Search is not available for this dataset
text
string | meta
dict |
---|---|
-- Andreas, 2017-04-28, issue #2558 reported by Youyou Cong
-- Size solver assumed invariants that do not hold.
open import Common.Size
data Con (i : Size) : Set where
c : {j : Size< i} → Con i -- needed
postulate
Tms : {i j : Size} → Con i → Con j → Set
Ty : (i : Size) {j : Size< i} → Con j → Set
sub : ∀{i}{j k : Size< i} {l : Size< j} {Γ : Con k} {Δ : Con l} →
Tms Γ Δ → Ty j Δ → Ty i Γ
P : ∀{A : Set} (a : A) → Set
[][]T : {i : Size} {j : Size< i} {k : Size< ↑ i} {l : Size< ↑ (↑ i)}
{Γ : Con l} {Δ : Con k} {Σ : Con j} {A : Ty i Σ} →
(δ : Tms Δ Σ) →
(σ : Tms Γ Δ) → -- Γ needed
P (sub σ (sub δ A)) -- sub σ needed
-- Should pass
| {
"alphanum_fraction": 0.4690140845,
"avg_line_length": 28.4,
"ext": "agda",
"hexsha": "9b9b81e6ac49c74a0528b4304206aeba49703048",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2558.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2558.agda",
"max_line_length": 70,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2558.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 291,
"size": 710
} |
module Tactic.Reflection.Reright where
open import Prelude hiding (abs)
open import Container.Traversable
open import Tactic.Reflection
open import Tactic.Reflection.Match
open import Tactic.Reflection.Replace
open import Tactic.Reflection.Quote
private
{-# TERMINATING #-}
reorderVars : List Nat → Term → Term
reorderVars xs (var x args) = var (maybe x id (index xs x)) (fmap (reorderVars xs) <$> args)
reorderVars xs (con c args) = con c ((fmap ∘ fmap) (reorderVars xs) args)
reorderVars xs (def f args) = def f (fmap (reorderVars xs) <$> args)
reorderVars xs (lam v t) = lam v (reorderVars (0 ∷ weaken 1 xs) <$> t)
reorderVars xs (pat-lam cs args) = pat-lam (fmap (reorderVarsInClause xs) cs) ((fmap ∘ fmap) (reorderVars xs) args) where
reorderVarsInClause : List Nat → Clause → Clause -- TODO reorder patterns?
reorderVarsInClause xs (clause ps t) = (clause ps (reorderVars xs t))
reorderVarsInClause xs (absurd-clause ps) = (absurd-clause ps)
reorderVars xs (pi a b) = pi (reorderVars xs <$> a) (reorderVars (0 ∷ weaken 1 xs) <$> b)
reorderVars xs (agda-sort (set t)) = agda-sort (set (reorderVars xs t))
reorderVars xs (agda-sort (lit n)) = agda-sort (lit n)
reorderVars xs (agda-sort unknown) = agda-sort unknown
reorderVars xs (lit l) = lit l
reorderVars xs (meta x args) = meta x $ (fmap ∘ fmap) (reorderVars xs) args
reorderVars xs unknown = unknown
{-# TERMINATING #-}
freeDependencies : List (Arg Type) → Type → Maybe VarSet
freeDependencies Γ x = foldr _∪_ (freeVars x) <$> mapM go (freeVars x) where
_∪_ : VarSet → VarSet → VarSet -- REFACTOR this was stolen from Tactic.Reflection.Free
[] ∪ ys = ys
xs ∪ [] = xs
(x ∷ xs) ∪ (y ∷ ys) with compare x y
... | (less _) = x ∷ (xs ∪ (y ∷ ys))
... | (equal _) = x ∷ (xs ∪ ys)
... | (greater _) = y ∷ ((x ∷ xs) ∪ ys)
go : Nat → Maybe VarSet
go v = weaken (suc v) $ join $ freeDependencies (drop (suc v) Γ) <$> (unArg <$> index Γ v)
.test-freeDependencies₁ : freeDependencies [] unknown ≡ just []
test-freeDependencies₁ = refl
.test-freeDependencies₂ : freeDependencies (vArg (var₀ 0) ∷ vArg unknown ∷ []) (var₀ 0) ≡ just (0 ∷ 1 ∷ [])
test-freeDependencies₂ = refl
.test-freeDependencies₃ : freeDependencies (vArg (var₀ 0) ∷ vArg (var₀ 1) ∷ vArg unknown ∷ vArg unknown ∷ []) (var₀ 0) ≡ just (0 ∷ 1 ∷ 3 ∷ [])
test-freeDependencies₃ = refl
.test-freeDependencies₄ : freeDependencies (vArg (var₀ 0) ∷ vArg (var₀ 1) ∷ vArg unknown ∷ vArg unknown ∷ []) (var₀ 1) ≡ just (1 ∷ 3 ∷ [])
test-freeDependencies₄ = refl
.test-freeDependencies₅ : freeDependencies (vArg (var₀ 1) ∷ vArg unknown ∷ vArg unknown ∷ []) (var₀ 0) ≡ just (0 ∷ 2 ∷ [])
test-freeDependencies₅ = refl
.test-freeDependencies₆ : freeDependencies (vArg (var₀ 0) ∷ vArg (var₀ 1) ∷ vArg unknown ∷ vArg unknown ∷ []) (var₁ 0 (var₀ 1)) ≡ just (0 ∷ 1 ∷ 3 ∷ [])
test-freeDependencies₆ = refl
record Request : Set where
field
l≡r : Term
A : Type
L R : Type
Γᶜ : List (Arg Type)
𝐺 : Type
[iᶜ∣iᶜ∈FVᴬ] : VarSet
[iᶜ∣iᶜ∈FVᴬ] = maybe [] id $ freeDependencies Γᶜ A -- TODO this is a hack; I don't expect freeDependencies will return 'nothing', but if it does, I hope(!) the rest of the computation will fail
[iᶜ∣iᶜ∉FVᴬ] : VarSet
[iᶜ∣iᶜ∉FVᴬ] = filter (not ∘ flip elem [iᶜ∣iᶜ∈FVᴬ]) (from 0 for (length Γᶜ))
record γᶜ' : Set where
field
iᶜ : Nat
γᶜᵢ : Arg Type
iᶜ∈FVᴬ : Bool
iʷ : Nat
γᶜᵢ∈Γʳ : Bool
gᶜᵢ : Type
gᶜᵢ = unArg γᶜᵢ
Γᶜ' : List γᶜ'
Γᶜ' = go 0 (length Γᶜ) Γᶜ where
go : Nat → Nat → List (Arg Type) → List γᶜ'
go iᶜ 0 _ = []
go iᶜ _ [] = []
go iᶜ (suc n) (γᶜᵢ ∷ Γᶜ) = γᶜᵢ' ∷ go (suc iᶜ) n (weaken 1 Γᶜ) where
γᶜᵢ' = record
{ iᶜ = iᶜ
; γᶜᵢ = γᶜᵢ
; iᶜ∈FVᴬ = elem iᶜ [iᶜ∣iᶜ∈FVᴬ]
; iʷ = if elem iᶜ [iᶜ∣iᶜ∉FVᴬ] then (length (filter (_<? iᶜ) [iᶜ∣iᶜ∉FVᴬ])) else (length [iᶜ∣iᶜ∉FVᴬ] + (length (filter (_≤? iᶜ) [iᶜ∣iᶜ∈FVᴬ])))
; γᶜᵢ∈Γʳ = let gᶜᵢ = unArg γᶜᵢ in (isNo $ weaken 1 gᶜᵢ == weaken 1 gᶜᵢ r[ unknown / L ]) && (isNo $ l≡r == var₀ iᶜ)
}
[iʷ∣γᶜᵢ∈Γʳ] : VarSet
[iʷ∣γᶜᵢ∈Γʳ] = iʷ <$> filter γᶜᵢ∈Γʳ Γᶜ' where open γᶜ'
[iʷ] : List Nat
[iʷ] = iʷ <$> Γᶜ' where open γᶜ'
subsetList : {A : Set} → List A → List Nat → Maybe (List A)
subsetList xs is = traverse (index xs) is
module _ where
private
Γʷ/ᶜ : Maybe (List (Arg Type))
Γʷ/ᶜ = go [iʷ] Γᶜ where
go : List Nat → List (Arg Type) → Maybe (List (Arg Type))
go _ [] = just []
go [] _ = nothing
go (iʷ ∷ [iʷ]) (γᶜᵢ ∷ Γᶜ) = _∷_ <$> (strengthen (suc iʷ) $ reorderVars [iʷ] <$> γᶜᵢ) <*> (go [iʷ] Γᶜ)
Γʷ/ᴬ = join $ subsetList <$> Γʷ/ᶜ <*> pure [iᶜ∣iᶜ∈FVᴬ]
Γʷ/⁻ᴬ = join $ subsetList <$> Γʷ/ᶜ <*> pure [iᶜ∣iᶜ∉FVᴬ]
module _ where
private
Lʷ = reorderVars [iʷ] L
Γʷ = caseF Γʷ' of _R[ var₀ (length [iᶜ∣iᶜ∉FVᴬ]) / Lʷ ] where
Γʷ' : Maybe (List (Arg Type))
Γʷ' = _++_ <$> Γʷ/⁻ᴬ <*> (_∷_ <$> (strengthen (length [iᶜ∣iᶜ∉FVᴬ] + 1) $ hArg (reorderVars [iʷ] A)) <*> Γʷ/ᴬ) where
𝐺ʷ = reorderVars [iʷ] 𝐺 r[ var₀ (length [iᶜ∣iᶜ∉FVᴬ]) / Lʷ ]
module _ where
private
Rʷ = reorderVars [iʷ] R
gʳ : Maybe Type
gʳ = join $ go <$> gʳ' <*> pure [iʷ∣γᶜᵢ∈Γʳ] <*> pure 𝐺ʷʳ where
go : List (Arg Type) → List Nat → Type → Maybe Type
go [] [] 𝐺 = just 𝐺
go (γʷ ∷ Γʷ) (iʷ ∷ iʷs) 𝐺 = go Γʷ iʷs $ pi (weaken (1 + iʷ) γʷ) $ abs "_" $ weaken 1 𝐺 r[ var₀ 0 / var₀ $ weaken 1 iʷ ]
go _ _ _ = nothing
gʳ' : Maybe (List (Arg Type))
gʳ' = join $ subsetList <$> (caseF Γʷ of _R[ Rʷ / var₀ (length [iᶜ∣iᶜ∉FVᴬ]) ]) <*> pure [iʷ∣γᶜᵢ∈Γʳ]
𝐺ʷʳ = 𝐺ʷ r[ Rʷ / var₀ (length [iᶜ∣iᶜ∉FVᴬ]) ]
helper-type : Maybe Type
helper-type = telPi <$> (_++_ <$> (reverse <$> Γʷ) <*> (_∷_ <$> (pure $ vArg (def₂ (quote _≡_) (var₀ (length [iᶜ∣iᶜ∉FVᴬ])) Rʷ)) <*> ([_] ∘ vArg <$> (weaken 1 <$> gʳ)))) <*> pure (weaken 2 𝐺ʷ)
make-vars-from-args : List Nat → List (Arg Type) → Maybe (List (Arg Type))
make-vars-from-args [] [] = pure []
make-vars-from-args (i ∷ is) (x ∷ xs) = _∷_ <$> pure (var₀ i <$ x) <*> make-vars-from-args is xs
make-vars-from-args _ _ = nothing
defineHelper : Name → TC ⊤
defineHelper n =
maybe (typeError ( strErr "error constructing helper function type, patterns, or term" ∷
strErr "\nhelper-type:" ∷ termErr (maybe unknown id helper-type) ∷
strErr "\n`helper-type:" ∷ termErr (` helper-type) ∷
strErr "\nhelper-patterns:" ∷ termErr (` helper-patterns) ∷
strErr "\nhelper-term:" ∷ termErr (maybe unknown id helper-term) ∷
strErr "\ngʳ:" ∷ termErr (` gʳ) ∷
strErr "\nΓʷ:" ∷ termErr (` Γʷ) ∷
strErr "\n𝐺ʷ:" ∷ termErr (` 𝐺ʷ) ∷
strErr "\nl≡r:" ∷ termErr (` l≡r) ∷
strErr "\nA:" ∷ termErr (` A) ∷
strErr "\nL:" ∷ termErr (` L) ∷
strErr "\nR:" ∷ termErr (` R) ∷
strErr "\nΓᶜ:" ∷ termErr (` Γᶜ) ∷
strErr "\n𝐺:" ∷ termErr (` 𝐺) ∷
strErr "\nΓʷ/ᴬ" ∷ termErr (` Γʷ/ᴬ) ∷
strErr "\nΓʷ/⁻ᴬ" ∷ termErr (` Γʷ/⁻ᴬ) ∷
strErr "\n[iᶜ∣iᶜ∈FVᴬ]" ∷ termErr (` [iᶜ∣iᶜ∈FVᴬ]) ∷
strErr "\n[iᶜ∣iᶜ∉FVᴬ]" ∷ termErr (` [iᶜ∣iᶜ∉FVᴬ]) ∷
strErr "\n[iʷ]" ∷ termErr (` [iʷ]) ∷
[] ))
(λ {(helper-type , helper-patterns , helper-term) →
catchTC
(define (vArg n) helper-type [ clause helper-patterns helper-term ])
(typeError ( strErr "error defining helper function" ∷
strErr "\nhelper-type:" ∷ termErr helper-type ∷
strErr "\n`helper-type:" ∷ termErr (` helper-type) ∷
strErr "\nhelper-patterns:" ∷ termErr (` helper-patterns) ∷
strErr "\nhelper-term:" ∷ termErr helper-term ∷
strErr "\n`helper-term:" ∷ termErr (` helper-term) ∷
strErr "\ngʳ:" ∷ termErr (` gʳ) ∷
strErr "\nΓʷ:" ∷ termErr (` Γʷ) ∷
strErr "\n𝐺ʷ:" ∷ termErr (` 𝐺ʷ) ∷
strErr "\nl≡r:" ∷ termErr (` l≡r) ∷
strErr "\nA:" ∷ termErr (` A) ∷
strErr "\nL:" ∷ termErr (` L) ∷
strErr "\nR:" ∷ termErr (` R) ∷
strErr "\nΓᶜ:" ∷ termErr (` Γᶜ) ∷
strErr "\n𝐺:" ∷ termErr (` 𝐺) ∷
strErr "\nΓʷ/ᴬ" ∷ termErr (` Γʷ/ᴬ) ∷
strErr "\nΓʷ/⁻ᴬ" ∷ termErr (` Γʷ/⁻ᴬ) ∷
strErr "\n[iᶜ∣iᶜ∈FVᴬ]" ∷ termErr (` [iᶜ∣iᶜ∈FVᴬ]) ∷
strErr "\n[iᶜ∣iᶜ∉FVᴬ]" ∷ termErr (` [iᶜ∣iᶜ∉FVᴬ]) ∷
strErr "\n[iʷ]" ∷ termErr (` [iʷ]) ∷
[] ))
})
(_,_ <$> helper-type <*> (_,_ <$> helper-patterns <*> helper-term))
where
helper-patterns : Maybe (List (Arg Pattern))
helper-patterns = (λ pa w p-a pr → pa ++ w ∷ (p-a ++ pr)) <$> (telePat ∘ reverse <$> Γʷ/ᴬ) <*> just (hArg dot) <*> (telePat ∘ reverse <$> Γʷ/⁻ᴬ) <*> pure (vArg (con₀ (quote refl)) ∷ [ vArg (var "_") ])
helper-term : Maybe Term
helper-term = do
γʷs ← join $ subsetList <$> Γʷ <*> pure [iʷ∣γᶜᵢ∈Γʳ]
iʷs ← make-vars-from-args [iʷ∣γᶜᵢ∈Γʳ] γʷs
pure (var 0 (reverse (weaken 1 iʷs)))
callHelper : Name → Tactic
callHelper n hole =
maybe (typeError [ strErr "error constructing helper call" ])
(unify hole)
$ helper-call n
where
helper-call : Name → Maybe Term
helper-call n = def n <$> (reverse <$> (_∷_ <$> pure (vArg l≡r) <*> Γʰ)) where
Γʰ : Maybe $ List $ Arg Term
Γʰ = (λ xs → take (length [iᶜ∣iᶜ∉FVᴬ]) xs ++ hArg unknown ∷ drop (length [iᶜ∣iᶜ∉FVᴬ]) xs) <$> (join $ make-vars-from-args <$> pure ([iᶜ∣iᶜ∉FVᴬ] ++ [iᶜ∣iᶜ∈FVᴬ]) <*> Γʰ') where
Γʰ' : Maybe (List (Arg Type))
Γʰ' = _++_ <$> subsetList Γᶜ [iᶜ∣iᶜ∉FVᴬ] <*> subsetList Γᶜ [iᶜ∣iᶜ∈FVᴬ]
inferGoal : Term → TC Type
inferGoal hole = unPi =<< forceFun =<< inferType hole where
unPi : Type → TC Type
unPi (pi _ (abs _ (meta x _))) = blockOnMeta! x
unPi (pi _ (abs _ b)) = maybe (typeError (strErr "error strengthening" ∷ termErr b ∷ [])) pure $ strengthen 1 b
unPi x = typeError (strErr "goal is not a pi type" ∷ termErr x ∷ [])
getRequest : Term → Term → TC Request
getRequest l≡r hole = do
L≡R ← inferType l≡r
L≡R-matched ← maybe (typeError (strErr "not an equality" ∷ termErr l≡r ∷ termErr L≡R ∷ [])) pure $
match 3 (def (quote _≡_) (hArg unknown ∷ (hArg (var₀ 0)) ∷ (vArg (var₀ 1)) ∷ (vArg (var₀ 2)) ∷ [])) L≡R
𝐺 ← inferGoal hole
Γᶜ ← getContext
case L≡R-matched of λ { (A ∷ L ∷ R ∷ []) →
pure $ record { l≡r = l≡r ; A = A ; L = L ; R = R ; Γᶜ = Γᶜ ; 𝐺 = 𝐺 } }
macro
reright : Term → Tactic
reright l≡r hole = do
q ← getRequest l≡r hole
n ← freshName "reright"
let open Request q
defineHelper n
callHelper n hole
| {
"alphanum_fraction": 0.4980877951,
"avg_line_length": 47.3543307087,
"ext": "agda",
"hexsha": "579bdfa14a96c5257e0ea4bf1b7aef48fa8664e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "lclem/agda-prelude",
"max_forks_repo_path": "src/Tactic/Reflection/Reright.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "lclem/agda-prelude",
"max_issues_repo_path": "src/Tactic/Reflection/Reright.agda",
"max_line_length": 209,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "75016b4151ed601e28f4462cd7b6b1aaf5d0d1a6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "lclem/agda-prelude",
"max_stars_repo_path": "src/Tactic/Reflection/Reright.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4779,
"size": 12028
} |
primitive
primLevelMax : _
| {
"alphanum_fraction": 0.7586206897,
"avg_line_length": 9.6666666667,
"ext": "agda",
"hexsha": "fa382541d9b03e3cf6a02ee9a5cb8c1452749a36",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3318-3.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3318-3.agda",
"max_line_length": 18,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3318-3.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 8,
"size": 29
} |
module 10-localInstances where
import Data.Empty as E
open import Data.String using (String; toList; _≟_)
open import Data.Bool using (Bool; true; false; if_then_else_)
open import Data.Nat using (ℕ) renaming (_≟_ to _ℕ≟_)
import Data.List as List
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Function using (_on_; _∘_)
record Eq (A : Set) : Set where
field eq : A → A → Bool
length : String → ℕ
length = List.length ∘ toList
open Eq {{...}}
eqℕ : Eq ℕ
eqℕ = record { eq = λ x x' → ⌊ x ℕ≟ x' ⌋ }
eqString₁ : String → String → Bool
eqString₁ s₁ s₂ = ⌊ s₁ ≟ s₂ ⌋
eqString₂ : String → String → Bool
eqString₂ = eq on length
test : Bool → Bool
test lengthEq = if eq "abcd" "dcba" then false else true
where eqLocal = record { eq = if lengthEq then eqString₂ else eqString₁ }
test2 = test true
| {
"alphanum_fraction": 0.6890243902,
"avg_line_length": 24.8484848485,
"ext": "agda",
"hexsha": "c98b30f375cca3b32f8a598398e1336384c85e3b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "examples/instance-arguments/10-localInstances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "examples/instance-arguments/10-localInstances.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "examples/instance-arguments/10-localInstances.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 275,
"size": 820
} |
------------------------------------------------------------------------------
-- Draft modules render to HTML (via an external Makefile)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module RenderToHTML where
| {
"alphanum_fraction": 0.3549160671,
"avg_line_length": 37.9090909091,
"ext": "agda",
"hexsha": "14af6e241223cf3c16ed0fd0d8d39471ea379657",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/RenderToHTML.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/RenderToHTML.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/RenderToHTML.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 55,
"size": 417
} |
{-# OPTIONS --profile=modules --profile=internal #-}
| {
"alphanum_fraction": 0.679245283,
"avg_line_length": 26.5,
"ext": "agda",
"hexsha": "2107c8d7278b114b27fd2424e0347693c2c70ddf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "Seanpm2001-Agda-lang/agda",
"max_forks_repo_path": "test/Fail/Issue5781c.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "Seanpm2001-Agda-lang/agda",
"max_issues_repo_path": "test/Fail/Issue5781c.agda",
"max_line_length": 52,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "sseefried/agda",
"max_stars_repo_path": "test/Fail/Issue5781c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z",
"num_tokens": 11,
"size": 53
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Rational numbers in non-reduced form.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Rational.Unnormalised where
open import Data.Integer.Base as ℤ using (ℤ; ∣_∣; +_; +0; +[1+_]; -[1+_])
open import Data.Nat as ℕ using (ℕ; zero; suc)
open import Level using (0ℓ)
open import Relation.Nullary using (¬_)
open import Relation.Nullary.Decidable using (False)
open import Relation.Binary using (Rel)
open import Relation.Binary.PropositionalEquality using (_≡_)
------------------------------------------------------------------------
-- Definition
-- Here we define rationals that are not necessarily in reduced form.
-- Consequently there are multiple ways of representing a given rational
-- number, and the performance of the arithmetic operations may suffer
-- due to blowup of the numerator and denominator.
-- Nonetheless they are much easier to reason about. In general proofs
-- are first proved for these unnormalised rationals and then translated
-- into the normalised rationals.
record ℚᵘ : Set where
constructor mkℚᵘ
field
numerator : ℤ
denominator-1 : ℕ
denominatorℕ : ℕ
denominatorℕ = suc denominator-1
denominator : ℤ
denominator = + denominatorℕ
open ℚᵘ public using ()
renaming
( numerator to ↥_
; denominator to ↧_
; denominatorℕ to ↧ₙ_
)
------------------------------------------------------------------------
-- Equality of rational numbers (does not coincide with _≡_)
infix 4 _≃_
data _≃_ : Rel ℚᵘ 0ℓ where
*≡* : ∀ {p q} → (↥ p ℤ.* ↧ q) ≡ (↥ q ℤ.* ↧ p) → p ≃ q
------------------------------------------------------------------------
-- Ordering of rationals
infix 4 _≤_ _<_ _≥_ _>_ _≰_ _≱_ _≮_ _≯_
data _≤_ : Rel ℚᵘ 0ℓ where
*≤* : ∀ {p q} → (↥ p ℤ.* ↧ q) ℤ.≤ (↥ q ℤ.* ↧ p) → p ≤ q
data _<_ : Rel ℚᵘ 0ℓ where
*<* : ∀ {p q} → (↥ p ℤ.* ↧ q) ℤ.< (↥ q ℤ.* ↧ p) → p < q
_≥_ : Rel ℚᵘ 0ℓ
x ≥ y = y ≤ x
_>_ : Rel ℚᵘ 0ℓ
x > y = y < x
_≰_ : Rel ℚᵘ 0ℓ
x ≰ y = ¬ (x ≤ y)
_≱_ : Rel ℚᵘ 0ℓ
x ≱ y = ¬ (x ≥ y)
_≮_ : Rel ℚᵘ 0ℓ
x ≮ y = ¬ (x < y)
_≯_ : Rel ℚᵘ 0ℓ
x ≯ y = ¬ (x > y)
------------------------------------------------------------------------
-- Constructing rationals
infix 4 _≢0
_≢0 : ℕ → Set
n ≢0 = False (n ℕ.≟ 0)
-- An alternative constructor for ℚᵘ. See the constants section below
-- for examples of how to use this operator.
infixl 7 _/_
_/_ : (n : ℤ) (d : ℕ) .{d≢0 : d ≢0} → ℚᵘ
n / suc d = mkℚᵘ n d
------------------------------------------------------------------------------
-- Operations on rationals
infix 8 -_ 1/_
infixl 7 _*_ _÷_
infixl 6 _-_ _+_
-- negation
-_ : ℚᵘ → ℚᵘ
- mkℚᵘ n d = mkℚᵘ (ℤ.- n) d
-- addition
_+_ : ℚᵘ → ℚᵘ → ℚᵘ
p + q = (↥ p ℤ.* ↧ q ℤ.+ ↥ q ℤ.* ↧ p) / (↧ₙ p ℕ.* ↧ₙ q)
-- multiplication
_*_ : ℚᵘ → ℚᵘ → ℚᵘ
p * q = (↥ p ℤ.* ↥ q) / (↧ₙ p ℕ.* ↧ₙ q)
-- subtraction
_-_ : ℚᵘ → ℚᵘ → ℚᵘ
p - q = p + (- q)
-- reciprocal: requires a proof that the numerator is not zero
1/_ : (p : ℚᵘ) → .{n≢0 : ∣ ↥ p ∣ ≢0} → ℚᵘ
1/ mkℚᵘ +[1+ n ] d = mkℚᵘ +[1+ d ] n
1/ mkℚᵘ -[1+ n ] d = mkℚᵘ -[1+ d ] n
-- division: requires a proof that the denominator is not zero
_÷_ : (p q : ℚᵘ) → .{n≢0 : ∣ ↥ q ∣ ≢0} → ℚᵘ
(p ÷ q) {n≢0} = p * (1/_ q {n≢0})
------------------------------------------------------------------------------
-- Some constants
0ℚᵘ : ℚᵘ
0ℚᵘ = + 0 / 1
1ℚᵘ : ℚᵘ
1ℚᵘ = + 1 / 1
½ : ℚᵘ
½ = + 1 / 2
-½ : ℚᵘ
-½ = - ½
| {
"alphanum_fraction": 0.4890469417,
"avg_line_length": 22.9738562092,
"ext": "agda",
"hexsha": "40ad40eb688b3637da6ae18defa11ff71fb56478",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Rational/Unnormalised.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Rational/Unnormalised.agda",
"max_line_length": 78,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Rational/Unnormalised.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1375,
"size": 3515
} |
--------------------------------------------------------------------------------
-- This is part of Agda Inference Systems
{-# OPTIONS --sized-types #-}
open import Codata.Colist
open import Codata.Thunk
open import Size
open import Data.Empty
open import Relation.Binary.PropositionalEquality
module Examples.Colists.Auxiliary.Colist_member {A : Set} where
data _∈_ : A → Colist A ∞ → Set where
here : ∀ {x xs} → x ∈ (x ∷ xs)
there : ∀{x y xs} → x ∈ xs .force → x ∈ (y ∷ xs)
mem-abs : ∀{x xs} → x ∈ xs → xs ≡ [] → ⊥
mem-abs {_} {.[]} () refl | {
"alphanum_fraction": 0.5365418895,
"avg_line_length": 29.5263157895,
"ext": "agda",
"hexsha": "5682b4551eebf681b1696fac5134784c6c81e356",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "LcicC/inference-systems-agda",
"max_forks_repo_path": "Examples/Colists/Auxiliary/Colist_member.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "LcicC/inference-systems-agda",
"max_issues_repo_path": "Examples/Colists/Auxiliary/Colist_member.agda",
"max_line_length": 80,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "b9043f99e4bf7211db4066a7a943401d127f0c8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "LcicC/inference-systems-agda",
"max_stars_repo_path": "Examples/Colists/Auxiliary/Colist_member.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-25T15:48:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-10T15:53:47.000Z",
"num_tokens": 159,
"size": 561
} |
-- Andreas, 2022-03-11, issue #5823
-- Make sure we do not weaken the singleton detection too much by checking for loops.
open import Agda.Builtin.Nat
record ⊤ : Set where
record Wrap (A : Set) : Set where
field unwrap : A
record _×_ (A B : Set) : Set where
field
fst : A
snd : B
-- A singleton record type with nestings of Wrap.
Singleton = (Wrap ⊤ × Wrap (Wrap ⊤)) × Wrap (Wrap (Wrap ⊤ × ⊤) × Wrap ⊤)
-- Agda should solve this meta:
unique : Singleton
unique = _
-- This is fine, even though we pass through 'Wrap' several times.
-- Passing already visited non-recursive records is fine!
mutual
record S (n : Nat) : Set where
inductive; eta-equality
field inn : T n
T : Nat → Set
T zero = ⊤
T (suc n) = T n × S n
-- S n is a eta singleton type for each n because it is terminating.
inh5 : S 5
inh5 = _
| {
"alphanum_fraction": 0.650887574,
"avg_line_length": 20.6097560976,
"ext": "agda",
"hexsha": "c862f023b36a42acecf9856bbbaf255f3ccf4f46",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue5823.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue5823.agda",
"max_line_length": 85,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue5823.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 261,
"size": 845
} |
{-# OPTIONS --cubical --no-import-sorts --allow-unsolved-metas #-}
module Number.Structures2 where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)-- ¬ᵗ_
open import Cubical.Foundations.Logic
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.Data.Sigma renaming (_×_ to infixr 4 _×_)
open import Utils
open import MoreLogic.Definitions
open import MoreLogic.Properties
open import MorePropAlgebra.Definitions
open import MorePropAlgebra.Consequences
open import MorePropAlgebra.Structures
{-
| name | struct | apart | abs | order | cauchy | sqrt₀⁺ | exp | final name |
|------|---------------------|-------|-----|-------|--------|---------|-----|------------------------------------------------------------------------|
| ℕ | CommSemiring | (✓) | (✓) | lin. | | (on x²) | | LinearlyOrderedCommSemiring |
| ℤ | CommRing | (✓) | (✓) | lin. | | (on x²) | | LinearlyOrderedCommRing |
| ℚ | Field | (✓) | (✓) | lin. | | (on x²) | (✓) | LinearlyOrderedField |
| ℝ | Field | (✓) | (✓) | part. | ✓ | ✓ | (✓) | CompletePartiallyOrderedFieldWithSqrt |
| ℂ | euclidean 2-Product | (✓) | (✓) | | (✓) | | ? | EuclideanTwoProductOfCompletePartiallyOrderedFieldWithSqrt |
| R | Ring | ✓ | ✓ | | | | ? | ApartnessRingWithAbsIntoCompletePartiallyOrderedFieldWithSqrt |
| G | Group | ✓ | ✓ | | | | ? | ApartnessGroupWithAbsIntoCompletePartiallyOrderedFieldWithSqrt |
| K | Field | ✓ | ✓ | | ✓ | | ? | CompleteApartnessFieldWithAbsIntoCompletePartiallyOrderedFieldWithSqrt |
-- NOTE: what about conjugation `conj`?
-}
-- we usually mean "CommRing" when writing just "Ring" ⇒ TODO: rename this where applicable
-- this is ℕ
record IsLinearlyOrderedCommSemiring {ℓ ℓ'} {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (_<_ : hPropRel F F ℓ') (min max : F → F → F) : Type (ℓ-max ℓ ℓ') where
constructor islinearlyorderedcommsemiring
infixl 4 _#_
infixl 4 _≤_
-- ≤, as in Lemma 4.1.7
_≤_ : hPropRel F F ℓ'
x ≤ y = ¬ (y < x)
field
is-CommSemiring : [ isCommSemiring 0f 1f _+_ _·_ ]
<-StrictLinearOrder : [ isStrictLinearOrder _<_ ]
≤-Lattice : [ isLattice _≤_ min max ]
+-<-ext : ∀ w x y z → [ (w + x) < (y + z) ] → [ (w < y) ⊔ (x < z) ]
·-preserves-< : ∀ x y z → [ 0f < z ] → [ x < y ] → [ (x · z) < (y · z) ]
open IsCommSemiring is-CommSemiring public
open IsStrictLinearOrder <-StrictLinearOrder public
renaming
( is-irrefl to <-irrefl
; is-trans to <-trans
; is-tricho to <-trichoᵗ )
abstract
<-asym : ∀ a b → [ a < b ] → [ ¬ b < a ] -- [ isAsym _<_ ]
<-asym = irrefl+trans⇒asym _<_ <-irrefl <-trans
<-irrefl'' : ∀ a b → ([ a < b ] ⊎ [ b < a ]) → [ ¬(a ≡ₚ b) ]
<-irrefl'' = isIrrefl'⇔isIrrefl'' _<_ <-asym .fst (isIrrefl⇔isIrrefl' _<_ .fst <-irrefl)
<-irreflˢ'' : ∀ a b → ([ a < b ] ⊎ [ b < a ]) → ¬ᵗ(a ≡ b)
<-irreflˢ'' = isIrreflˢ''⇔isIrrefl'' _<_ is-set <-asym .snd <-irrefl''
<-tricho : ∀ a b → ([ a < b ] ⊎ [ b < a ]) ⊎ (a ≡ b)
<-tricho = isTrichotomousˢ⇔isTrichotomous _<_ is-set <-irrefl'' <-irreflˢ'' <-asym .snd <-trichoᵗ
<-StrictPartialOrder : [ isStrictPartialOrder _<_ ]
<-StrictPartialOrder = strictlinearorder⇒strictpartialorder _<_ <-StrictLinearOrder
-- ≤-PartialOrder : [ isPartialOrder _≤_ ]
-- ≤-PartialOrder = {! linearorder⇒partialorder !}
≤-LinearOrder : [ isLinearOrder _≤_ ]
≤-LinearOrder = ≤'-isLinearOrder <-StrictLinearOrder
≤-Preorder : [ isPreorder _≤_ ]
≤-Preorder = ≤'-isPreorder <-StrictPartialOrder
-- # is defined as in Lemma 4.1.7
_#_ : hPropRel F F ℓ'
x # y = [ <-asym x y ] (x < y) ⊎ᵖ (y < x)
#-ApartnessRel : [ isApartnessRel _#_ ]
#-ApartnessRel = #''-isApartnessRel <-StrictPartialOrder <-asym
open IsApartnessRel #-ApartnessRel public renaming
( is-irrefl to #-irrefl
; is-sym to #-sym
; is-cotrans to #-cotrans
)
_ : [ isCommSemiring 0f 1f _+_ _·_ ]; _ = is-CommSemiring
_ : [ isStrictLinearOrder _<_ ]; _ = <-StrictLinearOrder
_ : [ isLattice _≤_ min max ]; _ = ≤-Lattice
open IsLattice ≤-Lattice renaming (≤-antisym to ≤-antisymᵗ) public
≤-antisym : [ isAntisymˢ _≤_ is-set ]
≤-antisym = isAntisymˢ⇔isAntisym _≤_ is-set .snd ≤-antisymᵗ
isLinearlyOrderedCommSemiring : ∀{ℓ ℓ'} {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (_<_ : hPropRel F F ℓ') (min max : F → F → F) → hProp (ℓ-max ℓ ℓ')
isLinearlyOrderedCommSemiring 0f 1f _+_ _·_ _<_ min max .fst = IsLinearlyOrderedCommSemiring 0f 1f _+_ _·_ _<_ min max
isLinearlyOrderedCommSemiring 0f 1f _+_ _·_ _<_ min max .snd = φ where
abstract φ = {! !}
-- this is ℤ
record IsLinearlyOrderedCommRing {ℓ ℓ'} {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_<_ : hPropRel F F ℓ') (min max : F → F → F) : Type (ℓ-max ℓ ℓ') where
constructor islinearlyorderedcommring
field
is-LinearlyOrderedCommSemiring : [ isLinearlyOrderedCommSemiring 0f 1f _+_ _·_ _<_ min max ]
+-inverse : ∀ x → (x + (- x) ≡ 0f) × ((- x) + x ≡ 0f)
infixl 6 _-_
_-_ : F → F → F
x - y = x + (- y)
+-linv : (x : F) → (- x) + x ≡ 0f
+-linv x = +-inverse x .snd
+-rinv : (x : F) → x + (- x) ≡ 0f
+-rinv x = +-inverse x .fst
open IsLinearlyOrderedCommSemiring is-LinearlyOrderedCommSemiring public
isLinearlyOrderedCommRing : ∀{ℓ ℓ'} {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_<_ : hPropRel F F ℓ') (min max : F → F → F) → hProp (ℓ-max ℓ ℓ')
isLinearlyOrderedCommRing 0f 1f _+_ _·_ -_ _<_ min max .fst = IsLinearlyOrderedCommRing 0f 1f _+_ _·_ -_ _<_ min max
isLinearlyOrderedCommRing 0f 1f _+_ _·_ -_ _<_ min max .snd = φ where
abstract φ = {! !}
-- this is ℚ
record IsLinearlyOrderedField {ℓ ℓ'} {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_<_ : hPropRel F F ℓ') (min max : F → F → F) : Type (ℓ-max ℓ ℓ') where
constructor islinearlyorderedfield
field
is-LinearlyOrderedCommRing : [ isLinearlyOrderedCommRing 0f 1f _+_ _·_ (-_) _<_ min max ]
open IsLinearlyOrderedCommRing is-LinearlyOrderedCommRing public
field
·-inv'' : ∀ x → [ (∃[ y ] ([ is-set ] (x · y) ≡ˢ 1f)) ⇔ (x # 0f) ]
isLinearlyOrderedField : ∀{ℓ ℓ'} {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_<_ : hPropRel F F ℓ') (min max : F → F → F) → hProp (ℓ-max ℓ ℓ')
isLinearlyOrderedField 0f 1f _+_ _·_ -_ _<_ min max .fst = IsLinearlyOrderedField 0f 1f _+_ _·_ -_ _<_ min max
isLinearlyOrderedField 0f 1f _+_ _·_ -_ _<_ min max .snd = φ where
abstract φ = {! !}
-- this is ℝ
record IsCompletePartiallyOrderedFieldWithSqrt {ℓ ℓ'} {F : Type ℓ} (0f 1f : F) (_+_ _·_ : F → F → F) (-_ : F → F) (_<_ : hPropRel F F ℓ') (min max : F → F → F) (sqrt : (x : F) → {{ ! [ ¬(x < 0f) ] }} → F) : Type (ℓ-max ℓ ℓ') where
constructor iscompletepartiallyorderedfield
field
-- 1. 2. 3. 4. 5. 6. (†) and (∗)
is-PartiallyOrderedField : [ isPartiallyOrderedField 0f 1f _+_ _·_ -_ _<_ min max ]
| {
"alphanum_fraction": 0.548745426,
"avg_line_length": 48.1257861635,
"ext": "agda",
"hexsha": "748ad8f63ed776ac2a90d6afd6a36f9ed24ae2f7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/Number/Structures2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/Number/Structures2.agda",
"max_line_length": 230,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/Number/Structures2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 2878,
"size": 7652
} |
{- Definition of join for ◇ and associated lemmas. -}
module TemporalOps.Diamond.Join where
open import CategoryTheory.Categories
open import CategoryTheory.Instances.Reactive
open import CategoryTheory.Functor
open import CategoryTheory.NatTrans
open import CategoryTheory.Monad
open import TemporalOps.Common
open import TemporalOps.Next
open import TemporalOps.Delay
open import TemporalOps.Diamond.Functor
import Relation.Binary.PropositionalEquality as ≡
open import Data.Product
open import Relation.Binary.HeterogeneousEquality as ≅
using (_≅_ ; ≅-to-≡ ; ≡-to-≅ ; cong₂)
open import Data.Nat.Properties
using (+-identityʳ ; +-comm ; +-suc ; +-assoc)
open import Holes.Term using (⌞_⌟)
open import Holes.Cong.Propositional
-- | Auxiliary definitions for μ
-- Shifting an event by some interval
μ-shift : {A : τ} -> (k n : ℕ) -> ◇ A at n -> ◇ A at (k + n)
μ-shift {A} k n (l , v) = k + l , rew (sym (delay-+ k l n)) v
-- Auxiliary function for μ, taking the comparison of the delay and
-- time index as an argument
μ-compare : (A : τ) -> (n k : ℕ) -> (v : delay ◇ A by k at n)
-> LeqOrdering k n -> ◇ A at n
μ-compare A .(k + l) k v snd==[ .k + l ] =
μ-shift k l (rew (delay-+-left0 k l) v)
μ-compare A n .(n + suc l) v fst==suc[ .n + l ] =
n + suc l , rew (delay-⊤ n l) top.tt
private module F-◇ = Functor F-◇
-- Join for ◇
μ-◇ : (F-◇ ²) ⟹ F-◇
μ-◇ = record
{ at = μ-◇-at
; nat-cond = λ {A} {B} {f} {n} {a}
-> μ-◇-nat-cond {A} {B} {f} {n} {a}
}
where
open Functor
private module F-▹ = Functor F-▹
open ≡.≡-Reasoning
-- The order of mapping and shifting of events can be interchanged
μ-shift-fmap : {A B : τ} {f : A ⇴ B} {k l : ℕ} {a : ◇ A at l}
-> F-◇.fmap f (k + l) (μ-shift {A} k l a)
≡ μ-shift {B} k l (F-◇.fmap f l a)
μ-shift-fmap {A} {B} {f} {zero} {l} {j , y} = refl
μ-shift-fmap {A} {B} {f} {suc k} {l} {j , y}
rewrite μ-shift-fmap {A} {B} {f} {k} {l} {j , y}
= cong (λ x → suc k + j , x) (fmap-delay-+-k k j l y)
-- Join for ◇
μ-◇-at : (A : τ) -> ◇ ◇ A ⇴ ◇ A
μ-◇-at A n (k , v) = μ-compare A n k v (compareLeq k n)
-- Naturality proof
μ-◇-nat-cond : ∀{A B : τ} {f : A ⇴ B} {n : ℕ} {a : ◇ ◇ A at n}
-> F-◇.fmap f n (μ-◇-at A n a)
≡ μ-◇-at B n (Functor.fmap (F-◇ ²) f n a)
μ-◇-nat-cond {A} {B} {f} {n} {k , v} with inspect (compareLeq k n)
-- n = k + l
μ-◇-nat-cond {A} {B} {f} {.(k + l)} {k , v} | snd==[ .k + l ] with≡ pf =
begin
F-◇.fmap f (k + l) (μ-◇-at A (k + l) (k , v))
≡⟨⟩ -- Def. of μ-◇-at
F-◇.fmap f (k + l) (μ-compare A (k + l) k v ⌞ compareLeq k (k + l) ⌟)
≡⟨ cong! pf ⟩
F-◇.fmap f (k + l) (μ-shift k l (rew (delay-+-left0 k l) v))
≡⟨ μ-shift-fmap {_}{_}{_}{k}{l}{(rew (delay-+-left0 k l) v)} ⟩
μ-shift k l (F-◇.fmap f l ⌞ rew (delay-+-left0 k l) v ⌟)
≡⟨ cong! (delay-+-left0-eq k l v v′ v≅v′) ⟩
μ-shift k l (F-◇.fmap f l (rew (delay-+ k 0 l) v′))
≡⟨⟩ -- Def. of (F-delay 0).fmap
μ-shift k l ((Functor.fmap (F-delay 0) (F-◇.fmap f) at l) (rew (delay-+ k 0 l) v′))
≡⟨ cong (λ x → μ-shift k l x) (sym (fmap-delay-+-n+k k 0 l v′)) ⟩
μ-shift k l ⌞ rew (delay-+ k 0 l) ((Functor.fmap (F-delay (k + 0)) (F-◇.fmap f) at (k + l)) v′) ⌟
≡⟨ cong!
(sym (delay-+-left0-eq k l ((Functor.fmap (F-delay k) (F-◇.fmap f) at (k + l)) v)
((Functor.fmap (F-delay (k + 0)) (F-◇.fmap f) at (k + l)) v′) pr))
⟩
μ-shift k l (rew (delay-+-left0 k l) ((Functor.fmap (F-delay k) (F-◇.fmap f) at (k + l)) v))
≡⟨⟩ -- Def. of μ-compare
μ-compare B (k + l) k ((Functor.fmap (F-delay k) (F-◇.fmap f) at (k + l)) v) (snd==[ k + l ])
≡⟨ cong (λ x → μ-compare B (k + l) k ((Functor.fmap (F-delay k) (F-◇.fmap f) at (k + l)) v) x) (sym pf) ⟩
μ-compare B (k + l) k ((Functor.fmap (F-delay k) (F-◇.fmap f) at (k + l)) v) (compareLeq k (k + l))
≡⟨⟩ -- Folding definitions
μ-◇-at B (k + l) (fmap (F-◇ ²) f (k + l) (k , v))
∎
where
v′ : delay (◇ A) by (k + 0) at (k + l)
v′ = rew (delay-+0-left k (k + l)) v
v≅v′ : v ≅ v′
v≅v′ = rew-to-≅ (delay-+0-left k (k + l))
pr : (Functor.fmap (F-delay k) (F-◇.fmap f) at (k + l)) v
≅ (Functor.fmap (F-delay (k + 0)) (F-◇.fmap f) at (k + l)) v′
pr = cong₂ (λ x y → (Functor.fmap (F-delay x) (F-◇.fmap f) at (k + l)) y)
(≡-to-≅ (sym (+-identityʳ k))) v≅v′
-- k = suc n + l
μ-◇-nat-cond {A} {B} {f} {.n} {.(n + suc l) , v} | fst==suc[ n + l ] with≡ pf =
begin
F-◇.fmap f n (μ-◇-at A n (n + suc l , v))
≡⟨⟩ -- Def. of μ-◇-at
F-◇.fmap f n (μ-compare A n (n + suc l) v ⌞ compareLeq (n + suc l) n ⌟)
≡⟨ cong! pf ⟩
F-◇.fmap f n (n + suc l , rew (delay-⊤ n l) top.tt)
≡⟨⟩ -- Def. of F-◇.fmap
n + suc l , (Functor.fmap (F-delay (n + suc l)) f at n) (rew (delay-⊤ n l) top.tt)
≡⟨ cong (λ x → n + suc l , x) (eq n l) ⟩
n + suc l , rew (delay-⊤ n l) top.tt
≡⟨⟩ -- Def. of μ-compare
μ-compare B n (n + suc l) ((Functor.fmap (F-delay ((n + suc l))) (F-◇.fmap f) at n) v) (fst==suc[ n + l ])
≡⟨ cong (λ x → μ-compare B n (n + suc l) ((Functor.fmap (F-delay (n + suc l)) (F-◇.fmap f) at n) v) x) (sym pf) ⟩
μ-compare B n (n + suc l) ((Functor.fmap (F-delay (n + suc l)) (F-◇.fmap f) at n) v) (compareLeq (n + suc l) n)
≡⟨⟩ -- Def. of μ-◇-at
μ-◇-at B n (Functor.fmap (F-◇ ²) f n (n + suc l , v))
∎
where
eq : ∀ (n l : ℕ)
-> (Functor.fmap (F-delay (n + suc l)) f at n) (rew (delay-⊤ n l) top.tt)
≡ rew (delay-⊤ n l) top.tt
eq zero l = refl
eq (suc n) l = eq n l
| {
"alphanum_fraction": 0.4691872085,
"avg_line_length": 44.1470588235,
"ext": "agda",
"hexsha": "888fdd9ebb2e23a4feeb9d9139aed6a9a502b109",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DimaSamoz/temporal-type-systems",
"max_forks_repo_path": "src/TemporalOps/Diamond/Join.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DimaSamoz/temporal-type-systems",
"max_issues_repo_path": "src/TemporalOps/Diamond/Join.agda",
"max_line_length": 123,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DimaSamoz/temporal-type-systems",
"max_stars_repo_path": "src/TemporalOps/Diamond/Join.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z",
"num_tokens": 2572,
"size": 6004
} |
module Issue760 where
module M where
A : Set₂
A = Set₁
abstract
B : Set₁
B = Set
open M public -- Not abstract.
C : Set₁
C = F where
F = Set -- where clauses declare an anonymous open public module
-- but we should not see any error here
InScope : A
InScope = Set
private
D : Set₁
D = Set
open M public -- Private & public?!
E : Set₁
E = F where
F = Set -- where clauses declare an anonymous open public module
-- but we should not see any error here
| {
"alphanum_fraction": 0.6177606178,
"avg_line_length": 16.1875,
"ext": "agda",
"hexsha": "830cfd2ebbd78ec824797f6b744c2b3626ee44c5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-06-14T11:07:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-06-14T11:07:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue760.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue760.agda",
"max_line_length": 68,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue760.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 150,
"size": 518
} |
open import prelude
-- Copied pretty much verbatim
data Term : Set where
true : Term
false : Term
if_then_else_end : Term → Term → Term → Term
zero : Term
succ : Term → Term
iszero : Term → Term
data NValue : Term → Set where
zero : NValue zero
succ : ∀ {t} → NValue(t) → NValue(succ t)
data Value : Term → Set where
true : Value true
false : Value false
nv : ∀ {t} → NValue(t) → Value(t)
data _⟶_ : Term → Term → Set where
E─IfTrue : ∀ {t₂ t₃} →
-----------------------------------
if true then t₂ else t₃ end ⟶ t₂
E─IfFalse : ∀ {t₂ t₃} →
-----------------------------------
if false then t₂ else t₃ end ⟶ t₃
E─IfCong : ∀ {t₁ t₁′ t₂ t₃} →
(t₁ ⟶ t₁′) →
----------------------------------------------------------
(if t₁ then t₂ else t₃ end ⟶ if t₁′ then t₂ else t₃ end)
E─SuccCong : ∀ {t₁ t₁′} →
(t₁ ⟶ t₁′) →
----------------------
(succ t₁ ⟶ succ t₁′)
E─IsZero :
----------------------
(iszero zero ⟶ true)
E─IsSucc : ∀ {n} →
--------------------------
(iszero (succ n) ⟶ false)
E─IsCong : ∀ {t₁ t₁′} →
(t₁ ⟶ t₁′) →
--------------------------
(iszero t₁ ⟶ iszero t₁′)
data Redex : Term → Set where
redex : ∀ {t t′} →
t ⟶ t′ →
--------
Redex(t)
-- Types
data Type : Set where
bool : Type
nat : Type
data _∈_ : Term → Type → Set where
T-True :
-----------
true ∈ bool
T-False :
-----------
false ∈ bool
T-If : ∀ {t₁ t₂ t₃ T} →
t₁ ∈ bool →
t₂ ∈ T →
t₃ ∈ T →
-----------------------------
if t₁ then t₂ else t₃ end ∈ T
T-Zero :
----------
zero ∈ nat
T-Succ : ∀ {t₁} →
t₁ ∈ nat →
-------------
succ t₁ ∈ nat
T-IsZero : ∀ {t₁} →
t₁ ∈ nat →
-------------
iszero t₁ ∈ bool
-- Proving that well-typed terms stay well-typed
preservation : ∀ {t t′ T} → (t ∈ T) → (t ⟶ t′) → (t′ ∈ T)
preservation (T-If p₁ p₂ p₃) E─IfTrue = p₂
preservation (T-If p₁ p₂ p₃) E─IfFalse = p₃
preservation (T-If p₁ p₂ p₃) (E─IfCong q) = T-If (preservation p₁ q) p₂ p₃
preservation (T-Succ p) (E─SuccCong q) = T-Succ (preservation p q)
preservation (T-IsZero p) E─IsZero = T-True
preservation (T-IsZero p) E─IsSucc = T-False
preservation (T-IsZero p) (E─IsCong q) = T-IsZero (preservation p q)
-- Proving that every term is a value or a redex
data ValueOrRedex : Term → Set where
value : ∀ {t} →
(Value(t)) →
---------------
ValueOrRedex(t)
redex : ∀ {t t′} →
t ⟶ t′ →
---------------
ValueOrRedex(t)
progress : ∀ {t T} → (t ∈ T) → ValueOrRedex(t)
progress T-True = value true
progress T-False = value false
progress (T-If p₁ p₂ p₃) = helper (progress p₁) p₁ where
helper : ∀ {t₀ t₁ t₂} → ValueOrRedex(t₀) → t₀ ∈ bool → ValueOrRedex(if t₀ then t₁ else t₂ end)
helper (value true) p = redex E─IfTrue
helper (value false) p = redex E─IfFalse
helper (redex r) p = redex (E─IfCong r)
helper (value (nv ())) T-True
helper (value (nv ())) T-False
helper (value (nv ())) (T-If p p₁ p₂)
progress T-Zero = value (nv zero)
progress (T-Succ p) = helper (progress p) p where
helper : ∀ {t₀} → ValueOrRedex(t₀) → t₀ ∈ nat → ValueOrRedex(succ t₀)
helper (value (nv n)) p = value (nv (succ n))
helper (redex r) p = redex (E─SuccCong r)
progress (T-IsZero p) = helper (progress p) p where
helper : ∀ {t₀} → ValueOrRedex(t₀) → t₀ ∈ nat → ValueOrRedex(iszero t₀)
helper (value (nv zero)) p = redex E─IsZero
helper (value (nv (succ x))) p = redex E─IsSucc
helper (redex r) p = redex (E─IsCong r)
-- Interpreter
data _⟶*_ : Term → Term → Set where
done : ∀ {t} →
--------
t ⟶* t
redex : ∀ {t t′ t″} →
t ⟶ t′ →
t′ ⟶* t″ →
----------
t ⟶* t″
-- An interpreter result
data Result : Term → Set where
result : ∀ {t t′} →
t ⟶* t′ →
Value(t′) →
---------
Result(t)
-- The interpreter just calls `progress` until it is a value.
-- This might bot terminate!
{-# NON_TERMINATING #-}
interp : ∀ {t T} → (t ∈ T) → Result(t)
interp p = helper₂ p (progress p) where
helper₁ : ∀ {t t′} → (t ⟶ t′) → Result(t′) → Result(t)
helper₁ r (result s v) = result (redex r s) v
helper₂ : ∀ {t T} → (t ∈ T) → ValueOrRedex(t) → Result(t)
helper₂ p (value v) = result done v
helper₂ p (redex r) = helper₁ r (interp (preservation p r))
ex = if (iszero zero) then (succ zero) else (zero) end
exNat : (ex ∈ nat)
exNat = T-If (T-IsZero T-Zero) (T-Succ T-Zero) T-Zero
-- Normalize (C-N) interp exNat
-- result
-- (redex (E─IfCong E─IsZero)
-- (redex E─IfTrue
-- done))
-- (nv (succ zero))
| {
"alphanum_fraction": 0.5120274914,
"avg_line_length": 21.1636363636,
"ext": "agda",
"hexsha": "4a3e1bbe23385d1d1181721ce5116d801f9123df",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "asajeffrey/tapl",
"max_forks_repo_path": "ch8.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "asajeffrey/tapl",
"max_issues_repo_path": "ch8.agda",
"max_line_length": 96,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "de2ae6c24d001b85a5032c9e06cc731557dbc5e5",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "asajeffrey/tapl",
"max_stars_repo_path": "ch8.agda",
"max_stars_repo_stars_event_max_datetime": "2021-03-15T12:09:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-03-12T22:44:19.000Z",
"num_tokens": 1721,
"size": 4656
} |
------------------------------------------------------------------------
-- A definition of the propositional truncation operator that does not
-- use recursive higher inductive types
------------------------------------------------------------------------
-- The definition does use natural numbers. The code is based on van
-- Doorn's "Constructing the Propositional Truncation using
-- Non-recursive HITs".
{-# OPTIONS --erased-cubical --safe #-}
import Equality.Path as P
module H-level.Truncation.Propositional.Non-recursive
{e⁺} (eq : ∀ {a p} → P.Equality-with-paths a p e⁺) where
private
open module PD = P.Derived-definitions-and-properties eq
hiding (elim)
open import Prelude
open import Colimit.Sequential eq as C using (Colimit)
open import Equality.Decidable-UIP equality-with-J
open import Equality.Path.Isomorphisms eq
open import Equivalence equality-with-J as Eq using (_≃_)
open import Function-universe equality-with-J as F
open import H-level equality-with-J
open import H-level.Closure equality-with-J
import H-level.Truncation.Propositional eq as T
open import H-level.Truncation.Propositional.Non-recursive.Erased eq
as N using (∥_∥ᴱ)
open import H-level.Truncation.Propositional.One-step eq as O
using (∥_∥¹; ∥_∥¹-out-^; ∣_∣-out-^)
private
variable
a p : Level
A B : Type a
P : A → Type p
e x : A
-- The propositional truncation operator.
∥_∥ : Type a → Type a
∥ A ∥ = Colimit ∥ A ∥¹-out-^ O.∣_∣
-- The point constructor.
∣_∣ : A → ∥ A ∥
∣_∣ = C.∣_∣
-- The eliminator.
record Elim {A : Type a} (P : ∥ A ∥ → Type p) : Type (a ⊔ p) where
no-eta-equality
field
∣∣ʳ : ∀ x → P ∣ x ∣
is-propositionʳ : ∀ x → Is-proposition (P x)
open Elim public
elim : Elim P → (x : ∥ A ∥) → P x
elim {A = A} {P = P} e = C.elim λ where
.C.Elim.∣∣ʳ {n = n} → helper n
.C.Elim.∣∣≡∣∣ʳ _ → E.is-propositionʳ _ _ _
where
module E = Elim e
helper : ∀ n (x : ∥ A ∥¹-out-^ n) → P C.∣ x ∣
helper zero = E.∣∣ʳ
helper (suc n) = O.elim λ where
.O.Elim.∣∣ʳ x → subst P (sym (C.∣∣≡∣∣ x)) (helper n x)
.O.Elim.∣∣-constantʳ _ _ → E.is-propositionʳ _ _ _
_ : elim e ∣ x ∣ ≡ e .∣∣ʳ x
_ = refl _
-- The propositional truncation operator returns propositions.
∥∥-proposition : Is-proposition ∥ A ∥
∥∥-proposition {A = A} = elim λ where
.is-propositionʳ → Π≡-proposition ext
.∣∣ʳ x → C.elim λ where
.C.Elim.∣∣ʳ → lemma₁ _ x
.C.Elim.∣∣≡∣∣ʳ {n = n} y →
subst (∣ x ∣ ≡_) (C.∣∣≡∣∣ y) (lemma₁ (suc n) x O.∣ y ∣) ≡⟨ sym trans-subst ⟩
trans (lemma₁ (1 + n) x O.∣ y ∣) (C.∣∣≡∣∣ y) ≡⟨⟩
trans (trans (sym (trans (C.∣∣≡∣∣ (∣ x ∣-out-^ (1 + n)))
(lemma₀ (1 + n) x)))
(trans (cong C.∣_∣
(O.∣∣-constant
(∣ x ∣-out-^ (1 + n)) O.∣ y ∣))
(C.∣∣≡∣∣ O.∣ y ∣)))
(C.∣∣≡∣∣ y) ≡⟨ trans (cong (λ eq → trans (trans eq
(trans (cong C.∣_∣ (O.∣∣-constant _ _))
(C.∣∣≡∣∣ _)))
(C.∣∣≡∣∣ _)) $
sym-trans _ _) $
trans (trans-assoc _ _ _) $
trans (trans-assoc _ _ _) $
cong (trans (sym (lemma₀ (1 + n) _))) $
sym $ trans-assoc _ _ _ ⟩
trans (sym (lemma₀ (1 + n) x))
(trans (trans (sym (C.∣∣≡∣∣ (∣ x ∣-out-^ (1 + n))))
(trans (cong C.∣_∣
(O.∣∣-constant
(∣ x ∣-out-^ (1 + n)) O.∣ y ∣))
(C.∣∣≡∣∣ O.∣ y ∣)))
(C.∣∣≡∣∣ y)) ≡⟨ cong (λ eq → trans (sym (lemma₀ (1 + n) _))
(trans (trans (sym (C.∣∣≡∣∣ _)) eq) (C.∣∣≡∣∣ _))) $ sym $
lemma₂ _ _ _ _ _ ⟩
trans (sym (lemma₀ (1 + n) x))
(trans (trans (sym (C.∣∣≡∣∣ (∣ x ∣-out-^ (1 + n))))
(trans (C.∣∣≡∣∣ (∣ x ∣-out-^ (1 + n)))
(cong C.∣_∣ (O.∣∣-constant _ _))))
(C.∣∣≡∣∣ y)) ≡⟨ cong (λ eq → trans (sym (lemma₀ (1 + n) _)) (trans eq (C.∣∣≡∣∣ _))) $
trans-sym-[trans] _ _ ⟩
trans (sym (lemma₀ (1 + n) x))
(trans (cong C.∣_∣ (O.∣∣-constant _ _)) (C.∣∣≡∣∣ y)) ≡⟨⟩
lemma₁ n x y ∎
where
lemma₀ : ∀ n (x : A) → C.∣ ∣ x ∣-out-^ n ∣ ≡ ∣ x ∣
lemma₀ zero x = ∣ x ∣ ∎
lemma₀ (suc n) x =
C.∣ O.∣ ∣ x ∣-out-^ n ∣ ∣ ≡⟨ C.∣∣≡∣∣ (∣ x ∣-out-^ n) ⟩
C.∣ ∣ x ∣-out-^ n ∣ ≡⟨ lemma₀ n x ⟩∎
∣ x ∣ ∎
lemma₁ : ∀ n (x : A) (y : ∥ A ∥¹-out-^ n) → ∣ x ∣ ≡ C.∣ y ∣
lemma₁ n x y =
∣ x ∣ ≡⟨ sym (lemma₀ (suc n) x) ⟩
C.∣ ∣ x ∣-out-^ (suc n) ∣ ≡⟨⟩
C.∣ O.∣ ∣ x ∣-out-^ n ∣ ∣ ≡⟨ cong C.∣_∣ (O.∣∣-constant _ _) ⟩
C.∣ O.∣ y ∣ ∣ ≡⟨ C.∣∣≡∣∣ y ⟩∎
C.∣ y ∣ ∎
lemma₂ :
∀ n (x y : ∥ A ∥¹-out-^ n) (p : x ≡ y) (q : O.∣ x ∣ ≡ O.∣ y ∣) →
trans (C.∣∣≡∣∣ {P = ∥ A ∥¹-out-^} x) (cong C.∣_∣ p) ≡
trans (cong C.∣_∣ q) (C.∣∣≡∣∣ y)
lemma₂ n x y p q =
trans (C.∣∣≡∣∣ x) (cong C.∣_∣ p) ≡⟨ PD.elim
(λ {x y} p → trans (C.∣∣≡∣∣ x) (cong C.∣_∣ p) ≡
trans (cong C.∣_∣ (cong O.∣_∣ p)) (C.∣∣≡∣∣ y))
(λ x →
trans (C.∣∣≡∣∣ x) (cong C.∣_∣ (refl _)) ≡⟨ cong (trans _) $ cong-refl _ ⟩
trans (C.∣∣≡∣∣ x) (refl _) ≡⟨ trans-reflʳ _ ⟩
C.∣∣≡∣∣ x ≡⟨ sym $ trans-reflˡ _ ⟩
trans (refl _) (C.∣∣≡∣∣ x) ≡⟨ cong (flip trans _) $ sym $
trans (cong (cong C.∣_∣) $ cong-refl _) $
cong-refl _ ⟩∎
trans (cong C.∣_∣ (cong O.∣_∣ (refl _))) (C.∣∣≡∣∣ x) ∎)
p ⟩
trans (cong C.∣_∣ (cong O.∣_∣ p)) (C.∣∣≡∣∣ y) ≡⟨ cong (flip trans _) $
cong-preserves-Constant
(λ u v →
C.∣ u ∣ ≡⟨ sym (C.∣∣≡∣∣ u) ⟩
C.∣ O.∣ u ∣ ∣ ≡⟨ cong C.∣_∣ (O.∣∣-constant _ _) ⟩
C.∣ O.∣ v ∣ ∣ ≡⟨ C.∣∣≡∣∣ v ⟩∎
C.∣ v ∣ ∎)
_ _ ⟩∎
trans (cong C.∣_∣ q) (C.∣∣≡∣∣ y) ∎
-- ∥_∥ is pointwise equivalent to T.∥_∥.
∥∥≃∥∥ : ∥ A ∥ ≃ T.∥ A ∥
∥∥≃∥∥ = Eq.⇔→≃
∥∥-proposition
T.truncation-is-proposition
(elim λ where
.∣∣ʳ → T.∣_∣
.is-propositionʳ _ → T.truncation-is-proposition)
(T.rec ∥∥-proposition ∣_∣)
-- Functions from T.∥ A ∥ can be expressed as families of functions
-- from ∥ A ∥¹-out-^ that satisfy a certain property.
∥∥→≃ :
(T.∥ A ∥ → B)
≃
(∃ λ (f : ∀ n → ∥ A ∥¹-out-^ n → B) →
∀ n x → f (suc n) O.∣ x ∣ ≡ f n x)
∥∥→≃ {A = A} {B = B} =
(T.∥ A ∥ → B) ↝⟨ →-cong ext (inverse ∥∥≃∥∥) F.id ⟩
(∥ A ∥ → B) ↝⟨ C.universal-property ⟩□
(∃ λ (f : ∀ n → ∥ A ∥¹-out-^ n → B) →
∀ n x → f (suc n) O.∣ x ∣ ≡ f n x) □
------------------------------------------------------------------------
-- Some conversion functions
-- ∥ A ∥ᴱ implies ∥ A ∥.
∥∥ᴱ→∥∥ : ∥ A ∥ᴱ → ∥ A ∥
∥∥ᴱ→∥∥ = N.elim λ where
.N.∣∣ʳ → ∣_∣
.N.is-propositionʳ _ → ∥∥-proposition
-- In erased contexts ∥ A ∥ᴱ and ∥ A ∥ are equivalent.
@0 ∥∥ᴱ≃∥∥ : ∥ A ∥ᴱ ≃ ∥ A ∥
∥∥ᴱ≃∥∥ = Eq.↔→≃
∥∥ᴱ→∥∥
(elim λ @0 where
.∣∣ʳ → N.∣_∣
.is-propositionʳ _ → N.∥∥ᴱ-proposition)
(elim λ @0 where
.∣∣ʳ _ → refl _
.is-propositionʳ _ → mono₁ 1 ∥∥-proposition)
(N.elim λ where
.N.∣∣ʳ _ → refl _
.N.is-propositionʳ _ → mono₁ 1 N.∥∥ᴱ-proposition)
| {
"alphanum_fraction": 0.3447862129,
"avg_line_length": 41.6727272727,
"ext": "agda",
"hexsha": "a2903018fcbe35e7f0a08b0314d99dd8c5019a61",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/H-level/Truncation/Propositional/Non-recursive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/H-level/Truncation/Propositional/Non-recursive.agda",
"max_line_length": 141,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/H-level/Truncation/Propositional/Non-recursive.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 3495,
"size": 9168
} |
{-# OPTIONS --without-K --safe #-}
module Math.FormalLanguage where
-- agda-stdlib
import Algebra.FunctionProperties as FP
import Algebra.Structures as Structures
open import Level renaming (zero to lzero; suc to lsuc)
open import Data.List as L using (List; []; _++_)
import Data.List.Properties as Lₚ
open import Data.Nat hiding (_⊔_; _^_)
open import Data.Empty
open import Data.Product using (proj₁; proj₂; _,_; _×_; ∃₂; ∃)
open import Function using (_$_)
import Function as F
open import Relation.Binary.PropositionalEquality
open import Relation.Binary
open import Relation.Unary hiding (∅; {_})
import Relation.Unary as U
import Relation.Unary.Properties as Uₚ
-- Equivalence of predicate
infix 4 _≡ᴾ_
_≡ᴾ_ : ∀ {a l} {A : Set a} → Rel (Pred A l) (a ⊔ l)
_≡ᴾ_ P Q = (P ⊆ Q) × (Q ⊆ P)
≡ᴾ-refl : ∀ {a l} {A : Set a} → Reflexive {A = Pred A l} _≡ᴾ_
≡ᴾ-refl = F.id , F.id
≡ᴾ-sym : ∀ {a l} {A : Set a} → Symmetric {A = Pred A l} _≡ᴾ_
≡ᴾ-sym = Data.Product.swap
≡ᴾ-trans : ∀ {a l} {A : Set a} → Transitive {A = Pred A l} _≡ᴾ_
≡ᴾ-trans P≡Q Q≡R = proj₁ Q≡R F.∘ proj₁ P≡Q , proj₂ P≡Q F.∘ proj₂ Q≡R
≡ᴾ-isEquivalence : ∀ {a l} {A : Set a} → IsEquivalence {A = Pred A l} _≡ᴾ_
≡ᴾ-isEquivalence = record
{ refl = ≡ᴾ-refl
; sym = ≡ᴾ-sym
; trans = ≡ᴾ-trans
}
≡ᴾ-setoid : ∀ {a l} {A : Set a} → Setoid _ _
≡ᴾ-setoid {a} {l} {A} = record
{ Carrier = Pred A l
; _≈_ = _≡ᴾ_
; isEquivalence = ≡ᴾ-isEquivalence
}
∅ : ∀ {a l} {A : Set a} → Pred A l
∅ {l = l} = λ _ → Lift l ⊥
{_} : ∀ {a l} {A : Set a} → A → Pred A (a ⊔ l)
{_}{l = l} x = λ y → Lift l (y ≡ x)
Lang : ∀ {s} → Set s → (l : Level) → Set _
Lang Σ l = Pred (List Σ) l
-- TODO Move Math.FormalLanguage.Construct.EmptyLang
data EmptyLang {a l} {A : Set a} : Lang A (a ⊔ l) where
mkEmptyLang : EmptyLang []
-- TODO Move Math.FormalLanguage.Construct.Concat
-- TODO Hetero
-- Lang A l → Lang B l → Lang (A ⊎ B) l
-- map inj₁ xs ++ map inj₂ ys
-- concatenation of formal language
data _<>_ {a l} {A : Set a} (L₁ L₂ : Lang A l) : Lang A (a ⊔ l) where
mk<> : ∀ {xs ys} → L₁ xs → L₂ ys → (L₁ <> L₂) (xs ++ ys)
-- TODO Move Math.FormalLanguage.Construct.Concat.Properties
module _ {s l} {Σ : Set s} where
open FP {A = Lang Σ (s ⊔ l)} _≡ᴾ_
<>-identityˡ : LeftIdentity (EmptyLang {l = l}) _<>_
<>-identityˡ L = to , from
where
to : EmptyLang <> L ⊆ L
to (mk<> mkEmptyLang x₁) = x₁
from : L ⊆ EmptyLang <> L
from Lx = mk<> mkEmptyLang Lx
<>-identityʳ : RightIdentity (EmptyLang {l = l}) _<>_
<>-identityʳ L = to , from
where
to : L <> EmptyLang ⊆ L
to (mk<> Lx mkEmptyLang) = subst L (sym $ Lₚ.++-identityʳ _) Lx
from : L ⊆ L <> EmptyLang
from {xs} x = subst (L <> EmptyLang) (Lₚ.++-identityʳ xs) $
mk<> {xs = xs} {ys = []} x mkEmptyLang
{- TODO move contents of agda-combinatorics to agda-misc
<>-dec : ∀ {L₁ L₂ : Lang Σ l} →
U.Decidable L₁ → U.Decidable L₂ → U.Decidable (L₁ <> L₂)
<>-dec L₁? L₂? zs with L.filter (L₁? Uₚ.×? L₂?) (splits₂ zs)
... | x = ?
-}
| {
"alphanum_fraction": 0.5936981758,
"avg_line_length": 30.7653061224,
"ext": "agda",
"hexsha": "20fff9337a60567cf4b67a8ee1e2e04698842c2f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Math/FormalLanguage.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Math/FormalLanguage.agda",
"max_line_length": 74,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Math/FormalLanguage.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 1247,
"size": 3015
} |
module Everything where
import Data.BitVector
import Data.BitVector.ContainmentOrder
import Data.BitVector.NumericOrder
import Data.BitVector.Peano
import Data.BitVector.Properties
import Data.BitVector.Properties.LatticeProperties
| {
"alphanum_fraction": 0.8798283262,
"avg_line_length": 25.8888888889,
"ext": "agda",
"hexsha": "e7e2d989c12d09fbe182d3ab7e081108daa25a60",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-11-12T01:40:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-25T00:15:43.000Z",
"max_forks_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "copumpkin/bitvector",
"max_forks_repo_path": "Everything.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687",
"max_issues_repo_issues_event_max_datetime": "2016-05-25T02:00:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-05-25T02:00:59.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "copumpkin/bitvector",
"max_issues_repo_path": "Everything.agda",
"max_line_length": 50,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6902f4bce0330f1b58f48395dac4406056713687",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/bitvector",
"max_stars_repo_path": "Everything.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-12T01:41:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-04T07:19:55.000Z",
"num_tokens": 48,
"size": 233
} |
module objectsInAgda where
open import Data.Product
open import interactiveProgramsAgda hiding (main)
open import NativeIO
open import Data.String.Base
record Interface : Set₁ where
field Method : Set
Result : (m : Method) → Set
open Interface public
record Object (I : Interface) : Set where
coinductive
field objectMethod : (m : Method I) → Result I m × Object I
open Object public
open import Size
record IOObject (Iᵢₒ : IOInterface) (I : Interface) (i : Size) : Set where
coinductive
field method : ∀{j : Size< i} (m : Method I)
→ IO Iᵢₒ ∞ (Result I m × IOObject Iᵢₒ I j)
open IOObject public
{- Example Cell -}
data CellMethod A : Set where
get : CellMethod A
put : A → CellMethod A
CellResult : ∀{A} → CellMethod A → Set
CellResult {A} get = A
CellResult (put _) = Unit
cellI : (A : Set) → Interface
Method (cellI A) = CellMethod A
Result (cellI A) m = CellResult m
{- A cell as an Object -}
Cell : Set → Set
Cell A = Object (cellI A)
cell : {A : Set} → A → Cell A
objectMethod (cell a) get = a , cell a
objectMethod (cell a) (put a') = unit , cell a'
{- A cell as an IOObject -}
CellC : (i : Size) → Set
CellC = IOObject ConsoleInterface (cellI String)
simpleCell : ∀{i} (s : String) → CellC i
force (method (simpleCell s) get) =
do' (putStrLn ("getting (" ++ s ++ ")")) λ _ →
return (s , simpleCell s)
force (method (simpleCell _) (put s)) =
do' (putStrLn ("putting (" ++ s ++ ")")) λ _ →
return (_ , simpleCell s)
program : ∀{i} → CellC ∞ → IO ConsoleInterface i Unit
force (program c) =
do' getLine λ s →
method c (put s) >>= λ{ (_ , c) →
method c get >>= λ{ (s' , c) →
do (putStrLn s') λ _ →
program c }}
main : NativeIO Unit
main = translateIOConsole (program (simpleCell "Start"))
| {
"alphanum_fraction": 0.5995762712,
"avg_line_length": 22.4761904762,
"ext": "agda",
"hexsha": "32dbdcf176bac526746a0b4fbbc22b4ec4a831c1",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/objectsInAgda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/objectsInAgda.agda",
"max_line_length": 74,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "presentationsAndExampleCode/agdaImplementorsMeetingGlasgow22April2016AntonSetzer/objectsInAgda.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 609,
"size": 1888
} |
module trichotomy where
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Data.Nat using (ℕ; zero; suc)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product using (_×_) renaming (_,_ to ⟨_,_⟩)
open import Negation using (¬_; _≢_)
infix 4 _<_
data _<_ : ℕ → ℕ → Set where
z<s : ∀ {n : ℕ}
------------
→ zero < suc n
s<s : ∀ {m n : ℕ}
→ m < n
-------------
→ suc m < suc n
infix 4 _≮_
_≮_ : ∀ (m n : ℕ) → Set
m ≮ n = ¬ (m < n)
-- 1 + m ≡ 1 + n ならば m ≡ n
sm≡sn→m≡n : ∀ {m n : ℕ} → suc m ≡ suc n → m ≡ n
sm≡sn→m≡n refl = refl
-- m ≢ n ならば 1 + m ≢ 1 + n
m≢n→sm≢sn : ∀ {m n : ℕ} → m ≢ n → suc m ≢ suc n
m≢n→sm≢sn m≢n = λ{ sm≡sn → m≢n (sm≡sn→m≡n sm≡sn) }
-- m ≮ n ならば 1 + m ≮ 1 + n
m≮n→sm≮sn : ∀ {m n : ℕ} → m ≮ n → suc m ≮ suc n
m≮n→sm≮sn m≮n = λ{ (s<s m<n) → m≮n m<n }
-- 三分律の証明
trichotomy : ∀ (m n : ℕ)
→ (m < n × m ≢ n × n ≮ m)
⊎ (m ≮ n × m ≡ n × n ≮ m)
⊎ (m ≮ n × m ≢ n × n < m)
trichotomy zero zero = inj₂ (inj₁ ⟨ (λ()) , ⟨ refl , (λ()) ⟩ ⟩)
trichotomy zero (suc n) = inj₁ ⟨ z<s , ⟨ (λ()) , (λ()) ⟩ ⟩
trichotomy (suc m) zero = inj₂ (inj₂ ⟨ (λ()) , ⟨ (λ()) , z<s ⟩ ⟩)
trichotomy (suc m) (suc n) with trichotomy m n
... | inj₁ ⟨ m<n , ⟨ m≢n , n≮m ⟩ ⟩ = inj₁ ⟨ s<s m<n , ⟨ m≢n→sm≢sn m≢n , m≮n→sm≮sn n≮m ⟩ ⟩
... | inj₂ (inj₁ ⟨ m≮n , ⟨ refl , n≮m ⟩ ⟩) = inj₂ (inj₁ ⟨ m≮n→sm≮sn m≮n , ⟨ refl , m≮n→sm≮sn n≮m ⟩ ⟩)
... | inj₂ (inj₂ ⟨ m≮n , ⟨ m≢n , n<m ⟩ ⟩) = inj₂ (inj₂ ⟨ m≮n→sm≮sn m≮n , ⟨ m≢n→sm≢sn m≢n , s<s n<m ⟩ ⟩)
| {
"alphanum_fraction": 0.4042923434,
"avg_line_length": 35.1836734694,
"ext": "agda",
"hexsha": "45cbab416bf929a3edc3491fc144937ae8a1cb82",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "akiomik/plfa-solutions",
"max_forks_repo_path": "part1/negation/trichotomy.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "akiomik/plfa-solutions",
"max_issues_repo_path": "part1/negation/trichotomy.agda",
"max_line_length": 130,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df7722b88a9b3dfde320a690b78c4c1ef8c7c547",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "akiomik/plfa-solutions",
"max_stars_repo_path": "part1/negation/trichotomy.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-07T09:42:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-07T09:42:22.000Z",
"num_tokens": 817,
"size": 1724
} |
open import Lemmachine.Resource
module Lemmachine.Resolve (c : Resource) where
open import Lemmachine.Request
open import Lemmachine.Response
open import Lemmachine.Utils
open import Data.Bool
open import Data.Nat
open import Data.String
open import Data.Function
open import Data.Maybe
open import Data.List
open import Data.Product
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
O18 : Request → Status
O18 r with Resource.multipleChoices c r
... | false = OK
... | true = MultipleChoices
O20 : Request → Status
O20 r with Request.reqBody r
... | nothing = NoContent
... | just _ = O18 r
P11 : Request → Status
P11 r with fetchHeader "Location" (Request.headers r)
... | nothing = O20 r
... | just _ = Created
O14 : Request → Status
O14 r with Resource.isConflict c r
... | true = Conflict
... | false = P11 r
O16 : Request → Status
O16 r with Request.method r
... | PUT = O14 r
... | _ = O18 r
N11 : Request → Status
N11 r with isRedirect r
... | true = SeeOther
... | false = P11 r
N16 : Request → Status
N16 r with Request.method r
... | POST = N11 r
... | _ = O16 r
M20 : Request → Status
M20 r with Resource.deleteResource c r
... | false = Accepted
... | true = O20 r
M16 : Request → Status
M16 r with Request.method r
... | DELETE = M20 r
... | _ = N16 r
L13+L14+L15+L17 : Request → Status
L13+L14+L15+L17 r with fetchHeader "If-Modified-Since" (Request.headers r)
... | nothing = M16 r
... | just clientDate with isDate clientDate
... | false = M16 r
... | true with isModified now clientDate
... | true = M16 r
... | false with Resource.lastModified c r
... | nothing = M16 r
... | just serverDate with isModified clientDate serverDate
... | true = M16 r
... | false = NotModified
J18 : Request → Status
J18 r with Request.method r
... | HEAD = NotModified
... | GET = NotModified
... | _ = PreconditionFailed
I12+I13+K13 : Request → Status
I12+I13+K13 r with fetchHeader "If-None-Match" (Request.headers r)
... | nothing = L13+L14+L15+L17 r
... | just clientETag with "*" == clientETag
... | true = J18 r
... | false with Resource.generateETag c r
... | nothing = L13+L14+L15+L17 r
... | just serverETag with clientETag == serverETag
... | true = J18 r
... | false = L13+L14+L15+L17 r
H10+H11+H12 : Request → Status
H10+H11+H12 r with fetchHeader "If-Unmodified-Since" (Request.headers r)
... | nothing = I12+I13+K13 r
... | just clientDate with isDate clientDate
... | false = I12+I13+K13 r
... | true with Resource.lastModified c r
... | nothing = I12+I13+K13 r
... | just serverDate with isModified clientDate serverDate
... | true = PreconditionFailed
... | false = I12+I13+K13 r
G8+G9+G11 : Request → Status
G8+G9+G11 r with fetchHeader "If-Match" (Request.headers r)
... | nothing = H10+H11+H12 r
... | just clientETag with "*" == clientETag
... | true = H10+H11+H12 r
... | false with Resource.generateETag c r
... | nothing = PreconditionFailed
... | just serverETag with clientETag == serverETag
... | true = H10+H11+H12 r
... | false = PreconditionFailed
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 : Request → Status
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 r with Request.method r
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 r | PUT with Resource.movedPermanently c r
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 _ | PUT | just _ = MovedPermanently
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 r | PUT | nothing with Resource.isConflict c r
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 r | PUT | nothing | false = N11 r
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 _ | PUT | nothing | true = Conflict
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 r | _ with Resource.previouslyExisted c r
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 r | _ | true with Resource.movedPermanently c r
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 _ | _ | true | just _ = MovedPermanently
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 r | _ | true | nothing with Resource.movedTemporarily c r
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 _ | _ | true | nothing | just _ = MovedTemporarily
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 r | POST | true | nothing | nothing with Resource.allowMissingPost c r
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 _ | POST | true | nothing | nothing | false = Gone
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 r | POST | true | nothing | nothing | true = N11 r
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 _ | _ | true | nothing | nothing = Gone
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 r | POST | false with Resource.allowMissingPost c r
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 _ | POST | false | false = NotFound
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 r | POST | false | true = N11 r
I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 _ | _ | false = NotFound
H7 : Request → Status
H7 r with fetchHeader "If-Match" (Request.headers r)
... | just "*" = PreconditionFailed
... | _ = I7+I4+P3+K7+K5+L5+M5+N5+L7+M7 r
G7 : Request → Status
G7 r with Resource.resourceExists c r
... | true = G8+G9+G11 r
... | false = H7 r
F6+F7 : Request → Status
F6+F7 r with fetchHeader "Accept-Encoding" (Request.headers r)
... | nothing = G7 r
... | just encoding with fetch encoding (Resource.encodingsProvided c r)
... | just _ = G7 r
... | nothing = NotAcceptable
E5+E6 : Request → Status
E5+E6 r with fetchHeader "Accept-Charset" (Request.headers r)
... | nothing = F6+F7 r
... | just charset with fetch charset (Resource.charsetsProvided c r)
... | just _ = F6+F7 r
... | nothing = NotAcceptable
D4+D5 : Request → Status
D4+D5 r with fetchHeader "Accept-Language" (Request.headers r)
... | nothing = E5+E6 r
... | just language with Resource.languageAvailable c r
... | true = E5+E6 r
... | false = NotAcceptable
C3+C4 : Request → Status
C3+C4 r with fetchHeader "Accept" (Request.headers r)
... | nothing = D4+D5 r
... | just contentType with fetchContentType contentType
(Resource.contentTypesProvided c r)
... | just _ = D4+D5 r
... | nothing = NotAcceptable
B3 : Request → Status
B3 r with eqMethod (Request.method r) OPTIONS
... | true = OK
... | false = C3+C4 r
B4 : Request → Status
B4 r with Resource.validEntityLength c r
... | true = B3 r
... | false = RequestEntityTooLarge
B5 : Request → Status
B5 r with Resource.knownContentType c r
... | true = B4 r
... | false = UnsupportedMediaType
B6 : Request → Status
B6 r with Resource.validContentHeaders c r
... | true = B5 r
... | false = NotImplemented
B7 : Request → Status
B7 r with Resource.forbidden c r
... | true = Forbidden
... | false = B6 r
B8 : Request → Status
B8 r with Resource.isAuthorized c r
... | true = B7 r
... | false = Unauthorized
B9 : Request → Status
B9 r with Resource.malformedRequest c r
... | true = BadRequest
... | false = B8 r
B10 : Request → Status
B10 r with any (eqMethod (Request.method r))
(Resource.allowedMethods c r)
... | true = B9 r
... | false = MethodNotAllowed
B11 : Request → Status
B11 r with Resource.uriTooLong c r
... | true = RequestURItooLong
... | false = B10 r
B12 : Request → Status
B12 r with any (eqMethod (Request.method r))
(Resource.knownMethods c r)
... | true = B11 r
... | false = NotImplemented
B13 : Request → Status
B13 r with Resource.serviceAvailable c r
... | true = B12 r
... | false = ServiceUnavailable
resolveStatus : Request → Status
resolveStatus r = B13 r
resolve : Application
resolve r = record {
status = s
; headers = hs $ fetchAccept (Request.headers r) (Resource.contentTypesProvided c r)
; body = Resource.body c s
} where
s = resolveStatus r
hs : Maybe String → List ResponseHeader
hs (just s) = [ "Content-Type" , s ]
hs nothing = []
| {
"alphanum_fraction": 0.6628777748,
"avg_line_length": 30.7736625514,
"ext": "agda",
"hexsha": "cfcdb5e3ee71ba65fe186c858b6958811d239995",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "src/Lemmachine/Resolve.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "src/Lemmachine/Resolve.agda",
"max_line_length": 105,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "src/Lemmachine/Resolve.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 2686,
"size": 7478
} |
{-# OPTIONS --without-K --safe #-}
module Definition.Typed.Reduction where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Typed.Properties
-- Weak head expansion of type equality
reduction : ∀ {A A′ B B′ Γ}
→ Γ ⊢ A ⇒* A′
→ Γ ⊢ B ⇒* B′
→ Whnf A′
→ Whnf B′
→ Γ ⊢ A′ ≡ B′
→ Γ ⊢ A ≡ B
reduction D D′ whnfA′ whnfB′ A′≡B′ =
trans (subset* D) (trans A′≡B′ (sym (subset* D′)))
reduction′ : ∀ {A A′ B B′ Γ}
→ Γ ⊢ A ⇒* A′
→ Γ ⊢ B ⇒* B′
→ Whnf A′
→ Whnf B′
→ Γ ⊢ A ≡ B
→ Γ ⊢ A′ ≡ B′
reduction′ D D′ whnfA′ whnfB′ A≡B =
trans (sym (subset* D)) (trans A≡B (subset* D′))
-- Weak head expansion of term equality
reductionₜ : ∀ {a a′ b b′ A B Γ}
→ Γ ⊢ A ⇒* B
→ Γ ⊢ a ⇒* a′ ∷ B
→ Γ ⊢ b ⇒* b′ ∷ B
→ Whnf B
→ Whnf a′
→ Whnf b′
→ Γ ⊢ a′ ≡ b′ ∷ B
→ Γ ⊢ a ≡ b ∷ A
reductionₜ D d d′ whnfB whnfA′ whnfB′ a′≡b′ =
conv (trans (subset*Term d)
(trans a′≡b′ (sym (subset*Term d′))))
(sym (subset* D))
reductionₜ′ : ∀ {a a′ b b′ A B Γ}
→ Γ ⊢ A ⇒* B
→ Γ ⊢ a ⇒* a′ ∷ B
→ Γ ⊢ b ⇒* b′ ∷ B
→ Whnf B
→ Whnf a′
→ Whnf b′
→ Γ ⊢ a ≡ b ∷ A
→ Γ ⊢ a′ ≡ b′ ∷ B
reductionₜ′ D d d′ whnfB whnfA′ whnfB′ a≡b =
trans (sym (subset*Term d))
(trans (conv a≡b (subset* D)) (subset*Term d′))
| {
"alphanum_fraction": 0.4224422442,
"avg_line_length": 26.1206896552,
"ext": "agda",
"hexsha": "70bb2a4c3b61f352fb515c52196ad23460bb7202",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Reduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Reduction.agda",
"max_line_length": 55,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Reduction.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 600,
"size": 1515
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Numbers.Naturals.Naturals
open import Numbers.Naturals.Order
open import Vectors
open import Semirings.Definition
open import Categories.Definition
open import Groups.Definition
open import Setoids.Setoids
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Examples
open import Groups.Homomorphisms.Lemmas
open import Functions
module Categories.Examples where
SET : {a : _} → Category {lsuc a} {a}
Category.objects (SET {a}) = Set a
Category.arrows (SET {a}) = λ a b → (a → b)
Category.id (SET {a}) = λ x → λ y → y
Category._∘_ (SET {a}) = λ f g → λ x → f (g x)
Category.rightId (SET {a}) = λ f → refl
Category.leftId (SET {a}) = λ f → refl
Category.compositionAssociative (SET {a}) = λ f g h → refl
GROUP : {a b : _} → Category {lsuc a ⊔ lsuc b} {a ⊔ b}
Category.objects (GROUP {a} {b}) = Sg (Set a) (λ A → Sg (A → A → A) (λ _+_ → Sg (Setoid {a} {b} A) (λ S → Group S _+_)))
Category.arrows (GROUP {a}) (A , (_+A_ , (S , G))) (B , (_+B_ , (T , H))) = Sg (A → B) (GroupHom G H)
Category.id (GROUP {a}) (A , (_+A_ , (S , G))) = (λ i → i) , identityHom G
Category._∘_ (GROUP {a}) {A , (_+A_ , (S , G))} {B , (_+B_ , (T , H))} {C , (_+C_ , (U , I))} (f , fHom) (g , gHom) = (f ∘ g) , groupHomsCompose gHom fHom
Category.rightId (GROUP {a}) {A , (_+A_ , (S , G))} {B , (_+B_ , (T , H))} (f , fHom) = {!!}
Category.leftId (GROUP {a}) {A , (_+A_ , (S , G))} {B , (_+B_ , (T , H))} (f , fHom) = {!!}
Category.compositionAssociative (GROUP {a}) = {!!}
DISCRETE : {a : _} (X : Set a) → Category {a} {a}
Category.objects (DISCRETE X) = X
Category.arrows (DISCRETE X) = λ a b → a ≡ b
Category.id (DISCRETE X) = λ x → refl
Category._∘_ (DISCRETE X) = λ y=z x=y → transitivity x=y y=z
Category.rightId (DISCRETE X) refl = refl
Category.leftId (DISCRETE X) refl = refl
Category.compositionAssociative (DISCRETE X) refl refl refl = refl
| {
"alphanum_fraction": 0.627245509,
"avg_line_length": 44.5333333333,
"ext": "agda",
"hexsha": "b461c9eeda893081d8a06923746635c952eb0287",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Categories/Examples.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Categories/Examples.agda",
"max_line_length": 154,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Categories/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 746,
"size": 2004
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.RingSolver.RingExpression where
open import Cubical.Foundations.Prelude
open import Cubical.Data.FinData
open import Cubical.Data.Nat using (ℕ)
open import Cubical.Data.Nat.Order using (zero-≤)
open import Cubical.Data.Vec.Base
open import Cubical.Algebra.RingSolver.AlmostRing
open import Cubical.Algebra.RingSolver.RawRing renaming (⟨_⟩ to ⟨_⟩ᵣ)
private
variable
ℓ : Level
infixl 6 _⊕_
infixl 7 _⊗_
-- Expression in a ring on A with n variables
data Expr {ℓ} (A : Type ℓ) (n : ℕ) : Type ℓ where
K : A → Expr A n
∣ : Fin n → Expr A n
_⊕_ : Expr A n → Expr A n → Expr A n
_⊗_ : Expr A n → Expr A n → Expr A n
-- _⊛_ : Expr A n → ℕ → Expr A n -- exponentiation
⊝_ : Expr A n → Expr A n
module Eval (R : RawRing {ℓ}) where
open import Cubical.Data.Vec
open RawRing R
⟦_⟧ : ∀ {n} → Expr ⟨ R ⟩ᵣ n → Vec ⟨ R ⟩ᵣ n → ⟨ R ⟩ᵣ
⟦ K r ⟧ v = r
⟦ ∣ k ⟧ v = lookup k v
⟦ x ⊕ y ⟧ v = ⟦ x ⟧ v + ⟦ y ⟧ v
⟦ x ⊗ y ⟧ v = ⟦ x ⟧ v · ⟦ y ⟧ v
-- ⟦ x ⊛ l ⟧ v = ⟦ x ⟧ v ^ l
⟦ ⊝ x ⟧ v = - ⟦ x ⟧ v
| {
"alphanum_fraction": 0.5987144169,
"avg_line_length": 27.225,
"ext": "agda",
"hexsha": "234e395f839aa66d3cc4a908bea8479525a63e7c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Algebra/RingSolver/RingExpression.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Algebra/RingSolver/RingExpression.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Algebra/RingSolver/RingExpression.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 463,
"size": 1089
} |
-- The <local hints> in an ATP pragma <prove> can be functions.
module ATPLocalHints3 where
postulate
D : Set
zero : D
succ : D → D
data N : D → Set where
zN : N zero
sN : ∀ {n} → N n → N (succ n)
1-N : N (succ zero)
1-N = sN zN
postulate
2-N : N (succ (succ zero))
{-# ATP prove 2-N 1-N #-}
| {
"alphanum_fraction": 0.5490797546,
"avg_line_length": 16.3,
"ext": "agda",
"hexsha": "f67ada8d46064659f76b3e0e1b55addb45284ff4",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "examples/ATPLocalHints3.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "examples/ATPLocalHints3.agda",
"max_line_length": 63,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "examples/ATPLocalHints3.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 120,
"size": 326
} |
{-# OPTIONS --prop --rewriting --confluence-check #-}
open import Agda.Primitive
open import Agda.Builtin.Equality
open import Agda.Builtin.Nat renaming (Nat to ℕ; _+_ to _+ℕ_)
infix 4 _≐_
data _≐_ {ℓ} {A : Set ℓ} (x : A) : A → Prop ℓ where
refl : x ≐ x
{-# BUILTIN REWRITE _≐_ #-}
variable
ℓ : Level
A B C : Set ℓ
x y z : A
cong : (f : A → B) → x ≐ y → f x ≐ f y
cong f refl = refl
data ℤ : Set where
zero : ℤ
pred suc : ℤ → ℤ
postulate
pred-suc : (x : ℤ) → pred (suc x) ≐ x
suc-pred : (x : ℤ) → suc (pred x) ≐ x
{-# REWRITE pred-suc suc-pred #-}
count-suc : ℤ → ℕ
count-suc zero = 0
count-suc (pred x) = count-suc x
count-suc (suc x) = 1 +ℕ count-suc x
| {
"alphanum_fraction": 0.5867647059,
"avg_line_length": 19.4285714286,
"ext": "agda",
"hexsha": "78283f53cc25df9793033acecd9d7b67c2038a64",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/ConstructorRewriteConfluenceFail.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/ConstructorRewriteConfluenceFail.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/ConstructorRewriteConfluenceFail.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 288,
"size": 680
} |
open import Agda.Builtin.Equality
test : (A : Set) (x y : A) → x ≡ y → Set
test A .y y refl with A
test A .y y refl | X = ?
-- Jesper, 2018-12-03, issue #2892:
-- Error message is:
-- Ill-typed pattern after with abstraction: y
-- (perhaps you can replace it by `_`?)
-- when checking that the clause ;Issue2892.with-14 A X y = ? has type
-- (A w : Set) (x : w) → Set
-- Implementing the suggestion makes the code typecheck, so this
-- behaviour is at least not obviously wrong.
| {
"alphanum_fraction": 0.6424242424,
"avg_line_length": 30.9375,
"ext": "agda",
"hexsha": "41bb1d998689d06e5622e14406f52e3c859ae8fc",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue2892.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue2892.agda",
"max_line_length": 73,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue2892.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 158,
"size": 495
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.CommAlgebra.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.Transport
open import Cubical.Foundations.SIP
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Path
open import Cubical.Data.Sigma
open import Cubical.Reflection.StrictEquiv
open import Cubical.Structures.Axioms
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Algebra
open import Cubical.Algebra.CommAlgebra.Base
open import Cubical.HITs.PropositionalTruncation
private
variable
ℓ ℓ' ℓ'' ℓ''' : Level
-- An R-algebra is the same as a CommRing A with a CommRingHom φ : R → A
module CommAlgChar (R : CommRing ℓ) where
open Iso
open IsRingHom
open CommRingTheory
CommRingWithHom : Type (ℓ-suc ℓ)
CommRingWithHom = Σ[ A ∈ CommRing ℓ ] CommRingHom R A
toCommAlg : CommRingWithHom → CommAlgebra R ℓ
toCommAlg (A , φ , φIsHom) = ⟨ A ⟩ , ACommAlgStr
where
open CommRingStr (snd A)
ACommAlgStr : CommAlgebraStr R ⟨ A ⟩
CommAlgebraStr.0a ACommAlgStr = 0r
CommAlgebraStr.1a ACommAlgStr = 1r
CommAlgebraStr._+_ ACommAlgStr = _+_
CommAlgebraStr._·_ ACommAlgStr = _·_
CommAlgebraStr.- ACommAlgStr = -_
CommAlgebraStr._⋆_ ACommAlgStr r a = (φ r) · a
CommAlgebraStr.isCommAlgebra ACommAlgStr = makeIsCommAlgebra
is-set +Assoc +Rid +Rinv +Comm ·Assoc ·Lid ·Ldist+ ·Comm
(λ _ _ x → cong (λ y → y · x) (pres· φIsHom _ _) ∙ sym (·Assoc _ _ _))
(λ _ _ x → cong (λ y → y · x) (pres+ φIsHom _ _) ∙ ·Ldist+ _ _ _)
(λ _ _ _ → ·Rdist+ _ _ _)
(λ x → cong (λ y → y · x) (pres1 φIsHom) ∙ ·Lid x)
(λ _ _ _ → sym (·Assoc _ _ _))
fromCommAlg : CommAlgebra R ℓ → CommRingWithHom
fromCommAlg A = (CommAlgebra→CommRing A) , φ , φIsHom
where
open CommRingStr (snd R) renaming (_·_ to _·r_) hiding (·Lid)
open CommAlgebraStr (snd A)
open AlgebraTheory (CommRing→Ring R) (CommAlgebra→Algebra A)
φ : ⟨ R ⟩ → ⟨ A ⟩
φ r = r ⋆ 1a
φIsHom : IsRingHom (CommRing→Ring R .snd) φ (CommRing→Ring (CommAlgebra→CommRing A) .snd)
φIsHom = makeIsRingHom (⋆-lid _) (λ _ _ → ⋆-ldist _ _ _)
λ x y → cong (λ a → (x ·r y) ⋆ a) (sym (·Lid _)) ∙ ⋆Dist· _ _ _ _
CommRingWithHomRoundTrip : (Aφ : CommRingWithHom) → fromCommAlg (toCommAlg Aφ) ≡ Aφ
CommRingWithHomRoundTrip (A , φ) = ΣPathP (APath , φPathP)
where
open CommRingStr
-- note that the proofs of the axioms might differ!
APath : fst (fromCommAlg (toCommAlg (A , φ))) ≡ A
fst (APath i) = ⟨ A ⟩
0r (snd (APath i)) = 0r (snd A)
1r (snd (APath i)) = 1r (snd A)
_+_ (snd (APath i)) = _+_ (snd A)
_·_ (snd (APath i)) = _·_ (snd A)
-_ (snd (APath i)) = -_ (snd A)
isCommRing (snd (APath i)) = isProp→PathP (λ i → isPropIsCommRing _ _ _ _ _ )
(isCommRing (snd (fst (fromCommAlg (toCommAlg (A , φ)))))) (isCommRing (snd A)) i
-- this only works because fst (APath i) = fst A definitionally!
φPathP : PathP (λ i → CommRingHom R (APath i)) (snd (fromCommAlg (toCommAlg (A , φ)))) φ
φPathP = RingHomPathP _ _ _ _ _ _ λ i x → ·Rid (snd A) (fst φ x) i
CommAlgRoundTrip : (A : CommAlgebra R ℓ) → toCommAlg (fromCommAlg A) ≡ A
CommAlgRoundTrip A = ΣPathP (refl , AlgStrPathP)
where
open CommAlgebraStr ⦃...⦄
instance
_ = snd A
AlgStrPathP : PathP (λ i → CommAlgebraStr R ⟨ A ⟩) (snd (toCommAlg (fromCommAlg A))) (snd A)
CommAlgebraStr.0a (AlgStrPathP i) = 0a
CommAlgebraStr.1a (AlgStrPathP i) = 1a
CommAlgebraStr._+_ (AlgStrPathP i) = _+_
CommAlgebraStr._·_ (AlgStrPathP i) = _·_
CommAlgebraStr.-_ (AlgStrPathP i) = -_
CommAlgebraStr._⋆_ (AlgStrPathP i) r x = (⋆-lassoc r 1a x ∙ cong (r ⋆_) (·Lid x)) i
CommAlgebraStr.isCommAlgebra (AlgStrPathP i) = isProp→PathP
(λ i → isPropIsCommAlgebra _ _ _ _ _ _ (CommAlgebraStr._⋆_ (AlgStrPathP i)))
(CommAlgebraStr.isCommAlgebra (snd (toCommAlg (fromCommAlg A)))) isCommAlgebra i
CommAlgIso : Iso (CommAlgebra R ℓ) CommRingWithHom
fun CommAlgIso = fromCommAlg
inv CommAlgIso = toCommAlg
rightInv CommAlgIso = CommRingWithHomRoundTrip
leftInv CommAlgIso = CommAlgRoundTrip
open RingHoms
isCommRingWithHomHom : (A B : CommRingWithHom) → CommRingHom (fst A) (fst B) → Type ℓ
isCommRingWithHomHom (_ , f) (_ , g) h = h ∘r f ≡ g
CommRingWithHomHom : CommRingWithHom → CommRingWithHom → Type ℓ
CommRingWithHomHom (A , f) (B , g) = Σ[ h ∈ CommRingHom A B ] h ∘r f ≡ g
toCommAlgebraHom : (A B : CommRingWithHom) (h : CommRingHom (fst A) (fst B))
→ isCommRingWithHomHom A B h
→ CommAlgebraHom (toCommAlg A) (toCommAlg B)
toCommAlgebraHom (A , f) (B , g) h commDiag =
makeCommAlgebraHom (fst h) (pres1 (snd h)) (pres+ (snd h)) (pres· (snd h)) pres⋆h
where
open CommRingStr ⦃...⦄
instance
_ = snd A
_ = snd B
pres⋆h : ∀ r x → fst h (fst f r · x) ≡ fst g r · fst h x
pres⋆h r x = fst h (fst f r · x) ≡⟨ pres· (snd h) _ _ ⟩
fst h (fst f r) · fst h x ≡⟨ cong (λ φ → fst φ r · fst h x) commDiag ⟩
fst g r · fst h x ∎
fromCommAlgebraHom : (A B : CommAlgebra R ℓ) → CommAlgebraHom A B
→ CommRingWithHomHom (fromCommAlg A) (fromCommAlg B)
fst (fst (fromCommAlgebraHom A B f)) = fst f
pres0 (snd (fst (fromCommAlgebraHom A B f))) = IsAlgebraHom.pres0 (snd f)
pres1 (snd (fst (fromCommAlgebraHom A B f))) = IsAlgebraHom.pres1 (snd f)
pres+ (snd (fst (fromCommAlgebraHom A B f))) = IsAlgebraHom.pres+ (snd f)
pres· (snd (fst (fromCommAlgebraHom A B f))) = IsAlgebraHom.pres· (snd f)
pres- (snd (fst (fromCommAlgebraHom A B f))) = IsAlgebraHom.pres- (snd f)
snd (fromCommAlgebraHom A B f) =
RingHom≡ (funExt (λ x → IsAlgebraHom.pres⋆ (snd f) x 1a ∙ cong (x ⋆_) (IsAlgebraHom.pres1 (snd f))))
where
open CommAlgebraStr (snd A) using (1a)
open CommAlgebraStr (snd B) using (_⋆_)
isCommRingWithHomEquiv : (A B : CommRingWithHom) → CommRingEquiv (fst A) (fst B) → Type ℓ
isCommRingWithHomEquiv A B e = isCommRingWithHomHom A B (RingEquiv→RingHom e)
CommRingWithHomEquiv : CommRingWithHom → CommRingWithHom → Type ℓ
CommRingWithHomEquiv A B = Σ[ e ∈ CommRingEquiv (fst A) (fst B) ] isCommRingWithHomEquiv A B e
toCommAlgebraEquiv : (A B : CommRingWithHom) (e : CommRingEquiv (fst A) (fst B))
→ isCommRingWithHomEquiv A B e
→ CommAlgebraEquiv (toCommAlg A) (toCommAlg B)
fst (toCommAlgebraEquiv A B e eCommDiag) = e .fst
snd (toCommAlgebraEquiv A B e eCommDiag) = toCommAlgebraHom A B _ eCommDiag .snd
module CommAlgebraHoms {R : CommRing ℓ} where
open AlgebraHoms
idCommAlgebraHom : (A : CommAlgebra R ℓ') → CommAlgebraHom A A
idCommAlgebraHom A = idAlgebraHom (CommAlgebra→Algebra A)
compCommAlgebraHom : (A : CommAlgebra R ℓ') (B : CommAlgebra R ℓ'') (C : CommAlgebra R ℓ''')
→ CommAlgebraHom A B → CommAlgebraHom B C → CommAlgebraHom A C
compCommAlgebraHom A B C = compAlgebraHom {A = CommAlgebra→Algebra A}
{CommAlgebra→Algebra B} {CommAlgebra→Algebra C}
_∘ca_ : {A : CommAlgebra R ℓ'} {B : CommAlgebra R ℓ''} {C : CommAlgebra R ℓ'''}
→ CommAlgebraHom B C → CommAlgebraHom A B → CommAlgebraHom A C
g ∘ca f = compCommAlgebraHom _ _ _ f g
compIdCommAlgebraHom : {A B : CommAlgebra R ℓ'} (f : CommAlgebraHom A B)
→ compCommAlgebraHom _ _ _ (idCommAlgebraHom A) f ≡ f
compIdCommAlgebraHom = compIdAlgebraHom
idCompCommAlgebraHom : {A B : CommAlgebra R ℓ'} (f : CommAlgebraHom A B)
→ compCommAlgebraHom _ _ _ f (idCommAlgebraHom B) ≡ f
idCompCommAlgebraHom = idCompAlgebraHom
compAssocCommAlgebraHom : {A B C D : CommAlgebra R ℓ'}
(f : CommAlgebraHom A B) (g : CommAlgebraHom B C) (h : CommAlgebraHom C D)
→ compCommAlgebraHom _ _ _ (compCommAlgebraHom _ _ _ f g) h
≡ compCommAlgebraHom _ _ _ f (compCommAlgebraHom _ _ _ g h)
compAssocCommAlgebraHom = compAssocAlgebraHom
module CommAlgebraEquivs {R : CommRing ℓ} where
open AlgebraEquivs
compCommAlgebraEquiv : {A : CommAlgebra R ℓ'} {B : CommAlgebra R ℓ''} {C : CommAlgebra R ℓ'''}
→ CommAlgebraEquiv A B → CommAlgebraEquiv B C → CommAlgebraEquiv A C
compCommAlgebraEquiv {A = A} {B = B} {C = C} = compAlgebraEquiv {A = CommAlgebra→Algebra A}
{B = CommAlgebra→Algebra B}
{C = CommAlgebra→Algebra C}
-- the CommAlgebra version of uaCompEquiv
module CommAlgebraUAFunctoriality {R : CommRing ℓ} where
open CommAlgebraStr
open CommAlgebraEquivs
CommAlgebra≡ : (A B : CommAlgebra R ℓ') → (
Σ[ p ∈ ⟨ A ⟩ ≡ ⟨ B ⟩ ]
Σ[ q0 ∈ PathP (λ i → p i) (0a (snd A)) (0a (snd B)) ]
Σ[ q1 ∈ PathP (λ i → p i) (1a (snd A)) (1a (snd B)) ]
Σ[ r+ ∈ PathP (λ i → p i → p i → p i) (_+_ (snd A)) (_+_ (snd B)) ]
Σ[ r· ∈ PathP (λ i → p i → p i → p i) (_·_ (snd A)) (_·_ (snd B)) ]
Σ[ s- ∈ PathP (λ i → p i → p i) (-_ (snd A)) (-_ (snd B)) ]
Σ[ s⋆ ∈ PathP (λ i → ⟨ R ⟩ → p i → p i) (_⋆_ (snd A)) (_⋆_ (snd B)) ]
PathP (λ i → IsCommAlgebra R (q0 i) (q1 i) (r+ i) (r· i) (s- i) (s⋆ i)) (isCommAlgebra (snd A))
(isCommAlgebra (snd B)))
≃ (A ≡ B)
CommAlgebra≡ A B = isoToEquiv theIso
where
open Iso
theIso : Iso _ _
fun theIso (p , q0 , q1 , r+ , r· , s- , s⋆ , t) i = p i
, commalgebrastr (q0 i) (q1 i) (r+ i) (r· i) (s- i) (s⋆ i) (t i)
inv theIso x = cong ⟨_⟩ x , cong (0a ∘ snd) x , cong (1a ∘ snd) x
, cong (_+_ ∘ snd) x , cong (_·_ ∘ snd) x , cong (-_ ∘ snd) x , cong (_⋆_ ∘ snd) x
, cong (isCommAlgebra ∘ snd) x
rightInv theIso _ = refl
leftInv theIso _ = refl
caracCommAlgebra≡ : {A B : CommAlgebra R ℓ'} (p q : A ≡ B) → cong ⟨_⟩ p ≡ cong ⟨_⟩ q → p ≡ q
caracCommAlgebra≡ {A = A} {B = B} p q P =
sym (transportTransport⁻ (ua (CommAlgebra≡ A B)) p)
∙∙ cong (transport (ua (CommAlgebra≡ A B))) helper
∙∙ transportTransport⁻ (ua (CommAlgebra≡ A B)) q
where
helper : transport (sym (ua (CommAlgebra≡ A B))) p ≡ transport (sym (ua (CommAlgebra≡ A B))) q
helper = Σ≡Prop
(λ _ → isPropΣ
(isOfHLevelPathP' 1 (is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ λ _ → is-set (snd B)) _ _)
λ _ → isPropΣ (isOfHLevelPathP' 1 (isSetΠ2 λ _ _ → is-set (snd B)) _ _)
λ _ → isOfHLevelPathP 1 (isPropIsCommAlgebra _ _ _ _ _ _ _) _ _)
(transportRefl (cong ⟨_⟩ p) ∙ P ∙ sym (transportRefl (cong ⟨_⟩ q)))
uaCompCommAlgebraEquiv : {A B C : CommAlgebra R ℓ'} (f : CommAlgebraEquiv A B) (g : CommAlgebraEquiv B C)
→ uaCommAlgebra (compCommAlgebraEquiv f g) ≡ uaCommAlgebra f ∙ uaCommAlgebra g
uaCompCommAlgebraEquiv f g = caracCommAlgebra≡ _ _ (
cong ⟨_⟩ (uaCommAlgebra (compCommAlgebraEquiv f g))
≡⟨ uaCompEquiv _ _ ⟩
cong ⟨_⟩ (uaCommAlgebra f) ∙ cong ⟨_⟩ (uaCommAlgebra g)
≡⟨ sym (cong-∙ ⟨_⟩ (uaCommAlgebra f) (uaCommAlgebra g)) ⟩
cong ⟨_⟩ (uaCommAlgebra f ∙ uaCommAlgebra g) ∎)
open CommAlgebraHoms
open CommAlgebraEquivs
open CommAlgebraUAFunctoriality
recPT→CommAlgebra : {R : CommRing ℓ} {A : Type ℓ'} (𝓕 : A → CommAlgebra R ℓ'')
→ (σ : ∀ x y → CommAlgebraEquiv (𝓕 x) (𝓕 y))
→ (∀ x y z → σ x z ≡ compCommAlgebraEquiv (σ x y) (σ y z))
------------------------------------------------------
→ ∥ A ∥ → CommAlgebra R ℓ''
recPT→CommAlgebra 𝓕 σ compCoh = GpdElim.rec→Gpd isGroupoidCommAlgebra 𝓕
(3-ConstantCompChar 𝓕 (λ x y → uaCommAlgebra (σ x y))
λ x y z → sym ( cong uaCommAlgebra (compCoh x y z)
∙ uaCompCommAlgebraEquiv (σ x y) (σ y z)))
contrCommAlgebraHom→contrCommAlgebraEquiv : {R : CommRing ℓ} {A : Type ℓ'}
(σ : A → CommAlgebra R ℓ'')
→ (∀ x y → isContr (CommAlgebraHom (σ x) (σ y)))
----------------------------------------------------------------------------
→ ∀ x y → isContr (CommAlgebraEquiv (σ x) (σ y))
contrCommAlgebraHom→contrCommAlgebraEquiv σ contrHom x y = σEquiv ,
λ e → Σ≡Prop (λ _ → isPropIsAlgebraHom _ _ _ _)
(Σ≡Prop isPropIsEquiv (cong fst (contrHom _ _ .snd (CommAlgebraEquiv→CommAlgebraHom e))))
where
open Iso
χ₁ = contrHom x y .fst
χ₂ = contrHom y x .fst
χ₁∘χ₂≡id : χ₁ ∘ca χ₂ ≡ idCommAlgebraHom _
χ₁∘χ₂≡id = isContr→isProp (contrHom _ _) _ _
χ₂∘χ₁≡id : χ₂ ∘ca χ₁ ≡ idCommAlgebraHom _
χ₂∘χ₁≡id = isContr→isProp (contrHom _ _) _ _
σIso : Iso ⟨ σ x ⟩ ⟨ σ y ⟩
fun σIso = fst χ₁
inv σIso = fst χ₂
rightInv σIso = funExt⁻ (cong fst χ₁∘χ₂≡id)
leftInv σIso = funExt⁻ (cong fst χ₂∘χ₁≡id)
σEquiv : CommAlgebraEquiv (σ x) (σ y)
fst σEquiv = isoToEquiv σIso
snd σEquiv = snd χ₁
| {
"alphanum_fraction": 0.6133782695,
"avg_line_length": 44.3149350649,
"ext": "agda",
"hexsha": "8ffe8d2946909ad8b162aa5de98e61a1527709d2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommAlgebra/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommAlgebra/Properties.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommAlgebra/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5114,
"size": 13649
} |
------------------------------------------------------------------------
-- Record types with manifest fields and "with", based on Randy
-- Pollack's "Dependently Typed Records in Type Theory"
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
-- The module is parametrised by the type of labels, which should come
-- with decidable equality.
open import Equality
open import Prelude hiding (id; proj₁; proj₂)
module Records-with-with
{c⁺}
(eq : ∀ {a p} → Equality-with-J a p c⁺)
(open Derived-definitions-and-properties eq)
(Label : Type)
(_≟_ : Decidable-equality Label)
where
open import Bijection eq using (_↔_; ↑↔)
open import Function-universe eq hiding (_∘_)
open import List eq using (foldr)
------------------------------------------------------------------------
-- A Σ-type with a manifest field
-- A variant of Σ where the value of the second field is "manifest"
-- (given by the first).
infix 4 _,
record Manifest-Σ {a b} (A : Type a) {B : A → Type b}
(f : (x : A) → B x) : Type a where
constructor _,
field proj₁ : A
proj₂ : B proj₁
proj₂ = f proj₁
------------------------------------------------------------------------
-- Signatures and records
mutual
infixl 5 _,_∶_ _,_≔_
data Signature s : Type (lsuc s) where
∅ : Signature s
_,_∶_ : (Sig : Signature s)
(ℓ : Label)
(A : Record Sig → Type s) →
Signature s
_,_≔_ : (Sig : Signature s)
(ℓ : Label)
{A : Record Sig → Type s}
(a : (r : Record Sig) → A r) →
Signature s
-- Record is a record type to ensure that the signature can be
-- inferred from a value of type Record Sig.
record Record {s} (Sig : Signature s) : Type s where
eta-equality
inductive
constructor rec
field fun : Record-fun Sig
Record-fun : ∀ {s} → Signature s → Type s
Record-fun ∅ = ↑ _ ⊤
Record-fun (Sig , ℓ ∶ A) = Σ (Record Sig) A
Record-fun (Sig , ℓ ≔ a) = Manifest-Σ (Record Sig) a
------------------------------------------------------------------------
-- Labels
-- A signature's labels, starting with the last one.
labels : ∀ {s} → Signature s → List Label
labels ∅ = []
labels (Sig , ℓ ∶ A) = ℓ ∷ labels Sig
labels (Sig , ℓ ≔ a) = ℓ ∷ labels Sig
-- Inhabited if the label is part of the signature.
infix 4 _∈_
_∈_ : ∀ {s} → Label → Signature s → Type
ℓ ∈ Sig =
foldr (λ ℓ′ → if ℓ ≟ ℓ′ then (λ _ → ⊤) else id)
⊥
(labels Sig)
------------------------------------------------------------------------
-- Projections
-- Signature restriction and projection. (Restriction means removal of
-- a given field and all subsequent fields.)
Restrict : ∀ {s} (Sig : Signature s) (ℓ : Label) → ℓ ∈ Sig →
Signature s
Restrict ∅ ℓ ()
Restrict (Sig , ℓ′ ∶ A) ℓ ℓ∈ with ℓ ≟ ℓ′
... | yes _ = Sig
... | no _ = Restrict Sig ℓ ℓ∈
Restrict (Sig , ℓ′ ≔ a) ℓ ℓ∈ with ℓ ≟ ℓ′
... | yes _ = Sig
... | no _ = Restrict Sig ℓ ℓ∈
Restricted : ∀ {s} (Sig : Signature s) (ℓ : Label) → ℓ ∈ Sig → Type s
Restricted Sig ℓ ℓ∈ = Record (Restrict Sig ℓ ℓ∈)
Proj : ∀ {s} (Sig : Signature s) (ℓ : Label) (ℓ∈ : ℓ ∈ Sig) →
Restricted Sig ℓ ℓ∈ → Type s
Proj ∅ ℓ ()
Proj (Sig , ℓ′ ∶ A) ℓ ℓ∈ with ℓ ≟ ℓ′
... | yes _ = A
... | no _ = Proj Sig ℓ ℓ∈
Proj (_,_≔_ Sig ℓ′ {A = A} a) ℓ ℓ∈ with ℓ ≟ ℓ′
... | yes _ = A
... | no _ = Proj Sig ℓ ℓ∈
-- Record restriction and projection.
infixl 5 _∣_
_∣_ : ∀ {s} {Sig : Signature s} → Record Sig →
(ℓ : Label) {ℓ∈ : ℓ ∈ Sig} → Restricted Sig ℓ ℓ∈
_∣_ {Sig = ∅} r ℓ {}
_∣_ {Sig = Sig , ℓ′ ∶ A} (rec r) ℓ {ℓ∈} with ℓ ≟ ℓ′
... | yes _ = Σ.proj₁ r
... | no _ = _∣_ (Σ.proj₁ r) ℓ {ℓ∈}
_∣_ {Sig = Sig , ℓ′ ≔ a} (rec r) ℓ {ℓ∈} with ℓ ≟ ℓ′
... | yes _ = Manifest-Σ.proj₁ r
... | no _ = _∣_ (Manifest-Σ.proj₁ r) ℓ {ℓ∈}
infixl 5 _·_
_·_ : ∀ {s} {Sig : Signature s} (r : Record Sig)
(ℓ : Label) {ℓ∈ : ℓ ∈ Sig} →
Proj Sig ℓ ℓ∈ (r ∣ ℓ)
_·_ {Sig = ∅} r ℓ {}
_·_ {Sig = Sig , ℓ′ ∶ A} (rec r) ℓ {ℓ∈} with ℓ ≟ ℓ′
... | yes _ = Σ.proj₂ r
... | no _ = _·_ (Σ.proj₁ r) ℓ {ℓ∈}
_·_ {Sig = Sig , ℓ′ ≔ a} (rec r) ℓ {ℓ∈} with ℓ ≟ ℓ′
... | yes _ = Manifest-Σ.proj₂ r
... | no _ = _·_ (Manifest-Σ.proj₁ r) ℓ {ℓ∈}
------------------------------------------------------------------------
-- With
-- Sig With ℓ ≔ a is the signature Sig, but with the ℓ field set to a.
mutual
infixl 5 _With_≔_
_With_≔_ : ∀ {s} (Sig : Signature s) (ℓ : Label) {ℓ∈ : ℓ ∈ Sig} →
((r : Restricted Sig ℓ ℓ∈) → Proj Sig ℓ ℓ∈ r) → Signature s
_With_≔_ ∅ ℓ {} a
_With_≔_ (Sig , ℓ′ ∶ A) ℓ {ℓ∈} a with ℓ ≟ ℓ′
... | yes _ = Sig , ℓ′ ≔ a
... | no _ = _With_≔_ Sig ℓ {ℓ∈} a , ℓ′ ∶ A ∘ drop-With
_With_≔_ (Sig , ℓ′ ≔ a′) ℓ {ℓ∈} a with ℓ ≟ ℓ′
... | yes _ = Sig , ℓ′ ≔ a
... | no _ = _With_≔_ Sig ℓ {ℓ∈} a , ℓ′ ≔ a′ ∘ drop-With
drop-With : ∀ {s} {Sig : Signature s} {ℓ : Label} {ℓ∈ : ℓ ∈ Sig}
{a : (r : Restricted Sig ℓ ℓ∈) → Proj Sig ℓ ℓ∈ r} →
Record (_With_≔_ Sig ℓ {ℓ∈} a) → Record Sig
drop-With {Sig = ∅} {ℓ∈ = ()} r
drop-With {Sig = Sig , ℓ′ ∶ A} {ℓ} (rec r) with ℓ ≟ ℓ′
... | yes _ = rec (Manifest-Σ.proj₁ r , Manifest-Σ.proj₂ r)
... | no _ = rec (drop-With (Σ.proj₁ r) , Σ.proj₂ r)
drop-With {Sig = Sig , ℓ′ ≔ a} {ℓ} (rec r) with ℓ ≟ ℓ′
... | yes _ = rec (Manifest-Σ.proj₁ r ,)
... | no _ = rec (drop-With (Manifest-Σ.proj₁ r) ,)
------------------------------------------------------------------------
-- Alternative definitions of Record, along with some isomorphisms
-- An alternative definition of Record: right-nested, without the
-- record type, and without Manifest-Σ.
Recordʳ : ∀ {s} (Sig : Signature s) → (Record Sig → Type s) → Type s
Recordʳ ∅ κ = κ _
Recordʳ (Sig , ℓ ∶ A) κ = Recordʳ Sig (λ r → Σ (A r) (κ ∘ rec ∘ (r ,_)))
Recordʳ (Sig , ℓ ≔ a) κ = Recordʳ Sig (λ r → κ (rec (r ,)))
-- Manifest-Σ A f is isomorphic to A.
Manifest-Σ↔ :
∀ {a b} {A : Type a} {B : A → Type b} {f : (x : A) → B x} →
Manifest-Σ A f ↔ A
Manifest-Σ↔ = record
{ surjection = record
{ logical-equivalence = record
{ to = Manifest-Σ.proj₁
; from = _,
}
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ _ → refl _
}
-- Record is pointwise isomorphic to Record-fun.
Record↔Record-fun :
∀ {s} {Sig : Signature s} → Record Sig ↔ Record-fun Sig
Record↔Record-fun = record
{ surjection = record
{ logical-equivalence = record { to = Record.fun ; from = rec }
; right-inverse-of = λ _ → refl _
}
; left-inverse-of = λ _ → refl _
}
-- Record and Recordʳ are, in a certain sense, isomorphic.
mutual
Σ-Record↔Recordʳ :
∀ {s} (Sig : Signature s) (κ : Record Sig → Type s) →
Σ (Record Sig) κ ↔ Recordʳ Sig κ
Σ-Record↔Recordʳ Sig κ =
Σ (Record Sig) κ ↝⟨ Σ-cong Record↔Record-fun (λ _ → id) ⟩
Σ (Record-fun Sig) (κ ∘ rec) ↝⟨ Σ-Record-fun↔Recordʳ Sig κ ⟩□
Recordʳ Sig κ □
Σ-Record-fun↔Recordʳ :
∀ {s} (Sig : Signature s) (κ : Record Sig → Type s) →
Σ (Record-fun Sig) (κ ∘ rec) ↔ Recordʳ Sig κ
Σ-Record-fun↔Recordʳ ∅ κ =
Σ (↑ _ ⊤) (κ ∘ rec) ↝⟨ Σ-cong ↑↔ (λ _ → id) ⟩
Σ ⊤ (κ ∘ rec ∘ lift) ↝⟨ Σ-left-identity ⟩□
κ _ □
Σ-Record-fun↔Recordʳ (Sig , ℓ ∶ A) κ =
Σ (Σ (Record Sig) A) (κ ∘ rec) ↝⟨ inverse Σ-assoc ⟩
Σ (Record Sig) (λ r → Σ (A r) (κ ∘ rec ∘ (r ,_))) ↝⟨ Σ-Record↔Recordʳ Sig _ ⟩□
Recordʳ Sig (λ r → Σ (A r) (κ ∘ rec ∘ (r ,_))) □
Σ-Record-fun↔Recordʳ (Sig , ℓ ≔ a) κ =
Σ (Manifest-Σ (Record Sig) a) (κ ∘ rec) ↝⟨ Σ-cong Manifest-Σ↔ (λ _ → id) ⟩
Σ (Record Sig) (κ ∘ rec ∘ _,) ↝⟨ Σ-Record↔Recordʳ Sig _ ⟩□
Recordʳ Sig (κ ∘ rec ∘ _,) □
-- Note that the continuation is initialised with a (lifted) unit
-- type.
Record↔Recordʳ :
∀ {s} (Sig : Signature s) →
Record Sig ↔ Recordʳ Sig (λ _ → ↑ s ⊤)
Record↔Recordʳ Sig =
Record Sig ↝⟨ inverse ×-right-identity ⟩
Record Sig × ⊤ ↝⟨ id ×-cong inverse ↑↔ ⟩
Record Sig × ↑ _ ⊤ ↝⟨ Σ-Record↔Recordʳ Sig _ ⟩□
Recordʳ Sig (λ _ → ↑ _ ⊤) □
-- Another alternative definition of Record: basically the same as
-- Recordʳ, but the continuation is initialised with the first
-- non-manifest field, if any, to avoid a pointless innermost unit
-- type.
Recʳ : ∀ {s} → Signature s → Type s
Recʳ ∅ = ↑ _ ⊤
Recʳ (Sig , ℓ ∶ A) = Recordʳ Sig A
Recʳ (Sig , ℓ ≔ a) = Recʳ Sig
-- Record and Recʳ are pointwise isomorphic.
mutual
Record↔Recʳ :
∀ {s} {Sig : Signature s} →
Record Sig ↔ Recʳ Sig
Record↔Recʳ {Sig = Sig} =
Record Sig ↝⟨ Record↔Record-fun ⟩
Record-fun Sig ↝⟨ Record-fun↔Recʳ Sig ⟩□
Recʳ Sig □
Record-fun↔Recʳ :
∀ {s} (Sig : Signature s) →
Record-fun Sig ↔ Recʳ Sig
Record-fun↔Recʳ ∅ = ↑ _ ⊤ □
Record-fun↔Recʳ (Sig , ℓ ∶ A) =
Σ (Record Sig) A ↝⟨ Σ-Record↔Recordʳ Sig A ⟩□
Recordʳ Sig A □
Record-fun↔Recʳ (Sig , ℓ ≔ a) =
Manifest-Σ (Record Sig) a ↝⟨ Manifest-Σ↔ ⟩
Record Sig ↝⟨ Record↔Recʳ ⟩□
Recʳ Sig □
| {
"alphanum_fraction": 0.499731385,
"avg_line_length": 31.127090301,
"ext": "agda",
"hexsha": "6c4ea689f23a79b4dd406e864e3d956116b14bdf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/equality",
"max_forks_repo_path": "src/Records-with-with.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/equality",
"max_issues_repo_path": "src/Records-with-with.agda",
"max_line_length": 83,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/equality",
"max_stars_repo_path": "src/Records-with-with.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z",
"num_tokens": 3584,
"size": 9307
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- A definition for the permutation relation using setoid equality
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Permutation.Homogeneous where
open import Data.List.Base using (List; _∷_)
open import Data.List.Relation.Binary.Pointwise as Pointwise
using (Pointwise)
open import Level using (Level; _⊔_)
open import Relation.Binary
private
variable
a r s : Level
A : Set a
data Permutation {A : Set a} (R : Rel A r) : Rel (List A) (a ⊔ r) where
refl : ∀ {xs ys} → Pointwise R xs ys → Permutation R xs ys
prep : ∀ {xs ys x y} (eq : R x y) → Permutation R xs ys → Permutation R (x ∷ xs) (y ∷ ys)
swap : ∀ {xs ys x y x' y'} (eq₁ : R x x') (eq₂ : R y y') → Permutation R xs ys → Permutation R (x ∷ y ∷ xs) (y' ∷ x' ∷ ys)
trans : ∀ {xs ys zs} → Permutation R xs ys → Permutation R ys zs → Permutation R xs zs
------------------------------------------------------------------------
-- The Permutation relation is an equivalence
module _ {R : Rel A r} where
sym : Symmetric R → Symmetric (Permutation R)
sym R-sym (refl xs∼ys) = refl (Pointwise.symmetric R-sym xs∼ys)
sym R-sym (prep x∼x' xs↭ys) = prep (R-sym x∼x') (sym R-sym xs↭ys)
sym R-sym (swap x∼x' y∼y' xs↭ys) = swap (R-sym y∼y') (R-sym x∼x') (sym R-sym xs↭ys)
sym R-sym (trans xs↭ys ys↭zs) = trans (sym R-sym ys↭zs) (sym R-sym xs↭ys)
isEquivalence : Reflexive R → Symmetric R → IsEquivalence (Permutation R)
isEquivalence R-refl R-sym = record
{ refl = refl (Pointwise.refl R-refl)
; sym = sym R-sym
; trans = trans
}
setoid : Reflexive R → Symmetric R → Setoid _ _
setoid R-refl R-sym = record
{ isEquivalence = isEquivalence R-refl R-sym
}
map : ∀ {R : Rel A r} {S : Rel A s} →
(R ⇒ S) → (Permutation R ⇒ Permutation S)
map R⇒S (refl xs∼ys) = refl (Pointwise.map R⇒S xs∼ys)
map R⇒S (prep e xs∼ys) = prep (R⇒S e) (map R⇒S xs∼ys)
map R⇒S (swap e₁ e₂ xs∼ys) = swap (R⇒S e₁) (R⇒S e₂) (map R⇒S xs∼ys)
map R⇒S (trans xs∼ys ys∼zs) = trans (map R⇒S xs∼ys) (map R⇒S ys∼zs)
| {
"alphanum_fraction": 0.5573916927,
"avg_line_length": 39.2807017544,
"ext": "agda",
"hexsha": "fb1f0d29f01e70f4b5bf592ed117835230dd51ee",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Homogeneous.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Homogeneous.agda",
"max_line_length": 125,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Permutation/Homogeneous.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 798,
"size": 2239
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Semigroup.Construct.Empty where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Semigroup
open import Cubical.Data.Empty
import Cubical.Algebra.Magma.Construct.Empty as ⊥Magma
open ⊥Magma public hiding (⊥-isMagma; ⊥-Magma)
◯-assoc : Associative _◯_
◯-assoc _ _ _ = isProp⊥ _ _
⊥-isSemigroup : IsSemigroup ⊥ _◯_
⊥-isSemigroup = record
{ isMagma = ⊥Magma.⊥-isMagma
; assoc = ◯-assoc
}
⊥-Semigroup : Semigroup ℓ-zero
⊥-Semigroup = record { isSemigroup = ⊥-isSemigroup }
| {
"alphanum_fraction": 0.7303921569,
"avg_line_length": 24.48,
"ext": "agda",
"hexsha": "ad138a0e90c06ee79ce757624e1872e4626699ad",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Semigroup/Construct/Empty.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Semigroup/Construct/Empty.agda",
"max_line_length": 54,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Semigroup/Construct/Empty.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 219,
"size": 612
} |
{-# OPTIONS --cubical #-}
module CubicalPrims where
open import Agda.Primitive renaming (_⊔_ to ℓ-max)
open import Agda.Primitive.Cubical renaming (primIMin to _∧_; primIMax to _∨_; primINeg to ~_; isOneEmpty to empty)
open import Agda.Builtin.Bool
open import Agda.Builtin.Cubical.Sub renaming (Sub to _[_↦_]; primSubOut to ouc)
open import Agda.Builtin.Cubical.Path
open import Agda.Builtin.Cubical.Id renaming (primIdJ to J)
open import Agda.Builtin.Cubical.Glue renaming (primGlue to Glue; prim^glue to glue; prim^unglue to unglue)
open import Agda.Builtin.Sigma
open import Agda.Builtin.List
open Helpers
module _ {ℓ} {A : Set ℓ} where
trans : {x y z : A} → x ≡ y → y ≡ z → x ≡ z
trans {x = x} p q i = primComp (λ _ → A) _ (λ { j (i = i0) → x
; j (i = i1) → q j }) (p i)
module _ {ℓ ℓ'} {A : Set ℓ} {x : A}
(P : ∀ y → x ≡ y → Set ℓ') (d : P x ((λ i → x))) where
pathJ : (y : A) → (p : x ≡ y) → P y p
pathJ _ p = primTransp (λ i → P (p i) (\ j → p (i ∧ j))) i0 d
module DerivedComp where
forward : (la : I → Level) (A : ∀ i → Set (la i)) (r : I) → A r → A i1
forward la A r x = primTransp (\ i → A (i ∨ r)) r x
module _ (la : I → Level) (A : ∀ i → Set (la i)) (φ : I) (u : ∀ i → Partial φ (A i)) (u0 : A i0 [ φ ↦ u i0 ]) where
comp : A i1
comp = primHComp (\ i → \ { (φ = i1) → forward la A i (u i itIsOne) }) (forward la A i0 (ouc u0))
comp-test : comp ≡ primComp A φ u (ouc u0)
comp-test = refl
test-sym : ∀ {ℓ} {A : Set ℓ} → {x y : A} → (p : x ≡ y) → sym (sym p) ≡ p
test-sym p = refl
transpFill : ∀ {ℓ} {A' : Set ℓ} (φ : I)
(A : (i : I) → Set ℓ [ φ ↦ (\ _ → A') ]) →
(u0 : ouc (A i0)) →
PathP (λ i → ouc (A i)) u0 (primTransp (λ i → ouc (A i)) φ u0)
transpFill φ A u0 i = primTransp (\ j → ouc (A (i ∧ j))) (~ i ∨ φ) u0
test-bool : (p : true ≡ false) → Bool
test-bool p = primComp (λ _ → Bool) i1 (λ j → λ _ → p j) true
-- cannot reduce to true, because it's already reducing to false.
test-bool-beta : ∀ p → test-bool p ≡ false
test-bool-beta p = refl
etaExpand : ∀ {ℓ} {A : Set ℓ} {x y : A} → (p : x ≡ y) → x ≡ y
etaExpand p = λ z → p z
etaEq : ∀ {ℓ} {A : Set ℓ} {x y : A} → (p : x ≡ y) → p ≡ etaExpand p
etaEq p = refl
module IntervalEquations where
postulate
P : I → Set
test-0 : (P (~ i0) ≡ P i1)
test-0 = refl
test-1 : P (~ i1) ≡ P i0
test-1 = refl
test-2 : ∀ {i j} → P (~ (i ∧ j)) ≡ P (~ i ∨ ~ j)
test-2 = refl
test-3 : ∀ {i j} → P (~ (i ∨ j)) ≡ P (~ i ∧ ~ j)
test-3 = refl
test-4 : ∀ {i} → P (~ (~ i)) ≡ P i
test-4 = refl
test-5 : ∀ {i} → P (_∧_ i0 i) ≡ P i0
test-5 = refl
test-52 : ∀ {i} → P (_∧_ i i) ≡ P i
test-52 = refl
test-53 : ∀ {i j} → P (i ∧ j) ≡ P (j ∧ i)
test-53 = refl
test-n6 : ∀ {i} → P (i1 ∧ i) ≡ P i
test-n6 = refl
test-n7 : ∀ {i} → P (i ∧ i0) ≡ P i0
test-n7 = refl
test-n8 : ∀ {i} → P (i ∧ i1) ≡ P i
test-n8 = refl
reflId : ∀ {l} {A : Set l} {x : A} → Id x x
reflId = conid i1 refl
J-comp : ∀ {ℓ ℓ'} {A : Set ℓ} {x : A} {P : ∀ y → Id x y → Set ℓ'} →
(d : P x reflId) → J P d reflId ≡ d
J-comp _ = refl
outPartial : ∀ {ℓ} {A : Set ℓ} → Partial i1 A → A
outPartial = λ f → f itIsOne
inPartial : ∀ {ℓ} {A : Set ℓ} → A → Partial i1 A
inPartial a = λ _ → a
module _ {ℓ ℓ'} {A : I → Set ℓ} {B : ∀ i → A i → Set ℓ'}
(let ℓ = _ ; C : I → Set ℓ ; C i = (x : A i) → B i x) where
compPi : (φ : I) → (u : ∀ i → Partial φ (C i)) → (a : C i0 [ φ ↦ u i0 ]) → C i1
compPi φ u a' x1 = primComp
(λ i → B i (v i)) φ (λ i o → u i o (v i)) (a (v i0)) where
a = ouc a'
v : (i : I) → A i
v i = primTransp (λ j → A (i ∨ (~ j))) i x1
f : ∀ i → (a : A i) → Partial φ (B i a)
f i a = λ { (φ = i1) → u i itIsOne a }
compPi' : (φ : I) → (u : ∀ i → Partial φ (C i)) → (a : C i0 [ φ ↦ u i0 ]) → C i1
compPi' φ u a = primComp C φ u (ouc a)
test-compPi : (φ : I) → (u : ∀ i → Partial φ (C i)) → (a : C i0 [ φ ↦ u i0 ]) →
compPi φ u a ≡ compPi' φ u a
test-compPi = λ φ u u0 → refl
module HCompPathP {ℓ} {A : I → Set ℓ} (u : A i0) (v : A i1) (φ : I)
(let C = PathP A u v) (p : ∀ i → Partial φ C) (p0 : C [ φ ↦ p i0 ]) where
hcompPathP : C
hcompPathP j = primHComp (\ { i (φ = i1) → p i itIsOne j
; i (j = i0) → u
; i (j = i1) → v })
(ouc p0 j)
test-hcompPathP : hcompPathP ≡ primHComp p (ouc p0)
test-hcompPathP = refl
module TranspPathP {ℓ} {A : I → I → Set ℓ} (u : ∀ i → A i i0)(v : ∀ i → A i i1)
(let C = λ (i : I) → PathP (A i) (u i) (v i))
(p0 : C i0) where
φ = i0
transpPathP : C i1
transpPathP j = primComp (λ i → A i j) _
(\ { i (j = i0) → u i
; i (j = i1) → v i })
(p0 j)
test-compPathP : transpPathP ≡ primTransp C i0 p0
test-compPathP = refl
module RecordComp where
record R {ℓ ℓ'} (A : Set ℓ) (B : A → Set ℓ') (C : (x : A) → B x → Set ℓ)
: Set (ℓ-max ℓ ℓ') where
coinductive
constructor _,_
field
fst : A
snd : B fst
trd : C fst snd
open R
hcompR : ∀ {ℓ ℓ'} {A : Set ℓ} {B : A → Set ℓ'}
{C : (x : A) → B x → Set ℓ} →
(let ℓ = _ ; Z : Set ℓ ; Z = R(A)(B)(C))
(φ : I) → (u : ∀ i → Partial φ Z) → Z [ φ ↦ u i0 ] → Z
fst (hcompR {A = A} {B} φ w w0)
= primComp (\ _ → A) φ (λ i → (λ{ (φ = i1) → fst (w i itIsOne) }) ) (fst (ouc w0))
snd (hcompR {A = A} {B} φ w w0)
= primComp (λ i → B (a i)) φ (λ i → (λ { (φ = i1) → snd (w i itIsOne) })) (snd (ouc w0))
where
a = fill (λ z → A) (λ i → (λ { (φ = i1) → fst (w i itIsOne) }) ) (inc (fst (ouc w0)))
trd (hcompR {A = A} {B} {C} φ w w0)
= primComp (λ i → C (a i) (b i)) φ ((λ i → (λ { (φ = i1) → trd (w i itIsOne)}))) (trd (ouc w0))
where
a = fill (λ z → A) (λ i → (λ { (φ = i1) → fst (w i itIsOne) }) ) (inc (fst (ouc w0)))
b = fill (λ i → B (a i)) (λ i → (λ { (φ = i1) → snd (w i itIsOne) }) ) (inc (snd (ouc w0)))
module _ {ℓ ℓ'} {A : Set ℓ} {B : A → Set ℓ'}
{C : (x : A) → B x → Set ℓ}
(let ℓ = _ ; Z : Set ℓ ; Z = R(A)(B)(C))
(φ : I) (u : ∀ i → Partial φ (Z)) (a : Z [ φ ↦ u i0 ]) where
test-compR-fst : hcompR {A = A} {B} {C} φ u a .fst ≡ primHComp u (ouc a) .fst
test-compR-fst = refl
test-compR-snd : hcompR {A = A} {B} {C} φ u a .snd ≡ primHComp u (ouc a) .snd
test-compR-snd = refl
test-compR-trd : hcompR {A = A} {B} {C} φ u a .trd ≡ primHComp u (ouc a) .trd
test-compR-trd = refl
module _ {ℓ ℓ'} {A : I → Set ℓ} {B : ∀ i → A i → Set ℓ'}
{C : ∀ i → (x : A i) → B i x → Set ℓ}
(let ℓ = _ ; Z : I → Set ℓ ; Z i = R(A i)(B i)(C i)) where
φ = i0
transpR : Z i0 → Z i1
fst (transpR w0) =
primTransp A φ (fst w0)
snd (transpR w0) = primTransp (\ i → B i (a i)) φ (snd w0)
where
a = transpFill {A' = A i0} φ (λ i → inc (A i)) (fst w0)
trd (transpR w0) = primTransp (\ i → C i (a i) (b i)) φ (trd w0)
where
a = transpFill {A' = A i0} φ (λ i → inc (A i)) (fst w0)
b = transpFill {A' = B i0 (a i0)} φ (λ i → inc (B i (a i))) (snd w0)
module _ {ℓ ℓ'} {A : I → Set ℓ} {B : ∀ i → A i → Set ℓ'}
{C : ∀ i → (x : A i) → B i x → Set ℓ}
(let ℓ = _ ; Z : I → Set ℓ ; Z i = R(A i)(B i)(C i))
(a : Z i0) where
test-transpR-fst : fst (transpR {A = A} {B} {C} a) ≡ fst (primTransp Z i0 a)
test-transpR-fst = refl
test-transpR-snd : snd (transpR {A = A} {B} {C} a) ≡ snd (primTransp Z i0 a)
test-transpR-snd = refl
test-transpR-trd : trd (transpR {A = A} {B} {C} a) ≡ trd (primTransp Z i0 a)
test-transpR-trd = refl
module _ {ℓ} {A : Set ℓ} {φ : I} {T : Partial φ (Set ℓ)}
{e : PartialP φ (λ o → T o ≃ A)}
where
test-Glue-β : (t : PartialP φ T) (a : A [ φ ↦ (\ o → e o .fst (t o)) ]) →
unglue {A = A} {φ = φ} {T = T} {e} (glue t (ouc a)) ≡ ouc a
test-Glue-β _ _ = refl
test-Glue-η : (b : Glue A T e) →
(glue {φ = φ} (λ{ (φ = i1) → b }) (unglue {φ = φ} b)) ≡ b
test-Glue-η b = refl
module _ {ℓ} {A : Set ℓ} (let φ = i1) {T : Partial φ (Set ℓ)}
{e : PartialP φ (λ o → T o ≃ A)}
where
test-unglue-0 : (b : Glue A T e) →
unglue {A = A} {φ = φ} {T = T} {e} b ≡ e itIsOne .fst b
test-unglue-0 _ = refl
test-unglue-2 : (t : PartialP φ T) (a : A [ φ ↦ (\ o → e o .fst (t o)) ]) →
unglue {A = A} {φ = φ} {T = T} {e}
(glue {A = A}{φ = φ}{T = T}{e} t (ouc a)) ≡ e itIsOne .fst (t itIsOne) -- = a
test-unglue-2 _ _ = refl
test-glue-0 : (t : PartialP φ T) (a : A [ φ ↦ (\ o → e o .fst (t o)) ]) →
(glue {A = A} {T = T} {e} t (ouc a)) ≡ t itIsOne
test-glue-0 _ _ = refl
eqToPath : ∀ {ℓ} {A B : Set ℓ} → A ≃ B → A ≡ B
eqToPath {ℓ} {A} {B} f = λ i → Glue B
([ ~ i ↦ (λ _ → A) , i ↦ (λ _ → B) ])
([ ~ i ↦ (λ{ (i = i0) → f }) , i ↦ (λ{ (i = i1) → pathToEquiv (λ _ → B) }) ])
univ = eqToPath
not : Bool → Bool
not true = false
not false = true
notnot : ∀ y → y ≡ not (not y)
notnot true = refl
notnot false = refl
nothelp : ∀ y (y₁ : Σ Bool \ x → (not x ≡ y)) → (not y , sym (notnot y)) ≡ y₁
nothelp y (true , eq) = pathJ (λ y₁ eq' →
(not y₁ , sym (notnot y₁)) ≡ (true , eq')) refl _ eq
nothelp y (false , eq) = pathJ (λ y₁ eq' →
(not y₁ , sym (notnot y₁)) ≡ (false , eq')) refl _ (eq)
notEquiv : Bool ≃ Bool
notEquiv = not , (λ { .equiv-proof y → (not y , sym (notnot y)) , nothelp y })
test : Bool
test = primComp (λ i → univ {A = Bool} {B = Bool} notEquiv i)
i0 (λ _ → empty) true
test-test : test ≡ primComp (λ i → Bool) i0 (λ _ _ → false)
(primComp (λ i → Bool) i0 (λ _ _ → false)
(primComp (λ i → Bool) i0 (λ _ _ → false)
(primComp (λ i → Bool) i0 (λ _ _ → false)
(primComp (λ i → Bool) i0 (λ _ _ → false)
(primComp (λ i → Bool) i0 (λ _ _ → false)
(primComp (λ i → Bool) i0 (λ _ _ → false)
(primComp (λ i → Bool) i0 (λ _ _ → false)
(primComp (λ i → Bool) i0 (λ _ _ → false)
false))))))))
test-test = refl
test-test2 : test ≡ false
test-test2 = refl
test2 : Bool
test2 = primComp (λ i → eqToPath {A = Bool} {B = Bool} notEquiv i)
i0
(λ _ → empty)
true
test2-test : test2 ≡ primComp (λ _ → Bool) i0 (λ _ _ → false)
(primComp (λ _ → Bool) i0 ((λ _ _ → false))
(primComp (λ _ → Bool) i0 ((λ _ _ → false))
(primComp (λ _ → Bool) i0 ((λ _ _ → false))
false)))
test2-test = refl
test3 : Bool
test3 = primComp (λ i → eqToPath {A = Bool} {B = Bool} notEquiv i)
i0
(λ _ → empty)
true
test3-test : test3 ≡ primComp (λ i → Bool) i0 (λ _ _ → false)
(primComp (λ _ → Bool) i0 (λ _ _ → false)
(primComp (λ i → Bool) i0 (λ _ _ → false)
false))
test3-test = refl
data D2 (A : Set) : Set where
c1 : D2 A
c2 : D2 A
test5-test : ∀ j → primComp (λ i → D2 Bool) (j ∨ ~ j)
(λ i → [ j ↦ (λ{ (j = i1) → c1 }) , ~ j ↦ (λ{ (j = i0) → c1 }) ]) c1 ≡ c1
test5-test j = refl
test6-test : (j : I → I) → primComp (λ i → D2 Bool) (j i0) (λ i o → c1) c1 ≡ c1
test6-test j = refl
test4-test : ∀ j → primComp (λ i → Bool) (j ∨ ~ j)
(λ i → [ j ↦ (λ{ (j = i1) → false }) , ~ j ↦ (λ{ (j = i0) → false }) ] ) false ≡ false
test4-test j = refl
ListNot : List Bool ≡ List Bool
ListNot = λ i → List (univ {A = Bool} {B = Bool} notEquiv i)
trues : List Bool
trues = true ∷ true ∷ []
falses : List Bool
falses = primComp (λ i → ListNot i) i0 (λ _ → empty) trues
test-falses : falses ≡ (false ∷ false ∷ [])
test-falses = refl
trues2 : List Bool
trues2 = primComp (λ i → trans ListNot ListNot i) i0 (λ _ → empty) trues
test-trues2 : trues2 ≡ trues
test-trues2 = refl
trues3 : List Bool
trues3 = primComp (λ i → let p = trans ListNot ListNot in
trans p p i)
i0
(λ _ → empty)
trues
test-trues3 : trues3 ≡ trues
test-trues3 = refl
| {
"alphanum_fraction": 0.463385063,
"avg_line_length": 33.895890411,
"ext": "agda",
"hexsha": "74fb4927f28813144373919569ac42af61930770",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "phadej/agda",
"max_forks_repo_path": "test/Succeed/CubicalPrims.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "phadej/agda",
"max_issues_repo_path": "test/Succeed/CubicalPrims.agda",
"max_line_length": 117,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "2fa8ede09451d43647f918dbfb24ff7b27c52edc",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "phadej/agda",
"max_stars_repo_path": "test/Succeed/CubicalPrims.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5239,
"size": 12372
} |
{-
Mayer-Vietoris cofiber sequence:
Let X be a pointed type, and let a span B ←[f]- X -[g]→ C be given.
Then the mapping cone of the canonical map (B ⋁ C) → B ⊔_X C is equivalent to Susp X.
The sequence Susp X → (B ⋁ C) → B ⊔_X C therefore induces a long exact sequence in cohomology.
Proof is adapted from Evan Cavallo's master's thesis.
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Homotopy.MayerVietorisCofiber where
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything
open import Cubical.Foundations.Pointed
open import Cubical.Data.Unit
open import Cubical.HITs.MappingCones
open import Cubical.HITs.Pushout
open import Cubical.HITs.Susp
open import Cubical.HITs.Wedge
module _ {ℓX ℓB ℓC} {X : Pointed ℓX} {B : Type ℓB} {C : Type ℓC} (f : X .fst → B) (g : X .fst → C)
where
private
Y : Pointed _
Y = (B , f (X .snd))
Z : Pointed _
Z = (C , g (X .snd))
wedgeToPushout : Y ⋁ Z → Pushout f g
wedgeToPushout (inl y) = inl y
wedgeToPushout (inr z) = inr z
wedgeToPushout (push _ i) = push (pt X) i
pushoutToSusp : Pushout f g → Susp (X .fst)
pushoutToSusp (inl y) = north
pushoutToSusp (inr z) = south
pushoutToSusp (push x i) = merid x i
{-
Coherence lemma:
To construct a function f : (c : Cone wedgeToPushout) → D c, we can always
adjust the definition of (f (spoke (inr z) i)) so that there is a canonical
choice for (f (spoke (push tt j) i))
-}
module Helper {ℓD} {D : Cone wedgeToPushout → Type ℓD}
(inj* : ∀ w → D (inj w))
(hub* : D hub)
(inl* : ∀ y → PathP (λ i → D (spoke (inl y) i)) hub* (inj* (inl y)))
(inr* : ∀ z → PathP (λ i → D (spoke (inr z) i)) hub* (inj* (inr z)))
where
cap : (i j : I) → D (spoke (push tt j) i)
cap i j =
fill
(λ i → D (spoke (push tt j) (~ i)))
(λ i → λ
{ (j = i0) → inl* (Y .snd) (~ i)
; (j = i1) → inr* (Z .snd) (~ i)
})
(inS (inj* (push (X .snd) j)))
(~ i)
cap0 : (j : I) → D hub
cap0 = cap i0
face-i≡0 : (k j : I) → D hub
face-i≡0 k j =
hfill
(λ j → λ
{ (k = i0) → cap0 j
; (k = i1) → hub*
})
(inS hub*)
j
inrFiller : ∀ z → (k i : I) → D (spoke (inr z) i)
inrFiller z k i =
hfill
(λ k → λ
{ (i = i0) → face-i≡0 k i1
; (i = i1) → inj* (inr z)
})
(inS (inr* z i))
k
fun : ∀ c → D c
fun (inj w) = inj* w
fun hub = hub*
fun (spoke (inl y) i) = inl* y i
fun (spoke (inr z) i) = inrFiller z i1 i
fun (spoke (push tt j) i) =
hcomp
(λ k → λ
{ (i = i0) → face-i≡0 k j
; (i = i1) → inj* (push (X .snd) j)
; (j = i0) → inl* (Y .snd) i
})
(cap i j)
equiv : Cone wedgeToPushout ≃ Susp (X .fst)
equiv = isoToEquiv (iso fwd bwd fwdBwd bwdFwd)
where
fwd : Cone wedgeToPushout → Susp (X .fst)
fwd (inj w) = pushoutToSusp w
fwd hub = north
fwd (spoke (inl y) i) = north
fwd (spoke (inr z) i) = merid (X .snd) i
fwd (spoke (push tt j) i) = merid (X .snd) (i ∧ j)
bwd : Susp (X .fst) → Cone wedgeToPushout
bwd north = hub
bwd south = hub
bwd (merid x i) =
hcomp
(λ k → λ
{ (i = i0) → spoke (inl (f x)) (~ k)
; (i = i1) → spoke (inr (g x)) (~ k)
})
(inj (push x i))
bwdPushout : (w : Pushout f g) → bwd (pushoutToSusp w) ≡ inj w
bwdPushout (inl y) = spoke (inl y)
bwdPushout (inr z) = spoke (inr z)
bwdPushout (push x i) k =
hfill
(λ k → λ
{ (i = i0) → spoke (inl (f x)) (~ k)
; (i = i1) → spoke (inr (g x)) (~ k)
})
(inS (inj (push x i)))
(~ k)
bwdMeridPt : refl ≡ cong bwd (merid (X .snd))
bwdMeridPt j i =
hcomp
(λ k → λ
{ (i = i0) → spoke (inl (Y .snd)) (~ k)
; (i = i1) → spoke (inr (Z .snd)) (~ k)
; (j = i0) → spoke (push _ i) (~ k)
})
(inj (push (X .snd) i))
bwdFwd : (c : Cone wedgeToPushout) → bwd (fwd c) ≡ c
bwdFwd =
Helper.fun
bwdPushout
refl
(λ y i k → spoke (inl y) (i ∧ k))
(λ z i k →
hcomp
(λ l → λ
{ (i = i0) → hub
; (i = i1) → spoke (inr z) k
; (k = i0) → bwdMeridPt l i
; (k = i1) → spoke (inr z) i
})
(spoke (inr z) (i ∧ k)))
fwdBwd : (s : Susp (X .fst)) → fwd (bwd s) ≡ s
fwdBwd north = refl
fwdBwd south = merid (X .snd)
fwdBwd (merid a i) j =
fill
(λ _ → Susp (X .fst))
(λ j → λ
{ (i = i0) → north
; (i = i1) → merid (X .snd) (~ j)
})
(inS (merid a i))
(~ j)
| {
"alphanum_fraction": 0.4796361381,
"avg_line_length": 27.4829545455,
"ext": "agda",
"hexsha": "58f0198d7491192df17ede548b8169334569fd42",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Homotopy/MayerVietorisCofiber.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Homotopy/MayerVietorisCofiber.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Homotopy/MayerVietorisCofiber.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1884,
"size": 4837
} |
------------------------------------------------------------------------------
-- Conversion rules for the greatest common divisor
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.GCD.Total.ConversionRulesI where
open import Common.FOL.Relation.Binary.EqReasoning
open import FOTC.Base
open import FOTC.Data.Nat
open import FOTC.Data.Nat.Inequalities
open import FOTC.Program.GCD.Total.GCD
------------------------------------------------------------------------------
private
-- Before to prove some properties for the gcd it is convenient to
-- descompose the behavior of the function step by step.
-- Initially, we define the possible states (gcd-s₁, gcd-s₂,
-- ...). Then we write down the proof for the execution step from
-- the state p to the state q, e.g.
--
-- proof₂₋₃ : ∀ m n → gcd-s₂ m n → gcd-s₃ m n.
-- The functions gcd-00, gcd-S0, gcd-0S, gcd-Sm>Sn and gcd-Sm≯Sn
-- show the use of the states gcd-s₁, gcd-s₂, ..., and the proofs
-- associated with the execution steps.
----------------------------------------------------------------------------
-- The steps
-- Initially, the equation gcd-eq is used.
gcd-s₁ : D → D → D
gcd-s₁ m n = if (iszero₁ n)
then m
else (if (iszero₁ m)
then n
else (if (gt m n)
then gcd (m ∸ n) n
else gcd m (n ∸ m)))
-- First if_then_else_ (iszero₁ n).
gcd-s₂ : D → D → D → D
gcd-s₂ m n b = if b
then m
else (if (iszero₁ m)
then n
else (if (gt m n)
then gcd (m ∸ n) n
else gcd m (n ∸ m)))
-- First if_then_else_ when iszero₁ n = true.
gcd-s₃ : D → D
gcd-s₃ m = m
-- First if_then_else_ when iszero₁ n = false.
gcd-s₄ : D → D → D
gcd-s₄ m n = if (iszero₁ m)
then n
else (if (gt m n) then gcd (m ∸ n) n else gcd m (n ∸ m))
-- Second if_then_else_ (iszero₁ m).
gcd-s₈ : D → D → D → D
gcd-s₈ m n b = if b
then n
else (if (gt m n) then gcd (m ∸ n) n else gcd m (n ∸ m))
-- Second if_then_else_, when iszero₁ m = true.
gcd-s₉ : D → D
gcd-s₉ n = n
-- Second if_then_else_, when iszero₁ m = false.
gcd-s₁₀ : D → D → D
gcd-s₁₀ m n = if (gt m n) then gcd (m ∸ n) n else gcd m (n ∸ m)
-- Third if_then_else_ (gt m n).
gcd-s₁₁ : D → D → D → D
gcd-s₁₁ m n b = if b then gcd (m ∸ n) n else gcd m (n ∸ m)
-- Third if_then_else_ when gt m n = true.
gcd-s₁₂ : D → D → D
gcd-s₁₂ m n = gcd (m ∸ n) n
-- Fourth if_then_else_ when gt m n = false.
gcd-s₁₃ : D → D → D
gcd-s₁₃ m n = gcd m (n ∸ m)
----------------------------------------------------------------------------
-- The execution steps
{-
To prove the execution steps, e.g.
proof₃₋₄ : ∀ m n → gcd-s₃ m n → gcd_s₄ m n)
we usually need to prove that
C [m] ≡ C [n] (1)
given that
m ≡ n, (2)
where (2) is a conversion rule usually.
We prove (1) using
subst : ∀ {x y} (D : A → Set) → x ≡ y → P x → P y
where
• P is given by λ m → C [m ] ≡ C [n],
• x ≡ y is given n ≡ m (actually, we use sym (m ≡ n)) and
• P x is given by C [n] ≡ C [n] (i.e. refl).
-}
proof₀₋₁ : ∀ m n → gcd m n ≡ gcd-s₁ m n
proof₀₋₁ = gcd-eq
-- 25 April 2014. Failed with Andreas' --without-K.
proof₁₋₂ : ∀ m n b → iszero₁ n ≡ b → gcd-s₁ m n ≡ gcd-s₂ m n b
proof₁₋₂ m n .(iszero₁ n) refl = refl
proof₂₋₃ : ∀ m n → gcd-s₂ m n true ≡ gcd-s₃ m
proof₂₋₃ m _ = if-true (gcd-s₃ m)
proof₂₋₄ : ∀ m n → gcd-s₂ m n false ≡ gcd-s₄ m n
proof₂₋₄ m n = if-false (gcd-s₄ m n)
proof₄₋₈ : ∀ m n b → iszero₁ m ≡ b → gcd-s₄ m n ≡ gcd-s₈ m n b
proof₄₋₈ m n .(iszero₁ m) refl = refl
proof₈₋₉ : ∀ m n → gcd-s₈ m n true ≡ gcd-s₉ n
proof₈₋₉ _ n = if-true n
proof₈₋₁₀ : ∀ m n → gcd-s₈ m n false ≡ gcd-s₁₀ m n
proof₈₋₁₀ m n = if-false (gcd-s₁₀ m n)
proof₁₀₋₁₁ : ∀ m n b → gt m n ≡ b → gcd-s₁₀ m n ≡ gcd-s₁₁ m n b
proof₁₀₋₁₁ m n .(lt n m) refl = refl
proof₁₁₋₁₂ : ∀ m n → gcd-s₁₁ m n true ≡ gcd-s₁₂ m n
proof₁₁₋₁₂ m n = if-true (gcd (m ∸ n) n)
proof₁₁₋₁₃ : ∀ m n → gcd-s₁₁ m n false ≡ gcd-s₁₃ m n
proof₁₁₋₁₃ m n = if-false (gcd m (n ∸ m))
------------------------------------------------------------------------------
-- The five equations for gcd
-- First equation.
gcd-00 : gcd zero zero ≡ zero
gcd-00 =
gcd zero zero ≡⟨ proof₀₋₁ zero zero ⟩
gcd-s₁ zero zero ≡⟨ proof₁₋₂ zero zero true iszero-0 ⟩
gcd-s₂ zero zero true ≡⟨ proof₂₋₃ zero zero ⟩
zero ∎
-- Second equation.
gcd-S0 : ∀ n → gcd (succ₁ n) zero ≡ succ₁ n
gcd-S0 n =
gcd (succ₁ n) zero ≡⟨ proof₀₋₁ (succ₁ n) zero ⟩
gcd-s₁ (succ₁ n) zero ≡⟨ proof₁₋₂ (succ₁ n) zero true iszero-0 ⟩
gcd-s₂ (succ₁ n) zero true ≡⟨ proof₂₋₃ (succ₁ n) zero ⟩
succ₁ n ∎
-- Third equation.
gcd-0S : ∀ n → gcd zero (succ₁ n) ≡ succ₁ n
gcd-0S n =
gcd zero (succ₁ n) ≡⟨ proof₀₋₁ zero (succ₁ n) ⟩
gcd-s₁ zero (succ₁ n) ≡⟨ proof₁₋₂ zero (succ₁ n) false (iszero-S n) ⟩
gcd-s₂ zero (succ₁ n) false ≡⟨ proof₂₋₄ zero (succ₁ n) ⟩
gcd-s₄ zero (succ₁ n) ≡⟨ proof₄₋₈ zero (succ₁ n) true iszero-0 ⟩
gcd-s₈ zero (succ₁ n) true ≡⟨ proof₈₋₉ zero (succ₁ n) ⟩
succ₁ n ∎
-- Fourth equation.
gcd-S>S : ∀ m n → succ₁ m > succ₁ n →
gcd (succ₁ m) (succ₁ n) ≡ gcd (succ₁ m ∸ succ₁ n) (succ₁ n)
gcd-S>S m n Sm>Sn =
gcd (succ₁ m) (succ₁ n) ≡⟨ proof₀₋₁ (succ₁ m) (succ₁ n) ⟩
gcd-s₁ (succ₁ m) (succ₁ n) ≡⟨ proof₁₋₂ (succ₁ m) (succ₁ n) false (iszero-S n) ⟩
gcd-s₂ (succ₁ m) (succ₁ n) false ≡⟨ proof₂₋₄ (succ₁ m) (succ₁ n) ⟩
gcd-s₄ (succ₁ m) (succ₁ n) ≡⟨ proof₄₋₈ (succ₁ m) (succ₁ n) false (iszero-S m) ⟩
gcd-s₈ (succ₁ m) (succ₁ n) false ≡⟨ proof₈₋₁₀ (succ₁ m) (succ₁ n) ⟩
gcd-s₁₀ (succ₁ m) (succ₁ n) ≡⟨ proof₁₀₋₁₁ (succ₁ m) (succ₁ n) true Sm>Sn ⟩
gcd-s₁₁ (succ₁ m) (succ₁ n) true ≡⟨ proof₁₁₋₁₂ (succ₁ m) (succ₁ n) ⟩
gcd (succ₁ m ∸ succ₁ n) (succ₁ n) ∎
-- Fifth equation.
gcd-S≯S : ∀ m n → succ₁ m ≯ succ₁ n →
gcd (succ₁ m) (succ₁ n) ≡ gcd (succ₁ m) (succ₁ n ∸ succ₁ m)
gcd-S≯S m n Sm≯Sn =
gcd (succ₁ m) (succ₁ n) ≡⟨ proof₀₋₁ (succ₁ m) (succ₁ n) ⟩
gcd-s₁ (succ₁ m) (succ₁ n) ≡⟨ proof₁₋₂ (succ₁ m) (succ₁ n) false (iszero-S n) ⟩
gcd-s₂ (succ₁ m) (succ₁ n) false ≡⟨ proof₂₋₄ (succ₁ m) (succ₁ n) ⟩
gcd-s₄ (succ₁ m) (succ₁ n) ≡⟨ proof₄₋₈ (succ₁ m) (succ₁ n) false (iszero-S m) ⟩
gcd-s₈ (succ₁ m) (succ₁ n) false ≡⟨ proof₈₋₁₀ (succ₁ m) (succ₁ n) ⟩
gcd-s₁₀ (succ₁ m) (succ₁ n) ≡⟨ proof₁₀₋₁₁ (succ₁ m) (succ₁ n) false Sm≯Sn ⟩
gcd-s₁₁ (succ₁ m) (succ₁ n) false ≡⟨ proof₁₁₋₁₃ (succ₁ m) (succ₁ n) ⟩
gcd (succ₁ m) (succ₁ n ∸ succ₁ m) ∎
| {
"alphanum_fraction": 0.5001396258,
"avg_line_length": 34.7669902913,
"ext": "agda",
"hexsha": "a257f82bb05307fc6b3ad52f3aea0a1165c014d4",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/GCD/Total/ConversionRulesI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/GCD/Total/ConversionRulesI.agda",
"max_line_length": 88,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/GCD/Total/ConversionRulesI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 2768,
"size": 7162
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties satisfied by Heyting Algebra
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary.Lattice
module Relation.Binary.Properties.HeytingAlgebra
{c ℓ₁ ℓ₂} (L : HeytingAlgebra c ℓ₁ ℓ₂) where
open HeytingAlgebra L
open import Algebra.FunctionProperties _≈_
open import Data.Product using (_,_)
open import Function using (_$_; flip; _∘_)
open import Level using (_⊔_)
open import Relation.Binary
import Relation.Binary.Reasoning.PartialOrder as POR
open import Relation.Binary.Properties.MeetSemilattice meetSemilattice
open import Relation.Binary.Properties.JoinSemilattice joinSemilattice
import Relation.Binary.Properties.BoundedMeetSemilattice boundedMeetSemilattice as BM
open import Relation.Binary.Properties.Lattice lattice
open import Relation.Binary.Properties.BoundedLattice boundedLattice
import Relation.Binary.Reasoning.Setoid as EqReasoning
------------------------------------------------------------------------
-- Useful lemmas
⇨-eval : ∀ {x y} → (x ⇨ y) ∧ x ≤ y
⇨-eval {x} {y} = transpose-∧ refl
swap-transpose-⇨ : ∀ {x y w} → x ∧ w ≤ y → w ≤ x ⇨ y
swap-transpose-⇨ x∧w≤y = transpose-⇨ $ trans (reflexive $ ∧-comm _ _) x∧w≤y
------------------------------------------------------------------------
-- Properties of exponential
⇨-unit : ∀ {x} → x ⇨ x ≈ ⊤
⇨-unit = antisym (maximum _) (transpose-⇨ $ reflexive $ BM.identityˡ _)
y≤x⇨y : ∀ {x y} → y ≤ x ⇨ y
y≤x⇨y = transpose-⇨ (x∧y≤x _ _)
⇨-drop : ∀ {x y} → (x ⇨ y) ∧ y ≈ y
⇨-drop = antisym (x∧y≤y _ _) (∧-greatest y≤x⇨y refl)
⇨-app : ∀ {x y} → (x ⇨ y) ∧ x ≈ y ∧ x
⇨-app = antisym (∧-greatest ⇨-eval (x∧y≤y _ _)) (∧-monotonic y≤x⇨y refl)
⇨ʳ-covariant : ∀ {x} → (x ⇨_) Preserves _≤_ ⟶ _≤_
⇨ʳ-covariant y≤z = transpose-⇨ (trans ⇨-eval y≤z)
⇨ˡ-contravariant : ∀ {x} → (_⇨ x) Preserves (flip _≤_) ⟶ _≤_
⇨ˡ-contravariant z≤y = transpose-⇨ (trans (∧-monotonic refl z≤y) ⇨-eval)
⇨-relax : _⇨_ Preserves₂ (flip _≤_) ⟶ _≤_ ⟶ _≤_
⇨-relax {x} {y} {u} {v} y≤x u≤v = begin
x ⇨ u ≤⟨ ⇨ʳ-covariant u≤v ⟩
x ⇨ v ≤⟨ ⇨ˡ-contravariant y≤x ⟩
y ⇨ v ∎
where open POR poset
⇨-cong : _⇨_ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_
⇨-cong x≈y u≈v = antisym (⇨-relax (reflexive $ Eq.sym x≈y) (reflexive u≈v))
(⇨-relax (reflexive x≈y) (reflexive $ Eq.sym u≈v))
⇨-applyˡ : ∀ {w x y} → w ≤ x → (x ⇨ y) ∧ w ≤ y
⇨-applyˡ = transpose-∧ ∘ ⇨ˡ-contravariant
⇨-applyʳ : ∀ {w x y} → w ≤ x → w ∧ (x ⇨ y) ≤ y
⇨-applyʳ w≤x = trans (reflexive (∧-comm _ _)) (⇨-applyˡ w≤x)
⇨-curry : ∀ {x y z} → x ∧ y ⇨ z ≈ x ⇨ y ⇨ z
⇨-curry = antisym (transpose-⇨ $ transpose-⇨ $ trans (reflexive $ ∧-assoc _ _ _) ⇨-eval)
(transpose-⇨ $ trans (reflexive $ Eq.sym $ ∧-assoc _ _ _)
(transpose-∧ $ ⇨-applyˡ refl))
------------------------------------------------------------------------
-- Various proofs of distributivity
∧-distribˡ-∨-≤ : ∀ x y z → x ∧ (y ∨ z) ≤ x ∧ y ∨ x ∧ z
∧-distribˡ-∨-≤ x y z = trans (reflexive $ ∧-comm _ _)
(transpose-∧ $ ∨-least (swap-transpose-⇨ (x≤x∨y _ _)) $ swap-transpose-⇨ (y≤x∨y _ _))
∧-distribˡ-∨-≥ : ∀ x y z → x ∧ y ∨ x ∧ z ≤ x ∧ (y ∨ z)
∧-distribˡ-∨-≥ x y z = let
x∧y≤x , x∧y≤y , _ = infimum x y
x∧z≤x , x∧z≤z , _ = infimum x z
y≤y∨z , z≤y∨z , _ = supremum y z
in ∧-greatest (∨-least x∧y≤x x∧z≤x)
(∨-least (trans x∧y≤y y≤y∨z) (trans x∧z≤z z≤y∨z))
∧-distribˡ-∨ : _∧_ DistributesOverˡ _∨_
∧-distribˡ-∨ x y z = antisym (∧-distribˡ-∨-≤ x y z) (∧-distribˡ-∨-≥ x y z)
⇨-distribˡ-∧-≤ : ∀ x y z → x ⇨ y ∧ z ≤ (x ⇨ y) ∧ (x ⇨ z)
⇨-distribˡ-∧-≤ x y z = let
y∧z≤y , y∧z≤z , _ = infimum y z
in ∧-greatest (transpose-⇨ $ trans ⇨-eval y∧z≤y)
(transpose-⇨ $ trans ⇨-eval y∧z≤z)
⇨-distribˡ-∧-≥ : ∀ x y z → (x ⇨ y) ∧ (x ⇨ z) ≤ x ⇨ y ∧ z
⇨-distribˡ-∧-≥ x y z = transpose-⇨ (begin
(((x ⇨ y) ∧ (x ⇨ z)) ∧ x) ≈⟨ ∧-cong Eq.refl $ Eq.sym $ ∧-idempotent _ ⟩
(((x ⇨ y) ∧ (x ⇨ z)) ∧ x ∧ x) ≈⟨ Eq.sym $ ∧-assoc _ _ _ ⟩
(((x ⇨ y) ∧ (x ⇨ z)) ∧ x) ∧ x ≈⟨ ∧-cong (∧-assoc _ _ _) Eq.refl ⟩
(((x ⇨ y) ∧ (x ⇨ z) ∧ x) ∧ x) ≈⟨ ∧-cong (∧-cong Eq.refl $ ∧-comm _ _) Eq.refl ⟩
(((x ⇨ y) ∧ x ∧ (x ⇨ z)) ∧ x) ≈⟨ ∧-cong (Eq.sym $ ∧-assoc _ _ _) Eq.refl ⟩
(((x ⇨ y) ∧ x) ∧ (x ⇨ z)) ∧ x ≈⟨ ∧-assoc _ _ _ ⟩
(((x ⇨ y) ∧ x) ∧ (x ⇨ z) ∧ x) ≤⟨ ∧-monotonic ⇨-eval ⇨-eval ⟩
y ∧ z ∎)
where open POR poset
⇨-distribˡ-∧ : _⇨_ DistributesOverˡ _∧_
⇨-distribˡ-∧ x y z = antisym (⇨-distribˡ-∧-≤ x y z) (⇨-distribˡ-∧-≥ x y z)
⇨-distribˡ-∨-∧-≤ : ∀ x y z → x ∨ y ⇨ z ≤ (x ⇨ z) ∧ (y ⇨ z)
⇨-distribˡ-∨-∧-≤ x y z = let x≤x∨y , y≤x∨y , _ = supremum x y
in ∧-greatest (transpose-⇨ $ trans (∧-monotonic refl x≤x∨y) ⇨-eval)
(transpose-⇨ $ trans (∧-monotonic refl y≤x∨y) ⇨-eval)
⇨-distribˡ-∨-∧-≥ : ∀ x y z → (x ⇨ z) ∧ (y ⇨ z) ≤ x ∨ y ⇨ z
⇨-distribˡ-∨-∧-≥ x y z = transpose-⇨ (trans (reflexive $ ∧-distribˡ-∨ _ _ _)
(∨-least (trans (transpose-∧ (x∧y≤x _ _)) refl)
(trans (transpose-∧ (x∧y≤y _ _)) refl)))
⇨-distribˡ-∨-∧ : ∀ x y z → x ∨ y ⇨ z ≈ (x ⇨ z) ∧ (y ⇨ z)
⇨-distribˡ-∨-∧ x y z = antisym (⇨-distribˡ-∨-∧-≤ x y z) (⇨-distribˡ-∨-∧-≥ x y z)
------------------------------------------------------------------------
-- Heyting algebras are distributive lattices
isDistributiveLattice : IsDistributiveLattice _≈_ _≤_ _∨_ _∧_
isDistributiveLattice = record
{ isLattice = isLattice
; ∧-distribˡ-∨ = ∧-distribˡ-∨
}
distributiveLattice : DistributiveLattice _ _ _
distributiveLattice = record
{ isDistributiveLattice = isDistributiveLattice
}
------------------------------------------------------------------------
-- Heyting algebras can define pseudo-complement
infix 8 ¬_
¬_ : Op₁ Carrier
¬ x = x ⇨ ⊥
x≤¬¬x : ∀ x → x ≤ ¬ ¬ x
x≤¬¬x x = transpose-⇨ (trans (reflexive (∧-comm _ _)) ⇨-eval)
------------------------------------------------------------------------
-- De-Morgan laws
de-morgan₁ : ∀ x y → ¬ (x ∨ y) ≈ ¬ x ∧ ¬ y
de-morgan₁ x y = ⇨-distribˡ-∨-∧ _ _ _
de-morgan₂-≤ : ∀ x y → ¬ (x ∧ y) ≤ ¬ ¬ (¬ x ∨ ¬ y)
de-morgan₂-≤ x y = transpose-⇨ $ begin
¬ (x ∧ y) ∧ ¬ (¬ x ∨ ¬ y) ≈⟨ ∧-cong ⇨-curry (de-morgan₁ _ _) ⟩
(x ⇨ ¬ y) ∧ ¬ ¬ x ∧ ¬ ¬ y ≈⟨ ∧-cong Eq.refl (∧-comm _ _) ⟩
(x ⇨ ¬ y) ∧ ¬ ¬ y ∧ ¬ ¬ x ≈⟨ Eq.sym $ ∧-assoc _ _ _ ⟩
((x ⇨ ¬ y) ∧ ¬ ¬ y) ∧ ¬ ¬ x ≤⟨ ⇨-applyʳ $ transpose-⇨ $
begin
((x ⇨ ¬ y) ∧ ¬ ¬ y) ∧ x ≈⟨ ∧-cong (∧-comm _ _) Eq.refl ⟩
((¬ ¬ y) ∧ (x ⇨ ¬ y)) ∧ x ≈⟨ ∧-assoc _ _ _ ⟩
(¬ ¬ y) ∧ (x ⇨ ¬ y) ∧ x ≤⟨ ∧-monotonic refl ⇨-eval ⟩
¬ ¬ y ∧ ¬ y ≤⟨ ⇨-eval ⟩
⊥ ∎ ⟩
⊥ ∎
where open POR poset
de-morgan₂-≥ : ∀ x y → ¬ ¬ (¬ x ∨ ¬ y) ≤ ¬ (x ∧ y)
de-morgan₂-≥ x y = transpose-⇨ $ ⇨-applyˡ $ transpose-⇨ $ begin
(x ∧ y) ∧ (¬ x ∨ ¬ y) ≈⟨ ∧-distribˡ-∨ _ _ _ ⟩
(x ∧ y) ∧ ¬ x ∨ (x ∧ y) ∧ ¬ y ≤⟨ ∨-monotonic (⇨-applyʳ (x∧y≤x _ _))
(⇨-applyʳ (x∧y≤y _ _)) ⟩
⊥ ∨ ⊥ ≈⟨ ∨-idempotent _ ⟩
⊥ ∎
where open POR poset
de-morgan₂ : ∀ x y → ¬ (x ∧ y) ≈ ¬ ¬ (¬ x ∨ ¬ y)
de-morgan₂ x y = antisym (de-morgan₂-≤ x y) (de-morgan₂-≥ x y)
weak-lem : ∀ {x} → ¬ ¬ (¬ x ∨ x) ≈ ⊤
weak-lem {x} = begin
¬ ¬ (¬ x ∨ x) ≈⟨ ⇨-cong (de-morgan₁ _ _) Eq.refl ⟩
¬ (¬ ¬ x ∧ ¬ x) ≈⟨ ⇨-cong ⇨-app Eq.refl ⟩
⊥ ∧ (x ⇨ ⊥) ⇨ ⊥ ≈⟨ ⇨-cong (∧-zeroˡ _) Eq.refl ⟩
⊥ ⇨ ⊥ ≈⟨ ⇨-unit ⟩
⊤ ∎
where open EqReasoning setoid
| {
"alphanum_fraction": 0.4679757512,
"avg_line_length": 38.1306532663,
"ext": "agda",
"hexsha": "e84d1705c3f72f00e50784d1c98cee7ed9c38f7a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/HeytingAlgebra.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/HeytingAlgebra.agda",
"max_line_length": 88,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Properties/HeytingAlgebra.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3537,
"size": 7588
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Many properties which hold for _∼_ also hold for flip _∼_
------------------------------------------------------------------------
open import Relation.Binary
module Relation.Binary.Flip where
open import Function
open import Data.Product
implies : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
(≈ : REL A B ℓ₁) (∼ : REL A B ℓ₂) →
≈ ⇒ ∼ → flip ≈ ⇒ flip ∼
implies _ _ impl = impl
reflexive : ∀ {a ℓ} {A : Set a} (∼ : Rel A ℓ) →
Reflexive ∼ → Reflexive (flip ∼)
reflexive _ refl = refl
irreflexive : ∀ {a b ℓ₁ ℓ₂} {A : Set a} {B : Set b}
(≈ : REL A B ℓ₁) (∼ : REL A B ℓ₂) →
Irreflexive ≈ ∼ → Irreflexive (flip ≈) (flip ∼)
irreflexive _ _ irrefl = irrefl
symmetric : ∀ {a ℓ} {A : Set a} (∼ : Rel A ℓ) →
Symmetric ∼ → Symmetric (flip ∼)
symmetric _ sym = sym
transitive : ∀ {a ℓ} {A : Set a} (∼ : Rel A ℓ) →
Transitive ∼ → Transitive (flip ∼)
transitive _ trans = flip trans
antisymmetric : ∀ {a ℓ₁ ℓ₂} {A : Set a} (≈ : Rel A ℓ₁) (≤ : Rel A ℓ₂) →
Antisymmetric ≈ ≤ → Antisymmetric (flip ≈) (flip ≤)
antisymmetric _ _ antisym = antisym
asymmetric : ∀ {a ℓ} {A : Set a} (< : Rel A ℓ) →
Asymmetric < → Asymmetric (flip <)
asymmetric _ asym = asym
respects : ∀ {a ℓ p} {A : Set a} (∼ : Rel A ℓ) (P : A → Set p) →
Symmetric ∼ → P Respects ∼ → P Respects flip ∼
respects _ _ sym resp ∼ = resp (sym ∼)
respects₂ : ∀ {a ℓ₁ ℓ₂} {A : Set a} (∼₁ : Rel A ℓ₁) (∼₂ : Rel A ℓ₂) →
Symmetric ∼₂ → ∼₁ Respects₂ ∼₂ → flip ∼₁ Respects₂ flip ∼₂
respects₂ _ _ sym (resp₁ , resp₂) =
((λ {_} {_} {_} ∼ → resp₂ (sym ∼)) , λ {_} {_} {_} ∼ → resp₁ (sym ∼))
decidable : ∀ {a b ℓ} {A : Set a} {B : Set b} (∼ : REL A B ℓ) →
Decidable ∼ → Decidable (flip ∼)
decidable _ dec x y = dec y x
total : ∀ {a ℓ} {A : Set a} (∼ : Rel A ℓ) →
Total ∼ → Total (flip ∼)
total _ tot x y = tot y x
trichotomous : ∀ {a ℓ₁ ℓ₂} {A : Set a} (≈ : Rel A ℓ₁) (< : Rel A ℓ₂) →
Trichotomous ≈ < → Trichotomous (flip ≈) (flip <)
trichotomous _ _ compare x y = compare y x
isEquivalence : ∀ {a ℓ} {A : Set a} {≈ : Rel A ℓ} →
IsEquivalence ≈ → IsEquivalence (flip ≈)
isEquivalence {≈ = ≈} eq = record
{ refl = reflexive ≈ Eq.refl
; sym = symmetric ≈ Eq.sym
; trans = transitive ≈ Eq.trans
}
where module Eq = IsEquivalence eq
setoid : ∀ {s₁ s₂} → Setoid s₁ s₂ → Setoid s₁ s₂
setoid S = record
{ _≈_ = flip S._≈_
; isEquivalence = isEquivalence S.isEquivalence
} where module S = Setoid S
isPreorder : ∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : Rel A ℓ₁} {∼ : Rel A ℓ₂} →
IsPreorder ≈ ∼ → IsPreorder (flip ≈) (flip ∼)
isPreorder {≈ = ≈} {∼} pre = record
{ isEquivalence = isEquivalence Pre.isEquivalence
; reflexive = implies ≈ ∼ Pre.reflexive
; trans = transitive ∼ Pre.trans
}
where module Pre = IsPreorder pre
preorder : ∀ {p₁ p₂ p₃} → Preorder p₁ p₂ p₃ → Preorder p₁ p₂ p₃
preorder P = record
{ _∼_ = flip P._∼_
; _≈_ = flip P._≈_
; isPreorder = isPreorder P.isPreorder
} where module P = Preorder P
isDecEquivalence : ∀ {a ℓ} {A : Set a} {≈ : Rel A ℓ} →
IsDecEquivalence ≈ → IsDecEquivalence (flip ≈)
isDecEquivalence {≈ = ≈} dec = record
{ isEquivalence = isEquivalence Dec.isEquivalence
; _≟_ = decidable ≈ Dec._≟_
}
where module Dec = IsDecEquivalence dec
decSetoid : ∀ {s₁ s₂} → DecSetoid s₁ s₂ → DecSetoid s₁ s₂
decSetoid S = record
{ _≈_ = flip S._≈_
; isDecEquivalence = isDecEquivalence S.isDecEquivalence
} where module S = DecSetoid S
isPartialOrder : ∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} →
IsPartialOrder ≈ ≤ →
IsPartialOrder (flip ≈) (flip ≤)
isPartialOrder {≈ = ≈} {≤} po = record
{ isPreorder = isPreorder Po.isPreorder
; antisym = antisymmetric ≈ ≤ Po.antisym
}
where module Po = IsPartialOrder po
poset : ∀ {p₁ p₂ p₃} → Poset p₁ p₂ p₃ → Poset p₁ p₂ p₃
poset O = record
{ _≈_ = flip O._≈_
; _≤_ = flip O._≤_
; isPartialOrder = isPartialOrder O.isPartialOrder
} where module O = Poset O
isStrictPartialOrder :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : Rel A ℓ₁} {< : Rel A ℓ₂} →
IsStrictPartialOrder ≈ < → IsStrictPartialOrder (flip ≈) (flip <)
isStrictPartialOrder {≈ = ≈} {<} spo = record
{ isEquivalence = isEquivalence Spo.isEquivalence
; irrefl = irreflexive ≈ < Spo.irrefl
; trans = transitive < Spo.trans
; <-resp-≈ = respects₂ < ≈ Spo.Eq.sym Spo.<-resp-≈
}
where module Spo = IsStrictPartialOrder spo
strictPartialOrder :
∀ {s₁ s₂ s₃} →
StrictPartialOrder s₁ s₂ s₃ → StrictPartialOrder s₁ s₂ s₃
strictPartialOrder O = record
{ _≈_ = flip O._≈_
; _<_ = flip O._<_
; isStrictPartialOrder = isStrictPartialOrder O.isStrictPartialOrder
} where module O = StrictPartialOrder O
isTotalOrder :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} →
IsTotalOrder ≈ ≤ → IsTotalOrder (flip ≈) (flip ≤)
isTotalOrder {≈ = ≈} {≤} to = record
{ isPartialOrder = isPartialOrder To.isPartialOrder
; total = total ≤ To.total
}
where module To = IsTotalOrder to
totalOrder : ∀ {t₁ t₂ t₃} → TotalOrder t₁ t₂ t₃ → TotalOrder t₁ t₂ t₃
totalOrder O = record
{ _≈_ = flip O._≈_
; _≤_ = flip O._≤_
; isTotalOrder = isTotalOrder O.isTotalOrder
} where module O = TotalOrder O
isDecTotalOrder :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : Rel A ℓ₁} {≤ : Rel A ℓ₂} →
IsDecTotalOrder ≈ ≤ → IsDecTotalOrder (flip ≈) (flip ≤)
isDecTotalOrder {≈ = ≈} {≤} dec = record
{ isTotalOrder = isTotalOrder Dec.isTotalOrder
; _≟_ = decidable ≈ Dec._≟_
; _≤?_ = decidable ≤ Dec._≤?_
}
where module Dec = IsDecTotalOrder dec
decTotalOrder :
∀ {d₁ d₂ d₃} → DecTotalOrder d₁ d₂ d₃ → DecTotalOrder d₁ d₂ d₃
decTotalOrder O = record
{ _≈_ = flip O._≈_
; _≤_ = flip O._≤_
; isDecTotalOrder = isDecTotalOrder O.isDecTotalOrder
} where module O = DecTotalOrder O
isStrictTotalOrder :
∀ {a ℓ₁ ℓ₂} {A : Set a} {≈ : Rel A ℓ₁} {< : Rel A ℓ₂} →
IsStrictTotalOrder ≈ < → IsStrictTotalOrder (flip ≈) (flip <)
isStrictTotalOrder {≈ = ≈} {<} sto = record
{ isEquivalence = isEquivalence Sto.isEquivalence
; trans = transitive < Sto.trans
; compare = trichotomous ≈ < Sto.compare
; <-resp-≈ = respects₂ < ≈ Sto.Eq.sym Sto.<-resp-≈
}
where module Sto = IsStrictTotalOrder sto
strictTotalOrder :
∀ {s₁ s₂ s₃} → StrictTotalOrder s₁ s₂ s₃ → StrictTotalOrder s₁ s₂ s₃
strictTotalOrder O = record
{ _≈_ = flip O._≈_
; _<_ = flip O._<_
; isStrictTotalOrder = isStrictTotalOrder O.isStrictTotalOrder
} where module O = StrictTotalOrder O
| {
"alphanum_fraction": 0.5690751445,
"avg_line_length": 34.9494949495,
"ext": "agda",
"hexsha": "9d52c36e6993cc38c16482ecfa4ceba2b713610c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Flip.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Flip.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Flip.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 2621,
"size": 6920
} |
module Unsolved-meta-in-module-application where
module M (A : Set) where
open M _ public
| {
"alphanum_fraction": 0.7608695652,
"avg_line_length": 15.3333333333,
"ext": "agda",
"hexsha": "e2cf4128c69ff58b31f613c22c965616fb37b6dd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Unsolved-meta-in-module-application.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Unsolved-meta-in-module-application.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Unsolved-meta-in-module-application.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 23,
"size": 92
} |
-- Closed monoid in the skew-closed category of families
module SOAS.Abstract.Monoid {T : Set} where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.ContextMaps.Combinators
open import SOAS.Construction.Structure as Structure
open import SOAS.Abstract.Hom {T}
open import SOAS.Abstract.Coalgebra using (module Sorted) ; open Sorted
open import SOAS.Families.Core {T}
open import Categories.Category.Equivalence using (StrongEquivalence)
open import Categories.NaturalTransformation.NaturalIsomorphism using (niHelper)
open import SOAS.Coalgebraic.Map {T}
open import SOAS.Coalgebraic.Lift {T}
private
variable
Γ Δ Θ : Ctx
α β γ : T
record Mon (𝒳 : Familyₛ) : Set where
field
η : ℐ ⇾̣ 𝒳
μ : 𝒳 ⇾̣ 〖 𝒳 , 𝒳 〗
lunit : {σ : Γ ~[ 𝒳 ]↝ Δ}{v : ℐ α Γ}
→ μ (η v) σ ≡ σ v
runit : {t : 𝒳 α Γ} → μ t η ≡ t
assoc : {σ : Γ ~[ 𝒳 ]↝ Δ}{ς : Δ ~[ 𝒳 ]↝ Θ} {t : 𝒳 α Γ}
→ μ (μ t σ) ς ≡ μ t (λ v → μ (σ v) ς)
-- Congruence in both arguments of the multiplication
μ≈₁ : {t₁ t₂ : 𝒳 α Γ}{σ : Γ ~[ 𝒳 ]↝ Δ}
→ t₁ ≡ t₂
→ μ t₁ σ ≡ μ t₂ σ
μ≈₁ refl = refl
μ≈₂ : {t : 𝒳 α Γ}{σ ς : Γ ~[ 𝒳 ]↝ Δ}
→ ({τ : T}{v : ℐ τ Γ} → σ v ≡ ς v)
→ μ t σ ≡ μ t ς
μ≈₂ {t = t} p = cong (μ t) (dext′ p)
-- Monoids are pointed coalgebras
ᵇ : Coalg 𝒳
ᵇ = record { r = λ t ρ → μ t (η ∘ ρ) ; counit = runit
; comult = λ { {t = t} → sym (trans assoc (μ≈₂ lunit)) } }
ᴮ : Coalgₚ 𝒳
ᴮ = record { ᵇ = ᵇ ; η = η ; r∘η = lunit }
-- Single-variable substitution
[_/] : 𝒳 α Γ → 𝒳 β (α ∙ Γ) → 𝒳 β Γ
[ s /] t = μ t (add 𝒳 s η)
-- Substitution for second variable
[_/]′ : 𝒳 α Γ → 𝒳 γ (β ∙ α ∙ Γ) → 𝒳 γ (β ∙ Γ)
[ s /]′ t = μ t (lift₁ ᴮ (add 𝒳 s η))
-- Substitution for top two variables
[_,_/]₂ : 𝒳 α Γ → 𝒳 β Γ → 𝒳 γ (α ∙ β ∙ Γ) → 𝒳 γ Γ
[ s₁ , s₂ /]₂ t = μ t (add 𝒳 s₁ (add 𝒳 s₂ η))
open Coalgₚ ᴮ public using (r ; r∘η)
-- Multiplication is coalgebraic map
μᶜ : Coalgebraic ᴮ ᴮ ᴮ μ
μᶜ = record { r∘f = assoc ; f∘r = trans assoc (μ≈₂ lunit) ; f∘η = lunit }
-- Monoid homomorphisms
record Mon⇒ {𝒳 𝒴 : Familyₛ}(𝒳ᵐ : Mon 𝒳)(𝒴ᵐ : Mon 𝒴)
(f : 𝒳 ⇾̣ 𝒴) : Set where
private module 𝒳 = Mon 𝒳ᵐ
private module 𝒴 = Mon 𝒴ᵐ
field
⟨η⟩ : {v : ℐ α Γ} → f (𝒳.η v) ≡ 𝒴.η v
⟨μ⟩ : {σ : Γ ~[ 𝒳 ]↝ Δ}{t : 𝒳 α Γ}
→ f (𝒳.μ t σ) ≡ 𝒴.μ (f t) (f ∘ σ)
ᵇ⇒ : Coalg⇒ 𝒳.ᵇ 𝒴.ᵇ f
ᵇ⇒ = record { ⟨r⟩ = trans ⟨μ⟩ (𝒴.μ≈₂ ⟨η⟩) }
ᴮ⇒ : Coalgₚ⇒ 𝒳.ᴮ 𝒴.ᴮ f
ᴮ⇒ = record { ᵇ⇒ = ᵇ⇒ ; ⟨η⟩ = ⟨η⟩ }
-- Preservation of multiplication and unit implies the semantic substitution
-- lemma for single- and double-variable substitution
sub-lemma : (s : 𝒳 α Γ)(t : 𝒳 β (α ∙ Γ)) →
f (𝒳.[ s /] t) ≡ 𝒴.[ f s /] (f t)
sub-lemma s t = trans ⟨μ⟩ (cong (𝒴.μ (f t))
(dext λ{ new → refl ; (old y) → ⟨η⟩}))
sub-lemma₂ : (s₁ : 𝒳 α Γ)(s₂ : 𝒳 β Γ)(t : 𝒳 γ (α ∙ β ∙ Γ)) →
f (𝒳.[ s₁ , s₂ /]₂ t) ≡ 𝒴.[ f s₁ , f s₂ /]₂ (f t)
sub-lemma₂ s₁ s₂ t = trans ⟨μ⟩ (cong (𝒴.μ (f t))
(dext λ{ new → refl ; (old new) → refl
; (old (old y)) → ⟨η⟩}))
module MonoidStructure = Structure 𝔽amiliesₛ Mon
-- Category of substitution monoids
𝕄onoids : Category 1ℓ 0ℓ 0ℓ
𝕄onoids = MonoidStructure.StructCat record
{ IsHomomorphism = Mon⇒
; id-hom = record { ⟨η⟩ = refl ; ⟨μ⟩ = refl }
; comp-hom = λ g f gᵐ⇒ fᵐ⇒ → record
{ ⟨η⟩ = trans (cong g (⟨η⟩ fᵐ⇒)) (⟨η⟩ gᵐ⇒)
; ⟨μ⟩ = trans (cong g (⟨μ⟩ fᵐ⇒)) (⟨μ⟩ gᵐ⇒)
}
} where open Mon⇒
module 𝕄on = Category 𝕄onoids
Monoid : Set₁
Monoid = 𝕄on.Obj
Monoid⇒ : Monoid → Monoid → Set
Monoid⇒ = 𝕄on._⇒_
module AsMonoid (ℳᵐ : Monoid) where
open Object ℳᵐ renaming (𝐶 to ℳ; ˢ to ᵐ) public
open Mon ᵐ public
module AsMonoid⇒ {ℳᵐ 𝒩ᵐ : Monoid} (fᵐ⇒ : Monoid⇒ ℳᵐ 𝒩ᵐ) where
open Morphism fᵐ⇒ renaming (𝑓 to f ; ˢ⇒ to ᵐ⇒) public
open Mon⇒ ᵐ⇒ public
| {
"alphanum_fraction": 0.5394434516,
"avg_line_length": 28.1798561151,
"ext": "agda",
"hexsha": "feea3d8e79ab8d79f4e04967a7da86a2a59ba3c7",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Abstract/Monoid.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Abstract/Monoid.agda",
"max_line_length": 80,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Abstract/Monoid.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 1906,
"size": 3917
} |
module GUIgeneric.GUIFeaturesPart4 where
open import GUIgeneric.Prelude renaming (addButton to addButton')
open import GUIgeneric.GUIDefinitions renaming (add to add'; add' to add)
open import GUIgeneric.GUI
open import GUIgeneric.GUIExampleLib
open import StateSizedIO.GUI.WxGraphicsLibLevel3 renaming (addButton to addButton')
open import GUIgeneric.GUIFeatures
open import GUIgeneric.GUIFeaturesPart2 hiding ( main )
open import GUIgeneric.GUIFeaturesPart3 hiding ( main )
open import GUIgeneric.GUIExample hiding (main )
open import Data.Product
open import Data.Fin
addStateFMachine : {BaseState : Set}
(vm : FMachine BaseState)
(Snew : Set)
(newSM : (s : Snew) →
SMachineState (BaseState ⊎ vm .AddStateF ⊎ Snew) (inj₂ (inj₂ s)))
→ FMachine BaseState
addStateFMachine {BaseState} vm Snew newSM .Features = vm .Features
addStateFMachine {BaseState} vm Snew newSM .AddStateF = vm .AddStateF ⊎ Snew
addStateFMachine {BaseState} vm Snew newSM .GUIF f (inj₁ s) =
mapFMachineHandle (inj₁ s) (vm .GUIF f (inj₁ s))
addStateFMachine {BaseState} vm Snew newSM .GUIF f (inj₂ (inj₁ s)) =
mapFMachineHandle (inj₂ s) (vm .GUIF f (inj₂ s))
addStateFMachine {BaseState} vm Snew newSM .GUIF f (inj₂ (inj₂ s)) .fSM = newSM s .fSM
addStateFMachine {BaseState} vm Snew newSM .GUIF f (inj₂ (inj₂ s)) .propSM = newSM s .propSM
addStateFMachine {BaseState} vm Snew newSM .GUIF f (inj₂ (inj₂ s)) .handlSM = newSM s .handlSM
addOneStateFMachine : {BaseState : Set}
(vm : FMachine BaseState)
(newSM : SMachineState (BaseState ⊎ vm .AddStateF ⊎ ⊤) (inj₂ (inj₂ _)))
→ FMachine BaseState
addOneStateFMachine vm newSM = addStateFMachine vm ⊤ λ _ → newSM
addDummyFeatures : {BaseState : Set}
(vm : FMachine BaseState)
(FeatureNew : Set)
→ FMachine BaseState
addDummyFeatures vm FeatureNew .Features = vm .Features × FeatureNew
addDummyFeatures vm FeatureNew .AddStateF = vm .AddStateF
addDummyFeatures vm FeatureNew .GUIF (f , _) s = vm .GUIF f s
{- handler for the new state to be added to the cancel machine -}
cancelNewStateSM : (vm : FMachine StateV) →
SMachineState (StateV ⊎ vm .AddStateF ⊎ ⊤) (inj₂ (inj₂ tt))
cancelNewStateSM vm = simpleSMState "Intermediate" (inj₁ s0)
{- add the state to the old feature machine -}
cancelStateAdded : FMachine StateV → FMachine StateV
cancelStateAdded vm = addOneStateFMachine vm (cancelNewStateSM vm)
{- add a dummy feature "FeatureCancel" to the feature machine -}
cancelFeatureAdded : FMachine StateV → FMachine StateV
cancelFeatureAdded vm = addDummyFeatures
(cancelStateAdded vm)
FeatureCancel
{- redefine in the feature machine one button -}
Cancel' : FMachine StateV → FMachine StateV
Cancel' vm .Features = cancelFeatureAdded vm .Features
Cancel' vm .AddStateF = cancelFeatureAdded vm .AddStateF
Cancel' vm .GUIF (f , yesCancel) (inj₁ s1) =
addBtn2StateMachine (cancelFeatureAdded vm .GUIF (f , yesCancel) (inj₁ s1))
"Cancel" (inj₂ (inj₂ _))
Cancel' vm .GUIF f s = cancelFeatureAdded vm .GUIF f s
main : NativeIO Unit
main = compileFeatureVM (Cancel' baseF) (_ , yesCancel) (inj₁ s0) --
| {
"alphanum_fraction": 0.6614942529,
"avg_line_length": 43.5,
"ext": "agda",
"hexsha": "f10f4e53f0fa31ab2816f4096a5102caeb91070b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "examples/GUIgeneric/GUIFeaturesPart4.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "examples/GUIgeneric/GUIFeaturesPart4.agda",
"max_line_length": 97,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "examples/GUIgeneric/GUIFeaturesPart4.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 974,
"size": 3480
} |
module Nat where
open import Data.Product
open import Data.Sum
open import Relation.Binary.PropositionalEquality as Eq
open import Data.Empty
open import Level hiding (zero)
data ℕ : Set where
zero : ℕ
succ : ℕ → ℕ
open Eq.≡-Reasoning
¬_ : { ℓ : Level} → Set ℓ → Set ℓ
¬ P = P → ⊥
≡-succ : (n m : ℕ) → succ n ≡ succ m → n ≡ m
≡-succ zero .zero refl = refl
≡-succ (succ n) .(succ n) refl = refl
sn≢0 : (n : ℕ) → ¬ (succ n ≡ zero)
sn≢0 _ ()
_+_ : ℕ → ℕ → ℕ
zero + m = m
succ n + m = succ (n + m)
_*_ : ℕ → ℕ → ℕ
zero * _ = zero
succ n * m = m + (n * m)
+-rUnit : (n : ℕ) → n + zero ≡ n
+-rUnit zero = refl
+-rUnit (succ n) = cong succ (+-rUnit n)
+-lUnit : (n : ℕ) → zero + n ≡ n
+-lUnit _ = refl
+-assoc : (n m l : ℕ) → n + (m + l) ≡ (n + m) + l
+-assoc zero m l = refl
+-assoc (succ n) m l = cong succ (+-assoc n m l)
+-right : (n m : ℕ) → n + succ m ≡ succ (n + m)
+-right zero m = refl
+-right (succ n) m = cong succ (+-right n m)
+-comm : (m n : ℕ) → m + n ≡ n + m
+-comm zero n = sym (+-rUnit n)
+-comm (succ m) n = begin
succ (m + n)
≡⟨ cong succ (+-comm m n) ⟩
succ (n + m)
≡⟨ sym (+-right n m) ⟩
n + succ m
∎
+-lCancel : (n m l : ℕ) → l + n ≡ l + m → n ≡ m
+-lCancel n m zero p = p
+-lCancel n m (succ l) p = +-lCancel n m l (≡-succ (l + n) (l + m) p)
+-rCancel : (n m l : ℕ) → n + l ≡ m + l → n ≡ m
+-rCancel n m zero p =
begin
n
≡⟨ sym (+-rUnit n) ⟩
n + zero
≡⟨ p ⟩
m + zero
≡⟨ +-rUnit m ⟩
m
∎
+-rCancel n m (succ l) n+sl≡m+sl = +-rCancel n m l (≡-succ (n + l) (m + l)
(begin
succ (n + l)
≡⟨ sym (+-right n l) ⟩
n + succ l
≡⟨ n+sl≡m+sl ⟩
m + succ l
≡⟨ +-right m l ⟩
succ (m + l)
∎))
*-rAbsorp : (n : ℕ) → n * zero ≡ zero
*-rAbsorp zero = refl
*-rAbsorp (succ n) = begin
succ n * zero
≡⟨ refl ⟩
zero + (n * zero)
≡⟨ cong (λ x → zero + x) (*-rAbsorp n) ⟩
zero + zero
≡⟨ refl ⟩
zero
∎
*-right : (m n : ℕ) → m * succ n ≡ (m * n) + m
*-right zero n = begin
zero * succ n
≡⟨ refl ⟩
zero
≡⟨ refl ⟩
zero * n
≡⟨ +-rUnit (zero * n) ⟩
(zero * n) + zero
∎
*-right (succ m) n = begin
succ m * succ n
≡⟨ refl ⟩
succ n + (m * succ n)
≡⟨ cong (λ x → succ n + x) (*-right m n) ⟩
succ n + ((m * n) + m)
≡⟨ refl ⟩
succ (n + ((m * n) + m))
≡⟨ cong succ (+-assoc n (m * n) m) ⟩
succ ((n + (m * n)) + m)
≡⟨ sym (+-right (n + (m * n)) m) ⟩
(succ m * n) + succ m
∎
+*-rDist : (m n l : ℕ) → (m + n) * l ≡ (m * l) + (n * l)
+*-rDist m n zero = begin
(m + n) * zero
≡⟨ *-rAbsorp (m + n) ⟩
zero
≡⟨ sym (*-rAbsorp m) ⟩
m * zero
≡⟨ sym (+-rUnit (m * zero)) ⟩
(m * zero) + zero
≡⟨ cong (λ x → (m * zero) + x) (sym (*-rAbsorp n)) ⟩
(m * zero) + (n * zero)
∎
+*-rDist m n (succ l) = begin
(m + n) * succ l
≡⟨ *-right (m + n) l ⟩
((m + n) * l) + (m + n)
≡⟨ cong (λ x → x + (m + n)) (+*-rDist m n l) ⟩
((m * l) + (n * l)) + (m + n)
≡⟨ +-assoc ((m * l) + (n * l)) m n ⟩
(((m * l) + (n * l)) + m) + n
≡⟨ cong (λ x → x + n) (sym (+-assoc (m * l) (n * l) m)) ⟩
((m * l) + ((n * l) + m)) + n
≡⟨ cong (λ x → x + n) (cong (λ x → (m * l) + x) (+-comm (n * l) m)) ⟩
((m * l) + (m + (n * l))) + n
≡⟨ cong (λ x → x + n) (+-assoc (m * l) m (n * l)) ⟩
(((m * l) + m) + (n * l)) + n
≡⟨ sym (+-assoc ((m * l) + m) (n * l) n) ⟩
((m * l) + m) + ((n * l) + n)
≡⟨ cong (λ x → x + ((n * l) + n)) (sym (*-right m l)) ⟩
(m * succ l) + ((n * l) + n)
≡⟨ cong (λ x → (m * succ l) + x) (sym (*-right n l)) ⟩
(m * succ l) + (n * succ l)
∎
*-assoc : (m n l : ℕ) → m * (n * l) ≡ (m * n) * l
*-assoc zero n l = refl
*-assoc (succ m) n l = begin
succ m * (n * l)
≡⟨ refl ⟩
(n * l) + (m * (n * l))
≡⟨ cong (λ x → (n * l) + x) (*-assoc m n l) ⟩
(n * l) + ((m * n) * l)
≡⟨ sym (+*-rDist n (m * n) l) ⟩
(n + (m * n)) * l
≡⟨ refl ⟩
(succ m * n) * l
∎
*-comm : (m n : ℕ) → m * n ≡ n * m
*-comm zero n = sym (*-rAbsorp n)
*-comm (succ m) n = begin
succ m * n
≡⟨ refl ⟩
n + (m * n)
≡⟨ +-comm n (m * n) ⟩
(m * n) + n
≡⟨ cong (λ x → x + n) (*-comm m n) ⟩
(n * m) + n
≡⟨ sym (*-right n m) ⟩
n * succ m
∎
_≤_ : ℕ → ℕ → Set
n ≤ m = Σ ℕ (λ l → n + l ≡ m)
≤-refl : (n : ℕ) → n ≤ n
≤-refl zero = zero , refl
≤-refl (succ n) = zero ,
(begin
(succ n + zero)
≡⟨ +-rUnit (succ n) ⟩
(succ n)
∎)
0≤n : (n : ℕ) → zero ≤ n
0≤n zero = ≤-refl zero
0≤n (succ n) = succ n , refl
≤-trans : (n m l : ℕ) → n ≤ m → m ≤ l → n ≤ l
≤-trans zero m l p q = l , refl
≤-trans (succ n) m l (a , succn+a≡m) (b , m+b≡l)
= (a + b) , (begin
succ n + (a + b)
≡⟨ +-assoc (succ n) a b ⟩
(succ n + a) + b
≡⟨ cong (λ x → x + b) succn+a≡m ⟩
m + b
≡⟨ m+b≡l ⟩
l
∎)
+-lZero : (n m : ℕ) → n + m ≡ zero → n ≡ zero
+-lZero zero m = λ _ → refl
+-lZero (succ n) m ()
≤-antisym : (n m : ℕ) → n ≤ m → m ≤ n → n ≡ m
≤-antisym n m (c , n+c≡m) (d , m+d≡n) = trans (sym n+c≡n) n+c≡m
where
c≡0 : c ≡ zero
c≡0 = +-lZero c d (+-lCancel (c + d) zero n (
begin
n + (c + d)
≡⟨ +-assoc n c d ⟩
(n + c) + d
≡⟨ cong (λ x → x + d) n+c≡m ⟩
m + d
≡⟨ m+d≡n ⟩
n
≡⟨ sym (+-rUnit n) ⟩
n + zero
∎))
n+c≡n : n + c ≡ n
n+c≡n = begin
n + c
≡⟨ cong (λ x → n + x) c≡0 ⟩
n + zero
≡⟨ +-rUnit n ⟩
n
∎
n+s0≡sn : (n : ℕ) → n + succ zero ≡ succ n
n+s0≡sn n = begin
n + succ zero
≡⟨ +-right n zero ⟩
succ (n + zero)
≡⟨ cong succ (+-rUnit n) ⟩
succ n
∎
n≤sn : (n : ℕ) → n ≤ succ n
n≤sn n = succ zero , n+s0≡sn n
ℕ-ω : (n : ℕ) → n ≡ zero ⊎ Σ ℕ (λ c → n ≡ succ c)
ℕ-ω zero = inj₁ refl
ℕ-ω (succ n) = inj₂ (n , refl)
m+sn≡sm+n : (m n : ℕ) → m + succ n ≡ succ m + n
m+sn≡sm+n m zero = begin
m + succ zero
≡⟨ n+s0≡sn m ⟩
succ m
≡⟨ sym (+-rUnit (succ m)) ⟩
succ m + zero
∎
m+sn≡sm+n m (succ n) = begin
m + succ (succ n)
≡⟨ +-right m (succ n) ⟩
succ (m + succ n)
≡⟨ cong succ (m+sn≡sm+n m n) ⟩
succ (succ m + n)
≡⟨ sym (+-right (succ m) n) ⟩
succ m + succ n
∎
sn≤m : (n m : ℕ) → n ≤ m → ¬ (n ≡ m) → succ n ≤ m
sn≤m n m (c , n+c≡m) q = lem (ℕ-ω c)
where
n+c≡n : c ≡ zero → n + c ≡ n
n+c≡n p = begin
n + c
≡⟨ cong (λ x → n + x) p ⟩
n + zero
≡⟨ +-rUnit n ⟩
n
∎
lem : c ≡ zero ⊎ Σ ℕ (λ d → c ≡ succ d) → succ n ≤ m
lem (inj₁ x) = ⊥-elim (q (trans (sym (n+c≡n x)) n+c≡m))
lem (inj₂ (d , c≡sd)) = d , (begin
succ n + d
≡⟨ sym (m+sn≡sm+n n d) ⟩
n + succ d
≡⟨ sym (cong (λ x → n + x) c≡sd) ⟩
n + c
≡⟨ n+c≡m ⟩
m
∎)
≤-all : (m n : ℕ) → m ≤ n ⊎ n ≤ m
≤-all m zero = inj₂ (m , refl)
≤-all m (succ n) = lem (≤-all m n)
where
lem : m ≤ n ⊎ n ≤ m → m ≤ succ n ⊎ succ n ≤ m
lem (inj₁ x) = inj₁ (≤-trans m n (succ n) x (n≤sn n))
lem (inj₂ (zero , n+zero≡m)) = inj₁ (succ zero , (begin
m + succ zero
≡⟨ +-right m zero ⟩
succ (m + zero)
≡⟨ cong succ (+-rUnit m) ⟩
succ m
≡⟨ cong succ (sym n+zero≡m) ⟩
succ (n + zero)
≡⟨ cong succ (+-rUnit n) ⟩
succ n
∎))
lem (inj₂ (succ c , n+sc≡m)) = inj₂ (c , (begin
succ n + c
≡⟨ refl ⟩
succ (n + c)
≡⟨ sym (+-right n c) ⟩
n + succ c
≡⟨ n+sc≡m ⟩
m
∎))
+-mono : (m n l : ℕ) → m ≤ n → (m + l) ≤ (n + l)
+-mono m n zero (c , m+c≡n) = c , (begin
(m + zero) + c
≡⟨ cong (λ x → x + c) (+-rUnit m) ⟩
m + c
≡⟨ m+c≡n ⟩
n
≡⟨ sym (+-rUnit n) ⟩
n + zero
∎)
+-mono m n (succ l) (c , m+c≡n) = lem (+-mono m n l (c , m+c≡n))
where
lem : (m + l) ≤ (n + l) → (m + succ l) ≤ (n + succ l)
lem (d , m+l+d≡n+l) = d , (begin
(m + succ l) + d
≡⟨ cong (λ x → x + d) (+-right m l) ⟩
succ (m + l) + d
≡⟨ refl ⟩
succ ((m + l) + d)
≡⟨ cong succ m+l+d≡n+l ⟩
succ (n + l)
≡⟨ sym (+-right n l) ⟩
n + succ l
∎)
*-mono : (m n l : ℕ) → m ≤ n → (m * l) ≤ (n * l)
*-mono m n zero (c , m+c≡n) = zero , (begin
(m * zero) + zero
≡⟨ +-rUnit (m * zero) ⟩
m * zero
≡⟨ trans (*-rAbsorp m) (sym (*-rAbsorp n)) ⟩
n * zero
∎)
*-mono m n (succ l) (c , m+c≡n) = lem (*-mono m n l (c , m+c≡n))
where
lem : (m * l) ≤ (n * l) → (m * succ l) ≤ (n * succ l)
lem (d , m*l+d≡n*l) = (c * succ l) , sym (begin
n * succ l
≡⟨ cong (λ x → x * succ l) (sym m+c≡n) ⟩
(m + c) * succ l
≡⟨ +*-rDist m c (succ l) ⟩
(m * succ l) + (c * succ l)
∎)
s≤s : (m n : ℕ) → m ≤ n → succ m ≤ succ n
s≤s zero n (c , c≡n) = n , refl
s≤s (succ m) n (c , sm+c≡n) = c , cong succ sm+c≡n
data _≲_ : ℕ → ℕ → Set where
0≲n : {n : ℕ} → zero ≲ n
s≲s : {n m : ℕ} → n ≲ m → succ n ≲ succ m
≤-≲ : (m n : ℕ) → m ≤ n → m ≲ n
≤-≲ zero _ _ = 0≲n
≤-≲ (succ m) zero (c , ())
≤-≲ (succ m) (succ n) (c , m+c≡n) = s≲s (≤-≲ m n (c , ≡-succ (m + c) n m+c≡n))
≲-≤ : (m n : ℕ) → m ≲ n → m ≤ n
≲-≤ .zero n 0≲n = n , refl
≲-≤ (succ m) (succ n) (s≲s p) = s≤s m n (≲-≤ m n p)
| {
"alphanum_fraction": 0.3589999004,
"avg_line_length": 26.1432291667,
"ext": "agda",
"hexsha": "2a141467784b751f4522afc5e260428459b2e21d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bf1f5ed013ea7072055c061b8458c4f1259b54f5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "karrym/NatToReal",
"max_forks_repo_path": "Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf1f5ed013ea7072055c061b8458c4f1259b54f5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "karrym/NatToReal",
"max_issues_repo_path": "Nat.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bf1f5ed013ea7072055c061b8458c4f1259b54f5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "karrym/NatToReal",
"max_stars_repo_path": "Nat.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4567,
"size": 10039
} |
-- mostly adapted from Agda stdlib
module level where
import Agda.Primitive
open Agda.Primitive public
using (Level ; _⊔_ ; lsuc ; lzero)
level = Level
lone : level
lone = lsuc lzero
record Lift {a ℓ} (A : Set a) : Set (a ⊔ ℓ) where
constructor lift
field lower : A
open Lift public
| {
"alphanum_fraction": 0.6833333333,
"avg_line_length": 15,
"ext": "agda",
"hexsha": "fd41b909c974d96738c6feca569fb0359bfc98ba",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "level.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "level.agda",
"max_line_length": 49,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "level.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 99,
"size": 300
} |
module Issue327 where
open import Common.Prelude
open import Common.Reflect
_==_ : QName → QName → Bool
_==_ = primQNameEquality
postulate
Dec : Bool → Set
_≟_ : (x y : QName) → Dec (x == y)
Foo : Set₁
Foo with quote Foo ≟ quote Foo
... | _ = Set
| {
"alphanum_fraction": 0.65234375,
"avg_line_length": 15.0588235294,
"ext": "agda",
"hexsha": "5f896f8f114abcd9c4d60934f4740bb1bed802c7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue327.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue327.agda",
"max_line_length": 36,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue327.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 86,
"size": 256
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
{-# OPTIONS --allow-unsolved-metas #-}
module Light.Implementation.Relation.Binary.Equality.Propositional.Decidable where
import Light.Implementation.Relation.Binary.Equality.Propositional as Propositional
open import Light.Library.Relation.Decidable using (Decidable ; yes ; no ; if_then_else_ ; from‐witness)
open import Light.Variable.Sets
open import Light.Library.Relation.Binary.Equality using (_≈_ ; SelfEquality ; wrap)
open import Light.Library.Relation.Binary
using (SelfSymmetric ; SelfTransitive ; Reflexive ; Binary ; SelfBinary ; Symmetric ; Transitive ; CongruentFor ; Preserved ; reflexivity ; transitivity ; symmetry ; congruence)
import Light.Implementation.Relation.Decidable
open import Light.Variable.Sets
open import Light.Variable.Levels
open import Light.Library.Relation using (_∧_ ; _⇢_)
open import Light.Library.Data.Product using (first ; second ; both)
import Light.Implementation.Data.Product
module Base {𝕒 : Set aℓ} where
instance relation : SelfBinary 𝕒
relation = record { are = λ a b → Decidable (a ≈ b) }
instance reflexive : Reflexive relation
reflexive .Reflexive.reflexivity = {!!}
instance symmetric : SelfSymmetric relation
symmetric .Symmetric.symmetry a‐≈?‐b =
if a‐≈?‐b
then (λ ⦃ b‐≈‐a ⦄ → yes (symmetry b‐≈‐a))
else (λ ⦃ f ⦄ → no λ b‐≈‐a → f (symmetry b‐≈‐a))
instance transitive : SelfTransitive relation
transitive .Transitive.transitivity a‐≈?‐b b‐≈?‐c =
if a‐≈?‐b ∧ b‐≈?‐c
then (λ ⦃ a‐≈‐c ⦄ → yes (transitivity (first a‐≈‐c) (second a‐≈‐c)))
else (λ ⦃ f ⦄ → no λ a‐≈‐c → f (both {!!} {!!}))
instance equals : SelfEquality 𝕒
equals = wrap relation
instance base‐congruent : ∀ {f : 𝕒 → 𝕓} → CongruentFor f Base.relation Base.relation
base‐congruent .Preserved.preservation a‐≈?‐c =
if a‐≈?‐c
then (λ ⦃ a‐≈‐c ⦄ → yes (congruence a‐≈‐c))
else λ ⦃ f ⦄ → no λ fa‐≈‐fc → f {!!}
module Main (_≈?_ : ∀ (a b : 𝕒) → Decidable (_≈_ ⦃ r = Propositional.equals ⦄ a b)) where
instance relation : SelfBinary 𝕒
relation = record { are = λ a b → a ≈? b }
open import Agda.Builtin.Equality using (_≡_)
instance reflexive : Reflexive relation
reflexive .Reflexive.reflexivity {a = a} = from‐witness {a? = a ≈? a} ⦃ witness = reflexivity ⦄
instance symmetric : SelfSymmetric relation
symmetric .Symmetric.symmetry {a = a} {b = b} = from‐witness {a? = (a ≈? b) ⇢ (b ≈? a)} ⦃ witness = symmetry ⦄
instance transitive : SelfTransitive relation
transitive .Transitive.transitivity {a = a} {b = b} {c = c} = from‐witness {a? = (a ≈? b) ⇢ ((b ≈? c) ⇢ (a ≈? c))} ⦃ witness = transitivity ⦄
module _ (_≈a?_ : ∀ (a b : 𝕒) → Decidable (_≈_ ⦃ r = Propositional.equals ⦄ a b)) (_≈b?_ : ∀ (a b : 𝕓) → Decidable (_≈_ ⦃ r = Propositional.equals ⦄ a b)) where
private module A = Main _≈a?_
private module B = Main _≈b?_
instance congruent : ∀ {f : 𝕒 → 𝕓} → CongruentFor f A.relation B.relation
congruent {f = f} .Preserved.preservation {a = a} {c = c} = from‐witness {a? = (a ≈a? c) ⇢ (f a ≈b? f c)} ⦃ witness = congruence ⦄
| {
"alphanum_fraction": 0.6294953158,
"avg_line_length": 48.6617647059,
"ext": "agda",
"hexsha": "ae06382aec71f8170b0b026a5bbe22f72d60cb58",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Implementation/Relation/Binary/Equality/Propositional/Decidable.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Implementation/Relation/Binary/Equality/Propositional/Decidable.agda",
"max_line_length": 183,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Implementation/Relation/Binary/Equality/Propositional/Decidable.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 1107,
"size": 3309
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Regular where
-- https://ncatlab.org/nlab/show/regular+category
-- https://en.wikipedia.org/wiki/Regular_category
open import Level
open import Categories.Category.Core
open import Categories.Category.Complete.Finitely using (FinitelyComplete)
open import Categories.Diagram.Coequalizer
open import Categories.Diagram.KernelPair
open import Categories.Diagram.Pullback
open import Categories.Morphism.Regular
record Regular {o ℓ e : Level} (𝒞 : Category o ℓ e) : Set (suc (o ⊔ ℓ ⊔ e)) where
open Category 𝒞
open Pullback
field
finitely-complete : FinitelyComplete 𝒞
coeq-of-kernelpairs : {A B : Obj} (f : A ⇒ B) (kp : KernelPair 𝒞 f) → Coequalizer 𝒞 (p₁ kp) (p₂ kp)
pullback-of-regularepi-is-regularepi : {A B C : Obj} (f : B ⇒ A) {g : C ⇒ A} → RegularEpi 𝒞 f → (p : Pullback 𝒞 f g) → RegularEpi 𝒞 (p₂ p)
| {
"alphanum_fraction": 0.7182940516,
"avg_line_length": 35.64,
"ext": "agda",
"hexsha": "3e378bff2cec9d2999b8233739cfac207efa3c0e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Regular.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Regular.agda",
"max_line_length": 142,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Regular.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-22T03:54:24.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-21T17:07:19.000Z",
"num_tokens": 279,
"size": 891
} |
open import Prelude
module Implicits.Resolution.Stack.Resolution where
open import Coinduction
open import Data.Fin.Substitution
open import Implicits.Syntax
open import Implicits.Substitutions
open import Induction
open import Induction.Nat
open import Implicits.Resolution.Termination.Stack
infixl 5 _⊢ᵣ_
infixl 5 _&_⊢ᵣ_ _&_,_⊢_↓_
mutual
-- Δ & s , r ⊢ a ↓ τ denotes:
-- Under the context Δ, with stack of resolution goals s, the type a yields simple type τ.
-- 'r' is used to keep track of the rule from the context that yielded 'a'
-- ('a' is getting recursively refined)
data _&_,_⊢_↓_ {ν} (Δ : ICtx ν) :
∀ {r} → Stack Δ → r List.∈ Δ → Type ν → SimpleType ν → Set where
i-simp : ∀ {r s} {r∈Δ : r List.∈ Δ} a → Δ & s , r∈Δ ⊢ simpl a ↓ a
i-iabs : ∀ {ρ₁ ρ₂ a r s} {r∈Δ : r List.∈ Δ} →
ρ₁ for r∈Δ ⊬dom s → -- subproblems decrease when recursing
Δ & (s push ρ₁ for r∈Δ) ⊢ᵣ ρ₁ → -- domain is resolvable
Δ & s , r∈Δ ⊢ ρ₂ ↓ a → -- codomain matches
Δ & s , r∈Δ ⊢ ρ₁ ⇒ ρ₂ ↓ a
i-tabs : ∀ {ρ a r s} {r∈Δ : r List.∈ Δ} b →
Δ & s , r∈Δ ⊢ ρ tp[/tp b ] ↓ a → Δ & s , r∈Δ ⊢ ∀' ρ ↓ a
data _&_⊢ᵣ_ {ν} (Δ : ICtx ν) : Stack Δ → Type ν → Set where
r-simp : ∀ {r τ s} → (r∈Δ : r List.∈ Δ) → Δ & s , r∈Δ ⊢ r ↓ τ → Δ & s ⊢ᵣ simpl τ
r-iabs : ∀ {ρ₁ ρ₂} {s : Stack Δ} → ((ρ₁ List.∷ Δ) & (s prepend ρ₁) ⊢ᵣ ρ₂) →
Δ & s ⊢ᵣ (ρ₁ ⇒ ρ₂)
r-tabs : ∀ {ρ s} → ictx-weaken Δ & stack-weaken s ⊢ᵣ ρ → Δ & s ⊢ᵣ ∀' ρ
-- TODO: This doesn't hold.
-- e.g. we can unify (a → b) with the codomain of a rule (a → b → a) ⇒ (a → b)
-- so the subgoal is larger than the initial goal.
--
-- We instantiate the stack with types that act as 'infinity' on the goal.
-- Every possible 'subgoal' we encounter and push to the stack will certainly
-- be smaller than r
_⊢ᵣ_ : ∀ {ν} → ICtx ν → Type ν → Set
Δ ⊢ᵣ r = Δ & All.tabulate (const r) ⊢ᵣ r
| {
"alphanum_fraction": 0.5753781951,
"avg_line_length": 39.1224489796,
"ext": "agda",
"hexsha": "c3fe10deed360210a2a80aabee715a84b76cf3db",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/Stack/Resolution.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/Stack/Resolution.agda",
"max_line_length": 92,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/Stack/Resolution.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 799,
"size": 1917
} |
module Data.List where
import Lvl
open import Type
private variable ℓ : Lvl.Level
private variable T : Type{ℓ}
infixr 1000 _⊰_
-- A list is a container/collection of elements.
-- • The elements are in a linear order.
-- • The container allows multiples (non-uniqueness of elements in the container).
data List (T : Type{ℓ}) : Type{ℓ} where
∅ : List(T) -- An empty list
_⊰_ : T → List(T) → List(T) -- Cons
{-# BUILTIN LIST List #-}
private variable l : List(T)
private variable P : List(T) → Type{ℓ}
elim : P(∅) → (∀(x : T)(l : List(T)) → P(l) → P(x ⊰ l)) → ((l : List(T)) → P(l))
elim base next ∅ = base
elim base next (x ⊰ l) = next(x)(l)(elim base next l)
| {
"alphanum_fraction": 0.6196769457,
"avg_line_length": 27.24,
"ext": "agda",
"hexsha": "1f99b494e8bb4d5b512506a2551db91f387b5d88",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Data/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Data/List.agda",
"max_line_length": 82,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Data/List.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 228,
"size": 681
} |
{-# OPTIONS --without-K --safe #-}
module Data.Fin.Indexed.Literals where
-- import Data.Nat as ℕ
-- import Data.Nat.Properties as ℕ
open import Data.Fin.Indexed.Base
open import Literals.Number
-- open import Relation.Nullary
open import Agda.Builtin.Nat renaming (_<_ to _<ᵇ_)
open import Data.Bool
open import Agda.Builtin.Nat using (_<_)
instance
numberFin : ∀ {n} → Number (Fin n)
numberFin {n} = record
{ Constraint = λ m → T (m <ᵇ n)
; fromNat = λ m {{pr}} → FinFromℕ {n} m pr
}
| {
"alphanum_fraction": 0.6732283465,
"avg_line_length": 25.4,
"ext": "agda",
"hexsha": "8bf8897455e67ecd2e636e9fa2a85e2274f830bb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/Fin/Indexed/Literals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/Fin/Indexed/Literals.agda",
"max_line_length": 51,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/Fin/Indexed/Literals.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 157,
"size": 508
} |
-- Andreas, 2016-09-20 test whether --no-eta-equality is respected
{-# OPTIONS --no-eta-equality #-}
open import Common.Equality
data Wrap (A : Set) : Set where
wrap : A → Wrap A
record R : Set where
inductive
constructor c
field p : Wrap R
open R
test : ∀ (w : R) → w ≡ c (p w)
test w = refl -- should fail
| {
"alphanum_fraction": 0.6366459627,
"avg_line_length": 17.8888888889,
"ext": "agda",
"hexsha": "e36fb151e263876cb0ef451fb4cf44c3391eed33",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/NoEtaEqualityInductiveRecord.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/NoEtaEqualityInductiveRecord.agda",
"max_line_length": 66,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/NoEtaEqualityInductiveRecord.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 105,
"size": 322
} |
{-# OPTIONS -v treeless.opt:20 #-}
-- Test that inlining a recursive function doesn't throw
-- the compiler into a loop.
module _ where
open import Common.Prelude
f : Nat → Nat
f zero = zero
f (suc n) = f n
{-# INLINE f #-}
main : IO Unit
main = printNat (f 4)
| {
"alphanum_fraction": 0.6628787879,
"avg_line_length": 17.6,
"ext": "agda",
"hexsha": "58c0677a1cd94bf70b50a3479d620f9a0c0934e9",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Compiler/simple/InlineRecursive.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Compiler/simple/InlineRecursive.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Compiler/simple/InlineRecursive.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 78,
"size": 264
} |
------------------------------------------------------------------------------
-- Testing a proof done using Hip (Haskell Inductive Prover)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module SK where
-- We add 3 to the fixities of the Agda standard library 0.8.1 (see
-- Algebra.agda and Relation/Binary/Core.agda).
infixl 9 _·_
infix 7 _≡_
postulate
D : Set
K S : D
_·_ : D → D → D
-- The identity type.
data _≡_ (x : D) : D → Set where
refl : x ≡ x
postulate
K-eq : ∀ x y → K · x · y ≡ x
S-eq : ∀ x y z → S · x · y · z ≡ x · z · (y · z)
{-# ATP axioms K-eq S-eq #-}
id : D → D
id x = x
{-# ATP definition id #-}
-- We don't use extensional equality, because _≡_ is not
-- polymorphic. See (Rosén 2012, p. 24).
postulate thm : ∀ x → S · K · K · x ≡ id x
{-# ATP prove thm #-}
------------------------------------------------------------------------------
-- References
--
-- Rosén, D. (2012). Proving Equational Haskell Properties Using
-- Automated Theorem Provers. MA thesis. University of Gothenburg.
| {
"alphanum_fraction": 0.471636953,
"avg_line_length": 27.4222222222,
"ext": "agda",
"hexsha": "bfc8588742372d491e706818bed4b85654508a7c",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/hip/SK.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/hip/SK.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/hip/SK.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 337,
"size": 1234
} |
module list-merge-sort-test where
open import list
open import nat
open import list-merge-sort ℕ _<_
test-list = 3 :: 2 :: 5 :: 1 :: 1 :: 6 :: 8 :: 9 :: 4 :: []
sorted = merge-sort test-list | {
"alphanum_fraction": 0.6237113402,
"avg_line_length": 19.4,
"ext": "agda",
"hexsha": "f7d457a6e420f9a6162cf8422d937b0add9bc325",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "list-merge-sort-test.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "list-merge-sort-test.agda",
"max_line_length": 59,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "list-merge-sort-test.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 63,
"size": 194
} |
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Relation.Binary using (Decidable)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Nullary.Decidable using (False; map)
open import Function.Equivalence as FE using ()
module AKS.Nat.Base where
open import Agda.Builtin.FromNat using (Number)
open import Data.Nat using (ℕ; _+_; _∸_; _*_; _≟_; _<ᵇ_; pred) public
open ℕ public
open import Data.Nat.Literals using (number)
instance
ℕ-number : Number ℕ
ℕ-number = number
data ℕ⁺ : Set where
ℕ+ : ℕ → ℕ⁺
_+⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺
ℕ+ n +⁺ ℕ+ m = ℕ+ (suc (n + m))
_*⁺_ : ℕ⁺ → ℕ⁺ → ℕ⁺
ℕ+ n *⁺ ℕ+ m = ℕ+ (n + m * (suc n))
_≟⁺_ : Decidable {A = ℕ⁺} _≡_
ℕ+ n ≟⁺ ℕ+ m = map (FE.equivalence (λ { refl → refl }) (λ { refl → refl })) (n ≟ m)
⟅_⇑⟆ : ∀ n {≢0 : False (n ≟ zero)} → ℕ⁺
⟅ suc n ⇑⟆ = ℕ+ n
⟅_⇓⟆ : ℕ⁺ → ℕ
⟅ ℕ+ n ⇓⟆ = suc n
instance
ℕ⁺-number : Number ℕ⁺
ℕ⁺-number = record
{ Constraint = λ n → False (n ≟ zero)
; fromNat = λ n {{≢0}} → ⟅ n ⇑⟆ {≢0}
}
infix 4 _≤_
record _≤_ (n : ℕ) (m : ℕ) : Set where
constructor lte
field
k : ℕ
≤-proof : n + k ≡ m
infix 4 _≥_
_≥_ : ℕ → ℕ → Set
n ≥ m = m ≤ n
infix 4 _≰_
_≰_ : ℕ → ℕ → Set
n ≰ m = ¬ (n ≤ m)
infix 4 _≱_
_≱_ : ℕ → ℕ → Set
n ≱ m = ¬ (m ≤ n)
infix 4 _<_
_<_ : ℕ → ℕ → Set
n < m = suc n ≤ m
infix 4 _≮_
_≮_ : ℕ → ℕ → Set
n ≮ m = ¬ (n < m)
infix 4 _>_
_>_ : ℕ → ℕ → Set
n > m = m < n
infix 4 _≯_
_≯_ : ℕ → ℕ → Set
n ≯ m = m ≮ n
| {
"alphanum_fraction": 0.5418082937,
"avg_line_length": 18.858974359,
"ext": "agda",
"hexsha": "18c6f37c38d1da2d59f65215f76e720c82c087a7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Nat/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Nat/Base.agda",
"max_line_length": 83,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Nat/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 680,
"size": 1471
} |
----------------------------------------------------------------------
-- Functional small-step semantics
----------------------------------------------------------------------
module SystemF.Reduction where
open import Codata.Musical.Notation
open import Category.Monad
open import Category.Monad.Partiality.All
open import Data.Maybe as Maybe using (Maybe; just; nothing; map)
open import Data.Maybe.Relation.Unary.All as MaybeAll using (nothing; just)
open import Data.Maybe.Relation.Unary.Any as MaybeAny using (just)
open import Data.Nat using (ℕ; _+_)
open import Data.Unit using (tt)
open import Data.Vec using ([])
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_)
open import Relation.Nullary
open import PartialityAndFailure as PF
open PF.Equality hiding (fail)
open PF.Equivalence
private
open module M {f} = RawMonad (PF.monad {f}) using (_>>=_; return)
open import SystemF.Type
open import SystemF.Term
open import SystemF.WtTerm
open import SystemF.Eval hiding (type-soundness)
open TypeSubst using () renaming (_[/_] to _[/tp_])
open TermTypeSubst using () renaming (_[/_] to _[/tmTp_])
open TermTermSubst using () renaming (_[/_] to _[/tmTm_])
open WtTermTypeSubst using () renaming (_[/_]′ to _[/⊢tmTp_])
open WtTermTermSubst using () renaming (_[/_] to _[/⊢tmTm_])
----------------------------------------------------------------------
-- Functional call-by-value small-step semantics in the partiality
-- monad
-- The functional presentation of the small-step semantics below is
-- heavily inspired by Danielsson's ICFP'12 paper "Operational
-- Semantics Using the Partiality Monad". Whereas the paper
-- illustrates the technique to give a functional abstract machine
-- semantics (i.e. the semantics of a "VM"), we skip the compilation
-- step and directly reduce terms, which results in a (functional)
-- structural operational semantics (SOS). We adopt many of the
-- conventions used in the accompanying code, which can be found at
--
-- http://www.cse.chalmers.se/~nad/publications/danielsson-semantics-partiality-monad.tgz
--
-- As pointed out in Danielsson's paper, the functional presentation
-- of the semantics feels rather natural in that it follows the form
-- of an interpreter, and it has the added advantage of proving that
-- the semantics are deterministic and computable "for free".
--
-- For more information about Danielson's paper see
--
-- http://www.cse.chalmers.se/~nad/publications/danielsson-semantics-partiality-monad.html
----------------------------------------------------------------------
-- Small-step call-by-value reduction
-- Results of reduction steps
data Result (m n : ℕ) : Set where
continue : (t : Term m n) → Result m n -- further reducible term
done : (v : Val m n) → Result m n -- irreducible value
-- Take a single reduction step (if possible).
step : ∀ {m n} → Term m n → Maybe (Result m n)
step (var x) = nothing
step (Λ t) = just (done (Λ t))
step (λ' a t) = just (done (λ' a t))
step (μ a t) = just (continue (t [/tmTm μ a t ]))
step (t [ a ]) with step t
... | just (continue t′) = just (continue (t′ [ a ]))
... | just (done (Λ t′)) = just (continue (t′ [/tmTp a ]))
... | just (done _) = nothing
... | nothing = nothing
step {m} {n} (s · t) with step s
... | just (continue s′) = just (continue (s′ · t))
... | just (done v) = nested v
where -- Call-by-value: only reduce (s · t) if s is a value.
nested : Val m n → Maybe (Result m n)
nested v with step t
nested v | (just (continue t′)) = just (continue (⌜ v ⌝ · t′))
nested (λ' _ s′) | (just (done v)) = just (continue (s′ [/tmTm ⌜ v ⌝ ]))
nested _ | (just (done _)) = nothing
nested _ | nothing = nothing
... | nothing = nothing
step (fold a t) with step t
... | just (continue t′) = just (continue (fold a t′))
... | just (done v) = just (done (fold a v))
... | nothing = nothing
step (unfold a t) with step t
... | just (continue t′) = just (continue (unfold a t′))
... | just (done (fold _ v)) = just (done v)
... | just (done _) = nothing
... | nothing = nothing
----------------------------------------------------------------------
-- Type soundness
infix 4 _⊢res_∈_ _⊢res?_∈_
-- Well-typedness lifted to results of reduction steps.
data _⊢res_∈_ {m n} (Γ : Ctx m n) : Result m n → Type n → Set where
⊢continue : ∀ {t a} → Γ ⊢ t ∈ a → Γ ⊢res continue t ∈ a
⊢done : ∀ {v a} → Γ ⊢val v ∈ a → Γ ⊢res done v ∈ a
-- Well-typedness lifted to possibly undefined reduction steps.
_⊢res?_∈_ : ∀ {m n} → Ctx m n → Maybe (Result m n) → Type n → Set
Γ ⊢res? r? ∈ a = MaybeAll.All (λ r → Γ ⊢res r ∈ a) r?
-- Preservation of well-typedness: a well-typed term reduces in one
-- step to a result of the same type or fails to reduce.
⊢step : ∀ {m n} {Γ : Ctx m n} {t a} → Γ ⊢ t ∈ a → Γ ⊢res? step t ∈ a
⊢step (var x) = nothing
⊢step (Λ ⊢t) = just (⊢done (Λ ⊢t))
⊢step (λ' a ⊢t) = just (⊢done (λ' a ⊢t))
⊢step (μ a ⊢t) = just (⊢continue (⊢t [/⊢tmTm μ a ⊢t ]))
⊢step {t = t [ a ]} (⊢t [ .a ]) with step t | ⊢step ⊢t
... | just ._ | just (⊢continue ⊢t′) = just (⊢continue (⊢t′ [ a ]))
... | just ._ | just (⊢done (Λ ⊢t′)) = just (⊢continue (⊢t′ [/⊢tmTp a ]))
... | nothing | nothing = nothing
⊢step {m} {n} {Γ} {s · t} {b} (⊢s · ⊢t) with step s | ⊢step ⊢s
... | just ._ | just (⊢continue ⊢s′) = just (⊢continue (⊢s′ · ⊢t))
... | just (done (λ' a s′)) | just (⊢done (λ' .a ⊢s′)) = nested
where
nested : Γ ⊢res? step ((λ' a s′) · t) ∈ b
nested with step t | ⊢step ⊢t
... | just ._ | just (⊢continue ⊢t′) = just (⊢continue ((λ' a ⊢s′) · ⊢t′))
... | just ._ | just (⊢done v) = just (⊢continue (⊢s′ [/⊢tmTm ⊢⌜ v ⌝ ]))
... | nothing | nothing = nothing
... | nothing | nothing = nothing
⊢step {t = fold a t} (fold .a ⊢t) with step t | ⊢step ⊢t
... | just ._ | just (⊢continue ⊢t′) = just (⊢continue (fold a ⊢t′))
... | just ._ | just (⊢done ⊢v) = just (⊢done (fold a ⊢v))
... | nothing | nothing = nothing
⊢step {t = unfold a t} (unfold .a ⊢t) with step t | ⊢step ⊢t
... | just ._ | just (⊢continue ⊢t′) = just (⊢continue (unfold a ⊢t′))
... | just ._ | just (⊢done (fold .a ⊢v)) = just (⊢done ⊢v)
... | nothing | nothing = nothing
-- Progress: reduction of well-typed closed terms does not fail.
progress : ∀ {t} {a : Type 0} → [] ⊢ t ∈ a → Maybe.Is-just (step t)
progress (var ())
progress (Λ t) = just tt
progress (λ' a t) = just tt
progress (μ a t) = just tt
progress {t [ a ]} (⊢t [ .a ]) with step t | ⊢step ⊢t | progress ⊢t
... | just ._ | just (⊢continue _) | just tt = just tt
... | just ._ | just (⊢done (Λ _)) | just tt = just tt
progress {s · t} (⊢s · ⊢t) with step s | ⊢step ⊢s | progress ⊢s
... | just ._ | just (⊢continue _) | just tt = just tt
... | just (done (λ' a s′)) | just (⊢done (λ' .a _)) | just tt = nested
where
nested : Maybe.Is-just (step ((λ' a s′) · t))
nested with step t | ⊢step ⊢t | progress ⊢t
... | just ._ | just (⊢continue _) | just tt = just tt
... | just ._ | just (⊢done _) | just tt = just tt
progress {fold a t} (fold .a ⊢t) with step t | ⊢step ⊢t | progress ⊢t
... | just ._ | just (⊢continue _) | just tt = just tt
... | just ._ | just (⊢done _) | just tt = just tt
progress {unfold a t} (unfold .a ⊢t) with step t | ⊢step ⊢t | progress ⊢t
... | just ._ | just (⊢continue _) | just tt = just tt
... | just ._ | just (⊢done (fold .a _)) | just tt = just tt
infix 7 _↓ ⊢_↓
-- Evaluation of untyped (open) terms in the partiality monad via
-- repeated reduction.
_↓ : ∀ {m n} → Term m n → Comp m n
t ↓ with step t
... | just (continue t′) = later (♯ (t′ ↓))
... | just (done v) = return v
... | nothing = fail
-- Evaluation of closed terms preserves well-typedness.
⊢_↓ : ∀ {t a} → [] ⊢ t ∈ a → [] ⊢comp t ↓ ∈ a
⊢_↓ {t} ⊢t with step t | ⊢step ⊢t | progress ⊢t
... | just (continue t′) | just (⊢continue ⊢t′) | just tt = later (♯ ⊢ ⊢t′ ↓)
... | just (done v) | just (⊢done ⊢v) | just tt = now (just ⊢v)
... | nothing | _ | ()
-- Type soundness: evaluation of well-typed terms does not fail.
type-soundness : ∀ {t a} → [] ⊢ t ∈ a → ¬ t ↓ ≈ fail
type-soundness ⊢t = does-not-fail ⊢ ⊢t ↓
----------------------------------------------------------------------
-- Strong bisimilarity of big-step and small-step semantics
open PF.AlternativeEquality
renaming (return to returnP; fail to failP; _>>=_ to _>>=P_)
-- Lemma: values don't reduce.
step-val : ∀ {m n} (v : Val m n) → step ⌜ v ⌝ ≡ just (done v)
step-val (Λ a) = P.refl
step-val (λ' a t) = P.refl
step-val (fold a v) with step ⌜ v ⌝ | step-val v
... | just (continue t) | ()
... | just (done w) | w≡v = P.cong (map (lower a)) w≡v
where lower : ∀ {m n} → Type (1 + n) → Result m n → Result m n
lower a (done v) = done (fold a v)
lower a (continue t) = continue t
... | nothing | ()
-- Lemma: _↓ "preserves" values.
↓-val : ∀ {m n} (v : Val m n) → ⌜ v ⌝ ↓ ≡ return v
↓-val v with step ⌜ v ⌝ | step-val v
↓-val v | just (continue t) | ()
↓-val v | just (done w) | w≡v = P.cong toComp w≡v
where toComp : ∀ {m n} → Maybe (Result m n) → Comp m n
toComp (just (continue t′)) = later (♯ (t′ ↓))
toComp (just (done v)) = return v
toComp nothing = fail
↓-val v | nothing | ()
mutual
infix 7 _[_]⇓≅↓′ _·⇓≅↓′_
-- A helper lemma relating reduction and evaluation of type
-- application.
_[_]⇓≅↓′ : ∀ {m n} (t : Term m n) (a : Type n) →
(t ↓) [ a ]⇓ ≅P (t [ a ]) ↓
t [ a ]⇓≅↓′ with step t
... | just (continue t′) = later (♯ (t′ [ a ]⇓≅↓′))
... | just (done (Λ t′)) = later (♯ ⇓≅↓′ (t′ [/tmTp a ]) )
... | just (done (λ' _ _)) = failP
... | just (done (fold _ _)) = failP
... | nothing = failP
-- A helper lemma relating reduction and evaluation of term
-- application.
_·⇓≅↓′_ : ∀ {m n} (s : Term m n) (t : Term m n) →
(s ↓) ·⇓ (t ↓) ≅P (s · t) ↓
s ·⇓≅↓′ t with step s
s ·⇓≅↓′ t | just (continue s′) = later (♯ (s′ ·⇓≅↓′ t))
s ·⇓≅↓′ t | just (done v) with step t
s ·⇓≅↓′ t | just (done v) | just (continue t′) = later (♯ subst v)
where
subst : ∀ v → (return v) ·⇓ (t′ ↓) ≅P (⌜ v ⌝ · t′) ↓
subst v with ⌜ v ⌝ ↓ | ↓-val v | ⌜ v ⌝ ·⇓≅↓′ t′
subst v | now (just .v) | P.refl | v≅t′ = v≅t′
subst _ | now nothing | () | _
subst _ | later x₁ | () | _
s ·⇓≅↓′ t | just (done (Λ s′)) | just (done w) = failP
s ·⇓≅↓′ t | just (done (λ' a s′)) | just (done w) =
later (♯ ⇓≅↓′ (s′ [/tmTm ⌜ w ⌝ ]))
s ·⇓≅↓′ t | just (done (fold x v)) | just (done w) = failP
s ·⇓≅↓′ t | just (done v) | nothing = failP
s ·⇓≅↓′ t | nothing = failP
-- A helper lemma relating reduction and evaluation of recursive
-- type folding.
fold⇓≅↓′ : ∀ {m n} (a : Type (1 + n)) (t : Term m n) →
fold⇓ a (t ↓) ≅P (fold a t) ↓
fold⇓≅↓′ a t with step t
... | just (continue t′) = later (♯ fold⇓≅↓′ a t′)
... | just (done v) = returnP P.refl
... | nothing = failP
-- A helper lemma relating reduction and evaluation of recursive
-- type unfolding.
unfold⇓≅↓′ : ∀ {m n} (a : Type (1 + n)) (t : Term m n) →
unfold⇓ a (t ↓) ≅P (unfold a t) ↓
unfold⇓≅↓′ a t with step t
... | just (continue t′) = later (♯ unfold⇓≅↓′ a t′)
... | just (done (Λ _)) = failP
... | just (done (λ' _ _)) = failP
... | just (done (fold _ v)) = returnP P.refl
... | nothing = failP
-- Big-step evaluation and small-step reduction are strongly bisimliar.
⇓≅↓′ : ∀ {m n} (t : Term m n) → t ⇓ ≅P t ↓
⇓≅↓′ (var x) = failP
⇓≅↓′ (Λ t) = returnP P.refl
⇓≅↓′ (λ' a t) = returnP P.refl
⇓≅↓′ (μ a t) = later (♯ ⇓≅↓′ (t [/tmTm μ a t ]))
⇓≅↓′ (t [ a ]) =
(t [ a ]) ⇓ ≅⟨ complete ([]-comp t a) ⟩
(t ⇓) [ a ]⇓ ≅⟨ (⇓≅↓′ t) >>=P (λ v → (_ ∎)) ⟩
(t ↓) [ a ]⇓ ≅⟨ t [ a ]⇓≅↓′ ⟩
(t [ a ]) ↓ ∎
⇓≅↓′ (s · t) =
(s · t) ⇓ ≅⟨ complete (·-comp s t) ⟩
(s ⇓) ·⇓ (t ⇓) ≅⟨ (⇓≅↓′ s >>=P λ v → ⇓≅↓′ t >>=P λ w → (_ ∎)) ⟩
(s ↓) ·⇓ (t ↓) ≅⟨ s ·⇓≅↓′ t ⟩
(s · t) ↓ ∎
⇓≅↓′ (fold a t) =
(fold a t) ⇓ ≅⟨ complete (fold-comp a t) ⟩
fold⇓ a (t ⇓) ≅⟨ (⇓≅↓′ t) >>=P (λ v → (_ ∎)) ⟩
fold⇓ a (t ↓) ≅⟨ fold⇓≅↓′ a t ⟩
(fold a t) ↓ ∎
⇓≅↓′ (unfold a t) =
(unfold a t) ⇓ ≅⟨ complete (unfold-comp a t) ⟩
unfold⇓ a (t ⇓) ≅⟨ (⇓≅↓′ t) >>=P (λ v → (_ ∎)) ⟩
unfold⇓ a (t ↓) ≅⟨ unfold⇓≅↓′ a t ⟩
(unfold a t) ↓ ∎
-- Big-step evaluation and small-step reduction are strongly bisimliar.
⇓≅↓ : ∀ {m n} (t : Term m n) → t ⇓ ≅ t ↓
⇓≅↓ t = sound (⇓≅↓′ t)
| {
"alphanum_fraction": 0.5082944729,
"avg_line_length": 42.7483660131,
"ext": "agda",
"hexsha": "eea0a4932fa88df0f45e6ee26a74b02042405df1",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-07-06T23:12:48.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-29T12:24:46.000Z",
"max_forks_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sstucki/system-f-agda",
"max_forks_repo_path": "src/SystemF/Reduction.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T19:23:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-05-30T06:43:04.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sstucki/system-f-agda",
"max_issues_repo_path": "src/SystemF/Reduction.agda",
"max_line_length": 92,
"max_stars_count": 68,
"max_stars_repo_head_hexsha": "ea262cf7714cdb762643f10275c568596f57cd1d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "sstucki/system-f-agda",
"max_stars_repo_path": "src/SystemF/Reduction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T01:25:16.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-26T13:12:56.000Z",
"num_tokens": 4898,
"size": 13081
} |
open import Data.Nat using (ℕ; suc; zero; _<_; _≤_; z≤n; s≤s; _+_; _⊔_)
open import Data.Bool using (Bool; true; false; not; _∧_)
open import Data.Sum using (inj₁; inj₂; _⊎_; [_,_])
open import Data.Product using (_×_; _,_; -,_; _-,-_; ∃; ∃-syntax; proj₂)
open import Data.String using (String; _≟_; length)
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Nullary.Decidable using (⌊_⌋)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; cong; trans; cong₂)
open import Data.Nat.Properties hiding (_≤?_; _≟_)
open import IMP
level = ℕ
sec : vname → level
-- We can also temporarily use "sec x" to avoid the
-- automatic expansion of the definition in error messages
sec x = length x
secₐ : aexp → level
secₐ (N n) = 0
secₐ (V x) = sec x
secₐ (Plus a b) = secₐ a ⊔ secₐ b
sec₆ : bexp → level
sec₆ (Bc x) = 0
sec₆ (Not b) = sec₆ b
sec₆ (And b₁ b₂) = sec₆ b₁ ⊔ sec₆ b₂
sec₆ (Less a b) = secₐ a ⊔ secₐ b
_≡_⦅≤_⦆ : state → state → level → Set
s₁ ≡ s₂ ⦅≤ l ⦆ = ∀ x → sec x ≤ l → s₁ x ≡ s₂ x
_≡_⦅<_⦆ : state → state → level → Set
s₁ ≡ s₂ ⦅< l ⦆ = ∀ x → sec x < l → s₁ x ≡ s₂ x
non-interference-aexp : ∀ a {s₁ s₂ l}
→ s₁ ≡ s₂ ⦅≤ l ⦆
→ secₐ a ≤ l
→ aval a s₁ ≡ aval a s₂
non-interference-aexp (N x) r e = refl
non-interference-aexp (V x) r e = r x e
non-interference-aexp (Plus a b) r e =
cong₂ (_+_) (non-interference-aexp a r (m⊔n≤o⇒m≤o _ _ e))
(non-interference-aexp b r (m⊔n≤o⇒n≤o _ _ e))
non-interference-bexp : ∀ a {s₁ s₂ l}
→ s₁ ≡ s₂ ⦅≤ l ⦆
→ sec₆ a ≤ l
→ bval a s₁ ≡ bval a s₂
non-interference-bexp (Bc x) r e = refl
non-interference-bexp (Not a) r e = cong not (non-interference-bexp a r e)
non-interference-bexp (And a b) r e =
cong₂ (_∧_) (non-interference-bexp a r (m⊔n≤o⇒m≤o _ _ e))
(non-interference-bexp b r (m⊔n≤o⇒n≤o _ _ e))
non-interference-bexp (Less a b) r e =
cong₂ (_≤?_) (non-interference-aexp a r (m⊔n≤o⇒m≤o _ _ e))
(non-interference-aexp b r (m⊔n≤o⇒n≤o _ _ e))
data _⊢_ : level → com → Set where
SecSkip : ∀{l}
→ l ⊢ SKIP
SecLoc : ∀{l a x}
→ secₐ a ≤ sec x
→ l ≤ sec x
→ l ⊢ (x ::= a)
SecSeq : ∀{l c₁ c₂}
→ l ⊢ c₁
→ l ⊢ c₂
→ l ⊢ (c₁ :: c₂)
SecIf : ∀{b l c₁ c₂}
→ (l ⊔ sec₆ b) ⊢ c₁
→ (l ⊔ sec₆ b) ⊢ c₂
→ l ⊢ (IF b THEN c₁ ELSE c₂)
SecWhile : ∀{b l c}
→ (l ⊔ sec₆ b) ⊢ c
→ l ⊢ (WHILE b DO c)
anti-monotonicity : ∀{l l′ c}
→ l ⊢ c
→ l′ ≤ l
→ l′ ⊢ c
anti-monotonicity SecSkip s = SecSkip
anti-monotonicity (SecLoc x x₁) s = SecLoc x (≤-trans s x₁)
anti-monotonicity (SecSeq d d₁) s = SecSeq (anti-monotonicity d s) (anti-monotonicity d₁ s)
anti-monotonicity (SecIf d d₁) s = SecIf (anti-monotonicity d (⊔-monoˡ-≤ _ s)) (anti-monotonicity d₁ (⊔-monoˡ-≤ _ s))
anti-monotonicity (SecWhile d) s = SecWhile ((anti-monotonicity d (⊔-monoˡ-≤ _ s)))
data ⦅_,_⦆⇒_ : com → state → state → Set where
Skip : ∀{s} → ⦅ SKIP , s ⦆⇒ s
Loc : ∀{s x a}
→ ⦅ x ::= a , s ⦆⇒ (s [ x ::= aval a s ])
Seq : ∀{c₁ c₂ s₁ s₂ s₃}
→ ⦅ c₁ , s₁ ⦆⇒ s₂
→ ⦅ c₂ , s₂ ⦆⇒ s₃
→ ⦅ c₁ :: c₂ , s₁ ⦆⇒ s₃
IfTrue : ∀{c₁ c₂ b s t}
→ bval b s ≡ true
→ ⦅ c₁ , s ⦆⇒ t
→ ⦅ IF b THEN c₁ ELSE c₂ , s ⦆⇒ t
IfFalse : ∀{c₁ c₂ b s t}
→ bval b s ≡ false
→ ⦅ c₂ , s ⦆⇒ t
→ ⦅ IF b THEN c₁ ELSE c₂ , s ⦆⇒ t
WhileFalse : ∀{c b s}
→ bval b s ≡ false
→ ⦅ WHILE b DO c , s ⦆⇒ s
WhileTrue : ∀{c b s₁ s₂ s₃}
→ bval b s₁ ≡ true
→ ⦅ c , s₁ ⦆⇒ s₂
→ ⦅ WHILE b DO c , s₂ ⦆⇒ s₃
→ ⦅ WHILE b DO c , s₁ ⦆⇒ s₃
confinement : ∀{c s t l}
→ ⦅ c , s ⦆⇒ t
→ l ⊢ c
→ s ≡ t ⦅< l ⦆
confinement Skip SecSkip x₂ x₃ = refl
confinement (Loc {x = x₂}) (SecLoc x x₁) e r with e ≟ x₂
... | yes refl = contradiction x₁ (<⇒≱ r)
... | no _ = refl
confinement (Seq x x₄) (SecSeq x₁ x₅) x₂ x₃ =
trans (confinement x x₁ x₂ x₃)
(confinement x₄ x₅ x₂ x₃)
confinement (IfTrue x x₄) (SecIf x₁ x₅) x₂ x₃ = confinement x₄ x₁ x₂ (m<n⇒m<n⊔o _ x₃)
confinement (IfFalse x x₄) (SecIf x₁ x₅) x₂ x₃ = confinement x₄ x₅ x₂ (m<n⇒m<n⊔o _ x₃)
confinement (WhileFalse x) (SecWhile x₁) x₂ x₃ = refl
confinement {l = l} (WhileTrue x x₄ x₅) (SecWhile x₁) x₂ x₃ =
trans (confinement x₄ (anti-monotonicity x₁ (m≤m⊔n _ _)) x₂ x₃)
(confinement x₅ (SecWhile x₁) x₂ x₃)
true≢false : ¬ (true ≡ false)
true≢false = λ ()
reversal₁ : ∀{b c s₁ s₃}
→ ⦅ WHILE b DO c , s₁ ⦆⇒ s₃
→ bval b s₁ ≡ true
→ ∃[ s₂ ] ( ⦅ c , s₁ ⦆⇒ s₂ × ⦅ WHILE b DO c , s₂ ⦆⇒ s₃)
reversal₁ (WhileFalse x) v = contradiction (trans (sym v) x) true≢false
reversal₁ (WhileTrue x e e₁) v = -, e , e₁
reversal₂ : ∀{b c s₁ s₃}
→ ⦅ WHILE b DO c , s₁ ⦆⇒ s₃
→ bval b s₁ ≡ false
→ s₁ ≡ s₃
reversal₂ (WhileFalse x) v = refl
reversal₂ (WhileTrue x r r₁) v = contradiction (trans (sym x) v) true≢false
level-cong : ∀{l l′ c} → l ≡ l′ → l ⊢ c → l′ ⊢ c
level-cong refl x = x
≤⇒<suc : ∀{a b} → a ≤ b → a < suc b
≤⇒<suc z≤n = s≤s z≤n
≤⇒<suc (s≤s r) = s≤s (≤⇒<suc r)
non-interference : ∀{c s s′ t t′ l}
→ ⦅ c , s ⦆⇒ s′
→ ⦅ c , t ⦆⇒ t′
→ 0 ⊢ c
→ s ≡ t ⦅≤ l ⦆
→ s′ ≡ t′ ⦅≤ l ⦆
non-interference Skip Skip z e = e
non-interference (Loc {x = x₂} {a}) Loc (SecLoc x₃ z≤n) e x x₁ with x ≟ x₂
... | yes refl = non-interference-aexp a e (≤-trans x₃ x₁)
... | no _ = e x x₁
non-interference (Seq x cs) (Seq y ct) (SecSeq z z₁) e =
non-interference cs ct z₁ (non-interference x y z e)
non-interference {l = l} (IfTrue {b = b} x cs) (IfTrue x₁ red) (SecIf w w₁) e r r₁ =
non-interference cs red (anti-monotonicity w z≤n) e r r₁
non-interference {l = l} (IfTrue {b = b} x cs) (IfFalse x₁ red) (SecIf w w₁) e r r₁ =
[ (λ secb≤l →
let wr = non-interference-bexp b e secb≤l
in contradiction (trans (sym x) (trans wr x₁)) true≢false)
, (λ l<secb → let oo₁ = confinement cs w
oo₂ = confinement red w₁
in trans (sym (oo₁ r (<-transʳ r₁ l<secb)))
(trans (e r r₁)
(oo₂ r (<-transʳ r₁ l<secb))))
] (≤-<-connex (sec₆ b) l)
non-interference {l = l} (IfFalse x₁ red) (IfTrue {b = b} x cs) (SecIf w w₁) e r r₁ =
[ (λ secb≤l →
let wr = non-interference-bexp b e secb≤l
in contradiction (trans (sym x) (trans (sym wr) x₁)) true≢false)
, (λ l<secb → let oo₁ = confinement cs w
oo₂ = confinement red w₁
in trans (sym (oo₂ r (<-transʳ r₁ l<secb)))
(trans (e r r₁)
(oo₁ r (<-transʳ r₁ l<secb))))
] (≤-<-connex (sec₆ b) l)
non-interference (IfFalse x₁ red) (IfFalse x cs) (SecIf x₇ x₈) =
non-interference red cs (anti-monotonicity x₈ z≤n)
non-interference (WhileFalse x) (WhileFalse x₁) (SecWhile z) e = e
non-interference {l = l} (WhileFalse {b = b} r) (WhileTrue c ct ct₁) (SecWhile z) e x x₁ =
[ (λ secb≤l →
let wr = non-interference-bexp b e secb≤l
in contradiction (trans (sym c) (trans (sym wr) r)) true≢false)
, (λ l<secb →
let simp = confinement ct z
simp2 = confinement ct₁ (SecWhile (level-cong (sym (m≤n⇒m⊔n≡n l<secb)) z))
in trans (e x x₁) (trans (simp x (<-transʳ x₁ l<secb)) (simp2 x (≤⇒<suc x₁))))
] (≤-<-connex (sec₆ b) l)
non-interference {l = l} (WhileTrue c ct ct₁) (WhileFalse {b = b} r) (SecWhile z) e x x₁ =
[ (λ secb≤l →
let wr = non-interference-bexp b e secb≤l
in contradiction (trans (sym c) (trans wr r)) true≢false)
, (λ l<secb →
let simp = confinement ct z
simp2 = confinement ct₁ (SecWhile (level-cong (sym (m≤n⇒m⊔n≡n l<secb)) z))
in trans (trans (sym (simp2 x (≤⇒<suc x₁))) (sym (simp x ((<-transʳ x₁ l<secb))))) (e x x₁))
] (≤-<-connex (sec₆ b) l)
non-interference {l = l} (WhileTrue {b = b} r cs cs₁) (WhileTrue c ct ct₁) (SecWhile z) e =
let h₁ = non-interference cs ct (anti-monotonicity z z≤n) e
h₂ = non-interference cs₁ ct₁ (SecWhile z) h₁
in h₂
| {
"alphanum_fraction": 0.5558049632,
"avg_line_length": 36.6164383562,
"ext": "agda",
"hexsha": "101300cc6e3e857f0dc52c7f1e3dad02695f5cda",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "iwilare/imp-semantics",
"max_forks_repo_path": "Security.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "iwilare/imp-semantics",
"max_issues_repo_path": "Security.agda",
"max_line_length": 117,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "cb98e3b3b93362654b79152bfdf2c21eb4951fcc",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iwilare/imp-semantics",
"max_stars_repo_path": "Security.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-24T22:29:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-08T11:54:07.000Z",
"num_tokens": 3669,
"size": 8019
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Relations between properties of functions, such as associativity and
-- commutativity (only those that don't require any sort of setoid)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Algebra.FunctionProperties.Consequences.Core
{a} {A : Set a} where
open import Algebra.FunctionProperties
open import Data.Sum
open import Relation.Binary
sel⇒idem : ∀ {ℓ} {_•_ : Op₂ A} (_≈_ : Rel A ℓ) →
Selective _≈_ _•_ → Idempotent _≈_ _•_
sel⇒idem _ sel x with sel x x
... | inj₁ x•x≈x = x•x≈x
... | inj₂ x•x≈x = x•x≈x
| {
"alphanum_fraction": 0.5357142857,
"avg_line_length": 31.8181818182,
"ext": "agda",
"hexsha": "48bc2515d6171eff6004968703b0072a3eb7bbba",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties/Consequences/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties/Consequences/Core.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Algebra/FunctionProperties/Consequences/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 189,
"size": 700
} |
------------------------------------------------------------------------------
-- We could not define the FOTC colists using the Agda machinery for
-- co-inductive types.
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOT.FOTC.Data.Colist.TypeSL where
open import Codata.Musical.Notation
open import FOTC.Base
open import FOTC.Base.List
------------------------------------------------------------------------------
data Colist : D → Set where
nilCL : Colist []
consCL : ∀ x xs → ∞ (Colist xs) → Colist (x ∷ xs)
-- Example (finite colist).
l₁ : Colist (zero ∷ true ∷ [])
l₁ = consCL zero (true ∷ []) (♯ (consCL true [] (♯ nilCL)))
-- Example (infinite colist).
-- zerosCL : Colist {!!}
-- zerosCL = consCL zero {!!} (♯ zerosCL)
| {
"alphanum_fraction": 0.4569327731,
"avg_line_length": 30.7096774194,
"ext": "agda",
"hexsha": "81785cab88f74e404fc02b35ab92d20b3dc5a4b6",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "notes/FOT/FOTC/Data/Colist/TypeSL.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "notes/FOT/FOTC/Data/Colist/TypeSL.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "notes/FOT/FOTC/Data/Colist/TypeSL.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 217,
"size": 952
} |
{-# OPTIONS --without-K --safe --no-sized-types --no-guardedness
--no-subtyping #-}
module Agda.Builtin.Float.Properties where
open import Agda.Builtin.Float
open import Agda.Builtin.Equality
primitive
primFloatToWord64Injective : ∀ a b → primFloatToWord64 a ≡ primFloatToWord64 b → a ≡ b
| {
"alphanum_fraction": 0.7231270358,
"avg_line_length": 25.5833333333,
"ext": "agda",
"hexsha": "a090623f0948449392d80abeaa727efcdc9a2de0",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "src/data/lib/prim/Agda/Builtin/Float/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-09-15T15:49:15.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "src/data/lib/prim/Agda/Builtin/Float/Properties.agda",
"max_line_length": 88,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "src/data/lib/prim/Agda/Builtin/Float/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2016-05-20T13:58:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-05-20T13:58:52.000Z",
"num_tokens": 84,
"size": 307
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Interval where
open import Cubical.HITs.Interval.Base public
-- open import Cubical.HITs.Interval.Properties public
| {
"alphanum_fraction": 0.7671957672,
"avg_line_length": 27,
"ext": "agda",
"hexsha": "db71aa3da4c5b1d0c0304d7c8f912e322696de8c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Interval.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Interval.agda",
"max_line_length": 54,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Interval.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 46,
"size": 189
} |
-- Basic intuitionistic modal logic S4, without ∨, ⊥, or ◇.
-- Tarski-style semantics with context pairs as concrete worlds, and glueing for α, ▻, and □.
-- Hilbert-style syntax.
module BasicIS4.Semantics.TarskiOvergluedDyadicHilbert where
open import BasicIS4.Syntax.Common public
open import Common.Semantics public
-- Intuitionistic Tarski models.
record Model : Set₁ where
infix 3 _⊩ᵅ_ _[⊢]_
field
-- Forcing for atomic propositions; monotonic.
_⊩ᵅ_ : Cx² Ty Ty → Atom → Set
mono²⊩ᵅ : ∀ {P Π Π′} → Π ⊆² Π′ → Π ⊩ᵅ P → Π′ ⊩ᵅ P
-- Hilbert-style syntax representation; monotonic.
_[⊢]_ : Cx² Ty Ty → Ty → Set
mono²[⊢] : ∀ {A Π Π′} → Π ⊆² Π′ → Π [⊢] A → Π′ [⊢] A
[var] : ∀ {A Γ Δ} → A ∈ Γ → Γ ⁏ Δ [⊢] A
[app] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ▻ B → Γ ⁏ Δ [⊢] A → Γ ⁏ Δ [⊢] B
[ci] : ∀ {A Γ Δ} → Γ ⁏ Δ [⊢] A ▻ A
[ck] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ▻ B ▻ A
[cs] : ∀ {A B C Γ Δ} → Γ ⁏ Δ [⊢] (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C
[mvar] : ∀ {A Γ Δ} → A ∈ Δ → Γ ⁏ Δ [⊢] A
[box] : ∀ {A Γ Δ} → ∅ ⁏ Δ [⊢] A → Γ ⁏ Δ [⊢] □ A
[cdist] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] □ (A ▻ B) ▻ □ A ▻ □ B
[cup] : ∀ {A Γ Δ} → Γ ⁏ Δ [⊢] □ A ▻ □ □ A
[cdown] : ∀ {A Γ Δ} → Γ ⁏ Δ [⊢] □ A ▻ A
[cpair] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ▻ B ▻ A ∧ B
[cfst] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ∧ B ▻ A
[csnd] : ∀ {A B Γ Δ} → Γ ⁏ Δ [⊢] A ∧ B ▻ B
[unit] : ∀ {Γ Δ} → Γ ⁏ Δ [⊢] ⊤
-- NOTE: [mlam] is necessary for [mmulticut], which is necessary for eval.
[mlam] : ∀ {A B Γ Δ} → Γ ⁏ Δ , A [⊢] B → Γ ⁏ Δ [⊢] □ A ▻ B
infix 3 _[⊢]⋆_
_[⊢]⋆_ : Cx² Ty Ty → Cx Ty → Set
Π [⊢]⋆ ∅ = 𝟙
Π [⊢]⋆ Ξ , A = Π [⊢]⋆ Ξ × Π [⊢] A
open Model {{…}} public
-- Forcing in a particular model.
module _ {{_ : Model}} where
infix 3 _⊩_
_⊩_ : Cx² Ty Ty → Ty → Set
Π ⊩ α P = Glue (Π [⊢] α P) (Π ⊩ᵅ P)
Π ⊩ A ▻ B = ∀ {Π′} → Π ⊆² Π′ → Glue (Π′ [⊢] A ▻ B) (Π′ ⊩ A → Π′ ⊩ B)
Π ⊩ □ A = ∀ {Π′} → Π ⊆² Π′ → Glue (Π′ [⊢] □ A) (Π′ ⊩ A)
Π ⊩ A ∧ B = Π ⊩ A × Π ⊩ B
Π ⊩ ⊤ = 𝟙
infix 3 _⊩⋆_
_⊩⋆_ : Cx² Ty Ty → Cx Ty → Set
Π ⊩⋆ ∅ = 𝟙
Π ⊩⋆ Ξ , A = Π ⊩⋆ Ξ × Π ⊩ A
-- Monotonicity with respect to context inclusion.
module _ {{_ : Model}} where
mono²⊩ : ∀ {A Π Π′} → Π ⊆² Π′ → Π ⊩ A → Π′ ⊩ A
mono²⊩ {α P} ψ s = mono²[⊢] ψ (syn s) ⅋ mono²⊩ᵅ ψ (sem s)
mono²⊩ {A ▻ B} ψ s = λ ψ′ → s (trans⊆² ψ ψ′)
mono²⊩ {□ A} ψ s = λ ψ′ → s (trans⊆² ψ ψ′)
mono²⊩ {A ∧ B} ψ s = mono²⊩ {A} ψ (π₁ s) , mono²⊩ {B} ψ (π₂ s)
mono²⊩ {⊤} ψ s = ∙
mono²⊩⋆ : ∀ {Ξ Π Π′} → Π ⊆² Π′ → Π ⊩⋆ Ξ → Π′ ⊩⋆ Ξ
mono²⊩⋆ {∅} ψ ∙ = ∙
mono²⊩⋆ {Ξ , A} ψ (ts , t) = mono²⊩⋆ ψ ts , mono²⊩ {A} ψ t
-- Extraction of syntax representation in a particular model.
module _ {{_ : Model}} where
reifyʳ : ∀ {A Π} → Π ⊩ A → Π [⊢] A
reifyʳ {α P} s = syn s
reifyʳ {A ▻ B} s = syn (s refl⊆²)
reifyʳ {□ A} s = syn (s refl⊆²)
reifyʳ {A ∧ B} s = [app] ([app] [cpair] (reifyʳ {A} (π₁ s))) (reifyʳ {B} (π₂ s))
reifyʳ {⊤} s = [unit]
reifyʳ⋆ : ∀ {Ξ Π} → Π ⊩⋆ Ξ → Π [⊢]⋆ Ξ
reifyʳ⋆ {∅} ∙ = ∙
reifyʳ⋆ {Ξ , A} (ts , t) = reifyʳ⋆ ts , reifyʳ t
-- Useful theorems in functional form.
module _ {{_ : Model}} where
[mmulticut] : ∀ {Ξ A Γ Δ} → Γ ⁏ Δ [⊢]⋆ □⋆ Ξ → Γ ⁏ Ξ [⊢] A → Γ ⁏ Δ [⊢] A
[mmulticut] {∅} ∙ u = mono²[⊢] (refl⊆ , bot⊆) u
[mmulticut] {Ξ , B} (ts , t) u = [app] ([mmulticut] ts ([mlam] u)) t
-- Additional useful equipment.
module _ {{_ : Model}} where
_⟪$⟫_ : ∀ {A B Π} → Π ⊩ A ▻ B → Π ⊩ A → Π ⊩ B
s ⟪$⟫ a = sem (s refl⊆²) a
⟪K⟫ : ∀ {A B Π} → Π ⊩ A → Π ⊩ B ▻ A
⟪K⟫ {A} a ψ = let a′ = mono²⊩ {A} ψ a
in [app] [ck] (reifyʳ a′) ⅋ K a′
⟪S⟫ : ∀ {A B C Π} → Π ⊩ A ▻ B ▻ C → Π ⊩ A ▻ B → Π ⊩ A → Π ⊩ C
⟪S⟫ s₁ s₂ a = (s₁ ⟪$⟫ a) ⟪$⟫ (s₂ ⟪$⟫ a)
⟪S⟫′ : ∀ {A B C Π} → Π ⊩ A ▻ B ▻ C → Π ⊩ (A ▻ B) ▻ A ▻ C
⟪S⟫′ {A} {B} {C} s₁ ψ = let s₁′ = mono²⊩ {A ▻ B ▻ C} ψ s₁
t = syn (s₁′ refl⊆²)
in [app] [cs] t ⅋ λ s₂ ψ′ →
let s₁″ = mono²⊩ {A ▻ B ▻ C} (trans⊆² ψ ψ′) s₁
s₂′ = mono²⊩ {A ▻ B} ψ′ s₂
t′ = syn (s₁″ refl⊆²)
u = syn (s₂′ refl⊆²)
in [app] ([app] [cs] t′) u ⅋ ⟪S⟫ s₁″ s₂′
_⟪D⟫_ : ∀ {A B Π} → Π ⊩ □ (A ▻ B) → Π ⊩ □ A → Π ⊩ □ B
(s₁ ⟪D⟫ s₂) ψ = let t ⅋ s₁′ = s₁ ψ
u ⅋ a = s₂ ψ
in [app] ([app] [cdist] t) u ⅋ s₁′ ⟪$⟫ a
_⟪D⟫′_ : ∀ {A B Π} → Π ⊩ □ (A ▻ B) → Π ⊩ □ A ▻ □ B
_⟪D⟫′_ {A} {B} s₁ ψ = let s₁′ = mono²⊩ {□ (A ▻ B)} ψ s₁
in [app] [cdist] (reifyʳ (λ {_} ψ′ → s₁′ ψ′)) ⅋ _⟪D⟫_ s₁′
⟪↑⟫ : ∀ {A Π} → Π ⊩ □ A → Π ⊩ □ □ A
⟪↑⟫ {A} s ψ = [app] [cup] (syn (s ψ)) ⅋ λ ψ′ → s (trans⊆² ψ ψ′)
⟪↓⟫ : ∀ {A Π} → Π ⊩ □ A → Π ⊩ A
⟪↓⟫ s = sem (s refl⊆²)
_⟪,⟫′_ : ∀ {A B Π} → Π ⊩ A → Π ⊩ B ▻ A ∧ B
_⟪,⟫′_ {A} a ψ = let a′ = mono²⊩ {A} ψ a
in [app] [cpair] (reifyʳ a′) ⅋ _,_ a′
-- Forcing in a particular world of a particular model, for sequents.
module _ {{_ : Model}} where
infix 3 _⊩_⇒_
_⊩_⇒_ : Cx² Ty Ty → Cx² Ty Ty → Ty → Set
Π ⊩ Γ ⁏ Δ ⇒ A = Π ⊩⋆ Γ → Π ⊩⋆ □⋆ Δ → Π ⊩ A
infix 3 _⊩_⇒⋆_
_⊩_⇒⋆_ : Cx² Ty Ty → Cx² Ty Ty → Cx Ty → Set
Π ⊩ Γ ⁏ Δ ⇒⋆ Ξ = Π ⊩⋆ Γ → Π ⊩⋆ □⋆ Δ → Π ⊩⋆ Ξ
-- Entailment, or forcing in all worlds of all models, for sequents.
infix 3 _⊨_
_⊨_ : Cx² Ty Ty → Ty → Set₁
Π ⊨ A = ∀ {{_ : Model}} {w : Cx² Ty Ty} → w ⊩ Π ⇒ A
infix 3 _⊨⋆_
_⊨⋆_ : Cx² Ty Ty → Cx Ty → Set₁
Π ⊨⋆ Ξ = ∀ {{_ : Model}} {w : Cx² Ty Ty} → w ⊩ Π ⇒⋆ Ξ
-- Additional useful equipment, for sequents.
module _ {{_ : Model}} where
lookup : ∀ {A Γ w} → A ∈ Γ → w ⊩⋆ Γ → w ⊩ A
lookup top (γ , a) = a
lookup (pop i) (γ , b) = lookup i γ
mlookup : ∀ {A Δ w} → A ∈ Δ → w ⊩⋆ □⋆ Δ → w ⊩ A
mlookup top (γ , s) = sem (s refl⊆²)
mlookup (pop i) (γ , s) = mlookup i γ
-- TODO: More equipment.
| {
"alphanum_fraction": 0.403327787,
"avg_line_length": 33.021978022,
"ext": "agda",
"hexsha": "4a48984c7523257967d806e0ce874e7f5c18adbb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/hilbert-gentzen",
"max_forks_repo_path": "BasicIS4/Semantics/TarskiOvergluedDyadicHilbert.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z",
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/hilbert-gentzen",
"max_issues_repo_path": "BasicIS4/Semantics/TarskiOvergluedDyadicHilbert.agda",
"max_line_length": 93,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/hilbert-gentzen",
"max_stars_repo_path": "BasicIS4/Semantics/TarskiOvergluedDyadicHilbert.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z",
"num_tokens": 3468,
"size": 6010
} |
{-# OPTIONS --without-K --safe #-}
module Dodo.Binary.Acyclic where
-- Stdlib imports
open import Level using (Level; _⊔_)
open import Function using (flip)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import Relation.Binary using (Rel; REL)
open import Relation.Binary using (Irreflexive; Transitive; Symmetric)
open import Relation.Binary.Construct.Closure.Transitive using (TransClosure; [_]; _∷_; _++_)
-- Local imports
open import Dodo.Binary.Equality
open import Dodo.Binary.Transitive
-- # Definitions
-- | Acyclicity of a binary relation R: x R⁺ y → x ≠ y
--
-- Defined with an underlying equality (≈)
Acyclic : {a ℓ₁ ℓ₂ : Level} → {A : Set a} → Rel A ℓ₁ → Rel A ℓ₂ → Set _
Acyclic _≈_ _<_ = Irreflexive _≈_ (TransClosure _<_)
-- # Operations
module _ {a ℓ₁ ℓ₂ : Level} {A : Set a}
{_≈_ : Rel A ℓ₁} {R : Rel A ℓ₂} where
-- | Any acyclic relation is also irreflexive
Acyclic⇒Irreflexive : Acyclic _≈_ R → Irreflexive _≈_ R
Acyclic⇒Irreflexive acyclicR x≈y Rxy = acyclicR x≈y [ Rxy ]
module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a}
{_≈_ : Rel A ℓ₁} {P : Rel A ℓ₂} {Q : Rel A ℓ₃} where
-- | If a relation is acyclic, then any subset of that relation is also acyclic
acyclic-⊆₂ : Acyclic _≈_ Q → P ⊆₂ Q → Acyclic _≈_ P
acyclic-⊆₂ acyclicQ P⊆Q x≈y P⁺ = acyclicQ x≈y (⊆₂-apply (⁺-preserves-⊆₂ P⊆Q) P⁺)
module _ {a ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set a}
{_≈_ : Rel A ℓ₁} {R : Rel A ℓ₂} where
-- | If a relation is acyclic, then its transitive closure is also acyclic
⁺-preserves-acyclic : Acyclic _≈_ R → Acyclic _≈_ (TransClosure R)
⁺-preserves-acyclic acR x≈y R⁺⁺xy = acR x≈y (⇔₂-apply-⊇₂ ⁺-idem R⁺⁺xy)
| {
"alphanum_fraction": 0.6455026455,
"avg_line_length": 34.02,
"ext": "agda",
"hexsha": "ce6f743f2725681c8a1a91e96edf616c8b920cfe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "sourcedennis/agda-dodo",
"max_forks_repo_path": "src/Dodo/Binary/Acyclic.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "sourcedennis/agda-dodo",
"max_issues_repo_path": "src/Dodo/Binary/Acyclic.agda",
"max_line_length": 94,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "sourcedennis/agda-dodo",
"max_stars_repo_path": "src/Dodo/Binary/Acyclic.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 660,
"size": 1701
} |
postulate
F : Set₁ → Set₁
data P : Set₁ → Set₁ where
c : P (F (P Set)) → P Set
| {
"alphanum_fraction": 0.5595238095,
"avg_line_length": 14,
"ext": "agda",
"hexsha": "b1ba5e828df1f7d06e7c4db3e6abce57bc90df90",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue3592-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue3592-2.agda",
"max_line_length": 27,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue3592-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 36,
"size": 84
} |
-- There was a bug where reexported constructors weren't
-- properly translated when termination checking.
module OpenPublicTermination where
module A where
data U : Set where
nat : U
list : U -> U
module A' where
open A public
open A'
f : U -> U
f nat = nat
f (list nat) = nat
f (list (list u)) = f (list u)
| {
"alphanum_fraction": 0.6430678466,
"avg_line_length": 16.1428571429,
"ext": "agda",
"hexsha": "c2437a2f042b54f44252049054977597dadb69ba",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/OpenPublicTermination.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/OpenPublicTermination.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/OpenPublicTermination.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 97,
"size": 339
} |
------------------------------------------------------------------------
-- Simple regular expression matcher (without soundness proof)
------------------------------------------------------------------------
open import Eq
open import Setoids
open import Prelude
import RegExps
module BoolMatcher (D : Datoid) where
private
open module D' = Datoid D
open module S' = Setoid setoid
open module R = RegExps setoid
infix 4 _∈‿⟦_⟧¿
------------------------------------------------------------------------
-- Helper function
decToBool : forall {x y} -> Dec (x ≈ y) -> Bool
decToBool (yes _) = true
decToBool (no _) = false
------------------------------------------------------------------------
-- Regular expression matcher
matches-⊙¿ : (xs₁ xs₂ : [ carrier ]) -> (re₁ re₂ : RegExp) -> Bool
_∈‿⟦_⟧¿ : (xs : [ carrier ]) -> (re : RegExp) -> Bool
[] ∈‿⟦ ε ⟧¿ = true
x ∷ [] ∈‿⟦ • ⟧¿ = true
x ∷ [] ∈‿⟦ sym y ⟧¿ = decToBool (x ≟ y)
xs ∈‿⟦ re₁ ∣ re₂ ⟧¿ = xs ∈‿⟦ re₁ ⟧¿ ∨ xs ∈‿⟦ re₂ ⟧¿
xs ∈‿⟦ re₁ ⊙ re₂ ⟧¿ = matches-⊙¿ [] xs re₁ re₂
[] ∈‿⟦ re ⋆ ⟧¿ = true
x ∷ xs ∈‿⟦ re ⋆ ⟧¿ = matches-⊙¿ (x ∷ []) xs re (re ⋆)
_ ∈‿⟦ _ ⟧¿ = false
matches-⊙¿ xs₁ xs₂ re₁ re₂ with xs₁ ∈‿⟦ re₁ ⟧¿ ∨ xs₂ ∈‿⟦ re₂ ⟧¿
matches-⊙¿ xs₁ xs₂ re₁ re₂ | true = true
matches-⊙¿ xs₁ [] re₁ re₂ | false = false
matches-⊙¿ xs₁ (x ∷ xs₂) re₁ re₂ | false =
matches-⊙¿ (xs₁ ++ x ∷ []) xs₂ re₁ re₂
| {
"alphanum_fraction": 0.4198895028,
"avg_line_length": 30.8085106383,
"ext": "agda",
"hexsha": "6bfdf3e1c0164c5b75fe3415ae89dcfd66291b27",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "examples/AIM6/RegExp/talk/BoolMatcher.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "examples/AIM6/RegExp/talk/BoolMatcher.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "examples/AIM6/RegExp/talk/BoolMatcher.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 528,
"size": 1448
} |
{-# OPTIONS --show-implicit #-}
-- {-# OPTIONS -v tc.def.fun:10 -v tc.def.where:100 #-}
module PartialityMonad where
open import Common.Level
open import Common.Coinduction
record RawMonad {f} (M : Set f → Set f) : Set (lsuc f) where
infixl 1 _>>=_
field
return : ∀ {A} → A → M A
_>>=_ : ∀ {A B} → M A → (A → M B) → M B
------------------------------------------------------------------------
-- The partiality monad
data _⊥ {a} (A : Set a) : Set a where
now : (x : A) → A ⊥
later : (x : ∞ (A ⊥)) → A ⊥
-- Fails if hidden pattern {f} is removed
monad : ∀ {f} → RawMonad {f = f} _⊥
-- monad {f} = record
monad = record
{ return = now
; _>>=_ = _>>=_
}
where
_>>=_ : ∀ {A B} → A ⊥ → (A → B ⊥) → B ⊥
now x >>= f = f x
later x >>= f = later (♯ (♭ x >>= f))
| {
"alphanum_fraction": 0.4592220828,
"avg_line_length": 22.7714285714,
"ext": "agda",
"hexsha": "2492bd3ebc76db77e12da03bb29c616072e21b3a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/PartialityMonad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/PartialityMonad.agda",
"max_line_length": 72,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/PartialityMonad.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 300,
"size": 797
} |
----------------------------------------------------------------------------
-- The FOTC lists of natural numbers type
----------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Data.Nat.List.Type where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.Nat.Type
------------------------------------------------------------------------------
-- The FOTC lists of natural numbers type (inductive predicate for
-- total lists of natural numbers).
data ListN : D → Set where
lnnil : ListN []
lncons : ∀ {n ns} → N n → ListN ns → ListN (n ∷ ns)
{-# ATP axioms lnnil lncons #-}
-- Induction principle.
ListN-ind : (A : D → Set) →
A [] →
(∀ {n ns} → N n → A ns → A (n ∷ ns)) →
∀ {ns} → ListN ns → A ns
ListN-ind A A[] h lnnil = A[]
ListN-ind A A[] h (lncons Nn Lns) = h Nn (ListN-ind A A[] h Lns)
| {
"alphanum_fraction": 0.4415341441,
"avg_line_length": 34.4838709677,
"ext": "agda",
"hexsha": "c2cbd70284781ceca8657c29ea1318a46cca7158",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/List/Type.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/List/Type.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/List/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 264,
"size": 1069
} |
module x04equality where
------------------------------------------------------------------------------
-- EQUALITY
-- for any type A
-- for any x of type A
-- refl constructor provides evidence that x ≡ x
-- i.e., every value is equal to itself
data _≡_ {A : Set} (x : A) : A → Set where
refl : x ≡ x
infix 4 _≡_
-- tell Agda which type corresponds to equality
{-# BUILTIN EQUALITY _≡_ #-}
{-
Note:
- 1st arg to _≡_ is PARAMETER (x : A)
- BEST PRACTICE: use parameters when possible
- can be a parameter because it does not vary
- 2nd arg is an INDEX in A → Set
- must be an index, so it can be required to be equal to the first
------------------------------------------------------------------------------
-- EQUALITY is an EQUIVALENCE RELATION (reflexive, symmetric, transitive)
reflexivity in the def of equality, via refl constructor
-}
-- symmetry
sym : ∀ {A : Set} {x y : A}
→ x ≡ y -- arg has type x ≡ y
-----
→ y ≡ x
sym refl -- LHS :instantiates arg to refl CONSTRUCTOR (only one possible)
-- refl requires x y to be the same
= refl -- RHS : need a term of type x ≡ x, so refl
-- transitive
trans : ∀ {A : Set} {x y z : A}
→ x ≡ y
→ y ≡ z
-----
→ x ≡ z
trans refl refl = refl
------------------------------------------------------------------------------
-- EQUALITY SATISFIES CONGRUENCE
-- if two terms are equal, they remain so after same function is applied to both
cong : ∀ {A B : Set} (f : A → B) {x y : A}
→ x ≡ y
---------
→ f x ≡ f y
cong f refl = refl
-- where f takes two args
cong₂ : ∀ {A B C : Set} (f : A → B → C) {u x : A} {v y : B}
→ u ≡ x
→ v ≡ y
-------------
→ f u v ≡ f x y
cong₂ f refl refl = refl
-- if two functions are equal, then applying them to same term yields equal terms
cong-app : ∀ {A B : Set} {f g : A → B}
→ f ≡ g
---------------------
→ ∀ (x : A) → f x ≡ g x
cong-app refl x = refl
------------------------------------------------------------------------------
-- EQUALITY SATISFIES SUBSTITUTION
-- if two values are equal and a predicate holds of first then it also holds of second
subst : ∀ {A : Set} {x y : A} (P : A → Set)
→ x ≡ y
---------
→ P x
→ P y
subst P refl px = px
------------------------------------------------------------------------------
-- CHAINS OF EQUATIONS (aka EQUATIONAL REASONING)
module ≡-Reasoning {A : Set} where
infix 1 begin_
infixr 2 _≡⟨⟩_ _≡⟨_⟩_
infix 3 _∎
-- identity : this is just used to make proof look nice
begin_ : ∀ {x y : A}
→ x ≡ y
-----
→ x ≡ y
begin x≡y = x≡y
-- think of _≡⟨⟩_ as equivalent to _≡⟨ refl ⟩_
_≡⟨⟩_ : ∀ (x : A) {y : A}
→ x ≡ y
-----
→ x ≡ y
x ≡⟨⟩ x≡y = x≡y
_≡⟨_⟩_ : ∀ (x : A) {y z : A}
→ x ≡ y
→ y ≡ z
-----
→ x ≡ z
x ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z
_∎ : ∀ (x : A)
-----
→ x ≡ x
x ∎ = refl
open ≡-Reasoning
trans′ : ∀ {A : Set} {x y z : A}
→ x ≡ y
→ y ≡ z
-----
→ x ≡ z
trans′ {A} {x} {y} {z} x≡y y≡z =
begin -- Goal: x ≡ z ; y≡z : y ≡ z; x≡y : x ≡ y
x ≡⟨ x≡y ⟩ -- Goal: y ≡ z
y ≡⟨ y≡z ⟩ -- Goal: z ≡ z
z
∎
{-
EXERCISE trans and ≡-Reasoning (practice) TODO
Cannot use definition of trans’ using ≡-Reasoning as the definition for trans.
Why?
Hint: look at the definition of _≡⟨_⟩_
-- Your code goes here
------------------------------------------------------------------------------
Chains of equations, another example : addition is commutative
-}
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
{-# BUILTIN NATURAL ℕ #-}
_+_ : ℕ → ℕ → ℕ
zero + n = n
(suc m) + n = suc (m + n)
infixl 6 _+_
-- to save space, postulate (rather than prove) two lemmas:
-- POSTULATE : specifies a signature but no def. Use with care. DON'T postulate something false!
postulate
+-identity : ∀ (m : ℕ) → m + zero ≡ m
+-suc : ∀ (m n : ℕ) → m + suc n ≡ suc (m + n)
+-comm : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm m zero =
begin
m + zero ≡⟨ +-identity m ⟩
m ≡⟨⟩
zero + m
∎
+-comm m (suc n) =
begin
m + suc n ≡⟨ +-suc m n ⟩
suc (m + n) ≡⟨ cong suc (+-comm m n) ⟩
suc (n + m) ≡⟨⟩ -- terms are equivalent to simplified term
suc n + m
∎
{-
------------------------------------------------------------------------------
Exercise ≤-Reasoning (stretch)
redo proof of +-monoʳ-≤ (from Chapter Relations) using an analogue of ≡-Reasoning
define ≤-Reasoning
use it to write out proof that addition is monotonic with regard to inequality
by redoing all of +-monoˡ-≤, +-monoʳ-≤, and +-mono-≤
-}
module ≤-Reasoning {A : Set} where
data _≤_ : ℕ → ℕ → Set where
z≤n : ∀ {n : ℕ}
--------
→ zero ≤ n
s≤s : ∀ {m n : ℕ}
→ m ≤ n
-------------
→ suc m ≤ suc n
infix 4 _≤_
≤-trans : ∀ {m n p : ℕ} → m ≤ n → n ≤ p → m ≤ p
≤-trans z≤n _ = z≤n
≤-trans (s≤s m≤n) (s≤s n≤p) = s≤s (≤-trans m≤n n≤p)
infix 1 begin≤_
infixr 2 _≤⟨⟩_ _≤⟨_⟩_
infix 3 _∎≤
--------------------------------------------------
begin≤_ : ∀ {x y : ℕ}
→ x ≤ y
-----
→ x ≤ y
begin≤ x≤y = x≤y
-- can think of _≤⟨⟩_ as equivalent to _≤⟨ refl ⟩_
_≤⟨⟩_ : ∀ (x : ℕ) {y : ℕ}
→ x ≤ y
-----
→ x ≤ y
x ≤⟨⟩ x≤y = x≤y
_≤⟨_⟩_ : ∀ (x : ℕ) {y z : ℕ}
→ x ≤ y
→ y ≤ z
-----
→ x ≤ z
x ≤⟨ x≤y ⟩ y≤z = ≤-trans x≤y y≤z
_∎≤ : ∀ (x : ℕ)
-----
→ x ≤ x
zero ∎≤ = z≤n
suc x ∎≤ = s≤s (x ∎≤)
--------------------------------------------------
+-monoʳ-≤ : ∀ (n p q : ℕ)
→ p ≤ q
-------------
→ (n + p) ≤ (n + q)
+-monoʳ-≤ zero p q p≤q =
begin≤
zero + p ≤⟨⟩
p ≤⟨ p≤q ⟩
q ≤⟨⟩
zero + q
∎≤
+-monoʳ-≤ (suc n) p q p≤q =
begin≤
suc n + p ≤⟨ s≤s (+-monoʳ-≤ n p q p≤q) ⟩
suc n + q
∎≤
-------------------------
postulate
+-comm-≤ : ∀ (m n : ℕ) → m + n ≤ n + m
+-monoˡ-≤ : ∀ (m n p : ℕ)
→ m ≤ n
-------------
→ m + p ≤ n + p
+-monoˡ-≤ m n p m≤n =
begin≤
m + p ≤⟨ +-comm-≤ m p ⟩
p + m ≤⟨ +-monoʳ-≤ p m n m≤n ⟩
p + n ≤⟨ +-comm-≤ p n ⟩
n + p
∎≤
-------------------------
+-mono-≤ : ∀ (m n p q : ℕ)
→ m ≤ n
→ p ≤ q
-------------
→ m + p ≤ n + q
+-mono-≤ m n p q m≤n p≤q =
begin≤
m + p ≤⟨ +-monoˡ-≤ m n p m≤n ⟩
n + p ≤⟨ +-monoʳ-≤ n p q p≤q ⟩
n + q
∎≤
{-
------------------------------------------------------------------------------
-- Rewriting
-}
data even : ℕ → Set
data odd : ℕ → Set
data even where
even-zero : even zero
even-suc : ∀ {n : ℕ}
→ odd n
------------
→ even (suc n)
data odd where
odd-suc : ∀ {n : ℕ}
→ even n
-----------
→ odd (suc n)
{-
given even (m + n) holds
prove even (n + m) holds
REWRITE: notation to support this kind of reasoning
-}
-- then use rewrite
even-comm : ∀ (m n : ℕ)
→ even (m + n)
------------
→ even (n + m)
even-comm m n ev -- even (n + m)
rewrite +-comm n m -- Goal: even (m + n); ev : even (m + n)
= ev
{-
keyword REWRITE : followed by evidence of an equality
That equality is used to rewrite the type of the goal and of any variable in scope.
-}
even-comm' : ∀ (m n : ℕ)
→ even (m + n)
------------
→ even (n + m)
even-comm' m n ev -- Goal: even (n + m) ; ev : even (m + n)
rewrite
+-comm m n -- Goal: even (n + m) ; ev : even (n + m) <-- rewrites evidence
= ev -- ^
-- note: arg order diff than 'even-comm' above
------------------------------------------------------------------------------
-- Multiple rewrites : each separated by a vertical bar
+-comm′ : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm′ zero n -- zero + n ≡ n + zero
-- n ≡ n + zero
rewrite
+-identity n -- n ≡ n
= refl
+-comm′ (suc m) n -- suc m + n ≡ n + suc m
-- suc (m + n) ≡ n + suc m
rewrite
+-suc n m -- suc (m + n) ≡ suc (n + m) <-- rewrites LHS
| +-comm′ m n -- suc (n + m) ≡ suc (n + m) <-- rewrites RHS
= refl
{-
Previous +-comm proof required cong suc (+-comm m n) (invoking inductive hypothesis).
Rewriting automatically takes congruence into account.
Proofs with rewriting are shorter.
Proofs as chains of equalities are easier to follow.
-}
+-comm′' : ∀ (m n : ℕ) → m + n ≡ n + m
+-comm′' zero n =
begin
zero + n ≡⟨⟩
n ≡⟨ +-comm′ zero n ⟩
n + zero
∎
+-comm′' (suc m) n =
begin
suc m + n ≡⟨ +-comm′ (suc m) n ⟩
n + suc m
∎
{-
------------------------------------------------------------------------------
--rewrite is shorthand for 'WITH'
-}
even-comm′ : ∀ (m n : ℕ)
→ even (m + n)
------------
→ even (n + m)
even-comm′ m n ev with m + n | +-comm m n
... | .(n + m) | refl = ev
{-
WITH : can be followed by one or more expressions, separated by bars
- where each equation has the same number of patterns
1st COLUMN asserts m + n and n + m are identical
2nd COLUMN justifies assertion with evidence of the appropriate equality
DOT PATTERN : .(n + m)
- dot followed by an expression
- used when other info forces value matched to be equal to value of expression in dot pattern
Here: m + n ≡ n + m justified by matching +-comm m n with refl
------------------------------------------------------------------------------
-- using SUBSTITUTION instead of REWRITE
-}
even-comm″ : ∀ (m n : ℕ)
→ even (m + n)
------------
→ even (n + m)
even-comm″ m n
-- m + n ≡ n + m
-- v
--= subst even {!!}
--= subst {!!} (+-comm m n)
-- ^
-- Constraints
-- ?0 (n + m) =< even (n + m)
-- even (m + n) =< ?0 (m + n)
= subst even (+-comm m n)
{-
------------------------------------------------------------------------------
-- Leibniz equality : TWO OBJECTS EQUAL IFF THEY SATISFY THE SAME PROPERTIES.
The form of asserting equality so far is due to Martin Löf (1975).
Another form is due to Leibniz (1686).
Define Leibniz equality and show that two terms satisfy Leibniz equality
IFF they satisfy Martin Löf equality.
x ≐ y
holds if
every property P that holds of x also holds of y
also ensures converse
every property P that holds of y also holds of x
Let x and y be objects of type A.
x ≐ y holds if for every predicate P over type A we have that P x implies P y:
-}
_≐_ : ∀ {A : Set} (x y : A) → Set₁
_≐_ {A} x y = ∀ (P : A → Set) → P x → P y
{-
write _≐_ {A} x y (instead of infix) to provide access to the implicit parameter A
FIRST USE OF LEVELS
Cannot assign Set the type Set
- would lead to contradictions such as Russell’s Paradox and Girard’s Paradox
hierarchy of types, where Set : Set₁, Set₁ : Set₂, ...
'Set' is an abbreviation for 'Set₀'
Since the equation defining _≐_ mentions Set on the right-hand side,
the corresponding signature must use Set₁.
------------------------------------------------------------------------------
Leibniz equality is reflexive, transitive, symmetric
-}
-- reflexiviity follows by a variant of the identity function
refl-≐ : ∀ {A : Set} {x : A}
→ x ≐ x
refl-≐ P Px = Px
-- transitivity follows by a variant of function composition
trans-≐ : ∀ {A : Set} {x y z : A}
→ x ≐ y
→ y ≐ z
-----
→ x ≐ z
trans-≐ x≐y y≐z P Px = y≐z P (x≐y P Px)
-- show that if P x implies P y for all predicates P
-- then P y implies P x
sym-≐ : ∀ {A : Set} {x y : A}
→ x ≐ y -- given x ≐ y
-----
→ y ≐ x
sym-≐ {A} {x} {y} x≐y P = Qy -- TODO : where is 'P' in the signature?
where
Q : A → Set -- instantiate the equality with a predicate Q such that Q z holds
Q z = P z → P x -- if P z implies P x
Qx : Q x -- The property Q x is by reflexivity, and hence Q y follows from x ≐ y.
Qx = refl-≐ P
Qy : Q y -- Q y is the required proof : P y implies P x
Qy = x≐y Q Qx
{-
------------------------------------------------------------------------------
Martin Löf equality implies Leibniz equality
given x ≡ y
need for any P to take evidence of P x to evidence of P y
the equality of x and y implies that any proof of P x is also a proof of P y
follows from substitution
-}
≡-implies-≐ : ∀ {A : Set} {x y : A}
→ x ≡ y
-----
→ x ≐ y
≡-implies-≐ x≡y P = subst P x≡y
{-
------------------------------------------------------------------------------
Leibniz equality implies Martin Löf equality
given for any P we can take a proof of P x to a proof of P y
show x ≡ y
proof is similar to that for symmetry of Leibniz equality
-}
≐-implies-≡ : ∀ {A : Set} {x y : A}
→ x ≐ y
-----
→ x ≡ y
≐-implies-≡ {A} {x} {y} x≐y = Qy
where
Q : A → Set -- Q is predicate that holds of z if x ≡ z
Q z = x ≡ z
Qx : Q x -- Q x by reflexivity of Martin Löf equality
Qx = refl
Qy : Q y -- Q y follows from x ≐ y
Qy = x≐y Q Qx -- Q y is required proof : x ≡ y
{-
This section adapted from
≐≃≡: Leibniz Equality is Isomorphic to Martin-Löf Identity, Parametrically
draft/2017
by Andreas Abel, Jesper Cockx, Dominique Devries, Andreas Nuyts, and Philip Wadler
------------------------------------------------------------------------------
UNIVERSE POLYMORPHISM (aka LEVELs)
every type belongs somewhere in the hierarchy Set₀, Set₁, Set₂, ...
Set abbreviates Set₀
Set₀ : Set₁
Set₁ : Set₂
...
to compare values of a type that belongs to Set ℓ for some arbitrary level ℓ?
via UNIVERSE POLYMORPHISM
definition is made with respect to an arbitrary level ℓ
to use levels:
-}
open import Level using (Level; _⊔_) renaming (zero to lzero; suc to lsuc)
{-
rename constructors zero and suc to avoid confusion between levels and naturals
Levels are isomorphic to natural numbers, and have similar constructors:
lzero : Level
lsuc : Level → Level
Set₀, Set₁, Set₂, ... abbreviations for
Set lzero
Set (lsuc lzero)
Set (lsuc (lsuc lzero))
_⊔_ : Level → Level → Level
that given two levels returns the larger of the two.
-}
-- equality, generalised to an arbitrary level:
data _≡′_ {ℓ : Level} {A : Set ℓ} (x : A) : A → Set ℓ where
refl′ : x ≡′ x
-- generalised definition of symmetry:
sym′ : ∀ {ℓ : Level} {A : Set ℓ} {x y : A}
→ x ≡′ y
------
→ y ≡′ x
sym′ refl′ = refl′
{-
For simplicity, this book avoids universe polymorphism.
Most definitions in the standard library are generalised to arbitrary levels as above.
-}
-- generalised definition of Leibniz equality:
_≐′_ : ∀ {ℓ : Level} {A : Set ℓ} (x y : A) → Set (lsuc ℓ)
_≐′_ {ℓ} {A} x y = ∀ (P : A → Set ℓ) → P x → P y
{-
Before the signature used Set₁ as the type of a term that includes Set,
whereas here the signature uses Set (lsuc ℓ) as the type of a term that includes Set ℓ.
Most other functions in the standard library are also generalised to arbitrary levels.
-}
-- definition of composition.
_∘_ : ∀ {ℓ₁ ℓ₂ ℓ₃ : Level} {A : Set ℓ₁} {B : Set ℓ₂} {C : Set ℓ₃}
→ (B → C) → (A → B) → A → C
(g ∘ f) x = g (f x)
{-
------------------------------------------------------------------------------
Standard library
standard library defines _≡⟨_⟩_ as step-≡,
which reverses the order of the arguments
standard library defines a macro,imported when import step-≡
which recovers the original argument order:
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; trans; sym; cong; cong-app; subst)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; step-≡; _∎)
------------------------------------------------------------------------------
Unicode
≡ U+2261 IDENTICAL TO (\==, \equiv)
⟨ U+27E8 MATHEMATICAL LEFT ANGLE BRACKET (\<)
⟩ U+27E9 MATHEMATICAL RIGHT ANGLE BRACKET (\>)
∎ U+220E END OF PROOF (\qed)
≐ U+2250 APPROACHES THE LIMIT (\.=)
ℓ U+2113 SCRIPT SMALL L (\ell)
⊔ U+2294 SQUARE CUP (\lub)
₀ U+2080 SUBSCRIPT ZERO (\_0)
₁ U+2081 SUBSCRIPT ONE (\_1)
₂ U+2082 SUBSCRIPT TWO (\_2)
-}
| {
"alphanum_fraction": 0.4861833953,
"avg_line_length": 24.7926267281,
"ext": "agda",
"hexsha": "9578edfd598bf78818bab8922dfcb6fe2488fa12",
"lang": "Agda",
"max_forks_count": 8,
"max_forks_repo_forks_event_max_datetime": "2021-09-21T15:58:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-04-13T21:40:15.000Z",
"max_forks_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_forks_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x04equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_issues_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x04equality.agda",
"max_line_length": 96,
"max_stars_count": 36,
"max_stars_repo_head_hexsha": "3dc7abca7ad868316bb08f31c77fbba0d3910225",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "haroldcarr/learn-haskell-coq-ml-etc",
"max_stars_repo_path": "agda/book/Programming_Language_Foundations_in_Agda/x04equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-07-30T06:55:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-29T14:37:15.000Z",
"num_tokens": 5461,
"size": 16140
} |
module List where
data List (a : Set) : Set where
nil : List a
_::_ : a -> List a -> List a
nil2 : (\x -> x) ({a : Set} -> List a)
nil2 = nil {_}
tt : Set1 -> Set2
tt _ = Set1
map : {a b : Set} -> (a -> b) -> List a -> List b
map f nil = nil
map f (x :: xs) = f x :: map f xs
| {
"alphanum_fraction": 0.4519230769,
"avg_line_length": 18.3529411765,
"ext": "agda",
"hexsha": "516ebe51c7c83dc0eacf0cfafb8b1bdb62230b58",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/covered/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/covered/List.agda",
"max_line_length": 51,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/covered/List.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 123,
"size": 312
} |
module Issue892a where
record R : Set₁ where
field f : Set
g : Set
g = f
-- The type of R.g should print as (r : R) → Set
-- rather than ( : R) → Set.
bad : R.g
bad = ?
| {
"alphanum_fraction": 0.5698324022,
"avg_line_length": 12.7857142857,
"ext": "agda",
"hexsha": "5cc7812e246ff434061a77266db7cc91d0fb4c3f",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue892a.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue892a.agda",
"max_line_length": 48,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue892a.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 65,
"size": 179
} |
{-# OPTIONS --exact-split #-}
module Thesis.SIRelBigStep.DOpSem where
open import Data.Nat
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Thesis.SIRelBigStep.DLangDerive public
open import Thesis.SIRelBigStep.OpSem public
open import Thesis.SIRelBigStep.DSyntax public
data DVal : Type → Set
import Base.Denotation.Environment
module D = Base.Denotation.Environment DType DVal
ChΔ : ∀ (Δ : Context) → Set
ChΔ Δ = D.⟦ Δ ⟧Context
data DVal where
bang : ∀ {τ} → Val τ → DVal τ
dclosure : ∀ {Γ σ τ} → (dt : DTerm (σ • Γ) τ) → (ρ : ⟦ Γ ⟧Context) → (dρ : ChΔ Γ) → DVal (σ ⇒ τ)
dnatV : ∀ (n : ℕ) → DVal nat
dpairV : ∀ {σ τ} → DVal σ → DVal τ → DVal (pair σ τ)
_⊕_ : ∀ {τ} → (v1 : Val τ) (dv : DVal τ) → Val τ
_⊕ρ_ : ∀ {Γ} → ⟦ Γ ⟧Context → ChΔ Γ → ⟦ Γ ⟧Context
∅ ⊕ρ ∅ = ∅
(v • ρ1) ⊕ρ (dv • dρ) = v ⊕ dv • ρ1 ⊕ρ dρ
v1 ⊕ bang v2 = v2
closure {Γ} t ρ ⊕ dclosure {Γ1} dt ρ₁ dρ with Γ ≟Ctx Γ1
closure {Γ} t ρ ⊕ dclosure {.Γ} dt ρ₁ dρ | yes refl = closure t (ρ ⊕ρ dρ)
... | no ¬p = closure t ρ
natV n ⊕ dnatV dn = natV (n + dn)
pairV v1 v2 ⊕ dpairV dv1 dv2 = pairV (v1 ⊕ dv1) (v2 ⊕ dv2)
inv-Δτ-nat : ∀ τ → Δτ τ ≡ nat → τ ≡ nat
inv-Δτ-nat nat refl = refl
inv-Δτ-nat (τ ⇒ τ₁) ()
inv-Δτ-nat (pair τ τ₁) ()
deval-const : ∀ {τ} → Const (Δτ τ) → DVal τ
deval-const {σ} c with Δτ σ | inv-Δτ-nat σ
deval-const {σ} (lit n) | .nat | inv-σ with inv-σ refl
deval-const {.nat} (lit n) | .nat | inv-σ | refl = dnatV n
deval : ∀ {Γ τ} (sv : DSVal Γ τ) (ρ : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) → DVal τ
deval (dvar x) ρ dρ = D.⟦ x ⟧Var dρ
deval (dabs dt) ρ dρ = dclosure dt ρ dρ
deval (dcons dsv1 dsv2) ρ dρ = dpairV (deval dsv1 ρ dρ) (deval dsv2 ρ dρ)
deval (dconst c) ρ dρ = deval-const c
deval-primitive : ∀ {σ τ} → Primitive (σ ⇒ τ) → Val σ → DVal σ → DVal τ
deval-primitive succ (natV _) (bang (natV n2)) = bang (natV (suc n2))
deval-primitive succ (natV n) (dnatV dn) = dnatV dn
deval-primitive add (pairV _ _) (dpairV (dnatV da) (dnatV db)) = dnatV (da + db)
deval-primitive add (pairV _ _) (bang p2) = bang (eval-primitive add p2)
-- During the proof we need to know which clauses hold definitionally, and sadly we can't get a single equation here.
deval-primitive add p1 @ (pairV a1 b1) dp @ (dpairV (dnatV da) (bang b2)) = bang (eval-primitive add (p1 ⊕ dp))
deval-primitive add p1 @ (pairV a1 b1) dp @ (dpairV (bang a2) db) = bang (eval-primitive add (p1 ⊕ dp))
deval-derive-const-inv : ∀ {τ Γ} (c : Const τ) (ρ : ⟦ Γ ⟧Context) dρ → deval (derive-const c) ρ dρ ≡ deval (derive-const c) ∅ ∅
deval-derive-const-inv (lit n) ρ dρ = refl
data _D_⊢_↓_ {Γ} (ρ : ⟦ Γ ⟧Context) (dρ : ChΔ Γ) : ∀ {τ} → DTerm Γ τ → DVal τ → Set where
dval : ∀ {τ} (sv : DSVal Γ τ) →
ρ D dρ ⊢ dval sv ↓ deval sv ρ dρ
dprimapp : ∀ {σ τ} (p : Primitive (σ ⇒ τ)) (sv : SVal Γ σ) dsv →
ρ D dρ ⊢ dprimapp p sv dsv ↓ deval-primitive p (eval sv ρ) (deval dsv ρ dρ)
dapp : ∀ {hasIdx} {n : Idx hasIdx}
{Γ′ σ τ ρ′ dρ′}
{dvs} {vt} {dvt}
{vtv} {dvtv}
{dt : DTerm (σ • Γ′) τ} {dv} →
ρ D dρ ⊢ dval dvs ↓ dclosure dt ρ′ dρ′ →
ρ ⊢ val vt ↓[ n ] vtv →
ρ D dρ ⊢ dval dvt ↓ dvtv →
(vtv • ρ′) D (dvtv • dρ′) ⊢ dt ↓ dv →
ρ D dρ ⊢ dapp dvs vt dvt ↓ dv
dlett : ∀ {hasIdx} {n : Idx hasIdx}
{σ τ} {s : Term Γ σ} {ds} {dt : DTerm (σ • Γ) τ}
{vsv dvsv dv} →
ρ ⊢ s ↓[ n ] vsv →
ρ D dρ ⊢ ds ↓ dvsv →
(vsv • ρ) D (dvsv • dρ) ⊢ dt ↓ dv →
ρ D dρ ⊢ dlett s ds dt ↓ dv
bangapp : ∀ {hasIdx1 hasIdx2}
{n1 : Idx hasIdx1}
{n2 : Idx hasIdx2}
{Γ′ σ τ ρ′}
{dvs} {vt} {dvt}
{vtv1 dvtv}
{t : Term (σ • Γ′) τ} {v2} →
ρ D dρ ⊢ dval dvs ↓ bang (closure t ρ′) →
ρ ⊢ val vt ↓[ n1 ] vtv1 →
ρ D dρ ⊢ dval dvt ↓ dvtv →
(vtv1 ⊕ dvtv • ρ′) ⊢ t ↓[ n2 ] v2 →
ρ D dρ ⊢ dapp dvs vt dvt ↓ bang v2
| {
"alphanum_fraction": 0.5775656325,
"avg_line_length": 37.71,
"ext": "agda",
"hexsha": "ff191437ed4ee05c3d03ffd8ab8930c935d916e4",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/SIRelBigStep/DOpSem.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/SIRelBigStep/DOpSem.agda",
"max_line_length": 127,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/SIRelBigStep/DOpSem.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 1765,
"size": 3771
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.FunExtEquiv where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
-- Function extensionality is an equivalence.
module _ {ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'} {f g : (x : A) → B x} where
private
appl : f ≡ g → ∀ x → f x ≡ g x
appl eq x i = eq i x
fib : (p : f ≡ g) → fiber (funExt {B = B}) p
fib p = (appl p , refl)
funExt-fiber-isContr
: (p : f ≡ g)
→ (fi : fiber (funExt {B = B}) p)
→ fib p ≡ fi
funExt-fiber-isContr p (h , eq) i = (appl (eq (~ i)) , λ j → eq (~ i ∨ j))
funExt-isEquiv : isEquiv (funExt {B = B})
equiv-proof funExt-isEquiv p = (fib p , funExt-fiber-isContr p)
funExtEquiv : (∀ x → f x ≡ g x) ≃ (f ≡ g)
funExtEquiv = (funExt {B = B} , funExt-isEquiv)
funExtPath : (∀ x → f x ≡ g x) ≡ (f ≡ g)
funExtPath = ua funExtEquiv
| {
"alphanum_fraction": 0.5884773663,
"avg_line_length": 28.5882352941,
"ext": "agda",
"hexsha": "09312da1b72274dbbc6f32e266fbe540f2643a6b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/Foundations/FunExtEquiv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/Foundations/FunExtEquiv.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/Foundations/FunExtEquiv.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 368,
"size": 972
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Sums (disjoint unions)
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Sum where
open import Function
open import Data.Unit.Base using (⊤; tt)
open import Data.Maybe.Base using (Maybe; just; nothing)
open import Level
open import Agda.Builtin.Equality
------------------------------------------------------------------------
-- Re-export content from base module
open import Data.Sum.Base public
------------------------------------------------------------------------
-- Additional functions
module _ {a b} {A : Set a} {B : Set b} where
isInj₁ : A ⊎ B → Maybe A
isInj₁ (inj₁ x) = just x
isInj₁ (inj₂ y) = nothing
isInj₂ : A ⊎ B → Maybe B
isInj₂ (inj₁ x) = nothing
isInj₂ (inj₂ y) = just y
From-inj₁ : A ⊎ B → Set a
From-inj₁ (inj₁ _) = A
From-inj₁ (inj₂ _) = Lift a ⊤
from-inj₁ : (x : A ⊎ B) → From-inj₁ x
from-inj₁ (inj₁ x) = x
from-inj₁ (inj₂ _) = _
From-inj₂ : A ⊎ B → Set b
From-inj₂ (inj₁ _) = Lift b ⊤
From-inj₂ (inj₂ _) = B
from-inj₂ : (x : A ⊎ B) → From-inj₂ x
from-inj₂ (inj₁ _) = _
from-inj₂ (inj₂ x) = x
| {
"alphanum_fraction": 0.4779116466,
"avg_line_length": 24.9,
"ext": "agda",
"hexsha": "643939df93d17f7125530bcf74ee43ad13228b9b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Sum.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 379,
"size": 1245
} |
open import Agda.Primitive
open import Data.List
-- f1 : {l : Level} -> (a : Set l) -> (x : a) -> (y : x) -> x
-- f1 : (a : Set2) -> (x : a) -> (y : x) -> x
-- f1 a x y = ?
f0 : (a : Set) -> (x : a) -> a
f0 a x = x
f1 : (a : Set1) -> (x : a) -> a
f1 a x = x
myprod : (As : List Set) -> Set
myprod = {!!}
mysum : (As : List Set) -> Set
mysum = {!!}
hej : (tyOp : List Set -> Set) -> Set
hej = {!!}
test1 = hej myprod
test2 = hej mysum
Type = Set
data Dummy : Set where Dum : Dummy
-- Start of example
hej2 : List Type -> Type -- Is universe-monomorphic in Agda, but polymorphic in Idris
hej2 (t ∷ ts) = t
hej2 _ = ?
test21 : Type
test21 = hej2 [ Type ] -- test21 == Type in Idris, but Agda complains
test22 : Type
test22 = hej2 [ Dummy ] -- test22 == Dummy
| {
"alphanum_fraction": 0.5380645161,
"avg_line_length": 19.375,
"ext": "agda",
"hexsha": "4a50f51267200cd912fedd98b875686e7cc7c648",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-27T16:25:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-27T16:25:18.000Z",
"max_forks_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hjorthjort/IdrisToAgda",
"max_forks_repo_path": "univ.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1",
"max_issues_repo_issues_event_max_datetime": "2019-11-28T17:52:42.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-11-28T17:52:42.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hjorthjort/IdrisToAgda",
"max_issues_repo_path": "univ.agda",
"max_line_length": 89,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "a5f65e28cc9fdfefde49e7d8cf84486601b9e7b1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hjorthjort/IdrisToAgda",
"max_stars_repo_path": "univ.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-29T20:42:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-16T23:22:50.000Z",
"num_tokens": 309,
"size": 775
} |
{-# OPTIONS --allow-unsolved-metas #-}
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Relation.Nullary using (¬_; Dec; yes; no)
open import Data.List hiding ( [_] )
open import finiteSet
module derive ( Σ : Set) ( fin : FiniteSet Σ ) ( eq? : (x y : Σ) → Dec (x ≡ y)) where
-- open import nfa
open import Data.Nat
-- open import Data.Nat hiding ( _<_ ; _>_ )
-- open import Data.Fin hiding ( _<_ )
open import finiteSetUtil
open import automaton
open import logic
open import regex
open FiniteSet
-- whether a regex accepts empty input
--
empty? : Regex Σ → Bool
empty? ε = true
empty? φ = false
empty? (x *) = true
empty? (x & y) = empty? x /\ empty? y
empty? (x || y) = empty? x \/ empty? y
empty? < x > = false
derivative : Regex Σ → Σ → Regex Σ
derivative ε s = φ
derivative φ s = φ
derivative (x *) s with derivative x s
... | ε = x *
... | φ = φ
... | t = t & (x *)
derivative (x & y) s with empty? x
... | true with derivative x s | derivative y s
... | ε | φ = φ
... | ε | t = y || t
... | φ | t = t
... | x1 | φ = x1 & y
... | x1 | y1 = (x1 & y) || y1
derivative (x & y) s | false with derivative x s
... | ε = y
... | φ = φ
... | t = t & y
derivative (x || y) s with derivative x s | derivative y s
... | φ | y1 = y1
... | x1 | φ = x1
... | x1 | y1 = x1 || y1
derivative < x > s with eq? x s
... | yes _ = ε
... | no _ = φ
data regex-states (x : Regex Σ ) : Regex Σ → Set where
unit : regex-states x x
derive : { y : Regex Σ } → regex-states x y → (s : Σ) → regex-states x ( derivative y s )
record Derivative (x : Regex Σ ) : Set where
field
state : Regex Σ
is-derived : regex-states x state
open Derivative
open import Data.Fin hiding (_<_)
-- derivative generates (x & y) || ... form. y and x part is a substerm of original regex
-- since subterm is finite, only finite number of state is generated for each operator
-- this does not work, becuase it depends on input sequences
-- finite-derivative : (r : Regex Σ) → FiniteSet Σ → FiniteSet (Derivative r)
-- order : Regex Σ → ℕ
-- decline-derive : (x : Regex Σ ) (i : Σ ) → 0 < order x → order (derivative x i) < order x
-- is not so easy
-- in case of automaton, number of derivative is limited by iteration of input length, so it is finite.
-- so we cannot say derived automaton is finite i.e. regex-match is regular language now
regex→automaton : (r : Regex Σ) → Automaton (Derivative r) Σ
regex→automaton r = record { δ = λ d s → record { state = derivative (state d) s ; is-derived = derive-step d s} ; aend = λ d → empty? (state d) } where
derive-step : (d0 : Derivative r) → (s : Σ) → regex-states r (derivative (state d0) s)
derive-step d0 s = derive (is-derived d0) s
regex-match : (r : Regex Σ) → (List Σ) → Bool
regex-match ex is = accept ( regex→automaton ex ) record { state = ex ; is-derived = unit } is
open import Relation.Binary.Definitions
cmp-regex : (x y : Regex Σ) → Dec ( x ≡ y )
cmp-regex ε ε = yes refl
cmp-regex ε φ = no (λ ())
cmp-regex ε (y *) = no (λ ())
cmp-regex ε (y & y₁) = no (λ ())
cmp-regex ε (y || y₁) = no (λ ())
cmp-regex ε < x > = no (λ ())
cmp-regex φ ε = no (λ ())
cmp-regex φ φ = yes refl
cmp-regex φ (y *) = no (λ ())
cmp-regex φ (y & y₁) = no (λ ())
cmp-regex φ (y || y₁) = no (λ ())
cmp-regex φ < x > = no (λ ())
cmp-regex (x *) ε = no (λ ())
cmp-regex (x *) φ = no (λ ())
cmp-regex (x *) (y *) with cmp-regex x y
... | yes refl = yes refl
... | no ne = no (λ x → ne (cmp1 x)) where
cmp1 : (x *) ≡ (y *) → x ≡ y
cmp1 refl = refl
cmp-regex (x *) (y & y₁) = no (λ ())
cmp-regex (x *) (y || y₁) = no (λ ())
cmp-regex (x *) < x₁ > = no (λ ())
cmp-regex (x & x₁) ε = no (λ ())
cmp-regex (x & x₁) φ = no (λ ())
cmp-regex (x & x₁) (y *) = no (λ ())
cmp-regex (x & x₁) (y & y₁) with cmp-regex x y | cmp-regex x₁ y₁
... | yes refl | yes refl = yes refl
... | no ne | _ = no (λ x → ne (cmp1 x)) where
cmp1 : x & x₁ ≡ y & y₁ → x ≡ y
cmp1 refl = refl
... | _ | no ne = no (λ x → ne (cmp1 x)) where
cmp1 : x & x₁ ≡ y & y₁ → x₁ ≡ y₁
cmp1 refl = refl
cmp-regex (x & x₁) (y || y₁) = no (λ ())
cmp-regex (x & x₁) < x₂ > = no (λ ())
cmp-regex (x || x₁) ε = no (λ ())
cmp-regex (x || x₁) φ = no (λ ())
cmp-regex (x || x₁) (y *) = no (λ ())
cmp-regex (x || x₁) (y & y₁) = no (λ ())
cmp-regex (x || x₁) (y || y₁) with cmp-regex x y | cmp-regex x₁ y₁
... | yes refl | yes refl = yes refl
... | no ne | _ = no (λ x → ne (cmp1 x)) where
cmp1 : x || x₁ ≡ y || y₁ → x ≡ y
cmp1 refl = refl
... | _ | no ne = no (λ x → ne (cmp1 x)) where
cmp1 : x || x₁ ≡ y || y₁ → x₁ ≡ y₁
cmp1 refl = refl
cmp-regex (x || x₁) < x₂ > = no (λ ())
cmp-regex < x > ε = no (λ ())
cmp-regex < x > φ = no (λ ())
cmp-regex < x > (y *) = no (λ ())
cmp-regex < x > (y & y₁) = no (λ ())
cmp-regex < x > (y || y₁) = no (λ ())
cmp-regex < x > < x₁ > with equal? fin x x₁ | inspect ( equal? fin x ) x₁
... | false | record { eq = eq } = no (λ x → ¬-bool eq (cmp1 x)) where
cmp1 : < x > ≡ < x₁ > → equal? fin x x₁ ≡ true
cmp1 refl = equal?-refl fin
... | true | record { eq = eq } with equal→refl fin eq
... | refl = yes refl
insert : List (Regex Σ) → (Regex Σ) → List (Regex Σ)
insert [] k = k ∷ []
insert (x ∷ t) k with cmp-regex k x
... | no n = x ∷ (insert t k)
... | yes y = x ∷ t
regex-derive : List (Regex Σ) → List (Regex Σ)
regex-derive t = regex-derive0 t t where
regex-derive1 : Regex Σ → List Σ → List (Regex Σ) → List (Regex Σ)
regex-derive1 x [] t = t
regex-derive1 x (i ∷ t) r = regex-derive1 x t (insert r (derivative x i))
regex-derive0 : List (Regex Σ) → List (Regex Σ) → List (Regex Σ)
regex-derive0 [] t = t
regex-derive0 (x ∷ r) t = regex-derive0 r (regex-derive1 x (to-list fin (λ _ → true)) t)
--
-- if (Derivative r is finite, regex→automaton is finite
--
drive-is-finite : (r : Regex Σ) → FiniteSet (Derivative r)
drive-is-finite ε = {!!}
drive-is-finite φ = {!!}
drive-is-finite (r *) = {!!} where
d1 : FiniteSet (Derivative r )
d1 = drive-is-finite r
drive-is-finite (r & r₁) = {!!}
drive-is-finite (r || r₁) = {!!}
drive-is-finite < x > = {!!}
| {
"alphanum_fraction": 0.5567127746,
"avg_line_length": 34.5224719101,
"ext": "agda",
"hexsha": "2bcd51eb76f2c333eaa3b7a17139d84e1571f7e1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/derive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/derive.agda",
"max_line_length": 153,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/derive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2285,
"size": 6145
} |
-- Insertion sort
{-# OPTIONS --without-K --safe #-}
module Algorithms.List.Sort.Insertion where
-- agda-stdlib
open import Data.Bool hiding (_≤_; _≤?_; _<_)
open import Data.List
import Data.Nat as ℕ
open import Relation.Binary as B
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Relation.Nullary
module InsertionSortOperation
{a r} {A : Set a} {_≤_ : Rel A r} (_≤?_ : B.Decidable _≤_)
where
-- swap : A x A → A × A
-- swap ∘ swap ≡ id
-- ifTrueSwap : Bool → A × A → A × A
-- ifTrueSwap x ∘ ifTrueSwap y ≡ ifTrueSwap (xor x y)
-- x : A → A ≡ Unit ⊎ (Σ A (λ y → x ≢ y))
insert : A → List A → List A
insert x [] = [ x ]
insert x (y ∷ ys) with x ≤? y
... | true because _ = x ∷ y ∷ ys
... | false because _ = y ∷ insert x ys
-- | Insertion sort
sort : List A → List A
sort = foldr insert []
private
open InsertionSortOperation ℕ._≤?_
_ : sort (5 ∷ 2 ∷ 4 ∷ 3 ∷ 1 ∷ []) ≡ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ []
_ = refl
| {
"alphanum_fraction": 0.587398374,
"avg_line_length": 24.6,
"ext": "agda",
"hexsha": "55b6a9180bea484da03551adf5e26fd19a8103a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Algorithms/List/Sort/Insertion.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Algorithms/List/Sort/Insertion.agda",
"max_line_length": 67,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Algorithms/List/Sort/Insertion.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 363,
"size": 984
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.Instance.Sets where
-- Category of (Agda) Sets, aka (types, functions, pointwise equality with implicit value)
-- Note the (explicit) levels in each
open import Level
open import Relation.Binary
open import Function using (_∘′_) renaming (id to idf)
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
open import Categories.Category
Sets : ∀ o → Category (suc o) o o
Sets o = record
{ Obj = Set o
; _⇒_ = λ c d → c → d
; _≈_ = λ f g → ∀ {x} → f x ≡ g x
; id = idf
; _∘_ = _∘′_
; assoc = ≡.refl
; sym-assoc = ≡.refl
; identityˡ = ≡.refl
; identityʳ = ≡.refl
; identity² = ≡.refl
; equiv = record
{ refl = ≡.refl
; sym = λ eq → ≡.sym eq
; trans = λ eq₁ eq₂ → ≡.trans eq₁ eq₂
}
; ∘-resp-≈ = resp
}
where resp : ∀ {A B C : Set o} {f h : B → C} {g i : A → B} →
({x : B} → f x ≡ h x) →
({x : A} → g x ≡ i x) → {x : A} → f (g x) ≡ h (i x)
resp {h = h} eq₁ eq₂ = ≡.trans eq₁ (≡.cong h eq₂)
| {
"alphanum_fraction": 0.5242451967,
"avg_line_length": 29.5405405405,
"ext": "agda",
"hexsha": "af24c7aca5e619016fbbebb06eedf0344b517680",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Instance/Sets.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Instance/Sets.agda",
"max_line_length": 90,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Instance/Sets.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 418,
"size": 1093
} |
{-# OPTIONS --cubical --safe --postfix-projections #-}
open import Prelude
open import Relation.Binary
module Data.RBTree {e} {E : Type e} {r₁ r₂} (totalOrder : TotalOrder E r₁ r₂) where
open import Relation.Binary.Construct.Bounded totalOrder
open TotalOrder totalOrder using (_≤?_)
data Colour : Type where
red black : Colour
add-black : Colour → ℕ → ℕ
add-black red = λ n → n
add-black black = suc
private
variable
n : ℕ
data Tree (lb ub : [∙]) : ℕ → Type (e ℓ⊔ r₂) where
leaf : lb [≤] ub → Tree lb ub n
node : (x : E) → (c : Colour) → Tree lb [ x ] n → Tree [ x ] ub n → Tree lb ub (add-black c n)
private
variable
lb ub : [∙]
IsBlack : Tree lb ub n → Type
IsBlack (leaf x) = ⊤
IsBlack (node x red tr tr₁) = ⊥
IsBlack (node x black tr tr₁) = ⊤
Valid-rec : Tree lb ub n → Type
Valid-rec (leaf x) = ⊤
Valid-rec (node x red xs ys) = IsBlack xs × IsBlack ys × Valid-rec xs × Valid-rec ys
Valid-rec (node x black xs ys) = Valid-rec xs × Valid-rec ys
Valid : Tree lb ub n → Type
Valid tr = IsBlack tr × Valid-rec tr
-- insertWithin : (x : E) →
-- (lb [≤] [ x ]) →
-- ([ x ] [≤] ub) →
-- (tr : Tree lb ub n) →
-- Valid-rec tr →
-- ∃ c Σ (Tree lb ub (add-black c n)) Valid-rec
-- insertWithin x lb≤x x≤ub (leaf _) val = red , node x red (leaf lb≤x) (leaf x≤ub) , tt , tt , tt , tt
-- insertWithin x lb≤x x≤ub (node y c ls rs) val with x ≤? y
-- insertWithin x lb≤x x≤ub (node y red ls rs) val | inl x≤y with insertWithin x lb≤x x≤y ls (fst (snd (snd val)))
-- insertWithin x lb≤x x≤ub (node y red ls rs) val | inl x≤y | red , ls′ , val′ = black , node y black ls′ rs , val′ , snd (snd (snd val))
-- insertWithin x lb≤x x≤ub (node y red ls rs) val | inl x≤y | black , ls′ , val′ = {!{!!} , node y {!!} ls′ rs , {!!}!}
-- insertWithin x lb≤x x≤ub (node y black ls rs) val | inl x≤y with insertWithin x lb≤x x≤y ls (fst val)
-- insertWithin x lb≤x x≤ub (node y black ls rs) val | inl x≤y | res = {!!}
-- insertWithin x lb≤x x≤ub (node y c ls rs) val | inr y≤x = {!!}
-- -- insertWithin x lb≤x x≤ub (node y ls rs) with x ≤? y
-- -- insertWithin x lb≤x x≤ub (node y ls rs) | inl x≤y = node y (insertWithin x lb≤x x≤y ls) rs
-- -- insertWithin x lb≤x x≤ub (node y ls rs) | inr y≤x = node y ls (insertWithin x y≤x x≤ub rs)
| {
"alphanum_fraction": 0.582761578,
"avg_line_length": 37.0158730159,
"ext": "agda",
"hexsha": "738c5289fdd242c32bb63899de746e726e5631e1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/RBTree.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/RBTree.agda",
"max_line_length": 143,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/RBTree.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 878,
"size": 2332
} |
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.Instances.Polynomials.UnivariatePolyList where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat using (ℕ ; zero ; suc)
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Polynomials.UnivariateList.Base
open import Cubical.Algebra.Polynomials.UnivariateList.Properties
private
variable
ℓ : Level
open CommRingStr
module _ (R : CommRing ℓ) where
open PolyMod R
open PolyModTheory R
UnivariatePolyList : CommRing ℓ
fst UnivariatePolyList = Poly R
0r (snd UnivariatePolyList) = 0P
1r (snd UnivariatePolyList) = 1P
_+_ (snd UnivariatePolyList) = _Poly+_
_·_ (snd UnivariatePolyList) = _Poly*_
- snd UnivariatePolyList = Poly-
isCommRing (snd UnivariatePolyList) = makeIsCommRing isSetPoly
Poly+Assoc Poly+Rid Poly+Inverses Poly+Comm
Poly*Associative Poly*Rid Poly*LDistrPoly+ Poly*Commutative
nUnivariatePolyList : (A' : CommRing ℓ) → (n : ℕ) → CommRing ℓ
nUnivariatePolyList A' zero = A'
nUnivariatePolyList A' (suc n) = UnivariatePolyList (nUnivariatePolyList A' n)
| {
"alphanum_fraction": 0.725,
"avg_line_length": 30.5263157895,
"ext": "agda",
"hexsha": "8c9baf9506c0e69c4f48129daaa17abd3063c038",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/UnivariatePolyList.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/UnivariatePolyList.agda",
"max_line_length": 95,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/Instances/Polynomials/UnivariatePolyList.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 343,
"size": 1160
} |
module SizedPolyIO.IOObject where
open import Data.Product
open import Level using (_⊔_) renaming (suc to lsuc)
open import Size
open import SizedPolyIO.Base
open import SizedPolyIO.Object
-- An IO object is like a simple object,
-- but the method returns IO applied to the result type of a simple object
-- which means the method returns an IO program which when terminating
-- returns the result of the simple object
module _ {γ ρ} (ioi : IOInterface γ ρ) (let C = Command ioi) (let R = Response ioi)
{μ σ} (oi : Interface μ σ) (let M = Method oi) (let Rt = Result oi)
where
record IOObject (i : Size) : Set (ρ ⊔ γ ⊔ μ ⊔ σ) where
coinductive
field
method : ∀{j : Size< i} (m : M) → IO ioi ∞ (Rt m × IOObject j)
open IOObject public
| {
"alphanum_fraction": 0.6700507614,
"avg_line_length": 29.1851851852,
"ext": "agda",
"hexsha": "bfe4681ab4c8895ce800e4600f1a184b7c651bf7",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z",
"max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/ooAgda",
"max_forks_repo_path": "src/SizedPolyIO/IOObject.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/ooAgda",
"max_issues_repo_path": "src/SizedPolyIO/IOObject.agda",
"max_line_length": 91,
"max_stars_count": 23,
"max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/ooAgda",
"max_stars_repo_path": "src/SizedPolyIO/IOObject.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z",
"num_tokens": 240,
"size": 788
} |
module Relator.Category where
open import Data
open import Data.Tuple
import Lvl
open import Structure.Categorical.Properties
open import Structure.Category
open import Structure.Operator
open import Type
private variable ℓ : Lvl.Level
| {
"alphanum_fraction": 0.8230452675,
"avg_line_length": 20.25,
"ext": "agda",
"hexsha": "f37d788119a901db64f7a0e2f62e7c183021e557",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Relator/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Relator/Category.agda",
"max_line_length": 44,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Relator/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 51,
"size": 243
} |
module Prelude.IO where
open import Prelude.Function
open import Prelude.Functor
open import Prelude.Applicative
open import Prelude.Monad
open import Prelude.List
open import Prelude.String
open import Prelude.Char
open import Prelude.Unit
open import Prelude.Show
open import Prelude.Nat
open import Agda.Builtin.IO public
postulate
ioReturn : ∀ {a} {A : Set a} → A → IO A
ioBind : ∀ {a b} {A : Set a} {B : Set b} → IO A → (A → IO B) → IO B
{-# COMPILE GHC ioReturn = (\ _ _ -> return) #-}
{-# COMPILE GHC ioBind = (\ _ _ _ _ -> (>>=)) #-}
{-# COMPILE UHC ioReturn = (\ _ _ x -> UHC.Agda.Builtins.primReturn x) #-}
{-# COMPILE UHC ioBind = (\ _ _ _ _ x y -> UHC.Agda.Builtins.primBind x y) #-}
ioMap : ∀ {a b} {A : Set a} {B : Set b} → (A → B) → IO A → IO B
ioMap f m = ioBind m λ x → ioReturn (f x)
instance
FunctorIO : ∀ {a} → Functor {a} IO
fmap {{FunctorIO}} = ioMap
ApplicativeIO : ∀ {a} → Applicative {a} IO
pure {{ApplicativeIO}} = ioReturn
_<*>_ {{ApplicativeIO}} = monadAp ioBind
MonadIO : ∀ {a} → Monad {a} IO
_>>=_ {{MonadIO}} = ioBind
FunctorIO′ : ∀ {a b} → Functor′ {a} {b} IO
fmap′ {{FunctorIO′}} = ioMap
ApplicativeIO′ : ∀ {a b} → Applicative′ {a} {b} IO
_<*>′_ {{ApplicativeIO′}} = monadAp′ ioBind
MonadIO′ : ∀ {a b} → Monad′ {a} {b} IO
_>>=′_ {{MonadIO′}} = ioBind
--- Terminal IO ---
postulate
getChar : IO Char
putChar : Char → IO Unit
putStr : String → IO Unit
putStrLn : String → IO Unit
{-# FOREIGN GHC import qualified Data.Text as Text #-}
{-# FOREIGN GHC import qualified Data.Text.IO as Text #-}
{-# COMPILE GHC getChar = getChar #-}
{-# COMPILE GHC putChar = putChar #-}
{-# COMPILE GHC putStr = Text.putStr #-}
{-# COMPILE GHC putStrLn = Text.putStrLn #-}
{-# COMPILE UHC putStr = (UHC.Agda.Builtins.primPutStr) #-}
{-# COMPILE UHC putStrLn = (UHC.Agda.Builtins.primPutStrLn) #-}
print : ∀ {a} {A : Set a} {{ShowA : Show A}} → A → IO Unit
print = putStrLn ∘ show
--- Command line arguments ---
{-# FOREIGN GHC import System.Environment (getArgs, getProgName) #-}
postulate
getArgs : IO (List String)
getProgName : IO String
{-# COMPILE GHC getArgs = fmap (map Text.pack) getArgs #-}
{-# COMPILE GHC getProgName = fmap Text.pack getProgName #-}
--- Misc ---
{-# FOREIGN GHC import System.Exit #-}
data ExitCode : Set where
Success : ExitCode
-- TODO we probably should also enforce an upper limit?
Failure : (n : Nat) → {p : NonZero n} → ExitCode
private
{-# FOREIGN GHC exitWith' x = exitWith (if x == 0 then ExitSuccess else ExitFailure $ fromInteger x) #-}
postulate
exitWith' : ∀ {a} {A : Set a} → Nat → IO A
{-# COMPILE GHC exitWith' = \ _ _ -> exitWith' #-}
exitWith : ∀ {a} {A : Set a} → ExitCode → IO A
exitWith Success = exitWith' 0
exitWith (Failure i) = exitWith' i
| {
"alphanum_fraction": 0.6225680934,
"avg_line_length": 27.7156862745,
"ext": "agda",
"hexsha": "4b6950fa34f7f76686b03ab9433bb315b4900b5f",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Prelude/IO.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Prelude/IO.agda",
"max_line_length": 106,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Prelude/IO.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 918,
"size": 2827
} |
------------------------------------------------------------------------
-- The two methods used to specify the grammars are (language)
-- equivalent (for acyclic graphs)
------------------------------------------------------------------------
open import Mixfix.Expr
open import Mixfix.Acyclic.PrecedenceGraph
using (acyclic; precedence)
module Mixfix.Equivalence
(g : PrecedenceGraphInterface.PrecedenceGraph acyclic)
where
open import Function using (_∘_)
open import Data.List using (List; []; _∷_)
open import Data.List.NonEmpty using (_∷_)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Product
open import Data.Vec using (Vec; []; _∷_)
open import TotalParserCombinators.Parser
open import TotalParserCombinators.Semantics
open import TotalParserCombinators.Semantics.Continuation as ContSem
import StructurallyRecursiveDescentParsing.Simplified as Simplified
import StructurallyRecursiveDescentParsing.Simplified.Semantics as SSem
open import Mixfix.Fixity
open import Mixfix.Operator
import Mixfix.Acyclic.Grammar
import Mixfix.Cyclic.Grammar
import Mixfix.Acyclic.Lemma
private
module Acyclic = Mixfix.Acyclic.Grammar g
module ALemma = Mixfix.Acyclic.Lemma g
module Cyclic = Mixfix.Cyclic.Grammar acyclic g
open import Mixfix.Acyclic.Lib as ALib
open ALib.Semantics-⊕ renaming (_⊕_∈⟦_⟧·_ to _⊕_∈⟦_⟧A·_)
open import Mixfix.Cyclic.Lib as CLib renaming (⟦_⟧ to ⟦_⟧C)
open CLib.Semantics-⊕ renaming (_⊕_∈⟦_⟧·_ to _⊕_∈⟦_⟧C·_)
open PrecedenceCorrect acyclic g
⟦_⟧A : ∀ {R} → ALib.ParserProg R → Parser NamePart R []
⟦ p ⟧A = Simplified.⟦_⟧ (ALib.⟦_⟧ p)
module AcyclicToCyclic where
mutual
precs : ∀ ps {s s′ e} →
e ⊕ s′ ∈⟦ Acyclic.precs ps ⟧A· s →
e ⊕ s′ ∈⟦ Cyclic.precs ps ⟧C· s
precs [] ()
precs (p ∷ ps) (∣ˡ (<$> e∈p)) = ∣ˡ (<$> prec p e∈p)
precs (p ∷ ps) (∣ʳ (<$> e∈ps)) = ∣ʳ (<$> precs ps e∈ps)
prec : ∀ p {s s′ e} →
e ⊕ s′ ∈⟦ Acyclic.prec p ⟧A· s →
e ⊕ s′ ∈⟦ Cyclic.prec p ⟧C· s
prec (precedence ops sucs) e∈ = prec′ e∈
where
p = precedence ops sucs
module A = Acyclic.Prec ops sucs
module C = Cyclic.Prec p
preRight : ∀ {s s′ f} →
f ⊕ s′ ∈⟦ A.preRight ⟧A· s →
f ⊕ s′ ∈⟦ C.preRight ⟧C· s
preRight (∣ˡ (<$> i∈)) = ∣ˡ (<$> inner _ i∈)
preRight (∣ʳ (<$> ↑∈ ⊛ i∈)) = ∣ʳ (<$> precs _ ↑∈ ⊛ inner _ i∈)
preRight⁺ : ∀ {s s′ s″ fs e} →
fs ⊕ s′ ∈⟦ A.preRight + ⟧A· s →
e ⊕ s″ ∈⟦ Acyclic.precs sucs ⟧A· s′ →
A.appʳ fs e ⊕ s″ ∈⟦ C.preRight⁺ ⟧C· s
preRight⁺ {fs = _ ∷ ._} (+-[] f∈) ↑∈ = preRight f∈ ⊛∞ ∣ʳ (<$> precs _ ↑∈)
preRight⁺ {fs = _ ∷ ._} (+-∷ f∈ fs∈) ↑∈ = preRight f∈ ⊛∞ ∣ˡ (<$> preRight⁺ fs∈ ↑∈)
postLeft : ∀ {s s′ f} →
f ⊕ s′ ∈⟦ A.postLeft ⟧A· s →
f ⊕ s′ ∈⟦ C.postLeft ⟧C· s
postLeft (∣ˡ (<$> i∈ )) = ∣ˡ (<$> inner _ i∈)
postLeft (∣ʳ (<$> i∈ ⊛ ↑∈)) = ∣ʳ (<$> inner _ i∈ ⊛ precs _ ↑∈)
postLeft⁺ : ∀ {s s′ s″ o fs} →
o ⊕ s′ ∈⟦ similar <$> C.postLeft⁺
∣ tighter <$> C.p↑ ⟧C· s →
fs ⊕ s″ ∈⟦ A.postLeft + ⟧A· s′ →
ALemma.appˡ o fs ⊕ s″ ∈⟦ C.postLeft⁺ ⟧C· s
postLeft⁺ {fs = _ ∷ ._} o∈ (+-[] f∈) = <$> o∈ ⊛∞ postLeft f∈
postLeft⁺ {fs = _ ∷ ._} o∈ (+-∷ f∈ fs∈) = postLeft⁺ (∣ˡ (<$> (<$> o∈ ⊛∞ postLeft f∈))) fs∈
prec′ : ∀ {s s′ assoc} {e : ExprIn p assoc} →
(-, e) ⊕ s′ ∈⟦ Acyclic.prec p ⟧A· s →
(-, e) ⊕ s′ ∈⟦ Cyclic.prec p ⟧C· s
prec′ (∥ˡ (<$> i∈)) = ∥ˡ (<$> inner _ i∈)
prec′ (∥ʳ (∥ˡ (<$> ↑₁∈ ⊛ i∈ ⊛ ↑₂∈))) = ∥ʳ (∥ˡ (<$> precs _ ↑₁∈ ⊛ inner _ i∈ ⊛∞ precs _ ↑₂∈ ))
prec′ (∥ʳ (∥ʳ (∥ˡ (<$> fs∈ ⊛ ↑∈)))) = ∥ʳ (∥ʳ (∥ˡ (preRight⁺ fs∈ ↑∈)))
prec′ (∥ʳ (∥ʳ (∥ʳ (∥ˡ (<$> ↑∈ ⊛ fs∈))))) = ∥ʳ (∥ʳ (∥ʳ (∥ˡ (postLeft⁺ (∣ʳ (<$> precs _ ↑∈)) fs∈))))
prec′ (∥ʳ (∥ʳ (∥ʳ (∥ʳ ()))))
inner : ∀ {fix} (ops : List (∃ (Operator fix))) {s s′ i} →
i ⊕ s′ ∈⟦ Acyclic.inner ops ⟧A· s →
i ⊕ s′ ∈⟦ Cyclic.inner ops ⟧C· s
inner [] ()
inner ((_ , op) ∷ ops) (∣ˡ (<$> i∈)) = ∣ˡ (<$> inner′ _ i∈)
inner ((_ , op) ∷ ops) (∣ʳ (<$> i∈)) = ∣ʳ (<$> inner ops i∈)
inner′ : ∀ {arity} (ns : Vec NamePart (1 + arity)) {s s′ i} →
i ⊕ s′ ∈⟦ Acyclic.expr between ns ⟧A· s →
i ⊕ s′ ∈⟦ Cyclic.expr between ns ⟧C· s
inner′ (n ∷ .[]) between-[] = between-[]
inner′ (n ∷ ns) (between-∷ e∈g es∈g) =
between-∷ (precs g e∈g) (inner′ ns es∈g)
module CyclicToAcyclic where
mutual
precs : ∀ ps {s s′ e} →
e ⊕ s′ ∈⟦ Cyclic.precs ps ⟧C· s →
e ⊕ s′ ∈⟦ Acyclic.precs ps ⟧A· s
precs [] ()
precs (p ∷ ps) (∣ˡ (<$> e∈p)) = ∣ˡ (<$> prec p e∈p)
precs (p ∷ ps) (∣ʳ (<$> e∈ps)) = ∣ʳ (<$> precs ps e∈ps)
prec : ∀ p {s s′ e} →
e ⊕ s′ ∈⟦ Cyclic.prec p ⟧C· s →
e ⊕ s′ ∈⟦ Acyclic.prec p ⟧A· s
prec (precedence ops sucs) e∈ = prec′ e∈
where
p = precedence ops sucs
module A = Acyclic.Prec ops sucs
module C = Cyclic.Prec p
preRight : ∀ {s s′ f} →
f ⊕ s′ ∈⟦ C.preRight ⟧C· s →
f ⊕ s′ ∈⟦ A.preRight ⟧A· s
preRight (∣ˡ (<$> i∈)) = ∣ˡ (<$> inner _ i∈)
preRight (∣ʳ (<$> ↑∈ ⊛ i∈)) = ∣ʳ (<$> precs _ ↑∈ ⊛ inner _ i∈)
preRight⁺ : ∀ {s s′ e} →
e ⊕ s′ ∈⟦ C.preRight⁺ ⟧C· s →
e ⊕ s′ ∈⟦ A.appʳ <$> A.preRight + ⊛ A.p↑ ⟧A· s
preRight⁺ (f∈ ⊛∞ ∣ˡ (<$> pre∈)) with preRight⁺ pre∈
preRight⁺ (f∈ ⊛∞ ∣ˡ (<$> pre∈)) | <$> fs∈ ⊛ ↑∈ = <$> +-∷ (preRight f∈) fs∈ ⊛ ↑∈
preRight⁺ (f∈ ⊛∞ ∣ʳ (<$> ↑∈) ) = <$> +-[] (preRight f∈) ⊛ precs _ ↑∈
postLeft : ∀ {s s′ f} →
f ⊕ s′ ∈⟦ C.postLeft ⟧C· s →
f ⊕ s′ ∈⟦ A.postLeft ⟧A· s
postLeft (∣ˡ (<$> i∈ )) = ∣ˡ (<$> inner _ i∈)
postLeft (∣ʳ (<$> i∈ ⊛ ↑∈)) = ∣ʳ (<$> inner _ i∈ ⊛ precs _ ↑∈)
postLeft⁺ : ∀ {s s′ e} →
e ⊕ s′ ∈⟦ C.postLeft⁺ ⟧C· s →
e ⊕ s′ ∈⟦ A.appˡ <$> A.p↑ ⊛ A.postLeft + ⟧A· s
postLeft⁺ (<$> ∣ˡ (<$> post∈) ⊛∞ f∈) with postLeft⁺ post∈
postLeft⁺ (<$> ∣ˡ (<$> post∈) ⊛∞ f∈)
| _⊛_ {x = fs} (<$> ↑∈) fs∈ = AS.cast∈ (ALemma.appˡ-∷ʳ _ fs _) (
<$> ↑∈ ⊛ AS.+-∷ʳ fs∈ (postLeft f∈))
where module AS = ALib.Semantics-⊕
postLeft⁺ (<$> ∣ʳ (<$> ↑∈) ⊛∞ f∈) = <$> precs _ ↑∈ ⊛ +-[] (postLeft f∈)
prec′ : ∀ {s s′ assoc} {e : ExprIn p assoc} →
(-, e) ⊕ s′ ∈⟦ Cyclic.prec p ⟧C· s →
(-, e) ⊕ s′ ∈⟦ Acyclic.prec p ⟧A· s
prec′ (∥ˡ (<$> i∈)) = ∥ˡ (<$> inner _ i∈)
prec′ (∥ʳ (∥ˡ (<$> ↑₁∈ ⊛ i∈ ⊛∞ ↑₂∈))) = ∥ʳ (∥ˡ (<$> precs _ ↑₁∈ ⊛ inner _ i∈ ⊛ precs _ ↑₂∈ ))
prec′ (∥ʳ (∥ʳ (∥ˡ pre∈))) = ∥ʳ (∥ʳ (∥ˡ (preRight⁺ pre∈)))
prec′ (∥ʳ (∥ʳ (∥ʳ (∥ˡ post∈)))) = ∥ʳ (∥ʳ (∥ʳ (∥ˡ (postLeft⁺ post∈))))
prec′ (∥ʳ (∥ʳ (∥ʳ (∥ʳ ()))))
inner : ∀ {fix} (ops : List (∃ (Operator fix))) {s s′ i} →
i ⊕ s′ ∈⟦ Cyclic.inner ops ⟧C· s →
i ⊕ s′ ∈⟦ Acyclic.inner ops ⟧A· s
inner [] ()
inner ((_ , op) ∷ ops) (∣ˡ (<$> i∈)) = ∣ˡ (<$> inner′ _ i∈)
inner ((_ , op) ∷ ops) (∣ʳ (<$> i∈)) = ∣ʳ (<$> inner ops i∈)
inner′ : ∀ {arity} (ns : Vec NamePart (1 + arity)) {s s′ i} →
i ⊕ s′ ∈⟦ Cyclic.expr between ns ⟧C· s →
i ⊕ s′ ∈⟦ Acyclic.expr between ns ⟧A· s
inner′ (n ∷ .[]) between-[] = between-[]
inner′ (n ∷ ns) (between-∷ e∈g es∈g) =
between-∷ (precs g e∈g) (inner′ ns es∈g)
acyclicToCyclic
: ∀ {e s} → e ∈ Simplified.⟦_⟧ Acyclic.expression · s →
e ∈ Cyclic.expression · s
acyclicToCyclic =
ContSem.sound ∘
CLib.Semantics-⊕.sound ∘
AcyclicToCyclic.precs _ ∘
ALib.Semantics-⊕.complete _ ∘
SSem.⊕-complete ∘
SSem.complete _
cyclicToAcyclic
: ∀ {e s} → e ∈ Cyclic.expression · s →
e ∈ Simplified.⟦_⟧ Acyclic.expression · s
cyclicToAcyclic =
SSem.sound ∘
SSem.⊕-sound ∘
ALib.Semantics-⊕.sound ∘
CyclicToAcyclic.precs _ ∘
CLib.Semantics-⊕.complete _ ∘
ContSem.complete
| {
"alphanum_fraction": 0.4315655396,
"avg_line_length": 40.9289099526,
"ext": "agda",
"hexsha": "99a8faa0e6ad5546407708e61cb193517a30bb20",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "Mixfix/Equivalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "Mixfix/Equivalence.agda",
"max_line_length": 104,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/parser-combinators",
"max_stars_repo_path": "Mixfix/Equivalence.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-03T08:56:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-03T08:56:13.000Z",
"num_tokens": 3721,
"size": 8636
} |
------------------------------------------------------------------------------
-- Testing the η-expansion
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Eta3 where
postulate
D : Set
P² : D → D → Set
data ∃ (A : D → Set) : Set where
_,_ : (t : D) → A t → ∃ A
-- Because Agda η-reduces the equations, the internal representation
-- of P corresponds to the predicate
--
-- P xs = ∃ (P² xs)
--
-- We η-expand the definition of P before the translation to FOL.
P : D → Set
P xs = ∃ λ ys → P² xs ys
{-# ATP definition P #-}
postulate bar : ∀ {xs} → P xs → (∃ λ ys → P² xs ys)
{-# ATP prove bar #-}
| {
"alphanum_fraction": 0.4504283966,
"avg_line_length": 25.53125,
"ext": "agda",
"hexsha": "49c71963906e24ad2c81b9e25cd8130cb04317da",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Eta3.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Eta3.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Eta3.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 204,
"size": 817
} |
module Cat where
open import Agda.Builtin.Equality
{- A category is very much like a graph. It has vertices
named objects and vertices named arrows. Each arrow goes
from an object to an object (possibly the same!). -}
record Cat (obj : Set) (arr : obj -> obj -> Set) : Set where
constructor MkCat
field
{- For each object, there is an arrow called `id` which
goes from the object to itself. -}
id : {o : obj} -> arr o o
{- Given an arrow `f` from object `a` to `b` and an arrow
`g` from `b` to `c`. We can compose these arrow. The
result is an arrow from `a` to `c`. -}
compose : {a b c : obj} -> arr a b -> arr b c -> arr a c
-- Here comes some properties of `id` and `compose`
{- For any arrow `f`, compose id f = f -}
neutralLeft : {a b : obj} -> (f : arr a b) -> compose id f ≡ f
{- For any arrow `f`, compose f id = f -}
neutralRight : {a b : obj} -> (f : arr a b) -> compose f id ≡ f
{- For any arrows `f`, `g` and `h`,
composing f with g, and then the result with h
gives exatctly the same result as
composing f with the result of the composition of g and h
Which means, like string concatenation than we can commpose
the way we preserve the order of each element in the sequence.
-}
associativity : {a b c d : obj} ->
(f : arr a b) -> (g : arr b c) -> (h : arr c d) ->
compose f (compose g h) ≡ compose (compose f g) h
open import Agda.Builtin.Nat
{- `LE n m` encode the property that `n ≤ m`
i.e. `n` is less or equal to `m` -}
data LE : Nat -> Nat -> Set where
LERefl : {n : Nat} -> LE n n
LENext : {n m : Nat} -> LE n m -> LE n (suc m)
{- Taking naturals as objects and `LE` as arrows,
this actually forms a category! -}
natPoset : Cat Nat LE
natPoset = ??? | {
"alphanum_fraction": 0.5845905172,
"avg_line_length": 36.3921568627,
"ext": "agda",
"hexsha": "a1bae4e34fbe4c3ef5b48eb39e1a23ea0b4514a5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "277e034f7152623a17527c4ae55acc7aa8ce1f89",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "chrilves/big4-tutorial",
"max_forks_repo_path": "Agda/Cat.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "277e034f7152623a17527c4ae55acc7aa8ce1f89",
"max_issues_repo_issues_event_max_datetime": "2021-08-24T14:31:45.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-08-24T14:31:45.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "chrilves/big4-tutorial",
"max_issues_repo_path": "Agda/Cat.agda",
"max_line_length": 70,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "277e034f7152623a17527c4ae55acc7aa8ce1f89",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "chrilves/big4-tutorial",
"max_stars_repo_path": "Agda/Cat.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-22T18:44:11.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-02T14:13:39.000Z",
"num_tokens": 561,
"size": 1856
} |
-- Checks that UHC FFI calls using non-magic datatypes work
module UHC-FFI where
data Nat : Set where
Zero : Nat
Suc : Nat -> Nat
{-# COMPILED_DATA_UHC Nat UHC.Agda.Builtins.Nat Zero Suc #-}
{-# IMPORT_UHC Data.Char #-}
open import Common.IO
open import Common.Unit
open import Common.String
open import Common.Char
postulate toLower : Char -> Char
{-# COMPILED_UHC toLower Data.Char.toLower #-}
main : IO Unit
main = putStr (charToStr (toLower 'A'))
| {
"alphanum_fraction": 0.7207792208,
"avg_line_length": 20.0869565217,
"ext": "agda",
"hexsha": "5a58e2455209faa0ebd17cfa882935d48f3275a9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Compiler/simple/UHC-FFI.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Compiler/simple/UHC-FFI.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Compiler/simple/UHC-FFI.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 129,
"size": 462
} |
-- modular arithmetic
module nat-mod where
open import eq
open import nat
infix 8 _≡_mod_
data _≡_mod_ : ℕ → ℕ → ℕ → Set where
mod-refl : ∀ {n k} → n ≡ n mod k
mod-add : ∀ {n m k} → n ≡ m mod k → n + k ≡ m mod k
mod-symm : ∀ {n m k} → n ≡ m mod k → m ≡ n mod k
{-
mod-trans : ∀ {n m o k} → n ≡ m mod k → m ≡ o mod k → n ≡ o mod k
mod-trans{n}{.n}{o}{k} mod-refl p2 = {!!}
mod-trans}{m}{o}{k} (mod-add p1) p2 = {!!}
mod-trans{n}{m}{o}{k} (mod-symm p1) p2 = {!!}
-} | {
"alphanum_fraction": 0.5189873418,
"avg_line_length": 23.7,
"ext": "agda",
"hexsha": "a2d0623273b64b975ce51278efd525c35a0d29dc",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "nat-mod.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "nat-mod.agda",
"max_line_length": 65,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "nat-mod.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 212,
"size": 474
} |
module Generic.Function.FoldMono where
open import Generic.Core
CurryAll : ∀ {α β} {A : Set α} -> (A -> Set β) -> List A -> Set β -> Set β
CurryAll B [] C = C
CurryAll B (x ∷ xs) C = B x -> CurryAll B xs C
curryAll : ∀ {α β} {A : Set α} {B : A -> Set β} {C xs}
-> (All B xs -> C) -> CurryAll B xs C
curryAll {xs = []} g = g tt
curryAll {xs = x ∷ xs} g = curryAll ∘ curry g
mutual
Hyp : ∀ {ι β} {I : Set ι} -> (I -> Set β) -> (D : Desc I β) -> Set β
Hyp C (var i) = C i
Hyp C (π i q D) = Hypᵇ i C D q
Hyp C (D ⊛ E) = Hyp C D × Hyp C E
Hypᵇ : ∀ {α ι β γ q} {I : Set ι} i
-> (I -> Set β) -> Binder α β γ i q I -> α ≤ℓ β -> Set β
Hypᵇ i C (coerce (A , D)) q = Coerce′ q $ Pi i A λ x -> Hyp C (D x)
mutual
Fold : ∀ {ι β} {I : Set ι} -> (I -> Set β) -> (D : Desc I β) -> Set β
Fold C (var i) = C i
Fold C (π i q D) = Foldᵇ i C D q
Fold C (D ⊛ E) = Hyp C D -> Fold C E
Foldᵇ : ∀ {α ι β γ q} {I : Set ι} i
-> (I -> Set β) -> Binder α β γ i q I -> α ≤ℓ β -> Set β
Foldᵇ i C (coerce (A , D)) q = Coerce′ q $ Pi i A λ x -> Fold C (D x)
module _ {ι β} {I : Set ι} {D₀ : Data (Desc I β)} (C : I -> Set β) where
module _ (hs : All (Fold C) (consTypes D₀)) where
{-# TERMINATING #-}
mutual
foldHyp : (D : Desc I β) -> ⟦ D ⟧ (μ D₀) -> Hyp C D
foldHyp (var i) d = foldMono d
foldHyp (π i q D) f = foldHypᵇ i D f
foldHyp (D ⊛ E) (x , y) = foldHyp D x , foldHyp E y
foldHypᵇ : ∀ {α γ q q′} i
-> (D : Binder α β γ i q′ I) -> ⟦ i / D ⟧ᵇ q (μ D₀) -> Hypᵇ i C D q
foldHypᵇ {q = q} i (coerce (A , D)) f =
coerce′ q $ lamPi i λ x -> foldHyp (D x) (appPi i (uncoerce′ q f) x)
foldExtend : ∀ {j} -> (D : Desc I β) -> Fold C D -> Extend D (μ D₀) j -> C j
foldExtend (var i) z lrefl = z
foldExtend (π i q D) h p = foldExtendᵇ i D h p
foldExtend (D ⊛ E) h (d , e) = foldExtend E (h (foldHyp D d)) e
foldExtendᵇ : ∀ {α γ q q′ j} i
-> (D : Binder α β γ i q′ I) -> Foldᵇ i C D q -> Extendᵇ i D q (μ D₀) j -> C j
foldExtendᵇ {q = q} i (coerce (A , D)) h p with p | inspectUncoerce′ q p
... | _ | (x , e) , refl = foldExtend (D x) (appPi i (uncoerce′ q h) x) e
foldAny : ∀ {j} (Ds : List (Desc I β)) d a b ns
-> All (Fold C) Ds -> Node D₀ (packData d a b Ds ns) j -> C j
foldAny [] d a b tt tt ()
foldAny (D ∷ []) d a b (_ , ns) (h , tt) e = foldExtend D h e
foldAny (D ∷ E ∷ Ds) d a b (_ , ns) (h , hs) (inj₁ e) = foldExtend D h e
foldAny (D ∷ E ∷ Ds) d a b (_ , ns) (h , hs) (inj₂ r) = foldAny (E ∷ Ds) d a b ns hs r
foldMono : ∀ {j} -> μ D₀ j -> C j
foldMono (node e) = foldAny (consTypes D₀)
(dataName D₀)
(parsTele D₀)
(indsTele D₀)
(consNames D₀)
hs
e
curryFoldMono : ∀ {j} -> μ D₀ j -> CurryAll (Fold C) (consTypes D₀) (C j)
curryFoldMono d = curryAll λ hs -> foldMono hs d
| {
"alphanum_fraction": 0.4447929737,
"avg_line_length": 41.9473684211,
"ext": "agda",
"hexsha": "cf9af2265a63eb6aae99de9cce637037e145f5ec",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2021-01-27T12:57:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-07-17T07:23:39.000Z",
"max_forks_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "turion/Generic",
"max_forks_repo_path": "src/Generic/Function/FoldMono.agda",
"max_issues_count": 9,
"max_issues_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_issues_repo_issues_event_max_datetime": "2022-01-04T15:43:14.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-04-06T18:58:09.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "turion/Generic",
"max_issues_repo_path": "src/Generic/Function/FoldMono.agda",
"max_line_length": 96,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "e102b0ec232f2796232bd82bf8e3906c1f8a93fe",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "turion/Generic",
"max_stars_repo_path": "src/Generic/Function/FoldMono.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T10:19:38.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-07-19T21:10:54.000Z",
"num_tokens": 1299,
"size": 3188
} |
{-# OPTIONS --termination-depth=2 #-}
module plfa-code.Quantifiers where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl)
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
open import Relation.Nullary using (¬_)
open import Data.Product using (_×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import plfa-code.Isomorphism using (_≃_; extensionality)
∀-elim : ∀ {A : Set} {B : A → Set}
→ (L : ∀ (x : A) → B x)
→ (M : A)
--------------------------
→ B M
∀-elim L M = L M
---------- practice ----------
∀-distrib-× : ∀ {A : Set} {B C : A → Set} →
(∀ (x : A) → B x × C x) ≃ (∀ (x : A) → B x) × (∀ (x : A) → C x)
∀-distrib-× =
record
{ to = λ fₗ → ⟨ (λ a → proj₁ (fₗ a)) , (λ a → proj₂ (fₗ a)) ⟩
; from = λ x a → ⟨ (proj₁ x a) , (proj₂ x a) ⟩
; from∘to = λ fₗ → refl
; to∘from = λ x → refl
}
⊎∀-implies-∀⊎ : ∀ {A : Set} {B C : A → Set} →
(∀ (x : A) → B x) ⊎ (∀ (x : A) → C x) → ∀ (x : A) → B x ⊎ C x
⊎∀-implies-∀⊎ (inj₁ f₁) a = inj₁ (f₁ a)
⊎∀-implies-∀⊎ (inj₂ f₂) a = inj₂ (f₂ a)
-- the converse doesn't hold. If we construct a function
-- '∀ (x : A) → B x', we could build a '∀ (x : A) → B x ⊎ C x',
-- but '∀ (x : A) → C x' maybe doesn't hold.
data Tri : Set where
aa : Tri
bb : Tri
cc : Tri
postulate
∀-extensionality :
∀ {A : Set} {B : A → Set} (f g : ∀ (x : A) → B x)
→ (∀ (x : A) → (f x ≡ g x))
→ f ≡ g
∀-× : {B : Tri → Set} → (∀ (x : Tri) → B x) ≃ (B aa × B bb × B cc)
∀-× {B} =
record
{ to = to′
; from = from′
; from∘to = λ f → ∀-extensionality (from′ ⟨ f aa , ⟨ f bb , f cc ⟩ ⟩) f
λ{aa → refl; bb → refl; cc → refl}
; to∘from = λ xx → refl
}
where
to′ : (∀ (x : Tri) → B x) → (B aa × B bb × B cc)
to′ f = ⟨ f aa , ⟨ f bb , f cc ⟩ ⟩
from′ : (B aa × B bb × B cc) → (∀ (x : Tri) → B x)
from′ xx aa = proj₁ xx
from′ xx bb = proj₁ (proj₂ xx)
from′ xx cc = proj₂ (proj₂ xx)
-- every λ expression has different types , wtf
------------------------------
data Σ (A : Set) (B : A → Set) : Set where
⟨_,_⟩ : (x : A) → B x → Σ A B
Σ-syntax = Σ
infix 2 Σ-syntax
syntax Σ-syntax A (λ x → B) = Σ[ x ∈ A ] B
record Σ′ (A : Set) (B : A → Set) : Set where
field
proj₁′ : A
proj₂′ : B proj₁′
∃ : ∀ {A : Set} (B : A → Set) → Set
∃ {A} B = Σ A B
∃-syntax = ∃
syntax ∃-syntax (λ x → B) = ∃[ x ] B
∃-elim : ∀ {A : Set} {B : A → Set} {C : Set}
→ (∀ x → B x → C)
→ ∃[ x ] B x
---------------
→ C
∃-elim f ⟨ x , y ⟩ = f x y
∀∃-currying : ∀ {A : Set} {B : A → Set} {C : Set}
→ (∀ x → B x → C) ≃ (∃[ x ] B x → C)
∀∃-currying =
record
{ to = λ{ f → λ{ ⟨ x , y ⟩ → f x y }}
; from = λ{ g → λ{ x → λ{ y → g ⟨ x , y ⟩ }}}
; from∘to = λ f → refl
; to∘from = λ g → extensionality (λ{ ⟨ x , y ⟩ → refl})
}
---------- practice ----------
∃-distrib-⊎ : ∀ {A : Set} {B C : A → Set} →
∃[ x ] (B x ⊎ C x) ≃ (∃[ x ] B x) ⊎ (∃[ x ] C x)
∃-distrib-⊎ =
record
{ to = λ{ ⟨ a , inj₁ b ⟩ → inj₁ ⟨ a , b ⟩
; ⟨ a , inj₂ c ⟩ → inj₂ ⟨ a , c ⟩
}
; from = λ{ (inj₁ ⟨ a , b ⟩) → ⟨ a , inj₁ b ⟩
; (inj₂ ⟨ a , c ⟩) → ⟨ a , inj₂ c ⟩
}
; from∘to = λ{ ⟨ a , inj₁ b ⟩ → refl
; ⟨ a , inj₂ c ⟩ → refl
}
; to∘from = λ{ (inj₁ ⟨ a , b ⟩) → refl
; (inj₂ ⟨ a , c ⟩) → refl
}
}
∃×-implies-×∃ : ∀ {A : Set} {B C : A → Set} →
∃[ x ] (B x × C x) → (∃[ x ] B x) × (∃[ x ] C x)
∃×-implies-×∃ ⟨ a , ⟨ b , c ⟩ ⟩ = ⟨ ⟨ a , b ⟩ , ⟨ a , c ⟩ ⟩
-- the converse doesn't hold, because the x in ∃[ x ] B x is maybe not
-- the same 'x' in ∃[ x ] C x
∃-⊎ : ∀ {B : Tri → Set} → ∃[ x ] B x ≃ B aa ⊎ B bb ⊎ B cc
∃-⊎ =
record
{ to = λ{ ⟨ aa , a ⟩ → inj₁ a
; ⟨ bb , b ⟩ → inj₂ (inj₁ b)
; ⟨ cc , c ⟩ → inj₂ (inj₂ c)
}
; from = λ{ (inj₁ a) → ⟨ aa , a ⟩
; (inj₂ (inj₁ b)) → ⟨ bb , b ⟩
; (inj₂ (inj₂ c)) → ⟨ cc , c ⟩
}
; from∘to = λ{ ⟨ aa , a ⟩ → refl
; ⟨ bb , b ⟩ → refl
; ⟨ cc , c ⟩ → refl
}
; to∘from = λ{ (inj₁ a) → refl
; (inj₂ (inj₁ b)) → refl
; (inj₂ (inj₂ c)) → refl
}
}
data even : ℕ → Set
data odd : ℕ → Set
data even where
even-zero : even zero
even-suc : ∀ {n : ℕ}
→ odd n
------------
→ even (suc n)
data odd where
odd-suc : ∀ {n : ℕ}
→ even n
-----------
→ odd (suc n)
even-∃ : ∀ {n : ℕ} → even n → ∃[ m ] ( m * 2 ≡ n)
odd-∃ : ∀ {n : ℕ} → odd n → ∃[ m ] (1 + m * 2 ≡ n)
even-∃ even-zero = ⟨ zero , refl ⟩
even-∃ (even-suc o) with odd-∃ o
... | ⟨ m , refl ⟩ = ⟨ suc m , refl ⟩
odd-∃ (odd-suc e) with even-∃ e
... | ⟨ m , refl ⟩ = ⟨ m , refl ⟩
∃-even : ∀ {n : ℕ} → ∃[ m ] ( m * 2 ≡ n) → even n
∃-odd : ∀ {n : ℕ} → ∃[ m ] (1 + m * 2 ≡ n) → odd n
∃-even ⟨ zero , refl ⟩ = even-zero
∃-even ⟨ suc m , refl ⟩ = even-suc (∃-odd ⟨ m , refl ⟩)
∃-odd ⟨ m , refl ⟩ = odd-suc (∃-even ⟨ m , refl ⟩)
--------- practice ----------
open import Data.Nat.Properties using (+-identityʳ; +-suc; +-assoc)
open Eq using (cong; sym; trans)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_)
open import plfa-code.Reasoning-legacy
∃-even′ : ∀ {n : ℕ} → ∃[ m ] ( 2 * m ≡ n) → even n
∃-odd′ : ∀ {n : ℕ} → ∃[ m ] (2 * m + 1 ≡ n) → odd n
dbl≡2* : ∀ n → n + n ≡ 2 * n
dbl≡2* n = cong (n +_) (sym (+-identityʳ n))
∃-even′ ⟨ zero , refl ⟩ = even-zero
∃-even′ ⟨ suc m , refl ⟩
rewrite +-identityʳ m | +-suc m m | dbl≡2* m
= even-suc (odd-suc (∃-even′ ⟨ m , refl ⟩))
∃-odd′ ⟨ m , refl ⟩ rewrite +-suc (2 * m) 0
| +-identityʳ m
| +-identityʳ (m + m)
| dbl≡2* m = odd-suc (∃-even′ ⟨ m , refl ⟩)
-- it's more difficult far away ...
open Data.Nat using (_≤_; z≤n; s≤s)
open Data.Nat.Properties using (≤-pred)
∃+⇒≤ : ∀ (y z : ℕ) → ∃[ x ] (x + y ≡ z) → y ≤ z
∃+⇒≤ zero .(x + 0) ⟨ x , refl ⟩ = z≤n
∃+⇒≤ (suc y) .(x + suc y) ⟨ x , refl ⟩ rewrite +-suc x y
= s≤s (∃+⇒≤ y (x + y) ⟨ x , refl ⟩)
≤⇒∃+ : ∀ (y z : ℕ) → y ≤ z → ∃[ x ] (x + y ≡ z)
≤⇒∃+ zero z y≤z = ⟨ z , (+-identityʳ z) ⟩
≤⇒∃+ (suc y) (suc z) y≤z with ≤⇒∃+ y z (≤-pred y≤z)
... | ⟨ x , x+y≡z ⟩ = ⟨ x , trans (+-suc x y) (cong suc x+y≡z) ⟩
-----------------------------
¬∃≃∀¬ : ∀ {A : Set} {B : A → Set}
→ (¬ ∃[ x ] B x) ≃ ∀ x → ¬ B x
¬∃≃∀¬ =
record
{ to = λ{ ¬∃xy x y → ¬∃xy ⟨ x , y ⟩ }
; from = λ{ ∀¬xy ⟨ x , y ⟩ → ∀¬xy x y }
; from∘to = λ{ ¬∃xy → extensionality λ{ ⟨ x , y ⟩ → refl } }
; to∘from = λ{ ∀¬xy → refl }
}
---------- practice ----------
∃¬-implies-¬∀ : ∀ {A : Set} {B : A → Set}
→ ∃[ x ] (¬ B x)
--------------
→ ¬ (∀ x → B x)
∃¬-implies-¬∀ ⟨ a , ¬b ⟩ = λ a→b → ¬b (a→b a)
-- the converse doesn't hold. we couldn't get a instance
-- of A to construct ∃[ x ] (¬ B x)
open import plfa-code.Bin using (Bin; Can; One;
zero; can-one; x0_; x1_; nil; one;
from; to; can-to-n; can-tf-eq; from-to-const)
open Eq using (subst₂; cong₂)
open import Data.Empty using (⊥-elim)
open import Function using (_∘_)
one-assim : ∀ {b : Bin} → (x : One b) → (y : One b) → x ≡ y
one-assim one one = refl
one-assim (x0 x) (x0 y) = sym (cong x0_ (one-assim y x))
one-assim (x1 x) (x1 y) = sym (cong x1_ (one-assim y x))
can-assim : ∀ {b : Bin} → (x : Can b) → (y : Can b) → x ≡ y
can-assim zero zero = refl
can-assim zero (can-one (x0 ()))
can-assim (can-one (x0 ())) zero
can-assim (can-one one) (can-one one) = refl
can-assim (can-one (x0 x)) (can-one (x0 y)) = cong (can-one ∘ x0_) (one-assim x y)
can-assim (can-one (x1 x)) (can-one (x1 y)) = cong (can-one ∘ x1_) (one-assim x y)
∃-proj₁ : {A : Set} {B : A → Set} → ∃[ x ] B x → A
∃-proj₁ ⟨ x , _ ⟩ = x
∃≡ : ∀ {A : Set} {B : A → Set} (p₁ : ∃[ x ](B x)) (p₂ : ∃[ y ](B y))
→ ∃-proj₁ p₁ ≡ ∃-proj₁ p₂ → (∀ (x) → (b₁ : B x) → (b₂ : B x) → b₁ ≡ b₂)
→ p₁ ≡ p₂
∃≡ ⟨ x , bx ⟩ ⟨ .x , by ⟩ refl f = sym (cong (⟨_,_⟩ x) (f x by bx))
Bin-isomorphism : ℕ ≃ ∃[ x ](Can x)
Bin-isomorphism =
record
{ to = to′
; from = from′
; from∘to = from-to-const
; to∘from = to∘from′
}
where
to′ : ℕ → ∃[ x ](Can x)
to′ n = ⟨ to n , can-to-n n ⟩
from′ : ∃[ x ](Can x) → ℕ
from′ ⟨ b , can-b ⟩ = from b
to∘from′ : ∀ y → to′ (from′ y) ≡ y
to∘from′ ⟨ b , can-b ⟩ = ∃≡ ⟨ to (from b) , can-to-n (from b) ⟩ ⟨ b , can-b ⟩ (can-tf-eq can-b) (λ x → can-assim {x})
| {
"alphanum_fraction": 0.4067387305,
"avg_line_length": 29.883161512,
"ext": "agda",
"hexsha": "a7c83d556925b7834f4379253b623657a937296c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "chirsz-ever/plfa-code",
"max_forks_repo_path": "src/plfa-code/Quantifiers.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "chirsz-ever/plfa-code",
"max_issues_repo_path": "src/plfa-code/Quantifiers.agda",
"max_line_length": 120,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ec5b359a8c22bf5268cae3c36a97e6737c75d5f3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "chirsz-ever/plfa-code",
"max_stars_repo_path": "src/plfa-code/Quantifiers.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3890,
"size": 8696
} |
{-
This is mostly for convenience, when working with ideals
(which are defined for general rings) in a commutative ring.
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.CommRing.Ideal where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Powerset renaming ( _∈_ to _∈p_ ; _⊆_ to _⊆p_
; subst-∈ to subst-∈p )
open import Cubical.Functions.Logic
open import Cubical.Data.Nat using (ℕ ; zero ; suc ; tt)
renaming ( --zero to ℕzero ; suc to ℕsuc
_+_ to _+ℕ_ ; _·_ to _·ℕ_
; +-assoc to +ℕ-assoc ; +-comm to +ℕ-comm
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm)
open import Cubical.Data.FinData hiding (rec ; elim)
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.Ideal renaming (IdealsIn to IdealsInRing)
open import Cubical.Algebra.Ring.BigOps
open import Cubical.Algebra.RingSolver.ReflectionSolving
private
variable
ℓ : Level
IdealsIn : (R : CommRing ℓ) → Type _
IdealsIn R = IdealsInRing (CommRing→Ring R)
module _ (Ring@(R , str) : CommRing ℓ) where
open CommRingStr str
makeIdeal : (I : R → hProp ℓ)
→ (+-closed : {x y : R} → x ∈p I → y ∈p I → (x + y) ∈p I)
→ (0r-closed : 0r ∈p I)
→ (·-closedLeft : {x : R} → (r : R) → x ∈p I → r · x ∈p I)
→ IdealsIn (R , str)
makeIdeal I +-closed 0r-closed ·-closedLeft = I ,
(record
{ +-closed = +-closed
; -closed = λ x∈pI → subst-∈p I (useSolver _)
(·-closedLeft (- 1r) x∈pI)
; 0r-closed = 0r-closed
; ·-closedLeft = ·-closedLeft
; ·-closedRight = λ r x∈pI →
subst-∈p I
(·-comm r _)
(·-closedLeft r x∈pI)
})
where useSolver : (x : R) → - 1r · x ≡ - x
useSolver = solve Ring
-- better?
module CommIdeal (R' : CommRing ℓ) where
private R = fst R'
open CommRingStr (snd R')
open Sum (CommRing→Ring R')
open CommRingTheory R'
open RingTheory (CommRing→Ring R')
record isCommIdeal (I : ℙ R) : Type ℓ where
constructor
makeIsCommIdeal
field
+Closed : ∀ {x y : R} → x ∈p I → y ∈p I → (x + y) ∈p I
contains0 : 0r ∈p I
·Closed : ∀ {x : R} (r : R) → x ∈p I → r · x ∈p I
·RClosed : ∀ {x : R} (r : R) → x ∈p I → x · r ∈p I
·RClosed r x∈pI = subst-∈p I (·-comm _ _) (·Closed r x∈pI)
open isCommIdeal
isPropIsCommIdeal : (I : ℙ R) → isProp (isCommIdeal I)
+Closed (isPropIsCommIdeal I ici₁ ici₂ i) x∈pI y∈pI =
I _ .snd (ici₁ .+Closed x∈pI y∈pI) (ici₂ .+Closed x∈pI y∈pI) i
contains0 (isPropIsCommIdeal I ici₁ ici₂ i) = I 0r .snd (ici₁ .contains0) (ici₂ .contains0) i
·Closed (isPropIsCommIdeal I ici₁ ici₂ i) r x∈pI =
I _ .snd (ici₁ .·Closed r x∈pI) (ici₂ .·Closed r x∈pI) i
CommIdeal : Type (ℓ-suc ℓ)
CommIdeal = Σ[ I ∈ ℙ R ] isCommIdeal I
--inclusion and containment of ideals
_⊆_ : CommIdeal → CommIdeal → Type ℓ
I ⊆ J = I .fst ⊆p J .fst
infix 5 _∈_
_∈_ : R → CommIdeal → Type ℓ
x ∈ I = x ∈p I .fst
subst-∈ : (I : CommIdeal) {x y : R} → x ≡ y → x ∈ I → y ∈ I
subst-∈ I = subst-∈p (I .fst)
CommIdeal≡Char : {I J : CommIdeal} → I ⊆ J → J ⊆ I → I ≡ J
CommIdeal≡Char I⊆J J⊆I = Σ≡Prop isPropIsCommIdeal (⊆-extensionality _ _ (I⊆J , J⊆I))
∑Closed : (I : CommIdeal) {n : ℕ} (V : FinVec R n)
→ (∀ i → V i ∈ I) → ∑ V ∈ I
∑Closed I {n = zero} _ _ = I .snd .contains0
∑Closed I {n = suc n} V h = I .snd .+Closed (h zero) (∑Closed I (V ∘ suc) (h ∘ suc))
0Ideal : CommIdeal
fst 0Ideal x = (x ≡ 0r) , is-set _ _
+Closed (snd 0Ideal) x≡0 y≡0 = cong₂ (_+_) x≡0 y≡0 ∙ +Rid _
contains0 (snd 0Ideal) = refl
·Closed (snd 0Ideal) r x≡0 = cong (r ·_) x≡0 ∙ 0RightAnnihilates _
1Ideal : CommIdeal
fst 1Ideal x = ⊤
+Closed (snd 1Ideal) _ _ = lift tt
contains0 (snd 1Ideal) = lift tt
·Closed (snd 1Ideal) _ _ = lift tt
contains1Is1 : (I : CommIdeal) → 1r ∈ I → I ≡ 1Ideal
contains1Is1 I 1∈I = CommIdeal≡Char (λ _ _ → lift tt)
λ x _ → subst-∈ I (·Rid _) (I .snd .·Closed x 1∈I) -- x≡x·1 ∈ I
_+i_ : CommIdeal → CommIdeal → CommIdeal
fst (I +i J) x =
(∃[ (y , z) ∈ (R × R) ] ((y ∈ I) × (z ∈ J) × (x ≡ y + z))) --have a record for this?
, isPropPropTrunc
+Closed (snd (I +i J)) {x = x₁} {y = x₂} = map2 +ClosedΣ
where
+ClosedΣ : Σ[ (y₁ , z₁) ∈ (R × R) ] ((y₁ ∈ I) × (z₁ ∈ J) × (x₁ ≡ y₁ + z₁))
→ Σ[ (y₂ , z₂) ∈ (R × R) ] ((y₂ ∈ I) × (z₂ ∈ J) × (x₂ ≡ y₂ + z₂))
→ Σ[ (y₃ , z₃) ∈ (R × R) ] ((y₃ ∈ I) × (z₃ ∈ J) × (x₁ + x₂ ≡ y₃ + z₃))
+ClosedΣ ((y₁ , z₁) , y₁∈I , z₁∈J , x₁≡y₁+z₁) ((y₂ , z₂) , y₂∈I , z₂∈J , x₂≡y₂+z₂) =
(y₁ + y₂ , z₁ + z₂) , +Closed (snd I) y₁∈I y₂∈I , +Closed (snd J) z₁∈J z₂∈J
, cong₂ (_+_) x₁≡y₁+z₁ x₂≡y₂+z₂ ∙ +ShufflePairs _ _ _ _
contains0 (snd (I +i J)) = ∣ (0r , 0r) , contains0 (snd I) , contains0 (snd J) , sym (+Rid _) ∣
·Closed (snd (I +i J)) {x = x} r = map ·ClosedΣ
where
·ClosedΣ : Σ[ (y₁ , z₁) ∈ (R × R) ] ((y₁ ∈ I) × (z₁ ∈ J) × (x ≡ y₁ + z₁))
→ Σ[ (y₂ , z₂) ∈ (R × R) ] ((y₂ ∈ I) × (z₂ ∈ J) × (r · x ≡ y₂ + z₂))
·ClosedΣ ((y₁ , z₁) , y₁∈I , z₁∈J , x≡y₁+z₁) =
(r · y₁ , r · z₁) , ·Closed (snd I) r y₁∈I , ·Closed (snd J) r z₁∈J
, cong (r ·_) x≡y₁+z₁ ∙ ·Rdist+ _ _ _
infixl 6 _+i_
+iComm⊆ : ∀ (I J : CommIdeal) → (I +i J) ⊆ (J +i I)
+iComm⊆ I J x = map λ ((y , z) , y∈I , z∈J , x≡y+z) → (z , y) , z∈J , y∈I , x≡y+z ∙ +Comm _ _
+iComm : ∀ (I J : CommIdeal) → I +i J ≡ J +i I
+iComm I J = CommIdeal≡Char (+iComm⊆ I J) (+iComm⊆ J I)
+iLidLIncl : ∀ (I : CommIdeal) → (0Ideal +i I) ⊆ I
+iLidLIncl I x = rec (I .fst x .snd) λ ((y , z) , y≡0 , z∈I , x≡y+z)
→ subst-∈ I (sym (x≡y+z ∙∙ cong (_+ z) y≡0 ∙∙ +Lid z)) z∈I
+iLidRIncl : ∀ (I : CommIdeal) → I ⊆ (0Ideal +i I)
+iLidRIncl I x x∈I = ∣ (0r , x) , refl , x∈I , sym (+Lid _) ∣
+iLid : ∀ (I : CommIdeal) → 0Ideal +i I ≡ I
+iLid I = CommIdeal≡Char (+iLidLIncl I) (+iLidRIncl I)
+iLincl : ∀ (I J : CommIdeal) → I ⊆ (I +i J)
+iLincl I J x x∈I = ∣ (x , 0r) , x∈I , J .snd .contains0 , sym (+Rid x) ∣
+iRincl : ∀ (I J : CommIdeal) → J ⊆ (I +i J)
+iRincl I J x x∈J = ∣ (0r , x) , I .snd .contains0 , x∈J , sym (+Lid x) ∣
+iRespLincl : ∀ (I J K : CommIdeal) → I ⊆ J → (I +i K) ⊆ (J +i K)
+iRespLincl I J K I⊆J x = map λ ((y , z) , y∈I , z∈K , x≡y+z) → ((y , z) , I⊆J y y∈I , z∈K , x≡y+z)
+iAssocLIncl : ∀ (I J K : CommIdeal) → (I +i (J +i K)) ⊆ ((I +i J) +i K)
+iAssocLIncl I J K x = elim (λ _ → ((I +i J) +i K) .fst x .snd) (uncurry3
λ (y , z) y∈I → elim (λ _ → isPropΠ λ _ → ((I +i J) +i K) .fst x .snd)
λ ((u , v) , u∈J , v∈K , z≡u+v) x≡y+z
→ ∣ (y + u , v) , ∣ _ , y∈I , u∈J , refl ∣ , v∈K
, x≡y+z ∙∙ cong (y +_) z≡u+v ∙∙ +Assoc _ _ _ ∣)
+iAssocRIncl : ∀ (I J K : CommIdeal) → ((I +i J) +i K) ⊆ (I +i (J +i K))
+iAssocRIncl I J K x = elim (λ _ → (I +i (J +i K)) .fst x .snd) (uncurry3
λ (y , z) → elim (λ _ → isPropΠ2 λ _ _ → (I +i (J +i K)) .fst x .snd)
λ ((u , v) , u∈I , v∈J , y≡u+v) z∈K x≡y+z
→ ∣ (u , v + z) , u∈I , ∣ _ , v∈J , z∈K , refl ∣
, x≡y+z ∙∙ cong (_+ z) y≡u+v ∙∙ sym (+Assoc _ _ _) ∣)
+iAssoc : ∀ (I J K : CommIdeal) → I +i (J +i K) ≡ (I +i J) +i K
+iAssoc I J K = CommIdeal≡Char (+iAssocLIncl I J K) (+iAssocRIncl I J K)
+iIdemLIncl : ∀ (I : CommIdeal) → (I +i I) ⊆ I
+iIdemLIncl I x = rec (I .fst x .snd) λ ((y , z) , y∈I , z∈I , x≡y+z)
→ subst-∈ I (sym x≡y+z) (I .snd .+Closed y∈I z∈I)
+iIdemRIncl : ∀ (I : CommIdeal) → I ⊆ (I +i I)
+iIdemRIncl I x x∈I = ∣ (0r , x) , I .snd .contains0 , x∈I , sym (+Lid _) ∣
+iIdem : ∀ (I : CommIdeal) → I +i I ≡ I
+iIdem I = CommIdeal≡Char (+iIdemLIncl I) (+iIdemRIncl I)
-- where to put this?
mul++dist : ∀ {n m : ℕ} (α U : FinVec R n) (β V : FinVec R m) (j : Fin (n +ℕ m))
→ ((λ i → α i · U i) ++Fin (λ i → β i · V i)) j ≡ (α ++Fin β) j · (U ++Fin V) j
mul++dist {n = zero} α U β V j = refl
mul++dist {n = suc n} α U β V zero = refl
mul++dist {n = suc n} α U β V (suc j) = mul++dist (α ∘ suc) (U ∘ suc) β V j
-- define multiplication of ideals
_·i_ : CommIdeal → CommIdeal → CommIdeal
fst (I ·i J) x = (∃[ n ∈ ℕ ] Σ[ (α , β) ∈ (FinVec R n × FinVec R n) ]
(∀ i → α i ∈ I) × (∀ i → β i ∈ J) × (x ≡ ∑ λ i → α i · β i))
, isPropPropTrunc
+Closed (snd (I ·i J)) = map2
λ (n , (α , β) , ∀αi∈I , ∀βi∈J , x≡∑αβ) (m , (γ , δ) , ∀γi∈I , ∀δi∈J , y≡∑γδ)
→ n +ℕ m , (α ++Fin γ , β ++Fin δ) , ++FinPres∈ (I .fst) ∀αi∈I ∀γi∈I
, ++FinPres∈ (J .fst) ∀βi∈J ∀δi∈J
, cong₂ (_+_) x≡∑αβ y≡∑γδ ∙∙ sym (∑Split++ (λ i → α i · β i) (λ i → γ i · δ i))
∙∙ ∑Ext (mul++dist α β γ δ)
contains0 (snd (I ·i J)) = ∣ 0 , ((λ ()) , (λ ())) , (λ ()) , (λ ()) , refl ∣
·Closed (snd (I ·i J)) r = map
λ (n , (α , β) , ∀αi∈I , ∀βi∈J , x≡∑αβ)
→ n , ((λ i → r · α i) , β) , (λ i → I .snd .·Closed r (∀αi∈I i)) , ∀βi∈J
, cong (r ·_) x≡∑αβ ∙ ∑Mulrdist r (λ i → α i · β i) ∙ ∑Ext λ i → ·Assoc r (α i) (β i)
infixl 7 _·i_
prodInProd : ∀ (I J : CommIdeal) (x y : R) → x ∈ I → y ∈ J → (x · y) ∈ (I ·i J)
prodInProd _ _ x y x∈I y∈J =
∣ 1 , ((λ _ → x) , λ _ → y) , (λ _ → x∈I) , (λ _ → y∈J) , sym (+Rid _) ∣
·iLincl : ∀ (I J : CommIdeal) → (I ·i J) ⊆ I
·iLincl I J x = elim (λ _ → I .fst x .snd)
λ (_ , (α , β) , α∈I , _ , x≡∑αβ) → subst-∈ I (sym x≡∑αβ)
(∑Closed I (λ i → α i · β i) λ i → ·RClosed (I .snd) _ (α∈I i))
·iComm⊆ : ∀ (I J : CommIdeal) → (I ·i J) ⊆ (J ·i I)
·iComm⊆ I J x = map λ (n , (α , β) , ∀αi∈I , ∀βi∈J , x≡∑αβ)
→ (n , (β , α) , ∀βi∈J , ∀αi∈I , x≡∑αβ ∙ ∑Ext (λ i → ·-comm (α i) (β i)))
·iComm : ∀ (I J : CommIdeal) → I ·i J ≡ J ·i I
·iComm I J = CommIdeal≡Char (·iComm⊆ I J) (·iComm⊆ J I)
I⊆I1 : ∀ (I : CommIdeal) → I ⊆ (I ·i 1Ideal)
I⊆I1 I x x∈I = ∣ 1 , ((λ _ → x) , λ _ → 1r) , (λ _ → x∈I) , (λ _ → lift tt) , useSolver x ∣
where
useSolver : ∀ x → x ≡ x · 1r + 0r
useSolver = solve R'
·iRid : ∀ (I : CommIdeal) → I ·i 1Ideal ≡ I
·iRid I = CommIdeal≡Char (·iLincl I 1Ideal) (I⊆I1 I)
-- a useful corollary
·iRContains1id : ∀ (I J : CommIdeal) → 1r ∈ J → I ·i J ≡ I
·iRContains1id I J 1∈J = cong (I ·i_) (contains1Is1 J 1∈J) ∙ ·iRid I
·iAssocLIncl : ∀ (I J K : CommIdeal) → (I ·i (J ·i K)) ⊆ ((I ·i J) ·i K)
·iAssocLIncl I J K x = rec isPropPropTrunc
λ (_ , (α , β) , α∈I , β∈JK , x≡∑αβ)
→ subst-∈ ((I ·i J) ·i K) (sym x≡∑αβ)
(∑Closed ((I ·i J) ·i K) (λ i → α i · β i)
λ i → rec isPropPropTrunc
(λ (_ , (γ , δ) , γ∈J , δ∈K , βi≡∑γδ)
→ subst-∈ ((I ·i J) ·i K) -- each αᵢβᵢ ≡...≡ ∑αᵢγⱼδⱼ ∈IJK
(sym (cong (α i ·_) βi≡∑γδ ∙∙ ∑Mulrdist (α i) (λ j → γ j · δ j)
∙∙ ∑Ext (λ j → ·Assoc (α i) (γ j) (δ j))))
(∑Closed ((I ·i J) ·i K) (λ j → α i · γ j · δ j) -- each αᵢγⱼδⱼ∈IJK
λ j → prodInProd (I ·i J) K _ _
(prodInProd I J _ _ (α∈I i) (γ∈J j)) (δ∈K j)))
(β∈JK i))
·iAssocRIncl : ∀ (I J K : CommIdeal) → ((I ·i J) ·i K) ⊆ (I ·i (J ·i K))
·iAssocRIncl I J K x = rec isPropPropTrunc
λ (_ , (α , β) , α∈IJ , β∈K , x≡∑αβ)
→ subst-∈ (I ·i (J ·i K)) (sym x≡∑αβ)
(∑Closed (I ·i (J ·i K)) (λ i → α i · β i)
λ i → rec isPropPropTrunc
(λ (_ , (γ , δ) , γ∈I , δ∈J , αi≡∑γδ)
→ subst-∈ (I ·i (J ·i K))
(sym (cong (_· β i) αi≡∑γδ ∙∙ ∑Mulldist (β i) (λ j → γ j · δ j)
∙∙ ∑Ext (λ j → sym (·Assoc (γ j) (δ j) (β i)))))
(∑Closed (I ·i (J ·i K)) (λ j → γ j · (δ j · β i))
λ j → prodInProd I (J ·i K) _ _ (γ∈I j)
(prodInProd J K _ _ (δ∈J j) (β∈K i))))
(α∈IJ i))
·iAssoc : ∀ (I J K : CommIdeal) → I ·i (J ·i K) ≡ (I ·i J) ·i K
·iAssoc I J K = CommIdeal≡Char (·iAssocLIncl I J K) (·iAssocRIncl I J K)
·iRdist+iLIncl : ∀ (I J K : CommIdeal) → (I ·i (J +i K)) ⊆ (I ·i J +i I ·i K)
·iRdist+iLIncl I J K x = rec isPropPropTrunc
λ (n , (α , β) , α∈I , β∈J+K , x≡∑αβ) → subst-∈ ((I ·i J) +i (I ·i K)) (sym x≡∑αβ)
(∑Closed ((I ·i J) +i (I ·i K)) (λ i → α i · β i) -- each αi·βi ∈ IJ+IK
λ i → rec isPropPropTrunc
(λ ((γi , δi) , γi∈J , δi∈K , βi≡γi+δi) →
∣ (α i · γi , α i · δi) , prodInProd I J _ _ (α∈I i) γi∈J
, prodInProd I K _ _ (α∈I i) δi∈K
, cong (α i ·_) βi≡γi+δi ∙ ·Rdist+ _ _ _ ∣)
(β∈J+K i))
·iRdist+iRIncl : ∀ (I J K : CommIdeal) → ((I ·i J) +i (I ·i K)) ⊆ (I ·i (J +i K))
·iRdist+iRIncl I J K x = rec isPropPropTrunc λ ((y , z) , y∈IJ , z∈IK , x≡y+z)
→ subst-∈ (I ·i (J +i K)) (sym x≡y+z)
((I ·i (J +i K)) .snd .+Closed (inclHelperLeft _ y∈IJ) (inclHelperRight _ z∈IK))
where
inclHelperLeft : (I ·i J) ⊆ (I ·i (J +i K))
inclHelperLeft x' = map (λ (n , (α , β) , α∈I , β∈J , x'≡∑αβ)
→ n , (α , β) , α∈I , (λ i → +iLincl J K _ (β∈J i)) , x'≡∑αβ)
inclHelperRight : (I ·i K) ⊆ (I ·i (J +i K))
inclHelperRight x' = map (λ (n , (α , β) , α∈I , β∈K , x'≡∑αβ)
→ n , (α , β) , α∈I , (λ i → +iRincl J K _ (β∈K i)) , x'≡∑αβ)
·iRdist+i : ∀ (I J K : CommIdeal) → I ·i (J +i K) ≡ I ·i J +i I ·i K
·iRdist+i I J K = CommIdeal≡Char (·iRdist+iLIncl I J K) (·iRdist+iRIncl I J K)
-- only one absorption law, i.e. CommIdeal , +i , ·i does not form a dist. lattice
·iAbsorb+iLIncl : ∀ (I J : CommIdeal) → (I +i (I ·i J)) ⊆ I
·iAbsorb+iLIncl I J x = rec (I .fst x .snd) λ ((y , z) , y∈I , z∈IJ , x≡y+z)
→ subst-∈ I (sym x≡y+z) (I .snd .+Closed y∈I (·iLincl I J _ z∈IJ))
·iAbsorb+iRIncl : ∀ (I J : CommIdeal) → I ⊆ (I +i (I ·i J))
·iAbsorb+iRIncl I J = +iLincl I (I ·i J)
·iAbsorb+i : ∀ (I J : CommIdeal) → I +i (I ·i J) ≡ I
·iAbsorb+i I J = CommIdeal≡Char (·iAbsorb+iLIncl I J) (·iAbsorb+iRIncl I J)
| {
"alphanum_fraction": 0.4590778884,
"avg_line_length": 44.5653495441,
"ext": "agda",
"hexsha": "c8b368dcecdd427428b765a8ba4a81c6d565773b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dolio/cubical",
"max_forks_repo_path": "Cubical/Algebra/CommRing/Ideal.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dolio/cubical",
"max_issues_repo_path": "Cubical/Algebra/CommRing/Ideal.agda",
"max_line_length": 100,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8d687c1a6237ad2db1396c6b0af6667bd203f548",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dolio/cubical",
"max_stars_repo_path": "Cubical/Algebra/CommRing/Ideal.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6743,
"size": 14662
} |
------------------------------------------------------------------------
-- Convenient syntax for "equational reasoning" using a partial order
------------------------------------------------------------------------
open import Relation.Binary
module Relation.Binary.PartialOrderReasoning (p : Poset) where
open Poset p
import Relation.Binary.PreorderReasoning as PreR
open PreR preorder public renaming (_∼⟨_⟩_ to _≤⟨_⟩_)
| {
"alphanum_fraction": 0.5234741784,
"avg_line_length": 35.5,
"ext": "agda",
"hexsha": "086217fd762f3106ba1944639ec5c62090a11961",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Relation/Binary/PartialOrderReasoning.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Relation/Binary/PartialOrderReasoning.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Relation/Binary/PartialOrderReasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 78,
"size": 426
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category.Monoidal
-- Monoidal natural transformations between lax and strong monoidal functors.
--
-- See
-- * John Baez, Some definitions everyone should know,
-- https://math.ucr.edu/home/baez/qg-fall2004/definitions.pdf
-- * https://ncatlab.org/nlab/show/monoidal+natural+transformation
module Categories.NaturalTransformation.Monoidal where
open import Level
open import Data.Product using (_,_)
open import Categories.Category using (module Commutation)
open import Categories.Category.Product
import Categories.Category.Monoidal.Reasoning as MonoidalReasoning
open import Categories.Functor.Monoidal
open import Categories.Functor.Monoidal.Properties using ()
renaming (∘-Monoidal to _∘Fˡ_; ∘-StrongMonoidal to _∘Fˢ_)
import Categories.Morphism as Morphism
import Categories.Morphism.Reasoning as MorphismReasoning
open import Categories.NaturalTransformation as NT using (NaturalTransformation)
open NaturalTransformation renaming (η to _[_])
module Lax where
module _ {o ℓ e o′ ℓ′ e′}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′}
(F G : MonoidalFunctor C D) where
private
module C = MonoidalCategory C
module D = MonoidalCategory D
module F = MonoidalFunctor F renaming (F to U)
module G = MonoidalFunctor G renaming (F to U)
open D hiding (U; id)
open Commutation D.U
-- Monoidal natural transformations between lax monoidal functors.
record IsMonoidalNaturalTransformation (β : NaturalTransformation F.U G.U)
: Set (o ⊔ ℓ′ ⊔ e′) where
field
ε-compat : [ unit ⇒ G.₀ C.unit ]⟨
F.ε ⇒⟨ F.₀ C.unit ⟩
β [ C.unit ]
≈ G.ε
⟩
⊗-homo-compat : ∀ {X Y} →
[ F.₀ X ⊗₀ F.₀ Y ⇒ G.₀ (X C.⊗₀ Y) ]⟨
F.⊗-homo [ (X , Y) ] ⇒⟨ F.₀ (X C.⊗₀ Y) ⟩
β [ X C.⊗₀ Y ]
≈ β [ X ] ⊗₁ β [ Y ] ⇒⟨ G.₀ X ⊗₀ G.₀ Y ⟩
G.⊗-homo [ (X , Y) ]
⟩
record MonoidalNaturalTransformation : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where
field
U : NaturalTransformation F.U G.U
isMonoidal : IsMonoidalNaturalTransformation U
open NaturalTransformation U public
open IsMonoidalNaturalTransformation isMonoidal public
-- To shorten some definitions
private _⇛_ = MonoidalNaturalTransformation
-- Identity and compositions
module _ {o ℓ e o′ ℓ′ e′}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′} where
private
module C = MonoidalCategory C
module D = MonoidalCategory D
open D hiding (U; id)
open MorphismReasoning D.U
open MonoidalReasoning D.monoidal
infixr 9 _∘ᵥ_
id : {F : MonoidalFunctor C D} → F ⇛ F
id {F} = record
{ U = NT.id
; isMonoidal = record
{ ε-compat = D.identityˡ
; ⊗-homo-compat = λ {X Y} → begin
D.id ∘ ⊗-homo.η (X , Y) ≈⟨ id-comm-sym ⟩
⊗-homo.η (X , Y) ∘ D.id ≈˘⟨ refl⟩∘⟨ ⊗.identity ⟩
⊗-homo.η (X , Y) ∘ D.id ⊗₁ D.id ∎
}
}
where open MonoidalFunctor F
_∘ᵥ_ : {F G H : MonoidalFunctor C D} → G ⇛ H → F ⇛ G → F ⇛ H
_∘ᵥ_ {F} {G} {H} αᵐ βᵐ = record
{ U = α NT.∘ᵥ β
; isMonoidal = record
{ ε-compat = begin
(α [ _ ] ∘ β [ _ ]) ∘ F.ε ≈⟨ pullʳ (ε-compat βᵐ) ⟩
α [ _ ] ∘ G.ε ≈⟨ ε-compat αᵐ ⟩
H.ε ∎
; ⊗-homo-compat = λ {X Y} → begin
(α [ X C.⊗₀ Y ] ∘ β [ X C.⊗₀ Y ]) ∘ F.⊗-homo.η (X , Y)
≈⟨ pullʳ (⊗-homo-compat βᵐ) ⟩
α [ X C.⊗₀ Y ] ∘ G.⊗-homo.η (X , Y) ∘ β [ X ] ⊗₁ β [ Y ]
≈⟨ extendʳ (⊗-homo-compat αᵐ) ⟩
H.⊗-homo.η (X , Y) ∘ α [ X ] ⊗₁ α [ Y ] ∘ β [ X ] ⊗₁ β [ Y ]
≈˘⟨ refl⟩∘⟨ ⊗-distrib-over-∘ ⟩
H.⊗-homo.η (X , Y) ∘ (α [ X ] ∘ β [ X ]) ⊗₁ (α [ Y ] ∘ β [ Y ])
∎
}
}
where
open MonoidalNaturalTransformation
α = U αᵐ
β = U βᵐ
module F = MonoidalFunctor F
module G = MonoidalFunctor G
module H = MonoidalFunctor H
module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′}
{E : MonoidalCategory o″ ℓ″ e″} where
private
module C = MonoidalCategory C
module D = MonoidalCategory D
module E = MonoidalCategory E
open E hiding (U; id)
open MorphismReasoning E.U
open MonoidalReasoning E.monoidal
infixr 9 _∘ₕ_ _∘ˡ_ _∘ʳ_
_∘ₕ_ : {F G : MonoidalFunctor C D} {H I : MonoidalFunctor D E} →
H ⇛ I → F ⇛ G → (H ∘Fˡ F) ⇛ (I ∘Fˡ G)
_∘ₕ_ {F} {G} {H} {I} αᵐ βᵐ = record
{ U = α NT.∘ₕ β
; isMonoidal = record
{ ε-compat = begin
(I.₁ (β [ C.unit ]) ∘ α [ F.₀ C.unit ]) ∘ H.₁ F.ε ∘ H.ε
≈⟨ extend² (commute αᵐ F.ε) ⟩
(I.₁ (β [ C.unit ]) ∘ I.₁ F.ε) ∘ α [ D.unit ] ∘ H.ε
≈˘⟨ I.homomorphism ⟩∘⟨refl ⟩
I.₁ (β [ C.unit ] D.∘ F.ε) ∘ α [ D.unit ] ∘ H.ε
≈⟨ I.F-resp-≈ (ε-compat βᵐ) ⟩∘⟨ ε-compat αᵐ ⟩
I.F₁ G.ε ∘ I.ε
∎
; ⊗-homo-compat = λ {X Y} → begin
(I.₁ (β [ X C.⊗₀ Y ]) ∘ α [ F.₀ (X C.⊗₀ Y) ]) ∘
H.₁ (F.⊗-homo.η (X , Y)) ∘ H.⊗-homo.η (F.₀ X , F.₀ Y)
≈⟨ extend² (commute αᵐ (F.⊗-homo.η (X , Y))) ⟩
(I.₁ (β [ X C.⊗₀ Y ]) ∘ I.₁ (F.⊗-homo.η (X , Y))) ∘
α [ F.₀ X D.⊗₀ F.₀ Y ] ∘ H.⊗-homo.η (F.₀ X , F.₀ Y)
≈˘⟨ I.homomorphism ⟩∘⟨refl ⟩
(I.₁ (β [ X C.⊗₀ Y ] D.∘ F.⊗-homo.η (X , Y))) ∘
α [ F.₀ X D.⊗₀ F.₀ Y ] ∘ H.⊗-homo.η (F.₀ X , F.₀ Y)
≈⟨ (I.F-resp-≈ (⊗-homo-compat βᵐ) ⟩∘⟨ ⊗-homo-compat αᵐ) ⟩
(I.₁ (G.⊗-homo.η (X , Y) D.∘ β [ X ] D.⊗₁ β [ Y ])) ∘
I.⊗-homo.η (F.₀ X , F.₀ Y) ∘ α [ F.₀ X ] ⊗₁ α [ F.₀ Y ]
≈⟨ I.homomorphism ⟩∘⟨refl ⟩
(I.₁ (G.⊗-homo.η (X , Y)) ∘ I.₁ (β [ X ] D.⊗₁ β [ Y ])) ∘
I.⊗-homo.η (F.₀ X , F.₀ Y) ∘ α [ F.₀ X ] ⊗₁ α [ F.₀ Y ]
≈˘⟨ extend² (I.⊗-homo.commute ((β [ X ]) , (β [ Y ]))) ⟩
(I.₁ (G.⊗-homo.η (X , Y)) ∘ I.⊗-homo.η (G.₀ X , G.₀ Y)) ∘
I.₁ (β [ X ]) ⊗₁ I.₁ (β [ Y ]) ∘ α [ F.₀ X ] ⊗₁ α [ F.₀ Y ]
≈˘⟨ refl⟩∘⟨ ⊗-distrib-over-∘ ⟩
(I.₁ (G.⊗-homo.η (X , Y)) ∘ I.⊗-homo.η (G.₀ X , G.₀ Y)) ∘
(I.₁ (β [ X ]) ∘ α [ F.₀ X ]) ⊗₁ (I.₁ (β [ Y ]) ∘ α [ F.₀ Y ])
∎
}
}
where
open MonoidalNaturalTransformation
α = U αᵐ
β = U βᵐ
module F = MonoidalFunctor F
module G = MonoidalFunctor G
module H = MonoidalFunctor H
module I = MonoidalFunctor I
_∘ˡ_ : {F G : MonoidalFunctor C D}
(H : MonoidalFunctor D E) → F ⇛ G → (H ∘Fˡ F) ⇛ (H ∘Fˡ G)
H ∘ˡ α = id {F = H} ∘ₕ α
_∘ʳ_ : {G H : MonoidalFunctor D E} →
G ⇛ H → (F : MonoidalFunctor C D) → (G ∘Fˡ F) ⇛ (H ∘Fˡ F)
α ∘ʳ F = α ∘ₕ id {F = F}
module Strong where
open StrongMonoidalFunctor
using () renaming (F to UF; monoidalFunctor to laxF)
module _ {o ℓ e o′ ℓ′ e′}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′}
(F G : StrongMonoidalFunctor C D) where
-- Monoidal natural transformations between strong monoidal functors.
IsMonoidalNaturalTransformation : NaturalTransformation (UF F) (UF G) →
Set (o ⊔ ℓ′ ⊔ e′)
IsMonoidalNaturalTransformation α =
Lax.IsMonoidalNaturalTransformation (laxF F) (laxF G) α
-- NOTE. This record contains the same data as the lax version,
-- but the type arguments are different. This helps type
-- inference by providing the right constraints.
record MonoidalNaturalTransformation : Set (o ⊔ ℓ ⊔ ℓ′ ⊔ e′) where
field
U : NaturalTransformation (UF F) (UF G)
isMonoidal : IsMonoidalNaturalTransformation U
laxNT : Lax.MonoidalNaturalTransformation (laxF F) (laxF G)
laxNT = record { U = U ; isMonoidal = isMonoidal }
open Lax.MonoidalNaturalTransformation laxNT public hiding (U; isMonoidal)
private _⇛_ = MonoidalNaturalTransformation
open MonoidalNaturalTransformation
module _ {o ℓ e o′ ℓ′ e′}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′} where
infixr 9 _∘ᵥ_
-- Since they contain the same data, we can strengthen a lax
-- monoidal transformation to a strong one.
strengthen : {F G : StrongMonoidalFunctor C D} →
Lax.MonoidalNaturalTransformation (laxF F) (laxF G) → F ⇛ G
strengthen α = record { U = L.U ; isMonoidal = L.isMonoidal }
where module L = Lax.MonoidalNaturalTransformation α
-- Identity and compositions
id : {F : StrongMonoidalFunctor C D} → F ⇛ F
id = strengthen Lax.id
_∘ᵥ_ : {F G H : StrongMonoidalFunctor C D} → G ⇛ H → F ⇛ G → F ⇛ H
α ∘ᵥ β = strengthen (laxNT α Lax.∘ᵥ laxNT β)
module _ {o ℓ e o′ ℓ′ e′ o″ ℓ″ e″}
{C : MonoidalCategory o ℓ e} {D : MonoidalCategory o′ ℓ′ e′}
{E : MonoidalCategory o″ ℓ″ e″} where
open Lax.MonoidalNaturalTransformation
infixr 9 _∘ₕ_ _∘ˡ_ _∘ʳ_
_∘ₕ_ : {F G : StrongMonoidalFunctor C D} {H I : StrongMonoidalFunctor D E} →
H ⇛ I → F ⇛ G → (H ∘Fˢ F) ⇛ (I ∘Fˢ G)
-- FIXME: this definition is clearly equivalent to
--
-- α ∘ₕ β = strengthen (laxNT α Lax.∘ₕ laxNT β)
--
-- but the latter takes an unreasonably long time to typecheck,
-- while the unfolded version typechecks almost immediately.
α ∘ₕ β = record
{ U = L.U
; isMonoidal = record
{ ε-compat = L.ε-compat
; ⊗-homo-compat = L.⊗-homo-compat }
}
where
module L = Lax.MonoidalNaturalTransformation (laxNT α Lax.∘ₕ laxNT β)
_∘ˡ_ : {F G : StrongMonoidalFunctor C D}
(H : StrongMonoidalFunctor D E) → F ⇛ G → (H ∘Fˢ F) ⇛ (H ∘Fˢ G)
H ∘ˡ α = id {F = H} ∘ₕ α
_∘ʳ_ : {G H : StrongMonoidalFunctor D E} →
G ⇛ H → (F : StrongMonoidalFunctor C D) → (G ∘Fˢ F) ⇛ (H ∘Fˢ F)
α ∘ʳ F = α ∘ₕ id {F = F}
| {
"alphanum_fraction": 0.514524015,
"avg_line_length": 37.2535714286,
"ext": "agda",
"hexsha": "11d0e5c2bae4168d0fe1dd8abb012a552690d2b6",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/NaturalTransformation/Monoidal.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/NaturalTransformation/Monoidal.agda",
"max_line_length": 80,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/NaturalTransformation/Monoidal.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 4047,
"size": 10431
} |
import Lvl
open import Type
module Structure.Logic.Constructive.Functions {ℓₒ} (Domain : Type{ℓₒ}) where
private
module Meta where
open import Numeral.Finite public
open import Numeral.Natural public
-- The type of a function. Functions on the domain in the meta-logic.
Function : Type{_}
Function = (Domain → Domain)
BinaryOperator : Type{_}
BinaryOperator = (Domain → Domain → Domain)
Tuple : Meta.ℕ → Type{_}
Tuple(n) = Meta.𝕟(n) → Domain
Sequence : Type{_}
Sequence = Meta.ℕ → Domain
| {
"alphanum_fraction": 0.6835205993,
"avg_line_length": 23.2173913043,
"ext": "agda",
"hexsha": "75214ba856d9a025b651a1bb2d8063ad0081062b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Structure/Logic/Constructive/Functions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Structure/Logic/Constructive/Functions.agda",
"max_line_length": 76,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Structure/Logic/Constructive/Functions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 145,
"size": 534
} |
{-# OPTIONS --without-K --safe #-}
open import Definition.Typed.EqualityRelation
module Definition.LogicalRelation {{eqrel : EqRelSet}} where
open EqRelSet {{...}}
open import Definition.Untyped as U
open import Definition.Untyped.Properties
open import Definition.Typed.Properties
open import Definition.Typed
open import Definition.Typed.Weakening
open import Tools.Product
import Tools.PropositionalEquality as PE
-- The different cases of the logical relation are spread out through out
-- this file. This is due to them having different dependencies.
-- We will refer to expressions that satisfies the logical relation as reducible.
-- Reducibility of Neutrals:
-- Neutral type
record _⊩ne_ (Γ : Con Term) (A : Term) : Set where
constructor ne
field
K : Term
D : Γ ⊢ A :⇒*: K
neK : Neutral K
K≡K : Γ ⊢ K ~ K ∷ U
-- Neutral type equality
record _⊩ne_≡_/_ (Γ : Con Term) (A B : Term) ([A] : Γ ⊩ne A) : Set where
constructor ne₌
open _⊩ne_ [A]
field
M : Term
D′ : Γ ⊢ B :⇒*: M
neM : Neutral M
K≡M : Γ ⊢ K ~ M ∷ U
-- Neutral term in WHNF
record _⊩neNf_∷_ (Γ : Con Term) (k A : Term) : Set where
inductive
constructor neNfₜ
field
neK : Neutral k
⊢k : Γ ⊢ k ∷ A
k≡k : Γ ⊢ k ~ k ∷ A
-- Neutral term
record _⊩ne_∷_/_ (Γ : Con Term) (t A : Term) ([A] : Γ ⊩ne A) : Set where
inductive
constructor neₜ
open _⊩ne_ [A]
field
k : Term
d : Γ ⊢ t :⇒*: k ∷ K
nf : Γ ⊩neNf k ∷ K
-- Neutral term equality in WHNF
record _⊩neNf_≡_∷_ (Γ : Con Term) (k m A : Term) : Set where
inductive
constructor neNfₜ₌
field
neK : Neutral k
neM : Neutral m
k≡m : Γ ⊢ k ~ m ∷ A
-- Neutral term equality
record _⊩ne_≡_∷_/_ (Γ : Con Term) (t u A : Term) ([A] : Γ ⊩ne A) : Set where
constructor neₜ₌
open _⊩ne_ [A]
field
k m : Term
d : Γ ⊢ t :⇒*: k ∷ K
d′ : Γ ⊢ u :⇒*: m ∷ K
nf : Γ ⊩neNf k ≡ m ∷ K
-- Reducibility of natural numbers:
-- Natural number type
_⊩ℕ_ : (Γ : Con Term) (A : Term) → Set
Γ ⊩ℕ A = Γ ⊢ A :⇒*: ℕ
-- Natural number type equality
_⊩ℕ_≡_ : (Γ : Con Term) (A B : Term) → Set
Γ ⊩ℕ A ≡ B = Γ ⊢ B ⇒* ℕ
mutual
-- Natural number term
record _⊩ℕ_∷ℕ (Γ : Con Term) (t : Term) : Set where
inductive
constructor ℕₜ
field
n : Term
d : Γ ⊢ t :⇒*: n ∷ ℕ
n≡n : Γ ⊢ n ≅ n ∷ ℕ
prop : Natural-prop Γ n
-- WHNF property of natural number terms
data Natural-prop (Γ : Con Term) : (n : Term) → Set where
sucᵣ : ∀ {n} → Γ ⊩ℕ n ∷ℕ → Natural-prop Γ (suc n)
zeroᵣ : Natural-prop Γ zero
ne : ∀ {n} → Γ ⊩neNf n ∷ ℕ → Natural-prop Γ n
mutual
-- Natural number term equality
record _⊩ℕ_≡_∷ℕ (Γ : Con Term) (t u : Term) : Set where
inductive
constructor ℕₜ₌
field
k k′ : Term
d : Γ ⊢ t :⇒*: k ∷ ℕ
d′ : Γ ⊢ u :⇒*: k′ ∷ ℕ
k≡k′ : Γ ⊢ k ≅ k′ ∷ ℕ
prop : [Natural]-prop Γ k k′
-- WHNF property of Natural number term equality
data [Natural]-prop (Γ : Con Term) : (n n′ : Term) → Set where
sucᵣ : ∀ {n n′} → Γ ⊩ℕ n ≡ n′ ∷ℕ → [Natural]-prop Γ (suc n) (suc n′)
zeroᵣ : [Natural]-prop Γ zero zero
ne : ∀ {n n′} → Γ ⊩neNf n ≡ n′ ∷ ℕ → [Natural]-prop Γ n n′
-- Natural extraction from term WHNF property
natural : ∀ {Γ n} → Natural-prop Γ n → Natural n
natural (sucᵣ x) = sucₙ
natural zeroᵣ = zeroₙ
natural (ne (neNfₜ neK ⊢k k≡k)) = ne neK
-- Natural extraction from term equality WHNF property
split : ∀ {Γ a b} → [Natural]-prop Γ a b → Natural a × Natural b
split (sucᵣ x) = sucₙ , sucₙ
split zeroᵣ = zeroₙ , zeroₙ
split (ne (neNfₜ₌ neK neM k≡m)) = ne neK , ne neM
-- Reducibility of Empty
-- Empty type
_⊩Empty_ : (Γ : Con Term) (A : Term) → Set
Γ ⊩Empty A = Γ ⊢ A :⇒*: Empty
-- Empty type equality
_⊩Empty_≡_ : (Γ : Con Term) (A B : Term) → Set
Γ ⊩Empty A ≡ B = Γ ⊢ B ⇒* Empty
-- WHNF property of absurd terms
data Empty-prop (Γ : Con Term) : (n : Term) → Set where
ne : ∀ {n} → Γ ⊩neNf n ∷ Empty → Empty-prop Γ n
-- Empty term
record _⊩Empty_∷Empty (Γ : Con Term) (t : Term) : Set where
inductive
constructor Emptyₜ
field
n : Term
d : Γ ⊢ t :⇒*: n ∷ Empty
n≡n : Γ ⊢ n ≅ n ∷ Empty
prop : Empty-prop Γ n
data [Empty]-prop (Γ : Con Term) : (n n′ : Term) → Set where
ne : ∀ {n n′} → Γ ⊩neNf n ≡ n′ ∷ Empty → [Empty]-prop Γ n n′
-- Empty term equality
record _⊩Empty_≡_∷Empty (Γ : Con Term) (t u : Term) : Set where
inductive
constructor Emptyₜ₌
field
k k′ : Term
d : Γ ⊢ t :⇒*: k ∷ Empty
d′ : Γ ⊢ u :⇒*: k′ ∷ Empty
k≡k′ : Γ ⊢ k ≅ k′ ∷ Empty
prop : [Empty]-prop Γ k k′
empty : ∀ {Γ n} → Empty-prop Γ n → Neutral n
empty (ne (neNfₜ neK _ _)) = neK
esplit : ∀ {Γ a b} → [Empty]-prop Γ a b → Neutral a × Neutral b
esplit (ne (neNfₜ₌ neK neM k≡m)) = neK , neM
-- Reducibility of Unit
-- Unit type
_⊩Unit_ : (Γ : Con Term) (A : Term) → Set
Γ ⊩Unit A = Γ ⊢ A :⇒*: Unit
-- Unit type equality
_⊩Unit_≡_ : (Γ : Con Term) (A B : Term) → Set
Γ ⊩Unit A ≡ B = Γ ⊢ B ⇒* Unit
record _⊩Unit_∷Unit (Γ : Con Term) (t : Term) : Set where
inductive
constructor Unitₜ
field
n : Term
d : Γ ⊢ t :⇒*: n ∷ Unit
prop : Whnf n
-- Unit term equality
record _⊩Unit_≡_∷Unit (Γ : Con Term) (t u : Term) : Set where
constructor Unitₜ₌
field
⊢t : Γ ⊢ t ∷ Unit
⊢u : Γ ⊢ u ∷ Unit
-- Type levels
data TypeLevel : Set where
⁰ : TypeLevel
¹ : TypeLevel
data _<_ : (i j : TypeLevel) → Set where
0<1 : ⁰ < ¹
-- Logical relation
-- Exported interface
record LogRelKit : Set₁ where
constructor Kit
field
_⊩U : (Γ : Con Term) → Set
_⊩B⟨_⟩_ : (Γ : Con Term) (W : BindingType) → Term → Set
_⊩_ : (Γ : Con Term) → Term → Set
_⊩_≡_/_ : (Γ : Con Term) (A B : Term) → Γ ⊩ A → Set
_⊩_∷_/_ : (Γ : Con Term) (t A : Term) → Γ ⊩ A → Set
_⊩_≡_∷_/_ : (Γ : Con Term) (t u A : Term) → Γ ⊩ A → Set
module LogRel (l : TypeLevel) (rec : ∀ {l′} → l′ < l → LogRelKit) where
-- Reducibility of Universe:
-- Universe type
record _⊩¹U (Γ : Con Term) : Set where
constructor Uᵣ
field
l′ : TypeLevel
l< : l′ < l
⊢Γ : ⊢ Γ
-- Universe type equality
_⊩¹U≡_ : (Γ : Con Term) (B : Term) → Set
Γ ⊩¹U≡ B = B PE.≡ U -- Note lack of reduction
-- Universe term
record _⊩¹U_∷U/_ {l′} (Γ : Con Term) (t : Term) (l< : l′ < l) : Set where
constructor Uₜ
open LogRelKit (rec l<)
field
A : Term
d : Γ ⊢ t :⇒*: A ∷ U
typeA : Type A
A≡A : Γ ⊢ A ≅ A ∷ U
[t] : Γ ⊩ t
-- Universe term equality
record _⊩¹U_≡_∷U/_ {l′} (Γ : Con Term) (t u : Term) (l< : l′ < l) : Set where
constructor Uₜ₌
open LogRelKit (rec l<)
field
A B : Term
d : Γ ⊢ t :⇒*: A ∷ U
d′ : Γ ⊢ u :⇒*: B ∷ U
typeA : Type A
typeB : Type B
A≡B : Γ ⊢ A ≅ B ∷ U
[t] : Γ ⊩ t
[u] : Γ ⊩ u
[t≡u] : Γ ⊩ t ≡ u / [t]
mutual
-- Reducibility of Binding types (Π, Σ):
-- B-type
record _⊩¹B⟨_⟩_ (Γ : Con Term) (W : BindingType) (A : Term) : Set where
inductive
constructor Bᵣ
field
F : Term
G : Term
D : Γ ⊢ A :⇒*: ⟦ W ⟧ F ▹ G
⊢F : Γ ⊢ F
⊢G : Γ ∙ F ⊢ G
A≡A : Γ ⊢ ⟦ W ⟧ F ▹ G ≅ ⟦ W ⟧ F ▹ G
[F] : ∀ {ρ Δ} → ρ ∷ Δ ⊆ Γ → ⊢ Δ → Δ ⊩¹ U.wk ρ F
[G] : ∀ {ρ Δ a}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ Δ ⊩¹ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ
→ Δ ⊩¹ U.wk (lift ρ) G [ a ]
G-ext : ∀ {ρ Δ a b}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩¹ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ ([b] : Δ ⊩¹ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ a ≡ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ
→ Δ ⊩¹ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G [ b ] / [G] [ρ] ⊢Δ [a]
-- B-type equality
record _⊩¹B⟨_⟩_≡_/_ (Γ : Con Term) (W : BindingType) (A B : Term) ([A] : Γ ⊩¹B⟨ W ⟩ A) : Set where
inductive
constructor B₌
open _⊩¹B⟨_⟩_ [A]
field
F′ : Term
G′ : Term
D′ : Γ ⊢ B ⇒* ⟦ W ⟧ F′ ▹ G′
A≡B : Γ ⊢ ⟦ W ⟧ F ▹ G ≅ ⟦ W ⟧ F′ ▹ G′
[F≡F′] : ∀ {ρ Δ}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ Δ ⊩¹ U.wk ρ F ≡ U.wk ρ F′ / [F] [ρ] ⊢Δ
[G≡G′] : ∀ {ρ Δ a}
→ ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩¹ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ U.wk (lift ρ) G [ a ] ≡ U.wk (lift ρ) G′ [ a ] / [G] [ρ] ⊢Δ [a]
-- Term reducibility of Π-type
_⊩¹Π_∷_/_ : (Γ : Con Term) (t A : Term) ([A] : Γ ⊩¹B⟨ BΠ ⟩ A) → Set
Γ ⊩¹Π t ∷ A / Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext =
∃ λ f → Γ ⊢ t :⇒*: f ∷ Π F ▹ G
× Function f
× Γ ⊢ f ≅ f ∷ Π F ▹ G
× (∀ {ρ Δ a b}
([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩¹ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
([b] : Δ ⊩¹ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
([a≡b] : Δ ⊩¹ a ≡ b ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ U.wk ρ f ∘ a ≡ U.wk ρ f ∘ b ∷ U.wk (lift ρ) G [ a ] / [G] [ρ] ⊢Δ [a])
× (∀ {ρ Δ a} → ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
→ ([a] : Δ ⊩¹ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ U.wk ρ f ∘ a ∷ U.wk (lift ρ) G [ a ] / [G] [ρ] ⊢Δ [a])
{- NOTE(WN): Last 2 fields could be refactored to a single forall.
But touching this definition is painful, so only do it
if you have to change it anyway. -}
-- Issue: Agda complains about record use not being strictly positive.
-- Therefore we have to use ×
-- Term equality of Π-type
_⊩¹Π_≡_∷_/_ : (Γ : Con Term) (t u A : Term) ([A] : Γ ⊩¹B⟨ BΠ ⟩ A) → Set
Γ ⊩¹Π t ≡ u ∷ A / [A]@(Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) =
∃₂ λ f g → Γ ⊢ t :⇒*: f ∷ Π F ▹ G
× Γ ⊢ u :⇒*: g ∷ Π F ▹ G
× Function f
× Function g
× Γ ⊢ f ≅ g ∷ Π F ▹ G
× Γ ⊩¹Π t ∷ A / [A]
× Γ ⊩¹Π u ∷ A / [A]
× (∀ {ρ Δ a} ([ρ] : ρ ∷ Δ ⊆ Γ) (⊢Δ : ⊢ Δ)
([a] : Δ ⊩¹ a ∷ U.wk ρ F / [F] [ρ] ⊢Δ)
→ Δ ⊩¹ U.wk ρ f ∘ a ≡ U.wk ρ g ∘ a ∷ U.wk (lift ρ) G [ a ] / [G] [ρ] ⊢Δ [a])
-- Issue: Same as above.
-- Term reducibility of Σ-type
_⊩¹Σ_∷_/_ : (Γ : Con Term) (t A : Term) ([A] : Γ ⊩¹B⟨ BΣ ⟩ A) → Set
Γ ⊩¹Σ t ∷ A / [A]@(Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) =
∃ λ p → Γ ⊢ t :⇒*: p ∷ Σ F ▹ G
× Product p
× Γ ⊢ p ≅ p ∷ Σ F ▹ G
× (Σ (Γ ⊩¹ fst p ∷ U.wk id F / [F] id (wf ⊢F)) λ [fst]
→ Γ ⊩¹ snd p ∷ U.wk (lift id) G [ fst p ] / [G] id (wf ⊢F) [fst])
-- Term equality of Σ-type
_⊩¹Σ_≡_∷_/_ : (Γ : Con Term) (t u A : Term) ([A] : Γ ⊩¹B⟨ BΣ ⟩ A) → Set
Γ ⊩¹Σ t ≡ u ∷ A / [A]@(Bᵣ F G D ⊢F ⊢G A≡A [F] [G] G-ext) =
∃₂ λ p r → Γ ⊢ t :⇒*: p ∷ Σ F ▹ G
× Γ ⊢ u :⇒*: r ∷ Σ F ▹ G
× Product p
× Product r
× Γ ⊢ p ≅ r ∷ Σ F ▹ G
× Γ ⊩¹Σ t ∷ A / [A]
× Γ ⊩¹Σ u ∷ A / [A]
× (Σ (Γ ⊩¹ fst p ∷ U.wk id F / [F] id (wf ⊢F)) λ [fstp]
→ Γ ⊩¹ fst r ∷ U.wk id F / [F] id (wf ⊢F)
× Γ ⊩¹ fst p ≡ fst r ∷ U.wk id F / [F] id (wf ⊢F)
× Γ ⊩¹ snd p ≡ snd r ∷ U.wk (lift id) G [ fst p ] / [G] id (wf ⊢F) [fstp])
-- Logical relation definition
data _⊩¹_ (Γ : Con Term) : Term → Set where
Uᵣ : Γ ⊩¹U → Γ ⊩¹ U
ℕᵣ : ∀ {A} → Γ ⊩ℕ A → Γ ⊩¹ A
Emptyᵣ : ∀ {A} → Γ ⊩Empty A → Γ ⊩¹ A
Unitᵣ : ∀ {A} → Γ ⊩Unit A → Γ ⊩¹ A
ne : ∀ {A} → Γ ⊩ne A → Γ ⊩¹ A
Bᵣ : ∀ {A} W → Γ ⊩¹B⟨ W ⟩ A → Γ ⊩¹ A
emb : ∀ {A l′} (l< : l′ < l) (let open LogRelKit (rec l<))
([A] : Γ ⊩ A) → Γ ⊩¹ A
_⊩¹_≡_/_ : (Γ : Con Term) (A B : Term) → Γ ⊩¹ A → Set
Γ ⊩¹ A ≡ B / Uᵣ UA = Γ ⊩¹U≡ B
Γ ⊩¹ A ≡ B / ℕᵣ D = Γ ⊩ℕ A ≡ B
Γ ⊩¹ A ≡ B / Emptyᵣ D = Γ ⊩Empty A ≡ B
Γ ⊩¹ A ≡ B / Unitᵣ D = Γ ⊩Unit A ≡ B
Γ ⊩¹ A ≡ B / ne neA = Γ ⊩ne A ≡ B / neA
Γ ⊩¹ A ≡ B / Bᵣ W BA = Γ ⊩¹B⟨ W ⟩ A ≡ B / BA
Γ ⊩¹ A ≡ B / emb l< [A] = Γ ⊩ A ≡ B / [A]
where open LogRelKit (rec l<)
_⊩¹_∷_/_ : (Γ : Con Term) (t A : Term) → Γ ⊩¹ A → Set
Γ ⊩¹ t ∷ .U / Uᵣ (Uᵣ l′ l< ⊢Γ) = Γ ⊩¹U t ∷U/ l<
Γ ⊩¹ t ∷ A / ℕᵣ D = Γ ⊩ℕ t ∷ℕ
Γ ⊩¹ t ∷ A / Emptyᵣ D = Γ ⊩Empty t ∷Empty
Γ ⊩¹ t ∷ A / Unitᵣ D = Γ ⊩Unit t ∷Unit
Γ ⊩¹ t ∷ A / ne neA = Γ ⊩ne t ∷ A / neA
Γ ⊩¹ t ∷ A / Bᵣ BΠ ΠA = Γ ⊩¹Π t ∷ A / ΠA
Γ ⊩¹ t ∷ A / Bᵣ BΣ ΣA = Γ ⊩¹Σ t ∷ A / ΣA
Γ ⊩¹ t ∷ A / emb l< [A] = Γ ⊩ t ∷ A / [A]
where open LogRelKit (rec l<)
_⊩¹_≡_∷_/_ : (Γ : Con Term) (t u A : Term) → Γ ⊩¹ A → Set
Γ ⊩¹ t ≡ u ∷ .U / Uᵣ (Uᵣ l′ l< ⊢Γ) = Γ ⊩¹U t ≡ u ∷U/ l<
Γ ⊩¹ t ≡ u ∷ A / ℕᵣ D = Γ ⊩ℕ t ≡ u ∷ℕ
Γ ⊩¹ t ≡ u ∷ A / Emptyᵣ D = Γ ⊩Empty t ≡ u ∷Empty
Γ ⊩¹ t ≡ u ∷ A / Unitᵣ D = Γ ⊩Unit t ≡ u ∷Unit
Γ ⊩¹ t ≡ u ∷ A / ne neA = Γ ⊩ne t ≡ u ∷ A / neA
Γ ⊩¹ t ≡ u ∷ A / Bᵣ BΠ ΠA = Γ ⊩¹Π t ≡ u ∷ A / ΠA
Γ ⊩¹ t ≡ u ∷ A / Bᵣ BΣ ΣA = Γ ⊩¹Σ t ≡ u ∷ A / ΣA
Γ ⊩¹ t ≡ u ∷ A / emb l< [A] = Γ ⊩ t ≡ u ∷ A / [A]
where open LogRelKit (rec l<)
kit : LogRelKit
kit = Kit _⊩¹U _⊩¹B⟨_⟩_
_⊩¹_ _⊩¹_≡_/_ _⊩¹_∷_/_ _⊩¹_≡_∷_/_
open LogRel public using (Uᵣ; ℕᵣ; Emptyᵣ; Unitᵣ; ne; Bᵣ; B₌; emb; Uₜ; Uₜ₌)
-- Patterns for the non-records of Π
pattern Πₜ f d funcF f≡f [f] [f]₁ = f , d , funcF , f≡f , [f] , [f]₁
pattern Πₜ₌ f g d d′ funcF funcG f≡g [f] [g] [f≡g] = f , g , d , d′ , funcF , funcG , f≡g , [f] , [g] , [f≡g]
pattern Σₜ p d pProd p≅p [fst] [snd] = p , d , pProd , p≅p , ([fst] , [snd])
pattern Σₜ₌ p r d d′ pProd rProd p≅r [t] [u] [fstp] [fstr] [fst≡] [snd≡] = p , r , d , d′ , pProd , rProd , p≅r , [t] , [u] , ([fstp] , [fstr] , [fst≡] , [snd≡])
pattern Uᵣ′ a b c = Uᵣ (Uᵣ a b c)
pattern ne′ a b c d = ne (ne a b c d)
pattern Bᵣ′ W a b c d e f g h i = Bᵣ W (Bᵣ a b c d e f g h i)
pattern Πᵣ′ a b c d e f g h i = Bᵣ′ BΠ a b c d e f g h i
pattern Σᵣ′ a b c d e f g h i = Bᵣ′ BΣ a b c d e f g h i
logRelRec : ∀ l {l′} → l′ < l → LogRelKit
logRelRec ⁰ = λ ()
logRelRec ¹ 0<1 = LogRel.kit ⁰ (λ ())
kit : ∀ (i : TypeLevel) → LogRelKit
kit l = LogRel.kit l (logRelRec l)
-- a bit of repetition in "kit ¹" definition, would work better with Fin 2 for
-- TypeLevel because you could recurse.
_⊩′⟨_⟩U : (Γ : Con Term) (l : TypeLevel) → Set
Γ ⊩′⟨ l ⟩U = Γ ⊩U where open LogRelKit (kit l)
_⊩′⟨_⟩B⟨_⟩_ : (Γ : Con Term) (l : TypeLevel) (W : BindingType) → Term → Set
Γ ⊩′⟨ l ⟩B⟨ W ⟩ A = Γ ⊩B⟨ W ⟩ A where open LogRelKit (kit l)
_⊩⟨_⟩_ : (Γ : Con Term) (l : TypeLevel) → Term → Set
Γ ⊩⟨ l ⟩ A = Γ ⊩ A where open LogRelKit (kit l)
_⊩⟨_⟩_≡_/_ : (Γ : Con Term) (l : TypeLevel) (A B : Term) → Γ ⊩⟨ l ⟩ A → Set
Γ ⊩⟨ l ⟩ A ≡ B / [A] = Γ ⊩ A ≡ B / [A] where open LogRelKit (kit l)
_⊩⟨_⟩_∷_/_ : (Γ : Con Term) (l : TypeLevel) (t A : Term) → Γ ⊩⟨ l ⟩ A → Set
Γ ⊩⟨ l ⟩ t ∷ A / [A] = Γ ⊩ t ∷ A / [A] where open LogRelKit (kit l)
_⊩⟨_⟩_≡_∷_/_ : (Γ : Con Term) (l : TypeLevel) (t u A : Term) → Γ ⊩⟨ l ⟩ A → Set
Γ ⊩⟨ l ⟩ t ≡ u ∷ A / [A] = Γ ⊩ t ≡ u ∷ A / [A] where open LogRelKit (kit l)
| {
"alphanum_fraction": 0.462481674,
"avg_line_length": 32.2709677419,
"ext": "agda",
"hexsha": "9fc4ad014cc89f2490396cb24cf8c30a8b403d37",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/LogicalRelation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/LogicalRelation.agda",
"max_line_length": 161,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/LogicalRelation.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7312,
"size": 15006
} |
module Readme where
-- SystemF with small-step semantics
-- and normal forms
open import SystemF.Everything
-- SystemF extended with functions that take implicit parameters
-- including a reduction to SystemF
open import Implicits.Everything
-- Simply typed lambda calculus with references,
-- accompanied by a store-passing small-step semantics
open import Impure.STLCRef.Readme
-- First order dependently typed lambda calculus with references,
-- accompanied by a store-passing small-step semantics
-- and a proof that the small-step semantics is deterministic
open import Impure.LFRef.Readme
| {
"alphanum_fraction": 0.8080133556,
"avg_line_length": 31.5263157895,
"ext": "agda",
"hexsha": "1f11678bb0b9f500bf7463381052e07dc87b19bf",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Readme.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Readme.agda",
"max_line_length": 65,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Readme.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 127,
"size": 599
} |
module tests.Forcing2 where
open import Prelude.Nat
open import Prelude.IO
open import Prelude.Unit
data _**_ (A B : Set) : Set where
_,_ : A -> B -> A ** B
data P {A B : Set} : A ** B -> Set where
_,_ : (x : A)(y : B) -> P (x , y)
data Q {A : Set} : A ** A -> Set where
[_] : (x : A) -> Q (x , x)
test1 : (p : Nat ** Nat) -> P p -> Nat
test1 .(x , y) (x , y) = x + y
test2 : (q : Nat ** Nat) -> Q q -> Nat
test2 .(x , x) [ x ] = ((S (S Z)) * x) + 1
test3 : (q : (Nat ** Nat) ** (Nat ** Nat)) -> Q q -> Nat
test3 .((Z , Z) , (Z , Z)) [ Z , Z ] = Z
test3 .((S n , m) , (S n , m)) [ S n , m ] = S n + m
test3 .((Z , m) , (Z , m)) [ Z , m ] = m
main : IO Unit
main =
printNat (test1 (5 , 8) (5 , 8)) ,,
printNat (test2 (1 , 1) [ 1 ]) ,,
printNat (test3 ( (3 , 4) , (3 , 4) ) [ 3 , 4 ]) ,,
return unit
| {
"alphanum_fraction": 0.4247058824,
"avg_line_length": 25.7575757576,
"ext": "agda",
"hexsha": "7ddca0c40b419e33b5b5dfa7ef0498abaf46710a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "test/epic/tests/Forcing2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "test/epic/tests/Forcing2.agda",
"max_line_length": 56,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/epic/tests/Forcing2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 378,
"size": 850
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Conat Literals
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Conat.Literals where
open import Agda.Builtin.FromNat
open import Data.Unit
open import Codata.Conat
number : ∀ {i} → Number (Conat i)
number = record
{ Constraint = λ _ → ⊤
; fromNat = λ n → fromℕ n
}
| {
"alphanum_fraction": 0.4620253165,
"avg_line_length": 23.7,
"ext": "agda",
"hexsha": "a6ad101efbd81cc6a6ae1a92395bd849dcb46cc2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Conat/Literals.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Conat/Literals.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Conat/Literals.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 103,
"size": 474
} |
open import Data.Product using ( _×_ ; _,_ )
open import Relation.Nullary using ( ¬_ )
open import Relation.Unary using ( _∈_ ; ∅ ; _∪_ )
open import Web.Semantic.DL.ABox using
( ABox ; Assertions ; ε ; _,_ ; _∼_ ; _∈₁_ ; _∈₂_ )
open import Web.Semantic.DL.ABox.Interp using ( Interp ; ⌊_⌋ ; ind )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.Concept using
( Concept ; ⟨_⟩ ; ⊤ ; ⊥ ; _⊓_ ; _⊔_ ; ∀[_]_ ; ∃⟨_⟩_ ; ≤1 )
open import Web.Semantic.DL.KB using ( KB ; tbox ; abox )
open import Web.Semantic.DL.Role using ( Role ; ⟨_⟩ ; ⟨_⟩⁻¹ )
open import Web.Semantic.DL.TBox using
( TBox ; Axioms ; ε ; _,_ ;_⊑₁_ ; _⊑₂_ ; Ref ; Tra )
open import Web.Semantic.DL.TBox.Interp using ( Δ ; _⊨_≈_ ; con ; rol )
open import Web.Semantic.Util using ( _⊕_⊕_ ; inode ; bnode ; enode )
module Web.Semantic.DL.Sequent {Σ : Signature} {W X Y : Set} where
infix 2 _⊕_⊢_∼_ _⊕_⊢_∈₁_ _⊕_⊢_∈₂_
Γ : (Interp Σ X) → (KB Σ (X ⊕ W ⊕ Y)) → Set
Γ I K = Δ ⌊ I ⌋ ⊕ W ⊕ Y
γ : ∀ I K → (X ⊕ W ⊕ Y) → Γ I K
γ I K (inode x) = inode (ind I x)
γ I K (bnode w) = bnode w
γ I K (enode y) = enode y
mutual
data _⊕_⊢_∼_ I K : Γ I K → Γ I K → Set where
∼-assert : ∀ {x y} → ((x ∼ y) ∈ Assertions (abox K)) → (I ⊕ K ⊢ γ I K x ∼ γ I K y)
∼-import : ∀ {x y} → (⌊ I ⌋ ⊨ x ≈ y) → (I ⊕ K ⊢ inode x ∼ inode y)
∼-refl : ∀ {x} → (I ⊕ K ⊢ x ∼ x)
∼-sym : ∀ {x y} → (I ⊕ K ⊢ x ∼ y) → (I ⊕ K ⊢ y ∼ x)
∼-trans : ∀ {x y z} → (I ⊕ K ⊢ x ∼ y) → (I ⊕ K ⊢ y ∼ z) → (I ⊕ K ⊢ x ∼ z)
∼-≤1 : ∀ {x y z R} → (I ⊕ K ⊢ x ∈₁ (≤1 R)) → (I ⊕ K ⊢ (x , y) ∈₂ R) → (I ⊕ K ⊢ (x , z) ∈₂ R) → (I ⊕ K ⊢ y ∼ z)
data _⊕_⊢_∈₁_ I K : Γ I K → Concept Σ → Set where
∈₁-assert : ∀ {x c} → ((x ∈₁ c) ∈ Assertions (abox K)) → (I ⊕ K ⊢ γ I K x ∈₁ ⟨ c ⟩)
∈₁-import : ∀ {x c} → (x ∈ con ⌊ I ⌋ c) → (I ⊕ K ⊢ inode x ∈₁ ⟨ c ⟩)
∈₁-resp-∼ : ∀ {x y C} → (I ⊕ K ⊢ x ∈₁ C) → (I ⊕ K ⊢ x ∼ y) → (I ⊕ K ⊢ y ∈₁ C)
∈₁-subsum : ∀ {x C D} → (I ⊕ K ⊢ x ∈₁ C) → ((C ⊑₁ D) ∈ Axioms (tbox K)) → (I ⊕ K ⊢ x ∈₁ D)
∈₁-⊤-I : ∀ {x} → (I ⊕ K ⊢ x ∈₁ ⊤)
∈₁-⊓-I : ∀ {x C D} → (I ⊕ K ⊢ x ∈₁ C) → (I ⊕ K ⊢ x ∈₁ D) → (I ⊕ K ⊢ x ∈₁ (C ⊓ D))
∈₁-⊓-E₁ : ∀ {x C D} → (I ⊕ K ⊢ x ∈₁ (C ⊓ D)) → (I ⊕ K ⊢ x ∈₁ C)
∈₁-⊓-E₂ : ∀ {x C D} → (I ⊕ K ⊢ x ∈₁ (C ⊓ D)) → (I ⊕ K ⊢ x ∈₁ D)
∈₁-⊔-I₁ : ∀ {x C D} → (I ⊕ K ⊢ x ∈₁ C) → (I ⊕ K ⊢ x ∈₁ (C ⊔ D))
∈₁-⊔-I₂ : ∀ {x C D} → (I ⊕ K ⊢ x ∈₁ D) → (I ⊕ K ⊢ x ∈₁ (C ⊔ D))
∈₁-∀-E : ∀ {x y R C} → (I ⊕ K ⊢ x ∈₁ (∀[ R ] C)) → (I ⊕ K ⊢ (x , y) ∈₂ R) → (I ⊕ K ⊢ y ∈₁ C)
∈₁-∃-I : ∀ {x y R C} → (I ⊕ K ⊢ (x , y) ∈₂ R) → (I ⊕ K ⊢ y ∈₁ C) → (I ⊕ K ⊢ x ∈₁ (∃⟨ R ⟩ C))
data _⊕_⊢_∈₂_ I K : (Γ I K × Γ I K) → Role Σ → Set where
∈₂-assert : ∀ {x y r} → (((x , y) ∈₂ r) ∈ Assertions (abox K)) → (I ⊕ K ⊢ (γ I K x , γ I K y) ∈₂ ⟨ r ⟩)
∈₂-import : ∀ {x y r} → ((x , y) ∈ rol ⌊ I ⌋ r) → (I ⊕ K ⊢ (inode x , inode y) ∈₂ ⟨ r ⟩)
∈₂-resp-∼ : ∀ {w x y z R} → (I ⊕ K ⊢ w ∼ x) → (I ⊕ K ⊢ (x , y) ∈₂ R) → (I ⊕ K ⊢ y ∼ z) → (I ⊕ K ⊢ (w , z) ∈₂ R)
∈₂-subsum : ∀ {xy R S} → (I ⊕ K ⊢ xy ∈₂ R) → ((R ⊑₂ S) ∈ Axioms (tbox K)) → (I ⊕ K ⊢ xy ∈₂ S)
∈₂-refl : ∀ x {R} → ((Ref R) ∈ Axioms (tbox K)) → (I ⊕ K ⊢ (x , x) ∈₂ R)
∈₂-trans : ∀ {x y z R} → (I ⊕ K ⊢ (x , y) ∈₂ R) → (I ⊕ K ⊢ (y , z) ∈₂ R) → ((Tra R) ∈ Axioms (tbox K)) → (I ⊕ K ⊢ (x , z) ∈₂ R)
∈₂-inv-I : ∀ {x y r} → (I ⊕ K ⊢ (x , y) ∈₂ ⟨ r ⟩) → (I ⊕ K ⊢ (y , x) ∈₂ ⟨ r ⟩⁻¹)
∈₂-inv-E : ∀ {x y r} → (I ⊕ K ⊢ (x , y) ∈₂ ⟨ r ⟩⁻¹) → (I ⊕ K ⊢ (y , x) ∈₂ ⟨ r ⟩)
| {
"alphanum_fraction": 0.4089985486,
"avg_line_length": 55.564516129,
"ext": "agda",
"hexsha": "68075f0963cdd3dd91955ec1e026f469fdf74da9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/Sequent.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/Sequent.agda",
"max_line_length": 131,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/Sequent.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1933,
"size": 3445
} |
open import Agda.Builtin.Equality
primitive
primEraseEquality : ∀ {a} {A : Set a} {x y : A} → x ≡ y → x ≡ y
| {
"alphanum_fraction": 0.6126126126,
"avg_line_length": 22.2,
"ext": "agda",
"hexsha": "407ad63d02dfe516476a2eb8a532d737c9e08f4a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/UnsafePrimEraseEquality.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/UnsafePrimEraseEquality.agda",
"max_line_length": 65,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/UnsafePrimEraseEquality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 44,
"size": 111
} |
{- https://lists.chalmers.se/pipermail/agda/2013/006033.html http://code.haskell.org/~Saizan/unification/ 18-Nov-2013 Andrea Vezzosi -}
module Unify-monolithic where
-- some equivalences needed to adapt Tactic.Nat to the standard library
module EquivalenceOf≤ where
open import Agda.Builtin.Equality
open import Agda.Builtin.Nat
open import Data.Nat using (less-than-or-equal) renaming (_≤_ to _≤s_)
open import Data.Nat.Properties using (≤⇒≤″; ≤″⇒≤)
open import Prelude using (diff; id) renaming (_≤_ to _≤p_)
open import Tactic.Nat.Generic (quote _≤p_) (quote id) (quote id) using (by)
≤p→≤s : ∀ {a b} → a ≤p b → a ≤s b
≤p→≤s (diff k b₊₁≡k₊₁+a) = ≤″⇒≤ (less-than-or-equal {k = k} (by b₊₁≡k₊₁+a))
≤s→≤p : ∀ {a b} → a ≤s b → a ≤p b
≤s→≤p a≤sb with ≤⇒≤″ a≤sb
≤s→≤p _ | less-than-or-equal {k = k} a+k≡b = diff k (by a+k≡b)
module _ where
open EquivalenceOf≤
open import Data.Nat
open import Tactic.Nat.Generic (quote _≤_) (quote ≤s→≤p) (quote ≤p→≤s) public
open import Data.Fin using (Fin; suc; zero)
open import Data.Nat hiding (_≤_)
--open import Relation.Binary.PropositionalEquality
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Function
open import Relation.Nullary
--open import Data.Product
open import Data.Product renaming (map to _***_)
open import Data.Empty
data Term (n : ℕ) : Set where
i : (x : Fin n) -> Term n
leaf : Term n
_fork_ : (s t : Term n) -> Term n
{-
data Term : ℕ -> Set where
i : ∀ ..{n} -> (x : Fin n) -> Term n
leaf : ∀ ..{n} -> Term n
_fork_ : ∀ ..{n} -> (s t : Term n) -> Term n
-}
_~>_ : (m n : ℕ) -> Set
m ~> n = Fin m -> Term n
▹ : ∀ {m n} -> (r : Fin m -> Fin n) -> Fin m -> Term n
▹ r = i ∘ r
_◃ : ∀ {m n} -> (f : m ~> n) -> Term m -> Term n
(f ◃ ) (i x) = f x
(f ◃ ) leaf = leaf
(f ◃ ) (s fork t) = (f ◃) s fork (f ◃) t
_◃_ : ∀ {m n} -> (f : m ~> n) -> Term m -> Term n
_◃_ = _◃
_≐_ : {m n : ℕ} -> (Fin m -> Term n) -> (Fin m -> Term n) -> Set
f ≐ g = ∀ x -> f x ≡ g x
◃ext : ∀ {m n} {f g : Fin m -> Term n} -> f ≐ g -> ∀ t -> f ◃ t ≡ g ◃ t
◃ext p (i x) = p x
◃ext p leaf = refl
◃ext p (s fork t) = cong₂ _fork_ (◃ext p s) (◃ext p t)
_◇_ : ∀ {l m n : ℕ } -> (f : Fin m -> Term n) (g : Fin l -> Term m) -> Fin l -> Term n
f ◇ g = (f ◃) ∘ g
≐-cong : ∀ {m n o} {f : m ~> n} {g} (h : _ ~> o) -> f ≐ g -> (h ◇ f) ≐ (h ◇ g)
≐-cong h f≐g t = cong (h ◃) (f≐g t)
≐-sym : ∀ {m n} {f : m ~> n} {g} -> f ≐ g -> g ≐ f
≐-sym f≐g = sym ∘ f≐g
module Sub where
fact1 : ∀ {n} -> (t : Term n) -> i ◃ t ≡ t
fact1 (i x) = refl
fact1 leaf = refl
fact1 (s fork t) = cong₂ _fork_ (fact1 s) (fact1 t)
fact2 : ∀ {l m n} -> (f : Fin m -> Term n) (g : _) (t : Term l)
-> (f ◇ g) ◃ t ≡ f ◃ (g ◃ t)
fact2 f g (i x) = refl
fact2 f g leaf = refl
fact2 f g (s fork t) = cong₂ _fork_ (fact2 f g s) (fact2 f g t)
fact3 : ∀ {l m n} (f : Fin m -> Term n) (r : Fin l -> Fin m) -> (f ◇ (▹ r)) ≡ (f ∘ r)
fact3 f r = refl -- ext (λ _ -> refl)
◃ext' : ∀ {m n o} {f : Fin m -> Term n}{g : Fin m -> Term o}{h} -> f ≐ (h ◇ g) -> ∀ t -> f ◃ t ≡ h ◃ (g ◃ t)
◃ext' p t = trans (◃ext p t) (Sub.fact2 _ _ t)
s : ℕ -> ℕ
s = suc
thin : ∀ {n} -> (x : Fin (s n)) (y : Fin n) -> Fin (s n)
thin zero y = suc y
thin (suc x) zero = zero
thin (suc x) (suc y) = suc (thin x y)
p : ∀ {n} -> Fin (suc (suc n)) -> Fin (suc n)
p (suc x) = x
p zero = zero
module Thin where
fact1 : ∀ {n} x y z -> thin {n} x y ≡ thin x z -> y ≡ z
fact1 zero y .y refl = refl
fact1 (suc x) zero zero r = refl
fact1 (suc x) zero (suc z) ()
fact1 (suc x) (suc y) zero ()
fact1 (suc x) (suc y) (suc z) r = cong suc (fact1 x y z (cong p r))
fact2 : ∀ {n} x y -> ¬ thin {n} x y ≡ x
fact2 zero y ()
fact2 (suc x) zero ()
fact2 (suc x) (suc y) r = fact2 x y (cong p r)
fact3 : ∀{n} x y -> ¬ x ≡ y -> ∃ λ y' -> thin {n} x y' ≡ y
fact3 zero zero ne = ⊥-elim (ne refl)
fact3 zero (suc y) _ = y , refl
fact3 {zero} (suc ()) _ _
fact3 {suc n} (suc x) zero ne = zero , refl
fact3 {suc n} (suc x) (suc y) ne with y | fact3 x y (ne ∘ cong suc)
... | .(thin x y') | y' , refl = suc y' , refl
open import Data.Maybe
open import Category.Functor
open import Category.Monad
import Level
open RawMonad (Data.Maybe.monad {Level.zero})
thick : ∀ {n} -> (x y : Fin (suc n)) -> Maybe (Fin n)
thick zero zero = nothing
thick zero (suc y) = just y
thick {zero} (suc ()) _
thick {suc _} (suc x) zero = just zero
thick {suc _} (suc x) (suc y) = suc <$> (thick x y)
open import Data.Sum
_≡Fin_ : ∀ {n} -> (x y : Fin n) -> Dec (x ≡ y)
zero ≡Fin zero = yes refl
zero ≡Fin suc y = no λ ()
suc x ≡Fin zero = no λ ()
suc {suc _} x ≡Fin suc y with x ≡Fin y
... | yes r = yes (cong suc r)
... | no r = no λ e -> r (cong p e)
suc {zero} () ≡Fin _
module Thick where
half1 : ∀ {n} (x : Fin (suc n)) -> thick x x ≡ nothing
half1 zero = refl
half1 {suc _} (suc x) = cong (_<$>_ suc) (half1 x)
half1 {zero} (suc ())
half2 : ∀ {n} (x : Fin (suc n)) y -> ∀ y' -> thin x y' ≡ y -> thick x y ≡ just y'
half2 zero zero y' ()
half2 zero (suc y) .y refl = refl
half2 {suc n} (suc x) zero zero refl = refl
half2 {suc _} (suc _) zero (suc _) ()
half2 {suc n} (suc x) (suc y) zero ()
half2 {suc n} (suc x) (suc .(thin x y')) (suc y') refl with thick x (thin x y') | half2 x (thin x y') y' refl
... | .(just y') | refl = refl
half2 {zero} (suc ()) _ _ _
fact1 : ∀ {n} (x : Fin (suc n)) y r
-> thick x y ≡ r
-> x ≡ y × r ≡ nothing ⊎ ∃ λ y' -> thin x y' ≡ y × r ≡ just y'
fact1 x y .(thick x y) refl with x ≡Fin y
fact1 x .x ._ refl | yes refl = inj₁ (refl , half1 x)
... | no el with Thin.fact3 x y el
... | y' , thinxy'=y = inj₂ (y' , ( thinxy'=y , half2 x y y' thinxy'=y ))
check : ∀{n} (x : Fin (suc n)) (t : Term (suc n)) -> Maybe (Term n)
check x (i y) = i <$> thick x y
check x leaf = just leaf
check x (s fork t) = _fork_ <$> check x s ⊛ check x t
_for_ : ∀ {n} (t' : Term n) (x : Fin (suc n)) -> Fin (suc n) -> Term n
(t' for x) y = maybe′ i t' (thick x y)
data AList : ℕ -> ℕ -> Set where
anil : ∀ {n} -> AList n n
_asnoc_/_ : ∀ {m n} (σ : AList m n) (t' : Term m) (x : Fin (suc m))
-> AList (suc m) n
alist≥ : ∀ m n → AList m n → m Data.Nat.≥ n
alist≥ m .m anil = {!!}
alist≥ .(suc _) n (x asnoc t' / x₁) with alist≥ _ _ x
… | r = {!!}
sub : ∀ {m n} (σ : AList m n) -> Fin m -> Term n
sub anil = i
sub (σ asnoc t' / x) = sub σ ◇ (t' for x)
_++_ : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> AList l n
ρ ++ anil = ρ
ρ ++ (σ asnoc t' / x) = (ρ ++ σ) asnoc t' / x
++-assoc : ∀ {l m n o} (ρ : AList l m) (σ : AList n _) (τ : AList o _) -> ρ ++ (σ ++ τ) ≡ (ρ ++ σ) ++ τ
++-assoc ρ σ anil = refl
++-assoc ρ σ (τ asnoc t / x) = cong (λ s -> s asnoc t / x) (++-assoc ρ σ τ)
module SubList where
anil-id-l : ∀ {m n} (σ : AList m n) -> anil ++ σ ≡ σ
anil-id-l anil = refl
anil-id-l (σ asnoc t' / x) = cong (λ σ -> σ asnoc t' / x) (anil-id-l σ)
fact1 : ∀ {l m n} (ρ : AList m n) (σ : AList l m) -> sub (ρ ++ σ) ≐ (sub ρ ◇ sub σ)
fact1 ρ anil v = refl
fact1 {suc l} {m} {n} r (s asnoc t' / x) v = trans hyp-on-terms ◃-assoc
where
t = (t' for x) v
hyp-on-terms = ◃ext (fact1 r s) t
◃-assoc = Sub.fact2 (sub r) (sub s) t
_∃asnoc_/_ : ∀ {m} (a : ∃ (AList m)) (t' : Term m) (x : Fin (suc m))
-> ∃ (AList (suc m))
(n , σ) ∃asnoc t' / x = n , σ asnoc t' / x
flexFlex : ∀ {m} (x y : Fin m) -> ∃ (AList m)
flexFlex {suc m} x y with thick x y
... | just y' = m , anil asnoc i y' / x
... | nothing = suc m , anil
flexFlex {zero} () _
flexRigid : ∀ {m} (x : Fin m) (t : Term m) -> Maybe (∃(AList m))
flexRigid {suc m} x t with check x t
... | just t' = just (m , anil asnoc t' / x)
... | nothing = nothing
flexRigid {zero} () _
amgu : ∀ {m} (s t : Term m) (acc : ∃ (AList m)) -> Maybe (∃ (AList m))
amgu leaf leaf acc = just acc
amgu leaf (s' fork t') acc = nothing
amgu (s' fork t') leaf acc = nothing
amgu (s1 fork s2) (t1 fork t2) acc =
amgu s2 t2 =<< amgu s1 t1 acc
amgu (i x) (i y) (m , anil) = just (flexFlex x y)
amgu (i x) t (m , anil) = flexRigid x t
amgu t (i x) (m , anil) = flexRigid x t
amgu s t (n , σ asnoc r / z) =
(λ σ -> σ ∃asnoc r / z) <$>
amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ)
mgu : ∀ {m} -> (s t : Term m) -> Maybe (∃ (AList m))
mgu {m} s t = amgu s t (m , anil)
{-
open import Data.Fin using (Fin; suc; zero)
open import Data.Nat hiding (_≤_)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Function
open import Relation.Nullary
open import Data.Product renaming (map to _***_)
open import Data.Empty
-}
open import Data.Maybe using (maybe; maybe′; nothing; just; monad; Maybe)
open import Data.Sum
--open import Unify
open import Data.List renaming (_++_ to _++L_)
open ≡-Reasoning
open import Category.Functor
open import Category.Monad
import Level as L
--open RawMonad (Data.Maybe.monad {L.zero})
record Σ₁ (A : Set1) (F : A -> Set) : Set1 where
field
π₁ : A
π₂ : F π₁
_,,_ : ∀ {A F} (x : A) -> F x -> Σ₁ A F
x ,, b = record{ π₁ = x; π₂ = b }
open Σ₁
Property⋆ : (m : ℕ) -> Set1
Property⋆ m = ∀ {n} -> (Fin m -> Term n) -> Set
Extensional : {m : ℕ} -> Property⋆ m -> Set
Extensional P = ∀ {m f g} -> f ≐ g -> P {m} f -> P g
Property : (m : ℕ) -> Set1
Property m = Σ₁ (Property⋆ m) Extensional
prop-id : ∀ {m n} {f : _ ~> n} {P : Property m} -> π₁ P f -> π₁ P (i ◇ f)
prop-id {_} {_} {f} {P'} Pf = π₂ P' (λ x → sym (Sub.fact1 (f x))) Pf
Unifies⋆ : ∀ {m} (s t : Term m) -> Property⋆ m
Unifies⋆ s t f = f ◃ s ≡ f ◃ t
Unifies : ∀ {m} (s t : Term m) -> Property m
Unifies s t = (λ {_} -> Unifies⋆ s t) ,, λ {_} {f} {g} f≐g f◃s=f◃t ->
begin
g ◃ s
≡⟨ sym (◃ext f≐g s) ⟩
f ◃ s
≡⟨ f◃s=f◃t ⟩
f ◃ t
≡⟨ ◃ext f≐g t ⟩
g ◃ t
∎
_∧⋆_ : ∀{m} -> (P Q : Property⋆ m) -> Property⋆ m
P ∧⋆ Q = (λ f -> P f × Q f)
_∧_ : ∀{m} -> (P Q : Property m) -> Property m
P ∧ Q = (λ {_} f -> π₁ P f × π₁ Q f) ,, λ {_} {_} {_} f≐g Pf×Qf -> π₂ P f≐g (proj₁ Pf×Qf) , π₂ Q f≐g (proj₂ Pf×Qf)
_⇔⋆_ : ∀{m} -> (P Q : Property⋆ m) -> Set
P ⇔⋆ Q = ∀ {n} f -> (P {n} f -> Q f) × (Q f -> P f)
_⇔_ : ∀{m} -> (P Q : Property m) -> Set
P ⇔ Q = ∀ {n} f -> (π₁ P {n} f -> π₁ Q f) × (π₁ Q f -> π₁ P f)
switch⋆ : ∀ {m} (P Q : Property⋆ m) -> P ⇔⋆ Q -> Q ⇔⋆ P
switch⋆ _ _ P⇔Q f = proj₂ (P⇔Q f) , proj₁ (P⇔Q f)
switch : ∀ {m} (P Q : Property m) -> P ⇔ Q -> Q ⇔ P
switch _ _ P⇔Q f = proj₂ (P⇔Q f) , proj₁ (P⇔Q f)
Nothing⋆ : ∀{m} -> (P : Property⋆ m) -> Set
Nothing⋆ P = ∀{n} f -> P {n} f -> ⊥
Nothing : ∀{m} -> (P : Property m) -> Set
Nothing P = ∀{n} f -> π₁ P {n} f -> ⊥
_[-◇⋆_] : ∀{m n} (P : Property⋆ m) (f : Fin m -> Term n) -> Property⋆ n
(P [-◇⋆ f ]) g = P (g ◇ f)
_[-◇_] : ∀{m n} (P : Property m) (f : Fin m -> Term n) -> Property n
P [-◇ f ] = (λ {_} g -> π₁ P (g ◇ f)) ,, λ {_} {f'} {g'} f'≐g' Pf'◇f -> π₂ P (◃ext f'≐g' ∘ f) Pf'◇f
module Properties where
fact1 : ∀ {m} {s t : Term m} -> (Unifies s t) ⇔ (Unifies t s)
fact1 _ = sym , sym
fact1'⋆ : ∀ {m} {s1 s2 t1 t2 : Term m}
-> Unifies⋆ (s1 fork s2) (t1 fork t2) ⇔⋆ (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2)
fact1'⋆ f = deconstr _ _ _ _ , uncurry (cong₂ _fork_)
where deconstr : ∀ {m} (s1 s2 t1 t2 : Term m)
-> (s1 fork s2) ≡ (t1 fork t2)
-> (s1 ≡ t1) × (s2 ≡ t2)
deconstr s1 s2 .s1 .s2 refl = refl , refl
fact1' : ∀ {m} {s1 s2 t1 t2 : Term m}
-> Unifies (s1 fork s2) (t1 fork t2) ⇔ (Unifies s1 t1 ∧ Unifies s2 t2)
fact1' f = deconstr _ _ _ _ , uncurry (cong₂ _fork_)
where deconstr : ∀ {m} (s1 s2 t1 t2 : Term m)
-> (s1 fork s2) ≡ (t1 fork t2)
-> (s1 ≡ t1) × (s2 ≡ t2)
deconstr s1 s2 .s1 .s2 refl = refl , refl
fact2⋆ : ∀ {m} (P Q : Property⋆ m) -> P ⇔⋆ Q -> Nothing⋆ P -> Nothing⋆ Q
fact2⋆ P Q iff notp f q with iff f
... | (p2q , q2p) = notp f (q2p q)
fact2 : ∀ {m} (P Q : Property m) -> P ⇔ Q -> Nothing P -> Nothing Q
fact2 P Q iff notp f q with iff f
... | (p2q , q2p) = notp f (q2p q)
fact3 : ∀ {m} {P : Property m} -> P ⇔ (P [-◇ i ])
fact3 f = id , id
fact4 : ∀{m n} {P : Property m} (f : _ -> Term n)
-> Nothing P -> Nothing (P [-◇ f ])
fact4 f nop g = nop (g ◇ f)
fact5⋆ : ∀{m n} (P Q : Property⋆ _) (f : m ~> n) -> P ⇔⋆ Q -> (P [-◇⋆ f ]) ⇔⋆ (Q [-◇⋆ f ])
fact5⋆ _ _ f P⇔Q f' = P⇔Q (f' ◇ f)
fact5 : ∀{m n} (P Q : Property _) (f : m ~> n) -> P ⇔ Q -> (P [-◇ f ]) ⇔ (Q [-◇ f ])
fact5 _ _ f P⇔Q f' = P⇔Q (f' ◇ f)
fact6 : ∀{m n} P {f g : m ~> n} -> f ≐ g -> (P [-◇ f ]) ⇔ (P [-◇ g ])
fact6 P f≐g h = π₂ P (≐-cong h f≐g) , π₂ P (≐-sym (≐-cong h f≐g))
{-
fact5 : ∀ {l m n} {f : Fin n -> Term l} {g : Fin m -> Term n}
{P : Property _ }
-> (P [-◇ g ]) [-◇ f ] ⇔ P [-◇ (f ◇ g) ]
fact5 h = {!!} , {!!}
-}
_≤_ : ∀ {m n n'} (f : Fin m -> Term n) (g : Fin m -> Term n') -> Set
f ≤ g = ∃ λ f' -> f ≐ (f' ◇ g)
module Order where
reflex : ∀ {m n} {f : Fin m -> Term n} -> f ≤ f
reflex = i , λ _ -> sym (Sub.fact1 _)
transitivity : ∀ {l m n o} {f : Fin l -> Term m}{g : _ -> Term n}
{h : _ -> Term o}
-> f ≤ g -> g ≤ h -> f ≤ h
transitivity {l} {_} {_} {_} {f} {g} {h} (fg , pfg) (gh , pgh) =
fg ◇ gh , proof
where
proof : (x : Fin l) → f x ≡ (λ x' → fg ◃ (gh x')) ◃ (h x)
proof x = trans z (sym (Sub.fact2 fg gh (h x)))
where z = trans (pfg x) (cong (fg ◃) (pgh x))
i-max : ∀ {m n} (f : Fin m -> Term n) -> f ≤ i
i-max f = f , λ _ -> refl
dist : ∀{l m n o}{f : Fin l -> Term m}{g : _ -> Term n}(h : Fin o -> _) -> f ≤ g -> (f ◇ h) ≤ (g ◇ h)
dist h (fg , pfg) = fg , λ x -> trans (◃ext pfg (h x)) (Sub.fact2 _ _ (h x))
Max⋆ : ∀ {m} (P : Property⋆ m) -> Property⋆ m
Max⋆ P f = P f × (∀ {n} f' -> P {n} f' -> f' ≤ f)
Max : ∀ {m} (P : Property m) -> Property m
Max P' = (λ {_} → Max⋆ P) ,, λ {_} {_} {_} -> lemma1
where
open Σ₁ P' renaming (π₁ to P; π₂ to Peq)
lemma1 : {m : ℕ} {f : Fin _ → Term m} {g : Fin _ → Term m} →
f ≐ g →
P f × ({n : ℕ} (f' : Fin _ → Term n) → P f' → f' ≤ f) →
P g × ({n : ℕ} (f' : Fin _ → Term n) → P f' → f' ≤ g)
lemma1 {_} {f} {g} f≐g (Pf , MaxPf) = Peq f≐g Pf , λ {_} -> lemma2
where
lemma2 : ∀ {n} f' → P {n} f' → ∃ λ f0 → f' ≐ (f0 ◇ g)
lemma2 f' Pf' = f0 , λ x -> trans (f'≐f0◇f x) (cong (f0 ◃) (f≐g x))
where
f0 = proj₁ (MaxPf f' Pf')
f'≐f0◇f = proj₂ (MaxPf f' Pf')
module Max where
fact : ∀{m}(P Q : Property m) -> P ⇔ Q -> Max P ⇔ Max Q
fact {m} P Q a f =
(λ maxp → pq (proj₁ maxp) , λ f' → proj₂ maxp f' ∘ qp)
, λ maxq → qp (proj₁ maxq) , λ f' → proj₂ maxq f' ∘ pq
where
pq : {n : ℕ} {f0 : Fin m → Term n} → (π₁ P f0 → π₁ Q f0)
pq {_} {f} = proj₁ (a f)
qp : {n : ℕ} {f0 : Fin m → Term n} → (π₁ Q f0 → π₁ P f0)
qp {_} {f} = proj₂ (a f)
DClosed : ∀{m} (P : Property m) -> Set
DClosed P = ∀ {n} f {o} g -> f ≤ g -> π₁ P {o} g -> π₁ P {n} f
module DClosed where
fact1 : ∀ {m} s t -> DClosed {m} (Unifies s t)
fact1 s t f g (f≤g , p) gs=gt =
begin
f ◃ s
≡⟨ ◃ext' p s ⟩
f≤g ◃ (g ◃ s)
≡⟨ cong (f≤g ◃) gs=gt ⟩
f≤g ◃ (g ◃ t)
≡⟨ sym (◃ext' p t) ⟩
f ◃ t
∎
optimist : ∀ {l m n o} (a : Fin _ -> Term n) (p : Fin _ -> Term o)
(q : Fin _ -> Term l) (P Q : Property m)
-> DClosed P -> π₁ (Max (P [-◇ a ])) p
-> π₁ (Max (Q [-◇ (p ◇ a) ])) q
-> π₁ (Max ((P ∧ Q) [-◇ a ])) (q ◇ p)
optimist a p q P' Q' DCP (Ppa , pMax) (Qqpa , qMax) =
(Peq (sym ∘ (Sub.fact2 _ _) ∘ a) (DCP (q ◇ (p ◇ a)) (p ◇ a) (q , λ _ -> refl) Ppa)
, Qeq (sym ∘ (Sub.fact2 _ _) ∘ a) Qqpa )
, λ {_} -> aux
where
open Σ₁ P' renaming (π₁ to P; π₂ to Peq)
open Σ₁ Q' renaming (π₁ to Q; π₂ to Qeq)
aux : ∀ {n} (f : _ -> Term n) -> P (f ◇ a) × Q (f ◇ a) -> f ≤ (q ◇ p)
aux f (Pfa , Qfa) = h ,
λ x -> trans (f≐g◇p x) (◃ext' g≐h◇q (p x))
where
one = pMax f Pfa
g = proj₁ one
f≐g◇p = proj₂ one
Qgpa : Q (g ◇ (p ◇ a))
Qgpa = Qeq (λ x -> ◃ext' f≐g◇p (a x)) Qfa
g≤q = qMax g Qgpa
h = proj₁ g≤q
g≐h◇q = proj₂ g≤q
module failure-propagation where
first⋆ : ∀ {m n} (a : _ ~> n) (P Q : Property⋆ m) ->
Nothing⋆ (P [-◇⋆ a ]) -> Nothing⋆ ((P ∧⋆ Q) [-◇⋆ a ])
first⋆ a P' Q' noP-a f (Pfa , Qfa) = noP-a f Pfa
first : ∀ {m n} (a : _ ~> n) (P Q : Property m) ->
Nothing (P [-◇ a ]) -> Nothing ((P ∧ Q) [-◇ a ])
first a P' Q' noP-a f (Pfa , Qfa) = noP-a f Pfa
{-
second⋆ : ∀ {m n o} (a : _ ~> n) (p : _ ~> o)(P Q : Property⋆ m) ->
(Max⋆ (P [-◇⋆ a ])) p -> Nothing⋆ (Q [-◇⋆ (p ◇ a)])
-> Nothing⋆ ((P ∧⋆ Q) [-◇⋆ a ])
second⋆ a p P' Q' (Ppa , pMax) noQ-p◇a f (Pfa , Qfa) = noQ-p◇a g Qgpa
where
f≤p = pMax f Pfa
g = proj₁ f≤p
f≐g◇p = proj₂ f≤p
Qgpa : Q' (g ◇ (p ◇ a))
Qgpa = {!!}
{-
noQ-p◇a g Qgpa
where
f≤p = pMax f Pfa
g = proj₁ f≤p
f≐g◇p = proj₂ f≤p
Qgpa : π₁ Q' (g ◇ (p ◇ a))
Qgpa = π₂ Q' (◃ext' f≐g◇p ∘ a) Qfa
-}
-}
second⋆ : ∀ {m n o} (a : _ ~> n) (p : _ ~> o)(P : Property⋆ m)(Q : Property m) ->
(Max⋆ (P [-◇⋆ a ])) p -> Nothing⋆ (π₁ Q [-◇⋆ (p ◇ a)])
-> Nothing⋆ ((P ∧⋆ π₁ Q) [-◇⋆ a ])
second⋆ a p P' Q' (Ppa , pMax) noQ-p◇a f (Pfa , Qfa) = noQ-p◇a g Qgpa
where
f≤p = pMax f Pfa
g = proj₁ f≤p
f≐g◇p = proj₂ f≤p
Qgpa : π₁ Q' (g ◇ (p ◇ a))
Qgpa = π₂ Q' (◃ext' f≐g◇p ∘ a) Qfa
second : ∀ {m n o} (a : _ ~> n) (p : _ ~> o)(P Q : Property m) ->
π₁ (Max (P [-◇ a ])) p -> Nothing (Q [-◇ (p ◇ a)])
-> Nothing ((P ∧ Q) [-◇ a ])
second a p P' Q' (Ppa , pMax) noQ-p◇a f (Pfa , Qfa) =
noQ-p◇a g Qgpa
where
f≤p = pMax f Pfa
g = proj₁ f≤p
f≐g◇p = proj₂ f≤p
Qgpa : π₁ Q' (g ◇ (p ◇ a))
Qgpa = π₂ Q' (◃ext' f≐g◇p ∘ a) Qfa
trivial-problem : ∀ {m n t} {f : m ~> n} -> π₁ (Max ((Unifies t t) [-◇ f ])) i
trivial-problem = refl , λ f' _ → f' , λ _ → refl
var-elim : ∀ {m} (x : Fin (suc m)) (t' : Term _)
-> π₁ (Max ((Unifies (i x) ((▹ (thin x) ◃) t')))) (t' for x)
var-elim x t' = first , \{_} -> second
where
lemma : ∀{m}(x : Fin (suc m)) t → i ≐ ((t for x) ◇ (▹ (thin x)))
lemma x t x' = sym (cong (maybe i t) (Thick.half2 x _ x' refl))
first = begin
(t' for x) ◃ (i x) ≡⟨ cong (maybe i t') (Thick.half1 x) ⟩
t' ≡⟨ sym (Sub.fact1 t') ⟩
i ◃ t' ≡⟨ ◃ext' (lemma x t') t' ⟩
(t' for x) ◃ ((▹ (thin x) ◃) t') ∎
second : ∀ {n} (f : _ ~> n) → f x ≡ f ◃ ((▹ (thin x) ◃) t') → f ≤ (t' for x)
second f Unifiesf = (f ∘ thin x) , third
where
third : ((x' : Fin _) → f x' ≡ (f ∘ thin x) ◃ (maybe′ i t' (thick x x')))
third x' with thick x x' | Thick.fact1 x x' (thick x x') refl
third .x | .nothing | inj₁ (refl , refl) =
sym (begin
(f ∘ thin x) ◃ t' ≡⟨ cong (λ g -> (g ◃) t') (sym (Sub.fact3 f (thin x))) ⟩
(f ◇ (▹ (thin x))) ◃ t' ≡⟨ Sub.fact2 f (▹ (thin x)) t' ⟩
f ◃ ((▹ (thin x) ◃) t') ≡⟨ sym Unifiesf ⟩
f x ∎)
third x' | .(just y) | inj₂ (y , ( thinxy≡x' , refl)) = sym (cong f thinxy≡x')
var-elim-i : ∀ {m} (x : Fin (suc m)) (t' : Term _)
-> π₁ (Max ((Unifies (i x) ((▹ (thin x) ◃) t')))) (i ◇ (t' for x))
var-elim-i {m} x t = prop-id {_} {_} {t for x} {Max (Unifies (i x) ((▹ (thin x) ◃) t))} (var-elim {m} x t)
var-elim-i-≡ : ∀ {m} {t'} (x : Fin (suc m)) t1 -> t1 ≡ (i ∘ thin x) ◃ t' -> π₁ (Max (Unifies (i x) t1)) (i ◇ (t' for x))
var-elim-i-≡ {_} {t'} x .((i ∘ thin x) ◃ t') refl = var-elim-i x t'
data Step (n : ℕ) : Set where
left : Term n -> Step n
right : Term n -> Step n
fmapS : ∀ {n m} (f : Term n -> Term m) (s : Step n) -> Step m
fmapS f (left x) = left (f x)
fmapS f (right x) = right (f x)
_⊹_ : ∀ {n} (ps : List (Step n)) (t : Term n) -> Term n
[] ⊹ t = t
(left r ∷ ps) ⊹ t = (ps ⊹ t) fork r
(right l ∷ ps) ⊹ t = l fork (ps ⊹ t)
_◃S : ∀ {n m} (f : n ~> m) -> List (Step n) -> List (Step m)
_◃S f = Data.List.map (fmapS (f ◃))
map-[] : ∀ {n m} (f : n ~> m) ps -> (f ◃S) ps ≡ [] -> ps ≡ []
map-[] f [] _ = refl
map-[] f (x ∷ xs) ()
module StepM where
lemma1 : ∀ {n} (x : Step n) xs t -> [ x ] ⊹ ( xs ⊹ t ) ≡ (x ∷ xs) ⊹ t
lemma1 (left y) xs t = refl
lemma1 (right y) xs t = refl
lemma2 : ∀ {n} {r} {t} {xs} (x : Step n) -> xs ⊹ t ≡ r -> ((x ∷ xs) ⊹ t ) ≡ [ x ] ⊹ r
lemma2 (left y) eq = cong (λ t -> t fork y) eq
lemma2 (right y) eq = cong (λ t -> y fork t) eq
fact1 : ∀ {n} ps qs (t : Term n) -> (ps ++L qs) ⊹ t ≡ ps ⊹ (qs ⊹ t)
fact1 [] qs t = refl
fact1 (p ∷ ps) qs t = begin (p ∷ (ps ++L qs)) ⊹ t ≡⟨ lemma2 p (fact1 ps qs t) ⟩
[ p ] ⊹ (ps ⊹ (qs ⊹ t)) ≡⟨ lemma1 p ps (qs ⊹ t) ⟩
(p ∷ ps) ⊹ (qs ⊹ t) ∎
fact2 : ∀ {m n} (f : m ~> n) t ps ->
f ◃ (ps ⊹ t) ≡ (f ◃S) ps ⊹ (f ◃ t)
fact2 f t [] = refl
fact2 f t (left y ∷ xs) = cong (λ t -> t fork (f ◃ y)) (fact2 f t xs)
fact2 f t (right y ∷ xs) = cong (λ t -> (f ◃ y) fork t) (fact2 f t xs)
check-prop : ∀ {m} (x : Fin (suc m)) t ->
(∃ λ t' -> t ≡ (▹ (thin x) ◃) t' × check x t ≡ just t')
⊎ (∃ λ ps -> t ≡ (ps ⊹ i x) × check x t ≡ nothing)
check-prop x (i x') with Thick.fact1 x x' (thick x x') refl
check-prop x (i .x) | inj₁ (refl , e) = inj₂ ([] , refl , cong (_<$>_ i) e)
... | inj₂ (y , thinxy≡x' , thickxx'≡justy')
= inj₁ (i y
, cong i (sym (thinxy≡x'))
, cong (_<$>_ i) thickxx'≡justy' )
check-prop x leaf = inj₁ (leaf , (refl , refl))
check-prop x (s fork t)
with check-prop x s | check-prop x t
... | inj₁ (s' , s≡thinxs' , checkxs≡s') | inj₁ (t' , t≡thinxt' , checkxt≡t')
= inj₁ (s' fork t' , cong₂ _fork_ s≡thinxs' t≡thinxt'
, cong₂ (λ a b -> _fork_ <$> a ⊛ b) checkxs≡s' checkxt≡t' )
... | inj₂ (ps , s≡ps+ix , checkxs≡no ) | _
= inj₂ (left t ∷ ps , cong (λ s -> s fork t) s≡ps+ix
, cong (λ a -> _fork_ <$> a ⊛ check x t) checkxs≡no )
... | _ | inj₂ (ps , s≡ps+ix , checkxs≡no )
= inj₂ (right s ∷ ps , cong (λ t -> s fork t) s≡ps+ix
, trans (cong (λ a -> _fork_ <$> check x s ⊛ a) checkxs≡no) (lemma (_fork_ <$> check x s)))
where
lemma : ∀ {a b : Set} {y : b} (x : Maybe a) -> maybe (λ _ → y) y x ≡ y
lemma (just x') = refl
lemma nothing = refl
fork++ : ∀ {m} {s t : Term m} ps ->
(ps ⊹ (s fork t) ≡ (ps ++L [ left t ]) ⊹ s)
× (ps ⊹ (s fork t) ≡ (ps ++L [ right s ]) ⊹ t)
fork++ [] = refl , refl
fork++ (left y' ∷ xs') = (cong (λ a -> a fork y') *** cong (λ a -> a fork y')) (fork++ xs')
fork++ (right y' ∷ xs') = (cong (λ a -> y' fork a) *** cong (λ a -> y' fork a)) (fork++ xs')
No-Cycle : ∀{m} (t : Term m) ps -> t ≡ ps ⊹ t -> ps ≡ []
No-Cycle _ [] refl = refl
No-Cycle (i x) (left _ ∷ xs) ()
No-Cycle leaf (left y ∷ xs) ()
No-Cycle {m} (s fork t) (left y ∷ xs) r = proof
where f : Term m -> Term m
f (s fork t) = s
f _ = s
hyp : xs ++L [ left t ] ≡ []
hyp = No-Cycle s (xs ++L [ left t ]) (trans (cong f r) (proj₁ (fork++ xs)))
proof : left y ∷ xs ≡ []
proof = case (_,_ {B = λ x → x ++L _ ≡ _} xs hyp) of λ { ([] , ()) ; (_ ∷ _ , ()) }
No-Cycle (i x) (right _ ∷ xs) ()
No-Cycle leaf (right _ ∷ xs) ()
No-Cycle {m} (s fork t) (right y ∷ xs) r = proof
where f : Term m -> Term m
f (s fork t) = t
f _ = s
hyp = No-Cycle t (xs ++L [ right s ]) (trans (cong f r) (proj₂ (fork++ xs)))
proof : right y ∷ xs ≡ []
proof = case (_,_ {B = λ x → x ++L _ ≡ _} xs hyp) of λ { ([] , ()) ; (_ ∷ _ , ()) }
module Step2 where
fact : ∀{m} (x : Fin m) p ps -> Nothing (Unifies (i x) ((p ∷ ps) ⊹ i x))
fact x p ps f r with No-Cycle (f x) ((f ◃S) (p ∷ ps)) (trans r (StepM.fact2 f (i x) (p ∷ ps)))
... | ()
◇-assoc : ∀ {l m n o} (f : l ~> m) (g : n ~> _) (h : o ~> _) ->
(f ◇ (g ◇ h)) ≐ ((f ◇ g) ◇ h)
◇-assoc f g h x = sym (Sub.fact2 f g (h x))
bind-assoc : ∀ {l m n o} (f : l ~> m) (g : n ~> _) (h : o ~> _) t -> (f ◇ g) ◃ (h ◃ t) ≡ (f ◇ (g ◇ h)) ◃ t
bind-assoc f g h t = sym (begin
(f ◇ (g ◇ h)) ◃ t ≡⟨ ◃ext (◇-assoc f g h) t ⟩
((f ◇ g) ◇ h) ◃ t ≡⟨ Sub.fact2 (f ◇ g) h t ⟩
(f ◇ g) ◃ (h ◃ t)
∎)
step-prop : ∀ {m n} (s t : Term (suc m)) (σ : AList m n) r z ->
(Unifies s t [-◇ sub (σ asnoc r / z) ]) ⇔ (Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub σ ])
step-prop s t σ r z f = to , from
where
lemma1 : ∀ t -> (f ◇ sub σ) ◃ ((r for z) ◃ t) ≡ (f ◇ (sub σ ◇ (r for z))) ◃ t
lemma1 t = bind-assoc f (sub σ) (r for z) t
to = λ a → begin
(f ◇ sub σ) ◃ ((r for z) ◃ s) ≡⟨ lemma1 s ⟩
(f ◇ (sub σ ◇ (r for z))) ◃ s ≡⟨ a ⟩
(f ◇ (sub σ ◇ (r for z))) ◃ t ≡⟨ sym (lemma1 t) ⟩
(f ◇ sub σ) ◃ ((r for z) ◃ t) ∎
from = λ a → begin
(f ◇ (sub σ ◇ (r for z))) ◃ s ≡⟨ sym (lemma1 s) ⟩
(f ◇ sub σ) ◃ ((r for z) ◃ s) ≡⟨ a ⟩
(f ◇ sub σ) ◃ ((r for z) ◃ t) ≡⟨ lemma1 t ⟩
(f ◇ (sub σ ◇ (r for z))) ◃ t ∎
-- We use a view so that we need to handle fewer cases in the main proof
data Amgu : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Maybe (∃ (AList m)) -> Set where
Flip : ∀ {m s t acc} -> amgu t s acc ≡ amgu s t acc ->
Amgu {m} t s acc (amgu t s acc) -> Amgu s t acc (amgu s t acc)
leaf-leaf : ∀ {m acc} -> Amgu {m} leaf leaf acc (just acc)
leaf-fork : ∀ {m s t acc} -> Amgu {m} leaf (s fork t) acc nothing
fork-fork : ∀ {m s1 s2 t1 t2 acc} -> Amgu {m} (s1 fork s2) (t1 fork t2) acc (amgu s2 t2 =<< amgu s1 t1 acc)
var-var : ∀ {m x y} -> Amgu (i x) (i y) (m , anil) (just (flexFlex x y))
var-t : ∀ {m x t} -> i x ≢ t -> Amgu (i x) t (m , anil) (flexRigid x t)
s-t : ∀{m s t n σ r z} -> Amgu {suc m} s t (n , σ asnoc r / z) ((λ σ -> σ ∃asnoc r / z) <$>
amgu ((r for z) ◃ s) ((r for z) ◃ t) (n , σ))
view : ∀ {m : ℕ} -> (s t : Term m) -> (acc : ∃ (AList m)) -> Amgu s t acc (amgu s t acc)
view leaf leaf acc = leaf-leaf
view leaf (s fork t) acc = leaf-fork
view (s fork t) leaf acc = Flip refl leaf-fork
view (s1 fork s2) (t1 fork t2) acc = fork-fork
view (i x) (i y) (m , anil) = var-var
view (i x) leaf (m , anil) = var-t (λ ())
view (i x) (s fork t) (m , anil) = var-t (λ ())
view leaf (i x) (m , anil) = Flip refl (var-t (λ ()))
view (s fork t) (i x) (m , anil) = Flip refl (var-t (λ ()))
view (i x) (i x') (n , σ asnoc r / z) = s-t
view (i x) leaf (n , σ asnoc r / z) = s-t
view (i x) (s fork t) (n , σ asnoc r / z) = s-t
view leaf (i x) (n , σ asnoc r / z) = s-t
view (s fork t) (i x) (n , σ asnoc r / z) = s-t
amgu-Correctness : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Set
amgu-Correctness s t (l , ρ) =
(∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t [-◇ sub ρ ])) (sub σ) × amgu s t (l , ρ) ≡ just (n , σ ++ ρ ))
⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu s t (l , ρ) ≡ nothing)
amgu-Correctness⋆ : {m : ℕ} -> (s t : Term m) -> ∃ (AList m) -> Set
amgu-Correctness⋆ s t (l , ρ) =
(∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t [-◇ sub ρ ])) (sub σ) × amgu s t (l , ρ) ≡ just (n , σ ++ ρ ))
⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu s t (l , ρ) ≡ nothing)
amgu-Ccomm : ∀ {m} s t acc -> amgu {m} s t acc ≡ amgu t s acc -> amgu-Correctness s t acc -> amgu-Correctness t s acc
amgu-Ccomm s t (l , ρ) st≡ts = lemma
where
Unst = (Unifies s t) [-◇ sub ρ ]
Unts = (Unifies t s) [-◇ sub ρ ]
Unst⇔Unts : ((Unifies s t) [-◇ sub ρ ]) ⇔ ((Unifies t s) [-◇ sub ρ ])
Unst⇔Unts = Properties.fact5 (Unifies s t) (Unifies t s) (sub ρ) (Properties.fact1 {_} {s} {t})
lemma : amgu-Correctness s t (l , ρ) -> amgu-Correctness t s (l , ρ)
lemma (inj₁ (n , σ , MaxUnst , amgu≡just)) =
inj₁ (n , σ , proj₁ (Max.fact Unst Unts Unst⇔Unts (sub σ)) MaxUnst , trans (sym st≡ts) amgu≡just)
lemma (inj₂ (NoUnst , amgu≡nothing)) =
inj₂ ((λ {_} → Properties.fact2 Unst Unts Unst⇔Unts NoUnst) , trans (sym st≡ts) amgu≡nothing)
amgu-Ccomm⋆ : ∀ {m} s t acc -> amgu {m} s t acc ≡ amgu t s acc -> amgu-Correctness⋆ s t acc -> amgu-Correctness⋆ t s acc
amgu-Ccomm⋆ s t (l , ρ) st≡ts = lemma
where
Unst = (Unifies s t) [-◇ sub ρ ]
Unts = (Unifies t s) [-◇ sub ρ ]
Unst⇔Unts : ((Unifies s t) [-◇ sub ρ ]) ⇔ ((Unifies t s) [-◇ sub ρ ])
Unst⇔Unts = Properties.fact5 (Unifies s t) (Unifies t s) (sub ρ) (Properties.fact1 {_} {s} {t})
lemma : amgu-Correctness s t (l , ρ) -> amgu-Correctness t s (l , ρ)
lemma (inj₁ (n , σ , MaxUnst , amgu≡just)) =
inj₁ (n , σ , proj₁ (Max.fact Unst Unts Unst⇔Unts (sub σ)) MaxUnst , trans (sym st≡ts) amgu≡just)
lemma (inj₂ (NoUnst , amgu≡nothing)) =
inj₂ ((λ {_} → Properties.fact2 Unst Unts Unst⇔Unts NoUnst) , trans (sym st≡ts) amgu≡nothing)
amgu-c : ∀ {m s t l ρ} -> Amgu s t (l , ρ) (amgu s t (l , ρ)) ->
(∃ λ n → ∃ λ σ → π₁ (Max ((Unifies s t) [-◇ sub ρ ])) (sub σ) × amgu {m} s t (l , ρ) ≡ just (n , σ ++ ρ ))
⊎ (Nothing ((Unifies s t) [-◇ sub ρ ]) × amgu {m} s t (l , ρ) ≡ nothing)
amgu-c {m} {s} {t} {l} {ρ} amg with amgu s t (l , ρ)
amgu-c {l = l} {ρ} leaf-leaf | ._
= inj₁ (l , anil , trivial-problem {_} {_} {leaf} {sub ρ} , cong (λ x -> just (l , x)) (sym (SubList.anil-id-l ρ)) )
amgu-c leaf-fork | .nothing = inj₂ ((λ _ () ) , refl)
amgu-c {m} {s1 fork s2} {t1 fork t2} {l} {ρ} fork-fork | ._
with amgu s1 t1 (l , ρ) | amgu-c $ view s1 t1 (l , ρ)
... | .nothing | inj₂ (nounify , refl) = inj₂ ((λ {_} -> No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]) , refl)
where
P = Unifies (s1 fork s2) (t1 fork t2)
Q = (Unifies s1 t1 ∧ Unifies s2 t2)
Q⇔P : Q ⇔ P
Q⇔P = switch P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2})
No[Q◇ρ]→No[P◇ρ] : Nothing (Q [-◇ sub ρ ]) -> Nothing (P [-◇ sub ρ ])
No[Q◇ρ]→No[P◇ρ] = Properties.fact2 (Q [-◇ sub ρ ]) (P [-◇ sub ρ ]) (Properties.fact5 Q P (sub ρ) Q⇔P)
No[Q◇ρ] : Nothing (Q [-◇ sub ρ ])
No[Q◇ρ] = failure-propagation.first (sub ρ) (Unifies s1 t1) (Unifies s2 t2) nounify
... | .(just (n , σ ++ ρ)) | inj₁ (n , σ , a , refl)
with amgu s2 t2 (n , σ ++ ρ) | amgu-c (view s2 t2 (n , (σ ++ ρ)))
... | .nothing | inj₂ (nounify , refl) = inj₂ ( (λ {_} -> No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]) , refl)
where
P = Unifies (s1 fork s2) (t1 fork t2)
Q = (Unifies s1 t1 ∧ Unifies s2 t2)
Q⇔P : Q ⇔ P
Q⇔P = switch P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2})
No[Q◇ρ]→No[P◇ρ] : Nothing (Q [-◇ sub ρ ]) -> Nothing (P [-◇ sub ρ ])
No[Q◇ρ]→No[P◇ρ] = Properties.fact2 (Q [-◇ sub ρ ]) (P [-◇ sub ρ ]) (Properties.fact5 Q P (sub ρ) Q⇔P)
No[Q◇ρ] : Nothing (Q [-◇ sub ρ ])
No[Q◇ρ] = failure-propagation.second (sub ρ) (sub σ) (Unifies s1 t1) (Unifies s2 t2) a
(λ f Unifs2t2-f◇σ◇ρ → nounify f (π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t))) Unifs2t2-f◇σ◇ρ))
... | .(just (n1 , σ1 ++ (σ ++ ρ))) | inj₁ (n1 , σ1 , b , refl)
= inj₁ (n1 , σ1 ++ σ , Max[P∧Q◇ρ][σ1++σ] , cong (λ σ -> just (n1 , σ)) (++-assoc σ1 σ ρ))
where
P = Unifies s1 t1
Q = Unifies s2 t2
P∧Q = P ∧ Q
C = Unifies (s1 fork s2) (t1 fork t2)
Max[C◇ρ]⇔Max[P∧Q◇ρ] : Max (C [-◇ sub ρ ]) ⇔ Max (P∧Q [-◇ sub ρ ])
Max[C◇ρ]⇔Max[P∧Q◇ρ] = Max.fact (C [-◇ sub ρ ]) (P∧Q [-◇ sub ρ ]) (Properties.fact5 C P∧Q (sub ρ)
(Properties.fact1' {_} {s1} {s2} {t1} {t2}))
Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] : Max (Q [-◇ sub (σ ++ ρ)]) ⇔ Max (Q [-◇ sub σ ◇ sub ρ ])
Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] = Max.fact (Q [-◇ sub (σ ++ ρ)]) (Q [-◇ sub σ ◇ sub ρ ]) (Properties.fact6 Q (SubList.fact1 σ ρ))
Max[P∧Q◇ρ][σ1++σ] : π₁ (Max (C [-◇ sub ρ ])) (sub (σ1 ++ σ))
Max[P∧Q◇ρ][σ1++σ] = π₂ (Max (C [-◇ sub ρ ])) (≐-sym (SubList.fact1 σ1 σ))
(proj₂ (Max[C◇ρ]⇔Max[P∧Q◇ρ] (sub σ1 ◇ sub σ))
(optimist (sub ρ) (sub σ) (sub σ1) P Q (DClosed.fact1 s1 t1) a (proj₁ (Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] (sub σ1)) b)))
amgu-c {suc l} {i x} {i y} (var-var) | .(just (flexFlex x y))
with thick x y | Thick.fact1 x y (thick x y) refl
... | .(just y') | inj₂ (y' , thinxy'≡y , refl )
= inj₁ (l , anil asnoc i y' / x , var-elim-i-≡ x (i y) (sym (cong i thinxy'≡y)) , refl )
... | .nothing | inj₁ ( x≡y , refl ) rewrite sym x≡y
= inj₁ (suc l , anil , trivial-problem {_} {_} {i x} {sub anil} , refl)
amgu-c {suc l} {i x} {t} (var-t ix≢t) | .(flexRigid x t)
with check x t | check-prop x t
... | .nothing | inj₂ ( ps , r , refl) = inj₂ ( (λ {_} -> No-Unifier ) , refl)
where
No-Unifier : {n : ℕ} (f : Fin (suc l) → Term n) → f x ≡ f ◃ t → ⊥
No-Unifier f fx≡f◃t = ix≢t (sym (trans r (cong (λ ps -> ps ⊹ i x) ps≡[])))
where
ps≡[] : ps ≡ []
ps≡[] = map-[] f ps (No-Cycle (f x) ((f ◃S) ps)
(begin f x ≡⟨ fx≡f◃t ⟩
f ◃ t ≡⟨ cong (f ◃) r ⟩
f ◃ (ps ⊹ i x) ≡⟨ StepM.fact2 f (i x) ps ⟩
(f ◃S) ps ⊹ f x ∎))
... | .(just t') | inj₁ (t' , r , refl) = inj₁ ( l , anil asnoc t' / x , var-elim-i-≡ x t r , refl )
amgu-c {suc m} {s} {t} {l} {ρ asnoc r / z} s-t
| .((λ x' → x' ∃asnoc r / z) <$>
(amgu ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ)))
with amgu-c (view ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ))
... | inj₂ (nounify , ra) = inj₂ ( (λ {_} -> NoQ→NoP nounify) , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra )
where
P = Unifies s t [-◇ sub (ρ asnoc r / z) ]
Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ]
NoQ→NoP : Nothing Q → Nothing P
NoQ→NoP = Properties.fact2 Q P (switch P Q (step-prop s t ρ r z))
... | inj₁ (n , σ , a , ra) = inj₁ (n , σ , proj₂ (MaxP⇔MaxQ (sub σ)) a , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra)
where
P = Unifies s t [-◇ sub (ρ asnoc r / z) ]
Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ]
MaxP⇔MaxQ : Max P ⇔ Max Q
MaxP⇔MaxQ = Max.fact P Q (step-prop s t ρ r z)
amgu-c {m} {s} {t} {l} {ρ} (Flip amguts≡amgust amguts) | ._ = amgu-Ccomm t s (l , ρ) amguts≡amgust (amgu-c amguts)
amgu-c {zero} {i ()} _ | _
amgu-c⋆ : ∀ {m s t l ρ} -> Amgu s t (l , ρ) (amgu s t (l , ρ)) ->
(∃ λ n → ∃ λ σ → (Max⋆ ((Unifies⋆ s t) [-◇⋆ sub ρ ])) (sub σ) × amgu {m} s t (l , ρ) ≡ just (n , σ ++ ρ ))
⊎ (Nothing⋆ ((Unifies⋆ s t) [-◇⋆ sub ρ ]) × amgu {m} s t (l , ρ) ≡ nothing)
amgu-c⋆ {m} {s} {t} {l} {ρ} amg with amgu s t (l , ρ)
amgu-c⋆ {l = l} {ρ} leaf-leaf | ._
= inj₁ (l , anil , trivial-problem {_} {_} {leaf} {sub ρ} , cong (λ x -> just (l , x)) (sym (SubList.anil-id-l ρ)) )
amgu-c⋆ leaf-fork | .nothing = inj₂ ((λ _ () ) , refl)
amgu-c⋆ {m} {s1 fork s2} {t1 fork t2} {l} {ρ} fork-fork | ._
with amgu s1 t1 (l , ρ) | amgu-c⋆ $ view s1 t1 (l , ρ)
... | .nothing | inj₂ (nounify , refl) = inj₂ ((λ {_} -> No[Q◇ρ]→No[P◇ρ] No[Q◇ρ]) , refl)
where
P = Unifies⋆ (s1 fork s2) (t1 fork t2)
Q = (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2)
Q⇔P : Q ⇔⋆ P
Q⇔P = switch⋆ P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2})
No[Q◇ρ]→No[P◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ]) -> Nothing⋆ (P [-◇⋆ sub ρ ])
No[Q◇ρ]→No[P◇ρ] = Properties.fact2⋆ (Q [-◇⋆ sub ρ ]) (P [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q P (sub ρ) Q⇔P)
No[Q◇ρ] : Nothing⋆ (Q [-◇⋆ sub ρ ])
No[Q◇ρ] = failure-propagation.first⋆ (sub ρ) (Unifies⋆ s1 t1) (Unifies⋆ s2 t2) nounify
... | .(just (n , σ ++ ρ)) | inj₁ (n , σ , a , refl)
with amgu s2 t2 (n , σ ++ ρ) | amgu-c⋆ (view s2 t2 (n , (σ ++ ρ)))
... | .nothing | inj₂ (nounify , refl) = inj₂ ( (λ {_} -> No[Q◇ρ]→No[P◇ρ]⋆ No[Q◇ρ]⋆) , refl)
where
P⋆ = Unifies⋆ (s1 fork s2) (t1 fork t2)
Q⋆ = (Unifies⋆ s1 t1 ∧⋆ Unifies⋆ s2 t2)
Q⇔P⋆ : Q⋆ ⇔⋆ P⋆
Q⇔P⋆ = switch⋆ P⋆ Q⋆ (Properties.fact1'⋆ {_} {s1} {s2} {t1} {t2})
No[Q◇ρ]→No[P◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ]) -> Nothing⋆ (P⋆ [-◇⋆ sub ρ ])
No[Q◇ρ]→No[P◇ρ]⋆ = Properties.fact2⋆ (Q⋆ [-◇⋆ sub ρ ]) (P⋆ [-◇⋆ sub ρ ]) (Properties.fact5⋆ Q⋆ P⋆ (sub ρ) Q⇔P⋆)
No[Q◇ρ]⋆ : Nothing⋆ (Q⋆ [-◇⋆ sub ρ ])
No[Q◇ρ]⋆ = failure-propagation.second⋆ (sub ρ) (sub σ) (Unifies⋆ s1 t1) (Unifies s2 t2) a
(λ f → nounify f ∘ π₂ (Unifies s2 t2) (cong (f ◃) ∘ sym ∘ SubList.fact1 σ ρ))
{-
No[Q◇ρ]⋆ = failure-propagation.second (sub ρ) (sub σ) (Unifies s1 t1) (Unifies s2 t2) a
-- (λ f Unifs2t2-f◇σ◇ρ → nounify f ((π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t))) Unifs2t2-f◇σ◇ρ)))
-- (λ f → nounify f ∘ π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t))))
(λ f → nounify f ∘ π₂ (Unifies s2 t2) (cong (f ◃) ∘ sym ∘ SubList.fact1 σ ρ))
-}
P = Unifies (s1 fork s2) (t1 fork t2)
Q = (Unifies s1 t1 ∧ Unifies s2 t2)
Q⇔P : Q ⇔ P
Q⇔P = switch P Q (Properties.fact1' {_} {s1} {s2} {t1} {t2})
No[Q◇ρ]→No[P◇ρ] : Nothing (Q [-◇ sub ρ ]) -> Nothing (P [-◇ sub ρ ])
No[Q◇ρ]→No[P◇ρ] = Properties.fact2 (Q [-◇ sub ρ ]) (P [-◇ sub ρ ]) (Properties.fact5 Q P (sub ρ) Q⇔P)
No[Q◇ρ] : Nothing (Q [-◇ sub ρ ])
No[Q◇ρ] = failure-propagation.second (sub ρ) (sub σ) (Unifies s1 t1) (Unifies s2 t2) a
(λ f Unifs2t2-f◇σ◇ρ → nounify f (π₂ (Unifies s2 t2) (λ t → cong (f ◃) (sym (SubList.fact1 σ ρ t))) Unifs2t2-f◇σ◇ρ))
... | .(just (n1 , σ1 ++ (σ ++ ρ))) | inj₁ (n1 , σ1 , b , refl)
= inj₁ (n1 , σ1 ++ σ , Max[P∧Q◇ρ][σ1++σ] , cong (λ σ -> just (n1 , σ)) (++-assoc σ1 σ ρ))
where
P = Unifies s1 t1
Q = Unifies s2 t2
P∧Q = P ∧ Q
C = Unifies (s1 fork s2) (t1 fork t2)
Max[C◇ρ]⇔Max[P∧Q◇ρ] : Max (C [-◇ sub ρ ]) ⇔ Max (P∧Q [-◇ sub ρ ])
Max[C◇ρ]⇔Max[P∧Q◇ρ] = Max.fact (C [-◇ sub ρ ]) (P∧Q [-◇ sub ρ ]) (Properties.fact5 C P∧Q (sub ρ)
(Properties.fact1' {_} {s1} {s2} {t1} {t2}))
Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] : Max (Q [-◇ sub (σ ++ ρ)]) ⇔ Max (Q [-◇ sub σ ◇ sub ρ ])
Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] = Max.fact (Q [-◇ sub (σ ++ ρ)]) (Q [-◇ sub σ ◇ sub ρ ]) (Properties.fact6 Q (SubList.fact1 σ ρ))
Max[P∧Q◇ρ][σ1++σ] : π₁ (Max (C [-◇ sub ρ ])) (sub (σ1 ++ σ))
Max[P∧Q◇ρ][σ1++σ] = π₂ (Max (C [-◇ sub ρ ])) (≐-sym (SubList.fact1 σ1 σ))
(proj₂ (Max[C◇ρ]⇔Max[P∧Q◇ρ] (sub σ1 ◇ sub σ))
(optimist (sub ρ) (sub σ) (sub σ1) P Q (DClosed.fact1 s1 t1) a (proj₁ (Max[Q◇σ++ρ]⇔Max[Q◇σ◇ρ] (sub σ1)) b)))
amgu-c⋆ {suc l} {i x} {i y} (var-var) | .(just (flexFlex x y))
with thick x y | Thick.fact1 x y (thick x y) refl
... | .(just y') | inj₂ (y' , thinxy'≡y , refl )
= inj₁ (l , anil asnoc i y' / x , var-elim-i-≡ x (i y) (sym (cong i thinxy'≡y)) , refl )
... | .nothing | inj₁ ( x≡y , refl ) rewrite sym x≡y
= inj₁ (suc l , anil , trivial-problem {_} {_} {i x} {sub anil} , refl)
amgu-c⋆ {suc l} {i x} {t} (var-t ix≢t) | .(flexRigid x t)
with check x t | check-prop x t
... | .nothing | inj₂ ( ps , r , refl) = inj₂ ( (λ {_} -> No-Unifier ) , refl)
where
No-Unifier : {n : ℕ} (f : Fin (suc l) → Term n) → f x ≡ f ◃ t → ⊥
No-Unifier f fx≡f◃t = ix≢t (sym (trans r (cong (λ ps -> ps ⊹ i x) ps≡[])))
where
ps≡[] : ps ≡ []
ps≡[] = map-[] f ps (No-Cycle (f x) ((f ◃S) ps)
(begin f x ≡⟨ fx≡f◃t ⟩
f ◃ t ≡⟨ cong (f ◃) r ⟩
f ◃ (ps ⊹ i x) ≡⟨ StepM.fact2 f (i x) ps ⟩
(f ◃S) ps ⊹ f x ∎))
... | .(just t') | inj₁ (t' , r , refl) = inj₁ ( l , anil asnoc t' / x , var-elim-i-≡ x t r , refl )
amgu-c⋆ {suc m} {s} {t} {l} {ρ asnoc r / z} s-t
| .((λ x' → x' ∃asnoc r / z) <$>
(amgu ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ)))
with amgu-c⋆ (view ((r for z) ◃ s) ((r for z) ◃ t) (l , ρ))
... | inj₂ (nounify , ra) = inj₂ ( (λ {_} -> NoQ→NoP nounify) , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra )
where
P = Unifies s t [-◇ sub (ρ asnoc r / z) ]
Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ]
NoQ→NoP : Nothing Q → Nothing P
NoQ→NoP = Properties.fact2 Q P (switch P Q (step-prop s t ρ r z))
... | inj₁ (n , σ , a , ra) = inj₁ (n , σ , proj₂ (MaxP⇔MaxQ (sub σ)) a , cong (_<$>_ (λ x' → x' ∃asnoc r / z)) ra)
where
P = Unifies s t [-◇ sub (ρ asnoc r / z) ]
Q = Unifies ((r for z) ◃ s) ((r for z) ◃ t) [-◇ sub ρ ]
MaxP⇔MaxQ : Max P ⇔ Max Q
MaxP⇔MaxQ = Max.fact P Q (step-prop s t ρ r z)
amgu-c⋆ {m} {s} {t} {l} {ρ} (Flip amguts≡amgust amguts) | ._ = amgu-Ccomm⋆ t s (l , ρ) amguts≡amgust (amgu-c⋆ amguts)
amgu-c⋆ {zero} {i ()} _ | _
mgu-c : ∀ {m} (s t : Term m) ->
(∃ λ n → ∃ λ σ → π₁ (Max (Unifies s t)) (sub σ) × mgu s t ≡ just (n , σ))
⊎ (Nothing (Unifies s t) × mgu s t ≡ nothing)
mgu-c {m} s t = amgu-c (view s t (m , anil))
mgu-c⋆ : ∀ {m} (s t : Term m) ->
(∃ λ n → ∃ λ σ → (Max⋆ (Unifies⋆ s t)) (sub σ) × mgu s t ≡ just (n , σ))
⊎ (Nothing⋆ (Unifies⋆ s t) × mgu s t ≡ nothing)
mgu-c⋆ {m} s t = amgu-c (view s t (m , anil))
data SidedTerm (n : ℕ) : Set where
i-left : (x : Fin n) -> 2 * Data.Fin.toℕ x Data.Nat.≤ n → SidedTerm n
i-right : (x : Fin n) -> n + Data.Fin.toℕ x Data.Nat.≤ 2 * n → SidedTerm n
leaf : SidedTerm n
_fork_ : (s t : SidedTerm n) -> SidedTerm n
data dTerm (n : ℕ) : Term (2 * n) → Set where
-- i :
l1 : ∀ m → Data.Fin.toℕ (Data.Fin.fromℕ m) ≡ m
l1 zero = refl
l1 (suc m) = cong suc (l1 m)
l2 : ∀ m → m ≡ m + 0
l2 zero = refl
l2 (suc m) = cong suc (l2 m)
fixup : ∀ m → Fin (Data.Fin.toℕ (Data.Fin.fromℕ m) + m) → Fin (m + (m + 0))
fixup m x rewrite l1 m | sym (l2 m) = x
revise-down : ∀ {m} → Fin m → Fin (2 * m)
revise-down {m} x = Data.Fin.inject+ (m + 0) x
revise-up : ∀ {m} → Fin m → Fin (2 * m)
revise-up {m} x = fixup m (Data.Fin.fromℕ m Data.Fin.+ x)
{-
reduce* : ∀ {m n} (i : Fin (m * 2)) → Fin m
reduce* {zero} i i≥m = i
reduce* {suc m} zero ()
reduce* {suc m} (suc i) (s≤s i≥m) = reduce≥ i i≥m
-}
downFin : ∀ {m} {x : Fin (2 * m)} → suc (Data.Fin.toℕ x) Data.Nat.≤ m → Fin m
downFin {zero} {()} p₁
downFin {suc m} {zero} (s≤s p₁) = zero
downFin {suc zero} {suc zero} (s≤s p₁) = zero
downFin {suc zero} {suc (suc ())} (s≤s p₁)
downFin {suc (suc m)} {suc zero} (s≤s x<m) = suc zero
downFin {suc (suc m)} {suc (suc x)} (s≤s (s≤s x<m)) = suc ((downFin {suc m} {x = subst Fin (foo m) x} (s≤s {!x<m!}))) where
foo : ∀ m → m + suc (suc (m + zero)) ≡ suc (m + suc (m + zero))
foo zero = refl
foo (suc m) rewrite foo m = cong suc {!refl!}
combineSubs : ∀ {m a} {A : Set a} → (Fin m → A) → (Fin m → A) → Fin (2 * m) → A
combineSubs {m} fl fr x with suc (Data.Fin.toℕ x) ≤? m
… | yes p = fl (downFin {x = x} p)
… | no _ = fr {!!}
write-variable-down : ∀ {m} → Term m → Term (2 * m)
write-variable-down {m} (i l) = i $ revise-down l
write-variable-down {m} leaf = leaf
write-variable-down {m} (s fork t) = write-variable-down s fork write-variable-down t
write-variable-up : ∀ {m} → Term m → Term (2 * m)
write-variable-up {m} (i r) = i (revise-up r)
write-variable-up {m} leaf = leaf
write-variable-up {m} (s fork t) = write-variable-up s fork write-variable-up t
write-variables-apart : ∀ {m} (s t : Term m) → Term (2 * m) × Term (2 * m)
write-variables-apart s t = write-variable-down s , write-variable-up t
separate-substitutions-down : ∀ {m n} → (Fin (2 * m) → Term n) → Fin m → Term n
separate-substitutions-down {m} f x = f $ revise-down x
separate-substitutions-up : ∀ {m n} → (Fin (2 * m) → Term n) → Fin m → Term n
separate-substitutions-up {m} f x = f $ revise-up x
separate-substitutions : ∀ {m n} → (Fin (2 * m) → Term n) → (Fin m → Term n) × (Fin m → Term n)
separate-substitutions {m} x = separate-substitutions-down {m} x , separate-substitutions-up {m} x
Property⋆2 : (m : ℕ) -> Set1
Property⋆2 m = ∀ {n} -> (Fin m -> Term n) × (Fin m -> Term n) -> Set
Nothing⋆2 : ∀{m} -> (P : Property⋆2 m) -> Set
Nothing⋆2 P = ∀{n} f -> P {n} f -> ⊥
Unifies⋆2 : ∀ {m} (s t : Term m) -> Property⋆2 m
Unifies⋆2 s t (f₁ , f₂) = f₁ ◃ s ≡ f₂ ◃ t
_≤2_ : ∀ {m n n'} (f : (Fin m -> Term n) × (Fin m -> Term n)) (g : (Fin m -> Term n') × (Fin m -> Term n')) -> Set
(f₁ , f₂) ≤2 (g₁ , g₂) = ∃ λ f' -> f₁ ≐ (f' ◇ g₁) × f₂ ≐ (f' ◇ g₂)
Max⋆2 : ∀ {m} (P : Property⋆2 m) -> Property⋆2 m
Max⋆2 P f = P f × (∀ {n} f' -> P {n} f' -> f' ≤2 f)
pair-mgu : ∀ {m} -> (s t : Term m) -> Maybe (∃ (AList m))
pair-mgu {m} s t = {!!} -- amgu s t (m , anil)
write≡separate : ∀ {m n} (σ : AList (2 * m) n) (t : Term m) → (sub σ ◃) (write-variable-down t) ≡ ((separate-substitutions-down $ sub σ) ◃) t
write≡separate {zero} {.0} anil (i x) = refl
write≡separate {suc m} {.(suc (m + suc (m + 0)))} anil (i x) = refl
write≡separate {suc m} {n} (σ asnoc t' / x) (i x₁) = refl
write≡separate σ leaf = refl
write≡separate σ (t₁ fork t₂) = cong₂ _fork_ (write≡separate σ t₁) (write≡separate σ t₂)
write≡separate' : ∀ {m n} (σ : AList (2 * m) n) (t : Term m) → (sub σ ◃) (write-variable-down t) ≡ ((separate-substitutions-down $ sub σ) ◃) t
write≡separate' {zero} {.0} anil (i x) = refl
write≡separate' {suc m} {.(suc (m + suc (m + 0)))} anil (i x) = refl
write≡separate' {suc m} {n} (σ asnoc t' / x) (i x₁) = refl
write≡separate' σ leaf = refl
write≡separate' σ (t₁ fork t₂) = cong₂ _fork_ (write≡separate σ t₁) (write≡separate σ t₂)
{-
(sub σ ◃) (write-variable-down s') ≡ (sub σ ◃) (write-variable-up t') →
((separate-substitutions-down $ sub σ) ◃) s' ≡ ((separate-substitutions-up $ sub σ) ◃) t'
-}
pair-mgu-c⋆! : ∀ {m} (s' t' : Term m) (let (s , t) = write-variables-apart s' t') ->
(∃ λ n → ∃ λ σ → ∃ λ σ₁ → ∃ λ σ₂ → (σ₁ , σ₂) ≡ separate-substitutions (sub σ) × (Max⋆2 (Unifies⋆2 s' t')) (σ₁ , σ₂) × mgu s t ≡ just (n , σ))
⊎ (Nothing⋆2 (Unifies⋆2 s t) × mgu s t ≡ nothing)
pair-mgu-c⋆! {m} s' t'
with write-variable-down s' | inspect write-variable-down s' | write-variable-up t' | inspect write-variable-up t'
… | s | Reveal_·_is_.[_] refl | t | Reveal_·_is_.[_] refl with amgu-c⋆ (view s t (2 * m , anil))
… | (inj₁ (n , σ , (s-un-t , s-un-t-correct) , amgu=nσ)) = inj₁ (_ , σ , ((separate-substitutions-down $ sub σ) , ((separate-substitutions-up $ sub σ) , (refl , (({!trans (sym $ write≡separate σ s') s-un-t!} , (λ {(fl , fr) x → ((proj₁ ∘ s-un-t-correct (combineSubs fl fr)) {!(proj₂ ∘ s-un-t-correct (combineSubs fl fr)) !}) , ({!!} , {!!})})) , amgu=nσ))))) where
… | (inj₂ (s-not-un-t , amgu=nothing)) = inj₂ {!!}
-- pair-mgu-c⋆ : ∀ {m} (s' t' : Term m) (let (s , t) = write-variables-apart s' t') ->
-- (∃ λ n → ∃ λ σ → ∃ λ σ₁ → ∃ λ σ₂ → (σ₁ , σ₂) ≡ separate-substitutions {m} {n} (sub {2 * m} {n} σ) × (Max⋆2 (Unifies⋆2 s t)) (σ₁ , σ₂) × mgu s t ≡ just (n , σ))
-- ⊎ (Nothing⋆2 (Unifies⋆2 s t) × mgu s t ≡ nothing)
-- pair-mgu-c⋆ {m} s' t'
-- with write-variables-apart s' t'
-- … | (s , t) with amgu-c⋆ (view s t (2 * m , anil))
-- pair-mgu-c⋆ {m} s' t' | s , t | (inj₁ (n , σ , (s-un-t , s-un-t-correct) , amgu=nσ)) = inj₁ ({!!} , {!!})
-- pair-mgu-c⋆ {m} s' t' | s , t | (inj₂ (s-not-un-t , amgu=nothing)) = inj₂ {!!}
-- -- pair-mgu-c⋆ {m} s t = {!!} -- amgu-c (view s t (m , anil))
-- {-
-- Goal: Σ ℕ
-- (λ n₁ →
-- Σ (AList (m + (m + 0)) n₁)
-- (λ σ₁ →
-- Σ (Fin (m + (m + 0)) → Term n₁)
-- (λ σ₂ →
-- Σ (Fin (m + (m + 0)) → Term n₁)
-- (λ σ₃ →
-- Σ ((σ₂ , σ₃) ≡ (?8 (sub σ₁) , ?9 (sub σ₁)))
-- (λ x →
-- Σ
-- (Σ ((σ₂ ◃) s ≡ (σ₃ ◃) t)
-- (λ x₁ →
-- {n = n₂ : ℕ}
-- (f'
-- : Σ (Fin (m + (m + 0)) → Term n₂)
-- (λ x₂ → Fin (m + (m + 0)) → Term n₂)) →
-- (proj₁ f' ◃) s ≡ (proj₂ f' ◃) t →
-- Σ (Fin n₁ → Term n₂)
-- (λ f'' →
-- Σ ((x₂ : Fin (m + (m + 0))) → proj₁ f' x₂ ≡ (f'' ◃) (σ₂ x₂))
-- (λ x₂ →
-- (x₃ : Fin (m + (m + 0))) → proj₂ f' x₃ ≡ (f'' ◃) (σ₃ x₃)))))
-- (λ x₁ → amgu s t (m + (m + 0) , anil) ≡ just (n₁ , σ₁)))))))
-- ⊎
-- Σ
-- ({n = n₁ : ℕ}
-- (f
-- : Σ (Fin (m + (m + 0)) → Term n₁)
-- (λ x → Fin (m + (m + 0)) → Term n₁)) →
-- (proj₁ f ◃) s ≡ (proj₂ f ◃) t → ⊥)
-- (λ x → amgu s t (m + (m + 0) , anil) ≡ nothing)
-- ————————————————————————————————————————————————————————————
-- t' : Term m
-- s' : Term m
-- amgu=nσ : amgu s t (m + (m + 0) , anil) ≡ just (n , σ)
-- s-un-t-correct
-- : {n = n₁ : ℕ} (f' : Fin (m + (m + 0)) → Term n₁) →
-- (f' ◃) s ≡ (f' ◃) t →
-- Σ (Fin n → Term n₁)
-- (λ f'' → (x : Fin (m + (m + 0))) → f' x ≡ (f'' ◃) (sub σ x))
-- s-un-t : (sub σ ◃) s ≡ (sub σ ◃) t
-- σ : AList (m + (m + 0)) n
-- n : ℕ
-- t : Term (m + (m + 0))
-- s : Term (m + (m + 0))
-- m : ℕ
-- -}
| {
"alphanum_fraction": 0.4528399277,
"avg_line_length": 42.4355518113,
"ext": "agda",
"hexsha": "4a702b49f482f5978ad8a379b08e1f90c2f48198",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-1/Unify-monolithic.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-1/Unify-monolithic.agda",
"max_line_length": 364,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-1/Unify-monolithic.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 22782,
"size": 50371
} |
{-# OPTIONS --without-K --rewriting #-}
open import lib.Basics
module lib.types.Lift where
⊙Lift : ∀ {i j} → Ptd i → Ptd (lmax i j)
⊙Lift {j = j} ⊙[ A , a ] = ⊙[ Lift {j = j} A , lift a ]
⊙lift : ∀ {i j} {X : Ptd i} → X ⊙→ ⊙Lift {j = j} X
⊙lift = (lift , idp)
⊙lower : ∀ {i j} {X : Ptd i} → ⊙Lift {j = j} X ⊙→ X
⊙lower = (lower , idp)
lift-equiv : ∀ {i j} {A : Type i} → A ≃ Lift {j = j} A
lift-equiv = equiv lift lower (λ _ → idp) (λ _ → idp)
-- [lower-equiv] is in Equivalences.agda
instance
Lift-level : ∀ {i j} {A : Type i} {n : ℕ₋₂}
→ has-level n A → has-level n (Lift {j = j} A)
Lift-level p = equiv-preserves-level lift-equiv {{p}}
⊙lift-equiv : ∀ {i j} {X : Ptd i} → X ⊙≃ ⊙Lift {j = j} X
⊙lift-equiv = (⊙lift , snd lift-equiv)
⊙lower-equiv : ∀ {i j} {X : Ptd i} → ⊙Lift {j = j} X ⊙≃ X
⊙lower-equiv = (⊙lower , snd lower-equiv)
Lift-fmap : ∀ {i j k} {A : Type i} {B : Type j}
→ (A → B) → (Lift {j = k} A → Lift {j = k} B)
Lift-fmap f = lift ∘ f ∘ lower
Lift-fmap-equiv : ∀ {i j k} {A : Type i} {B : Type j}
→ (A → B) ≃ (Lift {j = k} A → Lift {j = k} B)
Lift-fmap-equiv = equiv Lift-fmap (λ f → lower ∘ f ∘ lift) (λ _ → idp) (λ _ → idp)
⊙Lift-fmap : ∀ {i j k} {X : Ptd i} {Y : Ptd j}
→ (X ⊙→ Y) → (⊙Lift {j = k} X ⊙→ ⊙Lift {j = k} Y)
⊙Lift-fmap f = ⊙lift ⊙∘ f ⊙∘ ⊙lower
⊙Lift-fmap-equiv : ∀ {i j k} {X : Ptd i} {Y : Ptd j}
→ (X ⊙→ Y) ≃ (⊙Lift {j = k} X ⊙→ ⊙Lift {j = k} Y)
⊙Lift-fmap-equiv = equiv ⊙Lift-fmap (λ f → ⊙lower ⊙∘ f ⊙∘ ⊙lift)
(λ {(_ , idp) → idp}) (λ {(_ , idp) → idp})
| {
"alphanum_fraction": 0.4950690335,
"avg_line_length": 31.6875,
"ext": "agda",
"hexsha": "16bf427b82e2f7c6f46d47be39af418c525ee27a",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "timjb/HoTT-Agda",
"max_forks_repo_path": "core/lib/types/Lift.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "timjb/HoTT-Agda",
"max_issues_repo_path": "core/lib/types/Lift.agda",
"max_line_length": 82,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "core/lib/types/Lift.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 753,
"size": 1521
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
open import Cubical.Core.Everything
open import Cubical.Relation.Binary
open import Cubical.Algebra.Monoid
module Cubical.Algebra.Monoid.Construct.Quotient {c ℓ} (M : Monoid c) {R : Rel (Monoid.Carrier M) ℓ} (isEq : IsEquivalence R)
(closed : Congruent₂ R (Monoid._•_ M)) where
open import Cubical.Foundations.Prelude
open import Cubical.Algebra.Properties
open import Cubical.HITs.SetQuotients
open import Cubical.Data.Prod using (_,_)
open Monoid M
open IsEquivalence isEq
import Cubical.Algebra.Semigroup.Construct.Quotient semigroup isEq closed as QSemigroup
open QSemigroup public hiding (S/R-isSemigroup; S/R)
εᴿ : Carrier/R
εᴿ = [ ε ]
•ᴿ-identityˡ : LeftIdentity εᴿ _•ᴿ_
•ᴿ-identityˡ = elimProp (λ _ → squash/ _ _) (λ x → cong [_] (identityˡ x))
•ᴿ-identityʳ : RightIdentity εᴿ _•ᴿ_
•ᴿ-identityʳ = elimProp (λ _ → squash/ _ _) (λ x → cong [_] (identityʳ x))
•ᴿ-identity : Identity εᴿ _•ᴿ_
•ᴿ-identity = •ᴿ-identityˡ , •ᴿ-identityʳ
M/R-isMonoid : IsMonoid Carrier/R _•ᴿ_ εᴿ
M/R-isMonoid = record
{ isSemigroup = QSemigroup.S/R-isSemigroup
; identity = •ᴿ-identity
}
M/R : Monoid (ℓ-max c ℓ)
M/R = record { isMonoid = M/R-isMonoid }
| {
"alphanum_fraction": 0.6878930818,
"avg_line_length": 30.2857142857,
"ext": "agda",
"hexsha": "4c4b9ff58632fe8763c38297609d81c47189504d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bijan2005/univalent-foundations",
"max_forks_repo_path": "Cubical/Algebra/Monoid/Construct/Quotient.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bijan2005/univalent-foundations",
"max_issues_repo_path": "Cubical/Algebra/Monoid/Construct/Quotient.agda",
"max_line_length": 125,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "737f922d925da0cd9a875cb0c97786179f1f4f61",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bijan2005/univalent-foundations",
"max_stars_repo_path": "Cubical/Algebra/Monoid/Construct/Quotient.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 450,
"size": 1272
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Unary.All directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Vec.All where
open import Data.Vec.Relation.Unary.All public
{-# WARNING_ON_IMPORT
"Data.Vec.All was deprecated in v1.0.
Use Data.Vec.Relation.Unary.All instead."
#-}
| {
"alphanum_fraction": 0.5041841004,
"avg_line_length": 26.5555555556,
"ext": "agda",
"hexsha": "b08fa1064454ce9165484b2c532273da44202651",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Vec/All.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Vec/All.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Vec/All.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 92,
"size": 478
} |
{-# OPTIONS --cubical --no-import-sorts #-}
module MorePropAlgebra.Definitions where
open import Agda.Primitive renaming (_⊔_ to ℓ-max; lsuc to ℓ-suc; lzero to ℓ-zero)
open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ; assoc to ∙-assoc)
open import Cubical.Relation.Nullary.Base renaming (¬_ to ¬ᵗ_)-- ¬ᵗ_
open import Cubical.Data.Sum.Base renaming (_⊎_ to infixr 4 _⊎_)
open import Cubical.HITs.PropositionalTruncation.Base using (∣_∣)
open import Cubical.Foundations.Logic renaming
( inl to inlᵖ
; inr to inrᵖ
; _⇒_ to infixr 0 _⇒_ -- shifting by -6
; _⇔_ to infixr -2 _⇔_ --
; ∃[]-syntax to infix -4 ∃[]-syntax --
; ∃[∶]-syntax to infix -4 ∃[∶]-syntax --
; ∀[∶]-syntax to infix -4 ∀[∶]-syntax --
; ∀[]-syntax to infix -4 ∀[]-syntax --
)
open import Utils
open import MoreLogic.Definitions renaming
( _ᵗ⇒_ to infixr 0 _ᵗ⇒_
; ∀ᵖ[∶]-syntax to infix -4 ∀ᵖ[∶]-syntax
; ∀ᵖ〚∶〛-syntax to infix -4 ∀ᵖ〚∶〛-syntax
; ∀ᵖ!〚∶〛-syntax to infix -4 ∀ᵖ!〚∶〛-syntax
; ∀〚∶〛-syntax to infix -4 ∀〚∶〛-syntax
; Σᵖ[]-syntax to infix -4 Σᵖ[]-syntax
; Σᵖ[∶]-syntax to infix -4 Σᵖ[∶]-syntax
)
-- hProps of relations
module _ {ℓ ℓ' : Level} {A : Type ℓ} (R : hPropRel A A ℓ') where
isRefl = ∀[ a ] R a a
isIrrefl = ∀[ a ] ¬ (R a a)
isIrrefl' = ∀[ a ] ∀[ b ] ( R a b ⊔ R b a ) ⇒ ¬( a ≡ₚ b)
isIrrefl'' = ∀[ a ] ∀[ b ] ([ R a b ] ⊎ [ R b a ]) ᵗ⇒ ¬( a ≡ₚ b)
isIrreflˢ'' = λ(isset : isSet A) → ∀[ a ] ∀[ b ] ([ R a b ] ⊎ [ R b a ]) ᵗ⇒ ¬([ isset ] a ≡ˢ b)
isTrans = ∀[ a ] ∀[ b ] ∀[ x ] R a b ⇒ R b x ⇒ R a x
isCotrans = ∀[ a ] ∀[ b ] R a b ⇒ (∀[ x ] R a x ⊔ R x b)
isConnex = ∀[ a ] ∀[ b ] R a b ⊔ R b a
-- isTrichotomous = λ(<-irrefl ∶ [ isIrrefl' _<_ ]) → λ(<-asym : isAsym _<_) ∀[ a ] ∀[ b ] [ <-irrefl ]
-- [ P ] → ¬ᵗ [ Q ]
-- a ≡ b ⊎ (a < b ⊎ b < a)
-- (a < b ⊎ b < a) ⇒ (¬ a ≡ b) -- also irrefl
-- isTight
-- two variants of asymmetry
--
-- IsAsym R = ∀ a b → [ R a b ⇒ ¬ R b a ]
-- IsAsym' R = ∀ a b → [ ¬ (R a b ⊓ R b a) ]
--
-- which are equivalent
--
-- isAsymᵖ≡' : isAsym R ≡ isAsym' R
--
-- but it seems that this one is not equivalent:
--
-- ∀ a b → [ (¬ R b a) ⇒ R a b ]
isSym = ∀[ a ] ∀[ b ] R a b ⇒ R b a
isAsym = ∀[ a ] ∀[ b ] R a b ⇒ ¬ R b a
isAsym' = ∀[ a ] ∀[ b ] ¬ (R a b ⊓ R b a)
isAsym'' = ∀[ a ] ∀[ b ] ¬ R a b ⇒ R b a -- not equivalent! (weaker)
isTrichotomous : (<-irrefl : [ isIrrefl'' ]) → (<-asym : [ isAsym ]) → hProp _
isTrichotomousˢ : (isset : isSet A) → (<-irrefl : [ isIrreflˢ'' isset ]) → (<-asym : [ isAsym ]) → hProp _
isTrichotomous isirrefl isasym = ∀[ a ] ∀[ b ] ([ isirrefl a b ] ([ isasym a b ] R a b ⊎ᵖ R b a ) ⊎ᵖ ( a ≡ₚ b))
isTrichotomousˢ isset isirrefl isasym = ∀[ a ] ∀[ b ] ([ isirrefl a b ] ([ isasym a b ] R a b ⊎ᵖ R b a ) ⊎ᵖ ([ isset ] a ≡ˢ b))
isAntisym = ∀[ a ] ∀[ b ] R a b ⇒ R b a ⇒ a ≡ₚ b
isAntisymˢ = λ(isset : isSet A) → ∀[ a ] ∀[ b ] R a b ⇒ R b a ⇒ ([ isset ] a ≡ˢ b)
isAntisym' = ∀[ a ] ∀[ b ] R a b ⇒ ¬( a ≡ₚ b) ⇒ R b a
isAntisymˢ' = λ(isset : isSet A) → ∀[ a ] ∀[ b ] R a b ⇒ ¬([ isset ] a ≡ˢ b) ⇒ R b a
-- tightness is closely related to antisymmetry:
--
-- R-antisym : [ R a b ] → [ R b a ] → a ≡ b
-- R-tight : [ ¬ R a b ] → [ ¬ R b a ] → a ≡ b
--
-- this becomes even more obvious if we regard the intended use: when _≤_ and _#_ are derived from _<_
--
-- a ≤ b = ¬ (b < a)
-- a # b = ¬ ([ a < b ] ⊎ [ b < a ])
--
-- and indeed, we get
--
-- isTight _<_ ≡ isAntisym (λ a b → ¬ (b < a))
-- isTight' _<_ ≡ isTight''' (λ a b → (a < b) ⊔ (b < a))
--
-- In that case, `≤-antisym` and `#-tight` are almost the same, definitionally:
--
-- ≤-antisym : [ ¬ (b < a) ] → [ ¬ (a < b) ] → a ≡ b
-- ≤-antisym : [ ¬ (b < a) ] × [ ¬ (a < b) ] → a ≡ b -- by curry/uncurry
-- ≤-antisym : ¬ᵗ ( [ b < a ] ⊎ [ a < b ]) → a ≡ b -- by deMorgan
-- #-tight : [ ¬ (a < b) ] → [ ¬ (b < a) ] → a ≡ b
-- #-tight : [ ¬ (a < b) ] × [ ¬ (b < a) ] → a ≡ b -- by curry/uncurry
-- #-tight : ¬ᵗ ( [ a < b ] ⊎ [ b < a ]) → a ≡ b -- by deMorgan
--
-- We provide a few variants of tightness
--
isTight = ∀[ a ] ∀[ b ] ¬ R a b ⇒ ¬ R b a ⇒ a ≡ₚ b -- on _<_, "canonical"
isTightˢ = λ(isset : isSet A) → ∀[ a ] ∀[ b ] ¬ R a b ⇒ ¬ R b a ⇒ [ isset ] a ≡ˢ b -- on _<_
isTight' = ∀[ a ] ∀[ b ] ¬ ( R a b ⊔ R b a ) ⇒ a ≡ₚ b -- on _<_, definitional `isTight-ᵖ'≡'''`
isTightˢ' = λ(isset : isSet A) → ∀[ a ] ∀[ b ] ¬ ( R a b ⊔ R b a ) ⇒ [ isset ] a ≡ˢ b -- on _<_
isTight'' = ∀[ a ] ∀[ b ] (¬ᵗ ([ R a b ] ⊎ [ R b a ])) ᵗ⇒ a ≡ₚ b -- on _<_, definitional `isTight-ᵖ''≡'''`
isTightˢ'' = λ(isset : isSet A) → ∀[ a ] ∀[ b ] (¬ᵗ ([ R a b ] ⊎ [ R b a ])) ᵗ⇒ [ isset ] a ≡ˢ b -- on _<_, "convenient"
isTight''' = ∀[ a ] ∀[ b ] ¬ R a b ⇒ a ≡ₚ b -- on _#_
isTightˢ''' = λ(isset : isSet A) → ∀[ a ] ∀[ b ] ¬ R a b ⇒ [ isset ] a ≡ˢ b -- on _#_, also "convenient"
--
-- where the very first one, `IsTight` corresponds to a "canonical" definition,
-- the later one, `IsTightˢ''` is the "most convenient" one to use for `a # b = ¬ ([ a < b ] ⊎ [ b < a ])` on sets.
-- and the last ones `IsTight'''` and `IsTightˢ'''` are for "_#_" instead of "_<_".
--
-- These tightness definitions are all equivalent in the following sense:
--
-- isTight-ˢ≡ : (is-set : isSet A) → isTightˢ is-set _<_ ≡ isTight _<_
-- isTight-ˢ'≡' : (is-set : isSet A) → isTightˢ' is-set _<_ ≡ isTight' _<_
-- isTight-ˢ''≡'' : (is-set : isSet A) → isTightˢ'' is-set _<_ ≡ isTight'' _<_
-- isTight-ˢ'''≡''' : (is-set : isSet A) → isTightˢ''' is-set _#_ ≡ isTight''' _#_
-- isTight-≡' : isTight _<_ ≡ isTight' _<_
-- isTight-'≡'' : isTight' _<_ ≡ isTight'' _<_
-- isTight-'≡''' : isTight' _<_ ≡ isTight''' (λ a b → (a < b) ⊔ (b < a))
-- isTight-''≡''' : (<-asym : [ isAsym _<_ ]) → isTight'' _<_ ≡ isTight''' (λ a b → [ <-asym a b ] (a < b) ⊎ᵖ (b < a))
--
-- where `isTight-ᵖ'≡'''` and `isTight-ᵖ''≡'''` hold definitionally.
-- common definitions of less equal _≤_ and apartness _#_ with respect to _<_
module _ {ℓ ℓ'} {X : Type ℓ} {_<_ : hPropRel X X ℓ'} where
_#'_ : hPropRel X X ℓ'
_#'_ x y = (x < y) ⊔ (y < x)
-- a variant that omits propositional truncation by using asymmetry of _<_
_#''_ : {<-asym : [ isAsym _<_ ]} → hPropRel X X ℓ'
_#''_ {<-asym = <-asym} x y = [ <-asym x y ] (x < y) ⊎ᵖ (y < x)
_≤'_ : hPropRel X X ℓ'
_≤'_ x y = ¬ (y < x)
-- this is how Bridges 1999 defines _≤_
_≤''_ : hPropRel X X (ℓ-max ℓ ℓ')
x ≤'' y = ∀[ ε ] (y < ε) ⇒ (x < ε) -- (∀ ε → [ y < ε ] → [ x < ε ]) , isPropΠ2 (λ ε y<ε → isProp[] (x < ε))
-- combined hProps of relations
module _ {ℓ ℓ' : Level} {A : Type ℓ} (R : hPropRel A A ℓ')
(let _<_ = R; _≤_ = R) -- "strict" is denoted by _<_, and "non-strict" by _≤_
where
record IsApartnessRel : Type (ℓ-max ℓ ℓ') where
constructor isapartnessrel
field
is-irrefl : ∀ a → [ ¬ R a a ]
is-sym : ∀ a b → [ R a b ] → [ R b a ]
is-cotrans : ∀ a b → [ R a b ] → ∀ x → [ R a x ⊔ R x b ]
_ : [ isIrrefl R ]; _ = is-irrefl
_ : [ isSym R ]; _ = is-sym
_ : [ isCotrans R ]; _ = is-cotrans
isApartnessRel : hProp (ℓ-max ℓ ℓ')
isApartnessRel .fst = IsApartnessRel
isApartnessRel .snd (isapartnessrel a₀ b₀ c₀) (isapartnessrel a₁ b₁ c₁) = φ where
abstract φ = λ i → isapartnessrel (snd (isIrrefl R) a₀ a₁ i) (snd (isSym R) b₀ b₁ i) (snd (isCotrans R) c₀ c₁ i)
record IsStrictPartialOrder : Type (ℓ-max ℓ ℓ') where
constructor isstrictpartialorder
field
is-irrefl : ∀ a → [ ¬ a < a ]
is-trans : ∀ a b x → [ a < b ] → [ b < x ] → [ a < x ]
is-cotrans : ∀ a b → [ a < b ] → ∀ x → [ a < x ⊔ x < b ]
_ : [ isIrrefl _<_ ]; _ = is-irrefl
_ : [ isTrans _<_ ]; _ = is-trans
_ : [ isCotrans _<_ ]; _ = is-cotrans
isStrictPartialOrder : hProp (ℓ-max ℓ ℓ')
isStrictPartialOrder .fst = IsStrictPartialOrder
isStrictPartialOrder .snd (isstrictpartialorder a₀ b₀ c₀) (isstrictpartialorder a₁ b₁ c₁) = φ where
abstract φ = λ i → isstrictpartialorder (snd (isIrrefl _<_) a₀ a₁ i) (snd (isTrans _<_) b₀ b₁ i) (snd (isCotrans _<_) c₀ c₁ i)
record IsPreorder : Type (ℓ-max ℓ ℓ') where
constructor ispreorder
field
is-refl : ∀ a → [ R a a ]
is-trans : ∀ a b x → [ R a b ] → [ R b x ] → [ R a x ]
_ : [ isRefl R ]; _ = is-refl
_ : [ isTrans R ]; _ = is-trans
isPreorder : hProp (ℓ-max ℓ ℓ')
isPreorder .fst = IsPreorder
isPreorder .snd (ispreorder a₀ b₀) (ispreorder a₁ b₁) = φ where
abstract φ = λ i → ispreorder (snd (isRefl R) a₀ a₁ i) (snd (isTrans R) b₀ b₁ i)
record IsPartialOrder : Type (ℓ-max ℓ ℓ') where
constructor ispartialorder
field
is-refl : ∀ a → [ a ≤ a ]
is-antisym : ∀ a b → [ a ≤ b ] → [ b ≤ a ] → [ a ≡ₚ b ]
is-trans : ∀ a b x → [ a ≤ b ] → [ b ≤ x ] → [ a ≤ x ]
_ : [ isRefl _≤_ ]; _ = is-refl
_ : [ isAntisym _≤_ ]; _ = is-antisym
_ : [ isTrans _≤_ ]; _ = is-trans
isPartialOrder : hProp (ℓ-max ℓ ℓ')
isPartialOrder .fst = IsPartialOrder
isPartialOrder .snd (ispartialorder a₀ b₀ c₀) (ispartialorder a₁ b₁ c₁) = φ where
abstract φ = λ i → ispartialorder (snd (isRefl _≤_) a₀ a₁ i) (snd (isAntisym _≤_) b₀ b₁ i) (snd (isTrans _≤_) c₀ c₁ i)
record IsLinearOrder : Type (ℓ-max ℓ ℓ') where
constructor islinearorder
field
is-connex : ∀ a b → [ a ≤ b ⊔ b ≤ a ]
is-antisym : ∀ a b → [ a ≤ b ] → [ b ≤ a ] → [ a ≡ₚ b ]
is-trans : ∀ a b x → [ a ≤ b ] → [ b ≤ x ] → [ a ≤ x ]
_ : [ isConnex _≤_ ]; _ = is-connex
_ : [ isAntisym _≤_ ]; _ = is-antisym
_ : [ isTrans _≤_ ]; _ = is-trans
isLinearOrder : hProp (ℓ-max ℓ ℓ')
isLinearOrder .fst = IsLinearOrder
isLinearOrder .snd (islinearorder a₀ b₀ c₀) (islinearorder a₁ b₁ c₁) = φ where
abstract φ = λ i → islinearorder (snd (isConnex _≤_) a₀ a₁ i) (snd (isAntisym _≤_) b₀ b₁ i) (snd (isTrans _≤_) c₀ c₁ i)
record IsStrictLinearOrder : Type (ℓ-max ℓ ℓ') where
constructor isstrictlinearorder
field
is-irrefl : ∀ a → [ ¬ a < a ]
is-trans : ∀ a b x → [ a < b ] → [ b < x ] → [ a < x ]
is-tricho : ∀ a b → ([ a < b ] ⊎ [ b < a ]) ⊎ [ a ≡ₚ b ]
private
is-asym : ∀ a b → [ a < b ] → [ ¬ b < a ]
is-asym a b a<b b<a = is-irrefl _ (is-trans _ _ _ a<b b<a)
is-irrefl'' : ∀ a b → [ a < b ] ⊎ [ b < a ] → [ ¬(a ≡ₚ b) ]
is-irrefl'' a b (inl a<b) a≡b = is-irrefl _ (substₚ (λ p → p < b) a≡b a<b)
is-irrefl'' a b (inr b<a) a≡b = is-irrefl _ (substₚ (λ p → b < p) a≡b b<a)
_ : [ isIrrefl _<_ ]; _ = is-irrefl
_ : [ isTrans _<_ ]; _ = is-trans
_ : [ isTrichotomous _<_ is-irrefl'' is-asym ]; _ = is-tricho
isStrictLinearOrder : hProp (ℓ-max ℓ ℓ')
isStrictLinearOrder .fst = IsStrictLinearOrder
isStrictLinearOrder .snd (isstrictlinearorder a₀ b₀ c₀) (isstrictlinearorder a₁ b₁ c₁) = φ where
abstract φ = λ i → let is-irrefl = snd (isIrrefl _<_ ) a₀ a₁ i
is-trans = snd (isTrans _<_ ) b₀ b₁ i
is-asym : ∀ a b → [ a < b ] → [ ¬ b < a ]
is-asym a b a<b b<a = is-irrefl _ (is-trans _ _ _ a<b b<a)
is-irrefl'' : ∀ a b → [ a < b ] ⊎ [ b < a ] → [ ¬(a ≡ₚ b) ]
is-irrefl'' a b = λ
{ (inl a<b) a≡b → is-irrefl _ (substₚ (λ p → p < b) a≡b a<b)
; (inr b<a) a≡b → is-irrefl _ (substₚ (λ p → b < p) a≡b b<a)
}
is-tricho = snd (isTrichotomous _<_ is-irrefl'' is-asym) c₀ c₁ i
in isstrictlinearorder is-irrefl is-trans is-tricho
-- properties tied to some operation `op` on sets
module _ {ℓ : Level} {A : Type ℓ} (op : A → A → A) (is-set : isSet A)
(let _·_ = op -- different semantics
_+_ = op --
_≡ˢ_ = λ(x y : A) → [ is-set ] x ≡ˢ y
infixl 7 _·_
infixl 5 _+_
infixl 4 _≡ˢ_
) where
isAssociativeˢ = ∀[ x ] ∀[ y ] ∀[ z ] x · (y · z) ≡ˢ (x · y) · z
isIdentityˢ = λ(ε : A) → ∀[ x ] ( x · ε ≡ˢ x) ⊓ ( ε · x ≡ˢ x)
isCommutativeˢ = ∀[ x ] ∀[ y ] x + y ≡ˢ y + x
-- other properties
module _ {ℓ : Level} {A : Type ℓ} where
is-+-#-Extensional : (_+_ : A → A → A) → ∀{ℓ'} → (_#_ : hPropRel A A ℓ') → hProp _
is-+-<-Extensional : (_+_ : A → A → A) → ∀{ℓ'} → (_<_ : hPropRel A A ℓ') → hProp _
is-+-#-Extensional _+_ _#_ = ∀[ w ] ∀[ x ] ∀[ y ] ∀[ z ] (w + x) # (y + z) ⇒ (w # y) ⊔ (x # z)
is-+-<-Extensional _+_ _<_ = ∀[ w ] ∀[ x ] ∀[ y ] ∀[ z ] (w + x) < (y + z) ⇒ (w < y) ⊔ (x < z)
isMin : ∀{ℓ'} → (_≤_ : hPropRel A A ℓ') (min : A → A → A) → hProp _
isMax : ∀{ℓ'} → (_≤_ : hPropRel A A ℓ') (max : A → A → A) → hProp _
isMin _≤_ min = ∀[ x ] ∀[ y ] ∀[ z ] z ≤ (min x y) ⇔ z ≤ x ⊓ z ≤ y
isMax _≤_ max = ∀[ x ] ∀[ y ] ∀[ z ] (max x y) ≤ z ⇔ x ≤ z ⊓ y ≤ z
operation_preserves_when_ : (op : A → A → A) → ∀{ℓ'} → (R : hPropRel A A ℓ') → ∀{ℓ''} → (A → hProp ℓ'') → hProp _
operation_reflects_when_ : (op : A → A → A) → ∀{ℓ'} → (R : hPropRel A A ℓ') → ∀{ℓ''} → (A → hProp ℓ'') → hProp _
operation_reflects_〚when〛 : (op : A → A → A) → ∀{ℓ'} → (R : hPropRel A A ℓ') → ∀{ℓ''} → (A → hProp ℓ'') → hProp _
operation_creates_when_ : (op : A → A → A) → ∀{ℓ'} → (R : hPropRel A A ℓ') → ∀{ℓ''} → (A → hProp ℓ'') → hProp _
operation _·_ preserves _<_ when P = ∀[ x ] ∀[ y ] ∀[ z ] P z ⇒ x < y ⇒ (x · z) < (y · z)
operation _·_ reflects _<_ when P = ∀[ x ] ∀[ y ] ∀[ z ] P z ⇒ (x · z) < (y · z) ⇒ x < y
operation _·_ reflects _<_ 〚when〛 P = ∀[ x ] ∀[ y ] ∀[ z ] ∀〚 _ ∶ [ P z ] 〛 (x · z) < (y · z) ⇒ x < y
operation _·_ creates _<_ when P = ∀[ x ] ∀[ y ] ∀[ z ] P z ⇒ (x < y ⇔ (x · z) < (y · z))
isAbsNonnegative : ∀{ℓ} {F : Type ℓ} {Rℓ Rℓ'} {R : Type Rℓ} (0ᴿ : R) (_≤ᴿ_ : hPropRel R R Rℓ') (abs : F → R) → hProp _
isAbsCreatesZero : ∀{ℓ} {F : Type ℓ} (is-set : isSet F) (0f : F) {Rℓ Rℓ'} {R : Type Rℓ} (is-setᴿ : isSet R) (0ᴿ : R) (_≤ᴿ_ : hPropRel R R Rℓ') (abs : F → R) → hProp _
isAbsPreservesMultiplication : ∀{ℓ} {F : Type ℓ} ( _·_ : F → F → F) {Rℓ } {R : Type Rℓ} (is-setᴿ : isSet R) ( _·ᴿ_ : R → R → R) (abs : F → R) → hProp _
isAbsTriangleInequality : ∀{ℓ} {F : Type ℓ} (_+_ : F → F → F) {Rℓ Rℓ'} {R : Type Rℓ} (_+ᴿ_ : R → R → R) (_≤ᴿ_ : hPropRel R R Rℓ') (abs : F → R) → hProp _
isAbsNonnegative 0ᴿ _≤ᴿ_ abs = ∀[ x ] 0ᴿ ≤ᴿ (abs x)
isAbsCreatesZero is-set 0f is-setᴿ 0ᴿ _≤ᴿ_ abs = ∀[ x ] ([ is-set ] x ≡ˢ 0f ⇔ [ is-setᴿ ] abs x ≡ˢ 0ᴿ)
isAbsPreservesMultiplication _·_ is-setᴿ _·ᴿ_ abs = ∀[ x ] ∀[ y ] [ is-setᴿ ] (abs (x · y)) ≡ˢ (abs x ·ᴿ abs y)
isAbsTriangleInequality _+_ _+ᴿ_ _≤ᴿ_ abs = ∀[ x ] ∀[ y ] abs (x + y) ≤ᴿ (abs x +ᴿ abs y)
record IsAbsˢ
{ ℓ : Level} {F : Type ℓ } (is-set : isSet F) (0f : F) (_+_ _·_ : F → F → F)
{Rℓ Rℓ' : Level} {R : Type Rℓ} (is-setᴿ : isSet R) (0ᴿ : R) (_+ᴿ_ _·ᴿ_ : R → R → R) (_≤ᴿ_ : hPropRel R R Rℓ')
(abs : F → R)
: Type (ℓ-suc (ℓ-max ℓ (ℓ-max Rℓ Rℓ')))
where
constructor isabs
field
is-0≤abs : ∀ x → [ 0ᴿ ≤ᴿ (abs x) ]
abs-creates-0 : ∀ x → [ [ is-set ] x ≡ˢ 0f ⇔ [ is-setᴿ ] abs x ≡ˢ 0ᴿ ]
abs-preserves-· : ∀ x y → (abs (x · y)) ≡ (abs x ·ᴿ abs y)
triangle-ineq : ∀ x y → [ abs (x + y) ≤ᴿ (abs x +ᴿ abs y) ]
_ : [ isAbsNonnegative 0ᴿ _≤ᴿ_ abs ]; _ = is-0≤abs
_ : [ isAbsCreatesZero is-set 0f is-setᴿ 0ᴿ _≤ᴿ_ abs ]; _ = abs-creates-0
_ : [ isAbsPreservesMultiplication _·_ is-setᴿ _·ᴿ_ abs ]; _ = abs-preserves-·
_ : [ isAbsTriangleInequality _+_ _+ᴿ_ _≤ᴿ_ abs ]; _ = triangle-ineq
abs-preserves-0 : ∀ x → x ≡ 0f → abs x ≡ 0ᴿ
abs-preserves-0 x = abs-creates-0 x .fst
abs-reflects-0 : ∀ x → abs x ≡ 0ᴿ → x ≡ 0f
abs-reflects-0 x = abs-creates-0 x .snd
isAbs : { ℓ : Level} {F : Type ℓ } (is-set : isSet F) (0f : F) (_+_ _·_ : F → F → F)
{Rℓ Rℓ' : Level} {R : Type Rℓ} (is-setᴿ : isSet R) (0ᴿ : R) (_+ᴿ_ _·ᴿ_ : R → R → R) (_≤ᴿ_ : hPropRel R R Rℓ')
(abs : F → R)
→ hProp (ℓ-suc (ℓ-max ℓ (ℓ-max Rℓ Rℓ')))
isAbs is-set 0f _+_ _·_ is-setᴿ 0ᴿ _+ᴿ_ _·ᴿ_ _≤ᴿ_ abs .fst = IsAbsˢ is-set 0f _+_ _·_ is-setᴿ 0ᴿ _+ᴿ_ _·ᴿ_ _≤ᴿ_ abs
isAbs is-set 0f _+_ _·_ is-setᴿ 0ᴿ _+ᴿ_ _·ᴿ_ _≤ᴿ_ abs .snd (isabs a₀ b₀ c₀ d₀) (isabs a₁ b₁ c₁ d₁) = φ where
abstract φ = λ i → isabs (snd (isAbsNonnegative 0ᴿ _≤ᴿ_ abs) a₀ a₁ i) (snd (isAbsCreatesZero is-set 0f is-setᴿ 0ᴿ _≤ᴿ_ abs) b₀ b₁ i)
(snd (isAbsPreservesMultiplication _·_ is-setᴿ _·ᴿ_ abs) c₀ c₁ i) (snd (isAbsTriangleInequality _+_ _+ᴿ_ _≤ᴿ_ abs) d₀ d₁ i)
-- other properties on sets
module _ {ℓ : Level} {A : Type ℓ} (is-set : isSet A)
(let _≡ˢ_ = λ(x y : A) → [ is-set ] x ≡ˢ y; infixl 4 _≡ˢ_) where
-- NOTE: the left inverse is "on the right" of `_⊓_` (you get it with `snd`)
-- and the right inverse is "on the left" of `_⊓_` (you get it with `fst`)
-- .. this is how it's done in the cubical standard library
isInverseˢ : (0g : A) (_+_ : A → A → A) (-_ : A → A) → hProp _
isDistributiveˢ : (_+_ _·_ : A → A → A) → hProp _
isNonzeroInverseˢ' : (0f 1f : A) ( _·_ : A → A → A) (_⁻¹ : (x : A) → {{ ! [ ¬'(x ≡ 0f) ] }} → A) → hProp _
isNonzeroInverseˢ : (0f 1f : A) ( _·_ : A → A → A) → ∀{ℓ'} → (_#_ : hPropRel A A ℓ') → (_⁻¹ : (x : A) → {{ [ x # 0f ] }} → A) → hProp _
isNonzeroInverseˢ'' : (0f 1f : A) ( _·_ : A → A → A) → ∀{ℓ'} → (_#_ : hPropRel A A ℓ') → hProp _
-- isNonzeroInverseˢ''' : (0f 1f : A) ( _·_ : A → A → A) → ∀{ℓ'} → (_#_ : hPropRel A A ℓ') → hProp _
isInverseNonzeroˢ : (0f 1f : A) ( _·_ : A → A → A) → ∀{ℓ'} → (_#_ : hPropRel A A ℓ') → hProp _
isInverseˢ 0g _+_ -_ = ∀[ x ] ( x + (- x) ≡ˢ 0g)
⊓ ((- x) + x ≡ˢ 0g)
isDistributiveˢ _+_ _·_ = ∀[ x ] ∀[ y ] ∀[ z ] ( x · (y + z) ≡ˢ (x · y) + (x · z))
⊓ ((x + y) · z ≡ˢ (x · z) + (y · z))
-- classical notion of inverse operating on `¬(x ≡ 0)`, used in `IsClassicalField`
-- `∀ᵖ!〚_〛_` creates in instance argument of type `!_`
-- because `¬'(x ≡ 0f)` is a function type with an explicit argument and won't be considered in instance search
isNonzeroInverseˢ' 0f 1f _·_ _⁻¹ = ∀[ x ] ∀ᵖ!〚 p ∶ ¬'(x ≡ 0f) 〛 (x · (x ⁻¹) {{ p }} ≡ˢ 1f)
⊓ ((x ⁻¹) {{ p }} · x ≡ˢ 1f)
-- constructive notion of inverse operating on `x # 0`
-- `∀ᵖ〚_〛_` creates in instance argument
isNonzeroInverseˢ 0f 1f _·_ _#_ _⁻¹ = ∀[ x ] ∀ᵖ〚 p ∶ x # 0f 〛 (x · (x ⁻¹) {{ p }} ≡ˢ 1f)
⊓ ((x ⁻¹) {{ p }} · x ≡ˢ 1f)
-- constructive notion of inverse
-- this is the formulation in Booij2020, used in `IsAlmostOrderedField`
-- we need to proof uniqueness of inverses to obtain `_⁻¹` for `isNonzeroInverseˢ`
isNonzeroInverseˢ'' 0f 1f _·_ _#_ = ∀[ x ] (∃[ y ] x · y ≡ˢ 1f) ⇔ x # 0f
-- isNonzeroInverseˢ''' 0f 1f _·_ _#_ = ∀[ x ] (Σᵖ[ y ] x · y ≡ˢ 1f) ⇔ x # 0f
isInverseNonzeroˢ 0f 1f _·_ _#_ = ∀[ x ] ∀[ y ] x · y ≡ˢ 1f ⇒ x # 0f ⊓ y # 0f
| {
"alphanum_fraction": 0.433500483,
"avg_line_length": 55.5933503836,
"ext": "agda",
"hexsha": "ac8e8df8c037150a9b478bc994b25ed20ef9e943",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mchristianl/synthetic-reals",
"max_forks_repo_path": "agda/MorePropAlgebra/Definitions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mchristianl/synthetic-reals",
"max_issues_repo_path": "agda/MorePropAlgebra/Definitions.agda",
"max_line_length": 227,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mchristianl/synthetic-reals",
"max_stars_repo_path": "agda/MorePropAlgebra/Definitions.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z",
"num_tokens": 9116,
"size": 21737
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.