Search is not available for this dataset
text
string | meta
dict |
---|---|
{-# OPTIONS --sized-types #-}
open import Relation.Binary.Core
module BubbleSort.Correctness.Order {A : Set}
(_≤_ : A → A → Set)
(tot≤ : Total _≤_)
(trans≤ : Transitive _≤_) where
open import BubbleSort _≤_ tot≤
open import Data.Product
open import Data.List
open import Data.Sum
open import Function using (_∘_)
open import List.Sorted _≤_
open import Order.Total _≤_ tot≤
open import Size
open import SList
open import SList.Order _≤_
open import SList.Order.Properties _≤_
lemma-swap*-≤*-≤ : {ι : Size}{x t : A}{xs : SList A {ι}} → x ≤ t → xs ≤* t → proj₁ (swap* x xs) ≤* t × proj₂ (swap* x xs) ≤ t
lemma-swap*-≤*-≤ x≤t lenx = lenx , x≤t
lemma-swap*-≤*-≤ {x = x} x≤t (lecx {x = y} y≤t ys≤*t)
with tot≤ x y
... | inj₁ x≤y = lecx x≤t (proj₁ (lemma-swap*-≤*-≤ y≤t ys≤*t)), proj₂ (lemma-swap*-≤*-≤ y≤t ys≤*t)
... | inj₂ y≤x = lecx y≤t (proj₁ (lemma-swap*-≤*-≤ x≤t ys≤*t)), proj₂ (lemma-swap*-≤*-≤ x≤t ys≤*t)
lemma-bubbleSort-≤* : {ι : Size}{t : A}{xs : SList A {ι}} → xs ≤* t → bubbleSort xs ≤* t
lemma-bubbleSort-≤* lenx = lenx
lemma-bubbleSort-≤* (lecx x≤t xs≤*t)
with lemma-swap*-≤*-≤ x≤t xs≤*t
... | (zs≤*t , z≤t) = lemma-⊕≤* z≤t (lemma-bubbleSort-≤* zs≤*t)
lemma-swap*-≤ : {ι : Size}(x : A) → (xs : SList A {ι}) → x ≤ proj₂ (swap* x xs)
lemma-swap*-≤ x snil = refl≤
lemma-swap*-≤ x (y ∙ ys)
with tot≤ x y
... | inj₁ x≤y = trans≤ x≤y (lemma-swap*-≤ y ys)
... | inj₂ y≤x = lemma-swap*-≤ x ys
lemma-swap*-≤* : {ι : Size}(x : A) → (xs : SList A {ι}) → proj₁ (swap* x xs) ≤* proj₂ (swap* x xs)
lemma-swap*-≤* x snil = lenx
lemma-swap*-≤* x (y ∙ ys)
with tot≤ x y
... | inj₁ x≤y = lecx (trans≤ x≤y (lemma-swap*-≤ y ys)) (lemma-swap*-≤* y ys)
... | inj₂ y≤x = lecx (trans≤ y≤x (lemma-swap*-≤ x ys)) (lemma-swap*-≤* x ys)
lemma-bubbleSort-sorted : {ι : Size}(xs : SList A {ι}) → Sorted (unsize A (bubbleSort xs))
lemma-bubbleSort-sorted snil = nils
lemma-bubbleSort-sorted (x ∙ xs) = lemma-sorted⊕ (lemma-bubbleSort-≤* (lemma-swap*-≤* x xs)) (lemma-bubbleSort-sorted (proj₁ (swap* x xs)))
theorem-bubbleSort-sorted : (xs : List A) → Sorted (unsize A (bubbleSort (size A xs)))
theorem-bubbleSort-sorted = lemma-bubbleSort-sorted ∘ (size A)
| {
"alphanum_fraction": 0.5820962663,
"avg_line_length": 39,
"ext": "agda",
"hexsha": "ff0a098a0e4b95ef952e8bcd93cea6fa3c4d4181",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BubbleSort/Correctness/Order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BubbleSort/Correctness/Order.agda",
"max_line_length": 139,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BubbleSort/Correctness/Order.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 960,
"size": 2223
} |
module nix-emacs-agda where
| {
"alphanum_fraction": 0.8214285714,
"avg_line_length": 14,
"ext": "agda",
"hexsha": "bac4f0e0920c76fdce60d318a51b127c1655d4e4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f08dc7790ef9e30b7fd764643f312dd492a63793",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "o1lo01ol1o/nix-emacs-agda",
"max_forks_repo_path": "src/nix-emacs-agda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f08dc7790ef9e30b7fd764643f312dd492a63793",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "o1lo01ol1o/nix-emacs-agda",
"max_issues_repo_path": "src/nix-emacs-agda.agda",
"max_line_length": 27,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f08dc7790ef9e30b7fd764643f312dd492a63793",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "o1lo01ol1o/nix-emacs-agda",
"max_stars_repo_path": "src/nix-emacs-agda.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 9,
"size": 28
} |
{-# OPTIONS --without-K #-}
open import lib.Base
open import lib.PathGroupoid
open import lib.PathFunctor
open import lib.Equivalences
module lib.Univalence where
{-
The map [coe-equiv] is the map which is supposed to be an equivalence according
to the univalence axiom. We do not define it directly by path induction because
it may be helpful to know definitionally what are the components.
-}
coe-equiv : ∀ {i} {A B : Type i} → A == B → A ≃ B
coe-equiv p = equiv (coe p) (coe! p) (coe!-inv-r p) (coe!-inv-l p)
{- We postulate the univalence axiom as three separate axioms because it’s more
natural this way. But it doesn’t change anything in practice. -}
postulate -- Univalence axiom
ua : ∀ {i} {A B : Type i} → (A ≃ B) → A == B
coe-equiv-β : ∀ {i} {A B : Type i} (e : A ≃ B) → coe-equiv (ua e) == e
ua-η : ∀ {i} {A B : Type i} (p : A == B) → ua (coe-equiv p) == p
ua-equiv : ∀ {i} {A B : Type i} → (A ≃ B) ≃ (A == B)
ua-equiv = equiv ua coe-equiv ua-η coe-equiv-β
{- Reductions for coercions along a path constructed with the univalence axiom -}
coe-β : ∀ {i} {A B : Type i} (e : A ≃ B) (a : A)
→ coe (ua e) a == –> e a
coe-β e a = ap (λ e → –> e a) (coe-equiv-β e)
coe!-β : ∀ {i} {A B : Type i} (e : A ≃ B) (b : B)
→ coe! (ua e) b == <– e b
coe!-β e a = ap (λ e → <– e a) (coe-equiv-β e)
{- Paths over a path in a universe in the identity fibration reduces -}
↓-idf-ua-out : ∀ {i} {A B : Type i} (e : A ≃ B) {u : A} {v : B}
→ u == v [ (λ x → x) ↓ (ua e) ]
→ –> e u == v
↓-idf-ua-out e p = ! (coe-β e _) ∙ aux (ua e) p where
aux : ∀ {i} {A B : Type i} (p : A == B) {u : A} {v : B}
→ u == v [ (λ x → x) ↓ p ]
→ coe p u == v
aux idp = idf _
↓-idf-ua-in : ∀ {i} {A B : Type i} (e : A ≃ B) {u : A} {v : B}
→ –> e u == v
→ u == v [ (λ x → x) ↓ (ua e) ]
↓-idf-ua-in e p = aux (ua e) (coe-β e _ ∙ p) where
aux : ∀ {i} {A B : Type i} (p : A == B) {u : A} {v : B}
→ coe p u == v
→ u == v [ (λ x → x) ↓ p ]
aux idp = idf _
{- Induction along equivalences
If [P] is a predicate over all equivalences in a universe [Type i] and [d] is a
proof of [P] over all [ide A], then we get a section of [P]
-}
equiv-induction : ∀ {i j} (P : {A B : Type i} (f : A ≃ B) → Type j)
(d : (A : Type i) → P (ide A)) {A B : Type i} (f : A ≃ B)
→ P f
equiv-induction {i} {j} P d f =
transport P (coe-equiv-β f)
(aux P d (ua f)) where
aux : ∀ {j} (P : {A : Type i} {B : Type i} (f : A ≃ B) → Type j)
(d : (A : Type i) → P (ide A)) {A B : Type i} (p : A == B)
→ P (coe-equiv p)
aux P d idp = d _
| {
"alphanum_fraction": 0.5274294671,
"avg_line_length": 32.7179487179,
"ext": "agda",
"hexsha": "b252f6192ac4abd2006df6fa7fc5516cc2a49816",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "sattlerc/HoTT-Agda",
"max_forks_repo_path": "lib/Univalence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "sattlerc/HoTT-Agda",
"max_issues_repo_path": "lib/Univalence.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "c8fb8da3354fc9e0c430ac14160161759b4c5b37",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "sattlerc/HoTT-Agda",
"max_stars_repo_path": "lib/Univalence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1037,
"size": 2552
} |
module Data.List.Relation.Binary.Subset.Propositional.Instances where
open import Data.List using (List; _∷_; [])
open import Data.List.Relation.Unary.Any using (here; there)
open import Data.List.Membership.Propositional using (_∈_; _∉_)
open import Data.List.Membership.Setoid.Properties using (∈-resp-≈)
open import Data.List.Relation.Binary.Subset.Propositional using (_⊆_)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.PropositionalEquality using (sym; setoid)
open import Level using (Level)
private
variable
a : Level
A : Set a
x y : A
xs ys : List A
-- ----------------------------------------------------------------------
-- Wrapped subset. Could use Data.Wrap but required curried arguments
-- Easier to define specific data type.
infix 4 ⦅_⊆_⦆
data ⦅_⊆_⦆ {a} {A : Set a} : List A → List A → Set a where
[_] : xs ⊆ ys → ⦅ xs ⊆ ys ⦆
proj : ⦅ xs ⊆ ys ⦆ → xs ⊆ ys
proj [ xs⊆ys ] = xs⊆ys
-- ----------------------------------------------------------------------
-- Lemmas used for instance searching
x∉[] : x ∉ []
x∉[] = λ ()
[]⊆xs : [] ⊆ xs
[]⊆xs = λ x∈[] → contradiction x∈[] x∉[]
xs⊆x∷xs : xs ⊆ x ∷ xs
xs⊆x∷xs = there
xs⊆ys⇒x∷xs⊆x∷ys : xs ⊆ ys → x ∷ xs ⊆ x ∷ ys
xs⊆ys⇒x∷xs⊆x∷ys xs⊆ys (here y≡x) = here y≡x
xs⊆ys⇒x∷xs⊆x∷ys xs⊆ys (there y∈x∷xs) = there (xs⊆ys y∈x∷xs)
x∈ys-xs⊆ys⇒x∷xs⊆ys : x ∈ ys → xs ⊆ ys → x ∷ xs ⊆ ys
x∈ys-xs⊆ys⇒x∷xs⊆ys x∈ys xs⊆ys (here y≡x) = ∈-resp-≈ (setoid _) (sym y≡x) x∈ys
x∈ys-xs⊆ys⇒x∷xs⊆ys x∈ys xs⊆ys (there y∈x∷xs) = xs⊆ys y∈x∷xs
-- ----------------------------------------------------------------------
-- Instances
instance
⦃[]⊆xs⦄ : ⦅ [] ⊆ xs ⦆
⦃[]⊆xs⦄ = [ []⊆xs ]
-- Removed to improve instance search, syntax directed.
-- ⦃xs⊆x∷xs⦄ : ⦅ xs ⊆ x ∷ xs ⦆
-- ⦃xs⊆x∷xs⦄ = [ xs⊆x∷xs ]
-- ⦃xs⊆ys⇒x∷xs⊆x∷ys⦄ : ⦃ ⦅ xs ⊆ ys ⦆ ⦄ → ⦅ x ∷ xs ⊆ x ∷ ys ⦆
-- ⦃xs⊆ys⇒x∷xs⊆x∷ys⦄ ⦃ [ xs⊆ys ] ⦄ = [ xs⊆ys⇒x∷xs⊆x∷ys xs⊆ys ]
⦃x∈ys-xs⊆ys⇒x∷xs⊆ys⦄ : ⦃ x ∈ ys ⦄ → ⦃ ⦅ xs ⊆ ys ⦆ ⦄ → ⦅ x ∷ xs ⊆ ys ⦆
⦃x∈ys-xs⊆ys⇒x∷xs⊆ys⦄ ⦃ x∈ys ⦄ ⦃ [ xs⊆ys ] ⦄ = [ x∈ys-xs⊆ys⇒x∷xs⊆ys x∈ys xs⊆ys ]
| {
"alphanum_fraction": 0.5207439199,
"avg_line_length": 29.5352112676,
"ext": "agda",
"hexsha": "2b04ca3d4fc9d4c50273e473bab07e2b37701ccd",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "johnyob/agda-union",
"max_forks_repo_path": "src/Data/List/Relation/Binary/Subset/Propositional/Instances.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "johnyob/agda-union",
"max_issues_repo_path": "src/Data/List/Relation/Binary/Subset/Propositional/Instances.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "921a0dc44a69a74391031ca61568c624ab7f9c94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "johnyob/agda-union",
"max_stars_repo_path": "src/Data/List/Relation/Binary/Subset/Propositional/Instances.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1052,
"size": 2097
} |
module Pin where
-- N-dimensional version of Pi
-- open import Data.Fin
open import Data.Nat
open import Data.Empty
open import Data.Unit
open import Data.Sum
open import Data.Product
open import Function renaming (_∘_ to _○_)
open import Relation.Binary.PropositionalEquality using (module ≡-Reasoning)
open ≡-Reasoning
open import Algebra
open import Data.Nat.Properties
open CommutativeSemiring commutativeSemiring using (+-commutativeMonoid)
open CommutativeMonoid +-commutativeMonoid using ()
renaming (comm to +-comm)
--infix 4 _≡_ -- propositional equality
--infixr 8 _∘_ -- path composition
infixr 10 _◎_
infixr 30 _⟷_
infixr 9 _>>>_
-- infixr 30 _⟺_
------------------------------------------------------------------------------
-- base types (or 0d types) are the usual finite types
data T : Set where
Zero : T
One : T
Plus : T → T → T
Times : T → T → T
-- Combinators on 0d types
data _⟷_ : T → T → Set where
unite₊ : { t : T } → Plus Zero t ⟷ t
uniti₊ : { t : T } → t ⟷ Plus Zero t
swap₊ : { t₁ t₂ : T } → Plus t₁ t₂ ⟷ Plus t₂ t₁
assocl₊ : { t₁ t₂ t₃ : T } → Plus t₁ (Plus t₂ t₃) ⟷ Plus (Plus t₁ t₂) t₃
assocr₊ : { t₁ t₂ t₃ : T } → Plus (Plus t₁ t₂) t₃ ⟷ Plus t₁ (Plus t₂ t₃)
unite⋆ : { t : T } → Times One t ⟷ t
uniti⋆ : { t : T } → t ⟷ Times One t
swap⋆ : { t₁ t₂ : T } → Times t₁ t₂ ⟷ Times t₂ t₁
assocl⋆ : { t₁ t₂ t₃ : T } → Times t₁ (Times t₂ t₃) ⟷ Times (Times t₁ t₂) t₃
assocr⋆ : { t₁ t₂ t₃ : T } → Times (Times t₁ t₂) t₃ ⟷ Times t₁ (Times t₂ t₃)
distz : { t : T } → Times Zero t ⟷ Zero
factorz : { t : T } → Zero ⟷ Times Zero t
dist : { t₁ t₂ t₃ : T } →
Times (Plus t₁ t₂) t₃ ⟷ Plus (Times t₁ t₃) (Times t₂ t₃)
factor : { t₁ t₂ t₃ : T } →
Plus (Times t₁ t₃) (Times t₂ t₃) ⟷ Times (Plus t₁ t₂) t₃
id⟷ : { t : T } → t ⟷ t
sym⟷ : { t₁ t₂ : T } → (t₁ ⟷ t₂) → (t₂ ⟷ t₁)
_◎_ : { t₁ t₂ t₃ : T } → (t₁ ⟷ t₂) → (t₂ ⟷ t₃) → (t₁ ⟷ t₃)
_⊕_ : { t₁ t₂ t₃ t₄ : T } →
(t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (Plus t₁ t₂ ⟷ Plus t₃ t₄)
_⊗_ : { t₁ t₂ t₃ t₄ : T } →
(t₁ ⟷ t₃) → (t₂ ⟷ t₄) → (Times t₁ t₂ ⟷ Times t₃ t₄)
-- Semantics
⟦_⟧ : T → Set
⟦ Zero ⟧ = ⊥
⟦ One ⟧ = ⊤
⟦ Plus t1 t2 ⟧ = ⟦ t1 ⟧ ⊎ ⟦ t2 ⟧
⟦ Times t1 t2 ⟧ = ⟦ t1 ⟧ × ⟦ t2 ⟧
mutual
eval : {t₁ t₂ : T} → (t₁ ⟷ t₂) → ⟦ t₁ ⟧ → ⟦ t₂ ⟧
eval unite₊ (inj₁ ())
eval unite₊ (inj₂ v) = v
eval uniti₊ v = inj₂ v
eval swap₊ (inj₁ v) = inj₂ v
eval swap₊ (inj₂ v) = inj₁ v
eval assocl₊ (inj₁ v) = inj₁ (inj₁ v)
eval assocl₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v)
eval assocl₊ (inj₂ (inj₂ v)) = inj₂ v
eval assocr₊ (inj₁ (inj₁ v)) = inj₁ v
eval assocr₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v)
eval assocr₊ (inj₂ v) = inj₂ (inj₂ v)
eval unite⋆ (tt , v) = v
eval uniti⋆ v = (tt , v)
eval swap⋆ (v1 , v2) = (v2 , v1)
eval assocl⋆ (v1 , (v2 , v3)) = ((v1 , v2) , v3)
eval assocr⋆ ((v1 , v2) , v3) = (v1 , (v2 , v3))
eval distz (() , v)
eval factorz ()
eval dist (inj₁ v1 , v3) = inj₁ (v1 , v3)
eval dist (inj₂ v2 , v3) = inj₂ (v2 , v3)
eval factor (inj₁ (v1 , v3)) = (inj₁ v1 , v3)
eval factor (inj₂ (v2 , v3)) = (inj₂ v2 , v3)
eval id⟷ v = v
eval (sym⟷ c) v = evalB c v
eval (c₁ ◎ c₂) v = eval c₂ (eval c₁ v)
eval (c₁ ⊕ c₂) (inj₁ v) = inj₁ (eval c₁ v)
eval (c₁ ⊕ c₂) (inj₂ v) = inj₂ (eval c₂ v)
eval (c₁ ⊗ c₂) (v₁ , v₂) = (eval c₁ v₁ , eval c₂ v₂)
evalB : {t₁ t₂ : T} → (t₁ ⟷ t₂) → ⟦ t₂ ⟧ → ⟦ t₁ ⟧
evalB unite₊ v = inj₂ v
evalB uniti₊ (inj₁ ())
evalB uniti₊ (inj₂ v) = v
evalB swap₊ (inj₁ v) = inj₂ v
evalB swap₊ (inj₂ v) = inj₁ v
evalB assocl₊ (inj₁ (inj₁ v)) = inj₁ v
evalB assocl₊ (inj₁ (inj₂ v)) = inj₂ (inj₁ v)
evalB assocl₊ (inj₂ v) = inj₂ (inj₂ v)
evalB assocr₊ (inj₁ v) = inj₁ (inj₁ v)
evalB assocr₊ (inj₂ (inj₁ v)) = inj₁ (inj₂ v)
evalB assocr₊ (inj₂ (inj₂ v)) = inj₂ v
evalB unite⋆ v = (tt , v)
evalB uniti⋆ (tt , v) = v
evalB swap⋆ (v1 , v2) = (v2 , v1)
evalB assocl⋆ ((v1 , v2) , v3) = (v1 , (v2 , v3))
evalB assocr⋆ (v1 , (v2 , v3)) = ((v1 , v2) , v3)
evalB distz ()
evalB factorz (() , v)
evalB dist (inj₁ (v1 , v3)) = (inj₁ v1 , v3)
evalB dist (inj₂ (v2 , v3)) = (inj₂ v2 , v3)
evalB factor (inj₁ v1 , v3) = inj₁ (v1 , v3)
evalB factor (inj₂ v2 , v3) = inj₂ (v2 , v3)
evalB id⟷ v = v
evalB (sym⟷ c) v = eval c v
evalB (c₁ ◎ c₂) v = evalB c₁ (evalB c₂ v)
evalB (c₁ ⊕ c₂) (inj₁ v) = inj₁ (evalB c₁ v)
evalB (c₁ ⊕ c₂) (inj₂ v) = inj₂ (evalB c₂ v)
evalB (c₁ ⊗ c₂) (v₁ , v₂) = (evalB c₁ v₁ , evalB c₂ v₂)
------------------------------------------------------------------------------
-- N dimensional version
data C : ℕ → Set where
ZD : T → C 0
Node : {n : ℕ} → C n → C n → C (suc n)
liftN : (n : ℕ) → (t : T) → C n
liftN 0 t = ZD t
liftN (suc n) t = Node (liftN n t) (liftN n Zero)
zeroN : (n : ℕ) → C n
zeroN n = liftN n Zero
oneN : (n : ℕ) → C n
oneN n = liftN n One
plus : {n : ℕ} → C n → C n → C n
plus (ZD t₁) (ZD t₂) = ZD (Plus t₁ t₂)
plus (Node c₁ c₂) (Node c₁' c₂') = Node (plus c₁ c₁') (plus c₂ c₂')
times : {m n : ℕ} → C m → C n → C (m + n)
times (ZD t1) (ZD t2) = ZD (Times t1 t2)
times (ZD t) (Node c1 c2) = Node (times (ZD t) c1) (times (ZD t) c2)
times (Node c1 c2) c = Node (times c1 c) (times c2 c)
-- Combinators on nd types
data _⟺_ : {n : ℕ} → C n → C n → Set where
baseC : {t₁ t₂ : T} → (t₁ ⟷ t₂) → ((ZD t₁) ⟺ (ZD t₂))
nodeC : {n : ℕ} {c₁ : C n} {c₂ : C n} {c₃ : C n} {c₄ : C n} →
(c₁ ⟺ c₂) → (c₃ ⟺ c₄) → ((Node c₁ c₃) ⟺ (Node c₂ c₄))
zerolC : {n : ℕ} {c : C n} → ((Node c c) ⟺ (zeroN (suc n)))
zerorC : {n : ℕ} {c : C n} → ((zeroN (suc n)) ⟺ (Node c c))
-- Def. 2.1 lists the conditions for J-graded bipermutative category
mutual
_>>>_ = seqF
idN⟷ : {n : ℕ} {c : C n} → c ⟺ c
idN⟷ {0} {ZD t} = baseC (id⟷ {t})
idN⟷ {suc n} {Node c₁ c₂} = nodeC (idN⟷ {n} {c₁}) (idN⟷ {n} {c₂})
symN⟷ : {n : ℕ} {c₁ c₂ : C n} → (c₁ ⟺ c₂) → (c₂ ⟺ c₁)
symN⟷ (baseC f) = baseC (sym⟷ f)
symN⟷ (nodeC f g) = nodeC (symN⟷ f) (symN⟷ g)
symN⟷ (zerolC {n} {c}) = zerorC {n} {c}
symN⟷ (zerorC {n} {c}) = zerolC {n} {c}
seqF : {n : ℕ} {c₁ c₂ c₃ : C n} →
(c₁ ⟺ c₂) → (c₂ ⟺ c₃) → (c₁ ⟺ c₃)
seqF {0} (baseC f) (baseC g) = baseC (f ◎ g)
seqF {suc n} (nodeC f g) (nodeC f' g') = nodeC (seqF f f') (seqF g g')
seqF {suc n} (nodeC f g) zerolC = nodeC (seqF f {!!}) (seqF g {!!})
seqF {suc n} (nodeC f g) zerorC = {!!}
seqF {suc n} zerolC (nodeC f g) = {!!}
seqF {suc n} zerolC zerolC = {!!}
seqF {suc n} zerolC zerorC = {!!}
seqF {suc n} zerorC (nodeC f g) = {!!}
seqF {suc n} zerorC zerolC = {!!}
seqF {suc n} zerorC zerorC = {!!}
{--
plusF : {n : ℕ} {c₁ c₂ c₃ c₄ : C n} →
(c₁ ⟺ c₂) → (c₃ ⟺ c₄) → (plus c₁ c₃ ⟺ plus c₂ c₄)
plusF (baseC f) (baseC g) = baseC (f ⊕ g)
plusF (nodeC f) (nodeC g) = nodeC {!!}
timesF : {m n : ℕ} {c₁ c₂ : C m} {c₃ c₄ : C n} →
(c₁ ⟺ c₂) → (c₃ ⟺ c₄) → (times c₁ c₃ ⟺ times c₂ c₄)
timesF (baseC f) (baseC g) = baseC (f ⊗ g)
timesF (baseC f) (nodeC g) = nodeC {!!}
{--
nodeC (
seqF (plusF (timesF (baseC f) idN⟷) idN⟷) (
seqF (seqF (plusF swapN⋆ swapN⋆) factorN) (
seqF (timesF idN⟷ g) (
seqF (seqF distN (plusF swapN⋆ swapN⋆))
((plusF (timesF (baseC (sym⟷ f)) idN⟷) idN⟷))))))
--}
timesF (nodeC f) (baseC g) = {!!}
timesF (nodeC f) (nodeC g) = nodeC {!!}
-- nodeC (timesF f₁ g) (timesF f₂ g)
-- f : t1 <-> t2
-- g : c1 + c4 <=> c3 + c2
--?24 : plus (times (ZD t₁) c₁) (times (ZD t₂) c₄) ⟺
-- plus (times (ZD t₁) c₃) (times (ZD t₂) c₂)
{--
plus (times (ZD t₁) c₁) (times (ZD t₂) c₄) ⟺
-> s1
plus (times (ZD t2) c₁) (times (ZD t₂) c₄) ⟺
-> s2
times (ZD t2) (plus c1 c4)
-> s3
times (ZD t2) (plus c3 c2)
-> s4
plus (times (ZD t2) c3) (times (ZD t2) c2)
-> s5
plus (times (ZD t1) c3) (times (ZD t2) c2)
--}
uniteN₊ : {n : ℕ} {c : C n} → (plus (zeroN n) c) ⟺ c
uniteN₊ {0} {ZD t} = baseC (unite₊ {t})
uniteN₊ {suc n} {Node c₁ c₂} =
nodeC (seqF assocrN₊ (seqF (plusF idN⟷ swapN₊) assoclN₊))
unitiN₊ : {n : ℕ} {c : C n} → c ⟺ (plus (zeroN n) c)
unitiN₊ {0} {ZD t} = baseC (uniti₊ {t})
unitiN₊ {suc n} {Node c₁ c₂} =
nodeC (assoclN₊ >>> swapN₊ >>> (plusF idN⟷ swapN₊))
swapN₊ : { n : ℕ } { c₁ c₂ : C n } → plus c₁ c₂ ⟺ plus c₂ c₁
swapN₊ {0} {ZD t₁} {ZD t₂} = baseC (swap₊ {t₁} {t₂})
swapN₊ {suc n} {Node c₁ c₂} {Node c₁' c₂'} =
nodeC (swapN₊ >>> (plusF swapN₊ swapN₊))
assoclN₊ : { n : ℕ } { c₁ c₂ c₃ : C n } →
plus c₁ (plus c₂ c₃) ⟺ plus (plus c₁ c₂) c₃
assoclN₊ {0} {ZD t₁} {ZD t₂} {ZD t₃} = baseC (assocl₊ {t₁} {t₂} {t₃})
assoclN₊ {suc n} {Node c₁ c₂} {Node c₃ c₄} {Node c₅ c₆} =
nodeC (swapN₊ >>> (plusF assocrN₊ assoclN₊))
assocrN₊ : { n : ℕ } { c₁ c₂ c₃ : C n } →
plus (plus c₁ c₂) c₃ ⟺ plus c₁ (plus c₂ c₃)
assocrN₊ {0} {ZD t₁} {ZD t₂} {ZD t₃} = baseC (assocr₊ {t₁} {t₂} {t₃})
assocrN₊ {suc n} {Node c₁ c₂} {Node c₃ c₄} {Node c₅ c₆} =
nodeC (swapN₊ >>> (plusF assoclN₊ assocrN₊))
uniteN⋆ : {n : ℕ} {c : C n} → times (ZD One) c ⟺ c
uniteN⋆ {0} {ZD t} = baseC (unite⋆ {t})
uniteN⋆ {suc n} {Node c₁ c₂} = nodeC {!!}
unitiN⋆ : {n : ℕ} {c : C n} → c ⟺ times (ZD One) c
unitiN⋆ {0} {ZD t} = baseC (uniti⋆ {t})
unitiN⋆ {suc n} {Node c₁ c₂} = nodeC {!!}
-- Ugly hack or feature ???
times' : {m n : ℕ} → C n → C m → C (m + n)
times' {m} {n} c₁ c₂ rewrite +-comm m n = times c₁ c₂
swapN⋆ : {m n : ℕ} {c₁ : C m} {c₂ : C n} → times c₁ c₂ ⟺ times' c₂ c₁
swapN⋆ {0} {0} {ZD t₁} {ZD t₂} = baseC (swap⋆ {t₁} {t₂})
swapN⋆ {0} {suc n} {ZD t} {Node c₁ c₂} = {!!}
--nodeC (swapN⋆ {0} {n} {ZD t} {c₁}) (swapN⋆ {0} {n} {ZD t} {c₂})
swapN⋆ {suc m} {0} {Node c₁ c₂} {ZD t} = {!!}
--nodeC (swapN⋆ {0} {n} {c₁} {ZD t}) (swapN⋆ {0} {n} {c₂} {ZD t})
swapN⋆ {suc m} {n} {Node c₁ c₂} {c} = {!!}
--nodeC (swapN⋆ {m} {n} {c₁} {c}) (swapN⋆ {m} {n} {c₂} {c})
TODO : Set
TODO = {!!}
assoclN⋆ : {m n k : ℕ} {c₁ : C m} {c₂ : C n} {c₃ : C k} → TODO
-- times c₁ (times c₂ c₃) ⟺ times (times c₁ c₂) c₃
assoclN⋆ = {!!}
assocrN⋆ : { m n k : ℕ } { c₁ : C m } { c₂ : C n } { c₃ : C k } → TODO
-- times (times c₁ c₂) c₃ ⟺ times c₁ (times c₂ c₃)
assocrN⋆ = {!!}
distzN : {m n : ℕ} {c : C n} → times (zeroN m) c ⟺ zeroN (m + n)
distzN {0} {0} {ZD t} = baseC (distz {t})
distzN {0} {suc n} {Node c₁ c₂} = nodeC {!!}
-- nodeC (distzN {0} {n} {c₁}) (distzN {0} {n} {c₂})
distzN {suc m} {n} {c} = nodeC {!!}
-- nodeC (distzN {m} {n} {c}) (distzN {m} {n} {c})
factorzN : { m n : ℕ } { c : C n } → zeroN (m + n) ⟺ times (zeroN m) c
factorzN {0} {0} {ZD t} = baseC (factorz {t})
factorzN {0} {suc n} {Node c₁ c₂} = nodeC {!!}
-- nodeC (factorzN {0} {n} {c₁}) (factorzN {0} {n} {c₂})
factorzN {suc m} {n} {c} = nodeC {!!}
-- nodeC (factorzN {m} {n} {c}) (factorzN {m} {n} {c})
distN : {m n : ℕ} {c₁ c₂ : C m} {c₃ : C n} →
times (plus c₁ c₂) c₃ ⟺ plus (times c₁ c₃) (times c₂ c₃)
distN {0} {0} {ZD t₁} {ZD t₂} {ZD t₃} = baseC (dist {t₁} {t₂} {t₃})
distN {0} {suc n} {ZD t₁} {ZD t₂} {Node c₁ c₂} = nodeC {!!}
-- nodeC
-- (distN {0} {n} {ZD t₁} {ZD t₂} {c₁})
-- (distN {0} {n} {ZD t₁} {ZD t₂} {c₂})
distN {suc m} {n} {Node c₁ c₂} {Node c₃ c₄} {c} = nodeC {!!}
-- nodeC
-- ((distN {m} {n} {c₁} {c₃} {c}))
-- ((distN {m} {n} {c₂} {c₄} {c}))
factorN : {m n : ℕ} {c₁ c₂ : C m} {c₃ : C n} →
plus (times c₁ c₃) (times c₂ c₃) ⟺ times (plus c₁ c₂) c₃
factorN {0} {0} {ZD t₁} {ZD t₂} {ZD t₃} = baseC (factor {t₁} {t₂} {t₃})
factorN {0} {suc n} {ZD t₁} {ZD t₂} {Node c₁ c₂} = nodeC {!!}
-- nodeC
-- (factorN {0} {n} {ZD t₁} {ZD t₂} {c₁})
-- (factorN {0} {n} {ZD t₁} {ZD t₂} {c₂})
factorN {suc m} {n} {Node c₁ c₂} {Node c₃ c₄} {c} = nodeC {!!}
-- nodeC
-- ((factorN {m} {n} {c₁} {c₃} {c}))
-- ((factorN {m} {n} {c₂} {c₄} {c}))
--?25 : plus (times .c₁ .c₃) (times .c₆ .c₄) ⟺
-- plus (times .c₅ .c₃) (times .c₂ .c₄)
{--
data _⟺_ : {n : ℕ} → C n → C n → Set where
baseC : {t₁ t₂ : T} → (t₁ ⟷ t₂) → ((ZD t₁) ⟺ (ZD t₂))
nodeC : {n : ℕ} {c₁ : C n} {c₂ : C n} {c₃ : C n} {c₄ : C n} →
(plus c₁ c₄ ⟺ plus c₃ c₂) →
((Node c₁ c₃) ⟺ (Node c₂ c₄))
--}
-- eta/epsilon/trace
------------------------------------------------------------------------------
-- Semantics
⟦_⟧C : {n : ℕ} → C n → Set
⟦_⟧C (ZD t) = ⟦ t ⟧
⟦_⟧C (Node c₁ c₂) = ⟦ c₁ ⟧C ⊎ ⟦ c₂ ⟧C
evalC : {n : ℕ} {c₁ c₂ : C n} → (c₁ ⟺ c₂) → ⟦ c₁ ⟧C → ⟦ c₂ ⟧C
evalC (baseC iso) v = eval iso v
evalC (nodeC iso) (inj₁ v) = {!!} -- inj₁ (evalC iso v)
evalC (nodeC iso) (inj₂ v) = {!!} -- inj₂ (evalC iso v)
------------------------------------------------------------------------------
-- Example
-- Let's try a 3d program
Bool : T
Bool = Plus One One
vtrue : ⟦ Bool ⟧
vtrue = inj₁ tt
vfalse : ⟦ Bool ⟧
vfalse = inj₂ tt
Bool² : T
Bool² = Times Bool Bool
Bool³ : T
Bool³ = Times Bool² Bool
cond : {t₁ t₂ : T} → (t₁ ⟷ t₂) → (t₁ ⟷ t₂) →
((Times Bool t₁) ⟷ (Times Bool t₂))
cond f g = dist ◎ ((id⟷ ⊗ f) ⊕ (id⟷ ⊗ g)) ◎ factor
controlled : {t : T} → (t ⟷ t) → ((Times Bool t) ⟷ (Times Bool t))
controlled f = cond f id⟷
cnot : Bool² ⟷ Bool²
cnot = controlled swap₊
toffoli : Bool³ ⟷ Bool³
toffoli = assocr⋆ ◎ controlled cnot ◎ assocl⋆
test₁ : ⟦ Bool³ ⟧
test₁ = eval toffoli ((vtrue , vtrue) , vfalse)
--
condN : {n : ℕ} {c₁ c₂ : C n} → (c₁ ⟺ c₂) → (c₁ ⟺ c₂) →
((times (ZD Bool) c₁) ⟺ (times (ZD Bool) c₂))
condN {n} {c₁} {c₂} f g =
(seqF (distN {0} {n} {ZD One} {ZD One} {c₁})
(seqF (plusF {n}
(timesF {0} {n} (idN⟷ {0} {ZD One}) f)
(timesF {0} {n} (idN⟷ {0} {ZD One}) g))
(factorN {0} {n} {ZD One} {ZD One} {c₂})))
controlledN : {n : ℕ} {c : C n} →
(c ⟺ c) → ((times (ZD Bool) c) ⟺ (times (ZD Bool) c))
controlledN f = condN f idN⟷
BoolN : (n : ℕ) → C n
BoolN n = plus (oneN n) (oneN n)
{--
Note: liftN 3 Bool is not quite the same as plus (oneN 3) (oneN 3)
plus (oneN 3) (oneN 3)
=
Node
(Node
(Node (ZD (Plus One One)) (ZD (Plus Zero Zero)))
(Node (ZD (Plus Zero Zero)) (ZD (Plus Zero Zero))))
(Node
(Node (ZD (Plus Zero Zero)) (ZD (Plus Zero Zero)))
(Node (ZD (Plus Zero Zero)) (ZD (Plus Zero Zero))))
liftN 3 Bool
=
Node
(Node
(Node (ZD (Plus One One)) (ZD Zero))
(Node (ZD Zero) (ZD Zero)))
(Node
(Node (ZD Zero) (ZD Zero))
(Node (ZD Zero) (ZD Zero)))
--}
cnotN : {n : ℕ} → ((times (ZD Bool) (BoolN n)) ⟺ (times (ZD Bool) (BoolN n)))
cnotN {n} = controlledN {n} (swapN₊ {n} {oneN n} {oneN n})
-- Can't do toffoliN until we get all the products done
--}
------------------------------------------------------------------------------
------------------------------------------------------------------------------
------------------------------------------------------------------------------
{--
CODE THAT TRIED TO KEEP PROOF THAT DIMENSIONS ARE EQUAL
------------------------------------------------------------------------------
-- Types indexed by dimension... n-dimensional cubes
-- n-dimensional types represented as trees of depth n
-- Silly lemmas that should be in the library somewhere
suc-inj : {m n : ℕ} → suc m ≡ suc n → m ≡ n
suc-inj {0} {0} refl = refl
suc-inj {0} {suc i} ()
suc-inj {suc i} {suc .i} refl = refl
data C : ℕ → Set where
ZD : T → C 0
Node : {m n : ℕ} → C m → C n → (m ≡ n) → C (suc n)
Lower : {n : ℕ} → (c₁ c₂ : C n) → (c₁ ≡ c₂) → C 0
zeroN : (n : ℕ) → C n
zeroN 0 = ZD Zero
zeroN (suc n) = Node (zeroN n) (zeroN n) refl
plus : {m n : ℕ} → C m → C n → (m ≡ n) → C n
plus (ZD _) (Node _ _ _) ()
plus (Node _ _ _) (ZD _) ()
plus (ZD t1) (ZD t2) refl = ZD (Plus t1 t2)
plus {suc .m₂} {suc .m₂'}
(Node {m₁} {m₂} c1 c2 p₁)
(Node {m₁'} {m₂'} c1' c2' p₁') p =
Node (plus c1 c1' q)
(plus c2 c2' (suc-inj p))
p₁'
where q = begin
m₁
≡⟨ p₁ ⟩
m₂
≡⟨ suc-inj p ⟩
m₂'
≡⟨ sym p₁' ⟩
m₁' ∎
plus _ _ _ = {!!}
times : {m n : ℕ} → C m → C n → C (m + n)
times (ZD t1) (ZD t2) = ZD (Times t1 t2)
times (ZD t) (Node c1 c2 p) = Node (times (ZD t) c1) (times (ZD t) c2) p
times {n = n} (Node c1 c2 p) c =
Node (times c1 c) (times c2 c) (cong (λ z → z + n) p)
times _ _ = {!!}
-- Combinators on nd types
data _⟺_ : {m n : ℕ} → C m → C n → (m ≡ n) → Set where
baseC : { t₁ t₂ : T } → (t₁ ⟷ t₂) → (_⟺_ (ZD t₁) (ZD t₂) refl)
nodeC : {m n k l : ℕ} {c₁ : C m} {c₂ : C n} {c₃ : C k} {c₄ : C l}
{p₁ : m ≡ n} {p₂ : k ≡ l} {p : k ≡ m} →
(_⟺_ c₁ c₂ p₁) → (_⟺_ c₃ c₄ p₂) →
(_⟺_ (Node c₁ c₃ (sym p))
(Node c₂ c₄ (trans (trans (sym p₁) (sym p)) p₂))
(cong suc p₂))
eta : {m : ℕ} {c : C m} → _⟺_ (ZD Zero) (Lower c c refl) refl
-- Def. 2.1 lists the conditions for J-graded bipermutative category
-- (0)
-- the additive unit and assoc are implicit in the paper
uniteN₊ : {m : ℕ} {c : C m} → _⟺_ (plus (zeroN m) c refl) c refl
uniteN₊ {0} {ZD t} = baseC (unite₊ {t})
uniteN₊ {suc m} {Node {n} {.m} c₁ c₂ n≡m} = {!!}
uniteN₊ {_} {_} = {!!}
unitiN₊ : {m : ℕ} {c : C m} → _⟺_ c (plus (zeroN m) c refl) refl
unitiN₊ {0} {ZD t} = baseC (uniti₊ {t})
unitiN₊ {suc m} {Node {n} {.m} c₁ c₂ n≡m} = {!!}
-- nodeC (unitiN₊ {n} {c₁}) (unitiN₊ {n} {c₂})
unitiN₊ {_} {_} = {!!}
assoclN₊ : { n : ℕ } { c₁ c₂ c₃ : C n } →
plus c₁ (plus c₂ c₃) ⟺ plus (plus c₁ c₂) c₃
assoclN₊ {0} {ZD t₁} {ZD t₂} {ZD t₃} = baseC (assocl₊ {t₁} {t₂} {t₃})
assoclN₊ {suc n} {Node c₁ c₂} {Node c₃ c₄} {Node c₅ c₆} =
nodeC (assoclN₊ {n} {c₁} {c₃} {c₅}) (assoclN₊ {n} {c₂} {c₄} {c₆})
assocrN₊ : { n : ℕ } { c₁ c₂ c₃ : C n } →
plus (plus c₁ c₂) c₃ ⟺ plus c₁ (plus c₂ c₃)
assocrN₊ {0} {ZD t₁} {ZD t₂} {ZD t₃} = baseC (assocr₊ {t₁} {t₂} {t₃})
assocrN₊ {suc n} {Node c₁ c₂} {Node c₃ c₄} {Node c₅ c₆} =
nodeC (assocrN₊ {n} {c₁} {c₃} {c₅}) (assocrN₊ {n} {c₂} {c₄} {c₆})
-- (1) have times functor on objects
-- define times functor on combinators
-- timesF should satisfying assoc and unitality conditions...
-- diagram on top of p.6 should commute
timesF : { m n : ℕ } { c₁ : C m } { c₂ : C m } { c₃ : C n } { c₄ : C n } →
(c₁ ⟺ c₂) → (c₃ ⟺ c₄) → (times c₁ c₃ ⟺ times c₂ c₄)
timesF {0} {0} {ZD t₁} {ZD t₂} {ZD t₃} {ZD t₄} (baseC f) (baseC g) =
baseC (_⊗_ {t₁} {t₃} {t₂} {t₄} f g)
timesF {0} {suc n} {ZD t₁} {ZD t₂} {Node c₁ c₂} {Node c₃ c₄}
(baseC f) (nodeC g₁ g₂) = nodeC (timesF (baseC f) g₁) (timesF (baseC f) g₂)
timesF {suc m} {n} {Node c₁ c₂} {Node c₃ c₄} {c₅} {c₆}
(nodeC f₁ f₂) g = nodeC (timesF f₁ g) (timesF f₂ g)
-- (2) there is a unit object One of dimension 0
uniteN⋆ : {n : ℕ} {c : C n} → times (ZD One) c ⟺ c
uniteN⋆ {0} {ZD t} = baseC (unite⋆ {t})
uniteN⋆ {suc n} {Node c₁ c₂} = nodeC (uniteN⋆ {n} {c₁}) (uniteN⋆ {n} {c₂})
unitiN⋆ : {n : ℕ} {c : C n} → c ⟺ times (ZD One) c
unitiN⋆ {0} {ZD t} = baseC (uniti⋆ {t})
unitiN⋆ {suc n} {Node c₁ c₂} = nodeC (unitiN⋆ {n} {c₁}) (unitiN⋆ {n} {c₂})
-- (3) swap
swapN⋆ : {m n : ℕ} {c₁ : C m} {c₂ : C n} → times c₁ c₂ ⟺ times c₂ c₁
swapN⋆ {0} {0} {ZD t₁} {ZD t₂} = baseC (swap⋆ {t₁} {t₂})
swapN⋆ = ?
swapN₊ : { n : ℕ } { c₁ c₂ : C n } → plus c₁ c₂ ⟺ plus c₂ c₁
swapN₊ {0} {ZD t₁} {ZD t₂} = baseC (swap₊ {t₁} {t₂})
swapN₊ {suc n} {Node c₁ c₂} {Node c₁' c₂'} =
nodeC (swapN₊ {n} {c₁} {c₁'}) (swapN₊ {n} {c₂} {c₂'})
distzN : {m n : ℕ} {c : C n} → times (zeroN m) c ⟺ zeroN (m + n)
distzN {0} {0} {ZD t} = baseC (distz {t})
distzN {0} {suc n} {Node c₁ c₂} =
nodeC (distzN {0} {n} {c₁}) (distzN {0} {n} {c₂})
distzN {suc m} {n} {c} =
nodeC (distzN {m} {n} {c}) (distzN {m} {n} {c})
------------------------------------------------------------------------------
assocl⋆ : { m n k : ℕ } { c₁ : C m } { c₂ : C n } { c₃ : C k } →
times c₁ (times c₂ c₃) ⟺ times (times c₁ c₂) c₃
assocr⋆ : { m n k : ℕ } { c₁ : C m } { c₂ : C n } { c₃ : C k } →
times (times c₁ c₂) c₃ ⟺ times c₁ (times c₂ c₃)
distz : { m n : ℕ } { c : C n } → times (zeroN m) c ⟺ zeroN m
factorz : { m n : ℕ } { c : C n } → zeroN m ⟺ times (zeroN m) c
dist : { m n : ℕ } { c₁ c₂ : C m } { c₃ : C n } →
times (plus c₁ c₂) c₃ ⟺ plus (times c₁ c₃) (times c₂ c₃)
factor : { m n : ℕ } { c₁ c₂ : C m } { c₃ : C n } →
plus (times c₁ c₃) (times c₂ c₃) ⟺ times (plus c₁ c₂) c₃
id⟷ : { n : ℕ } { c : C n } → c ⟺ c
sym : { m n : ℕ } { c₁ : C m } { c₂ : C n } → (c₁ ⟺ c₂) → (c₂ ⟺ c₁)
_◎_ : { m n k : ℕ } { c₁ : C m } { c₂ : C n } { c₃ : C k } →
(c₁ ⟺ c₂) → (c₂ ⟺ c₃) → (c₁ ⟺ c₃)
_⊕_ : { m n : ℕ } { c₁ c₃ : C m } { c₂ c₄ : C n } →
(c₁ ⟺ c₂) → (c₃ ⟺ c₄) → (plus c₁ c₃ ⟺ plus c₂ c₄)
------------------------------------------------------------------------------
-- Semantics
-- probably should have our own × ?
-- should be a sum !
-- we have a value in one of the corners; not in all of them at once
⟦_⟧C : {n : ℕ} → C n → Set
⟦_⟧C (ZD t) = ⟦ t ⟧
⟦_⟧C (Node c₁ c₂ _) = ⟦ c₁ ⟧C ⊎ ⟦ c₂ ⟧C
⟦_⟧C (Lower c₁ c₂ _) = ⊥
evalC : {n m : ℕ} {c₁ : C n} {c₂ : C m} {p : n ≡ m} →
_⟺_ c₁ c₂ p → ⟦ c₁ ⟧C → ⟦ c₂ ⟧C
evalC (baseC iso) v = eval iso v
evalC (nodeC isoL isoR) (inj₁ v) = inj₁ (evalC isoL v)
evalC (nodeC isoL isoR) (inj₂ v) = inj₂ (evalC isoR v)
evalC _ _ = {!!}
-- now add etas and epsilons...
--}
| {
"alphanum_fraction": 0.4792045932,
"avg_line_length": 34.1674641148,
"ext": "agda",
"hexsha": "352bab198bdceb40ef94aa4f37075081fa856bd1",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Pin.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Pin.agda",
"max_line_length": 82,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Pin.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 10653,
"size": 21423
} |
{-# OPTIONS --allow-unsolved-metas #-}
module Issue442 where
postulate
A : Set
f : (P : A → A → Set) → (∀ {x} → P x x) →
(∀ {x y z} → P y z → P x y → A) → A
P : A → A → Set
reflP : ∀ {x} → P x x
g : ∀ {x y z} → P y z → P x y → A
a : A
a = f _ reflP g
| {
"alphanum_fraction": 0.4296296296,
"avg_line_length": 18,
"ext": "agda",
"hexsha": "02f91adb117722c091632500b64741f6ccc1bc45",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/succeed/Issue442.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/succeed/Issue442.agda",
"max_line_length": 43,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/Issue442.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 124,
"size": 270
} |
------------------------------------------------------------------------------
-- First-order logic theorems
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOL.TheoremsI where
-- The theorems below are valid on intuitionistic logic and with an
-- empty domain.
open import FOL.Base hiding ( D≢∅ ; pem )
------------------------------------------------------------------------------
-- We postulate some formulae and propositional functions.
postulate
A : Set
A¹ B¹ : D → Set
A² : D → D → Set
-- The introduction and elimination rules for the quantifiers are theorems.
{-
φ(x)
----------- ∀-intro
∀x.φ(x)
∀x.φ(x)
----------- ∀-elim
φ(t)
φ(t)
----------- ∃-intro
∃x.φ(x)
∃x.φ(x) φ(x) → ψ
---------------------- ∃-elim
ψ
-}
∀-intro : ((x : D) → A¹ x) → ∀ x → A¹ x
∀-intro h = h
∀-intro' : ((x : D) → A¹ x) → ⋀ A¹
∀-intro' = dfun
∀-elim : (t : D) → (∀ x → A¹ x) → A¹ t
∀-elim t h = h t
∀-elim' : (t : D) → ⋀ A¹ → A¹ t
∀-elim' = dapp
∃-intro : (t : D) → A¹ t → ∃ A¹
∃-intro t A¹x = t , A¹x
∃-elim : ∃ A¹ → ((x : D) → A¹ x → A) → A
∃-elim (x , A¹x) h = h x A¹x
-- Generalization of De Morgan's laws.
gDM₂ : ¬ (∃ A¹) ↔ (∀ {x} → ¬ (A¹ x))
gDM₂ = l→r , r→l
where
l→r : ¬ (∃ A¹) → ∀ {x} → ¬ (A¹ x)
l→r h A¹x = h (_ , A¹x)
r→l : (∀ {x} → ¬ (A¹ x)) → ¬ (∃ A¹)
r→l h (x , A¹x) = h A¹x
gDM₂' : ¬ (∃ A¹) ⇔ (⋀[ x ] ¬ (A¹ x))
gDM₂' = fun l→r , fun r→l
where
l→r : ¬ (∃ A¹) → ⋀[ x ] ¬ A¹ x
l→r h = dfun (λ d A¹d → h (d , A¹d))
r→l : ⋀[ x ] ¬ A¹ x → ¬ ∃ A¹
r→l (dfun f) (x , A¹x) = f x A¹x
-- Quantification over a variable that does not occur can be erased or
-- added.
∃-erase-add : (∃[ x ] A ∧ A¹ x) ↔ A ∧ (∃[ x ] A¹ x)
∃-erase-add = l→r , r→l
where
l→r : ∃[ x ] A ∧ A¹ x → A ∧ (∃[ x ] A¹ x)
l→r (x , a , A¹x) = a , x , A¹x
r→l : A ∧ (∃[ x ] A¹ x) → ∃[ x ] A ∧ A¹ x
r→l (a , x , A¹x) = x , a , A¹x
-- Interchange of quantifiers.
-- The related theorem ∀x∃y.Axy → ∃y∀x.Axy is not (classically) valid.
∃∀ : ∃[ x ] (∀ y → A² x y) → ∀ y → ∃[ x ] A² x y
∃∀ (x , h) y = x , h y
-- ∃ in terms of ∀ and ¬.
∃→¬∀¬ : ∃[ x ] A¹ x → ¬ (∀ {x} → ¬ A¹ x)
∃→¬∀¬ (_ , A¹x) h = h A¹x
∃¬→¬∀ : ∃[ x ] ¬ A¹ x → ¬ (∀ {x} → A¹ x)
∃¬→¬∀ (_ , h₁) h₂ = h₁ h₂
-- ∀ in terms of ∃ and ¬.
∀→¬∃¬ : (∀ {x} → A¹ x) → ¬ (∃[ x ] ¬ A¹ x)
∀→¬∃¬ h₁ (_ , h₂) = h₂ h₁
∀¬→¬∃ : (∀ {x} → ¬ A¹ x) → ¬ (∃[ x ] A¹ x)
∀¬→¬∃ h₁ (_ , h₂) = h₁ h₂
-- Distribution of ∃ and ∨.
∃∨ : ∃[ x ](A¹ x ∨ B¹ x) → (∃[ x ] A¹ x) ∨ (∃[ x ] B¹ x)
∃∨ (x , inj₁ A¹x) = inj₁ (x , A¹x)
∃∨ (x , inj₂ B¹x) = inj₂ (x , B¹x)
| {
"alphanum_fraction": 0.3924963925,
"avg_line_length": 24.5309734513,
"ext": "agda",
"hexsha": "915223438a4d3fb099ec9f55f96adab429a7dcaa",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOL/TheoremsI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOL/TheoremsI.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOL/TheoremsI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1267,
"size": 2772
} |
open import Mockingbird.Forest using (Forest)
-- Birds Galore
module Mockingbird.Problems.Chapter11 {b ℓ} (forest : Forest {b} {ℓ}) where
open import Data.Product using (_×_; _,_; proj₁; proj₂; ∃-syntax)
open import Data.Unit using (⊤; tt)
open import Function using (_$_)
import Mockingbird.Problems.Chapter09 forest as Chapter₉
open Forest forest
module Parentheses where
private
variable
u v w x y z A A₁ A₂ B : Bird
-- A variant of _∙_ that is not parsed as a right-associative operator, to
-- make sure that the parentheses in the right-hand side of the exercises
-- below are fully restored.
infix 6 _∙′_
_∙′_ = _∙_
exercise-a : x ∙ y ∙ (z ∙ w ∙ y) ∙ v ≈ ((x ∙′ y) ∙′ ((z ∙′ w) ∙′ y)) ∙′ v
exercise-a = refl
exercise-b : (x ∙ y ∙ z) ∙ (w ∙ v ∙ x) ≈ ((x ∙′ y) ∙′ z) ∙′ ((w ∙′ v) ∙′ x)
exercise-b = refl
exercise-c : x ∙ y ∙ (z ∙ w ∙ v) ∙ (x ∙ z) ≈ ((x ∙′ y) ∙′ ((z ∙′ w) ∙′ v)) ∙′ (x ∙′ z)
exercise-c = refl
exercise-d : x ∙ y ∙ (z ∙ w ∙ v) ∙ x ∙ z ≈ (((x ∙′ y) ∙′ ((z ∙′ w) ∙′ v)) ∙′ x) ∙′ z
exercise-d = refl
exercise-e : x ∙ (y ∙ (z ∙ w ∙ v)) ∙ x ∙ z ≈ ((x ∙′ (y ∙′ ((z ∙′ w) ∙′ v))) ∙′ x) ∙′ z
exercise-e = refl
exercise-f : x ∙ y ∙ z ∙ (A ∙ B) ≈ (x ∙ y ∙ z) ∙ (A ∙ B)
exercise-f = refl
exercise-g : A₁ ≈ A₂ → B ∙ A₁ ≈ B ∙ A₂ × A₁ ∙ B ≈ A₂ ∙ B
exercise-g A₁≈A₂ = (congˡ A₁≈A₂ , congʳ A₁≈A₂)
exercise-h : x ∙ y ≈ z → x ∙ y ∙ w ≈ z ∙ w
exercise-h {x} {y} {z} {w} xy≈z = begin
x ∙ y ∙ w ≈⟨⟩
(x ∙′ y) ∙′ w ≈⟨ congʳ xy≈z ⟩
z ∙ w ∎
-- The other part of exercise h, wxy ≈ wz, does not follow in general.
open import Mockingbird.Forest.Birds forest
problem₁ : ⦃ _ : HasBluebird ⦄ → HasComposition
problem₁ = record
{ _∘_ = λ C D → B ∙ C ∙ D
; isComposition = λ C D x → begin
B ∙ C ∙ D ∙ x ≈⟨ isBluebird C D x ⟩
C ∙ (D ∙ x) ∎
}
private
instance
hasComposition : ⦃ HasBluebird ⦄ → HasComposition
hasComposition = problem₁
module _ ⦃ _ : HasBluebird ⦄ ⦃ _ : HasMockingbird ⦄ where
problem₂ : ∀ x → ∃[ y ] x IsFondOf y
problem₂ x =
let (_ , isFond) = Chapter₉.problem₁ x
shorten : M ∙ (B ∙ x ∙ M) ≈ B ∙ x ∙ M ∙ (B ∙ x ∙ M)
shorten = isMockingbird (B ∙ x ∙ M)
in (M ∙ (B ∙ x ∙ M) , trans (congˡ shorten) (trans isFond (sym shorten)))
problem₃ : ∃[ x ] IsEgocentric x
problem₃ =
let (_ , isEgocentric) = Chapter₉.problem₂
in (B ∙ M ∙ M ∙ (B ∙ M ∙ M) , isEgocentric)
module _ ⦃ _ : HasBluebird ⦄ ⦃ _ : HasMockingbird ⦄ ⦃ _ : HasKestrel ⦄ where
problem₄ : ∃[ x ] IsHopelesslyEgocentric x
problem₄ =
let (_ , isHopelesslyEgocentric) = Chapter₉.problem₉
in (B ∙ K ∙ M ∙ (B ∙ K ∙ M) , isHopelesslyEgocentric)
module _ ⦃ _ : HasBluebird ⦄ where
problem₅ : HasDove
problem₅ = record
{ D = B ∙ B
; isDove = λ x y z w → begin
B ∙ B ∙ x ∙ y ∙ z ∙ w ≈⟨ congʳ $ congʳ $ isBluebird B x y ⟩
B ∙ (x ∙ y) ∙ z ∙ w ≈⟨ isBluebird (x ∙ y) z w ⟩
x ∙ y ∙ (z ∙ w) ∎
}
private instance hasDove = problem₅
problem₆ : HasBlackbird
problem₆ = record
{ B₁ = B ∙ B ∙ B
; isBlackbird = λ x y z w → begin
B ∙ B ∙ B ∙ x ∙ y ∙ z ∙ w ≈⟨ congʳ $ congʳ $ congʳ (isBluebird B B x) ⟩
B ∙ (B ∙ x) ∙ y ∙ z ∙ w ≈⟨ congʳ (isBluebird (B ∙ x) y z) ⟩
B ∙ x ∙ (y ∙ z) ∙ w ≈⟨ isBluebird x (y ∙ z) w ⟩
x ∙ (y ∙ z ∙ w) ∎
}
private instance hasBlackbird = problem₆
problem₇ : HasEagle
problem₇ = record
{ E = B ∙ B₁
; isEagle = λ x y z w v → begin
B ∙ B₁ ∙ x ∙ y ∙ z ∙ w ∙ v ≈⟨ congʳ $ congʳ $ congʳ $ isBluebird B₁ x y ⟩
B₁ ∙ (x ∙ y) ∙ z ∙ w ∙ v ≈⟨ isBlackbird (x ∙ y) z w v ⟩
x ∙ y ∙ (z ∙ w ∙ v) ∎
}
private instance hasEagle = problem₇
problem₈ : HasBunting
problem₈ = record
{ B₂ = B ∙ B ∙ B₁
; isBunting = λ x y z w v → begin
B ∙ B ∙ B₁ ∙ x ∙ y ∙ z ∙ w ∙ v ≈⟨ congʳ $ congʳ $ congʳ $ congʳ $ isBluebird B B₁ x ⟩
B ∙ (B₁ ∙ x) ∙ y ∙ z ∙ w ∙ v ≈⟨ congʳ $ congʳ $ isBluebird (B₁ ∙ x) y z ⟩
B₁ ∙ x ∙ (y ∙ z) ∙ w ∙ v ≈⟨ isBlackbird x (y ∙ z) w v ⟩
x ∙ (y ∙ z ∙ w ∙ v) ∎
}
private instance hasBunting = problem₈
problem₉ : HasDickcissel
problem₉ = record
{ D₁ = B ∙ D
; isDickcissel = λ x y z w v → begin
B ∙ D ∙ x ∙ y ∙ z ∙ w ∙ v ≈⟨ congʳ $ congʳ $ congʳ $ isBluebird D x y ⟩
D ∙ (x ∙ y) ∙ z ∙ w ∙ v ≈⟨ isDove (x ∙ y) z w v ⟩
x ∙ y ∙ z ∙ (w ∙ v) ∎
}
private instance hasDickcissel = problem₉
problem₁₀ : HasBecard
problem₁₀ = record
{ B₃ = B ∙ D ∙ B
; isBecard = λ x y z w → begin
B ∙ D ∙ B ∙ x ∙ y ∙ z ∙ w ≈⟨ congʳ $ congʳ $ congʳ $ isBluebird D B x ⟩
D ∙ (B ∙ x) ∙ y ∙ z ∙ w ≈⟨ isDove (B ∙ x) y z w ⟩
B ∙ x ∙ y ∙ (z ∙ w) ≈⟨ isBluebird x y (z ∙ w) ⟩
x ∙ (y ∙ (z ∙ w)) ∎
}
private instance hasBecard = problem₁₀
problem₁₁ : HasDovekie
problem₁₁ = record
{ D₂ = D ∙ D
; isDovekie = λ x y z w v → begin
D ∙ D ∙ x ∙ y ∙ z ∙ w ∙ v ≈⟨ congʳ $ congʳ $ isDove D x y z ⟩
D ∙ x ∙ (y ∙ z) ∙ w ∙ v ≈⟨ isDove x (y ∙ z) w v ⟩
x ∙ (y ∙ z) ∙ (w ∙ v) ∎
}
private instance hasDovekie = problem₁₁
problem₁₂ : HasBaldEagle
problem₁₂ = record
{ Ê = E ∙ E
; isBaldEagle = λ x y₁ y₂ y₃ z₁ z₂ z₃ → begin
E ∙ E ∙ x ∙ y₁ ∙ y₂ ∙ y₃ ∙ z₁ ∙ z₂ ∙ z₃ ≈⟨ congʳ $ congʳ $ congʳ $ isEagle E x y₁ y₂ y₃ ⟩
E ∙ x ∙ (y₁ ∙ y₂ ∙ y₃) ∙ z₁ ∙ z₂ ∙ z₃ ≈⟨ isEagle x (y₁ ∙ y₂ ∙ y₃) z₁ z₂ z₃ ⟩
x ∙ (y₁ ∙ y₂ ∙ y₃) ∙ (z₁ ∙ z₂ ∙ z₃) ∎
}
private instance hasBaldEagle = problem₁₂
problem₁₄ : ⦃ _ : HasWarbler ⦄ ⦃ _ : HasIdentity ⦄ → HasMockingbird
problem₁₄ = record
{ M = W ∙ I
; isMockingbird = λ x → begin
W ∙ I ∙ x ≈⟨ isWarbler I x ⟩
I ∙ x ∙ x ≈⟨ congʳ $ isIdentity x ⟩
x ∙ x ∎
}
problem₁₅ : ⦃ _ : HasWarbler ⦄ ⦃ _ : HasKestrel ⦄ → HasIdentity
problem₁₅ = record
{ I = W ∙ K
; isIdentity = λ x → begin
W ∙ K ∙ x ≈⟨ isWarbler K x ⟩
K ∙ x ∙ x ≈⟨ isKestrel x x ⟩
x ∎
}
problem₁₃ : ⦃ _ : HasWarbler ⦄ ⦃ _ : HasKestrel ⦄ → HasMockingbird
problem₁₃ = problem₁₄
where instance _ = problem₁₅
problem₁₆ : ⦃ _ : HasCardinal ⦄ ⦃ _ : HasKestrel ⦄ → HasIdentity
problem₁₆ = record
{ I = C ∙ K ∙ K
; isIdentity = λ x → begin
C ∙ K ∙ K ∙ x ≈⟨ isCardinal K K x ⟩
K ∙ x ∙ K ≈⟨ isKestrel x K ⟩
x ∎
}
problem₁₇ : ⦃ _ : HasCardinal ⦄ ⦃ _ : HasIdentity ⦄ → HasThrush
problem₁₇ = record
{ T = C ∙ I
; isThrush = λ x y → begin
C ∙ I ∙ x ∙ y ≈⟨ isCardinal I x y ⟩
I ∙ y ∙ x ≈⟨ congʳ $ isIdentity y ⟩
y ∙ x ∎
}
problem₁₈ : ⦃ _ : HasThrush ⦄ → (∀ x → IsNormal x) → ∃[ A ] (∀ x → Commute A x)
problem₁₈ isNormal =
let (A , isFond) = isNormal T
commute : ∀ x → Commute A x
commute x = begin
A ∙ x ≈˘⟨ (congʳ $ isFond) ⟩
T ∙ A ∙ x ≈⟨ isThrush A x ⟩
x ∙ A ∎
in (A , commute)
problem₁₉ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ ⦃ _ : HasMockingbird ⦄ → ∃[ x ] (∀ y → Commute x y)
problem₁₉ = problem₁₈ problem₂
problem₂₀ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ → HasRobin
problem₂₀ = record
{ R = B ∙ B ∙ T
; isRobin = λ x y z → begin
B ∙ B ∙ T ∙ x ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isBluebird B T x ⟩
B ∙ (T ∙ x) ∙ y ∙ z ≈⟨ isBluebird (T ∙ x) y z ⟩
T ∙ x ∙ (y ∙ z) ≈⟨ isThrush x (y ∙ z) ⟩
(y ∙ z) ∙ x ≈⟨⟩
y ∙ z ∙ x ∎
}
problem₂₁ : ⦃ _ : HasRobin ⦄ → HasCardinal
problem₂₁ = record
{ C = R ∙ R ∙ R
; isCardinal = λ x y z → begin
R ∙ R ∙ R ∙ x ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isRobin R R x ⟩
R ∙ x ∙ R ∙ y ∙ z ≈⟨ congʳ $ isRobin x R y ⟩
R ∙ y ∙ x ∙ z ≈⟨ isRobin y x z ⟩
x ∙ z ∙ y ∎
}
problem₂₁′ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ → HasCardinal
problem₂₁′ = problem₂₁ ⦃ problem₂₀ ⦄
problem₂₁-bonus : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ → HasCardinal
problem₂₁-bonus = record
{ C = B ∙ (T ∙ (B ∙ B ∙ T)) ∙ (B ∙ B ∙ T)
; isCardinal = λ x y z → begin
B ∙ (T ∙ (B ∙ B ∙ T)) ∙ (B ∙ B ∙ T) ∙ x ∙ y ∙ z ≈˘⟨ congʳ $ congʳ $ congʳ $ congʳ $ isBluebird B T (B ∙ B ∙ T) ⟩
B ∙ B ∙ T ∙ (B ∙ B ∙ T) ∙ (B ∙ B ∙ T) ∙ x ∙ y ∙ z ≈⟨ isCardinal x y z ⟩
x ∙ z ∙ y ∎
} where instance hasCardinal = problem₂₁′
module _ ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ where
private
instance hasRobin = problem₂₀
instance hasCardinal = problem₂₁′
problem₂₂-a : ∀ x → C ∙ x ≈ R ∙ x ∙ R
problem₂₂-a x = begin
C ∙ x ≈⟨⟩
R ∙ R ∙ R ∙ x ≈⟨ isRobin R R x ⟩
R ∙ x ∙ R ∎
problem₂₂-b : ∀ x → C ∙ x ≈ B ∙ (T ∙ x) ∙ R
problem₂₂-b x = begin
C ∙ x ≈⟨ problem₂₂-a x ⟩
R ∙ x ∙ R ≈⟨⟩
B ∙ B ∙ T ∙ x ∙ R ≈⟨ congʳ $ isBluebird B T x ⟩
B ∙ (T ∙ x) ∙ R ∎
problem₂₃ : ⦃ _ : HasCardinal ⦄ → HasRobin
problem₂₃ = record
{ R = C ∙ C
; isRobin = λ x y z → begin
C ∙ C ∙ x ∙ y ∙ z ≈⟨ congʳ $ isCardinal C x y ⟩
C ∙ y ∙ x ∙ z ≈⟨ isCardinal y x z ⟩
y ∙ z ∙ x ∎
}
problem₂₄ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasRobin ⦄ ⦃ _ : HasCardinal ⦄ → HasFinch
problem₂₄ = record
{ F = B ∙ C ∙ R
; isFinch = λ x y z → begin
B ∙ C ∙ R ∙ x ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isBluebird C R x ⟩
C ∙ (R ∙ x) ∙ y ∙ z ≈⟨ isCardinal (R ∙ x) y z ⟩
R ∙ x ∙ z ∙ y ≈⟨ isRobin x z y ⟩
z ∙ y ∙ x ∎
}
problem₂₅ : ⦃ _ : HasThrush ⦄ ⦃ _ : HasEagle ⦄ → HasFinch
problem₂₅ = record
{ F = E ∙ T ∙ T ∙ E ∙ T
; isFinch = λ x y z → begin
E ∙ T ∙ T ∙ E ∙ T ∙ x ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isEagle T T E T x ⟩
T ∙ T ∙ (E ∙ T ∙ x) ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isThrush T (E ∙ T ∙ x) ⟩
E ∙ T ∙ x ∙ T ∙ y ∙ z ≈⟨ isEagle T x T y z ⟩
T ∙ x ∙ (T ∙ y ∙ z) ≈⟨ isThrush x (T ∙ y ∙ z) ⟩
T ∙ y ∙ z ∙ x ≈⟨ congʳ $ isThrush y z ⟩
z ∙ y ∙ x ∎
}
problem₂₆ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ → HasFinch
problem₂₆ = record
{ F = short
; isFinch = shortIsFinch
}
where
instance
hasRobin = problem₂₀
hasCardinal = problem₂₁-bonus
hasEagle = problem₇
long : Bird
long = (B ∙ (B ∙ (T ∙ (B ∙ B ∙ T)) ∙ (B ∙ B ∙ T)) ∙ (B ∙ B ∙ T))
longIsFinch : IsFinch long
longIsFinch = HasFinch.isFinch problem₂₄
short : Bird
short = B ∙ (T ∙ T) ∙ (B ∙ (B ∙ B ∙ B) ∙ T)
short≈ETTET : short ≈ E ∙ T ∙ T ∙ E ∙ T
short≈ETTET = begin
short ≈⟨⟩
B ∙ (T ∙ T) ∙ (B ∙ (B ∙ B ∙ B) ∙ T) ≈˘⟨ isBluebird (B ∙ (T ∙ T)) (B ∙ (B ∙ B ∙ B)) T ⟩
B ∙ (B ∙ (T ∙ T)) ∙ (B ∙ (B ∙ B ∙ B)) ∙ T ≈˘⟨ congʳ $ congʳ $ isBluebird B B (T ∙ T) ⟩
B ∙ B ∙ B ∙ (T ∙ T) ∙ (B ∙ (B ∙ B ∙ B)) ∙ T ≈˘⟨ congʳ $ congʳ $ isBluebird (B ∙ B ∙ B) T T ⟩
B ∙ (B ∙ B ∙ B) ∙ T ∙ T ∙ (B ∙ (B ∙ B ∙ B)) ∙ T ≈⟨⟩
E ∙ T ∙ T ∙ E ∙ T ∎
shortIsFinch : IsFinch short
shortIsFinch x y z = begin
short ∙ x ∙ y ∙ z ≈⟨ congʳ $ congʳ $ congʳ $ short≈ETTET ⟩
E ∙ T ∙ T ∙ E ∙ T ∙ x ∙ y ∙ z ≈⟨ HasFinch.isFinch problem₂₅ x y z ⟩
z ∙ y ∙ x ∎
problem₂₇ : ⦃ _ : HasCardinal ⦄ ⦃ _ : HasFinch ⦄ → HasVireo
problem₂₇ = record
{ V = C ∙ F
; isVireo = λ x y z → begin
C ∙ F ∙ x ∙ y ∙ z ≈⟨ congʳ $ isCardinal F x y ⟩
F ∙ y ∙ x ∙ z ≈⟨ isFinch y x z ⟩
z ∙ x ∙ y ∎
}
problem₂₈ : ⦃ _ : HasFinch ⦄ ⦃ _ : HasRobin ⦄ → HasVireo
problem₂₈ = record
{ V = R ∙ F ∙ R
; isVireo = λ x y z → begin
R ∙ F ∙ R ∙ x ∙ y ∙ z ≈˘⟨ congʳ $ congʳ $ congʳ $ isRobin R R F ⟩
R ∙ R ∙ R ∙ F ∙ x ∙ y ∙ z ≈⟨ congʳ $ HasCardinal.isCardinal problem₂₁ F x y ⟩
F ∙ y ∙ x ∙ z ≈⟨ isFinch y x z ⟩
z ∙ x ∙ y ∎
}
problem₂₉ : ⦃ _ : HasCardinal ⦄ ⦃ _ : HasVireo ⦄ → HasFinch
problem₂₉ = record
{ F = C ∙ V
; isFinch = λ x y z → begin
C ∙ V ∙ x ∙ y ∙ z ≈⟨ congʳ $ isCardinal V x y ⟩
V ∙ y ∙ x ∙ z ≈⟨ isVireo y x z ⟩
z ∙ y ∙ x ∎
}
problem₃₀ : ⦃ _ : HasRobin ⦄ ⦃ _ : HasKestrel ⦄ → HasIdentity
problem₃₀ = problem₁₆
where instance hasCardinal = problem₂₁
module _ ⦃ _ : HasBluebird ⦄ ⦃ _ : HasCardinal ⦄ where
problem₃₁ : HasCardinalOnceRemoved
problem₃₁ = record
{ C* = B ∙ C
; isCardinalOnceRemoved = λ x y z w → begin
B ∙ C ∙ x ∙ y ∙ z ∙ w ≈⟨ congʳ $ congʳ $ isBluebird C x y ⟩
C ∙ (x ∙ y) ∙ z ∙ w ≈⟨ isCardinal (x ∙ y) z w ⟩
x ∙ y ∙ w ∙ z ∎
}
private instance hasCardinalOnceRemoved = problem₃₁
problem₃₂ : HasRobinOnceRemoved
problem₃₂ = record
{ R* = C* ∙ C*
; isRobinOnceRemoved = λ x y z w → begin
C* ∙ C* ∙ x ∙ y ∙ z ∙ w ≈⟨ congʳ $ isCardinalOnceRemoved C* x y z ⟩
C* ∙ x ∙ z ∙ y ∙ w ≈⟨ isCardinalOnceRemoved x z y w ⟩
x ∙ z ∙ w ∙ y ∎
}
private instance hasRobinOnceRemoved = problem₃₂
problem₃₃ : HasFinchOnceRemoved
problem₃₃ = record
{ F* = B ∙ C* ∙ R*
; isFinchOnceRemoved = λ x y z w → begin
B ∙ C* ∙ R* ∙ x ∙ y ∙ z ∙ w ≈⟨ congʳ $ congʳ $ congʳ $ isBluebird C* R* x ⟩
C* ∙ (R* ∙ x) ∙ y ∙ z ∙ w ≈⟨ isCardinalOnceRemoved (R* ∙ x) y z w ⟩
R* ∙ x ∙ y ∙ w ∙ z ≈⟨ isRobinOnceRemoved x y w z ⟩
x ∙ w ∙ z ∙ y ∎
}
private instance hasFinchOnceRemoved = problem₃₃
problem₃₄ : HasVireoOnceRemoved
problem₃₄ = record
{ V* = C* ∙ F*
; isVireoOnceRemoved = λ x y z w → begin
C* ∙ F* ∙ x ∙ y ∙ z ∙ w ≈⟨ congʳ $ isCardinalOnceRemoved F* x y z ⟩
F* ∙ x ∙ z ∙ y ∙ w ≈⟨ isFinchOnceRemoved x z y w ⟩
x ∙ w ∙ y ∙ z ∎
}
private instance hasVireoOnceRemoved = problem₃₄
problem₃₅-C** : HasCardinalTwiceRemoved
problem₃₅-C** = record
{ C** = B ∙ C*
; isCardinalTwiceRemoved = λ x y z₁ z₂ z₃ → begin
B ∙ C* ∙ x ∙ y ∙ z₁ ∙ z₂ ∙ z₃ ≈⟨ congʳ $ congʳ $ congʳ $ isBluebird C* x y ⟩
C* ∙ (x ∙ y) ∙ z₁ ∙ z₂ ∙ z₃ ≈⟨ isCardinalOnceRemoved (x ∙ y) z₁ z₂ z₃ ⟩
x ∙ y ∙ z₁ ∙ z₃ ∙ z₂ ∎
}
problem₃₅-R** : HasRobinTwiceRemoved
problem₃₅-R** = record
{ R** = B ∙ R*
; isRobinTwiceRemoved = λ x y z₁ z₂ z₃ → begin
B ∙ R* ∙ x ∙ y ∙ z₁ ∙ z₂ ∙ z₃ ≈⟨ congʳ $ congʳ $ congʳ $ isBluebird R* x y ⟩
R* ∙ (x ∙ y) ∙ z₁ ∙ z₂ ∙ z₃ ≈⟨ isRobinOnceRemoved (x ∙ y) z₁ z₂ z₃ ⟩
x ∙ y ∙ z₂ ∙ z₃ ∙ z₁ ∎
}
problem₃₅-F** : HasFinchTwiceRemoved
problem₃₅-F** = record
{ F** = B ∙ F*
; isFinchTwiceRemoved = λ x y z₁ z₂ z₃ → begin
B ∙ F* ∙ x ∙ y ∙ z₁ ∙ z₂ ∙ z₃ ≈⟨ congʳ $ congʳ $ congʳ $ isBluebird F* x y ⟩
F* ∙ (x ∙ y) ∙ z₁ ∙ z₂ ∙ z₃ ≈⟨ isFinchOnceRemoved (x ∙ y) z₁ z₂ z₃ ⟩
x ∙ y ∙ z₃ ∙ z₂ ∙ z₁ ∎
}
problem₃₅-V** : HasVireoTwiceRemoved
problem₃₅-V** = record
{ V** = B ∙ V*
; isVireoTwiceRemoved = λ x y z₁ z₂ z₃ → begin
B ∙ V* ∙ x ∙ y ∙ z₁ ∙ z₂ ∙ z₃ ≈⟨ congʳ $ congʳ $ congʳ $ isBluebird V* x y ⟩
V* ∙ (x ∙ y) ∙ z₁ ∙ z₂ ∙ z₃ ≈⟨ isVireoOnceRemoved (x ∙ y) z₁ z₂ z₃ ⟩
x ∙ y ∙ z₃ ∙ z₁ ∙ z₂ ∎
}
problem₃₆ : ⦃ _ : HasCardinalOnceRemoved ⦄ ⦃ _ : HasThrush ⦄ → HasVireo
problem₃₆ = record
{ V = C* ∙ T
; isVireo = λ x y z → begin
C* ∙ T ∙ x ∙ y ∙ z ≈⟨ isCardinalOnceRemoved T x y z ⟩
T ∙ x ∙ z ∙ y ≈⟨ congʳ $ isThrush x z ⟩
z ∙ x ∙ y ∎
}
problem₃₇′ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasCardinal ⦄ → HasQueerBird
problem₃₇′ = record
{ Q = C ∙ B
; isQueerBird = λ x y z → begin
C ∙ B ∙ x ∙ y ∙ z ≈⟨ congʳ $ isCardinal B x y ⟩
B ∙ y ∙ x ∙ z ≈⟨ isBluebird y x z ⟩
y ∙ (x ∙ z) ∎
}
problem₃₈′ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasCardinalOnceRemoved ⦄ → HasQuixoticBird
problem₃₈′ = record
{ Q₁ = C* ∙ B
; isQuixoticBird = λ x y z → begin
C* ∙ B ∙ x ∙ y ∙ z ≈⟨ isCardinalOnceRemoved B x y z ⟩
B ∙ x ∙ z ∙ y ≈⟨ isBluebird x z y ⟩
x ∙ (z ∙ y) ∎
}
problem₃₉′-F* : ⦃ _ : HasFinchOnceRemoved ⦄ ⦃ _ : HasQueerBird ⦄ → HasQuizzicalBird
problem₃₉′-F* = record
{ Q₂ = F* ∙ Q
; isQuizzicalBird = λ x y z → begin
F* ∙ Q ∙ x ∙ y ∙ z ≈⟨ isFinchOnceRemoved Q x y z ⟩
Q ∙ z ∙ y ∙ x ≈⟨ isQueerBird z y x ⟩
y ∙ (z ∙ x) ∎
}
problem₃₉′-R* : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasRobinOnceRemoved ⦄ → HasQuizzicalBird
problem₃₉′-R* = record
{ Q₂ = R* ∙ B
; isQuizzicalBird = λ x y z → begin
R* ∙ B ∙ x ∙ y ∙ z ≈⟨ isRobinOnceRemoved B x y z ⟩
B ∙ y ∙ z ∙ x ≈⟨ isBluebird y z x ⟩
y ∙ (z ∙ x) ∎
}
problem₄₁′ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasVireoOnceRemoved ⦄ → HasQuirkyBird
problem₄₁′ = record
{ Q₃ = V* ∙ B
; isQuirkyBird = λ x y z → begin
V* ∙ B ∙ x ∙ y ∙ z ≈⟨ isVireoOnceRemoved B x y z ⟩
B ∙ z ∙ x ∙ y ≈⟨ isBluebird z x y ⟩
z ∙ (x ∙ y) ∎
}
problem₄₂′ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasFinchOnceRemoved ⦄ → HasQuackyBird
problem₄₂′ = record
{ Q₄ = F* ∙ B
; isQuackyBird = λ x y z → begin
F* ∙ B ∙ x ∙ y ∙ z ≈⟨ isFinchOnceRemoved B x y z ⟩
B ∙ z ∙ y ∙ x ≈⟨ isBluebird z y x ⟩
z ∙ (y ∙ x) ∎
}
module _ ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ where
private
instance
hasCardinal = problem₂₁-bonus
hasCardinalOnceRemoved = problem₃₁
hasRobinOnceRemoved = problem₃₂
hasFinchOnceRemoved = problem₃₃
hasVireoOnceRemoved = problem₃₄
problem₃₇ : HasQueerBird
problem₃₇ = problem₃₇′
private instance hasQueerBird = problem₃₇
problem₃₈ : HasQuixoticBird
problem₃₈ = problem₃₈′
private instance hasQuixoticBird = problem₃₈
problem₃₉-F* : HasQuizzicalBird
problem₃₉-F* = problem₃₉′-F*
problem₃₉-R* : HasQuizzicalBird
problem₃₉-R* = problem₃₉′-R*
private instance hasQuizzicalBird = problem₃₉-F*
problem₄₁ : HasQuirkyBird
problem₄₁ = problem₄₁′
problem₄₂ : HasQuackyBird
problem₄₂ = problem₄₂′
module _ ⦃ _ : HasCardinal ⦄ where
problem₄₀-Q₁ : ⦃ _ : HasQuizzicalBird ⦄ → HasQuixoticBird
problem₄₀-Q₁ = record
{ Q₁ = C ∙ Q₂
; isQuixoticBird = λ x y z → begin
C ∙ Q₂ ∙ x ∙ y ∙ z ≈⟨ congʳ $ isCardinal Q₂ x y ⟩
Q₂ ∙ y ∙ x ∙ z ≈⟨ isQuizzicalBird y x z ⟩
x ∙ (z ∙ y) ∎
}
problem₄₀-Q₂ : ⦃ _ : HasQuixoticBird ⦄ → HasQuizzicalBird
problem₄₀-Q₂ = record
{ Q₂ = C ∙ Q₁
; isQuizzicalBird = λ x y z → begin
C ∙ Q₁ ∙ x ∙ y ∙ z ≈⟨ congʳ $ isCardinal Q₁ x y ⟩
Q₁ ∙ y ∙ x ∙ z ≈⟨ isQuixoticBird y x z ⟩
y ∙ (z ∙ x) ∎
}
problem₄₃-Q₃ : ⦃ _ : HasQuackyBird ⦄ → HasQuirkyBird
problem₄₃-Q₃ = record
{ Q₃ = C ∙ Q₄
; isQuirkyBird = λ x y z → begin
C ∙ Q₄ ∙ x ∙ y ∙ z ≈⟨ congʳ $ isCardinal Q₄ x y ⟩
Q₄ ∙ y ∙ x ∙ z ≈⟨ isQuackyBird y x z ⟩
z ∙ (x ∙ y) ∎
}
problem₄₃-Q₄ : ⦃ _ : HasQuirkyBird ⦄ → HasQuackyBird
problem₄₃-Q₄ = record
{ Q₄ = C ∙ Q₃
; isQuackyBird = λ x y z → begin
C ∙ Q₃ ∙ x ∙ y ∙ z ≈⟨ congʳ $ isCardinal Q₃ x y ⟩
Q₃ ∙ y ∙ x ∙ z ≈⟨ isQuirkyBird y x z ⟩
z ∙ (y ∙ x) ∎
}
problem₄₄ : ⦃ _ : HasQuixoticBird ⦄ ⦃ _ : HasThrush ⦄ → HasQuackyBird
problem₄₄ = record
{ Q₄ = Q₁ ∙ T
; isQuackyBird = λ x y z → begin
Q₁ ∙ T ∙ x ∙ y ∙ z ≈⟨ congʳ $ isQuixoticBird T x y ⟩
T ∙ (y ∙ x) ∙ z ≈⟨ isThrush (y ∙ x) z ⟩
z ∙ (y ∙ x) ∎
}
problem₄₅ : ⦃ _ : HasQueerBird ⦄ ⦃ _ : HasThrush ⦄ → HasBluebird
problem₄₅ = record
{ B = Q ∙ T ∙ (Q ∙ Q)
; isBluebird = λ x y z → begin
Q ∙ T ∙ (Q ∙ Q) ∙ x ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isQueerBird T (Q ∙ Q) x ⟩
Q ∙ Q ∙ (T ∙ x) ∙ y ∙ z ≈⟨ congʳ $ isQueerBird Q (T ∙ x) y ⟩
T ∙ x ∙ (Q ∙ y) ∙ z ≈⟨ congʳ $ isThrush x (Q ∙ y) ⟩
Q ∙ y ∙ x ∙ z ≈⟨ isQueerBird y x z ⟩
x ∙ (y ∙ z) ∎
}
problem₄₆ : ⦃ _ : HasQueerBird ⦄ ⦃ _ : HasThrush ⦄ → HasCardinal
problem₄₆ = record
{ C = Q ∙ Q ∙ (Q ∙ T)
; isCardinal = λ x y z → begin
Q ∙ Q ∙ (Q ∙ T) ∙ x ∙ y ∙ z ≈⟨ congʳ $ congʳ $ isQueerBird Q (Q ∙ T) x ⟩
Q ∙ T ∙ (Q ∙ x) ∙ y ∙ z ≈⟨ congʳ $ isQueerBird T (Q ∙ x) y ⟩
Q ∙ x ∙ (T ∙ y) ∙ z ≈⟨ isQueerBird x (T ∙ y) z ⟩
T ∙ y ∙ (x ∙ z) ≈⟨ isThrush y (x ∙ z) ⟩
x ∙ z ∙ y ∎
}
problem₄₇ : ⦃ _ : HasBluebird ⦄ ⦃ _ : HasThrush ⦄ → HasGoldfinch
problem₄₇ = record
{ G = D ∙ C
; isGoldfinch = λ x y z w → begin
D ∙ C ∙ x ∙ y ∙ z ∙ w ≈⟨ congʳ $ isDove C x y z ⟩
C ∙ x ∙ (y ∙ z) ∙ w ≈⟨ isCardinal x (y ∙ z) w ⟩
x ∙ w ∙ (y ∙ z) ∎
} where
instance
hasCardinal = problem₂₁-bonus
hasDove = problem₅
| {
"alphanum_fraction": 0.4807120238,
"avg_line_length": 32.4136858476,
"ext": "agda",
"hexsha": "42d7d0daf35ba501364222500ca00f1d2c70641a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "splintah/combinatory-logic",
"max_forks_repo_path": "Mockingbird/Problems/Chapter11.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "splintah/combinatory-logic",
"max_issues_repo_path": "Mockingbird/Problems/Chapter11.agda",
"max_line_length": 121,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "df8bf877e60b3059532c54a247a36a3d83cd55b0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "splintah/combinatory-logic",
"max_stars_repo_path": "Mockingbird/Problems/Chapter11.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-28T23:44:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-02-28T23:44:42.000Z",
"num_tokens": 10215,
"size": 20842
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.ZCohomology.Properties where
{-
This module contains:
1. direct proofs of connectedness of Kn and ΩKn
2. Induction principles for cohomology groups of pointed types
3. Equivalence between cohomology of A and reduced cohomology of (A + 1)
4. Equivalence between cohomology and reduced cohomology for dimension ≥ 1
5. Encode-decode proof of Kₙ ≃ ΩKₙ₊₁ and proofs that this equivalence
and its inverse are morphisms
6. A proof of coHomGr ≅ coHomGrΩ
7. A locked (non-reducing) version of Kₙ ≃ ΩKₙ₊₁
-}
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.GroupStructure
open import Cubical.HITs.S1 hiding (encode ; decode)
open import Cubical.HITs.Sn
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Pointed.Homogeneous
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws renaming (assoc to assoc∙)
open import Cubical.Foundations.Univalence
open import Cubical.HITs.Susp
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2 ; setTruncIsSet to §)
open import Cubical.Data.Int renaming (_+_ to _ℤ+_) hiding (-_)
open import Cubical.Data.Nat
open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; map2 to trMap2; rec to trRec ; elim3 to trElim3)
open import Cubical.Homotopy.Loopspace
open import Cubical.Homotopy.Connected
open import Cubical.Algebra.Group hiding (Unit ; Int)
open import Cubical.Algebra.AbGroup
open import Cubical.Algebra.Semigroup
open import Cubical.Algebra.Monoid
open import Cubical.Foundations.Equiv.HalfAdjoint
open import Cubical.Data.Sum.Base hiding (map)
open import Cubical.Functions.Morphism
open import Cubical.Data.Sigma
open Iso renaming (inv to inv')
private
variable
ℓ ℓ' : Level
------------------- Connectedness ---------------------
is2ConnectedKn : (n : ℕ) → isConnected 2 (coHomK (suc n))
is2ConnectedKn zero = ∣ ∣ base ∣ ∣
, trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _)
(trElim (λ _ → isOfHLevelPath 3 (isOfHLevelSuc 2 (isOfHLevelTrunc 2)) _ _)
(toPropElim (λ _ → isOfHLevelTrunc 2 _ _) refl))
is2ConnectedKn (suc n) = ∣ ∣ north ∣ ∣
, trElim (λ _ → isOfHLevelPath 2 (isOfHLevelTrunc 2) _ _)
(trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isOfHLevelTrunc 2 _ _))
(suspToPropElim (ptSn (suc n)) (λ _ → isOfHLevelTrunc 2 _ _) refl))
isConnectedKn : (n : ℕ) → isConnected (2 + n) (coHomK (suc n))
isConnectedKn n = isOfHLevelRetractFromIso 0 (invIso (truncOfTruncIso (2 + n) 1)) (sphereConnected (suc n))
-- direct proof of connectedness of ΩKₙ₊₁ not relying on the equivalence ∥ a ≡ b ∥ₙ ≃ (∣ a ∣ₙ₊₁ ≡ ∣ b ∣ₙ₊₁)
isConnectedPathKn : (n : ℕ) (x y : (coHomK (suc n))) → isConnected (suc n) (x ≡ y)
isConnectedPathKn n =
trElim (λ _ → isProp→isOfHLevelSuc (2 + n) (isPropΠ λ _ → isPropIsContr))
(sphereElim _ (λ _ → isProp→isOfHLevelSuc n (isPropΠ λ _ → isPropIsContr))
λ y → isContrRetractOfConstFun
{B = (hLevelTrunc (suc n) (ptSn (suc n) ≡ ptSn (suc n)))} ∣ refl ∣
(fun⁻ n y
, trElim (λ _ → isOfHLevelPath (suc n) (isOfHLevelTrunc (suc n)) _ _)
(J (λ y p → fun⁻ n y _ ≡ _) (funExt⁻ (fun⁻Id n) ∣ refl ∣))))
where
fun⁻ : (n : ℕ) → (y : coHomK (suc n)) →
hLevelTrunc (suc n) (ptSn (suc n) ≡ ptSn (suc n))
→ hLevelTrunc (suc n) (∣ ptSn (suc n) ∣ ≡ y)
fun⁻ n =
trElim (λ _ → isOfHLevelΠ (3 + n) λ _ → isOfHLevelSuc (2 + n) (isOfHLevelSuc (suc n) (isOfHLevelTrunc (suc n))))
(sphereElim n (λ _ → isOfHLevelΠ (suc n) λ _ → isOfHLevelTrunc (suc n)) λ _ → ∣ refl ∣)
fun⁻Id : (n : ℕ) → fun⁻ n ∣ ptSn (suc n) ∣ ≡ λ _ → ∣ refl ∣
fun⁻Id zero = refl
fun⁻Id (suc n) = refl
-------------------
-- Induction principles for cohomology groups (n ≥ 1)
-- If we want to show a proposition about some x : Hⁿ(A), it suffices to show it under the
-- assumption that x = ∣ f ∣₂ for some f : A → Kₙ and that f is pointed
coHomPointedElim : {A : Type ℓ} (n : ℕ) (a : A) {B : coHom (suc n) A → Type ℓ'}
→ ((x : coHom (suc n) A) → isProp (B x))
→ ((f : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → B ∣ f ∣₂)
→ (x : coHom (suc n) A) → B x
coHomPointedElim {ℓ' = ℓ'} {A = A} n a isprop indp =
sElim (λ _ → isOfHLevelSuc 1 (isprop _))
λ f → helper n isprop indp f (f a) refl
where
helper : (n : ℕ) {B : coHom (suc n) A → Type ℓ'}
→ ((x : coHom (suc n) A) → isProp (B x))
→ ((f : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → B ∣ f ∣₂)
→ (f : A → coHomK (suc n))
→ (x : coHomK (suc n))
→ f a ≡ x → B ∣ f ∣₂
-- pattern matching a bit extra to avoid isOfHLevelPlus'
helper zero isprop ind f =
trElim (λ _ → isOfHLevelPlus {n = 1} 2 (isPropΠ λ _ → isprop _))
(toPropElim (λ _ → isPropΠ λ _ → isprop _) (ind f))
helper (suc zero) isprop ind f =
trElim (λ _ → isOfHLevelPlus {n = 1} 3 (isPropΠ λ _ → isprop _))
(suspToPropElim base (λ _ → isPropΠ λ _ → isprop _) (ind f))
helper (suc (suc zero)) isprop ind f =
trElim (λ _ → isOfHLevelPlus {n = 1} 4 (isPropΠ λ _ → isprop _))
(suspToPropElim north (λ _ → isPropΠ λ _ → isprop _) (ind f))
helper (suc (suc (suc n))) isprop ind f =
trElim (λ _ → isOfHLevelPlus' {n = 5 + n} 1 (isPropΠ λ _ → isprop _))
(suspToPropElim north (λ _ → isPropΠ λ _ → isprop _) (ind f))
coHomPointedElim2 : {A : Type ℓ} (n : ℕ) (a : A) {B : coHom (suc n) A → coHom (suc n) A → Type ℓ'}
→ ((x y : coHom (suc n) A) → isProp (B x y))
→ ((f g : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → g a ≡ coHom-pt (suc n) → B ∣ f ∣₂ ∣ g ∣₂)
→ (x y : coHom (suc n) A) → B x y
coHomPointedElim2 {ℓ' = ℓ'} {A = A} n a isprop indp = sElim2 (λ _ _ → isOfHLevelSuc 1 (isprop _ _))
λ f g → helper n a isprop indp f g (f a) (g a) refl refl
where
helper : (n : ℕ) (a : A) {B : coHom (suc n) A → coHom (suc n) A → Type ℓ'}
→ ((x y : coHom (suc n) A) → isProp (B x y))
→ ((f g : A → coHomK (suc n)) → f a ≡ coHom-pt (suc n) → g a ≡ coHom-pt (suc n) → B ∣ f ∣₂ ∣ g ∣₂)
→ (f g : A → coHomK (suc n))
→ (x y : coHomK (suc n))
→ f a ≡ x → g a ≡ y
→ B ∣ f ∣₂ ∣ g ∣₂
helper zero a isprop indp f g =
elim2 (λ _ _ → isOfHLevelPlus {n = 1} 2 (isPropΠ2 λ _ _ → isprop _ _))
(toPropElim2 (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g))
helper (suc zero) a isprop indp f g =
elim2 (λ _ _ → isOfHLevelPlus {n = 1} 3 (isPropΠ2 λ _ _ → isprop _ _))
(suspToPropElim2 base (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g))
helper (suc (suc zero)) a isprop indp f g =
elim2 (λ _ _ → isOfHLevelPlus {n = 1} 4 (isPropΠ2 λ _ _ → isprop _ _))
(suspToPropElim2 north (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g))
helper (suc (suc (suc n))) a isprop indp f g =
elim2 (λ _ _ → isOfHLevelPlus' {n = 5 + n} 1 (isPropΠ2 λ _ _ → isprop _ _))
(suspToPropElim2 north (λ _ _ → isPropΠ2 λ _ _ → isprop _ _) (indp f g))
coHomK-elim : ∀ {ℓ} (n : ℕ) {B : coHomK (suc n) → Type ℓ}
→ ((x : _) → isOfHLevel (suc n) (B x))
→ B (0ₖ (suc n))
→ (x : _) → B x
coHomK-elim n {B = B } hlev b =
trElim (λ _ → isOfHLevelPlus {n = (suc n)} 2 (hlev _))
(sphereElim _ (hlev ∘ ∣_∣) b)
{- Equivalence between cohomology of A and reduced cohomology of (A + 1) -}
coHomRed+1Equiv : (n : ℕ) →
(A : Type ℓ) →
(coHom n A) ≡ (coHomRed n ((A ⊎ Unit , inr (tt))))
coHomRed+1Equiv zero A i = ∥ helpLemma {C = (Int , pos 0)} i ∥₂
module coHomRed+1 where
helpLemma : {C : Pointed ℓ} → ( (A → (typ C)) ≡ ((((A ⊎ Unit) , inr (tt)) →∙ C)))
helpLemma {C = C} = isoToPath (iso map1
map2
(λ b → linvPf b)
(λ _ → refl))
where
map1 : (A → typ C) → ((((A ⊎ Unit) , inr (tt)) →∙ C))
map1 f = map1' , refl
module helpmap where
map1' : A ⊎ Unit → fst C
map1' (inl x) = f x
map1' (inr x) = pt C
map2 : ((((A ⊎ Unit) , inr (tt)) →∙ C)) → (A → typ C)
map2 (g , pf) x = g (inl x)
linvPf : (b :((((A ⊎ Unit) , inr (tt)) →∙ C))) → map1 (map2 b) ≡ b
linvPf (f , snd) i = (λ x → helper x i) , λ j → snd ((~ i) ∨ j)
where
helper : (x : A ⊎ Unit) → ((helpmap.map1') (map2 (f , snd)) x) ≡ f x
helper (inl x) = refl
helper (inr tt) = sym snd
coHomRed+1Equiv (suc zero) A i = ∥ coHomRed+1.helpLemma A i {C = (coHomK 1 , ∣ base ∣)} i ∥₂
coHomRed+1Equiv (suc (suc n)) A i = ∥ coHomRed+1.helpLemma A i {C = (coHomK (2 + n) , ∣ north ∣)} i ∥₂
Iso-coHom-coHomRed : ∀ {ℓ} {A : Pointed ℓ} (n : ℕ) → Iso (coHomRed (suc n) A) (coHom (suc n) (typ A))
fun (Iso-coHom-coHomRed {A = A , a} n) = map fst
inv' (Iso-coHom-coHomRed {A = A , a} n) = map λ f → (λ x → f x -ₖ f a) , rCancelₖ _ _
rightInv (Iso-coHom-coHomRed {A = A , a} n) =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ f → trRec (isProp→isOfHLevelSuc _ (§ _ _))
(λ p → cong ∣_∣₂ (funExt λ x → cong (λ y → f x +ₖ y) (cong -ₖ_ p ∙ -0ₖ) ∙ rUnitₖ _ (f x)))
(Iso.fun (PathIdTruncIso (suc n)) (isContr→isProp (isConnectedKn n) ∣ f a ∣ ∣ 0ₖ _ ∣))
leftInv (Iso-coHom-coHomRed {A = A , a} n) =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ {(f , p) → cong ∣_∣₂ (ΣPathP (((funExt λ x → (cong (λ y → f x -ₖ y) p
∙∙ cong (λ y → f x +ₖ y) -0ₖ
∙∙ rUnitₖ _ (f x)) ∙ refl))
, helper n (f a) (sym p)))}
where
path : (n : ℕ) (x : coHomK (suc n)) (p : 0ₖ _ ≡ x) → _
path n x p = (cong (λ y → x -ₖ y) (sym p) ∙∙ cong (λ y → x +ₖ y) -0ₖ ∙∙ rUnitₖ _ x) ∙ refl
helper : (n : ℕ) (x : coHomK (suc n)) (p : 0ₖ _ ≡ x)
→ PathP (λ i → path n x p i ≡ 0ₖ _) (rCancelₖ _ x) (sym p)
helper zero x =
J (λ x p → PathP (λ i → path 0 x p i ≡ 0ₖ _)
(rCancelₖ _ x) (sym p))
λ i j → rUnit (rUnit (λ _ → 0ₖ 1) (~ j)) (~ j) i
helper (suc n) x =
J (λ x p → PathP (λ i → path (suc n) x p i ≡ 0ₖ _) (rCancelₖ _ x) (sym p))
λ i j → rCancelₖ (suc (suc n)) (0ₖ (suc (suc n))) (~ i ∧ ~ j)
+∙≡+ : (n : ℕ) {A : Pointed ℓ} (x y : coHomRed (suc n) A)
→ Iso.fun (Iso-coHom-coHomRed n) (x +ₕ∙ y)
≡ Iso.fun (Iso-coHom-coHomRed n) x +ₕ Iso.fun (Iso-coHom-coHomRed n) y
+∙≡+ zero = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ _ _ → refl
+∙≡+ (suc n) = sElim2 (λ _ _ → isOfHLevelPath 2 § _ _) λ _ _ → refl
private
homhelp : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) (x y : coHom (suc n) (typ A))
→ Iso.inv (Iso-coHom-coHomRed {A = A} n) (x +ₕ y)
≡ Iso.inv (Iso-coHom-coHomRed n) x +ₕ∙ Iso.inv (Iso-coHom-coHomRed n) y
homhelp n A = morphLemmas.isMorphInv _+ₕ∙_ _+ₕ_
(Iso.fun (Iso-coHom-coHomRed n)) (+∙≡+ n) _
(Iso.rightInv (Iso-coHom-coHomRed n)) (Iso.leftInv (Iso-coHom-coHomRed n))
coHomGr≅coHomRedGr : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ)
→ GroupEquiv (coHomRedGrDir (suc n) A) (coHomGr (suc n) (typ A))
fst (coHomGr≅coHomRedGr n A) = isoToEquiv (Iso-coHom-coHomRed n)
snd (coHomGr≅coHomRedGr n A) = makeIsGroupHom (+∙≡+ n)
coHomRedGroup : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ) → AbGroup ℓ
coHomRedGroup zero A = coHomRedGroupDir zero A
coHomRedGroup (suc n) A =
InducedAbGroup (coHomGroup (suc n) (typ A))
_+ₕ∙_
(isoToEquiv (invIso (Iso-coHom-coHomRed n)))
(homhelp n A)
abstract
coHomGroup≡coHomRedGroup : ∀ {ℓ} (n : ℕ) (A : Pointed ℓ)
→ coHomGroup (suc n) (typ A) ≡ coHomRedGroup (suc n) A
coHomGroup≡coHomRedGroup n A =
InducedAbGroupPath (coHomGroup (suc n) (typ A))
_+ₕ∙_
(isoToEquiv (invIso (Iso-coHom-coHomRed n)))
(homhelp n A)
------------------- Kₙ ≃ ΩKₙ₊₁ ---------------------
-- This proof uses the encode-decode method rather than Freudenthal
-- We define the map σ : Kₙ → ΩKₙ₊₁ and prove that it is a morphism
private
module _ (n : ℕ) where
σ : {n : ℕ} → coHomK (suc n) → Path (coHomK (2 + n)) ∣ north ∣ ∣ north ∣
σ {n = n} = trRec (isOfHLevelTrunc (4 + n) _ _)
λ a → cong ∣_∣ (merid a ∙ sym (merid (ptSn (suc n))))
σ-hom-helper : ∀ {ℓ} {A : Type ℓ} {a : A} (p : a ≡ a) (r : refl ≡ p)
→ lUnit p ∙ cong (_∙ p) r ≡ rUnit p ∙ cong (p ∙_) r
σ-hom-helper p = J (λ p r → lUnit p ∙ cong (_∙ p) r ≡ rUnit p ∙ cong (p ∙_) r) refl
σ-hom : {n : ℕ} (x y : coHomK (suc n)) → σ (x +ₖ y) ≡ σ x ∙ σ y
σ-hom {n = zero} =
elim2 (λ _ _ → isOfHLevelPath 3 (isOfHLevelTrunc 4 _ _) _ _)
(wedgeconFun _ _
(λ _ _ → isOfHLevelTrunc 4 _ _ _ _)
(λ x → lUnit _
∙ cong (_∙ σ ∣ x ∣) (cong (cong ∣_∣) (sym (rCancel (merid base)))))
(λ y → cong σ (rUnitₖ 1 ∣ y ∣)
∙∙ rUnit _
∙∙ cong (σ ∣ y ∣ ∙_) (cong (cong ∣_∣) (sym (rCancel (merid base)))))
(sym (σ-hom-helper (σ ∣ base ∣) (cong (cong ∣_∣) (sym (rCancel (merid base)))))))
σ-hom {n = suc n} =
elim2 (λ _ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (5 + n) _ _) _ _)
(wedgeconFun _ _ (λ _ _ → isOfHLevelPath ((2 + n) + (2 + n)) (wedgeConHLev' n) _ _)
(λ x → lUnit _
∙ cong (_∙ σ ∣ x ∣) (cong (cong ∣_∣) (sym (rCancel (merid north)))))
(λ y → cong σ (rUnitₖ (2 + n) ∣ y ∣)
∙∙ rUnit _
∙∙ cong (σ ∣ y ∣ ∙_) (cong (cong ∣_∣) (sym (rCancel (merid north)))))
(sym (σ-hom-helper (σ ∣ north ∣) (cong (cong ∣_∣) (sym (rCancel (merid north)))))))
-- We will need to following lemma
σ-minusDistr : {n : ℕ} (x y : coHomK (suc n)) → σ (x -ₖ y) ≡ σ x ∙ sym (σ y)
σ-minusDistr {n = n} =
morphLemmas.distrMinus'
_+ₖ_ _∙_
σ σ-hom ∣ (ptSn (suc n)) ∣ refl
-ₖ_ sym
(λ x → sym (lUnit x)) (λ x → sym (rUnit x))
(rUnitₖ (suc n))
(lCancelₖ (suc n)) rCancel
(assocₖ (suc n)) assoc∙
(cong (cong ∣_∣) (rCancel (merid (ptSn (suc n)))))
-- we define the code using addIso
Code : (n : ℕ) → coHomK (2 + n) → Type₀
Code n x = (trRec {B = TypeOfHLevel ℓ-zero (3 + n)} (isOfHLevelTypeOfHLevel (3 + n))
λ a → Code' a , hLevCode' a) x .fst
where
Code' : (S₊ (2 + n)) → Type₀
Code' north = coHomK (suc n)
Code' south = coHomK (suc n)
Code' (merid a i) = isoToPath (addIso (suc n) ∣ a ∣) i
hLevCode' : (x : S₊ (2 + n)) → isOfHLevel (3 + n) (Code' x)
hLevCode' = suspToPropElim (ptSn (suc n)) (λ _ → isPropIsOfHLevel (3 + n)) (isOfHLevelTrunc (3 + n))
symMeridLem : (n : ℕ) → (x : S₊ (suc n)) (y : coHomK (suc n))
→ subst (Code n) (cong ∣_∣ (sym (merid x))) y ≡ y -ₖ ∣ x ∣
symMeridLem n x = trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _)
(λ y → cong (_-ₖ ∣ x ∣) (transportRefl ∣ y ∣))
decode : {n : ℕ} (x : coHomK (2 + n)) → Code n x → ∣ north ∣ ≡ x
decode {n = n} = trElim (λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelPath (4 + n) (isOfHLevelTrunc (4 + n)) _ _)
decode-elim
where
north≡merid : (a : S₊ (suc n))
→ Path (coHomK (2 + n)) ∣ north ∣ ∣ north ∣
≡ (Path (coHomK (2 + n)) ∣ north ∣ ∣ south ∣)
north≡merid a i = Path (coHomK (2 + n)) ∣ north ∣ ∣ merid a i ∣
decode-elim : (a : S₊ (2 + n)) → Code n ∣ a ∣ → Path (coHomK (2 + n)) ∣ north ∣ ∣ a ∣
decode-elim north = σ
decode-elim south = trRec (isOfHLevelTrunc (4 + n) _ _)
λ a → cong ∣_∣ (merid a)
decode-elim (merid a i) =
hcomp (λ k → λ { (i = i0) → σ
; (i = i1) → mainPath a k})
(funTypeTransp (Code n) (λ x → ∣ north ∣ ≡ x) (cong ∣_∣ (merid a)) σ i)
where
mainPath : (a : (S₊ (suc n))) →
transport (north≡merid a) ∘ σ ∘ transport (λ i → Code n ∣ merid a (~ i) ∣)
≡ trRec (isOfHLevelTrunc (4 + n) _ _) λ a → cong ∣_∣ (merid a)
mainPath a = funExt (trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (4 + n) _ _) _ _)
(λ x → (λ i → transport (north≡merid a) (σ (symMeridLem n a ∣ x ∣ i)))
∙∙ cong (transport (north≡merid a)) (-distrHelp x)
∙∙ (substAbove x)))
where
-distrHelp : (x : S₊ (suc n)) → σ (∣ x ∣ -ₖ ∣ a ∣) ≡ cong ∣_∣ (merid x) ∙ cong ∣_∣ (sym (merid a))
-distrHelp x =
σ-minusDistr ∣ x ∣ ∣ a ∣
∙ (λ i → (cong ∣_∣ (compPath-filler (merid x) (λ j → merid (ptSn (suc n)) (~ j ∨ i)) (~ i)))
∙ (cong ∣_∣ (sym (compPath-filler (merid a) (λ j → merid (ptSn (suc n)) (~ j ∨ i)) (~ i)))))
substAbove : (x : S₊ (suc n)) → transport (north≡merid a) (cong ∣_∣ (merid x) ∙ cong ∣_∣ (sym (merid a)))
≡ cong ∣_∣ (merid x)
substAbove x i = transp (λ j → north≡merid a (i ∨ j)) i
(compPath-filler (cong ∣_∣ (merid x)) (λ j → ∣ merid a (~ j ∨ i) ∣) (~ i))
encode : {n : ℕ} {x : coHomK (2 + n)} → Path (coHomK (2 + n)) ∣ north ∣ x → Code n x
encode {n = n} p = transport (cong (Code n) p) ∣ (ptSn (suc n)) ∣
decode-encode : {n : ℕ} {x : coHomK (2 + n)} (p : Path (coHomK (2 + n)) ∣ north ∣ x)
→ decode _ (encode p) ≡ p
decode-encode {n = n} =
J (λ y p → decode _ (encode p) ≡ p)
(cong (decode ∣ north ∣) (transportRefl ∣ ptSn (suc n) ∣)
∙ cong (cong ∣_∣) (rCancel (merid (ptSn (suc n)))))
-- We define an addition operation on Code which we can use in order to show that encode is a
-- morphism (in a very loose sense)
hLevCode : {n : ℕ} (x : coHomK (2 + n)) → isOfHLevel (3 + n) (Code n x)
hLevCode {n = n} =
trElim (λ _ → isProp→isOfHLevelSuc (3 + n) (isPropIsOfHLevel (3 + n)))
(sphereToPropElim _
(λ _ → (isPropIsOfHLevel (3 + n))) (isOfHLevelTrunc (3 + n)))
Code-add' : {n : ℕ} (x : _) → Code n ∣ north ∣ → Code n ∣ x ∣ → Code n ∣ x ∣
Code-add' {n = n} north = _+ₖ_
Code-add' {n = n} south = _+ₖ_
Code-add' {n = n} (merid a i) = helper n a i
where
help : (n : ℕ) → (x y a : S₊ (suc n))
→ transport (λ i → Code n ∣ north ∣ → Code n ∣ merid a i ∣ → Code n ∣ merid a i ∣)
(_+ₖ_) ∣ x ∣ ∣ y ∣
≡ ∣ x ∣ +ₖ ∣ y ∣
help n x y a =
(λ i → transportRefl ((∣ transportRefl x i ∣ +ₖ (∣ transportRefl y i ∣ -ₖ ∣ a ∣)) +ₖ ∣ a ∣) i)
∙∙ cong (_+ₖ ∣ a ∣) (assocₖ _ ∣ x ∣ ∣ y ∣ (-ₖ ∣ a ∣))
∙∙ sym (assocₖ _ (∣ x ∣ +ₖ ∣ y ∣) (-ₖ ∣ a ∣) ∣ a ∣)
∙∙ cong ((∣ x ∣ +ₖ ∣ y ∣) +ₖ_) (lCancelₖ _ ∣ a ∣)
∙∙ rUnitₖ _ _
helper : (n : ℕ) (a : S₊ (suc n))
→ PathP (λ i → Code n ∣ north ∣ → Code n ∣ merid a i ∣ → Code n ∣ merid a i ∣) _+ₖ_ _+ₖ_
helper n a =
toPathP (funExt
(trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelΠ (3 + n) (λ _ → isOfHLevelTrunc (3 + n))) _ _)
λ x → funExt
(trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _)
λ y → help n x y a)))
Code-add : {n : ℕ} (x : _) → Code n ∣ north ∣ → Code n x → Code n x
Code-add {n = n} =
trElim (λ x → isOfHLevelΠ (4 + n) λ _ → isOfHLevelΠ (4 + n) λ _ → isOfHLevelSuc (3 + n) (hLevCode {n = n} x))
Code-add'
encode-hom : {n : ℕ} {x : _} (q : 0ₖ _ ≡ 0ₖ _) (p : 0ₖ _ ≡ x)
→ encode (q ∙ p) ≡ Code-add {n = n} x (encode q) (encode p)
encode-hom {n = n} q = J (λ x p → encode (q ∙ p) ≡ Code-add {n = n} x (encode q) (encode p))
(cong encode (sym (rUnit q))
∙∙ sym (rUnitₖ _ (encode q))
∙∙ cong (encode q +ₖ_) (cong ∣_∣ (sym (transportRefl _))))
stabSpheres : (n : ℕ) → Iso (coHomK (suc n)) (typ (Ω (coHomK-ptd (2 + n))))
fun (stabSpheres n) = decode _
inv' (stabSpheres n) = encode
rightInv (stabSpheres n) p = decode-encode p
leftInv (stabSpheres n) =
trElim (λ _ → isOfHLevelPath (3 + n) (isOfHLevelTrunc (3 + n)) _ _)
λ a → cong encode (congFunct ∣_∣ (merid a) (sym (merid (ptSn (suc n)))))
∙∙ (λ i → transport (congFunct (Code n) (cong ∣_∣ (merid a))
(cong ∣_∣ (sym (merid (ptSn (suc n))))) i) ∣ ptSn (suc n) ∣)
∙∙ (substComposite (λ x → x)
(cong (Code n) (cong ∣_∣ (merid a)))
(cong (Code n) (cong ∣_∣ (sym (merid (ptSn (suc n)))))) ∣ ptSn (suc n) ∣
∙∙ cong (transport (λ i → Code n ∣ merid (ptSn (suc n)) (~ i) ∣))
(transportRefl (∣ (ptSn (suc n)) ∣ +ₖ ∣ a ∣) ∙ lUnitₖ (suc n) ∣ a ∣)
∙∙ symMeridLem n (ptSn (suc n)) ∣ a ∣
∙∙ cong (∣ a ∣ +ₖ_) -0ₖ
∙∙ rUnitₖ (suc n) ∣ a ∣)
Iso-Kn-ΩKn+1 : (n : HLevel) → Iso (coHomK n) (typ (Ω (coHomK-ptd (suc n))))
Iso-Kn-ΩKn+1 zero = invIso (compIso (congIso (truncIdempotentIso _ isGroupoidS¹)) ΩS¹IsoInt)
Iso-Kn-ΩKn+1 (suc n) = stabSpheres n
Kn≃ΩKn+1 : {n : ℕ} → coHomK n ≃ typ (Ω (coHomK-ptd (suc n)))
Kn≃ΩKn+1 {n = n} = isoToEquiv (Iso-Kn-ΩKn+1 n)
-- Some properties of the Iso
Kn→ΩKn+1 : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n)))
Kn→ΩKn+1 n = Iso.fun (Iso-Kn-ΩKn+1 n)
ΩKn+1→Kn : (n : ℕ) → typ (Ω (coHomK-ptd (suc n))) → coHomK n
ΩKn+1→Kn n = Iso.inv (Iso-Kn-ΩKn+1 n)
Kn→ΩKn+10ₖ : (n : ℕ) → Kn→ΩKn+1 n (0ₖ n) ≡ refl
Kn→ΩKn+10ₖ zero = sym (rUnit refl)
Kn→ΩKn+10ₖ (suc n) i j = ∣ (rCancel (merid (ptSn (suc n))) i j) ∣
ΩKn+1→Kn-refl : (n : ℕ) → ΩKn+1→Kn n refl ≡ 0ₖ n
ΩKn+1→Kn-refl zero = refl
ΩKn+1→Kn-refl (suc zero) = refl
ΩKn+1→Kn-refl (suc (suc n)) = refl
Kn→ΩKn+1-hom : (n : ℕ) (x y : coHomK n) → Kn→ΩKn+1 n (x +[ n ]ₖ y) ≡ Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y
Kn→ΩKn+1-hom zero x y = (λ j i → hfill (doubleComp-faces (λ i₁ → ∣ base ∣) (λ _ → ∣ base ∣) i)
(inS (∣ intLoop (x ℤ+ y) i ∣)) (~ j))
∙∙ (λ j i → ∣ intLoop-hom x y (~ j) i ∣)
∙∙ (congFunct ∣_∣ (intLoop x) (intLoop y)
∙ cong₂ _∙_ (λ j i → hfill (doubleComp-faces (λ i₁ → ∣ base ∣) (λ _ → ∣ base ∣) i)
(inS (∣ intLoop x i ∣)) j)
λ j i → hfill (doubleComp-faces (λ i₁ → ∣ base ∣) (λ _ → ∣ base ∣) i)
(inS (∣ intLoop y i ∣)) j)
Kn→ΩKn+1-hom (suc n) = σ-hom
ΩKn+1→Kn-hom : (n : ℕ) (x y : Path (coHomK (suc n)) (0ₖ _) (0ₖ _))
→ ΩKn+1→Kn n (x ∙ y) ≡ ΩKn+1→Kn n x +[ n ]ₖ ΩKn+1→Kn n y
ΩKn+1→Kn-hom zero p q =
cong winding (congFunct (trRec isGroupoidS¹ (λ x → x)) p q)
∙ winding-hom (cong (trRec isGroupoidS¹ (λ x → x)) p) (cong (trRec isGroupoidS¹ (λ x → x)) q)
ΩKn+1→Kn-hom (suc n) = encode-hom
isHomogeneousKn : (n : HLevel) → isHomogeneous (coHomK-ptd n)
isHomogeneousKn n =
subst isHomogeneous
(sym (ΣPathP (ua Kn≃ΩKn+1 , ua-gluePath _ (Kn→ΩKn+10ₖ n))))
(isHomogeneousPath _ _)
-- With the equivalence Kn≃ΩKn+1, we get that the two definitions of cohomology groups agree
open IsGroupHom
coHom≅coHomΩ : ∀ {ℓ} (n : ℕ) (A : Type ℓ) → GroupIso (coHomGr n A) (coHomGrΩ n A)
fun (fst (coHom≅coHomΩ n A)) = map λ f a → Kn→ΩKn+1 n (f a)
inv' (fst (coHom≅coHomΩ n A)) = map λ f a → ΩKn+1→Kn n (f a)
rightInv (fst (coHom≅coHomΩ n A)) =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ f → cong ∣_∣₂ (funExt λ x → rightInv (Iso-Kn-ΩKn+1 n) (f x))
leftInv (fst (coHom≅coHomΩ n A)) =
sElim (λ _ → isOfHLevelPath 2 § _ _)
λ f → cong ∣_∣₂ (funExt λ x → leftInv (Iso-Kn-ΩKn+1 n) (f x))
snd (coHom≅coHomΩ n A) =
makeIsGroupHom
(sElim2 (λ _ _ → isOfHLevelPath 2 § _ _)
λ f g → cong ∣_∣₂ (funExt λ x → Kn→ΩKn+1-hom n (f x) (g x)))
module lockedKnIso (key : Unit') where
Kn→ΩKn+1' : (n : ℕ) → coHomK n → typ (Ω (coHomK-ptd (suc n)))
Kn→ΩKn+1' n = lock key (Iso.fun (Iso-Kn-ΩKn+1 n))
ΩKn+1→Kn' : (n : ℕ) → typ (Ω (coHomK-ptd (suc n))) → coHomK n
ΩKn+1→Kn' n = lock key (Iso.inv (Iso-Kn-ΩKn+1 n))
ΩKn+1→Kn→ΩKn+1 : (n : ℕ) → (x : typ (Ω (coHomK-ptd (suc n)))) → Kn→ΩKn+1' n (ΩKn+1→Kn' n x) ≡ x
ΩKn+1→Kn→ΩKn+1 n x = pm key
where
pm : (key : Unit') → lock key (Iso.fun (Iso-Kn-ΩKn+1 n)) (lock key (Iso.inv (Iso-Kn-ΩKn+1 n)) x) ≡ x
pm unlock = Iso.rightInv (Iso-Kn-ΩKn+1 n) x
Kn→ΩKn+1→Kn : (n : ℕ) → (x : coHomK n) → ΩKn+1→Kn' n (Kn→ΩKn+1' n x) ≡ x
Kn→ΩKn+1→Kn n x = pm key
where
pm : (key : Unit') → lock key (Iso.inv (Iso-Kn-ΩKn+1 n)) (lock key (Iso.fun (Iso-Kn-ΩKn+1 n)) x) ≡ x
pm unlock = Iso.leftInv (Iso-Kn-ΩKn+1 n) x
-distrLemma : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (n m : ℕ) (f : GroupHom (coHomGr n A) (coHomGr m B))
(x y : coHom n A)
→ fst f (x -[ n ]ₕ y) ≡ fst f x -[ m ]ₕ fst f y
-distrLemma n m f' x y = sym (-cancelRₕ m (f y) (f (x -[ n ]ₕ y)))
∙∙ cong (λ x → x -[ m ]ₕ f y) (sym (f' .snd .pres· (x -[ n ]ₕ y) y))
∙∙ cong (λ x → x -[ m ]ₕ f y) ( cong f (-+cancelₕ n _ _))
where
f = fst f'
| {
"alphanum_fraction": 0.5148380071,
"avg_line_length": 49.254789272,
"ext": "agda",
"hexsha": "e418ffa1df56aa38331e5dae41f2099de85e0b55",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-03-12T20:08:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-03-12T20:08:45.000Z",
"max_forks_repo_head_hexsha": "ef62b84397396d48135d73ba7400b71c721ddc94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "maxdore/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ef62b84397396d48135d73ba7400b71c721ddc94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "maxdore/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/Properties.agda",
"max_line_length": 132,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ef62b84397396d48135d73ba7400b71c721ddc94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "maxdore/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 10791,
"size": 25711
} |
module PatternSynonymImports where
open import PatternSynonyms renaming (z to zzz)
pattern myzero = zzz
two = ss zzz
list : List ℕ
list = 1 ∷ [] | {
"alphanum_fraction": 0.7364864865,
"avg_line_length": 14.8,
"ext": "agda",
"hexsha": "766aced91ef6f06904f8a0c055806ccf79bf8f7b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/PatternSynonymImports.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/PatternSynonymImports.agda",
"max_line_length": 47,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/PatternSynonymImports.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 44,
"size": 148
} |
{-# OPTIONS --cubical #-}
module Issue2799 where
open import Agda.Primitive.Cubical
postulate
PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ
{-# BUILTIN PATHP PathP #-}
_≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ
_≡_ {A = A} = PathP (λ _ → A)
record Stream (A : Set) : Set where
coinductive
constructor _,_
field
head : A
tail : Stream A
open Stream
mapS : ∀ {A B} → (A → B) → Stream A → Stream B
head (mapS f xs) = f (head xs)
tail (mapS f xs) = mapS f (tail xs)
mapS-id : ∀ {A} {xs : Stream A} → mapS (λ x → x) xs ≡ xs
head (mapS-id {xs = xs} i) = head xs
tail (mapS-id {xs = xs} i) = mapS-id {xs = tail xs} i
| {
"alphanum_fraction": 0.5492307692,
"avg_line_length": 20.3125,
"ext": "agda",
"hexsha": "d9139b685fd75f6058fd303ecd77cc1061334e48",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Succeed/Issue2799.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Succeed/Issue2799.agda",
"max_line_length": 56,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Succeed/Issue2799.agda",
"max_stars_repo_stars_event_max_datetime": "2016-03-17T01:45:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-03-17T01:45:59.000Z",
"num_tokens": 265,
"size": 650
} |
postulate A : Set
record Overlap : Set where
constructor mk
field overlap {{a}} : A
record NoOverlap : Set where
constructor mk
field {{a}} : A
ok : A → NoOverlap
ok a = mk {{a}}
bad : A → Overlap
bad a = mk {{a}}
-- Function does not accept argument {{a}}
-- when checking that {{a}} is a valid argument to a function of type
-- {{a = a₁ : A}} → Overlap
| {
"alphanum_fraction": 0.6277173913,
"avg_line_length": 18.4,
"ext": "agda",
"hexsha": "7c1cdae157db482d8494baf8a447d5f43d6d4161",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2597.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2597.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2597.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 113,
"size": 368
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Morphism.IsoEquiv {o ℓ e} (𝒞 : Category o ℓ e) where
open import Level
open import Function using (flip; _on_)
open import Relation.Binary hiding (_⇒_)
import Relation.Binary.Construct.On as On
open import Categories.Morphism 𝒞
open Category 𝒞
private
variable
A B C : Obj
-- Two lemmas to set things up: if they exist, inverses are unique.
to-unique : ∀ {f₁ f₂ : A ⇒ B} {g₁ g₂} →
Iso f₁ g₁ → Iso f₂ g₂ → f₁ ≈ f₂ → g₁ ≈ g₂
to-unique {_} {_} {f₁} {f₂} {g₁} {g₂} iso₁ iso₂ hyp = begin
g₁ ≈˘⟨ identityˡ ⟩
id ∘ g₁ ≈˘⟨ ∘-resp-≈ˡ Iso₂.isoˡ ⟩
(g₂ ∘ f₂) ∘ g₁ ≈˘⟨ ∘-resp-≈ˡ (∘-resp-≈ʳ hyp) ⟩
(g₂ ∘ f₁) ∘ g₁ ≈⟨ assoc ⟩
g₂ ∘ (f₁ ∘ g₁) ≈⟨ ∘-resp-≈ʳ Iso₁.isoʳ ⟩
g₂ ∘ id ≈⟨ identityʳ ⟩
g₂ ∎
where
open HomReasoning
module Iso₁ = Iso iso₁
module Iso₂ = Iso iso₂
from-unique : ∀ {f₁ f₂ : A ⇒ B} {g₁ g₂} →
Iso f₁ g₁ → Iso f₂ g₂ → g₁ ≈ g₂ → f₁ ≈ f₂
from-unique iso₁ iso₂ hyp = to-unique iso₁⁻¹ iso₂⁻¹ hyp
where
iso₁⁻¹ = record { isoˡ = Iso.isoʳ iso₁ ; isoʳ = Iso.isoˡ iso₁ }
iso₂⁻¹ = record { isoˡ = Iso.isoʳ iso₂ ; isoʳ = Iso.isoˡ iso₂ }
-- Equality of isomorphisms is just equality of the underlying morphism(s).
--
-- Only one equation needs to be given; the equation in the other
-- direction holds automatically (by the above lemmas).
--
-- The reason for wrapping the underlying equality in a record at all
-- is that this helps unification. Concretely, it allows Agda to
-- infer the isos |i| and |j| being related in function applications
-- where only the equation |i ≃ j| is passed as an explicit argument.
infix 4 _≃_
record _≃_ (i j : A ≅ B) : Set e where
constructor ⌞_⌟
open _≅_
field from-≈ : from i ≈ from j
to-≈ : to i ≈ to j
to-≈ = to-unique (iso i) (iso j) from-≈
open _≃_
≃-isEquivalence : IsEquivalence (_≃_ {A} {B})
≃-isEquivalence = record
{ refl = ⌞ refl ⌟
; sym = λ where ⌞ eq ⌟ → ⌞ sym eq ⌟
; trans = λ where ⌞ eq₁ ⌟ ⌞ eq₂ ⌟ → ⌞ trans eq₁ eq₂ ⌟
}
where open Equiv
≃-setoid : ∀ {A B : Obj} → Setoid _ _
≃-setoid {A} {B} = record
{ Carrier = A ≅ B
; _≈_ = _≃_
; isEquivalence = ≃-isEquivalence
}
----------------------------------------------------------------------
-- An alternative, more direct notion of equality on isomorphisms that
-- involves no wrapping/unwrapping.
infix 4 _≃′_
_≃′_ : Rel (A ≅ B) e
_≃′_ = _≈_ on _≅_.from
≃′-isEquivalence : IsEquivalence (_≃′_ {A} {B})
≃′-isEquivalence = On.isEquivalence _≅_.from equiv
≃′-setoid : ∀ {A B : Obj} → Setoid _ _
≃′-setoid {A} {B} = record
{ Carrier = A ≅ B
; _≈_ = _≃′_
; isEquivalence = ≃′-isEquivalence
}
-- The two notions of equality are equivalent
≃⇒≃′ : ∀ {i j : A ≅ B} → i ≃ j → i ≃′ j
≃⇒≃′ eq = from-≈ eq
≃′⇒≃ : ∀ {i j : A ≅ B} → i ≃′ j → i ≃ j
≃′⇒≃ {_} {_} {i} {j} eq = ⌞ eq ⌟
| {
"alphanum_fraction": 0.5655380489,
"avg_line_length": 28.141509434,
"ext": "agda",
"hexsha": "b7b7c6e080a5512827c4570a884754bd71b0ef92",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Morphism/IsoEquiv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Morphism/IsoEquiv.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Morphism/IsoEquiv.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1229,
"size": 2983
} |
open import OutsideIn.Prelude
open import OutsideIn.X
module OutsideIn.Expressions(x : X) where
import OutsideIn.TypeSchema as TS
open TS(x)
open X(x)
{- SYNTAX -}
data Name (n : Set) : NameType → Set where
N : n → Name n Regular
DC : ∀ {x} → dc x → Name n (Datacon x)
mutual
data Alternative (ev tv : Set) : Shape → Set where
_→′_ : ∀ {n : ℕ}{r : Shape}→ Name ev (Datacon n) → Expression (ev ⨁ n) tv r
→ Alternative ev tv (Unary r)
infixr 5 _∣_
data Alternatives (ev tv : Set) : Shape → Set where
esac : Alternatives ev tv Nullary
_∣_ : ∀ {r₁ r₂} → Alternative ev tv r₁ → Alternatives ev tv r₂
→ Alternatives ev tv (Binary r₁ r₂)
data Expression (ev tv : Set) : Shape → Set where
Var : ∀ {x} → Name ev x → Expression ev tv Nullary
λ′_ : ∀ {a} → Expression (Ⓢ ev) tv a → Expression ev tv (Unary a)
_·_ : ∀ {a a′} → Expression ev tv a → Expression ev tv a′ → Expression ev tv (Binary a a′)
let₁_in′_ : ∀ {a a′} → Expression ev tv a → Expression (Ⓢ ev) tv a′
→ Expression ev tv (Binary a a′)
let₂_∷_in′_ : ∀ {a a′} → Expression ev tv a → Type tv → Expression (Ⓢ ev) tv a′
→ Expression ev tv (Binary a a′)
let₃_·_∷_⇒_in′_ : ∀ {a a′} → (n : ℕ) → Expression ev (tv ⨁ n) a
→ QConstraint (tv ⨁ n)
→ Type (tv ⨁ n)
→ Expression (Ⓢ ev) tv a′
→ Expression ev tv (Binary a a′)
case_of_ : ∀ {r₁ r₂} → Expression ev tv r₁ → Alternatives ev tv r₂
→ Expression ev tv (Binary r₁ r₂)
private
module PlusN-f n = Functor (Monad.is-functor (PlusN-is-monad {n}))
module Ⓢ-f = Functor Ⓢ-is-functor
module Type-f = Functor (type-is-functor)
module TypeSchema-f {n} = Functor (type-schema-is-functor {n})
module QC-f = Functor (qconstraint-is-functor)
private
fmap-alt₁ : ∀ {a b tv}{r} → (a → b) → Alternative a tv r → Alternative b tv r
fmap-exp₁ : ∀ {a b tv}{r} → (a → b) → Expression a tv r → Expression b tv r
map-fmap-alt₁ : ∀ {a b tv}{r} → (a → b) → Alternatives a tv r → Alternatives b tv r
fmap-alt₁ f (_→′_ {n} (DC c) expr) = DC c →′ fmap-exp₁ (pn.map f) expr
where module pn = PlusN-f n
fmap-exp₁ f (Var (DC c)) = Var (DC c)
fmap-exp₁ f (Var (N x)) = Var (N (f x))
fmap-exp₁ f (λ′ x) = λ′ (fmap-exp₁ (Ⓢ-f.map f) x)
fmap-exp₁ f (x · y) = (fmap-exp₁ f x) · (fmap-exp₁ f y)
fmap-exp₁ f (let₁ x in′ y) = let₁ (fmap-exp₁ f x) in′ (fmap-exp₁ (Ⓢ-f.map f) y)
fmap-exp₁ f (let₂ x ∷ τ in′ y) = let₂ (fmap-exp₁ f x) ∷ τ in′ (fmap-exp₁ (Ⓢ-f.map f) y)
fmap-exp₁ f (let₃ n · x ∷ Q ⇒ τ in′ y) = let₃ n · fmap-exp₁ f x ∷ Q ⇒ τ
in′ fmap-exp₁ (Ⓢ-f.map f) y
fmap-exp₁ f (case x of alts) = case (fmap-exp₁ f x) of map-fmap-alt₁ f alts
map-fmap-alt₁ f esac = esac
map-fmap-alt₁ f (x ∣ xs) = fmap-alt₁ f x ∣ map-fmap-alt₁ f xs
private
fmap-alt₂ : ∀ {a b ev}{r} → (a → b) → Alternative ev a r → Alternative ev b r
fmap-exp₂ : ∀ {a b ev}{r} → (a → b) → Expression ev a r → Expression ev b r
map-fmap-alt₂ : ∀ {a b ev}{r} → (a → b) → Alternatives ev a r → Alternatives ev b r
fmap-alt₂ f (p →′ expr) = p →′ fmap-exp₂ f expr
fmap-exp₂ f (Var x) = Var x
fmap-exp₂ f (λ′ x) = λ′ (fmap-exp₂ f x)
fmap-exp₂ f (x · y) = fmap-exp₂ f x · fmap-exp₂ f y
fmap-exp₂ f (let₁ x in′ y) = let₁ fmap-exp₂ f x in′ fmap-exp₂ f y
fmap-exp₂ f (let₂ x ∷ τ in′ y) = let₂ fmap-exp₂ f x ∷ Type-f.map f τ in′ fmap-exp₂ f y
fmap-exp₂ f (let₃ n · x ∷ Q ⇒ τ in′ y) = let₃ n · fmap-exp₂ (pn.map f) x
∷ QC-f.map (pn.map f) Q ⇒ Type-f.map (pn.map f) τ
in′ fmap-exp₂ f y
where module pn = PlusN-f n
fmap-exp₂ f (case x of alts) = case (fmap-exp₂ f x) of map-fmap-alt₂ f alts
map-fmap-alt₂ f esac = esac
map-fmap-alt₂ f (x ∣ xs) = fmap-alt₂ f x ∣ map-fmap-alt₂ f xs
private
fmap-alt-id₁ : {A tv : Set} {f : A → A}{r : Shape}
→ isIdentity f → isIdentity (fmap-alt₁ {A}{A}{tv}{r} f)
map-fmap-alt-id₁ : ∀ {a}{tv}{f : a → a}{r : Shape}
→ isIdentity f → isIdentity (map-fmap-alt₁ {a}{a}{tv}{r} f)
fmap-exp-id₁ : ∀{A tv : Set}{r : Shape} {f : A → A} → isIdentity f
→ isIdentity (fmap-exp₁ {A}{A}{tv}{r} f)
fmap-alt-id₁ {A}{f} f-is-id {_→′_ {n} (DC p) x} = cong (_→′_ (DC p)) (fmap-exp-id₁ (pn.identity f-is-id))
where module pn = PlusN-f n
map-fmap-alt-id₁ {r = Unary _} f-is-id {}
map-fmap-alt-id₁ {r = Nullary} f-is-id {esac} = refl
map-fmap-alt-id₁ {r = Binary r₁ r₂} f-is-id {x ∣ xs} = cong₂ _∣_ (fmap-alt-id₁ f-is-id)
(map-fmap-alt-id₁ f-is-id)
fmap-exp-id₁ {r = Nullary} f-is-id {Var (DC x)} = refl
fmap-exp-id₁ {r = Nullary} f-is-id {Var (N x)} = cong Var (cong N f-is-id)
fmap-exp-id₁ {r = Unary r′} f-is-id {λ′ x} = cong λ′_ (fmap-exp-id₁ (Ⓢ-f.identity f-is-id))
fmap-exp-id₁ {r = Binary r₁ r₂} f-is-id {x · y} = cong₂ _·_ (fmap-exp-id₁ f-is-id)
(fmap-exp-id₁ f-is-id)
fmap-exp-id₁ {r = Binary r₁ r₂} f-is-id {let₁ x in′ y}
= cong₂ let₁_in′_ (fmap-exp-id₁ f-is-id) (fmap-exp-id₁ (Ⓢ-f.identity f-is-id))
fmap-exp-id₁ {r = Binary r₁ r₂} f-is-id {let₂ x ∷ τ in′ y}
= cong₂ (λ a b → let₂ a ∷ τ in′ b) (fmap-exp-id₁ f-is-id)
(fmap-exp-id₁ (Ⓢ-f.identity f-is-id))
fmap-exp-id₁ {r = Binary r₁ r₂} f-is-id {let₃ n · x ∷ Q ⇒ τ in′ y}
= cong₂ (λ a b → let₃ n · a ∷ Q ⇒ τ in′ b) (fmap-exp-id₁ f-is-id)
(fmap-exp-id₁ (Ⓢ-f.identity f-is-id))
fmap-exp-id₁ {r = Binary r₁ r₂} f-is-id {case x of alts}
= cong₂ case_of_ (fmap-exp-id₁ f-is-id) (map-fmap-alt-id₁ f-is-id)
private
fmap-alt-id₂ : {A ev : Set}{r : Shape}{f : A → A}
→ isIdentity f → isIdentity (fmap-alt₂ {A}{A}{ev}{r} f)
map-fmap-alt-id₂ : ∀ {a}{ev}{r : Shape}{f : a → a}
→ isIdentity f → isIdentity (map-fmap-alt₂ {a}{a}{ev}{r} f)
fmap-exp-id₂ : ∀{A ev : Set}{r : Shape} {f : A → A}
→ isIdentity f → isIdentity (fmap-exp₂ {A}{A}{ev}{r} f)
fmap-alt-id₂ f-is-id {_→′_ {n} p x} = cong (_→′_ p) (fmap-exp-id₂ f-is-id)
map-fmap-alt-id₂ f-is-id {esac} = refl
map-fmap-alt-id₂ f-is-id {x ∣ xs} = cong₂ _∣_ (fmap-alt-id₂ f-is-id) (map-fmap-alt-id₂ f-is-id)
fmap-exp-id₂ {r = Nullary} f-is-id {Var x} = refl
fmap-exp-id₂ {r = Unary r′} f-is-id {λ′ x} = cong λ′_ (fmap-exp-id₂ f-is-id)
fmap-exp-id₂ {r = Binary r₁ r₂} f-is-id {x · y} = cong₂ _·_ (fmap-exp-id₂ f-is-id)
(fmap-exp-id₂ f-is-id)
fmap-exp-id₂ {r = Binary r₁ r₂} f-is-id {let₁ x in′ y} = cong₂ let₁_in′_ (fmap-exp-id₂ f-is-id)
(fmap-exp-id₂ f-is-id)
fmap-exp-id₂ {r = Binary r₁ r₂} f-is-id {let₂ x ∷ τ in′ y} = cong₃ let₂_∷_in′_
(fmap-exp-id₂ f-is-id)
(Type-f.identity f-is-id)
(fmap-exp-id₂ f-is-id)
fmap-exp-id₂ {r = Binary r₁ r₂} f-is-id {let₃ n · x ∷ Q ⇒ τ in′ y}
= cong₄ (let₃_·_∷_⇒_in′_ n) (fmap-exp-id₂ (pn.identity f-is-id))
(QC-f.identity (pn.identity f-is-id))
(Type-f.identity (pn.identity f-is-id))
(fmap-exp-id₂ f-is-id)
where module pn = PlusN-f n
fmap-exp-id₂ {r = Binary r₁ r₂} f-is-id {case x of alts}
= cong₂ case_of_ (fmap-exp-id₂ f-is-id) (map-fmap-alt-id₂ f-is-id)
private
fmap-alt-comp₁ : {r : Shape} {A B C tv : Set} {f : A → B}{g : B → C} {x : Alternative A tv r}
→ fmap-alt₁ (g ∘ f) x ≡ fmap-alt₁ g (fmap-alt₁ f x)
fmap-exp-comp₁ : {r : Shape}{tv A B C : Set} {f : A → B} {g : B → C} {x : Expression A tv r}
→ fmap-exp₁ (g ∘ f) x ≡ fmap-exp₁ g (fmap-exp₁ f x)
map-fmap-alt-comp₁ : {r : Shape}{A B C tv : Set}{f : A → B}{g : B → C}{l : Alternatives A tv r}
→ map-fmap-alt₁ (g ∘ f) l ≡ map-fmap-alt₁ g (map-fmap-alt₁ f l)
fmap-alt-comp₁ {Nullary} {x = ()}
fmap-alt-comp₁ {Binary _ _}{x = ()}
fmap-alt-comp₁ {Unary r}{f = f}{g}{x = _→′_ {n} (DC p) expr}
= cong (_→′_ (DC p))
(combine-composite′ ⦃ Monad.is-functor (PlusN-is-monad {n}) ⦄ {expr}
fmap-exp₁
(fmap-exp-comp₁ {f = pn.map f}{g = pn.map g}{expr}))
where module pn = PlusN-f n
map-fmap-alt-comp₁ {l = esac} = refl
map-fmap-alt-comp₁ {Binary a b}{A}{B}{C}{tv}{l = x ∣ xs} = cong₂ _∣_ (fmap-alt-comp₁ {x = x}) (map-fmap-alt-comp₁)
fmap-exp-comp₁ {x = Var (N x)} = cong Var (cong N (refl))
fmap-exp-comp₁ {x = Var (DC x)} = refl
fmap-exp-comp₁ {f = f}{g}{x = λ′ x }
= cong λ′_ (combine-composite′ ⦃ Monad.is-functor (Ⓢ-is-monad) ⦄ {x}
fmap-exp₁
(fmap-exp-comp₁ {f = Ⓢ-f.map f}{g = Ⓢ-f.map g}{x}))
fmap-exp-comp₁ {f = f}{g}{x = x · y } = cong₂ _·_ (fmap-exp-comp₁ {f = f}{g}{x})
(fmap-exp-comp₁ {f = f}{g}{y})
fmap-exp-comp₁ {f = f}{g}{x = let₁ x in′ y }
= cong₂ let₁_in′_ (fmap-exp-comp₁ {f = f}{g}{x})
(combine-composite′ ⦃ Monad.is-functor (Ⓢ-is-monad) ⦄ {y}
fmap-exp₁
(fmap-exp-comp₁ {f = Ⓢ-f.map f}{g = Ⓢ-f.map g}{y}))
fmap-exp-comp₁ {f = f}{g}{x = let₂ x ∷ τ in′ y}
= cong₂ (λ a b → let₂ a ∷ τ in′ b) (fmap-exp-comp₁ {f = f}{g}{x})
(combine-composite′ ⦃ Monad.is-functor (Ⓢ-is-monad) ⦄ {y}
fmap-exp₁
(fmap-exp-comp₁ {f = Ⓢ-f.map f}
{g = Ⓢ-f.map g}{y}))
fmap-exp-comp₁ {f = f}{g}{x = let₃ n · x ∷ Q ⇒ τ in′ y}
= cong₂ (λ a b → let₃ n · a ∷ Q ⇒ τ in′ b)
(fmap-exp-comp₁ {f = f}{g}{x})
(combine-composite′ ⦃ Monad.is-functor (Ⓢ-is-monad) ⦄ {y}
fmap-exp₁
(fmap-exp-comp₁ {f = Ⓢ-f.map f}{g = Ⓢ-f.map g}{y}))
fmap-exp-comp₁ {f = f}{g}{x = case x of alts } = cong₂ case_of_
(fmap-exp-comp₁ {f = f}{g}{x})
map-fmap-alt-comp₁
private
fmap-alt-comp₂ : {A B C ev : Set}{r : Shape} {f : A → B} {g : B → C} {x : Alternative ev A r}
→ fmap-alt₂ (g ∘ f) x ≡ fmap-alt₂ g (fmap-alt₂ f x)
fmap-exp-comp₂ : {A B C ev : Set}{r : Shape} {f : A → B} {g : B → C} {x : Expression ev A r}
→ fmap-exp₂ (g ∘ f) x ≡ fmap-exp₂ g (fmap-exp₂ f x)
map-fmap-alt-comp₂ : ∀{r}{A B C ev : Set} {f : A → B} {g : B → C} {alts : Alternatives ev A r}
→ map-fmap-alt₂ (g ∘ f) alts ≡ map-fmap-alt₂ g (map-fmap-alt₂ f alts)
fmap-alt-comp₂ {x = _→′_ {n} p expr} = cong (_→′_ p) fmap-exp-comp₂
map-fmap-alt-comp₂ {alts = esac} = refl
map-fmap-alt-comp₂ {alts = x ∣ xs} = cong₂ _∣_ fmap-alt-comp₂ map-fmap-alt-comp₂
fmap-exp-comp₂ {x = Var a} = refl
fmap-exp-comp₂ {x = λ′ x } = cong λ′_ fmap-exp-comp₂
fmap-exp-comp₂ {x = x · y } = cong₂ _·_ fmap-exp-comp₂ fmap-exp-comp₂
fmap-exp-comp₂ {x = let₁ x in′ y } = cong₂ let₁_in′_ fmap-exp-comp₂ fmap-exp-comp₂
fmap-exp-comp₂ {x = let₂ x ∷ τ in′ y } = cong₃ let₂_∷_in′_ fmap-exp-comp₂ Type-f.composite fmap-exp-comp₂
fmap-exp-comp₂ {x = let₃ n · x ∷ Q ⇒ τ in′ y }
= cong₄ (λ a b c d → let₃ n · a ∷ b ⇒ c in′ d)
(combine-composite′ ⦃ pnf ⦄ fmap-exp₂ fmap-exp-comp₂)
(combine-composite ⦃ qconstraint-is-functor ⦄ ⦃ pnf ⦄)
(combine-composite ⦃ type-is-functor ⦄ ⦃ pnf ⦄)
fmap-exp-comp₂
where pnf = Monad.is-functor (PlusN-is-monad {n})
fmap-exp-comp₂ {x = case x of alts } = cong₂ case_of_ fmap-exp-comp₂ map-fmap-alt-comp₂
alternatives-is-functor₁ : ∀{tv}{r} → Functor (λ x → Alternatives x tv r)
alternatives-is-functor₁ = record { map = map-fmap-alt₁
; identity = map-fmap-alt-id₁
; composite = map-fmap-alt-comp₁
}
alternatives-is-functor₂ : ∀{ev}{r} → Functor (λ x → Alternatives ev x r)
alternatives-is-functor₂ = record { map = map-fmap-alt₂
; identity = map-fmap-alt-id₂
; composite = map-fmap-alt-comp₂
}
alternative-is-functor₁ : ∀{tv}{r} → Functor (λ x → Alternative x tv r)
alternative-is-functor₁ = record { map = fmap-alt₁
; identity = fmap-alt-id₁
; composite = λ { {x = x} → fmap-alt-comp₁ {x = x} }
}
alternative-is-functor₂ : ∀{ev}{r} → Functor (λ x → Alternative ev x r)
alternative-is-functor₂ = record { map = fmap-alt₂
; identity = fmap-alt-id₂
; composite = fmap-alt-comp₂
}
expression-is-functor₁ : ∀{tv}{r} → Functor (λ x → Expression x tv r)
expression-is-functor₁ {tv}{r} = record { map = fmap-exp₁
; identity = fmap-exp-id₁
; composite = λ {A}{B}{C}{f}{g}{x}
→ fmap-exp-comp₁ {r}{tv}{A}{B}{C}{f}{g}{x}
}
expression-is-functor₂ : ∀{ev}{r} → Functor (λ x → Expression ev x r)
expression-is-functor₂ = record { map = fmap-exp₂
; identity = fmap-exp-id₂
; composite = fmap-exp-comp₂
}
| {
"alphanum_fraction": 0.4662153013,
"avg_line_length": 59.3172690763,
"ext": "agda",
"hexsha": "2232fb32ae995a926610a7800fc2b33394e655ea",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "liamoc/outside-in",
"max_forks_repo_path": "OutsideIn/Expressions.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "liamoc/outside-in",
"max_issues_repo_path": "OutsideIn/Expressions.agda",
"max_line_length": 118,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "fc1fc1bba2af95806d9075296f9ed1074afa4c24",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "liamoc/outside-in",
"max_stars_repo_path": "OutsideIn/Expressions.agda",
"max_stars_repo_stars_event_max_datetime": "2020-11-19T14:30:07.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-14T05:22:15.000Z",
"num_tokens": 4943,
"size": 14770
} |
{-# OPTIONS --cubical #-}
module Type.Cubical.Path.Equality where
open import Functional
open import Function.Axioms
import Lvl
open import Type
open import Type.Cubical
open import Type.Cubical.Path
open import Type.Cubical.Path.Proofs as Path
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Structure.Relator
open import Structure.Setoid using (Equiv ; intro)
open import Structure.Type.Identity
private variable ℓ ℓ₁ ℓ₂ ℓₚ : Lvl.Level
private variable T A B C : Type{ℓ}
private variable f : A → B
private variable _▫_ : A → B → C
private variable P : T → Type{ℓ}
private variable x y : T
_≡_ : T → T → Type
_≡_ = Path
instance
Path-reflexivity : Reflexivity{T = T}(Path)
Path-reflexivity = intro Path.point
instance
Path-symmetry : Symmetry{T = T}(Path)
Path-symmetry = intro Path.reverse
instance
Path-transitivity : Transitivity{T = T}(Path)
Path-transitivity = intro Path.concat
instance
Path-equivalence : Equivalence{T = T}(Path)
Path-equivalence = intro
instance
Path-equiv : Equiv(T)
Path-equiv = intro(Path) ⦃ Path-equivalence ⦄
instance
Path-congruence₁ : Function(f)
Path-congruence₁ {f = f} = intro(Path.map f)
instance
Path-congruence₂ : BinaryOperator(_▫_)
Path-congruence₂ {_▫_ = _▫_} = intro(Path.map₂(_▫_))
instance
Path-substitution₁ : UnaryRelator(P)
Path-substitution₁ {P = P} = intro(Path.liftedSpaceMap P)
instance
Path-substitution₂ : BinaryRelator(_▫_)
Path-substitution₂ {_▫_ = _▫_} = intro(Path.liftedSpaceMap₂(_▫_))
instance
Path-coercion : Path ⊆₂ (_→ᶠ_ {ℓ}{ℓ})
Path-coercion = intro(Path.spaceMap)
Path-sub-of-reflexive : ⦃ refl : Reflexivity(_▫_) ⦄ → (Path ⊆₂ (_▫_))
Path-sub-of-reflexive {_▫_ = _▫_} = intro(\{a b} → ab ↦ sub₂(Path)(_→ᶠ_) ⦃ Path-coercion ⦄ (congruence₂ᵣ(_▫_)(a) ab) (reflexivity(_▫_) {a}))
instance
Path-function-extensionality : FunctionExtensionality A B
Path-function-extensionality = intro Path.mapping
instance
Path-dependent-function-extensionality : ∀{A : Type{ℓ₁}}{B : (a : A) → Type{ℓ₂}} → DependentFunctionExtensionality A B
Path-dependent-function-extensionality = intro Path.mapping
instance
Path-function-application : FunctionApplication A B
Path-function-application = intro Path.mappingPoint
Path-identity-eliminator : IdentityEliminator{ℓₚ = ℓₚ}(Path{P = T})
IdentityEliminator.elim Path-identity-eliminator P prefl eq = sub₂(Path)(_→ᶠ_) ⦃ Path-coercion ⦄ (\i → P(\j → eq(Interval.min i j))) prefl
-- TODO: Organize and move everything below
open import Type.Properties.MereProposition
open import Type.Properties.Singleton
prop-is-prop-unit : ⦃ proof : MereProposition(A) ⦄ → IsUnit(MereProposition(A))
MereProposition.uniqueness (IsUnit.unit prop-is-prop-unit) {x} {y} = uniqueness _
MereProposition.uniqueness (IsUnit.uniqueness (prop-is-prop-unit {A = A}) {intro p} i) {x}{y} j = Interval.hComp d x where
d : Interval → Interval.Partial (Interval.max (Interval.max (Interval.flip i) i) (Interval.max (Interval.flip j) j)) A
d k (i = Interval.𝟎) = uniqueness(A) {x}{p{x}{y} j} k
d k (i = Interval.𝟏) = uniqueness(A) {x}{uniqueness(A) {x}{y} j} k
d k (j = Interval.𝟎) = uniqueness(A) {x}{x} k
d k (j = Interval.𝟏) = uniqueness(A) {x}{y} k
{-
Path-isUnit : ∀{ℓ}{A : Type{ℓ}} → ⦃ _ : MereProposition(A) ⦄ → (∀{x y : A} → IsUnit(x ≡ y))
IsUnit.unit (Path-isUnit {A = A}) = uniqueness(A)
IsUnit.uniqueness (Path-isUnit {A = A} ⦃ mere-A ⦄ {x = x} {y = y}) {p} i = Interval.hComp d p where
d : Interval → Interval.Partial (Interval.max (Interval.flip i) i) (Path x y)
d j (i = Interval.𝟎) = p
d j (i = Interval.𝟏) = {!uniqueness(A) {x}{y}!}
-- congruence₁ (prop ↦ MereProposition.uniqueness prop {x}{y}) (IsUnit.uniqueness prop-is-prop-unit {intro (\{x y} → {!p!})})
-}
{-
open import Structure.Setoid.Uniqueness
open import Type.Dependent
-}
-- TODO
-- ∀{eu₁ eu₂ : ∃!{Obj = Obj}(Pred)} → () → (eu₁ ≡ eu₂)
{-
Unique-MereProposition-equivalence : ⦃ prop : ∀{x} → MereProposition(P(x)) ⦄ → (Unique(P) ↔ MereProposition(∃ P))
Unique-MereProposition-equivalence {P = P} = [↔]-intro l r where
l : Unique(P) ← MereProposition(∃ P)
l (intro p) {x} {y} px py = mapP([∃]-witness) (p{[∃]-intro x ⦃ px ⦄} {[∃]-intro y ⦃ py ⦄})
r : Unique(P) → MereProposition(∃ P)
MereProposition.uniqueness (r p) {[∃]-intro w₁ ⦃ p₁ ⦄} {[∃]-intro w₂ ⦃ p₂ ⦄} i = mapP (mapP (\w p → [∃]-intro w ⦃ p ⦄) (p p₁ p₂) i) {!!} i
-- mapP [∃]-intro (p p₁ p₂) i ⦃ {!!} ⦄
Unique-prop : ⦃ prop : ∀{x} → MereProposition(P(x)) ⦄ → MereProposition(Unique(P))
MereProposition.uniqueness Unique-prop {u₁} {u₂} i {x} {y} px py j = Interval.hComp d x where
d : Interval → Interval.Partial (Interval.max (Interval.max (Interval.flip i) i) (Interval.max (Interval.flip j) j)) A
d k (i = Interval.𝟎) = {!!}
d k (i = Interval.𝟏) = {!!}
d k (j = Interval.𝟎) = {!!}
d k (j = Interval.𝟏) = {!!}
[∃!trunc]-to-existence : ⦃ prop : ∀{x} → MereProposition(Pred(x)) ⦄ → HTrunc₁(∃!{Obj = Obj}(Pred)) → HomotopyLevel(0)(∃{Obj = Obj}(Pred))
[∃!trunc]-to-existence {Pred = Pred} (trunc ([∧]-intro e u)) = intro e (\{e₂} i → [∃]-intro (u ([∃]-proof e₂) ([∃]-proof e) i) ⦃ {!!} ⦄)
-- MereProposition.uniqueness test) {u _ _ _}
-- sub₂(_≡_)(_→ᶠ_) ⦃ [≡][→]-sub ⦄ (congruence₁(Pred) ?) ?
[∃!trunc]-to-existence (trunc-proof i) = {!!}
-}
{-
[∃!]-squashed-witness : HTrunc₁(∃!{Obj = Obj}(Pred)) → Obj
[∃!]-squashed-witness (trunc eu) = [∃]-witness([∧]-elimₗ eu)
[∃!]-squashed-witness (trunc-proof {trunc ([∧]-intro e₁ u₁)} {trunc ([∧]-intro e₂ u₂)} i) = u₁ ([∃]-proof e₁) ([∃]-proof e₂) i
[∃!]-squashed-witness (trunc-proof {trunc ([∧]-intro e₁ u₁)} {trunc-proof j} i) = {!!}
[∃!]-squashed-witness (trunc-proof {trunc-proof i₁} {trunc x} i) = {!!}
[∃!]-squashed-witness (trunc-proof {trunc-proof i₁} {trunc-proof i₂} i) = {!!}
-}
| {
"alphanum_fraction": 0.6576207544,
"avg_line_length": 38.5460526316,
"ext": "agda",
"hexsha": "1e1a544f3dfedd2ee6a4ab914362189772f30fab",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Cubical/Path/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Cubical/Path/Equality.agda",
"max_line_length": 140,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Cubical/Path/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2188,
"size": 5859
} |
module PureLambda where
data D : Set where
lam : (D -> D) -> D
_·_ : D -> D -> D
lam f · x = f x
δ : D
δ = lam (\x -> x · x)
loop : D
loop = δ · δ
| {
"alphanum_fraction": 0.464516129,
"avg_line_length": 9.6875,
"ext": "agda",
"hexsha": "adc127c6ce2d76464bea40347e1bf88ea4490bdd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/PureLambda.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/PureLambda.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/PureLambda.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 65,
"size": 155
} |
-- 2010-09-07 Andreas
module IrrelevantRecordMatching where
record Prod (A B : Set) : Set where
constructor _,_
field
fst : A
snd : B
wrongElim : {A : Set} -> .(Prod A A) -> A
wrongElim (a , a') = a
-- needs to fail because a is irrelevant | {
"alphanum_fraction": 0.6377952756,
"avg_line_length": 19.5384615385,
"ext": "agda",
"hexsha": "bb347fad5194d3b230399ad7fa2ea9fc85f939e8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/IrrelevantRecordMatching.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/IrrelevantRecordMatching.agda",
"max_line_length": 41,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/IrrelevantRecordMatching.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 82,
"size": 254
} |
module _ where
open import Common.Prelude hiding (_>>=_)
open import Common.Reflection
pattern `Nat = def (quote Nat) []
unquoteDecl f =
declareDef (vArg f) `Nat >>= λ _ →
freshName "aux" >>= λ aux →
declareDef (vArg aux) `Nat >>= λ _ →
defineFun f (clause [] (def aux []) ∷ [])
| {
"alphanum_fraction": 0.6254295533,
"avg_line_length": 20.7857142857,
"ext": "agda",
"hexsha": "a293f56b2b1c411139e4b20adf5634a33173d8b2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/UnquoteDeclHelperNotDefined.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/Fail/UnquoteDeclHelperNotDefined.agda",
"max_line_length": 43,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/Fail/UnquoteDeclHelperNotDefined.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 90,
"size": 291
} |
module Structure.LinearAlgebra where
import Lvl
open import Data
open import Data.Tuple
open import Functional hiding (id)
open import Function.Equals
open import Function.Proofs
open import Logic
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Logic.Predicate
open import Numeral.CoordinateVector as Vec using () renaming (Vector to Vec)
open import Numeral.Finite
open import Numeral.Natural
open import Numeral.Natural.Relation.Order
open import Numeral.Natural.Relation.Order.Proofs
-- open import Relator.Equals
-- open import Relator.Equals.Proofs
open import Structure.Setoid
open import Structure.Setoid.Uniqueness
open import Structure.Setoid.Uniqueness.Proofs
open import Structure.Function.Domain
import Structure.Function.Linear as Linear
open import Structure.Operator.Field
open import Structure.Operator.Group
open import Structure.Operator.Properties hiding (commutativity)
open import Structure.Operator.Vector
open import Syntax.Number
open import Type
-- Finite dimensional linear algebra
-- TODO: Apparently, most of linear algebra will not work in constructive logic
module _
{ℓᵥ ℓₛ : Lvl.Level}
{V : Type{ℓᵥ}}
⦃ equiv-V : Equiv(V) ⦄
{S : Type{ℓₛ}}
⦃ equiv-S : Equiv(S) ⦄
{_+ᵥ_ : V → V → V}
{_⋅ₛᵥ_ : S → V → V}
{_+ₛ_ _⋅ₛ_ : S → S → S}
⦃ vectorSpace : VectorSpace(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) ⦄
where
module _ where
open VectorSpace(vectorSpace)
-- A list of scalars
Scalars : ℕ → Type
Scalars(n) = Vec(n)(S) -- TODO: Prove that this type is a group if its underlying type (S) is a group. THen proceed to prove that injective-kernelᵣ holds with LinearCombination(_) being a homomorphism, which one can deduce that LinearlyIndependent is equivalent to Injective.
-- A list of vectors
Vectors : ℕ → Type
Vectors(n) = Vec(n)(V)
module _ where
-- TODO: Make this a record instead, and then define an "eval"-function and prove LinearCombination-addition for this eval function (homomorphism)
-- A specific linear combination of vectors (specific as specified by scalars).
-- Linear combination of 0 scalars and vectors are the zero vector.
-- Linear combination of 1 scalar and vector is just scalar on vector multiplication.
-- Example: LinearCombination {4} sf vf = (sf[0] ⋅ₛᵥ vf[0]) +ᵥ (sf[1] ⋅ₛᵥ vf[1]) +ᵥ (sf[2] ⋅ₛᵥ vf[2]) +ᵥ (sf[3] ⋅ₛᵥ vf[3])
LinearCombination : ∀{n} → Vectors(n) → Scalars(n) → V
LinearCombination {0} _ _ = 𝟎ᵥ
LinearCombination {1} vf sf = Vec.proj(sf)(0) ⋅ₛᵥ Vec.proj(vf)(0)
LinearCombination {𝐒(𝐒(n))} vf sf = (Vec.proj(sf)(0) ⋅ₛᵥ Vec.proj(vf)(0)) +ᵥ (LinearCombination {𝐒(n)} (Vec.tail vf) (Vec.tail sf))
postulate LinearCombination-addition : ∀{n}{sf₁ sf₂}{vf} → (LinearCombination{n}(vf)(sf₁) +ᵥ LinearCombination{n}(vf)(sf₂) ≡ LinearCombination{n}(vf)(sf₁ ⦗ Vec.map₂ (_+ₛ_) ⦘ sf₂))
postulate LinearCombination-subtraction : ∀{n}{sf₁ sf₂}{vf} → (LinearCombination{n}(vf)(sf₁) −ᵥ LinearCombination{n}(vf)(sf₂) ≡ LinearCombination{n}(vf)(sf₁ ⦗ Vec.map₂ (_−ₛ_) ⦘ sf₂))
-- Spanning(vf) ⇔ (VSP = Span(vf))
-- A set of vectors is spanning the vector space when every vector in the vector space can be represented as a linear combination of the set of vectors.
Spanning : ∀{n} → Vectors(n) → Stmt
Spanning(vf) = (∀{v} → ∃(sf ↦ LinearCombination(vf)(sf) ≡ v))
-- Basis(vf) ⇔ (vf is a basis)
-- A set of vectors is a basis when every vector in the vector space can be represented as a unique linear combination of the set of vectors.
-- A set of vectors is a basis when they span the vector space and is linearly independent.
Basis : ∀{n} → Vectors(n) → Stmt
Basis(vf) = (∀{v} → ∃!(sf ↦ LinearCombination(vf)(sf) ≡ v)) -- TODO: Should be some kind of set equality. Could be impossible to prove the uniqueness otherwise because one can just permute for commutative scalars
-- A set of vectors is linearly independent when there is no vector that can be represented as a linear combination by the others.
LinearlyIndependent : ∀{n} → Vectors(n) → Stmt
LinearlyIndependent{n}(vf) = ∀{sf} → (LinearCombination(vf)(sf) ≡ 𝟎ᵥ) → (∀{i} → Vec.proj(sf)(i) ≡ 𝟎ₛ) -- sf ⊜ fill(𝟎ₛ)
postulate independent-injective : ∀{n}{vf} → LinearlyIndependent{n}(vf) ↔ (∀{sf₁ sf₂} → (LinearCombination(vf)(sf₁) ≡ LinearCombination(vf)(sf₂)) → (∀{i}→ Vec.proj(sf₁)(i) ≡ Vec.proj(sf₂)(i))) -- TODO: Vec.proj(sf₁) ⊜ Vec.proj(sf₂)
-- TODO: Is there some axioms that make this happen? I remember this pattern from somewhere, that injectivity is equivalent to stuff being the identity of something. Maybe it is usually expressed using a kernel? See the note written above
-- TODO: Express this as injectivity when `Injective` is general over setoids
basis-span-independent : ∀{n}{vf : Vectors(n)} → Basis(vf) ↔ (Spanning(vf) ∧ LinearlyIndependent(vf))
basis-span-independent{n}{vf} = [↔]-intro (uncurry l) (([↔]-to-[←] [→][∧]-distributivityₗ) ([∧]-intro r₁ r₂)) where
l : Spanning(vf) → LinearlyIndependent(vf) → Basis(vf)
l spanning indep {v} = [∃!]-intro existence uniqueness where
existence : ∃(sf ↦ LinearCombination(vf)(sf) ≡ v)
existence = spanning
postulate uniqueness : Unique(sf ↦ LinearCombination(vf)(sf) ≡ v)
-- uniqueness = ([↔]-elimₗ Uniqueness-Injectivity) (([↔]-elimᵣ independent-injective) indep)
-- TODO: `Injective` over setoids is blocking this proof. It is at the moment proving something incorrect
r₁ : Basis(vf) → Spanning(vf)
r₁(proof) {v} = [∃!]-existence(proof{v})
postulate r₂ : Basis(vf) → LinearlyIndependent(vf)
-- TODO: `Injective` over setoids is blocking this proof. It is at the moment proving something incorrect
-- Cardinality of a set of linearly independent vectors is always less than the cardinality of a set of spanning vectors
postulate independent-less-than-spanning : ∀{n₁ n₂} → ∀{vf₁} → LinearlyIndependent{n₁}(vf₁) → ∀{vf₂} → Spanning{n₂}(vf₂) → (n₁ ≤ n₂)
-- Existence of a subset of spanning vectors which is a basis
-- TODO: postulate basis-from-spanning : ∀{n}{vf} → ⦃ _ : Spanning{n}(vf) ⦄ → ∃(m ↦ (m ≤ n) ∧ ∃(f ↦ Basis{n}(vf ∘ f) ∧ Injective(f)))
-- Existence of a finite set of vectors which spans the vector space
-- A "finite dimensional vector space" is sometimes defined as a vector space which satisfies this proposition.
postulate span-existence : ∃(n ↦ ∃(vf ↦ Spanning{n}(vf)))
-- TODO: Usually, this exists because one can take the whole set
-- Existence of a basis
postulate basis-existence : ∃(n ↦ ∃(vf ↦ Basis{n}(vf)))
-- A set of linearly independent vectors is smaller than a set of basis vectors
postulate independent-lesser-than-basis-number : ∀{m n} → {vfₘ : Vectors(m)} → LinearlyIndependent(vfₘ) → {vfₙ : Vectors(n)} → Basis(vfₙ) → (m ≤ n)
-- Every set of basis vectors are equal in size
postulate basis-equal-number : ∀{m n} → {vfₘ : Vectors(m)} → Basis(vfₘ) → {vfₙ : Vectors(n)} → Basis(vfₙ) → (m ≡ n)
-- The dimension of the vector space
dim : ℕ
dim = [∃]-witness(basis-existence)
-- Existence of a superset of linearly independent vectors which is a basis
-- TODO: basis-from-linearly-independent : ∀{n}{vf} → ⦃ _ : Spanning{n}(vf) ⦄ → ∃(m ↦ (m ≥ n) ∧ ∃(f ↦ Basis{n}(vf ∘ f) ∧ Injective(f)))
postulate basis-from-dim-spanning : ∀{vf} → Spanning{dim}(vf) → Basis{dim}(vf)
postulate basis-from-dim-independent : ∀{vf} → LinearlyIndependent{dim}(vf) → Basis{dim}(vf)
-- TODO: Move to some algebraic structure?
-- Nilpotent(f) = ∃(n ↦ ∀{v} → (f ^ n ≡ 𝟎ᵥ))
module _ where
private LinearMap = Linear.LinearMap(_+ᵥ_)(_⋅ₛᵥ_)(_+ᵥ_)(_⋅ₛᵥ_)
postulate linear-map-id : LinearMap(Function.id)
-- v is a eigenvector for the eigenvalue 𝜆 of the linear transformation f
Eigenvector : (V → V) → S → V → Stmt
Eigenvector(f)(𝜆)(v) = ((v ≢ 𝟎ᵥ) → (f(v) ≡ 𝜆 ⋅ₛᵥ v))
-- 𝜆 is a eigenvalue of the linear transformation f
-- Multiplication by an eigenvalue can replace a linear transformation for certain vectors.
Eigenvalue : (V → V) → S → Stmt
Eigenvalue(f)(𝜆) = (∀{v : V} → Eigenvector(f)(𝜆)(v))
-- Two linear mappings are similiar when there is a basis in which they are equal.
-- Similiar : (f : V → V) → ⦃ _ : LinearMap(f) ⦄ → (g : V → V) → ⦃ _ : LinearMap(g) ⦄ → Stmt
-- Similiar(f)(g) = (∀{v} → ∃(b ↦ Bijective(b) ∧ (f(v) ≡ (b ∘ g ∘ (inv(b)))(v))))
record DotProductSpace (_∙_ : V → V → S) (_≤_ : S → S → Stmt) : Stmt where
field
commutativity : Commutativity(_∙_)
linearmapₗ : ∀{v₂} → Linear.LinearMap(_+ᵥ_)(_⋅ₛᵥ_)(_+ₛ_)(_⋅ₛ_) (_∙ v₂)
positive : ∀{v} → (𝟎ₛ ≤ (v ∙ v))
injective-zero : ∀{v} → ((v ∙ v) ≡ 𝟎ₛ) → (v ≡ 𝟎ᵥ)
postulate [⋅ₛᵥ]-commuting : ∀{s}{v₁ v₂} → ((s ⋅ₛᵥ v₁) ∙ v₂) ≡ (v₁ ∙ (s ⋅ₛᵥ v₂))
postulate almost-injectivity-zeroₗ : ∀{v₁} → (∀{v₂} → ((v₁ ∙ v₂) ≡ 𝟎ₛ)) → (v₁ ≡ 𝟎ᵥ)
postulate injectivityₗ : ∀{v₁ v₂} → (∀{v₃} → ((v₁ ∙ v₃) ≡ (v₂ ∙ v₃))) → (v₁ ≡ v₂)
module Norm (√ : S → S) where
-- The length of a vector
norm : V → S
norm(v) = √(v ∙ v)
-- The positive part of a scalar
abs : S → S
abs(s) = √(s ⋅ₛ s)
postulate homogeneity : ∀{s}{v} → norm(s ⋅ₛᵥ v) ≡ abs(s) ⋅ₛ norm(v)
postulate triangle-inequality : ∀{v₁ v₂} → (norm(v₁ +ᵥ v₂) ≤ (norm(v₁) +ₛ norm(v₂)))
postulate positivity : ∀{v} → (𝟎ₛ ≤ norm(v))
postulate injectivity-zero : ∀{v} → (norm(v) ≡ 𝟎ₛ) → (v ≡ 𝟎ᵥ)
postulate mult-inequality : ∀{v₁ v₂} → (abs(v₁ ∙ v₂) ≤ (norm(v₁) ⋅ₛ norm(v₂)))
-- Two vectors are orthogonal when they are perpendicular.
Orthogonal : V → V → Stmt
Orthogonal(v₁)(v₂) = (v₁ ∙ v₂ ≡ 𝟎ₛ)
{-
OrthogonalAll : ∀{n} → Vectors(n) → Stmt
OrthogonalAll{0} (vf) = ⊤
OrthogonalAll{1} (vf) = Orthogonal(vf(0))(vf(1))
OrthogonalAll{𝐒(𝐒(n))} (vf) = (OrthogonalAll{n} (vf)) ∧ Orthogonal(vf(n))(vf(𝐒(n)))
-}
postulate hypotenuse-length : ∀{v₁ v₂} → ⦃ _ : Orthogonal(v₁)(v₂) ⦄ → ((v₁ +ᵥ v₂) ∙ (v₁ +ᵥ v₂) ≡ (v₁ ∙ v₁) +ₛ (v₂ ∙ v₂))
-- Transforms a vector to an unit vector in the same direction.
normalize : (v : V) → ⦃ _ : v ≢ 𝟎ᵥ ⦄ → V
normalize(v) ⦃ proof ⦄ = (⅟ₛ (norm(v)) ⦃ contrapositiveᵣ (injectivity-zero) (proof) ⦄) ⋅ₛᵥ v
postulate norm-of-normalize : ∀{v} → ⦃ nonzero : (v ≢ 𝟎ᵥ) ⦄ → (norm(normalize(v) ⦃ nonzero ⦄) ≡ 𝟏ₛ)
-- -- TODO: Is it okay for VSP₂ to have a different scalar field compared to VSP? Some stuff will not be compatible (like addition for the same scalar type)?
-- module _ {V₂} ⦃ lang₂ ⦄ (VSP₂ : VectorSpace(V₂)(S) ⦃ lang₂ ⦄) where
-- open Language ⦃ ... ⦄
-- open VectorSpace ⦃ ... ⦄
--
-- private _+ᵥ₁_ = _+ᵥ_ ⦃ lang ⦄
-- private _⋅ₛᵥ₁_ = _⋅ₛᵥ_ ⦃ lang ⦄
-- private _+ᵥ₂_ = _+ᵥ_ ⦃ lang₂ ⦄
-- private _⋅ₛᵥ₂_ = _⋅ₛᵥ_ ⦃ lang₂ ⦄
--
-- private LinearMap₁₂ = Linear.LinearMap(_+ᵥ₁_)(_⋅ₛᵥ₁_)(_+ᵥ₂_)(_⋅ₛᵥ₂_)
-- private LinearMap₂₁ = Linear.LinearMap(_+ᵥ₂_)(_⋅ₛᵥ₂_)(_+ᵥ₁_)(_⋅ₛᵥ₁_)
--
-- module _ where
-- -- Kernel(f)(v) ⇔ (v ∈ Kernel(f))
-- Kernel : (f : V → V₂) → ⦃ _ : LinearMap₁₂(f) ⦄ → V → Stmt
-- Kernel(f)(v) = (f(v) ≡ 𝟎ᵥ ⦃ lang₂ ⦄ ⦃ VSP₂ ⦄)
--
-- -- TODO: Move away the module for two vector spaces from one so that dim is not bound to V
-- -- rank : (V → V₂) → ℕ
-- -- rank(_) = dim ⦃ VSP₂ ⦄
--
-- module _ where
-- postulate linear-map-const-zero : LinearMap₁₂(const(𝟎ᵥ ⦃ lang₂ ⦄ ⦃ VSP₂ ⦄))
--
-- -- The inverse of an invertible linear mapping is a linear mapping
-- postulate linear-inverse : ∀{f} → ⦃ _ : Bijective(f) ⦄ → LinearMap₁₂(f) → LinearMap₂₁(inv(f))
--
-- -- Injectivity for only the zero vector implies injectivity
-- postulate injective-zero : ∀{f} → ⦃ _ : LinearMap₁₂(f) ⦄ → (∀{v} → (f(v) ≡ 𝟎ᵥ ⦃ lang₂ ⦄ ⦃ VSP₂ ⦄) → (v ≡ 𝟎ᵥ ⦃ lang ⦄ ⦃ VSP ⦄)) → Injective(f)
--
-- -- module _ {_∙₁_ : V → V → S}{_≤₁_} {_∙₂_ : V₂ → V₂ → S}{_≤₂_} (DPSP₁ : DotProductSpace(_∙₁_)(_≤₁_)) (DPSP₂ : DotProductSpace(_∙₂_)(_≤₂_)) where
-- -- Adjoint : (f : V → V₂) → ⦃ _ : LinearMap₁₂(f) ⦄ → (g : V₂ → V) → ⦃ _ : LinearMap₂₁(g) ⦄ → Stmt
-- -- Adjoint(f)(g) = (∀{v₁ : V}{v₂ : V₂} → (f(v₁) ∙₂ v₂ ≡ v₁ ∙₁ g(v₂)))
| {
"alphanum_fraction": 0.6170468187,
"avg_line_length": 52.280334728,
"ext": "agda",
"hexsha": "bc1bca8792ca3dc6eb2cc115a3094cc1c02f8b1b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "old/Structure/LinearAlgebra.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "old/Structure/LinearAlgebra.agda",
"max_line_length": 279,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "old/Structure/LinearAlgebra.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4593,
"size": 12495
} |
{-# OPTIONS --universe-polymorphism #-}
open import Categories.Category
module Categories.Pullback {o ℓ e} (C : Category o ℓ e) where
open Category C
open import Level
record Pullback {X Y Z}(f : X ⇒ Z)(g : Y ⇒ Z) : Set (o ⊔ ℓ ⊔ e) where
field
P : Obj
p₁ : P ⇒ X
p₂ : P ⇒ Y
field
.commutes : f ∘ p₁ ≡ g ∘ p₂
universal : ∀ {Q}(q₁ : Q ⇒ X)(q₂ : Q ⇒ Y)
→ .(commutes : (f ∘ q₁ ≡ g ∘ q₂)) → (Q ⇒ P)
.universal-unique : ∀ {Q} {q₁ : Q ⇒ X} {q₂ : Q ⇒ Y}
.{commutes : f ∘ q₁ ≡ g ∘ q₂}
(u : Q ⇒ P)
.(p₁∘u≡q₁ : p₁ ∘ u ≡ q₁)
.(p₂∘u≡q₂ : p₂ ∘ u ≡ q₂)
→ u ≡ universal q₁ q₂ commutes
.p₁∘universal≡q₁ : ∀ {Q} {q₁ : Q ⇒ X} {q₂ : Q ⇒ Y}
.{commutes : f ∘ q₁ ≡ g ∘ q₂}
→ (p₁ ∘ universal q₁ q₂ commutes ≡ q₁)
.p₂∘universal≡q₂ : ∀ {Q} {q₁ : Q ⇒ X} {q₂ : Q ⇒ Y}
.{commutes : f ∘ q₁ ≡ g ∘ q₂}
→ (p₂ ∘ universal q₁ q₂ commutes ≡ q₂)
glue : ∀ {W X Y Z : Obj} {f0 : W ⇒ X}{f : X ⇒ Z}{g : Y ⇒ Z}
→ (p : Pullback f g) → Pullback f0 (Pullback.p₁ p) → Pullback (f ∘ f0) g
glue {f0 = f0} {f} {g} R L = record {
P = L.P;
p₁ = L.p₁;
p₂ = R.p₂ ∘ L.p₂;
commutes = begin (f ∘ f0) ∘ L.p₁ ↓⟨ assoc ⟩
f ∘ f0 ∘ L.p₁ ↓⟨ ∘-resp-≡ʳ L.commutes ⟩
f ∘ R.p₁ ∘ L.p₂ ↑⟨ assoc ⟩
(f ∘ R.p₁) ∘ L.p₂ ↓⟨ ∘-resp-≡ˡ R.commutes ⟩
(g ∘ R.p₂) ∘ L.p₂ ↓⟨ assoc ⟩
g ∘ R.p₂ ∘ L.p₂ ∎;
universal = λ q₁ q₂ commutes → L.universal q₁ (R.universal (f0 ∘ q₁) q₂ (Equiv.trans (Equiv.sym assoc) commutes))
(Equiv.sym R.p₁∘universal≡q₁);
universal-unique = λ {Q} {q₁} u p₁∘u≡q₁ p₂∘u≡q₂ →
L.universal-unique u p₁∘u≡q₁
(R.universal-unique (L.p₂ ∘ u) (begin
R.p₁ ∘ L.p₂ ∘ u ↑⟨ assoc ⟩
(R.p₁ ∘ L.p₂) ∘ u ↑⟨ ∘-resp-≡ˡ L.commutes ⟩
(f0 ∘ L.p₁) ∘ u ↓⟨ assoc ⟩
f0 ∘ L.p₁ ∘ u ↓⟨ ∘-resp-≡ʳ p₁∘u≡q₁ ⟩
f0 ∘ q₁ ∎)
(Equiv.trans (Equiv.sym assoc) p₂∘u≡q₂));
p₁∘universal≡q₁ = L.p₁∘universal≡q₁;
p₂∘universal≡q₂ = Equiv.trans assoc (Equiv.trans (∘-resp-≡ʳ L.p₂∘universal≡q₂) R.p₂∘universal≡q₂) }
where
module L = Pullback L
module R = Pullback R
open HomReasoning
| {
"alphanum_fraction": 0.3344969851,
"avg_line_length": 47.0298507463,
"ext": "agda",
"hexsha": "e5c6e7039d19d5533c6650b4e3a50027348e75b9",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Pullback.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Pullback.agda",
"max_line_length": 136,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Pullback.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 1056,
"size": 3151
} |
module Issue2641.Import where
open import Agda.Builtin.Nat
five : Nat
five = 5
| {
"alphanum_fraction": 0.756097561,
"avg_line_length": 10.25,
"ext": "agda",
"hexsha": "d8236871439a5cce045efdcba9a9f559eda830fa",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2641/Import.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2641/Import.agda",
"max_line_length": 29,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2641/Import.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 26,
"size": 82
} |
{-# OPTIONS --safe --warning=error #-}
open import Sets.EquivalenceRelations
open import Functions.Definition
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_; Setω)
open import Setoids.Setoids
open import Groups.Definition
open import LogicalFormulae
open import Orders.WellFounded.Definition
open import Numbers.Naturals.Semiring
open import Groups.Lemmas
open import Groups.Homomorphisms.Definition
open import Groups.Homomorphisms.Lemmas
module Groups.FreeProduct.UniversalProperty {i : _} {I : Set i} (decidableIndex : (x y : I) → ((x ≡ y) || ((x ≡ y) → False))) {a b : _} {A : I → Set a} {S : (i : I) → Setoid {a} {b} (A i)} {_+_ : (i : I) → (A i) → (A i) → A i} (decidableGroups : (i : I) → (x y : A i) → ((Setoid._∼_ (S i) x y)) || ((Setoid._∼_ (S i) x y) → False)) (G : (i : I) → Group (S i) (_+_ i)) where
open import Groups.FreeProduct.Definition decidableIndex decidableGroups G
open import Groups.FreeProduct.Setoid decidableIndex decidableGroups G
open import Groups.FreeProduct.Addition decidableIndex decidableGroups G
open import Groups.FreeProduct.Group decidableIndex decidableGroups G
private
universalPropertyFunction' : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C → C → C} (H : Group T _+_) → (fs : (i : I) → (A i → C)) → (homs : (i : I) → GroupHom (G i) H (fs i)) → {i : I} → ReducedSequenceBeginningWith i → C
universalPropertyFunction' {_+_ = _+_} H fs homs {i} (ofEmpty .i g nonZero) = fs i g
universalPropertyFunction' {_+_ = _+_} H fs homs {i} (prependLetter .i g nonZero x x₁) = (fs i g) + universalPropertyFunction' H fs homs x
universalPropertyFunction : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C → C → C} (H : Group T _+_) → (fs : (i : I) → (A i → C)) → (homs : (i : I) → GroupHom (G i) H (fs i)) → ReducedSequence → C
universalPropertyFunction H fs homs empty = Group.0G H
universalPropertyFunction H fs homs (nonempty i x) = universalPropertyFunction' H fs homs x
private
upWellDefined' : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C → C → C} (H : Group T _+_) → (fs : (i : I) → (A i → C)) → (homs : (i : I) → GroupHom (G i) H (fs i)) → {m n : I} → (x : ReducedSequenceBeginningWith m) (y : ReducedSequenceBeginningWith n) → (eq : =RP' x y) → Setoid._∼_ T (universalPropertyFunction H fs homs (nonempty m x)) (universalPropertyFunction H fs homs (nonempty n y))
upWellDefined' H fs homs (ofEmpty m g nonZero) (ofEmpty n g₁ nonZero₁) eq with decidableIndex m n
... | inl refl = GroupHom.wellDefined (homs m) eq
upWellDefined' H fs homs (prependLetter m g nonZero x x₁) (prependLetter n g₁ nonZero₁ y x₂) eq with decidableIndex m n
... | inl refl = Group.+WellDefined H (GroupHom.wellDefined (homs m) (_&&_.fst eq)) (upWellDefined' H fs homs x y (_&&_.snd eq))
upWellDefined : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C → C → C} (H : Group T _+_) → (fs : (i : I) → (A i → C)) → (homs : (i : I) → GroupHom (G i) H (fs i)) → (x : ReducedSequence) (y : ReducedSequence) → (eq : _=RP_ x y) → Setoid._∼_ T (universalPropertyFunction H fs homs x) (universalPropertyFunction H fs homs y)
upWellDefined {T = T} H fs homs empty empty eq = Equivalence.reflexive (Setoid.eq T)
upWellDefined H fs homs (nonempty i w1) (nonempty j w2) eq = upWellDefined' H fs homs w1 w2 eq
private
upPrepend : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C → C → C} (H : Group T _+_) → (fs : (i : I) → (A i → C)) → (homs : (i : I) → GroupHom (G i) H (fs i)) → {j : I} (y : ReducedSequence) → (g : A j) .(pr : _) → Setoid._∼_ T (universalPropertyFunction H fs homs (prepend j g pr y)) ((fs j g) + universalPropertyFunction H fs homs y)
upPrepend {T = T} H fs homs empty g pr = Equivalence.symmetric (Setoid.eq T) (Group.identRight H)
upPrepend {T = T} H fs homs {j} (nonempty i (ofEmpty .i h nonZero)) g pr with decidableIndex j i
... | inr j!=i = Equivalence.reflexive (Setoid.eq T)
... | inl refl with decidableGroups j ((j + g) h) (Group.0G (G j))
... | inl x = Equivalence.transitive (Setoid.eq T) (Equivalence.symmetric (Setoid.eq T) (imageOfIdentityIsIdentity (homs j))) (Equivalence.transitive (Setoid.eq T) (Equivalence.symmetric (Setoid.eq T) (GroupHom.wellDefined (homs j) x)) (GroupHom.groupHom (homs j)))
... | inr x = GroupHom.groupHom (homs j)
upPrepend {T = T} H fs homs {j} (nonempty k (prependLetter .k h nonZero y _)) g pr with decidableIndex j k
... | inr j!=k = Equivalence.reflexive (Setoid.eq T)
... | inl refl with decidableGroups j ((j + g) h) (Group.0G (G j))
... | inl x = transitive (symmetric (Group.identLeft H)) (transitive (Group.+WellDefined H (transitive (symmetric (imageOfIdentityIsIdentity (homs k))) (transitive (GroupHom.wellDefined (homs k) (Equivalence.symmetric (Setoid.eq (S k)) x)) (GroupHom.groupHom (homs k)))) reflexive) (symmetric (Group.+Associative H)))
where
open Setoid T
open Equivalence eq
... | inr x = transitive (Group.+WellDefined H (GroupHom.groupHom (homs k)) reflexive) (symmetric (Group.+Associative H))
where
open Setoid T
open Equivalence eq
private
upHom : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C → C → C} (H : Group T _+_) → (fs : (i : I) → (A i → C)) → (homs : (i : I) → GroupHom (G i) H (fs i)) → {i : I} (x : ReducedSequenceBeginningWith i) (y : ReducedSequence) → Setoid._∼_ T (universalPropertyFunction H fs homs (plus' x y)) (universalPropertyFunction' H fs homs x + universalPropertyFunction H fs homs y)
upHom {T = T} H fs homs (ofEmpty _ g nonZero) empty = Equivalence.symmetric (Setoid.eq T) (Group.identRight H)
upHom {T = T} H fs homs (ofEmpty j g nonZero) (nonempty i (ofEmpty .i h nonZero1)) with decidableIndex j i
... | inr j!=i = Equivalence.reflexive (Setoid.eq T)
... | inl refl with decidableGroups j ((j + g) h) (Group.0G (G j))
... | inl x = Equivalence.transitive (Setoid.eq T) (Equivalence.symmetric (Setoid.eq T) (imageOfIdentityIsIdentity (homs j))) (Equivalence.transitive (Setoid.eq T) (Equivalence.symmetric (Setoid.eq T) (GroupHom.wellDefined (homs j) x)) (GroupHom.groupHom (homs j)))
... | inr x = GroupHom.groupHom (homs j)
upHom {T = T} H fs homs (ofEmpty j g nonZero) (nonempty i (prependLetter .i h nonZero1 x x₁)) with decidableIndex j i
... | inr j!=i = Equivalence.reflexive (Setoid.eq T)
... | inl refl with decidableGroups j ((j + g) h) (Group.0G (G j))
... | inr _ = Equivalence.transitive (Setoid.eq T) (Group.+WellDefined H (GroupHom.groupHom (homs j)) (Equivalence.reflexive (Setoid.eq T))) (Equivalence.symmetric (Setoid.eq T) (Group.+Associative H))
... | inl eq1 = Equivalence.transitive (Setoid.eq T) (Equivalence.symmetric (Setoid.eq T) (Group.identLeft H)) (Equivalence.transitive (Setoid.eq T) (Group.+WellDefined H (Equivalence.transitive (Setoid.eq T) (Equivalence.symmetric (Setoid.eq T) (imageOfIdentityIsIdentity (homs j))) (Equivalence.transitive (Setoid.eq T) (GroupHom.wellDefined (homs j) (Equivalence.symmetric (Setoid.eq (S j)) eq1)) (GroupHom.groupHom (homs j)))) (Equivalence.reflexive (Setoid.eq T))) (Equivalence.symmetric (Setoid.eq T) (Group.+Associative H)))
upHom {T = T} H fs homs (prependLetter j g nonZero {k} w k!=j) empty = Equivalence.transitive (Setoid.eq T) (Equivalence.transitive (Setoid.eq T) (upWellDefined H fs homs (plus' (prependLetter j g _ w k!=j) empty) (prepend j g _ (nonempty k w)) (prependWD' g nonZero (plus' w empty) (nonempty k w) (plusEmptyRight w))) (upPrepend H fs homs (nonempty k w) g nonZero)) (Equivalence.symmetric (Setoid.eq T) (Group.identRight H))
upHom {T = T} H fs homs (prependLetter j g nonZero {k} m k!=j) (nonempty i x2) = transitive (upPrepend H fs homs (plus' m (nonempty i x2)) g nonZero) (transitive (Group.+WellDefined H reflexive (upHom H fs homs m (nonempty i x2))) (Group.+Associative H))
where
open Setoid T
open Equivalence eq
universalPropertyHom : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C → C → C} (H : Group T _+_) → (fs : (i : I) → (A i → C)) → (homs : (i : I) → GroupHom (G i) H (fs i)) → GroupHom FreeProductGroup H (universalPropertyFunction H fs homs)
GroupHom.wellDefined (universalPropertyHom {T = T} H fs homs) {x} {y} eq = upWellDefined H fs homs x y eq
GroupHom.groupHom (universalPropertyHom {T = T} H fs homs) {empty} {y} = Equivalence.symmetric (Setoid.eq T) (Group.identLeft H)
GroupHom.groupHom (universalPropertyHom {T = T} H fs homs) {nonempty i x} {empty} = transitive (upWellDefined H fs homs (nonempty i x +RP empty) (nonempty i x) (plusEmptyRight x)) (symmetric (Group.identRight H))
where
open Setoid T
open Equivalence eq
GroupHom.groupHom (universalPropertyHom H fs homs) {nonempty i x} {nonempty j y} = upHom H fs homs x (nonempty j y)
universalPropertyFunctionHasProperty : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C → C → C} (H : Group T _+_) → (fs : (i : I) → (A i → C)) → (homs : (i : I) → GroupHom (G i) H (fs i)) → {i : I} → (g : A i) → (nz : (Setoid._∼_ (S i) g (Group.0G (G i))) → False) → Setoid._∼_ T (fs i g) (universalPropertyFunction H fs homs (injection g nz))
universalPropertyFunctionHasProperty {T = T} H fs homs g nz = Equivalence.reflexive (Setoid.eq T)
private
universalPropertyFunctionUniquelyHasPropertyLemma : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C → C → C} (H : Group T _+_) → (fs : (i : I) → (A i → C)) → (homs : (i : I) → GroupHom (G i) H (fs i)) → (otherFunction : ReducedSequence → C) → (isHom : GroupHom FreeProductGroup H otherFunction) → ({i : I} → (g : A i) → .(nz : (Setoid._∼_ (S i) g (Group.0G (G i))) → False) → Setoid._∼_ T (fs i g) (otherFunction (injection g nz))) → {k l : I} (neq : (k ≡ l) → False) (r : ReducedSequenceBeginningWith l) (g : A k) .(nz : (Setoid._∼_ (S k) g (Group.0G (G k)) → False)) → Setoid._∼_ T (otherFunction (nonempty k (prependLetter k g nz r neq))) (fs k g + universalPropertyFunction' H fs homs r)
universalPropertyFunctionUniquelyHasPropertyLemma {T = T} H fs homs otherFunction hom x {k} {l} neq (ofEmpty .l g2 nonZero) g nz = transitive (GroupHom.wellDefined hom {nonempty k (prependLetter k g nz (ofEmpty l g2 nonZero) neq)} {nonempty _ (ofEmpty k g nz) +RP nonempty _ (ofEmpty l g2 nonZero)} t) (transitive (GroupHom.groupHom hom {nonempty k (ofEmpty k g nz)} {nonempty _ (ofEmpty l g2 nonZero)}) (Group.+WellDefined H (symmetric (x g nz)) (symmetric (x g2 nonZero))))
where
open Setoid T
open Equivalence eq
t : Setoid._∼_ freeProductSetoid (nonempty k (prependLetter k g nz (ofEmpty l g2 nonZero) neq)) (prepend k g nz (nonempty l (ofEmpty l g2 nonZero)))
t with decidableIndex k l
... | inl p = exFalso (neq p)
... | inr _ with decidableIndex k k
... | inr bad = exFalso (bad refl)
... | inl refl = Equivalence.reflexive (Setoid.eq (S k)) ,, =RP'reflex (ofEmpty l g2 _)
universalPropertyFunctionUniquelyHasPropertyLemma {T = T} H fs homs otherFunction hom x {k} {l} neq (prependLetter .l h nonZero r pr) g nz = transitive (GroupHom.wellDefined hom {nonempty _ (prependLetter k g nz (prependLetter l h nonZero r pr) neq)} {(nonempty k (ofEmpty k g nz)) +RP (nonempty l (prependLetter l h nonZero r pr))} t) (transitive (GroupHom.groupHom hom {nonempty k (ofEmpty k g nz)} {nonempty l (prependLetter l h nonZero r pr)}) (Group.+WellDefined H (symmetric (x g nz)) (universalPropertyFunctionUniquelyHasPropertyLemma H fs homs otherFunction hom x pr r h nonZero)))
where
open Setoid T
open Equivalence eq
t : Setoid._∼_ freeProductSetoid (nonempty k (prependLetter k g nz (prependLetter l h nonZero r pr) neq)) (prepend k g nz (nonempty l (prependLetter l h nonZero r pr)))
t with decidableIndex k l
... | inl bad = exFalso (neq bad)
... | inr k!=l with decidableIndex k k
... | inr bad = exFalso (bad refl)
... | inl refl with decidableIndex l l
... | inr bad = exFalso (bad refl)
... | inl refl = Equivalence.reflexive (Setoid.eq (S k)) ,, ((Equivalence.reflexive (Setoid.eq (S l))) ,, =RP'reflex r)
universalPropertyFunctionUniquelyHasProperty : {c d : _} {C : Set c} {T : Setoid {c} {d} C} {_+_ : C → C → C} (H : Group T _+_) → (fs : (i : I) → (A i → C)) → (homs : (i : I) → GroupHom (G i) H (fs i)) → (otherFunction : ReducedSequence → C) → (isHom : GroupHom FreeProductGroup H otherFunction) → ({i : I} → (g : A i) → .(nz : (Setoid._∼_ (S i) g (Group.0G (G i))) → False) → Setoid._∼_ T (fs i g) (otherFunction (injection g nz))) → (r : ReducedSequence) → Setoid._∼_ T (otherFunction r) (universalPropertyFunction H fs homs r)
universalPropertyFunctionUniquelyHasProperty H fs homs otherFunction hom prop empty = imageOfIdentityIsIdentity hom
universalPropertyFunctionUniquelyHasProperty {T = T} H fs homs otherFunction hom prop (nonempty i (ofEmpty .i g nonZero)) = Equivalence.symmetric (Setoid.eq T) (prop g nonZero)
universalPropertyFunctionUniquelyHasProperty {T = T} H fs homs otherFunction hom prop (nonempty i (prependLetter .i g nonZero {k} (ofEmpty .k g1 nonZero1) x1)) = transitive (GroupHom.wellDefined hom {_} {(nonempty i (ofEmpty i g nonZero)) +RP (nonempty k (ofEmpty k g1 nonZero1))} t) (transitive (GroupHom.groupHom hom {nonempty i (ofEmpty i g nonZero)}) (Group.+WellDefined H (symmetric (prop g nonZero)) (symmetric (prop g1 nonZero1))))
where
open Setoid T
open Equivalence eq
t : Setoid._∼_ freeProductSetoid (nonempty i (prependLetter i g nonZero (ofEmpty k g1 nonZero1) x1)) (prepend i g nonZero (nonempty k (ofEmpty k g1 nonZero1)))
t with decidableIndex i k
... | inl p = exFalso (x1 p)
... | inr _ with decidableIndex i i
... | inr bad = exFalso (bad refl)
... | inl refl = Equivalence.reflexive (Setoid.eq (S i)) ,, =RP'reflex (ofEmpty k g1 nonZero1)
universalPropertyFunctionUniquelyHasProperty {T = T} H fs homs otherFunction hom prop (nonempty i (prependLetter .i g nonZero {k} (prependLetter .k g2 nonZero2 x x2) x1)) = transitive (GroupHom.wellDefined hom {nonempty i (prependLetter i g nonZero (prependLetter k g2 nonZero2 x x2) x1)} {(nonempty i (ofEmpty i g nonZero)) +RP (nonempty k (prependLetter k g2 nonZero2 x x2))} t) (transitive (GroupHom.groupHom hom {nonempty i (ofEmpty i g nonZero)} {nonempty k (prependLetter k g2 nonZero2 x x2)}) (Group.+WellDefined H (symmetric (prop g nonZero)) (universalPropertyFunctionUniquelyHasPropertyLemma H fs homs otherFunction hom prop x2 x g2 nonZero2)))
where
open Setoid T
open Equivalence eq
t : Setoid._∼_ freeProductSetoid (nonempty i (prependLetter i g nonZero (prependLetter k g2 nonZero2 x x2) x1)) (prepend i g nonZero (nonempty k (prependLetter k g2 nonZero2 x x2)))
t with decidableIndex i k
... | inl x = exFalso (x1 x)
... | inr _ = =RP'reflex (prependLetter i g nonZero (prependLetter k g2 nonZero2 x x2) x1)
| {
"alphanum_fraction": 0.6705355325,
"avg_line_length": 105.9928057554,
"ext": "agda",
"hexsha": "40c4df83d1066ac02c214569c9264f5decb879a2",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Groups/FreeProduct/UniversalProperty.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Groups/FreeProduct/UniversalProperty.agda",
"max_line_length": 699,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Groups/FreeProduct/UniversalProperty.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 5081,
"size": 14733
} |
{-# OPTIONS --safe -WnoSafeFlagNoCoverageCheck #-}
open import Agda.Builtin.Bool
open import Agda.Builtin.Equality
data ⊥ : Set where
{-# NON_COVERING #-}
f : ∀ b → b ≡ true → ⊥
f false ()
bad : ⊥
bad = f true refl
| {
"alphanum_fraction": 0.65,
"avg_line_length": 14.6666666667,
"ext": "agda",
"hexsha": "9c737d0481e24f3a861a525330bf3ad5cf1c742c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Issue5029-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Issue5029-2.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Issue5029-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 70,
"size": 220
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Yoneda where
-- Yoneda Lemma. In total, provides:
-- * the Yoneda Embedding (called embed here) from any Category C into Presheaves C
-- Worth noticing that there is no 'locally small' condition here; however, if one looks at
-- the levels involved, there is indeed a raise from that of C to that of Presheaves C.
-- * The traditional Yoneda lemma (yoneda-inverse) which says that for any object a of C, and
-- any Presheaf F over C (where our presheaves are over Setoids), then
-- Hom[ Presheaves C] (Functor.F₀ embed a , F) ≅ Functor.F₀ F a
-- as Setoids. In addition, Yoneda (yoneda) also says that this isomorphism is natural in a and F.
open import Level
open import Function using (_$_; Inverse) -- else there's a conflict with the import below
open import Function.Equality using (Π; _⟨$⟩_; cong)
open import Relation.Binary using (module Setoid)
import Relation.Binary.Reasoning.Setoid as SetoidR
open import Data.Product using (_,_; Σ)
open import Categories.Category using (Category; _[_,_])
open import Categories.Category.Product
open import Categories.Category.Construction.Presheaves
open import Categories.Category.Construction.Functors
open import Categories.Category.Instance.Setoids
open import Categories.Functor renaming (id to idF)
open import Categories.Functor.Hom using (module Hom; Hom[_][-,_]; Hom[_][-,-])
open import Categories.Functor.Bifunctor
open import Categories.Functor.Presheaf
open import Categories.Functor.Construction.LiftSetoids
open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) renaming (id to idN)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism)
import Categories.Morphism as Mor
import Categories.Morphism.Reasoning as MR
import Categories.NaturalTransformation.Hom as NT-Hom
private
variable
o ℓ e : Level
module Yoneda (C : Category o ℓ e) where
open Category C
open HomReasoning
open MR C
open Functor
open NaturalTransformation
open NT-Hom C
private
module CE = Category.Equiv C
module C = Category C
-- The Yoneda embedding functor
embed : Functor C (Presheaves C)
embed = record
{ F₀ = Hom[ C ][-,_]
; F₁ = Hom[A,C]⇒Hom[B,C] -- A⇒B induces a NatTrans on the Homs.
; identity = identityˡ ○_
; homomorphism = λ h₁≈h₂ → ∘-resp-≈ʳ h₁≈h₂ ○ assoc
; F-resp-≈ = λ f≈g h≈i → ∘-resp-≈ f≈g h≈i
}
-- Using the adjunction between product and product, we get a kind of contravariant Bifunctor
yoneda-inverse : (a : Obj) (F : Presheaf C (Setoids ℓ e)) →
Inverse (Category.hom-setoid (Presheaves C) {Functor.F₀ embed a} {F}) (Functor.F₀ F a)
yoneda-inverse a F = record
{ f = λ nat → η nat a ⟨$⟩ id
; f⁻¹ = λ x → ntHelper record
{ η = λ X → record
{ _⟨$⟩_ = λ X⇒a → F₁ F X⇒a ⟨$⟩ x
; cong = λ i≈j → F-resp-≈ F i≈j SE.refl
}
; commute = λ {X} {Y} Y⇒X {f} {g} f≈g →
let module SFY = Setoid (F₀ F Y) in
let module SR = SetoidR (F₀ F Y) in
SR.begin
F₁ F (id ∘ f ∘ Y⇒X) ⟨$⟩ x SR.≈⟨ F-resp-≈ F (identityˡ ○ ∘-resp-≈ˡ f≈g) (SE.refl {x}) ⟩
F₁ F (g ∘ Y⇒X) ⟨$⟩ x SR.≈⟨ homomorphism F SE.refl ⟩
F₁ F Y⇒X ⟨$⟩ (F₁ F g ⟨$⟩ x)
SR.∎
}
; cong₁ = λ i≈j → i≈j CE.refl
; cong₂ = λ i≈j y≈z → F-resp-≈ F y≈z i≈j
; inverse = (λ Fa → identity F SE.refl) , λ nat {x} {z} z≈y →
let module S = Setoid (F₀ F x) in
S.trans (S.sym (commute nat z CE.refl))
(cong (η nat x) (identityˡ ○ identityˡ ○ z≈y))
}
where module SE = Setoid (F₀ F a)
private
-- in this bifunctor, a presheaf from Presheaves C goes from C to Setoids ℓ e,
-- but the over Setoids has higher level than the hom setoids.
Nat[Hom[C][-,c],F] : Bifunctor (Presheaves C) (Category.op C) (Setoids _ _)
Nat[Hom[C][-,c],F] = Hom[ Presheaves C ][-,-] ∘F (Functor.op embed ∘F πʳ ※ πˡ)
-- in this bifunctor, it needs to go from Presheaves which maps C to Setoids ℓ e,
-- so the universe level needs to be lifted.
FC : Bifunctor (Presheaves C) (Category.op C) (Setoids _ _)
FC = LiftSetoids (o ⊔ ℓ ⊔ e) (o ⊔ ℓ) ∘F eval {C = Category.op C} {D = Setoids ℓ e}
module yoneda-inverse {a} {F} = Inverse (yoneda-inverse a F)
-- the two bifunctors above are naturally isomorphic.
-- it is easy to show yoneda-inverse first then to yoneda.
yoneda : NaturalIsomorphism Nat[Hom[C][-,c],F] FC
yoneda = record
{ F⇒G = ntHelper record
{ η = λ where
(F , A) → record
{ _⟨$⟩_ = λ α → lift (yoneda-inverse.f α)
; cong = λ i≈j → lift (i≈j CE.refl)
}
; commute = λ where
{_} {G , B} (α , f) {β} {γ} β≈γ → lift $ cong (η α B) (helper f β γ β≈γ)
}
; F⇐G = ntHelper record
{ η = λ where
(F , A) → record
{ _⟨$⟩_ = λ where
(lift x) → yoneda-inverse.f⁻¹ x
; cong = λ where
(lift i≈j) y≈z → F-resp-≈ F y≈z i≈j
}
; commute = λ where
(α , f) (lift eq) eq′ → helper′ α f eq eq′
}
; iso = λ where
(F , A) → record
{ isoˡ = λ {α β} i≈j {X} y≈z →
let module S = Setoid (F₀ F X)
in S.trans ( yoneda-inverse.inverseʳ α {x = X} y≈z) (i≈j CE.refl)
; isoʳ = λ where
(lift eq) →
let module S = Setoid (F₀ F A)
in lift (S.trans ( yoneda-inverse.inverseˡ {F = F} _) eq)
}
}
where helper : ∀ {F : Functor (Category.op C) (Setoids ℓ e)}
{A B : Obj} (f : B ⇒ A)
(β γ : NaturalTransformation Hom[ C ][-, A ] F) →
Setoid._≈_ (F₀ Nat[Hom[C][-,c],F] (F , A)) β γ →
Setoid._≈_ (F₀ F B) (η β B ⟨$⟩ f ∘ id) (F₁ F f ⟨$⟩ (η γ A ⟨$⟩ id))
helper {F} {A} {B} f β γ β≈γ = S.begin
η β B ⟨$⟩ f ∘ id S.≈⟨ cong (η β B) (id-comm ○ (⟺ identityˡ)) ⟩
η β B ⟨$⟩ id ∘ id ∘ f S.≈⟨ commute β f CE.refl ⟩
F₁ F f ⟨$⟩ (η β A ⟨$⟩ id) S.≈⟨ cong (F₁ F f) (β≈γ CE.refl) ⟩
F₁ F f ⟨$⟩ (η γ A ⟨$⟩ id) S.∎
where module S where
open Setoid (F₀ F B) public
open SetoidR (F₀ F B) public
helper′ : ∀ {F G : Functor (Category.op C) (Setoids ℓ e)}
{A B Z : Obj}
{h i : Z ⇒ B}
{X Y : Setoid.Carrier (F₀ F A)}
(α : NaturalTransformation F G)
(f : B ⇒ A) →
Setoid._≈_ (F₀ F A) X Y →
h ≈ i →
Setoid._≈_ (F₀ G Z) (F₁ G h ⟨$⟩ (η α B ⟨$⟩ (F₁ F f ⟨$⟩ X)))
(η α Z ⟨$⟩ (F₁ F (f ∘ i) ⟨$⟩ Y))
helper′ {F} {G} {A} {B} {Z} {h} {i} {X} {Y} α f eq eq′ = S.begin
F₁ G h ⟨$⟩ (η α B ⟨$⟩ (F₁ F f ⟨$⟩ X)) S.≈˘⟨ commute α h (S′.sym (cong (F₁ F f) eq)) ⟩
η α Z ⟨$⟩ (F₁ F h ⟨$⟩ (F₁ F f ⟨$⟩ Y)) S.≈⟨ cong (η α Z) (F-resp-≈ F eq′ S′.refl) ⟩
η α Z ⟨$⟩ (F₁ F i ⟨$⟩ (F₁ F f ⟨$⟩ Y)) S.≈˘⟨ cong (η α Z) (homomorphism F (Setoid.refl (F₀ F A))) ⟩
η α Z ⟨$⟩ (F₁ F (f ∘ i) ⟨$⟩ Y) S.∎
where module S where
open Setoid (F₀ G Z) public
open SetoidR (F₀ G Z) public
module S′ = Setoid (F₀ F B)
module yoneda = NaturalIsomorphism yoneda
| {
"alphanum_fraction": 0.5413453869,
"avg_line_length": 43.7325581395,
"ext": "agda",
"hexsha": "cb43bef5b1b2ed07e5c6f3a7649d243ad431013b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "MirceaS/agda-categories",
"max_forks_repo_path": "src/Categories/Yoneda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "MirceaS/agda-categories",
"max_issues_repo_path": "src/Categories/Yoneda.agda",
"max_line_length": 110,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "MirceaS/agda-categories",
"max_stars_repo_path": "src/Categories/Yoneda.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2694,
"size": 7522
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.ZCohomology.MayerVietorisUnreduced where
open import Cubical.ZCohomology.Base
open import Cubical.ZCohomology.Properties
open import Cubical.ZCohomology.KcompPrelims
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Function
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Data.Sigma
open import Cubical.HITs.Pushout
open import Cubical.HITs.Sn
open import Cubical.HITs.S1
open import Cubical.HITs.Susp
open import Cubical.HITs.SetTruncation renaming (rec to sRec ; rec2 to sRec2 ; elim to sElim ; elim2 to sElim2)
open import Cubical.HITs.PropositionalTruncation renaming (rec to pRec ; elim to pElim ; elim2 to pElim2 ; ∥_∥ to ∥_∥₁ ; ∣_∣ to ∣_∣₁)
open import Cubical.Data.Nat
open import Cubical.Data.Prod hiding (_×_)
open import Cubical.Algebra.Group
open import Cubical.HITs.Truncation renaming (elim to trElim ; map to trMap ; rec to trRec ; elim3 to trElim3)
open GroupHom
module MV {ℓ ℓ' ℓ''} (A : Type ℓ) (B : Type ℓ') (C : Type ℓ'') (f : C → A) (g : C → B) where
-- Proof from Brunerie 2016.
-- We first define the three morphisms involved: i, Δ and d.
private
i* : (n : ℕ) → coHom n (Pushout f g) → coHom n A × coHom n B
i* _ = sRec (isSet× setTruncIsSet setTruncIsSet) λ δ → ∣ (λ x → δ (inl x)) ∣₂ , ∣ (λ x → δ (inr x)) ∣₂
iIsHom : (n : ℕ) → isGroupHom (coHomGr n (Pushout f g)) (×coHomGr n A B) (i* n)
iIsHom _ = sElim2 (λ _ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _) λ _ _ → refl
i : (n : ℕ) → GroupHom (coHomGr n (Pushout f g)) (×coHomGr n A B)
GroupHom.fun (i n) = i* n
GroupHom.isHom (i n) = iIsHom n
private
distrLem : (n : ℕ) (x y z w : coHomK n) → (x +[ n ]ₖ y) -[ n ]ₖ (z +[ n ]ₖ w) ≡ (x -[ n ]ₖ z) +[ n ]ₖ (y -[ n ]ₖ w)
distrLem n x y z w =
cong (ΩKn+1→Kn n) (cong₂ (λ q p → q ∙ sym p) (+ₖ→∙ n x y) (+ₖ→∙ n z w)
∙∙ cong ((Kn→ΩKn+1 n x ∙ Kn→ΩKn+1 n y) ∙_) (symDistr (Kn→ΩKn+1 n z) (Kn→ΩKn+1 n w))
∙∙ ((sym (assoc (Kn→ΩKn+1 n x) (Kn→ΩKn+1 n y) _))
∙∙ cong (Kn→ΩKn+1 n x ∙_) (assoc (Kn→ΩKn+1 n y) (sym (Kn→ΩKn+1 n w)) (sym (Kn→ΩKn+1 n z)))
∙∙ (cong (Kn→ΩKn+1 n x ∙_) (isCommΩK (suc n) _ _)
∙∙ assoc _ _ _
∙∙ cong₂ _∙_ (sym (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n x ∙ sym (Kn→ΩKn+1 n z))))
(sym (Iso.rightInv (Iso-Kn-ΩKn+1 n) (Kn→ΩKn+1 n y ∙ sym (Kn→ΩKn+1 n w)))))))
Δ' : (n : ℕ) → ⟨ ×coHomGr n A B ⟩ → ⟨ coHomGr n C ⟩
Δ' n (α , β) = coHomFun n f α -[ n ]ₕ coHomFun n g β
Δ'-isMorph : (n : ℕ) → isGroupHom (×coHomGr n A B) (coHomGr n C) (Δ' n)
Δ'-isMorph n =
prodElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _ )
λ f' x1 g' x2 i → ∣ (λ x → distrLem n (f' (f x)) (g' (f x)) (x1 (g x)) (x2 (g x)) i) ∣₂
Δ : (n : ℕ) → GroupHom (×coHomGr n A B) (coHomGr n C)
GroupHom.fun (Δ n) = Δ' n
GroupHom.isHom (Δ n) = Δ'-isMorph n
d-pre : (n : ℕ) → (C → coHomK n) → Pushout f g → coHomK (suc n)
d-pre n γ (inl x) = 0ₖ (suc n)
d-pre n γ (inr x) = 0ₖ (suc n)
d-pre zero γ (push a i) = Kn→ΩKn+1 zero (γ a) i
d-pre (suc n) γ (push a i) = Kn→ΩKn+1 (suc n) (γ a) i
dHomHelperPath : (n : ℕ) (h l : C → coHomK n) (a : C) → I → I → coHomK (suc n)
dHomHelperPath zero h l a i j =
hcomp (λ k → λ { (i = i0) → lUnitₖ 1 (0ₖ 1) (~ j)
; (i = i1) → lUnitₖ 1 (0ₖ 1) (~ j)
; (j = i0) → +ₖ→∙ 0 (h a) (l a) (~ k) i
; (j = i1) → cong₂Funct (λ x y → x +[ 1 ]ₖ y)
(Kn→ΩKn+1 0 (h a)) (Kn→ΩKn+1 0 (l a)) (~ k) i})
(bottom i j)
where
bottom : I → I → coHomK 1
bottom i j = hcomp (λ k → λ { (i = i0) → lUnitₖ 1 (0ₖ 1) (~ j)
; (i = i1) → lUnitₖ 1 (Kn→ΩKn+1 0 (l a) k) (~ j) })
(anotherbottom i j)
where
anotherbottom : I → I → coHomK 1
anotherbottom i j = hcomp (λ k → λ { (i = i0) → rUnitlUnit0 1 k (~ j)
; (i = i1) → rUnitlUnit0 1 k (~ j)
; (j = i0) → Kn→ΩKn+1 0 (h a) i
; (j = i1) → Kn→ΩKn+1 0 (h a) i +[ 1 ]ₖ 0ₖ 1 })
(rUnitₖ 1 (Kn→ΩKn+1 0 (h a) i) (~ j))
dHomHelperPath (suc n) h l a i j =
hcomp (λ k → λ { (i = i0) → lUnitₖ (2 + n) (0ₖ (2 + n)) (~ j)
; (i = i1) → lUnitₖ (2 + n) (0ₖ (2 + n)) (~ j)
; (j = i0) → +ₖ→∙ (suc n) (h a) (l a) (~ k) i
; (j = i1) → cong₂Funct (λ x y → x +[ 2 + n ]ₖ y)
(Kn→ΩKn+1 (suc n) (h a)) (Kn→ΩKn+1 (suc n) (l a)) (~ k) i})
(bottom i j)
where
bottom : I → I → coHomK (2 + n)
bottom i j = hcomp (λ k → λ { (i = i0) → lUnitₖ (2 + n) (0ₖ (2 + n)) (~ j)
; (i = i1) → lUnitₖ (2 + n) (Kn→ΩKn+1 (suc n) (l a) k) (~ j) })
(anotherbottom i j)
where
anotherbottom : I → I → coHomK (2 + n)
anotherbottom i j = hcomp (λ k → λ { (i = i0) → rUnitlUnit0 (2 + n) k (~ j)
; (i = i1) → rUnitlUnit0 (2 + n) k (~ j)
; (j = i0) → Kn→ΩKn+1 (suc n) (h a) i
; (j = i1) → Kn→ΩKn+1 (suc n) (h a) i +[ 2 + n ]ₖ (0ₖ (2 + n)) })
(rUnitₖ (2 + n) (Kn→ΩKn+1 (suc n) (h a) i) (~ j))
dHomHelper : (n : ℕ) (h l : C → coHomK n) (x : Pushout f g)
→ d-pre n (λ x → h x +[ n ]ₖ l x) x ≡ d-pre n h x +[ suc n ]ₖ d-pre n l x
dHomHelper n h l (inl x) = sym (lUnitₖ (suc n) (0ₖ (suc n)))
dHomHelper n h l (inr x) = sym (lUnitₖ (suc n) (0ₖ (suc n)))
dHomHelper zero h l (push a i) j = dHomHelperPath zero h l a i j
dHomHelper (suc n) h l (push a i) j = dHomHelperPath (suc n) h l a i j
dIsHom : (n : ℕ) → isGroupHom (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (sRec setTruncIsSet λ a → ∣ d-pre n a ∣₂)
dIsHom zero = sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f g i → ∣ funExt (λ x → dHomHelper zero f g x) i ∣₂
dIsHom (suc n) = sElim2 (λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ f g i → ∣ funExt (λ x → dHomHelper (suc n) f g x) i ∣₂
d : (n : ℕ) → GroupHom (coHomGr n C) (coHomGr (suc n) (Pushout f g))
GroupHom.fun (d n) = sRec setTruncIsSet λ a → ∣ d-pre n a ∣₂
GroupHom.isHom (d n) = dIsHom n
-- The long exact sequence
Im-d⊂Ker-i : (n : ℕ) (x : ⟨ (coHomGr (suc n) (Pushout f g)) ⟩)
→ isInIm (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (d n) x
→ isInKer (coHomGr (suc n) (Pushout f g)) (×coHomGr (suc n) A B) (i (suc n)) x
Im-d⊂Ker-i n = sElim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _)
λ a → pRec (isOfHLevelPath' 1 (isSet× setTruncIsSet setTruncIsSet) _ _)
(sigmaElim (λ _ → isOfHLevelPath 2 (isSet× setTruncIsSet setTruncIsSet) _ _)
λ δ b i → sRec (isSet× setTruncIsSet setTruncIsSet)
(λ δ → ∣ (λ x → δ (inl x)) ∣₂ , ∣ (λ x → δ (inr x)) ∣₂ ) (b (~ i)))
Ker-i⊂Im-d : (n : ℕ) (x : ⟨ coHomGr (suc n) (Pushout f g) ⟩)
→ isInKer (coHomGr (suc n) (Pushout f g)) (×coHomGr (suc n) A B) (i (suc n)) x
→ isInIm (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (d n) x
Ker-i⊂Im-d zero =
sElim (λ _ → isSetΠ λ _ → isProp→isSet propTruncIsProp)
λ a p → pRec {A = (λ x → a (inl x)) ≡ λ _ → 0ₖ 1}
(isProp→ propTruncIsProp)
(λ p1 → pRec propTruncIsProp λ p2 → ∣ ∣ (λ c → ΩKn+1→Kn 0 (sym (cong (λ F → F (f c)) p1)
∙∙ cong a (push c)
∙∙ cong (λ F → F (g c)) p2)) ∣₂
, cong ∣_∣₂ (funExt (λ δ → helper a p1 p2 δ)) ∣₁)
(Iso.fun PathIdTrunc₀Iso (cong fst p))
(Iso.fun PathIdTrunc₀Iso (cong snd p))
where
helper : (F : (Pushout f g) → hLevelTrunc 3 (S₊ 1))
(p1 : Path (_ → hLevelTrunc 3 (S₊ 1)) (λ a₁ → F (inl a₁)) (λ _ → ∣ base ∣))
(p2 : Path (_ → hLevelTrunc 3 (S₊ 1)) (λ a₁ → F (inr a₁)) (λ _ → ∣ base ∣))
→ (δ : Pushout f g)
→ d-pre 0 (λ c → ΩKn+1→Kn 0 ((λ i₁ → p1 (~ i₁) (f c))
∙∙ cong F (push c)
∙∙ cong (λ F → F (g c)) p2)) δ
≡ F δ
helper F p1 p2 (inl x) = sym (cong (λ f → f x) p1)
helper F p1 p2 (inr x) = sym (cong (λ f → f x) p2)
helper F p1 p2 (push a i) j =
hcomp (λ k → λ { (i = i0) → p1 (~ j) (f a)
; (i = i1) → p2 (~ j) (g a)
; (j = i0) → Iso.rightInv (Iso-Kn-ΩKn+1 0) ((λ i₁ → p1 (~ i₁) (f a))
∙∙ cong F (push a)
∙∙ cong (λ F₁ → F₁ (g a)) p2) (~ k) i
; (j = i1) → F (push a i)})
(doubleCompPath-filler (sym (cong (λ F → F (f a)) p1)) (cong F (push a)) (cong (λ F → F (g a)) p2) (~ j) i)
Ker-i⊂Im-d (suc n) =
sElim (λ _ → isSetΠ λ _ → isProp→isSet propTruncIsProp)
λ a p → pRec {A = (λ x → a (inl x)) ≡ λ _ → 0ₖ (2 + n)} (isProp→ propTruncIsProp)
(λ p1 → pRec propTruncIsProp λ p2 → ∣ ∣ (λ c → ΩKn+1→Kn (suc n) (sym (cong (λ F → F (f c)) p1)
∙∙ cong a (push c)
∙∙ cong (λ F → F (g c)) p2)) ∣₂
, cong ∣_∣₂ (funExt (λ δ → helper a p1 p2 δ)) ∣₁)
(Iso.fun PathIdTrunc₀Iso (cong fst p))
(Iso.fun PathIdTrunc₀Iso (cong snd p))
where
helper : (F : (Pushout f g) → hLevelTrunc (4 + n) (S₊ (2 + n)))
(p1 : Path (_ → hLevelTrunc (4 + n) (S₊ (2 + n))) (λ a₁ → F (inl a₁)) (λ _ → ∣ north ∣))
(p2 : Path (_ → hLevelTrunc (4 + n) (S₊ (2 + n))) (λ a₁ → F (inr a₁)) (λ _ → ∣ north ∣))
→ (δ : (Pushout f g))
→ d-pre (suc n) (λ c → ΩKn+1→Kn (suc n) ((λ i₁ → p1 (~ i₁) (f c))
∙∙ cong F (push c)
∙∙ cong (λ F → F (g c)) p2)) δ
≡ F δ
helper F p1 p2 (inl x) = sym (cong (λ f → f x) p1)
helper F p1 p2 (inr x) = sym (cong (λ f → f x) p2)
helper F p1 p2 (push a i) j =
hcomp (λ k → λ { (i = i0) → p1 (~ j) (f a)
; (i = i1) → p2 (~ j) (g a)
; (j = i0) → Iso.rightInv (Iso-Kn-ΩKn+1 (suc n)) ((λ i₁ → p1 (~ i₁) (f a))
∙∙ cong F (push a)
∙∙ cong (λ F₁ → F₁ (g a)) p2) (~ k) i
; (j = i1) → F (push a i)})
(doubleCompPath-filler (sym (cong (λ F → F (f a)) p1)) (cong F (push a)) (cong (λ F → F (g a)) p2) (~ j) i)
open GroupHom
Im-i⊂Ker-Δ : (n : ℕ) (x : ⟨ ×coHomGr n A B ⟩)
→ isInIm (coHomGr n (Pushout f g)) (×coHomGr n A B) (i n) x
→ isInKer (×coHomGr n A B) (coHomGr n C) (Δ n) x
Im-i⊂Ker-Δ n (Fa , Fb) =
sElim {B = λ Fa → (Fb : _) → isInIm (coHomGr n (Pushout f g)) (×coHomGr n A B) (i n) (Fa , Fb)
→ isInKer (×coHomGr n A B) (coHomGr n C) (Δ n) (Fa , Fb)}
(λ _ → isSetΠ2 λ _ _ → isOfHLevelPath 2 setTruncIsSet _ _)
(λ Fa → sElim (λ _ → isSetΠ λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ Fb → pRec (setTruncIsSet _ _)
(sigmaElim (λ x → isProp→isSet (setTruncIsSet _ _))
λ Fd p → helper n Fa Fb Fd p))
Fa
Fb
where
helper : (n : ℕ) (Fa : A → coHomK n) (Fb : B → coHomK n) (Fd : (Pushout f g) → coHomK n)
→ (fun (i n) ∣ Fd ∣₂ ≡ (∣ Fa ∣₂ , ∣ Fb ∣₂))
→ (fun (Δ n)) (∣ Fa ∣₂ , ∣ Fb ∣₂) ≡ 0ₕ n
helper zero Fa Fb Fd p = cong (fun (Δ zero)) (sym p)
∙∙ (λ i → ∣ (λ x → Fd (inl (f x))) ∣₂ -[ 0 ]ₕ ∣ (λ x → Fd (push x (~ i))) ∣₂ )
∙∙ cancelₕ 0 ∣ (λ x → Fd (inl (f x))) ∣₂
helper (suc n) Fa Fb Fd p = cong (fun (Δ (suc n))) (sym p)
∙∙ (λ i → ∣ (λ x → Fd (inl (f x))) ∣₂ -[ (suc n) ]ₕ ∣ (λ x → Fd (push x (~ i))) ∣₂)
∙∙ cancelₕ (suc n) ∣ (λ x → Fd (inl (f x))) ∣₂
Ker-Δ⊂Im-i : (n : ℕ) (a : ⟨ ×coHomGr n A B ⟩)
→ isInKer (×coHomGr n A B) (coHomGr n C) (Δ n) a
→ isInIm (coHomGr n (Pushout f g)) (×coHomGr n A B) (i n) a
Ker-Δ⊂Im-i n = prodElim (λ _ → isSetΠ (λ _ → isProp→isSet propTruncIsProp))
(λ Fa Fb p → pRec propTruncIsProp
(λ q → ∣ ∣ helpFun Fa Fb q ∣₂ , refl ∣₁)
(helper Fa Fb p))
where
helper : (Fa : A → coHomK n) (Fb : B → coHomK n)
→ fun (Δ n) (∣ Fa ∣₂ , ∣ Fb ∣₂) ≡ 0ₕ n
→ ∥ Path (_ → _) (λ c → Fa (f c)) (λ c → Fb (g c)) ∥₁
helper Fa Fb p = Iso.fun PathIdTrunc₀Iso
(sym (-+cancelₕ n ∣ (λ c → Fa (f c)) ∣₂ ∣ (λ c → Fb (g c)) ∣₂)
∙∙ cong (λ x → x +[ n ]ₕ ∣ (λ c → Fb (g c)) ∣₂) p
∙∙ lUnitₕ n _)
helpFun : (Fa : A → coHomK n) (Fb : B → coHomK n)
→ ((λ c → Fa (f c)) ≡ (λ c → Fb (g c)))
→ Pushout f g → coHomK n
helpFun Fa Fb p (inl x) = Fa x
helpFun Fa Fb p (inr x) = Fb x
helpFun Fa Fb p (push a i) = p i a
private
distrHelper : (n : ℕ) (p q : _)
→ ΩKn+1→Kn n p +[ n ]ₖ (-[ n ]ₖ ΩKn+1→Kn n q) ≡ ΩKn+1→Kn n (p ∙ sym q)
distrHelper n p q i =
ΩKn+1→Kn n (Iso.rightInv (Iso-Kn-ΩKn+1 n) p i
∙ Iso.rightInv (Iso-Kn-ΩKn+1 n) (sym (Iso.rightInv (Iso-Kn-ΩKn+1 n) q i)) i)
Ker-d⊂Im-Δ : (n : ℕ) (a : coHom n C)
→ isInKer (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (d n) a
→ isInIm (×coHomGr n A B) (coHomGr n C) (Δ n) a
Ker-d⊂Im-Δ zero =
sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp)
λ Fc p → pRec propTruncIsProp (λ p → ∣ (∣ (λ a → ΩKn+1→Kn 0 (cong (λ f → f (inl a)) p)) ∣₂ ,
∣ (λ b → ΩKn+1→Kn 0 (cong (λ f → f (inr b)) p)) ∣₂) ,
Iso.inv (PathIdTrunc₀Iso) ∣ funExt (λ c → helper2 Fc p c) ∣₁ ∣₁)
(Iso.fun (PathIdTrunc₀Iso) p)
where
helper2 : (Fc : C → coHomK 0)
(p : d-pre 0 Fc ≡ (λ _ → ∣ base ∣)) (c : C)
→ ΩKn+1→Kn 0 (λ i₁ → p i₁ (inl (f c))) -[ 0 ]ₖ (ΩKn+1→Kn 0 (λ i₁ → p i₁ (inr (g c)))) ≡ Fc c
helper2 Fc p c = cong₂ (λ x y → ΩKn+1→Kn 0 (x ∙ sym y)) (Iso.rightInv (Iso-Kn-ΩKn+1 0) (λ i₁ → p i₁ (inl (f c))))
(Iso.rightInv (Iso-Kn-ΩKn+1 0) (λ i₁ → p i₁ (inr (g c))))
∙∙ cong (ΩKn+1→Kn 0) (sym ((PathP→compPathR (cong (λ f → cong f (push c)) p))
∙ (λ i → (λ i₁ → p i₁ (inl (f c)))
∙ (lUnit (sym (λ i₁ → p i₁ (inr (g c)))) (~ i)))))
∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 zero) (Fc c)
Ker-d⊂Im-Δ (suc n) =
sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelSuc 1 propTruncIsProp)
λ Fc p → pRec propTruncIsProp (λ p → ∣ (∣ (λ a → ΩKn+1→Kn (suc n) (cong (λ f → f (inl a)) p)) ∣₂ ,
∣ (λ b → ΩKn+1→Kn (suc n) (cong (λ f → f (inr b)) p)) ∣₂) ,
Iso.inv (PathIdTrunc₀Iso) ∣ funExt (λ c → helper2 Fc p c) ∣₁ ∣₁)
(Iso.fun (PathIdTrunc₀Iso) p)
where
helper2 : (Fc : C → coHomK (suc n))
(p : d-pre (suc n) Fc ≡ (λ _ → ∣ north ∣)) (c : C)
→ ΩKn+1→Kn (suc n) (λ i₁ → p i₁ (inl (f c))) -[ (suc n) ]ₖ (ΩKn+1→Kn (suc n) (λ i₁ → p i₁ (inr (g c)))) ≡ Fc c
helper2 Fc p c = cong₂ (λ x y → ΩKn+1→Kn (suc n) (x ∙ sym y)) (Iso.rightInv (Iso-Kn-ΩKn+1 (suc n)) (λ i₁ → p i₁ (inl (f c))))
(Iso.rightInv (Iso-Kn-ΩKn+1 (suc n)) (λ i₁ → p i₁ (inr (g c))))
∙∙ cong (ΩKn+1→Kn (suc n)) (sym ((PathP→compPathR (cong (λ f → cong f (push c)) p))
∙ (λ i → (λ i₁ → p i₁ (inl (f c)))
∙ (lUnit (sym (λ i₁ → p i₁ (inr (g c)))) (~ i)))))
∙∙ Iso.leftInv (Iso-Kn-ΩKn+1 (suc n)) (Fc c)
Im-Δ⊂Ker-d : (n : ℕ) (a : coHom n C)
→ isInIm (×coHomGr n A B) (coHomGr n C) (Δ n) a
→ isInKer (coHomGr n C) (coHomGr (suc n) (Pushout f g)) (d n) a
Im-Δ⊂Ker-d n =
sElim (λ _ → isOfHLevelΠ 2 λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ Fc → pRec (isOfHLevelPath' 1 setTruncIsSet _ _)
(sigmaProdElim (λ _ → isOfHLevelPath 2 setTruncIsSet _ _)
λ Fa Fb p → pRec (isOfHLevelPath' 1 setTruncIsSet _ _)
(λ q → ((λ i → fun (d n) ∣ (q (~ i)) ∣₂) ∙ dΔ-Id n Fa Fb))
(Iso.fun (PathIdTrunc₀Iso) p))
where
d-preLeftId : (n : ℕ) (Fa : A → coHomK n)(d : (Pushout f g))
→ d-pre n (Fa ∘ f) d ≡ 0ₖ (suc n)
d-preLeftId zero Fa (inl x) = Kn→ΩKn+1 0 (Fa x)
d-preLeftId (suc n) Fa (inl x) = Kn→ΩKn+1 (suc n) (Fa x)
d-preLeftId zero Fa (inr x) = refl
d-preLeftId (suc n) Fa (inr x) = refl
d-preLeftId zero Fa (push a i) j = Kn→ΩKn+1 zero (Fa (f a)) (j ∨ i)
d-preLeftId (suc n) Fa (push a i) j = Kn→ΩKn+1 (suc n) (Fa (f a)) (j ∨ i)
d-preRightId : (n : ℕ) (Fb : B → coHomK n) (d : (Pushout f g))
→ d-pre n (Fb ∘ g) d ≡ 0ₖ (suc n)
d-preRightId n Fb (inl x) = refl
d-preRightId zero Fb (inr x) = sym (Kn→ΩKn+1 0 (Fb x))
d-preRightId (suc n) Fb (inr x) = sym (Kn→ΩKn+1 (suc n) (Fb x))
d-preRightId zero Fb (push a i) j = Kn→ΩKn+1 zero (Fb (g a)) (~ j ∧ i)
d-preRightId (suc n) Fb (push a i) j = Kn→ΩKn+1 (suc n) (Fb (g a)) (~ j ∧ i)
dΔ-Id : (n : ℕ) (Fa : A → coHomK n) (Fb : B → coHomK n)
→ fun (d n) (fun (Δ n) (∣ Fa ∣₂ , ∣ Fb ∣₂)) ≡ 0ₕ (suc n)
dΔ-Id zero Fa Fb = -distrLemma 0 1 (d zero) ∣ Fa ∘ f ∣₂ ∣ Fb ∘ g ∣₂
∙∙ (λ i → ∣ (λ x → d-preLeftId zero Fa x i) ∣₂ -[ 1 ]ₕ ∣ (λ x → d-preRightId zero Fb x i) ∣₂)
∙∙ cancelₕ 1 (0ₕ 1)
dΔ-Id (suc n) Fa Fb = -distrLemma (suc n) (2 + n) (d (suc n)) ∣ Fa ∘ f ∣₂ ∣ Fb ∘ g ∣₂
∙∙ (λ i → ∣ (λ x → d-preLeftId (suc n) Fa x i) ∣₂ -[ (2 + n) ]ₕ ∣ (λ x → d-preRightId (suc n) Fb x i) ∣₂)
∙∙ cancelₕ (2 + n) (0ₕ (2 + n))
| {
"alphanum_fraction": 0.4208886208,
"avg_line_length": 58.1754385965,
"ext": "agda",
"hexsha": "5eae370bf74545bbf63dc7b70068f71f24e573c3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ayberkt/cubical",
"max_forks_repo_path": "Cubical/ZCohomology/MayerVietorisUnreduced.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ayberkt/cubical",
"max_issues_repo_path": "Cubical/ZCohomology/MayerVietorisUnreduced.agda",
"max_line_length": 133,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f25b8479fe8160fa4ddbb32e288ba26be6cc242f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ayberkt/cubical",
"max_stars_repo_path": "Cubical/ZCohomology/MayerVietorisUnreduced.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 8023,
"size": 19896
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The basic code for equational reasoning with three relations:
-- equality, strict ordering and non-strict ordering.
------------------------------------------------------------------------
--
-- See `Data.Nat.Properties` or `Relation.Binary.Reasoning.PartialOrder`
-- for examples of how to instantiate this module.
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.Base.Triple {a ℓ₁ ℓ₂ ℓ₃} {A : Set a}
{_≈_ : Rel A ℓ₁} {_≤_ : Rel A ℓ₂} {_<_ : Rel A ℓ₃}
(isPreorder : IsPreorder _≈_ _≤_)
(<-trans : Transitive _<_) (<-resp-≈ : _<_ Respects₂ _≈_) (<⇒≤ : _<_ ⇒ _≤_)
(<-≤-trans : Trans _<_ _≤_ _<_) (≤-<-trans : Trans _≤_ _<_ _<_)
where
open import Data.Product using (proj₁; proj₂)
open import Function using (case_of_; id)
open import Level using (Level; _⊔_; Lift; lift)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym)
open import Relation.Nullary using (Dec; yes; no)
open import Relation.Nullary.Decidable using (True; toWitness)
open IsPreorder isPreorder
renaming
( reflexive to ≤-reflexive
; trans to ≤-trans
; ∼-resp-≈ to ≤-resp-≈
)
------------------------------------------------------------------------
-- A datatype to hide the current relation type
data _IsRelatedTo_ (x y : A) : Set (a ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) where
strict : (x<y : x < y) → x IsRelatedTo y
nonstrict : (x≤y : x ≤ y) → x IsRelatedTo y
equals : (x≈y : x ≈ y) → x IsRelatedTo y
------------------------------------------------------------------------
-- Types that are used to ensure that the final relation proved by the
-- chain of reasoning can be converted into the required relation.
data IsStrict {x y} : x IsRelatedTo y → Set (a ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) where
isStrict : ∀ x<y → IsStrict (strict x<y)
IsStrict? : ∀ {x y} (x≲y : x IsRelatedTo y) → Dec (IsStrict x≲y)
IsStrict? (strict x<y) = yes (isStrict x<y)
IsStrict? (nonstrict _) = no λ()
IsStrict? (equals _) = no λ()
extractStrict : ∀ {x y} {x≲y : x IsRelatedTo y} → IsStrict x≲y → x < y
extractStrict (isStrict x<y) = x<y
data IsEquality {x y} : x IsRelatedTo y → Set (a ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃) where
isEquality : ∀ x≈y → IsEquality (equals x≈y)
IsEquality? : ∀ {x y} (x≲y : x IsRelatedTo y) → Dec (IsEquality x≲y)
IsEquality? (strict _) = no λ()
IsEquality? (nonstrict _) = no λ()
IsEquality? (equals x≈y) = yes (isEquality x≈y)
extractEquality : ∀ {x y} {x≲y : x IsRelatedTo y} → IsEquality x≲y → x ≈ y
extractEquality (isEquality x≈y) = x≈y
------------------------------------------------------------------------
-- Reasoning combinators
infix -1 begin_ begin-strict_ begin-equality_
infixr 0 _<⟨_⟩_ _≤⟨_⟩_ _≈⟨_⟩_ _≈˘⟨_⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ _≡⟨⟩_
infix 1 _∎
begin_ : ∀ {x y} (r : x IsRelatedTo y) → x ≤ y
begin (strict x<y) = <⇒≤ x<y
begin (nonstrict x≤y) = x≤y
begin (equals x≈y) = ≤-reflexive x≈y
begin-strict_ : ∀ {x y} (r : x IsRelatedTo y) → {s : True (IsStrict? r)} → x < y
begin-strict_ r {s} = extractStrict (toWitness s)
begin-equality_ : ∀ {x y} (r : x IsRelatedTo y) → {s : True (IsEquality? r)} → x ≈ y
begin-equality_ r {s} = extractEquality (toWitness s)
_<⟨_⟩_ : ∀ (x : A) {y z} → x < y → y IsRelatedTo z → x IsRelatedTo z
x <⟨ x<y ⟩ strict y<z = strict (<-trans x<y y<z)
x <⟨ x<y ⟩ nonstrict y≤z = strict (<-≤-trans x<y y≤z)
x <⟨ x<y ⟩ equals y≈z = strict (proj₁ <-resp-≈ y≈z x<y)
_≤⟨_⟩_ : ∀ (x : A) {y z} → x ≤ y → y IsRelatedTo z → x IsRelatedTo z
x ≤⟨ x≤y ⟩ strict y<z = strict (≤-<-trans x≤y y<z)
x ≤⟨ x≤y ⟩ nonstrict y≤z = nonstrict (≤-trans x≤y y≤z)
x ≤⟨ x≤y ⟩ equals y≈z = nonstrict (proj₁ ≤-resp-≈ y≈z x≤y)
_≈⟨_⟩_ : ∀ (x : A) {y z} → x ≈ y → y IsRelatedTo z → x IsRelatedTo z
x ≈⟨ x≈y ⟩ strict y<z = strict (proj₂ <-resp-≈ (Eq.sym x≈y) y<z)
x ≈⟨ x≈y ⟩ nonstrict y≤z = nonstrict (proj₂ ≤-resp-≈ (Eq.sym x≈y) y≤z)
x ≈⟨ x≈y ⟩ equals y≈z = equals (Eq.trans x≈y y≈z)
_≈˘⟨_⟩_ : ∀ x {y z} → y ≈ x → y IsRelatedTo z → x IsRelatedTo z
x ≈˘⟨ x≈y ⟩ y∼z = x ≈⟨ Eq.sym x≈y ⟩ y∼z
_≡⟨_⟩_ : ∀ (x : A) {y z} → x ≡ y → y IsRelatedTo z → x IsRelatedTo z
x ≡⟨ x≡y ⟩ strict y<z = strict (case x≡y of λ where refl → y<z)
x ≡⟨ x≡y ⟩ nonstrict y≤z = nonstrict (case x≡y of λ where refl → y≤z)
x ≡⟨ x≡y ⟩ equals y≈z = equals (case x≡y of λ where refl → y≈z)
_≡˘⟨_⟩_ : ∀ x {y z} → y ≡ x → y IsRelatedTo z → x IsRelatedTo z
x ≡˘⟨ x≡y ⟩ y∼z = x ≡⟨ sym x≡y ⟩ y∼z
_≡⟨⟩_ : ∀ (x : A) {y} → x IsRelatedTo y → x IsRelatedTo y
x ≡⟨⟩ x≲y = x≲y
_∎ : ∀ x → x IsRelatedTo x
x ∎ = equals Eq.refl
| {
"alphanum_fraction": 0.555410691,
"avg_line_length": 38.6722689076,
"ext": "agda",
"hexsha": "789549e79d0e8c7a3ec11bbfab7d16cd79a1218c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/Base/Triple.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/Base/Triple.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Reasoning/Base/Triple.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1880,
"size": 4602
} |
open import Everything
module Test.Test0 where
test-functor-surjidentity : ∀
{𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂}
⦃ functor : Functor 𝔬₁ 𝔯₁ ℓ₁ 𝔬₂ 𝔯₂ ℓ₂ ⦄
(open Functor functor)
→ Surjidentity.type _∼₁_ _∼₂_ _∼̇₂_ functor-smap ε₁ ε₂
test-functor-surjidentity = surjidentity
-- test-functor-transextensionality ⦃ functor ⦄ = let open Functor ⦃ … ⦄ in transextensionality1
| {
"alphanum_fraction": 0.7044854881,
"avg_line_length": 27.0714285714,
"ext": "agda",
"hexsha": "b80e119ec5cf55b48fdd19503aa20290f1182615",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/Test0.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/Test0.agda",
"max_line_length": 98,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/Test0.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 167,
"size": 379
} |
module tree where
open import bool
open import eq
open import level
open import list
open import list-to-string
open import nat
open import nat-thms
open import string
----------------------------------------------------------------------
-- datatype
----------------------------------------------------------------------
-- nonempty trees
data 𝕋 {ℓ} (A : Set ℓ) : Set ℓ where
node : A → 𝕃 (𝕋 A) → 𝕋 A
----------------------------------------------------------------------
-- tree operations
----------------------------------------------------------------------
leaf : ∀ {ℓ}{A : Set ℓ} → A → 𝕋 A
leaf a = node a []
𝕋-to-string : ∀ {ℓ}{A : Set ℓ} → (f : A → string) → (t : 𝕋 A) → string
𝕋s-to-string : ∀ {ℓ}{A : Set ℓ} → (f : A → string) → (ts : 𝕃 (𝕋 A)) → string
𝕋-to-string f (node a []) = f a
𝕋-to-string f (node a ts) = "(" ^ (f a) ^ (𝕋s-to-string f ts) ^ ")"
𝕋s-to-string f [] = ""
𝕋s-to-string f (t :: ts) = " " ^ (𝕋-to-string f t) ^ (𝕋s-to-string f ts)
perfect-binary-tree : ∀ {ℓ}{A : Set ℓ} → ℕ → A → 𝕋 A
perfect-binary-tree 0 a = (node a [])
perfect-binary-tree (suc n) a = let t = perfect-binary-tree n a in
(node a (t :: t :: []))
size𝕋 : ∀ {ℓ}{A : Set ℓ} → 𝕋 A → ℕ
size𝕋s : ∀ {ℓ}{A : Set ℓ} → 𝕃 (𝕋 A) → ℕ
size𝕋 (node a ts) = suc (size𝕋s ts)
size𝕋s [] = 0
size𝕋s (t :: ts) = size𝕋 t + size𝕋s ts
size-perfect : ∀ {ℓ}{A : Set ℓ}(n : ℕ)(a : A) → (size𝕋 (perfect-binary-tree n a)) ≡ pred (2 pow (suc n))
size-perfect 0 a = refl
size-perfect (suc n) a with (size𝕋 (perfect-binary-tree n a)) | size-perfect n a
... | s | ps rewrite ps with 2 pow n | nonzero-pow 2 n refl
... | x | px rewrite +0 x with x + x | (iszerosum2 x x px)
... | x2 | q rewrite +0 x2 | +0 (pred x2) | sym (+suc (pred x2) (pred x2)) | sucpred q | pred+ x2 x2 q = refl
| {
"alphanum_fraction": 0.4673731177,
"avg_line_length": 35.1568627451,
"ext": "agda",
"hexsha": "7cca65047465e84f79ed2c893080230b44b4c345",
"lang": "Agda",
"max_forks_count": 17,
"max_forks_repo_forks_event_max_datetime": "2021-11-28T20:13:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-03T22:38:15.000Z",
"max_forks_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rfindler/ial",
"max_forks_repo_path": "tree.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_issues_repo_issues_event_max_datetime": "2022-03-22T03:43:34.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-07-09T22:53:38.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rfindler/ial",
"max_issues_repo_path": "tree.agda",
"max_line_length": 109,
"max_stars_count": 29,
"max_stars_repo_head_hexsha": "f3f0261904577e930bd7646934f756679a6cbba6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rfindler/ial",
"max_stars_repo_path": "tree.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-04T15:05:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-02-06T13:09:31.000Z",
"num_tokens": 649,
"size": 1793
} |
{-# OPTIONS --safe #-}
module Cubical.Categories.Monad.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Categories.Category
open import Cubical.Categories.Functor renaming (𝟙⟨_⟩ to funcId)
open import Cubical.Categories.NaturalTransformation.Base
open import Cubical.Categories.NaturalTransformation.Properties
open import Cubical.Categories.Functors.HomFunctor
private
variable
ℓ ℓ' : Level
module _ {C : Category ℓ ℓ'} (M : Functor C C) where
open Category C
open Functor
open NatTrans
IsPointed : Type (ℓ-max ℓ ℓ')
IsPointed = NatTrans (funcId C) M
record IsMonad : Type (ℓ-max ℓ ℓ') where
field
η : IsPointed
μ : NatTrans (funcComp M M) M
idl-μ : PathP (λ i → NatTrans (F-rUnit {F = M} i) M) (compTrans μ (η ∘ˡ M)) (idTrans M)
idr-μ : PathP (λ i → NatTrans (F-lUnit {F = M} i) M) (compTrans μ (M ∘ʳ η)) (idTrans M)
assoc-μ : PathP (λ i → NatTrans (F-assoc {F = M} {G = M} {H = M} i) M)
(compTrans μ (M ∘ʳ μ))
(compTrans μ (μ ∘ˡ M))
-- bind : Hom[-,M-] -> Hom[M-,M-]
bind : NatTrans (funcComp (HomFunctor C) ((funcId C ^opF) ×F M)) (funcComp (HomFunctor C) ((M ^opF) ×F M))
N-ob bind (x , y) f = N-ob μ y ∘ F-hom M f
N-hom bind {x , y} {x' , y'} (f , h) = funExt λ g →
(F-hom M ((f ⋆ g) ⋆ F-hom M h) ⋆ N-ob μ y')
≡⟨ cong (_⋆ N-ob μ y') (F-seq M (f ⋆ g) (F-hom M h)) ⟩
((F-hom M (f ⋆ g) ⋆ F-hom M (F-hom M h)) ⋆ N-ob μ y')
≡⟨ ⋆Assoc (F-hom M (f ⋆ g)) (F-hom M (F-hom M h)) (N-ob μ y') ⟩
(F-hom M (f ⋆ g) ⋆ (F-hom M (F-hom M h) ⋆ N-ob μ y'))
≡⟨ cong (F-hom M (f ⋆ g) ⋆_) (N-hom μ h) ⟩
(F-hom M (f ⋆ g) ⋆ (N-ob μ y ⋆ F-hom M h))
≡⟨ sym (⋆Assoc (F-hom M (f ⋆ g)) (N-ob μ y) (F-hom M h)) ⟩
((F-hom M (f ⋆ g) ⋆ N-ob μ y) ⋆ F-hom M h)
≡⟨ cong (_⋆ F-hom M h) (cong (_⋆ N-ob μ y) (F-seq M f g)) ⟩
(((F-hom M f ⋆ F-hom M g) ⋆ N-ob μ y) ⋆ F-hom M h)
≡⟨ cong (_⋆ F-hom M h) (⋆Assoc (F-hom M f) (F-hom M g) (N-ob μ y)) ⟩
((M .F-hom f ⋆ (F-hom M g ⋆ N-ob μ y)) ⋆ F-hom M h) ∎
-- Define comonads as monads on the opposite category?
module _ (C : Category ℓ ℓ') where
Monad : Type (ℓ-max ℓ ℓ')
Monad = Σ[ M ∈ Functor C C ] IsMonad M
module _ {C : Category ℓ ℓ'} (monadM monadN : Monad C) (ν : NatTrans (fst monadM) (fst monadN)) where
private
M N : Functor C C
M = fst monadM
N = fst monadN
module M = IsMonad (snd monadM)
module N = IsMonad (snd monadN)
record IsMonadHom : Type (ℓ-max ℓ ℓ') where
constructor proveMonadHom
field
N-η : compTrans ν M.η ≡ N.η
N-μ : compTrans ν M.μ ≡ compTrans N.μ (whiskerTrans ν ν)
open IsMonadHom
isProp-IsMonadHom : isProp (IsMonadHom)
N-η (isProp-IsMonadHom (proveMonadHom N-η1 N-μ1) (proveMonadHom N-η2 N-μ2) i) = isSetNatTrans _ _ N-η1 N-η2 i
N-μ (isProp-IsMonadHom (proveMonadHom N-η1 N-μ1) (proveMonadHom N-η2 N-μ2) i) = isSetNatTrans _ _ N-μ1 N-μ2 i
module _ {C : Category ℓ ℓ'} (monadM monadN : Monad C) where
MonadHom : Type (ℓ-max ℓ ℓ')
MonadHom = Σ[ ν ∈ NatTrans (fst monadM) (fst monadN) ] IsMonadHom monadM monadN ν
| {
"alphanum_fraction": 0.5778347213,
"avg_line_length": 39.025,
"ext": "agda",
"hexsha": "ab50ec14349e64ea143c752cfb4664e9275d7b4d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Categories/Monad/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Categories/Monad/Base.agda",
"max_line_length": 111,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Categories/Monad/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 1354,
"size": 3122
} |
-- Non-deterministic insert and permutation with choose oracle
-- The oracle is passed through the individual functions.
open import bool
module even-double-eo
(Choice : Set)
(choose : Choice → 𝔹)
(lchoice : Choice → Choice)
(rchoice : Choice → Choice)
where
open import eq
open import bool-thms
open import nat
open import nat-thms
open import list
----------------------------------------------------------------------
-- double is deterministic:
double : ℕ → ℕ
double x = x + x
-- even is a deterministic predicate:
even : ℕ → 𝔹
even zero = tt
even (suc 0) = ff
even (suc (suc x)) = even x
-- eo yields an even and odd number close to the input value:
eo : Choice → ℕ → ℕ
eo ch n = if choose ch then n else (suc n)
-- auxiliary property for x+x instead of double:
even-x+x : ∀ (x : ℕ) → even (x + x) ≡ tt
even-x+x zero = refl
even-x+x (suc x) rewrite +suc x x | even-x+x x = refl
-- (even (double x)) is always true:
even-double-is-true : ∀ (x : ℕ) → even (double x) ≡ tt
even-double-is-true x rewrite even-x+x x = refl
-- (even (double (eo n))) is always true:
even-double-eo-is-true : ∀ (ch : Choice) (n : ℕ)
→ even (double (eo ch n)) ≡ tt
even-double-eo-is-true ch n = even-double-is-true (eo ch n)
----------------------------------------------------------------------
| {
"alphanum_fraction": 0.5775927328,
"avg_line_length": 25.9019607843,
"ext": "agda",
"hexsha": "f718cb9d2be41b26fcdec9737c68e794b6e1e70e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "mihanus/curry-agda",
"max_forks_repo_path": "choices/even-double-eo.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "mihanus/curry-agda",
"max_issues_repo_path": "choices/even-double-eo.agda",
"max_line_length": 70,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b7cfdda11cdadeba882b6b72d75448acd8b0a294",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "mihanus/curry-agda",
"max_stars_repo_path": "choices/even-double-eo.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 366,
"size": 1321
} |
module _ where
module G where
module H where
module A where
module B where
module C where
open G public
module I = A.B.C.H
| {
"alphanum_fraction": 0.6666666667,
"avg_line_length": 10.8461538462,
"ext": "agda",
"hexsha": "139b88a81521ae394d8a361da71adb80c70b0984",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2666.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2666.agda",
"max_line_length": 19,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2666.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 41,
"size": 141
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
-- This file contains a helper module for FinSet,
-- proving the finite pigeonhole principle
module homotopy.Pigeonhole where
{-
loosely based on code by copumpkin and xplat via byorgey
-}
incl : ∀ {m n} (m<n : m < n) → Fin m → Fin n
incl m<n (k , k<m) = k , <-trans k<m m<n
incl-ne : ∀ {n} (i : Fin n) → ¬ (incl ltS i == n , ltS)
incl-ne {n} (k , k<n) p = <-to-≠ k<n (ap fst p)
Dec-Σ-Fin : ∀ {ℓ} {n} (P : Fin n → Type ℓ) (dec-P : (i : Fin n) → Dec (P i))
→ Dec (Σ (Fin n) λ i → P i)
Dec-Σ-Fin {ℓ} {O} P dec-P = inr λ z → –> Fin-equiv-Empty (fst z)
Dec-Σ-Fin {ℓ} {S n} P dec-P with Dec-Σ-Fin {ℓ} {n} (P ∘ (incl ltS)) (dec-P ∘ (incl ltS))
Dec-Σ-Fin {ℓ} {S n} P dec-P | inl z = inl (incl ltS (fst z) , snd z)
Dec-Σ-Fin {ℓ} {S n} P dec-P | inr ¬z with dec-P (n , ltS)
Dec-Σ-Fin {ℓ} {S n} P dec-P | inr ¬z | (inl p) = inl ((n , ltS) , p)
Dec-Σ-Fin {ℓ} {S n} P dec-P | inr ¬z | (inr ¬p) = inr ¬w
where
¬w : Σ (Fin (S n)) P → ⊥
¬w ((_ , ltS) , p) = ¬p p
¬w ((k , ltSR k<n) , p) = ¬z ((k , k<n) , p)
<-trans-S : {m n k : ℕ} → m < n → n < (S k) → m < k
<-trans-S m<n ltS = m<n
<-trans-S m<n (ltSR n<k) = <-trans m<n n<k
ℕ-dichotomy : {m n : ℕ} → m ≠ n → (m < n) ⊔ (n < m)
ℕ-dichotomy {m} {n} m≠n with ℕ-trichotomy m n
ℕ-dichotomy {m} {n} m≠n | inl p = ⊥-rec (m≠n p)
ℕ-dichotomy {m} {n} m≠n | inr x = x
Fin-fst-= : ∀ {n} {i j : Fin n} → fst i == fst j → i == j
Fin-fst-= {n} {i , i<n} {j , j<n} = Subtype=-out (Fin-prop n)
punchout : ∀ {n} (i j : Fin (S n)) → i ≠ j → Fin n
punchout {n} (i , i<Sn) (j , j<Sn) i≠j with ℕ-dichotomy (i≠j ∘ Fin-fst-=)
punchout {n} (i , i<Sn) (.(S i) , Si<Sn) i≠j | inl ltS = i , <-trans-S ltS Si<Sn
punchout {n} (i , i<Sn) (S j , Sj<Sn) i≠j | inl (ltSR i<j) = j , <-cancel-S Sj<Sn
punchout {n} (i , i<Sn) (j , j<Sn) i≠j | inr j<i = j , <-trans-S j<i i<Sn
punchout-inj : ∀ {n} (i j k : Fin (S n)) (i≠j : i ≠ j) (i≠k : i ≠ k)
→ punchout i j i≠j == punchout i k i≠k → j == k
punchout-inj {n} (i , i<Sn) (j , j<Sn) (k , k<Sn) i≠j i≠k q with ℕ-dichotomy (i≠j ∘ Fin-fst-=)
punchout-inj {n} (i , i<Sn) (.(S i) , Si<Sn) (k , k<Sn) i≠j i≠k q | inl ltS with ℕ-dichotomy (i≠k ∘ Fin-fst-=)
punchout-inj {n} (i , i<Sn) (.(S i) , Si<Sn) (.(S i) , _) i≠j i≠k q | inl ltS | inl ltS = Fin-fst-= idp
punchout-inj {n} (i , i<Sn) (.(S i) , Si<Sn) (S k , Sk<Sn) i≠j i≠k q | inl ltS | inl (ltSR i<k) = ⊥-rec (<-to-≠ i<k (ap fst q))
punchout-inj {n} (i , i<Sn) (.(S i) , Si<Sn) (k , k<Sn) i≠j i≠k q | inl ltS | inr k<i = ⊥-rec (i≠k (Fin-fst-= (ap fst q)))
punchout-inj {n} (i , i<Sn) (S j , Sj<Sn) (k , k<Sn) i≠j i≠k q | inl (ltSR i<j) with ℕ-dichotomy (i≠k ∘ Fin-fst-=)
punchout-inj {n} (i , i<Sn) (S j , Sj<Sn) (.(S i) , Si<Sn) i≠j i≠k q | inl (ltSR i<j) | inl ltS = ⊥-rec (<-to-≠ i<j (! (ap fst q)))
punchout-inj {n} (i , i<Sn) (S j , Sj<Sn) (S k , Sk<Sn) i≠j i≠k q | inl (ltSR i<j) | inl (ltSR i<k) = Fin-fst-= (ap S (ap fst q))
punchout-inj {n} (i , i<Sn) (S j , Sj<Sn) (k , k<Sn) i≠j i≠k q | inl (ltSR i<j) | inr k<i = ⊥-rec (<-to-≠ (<-trans k<i i<j) (! (ap fst q)))
punchout-inj {n} (i , i<Sn) (j , j<Sn) (k , k<Sn) i≠j i≠k q | inr j<i with ℕ-dichotomy (i≠k ∘ Fin-fst-=)
punchout-inj {n} (i , i<Sn) (j , j<Sn) (.(S i) , Si<Sn) i≠j i≠k q | inr j<i | (inl ltS) = ⊥-rec (i≠j (Fin-fst-= (! (ap fst q))))
punchout-inj {n} (i , i<Sn) (j , j<Sn) (S k , Sk<Sn) i≠j i≠k q | inr j<i | (inl (ltSR i<k)) = ⊥-rec (<-to-≠ (<-trans j<i i<k) (ap fst q))
punchout-inj {n} (i , i<Sn) (j , j<Sn) (k , k<Sn) i≠j i≠k q | inr j<i | (inr k<i) = Fin-fst-= (ap fst q)
pigeonhole-special : ∀ {n} (f : Fin (S n) → Fin n)
→ Σ (Fin (S n)) λ i → Σ (Fin (S n)) λ j → (i ≠ j) × (f i == f j)
pigeonhole-special {O} f = ⊥-rec (–> Fin-equiv-Empty (f (O , ltS)))
pigeonhole-special {S n} f with Dec-Σ-Fin (λ i → f (incl ltS i) == f (S n , ltS))
(λ i → Fin-has-dec-eq (f (incl ltS i)) (f (S n , ltS)))
pigeonhole-special {S n} f | inl (i , p) = incl ltS i , (S n , ltS) , incl-ne i , p
pigeonhole-special {S n} f | inr h = incl ltS i , incl ltS j , (λ q → i≠j (Fin-fst-= (ap fst q))) ,
punchout-inj (f (S n , ltS)) (f (incl ltS i)) (f (incl ltS j))
(λ q → h (i , Fin-fst-= (! (ap fst q))))
(λ q → h (j , Fin-fst-= (! (ap fst q))))
(Fin-fst-= (ap fst p))
where
g : Fin (S n) → Fin n
g k = punchout (f (S n , ltS)) (f (incl ltS k)) λ p → h (k , Fin-fst-= (! (ap fst p)))
i : Fin (S n)
i = fst (pigeonhole-special g)
j : Fin (S n)
j = fst (snd (pigeonhole-special g))
i≠j : i ≠ j
i≠j = fst (snd (snd (pigeonhole-special g)))
p : g i == g j
p = snd (snd (snd (pigeonhole-special g)))
pigeonhole : ∀ {m n} (m<n : m < n) (f : Fin n → Fin m)
→ Σ (Fin n) λ i → Σ (Fin n) λ j → (i ≠ j) × (f i == f j)
pigeonhole {m} {.(S m)} ltS f = pigeonhole-special f
pigeonhole {m} {(S n)} (ltSR p) f = i , j , ¬q , Subtype=-out (Fin-prop m) (ap fst r)
where
g : Fin (S n) → Fin n
g k = fst (f k) , <-trans (snd (f k)) p
i : Fin (S n)
i = fst (pigeonhole-special g)
j : Fin (S n)
j = fst (snd (pigeonhole-special g))
¬q : i == j → ⊥
¬q = fst (snd (snd (pigeonhole-special g)))
r : g i == g j
r = snd (snd (snd (pigeonhole-special g)))
| {
"alphanum_fraction": 0.4863739591,
"avg_line_length": 47.1785714286,
"ext": "agda",
"hexsha": "3b89e1247135d8ae7051a0f1054f9f563d111dea",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/Pigeonhole.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/Pigeonhole.agda",
"max_line_length": 139,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/Pigeonhole.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2581,
"size": 5284
} |
open import Data.Unit using ( ⊤ )
open import FRP.LTL.RSet.Core using ( RSet )
module FRP.LTL.RSet.Unit where
T : RSet
T t = ⊤
| {
"alphanum_fraction": 0.6769230769,
"avg_line_length": 14.4444444444,
"ext": "agda",
"hexsha": "b9b0e5070f671b5887920dec77982a454d2e8ced",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/RSet/Unit.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/RSet/Unit.agda",
"max_line_length": 44,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/RSet/Unit.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 44,
"size": 130
} |
-- Andreas, 2017-07-13, issue #2642
record R : Set₁ where
field
F : Set
F : Set -- duplicate field, should be rejected
-- Otherwise, this gives an internal error:
test : Set → R
test A = record{ F = A }
| {
"alphanum_fraction": 0.6313364055,
"avg_line_length": 18.0833333333,
"ext": "agda",
"hexsha": "a9a909f3955464c6c9da9952360678d1d3f53c6c",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2642.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2642.agda",
"max_line_length": 51,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2642.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 68,
"size": 217
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Vectors defined in terms of the reflexive-transitive closure, Star
------------------------------------------------------------------------
{-# OPTIONS --with-K --safe #-}
module Data.Star.Vec where
open import Data.Star.Nat
open import Data.Star.Fin using (Fin)
open import Data.Star.Decoration
open import Data.Star.Pointer as Pointer hiding (lookup)
open import Data.Star.List using (List)
open import Relation.Binary
open import Relation.Binary.Consequences
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
open import Function
open import Data.Unit
-- The vector type. Vectors are natural numbers decorated with extra
-- information (i.e. elements).
Vec : Set → ℕ → Set
Vec A = All (λ _ → A)
-- Nil and cons.
[] : ∀ {A} → Vec A zero
[] = ε
infixr 5 _∷_
_∷_ : ∀ {A n} → A → Vec A n → Vec A (suc n)
x ∷ xs = ↦ x ◅ xs
-- Projections.
head : ∀ {A n} → Vec A (1# + n) → A
head (↦ x ◅ _) = x
tail : ∀ {A n} → Vec A (1# + n) → Vec A n
tail (↦ _ ◅ xs) = xs
-- Append.
infixr 5 _++_
_++_ : ∀ {A m n} → Vec A m → Vec A n → Vec A (m + n)
_++_ = _◅◅◅_
-- Safe lookup.
lookup : ∀ {A n} → Fin n → Vec A n → A
lookup i xs with Pointer.lookup i xs
... | result _ x = x
------------------------------------------------------------------------
-- Conversions
fromList : ∀ {A} → (xs : List A) → Vec A (length xs)
fromList ε = []
fromList (x ◅ xs) = x ∷ fromList xs
toList : ∀ {A n} → Vec A n → List A
toList = gmap (const tt) decoration
| {
"alphanum_fraction": 0.5415873016,
"avg_line_length": 23.1617647059,
"ext": "agda",
"hexsha": "ff4aef7af0780101f204382024650cf525308cf7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/Vec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/Vec.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Star/Vec.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 461,
"size": 1575
} |
-- Andreas, 2017-04-11, Issue 2543
-- Printing of second non-trivial with-pattern
-- {-# OPTIONS -v interaction.case:100 #-}
data D : Set where
c : D → D
f : D → D
f y with c y
... | c z with c y
... | q = {!q!} -- C-c C-c q
-- Was:
-- f y | c z | (c q) = ?
-- Expected:
-- f y | c z | c q = ?
| {
"alphanum_fraction": 0.5033112583,
"avg_line_length": 15.8947368421,
"ext": "agda",
"hexsha": "41c73842cfb1dff804f38c96f68549adc96cc7f6",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "hborum/agda",
"max_forks_repo_path": "test/interaction/Issue2543.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "hborum/agda",
"max_issues_repo_path": "test/interaction/Issue2543.agda",
"max_line_length": 46,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "hborum/agda",
"max_stars_repo_path": "test/interaction/Issue2543.agda",
"max_stars_repo_stars_event_max_datetime": "2020-09-20T00:28:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-29T09:40:30.000Z",
"num_tokens": 116,
"size": 302
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Showing natural numbers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Nat.Show where
open import Data.Char as Char using (Char)
open import Data.Digit using (showDigit; toDigits; toNatDigits)
open import Function using (_∘_; _$_)
open import Data.List.Base using (List; []; _∷_; map; reverse)
open import Data.Nat
open import Data.Product using (proj₁)
open import Data.String as String using (String)
open import Relation.Nullary.Decidable using (True)
------------------------------------------------------------------------
-- Conversion from unary representation to the representation by the
-- given base.
toDigitChar : (n : ℕ) → Char
toDigitChar n = Char.fromℕ (n + (Char.toℕ '0'))
toDecimalChars : ℕ → List Char
toDecimalChars = map toDigitChar ∘ toNatDigits 10
------------------------------------------------------------------------
-- Show
-- Time complexity is O(log₁₀(n))
show : ℕ → String
show = String.fromList ∘ toDecimalChars
-- Warning: when compiled the time complexity of `showInBase b n` is
-- O(n) instead of the expected O(log(n)).
showInBase : (base : ℕ)
{base≥2 : True (2 ≤? base)}
{base≤16 : True (base ≤? 16)} →
ℕ → String
showInBase base {base≥2} {base≤16} n =
String.fromList $
map (showDigit {base≤16 = base≤16}) $
reverse $
proj₁ $ toDigits base {base≥2 = base≥2} n
| {
"alphanum_fraction": 0.55078125,
"avg_line_length": 30.72,
"ext": "agda",
"hexsha": "2221a676e1cc9ad5ef5ed666abd019ed449c2269",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Nat/Show.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Nat/Show.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Nat/Show.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 369,
"size": 1536
} |
module Issue892b where
record R : Set₁ where
field A : Set
B : A → Set
-- The type of R.B should print as (r : R) → R.A r → Set
-- rather than ( : R) → R.A → Set.
bad : R.B
bad = ?
| {
"alphanum_fraction": 0.5408163265,
"avg_line_length": 15.0769230769,
"ext": "agda",
"hexsha": "87a62b07b0ae7f9c43b15dbb8a30297ef1558021",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue892b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue892b.agda",
"max_line_length": 56,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue892b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 70,
"size": 196
} |
------------------------------------------------------------------------
-- Programs used to define and specify breadth-first manipulations of
-- trees
------------------------------------------------------------------------
module BreadthFirst.Programs where
open import Codata.Musical.Notation
open import Codata.Musical.Colist hiding ([_])
open import Data.List.NonEmpty using (List⁺; [_]; _⁺++⁺_)
open import Data.Product
open import BreadthFirst.Universe
open import Stream hiding (zipWith)
open import Tree
infixr 5 _≺_ _∷_
infixr 4 _,_
infix 3 ↓_
mutual
-- The term WHNF is a bit of a misnomer here; only recursive
-- /coinductive/ arguments are suspended (in the form of programs).
data ElW : U → Set₁ where
leaf : ∀ {a} → ElW (tree a)
node : ∀ {a}
(l : ∞ (ElP (tree a))) (x : ElW a) (r : ∞ (ElP (tree a))) →
ElW (tree a)
_≺_ : ∀ {a} (x : ElW a) (xs : ∞ (ElP (stream a))) → ElW (stream a)
[] : ∀ {a} → ElW (colist a)
_∷_ : ∀ {a} (x : ElW a) (xs : ∞ (ElP (colist a))) → ElW (colist a)
_,_ : ∀ {a b} (x : ElW a) (y : ElW b) → ElW (a ⊗ b)
⌈_⌉ : ∀ {A} (x : A) → ElW ⌈ A ⌉
-- Note that higher-order functions are not handled well (see
-- longZipWith): the arguments cannot be programs, since this would
-- make the type negative.
-- The tree arguments to lab and flatten used to be tree programs,
-- but a number of lemmas could be removed when they were turned
-- into "actual" trees.
data ElP : U → Set₁ where
↓_ : ∀ {a} (w : ElW a) → ElP a
fst : ∀ {a b} (p : ElP (a ⊗ b)) → ElP a
snd : ∀ {a b} (p : ElP (a ⊗ b)) → ElP b
lab : ∀ {A B}
(t : Tree A) (lss : ElP (stream ⌈ Stream B ⌉)) →
ElP (tree ⌈ B ⌉ ⊗ stream ⌈ Stream B ⌉)
longZipWith : ∀ {A} (f : A → A → A) (xs ys : ElP (colist ⌈ A ⌉)) →
ElP (colist ⌈ A ⌉)
flatten : ∀ {A} (t : Tree A) → ElP (colist ⌈ List⁺ A ⌉)
infixl 9 _·_ _⊛_
_·_ : ∀ {A B} → (A → B) → ElW ⌈ A ⌉ → ElW ⌈ B ⌉
f · ⌈ x ⌉ = ⌈ f x ⌉
_⊛_ : ∀ {A B} → ElW ⌈ (A → B) ⌉ → ElW ⌈ A ⌉ → ElW ⌈ B ⌉
⌈ f ⌉ ⊛ x = f · x
fstW : ∀ {a b} → ElW (a ⊗ b) → ElW a
fstW (x , y) = x
sndW : ∀ {a b} → ElW (a ⊗ b) → ElW b
sndW (x , y) = y
-- Uses the n-th stream to label the n-th level in the tree. Returns
-- the remaining stream elements (for every level).
labW : ∀ {A B} → Tree A → ElW (stream ⌈ Stream B ⌉) →
ElW (tree ⌈ B ⌉ ⊗ stream ⌈ Stream B ⌉)
labW leaf bss = (leaf , bss)
labW (node l _ r) (⌈ b ≺ bs ⌉ ≺ bss) =
(node (♯ fst x) ⌈ b ⌉ (♯ fst y) , ⌈ ♭ bs ⌉ ≺ ♯ snd y)
where
x = lab (♭ l) (♭ bss)
y = lab (♭ r) (snd x)
longZipWithW : ∀ {A} → (A → A → A) →
(xs ys : ElW (colist ⌈ A ⌉)) → ElW (colist ⌈ A ⌉)
longZipWithW f (x ∷ xs) (y ∷ ys) = f · x ⊛ y ∷ ♯ longZipWith f (♭ xs) (♭ ys)
longZipWithW f xs [] = xs
longZipWithW f [] ys = ys
flattenW : ∀ {A} → Tree A → ElW (colist ⌈ List⁺ A ⌉)
flattenW leaf = []
flattenW (node l x r) =
⌈ [ x ] ⌉ ∷ ♯ longZipWith _⁺++⁺_ (flatten (♭ l)) (flatten (♭ r))
whnf : ∀ {a} → ElP a → ElW a
whnf (↓ w) = w
whnf (fst p) = fstW (whnf p)
whnf (snd p) = sndW (whnf p)
whnf (lab t bss) = labW t (whnf bss)
whnf (longZipWith f xs ys) = longZipWithW f (whnf xs) (whnf ys)
whnf (flatten t) = flattenW t
mutual
⟦_⟧W : ∀ {a} → ElW a → El a
⟦ leaf ⟧W = leaf
⟦ (node l x r) ⟧W = node (♯ ⟦ ♭ l ⟧) ⟦ x ⟧W (♯ ⟦ ♭ r ⟧)
⟦ (x ≺ xs) ⟧W = ⟦ x ⟧W ≺ ♯ ⟦ ♭ xs ⟧
⟦ [] ⟧W = []
⟦ (x ∷ xs) ⟧W = ⟦ x ⟧W ∷ ♯ ⟦ ♭ xs ⟧
⟦ (x , y) ⟧W = (⟦ x ⟧W , ⟦ y ⟧W)
⟦ ⌈ x ⌉ ⟧W = x
⟦_⟧ : ∀ {a} → ElP a → El a
⟦ p ⟧ = ⟦ whnf p ⟧W
| {
"alphanum_fraction": 0.4614152203,
"avg_line_length": 32.850877193,
"ext": "agda",
"hexsha": "c8af07f60b1d53644cef94f9133aea085fa66e6f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/codata",
"max_forks_repo_path": "BreadthFirst/Programs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/codata",
"max_issues_repo_path": "BreadthFirst/Programs.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "1b90445566df0d3b4ba6e31bd0bac417b4c0eb0e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/codata",
"max_stars_repo_path": "BreadthFirst/Programs.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T14:48:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-02-13T14:48:45.000Z",
"num_tokens": 1611,
"size": 3745
} |
{-# OPTIONS --allow-unsolved-metas #-}
module Real-Backup where
open import Data.Float hiding (_-_; _≈_)
open import Level using (0ℓ)
open import Algebra.Bundles using (CommutativeRing)
open import Algebra.Module.Bundles using (Module)
open import Relation.Binary.Structures using (IsStrictTotalOrder)
open import Relation.Binary.Bundles using (StrictTotalOrder)
open import Data.Sum using (_⊎_; inj₁; inj₂)
module CR = CommutativeRing
open import Relation.Binary.PropositionalEquality using (_≡_; module ≡-Reasoning)
open import Algebra.Module.Construct.TensorUnit
import Limit
open import InnerProduct
open import Relation.Nullary using (¬_)
private postulate
todo : ∀ {a} {A : Set a} → A
+-*-commutativeRing : CommutativeRing 0ℓ 0ℓ
CR.Carrier +-*-commutativeRing = Float
CR._≈_ +-*-commutativeRing = _≡_
CR._+_ +-*-commutativeRing = _+_
CR._*_ +-*-commutativeRing = _*_
CR.- +-*-commutativeRing = -_
CR.0# +-*-commutativeRing = 0.0
CR.1# +-*-commutativeRing = 1.0
CR.isCommutativeRing +-*-commutativeRing = todo
+-*-module : Module +-*-commutativeRing 0ℓ 0ℓ
+-*-module = ⟨module⟩
<-strictTotalOrder : StrictTotalOrder _ 0ℓ 0ℓ
<-strictTotalOrder = record { Carrier = Float; _≈_ = _≡_; _<_ = todo; isStrictTotalOrder = todo }
infixl 6 _-_
_-_ : Float → Float → Float
x - y = x + (- y)
open StrictTotalOrder <-strictTotalOrder
+-*-isInnerProduct : IsInnerProduct isStrictTotalOrder (λ x → x) +-*-module _*_
+-*-isInnerProduct = todo
+-*-isNormed : IsNormed isStrictTotalOrder (λ x → x) +-*-module _*_ sqrt
+-*-isNormed =
record
{ isInnerProduct = +-*-isInnerProduct
; sqrt-law = todo
; sqrt-concave = todo
; sqrt-cong = todo
}
module _ where
open Limit +-*-isNormed +-*-isNormed
open IsNormed +-*-isNormed
open Module +-*-module
open CommutativeRing +-*-commutativeRing using (refl; +-cong)
open import Data.Product
open import Algebra.Module.Morphism.Structures
_ : ∀ c → (c + x) ⟶ c as x ⟶0
_ = λ c ε (0<ε) → ε , λ x (0<x , x<ε) →
begin-strict
∥ c + x - c ∥
≈⟨ ∥∥-cong (y+x-y≈x c x) ⟩
∥ x ∥
<⟨ x<ε ⟩
ε
∎
where
open import Relation.Binary.Reasoning.StrictPartialOrder strictPartialOrder
y+x-y≈x : ∀ y x → y + x - y ≈ᴹ x
y+x-y≈x y x =
begin-equality
y + x - y
≈⟨ +ᴹ-cong (+ᴹ-comm y x) refl ⟩
x + y - y
≈⟨ +ᴹ-assoc x y (- y) ⟩
x + (y - y)
≈⟨ +ᴹ-cong {x = x} refl (-ᴹ‿inverseʳ y) ⟩
x + 0.0
≈⟨ +ᴹ-identityʳ x ⟩
x
∎
times : Float → Float → Float
times = _*_
times-homo : ∀ m → IsModuleHomomorphism +-*-module +-*-module (times m)
times-homo = todo
_SlopeOf_At_ : (f' : MA.X → MB.X) (f : MA.X → MB.X) (x : MA.X) → Set _
f' SlopeOf f At x = (λ y dy → f' y * dy) Differentiates f At x
dxⁿ≈nxⁿ⁻¹
: ∀ x n → (1.0 < n) ⊎ (¬ x ≈ 0.0)
→ (λ y → (n * (y ** (n - 1.0)))) SlopeOf (_** n) At x
dxⁿ≈nxⁿ⁻¹ = todo
dlogx≈1÷x : ∀ x → ¬ x ≈ 0.0 → (λ y dy → dy ÷ y) Differentiates log At x
dlogx≈1÷x = todo
deˣ/dx≈eˣ : ∀ x → e^_ SlopeOf e^_ At x
deˣ/dx≈eˣ = todo
open import Function using (_∘_)
-- chain'
-- : ∀ f f' g g' x
-- → (λ dx → dx * f' x) Differentiates f At x
-- → (λ dx → dx * g' (f x)) Differentiates g At f x
-- → (λ dx → g'fx * (f'x dx)) Differentiates (g ∘ f) At x
-- chain' f g x (f'x , _) (g'fx , _) = (λ dx → g'fx (f'x dx)) , todo
∂exp : ∀ x → (λ y dy → dy * (e^ y)) Differentiates e^_ At x
∂exp x = todo
open import Data.Nat using (zero; suc)
instance
exp-n-∂ : ∀ {n} {x} → e^_ ⟦ x , n ⟧
exp-n-∂ {zero} = []
exp-n-∂ {n = suc n} = todo ∹ exp-n-∂
it : ∀ {a} {A : Set a} → {{A}} → A
it {{x}} = x
gradexp : ∀ {x} → e^_ ⟦ x , 0 ⟧
gradexp = it
chain
: ∀ f g x {n}
→ ⦃ f ⟦ x , n ⟧ ⦄
→ ⦃ g ⟦ f x , n ⟧ ⦄
→ (g ∘ f) ⟦ x , n ⟧
chain f g x {n = 0} = []
chain f g x {_} ⦃ _∹_ {_} {f'} pf ff ⦄ ⦃ _∹_ {_} {g'} pg gg ⦄ =
let h y dy = g' (f y) (f' y dy)
-- confusion here between xs and dxs.
in _∹_ {δf = h} todo (chain (f' x) (g' (f x)) x ⦃ ff ⦄ ⦃ {! gg !} ⦄)
exp : Float → Float
exp = e^_
asdf : ∀ x → (exp ∘ exp) ⟦ x , 1 ⟧
asdf x = chain exp exp x
-- gradsin : ∀ {x} → sin DifferentiableAt x
-- gradsin {x} = (λ dx → dx * (cos x)) , todo
-- gradcos : ∀ {x} → cos DifferentiableAt x
-- gradcos {x} = (λ dx → dx * (- sin x)) , todo
-- grad : ∀ f x → f DifferentiableAt x → Float → Float
-- grad f x (f'x , _) = f'x
-- teste : Float → Float
-- teste x = grad e^_ x (grade^ {x}) 1.0
-- -- testsin : Float → Float
-- -- testsin x = grad sin x (gradsin x) 1.0
-- -- test : Float → Float
-- -- test x = grad (e^_ ∘ sin) x (chain' sin e^_ x (gradsin x) (grade^ (sin x))) 1.0
-- -- _ : ∀ x → test x ≡ 1.0 * cos x * (e^ sin x)
-- -- _ = λ x → refl
-- -- -- TODO
-- -- -- definitely need some helper functions here.
-- -- _ : ∀ y n → (λ x → n * y ** (n - 1.0) * x) Differentiates (λ x → x ** n) At y
-- -- _ = λ y n → todo , λ ε 0<ε → δ₀ ε y n , λ δ (0<δ , δ<ε) → proof y n ε δ 0<δ δ<ε
-- -- where
-- -- δ₀ : Float → Float → Float → Float
-- -- δ₀ = {! !}
-- -- triangle : ∀ x y → ∥ x + y ∥ < ∥ x ∥ + ∥ y ∥
-- -- triangle = todo
-- -- ≈< : ∀ x {y z} → y < z → x + y < x + z
-- -- ≈< = todo
-- -- -- does this imply _≈_ is _≡_?
-- -- ∀-cong : ∀ {x y} (f : CR.X → CR.X) → x ≈ y → f x ≈ f y
-- -- ∀-cong = todo
-- -- proof
-- -- : ∀ y n ε Δ (0<Δ : 0.0 < ∥ Δ ∥) (Δ<ε : ∥ Δ ∥ < ε)
-- -- → ∥ (y + Δ) ** n - (y ** n +ᴹ n * y ** (n - 1.0) * Δ) ∥ < ε
-- -- proof y n ε Δ 0<Δ Δ<ε =
-- -- begin-strict
-- -- ∥ (y + Δ) ** n - (y ** n + n * y ** (n - 1.0) * Δ) ∥
-- -- <⟨ triangle ((y + Δ) ** n) _ ⟩
-- -- ∥ (y + Δ) ** n ∥ + ∥ - (y ** n + n * y ** (n - 1.0) * Δ) ∥
-- -- ≈⟨ +-cong { ∥ (y + Δ) ** n ∥ } refl (sqrt-cong (∥-x∥²≈∥x∥² ((y ** n + n * y ** (n - 1.0) * Δ)))) ⟩
-- -- ∥ (y + Δ) ** n ∥ + ∥ (y ** n + n * y ** (n - 1.0) * Δ) ∥
-- -- <⟨ ≈< ∥ (y + Δ) ** n ∥ (triangle (y ** n) _) ⟩
-- -- ∥ (y + Δ) ** n ∥ + (∥ y ** n ∥ + ∥ n * y ** (n - 1.0) * Δ ∥)
-- -- <⟨ {! +-cong refl (x→-x _) !} ⟩
-- -- ε
-- -- ∎
-- -- -- (f (x MA.+ᴹ dx) MB.+ᴹ (MB.-ᴹ (f x MB.+ᴹ f' dx))) ⟶ MB.0ᴹ as dx ⟶ MA.0ᴹ
-- -- _ : ∀ θ → (λ dθ → F.cos θ F.* dθ) Differentiates F.sin At θ
-- -- _ =
-- -- λ θ → times-homo (F.cos θ) ,
-- -- λ ε → ε ,
-- -- λ dθ (0<abs[dθ-0] , abs[dθ-0]<ε) → {! !} -- abs[x-0]<ε→abs[c+x-c]<ε x ε {! F.sin (θ F.+ x) !} abs[x-0]<ε
-- -- -- if abs dθ < ε then abs ( sin (θ + dθ) - (sin θ + cos θ * dθ) ) < ε
-- -- -- sin x = (e^iπx - e^-iπx) / 2i
-- -- -- cos x = (e^iπx + e^-iπx) / 2
-- -- -- sin x+dx = ?
-- -- -- open Diff +-*-module +-*-module
-- -- -- open Line +-*-commutativeRing
-- -- -- dline : ∀ m b x → Differentiable _≤_ abs abs (line m b) x
-- -- -- dline m b x = (λ x' dx → m * dx) , {! !} , λ dy → (dy F.÷ m) , {! asdf dy !}
-- -- -- where
-- -- -- open import Relation.Binary.Reasoning.PartialOrder ≤-poset
-- -- -- diff≈0 : ∀ dx → (line m b (x + dx) - line m b x) - m * dx ≈ 0#
-- -- -- diff≈0 dx =
-- -- -- begin-equality
-- -- -- (line m b (x + dx) - line m b x - m * dx)
-- -- -- ≈⟨ +-cong (linear-diff m b x dx) refl ⟩
-- -- -- m * dx - m * dx
-- -- -- ≈⟨ proj₂ -‿inverse (m * dx) ⟩
-- -- -- 0#
-- -- -- ∎
-- -- -- open import Data.Nat using (ℕ; zero; suc)
-- -- -- --
-- -- -- -- Convex : (A → A) → Set
-- -- -- -- minimize : (f : A → A) (c : Convex f) → A
-- -- -- -- minimize f c = {! !}
-- -- -- -- gradient : (f : A → A) (Differentiable f)
-- -- -- -- gradientDescent : (f' : A → A) (n : ℕ) → A
-- -- -- -- gradientDescent = ?
-- -- -- open import Relation.Nullary using (¬_)
-- -- -- x<y→y≮x : ∀ {x y} → x < y → ¬ y < x
-- -- -- x<y→y≮x x y = post
-- -- -- <-trans : ∀ {i j k} → i < j → j < k → i < k
-- -- -- <-trans i<j j<k = post
-- -- -- open CommutativeRing +-*-commutativeRing
-- -- -- open Module +-*-module
-- -- -- open import Relation.Binary
-- -- -- ≤-antisym : Antisymmetric _≡_ _≤_
-- -- -- ≤-antisym (inj₂ i≡j) j≤i = i≡j
-- -- -- ≤-antisym (inj₁ i<j) (inj₂ j≡i) = sym j≡i
-- -- -- ≤-antisym {i} {j} (inj₁ i<j) (inj₁ j<i) with x<y→y≮x {i} {j} i<j j<i
-- -- -- ... | ()
-- -- -- ≤-trans : Transitive _≤_
-- -- -- ≤-trans {i} {j} {k} (inj₁ i<j) (inj₁ j<k) = inj₁ (<-trans {i} {j} {k} i<j j<k)
-- -- -- ≤-trans (inj₁ i<j) (inj₂ j≡k) = inj₁ {! tt !}
-- -- -- ≤-trans (inj₂ y) (inj₁ x) = {! !}
-- -- -- ≤-trans (inj₂ i≡j) (inj₂ j≡k) = inj₂ (trans i≡j j≡k)
| {
"alphanum_fraction": 0.4585761627,
"avg_line_length": 30.0721649485,
"ext": "agda",
"hexsha": "985d4526c1b28bb5ed024e4acc2d1d09ffe553f0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "cspollard/diff",
"max_forks_repo_path": "src/Real-Backup.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "cspollard/diff",
"max_issues_repo_path": "src/Real-Backup.agda",
"max_line_length": 120,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "78c3dec24834ffeca5e74cb75578e9b210a5be62",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "cspollard/diff",
"max_stars_repo_path": "src/Real-Backup.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3779,
"size": 8751
} |
-- Andreas, 2012-05-04
-- Occurs check when unifying indices in patterns
{-# OPTIONS --allow-unsolved-metas #-}
-- The option is supplied to force a real error to pass the regression test.
module OccursCheck1 where
data Nat : Set where
zero : Nat
suc : Nat -> Nat
data _==_ {A : Set}(x : A) : A -> Set where
refl : x == x
test :
let X : Nat
X = _
in X == suc X
test = refl
-- should fail with error message indicating no solution possible
| {
"alphanum_fraction": 0.6565217391,
"avg_line_length": 23,
"ext": "agda",
"hexsha": "45b9c705aa30a14d52dab10a878c1718acfb8c17",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dagit/agda",
"max_forks_repo_path": "test/fail/OccursCheck1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dagit/agda",
"max_issues_repo_path": "test/fail/OccursCheck1.agda",
"max_line_length": 76,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dagit/agda",
"max_stars_repo_path": "test/fail/OccursCheck1.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z",
"num_tokens": 135,
"size": 460
} |
{-# OPTIONS --safe --warning=error --without-K --guardedness #-}
open import Agda.Primitive using (Level; lzero; lsuc; _⊔_)
open import Setoids.Setoids
open import Rings.Definition
open import Rings.Lemmas
open import Rings.Orders.Partial.Definition
open import Rings.Orders.Total.Definition
open import Groups.Definition
open import Groups.Groups
open import Fields.Fields
open import Sets.EquivalenceRelations
open import Sequences
open import Setoids.Orders.Partial.Definition
open import Setoids.Orders.Total.Definition
open import Functions.Definition
open import LogicalFormulae
open import Numbers.Naturals.Naturals
module Fields.CauchyCompletion.EquivalentMonotone {m n o : _} {A : Set m} {S : Setoid {m} {n} A} {_+_ : A → A → A} {_*_ : A → A → A} {_<_ : Rel {m} {o} A} {pOrder : SetoidPartialOrder S _<_} {tOrder : SetoidTotalOrder {_<_ = _<_} pOrder} {R : Ring S _+_ _*_} (order : TotallyOrderedRing R tOrder) (F : Field R) (charNot2 : Setoid._∼_ S ((Ring.1R R) + (Ring.1R R)) (Ring.0R R) → False) where
open Setoid S
open SetoidTotalOrder tOrder
open SetoidPartialOrder pOrder
open Equivalence eq
open TotallyOrderedRing order
open Field F
open Group (Ring.additiveGroup R)
open Ring R
open import Fields.Lemmas F
open import Fields.Orders.Lemmas {F = F} record { oRing = order }
open import Rings.Orders.Lemmas(order)
open import Fields.CauchyCompletion.Definition order F
open import Fields.CauchyCompletion.Multiplication order F charNot2
open import Fields.CauchyCompletion.Addition order F charNot2
open import Fields.CauchyCompletion.Setoid order F charNot2
open import Fields.CauchyCompletion.Group order F charNot2
open import Fields.CauchyCompletion.Ring order F charNot2
open import Fields.CauchyCompletion.Comparison order F charNot2
open import Fields.CauchyCompletion.Approximation order F charNot2
halvingSequence : (start : A) → Sequence A
Sequence.head (halvingSequence start) = start
Sequence.tail (halvingSequence start) with halve charNot2 start
Sequence.tail (halvingSequence start) | start/2 , _ = halvingSequence start/2
halvingSequenceMultiple : (start : A) → {n : ℕ} → index (halvingSequence start) n ∼ index (map (start *_) (halvingSequence (Ring.1R R))) n
halvingSequenceMultiple start {zero} = Equivalence.symmetric eq (Equivalence.transitive eq *Commutative identIsIdent)
halvingSequenceMultiple start {succ n} with halve charNot2 start
... | start/2 , _ with allInvertible (1R + 1R) charNot2
halvingSequenceMultiple start {succ n} | start/2 , b | 1/2 , pr1/2 rewrite equalityCommutative (mapAndIndex (halvingSequence (1R * 1/2)) (_*_ start) n) = Equivalence.transitive eq (halvingSequenceMultiple start/2 {n}) f
where
g : (start * (1/2 * index (halvingSequence 1R) n)) ∼ (start * index (map (_*_ (1R * 1/2)) (halvingSequence 1R)) n)
g rewrite equalityCommutative (mapAndIndex (halvingSequence 1R) (_*_ (1R * 1/2)) n) = *WellDefined (Equivalence.reflexive eq) (*WellDefined (Equivalence.symmetric eq identIsIdent) (Equivalence.reflexive eq))
f : index (map (_*_ start/2) (halvingSequence 1R)) n ∼ (start * index (halvingSequence (1R * 1/2)) n)
f rewrite equalityCommutative (mapAndIndex (halvingSequence 1R) (_*_ start/2) n) = Equivalence.transitive eq (Equivalence.transitive eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq (*WellDefined (Equivalence.symmetric eq b) (Equivalence.reflexive eq)) (halfHalves 1/2 (Equivalence.transitive eq (Equivalence.transitive eq (+WellDefined (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative identIsIdent)) (Equivalence.symmetric eq (Equivalence.transitive eq *Commutative identIsIdent))) (Equivalence.symmetric eq *DistributesOver+)) pr1/2)))) (Equivalence.reflexive eq)) (Equivalence.symmetric eq *Associative)) g) (Equivalence.symmetric eq (*WellDefined (Equivalence.reflexive eq) (halvingSequenceMultiple (1R * 1/2) {n})))
Decreasing : Sequence A → Set o
Decreasing seq = ∀ (N : ℕ) → (index seq (succ N)) < (index seq N)
halvingSequencePositive : (n : ℕ) → 0G < index (halvingSequence 1R) n
halvingSequencePositive zero = 0<1 (charNot2ImpliesNontrivial charNot2)
halvingSequencePositive (succ n) with halve charNot2 1R
halvingSequencePositive (succ n) | 1/2 , pr1/2 = <WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq (Equivalence.transitive eq (halvingSequenceMultiple 1/2 {n}) (Equivalence.transitive eq (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (mapAndIndex (halvingSequence 1R) (_*_ 1/2) n)) *Commutative))) (orderRespectsMultiplication (halvingSequencePositive n) (halvePositive 1/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq pr1/2) (0<1 (charNot2ImpliesNontrivial charNot2)))))
decreasingHalving : Decreasing (halvingSequence 1R)
decreasingHalving N with halve charNot2 1R
decreasingHalving N | 1/2 , pr1/2 with (halfLess 1/2 1R (0<1 (charNot2ImpliesNontrivial charNot2)) pr1/2)
... | 1/2<1 = <WellDefined (Equivalence.transitive eq (identityOfIndiscernablesLeft _∼_ (Equivalence.reflexive eq) (equalityCommutative (mapAndIndex (halvingSequence 1R) (_*_ 1/2) N))) (Equivalence.symmetric eq (halvingSequenceMultiple 1/2 {N}))) identIsIdent (ringCanMultiplyByPositive {c = index (halvingSequence 1R) N} (halvingSequencePositive N) 1/2<1)
imageOfN : ℕ → A
imageOfN zero = 0R
imageOfN (succ x) = 1R + imageOfN x
nextImageOfN : (a : A) → 0R < a → ℕ
nextImageOfN a 0<a = ?
halvingToZero : (a : A) → (0G < a) → Sg ℕ (λ N → (index (halvingSequence 1R) N) < a)
halvingToZero a 0<a with SetoidTotalOrder.totality tOrder a 1R
halvingToZero a 0<a | inl (inl a<1) = {!!}
halvingToZero a 0<a | inl (inr 1<a) = 0 , 1<a
halvingToZero a 0<a | inr a=1 with halve charNot2 1R
... | 1/2 , pr1/2 = 1 , <WellDefined ans (Equivalence.symmetric eq a=1) (halfLess 1/2 1R (0<1 (charNot2ImpliesNontrivial charNot2)) pr1/2)
where
ans : 1/2 ∼ Sequence.head (Sequence.tail (halvingSequence 1R))
ans with halve charNot2 1R
ans | 1/2' , pr1/2' = halvesEqual charNot2 1/2 1/2' pr1/2 pr1/2'
halvesCauchy : cauchy (halvingSequence 1R)
halvesCauchy e 0<e = {!!}
multipleOfCauchyIsCauchy : (mult : A) → (seq : Sequence A) → cauchy seq → cauchy (map (mult *_) seq)
multipleOfCauchyIsCauchy mult seq seqCauchy e 0<e with SetoidTotalOrder.totality tOrder 0R mult
multipleOfCauchyIsCauchy mult seq seqCauchy e 0<e | inl (inl x) with allInvertible mult λ pr → irreflexive (<WellDefined (Equivalence.reflexive eq) pr x)
... | 1/mult , pr1/mult = {!!}
multipleOfCauchyIsCauchy mult seq seqCauchy e 0<e | inl (inr x) with allInvertible mult λ pr → irreflexive (<WellDefined pr (Equivalence.reflexive eq) x)
... | 1/mult , pr1/mult = {!!}
multipleOfCauchyIsCauchy mult seq seqCauchy e 0<e | inr 0=mult = 0 , ans
where
ans : {m n : ℕ} → (0 <N m) → (0 <N n) → abs (index (map (_*_ mult) seq) m + inverse (index (map (_*_ mult) seq) n)) < e
ans {m} {n} _ _ rewrite equalityCommutative (mapAndIndex seq (_*_ mult) m) | equalityCommutative (mapAndIndex seq (_*_ mult) n) = <WellDefined {!!} (Equivalence.reflexive eq) 0<e
halvingSequenceCauchy : (start : A) → cauchy (halvingSequence start)
halvingSequenceCauchy start = {!!}
sequenceAllAbove : (a : CauchyCompletion) → Sequence A
sequenceAllAbove a = go (Ring.1R R) (0<1 (charNot2ImpliesNontrivial charNot2))
where
go : (e : A) → (0G < e) → Sequence A
Sequence.head (go e 0<e) = rationalApproximatelyAbove a e 0<e
Sequence.tail (go e 0<e) with halve charNot2 e
... | e/2 , prE/2 = go e/2 (halvePositive e/2 (<WellDefined (Equivalence.reflexive eq) (Equivalence.symmetric eq prE/2) 0<e))
sequenceAllAboveCauchy : (a : CauchyCompletion) → cauchy (sequenceAllAbove a)
sequenceAllAboveCauchy a e 0<e = {!!}
-- find N such that 1/2^N < e
-- show that this N is enough
-- show that sequenceAllAbove ∼ a
-- monotonify sequenceAllAbove
-- show that monotonify of a sequence which is all above its limit still converges to that limit
| {
"alphanum_fraction": 0.7443798939,
"avg_line_length": 64.3739837398,
"ext": "agda",
"hexsha": "362481033b2350d9db1c8e385489e4acaeb9998b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Fields/CauchyCompletion/EquivalentMonotone.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Fields/CauchyCompletion/EquivalentMonotone.agda",
"max_line_length": 789,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Fields/CauchyCompletion/EquivalentMonotone.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 2614,
"size": 7918
} |
module Day4 where
open import Prelude.String as String
open import Data.Maybe
open import Foreign.Haskell using (Unit)
open import Prelude.List as List
open import Data.Nat
open import Data.Nat.DivMod
open import Data.Nat.Properties
import Data.Nat.Show as ℕs
open import Prelude.Char
open import Data.Vec as Vec renaming (_>>=_ to _VV=_ ; toList to VecToList)
open import Data.Product
open import Relation.Nullary
open import Data.Nat.Properties
open import Data.Bool.Base
open import AocIO
open import AocUtil
open import AocVec
open import Relation.Binary.PropositionalEquality
open import EvenOdd
count-falsy : List Bool → ℕ
count-falsy ls = length (filter not ls)
split-line : List Char → List String
split-line ls with (words ls)
... | ls-words = List.map packString ls-words
has-following-duplicates : List String → Bool
has-following-duplicates [] = false
has-following-duplicates (x ∷ []) = false
has-following-duplicates (x ∷ y ∷ ls) with primStringEquality x y
... | false = has-following-duplicates (y ∷ ls)
... | true = true
main : IO Unit
main = mainBuilder (readFileMain process-file)
where
sort-word : String → String
sort-word s with unpackString s
... | ls with sort ls
... | ls-sorted = packString ls-sorted
is-valid-passphrase : List String → Bool
is-valid-passphrase ls with List.map sort-word ls
... | sorted-words with sort sorted-words
... | ls-sorted = has-following-duplicates ls-sorted
process-file : String → IO Unit
process-file file-content with (lines (unpackString file-content))
... | file-lines with (List.map split-line file-lines)
... | lines-split-into-words with (List.map is-valid-passphrase lines-split-into-words)
... | lines-are-valid with count-falsy lines-are-valid
... | valid-count = printString (ℕs.show valid-count)
main2 : IO Unit
main2 = mainBuilder (readFileMain process-file)
where
is-valid-passphrase : List String → Bool
is-valid-passphrase ls with sort ls
... | ls-sorted = has-following-duplicates ls-sorted
process-file : String → IO Unit
process-file file-content with (lines (unpackString file-content))
... | file-lines with (List.map split-line file-lines)
... | lines-split-into-words with (List.map is-valid-passphrase lines-split-into-words)
... | lines-are-valid with count-falsy lines-are-valid
... | valid-count = printString (ℕs.show valid-count)
| {
"alphanum_fraction": 0.7214876033,
"avg_line_length": 34.5714285714,
"ext": "agda",
"hexsha": "ad4dadd168e40de48e5a4d60082b7062d78d530b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37956e581dc51bf78008d7dd902bb18d2ee481f6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Zalastax/adventofcode2017",
"max_forks_repo_path": "day-4/Day4.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37956e581dc51bf78008d7dd902bb18d2ee481f6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Zalastax/adventofcode2017",
"max_issues_repo_path": "day-4/Day4.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "37956e581dc51bf78008d7dd902bb18d2ee481f6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Zalastax/adventofcode2017",
"max_stars_repo_path": "day-4/Day4.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 626,
"size": 2420
} |
module Basics where
id : {A : Set} -> A -> A
id a = a
_o_ : {A : Set}{B : A -> Set}{C : (a : A)(b : B a) -> Set} ->
({a : A}(b : B a) -> C a b) -> (g : (a : A) -> B a) ->
(a : A) -> C a (g a)
_o_ f g a = f (g a)
| {
"alphanum_fraction": 0.3451327434,
"avg_line_length": 22.6,
"ext": "agda",
"hexsha": "8366bdfd988a1d1ceee07b05f68f9be28ccdc8ac",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "benchmark/Syntacticosmos/Basics.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "benchmark/Syntacticosmos/Basics.agda",
"max_line_length": 61,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "benchmark/Syntacticosmos/Basics.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 105,
"size": 226
} |
{-# OPTIONS --without-K --safe #-}
module Definition.Conversion.Whnf where
open import Definition.Untyped
open import Definition.Typed
open import Definition.Conversion
open import Tools.Product
mutual
-- Extraction of neutrality from algorithmic equality of neutrals.
ne~↑ : ∀ {t u A Γ}
→ Γ ⊢ t ~ u ↑ A
→ Neutral t × Neutral u
ne~↑ (var-refl x₁ x≡y) = var _ , var _
ne~↑ (app-cong x x₁) = let _ , q , w = ne~↓ x
in ∘ₙ q , ∘ₙ w
ne~↑ (fst-cong x) =
let _ , pNe , rNe = ne~↓ x
in fstₙ pNe , fstₙ rNe
ne~↑ (snd-cong x) =
let _ , pNe , rNe = ne~↓ x
in sndₙ pNe , sndₙ rNe
ne~↑ (natrec-cong x x₁ x₂ x₃) = let _ , q , w = ne~↓ x₃
in natrecₙ q , natrecₙ w
ne~↑ (Emptyrec-cong x x₁) = let _ , q , w = ne~↓ x₁
in Emptyrecₙ q , Emptyrecₙ w
-- Extraction of neutrality and WHNF from algorithmic equality of neutrals
-- with type in WHNF.
ne~↓ : ∀ {t u A Γ}
→ Γ ⊢ t ~ u ↓ A
→ Whnf A × Neutral t × Neutral u
ne~↓ ([~] A₁ D whnfB k~l) = whnfB , ne~↑ k~l
-- Extraction of WHNF from algorithmic equality of types in WHNF.
whnfConv↓ : ∀ {A B Γ}
→ Γ ⊢ A [conv↓] B
→ Whnf A × Whnf B
whnfConv↓ (U-refl x) = Uₙ , Uₙ
whnfConv↓ (ℕ-refl x) = ℕₙ , ℕₙ
whnfConv↓ (Empty-refl x) = Emptyₙ , Emptyₙ
whnfConv↓ (Unit-refl x) = Unitₙ , Unitₙ
whnfConv↓ (ne x) = let _ , neA , neB = ne~↓ x
in ne neA , ne neB
whnfConv↓ (Π-cong x x₁ x₂) = Πₙ , Πₙ
whnfConv↓ (Σ-cong x x₁ x₂) = Σₙ , Σₙ
-- Extraction of WHNF from algorithmic equality of terms in WHNF.
whnfConv↓Term : ∀ {t u A Γ}
→ Γ ⊢ t [conv↓] u ∷ A
→ Whnf A × Whnf t × Whnf u
whnfConv↓Term (ℕ-ins x) = let _ , neT , neU = ne~↓ x
in ℕₙ , ne neT , ne neU
whnfConv↓Term (Empty-ins x) = let _ , neT , neU = ne~↓ x
in Emptyₙ , ne neT , ne neU
whnfConv↓Term (Unit-ins x) = let _ , neT , neU = ne~↓ x
in Unitₙ , ne neT , ne neU
whnfConv↓Term (ne-ins t u x x₁) =
let _ , neT , neU = ne~↓ x₁
in ne x , ne neT , ne neU
whnfConv↓Term (univ x x₁ x₂) = Uₙ , whnfConv↓ x₂
whnfConv↓Term (zero-refl x) = ℕₙ , zeroₙ , zeroₙ
whnfConv↓Term (suc-cong x) = ℕₙ , sucₙ , sucₙ
whnfConv↓Term (η-eq x₁ x₂ y y₁ x₃) = Πₙ , functionWhnf y , functionWhnf y₁
whnfConv↓Term (Σ-η _ _ pProd rProd _ _) = Σₙ , productWhnf pProd , productWhnf rProd
whnfConv↓Term (η-unit _ _ tWhnf uWhnf) = Unitₙ , tWhnf , uWhnf
| {
"alphanum_fraction": 0.5524225576,
"avg_line_length": 35.9714285714,
"ext": "agda",
"hexsha": "652d1c235cac868c636855ab4e8eb2727d895444",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Vtec234/logrel-mltt",
"max_forks_repo_path": "Definition/Conversion/Whnf.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Vtec234/logrel-mltt",
"max_issues_repo_path": "Definition/Conversion/Whnf.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "4746894adb5b8edbddc8463904ee45c2e9b29b69",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Vtec234/logrel-mltt",
"max_stars_repo_path": "Definition/Conversion/Whnf.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1014,
"size": 2518
} |
postulate
A : Set
B : A → Set
@0 T : _
T = (@0 x : A) → B x
| {
"alphanum_fraction": 0.4153846154,
"avg_line_length": 9.2857142857,
"ext": "agda",
"hexsha": "e74490a9b7e366179a509d491fe325edf8ebe073",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "shlevy/agda",
"max_forks_repo_path": "test/Succeed/Issue3853.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3853.agda",
"max_line_length": 20,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3853.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 32,
"size": 65
} |
------------------------------------------------------------------------
-- Types used to make recursive arguments coinductive
------------------------------------------------------------------------
-- See Data.Colist for examples of how this type is used, or
-- http://article.gmane.org/gmane.comp.lang.agda/633 for a longer
-- explanation.
module Coinduction where
infix 10 ♯_ ♯₁_
codata ∞ (T : Set) : Set where
♯_ : (x : T) → ∞ T
♭ : ∀ {T} → ∞ T → T
♭ (♯ x) = x
-- Variant for Set₁.
codata ∞₁ (T : Set₁) : Set₁ where
♯₁_ : (x : T) → ∞₁ T
♭₁ : ∀ {T} → ∞₁ T → T
♭₁ (♯₁ x) = x
| {
"alphanum_fraction": 0.4372881356,
"avg_line_length": 22.6923076923,
"ext": "agda",
"hexsha": "0992d2c51249e4911e977e050616b97890cf2f00",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Coinduction.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Coinduction.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Coinduction.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 191,
"size": 590
} |
open import Prelude
open import Data.List.Properties
open import Data.List.Any hiding (map)
open import Extensions.Vec
open import Data.Vec
open import Data.List.All as All hiding (map; lookup)
module Implicits.Resolution.Infinite.Semantics where
open import Implicits.Syntax
open import Implicits.Resolution.Infinite.Resolution
open import Implicits.Substitutions
open import Implicits.Substitutions.Lemmas
open import Implicits.Semantics
open import Implicits.Semantics.Lemmas
open import SystemF.Everything as F using ()
module DerivationSemantics where
⟦_,_⟧r : ∀ {ν n} {Δ : ICtx ν} {Γ : Ctx ν n} {a} → Δ ⊢ᵣ a → Γ # Δ →
∃ λ t → ⟦ Γ ⟧ctx→ F.⊢ t ∈ ⟦ a ⟧tp→
⟦_,_⟧r {Γ = Γ} (r-simp {r = r} r∈Δ r↓τ) m with ∈⟶index (All.lookup m r∈Δ)
⟦_,_⟧r {Γ = Γ} (r-simp {r = r} r∈Δ r↓τ) m | i , lookup-i≡r =
⟦ subst (λ u → _ F.⊢ F.var i ∈ u) eq (F.var i) , r↓τ , m ⟧r↓
where
eq = begin
lookup i ⟦ Γ ⟧ctx→
≡⟨ sym $ lookup-⟦⟧ctx→ Γ i ⟩
⟦ lookup i Γ ⟧tp→
≡⟨ cong ⟦_⟧tp→ lookup-i≡r ⟩
⟦ r ⟧tp→ ∎
⟦_,_,_⟧r↓ : ∀ {ν n} {Δ : ICtx ν} {Γ : Ctx ν n} {a ta τ} →
⟦ Γ ⟧ctx→ F.⊢ ta ∈ ⟦ a ⟧tp→ → Δ ⊢ a ↓ τ → Γ # Δ →
∃ λ tτ → ⟦ Γ ⟧ctx→ F.⊢ tτ ∈ ⟦ simpl τ ⟧tp→
⟦ ⊢ta , i-simp τ , m ⟧r↓ = , ⊢ta
⟦ ⊢ta , i-iabs {ρ₁ = a} ⊢ᵣa b↓τ , m ⟧r↓ =
, (proj₂ ⟦ ⊢ta F.· (proj₂ ⟦ ⊢ᵣa , m ⟧r) , b↓τ , m ⟧r↓)
⟦ ⊢ta , i-tabs {ρ = a} b p , m ⟧r↓ =
⟦ subst (λ u → _ F.⊢ _ ∈ u) (sym $ ⟦a/sub⟧tp→ a b) (⊢ta F.[ ⟦ b ⟧tp→ ]) , p , m ⟧r↓
⟦ r-iabs {ρ₁ = a} {ρ₂ = b} ⊢b , m ⟧r = , F.λ' ⟦ a ⟧tp→ (proj₂ ⟦ ⊢b , #ivar a m ⟧r)
⟦_,_⟧r {Γ = Γ} (r-tabs {ρ = r} p) m with ⟦ p , #tvar m ⟧r
⟦_,_⟧r {Δ = Δ} {Γ = Γ} (r-tabs {ρ = r} p) m | _ , x =
, F.Λ (subst (λ u → u F.⊢ _ ∈ ⟦ r ⟧tp→) (⟦weaken⟧ctx→ Γ) x)
open Semantics _⊢ᵣ_ DerivationSemantics.⟦_,_⟧r public
| {
"alphanum_fraction": 0.5140086207,
"avg_line_length": 37.12,
"ext": "agda",
"hexsha": "db46eb50d598924519cc7c31f95c045313b4f332",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Implicits/Resolution/Infinite/Semantics.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Implicits/Resolution/Infinite/Semantics.agda",
"max_line_length": 91,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Implicits/Resolution/Infinite/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-07T04:08:41.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-04-05T17:57:11.000Z",
"num_tokens": 896,
"size": 1856
} |
module Issue846.DivModUtils where
open import Data.Nat
open import Data.Bool
open import Issue846.OldDivMod
open import Relation.Nullary
open import Data.Nat.Properties hiding (≤-antisym)
open import Data.Nat.Solver
open import Data.Fin using (Fin; toℕ; zero; suc; fromℕ≤)
open import Data.Fin.Properties using ( bounded; toℕ-fromℕ≤; toℕ-injective )
open import Relation.Binary.PropositionalEquality
open import Function
open import Data.Product
open import Relation.Binary hiding (NonEmpty)
open import Data.Empty
open import Relation.Nullary.Negation
open ≡-Reasoning
open ≤-Reasoning
renaming (begin_ to start_; _∎ to _□; _≡⟨_⟩_ to _≡⟨_⟩'_)
open DecTotalOrder ≤-decTotalOrder using () renaming (refl to ≤-refl; antisym to ≤-antisym)
i+[j∸m]≡i+j∸m : ∀ i j m → m ≤ j → i + (j ∸ m) ≡ i + j ∸ m
i+[j∸m]≡i+j∸m i zero zero lt = refl
i+[j∸m]≡i+j∸m i zero (suc m) ()
i+[j∸m]≡i+j∸m i (suc j) zero lt = refl
i+[j∸m]≡i+j∸m i (suc j) (suc m) (s≤s m≤j) = begin
i + (j ∸ m) ≡⟨ i+[j∸m]≡i+j∸m i j m m≤j ⟩
suc (i + j) ∸ suc m ≡⟨ cong (λ y → y ∸ suc m) $ solve 2 (λ i' j' → con 1 :+ (i' :+ j') := i' :+ (con 1 :+ j')) refl i j ⟩
(i + suc j) ∸ suc m ∎
where
open +-*-Solver
-- Following code taken from https://github.com/copumpkin/derpa/blob/master/REPA/Index.agda#L210
-- the next few bits are lemmas to prove uniqueness of euclidean division
-- first : for nonzero divisors, a nonzero quotient would require a larger
-- dividend than is consistent with a zero quotient, regardless of
-- remainders.
large : ∀ {d} {r : Fin (suc d)} x (r′ : Fin (suc d)) → toℕ r ≢ suc x * suc d + toℕ r′
large {d} {r} x r′ pf = irrefl pf (
start
suc (toℕ r)
≤⟨ bounded r ⟩
suc d
≤⟨ m≤m+n (suc d) (x * suc d) ⟩
suc d + x * suc d -- same as (suc x * suc d)
≤⟨ m≤m+n (suc x * suc d) (toℕ r′) ⟩
suc x * suc d + toℕ r′ -- clearer in two steps, and we'd need assoc anyway
□)
where
open ≤-Reasoning
open Relation.Binary.StrictTotalOrder Data.Nat.Properties.<-strictTotalOrder
-- a raw statement of the uniqueness, in the arrangement of terms that's
-- easiest to work with computationally
addMul-lemma′ : ∀ x x′ d (r r′ : Fin (suc d)) → x * suc d + toℕ r ≡ x′ * suc d + toℕ r′ → r ≡ r′ × x ≡ x′
addMul-lemma′ zero zero d r r′ hyp = (toℕ-injective hyp) , refl
addMul-lemma′ zero (suc x′) d r r′ hyp = ⊥-elim (large x′ r′ hyp)
addMul-lemma′ (suc x) zero d r r′ hyp = ⊥-elim (large x r (sym hyp))
addMul-lemma′ (suc x) (suc x′) d r r′ hyp
rewrite +-assoc (suc d) (x * suc d) (toℕ r)
| +-assoc (suc d) (x′ * suc d) (toℕ r′)
with addMul-lemma′ x x′ d r r′ (+-cancelˡ-≡ (suc d) hyp)
... | pf₁ , pf₂ = pf₁ , cong suc pf₂
-- and now rearranged to the order that Data.Nat.DivMod uses
addMul-lemma : ∀ x x′ d (r r′ : Fin (suc d)) → toℕ r + x * suc d ≡ toℕ r′ + x′ * suc d → r ≡ r′ × x ≡ x′
addMul-lemma x x′ d r r′ hyp rewrite +-comm (toℕ r) (x * suc d)
| +-comm (toℕ r′) (x′ * suc d)
= addMul-lemma′ x x′ d r r′ hyp
DivMod-lemma : ∀ x d (r : Fin (suc d)) → (res : DivMod (toℕ r + x * suc d) (suc d)) → res ≡ result x r refl
DivMod-lemma x d r (result q r′ eq) with addMul-lemma x q d r r′ eq
DivMod-lemma x d r (result .x .r eq) | refl , refl = cong (result x r) (≡-irrelevance eq refl) -- holy fuck
divMod-lemma : ∀ x d (r : Fin (suc d)) → (toℕ r + x * suc d) divMod suc d ≡ result x r refl
divMod-lemma x d r with (toℕ r + x * suc d) divMod suc d
divMod-lemma x d r | q rewrite DivMod-lemma x d r q = refl
-- End of copied code
mod-lemma : ∀ x d (r : Fin (suc d)) → (toℕ r + x * suc d) mod suc d ≡ r
mod-lemma x d r rewrite divMod-lemma x d r = refl
mod-suc : ∀ n
→ n mod 7 ≡ zero
→ suc n mod 7 ≡ suc zero
mod-suc n eq with n divMod 7
mod-suc .(q * 7) refl | result q .zero refl = mod-lemma q 6 (suc zero)
mod-pred : ∀ n
→ suc n mod 7 ≡ suc zero
→ n mod 7 ≡ zero
mod-pred n eq with n divMod 7
mod-pred .(toℕ r + q * 7) eq | result q r refl with toℕ r ≤? 5
mod-pred .(toℕ r + q * 7) eq | result q r refl | yes p = toℕ-injective eq4
where r' = fromℕ≤ {suc (toℕ r)} {7} (s≤s (s≤s p))
r'≡r = toℕ-fromℕ≤ (s≤s (s≤s p))
eq4 = cong pred $ begin
suc (toℕ r)
≡⟨ sym r'≡r ⟩
toℕ r'
≡⟨ cong toℕ $ begin
r' ≡⟨ sym (mod-lemma q 6 r') ⟩
(toℕ r' + q * 7) mod 7 ≡⟨ cong (λ y → (y + q * 7) mod 7) r'≡r ⟩
suc (toℕ r + q * 7) mod 7 ≡⟨ eq ⟩
suc zero ∎ ⟩
toℕ (suc (zero {7}))
≡⟨ refl ⟩
suc zero ∎
mod-pred .(toℕ r + q * 7) eq | result q r refl | no ¬p with eq3
where eq2 = begin
6
≡⟨ ≤-antisym (≰⇒> ¬p) (pred-mono (bounded r)) ⟩
toℕ r ∎
eq3 = begin
zero
≡⟨ sym (mod-lemma (suc q) 6 zero) ⟩
(suc q * 7) mod 7
≡⟨ refl ⟩
suc (6 + q * 7) mod 7
≡⟨ cong (λ y → suc (y + q * 7) mod 7) $ eq2 ⟩
suc (toℕ r + q * 7) mod 7
≡⟨ eq ⟩
suc zero ∎
... | ()
∸-mono₁ : ∀ i j k → i ≤ j → i ∸ k ≤ j ∸ k
∸-mono₁ i j zero i≤j = i≤j
∸-mono₁ zero j (suc k) i≤j = z≤n
∸-mono₁ (suc i) zero (suc k) ()
∸-mono₁ (suc i) (suc j) (suc k) (s≤s i≤j) = ∸-mono₁ i j k i≤j
∸-mono₂ : ∀ i j k → j ≤ k → i ∸ j ≥ i ∸ k
∸-mono₂ i zero k j≤k = n∸m≤n k i
∸-mono₂ i (suc j) zero ()
∸-mono₂ zero (suc j) (suc k) j≤k = z≤n
∸-mono₂ (suc n) (suc j) (suc k) (s≤s j≤k) = ∸-mono₂ n j k j≤k
1' : Fin 7
1' = suc zero
lem-sub-p : ∀ n p → (suc n mod 7 ≡ 1') → 1 ≤ p → p ≤ 6 → ((suc n ∸ p) mod 7 ≢ 1')
lem-sub-p _ 0 _ () _ _
lem-sub-p n 1 eq1 _ _ eq2 with begin zero ≡⟨ sym (mod-pred n eq1) ⟩ n mod 7 ≡⟨ eq2 ⟩ suc zero ∎
... | ()
lem-sub-p n (suc (suc p)) eq _ ≤6 eq2 with n divMod 7 | mod-pred n eq
lem-sub-p .0 (suc (suc p)) _ _ ≤6 () | result zero .zero refl | refl
lem-sub-p .(7 + (q * 7)) (suc (suc p)) _ _ (s≤s (s≤s (≤4))) eq2 | result (suc q) .zero refl | refl = ⊥-elim $ 1+n≰n 1<1
where <7 : (6 ∸ p) < 7
<7 = s≤s (n∸m≤n p 6)
eq4 = begin
toℕ (fromℕ≤ <7) + q * 7
≡⟨ cong (λ y → y + q * 7) (toℕ-fromℕ≤ <7 )⟩
(6 ∸ p) + q * 7
≡⟨ +-comm (6 ∸ p) (q * 7) ⟩
q * 7 + (6 ∸ p)
≡⟨ i+[j∸m]≡i+j∸m (q * 7) 6 p (≤-stepsˡ 2 ≤4) ⟩
(q * 7 + 6) ∸ p
≡⟨ cong (λ y → y ∸ p) (+-comm (q * 7) 6)⟩
(6 + q * 7) ∸ p ∎
eq5 = begin
fromℕ≤ <7
≡⟨ sym (mod-lemma q 6 (fromℕ≤ <7)) ⟩
(toℕ (fromℕ≤ <7) + q * 7) mod 7
≡⟨ cong (λ y → y mod 7) eq4 ⟩
((6 + q * 7) ∸ p) mod 7
≡⟨ eq2 ⟩
suc zero ∎
1<1 = start
2 ≤⟨ ∸-mono₂ 6 p 4 ≤4 ⟩
6 ∸ p ≡⟨ sym (toℕ-fromℕ≤ <7) ⟩'
toℕ (fromℕ≤ <7) ≡⟨ cong toℕ eq5 ⟩'
toℕ (suc (zero {7})) ≡⟨ refl ⟩'
suc zero □
-- bla = nonEmpty
| {
"alphanum_fraction": 0.502498929,
"avg_line_length": 36.664921466,
"ext": "agda",
"hexsha": "24c9d78d232b83fee5e95bedd4efcfce531c3ea9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/LibSucceed/Issue846/DivModUtils.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/LibSucceed/Issue846/DivModUtils.agda",
"max_line_length": 125,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/LibSucceed/Issue846/DivModUtils.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3057,
"size": 7003
} |
module Oscar.Property.IsReflexive where
open import Oscar.Level
record IsReflexive {𝔬} (⋆ : Set 𝔬) {ℓ} (_≣_ : ⋆ → ⋆ → Set ℓ) : Set (𝔬 ⊔ ℓ) where
field
reflexivity : ∀ x → x ≣ x
| {
"alphanum_fraction": 0.6075268817,
"avg_line_length": 20.6666666667,
"ext": "agda",
"hexsha": "6ce59e17979548e0ed67ff6c7a6d3ae09517bed4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Property/IsReflexive.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Property/IsReflexive.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Property/IsReflexive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 83,
"size": 186
} |
module Impure.LFRef.Welltyped where
open import Prelude
open import Data.List hiding ([_])
open import Data.List.All hiding (map)
open import Data.Vec as Vec hiding ([_]; map)
open import Data.Star hiding (_▻▻_; map)
open import Data.Sum hiding (map)
open import Extensions.List as L using ()
open import Impure.LFRef.Syntax hiding (subst)
open import Relation.Binary.List.Pointwise using (Rel)
Ctx : (n : ℕ) → Set
Ctx n = Vec (Type n) n
-- store typings
World : Set
World = List (Type 0)
weaken₁-tp : ∀ {n} → Type n → Type (suc n)
weaken₁-tp tp = tp tp/ wk
_:+:_ : ∀ {n} → Type n → Ctx n → Ctx (suc n)
a :+: Γ = (weaken₁-tp a) ∷ (Vec.map (flip _tp/_ wk) Γ)
weaken+-tm : ∀ {m} n → Term m → Term (n + m)
weaken+-tm n t = t / (wk⋆ n)
weaken+-tp : ∀ n → Type 0 → Type n
weaken+-tp zero t = t
weaken+-tp (suc n) t = subst Type (+-right-identity (suc n)) (t tp/ (wk⋆ (suc n)))
weaken+-tele : ∀ {m n} k → Tele n m → Tele (n + k) m
weaken+-tele k T = subst (flip Tele _) (+-comm k _) (T tele/ (wk⋆ k))
-- mutually inductive welltypedness judgments for kinds/types and terms respectively
data _,_,_⊢_teleok : ∀ {n m} → (𝕊 : Sig) → World → Ctx n → Tele n m → Set
data _,_,_⊢_::_ : ∀ {n m} (𝕊 : Sig) → World → Ctx n → Type n → Tele n m → Set
data _,_,_⊢_∶_ : ∀ {n} (𝕊 : Sig) → World → Ctx n → Term n → Type n → Set
data _,_,_⊢_teleok where
ε : ∀ {n 𝕊 Σ} {Γ : Ctx n} → 𝕊 , Σ , Γ ⊢ ε teleok
_⟶_ : ∀ {n m 𝕊 Σ Γ} {A : Type n} {K : Tele (suc n) m}→
𝕊 , Σ , Γ ⊢ A :: ε →
𝕊 , Σ , (A :+: Γ) ⊢ K teleok →
𝕊 , Σ , Γ ⊢ (A ⟶ K) teleok
data _,_,_⊢_∶ⁿ_ {n} (𝕊 : Sig) (Σ : World) (Γ : Ctx n) :
∀ {m} → List (Term n) → Tele n m → Set where
ε : 𝕊 , Σ , Γ ⊢ [] ∶ⁿ ε
_⟶_ : ∀ {m A t ts} {B : Tele (suc n) m}→
𝕊 , Σ , Γ ⊢ t ∶ A →
𝕊 , Σ , Γ ⊢ ts ∶ⁿ (B tele/ (sub t)) →
𝕊 , Σ , Γ ⊢ (t ∷ ts) ∶ⁿ (A ⟶ B)
-- specialize the returntype from a constructor from it's welltyped arguments
_con[_/_] : ∀ {n} → (C : ConType) → (ts : List (Term n)) → length ts ≡ (ConType.m C) → Type n
_con[_/_] {n} C ts p =
(ConType.tp C) [
map
(flip _/_ (subst (Vec _) p (fromList ts)))
(ConType.indices C)
]
-- specialize the return type of a function from it's welltyped arguments
_fun[_/_] : ∀ {n m} → Type m → (ts : List (Term n)) → length ts ≡ m → Type n
_fun[_/_] {n} {m} a ts p = a tp/ subst (Vec _) p ((fromList ts))
data _,_,_⊢_::_ where
Ref : ∀ {n 𝕊 Σ} {Γ : Ctx n} {A} →
𝕊 , Σ , Γ ⊢ A :: ε →
----------------------
𝕊 , Σ , Γ ⊢ Ref A :: ε
Unit : ∀ {n 𝕊 Σ} {Γ : Ctx n} →
---------------------
𝕊 , Σ , Γ ⊢ Unit :: ε
_[_] : ∀ {n 𝕊 Σ} {Γ : Ctx n} {k K ts} →
(Sig.types 𝕊) L.[ k ]= K →
𝕊 , [] , [] ⊢ (proj₂ K) teleok →
𝕊 , Σ , Γ ⊢ ts ∶ⁿ (weaken+-tele n (proj₂ K)) →
-------------------------
𝕊 , Σ , Γ ⊢ k [ ts ] :: ε
data _,_,_⊢_∶_ where
unit : ∀ {n 𝕊 Σ} {Γ : Ctx n} →
-----------------------
𝕊 , Σ , Γ ⊢ unit ∶ Unit
var : ∀ {n 𝕊 Σ} {Γ : Ctx n} {i A} →
Γ [ i ]= A →
---------------------
𝕊 , Σ , Γ ⊢ var i ∶ A
con : ∀ {n 𝕊 Σ} {Γ : Ctx n} {c C ts} →
(Sig.constructors 𝕊) L.[ c ]= C →
(p : 𝕊 , Σ , Γ ⊢ ts ∶ⁿ weaken+-tele n (ConType.args C)) →
(q : length ts ≡ (ConType.m C)) →
------------------------------------
𝕊 , Σ , Γ ⊢ con c ts ∶ (C con[ ts / q ])
loc : ∀ {n 𝕊 Σ} {Γ : Ctx n} {i S} →
Σ L.[ i ]= S →
---------------------
𝕊 , Σ , Γ ⊢ loc i ∶ Ref (weaken+-tp n S)
data _,_,_⊢ₑ_∶_ : ∀ {n} (𝕊 : Sig) → World → Ctx n → Exp n → Type n → Set where
tm : ∀ {n t} {Γ : Ctx n} {𝕊 Σ A} →
𝕊 , Σ , Γ ⊢ t ∶ A →
---------------------
𝕊 , Σ , Γ ⊢ₑ tm t ∶ A
_·★[_]_ : ∀ {n fn ts 𝕊 Σ φ} {Γ : Ctx n} →
(Sig.funs 𝕊) L.[ fn ]= φ →
(q : length ts ≡ (Fun.m φ)) →
(p : 𝕊 , Σ , Γ ⊢ ts ∶ⁿ weaken+-tele n (Fun.args φ)) →
-----------------------------------------------------
𝕊 , Σ , Γ ⊢ₑ (fn ·★ ts) ∶ ((Fun.returntype φ) fun[ ts / q ])
ref : ∀ {n x A 𝕊 Σ} {Γ : Ctx n} →
𝕊 , Σ , Γ ⊢ₑ x ∶ A →
--------------------------
𝕊 , Σ , Γ ⊢ₑ ref x ∶ Ref A
!_ : ∀ {n x A} {Γ : Ctx n} {𝕊 Σ} →
𝕊 , Σ , Γ ⊢ₑ x ∶ Ref A →
----------------------
𝕊 , Σ , Γ ⊢ₑ (! x) ∶ A
_≔_ : ∀ {n i x A} {Γ : Ctx n} {𝕊 Σ} →
𝕊 , Σ , Γ ⊢ₑ i ∶ Ref A →
𝕊 , Σ , Γ ⊢ₑ x ∶ A →
--------------------------
𝕊 , Σ , Γ ⊢ₑ (i ≔ x) ∶ Unit
data _,_,_⊢ₛ_∶_ : ∀ {n} (𝕊 : Sig) → World → Ctx n → SeqExp n → Type n → Set where
ret : ∀ {n x A 𝕊 Σ} {Γ : Ctx n} →
𝕊 , Σ , Γ ⊢ₑ x ∶ A →
---------------------
𝕊 , Σ , Γ ⊢ₛ ret x ∶ A
lett : ∀ {n x c A B 𝕊 Σ} {Γ : Ctx n} →
𝕊 , Σ , Γ ⊢ₑ x ∶ A →
𝕊 , (Σ) , (A :+: Γ) ⊢ₛ c ∶ weaken₁-tp B →
---------------------------------------r
𝕊 , Σ , Γ ⊢ₛ lett x c ∶ B
-- telescopes as context transformers
_⊢⟦_⟧ : ∀ {n m} → Ctx n → Tele n m → Ctx (n + m)
Γ ⊢⟦ ε ⟧ = subst Ctx (sym $ +-right-identity _) Γ
_⊢⟦_⟧ {n} Γ (_⟶_ {m = m} x T) = subst Ctx (sym $ +-suc n m) ((x :+: Γ) ⊢⟦ T ⟧)
_⊢_fnOk : Sig → Fun → Set
_⊢_fnOk 𝕊 φ = 𝕊 , [] , ([] ⊢⟦ Fun.args φ ⟧) ⊢ₑ (Fun.body φ) ∶ (Fun.returntype φ)
-- valid signature contexts
record _,_⊢ok {n} (𝕊 : Sig) (Γ : Ctx n) : Set where
field
funs-ok : All (λ x → 𝕊 ⊢ x fnOk) (Sig.funs 𝕊)
-- store welltypedness relation
-- as a pointwise lifting of the welltyped relation on closed expressions between a world and a store
_,_⊢_ : Sig → World → Store → Set
_,_⊢_ 𝕊 Σ μ = Rel (λ A x → 𝕊 , Σ , [] ⊢ (proj₁ x) ∶ A) Σ μ
-- a useful lemma about telescoped terms
tele-fit-length : ∀ {n m 𝕊 Σ Γ ts} {T : Tele n m} → 𝕊 , Σ , Γ ⊢ ts ∶ⁿ T → length ts ≡ m
tele-fit-length ε = refl
tele-fit-length (x ⟶ p) with tele-fit-length p
tele-fit-length (x ⟶ p) | refl = refl
| {
"alphanum_fraction": 0.4370940171,
"avg_line_length": 32.1428571429,
"ext": "agda",
"hexsha": "53be2ad5017deb5706837113dc65e4a040889409",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "metaborg/ts.agda",
"max_forks_repo_path": "src/Impure/LFRef/Welltyped.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "metaborg/ts.agda",
"max_issues_repo_path": "src/Impure/LFRef/Welltyped.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fe638b87de26df47b6437f5ab0a8b955384958d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "metaborg/ts.agda",
"max_stars_repo_path": "src/Impure/LFRef/Welltyped.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2581,
"size": 5850
} |
------------------------------------------------------------------------
-- Lemmas related to application of substitutions
------------------------------------------------------------------------
open import Data.Universe.Indexed
module deBruijn.Substitution.Data.Application.Application221
{i u e} {Uni : IndexedUniverse i u e}
where
import deBruijn.Context; open deBruijn.Context Uni
open import deBruijn.Substitution.Data.Application.Application21
open import deBruijn.Substitution.Data.Basics
open import deBruijn.Substitution.Data.Map
open import deBruijn.Substitution.Data.Simple
open import Function using (_$_)
open import Level using (_⊔_)
import Relation.Binary.PropositionalEquality as P
open P.≡-Reasoning
-- Lemmas related to application.
record Application₂₂₁
{t₁} {T₁ : Term-like t₁}
{t₂} {T₂ : Term-like t₂}
-- Simple substitutions for the first kind of terms.
(simple₁ : Simple T₁)
-- Simple substitutions for the second kind of terms.
(simple₂ : Simple T₂)
-- A translation from the first to the second kind of terms.
(trans : [ T₁ ⟶⁼ T₂ ])
: Set (i ⊔ u ⊔ e ⊔ t₁ ⊔ t₂) where
open Term-like T₂ using ([_]) renaming (_⊢_ to _⊢₂_; _≅-⊢_ to _≅-⊢₂_)
open Simple simple₁
using ()
renaming ( wk to wk₁; wk[_] to wk₁[_]; wk-subst to wk-subst₁
; _↑ to _↑₁; _↑_ to _↑₁_; _↑⁺_ to _↑⁺₁_; _↑⁺⋆_ to _↑⁺⋆₁_
)
open Simple simple₂
using ()
renaming ( var to var₂
; weaken to weaken₂; weaken[_] to weaken₂[_]
; wk[_] to wk₂[_]
; wk-subst to wk-subst₂; wk-subst[_] to wk-subst₂[_]
; _↑ to _↑₂
)
field
application₂₁ : Application₂₁ simple₁ simple₂ trans
open Application₂₁ application₂₁
field
-- Lifts equalities valid for all variables and liftings to
-- arbitrary terms.
var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆ :
∀ {Γ Δ} {ρ̂ : Γ ⇨̂ Δ} (ρs₁ : Subs T₁ ρ̂) (ρs₂ : Subs T₁ ρ̂) →
(∀ Γ⁺ {σ} (x : Γ ++⁺ Γ⁺ ∋ σ) →
var₂ · x /⊢⋆ ρs₁ ↑⁺⋆₁ Γ⁺ ≅-⊢₂ var₂ · x /⊢⋆ ρs₂ ↑⁺⋆₁ Γ⁺) →
∀ Γ⁺ {σ} (t : Γ ++⁺ Γ⁺ ⊢₂ σ) →
t /⊢⋆ ρs₁ ↑⁺⋆₁ Γ⁺ ≅-⊢₂ t /⊢⋆ ρs₂ ↑⁺⋆₁ Γ⁺
-- The wk substitution and the weaken function are equivalent.
/⊢-wk : ∀ {Γ σ τ} (t : Γ ⊢₂ τ) →
t /⊢ wk₁[ σ ] ≅-⊢₂ weaken₂[ σ ] · t
abstract
-- wk-subst is equivalent to composition with wk.
∘-wk : ∀ {Γ Δ σ} {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₂ ρ̂) →
ρ ∘ wk₁[ σ ] ≅-⇨ wk-subst₂[ σ ] ρ
∘-wk ρ = begin
[ map (app wk₁) ρ ] ≡⟨ map-cong-ext₁ P.refl /⊢-wk (P.refl {x = [ ρ ]}) ⟩
[ map weaken₂ ρ ] ∎
-- The wk substitution commutes (modulo lifting etc.) with any
-- other.
--
-- TODO: Prove this lemma using /⊢-/⊢-wk?
wk-∘-↑ : ∀ {Γ Δ} σ {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₁ ρ̂) →
map trans ρ ∘ wk₁[ σ / ρ ] ≅-⇨ wk₂[ σ ] ∘ ρ ↑₁
wk-∘-↑ σ ρ = extensionality P.refl λ x → begin
[ x /∋ map trans ρ ∘ wk₁ ] ≡⟨ /∋-cong (P.refl {x = [ x ]}) (∘-wk (map trans ρ)) ⟩
[ x /∋ wk-subst₂ (map trans ρ) ] ≡⟨ P.sym $ Simple.suc-/∋-↑ simple₂ σ x (map trans ρ) ⟩
[ suc[ σ ] x /∋ map trans ρ ↑₂ ] ≡⟨ /∋-cong (P.refl {x = [ suc[ σ ] x ]}) (P.sym $ map-trans-↑ ρ) ⟩
[ suc[ σ ] x /∋ map trans (ρ ↑₁) ] ≡⟨ /∋-map (suc[ σ ] x) trans (ρ ↑₁) ⟩
[ trans · (suc[ σ ] x /∋ ρ ↑₁) ] ≡⟨ P.sym $ var-/⊢ (suc[ σ ] x) (ρ ↑₁) ⟩
[ var₂ · suc[ σ ] x /⊢ ρ ↑₁ ] ≡⟨ /⊢-cong (P.sym $ Simple./∋-wk simple₂ {σ = σ} x) (P.refl {x = [ ρ ↑₁ ]}) ⟩
[ x /∋ wk₂[ σ ] /⊢ ρ ↑₁ ] ≡⟨ P.sym $ /∋-∘ x wk₂[ σ ] (ρ ↑₁) ⟩
[ x /∋ wk₂[ σ ] ∘ ρ ↑₁ ] ∎
-- A variant of suc-/∋-↑.
var-suc-/⊢-↑ :
∀ {Γ Δ} σ {τ} {ρ̂ : Γ ⇨̂ Δ} (x : Γ ∋ τ) (ρ : Sub T₁ ρ̂) →
var₂ · suc[ σ ] x /⊢ ρ ↑₁ ≅-⊢₂
var₂ · x /⊢ ρ /⊢ wk₁[ σ / ρ ]
var-suc-/⊢-↑ σ x ρ =
let lemma₁ = begin
[ x /∋ map trans ρ ] ≡⟨ /∋-map x trans ρ ⟩
[ trans · (x /∋ ρ) ] ≡⟨ P.sym $ var-/⊢ x ρ ⟩
[ var₂ · x /⊢ ρ ] ∎
lemma₂ = begin
[ map trans (wk-subst₁ ρ) ] ≡⟨ map-trans-wk-subst ρ ⟩
[ wk-subst₂ (map trans ρ) ] ≡⟨ P.sym $ ∘-wk (map trans ρ) ⟩
[ map trans ρ ∘ wk₁ ] ∎
in begin
[ var₂ · suc[ σ ] x /⊢ ρ ↑₁ ] ≡⟨ var-/⊢ (suc[ σ ] x) (ρ ↑₁) ⟩
[ trans · (suc[ σ ] x /∋ ρ ↑₁) ] ≡⟨ trans-cong (Simple.suc-/∋-↑ simple₁ σ x ρ) ⟩
[ trans · (x /∋ wk-subst₁ ρ) ] ≡⟨ P.sym $ /∋-map x trans (wk-subst₁ ρ) ⟩
[ x /∋ map trans (wk-subst₁ ρ) ] ≡⟨ /∋-cong (P.refl {x = [ x ]}) lemma₂ ⟩
[ x /∋ map trans ρ ∘ wk₁ ] ≡⟨ /∋-∘ x (map trans ρ) wk₁ ⟩
[ x /∋ map trans ρ /⊢ wk₁ ] ≡⟨ /⊢-cong lemma₁ (P.refl {x = [ wk₁ ]}) ⟩
[ var₂ · x /⊢ ρ /⊢ wk₁ ] ∎
private
-- wk ↑⁺ Γ⁺ and wk commute (more or less).
--
-- This lemma is an instance of /⊢-/⊢-wk, which is proved below
-- using, among other things, this lemma.
/⊢-wk-↑⁺-/⊢-wk :
∀ {Γ} σ Γ⁺ τ {υ} (t : Γ ++⁺ Γ⁺ ⊢₂ υ) →
let wk-σ = wk₁[ σ ] ↑⁺₁ Γ⁺ in
t /⊢ wk-σ /⊢ wk₁[ τ / wk-σ ] ≅-⊢₂
t /⊢ wk₁ /⊢ wk₁[ σ ] ↑⁺₁ (Γ⁺ ▻ τ)
/⊢-wk-↑⁺-/⊢-wk σ Γ⁺ τ t = var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆
(ε ▻ wk₁[ σ ] ↑⁺₁ Γ⁺ ▻ wk₁[ τ / wk₁ ↑⁺₁ Γ⁺ ])
(ε ▻ wk₁ ▻ wk₁ ↑⁺₁ (Γ⁺ ▻ τ))
(λ Γ⁺⁺ x → begin
[ var₂ · x /⊢⋆ (ε ▻ wk₁ ↑⁺₁ Γ⁺ ▻ wk₁) ↑⁺⋆₁ Γ⁺⁺ ] ≡⟨ /⊢⋆-ε-▻-▻-↑⁺⋆ Γ⁺⁺ (var₂ · x) (wk₁ ↑⁺₁ Γ⁺) wk₁ ⟩
[ var₂ · x /⊢ wk₁ ↑⁺₁ Γ⁺ ↑⁺₁ Γ⁺⁺ /⊢
wk₁ ↑⁺₁ (Γ⁺⁺ /⁺ wk₁ ↑⁺₁ Γ⁺) ] ≡⟨ /⊢-cong (var-/⊢-wk-↑⁺-↑⁺ Γ⁺ Γ⁺⁺ x) P.refl ⟩
[ var₂ · (lift (lift weaken∋ Γ⁺) Γ⁺⁺ · x) /⊢
wk₁ ↑⁺₁ (Γ⁺⁺ /⁺ wk₁ ↑⁺₁ Γ⁺) ] ≡⟨ var-/⊢-wk-↑⁺ (Γ⁺⁺ /⁺ wk₁ ↑⁺₁ Γ⁺)
(lift (lift weaken∋ Γ⁺) Γ⁺⁺ · x) ⟩
[ var₂ · (lift weaken∋ (Γ⁺⁺ /⁺ wk₁ ↑⁺₁ Γ⁺) ·
(lift (lift weaken∋ Γ⁺) Γ⁺⁺ · x)) ] ≡⟨ Simple.var-cong simple₂
(lift-weaken∋-lift-lift-weaken∋ σ Γ⁺ τ Γ⁺⁺ x) ⟩
[ var₂ · (lift (lift weaken∋ (Γ⁺ ▻ τ)) (Γ⁺⁺ /⁺ wk₁) ·
(lift weaken∋ Γ⁺⁺ · x)) ] ≡⟨ P.sym $ var-/⊢-wk-↑⁺-↑⁺ (Γ⁺ ▻ τ) (Γ⁺⁺ /⁺ wk₁)
(lift weaken∋ Γ⁺⁺ · x) ⟩
[ var₂ · (lift weaken∋ Γ⁺⁺ · x) /⊢
wk₁[ σ ] ↑⁺₁ (Γ⁺ ▻ τ) ↑⁺₁ (Γ⁺⁺ /⁺ wk₁) ] ≡⟨ P.sym $ /⊢-cong (var-/⊢-wk-↑⁺ Γ⁺⁺ x) P.refl ⟩
[ var₂ · x /⊢ wk₁ ↑⁺₁ Γ⁺⁺ /⊢
wk₁[ σ ] ↑⁺₁ (Γ⁺ ▻ τ) ↑⁺₁ (Γ⁺⁺ /⁺ wk₁) ] ≡⟨ P.sym $ /⊢⋆-ε-▻-▻-↑⁺⋆ Γ⁺⁺ (var₂ · x) wk₁
(wk₁[ σ ] ↑⁺₁ (Γ⁺ ▻ τ)) ⟩
[ var₂ · x /⊢⋆ (ε ▻ wk₁ ▻ wk₁[ σ ] ↑⁺₁ (Γ⁺ ▻ τ)) ↑⁺⋆₁ Γ⁺⁺ ] ∎)
ε t
-- Another lemma used in the proof of /⊢-/⊢-wk.
var-/⊢-↑⁺-/⊢-wk-↑⁺ :
∀ {Γ Δ} σ {ρ̂ : Γ ⇨̂ Δ} (ρ : Sub T₁ ρ̂) Γ⁺ {υ} (x : Γ ++⁺ Γ⁺ ∋ υ) →
var₂ · x /⊢ ρ ↑⁺₁ Γ⁺ /⊢ wk₁[ σ / ρ ] ↑⁺₁ (Γ⁺ /⁺ ρ) ≅-⊢₂
var₂ · (lift weaken∋[ σ ] Γ⁺ · x) /⊢ ρ ↑₁ ↑⁺₁ (Γ⁺ /⁺ wk₁)
var-/⊢-↑⁺-/⊢-wk-↑⁺ σ ρ ε x = P.sym $ var-suc-/⊢-↑ σ x ρ
var-/⊢-↑⁺-/⊢-wk-↑⁺ σ ρ (Γ⁺ ▻ τ) zero = begin
[ var₂ · zero /⊢ ρ ↑⁺₁ (Γ⁺ ▻ τ) /⊢ wk₁ ↑⁺₁ ((Γ⁺ ▻ τ) /⁺ ρ) ] ≡⟨ /⊢-cong (zero-/⊢-↑ τ (ρ ↑⁺₁ Γ⁺))
(P.refl {x = [ wk₁ ↑⁺₁ ((Γ⁺ ▻ τ) /⁺ ρ) ]}) ⟩
[ var₂ · zero /⊢ wk₁ ↑⁺₁ ((Γ⁺ ▻ τ) /⁺ ρ) ] ≡⟨ zero-/⊢-↑ (τ / ρ ↑⁺₁ Γ⁺) (wk₁ ↑⁺₁ (Γ⁺ /⁺ ρ)) ⟩
[ var₂ · zero ] ≡⟨ Simple.var-cong simple₂
(zero-cong (/̂-↑̂⁺-/̂-ŵk-↑̂⁺ σ ⟦ ρ ⟧⇨ Γ⁺ τ)) ⟩
[ var₂ · zero ] ≡⟨ P.sym $ zero-/⊢-↑ (τ / wk₁ ↑⁺₁ Γ⁺)
(ρ ↑₁ σ ↑⁺₁ (Γ⁺ /⁺ wk₁)) ⟩
[ var₂ · zero /⊢ ρ ↑₁ σ ↑⁺₁ ((Γ⁺ ▻ τ) /⁺ wk₁) ] ∎
var-/⊢-↑⁺-/⊢-wk-↑⁺ σ ρ (Γ⁺ ▻ τ) (suc x) = begin
[ var₂ · suc x /⊢ ρ ↑⁺₁ (Γ⁺ ▻ τ) /⊢ wk₁ ↑⁺₁ ((Γ⁺ ▻ τ) /⁺ ρ) ] ≡⟨ /⊢-cong (var-suc-/⊢-↑ τ x (ρ ↑⁺₁ Γ⁺))
(P.refl {x = [ wk₁ ↑⁺₁ ((Γ⁺ ▻ τ) /⁺ ρ) ]}) ⟩
[ var₂ · x /⊢ ρ ↑⁺₁ Γ⁺ /⊢ wk₁ /⊢ wk₁ ↑⁺₁ ((Γ⁺ ▻ τ) /⁺ ρ) ] ≡⟨ P.sym $ /⊢-wk-↑⁺-/⊢-wk (σ / ρ) (Γ⁺ /⁺ ρ) (τ / ρ ↑⁺₁ Γ⁺)
(var₂ · x /⊢ ρ ↑⁺₁ Γ⁺) ⟩
[ var₂ · x /⊢ ρ ↑⁺₁ Γ⁺ /⊢ wk₁[ σ / ρ ] ↑⁺₁ (Γ⁺ /⁺ ρ)
/⊢ wk₁[ τ / ρ ↑⁺₁ Γ⁺ / wk₁ ↑⁺₁ (Γ⁺ /⁺ ρ) ] ] ≡⟨ /⊢-cong
(var-/⊢-↑⁺-/⊢-wk-↑⁺ σ ρ Γ⁺ x)
(Simple.wk-cong simple₁ (/̂-↑̂⁺-/̂-ŵk-↑̂⁺ σ ⟦ ρ ⟧⇨ Γ⁺ τ)) ⟩
[ var₂ · (lift weaken∋[ σ ] Γ⁺ · x) /⊢
ρ ↑₁ ↑⁺₁ (Γ⁺ /⁺ wk₁) /⊢ wk₁ ] ≡⟨ P.sym $ var-suc-/⊢-↑ (τ / wk₁ ↑⁺₁ Γ⁺)
(lift weaken∋[ σ ] Γ⁺ · x)
(ρ ↑₁ ↑⁺₁ (Γ⁺ /⁺ wk₁)) ⟩
[ var₂ · suc (lift weaken∋[ σ ] Γ⁺ · x) /⊢
ρ ↑₁ ↑⁺₁ ((Γ⁺ ▻ τ) /⁺ wk₁) ] ∎
-- The wk substitution commutes (modulo lifting etc.) with any
-- other.
/⊢-/⊢-wk : ∀ {Γ Δ} σ {τ} {ρ̂ : Γ ⇨̂ Δ} (t : Γ ⊢₂ τ) (ρ : Sub T₁ ρ̂) →
t /⊢ ρ /⊢ wk₁[ σ / ρ ] ≅-⊢₂ t /⊢ wk₁[ σ ] /⊢ ρ ↑₁
/⊢-/⊢-wk σ t ρ = var-/⊢⋆-↑⁺⋆-⇒-/⊢⋆-↑⁺⋆
(ε ▻ ρ ▻ wk₁)
(ε ▻ wk₁[ σ ] ▻ ρ ↑₁)
(λ Γ⁺ x → begin
[ var₂ · x /⊢⋆ (ε ▻ ρ ▻ wk₁) ↑⁺⋆₁ Γ⁺ ] ≡⟨ /⊢⋆-ε-▻-▻-↑⁺⋆ Γ⁺ (var₂ · x) ρ wk₁ ⟩
[ var₂ · x /⊢ ρ ↑⁺₁ Γ⁺ /⊢ wk₁ ↑⁺₁ (Γ⁺ /⁺ ρ) ] ≡⟨ var-/⊢-↑⁺-/⊢-wk-↑⁺ σ ρ Γ⁺ x ⟩
[ var₂ · (lift weaken∋[ σ ] Γ⁺ · x) /⊢ ρ ↑₁ ↑⁺₁ (Γ⁺ /⁺ wk₁) ] ≡⟨ /⊢-cong (P.sym $ var-/⊢-wk-↑⁺ {σ = σ} Γ⁺ x)
(P.refl {x = [ ρ ↑₁ ↑⁺₁ (Γ⁺ /⁺ wk₁) ]}) ⟩
[ var₂ · x /⊢ wk₁[ σ ] ↑⁺₁ Γ⁺ /⊢ ρ ↑₁ ↑⁺₁ (Γ⁺ /⁺ wk₁) ] ≡⟨ P.sym $ /⊢⋆-ε-▻-▻-↑⁺⋆ Γ⁺ (var₂ · x) wk₁[ σ ] (ρ ↑₁) ⟩
[ var₂ · x /⊢⋆ (ε ▻ wk₁[ σ ] ▻ ρ ↑₁) ↑⁺⋆₁ Γ⁺ ] ∎) ε t
open Application₂₁ application₂₁ public
| {
"alphanum_fraction": 0.3425753629,
"avg_line_length": 51.180952381,
"ext": "agda",
"hexsha": "bba0e035d49c4e76c691407bfd3c50498c7440a4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/dependently-typed-syntax",
"max_forks_repo_path": "deBruijn/Substitution/Data/Application/Application221.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/dependently-typed-syntax",
"max_issues_repo_path": "deBruijn/Substitution/Data/Application/Application221.agda",
"max_line_length": 136,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "498f8aefc570f7815fd1d6616508eeb92c52abce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "nad/dependently-typed-syntax",
"max_stars_repo_path": "deBruijn/Substitution/Data/Application/Application221.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-08T22:51:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T12:14:44.000Z",
"num_tokens": 5169,
"size": 10748
} |
module OverloadedConInParamModule where
data A : Set where
module M (X : Set) where
data B : Set where
c : B
data C : Set where
c : C
open M A
f : B
f = c
| {
"alphanum_fraction": 0.612716763,
"avg_line_length": 10.1764705882,
"ext": "agda",
"hexsha": "e89491833b04cf41021f7267421b9279c397db3d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/OverloadedConInParamModule.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/OverloadedConInParamModule.agda",
"max_line_length": 39,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/OverloadedConInParamModule.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 61,
"size": 173
} |
-- Copyright: (c) 2016 Ertugrul Söylemez
-- License: BSD3
-- Maintainer: Ertugrul Söylemez <[email protected]>
module Data.Mod where
open import Core
open import Data.Int.Core hiding (module Props)
import Data.Int.Core as ℤ
open import Data.Nat.Core using (ℕ)
import Data.Nat.Core as ℕ
private module ℤP = ℤ.Props
ModEq : ℕ → Equiv ℤ
ModEq n =
record {
_≈_ = _≈_;
refl = λ {x} → 0 , ℤP.+-right-inv x;
sym = λ {x} {y} → sym' x y;
trans = λ {x} {y} {z} → trans' x y z
}
where
infix 4 _≈_
_≈_ : ℤ → ℤ → Set
x ≈ y = ∃ (λ k → x - y ≡ k * pos n)
sym' : ∀ x y → x ≈ y → y ≈ x
sym' x y (k , p) =
neg k ,
(begin
y - x || sym (ℤP.neg-flip x y) ::
neg (x - y) || cong neg p ::
neg (k * pos n) || sym (ℤP.*-assoc -1 k (pos n)) ::
neg k * pos n
qed)
where
open Equiv (PropEq ℤ)
trans' : ∀ x y z → x ≈ y → y ≈ z → x ≈ z
trans' x y z (k1 , p1) (k2 , p2) =
k1 + k2 ,
(begin
x - z || cong (x +_) (sym (ℤP.+-left-id (neg z))) ::
x + (0 - z) || cong (λ a → x + (a - z)) (sym (ℤP.+-left-inv y)) ::
x + (neg y + y - z) || cong (x +_) (ℤP.+-assoc (neg y) y (neg z)) ::
x + (neg y + (y - z)) || sym (ℤP.+-assoc x (neg y) (y + neg z)) ::
x + neg y + (y - z) || cong2 _+_ p1 p2 ::
k1 * pos n + k2 * pos n || sym (ℤP.*-+-right-dist k1 k2 (pos n)) ::
(k1 + k2) * pos n
qed)
where
open Equiv (PropEq ℤ)
module Props (n : ℕ) where
open Equiv (ModEq n) using (_≈_)
open Equiv (PropEq ℤ) hiding (_≈_)
+-cong : ∀ {x1 x2 y1 y2} → x1 ≈ x2 → y1 ≈ y2 → x1 + y1 ≈ x2 + y2
+-cong {x1} {x2} {y1} {y2} (k1 , p1) (k2 , p2) =
k1 + k2 ,
(begin
x1 + y1 - (x2 + y2) || ℤP.+-assoc x1 y1 _ ::
x1 + (y1 - (x2 + y2)) ||
cong (x1 +_) (
y1 - (x2 + y2) || cong (y1 +_) (ℤP.*-+-left-dist -1 x2 y2) ::
y1 + (neg x2 + neg y2) || sym (ℤP.+-assoc y1 (neg x2) (neg y2)) ::
(y1 + neg x2 + neg y2) || cong (_+ neg y2) (ℤP.+-comm y1 (neg x2)) ::
neg x2 + y1 + neg y2 || ℤP.+-assoc (neg x2) y1 _ ::
neg x2 + (y1 + neg y2)
qed) ::
x1 + (neg x2 + (y1 + neg y2)) || sym (ℤP.+-assoc x1 (neg x2) _) ::
x1 - x2 + (y1 - y2) || cong2 _+_ p1 p2 ::
k1 * pos n + k2 * pos n || sym (ℤP.*-+-right-dist k1 k2 (pos n)) ::
(k1 + k2) * pos n
qed)
| {
"alphanum_fraction": 0.4426501035,
"avg_line_length": 28.75,
"ext": "agda",
"hexsha": "9a0f5d67026ba16684d6c0080155d6aed3064c3c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "esoeylemez/agda-simple",
"max_forks_repo_path": "Data/Mod.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "esoeylemez/agda-simple",
"max_issues_repo_path": "Data/Mod.agda",
"max_line_length": 84,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "esoeylemez/agda-simple",
"max_stars_repo_path": "Data/Mod.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z",
"num_tokens": 1061,
"size": 2415
} |
module L.Base.Sigma where
-- Reexport definitions
open import L.Base.Sigma.Core public
| {
"alphanum_fraction": 0.7954545455,
"avg_line_length": 17.6,
"ext": "agda",
"hexsha": "0b42cf652e344bc866b1857de6bc49ecc65ae43e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "borszag/smallib",
"max_forks_repo_path": "src/L/Base/Sigma.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_issues_repo_issues_event_max_datetime": "2020-11-09T16:40:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-19T10:13:16.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "borszag/smallib",
"max_issues_repo_path": "src/L/Base/Sigma.agda",
"max_line_length": 36,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "83707537b182ba8906228ac0bcb9ccef972eaaa3",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "borszag/smallib",
"max_stars_repo_path": "src/L/Base/Sigma.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 21,
"size": 88
} |
open import Prelude renaming (_++_ to _++-List_)
open import Data.Maybe using (Maybe; just; nothing; maybe; From-just)
open import Data.Fin using (Fin; toℕ) renaming (inject+ to finject; raise to fraise; zero to fzero; suc to fsuc)
open import Data.List.All as A
open import Data.Vec using (Vec; _∷_; [])
open import Data.Nat renaming (decTotalOrder to decTotalOrder-ℕ)
open import Relation.Binary using (module DecTotalOrder)
module RW.Language.Instantiation where
open import RW.Language.RTerm
open import RW.Language.FinTerm
--------------------------------------------------
-- Monadic Boilerplate
open import RW.Utils.Monads
open Monad {{...}}
_<$>_ : ∀{a b}{A : Set a}{B : Set b}
→ (A → B) → Maybe A → Maybe B
_ <$> nothing = nothing
f <$> (just x) = just (f x)
_<*>_ : ∀{a b}{A : Set a}{B : Set b}
→ Maybe (A → B) → Maybe A → Maybe B
just f <*> just x = just (f x)
_ <*> _ = nothing
{-
mapM : {A B : Set} → (A → Maybe B) → List A → Maybe (List B)
mapM f = Prelude.foldr
(λ a → maybe (λ x → flip _∷_ x <$> f a) nothing)
(just [])
-}
-------------------------------------------------
-- Partial Substitutions
--
-- The complexity annotations might require
-- a slight notational introduction.
--
-- If a variable name overlaps one in the corresponding type signature,
-- this is intentional.
--
-- Sₜ is defined by (S t), module RW.Language.RTermUtils.
-- #Fvₜ is defined by length (Fv t), where Fv is also in RTermUtils.
--
X : ℕ → Set
X = Vec (Maybe (RTerm ⊥))
-- O(n)
empty-X : {n : ℕ} → X n
empty-X {zero} = []
empty-X {suc n} = nothing ∷ empty-X
-- O(n)
lookup-X : {n : ℕ} → Fin n → X n → Maybe (RTerm ⊥)
lookup-X fz (x ∷ _) = x
lookup-X (fs i) (_ ∷ s) = lookup-X i s
-- Let n be the number of free variables, and Sₜ be the size of our term t.
-- We'll denote by #Fvₜ the number of free variables actually occuring in t.
--
-- O(Sₜ + n × # Fvₜ)
--
-- Still, on the average case, we can expect that each (i ∈ Fin n) will
-- occur in a (FinTerm n), therefore # Fvₜ ≥ n. So, we have,
--
-- # Fvₜ ≥ n
-- ⇒ n × # Fvₜ ≥ n²
-- ⇒ Sₜ + n × # Fvₜ ≥ Sₜ + n²
--
-- For calculational purposes, then, we might consider that apply-X function
-- have a complexity of O(n²).
{-# TERMINATING #-}
apply-X : {n : ℕ} → X n → FinTerm n → Maybe (RTerm ⊥)
apply-X s (ovar x) = lookup-X x s
apply-X s (ivar n) = just (ivar n)
apply-X s (rlit l) = just (rlit l)
apply-X s (rlam t) = rlam <$> apply-X s t
apply-X s (rapp n ts) = rapp n <$> mapM (apply-X s) ts
-- The worst case of extending a partial substitution is
-- asking to extend the last index on an already defined
-- term, that is, n recursive calls on the last branch and
-- finishing on the branch marked (§). comparing (t ≟-RTerm u)
-- is O(min(Sₜ , Sᵤ)).
--
-- Therefore,
--
-- O(n + min(Sₜ , Sᵤ))
extend-X : {n : ℕ} → Fin n → RTerm ⊥ → X n → Maybe (X n)
extend-X fz t (nothing ∷ s) = just (just t ∷ s)
extend-X fz t (just t′ ∷ s) with t ≟-RTerm t′
...| yes _ = just (just t ∷ s) -- (§)
...| no _ = nothing
extend-X (fs i) t (mt ∷ s) = _∷_ mt <$> extend-X i t s
------------------------------
-- * Instantiation
-- Taking a close look to instAcc, we can see that the only real operation it performs
-- is extend-X, on the first branch. The rest is pretty much traversing down the term
-- with a possibility of failing (nothing).
--
-- Assuming (t : FinTerm n), Sₜ is the size of t and #Fvₜ is the number of
-- free variables in t.
--
-- instAcc t j empty ∈ O(Sₜ + #Fvₜ × (n + min(Sₜ , Sⱼ)ᴬ ))
--
-- [ᴬ]: This is not really the size of t, but of the corresponding term sent to extend,
-- which is ALWAYS smaller than or equal to Sₜ.
--
-- Without loss of generality, let's assume that the subterms of t are always
-- smaller than their corresponding counterparts in j, allowing us
-- to simplify min(Sₜ , Sⱼ) to Sₜ.
--
-- O(Sₜ + #Fvₜ × (n + Sₜ))
-- O(Sₜ + #Fvₜ × Sₜ + #Fvₜ × n)
-- O(Sₜ × (#Fvₜ + 1) + #Fvₜ × n)
--
-- Making the same assumption as before, that #Fvₜ ≈ n in the average scenario,
--
-- O(Sₜ × (n + 1) + n²)
-- O(n² + Sₜ × n + Sₜ) ≈ O(n²).
mutual
instAcc : {n : ℕ} → FinTerm n → RTerm ⊥ → X n → Maybe (X n)
instAcc (ovar x) t s = extend-X x t s
{- we need to allow ivar's to match whatever. If we end up
giving a false positive, Agda typechecker will spot it.
TODO: maybe there's a better workaround, but it would require
a re-engineering of our AST, by providing explicit and
implicit ovar's. Or, a RTerm (A ⊎ A) would suffice.
instAcc (ivar n) (ivar m) s with n ≟-ℕ m
...| yes _ = just s
...| no _ = nothing
-}
instAcc (ivar _) _ s = just s
instAcc (rlit l) (rlit k) s with l ≟-Lit k
...| yes _ = just s
...| no _ = nothing
instAcc (rlam t) (rlam u) s = instAcc t u s
instAcc (rapp n ts) (rapp m us) s with n ≟-RTermName m
...| no _ = nothing
...| yes _ = instAcc* ts us s
instAcc _ _ _ = nothing
instAcc* : {n : ℕ} → List (FinTerm n) → List (RTerm ⊥) → X n → Maybe (X n)
instAcc* [] [] s = just s
instAcc* [] (_ ∷ _) _ = nothing
instAcc* (_ ∷ _) [] _ = nothing
instAcc* (x ∷ xs) (y ∷ ys) s = instAcc x y s >>= instAcc* xs ys
-- This is just a call to instAcc with an aditional n steps performed to generate
-- empty-X.
--
-- Keeping our degree of freedom Sₜ, we have
-- inst ∈ O(n² + (Sₜ + 1) × n + Sₜ)
--
inst : {n : ℕ} → FinTerm n → RTerm ⊥ → Maybe (X n)
inst t u = instAcc t u empty-X
----------------------------------
-- * Interface
RSubst : Set
RSubst = List (ℕ × RTerm ⊥)
private
X2RSubst0 : {n : ℕ} → X n → Maybe RSubst
X2RSubst0 {.zero} [] = just []
X2RSubst0 {suc n} (just x ∷ s) = _∷_ (suc n , x) <$> X2RSubst0 s
X2RSubst0 {suc _} (nothing ∷ _) = nothing
X2RSubst : {n : ℕ} → X n → Maybe RSubst
X2RSubst x = reverse <$> (X2RSubst0 x)
_++ₓ_ : {n : ℕ} → X n → X n → Maybe (X n)
[] ++ₓ [] = just []
(x ∷ xs) ++ₓ (y ∷ ys) with x | y
...| nothing | just y' = _∷_ y <$> (xs ++ₓ ys)
...| just x' | nothing = _∷_ x <$> (xs ++ₓ ys)
...| nothing | nothing = nothing
...| just x' | just y' with x' ≟-RTerm y'
...| no _ = nothing
...| yes _ = _∷_ x <$> (xs ++ₓ ys)
| {
"alphanum_fraction": 0.5483073118,
"avg_line_length": 33.6927083333,
"ext": "agda",
"hexsha": "d9f8a6287cb4a2455c052f0d1789a95183540609",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "VictorCMiraldo/agda-rw",
"max_forks_repo_path": "RW/Language/Instantiation.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_issues_repo_issues_event_max_datetime": "2015-05-28T14:48:03.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-02-06T15:03:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "VictorCMiraldo/agda-rw",
"max_issues_repo_path": "RW/Language/Instantiation.agda",
"max_line_length": 112,
"max_stars_count": 16,
"max_stars_repo_head_hexsha": "2856afd12b7dbbcc908482975638d99220f38bf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "VictorCMiraldo/agda-rw",
"max_stars_repo_path": "RW/Language/Instantiation.agda",
"max_stars_repo_stars_event_max_datetime": "2019-10-24T17:38:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-02-09T15:43:38.000Z",
"num_tokens": 2303,
"size": 6469
} |
{-
ℚ is a Field
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.Field.Instances.QuoQ where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Data.Sigma
open import Cubical.Data.Empty as Empty
open import Cubical.Data.Nat using (ℕ ; zero ; suc)
open import Cubical.Data.NatPlusOne
open import Cubical.Data.Int.MoreInts.QuoInt
using (ℤ ; spos ; sneg ; pos ; neg ; signed ; posneg ; isSetℤ ; 0≢1-ℤ)
renaming (_·_ to _·ℤ_ ; -_ to -ℤ_
; ·-zeroˡ to ·ℤ-zeroˡ
; ·-identityʳ to ·ℤ-identityʳ)
open import Cubical.HITs.SetQuotients as SetQuot
open import Cubical.HITs.Rationals.QuoQ
using (ℚ ; ℕ₊₁→ℤ ; isEquivRel∼)
open import Cubical.Algebra.Field
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRingSolver.Reflection
open import Cubical.Algebra.CommRing.Instances.QuoInt
open import Cubical.Algebra.CommRing.Instances.QuoQ
open import Cubical.Relation.Nullary
-- It seems there are bugs when applying ring solver to explicit ring.
-- The following is a work-around.
private
module Helpers {ℓ : Level}(𝓡 : CommRing ℓ) where
open CommRingStr (𝓡 .snd)
helper1 : (x y : 𝓡 .fst) → (x · y) · 1r ≡ 1r · (y · x)
helper1 = solve 𝓡
helper2 : (x y : 𝓡 .fst) → ((- x) · (- y)) · 1r ≡ 1r · (y · x)
helper2 = solve 𝓡
-- A rational number is zero if and only if its numerator is zero
a/b≡0→a≡0 : (x : ℤ × ℕ₊₁) → [ x ] ≡ 0 → x .fst ≡ 0
a/b≡0→a≡0 (a , b) a/b≡0 = sym (·ℤ-identityʳ a) ∙ a·1≡0·b ∙ ·ℤ-zeroˡ (ℕ₊₁→ℤ b)
where a·1≡0·b : a ·ℤ 1 ≡ 0 ·ℤ (ℕ₊₁→ℤ b)
a·1≡0·b = effective (λ _ _ → isSetℤ _ _) isEquivRel∼ _ _ a/b≡0
a≡0→a/b≡0 : (x : ℤ × ℕ₊₁) → x .fst ≡ 0 → [ x ] ≡ 0
a≡0→a/b≡0 (a , b) a≡0 = eq/ _ _ a·1≡0·b
where a·1≡0·b : a ·ℤ 1 ≡ 0 ·ℤ (ℕ₊₁→ℤ b)
a·1≡0·b = (λ i → a≡0 i ·ℤ 1) ∙ ·ℤ-zeroˡ {s = spos} 1 ∙ sym (·ℤ-zeroˡ (ℕ₊₁→ℤ b))
-- ℚ is a field
open CommRingStr (ℚCommRing .snd)
open Units ℚCommRing
open Helpers ℤCommRing
hasInverseℚ : (q : ℚ) → ¬ q ≡ 0 → Σ[ p ∈ ℚ ] q · p ≡ 1
hasInverseℚ = SetQuot.elimProp (λ q → isPropΠ (λ _ → inverseUniqueness q))
(λ x x≢0 → let a≢0 = λ a≡0 → x≢0 (a≡0→a/b≡0 x a≡0) in inv-helper x a≢0 , inv·-helper x a≢0)
where
inv-helper : (x : ℤ × ℕ₊₁) → ¬ x .fst ≡ 0 → ℚ
inv-helper (signed spos (suc a) , b) _ = [ ℕ₊₁→ℤ b , 1+ a ]
inv-helper (signed sneg (suc a) , b) _ = [ -ℤ ℕ₊₁→ℤ b , 1+ a ]
inv-helper (signed spos zero , _) a≢0 = Empty.rec (a≢0 refl)
inv-helper (signed sneg zero , _) a≢0 = Empty.rec (a≢0 (sym posneg))
inv-helper (posneg i , _) a≢0 = Empty.rec (a≢0 (λ j → posneg (i ∧ ~ j)))
inv·-helper : (x : ℤ × ℕ₊₁)(a≢0 : ¬ x .fst ≡ 0) → [ x ] · inv-helper x a≢0 ≡ 1
inv·-helper (signed spos zero , b) a≢0 = Empty.rec (a≢0 refl)
inv·-helper (signed sneg zero , b) a≢0 = Empty.rec (a≢0 (sym posneg))
inv·-helper (posneg i , b) a≢0 = Empty.rec (a≢0 (λ j → posneg (i ∧ ~ j)))
inv·-helper (signed spos (suc a) , b) _ = eq/ _ _ (helper1 (pos (suc a)) (ℕ₊₁→ℤ b))
inv·-helper (signed sneg (suc a) , b) _ = eq/ _ _ (helper2 (pos (suc a)) (ℕ₊₁→ℤ b))
0≢1-ℚ : ¬ Path ℚ 0 1
0≢1-ℚ p = 0≢1-ℤ (effective (λ _ _ → isSetℤ _ _) isEquivRel∼ _ _ p)
-- The instance
ℚField : Field ℓ-zero
ℚField = makeFieldFromCommRing ℚCommRing hasInverseℚ 0≢1-ℚ
| {
"alphanum_fraction": 0.6051740068,
"avg_line_length": 34.9139784946,
"ext": "agda",
"hexsha": "5f0e42a9b9de853be2c53d80ed38f07aa7fd5be4",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Field/Instances/QuoQ.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Field/Instances/QuoQ.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Field/Instances/QuoQ.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1470,
"size": 3247
} |
module Absurd where
open import Prelude
absurd : {A : Set} -> Empty -> A
absurd x = {!!}
| {
"alphanum_fraction": 0.6263736264,
"avg_line_length": 13,
"ext": "agda",
"hexsha": "b74e50b4410ddb11b3542858e871c6b878de2c65",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "carlostome/martin",
"max_forks_repo_path": "data/test-files/Absurd.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "carlostome/martin",
"max_issues_repo_path": "data/test-files/Absurd.agda",
"max_line_length": 32,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "baf979ef78b5ec0f4783240b03f9547490bc5d42",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "carlostome/martin",
"max_stars_repo_path": "data/test-files/Absurd.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 28,
"size": 91
} |
module Ethambda.Common where
open import Eth.Prelude
infixr 3 _<<_
infixr 3 _<d>_
export
_<d>_ : String -> String -> String
v <d> w =
if isNullStr v
then v
else v ++ " " ++ " " ++ w
export
ShowS : Type
ShowS = String -> String
export
_<d_ : String -> ShowS -> ShowS
s <d c = (s <.>) . c
| {
"alphanum_fraction": 0.5927152318,
"avg_line_length": 12.5833333333,
"ext": "agda",
"hexsha": "6e69858d723001605fa23cd517de32085a983ad5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "18e1f9271a3ce76319cdfbcffe027c2088a418aa",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "fredefox/ethambda-agda",
"max_forks_repo_path": "src/Ethambda/Common.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "18e1f9271a3ce76319cdfbcffe027c2088a418aa",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "fredefox/ethambda-agda",
"max_issues_repo_path": "src/Ethambda/Common.agda",
"max_line_length": 34,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "18e1f9271a3ce76319cdfbcffe027c2088a418aa",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "fredefox/ethambda-agda",
"max_stars_repo_path": "src/Ethambda/Common.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 113,
"size": 302
} |
{-
The James Construction,
also known as James Reduced Product
A very fundamental and useful construction in classical homotopy theory.
It can be seen as the free A∞-monoid constructed out of a given type,
namely the "correct higher version" of free monoid that is meaningful for all types,
instead of only h-Sets.
Referrence:
Guillaume Brunerie,
"The James construction and π₄(𝕊³) in homotopy type theory"
(https://arxiv.org/abs/1710.10307)
-}
{-# OPTIONS --safe #-}
module Cubical.HITs.James.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
private
variable
ℓ ℓ' : Level
module _
((X , x₀) : Pointed ℓ) where
infixr 5 _∷_
-- The James Construction
data James : Type ℓ where
[] : James
_∷_ : X → James → James
unit : (xs : James) → xs ≡ x₀ ∷ xs
James∙ : Pointed ℓ
James∙ = James , []
-- Basic operations on James construction, imitating those in Cubical.Data.List.Base
module _
{X∙@(X , x₀) : Pointed ℓ} where
infixr 5 _++_
infixl 5 _∷ʳ_
[_] : X → James X∙
[ x ] = x ∷ []
_++_ : James X∙ → James X∙ → James X∙
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ xs ++ ys
(unit xs i) ++ ys = unit (xs ++ ys) i
++₀ : (xs : James X∙) → xs ≡ xs ++ [ x₀ ]
++₀ [] = unit []
++₀ (x ∷ xs) i = x ∷ ++₀ xs i
++₀ (unit xs i) j = unit (++₀ xs j) i
rev : James X∙ → James X∙
rev [] = []
rev (x ∷ xs) = rev xs ++ [ x ]
rev (unit xs i) = ++₀ (rev xs) i
_∷ʳ_ : James X∙ → X → James X∙
xs ∷ʳ x = xs ++ x ∷ []
map : {X : Pointed ℓ}{Y : Pointed ℓ'} → (X →∙ Y) → James X → James Y
map f [] = []
map f (x ∷ xs) = f .fst x ∷ map f xs
map f (unit xs i) = (unit (map f xs) ∙ (λ i → f .snd (~ i) ∷ map f xs)) i
map∙ : {X : Pointed ℓ}{Y : Pointed ℓ'} → (X →∙ Y) → James∙ X →∙ James∙ Y
map∙ f .fst = map f
map∙ f .snd = refl
| {
"alphanum_fraction": 0.5775342466,
"avg_line_length": 22.8125,
"ext": "agda",
"hexsha": "a4f12011dbc4c06ff36cc3f472ae05359091a484",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/James/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/James/Base.agda",
"max_line_length": 84,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/James/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 705,
"size": 1825
} |
{-# OPTIONS --type-in-type #-}
module Compilation.Data where
open import Context
open import Type.Core
open import Function
open import Data.Product
open import Data.List.Base
infixr 6 _⇒ᶜ_
{- Note [Type denotations]
The denotation of a System Fωμ type is an Agda type that somehow corresponds to the original type.
For System Fωμ types we'll be using simple and straightforward denotations. For example, we map
π ⋆ (Var vz ⇒ Var vz)
to
(A : Set) -> A -> A
and
Lam (Var vz) ∙ (π ⋆ (Var vz ⇒ Var vz))
to
(λ x -> x) ((A : Set) -> A -> A)
which computes to
(A : Set) -> A -> A
The latter is due to the fact that we map System Fωμ lambdas to Agda lambdas and System Fωμ
applications to Agda applications and hence get type normalization of denotations for free.
-}
{- Note [Kind denotations]
Of course before taking denotations of System Fωμ types, we need to be able to take denotations
of System Fωμ kinds. We map a System Fωμ `⋆` to an Agda `Set` and a System Fωμ `_⇒ᵏ_` to an Agda
`_->_`. For example the denotation of
(⋆ ⇒ᵏ ⋆) ⇒ᵏ ⋆
is
(Set -> Set) -> Set
-}
-- | The Agda meaning of a kind.
⟦_⟧ᵏ : Kind -> Set
⟦ ⋆ ⟧ᵏ = Set
⟦ σ ⇒ᵏ τ ⟧ᵏ = ⟦ σ ⟧ᵏ -> ⟦ τ ⟧ᵏ
-- | The Agda meaning of a System Fωμ type in an environment.
evalᵗ : ∀ {Θ σ} -> Env ⟦_⟧ᵏ Θ -> Θ ⊢ᵗ σ -> ⟦ σ ⟧ᵏ
evalᵗ ρ (Var v) = lookupᵉ v ρ -- Look up a variable in the current context.
evalᵗ ρ (Lam β) = λ A -> evalᵗ (ρ ▷ A) β -- Map a System Fωμ lambda to an Agda lambda.
evalᵗ ρ (φ ∙ α) = evalᵗ ρ φ (evalᵗ ρ α) -- Map a System Fωμ application to an Agda application.
evalᵗ ρ (α ⇒ β) = evalᵗ ρ α -> evalᵗ ρ β -- Map a System Fωμ arrow to an Agda arrow.
evalᵗ ρ (π σ β) = (A : ⟦ σ ⟧ᵏ) -> evalᵗ (ρ ▷ A) β -- Map a System Fωμ `all` to an Agda `∀`.
evalᵗ ρ (μ ψ α) = IFix (evalᵗ ρ ψ) (evalᵗ ρ α) -- Map a System Fωμ `ifix` to an Agda `IFix`.
-- | The Agda meaning of a closed System Fωμ type.
⟦_⟧ᵗ : ∀ {σ} -> Type⁽⁾ σ -> ⟦ σ ⟧ᵏ
⟦_⟧ᵗ = evalᵗ ∅
{- Note [Representing data types]
We represent a single data type as a list of constructor types. Each constructor type is defined in
a non-empty context where the first bound variable is for handling recursion and other variables are
parameters of the data type (there can be none). Each constructor type is a sequence of `_⇒ᶜ_`
that ends in `endᶜ` where `endᶜ` is a placeholder that will later be substituted either for
a type being defined or a type we eliminate the data type into or the unit type,
depending on how we denote constructors (there are multiple ways).
Consider the `list` data type. Its pattern functor binds two variables:
1. one responsible for recursion
2. one for the type of the elements stored in a list
Since we define constructors in contexts, the list constructors are defined in
ε ▻ (⋆ ⇒ ⋆) ▻ ⋆
(the parens are for clarity, they're not really needed). The types of the constructors are
1. List A -- The type of the `nil` constructor.
2. A -> List A -> List A -- The type of the `cons` constructor.
and we translate them to
1. endᶜ
2. Var vz ⇒ᶜ Var (vs vz) ∙ Var vz ⇒ᶜ endᶜ
A more interesting example is
data InterList (A B : Set) : Set where
InterNil : InterList A B
InterCons : A -> B -> InterList B A -> InterList A B
The types of its constructors are described as
1. endᶜ
2. Var (vs vz) ⇒ᶜ Var vz ⇒ᶜ Var (vs vs vz) ∙ Var vz ∙ Var (vs vz) ⇒ᶜ endᶜ
Below we define the data type that describes constructors and some basic functions over it.
-}
-- | The type of a constructor is of the `σ₁ ⇒ … ⇒ σₙ ⇒ end` form
-- where each `σ` is a type of kind `⋆`.
data Cons Θ : Set where
endᶜ : Cons Θ
_⇒ᶜ_ : (α : Star Θ) -> (ξ : Cons Θ) -> Cons Θ
-- | Convert the type of a constructor to an actual type of kind `⋆`.
--
-- > consToType (α₁ ⇒ᶜ … ⇒ᶜ αₙ ⇒ᶜ endᶜ) β = α₁ ⇒ … ⇒ αₙ ⇒ β
consToType : ∀ {Θ} -> Cons Θ -> Star Θ -> Star Θ
consToType endᶜ β = β
consToType (α ⇒ᶜ ξ) β = α ⇒ consToType ξ β
-- | Rename the type of a constructor.
renᶜ : ∀ {Θ Ξ} -> Θ ⊆ Ξ -> Cons Θ -> Cons Ξ
renᶜ ι endᶜ = endᶜ
renᶜ ι (α ⇒ᶜ ξ) = renᵗ ι α ⇒ᶜ renᶜ ι ξ
-- The family we use as an example in docs below.
module ProdTreeTree where
mutual
data ProdTree (A : Set) (B : Set) : Set where
Prod : Tree (A × B) -> ProdTree A B
data Tree (A : Set) : Set where
Leaf : A -> Tree A
Fork : ProdTree A A -> Tree A
open import Data.Nat.Base
open import Data.Bool.Base
private
example : ProdTree ℕ Bool
example
= Prod ∘ Fork ∘ Prod ∘ Fork ∘ Prod ∘ Leaf
$ ( ( 0
, false
)
, ( 1
, true
)
)
, ( ( 2
, false
)
, (3
, true
)
)
-- | A data description is parameterized by a context of contexts of kinds. Inner contexts are those
-- single data types are defined in. Outer contexts are needed in order to allow to define mutually
-- recursive data types. I.e. each element of an outer context is an inner context, in which
-- a single data type is defined.
--
-- A single data type is described as a list of described constructors. The context of each
-- constructor consists of
--
-- 1. all the data types being defined (because we allow mutually recursive data types)
-- 2. the particular inner context of the data type that the constructor constructs
--
-- For example, consider the `ProdTree`/`Tree` family of data types defined above
--
-- Since there are two data types in this family, the length of the outer context is 2.
-- Since `ProdTree` is parameterized by two types, it's inner context is `ε ▻ ⋆ ▻ ⋆`.
-- Since `Tree` is parameterized by one type, it's inner context is `ε ▻ ⋆`.
-- I.e. the context this whole family is defined in, is
--
-- > ε ▻ (ε ▻ ⋆ ▻ ⋆) ▻ (ε ▻ ⋆)
--
-- The context that the constructor of `ProdTree` is defined in, consists of
--
-- 1. References to both `ProdTree` and `Tree` which have the `⋆ ⇒ᵏ ⋆ ⇒ᵏ ⋆` and `⋆ ⇒ᵏ ⋆`
-- kinds respectively.
-- 2. The inner context of `ProdTree` which has two parameters `A` and `B`, each of kind `⋆`.
--
-- hence the final context is
--
-- > ε ▻ {- ProdTree :: -} (⋆ ⇒ᵏ ⋆ ⇒ᵏ ⋆) ▻ {- Tree :: -} (⋆ ⇒ᵏ ⋆) ▻ {- A :: -} ⋆ ▻ {- B :: -} ⋆
--
-- (things in `{- … -}` are comments that assign names to variables for clarity).
--
-- Analogously, the context that the constructors of Tree` are defined in, is
--
-- > ε ▻ {- ProdTree :: -} (⋆ ⇒ᵏ ⋆ ⇒ᵏ ⋆) ▻ {- Tree :: -} (⋆ ⇒ᵏ ⋆) ▻ {- A :: -} ⋆
--
-- I.e. the same as the one of `ProdTree`, except we bind only one type parameter, because `Tree`
-- has only one type parameter.
record Data Ξ (Θs : Con Conᵏ) : Set where
constructor PackData
field constructors : Seq (λ Θ -> List (Cons (Ξ ▻▻ mapᶜ (λ Θᵢ -> conToKind Θᵢ ⋆) Θs ▻▻ Θ))) Θs
Data⁺ : Con Conᵏ -> Set
Data⁺ Θs = ∀ {Ξ} -> Data Ξ Θs
module prodTreeTree where
-- The encoded `ProdTree`/`Tree` family from the above looks like this:
-- (`∀ Q -> (A -> B -> Q) -> Q` is the Scott-encoded `A × B`)
prodTreeTree : Data⁺ (ε ▻ (ε ▻ ⋆ ▻ ⋆) ▻ (ε ▻ ⋆))
prodTreeTree
= PackData
$ ø
▶ ( -- `Tree (∀ Q -> (A -> B -> Q) -> Q) -> ProdTree A B`
Var (vs vs vz) ∙ π ⋆ ((Var (vs vs vz) ⇒ Var (vs vz) ⇒ Var vz) ⇒ Var vz) ⇒ᶜ endᶜ
∷ []
)
▶ ( -- `A -> Tree A`
Var vz ⇒ᶜ endᶜ
∷ -- `ProdTree A A -> Tree A`
Var (vs vs vz) ∙ Var vz ∙ Var vz ⇒ᶜ endᶜ
∷ []
)
| {
"alphanum_fraction": 0.6102081934,
"avg_line_length": 33.3856502242,
"ext": "agda",
"hexsha": "1c932af6caf1e37416964f94c277abb07aa827a3",
"lang": "Agda",
"max_forks_count": 399,
"max_forks_repo_forks_event_max_datetime": "2022-03-31T11:18:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-10-05T09:36:10.000Z",
"max_forks_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "AriFordsham/plutus",
"max_forks_repo_path": "papers/unraveling-recursion/code/src/Compilation/Data.agda",
"max_issues_count": 2493,
"max_issues_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T15:31:31.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-09-28T19:28:17.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "AriFordsham/plutus",
"max_issues_repo_path": "papers/unraveling-recursion/code/src/Compilation/Data.agda",
"max_line_length": 106,
"max_stars_count": 1299,
"max_stars_repo_head_hexsha": "f7d34336cd3d65f62b0da084a16f741dc9156413",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "AriFordsham/plutus",
"max_stars_repo_path": "papers/unraveling-recursion/code/src/Compilation/Data.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-28T01:10:02.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-02T13:41:39.000Z",
"num_tokens": 2681,
"size": 7445
} |
-- Issue reported by Christian Sattler on 2019-12-02
postulate
M : Set
m₀ : M
D : Set
d : D
Y : (m : M) (a : D) → Set
y : Y m₀ d
R' : M → Set
data X : M → Set where
conX : X m₀
R : M → Set
R = R'
postulate
felt :
(m : M)
(f : X m → D)
(g : (x : X m) → Y m (f x))
→ R m -- No error if R unfolded to R'.
module _ (m : M) where
foo : R m
foo = felt _ f g where
f : X _ → D -- No error if signature of f given as _.
f conX = d
g : (x : X _) → Y _ (f x)
g conX = y -- Accepted if y given as hole filler.
-- WAS: error:
-- d != f conX of type D
-- when checking that the expression y has type Y m₀ (f conX)
-- SHOULD: succeed.
| {
"alphanum_fraction": 0.5101156069,
"avg_line_length": 18.2105263158,
"ext": "agda",
"hexsha": "e35654c46751e1b5b5812ff7ad2b27b3cadeb9a4",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue4255.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue4255.agda",
"max_line_length": 63,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue4255.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 268,
"size": 692
} |
-- Functions used in googology
{-# OPTIONS --without-K --safe --exact-split #-}
module Math.Googology.Function where
-- agda-stdlib
open import Data.Nat
open import Data.Nat.GeneralisedArithmetic
open import Function
-- Ackermann function.
-- ack m n = Ack(m, n)
ack : ℕ → ℕ → ℕ
ack 0 n = 1 + n
ack (suc m) zero = ack m 1
ack (suc m) (suc n) = ack m (ack (suc m) n)
-- Hyperoperation.
-- H n a b ≡ Hₙ(a, b)
H : ℕ → ℕ → ℕ → ℕ
H 0 a b = 1 + b
H 1 a 0 = a
H 1 a (suc b) = H 0 a (H 1 a b)
H 2 a 0 = 0
H 2 a (suc b) = H 1 a (H 2 a b)
H (suc (suc (suc _))) a 0 = 1
H (suc n@(suc (suc _))) a (suc b) = H n a (H (suc n) a b)
-- Knuth's up-arrow notation.
-- a ↑[ n ] b =`a ↑ⁿ b`
_↑[_]_ : ℕ → ℕ → ℕ → ℕ
a ↑[ n ] b = H (2 + n) a b
infixr 8 _↑_ _↑↑_ _↑↑↑_ _↑↑↑↑_
-- Exponentiation.
_↑_ : ℕ → ℕ → ℕ
_↑_ a b = a ↑[ 1 ] b
-- Tetration.
_↑↑_ : ℕ → ℕ → ℕ
_↑↑_ a b = a ↑[ 2 ] b
-- Pentation.
_↑↑↑_ : ℕ → ℕ → ℕ
_↑↑↑_ a b = a ↑[ 3 ] b
-- Hexation.
_↑↑↑↑_ : ℕ → ℕ → ℕ
_↑↑↑↑_ a b = a ↑[ 4 ] b
-- Heptation.
_↑↑↑↑↑_ : ℕ → ℕ → ℕ
_↑↑↑↑↑_ a b = a ↑[ 5 ] b
-- Graham's number.
graham's-number : ℕ
graham's-number = go 64 where
go : ℕ → ℕ
go 0 = 4
go (suc n) = 3 ↑[ go n ] 3
-- Fast-growing hierarchy
FGHℕ[_][_] : ℕ → ℕ → ℕ
FGHℕ[ zero ][ x ] = suc x
FGHℕ[ suc n ][ x ] = fold x FGHℕ[ n ][_] x
FGHω : ℕ → ℕ
FGHω n = FGHℕ[ n ][ n ]
| {
"alphanum_fraction": 0.457201087,
"avg_line_length": 20.7323943662,
"ext": "agda",
"hexsha": "51c2b0c42f6d91684b1e58535a5cb6bd366a3a16",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "rei1024/agda-misc",
"max_forks_repo_path": "Math/Googology/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "rei1024/agda-misc",
"max_issues_repo_path": "Math/Googology/Function.agda",
"max_line_length": 57,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "rei1024/agda-misc",
"max_stars_repo_path": "Math/Googology/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z",
"num_tokens": 660,
"size": 1472
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointwise equality for containers
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Container.Relation.Binary.Pointwise where
open import Data.Product using (_,_; Σ-syntax; -,_; proj₁; proj₂)
open import Function
open import Level using (_⊔_)
open import Relation.Binary using (REL; _⇒_)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; subst; cong)
open import Data.Container.Core using (Container; ⟦_⟧)
-- Equality, parametrised on an underlying relation.
module _ {s p} (C : Container s p) where
record Pointwise {x y e} {X : Set x} {Y : Set y} (R : REL X Y e)
(cx : ⟦ C ⟧ X) (cy : ⟦ C ⟧ Y) : Set (s ⊔ p ⊔ e) where
constructor _,_
field shape : proj₁ cx ≡ proj₁ cy
position : ∀ p → R (proj₂ cx p) (proj₂ cy (subst _ shape p))
module _ {s p} {C : Container s p} {x y} {X : Set x} {Y : Set y}
{ℓ ℓ′} {R : REL X Y ℓ} {R′ : REL X Y ℓ′}
where
map : R ⇒ R′ → Pointwise C R ⇒ Pointwise C R′
map R⇒R′ (s , f) = s , R⇒R′ ∘ f
| {
"alphanum_fraction": 0.531092437,
"avg_line_length": 33.0555555556,
"ext": "agda",
"hexsha": "697b071f358a554ea7ea615ec6ff373859d2a9cb",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Binary/Pointwise.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Binary/Pointwise.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Container/Relation/Binary/Pointwise.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 355,
"size": 1190
} |
{-# OPTIONS --cubical #-}
F : Set → Set
F A = A
record R : Set₁ where
field
A : Set
r : Set → R
r A = λ where
.R.A → A
| {
"alphanum_fraction": 0.5,
"avg_line_length": 10,
"ext": "agda",
"hexsha": "0bde5648dec6b172e5436317f52e91bdef90d587",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue4954-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue4954-2.agda",
"max_line_length": 25,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue4954-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 52,
"size": 130
} |
module CF.Examples.Ex1 where
open import Function
open import Data.Bool
open import Data.Product
open import Data.List
open import Data.List.Relation.Unary.All
open import Data.Nat
open import Data.String
open import Relation.Binary.PropositionalEquality using (refl)
open import Relation.Ternary.Core
open import Relation.Ternary.Structures
open import Relation.Ternary.Structures.Syntax
open import Relation.Ternary.Monad.Possibly
open import Relation.Ternary.Data.Allstar
open import Relation.Ternary.Data.Bigstar hiding ([_])
open import CF.Types
open import CF.Syntax as Src
open import CF.Contexts.Lexical
open import JVM.Transform.Assemble
open import JVM.Printer
import JVM.Printer.Jasmin as J
ex₁ : Closed (Src.Block void)
ex₁ = (
Src.while (
Src.bool true ∙⟨ ∙-idˡ ⟩ Src.block
-- int j = true
(Src.bool true ≔⟨ ∙-idˡ ⟩ Possibly.possibly ∼-all (
Src.ifthenelse
-- if j
(var
∙⟨ overlaps ∙-idˡ ⟩
-- then
Src.block (
-- int i = j
var ≔⟨ consˡ ∙-idˡ ⟩
Possibly.possibly ∼-all (
-- j := j
Src.asgn (vars ∙⟨ overlaps ∙-idˡ ⟩ var) ⍮⟨ ∙-idʳ ⟩
Src.run unit ⍮⟨ ∙-idʳ ⟩
emp))
-- else
∙⟨ overlaps ∙-idˡ ⟩
Src.block (
-- int i = j
var ≔⟨ consˡ ∙-idˡ ⟩
Possibly.possibly ∼-none (
Src.run unit ⍮⟨ ∙-idʳ ⟩
emp))
)
Src.⍮⟨ ∙-idʳ ⟩ emp
))) Src.⍮⟨ ∙-idʳ ⟩ emp)
open import IO as IO
open import Codata.Musical.Notation
open import CF.Compile
main = IO.run (putStrLn test)
where
test = Show.showBytecode $ proj₂ $ exec-extractor $ extract (proj₂ $ compile ex₁)
-- Uncomment this instead of the above main to output Jasmin code.
-- You can assemble this using Jasmin so that you can run the output with java.
-- Disclaimer: the jasmin compiler pass is not verified.
-- main = IO.run (putStrLn (J.unlines $ J.Jasmin.out proc))
-- where
-- proc = procedure "ex1" (proj₂ $ compile ex₁)
| {
"alphanum_fraction": 0.6213075061,
"avg_line_length": 28.2876712329,
"ext": "agda",
"hexsha": "5b1f7dbe4daeccfffe937d291687eae7bd38eac7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:37:15.000Z",
"max_forks_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "ajrouvoet/jvm.agda",
"max_forks_repo_path": "src/CF/Examples/Ex1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "ajrouvoet/jvm.agda",
"max_issues_repo_path": "src/CF/Examples/Ex1.agda",
"max_line_length": 85,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "c84bc6b834295ac140ff30bfc8e55228efbf6d2a",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "ajrouvoet/jvm.agda",
"max_stars_repo_path": "src/CF/Examples/Ex1.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-28T21:49:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T14:07:17.000Z",
"num_tokens": 633,
"size": 2065
} |
{-# OPTIONS --prop --allow-unsolved-metas #-}
data _≡_ {α}{A : Set α}(a : A) : A → Prop where
refl : a ≡ a
data _≃_ {α}{A : Set α}(a : A) : ∀ {B} → B → Prop where
refl̃ : a ≃ a
data ⊥ : Set where
data Con : Set
data Con~ : Con → Con → Prop
data Ty : Con → Set
data Ty~ : ∀ {Γ₀ Γ₁} → Con~ Γ₀ Γ₁ → Ty Γ₀ → Ty Γ₁ → Prop
data Con where
data Con~ where
data Ty where
U : ∀ {Γ} → Ty Γ
data Ty~ where
U~ : ∀ {Γ₀ Γ₁ Γ₀₁} → Ty~ {Γ₀}{Γ₁} Γ₀₁ U U
Conᴹ : Con → Set
Con~ᴹ : ∀ {Γ₀ Γ₁} → Con~ Γ₀ Γ₁ → Conᴹ Γ₀ ≡ Conᴹ Γ₁
Tyᴹ : ∀ {Γ} → Ty Γ → Conᴹ Γ → Set
Ty~ᴹ : ∀ {Γ₀ Γ₁ Γ₀₁ A₀ A₁} → Ty~ {Γ₀}{Γ₁} Γ₀₁ A₀ A₁ → Tyᴹ A₀ ≃ Tyᴹ A₁
Conᴹ ()
Con~ᴹ ()
Tyᴹ U γ = ⊥
-- offending line: if I comment this out, the internal error goes away
-- If I use Set instead of Prop everywhere, the error also goes away
Ty~ᴹ U~ = {!!}
| {
"alphanum_fraction": 0.5505481121,
"avg_line_length": 22.1891891892,
"ext": "agda",
"hexsha": "61ccc0c650f2536781803ae9f307cc475a326d65",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3724.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3724.agda",
"max_line_length": 70,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3724.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 399,
"size": 821
} |
module PushArgument where
open import ScopeState
open import Data.List.NonEmpty
open import Data.List
open import ParseTree
open import Data.Nat
open import AgdaHelperFunctions
open import Data.Unit
open import Data.String hiding (toVec)
open import Data.Bool
open import Data.Product
open import Data.Maybe
open import ExpressionChanging hiding (makeInstruction)
open import ParseTreeOperations
open import Data.Vec hiding (_>>=_)
open import Data.Fin
open import Relation.Nullary
open import Data.Nat.Properties
open import Data.String using (_++_)
data ArgType : Set where
explicit : ArgType
present : ArgType
absent : ArgType
-- if matches is false then an expected implicit argument has been omitted
matches : Expr -> Expr -> ArgType
matches expectedType argument
with isImplicit expectedType | isImplicit argument
matches expectedType argument | false | false = explicit
--expected explicit but found implicit, actually an error
matches expectedType argument | false | true = explicit
matches expectedType argument | true | false = absent
matches expectedType argument | true | true = present
-- n is the argument to be pushed, so there must be another argument to switch
-- it with
makeIns : {n : ℕ} -> Vec Expr (suc n) -> Fin n -> (List Expr -> List Expr)
makeIns (x ∷ x₁) _ [] = []
makeIns (x ∷ y ∷ list) zero (z ∷ []) with matches x z
makeIns (x ∷ y ∷ list) zero (z ∷ []) | explicit = newHole ∷ []
makeIns (x ∷ y ∷ list) zero (z ∷ []) | present = implicit newHole ∷ []
makeIns (x ∷ y ∷ list) zero (z ∷ []) | absent with matches y z
makeIns (x ∷ y ∷ list) zero (z ∷ []) | absent | explicit = newHole ∷ []
makeIns (x ∷ y ∷ list) zero (z ∷ []) | absent | present = z ∷ []
makeIns (x ∷ y ∷ list) zero (z ∷ []) | absent | absent = z ∷ []
makeIns (a ∷ b ∷ list) zero (y ∷ z ∷ list2) with
matches a y
makeIns (a ∷ b ∷ list) zero (y ∷ z ∷ list2) | absent = y ∷ z ∷ list2
makeIns (a ∷ b ∷ list) zero (y ∷ z ∷ list2) | _ with matches b z
makeIns (a ∷ b ∷ list) zero (y ∷ z ∷ list2) | _ | explicit = z ∷ y ∷ list2
makeIns (a ∷ b ∷ list) zero (y ∷ z ∷ list2) | _ | present = z ∷ y ∷ list2
makeIns (a ∷ b ∷ list) zero (y ∷ z ∷ list2) | _ | absent = y ∷ z ∷ list2
makeIns (x ∷ x₁) (suc n) (y ∷ list) with matches x y
makeIns (x ∷ x₁) (suc n) (y ∷ list) | explicit = y ∷ makeIns x₁ n list
makeIns (x ∷ x₁) (suc n) (y ∷ list) | present = y ∷ makeIns x₁ n list
makeIns (x ∷ x₁) (suc n) (y ∷ list) | absent = makeIns x₁ n (y ∷ list)
makeInstruction : TypeSignature -> ℕ -> (makeIns : {n : ℕ} -> Vec Expr (suc n) -> Fin n -> (List Expr -> List Expr)) -> ScopeState (List⁺ Expr -> List⁺ Expr)
makeInstruction (typeSignature funcName funcType) argNo f
with toVec (typeToList funcType)
... | c = do
newFin <- makeFin2 c argNo
return $ function $ f c newFin
where function : (List Expr -> List Expr) -> (List⁺ Expr -> List⁺ Expr)
function f (ident identifier₁ ∷ tail₁)
with sameId identifier₁ funcName
function f (ident identifier₁ ∷ tail₁) | false =
(ident identifier₁ ∷ tail₁)
function f (ident identifier₁ ∷ tail₁) | true =
ident identifier₁ ∷ f tail₁
function f list = list
pushInstruction : TypeSignature -> ℕ -> ScopeState (List⁺ Expr -> List⁺ Expr)
pushInstruction t n = makeInstruction t n makeIns
--Data.List.NonEmpty.fromVec
pushTypeIfApplicable : {n : ℕ} -> Vec Expr (suc n) -> Fin n -> ScopeState (Vec Expr (suc n))
pushTypeIfApplicable (namedArgument (typeSignature funcName funcType) {b} {bef1} {aft1} ∷ namedArgument (typeSignature funcName₁ funcType₁) {b2} {bef2} {aft2} ∷ v) zero =
if sameName funcName funcName₁
then fail "Can't switch two arguments of the same name, to avoid anything changing meaning"
else if funcName doesNotAppearInExp funcType₁
then (return $ namedArgument (typeSignature funcName₁ funcType₁) {b2} {bef2} {aft2} ∷ namedArgument (typeSignature funcName funcType) {b} {bef1} {aft1} ∷ v)
else fail "The next argument depends on the one being pushed"
pushTypeIfApplicable (namedArgument (typeSignature funcName funcType) {b} {bef} {aft} ∷ x ∷ v) zero = if funcName doesNotAppearInExp x
then return $ x ∷ namedArgument (typeSignature funcName funcType) {b} {bef} {aft} ∷ v
else fail "The next argument depends on the one being pushed"
pushTypeIfApplicable (x ∷ x₁ ∷ v) zero = return $ x₁ ∷ x ∷ v
pushTypeIfApplicable (x ∷ v) (suc f) = do
newRest <- pushTypeIfApplicable v f
return $ x ∷ newRest
pushArgument : List ParseTree -> (funcID : ℕ) -> (whichArgument : ℕ) -> ScopeState (List ParseTree)
pushArgument code funcId whichArgument = doForArgument code funcId whichArgument pushTypeIfApplicable pushInstruction
| {
"alphanum_fraction": 0.6706524019,
"avg_line_length": 50.7127659574,
"ext": "agda",
"hexsha": "15cbe7492d003c928e91956b7491d7d477954237",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-01-31T08:40:41.000Z",
"max_forks_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "omega12345/RefactorAgda",
"max_forks_repo_path": "RefactorAgdaEngine/PushArgument.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_issues_repo_issues_event_max_datetime": "2019-02-05T12:53:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-31T08:03:07.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "omega12345/RefactorAgda",
"max_issues_repo_path": "RefactorAgdaEngine/PushArgument.agda",
"max_line_length": 173,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "52d1034aed14c578c9e077fb60c3db1d0791416b",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "omega12345/RefactorAgda",
"max_stars_repo_path": "RefactorAgdaEngine/PushArgument.agda",
"max_stars_repo_stars_event_max_datetime": "2019-05-03T10:03:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-01-31T14:10:18.000Z",
"num_tokens": 1474,
"size": 4767
} |
-- {-# OPTIONS -v tc.cover.splittree:10 -v tc.cc.splittree:10 #-}
module Issue106 where
data ℕ : Set where
zero : ℕ
suc : ℕ -> ℕ
{-# BUILTIN NATURAL ℕ #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}
_+_ : ℕ -> ℕ -> ℕ
zero + m = m
suc n + m = suc (n + m)
record ⊤ : Set where
data C : ℕ -> Set where
c : C 0
data D : Set where
d : forall s (x : C s) (xs : D) -> D
f : D -> ℕ -> ⊤
f (d zero c x) (suc n) = f (d 0 c x) n
f (d .zero c x) n = f x (suc n)
g : D -> ℕ -> ⊤
g (d .zero c x) (suc n) = g (d zero c x) n
g (d .zero c x) n = g x (suc n)
h : D -> ℕ -> ⊤
h (d .zero c x) (suc n) = h (d 0 c x) n
h (d .zero c x) n = h x (suc n)
| {
"alphanum_fraction": 0.4739195231,
"avg_line_length": 19.1714285714,
"ext": "agda",
"hexsha": "5708af080c835b5d4f8bea9b3a4765aca0b1bd74",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/succeed/Issue106.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/succeed/Issue106.agda",
"max_line_length": 66,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/succeed/Issue106.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 295,
"size": 671
} |
module Data where
data D
(A : Set)
: Set
data D A
where
c
: D A
data E
(B : Set)
: Set
where
| {
"alphanum_fraction": 0.5,
"avg_line_length": 6.4444444444,
"ext": "agda",
"hexsha": "fcbe1224462adee6dd54258af57aadcb28525cac",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msuperdock/agda-unused",
"max_forks_repo_path": "data/declaration/Data.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msuperdock/agda-unused",
"max_issues_repo_path": "data/declaration/Data.agda",
"max_line_length": 17,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msuperdock/agda-unused",
"max_stars_repo_path": "data/declaration/Data.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z",
"num_tokens": 48,
"size": 116
} |
{-# OPTIONS --without-K --show-implicit #-}
module WithoutK10 where
data Unit : Set where
unit : Unit
data D {A : Set} (f : Unit → A) : A → Set where
d : ∀ {x} → D f x
Foo : ∀ {A} {x : A} → D (let f = λ { unit → x } in f) x → Set₁
Foo d = Set
| {
"alphanum_fraction": 0.5298804781,
"avg_line_length": 19.3076923077,
"ext": "agda",
"hexsha": "f4fe6f97360a2e1fb537969bfeee42b59c0fb45b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/WithoutK10.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/WithoutK10.agda",
"max_line_length": 62,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/fail/WithoutK10.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 95,
"size": 251
} |
{-
Index a structure S by the type variable: X ↦ X → S X
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Relational.UnaryOp where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Structure
open import Cubical.Foundations.RelationalStructure
open import Cubical.Foundations.Univalence
open import Cubical.Functions.FunExtEquiv
open import Cubical.Data.Sigma
open import Cubical.Relation.Binary.Base
open import Cubical.Relation.ZigZag.Base
open import Cubical.HITs.SetQuotients
open import Cubical.HITs.PropositionalTruncation as Trunc
open import Cubical.Structures.NAryOp
private
variable
ℓ ℓ₁ ℓ₁' : Level
-- Structured relations
preservesSetsUnaryFun : {S : Type ℓ → Type ℓ₁}
→ preservesSets S → preservesSets (NAryFunStructure 1 S)
preservesSetsUnaryFun p setX = isSetΠ λ _ → p setX
UnaryFunRelStr : {S : Type ℓ → Type ℓ₁} {ℓ₁' : Level}
→ StrRel S ℓ₁' → StrRel (NAryFunStructure 1 S) (ℓ-max ℓ ℓ₁')
UnaryFunRelStr ρ R f g =
∀ {x y} → R x y → ρ R (f x) (g y)
open BinaryRelation
open isEquivRel
open isQuasiEquivRel
open SuitableStrRel
private
composeWith[_] : {A : Type ℓ} (R : EquivPropRel A ℓ)
→ compPropRel (R .fst) (quotientPropRel (R .fst .fst)) .fst ≡ graphRel [_]
composeWith[_] R =
funExt₂ λ a t →
hPropExt squash (squash/ _ _)
(Trunc.rec (squash/ _ _) (λ {(b , r , p) → eq/ a b r ∙ p }))
(λ p → ∣ a , R .snd .reflexive a , p ∣)
unaryFunSuitableRel : {S : Type ℓ → Type ℓ₁} (p : preservesSets S) {ρ : StrRel S ℓ₁'}
→ SuitableStrRel S ρ
→ SuitableStrRel (NAryFunStructure 1 S) (UnaryFunRelStr ρ)
unaryFunSuitableRel pres {ρ} θ .quo (X , f) R h .fst =
f₀ ,
λ {x} → J (λ y p → ρ (graphRel [_]) (f x) (f₀ y)) (θ .quo (X , f x) R (href x) .fst .snd)
where
href = h ∘ R .snd .reflexive
f₀ : _
f₀ [ x ] = θ .quo (X , f x) R (href x) .fst .fst
f₀ (eq/ x₀ x₁ r i) = path i
where
path : θ .quo (X , f x₀) R (href x₀) .fst .fst ≡ θ .quo (X , f x₁) R (href x₁) .fst .fst
path =
cong fst
(θ .quo (X , f x₀) R (href x₀) .snd
( θ .quo (X , f x₁) R (href x₁) .fst .fst
, subst
(λ T → ρ T (f x₀) (θ .quo (X , f x₁) R (href x₁) .fst .fst))
(composeWith[_] R)
(θ .transitive (R .fst) (quotientPropRel (R .fst .fst))
(h r)
(θ .quo (X , f x₁) R (href x₁) .fst .snd))
))
f₀ (squash/ _ _ p q j i) =
pres squash/ _ _ (cong f₀ p) (cong f₀ q) j i
unaryFunSuitableRel pres {ρ} θ .quo (X , f) R h .snd (f' , c) =
Σ≡Prop
(λ _ → isPropImplicitΠ λ _ → isPropImplicitΠ λ _ → isPropΠ λ _ →
θ .prop (λ _ _ → squash/ _ _) _ _)
(funExt
(elimProp (λ _ → pres squash/ _ _)
(λ x → cong fst (θ .quo (X , f x) R (href x) .snd (f' [ x ] , c refl)))))
where
href = h ∘ R .snd .reflexive
unaryFunSuitableRel pres {ρ} θ .symmetric R h {x} {y} r = θ .symmetric R (h r)
unaryFunSuitableRel pres {ρ} θ .transitive R R' h h' {x} {z} =
Trunc.rec
(θ .prop (λ _ _ → squash) _ _)
(λ {(y , r , r') → θ .transitive R R' (h r) (h' r')})
unaryFunSuitableRel pres {ρ} θ .prop propR f g =
isPropImplicitΠ λ x →
isPropImplicitΠ λ y →
isPropΠ λ _ → θ .prop propR (f x) (g y)
unaryFunRelMatchesEquiv : {S : Type ℓ → Type ℓ₁}
(ρ : StrRel S ℓ₁') {ι : StrEquiv S ℓ₁'}
→ StrRelMatchesEquiv ρ ι
→ StrRelMatchesEquiv (UnaryFunRelStr ρ) (UnaryFunEquivStr ι)
unaryFunRelMatchesEquiv ρ μ (X , f) (Y , g) e =
compEquiv (isoToEquiv isom) (equivPi λ _ → μ _ _ e)
where
open Iso
isom : Iso _ _
isom .fun h x = h refl
isom .inv k {x} = J (λ y _ → ρ (graphRel (e .fst)) (f x) (g y)) (k x)
isom .rightInv k i x = JRefl (λ y _ → ρ (graphRel (e .fst)) (f x) (g y)) (k x) i
isom .leftInv h =
implicitFunExt λ {x} →
implicitFunExt λ {y} →
funExt λ p →
J (λ y p → isom .inv (isom .fun h) p ≡ h p)
(funExt⁻ (isom .rightInv (isom .fun h)) x)
p
| {
"alphanum_fraction": 0.6130690162,
"avg_line_length": 33.7685950413,
"ext": "agda",
"hexsha": "1f6e424848353bd91b65d15742217d9bf77637da",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "RobertHarper/cubical",
"max_forks_repo_path": "Cubical/Structures/Relational/UnaryOp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "RobertHarper/cubical",
"max_issues_repo_path": "Cubical/Structures/Relational/UnaryOp.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "RobertHarper/cubical",
"max_stars_repo_path": "Cubical/Structures/Relational/UnaryOp.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1622,
"size": 4086
} |
module Bound.Total.Order {A : Set}(_≤_ : A → A → Set) where
open import Bound.Total A
data LeB : Bound → Bound → Set where
lebx : {b : Bound}
→ LeB bot b
lexy : {x y : A}
→ x ≤ y
→ LeB (val x) (val y)
lext : {b : Bound}
→ LeB b top
| {
"alphanum_fraction": 0.4267912773,
"avg_line_length": 24.6923076923,
"ext": "agda",
"hexsha": "851a5a3c7b4889a801cc88a8d7787ac3ce0dc979",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/Bound/Total/Order.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/Bound/Total/Order.agda",
"max_line_length": 60,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/Bound/Total/Order.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 103,
"size": 321
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Groups.Homomorphisms.Definition
open import Groups.Definition
open import Rings.Definition
open import Rings.Homomorphisms.Definition
open import Rings.IntegralDomains.Definition
open import Setoids.Setoids
open import Sets.EquivalenceRelations
module Fields.FieldOfFractions.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ : A → A → A} {_*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where
open import Fields.FieldOfFractions.Setoid I
open import Fields.FieldOfFractions.Ring I
embedIntoFieldOfFractions : A → fieldOfFractionsSet
embedIntoFieldOfFractions a = record { num = a ; denom = Ring.1R R ; denomNonzero = IntegralDomain.nontrivial I }
homIntoFieldOfFractions : RingHom R fieldOfFractionsRing embedIntoFieldOfFractions
RingHom.preserves1 homIntoFieldOfFractions = Equivalence.reflexive (Setoid.eq S)
RingHom.ringHom homIntoFieldOfFractions {a} {b} = Equivalence.transitive (Setoid.eq S) (Ring.*WellDefined R (Equivalence.reflexive (Setoid.eq S)) (Ring.identIsIdent R)) (Ring.*Commutative R)
GroupHom.groupHom (RingHom.groupHom homIntoFieldOfFractions) {x} {y} = need
where
open Setoid S
open Equivalence eq
need : ((x + y) * (Ring.1R R * Ring.1R R)) ∼ (Ring.1R R * ((x * Ring.1R R) + (Ring.1R R * y)))
need = transitive (transitive (Ring.*WellDefined R reflexive (Ring.identIsIdent R)) (transitive (Ring.*Commutative R) (transitive (Ring.identIsIdent R) (Group.+WellDefined (Ring.additiveGroup R) (symmetric (transitive (Ring.*Commutative R) (Ring.identIsIdent R))) (symmetric (Ring.identIsIdent R)))))) (symmetric (Ring.identIsIdent R))
GroupHom.wellDefined (RingHom.groupHom homIntoFieldOfFractions) x=y = transitive (Ring.*Commutative R) (Ring.*WellDefined R reflexive x=y)
where
open Equivalence (Setoid.eq S)
homIntoFieldOfFractionsIsInj : SetoidInjection S fieldOfFractionsSetoid embedIntoFieldOfFractions
SetoidInjection.wellDefined homIntoFieldOfFractionsIsInj x=y = transitive (Ring.*Commutative R) (Ring.*WellDefined R reflexive x=y)
where
open Equivalence (Setoid.eq S)
SetoidInjection.injective homIntoFieldOfFractionsIsInj x~y = transitive (symmetric identIsIdent) (transitive *Commutative (transitive x~y identIsIdent))
where
open Ring R
open Setoid S
open Equivalence eq
| {
"alphanum_fraction": 0.7664264519,
"avg_line_length": 56.1666666667,
"ext": "agda",
"hexsha": "0f9f912bd262b61195d5184363e7eeaf9084660d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Fields/FieldOfFractions/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Fields/FieldOfFractions/Lemmas.agda",
"max_line_length": 339,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Fields/FieldOfFractions/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 709,
"size": 2359
} |
{-
This file contains:
- Properties of 2-groupoid truncations
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.2GroupoidTruncation.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.HITs.2GroupoidTruncation.Base
rec2GroupoidTrunc : ∀ {ℓ ℓ'} {A : Type ℓ} {B : Type ℓ'} (gB : is2Groupoid B) → (A → B) → (∥ A ∥₂ → B)
rec2GroupoidTrunc gB f ∣ x ∣₂ = f x
rec2GroupoidTrunc gB f (squash₂ _ _ _ _ _ _ t u i j k l) =
gB _ _ _ _ _ _
(λ m n o → rec2GroupoidTrunc gB f (t m n o))
(λ m n o → rec2GroupoidTrunc gB f (u m n o))
i j k l
g2TruncFib : ∀ {ℓ ℓ'} {A : Type ℓ} (P : A → Type ℓ')
{a b : A} (sPb : is2Groupoid (P b))
{p q : a ≡ b} {r s : p ≡ q} {u v : r ≡ s} (w : u ≡ v) {a1 : P a} {b1 : P b}
{p1 : PathP (λ i → P (p i)) a1 b1}
{q1 : PathP (λ i → P (q i)) a1 b1}
{r1 : PathP (λ i → PathP (λ j → P (r i j)) a1 b1) p1 q1}
{s1 : PathP (λ i → PathP (λ j → P (s i j)) a1 b1) p1 q1}
(u1 : PathP (λ i → PathP (λ j → PathP (λ k → P (u i j k)) a1 b1) p1 q1) r1 s1)
(v1 : PathP (λ i → PathP (λ j → PathP (λ k → P (v i j k)) a1 b1) p1 q1) r1 s1)
→ PathP (λ i → PathP (λ j → PathP (λ k → PathP (λ l → P (w i j k l)) a1 b1) p1 q1) r1 s1) u1 v1
g2TruncFib {A} P {a} {b} sPb {p} {q} {r} {s} {u} {v} w
{a1} {b1} {p1} {q1} {r1} {s1} u1 v1 i j k l
= hcomp (λ m → λ { (i = i0) → u1 j k l
; (i = i1) → v1 j k l
; (j = i0) → r1 k l
; (j = i1) → s1 k l
; (k = i0) → p1 l
; (k = i1) → q1 l
; (l = i0) → a1
; (l = i1) → sPb b1 b1 refl refl refl refl L refl m i j k
})
(Lb i j k l)
where
L : Path (Path (b1 ≡ b1) refl refl) refl refl
L i j k = comp (λ l → P (w i j k l))
(λ l → λ { (i = i0) → u1 j k l
; (i = i1) → v1 j k l
; (j = i0) → r1 k l
; (j = i1) → s1 k l
; (k = i0) → p1 l
; (k = i1) → q1 l
})
a1
Lb : PathP (λ i → PathP (λ j → PathP (λ k → PathP (λ l → P (w i j k l)) a1 (L i j k)) p1 q1) r1 s1) u1 v1
Lb i j k l = fill (λ l → P (w i j k l))
(λ l → λ { (i = i0) → u1 j k l
; (i = i1) → v1 j k l
; (j = i0) → r1 k l
; (j = i1) → s1 k l
; (k = i0) → p1 l
; (k = i1) → q1 l
})
(inS a1) l
g2TruncElim : ∀ {ℓ ℓ'} (A : Type ℓ) (B : ∥ A ∥₂ → Type ℓ')
(bG : (x : ∥ A ∥₂) → is2Groupoid (B x))
(f : (x : A) → B ∣ x ∣₂) (x : ∥ A ∥₂) → B x
g2TruncElim A B bG f ∣ x ∣₂ = f x
g2TruncElim A B bG f (squash₂ x y p q r s u v i j k l) =
g2TruncFib {A = ∥ A ∥₂} B {x} {y} (bG y) {p} {q} {r} {s} {u} {v}
(squash₂ x y p q r s u v)
{g2TruncElim A B bG f x}
{g2TruncElim A B bG f y}
{λ i → g2TruncElim A B bG f (p i)}
{λ i → g2TruncElim A B bG f (q i)}
{λ i j → g2TruncElim A B bG f (r i j)}
{λ i j → g2TruncElim A B bG f (s i j)}
(λ i j k → g2TruncElim A B bG f (u i j k))
(λ i j k → g2TruncElim A B bG f (v i j k))
i j k l
| {
"alphanum_fraction": 0.3803455112,
"avg_line_length": 43.0609756098,
"ext": "agda",
"hexsha": "88805968bb16dc537a0b01d0d79e5e9d2867a63f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "limemloh/cubical",
"max_forks_repo_path": "Cubical/HITs/2GroupoidTruncation/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "limemloh/cubical",
"max_issues_repo_path": "Cubical/HITs/2GroupoidTruncation/Properties.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "df4ef7edffd1c1deb3d4ff342c7178e9901c44f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "limemloh/cubical",
"max_stars_repo_path": "Cubical/HITs/2GroupoidTruncation/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1471,
"size": 3531
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
module Decidable.Sets {a : _} (A : Set a) where
DecidableSet : Set a
DecidableSet = (a b : A) → ((a ≡ b) || ((a ≡ b) → False))
| {
"alphanum_fraction": 0.6076555024,
"avg_line_length": 23.2222222222,
"ext": "agda",
"hexsha": "332850efc0455f1b121716a4b8f2d8f20d47f4ad",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Decidable/Sets.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Decidable/Sets.agda",
"max_line_length": 57,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Decidable/Sets.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 70,
"size": 209
} |
{-# OPTIONS --without-K #-}
open import Axiom.Extensionality.Propositional
module FLA.Axiom.Extensionality.Propositional where
-- Since (dependent) extensionality is not allowed in standard Agda, we
-- postulate it here. In the standard library, the Extensionality term is
-- given in the type, which is then often named `ext` as an input to the
-- function. However this is cumberson, as anything using extensionality now
-- needs to take extensionality as an argument. If this library was
-- converted to cubical Agda we could prove extensionality directly,
-- although we would lose UIP.
postulate
extensionality : ∀ {α β} → Extensionality α β
| {
"alphanum_fraction": 0.7714723926,
"avg_line_length": 40.75,
"ext": "agda",
"hexsha": "f01aa889fe2d8a9572c82e4ad2b210a8936f9946",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-09-07T19:55:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-12T20:34:17.000Z",
"max_forks_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "turion/functional-linear-algebra",
"max_forks_repo_path": "src/FLA/Axiom/Extensionality/Propositional.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_issues_repo_issues_event_max_datetime": "2022-01-07T05:27:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-09-01T01:42:12.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "turion/functional-linear-algebra",
"max_issues_repo_path": "src/FLA/Axiom/Extensionality/Propositional.agda",
"max_line_length": 76,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "375475a2daa57b5995ceb78b4bffcbfcbb5d8898",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "turion/functional-linear-algebra",
"max_stars_repo_path": "src/FLA/Axiom/Extensionality/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-07T05:28:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-22T20:49:34.000Z",
"num_tokens": 155,
"size": 652
} |
------------------------------------------------------------------------
-- Some derivable properties
------------------------------------------------------------------------
open import Algebra
module Algebra.Props.DistributiveLattice
(dl : DistributiveLattice)
where
open DistributiveLattice dl
import Algebra.Props.Lattice as L; open L lattice public
open import Algebra.Structures
import Algebra.FunctionProperties as P; open P _≈_
import Relation.Binary.EqReasoning as EqR; open EqR setoid
open import Data.Function
open import Data.Product
∨-∧-distrib : _∨_ DistributesOver _∧_
∨-∧-distrib = ∨-∧-distribˡ , ∨-∧-distribʳ
where
∨-∧-distribˡ : _∨_ DistributesOverˡ _∧_
∨-∧-distribˡ x y z = begin
x ∨ y ∧ z ≈⟨ ∨-comm _ _ ⟩
y ∧ z ∨ x ≈⟨ ∨-∧-distribʳ _ _ _ ⟩
(y ∨ x) ∧ (z ∨ x) ≈⟨ ∨-comm _ _ ⟨ ∧-pres-≈ ⟩ ∨-comm _ _ ⟩
(x ∨ y) ∧ (x ∨ z) ∎
∧-∨-distrib : _∧_ DistributesOver _∨_
∧-∨-distrib = ∧-∨-distribˡ , ∧-∨-distribʳ
where
∧-∨-distribˡ : _∧_ DistributesOverˡ _∨_
∧-∨-distribˡ x y z = begin
x ∧ (y ∨ z) ≈⟨ sym (proj₂ absorptive _ _) ⟨ ∧-pres-≈ ⟩ refl ⟩
(x ∧ (x ∨ y)) ∧ (y ∨ z) ≈⟨ (refl ⟨ ∧-pres-≈ ⟩ ∨-comm _ _) ⟨ ∧-pres-≈ ⟩ refl ⟩
(x ∧ (y ∨ x)) ∧ (y ∨ z) ≈⟨ ∧-assoc _ _ _ ⟩
x ∧ ((y ∨ x) ∧ (y ∨ z)) ≈⟨ refl ⟨ ∧-pres-≈ ⟩ sym (proj₁ ∨-∧-distrib _ _ _) ⟩
x ∧ (y ∨ x ∧ z) ≈⟨ sym (proj₁ absorptive _ _) ⟨ ∧-pres-≈ ⟩ refl ⟩
(x ∨ x ∧ z) ∧ (y ∨ x ∧ z) ≈⟨ sym $ proj₂ ∨-∧-distrib _ _ _ ⟩
x ∧ y ∨ x ∧ z ∎
∧-∨-distribʳ : _∧_ DistributesOverʳ _∨_
∧-∨-distribʳ x y z = begin
(y ∨ z) ∧ x ≈⟨ ∧-comm _ _ ⟩
x ∧ (y ∨ z) ≈⟨ ∧-∨-distribˡ _ _ _ ⟩
x ∧ y ∨ x ∧ z ≈⟨ ∧-comm _ _ ⟨ ∨-pres-≈ ⟩ ∧-comm _ _ ⟩
y ∧ x ∨ z ∧ x ∎
-- The dual construction is also a distributive lattice.
∧-∨-isDistributiveLattice : IsDistributiveLattice _≈_ _∧_ _∨_
∧-∨-isDistributiveLattice = record
{ isLattice = ∧-∨-isLattice
; ∨-∧-distribʳ = proj₂ ∧-∨-distrib
}
∧-∨-distributiveLattice : DistributiveLattice
∧-∨-distributiveLattice = record
{ _∧_ = _∨_
; _∨_ = _∧_
; isDistributiveLattice = ∧-∨-isDistributiveLattice
}
| {
"alphanum_fraction": 0.4997730368,
"avg_line_length": 34.9682539683,
"ext": "agda",
"hexsha": "5f1319d1604044f743d11fdcaf9137576ea02e60",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Algebra/Props/DistributiveLattice.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Algebra/Props/DistributiveLattice.agda",
"max_line_length": 84,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Algebra/Props/DistributiveLattice.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 977,
"size": 2203
} |
even : ℕ → Bool
odd : ℕ → Bool
even zero = true
even (suc n) = odd n
odd zero = false
odd (suc n) = even n
| {
"alphanum_fraction": 0.5603448276,
"avg_line_length": 12.8888888889,
"ext": "agda",
"hexsha": "95a3563125fb8db2bf082a4a15d4a1afa18dff11",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_forks_repo_licenses": [
"Info-ZIP"
],
"max_forks_repo_name": "seanwallawalla-forks/RosettaCodeData",
"max_forks_repo_path": "Task/Even-or-odd/Agda/even-or-odd.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Info-ZIP"
],
"max_issues_repo_name": "seanwallawalla-forks/RosettaCodeData",
"max_issues_repo_path": "Task/Even-or-odd/Agda/even-or-odd.agda",
"max_line_length": 20,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9ad63ea473a958506c041077f1d810c0c7c8c18d",
"max_stars_repo_licenses": [
"Info-ZIP"
],
"max_stars_repo_name": "LaudateCorpus1/RosettaCodeData",
"max_stars_repo_path": "Task/Even-or-odd/Agda/even-or-odd.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T13:42:20.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-05T13:42:20.000Z",
"num_tokens": 45,
"size": 116
} |
{-
Please do not move this file. Changes should only be made if necessary.
This file contains pointers to the code examples and main results from the paper:
Internalizing Representation Independence with Univalence
Carlo Angiuli, Evan Cavallo, Anders Mörtberg, Max Zeuner
Preprint: https://arxiv.org/abs/2009.05547
-}
{-# OPTIONS --safe #-}
module Cubical.Papers.RepresentationIndependence where
-- 2.1
import Agda.Builtin.Cubical.Path as Path
import Cubical.Foundations.Prelude as Prelude
-- 2.2
import Cubical.Foundations.Univalence as Univalence
import Cubical.Foundations.HLevels as HLevels
import Cubical.Foundations.Equiv as Equivalences
import Cubical.Data.Sigma.Properties as Sigma
-- 2.3
import Cubical.HITs.PropositionalTruncation as PropositionalTruncation
import Cubical.HITs.Cost.Base as CostMonad
import Cubical.HITs.SetQuotients as SetQuotients
import Cubical.HITs.Rationals.QuoQ as SetQuoQ
import Cubical.HITs.Rationals.SigmaQ as SigmaQ
-- 3.1
import Cubical.Foundations.SIP as SIP
import Cubical.Structures.Axioms as Axioms
import Cubical.Algebra.Semigroup.Base as Semigroup
open import Cubical.Data.Sigma.Base
-- 3.2
import Cubical.Structures.Pointed as PointedStr
import Cubical.Structures.Constant as ConstantStr
import Cubical.Structures.Product as ProductStr
import Cubical.Structures.Function as FunctionStr
import Cubical.Structures.Maybe as MaybeStr
import Cubical.Foundations.Structure as Structure
import Cubical.Structures.Auto as Auto
open import Cubical.Data.Maybe.Base
-- 4.1
import Cubical.Data.Vec.Base as Vector
import Cubical.Algebra.Matrix as Matrices
import Cubical.Data.FinData.Base as Finite
open import Cubical.Algebra.AbGroup.Base
open import Cubical.Data.Bool.Base
-- 4.2
import Cubical.Structures.Queue as Queues
import Cubical.Data.Queue.Truncated2List as BatchedQueues
-- 5.1
import Cubical.Relation.Binary.Base as BinRel
import Cubical.Relation.ZigZag.Base as QER
import Cubical.Relation.ZigZag.Applications.MultiSet
as MultiSets
-- 5.2
import Cubical.Foundations.RelationalStructure as RelStructure
import Cubical.Structures.Relational.Function as RelFunction
-------------------------------------------------------------------------
-- 2. Programming in Cubical Type Theory
-- 2.1 Equalities as Paths
-- 2.2 Univalence
-- 2.3 Higher Inductive Types
-------------------------------------------------------------------------
-- 2.1 Equalities as Paths
open Path using (PathP) public
open Prelude using (_≡_ ; refl ; cong ; funExt
; transport ; subst ; J) public
-- 2.2 Univalence
open Univalence using (ua ; uaβ) public
-- Sets and Propositions
open Prelude using (isProp ; isSet) public
open HLevels using (isPropΠ) public
open Prelude using (isContr) public
-- Equivalences and Isomorphisms
open Equivalences using (isEquiv ; _≃_) public
open Equivalences renaming (fiber to preim) public
open Sigma using (ΣPath≃PathΣ) public
open Equivalences renaming (propBiimpl→Equiv to prop≃) public
-- 2.3 Higher Inductive Types
-- Propositional Truncation
open PropositionalTruncation using (∥_∥ ; map) public
open CostMonad using (Cost ; Cost≡ ; _>>=_ ; return
; fib ; fibTail) public
-- Computation
_ : fib 20 ≡ (6765 , PropositionalTruncation.∣ 21890 ∣)
_ = refl
_ : fibTail 20 ≡ (6765 , PropositionalTruncation.∣ 19 ∣)
_ = refl
-- Set Quotients
open SetQuotients using (_/_ ; setQuotUniversal) public
-- Rational Numbers
open SetQuoQ using (_∼_ ; ℚ) public
open SigmaQ renaming (ℚ to ℚ') public
-------------------------------------------------------------------------
-- 3. The Structure Identity Principle
-- 3.1 Structures
-- 3.2 Building Strucutres
-------------------------------------------------------------------------
-- 3.1 Structures
open SIP using (TypeWithStr ; StrEquiv ; _≃[_]_
; UnivalentStr ; SIP ; sip) public
-- the last two terms above correspond to lemma 3.3
-- and corollary 3.4 respectively
open Axioms using ( AxiomsStructure ; AxiomsEquivStr
; axiomsUnivalentStr ; transferAxioms) public
-- Monoids are defined using records and Σ-types in the library
RawMonoidStructure : Type → Type
RawMonoidStructure X = X × (X → X → X)
MonoidAxioms : (M : Type) → RawMonoidStructure M → Type
MonoidAxioms M (e , _·_) = Semigroup.IsSemigroup _·_
× ((x : M) → (x · e ≡ x) × (e · x ≡ x))
MonoidStructure : Type → Type
MonoidStructure = AxiomsStructure RawMonoidStructure MonoidAxioms
Monoid : Type₁
Monoid = TypeWithStr ℓ-zero MonoidStructure
MonoidEquiv : (M N : Monoid) → fst M ≃ fst N → Type
MonoidEquiv (_ , (εᴹ , _·_) , _) (_ , (εᴺ , _∗_) , _) (φ , _) =
(φ εᴹ ≡ εᴺ) × (∀ x y → φ (x · y) ≡ (φ x) ∗ (φ y))
-- 3.2 Building Structures
-- Constant and Pointed Structures
open PointedStr using (PointedStructure ; PointedEquivStr
; pointedUnivalentStr) public
open ConstantStr using (ConstantStructure ; ConstantEquivStr
; constantUnivalentStr) public
-- Product Structures
open ProductStr using (ProductStructure ; ProductEquivStr
; productUnivalentStr) public
-- Function Structures
open FunctionStr using (FunctionEquivStr) public
-- Maybe Structures
open MaybeStr using (MaybeEquivStr) public
-- Transport Structures
open Structure using (EquivAction) public
open SIP using (TransportStr ; TransportStr→UnivalentStr
; UnivalentStr→TransportStr) public
open Structure using (EquivAction→StrEquiv) public
open FunctionStr using (FunctionEquivStr+) public
-- Monoids Revisited
RawMonoid : Type₁
RawMonoid = TypeWithStr _ RawMonoidStructure
Monoid→RawMonoid : Monoid → RawMonoid
Monoid→RawMonoid (A , r , _) = (A , r)
RawMonoidEquivStr = Auto.AutoEquivStr RawMonoidStructure
rawMonoidUnivalentStr : UnivalentStr _ RawMonoidEquivStr
rawMonoidUnivalentStr = Auto.autoUnivalentStr RawMonoidStructure
isPropMonoidAxioms : (M : Type) (s : RawMonoidStructure M) → isProp (MonoidAxioms M s)
isPropMonoidAxioms M (e , _·_) =
HLevels.isPropΣ
(Semigroup.isPropIsSemigroup _·_)
(λ α → isPropΠ λ _ →
HLevels.isProp×
(Semigroup.IsSemigroup.is-set α _ _)
(Semigroup.IsSemigroup.is-set α _ _))
MonoidEquivStr : StrEquiv MonoidStructure ℓ-zero
MonoidEquivStr = AxiomsEquivStr RawMonoidEquivStr MonoidAxioms
monoidUnivalentStr : UnivalentStr MonoidStructure MonoidEquivStr
monoidUnivalentStr = axiomsUnivalentStr _ isPropMonoidAxioms rawMonoidUnivalentStr
MonoidΣPath : (M N : Monoid) → (M ≃[ MonoidEquivStr ] N) ≃ (M ≡ N)
MonoidΣPath = SIP monoidUnivalentStr
InducedMonoid : (M : Monoid) (N : RawMonoid) (e : M .fst ≃ N .fst)
→ RawMonoidEquivStr (Monoid→RawMonoid M) N e → Monoid
InducedMonoid M N e r =
Axioms.inducedStructure rawMonoidUnivalentStr M N (e , r)
InducedMonoidPath : (M : Monoid) (N : RawMonoid) (e : M .fst ≃ N .fst)
(E : RawMonoidEquivStr (Monoid→RawMonoid M) N e)
→ M ≡ InducedMonoid M N e E
InducedMonoidPath M N e E =
MonoidΣPath M (InducedMonoid M N e E) .fst (e , E)
-- Automation
open Auto using (Transp[_] ; AutoEquivStr ; autoUnivalentStr) public
module _ (A : Type) (Aset : isSet A) where
RawQueueEquivStr =
AutoEquivStr (λ (X : Type) → X × (A → X → X) × (X → Transp[ Maybe (X × A) ]))
-------------------------------------------------------------------------
-- 4. Representation Independence through the SIP
-- 4.1 Matrices
-- 4.2 Queues
-------------------------------------------------------------------------
-- 4.1 Matrices
open Vector using (Vec) public
open Finite using (Fin ; _==_) public
open Matrices using (VecMatrix ; FinMatrix ; FinMatrix≡VecMatrix
; FinMatrix≃VecMatrix) public
open Matrices.FinMatrixAbGroup using (addFinMatrix ; addFinMatrixComm) public
-- example (not in the library)
open import Cubical.Data.Int renaming (Int to ℤ ; isSetInt to isSetℤ) hiding (-_)
ℤ-AbGroup : AbGroup ℓ-zero
ℤ-AbGroup = makeAbGroup {G = ℤ} 0 _+_ -_ isSetℤ +-assoc (λ x _ → x) rem +-comm
where
-_ : ℤ → ℤ
- x = 0 - x
rem : (x : ℤ) → x + (- x) ≡ 0
rem x = +-comm x (pos 0 - x) Prelude.∙ minusPlus x 0
module experiment where
open Prelude
M : FinMatrix ℤ 2 2
M i j = if i == j then 1 else 0
N : FinMatrix ℤ 2 2
N i j = if i == j then 0 else 1
replaceGoal : {A B : Type} {x y : A} → (e : A ≃ B)
(h : invEq e (equivFun e x) ≡ invEq e (equivFun e y)) → x ≡ y
replaceGoal e h = sym (retEq e _) ∙∙ h ∙∙ retEq e _
_ : addFinMatrix ℤ-AbGroup M N ≡ (λ _ _ → 1)
_ = replaceGoal (FinMatrix≃VecMatrix) refl
-- 4.2 Queues
open Queues.Queues-on using (RawQueueStructure ; QueueAxioms) public
open BatchedQueues.Truncated2List renaming (Q to BatchedQueueHIT)
using (Raw-1≡2 ; WithLaws) public
-------------------------------------------------------------------------
-- 5. Structured Equivalences from Structured Relations
-- 5.1 Quasi-Equivalence Relations
-- 5.2 Structured Relations
-------------------------------------------------------------------------
-- 5.1 Quasi-Equivalence Relations
--Lemma (5.1)
open BinRel using (idPropRel ; invPropRel
; compPropRel ; graphRel) public
-- Definitions (5.2) and (5.3)
open QER using (isZigZagComplete ; isQuasiEquivRel) public
-- Lemma (5.4)
open QER.QER→Equiv using (Thm ; bwd≡ToRel) public
-- Multisets
open MultiSets renaming (AList to AssocList) public
open MultiSets.Lists&ALists using (addIfEq ; R ; φ ; ψ
; List/Rᴸ≃AList/Rᴬᴸ) public
open MultiSets.Lists&ALists.L using (insert ; union ; count)
open MultiSets.Lists&ALists.AL using (insert ; union ; count)
-- 5.2 Structured Relations
open RelStructure using (StrRel) public
-- Definition (5.6)
open RelStructure using (SuitableStrRel) public
-- Theorem (5.7)
open RelStructure using (structuredQER→structuredEquiv) public
-- Definition (5.9)
open RelStructure using (StrRelAction) public
-- Lemma (5.10)
open RelStructure using (strRelQuotientComparison) public
-- Definition (5.11)
open RelStructure using (PositiveStrRel) public
-- Theorem (5.12)
open RelFunction using (functionSuitableRel) public
-- Multisets
-- (main is applying 5.7 to the example)
open MultiSets.Lists&ALists using (multisetShape ; isStructuredR ; main ; List/Rᴸ≡AList/Rᴬᴸ)
renaming ( hasAssociativeUnion to unionAssocAxiom
; LQassoc to LUnionAssoc
; ALQassoc to ALUnionAssoc) public
| {
"alphanum_fraction": 0.6420043415,
"avg_line_length": 35.0984126984,
"ext": "agda",
"hexsha": "4131eadba26c7a758ad5239ae4cc8047f7e3248d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-03-12T20:08:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-03-12T20:08:45.000Z",
"max_forks_repo_head_hexsha": "ce8fe04f9c5d2c9faf8690885c1b702434626621",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "LuuBluum/cubical",
"max_forks_repo_path": "Cubical/Papers/RepresentationIndependence.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ce8fe04f9c5d2c9faf8690885c1b702434626621",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "LuuBluum/cubical",
"max_issues_repo_path": "Cubical/Papers/RepresentationIndependence.agda",
"max_line_length": 92,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "ce8fe04f9c5d2c9faf8690885c1b702434626621",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "LuuBluum/cubical",
"max_stars_repo_path": "Cubical/Papers/RepresentationIndependence.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3146,
"size": 11056
} |
open import Nat
open import Prelude
open import Hazelnut-core
module Hazelnut-sensible where
-- theorem 1: action sensibility
synthmovelem : {Γ : ·ctx} {e e' : ê} {t : τ̇} {δ : direction} →
(e + move δ +>e e') →
(Γ ⊢ e ◆e => t) →
(Γ ⊢ e' ◆e => t)
synthmovelem EMAscFirstChild d2 = d2
synthmovelem EMAscParent1 d2 = d2
synthmovelem EMAscParent2 d2 = d2
synthmovelem EMAscNextSib d2 = d2
synthmovelem EMAscPrevSib d2 = d2
synthmovelem EMLamFirstChild d2 = d2
synthmovelem EMLamParent d2 = d2
synthmovelem EMPlusFirstChild d2 = d2
synthmovelem EMPlusParent1 d2 = d2
synthmovelem EMPlusParent2 d2 = d2
synthmovelem EMPlusNextSib d2 = d2
synthmovelem EMPlusPrevSib d2 = d2
synthmovelem EMApFirstChild d2 = d2
synthmovelem EMApParent1 d2 = d2
synthmovelem EMApParent2 d2 = d2
synthmovelem EMApNextSib d2 = d2
synthmovelem EMApPrevSib d2 = d2
synthmovelem EMFHoleFirstChild d2 = d2
synthmovelem EMFHoleParent d2 = d2
-- movements preserve analytic types up to erasure. this lemma seems
-- silly because all it seems to do in each case is return the second
-- derivation D. the pattern matching here, though, constrains what that
-- derivation may be in each case, and is therefore actually
-- non-trivial. it's just that most of the work is happening in the
-- implicit arguments.
anamovelem : {Γ : ·ctx} {δ : direction} {e e' : ê} {t : τ̇}
(p : e + move δ +>e e') →
(Γ ⊢ e ◆e <= t) →
(Γ ⊢ e' ◆e <= t)
anamovelem EMAscFirstChild d2 = d2
anamovelem EMAscParent1 d2 = d2
anamovelem EMAscParent2 d2 = d2
anamovelem EMAscNextSib d2 = d2
anamovelem EMAscPrevSib d2 = d2
anamovelem EMLamFirstChild d2 = d2
anamovelem EMLamParent d2 = d2
anamovelem EMPlusFirstChild d2 = d2
anamovelem EMPlusParent1 d2 = d2
anamovelem EMPlusParent2 d2 = d2
anamovelem EMPlusNextSib d2 = d2
anamovelem EMPlusPrevSib d2 = d2
anamovelem EMApFirstChild d2 = d2
anamovelem EMApParent1 d2 = d2
anamovelem EMApParent2 d2 = d2
anamovelem EMApNextSib d2 = d2
anamovelem EMApPrevSib d2 = d2
anamovelem EMFHoleFirstChild d2 = d2
anamovelem EMFHoleParent d2 = d2
mutual
-- if an action transforms an zexp in a synthetic posistion to another
-- zexp, they have the same type up erasure of focus.
actsense1 : {Γ : ·ctx} {e e' : ê} {t t' : τ̇} {α : action} →
(Γ ⊢ e => t ~ α ~> e' => t') →
(Γ ⊢ (e ◆e) => t) →
Γ ⊢ (e' ◆e) => t'
actsense1 (SAMove x) D2 = synthmovelem x D2
actsense1 SADel D2 = SEHole
actsense1 SAConAsc D2 = SAsc (ASubsume D2 TCRefl)
actsense1 (SAConVar p) D2 = SVar p
actsense1 (SAConLam p) D2 = SAsc (ALam p (ASubsume SEHole TCRefl))
actsense1 SAConAp1 D2 = SAp D2 (ASubsume SEHole TCHole1)
actsense1 SAConAp2 D2 = SApHole D2 (ASubsume SEHole TCRefl)
actsense1 (SAConAp3 x) D2 = SApHole (SFHole D2) (ASubsume SEHole TCRefl)
actsense1 SAConArg D2 = SApHole SEHole (ASubsume D2 TCHole2)
actsense1 SAConNumlit D2 = SNum
actsense1 (SAConPlus1 TCRefl) D2 = SPlus (ASubsume D2 TCRefl) (ASubsume SEHole TCHole1)
actsense1 (SAConPlus1 TCHole2) D2 = SPlus (ASubsume D2 TCHole1) (ASubsume SEHole TCHole1)
actsense1 (SAConPlus2 x) D2 = SPlus (ASubsume (SFHole D2) TCHole1) (ASubsume SEHole TCHole1)
actsense1 (SAFinish x) D2 = x
actsense1 (SAZipAsc1 x) (SAsc D2) = SAsc (actsense2 x D2)
actsense1 (SAZipAsc2 x x₁) _ = SAsc x₁
actsense1 (SAZipAp1 x D1 x₁) D2 = SAp (actsense1 D1 x) x₁
actsense1 (SAZipAp2 x D1 x₁) D2 = SApHole (actsense1 D1 x) x₁
actsense1 (SAZipAp3 x x₁) (SAp D2 x₃) with synthunicity x D2
... | refl = SAp x (actsense2 x₁ x₃)
actsense1 (SAZipAp3 x x₁) (SApHole D2 x₂) with synthunicity x D2
... | ()
actsense1 (SAZipAp4 x x₁) (SAp D2 x₂) with synthunicity x D2
... | ()
actsense1 (SAZipAp4 x x₁) (SApHole D2 x₂) = SApHole x (actsense2 x₁ x₂)
actsense1 (SAZipPlus1 x) (SPlus x₁ x₂) = SPlus (actsense2 x x₁) x₂
actsense1 (SAZipPlus2 x) (SPlus x₁ x₂) = SPlus x₁ (actsense2 x x₂)
actsense1 (SAZipHole1 x D1 x₁) D2 = SFHole (actsense1 D1 x)
actsense1 (SAZipHole2 x D1) D2 = SEHole
-- if an action transforms an zexp in an analytic posistion to another
-- zexp, they have the same type up erasure of focus.
actsense2 : {Γ : ·ctx} {e e' : ê} {t : τ̇} {α : action} →
(Γ ⊢ e ~ α ~> e' ⇐ t) →
(Γ ⊢ (e ◆e) <= t) →
(Γ ⊢ (e' ◆e) <= t)
actsense2 (AASubsume x act p) D2 = ASubsume (actsense1 act x) p
actsense2 (AAMove x) D2 = anamovelem x D2
actsense2 AADel _ = ASubsume SEHole TCHole1
actsense2 AAConAsc D2 = ASubsume (SAsc D2) TCRefl
actsense2 (AAConVar x₁ p) D2 = ASubsume (SFHole (SVar p)) TCHole1
actsense2 (AAConLam1 p) (ASubsume SEHole TCHole1) = ALam p (ASubsume SEHole TCHole1)
actsense2 (AAConLam2 p n~) (ASubsume SEHole TCRefl) = abort (n~ TCHole2)
actsense2 (AAConLam2 p x₁) (ASubsume SEHole TCHole1) = ASubsume (SFHole (SAsc (ALam p (ASubsume SEHole TCRefl)))) TCHole1
actsense2 (AAConLam2 p n~) (ASubsume SEHole TCHole2) = abort (n~ TCHole2)
actsense2 (AAConNumlit _) _ = ASubsume (SFHole SNum) TCHole1
actsense2 (AAFinish x) _ = x
actsense2 (AAZipLam _ _ ) (ASubsume () _)
actsense2 (AAZipLam x₁ (AASubsume {p = p} x₂ x₃ x₄)) (ALam x₅ D2) = ALam x₅ (actsense2 (AASubsume {p = p} x₂ x₃ x₄) D2)
actsense2 (AAZipLam x₁ (AAMove x₂)) (ALam x₃ D2) = ALam x₃ (anamovelem x₂ D2)
actsense2 (AAZipLam x₁ AADel) (ALam x₂ D2) = ALam x₂ (ASubsume SEHole TCHole1)
actsense2 (AAZipLam x₁ AAConAsc) (ALam x₂ (ASubsume x₃ x₄)) = ALam x₂ (ASubsume (SAsc (ASubsume x₃ x₄)) TCRefl)
actsense2 (AAZipLam x₁ AAConAsc) (ALam x₂ (ALam x₃ D2)) = ALam x₂ (ASubsume (SAsc (ALam x₃ D2)) TCRefl)
actsense2 (AAZipLam x₁ (AAConVar x₃ p)) (ALam x₄ D2) = ALam x₄ (ASubsume (SFHole (SVar p)) TCHole1)
actsense2 (AAZipLam x₁ (AAConLam1 x₃)) (ALam x₄ D2) = ALam x₄ (ALam x₃ (ASubsume SEHole TCHole1))
actsense2 (AAZipLam x₁ (AAConLam2 x₃ x₄)) (ALam x₅ D2) = ALam x₅ (ASubsume (SFHole (SAsc (ALam x₃ (ASubsume SEHole TCRefl))))
TCHole1)
actsense2 (AAZipLam x₁ (AAConNumlit x₂)) (ALam x₃ D2) = ALam x₃ (ASubsume (SFHole SNum) TCHole1)
actsense2 (AAZipLam x₁ (AAFinish x₂)) (ALam x₃ D2) = ALam x₃ x₂
actsense2 (AAZipLam x₁ (AAZipLam x₃ D1)) (ALam x₄ (ASubsume () x₆))
actsense2 (AAZipLam x₁ (AAZipLam x₃ D1)) (ALam x₄ (ALam x₅ D2)) = ALam x₄ (ALam x₃ (actsense2 D1 D2))
| {
"alphanum_fraction": 0.6568538647,
"avg_line_length": 50.9538461538,
"ext": "agda",
"hexsha": "7233eedea87e7f29a8f97b1b9417fa79f3daee45",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "ivoysey/agda-tfp16",
"max_forks_repo_path": "Hazelnut-sensible.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "ivoysey/agda-tfp16",
"max_issues_repo_path": "Hazelnut-sensible.agda",
"max_line_length": 129,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "86a755ca6749e080f9a03287e34d1cda889f1edb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "ivoysey/agda-tfp16",
"max_stars_repo_path": "Hazelnut-sensible.agda",
"max_stars_repo_stars_event_max_datetime": "2016-04-14T02:19:58.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-04-09T13:35:22.000Z",
"num_tokens": 2824,
"size": 6624
} |
--{-# OPTIONS --allow-unsolved-metas #-}
module StateSizedIO.GUI.Prelude where
open import Size public renaming (Size to AgdaSize)
open import Data.Nat.Base public
open import Data.Bool.Base hiding (_≟_) public
open import Data.List.Base public
open import Function public
open import Data.Integer.Base public hiding (_*_; _+_; _-_; _⊓_; _⊔_; pred; suc;_≤_)
open import Agda.Builtin.Equality public
open import Data.Product public using (_×_; _,_)
open import NativeIO public
open import StateSizedIO.GUI.WxBindingsFFI public
open import StateSizedIO.GUI.VariableList public
open import SizedIO.Base public
open import StateSizedIO.GUI.BaseStateDependent public
| {
"alphanum_fraction": 0.7907324365,
"avg_line_length": 29.0869565217,
"ext": "agda",
"hexsha": "b58734583d369778447923fbbae41e3d337db345",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "stephanadls/state-dependent-gui",
"max_forks_repo_path": "src/StateSizedIO/GUI/Prelude.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "stephanadls/state-dependent-gui",
"max_issues_repo_path": "src/StateSizedIO/GUI/Prelude.agda",
"max_line_length": 84,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "2bc84cb14a568b560acb546c440cbe0ddcbb2a01",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "stephanadls/state-dependent-gui",
"max_stars_repo_path": "src/StateSizedIO/GUI/Prelude.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-31T17:20:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-07-31T15:37:39.000Z",
"num_tokens": 172,
"size": 669
} |
-- Andreas, 2019-08-20, issue #4012
-- unquoteDef and unquoteDecl should respect `private`
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_)
open import Agda.Builtin.List
data D : Set where
c : D
module M where
private
unquoteDecl g = do
ty ← quoteTC D
_ ← declareDef (arg (arg-info visible relevant) g) ty
qc ← quoteTC c
defineFun g (clause [] qc ∷ [])
open M
test = g
-- Expect failure.
-- g is private in M, thus, should not be in scope
| {
"alphanum_fraction": 0.6578947368,
"avg_line_length": 19,
"ext": "agda",
"hexsha": "3d6a1e1df3bf3c614d3eedecf11a7f5e74c94f8d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4012UnquotePrivate.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4012UnquotePrivate.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4012UnquotePrivate.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 148,
"size": 494
} |
{-# OPTIONS --without-K #-}
{-
Imports everything that is not imported by something else.
This is not supposed to be used anywhere, this is just a simple way to
do `make all'
This file is intentionally named index.agda so that
Agda will generate index.html.
-}
module index where
-- import Spaces.IntervalProps
-- import Algebra.F2NotCommutative
import homotopy.LoopSpaceCircle
import homotopy.HopfJunior
import homotopy.Hopf
import homotopy.CoverClassification
import homotopy.AnyUniversalCoverIsPathSet
import homotopy.PathSetIsInital
-- import Spaces.LoopSpaceDecidableWedgeCircles
-- import Homotopy.PullbackIsPullback
-- import Homotopy.PushoutIsPushout
-- import Homotopy.Truncation
-- import Sets.QuotientUP
-- import Spaces.PikSn
-- import Homotopy.VanKampen
| {
"alphanum_fraction": 0.813229572,
"avg_line_length": 26.5862068966,
"ext": "agda",
"hexsha": "9a6e9064f4f7ad1dd7df4326be4fd5f03de35658",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "index.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "index.agda",
"max_line_length": 70,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "index.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 205,
"size": 771
} |
open import Data.List using (List; _∷_; [])
open import Data.Product using (_×_; _,_; Σ)
open import Data.Unit using (⊤; tt)
open import Relation.Binary.PropositionalEquality using (_≡_)
module SystemT where
data _∈_ {A : Set} : (x : A) (l : List A) → Set where -- type \in
i0 : {x : A} {xs : List A} → x ∈ (x ∷ xs)
iS : {x y : A} {xs : List A} → x ∈ xs → x ∈ (y ∷ xs)
data TType : Set where
base : TType
_⟶_ : TType → TType → TType
Context = List TType
_,,_ : Context → TType → Context
Γ ,, τ = τ ∷ Γ
infixr 10 _⟶_
infixr 9 _,,_
infixr 8 _⊢_
data _⊢_ (Γ : Context) : TType → Set where
-- Some constant of the base type whose type is immediate.
c : Γ ⊢ base
-- Variable.
var : {τ : TType} → τ ∈ Γ → Γ ⊢ τ
-- Function introduction.
lam : {τ₁ τ₂ : TType} → Γ ,, τ₁ ⊢ τ₂ → Γ ⊢ τ₁ ⟶ τ₂
-- Function application.
app : {τ₁ τ₂ : TType} → (Γ ⊢ τ₁ ⟶ τ₂) → Γ ⊢ τ₁ → Γ ⊢ τ₂
module Semantics (B : Set) (elB : B) where
-- Interpretation of System T types to Agda types.
⟦_⟧t : TType → Set
⟦ base ⟧t = B
⟦ τ₁ ⟶ τ₂ ⟧t = ⟦ τ₁ ⟧t → ⟦ τ₂ ⟧t
-- Interpretation of System T contexts to Agda types.
⟦_⟧c : Context → Set
⟦ [] ⟧c = ⊤
⟦ τ ∷ Γ ⟧c = ⟦ Γ ⟧c × ⟦ τ ⟧t
-- Interpretation of terms.
⟦_⟧ : {Γ : Context} {τ : TType} → (Γ ⊢ τ) → ⟦ Γ ⟧c → ⟦ τ ⟧t
⟦ c ⟧ γ = elB
⟦ var x ⟧ γ = {! !}
⟦ lam e ⟧ γ x = {! !}
⟦ app e₁ e₂ ⟧ γ = {! !}
| {
"alphanum_fraction": 0.507565337,
"avg_line_length": 27.4339622642,
"ext": "agda",
"hexsha": "77a237e4e8229b2e2c63b9e5d8db0dcf495e2d4c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "785c3d1f93ce2dac7801504b806abfd59f3875f6",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "ayberkt/system-t-normalization",
"max_forks_repo_path": "SystemT.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "785c3d1f93ce2dac7801504b806abfd59f3875f6",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "ayberkt/system-t-normalization",
"max_issues_repo_path": "SystemT.agda",
"max_line_length": 67,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "785c3d1f93ce2dac7801504b806abfd59f3875f6",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "ayberkt/system-t-normalization",
"max_stars_repo_path": "SystemT.agda",
"max_stars_repo_stars_event_max_datetime": "2016-06-25T03:40:58.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-06-24T14:36:42.000Z",
"num_tokens": 618,
"size": 1454
} |
{-# OPTIONS --universe-polymorphism #-}
-- {-# OPTIONS --verbose tc.records.ifs:15 #-}
-- {-# OPTIONS --verbose tc.constr.findInScope:15 #-}
-- {-# OPTIONS --verbose tc.term.args.ifs:15 #-}
module 05-equality-std1 where
open import Relation.Binary using (IsDecEquivalence; module IsDecEquivalence; Reflexive; module DecSetoid)
open import Data.Bool using (false; true; decSetoid)
open DecSetoid decSetoid using (isDecEquivalence)
open module IsDecEquivalenceWithImplicits = IsDecEquivalence {{...}} using (_≟_)
test = false ≟ true
test2 : ∀ {a ℓ} {A : Set a} {_≈_} → {{ide : IsDecEquivalence {a} {ℓ} {A} _≈_}} →
Reflexive _≈_
test2 = IsDecEquivalenceWithImplicits.refl
| {
"alphanum_fraction": 0.7042459736,
"avg_line_length": 34.15,
"ext": "agda",
"hexsha": "d5f288c4470d0f68bc03edcdc11d4a057ba6cc7b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "larrytheliquid/agda",
"max_forks_repo_path": "examples/instance-arguments/05-equality-std1.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/agda",
"max_issues_repo_path": "examples/instance-arguments/05-equality-std1.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "examples/instance-arguments/05-equality-std1.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 211,
"size": 683
} |
module Thesis.SIRelBigStep.DenSem where
open import Data.Nat
open import Data.Product
open import Thesis.SIRelBigStep.Syntax
open import Data.Nat
⟦_⟧Type : Type → Set
⟦ σ ⇒ τ ⟧Type = ⟦ σ ⟧Type → ⟦ τ ⟧Type
⟦ nat ⟧Type = ℕ
⟦ pair τ1 τ2 ⟧Type = ⟦ τ1 ⟧Type × ⟦ τ2 ⟧Type
import Base.Denotation.Environment
module Den = Base.Denotation.Environment Type ⟦_⟧Type
open import Base.Data.DependentList
⟦_⟧Const : ∀ {τ} → Const τ → ⟦ τ ⟧Type
⟦ lit n ⟧Const = n
⟦_⟧Primitive : ∀ {τ} → Primitive τ → ⟦ τ ⟧Type
⟦ succ ⟧Primitive = suc
⟦ add ⟧Primitive = λ { (n1 , n2) → n1 + n2}
⟦_⟧Term : ∀ {Γ τ} → Term Γ τ → Den.⟦ Γ ⟧Context → ⟦ τ ⟧Type
⟦_⟧SVal : ∀ {Γ τ} → SVal Γ τ → Den.⟦ Γ ⟧Context → ⟦ τ ⟧Type
⟦ var x ⟧SVal ρ = Den.⟦ x ⟧Var ρ
⟦ abs t ⟧SVal ρ = λ v → ⟦ t ⟧Term (v • ρ)
⟦ cons sv1 sv2 ⟧SVal ρ = ⟦ sv1 ⟧SVal ρ , ⟦ sv2 ⟧SVal ρ
⟦ const c ⟧SVal ρ = ⟦ c ⟧Const
⟦ val sv ⟧Term ρ = ⟦ sv ⟧SVal ρ
⟦ app s t ⟧Term ρ = ⟦ s ⟧SVal ρ (⟦ t ⟧SVal ρ)
⟦ lett s t ⟧Term ρ = ⟦ t ⟧Term ((⟦ s ⟧Term ρ) • ρ)
⟦ primapp vs vt ⟧Term ρ = ⟦ vs ⟧Primitive (⟦ vt ⟧SVal ρ)
| {
"alphanum_fraction": 0.593840231,
"avg_line_length": 28.8611111111,
"ext": "agda",
"hexsha": "a429709d293f643d32013a89205d364a0df2f83c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Thesis/SIRelBigStep/DenSem.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Thesis/SIRelBigStep/DenSem.agda",
"max_line_length": 59,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Thesis/SIRelBigStep/DenSem.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 510,
"size": 1039
} |
-- Subtyping is no longer supported for irrelevance.
f : {A B : Set} → (.A → B) → A → B
f g = λ .x → g x
| {
"alphanum_fraction": 0.5471698113,
"avg_line_length": 21.2,
"ext": "agda",
"hexsha": "6b9f9da300fcd19aeb734dcdb8959c3d2949f439",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Fail/Relevance-subtyping-2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Fail/Relevance-subtyping-2.agda",
"max_line_length": 52,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Fail/Relevance-subtyping-2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 40,
"size": 106
} |
open import Agda.Builtin.Equality
open import Agda.Builtin.Sigma
postulate X : Set
variable x : X
data C : Σ X (λ x → x ≡ x) → Set where
mkC :
let
eq : x ≡ x -- don't generalize over x at eq
eq = refl {x = x}
in
C (x , eq)
| {
"alphanum_fraction": 0.5691699605,
"avg_line_length": 16.8666666667,
"ext": "agda",
"hexsha": "399682558c63730eef0bf55acf28a4d523daeb5e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "Seanpm2001-Agda-lang/agda",
"max_forks_repo_path": "test/Succeed/Issue5683.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "Seanpm2001-Agda-lang/agda",
"max_issues_repo_path": "test/Succeed/Issue5683.agda",
"max_line_length": 50,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "6b13364d36eeb60d8ec15eaf8effe23c73401900",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "sseefried/agda",
"max_stars_repo_path": "test/Succeed/Issue5683.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 92,
"size": 253
} |
module Sets.IterativeUSet where
open import Data renaming (Empty to EmptyType)
open import Functional
import Lvl
import Lvl.Decidable as Lvl
open import Structure.Setoid renaming (_≡_ to _≡ₛ_)
open import Syntax.Function
open import Type
open import Type.Dependent
private variable ℓ ℓₒ ℓₑ ℓ₁ ℓ₂ : Lvl.Level
private variable T Indexₗ Indexᵣ : Type{ℓ}
private variable a b c x y z : T
-- A model of constructive set theory with atoms/urelements (CZFU) by iterative sets.
-- The definition states that an instance of IUset is either an atom or a set.
-- An atom is an instance of the atoms/urelements.
-- A set is an instance of a set container which is a function from a type of indices (which depends on the set) to an IUset. The function should be interpreted as pointing to every element of the set, and the image of this function is how a single set is represented.
module _ (T : Type{ℓₒ}) ⦃ equiv : Equiv{ℓₑ}(T) ⦄ {ℓ} where
data IUset : Type{Lvl.𝐒(ℓ) Lvl.⊔ ℓₒ}
SetContainer : Type{Lvl.𝐒(ℓ) Lvl.⊔ ℓₒ}
SetContainer = Σ(Type{ℓ}) (_→ᶠ IUset)
data IUset where
atom : T → IUset
set : SetContainer → IUset
module _ {T : Type{ℓₒ}} ⦃ equiv : Equiv{ℓₑ}(T) ⦄ {ℓ} where
pattern setc {Index} elem = set(intro Index elem)
module SetContainer where
-- The projection of the index type for a set container.
Index : (SC : SetContainer(T){ℓ}) → Type.of(Σ.left SC)
Index = Σ.left
-- The projection of the elements' function for a set container.
elem : (SC : SetContainer(T){ℓ}) → Type.of(Σ.right SC)
elem = Σ.right
-- The projection of the index type for an IUset's set container if it is a set.
-- It is non-existant otherwise (modeled by the empty type with no inhabitants).
Index : IUset(T){ℓ} → Type{ℓ}
Index (atom x) = EmptyType
Index (set SC) = SetContainer.Index SC
-- The projection of the elements' function for an IUset's set container it if it a set.
-- It is non-existant otherwise (modeled by the empty function which is interpreted as the empty set).
elem : (A : IUset(T){ℓ}) → (Index(A) → IUset(T){ℓ})
elem (atom _) ()
elem (set SC) = SetContainer.elem SC
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
open import Functional
open import Logic.Propositional
open import Logic.Propositional.Theorems
open import Logic.Predicate
private variable SC SCₗ SCᵣ : SetContainer(T) ⦃ equiv ⦄ {ℓ}
-- The predicate stating that an IUset is a set.
data IsSet {ℓ} : IUset(T){ℓ} → Type{Lvl.of(T) Lvl.⊔ Lvl.𝐒(ℓ)} where
intro : IsSet(set(SC))
-- The predicate stating that an IUset is an atom.
data IsAtom {ℓ} : IUset(T){ℓ} → Type{Lvl.of(T) Lvl.⊔ Lvl.𝐒(ℓ)} where
intro : IsAtom(atom(x))
data _≡_ {ℓ₁ ℓ₂} : IUset(T){ℓ₁} → IUset(T){ℓ₂} → Type{Lvl.𝐒(ℓ₁ Lvl.⊔ ℓ₂) Lvl.⊔ ℓₑ Lvl.⊔ Lvl.of(T)}
data _⊆_ {ℓ₁ ℓ₂} : IUset(T){ℓ₁} → IUset(T){ℓ₂} → Type{Lvl.𝐒(ℓ₁ Lvl.⊔ ℓ₂) Lvl.⊔ ℓₑ Lvl.⊔ Lvl.of(T)}
_⊇_ : IUset(T){ℓ₁} → IUset(T){ℓ₂} → Type
A ⊇ B = B ⊆ A
-- Equality is either equivalence on its atoms or by definition the antisymmetric property of the subset relation.
data _≡_ where
atom : (a ≡ₛ b) → (atom a ≡ atom b)
set : (set SCₗ ⊇ set SCᵣ) → (set SCₗ ⊆ set SCᵣ) → (set SCₗ ≡ set SCᵣ)
-- Set membership is the existence of an index in the set that points to a set equal element to the element.
-- Note: This is never satisfied for an atom on the right.
data _∈_ {ℓ₁ ℓ₂} (x : IUset(T){ℓ₁}) : IUset(T){ℓ₂} → Type{Lvl.𝐒(ℓ₁ Lvl.⊔ ℓ₂) Lvl.⊔ ℓₑ Lvl.⊔ Lvl.of(T)} where
set : ∃{Obj = SetContainer.Index(SC)} (i ↦ x ≡ SetContainer.elem(SC) i) → (x ∈ set SC)
[∈]-proof : (x ∈ set SC) → ∃{Obj = SetContainer.Index(SC)} (i ↦ x ≡ SetContainer.elem(SC) i)
[∈]-proof (set p) = p
[∈]-index : (x ∈ set SC) → SetContainer.Index(SC)
[∈]-index (set ([∃]-intro i)) = i
[∈]-elem : (p : (x ∈ set SC)) → (x ≡ SetContainer.elem(SC) ([∈]-index p))
[∈]-elem (set ([∃]-intro _ ⦃ p ⦄)) = p
-- Set subset is a mapping between the indices such that they point to the same element in both sets.
-- Note: This is never satisfied for an atom on the right.
data _⊆_ where
set : (map : SetContainer.Index(SCₗ) → SetContainer.Index(SCᵣ)) → (∀{i} → (SetContainer.elem(SCₗ) i ≡ SetContainer.elem(SCᵣ) (map i))) → (set SCₗ ⊆ set SCᵣ)
[⊆]-map : (set SCₗ ⊆ set SCᵣ) → (SetContainer.Index(SCₗ) → SetContainer.Index(SCᵣ))
[⊆]-map (set map _) = map
[⊆]-proof : (p : (set SCₗ ⊆ set SCᵣ)) → (∀{i} → (SetContainer.elem(SCₗ) i ≡ SetContainer.elem(SCᵣ) ([⊆]-map p i)))
[⊆]-proof (set _ p) = p
-- The binary relation of non-membership.
_∉_ : IUset(T){ℓ₁} → IUset(T){ℓ₂} → Type
a ∉ B = ¬(a ∈ B)
-- The predicate stating that an IUset contains no elements (in other words, is empty).
Empty : ∀{ℓ₁ ℓ₂ : Lvl.Level} → IUset(T){ℓ₂} → Type
Empty{ℓ₁}(A) = ∀{x : IUset(T){ℓ₁}} → (x ∉ A)
open import Logic.Classical
private variable A B C : IUset(T) ⦃ equiv ⦄ {ℓ}
instance
-- An IUset is exclusively either an atom or a set.
atom-xor-set : IsAtom(A) ⊕ IsSet(A)
atom-xor-set {A = atom _} = [⊕]-introₗ intro \()
atom-xor-set {A = set _} = [⊕]-introᵣ intro \()
instance
IsAtom-classical : Classical₁(IsAtom{ℓ})
IsAtom-classical = classical-from-xorₗ
instance
IsSet-classical : Classical₁(IsSet{ℓ})
IsSet-classical = classical-from-xorᵣ
-- An IUset containing something is always a set.
set-if-membership : (x ∈ A) → IsSet(A)
set-if-membership (set _) = intro
-- An IUset which is an atom is always "empty" when interpreted as a set.
atom-is-empty : IsAtom(A) → Empty{ℓ}(A)
atom-is-empty p = contrapositiveᵣ set-if-membership ([⊕]-not-left atom-xor-set p)
open import Functional
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
[≡]-reflexivity-raw : (A ≡ A)
[⊆]-reflexivity-raw : (set SC ⊆ set SC)
[⊇]-reflexivity-raw : (set SC ⊇ set SC)
[⊇]-reflexivity-raw = [⊆]-reflexivity-raw
{-# TERMINATING #-} -- TODO: Passed the termination checker before Agda 2.6.2-caeadac-dirty
[≡]-reflexivity-raw {A = atom x} = atom(reflexivity(_≡ₛ_))
[≡]-reflexivity-raw {A = set x} = set [⊇]-reflexivity-raw [⊆]-reflexivity-raw
[⊆]-reflexivity-raw {SC = SC} = set id \{i} → [≡]-reflexivity-raw {A = SetContainer.elem(SC)(i)}
[≡]-transitivity-raw : (A ≡ B) → (B ≡ C) → (A ≡ C)
[⊆]-transitivity-raw : (A ⊆ B) → (B ⊆ C) → (A ⊆ C)
[⊇]-transitivity-raw : (A ⊇ B) → (B ⊇ C) → (A ⊇ C)
[⊇]-transitivity-raw {A = A}{B = B}{C = C} ab bc = [⊆]-transitivity-raw {A = C}{B = B}{C = A} bc ab
[≡]-transitivity-raw (atom ab) (atom bc) = atom (transitivity(_≡ₛ_) ab bc)
[≡]-transitivity-raw (set lab rab) (set lbc rbc) = set ([⊇]-transitivity-raw lab lbc) ([⊆]-transitivity-raw rab rbc)
[⊆]-transitivity-raw (set {SCₗ = SC₁} {SCᵣ = SC₂} mapₗ pₗ) (set {SCᵣ = SC₃} mapᵣ pᵣ) = set (mapᵣ ∘ mapₗ) \{i} → [≡]-transitivity-raw {A = SetContainer.elem(SC₁) i}{B = SetContainer.elem(SC₂)(mapₗ i)} {C = SetContainer.elem(SC₃)(mapᵣ(mapₗ i))} pₗ pᵣ
instance
[≡]-reflexivity : Reflexivity(_≡_ {ℓ})
[≡]-reflexivity = intro [≡]-reflexivity-raw
instance
[⊆]-reflexivity : Reflexivity{T = SetContainer(T){ℓ}} ((_⊆_) on₂ set)
[⊆]-reflexivity = intro [⊆]-reflexivity-raw
instance
[⊇]-reflexivity : Reflexivity{T = SetContainer(T){ℓ}} ((_⊇_) on₂ set)
[⊇]-reflexivity = intro [⊇]-reflexivity-raw
instance
[≡]-symmetry : Symmetry(_≡_ {ℓ})
Symmetry.proof [≡]-symmetry (atom ab) = atom (symmetry(_≡ₛ_) ab)
Symmetry.proof [≡]-symmetry (set l r) = set r l
instance
[⊆]-antisymmetry : Antisymmetry(_⊆_ {ℓ})(_≡_)
Antisymmetry.proof [⊆]-antisymmetry l@(set _ _) r@(set _ _) = set r l
instance
[⊇]-antisymmetry : Antisymmetry(_⊇_ {ℓ})(_≡_)
Antisymmetry.proof [⊇]-antisymmetry l@(set _ _) r@(set _ _) = set l r
instance
[≡]-transitivity : Transitivity(_≡_ {ℓ})
[≡]-transitivity = intro [≡]-transitivity-raw
instance
[⊆]-transitivity : Transitivity(_⊆_ {ℓ})
[⊆]-transitivity = intro [⊆]-transitivity-raw
instance
[⊇]-transitivity : Transitivity(_⊇_ {ℓ})
[⊇]-transitivity = intro [⊇]-transitivity-raw
instance
[≡]-equivalence : Equivalence(_≡_ {ℓ})
[≡]-equivalence = intro
instance
Iset-equiv : Equiv(IUset(T){ℓ})
Equiv._≡_ Iset-equiv = _≡_
Equiv.equivalence Iset-equiv = [≡]-equivalence
[≡]-to-[⊆] : (set SCₗ ≡ set SCᵣ) → (set SCₗ ⊆ set SCᵣ)
[≡]-to-[⊆] (set l r) = r
[≡]-to-[⊇] : (set SCₗ ≡ set SCᵣ) → (set SCₗ ⊇ set SCᵣ)
[≡]-to-[⊇] (set l r) = l
[∈]-of-elem : ∀{A : IUset(T){ℓ}}{ia : Index(A)} → (elem(A)(ia) ∈ A)
[∈]-of-elem {A = setc {Index} elem} {ia} = set ([∃]-intro ia ⦃ [≡]-reflexivity-raw ⦄)
[⊆]-membership : ((_⊆_ on₂ set) SCₗ SCᵣ) ← (∀{x : IUset(T)} → (x ∈ set SCₗ) → (x ∈ set SCᵣ))
[⊆]-membership {SCₗ = SCₗ} {SCᵣ = SCᵣ} proof = set
(ia ↦ [∃]-witness ([∈]-proof(proof {elem(set SCₗ)(ia)} ([∈]-of-elem {A = set SCₗ}))))
(\{ia} → [∃]-proof ([∈]-proof(proof {elem(set SCₗ)(ia)} ([∈]-of-elem {A = set SCₗ}))))
module Oper ⦃ equiv : Equiv{ℓₑ}(T) ⦄ where
open import Data renaming (Empty to EmptyType)
open import Data.Boolean
open import Data.Boolean.Stmt
open import Data.Either as Either using (_‖_)
open import Functional
open import Logic
open import Logic.Classical
open import Type.Dependent
open import Type.Dependent.Functions
open import Type.Properties.Decidable
open import Type.Properties.Decidable.Proofs
open import Syntax.Function
instance _ = classical-to-decidable
-- TODO: Many of these operations are simply copy-pasted from Sets.IterativeSet with small modifications.
-- The operation converting an IUset from a lower universe level to a higher universe level.
IUset-level-up : let _ = ℓ₁ in IUset(T){ℓ₂} → IUset(T){ℓ₁ Lvl.⊔ ℓ₂}
IUset-level-up (atom x) = atom x
IUset-level-up {ℓ₁}{ℓ₂} (setc {Index} elem) = setc {Lvl.Up{ℓ₁}{ℓ₂}(Index)} \{(Lvl.up i) → IUset-level-up{ℓ₁}{ℓ₂}(elem(i))}
-- The empty set, consisting of no elements.
-- Index is the empty type, which means that there are no objects pointing to elements in the set.
∅ : IUset(T){ℓ}
∅ = setc empty
-- Lifts an unary operation on set containers to an unary operation on IUsets.
set-operator₁ : (SetContainer(T){ℓ₁} → SetContainer(T){ℓ₂}) → (IUset(T){ℓ₁} → IUset(T){ℓ₂})
set-operator₁ op (atom _) = ∅
set-operator₁ op (set A) = set (op A)
-- Lifts a binary operation on set containers to a binary operation on IUsets.
set-operator₂ : (SetContainer(T){ℓ} → SetContainer(T){ℓ} → SetContainer(T){ℓ}) → (IUset(T){ℓ} → IUset(T){ℓ} → IUset(T){ℓ})
set-operator₂ op (atom _) (atom _) = ∅
set-operator₂ op (atom _) (set B) = set B
set-operator₂ op (set A) (atom _) = set A
set-operator₂ op (set A) (set B) = set (op A B)
-- Filters a set to only contain set elements.
sets-of : IUset(T){ℓ} → IUset(T){ℓ}
sets-of{ℓ} = set-operator₁(A ↦ intro (Σ(SetContainer.Index(A)) (ia ↦ Lvl.Convert(IsSet(SetContainer.elem(A)(ia))){ℓ})) \{(intro ia p) → SetContainer.elem(A)(ia)})
-- Filters a set to only contain atomic elements.
atoms-of : IUset(T){ℓ} → IUset(T){ℓ}
atoms-of{ℓ} = set-operator₁(A ↦ intro (Σ(SetContainer.Index(A)) (ia ↦ Lvl.Convert(IsAtom(SetContainer.elem(A)(ia))){ℓ})) \{(intro ia p) → SetContainer.elem(A)(ia)})
-- The singleton set, consisting of one element.
-- Index is the unit type, which means that there are a single object pointing to a single element in the set.
singleton : IUset(T){ℓ} → IUset(T){ℓ}
singleton = setc{Index = Unit} ∘ const
-- The pair set, consisting of two elements.
-- Index is the boolean type, which means that there are two objects pointing to two elements in the set.
pair : IUset(T){ℓ} → IUset(T){ℓ} → IUset(T){ℓ}
pair A B = setc{Index = Lvl.Up(Bool)} ((if_then B else A) ∘ Lvl.Up.obj)
-- The union operator.
-- Index(A ∪ B) is the either type of two indices, which means that both objects from the A and the B index point to elements in the set.
_∪_ : IUset(T){ℓ} → IUset(T){ℓ} → IUset(T){ℓ}
A ∪ B = setc{Index = Index(A) ‖ Index(B)} (Either.map1 (elem(A)) (elem(B)))
-- _∪_ = set-operator₂([ℰ]-map₂ Either.map1)
-- The big union operator.
-- Index(⋃ A) is the dependent sum type of an Index(A) and the index of the element this index points to.
⋃ : IUset(T){ℓ} → IUset(T){ℓ}
⋃ A = setc{Index = Σ(Index(A)) (ia ↦ Index(elem(A)(ia)))} (\{(intro ia i) → elem(elem(A)(ia))(i)})
indexFilter : (A : IUset(T){ℓ}) → (Index(A) → Stmt{ℓ}) → IUset(T){ℓ}
indexFilter A P = setc{Index = Σ(Index(A)) P} (elem(A) ∘ Σ.left)
filter : (A : IUset(T){ℓ}) → (IUset(T){ℓ} → Stmt{ℓ}) → IUset(T){ℓ}
filter{ℓ} A P = indexFilter A (P ∘ elem(A))
indexFilterBool : (A : IUset(T){ℓ}) → (Index(A) → Bool) → IUset(T){ℓ}
indexFilterBool A f = indexFilter A (Lvl.Up ∘ IsTrue ∘ f)
filterBool : (A : IUset(T){ℓ}) → (IUset(T){ℓ} → Bool) → IUset(T){ℓ}
filterBool A f = indexFilterBool A (f ∘ elem(A))
map : (IUset(T){ℓ} → IUset(T){ℓ}) → (IUset(T){ℓ} → IUset(T){ℓ})
map f(A) = setc{Index = Index(A)} (f ∘ elem(A))
-- The power set operator.
-- Index(℘(A)) is a function type. An instance of such a function represents a subset, and essentially maps every element in A to a boolean which is interpreted as "in the subset of not".
-- Note: This only works properly in a classical setting. Trying to use indexFilter instead result in universe level problems.
℘ : IUset(T){ℓ} → IUset(T){ℓ}
℘(A) = setc{Index = Index(A) → Bool} (indexFilterBool A)
-- The set of ordinal numbers of the first order.
ω : IUset(T){ℓ}
ω = setc{Index = Lvl.Up ℕ} (N ∘ Lvl.Up.obj) where
open import Numeral.Natural
N : ℕ → IUset(T){ℓ}
N(𝟎) = ∅
N(𝐒(n)) = N(n) ∪ singleton(N(n))
module Proofs where
open import Data.Boolean
open import Data.Tuple as Tuple using ()
open import Logic.Propositional
open import Logic.Predicate
open import Structure.Function
open import Structure.Relator.Properties
instance
atom-function : Function(atom{T = T}{ℓ})
Function.congruence atom-function = atom
{-instance
set-function : Function(set{T = T}{ℓ})
Function.congruence set-function = ?
-}
-- If there is an element in the empty set, then there exists an instance of the empty type by definition, and that is false by definition.
∅-membership : ∀{x : IUset(T){ℓ₁}} → (x ∉ ∅ {ℓ₂})
∅-membership (set())
-- There is a bijection between (A ‖ B) and ∃{Lvl.Up Bool}(\{(Lvl.up 𝐹) → A ; (Lvl.up 𝑇) → B}).
pair-membership : ∀{a b x : IUset(T){ℓ}} → (x ∈ pair a b) ↔ (x ≡ a)∨(x ≡ b)
Tuple.left (pair-membership {x = x}) ([∨]-introₗ p) = set ([∃]-intro (Lvl.up 𝐹) ⦃ p ⦄)
Tuple.left (pair-membership {x = x}) ([∨]-introᵣ p) = set ([∃]-intro (Lvl.up 𝑇) ⦃ p ⦄)
Tuple.right pair-membership (set ([∃]-intro (Lvl.up 𝐹) ⦃ atom p ⦄)) = [∨]-introₗ (atom p)
Tuple.right pair-membership (set ([∃]-intro (Lvl.up 𝑇) ⦃ atom p ⦄)) = [∨]-introᵣ (atom p)
Tuple.right pair-membership (set ([∃]-intro (Lvl.up 𝐹) ⦃ set l r ⦄)) = [∨]-introₗ (set l r)
Tuple.right pair-membership (set ([∃]-intro (Lvl.up 𝑇) ⦃ set l r ⦄)) = [∨]-introᵣ (set l r)
-- There is a bijection between (A) and ∃{Unit}(\{<> → A}).
singleton-membership : ∀{a x : IUset(T){ℓ}} → (x ∈ singleton(a)) ↔ (x ≡ a)
Tuple.left singleton-membership xin = set ([∃]-intro <> ⦃ xin ⦄)
Tuple.right singleton-membership (set ([∃]-intro _ ⦃ eq ⦄)) = eq
[∪]-membership : ∀{A B x : IUset(T){ℓ}} → (x ∈ (A ∪ B)) ↔ (x ∈ A)∨(x ∈ B)
Tuple.left [∪]-membership ([∨]-introₗ (set ([∃]-intro ia))) = set ([∃]-intro (Either.Left ia))
Tuple.left [∪]-membership ([∨]-introᵣ (set ([∃]-intro ib))) = set ([∃]-intro (Either.Right ib))
Tuple.right ([∪]-membership {A = set x}) (set ([∃]-intro ([∨]-introₗ ia))) = [∨]-introₗ (set ([∃]-intro ia))
{-# CATCHALL #-}
Tuple.right ([∪]-membership {B = set x}) (set ([∃]-intro ([∨]-introᵣ ib))) = [∨]-introᵣ (set ([∃]-intro ib))
[⊆]-with-elem : ∀{SCₗ SCᵣ : SetContainer(T){ℓ}} → (xy : set SCₗ ⊆ set SCᵣ) → ∀{ix} → (elem (set SCₗ) ix ≡ elem (set SCᵣ) ([⊆]-map xy ix))
[⊆]-with-elem (set map proof) {ix} = proof{ix}
{-
open import Lang.Inspect
import Relator.Equals as Equals
import Relator.Equals.Proofs.Equivalence as Equals
[⋃]-membership : ∀{A x : IUset(T){ℓ}} → (x ∈ (⋃ A)) ↔ ∃(a ↦ (a ∈ A) ∧ (x ∈ a))
Tuple.left ([⋃]-membership {A = A@(set _)}) ([∃]-intro a@(set _) ⦃ [∧]-intro aA xa ⦄) with elem A ([∈]-index aA) | [∈]-elem aA | inspect ⦃ Equals.[≡]-equiv ⦄ (elem A) ([∈]-index aA)
... | set _ | (set aA-mapₗ aA-mapᵣ) | intro pp = set ([∃]-intro (intro ([∈]-index aA) (Equals.[≡]-substitutionₗ pp {f = Index} ([⊆]-map aA-mapᵣ ([∈]-index xa)))) ⦃ [≡]-transitivity-raw ([∈]-elem xa) ([⊆]-with-elem ([≡]-to-[⊆] ([≡]-transitivity-raw ([∈]-elem aA) ([≡]-transitivity-raw (sub₂(Equals._≡_)(_≡_) pp) {!!}))) {[∈]-index xa}) ⦄)
Tuple.right ([⋃]-membership {A = A@(atom _)}) (set ([∃]-intro (intro iA ia))) = {!!}
∃.witness (Tuple.right ([⋃]-membership {A = A@(set _)}) (set ([∃]-intro (intro iA ia)))) = elem(A) iA
∃.proof (Tuple.right ([⋃]-membership {A = A@(set _)}) (set ([∃]-intro (intro iA ia) ⦃ proof ⦄))) = [∧]-intro ([∈]-of-elem {A = A}) {!set([∃]-intro ia ⦃ proof ⦄)!}
-}
{- Σ.left (∃.witness (Tuple.left ([⋃]-membership {A = A} {x}) ([∃]-intro a ⦃ [∧]-intro ([∃]-intro iA) _ ⦄))) = iA
Σ.right (∃.witness (Tuple.left ([⋃]-membership {A = A} {x}) ([∃]-intro a ⦃ [∧]-intro ([∃]-intro iA ⦃ aA ⦄) ([∃]-intro ia) ⦄))) = _⊆_.map (_≡_.right aA) ia
∃.proof (Tuple.left ([⋃]-membership {A = A} {x}) ([∃]-intro a ⦃ [∧]-intro ([∃]-intro iA ⦃ aA ⦄) ([∃]-intro ia ⦃ xa ⦄) ⦄)) = [≡]-transitivity-raw xa ([⊆]-with-elem (sub₂(_≡_)(_⊆_) aA) {ia})
∃.witness (Tuple.right ([⋃]-membership {A = A} {x}) ([∃]-intro (intro iA ia) ⦃ proof ⦄)) = elem(A)(iA)
Tuple.left (∃.proof (Tuple.right ([⋃]-membership {A = A} {x}) ([∃]-intro (intro iA ia) ⦃ proof ⦄))) = [∈]-of-elem {A = A}
∃.witness (Tuple.right (∃.proof (Tuple.right ([⋃]-membership {A = A} {x}) ([∃]-intro (intro iA ia) ⦃ proof ⦄)))) = ia
∃.proof (Tuple.right (∃.proof (Tuple.right ([⋃]-membership {A = A} {x}) ([∃]-intro (intro iA ia) ⦃ proof ⦄)))) = proof
-}
| {
"alphanum_fraction": 0.610455498,
"avg_line_length": 48.486631016,
"ext": "agda",
"hexsha": "708d8a09ad3a8bc624caa674ec44e3df29724f49",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Sets/IterativeUSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Sets/IterativeUSet.agda",
"max_line_length": 341,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Sets/IterativeUSet.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 7139,
"size": 18134
} |
module treeThms where
open import lib
-- simple Tree type storing natural numbers
data Tree : Set where
Node : ℕ → Tree → Tree → Tree
Leaf : Tree
mirror : Tree → Tree
mirror (Node x t1 t2) = Node x (mirror t2) (mirror t1)
mirror Leaf = Leaf
mirror-mirror : ∀ (t : Tree) → mirror (mirror t) ≡ t
mirror-mirror Leaf = refl
mirror-mirror (Node x t1 t2) rewrite mirror-mirror t2 | mirror-mirror t1 = refl
size : Tree → ℕ
size (Node x t t₁) = 1 + size t + size t₁
size Leaf = 1
height : Tree → ℕ
height (Node x t t₁) = 1 + (max (height t) (height t₁))
height Leaf = 0
numLeaves : Tree → ℕ
numLeaves (Node x t t₁) = numLeaves t + numLeaves t₁
numLeaves Leaf = 1
perfect : ℕ → Tree
perfect zero = Leaf
perfect (suc n) = Node 1 (perfect n) (perfect n)
-- I found I needed the +0 theorem from nat-thms.agda in the IAL
perfect-numLeaves : ∀(n : ℕ) → numLeaves (perfect n) ≡ 2 pow n
perfect-numLeaves zero = refl
perfect-numLeaves (suc n) rewrite +0 (2 pow n) | perfect-numLeaves n = refl
perfect-size : ∀(n : ℕ) → suc (size (perfect n)) ≡ 2 pow (suc n)
perfect-size zero = refl
perfect-size (suc n) rewrite sym (perfect-size n) | +0 (size(perfect n)) | sym (+suc(size(perfect n))(size(perfect n)))= refl
-- helper lemma I found I needed below
max-same : ∀ (n : ℕ) → max n n ≡ n
max-same n rewrite <-irrefl n = refl
perfect-height : ∀(n : ℕ) → height (perfect n) ≡ n
perfect-height zero = refl
perfect-height (suc n) rewrite max-same (height(perfect n)) | perfect-height n = refl
numNodes : Tree → ℕ
numNodes (Node x t1 t2) = 1 + numNodes t1 + numNodes t2
numNodes Leaf = 0
-- flatten a tree into a list of all the values stored at the nodes
prefixFlatten : Tree → 𝕃 ℕ
prefixFlatten (Node x t1 t2) = x :: prefixFlatten t1 ++ prefixFlatten t2
prefixFlatten Leaf = []
-- I found I needed a theorem from list-thms.agda in the IAL
length-flatten : ∀(t : Tree) → numNodes t ≡ length (prefixFlatten t)
length-flatten (Node x t1 t2) rewrite length-++(prefixFlatten t1) (prefixFlatten t2) | length-flatten t1 | length-flatten t2 = refl
length-flatten Leaf = refl
| {
"alphanum_fraction": 0.6611919287,
"avg_line_length": 32.7846153846,
"ext": "agda",
"hexsha": "fa78d604d84f53c4712c4dcc8b9c3ad057fc784b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0117aa66ff3cbc8d75be3c9705bada96bdcf8d5a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout7",
"max_forks_repo_path": "treeThms.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0117aa66ff3cbc8d75be3c9705bada96bdcf8d5a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout7",
"max_issues_repo_path": "treeThms.agda",
"max_line_length": 132,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0117aa66ff3cbc8d75be3c9705bada96bdcf8d5a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DTMcNamara/CS3820-ProgrammingLanguageConcepts-Workout7",
"max_stars_repo_path": "treeThms.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 694,
"size": 2131
} |
open import Agda.Builtin.Unit
open import Agda.Builtin.Bool
open import Agda.Builtin.Sigma
open import Agda.Builtin.List
open import Agda.Builtin.Equality
open import Agda.Builtin.Reflection renaming (returnTC to return; bindTC to _>>=_)
_>>_ : ∀ {a} {b} {A : Set a} {B : Set b}
→ TC A → TC B → TC B
x >> y = x >>= λ _ → y
macro
false-oh-no-actually-true : Term → TC ⊤
false-oh-no-actually-true goal = do
runSpeculative (do
unify goal (con (quote false) [])
return (tt , false))
unify goal (con (quote true) [])
false-yes-really-false : Term → TC ⊤
false-yes-really-false goal =
runSpeculative (do
unify goal (con (quote false) [])
return (tt , true))
test₁ : Bool
test₁ = false-oh-no-actually-true
_ : test₁ ≡ true
_ = refl
test₂ : Bool
test₂ = false-yes-really-false
_ : test₂ ≡ false
_ = refl
| {
"alphanum_fraction": 0.6471277843,
"avg_line_length": 22.4473684211,
"ext": "agda",
"hexsha": "e54075e8f1baa44ff1ca349dd801501a6325fb0d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/ReflectionRunSpeculative.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/ReflectionRunSpeculative.agda",
"max_line_length": 82,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/ReflectionRunSpeculative.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 280,
"size": 853
} |
{-# OPTIONS --without-K --rewriting --termination-depth=2 #-}
open import HoTT
open import cohomology.ChainComplex
open import cohomology.Theory
open import groups.KernelImage
open import cw.CW
module cw.cohomology.ReconstructedHigherCohomologyGroups {i : ULevel} (OT : OrdinaryTheory i) where
open OrdinaryTheory OT
import cw.cohomology.HigherCoboundary OT as HC
open import cw.cohomology.WedgeOfCells OT
open import cw.cohomology.Descending OT
open import cw.cohomology.ReconstructedCochainComplex OT
import cw.cohomology.HigherCohomologyGroups OT as HCG
import cw.cohomology.HigherCohomologyGroupsOnDiag OT as HCGD
import cw.cohomology.CohomologyGroupsTooHigh OT as CGTH
private
≤-dec-has-all-paths : {m n : ℕ} → has-all-paths (Dec (m ≤ n))
≤-dec-has-all-paths = prop-has-all-paths (Dec-level ≤-is-prop)
private
abstract
higher-cohomology-group-descend : ∀ {n} (⊙skel : ⊙Skeleton {i} (2 + n)) {m} (Sm<n : S m < n)
→ cohomology-group (cochain-complex ⊙skel) (ℕ-to-ℤ (2 + m))
== cohomology-group (cochain-complex (⊙cw-init ⊙skel)) (ℕ-to-ℤ (2 + m))
higher-cohomology-group-descend ⊙skel {m} ltS -- n = 2 + m
= ap3
(λ Sm≤4+m? SSm≤4+m? SSSm≤4+m? → Ker/Im
(coboundary-template ⊙skel SSm≤4+m? SSSm≤4+m?)
(coboundary-template ⊙skel Sm≤4+m? SSm≤4+m?)
(cochain-is-abelian-template ⊙skel SSm≤4+m?))
(≤-dec-has-all-paths (≤-dec (1 + m) (4 + m)) (inl (lteSR $ lteSR lteS)))
(≤-dec-has-all-paths (≤-dec (2 + m) (4 + m)) (inl (lteSR lteS)))
(≤-dec-has-all-paths (≤-dec (3 + m) (4 + m)) (inl lteS))
∙ ap2 (λ δ₁ δ₂ → Ker/Im δ₂ δ₁ (CXₙ/Xₙ₋₁-is-abelian (⊙cw-take (lteSR lteS) ⊙skel) (ℕ-to-ℤ (2 + m))))
(coboundary-higher-template-descend-from-far {n = 3 + m} ⊙skel {m = m} (ltSR ltS) ltS)
(coboundary-higher-template-descend-from-one-above ⊙skel)
∙ ap3
(λ Sm≤3+m? SSm≤3+m? SSSm≤3+m? → Ker/Im
(coboundary-template (⊙cw-init ⊙skel) SSm≤3+m? SSSm≤3+m?)
(coboundary-template (⊙cw-init ⊙skel) Sm≤3+m? SSm≤3+m?)
(cochain-is-abelian-template (⊙cw-init ⊙skel) SSm≤3+m?))
(≤-dec-has-all-paths (inl (lteSR lteS)) (≤-dec (1 + m) (3 + m)))
(≤-dec-has-all-paths (inl lteS) (≤-dec (2 + m) (3 + m)))
(≤-dec-has-all-paths (inl lteE) (≤-dec (3 + m) (3 + m)))
higher-cohomology-group-descend {n = S n} ⊙skel {m} (ltSR Sm<n) -- n = S n
= ap3
(λ Sm≤3+n? SSm≤3+n? SSSm≤3+n? → Ker/Im
(coboundary-template ⊙skel SSm≤3+n? SSSm≤3+n?)
(coboundary-template ⊙skel Sm≤3+n? SSm≤3+n?)
(cochain-is-abelian-template ⊙skel SSm≤3+n?))
(≤-dec-has-all-paths (≤-dec (1 + m) (3 + n)) (inl (lteSR $ lteSR $ lteSR (inr Sm<n))))
(≤-dec-has-all-paths (≤-dec (2 + m) (3 + n)) (inl (≤-+-l 1 (lteSR $ lteSR $ inr Sm<n))))
(≤-dec-has-all-paths (≤-dec (3 + m) (3 + n)) (inl (≤-+-l 2 (lteSR (inr Sm<n)))))
∙ ap2
(λ δ₁ δ₂ → Ker/Im δ₂ δ₁
(CXₙ/Xₙ₋₁-is-abelian (⊙cw-take (≤-+-l 1 (lteSR $ lteSR $ inr Sm<n)) ⊙skel) (ℕ-to-ℤ (2 + m))))
(coboundary-higher-template-descend-from-far {n = 2 + n} ⊙skel {m = m} (ltSR (ltSR Sm<n)) (<-+-l 1 (ltSR Sm<n)))
(coboundary-higher-template-descend-from-far {n = 2 + n} ⊙skel {m = S m} (<-+-l 1 (ltSR Sm<n)) (<-+-l 2 Sm<n))
∙ ap3
(λ Sm≤2+n? SSm≤2+n? SSSm≤2+n? → Ker/Im
(coboundary-template (⊙cw-init ⊙skel) SSm≤2+n? SSSm≤2+n?)
(coboundary-template (⊙cw-init ⊙skel) Sm≤2+n? SSm≤2+n?)
(cochain-is-abelian-template (⊙cw-init ⊙skel) SSm≤2+n?))
(≤-dec-has-all-paths (inl (lteSR $ lteSR $ inr Sm<n)) (≤-dec (1 + m) (2 + n)))
(≤-dec-has-all-paths (inl (≤-+-l 1 (lteSR $ inr Sm<n))) (≤-dec (2 + m) (2 + n)))
(≤-dec-has-all-paths (inl (≤-+-l 2 (inr Sm<n))) (≤-dec (3 + m) (2 + n)))
higher-cohomology-group-β : ∀ {n} (⊙skel : ⊙Skeleton {i} (3 + n))
→ cohomology-group (cochain-complex ⊙skel) (ℕ-to-ℤ (2 + n))
== Ker/Im
(HC.cw-co∂-last ⊙skel)
(HC.cw-co∂-last (⊙cw-init ⊙skel))
(CXₙ/Xₙ₋₁-is-abelian (⊙cw-init ⊙skel) (ℕ-to-ℤ (2 + n)))
higher-cohomology-group-β {n} ⊙skel
= ap3
(λ 1+n≤3+n? 2+n≤3+n? 3+n≤3+n? → Ker/Im
(coboundary-template ⊙skel 2+n≤3+n? 3+n≤3+n?)
(coboundary-template ⊙skel 1+n≤3+n? 2+n≤3+n?)
(cochain-is-abelian-template ⊙skel 2+n≤3+n?))
(≤-dec-has-all-paths (≤-dec (1 + n) (3 + n)) (inl (lteSR lteS)))
(≤-dec-has-all-paths (≤-dec (2 + n) (3 + n)) (inl lteS))
(≤-dec-has-all-paths (≤-dec (3 + n) (3 + n)) (inl lteE))
∙ ap2 (λ δ₁ δ₂ → Ker/Im δ₂ δ₁ (CXₙ/Xₙ₋₁-is-abelian (⊙cw-init ⊙skel) (ℕ-to-ℤ (2 + n))))
( coboundary-higher-template-descend-from-one-above ⊙skel
∙ coboundary-higher-template-β (⊙cw-init ⊙skel))
(coboundary-higher-template-β ⊙skel)
higher-cohomology-group-β-one-below : ∀ {n} (⊙skel : ⊙Skeleton {i} (2 + n))
→ cohomology-group (cochain-complex ⊙skel) (ℕ-to-ℤ (2 + n))
== Ker/Im
(cst-hom {H = Lift-group {j = i} Unit-group})
(HC.cw-co∂-last ⊙skel)
(CXₙ/Xₙ₋₁-is-abelian ⊙skel (ℕ-to-ℤ (2 + n)))
higher-cohomology-group-β-one-below {n} ⊙skel
= ap3
(λ 1+n≤2+n? 2+n≤2+n? 3+n≤2+n? → Ker/Im
(coboundary-template ⊙skel 2+n≤2+n? 3+n≤2+n?)
(coboundary-template ⊙skel 1+n≤2+n? 2+n≤2+n?)
(cochain-is-abelian-template ⊙skel 2+n≤2+n?))
(≤-dec-has-all-paths (≤-dec (1 + n) (2 + n)) (inl lteS))
(≤-dec-has-all-paths (≤-dec (2 + n) (2 + n)) (inl lteE))
(≤-dec-has-all-paths (≤-dec (3 + n) (2 + n)) (inr (<-to-≱ ltS)))
∙ ap
(λ δ₁ → Ker/Im
(cst-hom {H = Lift-group {j = i} Unit-group})
δ₁ (CXₙ/Xₙ₋₁-is-abelian ⊙skel (ℕ-to-ℤ (2 + n))))
(coboundary-higher-template-β ⊙skel)
higher-cohomology-group-β-far-below : ∀ {n} (⊙skel : ⊙Skeleton {i} n) {m} (SSm≰n : ¬ (2 + m ≤ n))
→ cohomology-group (cochain-complex ⊙skel) (ℕ-to-ℤ (2 + m))
== Ker/Im
(cst-hom {H = Lift-group {j = i} Unit-group})
(cst-hom
{G = AbGroup.grp (cochain-template ⊙skel (≤-dec (1 + m) n))}
{H = Lift-group {j = i} Unit-group})
(snd (Lift-abgroup {j = i} Unit-abgroup))
higher-cohomology-group-β-far-below {n} ⊙skel {m} SSm≰n
= ap2
(λ 2+m≤n? 3+m≤n? → Ker/Im
(coboundary-template ⊙skel 2+m≤n? 3+m≤n?)
(coboundary-template ⊙skel (≤-dec (1 + m) n) 2+m≤n?)
(cochain-is-abelian-template ⊙skel 2+m≤n?))
(≤-dec-has-all-paths (≤-dec (2 + m) n) (inr SSm≰n))
(≤-dec-has-all-paths (≤-dec (3 + m) n) (inr (λ SSSm≤n → SSm≰n (≤-trans lteS SSSm≤n))))
abstract
higher-cohomology-group : ∀ m {n} (⊙skel : ⊙Skeleton {i} n)
→ ⊙has-cells-with-choice 0 ⊙skel i
→ C (ℕ-to-ℤ (2 + m)) ⊙⟦ ⊙skel ⟧ ≃ᴳ cohomology-group (cochain-complex ⊙skel) (ℕ-to-ℤ (2 + m))
higher-cohomology-group m {n = 0} ⊙skel ac =
CGTH.C-cw-iso-ker/im (2 + m) (O<S (S m)) (Lift-group {j = i} Unit-group) ⊙skel ac
higher-cohomology-group m {n = 1} ⊙skel ac =
CGTH.C-cw-iso-ker/im (2 + m) (<-+-l 1 (O<S m))
(AbGroup.grp (cochain-template ⊙skel (≤-dec (1 + m) 1)))
⊙skel ac
higher-cohomology-group m {n = S (S n)} ⊙skel ac with ℕ-trichotomy (S m) (S n)
... | inl idp = coe!ᴳ-iso (higher-cohomology-group-β-one-below ⊙skel)
∘eᴳ HCGD.C-cw-iso-ker/im ⊙skel ac
... | inr (inl ltS) = coe!ᴳ-iso (higher-cohomology-group-β ⊙skel)
∘eᴳ HCG.C-cw-iso-ker/im ⊙skel ac
... | inr (inl (ltSR Sm<n)) =
coe!ᴳ-iso (higher-cohomology-group-descend ⊙skel Sm<n)
∘eᴳ higher-cohomology-group m {n = S n} (⊙cw-init ⊙skel) (⊙init-has-cells-with-choice ⊙skel ac)
∘eᴳ C-cw-descend-at-lower ⊙skel (<-+-l 1 Sm<n) ac
... | inr (inr Sn<Sm) =
coe!ᴳ-iso (higher-cohomology-group-β-far-below ⊙skel (<-to-≱ (<-+-l 1 Sn<Sm)))
∘eᴳ CGTH.C-cw-iso-ker/im (2 + m) (<-+-l 1 Sn<Sm)
(AbGroup.grp (cochain-template ⊙skel (≤-dec (1 + m) (2 + n))))
⊙skel ac
| {
"alphanum_fraction": 0.5157684161,
"avg_line_length": 55.1818181818,
"ext": "agda",
"hexsha": "387989d736af36096e008e36819a3d5db020ddef",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/ReconstructedHigherCohomologyGroups.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/ReconstructedHigherCohomologyGroups.agda",
"max_line_length": 129,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/ReconstructedHigherCohomologyGroups.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3574,
"size": 8498
} |
module Verifier
(down : Set₁ -> Set)
(up : Set → Set₁)
(iso : ∀ {A} → down (up A) -> A)
(osi : ∀ {A} → up (down A) -> A) where
import UniverseCollapse as UC
open UC down up iso osi using (anything)
check : (A : Set) -> A
check = anything
| {
"alphanum_fraction": 0.55859375,
"avg_line_length": 21.3333333333,
"ext": "agda",
"hexsha": "9a85e2af15d6e02d3cec06192c38a9003f7ba52f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "danr/agder",
"max_forks_repo_path": "problems/UniverseCollapse/Verifier.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "danr/agder",
"max_issues_repo_path": "problems/UniverseCollapse/Verifier.agda",
"max_line_length": 42,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ece25bed081a24f02e9f85056d05933eae2afabf",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "danr/agder",
"max_stars_repo_path": "problems/UniverseCollapse/Verifier.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-17T12:07:03.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-05-17T12:07:03.000Z",
"num_tokens": 89,
"size": 256
} |
module Data.Bin.DivMod where
import Data.Fin
import Data.Product
import Data.Bin
import Data.Nat
import Relation.Binary.PropositionalEquality
import Data.Digit hiding (0b; 1b)
import Data.List
import Algebra
import Algebra.Structures
import Data.Bin.NatHelpers
open Data.Bin using (Bin; toℕ; toBits; fromBits; _1#; 0#; 2+_; 0b; 1b)
module PropEq = Relation.Binary.PropositionalEquality
open Data.List using (_∷_; []; List)
open Data.Nat using (ℕ; zero; suc)
import Data.Nat.Properties
open import Data.Bin.Utils
open import Data.Bin.Bijection using (fromℕ-bijection; fromℕ; toℕ-inj; toFromℕ-inverse)
import Data.Bin.Addition
module Properties where
open import Data.Bin.Multiplication
open Data.Bin using () renaming (_+_ to _B+_; _*_ to _B*_)
open Algebra.Structures using (IsCommutativeMonoid; module IsCommutativeSemiring)
open PropEq
open Data.Nat using (_+_; _*_)
open Data.Nat.Properties using (isCommutativeSemiring)
open IsCommutativeSemiring isCommutativeSemiring
module Everything where
open Data.Bin using (_1#; 0#; Bin; _+_; _*2; _*2+1; toℕ; ⌊_/2⌋; _*_; less)
open import Data.Bin.Properties using (<-strictTotalOrder)
open import Function
open Data.Product
open import Relation.Binary
open Relation.Binary.PropositionalEquality renaming (setoid to ≡-setoid)
open import Relation.Nullary
open import Relation.Nullary.Decidable
open Data.Fin using (zero; suc)
open Data.List using (_∷_; [])
open StrictTotalOrder <-strictTotalOrder hiding (trans)
open import Data.Bin.Minus using (_-_)
BinFin : Bin → Set
BinFin n = ∃ λ x → x < n
toBin : ∀ {x} → BinFin x → Bin
toBin = proj₁
{- data DivMod : Bin → Bin → Set where
result : ∀ {divisor : Bin} (q : Bin) (r : BinFin divisor) → DivMod (toBin r + q * divisor) divisor-}
data DivMod' (dividend : Bin) (divisor : Bin) : Set where
result : (q : Bin) (r : BinFin divisor) → (eq : dividend ≡ toBin r + q * divisor) → DivMod' dividend divisor
open Data.Digit
open Data.Bin using (addBitLists; addBits; toBits; fromBits)
open import Data.List using (List; _++_; [_]; [])
open import Data.Empty
import Data.Bin.Bijection
import Data.Bin.Multiplication
open Algebra.Structures using (module IsCommutativeMonoid)
import Data.Bin.Props
open Data.Bin.Props using (*-distrib; *2-is-2*; *2-distrib)
open IsCommutativeMonoid Data.Bin.Props.bin-+-is-comm-monoid using ()
renaming (identity to +-identity; comm to +-comm; assoc to +-assoc)
open IsCommutativeMonoid Data.Bin.Props.bin-*-is-comm-monoid using () renaming (comm to *-comm)
*-distribˡ : ∀ {a b c} → c * (a + b) ≡ c * a + c * b
*-distribˡ {a} {b} {c} = *-comm c (a + b) ⟨ trans ⟩ *-distrib {a} {b} {c} ⟨ trans ⟩ cong₂ _+_ (*-comm a c) (*-comm b c)
*-*2-assoc : ∀ {a b} → (a * b) *2 ≡ a *2 * b
*-*2-assoc {a} {b} = Data.Bin.Multiplication.*-*2-comm a b
*2-cong : ∀ {a b} → a ≡ b → a *2 ≡ b *2
*2-cong = cong _*2
+-cong₁ : ∀ {a b c} → a ≡ b → a + c ≡ b + c
+-cong₁ {c = c} = cong (λ z → z + c)
+-cong₂ : ∀ {a b c} → a ≡ b → c + a ≡ c + b
+-cong₂ {c = c} = cong (λ z → c + z)
+-identityʳ = proj₂ +-identity
divMod2-lem : ∀ {a} → a ≡ ⌊ a /2⌋ *2 + a %2
divMod2-lem {0#} = refl
divMod2-lem {[] 1#} = refl
divMod2-lem {(zero ∷ xs) 1#} = sym (+-identityʳ (⌊ (zero ∷ xs) 1# /2⌋ *2))
divMod2-lem {(suc zero ∷ xs) 1#} = Data.Bin.Multiplication.∷1#-interpretation (suc zero) xs
⟨ trans ⟩ +-comm ([] 1#) ((zero ∷ xs) 1#)
divMod2-lem {(suc (suc ()) ∷ xs) 1#}
import Relation.Binary.EqReasoning
open import Data.Bin.Props
helper' : ∀ l → ⌊ l 1# /2⌋ < l 1#
helper' [] = Data.Bin.less (Data.Nat.s≤s Data.Nat.z≤n)
helper' (x ∷ xs) = Data.Bin.less (Data.Bin.NatHelpers.kojojo x (toℕ (xs 1#)) (1+≢0 xs))
helper : ∀ {a} {d} → (≢0 : False (d ≟ fromℕ 0)) → ¬ (a < d) → ⌊ a /2⌋ < a
helper {_} {0#} () _
helper {0#} {l 1#} _ a≮d = ⊥-elim (a≮d (z<nz l))
helper {l 1#} _ _ = helper' l
open import Data.Sum
_≤_ : Bin → Bin → Set
a ≤ b = a ≡ b ⊎ a < b
¬>→< : ∀ {a b} → ¬ (b ≤ a) → a < b
¬>→< {a} {b} a≰b with compare a b
... | tri< a<b _ _ = a<b
... | tri≈ _ a≡b _ = ⊥-elim (a≰b (inj₁ (sym a≡b)))
... | tri> _ _ a>b = ⊥-elim (a≰b (inj₂ a>b))
*2-gives-space : ∀ {x y z} → (x < y) → z < fromℕ 2 → x *2 + z < y *2
*2-gives-space {x} {y} {z} (less x<y) (less z<2) = less (finalize (Data.Bin.NatHelpers.*2-gives-space x<y z<2)) where
open Data.Nat using () renaming (_*_ to _ℕ*_; _+_ to _ℕ+_; _<_ to _ℕ<_)
eq1 : toℕ x ℕ* 2 ℕ+ toℕ z ≡ toℕ (x *2 + z)
eq1 = sym (Data.Bin.Addition.+-is-addition (x *2) z ⟨ trans ⟩ cong (λ q → q ℕ+ toℕ z) (Data.Bin.Multiplication.*2-is-*2 x))
eq2 : toℕ y ℕ* 2 ≡ toℕ (y *2)
eq2 = sym (Data.Bin.Multiplication.*2-is-*2 y)
finalize : toℕ x ℕ* 2 ℕ+ toℕ z ℕ< toℕ y ℕ* 2 → toℕ (x *2 + z) ℕ< toℕ (y *2)
finalize = subst₂ _ℕ<_ eq1 eq2
<-pres₁ : ∀ {a b c} → a ≡ b → a < c → b < c
<-pres₁ refl eq = eq
<-pres₂ : ∀ {a b c} → a ≡ b → c < a → c < b
<-pres₂ refl eq = eq
*-identityˡ : ∀ {x} → [] 1# * x ≡ x
*-identityˡ = refl
x*2≡x+x : ∀ {x} → x *2 ≡ x + x
x*2≡x+x {x} = *2-is-2* x ⟨ trans ⟩ *-distrib {[] 1#} {[] 1#} {x} ⟨ trans ⟩ cong₂ _+_ (*-identityˡ {x}) (*-identityˡ {x})
%2<2 : ∀ {x} → x %2 < fromℕ 2
%2<2 {0#} = Data.Bin.less (Data.Nat.s≤s Data.Nat.z≤n)
%2<2 {[] 1#} = Data.Bin.less (Data.Nat.s≤s (Data.Nat.s≤s Data.Nat.z≤n))
%2<2 {(zero ∷ xs) 1#} = Data.Bin.less (Data.Nat.s≤s Data.Nat.z≤n)
%2<2 {(suc zero ∷ xs) 1#} = Data.Bin.less (Data.Nat.s≤s (Data.Nat.s≤s Data.Nat.z≤n))
%2<2 {(suc (suc ()) ∷ xs) 1#}
-+-elim : ∀ {x z} → ¬ x < z → x - z + z ≡ x
-+-elim = Data.Bin.Minus.-+-elim'
open import Data.Bin.Addition using (+-is-addition)
open import Data.Bin.Minus using (_-?_; positive; negative; equal; Greater; greater)
lemma1 : ∀ (f d q : Bin) → (d + f) + q * d ≡ f + (fromℕ 1 + q) * d
lemma1 f d q =
let open ≡-Reasoning in
begin
(d + f) + q * d
≡⟨ +-cong₁ {c = q * d} (+-comm d f) ⟩
(f + d) + q * d
≡⟨ +-assoc f d (q * d) ⟩
f + (d + q * d)
≡⟨ +-cong₂ {c = f} (+-cong₁ {c = q * d} (*-identityˡ {d})) ⟩
f + ((fromℕ 1 * d) + q * d)
≡⟨ +-cong₂ {c = f} (PropEq.sym (*-distrib {fromℕ 1} {q} {d})) ⟩
f + (fromℕ 1 + q) * d
∎
lemma2 : ∀ d q → d + q * d ≡ d + 0# + q * d
lemma2 d q = cong₂ _+_ (sym (proj₂ +-identity d)) (refl {x = q * d})
open import Algebra.FunctionProperties
using (LeftCancellative; RightCancellative; Cancellative)
+-cancelˡ-< : LeftCancellative Data.Nat._<_ Data.Nat._+_
+-cancelˡ-< c {y} {z} le =
Data.Nat.Properties.+-cancelˡ-≤ c
(subst₂ Data.Nat._≤_
(PropEq.sym (Data.Nat.Properties.+-suc c y))
(PropEq.refl {x = (Data.Nat._+_ c z)}) le)
+-<-left-cancellative : LeftCancellative _<_ _+_
+-<-left-cancellative c {a} {b} (less le) = less (+-cancelˡ-< (toℕ c) brr) where
brr : toℕ c Data.Nat.+ toℕ a Data.Nat.< toℕ c Data.Nat.+ toℕ b
brr = (subst₂ Data.Nat._<_
(Data.Bin.Addition.+-is-addition c a)
(Data.Bin.Addition.+-is-addition c b) le)
+-elim₂ : RightCancellative _<_ _+_
+-elim₂ {z} x y (less lt) rewrite +-is-addition x z | +-is-addition y z = less (Data.Bin.NatHelpers.+-elim₂ {toℕ x} {toℕ y} {toℕ z} lt)
fixup-divmod :
∀ a d q r
→ a ≡ r + q * d
→ r < d + d
→ DivMod' a d
fixup-divmod a d q r eq not-too-big =
case r -? d of λ {
(positive (greater diff PropEq.refl)) →
result
(fromℕ 1 + q)
(diff 1# , +-<-left-cancellative d not-too-big)
(PropEq.trans eq (lemma1 (diff 1#) d q));
(negative x) → result q (r , Data.Bin.Minus.greater-to-< _ _ x) eq ;
(equal PropEq.refl) →
result
(fromℕ 1 + q)
(0# ,
(+-<-left-cancellative
d
(subst (λ z → z < d + d) (PropEq.sym (proj₂ +-identity _)) not-too-big )) )
(PropEq.trans eq (PropEq.trans (lemma2 d q) (lemma1 0# d q)))
}
lemma3 : ∀ r q d bit → (r + q * d) *2 + bit ≡ (r *2 + bit) + q *2 * d
lemma3 r q d bit =
let open ≡-Reasoning in
begin
(r + q * d) *2 + bit
≡⟨ +-cong₁ {c = bit}
(begin
(r + q * d) *2
≡⟨ *2-distrib r (q * d) ⟩
r *2 + (q * d) *2
≡⟨ +-comm (r *2) ((q * d) *2) ⟩
(q * d) *2 + r *2
∎) ⟩
((q * d) *2 + r *2) + bit
≡⟨ +-assoc ((q * d) *2) (r *2) (bit) ⟩
(q * d) *2 + (r *2 + bit)
≡⟨ +-comm ((q * d) *2) (r *2 + bit) ⟩
(r *2 + bit) + (q * d) *2
≡⟨ +-cong₂ {c = r *2 + bit} (*-*2-assoc {q} {d}) ⟩
(r *2 + bit) + q *2 * d
∎
dm-step :
∀ a d q (r : BinFin d) → a ≡ toBin r + q * d →
∀ w (bit : BinFin (fromℕ 2))
→ w ≡ (a *2 + proj₁ bit)
→ DivMod' w d
dm-step ._ d q (r' , r'<d) refl ._ (bit , bit<2) refl =
fixup-divmod
_ d (q *2) (r' *2 + bit)
(lemma3 r' q d bit)
(<-pres₂ x*2≡x+x (*2-gives-space {r'} {d} {bit} r'<d (bit<2)))
dmRec : (d : Bin) → {≢0 : False (d ≟ fromℕ 0)} → (a : Bin) → ((a' : Bin) → (a' < a) → DivMod' a' d) → DivMod' a d
dmRec d {≢0} a rec =
case a <? d of λ {
(yes a<d) → result (0#) (a , a<d) (sym (+-identityʳ _)) ;
(no ¬a<d) →
case rec ⌊ a /2⌋ (helper ≢0 ¬a<d) of
λ { (result q r eq) →
dm-step ⌊ a /2⌋ d q r eq a (a %2 , %2<2) divMod2-lem } }
import Data.Bin.Rec
_divMod_ : (a : Bin) → (d : Bin) → {≢0 : False (d ≟ fromℕ 0)} → DivMod' a d
_divMod_ a d {≡0} = Data.Bin.Rec.rec (λ x → DivMod' x d) (dmRec d {≡0}) a
| {
"alphanum_fraction": 0.5324069273,
"avg_line_length": 33.7167832168,
"ext": "agda",
"hexsha": "76622c63e75b5a6e29293ec4182e526ba182f6ba",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "Rotsor/BinDivMod",
"max_forks_repo_path": "Data/Bin/DivMod.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "Rotsor/BinDivMod",
"max_issues_repo_path": "Data/Bin/DivMod.agda",
"max_line_length": 137,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "Rotsor/BinDivMod",
"max_stars_repo_path": "Data/Bin/DivMod.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-18T13:58:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-18T13:58:14.000Z",
"num_tokens": 4045,
"size": 9643
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.ZariskiLattice.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Transport
import Cubical.Data.Empty as ⊥
open import Cubical.Data.Bool
open import Cubical.Data.Nat renaming ( _+_ to _+ℕ_ ; _·_ to _·ℕ_ ; _^_ to _^ℕ_
; +-comm to +ℕ-comm ; +-assoc to +ℕ-assoc
; ·-assoc to ·ℕ-assoc ; ·-comm to ·ℕ-comm
; ·-identityʳ to ·ℕ-rid)
open import Cubical.Data.Sigma.Base
open import Cubical.Data.Sigma.Properties
open import Cubical.Data.FinData
open import Cubical.Data.Unit
open import Cubical.Relation.Nullary
open import Cubical.Relation.Binary
open import Cubical.Relation.Binary.Poset
open import Cubical.Algebra.Ring
open import Cubical.Algebra.Ring.Properties
open import Cubical.Algebra.Ring.BigOps
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.BinomialThm
open import Cubical.Algebra.CommRing.Ideal
open import Cubical.Algebra.CommRing.FGIdeal
open import Cubical.Algebra.CommRing.RadicalIdeal
open import Cubical.Algebra.RingSolver.Reflection
open import Cubical.Algebra.Semilattice
open import Cubical.Algebra.Lattice
open import Cubical.Algebra.DistLattice
open import Cubical.Algebra.Matrix
open import Cubical.HITs.SetQuotients as SQ
open Iso
open BinaryRelation
open isEquivRel
private
variable
ℓ ℓ' : Level
module ZarLat (R' : CommRing ℓ) where
open CommRingStr (snd R')
open RingTheory (CommRing→Ring R')
open Sum (CommRing→Ring R')
open CommRingTheory R'
open Exponentiation R'
open BinomialThm R'
open CommIdeal R'
open RadicalIdeal R'
open isCommIdeal
open ProdFin R'
private
R = fst R'
A = Σ[ n ∈ ℕ ] (FinVec R n)
⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal
⟨ V ⟩ = ⟨ V ⟩[ R' ]
_∼_ : A → A → Type (ℓ-suc ℓ)
(_ , α) ∼ (_ , β) = √ ⟨ α ⟩ ≡ √ ⟨ β ⟩
∼EquivRel : isEquivRel (_∼_)
reflexive ∼EquivRel _ = refl
symmetric ∼EquivRel _ _ = sym
transitive ∼EquivRel _ _ _ = _∙_
ZL : Type (ℓ-suc ℓ)
ZL = A / _∼_
0z : ZL
0z = [ 0 , (λ ()) ]
1z : ZL
1z = [ 1 , (replicateFinVec 1 1r) ]
_∨z_ : ZL → ZL → ZL
_∨z_ = setQuotSymmBinOp (reflexive ∼EquivRel) (transitive ∼EquivRel)
(λ (_ , α) (_ , β) → (_ , α ++Fin β))
(λ (_ , α) (_ , β) → cong √ (FGIdealAddLemma _ α β ∙∙ +iComm _ _ ∙∙ sym (FGIdealAddLemma _ β α)))
λ (_ , α) (_ , β) (_ , γ) α∼β → --need to show α∨γ ∼ β∨γ
√ ⟨ α ++Fin γ ⟩ ≡⟨ cong √ (FGIdealAddLemma _ α γ) ⟩
√ (⟨ α ⟩ +i ⟨ γ ⟩) ≡⟨ sym (√+LContr _ _) ⟩
√ (√ ⟨ α ⟩ +i ⟨ γ ⟩) ≡⟨ cong (λ I → √ (I +i ⟨ γ ⟩)) α∼β ⟩
√ (√ ⟨ β ⟩ +i ⟨ γ ⟩) ≡⟨ √+LContr _ _ ⟩
√ (⟨ β ⟩ +i ⟨ γ ⟩) ≡⟨ cong √ (sym (FGIdealAddLemma _ β γ)) ⟩
√ ⟨ β ++Fin γ ⟩ ∎
_∧z_ : ZL → ZL → ZL
_∧z_ = setQuotSymmBinOp (reflexive ∼EquivRel) (transitive ∼EquivRel)
(λ (_ , α) (_ , β) → (_ , α ··Fin β))
(λ (_ , α) (_ , β) → cong √ (FGIdealMultLemma _ α β ∙∙ ·iComm _ _ ∙∙ sym (FGIdealMultLemma _ β α)))
λ (_ , α) (_ , β) (_ , γ) α∼β → --need to show α∧γ ∼ β∧γ
√ ⟨ α ··Fin γ ⟩ ≡⟨ cong √ (FGIdealMultLemma _ α γ) ⟩
√ (⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ sym (√·LContr _ _) ⟩
√ (√ ⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ cong (λ I → √ (I ·i ⟨ γ ⟩)) α∼β ⟩
√ (√ ⟨ β ⟩ ·i ⟨ γ ⟩) ≡⟨ √·LContr _ _ ⟩
√ (⟨ β ⟩ ·i ⟨ γ ⟩) ≡⟨ cong √ (sym (FGIdealMultLemma _ β γ)) ⟩
√ ⟨ β ··Fin γ ⟩ ∎
-- join axioms
∨zAssoc : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∨z (𝔟 ∨z 𝔠) ≡ (𝔞 ∨z 𝔟) ∨z 𝔠
∨zAssoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _)
λ (_ , α) (_ , β) (_ , γ) → eq/ _ _ (cong √ (IdealAddAssoc _ _ _ _))
∨zComm : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∨z 𝔟 ≡ 𝔟 ∨z 𝔞
∨zComm = SQ.elimProp2 (λ _ _ → squash/ _ _)
λ (_ , α) (_ , β) → eq/ _ _
(cong √ (FGIdealAddLemma _ α β ∙∙ +iComm _ _ ∙∙ sym (FGIdealAddLemma _ β α)))
∨zLid : ∀ (𝔞 : ZL) → 0z ∨z 𝔞 ≡ 𝔞
∨zLid = SQ.elimProp (λ _ → squash/ _ _) λ _ → eq/ _ _ refl
∨zRid : ∀ (𝔞 : ZL) → 𝔞 ∨z 0z ≡ 𝔞
∨zRid _ = ∨zComm _ _ ∙ ∨zLid _
-- -- meet axioms
∧zAssoc : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∧z (𝔟 ∧z 𝔠) ≡ (𝔞 ∧z 𝔟) ∧z 𝔠
∧zAssoc = SQ.elimProp3 (λ _ _ _ → squash/ _ _)
λ (_ , α) (_ , β) (_ , γ) → eq/ _ _
(√ ⟨ α ··Fin (β ··Fin γ) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ _ _) ⟩
√ (⟨ α ⟩ ·i ⟨ β ··Fin γ ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealMultLemma _ _ _) ⟩
√ (⟨ α ⟩ ·i (⟨ β ⟩ ·i ⟨ γ ⟩)) ≡⟨ cong √ (·iAssoc _ _ _) ⟩
√ ((⟨ α ⟩ ·i ⟨ β ⟩) ·i ⟨ γ ⟩) ≡⟨ cong (λ x → √ (x ·i ⟨ γ ⟩)) (sym (FGIdealMultLemma _ _ _)) ⟩
√ (⟨ α ··Fin β ⟩ ·i ⟨ γ ⟩) ≡⟨ cong √ (sym (FGIdealMultLemma _ _ _)) ⟩
√ ⟨ (α ··Fin β) ··Fin γ ⟩ ∎)
∧zComm : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∧z 𝔟 ≡ 𝔟 ∧z 𝔞
∧zComm = SQ.elimProp2 (λ _ _ → squash/ _ _)
λ (_ , α) (_ , β) → eq/ _ _
(cong √ (FGIdealMultLemma _ α β ∙∙ ·iComm _ _ ∙∙ sym (FGIdealMultLemma _ β α)))
∧zRid : ∀ (𝔞 : ZL) → 𝔞 ∧z 1z ≡ 𝔞
∧zRid = SQ.elimProp (λ _ → squash/ _ _)
λ (_ , α) → eq/ _ _ (cong √
(⟨ α ··Fin (replicateFinVec 1 1r) ⟩ ≡⟨ FGIdealMultLemma _ _ _ ⟩
⟨ α ⟩ ·i ⟨ (replicateFinVec 1 1r) ⟩ ≡⟨ cong (⟨ α ⟩ ·i_) (contains1Is1 _ (indInIdeal _ _ zero)) ⟩
⟨ α ⟩ ·i 1Ideal ≡⟨ ·iRid _ ⟩
⟨ α ⟩ ∎))
-- absorption and distributivity
∧zAbsorb∨z : ∀ (𝔞 𝔟 : ZL) → 𝔞 ∧z (𝔞 ∨z 𝔟) ≡ 𝔞
∧zAbsorb∨z = SQ.elimProp2 (λ _ _ → squash/ _ _)
λ (_ , α) (_ , β) → eq/ _ _
(√ ⟨ α ··Fin (α ++Fin β) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ α (α ++Fin β)) ⟩
√ (⟨ α ⟩ ·i ⟨ α ++Fin β ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealAddLemma _ α β) ⟩
√ (⟨ α ⟩ ·i (⟨ α ⟩ +i ⟨ β ⟩)) ≡⟨ √·Absorb+ _ _ ⟩
√ ⟨ α ⟩ ∎)
∧zLDist∨z : ∀ (𝔞 𝔟 𝔠 : ZL) → 𝔞 ∧z (𝔟 ∨z 𝔠) ≡ (𝔞 ∧z 𝔟) ∨z (𝔞 ∧z 𝔠)
∧zLDist∨z = SQ.elimProp3 (λ _ _ _ → squash/ _ _)
λ (_ , α) (_ , β) (_ , γ) → eq/ _ _
(√ ⟨ α ··Fin (β ++Fin γ) ⟩ ≡⟨ cong √ (FGIdealMultLemma _ _ _) ⟩
√ (⟨ α ⟩ ·i ⟨ β ++Fin γ ⟩) ≡⟨ cong (λ x → √ (⟨ α ⟩ ·i x)) (FGIdealAddLemma _ _ _) ⟩
√ (⟨ α ⟩ ·i (⟨ β ⟩ +i ⟨ γ ⟩)) ≡⟨ cong √ (·iRdist+i _ _ _) ⟩
-- L/R-dist are swapped
-- in Lattices vs Rings
√ (⟨ α ⟩ ·i ⟨ β ⟩ +i ⟨ α ⟩ ·i ⟨ γ ⟩) ≡⟨ cong₂ (λ x y → √ (x +i y))
(sym (FGIdealMultLemma _ _ _))
(sym (FGIdealMultLemma _ _ _)) ⟩
√ (⟨ α ··Fin β ⟩ +i ⟨ α ··Fin γ ⟩) ≡⟨ cong √ (sym (FGIdealAddLemma _ _ _)) ⟩
√ ⟨ (α ··Fin β) ++Fin (α ··Fin γ) ⟩ ∎)
ZariskiLattice : DistLattice (ℓ-suc ℓ)
fst ZariskiLattice = ZL
DistLatticeStr.0l (snd ZariskiLattice) = 0z
DistLatticeStr.1l (snd ZariskiLattice) = 1z
DistLatticeStr._∨l_ (snd ZariskiLattice) = _∨z_
DistLatticeStr._∧l_ (snd ZariskiLattice) = _∧z_
DistLatticeStr.isDistLattice (snd ZariskiLattice) =
makeIsDistLattice∧lOver∨l squash/ ∨zAssoc ∨zRid ∨zComm
∧zAssoc ∧zRid ∧zComm ∧zAbsorb∨z ∧zLDist∨z
-- An equivalent definition that doesn't bump up the unviverse level
module SmallZarLat (R' : CommRing ℓ) where
open CommRingStr (snd R')
open CommIdeal R'
open RadicalIdeal R'
open ZarLat R'
open Iso
private
R = fst R'
A = Σ[ n ∈ ℕ ] (FinVec R n)
⟨_⟩ : {n : ℕ} → FinVec R n → CommIdeal
⟨ V ⟩ = ⟨ V ⟩[ R' ]
-- This is small!
_≼_ : A → A → Type ℓ
(_ , α) ≼ (_ , β) = ∀ i → α i ∈ √ ⟨ β ⟩
_∼'_ : A → A → Type ℓ
α ∼' β = (α ≼ β) × (β ≼ α)
-- lives in the same universe as R
ZL' : Type ℓ
ZL' = A / (_∼'_)
IsoLarLatSmall : Iso ZL ZL'
IsoLarLatSmall = relBiimpl→TruncIso ~→∼' ~'→∼
where
~→∼' : ∀ {a b : A} → a ∼ b → a ∼' b
~→∼' r = √FGIdealCharLImpl _ ⟨ _ ⟩ (λ x h → subst (λ p → x ∈ p) r h)
, √FGIdealCharLImpl _ ⟨ _ ⟩ (λ x h → subst (λ p → x ∈ p) (sym r) h)
~'→∼ : ∀ {a b : A} → a ∼' b → a ∼ b
~'→∼ r = CommIdeal≡Char (√FGIdealCharRImpl _ ⟨ _ ⟩ (fst r))
(√FGIdealCharRImpl _ ⟨ _ ⟩ (snd r))
ZL≃ZL' : ZL ≃ ZL'
ZL≃ZL' = isoToEquiv IsoLarLatSmall
| {
"alphanum_fraction": 0.5184823716,
"avg_line_length": 36.1101321586,
"ext": "agda",
"hexsha": "fd78ec0894db6397f0da21b284deb61cd90afb9f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "howsiyu/cubical",
"max_forks_repo_path": "Cubical/Algebra/ZariskiLattice/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "howsiyu/cubical",
"max_issues_repo_path": "Cubical/Algebra/ZariskiLattice/Base.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1b9c97a2140fe96fe636f4c66beedfd7b8096e8f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "howsiyu/cubical",
"max_stars_repo_path": "Cubical/Algebra/ZariskiLattice/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3662,
"size": 8197
} |
------------------------------------------------------------------------------
-- Agda-Prop Library.
-- Theorems with different connectives.
------------------------------------------------------------------------------
open import Data.Nat using ( ℕ )
module Data.PropFormula.Theorems.Mixies ( n : ℕ ) where
------------------------------------------------------------------------------
open import Data.PropFormula.Syntax n
open import Data.PropFormula.Theorems.Classical n
open import Data.PropFormula.Theorems.Biimplication n
using ( ⇔-¬-to-¬; ⊃-⇔-¬∨ )
open import Data.PropFormula.Theorems.Disjunction n
using ( ∨-dmorgan; ∨-dmorgan₁ )
open import Data.PropFormula.Theorems.Implication n
using ( vanDalen244e; ⊃-equiv )
open import Data.PropFormula.Theorems.Weakening n
open import Function using ( _$_ ; _∘_ )
------------------------------------------------------------------------------
-- Theorem.
e245b
: ∀ {Γ Δ} {φ ψ}
→ Γ ⊢ φ → Δ , φ ⊢ ψ
→ Γ ⨆ Δ ⊢ ψ
-- Proof.
e245b {Γ}{Δ} Γ⊢φ Δ,φ⊢ψ =
⊃-elim
(weaken-Δ₂ Γ $ ⊃-intro Δ,φ⊢ψ)
(weaken-Δ₁ Δ Γ⊢φ)
-------------------------------------------------------------------------- ∎
-- Theorem.
¬⊃-to-∧¬
: ∀ {Γ} {φ ψ}
→ Γ ⊢ ¬ (φ ⊃ ψ)
→ Γ ⊢ φ ∧ ¬ ψ
-- Proof.
¬⊃-to-∧¬ {Γ}{φ}{ψ} Γ⊢¬⟪φ⊃ψ⟫ =
∧-intro
(⊃-elim vanDalen244e (∧-proj₁ p2))
(∧-proj₂ p2)
where
p1 : Γ ⊢ ¬ (¬ φ ∨ ψ)
p1 = ⇔-¬-to-¬ ⊃-⇔-¬∨ Γ⊢¬⟪φ⊃ψ⟫
p2 : Γ ⊢ ¬ (¬ φ) ∧ ¬ ψ
p2 = ∨-dmorgan₁ p1
-------------------------------------------------------------------------- ∎
-- Theorem.
⊃¬∧¬⊃-to-¬⇔
: ∀ {Γ} {φ ψ}
→ Γ ⊢ (φ ⊃ ¬ ψ) ∧ (¬ ψ ⊃ φ)
→ Γ ⊢ ¬ (φ ⇔ ψ)
-- Proof.
⊃¬∧¬⊃-to-¬⇔ {Γ}{φ}{ψ} thm =
¬-intro
(¬-elim
(¬-intro
(¬-elim
(⊃-elim
(weaken ψ (weaken (φ ⇔ ψ) (∧-proj₁ thm)))
(⇔-elim₂
(assume {Γ = Γ , φ ⇔ ψ} ψ)
(weaken ψ (assume (φ ⇔ ψ)))))
(assume {Γ = Γ , φ ⇔ ψ} ψ)))
(RAA
(¬-elim
(¬-intro
(¬-elim
(⊃-elim
(weaken φ (weaken (¬ ψ ) (weaken (φ ⇔ ψ) (∧-proj₁ thm))))
(assume {Γ = Γ , φ ⇔ ψ , ¬ ψ} φ))
(⇔-elim₁
(assume {Γ = Γ , φ ⇔ ψ , ¬ ψ} φ)
(weaken φ (weaken (¬ ψ) (assume (φ ⇔ ψ)))))))
(⊃-elim
(weaken (¬ ψ) (weaken (φ ⇔ ψ) (∧-proj₂ thm)))
(assume {Γ = Γ , φ ⇔ ψ} (¬ ψ))))))
-------------------------------------------------------------------------- ∎
| {
"alphanum_fraction": 0.3568515498,
"avg_line_length": 27.2444444444,
"ext": "agda",
"hexsha": "3f0750f19f6c352e6483988b562e887487b0a4cc",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2017-12-01T17:01:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-03-30T16:41:56.000Z",
"max_forks_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jonaprieto/agda-prop",
"max_forks_repo_path": "src/Data/PropFormula/Theorems/Mixies.agda",
"max_issues_count": 18,
"max_issues_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_issues_repo_issues_event_max_datetime": "2017-12-18T16:34:21.000Z",
"max_issues_repo_issues_event_min_datetime": "2017-03-08T14:33:10.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jonaprieto/agda-prop",
"max_issues_repo_path": "src/Data/PropFormula/Theorems/Mixies.agda",
"max_line_length": 78,
"max_stars_count": 13,
"max_stars_repo_head_hexsha": "a1730062a6aaced2bb74878c1071db06477044ae",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jonaprieto/agda-prop",
"max_stars_repo_path": "src/Data/PropFormula/Theorems/Mixies.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T03:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-01T16:45:41.000Z",
"num_tokens": 938,
"size": 2452
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of non-empty lists
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.NonEmpty.Properties where
open import Category.Monad
open import Data.List as List using (List; []; _∷_; _++_)
open import Data.List.Categorical using () renaming (monad to listMonad)
open import Data.List.NonEmpty.Categorical using () renaming (monad to list⁺Monad)
open import Data.List.NonEmpty as List⁺
open import Data.List.Properties
open import Function
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
private
open module LMo {a} =
RawMonad {f = a} listMonad
using () renaming (_>>=_ to _⋆>>=_)
open module L⁺Mo {a} =
RawMonad {f = a} list⁺Monad
η : ∀ {a} {A : Set a}
(xs : List⁺ A) → head xs ∷ tail xs ≡ List⁺.toList xs
η _ = refl
toList-fromList : ∀ {a} {A : Set a} x (xs : List A) →
x ∷ xs ≡ List⁺.toList (x ∷ xs)
toList-fromList _ _ = refl
toList-⁺++ : ∀ {a} {A : Set a} (xs : List⁺ A) ys →
List⁺.toList xs ++ ys ≡
List⁺.toList (xs ⁺++ ys)
toList-⁺++ _ _ = refl
toList-⁺++⁺ : ∀ {a} {A : Set a} (xs ys : List⁺ A) →
List⁺.toList xs ++ List⁺.toList ys ≡
List⁺.toList (xs ⁺++⁺ ys)
toList-⁺++⁺ _ _ = refl
toList->>= : ∀ {ℓ} {A B : Set ℓ}
(f : A → List⁺ B) (xs : List⁺ A) →
(List⁺.toList xs ⋆>>= List⁺.toList ∘ f) ≡
(List⁺.toList (xs >>= f))
toList->>= f (x ∷ xs) = begin
List.concat (List.map (List⁺.toList ∘ f) (x ∷ xs))
≡⟨ cong List.concat $ map-compose {g = List⁺.toList} (x ∷ xs) ⟩
List.concat (List.map List⁺.toList (List.map f (x ∷ xs)))
∎
| {
"alphanum_fraction": 0.5213533001,
"avg_line_length": 32.7818181818,
"ext": "agda",
"hexsha": "e5921cb82d5e6d69f224ae219bfb1b8556667d48",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/NonEmpty/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/NonEmpty/Properties.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/NonEmpty/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 582,
"size": 1803
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Bicategory where
open import Level
open import Data.Product using (_,_)
open import Relation.Binary using (Rel)
open import Categories.Category using (Category; module Commutation)
open import Categories.Category.Monoidal.Instance.Cats using (module Product)
open import Categories.Enriched.Category using () renaming (Category to Enriched)
open import Categories.Functor using (module Functor)
open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism)
-- https://ncatlab.org/nlab/show/bicategory
-- notice that some axioms in nLab are inconsistent. they have been fixed in this definition.
record Bicategory o ℓ e t : Set (suc (o ⊔ ℓ ⊔ e ⊔ t)) where
field
enriched : Enriched (Product.Cats-Monoidal {o} {ℓ} {e}) t
open Enriched enriched public
module hom {A B} = Category (hom A B)
module ComHom {A B} = Commutation (hom A B)
infix 4 _⇒₁_ _⇒₂_ _≈_
infixr 7 _∘ᵥ_ _∘₁_
infixr 9 _▷_
infixl 9 _◁_
infixr 11 _⊚₀_ _⊚₁_ _∘ₕ_
_⇒₁_ : Obj → Obj → Set o
A ⇒₁ B = Category.Obj (hom A B)
_⇒₂_ : {A B : Obj} → A ⇒₁ B → A ⇒₁ B → Set ℓ
_⇒₂_ = hom._⇒_
_⊚₀_ : {A B C : Obj} → B ⇒₁ C → A ⇒₁ B → A ⇒₁ C
f ⊚₀ g = Functor.F₀ ⊚ (f , g)
_⊚₁_ : {A B C : Obj} {f h : B ⇒₁ C} {g i : A ⇒₁ B} → f ⇒₂ h → g ⇒₂ i → f ⊚₀ g ⇒₂ h ⊚₀ i
α ⊚₁ β = Functor.F₁ ⊚ (α , β)
_≈_ : {A B : Obj} {f g : A ⇒₁ B} → Rel (f ⇒₂ g) e
_≈_ = hom._≈_
id₁ : {A : Obj} → A ⇒₁ A
id₁ {_} = Functor.F₀ id _
id₂ : {A B : Obj} {f : A ⇒₁ B} → f ⇒₂ f
id₂ {A} {B} = Category.id (hom A B)
-- 1-cell composition
_∘₁_ : {A B C : Obj} → B ⇒₁ C → A ⇒₁ B → A ⇒₁ C
_∘₁_ = _⊚₀_
-- horizontal composition
_∘ₕ_ : {A B C : Obj} {f h : B ⇒₁ C} {g i : A ⇒₁ B} → f ⇒₂ h → g ⇒₂ i → f ⊚₀ g ⇒₂ h ⊚₀ i
_∘ₕ_ = _⊚₁_
-- vertical composition
_∘ᵥ_ : {A B : Obj} {f g h : A ⇒₁ B} (α : g ⇒₂ h) (β : f ⇒₂ g) → f ⇒₂ h
_∘ᵥ_ = hom._∘_
_◁_ : {A B C : Obj} {g h : B ⇒₁ C} (α : g ⇒₂ h) (f : A ⇒₁ B) → g ∘₁ f ⇒₂ h ∘₁ f
α ◁ _ = α ⊚₁ id₂
_▷_ : {A B C : Obj} {f g : A ⇒₁ B} (h : B ⇒₁ C) (α : f ⇒₂ g) → h ∘₁ f ⇒₂ h ∘₁ g
_ ▷ α = id₂ ⊚₁ α
private
λ⇒ : {A B : Obj} {f : A ⇒₁ B} → id₁ ⊚₀ f hom.⇒ f
λ⇒ {_} {_} {f} = NaturalIsomorphism.⇒.η unitˡ (_ , f)
ρ⇒ : {A B : Obj} {f : A ⇒₁ B} → f ⊚₀ id₁ hom.⇒ f
ρ⇒ {_} {_} {f} = NaturalIsomorphism.⇒.η unitʳ (f , _)
α⇒ : {A B C D : Obj} {f : D ⇒₁ B} {g : C ⇒₁ D} {h : A ⇒₁ C} →
((f ⊚₀ g) ⊚₀ h) hom.⇒ (f ⊚₀ (g ⊚₀ h))
α⇒ {_} {_} {_} {_} {f} {g} {h} = NaturalIsomorphism.⇒.η ⊚-assoc ((f , g) , h)
field
triangle : {A B C : Obj} {f : A ⇒₁ B} {g : B ⇒₁ C} →
let open ComHom {A} {C} in
[ (g ∘₁ id₁) ∘₁ f ⇒ g ∘₁ f ]⟨
α⇒ ⇒⟨ g ∘₁ id₁ ∘₁ f ⟩
g ▷ λ⇒
≈ ρ⇒ ◁ f
⟩
pentagon : {A B C D E : Obj} {f : A ⇒₁ B} {g : B ⇒₁ C} {h : C ⇒₁ D} {i : D ⇒₁ E} →
let open ComHom {A} {E} in
[ ((i ∘₁ h) ∘₁ g) ∘₁ f ⇒ i ∘₁ h ∘₁ g ∘₁ f ]⟨
α⇒ ◁ f ⇒⟨ (i ∘₁ h ∘₁ g) ∘₁ f ⟩
α⇒ ⇒⟨ i ∘₁ (h ∘₁ g) ∘₁ f ⟩
i ▷ α⇒
≈ α⇒ ⇒⟨ (i ∘₁ h) ∘₁ g ∘₁ f ⟩
α⇒
⟩
| {
"alphanum_fraction": 0.4678982435,
"avg_line_length": 33.693877551,
"ext": "agda",
"hexsha": "6410518212bd5f12e376e91edc983f63a8c19bf7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "maxsnew/agda-categories",
"max_forks_repo_path": "src/Categories/Bicategory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "maxsnew/agda-categories",
"max_issues_repo_path": "src/Categories/Bicategory.agda",
"max_line_length": 93,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8f3c844d929508040dfa21f681fa260056214b73",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "maxsnew/agda-categories",
"max_stars_repo_path": "src/Categories/Bicategory.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1504,
"size": 3302
} |
{-
Pointed structure: X ↦ X
-}
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Structures.Pointed where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Pointed.Base
private
variable
ℓ : Level
-- Structured isomorphisms
PointedStructure : Type ℓ → Type ℓ
PointedStructure X = X
PointedEquivStr : StrEquiv PointedStructure ℓ
PointedEquivStr A B f = equivFun f (pt A) ≡ pt B
pointedUnivalentStr : UnivalentStr {ℓ} PointedStructure PointedEquivStr
pointedUnivalentStr f = invEquiv (ua-ungluePath-Equiv f)
pointedSIP : (A B : Pointed ℓ) → A ≃[ PointedEquivStr ] B ≃ (A ≡ B)
pointedSIP = SIP pointedUnivalentStr
pointed-sip : (A B : Pointed ℓ) → A ≃[ PointedEquivStr ] B → (A ≡ B)
pointed-sip A B = equivFun (pointedSIP A B) -- ≡ λ (e , p) i → ua e i , ua-gluePath e p i
pointedEquivAction : EquivAction {ℓ} PointedStructure
pointedEquivAction e = e
pointedTransportStr : TransportStr {ℓ} pointedEquivAction
pointedTransportStr e s = sym (transportRefl _)
| {
"alphanum_fraction": 0.75,
"avg_line_length": 26.8571428571,
"ext": "agda",
"hexsha": "e9ce88e40d17948500f737302582792155b91f0f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Structures/Pointed.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Structures/Pointed.agda",
"max_line_length": 89,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Structures/Pointed.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 378,
"size": 1128
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.