroupoidTruncation as 2GroupoidTrunc open import Cubical.HITs.Truncation as Trunc open import Cubical.HITs.Susp renaming (toSusp to σ) open import Cubical.Homotopy.Loopspace open import Cubical.Homotopy.Hopf open S¹Hopf -- This code is adapted from examples/brunerie3.ctt on the pi4s3_nobug branch of cubicaltt Bool∙ S¹∙ S³∙ : Pointed₀ Bool∙ = (Bool , true) S¹∙ = (S¹ , base) S³∙ = (S³ , base) ∥_∥₃∙ ∥_∥₄∙ : Pointed₀ → Pointed₀ ∥ A , a ∥₃∙ = ∥ A ∥₃ , ∣ a ∣₃ ∥ A , a ∥₄∙ = ∥ A ∥₄ , ∣ a ∣₄ join∙ : Pointed₀ → Type₀ → Pointed₀ join∙ (A , a) B = join A B , inl a Ω² Ω³ : Pointed₀ → Pointed₀ Ω² = Ω^ 2 Ω³ = Ω^ 3 mapΩrefl : {A : Pointed₀} {B : Type₀} (f : A .fst → B) → Ω A .fst → Ω (B , f (pt A)) .fst mapΩrefl f p i = f (p i) mapΩ²refl : {A : Pointed₀} {B : Type₀} (f : A .fst → B) → Ω² A .fst → Ω² (B , f (pt A)) .fst mapΩ²refl f p i j = f (p i j) mapΩ³refl : {A : Pointed₀} {B : Type₀} (f : A .fst → B) → Ω³ A .fst → Ω³ (B , f (pt A)) .fst mapΩ³refl f p i j k = f (p i j k) meridS² : S¹ → Path S² base base meridS² base _ = base meridS² (loop i) j = surf i j alpha : join S¹ S¹ → S² alpha (inl x) = base alpha (inr y) = base alpha (push x y i) = (meridS² y ∙ meridS² x) i connectionBoth : {A : Type₀} {a : A} (p : Path A a a) → PathP (λ i → Path A (p i) (p i)) p p connectionBoth {a = a} p i j = hcomp (λ k → λ { (i = i0) → p (j ∨ ~ k) ; (i = i1) → p (j ∧ k) ; (j = i0) → p (i ∨ ~ k) ; (j = i1) → p (i ∧ k) }) a data PostTotalHopf : Type₀ where base : S¹ → PostTotalHopf loop : (x : S¹) → PathP (λ i → Path PostTotalHopf (base x) (base (rotLoop x (~ i)))) refl refl tee12 : (x : S²) → HopfS² x → PostTotalHopf tee12 base y = base y tee12 (surf i j) y = hcomp (λ k → λ { (i = i0) → base y ; (i = i1) → base y ; (j = i0) → base y ; (j = i1) → base (rotLoopInv y (~ i) k) }) (loop (unglue (i ∨ ~ i ∨ j ∨ ~ j) y) i j) tee34 : PostTotalHopf → join S¹ S¹ tee34 (base x) = inl x tee34 (loop x i j) = hcomp (λ k → λ { (i = i0) → push x x (j ∧ ~ k) ; (i = i1) → push x x (j ∧ ~ k) ; (j = i0) → inl x ; (j = i1) → push (rotLoop x (~ i)) x (~ k) }) (push x x j) tee : (x : S²) → HopfS² x → join S¹ S¹ tee x y = tee34 (tee12 x y) fibΩ : {B : Pointed₀} (P : B .fst → Type₀) → P (pt B) → Ω B .fst → Type₀ fibΩ P f p = PathP (λ i → P (p i)) f f fibΩ² : {B : Pointed₀} (P : B .fst → Type₀) → P (pt B) → Ω² B .fst → Type₀ fibΩ² P f = fibΩ (fibΩ P f) refl fibΩ³ : {B : Pointed₀} (P : B .fst → Type₀) → P (pt B) → Ω³ B .fst → Type₀ fibΩ³ P f = fibΩ² (fibΩ P f) refl Ω³Hopf : Ω³ S²∙ .fst → Type₀ Ω³Hopf = fibΩ³ HopfS² base fibContrΩ³Hopf : ∀ p → Ω³Hopf p fibContrΩ³Hopf p i j k = hcomp (λ m → λ { (i = i0) → base ; (i = i1) → base ; (j = i0) → base ; (j = i1) → base ; (k = i0) → base ; (k = i1) → isSetΩS¹ refl refl (λ i j → transp (λ n → HopfS² (p i j n)) (i ∨ ~ i ∨ j ∨ ~ j) base) (λ _ _ → base) m i j }) (transp (λ n → HopfS² (p i j (k ∧ n))) (i ∨ ~ i ∨ j ∨ ~ j ∨ ~ k) base) h : Ω³ S²∙ .fst → Ω³ (join∙ S¹∙ S¹) .fst h p i j k = tee (p i j k) (fibContrΩ³Hopf p i j k) multTwoAux : (x : S²) → Path (Path ∥ S² ∥₄ ∣ x ∣₄ ∣ x ∣₄) refl refl multTwoAux base i j = ∣ surf i j ∣₄ multTwoAux (surf k l) i j = hcomp (λ m → λ { (i = i0) → ∣ surf k l ∣₄ ; (i = i1) → ∣ surf k l ∣₄ ; (j = i0) → ∣ surf k l ∣₄ ; (j = i1) → ∣ surf k l ∣₄ ; (k = i0) → ∣ surf i j ∣₄ ; (k = i1) → ∣ surf i j ∣₄ ; (l = i0) → ∣ surf i j ∣₄ ; (l = i1) → squash₄ _ _ _ _ _ _ (λ k i j → step₁ k i j) refl m k i j }) (step₁ k i j) where step₁ : I → I → I → ∥ S² ∥₄ step₁ k i j = hcomp {A = ∥ S² ∥₄} (λ m → λ { (i = i0) → ∣ surf k (l ∧ m) ∣₄ ; (i = i1) → ∣ surf k (l ∧ m) ∣₄ ; (j = i0) → ∣ surf k (l ∧ m) ∣₄ ; (j = i1) → ∣ surf k (l ∧ m) ∣₄ ; (k = i0) → ∣ surf i j ∣₄ ; (k = i1) → ∣ surf i j ∣₄ ; (l = i0) → ∣ surf i j ∣₄ }) ∣ surf i j ∣₄ multTwoTildeAux : (t : ∥ S² ∥₄) → Path (Path ∥ S² ∥₄ t t) refl refl multTwoTildeAux ∣ x ∣₄ = multTwoAux x multTwoTildeAux (squash₄ _ _ _ _ _ _ t u k l m n) i j = squash₄ _ _ _ _ _ _ (λ k l m → multTwoTildeAux (t k l m) i j) (λ k l m → multTwoTildeAux (u k l m) i j) k l m n multTwoEquivAux : Path (Path (∥ S² ∥₄ ≃ ∥ S² ∥₄) (idEquiv _) (idEquiv _)) refl refl multTwoEquivAux i j = ( f i j , hcomp (λ l → λ { (i = i0) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (i = i1) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (j = i0) → isPropIsEquiv _ (idIsEquiv _) (idIsEquiv _) l ; (j = i1) → isPropIsEquiv _ (transp (λ k → isEquiv (f i k)) (i ∨ ~ i) (idIsEquiv _)) (idIsEquiv _) l }) (transp (λ k → isEquiv (f i (j ∧ k))) (i ∨ ~ i ∨ ~ j) (idIsEquiv _)) ) where f : I → I → ∥ S² ∥₄ → ∥ S² ∥₄ f i j t = multTwoTildeAux t i j tHopf³ : S³ → Type₀ tHopf³ base = ∥ S² ∥₄ tHopf³ (surf i j k) = Glue ∥ S² ∥₄ (λ { (i = i0) → (∥ S² ∥₄ , idEquiv _) ; (i = i1) → (∥ S² ∥₄ , idEquiv _) ; (j = i0) → (∥ S² ∥₄ , idEquiv _) ; (j = i1) → (∥ S² ∥₄ , idEquiv _) ; (k = i0) → (∥ S² ∥₄ , multTwoEquivAux i j) ; (k = i1) → (∥ S² ∥₄ , idEquiv _) }) π₃S³ : Ω³ S³∙ .fst → Ω² ∥ S²∙ ∥₄∙ .fst π₃S³ p i j = transp (λ k → tHopf³ (p j k i)) i0 ∣ base ∣₄ codeS² : S² → hGroupoid _ codeS² s = ∥ HopfS² s ∥₃ , squash₃ codeTruncS² : ∥ S² ∥₄ → hGroupoid _ codeTruncS² = 2GroupoidTrunc.rec (isOfHLevelTypeOfHLevel 3) codeS² encodeTruncS² : Ω ∥ S²∙ ∥₄∙ .fst → ∥ S¹ ∥₃ encodeTruncS² p = transp (λ i → codeTruncS² (p i) .fst) i0 ∣ base ∣₃ codeS¹ : S¹ → hSet _ codeS¹ s = ∥ helix s ∥₂ , squash₂ codeTruncS¹ : ∥ S¹ ∥₃ → hSet _ codeTruncS¹ = GroupoidTrunc.rec (isOfHLevelTypeOfHLevel 2) codeS¹ encodeTruncS¹ : Ω ∥ S¹∙ ∥₃∙ .fst → ∥ ℤ ∥₂ encodeTruncS¹ p = transp (λ i → codeTruncS¹ (p i) .fst) i0 ∣ pos zero ∣₂ -- THE BIG GAME f3 : Ω³ S³∙ .fst → Ω³ (join∙ S¹∙ S¹) .fst f3 = mapΩ³refl S³→joinS¹S¹ f4 : Ω³ (join∙ S¹∙ S¹) .fst → Ω³ S²∙ .fst f4 = mapΩ³refl alpha f5 : Ω³ S²∙ .fst → Ω³ (join∙ S¹∙ S¹) .fst f5 = h f6 : Ω³ (join∙ S¹∙ S¹) .fst → Ω³ S³∙ .fst f6 = mapΩ³refl joinS¹S¹→S³ f7 : Ω³ S³∙ .fst → Ω² ∥ S²∙ ∥₄∙ .fst f7 = π₃S³ g8 : Ω² ∥ S²∙ ∥₄∙ .fst → Ω ∥ S¹∙ ∥₃∙ .fst g8 = mapΩrefl encodeTruncS² g9 : Ω ∥ S¹∙ ∥₃∙ .fst → ∥ ℤ ∥₂ g9 = encodeTruncS¹ g10 : ∥ ℤ ∥₂ → ℤ g10 = SetTrunc.rec isSetℤ (idfun ℤ) -- don't run me brunerie : ℤ brunerie = g10 (g9 (g8 (f7 (f6 (f5 (f4 (f3 (λ i j k → surf i j k)))))))) -- simpler tests test63 : ℕ → ℤ test63 n = g10 (g9 (g8 (f7 (63n n)))) where 63n : ℕ → Ω³ S³∙ .fst 63n zero i j k = surf i j k 63n (suc n) = f6 (f3 (63n n)) foo : Ω³ S²∙ .fst foo i j k = hcomp (λ l → λ { (i = i0) → surf l l ; (i = i1) → surf l l ; (j = i0) → surf l l ; (j = i1) → surf l l ; (k = i0) → surf l l ; (k = i1) → surf l l }) base sorghum : Ω³ S²∙ .fst sorghum i j k = hcomp (λ l → λ { (i = i0) → surf j l ; (i = i1) → surf k (~ l) ; (j = i0) → surf k (i ∧ ~ l) ; (j = i1) → surf k (i ∧ ~ l) ; (k = i0) → surf j (i ∨ l) ; (k = i1) → surf j (i ∨ l) }) (hcomp (λ l → λ { (i = i0) → base ; (i = i1) → surf j l ; (j = i0) → surf k i ; (j = i1) → surf k i ; (k = i0) → surf j (i ∧ l) ; (k = i1) → surf j (i ∧ l) }) (surf k i)) goo : Ω³ S²∙ .fst → ℤ goo x = g10 (g9 (g8 (f7 (f6 (f5 x))))) {- Computation of an alternative definition of the Brunerie number based on https://github.com/agda/cubical/pull/741. One should note that this computation by no means is comparable to the one of the term "brunerie" defined above. This computation starts in π₃S³ rather than π₃S². -} -- The brunerie element can be shown to correspond to the following map η₃ : (join S¹ S¹ , inl base) →∙ (Susp S² , north) fst η₃ (inl x) = north fst η₃ (inr x) = north fst η₃ (push a b i) = (σ (S² , base) (S¹×S¹→S² a b) ∙ σ (S² , base) (S¹×S¹→S² a b)) i where S¹×S¹→S² : S¹ → S¹ → S² S¹×S¹→S² base y = base S¹×S¹→S² (loop i) base = base S¹×S¹→S² (loop i) (loop j) = surf i j snd η₃ = refl K₂ = ∥ S² ∥₄ -- We will need a map Ω (Susp S²) → K₂. It turns out that the -- following map is fast. It need a bit of work, however. It's -- esentially the same map as you find in ZCohomology from ΩKₙ₊₁ to -- Kₙ. This gives another definition of f7 which appears to work better. module f7stuff where _+₂_ : K₂ → K₂ → K₂ _+₂_ = 2GroupoidTrunc.elim (λ _ → isOfHLevelΠ 4 λ _ → squash₄) λ { base x → x ; (surf i j) x → surfc x i j} where surfc : (x : K₂) → typ ((Ω^ 2) (K₂ , x)) surfc = 2GroupoidTrunc.elim (λ _ → isOfHLevelPath 4 (isOfHLevelPath 4 squash₄ _ _) _ _) (S²ToSetElim (λ _ → squash₄ _ _ _ _) λ i j → ∣ surf i j ∣₄) K₂≃K₂ : (x : S²) → K₂ ≃ K₂ fst (K₂≃K₂ x) y = ∣ x ∣₄ +₂ y snd (K₂≃K₂ x) = help x where help : (x : _) → isEquiv (λ y → ∣ x ∣₄ +₂ y) help = S²ToSetElim (λ _ → isProp→isSet (isPropIsEquiv _)) (idEquiv _ .snd) Code : Susp S² → Type ℓ-zero Code north = K₂ Code south = K₂ Code (merid a i) = ua (K₂≃K₂ a) i encode : (x : Susp S²) → north ≡ x → Code x encode x = J (λ x p → Code x) ∣ base ∣₄ -- We now get an alternative definition of f7 f7' : typ (Ω (Susp∙ S²)) → K₂ f7' = f7stuff.encode north -- We can define the Brunerie number by brunerie' : ℤ brunerie' = g10 (g9 (g8 λ i j → f7' λ k → η₃ .fst (push (loop i) (loop j) k))) -- Computing it takes ~1s brunerie'≡-2 : brunerie' ≡ -2 brunerie'≡-2 = refl
{ "alphanum_fraction": 0.5338852522, "avg_line_length": 27.7754010695, "ext": "agda", "hexsha": "18f32581411200f6cec8e488ce637b4a0ec2dda2", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "xekoukou/cubical", "max_forks_repo_path": "Cubical/Experiments/Brunerie.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "xekoukou/cubical", "max_issues_repo_path": "Cubical/Experiments/Brunerie.agda", "max_line_length": 96, "max_stars_count": null, "max_stars_repo_head_hexsha": "b6fbca9e83e553c5c2e4a16a2df7f9e9039034dc", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "xekoukou/cubical", "max_stars_repo_path": "Cubical/Experiments/Brunerie.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 4940, "size": 10388 }
module StalinSort where import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl) open import Data.Nat using (ℕ; _≤_; _≤?_) open import Data.List using (List; _∷_; []) open import Relation.Nullary using (Dec; yes; no) -- Implementation of Stalin Sort stalinSort : List ℕ → List ℕ stalinSort [] = [] stalinSort (x ∷ []) = x ∷ [] stalinSort (x ∷ y ∷ zs) with x ≤? y ...| yes m≤n = x ∷ stalinSort (y ∷ zs) ...| no m≰n = stalinSort (x ∷ zs) -- Example Test _ : stalinSort (2 ∷ 3 ∷ 5 ∷ 4 ∷ 6 ∷ []) ≡ (2 ∷ 3 ∷ 5 ∷ 6 ∷ []) _ = refl -------------------- Correctness of Stalin Sort ------------------------- {- This section is only interesting for Logic and Formal Verification enthusiasts. Although I tried to sketch the formal proof that Stalin Sort always returns a Sorted List, there is a point in the proof that I couldn't solve yet. I declared it as a postulate, so somebody can try improving it by giving an lemma that remove the postulate and finish the proof =D -} -- A proof that x is less than all values in xs (thanks to Twan van Laarhoven) data _≤*_ (x : ℕ) : List ℕ → Set where [] : x ≤* [] _∷_ : ∀ {y ys} → (x ≤ y) → y ≤* ys → x ≤* (y ∷ ys) -- Proof that a list is sorted (thanks to Twan van Laarhoven) data SortedList : List ℕ → Set where [] : SortedList [] _∷_ : ∀ {x xs} → x ≤* xs → SortedList xs → SortedList (x ∷ xs) -- This is necessary to prove the correctness, I can't find a way yet ... postulate less-stalin : ∀ (x y : ℕ) (zs : List ℕ) → x ≤ y → x ≤* stalinSort (y ∷ zs) -- Proof that Stalin Sort returns a sorted list stalinSort-correctness : ∀ (xs : List ℕ) → SortedList (stalinSort xs) stalinSort-correctness [] = [] stalinSort-correctness (x ∷ []) = [] ∷ [] stalinSort-correctness (x ∷ y ∷ zs) with x ≤? y ...| yes m≤n = less-stalin x y zs m≤n ∷ (stalinSort-correctness (y ∷ zs)) ...| no m≰n = stalinSort-correctness (x ∷ zs)
{ "alphanum_fraction": 0.5987933635, "avg_line_length": 38.25, "ext": "agda", "hexsha": "f094536808f0584a228af71a650d5ee661372fcc", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6098af3dbebdcbb8d23491a0be51775bddaee4a4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bluoxy/stalin-sort", "max_forks_repo_path": "agda/StalinSort.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6098af3dbebdcbb8d23491a0be51775bddaee4a4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bluoxy/stalin-sort", "max_issues_repo_path": "agda/StalinSort.agda", "max_line_length": 80, "max_stars_count": null, "max_stars_repo_head_hexsha": "6098af3dbebdcbb8d23491a0be51775bddaee4a4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bluoxy/stalin-sort", "max_stars_repo_path": "agda/StalinSort.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 672, "size": 1989 }
module Data.Bin.Utils where open import Data.Digit open import Data.Bin hiding (suc) open import Data.Fin open import Data.List _%2 : Bin → Bin 0# %2 = 0# ([] 1#) %2 = [] 1# ((zero ∷ _) 1#) %2 = 0# ((suc zero ∷ _) 1#) %2 = [] 1# ((suc (suc ()) ∷ _) 1#) %2 bitToBin : Bit → Bin bitToBin zero = 0# bitToBin (suc zero) = [] 1# bitToBin (suc (suc ()))
{ "alphanum_fraction": 0.5329815303, "avg_line_length": 19.9473684211, "ext": "agda", "hexsha": "1f2c4ff45ae8b3f2924e519da59673200dda6ae1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "Rotsor/BinDivMod", "max_forks_repo_path": "Data/Bin/Utils.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "Rotsor/BinDivMod", "max_issues_repo_path": "Data/Bin/Utils.agda", "max_line_length": 35, "max_stars_count": 1, "max_stars_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Rotsor/BinDivMod", "max_stars_repo_path": "Data/Bin/Utils.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-18T13:58:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-18T13:58:14.000Z", "num_tokens": 167, "size": 379 }
module Properties where open import Data.Bool open import Data.Empty open import Data.Maybe hiding (Any ; All) open import Data.Nat open import Data.List open import Data.List.All open import Data.List.Any open import Data.Product open import Data.Sum open import Data.Unit open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Typing open import Syntax open import Global open import Channel open import Values open import Session open import Schedule open import ProcessSyntax open import ProcessRun -- adequacy open import Properties.Base import Properties.StepBeta import Properties.StepPair import Properties.StepFork import Properties.StepNew import Properties.StepCloseWait
{ "alphanum_fraction": 0.8360881543, "avg_line_length": 19.1052631579, "ext": "agda", "hexsha": "6c86054487b9d069d1ee6ce146f4174610589fc8", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "peterthiemann/definitional-session", "max_forks_repo_path": "src/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "peterthiemann/definitional-session", "max_issues_repo_path": "src/Properties.agda", "max_line_length": 49, "max_stars_count": 9, "max_stars_repo_head_hexsha": "c2213909c8a308fb1c1c1e4e789d65ba36f6042c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "peterthiemann/definitional-session", "max_stars_repo_path": "src/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-01-18T08:10:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-19T16:33:27.000Z", "num_tokens": 152, "size": 726 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category -- obtain free properties from duality module Categories.Diagram.Pushout.Properties {o ℓ e} (C : Category o ℓ e) where open Category C open import Data.Product using (∃; _,_) open import Categories.Category.Cocartesian C open import Categories.Morphism C open import Categories.Morphism.Properties C open import Categories.Morphism.Duality C open import Categories.Object.Initial C open import Categories.Object.Terminal op open import Categories.Object.Coproduct C open import Categories.Object.Duality C open import Categories.Diagram.Coequalizer C open import Categories.Diagram.Pushout C open import Categories.Diagram.Duality C open import Categories.Diagram.Pullback op as P′ using (Pullback) open import Categories.Diagram.Pullback.Properties op private variable A B X Y : Obj f g h i : A ⇒ B module _ (p : Pushout f g) where open Pushout p private pullback : Pullback f g pullback = Pushout⇒coPullback p open Pullback pullback using (unique′; id-unique; unique-diagram) public swap : Pushout g f swap = coPullback⇒Pushout (P′.swap pullback) glue : Pushout h i₁ → Pushout (h ∘ f) g glue p = coPullback⇒Pushout (P′.glue pullback (Pushout⇒coPullback p)) unglue : Pushout (h ∘ f) g → Pushout h i₁ unglue p = coPullback⇒Pushout (P′.unglue pullback (Pushout⇒coPullback p)) Pushout-resp-Epi : Epi g → Epi i₁ Pushout-resp-Epi epi = P′.Pullback-resp-Mono pullback epi Pushout-resp-Iso : Iso g h → ∃ λ j → Iso i₁ j Pushout-resp-Iso iso with P′.Pullback-resp-Iso pullback (Iso⇒op-Iso (Iso-swap iso)) ... | j , record { isoˡ = isoˡ ; isoʳ = isoʳ } = j , record { isoˡ = isoʳ ; isoʳ = isoˡ } Coproduct×Coequalizer⇒Pushout : (cp : Coproduct A B) → Coequalizer (Coproduct.i₁ cp ∘ f) (Coproduct.i₂ cp ∘ g) → Pushout f g Coproduct×Coequalizer⇒Pushout cp coe = coPullback⇒Pushout (P′.Product×Equalizer⇒Pullback (coproduct→product cp) (Coequalizer⇒coEqualizer coe)) Coproduct×Pushout⇒Coequalizer : (cp : Coproduct A B) → Pushout f g → Coequalizer (Coproduct.i₁ cp ∘ f) (Coproduct.i₂ cp ∘ g) Coproduct×Pushout⇒Coequalizer cp p = coEqualizer⇒Coequalizer (P′.Product×Pullback⇒Equalizer (coproduct→product cp) (Pushout⇒coPullback p)) module _ (i : Initial) where open Initial i private t : Terminal t = ⊥⇒op⊤ i pushout-⊥⇒coproduct : Pushout (! {X}) (! {Y}) → Coproduct X Y pushout-⊥⇒coproduct p = product→coproduct (pullback-⊤⇒product t (Pushout⇒coPullback p)) coproduct⇒pushout-⊥ : Coproduct X Y → Pushout (! {X}) (! {Y}) coproduct⇒pushout-⊥ c = coPullback⇒Pushout (product⇒pullback-⊤ t (coproduct→product c)) pushout-resp-≈ : Pushout f g → f ≈ h → g ≈ i → Pushout h i pushout-resp-≈ p eq eq′ = coPullback⇒Pushout (pullback-resp-≈ (Pushout⇒coPullback p) eq eq′) module _ (pushouts : ∀ {X Y Z} (f : X ⇒ Y) (g : X ⇒ Z) → Pushout f g) (cocartesian : Cocartesian) where open Cocartesian cocartesian open Dual pushout×cocartesian⇒coequalizer : Coequalizer f g pushout×cocartesian⇒coequalizer = coEqualizer⇒Coequalizer (pullback×cartesian⇒equalizer (λ f g → Pushout⇒coPullback (pushouts f g)) op-cartesian)
{ "alphanum_fraction": 0.6641332944, "avg_line_length": 36.0105263158, "ext": "agda", "hexsha": "f6ce54f7c34a4dd9a29abc58890943f6c3c9e541", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Pushout/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Pushout/Properties.agda", "max_line_length": 92, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Pushout/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1178, "size": 3421 }
module Categories.Monad.Algebras where
{ "alphanum_fraction": 0.8717948718, "avg_line_length": 19.5, "ext": "agda", "hexsha": "f9151d5e1fa1cdeadcbd2b8adb7ea3466bdd865c", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Monad/Algebras.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Monad/Algebras.agda", "max_line_length": 38, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Monad/Algebras.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 8, "size": 39 }
module x02induction where -- prove properties of inductive naturals and operations on them via induction import Relation.Binary.PropositionalEquality as Eq open Eq using (_≡_; refl; cong; sym) open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎) open import Data.Nat using (ℕ; zero; suc; _+_; _*_; _∸_; _^_) {- ------------------------------------------------------------------------------ ## Properties of operators : identity, associativity, commutativity, distributivity * _Identity_. left/right/both; sometimes called _unit_ * _Associativity_. e.g., `(m + n) + p ≡ m + (n + p)` * _Commutativity_. e.g., `m + n ≡ n + m` * _Distributivity_. e.g., from the left `(m + n) * p ≡ (m * p) + (n * p)` from the right `m * (p + q) ≡ (m * p) + (m * q)` #### Exercise `operators` (practice) {name=operators} TODO : ops with different properties - no proofs pair of operators - have an identity - are associative, commutative, and distribute over one another (do not prove) operator - has identity - is associative - not commutative (do not prove) -} {- HC not associative; right identity -} _ = begin (3 ∸ 1) ∸ 1 ∸ 0 ≡⟨⟩ 2 ∸ 1 ∸ 0 ≡⟨⟩ 1 ∸ 0 ≡⟨⟩ 1 ∸ 0 ∎ {- ------------------------------------------------------------------------------ ## ASSOCIATIVITY of ADDITION : (m + n) + p ≡ m + (n + p) -} _ : (3 + 4) + 5 ≡ 3 + (4 + 5) _ = begin (3 + 4) + 5 ≡⟨⟩ 7 + 5 ≡⟨⟩ 12 ≡⟨⟩ 3 + 9 ≡⟨⟩ 3 + (4 + 5) ∎ {- useful to read chains like above - from top down until reaching simplest term (i.e., `12`) - from bottom up until reaching the same term Why should `7 + 5` be the same as `3 + 9`? Perhaps gather more evidence, testing the proposition by choosing other numbers. But infinite naturals so testing can never be complete. ## PROOF BY INDUCTION natural definition has - base case - inductive case inductive proof follows structure of definition: prove two cases - _base case_ : show property holds for `zero` - _inductive case_ : - assume property holds for an arbitrary natural `m` (the _inductive hypothesis_) - then show that the property holds for `suc m` ------ P zero P m --------- P (suc m) - initially, no properties are known. - base case : `P zero` holds : add it to set of known properties -- On the first day, one property is known. P zero - inductive case tells us that if `P m` holds -- On the second day, two properties are known. P zero P (suc zero) then `P (suc m)` also holds -- On the third day, three properties are known. P zero P (suc zero) P (suc (suc zero)) -- On the fourth day, four properties are known. P zero P (suc zero) P (suc (suc zero)) P (suc (suc (suc zero))) the process continues: property `P n` first appears on day _n+1_ ------------------------------------------------------------------------------ ## PROVE ASSOCIATIVITY of ADDITION take `P m` to be the property: (m + n) + p ≡ m + (n + p) `n` and `p` are arbitrary natural numbers show the equation holds for all `m` it will also hold for all `n` and `p` ------------------------------- (zero + n) + p ≡ zero + (n + p) (m + n) + p ≡ m + (n + p) --------------------------------- (suc m + n) + p ≡ suc m + (n + p) demonstrate both of above, then associativity of addition follows by induction -} -- signature says providing evidence for proposition +-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) -- Evidence is a function that -- - takes three natural numbers, binds them to `m`, `n`, and `p` -- - returns evidence for the corresponding instance of the equation -- base case : show: (zero + n) + p -- ≡ zero + (n + p) +-assoc zero n p = begin (zero + n) + p ≡⟨⟩ -- _+_ base case n + p ≡⟨⟩ zero + (n + p) ∎ -- inductive case : show: (suc m + n) + p -- ≡ suc m + (n + p) +-assoc (suc m) n p = begin (suc m + n) + p ≡⟨⟩ -- _+_ inductive case (left to right) suc (m + n) + p ≡⟨⟩ suc ((m + n) + p) ≡⟨ cong suc (+-assoc m n p) ⟩ -- simplifying both sides : suc ((m + n) + p) ≡ suc (m + (n + p)) -- follows by prefacing `suc` to both sides of the induction hypothesis: -- (m + n) + p ≡ m + (n + p) suc (m + (n + p)) ≡⟨⟩ -- _+_ inductive case (right to left) suc m + (n + p) ∎ -- HC minimal version +-assoc' : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc' zero n p = refl +-assoc' (suc m) n p = cong suc (+-assoc m n p) {- identifiers can have any characters NOT including spaces or the characters @.(){};_ the "middle" equation, does not follow from applying _+_ (i.e., "simplification") alone - `_≡⟨_⟩_` : called "chain reasoning" - justification for equation given in angle brackets: - empty means "simplification", or - something more, e.g.,: ⟨ cong suc (+-assoc m n p) ⟩ recursive invocation `+-assoc m n p` - has type of the induction hypothesis - `cong suc` prefaces `suc` to each side of inductive hypothesis A relation is a CONGRUENCE for a given function if the relation is preserved by applying the function. if `e` is evidence that `x ≡ y`, then `cong f e` is evidence `f x ≡ f y`, for any `f` here the inductive hypothesis is not assumed instead, proved by recursive invocation of the function being defined, `+-assoc m n p` WELL FOUNDED : associativity of larger numbers is proved in of associativity of smaller numbers. e.g., `assoc (suc m) n p` is proved using `assoc m n p`. ------------------------------------------------------------------------------ ## Induction as recursion Concrete example of how induction corresponds to recursion : instantiate `m` to `2` -} +-assoc-2 : ∀ (n p : ℕ) → (2 + n) + p ≡ 2 + (n + p) +-assoc-2 n p = begin (2 + n) + p ≡⟨⟩ suc (1 + n) + p ≡⟨⟩ suc ((1 + n) + p) ≡⟨ cong suc (+-assoc-1 n p) ⟩ suc (1 + (n + p)) ≡⟨⟩ 2 + (n + p) ∎ where +-assoc-1 : ∀ (n p : ℕ) → (1 + n) + p ≡ 1 + (n + p) +-assoc-1 n p = begin (1 + n) + p ≡⟨⟩ suc (0 + n) + p ≡⟨⟩ suc ((0 + n) + p) ≡⟨ cong suc (+-assoc-0 n p) ⟩ suc (0 + (n + p)) ≡⟨⟩ 1 + (n + p) ∎ where +-assoc-0 : ∀ (n p : ℕ) → (0 + n) + p ≡ 0 + (n + p) +-assoc-0 n p = begin (0 + n) + p ≡⟨⟩ n + p ≡⟨⟩ 0 + (n + p) ∎ {- ------------------------------------------------------------------------------ ## Terminology and notation Evidence for a universal quantifier is a function. The notations +-assoc : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) and +-assoc : ∀ (m : ℕ) → ∀ (n : ℕ) → ∀ (p : ℕ) → (m + n) + p ≡ m + (n + p) are equivalent. differ from function type such as `ℕ → ℕ → ℕ` - variables are associated with each argument type - the result type may mention (or depend upon) these variables - hence called _DEPENDENT functions_ ------------------------------------------------------------------------------ ## COMMUTATIVITY of ADDITION : m + n ≡ n + m two lemmas used in proof ### first lemma The base case of the definition of addition states that zero is a left-identity: zero + n ≡ n First lemma states that zero is also a right-identity: -} -- proof by induction on `m` +-identityʳ : ∀ (m : ℕ) → m + zero ≡ m -- base case : show: -- zero + zero -- ≡ zero +-identityʳ zero = begin zero + zero ≡⟨⟩ -- _+_ base zero ∎ -- inductive case : show: -- (suc m) + zero -- = suc m +-identityʳ (suc m) = begin suc m + zero ≡⟨⟩ -- _+_ inductive suc (m + zero) ≡⟨ cong suc (+-identityʳ m) ⟩ -- recursive invocation `+-identityʳ m` -- has type of induction hypothesis -- m + zero ≡ m -- `cong suc` prefaces `suc` to each side of that type, yielding -- suc (m + zero) ≡ suc m suc m ∎ {- ### second lemma inductive case of _+_ pushes `suc` on 1st arg to the outside: suc m + n ≡ suc (m + n) second lemma does same for `suc` on 2nd arg: m + suc n ≡ suc (m + n) -} -- signature states defining `+-suc` which provides evidence for the proposition/type +-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) -- evidence is fun that takes two nats, binds to `m` and `n` -- returns evidence for the corresponding instance of the equation -- proof is by induction on `m` -- base case +-suc zero n = begin zero + suc n ≡⟨⟩ -- _+_ base suc n ≡⟨⟩ -- _+_ base suc (zero + n) ∎ -- inductive case : show: suc m + suc n -- ≡ suc (suc m + n) +-suc (suc m) n = begin suc m + suc n ≡⟨⟩ -- _+_ inductive suc (m + suc n) ≡⟨ cong suc (+-suc m n) ⟩ -- induction suc (suc (m + n)) ≡⟨⟩ -- _+_ inductive suc (suc m + n) ∎ ------------------------- +-comm : ∀ (m n : ℕ) → m + n ≡ n + m +-comm m zero = begin m + zero ≡⟨ +-identityʳ m ⟩ m ≡⟨⟩ zero + m ∎ +-comm m (suc n) = begin m + suc n ≡⟨ +-suc m n ⟩ suc (m + n) ≡⟨ cong suc (+-comm m n) ⟩ -- congruence and induction hypothesis suc (n + m) ≡⟨⟩ -- _+_ inductive suc n + m ∎ {- definition required BEFORE using them ------------------------------------------------------------------------------ ## COROLLARY: REARRANGING : apply associativity to rearrange parentheses (SYM; sections) -} +-rearrange : ∀ (m n p q : ℕ) → (m + n) + (p + q) ≡ m + (n + p) + q +-rearrange m n p q = begin (m + n) + (p + q) ≡⟨ +-assoc m n (p + q) ⟩ m + (n + (p + q)) ≡⟨ cong (m +_) (sym (+-assoc n p q)) ⟩ m + ((n + p) + q) ≡⟨ sym (+-assoc m (n + p) q) ⟩ (m + (n + p)) + q ≡⟨⟩ m + (n + p) + q ∎ {- no induction is required NOTE: addition is left associative : m + (n + p) + q = (m + (n + p)) + q SYM : interchange sides of an equation, e.g., - `+-assoc n p q` shifts parens right to left: (n + p) + q ≡ n + (p + q) `sym (+-assoc n p q)`: to shift them left-to-right n + (p + q) ≡ (n + p) + q general - if `e` provides evidence for `x ≡ y` - then `sym e` provides evidence for `y ≡ x` SECTION NOTATION (introduced by Richard Bird) : `(x +_)` `(_+ x)` ------------------------------------------------------------------------------ ## Creation, one last time base case : `(zero + n) + p ≡ zero + (n + p)` inductive case : - if `(m + n) + p ≡ m + (n + p)` then `(suc m + n) + p ≡ suc m + (n + p)` using base case, associativity of zero on left: (0 + 0) + 0 ≡ 0 + (0 + 0) ... (0 + 4) + 5 ≡ 0 + (4 + 5) ... using inductive case (1 + 0) + 0 ≡ 1 + (0 + 0) ... (1 + 4) + 5 ≡ 1 + (4 + 5) ... (2 + 0) + 0 ≡ 2 + (0 + 0) ... (2 + 4) + 5 ≡ 2 + (4 + 5) ... (3 + 0) + 0 ≡ 3 + (0 + 0) ... (3 + 4) + 5 ≡ 3 + (4 + 5) ... ... there is a finite approach to generating the same equations (following exercise) ------------------------------------------------------------------------------ #### Exercise `finite-|-assoc` (stretch) {name=finite-plus-assoc} TODO - first four days of creation - description, not proof Write out what is known about associativity of addition on each of the first four days using a finite story of creation, as [earlier](/Naturals/#finite-creation). ------------------------------------------------------------------------------ ## proof of ASSOCIATIVITY using `rewrite` (rather than chains of equations) avoids chains of equations and the need to invoke `cong` -} +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) -- base -- show: (zero + n) + p ≡ zero + (n + p) -- _+_ base applied "invisibly", then terms equal/refl +-assoc′ zero n p = refl -- inductive -- show: (suc m + n) + p ≡ suc m + (n + p) -- _+_ inductive applied "invisibly" giving: suc ((m + n) + p) ≡ suc (m + (n + p)) -- rewrite with the inductive hypothesis -- then terms are equal/refl +-assoc′ (suc m) n p rewrite +-assoc′ m n p = refl {- rewriting by a given equation - indicated by keyword `rewrite` - followed by a proof of that equation ------------------------------------------------------------------------------ ## COMMUTATIVITY with rewrite -} +-suc′ : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n) +-suc′ zero n = refl +-suc′ (suc m) n rewrite +-suc′ m n = refl +-comm′ : ∀ (m n : ℕ) → m + n ≡ n + m +-comm′ m zero rewrite +-identityʳ m = refl -- rewriting with two equations indicated by separating the two proofs -- of the relevant equations by a vertical bar -- left rewrite performed before right +-comm′ m (suc n) -- m + suc n ≡ suc n + m -- m + suc n ≡ suc (n + m) -- def/eq rewrite +-suc′ m n -- suc (m + n) ≡ suc (n + m) | +-comm′ m n -- suc (n + m) ≡ suc (n + m) = refl +-comm′′ : ∀ (m n : ℕ) → m + n ≡ n + m +-comm′′ m zero rewrite +-identityʳ m = refl +-comm′′ m (suc n) = begin m + suc n ≡⟨ +-suc′ m n ⟩ suc (m + n) ≡⟨ cong suc (+-comm′′ m n) ⟩ suc (n + m) ≡⟨⟩ -- def/eq suc n + m ∎ {- ------------------------------------------------------------------------------ HC -} *0 : ∀ (m : ℕ) → m * 0 ≡ 0 *0 zero = refl *0 (suc m) = *0 m 0* : ∀ (m : ℕ) → 0 * m ≡ 0 0* m = refl *1 : ∀ (n : ℕ) → n * 1 ≡ n *1 zero = refl *1 (suc n) rewrite *1 n = refl 1* : ∀ (n : ℕ) → 1 * n ≡ n 1* zero = refl 1* (suc n) rewrite 1* n = refl {- ------------------------------------------------------------------------------ ## Building proofs interactively +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ m n p = ? C-c C-l +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ m n p = { }0 new window at the bottom: ?0 : ((m + n) + p) ≡ (m + (n + p)) indicates hole 0 needs to be filled with a proof of the stated judgment to prove the proposition by induction on `m` move cursor into hole C-c C-c prompt: pattern variables to case (empty for split on result): type `m` to case split on that variable +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ zero n p = { }0 +-assoc′ (suc m) n p = { }1 There are now two holes, and the window at the bottom tells you what each is required to prove: ?0 : ((zero + n) + p) ≡ (zero + (n + p)) ?1 : ((suc m + n) + p) ≡ (suc m + (n + p)) goto hole 0 C-c C-, Goal: (n + p) ≡ (n + p) ———————————————————————————————————————————————————————————— p : ℕ n : ℕ indicates that after simplification the goal for hole 0 is as stated, and that variables `p` and `n` of the stated types are available to use in the proof. the proof of the given goal is simple goto goal C-c C-r fills in with refl C-c C-l renumbers remaining hole to 0: +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ zero n p = refl +-assoc′ (suc m) n p = { }0 goto hole 0 C-c C-, Goal: suc ((m + n) + p) ≡ suc (m + (n + p)) ———————————————————————————————————————————————————————————— p : ℕ n : ℕ m : ℕ gives simplified goal and available variables need to rewrite by the induction hypothesis +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ zero n p = refl +-assoc′ (suc m) n p rewrite +-assoc′ m n p = { }0 goto hole C-c C-, Goal: suc (m + (n + p)) ≡ suc (m + (n + p)) ———————————————————————————————————————————————————————————— p : ℕ n : ℕ m : ℕ goto goal C-c C-r fills in, completing proof +-assoc′ : ∀ (m n p : ℕ) → (m + n) + p ≡ m + (n + p) +-assoc′ zero n p = refl +-assoc′ (suc m) n p rewrite +-assoc′ m n p = refl ------------------------------------------------------------------------------ #### Exercise `+-swap` (recommended) {name=plus-swap} Show m + (n + p) ≡ n + (m + p) for all naturals `m`, `n`, and `p` - no induction - use associativity and commutativity of addtion -} +-swap : ∀ (m n p : ℕ) → m + (n + p) ≡ n + (m + p) +-swap m n p = begin m + (n + p) ≡⟨ sym (+-assoc m n p) ⟩ (m + n) + p ≡⟨ cong (_+ p) (sym (+-comm n m)) ⟩ (n + m) + p ≡⟨ +-assoc n m p ⟩ n + (m + p) ∎ {- ------------------------------------------------------------------------------ #### Exercise `*-distrib-+` (recommended) {name=times-distrib-plus} (m + n) * p ≡ m * p + n * p -} *-distrib-+r : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-distrib-+r zero y z = refl *-distrib-+r (suc x) y z -- (suc x + y) * z ≡ suc x * z + y * z -- z + (x + y) * z ≡ z + x * z + y * z rewrite *-distrib-+r x y z -- z + (x * z + y * z) ≡ z + x * z + y * z | sym (+-assoc z (x * z) (y * z)) -- z + x * z + y * z ≡ z + x * z + y * z = refl {- TODO: agda loops on this : *-distrib-+r done with chain reasoning *-distrib-+r' : ∀ (m n p : ℕ) → (m + n) * p ≡ m * p + n * p *-distrib-+r' zero y z = refl *-distrib-+r' (suc x) y z begin (suc x + y) * z ≡⟨⟩ z + (x + y) * z ≡⟨ *-distrib-+r' x y z ⟩ z + (x * z + y * z) ≡⟨ sym (+-assoc z (x * z) (y * z)) ⟩ z + x * z + y * z ≡⟨⟩ suc x * z + y * z ∎ -} {- ------------------------------------------------------------------------------ #### Exercise `*-assoc` (recommended) {name=times-assoc} (m * n) * p ≡ m * (n * p) -} *-assoc : ∀ (m n p : ℕ) → (m * n) * p ≡ m * (n * p) -- base case : show: (zero * n) * p -- ≡ zero * (n * p) *-assoc zero n p = refl -- zero * n * p ≡ zero * (n * p) -- zero ≡ zero -- def/eq -- inductive case : show: (suc m * n) * p -- ≡ suc m * (n * p) *-assoc (suc m) n p -- suc m * n * p ≡ suc m * (n * p) -- (n + m * n) * p ≡ n * p + m * (n * p) rewrite *-distrib-+r n (m * n) p -- n * p + m * n * p ≡ n * p + m * (n * p) | *-assoc m n p -- n * p + m * (n * p) ≡ n * p + m * (n * p) = refl {- ------------------------------------------------------------------------------ #### Exercise `*-comm` (practice) {name=times-comm} MULTIPLICATION is COMMUTATIVE : m * n ≡ n * m -} *-suc : ∀ (x y : ℕ) → x * (suc y) ≡ x + (x * y) *-suc zero y = refl *-suc (suc x) y -- suc x * suc y ≡ suc x + suc x * y -- suc (y + x * suc y) ≡ suc (x + (y + x * y)) rewrite +-comm y (x * suc y) -- suc (x * suc y + y) ≡ suc (x + (y + x * y)) | *-suc x y -- suc (x + x * y + y) ≡ suc (x + (y + x * y)) | +-comm y (x * y) -- suc (x + x * y + y) ≡ suc (x + (x * y + y)) | sym (+-assoc x (x * y) y) -- suc (x + x * y + y) ≡ suc (x + x * y + y) = refl *-comm : ∀ (m n : ℕ) → m * n ≡ n * m *-comm m zero rewrite *0 m = refl *-comm m (suc n) -- m * suc n ≡ suc n * m -- m * suc n ≡ m + n * m rewrite *-suc m n -- m + m * n ≡ m + n * m | *-comm m n -- m + n * m ≡ m + n * m = refl {- ------------------------------------------------------------------------------ #### Exercise `0∸n≡0` (practice) {name=zero-monus} : Show zero ∸ n ≡ zero for all naturals `n`. Did your proof require induction? -} 0∸n≡0 : ∀ (n : ℕ) → 0 ∸ n ≡ 0 0∸n≡0 zero = refl 0∸n≡0 (suc n) = refl {- ------------------------------------------------------------------------------ #### Exercise `∸-|-assoc` (practice) {name=monus-plus-assoc} : m ∸ n ∸ p ≡ m ∸ (n + p) show that monus associates with addition -} ∸-|-assoc : ∀ (m n p : ℕ) → m ∸ n ∸ p ≡ m ∸ (n + p) ∸-|-assoc m n zero -- m ∸ n ∸ zero ≡ m ∸ (n + zero) -- m ∸ n ≡ m ∸ (n + zero) rewrite +-identityʳ n = refl -- m ∸ n ≡ m ∸ n ∸-|-assoc m zero (suc p) -- m ∸ zero ∸ suc p ≡ m ∸ (zero + suc p) = refl -- m ∸ suc p ≡ m ∸ suc p ∸-|-assoc zero (suc n) (suc p) -- zero ∸ suc n ∸ suc p ≡ zero ∸ (suc n + suc p) = refl -- zero ≡ zero ∸-|-assoc (suc m) (suc n) (suc p) -- suc m ∸ suc n ∸ suc p ≡ suc m ∸ (suc n + suc p) -- m ∸ n ∸ suc p ≡ m ∸ (n + suc p) rewrite ∸-|-assoc m n (suc p) -- m ∸ (n + suc p) ≡ m ∸ (n + suc p) = refl {- ------------------------------------------------------------------------------ #### Exercise `+*^` (stretch) m ^ (n + p) ≡ (m ^ n) * (m ^ p) (^-distribˡ-|-*) (m * n) ^ p ≡ (m ^ p) * (n ^ p) (^-distribʳ-*) (m ^ n) ^ p ≡ m ^ (n * p) (^-*-assoc) -} ------------------------- -- this can be shortened ^-distribˡ-|-* : ∀ (m n p : ℕ) → m ^ (n + p) ≡ (m ^ n) * (m ^ p) ^-distribˡ-|-* m n zero -- (m ^ (n + zero)) ≡ (m ^ n) * (m ^ zero) -- (m ^ (n + zero)) ≡ (m ^ n) * 1 rewrite +-identityʳ n -- (m ^ n) ≡ (m ^ n) * 1 | *1 (m ^ n) -- (m ^ n) ≡ (m ^ n) = refl ^-distribˡ-|-* m n (suc p) -- (m ^ (n + suc p)) ≡ (m ^ n) * (m ^ suc p) -- (m ^ (n + suc p)) ≡ (m ^ n) * (m * (m ^ p)) rewrite *-comm m (m ^ p) -- (m ^ (n + suc p)) ≡ (m ^ n) * ((m ^ p) * m) | sym (*-assoc (m ^ n) (m ^ p) m) -- (m ^ (n + suc p)) ≡ (m ^ n) * (m ^ p) * m | +-comm n (suc p) -- (m ^ suc (p + n)) ≡ (m ^ n) * (m ^ p) * m -- m * (m ^ (p + n)) ≡ (m ^ n) * (m ^ p) * m | *-comm ((m ^ n) * (m ^ p)) m -- m * (m ^ (p + n)) ≡ m * ((m ^ n) * (m ^ p)) | sym (*-assoc m (m ^ n) (m ^ p)) -- m * (m ^ (p + n)) ≡ m * (m ^ n) * (m ^ p) | ^-distribˡ-|-* m p n -- m * ((m ^ p) * (m ^ n)) ≡ m * (m ^ n) * (m ^ p) | sym (*-comm (m ^ n) (m ^ p)) -- m * ((m ^ n) * (m ^ p)) ≡ m * (m ^ n) * (m ^ p) | *-assoc m (m ^ n) (m ^ p) -- m * ((m ^ n) * (m ^ p)) ≡ m * ((m ^ n) * (m ^ p)) = refl ------------------------- ^-distribʳ-* : ∀ (m n p : ℕ) → (m * n) ^ p ≡ (m ^ p) * (n ^ p) ^-distribʳ-* m n zero = refl ^-distribʳ-* m n (suc p) -- ((m * n) ^ suc p) ≡(m ^ suc p) * (n ^ suc p) -- m * n * ((m * n) ^ p) ≡ m * (m ^ p) * (n * (n ^ p)) rewrite ^-distribʳ-* m n p -- m * n * ((m ^ p) * (n ^ p)) ≡ m * (m ^ p) * (n * (n ^ p)) | *-comm (m * (m ^ p)) (n * (n ^ p)) -- m * n * ((m ^ p) * (n ^ p)) ≡ n * (n ^ p) * (m * (m ^ p)) | *-assoc m n ((m ^ p) * (n ^ p)) -- m *(n * ((m ^ p) * (n ^ p)))≡ n * (n ^ p) * (m * (m ^ p)) | *-comm m (n * ((m ^ p) * (n ^ p))) -- n *((m ^ p) * (n ^ p))* m ≡ n * (n ^ p) * (m * (m ^ p)) | *-comm (m ^ p) (n ^ p) -- n *((n ^ p) * (m ^ p))* m ≡ n * (n ^ p) * (m * (m ^ p)) | sym (*-assoc n (n ^ p) (m ^ p)) -- n * (n ^ p) * (m ^ p) * m ≡ n * (n ^ p) * (m * (m ^ p)) | *-assoc n (n ^ p) (m * (m ^ p)) -- n * (n ^ p) * (m ^ p) * m ≡ n *((n ^ p) * (m * (m ^ p))) | *-comm m (m ^ p) -- n * (n ^ p) * (m ^ p) * m ≡ n *((n ^ p) * ((m ^ p) * m)) | *-assoc n (n ^ p) (m ^ p) -- n *((n ^ p) * (m ^ p))* m ≡ n *((n ^ p) * ((m ^ p) * m)) | *-assoc n ((n ^ p) * (m ^ p)) m -- n *((n ^ p) * (m ^ p) * m) ≡ n *((n ^ p) * ((m ^ p) * m)) | *-assoc (n ^ p) (m ^ p) m -- n *((n ^ p) *((m ^ p) * m))≡ n *((n ^ p) * ((m ^ p) * m)) = refl ------------------------- ^-*-assoc : ∀ (m n p : ℕ) → (m ^ n) ^ p ≡ m ^ (n * p) ^-*-assoc m n zero -- ((m ^ n) ^ zero) ≡ (m ^ (n * zero)) -- 1 ≡ (m ^ (n * zero)) rewrite *0 n -- 1 ≡ (m ^ 0) -- 1 ≡ 1 = refl ^-*-assoc m n (suc p) -- ((m ^ n) ^ suc p) ≡ (m ^ (n * suc p)) -- (m ^ n) * ((m ^ n) ^ p) ≡ (m ^ (n * suc p)) rewrite *-suc n p -- (m ^ n) * ((m ^ n) ^ p) ≡ (m ^ (n + n * p)) | ^-distribˡ-|-* m n (n * p) -- (m ^ n) * ((m ^ n) ^ p) ≡ (m ^ n) * (m ^ (n * p)) | sym (^-*-assoc m n p) -- (m ^ n) * ((m ^ n) ^ p) ≡ (m ^ n) * ((m ^ n) ^ p) = refl {- ------------------------------------------------------------------------------ #### Exercise `Bin-laws` (stretch) {name=Bin-laws} Recall that Exercise [Bin](/Naturals/#Bin) defines a datatype `Bin` of bitstrings representing natural numbers, and asks you to define functions -} -- begin duplicated from x01 (can't import because of "duplicate" pragma) data Bin : Set where ⟨⟩ : Bin _O : Bin → Bin _I : Bin → Bin inc : Bin → Bin inc ⟨⟩ = ⟨⟩ I inc (b O) = b I inc (b I) = (inc b) O _ : inc (⟨⟩ I O I I) ≡ ⟨⟩ I I O O _ = refl -- end duplicated dbl : ℕ → ℕ dbl zero = zero dbl (suc m) = suc (suc (dbl m)) to : ℕ → Bin to zero = ⟨⟩ O to (suc m) = inc (to m) -- THIS IS THE CRITICAL STEP : defining in terms of 'dbl' -- Got hint from : https://cs.uwaterloo.ca/~plragde/842/ from : Bin → ℕ from ⟨⟩ = 0 from (b O) = dbl (from b) from (b I) = suc (dbl (from b)) _ : to 6 ≡ ⟨⟩ I I O _ = refl _ : from (⟨⟩ I I O) ≡ 6 _ = refl {- Consider the following laws, where `n` ranges over naturals and `b` over bitstrings: from (inc b) ≡ suc (from b) to (from b) ≡ b from (to n) ≡ n For each law: if it holds, prove; if not, give a counterexample. -} ------------------------- -- fromInc≡sucFrom +1 : ∀ (x : ℕ) → x + 1 ≡ suc x +1 zero = refl +1 (suc n) rewrite +1 n = refl fromInc≡sucFrom : ∀ (b : Bin) → from (inc b) ≡ suc (from b) fromInc≡sucFrom ⟨⟩ -- from (inc ⟨⟩) ≡ suc (from ⟨⟩) -- 1 ≡ 1 = refl fromInc≡sucFrom (⟨⟩ I) -- from (inc (⟨⟩ I)) ≡ suc (from (⟨⟩ I)) -- 2 ≡ 2 = refl fromInc≡sucFrom (b O) -- from (inc (b O)) ≡ suc (from (b O)) -- dbl (from b) + 1 ≡ suc (dbl (from b)) rewrite +1 (dbl (from b)) -- suc (dbl (from b)) ≡ suc (dbl (from b)) = refl fromInc≡sucFrom (b I) -- from (inc (b I)) ≡ suc (from (b I)) -- dbl (from (inc b)) ≡ suc (dbl (from b) + 1) rewrite +1 (dbl (from b)) -- dbl (from (inc b)) ≡ suc (suc (dbl (from b))) | fromInc≡sucFrom b -- dbl (suc (from b)) ≡ suc (suc (dbl (from b))) -- suc (suc (dbl (from b))) ≡ suc (suc (dbl (from b))) = refl ------------------------- -- to-from≡b -- cannot be proved because there are TWO representations of ZERO -- NOT USED xx : ∀ (b : Bin) → (dbl (from b)) ≡ from (b O) xx ⟨⟩ -- dbl (from ⟨⟩) ≡ from (⟨⟩ O) -- zero ≡ zero = refl xx (b O) -- dbl (from (b O)) ≡ from ((b O) O) -- dbl (dbl (from b)) ≡ dbl (dbl (from b)) = refl xx (b I) -- dbl (from (b I)) ≡ from ((b I) O) -- suc (suc (dbl (dbl (from b)))) ≡ suc (suc (dbl (dbl (from b)))) = refl -- CANNOT BE PROVED BECAUSE TWO REPRESENTATIONS OF ZERO : (⟨⟩) and (⟨⟩ O) yy : ∀ (b : Bin) → to (dbl (from b)) ≡ (b O) yy ⟨⟩ -- to (dbl (from ⟨⟩)) ≡ (⟨⟩ O) -- (⟨⟩ O) ≡ (⟨⟩ O) = refl yy (b O) -- to (dbl (from (b O))) ≡ ((b O) O) -- to (dbl (dbl (from b))) ≡ ((b O) O) rewrite yy b = {!!} yy (b I) -- to (dbl (from (b I))) ≡ ((b I) O) -- inc (inc (to (dbl (dbl (from b))))) ≡ ((b I) O) = {!!} to-from : ∀ (b : Bin) → to (from b) ≡ b to-from ⟨⟩ -- to (from ⟨⟩) ≡ ⟨⟩ -- (⟨⟩ O) ≡ ⟨⟩ -- ***** = {!!} to-from (⟨⟩ I) -- to (from (⟨⟩ I)) ≡ (⟨⟩ I) -- (⟨⟩ I) ≡ (⟨⟩ I) = refl to-from (b O) -- to (from (b O)) ≡ (b O) -- to (dbl (from b)) ≡ (b O) rewrite yy b -- (b O) ≡ (b O) = refl to-from (b I) -- to (from (b I)) ≡ (b I) -- inc (to (dbl (from b))) ≡ (b I) rewrite yy b -- (b I) ≡ (b I) = refl ------------------------- -- https://github.com/billyang98/plfa/blob/master/plfa/Induction.agda from-inc≡suc-from : ∀ x → from (inc x) ≡ suc (from x) from-inc≡suc-from ⟨⟩ = refl from-inc≡suc-from (x O) = refl from-inc≡suc-from (x I) -- from (inc (x I)) ≡ suc (from (x I)) -- dbl (from (inc x)) ≡ suc (suc (dbl (from x))) rewrite from-inc≡suc-from x -- suc (suc (dbl (from x))) ≡ suc (suc (dbl (from x))) = refl from-to : ∀ n → from (to n) ≡ n from-to zero = refl from-to (suc n) -- from (to (suc n)) ≡ suc n -- from (inc (to n)) ≡ suc n rewrite from-inc≡suc-from (to n) -- suc (from (to n)) ≡ suc n | cong suc (from-to n) -- suc n ≡ suc n = refl {- ------------------------------------------------------------------------------ ## Standard library Definitions similar to those in this chapter can be found in the standard library: ``` import Data.Nat.Properties using (+-assoc; +-identityʳ; +-suc; +-comm) ``` ------------------------------------------------------------------------------ ## Unicode This chapter uses the following unicode: ∀ U+2200 FOR ALL (\forall, \all) ʳ U+02B3 MODIFIER LETTER SMALL R (\^r) ′ U+2032 PRIME (\') ″ U+2033 DOUBLE PRIME (\') ‴ U+2034 TRIPLE PRIME (\') ⁗ U+2057 QUADRUPLE PRIME (\') Similar to `\r`, the command `\^r` gives access to a variety of superscript rightward arrows, and also a superscript letter `r`. The command `\'` gives access to a range of primes (`′ ″ ‴ ⁗`). -} -- ============================================================================ -- this is here to ensure the Bin/in/from/to does not get broken if changed above _ : inc (⟨⟩ I O I I) ≡ ⟨⟩ I I O O _ = refl _ : inc (⟨⟩ O) ≡ ⟨⟩ I _ = refl _ : inc (⟨⟩ I) ≡ ⟨⟩ I O _ = refl _ : inc (⟨⟩ I O) ≡ ⟨⟩ I I _ = refl _ : inc (⟨⟩ I I) ≡ ⟨⟩ I O O _ = refl _ : inc (⟨⟩ I O O) ≡ ⟨⟩ I O I _ = refl _ : from (⟨⟩ O) ≡ 0 _ = refl _ : from (⟨⟩ I) ≡ 1 _ = refl _ : from (⟨⟩ I O) ≡ 2 _ = refl _ : from (⟨⟩ I I) ≡ 3 _ = refl _ : from (⟨⟩ I O O) ≡ 4 _ = refl _ : to 0 ≡ (⟨⟩ O) _ = refl _ : to 1 ≡ (⟨⟩ I) _ = refl _ : to 2 ≡ (⟨⟩ I O) _ = refl _ : to 3 ≡ (⟨⟩ I I) _ = refl _ : to 4 ≡ (⟨⟩ I O O) _ = refl _ : from (to 12) ≡ 12 _ = refl _ : to (from (⟨⟩ I I O O)) ≡ ⟨⟩ I I O O _ = refl
{ "alphanum_fraction": 0.4053140402, "avg_line_length": 30.6408518877, "ext": "agda", "hexsha": "41e8c42d615dfce97b5718c02f9d84dd18c20261", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x02induction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x02induction.agda", "max_line_length": 125, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x02induction.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 11345, "size": 31652 }
-- Helper operations to construct and build signatures module SOAS.Syntax.Build (T : Set) where open import SOAS.Common open import SOAS.Families.Build {T} open import SOAS.Context {T} open import Data.List.Base open import SOAS.Syntax.Signature T -- Syntactic sugar to construct arity - sort mappings ⟼₀_ : T → List (Ctx × T) × T ⟼₀_ τ = [] , τ _⟼₁_ : (Ctx × T) → T → List (Ctx × T) × T a ⟼₁ τ = [ a ] , τ _,_⟼₂_ : (a₁ a₂ : Ctx × T) → T → List (Ctx × T) × T a₁ , a₂ ⟼₂ τ = (a₁ ∷ [ a₂ ]) , τ _,_,_⟼₃_ : (a₁ a₂ a₃ : Ctx × T) → T → List (Ctx × T) × T a₁ , a₂ , a₃ ⟼₃ τ = (a₁ ∷ a₂ ∷ [ a₃ ]) , τ _,_,_,_⟼₄_ : (a₁ a₂ a₃ a₄ : Ctx × T) → T → List (Ctx × T) × T a₁ , a₂ , a₃ , a₄ ⟼₄ τ = (a₁ ∷ a₂ ∷ a₃ ∷ [ a₄ ]) , τ _⟼ₙ_ : List (Ctx × T) → T → List (Ctx × T) × T _⟼ₙ_ = _,_ -- Syntactic sugar to costruct arguments ⊢₀_ : T → Ctx × T ⊢₀ α = ∅ , α _⊢₁_ : T → T → Ctx × T τ ⊢₁ α = ⌊ τ ⌋ , α _,_⊢₂_ : (τ₁ τ₂ : T) → T → Ctx × T τ₁ , τ₂ ⊢₂ α = ⌊ τ₁ ∙ τ₂ ⌋ , α _,_,_⊢₃_ : (τ₁ τ₂ τ₃ : T) → T → Ctx × T τ₁ , τ₂ , τ₃ ⊢₃ α = ⌊ τ₁ ∙ τ₂ ∙ τ₃ ⌋ , α _⊢ₙ_ : Ctx → T → Ctx × T Π ⊢ₙ τ = Π , τ infix 2 ⟼₀_ infix 2 _⟼₁_ infix 2 _,_⟼₂_ infix 2 _,_,_⟼₃_ infix 2 _⟼ₙ_ infix 10 ⊢₀_ infix 10 _⊢₁_ infix 10 _,_⊢₂_ infix 10 _⊢ₙ_ -- Sum of two signatures _+ˢ_ : {O₁ O₂ : Set} → Signature O₁ → Signature O₂ → Signature (+₂ O₁ O₂) S1 +ˢ S2 = sig (₂| ∣ S1 ∣ ∣ S2 ∣) where open Signature -- Sums of signatures Σ₂ : {O₁ O₂ : Set} → Signature O₁ → Signature O₂ → Signature (+₂ O₁ O₂) Σ₂ S₁ S₂ = sig (₂| (∣ S₁ ∣) (∣ S₂ ∣)) where open Signature Σ₃ : {O₁ O₂ O₃ : Set} → Signature O₁ → Signature O₂ → Signature O₃ → Signature (+₃ O₁ O₂ O₃) Σ₃ S₁ S₂ S₃ = sig (₃| (∣ S₁ ∣) (∣ S₂ ∣) (∣ S₃ ∣)) where open Signature Σ₄ : {O₁ O₂ O₃ O₄ : Set} → Signature O₁ → Signature O₂ → Signature O₃ → Signature O₄ → Signature (+₄ O₁ O₂ O₃ O₄) Σ₄ S₁ S₂ S₃ S₄ = sig (₄| (∣ S₁ ∣) (∣ S₂ ∣) (∣ S₃ ∣) (∣ S₄ ∣)) where open Signature
{ "alphanum_fraction": 0.5494447382, "avg_line_length": 24.5584415584, "ext": "agda", "hexsha": "c71e5b83fb422c69336ef8cf697fde74f7a1f7c9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "JoeyEremondi/agda-soas", "max_forks_repo_path": "SOAS/Syntax/Build.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "JoeyEremondi/agda-soas", "max_issues_repo_path": "SOAS/Syntax/Build.agda", "max_line_length": 113, "max_stars_count": null, "max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "JoeyEremondi/agda-soas", "max_stars_repo_path": "SOAS/Syntax/Build.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 994, "size": 1891 }
module ANF where open import Data.Nat open import Data.Vec open import Data.Fin open import Data.String open import Data.Rational open import Data.Sum open import Data.Unit open import Binders.Var record DataConApp (universe a : Set) : Set where constructor _#_◂_ -- theres probably room for a better notation :))) field -- universe : Set arity : ℕ schema : Vec universe arity app : Vec a arity mutual data term (a : Set ) : Set where v : a -> term a -- variables return only appears in "tail" position app : ∀ (n : ℕ ) -> Callish a n -> term a letCall : ∀ (n : ℕ ) -> Callish a n -> term (Var (Fin n) a) -> term a letAlloc : Allocish a 1 -> term (Var (Fin 1) a) -> term a -- for now we only model direct allocations have having a single return value ... data Allocish (a : Set) : ℕ -> Set where lam : ∀ (n : ℕ ) -> term (Var (Fin n) (term a)) -> Allocish a 1 delay : term a -> Allocish a 1 dataConstr : DataConApp ⊤ {- for now using unit as the universe -} a -> Allocish a 1 data Callish (a : Set) : ℕ -> Set where force : a -> Callish a 0 call : ∀ {n } -> a -> Vec a n -> Callish a n primCall : ∀ {n } -> String -> Vec a n -> Callish a n
{ "alphanum_fraction": 0.5534266765, "avg_line_length": 30.8409090909, "ext": "agda", "hexsha": "14dfe55275700ad807abe740aae17215a608d828", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "e0de23b3c78313a7f6856c3d48c3d6a2ce3962dd", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "hopper-lang/hopper-v0", "max_forks_repo_path": "models/agda/ANF.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "e0de23b3c78313a7f6856c3d48c3d6a2ce3962dd", "max_issues_repo_issues_event_max_datetime": "2020-02-19T01:08:47.000Z", "max_issues_repo_issues_event_min_datetime": "2020-02-19T01:08:47.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "hopper-lang/hopper-v0", "max_issues_repo_path": "models/agda/ANF.agda", "max_line_length": 91, "max_stars_count": 17, "max_stars_repo_head_hexsha": "e0de23b3c78313a7f6856c3d48c3d6a2ce3962dd", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "hopper-lang/hopper-v0", "max_stars_repo_path": "models/agda/ANF.agda", "max_stars_repo_stars_event_max_datetime": "2019-03-18T03:02:06.000Z", "max_stars_repo_stars_event_min_datetime": "2016-09-23T16:03:03.000Z", "num_tokens": 403, "size": 1357 }
{-# OPTIONS --postfix-projections #-} module StateSized.cellStateDependent where open import Data.Product open import Data.String.Base {- open import SizedIO.Object open import SizedIO.ConsoleObject -} open import SizedIO.Console hiding (main) open import SizedIO.Base open import NativeIO open import StateSizedIO.Object open import StateSizedIO.IOObject open import Size open import StateSizedIO.cellStateDependent {- I moved most into src/StateSizedIO/cellStateDependent.agda now the code doesn't work -} -- Program is another program program : IOConsole ∞ Unit program = let c₀ = cellPempty ∞ in exec getLine λ str → method c₀ (put str) >>= λ{ (_ , c₁) → -- empty method c₁ get >>= λ{ (str₁ , c₂) → -- full exec (putStrLn ("we got " ++ str₁)) λ _ → exec (putStrLn ("Second Round")) λ _ → exec getLine λ str₂ → method c₂ (put str₂) >>= λ{ (_ , c₃) → method c₃ get >>= λ{ (str₃ , c₄) → exec (putStrLn ("we got " ++ str₃) ) λ _ → return unit }}}} main : NativeIO Unit main = translateIOConsole program -- cellP is constructor for the consoleObject for interface (cellI String) {- cellPˢ : ∀{i} → CellCˢ i force (method cellPˢ (put x)) = {!!} -} {- cellP : ∀{i} (s : String) → CellC i force (method (cellP s) get) = exec' (putStrLn ("getting (" ++ s ++ ")")) λ _ → return (s , cellP s) force (method (cellP s) (put x)) = exec' (putStrLn ("putting (" ++ x ++ ")")) λ _ → return (_ , (cellP x)) -} {- -- cellI is the interface of the object of a simple cell cellI : (A : Set) → Interfaceˢ Method (cellI A) = CellMethodˢ A Result (cellI A) m = CellResultˢ m -- cellC is the type of consoleObjects with interface (cellI String) CellC : (i : Size) → Set CellC i = ConsoleObject i (cellI String) -} {- -- cellO is a program for a simple cell which -- when get is called writes "getting s" for the string s of the object -- and when putting s writes "putting s" for the string -- cellP is constructor for the consoleObject for interface (cellI String) cellP : ∀{i} (s : String) → CellC i force (method (cellP s) get) = exec' (putStrLn ("getting (" ++ s ++ ")")) λ _ → return (s , cellP s) force (method (cellP s) (put x)) = exec' (putStrLn ("putting (" ++ x ++ ")")) λ _ → return (_ , (cellP x)) -- Program is another program program : String → IOConsole ∞ Unit program arg = let c₀ = cellP "Start" in method c₀ get >>= λ{ (s , c₁) → exec1 (putStrLn s) >> method c₁ (put arg) >>= λ{ (_ , c₂) → method c₂ get >>= λ{ (s' , c₃) → exec1 (putStrLn s') }}} main : NativeIO Unit main = translateIOConsole (program "hello") -}
{ "alphanum_fraction": 0.6242559524, "avg_line_length": 25.1214953271, "ext": "agda", "hexsha": "a0eb8b07edb7c64f95a0fac655a867857d79a1d9", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/StateSized/cellStateDependent.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/StateSized/cellStateDependent.agda", "max_line_length": 74, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/StateSized/cellStateDependent.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 868, "size": 2688 }
module Logic.Propositional.Xor where open import Logic.Propositional open import Logic import Lvl -- TODO: Is it possible write a general construction for arbitrary number of xors? Probably by using rotate₃Fn₃Op₂? data _⊕₃_⊕₃_ {ℓ₁ ℓ₂ ℓ₃} (P : Stmt{ℓ₁}) (Q : Stmt{ℓ₂}) (R : Stmt{ℓ₃}) : Stmt{ℓ₁ Lvl.⊔ ℓ₂ Lvl.⊔ ℓ₃} where [⊕₃]-intro₁ : P → (¬ Q) → (¬ R) → (P ⊕₃ Q ⊕₃ R) [⊕₃]-intro₂ : (¬ P) → Q → (¬ R) → (P ⊕₃ Q ⊕₃ R) [⊕₃]-intro₃ : (¬ P) → (¬ Q) → R → (P ⊕₃ Q ⊕₃ R)
{ "alphanum_fraction": 0.5728952772, "avg_line_length": 40.5833333333, "ext": "agda", "hexsha": "1307a9e10566c953807a335516ad9adb4e259668", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Logic/Propositional/Xor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Logic/Propositional/Xor.agda", "max_line_length": 115, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Logic/Propositional/Xor.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 248, "size": 487 }
module _ where open import Agda.Builtin.Bool postulate Eq : Set → Set it : {A : Set} → ⦃ A ⦄ → A it ⦃ x ⦄ = x module M1 (A : Set) ⦃ eqA : Eq A ⦄ where postulate B : Set variable n : B postulate P : B → Set module M2 (A : Set) ⦃ eqA : Eq A ⦄ where open M1 A postulate p₁ : P n p₂ : P ⦃ it ⦄ n p₃ : P ⦃ eqA ⦄ n p₄ : M1.P A n
{ "alphanum_fraction": 0.5308988764, "avg_line_length": 15.4782608696, "ext": "agda", "hexsha": "ae84e44ba086acc2560e9a05015bd42e1cfdcd45", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "cagix/agda", "max_forks_repo_path": "test/Succeed/Issue5093.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "cagix/agda", "max_issues_repo_path": "test/Succeed/Issue5093.agda", "max_line_length": 40, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "cagix/agda", "max_stars_repo_path": "test/Succeed/Issue5093.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 173, "size": 356 }
record R : Set₁ where field A : Set module _ (r : R) where open R r data D : Set where c : A → D data P : D → Set where d : (x : A) → P (c x) postulate f : D → A g : (x : D) → P x → D g x (d y) with Set g x (d y) | _ = x
{ "alphanum_fraction": 0.4461538462, "avg_line_length": 11.8181818182, "ext": "agda", "hexsha": "03ae2bf644e537c8157405977077995eac6567b9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue2297.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue2297.agda", "max_line_length": 25, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue2297.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 114, "size": 260 }
postulate A : Set f : A → A → A → A → A → A → A → A → A → A → A test : A test = {!f!}
{ "alphanum_fraction": 0.3846153846, "avg_line_length": 13, "ext": "agda", "hexsha": "a53f26b0954697f241006f669f20579d21e0f4e7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/interaction/Issue3532.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/interaction/Issue3532.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/interaction/Issue3532.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 43, "size": 91 }
{-# OPTIONS --without-K --safe #-} open import Level open import Categories.Category using (Category; _[_,_]) -- Various conclusions that can be drawn from Yoneda -- over a particular Category C module Categories.Yoneda.Properties {o ℓ e : Level} (C : Category o ℓ e) where open import Function using (_$_; Inverse) -- else there's a conflict with the import below open import Function.Equality using (Π; _⟨$⟩_; cong) open import Relation.Binary using (module Setoid) import Relation.Binary.Reasoning.Setoid as SetoidR open import Data.Product using (_,_; Σ) open import Categories.Category.Product open import Categories.Category.Construction.Presheaves open import Categories.Category.Construction.Functors open import Categories.Category.Instance.Setoids open import Categories.Functor renaming (id to idF) open import Categories.Functor.Hom using (module Hom; Hom[_][-,_]; Hom[_][-,-]) open import Categories.Functor.Bifunctor open import Categories.Functor.Presheaf open import Categories.Functor.Construction.LiftSetoids open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) renaming (id to idN) open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) open import Categories.Yoneda import Categories.Morphism as Mor import Categories.Morphism.Reasoning as MR import Categories.NaturalTransformation.Hom as NT-Hom open Category C open HomReasoning open NaturalTransformation open Yoneda C private module CE = Category.Equiv C module C = Category C YoFull : Full embed YoFull {X} {Y} = record { from = record { _⟨$⟩_ = λ ε → η ε X ⟨$⟩ id ; cong = λ i≈j → i≈j CE.refl } ; right-inverse-of = λ ε {x} {z} {y} z≈y → begin (η ε X ⟨$⟩ id) ∘ z ≈˘⟨ identityˡ ⟩ id ∘ (η ε X ⟨$⟩ id) ∘ z ≈˘⟨ commute ε z CE.refl ⟩ η ε x ⟨$⟩ id ∘ id ∘ z ≈⟨ cong (η ε x) (identityˡ ○ identityˡ ○ z≈y) ⟩ η ε x ⟨$⟩ y ∎ } YoFaithful : Faithful embed YoFaithful _ _ pres-≈ = ⟺ identityʳ ○ pres-≈ {_} {id} CE.refl ○ identityʳ YoFullyFaithful : FullyFaithful embed YoFullyFaithful = YoFull , YoFaithful open Mor C yoneda-iso : ∀ {A B : Obj} → NaturalIsomorphism Hom[ C ][-, A ] Hom[ C ][-, B ] → A ≅ B yoneda-iso {A} {B} niso = record { from = ⇒.η A ⟨$⟩ id ; to = ⇐.η B ⟨$⟩ id ; iso = record { isoˡ = begin (⇐.η B ⟨$⟩ id) ∘ (⇒.η A ⟨$⟩ id) ≈˘⟨ identityˡ ⟩ id ∘ (⇐.η B ⟨$⟩ id) ∘ (⇒.η A ⟨$⟩ id) ≈⟨ B⇒A.inverseʳ F⇐G refl ⟩ ⇐.η A ⟨$⟩ (⇒.η A ⟨$⟩ id) ≈⟨ isoX.isoˡ refl ⟩ id ∎ ; isoʳ = begin (⇒.η A ⟨$⟩ id) ∘ (⇐.η B ⟨$⟩ id) ≈˘⟨ identityˡ ⟩ id ∘ (⇒.η A ⟨$⟩ id) ∘ (⇐.η B ⟨$⟩ id) ≈⟨ A⇒B.inverseʳ F⇒G refl ⟩ ⇒.η B ⟨$⟩ (⇐.η B ⟨$⟩ id) ≈⟨ isoX.isoʳ refl ⟩ id ∎ } } where open NaturalIsomorphism niso A⇒B = yoneda-inverse A (Functor.F₀ embed B) B⇒A = yoneda-inverse B (Functor.F₀ embed A) module A⇒B = Inverse A⇒B module B⇒A = Inverse B⇒A module isoX {X} = Mor.Iso (iso X) module _ {o′ ℓ′ e′} {D : Category o′ ℓ′ e′} where private module D = Category D module _ {F G : Functor D C} where private module F = Functor F module G = Functor G Hom[-,F-] : Bifunctor C.op D (Setoids ℓ e) Hom[-,F-] = Hom[ C ][-,-] ∘F (idF ⁂ F) Hom[-,G-] : Bifunctor C.op D (Setoids ℓ e) Hom[-,G-] = Hom[ C ][-,-] ∘F (idF ⁂ G) nat-appʳ : ∀ X → NaturalTransformation Hom[-,F-] Hom[-,G-] → NaturalTransformation Hom[ C ][-, F.F₀ X ] Hom[ C ][-, G.F₀ X ] nat-appʳ X α = ntHelper record { η = λ Y → η α (Y , X) ; commute = λ {_ Y} f eq → cong (η α (Y , X)) (∘-resp-≈ˡ (⟺ F.identity)) ○ commute α (f , D.id) eq ○ ∘-resp-≈ˡ G.identity } transform : NaturalTransformation Hom[-,F-] Hom[-,G-] → NaturalTransformation F G transform α = ntHelper record { η = λ X → η α (F.F₀ X , X) ⟨$⟩ id ; commute = λ {X Y} f → begin (η α (F.F₀ Y , Y) ⟨$⟩ id) ∘ F.F₁ f ≈˘⟨ identityˡ ⟩ id ∘ (η α (F.F₀ Y , Y) ⟨$⟩ id) ∘ F.F₁ f ≈˘⟨ lower (yoneda.⇒.commute {Y = Hom[ C ][-, G.F₀ Y ] , _} (idN , F.F₁ f) {nat-appʳ Y α} {nat-appʳ Y α} (cong (η α _))) ⟩ η α (F.F₀ X , Y) ⟨$⟩ F.F₁ f ∘ id ≈⟨ cong (η α (F.F₀ X , Y)) (∘-resp-≈ʳ (⟺ identityˡ)) ⟩ η α (F.F₀ X , Y) ⟨$⟩ F.F₁ f ∘ id ∘ id ≈⟨ commute α (id , f) refl ⟩ G.F₁ f ∘ (η α (F.F₀ X , X) ⟨$⟩ id) ∘ id ≈⟨ refl⟩∘⟨ identityʳ ⟩ G.F₁ f ∘ (η α (F.F₀ X , X) ⟨$⟩ id) ∎ } module _ (F G : Functor D C) where private module F = Functor F module G = Functor G Hom[-,F-] : Bifunctor C.op D (Setoids ℓ e) Hom[-,F-] = Hom[ C ][-,-] ∘F (idF ⁂ F) Hom[-,G-] : Bifunctor C.op D (Setoids ℓ e) Hom[-,G-] = Hom[ C ][-,-] ∘F (idF ⁂ G) yoneda-NI : NaturalIsomorphism Hom[-,F-] Hom[-,G-] → NaturalIsomorphism F G yoneda-NI ni = record { F⇒G = transform F⇒G ; F⇐G = transform F⇐G ; iso = λ X → record { isoˡ = begin (⇐.η (G.F₀ X , X) ⟨$⟩ id) ∘ (⇒.η (F.F₀ X , X) ⟨$⟩ id) ≈˘⟨ identityˡ ⟩ id ∘ (⇐.η (G.F₀ X , X) ⟨$⟩ id) ∘ (⇒.η (F.F₀ X , X) ⟨$⟩ id) ≈˘⟨ lower (yoneda.⇒.commute {Y = Hom[ C ][-, F.F₀ X ] , _} (idN , (⇒.η (F.F₀ X , X) ⟨$⟩ C.id)) {nat-appʳ X F⇐G} {nat-appʳ X F⇐G} (cong (⇐.η _))) ⟩ ⇐.η (F.F₀ X , X) ⟨$⟩ (⇒.η (F.F₀ X , X) ⟨$⟩ id) ∘ id ≈⟨ cong (⇐.η _) identityʳ ⟩ ⇐.η (F.F₀ X , X) ⟨$⟩ (⇒.η (F.F₀ X , X) ⟨$⟩ id) ≈⟨ iso.isoˡ _ refl ⟩ id ∎ ; isoʳ = begin (⇒.η (F.F₀ X , X) ⟨$⟩ id) ∘ (⇐.η (G.F₀ X , X) ⟨$⟩ id) ≈˘⟨ identityˡ ⟩ id ∘ (⇒.η (F.F₀ X , X) ⟨$⟩ id) ∘ (⇐.η (G.F₀ X , X) ⟨$⟩ id) ≈˘⟨ lower (yoneda.⇒.commute {Y = Hom[ C ][-, G.F₀ X ] , _} (idN , (⇐.η (G.F₀ X , X) ⟨$⟩ C.id)) {nat-appʳ X F⇒G} {nat-appʳ X F⇒G} (cong (⇒.η _))) ⟩ ⇒.η (G.F₀ X , X) ⟨$⟩ (⇐.η (G.F₀ X , X) ⟨$⟩ id) ∘ id ≈⟨ cong (⇒.η _) identityʳ ⟩ ⇒.η (G.F₀ X , X) ⟨$⟩ (⇐.η (G.F₀ X , X) ⟨$⟩ id) ≈⟨ iso.isoʳ _ refl ⟩ id ∎ } } where open NaturalIsomorphism ni
{ "alphanum_fraction": 0.4943286327, "avg_line_length": 43.7852348993, "ext": "agda", "hexsha": "e1ee0345682f688ddee2c4e76e68b0b53631171d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Yoneda/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Yoneda/Properties.agda", "max_line_length": 171, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Yoneda/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2623, "size": 6524 }
------------------------------------------------------------------------ -- A virtual machine ------------------------------------------------------------------------ open import Prelude import Lambda.Virtual-machine.Instructions module Lambda.Virtual-machine {Name : Type} (open Lambda.Virtual-machine.Instructions Name) (def : Name → Code 1) where open import Equality.Propositional open import Colist equality-with-J as Colist using (Colist) open import List equality-with-J using (_++_; length) open import Monad equality-with-J open import Vec.Data equality-with-J open import Lambda.Delay-crash using (Delay-crash) open import Lambda.Delay-crash-trace open import Lambda.Syntax Name open Closure Code -- A single step of the computation. step : State → Result step ⟨ var x ∷ c , s , ρ ⟩ = continue ⟨ c , val (index ρ x) ∷ s , ρ ⟩ step ⟨ clo c′ ∷ c , s , ρ ⟩ = continue ⟨ c , val (lam c′ ρ) ∷ s , ρ ⟩ step ⟨ app ∷ c , val v ∷ val (lam c′ ρ′) ∷ s , ρ ⟩ = continue ⟨ c′ , ret c ρ ∷ s , v ∷ ρ′ ⟩ step ⟨ ret ∷ c , val v ∷ ret c′ ρ′ ∷ s , ρ ⟩ = continue ⟨ c′ , val v ∷ s , ρ′ ⟩ step ⟨ cal f ∷ c , val v ∷ s , ρ ⟩ = continue ⟨ def f , ret c ρ ∷ s , v ∷ [] ⟩ step ⟨ tcl f ∷ c , val v ∷ s , ρ ⟩ = continue ⟨ def f , s , v ∷ [] ⟩ step ⟨ con b ∷ c , s , ρ ⟩ = continue ⟨ c , val (con b) ∷ s , ρ ⟩ step ⟨ bra c₁ c₂ ∷ c , val (con true) ∷ s , ρ ⟩ = continue ⟨ c₁ ++ c , s , ρ ⟩ step ⟨ bra c₁ c₂ ∷ c , val (con false) ∷ s , ρ ⟩ = continue ⟨ c₂ ++ c , s , ρ ⟩ step ⟨ [] , val v ∷ [] , [] ⟩ = done v step _ = crash -- A functional semantics for the VM. The result includes a trace of -- all the encountered states. mutual exec⁺ : ∀ {i} → State → Delay-crash-trace State Value i exec⁺ s = later s λ { .force → exec⁺′ (step s) } exec⁺′ : ∀ {i} → Result → Delay-crash-trace State Value i exec⁺′ (continue s) = exec⁺ s exec⁺′ (done v) = now v exec⁺′ crash = crash -- The semantics without the trace of states. exec : ∀ {i} → State → Delay-crash Value i exec = delay-crash ∘ exec⁺ -- The stack sizes of all the encountered states. stack-sizes : ∀ {i} → State → Colist ℕ i stack-sizes = Colist.map (λ { ⟨ _ , s , _ ⟩ → length s }) ∘ trace ∘ exec⁺
{ "alphanum_fraction": 0.4718581342, "avg_line_length": 39.303030303, "ext": "agda", "hexsha": "68fd48d7161c3a23d5967959c486599590a31a2f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/definitional-interpreters", "max_forks_repo_path": "src/Lambda/Virtual-machine.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/definitional-interpreters", "max_issues_repo_path": "src/Lambda/Virtual-machine.agda", "max_line_length": 112, "max_stars_count": null, "max_stars_repo_head_hexsha": "dec8cd2d2851340840de25acb0feb78f7b5ffe96", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/definitional-interpreters", "max_stars_repo_path": "src/Lambda/Virtual-machine.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 804, "size": 2594 }
module Rewrite where open import Common.Equality data _≈_ {A : Set}(x : A) : A → Set where refl : ∀ {y} → x ≈ y lem : ∀ {A} (x y : A) → x ≈ y lem x y = refl thm : {A : Set}(P : A → Set)(x y : A) → P x → P y thm P x y px rewrite lem x y = {!!}
{ "alphanum_fraction": 0.508, "avg_line_length": 17.8571428571, "ext": "agda", "hexsha": "f89c800a21dd8f26713f20ca6dc971f507a751f2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/Rewrite.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Rewrite.agda", "max_line_length": 49, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Rewrite.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 107, "size": 250 }
module Issue3818.M where
{ "alphanum_fraction": 0.84, "avg_line_length": 12.5, "ext": "agda", "hexsha": "15a5a726ec4702bbe3011e22bcb65a8dc8d7e812", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3818/M.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3818/M.agda", "max_line_length": 24, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3818/M.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 7, "size": 25 }
{-# OPTIONS --safe --experimental-lossy-unification #-} module Cubical.Algebra.Polynomials.Multivariate.EquivCarac.An[Am[X]]-Anm[X] where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Isomorphism open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _·n_) open import Cubical.Data.Vec open import Cubical.Data.Vec.OperationsNat open import Cubical.Data.Sigma open import Cubical.Algebra.Ring open import Cubical.Algebra.CommRing open import Cubical.Algebra.Polynomials.Univariate.Base open import Cubical.Algebra.Polynomials.Multivariate.Base open import Cubical.Algebra.Polynomials.Multivariate.Properties open import Cubical.Algebra.CommRing.Instances.MultivariatePoly private variable ℓ ℓ' : Level module Comp-Poly-nm (A' : CommRing ℓ) (n m : ℕ) where private A = fst A' open CommRingStr (snd A') module Mr = Nth-Poly-structure A' m module N+Mr = Nth-Poly-structure A' (n +n m) module N∘Mr = Nth-Poly-structure (PolyCommRing A' m) n ----------------------------------------------------------------------------- -- direct sens N∘M→N+M-b : (v : Vec ℕ n) → Poly A' m → Poly A' (n +n m) N∘M→N+M-b v = Poly-Rec-Set.f A' m (Poly A' (n +n m)) trunc 0P (λ v' a → base (v ++ v') a) _poly+_ poly+Assoc poly+IdR poly+Comm (λ v' → base-0P (v ++ v')) (λ v' a b → base-poly+ (v ++ v') a b) N∘M→N+M : Poly (PolyCommRing A' m) n → Poly A' (n +n m) N∘M→N+M = Poly-Rec-Set.f (PolyCommRing A' m) n (Poly A' (n +n m)) trunc 0P N∘M→N+M-b _poly+_ poly+Assoc poly+IdR poly+Comm (λ _ → refl) (λ v a b → refl) -- ----------------------------------------------------------------------------- -- -- Converse sens N+M→N∘M : Poly A' (n +n m) → Poly (PolyCommRing A' m) n N+M→N∘M = Poly-Rec-Set.f A' (n +n m) (Poly (PolyCommRing A' m) n) trunc 0P (λ v a → let v , v' = sep-vec n m v in base v (base v' a)) _poly+_ poly+Assoc poly+IdR poly+Comm (λ v → (cong (base (fst (sep-vec n m v))) (base-0P (snd (sep-vec n m v)))) ∙ (base-0P (fst (sep-vec n m v)))) λ v a b → base-poly+ (fst (sep-vec n m v)) (base (snd (sep-vec n m v)) a) (base (snd (sep-vec n m v)) b) ∙ cong (base (fst (sep-vec n m v))) (base-poly+ (snd (sep-vec n m v)) a b) ----------------------------------------------------------------------------- -- Section e-sect : (P : Poly A' (n +n m)) → N∘M→N+M (N+M→N∘M P) ≡ P e-sect = Poly-Ind-Prop.f A' (n +n m) (λ P → N∘M→N+M (N+M→N∘M P) ≡ P) (λ _ → trunc _ _) refl (λ v a → cong (λ X → base X a) (sep-vec-id n m v)) (λ {U V} ind-U ind-V → cong₂ _poly+_ ind-U ind-V) ----------------------------------------------------------------------------- -- Retraction e-retr : (P : Poly (PolyCommRing A' m) n) → N+M→N∘M (N∘M→N+M P) ≡ P e-retr = Poly-Ind-Prop.f (PolyCommRing A' m) n (λ P → N+M→N∘M (N∘M→N+M P) ≡ P) (λ _ → trunc _ _) refl (λ v → Poly-Ind-Prop.f A' m (λ P → N+M→N∘M (N∘M→N+M (base v P)) ≡ base v P) (λ _ → trunc _ _) (sym (base-0P v)) (λ v' a → cong₂ base (sep-vec-fst n m v v') (cong (λ X → base X a) (sep-vec-snd n m v v'))) (λ {U V} ind-U ind-V → (cong₂ _poly+_ ind-U ind-V) ∙ (base-poly+ v U V))) (λ {U V} ind-U ind-V → cong₂ _poly+_ ind-U ind-V ) ----------------------------------------------------------------------------- -- Morphism of ring map-0P : N∘M→N+M (0P) ≡ 0P map-0P = refl N∘M→N+M-gmorph : (P Q : Poly (PolyCommRing A' m) n) → N∘M→N+M ( P poly+ Q) ≡ N∘M→N+M P poly+ N∘M→N+M Q N∘M→N+M-gmorph = λ P Q → refl map-1P : N∘M→N+M (N∘Mr.1P) ≡ N+Mr.1P map-1P = cong (λ X → base X 1r) (rep-concat n m 0 ) N∘M→N+M-rmorph : (P Q : Poly (PolyCommRing A' m) n) → N∘M→N+M ( P N∘Mr.poly* Q) ≡ N∘M→N+M P N+Mr.poly* N∘M→N+M Q N∘M→N+M-rmorph = -- Ind P Poly-Ind-Prop.f (PolyCommRing A' m) n (λ P → (Q : Poly (PolyCommRing A' m) n) → N∘M→N+M (P N∘Mr.poly* Q) ≡ (N∘M→N+M P N+Mr.poly* N∘M→N+M Q)) (λ P p q i Q j → trunc _ _ (p Q) (q Q) i j) (λ Q → refl) (λ v → -- Ind Base P Poly-Ind-Prop.f A' m (λ P → (Q : Poly (PolyCommRing A' m) n) → N∘M→N+M (base v P N∘Mr.poly* Q) ≡ (N∘M→N+M (base v P) N+Mr.poly* N∘M→N+M Q)) (λ P p q i Q j → trunc _ _ (p Q) (q Q) i j) (λ Q → cong (λ X → N∘M→N+M (X N∘Mr.poly* Q)) (base-0P v)) (λ v' a → -- Ind Q Poly-Ind-Prop.f (PolyCommRing A' m) n (λ Q → N∘M→N+M (base v (base v' a) N∘Mr.poly* Q) ≡ (N∘M→N+M (base v (base v' a)) N+Mr.poly* N∘M→N+M Q)) (λ _ → trunc _ _) (sym (N+Mr.poly*AnnihilR (N∘M→N+M (base v (base v' a))))) (λ w → -- Ind base Q Poly-Ind-Prop.f A' m _ (λ _ → trunc _ _) (sym (N+Mr.poly*AnnihilR (N∘M→N+M (base v (base v' a))))) (λ w' b → cong (λ X → base X (a · b)) (+n-vec-concat n m v w v' w')) λ {U V} ind-U ind-V → cong (λ X → N∘M→N+M (base v (base v' a) N∘Mr.poly* X)) (sym (base-poly+ w U V)) ∙ cong₂ (_poly+_ ) ind-U ind-V ∙ sym (cong (λ X → N∘M→N+M (base v (base v' a)) N+Mr.poly* N∘M→N+M X) (base-poly+ w U V)) ) -- End Ind base Q λ {U V} ind-U ind-V → cong₂ _poly+_ ind-U ind-V) -- End Ind Q λ {U V} ind-U ind-V Q → cong (λ X → N∘M→N+M (X N∘Mr.poly* Q)) (sym (base-poly+ v U V)) ∙ cong₂ _poly+_ (ind-U Q) (ind-V Q) ∙ sym (cong (λ X → (N∘M→N+M X) N+Mr.poly* (N∘M→N+M Q)) (sym (base-poly+ v U V)) )) -- End Ind base P λ {U V} ind-U ind-V Q → cong₂ _poly+_ (ind-U Q) (ind-V Q) -- End Ind P ----------------------------------------------------------------------------- -- Ring Equivalence module _ (A' : CommRing ℓ) (n m : ℕ) where open Comp-Poly-nm A' n m CRE-PolyN∘M-PolyN+M : CommRingEquiv (PolyCommRing (PolyCommRing A' m) n) (PolyCommRing A' (n +n m)) fst CRE-PolyN∘M-PolyN+M = isoToEquiv is where is : Iso _ _ Iso.fun is = N∘M→N+M Iso.inv is = N+M→N∘M Iso.rightInv is = e-sect Iso.leftInv is = e-retr snd CRE-PolyN∘M-PolyN+M = makeIsRingHom map-1P N∘M→N+M-gmorph N∘M→N+M-rmorph
{ "alphanum_fraction": 0.4439279489, "avg_line_length": 40.023255814, "ext": "agda", "hexsha": "21a990f92ab6e4eb0d67cb629545c26d8e0b7baf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/cubical", "max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/An[Am[X]]-Anm[X].agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/cubical", "max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/An[Am[X]]-Anm[X].agda", "max_line_length": 144, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ce3120d3f8d692847b2744162bcd7a01f0b687eb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/cubical", "max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/An[Am[X]]-Anm[X].agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 2526, "size": 6884 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Some defined operations (multiplication by natural number and -- exponentiation) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Algebra module Algebra.Operations.Semiring {s₁ s₂} (S : Semiring s₁ s₂) where import Algebra.Operations.CommutativeMonoid as MonoidOperations open import Data.Nat.Base using (zero; suc; ℕ) renaming (_+_ to _ℕ+_; _*_ to _ℕ*_) open import Data.Product using (module Σ) open import Function using (_$_) open import Relation.Binary open import Relation.Binary.PropositionalEquality as P using (_≡_) open Semiring S renaming (zero to *-zero) open import Relation.Binary.Reasoning.Setoid setoid ------------------------------------------------------------------------ -- Operations -- Re-export all monoid operations and proofs open MonoidOperations +-commutativeMonoid public -- Exponentiation. infixr 9 _^_ _^_ : Carrier → ℕ → Carrier x ^ zero = 1# x ^ suc n = x * x ^ n ------------------------------------------------------------------------ -- Properties of _×_ -- _× 1# is homomorphic with respect to _ℕ*_/_*_. ×1-homo-* : ∀ m n → (m ℕ* n) × 1# ≈ (m × 1#) * (n × 1#) ×1-homo-* 0 n = begin 0# ≈⟨ sym (Σ.proj₁ *-zero (n × 1#)) ⟩ 0# * (n × 1#) ∎ ×1-homo-* (suc m) n = begin (n ℕ+ m ℕ* n) × 1# ≈⟨ ×-homo-+ 1# n (m ℕ* n) ⟩ n × 1# + (m ℕ* n) × 1# ≈⟨ +-cong refl (×1-homo-* m n) ⟩ n × 1# + (m × 1#) * (n × 1#) ≈⟨ sym (+-cong (*-identityˡ _) refl) ⟩ 1# * (n × 1#) + (m × 1#) * (n × 1#) ≈⟨ sym (distribʳ (n × 1#) 1# (m × 1#)) ⟩ (1# + m × 1#) * (n × 1#) ∎ ------------------------------------------------------------------------ -- Properties of _×′_ -- _×′ 1# is homomorphic with respect to _ℕ*_/_*_. ×′1-homo-* : ∀ m n → (m ℕ* n) ×′ 1# ≈ (m ×′ 1#) * (n ×′ 1#) ×′1-homo-* m n = begin (m ℕ* n) ×′ 1# ≈⟨ sym $ ×≈×′ (m ℕ* n) 1# ⟩ (m ℕ* n) × 1# ≈⟨ ×1-homo-* m n ⟩ (m × 1#) * (n × 1#) ≈⟨ *-cong (×≈×′ m 1#) (×≈×′ n 1#) ⟩ (m ×′ 1#) * (n ×′ 1#) ∎ ------------------------------------------------------------------------ -- Properties of _^_ -- _^_ preserves equality. ^-congˡ : ∀ n → (_^ n) Preserves _≈_ ⟶ _≈_ ^-congˡ zero x≈y = refl ^-congˡ (suc n) x≈y = *-cong x≈y (^-congˡ n x≈y) ^-cong : _^_ Preserves₂ _≈_ ⟶ _≡_ ⟶ _≈_ ^-cong {v = n} x≈y P.refl = ^-congˡ n x≈y
{ "alphanum_fraction": 0.4401606426, "avg_line_length": 32.7631578947, "ext": "agda", "hexsha": "bb7c67a604818ed5adff185713b11b515e9e5e7e", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Operations/Semiring.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Operations/Semiring.agda", "max_line_length": 79, "max_stars_count": 5, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/Operations/Semiring.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 937, "size": 2490 }
{-# OPTIONS --cubical --safe --postfix-projections #-} open import Prelude open import Relation.Binary module Data.AVLTree.Internal {k} {K : Type k} {r₁ r₂} (totalOrder : TotalOrder K r₁ r₂) where open import Relation.Binary.Construct.Bounded totalOrder open import Data.Nat using (_+_) open TotalOrder totalOrder using (_<?_; compare) open TotalOrder b-ord using (<-trans) renaming (refl to <-refl) import Data.Empty.UniversePolymorphic as Poly private variable n m l : ℕ data Bal : ℕ → ℕ → ℕ → Type where ll : Bal (suc n) n (suc n) ee : Bal n n n rr : Bal n (suc n) (suc n) balr : Bal n m l → Bal l n l balr ll = ee balr ee = ee balr rr = ll ball : Bal n m l → Bal m l l ball ll = rr ball ee = ee ball rr = ee private variable v : Level Val : K → Type v data Tree {v} (Val : K → Type v) (lb ub : [∙]) : ℕ → Type (k ℓ⊔ r₁ ℓ⊔ v) where leaf : (lb<ub : lb [<] ub) → Tree Val lb ub zero node : (key : K) (val : Val key) (bal : Bal n m l) (lchild : Tree Val lb [ key ] n) (rchild : Tree Val [ key ] ub m) → Tree Val lb ub (suc l) private variable lb ub : [∙] data Inc {t} (T : ℕ → Type t) (n : ℕ) : Type t where stay : T n → Inc T n high : T (suc n) → Inc T n private variable t : Level N : ℕ → Type t rotʳ : (x : K) → (xv : Val x) → (ls : Tree Val lb [ x ] (2 + n)) → (rs : Tree Val [ x ] ub n) → Inc (Tree Val lb ub) (2 + n) rotʳ y yv (node x xv ll xl xr) zs = stay (node x xv ee xl (node y yv ee xr zs)) rotʳ y yv (node x xv ee xl xr) zs = high (node x xv rr xl (node y yv ll xr zs)) rotʳ z zv (node x xv rr xl (node y yv bl yl yr)) zr = stay (node y yv ee (node x xv (balr bl) xl yl) (node z zv (ball bl) yr zr)) rotˡ : (x : K) → (xv : Val x) → (ls : Tree Val lb [ x ] n) → (rs : Tree Val [ x ] ub (2 + n)) → Inc (Tree Val lb ub) (2 + n) rotˡ x xv xl (node y yv ee yl yr) = high (node y yv ll (node x xv rr xl yl) yr) rotˡ x xv xl (node y yv rr yl yr) = stay (node y yv ee (node x xv ee xl yl) yr) rotˡ x xv xl (node z zv ll (node y yv bl yl yr) zr) = stay (node y yv ee (node x xv (balr bl) xl yl) (node z zv (ball bl) yr zr)) insertWith : (x : K) → Val x → ((new : Val x) → (old : Val x) → Val x) → (lb [<] [ x ]) → ([ x ] [<] ub) → (tr : Tree Val lb ub n) → Inc (Tree Val lb ub) n insertWith x xv xf lb<x x<ub (leaf lb<ub) = high (node x xv ee (leaf lb<x) (leaf x<ub)) insertWith x xv xf lb<x x<ub (node y yv bal ls rs) with compare x y ... | lt x<y with insertWith x xv xf lb<x x<y ls ... | stay ls′ = stay (node y yv bal ls′ rs) ... | high ls′ with bal ... | ll = rotʳ y yv ls′ rs ... | ee = high (node y yv ll ls′ rs) ... | rr = stay (node y yv ee ls′ rs) insertWith x xv xf lb<x x<ub (node y yv bal ls rs) | gt y<x with insertWith x xv xf y<x x<ub rs ... | stay rs′ = stay (node y yv bal ls rs′) ... | high rs′ with bal ... | ll = stay (node y yv ee ls rs′) ... | ee = high (node y yv rr ls rs′) ... | rr = rotˡ y yv ls rs′ insertWith x xv xf lb<x x<ub (node y yv bal ls rs) | eq x≡y = stay (node y (subst _ x≡y (xf xv (subst _ (sym x≡y) yv))) bal ls rs) lookup : (x : K) → Tree Val lb ub n → Maybe (Val x) lookup x (leaf lb<ub) = nothing lookup x (node y val bal lhs rhs) with compare y x ... | lt x<y = lookup x lhs ... | eq x≡y = just (subst _ x≡y val) ... | gt x>y = lookup x rhs record Cons (Val : K → Type v) (lb ub : [∙]) (h : ℕ) : Type (k ℓ⊔ v ℓ⊔ r₁) where constructor cons field head : K val : Val head bounds : lb [<] [ head ] tail : Inc (Tree Val [ head ] ub) h open Cons public map-tail : ∀ {ub₁ ub₂} → Cons Val lb ub₁ n → (∀ {lb} → Inc (Tree Val lb ub₁) n → Inc (Tree Val lb ub₂) m) → Cons Val lb ub₂ m map-tail (cons h v b t) f = cons h v b (f t) uncons : (x : K) → Val x → Bal n m l → Tree Val lb [ x ] n → Tree Val [ x ] ub m → Cons Val lb ub l uncons x xv bl (leaf lb<ub) rhs .head = x uncons x xv bl (leaf lb<ub) rhs .val = xv uncons x xv bl (leaf lb<ub) rhs .bounds = lb<ub uncons x xv ee (leaf lb<ub) rhs .tail = stay rhs uncons x xv rr (leaf lb<ub) rhs .tail = stay rhs uncons x xv bl (node y yv yb ls yrs) rs = map-tail (uncons y yv yb ls yrs) λ { (high ys) → high (node x xv bl ys rs) ; (stay ys) → case bl of λ { ll → stay (node x xv ee ys rs) ; ee → high (node x xv rr ys rs) ; rr → rotˡ x xv ys rs } } ext : ∀ {ub′} → ub [<] ub′ → Tree Val lb ub n → Tree Val lb ub′ n ext {lb = lb} ub<ub′ (leaf lb<ub) = leaf (<-trans {x = lb} lb<ub ub<ub′) ext ub<ub′ (node x xv bal lhs rhs) = node x xv bal lhs (ext ub<ub′ rhs) join : ∀ {x} → Tree Val lb [ x ] m → Bal m n l → Tree Val [ x ] ub n → Inc (Tree Val lb ub) l join lhs ll (leaf lb<ub) = stay (ext lb<ub lhs) join {lb = lb} (leaf lb<ub₁) ee (leaf lb<ub) = stay (leaf (<-trans {x = lb} lb<ub₁ lb<ub)) join lhs bl (node x xv xb xl xr) with uncons x xv xb xl xr ... | cons k′ v′ l<u (high tr′) = high (node k′ v′ bl (ext l<u lhs) tr′) ... | cons k′ v′ l<u (stay tr′) with bl ... | ll = rotʳ k′ v′ (ext l<u lhs) tr′ ... | ee = high (node k′ v′ ll (ext l<u lhs) tr′) ... | rr = stay (node k′ v′ ee (ext l<u lhs) tr′) data Decr {t} (T : ℕ → Type t) : ℕ → Type t where same : T n → Decr T n decr : T n → Decr T (suc n) inc→dec : Inc N n → Decr N (suc n) inc→dec (stay x) = decr x inc→dec (high x) = same x delete : (x : K) → Tree Val lb ub n → Decr (Tree Val lb ub) n delete x (leaf l<u) = same (leaf l<u) delete x (node y yv b l r) with compare x y delete x (node y yv b l r) | eq _ = inc→dec (join l b r) delete x (node y yv b l r) | lt a with delete x l ... | same l′ = same (node y yv b l′ r) ... | decr l′ with b ... | ll = decr (node y yv ee l′ r) ... | ee = same (node y yv rr l′ r) ... | rr = inc→dec (rotˡ y yv l′ r) delete x (node y yv b l r) | gt c with delete x r ... | same r′ = same (node y yv b l r′) ... | decr r′ with b ... | ll = inc→dec (rotʳ y yv l r′) ... | ee = same (node y yv ll l r′) ... | rr = decr (node y yv ee l r′) data Change {t} (T : ℕ → Type t) : ℕ → Type t where up : T (suc n) → Change T n ev : T n → Change T n dn : T n → Change T (suc n) inc→changeup : Inc N n → Change N (suc n) inc→changeup (stay x) = dn x inc→changeup (high x) = ev x inc→changedn : Inc N n → Change N n inc→changedn (stay x) = ev x inc→changedn (high x) = up x _<_<_ : [∙] → K → [∙] → Type _ l < x < u = l [<] [ x ] × [ x ] [<] u alter : (x : K) → (Maybe (Val x) → Maybe (Val x)) → Tree Val lb ub n → lb < x < ub → Change (Tree Val lb ub) n alter x f (leaf l<u) (l , u) with f nothing ... | just xv = up (node x xv ee (leaf l) (leaf u)) ... | nothing = ev (leaf l<u) alter x f (node y yv b tl tr) (l , u) with compare x y alter x f (node y yv b tl tr) (l , u) | eq x≡y with f (just (subst _ (sym x≡y) yv)) ... | just xv = ev (node y (subst _ x≡y xv) b tl tr) ... | nothing = inc→changeup (join tl b tr) alter x f (node y yv b tl tr) (l , u) | lt a with alter x f tl (l , a) | b ... | ev tl′ | _ = ev (node y yv b tl′ tr) ... | up tl′ | ll = inc→changedn (rotʳ y yv tl′ tr) ... | up tl′ | ee = up (node y yv ll tl′ tr) ... | up tl′ | rr = ev (node y yv ee tl′ tr) ... | dn tl′ | ll = dn (node y yv ee tl′ tr) ... | dn tl′ | ee = ev (node y yv rr tl′ tr) ... | dn tl′ | rr = inc→changeup (rotˡ y yv tl′ tr) alter x f (node y yv b tl tr) (l , u) | gt c with alter x f tr (c , u) | b ... | ev tr′ | _ = ev (node y yv b tl tr′) ... | up tr′ | ll = ev (node y yv ee tl tr′) ... | up tr′ | ee = up (node y yv rr tl tr′) ... | up tr′ | rr = inc→changedn (rotˡ y yv tl tr′) ... | dn tr′ | ll = inc→changeup (rotʳ y yv tl tr′) ... | dn tr′ | ee = ev (node y yv ll tl tr′) ... | dn tr′ | rr = dn (node y yv ee tl tr′) open import Lens alterF : (x : K) → Tree Val lb ub n → lb < x < ub → LensPart (Change (Tree Val lb ub) n) (Maybe (Val x)) alterF x xs bnds = go (ev xs) x xs bnds id where go : A → (x : K) → Tree Val lb ub n → lb < x < ub → (Change (Tree Val lb ub) n → A) → LensPart A (Maybe (Val x)) go xs x (leaf lb<ub) (l , u) k = λ where .get → nothing .set nothing → xs .set (just xv) → k (up (node x xv ee (leaf l) (leaf u))) go xs x (node y yv bl yl yr) (l , u) k with compare x y go xs x (node y yv bl yl yr) (l , u) k | eq x≡y = λ where .get → just (subst _ (sym x≡y) yv) .set nothing → k (inc→changeup (join yl bl yr)) .set (just xv) → k (ev (node y (subst _ x≡y xv) bl yl yr)) go xs x (node y yv bl yl yr) (l , u) k | lt x<y = go xs x yl (l , x<y) λ { (up yl′) → case bl of λ { ll → k (inc→changedn (rotʳ y yv yl′ yr)) ; ee → k (up (node y yv ll yl′ yr)) ; rr → k (ev (node y yv ee yl′ yr)) } ; (ev yl′) → k (ev (node y yv bl yl′ yr)) ; (dn yl′) → case bl of λ { rr → k (inc→changeup (rotˡ y yv yl′ yr)) ; ee → k (ev (node y yv rr yl′ yr)) ; ll → k (dn (node y yv ee yl′ yr)) } } go xs x (node y yv bl yl yr) (l , u) k | gt x>y = go xs x yr (x>y , u) λ { (up yr′) → case bl of λ { rr → k (inc→changedn (rotˡ y yv yl yr′)) ; ee → k (up (node y yv rr yl yr′)) ; ll → k (ev (node y yv ee yl yr′)) } ; (ev yr′) → k (ev (node y yv bl yl yr′)) ; (dn yr′) → case bl of λ { ll → k (inc→changeup (rotʳ y yv yl yr′)) ; ee → k (ev (node y yv ll yl yr′)) ; rr → k (dn (node y yv ee yl yr′)) } } open import Data.List toList⊙ : Tree Val lb ub n → List (∃ x × Val x) → List (∃ x × Val x) toList⊙ (leaf lb<ub) ks = ks toList⊙ (node x xv bal xl xr) ks = toList⊙ xl ((x , xv) ∷ toList⊙ xr ks) toList : Tree Val lb ub n → List (∃ x × Val x) toList xs = toList⊙ xs []
{ "alphanum_fraction": 0.5144595134, "avg_line_length": 33.6510067114, "ext": "agda", "hexsha": "d1dc4973749fac1a0305091492f83002d6e52751", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Data/AVLTree/Internal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Data/AVLTree/Internal.agda", "max_line_length": 129, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Data/AVLTree/Internal.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 3970, "size": 10028 }
{-# OPTIONS --guardedness #-} module Stream where import Lvl open import Data.Boolean open import Data.List as List using (List) import Data.List.Functions as List import Data.List.Proofs as List import Data.List.Equiv.Id as List open import Functional open import Function.Iteration open import Function.Iteration.Proofs open import Logic open import Logic.Propositional open import Numeral.Natural open import Relator.Equals open import Relator.Equals.Proofs open import Type private variable ℓ : Lvl.Level private variable T A B : Type{ℓ} private variable a x init : T private variable f : A → B private variable n : ℕ -- A countably infinite list record Stream (T : Type{ℓ}) : Type{ℓ} where coinductive field head : T tail : Stream(T) open Stream module _ where -- The n:th element of a stream. -- Example: index(2)(0,1,2,…) = 2 index : Stream(T) → ℕ → T index(l)(𝟎) = head(l) index(l)(𝐒(n)) = index(tail(l))(n) -- The constant stream, consisting of a single element repeated. -- Example: repeat(x) = (x,x,x,..) repeat : T → Stream(T) head(repeat(x)) = x tail(repeat(x)) = repeat(x) -- The stream consisting of a list repeated (concatenated infinite many times). -- Example: loop(1,2,3) = (1,2,3 , 1,2,3 , 1,2,3 , …) loop : (l : List(T)) → (l ≢ List.∅) → Stream(T) loop List.∅ p with () ← p [≡]-intro head (loop (x List.⊰ l) p) = x tail (loop (x List.⊰ l) p) = loop (List.postpend x l) List.[∅]-postpend-unequal -- The stream of two interleaved streams. -- Example: interleave₂(1,2,3,‥)(a,b,c,…) = (1,a , 2,b , 3,c , …) interleave₂ : Stream(T) -> Stream(T) -> Stream(T) head(interleave₂(a)(b)) = head(a) tail(interleave₂(a)(b)) = interleave₂(b)(tail a) -- A stream which skips the first n number of elements from the specified stream. -- From the stream of (index 0 l , index 1 l , index 2 l , ..), the stream of (index n l , index (n+1) l , index (n+2) l , ..) -- Example: skip(2)(1,2,3,4,…) = (3,4,…) skip : ℕ → Stream(T) -> Stream(T) head(skip 𝟎 l) = head(l) tail(skip 𝟎 l) = tail(l) head(skip (𝐒(n)) l) = head(skip n (tail(l))) tail(skip (𝐒(n)) l) = tail(skip n (tail(l))) -- From the stream of (index 0 l , index 1 l , index 2 l , ..), the stream of (index 0 l , index n l , index (2⋅n) l , ..) -- Example: takeMultiples(3)(0,1,2,…) = (0,3,6,…) takeMultiples : ℕ → Stream(T) -> Stream(T) head(takeMultiples _ l) = head(l) tail(takeMultiples n l) = takeMultiples n ((tail ^ n) l) -- From the stream of (a,b,c,..), the stream of (x,a,b,c,..) _⊰_ : T → Stream(T) -> Stream(T) head(x ⊰ _) = x tail(_ ⊰ l) = l -- Stream of (init , f(init) , f(f(init)) , ..) iterated : T -> (T → T) → Stream(T) head(iterated init _) = init tail(iterated init f) = iterated (f(init)) f -- List from the initial part of the stream take : ℕ → Stream(T) → List(T) take(𝟎) (l) = List.∅ take(𝐒(n))(l) = head(l) List.⊰ take(n)(tail(l)) -- Example: indexIntervals(0,0,2,0,1,2,…)(0,1,2,3,…) = (0,0,2,2,3,5,…) indexIntervals : Stream(ℕ) → Stream(T) → Stream(T) head (indexIntervals i l) = index l (head i) tail (indexIntervals i l) = indexIntervals (tail i) (skip (head i) l) module _ where -- From the stream of (a,b,c,..), the stream of (f(a),f(b),f(c),..) map : (A → B) → Stream(A) → Stream(B) head(map f(l)) = f(head(l)) tail(map f(l)) = map f(tail(l)) {- TODO: May not terminate. For example when P = const 𝐹 module _ {ℓ} {A : Type{ℓ}} where filter : (A → Bool) → Stream(A) → Stream(A) head(filter p(l)) with p(head(l)) ... | 𝑇 = head(l) ... | 𝐹 = head(filter p(tail(l))) tail(filter p(l)) = filter p(tail(l)) -} module _ where data _∈_ {T : Type{ℓ}} : T → Stream(T) → Stmt{ℓ} where [∈]-head : ∀{l} → (head(l) ∈ l) [∈]-tail : ∀{a l} → (a ∈ tail(l)) → (a ∈ l) private variable l : Stream(T) index-of-[∈] : (x ∈ l) → ℕ index-of-[∈] [∈]-head = 𝟎 index-of-[∈] ([∈]-tail p) = 𝐒(index-of-[∈] p) index-of-[∈]-correctness : ∀{p : (x ∈ l)} → (index l (index-of-[∈] p) ≡ x) index-of-[∈]-correctness {x = .(head l)} {l} {[∈]-head} = [≡]-intro index-of-[∈]-correctness {x = x} {l} {[∈]-tail p} = index-of-[∈]-correctness {x = x} {tail l} {p} _⊆_ : Stream(T) → Stream(T) → Stmt _⊆_ l₁ l₂ = ∀{a} → (a ∈ l₁) → (a ∈ l₂) [∈]-tails : ((tail ^ n)(l) ⊆ l) [∈]-tails {n = 𝟎} {l = l} {a} tailn = tailn [∈]-tails {n = 𝐒 n} {l = l} {a} tailn = [∈]-tail ([∈]-tails {n = n} {l = tail l} {a} ([≡]-substitutionₗ ([^]-inner-value {f = tail}{x = l}{n}) {a ∈_} tailn)) [∈]-head-tail : (head(tail(l)) ∈ l) [∈]-head-tail = [∈]-tail ([∈]-head) [∈]-head-tails-membership : (head((tail ^ n)(l)) ∈ l) [∈]-head-tails-membership{𝟎} = [∈]-head [∈]-head-tails-membership{𝐒(n)}{l} = [∈]-tails {n = n} ([∈]-head-tail) [∈]-disjunction : (x ∈ l) → ((x ≡ head(l)) ∨ (x ∈ tail(l))) [∈]-disjunction ([∈]-head) = [∨]-introₗ [≡]-intro [∈]-disjunction ([∈]-tail proof) = [∨]-introᵣ proof [∈]-index : (index l n ∈ l) [∈]-index {n = 𝟎} = [∈]-head [∈]-index {n = 𝐒(n)} = [∈]-tail ([∈]-index {n = n}) repeat-[∈] : (x ∈ repeat(a)) ↔ (x ≡ a) repeat-[∈] {x = x}{a = a} = [↔]-intro left right where left : (x ∈ repeat(a)) ← (x ≡ a) left ([≡]-intro) = [∈]-head right : (x ∈ repeat(a)) → (x ≡ a) right ([∈]-head) = [≡]-intro right ([∈]-tail proof) = right(proof) map-[∈] : (x ∈ l) → (f(x) ∈ map f(l)) map-[∈] ([∈]-head) = [∈]-head map-[∈] {l = l} ([∈]-tail proof) = [∈]-tail (map-[∈] {l = tail l} (proof)) [⊰][∈] : (a ∈ (x ⊰ l)) ↔ ((x ≡ a) ∨ (a ∈ l)) [⊰][∈] {a = a}{x = x}{l = l} = [↔]-intro ll rr where ll : (a ∈ (x ⊰ l)) ← ((x ≡ a) ∨ (a ∈ l)) ll ([∨]-introₗ ([≡]-intro)) = [∈]-head ll ([∨]-introᵣ (proof)) = [∈]-tail (proof) rr : (a ∈ (x ⊰ l)) → ((x ≡ a) ∨ (a ∈ l)) rr ([∈]-head) = [∨]-introₗ ([≡]-intro) rr ([∈]-tail (proof)) = [∨]-introᵣ (proof) iterated-init-[∈] : (init ∈ iterated(init)(f)) iterated-init-[∈] = [∈]-head iterated-next-[∈] : (x ∈ iterated(init)(f)) → (f(x) ∈ iterated(init)(f)) iterated-next-[∈] ([∈]-head) = [∈]-tail ([∈]-head) iterated-next-[∈] ([∈]-tail proof) = [∈]-tail (iterated-next-[∈] (proof)) -- First: -- head(iterated(init)(f)) ∈ iterated(init)(f) -- init ∈ iterated(init)(f) -- ... -- Second: -- x ∈ tail(iterated(init)(f)) -- x ∈ iterated (f(init)) f -- ... iterated-[∈] : ((f ^ n)(init) ∈ iterated(init)(f)) iterated-[∈] {n = 𝟎} = iterated-init-[∈] iterated-[∈] {n = 𝐒 n} = iterated-next-[∈] (iterated-[∈] {n = n}) -- Stream of (0,1,2,3,..) [ℕ]-stream : Stream(ℕ) [ℕ]-stream = iterated(𝟎)(𝐒) [ℕ]-stream-[∈] : (n ∈ [ℕ]-stream) [ℕ]-stream-[∈]{𝟎} = [∈]-head [ℕ]-stream-[∈]{𝐒(n)} = iterated-next-[∈]([ℕ]-stream-[∈]{n}) -- Stream of (f(0),f(1),f(2),f(3),..) [ℕ]-function-stream : (ℕ → T) → Stream(T) [ℕ]-function-stream f = map f([ℕ]-stream) module _ {ℓ} {T : Type{ℓ}} where open import Logic.Predicate open import Logic.Predicate.Theorems open import Structure.Function.Domain open import Type.Size.Countable -- This provides another way of proving that a type is countable. -- The method is: If a stream can enumerate every object of a certain type, then it is countable. countable-equivalence : ∃(l ↦ ∀{x : T} → (x ∈ l)) ↔ Countable(T) countable-equivalence = [↔]-intro left right where left : ∃(l ↦ ∀{x : T} → (x ∈ l)) ← Countable(T) ∃.witness (left ([∃]-intro f ⦃ intro proof ⦄)) = [ℕ]-function-stream f ∃.proof (left ([∃]-intro f ⦃ intro proof ⦄)) {x} with proof{x} ... | [∃]-intro n ⦃ [≡]-intro ⦄ = map-[∈] [ℕ]-stream-[∈] right : ∃(l ↦ ∀{x : T} → (x ∈ l)) → Countable(T) ∃.witness (right ([∃]-intro l ⦃ p ⦄)) = index l ∃.witness (Surjective.proof (∃.proof (right ([∃]-intro l ⦃ p ⦄))) {x}) = index-of-[∈] (p{x}) ∃.proof (Surjective.proof (∃.proof (right ([∃]-intro l ⦃ p ⦄))) {x}) = index-of-[∈]-correctness {p = p}
{ "alphanum_fraction": 0.5353738083, "avg_line_length": 36.07239819, "ext": "agda", "hexsha": "eab37a366c4e69e69138f5a7b93c172dfc7b683d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Stream.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Stream.agda", "max_line_length": 159, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Stream.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 3275, "size": 7972 }
module Oscar.Data.AList.properties {𝔣} (FunctionName : Set 𝔣) where open import Oscar.Category.Category open import Oscar.Category.Functor open import Oscar.Category.Morphism open import Oscar.Category.Semigroupoid open import Oscar.Category.Semifunctor open import Oscar.Category.Setoid open import Oscar.Class.ThickAndThin open import Oscar.Data.AList FunctionName open import Oscar.Data.Equality open import Oscar.Data.Equality.properties open import Oscar.Data.Fin open import Oscar.Data.Fin.ThickAndThin open import Oscar.Data.Maybe open import Oscar.Data.Nat open import Oscar.Data.Product open import Oscar.Data.Term FunctionName import Oscar.Data.Term.internal.SubstituteAndSubstitution FunctionName as S open import Oscar.Data.Term.ThickAndThin FunctionName open import Oscar.Function module 𝔊₂ = Category S.𝔾₁ module 𝔉◃ = Functor S.𝔽◂ 𝕞₁ = ⇧ AList module 𝔐₁ = Morphism 𝕞₁ private _∙_ : ∀ {m n} → m 𝔐₁.↦ n → ∀ {l} → l 𝔐₁.↦ m → l 𝔐₁.↦ n ρ ∙ anil = ρ ρ ∙ (σ asnoc t' / x) = (ρ ∙ σ) asnoc t' / x ∙-associativity : ∀ {l m} (ρ : l 𝔐₁.↦ m) {n} (σ : n 𝔐₁.↦ _) {o} (τ : o 𝔐₁.↦ _) → (ρ ∙ σ) ∙ τ ≡ ρ ∙ (σ ∙ τ) ∙-associativity ρ σ anil = refl ∙-associativity ρ σ (τ asnoc t / x) = cong (λ s → s asnoc t / x) (∙-associativity ρ σ τ) instance IsSemigroupoid𝕞₁∙ : IsSemigroupoid 𝕞₁ _∙_ IsSemigroupoid.extensionality IsSemigroupoid𝕞₁∙ f₁≡f₂ g₁≡g₂ = cong₂ (λ ‵ → _∙_ ‵) g₁≡g₂ f₁≡f₂ IsSemigroupoid.associativity IsSemigroupoid𝕞₁∙ f g h = ∙-associativity h g f 𝕘₁ : Semigroupoid _ _ _ 𝕘₁ = 𝕞₁ , _∙_ private ε : ∀ {n} → n 𝔐₁.↦ n ε = anil ∙-left-identity : ∀ {m n} (σ : AList m n) → ε ∙ σ ≡ σ ∙-left-identity anil = refl ∙-left-identity (σ asnoc t' / x) = cong (λ σ → σ asnoc t' / x) (∙-left-identity σ) instance IsCategory𝕘₁ε : IsCategory 𝕘₁ ε IsCategory.left-identity IsCategory𝕘₁ε = ∙-left-identity IsCategory.right-identity IsCategory𝕘₁ε _ = refl 𝔾₁ : Category _ _ _ 𝔾₁ = 𝕘₁ , ε 𝕞₂ = 𝔊₂.𝔐 module 𝔐₂ = Morphism 𝕞₂ private sub : ∀ {m n} → m 𝔐₁.↦ n → m 𝔊₂.↦ n sub anil = i sub (σ asnoc t' / x) = sub σ 𝔊₂.∙ (t' for x) fact1 : ∀ {l m n} (ρ : AList m n) (σ : AList l m) → sub (ρ ∙ σ) ≡̇ (sub ρ 𝔊₂.∙ sub σ) fact1 ρ anil v = refl fact1 {suc l} {m} {n} r (s asnoc t' / x) v = trans hyp-on-terms ◃-assoc where t = (t' for x) v hyp-on-terms = 𝔉◃.extensionality (fact1 r s) t ◃-assoc = 𝔉◃.distributivity (sub s) (sub r) t 𝕘₁,₂ : Semigroupoids _ _ _ _ _ _ 𝕘₁,₂ = 𝕘₁ , 𝔊₂.semigroupoid instance IsSemifunctorSub∙◇ : IsSemifunctor 𝕘₁,₂ sub IsSemifunctor.extensionality IsSemifunctorSub∙◇ refl _ = refl IsSemifunctor.distributivity IsSemifunctorSub∙◇ f g x = fact1 g f x semifunctorSub∙◇ : Semifunctor _ _ _ _ _ _ semifunctorSub∙◇ = 𝕘₁,₂ , sub instance IsFunctor𝔽 : IsFunctor (𝔾₁ , S.𝔾₁) sub IsFunctor.identity IsFunctor𝔽 _ _ = refl 𝔽 : Functor _ _ _ _ _ _ 𝔽 = (𝔾₁ , S.𝔾₁) , sub -- fact1 : ∀ {l m n} (ρ : AList m n) (σ : AList l m) → sub (ρ ∙ σ) ≡̇ (sub ρ ◇ sub σ) -- fact1 ρ anil v = refl -- fact1 {suc l} {m} {n} r (s asnoc t' / x) v = trans hyp-on-terms ◃-assoc -- where -- t = (t' for x) v -- hyp-on-terms = ◃-extensionality (fact1 r s) t -- ◃-assoc = ◃-associativity (sub s) (sub r) t -- _∃asnoc_/_ : ∀ {m} (a : ∃ (AList m)) (t' : Term m) (x : Fin (suc m)) -- → ∃ (AList (suc m)) -- (n , σ) ∃asnoc t' / x = n , σ asnoc t' / x -- flexFlex : ∀ {m} (x y : Fin m) → ∃ (AList m) -- flexFlex {suc m} x y with check x y -- ... | just y' = m , anil asnoc i y' / x -- ... | nothing = suc m , anil -- flexFlex {zero} () _ -- flexRigid : ∀ {m} (x : Fin m) (t : Term m) → Maybe (∃(AList m)) -- flexRigid {suc m} x t with check x t -- ... | just t' = just (m , anil asnoc t' / x) -- ... | nothing = nothing -- flexRigid {zero} () _
{ "alphanum_fraction": 0.6130217905, "avg_line_length": 29.7578125, "ext": "agda", "hexsha": "24fb4a65405f63c27ff347c0b980f88c8008d0ae", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-2/Oscar/Data/AList/properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-2/Oscar/Data/AList/properties.agda", "max_line_length": 108, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-2/Oscar/Data/AList/properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1654, "size": 3809 }
{-# OPTIONS --without-K --safe #-} -- Formalization of internal relations -- (=congruences: https://ncatlab.org/nlab/show/congruence) open import Categories.Category module Categories.Object.InternalRelation {o ℓ e} (𝒞 : Category o ℓ e) where open import Level hiding (zero) open import Data.Unit open import Data.Fin using (Fin; zero) renaming (suc to nzero) import Categories.Morphism as Mor import Categories.Morphism.Reasoning as MR open import Categories.Morphism.Notation open import Categories.Diagram.Pullback open import Categories.Diagram.KernelPair open import Categories.Category.Cartesian open import Categories.Category.BinaryProducts 𝒞 using (BinaryProducts; module BinaryProducts) private module 𝒞 = Category 𝒞 open Category 𝒞 open Mor 𝒞 -- A relation is a span, "which is (-1)-truncated as a morphism into the cartesian product." -- (https://ncatlab.org/nlab/show/span#correspondences) isRelation : {X Y R : 𝒞.Obj} (f : R ⇒ X) (g : R ⇒ Y) → Set (o ⊔ ℓ ⊔ e) isRelation{X}{Y}{R} f g = JointMono (Fin 2) (λ{zero → X; (nzero _) → Y}) (λ{zero → f; (nzero _) → g}) record Relation (X Y : 𝒞.Obj) : Set (suc (o ⊔ ℓ ⊔ e)) where open Mor 𝒞 field dom : 𝒞.Obj p₁ : dom ⇒ X p₂ : dom ⇒ Y field relation : isRelation p₁ p₂ record isEqSpan {X R : 𝒞.Obj} (f : R ⇒ X) (g : R ⇒ X) : Set (suc (o ⊔ ℓ ⊔ e)) where field R×R : Pullback 𝒞 f g module R×R = Pullback R×R renaming (P to dom) field refl : X ⇒ R sym : R ⇒ R trans : R×R.dom ⇒ R is-refl₁ : f ∘ refl ≈ id is-refl₂ : g ∘ refl ≈ id is-sym₁ : f ∘ sym ≈ g is-sym₂ : g ∘ sym ≈ f is-trans₁ : f ∘ trans ≈ f ∘ R×R.p₁ is-trans₂ : g ∘ trans ≈ g ∘ R×R.p₂ -- Internal equivalence record Equivalence (X : 𝒞.Obj) : Set (suc (o ⊔ ℓ ⊔ e)) where open Mor 𝒞 open BinaryProducts field R : Relation X X open Relation R module R = Relation R field eqspan : isEqSpan R.p₁ R.p₂ module _ where open Pullback hiding (P) KP⇒EqSpan : {X Y : 𝒞.Obj} (f : X ⇒ Y) → (kp : KernelPair 𝒞 f) → (p : Pullback 𝒞 (p₁ kp) (p₂ kp)) → isEqSpan (p₁ kp) (p₂ kp) KP⇒EqSpan f kp p = record { R×R = p ; refl = universal kp {_} {id}{id} 𝒞.Equiv.refl ; sym = universal kp {_} {p₂ kp}{p₁ kp} (𝒞.Equiv.sym (commute kp)) ; trans = universal kp {_}{p₁ kp ∘ p₁ p}{p₂ kp ∘ p₂ p} (∘-resp-≈ʳ (commute p)) ; is-refl₁ = p₁∘universal≈h₁ kp ; is-refl₂ = p₂∘universal≈h₂ kp ; is-sym₁ = p₁∘universal≈h₁ kp ; is-sym₂ = p₂∘universal≈h₂ kp ; is-trans₁ = p₁∘universal≈h₁ kp ; is-trans₂ = p₂∘universal≈h₂ kp } KP⇒Relation : {X Y : 𝒞.Obj} (f : X ⇒ Y) → (kp : KernelPair 𝒞 f) → (p : Pullback 𝒞 (p₁ kp) (p₂ kp)) → isRelation (p₁ kp) (p₂ kp) KP⇒Relation f kp _ _ _ eq = unique-diagram kp (eq zero) (eq (nzero zero))
{ "alphanum_fraction": 0.6087873462, "avg_line_length": 28.1683168317, "ext": "agda", "hexsha": "b2768a33119075d85acce1067d94d294d17c6310", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c202a616d4f376b11e8320e641c98db2ddc9d233", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Akshobhya1234/agda-categories", "max_forks_repo_path": "src/Categories/Object/InternalRelation.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c202a616d4f376b11e8320e641c98db2ddc9d233", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Akshobhya1234/agda-categories", "max_issues_repo_path": "src/Categories/Object/InternalRelation.agda", "max_line_length": 129, "max_stars_count": null, "max_stars_repo_head_hexsha": "c202a616d4f376b11e8320e641c98db2ddc9d233", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Akshobhya1234/agda-categories", "max_stars_repo_path": "src/Categories/Object/InternalRelation.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1081, "size": 2845 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT module experimental.CubicalTypes where data access : ℕ → ℕ → Type₀ where [] : access O O _#up : ∀ {n} {k} → access n k → access (S n) k _#down : ∀ {n} {k} → access n k → access (S n) k _#keep : ∀ {n} {k} → access n k → access (S n) (S k) _a∙_ : ∀ {n k l} → access n k → access k l → access n l _a∙_ [] a₂ = a₂ _a∙_ (a₁ #up) a₂ = (a₁ a∙ a₂) #up _a∙_ (a₁ #down) a₂ = (a₁ a∙ a₂) #down _a∙_ (a₁ #keep) (a₂ #up) = (a₁ a∙ a₂) #up _a∙_ (a₁ #keep) (a₂ #down) = (a₁ a∙ a₂) #down _a∙_ (a₁ #keep) (a₂ #keep) = (a₁ a∙ a₂) #keep
{ "alphanum_fraction": 0.5375426621, "avg_line_length": 27.9047619048, "ext": "agda", "hexsha": "c26fef43eff1c8e133c8335f5bbda482759c5ca5", "lang": "Agda", "max_forks_count": 50, "max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z", "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/stash/CubicalTypes.agda", "max_issues_count": 31, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/stash/CubicalTypes.agda", "max_line_length": 55, "max_stars_count": 294, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/stash/CubicalTypes.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z", "num_tokens": 286, "size": 586 }
module Prelude.List where open import Prelude.List.Base public
{ "alphanum_fraction": 0.8153846154, "avg_line_length": 13, "ext": "agda", "hexsha": "891e14e82e8826a7daa5d3ae16b0982b645a3337", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "t-more/agda-prelude", "max_forks_repo_path": "src/Prelude/List.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "t-more/agda-prelude", "max_issues_repo_path": "src/Prelude/List.agda", "max_line_length": 36, "max_stars_count": null, "max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "t-more/agda-prelude", "max_stars_repo_path": "src/Prelude/List.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 12, "size": 65 }
-- We can infer the type of a record by comparing the given -- fields against the fields of the currently known records. module InferRecordTypes where data Nat : Set where zero : Nat suc : Nat → Nat record _×_ (A B : Set) : Set where field fst : A snd : B pair = record { fst = zero; snd = zero } record R₁ : Set where field x₁ : Nat r₁ = record { x₁ = zero } data T {A : Set} : A → Set where mkT : ∀ n → T n record R₂ A : Set where field {x₁} : A x₂ : T x₁ r₂ = record { x₂ = mkT (suc zero) } record R₃ : Set where field x₁ x₃ : Nat r₃ = record { x₁ = zero; x₃ = suc zero }
{ "alphanum_fraction": 0.5984, "avg_line_length": 17.3611111111, "ext": "agda", "hexsha": "18c9fe0ec542765f393e1206215ad5e1d421bc29", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/InferRecordTypes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/InferRecordTypes.agda", "max_line_length": 60, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/succeed/InferRecordTypes.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 220, "size": 625 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} -- This module contains properties that are only about the behavior of the handlers, nothing to do -- with system state open import Optics.All open import LibraBFT.Prelude open import LibraBFT.Base.ByteString open import LibraBFT.Base.Types open import LibraBFT.Hash open import LibraBFT.Impl.Base.Types open import LibraBFT.Impl.Consensus.Types open import LibraBFT.Impl.Util.Util module LibraBFT.Impl.Consensus.ChainedBFT.EventProcessor.Properties (hash : BitString → Hash) (hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y) where open import LibraBFT.Impl.Consensus.ChainedBFT.EventProcessor hash hash-cr -- The quorum certificates sent in SyncInfo with votes are those from the peer state procPMCerts≡ : ∀ {ts pm pre vm αs} → (SendVote vm αs) ∈ LBFT-outs (processProposalMsg ts pm) pre → vm ^∙ vmSyncInfo ≡ mkSyncInfo (₋epHighestQC pre) (₋epHighestCommitQC pre) procPMCerts≡ (there x) = ⊥-elim (¬Any[] x) -- processProposalMsg sends only one vote procPMCerts≡ (here refl) = refl
{ "alphanum_fraction": 0.7378565921, "avg_line_length": 40.53125, "ext": "agda", "hexsha": "dc2e62faae68467252b56000acc7ddcbdcdc801f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "haroldcarr/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Impl/Consensus/ChainedBFT/EventProcessor/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "haroldcarr/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Impl/Consensus/ChainedBFT/EventProcessor/Properties.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "34e4627855fb198665d0c98f377403a906ba75d7", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "haroldcarr/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Impl/Consensus/ChainedBFT/EventProcessor/Properties.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 374, "size": 1297 }
module unit where open import level open import eq data ⊤ {ℓ : Level} : Set ℓ where triv : ⊤ {-# COMPILE GHC ⊤ = data () (()) #-} single-range : ∀{ℓ}{U : Set ℓ}{g : U → ⊤ {ℓ}} → ∀{u : U} → g u ≡ triv single-range {_}{U}{g}{u} with g u ... | triv = refl
{ "alphanum_fraction": 0.5250965251, "avg_line_length": 18.5, "ext": "agda", "hexsha": "4bb7cff6a1fe984ea35cd1fd7e761a5ab2722c88", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "unit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "unit.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "unit.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 106, "size": 259 }
-- Andreas, 2020-04-15, issue #4586 -- An unintended internal error. test : Set₁ test = let ... | _ = Set in Set -- WAS: -- An internal error has occurred. Please report this as a bug. -- Location of the error: src/full/Agda/Syntax/Translation/ConcreteToAbstract.hs:1417 -- EXPECTED: -- Could not parse the left-hand side ... | _ -- Operators used in the grammar: -- None -- when scope checking let ... | _ = Set in Set
{ "alphanum_fraction": 0.6674364896, "avg_line_length": 25.4705882353, "ext": "agda", "hexsha": "bc2aaa21ea9bd8599d52ec55472d4ffd5c99b33d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue4586LetEllipsis.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue4586LetEllipsis.agda", "max_line_length": 85, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue4586LetEllipsis.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 121, "size": 433 }
{-# OPTIONS --copatterns #-} module Control.Category.Slice where open import Level using (suc; _⊔_) open import Relation.Binary hiding (_⇒_) open import Control.Category open Category using () renaming (Obj to obj) -- Given a category C and an object Tgt in C we can define a new category -- whose objects S are pairs of an object Src in C -- and a morphism out from Src to Tgt. record SliceObj {o h e} (C : Category o h e) (Tgt : obj C) : Set (o ⊔ h ⊔ e) where constructor sliceObj open Category C -- public field Src : Obj out : Src ⇒ Tgt -- In the following, we fix a category C and an object Tgt. module _ {o h e} {C : Category o h e} {Tgt : obj C} where -- We use _⇒_ for C's morphisms and _∘_ for their composition. private open module C = Category C hiding (id; ops) Slice = SliceObj C Tgt open module Slice = SliceObj {C = C} {Tgt = Tgt} -- A morphism in the slice category into Tgt -- from slice (S, s) to (T, t) -- is a morphism f : S ⇒ T such that t ∘ f ≡ s. record SliceMorphism (S T : Slice) : Set (h ⊔ e) where constructor sliceMorphism field mor : Src S ⇒ Src T triangle : (mor ⟫ out T) ≈ out S -- Two morphisms in the slice category are equal -- iff they are equal in the underlying category C. SliceHom : (S T : Slice) → Setoid _ _ SliceHom S T = record { Carrier = SliceMorphism S T ; _≈_ = λ f g → SliceMorphism.mor f ≈ SliceMorphism.mor g ; isEquivalence = record { refl = refl ; sym = sym ; trans = trans } } where open IsEquivalence (≈-equiv {Src S} {Src T}) -- We write S ⇉ T for a morphism from slice S to slice T open HomSet SliceHom using () renaming (_⇒_ to _⇉_; _≈_ to _≐_) -- The identity slice morphism is just the identity morphism. slice-id : ∀ {P} → P ⇉ P slice-id = record { mor = C.id; triangle = C.id-first } -- The composition of slice morphims is just the composition in C. comp : ∀ {S T U} → S ⇉ T → T ⇉ U → S ⇉ U comp (sliceMorphism f tri-f) (sliceMorphism g tri-g) = record { mor = f ⟫ g ; triangle = ≈-trans (C.∘-assoc f) (≈-trans (C.∘-cong ≈-refl tri-g) tri-f) } ops : CategoryOps SliceHom ops = record { id = slice-id ; _⟫_ = comp} sliceIsCategory : IsCategory SliceHom sliceIsCategory = record { ops = ops ; laws = record { id-first = C.id-first -- id-first ; id-last = C.id-last ; ∘-assoc = λ f → C.∘-assoc _ ; ∘-cong = C.∘-cong } } -- The slice category. module _ {o h e} (C : Category o h e) (Tgt : obj C) where module C = Category C _/_ : Category (o ⊔ h ⊔ e) (e ⊔ h) e _/_ = record { Obj = SliceObj C Tgt ; Hom = SliceHom ; isCategory = sliceIsCategory } open Category _/_ -- The terminal object in C / Tgt is (Tgt, id). terminalSlice : Obj terminalSlice = record { Src = Tgt; out = C.id } open IsFinal isTerminalSlice : IsFinal Hom terminalSlice final isTerminalSlice {sliceObj Src f} = sliceMorphism f C.id-last final-universal isTerminalSlice {sliceObj Src f} {sliceMorphism g tri} = C.≈-trans (C.≈-sym C.id-last) tri -- The initial object in C / Tgt is (0, initial) module _ {⊥ : obj C} (⊥-initial : IsInitial C.Hom ⊥) where open IsInitial ⊥-initial renaming (initial to abort; initial-universal to abort-unique) initialSlice : Obj initialSlice = record { Src = ⊥; out = abort } open IsInitial isInitialSlice : IsInitial Hom initialSlice initial isInitialSlice = sliceMorphism abort abort-unique initial-universal isInitialSlice = abort-unique
{ "alphanum_fraction": 0.6190866831, "avg_line_length": 27.4962406015, "ext": "agda", "hexsha": "5f97bb5fcc88b0264f36fd5799872e2e4459e9e6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "andreasabel/cubical", "max_forks_repo_path": "src/Control/Category/Slice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "andreasabel/cubical", "max_issues_repo_path": "src/Control/Category/Slice.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "andreasabel/cubical", "max_stars_repo_path": "src/Control/Category/Slice.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1177, "size": 3657 }
open import Nat open import Prelude open import core open import judgemental-erase open import moveerase module sensibility where mutual -- if an action transforms a ê in a synthetic posistion to another ê, -- they have the same type up erasure of the cursor actsense-synth : {Γ : ·ctx} {e e' : ê} {e◆ e'◆ : ė} {t t' : τ̇} {α : action} → erase-e e e◆ → erase-e e' e'◆ → Γ ⊢ e => t ~ α ~> e' => t' → Γ ⊢ e◆ => t → Γ ⊢ e'◆ => t' -- in the movement case, we defer to the movement erasure theorem actsense-synth er er' (SAMove x) wt with erasee-det (moveerasee' er x) er' ... | refl = wt -- in all the nonzipper cases, the cursor must be at the top for the -- action rule to apply, so we just build the new derivation -- directly. no recursion is needed; these are effectively base cases. actsense-synth _ EETop SADel _ = SEHole actsense-synth EETop (EEAscR ETTop) SAConAsc wt = SAsc (ASubsume wt TCRefl) actsense-synth _ EETop (SAConVar p) _ = SVar p actsense-synth EETop (EEAscR (ETArrL ETTop)) (SAConLam x) SEHole = SAsc (ALam x MAArr (ASubsume SEHole TCRefl)) actsense-synth EETop (EEApR EETop) (SAConApArr x) wt = SAp wt x (ASubsume SEHole TCHole1) actsense-synth EETop (EEApR EETop) (SAConApOtw x) wt = SAp (SNEHole wt) MAHole (ASubsume SEHole TCRefl) actsense-synth _ EETop SAConNumlit _ = SNum actsense-synth EETop (EEPlusR EETop) (SAConPlus1 TCRefl) wt = SPlus (ASubsume wt TCRefl) (ASubsume SEHole TCHole1) actsense-synth EETop (EEPlusR EETop) (SAConPlus1 TCHole2) wt = SPlus (ASubsume wt TCHole1) (ASubsume SEHole TCHole1) actsense-synth EETop (EEPlusR EETop) (SAConPlus2 _) wt = SPlus (ASubsume (SNEHole wt) TCHole1) (ASubsume SEHole TCHole1) actsense-synth EETop (EENEHole EETop) SAConNEHole wt = SNEHole wt actsense-synth _ EETop (SAFinish x) _ = x --- zipper cases. in each, we recur on the smaller action derivation --- following the zipper structure, then reassemble the result actsense-synth (EEAscL er) (EEAscL er') (SAZipAsc1 x) (SAsc x₁) with actsense-ana er er' x x₁ ... | ih = SAsc ih actsense-synth (EEAscR x₁) (EEAscR x) (SAZipAsc2 x₂ x₃ x₄ x₅) (SAsc x₆) with eraset-det x x₃ ... | refl = SAsc x₅ actsense-synth er (EEApL er') (SAZipApArr x x₁ x₂ act x₃) wt with actsense-synth x₁ er' act x₂ ... | ih = SAp ih x x₃ actsense-synth (EEApR er) (EEApR er') (SAZipApAna x x₁ x₂) (SAp wt x₃ x₄) with synthunicity x₁ wt ... | refl with matcharrunicity x x₃ ... | refl with actsense-ana er er' x₂ x₄ ... | ih = SAp wt x ih actsense-synth (EEPlusL er) (EEPlusL er') (SAZipPlus1 x) (SPlus x₁ x₂) with actsense-ana er er' x x₁ ... | ih = SPlus ih x₂ actsense-synth (EEPlusR er) (EEPlusR er') (SAZipPlus2 x) (SPlus x₁ x₂) with actsense-ana er er' x x₂ ... | ih = SPlus x₁ ih actsense-synth er (EENEHole er') (SAZipHole x x₁ act) wt with actsense-synth x er' act x₁ ... | ih = SNEHole ih -- if an action transforms an ê in an analytic posistion to another ê, -- they have the same type up erasure of the cursor. actsense-ana : {Γ : ·ctx} {e e' : ê} {e◆ e'◆ : ė} {t : τ̇} {α : action} → erase-e e e◆ → erase-e e' e'◆ → Γ ⊢ e ~ α ~> e' ⇐ t → Γ ⊢ e◆ <= t → Γ ⊢ e'◆ <= t -- in the subsumption case, punt to the other theorem actsense-ana er1 er2 (AASubsume x x₁ x₂ x₃) _ = ASubsume (actsense-synth x er2 x₂ x₁) x₃ -- for movement, appeal to the movement-erasure theorem actsense-ana er1 er2 (AAMove x) wt with erasee-det (moveerasee' er1 x) er2 ... | refl = wt -- in the nonzipper cases, we again know where the hole must be, so we -- force it and then build the relevant derivation directly. actsense-ana EETop EETop AADel wt = ASubsume SEHole TCHole1 actsense-ana EETop (EEAscR ETTop) AAConAsc wt = ASubsume (SAsc wt) TCRefl actsense-ana EETop (EENEHole EETop) (AAConVar x₁ p) wt = ASubsume (SNEHole (SVar p)) TCHole1 actsense-ana EETop (EELam EETop) (AAConLam1 x₁ x₂) wt = ALam x₁ x₂ (ASubsume SEHole TCHole1) actsense-ana EETop (EENEHole EETop) (AAConNumlit x) wt = ASubsume (SNEHole SNum) TCHole1 actsense-ana EETop EETop (AAFinish x) wt = x actsense-ana EETop (EENEHole (EEAscR (ETArrL ETTop))) (AAConLam2 x _) (ASubsume SEHole q) = ASubsume (SNEHole (SAsc (ALam x MAArr (ASubsume SEHole TCRefl)))) q -- all subsumptions in the right derivation are bogus, because there's no -- rule for lambdas synthetically actsense-ana (EELam _) (EELam _) (AAZipLam _ _ _) (ASubsume () _) -- that leaves only the zipper cases for lambda, where we force the -- forms and then recurr into the body of the lambda being checked. actsense-ana (EELam er1) (EELam er2) (AAZipLam x₁ x₂ act) (ALam x₄ x₅ wt) with matcharrunicity x₂ x₅ ... | refl with actsense-ana er1 er2 act wt ... | ih = ALam x₄ x₅ ih
{ "alphanum_fraction": 0.6399217221, "avg_line_length": 50.0980392157, "ext": "agda", "hexsha": "654b9d35984c96845371fc432dcda44b7d92079b", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-07-03T03:45:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-07-03T03:45:07.000Z", "max_forks_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/agda-popl17", "max_forks_repo_path": "sensibility.agda", "max_issues_count": 37, "max_issues_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7", "max_issues_repo_issues_event_max_datetime": "2016-11-09T18:13:55.000Z", "max_issues_repo_issues_event_min_datetime": "2016-07-07T16:23:11.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/agda-popl17", "max_issues_repo_path": "sensibility.agda", "max_line_length": 124, "max_stars_count": 14, "max_stars_repo_head_hexsha": "db3d21a1e3f17ef77ad557ed12374979f381b6b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/agda-popl17", "max_stars_repo_path": "sensibility.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-11T12:30:50.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-01T22:44:11.000Z", "num_tokens": 1914, "size": 5110 }
open import Agda.Primitive open import Agda.Builtin.List open import Agda.Builtin.Maybe data Coercible (A : Set) (B : Set) : Set where TrustMe : Coercible A B postulate coerce : {A B : Set} {{_ : Coercible A B}} → A → B instance coerce-fun : {A B : Set} {{_ : Coercible A B}} → {C D : Set} {{_ : Coercible C D}} → Coercible (B → C) (A → D) coerce-fun = TrustMe coerce-refl : {A : Set} → Coercible A A coerce-refl = TrustMe postulate primCatMaybes : {A : Set} → List (Maybe A) → List A catMaybes : {A : Set} → List (Maybe A) → List A catMaybes = coerce (primCatMaybes {_})
{ "alphanum_fraction": 0.6077795786, "avg_line_length": 24.68, "ext": "agda", "hexsha": "10e8f90d8d74f16d43a01cd75daa2e6f142c4216", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Test4687.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Test4687.agda", "max_line_length": 60, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Test4687.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 218, "size": 617 }
------------------------------------------------------------------------ -- Monotone functions ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} module Partiality-monad.Inductive.Monotone where open import Equality.Propositional open import Prelude open import Bijection equality-with-J using (_↔_) import Partiality-algebra.Monotone as M open import Partiality-monad.Inductive -- Definition of monotone functions. [_⊥→_⊥]⊑ : ∀ {a b} → Type a → Type b → Type (a ⊔ b) [ A ⊥→ B ⊥]⊑ = M.[ partiality-algebra A ⟶ partiality-algebra B ]⊑ module [_⊥→_⊥]⊑ {a b} {A : Type a} {B : Type b} (f : [ A ⊥→ B ⊥]⊑) = M.[_⟶_]⊑ f open [_⊥→_⊥]⊑ -- Identity. id⊑ : ∀ {a} {A : Type a} → [ A ⊥→ A ⊥]⊑ id⊑ = M.id⊑ -- Composition. infixr 40 _∘⊑_ _∘⊑_ : ∀ {a b c} {A : Type a} {B : Type b} {C : Type c} → [ B ⊥→ C ⊥]⊑ → [ A ⊥→ B ⊥]⊑ → [ A ⊥→ C ⊥]⊑ _∘⊑_ = M._∘⊑_ -- Equality characterisation lemma for monotone functions. equality-characterisation-monotone : ∀ {a b} {A : Type a} {B : Type b} {f g : [ A ⊥→ B ⊥]⊑} → (∀ x → function f x ≡ function g x) ↔ f ≡ g equality-characterisation-monotone = M.equality-characterisation-monotone -- Composition is associative. ∘⊑-assoc : ∀ {a b c d} {A : Type a} {B : Type b} {C : Type c} {D : Type d} (f : [ C ⊥→ D ⊥]⊑) (g : [ B ⊥→ C ⊥]⊑) {h : [ A ⊥→ B ⊥]⊑} → f ∘⊑ (g ∘⊑ h) ≡ (f ∘⊑ g) ∘⊑ h ∘⊑-assoc = M.∘⊑-assoc module _ {a b} {A : Type a} {B : Type b} where -- If a monotone function is applied to an increasing sequence, -- then the result is another increasing sequence. [_$_]-inc : [ A ⊥→ B ⊥]⊑ → Increasing-sequence A → Increasing-sequence B [_$_]-inc = M.[_$_]-inc -- A lemma relating monotone functions and least upper bounds. ⨆$⊑$⨆ : (f : [ A ⊥→ B ⊥]⊑) → ∀ s → ⨆ [ f $ s ]-inc ⊑ function f (⨆ s) ⨆$⊑$⨆ = M.⨆$⊑$⨆
{ "alphanum_fraction": 0.5098983414, "avg_line_length": 26.7, "ext": "agda", "hexsha": "39ba9767b51f470e9fa6ca1011c57e205c0d0621", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Partiality-monad/Inductive/Monotone.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Partiality-monad/Inductive/Monotone.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Partiality-monad/Inductive/Monotone.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 793, "size": 1869 }
{-# OPTIONS --without-K --safe #-} module SDG.Extra.OrderedAlgebra where open import Relation.Binary open import Algebra.FunctionProperties open import Level open import SDG.Extra.OrderedAlgebra.Structures record OrderedCommutativeRing c ℓ : Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _<_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier 0# : Carrier 1# : Carrier isOrderedCommutativeRing : IsOrderedCommutativeRing _≈_ _<_ _+_ _*_ -_ 0# 1# open IsOrderedCommutativeRing isOrderedCommutativeRing public
{ "alphanum_fraction": 0.700617284, "avg_line_length": 23.1428571429, "ext": "agda", "hexsha": "9153035cc0b55c63b3bd24f23d363d9d81dadfa4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6814e6f0baffff35efe14ef70d469343cd9b3ba0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "wrrnhttn/agda-sdg", "max_forks_repo_path": "SDG/Extra/OrderedAlgebra.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "6814e6f0baffff35efe14ef70d469343cd9b3ba0", "max_issues_repo_issues_event_max_datetime": "2019-09-18T15:47:49.000Z", "max_issues_repo_issues_event_min_datetime": "2019-07-18T20:00:23.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "wrrnhttn/agda-sdg", "max_issues_repo_path": "SDG/Extra/OrderedAlgebra.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "6814e6f0baffff35efe14ef70d469343cd9b3ba0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wrrnhttn/agda-sdg", "max_stars_repo_path": "SDG/Extra/OrderedAlgebra.agda", "max_stars_repo_stars_event_max_datetime": "2020-11-13T09:36:38.000Z", "max_stars_repo_stars_event_min_datetime": "2020-11-13T09:36:38.000Z", "num_tokens": 215, "size": 648 }
module Imports.ImportedDisplayForms where open import Agda.Builtin.Nat postulate _plus_ : Set {-# DISPLAY _+_ a b = a plus b #-}
{ "alphanum_fraction": 0.7185185185, "avg_line_length": 13.5, "ext": "agda", "hexsha": "502e4f0f48d5e5cf1c204b6d3977fa1c334a830b", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/interaction/Imports/ImportedDisplayForms.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/interaction/Imports/ImportedDisplayForms.agda", "max_line_length": 41, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/interaction/Imports/ImportedDisplayForms.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 39, "size": 135 }
module CP where open import Level open import Data.Nat open import Relation.Nullary -- open import Data.String using (String) TypeVar : Set TypeVar = ℕ infixl 10 _⨂_ infixl 10 _⅋_ data Type : Set where -- ‵_ : TypeVar → Type -- _^ : Type → Type _⨂_ : Type → Type → Type _⅋_ : Type → Type → Type -- _⨁_ : Type → Type → Type -- _&_ : Type → Type → Type -- !_ : Type → Type -- ¿_ : Type → Type -- ∃[_] : Type → Type -- ∀[_] : Type → Type 𝟙 : Type ⊥ : Type 𝟘 : Type ⊤ : Type infixl 11 _^ _^ : Type → Type (A ⨂ B) ^ = A ^ ⅋ B ^ (A ⅋ B) ^ = A ^ ⨂ B ^ 𝟙 ^ = ⊥ ⊥ ^ = 𝟙 𝟘 ^ = ⊤ ⊤ ^ = 𝟘 open import Relation.Binary.PropositionalEquality open import Relation.Nullary.Decidable open import Relation.Nullary.Product open import Data.Product open import Agda.Builtin.Bool -- _≟t_ : (A B : Type) → Dec (A ≡ B) -- (A ⨂ B) ≟t (C ⨂ D) with A ≟t C | B ≟t D -- ... | yes refl | yes refl = yes refl -- ... | yes refl | no ¬q = no λ where refl → ¬q refl -- ... | no ¬p | yes q = no λ where refl → ¬p refl -- ... | no ¬p | no ¬q = no λ where refl → ¬p refl -- (A ⨂ B) ≟t (C ⅋ D) = no (λ ()) -- (A ⨂ B) ≟t 𝟙 = no (λ ()) -- (A ⨂ B) ≟t ⊥ = no (λ ()) -- (A ⨂ B) ≟t 𝟘 = no (λ ()) -- (A ⨂ B) ≟t ⊤ = no (λ ()) -- (A ⅋ B) ≟t (C ⨂ D) = no (λ ()) -- (A ⅋ B) ≟t (C ⅋ D) with A ≟t C | B ≟t D -- ... | yes refl | yes refl = yes refl -- ... | yes refl | no ¬q = no λ where refl → ¬q refl -- ... | no ¬p | yes q = no λ where refl → ¬p refl -- ... | no ¬p | no ¬q = no λ where refl → ¬p refl -- (A ⅋ B) ≟t 𝟙 = no (λ ()) -- (A ⅋ B) ≟t ⊥ = no (λ ()) -- (A ⅋ B) ≟t 𝟘 = no (λ ()) -- (A ⅋ B) ≟t ⊤ = no (λ ()) -- 𝟙 ≟t (B ⨂ C) = no (λ ()) -- 𝟙 ≟t (B ⅋ C) = no (λ ()) -- 𝟙 ≟t 𝟙 = yes refl -- 𝟙 ≟t ⊥ = no (λ ()) -- 𝟙 ≟t 𝟘 = no (λ ()) -- 𝟙 ≟t ⊤ = no (λ ()) -- ⊥ ≟t (B ⨂ C) = no (λ ()) -- ⊥ ≟t (B ⅋ C) = no (λ ()) -- ⊥ ≟t 𝟙 = no (λ ()) -- ⊥ ≟t ⊥ = yes refl -- ⊥ ≟t 𝟘 = no (λ ()) -- ⊥ ≟t ⊤ = no (λ ()) -- 𝟘 ≟t (B ⨂ C) = no (λ ()) -- 𝟘 ≟t (B ⅋ C) = no (λ ()) -- 𝟘 ≟t 𝟙 = no (λ ()) -- 𝟘 ≟t ⊥ = no (λ ()) -- 𝟘 ≟t 𝟘 = yes refl -- 𝟘 ≟t ⊤ = no (λ ()) -- ⊤ ≟t (B ⨂ C) = no (λ ()) -- ⊤ ≟t (B ⅋ C) = no (λ ()) -- ⊤ ≟t 𝟙 = no (λ ()) -- ⊤ ≟t ⊥ = no (λ ()) -- ⊤ ≟t 𝟘 = no (λ ()) -- ⊤ ≟t ⊤ = yes refl Chan : Set Chan = ℕ data Proc⁺ : Set data Proc⁻ : Set data Proc⁺ where _↔_ : Chan → Chan → Proc⁺ ν_∶_∙_∣_ : Chan → Type → Proc⁻ → Proc⁻ → Proc⁺ -- infixl 7 _⟦⟧0 -- inherited types data Proc⁻ where -- x[y].(P|Q) _⟦_⟧_∣_ : Chan → Chan → Proc⁻ → Proc⁻ → Proc⁻ -- x(y).(P|Q) _⦅_⦆_ : Chan → Chan → Proc⁻ → Proc⁻ -- x[].0 _⟦⟧0 : Chan → Proc⁻ -- x().P _⦅⦆_ : Chan → Proc⁻ → Proc⁻ -- x.case() _case : Chan → Proc⁻ -- _[_/_] : Type → Type → TypeVar → Type -- (‵ P) [ T / X ] with P ≟ X -- ((‵ P) [ T / X ]) | yes p = T -- ((‵ P) [ T / X ]) | no ¬p = ‵ P -- (P ^) [ T / X ] = (P [ T / X ]) ^ -- (P ⨂ Q) [ T / X ] = (P [ T / X ]) ⨂ (Q [ T / X ]) -- (P ⅋ Q) [ T / X ] = (P [ T / X ]) ⅋ (Q [ T / X ]) -- (P ⨁ Q) [ T / X ] = (P [ T / X ]) ⨁ (Q [ T / X ]) -- (P & Q) [ T / X ] = (P [ T / X ]) & (Q [ T / X ]) -- (! P) [ T / X ] = ! (P [ T / X ]) -- (¿ P) [ T / X ] = ¿ (P [ T / X ]) -- ∃[ P ] [ T / zero ] = {! !} -- ∃[ P ] [ T / suc X ] = {! !} -- ∀[ P ] [ T / X ] = {! !} -- 𝟙 [ T / X ] = {! !} -- ⊥ [ T / X ] = {! !} -- 𝟘 [ T / X ] = {! !} -- ⊤ [ T / X ] = {! !} -- infixl 5 _,_∶_ -- data Session : Set where -- _,_∶_ : Session → Chan → Type → Session -- _++_ : Session → Session → Session -- ∅ : Session -- infix 4 _⊢↓_ -- infix 4 _⊢↑_ -- data _⊢↑_ : Proc⁺ → Session → Set -- data _⊢↓_ : Proc⁻ → Session → Set -- data _⊢↑_ where -- ⊢↔ : ∀ {w x A} -- --------------- -- → w ↔ x ⊢↑ ∅ , w ∶ A ^ , x ∶ A -- ⊢Cut : ∀ {P Q Γ Δ x A} -- → P ⊢↓ Γ , x ∶ A -- → Q ⊢↓ Δ , x ∶ A ^ -- --------------- -- → ν x ∶ A ∙ P ∣ Q ⊢↑ Γ ++ Δ -- data _⊢↓_ where -- ⊢⨂ : ∀ {P Q Γ Δ y x A B} -- → P ⊢↓ Γ , y ∶ A -- → Q ⊢↓ Δ , x ∶ B -- --------------- -- → x ⟦ y ⟧ P ∣ Q ⊢↓ ∅ , x ∶ 𝟙 -- ⊢⅋ : ∀ {R Θ y x A B} -- → R ⊢↓ Θ , y ∶ A , x ∶ B -- --------------- -- → x ⦅ y ⦆ R ⊢↓ Θ , x ∶ A ⅋ B -- ⊢𝟏 : ∀ {x} -- --------------- -- → x ⟦⟧0 ⊢↓ ∅ , x ∶ 𝟙 -- ⊢⊥ : ∀ {x P Γ} -- → P ⊢↓ Γ -- --------------- -- → x ⦅⦆ P ⊢↓ Γ , x ∶ ⊥ -- ⊢⊤ : ∀ {x Γ} -- --------------- -- → x case ⊢↓ Γ , x ∶ ⊤ -- data Result (P : Proc⁺) : Set where -- known : (Γ : Session) → P ⊢↑ Γ → Result P -- cntx? : ((Γ : Session) → P ⊢↑ Γ) → Result P -- type? : ((Γ : Session) → (x : Chan) → (T : Type) → P ⊢↑ Γ , x ∶ T) → Result P -- wrong : Result P -- infer : ∀ (P : Proc⁺) → Result P -- infer (w ↔ x) = type? λ Γ x A → {! ⊢↔ {w} {x} {A} !} -- infer (ν x ∶ x₁ ∙ x₂ ∣ x₃) = {! !} -- open import Data.Bool hiding (_≟_) open import Relation.Binary using (Decidable; DecSetoid) ChanSetoid : DecSetoid _ _ ChanSetoid = ≡-decSetoid where open import Data.Nat.Properties using (≡-decSetoid) module Example where open import CP.Session3 ChanSetoid Type Γ : Session Γ = (0 ∶ 𝟙) ∷ (1 ∶ 𝟘) ∷ [] Δ : Session Δ = (1 ∶ 𝟘) ∷ (0 ∶ 𝟙) ∷ [] open import Data.List.Relation.Binary.Subset.DecSetoid typeOfDecSetoid -- _∋_ : Session → Chan → Bool -- (Γ , y ∶ A) ∋ x with x ≟ y -- ... | no ¬p = Γ ∋ x -- ... | yes p = true -- (Γ ++ Δ) ∋ x = (Γ ∋ x) ∨ (Δ ∋ x) -- ∅ ∋ x = false -- _≈_ : Session → Session → Set -- Γ ≈ Δ = ∀ x → Γ ∋ x ≡ Δ ∋ x -- empty : ∀ {Γ x A} → ¬ (∅ ≈ (Γ , x ∶ A)) -- empty {Γ} {x} {A} P with x ≟ x -- ... | no ¬p = {! !} -- ... | yes p = {! !} -- lookup : (Γ : Session) (x : Chan) → Dec (∃[ Δ ] ∃[ A ] (Γ ≈ (Δ , x ∶ A))) -- lookup (Γ , y ∶ A) x = {! !} -- lookup (Γ ++ Δ) x with lookup Γ x -- ... | yes p = {! !} -- ... | no ¬p = {! !} -- lookup ∅ x = no (λ where (Γ , A , P) → {! P x !}) -- infer : ∀ (P : Proc⁺) → Dec (∃[ Γ ] (P ⊢↑ Γ)) -- infer' : ∀ (P : Proc⁻) → Dec (∃[ Γ ] (P ⊢↓ Γ)) -- check : ∀ (P : Proc⁻) (Γ : Session) → Dec (P ⊢↓ Γ) -- infer' (x ⟦ y ⟧ P ∣ Q) = {! !} -- infer' (x ⦅ y ⦆ P) with infer' P -- ... | no ¬p = no λ where ((Γ , x ∶ A ⅋ B) , ⊢⅋ P⊢Γ) → ¬p ((Γ , y ∶ A , x ∶ B) , P⊢Γ) -- ... | yes (Γ , P⊢Γ) = yes ({! !} , (⊢⅋ {! !})) -- infer' (x ⟦⟧0) = yes (∅ , x ∶ 𝟙 , ⊢𝟏) -- infer' (x ⦅⦆ P) with infer' P -- ... | no ¬p = no λ where ((Γ , x ∶ ⊥) , ⊢⊥ P⊢Γ) → ¬p (Γ , P⊢Γ) -- ... | yes (Γ , P⊢Γ) = yes ((Γ , x ∶ ⊥) , (⊢⊥ P⊢Γ)) -- infer' (x case) = yes (∅ , x ∶ ⊤ , ⊢⊤) -- infer (w ↔ x) = yes ((∅ , w ∶ {! !} , x ∶ {! !}) , ⊢↔) -- infer (ν x ∶ A ∙ P ∣ Q) with infer' P | infer' Q -- ... | no ¬p | no ¬q = {! !} -- ... | no ¬p | yes q = no (λ where (.(_ ++ _) , ⊢Cut x _) → ¬p {! x !}) -- ... | yes p | no ¬q = {! !} -- ... | yes (Γ , P⊢Γ) | yes (Δ , Q⊢Δ) = yes ({! !} , ⊢Cut {! P⊢Γ !} {! !}) -- -- = yes ({! !} , {! !}) -- check P Γ = {! !} -- infixl 4 _∶_∈_ -- data _∶_∈_ : Channel → Type → Session → Set where -- Z : ∀ {Γ x A} -- ------------------ -- → x ∶ A ∈ Γ , x ∶ A -- S_ : ∀ {Γ x y A B} -- → x ∶ A ∈ Γ -- ------------------ -- → x ∶ A ∈ Γ , x ∶ A , y ∶ B -- ¿[_] : Session → Session -- ¿[ Γ , x ∶ A ] = ¿[ Γ ] , x ∶ ¿ A -- ¿[ Γ ++ Δ ] = ¿[ Γ ] ++ ¿[ Δ ] -- ¿[ ∅ ] = ∅ -- infix 4 ⊢_ -- data ⊢_ : Session → Set where -- Ax : ∀ {A w x} -- --------------------------- -- → ⊢ ∅ , w ∶ A ^ , x ∶ A -- Cut : ∀ {Γ Δ x A} -- → (P : ⊢ Γ , x ∶ A) -- → (Q : ⊢ Δ , x ∶ A ^) -- --------------------------- -- → ⊢ Γ ++ Δ -- Times : ∀ {Γ Δ x y A B} -- → (P : ⊢ Γ , y ∶ A) -- → (Q : ⊢ Δ , x ∶ B) -- --------------------------- -- → ⊢ Γ ++ Δ , x ∶ A ⨂ B -- Par : ∀ {Θ x y A B} -- → (R : ⊢ Θ , y ∶ A , x ∶ B) -- --------------------------- -- → ⊢ Θ , x ∶ A ⅋ B -- PlusL : ∀ {Γ x A B} -- → (P : ⊢ Γ , x ∶ A) -- --------------------------- -- → ⊢ Γ , x ∶ A ⨁ B -- PlusR : ∀ {Γ x A B} -- → (P : ⊢ Γ , x ∶ B) -- --------------------------- -- → ⊢ Γ , x ∶ A ⨁ B -- With : ∀ {Δ x A B} -- → (Q : ⊢ Δ , x ∶ A) -- → (R : ⊢ Δ , x ∶ B) -- --------------------------- -- → ⊢ Δ , x ∶ A & B -- OfCourse : ∀ {Γ x y A} -- → (P : ⊢ ¿[ Γ ] , y ∶ A) -- --------------------------- -- → ⊢ ¿[ Γ ] , x ∶ ! A -- WhyNot : ∀ {Δ x y A} -- → (Q : ⊢ Δ , y ∶ A) -- --------------------------- -- → ⊢ Δ , x ∶ ¿ A -- Weaken : ∀ {Δ x A} -- → (Q : ⊢ Δ) -- --------------------------- -- → ⊢ Δ , x ∶ ¿ A -- Contract : ∀ {Δ x x' A} -- → (Q : ⊢ Δ , x ∶ ¿ A , x' ∶ ¿ A) -- --------------------------- -- → ⊢ Δ , x ∶ ¿ A -- -- Exist : ∀ {Γ x x' A} -- -- → (Q : ⊢ Δ , x ∶ ¿ A , x' ∶ ¿ A) -- -- --------------------------- -- -- → ⊢ Δ , x ∶ ¿ A
{ "alphanum_fraction": 0.3098250633, "avg_line_length": 25.6028169014, "ext": "agda", "hexsha": "00684b59fa1148528eb62bc101051f3f515a3f21", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/bidirectional", "max_forks_repo_path": "CP.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/bidirectional", "max_issues_repo_path": "CP.agda", "max_line_length": 87, "max_stars_count": 2, "max_stars_repo_head_hexsha": "0c9a6e79c23192b28ddb07315b200a94ee900ca6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/bidirectional", "max_stars_repo_path": "CP.agda", "max_stars_repo_stars_event_max_datetime": "2020-08-25T14:05:01.000Z", "max_stars_repo_stars_event_min_datetime": "2020-08-25T07:34:40.000Z", "num_tokens": 4254, "size": 9089 }
-- Currently modules are not allowed in mutual blocks. -- This might change. module ModuleInMutual where mutual module A where T : Set -> Set T A = A module B where U : Set -> Set U B = B
{ "alphanum_fraction": 0.6273584906, "avg_line_length": 14.1333333333, "ext": "agda", "hexsha": "8bc6293d5057663e4dc171f9fb8f67a43e9faa81", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/ModuleInMutual.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/ModuleInMutual.agda", "max_line_length": 54, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/ModuleInMutual.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 62, "size": 212 }
module lang-text where open import Data.List open import Data.String open import Data.Char open import Data.Char.Unsafe open import Relation.Binary.PropositionalEquality open import Relation.Nullary open import logic split : {Σ : Set} → (List Σ → Bool) → ( List Σ → Bool) → List Σ → Bool split x y [] = x [] /\ y [] split x y (h ∷ t) = (x [] /\ y (h ∷ t)) \/ split (λ t1 → x ( h ∷ t1 )) (λ t2 → y t2 ) t contains : String → String → Bool contains x y = contains1 (toList x ) ( toList y ) where contains1 : List Char → List Char → Bool contains1 [] [] = false contains1 [] ( cx ∷ ly ) = false contains1 (cx ∷ lx) [] = true contains1 (cx ∷ lx ) ( cy ∷ ly ) with cx ≟ cy ... | yes refl = contains1 lx ly ... | no n = false -- w does not contain the substring ab ex15a : Set ex15a = (w : String ) → ¬ (contains w "ab" ≡ true ) -- w does not contains substring baba ex15b : Set ex15b = (w : String ) → ¬ (contains w "baba" ≡ true ) -- w contains neither the substing ab nor ba ex15c : Set -- w is any string not in a*b* ex15c = (w : String ) → ( ¬ (contains w "ab" ≡ true ) /\ ( ¬ (contains w "ba" ≡ true ) ex15d : {!!} ex15d = {!!} ex15e : {!!} ex15e = {!!} ex15f : {!!} ex15f = {!!} ex15g : {!!} ex15g = {!!} ex15h : {!!} ex15h = {!!}
{ "alphanum_fraction": 0.5726495726, "avg_line_length": 23.4, "ext": "agda", "hexsha": "a24a5425f16afffd23b955a93f15d9dee686974c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "shinji-kono/automaton-in-agda", "max_forks_repo_path": "src/lang-text.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "shinji-kono/automaton-in-agda", "max_issues_repo_path": "src/lang-text.agda", "max_line_length": 90, "max_stars_count": null, "max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "shinji-kono/automaton-in-agda", "max_stars_repo_path": "src/lang-text.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 457, "size": 1287 }
open import Tutorials.Monday-Complete module Tutorials.Tuesday-Complete where ----------- -- Pi and Sigma types ----------- module Product where -- The open keyword opens a given module in the current namespace -- By default all of the public names of the module are opened -- The using keyword limits the imported definitions to those explicitly listed open Fin open Vec using (Vec; []; _∷_) open Simple using (¬_) variable P Q : A → Set -- Pi types: dependent function types -- For every x of type A, the predicate P x holds Π : (A : Set) → (Pred A) → Set Π A P = (x : A) → P x infix 5 _,_ -- Sigma types: dependent product types, existential types -- For this x of type A, the predicate P x holds record Σ (A : Set) (P : Pred A) : Set where -- In the type P fst, fst refers to a previously introduced field constructor _,_ field fst : A snd : P fst open Σ public -- By depending on a boolean we can use pi types to represent product types Π-× : Set → Set → Set Π-× A B = Π Bool λ where true → A false → B -- By depending on a boolean we can use sigma types to represent sum types Σ-⊎ : Set → Set → Set Σ-⊎ A B = Σ Bool λ where true → A false → B -- Use pi types to recover function types Π-→ : Set → Set → Set Π-→ A B = Π A λ where _ → B -- Use sigma types to recover product types Σ-× : Set → Set → Set Σ-× A B = Σ A λ where _ → B infix 5 _×_ _×_ : Set → Set → Set _×_ = Σ-× -- 1) If we can transform the witness and -- 2) transform the predicate as per the transformation on the witness -- ⇒) then we can transform a sigma type map : (f : A → B) → (∀ {x} → P x → Q (f x)) → (Σ A P → Σ B Q) map f g (x , y) = (f x , g y) -- The syntax keyword introduces notation that can include binders infix 4 Σ-syntax Σ-syntax : (A : Set) → (A → Set) → Set Σ-syntax = Σ syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B example₁ : Σ ℕ EvenData example₁ = 0 , zero one-is-not-even : ¬ EvenData 1 one-is-not-even () example₂ : ¬ Π ℕ EvenData example₂ f = one-is-not-even (f 1) ¬∘ : Pred A → Pred A ¬∘ P = ¬_ ∘ P -- These can be proven regardless of A ¬∃⇒∀¬ : ¬ (Σ A P) → Π A (¬∘ P) ¬∃⇒∀¬ f x px = f (x , px) ∃¬⇒¬∀ : Σ A (¬∘ P) → ¬ Π A P ∃¬⇒¬∀ (a , ¬pa) f = ¬pa (f a) ∀¬⇒¬∃ : Π A (¬∘ P) → ¬ Σ A P ∀¬⇒¬∃ f (a , pa) = f a pa -- Works in classical, not in constructive mathematics postulate ¬∀⇒∃¬ : ¬ Π A P → Σ A (¬∘ P) -- Show that ≤ is antisymmetric ≤-≡ : n ≤ m → m ≤ n → n ≡ m ≤-≡ z≤n z≤n = refl ≤-≡ (s≤s x) (s≤s y) = cong suc (≤-≡ x y) -- By using n ≤ m instead of Fin m we can mention n in the output take : Vec A m → n ≤ m → Vec A n take xs z≤n = [] take (x ∷ xs) (s≤s lte) = x ∷ take xs lte Fin-to-≤ : (i : Fin m) → to-ℕ i < m Fin-to-≤ zero = s≤s z≤n Fin-to-≤ (suc i) = s≤s (Fin-to-≤ i) -- Proof combining sigma types and equality ≤-to-Fin : n < m → Fin m ≤-to-Fin (s≤s z≤n) = zero ≤-to-Fin (s≤s (s≤s i)) = suc (≤-to-Fin (s≤s i)) Fin-≤-inv : (i : Fin m) → ≤-to-Fin (Fin-to-≤ i) ≡ i Fin-≤-inv zero = refl Fin-≤-inv (suc zero) = refl Fin-≤-inv (suc (suc i)) = cong suc (Fin-≤-inv (suc i)) ≤-Fin-inv : (lt : Σ[ n ∈ ℕ ] n < m) → (to-ℕ (≤-to-Fin (snd lt)) , Fin-to-≤ (≤-to-Fin (snd lt))) ≡ lt ≤-Fin-inv (.zero , s≤s z≤n) = refl ≤-Fin-inv (.(suc _) , s≤s (s≤s i)) = cong (map suc s≤s) (≤-Fin-inv (_ , s≤s i))
{ "alphanum_fraction": 0.5461649783, "avg_line_length": 26.5769230769, "ext": "agda", "hexsha": "b40ee744f2aa1c26f6ee9a6a6943b29dde109ecc", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2021-11-24T10:50:55.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-23T08:50:13.000Z", "max_forks_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "poncev/agda-bcam", "max_forks_repo_path": "Tutorials/Tuesday-Complete.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "poncev/agda-bcam", "max_issues_repo_path": "Tutorials/Tuesday-Complete.agda", "max_line_length": 81, "max_stars_count": 27, "max_stars_repo_head_hexsha": "ccd2a78642e93754011deffbe85e9ef5071e4cb7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "poncev/agda-bcam", "max_stars_repo_path": "Tutorials/Tuesday-Complete.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-03T22:53:51.000Z", "max_stars_repo_stars_event_min_datetime": "2021-09-23T17:59:21.000Z", "num_tokens": 1419, "size": 3455 }
{-# OPTIONS --two-level --no-sized-types --no-guardedness #-} module Issue2487.e where postulate admit : {A : Set} -> A
{ "alphanum_fraction": 0.6611570248, "avg_line_length": 24.2, "ext": "agda", "hexsha": "c85052c9281c60c5d9e70ee789ead732ca9dccdd", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue2487/e.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue2487/e.agda", "max_line_length": 61, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue2487/e.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 34, "size": 121 }
module Type.Size.Finite where import Lvl open import Functional open import Logic open import Logic.Predicate open import Numeral.Finite open import Numeral.Finite.Equiv open import Numeral.Natural open import Structure.Setoid open import Type open import Type.Size private variable ℓ ℓₑ : Lvl.Level -- A finitely enumerable type is a type where its inhabitants are finitely enumerable (alternatively: listable, able to collect to a finite list (a list containing all inhabitants is constructible)). -- There is a finite upper bound on the number of inhabitants in the sense that the inverse of a mapping from a type of finite numbers is a function (TODO: Not sure if the implementation actually states this. Maybe Invertible should be used instead of Surjective?). -- Also called: Finitely indexed. FinitelyEnumerable : (T : Type{ℓ}) → ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → Stmt FinitelyEnumerable(T) = ∃(n ↦ 𝕟(n) ≽ T) -- A finite type have a finite number of inhabitants, and this number is constructable. Finite : (T : Type{ℓ}) → ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → Stmt Finite(T) = ∃(n ↦ 𝕟(n) ≍ T) -- Cardinality of a finite type in the form of a number. Number of inhabitants of a type. -- The witness of Finite is the exact number of inhabitants of the type (the count). #_ : (T : Type{ℓ}) → ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → ⦃ fin : Finite(T) ⦄ → ℕ #_ _ ⦃ fin = [∃]-intro(n) ⦄ = n enum : ∀{T : Type{ℓ}} → ⦃ equiv : Equiv{ℓₑ}(T) ⦄ → ⦃ fin : Finite(T) ⦄ → 𝕟(# T) → T enum ⦃ fin = [∃]-intro _ ⦃ [∃]-intro f ⦄ ⦄ = f module Finite where import Data.Either as Type import Data.Either.Equiv as Either import Data.Tuple as Type import Data.Tuple.Equiv as Tuple open import Numeral.Finite.Sequence open import Structure.Function.Domain import Numeral.Natural.Oper as ℕ private variable A B : Type{ℓ} private variable ⦃ equiv-A ⦄ : Equiv{ℓₑ}(A) private variable ⦃ equiv-B ⦄ : Equiv{ℓₑ}(B) private variable ⦃ equiv-A‖B ⦄ : Equiv{ℓₑ}(A Type.‖ B) private variable ⦃ equiv-A⨯B ⦄ : Equiv{ℓₑ}(A Type.⨯ B) _+_ : ⦃ ext : Either.Extensionality ⦃ equiv-A ⦄ ⦃ equiv-B ⦄ (equiv-A‖B) ⦄ → Finite(A) ⦃ equiv-A ⦄ → Finite(B) ⦃ equiv-B ⦄ → Finite(A Type.‖ B) ⦃ equiv-A‖B ⦄ _+_ ([∃]-intro a ⦃ [∃]-intro af ⦄) ([∃]-intro b ⦃ [∃]-intro bf ⦄) = [∃]-intro (a ℕ.+ b) ⦃ [∃]-intro (interleave af bf) ⦃ interleave-bijective ⦄ ⦄ -- TODO: Below _⋅_ : ⦃ ext : Tuple.Extensionality ⦃ equiv-A ⦄ ⦃ equiv-B ⦄ (equiv-A⨯B) ⦄ → Finite(A) ⦃ equiv-A ⦄ → Finite(B) ⦃ equiv-B ⦄ → Finite(A Type.⨯ B) ⦃ equiv-A⨯B ⦄ _⋅_ ([∃]-intro a ⦃ [∃]-intro af ⦄) ([∃]-intro b ⦃ [∃]-intro bf ⦄) = [∃]-intro (a ℕ.⋅ b) ⦃ [∃]-intro (f af bf) ⦃ p ⦄ ⦄ where postulate f : (𝕟(a) → _) → (𝕟(b) → _) → 𝕟(a ℕ.⋅ b) → (_ Type.⨯ _) postulate p : Bijective(f af bf) {- _^_ : Finite(A) → Finite(B) → Finite(A ← B) _^_ ([∃]-intro a ⦃ [∃]-intro af ⦄) ([∃]-intro b ⦃ [∃]-intro bf ⦄) = [∃]-intro (a ℕ.^ b) ⦃ [∃]-intro (f af bf) ⦃ p ⦄ ⦄ where postulate f : (𝕟(a) → _) → (𝕟(b) → _) → 𝕟(a ℕ.^ b) → (_ ← _) postulate p : Bijective(f af bf) -}
{ "alphanum_fraction": 0.6235177866, "avg_line_length": 47.4375, "ext": "agda", "hexsha": "74f337aa6ba6c90afeae72e8cd34dc9d588c8daa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Type/Size/Finite.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Type/Size/Finite.agda", "max_line_length": 265, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Type/Size/Finite.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1232, "size": 3036 }
module Interior where open import Basics open import Ix open import All open import Cutting module INTERIOR {I}(C : I |> I) where open _|>_ C data Interior (P : I -> Set)(i : I) : Set where tile : P i -> Interior P i <_> : Cutting C (Interior P) i -> Interior P i ifold : forall {P Q} -> [ P -:> Q ] -> [ Cutting C Q -:> Q ] -> [ Interior P -:> Q ] ifolds : forall {P Q} -> [ P -:> Q ] -> [ Cutting C Q -:> Q ] -> [ All (Interior P) -:> All Q ] ifold pq cq i (tile p) = pq i p ifold pq cq i < c 8>< ps > = cq i (c 8>< ifolds pq cq _ ps) ifolds pq cq [] <> = <> ifolds pq cq (i ,- is) (x , xs) = ifold pq cq i x , ifolds pq cq is xs -- tile : [ P -:> Interior P ] extend : forall {P Q} -> [ P -:> Interior Q ] -> [ Interior P -:> Interior Q ] extend k = ifold k (\ i x -> < x >) -- and we have a monad, not in Set, but in I -> Set open INTERIOR NatCut {- foo : Interior (\ n -> n == 3) 12 foo = < ((3 , 9 , refl _)) 8>< (tile (refl _) , {!!} , <>) > -}
{ "alphanum_fraction": 0.48, "avg_line_length": 24.4318181818, "ext": "agda", "hexsha": "1fa158f0cff4b8da58d304d76db7e6caf496094c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pigworker/InteriorDesign", "max_forks_repo_path": "Interior.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pigworker/InteriorDesign", "max_issues_repo_path": "Interior.agda", "max_line_length": 72, "max_stars_count": 6, "max_stars_repo_head_hexsha": "454cdd18f56db0b0d1643a1fcf36951b5ece395c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pigworker/InteriorDesign", "max_stars_repo_path": "Interior.agda", "max_stars_repo_stars_event_max_datetime": "2018-07-31T02:00:13.000Z", "max_stars_repo_stars_event_min_datetime": "2018-06-18T15:25:39.000Z", "num_tokens": 368, "size": 1075 }
-- Andreas, 2021-12-22, issue #5706 reported by Trebor-Huang -- In Agda <= 2.6.2.1, Int overflow can be exploited. -- Basically just a modified version of Russell's paradox found at -- http://liamoc.net/posts/2015-09-10-girards-paradox.html. -- -- This 64bit Int overflow got us Set:Set. -- WTF : Set₀ -- WTF = Set₁₈₄₄₆₇₄₄₀₇₃₇₀₉₅₅₁₆₁₅ -- -- 18446744073709551615 = 2^64 - 1 -- Some preliminaries, just to avoid any library imports: data _≡_ {ℓ : _} {A : Set ℓ} : A → A → Set where refl : ∀ {a} → a ≡ a record ∃ {A : Set} (P : A → Set) : Set where constructor _,_ field proj₁ : A proj₂ : P proj₁ open ∃ data ⊥ : Set where -- The rest follows the linked development of Russell's paradox. -- Naive sets (tree representation), accepted with --type-in-type. data SET : Set where set : (X : Set₁₈₄₄₆₇₄₄₀₇₃₇₀₉₅₅₁₆₁₅) → (X → SET) → SET -- Elementhood _∈_ : SET → SET → Set a ∈ set X f = ∃ λ x → a ≡ f x _∉_ : SET → SET → Set a ∉ b = (a ∈ b) → ⊥ -- The set Δ of sets that do not contain themselves. Δ : SET Δ = set (∃ λ s → s ∉ s) proj₁ -- Any member of Δ does not contain itself. x∈Δ→x∉x : ∀ {X} → X ∈ Δ → X ∉ X x∈Δ→x∉x ((Y , Y∉Y) , refl) = Y∉Y -- Δ does not contain itself. Δ∉Δ : Δ ∉ Δ Δ∉Δ Δ∈Δ = x∈Δ→x∉x Δ∈Δ Δ∈Δ -- Any set that does not contain itself lives in Δ. x∉x→x∈Δ : ∀ {X} → X ∉ X → X ∈ Δ x∉x→x∈Δ {X} X∉X = (X , X∉X) , refl -- So Δ must live in Δ, which is absurd. falso : ⊥ falso = Δ∉Δ (x∉x→x∈Δ Δ∉Δ)
{ "alphanum_fraction": 0.5946317963, "avg_line_length": 22.3538461538, "ext": "agda", "hexsha": "7c5dbe7ecc603c9d74a30aa96135e0440177f4d6", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "Seanpm2001-Agda-lang/agda", "max_forks_repo_path": "test/Fail/Issue5706.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "Seanpm2001-Agda-lang/agda", "max_issues_repo_path": "test/Fail/Issue5706.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Fail/Issue5706.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 658, "size": 1453 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Construction.Elements where -- Category of Elements -- given a functor into Sets, construct the category of elements 'above' each object -- see https://ncatlab.org/nlab/show/category+of+elements open import Level open import Data.Product using (Σ; _,_; Σ-syntax; proj₁; proj₂; map) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong) open import Function hiding (_∘_) renaming (id to idf) open import Categories.Category using (Category) open import Categories.Functor hiding (id) open import Categories.Category.Instance.Sets open import Categories.Category.Instance.Cats open import Categories.Category.Construction.Functors open import Categories.NaturalTransformation.NaturalIsomorphism hiding (refl; sym; trans) open import Categories.NaturalTransformation hiding (id) import Categories.Morphism.Reasoning as MR private variable o ℓ e o′ : Level -- the first, most explicit definition is taken as 'canonical'. Elements : {C : Category o ℓ e} → Functor C (Sets o′) → Category (o ⊔ o′) (ℓ ⊔ o′) e Elements {C = C} F = record { Obj = Σ Obj F₀ ; _⇒_ = λ { (c , x) (c′ , x′) → Σ (c ⇒ c′) (λ f → F₁ f x ≡ x′) } ; _≈_ = λ p q → proj₁ p ≈ proj₁ q ; id = id , identity ; _∘_ = λ { (f , Ff≡) (g , Fg≡) → f ∘ g , trans homomorphism (trans (cong (F₁ f) Fg≡) Ff≡)} ; assoc = assoc ; sym-assoc = sym-assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identity² ; equiv = record { refl = Equiv.refl ; sym = Equiv.sym ; trans = Equiv.trans } ; ∘-resp-≈ = ∘-resp-≈ } where open Category C open Functor F -- This induces a functor. It is largely uninteresting as it is as close to 'strict' -- as things get in this setting. El : {C : Category o ℓ e} → Functor (Functors C (Sets o′)) (Cats (o ⊔ o′) (ℓ ⊔ o′) e) El {C = C} = record { F₀ = Elements ; F₁ = λ A⇒B → record { F₀ = map idf (η A⇒B _) ; F₁ = map idf λ {f} eq → trans (sym $ commute A⇒B f) (cong (η A⇒B _) eq) ; identity = Equiv.refl ; homomorphism = Equiv.refl ; F-resp-≈ = idf } ; identity = λ {P} → record { F⇒G = record { η = λ X → id , identity P ; commute = λ _ → MR.id-comm-sym C ; sym-commute = λ _ → MR.id-comm C } ; F⇐G = record { η = λ X → id , identity P ; commute = λ _ → MR.id-comm-sym C ; sym-commute = λ _ → MR.id-comm C } ; iso = λ X → record { isoˡ = identityˡ ; isoʳ = identityʳ } } ; homomorphism = λ {X₁} {Y₁} {Z₁} → record { F⇒G = record { η = λ X → id , identity Z₁ ; commute = λ _ → MR.id-comm-sym C ; sym-commute = λ _ → MR.id-comm C } ; F⇐G = record { η = λ X → id , identity Z₁ ; commute = λ _ → MR.id-comm-sym C ; sym-commute = λ _ → MR.id-comm C } ; iso = λ X → record { isoˡ = identityˡ ; isoʳ = identityʳ } } ; F-resp-≈ = λ {_} {B₁} f≈g → record { F⇒G = record { η = λ _ → id , trans (identity B₁) f≈g ; commute = λ _ → MR.id-comm-sym C ; sym-commute = λ _ → MR.id-comm C } ; F⇐G = record { η = λ _ → id , trans (identity B₁) (sym f≈g) ; commute = λ _ → MR.id-comm-sym C ; sym-commute = λ _ → MR.id-comm C } ; iso = λ X → record { isoˡ = identityˡ ; isoʳ = identityʳ } } } where open Category C open Functor open NaturalTransformation -- But there are all sorts of interesting alternate definitions -- note how this one is WAY less level polymorphic than the above! -- it looks like it contains more information... but not really either. {- Unfinished because it is super tedious and not informative! module Alternate-Pullback {C : Category (suc o) o o} (F : Functor C (Sets o)) where open import Categories.Category.Instance.PointedSets open import Categories.Category.Instance.Cats open import Categories.Diagram.Pullback (Cats (suc o) o o) open import Categories.Category.Product using (_※_; πˡ) open Category C open Functor F Pb : Pullback F Underlying Pb = record { P = Elements F ; p₁ = record { F₀ = proj₁ ; F₁ = proj₁ ; identity = Equiv.refl ; homomorphism = Equiv.refl ; F-resp-≈ = idf } ; p₂ = record { F₀ = map F₀ idf ; F₁ = map F₁ idf ; identity = λ x → identity {_} {x} ; homomorphism = λ _ → homomorphism ; F-resp-≈ = λ f≈g _ → F-resp-≈ f≈g } ; commute = record { F⇒G = record { η = λ _ → idf ; commute = λ _ → refl } ; F⇐G = record { η = λ _ → idf ; commute = λ _ → refl } ; iso = λ X → record { isoˡ = refl ; isoʳ = refl } } ; universal = λ {A} {h₁} {h₂} NI → record { F₀ = λ X → Functor.F₀ h₁ X , η (F⇐G NI) X (proj₂ $ Functor.F₀ h₂ X) ; F₁ = λ f → Functor.F₁ h₁ f , trans (sym $ commute (F⇐G NI) f) (cong (η (F⇐G NI) _) (proj₂ $ Functor.F₁ h₂ f)) ; identity = Functor.identity h₁ ; homomorphism = Functor.homomorphism h₁ ; F-resp-≈ = Functor.F-resp-≈ h₁ } ; unique = λ πˡ∘i≃h₁ map∘i≃h₂ → record { F⇒G = record { η = λ X → {!!} ; commute = {!!} } ; F⇐G = record { η = {!!} ; commute = {!!} } ; iso = λ X → record { isoˡ = {!!} ; isoʳ = {!!} } } ; p₁∘universal≈h₁ = {!!} ; p₂∘universal≈h₂ = {!!} } where open NaturalTransformation open NaturalIsomorphism -}
{ "alphanum_fraction": 0.5728881591, "avg_line_length": 35.3612903226, "ext": "agda", "hexsha": "24d82943d6f29d7c3f6285fa6355cf31802e3cef", "lang": "Agda", "max_forks_count": 64, "max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z", "max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z", "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Construction/Elements.agda", "max_issues_count": 236, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z", "max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Construction/Elements.agda", "max_line_length": 108, "max_stars_count": 279, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Construction/Elements.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z", "num_tokens": 1909, "size": 5481 }
{-# OPTIONS --without-K --rewriting #-} open import Base using (Type; Type₀; _==_; idp) module PathInductionSimplified where {-<pathinduction>-} record Coh {i} (A : Type i) : Type i where field & : A open Coh public instance J : ∀ {i j} {A : Type i} {a : A} {B : (a' : A) → a == a' → Type j} → Coh (B a idp) → Coh ({a' : A} (p : a == a') → B a' p) & (J d) idp = & d idp-Coh : ∀ {i} {A : Type i} {a : A} → Coh (a == a) & idp-Coh = idp path-induction : ∀ {i} {A : Type i} {{a : A}} → A path-induction {{a}} = a composition : ∀ {i} {A : Type i} {a : A} → Coh ({b : A} (p : a == b) {c : A} (q : b == c) → a == c) composition = path-induction postulate A : Type₀ a b c : A p : a == b q : b == c pq : a == c pq = & composition p q {-</>-}
{ "alphanum_fraction": 0.4825355757, "avg_line_length": 20.8918918919, "ext": "agda", "hexsha": "f57fd67c6140b08d6294649a7b0a07a95350f21b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guillaumebrunerie/JamesConstruction", "max_forks_repo_path": "PathInductionSimplified.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guillaumebrunerie/JamesConstruction", "max_issues_repo_path": "PathInductionSimplified.agda", "max_line_length": 68, "max_stars_count": 5, "max_stars_repo_head_hexsha": "89fbc29473d2d1ed1a45c3c0e56288cdcf77050b", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guillaumebrunerie/JamesConstruction", "max_stars_repo_path": "PathInductionSimplified.agda", "max_stars_repo_stars_event_max_datetime": "2018-11-16T22:10:16.000Z", "max_stars_repo_stars_event_min_datetime": "2016-12-07T04:34:52.000Z", "num_tokens": 319, "size": 773 }
open import Data.Bool using (Bool; false; true; _∧_) open import Data.Maybe open import Data.Nat open import Data.Nat.Properties --using (_≟_; _<?_) open import Data.Product open import Relation.Binary.PropositionalEquality --using (_≡_; refl) open import Relation.Nullary --using (Dec; yes; no) --open import Relation.Nullary.Decidable --using (from-yes) _ : Dec (0 ≡ 2) _ = no (λ()) --_ = 0 ≟ 2 --_ = 0 ≟ 3 _ : Dec (2 ≡ 2) _ = yes refl fun : ℕ → ℕ → Maybe ℕ fun x y with x <? y ... | yes _ = nothing ... | no _ = just y _ : fun 3 5 ≡ nothing _ = refl _ : fun 3 2 ≡ just 2 _ = refl --prop-:S : ∀ (x y) -- → fun x y ≡ nothing -- → x < y --prop-:S 0 0 () --prop-:S 0 (suc y) refl = s≤s z≤n --prop-:S (suc x) 0 () --prop-:S (suc x) (suc y) funsxsy≡nothing = s≤s (prop-:S x y ?) --prop : ∀ (x y) -- → fun x y ≡ nothing -- → x < y --prop x y with fun x y --... | just _ = λ() --... | nothing = λ{refl → ?} -- from-yes (x <? y)} -- ---- This fails because the pattern matching is incomplete, ---- but it shouldn't. There are no other cases --prop' : ∀ (x y) -- → fun x y ≡ nothing -- → x < y --prop' x y with fun x y | x <? y --... | nothing | yes x<y = λ{refl → x<y} --... | just _ | no _ = λ() --... | _ | _ = ? -- From: https://stackoverflow.com/a/63119870/1744344 prop : ∀ x y → fun x y ≡ nothing → x < y prop x y with x <? y ... | yes p = λ _ → p prop-old : ∀ x y → fun x y ≡ nothing → x < y prop-old x y _ with x <? y prop-old _ _ refl | yes p = p prop-old _ _ () | no _ data Comp : Set where greater equal less : Comp compare' : ℕ → ℕ → Comp compare' x y with x <ᵇ y ... | false with y <ᵇ x ... | false = equal ... | true = greater compare' x y | true = less --fun2 : Maybe (ℕ × ℕ) → Maybe ℕ --fun2 pair with pair --... | just (x , y) with x <? y --... | just (x , y) | yes _ = nothing --... | just (x , y) | no _ = just y --fun2 _ | nothing = nothing prop-comp : ∀ x y → compare' x y ≡ greater → (y <ᵇ x) ≡ true prop-comp x y _ with x <ᵇ y ... | false with y <ᵇ x ... | true = refl --same as --prop-comp x y _ | false with y <ᵇ x --prop-comp x y _ | false | true = refl prop-comp← : ∀ x y → (y <ᵇ x) ≡ true → compare' x y ≡ greater prop-comp← x y _ with x <ᵇ y prop-comp← x y _ | true with y <ᵇ x prop-comp← _ _ _ | true | true = ? -- This impossible! prop-comp← _ _ () | true | false prop-comp← x y _ | false with y <ᵇ x prop-comp← _ _ _ | false | true = refl --prop-comp← x y () | false | false prop-new← : ∀ x y → (x <ᵇ y) ≡ false → (y <ᵇ x) ≡ false → compare' x y ≡ equal --Why is this not possible? --prop-new← x y _ with x <ᵇ y | y <ᵇ x --... | false | false = refl prop-new← x y _ _ with x <ᵇ y ... | false with y <ᵇ x ... | false = refl --a : inspect 3 2 --a = ?
{ "alphanum_fraction": 0.5212840195, "avg_line_length": 24.9217391304, "ext": "agda", "hexsha": "053b4ae2c9e7ff82f06b56f6da7a9b0383c9124c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_forks_repo_licenses": [ "CC0-1.0" ], "max_forks_repo_name": "helq/old_code", "max_forks_repo_path": "proglangs-learning/Agda/general-exercises/with-abstraction-proofs.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z", "max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z", "max_issues_repo_licenses": [ "CC0-1.0" ], "max_issues_repo_name": "helq/old_code", "max_issues_repo_path": "proglangs-learning/Agda/general-exercises/with-abstraction-proofs.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d", "max_stars_repo_licenses": [ "CC0-1.0" ], "max_stars_repo_name": "helq/old_code", "max_stars_repo_path": "proglangs-learning/Agda/general-exercises/with-abstraction-proofs.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1090, "size": 2866 }
{-# OPTIONS --without-K #-} open import library.Basics hiding (Type ; Σ ; S) open import library.types.Sigma open import library.types.Bool open import Sec2preliminaries open import Sec3hedberg open import Sec4hasConstToSplit open import Sec5factorConst open import Sec6populatedness module Sec7taboos where -- Subsection 7.1 -- Lemma 7.1 hasConst-family-dec : {X : Type} → (x₁ x₂ : X) → ((x : X) → hasConst ((x₁ == x) + (x₂ == x))) → (x₁ == x₂) + ¬(x₁ == x₂) hasConst-family-dec {X} x₁ x₂ hasConst-fam = solution where f₋ : (x : X) → (x₁ == x) + (x₂ == x) → (x₁ == x) + (x₂ == x) f₋ x = fst (hasConst-fam x) E₋ : X → Type E₋ x = fix (f₋ x) E : Type E = Σ X λ x → (E₋ x) E-fst-determines-eq : (e₁ e₂ : E) → (fst e₁ == fst e₂) → e₁ == e₂ E-fst-determines-eq e₁ e₂ p = second-comp-triv (λ x → fixed-point (f₋ x) (snd (hasConst-fam x))) _ _ p r : Bool → E r true = x₁ , to-fix (f₋ x₁) (snd (hasConst-fam x₁)) (inl idp) r false = x₂ , to-fix (f₋ x₂) (snd (hasConst-fam x₂)) (inr idp) about-r : (r true == r false) ↔ (x₁ == x₂) about-r = (λ p → ap fst p) , (λ p → E-fst-determines-eq _ _ p) s : E → Bool s (_ , inl _ , _) = true s (_ , inr _ , _) = false s-section-of-r : (e : E) → r(s e) == e s-section-of-r (x , inl p , q) = E-fst-determines-eq _ _ p s-section-of-r (x , inr p , q) = E-fst-determines-eq _ _ p about-s : (e₁ e₂ : E) → (s e₁ == s e₂) ↔ (e₁ == e₂) about-s e₁ e₂ = one , two where one : (s e₁ == s e₂) → (e₁ == e₂) one p = e₁ =⟨ ! (s-section-of-r e₁) ⟩ r(s(e₁)) =⟨ ap r p ⟩ r(s(e₂)) =⟨ s-section-of-r e₂ ⟩ e₂ ∎ two : (e₁ == e₂) → (s e₁ == s e₂) two p = ap s p combine : (s (r true) == s (r false)) ↔ (x₁ == x₂) combine = (about-s _ _) ◎ about-r check-bool : (s (r true) == s (r false)) + ¬(s (r true) == s (r false)) check-bool = Bool-has-dec-eq _ _ solution : (x₁ == x₂) + ¬(x₁ == x₂) solution with check-bool solution | inl p = inl (fst combine p) solution | inr np = inr (λ p → np (snd combine p)) -- The assumption that we are discussing: all-hasConst : Type₁ all-hasConst = (X : Type) → hasConst X -- Theorem 7.2 all-hasConst→dec-eq : all-hasConst → (X : Type) → has-dec-eq X all-hasConst→dec-eq ahc X x₁ x₂ = hasConst-family-dec x₁ x₂ (λ x → ahc _) -- Theorem 7.3 module functional-subrelation (ac : all-hasConst) (X : Type) (R : X × X → Type) where all-sets : (Y : Type) → is-set Y all-sets Y = pathHasConst→isSet (λ y₁ y₂ → ac _) R₋ : (x : X) → Type R₋ x = Σ X λ y → R(x , y) k : (x : X) → (R₋ x) → (R₋ x) k x = fst (ac _) kc : (x : X) → const (k x) kc x = snd (ac _) S : X × X → Type S (x , y) = Σ (R(x , y)) λ a → (y , a) == k x (y , a) -- the relation S S₋ : (x : X) → Type S₋ x = Σ X λ y → S(x , y) -- fix kₓ is equivalent to Sₓ -- This is just Σ-assoc. We try to make it more readable by adding some (trivial) steps. fixk-S : (x : X) → (fix (k x)) ≃ S₋ x fixk-S x = (fix (k x)) ≃⟨ ide _ ⟩ (Σ (Σ X λ y → R(x , y)) λ a → a == k x a) ≃⟨ Σ-assoc ⟩ (Σ X λ y → Σ (R(x , y)) λ r → (y , r) == k x (y , r)) ≃⟨ ide _ ⟩ (S₋ x) ≃∎ -- claim (0) subrelation : (x y : X) → S(x , y) → R(x , y) subrelation x y (r , _) = r -- claim (1) prop-Sx : (x : X) → is-prop (S₋ x) prop-Sx x = equiv-preserves-level {A = fix (k x)} {B = (S₋ x)} (fixk-S x) (fixed-point _ (kc x)) -- claim (2) same-domain : (x : X) → (R₋ x) ↔ (S₋ x) same-domain x = rs , sr where rs : (R₋ x) → (S₋ x) rs a = –> (fixk-S x) (to-fix (k x) (kc x) a) sr : (S₋ x) → (R₋ x) sr (y , r , _) = y , r -- claim (3) prop-S : (x y : X) → is-prop (S (x , y)) prop-S x y = all-paths-is-prop all-paths where all-paths : (s₁ s₂ : S(x , y)) → s₁ == s₂ all-paths s₁ s₂ = ss where yss : (y , s₁) == (y , s₂) yss = prop-has-all-paths (prop-Sx x) _ _ ss : s₁ == s₂ ss = set-lemma (all-sets _) y s₁ s₂ yss -- intermediate definition -- see the caveat about the notion 'epimorphism' in the article is-split-epimorphism : {U V : Type} → (U → V) → Type is-split-epimorphism {U} {V} e = Σ (V → U) λ s → (v : V) → e (s v) == v is-epimorphism : {U V : Type} → (U → V) → Type₁ is-epimorphism {U} {V} e = (W : Type) → (f g : V → W) → ((u : U) → f (e u) == g (e u)) → (v : V) → f v == g v -- Lemma 7.4 path-trunc-epi→set : {Y : Type} → ((y₁ y₂ : Y) → is-epimorphism (∣_∣ {X = y₁ == y₂})) → is-set Y path-trunc-epi→set {Y} path-epi = reminder special-case where f : (y₁ y₂ : Y) → Trunc (y₁ == y₂) → Y f y₁ _ _ = y₁ g : (y₁ y₂ : Y) → Trunc (y₁ == y₂) → Y g _ y₂ _ = y₂ special-case : (y₁ y₂ : Y) → Trunc (y₁ == y₂) → y₁ == y₂ special-case y₁ y₂ = path-epi y₁ y₂ Y (f y₁ y₂) (g y₁ y₂) (idf _) reminder : hseparated Y → is-set Y reminder = fst set-characterizations ∘ snd (snd set-characterizations) -- Theorem 7.5 (1) all-split→all-deceq : ((X : Type) → is-split-epimorphism (∣_∣ {X = X})) → (X : Type) → has-dec-eq X all-split→all-deceq all-split = all-hasConst→dec-eq ac where ac : (X : Type) → hasConst X ac X = snd hasConst↔splitSup (fst (all-split X)) -- Theorem 7.5 (2) all-epi→all-set : ((X : Type) → is-epimorphism (∣_∣ {X = X})) → (X : Type) → is-set X all-epi→all-set all-epi X = path-trunc-epi→set (λ y₁ y₂ → all-epi (y₁ == y₂)) -- Subsection 7.2 -- Lemma 7.6, first proof pop-splitSup-1 : {X : Type} → Pop (splitSup X) pop-splitSup-1 {X} f c = to-fix f c (hasConst→splitSup (g , gc)) where g : X → X g x = f (λ _ → x) ∣ x ∣ gc : const g gc x₁ x₂ = g x₁ =⟨ idp ⟩ f (λ _ → x₁) ∣ x₁ ∣ =⟨ ap (λ k → k ∣ x₁ ∣) (c (λ _ → x₁) (λ _ → x₂)) ⟩ f (λ _ → x₂) ∣ x₁ ∣ =⟨ ap (f (λ _ → x₂)) (prop-has-all-paths (h-tr X) ∣ x₁ ∣ ∣ x₂ ∣) ⟩ f (λ _ → x₂) ∣ x₂ ∣ =⟨ idp ⟩ g x₂ ∎ -- Lemma 7.6, second proof pop-splitSup-2 : {X : Type} → Pop (splitSup X) pop-splitSup-2 {X} = snd (pop-alt₂ {splitSup X}) get-P where get-P : (P : Type) → is-prop P → splitSup X ↔ P → P get-P P pp (hstp , phst) = hstp free-hst where xp : X → P xp x = hstp (λ _ → x) zp : Trunc X → P zp = rec pp xp free-hst : splitSup X free-hst z = phst (zp z) z -- Lemma 7.6, third proof pop-splitSup-3 : {X : Type} → Pop (splitSup X) pop-splitSup-3 {X} = snd pop-alt translation where translation-aux : splitSup (splitSup X) → splitSup X translation-aux = λ hsthst z → hsthst (trunc-functorial {X = X} {Y = splitSup X} (λ x _ → x) z) z translation : Trunc (splitSup (splitSup X)) → Trunc (splitSup X) translation = trunc-functorial translation-aux -- Theorem 7.7 module thm77 where One = (X : Type) → Pop X → Trunc X Two = (X : Type) → Trunc (splitSup X) Three = (P : Type) → is-prop P → (Y : P → Type) → ((p : P) → Trunc (Y p)) → Trunc ((p : P) → Y p) Four = (X Y : Type) → (X → Y) → (Pop X → Pop Y) One→Two : One → Two One→Two poptr X = poptr (splitSup X) pop-splitSup-1 Two→One : Two → One Two→One trhst X pop = fst pop-alt pop (trhst X) One→Four : One → Four One→Four poptr X Y f = Trunc→Pop ∘ (trunc-functorial f) ∘ (poptr X) Four→One : Four → One Four→One funct X px = snd (prop→hasConst×PopX→X (h-tr _)) pz where pz : Pop (Trunc X) pz = funct X (Trunc X) ∣_∣ px -- only very slightly different to the proof in the article One→Three : One → Three One→Three poptr P pp Y = λ py → poptr _ (snd pop-alt' (λ hst p₀ → hst (contr-trick p₀ py) p₀)) where contr-trick : (p₀ : P) → ((p : P) → Trunc (Y p)) → Trunc ((p : P) → Y p) contr-trick p₀ py = rec {X = Y p₀} {P = Trunc ((p : P) → Y p)} (h-tr _) (λ y₀ → ∣ <– (thm55aux.neutral-contr-exp {P = P} {Y = Y} pp p₀) y₀ ∣) (py p₀) Three→Two : Three → Two Three→Two proj X = proj (Trunc X) (h-tr _) (λ _ → X) (idf _) -- Subsection 7.3 -- Some very simple lemmata -- If P is a proposition, so is P + ¬ P dec-is-prop : {P : Type} → (Funext {X = P} {Y = Empty}) → is-prop P → is-prop (P + ¬ P) dec-is-prop {P} fext pp = all-paths-is-prop (λ { (inl p₁) (inl p₂) → ap inl (prop-has-all-paths pp _ _) ; (inl p₁) (inr np₂) → Empty-elim {A = λ _ → inl p₁ == inr np₂} (np₂ p₁) ; (inr np₁) (inl p₂) → Empty-elim {A = λ _ → inr np₁ == inl p₂} (np₁ p₂) ; (inr np₁) (inr np₂) → ap inr (fext np₁ np₂ (λ p → prop-has-all-paths (λ ()) _ _)) }) -- Theorem 7.8 nonempty-pop→lem : ((X : Type) → Funext {X} {Empty}) → ((X : Type) → (¬(¬ X) → Pop X)) → LEM nonempty-pop→lem fext nn-pop P pp = from-fix {X = dec} (idf _) (nn-pop dec nndec (idf _) idc) where dec : Type dec = P + ¬ P idc : const (idf dec) idc = λ _ _ → prop-has-all-paths (dec-is-prop {P} (fext P) pp) _ _ nndec : ¬(¬ dec) nndec ndec = (λ np → ndec (inr np)) λ p → ndec (inl p) -- Corollary 7.9 nonempty-pop↔lem : ((X : Type) → Funext {X} {Empty}) → ((X : Type) → (¬(¬ X) → Pop X)) ↔₁₁ LEM nonempty-pop↔lem fext = nonempty-pop→lem fext , other where other : LEM → ((X : Type) → (¬(¬ X) → Pop X)) other lem X nnX = p where pnp : Pop X + ¬ (Pop X) pnp = lem (Pop X) pop-property₂ p : Pop X p = match pnp withl idf _ withr (λ np → Empty-elim {A = λ _ → Pop X} (nnX (λ x → np (pop-property₁ x))))
{ "alphanum_fraction": 0.515007398, "avg_line_length": 32.2935153584, "ext": "agda", "hexsha": "4f0d433fb92b90b8fc79621910bd7629ea286145", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nicolaikraus/HoTT-Agda", "max_forks_repo_path": "nicolai/anonymousExistence/Sec7taboos.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nicolaikraus/HoTT-Agda", "max_issues_repo_path": "nicolai/anonymousExistence/Sec7taboos.agda", "max_line_length": 120, "max_stars_count": 1, "max_stars_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nicolaikraus/HoTT-Agda", "max_stars_repo_path": "nicolai/anonymousExistence/Sec7taboos.agda", "max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z", "num_tokens": 3950, "size": 9462 }
-- Andreas, 2017-08-23, issue #2712 -- -- GHC Pragmas like LANGUAGE have to appear at the top of the Haskell file. {-# OPTIONS --no-main #-} -- Recognized as pragma option since #2714 module Issue2712 where {-# FOREIGN GHC {-# LANGUAGE TupleSections #-} #-} postulate Pair : (A B : Set) → Set pair : {A B : Set} → A → B → Pair A B {-# COMPILE GHC Pair = type (,) #-} {-# COMPILE GHC pair = \ _ _ a b -> (a,) b #-} -- Test the availability of TupleSections
{ "alphanum_fraction": 0.6046025105, "avg_line_length": 28.1176470588, "ext": "agda", "hexsha": "9ee270daf4eb48cd16cec17acb7b1a7cdcc7417d", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2712.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2712.agda", "max_line_length": 89, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2712.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 142, "size": 478 }
-- Andreas, 2016-02-02, issues 480, 1159, 1811 data Unit : Set where unit : Unit -- To make it harder for Agda, we make constructor unit ambiguous. data Ambiguous : Set where unit : Ambiguous postulate f : ∀{A : Set} → (A → A) → A test : Unit test = f \{ unit → unit } -- Extended lambda checking should be postponed until -- type A has been instantiated to Unit. -- Should succeed.
{ "alphanum_fraction": 0.6734177215, "avg_line_length": 19.75, "ext": "agda", "hexsha": "1eb9e8a05172d10013f4fa9c8b1e6bba6d11a784", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1159.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1159.agda", "max_line_length": 66, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1159.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 118, "size": 395 }
-- The sole purpose of this module is to ease compilation of everything. module Everything where import Generic import Structures import Instances import FinMap import CheckInsert import GetTypes import FreeTheorems import BFF import Bidir import LiftGet import Precond import Examples import BFFPlug
{ "alphanum_fraction": 0.8476821192, "avg_line_length": 17.7647058824, "ext": "agda", "hexsha": "5ca555074ae076e7a18a52f6457c7784a845a2d1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "jvoigtlaender/bidiragda", "max_forks_repo_path": "Everything.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "jvoigtlaender/bidiragda", "max_issues_repo_path": "Everything.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "jvoigtlaender/bidiragda", "max_stars_repo_path": "Everything.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 69, "size": 302 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Library.Relation.Binary.Equality.Decidable where open import Light.Library.Relation using (Base) open import Light.Library.Relation.Binary.Equality using (Equality) open import Light.Level using (Setω) import Light.Library.Relation.Decidable as Decidable open import Light.Package using (Package) open import Light.Variable.Levels record DecidableEquality (𝕒 : Set aℓ) (𝕓 : Set aℓ) : Setω where constructor wrap field ⦃ decidable‐package ⦄ : Package record { Decidable } field ⦃ equals ⦄ : Equality 𝕒 𝕓 DecidableSelfEquality : ∀ (𝕒 : Set aℓ) → Setω DecidableSelfEquality 𝕒 = DecidableEquality 𝕒 𝕒 open DecidableEquality ⦃ ... ⦄ public
{ "alphanum_fraction": 0.7549933422, "avg_line_length": 35.7619047619, "ext": "agda", "hexsha": "5a3a5ea0c07ffec0640b27f96cb8d5caa7946f2f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Library/Relation/Binary/Equality/Decidable.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Library/Relation/Binary/Equality/Decidable.agda", "max_line_length": 79, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Library/Relation/Binary/Equality/Decidable.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 209, "size": 751 }
{-# OPTIONS --type-in-type #-} module z where {- Generic Programming with Dependent Types Stephanie Weirich and Chris Casinghino, University of Pennsylvania, {sweirich,ccasin}@cis.upenn.edu [email protected] 2010 : https://www.seas.upenn.edu/~sweirich/papers/aritygen.pdf 2012 : https://www.cis.upenn.edu/~sweirich/papers/ssgip-journal.pdf ------------------------------------------------------------------------------ -- Abstract and Intro 2 types of genericity - datatype - operate on type structure of data - so no need to define for each new type - arity - enables functions to be applied to a variable number of args. e.g., generalize arity of map repeat :: a → [a] map :: (a → b) → [a] → [b] zipWith :: (a → b → c) → [a] → [b] → [c] zipWith3 :: (a → b → c → d) → [a] → [b] → [c] → [d] code : http://www.seas.upenn.edu/~sweirich/papers/aritygen-lncs.tar.gz tested with : Agda version 2.2.10 ------------------------------------------------------------------------------ 2 SIMPLE TYPE-GENERIC PROGRAMMING IN AGDA using Agda with flags (which implies cannot do proofs) {-# OPTIONS --type-in-type #-} –no-termination-check {-# OPTIONS --no-positivity-check #-} -} data Bool : Set where true : Bool false : Bool ¬ : Bool → Bool ¬ true = false ¬ false = true _∧_ : Bool → Bool → Bool true ∧ true = true _ ∧ _ = false if_then_else : ∀ {A : Set} → Bool → A → A → A if true then a1 else a2 = a1 if false then a1 else a2 = a2 data ℕ : Set where zero : ℕ suc : ℕ → ℕ {-# BUILTIN NATURAL ℕ #-} _+_ : ℕ → ℕ → ℕ zero + m = m suc n + m = suc (n + m) infixl 40 _+_ data List (A : Set) : Set where [] : List A _::_ : A → List A → List A infixr 5 _::_ -- https://agda.github.io/agda-stdlib/Data.Vec.Functional.html replicate : ∀ {A} → ℕ → A → List A replicate zero _ = [] replicate (suc n) x = x :: replicate n x data Vec (A : Set) : ℕ → Set where [] : Vec A zero _::_ : ∀ {n} → A → (Vec A n) → Vec A (suc n) repeat : ∀ {n} {A} → A → Vec A n repeat {zero} x = [] repeat {suc n} x = x :: repeat x ------------------------------------------------------------------------------ -- 2.1 BASIC TYPE-GENERIC PROGRAMMING eq-bool : Bool → Bool → Bool eq-bool true true = true eq-bool false false = true eq-bool _ _ = false eq-nat : ℕ → ℕ → Bool eq-nat zero zero = true eq-nat (suc n) (suc m) = eq-nat n m eq-nat _ _ = false {- Structural equality functions, like above, motivate type-generic programming: - enables defining functions that observe and use structure of types In a dependently typed language, type-generic is accomplished using universes [17, 21]. E.G., universe of natural number, boolean and product types -} -- datatype 'Type', called a "universe" data Type : Set where TNat : Type TBool : Type TProd : Type → Type → Type open import Data.Product -- define an interpretation function '⟨_⟩' -- maps elements of this universe to Agda types ⟨_⟩ : Type → Set ⟨ TNat ⟩ = ℕ ⟨ TBool ⟩ = Bool ⟨ TProd t1 t2 ⟩ = ⟨ t1 ⟩ × ⟨ t2 ⟩ geq : (t : Type) → ⟨ t ⟩ → ⟨ t ⟩ → Bool geq TNat n1 n2 = eq-nat n1 n2 geq TBool b1 b2 = eq-bool b1 b2 geq (TProd a b) (a1 , b1) (a2 , b2) = geq a a1 a2 ∧ geq b b1 b2 geqEx : Bool geqEx = geq (TProd TNat TBool) (1 , false) (1 , false) {- ------------------------------------------------------------------------------ -- 3 ARITY-GENERIC PROGRAMMING : generalize over number of arguments e.g., map-like (above), +, foldl, foldr e.g., generalize following functions into one definition : maps for vectors -} -- infix zipping application, pronounced “zap” for “zip with apply” _⊗_ : {A B : Set} {n : ℕ} → Vec (A → B) n → Vec A n → Vec B n [] ⊗ [] = [] (a :: As) ⊗ (b :: Bs) = a b :: As ⊗ Bs infixl 40 _⊗_ map0 : {m : ℕ} {A : Set} → A → Vec A m map0 = repeat map1 : {m : ℕ} {A B : Set} → (A → B) → Vec A m → Vec B m map1 f x = repeat f ⊗ x map2 : {m : ℕ} {A B C : Set} → (A → B → C) → Vec A m → Vec B m → Vec C m map2 f x1 x2 = repeat f ⊗ x1 ⊗ x2 {- Intuitively, each map defined by a application of repeat and n copies of _⊗_. nvec-map f n v1 v2 ... vn = repeat f ⊗ v1 ⊗ v2 ⊗ ... ⊗ vn -- recursion on n in accumulator style -- after repeating f : have a vector of functions -- then zap this vector across n argument vectors -- NEEDS type declaration - given below (in Arity section) nvec-map n f = g n (repeat f) where g0 a = a g (suc n) f = (λ a → g n (f ⊗ a)) -------------------------------------------------- 3.1 Typing Arity-Generic Vector Map arity-generic map : instances have different types Given arity n, generate corresponding type in the sequence Part of the difficulty is that generic function is curried in both its type and term args. This subsection starts with an initial def that takes - all of the type args in a vector, - curries term arguments next subsection, shows how to uncurry type args ℕ for arity store types in vector of Agda types, Bool :: N :: []. vector has type Vec Set 2, so can use standard vector operations (such as _⊗_) (given in OPTIONS at top of file) --type-in-type : gives Set the type Set - simplifies presentation by hiding Agda’s infinite hierarchy of Set levels - at cost of making Agda’s logic inconsistent -} -- folds arrow type constructor (→) over vector of types -- used to construct the type of 1sr arg to nvec-map arrTy : {n : ℕ} → Vec Set (suc n) → Set arrTy {0} (A :: []) = A arrTy {suc n} (A :: As) = A → arrTy As arrTyTest : Set arrTyTest = arrTy (ℕ :: ℕ :: Bool :: []) -- C-c C-n arrTyTest -- ℕ → ℕ → Bool -- Constructs result type of arity-generic map for vectors. -- Map Vec constructor onto the vector of types, then placing arrows between them. -- There are two indices: -- - n : number of types (the arity) -- - m : length of vectors to be mapped over arrTyVec : {n : ℕ} → ℕ → Vec Set (suc n) → Set arrTyVec m As = arrTy (repeat (λ A → Vec A m) ⊗ As) {- alternate type sigs of previous mapN examples: map0' : {m : ℕ} {A : Set} → arrTy (A :: []) → arrTyVec m (A :: []) map1' : {m : ℕ} {A B : Set} → arrTy (A :: B :: []) → arrTyVec m (A :: B :: []) map2' : {m : ℕ} {A B C : Set} → arrTy (A :: B :: C :: []) → arrTyVec m (A :: B :: C :: []) -} nvec-map : {m : ℕ} → (n : ℕ) → {As : Vec Set (suc n)} → arrTy As → arrTyVec m As nvec-map n f = g n (repeat f) where g : {m : ℕ} → (n : ℕ) → {As : Vec Set (suc n)} → Vec (arrTy As) m → arrTyVec m As g 0 {A :: []} a = a g (suc n) {A :: As} f = (λ a → g n (f ⊗ a)) nvec-map-Test : Vec ℕ 2 -- 11 :: 15 :: [] nvec-map-Test = nvec-map 1 { ℕ :: ℕ :: [] } (λ x → 10 + x) (1 :: 5 :: []) {- annoying : must explicitly supply types next section : enable inference -------------------------------------------------- 3.2 A Curried Vector Map Curry type args so they are supplied individually (rather than a ector). Enables inference (usually). -} -- quantify : creates curried version of a type which depends on a vector ∀⇒ : {n : ℕ} {A : Set} → (Vec A n → Set) → Set ∀⇒ {zero} B = B [] ∀⇒ {suc n} {A} B = (a : A) → ∀⇒ {n} (λ as → B (a :: as)) -- curry : creates curried version of a corresponding function term λ⇒ : {n : ℕ} {A : Set} {B : Vec A n → Set} → ((X : Vec A n) → B X) → (∀⇒ B) λ⇒ {zero} f = f [] λ⇒ {suc n} {A} f = (λ a → λ⇒ {n} (λ as → f (a :: as))) -- **** HERE -- 'a' is implicit in paper -- Victor says 'hidden' lambdas are magic. -- see: Eliminating the problems of hidden-lambda insertion -- https://www.cse.chalmers.se/~abela/MScThesisJohanssonLloyd.pdf -- uncurry (from 2010 paper) /⇒ : (n : ℕ) → {K : Set} {B : Vec K n → Set} → (∀⇒ B) → (A : Vec K n) → B A /⇒ (zero) f [] = f /⇒ (suc n) f (a :: as) = /⇒ n (f a) as -- arity-generic map nmap : {m : ℕ} → (n : ℕ) -- specifies arity → ∀⇒ (λ (As : Vec Set (suc n)) → arrTy As → arrTyVec m As) nmap {m} n = λ⇒ (λ As → nvec-map {m} n {As}) {- nmap 1 has type {m : N} → {A B : Set} → (A → B) → (Vec A m) → (Vec B m) C-c C-d (a a₁ : Set) → (a → a₁) → arrTyVec _m_193 (a :: a₁ :: []) nmap 1 (λ x → 10 + x) (10 :: 5 :: []) evaluates to 11 :: 15 :: [] C-c C-d (x : ℕ) → ℕ !=< Set when checking that the expression λ x → 10 + x has type Set nmap 2 has type {m : N} → {ABC : Set} → (A → B → C) → Vec A m → Vec B m → Vec C m C-c C-d (a a₁ a₂ : Set) → (a → a₁ → a₂) → arrTyVec _m_193 (a :: a₁ :: a₂ :: []) nmap 2 ( , ) (1 :: 2 :: 3 :: []) (4 :: 5 :: 6 :: []) evaluates to (1 , 4) :: (2 , 5) :: (3 , 6) :: [] now : do not need to explicitly specify type of data in vectors -}
{ "alphanum_fraction": 0.5513145756, "avg_line_length": 28.5263157895, "ext": "agda", "hexsha": "37606314b2a1dc7c8b78d3f4c7cd65e883934c5c", "lang": "Agda", "max_forks_count": 8, "max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z", "max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_forks_repo_path": "agda/paper/2012-Stephanie_Weirich_and_Casinghino-Generic_Programming_with_Dependent_Types/z.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_issues_repo_path": "agda/paper/2012-Stephanie_Weirich_and_Casinghino-Generic_Programming_with_Dependent_Types/z.agda", "max_line_length": 99, "max_stars_count": 36, "max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc", "max_stars_repo_path": "agda/paper/2012-Stephanie_Weirich_and_Casinghino-Generic_Programming_with_Dependent_Types/z.agda", "max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z", "num_tokens": 2989, "size": 8672 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Implementation.Standard.Data.Empty where open import Light.Library.Data.Empty using (Library ; Dependencies) instance dependencies : Dependencies dependencies = record {} instance library : Library dependencies library = record { Implementation } where module Implementation where open import Data.Empty using () renaming (⊥ to Empty ; ⊥-elim to eliminate) public
{ "alphanum_fraction": 0.7422680412, "avg_line_length": 32.3333333333, "ext": "agda", "hexsha": "a94651b1475507abb687783216643c3f0997ad82", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "bindings/stdlib/Light/Implementation/Standard/Data/Empty.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "bindings/stdlib/Light/Implementation/Standard/Data/Empty.agda", "max_line_length": 94, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "bindings/stdlib/Light/Implementation/Standard/Data/Empty.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 92, "size": 485 }
module Tactic.Nat.Induction where open import Prelude nat-induction : (P : Nat → Set) → P 0 → (∀ n → P n → P (suc n)) → ∀ n → P n nat-induction P base step zero = base nat-induction P base step (suc n) = step n (nat-induction P base step n)
{ "alphanum_fraction": 0.6437246964, "avg_line_length": 27.4444444444, "ext": "agda", "hexsha": "9c5bddc2227b1c58ebe3029d8746dc1caa5a2622", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Tactic/Nat/Induction.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Tactic/Nat/Induction.agda", "max_line_length": 75, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Tactic/Nat/Induction.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 86, "size": 247 }
open import Agda.Primitive using (lzero; lsuc; _⊔_ ;Level) open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; setoid; cong; trans) import Function.Equality open import Relation.Binary using (Setoid) import Categories.Category import Categories.Functor import Categories.Category.Instance.Setoids import Categories.Monad.Relative import Categories.Category.Equivalence import Categories.Category.Cocartesian import Categories.Category.Construction.Functors import Categories.NaturalTransformation.Equivalence import Relation.Binary.Core import SecondOrder.Arity import SecondOrder.Signature import SecondOrder.Metavariable import SecondOrder.VRenaming import SecondOrder.MRenaming import SecondOrder.Term import SecondOrder.IndexedCategory import SecondOrder.RelativeKleisli import SecondOrder.Substitution module SecondOrder.VRelativeMonad {ℓ} {𝔸 : SecondOrder.Arity.Arity} (Σ : SecondOrder.Signature.Signature ℓ 𝔸) where open SecondOrder.Signature.Signature Σ open SecondOrder.Metavariable Σ open SecondOrder.Term Σ open SecondOrder.VRenaming Σ open SecondOrder.MRenaming Σ open SecondOrder.Substitution Σ -- TERMS FORM A RELATIVE MONAD -- (FOR A FUNCTOR WHOSE DOMAIN IS THE -- CATEGORY OF VARIABLE CONTEXTS AND RENAMINGS) module _ where open Categories.Category open Categories.Functor using (Functor) open Categories.Category.Instance.Setoids open import SecondOrder.IndexedCategory -- The embedding of contexts into setoids indexed by sorts -- (seen as a "variable" functor) Jⱽ : Functor VContexts (IndexedCategory sort (Setoids ℓ ℓ)) Jⱽ = slots -- The relative monad over Jⱽ module _ {Θ : MContext} where open Categories.Category open Categories.Functor using (Functor) open Categories.Category.Instance.Setoids open Categories.Category.Category (Setoids ℓ ℓ) open Categories.Monad.Relative open Function.Equality using () renaming (setoid to Π-setoid) open Categories.Category.Equivalence using (StrongEquivalence) open import SecondOrder.IndexedCategory open import SecondOrder.RelativeKleisli open Function.Equality using (_⟨$⟩_) renaming (cong to func-cong) open import Relation.Binary.Reasoning.MultiSetoid to-σ : ∀ {Γ Δ} → (IndexedCategory sort (Setoids ℓ ℓ) Category.⇒ Functor.₀ Jⱽ Γ) (λ A → Term-setoid Θ Δ A) → (Θ ⊕ Γ ⇒ˢ Δ) to-σ ℱ {A} x = ℱ A ⟨$⟩ x VMonad : Monad Jⱽ VMonad = record { F₀ = λ Γ A → Term-setoid Θ Γ A ; unit = λ A → record { _⟨$⟩_ = λ x → tm-var x ; cong = λ ξ → ≈-≡ (σ-resp-≡ {σ = tm-var} ξ) } ; extend = λ ℱ A → record { _⟨$⟩_ = [ to-σ ℱ ]ˢ_ ; cong = λ ξ → []ˢ-resp-≈ (λ {B} z → ℱ B ⟨$⟩ z) ξ } ; identityʳ = λ {Γ} {Δ} {ℱ} A {x} {y} ξ → func-cong (ℱ A) ξ ; identityˡ = λ A ξ → ≈-trans [idˢ] ξ ; assoc = λ {Γ} {Δ} {Ξ} {k} {l} A {x} {y} ξ → begin⟨ Term-setoid Θ _ _ ⟩ ( ([ (λ {B} r → [ (λ {A = B} z → l B ⟨$⟩ z) ]ˢ (k B ⟨$⟩ r)) ]ˢ x) ) ≈⟨ []ˢ-resp-≈ ((λ {B} r → [ (λ {A = B} z → l B ⟨$⟩ z) ]ˢ (k B ⟨$⟩ r))) ξ ⟩ ([ (λ {B} r → [ (λ {A = A₁} z → l A₁ ⟨$⟩ z) ]ˢ (k B ⟨$⟩ r)) ]ˢ y) ≈⟨ [∘ˢ] y ⟩ (([ (λ {B} z → l B ⟨$⟩ z) ]ˢ ([ (λ {B} z → k B ⟨$⟩ z) ]ˢ y))) ∎ ; extend-≈ = λ {Γ} {Δ} {k} {h} ξˢ A {x} {y} ξ → begin⟨ Term-setoid Θ _ _ ⟩ ([ (λ {B} z → k B ⟨$⟩ z) ]ˢ x) ≈⟨ []ˢ-resp-≈ ((λ {B} z → k B ⟨$⟩ z)) ξ ⟩ ([ (λ {B} z → k B ⟨$⟩ z) ]ˢ y) ≈⟨ []ˢ-resp-≈ˢ y (λ {B} z → ξˢ B refl) ⟩ ([ (λ {B} z → h B ⟨$⟩ z) ]ˢ y) ∎ }
{ "alphanum_fraction": 0.5707715892, "avg_line_length": 39.9387755102, "ext": "agda", "hexsha": "b7a97f86e5bf28cef91e761154d2e5e88765cd82", "lang": "Agda", "max_forks_count": 6, "max_forks_repo_forks_event_max_datetime": "2021-05-24T02:51:43.000Z", "max_forks_repo_forks_event_min_datetime": "2021-02-16T13:43:07.000Z", "max_forks_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cilinder/formaltt", "max_forks_repo_path": "src/SecondOrder/VRelativeMonad.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_issues_repo_issues_event_max_datetime": "2021-05-14T16:15:17.000Z", "max_issues_repo_issues_event_min_datetime": "2021-04-30T14:18:25.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cilinder/formaltt", "max_issues_repo_path": "src/SecondOrder/VRelativeMonad.agda", "max_line_length": 171, "max_stars_count": 21, "max_stars_repo_head_hexsha": "0a9d25e6e3965913d9b49a47c88cdfb94b55ffeb", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cilinder/formaltt", "max_stars_repo_path": "src/SecondOrder/VRelativeMonad.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-19T15:50:08.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-16T14:07:06.000Z", "num_tokens": 1291, "size": 3914 }
------------------------------------------------------------------------ -- The figure of eight ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} -- The module is parametrised by a notion of equality. The higher -- constructor of the HIT defining the circle uses path equality, but -- the supplied notion of equality is used for many other things. import Equality.Path as P module Figure-of-eight {e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where open P.Derived-definitions-and-properties eq hiding (elim) import Equality.Path.Univalence as EPU open import Prelude open import Bijection equality-with-J using (_↔_) import Bijection P.equality-with-J as PB open import Circle eq as Circle using (𝕊¹; base; loopᴾ) open import Equality.Decision-procedures equality-with-J open import Equality.Path.Isomorphisms eq import Equality.Tactic P.equality-with-J as PT open import Equivalence equality-with-J as Eq using (_≃_) import Equivalence P.equality-with-J as PE open import Erased.Cubical eq open import Function-universe equality-with-J hiding (_∘_) open import Pushout eq as Pushout using (Wedge; inl; inr; glueᴾ) import Univalence-axiom P.equality-with-J as PU private variable a p : Level A : Type a P : A → Type p e r x : A ------------------------------------------------------------------------ -- The type -- The figure of eight -- (https://topospaces.subwiki.org/wiki/Wedge_of_two_circles). data ∞ : Type where base : ∞ loop₁ᴾ loop₂ᴾ : base P.≡ base -- The higher constructors. loop₁ : base ≡ base loop₁ = _↔_.from ≡↔≡ loop₁ᴾ loop₂ : base ≡ base loop₂ = _↔_.from ≡↔≡ loop₂ᴾ ------------------------------------------------------------------------ -- Eliminators -- An eliminator, expressed using paths. record Elimᴾ (P : ∞ → Type p) : Type p where no-eta-equality field baseʳ : P base loop₁ʳ : P.[ (λ i → P (loop₁ᴾ i)) ] baseʳ ≡ baseʳ loop₂ʳ : P.[ (λ i → P (loop₂ᴾ i)) ] baseʳ ≡ baseʳ open Elimᴾ public elimᴾ : Elimᴾ P → (x : ∞) → P x elimᴾ {P = P} e = helper where module E = Elimᴾ e helper : (x : ∞) → P x helper base = E.baseʳ helper (loop₁ᴾ i) = E.loop₁ʳ i helper (loop₂ᴾ i) = E.loop₂ʳ i -- A non-dependent eliminator, expressed using paths. record Recᴾ (A : Type a) : Type a where no-eta-equality field baseʳ : A loop₁ʳ loop₂ʳ : baseʳ P.≡ baseʳ open Recᴾ public recᴾ : Recᴾ A → ∞ → A recᴾ r = elimᴾ λ where .baseʳ → R.baseʳ .loop₁ʳ → R.loop₁ʳ .loop₂ʳ → R.loop₂ʳ where module R = Recᴾ r -- An eliminator. record Elim (P : ∞ → Type p) : Type p where no-eta-equality field baseʳ : P base loop₁ʳ : subst P loop₁ baseʳ ≡ baseʳ loop₂ʳ : subst P loop₂ baseʳ ≡ baseʳ open Elim public elim : Elim P → (x : ∞) → P x elim e = elimᴾ λ where .baseʳ → E.baseʳ .loop₁ʳ → subst≡→[]≡ E.loop₁ʳ .loop₂ʳ → subst≡→[]≡ E.loop₂ʳ where module E = Elim e -- Two "computation" rules. elim-loop₁ : dcong (elim e) loop₁ ≡ e .Elim.loop₁ʳ elim-loop₁ = dcong-subst≡→[]≡ (refl _) elim-loop₂ : dcong (elim e) loop₂ ≡ e .Elim.loop₂ʳ elim-loop₂ = dcong-subst≡→[]≡ (refl _) -- A non-dependent eliminator. record Rec (A : Type a) : Type a where no-eta-equality field baseʳ : A loop₁ʳ loop₂ʳ : baseʳ ≡ baseʳ open Rec public rec : Rec A → ∞ → A rec r = recᴾ λ where .baseʳ → R.baseʳ .loop₁ʳ → _↔_.to ≡↔≡ R.loop₁ʳ .loop₂ʳ → _↔_.to ≡↔≡ R.loop₂ʳ where module R = Rec r -- Two "computation" rules. rec-loop₁ : cong (rec r) loop₁ ≡ r .Rec.loop₁ʳ rec-loop₁ = cong-≡↔≡ (refl _) rec-loop₂ : cong (rec r) loop₂ ≡ r .Rec.loop₂ʳ rec-loop₂ = cong-≡↔≡ (refl _) ------------------------------------------------------------------------ -- Some negative results -- The two higher constructors are not equal. -- -- The proof is based on the one from the HoTT book that shows that -- the circle's higher constructor is not equal to reflexivity. loop₁≢loop₂ : loop₁ ≢ loop₂ loop₁≢loop₂ = Stable-¬ [ loop₁ ≡ loop₂ ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ (inverse ≡↔≡)) ⟩ loop₁ᴾ ≡ loop₂ᴾ ↔⟨ ≡↔≡ ⟩ loop₁ᴾ P.≡ loop₂ᴾ ↝⟨ PU.¬-Type-set EPU.univ ∘ Type-set ⟩□ ⊥ □ ] where module _ (hyp : loop₁ᴾ P.≡ loop₂ᴾ) where refl≡ : (A : Type) (A≡A : A P.≡ A) → P.refl P.≡ A≡A refl≡ A A≡A = P.refl P.≡⟨⟩ P.cong F loop₁ᴾ P.≡⟨ P.cong (P.cong F) hyp ⟩ P.cong F loop₂ᴾ P.≡⟨⟩ A≡A P.∎ where F : ∞ → Type F base = A F (loop₁ᴾ i) = P.refl i F (loop₂ᴾ i) = A≡A i Type-set : P.Is-set Type Type-set {x = A} {y = B} = P.elim¹ (λ p → ∀ q → p P.≡ q) (refl≡ A) -- The two higher constructors provide a counterexample to -- commutativity of transitivity. -- -- This proof is a minor variant of a proof due to Andrea Vezzosi. trans-not-commutative : trans loop₁ loop₂ ≢ trans loop₂ loop₁ trans-not-commutative = Stable-¬ [ trans loop₁ loop₂ ≡ trans loop₂ loop₁ ↝⟨ (λ hyp → trans (sym (_↔_.from-to ≡↔≡ (sym trans≡trans))) (trans (cong (_↔_.to ≡↔≡) hyp) (_↔_.from-to ≡↔≡ (sym trans≡trans)))) ⟩ P.trans loop₁ᴾ loop₂ᴾ ≡ P.trans loop₂ᴾ loop₁ᴾ ↝⟨ cong (P.subst F) ⟩ P.subst F (P.trans loop₁ᴾ loop₂ᴾ) ≡ P.subst F (P.trans loop₂ᴾ loop₁ᴾ) ↝⟨ (λ hyp → trans (sym (_↔_.from ≡↔≡ lemma₁₂)) (trans hyp (_↔_.from ≡↔≡ lemma₂₁))) ⟩ PE._≃_.to eq₂ ∘ PE._≃_.to eq₁ ≡ PE._≃_.to eq₁ ∘ PE._≃_.to eq₂ ↝⟨ cong (_$ fzero) ⟩ fzero ≡ fsuc fzero ↝⟨ ⊎.inj₁≢inj₂ ⟩□ ⊥ □ ] where eq₁ : Fin 3 PE.≃ Fin 3 eq₁ = PE.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = λ where fzero → fsuc (fsuc fzero) (fsuc fzero) → fsuc fzero (fsuc (fsuc fzero)) → fzero ; from = λ where fzero → fsuc (fsuc fzero) (fsuc fzero) → fsuc fzero (fsuc (fsuc fzero)) → fzero } ; right-inverse-of = λ where fzero → P.refl (fsuc fzero) → P.refl (fsuc (fsuc fzero)) → P.refl } ; left-inverse-of = λ where fzero → P.refl (fsuc fzero) → P.refl (fsuc (fsuc fzero)) → P.refl }) eq₂ : Fin 3 PE.≃ Fin 3 eq₂ = PE.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = λ where fzero → fsuc fzero (fsuc fzero) → fsuc (fsuc fzero) (fsuc (fsuc fzero)) → fzero ; from = λ where fzero → fsuc (fsuc fzero) (fsuc fzero) → fzero (fsuc (fsuc fzero)) → fsuc fzero } ; right-inverse-of = λ where fzero → P.refl (fsuc fzero) → P.refl (fsuc (fsuc fzero)) → P.refl } ; left-inverse-of = λ where fzero → P.refl (fsuc fzero) → P.refl (fsuc (fsuc fzero)) → P.refl }) @0 F : ∞ → Type F base = Fin 3 F (loop₁ᴾ i) = EPU.≃⇒≡ eq₁ i F (loop₂ᴾ i) = EPU.≃⇒≡ eq₂ i lemma₁₂ : P.subst F (P.trans loop₁ᴾ loop₂ᴾ) P.≡ PE._≃_.to eq₂ ∘ PE._≃_.to eq₁ lemma₁₂ _ i@fzero = PE._≃_.to eq₂ (PE._≃_.to eq₁ i) lemma₁₂ _ i@(fsuc fzero) = PE._≃_.to eq₂ (PE._≃_.to eq₁ i) lemma₁₂ _ i@(fsuc (fsuc fzero)) = PE._≃_.to eq₂ (PE._≃_.to eq₁ i) lemma₂₁ : P.subst F (P.trans loop₂ᴾ loop₁ᴾ) P.≡ PE._≃_.to eq₁ ∘ PE._≃_.to eq₂ lemma₂₁ _ i@fzero = PE._≃_.to eq₁ (PE._≃_.to eq₂ i) lemma₂₁ _ i@(fsuc fzero) = PE._≃_.to eq₁ (PE._≃_.to eq₂ i) lemma₂₁ _ i@(fsuc (fsuc fzero)) = PE._≃_.to eq₁ (PE._≃_.to eq₂ i) private -- A lemma used below. trans-sometimes-commutative′ : {p q : x ≡ x} (f : (x : ∞) → x ≡ x) → f x ≡ p → trans p q ≡ trans q p trans-sometimes-commutative′ {x = x} {p = p} {q = q} f f-x≡p = trans p q ≡⟨ cong (flip trans _) $ sym f-x≡p ⟩ trans (f x) q ≡⟨ trans-sometimes-commutative f ⟩ trans q (f x) ≡⟨ cong (trans q) f-x≡p ⟩∎ trans q p ∎ -- There is no function of type (x : ∞) → x ≡ x which returns loop₁ -- when applied to base. ¬-base↦loop₁ : ¬ ∃ λ (f : (x : ∞) → x ≡ x) → f base ≡ loop₁ ¬-base↦loop₁ (f , f-base≡loop₁) = trans-not-commutative ( trans loop₁ loop₂ ≡⟨ trans-sometimes-commutative′ f f-base≡loop₁ ⟩∎ trans loop₂ loop₁ ∎) -- There is no function of type (x : ∞) → x ≡ x which returns loop₂ -- when applied to base. ¬-base↦loop₂ : ¬ ∃ λ (f : (x : ∞) → x ≡ x) → f base ≡ loop₂ ¬-base↦loop₂ (f , f-base≡loop₂) = trans-not-commutative ( trans loop₁ loop₂ ≡⟨ sym $ trans-sometimes-commutative′ f f-base≡loop₂ ⟩∎ trans loop₂ loop₁ ∎) -- There is no function of type (x : ∞) → x ≡ x which returns -- trans loop₁ loop₂ when applied to base. ¬-base↦trans-loop₁-loop₂ : ¬ ∃ λ (f : (x : ∞) → x ≡ x) → f base ≡ trans loop₁ loop₂ ¬-base↦trans-loop₁-loop₂ (f , f-base≡trans-loop₁-loop₂) = trans-not-commutative ( trans loop₁ loop₂ ≡⟨ sym $ trans-reflˡ _ ⟩ trans (refl _) (trans loop₁ loop₂) ≡⟨ cong (flip trans _) $ sym $ trans-symˡ _ ⟩ trans (trans (sym loop₁) loop₁) (trans loop₁ loop₂) ≡⟨ trans-assoc _ _ _ ⟩ trans (sym loop₁) (trans loop₁ (trans loop₁ loop₂)) ≡⟨ cong (trans (sym loop₁)) $ sym $ trans-sometimes-commutative′ f f-base≡trans-loop₁-loop₂ ⟩ trans (sym loop₁) (trans (trans loop₁ loop₂) loop₁) ≡⟨ cong (trans (sym loop₁)) $ trans-assoc _ _ _ ⟩ trans (sym loop₁) (trans loop₁ (trans loop₂ loop₁)) ≡⟨ sym $ trans-assoc _ _ _ ⟩ trans (trans (sym loop₁) loop₁) (trans loop₂ loop₁) ≡⟨ cong (flip trans _) $ trans-symˡ _ ⟩ trans (refl _) (trans loop₂ loop₁) ≡⟨ trans-reflˡ _ ⟩∎ trans loop₂ loop₁ ∎) -- There is no function of type (x : ∞) → x ≡ x which returns -- trans loop₂ loop₁ when applied to base. ¬-base↦trans-loop₂-loop₁ : ¬ ∃ λ (f : (x : ∞) → x ≡ x) → f base ≡ trans loop₂ loop₁ ¬-base↦trans-loop₂-loop₁ (f , f-base≡trans-loop₂-loop₁) = trans-not-commutative ( trans loop₁ loop₂ ≡⟨ sym $ trans-reflˡ _ ⟩ trans (refl _) (trans loop₁ loop₂) ≡⟨ cong (flip trans _) $ sym $ trans-symˡ _ ⟩ trans (trans (sym loop₂) loop₂) (trans loop₁ loop₂) ≡⟨ trans-assoc _ _ _ ⟩ trans (sym loop₂) (trans loop₂ (trans loop₁ loop₂)) ≡⟨ cong (trans (sym loop₂)) $ sym $ trans-assoc _ _ _ ⟩ trans (sym loop₂) (trans (trans loop₂ loop₁) loop₂) ≡⟨ cong (trans (sym loop₂)) $ trans-sometimes-commutative′ f f-base≡trans-loop₂-loop₁ ⟩ trans (sym loop₂) (trans loop₂ (trans loop₂ loop₁)) ≡⟨ sym $ trans-assoc _ _ _ ⟩ trans (trans (sym loop₂) loop₂) (trans loop₂ loop₁) ≡⟨ cong (flip trans _) $ trans-symˡ _ ⟩ trans (refl _) (trans loop₂ loop₁) ≡⟨ trans-reflˡ _ ⟩∎ trans loop₂ loop₁ ∎) -- TODO: Can one prove that functions of type (x : ∞) → x ≡ x must map -- base to refl base? ------------------------------------------------------------------------ -- A positive result -- The figure of eight can be expressed as a wedge of two circles. -- -- This result was suggested to me by Anders Mörtberg. ∞≃Wedge-𝕊¹-𝕊¹ : ∞ ≃ Wedge (𝕊¹ , base) (𝕊¹ , base) ∞≃Wedge-𝕊¹-𝕊¹ = Eq.↔⇒≃ (record { surjection = record { logical-equivalence = record { to = to ; from = from } ; right-inverse-of = to∘from } ; left-inverse-of = _↔_.from ≡↔≡ ∘ from∘to }) where lemma : inl base P.≡ inl base lemma = inl base P.≡⟨ glueᴾ tt ⟩ inr base P.≡⟨ P.sym (P.cong inr loopᴾ) ⟩ inr base P.≡⟨ P.sym (glueᴾ tt) ⟩∎ inl base ∎ Glue = PT.Lift (glueᴾ tt) Loop = PT.Lift (P.cong inr loopᴾ) Loop₂ = PT.Lift loop₂ᴾ Lemma = PT.Trans Glue $ PT.Trans (PT.Sym Loop) $ PT.Sym Glue to : ∞ → Wedge (𝕊¹ , base) (𝕊¹ , base) to base = inl base to (loop₁ᴾ i) = P.cong inl loopᴾ i to (loop₂ᴾ i) = P.sym lemma i from : Wedge (𝕊¹ , base) (𝕊¹ , base) → ∞ from = Pushout.recᴾ (Circle.recᴾ base loop₁ᴾ) (Circle.recᴾ base loop₂ᴾ) (λ _ → P.refl) to∘from : ∀ x → to (from x) ≡ x to∘from = _↔_.from ≡↔≡ ∘ Pushout.elimᴾ _ (Circle.elimᴾ _ P.refl (λ _ → P.refl)) (Circle.elimᴾ _ (glueᴾ _) (PB._↔_.from (P.heterogeneous↔homogeneous _) (P.transport (λ i → P.sym lemma i P.≡ inr (loopᴾ i)) P.0̲ (glueᴾ tt) P.≡⟨ P.transport-≡ (glueᴾ tt) ⟩ P.trans lemma (P.trans (glueᴾ tt) (P.cong inr loopᴾ)) P.≡⟨ PT.prove (PT.Trans Lemma (PT.Trans Glue Loop)) (PT.Trans Glue (PT.Trans (PT.Sym Loop) (PT.Trans (PT.Trans (PT.Sym Glue) Glue) Loop))) P.refl ⟩ P.trans (glueᴾ tt) (P.trans (P.sym (P.cong inr loopᴾ)) (P.trans (P.trans (P.sym (glueᴾ tt)) (glueᴾ tt)) (P.cong inr loopᴾ))) P.≡⟨ P.cong (λ eq → P.trans (glueᴾ tt) (P.trans (P.sym (P.cong inr loopᴾ)) (P.trans eq (P.cong inr loopᴾ)))) $ P.trans-symˡ _ ⟩ P.trans (glueᴾ tt) (P.trans (P.sym (P.cong inr loopᴾ)) (P.trans P.refl (P.cong inr loopᴾ))) P.≡⟨ P.cong (λ eq → P.trans (glueᴾ tt) (P.trans (P.sym (P.cong inr loopᴾ)) eq)) $ P.trans-reflˡ _ ⟩ P.trans (glueᴾ tt) (P.trans (P.sym (P.cong inr loopᴾ)) (P.cong inr loopᴾ)) P.≡⟨ P.cong (P.trans (glueᴾ tt)) $ P.trans-symˡ _ ⟩ P.trans (glueᴾ tt) P.refl P.≡⟨ P.trans-reflʳ _ ⟩∎ glueᴾ tt ∎))) (λ _ → PB._↔_.from (P.heterogeneous↔homogeneous _) ( P.subst (inl base P.≡_) (glueᴾ tt) P.refl P.≡⟨ P.sym $ P.trans-subst {x≡y = P.refl} ⟩ P.trans P.refl (glueᴾ tt) P.≡⟨ P.trans-reflˡ _ ⟩∎ glueᴾ tt ∎)) from∘to : ∀ x → from (to x) P.≡ x from∘to base = P.refl from∘to (loop₁ᴾ i) = P.refl from∘to (loop₂ᴾ i) = lemma′ i where lemma′ : P.[ (λ i → P.cong from (P.sym lemma) i P.≡ loop₂ᴾ i) ] P.refl ≡ P.refl lemma′ = PB._↔_.from (P.heterogeneous↔homogeneous _) ( P.transport (λ i → P.cong from (P.sym lemma) i P.≡ loop₂ᴾ i) P.0̲ P.refl P.≡⟨ P.transport-≡ P.refl ⟩ P.trans (P.cong from lemma) (P.trans P.refl loop₂ᴾ) P.≡⟨ PT.prove (PT.Trans (PT.Cong from Lemma) (PT.Trans PT.Refl Loop₂)) (PT.Trans (PT.Trans (PT.Cong from Glue) (PT.Trans (PT.Cong from (PT.Sym Loop)) (PT.Cong from (PT.Sym Glue)))) Loop₂) P.refl ⟩ P.trans (P.trans (P.cong from (glueᴾ tt)) (P.trans (P.cong from (P.sym (P.cong inr loopᴾ))) (P.cong from (P.sym (glueᴾ tt))))) loop₂ᴾ P.≡⟨⟩ P.trans (P.trans P.refl (P.trans (P.sym loop₂ᴾ) P.refl)) loop₂ᴾ P.≡⟨ P.cong (flip P.trans loop₂ᴾ) $ P.trans-reflˡ (P.trans (P.sym loop₂ᴾ) P.refl) ⟩ P.trans (P.trans (P.sym loop₂ᴾ) P.refl) loop₂ᴾ P.≡⟨ P.cong (flip P.trans loop₂ᴾ) $ P.trans-reflʳ (P.sym loop₂ᴾ) ⟩ P.trans (P.sym loop₂ᴾ) loop₂ᴾ P.≡⟨ P.trans-symˡ _ ⟩∎ P.refl ∎)
{ "alphanum_fraction": 0.4757775465, "avg_line_length": 36.9615384615, "ext": "agda", "hexsha": "d55cf24ddfe56fe74d7cfe4785e60e590d87dae9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Figure-of-eight.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Figure-of-eight.agda", "max_line_length": 142, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Figure-of-eight.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 6078, "size": 17298 }
open import Prelude module Implicits.Resolution.Infinite.Algorithm.Soundness where open import Data.Vec hiding (_∈_) open import Data.List hiding (map) open import Data.List.Any hiding (tail) open Membership-≡ open import Data.Bool open import Data.Unit.Base open import Data.Maybe as Maybe hiding (All) open import Coinduction open import Data.Fin.Substitution open import Implicits.Syntax open import Implicits.Substitutions open import Implicits.Substitutions.MetaType open import Implicits.Substitutions.Lemmas open import Implicits.Syntax.Type.Unification open import Implicits.Syntax.Type.Unification.Lemmas renaming (sound to mgu-sound) open import Implicits.Resolution.Infinite.Resolution open import Implicits.Resolution.Infinite.Algorithm open import Implicits.Resolution.Termination open Inductive open import Induction.WellFounded open import Category.Functor open import Category.Monad.Partiality as P open import Category.Monad.Partiality.All using (All; module Alternative) open Alternative renaming (sound to AllP-sound) private module MaybeFunctor {f} = RawFunctor (functor {f}) open import Extensions.Bool as B hiding (All) open import Relation.Binary.PropositionalEquality as PEq using (_≡_) module PR = P.Reasoning (PEq.isEquivalence {A = Bool}) private module M = MetaTypeMetaSubst postulate lem₄ : ∀ {m ν} (a : MetaType m (suc ν)) u us → from-meta (((M.open-meta a) M./ (us M.↑)) M./ (M.sub u)) ≡ (from-meta (a M./ (us M.↑tp))) tp[/tp from-meta u ] open-↓-∀ : ∀ {ν m} {Δ : ICtx ν} (a : MetaType m (suc ν)) τ u us → Δ ⊢ (from-meta ((open-meta a) M./ (u ∷ us))) ↓ τ → Δ ⊢ (from-meta (∀' a M./ us)) ↓ τ open-↓-∀ {Δ = Δ} a τ u us p = (i-tabs (from-meta u) (subst (λ v → Δ ⊢ v ↓ τ) (begin from-meta (M._/_ (open-meta a) (u ∷ us)) ≡⟨ cong (λ v → from-meta (M._/_ (open-meta a) v)) (sym $ us↑-⊙-sub-u≡u∷us u us) ⟩ from-meta ((open-meta a) M./ (us M.↑ M.⊙ (M.sub u))) ≡⟨ cong from-meta (/-⊙ (open-meta a)) ⟩ from-meta ((open-meta a) M./ us M.↑ M./ (M.sub u)) ≡⟨ lem₄ a u us ⟩ from-meta (M._/_ a (us M.↑tp)) tp[/tp from-meta u ] ∎) p)) where open MetaTypeMetaLemmas hiding (subst) mutual delayed-resolve-sound : ∀ {ν} (Δ : ICtx ν) (a : Type ν) → AllP (B.All (Δ ⊢ᵣ a)) (delayed-resolve Δ a) delayed-resolve-sound Δ a = later (♯ (resolve'-sound Δ a)) resolve-context-sound : ∀ {ν m} (Δ : ICtx ν) (a : MetaType m ν) b {τ v} → Maybe.All (λ u → Δ ⊢ from-meta (b M./ u) ↓ τ) v → AllP (Maybe.All (λ u → (Δ ⊢ from-meta (a M./ u) ⇒ from-meta (b M./ u) ↓ τ)) ) (resolve-context Δ a v) resolve-context-sound Δ a b {τ = τ} (just {x = u} px) = _ ≅⟨ resolve-context-comp Δ a u ⟩P delayed-resolve-sound Δ (from-meta (M._/_ a u)) >>=-congP lem where lem : ∀ {v} → B.All (Δ ⊢ᵣ from-meta (a M./ u)) v → AllP (Maybe.All (λ u → Δ ⊢ from-meta (a M./ u) ⇒ from-meta (b M./ u) ↓ τ)) (map-bool u v) lem (true x) = now (just (i-iabs x px)) lem (false) = now nothing resolve-context-sound Δ a b nothing = now nothing match-u-sound : ∀ {ν m} (Δ : ICtx ν) τ (r : MetaType m ν) → (r-acc : m<-Acc r) → AllP (Maybe.All (λ u → (Δ ⊢ from-meta (r M./ u) ↓ τ))) (match-u Δ τ r r-acc) match-u-sound Δ τ (a ⇒ b) (acc rs) = _ ≅⟨ match-u-iabs-comp Δ τ a b rs ⟩P match-u-sound Δ τ b (rs _ (b-m<-a⇒b a b)) >>=-congP resolve-context-sound Δ a b match-u-sound Δ τ (∀' r) (acc rs) = _ ≅⟨ match-u-tabs-comp Δ τ r rs ⟩P match-u-sound Δ τ (open-meta r) _ >>=-congP lem where lem : ∀ {v} → Maybe.All (λ u → Δ ⊢ from-meta (open-meta r M./ u) ↓ τ) v → AllP (Maybe.All (λ u → Δ ⊢ ∀' (from-meta (r M./ u M.↑tp)) ↓ τ )) ((now ∘ (MaybeFunctor._<$>_ tail)) v) lem (just {x = u ∷ us} px) = now (just (open-↓-∀ r τ u us px)) lem nothing = now nothing match-u-sound Δ τ (simpl x) (acc rs) with mgu (simpl x) τ | mgu-sound (simpl x) τ match-u-sound Δ τ (simpl x) (acc rs) | just us | just x/us≡τ = now (just (subst (λ z → Δ ⊢ z ↓ τ) (sym x/us≡τ) (i-simp τ))) match-u-sound Δ τ (simpl x) (acc rs) | nothing | nothing = now nothing match-sound : ∀ {ν} (Δ : ICtx ν) τ r → AllP (B.All (Δ ⊢ r ↓ τ)) (match Δ τ r) match-sound Δ τ r = _ ≅⟨ match-comp Δ τ r ⟩P match-u-sound Δ τ (to-meta {zero} r) (m<-well-founded _) >>=-congP lem where eq : ∀ {ν} {a : Type ν} {s} → from-meta (to-meta {zero} a M./ s) ≡ a eq {a = a} {s = []} = begin from-meta (M._/_ (to-meta {zero} a) []) ≡⟨ cong (λ q → from-meta q) (MetaTypeMetaLemmas.id-vanishes (to-meta {zero} a)) ⟩ from-meta (to-meta {zero} a) ≡⟨ to-meta-zero-vanishes ⟩ a ∎ lem : ∀ {v} → Maybe.All (λ u → (Δ ⊢ from-meta ((to-meta {zero} r) M./ u) ↓ τ)) v → AllP (B.All (Δ ⊢ r ↓ τ)) ((now ∘ is-just) v) lem (just px) = now (true (subst (λ z → Δ ⊢ z ↓ τ) eq px)) lem nothing = now false match1st-recover-sound : ∀ {ν b} x (Δ ρs : ICtx ν) τ → B.All (Δ ⊢ x ↓ τ) b → AllP (B.All (∃₂ λ r (r∈Δ : r ∈ (x ∷ ρs)) → Δ ⊢ r ↓ τ)) (match1st-recover Δ ρs τ b) match1st-recover-sound x Δ ρs τ (true p) = now (true (x , (here refl) , p)) match1st-recover-sound x Δ ρs τ false = _ ≅⟨ PR.sym (right-identity refl (match1st Δ ρs τ)) ⟩P match1st'-sound Δ ρs τ >>=-congP lem where lem : ∀ {v} → B.All (∃₂ λ r (r∈Δ : r ∈ ρs)→ Δ ⊢ r ↓ τ) v → AllP (B.All (∃₂ λ r (r∈Δ : r ∈ x ∷ ρs) → Δ ⊢ r ↓ τ)) (now v) lem (true (r , r∈ρs , p)) = now (true (r , (there r∈ρs) , p)) lem false = now false -- {!match1st'-sound Δ ρs τ!} match1st'-sound : ∀ {ν} (Δ ρs : ICtx ν) τ → AllP (B.All (∃₂ λ r (r∈Δ : r ∈ ρs) → Δ ⊢ r ↓ τ)) (match1st Δ ρs τ) match1st'-sound Δ [] τ = now false match1st'-sound Δ (x ∷ ρs) τ = _ ≅⟨ match1st-comp Δ x ρs τ ⟩P match-sound Δ τ x >>=-congP match1st-recover-sound x Δ ρs τ resolve'-sound : ∀ {ν} (Δ : ICtx ν) r → AllP (B.All (Δ ⊢ᵣ r)) (resolve Δ r) resolve'-sound Δ (simpl x) = _ ≅⟨ PR.sym (right-identity refl (match1st Δ Δ x)) ⟩P match1st'-sound Δ Δ x >>=-congP (λ x → now (B.all-map x (λ{ (r , r∈Δ , p) → r-simp r∈Δ p }))) resolve'-sound Δ (a ⇒ b) = _ ≅⟨ PR.sym (right-identity refl (resolve (a ∷ Δ) b)) ⟩P resolve'-sound (a ∷ Δ) b >>=-congP (λ x → now (B.all-map x r-iabs)) resolve'-sound Δ (∀' r) = _ ≅⟨ PR.sym (right-identity refl (resolve (ictx-weaken Δ) r)) ⟩P resolve'-sound (ictx-weaken Δ) r >>=-congP (λ x → now (B.all-map x r-tabs)) -- Soundness means: -- for all terminating runs of the algorithm we have a finite resolution proof. sound : ∀ {ν} (Δ : ICtx ν) r → All (B.All (Δ ⊢ᵣ r)) (resolve Δ r) sound Δ r = AllP-sound (resolve'-sound Δ r)
{ "alphanum_fraction": 0.5566445662, "avg_line_length": 45.9470198675, "ext": "agda", "hexsha": "a00b9d0dc9ccc2677ea193dd709efa1293f20952", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Infinite/Algorithm/Soundness.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Infinite/Algorithm/Soundness.agda", "max_line_length": 101, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Infinite/Algorithm/Soundness.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 2615, "size": 6938 }
{-# OPTIONS --safe --experimental-lossy-unification #-} {- This file contains a proof that the generator of Π₃S² has hopf invariant ±1. -} module Cubical.Homotopy.HopfInvariant.HopfMap where open import Cubical.Homotopy.HopfInvariant.Base open import Cubical.Homotopy.Hopf open S¹Hopf open import Cubical.Homotopy.Connected open import Cubical.Homotopy.HSpace open import Cubical.ZCohomology.Base open import Cubical.ZCohomology.GroupStructure open import Cubical.ZCohomology.Properties open import Cubical.ZCohomology.Groups.Sn open import Cubical.ZCohomology.RingStructure.CupProduct open import Cubical.ZCohomology.RingStructure.RingLaws open import Cubical.ZCohomology.Gysin open import Cubical.Foundations.Prelude open import Cubical.Foundations.Path open import Cubical.Foundations.HLevels open import Cubical.Foundations.Function open import Cubical.Foundations.Pointed open import Cubical.Foundations.Pointed.Homogeneous open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.GroupoidLaws open import Cubical.Foundations.Equiv open import Cubical.Foundations.Univalence open import Cubical.Data.Sum open import Cubical.Data.Sigma open import Cubical.Data.Int hiding (_+'_) open import Cubical.Data.Nat renaming (_+_ to _+ℕ_ ; _·_ to _·ℕ_) open import Cubical.Data.Unit open import Cubical.Algebra.Group open import Cubical.Algebra.Group.ZAction open import Cubical.Algebra.Group.Exact open import Cubical.Algebra.Group.Morphisms open import Cubical.Algebra.Group.MorphismProperties open import Cubical.Algebra.Group.Instances.Int open import Cubical.Algebra.Group.GroupPath open import Cubical.HITs.Pushout open import Cubical.HITs.Join open import Cubical.HITs.S1 renaming (_·_ to _*_) open import Cubical.HITs.Sn open import Cubical.HITs.Susp open import Cubical.HITs.Truncation renaming (rec to trRec ; elim to trElim) open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; map to sMap) open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec) HopfMap : S₊∙ 3 →∙ S₊∙ 2 fst HopfMap x = JoinS¹S¹→TotalHopf (Iso.inv (IsoSphereJoin 1 1) x) .fst snd HopfMap = refl -- We use the Hopf fibration in order to connect it to the Gysin Sequence module hopfS¹ = Hopf S1-AssocHSpace (sphereElim2 _ (λ _ _ → squash₁) ∣ refl ∣₁) S¹Hopf = hopfS¹.Hopf E* = hopfS¹.TotalSpacePush²' IsoE*join = hopfS¹.joinIso₂ IsoTotalHopf' = hopfS¹.joinIso₁ CP² = hopfS¹.TotalSpaceHopfPush² fibr = hopfS¹.P TotalHopf' : Type _ TotalHopf' = Σ (S₊ 2) S¹Hopf IsoJoins : (join S¹ (join S¹ S¹)) ≡ join S¹ (S₊ 3) IsoJoins = cong (join S¹) (isoToPath (IsoSphereJoin 1 1)) -- CP² is 1-connected conCP² : (x y : CP²) → ∥ x ≡ y ∥₂ conCP² x y = sRec2 squash₂ (λ p q → ∣ p ∙ sym q ∣₂) (conCP²' x) (conCP²' y) where conCP²' : (x : CP²) → ∥ x ≡ inl tt ∥₂ conCP²' (inl x) = ∣ refl ∣₂ conCP²' (inr x) = sphereElim 1 {A = λ x → ∥ inr x ≡ inl tt ∥₂} (λ _ → squash₂) ∣ sym (push (inl base)) ∣₂ x conCP²' (push a i) = main a i where indLem : ∀ {ℓ} {A : hopfS¹.TotalSpaceHopfPush → Type ℓ} → ((a : _) → isProp (A a)) → A (inl base) → ((a : hopfS¹.TotalSpaceHopfPush) → A a) indLem {A = A} p b = PushoutToProp p (sphereElim 0 (λ _ → p _) b) (sphereElim 0 (λ _ → p _) (subst A (push (base , base)) b)) main : (a : hopfS¹.TotalSpaceHopfPush) → PathP (λ i → ∥ Path CP² (push a i) (inl tt) ∥₂) (conCP²' (inl tt)) (conCP²' (inr (hopfS¹.induced a))) main = indLem (λ _ → isOfHLevelPathP' 1 squash₂ _ _) λ j → ∣ (λ i → push (inl base) (~ i ∧ j)) ∣₂ module GysinS² = Gysin (CP² , inl tt) fibr conCP² 2 idIso refl E'S⁴Iso : Iso GysinS².E' (S₊ 5) E'S⁴Iso = compIso IsoE*join (compIso (Iso→joinIso idIso (IsoSphereJoin 1 1)) (IsoSphereJoin 1 3)) isContrH³E : isContr (coHom 3 (GysinS².E')) isContrH³E = subst isContr (sym (isoToPath (fst (Hⁿ-Sᵐ≅0 2 4 λ p → snotz (sym (cong (predℕ ∘ predℕ) p))))) ∙ cong (coHom 3) (sym (isoToPath E'S⁴Iso))) isContrUnit isContrH⁴E : isContr (coHom 4 (GysinS².E')) isContrH⁴E = subst isContr (sym (isoToPath (fst (Hⁿ-Sᵐ≅0 3 4 λ p → snotz (sym (cong (predℕ ∘ predℕ ∘ predℕ) p))))) ∙ cong (coHom 4) (sym (isoToPath E'S⁴Iso))) isContrUnit -- We will need a bunch of elimination principles joinS¹S¹→Groupoid : ∀ {ℓ} (P : join S¹ S¹ → Type ℓ) → ((x : _) → isGroupoid (P x)) → P (inl base) → (x : _) → P x joinS¹S¹→Groupoid P grp b = transport (λ i → (x : (isoToPath (invIso (IsoSphereJoin 1 1))) i) → P (transp (λ j → isoToPath (invIso (IsoSphereJoin 1 1)) (i ∨ j)) i x)) (sphereElim _ (λ _ → grp _) b) TotalHopf→Gpd : ∀ {ℓ} (P : hopfS¹.TotalSpaceHopfPush → Type ℓ) → ((x : _) → isGroupoid (P x)) → P (inl base) → (x : _) → P x TotalHopf→Gpd P grp b = transport (λ i → (x : sym (isoToPath IsoTotalHopf') i) → P (transp (λ j → isoToPath IsoTotalHopf' (~ i ∧ ~ j)) i x)) (joinS¹S¹→Groupoid _ (λ _ → grp _) b) TotalHopf→Gpd' : ∀ {ℓ} (P : Σ (S₊ 2) hopfS¹.Hopf → Type ℓ) → ((x : _) → isGroupoid (P x)) → P (north , base) → (x : _) → P x TotalHopf→Gpd' P grp b = transport (λ i → (x : ua (_ , hopfS¹.isEquivTotalSpaceHopfPush→TotalSpace) i) → P (transp (λ j → ua (_ , hopfS¹.isEquivTotalSpaceHopfPush→TotalSpace) (i ∨ j)) i x)) (TotalHopf→Gpd _ (λ _ → grp _) b) CP²→Groupoid : ∀ {ℓ} {P : CP² → Type ℓ} → ((x : _) → is2Groupoid (P x)) → (b : P (inl tt)) → (s2 : ((x : _) → P (inr x))) → PathP (λ i → P (push (inl base) i)) b (s2 north) → (x : _) → P x CP²→Groupoid {P = P} grp b s2 pp (inl x) = b CP²→Groupoid {P = P} grp b s2 pp (inr x) = s2 x CP²→Groupoid {P = P} grp b s2 pp (push a i₁) = lem a i₁ where lem : (a : hopfS¹.TotalSpaceHopfPush) → PathP (λ i → P (push a i)) b (s2 _) lem = TotalHopf→Gpd _ (λ _ → isOfHLevelPathP' 3 (grp _) _ _) pp -- The function inducing the iso H²(S²) ≅ H²(CP²) H²S²→H²CP²-raw : (S₊ 2 → coHomK 2) → (CP² → coHomK 2) H²S²→H²CP²-raw f (inl x) = 0ₖ _ H²S²→H²CP²-raw f (inr x) = f x -ₖ f north H²S²→H²CP²-raw f (push a i) = TotalHopf→Gpd (λ x → 0ₖ 2 ≡ f (hopfS¹.TotalSpaceHopfPush→TotalSpace x .fst) -ₖ f north) (λ _ → isOfHLevelTrunc 4 _ _) (sym (rCancelₖ 2 (f north))) a i H²S²→H²CP² : coHomGr 2 (S₊ 2) .fst → coHomGr 2 CP² .fst H²S²→H²CP² = sMap H²S²→H²CP²-raw cancel-H²S²→H²CP² : (f : CP² → coHomK 2) → ∥ H²S²→H²CP²-raw (f ∘ inr) ≡ f ∥₁ cancel-H²S²→H²CP² f = pRec squash₁ (λ p → pRec squash₁ (λ f → ∣ funExt f ∣₁) (cancelLem p)) (connLem (f (inl tt))) where connLem : (x : coHomK 2) → ∥ x ≡ 0ₖ 2 ∥₁ connLem = coHomK-elim _ (λ _ → isOfHLevelSuc 1 squash₁) ∣ refl ∣₁ cancelLem : (p : f (inl tt) ≡ 0ₖ 2) → ∥ ((x : CP²) → H²S²→H²CP²-raw (f ∘ inr) x ≡ f x) ∥₁ cancelLem p = trRec squash₁ (λ pp → ∣ CP²→Groupoid (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) (sym p) (λ x → (λ i → f (inr x) -ₖ f (push (inl base) (~ i))) ∙∙ (λ i → f (inr x) -ₖ p i) ∙∙ rUnitₖ 2 (f (inr x))) pp ∣₁) help where help : hLevelTrunc 1 (PathP (λ i₁ → H²S²→H²CP²-raw (f ∘ inr) (push (inl base) i₁) ≡ f (push (inl base) i₁)) (sym p) (((λ i₁ → f (inr north) -ₖ f (push (inl base) (~ i₁))) ∙∙ (λ i₁ → f (inr north) -ₖ p i₁) ∙∙ rUnitₖ 2 (f (inr north))))) help = isConnectedPathP 1 (isConnectedPath 2 (isConnectedKn 1) _ _) _ _ .fst H²CP²≅H²S² : GroupIso (coHomGr 2 CP²) (coHomGr 2 (S₊ 2)) Iso.fun (fst H²CP²≅H²S²) = sMap (_∘ inr) Iso.inv (fst H²CP²≅H²S²) = H²S²→H²CP² Iso.rightInv (fst H²CP²≅H²S²) = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → trRec {B = Iso.fun (fst H²CP²≅H²S²) (Iso.inv (fst H²CP²≅H²S²) ∣ f ∣₂) ≡ ∣ f ∣₂} (isOfHLevelPath 2 squash₂ _ _) (λ p → cong ∣_∣₂ (funExt λ x → cong (λ y → (f x) -ₖ y) p ∙ rUnitₖ 2 (f x))) (Iso.fun (PathIdTruncIso _) (isContr→isProp (isConnectedKn 1) ∣ f north ∣ ∣ 0ₖ 2 ∣)) Iso.leftInv (fst H²CP²≅H²S²) = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → pRec (squash₂ _ _) (cong ∣_∣₂) (cancel-H²S²→H²CP² f) snd H²CP²≅H²S² = makeIsGroupHom (sElim2 (λ _ _ → isOfHLevelPath 2 squash₂ _ _) λ f g → refl) H²CP²≅ℤ : GroupIso (coHomGr 2 CP²) ℤGroup H²CP²≅ℤ = compGroupIso H²CP²≅H²S² (Hⁿ-Sⁿ≅ℤ 1) -- ⌣ gives a groupEquiv H²(CP²) ≃ H⁴(CP²) ⌣Equiv : GroupEquiv (coHomGr 2 CP²) (coHomGr 4 CP²) fst (fst ⌣Equiv) = GysinS².⌣-hom 2 .fst snd (fst ⌣Equiv) = isEq⌣ where isEq⌣ : isEquiv (GysinS².⌣-hom 2 .fst) isEq⌣ = SES→isEquiv (GroupPath _ _ .fst (invGroupEquiv (isContr→≃Unit isContrH³E , makeIsGroupHom λ _ _ → refl))) (GroupPath _ _ .fst (invGroupEquiv (isContr→≃Unit isContrH⁴E , makeIsGroupHom λ _ _ → refl))) (GysinS².susp∘ϕ 1) (GysinS².⌣-hom 2) (GysinS².p-hom 4) (GysinS².Ker-⌣e⊂Im-Susp∘ϕ _) (GysinS².Ker-p⊂Im-⌣e _) snd ⌣Equiv = GysinS².⌣-hom 2 .snd -- The generator of H²(CP²) genCP² : coHom 2 CP² genCP² = ∣ CP²→Groupoid (λ _ → isOfHLevelTrunc 4) (0ₖ _) ∣_∣ refl ∣₂ inrInjective : (f g : CP² → coHomK 2) → ∥ f ∘ inr ≡ g ∘ inr ∥₁ → Path (coHom 2 CP²) ∣ f ∣₂ ∣ g ∣₂ inrInjective f g = pRec (squash₂ _ _) (λ p → pRec (squash₂ _ _) (λ id → trRec (squash₂ _ _) (λ pp → cong ∣_∣₂ (funExt (CP²→Groupoid (λ _ → isOfHLevelPath 4 (isOfHLevelTrunc 4) _ _) id (funExt⁻ p) (compPathR→PathP pp)))) (conn2 (f (inl tt)) (g (inl tt)) id (cong f (push (inl base)) ∙ (funExt⁻ p north) ∙ cong g (sym (push (inl base)))))) (conn (f (inl tt)) (g (inl tt)))) where conn : (x y : coHomK 2) → ∥ x ≡ y ∥₁ conn = coHomK-elim _ (λ _ → isSetΠ λ _ → isOfHLevelSuc 1 squash₁) (coHomK-elim _ (λ _ → isOfHLevelSuc 1 squash₁) ∣ refl ∣₁) conn2 : (x y : coHomK 2) (p q : x ≡ y) → hLevelTrunc 1 (p ≡ q) conn2 x y p q = Iso.fun (PathIdTruncIso _) (isContr→isProp (isConnectedPath _ (isConnectedKn 1) x y) ∣ p ∣ ∣ q ∣) -- A couple of basic lemma concerning the hSpace structure on S¹ private invLooperLem₁ : (a x : S¹) → (invEq (hopfS¹.μ-eq a) x) * a ≡ (invLooper a * x) * a invLooperLem₁ a x = secEq (hopfS¹.μ-eq a) x ∙∙ cong (_* x) (rCancelS¹ a) ∙∙ AssocHSpace.μ-assoc S1-AssocHSpace a (invLooper a) x ∙ commS¹ _ _ invLooperLem₂ : (a x : S¹) → invEq (hopfS¹.μ-eq a) x ≡ invLooper a * x invLooperLem₂ a x = sym (retEq (hopfS¹.μ-eq a) (invEq (hopfS¹.μ-eq a) x)) ∙∙ cong (invEq (hopfS¹.μ-eq a)) (invLooperLem₁ a x) ∙∙ retEq (hopfS¹.μ-eq a) (invLooper a * x) rotLoop² : (a : S¹) → Path (a ≡ a) (λ i → rotLoop (rotLoop a i) (~ i)) refl rotLoop² = sphereElim 0 (λ _ → isGroupoidS¹ _ _ _ _) λ i j → hcomp (λ {k → λ { (i = i1) → base ; (j = i0) → base ; (j = i1) → base}}) base -- We prove that the generator of CP² given by Gysin is the same one -- as genCP², which is much easier to work with Gysin-e≡genCP² : GysinS².e ≡ genCP² Gysin-e≡genCP² = inrInjective _ _ ∣ funExt (λ x → funExt⁻ (cong fst (main x)) south) ∣₁ where mainId : (x : Σ (S₊ 2) hopfS¹.Hopf) → Path (hLevelTrunc 4 _) ∣ fst x ∣ ∣ north ∣ mainId = uncurry λ { north → λ y → cong ∣_∣ₕ (merid base ∙ sym (merid y)) ; south → λ y → cong ∣_∣ₕ (sym (merid y)) ; (merid a i) → main a i} where main : (a : S¹) → PathP (λ i → (y : hopfS¹.Hopf (merid a i)) → Path (HubAndSpoke (Susp S¹) 3) ∣ merid a i ∣ ∣ north ∣) (λ y → cong ∣_∣ₕ (merid base ∙ sym (merid y))) λ y → cong ∣_∣ₕ (sym (merid y)) main a = toPathP (funExt λ x → cong (transport (λ i₁ → Path (HubAndSpoke (Susp S¹) 3) ∣ merid a i₁ ∣ ∣ north ∣)) ((λ i → (λ z → cong ∣_∣ₕ (merid base ∙ sym (merid (transport (λ j → uaInvEquiv (hopfS¹.μ-eq a) (~ i) j) x))) z)) ∙ λ i → cong ∣_∣ₕ (merid base ∙ sym (merid (transportRefl (invEq (hopfS¹.μ-eq a) x) i)))) ∙∙ (λ i → transp (λ i₁ → Path (HubAndSpoke (Susp S¹) 3) ∣ merid a (i₁ ∨ i) ∣ ∣ north ∣) i (compPath-filler' (cong ∣_∣ₕ (sym (merid a))) (cong ∣_∣ₕ (merid base ∙ sym (merid (invLooperLem₂ a x i)))) i)) ∙∙ cong ((cong ∣_∣ₕ) (sym (merid a)) ∙_) (cong (cong ∣_∣ₕ) (cong sym (symDistr (merid base) (sym (merid (invLooper a * x))))) ∙ cong sym (SuspS¹-hom (invLooper a) x) ∙ symDistr ((cong ∣_∣ₕ) (merid (invLooper a) ∙ sym (merid base))) ((cong ∣_∣ₕ) (merid x ∙ sym (merid base))) ∙ isCommΩK 2 (sym (λ i₁ → ∣ (merid x ∙ (λ i₂ → merid base (~ i₂))) i₁ ∣)) (sym (λ i₁ → ∣ (merid (invLooper a) ∙ (λ i₂ → merid base (~ i₂))) i₁ ∣)) ∙ cong₂ _∙_ (cong sym (SuspS¹-inv a) ∙ cong-∙ ∣_∣ₕ (merid a) (sym (merid base))) (cong (cong ∣_∣ₕ) (symDistr (merid x) (sym (merid base))) ∙ cong-∙ ∣_∣ₕ (merid base) (sym (merid x)))) ∙∙ (λ j → (λ i₁ → ∣ merid a (~ i₁ ∨ j) ∣) ∙ ((λ i₁ → ∣ merid a (i₁ ∨ j) ∣) ∙ (λ i₁ → ∣ merid base (~ i₁ ∨ j) ∣)) ∙ (λ i₁ → ∣ merid base (i₁ ∨ j) ∣) ∙ (λ i₁ → ∣ merid x (~ i₁) ∣ₕ)) ∙∙ sym (lUnit _) ∙∙ sym (assoc _ _ _) ∙∙ (sym (lUnit _) ∙ sym (lUnit _) ∙ sym (lUnit _))) gen' : (x : S₊ 2) → preThom.Q (CP² , inl tt) fibr (inr x) →∙ coHomK-ptd 2 fst (gen' x) north = ∣ north ∣ fst (gen' x) south = ∣ x ∣ fst (gen' x) (merid a i₁) = mainId (x , a) (~ i₁) snd (gen' x) = refl gen'Id : GysinS².c (inr north) .fst ≡ gen' north .fst gen'Id = cong fst (GysinS².cEq (inr north) ∣ push (inl base) ∣₂) ∙ (funExt lem) where lem : (qb : _) → ∣ (subst (fst ∘ preThom.Q (CP² , inl tt) fibr) (sym (push (inl base))) qb) ∣ ≡ gen' north .fst qb lem north = refl lem south = cong ∣_∣ₕ (sym (merid base)) lem (merid a i) j = hcomp (λ k → λ { (i = i0) → ∣ merid a (~ k ∧ j) ∣ ; (i = i1) → ∣ merid base (~ j) ∣ ; (j = i0) → ∣ transportRefl (merid a i) (~ k) ∣ ; (j = i1) → ∣ compPath-filler (merid base) (sym (merid a)) k (~ i) ∣ₕ}) (hcomp (λ k → λ { (i = i0) → ∣ merid a (j ∨ ~ k) ∣ ; (i = i1) → ∣ merid base (~ j ∨ ~ k) ∣ ; (j = i0) → ∣ merid a (~ k ∨ i) ∣ ; (j = i1) → ∣ merid base (~ i ∨ ~ k) ∣ₕ}) ∣ south ∣) setHelp : (x : S₊ 2) → isSet (preThom.Q (CP² , inl tt) fibr (inr x) →∙ coHomK-ptd 2) setHelp = sphereElim _ (λ _ → isProp→isOfHLevelSuc 1 (isPropIsOfHLevel 2)) (isOfHLevel↑∙' 0 1) main : (x : S₊ 2) → (GysinS².c (inr x) ≡ gen' x) main = sphereElim _ (λ x → isOfHLevelPath 2 (setHelp x) _ _) (→∙Homogeneous≡ (isHomogeneousKn _) gen'Id) isGenerator≃ℤ : ∀ {ℓ} (G : Group ℓ) (g : fst G) → Type ℓ isGenerator≃ℤ G g = Σ[ e ∈ GroupIso G ℤGroup ] abs (Iso.fun (fst e) g) ≡ 1 isGenerator≃ℤ-e : isGenerator≃ℤ (coHomGr 2 CP²) GysinS².e isGenerator≃ℤ-e = subst (isGenerator≃ℤ (coHomGr 2 CP²)) (sym Gysin-e≡genCP²) (H²CP²≅ℤ , refl) -- Alternative definition of the hopfMap HopfMap' : S₊ 3 → S₊ 2 HopfMap' x = hopfS¹.TotalSpaceHopfPush→TotalSpace (Iso.inv IsoTotalHopf' (Iso.inv (IsoSphereJoin 1 1) x)) .fst hopfMap≡HopfMap' : HopfMap ≡ (HopfMap' , refl) hopfMap≡HopfMap' = ΣPathP ((funExt (λ x → cong (λ x → JoinS¹S¹→TotalHopf x .fst) (sym (Iso.rightInv IsoTotalHopf' (Iso.inv (IsoSphereJoin 1 1) x))) ∙ sym (lem (Iso.inv IsoTotalHopf' (Iso.inv (IsoSphereJoin 1 1) x))))) , flipSquare (sym (rUnit refl) ◁ λ _ _ → north)) where lem : (x : _) → hopfS¹.TotalSpaceHopfPush→TotalSpace x .fst ≡ JoinS¹S¹→TotalHopf (Iso.fun IsoTotalHopf' x) .fst lem (inl x) = refl lem (inr x) = refl lem (push (base , snd₁) i) = refl lem (push (loop i₁ , a) i) k = merid (rotLoop² a (~ k) i₁) i CP²' : Type _ CP²' = Pushout {A = S₊ 3} (λ _ → tt) HopfMap' PushoutReplaceBase : ∀ {ℓ ℓ' ℓ''} {A B : Type ℓ} {C : Type ℓ'} {D : Type ℓ''} {f : A → C} {g : A → D} (e : B ≃ A) → Pushout (f ∘ fst e) (g ∘ fst e) ≡ Pushout f g PushoutReplaceBase {f = f} {g = g} = EquivJ (λ _ e → Pushout (f ∘ fst e) (g ∘ fst e) ≡ Pushout f g) refl CP2≡CP²' : CP²' ≡ CP² CP2≡CP²' = PushoutReplaceBase (isoToEquiv (compIso (invIso (IsoSphereJoin 1 1)) (invIso IsoTotalHopf'))) -- packaging everything up: ⌣equiv→pres1 : ∀ {ℓ} {G H : Type ℓ} → (G ≡ H) → (g₁ : coHom 2 G) (h₁ : coHom 2 H) → (fstEq : (Σ[ ϕ ∈ GroupEquiv (coHomGr 2 G) ℤGroup ] abs (fst (fst ϕ) g₁) ≡ 1)) → (sndEq : ((Σ[ ϕ ∈ GroupEquiv (coHomGr 2 H) ℤGroup ] abs (fst (fst ϕ) h₁) ≡ 1))) → isEquiv {A = coHom 2 G} {B = coHom 4 G} (_⌣ g₁) → (3rdEq : GroupEquiv (coHomGr 4 H) ℤGroup) → abs (fst (fst 3rdEq) (h₁ ⌣ h₁)) ≡ 1 ⌣equiv→pres1 {G = G} = J (λ H _ → (g₁ : coHom 2 G) (h₁ : coHom 2 H) → (fstEq : (Σ[ ϕ ∈ GroupEquiv (coHomGr 2 G) ℤGroup ] abs (fst (fst ϕ) g₁) ≡ 1)) → (sndEq : ((Σ[ ϕ ∈ GroupEquiv (coHomGr 2 H) ℤGroup ] abs (fst (fst ϕ) h₁) ≡ 1))) → isEquiv {A = coHom 2 G} {B = coHom 4 G} (_⌣ g₁) → (3rdEq : GroupEquiv (coHomGr 4 H) ℤGroup) → abs (fst (fst 3rdEq) (h₁ ⌣ h₁)) ≡ 1) help where help : (g₁ h₁ : coHom 2 G) → (fstEq : (Σ[ ϕ ∈ GroupEquiv (coHomGr 2 G) ℤGroup ] abs (fst (fst ϕ) g₁) ≡ 1)) → (sndEq : ((Σ[ ϕ ∈ GroupEquiv (coHomGr 2 G) ℤGroup ] abs (fst (fst ϕ) h₁) ≡ 1))) → isEquiv {A = coHom 2 G} {B = coHom 4 G} (_⌣ g₁) → (3rdEq : GroupEquiv (coHomGr 4 G) ℤGroup) → abs (fst (fst 3rdEq) (h₁ ⌣ h₁)) ≡ 1 help g h (ϕ , idg) (ψ , idh) ⌣eq ξ = ⊎→abs _ _ (groupEquivPresGen _ (compGroupEquiv main (compGroupEquiv (invGroupEquiv main) ψ)) h (abs→⊎ _ _ (cong abs (cong (fst (fst ψ)) (retEq (fst main) h)) ∙ idh)) (compGroupEquiv main ξ)) where lem₁ : ((fst (fst ψ) h) ≡ 1) ⊎ (fst (fst ψ) h ≡ -1) → abs (fst (fst ϕ) h) ≡ 1 lem₁ p = ⊎→abs _ _ (groupEquivPresGen _ ψ h p ϕ) lem₂ : ((fst (fst ϕ) h) ≡ 1) ⊎ (fst (fst ϕ) h ≡ -1) → ((fst (fst ϕ) g) ≡ 1) ⊎ (fst (fst ϕ) g ≡ -1) → (h ≡ g) ⊎ (h ≡ (-ₕ g)) lem₂ (inl x) (inl x₁) = inl (sym (retEq (fst ϕ) h) ∙∙ cong (invEq (fst ϕ)) (x ∙ sym x₁) ∙∙ retEq (fst ϕ) g) lem₂ (inl x) (inr x₁) = inr (sym (retEq (fst ϕ) h) ∙∙ cong (invEq (fst ϕ)) x ∙ IsGroupHom.presinv (snd (invGroupEquiv ϕ)) (negsuc zero) ∙∙ cong (-ₕ_) (cong (invEq (fst ϕ)) (sym x₁) ∙ (retEq (fst ϕ) g))) lem₂ (inr x) (inl x₁) = inr (sym (retEq (fst ϕ) h) ∙∙ cong (invEq (fst ϕ)) x ∙∙ (IsGroupHom.presinv (snd (invGroupEquiv ϕ)) 1 ∙ cong (-ₕ_) (cong (invEq (fst ϕ)) (sym x₁) ∙ (retEq (fst ϕ) g)))) lem₂ (inr x) (inr x₁) = inl (sym (retEq (fst ϕ) h) ∙∙ cong (invEq (fst ϕ)) (x ∙ sym x₁) ∙∙ retEq (fst ϕ) g) -ₕeq : ∀ {ℓ} {A : Type ℓ} (n : ℕ) → Iso (coHom n A) (coHom n A) Iso.fun (-ₕeq n) = -ₕ_ Iso.inv (-ₕeq n) = -ₕ_ Iso.rightInv (-ₕeq n) = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → -ₖ^2 (f x)) Iso.leftInv (-ₕeq n) = sElim (λ _ → isOfHLevelPath 2 squash₂ _ _) λ f → cong ∣_∣₂ (funExt λ x → -ₖ^2 (f x)) theEq : coHom 2 G ≃ coHom 4 G theEq = compEquiv (_ , ⌣eq) (isoToEquiv (-ₕeq 4)) lem₃ : (h ≡ g) ⊎ (h ≡ (-ₕ g)) → isEquiv {A = coHom 2 G} (_⌣ h) lem₃ (inl x) = subst isEquiv (λ i → _⌣ (x (~ i))) ⌣eq lem₃ (inr x) = subst isEquiv (funExt (λ x → -ₕDistᵣ 2 2 x g) ∙ (λ i → _⌣ (x (~ i)))) (theEq .snd) main : GroupEquiv (coHomGr 2 G) (coHomGr 4 G) fst main = _ , (lem₃ (lem₂ (abs→⊎ _ _ (lem₁ (abs→⊎ _ _ idh))) (abs→⊎ _ _ idg))) snd main = makeIsGroupHom λ g1 g2 → rightDistr-⌣ _ _ g1 g2 h -- The hopf invariant is ±1 for both definitions of the hopf map HopfInvariant-HopfMap' : abs (HopfInvariant zero (HopfMap' , λ _ → HopfMap' (snd (S₊∙ 3)))) ≡ 1 HopfInvariant-HopfMap' = cong abs (cong (Iso.fun (fst (Hopfβ-Iso zero (HopfMap' , refl)))) (transportRefl (⌣-α 0 (HopfMap' , refl)))) ∙ ⌣equiv→pres1 (sym CP2≡CP²') GysinS².e (Hopfα zero (HopfMap' , refl)) (l isGenerator≃ℤ-e) (GroupIso→GroupEquiv (Hopfα-Iso 0 (HopfMap' , refl)) , refl) (snd (fst ⌣Equiv)) (GroupIso→GroupEquiv (Hopfβ-Iso zero (HopfMap' , refl))) where l : Σ[ ϕ ∈ GroupIso (coHomGr 2 CP²) ℤGroup ] (abs (Iso.fun (fst ϕ) GysinS².e) ≡ 1) → Σ[ ϕ ∈ GroupEquiv (coHomGr 2 CP²) ℤGroup ] (abs (fst (fst ϕ) GysinS².e) ≡ 1) l p = (GroupIso→GroupEquiv (fst p)) , (snd p) HopfInvariant-HopfMap : abs (HopfInvariant zero HopfMap) ≡ 1 HopfInvariant-HopfMap = cong abs (cong (HopfInvariant zero) hopfMap≡HopfMap') ∙ HopfInvariant-HopfMap'
{ "alphanum_fraction": 0.5304913619, "avg_line_length": 39.5825932504, "ext": "agda", "hexsha": "278c0641319440784bf0d931bc59f5ea656793f6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Homotopy/HopfInvariant/HopfMap.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Homotopy/HopfInvariant/HopfMap.agda", "max_line_length": 81, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Homotopy/HopfInvariant/HopfMap.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 9320, "size": 22285 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Lift where open import Level open import Categories.Category liftC : ∀ {o ℓ e} o′ ℓ′ e′ → Category o ℓ e → Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′) liftC o′ ℓ′ e′ C = record { Obj = Lift o′ Obj ; _⇒_ = λ X Y → Lift ℓ′ (lower X ⇒ lower Y) ; _≈_ = λ f g → Lift e′ (lower f ≈ lower g) ; id = lift id ; _∘_ = λ f g → lift (lower f ∘ lower g) ; assoc = lift assoc ; sym-assoc = lift sym-assoc ; identityˡ = lift identityˡ ; identityʳ = lift identityʳ ; identity² = lift identity² ; equiv = record { refl = lift Equiv.refl ; sym = λ eq → lift (Equiv.sym (lower eq)) ; trans = λ eq eq′ → lift (Equiv.trans (lower eq) (lower eq′)) } ; ∘-resp-≈ = λ eq eq′ → lift (∘-resp-≈ (lower eq) (lower eq′)) } where open Category C
{ "alphanum_fraction": 0.5471478463, "avg_line_length": 30.6785714286, "ext": "agda", "hexsha": "12710ad22d035df3dd0a1ffb83216335fb494499", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/agda-categories", "max_forks_repo_path": "src/Categories/Category/Lift.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/agda-categories", "max_issues_repo_path": "src/Categories/Category/Lift.agda", "max_line_length": 81, "max_stars_count": null, "max_stars_repo_head_hexsha": "5a49c6ac87cbb7e20511c28f28205163fe69f48f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/agda-categories", "max_stars_repo_path": "src/Categories/Category/Lift.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 323, "size": 859 }
-- Andreas, 2012-03-13 module Issue585t where postulate A : Set a : A -- just so that A is not empty and the constraints are solvable -- however, Agda picks the wrong solution data B : Set where inn : A -> B out : B -> A out (inn a) = a postulate P : (y : A) (z : B) → Set p : (x : B) → P (out x) x mutual d : B d = inn _ -- Y g : P (out d) d g = p _ -- X -- Agda previously solved d = inn (out d) -- -- out X = out d = out (inn Y) = Y -- X = d -- -- Now this does not pass the occurs check, so unsolved metas should remain.
{ "alphanum_fraction": 0.5417376491, "avg_line_length": 18.34375, "ext": "agda", "hexsha": "26a87ebed527a0656ad2261d36ad52b250337333", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue585t.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue585t.agda", "max_line_length": 76, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue585t.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 207, "size": 587 }
postulate ℤ : Set n : ℤ -_ _! : ℤ → ℤ -- Note that an unrelated prefix/postfix operator can be combined with -- itself: ok : ℤ ok = n ! ! ! ! also-ok : ℤ also-ok = - - - - - - - n
{ "alphanum_fraction": 0.5177664975, "avg_line_length": 14.0714285714, "ext": "agda", "hexsha": "3b044928076d1c88cd20f74e9bd218381dd27ad3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/By-default-no-fixity.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/By-default-no-fixity.agda", "max_line_length": 70, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/By-default-no-fixity.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 76, "size": 197 }
open import Prelude module Implicits.Resolution.Infinite.Resolution where open import Coinduction open import Data.Fin.Substitution open import Data.List open import Data.List.Any.Membership using (map-mono) open import Data.List.Any open Membership-≡ open import Implicits.Syntax open import Implicits.Substitutions module Coinductive where infixl 5 _⊢ᵣ_ _⊢_↓_ mutual data _⊢_↓_ {ν} (Δ : ICtx ν) : Type ν → SimpleType ν → Set where i-simp : ∀ a → Δ ⊢ simpl a ↓ a i-iabs : ∀ {ρ₁ ρ₂ a} → ∞ (Δ ⊢ᵣ ρ₁) → Δ ⊢ ρ₂ ↓ a → Δ ⊢ ρ₁ ⇒ ρ₂ ↓ a i-tabs : ∀ {ρ a} b → Δ ⊢ ρ tp[/tp b ] ↓ a → Δ ⊢ ∀' ρ ↓ a data _⊢ᵣ_ {ν} (Δ : ICtx ν) : Type ν → Set where r-simp : ∀ {r τ} → (r ∈ Δ) → Δ ⊢ r ↓ τ → Δ ⊢ᵣ simpl τ r-iabs : ∀ {ρ₁ ρ₂} → ((ρ₁ ∷ Δ) ⊢ᵣ ρ₂) → Δ ⊢ᵣ (ρ₁ ⇒ ρ₂) r-tabs : ∀ {ρ} → (ictx-weaken Δ ⊢ᵣ ρ) → Δ ⊢ᵣ ∀' ρ mutual -- extending contexts is safe: it preserves the r ↓ a relation -- (this is not true for Oliveira's deterministic calculus) ⊆-r↓a : ∀ {ν} {Δ Δ' : ICtx ν} {a r} → Δ ⊢ r ↓ a → Δ ⊆ Δ' → Δ' ⊢ r ↓ a ⊆-r↓a (i-simp a) _ = i-simp a ⊆-r↓a (i-iabs x₁ x₂) f = i-iabs (♯ (⊆-Δ⊢a (♭ x₁) f)) (⊆-r↓a x₂ f) ⊆-r↓a (i-tabs b x₁) f = i-tabs b (⊆-r↓a x₁ f) -- extending contexts is safe: it preserves the ⊢ᵣ a relation -- (this is not true for Oliveira's deterministic calculus) ⊆-Δ⊢a : ∀ {ν} {Δ Δ' : ICtx ν} {a} → Δ ⊢ᵣ a → Δ ⊆ Δ' → Δ' ⊢ᵣ a ⊆-Δ⊢a (r-simp x₁ x₂) f = r-simp (f x₁) (⊆-r↓a x₂ f) ⊆-Δ⊢a (r-iabs x₁) f = r-iabs (⊆-Δ⊢a x₁ (λ{ (here px) → here px ; (there x₂) → there (f x₂) })) ⊆-Δ⊢a (r-tabs x) f = r-tabs (⊆-Δ⊢a x f') where f' = map-mono (flip TypeSubst._/_ TypeSubst.wk) f module Inductive where infixl 5 _⊢ᵣ_ _⊢_↓_ mutual data _⊢_↓_ {ν} (Δ : ICtx ν) : Type ν → SimpleType ν → Set where i-simp : ∀ a → Δ ⊢ simpl a ↓ a i-iabs : ∀ {ρ₁ ρ₂ a} → (Δ ⊢ᵣ ρ₁) → Δ ⊢ ρ₂ ↓ a → Δ ⊢ ρ₁ ⇒ ρ₂ ↓ a i-tabs : ∀ {ρ a} b → Δ ⊢ ρ tp[/tp b ] ↓ a → Δ ⊢ ∀' ρ ↓ a data _⊢ᵣ_ {ν} (Δ : ICtx ν) : Type ν → Set where r-simp : ∀ {r τ} → (r ∈ Δ) → Δ ⊢ r ↓ τ → Δ ⊢ᵣ simpl τ r-iabs : ∀ {ρ₁ ρ₂} → ((ρ₁ ∷ Δ) ⊢ᵣ ρ₂) → Δ ⊢ᵣ (ρ₁ ⇒ ρ₂) r-tabs : ∀ {ρ} → (ictx-weaken Δ ⊢ᵣ ρ) → Δ ⊢ᵣ ∀' ρ mutual -- extending contexts is safe: it preserves the r ↓ a relation -- (this is not true for Oliveira's deterministic calculus) ⊆-r↓a : ∀ {ν} {Δ Δ' : ICtx ν} {a r} → Δ ⊢ r ↓ a → Δ ⊆ Δ' → Δ' ⊢ r ↓ a ⊆-r↓a (i-simp a) _ = i-simp a ⊆-r↓a (i-iabs x₁ x₂) f = i-iabs (⊆-Δ⊢a x₁ f) (⊆-r↓a x₂ f) ⊆-r↓a (i-tabs b x₁) f = i-tabs b (⊆-r↓a x₁ f) -- extending contexts is safe: it preserves the ⊢ᵣ a relation -- (this is not true for Oliveira's deterministic calculus) ⊆-Δ⊢a : ∀ {ν} {Δ Δ' : ICtx ν} {a} → Δ ⊢ᵣ a → Δ ⊆ Δ' → Δ' ⊢ᵣ a ⊆-Δ⊢a (r-simp x₁ x₂) f = r-simp (f x₁) (⊆-r↓a x₂ f) ⊆-Δ⊢a (r-iabs x₁) f = r-iabs (⊆-Δ⊢a x₁ (λ{ (here px) → here px ; (there x₂) → there (f x₂) })) ⊆-Δ⊢a (r-tabs x) f = r-tabs (⊆-Δ⊢a x f') where f' = map-mono (flip TypeSubst._/_ TypeSubst.wk) f open Inductive public
{ "alphanum_fraction": 0.5174437561, "avg_line_length": 38.8227848101, "ext": "agda", "hexsha": "b9a041e708eb4e6c1753c172502ae47f84a8da7c", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "metaborg/ts.agda", "max_forks_repo_path": "src/Implicits/Resolution/Infinite/Resolution.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "metaborg/ts.agda", "max_issues_repo_path": "src/Implicits/Resolution/Infinite/Resolution.agda", "max_line_length": 78, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "metaborg/ts.agda", "max_stars_repo_path": "src/Implicits/Resolution/Infinite/Resolution.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z", "max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z", "num_tokens": 1528, "size": 3067 }
{-# OPTIONS --safe #-} module Cubical.Data.NatMinusOne where open import Cubical.Data.NatMinusOne.Base public open import Cubical.Data.NatMinusOne.Properties public
{ "alphanum_fraction": 0.8072289157, "avg_line_length": 27.6666666667, "ext": "agda", "hexsha": "f1838c6e8bf2dd3c5e70103cee7cf30e36444224", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Data/NatMinusOne.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Data/NatMinusOne.agda", "max_line_length": 54, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Data/NatMinusOne.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 39, "size": 166 }
module Lang.Irrelevance where open import Type postulate .axiom : ∀{ℓ}{T : Type{ℓ}} -> .T -> T
{ "alphanum_fraction": 0.6494845361, "avg_line_length": 16.1666666667, "ext": "agda", "hexsha": "23abad321b5409d0ca27ecca42adf06419cfe11f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Lang/Irrelevance.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Lang/Irrelevance.agda", "max_line_length": 47, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Lang/Irrelevance.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 36, "size": 97 }
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-} module Light.Library.Data.Both where open import Light.Level using (Level ; Setω) open import Light.Variable.Sets open import Light.Variable.Levels open import Light.Library.Relation.Binary using (SelfTransitive ; SelfSymmetric ; Reflexive) open import Light.Library.Relation.Binary.Equality.Decidable using (DecidableEquality ; DecidableSelfEquality) record Dependencies : Setω where record Library (dependencies : Dependencies) : Setω where field ℓf : Level → Level → Level Both : Set aℓ → Set bℓ → Set (ℓf aℓ bℓ) both : 𝕒 → 𝕓 → Both 𝕒 𝕓 first : Both 𝕒 𝕓 → 𝕒 second : Both 𝕒 𝕓 → 𝕓 ⦃ equals ⦄ : ∀ ⦃ a‐c‐equals : DecidableEquality 𝕒 𝕔 ⦄ ⦃ b‐d‐equals : DecidableEquality 𝕓 𝕕 ⦄ → DecidableEquality (Both 𝕒 𝕓) (Both 𝕔 𝕕) open Library ⦃ ... ⦄ public
{ "alphanum_fraction": 0.643533123, "avg_line_length": 36.5769230769, "ext": "agda", "hexsha": "92252cd759e840f26725af6773771ac0d2ef1376", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "Zambonifofex/lightlib", "max_forks_repo_path": "Light/Library/Data/Both.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "Zambonifofex/lightlib", "max_issues_repo_path": "Light/Library/Data/Both.agda", "max_line_length": 110, "max_stars_count": 1, "max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "zamfofex/lightlib", "max_stars_repo_path": "Light/Library/Data/Both.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z", "num_tokens": 290, "size": 951 }
module Cats.Category.Fun where open import Cats.Trans public using (Trans ; component ; natural ; id ; _∘_) open import Relation.Binary using (Rel ; IsEquivalence ; _Preserves₂_⟶_⟶_) open import Level open import Cats.Category open import Cats.Functor using (Functor) module _ {lo la l≈ lo′ la′ l≈′} (C : Category lo la l≈) (D : Category lo′ la′ l≈′) where infixr 4 _≈_ private module C = Category C module D = Category D open D.≈ open D.≈-Reasoning Obj : Set (lo ⊔ la ⊔ l≈ ⊔ lo′ ⊔ la′ ⊔ l≈′) Obj = Functor C D _⇒_ : Obj → Obj → Set (lo ⊔ la ⊔ la′ ⊔ l≈′) _⇒_ = Trans record _≈_ {F G} (θ ι : F ⇒ G) : Set (lo ⊔ l≈′) where constructor ≈-intro field ≈-elim : ∀ {c} → component θ c D.≈ component ι c open _≈_ public equiv : ∀ {F G} → IsEquivalence (_≈_ {F} {G}) equiv = record { refl = ≈-intro refl ; sym = λ eq → ≈-intro (sym (≈-elim eq)) ; trans = λ eq₁ eq₂ → ≈-intro (trans (≈-elim eq₁) (≈-elim eq₂)) } Fun : Category (lo ⊔ la ⊔ l≈ ⊔ lo′ ⊔ la′ ⊔ l≈′) (lo ⊔ la ⊔ la′ ⊔ l≈′) (lo ⊔ l≈′) Fun = record { Obj = Obj ; _⇒_ = _⇒_ ; _≈_ = _≈_ ; id = id ; _∘_ = _∘_ ; equiv = equiv ; ∘-resp = λ θ≈θ′ ι≈ι′ → ≈-intro (D.∘-resp (≈-elim θ≈θ′) (≈-elim ι≈ι′)) ; id-r = ≈-intro D.id-r ; id-l = ≈-intro D.id-l ; assoc = ≈-intro D.assoc }
{ "alphanum_fraction": 0.5140591204, "avg_line_length": 21.671875, "ext": "agda", "hexsha": "8d35e9fc015a9cf2727c6738c8c87633cacd2b62", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Category/Fun.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Category/Fun.agda", "max_line_length": 82, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Category/Fun.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 605, "size": 1387 }
{- Theory about isomorphisms - Definitions of [section] and [retract] - Definition of isomorphisms ([Iso]) - Any isomorphism is an equivalence ([isoToEquiv]) -} {-# OPTIONS --safe #-} module Cubical.Foundations.Isomorphism where open import Cubical.Core.Everything open import Cubical.Foundations.Prelude open import Cubical.Foundations.Function open import Cubical.Foundations.Equiv.Base private variable ℓ ℓ' : Level A B C : Type ℓ -- Section and retract module _ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} where section : (f : A → B) → (g : B → A) → Type ℓ' section f g = ∀ b → f (g b) ≡ b -- NB: `g` is the retraction! retract : (f : A → B) → (g : B → A) → Type ℓ retract f g = ∀ a → g (f a) ≡ a record Iso {ℓ ℓ'} (A : Type ℓ) (B : Type ℓ') : Type (ℓ-max ℓ ℓ') where no-eta-equality constructor iso field fun : A → B inv : B → A rightInv : section fun inv leftInv : retract fun inv isIso : (A → B) → Type _ isIso {A = A} {B = B} f = Σ[ g ∈ (B → A) ] Σ[ _ ∈ section f g ] retract f g isoFunInjective : (f : Iso A B) → (x y : A) → Iso.fun f x ≡ Iso.fun f y → x ≡ y isoFunInjective f x y h = sym (Iso.leftInv f x) ∙∙ cong (Iso.inv f) h ∙∙ Iso.leftInv f y isoInvInjective : (f : Iso A B) → (x y : B) → Iso.inv f x ≡ Iso.inv f y → x ≡ y isoInvInjective f x y h = sym (Iso.rightInv f x) ∙∙ cong (Iso.fun f) h ∙∙ Iso.rightInv f y -- Any iso is an equivalence module _ (i : Iso A B) where open Iso i renaming ( fun to f ; inv to g ; rightInv to s ; leftInv to t) private module _ (y : B) (x0 x1 : A) (p0 : f x0 ≡ y) (p1 : f x1 ≡ y) where fill0 : I → I → A fill0 i = hfill (λ k → λ { (i = i1) → t x0 k ; (i = i0) → g y }) (inS (g (p0 (~ i)))) fill1 : I → I → A fill1 i = hfill (λ k → λ { (i = i1) → t x1 k ; (i = i0) → g y }) (inS (g (p1 (~ i)))) fill2 : I → I → A fill2 i = hfill (λ k → λ { (i = i1) → fill1 k i1 ; (i = i0) → fill0 k i1 }) (inS (g y)) p : x0 ≡ x1 p i = fill2 i i1 sq : I → I → A sq i j = hcomp (λ k → λ { (i = i1) → fill1 j (~ k) ; (i = i0) → fill0 j (~ k) ; (j = i1) → t (fill2 i i1) (~ k) ; (j = i0) → g y }) (fill2 i j) sq1 : I → I → B sq1 i j = hcomp (λ k → λ { (i = i1) → s (p1 (~ j)) k ; (i = i0) → s (p0 (~ j)) k ; (j = i1) → s (f (p i)) k ; (j = i0) → s y k }) (f (sq i j)) lemIso : (x0 , p0) ≡ (x1 , p1) lemIso i .fst = p i lemIso i .snd = λ j → sq1 i (~ j) isoToIsEquiv : isEquiv f isoToIsEquiv .equiv-proof y .fst .fst = g y isoToIsEquiv .equiv-proof y .fst .snd = s y isoToIsEquiv .equiv-proof y .snd z = lemIso y (g y) (fst z) (s y) (snd z) isoToEquiv : Iso A B → A ≃ B isoToEquiv i .fst = i .Iso.fun isoToEquiv i .snd = isoToIsEquiv i isoToPath : Iso A B → A ≡ B isoToPath {A = A} {B = B} f i = Glue B (λ { (i = i0) → (A , isoToEquiv f) ; (i = i1) → (B , idEquiv B) }) open Iso invIso : Iso A B → Iso B A fun (invIso f) = inv f inv (invIso f) = fun f rightInv (invIso f) = leftInv f leftInv (invIso f) = rightInv f compIso : Iso A B → Iso B C → Iso A C fun (compIso i j) = fun j ∘ fun i inv (compIso i j) = inv i ∘ inv j rightInv (compIso i j) b = cong (fun j) (rightInv i (inv j b)) ∙ rightInv j b leftInv (compIso i j) a = cong (inv i) (leftInv j (fun i a)) ∙ leftInv i a composesToId→Iso : (G : Iso A B) (g : B → A) → G .fun ∘ g ≡ idfun B → Iso B A fun (composesToId→Iso _ g _) = g inv (composesToId→Iso j _ _) = fun j rightInv (composesToId→Iso i g path) b = sym (leftInv i (g (fun i b))) ∙∙ cong (λ g → inv i (g (fun i b))) path ∙∙ leftInv i b leftInv (composesToId→Iso _ _ path) b i = path i b idIso : Iso A A fun idIso = idfun _ inv idIso = idfun _ rightInv idIso _ = refl leftInv idIso _ = refl LiftIso : Iso A (Lift {i = ℓ} {j = ℓ'} A) fun LiftIso = lift inv LiftIso = lower rightInv LiftIso _ = refl leftInv LiftIso _ = refl isContr→Iso : isContr A → isContr B → Iso A B fun (isContr→Iso _ Bctr) _ = Bctr .fst inv (isContr→Iso Actr _) _ = Actr .fst rightInv (isContr→Iso _ Bctr) = Bctr .snd leftInv (isContr→Iso Actr _) = Actr .snd isProp→Iso : (Aprop : isProp A) (Bprop : isProp B) (f : A → B) (g : B → A) → Iso A B fun (isProp→Iso _ _ f _) = f inv (isProp→Iso _ _ _ g) = g rightInv (isProp→Iso _ Bprop f g) b = Bprop (f (g b)) b leftInv (isProp→Iso Aprop _ f g) a = Aprop (g (f a)) a domIso : ∀ {ℓ} {C : Type ℓ} → Iso A B → Iso (A → C) (B → C) fun (domIso e) f b = f (inv e b) inv (domIso e) f a = f (fun e a) rightInv (domIso e) f i x = f (rightInv e x i) leftInv (domIso e) f i x = f (leftInv e x i) -- Helpful notation _Iso⟨_⟩_ : ∀ {ℓ ℓ' ℓ''} {B : Type ℓ'} {C : Type ℓ''} (X : Type ℓ) → Iso X B → Iso B C → Iso X C _ Iso⟨ f ⟩ g = compIso f g _∎Iso : ∀ {ℓ} (A : Type ℓ) → Iso A A A ∎Iso = idIso {A = A} infixr 0 _Iso⟨_⟩_ infix 1 _∎Iso codomainIsoDep : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : A → Type ℓ'} {C : A → Type ℓ''} → ((a : A) → Iso (B a) (C a)) → Iso ((a : A) → B a) ((a : A) → C a) fun (codomainIsoDep is) f a = fun (is a) (f a) inv (codomainIsoDep is) f a = inv (is a) (f a) rightInv (codomainIsoDep is) f = funExt λ a → rightInv (is a) (f a) leftInv (codomainIsoDep is) f = funExt λ a → leftInv (is a) (f a) codomainIso : ∀ {ℓ ℓ' ℓ''} {A : Type ℓ} {B : Type ℓ'} {C : Type ℓ''} → Iso B C → Iso (A → B) (A → C) codomainIso z = codomainIsoDep λ _ → z Iso≡Set : isSet A → isSet B → (f g : Iso A B) → ((x : A) → f .fun x ≡ g .fun x) → ((x : B) → f .inv x ≡ g .inv x) → f ≡ g fun (Iso≡Set hA hB f g hfun hinv i) x = hfun x i inv (Iso≡Set hA hB f g hfun hinv i) x = hinv x i rightInv (Iso≡Set hA hB f g hfun hinv i) x j = isSet→isSet' hB (rightInv f x) (rightInv g x) (λ i → hfun (hinv x i) i) refl i j leftInv (Iso≡Set hA hB f g hfun hinv i) x j = isSet→isSet' hA (leftInv f x) (leftInv g x) (λ i → hinv (hfun x i) i) refl i j
{ "alphanum_fraction": 0.5090937846, "avg_line_length": 32.2602040816, "ext": "agda", "hexsha": "52d9c36f3612005abb9081d14d88b654bd473ebb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "howsiyu/cubical", "max_forks_repo_path": "Cubical/Foundations/Isomorphism.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "howsiyu/cubical", "max_issues_repo_path": "Cubical/Foundations/Isomorphism.agda", "max_line_length": 95, "max_stars_count": null, "max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "howsiyu/cubical", "max_stars_repo_path": "Cubical/Foundations/Isomorphism.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2547, "size": 6323 }
{-# OPTIONS --sized-types #-} open import Relation.Binary.Core module SelectSort.Correctness.Order {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import Data.List open import Data.Product open import Data.Sum open import Function using (_∘_) open import List.Sorted _≤_ open import Order.Total _≤_ tot≤ open import Size open import SList open import SList.Order _≤_ open import SList.Order.Properties _≤_ open import SelectSort _≤_ tot≤ lemma-select-≤ : {ι : Size}(x : A) → (xs : SList A {ι}) → proj₁ (select x xs) ≤ x lemma-select-≤ x snil = refl≤ lemma-select-≤ x (y ∙ ys) with tot≤ x y ... | inj₁ x≤y = lemma-select-≤ x ys ... | inj₂ y≤x = trans≤ (lemma-select-≤ y ys) y≤x lemma-select-*≤ : {ι : Size}(x : A) → (xs : SList A {ι}) → proj₁ (select x xs) *≤ proj₂ (select x xs) lemma-select-*≤ x snil = genx lemma-select-*≤ x (y ∙ ys) with tot≤ x y ... | inj₁ x≤y = gecx (trans≤ (lemma-select-≤ x ys) x≤y) (lemma-select-*≤ x ys) ... | inj₂ y≤x = gecx (trans≤ (lemma-select-≤ y ys) y≤x) (lemma-select-*≤ y ys) lemma-select-≤-*≤ : {ι : Size}{b x : A}{xs : SList A {ι}} → b ≤ x → b *≤ xs → b ≤ proj₁ (select x xs) × b *≤ proj₂ (select x xs) lemma-select-≤-*≤ b≤x genx = b≤x , genx lemma-select-≤-*≤ {x = x} b≤x (gecx {x = y} b≤y b*≤ys) with tot≤ x y ... | inj₁ x≤y = proj₁ (lemma-select-≤-*≤ b≤x b*≤ys) , gecx (trans≤ b≤x x≤y) (proj₂ (lemma-select-≤-*≤ b≤x b*≤ys)) ... | inj₂ y≤x = proj₁ (lemma-select-≤-*≤ b≤y b*≤ys) , gecx (trans≤ b≤y y≤x) (proj₂ (lemma-select-≤-*≤ b≤y b*≤ys)) lemma-selectSort-*≤ : {ι : Size}{x : A}{xs : SList A {ι}} → x *≤ xs → x *≤ selectSort xs lemma-selectSort-*≤ genx = genx lemma-selectSort-*≤ (gecx x≤y x*≤ys) with lemma-select-≤-*≤ x≤y x*≤ys ... | (x≤z , x*≤zs) = gecx x≤z (lemma-selectSort-*≤ x*≤zs) lemma-selectSort-sorted : {ι : Size}(xs : SList A {ι}) → Sorted (unsize A (selectSort xs)) lemma-selectSort-sorted snil = nils lemma-selectSort-sorted (x ∙ xs) = lemma-slist-sorted (lemma-selectSort-*≤ (lemma-select-*≤ x xs)) (lemma-selectSort-sorted (proj₂ (select x xs))) theorem-selectSort-sorted : (xs : List A) → Sorted (unsize A (selectSort (size A xs))) theorem-selectSort-sorted = lemma-selectSort-sorted ∘ (size A)
{ "alphanum_fraction": 0.6001757469, "avg_line_length": 41.3818181818, "ext": "agda", "hexsha": "897f934286bcc1798b6dcad213ab108d62a7cc0f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/SelectSort/Correctness/Order.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/SelectSort/Correctness/Order.agda", "max_line_length": 146, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/SelectSort/Correctness/Order.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 932, "size": 2276 }
------------------------------------------------------------------------------ -- tptp4X yields an error because a duplicate formula ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} postulate D : Set true false : D _≡_ : D → D → Set data Bool : D → Set where btrue : Bool true bfalse : Bool false {-# ATP axioms btrue false #-} postulate foo : ∀ d → d ≡ d {-# ATP prove foo btrue #-}
{ "alphanum_fraction": 0.4019448947, "avg_line_length": 28.0454545455, "ext": "agda", "hexsha": "ee87691dbb9233e5eed1b7f832071189d85de1ca", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z", "max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/apia", "max_forks_repo_path": "test/Fail/Errors/DuplicateFormulaTPTP4XError.agda", "max_issues_count": 121, "max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/apia", "max_issues_repo_path": "test/Fail/Errors/DuplicateFormulaTPTP4XError.agda", "max_line_length": 78, "max_stars_count": 10, "max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/apia", "max_stars_repo_path": "test/Fail/Errors/DuplicateFormulaTPTP4XError.agda", "max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z", "num_tokens": 128, "size": 617 }
{-# OPTIONS --universe-polymorphism #-} -- Check that unification can handle levels module LevelUnification where open import Common.Level data _≡_ {a}{A : Set a}(x : A) : ∀ {b}{B : Set b} → B → Set where refl : x ≡ x sym₁ : ∀ a b (A : Set a)(B : Set b)(x : A)(y : B) → x ≡ y → y ≡ x sym₁ a .a A .A x .x refl = refl sym₂ : ∀ a b (A : Set (lsuc a))(B : Set b)(x : A)(y : B) → x ≡ y → y ≡ x sym₂ a .(lsuc a) A .A x .x refl = refl homogenous : ∀ a (A : Set a)(x y : A) → x ≡ y → Set₁ homogenous a A x .x refl = Set
{ "alphanum_fraction": 0.5442307692, "avg_line_length": 27.3684210526, "ext": "agda", "hexsha": "b73ebfd7b8db6ea42c8f9daa1a85dbf324d92d2f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/LevelUnification.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/LevelUnification.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/LevelUnification.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 215, "size": 520 }
{-# OPTIONS --type-in-type #-} -- DANGER! postulate HOLE : {A : Set} -> A -- MORE DANGER! infixr 6 _\\ _/quad/ infixr 6 _\\&\indent infixl 2 &_ infixr 3 [_ infixr 5 _,_ infixr 7 _] infixr 5 _/xor/_ _/land/_ _/lor/_ _+_ _/ll/_ _/gg/_ infixr 5 /Sigma/ /Sigmap/ /Pi/ /Pip/ lambda tlambda infixr 2 id infixl 1 WHEN infixl 1 AND -- Definitions used in the main body data ⊥ : Set where record ⊤ : Set where constructor /epsilon/ record Π (A : Set) (B : A -> Set) : Set where constructor _,_ field fst : A field snd : B(fst) syntax Π A (\x -> B) = Π x ∈ A ∙ B _×_ : Set → Set → Set (A × B) = Π x ∈ A ∙ B data 𝔹 : Set where /false/ : 𝔹 /true/ : 𝔹 if_then_else_ : ∀ {A : 𝔹 -> Set} -> (b : 𝔹) -> A(/true/) -> A(/false/) -> A(b) if /false/ then T else F = F if /true/ then T else F = T ⟨_⟩ : 𝔹 → Set ⟨ /false/ ⟩ = ⊥ ⟨ /true/ ⟩ = ⊤ data ℕ : Set where zero : ℕ succ : ℕ -> ℕ one = succ zero two = succ one three = succ two four = succ three _+n_ : ℕ → ℕ → ℕ zero +n k = k (succ j) +n k = succ(j +n k) _⊔_ : ℕ → ℕ → ℕ zero ⊔ n = n succ m ⊔ zero = succ m succ m ⊔ succ n = succ (m ⊔ n) _↑_ : Set → ℕ → Set (A ↑ zero) = ⊤ (A ↑ (succ n)) = (A × (A ↑ n)) len : ∀ {k} → (𝔹 ↑ k) → ℕ len {k} n = k /IF/_/THEN/_/ELSE/_ : forall {A : 𝔹 -> Set} -> (b : 𝔹) -> A(/true/) -> A(/false/) -> A(b) /IF/ /false/ /THEN/ T /ELSE/ F = F /IF/ /true/ /THEN/ T /ELSE/ F = T -- Binary arithmetic indn : ∀ {k} {A : Set} → A → (A → A) → (𝔹 ↑ k) → A indn {zero} e f n = e indn {succ k} e f (/false/ , n) = indn e (λ x → f (f x)) n indn {succ k} e f (/true/ , n) = f (indn e (λ x → f (f x)) n) unary : ∀ {k} → (𝔹 ↑ k) → ℕ unary = indn zero succ /zerop/ : ∀ {k} → (𝔹 ↑ k) /zerop/ {zero} = /epsilon/ /zerop/ {succ n} = (/false/ , /zerop/) /epsilon/[_] : ∀ {k} → (n : 𝔹 ↑ k) → (𝔹 ↑ unary n) /epsilon/[ n ] = /zerop/ /onep/ : ∀ {k} → (𝔹 ↑ succ k) /onep/ = (/true/ , /zerop/) /one/ : (𝔹 ↑ one) /one/ = /onep/ /max/ : ∀ {k} → (𝔹 ↑ k) /max/ {zero} = /epsilon/ /max/ {succ n} = (/true/ , /max/) /IMPOSSIBLE/ : {A : Set} → {{p : ⊥}} → A /IMPOSSIBLE/ {A} {{()}} /not/ : 𝔹 → 𝔹 /not/ /false/ = /true/ /not/ /true/ = /false/ /extend/ : ∀ {k} → (𝔹 ↑ k) → (𝔹 ↑ succ k) /extend/ {zero} _ = (/false/ , /epsilon/) /extend/ {succ k} (b , n) = (b , /extend/ n) /succp/ : ∀ {k} → (𝔹 ↑ k) → (𝔹 ↑ succ k) /succp/ {zero} n = (/false/ , /epsilon/) /succp/ {succ k} (/false/ , n) = (/true/ , /extend/ n) /succp/ {succ k} (/true/ , n) = (/false/ , /succp/ n) _/land/_ : 𝔹 → 𝔹 → 𝔹 (/false/ /land/ b) = /false/ (/true/ /land/ b) = b _/lor/_ : 𝔹 → 𝔹 → 𝔹 (/false/ /lor/ b) = b (/true/ /lor/ b) = /true/ /neg/ : 𝔹 → 𝔹 /neg/ /false/ = /true/ /neg/ /true/ = /false/ _/xor/_ : 𝔹 → 𝔹 → 𝔹 (/false/ /xor/ b) = b (/true/ /xor/ /false/) = /true/ (/true/ /xor/ /true/) = /false/ /carry/ : 𝔹 → 𝔹 → 𝔹 → 𝔹 /carry/ /false/ a b = a /land/ b /carry/ /true/ a b = a /lor/ b addclen : ∀ {j k} → 𝔹 → (𝔹 ↑ j) → (𝔹 ↑ k) → ℕ addclen {zero} {k} /false/ m n = k addclen {zero} {zero} /true/ m n = one addclen {zero} {succ k} /true/ m (b , n) = succ (addclen b m n) addclen {succ j} {zero} /false/ m n = succ j addclen {succ j} {zero} /true/ (a , m) n = succ (addclen a m n) addclen {succ j} {succ k} c (a , m) (b , n) = succ (addclen (/carry/ c a b) m n) addlen : ∀ {j k} → (𝔹 ↑ j) → (𝔹 ↑ k) → ℕ addlen = addclen /false/ /addc/ : ∀ {j k} c → (m : 𝔹 ↑ j) → (n : 𝔹 ↑ k) → (𝔹 ↑ addclen c m n) /addc/ {zero} {k} /false/ m n = n /addc/ {zero} {zero} /true/ m n = /one/ /addc/ {zero} {succ k} /true/ m (b , n) = (/not/ b , /addc/ b m n) /addc/ {succ j} {zero} /false/ (a , m) n = (a , m) /addc/ {succ j} {zero} /true/ (a , m) n = (/not/ a , /addc/ a m n) /addc/ {succ j} {succ k} c (a , m) (b , n) = ((c /xor/ a /xor/ b) , (/addc/ (/carry/ c a b) m n)) _+_ : ∀ {j k} → (m : 𝔹 ↑ j) → (n : 𝔹 ↑ k) → (𝔹 ↑ addlen m n) _+_ = /addc/ /false/ /succ/ : ∀ {k} → (n : 𝔹 ↑ k) → (𝔹 ↑ addclen /true/ /epsilon/ n) /succ/ = /addc/ /true/ /epsilon/ dindn : (A : ∀ {k} → (𝔹 ↑ k) → Set) → (∀ {k} → A(/zerop/ {k})) → (∀ {k} (n : 𝔹 ↑ k) → A(n) → A(/succ/(n))) → ∀ {k} → (n : 𝔹 ↑ k) → A(n) dindn A e f {zero} n = e dindn A e f {succ k} (/false/ , n) = dindn (λ {j} m → A (/false/ , m)) e (λ {j} m x → f (/true/ , m) (f (/false/ , m) x)) n dindn A e f {succ k} (/true/ , n) = f (/false/ , n) (dindn (λ {j} m → A (/false/ , m)) e (λ {j} m x → f (/true/ , m) (f (/false/ , m) x)) n) _++_ : ∀ {A j k} → (A ↑ j) → (A ↑ k) → (A ↑ (j +n k)) _++_ {A} {zero} xs ys = ys _++_ {A} {succ j} (x , xs) ys = (x , xs ++ ys) _/ll/_ : ∀ {j k} → (𝔹 ↑ j) → (n : 𝔹 ↑ k) → (𝔹 ↑ (unary n +n j)) (m /ll/ n) = (/zerop/ {unary n} ++ m) _-n_ : ℕ → ℕ → ℕ (m -n zero) = m (zero -n n) = zero (succ m -n succ n) = (m -n n) drop : ∀ {A j} (k : ℕ) → (A ↑ j) → (A ↑ (j -n k)) drop zero xs = xs drop {A} {zero} (succ k) xs = /epsilon/ drop {A} {succ j} (succ k) (x , xs) = drop k xs _/gg/_ : ∀ {j k} → (𝔹 ↑ j) → (n : 𝔹 ↑ k) → (𝔹 ↑ (j -n unary n)) m /gg/ n = drop (unary n) m /truncate/ : ∀ {j k} → (𝔹 ↑ j) → (𝔹 ↑ k) /truncate/ {j} {zero} n = /epsilon/ /truncate/ {zero} {succ k} n = /zerop/ /truncate/ {succ j} {succ k} (a , n) = (a , /truncate/ n) -- Finite sets EncodableIn : ∀ {k} → Set → (𝔹 ↑ k) → Set EncodableIn = HOLE record FSet {k} (n : 𝔹 ↑ k) : Set where field Carrier : Set field .encodable : EncodableIn Carrier n open FSet public /sizeof/ : ∀ {k} → {n : 𝔹 ↑ k} → FSet(n) → (𝔹 ↑ k) /sizeof/ {k} {n} A = n data _≡_ {A : Set} (x : A) : A → Set where refl : (x ≡ x) data ℂ : Set where less : ℂ eq : ℂ gtr : ℂ isless : ℂ → Set isless less = ⊤ isless _ = ⊥ isleq : ℂ → Set isleq gtr = ⊥ isleq _ = ⊤ cmpb : 𝔹 → 𝔹 → ℂ cmpb /false/ /false/ = eq cmpb /false/ /true/ = less cmpb /true/ /false/ = gtr cmpb /true/ /true/ = eq cmpcb : 𝔹 → 𝔹 → ℂ → ℂ cmpcb /false/ /false/ c = c cmpcb /false/ /true/ c = less cmpcb /true/ /false/ c = gtr cmpcb /true/ /true/ c = c cmpc : ∀ {j k} → (𝔹 ↑ j) → (𝔹 ↑ k) → ℂ → ℂ cmpc {zero} {zero} m n c = c cmpc {zero} {succ k} m (b , n) c = cmpc m n (cmpcb /false/ b c) cmpc {succ j} {zero} (a , m) n c = cmpc m n (cmpcb a /false/ c) cmpc {succ j} {succ k} (a , m) (b , n) c = cmpc m n (cmpcb a b c) cmp : ∀ {j k} → (𝔹 ↑ j) → (𝔹 ↑ k) → ℂ cmp m n = cmpc m n eq _<_ : ∀ {j k} → (𝔹 ↑ j) → (𝔹 ↑ k) → Set (m < n) = isless (cmp m n) _≤_ : ∀ {j k} → (𝔹 ↑ j) → (𝔹 ↑ k) → Set (m ≤ n) with cmp m n (m ≤ n) | gtr = ⊥ (m ≤ n) | _ = ⊤ borrow : 𝔹 → 𝔹 → 𝔹 → 𝔹 borrow /false/ /false/ c = c borrow /false/ /true/ c = /true/ borrow /true/ /false/ c = /false/ borrow /true/ /true/ c = c subc : ∀ {j k} → (m : 𝔹 ↑ j) → (n : 𝔹 ↑ k) → 𝔹 → (𝔹 ↑ j) subc {zero} m n c = /epsilon/ subc {succ j} {zero} (a , m) n c = ((a /xor/ c) , (subc m n (borrow a /false/ c))) subc {succ j} {succ k} (a , m) (b , n) c = ((a /xor/ b /xor/ c) , (subc m n (borrow a b c))) _∸_ : ∀ {j k} → (m : 𝔹 ↑ j) → (n : 𝔹 ↑ k) → (𝔹 ↑ j) (m ∸ n) = subc m n /false/ /FSetp/ : ∀ {j k} {m : 𝔹 ↑ j} -> (n : 𝔹 ↑ k) -> {p : n < m} -> FSet(m) /FSetp/ n = record { Carrier = FSet(n); encodable = HOLE } /FSet/ : ∀ {k} -> (n : 𝔹 ↑ k) -> FSet(/succp/ n) /FSet/ n = record { Carrier = FSet(n); encodable = HOLE } /nothingp/ : ∀ {k} {n : 𝔹 ↑ k} → FSet(n) /nothingp/ = record { Carrier = ⊥; encodable = HOLE } /nothing/ : FSet(/epsilon/) /nothing/ = /nothingp/ /boolp/ : ∀ {k} {n : 𝔹 ↑ k} {p : /epsilon/ < n} → FSet(n) /boolp/ = record { Carrier = 𝔹; encodable = HOLE } /bool/ : FSet(/one/) /bool/ = /boolp/ /unitp/ : ∀ {k} {n : 𝔹 ↑ k} → FSet(n) /unitp/ = record { Carrier = ⊤; encodable = HOLE } /unit/ : FSet(/epsilon/) /unit/ = /unitp/ /bitsp/ : ∀ {j k} {m : 𝔹 ↑ j} → (n : 𝔹 ↑ k) -> {p : n ≤ m} -> FSet(m) /bitsp/ n = record { Carrier = (𝔹 ↑ unary n); encodable = HOLE } /bits/ : ∀ {k} (n : 𝔹 ↑ k) -> {p : n ≤ n} -> FSet(n) /bits/ n {p} = /bitsp/ n {p} /Pi/ : ∀ {j k} -> {m : 𝔹 ↑ j} {n : 𝔹 ↑ k} -> (A : FSet(m)) -> (Carrier(A) → FSet(n)) -> FSet(m + n) /Pi/ A B = record { Carrier = Π x ∈ (Carrier A) ∙ Carrier (B x) ; encodable = HOLE } syntax /Pi/ A (λ x → B) = /prod/ x /in/ A /cdot/ B /Pip/ : ∀ {j k} -> {m : 𝔹 ↑ j} -> {n : 𝔹 ↑ k} -> (A : FSet(m)) -> {p : m ≤ n} → (Carrier(A) → FSet(n ∸ m)) -> FSet(n) /Pip/ A B = record { Carrier = Π x ∈ (Carrier A) ∙ Carrier (B x) ; encodable = HOLE } syntax /Pip/ A (λ x → B) = /prodp/ x /in/ A /cdot/ B /Sigma/ : ∀ {j k} -> {m : 𝔹 ↑ j} {n : 𝔹 ↑ k} -> (A : FSet(m)) → ((Carrier A) → FSet(n)) -> FSet(n /ll/ m) /Sigma/ A B = record { Carrier = (x : Carrier A) → (Carrier (B x)) ; encodable = HOLE } syntax /Sigma/ A (λ x → B) = /sum/ x /in/ A /cdot/ B /Sigmap/ : ∀ {j k} -> {m : 𝔹 ↑ j} {n : 𝔹 ↑ k} -> (A : FSet(m)) → {p : m ≤ n} → ((Carrier A) → FSet(n /gg/ m)) -> FSet(n) /Sigmap/ A B = record { Carrier = (x : Carrier A) → (Carrier (B x)) ; encodable = HOLE } syntax /Sigmap/ A (λ x → B) = /sump/ x /in/ A /cdot/ B lambda : ∀ {A : Set} {B : A → Set} → (∀ x → B(x)) → (∀ x → B(x)) lambda f = f syntax lambda (λ x → e) = /fn/ x /cdot/ e tlambda : ∀ {k} {n : 𝔹 ↑ k} (A : FSet(n)) {B : Carrier A → Set} → (∀ x → B(x)) → (∀ x → B(x)) tlambda A f = f syntax tlambda A (λ x → e) = /fn/ x /in/ A /cdot/ e /indn/ : {h : ∀ {k} → (𝔹 ↑ k) → ℕ} → {g : ∀ {k} → (n : 𝔹 ↑ k) → (𝔹 ↑ h(n))} → (A : ∀ {k} → (n : 𝔹 ↑ k) → FSet(g(n))) → (∀ {k} → Carrier(A(/zerop/ {k}))) → (∀ {k} (n : 𝔹 ↑ k) → Carrier(A(n)) → Carrier(A(/one/ + n))) → ∀ {k} → (n : 𝔹 ↑ k) → Carrier(A(n)) /indn/ A e f = dindn (λ n → Carrier(A(n))) e (λ n x → g n (f n x)) where g : ∀ {k} → (n : 𝔹 ↑ k) → Carrier(A(/one/ + n)) → Carrier(A(/succ/(n))) g {zero} n x = x g {succ k} (/false/ , n) x = x g {succ k} (/true/ , n) x = x -- Stuff to help with LaTeX layout id : ∀ {k} → {n : 𝔹 ↑ k} → (A : FSet(n)) → (Carrier A) → (Carrier A) id A x = x typeof : ∀ {k} → {n : 𝔹 ↑ k} → (A : FSet(n)) → (Carrier A) → Set typeof A x = Carrier A WHEN : ∀ {k} → {n : 𝔹 ↑ k} → (A : FSet(n)) → {B : Carrier A → Set} → (∀ x → B(x)) → (∀ x → B(x)) WHEN A F = F AND : ∀ {k} → {n : 𝔹 ↑ k} → (A : FSet(n)) → {B : Carrier A → Set} → (∀ x → B(x)) → (∀ x → B(x)) AND A F = F [_ : ∀ {A k} → (A ↑ k) → (A ↑ k) [_ x = x _] : ∀ {A} → A → (A ↑ one) _] x = (x , /epsilon/) _\\ : forall {A : Set} -> A -> A x \\ = x _/quad/ : forall {A : Set} -> A -> A x /quad/ = x _\\&\indent : forall {A : Set} -> A -> A x \\&\indent = x &_ : forall {A : Set} -> A -> A & x = x syntax id A x = x &/in/ A syntax WHEN A (λ x → B) = B &/WHEN/ x /in/ A syntax AND A (λ x → B) = B /AND/ x /in/ A
{ "alphanum_fraction": 0.4602069432, "avg_line_length": 27.5026595745, "ext": "agda", "hexsha": "7576d9a63e1785c81ae5ee5dac7a25804a7062cf", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f7a0d4b54a7f1907fa2598cb65135cdbb3387514", "max_forks_repo_licenses": [ "CC-BY-4.0" ], "max_forks_repo_name": "asajeffrey/finite-dtypes", "max_forks_repo_path": "prelude.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f7a0d4b54a7f1907fa2598cb65135cdbb3387514", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "CC-BY-4.0" ], "max_issues_repo_name": "asajeffrey/finite-dtypes", "max_issues_repo_path": "prelude.agda", "max_line_length": 140, "max_stars_count": 6, "max_stars_repo_head_hexsha": "f7a0d4b54a7f1907fa2598cb65135cdbb3387514", "max_stars_repo_licenses": [ "CC-BY-4.0" ], "max_stars_repo_name": "asajeffrey/finite-dtypes", "max_stars_repo_path": "prelude.agda", "max_stars_repo_stars_event_max_datetime": "2018-08-10T13:53:15.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-11T23:56:24.000Z", "num_tokens": 5027, "size": 10341 }
{-# OPTIONS --universe-polymorphism #-} module Categories.Graphs.Underlying where open import Categories.Support.PropositionalEquality open import Categories.Category hiding (module Heterogeneous) open import Categories.Categories open import Categories.Graphs open import Categories.Functor using (Functor; module Functor; ≡⇒≣) renaming (id to idF; _≡_ to _≡F_) open import Data.Product open import Graphs.Graph open import Graphs.GraphMorphism Underlying₀ : ∀ {o ℓ e} → Category o ℓ e → Graph o ℓ e Underlying₀ C = record { Obj = Obj ; _↝_ = _⇒_ ; _≈_ = _≡_ ; equiv = equiv } where open Category C Underlying₁ : ∀ {o₁ ℓ₁ e₁ o₂ ℓ₂ e₂} {X : Category o₁ ℓ₁ e₁} {Y : Category o₂ ℓ₂ e₂} → Functor X Y → GraphMorphism (Underlying₀ X) (Underlying₀ Y) Underlying₁ G = record { F₀ = G₀ ; F₁ = G₁ ; F-resp-≈ = G-resp-≡ } where open Functor G renaming (F₀ to G₀; F₁ to G₁; F-resp-≡ to G-resp-≡) Underlying : ∀ {o ℓ e} → Functor (Categories o ℓ e) (Graphs o ℓ e) Underlying {o}{ℓ}{e} = record { F₀ = Underlying₀ ; F₁ = Underlying₁ ; identity = (λ x → ≣-refl) , (λ f → Heterogeneous.refl _) ; homomorphism = (λ x → ≣-refl) , (λ f → Heterogeneous.refl _) ; F-resp-≡ = λ {A B}{F G : Functor A B} → F-resp-≡ {A}{B}{F}{G} } where module Graphs = Category (Graphs o ℓ e) module Categories = Category (Categories o ℓ e) .F-resp-≡ : ∀ {A B : Categories.Obj} {G H : Functor A B} → G ≡F H → Underlying₁ G ≈ Underlying₁ H F-resp-≡ {A}{B}{G}{H} G≡H = (≡⇒≣ G H G≡H) , (λ f → convert-~ (G≡H f)) where open Heterogeneous (Underlying₀ B) renaming (_~_ to _~₂_) open Categories.Category.Heterogeneous B renaming (_∼_ to _~₁_) convert-~ : ∀ {a b c d}{x : B [ a , b ]}{y : B [ c , d ]} → x ~₁ y → x ~₂ y convert-~ (≡⇒∼ foo) = ≈⇒~ foo
{ "alphanum_fraction": 0.5805785124, "avg_line_length": 30.7301587302, "ext": "agda", "hexsha": "2876587b16e0edd96ea418d3c616b7c1273d8fde", "lang": "Agda", "max_forks_count": 23, "max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z", "max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "p-pavel/categories", "max_forks_repo_path": "Categories/Graphs/Underlying.agda", "max_issues_count": 19, "max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2", "max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z", "max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "p-pavel/categories", "max_issues_repo_path": "Categories/Graphs/Underlying.agda", "max_line_length": 83, "max_stars_count": 98, "max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "copumpkin/categories", "max_stars_repo_path": "Categories/Graphs/Underlying.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z", "num_tokens": 734, "size": 1936 }
import Algebra.FunctionProperties using (LeftZero; RightZero; _DistributesOverˡ_;_DistributesOverʳ_; Idempotent) import Function using (_on_) import Level import Relation.Binary.EqReasoning as EqReasoning import Relation.Binary.On using (isEquivalence) import Algebra.Structures using (module IsCommutativeMonoid; IsCommutativeMonoid) open import Relation.Binary using (module IsEquivalence; IsEquivalence; _Preserves₂_⟶_⟶_ ; Setoid) open import Data.Product renaming (_,_ to _,,_) -- just to avoid clash with other commas open import Preliminaries using (Rel; UniqueSolution; LowerBound) module SemiNearRingRecords where record SemiNearRing : Set₁ where -- \structure{1}{|SemiNearRing|} field -- \structure{1.1}{Carriers, operators} s : Set _≃s_ : s → s → Set zers : s _+s_ : s → s → s _*s_ : s → s → s open Algebra.Structures using (IsCommutativeMonoid) open Algebra.FunctionProperties _≃s_ using (LeftZero; RightZero) field -- \structure{1.2}{Commutative monoid |(+,0)|} isCommMon : IsCommutativeMonoid _≃s_ _+s_ zers zeroˡ : LeftZero zers _*s_ -- expands to |∀ x → (zers *s x) ≃s zers| zeroʳ : RightZero zers _*s_ -- expands to |∀ x → (x *s zers) ≃s zers| _<*>_ : ∀ {x y u v} → (x ≃s y) → (u ≃s v) → (x *s u ≃s y *s v) open Algebra.FunctionProperties _≃s_ using (Idempotent; _DistributesOverˡ_; _DistributesOverʳ_) field -- \structure{1.3}{Distributive, idempotent, \ldots} idem : Idempotent _+s_ distl : _*s_ DistributesOverˡ _+s_ distr : _*s_ DistributesOverʳ _+s_ -- expands to |∀ a b c → (a +s b) *s c ≃s (a *s c) +s (b *s c)| infix 4 _≤s_ _≤s_ : s -> s -> Set x ≤s y = x +s y ≃s y infix 4 _≃s_; infixl 6 _+s_; infixl 7 _*s_ -- \structure{1.4}{Exporting commutative monoid operations} open Algebra.Structures.IsCommutativeMonoid isCommMon public hiding (refl) renaming ( isEquivalence to isEquivs ; assoc to assocs ; comm to comms ; ∙-cong to _<+>_ ; identityˡ to identityˡs ) identityʳs = proj₂ identity sSetoid : Setoid Level.zero Level.zero -- \structure{1.5}{Setoid, \ldots} sSetoid = record { Carrier = s; _≈_ = _≃s_; isEquivalence = isEquivs } open IsEquivalence isEquivs public hiding (reflexive) renaming (refl to refls ; sym to syms ; trans to transs) LowerBounds = LowerBound _≤s_ -- \structure{1.6}{Lower bounds} record SemiNearRing2 : Set₁ where -- \structure{2}{|SemiNearRing2|} field snr : SemiNearRing open SemiNearRing snr public -- public = export the "local" names from |SemiNearRing| field -- \structure{2.1}{Plus and times for |u|, \ldots} u : Set _+u_ : u → u → u _*u_ : u → u → u u2s : u → s _≃u_ : u → u → Set _≃u_ = _≃s_ Function.on u2s _u*s_ : u → s → s _u*s_ u s = u2s u *s s _s*u_ : s → u → s _s*u_ s u = s *s u2s u infix 4 _≃u_; infixl 6 _+u_; infixl 7 _*u_ _u*s_ _s*u_ uSetoid : Setoid Level.zero Level.zero uSetoid = record { isEquivalence = Relation.Binary.On.isEquivalence u2s isEquivs } _≤u_ : u → u → Set _≤u_ = _≤s_ Function.on u2s L : u → s → u → s → Set -- \structure{2.2}{Linear equation |L|} L a y b x = y +s (a u*s x +s x s*u b) ≃s x -- \structure{2.3}{Properties of |L|} UniqueL = ∀ {a y b} → UniqueSolution _≃s_ (L a y b) CongL = ∀ {a x b} -> ∀ {y y'} -> y ≃s y' -> L a y b x -> L a y' b x
{ "alphanum_fraction": 0.5574272588, "avg_line_length": 38.0388349515, "ext": "agda", "hexsha": "34d6dceddd0dea9f02a666554cae62944771323c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-29T04:53:48.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-29T04:53:48.000Z", "max_forks_repo_head_hexsha": "43729ff822a0b05c6cb74016b04bdc93c627b0b1", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "DSLsofMath/ValiantAgda", "max_forks_repo_path": "code/SemiNearRingRecords.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "43729ff822a0b05c6cb74016b04bdc93c627b0b1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "DSLsofMath/ValiantAgda", "max_issues_repo_path": "code/SemiNearRingRecords.agda", "max_line_length": 112, "max_stars_count": 3, "max_stars_repo_head_hexsha": "43729ff822a0b05c6cb74016b04bdc93c627b0b1", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "DSLsofMath/ValiantAgda", "max_stars_repo_path": "code/SemiNearRingRecords.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-15T03:04:31.000Z", "max_stars_repo_stars_event_min_datetime": "2016-10-23T00:41:14.000Z", "num_tokens": 1368, "size": 3918 }
{-# OPTIONS --cubical-compatible #-} module NewWithoutK where data ℕ : Set where zero : ℕ suc : ℕ → ℕ infixl 20 _+_ _+_ : ℕ → ℕ → ℕ zero + n = n (suc m) + n = suc (m + n) infixl 30 _*_ _*_ : ℕ → ℕ → ℕ zero * n = zero (suc m) * n = n + (m * n) infixl 5 _⊎_ data _⊎_ (A B : Set) : Set where inj₁ : A → A ⊎ B inj₂ : B → A ⊎ B infixl 10 _≡_ data _≡_ {A : Set} (a : A) : A → Set where refl : a ≡ a data _≤_ : ℕ → ℕ → Set where z≤n : {n : ℕ} → zero ≤ n s≤s : {m n : ℕ} → m ≤ n → suc m ≤ suc n foo : (k l m : ℕ) → k ≡ l + m → ℕ foo .(l + m) l m refl = zero bar : (n : ℕ) → n ≤ n → ℕ bar .zero z≤n = zero bar .(suc m) (s≤s {m} p) = zero baz : ∀ m n → m * n ≡ zero → m ≡ zero ⊎ n ≡ zero baz zero n h = inj₁ refl baz (suc m) zero h = inj₂ refl baz (suc x) (suc x₁) ()
{ "alphanum_fraction": 0.4817610063, "avg_line_length": 18.488372093, "ext": "agda", "hexsha": "33048501685102f194c2523503b66c404c25e98f", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/NewWithoutK.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/NewWithoutK.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/NewWithoutK.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 382, "size": 795 }
module Structure.Function.Domain where import Lvl open import Functional import Structure.Function.Names as Names open import Structure.Function open import Lang.Instance open import Logic open import Logic.Propositional open import Logic.Predicate open import Structure.Setoid open import Type private variable ℓₒ ℓₒ₁ ℓₒ₂ ℓₗ ℓₗ₁ ℓₗ₂ : Lvl.Level module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ (f : A → B) where record Injective : Stmt{ℓₒ₁ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where constructor intro field proof : Names.Injective(f) injective = inst-fn Injective.proof module _ {A : Type{ℓₒ₁}} {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ (f : A → B) where record Surjective : Stmt{ℓₒ₁ Lvl.⊔ ℓₒ₂ Lvl.⊔ ℓₗ₂} where constructor intro field proof : Names.Surjective(f) surjective = inst-fn Surjective.proof module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ (f : A → B) where record Bijective : Stmt{ℓₒ₁ Lvl.⊔ ℓₒ₂ Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where constructor intro field proof : Names.Bijective(f) bijective = inst-fn Bijective.proof module _ {A : Type{ℓₒ₁}} {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ (f : A → B) where module _ (f⁻¹ : B → A) where record Inverseᵣ : Stmt{ℓₒ₂ Lvl.⊔ ℓₗ₂} where constructor intro field proof : Names.Inverses(f)(f⁻¹) inverseᵣ = inst-fn Inverseᵣ.proof module _ ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ where Invertibleᵣ = ∃(f⁻¹ ↦ Function(f⁻¹) ∧ Inverseᵣ(f⁻¹)) module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} (f : A → B) where module _ (f⁻¹ : B → A) where Inverseₗ : Stmt Inverseₗ = Inverseᵣ(f⁻¹)(f) module Inverseₗ(inverseₗ) = Inverseᵣ{f = f⁻¹}{f⁻¹ = f}(inverseₗ) inverseₗ : ⦃ inverseₗ : Inverseₗ ⦄ → Names.Inverses(f⁻¹)(f) inverseₗ = inst-fn Inverseₗ.proof module _ ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ where Invertibleₗ = ∃(f⁻¹ ↦ Function(f⁻¹) ∧ Inverseₗ(f⁻¹)) module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ (f : A → B) where module _ (f⁻¹ : B → A) where Inverse = Inverseₗ(f)(f⁻¹) ∧ Inverseᵣ(f)(f⁻¹) inverse-left : ⦃ inverse : Inverse ⦄ → Names.Inverses(f⁻¹)(f) inverse-left = inst-fn(Inverseₗ.proof ∘ [∧]-elimₗ) inverse-right : ⦃ inverse : Inverse ⦄ → Names.Inverses(f)(f⁻¹) inverse-right = inst-fn(Inverseᵣ.proof ∘ [∧]-elimᵣ) Invertible = ∃(f⁻¹ ↦ Function(f⁻¹) ∧ Inverse(f⁻¹)) module _ {A : Type{ℓₒ₁}} ⦃ _ : Equiv{ℓₗ₁}(A) ⦄ {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ (([↔]-intro ba ab) : A ↔ B) where record InversePair : Type{Lvl.of(A) Lvl.⊔ Lvl.of(B) Lvl.⊔ ℓₗ₁ Lvl.⊔ ℓₗ₂} where constructor intro l = ba r = ab field ⦃ left ⦄ : Inverseₗ(l)(r) ⦃ right ⦄ : Inverseᵣ(l)(r) module _ {A : Type{ℓₒ₁}} {B : Type{ℓₒ₂}} ⦃ _ : Equiv{ℓₗ₂}(B) ⦄ (f : A → B) where record Constant : Stmt{ℓₒ₁ Lvl.⊔ ℓₗ₂} where constructor intro field proof : Names.Constant(f) constant = inst-fn Constant.proof module _ {A : Type{ℓₒ}} ⦃ _ : Equiv{ℓₗ}(A) ⦄ (f : A → A) where module _ (x : A) where record Fixpoint : Stmt{ℓₗ} where constructor intro field proof : Names.Fixpoint f(x) fixpoint = inst-fn Fixpoint.proof record Involution : Stmt{ℓₒ Lvl.⊔ ℓₗ} where constructor intro field proof : Names.Involution(f) involution = inst-fn Involution.proof record Idempotent : Stmt{ℓₒ Lvl.⊔ ℓₗ} where constructor intro field proof : Names.Idempotent(f) idempotent = inst-fn Idempotent.proof
{ "alphanum_fraction": 0.6276319585, "avg_line_length": 36.1145833333, "ext": "agda", "hexsha": "75e8cecf095d688a9f840b475ec63d761c1774f1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Function/Domain.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Function/Domain.agda", "max_line_length": 118, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Function/Domain.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1620, "size": 3467 }
module TYPE where data Pair (a b : Set1) : Set1 where pair : a -> b -> Pair a b data Unit : Set1 where unit : Unit
{ "alphanum_fraction": 0.6147540984, "avg_line_length": 13.5555555556, "ext": "agda", "hexsha": "8bfd76e5fbe80d160e622fc3d94d078f7077ae3e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "examples/AIM5/PolyDep/TYPE.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "examples/AIM5/PolyDep/TYPE.agda", "max_line_length": 35, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "examples/AIM5/PolyDep/TYPE.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 41, "size": 122 }
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-} module Cubical.Experiments.NatMinusTwo.Base where open import Cubical.Core.Primitives open import Cubical.Data.Nat open import Cubical.Data.Empty record ℕ₋₂ : Type₀ where constructor -2+_ field n : ℕ pattern neg2 = -2+ zero pattern neg1 = -2+ (suc zero) pattern ℕ→ℕ₋₂ n = -2+ (suc (suc n)) pattern -1+_ n = -2+ (suc n) 2+_ : ℕ₋₂ → ℕ 2+ (-2+ n) = n pred₋₂ : ℕ₋₂ → ℕ₋₂ pred₋₂ neg2 = neg2 pred₋₂ neg1 = neg2 pred₋₂ (ℕ→ℕ₋₂ zero) = neg1 pred₋₂ (ℕ→ℕ₋₂ (suc n)) = (ℕ→ℕ₋₂ n) suc₋₂ : ℕ₋₂ → ℕ₋₂ suc₋₂ (-2+ n) = -2+ (suc n) -- Natural number and negative integer literals for ℕ₋₂ open import Cubical.Data.Nat.Literals public instance fromNatℕ₋₂ : HasFromNat ℕ₋₂ fromNatℕ₋₂ = record { Constraint = λ _ → Unit ; fromNat = ℕ→ℕ₋₂ } instance fromNegℕ₋₂ : HasFromNeg ℕ₋₂ fromNegℕ₋₂ = record { Constraint = λ { (suc (suc (suc _))) → ⊥ ; _ → Unit } ; fromNeg = λ { zero → 0 ; (suc zero) → neg1 ; (suc (suc zero)) → neg2 } }
{ "alphanum_fraction": 0.6164383562, "avg_line_length": 24.3333333333, "ext": "agda", "hexsha": "0754efcd4d18b9bacd336b94d79d9808bd6a09c9", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z", "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Experiments/NatMinusTwo/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Experiments/NatMinusTwo/Base.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Experiments/NatMinusTwo/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 432, "size": 1022 }
{- Formal verification of authenticated append-only skiplists in Agda, version 1.0. Copyright (c) 2020 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Data.Unit.NonEta open import Data.Empty open import Data.Sum open import Data.Product open import Data.Product.Properties hiding (≡-dec) open import Data.Nat renaming (_≟_ to _≟ℕ_; _≤?_ to _≤?ℕ_) open import Data.Nat.Properties open import Data.List renaming (map to List-map) open import Data.List.Properties using (∷-injective; ≡-dec) open import Data.List.Relation.Unary.Any open import Data.List.Relation.Unary.All open import Data.Bool hiding (_<_; _≤_) renaming (_≟_ to _≟Bool_) open import Data.Maybe renaming (map to Maybe-map) open import Function open import Relation.Binary.PropositionalEquality open import Relation.Binary.Core open import Relation.Nullary -- This module defins a type to represent hashes, functions for encoding -- them, and properties about them module AAOSL.Abstract.Hash where open import AAOSL.Lemmas -- We define a ByteString as a list of bits ByteString : Set ByteString = List Bool -- TODO-1 : Hash -> Digest (to be consistent with the paper)? Or just comment? Hash : Set Hash = Σ ByteString (λ bs → length bs ≡ 32) _≟Hash_ : (h₁ h₂ : Hash) → Dec (h₁ ≡ h₂) (l , pl) ≟Hash (m , pm) with ≡-dec _≟Bool_ l m ...| yes refl = yes (cong (_,_ l) (≡-irrelevant pl pm)) ...| no abs = no (abs ∘ ,-injectiveˡ) encodeH : Hash → ByteString encodeH (bs , _) = bs encodeH-inj : ∀ i j → encodeH i ≡ encodeH j → i ≡ j encodeH-inj (i , pi) (j , pj) refl = cong (_,_ i) (≡-irrelevant pi pj) encodeH-len : ∀{h} → length (encodeH h) ≡ 32 encodeH-len { bs , p } = p encodeH-len-lemma : ∀ i j → length (encodeH i) ≡ length (encodeH j) encodeH-len-lemma i j = trans (encodeH-len {i}) (sym (encodeH-len {j})) -- This means that we can make a helper function that combines -- the necessary injections into one big injection ++b-2-inj : (h₁ h₂ : Hash){l₁ l₂ : Hash} → encodeH h₁ ++ encodeH l₁ ≡ encodeH h₂ ++ encodeH l₂ → h₁ ≡ h₂ × l₁ ≡ l₂ ++b-2-inj h₁ h₂ {l₁} {l₂} hip with ++-inj {m = encodeH h₁} {n = encodeH h₂} (encodeH-len-lemma h₁ h₂) hip ...| hh , ll = encodeH-inj h₁ h₂ hh , encodeH-inj l₁ l₂ ll Collision : {A B : Set}(f : A → B)(a₁ a₂ : A) → Set Collision f a₁ a₂ = a₁ ≢ a₂ × f a₁ ≡ f a₂ module WithCryptoHash -- A Hash function maps a bytestring into a hash. (hash : ByteString → Hash) (hash-cr : ∀{x y} → hash x ≡ hash y → Collision hash x y ⊎ x ≡ y) where HashBroke : Set HashBroke = Σ ( ByteString × ByteString ) (λ { (x₁ , x₂) → Collision hash x₁ x₂ }) hash-concat : List Hash → Hash hash-concat l = hash (concat (List-map encodeH l)) -- hash-concat isinjective, modulo hash collisions hash-concat-inj : ∀{l₁ l₂} → hash-concat l₁ ≡ hash-concat l₂ → HashBroke ⊎ l₁ ≡ l₂ hash-concat-inj {[]} {x ∷ xs} h with hash-cr h ...| inj₁ col = inj₁ (([] , encodeH x ++ foldr _++_ [] (List-map encodeH xs)) , col) ...| inj₂ abs = ⊥-elim (++-abs (encodeH x) (subst (1 ≤_) (sym (encodeH-len {x})) (s≤s z≤n)) abs) hash-concat-inj {x ∷ xs} {[]} h with hash-cr h ...| inj₁ col = inj₁ ((encodeH x ++ foldr _++_ [] (List-map encodeH xs) , []) , col) ...| inj₂ abs = ⊥-elim (++-abs (encodeH x) (subst (1 ≤_) (sym (encodeH-len {x})) (s≤s z≤n)) (sym abs)) hash-concat-inj {[]} {[]} h = inj₂ refl hash-concat-inj {x ∷ xs} {y ∷ ys} h with hash-cr h ...| inj₁ col = inj₁ ((encodeH x ++ foldr _++_ [] (List-map encodeH xs) , encodeH y ++ foldr _++_ [] (List-map encodeH ys)) , col) ...| inj₂ res with ++-inj {m = encodeH x} {n = encodeH y} (encodeH-len-lemma x y) res ...| xy , xsys with hash-concat-inj {l₁ = xs} {l₂ = ys} (cong hash xsys) ...| inj₁ hb = inj₁ hb ...| inj₂ final = inj₂ (cong₂ _∷_ (encodeH-inj x y xy) final)
{ "alphanum_fraction": 0.6390442298, "avg_line_length": 40.1428571429, "ext": "agda", "hexsha": "994201e1f52ad6fa337491c07fb7fbb540cf8eab", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-02-18T04:33:50.000Z", "max_forks_repo_forks_event_min_datetime": "2020-12-22T00:01:03.000Z", "max_forks_repo_head_hexsha": "318881fb24af06bbaafa33edeea0745eca1873f0", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/aaosl-agda", "max_forks_repo_path": "AAOSL/Abstract/Hash.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "318881fb24af06bbaafa33edeea0745eca1873f0", "max_issues_repo_issues_event_max_datetime": "2021-02-12T04:16:40.000Z", "max_issues_repo_issues_event_min_datetime": "2021-01-04T03:45:34.000Z", "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/aaosl-agda", "max_issues_repo_path": "AAOSL/Abstract/Hash.agda", "max_line_length": 132, "max_stars_count": 9, "max_stars_repo_head_hexsha": "318881fb24af06bbaafa33edeea0745eca1873f0", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/aaosl-agda", "max_stars_repo_path": "AAOSL/Abstract/Hash.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-31T10:16:38.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-22T00:01:00.000Z", "num_tokens": 1364, "size": 3934 }
------------------------------------------------------------------------ -- Characters ------------------------------------------------------------------------ module Data.Char where open import Data.Nat using (ℕ) open import Data.Bool using (Bool; true; false) open import Relation.Nullary open import Relation.Binary open import Relation.Binary.PropositionalEquality as PropEq using (_≡_) ------------------------------------------------------------------------ -- The type postulate Char : Set {-# BUILTIN CHAR Char #-} {-# COMPILED_TYPE Char Char #-} ------------------------------------------------------------------------ -- Operations private primitive primCharToNat : Char → ℕ primCharEquality : Char → Char → Bool toNat : Char → ℕ toNat = primCharToNat infix 4 _==_ _==_ : Char → Char → Bool _==_ = primCharEquality _≟_ : Decidable {Char} _≡_ s₁ ≟ s₂ with s₁ == s₂ ... | true = yes trustMe where postulate trustMe : _ ... | false = no trustMe where postulate trustMe : _ setoid : Setoid setoid = PropEq.setoid Char decSetoid : DecSetoid decSetoid = PropEq.decSetoid _≟_
{ "alphanum_fraction": 0.5189530686, "avg_line_length": 22.16, "ext": "agda", "hexsha": "1a8fed138a280298744ded9cda8f94ad1934a489", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z", "max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z", "max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "isabella232/Lemmachine", "max_forks_repo_path": "vendor/stdlib/src/Data/Char.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "larrytheliquid/Lemmachine", "max_issues_repo_path": "vendor/stdlib/src/Data/Char.agda", "max_line_length": 72, "max_stars_count": 56, "max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "isabella232/Lemmachine", "max_stars_repo_path": "vendor/stdlib/src/Data/Char.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z", "num_tokens": 258, "size": 1108 }
------------------------------------------------------------------------ -- A virtual machine ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Lambda.Simplified.Delay-monad.Virtual-machine where open import Equality.Propositional open import Prelude open import Monad equality-with-J open import Delay-monad open import Delay-monad.Monad open import Lambda.Simplified.Delay-monad.Interpreter open import Lambda.Simplified.Syntax open import Lambda.Simplified.Virtual-machine open Closure Code -- A functional semantics for the VM. exec : ∀ {i} → State → Delay (Maybe Value) i exec s with step s ... | continue s′ = later λ { .force → exec s′ } ... | done v = return (just v) ... | crash = return nothing
{ "alphanum_fraction": 0.5923566879, "avg_line_length": 26.1666666667, "ext": "agda", "hexsha": "d155cd11101f76197bb4c72c3a7a153ad3f18768", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/partiality-monad", "max_forks_repo_path": "src/Lambda/Simplified/Delay-monad/Virtual-machine.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/partiality-monad", "max_issues_repo_path": "src/Lambda/Simplified/Delay-monad/Virtual-machine.agda", "max_line_length": 72, "max_stars_count": 2, "max_stars_repo_head_hexsha": "f69749280969f9093e5e13884c6feb0ad2506eae", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/partiality-monad", "max_stars_repo_path": "src/Lambda/Simplified/Delay-monad/Virtual-machine.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:08.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:59:18.000Z", "num_tokens": 153, "size": 785 }
{-# OPTIONS --safe #-} module Cubical.Data.Maybe.Base where open import Cubical.Core.Everything private variable ℓ ℓA ℓB : Level A : Type ℓA B : Type ℓB data Maybe (A : Type ℓ) : Type ℓ where nothing : Maybe A just : A → Maybe A caseMaybe : (n j : B) → Maybe A → B caseMaybe n _ nothing = n caseMaybe _ j (just _) = j map-Maybe : (A → B) → Maybe A → Maybe B map-Maybe _ nothing = nothing map-Maybe f (just x) = just (f x) rec : B → (A → B) → Maybe A → B rec n j nothing = n rec n j (just a) = j a elim : ∀ {A : Type ℓA} (B : Maybe A → Type ℓB) → B nothing → ((x : A) → B (just x)) → (mx : Maybe A) → B mx elim B n j nothing = n elim B n j (just a) = j a
{ "alphanum_fraction": 0.5833333333, "avg_line_length": 22.064516129, "ext": "agda", "hexsha": "1712b822ca0d67e5f447121216732791c9d643ba", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Data/Maybe/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Data/Maybe/Base.agda", "max_line_length": 107, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Data/Maybe/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 259, "size": 684 }
module Issue833-2 where -- Arbitrary data type record unit : Set where constructor tt module Test ⦃ m : unit ⦄ { n : unit } where open Test { tt }
{ "alphanum_fraction": 0.6732026144, "avg_line_length": 13.9090909091, "ext": "agda", "hexsha": "96eb1cf537e34564ddba7d7aa763ed9c3bc95442", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue833-2.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue833-2.agda", "max_line_length": 43, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue833-2.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 45, "size": 153 }
{-# OPTIONS --without-K #-} module sets.fin.universe where open import level open import sum open import decidable open import equality.core open import equality.calculus open import equality.inspect open import function.isomorphism open import function.core open import function.extensionality open import function.fibration open import function.overloading open import sets.core open import sets.properties open import sets.nat.core hiding (_≟_) open import sets.nat.ordering hiding (compare) open import sets.fin.core open import sets.fin.ordering open import sets.fin.properties open import sets.unit open import sets.empty open import sets.bool open import sets.vec.dependent open import hott.level.core open import hott.level.closure open import hott.level.sets fin-struct-iso : ∀ {n} → Fin (suc n) ≅ (⊤ {lzero} ⊎ Fin n) fin-struct-iso = record { to = λ { zero → inj₁ tt; (suc i) → inj₂ i } ; from = [ (λ _ → zero) ,⊎ (suc) ] ; iso₁ = λ { zero → refl ; (suc i) → refl } ; iso₂ = λ { (inj₁ _) → refl; (inj₂ i) → refl } } fin0-empty : ⊥ ≅ Fin 0 fin0-empty = sym≅ (empty-⊥-iso (λ ())) fin1-unit : ∀ {i} → ⊤ {i} ≅ Fin 1 fin1-unit = record { to = λ _ → zero ; from = λ { zero → tt ; (suc ()) } ; iso₁ = λ _ → refl ; iso₂ = λ { zero → refl ; (suc ()) } } fin2-bool : Bool ≅ Fin 2 fin2-bool = record { to = λ b → if b then # 0 else # 1 ; from = true ∷∷ false ∷∷ ⟦⟧ ; iso₁ = λ { true → refl ; false → refl } ; iso₂ = refl ∷∷ refl ∷∷ ⟦⟧ } fin-sum : ∀ {n m} → (Fin n ⊎ Fin m) ≅ Fin (n + m) fin-sum {0} = record { to = λ { (inj₁ ()) ; (inj₂ j) → j } ; from = λ { j → inj₂ j } ; iso₁ = λ { (inj₁ ()); (inj₂ j) → refl } ; iso₂ = λ _ → refl } fin-sum {suc n}{m} = begin (Fin (suc n) ⊎ Fin m) ≅⟨ ⊎-ap-iso fin-struct-iso refl≅ ⟩ ((⊤ ⊎ Fin n) ⊎ Fin m) ≅⟨ ⊎-assoc-iso ⟩ (⊤ ⊎ (Fin n ⊎ Fin m)) ≅⟨ ⊎-ap-iso refl≅ fin-sum ⟩ (⊤ ⊎ Fin (n + m)) ≅⟨ sym≅ fin-struct-iso ⟩ Fin (suc (n + m)) ∎ where open ≅-Reasoning fin-prod : ∀ {n m} → (Fin n × Fin m) ≅ Fin (n * m) fin-prod {0} = iso (λ { (() , _) }) (λ ()) (λ { (() , _) }) (λ ()) fin-prod {suc n}{m} = begin (Fin (suc n) × Fin m) ≅⟨ ×-ap-iso fin-struct-iso refl≅ ⟩ ((⊤ ⊎ Fin n) × Fin m) ≅⟨ ⊎×-distr-iso ⟩ ((⊤ × Fin m) ⊎ (Fin n × Fin m)) ≅⟨ ⊎-ap-iso ×-left-unit fin-prod ⟩ (Fin m ⊎ (Fin (n * m))) ≅⟨ fin-sum ⟩ (Fin (m + (n * m))) ≡⟨ refl ⟩ Fin (suc n * m) ∎ where open ≅-Reasoning fin-exp : ∀ {n m} → (Fin n → Fin m) ≅ Fin (m ^ n) fin-exp {0} = record { to = λ f → zero ; from = (λ ()) ∷∷ ⟦⟧ ; iso₁ = λ f → funext λ () ; iso₂ = refl ∷∷ ⟦⟧ } fin-exp {suc n}{m} = begin (Fin (suc n) → Fin m) ≅⟨ (Π-ap-iso fin-struct-iso λ _ → refl≅) ⟩ ((⊤ ⊎ Fin n) → Fin m) ≅⟨ iso (λ f → f (inj₁ tt) , f ∘' inj₂) (λ { (i , _) (inj₁ _) → i ; (_ , g) (inj₂ i) → g i }) (λ f → funext λ { (inj₁ tt) → refl ; (inj₂ i) → refl }) (λ { (i , g) → refl }) ⟩ (Fin m × (Fin n → Fin m)) ≅⟨ ×-ap-iso refl≅ fin-exp ⟩ (Fin m × Fin (m ^ n)) ≅⟨ fin-prod ⟩ Fin (m ^ (suc n)) ∎ where open ≅-Reasoning factorial : ℕ → ℕ factorial 0 = 1 factorial (suc n) = suc n * factorial n fin-inj-iso : ∀ {n} → (Fin n ≅ Fin n) ≅ (Fin n ↣ Fin n) fin-inj-iso {n} = record { to = λ f → (apply f , iso⇒inj f) ; from = λ { (f , inj) → inj⇒iso f inj } ; iso₁ = λ f → iso-eq-h2 (fin-set n) (fin-set n) refl ; iso₂ = λ { (f , inj) → inj-eq-h2 (fin-set n) refl } } fin-iso-iso : ∀ {n} → (Fin n ↣ Fin n) ≅ Fin (factorial n) fin-iso-iso {0} = record { to = λ { (f , _) → zero } ; from = λ _ → (λ ()) , (λ { {()} p }) ; iso₁ = λ { (f , _) → inj-eq-h2 (fin-set _) (funext λ ()) } ; iso₂ = λ { zero → refl ; (suc ()) } } fin-iso-iso {suc n} = begin (X ↣ X) ≅⟨ sym≅ (total-iso classify) ⟩ (Σ X λ i → classify ⁻¹ i) ≅⟨ (Σ-ap-iso₂ λ i → trans≅ (sym≅ (const-fibre i)) fibre-zero-iso) ⟩ (Fin (suc n) × (Fin n ↣ Fin n)) ≅⟨ ×-ap-iso refl≅ fin-iso-iso ⟩ (Fin (suc n) × Fin (factorial n)) ≅⟨ fin-prod ⟩ Fin (factorial (suc n)) ∎ where X = Fin (suc n) open ≅-Reasoning classify : (X ↣ X) → X classify (f , _) = f zero const-fibre : (i : X) → classify ⁻¹ zero ≅ classify ⁻¹ i const-fibre i = begin ( Σ (X ↣ X) λ { (f , _) → f zero ≡ zero } ) ≅⟨ ( Σ-ap-iso (transpose-inj-iso' zero i) (λ { (f , inj) → mk-prop-iso (fin-set _ _ _) (fin-set _ _ _) (ap (transpose zero i)) (u f) }) ) ⟩ ( Σ (X ↣ X) λ { (f , _) → f zero ≡ i } ) ∎ where u : (f : X → X) → transpose zero i (f zero) ≡ i → f zero ≡ zero u f p = sym (_≅_.iso₁ (transpose-iso zero i) (f zero)) · (ap (transpose zero i) p · transpose-β₂ zero i) fibre-zero-iso : classify ⁻¹ zero ≅ (Fin n ↣ Fin n) fibre-zero-iso = record { to = λ { (f , z) → fin-inj-remove₀ f z } ; from = λ { g → fin-inj-add g , refl } ; iso₁ = λ { (f , p) → unapΣ (inj-eq-h2 (fin-set (suc n)) (funext (α f p )) , h1⇒prop (fin-set (suc n) _ _) _ _) } ; iso₂ = λ g → inj-eq-h2 (fin-set n) refl } where α : (f : Fin (suc n) ↣ Fin (suc n)) → (p : apply f zero ≡ zero) → (i : Fin (suc n)) → apply (fin-inj-add (fin-inj-remove₀ f p)) i ≡ apply f i α _ p zero = sym p α (f , f-inj) p (suc i) = pred-β (f (suc i)) (λ q → fin-disj _ (f-inj (p · sym q))) fin-subsets : ∀ {n} → (Fin n → Bool) ≅ Fin (2 ^ n) fin-subsets = trans≅ (Π-ap-iso refl≅ λ _ → fin2-bool) fin-exp
{ "alphanum_fraction": 0.489871411, "avg_line_length": 30.1968085106, "ext": "agda", "hexsha": "85292646bb4e4117375eb599798c6647a603d494", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2019-05-04T19:31:00.000Z", "max_forks_repo_forks_event_min_datetime": "2015-02-02T12:17:00.000Z", "max_forks_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pcapriotti/agda-base", "max_forks_repo_path": "src/sets/fin/universe.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_issues_repo_issues_event_max_datetime": "2016-10-26T11:57:26.000Z", "max_issues_repo_issues_event_min_datetime": "2015-02-02T14:32:16.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pcapriotti/agda-base", "max_issues_repo_path": "src/sets/fin/universe.agda", "max_line_length": 69, "max_stars_count": 20, "max_stars_repo_head_hexsha": "bbbc3bfb2f80ad08c8e608cccfa14b83ea3d258c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pcapriotti/agda-base", "max_stars_repo_path": "src/sets/fin/universe.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-01T11:25:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-06-12T12:20:17.000Z", "num_tokens": 2341, "size": 5677 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Instance.Properties.Setoids.Extensive where open import Level open import Data.Product using (∃; Σ; proj₁; proj₂; _,_; _×_) open import Data.Sum.Base as Sum using (_⊎_; inj₁; inj₂) open import Data.Sum.Relation.Binary.Pointwise using (inj₁; inj₂; _⊎ₛ_; drop-inj₁; drop-inj₂) open import Data.Unit.Polymorphic using (tt) open import Function.Equality using (Π; _⟶_; _⇨_; _∘_) open import Relation.Binary using (Setoid) import Relation.Binary.Reasoning.Setoid as SetoidR open import Categories.Category using (Category; _[_,_]) open import Categories.Category.Instance.Setoids using (Setoids) open import Categories.Category.Extensive using (Extensive) open import Categories.Category.Cocartesian using (Cocartesian) open import Categories.Diagram.Pullback using (Pullback) open import Categories.Category.Instance.Properties.Setoids.Limits.Canonical using (pullback; FiberProduct) open import Categories.Category.Monoidal.Instance.Setoids using (Setoids-Cocartesian) open Π open Pullback -- Note the Setoids is extensive if the two levels coincide. Whether it happens more generally -- is unknown at this point. Setoids-Extensive : (ℓ : Level) → Extensive (Setoids ℓ ℓ) Setoids-Extensive ℓ = record { cocartesian = record { initial = initial ; coproducts = coproducts } ; pullback₁ = λ f → pullback ℓ ℓ f i₁ ; pullback₂ = λ f → pullback ℓ ℓ f i₂ ; pullback-of-cp-is-cp = λ f → record { [_,_] = λ g h → copair f g h ; inject₁ = λ {X g h z} eq → trans (isEquivalence X) (copair-inject₁ f g h z) (cong g eq) ; inject₂ = λ {X g h z} eq → trans (isEquivalence X) (copair-inject₂ f g h z) (cong h eq) ; unique = λ {X u g h} feq₁ feq₂ {z} eq → trans (isEquivalence X) (copair-unique f g h u z (λ {z} → feq₁ {z}) (λ {z} → feq₂ {z})) (cong u eq) } ; pullback₁-is-mono = λ _ _ eq x≈y → drop-inj₁ (eq x≈y) ; pullback₂-is-mono = λ _ _ eq x≈y → drop-inj₂ (eq x≈y) ; disjoint = λ {A B} → record { commute = λ { {()} _} ; universal = λ {C f g} eq → record { _⟨$⟩_ = λ z → conflict A B (eq {x = z} (refl (isEquivalence C))) ; cong = λ z → tt } ; unique = λ _ _ _ → tt ; p₁∘universal≈h₁ = λ {_ _ _ eq} x≈y → conflict A B (eq x≈y) ; p₂∘universal≈h₂ = λ {_ _ _ eq} x≈y → conflict A B (eq x≈y) } } where open Cocartesian (Setoids-Cocartesian {ℓ} {ℓ}) open Relation.Binary.IsEquivalence open Setoid renaming (_≈_ to [_][_≈_]; Carrier to ∣_∣) using (isEquivalence) -- must be in the standard library. Maybe it is? conflict : ∀ {ℓ ℓ' ℓ''} (X Y : Setoid ℓ ℓ') {Z : Set ℓ''} {x : ∣ X ∣} {y : ∣ Y ∣} → [ X ⊎ₛ Y ][ inj₁ x ≈ inj₂ y ] → Z conflict X Y () module Diagram {A B C X : Setoid ℓ ℓ} (f : C ⟶ A ⊎ₛ B) (g : P (pullback ℓ ℓ f i₁) ⟶ X) (h : P (pullback ℓ ℓ f i₂) ⟶ X) where private module A = Setoid A module B = Setoid B module C = Setoid C module X = Setoid X A⊎B = A ⊎ₛ B module A⊎B = Setoid (A ⊎ₛ B) A′ = P (pullback ℓ ℓ f i₁) B′ = P (pullback ℓ ℓ f i₂) A⊎B′ = A′ ⊎ₛ B′ module A⊎B′ = Setoid A⊎B′ open SetoidR A⊎B′ _⊎⟶_ : {o₁ o₂ o₃ ℓ₁ ℓ₂ ℓ₃ : Level} {X : Setoid o₁ ℓ₁} {Y : Setoid o₂ ℓ₂} {Z : Setoid o₃ ℓ₃} → (X ⟶ Z) → (Y ⟶ Z) → (X ⊎ₛ Y) ⟶ Z f₁ ⊎⟶ f₂ = record { _⟨$⟩_ = Sum.[ f₁ ⟨$⟩_ , f₂ ⟨$⟩_ ] ; cong = λ { (inj₁ x) → cong f₁ x ; (inj₂ x) → cong f₂ x} } to-⊎ₛ : (z : ∣ C ∣) → (w : ∣ A ⊎ₛ B ∣) → (eq : [ A⊎B ][ f ⟨$⟩ z ≈ w ]) → ∣ A′ ⊎ₛ B′ ∣ to-⊎ₛ z (inj₁ x) eq = inj₁ (record { elem₁ = z ; elem₂ = x ; commute = eq }) to-⊎ₛ z (inj₂ y) eq = inj₂ (record { elem₁ = z ; elem₂ = y ; commute = eq }) to-⊎ₛ-cong : {z : ∣ C ∣} {w w′ : ∣ A ⊎ₛ B ∣ } → [ A⊎B ][ w ≈ w′ ] → {eq : [ A⊎B ][ f ⟨$⟩ z ≈ w ]} → {eq′ : [ A⊎B ][ f ⟨$⟩ z ≈ w′ ]} → [ A⊎B′ ][ to-⊎ₛ z w eq ≈ to-⊎ₛ z w′ eq′ ] to-⊎ₛ-cong (inj₁ x) = inj₁ (C.refl , x) to-⊎ₛ-cong (inj₂ x) = inj₂ (C.refl , x) f⟨$⟩→ : (z : ∣ C ∣) → ∣ A′ ⊎ₛ B′ ∣ f⟨$⟩→ z = to-⊎ₛ z (f ⟨$⟩ z) A⊎B.refl f⟨$⟩-cong′ : {z z′ : ∣ C ∣} → (z≈z′ : [ C ][ z ≈ z′ ]) → (w w′ : ∣ A ⊎ₛ B ∣) → [ A⊎B ][ f ⟨$⟩ z ≈ w ] → [ A⊎B ][ f ⟨$⟩ z′ ≈ w′ ] → [ A′ ⊎ₛ B′ ][ f⟨$⟩→ z ≈ f⟨$⟩→ z′ ] f⟨$⟩-cong′ {z} {z′} z≈z′ (inj₁ x) (inj₁ x₁) fz≈w fz′≈w′ = begin f⟨$⟩→ z ≈⟨ A⊎B′.refl ⟩ to-⊎ₛ z (f ⟨$⟩ z) A⊎B.refl ≈⟨ to-⊎ₛ-cong fz≈w ⟩ to-⊎ₛ z (inj₁ x) fz≈w ≈⟨ inj₁ (z≈z′ , (drop-inj₁ (A⊎B.trans (A⊎B.sym fz≈w) (A⊎B.trans (cong f z≈z′) fz′≈w′)))) ⟩ to-⊎ₛ z′ (inj₁ x₁) fz′≈w′ ≈⟨ to-⊎ₛ-cong (A⊎B.sym fz′≈w′) ⟩ to-⊎ₛ z′ (f ⟨$⟩ z′) A⊎B.refl ≈⟨ A⊎B′.refl ⟩ f⟨$⟩→ z′ ∎ f⟨$⟩-cong′ z≈z′ (inj₁ x) (inj₂ y) fz≈w fz′≈w′ = conflict A B (A⊎B.trans (A⊎B.sym fz≈w) (A⊎B.trans (cong f z≈z′) fz′≈w′)) f⟨$⟩-cong′ z≈z′ (inj₂ y) (inj₁ x) fz≈w fz′≈w′ = conflict A B (A⊎B.trans (A⊎B.sym fz′≈w′) (A⊎B.trans (cong f (C.sym z≈z′)) fz≈w)) f⟨$⟩-cong′ {z} {z′} z≈z′ (inj₂ y) (inj₂ y₁) fz≈w fz′≈w′ = begin to-⊎ₛ z (f ⟨$⟩ z) A⊎B.refl ≈⟨ to-⊎ₛ-cong fz≈w ⟩ to-⊎ₛ z (inj₂ y) fz≈w ≈⟨ inj₂ (z≈z′ , (drop-inj₂ (A⊎B.trans (A⊎B.sym fz≈w) (A⊎B.trans (cong f z≈z′) fz′≈w′)))) ⟩ to-⊎ₛ z′ (inj₂ y₁) fz′≈w′ ≈⟨ to-⊎ₛ-cong (A⊎B.sym fz′≈w′) ⟩ to-⊎ₛ z′ (f ⟨$⟩ z′) A⊎B.refl ∎ f⟨$⟩-cong : {i j : ∣ C ∣} → i C.≈ j → [ A′ ⊎ₛ B′ ][ f⟨$⟩→ i ≈ f⟨$⟩→ j ] f⟨$⟩-cong {i} {j} i≈j = f⟨$⟩-cong′ i≈j (f ⟨$⟩ i) (f ⟨$⟩ j) A⊎B.refl A⊎B.refl f⟨$⟩ : C ⟶ A′ ⊎ₛ B′ f⟨$⟩ = record { _⟨$⟩_ = f⟨$⟩→ ; cong = f⟨$⟩-cong } -- copairing of g : A′ → X and h : B′ → X, resulting in C → X copair : C ⟶ X copair = (g ⊎⟶ h) ∘ f⟨$⟩ copair-inject₁ : (z : FiberProduct f i₁) → [ X ][ copair ⟨$⟩ (FiberProduct.elem₁ z) ≈ g ⟨$⟩ z ] copair-inject₁ record { elem₁ = z ; elem₂ = x ; commute = eq } = cong (g ⊎⟶ h) (to-⊎ₛ-cong eq) copair-inject₂ : (z : FiberProduct f i₂) → [ X ][ copair ⟨$⟩ (FiberProduct.elem₁ z) ≈ h ⟨$⟩ z ] copair-inject₂ record { elem₁ = z ; elem₂ = y ; commute = eq } = cong (g ⊎⟶ h) (to-⊎ₛ-cong eq) copair-unique′ : (u : C ⟶ X) (z : ∣ C ∣) → [ A′ ⇨ X ][ u ∘ p₁ (pullback ℓ ℓ f i₁) ≈ g ] → [ B′ ⇨ X ][ u ∘ p₁ (pullback ℓ ℓ f i₂) ≈ h ] → (w : ∣ A⊎B ∣) → [ A⊎B ][ f ⟨$⟩ z ≈ w ] → [ X ][ copair ⟨$⟩ z ≈ u ⟨$⟩ z ] copair-unique′ u z feq₁ feq₂ (inj₁ x) fz≈w = XR.begin copair ⟨$⟩ z XR.≈⟨ X.refl ⟩ g ⊎⟶ h ⟨$⟩ (to-⊎ₛ z (f ⟨$⟩ z) A⊎B.refl) XR.≈⟨ cong (g ⊎⟶ h) (to-⊎ₛ-cong fz≈w) ⟩ g ⊎⟶ h ⟨$⟩ (to-⊎ₛ z (inj₁ x) fz≈w) XR.≈⟨ X.refl ⟩ g ⟨$⟩ fb XR.≈⟨ X.sym (feq₁ {x = fb} (C.refl , A.refl)) ⟩ u ⟨$⟩ z XR.∎ where module XR = SetoidR X fb = record {elem₁ = z ; elem₂ = x; commute = fz≈w } copair-unique′ u z feq₁ feq₂ (inj₂ y) fz≈w = XR.begin copair ⟨$⟩ z XR.≈⟨ X.refl ⟩ g ⊎⟶ h ⟨$⟩ (to-⊎ₛ z (f ⟨$⟩ z) A⊎B.refl) XR.≈⟨ cong (g ⊎⟶ h) (to-⊎ₛ-cong fz≈w) ⟩ g ⊎⟶ h ⟨$⟩ (to-⊎ₛ z (inj₂ y) fz≈w) XR.≈⟨ X.refl ⟩ h ⟨$⟩ fb XR.≈⟨ X.sym (feq₂ {x = fb} {y = fb} (C.refl , B.refl)) ⟩ u ⟨$⟩ z XR.∎ where module XR = SetoidR X fb = record {elem₁ = z ; elem₂ = y; commute = fz≈w } copair-unique : (u : C ⟶ X) (z : ∣ C ∣) → [ A′ ⇨ X ][ u ∘ p₁ (pullback ℓ ℓ f i₁) ≈ g ] → [ B′ ⇨ X ][ u ∘ p₁ (pullback ℓ ℓ f i₂) ≈ h ] → [ X ][ copair ⟨$⟩ z ≈ u ⟨$⟩ z ] copair-unique u z feq₁ feq₂ = copair-unique′ u z (λ {x} {y} → feq₁ {x} {y}) (λ {x} {y} → feq₂ {x} {y}) (f ⟨$⟩ z) A⊎B.refl open Diagram
{ "alphanum_fraction": 0.4555082167, "avg_line_length": 49.4879518072, "ext": "agda", "hexsha": "9879ce05c7587f1ac3a9c772ad1eb70c6957db4a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Code-distancing/agda-categories", "max_forks_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Extensive.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Code-distancing/agda-categories", "max_issues_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Extensive.agda", "max_line_length": 137, "max_stars_count": 5, "max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Trebor-Huang/agda-categories", "max_stars_repo_path": "src/Categories/Category/Instance/Properties/Setoids/Extensive.agda", "max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z", "max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z", "num_tokens": 3761, "size": 8215 }
module A4 where -- open import Data.Nat open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Groupoid ------------------------------------------------------------------------------ -- Level 0: -- types are collections of points -- equivalences are between points module Pi0 where infixr 10 _◎_ infixr 30 _⟷_ -- types data U : Set where ZERO : U ONE : U PLUS : U → U → U TIMES : U → U → U -- values ⟦_⟧ : U → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ -- Examples BOOL : U BOOL = PLUS ONE ONE BOOL² : U BOOL² = TIMES BOOL BOOL TRUE : ⟦ BOOL ⟧ TRUE = inj₁ tt FALSE : ⟦ BOOL ⟧ FALSE = inj₂ tt -- combinators data _⟷_ : U → U → Set where unite₊ : {t : U} → PLUS ZERO t ⟷ t uniti₊ : {t : U} → t ⟷ PLUS ZERO t swap₊ : {t₁ t₂ : U} → PLUS t₁ t₂ ⟷ PLUS t₂ t₁ assocl₊ : {t₁ t₂ t₃ : U} → PLUS t₁ (PLUS t₂ t₃) ⟷ PLUS (PLUS t₁ t₂) t₃ assocr₊ : {t₁ t₂ t₃ : U} → PLUS (PLUS t₁ t₂) t₃ ⟷ PLUS t₁ (PLUS t₂ t₃) unite⋆ : {t : U} → TIMES ONE t ⟷ t uniti⋆ : {t : U} → t ⟷ TIMES ONE t swap⋆ : {t₁ t₂ : U} → TIMES t₁ t₂ ⟷ TIMES t₂ t₁ assocl⋆ : {t₁ t₂ t₃ : U} → TIMES t₁ (TIMES t₂ t₃) ⟷ TIMES (TIMES t₁ t₂) t₃ assocr⋆ : {t₁ t₂ t₃ : U} → TIMES (TIMES t₁ t₂) t₃ ⟷ TIMES t₁ (TIMES t₂ t₃) distz : {t : U} → TIMES ZERO t ⟷ ZERO factorz : {t : U} → ZERO ⟷ TIMES ZERO t dist : {t₁ t₂ t₃ : U} → TIMES (PLUS t₁ t₂) t₃ ⟷ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) factor : {t₁ t₂ t₃ : U} → PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) ⟷ TIMES (PLUS t₁ t₂) t₃ id⟷ : {t : U} → t ⟷ t sym⟷ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁) _◎_ : {t₁ t₂ t₃ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (PLUS t₁ t₂ ⟷ PLUS t₃ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (TIMES t₁ t₂ ⟷ TIMES t₃ t₄) -- Examples COND : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) → ((TIMES BOOL t₁) ⟷ (TIMES BOOL t₂)) COND f g = dist ◎ ((id⟷ ⊗ f) ⊕ (id⟷ ⊗ g)) ◎ factor CONTROLLED : {t : U} → (t ⟷ t) → ((TIMES BOOL t) ⟷ (TIMES BOOL t)) CONTROLLED f = COND f id⟷ CNOT : BOOL² ⟷ BOOL² CNOT = CONTROLLED swap₊ ------------------------------------------------------------------------------ -- Level 1 -- types are collections of paths (where paths are equivalences between points) -- equivalences are between paths module Pi1 where -- types data U : Set where {- LIFT : Pi0.U → U PLUS : U → U → U TIMES : U → U → U -} EQUIV : {t₁ t₂ : Pi0.U} → (t₁ Pi0.⟷ t₂) → Pi0.⟦ t₁ ⟧ → Pi0.⟦ t₂ ⟧ → U -- extractor, dependently typed. srcU : U → Σ Pi0.U Pi0.⟦_⟧ srcU (EQUIV {t₁} {t₂} c x y) = t₁ , x -- values data Path⊤ : Set where pathtt : Path⊤ data Path⊎ (A B : Set) : Set where pathLeft : A → Path⊎ A B pathRight : B → Path⊎ A B data Path× (A B : Set) : Set where pathPair : A → B → Path× A B data Unite₊ {t : Pi0.U} : Pi0.⟦ Pi0.PLUS Pi0.ZERO t ⟧ → Pi0.⟦ t ⟧ → Set where pathUnite₊ : (v : Pi0.⟦ t ⟧) → Unite₊ (inj₂ v) v data Uniti₊ {t : Pi0.U} : Pi0.⟦ t ⟧ → Pi0.⟦ Pi0.PLUS Pi0.ZERO t ⟧ → Set where pathUniti₊ : (v : Pi0.⟦ t ⟧) → Uniti₊ v (inj₂ v) data Swap₊ {t₁ t₂ : Pi0.U} : Pi0.⟦ Pi0.PLUS t₁ t₂ ⟧ → Pi0.⟦ Pi0.PLUS t₂ t₁ ⟧ → Set where path1Swap₊ : (v₁ : Pi0.⟦ t₁ ⟧) → Swap₊ (inj₁ v₁) (inj₂ v₁) path2Swap₊ : (v₂ : Pi0.⟦ t₂ ⟧) → Swap₊ (inj₂ v₂) (inj₁ v₂) data Assocl₊ {t₁ t₂ t₃ : Pi0.U} : Pi0.⟦ Pi0.PLUS t₁ (Pi0.PLUS t₂ t₃) ⟧ → Pi0.⟦ Pi0.PLUS (Pi0.PLUS t₁ t₂) t₃ ⟧ → Set where path1Assocl₊ : (v₁ : Pi0.⟦ t₁ ⟧) → Assocl₊ (inj₁ v₁) (inj₁ (inj₁ v₁)) path2Assocl₊ : (v₂ : Pi0.⟦ t₂ ⟧) → Assocl₊ (inj₂ (inj₁ v₂)) (inj₁ (inj₂ v₂)) path3Assocl₊ : (v₃ : Pi0.⟦ t₃ ⟧) → Assocl₊ (inj₂ (inj₂ v₃)) (inj₂ v₃) data Assocr₊ {t₁ t₂ t₃ : Pi0.U} : Pi0.⟦ Pi0.PLUS (Pi0.PLUS t₁ t₂) t₃ ⟧ → Pi0.⟦ Pi0.PLUS t₁ (Pi0.PLUS t₂ t₃) ⟧ → Set where path1Assocr₊ : (v₁ : Pi0.⟦ t₁ ⟧) → Assocr₊ (inj₁ (inj₁ v₁)) (inj₁ v₁) path2Assocr₊ : (v₂ : Pi0.⟦ t₂ ⟧) → Assocr₊ (inj₁ (inj₂ v₂)) (inj₂ (inj₁ v₂)) path3Assocr₊ : (v₃ : Pi0.⟦ t₃ ⟧) → Assocr₊ (inj₂ v₃) (inj₂ (inj₂ v₃)) data Unite⋆ {t : Pi0.U} : Pi0.⟦ Pi0.TIMES Pi0.ONE t ⟧ → Pi0.⟦ t ⟧ → Set where pathUnite⋆ : (v : Pi0.⟦ t ⟧) → Unite⋆ (tt , v) v data Uniti⋆ {t : Pi0.U} : Pi0.⟦ t ⟧ → Pi0.⟦ Pi0.TIMES Pi0.ONE t ⟧ → Set where pathUniti⋆ : (v : Pi0.⟦ t ⟧) → Uniti⋆ v (tt , v) data Swap⋆ {t₁ t₂ : Pi0.U} : Pi0.⟦ Pi0.TIMES t₁ t₂ ⟧ → Pi0.⟦ Pi0.TIMES t₂ t₁ ⟧ → Set where pathSwap⋆ : (v₁ : Pi0.⟦ t₁ ⟧) → (v₂ : Pi0.⟦ t₂ ⟧) → Swap⋆ (v₁ , v₂) (v₂ , v₁) data Assocl⋆ {t₁ t₂ t₃ : Pi0.U} : Pi0.⟦ Pi0.TIMES t₁ (Pi0.TIMES t₂ t₃) ⟧ → Pi0.⟦ Pi0.TIMES (Pi0.TIMES t₁ t₂) t₃ ⟧ → Set where pathAssocl⋆ : (v₁ : Pi0.⟦ t₁ ⟧) → (v₂ : Pi0.⟦ t₂ ⟧) → (v₃ : Pi0.⟦ t₃ ⟧) → Assocl⋆ (v₁ , (v₂ , v₃)) ((v₁ , v₂) , v₃) data Assocr⋆ {t₁ t₂ t₃ : Pi0.U} : Pi0.⟦ Pi0.TIMES (Pi0.TIMES t₁ t₂) t₃ ⟧ → Pi0.⟦ Pi0.TIMES t₁ (Pi0.TIMES t₂ t₃) ⟧ → Set where pathAssocr⋆ : (v₁ : Pi0.⟦ t₁ ⟧) → (v₂ : Pi0.⟦ t₂ ⟧) → (v₃ : Pi0.⟦ t₃ ⟧) → Assocr⋆ ((v₁ , v₂) , v₃) (v₁ , (v₂ , v₃)) data Dist {t₁ t₂ t₃ : Pi0.U} : Pi0.⟦ Pi0.TIMES (Pi0.PLUS t₁ t₂) t₃ ⟧ → Pi0.⟦ Pi0.PLUS (Pi0.TIMES t₁ t₃) (Pi0.TIMES t₂ t₃) ⟧ → Set where path1Dist : (v₁ : Pi0.⟦ t₁ ⟧) → (v₃ : Pi0.⟦ t₃ ⟧) → Dist (inj₁ v₁ , v₃) (inj₁ (v₁ , v₃)) path2Dist : (v₂ : Pi0.⟦ t₂ ⟧) → (v₃ : Pi0.⟦ t₃ ⟧) → Dist (inj₂ v₂ , v₃) (inj₂ (v₂ , v₃)) data Factor {t₁ t₂ t₃ : Pi0.U} : Pi0.⟦ Pi0.PLUS (Pi0.TIMES t₁ t₃) (Pi0.TIMES t₂ t₃) ⟧ → Pi0.⟦ Pi0.TIMES (Pi0.PLUS t₁ t₂) t₃ ⟧ → Set where path1Factor : (v₁ : Pi0.⟦ t₁ ⟧) → (v₃ : Pi0.⟦ t₃ ⟧) → Factor (inj₁ (v₁ , v₃)) (inj₁ v₁ , v₃) path2Factor : (v₂ : Pi0.⟦ t₂ ⟧) → (v₃ : Pi0.⟦ t₃ ⟧) → Factor (inj₂ (v₂ , v₃)) (inj₂ v₂ , v₃) data Id⟷ {t : Pi0.U} : Pi0.⟦ t ⟧ → Pi0.⟦ t ⟧ → Set where pathId⟷ : (v : Pi0.⟦ t ⟧) → Id⟷ v v data PathRev (A : Set) : Set where pathRev : A → PathRev A record PathTrans (A : Set) (B C : A → Set) : Set where constructor pathTrans field anchor : A pre : B anchor post : C anchor mutual ⟦_⟧ : U → Set {- ⟦ LIFT u ⟧ = Pi0.⟦ u ⟧ ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = Path⊤ ⟦ PLUS t₁ t₂ ⟧ = Path⊎ ⟦ t₁ ⟧ ⟦ t₂ ⟧ ⟦ TIMES t₁ t₂ ⟧ = Path× ⟦ t₁ ⟧ ⟦ t₂ ⟧ -} ⟦ EQUIV c v₁ v₂ ⟧ = Paths c v₁ v₂ -- space of paths from v₁ to v₂ using c Paths : {t₁ t₂ : Pi0.U} → (t₁ Pi0.⟷ t₂) → Pi0.⟦ t₁ ⟧ → Pi0.⟦ t₂ ⟧ → Set Paths Pi0.unite₊ (inj₁ ()) _ Paths Pi0.unite₊ (inj₂ v) v' = Unite₊ (inj₂ v) v' Paths Pi0.uniti₊ v (inj₁ ()) Paths Pi0.uniti₊ v (inj₂ v') = Uniti₊ v (inj₂ v') Paths Pi0.swap₊ v v' = Swap₊ v v' Paths Pi0.assocl₊ v v' = Assocl₊ v v' Paths Pi0.assocr₊ v v' = Assocr₊ v v' Paths Pi0.unite⋆ v v' = Unite⋆ v v' Paths Pi0.uniti⋆ v v' = Uniti⋆ v v' Paths Pi0.swap⋆ v v' = Swap⋆ v v' Paths Pi0.assocl⋆ v v' = Assocl⋆ v v' Paths Pi0.assocr⋆ v v' = Assocr⋆ v v' Paths Pi0.distz v () Paths Pi0.factorz () v' Paths Pi0.dist v v' = Dist v v' Paths Pi0.factor v v' = Factor v v' Paths Pi0.id⟷ v v' = Id⟷ v v' Paths (Pi0.sym⟷ c) v v' = PathRev (Paths c v' v) Paths (Pi0._◎_ {t₂ = t₂} c₁ c₂) v₁ v₃ = PathTrans Pi0.⟦ t₂ ⟧ (λ v₂ → Paths c₁ v₁ v₂) (λ v₂ → Paths c₂ v₂ v₃) -- Σ[ v₂ ∈ Pi0.⟦ t₂ ⟧ ] (Paths c₁ v₁ v₂ × Paths c₂ v₂ v₃) Paths (c₁ Pi0.⊕ c₂) (inj₁ v₁) (inj₁ v₁') = Path⊎ (Paths c₁ v₁ v₁') ⊥ Paths (c₁ Pi0.⊕ c₂) (inj₁ v₁) (inj₂ v₂') = ⊥ Paths (c₁ Pi0.⊕ c₂) (inj₂ v₂) (inj₁ v₁') = ⊥ Paths (c₁ Pi0.⊕ c₂) (inj₂ v₂) (inj₂ v₂') = Path⊎ ⊥ (Paths c₂ v₂ v₂') Paths (c₁ Pi0.⊗ c₂) (v₁ , v₂) (v₁' , v₂') = Path× (Paths c₁ v₁ v₁') (Paths c₂ v₂ v₂') -- Examples -- A few paths between FALSE and FALSE p₁ : ⟦ EQUIV Pi0.id⟷ Pi0.FALSE Pi0.FALSE ⟧ p₁ = pathId⟷ Pi0.FALSE p₂ : ⟦ EQUIV (Pi0.id⟷ Pi0.◎ Pi0.id⟷) Pi0.FALSE Pi0.FALSE ⟧ p₂ = pathTrans Pi0.FALSE p₁ p₁ p₃ : ⟦ EQUIV (Pi0.swap₊ Pi0.◎ Pi0.swap₊) Pi0.FALSE Pi0.FALSE ⟧ p₃ = pathTrans Pi0.TRUE (path2Swap₊ tt) (path1Swap₊ tt) p₄ : ⟦ EQUIV (Pi0.id⟷ Pi0.⊕ Pi0.id⟷) Pi0.FALSE Pi0.FALSE ⟧ p₄ = pathRight (pathId⟷ tt) -- A few paths between (TRUE,TRUE) and (TRUE,TRUE) p₅ : ⟦ EQUIV Pi0.id⟷ (Pi0.TRUE , Pi0.TRUE) (Pi0.TRUE , Pi0.TRUE) ⟧ p₅ = pathId⟷ (Pi0.TRUE , Pi0.TRUE) p₆ : ⟦ EQUIV (Pi0.id⟷ Pi0.⊗ Pi0.id⟷) (Pi0.TRUE , Pi0.TRUE) (Pi0.TRUE , Pi0.TRUE) ⟧ p₆ = pathPair (pathId⟷ Pi0.TRUE) (pathId⟷ Pi0.TRUE) -- A few paths between (TRUE,FALSE) and (TRUE,TRUE) p₇ : ⟦ EQUIV (Pi0.id⟷ Pi0.⊗ Pi0.swap₊) (Pi0.TRUE , Pi0.FALSE) (Pi0.TRUE , Pi0.TRUE) ⟧ p₇ = pathPair (pathId⟷ Pi0.TRUE) (path2Swap₊ tt) p₇' : ⟦ EQUIV (Pi0.swap₊ Pi0.⊗ Pi0.id⟷) (Pi0.FALSE , Pi0.TRUE) (Pi0.TRUE , Pi0.TRUE) ⟧ p₇' = pathPair (path2Swap₊ tt) (pathId⟷ Pi0.TRUE) p₈ : ⟦ EQUIV Pi0.CNOT (Pi0.TRUE , Pi0.FALSE) (Pi0.TRUE , Pi0.TRUE) ⟧ p₈ = pathTrans (inj₁ (tt , Pi0.FALSE)) (path1Dist tt Pi0.FALSE) (pathTrans (inj₁ (tt , Pi0.TRUE)) (pathLeft (pathPair (pathId⟷ tt) (path2Swap₊ tt))) (path1Factor tt Pi0.TRUE)) -- Examples using sum and products of paths {- q₀ : ⟦ TIMES (LIFT Pi0.ONE) (EQUIV Pi0.id⟷ Pi0.FALSE Pi0.FALSE) ⟧ q₀ = pathPair pathtt p₁ q₁ : ⟦ (LIFT Pi0.PLUS) (EQUIV Pi0.id⟷ Pi0.FALSE Pi0.FALSE) (EQUIV (Pi0.id⟷ Pi0.⊗ Pi0.swap₊) (Pi0.TRUE , Pi0.FALSE) (Pi0.TRUE , Pi0.TRUE)) ⟧ q₁ = pathRight p₇ q₂ : ⟦ (LIFT Pi0.PLUS) (EQUIV Pi0.id⟷ Pi0.FALSE Pi0.FALSE) (LIFT Pi0.ZERO) ⟧ q₂ = pathLeft p₁ -} -- combinators -- the usual semiring combinators to reason about 0, 1, +, and *, and -- the groupoid combinators to reason about id, rev, and trans data _⟷_ : U → U → Set where {- unite₊ : {t : U} → PLUS ZERO t ⟷ t uniti₊ : {t : U} → t ⟷ PLUS ZERO t swap₊ : {t₁ t₂ : U} → PLUS t₁ t₂ ⟷ PLUS t₂ t₁ assocl₊ : {t₁ t₂ t₃ : U} → PLUS t₁ (PLUS t₂ t₃) ⟷ PLUS (PLUS t₁ t₂) t₃ assocr₊ : {t₁ t₂ t₃ : U} → PLUS (PLUS t₁ t₂) t₃ ⟷ PLUS t₁ (PLUS t₂ t₃) unite⋆ : {t : U} → TIMES ONE t ⟷ t uniti⋆ : {t : U} → t ⟷ TIMES ONE t swap⋆ : {t₁ t₂ : U} → TIMES t₁ t₂ ⟷ TIMES t₂ t₁ assocl⋆ : {t₁ t₂ t₃ : U} → TIMES t₁ (TIMES t₂ t₃) ⟷ TIMES (TIMES t₁ t₂) t₃ assocr⋆ : {t₁ t₂ t₃ : U} → TIMES (TIMES t₁ t₂) t₃ ⟷ TIMES t₁ (TIMES t₂ t₃) distz : {t : U} → TIMES ZERO t ⟷ ZERO factorz : {t : U} → ZERO ⟷ TIMES ZERO t dist : {t₁ t₂ t₃ : U} → TIMES (PLUS t₁ t₂) t₃ ⟷ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) factor : {t₁ t₂ t₃ : U} → PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) ⟷ TIMES (PLUS t₁ t₂) t₃ -} id⟷ : {t₁ t₂ : Pi0.U} {c : t₁ Pi0.⟷ t₂} {v₀ : Pi0.⟦ t₁ ⟧} {v₁ : Pi0.⟦ t₂ ⟧} → EQUIV c v₀ v₁ ⟷ EQUIV c v₀ v₁ sym⟷ : {t₁ t₂ : Pi0.U} {c d : t₁ Pi0.⟷ t₂} {v₀ : Pi0.⟦ t₁ ⟧} {v₁ : Pi0.⟦ t₂ ⟧} → EQUIV c v₀ v₁ ⟷ EQUIV d v₀ v₁ → EQUIV d v₀ v₁ ⟷ EQUIV c v₀ v₁ _◎_ : {t₁ t₂ : Pi0.U} {c d e : t₁ Pi0.⟷ t₂} {v₀ : Pi0.⟦ t₁ ⟧} {v₁ : Pi0.⟦ t₂ ⟧} → EQUIV c v₀ v₁ ⟷ EQUIV d v₀ v₁ → EQUIV d v₀ v₁ ⟷ EQUIV e v₀ v₁ → EQUIV c v₀ v₁ ⟷ EQUIV e v₀ v₁ {- _⊕_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (PLUS t₁ t₂ ⟷ PLUS t₃ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (TIMES t₁ t₂ ⟷ TIMES t₃ t₄) -} lidl : {t₁ t₂ : Pi0.U} {c : t₁ Pi0.⟷ t₂} {v₁ : Pi0.⟦ t₁ ⟧} {v₂ : Pi0.⟦ t₂ ⟧} → EQUIV (Pi0.id⟷ Pi0.◎ c) v₁ v₂ ⟷ EQUIV c v₁ v₂ lidr : {t₁ t₂ : Pi0.U} {c : t₁ Pi0.⟷ t₂} {v₁ : Pi0.⟦ t₁ ⟧} {v₂ : Pi0.⟦ t₂ ⟧} → EQUIV c v₁ v₂ ⟷ EQUIV (Pi0.id⟷ Pi0.◎ c) v₁ v₂ ridl : {t₁ t₂ : Pi0.U} {c : t₁ Pi0.⟷ t₂} {v₁ : Pi0.⟦ t₁ ⟧} {v₂ : Pi0.⟦ t₂ ⟧} → EQUIV (c Pi0.◎ Pi0.id⟷) v₁ v₂ ⟷ EQUIV c v₁ v₂ ridr : {t₁ t₂ : Pi0.U} {c : t₁ Pi0.⟷ t₂} {v₁ : Pi0.⟦ t₁ ⟧} {v₂ : Pi0.⟦ t₂ ⟧} → EQUIV c v₁ v₂ ⟷ EQUIV (c Pi0.◎ Pi0.id⟷) v₁ v₂ invll : {t₁ t₂ : Pi0.U} {c : t₁ Pi0.⟷ t₂} {v₀ v₂ : Pi0.⟦ t₂ ⟧} → EQUIV (Pi0.sym⟷ c Pi0.◎ c) v₀ v₂ ⟷ EQUIV Pi0.id⟷ v₀ v₂ invlr : {t₁ t₂ : Pi0.U} {c : t₁ Pi0.⟷ t₂} {v₀ v₂ : Pi0.⟦ t₂ ⟧} → EQUIV Pi0.id⟷ v₀ v₂ ⟷ EQUIV (Pi0.sym⟷ c Pi0.◎ c) v₀ v₂ invrl : {t₁ t₂ : Pi0.U} {c : t₁ Pi0.⟷ t₂} {v₀ v₁ : Pi0.⟦ t₁ ⟧} → EQUIV (c Pi0.◎ Pi0.sym⟷ c) v₀ v₁ ⟷ EQUIV Pi0.id⟷ v₀ v₁ invrr : {t₁ t₂ : Pi0.U} {c : t₁ Pi0.⟷ t₂} {v₀ v₁ : Pi0.⟦ t₁ ⟧} → EQUIV Pi0.id⟷ v₀ v₁ ⟷ EQUIV (c Pi0.◎ Pi0.sym⟷ c) v₀ v₁ invinvl : {t₁ t₂ : Pi0.U} {c : t₁ Pi0.⟷ t₂} {v₁ : Pi0.⟦ t₁ ⟧} {v₂ : Pi0.⟦ t₂ ⟧} → EQUIV (Pi0.sym⟷ (Pi0.sym⟷ c)) v₁ v₂ ⟷ EQUIV c v₁ v₂ invinvr : {t₁ t₂ : Pi0.U} {c : t₁ Pi0.⟷ t₂} {v₁ : Pi0.⟦ t₁ ⟧} {v₂ : Pi0.⟦ t₂ ⟧} → EQUIV c v₁ v₂ ⟷ EQUIV (Pi0.sym⟷ (Pi0.sym⟷ c)) v₁ v₂ tassocl : {t₁ t₂ t₃ t₄ : Pi0.U} {c₁ : t₁ Pi0.⟷ t₂} {c₂ : t₂ Pi0.⟷ t₃} {c₃ : t₃ Pi0.⟷ t₄} {v₁ : Pi0.⟦ t₁ ⟧} {v₄ : Pi0.⟦ t₄ ⟧} → EQUIV (c₁ Pi0.◎ (c₂ Pi0.◎ c₃)) v₁ v₄ ⟷ EQUIV ((c₁ Pi0.◎ c₂) Pi0.◎ c₃) v₁ v₄ tassocr : {t₁ t₂ t₃ t₄ : Pi0.U} {c₁ : t₁ Pi0.⟷ t₂} {c₂ : t₂ Pi0.⟷ t₃} {c₃ : t₃ Pi0.⟷ t₄} {v₁ : Pi0.⟦ t₁ ⟧} {v₄ : Pi0.⟦ t₄ ⟧} → EQUIV ((c₁ Pi0.◎ c₂) Pi0.◎ c₃) v₁ v₄ ⟷ EQUIV (c₁ Pi0.◎ (c₂ Pi0.◎ c₃)) v₁ v₄ -- this is closely related to Eckmann-Hilton resp◎ : {t₁ t₂ t₃ : Pi0.U} {c₁ : t₁ Pi0.⟷ t₂} {c₂ : t₂ Pi0.⟷ t₃} {c₃ : t₁ Pi0.⟷ t₂} {c₄ : t₂ Pi0.⟷ t₃} {v₁ : Pi0.⟦ t₁ ⟧} {v₂ : Pi0.⟦ t₂ ⟧} {v₃ : Pi0.⟦ t₃ ⟧} → (EQUIV c₁ v₁ v₂ ⟷ EQUIV c₃ v₁ v₂) → (EQUIV c₂ v₂ v₃ ⟷ EQUIV c₄ v₂ v₃) → EQUIV (c₁ Pi0.◎ c₂) v₁ v₃ ⟷ EQUIV (c₃ Pi0.◎ c₄) v₁ v₃ -- extractor for ⟷ src : {t₁ t₂ : U} → t₁ ⟷ t₂ → Pi0.U src (id⟷ {t₁}) = t₁ src (sym⟷ {t₁} c) = t₁ src (_◎_ {t₁} _ _) = t₁ src (lidl {t₁}) = t₁ src (lidr {t₁}) = t₁ src (ridl {t₁}) = t₁ src (ridr {t₁}) = t₁ src (invll {t₁}) = t₁ src (invlr {t₁}) = t₁ src (invrl {t₁}) = t₁ src (invrr {t₁}) = t₁ src (invinvl {t₁}) = t₁ src (invinvr {t₁}) = t₁ src (tassocl {t₁}) = t₁ src (tassocr {t₁}) = t₁ src (resp◎ {t₁} _ _) = t₁ val : {t₁ t₂ : U} → (c : t₁ ⟷ t₂) → Pi0.⟦ src c ⟧ val (id⟷ {v₀ = v₀}) = v₀ val (sym⟷ {v₀ = v₀} c) = v₀ val (c ◎ c₁) = {!!} val lidl = {!!} val lidr = {!!} val ridl = {!!} val ridr = {!!} val invll = {!!} val invlr = {!!} val invrl = {!!} val invrr = {!!} val invinvl = {!!} val invinvr = {!!} val tassocl = {!!} val tassocr = {!!} val (resp◎ c c₅) = {!!} -- Examples -- id;swap₊ is equivalent to swap₊ e₁ : EQUIV (Pi0.id⟷ Pi0.◎ Pi0.swap₊) Pi0.FALSE Pi0.TRUE ⟷ EQUIV Pi0.swap₊ Pi0.FALSE Pi0.TRUE e₁ = lidl -- swap₊;id;swap₊ is equivalent to id e₂ : EQUIV (Pi0.swap₊ Pi0.◎ (Pi0.id⟷ Pi0.◎ Pi0.swap₊)) Pi0.FALSE Pi0.FALSE ⟷ EQUIV Pi0.id⟷ Pi0.FALSE Pi0.FALSE e₂ = {!!} arr : {t₁ t₂ : Pi0.U} {c : t₁ Pi0.⟷ t₂} → Pi0.⟦ t₁ ⟧ → Pi0.⟦ t₂ ⟧ → Set arr {t₁} {t₂} {c} v₁ v₂ = ⟦ EQUIV c v₁ v₂ ⟧ -- we have a 1Groupoid structure G : 1Groupoid G = record { set = Pi0.U ; _↝_ = Pi0._⟷_ ; _≈_ = λ c₀ c₁ → ∀ {v₀ v₁} → EQUIV c₀ v₀ v₁ ⟷ EQUIV c₁ v₀ v₁ ; id = Pi0.id⟷ ; _∘_ = λ c₀ c₁ → c₁ Pi0.◎ c₀ ; _⁻¹ = Pi0.sym⟷ ; lneutr = λ α → ridl {c = α} ; rneutr = λ α → lidl { c = α} ; assoc = λ α β δ {v₁} {v₄} → tassocl ; equiv = record { refl = id⟷ ; sym = λ c → sym⟷ c ; trans = λ c₀ c₁ → c₀ ◎ c₁ } ; linv = λ α → invrl {c = α} ; rinv = λ α → invll {c = α} ; ∘-resp-≈ = λ {_} {_} {_} {f} {h} {g} {i} f⟷h g⟷i {v₀} {v₁} → resp◎ {v₂ = {!val f⟷h!}} g⟷i f⟷h } ------------------------------------------------------------------------------ -- Level 2 explicitly... {- module Pi2 where -- types data U : Set where ZERO : U ONE : U PLUS : U → U → U TIMES : U → U → U EQUIV : {t₁ t₂ : Pi1.U} → (t₁ Pi1.⟷ t₂) → Pi1.⟦ t₁ ⟧ → Pi1.⟦ t₂ ⟧ → U data Unite₊ {t : Pi1.U} : Pi1.⟦ Pi1.PLUS Pi1.ZERO t ⟧ → Pi1.⟦ t ⟧ → Set where pathUnite₊ : (v₁ : Pi1.⟦ Pi1.PLUS Pi1.ZERO t ⟧) → (v₂ : Pi1.⟦ t ⟧) → Unite₊ v₁ v₂ data Id⟷ {t : Pi1.U} : Pi1.⟦ t ⟧ → Pi1.⟦ t ⟧ → Set where pathId⟷ : (v₁ : Pi1.⟦ t ⟧) → (v₂ : Pi1.⟦ t ⟧) → Id⟷ v₁ v₂ -- values mutual ⟦_⟧ : U → Set ⟦ ZERO ⟧ = ⊥ ⟦ ONE ⟧ = ⊤ ⟦ PLUS t₁ t₂ ⟧ = ⟦ t₁ ⟧ ⊎ ⟦ t₂ ⟧ ⟦ TIMES t₁ t₂ ⟧ = ⟦ t₁ ⟧ × ⟦ t₂ ⟧ ⟦ EQUIV c v₁ v₂ ⟧ = f c v₁ v₂ f : {t₁ t₂ : Pi1.U} → (t₁ Pi1.⟷ t₂) → Pi1.⟦ t₁ ⟧ → Pi1.⟦ t₂ ⟧ → Set f (Pi1.id⟷ {t}) v v' = Id⟷ {t} v v' f (Pi1._◎_ {t₂ = t₂} c₁ c₂) v₁ v₃ = Σ[ v₂ ∈ Pi1.⟦ t₂ ⟧ ] (f c₁ v₁ v₂ × f c₂ v₂ v₃) -- f (Pi1.lidl {v₁ = v₁}) (pathTrans .v₁ (Pi1.pathId⟷ .v₁) q) q' = ⊥ -- todo f c v₁ v₂ = ⊥ -- to do -- combinators data _⟷_ : U → U → Set where unite₊ : {t : U} → PLUS ZERO t ⟷ t uniti₊ : {t : U} → t ⟷ PLUS ZERO t swap₊ : {t₁ t₂ : U} → PLUS t₁ t₂ ⟷ PLUS t₂ t₁ assocl₊ : {t₁ t₂ t₃ : U} → PLUS t₁ (PLUS t₂ t₃) ⟷ PLUS (PLUS t₁ t₂) t₃ assocr₊ : {t₁ t₂ t₃ : U} → PLUS (PLUS t₁ t₂) t₃ ⟷ PLUS t₁ (PLUS t₂ t₃) unite⋆ : {t : U} → TIMES ONE t ⟷ t uniti⋆ : {t : U} → t ⟷ TIMES ONE t swap⋆ : {t₁ t₂ : U} → TIMES t₁ t₂ ⟷ TIMES t₂ t₁ assocl⋆ : {t₁ t₂ t₃ : U} → TIMES t₁ (TIMES t₂ t₃) ⟷ TIMES (TIMES t₁ t₂) t₃ assocr⋆ : {t₁ t₂ t₃ : U} → TIMES (TIMES t₁ t₂) t₃ ⟷ TIMES t₁ (TIMES t₂ t₃) distz : {t : U} → TIMES ZERO t ⟷ ZERO factorz : {t : U} → ZERO ⟷ TIMES ZERO t dist : {t₁ t₂ t₃ : U} → TIMES (PLUS t₁ t₂) t₃ ⟷ PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) factor : {t₁ t₂ t₃ : U} → PLUS (TIMES t₁ t₃) (TIMES t₂ t₃) ⟷ TIMES (PLUS t₁ t₂) t₃ id⟷ : {t : U} → t ⟷ t sym⟷ : {t₁ t₂ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₁) _◎_ : {t₁ t₂ t₃ : U} → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃) _⊕_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (PLUS t₁ t₂ ⟷ PLUS t₃ t₄) _⊗_ : {t₁ t₂ t₃ t₄ : U} → (t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (TIMES t₁ t₂ ⟷ TIMES t₃ t₄) lid : {t₁ t₂ : Pi1.U} {v₁ : Pi1.⟦ t₁ ⟧} {v₂ : Pi1.⟦ t₂ ⟧} {c : t₁ Pi1.⟷ t₂} → EQUIV (Pi1.id⟷ Pi1.◎ c) v₁ v₂ ⟷ EQUIV c v₁ v₂ -} ------------------------------------------------------------------------------
{ "alphanum_fraction": 0.4732100016, "avg_line_length": 36.5633528265, "ext": "agda", "hexsha": "e91186edaf7476bdfd631a24a8bd1bd97a75173e", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "Univalence/Obsolete/A4.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "Univalence/Obsolete/A4.agda", "max_line_length": 184, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "Univalence/Obsolete/A4.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 9626, "size": 18757 }