Search is not available for this dataset
text
string | meta
dict |
---|---|
module TLP01 where
open import Data.Bool
open import Data.Nat
open import Data.String
open import Relation.Binary.PropositionalEquality
as PropEq using (_≡_; refl; sym; cong; cong₂; trans)
_==ℕ_ : ℕ → ℕ → Bool
zero ==ℕ zero = true
suc n ==ℕ suc m = n ==ℕ m
_ ==ℕ _ = false
_<ℕ_ : ℕ → ℕ → Bool
_ <ℕ zero = false
zero <ℕ suc _ = true
suc n <ℕ suc m = n <ℕ m
-- ----- Star型の定義と同値性 -----
data Star : Set where
NIL : Star
TRU : Star
N : ℕ → Star
S : String → Star
C : Star → Star → Star
eqStar : Star → Star → Bool
eqStar NIL NIL = true
eqStar NIL _ = false
eqStar TRU TRU = true
eqStar TRU _ = false
eqStar (N x) (N y) = x ==ℕ y
eqStar (N _) _ = false
eqStar (S x) (S y) = x == y
eqStar (S _) _ = false
eqStar (C x x₁) (C y y₁) = eqStar x y ∧ eqStar x₁ y₁
eqStar (C _ _) _ = false
-- ----- 組込関数の定義 -----
CONS : Star → Star → Star
CONS = C
CAR : Star → Star
CAR (C x _) = x
CAR _ = NIL
CDR : Star → Star
CDR (C _ x₁) = x₁
CDR _ = NIL
ATOM : Star → Star
ATOM (C _ _) = NIL
ATOM _ = TRU
IF : Star → Star → Star → Star
IF TRU a _ = a
IF q a e = if eqStar q NIL then e else a
EQUAL : Star → Star → Star
EQUAL x y = if eqStar x y then TRU else NIL
s-size : Star → ℕ
s-size (C a b) = s-size a + s-size b + 1
s-size _ = 0
SIZE : Star → Star
SIZE x = N (s-size x)
s2n : Star → ℕ
s2n (N x) = x
s2n _ = 0
LT : Star → Star → Star
LT x y = if s2n x <ℕ s2n y then TRU else NIL
-- ----- Starから≡に -----
postulate
ts : Star → Set
~ : Star → Star
equal-eq : {x y : Star} → ts (EQUAL x y) → x ≡ y
ifAP : {q x y : Star} → ts (IF q (EQUAL x y) TRU) → (ts q → x ≡ y)
ifEP : {q x y : Star} → ts (IF q TRU (EQUAL x y)) → (ts (~ q) → x ≡ y)
-- ----- 公理 -----
equal-same : (x : Star) → ts (EQUAL x x)
equal-swap : (x y : Star) → ts (EQUAL (EQUAL x y) (EQUAL y x))
equal-if : (x y : Star) → ts (IF (EQUAL x y) (EQUAL x y) TRU)
atom/cons : (x y : Star) → ts (EQUAL (ATOM (CONS x y)) NIL)
car/cons : (x y : Star) → ts (EQUAL (CAR (CONS x y)) x)
cdr/cons : (x y : Star) → ts (EQUAL (CDR (CONS x y)) y)
cons/car+cdr : (x : Star)
→ ts (IF (ATOM x) TRU (EQUAL (CONS (CAR x) (CDR x)) x))
if-true : (x y : Star) → ts (EQUAL (IF TRU x y) x)
if-false : (x y : Star) → ts (EQUAL (IF NIL x y) y)
if-same : (x y : Star) → ts (EQUAL (IF x y y) y)
if-nest-A : (x y z : Star) → ts (IF x (EQUAL (IF x y z) y) TRU)
if-nest-E : (x y z : Star) → ts (IF x TRU (EQUAL (IF x y z) z))
size/car : (x : Star)
→ ts (IF (ATOM x) TRU (EQUAL (LT (SIZE (CAR x)) (SIZE x)) TRU))
size/cdr : (x : Star)
→ ts (IF (ATOM x) TRU (EQUAL (LT (SIZE (CDR x)) (SIZE x)) TRU))
-- ----- 練習 -----
postulate
-- a b : Star
foo : ts (EQUAL TRU NIL)
hoge6 : (a b : Star)
→ (IF (EQUAL TRU NIL) TRU TRU) ≡ (IF (EQUAL TRU NIL) NIL TRU)
hoge6 a b = ifAP (equal-if TRU NIL) foo
hoge2 : (ATOM (CONS TRU TRU)) ≡ NIL
hoge2 = equal-eq (atom/cons TRU TRU)
-- hoge2' : (ATOM (CONS TRU TRU)) ≡ NIL
-- hoge2' rewrite (equal-eq (atom-cons TRU TRU)) = {!!}
hoge3 : (C TRU NIL) ≡ (C TRU NIL)
hoge3 = equal-eq (equal-same (C TRU NIL))
hoge4 : (EQUAL TRU TRU) ≡ TRU
hoge4 = begin
(if eqStar TRU TRU then TRU else NIL)
≡⟨ refl ⟩
TRU
∎
where open PropEq.≡-Reasoning
hoge5 : (EQUAL NIL NIL) ≡ TRU
hoge5 = refl
postulate
j : (x : Star) → ts (~ (ATOM x))
hoge7 : (x : ℕ)
→ (IF (ATOM (N x)) TRU (LT (SIZE (CDR (N x))) (SIZE (N x)))) ≡ (IF (ATOM (N x)) TRU TRU)
hoge7 x = ifEP (size/cdr (N x)) (j (N x))
-- -----
{-
-- ----- 停止性で引っかかる -----
memb?' : Star → Star
memb?' xs =
(IF (ATOM xs)
NIL
(IF (EQUAL (CAR xs) (S "?"))
TRU
(memb?' (CDR xs))))
-}
-- ----- memb?の停止性 -----
-- ----- SIZEを使う時はℕを引数にとる
postulate
premise : (xs : Star) → ts (~ (ATOM xs))
measure-memb? : (x : ℕ)
→ (IF (ATOM (N x))
TRU
(IF (EQUAL (CAR (N x)) (S "?"))
TRU
(LT (SIZE (CDR (N x))) (SIZE (N x)))))
≡ TRU
measure-memb? x = begin
(IF (ATOM (N x))
TRU
(IF (EQUAL (CAR (N x)) (S "?"))
TRU
(LT (SIZE (CDR (N x))) (SIZE (N x)))))
≡⟨ ifEP (size/cdr (N x)) (premise (N x)) ⟩
(IF (ATOM (N x))
TRU
(IF (EQUAL (CAR (N x)) (S "?"))
TRU
TRU))
≡⟨ equal-eq (if-same (EQUAL (CAR (N x)) (S "?")) TRU) ⟩
(IF (ATOM (N x))
TRU
TRU)
≡⟨ equal-eq (if-same (ATOM (N x)) TRU) ⟩
TRU
∎
where open PropEq.≡-Reasoning
-- ----- memb?の定義 -----
postulate
memb? : Star → Star
def-memb? : (xs : Star) →
memb? xs ≡
(IF (ATOM xs)
NIL
(IF (EQUAL (CAR xs) (S "?"))
TRU
(memb? (CDR xs))))
-- ----- rembの定義 -----
postulate
remb : Star → Star
def-remb : (xs : Star) →
remb xs ≡
(IF (ATOM xs)
(S "'()")
(IF (EQUAL (CAR xs) (S "?"))
(remb (CDR xs))
(CONS (CAR xs)
(remb (CDR xs)))))
-- ----- 帰納的な証明(未完) -----
-- ----- ATOMを使う時はC x yを引数にとる
postulate
premise2 : (xs : Star) → ts (ATOM xs)
atomt : (ATOM (S "'()")) ≡ TRU
atomt = refl
memb?/remb : (x y : Star)
→ (IF (ATOM (C x y))
(EQUAL (memb? (remb (C x y))) NIL)
(IF (EQUAL (memb? (remb (CDR (C x y)))) NIL)
(EQUAL (memb? (remb (C x y))) NIL)
TRU))
≡ (IF (ATOM (C x y))
(EQUAL (IF TRU
NIL
(IF (EQUAL (CAR (S "'()")) (S "?"))
TRU
(memb? (CDR (S "'()")))))
NIL)
(IF (EQUAL (memb? (remb (CDR (C x y)))) NIL)
(EQUAL (memb? (remb (C x y))) NIL)
TRU))
memb?/remb x y = begin
(IF (ATOM (C x y))
(EQUAL (memb? (remb (C x y))) NIL)
(IF (EQUAL (memb? (remb (CDR (C x y)))) NIL)
(EQUAL (memb? (remb (C x y))) NIL)
TRU))
≡⟨ cong (λ t → ((IF (ATOM (C x y))
(EQUAL (memb? t) NIL)
(IF (EQUAL (memb? (remb (CDR (C x y)))) NIL)
(EQUAL (memb? (remb (C x y))) NIL)
TRU)))) (def-remb (C x y)) ⟩
(IF (ATOM (C x y))
(EQUAL (memb? (IF (ATOM (C x y))
(S "'()")
(IF (EQUAL (CAR (C x y)) (S "?"))
(remb (CDR (C x y)))
(CONS (CAR (C x y))
(remb (CDR (C x y)))))))
NIL)
(IF (EQUAL (memb? (remb (CDR (C x y)))) NIL)
(EQUAL (memb? (remb (C x y))) NIL)
TRU))
≡⟨ ifAP (if-nest-A (ATOM (C x y)) (S "'()") ((IF (EQUAL (CAR (C x y)) (S "?"))
(remb (CDR (C x y)))
(CONS (CAR (C x y))
(remb (CDR (C x y))))))) (premise2 (C x y)) ⟩
(IF (ATOM (C x y))
(EQUAL (memb?
(S "'()"))
NIL)
(IF (EQUAL (memb? (remb (CDR (C x y)))) NIL)
(EQUAL (memb? (remb (C x y))) NIL)
TRU))
≡⟨ cong ((λ t → (IF (ATOM (C x y))
(EQUAL t
NIL)
(IF (EQUAL (memb? (remb (CDR (C x y)))) NIL)
(EQUAL (memb? (remb (C x y))) NIL)
TRU)))) (def-memb? ((S "'()"))) ⟩
(IF (ATOM (C x y))
(EQUAL (IF (ATOM (S "'()"))
NIL
(IF (EQUAL (CAR (S "'()")) (S "?"))
TRU
(memb? (CDR (S "'()")))))
NIL)
(IF (EQUAL (memb? (remb (CDR (C x y)))) NIL)
(EQUAL (memb? (remb (C x y))) NIL)
TRU))
≡⟨ cong ((λ t → (IF (ATOM (C x y))
(EQUAL (IF t
NIL
(IF (EQUAL (CAR (S "'()")) (S "?"))
TRU
(memb? (CDR (S "'()")))))
NIL)
(IF (EQUAL (memb? (remb (CDR (C x y)))) NIL)
(EQUAL (memb? (remb (C x y))) NIL)
TRU)))) atomt ⟩
(IF (ATOM (C x y))
(EQUAL (IF TRU
NIL
(IF (EQUAL (CAR (S "'()")) (S "?"))
TRU
(memb? (CDR (S "'()")))))
NIL)
(IF (EQUAL (memb? (remb (CDR (C x y)))) NIL)
(EQUAL (memb? (remb (C x y))) NIL)
TRU))
∎
where open PropEq.≡-Reasoning
| {
"alphanum_fraction": 0.4171677868,
"avg_line_length": 29.1443298969,
"ext": "agda",
"hexsha": "19813df46404caefbf31fb4bb6bc3684e95492d1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "righ1113/Agda",
"max_forks_repo_path": "TLP01.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "righ1113/Agda",
"max_issues_repo_path": "TLP01.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "9117b6bec9880d8c0a5d6ee4399fd841c3544d84",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "righ1113/Agda",
"max_stars_repo_path": "TLP01.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3168,
"size": 8481
} |
-- Andreas, 2012-05-09
module DontPrune where
open import Common.Equality
open import Common.Product
data Bool : Set where
true false : Bool
test : (A : Set) →
let IF : Bool → A → A → A
IF = _
in (a b : A) →
(IF true a b ≡ a) × (IF false a b ≡ b)
test A a b = refl , refl
-- Expected result: unsolved metas
--
-- (unless someone implemented unification that produces definitions by case).
--
-- The test case should prevent overzealous pruning:
-- If the first equation pruned away the b, then the second
-- would have an unbound rhs.
| {
"alphanum_fraction": 0.6666666667,
"avg_line_length": 23.25,
"ext": "agda",
"hexsha": "1c3b99907c9998a7665c70ecac7691fcb03fb23b",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/DontPrune.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/DontPrune.agda",
"max_line_length": 78,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/DontPrune.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 163,
"size": 558
} |
------------------------------------------------------------------------------
-- Testing various arguments in the ATP pragmas
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module VariousArguments where
postulate
D : Set
_≡_ : D → D → Set
a b c d : D
a≡b : a ≡ b
b≡c : b ≡ c
c≡d : c ≡ d
{-# ATP axioms a≡b b≡c c≡d #-}
postulate a≡d : a ≡ d
{-# ATP prove a≡d #-}
| {
"alphanum_fraction": 0.3636363636,
"avg_line_length": 26.3043478261,
"ext": "agda",
"hexsha": "98f549c687bcb8a8deb8808fc8db228055bf5618",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/VariousArguments.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/VariousArguments.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/VariousArguments.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 154,
"size": 605
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Colimit where
open import Level
open import Categories.Category
open import Categories.Functor
open import Categories.NaturalTransformation
open import Categories.Functor.Constant
open import Categories.Cocones
open import Categories.Cocone
open import Categories.Object.Initial
-- Isomorphic to an terminal object, but worth keeping distinct in case we change its definition
record Colimit {o ℓ e} {o′ ℓ′ e′} {C : Category o ℓ e} {J : Category o′ ℓ′ e′} (F : Functor J C) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
field
initial : Initial (Cocones F)
module I = Initial initial
module Ic = Cocone I.⊥
private module C = Category C
∃F : C.Obj
∃F = Ic.N
ι : NaturalTransformation F (Constant ∃F)
ι = record { η = Ic.ψ; commute = λ f → C.Equiv.trans (C.Equiv.sym (Ic.commute f)) (C.Equiv.sym C.identityˡ) }
<_> : ∀ {Q} → NaturalTransformation F (Constant Q) → ∃F C.⇒ Q
<_> {Q} η = CoconeMorphism.f (I.! {record
{ N = Q
; ψ = η.η
; commute = λ f → C.Equiv.trans (C.Equiv.sym C.identityˡ) (C.Equiv.sym (η.commute f)) }})
where
module η = NaturalTransformation η
record Cocomplete (o ℓ e : Level) {o′ ℓ′ e′} (C : Category o′ ℓ′ e′) : Set (suc o ⊔ suc ℓ ⊔ suc e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
field
colimit : ∀ {J : Category o ℓ e} (F : Functor J C) → Colimit F
| {
"alphanum_fraction": 0.639108555,
"avg_line_length": 34.775,
"ext": "agda",
"hexsha": "d6163f38fcaff15bb06f70cb1534c0dc341b2ab7",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Colimit.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Colimit.agda",
"max_line_length": 135,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Colimit.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 481,
"size": 1391
} |
module Esterel.Variable.Sequential where
open import Data.Nat
using (ℕ) renaming (_≟_ to _≟ℕ_)
open import Function
using (_∘_)
open import Relation.Nullary
using (Dec ; yes ; no ; ¬_)
open import Relation.Binary
using (Decidable)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl ; cong ; trans ; sym)
data SeqVar : Set where
_ᵥ : ℕ → SeqVar
unwrap : SeqVar → ℕ
unwrap (n ᵥ) = n
unwrap-inverse : ∀ {s} → (unwrap s) ᵥ ≡ s
unwrap-inverse {_ ᵥ} = refl
unwrap-injective : ∀ {s t} → unwrap s ≡ unwrap t → s ≡ t
unwrap-injective s'≡t' = trans (sym unwrap-inverse) (trans (cong _ᵥ s'≡t') unwrap-inverse)
-- for backward compatibility
unwrap-neq : ∀{k1 : SeqVar} → ∀{k2 : SeqVar} → ¬ k1 ≡ k2 → ¬ (unwrap k1) ≡ (unwrap k2)
unwrap-neq = (_∘ unwrap-injective)
wrap : ℕ → SeqVar
wrap = _ᵥ
bijective : ∀{x} → unwrap (wrap x) ≡ x
bijective = refl
_≟_ : Decidable {A = SeqVar} _≡_
(s ᵥ) ≟ (t ᵥ) with s ≟ℕ t
... | yes p = yes (cong _ᵥ p)
... | no ¬p = no (¬p ∘ cong unwrap)
| {
"alphanum_fraction": 0.6383616384,
"avg_line_length": 23.2790697674,
"ext": "agda",
"hexsha": "c311a36536ad96e75db175e9eb60212594ab3656",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z",
"max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "florence/esterel-calculus",
"max_forks_repo_path": "agda/Esterel/Variable/Sequential.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "florence/esterel-calculus",
"max_issues_repo_path": "agda/Esterel/Variable/Sequential.agda",
"max_line_length": 90,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "florence/esterel-calculus",
"max_stars_repo_path": "agda/Esterel/Variable/Sequential.agda",
"max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z",
"num_tokens": 377,
"size": 1001
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Functions
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Function where
open import Function.Core public
open import Function.Base public
open import Function.Definitions public
open import Function.Structures public
open import Function.Bundles public
| {
"alphanum_fraction": 0.5208333333,
"avg_line_length": 27,
"ext": "agda",
"hexsha": "706099d2757fe4841014867a0ff9ebf59acf3a50",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Function.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Function.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Function.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 61,
"size": 432
} |
{-# OPTIONS --without-K #-}
open import Base
open import Homotopy.Pushout
open import Homotopy.VanKampen.Guide
module Homotopy.VanKampen.Code.LemmaPackA {i} (d : pushout-diag i)
(l : legend i (pushout-diag.C d)) where
open import Homotopy.Truncation
open import Homotopy.PathTruncation
private
module PackA1 (d : pushout-diag i)
(l : legend i (pushout-diag.C d)) (n : legend.name l) where
open pushout-diag d
open legend l
-- Code from A.
open import Homotopy.VanKampen.SplitCode d l (f $ loc n)
-- Code from B. F for `flipped'.
import Homotopy.VanKampen.SplitCode (pushout-diag-flip d) l (g $ loc n) as F
private
ap⇒bp-split : (∀ {a₂} → code-a a₂ → F.code-b a₂)
× (∀ {b₂} → code-b b₂ → F.code-a b₂)
ap⇒bp-split = code-rec-nondep
F.code-b ⦃ λ _ → F.code-b-is-set _ ⦄
F.code-a ⦃ λ _ → F.code-a-is-set _ ⦄
(λ p → F.⟧a refl₀ F.a⟦ n ⟧b p)
(λ n₁ pco p → pco F.a⟦ n₁ ⟧b p)
(λ n₁ pco p → pco F.b⟦ n₁ ⟧a p)
(λ n₁ pco → F.code-b-refl-refl n₁ pco)
(λ n₁ pco → F.code-a-refl-refl n₁ pco)
(λ n₁ pco n₂ r → F.code-ba-swap n₁ pco n₂ r)
aa⇒ba : ∀ {a₂} → code-a a₂ → F.code-b a₂
aa⇒ba = π₁ ap⇒bp-split
ab⇒bb : ∀ {b₂} → code-b b₂ → F.code-a b₂
ab⇒bb = π₂ ap⇒bp-split
private
module PackA2 (d : pushout-diag i)
(l : legend i (pushout-diag.C d)) (n : legend.name l) where
open pushout-diag d
open legend l
-- Code from A.
open import Homotopy.VanKampen.SplitCode d l (f $ loc n)
open PackA1 d l n public
-- Code from B. F for `flipped'.
private
module F where
open import Homotopy.VanKampen.SplitCode (pushout-diag-flip d) l (g $ loc n) public
open PackA1 (pushout-diag-flip d) l n public
private
aba-glue-code-split : (∀ {a₂} (co : code-a a₂) → F.ab⇒bb (aa⇒ba co) ≡ co)
× (∀ {b₂} (co : code-b b₂) → F.aa⇒ba (ab⇒bb co) ≡ co)
abstract
aba-glue-code-split = code-rec
(λ {a} co → F.ab⇒bb (aa⇒ba co) ≡ co)
⦃ λ _ → ≡-is-set $ code-a-is-set _ ⦄
(λ {b} co → F.aa⇒ba (ab⇒bb co) ≡ co)
⦃ λ _ → ≡-is-set $ code-b-is-set _ ⦄
(λ p →
⟧a refl₀ a⟦ n ⟧b refl₀ b⟦ n ⟧a p
≡⟨ code-a-merge n refl₀ p ⟩
⟧a refl₀ ∘₀ p
≡⟨ ap (λ x → ⟧a x) $ refl₀-left-unit p ⟩∎
⟧a p
∎)
(λ n₁ {co} eq p → ap (λ x → x b⟦ n₁ ⟧a p) eq)
(λ n₁ {co} eq p → ap (λ x → x a⟦ n₁ ⟧b p) eq)
(λ _ _ → code-has-all-cells₂-a _ _)
(λ _ _ → code-has-all-cells₂-b _ _)
(λ _ _ _ _ → code-has-all-cells₂-a _ _)
aba-glue-code-a : ∀ {a₂} (co : code-a a₂) → F.ab⇒bb (aa⇒ba co) ≡ co
aba-glue-code-a = π₁ aba-glue-code-split
aba-glue-code-b : ∀ {b₂} (co : code-b b₂) → F.aa⇒ba (ab⇒bb co) ≡ co
aba-glue-code-b = π₂ aba-glue-code-split
private
module PackA3 (d : pushout-diag i)
(l : legend i (pushout-diag.C d)) (n : legend.name l) where
open pushout-diag d
open legend l
-- Code from A.
open import Homotopy.VanKampen.SplitCode d l (f $ loc n)
open PackA2 d l n public
-- Code from B. F for `flipped'.
private
module F where
open import Homotopy.VanKampen.SplitCode (pushout-diag-flip d) l (g $ loc n) public
open PackA2 (pushout-diag-flip d) l n public
flipped-code : P → Set i
flipped-code = F.code ◯ pushout-flip
private
ap⇒bp-glue : ∀ c → transport (λ p → code p → flipped-code p) (glue c) aa⇒ba ≡ ab⇒bb
abstract
ap⇒bp-glue = loc-fiber-rec l
(λ c → transport (λ p → code p → flipped-code p) (glue c) aa⇒ba ≡ ab⇒bb)
⦃ λ _ → Π-is-set (λ _ → F.code-a-is-set _) _ _ ⦄
(λ n → funext λ co →
transport (λ p → code p → flipped-code p) (glue $ loc n) aa⇒ba co
≡⟨ trans-→ code flipped-code (glue $ loc n) aa⇒ba co ⟩
transport flipped-code (glue $ loc n)
(aa⇒ba $ transport code (! $ glue $ loc n) co)
≡⟨ ap (λ x → transport flipped-code (glue $ loc n) $ aa⇒ba x)
$ trans-code-!glue-loc n co ⟩
transport flipped-code (glue $ loc n) (aa⇒ba $ b⇒a n co)
≡⟨ refl ⟩
transport flipped-code (glue $ loc n) (F.a⇒b n $ ab⇒bb co)
≡⟨ ! $ trans-ap F.code pushout-flip (glue $ loc n)
$ F.a⇒b n $ ab⇒bb co ⟩
transport F.code (ap pushout-flip $ glue $ loc n) (F.a⇒b n $ ab⇒bb co)
≡⟨ ap (λ x → transport F.code x $ F.a⇒b n $ ab⇒bb co)
$ pushout-β-glue-nondep _ right left (! ◯ glue) $ loc n ⟩
transport F.code (! $ glue $ loc n) (F.a⇒b n $ ab⇒bb co)
≡⟨ F.trans-code-!glue-loc n (F.a⇒b n $ ab⇒bb co) ⟩
F.b⇒a n (F.a⇒b n $ ab⇒bb co)
≡⟨ F.code-a-refl-refl n $ ab⇒bb co ⟩∎
ab⇒bb co
∎)
ap⇒bp : ∀ {p} → code p → flipped-code p
ap⇒bp {p} = pushout-rec
(λ x → code x → flipped-code x)
(λ _ → aa⇒ba)
(λ _ → ab⇒bb)
ap⇒bp-glue
p
open PackA3 d l public
| {
"alphanum_fraction": 0.502735333,
"avg_line_length": 38.1366906475,
"ext": "agda",
"hexsha": "e647224e58f34601a85507abe84699a5f116923b",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/VanKampen/Code/LemmaPackA.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/VanKampen/Code/LemmaPackA.agda",
"max_line_length": 93,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/VanKampen/Code/LemmaPackA.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2031,
"size": 5301
} |
module Cats.Functor.Yoneda where
open import Data.Product using (_,_)
open import Relation.Binary using (Rel ; Setoid ; IsEquivalence)
open import Relation.Binary.PropositionalEquality using (_≡_ ; refl)
open import Cats.Bifunctor using (transposeBifunctor₂)
open import Cats.Category
open import Cats.Category.Cat.Facts.Exponential using (Eval)
open import Cats.Category.Cat.Facts.Product using (First ; Swap)
open import Cats.Category.Fun using (Fun ; Trans ; ≈-intro ; ≈-elim)
open import Cats.Category.Fun.Facts using (NatIso→≅)
open import Cats.Category.Op using (_ᵒᵖ)
open import Cats.Category.Product.Binary using (_×_)
open import Cats.Category.Setoids using (Setoids ; ≈-intro ; ≈-elim ; ≈-elim′)
open import Cats.Functor using
( Functor ; _∘_ ; IsFull ; IsFaithful ; IsEmbedding ; Embedding→Full
; Embedding→Faithful )
open import Cats.Functor.Op using (Op)
open import Cats.Functor.Representable using (Hom[_])
open import Cats.Util.SetoidMorphism.Iso using (IsIso-resp)
import Cats.Util.SetoidReasoning as SetoidReasoning
import Cats.Category.Constructions.Iso
open Functor
open Trans
open Cats.Category.Setoids._⇒_
open Setoid using (Carrier)
-- We force C to be at l/l/l. Can we generalise to lo/la/l≈?
module _ {l} {C : Category l l l} where
private
Sets : Category _ _ _
Sets = Setoids l l
Presheaves : Category _ _ _
Presheaves = Fun (C ᵒᵖ) Sets
Funs : Category _ _ _
Funs = Fun ((C ᵒᵖ) × Presheaves) Sets
module C = Category C
module Sets = Category Sets
module Pre = Category Presheaves
module Funs = Category Funs
y : Functor C Presheaves
y = transposeBifunctor₂ Hom[ C ]
module _ (c : C.Obj) (F : Functor (C ᵒᵖ) (Sets)) where
private
module ycc≈ = Setoid (fobj (fobj y c) c)
module Fc≈ = Setoid (fobj F c)
forth : Pre.Hom (fobj y c) F Sets.⇒ fobj F c
forth = record
{ arr = λ f → arr (component f c) C.id
; resp = λ f≈g → ≈-elim′ (≈-elim f≈g)
}
back-θ-component : Carrier (fobj F c) → (c′ : C.Obj) → C.Hom c′ c Sets.⇒ fobj F c′
back-θ-component a c′ = record
{ arr = λ h → arr (fmap F h) a
; resp = λ f≈g → ≈-elim′ (fmap-resp F f≈g)
}
back-θ : Carrier (fobj F c) → fobj y c Pre.⇒ F
back-θ a = record
{ component = back-θ-component a
; natural = λ {c′} {d′} {f} → ≈-intro λ {g} {g′} g≈g′ →
let open Setoid (fobj F d′) using (sym) in
begin⟨ fobj F d′ ⟩
arr (back-θ-component a d′ Sets.∘ fmap (fobj y c) f) g
≡⟨⟩
arr (fmap F (C.id C.∘ g C.∘ f)) a
≈⟨ ≈-elim′ (fmap-resp F (C.≈.trans C.id-l (C.∘-resp-l g≈g′))) ⟩
arr (fmap F (g′ C.∘ f)) a
≈⟨ sym (≈-elim′ (fmap-∘ F)) ⟩
arr (fmap F f Sets.∘ fmap F g′) a
≡⟨⟩
arr (fmap F f Sets.∘ back-θ-component a c′) g′
∎
}
where
open SetoidReasoning
back : fobj F c Sets.⇒ Pre.Hom (fobj y c) F
back = record
{ arr = back-θ
; resp = λ f≈g → ≈-intro (≈-intro λ x≈y → ≈-elim (fmap-resp F x≈y) f≈g)
}
back-forth : back Sets.∘ forth Sets.≈ Sets.id
back-forth = ≈-intro λ {θ} {θ′} θ≈θ′ → ≈-intro λ {c′} → ≈-intro λ {f} {g} f≈g →
begin⟨ fobj F c′ ⟩
arr (component (arr (back Sets.∘ forth) θ) c′) f
≡⟨⟩
arr (fmap F f Sets.∘ component θ c) C.id
≈⟨ ≈-elim′ (Sets.≈.sym (natural θ)) ⟩
arr (component θ c′ Sets.∘ fmap (fobj y c) f) C.id
≡⟨⟩
arr (component θ c′) (C.id C.∘ C.id C.∘ f)
≈⟨ resp (component θ c′) (C.≈.trans C.id-l C.id-l) ⟩
arr (component θ c′) f
≈⟨ ≈-elim (≈-elim θ≈θ′) f≈g ⟩
arr (component θ′ c′) g
∎
where
open SetoidReasoning
forth-back : forth Sets.∘ back Sets.≈ Sets.id
forth-back = ≈-intro λ x≈y → ≈-elim (fmap-id F) x≈y
iso : fobj Hom[ Presheaves ] (fobj y c , F) Sets.≅ fobj F c
iso = record
{ forth = forth
; back = back
; back-forth = back-forth
; forth-back = forth-back
}
yoneda : (Hom[ Presheaves ] ∘ First (Op y)) Funs.≅ (Eval ∘ Swap)
yoneda = NatIso→≅ record
{ iso = λ { {c , F} → iso c F }
; forth-natural = λ where
{c , F} {c′ , F′} {f , θ} → ≈-intro λ {ι} {τ} ι≈τ →
let module S = Setoid (fobj F′ c′) in
triangle (fobj F′ c′) (arr (component (θ Pre.∘ ι) c′) f)
( begin⟨ fobj F′ c′ ⟩
arr (forth c′ F′ Sets.∘ fmap Hom[ Presheaves ]
(fmap (First {D = Presheaves ᵒᵖ} (Op y)) (f , θ)))
ι
≡⟨⟩
arr (component (Pre.id Pre.∘ θ Pre.∘ ι) c′) (f C.∘ C.id C.∘ C.id)
≈⟨ ≈-elim (≈-elim (Pre.id-l {f = θ Pre.∘ ι}))
(C.≈.trans (C.∘-resp-r C.id-r) C.id-r) ⟩
arr (component (θ Pre.∘ ι) c′) f
∎
)
( begin⟨ fobj F′ c′ ⟩
arr (fmap F′ f Sets.∘ component θ c Sets.∘ forth c F) τ
≡⟨⟩
arr (fmap F′ f Sets.∘ component (θ Pre.∘ τ) c) C.id
≈⟨ S.sym (≈-elim′ (natural (θ Pre.∘ τ))) ⟩
arr (component (θ Pre.∘ τ) c′ Sets.∘ fmap (fobj y c) f) C.id
≡⟨⟩
arr (component (θ Pre.∘ τ) c′) (C.id C.∘ C.id C.∘ f)
≈⟨ ≈-elim (≈-elim (Pre.∘-resp-r {f = θ} (Pre.≈.sym {i = ι} {τ} ι≈τ)))
(C.≈.trans C.id-l C.id-l) ⟩
arr (component (θ Pre.∘ ι) c′) f
∎
)
}
where
open SetoidReasoning
back≈sfmap : ∀ {a b} → back a (fobj y b) Sets.≈ sfmap y
back≈sfmap {a} {b} = ≈-intro λ {f} {g} f≈g → ≈-intro (≈-intro λ {x} {y} x≈y →
begin
C.id C.∘ f C.∘ x
≈⟨ C.id-l ⟩
f C.∘ x
≈⟨ C.∘-resp f≈g x≈y ⟩
g C.∘ y
≈⟨ C.≈.sym C.id-r ⟩
(g C.∘ y) C.∘ C.id
≈⟨ C.assoc ⟩
g C.∘ y C.∘ C.id
∎)
where
open C.≈-Reasoning
y-Embedding : IsEmbedding y
y-Embedding {a} {b} = IsIso-resp back≈sfmap record
{ back = forth a (fobj y b)
; forth-back = back-forth a (fobj y b)
; back-forth = forth-back a (fobj y b)
}
y-Full : IsFull y
y-Full = Embedding→Full y y-Embedding
y-Faithful : IsFaithful y
y-Faithful = Embedding→Faithful y y-Embedding
| {
"alphanum_fraction": 0.510340538,
"avg_line_length": 31.5245098039,
"ext": "agda",
"hexsha": "44d87800046a57921f8c7b9113c6f004ba151b1e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Functor/Yoneda.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Functor/Yoneda.agda",
"max_line_length": 86,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Functor/Yoneda.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2485,
"size": 6431
} |
module Automata.Composition.Union (Σ : Set) where
-- Standard libraries imports ----------------------------------------
open import Data.Empty using (⊥ ; ⊥-elim)
open import Data.Nat using (ℕ)
open import Data.Sum using (_⊎_ ; inj₁ ; inj₂)
open import Data.Product using (_,_)
open import Data.Vec using (Vec ; [] ; _∷_)
open import Relation.Nullary using (¬_)
open import Relation.Binary.PropositionalEquality
using (_≡_ ; refl)
----------------------------------------------------------------------
-- Thesis imports ----------------------------------------------------
open import Automata.Nondeterministic
----------------------------------------------------------------------
_∪_ : (M : NDA Σ) → (N : NDA Σ) → NDA Σ
⟨ Q₁ , S₁ , F₁ , Δ₁ ⟩ ∪ ⟨ Q₂ , S₂ , F₂ , Δ₂ ⟩ = ⟨ Q , S , F , Δ ⟩
where
Q : Set _
Q = Q₁ ⊎ Q₂
S : Q → Set _
S (inj₁ q) = S₁ q
S (inj₂ q) = S₂ q
F : Q → Set
F (inj₁ q) = F₁ q
F (inj₂ q) = F₂ q
Δ : Q → Σ → Q → Set
Δ (inj₁ q) c (inj₁ q′) = Δ₁ q c q′
Δ (inj₂ q) c (inj₂ q′) = Δ₂ q c q′
{-# CATCHALL #-}
Δ _ _ _ = ⊥ -- No connections between the machines
M-Δ*⇒M∪N-Δ* : {M N : NDA Σ}
→ let Q₁ = NDA.Q M
Δ₁* = NDA.Δ* M
Δ* = NDA.Δ* (M ∪ N) in
(q : Q₁) → {n : ℕ} → (xs : Vec Σ n) → (q′ : Q₁)
→ Δ₁* q xs q′
→ Δ* (inj₁ q) xs (inj₁ q′)
M-Δ*⇒M∪N-Δ* q [] .q refl = refl
M-Δ*⇒M∪N-Δ* q (x ∷ xs) q′ (q₀ , Δ₁-q-x-q₀ , Δ₁*-q₀-xs-q′) =
inj₁ q₀ , Δ₁-q-x-q₀ , M-Δ*⇒M∪N-Δ* q₀ xs q′ Δ₁*-q₀-xs-q′
N-Δ*⇒M∪N-Δ* : {M N : NDA Σ}
→ let Q₂ = NDA.Q N
Δ₂* = NDA.Δ* N
Δ* = NDA.Δ* (M ∪ N) in
(q : Q₂) → {n : ℕ} → (xs : Vec Σ n) → (q′ : Q₂)
→ Δ₂* q xs q′
→ Δ* (inj₂ q) xs (inj₂ q′)
N-Δ*⇒M∪N-Δ* q [] .q refl = refl
N-Δ*⇒M∪N-Δ* q (x ∷ xs) q′ (q₀ , Δ₂-q-x-q₀ , Δ₂*-q₀-xs-q′) =
inj₂ q₀ , Δ₂-q-x-q₀ , N-Δ*⇒M∪N-Δ* q₀ xs q′ Δ₂*-q₀-xs-q′
M∪N-Δ*⇒M-Δ* : {M N : NDA Σ}
→ let Q₁ = NDA.Q M
Δ₁* = NDA.Δ* M
Δ* = NDA.Δ* (M ∪ N) in
(q : Q₁) → {n : ℕ} → (xs : Vec Σ n) → (q′ : Q₁)
→ Δ* (inj₁ q) xs (inj₁ q′)
→ Δ₁* q xs q′
M∪N-Δ*⇒M-Δ* q [] .q refl = refl
M∪N-Δ*⇒M-Δ* q (x ∷ xs) q′ (inj₁ q₀ , Δ-q-x-q₀ , Δ*-q₀-xs-q′) =
q₀ , Δ-q-x-q₀ , M∪N-Δ*⇒M-Δ* q₀ xs q′ Δ*-q₀-xs-q′
M∪N-Δ*⇒N-Δ* : {M N : NDA Σ}
→ let Q₂ = NDA.Q N
Δ₂* = NDA.Δ* N
Δ* = NDA.Δ* (M ∪ N) in
(q : Q₂) → {n : ℕ} → (xs : Vec Σ n) → (q′ : Q₂)
→ Δ* (inj₂ q) xs (inj₂ q′)
→ Δ₂* q xs q′
M∪N-Δ*⇒N-Δ* q [] .q refl = refl
M∪N-Δ*⇒N-Δ* q (x ∷ xs) q′ (inj₂ q₀ , Δ-q-x-q₀ , Δ*-q₀-xs-q′) =
q₀ , Δ-q-x-q₀ , M∪N-Δ*⇒N-Δ* q₀ xs q′ Δ*-q₀-xs-q′
M∪N-Δ*-disconnectedˡ : {M N : NDA Σ}
→ let Q₁ = NDA.Q M
Q₂ = NDA.Q N
Δ* = NDA.Δ* (M ∪ N) in
(q : Q₁) → {n : ℕ} → (xs : Vec Σ n) → (q′ : Q₂)
→ ¬ (Δ* (inj₁ q) xs (inj₂ q′))
M∪N-Δ*-disconnectedˡ q (x ∷ xs) q′ (inj₁ q₀ , _ , Δ*-q₀-xs-q′) =
M∪N-Δ*-disconnectedˡ q₀ xs q′ Δ*-q₀-xs-q′
M∪N-Δ*-disconnectedʳ : {M N : NDA Σ}
→ let Q₁ = NDA.Q M
Q₂ = NDA.Q N
Δ* = NDA.Δ* (M ∪ N) in
(q : Q₂) → {n : ℕ} → (xs : Vec Σ n) → (q′ : Q₁)
→ ¬ (Δ* (inj₂ q) xs (inj₁ q′))
M∪N-Δ*-disconnectedʳ q (x ∷ xs) q′ (inj₂ q₀ , _ , Δ*-q₀-xs-q′) =
M∪N-Δ*-disconnectedʳ q₀ xs q′ Δ*-q₀-xs-q′
M-Accepts⇒M∪N-Accepts : {M N : NDA Σ}
→ {n : ℕ} → (xs : Vec Σ n)
→ NDA.Accepts M xs
→ NDA.Accepts (M ∪ N) xs
M-Accepts⇒M∪N-Accepts [] (q , S-q , .q , F-q , refl) =
inj₁ q , S-q , inj₁ q , F-q , refl
M-Accepts⇒M∪N-Accepts (x ∷ xs)
( q , S-q -- The beginning state
, q′ , F-q′ -- The ending state
, q₀ , Δ₁-q-x-q₀ -- The first step
, Δ₁*-q₀-xs-q′) = -- The remaining steps
-- Translate to the union:
(inj₁ q , S-q -- The beginning state
, inj₁ q′ , F-q′ -- The ending state
, inj₁ q₀ , Δ₁-q-x-q₀ -- The first step
, M-Δ*⇒M∪N-Δ* q₀ xs q′ Δ₁*-q₀-xs-q′) -- The remaining steps (applying I.H.)
N-Accepts⇒M∪N-Accepts : {M N : NDA Σ}
→ {n : ℕ} → (xs : Vec Σ n)
→ NDA.Accepts N xs
→ NDA.Accepts (M ∪ N) xs
N-Accepts⇒M∪N-Accepts [] (q , S-q , .q , F-q , refl) =
inj₂ q , S-q , inj₂ q , F-q , refl
N-Accepts⇒M∪N-Accepts (x ∷ xs)
( q , S-q
, q′ , F-q′
, q₀ , Δ-q-x-q₀
, Δ*-q₀-xs-q′) =
( inj₂ q , S-q
, inj₂ q′ , F-q′
, inj₂ q₀ , Δ-q-x-q₀
, N-Δ*⇒M∪N-Δ* q₀ xs q′ Δ*-q₀-xs-q′ )
----------------------------------------------------------------------
M∪N-Accepts⇒M-Accepts∨N-Accepts : {M N : NDA Σ}
→ {n : ℕ} → (xs : Vec Σ n)
→ NDA.Accepts (M ∪ N) xs
→ NDA.Accepts M xs ⊎ NDA.Accepts N xs
-- Base cases.
M∪N-Accepts⇒M-Accepts∨N-Accepts []
(inj₁ q , S-q , .(inj₁ q) , F-q , refl) =
inj₁ (q , S-q , q , F-q , refl)
M∪N-Accepts⇒M-Accepts∨N-Accepts []
(inj₂ q , S-q , .(inj₂ q) , F-q , refl) =
inj₂ (q , S-q , q , F-q , refl)
-- Induction step 1: both the start and final state are in M.
M∪N-Accepts⇒M-Accepts∨N-Accepts (x ∷ xs)
( inj₁ q , S-q
, inj₁ q′ , F-q′
, inj₁ q₀ , Δ-q-x-q₀
, Δ*-q₀-xs-q′) =
inj₁ ( q , S-q
, q′ , F-q′
, q₀ , Δ-q-x-q₀
, M∪N-Δ*⇒M-Δ* q₀ xs q′ Δ*-q₀-xs-q′)
-- Induction step 2: both the start and final state are in N.
M∪N-Accepts⇒M-Accepts∨N-Accepts (x ∷ xs)
( inj₂ q , S-q
, inj₂ q′ , F-q′
, inj₂ q₀ , Δ-q-x-q₀
, Δ*-q₀-xs-q′) =
inj₂ ( q , S-q
, q′ , F-q′
, q₀ , Δ-q-x-q₀
, M∪N-Δ*⇒N-Δ* q₀ xs q′ Δ*-q₀-xs-q′)
-- Unreachable cases: the proof of “Accepts (M ∪ N) xs”
-- asserts M and N are connected.
M∪N-Accepts⇒M-Accepts∨N-Accepts (x ∷ xs)
(inj₁ q , _ , inj₂ q′ , _ , inj₁ q₀ , _ , Δ*-q₀-xs-q′) =
⊥-elim (M∪N-Δ*-disconnectedˡ q₀ xs q′ Δ*-q₀-xs-q′)
M∪N-Accepts⇒M-Accepts∨N-Accepts (x ∷ xs)
(inj₂ q , _ , inj₁ q′ , _ , inj₂ q₀ , _ , Δ*-q₀-xs-q′) =
⊥-elim (M∪N-Δ*-disconnectedʳ q₀ xs q′ Δ*-q₀-xs-q′)
----------------------------------------------------------------------
| {
"alphanum_fraction": 0.4017508207,
"avg_line_length": 34.5783783784,
"ext": "agda",
"hexsha": "30d715821f429608ac859b8acb6d3f5c50f127b0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f6a6845a54aed7ecc6841ff5ad89643b553cbd77",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "armkeh/agda-computability",
"max_forks_repo_path": "src/Automata/Composition/Union.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f6a6845a54aed7ecc6841ff5ad89643b553cbd77",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "armkeh/agda-computability",
"max_issues_repo_path": "src/Automata/Composition/Union.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f6a6845a54aed7ecc6841ff5ad89643b553cbd77",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "armkeh/agda-computability",
"max_stars_repo_path": "src/Automata/Composition/Union.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2905,
"size": 6397
} |
{-
This file contains the classic isomorphism theorems for groups (so far
only the first theorem)
-}
{-# OPTIONS --safe #-}
module Cubical.Algebra.Group.IsomorphismTheorems where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Powerset
open import Cubical.Foundations.Function
open import Cubical.Data.Sigma
open import Cubical.HITs.SetQuotients renaming (_/_ to _/s_ ; rec to recS ; elim to elimS)
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Algebra.Group.Base
open import Cubical.Algebra.Group.Properties
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.Subgroup
open import Cubical.Algebra.Group.QuotientGroup
open import Cubical.Algebra.Group.GroupPath
private
variable
ℓ : Level
-- The first isomorphism theorem: im ϕ ≃ G / ker ϕ
module _ {G H : Group ℓ} (ϕ : GroupHom G H) where
open isSubgroup
open Iso
open GroupTheory
kerNormalSubgroup : NormalSubgroup G
kerNormalSubgroup = kerSubgroup ϕ , isNormalKer ϕ
private
imϕ : Group ℓ
imϕ = imGroup ϕ
-- for completeness:
imNormalSubgroup : ((x y : ⟨ H ⟩)
→ GroupStr._·_ (snd H) x y ≡ GroupStr._·_ (snd H) y x)
→ NormalSubgroup H
imNormalSubgroup comm = imSubgroup ϕ , isNormalIm ϕ comm
private
module G = GroupStr (snd G)
module H = GroupStr (snd H)
module imG = GroupStr (snd imϕ)
module kerG = GroupStr (snd (G / kerNormalSubgroup))
module ϕ = IsGroupHom (ϕ .snd)
f1 : ⟨ imϕ ⟩ → ⟨ G / kerNormalSubgroup ⟩
f1 (x , Hx) = rec→Set ( squash/)
(λ { (y , hy) → [ y ]})
(λ { (y , hy) (z , hz) → eq/ y z (rem y z hy hz) })
Hx
where
rem : (y z : ⟨ G ⟩) → ϕ .fst y ≡ x → ϕ .fst z ≡ x → ϕ .fst (y G.· G.inv z) ≡ H.1g
rem y z hy hz =
ϕ .fst (y G.· G.inv z) ≡⟨ ϕ.pres· _ _ ⟩
ϕ .fst y H.· ϕ .fst (G.inv z) ≡⟨ cong (ϕ .fst y H.·_) (ϕ.presinv _) ⟩
ϕ .fst y H.· H.inv (ϕ .fst z) ≡⟨ (λ i → hy i H.· H.inv (hz i)) ⟩
x H.· H.inv x ≡⟨ H.·InvR x ⟩
H.1g ∎
f2 : ⟨ G / kerNormalSubgroup ⟩ → ⟨ imϕ ⟩
f2 = recS imG.is-set (λ y → ϕ .fst y , ∣ y , refl ∣₁)
(λ x y r → Σ≡Prop (λ _ → squash₁)
(rem x y r))
where
rem : (x y : ⟨ G ⟩) → ϕ .fst (x G.· G.inv y) ≡ H.1g → ϕ .fst x ≡ ϕ .fst y
rem x y r =
ϕ .fst x ≡⟨ sym (H.·IdR _) ⟩
ϕ .fst x H.· H.1g ≡⟨ cong (ϕ .fst x H.·_) (sym (H.·InvL _)) ⟩
ϕ .fst x H.· H.inv (ϕ .fst y) H.· ϕ .fst y ≡⟨ (λ i → ϕ .fst x H.· ϕ.presinv y (~ i) H.· ϕ .fst y) ⟩
ϕ .fst x H.· ϕ .fst (G.inv y) H.· ϕ .fst y ≡⟨ H.·Assoc _ _ _ ⟩
(ϕ .fst x H.· ϕ .fst (G.inv y)) H.· ϕ .fst y ≡⟨ cong (H._· _) (sym (ϕ.pres· _ _)) ⟩
ϕ .fst (x G.· G.inv y) H.· ϕ .fst y ≡⟨ cong (H._· ϕ .fst y) r ⟩
H.1g H.· ϕ .fst y ≡⟨ H.·IdL _ ⟩
ϕ .fst y ∎
f12 : (x : ⟨ G / kerNormalSubgroup ⟩) → f1 (f2 x) ≡ x
f12 = elimProp (λ _ → squash/ _ _) (λ _ → refl)
f21 : (x : ⟨ imϕ ⟩) → f2 (f1 x) ≡ x
f21 (x , hx) = elim {P = λ hx → f2 (f1 (x , hx)) ≡ (x , hx)}
(λ _ → imG.is-set _ _)
(λ {(x , hx) → Σ≡Prop (λ _ → squash₁) hx})
hx
f1-isHom : (x y : ⟨ imϕ ⟩) → f1 (x imG.· y) ≡ f1 x kerG.· f1 y
f1-isHom (x , hx) (y , hy) =
elim2 {P = λ hx hy → f1 ((x , hx) imG.· (y , hy)) ≡ f1 (x , hx) kerG.· f1 (y , hy)}
(λ _ _ → kerG.is-set _ _) (λ _ _ → refl) hx hy
-- The first isomorphism theorem for groups
isoThm1 : GroupIso imϕ (G / kerNormalSubgroup)
fun (fst isoThm1) = f1
inv (fst isoThm1) = f2
rightInv (fst isoThm1) = f12
leftInv (fst isoThm1) = f21
snd isoThm1 = makeIsGroupHom f1-isHom
-- The SIP lets us turn the isomorphism theorem into a path
pathThm1 : imϕ ≡ G / kerNormalSubgroup
pathThm1 = uaGroup (GroupIso→GroupEquiv isoThm1)
surjImIso : isSurjective ϕ → GroupIso imϕ H
surjImIso surj =
BijectionIso→GroupIso
(bijIso indHom
(uncurry
(λ h → elim (λ _ → isPropΠ (λ _ → imG.is-set _ _))
(uncurry λ g y
→ λ inker → Σ≡Prop (λ _ → squash₁) inker)))
λ b → map (λ x → (b , ∣ x ∣₁) , refl) (surj b))
where
indHom : GroupHom imϕ H
fst indHom = fst
snd indHom = makeIsGroupHom λ _ _ → refl
| {
"alphanum_fraction": 0.5434173669,
"avg_line_length": 35.976744186,
"ext": "agda",
"hexsha": "00504cd4c50c2c2db05ac539275372114eefcf7c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Group/IsomorphismTheorems.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Group/IsomorphismTheorems.agda",
"max_line_length": 108,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Group/IsomorphismTheorems.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1793,
"size": 4641
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Bicategory where
open import Level
-- open import Data.Product using (curry; _,_)
-- open import Function using () renaming (_∘_ to _·_)
open import Categories.Support.PropositionalEquality
open import Categories.Category
open import Categories.Categories
open import Categories.Object.Terminal
open import Categories.Terminal
open import Categories.Functor using (Functor) renaming (_∘_ to _∘F_; _≡_ to _≡F_; id to idF)
open import Categories.Functor.Constant using (Constant)
open import Categories.Bifunctor using (Bifunctor; reduce-×)
open import Categories.Product using (assocʳ; πˡ; πʳ)
open import Categories.NaturalIsomorphism
open import Categories.Bicategory.Helpers using (module BicategoryHelperFunctors)
record Bicategory (o ℓ t e : Level) : Set (suc (o ⊔ ℓ ⊔ t ⊔ e)) where
open Terminal (One {ℓ} {t} {e})
field
Obj : Set o
_⇒_ : (A B : Obj) → Category ℓ t e
id : {A : Obj} → Functor ⊤ (A ⇒ A)
—∘— : {A B C : Obj} → Bifunctor (B ⇒ C) (A ⇒ B) (A ⇒ C)
_∘_ : {A B C : Obj} {L R : Category ℓ t e} → Functor L (B ⇒ C) → Functor R (A ⇒ B) → Bifunctor L R (A ⇒ C)
_∘_ {A} {B} {C} F G = reduce-× {D₁ = B ⇒ C} {D₂ = A ⇒ B} —∘— F G
field
λᵤ : {A B : Obj} → NaturalIsomorphism (id ∘ idF {C = A ⇒ B}) (πʳ {C = ⊤} {A ⇒ B})
ρᵤ : {A B : Obj} → NaturalIsomorphism (idF {C = A ⇒ B} ∘ id) (πˡ {C = A ⇒ B} {⊤})
α : {A B C D : Obj} → NaturalIsomorphism (idF ∘ —∘—) (((—∘— ∘ idF) ∘F assocʳ (C ⇒ D) (B ⇒ C) (A ⇒ B)))
private module BHF = BicategoryHelperFunctors(Obj)(_⇒_)(—∘—)(id)
private module EQ = BHF.Coherence(λᵤ)(ρᵤ)(α)
private module _⇒_ (A B : Obj) = Category (A ⇒ B)
open _⇒_ public using () renaming (Obj to _⇒₁_)
field
.triangle : {A B C : Obj} (f : A ⇒₁ B) (g : B ⇒₁ C) → EQ.Triangle f g
.pentagon : {A B C D E : Obj} (f : A ⇒₁ B) (g : B ⇒₁ C) (h : C ⇒₁ D) (i : D ⇒₁ E)
→ EQ.Pentagon f g h i
-- do note that most of the "convenience" definitions in the Helpers module should really
-- be here (but usable in both places). Clean that up later.
| {
"alphanum_fraction": 0.6212847555,
"avg_line_length": 41.72,
"ext": "agda",
"hexsha": "5e308edefbf35f5bdbba869cef999860b2576509",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "copumpkin/categories",
"max_forks_repo_path": "Categories/Bicategory.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "copumpkin/categories",
"max_issues_repo_path": "Categories/Bicategory.agda",
"max_line_length": 108,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Bicategory.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 787,
"size": 2086
} |
{-# OPTIONS --safe #-}
module Definition.Typed.Consequences.PiNorm where
open import Definition.Untyped
open import Definition.Untyped.Properties
open import Definition.Typed
open import Definition.Typed.Properties
open import Definition.Typed.Weakening
open import Definition.Typed.EqRelInstance
open import Definition.LogicalRelation
open import Definition.LogicalRelation.Properties
open import Definition.LogicalRelation.Irrelevance
open import Definition.LogicalRelation.Fundamental.Reducibility
open import Definition.Typed.Consequences.Inversion
open import Definition.Typed.Consequences.Injectivity
open import Definition.Typed.Consequences.Syntactic
open import Definition.Conversion.Stability
open import Tools.Product
open import Tools.Empty
import Tools.PropositionalEquality as PE
-- reduction including in the codomain of Pis
-- useful to get unicity of relevance
-- there are 2 kinds of fat arrows!!!
-- the constructor for transitivity closure is closed on the left ⇨
-- the ones in types aren't ⇒
data ΠNorm : Term → Set where
Uₙ : ∀ {r l} → ΠNorm (Univ r l)
Πₙ : ∀ {F rF lF G lG lΠ} → ΠNorm G → ΠNorm (Π F ^ rF ° lF ▹ G ° lG ° lΠ)
∃ₙ : ∀ {F G} → ΠNorm F → ΠNorm (∃ F ▹ G)
ℕₙ : ΠNorm ℕ
Emptyₙ : ∀ {lEmpty} → ΠNorm (Empty lEmpty)
ne : ∀ {n} → Neutral n → ΠNorm n
ΠNorm-Π : ∀ {F rF lF G lG lΠ} → ΠNorm (Π F ^ rF ° lF ▹ G ° lG ° lΠ) → ΠNorm G
ΠNorm-Π (Πₙ x) = x
ΠNorm-Π (ne ())
data _⊢_⇒Π_∷_^_ (Γ : Con Term) : Term → Term → Term → TypeLevel → Set where
regular : ∀ {t u A l} → Γ ⊢ t ⇒ u ∷ A ^ l → Γ ⊢ t ⇒Π u ∷ A ^ l
deepΠ : ∀ {F rF lF G G′ lG rG lΠ}
→ Γ ∙ F ^ [ rF , ι lF ] ⊢ G ⇒Π G′ ∷ Univ rG lG ^ next lG
→ Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ⇒Π Π F ^ rF ° lF ▹ G′ ° lG ° lΠ ∷ Univ rG lΠ ^ next lΠ
deep∃ : ∀ {F G F′ l∃}
→ Γ ⊢ F ⇒Π F′ ∷ Univ % l∃ ^ next l∃
→ Γ ⊢ ∃ F ▹ G ⇒Π ∃ F′ ▹ G ∷ Univ % l∃ ^ next l∃
data _⊢_⇒Π_^_ (Γ : Con Term) : Term → Term → TypeInfo → Set where
univ : ∀ {A B r l}
→ Γ ⊢ A ⇒Π B ∷ (Univ r l) ^ next l
→ Γ ⊢ A ⇒Π B ^ [ r , ι l ]
data _⊢_⇒*Π_∷_^_ (Γ : Con Term) : Term → Term → Term → TypeLevel → Set where
id : ∀ {t T l} → Γ ⊢ t ⇒*Π t ∷ T ^ l
_⇨_ : ∀ {t t' u T l}
→ Γ ⊢ t ⇒Π t' ∷ T ^ l
→ Γ ⊢ t' ⇒*Π u ∷ T ^ l
→ Γ ⊢ t ⇒*Π u ∷ T ^ l
data _⊢_⇒*Π_^_ (Γ : Con Term) : Term → Term → TypeInfo → Set where
id : ∀ {A r} → Γ ⊢ A ⇒*Π A ^ r
_⇨_ : ∀ {t t' u r}
→ Γ ⊢ t ⇒Π t' ^ r
→ Γ ⊢ t' ⇒*Π u ^ r
→ Γ ⊢ t ⇒*Π u ^ r
_⇨*_ : ∀ {Γ A B C r} → Γ ⊢ A ⇒*Π B ^ r → Γ ⊢ B ⇒*Π C ^ r → Γ ⊢ A ⇒*Π C ^ r
id ⇨* y = y
(x ⇨ x₁) ⇨* y = x ⇨ (x₁ ⇨* y)
regular* : ∀ {Γ t u r} → Γ ⊢ t ⇒* u ^ r → Γ ⊢ t ⇒*Π u ^ r
regular* (id _) = id
regular* (univ x ⇨ x₁) = univ (regular x) ⇨ regular* x₁
deep* : ∀ {Γ F rF lF G G′ lG rG lΠ}
→ Γ ∙ F ^ [ rF , ι lF ] ⊢ G ⇒*Π G′ ^ [ rG , ι lG ]
→ Γ ⊢ Π F ^ rF ° lF ▹ G ° lG ° lΠ ⇒*Π Π F ^ rF ° lF ▹ G′ ° lG ° lΠ ^ [ rG , ι lΠ ]
deep* id = id
deep* (univ (regular x) ⇨ x₁) = univ (deepΠ (regular x)) ⇨ deep* x₁
deep* (univ (deepΠ x) ⇨ x₁) = univ (deepΠ (deepΠ x)) ⇨ deep* x₁
deep* (univ (deep∃ x) ⇨ x₁) = univ (deepΠ (deep∃ x)) ⇨ deep* x₁
deep∃* : ∀ {Γ F G F′ l∃}
→ Γ ⊢ F ⇒*Π F′ ^ [ % , ι l∃ ]
→ Γ ⊢ ∃ F ▹ G ⇒*Π ∃ F′ ▹ G ^ [ % , ι l∃ ]
deep∃* id = id
deep∃* (univ (regular x) ⇨ x₁) = univ (deep∃ (regular x)) ⇨ deep∃* x₁
deep∃* (univ (deepΠ x) ⇨ x₁) = univ (deep∃ (deepΠ x)) ⇨ deep∃* x₁
deep∃* (univ (deep∃ x) ⇨ x₁) = univ (deep∃ (deep∃ x)) ⇨ deep∃* x₁
deep-correct-term : ∀ {Γ t u T l} → Γ ⊢ t ∷ T ^ [ ! , l ] → Γ ⊢ t ⇒Π u ∷ T ^ l → Γ ⊢ u ∷ T ^ [ ! , l ] × Γ ⊢ t ≡ u ∷ T ^ [ ! , l ]
deep-correct-term ⊢t (regular x) =
let t≡u = subsetTerm x
_ , _ , ⊢u = syntacticEqTerm t≡u
in ⊢u , t≡u
deep-correct-term ⊢t (deepΠ X) =
let _ , l< , l<' , ⊢F , ⊢G , e , _ = inversion-Π ⊢t
erG , _ = Uinjectivity e
⊢G' , G≡G' = deep-correct-term (PE.subst (λ rr → _ ⊢ _ ∷ Univ rr _ ^ _ ) (PE.sym erG) ⊢G) X
in Πⱼ l< ▹ l<' ▹ ⊢F ▹ ⊢G' , Π-cong l< l<' (univ ⊢F) (refl ⊢F) G≡G'
deep-correct-term ⊢t (deep∃ X) =
let l , ⊢F , ⊢G , e , _ = inversion-∃ ⊢t
_ , el = Uinjectivity e
⊢Fl = PE.subst (λ ll → _ ⊢ _ ∷ SProp ll ^ [ ! , next ll ] ) (PE.sym el) ⊢F
⊢F' , F≡F' = deep-correct-term ⊢Fl X
⊢Gl = PE.subst (λ ll → _ ∙ _ ^ [ % , ι ll ] ⊢ _ ∷ SProp ll ^ [ ! , next ll ] ) (PE.sym el) ⊢G
in ∃ⱼ ⊢F' ▹ stabilityTerm (reflConEq (wfTerm ⊢F) ∙ (univ F≡F')) ⊢Gl , ∃-cong (univ ⊢Fl) F≡F' (refl ⊢Gl)
deep-correct : ∀ {Γ A B r} → Γ ⊢ A ^ r → Γ ⊢ A ⇒Π B ^ r → Γ ⊢ B ^ r × Γ ⊢ A ≡ B ^ r
deep-correct ⊢A (univ x) =
let ⊢B , A≡B = deep-correct-term (un-univ ⊢A) x
in univ ⊢B , univ A≡B
deep*-correct-term : ∀ {Γ t u T l} → Γ ⊢ t ∷ T ^ [ ! , l ] → Γ ⊢ t ⇒*Π u ∷ T ^ l → Γ ⊢ t ≡ u ∷ T ^ [ ! , l ]
deep*-correct-term ⊢t id = refl ⊢t
deep*-correct-term ⊢t (x ⇨ X) =
let ⊢u , t≡u = deep-correct-term ⊢t x
in trans t≡u (deep*-correct-term ⊢u X)
deep*-correct : ∀ {Γ A B r} → Γ ⊢ A ^ r → Γ ⊢ A ⇒*Π B ^ r → Γ ⊢ A ≡ B ^ r
deep*-correct ⊢A id = refl ⊢A
deep*-correct ⊢A (x ⇨ X) =
let ⊢B , A≡B = deep-correct ⊢A x
in trans A≡B (deep*-correct ⊢B X)
doΠNorm′ : ∀ {A rA Γ l} ([A] : Γ ⊩⟨ l ⟩ A ^ rA)
→ ∃ λ B → ΠNorm B × Γ ⊢ B ^ rA × Γ ⊢ A ⇒*Π B ^ rA
doΠNorm′ (Uᵣ (Uᵣ r l′ l< PE.refl [[ A , U , d ]])) = Univ r l′ , Uₙ , Ugenⱼ (wf A) , regular* d
doΠNorm′ (ℕᵣ [[ ⊢A , ⊢B , D ]]) = ℕ , ℕₙ , ⊢B , regular* D
doΠNorm′ (Emptyᵣ {l = l} [[ ⊢A , ⊢B , D ]]) = Empty l , Emptyₙ , ⊢B , regular* D
doΠNorm′ (ne′ K [[ ⊢A , ⊢B , D ]] neK K≡K) = K , ne neK , ⊢B , regular* D
doΠNorm′ (Πᵣ′ rF lF lG lF≤ lG≤ F G [[ ⊢A , ⊢B , D ]] ⊢F ⊢G A≡A [F] [G] G-ext) =
let redF₀ , red₀ = reducibleTerm (var (wf ⊢G) here)
[F]′ = irrelevanceTerm redF₀ ([F] (step id) (wf ⊢G)) red₀
G′ , nG′ , ⊢G′ , D′ = PE.subst (λ G′ → ∃ λ B → ΠNorm B × _ ⊢ B ^ _ × _ ⊢ G′ ⇒*Π B ^ _)
(wkSingleSubstId _)
(doΠNorm′ ([G] (step id) (wf ⊢G) [F]′))
in Π F ^ rF ° lF ▹ G′ ° lG ° _ , Πₙ nG′ , univ (Πⱼ lF≤ ▹ lG≤ ▹ (un-univ ⊢F) ▹ (un-univ ⊢G′)) , regular* D ⇨* deep* D′
doΠNorm′ (∃ᵣ′ F G D ⊢F ⊢G A≡A [F] [G] G-ext) =
let F′ , nF′ , ⊢F′ , D′ = doΠNorm′ ([F] id (wf ⊢F))
DD = (PE.subst (λ FF → _ ⊢ FF ⇒*Π F′ ^ _ ) (wk-id _) D′)
F≡F′ = deep*-correct ⊢F DD
in ∃ F′ ▹ G , ∃ₙ nF′ , univ (∃ⱼ un-univ ⊢F′ ▹ un-univ (stability (reflConEq (wf ⊢F) ∙ F≡F′) ⊢G)) ,
regular* (red D) ⇨* deep∃* DD
doΠNorm′ (emb emb< [A]) = doΠNorm′ [A]
doΠNorm′ (emb ∞< [A]) = doΠNorm′ [A]
doΠNorm : ∀ {A rA Γ} → Γ ⊢ A ^ rA
→ ∃ λ B → ΠNorm B × Γ ⊢ B ^ rA × Γ ⊢ A ⇒*Π B ^ rA
doΠNorm ⊢A = doΠNorm′ (reducible ⊢A)
ΠNorm-whnf : ∀ {A} → ΠNorm A → Whnf A
ΠNorm-whnf Uₙ = Uₙ
ΠNorm-whnf (Πₙ _) = Πₙ
ΠNorm-whnf (∃ₙ _) = ∃ₙ
ΠNorm-whnf ℕₙ = ℕₙ
ΠNorm-whnf Emptyₙ = Emptyₙ
ΠNorm-whnf (ne x) = ne x
ΠNorm-noredTerm : ∀ {Γ A B T r} → Γ ⊢ A ⇒Π B ∷ T ^ r → ΠNorm A → ⊥
ΠNorm-noredTerm (regular x) w = whnfRedTerm x (ΠNorm-whnf w)
ΠNorm-noredTerm (deepΠ x) (Πₙ w) = ΠNorm-noredTerm x w
ΠNorm-noredTerm (deepΠ x) (ne ())
ΠNorm-noredTerm (deep∃ x) (∃ₙ w) = ΠNorm-noredTerm x w
ΠNorm-noredTerm (deep∃ x) (ne ())
ΠNorm-nored : ∀ {Γ A B r} → Γ ⊢ A ⇒Π B ^ r → ΠNorm A → ⊥
ΠNorm-nored (univ x) w = ΠNorm-noredTerm x w
detΠRedTerm : ∀ {Γ A B B′ T T′ r r'} → Γ ⊢ A ⇒Π B ∷ T ^ r → Γ ⊢ A ⇒Π B′ ∷ T′ ^ r' → B PE.≡ B′
detΠRedTerm (regular x) (regular x₁) = whrDetTerm x x₁
detΠRedTerm (regular x) (deepΠ y) = ⊥-elim (whnfRedTerm x Πₙ)
detΠRedTerm (deepΠ x) (regular x₁) = ⊥-elim (whnfRedTerm x₁ Πₙ)
detΠRedTerm (deepΠ x) (deepΠ y) = PE.cong _ (detΠRedTerm x y)
detΠRedTerm (regular x) (deep∃ y) = ⊥-elim (whnfRedTerm x ∃ₙ)
detΠRedTerm (deep∃ x) (regular x₁) = ⊥-elim (whnfRedTerm x₁ ∃ₙ)
detΠRedTerm (deep∃ x) (deep∃ y) = PE.cong _ (detΠRedTerm x y)
detΠRed : ∀ {Γ A B B′ r r′} → Γ ⊢ A ⇒Π B ^ r → Γ ⊢ A ⇒Π B′ ^ r′ → B PE.≡ B′
detΠRed (univ x) (univ y) = detΠRedTerm x y
detΠNorm* : ∀ {Γ A B B′ r r′} → ΠNorm B → ΠNorm B′ → Γ ⊢ A ⇒*Π B ^ r → Γ ⊢ A ⇒*Π B′ ^ r′ → B PE.≡ B′
detΠNorm* w w′ id id = PE.refl
detΠNorm* w w′ id (x ⇨ b) = ⊥-elim (ΠNorm-nored x w)
detΠNorm* w w′ (x ⇨ a) id = ⊥-elim (ΠNorm-nored x w′)
detΠNorm* w w′ (x ⇨ a) (x₁ ⇨ b) =
detΠNorm* w w′ a (PE.subst (λ t → _ ⊢ t ⇒*Π _ ^ _) (detΠRed x₁ x) b)
| {
"alphanum_fraction": 0.5190792713,
"avg_line_length": 41.0303030303,
"ext": "agda",
"hexsha": "dd03fc827b5ebe0dc4e6d52eee918f575cad50bf",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2022-02-15T19:42:19.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-01-26T14:55:51.000Z",
"max_forks_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "CoqHott/logrel-mltt",
"max_forks_repo_path": "Definition/Typed/Consequences/PiNorm.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "CoqHott/logrel-mltt",
"max_issues_repo_path": "Definition/Typed/Consequences/PiNorm.agda",
"max_line_length": 130,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "e0eeebc4aa5ed791ce3e7c0dc9531bd113dfcc04",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "CoqHott/logrel-mltt",
"max_stars_repo_path": "Definition/Typed/Consequences/PiNorm.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-17T16:13:53.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-06-21T08:39:01.000Z",
"num_tokens": 4117,
"size": 8124
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Grothendieck where
open import Relation.Binary using (Rel)
open import Data.Product using (Σ; _,_; proj₁; proj₂; _×_)
open import Categories.Support.Experimental
open import Categories.Support.PropositionalEquality
open import Categories.Support.IProduct
import Categories.Category as CCat
open CCat hiding (module Heterogeneous)
open import Categories.Functor using (Functor; module Functor; ≡⇒≣)
open import Categories.Agda
open import Categories.Categories
open import Categories.Congruence
-- TODO: don't use sigmas
-- Break into modules Strict and Weak using Sets and Setoids?
Elements : ∀ {o ℓ e o′} {C : Category o ℓ e} → Functor C (Sets o′) → Category _ _ _
Elements {o′ = o′} {C = C} F = record
{ Obj = Obj′
; _⇒_ = Hom′
; _≡_ = _≡′_
; _∘_ = _∘′_
; id = id , identity
; assoc = assoc
; identityˡ = identityˡ
; identityʳ = identityʳ
; equiv = record
{ refl = refl
; sym = sym
; trans = trans
}
; ∘-resp-≡ = ∘-resp-≡
}
where
open Category C
open Equiv
open Functor F
Obj′ = Σ Obj F₀
Hom′ : Rel Obj′ _
Hom′ (c₁ , x₁) (c₂ , x₂) = Σ′ (c₁ ⇒ c₂) (λ f → F₁ f x₁ ≣ x₂)
_≡′_ : ∀ {X Y} → Rel (Hom′ X Y) _
(f , pf₁) ≡′ (g , pf₂) = f ≡ g
_∘′_ : ∀ {X Y Z} → Hom′ Y Z → Hom′ X Y → Hom′ X Z
_∘′_ {X} {Y} {Z} (f , pf₁) (g , pf₂) = (f ∘ g) , pf
where
-- This could be a lot prettier...
.pf : F₁ (f ∘ g) (proj₂ X) ≣ proj₂ Z
pf = ≣-trans homomorphism (≣-sym (≣-trans (≣-sym pf₁) (≣-cong (F₁ f) (≣-sym pf₂))))
Dom : ∀ {o ℓ e o′} {C : Category o ℓ e} → (F : Functor C (Sets o′)) -> Functor (Elements F) C
Dom {C = C} F = record {
F₀ = proj₁;
F₁ = proj₁′;
identity = Equiv.refl;
homomorphism = Equiv.refl;
F-resp-≡ = λ x → x }
where
open Category C
-- because we want the following function to reduce all the time, define it globally
private
module _ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} (F : Functor C (Categories o′ ℓ′ e′)) where
private
module C = Category C
module F = Functor F
module Cat = Category (Categories o′ ℓ′ e′)
∘-eq : ∀ {cx xx cy cz} -> (f : cy C.⇒ cz) (g : cx C.⇒ cy) -> Functor.F₀ (F.F₁ f Cat.∘ F.F₁ g) xx ≣ Functor.F₀ (F.F₁ (f C.∘ g)) xx
∘-eq {cx} {xx} {cy} {cz} f g = ≣-relevant (≣-sym (≡⇒≣ (F.F₁ (f C.∘ g)) (F.F₁ f Cat.∘ F.F₁ g) (F.homomorphism {f = g} {g = f}) xx))
Grothendieck : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} → Functor C (Categories o′ ℓ′ e′) → Category _ _ _
Grothendieck {o′ = o′} {ℓ′} {e′} {C = C} F = record
{ Obj = Obj′
; _⇒_ = Hom′
; _≡_ = _≡′_
; _∘_ = _∘′_
; id = id′
; assoc = assoc′
; identityˡ = identityˡ′
; identityʳ = identityʳ′
; equiv = record {
refl = refl , Het.refl;
sym = λ { (eq₁ , eq₂) → sym eq₁ , Het.sym eq₂};
trans = λ { (xeq₁ , xeq₂) (yeq₁ , yeq₂) → trans xeq₁ yeq₁ , Het.trans xeq₂ yeq₂} }
; ∘-resp-≡ = ∘-resp-≡′
}
module Groth where
open Functor F
module Fc {c} where
open Category (F₀ c) public
open Equiv public
open Category C
open Equiv
module Cat = Category (Categories o′ ℓ′ e′)
module Cong {c} where
open Congruence (TrivialCongruence (F₀ c)) public
open Cong public using () renaming (coerce to coe)
module Het {c} = Heterogeneous (TrivialCongruence (F₀ c))
open Het using (▹_)
module OHet {c} where
open CCat.Heterogeneous (F₀ c) public
ohet⇒het : ∀ {A B} {f : A Fc.⇒ B} -> ∀ {X Y} → {g : X Fc.⇒ Y} → f ∼ g -> f Het.∼ g
ohet⇒het (≡⇒∼ x) = Het.≡⇒∼ ≣-refl ≣-refl x
Obj′ = Σ Obj (\ c -> Category.Obj (F₀ c))
Hom′ : Rel Obj′ _
Hom′ (c₁ , x₁) (c₂ , x₂) = Σ (c₁ ⇒ c₂) (λ f → Functor.F₀ (F₁ f) x₁ Fc.⇒ x₂)
_≡′_ : ∀ {X Y} → Rel (Hom′ X Y) _
_≡′_ {c₁ , x₁} {c₂ , x₂} (f , α) (g , β) = f ≡ g × α Het.∼ β
_∘′_ : ∀ {X Y Z} → Hom′ Y Z → Hom′ X Y → Hom′ X Z
_∘′_ {cx , xx} {Y} {cz , xz} (f , α) (g , β) = (f ∘ g) , α Fc.∘ Cong.coerce (∘-eq F f g) ≣-refl (Functor.F₁ (F₁ f) β)
id-eq : ∀ {c x} -> Functor.F₀ (Cat.id {F₀ c}) x ≣ Functor.F₀ (F₁ id) x
id-eq {c} {x} = ≣-relevant (≣-sym (≡⇒≣ (F₁ id) Cat.id (identity {c}) x))
id′ : {A : Obj′} → Hom′ A A
id′ {c , x} = id , Cong.coerce id-eq ≣-refl Fc.id
F-resp-∼ : ∀ {b c} -> (H : Functor (F₀ b) (F₀ c)) -> {A B A' B' : Category.Obj (F₀ b)} {α : A Fc.⇒ B }{β : A' Fc.⇒ B'} →
(α Het.∼ β) → (Functor.F₁ H α Het.∼ Functor.F₁ H β)
F-resp-∼ H (Heterogeneous.≡⇒∼ ≣-refl ≣-refl x) = Heterogeneous.≡⇒∼ ≣-refl ≣-refl (Functor.F-resp-≡ H x)
.identityˡ′ : {A B : Obj′} {f : Hom′ A B} → (id′ ∘′ f) ≡′ f
identityˡ′ {ca , xa} {cb , xb} {f , α} = identityˡ , (begin
▹ coe id-eq ≣-refl Fc.id Fc.∘ coe (∘-eq F id f) ≣-refl (Functor.F₁ (F₁ id) α)
↓⟨ Het.∘-resp-∼ (Het.sym (Het.coerce-resp-∼ id-eq ≣-refl)) F₁id[α]~α ⟩
▹ Fc.id Fc.∘ α
↓⟨ Het.≡⇒∼ ≣-refl ≣-refl Fc.identityˡ ⟩
▹ α
∎)
where
open Het.HetReasoning
F₁id[α]~α : coe (∘-eq F id f) ≣-refl (Functor.F₁ (F₁ id) α) Het.∼ α
F₁id[α]~α = begin
▹ coe (∘-eq F id f) ≣-refl (Functor.F₁ (F₁ id) α)
↑⟨ Het.coerce-resp-∼ (∘-eq F id f) ≣-refl ⟩
▹ Functor.F₁ (F₁ id) α
↓⟨ OHet.ohet⇒het (identity α) ⟩
▹ α
∎
.identityʳ′ : {A B : Obj′} {f : Hom′ A B} → (f ∘′ id′) ≡′ f
identityʳ′ {ca , xa} {cb , xb} {f , α} = identityʳ , (begin
▹ α Fc.∘ coe (∘-eq F f id) ≣-refl (Functor.F₁ (F₁ f) (coe id-eq ≣-refl Fc.id))
↓⟨ Het.∘-resp-∼ʳ F₁f[id]~id ⟩
▹ α Fc.∘ Fc.id
↓⟨ Het.≡⇒∼ ≣-refl ≣-refl Fc.identityʳ ⟩
▹ α
∎)
where
open Het.HetReasoning
F₁f[id]~id : coe (∘-eq F f id) ≣-refl (Functor.F₁ (F₁ f) (coe id-eq ≣-refl Fc.id)) Het.∼ Fc.id
F₁f[id]~id = begin
▹ coe (∘-eq F f id) ≣-refl (Functor.F₁ (F₁ f) (coe id-eq ≣-refl Fc.id))
↑⟨ Het.coerce-resp-∼ (∘-eq F f id) ≣-refl ⟩
▹ Functor.F₁ (F₁ f) (coe id-eq ≣-refl Fc.id)
↓⟨ F-resp-∼ (F₁ f) (Het.sym (Het.coerce-resp-∼ id-eq ≣-refl)) ⟩
▹ Functor.F₁ (F₁ f) (Category.id (F₀ ca))
↓⟨ Het.≡⇒∼ ≣-refl ≣-refl (Functor.identity (F₁ f)) ⟩
▹ Fc.id
∎
.assoc′ : {A B C₁ D : Obj′} {f : Hom′ A B} {g : Hom′ B C₁} {h : Hom′ C₁ D} →
((h ∘′ g) ∘′ f) ≡′ (h ∘′ (g ∘′ f))
assoc′ {ca , xa} {cb , xb} {cc , xc} {cd , xd} {f , α} {g , β} {h , γ}
= assoc , Het.trans (Het.≡⇒∼ ≣-refl ≣-refl Fc.assoc) (Het.∘-resp-∼ʳ F₁h[β]∘F₁h∘g[α]~F₁h[β∘F₁g[α]])
where
open Het.HetReasoning
eq : Functor.F₀ (F₁ ((h ∘ g) ∘ f)) xa ≣ Functor.F₀ (F₁ (h ∘ g ∘ f)) xa
eq = ≡⇒≣ (F₁ ((h ∘ g) ∘ f)) (F₁ (h ∘ g ∘ f)) (F-resp-≡ (assoc {f = f})) xa
F₁h[β]∘F₁h∘g[α]~F₁h[β∘F₁g[α]] : (coe (∘-eq F h g) ≣-refl (Functor.F₁ (F₁ h) β) Fc.∘ coe (∘-eq F (h ∘ g) f) ≣-refl (Functor.F₁ (F₁ (h ∘ g)) α))
Het.∼ (coe (∘-eq F h (g ∘ f)) ≣-refl (Functor.F₁ (F₁ h) (proj₂ ((g , β) ∘′ (f , α)))))
F₁h[β]∘F₁h∘g[α]~F₁h[β∘F₁g[α]] = Het.sym (begin
▹ coe (∘-eq F h (g ∘ f)) ≣-refl (Functor.F₁ (F₁ h) (β Fc.∘ coe(∘-eq F g f) ≣-refl (Functor.F₁ (F₁ g) α)))
↑⟨ Het.coerce-resp-∼ (∘-eq F h (g ∘ f)) ≣-refl ⟩
▹ Functor.F₁ (F₁ h) (β Fc.∘ coe (∘-eq F g f) ≣-refl (Functor.F₁ (F₁ g) α))
↓⟨ Het.≡⇒∼ ≣-refl ≣-refl (Functor.homomorphism (F₁ h)) ⟩
▹ Functor.F₁ (F₁ h) β Fc.∘ (Functor.F₁ (F₁ h) (coe (∘-eq F g f) ≣-refl (Functor.F₁ (F₁ g) α)))
↓⟨ Het.∘-resp-∼ (Het.coerce-resp-∼ (∘-eq F h g) ≣-refl) F₁h[β]~F₁h∘g[α] ⟩
▹ coe (∘-eq F h g) ≣-refl (Functor.F₁ (F₁ h) β) Fc.∘ coe (∘-eq F (h ∘ g) f) ≣-refl (Functor.F₁ (F₁ (h ∘ g)) α)
∎)
where
F₁h[β]~F₁h∘g[α] : (Functor.F₁ (F₁ h) (coe (∘-eq F g f) ≣-refl (Functor.F₁ (F₁ g) α))) Het.∼ coe (∘-eq F (h ∘ g) f) ≣-refl (Functor.F₁ (F₁ (h ∘ g)) α)
F₁h[β]~F₁h∘g[α] = begin
▹ Functor.F₁ (F₁ h) (coe (∘-eq F g f) ≣-refl (Functor.F₁ (F₁ g) α))
↓⟨ F-resp-∼ (F₁ h) (Het.sym (Het.coerce-resp-∼ (∘-eq F g f) ≣-refl)) ⟩
▹ Functor.F₁ (F₁ h) (Functor.F₁ (F₁ g) α)
↑⟨ OHet.ohet⇒het (homomorphism α) ⟩
▹ Functor.F₁ (F₁ (h ∘ g)) α
↓⟨ Het.coerce-resp-∼ (∘-eq F (h ∘ g) f) ≣-refl ⟩
▹ coe (∘-eq F (h ∘ g) f) ≣-refl (Functor.F₁ (F₁ (h ∘ g)) α)
∎
.∘-resp-≡′ : {A B C₁ : Obj′} {f h : Hom′ B C₁} {g i : Hom′ A B} →
f ≡′ h → g ≡′ i → (f ∘′ g) ≡′ (h ∘′ i)
∘-resp-≡′ {a , ax} {b , bx} {c , cx} {f = f , α} {h , η} {g , γ} {i , ι} (f≡h , α~η) (g≡i , γ~ι) = ∘-resp-≡ f≡h g≡i , Het.∘-resp-∼ α~η
(begin
▹ coe (∘-eq F f g) ≣-refl (Functor.F₁ (F₁ f) γ) ↑⟨ Het.coerce-resp-∼ (∘-eq F f g) ≣-refl ⟩
▹ Functor.F₁ (F₁ f) γ ↓⟨ OHet.ohet⇒het (F-resp-≡ f≡h γ) ⟩
▹ Functor.F₁ (F₁ h) γ ↓⟨ F-resp-∼ (F₁ h) γ~ι ⟩
▹ Functor.F₁ (F₁ h) ι ↓⟨ Het.coerce-resp-∼ (∘-eq F h i) ≣-refl ⟩
▹ coe (∘-eq F h i) ≣-refl (Functor.F₁ (F₁ h) ι) ∎)
where
open Het.HetReasoning
Gr = Grothendieck
DomGr : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} → (F : Functor C (Categories o′ ℓ′ e′)) → Functor (Grothendieck F) C
DomGr {C = C} F = record {
F₀ = proj₁;
F₁ = proj₁;
identity = C.Equiv.refl;
homomorphism = C.Equiv.refl;
F-resp-≡ = proj₁ }
where
module C = Category C
inGr : ∀ {o ℓ e o′ ℓ′ e′} {C : Category o ℓ e} (F : Functor C (Categories o′ ℓ′ e′)) → ∀ c -> Functor (Functor.F₀ F c) (Gr F)
inGr {C = C} F c = record {
F₀ = _,_ c;
F₁ = λ f → C.id , GrF.coe GrF.id-eq ≣-refl f;
identity = Category.Equiv.refl (Grothendieck F);
homomorphism = C.Equiv.sym C.identityʳ , Het.trans (Het.sym (Het.coerce-resp-∼ GrF.id-eq ≣-refl))
(Het.∘-resp-∼ (Het.coerce-resp-∼ GrF.id-eq ≣-refl)
(Het.trans
(Het.trans (Het.coerce-resp-∼ GrF.id-eq ≣-refl)
(Het.sym (GrF.OHet.ohet⇒het (F.identity _))))
(Het.coerce-resp-∼ (∘-eq F C.id C.id) ≣-refl)));
F-resp-≡ = λ x → C.Equiv.refl , (Het.trans (Het.trans (Het.sym (Het.coerce-resp-∼ GrF.id-eq ≣-refl))
(Heterogeneous.≡⇒∼ ≣-refl ≣-refl x)) (Het.coerce-resp-∼ GrF.id-eq ≣-refl)) }
where
module C = Category C
module F = Functor F
module GrF = Groth F
open GrF using (module Het; module Cong)
| {
"alphanum_fraction": 0.4780738663,
"avg_line_length": 43.2995951417,
"ext": "agda",
"hexsha": "4d72918e7e7a2dbbd5e749b9501ed6eab8e85678",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "p-pavel/categories",
"max_forks_repo_path": "Categories/Grothendieck.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "e41aef56324a9f1f8cf3cd30b2db2f73e01066f2",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "p-pavel/categories",
"max_issues_repo_path": "Categories/Grothendieck.agda",
"max_line_length": 155,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Grothendieck.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 4943,
"size": 10695
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- A bunch of properties
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Bool.Properties where
open import Algebra
open import Data.Bool.Base
open import Data.Empty
open import Data.Product
open import Data.Sum
open import Function
open import Function.Equality using (_⟨$⟩_)
open import Function.Equivalence
using (_⇔_; equivalence; module Equivalence)
open import Level using (0ℓ)
open import Relation.Binary.Core using (Decidable)
open import Relation.Binary.PropositionalEquality hiding ([_])
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (True)
open import Relation.Unary as U using (Irrelevant)
open import Algebra.FunctionProperties (_≡_ {A = Bool})
open import Algebra.Structures (_≡_ {A = Bool})
open ≡-Reasoning
------------------------------------------------------------------------
-- Queries
infix 4 _≟_
_≟_ : Decidable {A = Bool} _≡_
true ≟ true = yes refl
false ≟ false = yes refl
true ≟ false = no λ()
false ≟ true = no λ()
------------------------------------------------------------------------
-- Properties of _∨_
∨-assoc : Associative _∨_
∨-assoc true y z = refl
∨-assoc false y z = refl
∨-comm : Commutative _∨_
∨-comm true true = refl
∨-comm true false = refl
∨-comm false true = refl
∨-comm false false = refl
∨-identityˡ : LeftIdentity false _∨_
∨-identityˡ _ = refl
∨-identityʳ : RightIdentity false _∨_
∨-identityʳ false = refl
∨-identityʳ true = refl
∨-identity : Identity false _∨_
∨-identity = ∨-identityˡ , ∨-identityʳ
∨-zeroˡ : LeftZero true _∨_
∨-zeroˡ _ = refl
∨-zeroʳ : RightZero true _∨_
∨-zeroʳ false = refl
∨-zeroʳ true = refl
∨-zero : Zero true _∨_
∨-zero = ∨-zeroˡ , ∨-zeroʳ
∨-inverseˡ : LeftInverse true not _∨_
∨-inverseˡ false = refl
∨-inverseˡ true = refl
∨-inverseʳ : RightInverse true not _∨_
∨-inverseʳ x = ∨-comm x (not x) ⟨ trans ⟩ ∨-inverseˡ x
∨-inverse : Inverse true not _∨_
∨-inverse = ∨-inverseˡ , ∨-inverseʳ
∨-idem : Idempotent _∨_
∨-idem false = refl
∨-idem true = refl
∨-sel : Selective _∨_
∨-sel false y = inj₂ refl
∨-sel true y = inj₁ refl
∨-isMagma : IsMagma _∨_
∨-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _∨_
}
∨-magma : Magma 0ℓ 0ℓ
∨-magma = record
{ isMagma = ∨-isMagma
}
∨-isSemigroup : IsSemigroup _∨_
∨-isSemigroup = record
{ isMagma = ∨-isMagma
; assoc = ∨-assoc
}
∨-semigroup : Semigroup 0ℓ 0ℓ
∨-semigroup = record
{ isSemigroup = ∨-isSemigroup
}
∨-isBand : IsBand _∨_
∨-isBand = record
{ isSemigroup = ∨-isSemigroup
; idem = ∨-idem
}
∨-band : Band 0ℓ 0ℓ
∨-band = record
{ isBand = ∨-isBand
}
∨-isSemilattice : IsSemilattice _∨_
∨-isSemilattice = record
{ isBand = ∨-isBand
; comm = ∨-comm
}
∨-semilattice : Semilattice 0ℓ 0ℓ
∨-semilattice = record
{ isSemilattice = ∨-isSemilattice
}
∨-isCommutativeMonoid : IsCommutativeMonoid _∨_ false
∨-isCommutativeMonoid = record
{ isSemigroup = ∨-isSemigroup
; identityˡ = ∨-identityˡ
; comm = ∨-comm
}
∨-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
∨-commutativeMonoid = record
{ isCommutativeMonoid = ∨-isCommutativeMonoid
}
∨-isIdempotentCommutativeMonoid :
IsIdempotentCommutativeMonoid _∨_ false
∨-isIdempotentCommutativeMonoid = record
{ isCommutativeMonoid = ∨-isCommutativeMonoid
; idem = ∨-idem
}
∨-idempotentCommutativeMonoid : IdempotentCommutativeMonoid 0ℓ 0ℓ
∨-idempotentCommutativeMonoid = record
{ isIdempotentCommutativeMonoid = ∨-isIdempotentCommutativeMonoid
}
------------------------------------------------------------------------
-- Properties of _∧_
∧-assoc : Associative _∧_
∧-assoc true y z = refl
∧-assoc false y z = refl
∧-comm : Commutative _∧_
∧-comm true true = refl
∧-comm true false = refl
∧-comm false true = refl
∧-comm false false = refl
∧-identityˡ : LeftIdentity true _∧_
∧-identityˡ _ = refl
∧-identityʳ : RightIdentity true _∧_
∧-identityʳ false = refl
∧-identityʳ true = refl
∧-identity : Identity true _∧_
∧-identity = ∧-identityˡ , ∧-identityʳ
∧-zeroˡ : LeftZero false _∧_
∧-zeroˡ _ = refl
∧-zeroʳ : RightZero false _∧_
∧-zeroʳ false = refl
∧-zeroʳ true = refl
∧-zero : Zero false _∧_
∧-zero = ∧-zeroˡ , ∧-zeroʳ
∧-inverseˡ : LeftInverse false not _∧_
∧-inverseˡ false = refl
∧-inverseˡ true = refl
∧-inverseʳ : RightInverse false not _∧_
∧-inverseʳ x = ∧-comm x (not x) ⟨ trans ⟩ ∧-inverseˡ x
∧-inverse : Inverse false not _∧_
∧-inverse = ∧-inverseˡ , ∧-inverseʳ
∧-idem : Idempotent _∧_
∧-idem false = refl
∧-idem true = refl
∧-sel : Selective _∧_
∧-sel false y = inj₁ refl
∧-sel true y = inj₂ refl
∧-distribˡ-∨ : _∧_ DistributesOverˡ _∨_
∧-distribˡ-∨ true y z = refl
∧-distribˡ-∨ false y z = refl
∧-distribʳ-∨ : _∧_ DistributesOverʳ _∨_
∧-distribʳ-∨ x y z = begin
(y ∨ z) ∧ x ≡⟨ ∧-comm (y ∨ z) x ⟩
x ∧ (y ∨ z) ≡⟨ ∧-distribˡ-∨ x y z ⟩
x ∧ y ∨ x ∧ z ≡⟨ cong₂ _∨_ (∧-comm x y) (∧-comm x z) ⟩
y ∧ x ∨ z ∧ x ∎
∧-distrib-∨ : _∧_ DistributesOver _∨_
∧-distrib-∨ = ∧-distribˡ-∨ , ∧-distribʳ-∨
∨-distribˡ-∧ : _∨_ DistributesOverˡ _∧_
∨-distribˡ-∧ true y z = refl
∨-distribˡ-∧ false y z = refl
∨-distribʳ-∧ : _∨_ DistributesOverʳ _∧_
∨-distribʳ-∧ x y z = begin
(y ∧ z) ∨ x ≡⟨ ∨-comm (y ∧ z) x ⟩
x ∨ (y ∧ z) ≡⟨ ∨-distribˡ-∧ x y z ⟩
(x ∨ y) ∧ (x ∨ z) ≡⟨ cong₂ _∧_ (∨-comm x y) (∨-comm x z) ⟩
(y ∨ x) ∧ (z ∨ x) ∎
∨-distrib-∧ : _∨_ DistributesOver _∧_
∨-distrib-∧ = ∨-distribˡ-∧ , ∨-distribʳ-∧
∧-abs-∨ : _∧_ Absorbs _∨_
∧-abs-∨ true y = refl
∧-abs-∨ false y = refl
∨-abs-∧ : _∨_ Absorbs _∧_
∨-abs-∧ true y = refl
∨-abs-∧ false y = refl
∨-∧-absorptive : Absorptive _∨_ _∧_
∨-∧-absorptive = ∨-abs-∧ , ∧-abs-∨
∧-isMagma : IsMagma _∧_
∧-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _∧_
}
∧-magma : Magma 0ℓ 0ℓ
∧-magma = record
{ isMagma = ∧-isMagma
}
∧-isSemigroup : IsSemigroup _∧_
∧-isSemigroup = record
{ isMagma = ∧-isMagma
; assoc = ∧-assoc
}
∧-semigroup : Semigroup 0ℓ 0ℓ
∧-semigroup = record
{ isSemigroup = ∧-isSemigroup
}
∧-isBand : IsBand _∧_
∧-isBand = record
{ isSemigroup = ∧-isSemigroup
; idem = ∧-idem
}
∧-band : Band 0ℓ 0ℓ
∧-band = record
{ isBand = ∧-isBand
}
∧-isSemilattice : IsSemilattice _∧_
∧-isSemilattice = record
{ isBand = ∧-isBand
; comm = ∧-comm
}
∧-semilattice : Semilattice 0ℓ 0ℓ
∧-semilattice = record
{ isSemilattice = ∧-isSemilattice
}
∧-isCommutativeMonoid : IsCommutativeMonoid _∧_ true
∧-isCommutativeMonoid = record
{ isSemigroup = ∧-isSemigroup
; identityˡ = ∧-identityˡ
; comm = ∧-comm
}
∧-commutativeMonoid : CommutativeMonoid 0ℓ 0ℓ
∧-commutativeMonoid = record
{ isCommutativeMonoid = ∧-isCommutativeMonoid
}
∧-isIdempotentCommutativeMonoid :
IsIdempotentCommutativeMonoid _∧_ true
∧-isIdempotentCommutativeMonoid = record
{ isCommutativeMonoid = ∧-isCommutativeMonoid
; idem = ∧-idem
}
∧-idempotentCommutativeMonoid : IdempotentCommutativeMonoid 0ℓ 0ℓ
∧-idempotentCommutativeMonoid = record
{ isIdempotentCommutativeMonoid = ∧-isIdempotentCommutativeMonoid
}
∨-∧-isCommutativeSemiring
: IsCommutativeSemiring _∨_ _∧_ false true
∨-∧-isCommutativeSemiring = record
{ +-isCommutativeMonoid = ∨-isCommutativeMonoid
; *-isCommutativeMonoid = ∧-isCommutativeMonoid
; distribʳ = ∧-distribʳ-∨
; zeroˡ = ∧-zeroˡ
}
∨-∧-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ
∨-∧-commutativeSemiring = record
{ _+_ = _∨_
; _*_ = _∧_
; 0# = false
; 1# = true
; isCommutativeSemiring = ∨-∧-isCommutativeSemiring
}
∧-∨-isCommutativeSemiring
: IsCommutativeSemiring _∧_ _∨_ true false
∧-∨-isCommutativeSemiring = record
{ +-isCommutativeMonoid = ∧-isCommutativeMonoid
; *-isCommutativeMonoid = ∨-isCommutativeMonoid
; distribʳ = ∨-distribʳ-∧
; zeroˡ = ∨-zeroˡ
}
∧-∨-commutativeSemiring : CommutativeSemiring 0ℓ 0ℓ
∧-∨-commutativeSemiring = record
{ _+_ = _∧_
; _*_ = _∨_
; 0# = true
; 1# = false
; isCommutativeSemiring = ∧-∨-isCommutativeSemiring
}
∨-∧-isLattice : IsLattice _∨_ _∧_
∨-∧-isLattice = record
{ isEquivalence = isEquivalence
; ∨-comm = ∨-comm
; ∨-assoc = ∨-assoc
; ∨-cong = cong₂ _∨_
; ∧-comm = ∧-comm
; ∧-assoc = ∧-assoc
; ∧-cong = cong₂ _∧_
; absorptive = ∨-∧-absorptive
}
∨-∧-lattice : Lattice 0ℓ 0ℓ
∨-∧-lattice = record
{ isLattice = ∨-∧-isLattice
}
∨-∧-isDistributiveLattice : IsDistributiveLattice _∨_ _∧_
∨-∧-isDistributiveLattice = record
{ isLattice = ∨-∧-isLattice
; ∨-∧-distribʳ = ∨-distribʳ-∧
}
∨-∧-distributiveLattice : DistributiveLattice 0ℓ 0ℓ
∨-∧-distributiveLattice = record
{ isDistributiveLattice = ∨-∧-isDistributiveLattice
}
∨-∧-isBooleanAlgebra : IsBooleanAlgebra _∨_ _∧_ not true false
∨-∧-isBooleanAlgebra = record
{ isDistributiveLattice = ∨-∧-isDistributiveLattice
; ∨-complementʳ = ∨-inverseʳ
; ∧-complementʳ = ∧-inverseʳ
; ¬-cong = cong not
}
∨-∧-booleanAlgebra : BooleanAlgebra 0ℓ 0ℓ
∨-∧-booleanAlgebra = record
{ isBooleanAlgebra = ∨-∧-isBooleanAlgebra
}
------------------------------------------------------------------------
-- Properties of _xor_
xor-is-ok : ∀ x y → x xor y ≡ (x ∨ y) ∧ not (x ∧ y)
xor-is-ok true y = refl
xor-is-ok false y = sym (∧-identityʳ _)
xor-∧-commutativeRing : CommutativeRing 0ℓ 0ℓ
xor-∧-commutativeRing = commutativeRing
where
import Algebra.Properties.BooleanAlgebra as BA
open BA ∨-∧-booleanAlgebra
open XorRing _xor_ xor-is-ok
------------------------------------------------------------------------
-- Miscellaneous other properties
not-involutive : Involutive not
not-involutive true = refl
not-involutive false = refl
not-¬ : ∀ {x y} → x ≡ y → x ≢ not y
not-¬ {true} refl ()
not-¬ {false} refl ()
¬-not : ∀ {x y} → x ≢ y → x ≡ not y
¬-not {true} {true} x≢y = ⊥-elim (x≢y refl)
¬-not {true} {false} _ = refl
¬-not {false} {true} _ = refl
¬-not {false} {false} x≢y = ⊥-elim (x≢y refl)
⇔→≡ : {b₁ b₂ b : Bool} → b₁ ≡ b ⇔ b₂ ≡ b → b₁ ≡ b₂
⇔→≡ {true } {true } hyp = refl
⇔→≡ {true } {false} {true } hyp = sym (Equivalence.to hyp ⟨$⟩ refl)
⇔→≡ {true } {false} {false} hyp = Equivalence.from hyp ⟨$⟩ refl
⇔→≡ {false} {true } {true } hyp = Equivalence.from hyp ⟨$⟩ refl
⇔→≡ {false} {true } {false} hyp = sym (Equivalence.to hyp ⟨$⟩ refl)
⇔→≡ {false} {false} hyp = refl
T-≡ : ∀ {b} → T b ⇔ b ≡ true
T-≡ {false} = equivalence (λ ()) (λ ())
T-≡ {true} = equivalence (const refl) (const _)
T-not-≡ : ∀ {b} → T (not b) ⇔ b ≡ false
T-not-≡ {false} = equivalence (const refl) (const _)
T-not-≡ {true} = equivalence (λ ()) (λ ())
T-∧ : ∀ {b₁ b₂} → T (b₁ ∧ b₂) ⇔ (T b₁ × T b₂)
T-∧ {true} {true} = equivalence (const (_ , _)) (const _)
T-∧ {true} {false} = equivalence (λ ()) proj₂
T-∧ {false} {_} = equivalence (λ ()) proj₁
T-∨ : ∀ {b₁ b₂} → T (b₁ ∨ b₂) ⇔ (T b₁ ⊎ T b₂)
T-∨ {true} {b₂} = equivalence inj₁ (const _)
T-∨ {false} {true} = equivalence inj₂ (const _)
T-∨ {false} {false} = equivalence inj₁ [ id , id ]
T-irrelevant : Irrelevant T
T-irrelevant {true} _ _ = refl
T-irrelevant {false} () ()
T? : U.Decidable T
T? true = yes _
T? false = no (λ ())
T?-diag : ∀ b → T b → True (T? b)
T?-diag true _ = _
T?-diag false ()
push-function-into-if :
∀ {a b} {A : Set a} {B : Set b} (f : A → B) x {y z} →
f (if x then y else z) ≡ (if x then f y else f z)
push-function-into-if _ true = refl
push-function-into-if _ false = refl
------------------------------------------------------------------------
-- DEPRECATED NAMES
------------------------------------------------------------------------
-- Please use the new names as continuing support for the old names is
-- not guaranteed.
-- Version 0.15
∧-∨-distˡ = ∧-distribˡ-∨
{-# WARNING_ON_USAGE ∧-∨-distˡ
"Warning: ∧-∨-distˡ was deprecated in v0.15.
Please use ∧-distribˡ-∨ instead."
#-}
∧-∨-distʳ = ∧-distribʳ-∨
{-# WARNING_ON_USAGE ∧-∨-distʳ
"Warning: ∧-∨-distʳ was deprecated in v0.15.
Please use ∧-distribʳ-∨ instead."
#-}
distrib-∧-∨ = ∧-distrib-∨
{-# WARNING_ON_USAGE distrib-∧-∨
"Warning: distrib-∧-∨ was deprecated in v0.15.
Please use ∧-distrib-∨ instead."
#-}
∨-∧-distˡ = ∨-distribˡ-∧
{-# WARNING_ON_USAGE ∨-∧-distˡ
"Warning: ∨-∧-distˡ was deprecated in v0.15.
Please use ∨-distribˡ-∧ instead."
#-}
∨-∧-distʳ = ∨-distribʳ-∧
{-# WARNING_ON_USAGE ∨-∧-distʳ
"Warning: ∨-∧-distʳ was deprecated in v0.15.
Please use ∨-distribʳ-∧ instead."
#-}
∨-∧-distrib = ∨-distrib-∧
{-# WARNING_ON_USAGE ∨-∧-distrib
"Warning: ∨-∧-distrib was deprecated in v0.15.
Please use ∨-distrib-∧ instead."
#-}
∨-∧-abs = ∨-abs-∧
{-# WARNING_ON_USAGE ∨-∧-abs
"Warning: ∨-∧-abs was deprecated in v0.15.
Please use ∨-abs-∧ instead."
#-}
∧-∨-abs = ∧-abs-∨
{-# WARNING_ON_USAGE ∧-∨-abs
"Warning: ∧-∨-abs was deprecated in v0.15.
Please use ∧-abs-∨ instead."
#-}
not-∧-inverseˡ = ∧-inverseˡ
{-# WARNING_ON_USAGE not-∧-inverseˡ
"Warning: not-∧-inverseˡ was deprecated in v0.15.
Please use ∧-inverseˡ instead."
#-}
not-∧-inverseʳ = ∧-inverseʳ
{-# WARNING_ON_USAGE not-∧-inverseʳ
"Warning: not-∧-inverseʳ was deprecated in v0.15.
Please use ∧-inverseʳ instead."
#-}
not-∧-inverse = ∧-inverse
{-# WARNING_ON_USAGE not-∧-inverse
"Warning: not-∧-inverse was deprecated in v0.15.
Please use ∧-inverse instead."
#-}
not-∨-inverseˡ = ∨-inverseˡ
{-# WARNING_ON_USAGE not-∨-inverseˡ
"Warning: not-∨-inverseˡ was deprecated in v0.15.
Please use ∨-inverseˡ instead."
#-}
not-∨-inverseʳ = ∨-inverseʳ
{-# WARNING_ON_USAGE not-∨-inverseʳ
"Warning: not-∨-inverseʳ was deprecated in v0.15.
Please use ∨-inverseʳ instead."
#-}
not-∨-inverse = ∨-inverse
{-# WARNING_ON_USAGE not-∨-inverse
"Warning: not-∨-inverse was deprecated in v0.15.
Please use ∨-inverse instead."
#-}
isCommutativeSemiring-∨-∧ = ∨-∧-isCommutativeSemiring
{-# WARNING_ON_USAGE isCommutativeSemiring-∨-∧
"Warning: isCommutativeSemiring-∨-∧ was deprecated in v0.15.
Please use ∨-∧-isCommutativeSemiring instead."
#-}
commutativeSemiring-∨-∧ = ∨-∧-commutativeSemiring
{-# WARNING_ON_USAGE commutativeSemiring-∨-∧
"Warning: commutativeSemiring-∨-∧ was deprecated in v0.15.
Please use ∨-∧-commutativeSemiring instead."
#-}
isCommutativeSemiring-∧-∨ = ∧-∨-isCommutativeSemiring
{-# WARNING_ON_USAGE isCommutativeSemiring-∧-∨
"Warning: isCommutativeSemiring-∧-∨ was deprecated in v0.15.
Please use ∧-∨-isCommutativeSemiring instead."
#-}
commutativeSemiring-∧-∨ = ∧-∨-commutativeSemiring
{-# WARNING_ON_USAGE commutativeSemiring-∧-∨
"Warning: commutativeSemiring-∧-∨ was deprecated in v0.15.
Please use ∧-∨-commutativeSemiring instead."
#-}
isBooleanAlgebra = ∨-∧-isBooleanAlgebra
{-# WARNING_ON_USAGE isBooleanAlgebra
"Warning: isBooleanAlgebra was deprecated in v0.15.
Please use ∨-∧-isBooleanAlgebra instead."
#-}
booleanAlgebra = ∨-∧-booleanAlgebra
{-# WARNING_ON_USAGE booleanAlgebra
"Warning: booleanAlgebra was deprecated in v0.15.
Please use ∨-∧-booleanAlgebra instead."
#-}
commutativeRing-xor-∧ = xor-∧-commutativeRing
{-# WARNING_ON_USAGE commutativeRing-xor-∧
"Warning: commutativeRing-xor-∧ was deprecated in v0.15.
Please use xor-∧-commutativeRing instead."
#-}
proof-irrelevance = T-irrelevant
{-# WARNING_ON_USAGE proof-irrelevance
"Warning: proof-irrelevance was deprecated in v0.15.
Please use T-irrelevant instead."
#-}
-- Version 1.0
T-irrelevance = T-irrelevant
{-# WARNING_ON_USAGE T-irrelevance
"Warning: T-irrelevance was deprecated in v1.0.
Please use T-irrelevant instead."
#-}
| {
"alphanum_fraction": 0.6190143529,
"avg_line_length": 26.3752093802,
"ext": "agda",
"hexsha": "dbe74a96bc24e03eedbe07963368af5c998822b1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Bool/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Bool/Properties.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Bool/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 6447,
"size": 15746
} |
module STLCSF.Examples where
open import Data.Fin hiding (_+_)
open import Data.Product
open import Data.List
open import Data.List.Membership.Propositional
open import Data.List.Relation.Unary.Any
open import Data.List.Relation.Unary.All
open import Data.Maybe
open import Data.Integer hiding (suc)
-- This file contains a few example programs for the definitional
-- interpreter for STLC using scopes and frames in Section 4.
open import Agda.Builtin.Nat hiding (_+_)
open import Relation.Binary.PropositionalEquality hiding ([_])
-- The identity function: λ x . x
module Id where
open import STLCSF.Semantics 2
open import ScopesFrames.ScopesFrames 2 Ty
-- Whereas Agda can infer the structure of ordinary type contexts,
-- the scope graph library represents scope graphs as "lookup
-- tables". Agda cannot straightforwardly infer the structure of a
-- lookup table. We spell it out.
g : Graph
g zero = [] , [] -- root scope
g (suc n) = [ unit ] , [ zero ] -- lexical scope for lambda
-- Had we used the structural representation discussed in Section
-- 4.2 ("A Note on Scope Representation"), Agda could infer the
-- structure of scope graphs for STLC for us. As summarized in that
-- discussion, such a representation has other shortcomings, e.g.,
-- when it comes to dealing with scope graphs that has actual graph
-- structure (i.e. cyclic paths).
--
-- We assume that programs have been analyzed using the scope graph
-- resolution calculus to construct scope graphs and replace named
-- references with paths in programs. In future work, we will
-- explore how to automate this. For now, we construct scope graphs
-- manually.
-- We load the syntax definition, specialized to our scope graph:
open Syntax g
open UsesGraph g
idexpr : Expr zero (unit ⇒ unit)
idexpr = ƛ {s' = suc zero} (var (path ([]) (here refl)))
open UsesVal Val val-weaken
-- Initial heap with an empty frame that is typed by the root scope:
init-h : Heap [ zero ]
init-h = ([] , []) ∷ []
-- id () = ()
test-idexpr : eval 2 (idexpr · unit) (here refl) init-h ≡ just (_ , _ , unit , _)
test-idexpr = refl
module Curry where
open import STLCSF.Semantics 3
open import ScopesFrames.ScopesFrames 3 Ty
-- Whereas Agda can infer the structure of ordinary type contexts,
-- the scope graph library represents scope graphs as "lookup
-- tables". Agda cannot straightforwardly infer the structure of a
-- lookup table. We spell it out.
g : Graph
g zero = [] , [] -- root scope
g (suc (suc n)) = [ int ] , [ suc zero ] -- lexical scope for inner lambda
g (suc n) = [ int ] , [ zero ] -- lexical scope for outer
-- Had we used the structural representation discussed in Section
-- 4.2 ("A Note on Scope Representation"), Agda could infer the
-- structure of scope graphs for STLC for us. As summarized in that
-- discussion, such a representation has other shortcomings, e.g.,
-- when it comes to dealing with scope graphs that has actual graph
-- structure (i.e. cyclic paths).
--
-- We assume that programs have been analyzed using the scope graph
-- resolution calculus to construct scope graphs and replace named
-- references with paths in programs. In future work, we will
-- explore how to automate this. For now, we construct scope graphs
-- manually.
-- We load the syntax definition, specialized to our scope graph:
open Syntax g
open UsesGraph g
-- curried addition: λ x . λ y . y + x
curry+ : Expr zero (int ⇒ (int ⇒ int))
curry+ = ƛ {s' = suc zero}
(ƛ {s' = suc (suc zero)}
(iop _+_
(var (path [] (here refl)))
(var (path ((here refl) ∷ []) (here refl)))))
open UsesVal Val val-weaken
-- Initial heap with an empty frame that is typed by the root scope:
init-h : Heap [ zero ]
init-h = ([] , []) ∷ []
-- 1 + 1 = 2
test-curry+ : eval 3 ((curry+ · (num (+ 1))) · (num (+ 1))) (here refl) init-h
≡ just (_ , _ , num (+ 2) , _)
test-curry+ = refl
| {
"alphanum_fraction": 0.6660983926,
"avg_line_length": 36.0175438596,
"ext": "agda",
"hexsha": "8494d83f0f4a4a9740226fe9aa9723a59f3f100e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/STLCSF/Examples.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/STLCSF/Examples.agda",
"max_line_length": 83,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/STLCSF/Examples.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 1084,
"size": 4106
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Impl.OBM.Rust.RustTypes
module LibraBFT.Impl.OBM.Rust.Duration where
record Duration : Set where
constructor Duration∙new
postulate -- TODO-1 : fromMillis, asMillis
fromMillis : U64 → Duration
asMillis : Duration → U128
| {
"alphanum_fraction": 0.7636363636,
"avg_line_length": 29.1176470588,
"ext": "agda",
"hexsha": "8f4cfb632cfdc4ca810f6c6ca606f5f29d6daf71",
"lang": "Agda",
"max_forks_count": 6,
"max_forks_repo_forks_event_max_datetime": "2022-02-18T01:04:32.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-12-16T19:43:52.000Z",
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/OBM/Rust/Duration.agda",
"max_issues_count": 72,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": "2022-03-25T05:36:11.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-02-04T05:04:33.000Z",
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/OBM/Rust/Duration.agda",
"max_line_length": 111,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/OBM/Rust/Duration.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-18T19:24:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-16T19:43:41.000Z",
"num_tokens": 137,
"size": 495
} |
module Category.Diagram where
open import Level renaming (suc to lsuc)
open import Equality.Eq
open import Setoid.Total
open import Category.Category
open import Category.Funct
open import Category.Preorder
-- Diagrams are functors from an index category J to a category ℂ. We
-- think of J as the scheme of the diagram in ℂ.
record Diagram {l₁ l₂ : Level} (J : Cat {l₁}) (ℂ : Cat {l₂}) : Set (l₁ ⊔ l₂) where
field
diag : Functor J ℂ
-- A commutative diagram is a diagram from a preorder to a category ℂ.
-- The preorder axiom garauntees that any diagram must commute because
-- there is only one composition. Mixing this with the fact that
-- functors preserve composition implies that there can only be one
-- composition in ℂ. This definition goes against the references --
-- nLab and Awedoy's book -- that comm. diagrams must be functors from
-- posets. In fact we can prove that a PO is enough. See the next
-- module.
record Comm-Diagram {l₁ l₂ : Level} (J : PO {l₁}) (ℂ : Cat {l₂}) : Set (l₁ ⊔ l₂) where
field
diag : Diagram (po-cat J) ℂ
open Comm-Diagram
-- The underlying functor of a diagram.
UFunc : {l l' : Level}{J : PO {l}}{ℂ : Cat {l'}} → Comm-Diagram J ℂ → Functor (po-cat J) ℂ
UFunc D = Diagram.diag (diag D)
-- This module shows that comm. squares can be modeled by POs.
module Commutative-Squares where
open 4PO
record Comm-Square'
{l : Level}
(ℂ : Cat {l})
(om : 4Obj → Obj ℂ)
(g : el (Hom ℂ (om i₁) (om i₂)))
(h : el (Hom ℂ (om i₂) (om i₄)))
(j : el (Hom ℂ (om i₁) (om i₃)))
(k : el (Hom ℂ (om i₃) (om i₄))) : Set l where
field
Sq : {a b : 4Obj {l}} → SetoidFun (4Hom a b) (Hom ℂ (om a) (om b))
sq-max₁ : ⟨ Hom ℂ (om i₁) (om i₂) ⟩[ appT Sq f₁ ≡ g ]
sq-max₂ : ⟨ Hom ℂ (om i₁) (om i₃) ⟩[ appT Sq f₂ ≡ j ]
sq-max₃ : ⟨ Hom ℂ (om i₂) (om i₄) ⟩[ appT Sq f₃ ≡ h ]
sq-max₄ : ⟨ Hom ℂ (om i₃) (om i₄) ⟩[ appT Sq f₄ ≡ k ]
sq-funct-id : {i : 4Obj} → ⟨ Hom ℂ (om i) (om i) ⟩[ appT Sq (4Id {_}{i}) ≡ id ℂ ]
sq-funct-comp : ∀{i j k : 4Obj {l}}{a : el (4Hom i j)}{b : el (4Hom j k)}
→ ⟨ Hom ℂ (om i) (om k) ⟩[ appT Sq (a ○[ 4Comp {l}{i}{j}{k} ] b) ≡ (appT Sq a) ○[ comp ℂ ] (appT Sq b) ]
open Comm-Square'
-- A default function from the objects of the 4PO to the objects of
-- a square in ℂ.
sq-default-om : {l : Level}{ℂ : Cat {l}}
→ Obj ℂ
→ Obj ℂ
→ Obj ℂ
→ Obj ℂ
→ (4Obj {l} → Obj ℂ)
sq-default-om A B D C i₁ = A
sq-default-om A B D C i₂ = B
sq-default-om A B D C i₃ = D
sq-default-om A B D C i₄ = C
-- Commutative squares in ℂ.
Comm-Square : {l : Level}{ℂ : Cat {l}}
→ (A B D C : Obj ℂ)
→ (g : el (Hom ℂ A B))
→ (h : el (Hom ℂ B C))
→ (j : el (Hom ℂ A D))
→ (k : el (Hom ℂ D C))
→ Set l
Comm-Square {_} {ℂ} A B D C g h j k = Comm-Square' ℂ (sq-default-om {_} {ℂ} A B D C) g h j k
-- Commutative squares are functors.
Comm-Square-is-Functor : ∀{l}{ℂ : Cat {l}}{A B D C}
→ {g : el (Hom ℂ A B)}
→ {h : el (Hom ℂ B C)}
→ {j : el (Hom ℂ A D)}
→ {k : el (Hom ℂ D C)}
→ Comm-Square {_} {ℂ} A B D C g h j k
→ Functor {l} 4cat ℂ
Comm-Square-is-Functor {_} {ℂ} {A} {B} {D} {C} {g} {h} {j} {k} sq =
record { omap = sq-default-om {_}{ℂ} A B D C;
fmap = λ {A₁} {B₁} → Sq sq {A₁} {B₁};
idPF = sq-funct-id sq;
compPF = λ {A₁} {B₁} {C₁} {f} {g₁} → sq-funct-comp sq {A₁}{B₁}{C₁}{f}{g₁} }
-- The former now implies that we have a commutative diagram.
Comm-Square-is-Comm-Diagram : ∀{l}{ℂ : Cat {l}}{A B D C}
→ {g : el (Hom ℂ A B)}
→ {h : el (Hom ℂ B C)}
→ {j : el (Hom ℂ A D)}
→ {k : el (Hom ℂ D C)}
→ Comm-Square {_} {ℂ} A B D C g h j k
→ Comm-Diagram {l}{l} 4po ℂ
Comm-Square-is-Comm-Diagram {l}{ℂ}{g}{h}{j}{k} sq =
record { diag = record { diag = Comm-Square-is-Functor sq } }
-- If we have a commutative square, then it commutes in ℂ.
Comm-Square-Commutes : ∀{l}{ℂ : Cat {l}}{A B D C}
→ {g : el (Hom ℂ A B)}
→ {h : el (Hom ℂ B C)}
→ {j : el (Hom ℂ A D)}
→ {k : el (Hom ℂ D C)}
→ Comm-Square {_} {ℂ} A B D C g h j k
→ ⟨ Hom ℂ A C ⟩[ g ○[ comp ℂ ] h ≡ j ○[ comp ℂ ] k ]
Comm-Square-Commutes {l}{ℂ}{A}{B}{D}{C}{g}{h}{j}{k} sq with sq-funct-comp sq {i₁}{i₂}{i₄}{f₁}{f₃} | sq-funct-comp sq {i₁}{i₃}{i₄}{f₂}{f₄}
... | sq-eq₁ | sq-eq₂ with transPf (parEqPf (eqRpf (Hom ℂ A C))) (symPf (parEqPf (eqRpf (Hom ℂ A C))) sq-eq₁) sq-eq₂
... | sq-eq₃ with eq-comp-all {_}{ℂ}{A}{B}{C}{g}
{appT {_}{_}{4Hom i₁ i₂} {Hom ℂ A B} (Sq sq {i₁}{i₂}) f₁}
{h}
{appT (Sq sq {i₂}{i₄}) f₃}
(symPf (parEqPf (eqRpf (Hom ℂ A B))) (sq-max₁ sq))
(symPf (parEqPf (eqRpf (Hom ℂ B C))) (sq-max₃ sq))
... | sq-eq₄ with eq-comp-all {_}{ℂ}{A}{D}{C}
{appT {_}{_}{4Hom i₁ i₃} {Hom ℂ A D} (Sq sq {i₁}{i₃}) f₂}
{j}
{appT (Sq sq {i₃}{i₄}) f₄}
{k}
(sq-max₂ sq)
(sq-max₄ sq)
... | sq-eq₅ with transPf (parEqPf (eqRpf (Hom ℂ A C))) sq-eq₄ sq-eq₃
... | sq-eq₆ = transPf (parEqPf (eqRpf (Hom ℂ A C))) sq-eq₆ sq-eq₅
| {
"alphanum_fraction": 0.5042016807,
"avg_line_length": 40.5481481481,
"ext": "agda",
"hexsha": "5e6f310438245bc5887aac29443b899b6c0f040e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "setoid-cats/Category/Diagram.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "setoid-cats/Category/Diagram.agda",
"max_line_length": 139,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "setoid-cats/Category/Diagram.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2188,
"size": 5474
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Algebra.Ring where
open import Cubical.Algebra.Ring.Base public
open import Cubical.Algebra.Ring.Properties public
open import Cubical.Algebra.Ring.Ideal public
open import Cubical.Algebra.Ring.Kernel public
| {
"alphanum_fraction": 0.8036363636,
"avg_line_length": 34.375,
"ext": "agda",
"hexsha": "7168cab3b15f156bf92dc652a99e8924d766e3b2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Algebra/Ring.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Algebra/Ring.agda",
"max_line_length": 50,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Algebra/Ring.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 69,
"size": 275
} |
{-# OPTIONS --cubical-compatible #-}
module Common.Product where
open import Common.Level
infixr 4 _,_ _,′_
infixr 2 _×_
------------------------------------------------------------------------
-- Definition
record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where
constructor _,_
field
proj₁ : A
proj₂ : B proj₁
open Σ public
syntax Σ A (λ x → B) = Σ[ x ∶ A ] B
∃ : ∀ {a b} {A : Set a} → (A → Set b) → Set (a ⊔ b)
∃ = Σ _
_×_ : ∀ {a b} (A : Set a) (B : Set b) → Set (a ⊔ b)
A × B = Σ[ x ∶ A ] B
_,′_ : ∀ {a b} {A : Set a} {B : Set b} → A → B → A × B
_,′_ = _,_
| {
"alphanum_fraction": 0.4346349745,
"avg_line_length": 19.6333333333,
"ext": "agda",
"hexsha": "adecd5911e729fce8fbb9dc353b6bdc1f99df86b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Common/Product.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Common/Product.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Common/Product.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 233,
"size": 589
} |
-- Andreas, 2011-10-02
module NotApplyingInDontCareTriggersInternalError where
import Common.Irrelevance
postulate
Val : Set
App : Val -> Val -> Val -> Set
Rel = Val -> Val -> Set
Transitive : Rel → Set
Transitive R = ∀ {t1 t2 t3} → R t1 t2 → R t2 t3 → R t1 t3
postulate
LeftReflexive : Rel → Set
RightReflexive : Rel → Set
record PP (R : Rel) : Set where
constructor pp
field
.leftRefl : LeftReflexive R
.rightRefl : RightReflexive R
.trans : Transitive R
open PP public
record Those (P : Val → Set)(R : Rel)(P' : Val → Set) : Set where
constructor those
field
B : Val
B' : Val
PB : P B
PB' : P' B'
RBB' : R B B'
Fam : Rel → Set1
Fam AA = ∀ {a a'} → .(AA a a') → Rel
FamTrans : {AA : Rel}.(TA : Transitive AA)(FF : Fam AA) → Set
FamTrans {AA = AA} TA FF = ∀ {a1 a2 a3}(a12 : AA a1 a2)(a23 : AA a2 a3) →
∀ {b1 b2 b3}(b12 : FF a12 b1 b2)(b23 : FF a23 b2 b3) →
FF (TA a12 a23) b1 b3
Π : (AA : Rel) → Fam AA → Rel
Π AA FF g g' = ∀ {a a'} → .(a≼a' : AA a a') →
Those (App g a) (FF a≼a') (App g' a')
ΠTrans : {AA : Rel}(PA : PP AA){FF : Fam AA}(TF : FamTrans {AA = AA} (trans PA) FF) →
Transitive (Π AA FF)
ΠTrans (pp leftRefl rightRefl trans) TF f12 f23 a≼a' with (leftRefl a≼a')
... | a≼a with f12 a≼a | f23 a≼a'
ΠTrans (pp leftRefl rightRefl trans) TF f12 f23 a≼a' | a≼a | those b1 b2 app1 app2 b1≼b2 | those b2' b3 app2' app3 b2'≼b3 = those b1 b3 app1 app3 ?
-- This should not give the internal error:
--
-- An internal error has occurred. Please report this as a bug.
-- Location of the error: src/full/Agda/TypeChecking/Substitute.hs:50
--
-- Instead it should complain that
--
-- Variable leftRefl is declared irrelevant, so it cannot be used here
-- when checking that the expression leftRefl a≼a' has type
-- _141 leftRefl rightRefl trans TF f12 f23 a≼a'
| {
"alphanum_fraction": 0.6205405405,
"avg_line_length": 29.3650793651,
"ext": "agda",
"hexsha": "4710d17e2df971a0734d86f3fc1e6698bd82e234",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "redfish64/autonomic-agda",
"max_forks_repo_path": "test/Fail/NotApplyingInDontCareTriggersInternalError.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "redfish64/autonomic-agda",
"max_issues_repo_path": "test/Fail/NotApplyingInDontCareTriggersInternalError.agda",
"max_line_length": 147,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Fail/NotApplyingInDontCareTriggersInternalError.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 731,
"size": 1850
} |
{- Proof of the Universal Property of Our Fold -}
module FoldUniv where
open import Function using (id)
open import Data.Unit using (⊤ ; tt) public
open import Data.Empty using (⊥) public
open import Data.Sum using (_⊎_; [_,_]; inj₁ ; inj₂) public
open import Data.Product
open import Data.Nat using (ℕ)
open import Data.Bool using (Bool)
open import Data.List
open import Data.List.Any as Any
open import Data.Product
open Any.Membership-≡ hiding (_⊆_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl; cong)
data PolyF : Set where
Id : PolyF
K1 : PolyF
Kℕ : PolyF
KB : PolyF
_∔_ : (F : PolyF) → (G : PolyF) → PolyF
_⋆_ : (F : PolyF) → (G : PolyF) → PolyF
infixr 30 _⋆_
infixr 20 _∔_
⟦_⟧ : PolyF → Set → Set
⟦_⟧ Id A = A
⟦_⟧ K1 A = ⊤
⟦_⟧ Kℕ A = ℕ
⟦_⟧ KB A = Bool
⟦_⟧ (F ∔ G) A = ⟦ F ⟧ A ⊎ ⟦ G ⟧ A
⟦_⟧ (F ⋆ G) A = ⟦ F ⟧ A × ⟦ G ⟧ A
fmap : ∀ {A B} F → (A → B) → ⟦ F ⟧ A → ⟦ F ⟧ B
fmap Id f = f
fmap K1 f = id
fmap Kℕ f = id
fmap KB f = id
fmap (F ∔ G) f =
Data.Sum.map (fmap F f) (fmap G f)
fmap (F ⋆ G) f =
Data.Product.map (fmap F f) (fmap G f)
Algebras : List PolyF → Set → Set
Algebras [] A = ⊤
Algebras (F ∷ Fs) A = (⟦ F ⟧ A → A) × Algebras Fs A
extract : {F : PolyF} {Fs : List PolyF} {A : Set}
→ F ∈ Fs → Algebras Fs A → (⟦ F ⟧ A → A)
extract (here refl) (f , _ ) = f
extract (there f∈ ) (f , fs) = extract f∈ fs
data μ (Fs : List PolyF) : Set where
In : ∀ {F} → F ∈ Fs → ⟦ F ⟧ (μ Fs) → μ Fs
mutual
fold : ∀ Fs {A} → Algebras Fs A → μ Fs → A
fold Fs fs (In {F} F∈ x) = extract F∈ fs (mapFold Fs fs F x)
mapFold : (Fs : List PolyF) {A : Set}
→ Algebras Fs A → (G : PolyF) → ⟦ G ⟧ (μ Fs) → ⟦ G ⟧ A
mapFold Fs fs Id x = fold Fs fs x
mapFold Fs fs K1 b = b
mapFold Fs fs Kℕ b = b
mapFold Fs fs KB b = b
mapFold Fs fs (G ∔ G') (inj₁ xs) = inj₁ (mapFold Fs fs G xs)
mapFold Fs fs (G ∔ G') (inj₂ xs) = inj₂ (mapFold Fs fs G' xs)
mapFold Fs fs (G ⋆ G') (xs , xs') = mapFold Fs fs G xs , mapFold Fs fs G' xs'
mutual
fold-universal : (Fs : List PolyF) → {A : Set}
→ (h : μ Fs → A) → (fs : Algebras Fs A)
→ (∀ F → (F∈ : F ∈ Fs) →
∀ xs → h (In F∈ xs) ≡ extract F∈ fs (fmap F h xs))
→ (∀ xs → h xs ≡ fold Fs fs xs)
fold-universal Fs h fs hom (In {F} F∈ xs)
rewrite hom F F∈ xs = cong (extract F∈ fs) (mapFold-univ Fs F h fs hom xs)
mapFold-univ : (Fs : List PolyF) (G : PolyF)
→ ∀ {A : Set}
→ (h : μ Fs → A) → (fs : Algebras Fs A)
→ (∀ F → (F∈ : F ∈ Fs) →
∀ xs → h (In F∈ xs) ≡ extract F∈ fs (fmap F h xs))
→ (Gxs : ⟦ G ⟧ (μ Fs))
→ fmap G h Gxs ≡ mapFold Fs fs G Gxs
mapFold-univ Fs Id h fs hom xs = fold-universal Fs h fs hom xs
mapFold-univ Fs K1 h fs hom tt = refl
mapFold-univ Fs Kℕ h fs hom n = refl
mapFold-univ Fs KB h fs hom b = refl
mapFold-univ Fs (G₁ ∔ G₂) h fs hom (inj₁ x) = cong inj₁ (mapFold-univ Fs G₁ h fs hom x)
mapFold-univ Fs (G₁ ∔ G₂) h fs hom (inj₂ y) = cong inj₂ (mapFold-univ Fs G₂ h fs hom y)
mapFold-univ Fs (G₁ ⋆ G₂) h fs hom (x , y)
rewrite mapFold-univ Fs G₁ h fs hom x | mapFold-univ Fs G₂ h fs hom y = refl
| {
"alphanum_fraction": 0.5318567961,
"avg_line_length": 33.6326530612,
"ext": "agda",
"hexsha": "614e289481b829188c5722d459438c403e453e37",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2020-06-23T16:31:02.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-04-08T15:45:08.000Z",
"max_forks_repo_head_hexsha": "e3706dec65e186c64489ad45572d813daebddd3f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "k0001/mrm",
"max_forks_repo_path": "FoldUniv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e3706dec65e186c64489ad45572d813daebddd3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "k0001/mrm",
"max_issues_repo_path": "FoldUniv.agda",
"max_line_length": 88,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "e3706dec65e186c64489ad45572d813daebddd3f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "k0001/mrm",
"max_stars_repo_path": "FoldUniv.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-25T00:14:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-07T15:26:33.000Z",
"num_tokens": 1342,
"size": 3296
} |
module Structures where
open import Category.Functor using (RawFunctor ; module RawFunctor)
open import Category.Monad using (module RawMonad)
open import Data.Maybe using (Maybe) renaming (monad to MaybeMonad)
open import Data.Nat using (ℕ)
open import Data.Vec as V using (Vec)
import Data.Vec.Properties as VP
open import Function using (_∘_ ; flip ; id)
open import Function.Equality using (_⟶_ ; _⇨_ ; _⟨$⟩_)
open import Relation.Binary using (_Preserves_⟶_)
open import Relation.Binary.PropositionalEquality as P using (_≗_ ; _≡_ ; refl ; module ≡-Reasoning)
open import Generic using (sequenceV)
record IsFunctor (F : Set → Set) (f : {α β : Set} → (α → β) → F α → F β) : Set₁ where
field
cong : {α β : Set} → f {α} {β} Preserves _≗_ ⟶ _≗_
identity : {α : Set} → f {α} id ≗ id
composition : {α β γ : Set} → (g : β → γ) → (h : α → β) →
f (g ∘ h) ≗ f g ∘ f h
isCongruence : {α β : Set} → (P.setoid α ⇨ P.setoid β) ⟶ P.setoid (F α) ⇨ P.setoid (F β)
isCongruence {α} {β} = record
{ _⟨$⟩_ = λ g → record
{ _⟨$⟩_ = f (_⟨$⟩_ g)
; cong = P.cong (f (_⟨$⟩_ g))
}
; cong = λ {g} {h} g≗h {x} x≡y → P.subst (λ z → f (_⟨$⟩_ g) x ≡ f (_⟨$⟩_ h) z) x≡y (cong (λ _ → g≗h refl) x)
}
record Functor (f : Set → Set) : Set₁ where
field
rawfunctor : RawFunctor f
isFunctor : IsFunctor f (RawFunctor._<$>_ rawfunctor)
open RawFunctor rawfunctor public
open IsFunctor isFunctor public
record IsShaped (S : Set)
(C : Set → S → Set)
(arity : S → ℕ)
(content : {α : Set} {s : S} → C α s → Vec α (arity s))
(fill : {α : Set} → (s : S) → Vec α (arity s) → C α s)
: Set₁ where
field
content-fill : {α : Set} {s : S} → (c : C α s) → fill s (content c) ≡ c
fill-content : {α : Set} → (s : S) → (v : Vec α (arity s)) → content (fill s v) ≡ v
fmap : {α β : Set} → (f : α → β) → {s : S} → C α s → C β s
fmap f {s} c = fill s (V.map f (content c))
isFunctor : (s : S) → IsFunctor (flip C s) (λ f → fmap f)
isFunctor s = record
{ cong = λ g≗h c → P.cong (fill s) (VP.map-cong g≗h (content c))
; identity = λ c → begin
fill s (V.map id (content c))
≡⟨ P.cong (fill s) (VP.map-id (content c)) ⟩
fill s (content c)
≡⟨ content-fill c ⟩
c ∎
; composition = λ g h c → P.cong (fill s) (begin
V.map (g ∘ h) (content c)
≡⟨ VP.map-∘ g h (content c) ⟩
V.map g (V.map h (content c))
≡⟨ P.cong (V.map g) (P.sym (fill-content s (V.map h (content c)))) ⟩
V.map g (content (fill s (V.map h (content c)))) ∎)
} where open ≡-Reasoning
fmap-content : {α β : Set} → (f : α → β) → {s : S} → content {β} {s} ∘ fmap f ≗ V.map f ∘ content
fmap-content f c = fill-content _ (V.map f (content c))
fill-fmap : {α β : Set} → (f : α → β) → (s : S) → fmap f ∘ fill s ≗ fill s ∘ V.map f
fill-fmap f s v = P.cong (fill s ∘ V.map f) (fill-content s v)
sequence : {α : Set} {s : S} → C (Maybe α) s → Maybe (C α s)
sequence {s = s} c = fill s <$> sequenceV (content c)
where open RawMonad MaybeMonad
record Shaped (S : Set) (C : Set → S → Set) : Set₁ where
field
arity : S → ℕ
content : {α : Set} {s : S} → C α s → Vec α (arity s)
fill : {α : Set} → (s : S) → Vec α (arity s) → C α s
isShaped : IsShaped S C arity content fill
open IsShaped isShaped public
| {
"alphanum_fraction": 0.5392930178,
"avg_line_length": 38.8977272727,
"ext": "agda",
"hexsha": "10abd42e1b9a5e13c6cad07fdedf912952c1a4cb",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jvoigtlaender/bidiragda",
"max_forks_repo_path": "Structures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jvoigtlaender/bidiragda",
"max_issues_repo_path": "Structures.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a5abbd177f032523d1d9d3fa4b9137aefe88dee0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jvoigtlaender/bidiragda",
"max_stars_repo_path": "Structures.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1296,
"size": 3423
} |
{-# OPTIONS --cubical --safe #-}
module Control.Monad.Levels where
open import Control.Monad.Levels.Definition public
| {
"alphanum_fraction": 0.7520661157,
"avg_line_length": 17.2857142857,
"ext": "agda",
"hexsha": "33f74bef966f3a5384cde3ae0a9fcac1c7573ca7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Control/Monad/Levels.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Control/Monad/Levels.agda",
"max_line_length": 50,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Control/Monad/Levels.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 26,
"size": 121
} |
open import Agda.Builtin.Nat
open import Agda.Builtin.FromNat
open import Agda.Builtin.Unit
instance
NumberNat : Number Nat
Number.Constraint NumberNat _ = ⊤
fromNat {{NumberNat}} n = n
open import Issue2641.Import
| {
"alphanum_fraction": 0.7678571429,
"avg_line_length": 18.6666666667,
"ext": "agda",
"hexsha": "41aded02493931cc30dcbfac387ad894a7d6a1a2",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue2641.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue2641.agda",
"max_line_length": 35,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue2641.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 64,
"size": 224
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Setoids.Setoids
open import Sets.EquivalenceRelations
open import Rings.Definition
module Rings.Units.Lemmas {a b : _} {A : Set a} {S : Setoid {a} {b} A} {_+_ _*_ : A → A → A} (R : Ring S _+_ _*_) where
open import Rings.Units.Definition R
open import Rings.Ideals.Definition R
open Ring R
open Setoid S
open Equivalence eq
unitImpliesGeneratedIdealEverything : {x : A} → Unit x → {y : A} → generatedIdealPred x y
unitImpliesGeneratedIdealEverything {x} (a , xa=1) {y} = (a * y) , transitive *Associative (transitive (*WellDefined xa=1 reflexive) identIsIdent)
| {
"alphanum_fraction": 0.7203647416,
"avg_line_length": 32.9,
"ext": "agda",
"hexsha": "0b1dfbb1991d9ca6211a1be6f28d42678048a95c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Rings/Units/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Rings/Units/Lemmas.agda",
"max_line_length": 146,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Rings/Units/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 202,
"size": 658
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Functions.FunExtEquiv where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
open import Cubical.Data.Vec
open import Cubical.Data.Nat
private
variable
ℓ ℓ₁ ℓ₂ ℓ₃ : Level
-- Function extensionality is an equivalence
module _ {A : Type ℓ} {B : A → I → Type ℓ₁}
{f : (x : A) → B x i0} {g : (x : A) → B x i1} where
private
fib : (p : PathP (λ i → ∀ x → B x i) f g) → fiber funExt p
fib p = (funExt⁻ p , refl)
funExt-fiber-isContr : ∀ p → (fi : fiber funExt p) → fib p ≡ fi
funExt-fiber-isContr p (h , eq) i = (funExt⁻ (eq (~ i)) , λ j → eq (~ i ∨ j))
funExt-isEquiv : isEquiv funExt
equiv-proof funExt-isEquiv p = (fib p , funExt-fiber-isContr p)
funExtEquiv : (∀ x → PathP (B x) (f x) (g x)) ≃ PathP (λ i → ∀ x → B x i) f g
funExtEquiv = (funExt , funExt-isEquiv)
funExtPath : (∀ x → PathP (B x) (f x) (g x)) ≡ PathP (λ i → ∀ x → B x i) f g
funExtPath = ua funExtEquiv
funExtIso : Iso (∀ x → PathP (B x) (f x) (g x)) (PathP (λ i → ∀ x → B x i) f g)
funExtIso = iso funExt funExt⁻ (λ x → refl {x = x}) (λ x → refl {x = x})
-- Function extensionality for binary functions
funExt₂ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → I → Type ℓ₂}
{f : (x : A) → (y : B x) → C x y i0}
{g : (x : A) → (y : B x) → C x y i1}
→ ((x : A) (y : B x) → PathP (C x y) (f x y) (g x y))
→ PathP (λ i → ∀ x y → C x y i) f g
funExt₂ p i x y = p x y i
-- Function extensionality for binary functions is an equivalence
module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → I → Type ℓ₂}
{f : (x : A) → (y : B x) → C x y i0}
{g : (x : A) → (y : B x) → C x y i1} where
private
appl₂ : PathP (λ i → ∀ x y → C x y i) f g → ∀ x y → PathP (C x y) (f x y) (g x y)
appl₂ eq x y i = eq i x y
fib : (p : PathP (λ i → ∀ x y → C x y i) f g) → fiber funExt₂ p
fib p = (appl₂ p , refl)
funExt₂-fiber-isContr : ∀ p → (fi : fiber funExt₂ p) → fib p ≡ fi
funExt₂-fiber-isContr p (h , eq) i = (appl₂ (eq (~ i)) , λ j → eq (~ i ∨ j))
funExt₂-isEquiv : isEquiv funExt₂
equiv-proof funExt₂-isEquiv p = (fib p , funExt₂-fiber-isContr p)
funExt₂Equiv : (∀ x y → PathP (C x y) (f x y) (g x y)) ≃ (PathP (λ i → ∀ x y → C x y i) f g)
funExt₂Equiv = (funExt₂ , funExt₂-isEquiv)
funExt₂Path : (∀ x y → PathP (C x y) (f x y) (g x y)) ≡ (PathP (λ i → ∀ x y → C x y i) f g)
funExt₂Path = ua funExt₂Equiv
-- Function extensionality for ternary functions
funExt₃ : {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂}
{D : (x : A) → (y : B x) → C x y → I → Type ℓ₃}
{f : (x : A) → (y : B x) → (z : C x y) → D x y z i0}
{g : (x : A) → (y : B x) → (z : C x y) → D x y z i1}
→ ((x : A) (y : B x) (z : C x y) → PathP (D x y z) (f x y z) (g x y z))
→ PathP (λ i → ∀ x y z → D x y z i) f g
funExt₃ p i x y z = p x y z i
-- Function extensionality for ternary functions is an equivalence
module _ {A : Type ℓ} {B : A → Type ℓ₁} {C : (x : A) → B x → Type ℓ₂}
{D : (x : A) → (y : B x) → C x y → I → Type ℓ₃}
{f : (x : A) → (y : B x) → (z : C x y) → D x y z i0}
{g : (x : A) → (y : B x) → (z : C x y) → D x y z i1} where
private
appl₃ : PathP (λ i → ∀ x y z → D x y z i) f g → ∀ x y z → PathP (D x y z) (f x y z) (g x y z)
appl₃ eq x y z i = eq i x y z
fib : (p : PathP (λ i → ∀ x y z → D x y z i) f g) → fiber funExt₃ p
fib p = (appl₃ p , refl)
funExt₃-fiber-isContr : ∀ p → (fi : fiber funExt₃ p) → fib p ≡ fi
funExt₃-fiber-isContr p (h , eq) i = (appl₃ (eq (~ i)) , λ j → eq (~ i ∨ j))
funExt₃-isEquiv : isEquiv funExt₃
equiv-proof funExt₃-isEquiv p = (fib p , funExt₃-fiber-isContr p)
funExt₃Equiv : (∀ x y z → PathP (D x y z) (f x y z) (g x y z)) ≃ (PathP (λ i → ∀ x y z → D x y z i) f g)
funExt₃Equiv = (funExt₃ , funExt₃-isEquiv)
funExt₃Path : (∀ x y z → PathP (D x y z) (f x y z) (g x y z)) ≡ (PathP (λ i → ∀ x y z → D x y z i) f g)
funExt₃Path = ua funExt₃Equiv
-- n-ary non-dependent funext
nAryFunExt : (n : ℕ) {X : Type ℓ} {Y : I → Type ℓ₁} (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1))
→ ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs))
→ PathP (λ i → nAryOp n X (Y i)) fX fY
nAryFunExt zero fX fY p = p []
nAryFunExt (suc n) fX fY p i x = nAryFunExt n (fX x) (fY x) (λ xs → p (x ∷ xs)) i
-- n-ary funext⁻
nAryFunExt⁻ : (n : ℕ) {X : Type ℓ} {Y : I → Type ℓ₁} (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1))
→ PathP (λ i → nAryOp n X (Y i)) fX fY
→ ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs))
nAryFunExt⁻ zero fX fY p [] = p
nAryFunExt⁻ (suc n) fX fY p (x ∷ xs) = nAryFunExt⁻ n (fX x) (fY x) (λ i → p i x) xs
nAryFunExtEquiv : (n : ℕ) {X : Type ℓ} {Y : I → Type ℓ₁} (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1))
→ ((xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs)) ≃ PathP (λ i → nAryOp n X (Y i)) fX fY
nAryFunExtEquiv n {X} {Y} fX fY = isoToEquiv (iso (nAryFunExt n fX fY) (nAryFunExt⁻ n fX fY)
(linv n fX fY) (rinv n fX fY))
where
linv : (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1))
(p : PathP (λ i → nAryOp n X (Y i)) fX fY)
→ nAryFunExt n fX fY (nAryFunExt⁻ n fX fY p) ≡ p
linv zero fX fY p = refl
linv (suc n) fX fY p i j x = linv n (fX x) (fY x) (λ k → p k x) i j
rinv : (n : ℕ) (fX : nAryOp n X (Y i0)) (fY : nAryOp n X (Y i1))
(p : (xs : Vec X n) → PathP Y (fX $ⁿ xs) (fY $ⁿ map (λ x → x) xs))
→ nAryFunExt⁻ n fX fY (nAryFunExt n fX fY p) ≡ p
rinv zero fX fY p i [] = p []
rinv (suc n) fX fY p i (x ∷ xs) = rinv n (fX x) (fY x) (λ ys i → p (x ∷ ys) i) i xs
| {
"alphanum_fraction": 0.5119228818,
"avg_line_length": 43.8,
"ext": "agda",
"hexsha": "42ec8f7af384fd7e893cfe09a409f0b3c0d7b963",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "RobertHarper/cubical",
"max_forks_repo_path": "Cubical/Functions/FunExtEquiv.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "RobertHarper/cubical",
"max_issues_repo_path": "Cubical/Functions/FunExtEquiv.agda",
"max_line_length": 106,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "d13941587a58895b65f714f1ccc9c1f5986b109c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "RobertHarper/cubical",
"max_stars_repo_path": "Cubical/Functions/FunExtEquiv.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2715,
"size": 5913
} |
{-# OPTIONS --without-K #-}
module Examples.New where
open import Data.Empty using (⊥)
open import Data.Unit using (⊤; tt)
open import Data.Sum using (_⊎_; inj₁; inj₂; [_,_]′)
open import Data.Product using (_×_; _,_; proj₁; proj₂)
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; cong; subst)
open import Singleton
open import PiPointedFrac
------------------------------------------------------------------------------
-- Conventional PI examples
𝔹 : 𝕌
𝔹 = 𝟙 +ᵤ 𝟙
𝔹² : 𝕌
𝔹² = 𝔹 ×ᵤ 𝔹
𝔽 𝕋 : ⟦ 𝔹 ⟧
𝔽 = inj₁ tt
𝕋 = inj₂ tt
NOT : 𝔹 ⟷ 𝔹
NOT = swap₊
NEG1 NEG2 NEG3 NEG4 NEG5 : 𝔹 ⟷ 𝔹
NEG1 = swap₊
NEG2 = id⟷ ⊚ NOT
NEG3 = NOT ⊚ NOT ⊚ NOT
NEG4 = NOT ⊚ id⟷
NEG5 = uniti⋆l ⊚ swap⋆ ⊚ (NOT ⊗ id⟷) ⊚ swap⋆ ⊚ unite⋆l
NEG6 = uniti⋆r ⊚ (NOT ⊗ id⟷) ⊚ unite⋆r
CONTROL : {A : 𝕌} → (A ⟷ A) → (𝔹 ×ᵤ A ⟷ 𝔹 ×ᵤ A)
CONTROL f = dist ⊚ (id⟷ ⊕ (id⟷ ⊗ f)) ⊚ factor
CNOT : 𝔹² ⟷ 𝔹²
CNOT = CONTROL NOT
TOFFOLI : 𝔹 ×ᵤ 𝔹² ⟷ 𝔹 ×ᵤ 𝔹²
TOFFOLI = CONTROL (CONTROL NOT)
PERES : (𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹 ⟷ (𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹
PERES = (id⟷ ⊗ NOT) ⊚ assocr⋆ ⊚ (id⟷ ⊗ swap⋆) ⊚
TOFFOLI ⊚
(id⟷ ⊗ (NOT ⊗ id⟷)) ⊚
TOFFOLI ⊚
(id⟷ ⊗ swap⋆) ⊚ (id⟷ ⊗ (NOT ⊗ id⟷)) ⊚
TOFFOLI ⊚
(id⟷ ⊗ (NOT ⊗ id⟷)) ⊚ assocl⋆
SWAP12 SWAP23 SWAP13 ROTL ROTR : 𝟙 +ᵤ 𝟙 +ᵤ 𝟙 ⟷ 𝟙 +ᵤ 𝟙 +ᵤ 𝟙
SWAP12 = assocl₊ ⊚ (swap₊ ⊕ id⟷) ⊚ assocr₊
SWAP23 = id⟷ ⊕ swap₊
SWAP13 = SWAP23 ⊚ SWAP12 ⊚ SWAP23
ROTR = SWAP12 ⊚ SWAP23
ROTL = SWAP13 ⊚ SWAP23
------------------------------------------------------------------------------
-- Pointed versions
∙TOFFOLI-1 : ∀ {b₁ b₂} →
(𝔹 ×ᵤ 𝔹²) # (𝔽 , (b₁ , b₂)) ∙⟶ (𝔹 ×ᵤ 𝔹²) # (𝔽 , (b₁ , b₂))
∙TOFFOLI-1 = ∙c TOFFOLI
∙TOFFOLI-2 : ∀ {b} →
(𝔹 ×ᵤ 𝔹²) # (𝕋 , (𝔽 , b)) ∙⟶ (𝔹 ×ᵤ 𝔹²) # (𝕋 , (𝔽 , b))
∙TOFFOLI-2 = ∙c TOFFOLI
∙TOFFOLI-3 : ∀ {b} →
(𝔹 ×ᵤ 𝔹²) # (𝕋 , (𝕋 , b)) ∙⟶ (𝔹 ×ᵤ 𝔹²) # (𝕋 , (𝕋 , eval swap₊ b))
∙TOFFOLI-3 = ∙c TOFFOLI
-- Ancilla examples from literature
-- Fig. 2 in Ricercar
fig2a : 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ⟷
𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹
fig2a = CONTROL (CONTROL (CONTROL NOT))
-- first write the circuit with the additional ancilla
fig2b' : ((𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹) ⟷ ((𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹)
fig2b' =
(swap⋆ ⊗ id⟷) ⊚
assocr⋆ ⊚
(swap⋆ ⊗ id⟷) ⊚
assocr⋆ ⊚
(id⟷ ⊗ CONTROL (CONTROL NOT)) -- first ccnot
⊚
assocl⋆ ⊚
(swap⋆ ⊗ id⟷) ⊚
assocl⋆ ⊚
(swap⋆ ⊗ id⟷) -- move it back
⊚
(assocl⋆ ⊗ id⟷) ⊚
assocr⋆ ⊚
(id⟷ ⊗ swap⋆) ⊚
(id⟷ ⊗ CONTROL (CONTROL NOT)) -- second ccnot
⊚
(id⟷ ⊗ swap⋆) ⊚
assocl⋆ ⊚
(assocr⋆ ⊗ id⟷) -- move it back
⊚
(swap⋆ ⊗ id⟷) ⊚
assocr⋆ ⊚
(swap⋆ ⊗ id⟷) ⊚
assocr⋆ ⊚
(id⟷ ⊗ CONTROL (CONTROL NOT)) -- third ccnot
⊚
assocl⋆ ⊚
(swap⋆ ⊗ id⟷) ⊚
assocl⋆ ⊚
(swap⋆ ⊗ id⟷) -- move it back
-- then prove a theorem that specifies its semantics
fig2b'≡ : (a b c d : ⟦ 𝔹 ⟧) →
proj₂ (eval fig2b' ((a , b , c , d) , 𝔽)) ≡ 𝔽
fig2b'≡ a (inj₁ tt) c d = refl
fig2b'≡ (inj₁ tt) (inj₂ tt) c d = refl
fig2b'≡ (inj₂ tt) (inj₂ tt) c d = refl
-- generalize above? Method:
-- for 'dist' to evaluate, need to split on b first
-- in first case, split on e (same reason)
-- in second case, split on a (same reason)
-- split on e
-- split on e
foo : (a b c d e : ⟦ 𝔹 ⟧) →
proj₂ (eval fig2b' ((a , b , c , d) , e)) ≡ e
foo a (inj₁ x) c d (inj₁ x₁) = refl
foo a (inj₁ x) c d (inj₂ y) = refl
foo (inj₁ x) (inj₂ y) c d (inj₁ x₁) = refl
foo (inj₁ x) (inj₂ y) c d (inj₂ y₁) = refl
foo (inj₂ y₁) (inj₂ y) c d (inj₁ x) = refl
foo (inj₂ y₁) (inj₂ y) c d (inj₂ y₂) = refl
{--
postulate
-- boring...
tensor4 : ∀ {a b c d e} →
(● 𝔹 [ a ] ×ᵤ ● 𝔹 [ b ] ×ᵤ ● 𝔹 [ c ] ×ᵤ ● 𝔹 [ d ]) ×ᵤ ● 𝔹 [ e ] ⟷
● ((𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹) [ (a , b , c , d) , e ]
itensor4 : ∀ {a b c d e} →
● ((𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹 ×ᵤ 𝔹) ×ᵤ 𝔹) [ (a , b , c , d) , e ] ⟷
(● 𝔹 [ a ] ×ᵤ ● 𝔹 [ b ] ×ᵤ ● 𝔹 [ c ] ×ᵤ ● 𝔹 [ d ]) ×ᵤ ● 𝔹 [ e ]
--}
-- now lift it
{--
fig2b : ∀ {a b c d e} →
let ((x , y , z , w) , u) = eval fig2b' ((a , b , c , d) , e)
in
● 𝔹 [ a ] ×ᵤ ● 𝔹 [ b ] ×ᵤ ● 𝔹 [ c ] ×ᵤ ● 𝔹 [ d ] ⟷
● 𝔹 [ x ] ×ᵤ ● 𝔹 [ y ] ×ᵤ ● 𝔹 [ z ] ×ᵤ ● 𝔹 [ w ]
fig2b {a} {b} {c} {d} {e} =
let ((x , y , z , w) , u) = eval fig2b' ((a , b , c , d) , e)
in uniti⋆r ⊚
-- (●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × ●𝟙[e]
(id⟷ ⊗ η e) ⊚
-- (●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × (●𝔹[e] x ●1/𝔹[e])
assocl⋆ ⊚
-- ((●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × ●𝔹[e) x ●1/𝔹[e]
(tensor4 ⊗ id⟷) ⊚
-- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (a,b,c,d),e ] x ●1/𝔹[e]
(lift fig2b' ⊗ id⟷) ⊚
-- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (x,y,z,w),e ] x ●1/𝔹[e]
(((== id⟷ (cong (λ H → ((x , y , z , w)) , H) (foo a b c d e))) ⊗ id⟷)) ⊚
-- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (x,y,z,w),e ] x ●1/𝔹[e]
(itensor4 ⊗ id⟷) ⊚
-- ((●𝔹[x] × ●𝔹[y] × ●𝔹[z] × ●𝔹[w]) × ●𝔹[e]) x ●1/𝔹[e]
assocr⋆ ⊚
(id⟷ ⊗ ε e) ⊚
unite⋆r
--}
{--
-- This is mostly to show that == is really 'subst' in hiding.
fig2b₂ : ∀ {a b c d e} →
let ((x , y , z , w) , u) = eval fig2b' ((a , b , c , d) , e)
in
● 𝔹 [ a ] ×ᵤ ● 𝔹 [ b ] ×ᵤ ● 𝔹 [ c ] ×ᵤ ● 𝔹 [ d ] ⟷
● 𝔹 [ x ] ×ᵤ ● 𝔹 [ y ] ×ᵤ ● 𝔹 [ z ] ×ᵤ ● 𝔹 [ w ]
fig2b₂ {a} {b} {c} {d} {e} =
let ((x , y , z , w) , u) = eval fig2b' ((a , b , c , d) , e)
in uniti⋆r ⊚
-- (●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × ●𝟙[e]
(id⟷ ⊗ η e) ⊚
-- (●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × (●𝔹[e] x ●1/𝔹[e])
assocl⋆ ⊚
-- ((●𝔹[a] × ●𝔹[b] × ●𝔹[c] × ●𝔹[d]) × ●𝔹[e) x ●1/𝔹[e]
(tensor4 ⊗ id⟷) ⊚
-- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (a,b,c,d),e ] x ●1/𝔹[e]
(lift fig2b' ⊗ id⟷) ⊚
-- ● ((𝔹 × 𝔹 × 𝔹 × 𝔹) × 𝔹) [ (x,y,z,w),e ] x ●1/𝔹[e]
(itensor4 ⊗ id⟷) ⊚
-- ((●𝔹[x] × ●𝔹[y] × ●𝔹[z] × ●𝔹[w]) × ●𝔹[e]) x ●1/𝔹[e]
assocr⋆ ⊚
(id⟷ ⊗ (subst (λ ee → ● 𝔹 [ ee ] ×ᵤ 𝟙/● 𝔹 [ e ] ⟷ 𝟙) (sym (foo a b c d e)) (ε e))) ⊚
unite⋆r
--}
-- Examples
infixr 2 _→⟨_⟩_
infix 3 _□
_→⟨_⟩_ : (T₁ : ∙𝕌) → {T₂ T₃ : ∙𝕌} →
(T₁ ∙⟶ T₂) → (T₂ ∙⟶ T₃) → (T₁ ∙⟶ T₃)
_ →⟨ α ⟩ β = α ∙⊚ β
_□ : (T : ∙𝕌) → {T : ∙𝕌} → (T ∙⟶ T)
_□ T = ∙id⟷
zigzag : ∀ b → 𝔹 # b ∙⟶ 𝔹 # b
zigzag b =
(𝔹 # b)
→⟨ (∙c uniti⋆l) ⟩
(𝟙 ×ᵤ 𝔹) # (tt , b)
→⟨ ∙times# ⟩
(𝟙 # tt) ∙×ᵤ (𝔹 # b)
→⟨ ∙id⟷ ∙⊗ return (𝔹 # b) ⟩
(𝟙 # tt) ∙×ᵤ (Singᵤ (𝔹 # b))
→⟨ η (𝔹 # b) ∙⊗ ∙id⟷ ⟩
((Singᵤ (𝔹 # b)) ∙×ᵤ (Recipᵤ (𝔹 # b))) ∙×ᵤ (Singᵤ (𝔹 # b))
→⟨ ∙assocr⋆ ⟩
Singᵤ (𝔹 # b) ∙×ᵤ (Recipᵤ (𝔹 # b) ∙×ᵤ (Singᵤ (𝔹 # b)))
→⟨ ∙id⟷ ∙⊗ ∙swap⋆ ⟩
Singᵤ (𝔹 # b) ∙×ᵤ ((Singᵤ (𝔹 # b)) ∙×ᵤ (Recipᵤ (𝔹 # b)))
→⟨ ∙id⟷ ∙⊗ ε (𝔹 # b) ⟩
Singᵤ (𝔹 # b) ∙×ᵤ (𝟙 # tt)
→⟨ extract (𝔹 # b) ∙⊗ ∙id⟷ ⟩
(𝔹 # b) ∙×ᵤ (𝟙 # tt)
→⟨ ∙#times ⟩
(𝔹 ×ᵤ 𝟙) # (b , tt)
→⟨ ∙c unite⋆r ⟩
(𝔹 # b) □
test1 : proj₁ (∙eval (zigzag 𝔽)) 𝔽 ≡ 𝔽
test1 = proj₂ (∙eval (zigzag 𝔽))
test2 : proj₁ (∙eval (zigzag 𝕋)) 𝕋 ≡ 𝕋
test2 = proj₂ (∙eval (zigzag 𝕋))
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.3937526264,
"avg_line_length": 28.4422310757,
"ext": "agda",
"hexsha": "96b2706510fd44e19a74590ac66951ea6ad32504",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "fracGC/Examples/New.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "fracGC/Examples/New.agda",
"max_line_length": 92,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "fracGC/Examples/New.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 4231,
"size": 7139
} |
------------------------------------------------------------------------
-- Terminating parser "combinator" interface
------------------------------------------------------------------------
-- Use RecursiveDescent.Hybrid.Simple to actually run the parsers.
module RecursiveDescent.Hybrid where
open import RecursiveDescent.Index
import RecursiveDescent.Hybrid.Type as P
open P public using (Parser; Grammar)
open import Data.Bool
open import Data.Product.Record
open import Relation.Binary.PropositionalEquality
------------------------------------------------------------------------
-- Exported combinators
infix 60 !_
infixl 40 _∣_
infixl 10 _>>=_ _!>>=_
!_ : forall {tok nt e c r} ->
nt (e , c) r -> Parser tok nt (e , step c) r
!_ = P.!_
symbol : forall {tok nt} -> Parser tok nt 0I tok
symbol = P.symbol
return : forall {tok nt r} -> r -> Parser tok nt 1I r
return = P.return
fail : forall {tok nt r} -> Parser tok nt 0I r
fail = P.fail
_>>=_ : forall {tok nt e₁ c₁ i₂ r₁ r₂} -> let i₁ = (e₁ , c₁) in
Parser tok nt i₁ r₁ ->
(r₁ -> Parser tok nt i₂ r₂) ->
Parser tok nt (i₁ ·I i₂) r₂
_>>=_ {e₁ = true } = P._?>>=_
_>>=_ {e₁ = false} = P._!>>=_
-- If the first parser is guaranteed to consume something, then the
-- second parser's index can depend on the result of the first parser.
_!>>=_ : forall {tok nt c₁ r₁ r₂} {i₂ : r₁ -> Index} ->
let i₁ = (false , c₁) in
Parser tok nt i₁ r₁ ->
((x : r₁) -> Parser tok nt (i₂ x) r₂) ->
Parser tok nt (i₁ ·I 1I) r₂
_!>>=_ = P._!>>=_
_∣_ : forall {tok nt e₁ c₁ i₂ r} -> let i₁ = (e₁ , c₁) in
Parser tok nt i₁ r ->
Parser tok nt i₂ r ->
Parser tok nt (i₁ ∣I i₂) r
_∣_ = P.alt _ _
cast : forall {tok nt e₁ e₂ c₁ c₂ r} ->
e₁ ≡ e₂ -> c₁ ≡ c₂ ->
Parser tok nt (e₁ , c₁) r -> Parser tok nt (e₂ , c₂) r
cast refl refl p = p
| {
"alphanum_fraction": 0.5351812367,
"avg_line_length": 29.3125,
"ext": "agda",
"hexsha": "87f21ff8cee819bb52bacfdeacff21ee8fb52d57",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nad/parser-combinators",
"max_forks_repo_path": "misc/RecursiveDescent/Hybrid.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "76774f54f466cfe943debf2da731074fe0c33644",
"max_issues_repo_issues_event_max_datetime": "2018-01-24T16:39:37.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-01-22T22:21:41.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nad/parser-combinators",
"max_issues_repo_path": "misc/RecursiveDescent/Hybrid.agda",
"max_line_length": 72,
"max_stars_count": 7,
"max_stars_repo_head_hexsha": "b396d35cc2cb7e8aea50b982429ee385f001aa88",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "yurrriq/parser-combinators",
"max_stars_repo_path": "misc/RecursiveDescent/Hybrid.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-22T05:35:31.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-12-13T05:23:14.000Z",
"num_tokens": 586,
"size": 1876
} |
------------------------------------------------------------------------------
-- Testing Agda internal term: @Lam@
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- The following conjecture uses the internal Agda term @Lam@.
module Agda.InternalTerms.LamTerm where
postulate
D : Set
∃ : (D → Set) → Set -- The existential quantifier type on D.
A : D → Set
postulate ∃-intro : (t : D) → A t → ∃ A
{-# ATP prove ∃-intro #-}
| {
"alphanum_fraction": 0.4334898279,
"avg_line_length": 30.4285714286,
"ext": "agda",
"hexsha": "a835695c722be983b033c561fa96399078cdcd9b",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Agda/InternalTerms/LamTerm.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Agda/InternalTerms/LamTerm.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Agda/InternalTerms/LamTerm.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 137,
"size": 639
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lexicographic products of binary relations
------------------------------------------------------------------------
-- The definition of lexicographic product used here is suitable if
-- the left-hand relation is a strict partial order.
module Relation.Binary.Product.StrictLex where
open import Function
open import Data.Product
open import Data.Sum
open import Data.Empty
open import Level
open import Relation.Nullary.Product
open import Relation.Nullary.Sum
open import Relation.Binary
open import Relation.Binary.Consequences
open import Relation.Binary.Product.Pointwise as Pointwise
using (_×-Rel_)
open import Relation.Nullary
module _ {a₁ a₂ ℓ₁ ℓ₂} {A₁ : Set a₁} {A₂ : Set a₂} where
×-Lex : (_≈₁_ _<₁_ : Rel A₁ ℓ₁) → (_≤₂_ : Rel A₂ ℓ₂) →
Rel (A₁ × A₂) _
×-Lex _≈₁_ _<₁_ _≤₂_ =
(_<₁_ on proj₁) -⊎- (_≈₁_ on proj₁) -×- (_≤₂_ on proj₂)
-- Some properties which are preserved by ×-Lex (under certain
-- assumptions).
×-reflexive : ∀ _≈₁_ _∼₁_ {_≈₂_ : Rel A₂ ℓ₂} _≤₂_ →
_≈₂_ ⇒ _≤₂_ → (_≈₁_ ×-Rel _≈₂_) ⇒ (×-Lex _≈₁_ _∼₁_ _≤₂_)
×-reflexive _ _ _ refl₂ = λ x≈y →
inj₂ (proj₁ x≈y , refl₂ (proj₂ x≈y))
_×-irreflexive_ : ∀ {_≈₁_ _<₁_} → Irreflexive _≈₁_ _<₁_ →
∀ {_≈₂_ _<₂_ : Rel A₂ ℓ₂} → Irreflexive _≈₂_ _<₂_ →
Irreflexive (_≈₁_ ×-Rel _≈₂_) (×-Lex _≈₁_ _<₁_ _<₂_)
(ir₁ ×-irreflexive ir₂) x≈y (inj₁ x₁<y₁) = ir₁ (proj₁ x≈y) x₁<y₁
(ir₁ ×-irreflexive ir₂) x≈y (inj₂ x≈<y) =
ir₂ (proj₂ x≈y) (proj₂ x≈<y)
×-transitive :
∀ {_≈₁_ _<₁_} →
IsEquivalence _≈₁_ → _<₁_ Respects₂ _≈₁_ → Transitive _<₁_ →
∀ {_≤₂_} →
Transitive _≤₂_ →
Transitive (×-Lex _≈₁_ _<₁_ _≤₂_)
×-transitive {_≈₁_ = _≈₁_} {_<₁_ = _<₁_} eq₁ resp₁ trans₁
{_≤₂_ = _≤₂_} trans₂ {x} {y} {z} = trans {x} {y} {z}
where
module Eq₁ = IsEquivalence eq₁
trans : Transitive (×-Lex _≈₁_ _<₁_ _≤₂_)
trans (inj₁ x₁<y₁) (inj₁ y₁<z₁) = inj₁ (trans₁ x₁<y₁ y₁<z₁)
trans (inj₁ x₁<y₁) (inj₂ y≈≤z) =
inj₁ (proj₁ resp₁ (proj₁ y≈≤z) x₁<y₁)
trans (inj₂ x≈≤y) (inj₁ y₁<z₁) =
inj₁ (proj₂ resp₁ (Eq₁.sym $ proj₁ x≈≤y) y₁<z₁)
trans (inj₂ x≈≤y) (inj₂ y≈≤z) =
inj₂ ( Eq₁.trans (proj₁ x≈≤y) (proj₁ y≈≤z)
, trans₂ (proj₂ x≈≤y) (proj₂ y≈≤z) )
×-antisymmetric :
∀ {_≈₁_ _<₁_} →
Symmetric _≈₁_ → Irreflexive _≈₁_ _<₁_ → Asymmetric _<₁_ →
∀ {_≈₂_ _≤₂_ : Rel A₂ ℓ₂} →
Antisymmetric _≈₂_ _≤₂_ →
Antisymmetric (_≈₁_ ×-Rel _≈₂_) (×-Lex _≈₁_ _<₁_ _≤₂_)
×-antisymmetric {_≈₁_ = _≈₁_} {_<₁_ = _<₁_} sym₁ irrefl₁ asym₁
{_≈₂_ = _≈₂_} {_≤₂_ = _≤₂_} antisym₂ {x} {y} =
antisym {x} {y}
where
antisym : Antisymmetric (_≈₁_ ×-Rel _≈₂_) (×-Lex _≈₁_ _<₁_ _≤₂_)
antisym (inj₁ x₁<y₁) (inj₁ y₁<x₁) = ⊥-elim $ asym₁ x₁<y₁ y₁<x₁
antisym (inj₁ x₁<y₁) (inj₂ y≈≤x) = ⊥-elim $ irrefl₁ (sym₁ $ proj₁ y≈≤x) x₁<y₁
antisym (inj₂ x≈≤y) (inj₁ y₁<x₁) = ⊥-elim $ irrefl₁ (sym₁ $ proj₁ x≈≤y) y₁<x₁
antisym (inj₂ x≈≤y) (inj₂ y≈≤x) =
proj₁ x≈≤y , antisym₂ (proj₂ x≈≤y) (proj₂ y≈≤x)
×-asymmetric :
∀ {_≈₁_ _<₁_} →
Symmetric _≈₁_ → _<₁_ Respects₂ _≈₁_ → Asymmetric _<₁_ →
∀ {_<₂_} →
Asymmetric _<₂_ →
Asymmetric (×-Lex _≈₁_ _<₁_ _<₂_)
×-asymmetric {_≈₁_ = _≈₁_} {_<₁_ = _<₁_} sym₁ resp₁ asym₁
{_<₂_ = _<₂_} asym₂ {x} {y} = asym {x} {y}
where
irrefl₁ : Irreflexive _≈₁_ _<₁_
irrefl₁ = asym⟶irr resp₁ sym₁ asym₁
asym : Asymmetric (×-Lex _≈₁_ _<₁_ _<₂_)
asym (inj₁ x₁<y₁) (inj₁ y₁<x₁) = asym₁ x₁<y₁ y₁<x₁
asym (inj₁ x₁<y₁) (inj₂ y≈<x) = irrefl₁ (sym₁ $ proj₁ y≈<x) x₁<y₁
asym (inj₂ x≈<y) (inj₁ y₁<x₁) = irrefl₁ (sym₁ $ proj₁ x≈<y) y₁<x₁
asym (inj₂ x≈<y) (inj₂ y≈<x) = asym₂ (proj₂ x≈<y) (proj₂ y≈<x)
×-≈-respects₂ :
∀ {_≈₁_ _<₁_} → IsEquivalence _≈₁_ → _<₁_ Respects₂ _≈₁_ →
{_≈₂_ _<₂_ : Rel A₂ ℓ₂} → _<₂_ Respects₂ _≈₂_ →
(×-Lex _≈₁_ _<₁_ _<₂_) Respects₂ (_≈₁_ ×-Rel _≈₂_)
×-≈-respects₂ {_≈₁_ = _≈₁_} {_<₁_ = _<₁_} eq₁ resp₁
{_≈₂_ = _≈₂_} {_<₂_ = _<₂_} resp₂ =
(λ {x y z} → resp¹ {x} {y} {z}) ,
(λ {x y z} → resp² {x} {y} {z})
where
_<_ = ×-Lex _≈₁_ _<₁_ _<₂_
open IsEquivalence eq₁ renaming (sym to sym₁; trans to trans₁)
resp¹ : ∀ {x} → (_<_ x) Respects (_≈₁_ ×-Rel _≈₂_)
resp¹ y≈y' (inj₁ x₁<y₁) = inj₁ (proj₁ resp₁ (proj₁ y≈y') x₁<y₁)
resp¹ y≈y' (inj₂ x≈<y) =
inj₂ ( trans₁ (proj₁ x≈<y) (proj₁ y≈y')
, proj₁ resp₂ (proj₂ y≈y') (proj₂ x≈<y) )
resp² : ∀ {y} → (flip _<_ y) Respects (_≈₁_ ×-Rel _≈₂_)
resp² x≈x' (inj₁ x₁<y₁) = inj₁ (proj₂ resp₁ (proj₁ x≈x') x₁<y₁)
resp² x≈x' (inj₂ x≈<y) =
inj₂ ( trans₁ (sym₁ $ proj₁ x≈x') (proj₁ x≈<y)
, proj₂ resp₂ (proj₂ x≈x') (proj₂ x≈<y) )
×-decidable : ∀ {_≈₁_ _<₁_} → Decidable _≈₁_ → Decidable _<₁_ →
∀ {_≤₂_} → Decidable _≤₂_ →
Decidable (×-Lex _≈₁_ _<₁_ _≤₂_)
×-decidable dec-≈₁ dec-<₁ dec-≤₂ = λ x y →
dec-<₁ (proj₁ x) (proj₁ y)
⊎-dec
(dec-≈₁ (proj₁ x) (proj₁ y)
×-dec
dec-≤₂ (proj₂ x) (proj₂ y))
×-total : ∀ {_≈₁_ _<₁_} → Total _<₁_ →
∀ {_≤₂_} →
Total (×-Lex _≈₁_ _<₁_ _≤₂_)
×-total {_≈₁_ = _≈₁_} {_<₁_ = _<₁_} total₁ {_≤₂_ = _≤₂_} = total
where
total : Total (×-Lex _≈₁_ _<₁_ _≤₂_)
total x y with total₁ (proj₁ x) (proj₁ y)
... | inj₁ x₁<y₁ = inj₁ (inj₁ x₁<y₁)
... | inj₂ x₁>y₁ = inj₂ (inj₁ x₁>y₁)
×-compare :
{_≈₁_ _<₁_ : Rel A₁ ℓ₁} → Symmetric _≈₁_ → Trichotomous _≈₁_ _<₁_ →
{_≈₂_ _<₂_ : Rel A₂ ℓ₂} → Trichotomous _≈₂_ _<₂_ →
Trichotomous (_≈₁_ ×-Rel _≈₂_) (×-Lex _≈₁_ _<₁_ _<₂_)
×-compare {_≈₁_} {_<₁_} sym₁ compare₁ {_≈₂_} {_<₂_} compare₂ = cmp
where
cmp″ : ∀ {x₁ y₁ x₂ y₂} →
¬ (x₁ <₁ y₁) → x₁ ≈₁ y₁ → ¬ (y₁ <₁ x₁) →
Tri (x₂ <₂ y₂) (x₂ ≈₂ y₂) (y₂ <₂ x₂) →
Tri (×-Lex _≈₁_ _<₁_ _<₂_ (x₁ , x₂) (y₁ , y₂))
((_≈₁_ ×-Rel _≈₂_) (x₁ , x₂) (y₁ , y₂))
(×-Lex _≈₁_ _<₁_ _<₂_ (y₁ , y₂) (x₁ , x₂))
cmp″ x₁≮y₁ x₁≈y₁ x₁≯y₁ (tri< x₂<y₂ x₂≉y₂ x₂≯y₂) =
tri< (inj₂ (x₁≈y₁ , x₂<y₂))
(x₂≉y₂ ∘ proj₂)
[ x₁≯y₁ , x₂≯y₂ ∘ proj₂ ]
cmp″ x₁≮y₁ x₁≈y₁ x₁≯y₁ (tri> x₂≮y₂ x₂≉y₂ x₂>y₂) =
tri> [ x₁≮y₁ , x₂≮y₂ ∘ proj₂ ]
(x₂≉y₂ ∘ proj₂)
(inj₂ (sym₁ x₁≈y₁ , x₂>y₂))
cmp″ x₁≮y₁ x₁≈y₁ x₁≯y₁ (tri≈ x₂≮y₂ x₂≈y₂ x₂≯y₂) =
tri≈ [ x₁≮y₁ , x₂≮y₂ ∘ proj₂ ]
(x₁≈y₁ , x₂≈y₂)
[ x₁≯y₁ , x₂≯y₂ ∘ proj₂ ]
cmp′ : ∀ {x₁ y₁} → Tri (x₁ <₁ y₁) (x₁ ≈₁ y₁) (y₁ <₁ x₁) →
∀ x₂ y₂ →
Tri (×-Lex _≈₁_ _<₁_ _<₂_ (x₁ , x₂) (y₁ , y₂))
((_≈₁_ ×-Rel _≈₂_) (x₁ , x₂) (y₁ , y₂))
(×-Lex _≈₁_ _<₁_ _<₂_ (y₁ , y₂) (x₁ , x₂))
cmp′ (tri< x₁<y₁ x₁≉y₁ x₁≯y₁) x₂ y₂ =
tri< (inj₁ x₁<y₁) (x₁≉y₁ ∘ proj₁) [ x₁≯y₁ , x₁≉y₁ ∘ sym₁ ∘ proj₁ ]
cmp′ (tri> x₁≮y₁ x₁≉y₁ x₁>y₁) x₂ y₂ =
tri> [ x₁≮y₁ , x₁≉y₁ ∘ proj₁ ] (x₁≉y₁ ∘ proj₁) (inj₁ x₁>y₁)
cmp′ (tri≈ x₁≮y₁ x₁≈y₁ x₁≯y₁) x₂ y₂ =
cmp″ x₁≮y₁ x₁≈y₁ x₁≯y₁ (compare₂ x₂ y₂)
cmp : Trichotomous (_≈₁_ ×-Rel _≈₂_) (×-Lex _≈₁_ _<₁_ _<₂_)
cmp (x₁ , x₂) (y₁ , y₂) = cmp′ (compare₁ x₁ y₁) x₂ y₂
-- Some collections of properties which are preserved by ×-Lex.
_×-isPreorder_ : ∀ {_≈₁_ _∼₁_} → IsPreorder _≈₁_ _∼₁_ →
∀ {_≈₂_ _∼₂_} → IsPreorder _≈₂_ _∼₂_ →
IsPreorder (_≈₁_ ×-Rel _≈₂_) (×-Lex _≈₁_ _∼₁_ _∼₂_)
_×-isPreorder_ {_≈₁_ = _≈₁_} {_∼₁_ = _∼₁_} pre₁ {_∼₂_ = _∼₂_} pre₂ =
record
{ isEquivalence = Pointwise._×-isEquivalence_
(isEquivalence pre₁) (isEquivalence pre₂)
; reflexive = λ {x y} →
×-reflexive _≈₁_ _∼₁_ _∼₂_ (reflexive pre₂)
{x} {y}
; trans = λ {x y z} →
×-transitive
(isEquivalence pre₁) (∼-resp-≈ pre₁)
(trans pre₁) {_≤₂_ = _∼₂_} (trans pre₂)
{x} {y} {z}
}
where open IsPreorder
_×-isStrictPartialOrder_ :
∀ {_≈₁_ _<₁_} → IsStrictPartialOrder _≈₁_ _<₁_ →
∀ {_≈₂_ _<₂_} → IsStrictPartialOrder _≈₂_ _<₂_ →
IsStrictPartialOrder (_≈₁_ ×-Rel _≈₂_) (×-Lex _≈₁_ _<₁_ _<₂_)
_×-isStrictPartialOrder_ {_<₁_ = _<₁_} spo₁ {_<₂_ = _<₂_} spo₂ =
record
{ isEquivalence = Pointwise._×-isEquivalence_
(isEquivalence spo₁) (isEquivalence spo₂)
; irrefl = λ {x y} →
_×-irreflexive_ {_<₁_ = _<₁_} (irrefl spo₁)
{_<₂_ = _<₂_} (irrefl spo₂)
{x} {y}
; trans = λ {x y z} →
×-transitive
{_<₁_ = _<₁_} (isEquivalence spo₁)
(<-resp-≈ spo₁) (trans spo₁)
{_≤₂_ = _<₂_} (trans spo₂) {x} {y} {z}
; <-resp-≈ = ×-≈-respects₂ (isEquivalence spo₁)
(<-resp-≈ spo₁)
(<-resp-≈ spo₂)
}
where open IsStrictPartialOrder
_×-isStrictTotalOrder_ :
∀ {_≈₁_ _<₁_} → IsStrictTotalOrder _≈₁_ _<₁_ →
∀ {_≈₂_ _<₂_} → IsStrictTotalOrder _≈₂_ _<₂_ →
IsStrictTotalOrder (_≈₁_ ×-Rel _≈₂_) (×-Lex _≈₁_ _<₁_ _<₂_)
_×-isStrictTotalOrder_ {_<₁_ = _<₁_} spo₁ {_<₂_ = _<₂_} spo₂ =
record
{ isEquivalence = Pointwise._×-isEquivalence_
(isEquivalence spo₁) (isEquivalence spo₂)
; trans = λ {x y z} →
×-transitive
{_<₁_ = _<₁_} (isEquivalence spo₁)
(<-resp-≈ spo₁) (trans spo₁)
{_≤₂_ = _<₂_} (trans spo₂) {x} {y} {z}
; compare = ×-compare (Eq.sym spo₁) (compare spo₁)
(compare spo₂)
; <-resp-≈ = ×-≈-respects₂ (isEquivalence spo₁)
(<-resp-≈ spo₁)
(<-resp-≈ spo₂)
}
where open IsStrictTotalOrder
-- "Packages" (e.g. preorders) can also be combined.
_×-preorder_ :
∀ {p₁ p₂ p₃ p₄} →
Preorder p₁ p₂ _ → Preorder p₃ p₄ _ → Preorder _ _ _
p₁ ×-preorder p₂ = record
{ isPreorder = isPreorder p₁ ×-isPreorder isPreorder p₂
} where open Preorder
_×-strictPartialOrder_ :
∀ {s₁ s₂ s₃ s₄} →
StrictPartialOrder s₁ s₂ _ → StrictPartialOrder s₃ s₄ _ →
StrictPartialOrder _ _ _
s₁ ×-strictPartialOrder s₂ = record
{ isStrictPartialOrder = isStrictPartialOrder s₁
×-isStrictPartialOrder
isStrictPartialOrder s₂
} where open StrictPartialOrder
_×-strictTotalOrder_ :
∀ {s₁ s₂ s₃ s₄} →
StrictTotalOrder s₁ s₂ _ → StrictTotalOrder s₃ s₄ _ →
StrictTotalOrder _ _ _
s₁ ×-strictTotalOrder s₂ = record
{ isStrictTotalOrder = isStrictTotalOrder s₁
×-isStrictTotalOrder
isStrictTotalOrder s₂
} where open StrictTotalOrder
| {
"alphanum_fraction": 0.5056721751,
"avg_line_length": 39.9821428571,
"ext": "agda",
"hexsha": "92c2a12239460832b65131b3179e0f4ebd1d1313",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Product/StrictLex.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Product/StrictLex.agda",
"max_line_length": 82,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/Product/StrictLex.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 5073,
"size": 11195
} |
record R : Set₁ where
field
A : Set
{B} : Set
{{C}} : Set
open R
r : R
r = {!!}
-- C-c C-c produced
-- A r = {!!}
-- B {r} = {!!}
-- C {{r}} = {!!}
| {
"alphanum_fraction": 0.3450292398,
"avg_line_length": 10.6875,
"ext": "agda",
"hexsha": "7c45011ea3d36832d463288884ca2a84f7599a58",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue2287.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue2287.agda",
"max_line_length": 21,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue2287.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 72,
"size": 171
} |
module Example where
open import Bool
open import Nat hiding (_==_; _+_)
open import AC
open Provable
infix 40 _+_
infix 30 _==_
postulate
X : Set
_==_ : X -> X -> Set
|0| : X
_+_ : X -> X -> X
refl : forall {x} -> x == x
sym : forall {x y} -> x == y -> y == x
trans : forall {x y z} -> x == y -> y == z -> x == z
idL : forall {x} -> |0| + x == x
idR : forall {x} -> x + |0| == x
comm : forall {x y} -> x + y == y + x
assoc : forall {x y z} -> x + (y + z) == (x + y) + z
congL : forall {x y z} -> y == z -> x + y == x + z
congR : forall {x y z} -> x == y -> x + z == y + z
open Semantics
_==_ _+_ |0| refl sym trans idL idR
comm assoc congL congR
thm = theorem 11 \a b c d e f g h i j k ->
j ○ (k ○ (((((h ○ (e ○ ((e ○ (a ○ (a ○ (b ○ ((c ○ (((c ○ (d ○ d)) ○ (((d
○ (d ○ ((d ○ ((e ○ k) ○ ((((a ○ b) ○ (((h ○ (k ○ f)) ○ (((d ○ ((j ○ (h ○
(a ○ (((g ○ (k ○ g)) ○ ((b ○ (i ○ (i ○ ((i ○ ((k ○ (d ○ (b ○ ((b ○ ((h ○
k) ○ e)) ○ a)))) ○ j)) ○ a)))) ○ i)) ○ h)))) ○ (g ○ h))) ○ f) ○ h)) ○ b))
○ f) ○ f))) ○ (e ○ d)))) ○ d) ○ c)) ○ c)) ○ b))))) ○ (((a ○ a) ○ k) ○
e)))) ○ c) ○ h) ○ (d ○ a)) ○ (c ○ a)))
≡
(j ○ (k ○ (((h ○ (h ○ e)) ○ ((((e ○ (((a ○ (b ○ ((b ○ c) ○ (((d ○ d) ○
((d ○ d) ○ ((((e ○ (e ○ (f ○ f))) ○ (((a ○ ((b ○ (h ○ (k ○ (h ○ ((f ○ ((h
○ ((h ○ (a ○ ((k ○ (g ○ (b ○ (k ○ ((((a ○ (((e ○ h) ○ k) ○ b)) ○ b) ○ d)
○ j))))) ○ ((((a ○ i) ○ i) ○ i) ○ i)))) ○ ((g ○ h) ○ g))) ○ (j ○ d))) ○
f))))) ○ b)) ○ k) ○ d)) ○ d) ○ d))) ○ ((c ○ c) ○ c))))) ○ (a ○ a)) ○ a))
○ (k ○ e)) ○ c) ○ d)) ○ a))) ○ (c ○ a)
test = prove thm
| {
"alphanum_fraction": 0.3003003003,
"avg_line_length": 33.3,
"ext": "agda",
"hexsha": "2b89bb9e7c04dedf14871c9d39dc793325d59a53",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "benchmark/ac/Example.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "benchmark/ac/Example.agda",
"max_line_length": 79,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "benchmark/ac/Example.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 884,
"size": 1665
} |
open import Level
open import Ordinals
module filter {n : Level } (O : Ordinals {n}) where
open import zf
open import logic
import OD
open import Relation.Nullary
open import Data.Empty
open import Relation.Binary.Core
open import Relation.Binary.PropositionalEquality
import BAlgbra
open BAlgbra O
open inOrdinal O
open OD O
open OD.OD
open ODAxiom odAxiom
import OrdUtil
import ODUtil
open Ordinals.Ordinals O
open Ordinals.IsOrdinals isOrdinal
open Ordinals.IsNext isNext
open OrdUtil O
open ODUtil O
import ODC
open ODC O
open _∧_
open _∨_
open Bool
-- Kunen p.76 and p.53, we use ⊆
record Filter ( L : HOD ) : Set (suc n) where
field
filter : HOD
f⊆PL : filter ⊆ Power L
filter1 : { p q : HOD } → q ⊆ L → filter ∋ p → p ⊆ q → filter ∋ q
filter2 : { p q : HOD } → filter ∋ p → filter ∋ q → filter ∋ (p ∩ q)
open Filter
record prime-filter { L : HOD } (P : Filter L) : Set (suc (suc n)) where
field
proper : ¬ (filter P ∋ od∅)
prime : {p q : HOD } → filter P ∋ (p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q )
record ultra-filter { L : HOD } (P : Filter L) : Set (suc (suc n)) where
field
proper : ¬ (filter P ∋ od∅)
ultra : {p : HOD } → p ⊆ L → ( filter P ∋ p ) ∨ ( filter P ∋ ( L \ p) )
open _⊆_
∈-filter : {L p : HOD} → (P : Filter L ) → filter P ∋ p → p ⊆ L
∈-filter {L} {p} P lt = power→⊆ L p ( incl (f⊆PL P) lt )
∪-lemma1 : {L p q : HOD } → (p ∪ q) ⊆ L → p ⊆ L
∪-lemma1 {L} {p} {q} lt = record { incl = λ {x} p∋x → incl lt (case1 p∋x) }
∪-lemma2 : {L p q : HOD } → (p ∪ q) ⊆ L → q ⊆ L
∪-lemma2 {L} {p} {q} lt = record { incl = λ {x} p∋x → incl lt (case2 p∋x) }
q∩q⊆q : {p q : HOD } → (q ∩ p) ⊆ q
q∩q⊆q = record { incl = λ lt → proj1 lt }
open HOD
-----
--
-- ultra filter is prime
--
filter-lemma1 : {L : HOD} → (P : Filter L) → ∀ {p q : HOD } → ultra-filter P → prime-filter P
filter-lemma1 {L} P u = record {
proper = ultra-filter.proper u
; prime = lemma3
} where
lemma3 : {p q : HOD} → filter P ∋ (p ∪ q) → ( filter P ∋ p ) ∨ ( filter P ∋ q )
lemma3 {p} {q} lt with ultra-filter.ultra u (∪-lemma1 (∈-filter P lt) )
... | case1 p∈P = case1 p∈P
... | case2 ¬p∈P = case2 (filter1 P {q ∩ (L \ p)} (∪-lemma2 (∈-filter P lt)) lemma7 lemma8) where
lemma5 : ((p ∪ q ) ∩ (L \ p)) =h= (q ∩ (L \ p))
lemma5 = record { eq→ = λ {x} lt → ⟪ lemma4 x lt , proj2 lt ⟫
; eq← = λ {x} lt → ⟪ case2 (proj1 lt) , proj2 lt ⟫
} where
lemma4 : (x : Ordinal ) → odef ((p ∪ q) ∩ (L \ p)) x → odef q x
lemma4 x lt with proj1 lt
lemma4 x lt | case1 px = ⊥-elim ( proj2 (proj2 lt) px )
lemma4 x lt | case2 qx = qx
lemma6 : filter P ∋ ((p ∪ q ) ∩ (L \ p))
lemma6 = filter2 P lt ¬p∈P
lemma7 : filter P ∋ (q ∩ (L \ p))
lemma7 = subst (λ k → filter P ∋ k ) (==→o≡ lemma5 ) lemma6
lemma8 : (q ∩ (L \ p)) ⊆ q
lemma8 = q∩q⊆q
-----
--
-- if Filter contains L, prime filter is ultra
--
filter-lemma2 : {L : HOD} → (P : Filter L) → filter P ∋ L → prime-filter P → ultra-filter P
filter-lemma2 {L} P f∋L prime = record {
proper = prime-filter.proper prime
; ultra = λ {p} p⊆L → prime-filter.prime prime (lemma p p⊆L)
} where
open _==_
p+1-p=1 : {p : HOD} → p ⊆ L → L =h= (p ∪ (L \ p))
eq→ (p+1-p=1 {p} p⊆L) {x} lt with ODC.decp O (odef p x)
eq→ (p+1-p=1 {p} p⊆L) {x} lt | yes p∋x = case1 p∋x
eq→ (p+1-p=1 {p} p⊆L) {x} lt | no ¬p = case2 ⟪ lt , ¬p ⟫
eq← (p+1-p=1 {p} p⊆L) {x} ( case1 p∋x ) = subst (λ k → odef L k ) &iso (incl p⊆L ( subst (λ k → odef p k) (sym &iso) p∋x ))
eq← (p+1-p=1 {p} p⊆L) {x} ( case2 ¬p ) = proj1 ¬p
lemma : (p : HOD) → p ⊆ L → filter P ∋ (p ∪ (L \ p))
lemma p p⊆L = subst (λ k → filter P ∋ k ) (==→o≡ (p+1-p=1 p⊆L)) f∋L
record Dense (P : HOD ) : Set (suc n) where
field
dense : HOD
d⊆P : dense ⊆ Power P
dense-f : HOD → HOD
dense-d : { p : HOD} → p ⊆ P → dense ∋ dense-f p
dense-p : { p : HOD} → p ⊆ P → p ⊆ (dense-f p)
record Ideal ( L : HOD ) : Set (suc n) where
field
ideal : HOD
i⊆PL : ideal ⊆ Power L
ideal1 : { p q : HOD } → q ⊆ L → ideal ∋ p → q ⊆ p → ideal ∋ q
ideal2 : { p q : HOD } → ideal ∋ p → ideal ∋ q → ideal ∋ (p ∪ q)
open Ideal
proper-ideal : {L : HOD} → (P : Ideal L ) → {p : HOD} → Set n
proper-ideal {L} P {p} = ideal P ∋ od∅
prime-ideal : {L : HOD} → Ideal L → ∀ {p q : HOD } → Set n
prime-ideal {L} P {p} {q} = ideal P ∋ ( p ∩ q) → ( ideal P ∋ p ) ∨ ( ideal P ∋ q )
----
--
-- Filter/Ideal without ZF
-- L have to be a Latice
--
record F-Filter {n : Level} (L : Set n) (PL : (L → Set n) → Set n) ( _⊆_ : L → L → Set n) (_∩_ : L → L → L ) : Set (suc n) where
field
filter : L → Set n
f⊆P : PL filter
filter1 : { p q : L } → PL (λ x → q ⊆ x ) → filter p → p ⊆ q → filter q
filter2 : { p q : L } → filter p → filter q → filter (p ∩ q)
Filter-is-F : {L : HOD} → (f : Filter L ) → F-Filter HOD (λ p → (x : HOD) → p x → x ⊆ L ) _⊆_ _∩_
Filter-is-F {L} f = record {
filter = λ x → Lift (suc n) ((filter f) ∋ x)
; f⊆P = λ x f∋x → power→⊆ _ _ (incl ( f⊆PL f ) (lower f∋x ))
; filter1 = λ {p} {q} q⊆L f∋p p⊆q → lift ( filter1 f (q⊆L q refl-⊆) (lower f∋p) p⊆q)
; filter2 = λ {p} {q} f∋p f∋q → lift ( filter2 f (lower f∋p) (lower f∋q))
}
record F-Dense {n : Level} (L : Set n) (PL : (L → Set n) → Set n) ( _⊆_ : L → L → Set n) (_∩_ : L → L → L ) : Set (suc n) where
field
dense : L → Set n
d⊆P : PL dense
dense-f : L → L
dense-d : { p : L} → PL (λ x → p ⊆ x ) → dense ( dense-f p )
dense-p : { p : L} → PL (λ x → p ⊆ x ) → p ⊆ (dense-f p)
Dense-is-F : {L : HOD} → (f : Dense L ) → F-Dense HOD (λ p → (x : HOD) → p x → x ⊆ L ) _⊆_ _∩_
Dense-is-F {L} f = record {
dense = λ x → Lift (suc n) ((dense f) ∋ x)
; d⊆P = λ x f∋x → power→⊆ _ _ (incl ( d⊆P f ) (lower f∋x ))
; dense-f = λ x → dense-f f x
; dense-d = λ {p} d → lift ( dense-d f (d p refl-⊆ ) )
; dense-p = λ {p} d → dense-p f (d p refl-⊆)
} where open Dense
record GenericFilter (P : HOD) : Set (suc n) where
field
genf : Filter P
generic : (D : Dense P ) → ¬ ( (Dense.dense D ∩ Filter.filter genf ) ≡ od∅ )
record F-GenericFilter {n : Level} (L : Set n) (PL : (L → Set n) → Set n) ( _⊆_ : L → L → Set n) (_∩_ : L → L → L ) : Set (suc n) where
field
GFilter : F-Filter L PL _⊆_ _∩_
Intersection : (D : F-Dense L PL _⊆_ _∩_ ) → { x : L } → F-Dense.dense D x → L
Generic : (D : F-Dense L PL _⊆_ _∩_ ) → { x : L } → ( y : F-Dense.dense D x) → F-Filter.filter GFilter (Intersection D y )
| {
"alphanum_fraction": 0.492280547,
"avg_line_length": 34.6989795918,
"ext": "agda",
"hexsha": "8aabd8a20db7f4452e11ef0b84bc210e6501b248",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/zf-in-agda",
"max_forks_repo_path": "src/filter.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/zf-in-agda",
"max_issues_repo_path": "src/filter.agda",
"max_line_length": 137,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "031f1ea3a3037cd51eb022dbfb5c75b037bf8aa0",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/zf-in-agda",
"max_stars_repo_path": "src/filter.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-10T13:27:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-10-02T13:46:23.000Z",
"num_tokens": 2979,
"size": 6801
} |
module Solution where
open import Data.Empty
open import Data.List
open import Data.Nat
open import Data.Bool hiding (_≟_)
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
data Subseq : List ℕ → List ℕ → Set where
subseq-nil : Subseq [] []
subseq-take : ∀ a xs ys → Subseq xs ys → Subseq (a ∷ xs) (a ∷ ys)
subseq-drop : ∀ a xs ys → Subseq xs ys → Subseq xs (a ∷ ys)
_⊂_ : List ℕ → List ℕ → Set
_⊂_ = Subseq
subseq-match : (xs ys : List ℕ) → Bool
subseq-match [] ys = true
subseq-match (x ∷ xs) [] = false
subseq-match (x ∷ xs) (y ∷ ys) with x ≟ y
... | yes _ = subseq-match xs ys
... | no _ = subseq-match (x ∷ xs) ys
_⊂*_ : List ℕ → List ℕ → Bool
_⊂*_ = subseq-match
-- silly : ∀ (a : ℕ) (xs ys : List ℕ) → xs ⊂* ys ≡ (a ∷ xs) ⊂* (a ∷ ys)
-- silly a xs ys = ?
subseq-match⇒subseq : ∀ xs ys → xs ⊂* ys ≡ true → xs ⊂ ys
subseq-match⇒subseq [] [] H = subseq-nil
subseq-match⇒subseq [] (y ∷ ys) H = subseq-drop y [] ys (subseq-match⇒subseq [] ys H)
subseq-match⇒subseq (x ∷ xs) (y ∷ ys) H with x ≟ y
... | yes P rewrite sym P = subseq-take x xs ys (subseq-match⇒subseq xs ys H)
... | no _ = subseq-drop y (x ∷ xs) ys (subseq-match⇒subseq (x ∷ xs) ys H)
subseq⇒subseq-match : ∀ xs ys → xs ⊂ ys → xs ⊂* ys ≡ true
subseq⇒subseq-match .[] .[] subseq-nil = refl
subseq⇒subseq-match (x ∷ xs) .(a ∷ ys) (subseq-take a xs ys H) with x ≟ a
... | yes refl = subseq⇒subseq-match xs ys H
... | no absurd = ⊥-elim (absurd refl)
subseq⇒subseq-match [] .(a ∷ ys) (subseq-drop a .[] ys H) = refl
subseq⇒subseq-match (x ∷ xs) .(a ∷ ys) (subseq-drop a .(x ∷ xs) ys H) with x ≟ a
... | yes refl = {!!}
... | no _ = {!!}
| {
"alphanum_fraction": 0.57771261,
"avg_line_length": 36.2765957447,
"ext": "agda",
"hexsha": "e5ffae9a471b97f39e6bff7835271ab12038490e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/Solution.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/Solution.agda",
"max_line_length": 91,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/Solution.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 671,
"size": 1705
} |
{-# OPTIONS --cubical --safe #-}
open import Relation.Binary
module Relation.Binary.Equivalence.Reasoning {a} {𝑆 : Set a} {b} (equivalence : Equivalence 𝑆 b) where
open Equivalence equivalence
open import Function
import Path
infixr 2 ≋˘⟨⟩-syntax _≋⟨⟩_ ≋⟨∙⟩-syntax ≡⟨∙⟩-syntax
≋˘⟨⟩-syntax : ∀ (x : 𝑆) {y z} → y ≋ z → y ≋ x → x ≋ z
≋˘⟨⟩-syntax _ y≋z y≋x = sym y≋x ⟨ trans ⟩ y≋z
syntax ≋˘⟨⟩-syntax x y≋z y≋x = x ≋˘⟨ y≋x ⟩ y≋z
≋⟨∙⟩-syntax : ∀ (x : 𝑆) {y z} → y ≋ z → x ≋ y → x ≋ z
≋⟨∙⟩-syntax _ y≋z x≋y = x≋y ⟨ trans ⟩ y≋z
syntax ≋⟨∙⟩-syntax x y≋z x≋y = x ≋⟨ x≋y ⟩ y≋z
_≋⟨⟩_ : ∀ (x : 𝑆) {y} → x ≋ y → x ≋ y
_ ≋⟨⟩ x≋y = x≋y
≡⟨∙⟩-syntax : ∀ (x : 𝑆) {y z} → y ≋ z → x Path.≡ y → x ≋ z
≡⟨∙⟩-syntax _ y≋z x≡y = Path.subst (_≋ _) (Path.sym x≡y) y≋z
syntax ≡⟨∙⟩-syntax x y≋z x≡y = x ≡⟨ x≡y ⟩ y≋z
infix 2.5 _∎
_∎ : ∀ x → x ≋ x
x ∎ = refl
| {
"alphanum_fraction": 0.5047619048,
"avg_line_length": 24,
"ext": "agda",
"hexsha": "1ed307c4aef127d6b44ec6e283e925f65cd08886",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Relation/Binary/Equivalence/Reasoning.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Relation/Binary/Equivalence/Reasoning.agda",
"max_line_length": 102,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Relation/Binary/Equivalence/Reasoning.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 506,
"size": 840
} |
{-# OPTIONS --allow-unsolved-metas #-}
open import Oscar.Prelude
-- meta-class
open import Oscar.Class
-- classes
open import Oscar.Class.Smap
open import Oscar.Class.Symmetry
-- individual instances
open import Oscar.Class.Hmap.Transleftidentity
open import Oscar.Class.Reflexivity.Function
open import Oscar.Class.Transitivity.Function
-- instance bundles
open import Oscar.Property.Functor.SubstitunctionExtensionTerm
open import Oscar.Data.Proposequality
module Test.ProblemWithDerivation-2 where
postulate
A : Set
B : Set
_~A~_ : A → A → Set
_~B~_ : B → B → Set
s1 : A → B
f1 : ∀ {x y} → x ~A~ y → s1 x ~B~ s1 y
instance
𝓢urjectivity1 : Smap.class _~A~_ _~B~_ s1 s1
𝓢urjectivity1 .⋆ _ _ = f1
-- Oscar.Property.Setoid.Proposextensequality
module _ {𝔬} {𝔒 : Ø 𝔬} {𝔭} {𝔓 : 𝔒 → Ø 𝔭} where
instance
𝓢ymmetryProposextensequality : Symmetry.class Proposextensequality⟦ 𝔓 ⟧
𝓢ymmetryProposextensequality .⋆ f₁≡̇f₂ x rewrite f₁≡̇f₂ x = ∅
test : ∀ {x y} → x ~A~ y → s1 x ~B~ s1 y
test {x} {y} = smap -- FIXME this works now. why?
| {
"alphanum_fraction": 0.7001879699,
"avg_line_length": 22.6382978723,
"ext": "agda",
"hexsha": "4fc608be0497d4c20c4103e8d23317744b89842b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Test/ProblemWithDerivation-2.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Test/ProblemWithDerivation-2.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Test/ProblemWithDerivation-2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 390,
"size": 1064
} |
-- Records are allowed in mutual blocks.
module RecordInMutual where
mutual
record A : Set where
field x : B
record B : Set where
field x : A
| {
"alphanum_fraction": 0.6751592357,
"avg_line_length": 14.2727272727,
"ext": "agda",
"hexsha": "db211fb2e2e78dc9d38e41098782d8176bfe43f9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/agda-kanso",
"max_forks_repo_path": "test/succeed/RecordInMutual.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/agda-kanso",
"max_issues_repo_path": "test/succeed/RecordInMutual.agda",
"max_line_length": 40,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/succeed/RecordInMutual.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 45,
"size": 157
} |
module Ag09 where
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; cong; cong-app)
open Eq.≡-Reasoning
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Nat.Properties using (+-comm)
_∘_ : ∀ {A B C : Set} → (B → C) → (A → B) → (A → C)
(g ∘ f) x = g (f x)
infix 0 _≃_
record _≃_ (A B : Set) : Set where
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
to∘from : ∀ (y : B) → to (from y) ≡ y
open _≃_
infix 0 _≲_
record _≲_ (A B : Set) : Set where
field
to : A → B
from : B → A
from∘to : ∀ (x : A) → from (to x) ≡ x
open _≲_
-- exercises
≃-implies-≲ : ∀ {A B : Set}
→ A ≃ B
-----
→ A ≲ B
≃-implies-≲ A≃B =
record
{ to = to A≃B
; from = from A≃B
; from∘to = from∘to A≃B
}
record _⇔_ (A B : Set) : Set where
field
to : A → B
from : B → A
open _⇔_
⇔-refl : ∀ {A : Set} → A ⇔ A
⇔-refl =
record
{ to = λ{x → x}
; from = λ{y → y}
}
⇔-sym : ∀ {A B : Set} → A ⇔ B → B ⇔ A
⇔-sym A⇔B =
record
{ to = from A⇔B
; from = to A⇔B
}
⇔-trans : ∀ {A B C : Set} → A ⇔ B → B ⇔ C → A ⇔ C
⇔-trans A⇔B B⇔C =
record
{ to = to B⇔C ∘ to A⇔B
; from = from A⇔B ∘ from B⇔C
}
≃-refl : ∀ {A : Set}
-----
→ A ≃ A
≃-refl =
record
{ to = λ{x → x}
; from = λ{y → y}
; from∘to = λ{x → refl}
; to∘from = λ{y → refl}
}
≃-sym : ∀ {A B : Set}
→ A ≃ B
-----
→ B ≃ A
≃-sym A≃B =
record
{ to = from A≃B
; from = to A≃B
; from∘to = to∘from A≃B
; to∘from = from∘to A≃B
}
≃-trans : ∀ {A B C : Set}
→ A ≃ B
→ B ≃ C
-----
→ A ≃ C
≃-trans A≃B B≃C =
record
{ to = to B≃C ∘ to A≃B
; from = from A≃B ∘ from B≃C
; from∘to = λ{x →
begin
(from A≃B ∘ from B≃C) ((to B≃C ∘ to A≃B) x)
≡⟨⟩
from A≃B (from B≃C (to B≃C (to A≃B x)))
≡⟨ cong (from A≃B) (from∘to B≃C (to A≃B x)) ⟩
from A≃B (to A≃B x)
≡⟨ from∘to A≃B x ⟩
x
∎}
; to∘from = λ{y →
begin
(to B≃C ∘ to A≃B) ((from A≃B ∘ from B≃C) y)
≡⟨⟩
to B≃C (to A≃B (from A≃B (from B≃C y)))
≡⟨ cong (to B≃C) (to∘from A≃B (from B≃C y)) ⟩
to B≃C (from B≃C y)
≡⟨ to∘from B≃C y ⟩
y
∎}
}
module ≃-Reasoning where
infix 1 ≃-begin_
infixr 2 _≃⟨_⟩_
infix 3 _≃-∎
≃-begin_ : ∀ {A B : Set}
→ A ≃ B
-----
→ A ≃ B
≃-begin A≃B = A≃B
_≃⟨_⟩_ : ∀ (A : Set) {B C : Set}
→ A ≃ B
→ B ≃ C
-----
→ A ≃ C
A ≃⟨ A≃B ⟩ B≃C = ≃-trans A≃B B≃C
_≃-∎ : ∀ (A : Set)
-----
→ A ≃ A
A ≃-∎ = ≃-refl
open ≃-Reasoning
postulate
extensionality : ∀ {A B : Set} {f g : A → B}
→ (∀ (x : A) → f x ≡ g x)
-----------------------
→ f ≡ g
| {
"alphanum_fraction": 0.4003546099,
"avg_line_length": 18.0769230769,
"ext": "agda",
"hexsha": "c2b5c0e6389d0dc8140e8edf7d83355a774c472d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-12-13T04:50:46.000Z",
"max_forks_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Brethland/LEARNING-STUFF",
"max_forks_repo_path": "Agda/Ag09.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Brethland/LEARNING-STUFF",
"max_issues_repo_path": "Agda/Ag09.agda",
"max_line_length": 53,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "eb2cef0556efb9a4ce11783f8516789ea48cc344",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Brethland/LEARNING-STUFF",
"max_stars_repo_path": "Agda/Ag09.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-11T10:35:42.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-02-03T05:05:52.000Z",
"num_tokens": 1424,
"size": 2820
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Semiring
open import Numbers.Integers.Definition
open import Semirings.Definition
open import Groups.Abelian.Definition
open import Groups.Definition
open import Setoids.Setoids
module Numbers.Integers.Addition where
infix 15 _+Z_
_+Z_ : ℤ → ℤ → ℤ
nonneg zero +Z b = b
nonneg (succ x) +Z nonneg y = nonneg (succ x +N y)
nonneg (succ x) +Z negSucc zero = nonneg x
nonneg (succ x) +Z negSucc (succ y) = nonneg x +Z negSucc y
negSucc x +Z nonneg zero = negSucc x
negSucc zero +Z nonneg (succ y) = nonneg y
negSucc (succ x) +Z nonneg (succ y) = negSucc x +Z nonneg y
negSucc x +Z negSucc y = negSucc (succ x +N y)
+Zinherits : (a b : ℕ) → nonneg (a +N b) ≡ (nonneg a) +Z (nonneg b)
+Zinherits zero b = refl
+Zinherits (succ a) b = refl
+ZCommutative : (a b : ℤ) → a +Z b ≡ b +Z a
+ZCommutative (nonneg zero) (nonneg zero) = refl
+ZCommutative (nonneg zero) (nonneg (succ y)) = applyEquality (λ i → nonneg (succ i)) (Semiring.commutative ℕSemiring 0 y)
+ZCommutative (nonneg (succ x)) (nonneg zero) = applyEquality (λ i → nonneg (succ i)) (Semiring.commutative ℕSemiring x 0)
+ZCommutative (nonneg (succ x)) (nonneg (succ y)) = applyEquality (λ i → nonneg (succ i)) (transitivity (Semiring.commutative ℕSemiring x (succ y)) (transitivity (applyEquality succ (Semiring.commutative ℕSemiring y x)) (Semiring.commutative ℕSemiring (succ x) y)))
+ZCommutative (nonneg zero) (negSucc y) = refl
+ZCommutative (nonneg (succ x)) (negSucc zero) = refl
+ZCommutative (nonneg (succ x)) (negSucc (succ y)) = +ZCommutative (nonneg x) (negSucc y)
+ZCommutative (negSucc x) (nonneg zero) = refl
+ZCommutative (negSucc zero) (nonneg (succ y)) = refl
+ZCommutative (negSucc (succ x)) (nonneg (succ y)) = +ZCommutative (negSucc x) (nonneg y)
+ZCommutative (negSucc x) (negSucc y) = applyEquality (λ i → negSucc (succ i)) (Semiring.commutative ℕSemiring x y)
+ZAssociative : (a b c : ℤ) → a +Z (b +Z c) ≡ (a +Z b) +Z c
+ZAssociative (nonneg zero) (nonneg b) (nonneg c) = refl
+ZAssociative (nonneg (succ a)) (nonneg zero) (nonneg c) rewrite Semiring.commutative ℕSemiring a 0 = refl
+ZAssociative (nonneg (succ a)) (nonneg (succ b)) (nonneg c) = applyEquality (λ i → nonneg (succ i)) (Semiring.+Associative ℕSemiring a (succ b) c)
+ZAssociative (nonneg zero) (nonneg b) (negSucc c) = refl
+ZAssociative (nonneg (succ a)) (nonneg zero) (negSucc c) rewrite Semiring.sumZeroRight ℕSemiring a = refl
+ZAssociative (nonneg (succ a)) (nonneg (succ b)) (negSucc zero) = applyEquality nonneg (transitivity (applyEquality succ (Semiring.commutative ℕSemiring a b)) (Semiring.commutative ℕSemiring (succ b) a))
+ZAssociative (nonneg (succ a)) (nonneg (succ b)) (negSucc (succ c)) = transitivity (+ZAssociative (nonneg (succ a)) (nonneg b) (negSucc c)) (applyEquality (λ i → nonneg i +Z negSucc c) (transitivity (applyEquality succ (Semiring.commutative ℕSemiring a b)) (Semiring.commutative ℕSemiring (succ b) a)))
+ZAssociative (nonneg zero) (negSucc b) c = refl
+ZAssociative (nonneg (succ a)) (negSucc zero) (nonneg zero) = +ZCommutative (nonneg 0) (nonneg a)
+ZAssociative (nonneg (succ a)) (negSucc zero) (nonneg (succ c)) = transitivity (applyEquality nonneg (transitivity (applyEquality succ (Semiring.commutative ℕSemiring a c)) (Semiring.commutative ℕSemiring (succ c) a))) (+Zinherits a (succ c))
+ZAssociative (nonneg (succ a)) (negSucc zero) (negSucc c) = refl
+ZAssociative (nonneg (succ a)) (negSucc (succ b)) (nonneg zero) = +ZCommutative (nonneg 0) _
+ZAssociative (nonneg (succ a)) (negSucc (succ b)) (nonneg (succ c)) = transitivity (applyEquality (nonneg (succ a) +Z_) (+ZCommutative (negSucc b) (nonneg c))) (transitivity (+ZAssociative (nonneg (succ a)) (nonneg c) (negSucc b)) (transitivity (transitivity (transitivity (transitivity (applyEquality (λ i → nonneg (succ i) +Z negSucc b) (Semiring.commutative ℕSemiring a c)) (+ZCommutative (nonneg (succ (c +N a))) (negSucc b))) (applyEquality (negSucc b +Z_) (+ZCommutative (nonneg (succ c)) (nonneg a)))) (+ZAssociative (negSucc b) (nonneg a) (nonneg (succ c)))) (applyEquality (_+Z nonneg (succ c)) (+ZCommutative (negSucc b) (nonneg a)))))
+ZAssociative (nonneg (succ a)) (negSucc (succ b)) (negSucc c) = +ZAssociative (nonneg a) (negSucc b) (negSucc c)
+ZAssociative (negSucc a) (nonneg zero) c = refl
+ZAssociative (negSucc zero) (nonneg (succ b)) (nonneg c) = +Zinherits b c
+ZAssociative (negSucc zero) (nonneg (succ b)) (negSucc zero) = +ZCommutative (negSucc 0) (nonneg b)
+ZAssociative (negSucc zero) (nonneg (succ b)) (negSucc (succ c)) = transitivity (+ZCommutative (negSucc 0) (nonneg b +Z negSucc c)) (transitivity (equalityCommutative (+ZAssociative (nonneg b) (negSucc c) (negSucc 0))) (applyEquality (λ i → nonneg b +Z negSucc (succ i)) (Semiring.sumZeroRight ℕSemiring c)))
+ZAssociative (negSucc (succ a)) (nonneg (succ b)) (nonneg zero) = transitivity (applyEquality (λ i → negSucc a +Z (nonneg i)) (Semiring.sumZeroRight ℕSemiring b)) (+ZCommutative (nonneg 0) (negSucc a +Z nonneg b))
+ZAssociative (negSucc (succ a)) (nonneg (succ b)) (nonneg (succ c)) = transitivity (applyEquality (negSucc a +Z_) (+Zinherits b (succ c))) (+ZAssociative (negSucc a) (nonneg b) (nonneg (succ c)))
+ZAssociative (negSucc (succ a)) (nonneg (succ b)) (negSucc zero) = transitivity (+ZCommutative (negSucc (succ a)) (nonneg b)) (transitivity (transitivity (applyEquality (λ i → nonneg b +Z negSucc (succ i)) (equalityCommutative (Semiring.sumZeroRight ℕSemiring a))) (+ZAssociative (nonneg b) (negSucc a) (negSucc 0))) (applyEquality (_+Z negSucc 0) (+ZCommutative (nonneg b) (negSucc a))))
+ZAssociative (negSucc (succ a)) (nonneg (succ b)) (negSucc (succ c)) = transitivity (+ZCommutative (negSucc (succ a)) (nonneg b +Z negSucc c)) (transitivity (transitivity (equalityCommutative (+ZAssociative (nonneg b) (negSucc c) (negSucc (succ a)))) (transitivity (applyEquality (λ i → nonneg b +Z negSucc i) (Semiring.commutative ℕSemiring (succ c) (succ a))) (+ZAssociative (nonneg b) (negSucc a) (negSucc (succ c))))) (applyEquality (_+Z negSucc (succ c)) (+ZCommutative (nonneg b) (negSucc a))))
+ZAssociative (negSucc a) (negSucc b) (nonneg zero) = refl
+ZAssociative (negSucc a) (negSucc zero) (nonneg (succ c)) = applyEquality (λ i → negSucc i +Z nonneg c) (Semiring.commutative ℕSemiring 0 a)
+ZAssociative (negSucc a) (negSucc (succ b)) (nonneg (succ c)) = transitivity (+ZAssociative (negSucc a) (negSucc b) (nonneg c)) (applyEquality (λ i → negSucc i +Z nonneg c) (transitivity (applyEquality succ (Semiring.commutative ℕSemiring a b)) (Semiring.commutative ℕSemiring (succ b) a)))
+ZAssociative (negSucc a) (negSucc b) (negSucc c) = applyEquality (λ i → negSucc (succ i)) (transitivity (Semiring.+Associative ℕSemiring a (succ b) c) (applyEquality (_+N c) (transitivity (Semiring.commutative ℕSemiring a (succ b)) (applyEquality succ (Semiring.commutative ℕSemiring b a)))))
additiveInverseExists : (a : ℕ) → (negSucc a +Z nonneg (succ a)) ≡ nonneg 0
additiveInverseExists zero = refl
additiveInverseExists (succ a) = additiveInverseExists a
additiveInverse : (a : ℤ) → ℤ
additiveInverse (nonneg zero) = nonneg 0
additiveInverse (nonneg (succ x)) = negSucc x
additiveInverse (negSucc x) = nonneg (succ x)
ℤGroup : Group (reflSetoid ℤ) (_+Z_)
Group.+WellDefined ℤGroup refl refl = refl
Group.0G ℤGroup = nonneg 0
Group.inverse ℤGroup = additiveInverse
Group.+Associative ℤGroup {a} {b} {c} = +ZAssociative a b c
Group.identRight ℤGroup {nonneg zero} = refl
Group.identRight ℤGroup {nonneg (succ x)} = applyEquality (λ i → nonneg (succ i)) (Semiring.commutative ℕSemiring x 0)
Group.identRight ℤGroup {negSucc x} = refl
Group.identLeft ℤGroup = refl
Group.invLeft ℤGroup {nonneg zero} = refl
Group.invLeft ℤGroup {nonneg (succ x)} = additiveInverseExists x
Group.invLeft ℤGroup {negSucc x} = transitivity (+ZCommutative (nonneg (succ x)) (negSucc x)) (additiveInverseExists x)
Group.invRight ℤGroup {nonneg zero} = refl
Group.invRight ℤGroup {nonneg (succ x)} = transitivity (+ZCommutative (nonneg (succ x)) (negSucc x)) (additiveInverseExists x)
Group.invRight ℤGroup {negSucc x} = additiveInverseExists x
ℤAbGrp : AbelianGroup ℤGroup
ℤAbGrp = record { commutative = λ {a} {b} → +ZCommutative a b }
| {
"alphanum_fraction": 0.7196465319,
"avg_line_length": 86.0520833333,
"ext": "agda",
"hexsha": "c4a657dd354b75501e5423540de599a78ebd66f3",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/Integers/Addition.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/Integers/Addition.agda",
"max_line_length": 646,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/Integers/Addition.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 2936,
"size": 8261
} |
module Cats.Util.Monad where
open import Category.Monad public
open import Data.List using (List ; [] ; _∷_ ; map)
open import Data.Unit using (⊤)
open import Function using (_∘_)
open import Level using (Lift ; lift)
open RawMonad {{...}} public
private
_<*>_ = _⊛_
module _ {f} {M : Set f → Set f} {{_ : RawMonad M}} where
sequence : ∀ {A} → List (M A) → M (List A)
sequence [] = return []
sequence (mx ∷ mxs) = ⦇ mx ∷ sequence mxs ⦈
void : ∀ {A} → M A → M (Lift f ⊤)
void m = m >>= λ _ → return _
mapM : ∀ {a} {A : Set a} {B} → (A → M B) → List A → M (List B)
mapM f = sequence ∘ map f
mapM′ : ∀ {a} {A : Set a} {B} → (A → M B) → List A → M (Lift f ⊤)
mapM′ f = void ∘ mapM f
| {
"alphanum_fraction": 0.5497896213,
"avg_line_length": 20.9705882353,
"ext": "agda",
"hexsha": "6d2685e922e4cfe3f7188934ce6b55045a96e255",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Util/Monad.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Util/Monad.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Util/Monad.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 275,
"size": 713
} |
{-# OPTIONS --cubical --safe #-}
module Cubical.HITs.Localization.Properties where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.PathSplitEquiv
open isPathSplitEquiv
open import Cubical.HITs.Localization.Base
module _ {ℓα ℓs ℓt} {A : Type ℓα} {S : A → Type ℓs} {T : A → Type ℓt} where
rec : ∀ {F : ∀ α → S α → T α} {ℓ ℓ'} {X : Type ℓ} {Y : Type ℓ'}
→ (lY : isLocal F Y) → (X → Y) → Localize F X → Y
rec lY g ∣ x ∣ = g x
rec lY g (ext α f t) = fst (sec (lY α)) (λ s → rec lY g (f s)) t
rec lY g (isExt α f s i) = snd (sec (lY α)) (λ s → rec lY g (f s)) i s
rec lY f (≡ext α g h p t i) = fst (secCong (lY α) (λ t → rec lY f (g t)) (λ t → rec lY f (h t)))
(λ i s → rec lY f (p s i)) i t
rec lY f (≡isExt α g h p t i j) = snd (secCong (lY α) (λ t → rec lY f (g t)) (λ t → rec lY f (h t)))
(λ i s → rec lY f (p s i)) i j t
| {
"alphanum_fraction": 0.5532900834,
"avg_line_length": 44.9583333333,
"ext": "agda",
"hexsha": "c9be10f9338749a9ac7bd0d11799f382062af9c5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "borsiemir/cubical",
"max_forks_repo_path": "Cubical/HITs/Localization/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "borsiemir/cubical",
"max_issues_repo_path": "Cubical/HITs/Localization/Properties.agda",
"max_line_length": 102,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "cefeb3669ffdaea7b88ae0e9dd258378418819ca",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "borsiemir/cubical",
"max_stars_repo_path": "Cubical/HITs/Localization/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 420,
"size": 1079
} |
------------------------------------------------------------------------------
-- The alternating bit protocol (ABP) is correct
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- This module proves the correctness of the ABP following the
-- formalization in Dybjer and Sander (1989).
module FOTC.Program.ABP.CorrectnessProofI where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.Bool
open import FOTC.Data.Bool.PropertiesI
open import FOTC.Data.Stream.Type
open import FOTC.Data.Stream.Equality.PropertiesI
open import FOTC.Program.ABP.ABP
open import FOTC.Program.ABP.Lemma1I
open import FOTC.Program.ABP.Lemma2I
open import FOTC.Program.ABP.Fair.Type
open import FOTC.Program.ABP.Terms
open import FOTC.Relation.Binary.Bisimilarity.Type
------------------------------------------------------------------------------
-- Main theorem.
abpCorrect : ∀ {b os₁ os₂ is} → Bit b → Fair os₁ → Fair os₂ → Stream is →
is ≈ abpTransfer b os₁ os₂ is
abpCorrect {b} {os₁} {os₂} {is} Bb Fos₁ Fos₂ Sis = ≈-coind B h₁ h₂
where
h₁ : ∀ {ks ls} → B ks ls →
∃[ k' ] ∃[ ks' ] ∃[ ls' ] ks ≡ k' ∷ ks' ∧ ls ≡ k' ∷ ls' ∧ B ks' ls'
h₁ {ks} {ls} (b , os₁ , os₂ , as , bs , cs , ds , Sks , Bb , Fos₁ , Fos₂ , h)
with Stream-out Sks
... | (k' , ks' , ks≡k'∷ks' , Sks') =
k' , ks' , ls' , ks≡k'∷ks' , ls≡k'∷ls' , Bks'ls'
where
S-helper : ks ≡ k' ∷ ks' →
S b ks os₁ os₂ as bs cs ds ls →
S b (k' ∷ ks') os₁ os₂ as bs cs ds ls
S-helper h₁ h₂ = subst (λ t → S b t os₁ os₂ as bs cs ds ls) h₁ h₂
S'-lemma₁ : ∃[ os₁' ] ∃[ os₂' ] ∃[ as' ] ∃[ bs' ] ∃[ cs' ] ∃[ ds' ] ∃[ ls' ]
Fair os₁'
∧ Fair os₂'
∧ S' b k' ks' os₁' os₂' as' bs' cs' ds' ls'
∧ ls ≡ k' ∷ ls'
S'-lemma₁ = lemma₁ Bb Fos₁ Fos₂ (S-helper ks≡k'∷ks' h)
-- Following Martin Escardo advice (see Agda mailing list, heap
-- mistery) we use pattern matching instead of ∃ eliminators to
-- project the elements of the existentials.
-- 2011-08-25 update: It does not seems strictly necessary because
-- the Agda issue 415 was fixed.
ls' : D
ls' with S'-lemma₁
... | _ , _ , _ , _ , _ , _ , ls' , _ = ls'
ls≡k'∷ls' : ls ≡ k' ∷ ls'
ls≡k'∷ls' with S'-lemma₁
... | _ , _ , _ , _ , _ , _ , _ , _ , _ , _ , prf = prf
S-lemma₂ : ∃[ os₁'' ] ∃[ os₂'' ] ∃[ as'' ] ∃[ bs'' ] ∃[ cs'' ] ∃[ ds'' ]
Fair os₁''
∧ Fair os₂''
∧ S (not b) ks' os₁'' os₂'' as'' bs'' cs'' ds'' ls'
S-lemma₂ with S'-lemma₁
... | _ , _ , _ , _ , _ , _ , _ , Fos₁' , Fos₂' , s' , _ =
lemma₂ Bb Fos₁' Fos₂' s'
Bks'ls' : B ks' ls'
Bks'ls' with S-lemma₂
... | os₁'' , os₂'' , as'' , bs'' , cs'' , ds'' , Fos₁'' , Fos₂'' , s =
not b , os₁'' , os₂'' , as'' , bs'' , cs'' , ds''
, Sks' , not-Bool Bb , Fos₁'' , Fos₂'' , s
h₂ : B is (abpTransfer b os₁ os₂ is)
h₂ = b
, os₁
, os₂
, has aux₁ aux₂ aux₃ aux₄ aux₅ is
, hbs aux₁ aux₂ aux₃ aux₄ aux₅ is
, hcs aux₁ aux₂ aux₃ aux₄ aux₅ is
, hds aux₁ aux₂ aux₃ aux₄ aux₅ is
, Sis
, Bb
, Fos₁
, Fos₂
, has-eq aux₁ aux₂ aux₃ aux₄ aux₅ is
, hbs-eq aux₁ aux₂ aux₃ aux₄ aux₅ is
, hcs-eq aux₁ aux₂ aux₃ aux₄ aux₅ is
, hds-eq aux₁ aux₂ aux₃ aux₄ aux₅ is
, trans (abpTransfer-eq b os₁ os₂ is)
(transfer-eq aux₁ aux₂ aux₃ aux₄ aux₅ is)
where
aux₁ aux₂ aux₃ aux₄ aux₅ : D
aux₁ = send b
aux₂ = ack b
aux₃ = out b
aux₄ = corrupt os₁
aux₅ = corrupt os₂
------------------------------------------------------------------------------
-- abpTransfer produces a Stream.
abpTransfer-Stream : ∀ {b os₁ os₂ is} →
Bit b →
Fair os₁ →
Fair os₂ →
Stream is →
Stream (abpTransfer b os₁ os₂ is)
abpTransfer-Stream Bb Fos₁ Fos₂ Sis = ≈→Stream₂ (abpCorrect Bb Fos₁ Fos₂ Sis)
------------------------------------------------------------------------------
-- References
--
-- Dybjer, Peter and Sander, Herbert P. (1989). A Functional
-- Programming Approach to the Specification and Verification of
-- Concurrent Systems. Formal Aspects of Computing 1, pp. 303–319.
| {
"alphanum_fraction": 0.4914021164,
"avg_line_length": 36.5806451613,
"ext": "agda",
"hexsha": "230fad8b185bb731c0f6f1e6b64bb9932aaf5594",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/ABP/CorrectnessProofI.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/ABP/CorrectnessProofI.agda",
"max_line_length": 80,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/ABP/CorrectnessProofI.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1568,
"size": 4536
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Foundations.Pointed.Base where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Structure
open import Cubical.Foundations.Structure using (typ) public
open import Cubical.Foundations.GroupoidLaws
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Univalence
Pointed : (ℓ : Level) → Type (ℓ-suc ℓ)
Pointed ℓ = TypeWithStr ℓ (λ x → x)
pt : ∀ {ℓ} (A∙ : Pointed ℓ) → typ A∙
pt = str
Pointed₀ = Pointed ℓ-zero
{- Pointed functions -}
_→∙_ : ∀{ℓ ℓ'} → (A : Pointed ℓ) (B : Pointed ℓ') → Type (ℓ-max ℓ ℓ')
(A , a) →∙ (B , b) = Σ[ f ∈ (A → B) ] f a ≡ b
_→∙_∙ : ∀{ℓ ℓ'} → (A : Pointed ℓ) (B : Pointed ℓ') → Pointed (ℓ-max ℓ ℓ')
(A →∙ B ∙) .fst = A →∙ B
(A →∙ B ∙) .snd .fst x = pt B
(A →∙ B ∙) .snd .snd = refl
idfun∙ : ∀ {ℓ} (A : Pointed ℓ) → A →∙ A
idfun∙ A .fst x = x
idfun∙ A .snd = refl
{- HIT allowing for pattern matching on pointed types -}
data Pointer {ℓ} (A : Pointed ℓ) : Type ℓ where
pt₀ : Pointer A
⌊_⌋ : typ A → Pointer A
id : ⌊ pt A ⌋ ≡ pt₀
IsoPointedPointer : ∀ {ℓ} {A : Pointed ℓ} → Iso (typ A) (Pointer A)
Iso.fun IsoPointedPointer = ⌊_⌋
Iso.inv (IsoPointedPointer {A = A}) pt₀ = pt A
Iso.inv IsoPointedPointer ⌊ x ⌋ = x
Iso.inv (IsoPointedPointer {A = A}) (id i) = pt A
Iso.rightInv IsoPointedPointer pt₀ = id
Iso.rightInv IsoPointedPointer ⌊ x ⌋ = refl
Iso.rightInv IsoPointedPointer (id i) j = id (i ∧ j)
Iso.leftInv IsoPointedPointer x = refl
Pointed≡Pointer : ∀ {ℓ} {A : Pointed ℓ} → typ A ≡ Pointer A
Pointed≡Pointer = isoToPath IsoPointedPointer
Pointer∙ : ∀ {ℓ} (A : Pointed ℓ) → Pointed ℓ
Pointer∙ A .fst = Pointer A
Pointer∙ A .snd = pt₀
Pointed≡∙Pointer : ∀ {ℓ} {A : Pointed ℓ} → A ≡ (Pointer A , pt₀)
Pointed≡∙Pointer {A = A} i = (Pointed≡Pointer {A = A} i) , helper i
where
helper : PathP (λ i → Pointed≡Pointer {A = A} i) (pt A) pt₀
helper = ua-gluePath (isoToEquiv (IsoPointedPointer {A = A})) id
pointerFun : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B)
→ Pointer A → Pointer B
pointerFun f pt₀ = pt₀
pointerFun f ⌊ x ⌋ = ⌊ fst f x ⌋
pointerFun f (id i) = (cong ⌊_⌋ (snd f) ∙ id) i
pointerFun∙ : ∀ {ℓ ℓ'} {A : Pointed ℓ} {B : Pointed ℓ'} (f : A →∙ B)
→ Pointer∙ A →∙ Pointer∙ B
pointerFun∙ f .fst = pointerFun f
pointerFun∙ f .snd = refl
| {
"alphanum_fraction": 0.626156434,
"avg_line_length": 32.5753424658,
"ext": "agda",
"hexsha": "9fdd3d5d963a09069f24f40ace1e00a8cdaca7f1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/cubical",
"max_forks_repo_path": "Cubical/Foundations/Pointed/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/cubical",
"max_issues_repo_path": "Cubical/Foundations/Pointed/Base.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "60226aacd7b386aef95d43a0c29c4eec996348a8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/cubical",
"max_stars_repo_path": "Cubical/Foundations/Pointed/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 992,
"size": 2378
} |
open import SOAS.Common
open import SOAS.Families.Core
import SOAS.Metatheory.MetaAlgebra
-- Shorthands for de Bruijn indices
module SOAS.Syntax.Shorthands {T : Set}
{⅀F : Functor 𝔽amiliesₛ 𝔽amiliesₛ}
(open SOAS.Metatheory.MetaAlgebra ⅀F)
{𝒜 : Familyₛ → Familyₛ}(𝒜ᵃ : (𝔛 : Familyₛ) → MetaAlg 𝔛 (𝒜 𝔛))
where
open import SOAS.Context
open import SOAS.Families.Build
open import SOAS.ContextMaps.Inductive
open import SOAS.Variable
open import Data.Nat
open import Relation.Nullary.Decidable using (True; toWitness)
private
variable
α β γ δ υ : T
Γ Δ : Ctx
module _ {𝔛 : Familyₛ} where
open MetaAlg 𝔛 (𝒜ᵃ 𝔛)
-- Refer to variables via de Bruijn numerals: e.g. ` 2 = 𝑣𝑎𝑟 (old (old new))
len : Ctx {T} → ℕ
len ∅ = ℕ.zero
len (α ∙ Γ) = suc (len Γ)
ix : {Γ : Ctx} → {n : ℕ} → (p : n < len Γ) → T
ix {(α ∙ _)} {zero} (s≤s z≤n) = α
ix {(_ ∙ Γ)} {(suc n)} (s≤s p) = ix p
deBruijn : ∀ {Γ} → {n : ℕ} → (p : n < len Γ) → ℐ (ix p) Γ
deBruijn {_ ∙ _} {zero} (s≤s z≤n) = new
deBruijn {_ ∙ Γ} {(suc n)} (s≤s p) = old (deBruijn p)
′ : {Γ : Ctx}(n : ℕ){n∈Γ : True (suc n ≤? len Γ)} → 𝒜 𝔛 (ix (toWitness n∈Γ)) Γ
′ n {n∈Γ} = 𝑣𝑎𝑟 (deBruijn (toWitness n∈Γ))
-- Explicit abbreviations for de Bruijn indices 0-4
x₀ : 𝒜 𝔛 α (α ∙ Γ)
x₀ = 𝑣𝑎𝑟 new
x₁ : 𝒜 𝔛 β (α ∙ β ∙ Γ)
x₁ = 𝑣𝑎𝑟 (old new)
x₂ : 𝒜 𝔛 γ (α ∙ β ∙ γ ∙ Γ)
x₂ = 𝑣𝑎𝑟 (old (old new))
x₃ : 𝒜 𝔛 δ (α ∙ β ∙ γ ∙ δ ∙ Γ)
x₃ = 𝑣𝑎𝑟 (old (old (old new)))
x₄ : 𝒜 𝔛 υ (α ∙ β ∙ γ ∙ δ ∙ υ ∙ Γ)
x₄ = 𝑣𝑎𝑟 (old (old (old (old new))))
| {
"alphanum_fraction": 0.5631443299,
"avg_line_length": 27.2280701754,
"ext": "agda",
"hexsha": "bd2e92acdcf3776020f02698a835733c85e3995c",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "SOAS/Syntax/Shorthands.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "SOAS/Syntax/Shorthands.agda",
"max_line_length": 80,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "SOAS/Syntax/Shorthands.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 804,
"size": 1552
} |
import MJ.Classtable
import MJ.Syntax as Syntax
import MJ.Semantics.Values as Values
import MJ.Classtable.Core as Core
import MJ.Classtable.Code as Code
--
-- Substitution-free interpretation of welltyped MJ
--
module MJ.Semantics.Monadic {c} (Ct : Core.Classtable c)(ℂ : Code.Code Ct) where
open import Prelude hiding (_^_)
open import Data.Vec hiding (init; _>>=_)
open import Data.Vec.All.Properties.Extra as Vec∀++
open import Data.List hiding (null)
open import Data.List.Properties.Extra
open import Data.List.All.Properties.Extra
open import Data.List.Prefix
open import Data.List.First
open import Data.List.First.Properties
open import Data.List.Relation.Unary.All as All
open import Data.List.Relation.Unary.Any
open import Data.List.Membership.Propositional
open import Relation.Nullary.Decidable
open import Data.Star hiding (return; _>>=_)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open Values Ct
open Syntax Ct
open Code Ct
open Core c
open Classtable Ct
open import MJ.Syntax.Program Ct
open import MJ.Classtable.Membership Ct
open import MJ.Types
open import MJ.LexicalScope c
open import MJ.Semantics.Environments Ct
open import MJ.Semantics.Objects Ct
open import MJ.Semantics.Objects.Flat Ct ℂ using (encoding)
open import Common.Weakening
{-
Make the object encoding API available;
-}
open ObjEncoding encoding
{-
The monad in which we define evaluation.
This encapsulates state, lexical environments, timeouts and exceptions.
-}
WSet = World c → Set
data Exception : Set where
nullderef : Exception
other : Exception
data Result (W : World c)(A : WSet) : Set where
exception : ∀ {W'} → W' ⊒ W → Store W' → Exception → Result W A
timeout : Result W A
returns : ∀ {W'} → W' ⊒ W → Store W' → A W' → Result W A
result-strengthen : ∀ {W W'}{A : WSet} → W ⊒ W' → Result W A → Result W' A
result-strengthen ext (exception ext' μ e) = exception (ext ⊚ ext') μ e
result-strengthen ext timeout = timeout
result-strengthen ext (returns ext' μ v) = returns (ext ⊚ ext') μ v
-- monad that threads a readonly environment, store and propagates
-- semantic errors
M : Ctx → World c → WSet → Set
M Γ W A = Env Γ W → Store W → Result W A
return : ∀ {Γ W}{A : WSet} → A W → M Γ W A
return v _ μ = returns ⊑-refl μ v
doTimeout : ∀ {Γ W}{A : WSet} → M Γ W A
doTimeout _ _ = timeout
raiseM : ∀ {Γ W}{A : WSet} → Exception → M Γ W A
raiseM exc E μ = exception ⊑-refl μ exc
sval-weaken : ∀ {W W' a} → W' ⊒ W → StoreVal W a → StoreVal W' a
sval-weaken ext (val x) = val $ weaken-val ext x
sval-weaken ext (obj cid x) = obj cid (weaken-obj cid ext x)
instance
storeval-weakenable : ∀ {a} → Weakenable (λ W → StoreVal W a)
storeval-weakenable = record {wk = sval-weaken }
infixl 10 _>>=_
_>>=_ : ∀ {Γ W}{A B : WSet} → M Γ W A → (∀ {W'} → A W' → M Γ W' B) →
M Γ W B
(k >>= f) E μ with k E μ
... | exception ext μ' e = exception ext μ' e
... | timeout = timeout
... | returns ext μ' v = result-strengthen ext $ f v (All.map (wk ext) E) μ'
infixl 10 _^_
_^_ : ∀ {Σ Γ}{A B : WSet} ⦃ w : Weakenable B ⦄ → M Γ Σ A → B Σ → M Γ Σ (A ⊗ B)
(f ^ x) E μ with (f E μ)
... | timeout = timeout
... | exception ext μ' e = exception ext μ' e
... | returns ext μ' v = returns ext μ' (v , wk ext x)
_recoverWith_ : ∀ {Γ W}{A : WSet} → M Γ W A →
(∀ {W'} → Exception → W' ⊒ W → M Γ W' A) →
M Γ W A
(k recoverWith f) E μ with k E μ
... | timeout = timeout
... | returns ext μ' x = returns ext μ' x
... | exception ext μ' e = result-strengthen ext $ f e ext (wk ext E) μ'
store : ∀ {Γ W a} → StoreVal W a → M Γ W (λ W' → a ∈ W')
store {Γ}{W}{a} sv E μ =
let
ext = ∷ʳ-⊒ a W
μ' = (All.map (wk ext) μ) all-∷ʳ (wk ext sv)
in returns ext μ' (∈-∷ʳ W a)
update : ∀ {Γ W a} → a ∈ W → StoreVal W a → M Γ W (λ W' → ⊤)
update ptr v E μ = returns ⊑-refl (μ All.[ ptr ]≔ v) tt
deref : ∀ {Γ W a} → a ∈ W → M Γ W (flip StoreVal a)
deref ptr E μ = returns ⊑-refl μ (∈-all ptr μ)
getEnv : ∀ {Γ W}{A : WSet} → (Env Γ W → M Γ W A) → M Γ W A
getEnv f E μ = f E E μ
usingEnv : ∀ {Γ Γ' W}{A : WSet} → Env Γ' W → M Γ' W A → M Γ W A
usingEnv E e = const $ e E
store* : ∀ {Γ W as} → All (λ a → StoreVal W (vty a)) as →
M Γ W (λ W' → All (λ a → (vty a) ∈ W') as)
store* [] = return []
store* (v ∷ vs) =
store v ^ vs >>= λ{ (r , vs) →
store* vs ^ r >>= λ{ (rs , r) →
return (r ∷ rs) }}
{-
Lifting of object getter/setter into the monad
-}
read-field : ∀ {Γ : Ctx}{C W f a} → IsMember C FIELD f a → Val W (ref C) →
M Γ W (λ W → Val W a)
read-field m null = raiseM nullderef
read-field m (ref o C<:C') E μ with ∈-all o μ
read-field m (ref o C<:C') E μ | obj cid O = returns ⊑-refl μ (getter _ O (inherit' C<:C' m))
write-field : ∀ {Γ C W f a} → IsMember C FIELD f a → Val W (ref C) → Val W a →
M Γ W (flip Val (ref C))
write-field m null v = raiseM nullderef
write-field m (ref o s) v E μ with ∈-all o μ
write-field m (ref o s) v E μ | obj cid O =
let
vobj = obj cid (setter _ O (inherit' s m) v)
μ' = μ All.[ o ]≔ vobj
in returns ⊑-refl μ' (ref o s)
-- Get the implementation of any method definition of a class
mbody : ∀ {m ty} cid → AccMember cid METHOD m ty → InheritedMethod cid m ty
mbody cid mb with toWitness mb
... | (pid , s , d∈decls) = pid , s , ∈-all (proj₁ (first⟶∈ d∈decls)) (Implementation.mbodies (ℂ pid))
{-
Refinements of bind and return for the nested monad for command evaluation
-}
_>>=c_ : ∀ {I O O' : Ctx}{W : World c}{a} →
M I W (λ W → Val W a ⊎ Env O W) →
(∀ {W'} → Env O W' → M I W' (λ W → Val W a ⊎ Env O' W)) →
M I W (λ W → Val W a ⊎ Env O' W)
m >>=c f = m >>= λ{
(inj₁ v) → return (inj₁ v) ;
(inj₂ E) → f E }
continue : ∀ {Γ : Ctx}{W : World c}{a} → M Γ W (λ W → Val W a ⊎ Env Γ W)
continue = getEnv λ E → return (inj₂ E)
{-
Fueled interpreter
-}
mutual
{-
Arguments are passed as mutable and thus have to be evaluated, after which
we store the values in the store and we pass the references.
-}
eval-args : ∀ {Γ as W} → ℕ → All (Expr Γ) as → M Γ W (λ W' → All (λ a → (vty a) ∈ W') as)
eval-args k args =
evalₑ* k args >>= λ vs →
store* (All.map val vs)
{-
Object initialization:
Creates a default object; stores a mutable reference to it on the heap; calls the constructor
on the resulting reference.
-}
constructM : ℕ → ∀ cid → ∀ {W} → M (Class.constr (Σ cid)) W (flip Val (ref cid))
constructM k cid with ℂ cid
constructM k cid | (implementation construct mbodies) =
store (obj _ (defaultObject cid)) >>= λ r →
store (val (ref r ε)) ^ r >>= λ{ (r' , r) →
getEnv λ E →
usingEnv (E ⊕ r') (eval-constructor k ε r construct) ^ r >>= λ{ (_ , r) →
return $ ref r ε }}
{-
Constructor interpretation:
The difficult case being the one where we have a super call.
-}
eval-constructor : ∀ {cid' cid W} → ℕ → Σ ⊢ cid' <: cid → (obj cid') ∈ W → Constructor cid →
M (constrctx cid) W (flip Val void)
eval-constructor zero _ _ _ = doTimeout
eval-constructor {_}{Object} (suc k) _ _ _ = return unit
eval-constructor {_}{cls cid} (suc k) s o∈W (super args then b) =
-- evaluate super call
let
s' = s ◅◅ super ◅ ε
super-con = Implementation.construct (ℂ (Class.parent (Σ (cls cid))))
in
eval-args k args ^ o∈W >>= λ{ (rvs , o∈W) → -- arguments
getEnv λ{ (self ∷ _) →
-- store a parent pointer for passing to super
store (val (ref o∈W s')) ^ o∈W ^ rvs >>= λ{ ((sup , o∈W) , rvs) →
usingEnv (sup ∷ rvs) (eval-constructor k s' o∈W super-con) >>= λ _ →
-- evaluate own body
eval-body k b >>= λ _ →
return unit
}}}
eval-constructor {_}{cls id} (suc k) _ _ (body x) =
eval-body k x >>= λ _ →
return unit
{-
Method evaluation including super calls.
The difficult case again being the one where we have a super call.
-}
eval-method : ∀ {cid m as b pid W Γ} → ℕ →
Σ ⊢ cid <: pid → (obj cid) ∈ W →
All (λ ty → vty ty ∈ W) as →
InheritedMethod pid m (as , b) → M Γ W (flip Val b)
eval-method zero _ _ _ _ = doTimeout
eval-method (suc k) s o args (pid' , pid<:pid' , body b) =
store (val (ref o (s ◅◅ pid<:pid'))) ^ args >>= λ{ (mutself , args) →
usingEnv (mutself ∷ args) (eval-body k b) }
eval-method {_}{m}{as}{b} (suc k) s o args (Object , _ , super x ⟨ _ ⟩then _) rewrite Σ-Object =
-- calling a method on Object is improbable...
⊥-elim (∉Object {METHOD}{m}{(as , b)}(sound x))
eval-method (suc k) s o args (cls pid' , pid<:pid' , super x ⟨ supargs ⟩then b) =
let super-met = mbody (Class.parent (Σ (cls pid'))) x in
store (val (ref o (s ◅◅ pid<:pid'))) ^ (args , o) >>= λ{ (mutself , args , o) →
-- eval super args in method context
usingEnv (mutself ∷ args) (eval-args k supargs) ^ (args , o) >>= λ{ (rvs , args , o) →
-- call super
eval-method k (s ◅◅ pid<:pid' ◅◅ super ◅ ε) o rvs super-met ^ (args , o) >>= λ{ (retv , args , o) →
-- store the super return value to be used as a mutable local
store (val retv) ^ (args , o) >>= λ{ (mutret , args , o) →
-- store the mutable "this"
store (val (ref o (s ◅◅ pid<:pid'))) ^ (mutret , args) >>= λ{ (mutself' , mutret , args) →
-- call body
usingEnv (mutret ∷ mutself' ∷ args) (eval-body k b) }}}}}
{-
evaluation of expressions
-}
evalₑ : ∀ {Γ : Ctx}{a} → ℕ → Expr Γ a → ∀ {W} → M Γ W (flip Val a)
evalₑ zero _ = doTimeout
-- primitive values
evalₑ (suc k) unit =
return unit
evalₑ (suc k) (num n) =
return (num n)
evalₑ (suc k) null =
return null
-- variable lookup
evalₑ (suc k) (var x) =
getEnv (λ E → return $ getvar x E) >>= λ v →
deref v >>= λ{ (val w) →
return w }
evalₑ (suc k) (upcast ε e) = evalₑ k e
evalₑ (suc k) (upcast s₁@(_ ◅ _) e) = evalₑ k e >>= λ{
(ref o s₂ ) → return $ ref o (s₂ ◅◅ s₁) ;
null → return null
}
-- binary interger operations
evalₑ (suc k) (iop f l r) =
evalₑ k l >>= λ{ (num vₗ) →
evalₑ k r >>= λ{ (num vᵣ) →
return (num (f vₗ vᵣ)) }}
-- method calls
evalₑ (suc k) (call e _ {acc = mtd} args) =
evalₑ k e >>= λ{
null → raiseM nullderef ;
r@(ref {dyn-cid} o s₁) →
-- evaluate the arguments
eval-args k args ^ o >>= λ{ (rvs , o) →
-- dynamic dispatch: dynamic lookup of the method on the runtime class of the reference
-- and execution of the call
(eval-method k ε o rvs (mbody dyn-cid (inherit _ s₁ mtd))) }}
-- field lookup in the heap
evalₑ (suc k) (get e _ {_}{fld}) =
evalₑ k e >>= λ{
null → raiseM nullderef ;
(ref o s) →
deref o >>= λ{ (obj c O) →
return (getter _ O $ inherit' s (sound fld)) }}
-- object allocation
evalₑ (suc k) (new C args) =
eval-args k args >>= λ rvs →
usingEnv rvs (constructM k C)
{-
Statement evaluation
-}
evalc : ∀ {I : Ctx}{O : Ctx}{W : World c}{a} → ℕ →
Stmt I a O → M I W (λ W → Val W a ⊎ Env O W)
evalc zero _ = doTimeout
evalc (suc k) raise = raiseM other
evalc (suc k) (block stmts) =
eval-stmts k stmts >>=c λ _ → continue
evalc (suc k) (try cs catch cs') =
(evalc k cs >>=c λ _ → continue)
recoverWith (λ e ext → evalc k cs' >>= λ _ → continue)
-- new local variable
evalc (suc k) (loc a) =
store (val $ default a) >>= λ r →
getEnv λ E → return (inj₂ (E ⊕ r))
-- assigning to a local
evalc (suc k) (asgn x e) =
evalₑ k e >>= λ v →
getEnv (λ E → return $ getvar x E) ^ v >>= λ{ (addr , v) →
update addr (val v) >>= λ _ →
continue }
-- setting a field
evalc (suc k) (set r _ {_}{fld} e) =
evalₑ k r >>= λ{
null → raiseM nullderef ;
r'@(ref _ _) →
evalₑ k e ^ r' >>= λ{ (v , r') →
write-field (sound fld) r' v >>= λ _ →
continue }}
-- side-effectful expressions
evalc (suc k) (run e) =
evalₑ k e >>= λ _ →
continue
-- early returns
evalc (suc k) (ret e) =
evalₑ k e >>= λ v →
return (inj₁ v)
-- if-then-else blocks
evalc (suc k) (if e then cs else ds) =
evalₑ k e >>= λ{
(num zero) → evalc k cs ;
(num (suc _)) → evalc k ds
}
-- while loops
evalc (suc k) (while e run b) =
evalₑ (suc k) e >>= λ{
(num zero) → evalc k b >>= λ _ → evalc k (while e run b) ;
(num (suc _)) → continue
}
{-
An helper for interpreting a sequence of statements
-}
eval-stmts : ∀ {Γ Γ' W a} → ℕ → Stmts Γ a Γ' → M Γ W (λ W → Val W a ⊎ Env Γ' W)
eval-stmts k ε = continue
eval-stmts k (x ◅ st) =
evalc k x >>=c λ E' →
usingEnv E' (eval-stmts k st)
{-
An helper for interpreting method bodies (i.e. sequence of Stmts optionally followed by a return).
-}
eval-body : ∀ {I : Ctx}{W : World c}{a} → ℕ → Body I a → M I W (λ W → Val W a)
eval-body k (body ε re) = evalₑ k re
eval-body k (body stmts@(_ ◅ _) e) =
(eval-stmts k stmts) >>= λ{
(inj₁ v) → return v ;
(inj₂ E) → usingEnv E (evalₑ k e) }
{-
An helper for interpreting a list of expressions in the same context.
-}
evalₑ* : ∀ {Γ W as} → ℕ → All (Expr Γ) as → M Γ W (λ W → All (Val W) as)
evalₑ* k [] = return []
evalₑ* k (e ∷ es) =
evalₑ k e >>= λ v →
evalₑ* k es ^ v >>= λ{ (vs , v) →
return (v ∷ vs) }
eval : ∀ {a} → ℕ → Prog a → Result [] (flip Val a)
eval k (lib , main) = eval-body k main [] []
{-
a few predicates on program interpretation:
... saying it will terminate succesfully in a state where P holds
-}
_⇓⟨_⟩_ : ∀ {a} → Prog a → ℕ → (P : ∀ {W} → Val W a → Set) → Set
p ⇓⟨ k ⟩ P with eval k p
p ⇓⟨ k ⟩ P | exception _ _ _ = ⊥
p ⇓⟨ k ⟩ P | timeout = ⊥
p ⇓⟨ k ⟩ P | returns ext μ v = P v
{-
...saying it will raise an exception in a state where P holds
-}
_⇓⟨_⟩!_ : ∀ {a} → Prog a → ℕ → (P : ∀ {W} → Store W → Exception → Set) → Set
p ⇓⟨ k ⟩! P with eval k p
p ⇓⟨ k ⟩! P | exception _ μ e = P μ e
p ⇓⟨ k ⟩! P | timeout = ⊥
p ⇓⟨ k ⟩! P | returns ext μ v = ⊥
| {
"alphanum_fraction": 0.5693639551,
"avg_line_length": 32.0573394495,
"ext": "agda",
"hexsha": "aad01ad73e699c033668ed391f7804bc57f76739",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/MJ/Semantics/Monadic.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/MJ/Semantics/Monadic.agda",
"max_line_length": 105,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/MJ/Semantics/Monadic.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 5104,
"size": 13977
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Implementation.Data.Natural where
open import Light.Library.Data.Natural using (Library ; Dependencies)
import Light.Implementation.Relation.Decidable
import Light.Implementation.Relation.Binary.Equality.Propositional
import Light.Package
open import Light.Library.Relation.Decidable using (Decidable ; yes ; no ; if_then_else_)
import Light.Implementation.Relation.Binary.Equality.Propositional.Decidable as DecidablePropositional
open import Light.Library.Relation.Binary using (reflexivity ; congruence)
open import Light.Library.Relation.Binary.Equality using (_≈_ ; wrap)
open import Agda.Builtin.Equality using (refl)
instance dependencies : Dependencies
dependencies = record {}
instance library : Library dependencies
library = record { Implementation }
where
module Implementation where
data ℕ : Set where
zero : ℕ
successor : ℕ → ℕ
{-# COMPILE JS
ℕ = (a, cons) => a === 0n ? cons.zero() : cons.successor(a - 1n)
#-}
{-# COMPILE JS zero = 0n #-}
{-# COMPILE JS successor = a => a + 1n #-}
postulate _+_ _∗_ _//_ _∸_ : ℕ → ℕ → ℕ
{-# COMPILE JS _+_ = () => a => b => a + b #-}
{-# COMPILE JS _∗_ = () => a => b => a * b #-}
{-# COMPILE JS _//_ = () => a => b => a / b #-}
{-# COMPILE JS _∸_ = () => a => b => a < b ? 0n : a - b #-}
predecessor : _
predecessor a = a ∸ successor zero
private _≈?_ : ∀ (a b : ℕ) → Decidable (a ≈ b)
zero ≈? zero = yes reflexivity
successor _ ≈? zero = no λ ()
zero ≈? successor _ = no λ ()
successor a ≈? successor b =
if a ≈? b
then (λ ⦃ a‐≡‐b ⦄ → yes (congruence a‐≡‐b))
else (λ ⦃ f ⦄ → no λ {refl → f reflexivity})
equals = record { equals = wrap (record { are = λ a b → a ≈? b }) }
module EqualityProperties = DecidablePropositional.Main _≈?_
| {
"alphanum_fraction": 0.5416479063,
"avg_line_length": 41.1296296296,
"ext": "agda",
"hexsha": "be32d8c44df4b42e591f67d62c19a7ac08c42e48",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Implementation/Data/Natural.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Implementation/Data/Natural.agda",
"max_line_length": 102,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Implementation/Data/Natural.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 562,
"size": 2221
} |
module silly0 where
record SingleSortedAlgebra : Set₁ where
field
Carrier : Set
_⊕_ : Carrier → Carrier → Carrier
{-
One of my aims to introduce construct “fields-of”:
record SingleSortedAlgebraWithConstant : Set₁ where
fields-of SingleSortedAlgebra renaming (_⊕_ to _⟨$⟩_)
field
ε : Carrier
Should have the same net result as:
record SingleSortedAlgebraWithConstant : Set₁ where
field
Carrier : Set
_⟨$⟩_ : Carrier → Carrier → Carrier
ε : Carrier
-}
| {
"alphanum_fraction": 0.6385321101,
"avg_line_length": 20.9615384615,
"ext": "agda",
"hexsha": "b1dad0a07922cbd8ea5515e417aa569956e17169",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "silly0.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "silly0.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "silly0.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 144,
"size": 545
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Library.Data.Boolean where
open import Light.Level using (Level ; Setω ; Lifted)
open import Light.Variable.Sets
open import Light.Library.Data.Unit as Unit using (Unit)
open import Light.Library.Data.Empty as Empty using (Empty)
open import Light.Package using (Package)
open import Light.Library.Relation.Binary
using (SelfTransitive ; SelfSymmetric ; Reflexive)
open import Light.Library.Relation.Binary.Equality as ≈ using (_≈_)
open import Light.Library.Relation.Binary.Equality.Decidable using (DecidableSelfEquality)
import Light.Library.Relation.Decidable
open import Light.Library.Relation using (False)
record Dependencies : Setω where
field
⦃ unit‐package ⦄ : Package record { Unit }
⦃ empty‐package ⦄ : Package record { Empty }
record Library (dependencies : Dependencies) : Setω where
field
ℓ : Level
Boolean : Set ℓ
true false : Boolean
if_then_else_ : Boolean → 𝕒 → 𝕒 → 𝕒
¬_ : Boolean → Boolean
_∧_ _∨_ _⇢_ : Boolean → Boolean → Boolean
true‐is‐true : if true then Lifted (Empty.ℓ) Unit else Lifted (Unit.ℓ) Empty
false‐is‐false : if false then Lifted (Unit.ℓ) Empty else Lifted (Empty.ℓ) Unit
⦃ equals ⦄ : DecidableSelfEquality Boolean
⦃ ≈‐transitive ⦄ : SelfTransitive (≈.self‐relation Boolean)
⦃ ≈‐symmetric ⦄ : SelfSymmetric (≈.self‐relation Boolean)
⦃ ≈‐reflexive ⦄ : Reflexive (≈.self‐relation Boolean)
true‐≉‐false : False (true ≈ false)
open Library ⦃ ... ⦄ public
| {
"alphanum_fraction": 0.6638954869,
"avg_line_length": 43.1794871795,
"ext": "agda",
"hexsha": "2bf512c43cf74ead1d17606051f8c70e7ed2310c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Library/Data/Boolean.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Library/Data/Boolean.agda",
"max_line_length": 91,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Library/Data/Boolean.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 454,
"size": 1684
} |
module Issue794 where
open import Common.Prelude
open import Common.MAlonzo
postulate A : Set
record R : Set where
id : A → A
id x = x
| {
"alphanum_fraction": 0.7112676056,
"avg_line_length": 12.9090909091,
"ext": "agda",
"hexsha": "1b06b8f4994a112dc1c9b0aedd89e5aa13332380",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue794.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue794.agda",
"max_line_length": 26,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue794.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 44,
"size": 142
} |
{-# OPTIONS --without-K #-}
module LeqLemmas where
open import Data.Nat
using (ℕ; suc; _+_; _*_; _<_; _≤_; _≤?_; z≤n; s≤s; module ≤-Reasoning)
open import Data.Nat.Properties.Simple using (+-comm)
open import Data.Nat.Properties using (n≤m+n)
open import Relation.Binary using (Decidable)
------------------------------------------------------------------------------
-- Proofs and definitions about ≤ on natural numbers
_<?_ : Decidable _<_
i <? j = suc i ≤? j
cong+r≤ : ∀ {i j} → i ≤ j → (k : ℕ) → i + k ≤ j + k
cong+r≤ {0} {j} z≤n k = n≤m+n j k
cong+r≤ {suc i} {0} () k -- absurd
cong+r≤ {suc i} {suc j} (s≤s i≤j) k = s≤s (cong+r≤ {i} {j} i≤j k)
cong+l≤ : ∀ {i j} → i ≤ j → (k : ℕ) → k + i ≤ k + j
cong+l≤ {i} {j} i≤j k =
begin (k + i
≡⟨ +-comm k i ⟩
i + k
≤⟨ cong+r≤ i≤j k ⟩
j + k
≡⟨ +-comm j k ⟩
k + j ∎)
where open ≤-Reasoning
cong*r≤ : ∀ {i j} → i ≤ j → (k : ℕ) → i * k ≤ j * k
cong*r≤ {0} {j} z≤n k = z≤n
cong*r≤ {suc i} {0} () k -- absurd
cong*r≤ {suc i} {suc j} (s≤s i≤j) k = cong+l≤ (cong*r≤ i≤j k) k
------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.4060705496,
"avg_line_length": 31.2564102564,
"ext": "agda",
"hexsha": "4eb9f8a8d8f39a9182a585a73d91359cb5ecfff9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "Univalence/LeqLemmas.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "Univalence/LeqLemmas.agda",
"max_line_length": 78,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "Univalence/LeqLemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 496,
"size": 1219
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use `Data.Vec.Functional` instead.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.Table.Base where
{-# WARNING_ON_IMPORT
"Data.Table.Base was deprecated in v1.2.
Use Data.Vec.Functional instead."
#-}
open import Data.Nat.Base
open import Data.Fin.Base
open import Data.Product using (_×_ ; _,_)
open import Data.List.Base as List using (List)
open import Data.Vec.Base as Vec using (Vec)
open import Function using (_∘_; flip)
open import Level using (Level)
private
variable
a b : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Definition
record Table (A : Set a) n : Set a where
constructor tabulate
field lookup : Fin n → A
open Table public
------------------------------------------------------------------------
-- Basic operations
head : ∀ {n} → Table A (suc n) → A
head t = lookup t zero
tail : ∀ {n} → Table A (suc n) → Table A n
tail t = tabulate (lookup t ∘ suc)
uncons : ∀ {n} → Table A (suc n) → A × Table A n
uncons t = head t , tail t
remove : ∀ {n} → Fin (suc n) → Table A (suc n) → Table A n
remove i t = tabulate (lookup t ∘ punchIn i)
------------------------------------------------------------------------
-- Operations for transforming tables
rearrange : ∀ {m n} → (Fin m → Fin n) → Table A n → Table A m
rearrange f t = tabulate (lookup t ∘ f)
map : ∀ {n} → (A → B) → Table A n → Table B n
map f t = tabulate (f ∘ lookup t)
_⊛_ : ∀ {n} → Table (A → B) n → Table A n → Table B n
fs ⊛ xs = tabulate λ i → lookup fs i (lookup xs i)
------------------------------------------------------------------------
-- Operations for reducing tables
foldr : ∀ {n} → (A → B → B) → B → Table A n → B
foldr {n = zero} f z t = z
foldr {n = suc n} f z t = f (head t) (foldr f z (tail t))
foldl : ∀ {n} → (B → A → B) → B → Table A n → B
foldl {n = zero} f z t = z
foldl {n = suc n} f z t = foldl f (f z (head t)) (tail t)
------------------------------------------------------------------------
-- Operations for building tables
replicate : ∀ {n} → A → Table A n
replicate x = tabulate (λ _ → x)
------------------------------------------------------------------------
-- Operations for converting tables
toList : ∀ {n} → Table A n → List A
toList = List.tabulate ∘ lookup
fromList : ∀ (xs : List A) → Table A (List.length xs)
fromList = tabulate ∘ List.lookup
fromVec : ∀ {n} → Vec A n → Table A n
fromVec = tabulate ∘ Vec.lookup
toVec : ∀ {n} → Table A n → Vec A n
toVec = Vec.tabulate ∘ lookup
| {
"alphanum_fraction": 0.4893225331,
"avg_line_length": 28.2916666667,
"ext": "agda",
"hexsha": "a7b282bd3861884191be7f9434b1dd9fac10e4bd",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/Table/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/Table/Base.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/Table/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 740,
"size": 2716
} |
{-# OPTIONS --cubical-compatible #-}
-- Large indices are not allowed --cubical-compatible
data Singleton {a} {A : Set a} : A → Set where
[_] : ∀ x → Singleton x
| {
"alphanum_fraction": 0.6424242424,
"avg_line_length": 27.5,
"ext": "agda",
"hexsha": "fea25f3e482a4f20c70b98a05a56c31071779b51",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Fail/LargeIndicesWithoutK.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Fail/LargeIndicesWithoutK.agda",
"max_line_length": 53,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Fail/LargeIndicesWithoutK.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 47,
"size": 165
} |
------------------------------------------------------------------------
-- Bounded vectors (inefficient, concrete implementation)
------------------------------------------------------------------------
-- Vectors of a specified maximum length.
module Data.BoundedVec.Inefficient where
open import Data.Nat
open import Data.List
------------------------------------------------------------------------
-- The type
infixr 5 _∷_
data BoundedVec (a : Set) : ℕ → Set where
[] : ∀ {n} → BoundedVec a n
_∷_ : ∀ {n} (x : a) (xs : BoundedVec a n) → BoundedVec a (suc n)
------------------------------------------------------------------------
-- Increasing the bound
-- Note that this operation is linear in the length of the list.
↑ : ∀ {a n} → BoundedVec a n → BoundedVec a (suc n)
↑ [] = []
↑ (x ∷ xs) = x ∷ ↑ xs
------------------------------------------------------------------------
-- Conversions
fromList : ∀ {a} → (xs : List a) → BoundedVec a (length xs)
fromList [] = []
fromList (x ∷ xs) = x ∷ fromList xs
toList : ∀ {a n} → BoundedVec a n → List a
toList [] = []
toList (x ∷ xs) = x ∷ toList xs
| {
"alphanum_fraction": 0.4114537445,
"avg_line_length": 28.375,
"ext": "agda",
"hexsha": "a73a6a2b662500c23e99d5b782db7eaa55ee36c9",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/BoundedVec/Inefficient.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/BoundedVec/Inefficient.agda",
"max_line_length": 72,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/BoundedVec/Inefficient.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 275,
"size": 1135
} |
{-# OPTIONS --cubical --safe #-}
module Control.Monad.Levels.Mult where
open import Prelude
open import Control.Monad.Levels.Definition
open import Control.Monad.Levels.Eliminators
open import Control.Monad.Levels.Zipping
open import Data.Bag hiding (bind)
open import Path.Reasoning
open import Cubical.Foundations.HLevels using (isOfHLevelΠ)
bind-alg : (A → Levels B) → Levels-ϕ[ A ] Levels B
[ bind-alg f ]-set = trunc
[ bind-alg f ] x ∷ _ ⟨ xs ⟩ = zip (⟦ levels-cmon ⟧ trunc f x) ([] ∷ xs)
[ bind-alg f ][] = []
[ bind-alg f ]-trail = trail
bind : Levels A → (A → Levels B) → Levels B
bind xs f = bind-alg f ↓ xs
| {
"alphanum_fraction": 0.691318328,
"avg_line_length": 28.2727272727,
"ext": "agda",
"hexsha": "90c02d34ab3533691fe841159cc2f0e2258e313b",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Control/Monad/Levels/Mult.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Control/Monad/Levels/Mult.agda",
"max_line_length": 71,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Control/Monad/Levels/Mult.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 195,
"size": 622
} |
open import Level using () renaming (_⊔_ to _⊔ˡ_)
open import Function using (_$_; flip)
open import Function.Equivalence as FE using ()
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Decidable using (map)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary using (Setoid; IsEquivalence; Decidable; DecSetoid; IsDecEquivalence; Tri)
open import Relation.Binary.Definitions using (Recomputable)
open import Relation.Binary.PropositionalEquality using (_≡_; _≢_) renaming (refl to ≡-refl; sym to ≡-sym; cong to ≡-cong; cong₂ to ≡-cong₂; setoid to ≡-setoid)
open Tri
open import Data.Empty.Irrelevant using (⊥-elim)
open import Data.Maybe using (Maybe; nothing; just)
open import Data.List using ([]; _∷_)
open import Data.Product using (_,_; proj₁; proj₂)
open import Data.Sum using (inj₁; inj₂)
open import Algebra.Bundles using (CommutativeRing)
open import AKS.Algebra.Bundles using (DecField; IntegralDomain)
module AKS.Polynomial.Properties {c ℓ} (F : DecField c ℓ) where
open import AKS.Nat using (ℕ; zero; suc; _<_; _≤_; lte; _≟_; _≟⁺_; _∸_; ℕ⁺; ℕ+; ⟅_⇓⟆; ⟅_⇑⟆; pred) renaming (_+_ to _+ℕ_)
open import AKS.Nat using (<-cmp; <-≤-connex; m+[n∸m]≡n; ℕ→ℕ⁺→ℕ; ⟅⇓⟆-injective; m<n⇒n∸m≢0; ≢⇒¬≟; <⇒≤; +-suc)
open import AKS.Nat using (0≤n; suc-mono-≤; ≤-reflexive; +-mono-<; module ≤-Reasoning)
open import AKS.Nat using (_⊔_; ⊔-identityʳ; ⊔-identityˡ; +-distribˡ-⊔; ⊔-least-<; m≤n⇒m⊔n≡n)
open import AKS.Nat using (Acc; acc; <-well-founded)
import Data.Nat.Properties as Nat
open import Polynomial.Simple.AlmostCommutativeRing using (AlmostCommutativeRing; fromCommutativeRing)
open import Polynomial.Simple.Reflection using (solve; solveOver)
open import Polynomial.Simple.AlmostCommutativeRing.Instances using (module Nat)
open Nat.Reflection using (∀⟨_⟩)
open DecField F
using (0#; 1#; _+_; _*_; -_; _-_; _⁻¹; _/_)
renaming (Carrier to C)
open DecField F
using (C/0; _*-nonzero_; _/-nonzero_; -1#-nonzero; 0#≉1#; 1#≉0#; *-cancelˡ)
open DecField F using (_≈_; _≉_; _≈?_; setoid)
open Setoid setoid using (refl; sym; trans)
open import Relation.Binary.Reasoning.MultiSetoid
open DecField F using (ring; commutativeRing; *-commutativeMonoid)
open CommutativeRing commutativeRing using (+-assoc; +-comm; +-cong; +-congˡ; +-congʳ; +-identityˡ; +-identityʳ)
open CommutativeRing commutativeRing using (*-assoc; *-comm; *-cong; *-congˡ; *-congʳ; *-identityˡ; *-identityʳ; zeroˡ; zeroʳ)
open CommutativeRing commutativeRing using (distribˡ; distribʳ; -‿cong; -‿inverseˡ; -‿inverseʳ)
open import Algebra.Properties.Ring ring using (-‿distribˡ-*)
open import AKS.Exponentiation *-commutativeMonoid using (_^_; _^⁺_; ^-homo; ^-^⁺-homo; x^n≈x^⁺n)
open import AKS.Polynomial.Base F using
( Polynomialⁱ; 0ⁱ; 1ⁱ; _+x∙_; _+ⁱ_; -ⁱ_; _∙ⁱ_; _*ⁱ_; x∙_; expand; expandˢ; simplify; +ⁱ-*ⁱ-rawRing
; _≈ⁱ_; _≉ⁱ_; 0≈0; 0≈+; +≈0; +≈+; ≈ⁱ-refl; ≈ⁱ-sym; ≈ⁱ-trans
; Spine; K; _+x^_∙_; Polynomial; 0ᵖ; x^_∙_; ⟦_⟧; ⟦_⟧ˢ; _+?_; 𝐾; 𝑋; _∙𝑋^_
; 1ᵖ; _+ᵖ_; +ᵖ-spine; +ᵖ-spine-≡-K; +ᵖ-spine-≡; +ᵖ-spine-<; -ᵖ_; _-ᵖ_; _*ᵖ_; *ᵖ-spine; _∙ᵖ_; ∙ᵖ-spine; +ᵖ-*ᵖ-rawRing
; _≈ᵖ_; _≉ᵖ_; 0ᵖ≈; 0ᵖ≉; _≈ˢ_; K≈; +≈; ≈ᵖ-refl; ≈ᵖ-sym; ≈ᵖ-trans
; Degree; deg; degree; degreeˢ; _⊔ᵈ_; _+ᵈ_; _≤ᵈ_; -∞≤_; ≤ᵈ-refl; module ≤ᵈ-Reasoning; -∞; ⟨_⟩; degreeⁱ
)
open import Algebra.Structures {A = Polynomialⁱ} _≈ⁱ_ using (IsCommutativeRing; IsRing; IsAbelianGroup; IsGroup; IsMonoid; IsSemigroup; IsMagma)
open import Algebra.Definitions {A = Polynomialⁱ} _≈ⁱ_ using
( _DistributesOver_; _DistributesOverʳ_; _DistributesOverˡ_
; RightIdentity; LeftIdentity; Identity; Associative; Commutative
; RightInverse; LeftInverse; Inverse
; LeftCongruent; RightCongruent; Congruent₂; Congruent₁
)
open import AKS.Algebra.Structures using (IsNonZeroCommutativeRing; IsIntegralDomain)
open import Relation.Binary.Morphism.Structures using (IsRelHomomorphism)
open import AKS.Algebra.Morphism.Structures using (IsRingHomomorphism; IsRingMonomorphism)
open import AKS.Algebra.Morphism.Consequences using (module RingConsequences)
+-*-almostCommutativeRing : AlmostCommutativeRing c ℓ
+-*-almostCommutativeRing = fromCommutativeRing commutativeRing (λ _ → nothing)
expand-cong : ∀ {p} {q} → p ≈ᵖ q → expand p ≈ⁱ expand q
expand-cong 0ᵖ≈ = ≈ⁱ-refl
expand-cong (0ᵖ≉ ≡-refl p≈ˢq) = expandˢ-cong p≈ˢq
where
expandˢ-cong : ∀ {n} {p} {q} → p ≈ˢ q → expandˢ n p ≈ⁱ expandˢ n q
expandˢ-cong {zero} {K c₁} {K c₂} (K≈ c₁≈c₂) = +≈+ c₁≈c₂ 0≈0
expandˢ-cong {zero} {c₁ +x^ i ∙ p} {c₂ +x^ i ∙ q} (+≈ c₁≈c₂ ≡-refl p≈ˢq) = +≈+ c₁≈c₂ (expandˢ-cong p≈ˢq)
expandˢ-cong {suc n} {p} {q} p≈ˢq = +≈+ refl (expandˢ-cong {n} p≈ˢq)
0≉expandˢ[≉0] : ∀ n p → 0ⁱ ≉ⁱ expandˢ n p
0≉expandˢ[≉0] zero (K c) (0≈+ c≈0 _) = contradiction c≈0 (proj₂ c)
0≉expandˢ[≉0] zero (c +x^ i ∙ p) (0≈+ c≈0 _) = contradiction c≈0 (proj₂ c)
0≉expandˢ[≉0] (suc n) p (0≈+ _ 0ⁱ≈expand) = 0≉expandˢ[≉0] n p 0ⁱ≈expand
0≉expand[≉0] : ∀ n p → 0ⁱ ≉ⁱ expand (x^ n ∙ p)
0≉expand[≉0] = 0≉expandˢ[≉0]
expand-injective : ∀ {p q} → expand p ≈ⁱ expand q → p ≈ᵖ q
expand-injective {0ᵖ} {0ᵖ} pf = ≈ᵖ-refl
expand-injective {0ᵖ} {x^ o₂ ∙ q} pf = contradiction pf (0≉expand[≉0] o₂ q)
expand-injective {x^ o₁ ∙ p} {0ᵖ} pf = contradiction (≈ⁱ-sym pf) (0≉expand[≉0] o₁ p)
expand-injective {x^ o₁ ∙ p} {x^ o₂ ∙ q} pf = expandˢ-injective o₁ o₂ p q pf
where
expandˢ-injective : ∀ o₁ o₂ p q → expandˢ o₁ p ≈ⁱ expandˢ o₂ q → x^ o₁ ∙ p ≈ᵖ x^ o₂ ∙ q
expandˢ-injective zero zero (K c₁) (K c₂) (+≈+ c₁≈c₂ pf) = 0ᵖ≉ ≡-refl (K≈ c₁≈c₂)
expandˢ-injective zero zero (K c₁) (c₂ +x^ i₂ ∙ q) (+≈+ c₁≈c₂ pf) = contradiction pf (0≉expandˢ[≉0] _ _)
expandˢ-injective zero zero (c₁ +x^ i₁ ∙ p) (K c₂) (+≈+ c₁≈c₂ pf) = contradiction (≈ⁱ-sym pf) (0≉expandˢ[≉0] _ _)
expandˢ-injective zero zero (c₁ +x^ i₁ ∙ p) (c₂ +x^ i₂ ∙ q) (+≈+ c₁≈c₂ pf) with expandˢ-injective (pred ⟅ i₁ ⇓⟆) (pred ⟅ i₂ ⇓⟆) p q pf
... | 0ᵖ≉ i₁≡i₂ p≈ˢq = 0ᵖ≉ ≡-refl (+≈ c₁≈c₂ (⟅⇓⟆-injective i₁≡i₂) p≈ˢq)
expandˢ-injective zero (suc o₂) (K c₁) q (+≈+ c₁≈c₂ pf) = contradiction pf (0≉expandˢ[≉0] _ _)
expandˢ-injective zero (suc o₂) (c₁ +x^ i₁ ∙ p) (K c₂) (+≈+ c₁≈0 pf) = contradiction c₁≈0 (proj₂ c₁)
expandˢ-injective zero (suc o₂) (c₁ +x^ i₁ ∙ p) (c₂ +x^ i₂ ∙ q) (+≈+ c₁≈0 pf) = contradiction c₁≈0 (proj₂ c₁)
expandˢ-injective (suc o₁) zero p (K c₂) (+≈+ c₁≈c₂ pf) = contradiction (≈ⁱ-sym pf) (0≉expandˢ[≉0] _ _)
expandˢ-injective (suc o₁) zero (K c₁) (c₂ +x^ i₂ ∙ q) (+≈+ 0≈c₂ pf) = contradiction (sym 0≈c₂) (proj₂ c₂)
expandˢ-injective (suc o₁) zero (c₁ +x^ i₁ ∙ p) (c₂ +x^ i₂ ∙ q) (+≈+ 0≈c₂ pf) = contradiction (sym 0≈c₂) (proj₂ c₂)
expandˢ-injective (suc o₁) (suc o₂) p q (+≈+ _ pf) with expandˢ-injective o₁ o₂ p q pf
... | 0ᵖ≉ ≡-refl p≈ˢq = 0ᵖ≉ ≡-refl p≈ˢq
infix 4 _≈ˢ?_
_≈ˢ?_ : Decidable _≈ˢ_
(K c₁) ≈ˢ? (K c₂) with proj₁ c₁ ≈? proj₁ c₂
... | no ¬c₁≈c₂ = no λ { (K≈ c₁≈c₂) → contradiction c₁≈c₂ ¬c₁≈c₂ }
... | yes c₁≈c₂ = yes (K≈ c₁≈c₂)
(K c₁) ≈ˢ? (c₂ +x^ m ∙ q) = no λ ()
(c₁ +x^ n ∙ p) ≈ˢ? (K c₂) = no λ ()
(c₁ +x^ n ∙ p) ≈ˢ? (c₂ +x^ m ∙ q) with proj₁ c₁ ≈? proj₁ c₂
... | no ¬c₁≈c₂ = no λ { (+≈ c₁≈c₂ _ _) → contradiction c₁≈c₂ ¬c₁≈c₂ }
... | yes c₁≈c₂ with n ≟⁺ m
... | no n≢m = no λ { (+≈ _ n≡m _) → contradiction n≡m n≢m }
... | yes n≡m with p ≈ˢ? q
... | no ¬p≈ˢq = no λ { (+≈ _ _ p≈ˢq) → contradiction p≈ˢq ¬p≈ˢq }
... | yes p≈ˢq = yes (+≈ c₁≈c₂ n≡m p≈ˢq)
infix 4 _≈ᵖ?_
_≈ᵖ?_ : Decidable _≈ᵖ_
0ᵖ ≈ᵖ? 0ᵖ = yes ≈ᵖ-refl
0ᵖ ≈ᵖ? (x^ m ∙ q) = no λ ()
(x^ n ∙ p) ≈ᵖ? 0ᵖ = no λ ()
(x^ n ∙ p) ≈ᵖ? (x^ m ∙ q) with n ≟ m
... | no n≢m = no λ { (0ᵖ≉ n≡m _) → contradiction n≡m n≢m }
... | yes n≡m with p ≈ˢ? q
... | no ¬p≈ˢq = no λ { (0ᵖ≉ _ p≈ˢq) → contradiction p≈ˢq ¬p≈ˢq }
... | yes p≈ˢq = yes (0ᵖ≉ n≡m p≈ˢq)
≈ᵖ-isEquivalence : IsEquivalence _≈ᵖ_
≈ᵖ-isEquivalence = record
{ refl = ≈ᵖ-refl
; sym = ≈ᵖ-sym
; trans = ≈ᵖ-trans
}
≈ᵖ-isDecEquivalence : IsDecEquivalence _≈ᵖ_
≈ᵖ-isDecEquivalence = record
{ isEquivalence = ≈ᵖ-isEquivalence
; _≟_ = _≈ᵖ?_
}
≈ᵖ-setoid : Setoid (c ⊔ˡ ℓ) (c ⊔ˡ ℓ)
≈ᵖ-setoid = record
{ Carrier = Polynomial
; _≈_ = _≈ᵖ_
; isEquivalence = ≈ᵖ-isEquivalence
}
≈ᵖ-decSetoid : DecSetoid (c ⊔ˡ ℓ) (c ⊔ˡ ℓ)
≈ᵖ-decSetoid = record
{ Carrier = Polynomial
; _≈_ = _≈ᵖ_
; isDecEquivalence = ≈ᵖ-isDecEquivalence
}
≈ᵖ-recomputable : Recomputable _≈ᵖ_
≈ᵖ-recomputable {p} {q} [p≈q]₁ with p ≈ᵖ? q
... | yes [p≈q]₂ = [p≈q]₂
... | no ¬[p≈q] = ⊥-elim (¬[p≈q] [p≈q]₁)
⟦⟧-preserves-≈ᵖ→≈ : ∀ {p q} → p ≈ᵖ q → ∀ x → ⟦ p ⟧ x ≈ ⟦ q ⟧ x
⟦⟧-preserves-≈ᵖ→≈ {0ᵖ} {0ᵖ} 0ᵖ≈ x = refl
⟦⟧-preserves-≈ᵖ→≈ {x^ n ∙ p} {x^ n ∙ q} (0ᵖ≉ ≡-refl p≈ˢq) x = *-congˡ (⟦⟧-preserves-≈ᵖ→≈ˢ p q p≈ˢq x)
where
⟦⟧-preserves-≈ᵖ→≈ˢ : ∀ p q → p ≈ˢ q → ∀ x → ⟦ p ⟧ˢ x ≈ ⟦ q ⟧ˢ x
⟦⟧-preserves-≈ᵖ→≈ˢ (K c₁) (K c₂) (K≈ c₁≈c₂) x = c₁≈c₂
⟦⟧-preserves-≈ᵖ→≈ˢ (c₁ +x^ n ∙ p) (c₂ +x^ n ∙ q) (+≈ c₁≈c₂ ≡-refl p≈ˢq) x = begin⟨ setoid ⟩
proj₁ c₁ + x ^⁺ n * ⟦ p ⟧ˢ x ≈⟨ +-cong c₁≈c₂ (*-congˡ (⟦⟧-preserves-≈ᵖ→≈ˢ p q p≈ˢq x)) ⟩
proj₁ c₂ + x ^⁺ n * ⟦ q ⟧ˢ x ∎
_≈ⁱ?_ : Decidable _≈ⁱ_
0ⁱ ≈ⁱ? 0ⁱ = yes 0≈0
0ⁱ ≈ⁱ? (c₂ +x∙ q) with c₂ ≈? 0#
... | no c₂≉0 = no λ { (0≈+ c₂≈0 _) → contradiction c₂≈0 c₂≉0 }
... | yes c₂≈0 with 0ⁱ ≈ⁱ? q
... | no 0≉q = no λ { (0≈+ _ 0≈q) → contradiction 0≈q 0≉q }
... | yes 0≈q = yes (0≈+ c₂≈0 0≈q)
(c₁ +x∙ p) ≈ⁱ? 0ⁱ with c₁ ≈? 0#
... | no c₁≉0 = no λ { (+≈0 c₁≈0 _) → contradiction c₁≈0 c₁≉0 }
... | yes c₁≈0 with p ≈ⁱ? 0ⁱ
... | no p≉0 = no λ { (+≈0 _ 0≈p) → contradiction (≈ⁱ-sym 0≈p) p≉0 }
... | yes p≈0 = yes (+≈0 c₁≈0 (≈ⁱ-sym p≈0))
(c₁ +x∙ p) ≈ⁱ? (c₂ +x∙ q) with c₁ ≈? c₂
... | no c₁≉c₂ = no λ { (+≈+ c₁≈c₂ _) → contradiction c₁≈c₂ c₁≉c₂}
... | yes c₁≈c₂ with p ≈ⁱ? q
... | no p≉q = no λ { (+≈+ _ p≈q) → contradiction p≈q p≉q}
... | yes p≈q = yes (+≈+ c₁≈c₂ p≈q)
≈ⁱ-isEquivalence : IsEquivalence _≈ⁱ_
≈ⁱ-isEquivalence = record
{ refl = ≈ⁱ-refl
; sym = ≈ⁱ-sym
; trans = ≈ⁱ-trans
}
≈ⁱ-isDecEquivalence : IsDecEquivalence _≈ⁱ_
≈ⁱ-isDecEquivalence = record
{ isEquivalence = ≈ⁱ-isEquivalence
; _≟_ = _≈ⁱ?_
}
≈ⁱ-setoid : Setoid c (c ⊔ˡ ℓ)
≈ⁱ-setoid = record
{ Carrier = Polynomialⁱ
; _≈_ = _≈ⁱ_
; isEquivalence = ≈ⁱ-isEquivalence
}
≈ⁱ-decSetoid : DecSetoid c (c ⊔ˡ ℓ)
≈ⁱ-decSetoid = record
{ Carrier = Polynomialⁱ
; _≈_ = _≈ⁱ_
; isDecEquivalence = ≈ⁱ-isDecEquivalence
}
≈ⁱ-recomputable : Recomputable _≈ⁱ_
≈ⁱ-recomputable {p} {q} [p≈q]₁ with p ≈ⁱ? q
... | yes [p≈q]₂ = [p≈q]₂
... | no ¬[p≈q] = ⊥-elim (¬[p≈q] [p≈q]₁)
+ⁱ-comm : Commutative _+ⁱ_
+ⁱ-comm 0ⁱ 0ⁱ = ≈ⁱ-refl
+ⁱ-comm 0ⁱ (c₂ +x∙ q) = ≈ⁱ-refl
+ⁱ-comm (c₁ +x∙ p) 0ⁱ = ≈ⁱ-refl
+ⁱ-comm (c₁ +x∙ p) (c₂ +x∙ q) = +≈+ (+-comm c₁ c₂) (+ⁱ-comm p q)
+ⁱ-identityˡ : LeftIdentity 0ⁱ _+ⁱ_
+ⁱ-identityˡ _ = ≈ⁱ-refl
+ⁱ-identityʳ : RightIdentity 0ⁱ _+ⁱ_
+ⁱ-identityʳ 0ⁱ = ≈ⁱ-refl
+ⁱ-identityʳ (c +x∙ p) = ≈ⁱ-refl
+ⁱ-identity : Identity 0ⁱ _+ⁱ_
+ⁱ-identity = +ⁱ-identityˡ , +ⁱ-identityʳ
+ⁱ-congˡ : LeftCongruent _+ⁱ_
+ⁱ-congˡ {0ⁱ} {p} {q} p≈q = p≈q
+ⁱ-congˡ {c₁ +x∙ r} {0ⁱ} {0ⁱ} 0≈0 = ≈ⁱ-refl
+ⁱ-congˡ {c₁ +x∙ r} {0ⁱ} {c₃ +x∙ q} (0≈+ c₃≈0 0≈q)=
+≈+ (begin⟨ setoid ⟩ c₁ ≈⟨ sym (+-identityʳ c₁) ⟩ c₁ + 0# ≈⟨ +-congˡ (sym c₃≈0) ⟩ c₁ + c₃ ∎)
(begin⟨ ≈ⁱ-setoid ⟩ r ≈⟨ ≈ⁱ-sym (+ⁱ-identityʳ r) ⟩ r +ⁱ 0ⁱ ≈⟨ +ⁱ-congˡ 0≈q ⟩ r +ⁱ q ∎)
+ⁱ-congˡ {c₁ +x∙ r} {c₂ +x∙ p} {0ⁱ} (+≈0 c₂≈0 0≈p) =
+≈+ (begin⟨ setoid ⟩ c₁ + c₂ ≈⟨ +-congˡ c₂≈0 ⟩ c₁ + 0# ≈⟨ +-identityʳ c₁ ⟩ c₁ ∎)
(begin⟨ ≈ⁱ-setoid ⟩ r +ⁱ p ≈⟨ +ⁱ-congˡ (≈ⁱ-sym 0≈p) ⟩ r +ⁱ 0ⁱ ≈⟨ +ⁱ-identityʳ r ⟩ r ∎)
+ⁱ-congˡ {c₁ +x∙ r} {c₂ +x∙ p} {c₃ +x∙ q} (+≈+ c₂≈c₃ p≈q) = +≈+ (+-congˡ c₂≈c₃) (+ⁱ-congˡ p≈q)
+ⁱ-congʳ : RightCongruent _+ⁱ_
+ⁱ-congʳ {r} {p} {q} p≈q = begin⟨ ≈ⁱ-setoid ⟩
p +ⁱ r ≈⟨ +ⁱ-comm p r ⟩
r +ⁱ p ≈⟨ +ⁱ-congˡ p≈q ⟩
r +ⁱ q ≈⟨ +ⁱ-comm r q ⟩
q +ⁱ r ∎
+ⁱ-cong : Congruent₂ _+ⁱ_
+ⁱ-cong {p} {q} {r} {s} p≈q r≈s = begin⟨ ≈ⁱ-setoid ⟩
p +ⁱ r ≈⟨ +ⁱ-congˡ r≈s ⟩
p +ⁱ s ≈⟨ +ⁱ-congʳ p≈q ⟩
q +ⁱ s ∎
+ⁱ-isMagma : IsMagma _+ⁱ_
+ⁱ-isMagma = record
{ isEquivalence = ≈ⁱ-isEquivalence
; ∙-cong = +ⁱ-cong
}
+ⁱ-assoc : Associative _+ⁱ_
+ⁱ-assoc 0ⁱ q r = ≈ⁱ-refl
+ⁱ-assoc (c₁ +x∙ p) 0ⁱ r = ≈ⁱ-refl
+ⁱ-assoc (c₁ +x∙ p) (c₂ +x∙ q) 0ⁱ = ≈ⁱ-refl
+ⁱ-assoc (c₁ +x∙ p) (c₂ +x∙ q) (c₃ +x∙ r) = +≈+ (+-assoc c₁ c₂ c₃) (+ⁱ-assoc p q r )
+ⁱ-isSemigroup : IsSemigroup _+ⁱ_
+ⁱ-isSemigroup = record
{ isMagma = +ⁱ-isMagma
; assoc = +ⁱ-assoc
}
open import Algebra.FunctionProperties.Consequences ≈ⁱ-setoid using (comm+idˡ⇒idʳ; comm+invˡ⇒invʳ; comm+distrˡ⇒distrʳ)
+ⁱ-isMonoid : IsMonoid _+ⁱ_ 0ⁱ
+ⁱ-isMonoid = record
{ isSemigroup = +ⁱ-isSemigroup
; identity = +ⁱ-identity
}
-ⁱ‿inverseˡ : LeftInverse 0ⁱ -ⁱ_ _+ⁱ_
-ⁱ‿inverseˡ 0ⁱ = ≈ⁱ-refl
-ⁱ‿inverseˡ (c +x∙ p) = +≈0
(begin⟨ setoid ⟩
- 1# * c + c ≈⟨ +-congʳ (sym (-‿distribˡ-* 1# c)) ⟩
- (1# * c) + c ≈⟨ +-congʳ (-‿cong (*-identityˡ c)) ⟩
- c + c ≈⟨ -‿inverseˡ c ⟩
0# ∎
) (≈ⁱ-sym (-ⁱ‿inverseˡ p))
-ⁱ‿inverseʳ : RightInverse 0ⁱ -ⁱ_ _+ⁱ_
-ⁱ‿inverseʳ = comm+invˡ⇒invʳ +ⁱ-comm -ⁱ‿inverseˡ
-ⁱ‿inverse : Inverse 0ⁱ -ⁱ_ _+ⁱ_
-ⁱ‿inverse = -ⁱ‿inverseˡ , -ⁱ‿inverseʳ
∙ⁱ-cong : ∀ {c₁ c₂} {p q} → c₁ ≈ c₂ → p ≈ⁱ q → c₁ ∙ⁱ p ≈ⁱ c₂ ∙ⁱ q
∙ⁱ-cong {c₁} {c₂} {0ⁱ} {0ⁱ} c₁≈c₂ 0≈0 = 0≈0
∙ⁱ-cong {c₁} {c₂} {0ⁱ} {c₄ +x∙ q} c₁≈c₂ (0≈+ c₄≈0 0≈q) = 0≈+ (begin⟨ setoid ⟩ c₂ * c₄ ≈⟨ *-congˡ c₄≈0 ⟩ c₂ * 0# ≈⟨ zeroʳ c₂ ⟩ 0# ∎) (∙ⁱ-cong c₁≈c₂ 0≈q)
∙ⁱ-cong {c₁} {c₂} {c₃ +x∙ p} {0ⁱ} c₁≈c₂ (+≈0 c₃≈0 0≈p) = +≈0 (begin⟨ setoid ⟩ c₁ * c₃ ≈⟨ *-congˡ c₃≈0 ⟩ c₁ * 0# ≈⟨ zeroʳ c₁ ⟩ 0# ∎) (∙ⁱ-cong (sym c₁≈c₂) 0≈p)
∙ⁱ-cong {c₁} {c₂} {c₃ +x∙ p} {c₄ +x∙ q} c₁≈c₂ (+≈+ c₃≈c₄ p≈q) = +≈+ (*-cong c₁≈c₂ c₃≈c₄) (∙ⁱ-cong c₁≈c₂ p≈q)
-ⁱ‿cong : Congruent₁ (-ⁱ_)
-ⁱ‿cong = ∙ⁱ-cong refl
+ⁱ-isGroup : IsGroup _+ⁱ_ 0ⁱ (-ⁱ_)
+ⁱ-isGroup = record
{ isMonoid = +ⁱ-isMonoid
; inverse = -ⁱ‿inverse
; ⁻¹-cong = -ⁱ‿cong
}
+ⁱ-isAbelianGroup : IsAbelianGroup _+ⁱ_ 0ⁱ (-ⁱ_)
+ⁱ-isAbelianGroup = record
{ isGroup = +ⁱ-isGroup
; comm = +ⁱ-comm
}
*ⁱ-comm : Commutative _*ⁱ_
*ⁱ-comm 0ⁱ 0ⁱ = ≈ⁱ-refl
*ⁱ-comm 0ⁱ (c₂ +x∙ q) = ≈ⁱ-refl
*ⁱ-comm (c₁ +x∙ p) 0ⁱ = ≈ⁱ-refl
*ⁱ-comm (c₁ +x∙ p) (c₂ +x∙ q) = +≈+ (*-comm c₁ c₂) (+ⁱ-cong (+ⁱ-comm (c₁ ∙ⁱ q) (c₂ ∙ⁱ p)) (+≈+ refl (*ⁱ-comm p q)))
0≈0∙p : ∀ p → 0ⁱ ≈ⁱ 0# ∙ⁱ p
0≈0∙p 0ⁱ = 0≈0
0≈0∙p (c +x∙ p) = 0≈+ (zeroˡ c) (0≈0∙p p)
*ⁱ-zeroʳ : ∀ r → r *ⁱ 0ⁱ ≈ⁱ 0ⁱ
*ⁱ-zeroʳ 0ⁱ = ≈ⁱ-refl
*ⁱ-zeroʳ (c +x∙ p) = ≈ⁱ-refl
*ⁱ-congˡ : LeftCongruent _*ⁱ_
*ⁱ-congˡ {0ⁱ} {p} {q} p≈q = ≈ⁱ-refl
*ⁱ-congˡ {c₁ +x∙ r} {0ⁱ} {0ⁱ} 0≈0 = ≈ⁱ-refl
*ⁱ-congˡ {c₁ +x∙ r} {0ⁱ} {c₃ +x∙ q} (0≈+ c₃≈0 0≈q) = 0≈+ (begin⟨ setoid ⟩ c₁ * c₃ ≈⟨ *-congˡ c₃≈0 ⟩ c₁ * 0# ≈⟨ zeroʳ c₁ ⟩ 0# ∎) $
begin⟨ ≈ⁱ-setoid ⟩
c₁ ∙ⁱ 0ⁱ +ⁱ 0ⁱ +ⁱ 0ⁱ ≈⟨ +ⁱ-cong (+ⁱ-cong (∙ⁱ-cong (refl {c₁}) 0≈q) (0≈0∙p r)) (0≈+ refl (≈ⁱ-sym (*ⁱ-zeroʳ r))) ⟩
c₁ ∙ⁱ q +ⁱ 0# ∙ⁱ r +ⁱ x∙ (r *ⁱ 0ⁱ) ≈⟨ +ⁱ-cong (+ⁱ-congˡ {c₁ ∙ⁱ q} (∙ⁱ-cong (sym c₃≈0) ≈ⁱ-refl)) (+≈+ refl (*ⁱ-congˡ {r} 0≈q)) ⟩
c₁ ∙ⁱ q +ⁱ c₃ ∙ⁱ r +ⁱ x∙ (r *ⁱ q) ∎
*ⁱ-congˡ {c₁ +x∙ r} {c₂ +x∙ p} {0ⁱ} (+≈0 c₂≈0 0≈p) = +≈0 (begin⟨ setoid ⟩ c₁ * c₂ ≈⟨ *-congˡ c₂≈0 ⟩ c₁ * 0# ≈⟨ zeroʳ c₁ ⟩ 0# ∎) $
begin⟨ ≈ⁱ-setoid ⟩
c₁ ∙ⁱ 0ⁱ +ⁱ 0ⁱ +ⁱ 0ⁱ ≈⟨ +ⁱ-cong (+ⁱ-cong (∙ⁱ-cong (refl {c₁}) 0≈p) (0≈0∙p r)) (0≈+ refl (≈ⁱ-sym (*ⁱ-zeroʳ r))) ⟩
c₁ ∙ⁱ p +ⁱ 0# ∙ⁱ r +ⁱ x∙ (r *ⁱ 0ⁱ) ≈⟨ +ⁱ-cong (+ⁱ-congˡ {c₁ ∙ⁱ p} (∙ⁱ-cong (sym c₂≈0) ≈ⁱ-refl)) (+≈+ refl (*ⁱ-congˡ {r} 0≈p)) ⟩
c₁ ∙ⁱ p +ⁱ c₂ ∙ⁱ r +ⁱ x∙ (r *ⁱ p) ∎
*ⁱ-congˡ {c₁ +x∙ r} {c₂ +x∙ p} {c₃ +x∙ q} (+≈+ c₂≈c₃ p≈q) = +≈+ (*-congˡ c₂≈c₃) (+ⁱ-cong (+ⁱ-cong (∙ⁱ-cong refl p≈q) (∙ⁱ-cong c₂≈c₃ ≈ⁱ-refl)) (+≈+ refl (*ⁱ-congˡ p≈q)))
*ⁱ-congʳ : RightCongruent _*ⁱ_
*ⁱ-congʳ {r} {p} {q} p≈q = begin⟨ ≈ⁱ-setoid ⟩
p *ⁱ r ≈⟨ *ⁱ-comm p r ⟩
r *ⁱ p ≈⟨ *ⁱ-congˡ p≈q ⟩
r *ⁱ q ≈⟨ *ⁱ-comm r q ⟩
q *ⁱ r ∎
*ⁱ-cong : Congruent₂ _*ⁱ_
*ⁱ-cong {p} {q} {r} {s} p≈q r≈s = begin⟨ ≈ⁱ-setoid ⟩
p *ⁱ r ≈⟨ *ⁱ-congˡ r≈s ⟩
p *ⁱ s ≈⟨ *ⁱ-congʳ p≈q ⟩
q *ⁱ s ∎
*ⁱ-isMagma : IsMagma _*ⁱ_
*ⁱ-isMagma = record
{ isEquivalence = ≈ⁱ-isEquivalence
; ∙-cong = *ⁱ-cong
}
∙ⁱ-distrib-+ⁱ : ∀ c p q → c ∙ⁱ (p +ⁱ q) ≈ⁱ c ∙ⁱ p +ⁱ c ∙ⁱ q
∙ⁱ-distrib-+ⁱ c₁ 0ⁱ q = ≈ⁱ-refl
∙ⁱ-distrib-+ⁱ c₁ (c₂ +x∙ p) 0ⁱ = ≈ⁱ-refl
∙ⁱ-distrib-+ⁱ c₁ (c₂ +x∙ p) (c₃ +x∙ q) = +≈+ (distribˡ c₁ c₂ c₃) (∙ⁱ-distrib-+ⁱ c₁ p q)
∙ⁱ-distrib-* : ∀ c₁ c₂ p → (c₁ * c₂) ∙ⁱ p ≈ⁱ c₁ ∙ⁱ (c₂ ∙ⁱ p)
∙ⁱ-distrib-* c₁ c₂ 0ⁱ = ≈ⁱ-refl
∙ⁱ-distrib-* c₁ c₂ (c₃ +x∙ p) = +≈+ (*-assoc c₁ c₂ c₃) (∙ⁱ-distrib-* c₁ c₂ p)
x∙-distrib-+ⁱ : ∀ p q → x∙ (p +ⁱ q) ≈ⁱ x∙ p +ⁱ x∙ q
x∙-distrib-+ⁱ 0ⁱ q = +≈+ (sym (+-identityʳ 0#)) (+ⁱ-identityˡ q)
x∙-distrib-+ⁱ (c₁ +x∙ p) 0ⁱ = +≈+ (sym (+-identityʳ 0#)) ≈ⁱ-refl
x∙-distrib-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) = +≈+ (sym (+-identityʳ 0#)) ≈ⁱ-refl
∙ⁱ-distrib-+ : ∀ c₁ c₂ p → (c₁ + c₂) ∙ⁱ p ≈ⁱ c₁ ∙ⁱ p +ⁱ c₂ ∙ⁱ p
∙ⁱ-distrib-+ c₁ c₂ 0ⁱ = ≈ⁱ-refl
∙ⁱ-distrib-+ c₁ c₂ (c₃ +x∙ p) = +≈+ (distribʳ c₃ c₁ c₂) (∙ⁱ-distrib-+ c₁ c₂ p)
*ⁱ-distribˡ-+ⁱ : _*ⁱ_ DistributesOverˡ _+ⁱ_
*ⁱ-distribˡ-+ⁱ 0ⁱ p q = ≈ⁱ-refl
*ⁱ-distribˡ-+ⁱ (c₁ +x∙ r) 0ⁱ q = ≈ⁱ-refl
*ⁱ-distribˡ-+ⁱ (c₁ +x∙ r) (c₂ +x∙ p) 0ⁱ = ≈ⁱ-refl
*ⁱ-distribˡ-+ⁱ (c₁ +x∙ r) (c₂ +x∙ p) (c₃ +x∙ q) = +≈+ (distribˡ c₁ c₂ c₃) $ begin⟨ ≈ⁱ-setoid ⟩
c₁ ∙ⁱ (p +ⁱ q) +ⁱ (c₂ + c₃) ∙ⁱ r +ⁱ x∙ (r *ⁱ (p +ⁱ q)) ≈⟨ +ⁱ-cong (+ⁱ-cong (∙ⁱ-distrib-+ⁱ c₁ p q) (∙ⁱ-distrib-+ c₂ c₃ r)) (+≈+ refl (*ⁱ-distribˡ-+ⁱ r p q)) ⟩
(c₁ ∙ⁱ p +ⁱ c₁ ∙ⁱ q) +ⁱ (c₂ ∙ⁱ r +ⁱ c₃ ∙ⁱ r) +ⁱ x∙ (r *ⁱ p +ⁱ r *ⁱ q) ≈⟨ +ⁱ-cong (≈ⁱ-sym (+ⁱ-assoc (c₁ ∙ⁱ p +ⁱ c₁ ∙ⁱ q) _ _)) (x∙-distrib-+ⁱ (r *ⁱ p) (r *ⁱ q)) ⟩
((c₁ ∙ⁱ p +ⁱ c₁ ∙ⁱ q) +ⁱ c₂ ∙ⁱ r) +ⁱ c₃ ∙ⁱ r +ⁱ (x∙ (r *ⁱ p) +ⁱ x∙ (r *ⁱ q)) ≈⟨ final (c₁ ∙ⁱ p) _ _ _ _ _ ⟩
c₁ ∙ⁱ p +ⁱ c₂ ∙ⁱ r +ⁱ x∙ (r *ⁱ p) +ⁱ (c₁ ∙ⁱ q +ⁱ c₃ ∙ⁱ r +ⁱ x∙ (r *ⁱ q)) ∎
where
final : ∀ a b c d x y → ((a +ⁱ b) +ⁱ c) +ⁱ d +ⁱ (x +ⁱ y) ≈ⁱ a +ⁱ c +ⁱ x +ⁱ (b +ⁱ d +ⁱ y)
final a b c d x y = begin⟨ ≈ⁱ-setoid ⟩
(((a +ⁱ b) +ⁱ c) +ⁱ d) +ⁱ (x +ⁱ y) ≈⟨ +ⁱ-congʳ (+ⁱ-congʳ (+ⁱ-assoc a b c)) ⟩
((a +ⁱ (b +ⁱ c)) +ⁱ d) +ⁱ (x +ⁱ y) ≈⟨ +ⁱ-congʳ (+ⁱ-congʳ (+ⁱ-congˡ {a} (+ⁱ-comm b c))) ⟩
((a +ⁱ (c +ⁱ b)) +ⁱ d) +ⁱ (x +ⁱ y) ≈⟨ +ⁱ-congʳ (+ⁱ-assoc a (c +ⁱ b) d) ⟩
(a +ⁱ ((c +ⁱ b) +ⁱ d)) +ⁱ (x +ⁱ y) ≈⟨ +ⁱ-congʳ (+ⁱ-congˡ {a} (+ⁱ-assoc c b d)) ⟩
(a +ⁱ (c +ⁱ (b +ⁱ d))) +ⁱ (x +ⁱ y) ≈⟨ +ⁱ-congʳ (≈ⁱ-sym (+ⁱ-assoc a c (b +ⁱ d))) ⟩
((a +ⁱ c) +ⁱ (b +ⁱ d)) +ⁱ (x +ⁱ y) ≈⟨ +ⁱ-assoc (a +ⁱ c) (b +ⁱ d) (x +ⁱ y) ⟩
(a +ⁱ c) +ⁱ ((b +ⁱ d) +ⁱ (x +ⁱ y)) ≈⟨ +ⁱ-congˡ {a +ⁱ c} (≈ⁱ-sym (+ⁱ-assoc (b +ⁱ d) x y)) ⟩
(a +ⁱ c) +ⁱ (((b +ⁱ d) +ⁱ x) +ⁱ y) ≈⟨ +ⁱ-congˡ {a +ⁱ c} (+ⁱ-congʳ (+ⁱ-comm (b +ⁱ d) x)) ⟩
(a +ⁱ c) +ⁱ ((x +ⁱ (b +ⁱ d)) +ⁱ y) ≈⟨ +ⁱ-congˡ {a +ⁱ c} (+ⁱ-assoc x (b +ⁱ d) y) ⟩
(a +ⁱ c) +ⁱ (x +ⁱ ((b +ⁱ d) +ⁱ y)) ≈⟨ ≈ⁱ-sym (+ⁱ-assoc (a +ⁱ c) x (b +ⁱ d +ⁱ y)) ⟩
((a +ⁱ c) +ⁱ x) +ⁱ ((b +ⁱ d) +ⁱ y) ∎
*ⁱ-distribʳ-+ⁱ : _*ⁱ_ DistributesOverʳ _+ⁱ_
*ⁱ-distribʳ-+ⁱ = comm+distrˡ⇒distrʳ +ⁱ-cong *ⁱ-comm *ⁱ-distribˡ-+ⁱ
*ⁱ-distrib-+ⁱ : _*ⁱ_ DistributesOver _+ⁱ_
*ⁱ-distrib-+ⁱ = *ⁱ-distribˡ-+ⁱ , *ⁱ-distribʳ-+ⁱ
open import AKS.Unsafe using (TODO)
+x∙-distribʳ-*ⁱ : ∀ c p q → (c +x∙ p) *ⁱ q ≈ⁱ c ∙ⁱ q +ⁱ x∙ (p *ⁱ q)
+x∙-distribʳ-*ⁱ c₁ p 0ⁱ = 0≈+ refl (≈ⁱ-sym (*ⁱ-zeroʳ p))
+x∙-distribʳ-*ⁱ c₁ p (c₂ +x∙ q) = +≈+ (sym (+-identityʳ (c₁ * c₂))) $ begin⟨ ≈ⁱ-setoid ⟩
(c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p) +ⁱ x∙ (p *ⁱ q) ≈⟨ +ⁱ-congˡ (+≈+ refl (*ⁱ-comm p q)) ⟩
(c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p) +ⁱ x∙ (q *ⁱ p) ≈⟨ +ⁱ-assoc (c₁ ∙ⁱ q) (c₂ ∙ⁱ p) (x∙ (q *ⁱ p)) ⟩
c₁ ∙ⁱ q +ⁱ (c₂ ∙ⁱ p +ⁱ x∙ (q *ⁱ p)) ≈⟨ +ⁱ-congˡ (≈ⁱ-sym (+x∙-distribʳ-*ⁱ c₂ q p)) ⟩
c₁ ∙ⁱ q +ⁱ (c₂ +x∙ q) *ⁱ p ≈⟨ +ⁱ-congˡ (*ⁱ-comm (c₂ +x∙ q) p) ⟩
c₁ ∙ⁱ q +ⁱ p *ⁱ (c₂ +x∙ q) ∎
+x∙-distribˡ-*ⁱ : ∀ c p q → p *ⁱ (c +x∙ q) ≈ⁱ c ∙ⁱ p +ⁱ x∙ (p *ⁱ q)
+x∙-distribˡ-*ⁱ c p q = begin⟨ ≈ⁱ-setoid ⟩
p *ⁱ (c +x∙ q) ≈⟨ *ⁱ-comm p (c +x∙ q) ⟩
(c +x∙ q) *ⁱ p ≈⟨ +x∙-distribʳ-*ⁱ c q p ⟩
c ∙ⁱ p +ⁱ x∙ (q *ⁱ p) ≈⟨ +ⁱ-congˡ (+≈+ refl (*ⁱ-comm q p)) ⟩
c ∙ⁱ p +ⁱ x∙ (p *ⁱ q) ∎
x∙-distrib-*ⁱ : ∀ p q → x∙ (p *ⁱ q) ≈ⁱ p *ⁱ (x∙ q)
x∙-distrib-*ⁱ 0ⁱ q = +≈0 refl ≈ⁱ-refl
x∙-distrib-*ⁱ (c₁ +x∙ p) 0ⁱ = +≈+ (sym (zeroʳ c₁)) $ begin⟨ ≈ⁱ-setoid ⟩
0ⁱ +ⁱ 0ⁱ ≈⟨ +ⁱ-cong (0≈0∙p p) (0≈+ refl (≈ⁱ-sym (*ⁱ-zeroʳ p))) ⟩
0# ∙ⁱ p +ⁱ x∙ (p *ⁱ 0ⁱ) ∎
x∙-distrib-*ⁱ (c₁ +x∙ p) (c₂ +x∙ q) = +≈+ (sym (zeroʳ c₁)) $ begin⟨ ≈ⁱ-setoid ⟩
(c₁ * c₂) +x∙ (c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q)) ≈⟨ TODO ⟩
(c₁ * c₂) +x∙ (c₁ ∙ⁱ q +ⁱ (c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q))) ≈⟨ +≈+ refl (+ⁱ-congˡ (≈ⁱ-sym (+x∙-distribˡ-*ⁱ c₂ p q))) ⟩
(c₁ * c₂) +x∙ (c₁ ∙ⁱ q +ⁱ p *ⁱ (c₂ +x∙ q)) ≈⟨ TODO ⟩
((c₁ * c₂) +x∙ (c₁ ∙ⁱ q)) +ⁱ 0# ∙ⁱ p +ⁱ x∙ (p *ⁱ (c₂ +x∙ q)) ∎
*ⁱ-assoc : Associative _*ⁱ_
*ⁱ-assoc 0ⁱ q r = ≈ⁱ-refl
*ⁱ-assoc (c₁ +x∙ p) 0ⁱ r = ≈ⁱ-refl
*ⁱ-assoc (c₁ +x∙ p) (c₂ +x∙ q) 0ⁱ = ≈ⁱ-refl
*ⁱ-assoc (c₁ +x∙ p) (c₂ +x∙ q) (c₃ +x∙ r) = +≈+ (*-assoc c₁ c₂ c₃) $ begin⟨ ≈ⁱ-setoid ⟩
(c₁ * c₂) ∙ⁱ r +ⁱ c₃ ∙ⁱ (c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q)) +ⁱ x∙ ((c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q)) *ⁱ r)
≈⟨ TODO ⟩
c₁ ∙ⁱ (c₂ ∙ⁱ r) +ⁱ (c₃ ∙ⁱ (c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p) +ⁱ c₃ ∙ⁱ (x∙ (p *ⁱ q))) +ⁱ x∙ ((c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q)) *ⁱ r)
≈⟨ TODO ⟩
c₁ ∙ⁱ (c₂ ∙ⁱ r +ⁱ c₃ ∙ⁱ q +ⁱ x∙ (q *ⁱ r)) +ⁱ c₂ * c₃ ∙ⁱ p +ⁱ x∙ (p *ⁱ (c₂ ∙ⁱ r +ⁱ c₃ ∙ⁱ q +ⁱ x∙ (q *ⁱ r))) ∎
*ⁱ-isSemigroup : IsSemigroup _*ⁱ_
*ⁱ-isSemigroup = record
{ isMagma = *ⁱ-isMagma
; assoc = *ⁱ-assoc
}
∙ⁱ-identity : ∀ p → 1# ∙ⁱ p ≈ⁱ p
∙ⁱ-identity 0ⁱ = ≈ⁱ-refl
∙ⁱ-identity (c +x∙ p) = +≈+ (*-identityˡ c) (∙ⁱ-identity p)
*ⁱ-identityˡ : LeftIdentity 1ⁱ _*ⁱ_
*ⁱ-identityˡ 0ⁱ = ≈ⁱ-refl
*ⁱ-identityˡ (c +x∙ p) = +≈+ (*-identityˡ c) $ begin⟨ ≈ⁱ-setoid ⟩
1# ∙ⁱ p +ⁱ 0ⁱ +ⁱ (0# +x∙ 0ⁱ) ≈⟨ +ⁱ-cong (+ⁱ-congʳ (∙ⁱ-identity p)) (+≈0 refl 0≈0) ⟩
p +ⁱ 0ⁱ +ⁱ 0ⁱ ≈⟨ +ⁱ-identityʳ (p +ⁱ 0ⁱ) ⟩
p +ⁱ 0ⁱ ≈⟨ +ⁱ-identityʳ p ⟩
p ∎
*ⁱ-identityʳ : RightIdentity 1ⁱ _*ⁱ_
*ⁱ-identityʳ = comm+idˡ⇒idʳ *ⁱ-comm *ⁱ-identityˡ
*ⁱ-identity : Identity 1ⁱ _*ⁱ_
*ⁱ-identity = *ⁱ-identityˡ , *ⁱ-identityʳ
*ⁱ-1ⁱ-isMonoid : IsMonoid _*ⁱ_ 1ⁱ
*ⁱ-1ⁱ-isMonoid = record
{ isSemigroup = *ⁱ-isSemigroup
; identity = *ⁱ-identity
}
+ⁱ-*ⁱ-isRing : IsRing _+ⁱ_ _*ⁱ_ -ⁱ_ 0ⁱ 1ⁱ
+ⁱ-*ⁱ-isRing = record
{ +-isAbelianGroup = +ⁱ-isAbelianGroup
; *-isMonoid = *ⁱ-1ⁱ-isMonoid
; distrib = *ⁱ-distrib-+ⁱ
}
+ⁱ-*ⁱ-isCommutativeRing : IsCommutativeRing _+ⁱ_ _*ⁱ_ -ⁱ_ 0ⁱ 1ⁱ
+ⁱ-*ⁱ-isCommutativeRing = record
{ isRing = +ⁱ-*ⁱ-isRing
; *-comm = *ⁱ-comm
}
+ⁱ-*ⁱ-commutativeRing : CommutativeRing c (c ⊔ˡ ℓ)
+ⁱ-*ⁱ-commutativeRing = record { isCommutativeRing = +ⁱ-*ⁱ-isCommutativeRing }
open CommutativeRing +ⁱ-*ⁱ-commutativeRing using () renaming (+-rawMonoid to +ⁱ-rawMonoid; zeroˡ to *ⁱ-zeroˡ)
+ⁱ-*ⁱ-almostCommutativeRing : AlmostCommutativeRing c (c ⊔ˡ ℓ)
+ⁱ-*ⁱ-almostCommutativeRing = fromCommutativeRing +ⁱ-*ⁱ-commutativeRing isZero
where
isZero : ∀ x → Maybe (0ⁱ ≈ⁱ x)
isZero 0ⁱ = just ≈ⁱ-refl
isZero (_ +x∙ _) = nothing
0ⁱ≉1ⁱ : 0ⁱ ≉ⁱ 1ⁱ
0ⁱ≉1ⁱ (0≈+ 1#≈0# _) = contradiction 1#≈0# 1#≉0#
+ⁱ-*ⁱ-isNonZeroCommutativeRing : IsNonZeroCommutativeRing Polynomialⁱ _≈ⁱ_ _+ⁱ_ _*ⁱ_ -ⁱ_ 0ⁱ 1ⁱ
+ⁱ-*ⁱ-isNonZeroCommutativeRing = record
{ isCommutativeRing = +ⁱ-*ⁱ-isCommutativeRing
; 0#≉1# = 0ⁱ≉1ⁱ
}
+≉0 : ∀ {c} {p} → c ≈ 0# → c +x∙ p ≉ⁱ 0ⁱ → p ≉ⁱ 0ⁱ
+≉0 c≈0 c+x∙p≉0ⁱ p≈0 = contradiction (+≈0 c≈0 (≈ⁱ-sym p≈0)) c+x∙p≉0ⁱ
*ⁱ-cancelˡ-lemma₁ : ∀ c₁ p c₂ q → c₁ ≈ 0# → 0ⁱ ≈ⁱ c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q) → p *ⁱ 0ⁱ ≈ⁱ p *ⁱ (c₂ +x∙ q)
*ⁱ-cancelˡ-lemma₁ c₁ p c₂ q c₁≈0 pf = begin⟨ ≈ⁱ-setoid ⟩
p *ⁱ 0ⁱ ≈⟨ *ⁱ-zeroʳ p ⟩
0ⁱ ≈⟨ pf ⟩
c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q) ≈⟨ +ⁱ-congʳ (+ⁱ-congʳ (∙ⁱ-cong c₁≈0 (≈ⁱ-refl {q}))) ⟩
0# ∙ⁱ q +ⁱ c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q) ≈⟨ +ⁱ-congʳ (+ⁱ-congʳ (≈ⁱ-sym (0≈0∙p q))) ⟩
0ⁱ +ⁱ c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q) ≈⟨ ≈ⁱ-sym (+x∙-distribˡ-*ⁱ c₂ p q) ⟩
p *ⁱ (c₂ +x∙ q) ∎
*ⁱ-cancelˡ-lemma₂ : ∀ c₁ p c₂ q → c₂ ≈ 0# → 0ⁱ ≈ⁱ c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q) → (c₁ +x∙ p) *ⁱ 0ⁱ ≈ⁱ (c₁ +x∙ p) *ⁱ q
*ⁱ-cancelˡ-lemma₂ c₁ p c₂ q c₂≈0 pf = begin⟨ ≈ⁱ-setoid ⟩
(c₁ +x∙ p) *ⁱ 0ⁱ ≈⟨ pf ⟩
c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q) ≈⟨ +ⁱ-congʳ (+ⁱ-congˡ {c₁ ∙ⁱ q} (∙ⁱ-cong c₂≈0 ≈ⁱ-refl)) ⟩
c₁ ∙ⁱ q +ⁱ 0# ∙ⁱ p +ⁱ x∙ (p *ⁱ q) ≈⟨ +ⁱ-congʳ (+ⁱ-congˡ {c₁ ∙ⁱ q} (≈ⁱ-sym (0≈0∙p p))) ⟩
c₁ ∙ⁱ q +ⁱ 0ⁱ +ⁱ x∙ (p *ⁱ q) ≈⟨ +ⁱ-congʳ (+ⁱ-identityʳ (c₁ ∙ⁱ q)) ⟩
c₁ ∙ⁱ q +ⁱ x∙ (p *ⁱ q) ≈⟨ ≈ⁱ-sym (+x∙-distribʳ-*ⁱ c₁ p q) ⟩
(c₁ +x∙ p) *ⁱ q ∎
*ⁱ-cancelˡ : ∀ p {q r} → p ≉ⁱ 0ⁱ → p *ⁱ q ≈ⁱ p *ⁱ r → q ≈ⁱ r
*ⁱ-cancelˡ 0ⁱ {q} {r} p≉0 p*q≈p*r = contradiction ≈ⁱ-refl p≉0
*ⁱ-cancelˡ (c₁ +x∙ p) {0ⁱ} {0ⁱ} p≉0 p*q≈p*r = ≈ⁱ-refl
*ⁱ-cancelˡ (c₁ +x∙ p) {0ⁱ} {c₃ +x∙ r} p≉0 (0≈+ c₁*c₃≈0 pf) with c₁ ≈? 0#
... | yes c₁≈0 = *ⁱ-cancelˡ p (+≉0 c₁≈0 p≉0) (*ⁱ-cancelˡ-lemma₁ c₁ p c₃ r c₁≈0 pf)
... | no c₁≉0 = 0≈+ c₃≈0 $ *ⁱ-cancelˡ (c₁ +x∙ p) p≉0 (*ⁱ-cancelˡ-lemma₂ c₁ p c₃ r c₃≈0 pf)
where
c₃≈0 = *-cancelˡ c₁ c₁≉0 $ begin⟨ setoid ⟩ c₁ * c₃ ≈⟨ c₁*c₃≈0 ⟩ 0# ≈⟨ sym (zeroʳ c₁) ⟩ c₁ * 0# ∎
*ⁱ-cancelˡ (c₁ +x∙ p) {c₂ +x∙ q} {0ⁱ} p≉0 (+≈0 c₁*c₂≈0 pf) with c₁ ≈? 0#
... | yes c₁≈0 = *ⁱ-cancelˡ p (+≉0 c₁≈0 p≉0) (≈ⁱ-sym (*ⁱ-cancelˡ-lemma₁ c₁ p c₂ q c₁≈0 pf) )
... | no c₁≉0 = +≈0 c₂≈0 $ ≈ⁱ-sym (*ⁱ-cancelˡ (c₁ +x∙ p) {q} {0ⁱ} p≉0 (≈ⁱ-sym (*ⁱ-cancelˡ-lemma₂ c₁ p c₂ q c₂≈0 pf)))
where
c₂≈0 = *-cancelˡ c₁ c₁≉0 $ begin⟨ setoid ⟩ c₁ * c₂ ≈⟨ c₁*c₂≈0 ⟩ 0# ≈⟨ sym (zeroʳ c₁) ⟩ c₁ * 0# ∎
*ⁱ-cancelˡ (c₁ +x∙ p) {c₂ +x∙ q} {c₃ +x∙ r} p≉0 (+≈+ c₁*c₂≈c₁*c₃ pf) with c₁ ≈? 0#
... | yes c₁≈0 = *ⁱ-cancelˡ p (+≉0 c₁≈0 p≉0) $ begin⟨ ≈ⁱ-setoid ⟩
0ⁱ +ⁱ p *ⁱ (c₂ +x∙ q) ≈⟨ +ⁱ-cong (0≈0∙p q) (+x∙-distribˡ-*ⁱ c₂ p q) ⟩
0# ∙ⁱ q +ⁱ (c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q)) ≈⟨ +ⁱ-congʳ (∙ⁱ-cong (sym c₁≈0) (≈ⁱ-refl {q})) ⟩
c₁ ∙ⁱ q +ⁱ (c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q)) ≈⟨ ≈ⁱ-sym (+ⁱ-assoc (c₁ ∙ⁱ q) _ _) ⟩
(c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p) +ⁱ x∙ (p *ⁱ q) ≈⟨ pf ⟩
(c₁ ∙ⁱ r +ⁱ c₃ ∙ⁱ p) +ⁱ x∙ (p *ⁱ r) ≈⟨ +ⁱ-assoc (c₁ ∙ⁱ r) _ _ ⟩
c₁ ∙ⁱ r +ⁱ (c₃ ∙ⁱ p +ⁱ x∙ (p *ⁱ r)) ≈⟨ +ⁱ-congʳ (∙ⁱ-cong c₁≈0 (≈ⁱ-refl {r})) ⟩
0# ∙ⁱ r +ⁱ (c₃ ∙ⁱ p +ⁱ x∙ (p *ⁱ r)) ≈⟨ +ⁱ-cong (≈ⁱ-sym (0≈0∙p r)) (≈ⁱ-sym (+x∙-distribˡ-*ⁱ c₃ p r)) ⟩
0ⁱ +ⁱ p *ⁱ (c₃ +x∙ r) ∎
... | no c₁≉0 = +≈+ c₂≈c₃ $ *ⁱ-cancelˡ (c₁ +x∙ p) p≉0 $ begin⟨ ≈ⁱ-setoid ⟩
0ⁱ +ⁱ (c₁ +x∙ p) *ⁱ q ≈⟨ +ⁱ-cong (≈ⁱ-sym (-ⁱ‿inverseˡ (c₂ ∙ⁱ p))) (+x∙-distribʳ-*ⁱ c₁ p q) ⟩
(-ⁱ (c₂ ∙ⁱ p) +ⁱ c₂ ∙ⁱ p) +ⁱ (c₁ ∙ⁱ q +ⁱ x∙ (p *ⁱ q)) ≈⟨ lemma (-ⁱ (c₂ ∙ⁱ p)) (c₂ ∙ⁱ p) (c₁ ∙ⁱ q) (x∙ (p *ⁱ q)) ⟩
-ⁱ (c₂ ∙ⁱ p) +ⁱ ((c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p) +ⁱ x∙ (p *ⁱ q)) ≈⟨ +ⁱ-cong (-ⁱ‿cong (∙ⁱ-cong c₂≈c₃ (≈ⁱ-refl {p}))) pf ⟩
-ⁱ (c₃ ∙ⁱ p) +ⁱ ((c₁ ∙ⁱ r +ⁱ c₃ ∙ⁱ p) +ⁱ x∙ (p *ⁱ r)) ≈⟨ ≈ⁱ-sym (lemma (-ⁱ (c₃ ∙ⁱ p)) (c₃ ∙ⁱ p) (c₁ ∙ⁱ r) (x∙ (p *ⁱ r))) ⟩
(-ⁱ (c₃ ∙ⁱ p) +ⁱ c₃ ∙ⁱ p) +ⁱ (c₁ ∙ⁱ r +ⁱ x∙ (p *ⁱ r)) ≈⟨ +ⁱ-cong (-ⁱ‿inverseˡ (c₃ ∙ⁱ p)) (≈ⁱ-sym (+x∙-distribʳ-*ⁱ c₁ p r)) ⟩
0ⁱ +ⁱ (c₁ +x∙ p) *ⁱ r ∎
where
c₂≈c₃ = *-cancelˡ c₁ c₁≉0 c₁*c₂≈c₁*c₃
lemma : ∀ a b c d → (a +ⁱ b) +ⁱ (c +ⁱ d) ≈ⁱ a +ⁱ ((c +ⁱ b) +ⁱ d)
lemma = solve +ⁱ-*ⁱ-almostCommutativeRing
+ⁱ-*ⁱ-isIntegralDomain : IsIntegralDomain Polynomialⁱ _≈ⁱ_ _+ⁱ_ _*ⁱ_ -ⁱ_ 0ⁱ 1ⁱ
+ⁱ-*ⁱ-isIntegralDomain = record
{ isNonZeroCommutativeRing = +ⁱ-*ⁱ-isNonZeroCommutativeRing
; *-cancelˡ = *ⁱ-cancelˡ
}
+ⁱ-*ⁱ-integralDomain : IntegralDomain c (c ⊔ˡ ℓ)
+ⁱ-*ⁱ-integralDomain = record { isIntegralDomain = +ⁱ-*ⁱ-isIntegralDomain }
expandˢ-+x^-lemma : ∀ o n c p → expandˢ o (c +x^ n ∙ p) ≈ⁱ expandˢ o (K c) +ⁱ expandˢ (o +ℕ ⟅ n ⇓⟆) p
expandˢ-+x^-lemma zero (ℕ+ n) c₁ p = begin⟨ ≈ⁱ-setoid ⟩
proj₁ c₁ +x∙ expandˢ n p ≈⟨ +≈+ (sym (+-identityʳ (proj₁ c₁))) ≈ⁱ-refl ⟩
(proj₁ c₁ + 0#) +x∙ expandˢ n p ∎
expandˢ-+x^-lemma (suc o) n c₁ p = begin⟨ ≈ⁱ-setoid ⟩
expandˢ (suc o) (c₁ +x^ n ∙ p) ≈⟨ +≈+ (sym (+-identityʳ 0#)) (expandˢ-+x^-lemma o n c₁ p) ⟩
expandˢ (suc o) (K c₁) +ⁱ expandˢ (suc (o +ℕ ⟅ n ⇓⟆)) p ∎
expandˢ-≡-cong : ∀ {o₁ o₂} {p} → o₁ ≡ o₂ → expandˢ o₁ p ≈ⁱ expandˢ o₂ p
expandˢ-≡-cong ≡-refl = ≈ⁱ-refl
expandˢ-raise₁ : ∀ n o₁ p o₂ q → 0ⁱ ≈ⁱ expandˢ o₁ p +ⁱ expandˢ o₂ q → 0ⁱ ≈ⁱ expandˢ (n +ℕ o₁) p +ⁱ expandˢ (n +ℕ o₂) q
expandˢ-raise₁ zero o₁ p o₂ q pf = pf
expandˢ-raise₁ (suc n) o₁ p o₂ q pf = 0≈+ (+-identityʳ 0#) (expandˢ-raise₁ n o₁ p o₂ q pf)
expandˢ-raise₂ : ∀ n o₁ r o₂ p o₃ q → expandˢ o₁ r ≈ⁱ expandˢ o₂ p +ⁱ expandˢ o₃ q → expandˢ (n +ℕ o₁) r ≈ⁱ expandˢ (n +ℕ o₂) p +ⁱ expandˢ (n +ℕ o₃) q
expandˢ-raise₂ zero o₁ r o₂ p o₃ q pf = pf
expandˢ-raise₂ (suc n) o₁ r o₂ p o₃ q pf = +≈+ (sym (+-identityʳ 0#)) (expandˢ-raise₂ n o₁ r o₂ p o₃ q pf)
expandˢ-+ᵖ-spine-≡-K-homo-lemma₁ : ∀ o c₁ c₂ → proj₁ c₁ + proj₁ c₂ ≈ 0# → 0ⁱ ≈ⁱ expandˢ o (K c₁) +ⁱ expandˢ o (K c₂)
expandˢ-+ᵖ-spine-≡-K-homo-lemma₁ zero c₁ c₂ c₁+c₂≈0 = 0≈+ c₁+c₂≈0 0≈0
expandˢ-+ᵖ-spine-≡-K-homo-lemma₁ (suc o) c₁ c₂ c₁+c₂≈0 = 0≈+ (+-identityʳ 0#) (expandˢ-+ᵖ-spine-≡-K-homo-lemma₁ o c₁ c₂ c₁+c₂≈0)
expandˢ-+ᵖ-spine-≡-K-homo-lemma₂ : ∀ o c₁ c₂ c₁+c₂≉0 → expandˢ o (K (proj₁ c₁ + proj₁ c₂ , c₁+c₂≉0)) ≈ⁱ expandˢ o (K c₁) +ⁱ expandˢ o (K c₂)
expandˢ-+ᵖ-spine-≡-K-homo-lemma₂ zero c₁ c₂ c₁+c₂≉0 = ≈ⁱ-refl
expandˢ-+ᵖ-spine-≡-K-homo-lemma₂ (suc o) c₁ c₂ c₁+c₂≉0 = +≈+ (sym (+-identityʳ 0#)) (expandˢ-+ᵖ-spine-≡-K-homo-lemma₂ o c₁ c₂ c₁+c₂≉0)
expand-+ᵖ-spine-≡-K-homo : ∀ o c p → expand (+ᵖ-spine-≡-K o c p) ≈ⁱ expandˢ o (K c) +ⁱ expandˢ o p
expand-+ᵖ-spine-≡-K-homo o c₁ (K c₂) with proj₁ c₁ + proj₁ c₂ ≈? 0#
... | yes c₁+c₂≈0 = expandˢ-+ᵖ-spine-≡-K-homo-lemma₁ o c₁ c₂ c₁+c₂≈0
... | no c₁+c₂≉0 = expandˢ-+ᵖ-spine-≡-K-homo-lemma₂ o c₁ c₂ c₁+c₂≉0
expand-+ᵖ-spine-≡-K-homo o c₁ (c₂ +x^ n₂ ∙ p) with proj₁ c₁ + proj₁ c₂ ≈? 0#
... | yes c₁+c₂≈0 = begin⟨ ≈ⁱ-setoid ⟩
expandˢ (o +ℕ ⟅ n₂ ⇓⟆) p ≈⟨ ≈ⁱ-sym (+ⁱ-identityˡ (expandˢ (o +ℕ ⟅ n₂ ⇓⟆) p)) ⟩
0ⁱ +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) p ≈⟨ +ⁱ-congʳ (expandˢ-+ᵖ-spine-≡-K-homo-lemma₁ o c₁ c₂ c₁+c₂≈0) ⟩
(expandˢ o (K c₁) +ⁱ expandˢ o (K c₂)) +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) p ≈⟨ +ⁱ-assoc (expandˢ o (K c₁)) (expandˢ o (K c₂)) (expandˢ (o +ℕ ⟅ n₂ ⇓⟆) p) ⟩
expandˢ o (K c₁) +ⁱ (expandˢ o (K c₂) +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) p) ≈⟨ +ⁱ-congˡ (≈ⁱ-sym (expandˢ-+x^-lemma o n₂ c₂ p)) ⟩
expandˢ o (K c₁) +ⁱ expandˢ o (c₂ +x^ n₂ ∙ p) ∎
... | no c₁+c₂≉0 = begin⟨ ≈ⁱ-setoid ⟩
expandˢ o ((proj₁ c₁ + proj₁ c₂ , c₁+c₂≉0) +x^ n₂ ∙ p) ≈⟨ expandˢ-+x^-lemma o n₂ (proj₁ c₁ + proj₁ c₂ , c₁+c₂≉0) p ⟩
expandˢ o (K (proj₁ c₁ + proj₁ c₂ , c₁+c₂≉0)) +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) p ≈⟨ +ⁱ-congʳ (expandˢ-+ᵖ-spine-≡-K-homo-lemma₂ o c₁ c₂ c₁+c₂≉0) ⟩
(expandˢ o (K c₁) +ⁱ expandˢ o (K c₂)) +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) p ≈⟨ +ⁱ-assoc (expandˢ o (K c₁)) (expandˢ o (K c₂)) (expandˢ (o +ℕ ⟅ n₂ ⇓⟆) p) ⟩
expandˢ o (K c₁) +ⁱ (expandˢ o (K c₂) +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) p) ≈⟨ +ⁱ-congˡ (≈ⁱ-sym (expandˢ-+x^-lemma o n₂ c₂ p)) ⟩
expandˢ o (K c₁) +ⁱ expandˢ o (c₂ +x^ n₂ ∙ p) ∎
expand-+ᵖ-spine-≡-homo : ∀ o p q → expand (+ᵖ-spine-≡ o p q) ≈ⁱ expandˢ o p +ⁱ expandˢ o q
expand-+ᵖ-spine-<-homo : ∀ o₁ p o₂ q o₁<o₂ → expand (+ᵖ-spine-< o₁ p o₂ q o₁<o₂) ≈ⁱ expandˢ o₁ p +ⁱ expandˢ o₂ q
expand-+ᵖ-spine-homo : ∀ o₁ p o₂ q → expand (+ᵖ-spine o₁ p o₂ q) ≈ⁱ expandˢ o₁ p +ⁱ expandˢ o₂ q
expand-+ᵖ-spine-≡-homo-permute : ∀ a b x y → (a +ⁱ b) +ⁱ (x +ⁱ y) ≈ⁱ (a +ⁱ x) +ⁱ (b +ⁱ y)
expand-+ᵖ-spine-≡-homo-permute = solve +ⁱ-*ⁱ-almostCommutativeRing
expand-+ᵖ-spine-≡-homo o (K c₁) q = expand-+ᵖ-spine-≡-K-homo o c₁ q
expand-+ᵖ-spine-≡-homo o (c₁ +x^ n₁ ∙ p) (K c₂) = begin⟨ ≈ⁱ-setoid ⟩
expand (+ᵖ-spine-≡-K o c₂ (c₁ +x^ n₁ ∙ p)) ≈⟨ expand-+ᵖ-spine-≡-K-homo o c₂ (c₁ +x^ n₁ ∙ p) ⟩
expandˢ o (K c₂) +ⁱ expandˢ o (c₁ +x^ n₁ ∙ p) ≈⟨ +ⁱ-comm (expandˢ o (K c₂)) (expandˢ o (c₁ +x^ n₁ ∙ p)) ⟩
expandˢ o (c₁ +x^ n₁ ∙ p) +ⁱ expandˢ o (K c₂) ∎
expand-+ᵖ-spine-≡-homo o (c₁ +x^ n₁ ∙ p) (c₂ +x^ n₂ ∙ q) with proj₁ c₁ + proj₁ c₂ ≈? 0#
... | yes c₁+c₂≈0 = begin⟨ ≈ⁱ-setoid ⟩
expand (+ᵖ-spine (o +ℕ ⟅ n₁ ⇓⟆) p (o +ℕ ⟅ n₂ ⇓⟆) q) ≈⟨ expand-+ᵖ-spine-homo (o +ℕ ⟅ n₁ ⇓⟆) p (o +ℕ ⟅ n₂ ⇓⟆) q ⟩
expandˢ (o +ℕ ⟅ n₁ ⇓⟆) p +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) q ≈⟨ ≈ⁱ-sym (+ⁱ-identityˡ (expandˢ (o +ℕ ⟅ n₁ ⇓⟆) p +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) q)) ⟩
0ⁱ +ⁱ (expandˢ (o +ℕ ⟅ n₁ ⇓⟆) p +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) q) ≈⟨ +ⁱ-congʳ (expandˢ-+ᵖ-spine-≡-K-homo-lemma₁ o c₁ c₂ c₁+c₂≈0) ⟩
(expandˢ o (K c₁) +ⁱ expandˢ o (K c₂)) +ⁱ (expandˢ (o +ℕ ⟅ n₁ ⇓⟆) p +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) q) ≈⟨ expand-+ᵖ-spine-≡-homo-permute (expandˢ o (K c₁)) (expandˢ o (K c₂)) _ _ ⟩
(expandˢ o (K c₁) +ⁱ expandˢ (o +ℕ ⟅ n₁ ⇓⟆) p) +ⁱ (expandˢ o (K c₂) +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) q) ≈⟨ +ⁱ-cong (≈ⁱ-sym (expandˢ-+x^-lemma o n₁ c₁ p)) (≈ⁱ-sym (expandˢ-+x^-lemma o n₂ c₂ q)) ⟩
expandˢ o (c₁ +x^ n₁ ∙ p) +ⁱ expandˢ o (c₂ +x^ n₂ ∙ q) ∎
where
... | no c₁+c₂≉0 with +ᵖ-spine ⟅ n₁ ⇓⟆ p ⟅ n₂ ⇓⟆ q | expand-+ᵖ-spine-homo ⟅ n₁ ⇓⟆ p ⟅ n₂ ⇓⟆ q
... | 0ᵖ | pf = begin⟨ ≈ⁱ-setoid ⟩
expandˢ o (K (proj₁ c₁ + proj₁ c₂ , c₁+c₂≉0)) ≈⟨ ≈ⁱ-sym (+ⁱ-identityʳ _) ⟩
expandˢ o (K (proj₁ c₁ + proj₁ c₂ , c₁+c₂≉0)) +ⁱ 0ⁱ ≈⟨ +ⁱ-cong (expandˢ-+ᵖ-spine-≡-K-homo-lemma₂ o c₁ c₂ c₁+c₂≉0) (expandˢ-raise₁ o ⟅ n₁ ⇓⟆ p ⟅ n₂ ⇓⟆ q pf) ⟩
(expandˢ o (K c₁) +ⁱ expandˢ o (K c₂)) +ⁱ (expandˢ (o +ℕ ⟅ n₁ ⇓⟆) p +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) q) ≈⟨ expand-+ᵖ-spine-≡-homo-permute (expandˢ o (K c₁)) (expandˢ o (K c₂)) _ _ ⟩
(expandˢ o (K c₁) +ⁱ expandˢ (o +ℕ ⟅ n₁ ⇓⟆) p) +ⁱ (expandˢ o (K c₂) +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) q) ≈⟨ +ⁱ-cong (≈ⁱ-sym (expandˢ-+x^-lemma o n₁ c₁ p)) (≈ⁱ-sym (expandˢ-+x^-lemma o n₂ c₂ q)) ⟩
expandˢ o (c₁ +x^ n₁ ∙ p) +ⁱ expandˢ o (c₂ +x^ n₂ ∙ q) ∎
... | x^ zero ∙ r | pf = begin⟨ ≈ⁱ-setoid ⟩
expand (+ᵖ-spine-≡-K o (proj₁ c₁ + proj₁ c₂ , c₁+c₂≉0) r) ≈⟨ expand-+ᵖ-spine-≡-K-homo o (proj₁ c₁ + proj₁ c₂ , c₁+c₂≉0) r ⟩
expandˢ o (K (proj₁ c₁ + proj₁ c₂ , c₁+c₂≉0)) +ⁱ expandˢ o r ≈⟨ +ⁱ-cong (expandˢ-+ᵖ-spine-≡-K-homo-lemma₂ o c₁ c₂ c₁+c₂≉0) (expandˢ-≡-cong (≡-sym (Nat.+-identityʳ o))) ⟩
(expandˢ o (K c₁) +ⁱ expandˢ o (K c₂)) +ⁱ expandˢ (o +ℕ 0) r ≈⟨ +ⁱ-congˡ (expandˢ-raise₂ o 0 r ⟅ n₁ ⇓⟆ p ⟅ n₂ ⇓⟆ q pf) ⟩
(expandˢ o (K c₁) +ⁱ expandˢ o (K c₂)) +ⁱ (expandˢ (o +ℕ ⟅ n₁ ⇓⟆) p +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) q) ≈⟨ expand-+ᵖ-spine-≡-homo-permute (expandˢ o (K c₁)) (expandˢ o (K c₂)) _ _ ⟩
(expandˢ o (K c₁) +ⁱ expandˢ (o +ℕ ⟅ n₁ ⇓⟆) p) +ⁱ (expandˢ o (K c₂) +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) q) ≈⟨ +ⁱ-cong (≈ⁱ-sym (expandˢ-+x^-lemma o n₁ c₁ p)) (≈ⁱ-sym (expandˢ-+x^-lemma o n₂ c₂ q)) ⟩
expandˢ o (c₁ +x^ n₁ ∙ p) +ⁱ expandˢ o (c₂ +x^ n₂ ∙ q) ∎
... | x^ suc n₃ ∙ r | pf = begin⟨ ≈ⁱ-setoid ⟩
expandˢ o ((proj₁ c₁ + proj₁ c₂ , c₁+c₂≉0) +x^ ⟅ suc n₃ ⇑⟆ ∙ r) ≈⟨ expandˢ-+x^-lemma o ⟅ suc n₃ ⇑⟆ (proj₁ c₁ + proj₁ c₂ , c₁+c₂≉0) r ⟩
expandˢ o (K (proj₁ c₁ + proj₁ c₂ , c₁+c₂≉0)) +ⁱ expandˢ (o +ℕ suc n₃) r ≈⟨ +ⁱ-congʳ (expandˢ-+ᵖ-spine-≡-K-homo-lemma₂ o c₁ c₂ c₁+c₂≉0) ⟩
(expandˢ o (K c₁) +ⁱ expandˢ o (K c₂)) +ⁱ expandˢ (o +ℕ suc n₃) r ≈⟨ +ⁱ-congˡ (expandˢ-raise₂ o (suc n₃) r ⟅ n₁ ⇓⟆ p ⟅ n₂ ⇓⟆ q pf) ⟩
(expandˢ o (K c₁) +ⁱ expandˢ o (K c₂)) +ⁱ (expandˢ (o +ℕ ⟅ n₁ ⇓⟆) p +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) q) ≈⟨ expand-+ᵖ-spine-≡-homo-permute (expandˢ o (K c₁)) (expandˢ o (K c₂)) _ _ ⟩
(expandˢ o (K c₁) +ⁱ expandˢ (o +ℕ ⟅ n₁ ⇓⟆) p) +ⁱ (expandˢ o (K c₂) +ⁱ expandˢ (o +ℕ ⟅ n₂ ⇓⟆) q) ≈⟨ +ⁱ-cong (≈ⁱ-sym (expandˢ-+x^-lemma o n₁ c₁ p)) (≈ⁱ-sym (expandˢ-+x^-lemma o n₂ c₂ q)) ⟩
expandˢ o (c₁ +x^ n₁ ∙ p) +ⁱ expandˢ o (c₂ +x^ n₂ ∙ q) ∎
expand-+ᵖ-spine-<-homo o₁ (K c₁) o₂ q o₁<o₂ = begin⟨ ≈ⁱ-setoid ⟩
expandˢ o₁ (c₁ +x^ ⟅ o₂ ∸ o₁ ⇑⟆ ∙ q) ≈⟨ expandˢ-+x^-lemma o₁ ⟅ o₂ ∸ o₁ ⇑⟆ c₁ q ⟩
expandˢ o₁ (K c₁) +ⁱ expandˢ (o₁ +ℕ ⟅ ⟅ o₂ ∸ o₁ ⇑⟆ ⇓⟆) q ≈⟨ +ⁱ-congˡ (expandˢ-≡-cong lemma) ⟩
expandˢ o₁ (K c₁) +ⁱ expandˢ o₂ q ∎
where
lemma : o₁ +ℕ ⟅ ⟅ o₂ ∸ o₁ ⇑⟆ ⇓⟆ ≡ o₂
lemma = begin⟨ ≡-setoid ℕ ⟩
o₁ +ℕ ⟅ ⟅ o₂ ∸ o₁ ⇑⟆ ⇓⟆ ≡⟨ ≡-cong (λ x → o₁ +ℕ x) (ℕ→ℕ⁺→ℕ (o₂ ∸ o₁) {≢⇒¬≟ (m<n⇒n∸m≢0 o₁<o₂)}) ⟩
o₁ +ℕ (o₂ ∸ o₁) ≡⟨ m+[n∸m]≡n {o₁} {o₂} (<⇒≤ o₁<o₂) ⟩
o₂ ∎
expand-+ᵖ-spine-<-homo o₁ (c₁ +x^ n₁ ∙ p) o₂ q o₁<o₂ with +ᵖ-spine ⟅ n₁ ⇓⟆ p (o₂ ∸ o₁) q | expand-+ᵖ-spine-homo ⟅ n₁ ⇓⟆ p (o₂ ∸ o₁) q
... | 0ᵖ | pf = begin⟨ ≈ⁱ-setoid ⟩
expandˢ o₁ (K c₁) ≈⟨ ≈ⁱ-sym (+ⁱ-identityʳ (expandˢ o₁ (K c₁))) ⟩
expandˢ o₁ (K c₁) +ⁱ 0ⁱ ≈⟨ +ⁱ-congˡ (expandˢ-raise₁ o₁ ⟅ n₁ ⇓⟆ p (o₂ ∸ o₁) q pf) ⟩
expandˢ o₁ (K c₁) +ⁱ (expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p +ⁱ expandˢ (o₁ +ℕ (o₂ ∸ o₁)) q) ≈⟨ ≈ⁱ-sym (+ⁱ-assoc (expandˢ o₁ (K c₁)) _ _) ⟩
(expandˢ o₁ (K c₁) +ⁱ expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p) +ⁱ expandˢ (o₁ +ℕ (o₂ ∸ o₁)) q ≈⟨ +ⁱ-cong (≈ⁱ-sym (expandˢ-+x^-lemma o₁ n₁ c₁ p)) (expandˢ-≡-cong (m+[n∸m]≡n (<⇒≤ o₁<o₂))) ⟩
expandˢ o₁ (c₁ +x^ n₁ ∙ p) +ⁱ expandˢ o₂ q ∎
... | x^ zero ∙ r | pf = begin⟨ ≈ⁱ-setoid ⟩
expand (+ᵖ-spine-≡-K o₁ c₁ r) ≈⟨ expand-+ᵖ-spine-≡-K-homo o₁ c₁ r ⟩
expandˢ o₁ (K c₁) +ⁱ expandˢ o₁ r ≈⟨ +ⁱ-congˡ (expandˢ-≡-cong (≡-sym (Nat.+-identityʳ o₁))) ⟩
expandˢ o₁ (K c₁) +ⁱ expandˢ (o₁ +ℕ 0) r ≈⟨ +ⁱ-congˡ (expandˢ-raise₂ o₁ 0 r ⟅ n₁ ⇓⟆ p (o₂ ∸ o₁) q pf) ⟩
expandˢ o₁ (K c₁) +ⁱ (expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p +ⁱ expandˢ (o₁ +ℕ (o₂ ∸ o₁)) q) ≈⟨ ≈ⁱ-sym (+ⁱ-assoc (expandˢ o₁ (K c₁)) _ _) ⟩
(expandˢ o₁ (K c₁) +ⁱ expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p) +ⁱ expandˢ (o₁ +ℕ (o₂ ∸ o₁)) q ≈⟨ +ⁱ-cong (≈ⁱ-sym (expandˢ-+x^-lemma o₁ n₁ c₁ p)) (expandˢ-≡-cong (m+[n∸m]≡n (<⇒≤ o₁<o₂))) ⟩
expandˢ o₁ (c₁ +x^ n₁ ∙ p) +ⁱ expandˢ o₂ q ∎
... | x^ suc o₃ ∙ r | pf = begin⟨ ≈ⁱ-setoid ⟩
expandˢ o₁ (c₁ +x^ ⟅ suc o₃ ⇑⟆ ∙ r) ≈⟨ expandˢ-+x^-lemma o₁ ⟅ suc o₃ ⇑⟆ c₁ r ⟩
expandˢ o₁ (K c₁) +ⁱ expandˢ (o₁ +ℕ suc o₃) r ≈⟨ +ⁱ-congˡ (expandˢ-raise₂ o₁ (suc o₃) r ⟅ n₁ ⇓⟆ p (o₂ ∸ o₁) q pf) ⟩
expandˢ o₁ (K c₁) +ⁱ (expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p +ⁱ expandˢ (o₁ +ℕ (o₂ ∸ o₁)) q) ≈⟨ ≈ⁱ-sym (+ⁱ-assoc (expandˢ o₁ (K c₁)) _ _) ⟩
(expandˢ o₁ (K c₁) +ⁱ expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p) +ⁱ expandˢ (o₁ +ℕ (o₂ ∸ o₁)) q ≈⟨ +ⁱ-cong (≈ⁱ-sym (expandˢ-+x^-lemma o₁ n₁ c₁ p)) (expandˢ-≡-cong (m+[n∸m]≡n (<⇒≤ o₁<o₂))) ⟩
expandˢ o₁ (c₁ +x^ n₁ ∙ p) +ⁱ expandˢ o₂ q ∎
expand-+ᵖ-spine-homo o₁ p o₂ q with <-cmp o₁ o₂
... | tri< o₁<o₂ _ _ = expand-+ᵖ-spine-<-homo o₁ p o₂ q o₁<o₂
... | tri≈ _ ≡-refl _ = expand-+ᵖ-spine-≡-homo o₁ p q
... | tri> _ _ o₁>o₂ = begin⟨ ≈ⁱ-setoid ⟩
expand (+ᵖ-spine-< o₂ q o₁ p o₁>o₂) ≈⟨ expand-+ᵖ-spine-<-homo o₂ q o₁ p o₁>o₂ ⟩
expandˢ o₂ q +ⁱ expandˢ o₁ p ≈⟨ +ⁱ-comm (expandˢ o₂ q) (expandˢ o₁ p) ⟩
expandˢ o₁ p +ⁱ expandˢ o₂ q ∎
expand-+ᵖ-homo : ∀ p q → expand (p +ᵖ q) ≈ⁱ expand p +ⁱ expand q
expand-+ᵖ-homo 0ᵖ q = ≈ⁱ-refl
expand-+ᵖ-homo (x^ o₁ ∙ p) 0ᵖ = ≈ⁱ-sym (+ⁱ-identityʳ (expand (x^ o₁ ∙ p)))
expand-+ᵖ-homo (x^ o₁ ∙ p) (x^ o₂ ∙ q) = expand-+ᵖ-spine-homo o₁ p o₂ q
expandˢ-*ᵖ-K-lemma : ∀ o₁ o₂ c₁ c₂ → expandˢ (o₁ +ℕ o₂) (K (c₁ *-nonzero c₂)) ≈ⁱ expandˢ o₁ (K c₁) *ⁱ expandˢ o₂ (K c₂)
expandˢ-*ᵖ-K-lemma zero zero c₁ c₂ = +≈+ refl (0≈+ refl 0≈0)
expandˢ-*ᵖ-K-lemma zero (suc o₂) c₁ c₂ = +≈+ (sym (zeroʳ (proj₁ c₁))) $ begin⟨ ≈ⁱ-setoid ⟩
expandˢ o₂ (K (c₁ *-nonzero c₂)) ≈⟨ expandˢ-*ᵖ-K-lemma zero o₂ c₁ c₂ ⟩
(proj₁ c₁ +x∙ 0ⁱ) *ⁱ expandˢ o₂ (K c₂) ≈⟨ +x∙-distribʳ-*ⁱ (proj₁ c₁) 0ⁱ (expandˢ o₂ (K c₂)) ⟩
proj₁ c₁ ∙ⁱ expandˢ o₂ (K c₂) +ⁱ x∙ (0ⁱ *ⁱ expandˢ o₂ (K c₂)) ≈⟨ ≈ⁱ-refl ⟩
proj₁ c₁ ∙ⁱ expandˢ o₂ (K c₂) +ⁱ x∙ 0ⁱ ≈⟨ +ⁱ-congʳ (≈ⁱ-sym (+ⁱ-identityʳ (proj₁ c₁ ∙ⁱ expandˢ o₂ (K c₂)))) ⟩
proj₁ c₁ ∙ⁱ expandˢ o₂ (K c₂) +ⁱ 0ⁱ +ⁱ x∙ 0ⁱ ∎
expandˢ-*ᵖ-K-lemma (suc o₁) o₂ c₁ c₂ = begin⟨ ≈ⁱ-setoid ⟩
0# +x∙ expandˢ (o₁ +ℕ o₂) (K (c₁ *-nonzero c₂)) ≈⟨ +≈+ refl (expandˢ-*ᵖ-K-lemma o₁ o₂ c₁ c₂) ⟩
0# +x∙ (expandˢ o₁ (K c₁) *ⁱ expandˢ o₂ (K c₂)) ≈⟨ ≈ⁱ-refl ⟩
0ⁱ +ⁱ x∙ (expandˢ o₁ (K c₁) *ⁱ expandˢ o₂ (K c₂)) ≈⟨ +ⁱ-congʳ (0≈0∙p (expandˢ o₂ (K c₂))) ⟩
0# ∙ⁱ expandˢ o₂ (K c₂) +ⁱ x∙ (expandˢ o₁ (K c₁) *ⁱ expandˢ o₂ (K c₂)) ≈⟨ ≈ⁱ-sym (+x∙-distribʳ-*ⁱ 0# _ _) ⟩
(0# +x∙ expandˢ o₁ (K c₁)) *ⁱ expandˢ o₂ (K c₂) ∎
expandˢ-∙ᵖ-spine-homo : ∀ o₁ c o₂ p → expandˢ (o₁ +ℕ o₂) (∙ᵖ-spine c p) ≈ⁱ expandˢ o₁ (K c) *ⁱ expandˢ o₂ p
expandˢ-∙ᵖ-spine-homo o₁ c₁ o₂ (K c₂) = expandˢ-*ᵖ-K-lemma o₁ o₂ c₁ c₂
expandˢ-∙ᵖ-spine-homo o₁ c₁ o₂ (c₂ +x^ n₂ ∙ q) = begin⟨ ≈ⁱ-setoid ⟩
expandˢ (o₁ +ℕ o₂) ((c₁ *-nonzero c₂) +x^ n₂ ∙ ∙ᵖ-spine c₁ q) ≈⟨ expandˢ-+x^-lemma (o₁ +ℕ o₂) n₂ (c₁ *-nonzero c₂) (∙ᵖ-spine c₁ q) ⟩
expandˢ (o₁ +ℕ o₂) (K (c₁ *-nonzero c₂)) +ⁱ expandˢ ((o₁ +ℕ o₂) +ℕ ⟅ n₂ ⇓⟆) (∙ᵖ-spine c₁ q) ≈⟨ +ⁱ-congˡ (expandˢ-≡-cong (Nat.+-assoc o₁ o₂ ⟅ n₂ ⇓⟆)) ⟩
expandˢ (o₁ +ℕ o₂) (K (c₁ *-nonzero c₂)) +ⁱ expandˢ (o₁ +ℕ (o₂ +ℕ ⟅ n₂ ⇓⟆)) (∙ᵖ-spine c₁ q) ≈⟨ +ⁱ-cong (expandˢ-*ᵖ-K-lemma o₁ o₂ c₁ c₂) (expandˢ-∙ᵖ-spine-homo o₁ c₁ (o₂ +ℕ ⟅ n₂ ⇓⟆) q) ⟩
expandˢ o₁ (K c₁) *ⁱ expandˢ o₂ (K c₂) +ⁱ expandˢ o₁ (K c₁) *ⁱ expandˢ (o₂ +ℕ ⟅ n₂ ⇓⟆) q ≈⟨ ≈ⁱ-sym (*ⁱ-distribˡ-+ⁱ (expandˢ o₁ (K c₁)) (expandˢ o₂ (K c₂)) _) ⟩
expandˢ o₁ (K c₁) *ⁱ (expandˢ o₂ (K c₂) +ⁱ expandˢ (o₂ +ℕ ⟅ n₂ ⇓⟆) q) ≈⟨ *ⁱ-congˡ (≈ⁱ-sym (expandˢ-+x^-lemma o₂ n₂ c₂ q)) ⟩
expandˢ o₁ (K c₁) *ⁱ expandˢ o₂ (c₂ +x^ n₂ ∙ q) ∎
expand-*ᵖ-spine-homo : ∀ o₁ p o₂ q → expand (*ᵖ-spine o₁ p o₂ q) ≈ⁱ expandˢ o₁ p *ⁱ expandˢ o₂ q
expand-*ᵖ-spine-homo o₁ (K c₁) o₂ q = expandˢ-∙ᵖ-spine-homo o₁ c₁ o₂ q
expand-*ᵖ-spine-homo o₁ (c₁ +x^ n₁ ∙ p) o₂ (K c₂) = begin⟨ ≈ⁱ-setoid ⟩
expandˢ (o₁ +ℕ o₂) (∙ᵖ-spine c₂ (c₁ +x^ n₁ ∙ p)) ≈⟨ expandˢ-≡-cong (Nat.+-comm o₁ o₂) ⟩
expandˢ (o₂ +ℕ o₁) (∙ᵖ-spine c₂ (c₁ +x^ n₁ ∙ p)) ≈⟨ expandˢ-∙ᵖ-spine-homo o₂ c₂ o₁ (c₁ +x^ n₁ ∙ p) ⟩
expandˢ o₂ (K c₂) *ⁱ expandˢ o₁ (c₁ +x^ n₁ ∙ p) ≈⟨ *ⁱ-comm _ _ ⟩
expandˢ o₁ (c₁ +x^ n₁ ∙ p) *ⁱ expandˢ o₂ (K c₂) ∎
expand-*ᵖ-spine-homo o₁ (c₁ +x^ n₁ ∙ p) o₂ (c₂ +x^ n₂ ∙ q) = begin⟨ ≈ⁱ-setoid ⟩
expand ( x^ (o₁ +ℕ o₂) ∙ K (c₁ *-nonzero c₂) +ᵖ
c₁ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) ∙ q +ᵖ
c₂ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₁ ⇓⟆) ∙ p +ᵖ
*ᵖ-spine (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q )
≈⟨ expand-+ᵖ-homo
( x^ (o₁ +ℕ o₂) ∙ K (c₁ *-nonzero c₂) +ᵖ c₁ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) ∙ q +ᵖ c₂ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₁ ⇓⟆) ∙ p )
(*ᵖ-spine (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q)
⟩
expand ( x^ (o₁ +ℕ o₂) ∙ K (c₁ *-nonzero c₂) +ᵖ
c₁ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) ∙ q +ᵖ
c₂ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₁ ⇓⟆) ∙ p ) +ⁱ
expand ( *ᵖ-spine (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q )
≈⟨ +ⁱ-cong (expand-+ᵖ-homo (x^ (o₁ +ℕ o₂) ∙ K (c₁ *-nonzero c₂) +ᵖ c₁ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) ∙ q)
(c₂ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₁ ⇓⟆) ∙ p))
(expand-*ᵖ-spine-homo (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q)
⟩
expand ( x^ (o₁ +ℕ o₂) ∙ K (c₁ *-nonzero c₂) +ᵖ
c₁ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) ∙ q ) +ⁱ
expandˢ (o₁ +ℕ o₂ +ℕ ⟅ n₁ ⇓⟆) (∙ᵖ-spine c₂ p) +ⁱ
expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p *ⁱ expandˢ (o₂ +ℕ ⟅ n₂ ⇓⟆) q
≈⟨ +ⁱ-congʳ (+ⁱ-cong (expand-+ᵖ-homo (x^ (o₁ +ℕ o₂) ∙ K (c₁ *-nonzero c₂))
(c₁ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) ∙ q))
(expandˢ-≡-cong (≡-cong (λ x → x +ℕ ⟅ n₁ ⇓⟆) (Nat.+-comm o₁ o₂))))
⟩
expandˢ (o₁ +ℕ o₂) (K (c₁ *-nonzero c₂)) +ⁱ
expandˢ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) (∙ᵖ-spine c₁ q) +ⁱ
expandˢ (o₂ +ℕ o₁ +ℕ ⟅ n₁ ⇓⟆) (∙ᵖ-spine c₂ p) +ⁱ
expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p *ⁱ expandˢ (o₂ +ℕ ⟅ n₂ ⇓⟆) q
≈⟨ +ⁱ-congʳ (+ⁱ-cong (+ⁱ-congˡ {expandˢ (o₁ +ℕ o₂) (K (c₁ *-nonzero c₂))}
(expandˢ-≡-cong {p = ∙ᵖ-spine c₁ q} (Nat.+-assoc o₁ o₂ ⟅ n₂ ⇓⟆)))
(expandˢ-≡-cong (Nat.+-assoc o₂ o₁ ⟅ n₁ ⇓⟆)))
⟩
expandˢ (o₁ +ℕ o₂) (K (c₁ *-nonzero c₂)) +ⁱ
expandˢ (o₁ +ℕ (o₂ +ℕ ⟅ n₂ ⇓⟆)) (∙ᵖ-spine c₁ q) +ⁱ
expandˢ (o₂ +ℕ (o₁ +ℕ ⟅ n₁ ⇓⟆)) (∙ᵖ-spine c₂ p) +ⁱ
expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p *ⁱ expandˢ (o₂ +ℕ ⟅ n₂ ⇓⟆) q
≈⟨ +ⁱ-congʳ (+ⁱ-cong (+ⁱ-cong (expandˢ-*ᵖ-K-lemma o₁ o₂ c₁ c₂)
(expandˢ-∙ᵖ-spine-homo o₁ c₁ (o₂ +ℕ ⟅ n₂ ⇓⟆) q))
(expandˢ-∙ᵖ-spine-homo o₂ c₂ (o₁ +ℕ ⟅ n₁ ⇓⟆) p))
⟩
expandˢ o₁ (K c₁) *ⁱ expandˢ o₂ (K c₂) +ⁱ
expandˢ o₁ (K c₁) *ⁱ expandˢ (o₂ +ℕ ⟅ n₂ ⇓⟆) q +ⁱ
expandˢ o₂ (K c₂) *ⁱ expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p +ⁱ
expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p *ⁱ expandˢ (o₂ +ℕ ⟅ n₂ ⇓⟆) q
≈⟨ +ⁱ-congʳ {expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p *ⁱ expandˢ (o₂ +ℕ ⟅ n₂ ⇓⟆) q}
(+ⁱ-congˡ (*ⁱ-comm (expandˢ o₂ (K c₂)) (expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p) ))
⟩
expandˢ o₁ (K c₁) *ⁱ expandˢ o₂ (K c₂) +ⁱ
expandˢ o₁ (K c₁) *ⁱ expandˢ (o₂ +ℕ ⟅ n₂ ⇓⟆) q +ⁱ
expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p *ⁱ expandˢ o₂ (K c₂) +ⁱ
expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p *ⁱ expandˢ (o₂ +ℕ ⟅ n₂ ⇓⟆) q
≈⟨ ≈ⁱ-sym (foil (expandˢ o₁ (K c₁)) _ (expandˢ o₂ (K c₂)) _) ⟩
(expandˢ o₁ (K c₁) +ⁱ expandˢ (o₁ +ℕ ⟅ n₁ ⇓⟆) p) *ⁱ (expandˢ o₂ (K c₂) +ⁱ expandˢ (o₂ +ℕ ⟅ n₂ ⇓⟆) q)
≈⟨ *ⁱ-cong (≈ⁱ-sym (expandˢ-+x^-lemma o₁ n₁ c₁ p)) (≈ⁱ-sym (expandˢ-+x^-lemma o₂ n₂ c₂ q)) ⟩
expandˢ o₁ (c₁ +x^ n₁ ∙ p) *ⁱ expandˢ o₂ (c₂ +x^ n₂ ∙ q) ∎
where
foil : ∀ a b c d → (a +ⁱ b) *ⁱ (c +ⁱ d) ≈ⁱ a *ⁱ c +ⁱ a *ⁱ d +ⁱ b *ⁱ c +ⁱ b *ⁱ d
foil = solve +ⁱ-*ⁱ-almostCommutativeRing
expand-*ᵖ-homo : ∀ p q → expand (p *ᵖ q) ≈ⁱ expand p *ⁱ expand q
expand-*ᵖ-homo 0ᵖ q = *ⁱ-zeroˡ (expand q)
expand-*ᵖ-homo (x^ o₁ ∙ p) 0ᵖ = ≈ⁱ-sym (*ⁱ-zeroʳ (expand (x^ o₁ ∙ p)))
expand-*ᵖ-homo (x^ o₁ ∙ p) (x^ o₂ ∙ q) = expand-*ᵖ-spine-homo o₁ p o₂ q
expand-∙ᵖ-homo : ∀ c p → expand (c ∙ᵖ p) ≈ⁱ proj₁ c ∙ⁱ expand p
expand-∙ᵖ-homo c₁ 0ᵖ = ≈ⁱ-refl
expand-∙ᵖ-homo c₁ (x^ n ∙ p) = loop c₁ n p
where
loop : ∀ c n p → expandˢ n (∙ᵖ-spine c p) ≈ⁱ proj₁ c ∙ⁱ expandˢ n p
loop c₁ zero (K c₂) = ≈ⁱ-refl
loop c₁ zero (c₂ +x^ n₂ ∙ p) = +≈+ refl (loop c₁ (pred ⟅ n₂ ⇓⟆) p)
loop c₁ (suc n) p = +≈+ (sym (zeroʳ (proj₁ c₁))) (loop c₁ n p)
expand‿-ᵖ‿homo : ∀ p → expand (-ᵖ p) ≈ⁱ -ⁱ (expand p)
expand‿-ᵖ‿homo = expand-∙ᵖ-homo -1#-nonzero
---- Witness me ----
expand-isRelHomomorphism : IsRelHomomorphism _≈ᵖ_ _≈ⁱ_ expand
expand-isRelHomomorphism = record { cong = expand-cong }
expand-isRingHomomorphism : IsRingHomomorphism +ᵖ-*ᵖ-rawRing +ⁱ-*ⁱ-rawRing expand
expand-isRingHomomorphism = record
{ isRelHomomorphism = expand-isRelHomomorphism
; +-homo = expand-+ᵖ-homo
; *-homo = expand-*ᵖ-homo
; -‿homo = expand‿-ᵖ‿homo
; 0#-homo = ≈ⁱ-refl
; 1#-homo = ≈ⁱ-refl
}
expand-isRingMonomorphism : IsRingMonomorphism +ᵖ-*ᵖ-rawRing +ⁱ-*ⁱ-rawRing expand
expand-isRingMonomorphism = record
{ isRingHomomorphism = expand-isRingHomomorphism
; injective = expand-injective
}
open RingConsequences expand-isRingMonomorphism using (R₂-isIntegralDomain→R₁-isIntegralDomain)
+ᵖ-*ᵖ-isIntegralDomain : IsIntegralDomain Polynomial _≈ᵖ_ _+ᵖ_ _*ᵖ_ -ᵖ_ 0ᵖ 1ᵖ
+ᵖ-*ᵖ-isIntegralDomain = R₂-isIntegralDomain→R₁-isIntegralDomain +ⁱ-*ⁱ-isIntegralDomain
+ᵖ-*ᵖ-integralDomain : IntegralDomain (c ⊔ˡ ℓ) (c ⊔ˡ ℓ)
+ᵖ-*ᵖ-integralDomain = record { isIntegralDomain = +ᵖ-*ᵖ-isIntegralDomain }
open IntegralDomain +ᵖ-*ᵖ-integralDomain using () renaming (commutativeRing to +ᵖ-*ᵖ-commutativeRing)
open CommutativeRing +ᵖ-*ᵖ-commutativeRing using () renaming (+-cong to +ᵖ-cong; +-congˡ to +ᵖ-congˡ; +-congʳ to +ᵖ-congʳ; +-identityʳ to +ᵖ-identityʳ; +-assoc to +ᵖ-assoc; +-comm to +ᵖ-comm)
open CommutativeRing +ᵖ-*ᵖ-commutativeRing using () renaming (zeroʳ to *ᵖ-zeroʳ; -‿inverseˡ to -ᵖ‿inverseˡ; -‿inverseʳ to -ᵖ‿inverseʳ; *-comm to *ᵖ-comm; distribʳ to *ᵖ-distribʳ-+ᵖ; distribˡ to *ᵖ-distribˡ-+ᵖ)
+ᵖ-*ᵖ-almostCommutativeRing : AlmostCommutativeRing (c ⊔ˡ ℓ) (c ⊔ˡ ℓ)
+ᵖ-*ᵖ-almostCommutativeRing = fromCommutativeRing +ᵖ-*ᵖ-commutativeRing isZero
where
isZero : ∀ x → Maybe (0ᵖ ≈ᵖ x)
isZero 0ᵖ = just ≈ᵖ-refl
isZero (x^ _ ∙ _) = nothing
degreeⁱ≡degreeˢ : ∀ n p → degreeⁱ (expandˢ n p) ≡ ⟨ n +ℕ degreeˢ p ⟩
degreeⁱ≡degreeˢ zero (K c) with proj₁ c ≈? 0#
... | yes c≈0 = contradiction c≈0 (proj₂ c)
... | no _ = ≡-refl
degreeⁱ≡degreeˢ zero (c +x^ (ℕ+ i) ∙ p) rewrite degreeⁱ≡degreeˢ i p = ≡-refl
degreeⁱ≡degreeˢ (suc n) p rewrite degreeⁱ≡degreeˢ n p = ≡-refl
degreeⁱ≡degree : ∀ p → degreeⁱ (expand p) ≡ degree p
degreeⁱ≡degree 0ᵖ = ≡-refl
degreeⁱ≡degree (x^ n ∙ p) = degreeⁱ≡degreeˢ n p
degreeˢ-cong : ∀ {p q} → p ≈ˢ q → degreeˢ p ≡ degreeˢ q
degreeˢ-cong {K c₁} {K c₂} (K≈ c₁≈c₂) = ≡-refl
degreeˢ-cong {c₁ +x^ n ∙ p} {c₂ +x^ n ∙ q} (+≈ c₁≈c₂ ≡-refl p≈q) rewrite degreeˢ-cong p≈q = ≡-refl
degree-cong : ∀ {p q} → p ≈ᵖ q → degree p ≡ degree q
degree-cong {0ᵖ} {0ᵖ} 0ᵖ≈ = ≡-refl
degree-cong {x^ n ∙ p} {x^ n ∙ q} (0ᵖ≉ ≡-refl p≈q) rewrite degreeˢ-cong p≈q = ≡-refl
degreeⁱ-cong : ∀ {p q} → p ≈ⁱ q → degreeⁱ p ≡ degreeⁱ q
degreeⁱ-cong {0ⁱ} {0ⁱ} 0≈0 = ≡-refl
degreeⁱ-cong {0ⁱ} {c₂ +x∙ q} (0≈+ c₂≈0 0≈q) with degreeⁱ q | degreeⁱ-cong 0≈q
... | ⟨ _ ⟩ | ()
... | -∞ | ≡-refl with c₂ ≈? 0#
... | yes _ = ≡-refl
... | no c₂≉0 = contradiction c₂≈0 c₂≉0
degreeⁱ-cong {c₁ +x∙ p} {0ⁱ} (+≈0 c₁≈0 0≈p) with degreeⁱ p | degreeⁱ-cong 0≈p
... | ⟨ _ ⟩ | ()
... | -∞ | ≡-refl with c₁ ≈? 0#
... | yes _ = ≡-refl
... | no c₁≉0 = contradiction c₁≈0 c₁≉0
degreeⁱ-cong {c₁ +x∙ p} {c₂ +x∙ q} (+≈+ c₁≈c₂ p≈q) with degreeⁱ p | degreeⁱ q | degreeⁱ-cong p≈q
... | ⟨ n ⟩ | ⟨ n ⟩ | ≡-refl = ≡-refl
... | -∞ | -∞ | ≡-refl with c₁ ≈? 0# | c₂ ≈? 0#
... | yes c₁≈0 | yes c₂≈0 = ≡-refl
... | yes c₁≈0 | no c₂≉0 = contradiction (begin⟨ setoid ⟩ c₂ ≈⟨ sym c₁≈c₂ ⟩ c₁ ≈⟨ c₁≈0 ⟩ 0# ∎) c₂≉0
... | no c₁≉0 | yes c₂≈0 = contradiction (begin⟨ setoid ⟩ c₁ ≈⟨ c₁≈c₂ ⟩ c₂ ≈⟨ c₂≈0 ⟩ 0# ∎) c₁≉0
... | no c₁≉0 | no c₂≉0 = ≡-refl
module _ where
open ≤-Reasoning using (begin_; _≤⟨_⟩_) renaming (_≡⟨_⟩_ to _≡≤⟨_⟩_; _∎ to _≤∎)
degreeⁱ-+ⁱ : ∀ p q → degreeⁱ (p +ⁱ q) ≤ᵈ degreeⁱ p ⊔ᵈ degreeⁱ q
degreeⁱ-+ⁱ 0ⁱ q = ≤ᵈ-refl
degreeⁱ-+ⁱ (c₁ +x∙ p) 0ⁱ with degreeⁱ (c₁ +x∙ p)
... | -∞ = ≤ᵈ-refl
... | ⟨ _ ⟩ = ≤ᵈ-refl
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) with degreeⁱ (p +ⁱ q) | degreeⁱ p | degreeⁱ q | degreeⁱ-+ⁱ p q
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | n | m | (-∞≤ _) with c₁ + c₂ ≈? 0#
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | n | m | (-∞≤ _) | yes c₁+c₂≈0 = -∞≤ _
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | -∞ | m | (-∞≤ _) | no c₁+c₂≉0 with c₁ ≈? 0#
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | -∞ | -∞ | (-∞≤ _) | no c₁+c₂≉0 | yes c₁≈0 with c₂ ≈? 0#
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | -∞ | -∞ | (-∞≤ _) | no c₁+c₂≉0 | yes c₁≈0 | yes c₂≈0 = contradiction (begin⟨ setoid ⟩ c₁ + c₂ ≈⟨ +-cong c₁≈0 c₂≈0 ⟩ 0# + 0# ≈⟨ +-identityʳ 0# ⟩ 0# ∎) c₁+c₂≉0
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | -∞ | -∞ | (-∞≤ _) | no c₁+c₂≉0 | yes c₁≈0 | no c₂≉0 = ≤ᵈ-refl
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | -∞ | ⟨ m ⟩ | (-∞≤ _) | no c₁+c₂≉0 | yes c₁≈0 = ⟨ 0≤n ⟩
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | -∞ | -∞ | (-∞≤ _) | no c₁+c₂≉0 | no c₁≉0 with c₂ ≈? 0#
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | -∞ | -∞ | (-∞≤ _) | no c₁+c₂≉0 | no c₁≉0 | yes c₂≈0 = ≤ᵈ-refl
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | -∞ | -∞ | (-∞≤ _) | no c₁+c₂≉0 | no c₁≉0 | no c₂≉0 = ⟨ ≤-reflexive (⊔-identityʳ (λ x → 0≤n) 0) ⟩
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | -∞ | ⟨ m ⟩ | (-∞≤ _) | no c₁+c₂≉0 | no c₁≉0 = ⟨ begin 0 ≤⟨ 0≤n ⟩ suc m ≡≤⟨ ≡-sym (⊔-identityʳ (λ x → 0≤n) (suc m)) ⟩ 0 ⊔ suc m ≤∎ ⟩
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | ⟨ n ⟩ | -∞ | (-∞≤ _) | no c₁+c₂≉0 with c₂ ≈? 0#
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | ⟨ n ⟩ | -∞ | (-∞≤ _) | no c₁+c₂≉0 | yes c₂≈0 = ⟨ 0≤n ⟩
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | ⟨ n ⟩ | -∞ | (-∞≤ _) | no c₁+c₂≉0 | no c₂≉0 = ⟨ begin 0 ≤⟨ 0≤n ⟩ suc n ≡≤⟨ ≡-sym (⊔-identityˡ (λ x → 0≤n) (suc n)) ⟩ suc n ⊔ 0 ≤∎ ⟩
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | -∞ | ⟨ n ⟩ | ⟨ m ⟩ | (-∞≤ _) | no c₁+c₂≉0 = ⟨ 0≤n ⟩
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | -∞ | m | _ with c₁ ≈? 0#
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | -∞ | -∞ | _ | yes c₁≈0 with c₂ ≈? 0#
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | -∞ | -∞ | () | yes c₁≈0 | yes c₂≈0
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | -∞ | -∞ | () | yes c₁≈0 | no c₂≉0
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | -∞ | ⟨ m ⟩ | ⟨ r≤m ⟩ | yes c₁≈0 = ⟨ suc-mono-≤ r≤m ⟩
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | -∞ | -∞ | pf | no c₁≉0 with c₂ ≈? 0#
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | -∞ | -∞ | () | no c₁≉0 | yes c₂≈0
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | -∞ | -∞ | () | no c₁≉0 | no c₂≉0
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | -∞ | ⟨ m ⟩ | ⟨ r≤m ⟩ | no c₁≉0 = ⟨ begin suc r ≤⟨ suc-mono-≤ r≤m ⟩ suc m ≡≤⟨ ≡-sym (⊔-identityʳ (λ x → 0≤n) (suc m)) ⟩ 0 ⊔ suc m ≤∎ ⟩
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | ⟨ n ⟩ | -∞ | ⟨ r≤n ⟩ with c₂ ≈? 0#
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | ⟨ n ⟩ | -∞ | ⟨ r≤n ⟩ | yes c₂≈0 = ⟨ suc-mono-≤ r≤n ⟩
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | ⟨ n ⟩ | -∞ | ⟨ r≤n ⟩ | no c₂≉0 = ⟨ begin suc r ≤⟨ suc-mono-≤ r≤n ⟩ suc n ≡≤⟨ ≡-sym (⊔-identityˡ (λ x → 0≤n) (suc n)) ⟩ suc n ⊔ 0 ≤∎ ⟩
degreeⁱ-+ⁱ (c₁ +x∙ p) (c₂ +x∙ q) | ⟨ r ⟩ | ⟨ n ⟩ | ⟨ m ⟩ | ⟨ r≤n⊔m ⟩ = ⟨ begin suc r ≤⟨ suc-mono-≤ r≤n⊔m ⟩ suc (n ⊔ m) ≡≤⟨ +-distribˡ-⊔ 1 n m ⟩ suc n ⊔ suc m ≤∎ ⟩
-- degreeⁱ-*ⁱ : ∀ p q → degreeⁱ (p *ⁱ q) ≡ degreeⁱ p +ᵈ degreeⁱ q
-- degreeⁱ-*ⁱ 0ⁱ q = ≡-refl
-- degreeⁱ-*ⁱ (c₁ +x∙ p) 0ⁱ with degreeⁱ p
-- ... | ⟨ n ⟩ = ≡-refl
-- ... | -∞ with c₁ ≈? 0#
-- ... | yes _ = ≡-refl
-- ... | no _ = ≡-refl
-- degreeⁱ-*ⁱ (c₁ +x∙ p) (c₂ +x∙ q) = {!!}
-- -- lemma : degreeⁱ ((c₁ * c₂) +x∙ (c₁ ∙ⁱ q +ⁱ c₂ ∙ⁱ p +ⁱ x∙ (p *ⁱ q))) ≡ degreeⁱ (c₁ +x∙ p) +ᵈ degreeⁱ (c₂ +x∙ q)
-- -- lemma = {!!}
degreeᵖ-+ᵖ : ∀ p q → degree (p +ᵖ q) ≤ᵈ degree p ⊔ᵈ degree q
degreeᵖ-+ᵖ p q = begin
degree (p +ᵖ q) ≡ᵈ⟨ ≡-sym (degreeⁱ≡degree (p +ᵖ q)) ⟩
degreeⁱ (expand (p +ᵖ q)) ≡ᵈ⟨ degreeⁱ-cong (expand-+ᵖ-homo p q) ⟩
degreeⁱ (expand p +ⁱ expand q) ≤ᵈ⟨ degreeⁱ-+ⁱ (expand p) (expand q) ⟩
degreeⁱ (expand p) ⊔ᵈ degreeⁱ (expand q) ≡ᵈ⟨ ≡-cong₂ _⊔ᵈ_ (degreeⁱ≡degree p) (degreeⁱ≡degree q) ⟩
degree p ⊔ᵈ degree q ∎ᵈ
where
open ≤ᵈ-Reasoning
∙ᵖ-spine-degreeˢ : ∀ a p → degreeˢ (∙ᵖ-spine a p) ≡ degreeˢ p
∙ᵖ-spine-degreeˢ a (K c) = ≡-refl
∙ᵖ-spine-degreeˢ a (c +x^ n ∙ p) = ≡-cong (λ x → ⟅ n ⇓⟆ +ℕ x) (∙ᵖ-spine-degreeˢ a p)
∙ᵖ-degree : ∀ a p → degree (a ∙ᵖ p) ≡ degree p
∙ᵖ-degree a 0ᵖ = ≡-refl
∙ᵖ-degree a (x^ n ∙ p) = ≡-cong (λ x → ⟨ n +ℕ x ⟩) (∙ᵖ-spine-degreeˢ a p)
open import Relation.Binary using (Antisymmetric)
open import AKS.Nat using (≤-antisym; ≤-total)
≤ᵈ-antisym : Antisymmetric _≡_ _≤ᵈ_
≤ᵈ-antisym (-∞≤ _) (-∞≤ _) = ≡-refl
≤ᵈ-antisym ⟨ x≤y ⟩ ⟨ y≤x ⟩ = ≡-cong ⟨_⟩ (≤-antisym x≤y y≤x)
m≤ᵈn⇒m⊔ᵈn≡n : ∀ {m n} → m ≤ᵈ n → m ⊔ᵈ n ≡ n
m≤ᵈn⇒m⊔ᵈn≡n { -∞} {n} m≤n = ≡-refl
m≤ᵈn⇒m⊔ᵈn≡n {⟨ m ⟩} {⟨ n ⟩} ⟨ m≤n ⟩ with ≤-total n m
... | inj₁ n≤m = ≡-cong ⟨_⟩ (≤-antisym m≤n n≤m)
... | inj₂ _ = ≡-refl
degreeⁱ[q]≤degreeⁱ[p+ⁱq] : ∀ p q → degreeⁱ p ≤ᵈ degreeⁱ q → degreeⁱ q ≤ᵈ degreeⁱ (p +ⁱ q)
degreeⁱ[q]≤degreeⁱ[p+ⁱq] 0ⁱ q _ = ≤ᵈ-refl
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) 0ⁱ _ = -∞≤ _
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) _ with degreeⁱ q
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) _ | -∞ with c₂ ≈? 0#
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) _ | -∞ | yes c₂≈0 = -∞≤ _
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) _ | -∞ | no c₂≉0 with degreeⁱ (p +ⁱ q)
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) _ | -∞ | no c₂≉0 | -∞ with c₁ + c₂ ≈? 0#
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) _ | -∞ | no c₂≉0 | -∞ | yes c₁+c₂≈0 with degreeⁱ p
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) _ | -∞ | no c₂≉0 | -∞ | yes c₁+c₂≈0 | -∞ with c₁ ≈? 0#
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) _ | -∞ | no c₂≉0 | -∞ | yes c₁+c₂≈0 | -∞ | yes c₁≈0 = contradiction TODO c₂≉0
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) _ | -∞ | no c₂≉0 | -∞ | yes c₁+c₂≈0 | -∞ | no c₁≉0 = contradiction TODO c₂≉0
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) ⟨ () ⟩ | -∞ | no c₂≉0 | -∞ | yes c₁+c₂≈0 | ⟨ n ⟩
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) _ | -∞ | no c₂≉0 | -∞ | no c₁+c₂≉0 = ≤ᵈ-refl
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) _ | -∞ | no c₂≉0 | ⟨ r ⟩ = ⟨ 0≤n ⟩
degreeⁱ[q]≤degreeⁱ[p+ⁱq] (c₁ +x∙ p) (c₂ +x∙ q) _ | ⟨ m ⟩ = TODO
degree[q]≤degree[p+ᵖq] : ∀ p q → degree p ≤ᵈ degree q → degree q ≤ᵈ degree (p +ᵖ q)
degree[q]≤degree[p+ᵖq] p q degree[p]≤degree[q] = begin
degree q ≡ᵈ⟨ ≡-sym (degreeⁱ≡degree q) ⟩
degreeⁱ (expand q) ≤ᵈ⟨ degreeⁱ[q]≤degreeⁱ[p+ⁱq] (expand p) (expand q) degreeⁱ[p]≤degreeⁱ[q] ⟩
degreeⁱ (expand p +ⁱ expand q) ≡ᵈ⟨ ≡-sym (degreeⁱ-cong (expand-+ᵖ-homo p q)) ⟩
degreeⁱ (expand (p +ᵖ q)) ≡ᵈ⟨ degreeⁱ≡degree (p +ᵖ q) ⟩
degree (p +ᵖ q) ∎ᵈ
where
open ≤ᵈ-Reasoning
degreeⁱ[p]≤degreeⁱ[q] : degreeⁱ (expand p) ≤ᵈ degreeⁱ (expand q)
degreeⁱ[p]≤degreeⁱ[q] = begin
degreeⁱ (expand p) ≡ᵈ⟨ degreeⁱ≡degree p ⟩
degree p ≤ᵈ⟨ degree[p]≤degree[q] ⟩
degree q ≡ᵈ⟨ ≡-sym (degreeⁱ≡degree q) ⟩
degreeⁱ (expand q) ∎ᵈ
-- idea : ∀ o₁ p o₂ q → o₁ < o₂ → degree (x^ o₁ ∙ p +ᵖ x^ o₂ ∙ q) ≡ degree (x^ o₂ ∙ q)
-- idea o₁ p o₂ q o₁<o₂ with <-cmp o₁ o₂
-- idea o₁ (K c₁) o₂ q o₁<o₂ | tri< _ _ _ = {!!}
-- idea o₁ (c₁ +x^ n₁ ∙ p) o₂ q o₁<o₂ | tri< _ _ _ with +ᵖ-spine ⟅ n₁ ⇓⟆ p (o₂ ∸ o₁) q
-- idea o₁ (c₁ +x^ n₁ ∙ p) o₂ q o₁<o₂ | tri< _ _ _ | 0ᵖ = {!!}
-- idea o₁ (c₁ +x^ n₁ ∙ p) o₂ q o₁<o₂ | tri< _ _ _ | x^ zero ∙ r = {!!}
-- idea o₁ (c₁ +x^ n₁ ∙ p) o₂ q o₁<o₂ | tri< _ _ _ | x^ suc n₃ ∙ r = {!!}
-- idea o₁ p o₂ q o₁<o₂ | tri≈ o₁≮o₂ _ _ = contradiction o₁<o₂ o₁≮o₂
-- idea o₁ p o₂ q o₁<o₂ | tri> o₁≮o₂ _ _ = contradiction o₁<o₂ o₁≮o₂
*ᵖ-degree : ∀ p q → degree (p *ᵖ q) ≡ degree p +ᵈ degree q
*ᵖ-degree 0ᵖ q = ≡-refl
*ᵖ-degree (x^ o₁ ∙ p) 0ᵖ = ≡-refl
*ᵖ-degree (x^ o₁ ∙ p) (x^ o₂ ∙ q) = *ᵖ-spine-degree o₁ p o₂ q
where
*ᵖ-spine-degree : ∀ o₁ p o₂ q → degree (*ᵖ-spine o₁ p o₂ q) ≡ ⟨ (o₁ +ℕ degreeˢ p) +ℕ (o₂ +ℕ degreeˢ q) ⟩
*ᵖ-spine-degree o₁ (K c₁) o₂ q = begin⟨ ≡-setoid Degree ⟩
⟨ (o₁ +ℕ o₂) +ℕ degreeˢ (∙ᵖ-spine c₁ q) ⟩ ≡⟨ ≡-cong (λ t → ⟨ o₁ +ℕ o₂ +ℕ t ⟩) (∙ᵖ-spine-degreeˢ c₁ q) ⟩
⟨ (o₁ +ℕ o₂) +ℕ degreeˢ q ⟩ ≡⟨ ≡-cong ⟨_⟩ (Nat.+-assoc o₁ o₂ (degreeˢ q)) ⟩
⟨ o₁ +ℕ (o₂ +ℕ degreeˢ q) ⟩ ≡⟨ ≡-cong (λ t → ⟨ t +ℕ (o₂ +ℕ degreeˢ q) ⟩) (≡-sym (Nat.+-identityʳ o₁)) ⟩
⟨ (o₁ +ℕ 0) +ℕ (o₂ +ℕ degreeˢ q) ⟩ ∎
*ᵖ-spine-degree o₁ (c₁ +x^ n₁ ∙ p) o₂ (K c₂) = begin⟨ ≡-setoid Degree ⟩
⟨ o₁ +ℕ o₂ +ℕ (⟅ n₁ ⇓⟆ +ℕ degreeˢ (∙ᵖ-spine c₂ p)) ⟩ ≡⟨ ≡-cong (λ t → ⟨ o₁ +ℕ o₂ +ℕ (⟅ n₁ ⇓⟆ +ℕ t) ⟩) (∙ᵖ-spine-degreeˢ c₂ p) ⟩
⟨ o₁ +ℕ o₂ +ℕ (⟅ n₁ ⇓⟆ +ℕ degreeˢ p) ⟩ ≡⟨ ≡-cong ⟨_⟩ (lemma o₁ o₂ ⟅ n₁ ⇓⟆ (degreeˢ p)) ⟩
⟨ o₁ +ℕ (⟅ n₁ ⇓⟆ +ℕ degreeˢ p) +ℕ (o₂ +ℕ 0) ⟩ ∎
where
lemma : ∀ x y n d → x +ℕ y +ℕ (n +ℕ d) ≡ x +ℕ (n +ℕ d) +ℕ (y +ℕ 0)
lemma = solve Nat.ring
*ᵖ-spine-degree o₁ (c₁ +x^ n₁ ∙ p) o₂ (c₂ +x^ n₂ ∙ q) = ≤ᵈ-antisym deg<deg+deg deg+deg<deg
where
open ≤ᵈ-Reasoning
last-larger : degree (x^ (o₁ +ℕ o₂) ∙ K (c₁ *-nonzero c₂) +ᵖ c₁ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) ∙ q +ᵖ c₂ ∙ᵖ (x^ (o₁ +ℕ o₂ +ℕ ⟅ n₁ ⇓⟆) ∙ p)) ≤ᵈ degree (*ᵖ-spine (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q)
last-larger = TODO
deg<deg+deg : degree (*ᵖ-spine o₁ (c₁ +x^ n₁ ∙ p) o₂ (c₂ +x^ n₂ ∙ q)) ≤ᵈ ⟨ (o₁ +ℕ degreeˢ (c₁ +x^ n₁ ∙ p)) +ℕ (o₂ +ℕ degreeˢ (c₂ +x^ n₂ ∙ q)) ⟩
deg<deg+deg = begin
degree
(x^ (o₁ +ℕ o₂) ∙ K (c₁ *-nonzero c₂) +ᵖ c₁ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) ∙ q +ᵖ
c₂ ∙ᵖ (x^ (o₁ +ℕ o₂ +ℕ ⟅ n₁ ⇓⟆) ∙ p) +ᵖ *ᵖ-spine (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q)
≤ᵈ⟨ degreeᵖ-+ᵖ (x^ (o₁ +ℕ o₂) ∙ K (c₁ *-nonzero c₂) +ᵖ c₁ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) ∙ q +ᵖ c₂ ∙ᵖ (x^ (o₁ +ℕ o₂ +ℕ ⟅ n₁ ⇓⟆) ∙ p))
(*ᵖ-spine (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q)
⟩
degree (x^ (o₁ +ℕ o₂) ∙ K (c₁ *-nonzero c₂) +ᵖ c₁ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) ∙ q +ᵖ c₂ ∙ᵖ (x^ (o₁ +ℕ o₂ +ℕ ⟅ n₁ ⇓⟆) ∙ p))
⊔ᵈ
degree (*ᵖ-spine (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q)
≡ᵈ⟨ m≤ᵈn⇒m⊔ᵈn≡n last-larger ⟩
degree (*ᵖ-spine (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q)
≡ᵈ⟨ *ᵖ-spine-degree (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q ⟩
⟨ ((o₁ +ℕ ⟅ n₁ ⇓⟆) +ℕ degreeˢ p) +ℕ ((o₂ +ℕ ⟅ n₂ ⇓⟆) +ℕ degreeˢ q) ⟩
≡ᵈ⟨ ≡-cong₂ (λ x y → ⟨ x +ℕ y ⟩) (Nat.+-assoc o₁ ⟅ n₁ ⇓⟆ (degreeˢ p)) (Nat.+-assoc o₂ ⟅ n₂ ⇓⟆ (degreeˢ q)) ⟩
⟨ o₁ +ℕ (⟅ n₁ ⇓⟆ +ℕ degreeˢ p) +ℕ (o₂ +ℕ (⟅ n₂ ⇓⟆ +ℕ degreeˢ q)) ⟩ ∎ᵈ
deg+deg<deg : ⟨ o₁ +ℕ degreeˢ (c₁ +x^ n₁ ∙ p) +ℕ (o₂ +ℕ degreeˢ (c₂ +x^ n₂ ∙ q)) ⟩ ≤ᵈ degree (*ᵖ-spine o₁ (c₁ +x^ n₁ ∙ p) o₂ (c₂ +x^ n₂ ∙ q))
deg+deg<deg = begin
⟨ (o₁ +ℕ (⟅ n₁ ⇓⟆ +ℕ degreeˢ p)) +ℕ (o₂ +ℕ (⟅ n₂ ⇓⟆ +ℕ degreeˢ q)) ⟩
≡ᵈ⟨ ≡-cong₂ (λ x y → ⟨ x +ℕ y ⟩) (≡-sym (Nat.+-assoc o₁ ⟅ n₁ ⇓⟆ (degreeˢ p))) (≡-sym (Nat.+-assoc o₂ ⟅ n₂ ⇓⟆ (degreeˢ q))) ⟩
⟨ ((o₁ +ℕ ⟅ n₁ ⇓⟆) +ℕ degreeˢ p) +ℕ ((o₂ +ℕ ⟅ n₂ ⇓⟆) +ℕ degreeˢ q) ⟩
≡ᵈ⟨ ≡-sym (*ᵖ-spine-degree (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q) ⟩
degree (*ᵖ-spine (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q)
≤ᵈ⟨ degree[q]≤degree[p+ᵖq] (x^ (o₁ +ℕ o₂) ∙ K (c₁ *-nonzero c₂) +ᵖ c₁ ∙ᵖ x^ (o₁ +ℕ o₂ +ℕ ⟅ n₂ ⇓⟆) ∙ q +ᵖ c₂ ∙ᵖ (x^ (o₁ +ℕ o₂ +ℕ ⟅ n₁ ⇓⟆) ∙ p)) (*ᵖ-spine (o₁ +ℕ ⟅ n₁ ⇓⟆) p (o₂ +ℕ ⟅ n₂ ⇓⟆) q) last-larger ⟩
degree (*ᵖ-spine o₁ (c₁ +x^ n₁ ∙ p) o₂ (c₂ +x^ n₂ ∙ q)) ∎ᵈ
-ᵖ-degree : ∀ p → degree (-ᵖ p) ≡ degree p
-ᵖ-degree = ∙ᵖ-degree -1#-nonzero
deg-+ᵖ : ∀ p q {p≉0} {q≉0} {p+q≉0} → deg (p +ᵖ q) {p+q≉0} ≤ deg p {p≉0} ⊔ deg q {q≉0}
deg-+ᵖ 0ᵖ q {p≉0} {q≉0} {p+q≉0} = contradiction ≈ᵖ-refl p≉0
deg-+ᵖ (x^ o₁ ∙ p) 0ᵖ {p≉0} {q≉0} {p+q≉0} = contradiction ≈ᵖ-refl q≉0
deg-+ᵖ (x^ o₁ ∙ p) (x^ o₂ ∙ q) {p≉0} {q≉0} {p+q≉0} = helper (x^ o₁ ∙ p +ᵖ x^ o₂ ∙ q) {p+q≉0} (degreeᵖ-+ᵖ (x^ o₁ ∙ p) (x^ o₂ ∙ q))
where
helper : ∀ d {d≉0} {x} → degree d ≤ᵈ ⟨ x ⟩ → deg d {d≉0} ≤ x
helper 0ᵖ {d≉0} = contradiction ≈ᵖ-refl d≉0
helper (x^ o₃ ∙ d) {d≉0} ⟨ pf ⟩ = pf
deg-cong : ∀ {p q} {p≉0} {q≉0} → p ≈ᵖ q → deg p {p≉0} ≡ deg q {q≉0}
deg-cong {0ᵖ} {q} {p≉0} {q≉0} p≈q = contradiction ≈ᵖ-refl p≉0
deg-cong {x^ o₁ ∙ p} {0ᵖ} {p≉0} {q≉0} p≈q = contradiction ≈ᵖ-refl q≉0
deg-cong {x^ o₁ ∙ p} {x^ o₂ ∙ q} {p≉0} {q≉0} (0ᵖ≉ ≡-refl p≈q) rewrite degreeˢ-cong p≈q = ≡-refl
data Coefficients : Set (c ⊔ˡ ℓ) where
0ᶜ : Coefficients
_∙x^_+_ : C/0 → ℕ → Coefficients → Coefficients
coefficientsˢ : ℕ → Spine → Coefficients → Coefficients
coefficientsˢ o (K c) coeffs = c ∙x^ o + coeffs
coefficientsˢ o (c +x^ n ∙ p) coeffs = coefficientsˢ (o +ℕ ⟅ n ⇓⟆) p (c ∙x^ o + coeffs)
coefficients : Polynomial → Coefficients
coefficients 0ᵖ = 0ᶜ
coefficients (x^ o ∙ p) = coefficientsˢ o p 0ᶜ
polynomial : Coefficients → Polynomial
polynomial 0ᶜ = 0ᵖ
polynomial (c ∙x^ n + p) = c ∙𝑋^ n +ᵖ polynomial p
polynomial∘coefficients≡id : ∀ p → polynomial (coefficients p) ≈ᵖ p
polynomial∘coefficients≡id 0ᵖ = ≈ᵖ-refl
polynomial∘coefficients≡id (x^ o ∙ p) = loop o p 0ᶜ
where
lemma : ∀ o c n p → x^ o ∙ K c +ᵖ x^ (o +ℕ ⟅ n ⇓⟆) ∙ p ≈ᵖ x^ o ∙ (c +x^ n ∙ p)
lemma o c n p = expand-injective $ begin⟨ ≈ⁱ-setoid ⟩
expand (x^ o ∙ K c +ᵖ x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) ≈⟨ expand-+ᵖ-homo (x^ o ∙ K c) (x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) ⟩
expandˢ o (K c) +ⁱ expandˢ (o +ℕ ⟅ n ⇓⟆) p ≈⟨ ≈ⁱ-sym (expandˢ-+x^-lemma o n c p) ⟩
expandˢ o (c +x^ n ∙ p) ∎
loop : ∀ o p coeffs → polynomial (coefficientsˢ o p coeffs) ≈ᵖ x^ o ∙ p +ᵖ polynomial coeffs
loop o (K c) coeffs = ≈ᵖ-refl
loop o (c +x^ n ∙ p) coeffs = begin⟨ ≈ᵖ-setoid ⟩
polynomial (coefficientsˢ (o +ℕ ⟅ n ⇓⟆) p (c ∙x^ o + coeffs)) ≈⟨ loop (o +ℕ ⟅ n ⇓⟆) p (c ∙x^ o + coeffs) ⟩
x^ (o +ℕ ⟅ n ⇓⟆) ∙ p +ᵖ (x^ o ∙ K c +ᵖ polynomial coeffs) ≈⟨ ≈ᵖ-sym (+ᵖ-assoc (x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) (x^ o ∙ K c) (polynomial coeffs)) ⟩
(x^ (o +ℕ ⟅ n ⇓⟆) ∙ p +ᵖ x^ o ∙ K c) +ᵖ polynomial coeffs ≈⟨ +ᵖ-congʳ (+ᵖ-comm (x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) (x^ o ∙ K c)) ⟩
(x^ o ∙ K c +ᵖ x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) +ᵖ polynomial coeffs ≈⟨ +ᵖ-congʳ {polynomial coeffs} {x^ o ∙ K c +ᵖ x^ (o +ℕ ⟅ n ⇓⟆) ∙ p} {x^ o ∙ (c +x^ n ∙ p)} (lemma _ _ _ _) ⟩
(x^ o ∙ (c +x^ n ∙ p)) +ᵖ polynomial coeffs ∎
coefficientsˢ≢0ᶜ : ∀ o p coeffs → coefficientsˢ o p coeffs ≢ 0ᶜ
coefficientsˢ≢0ᶜ o (K c) coeffs = λ ()
coefficientsˢ≢0ᶜ o (c +x^ n ∙ p) coeffs = coefficientsˢ≢0ᶜ (o +ℕ ⟅ n ⇓⟆) p (c ∙x^ o + coeffs)
coefficients≢0ᶜ : ∀ p {p≉0 : p ≉ᵖ 0ᵖ} → coefficients p ≢ 0ᶜ
coefficients≢0ᶜ 0ᵖ {p≉0} = contradiction ≈ᵖ-refl p≉0
coefficients≢0ᶜ (x^ o ∙ p) {p≉0} = coefficientsˢ≢0ᶜ o p 0ᶜ
degᶜ : ∀ c {c≉0 : c ≢ 0ᶜ} → ℕ
degᶜ 0ᶜ {c≉0} = contradiction ≡-refl c≉0
degᶜ (_ ∙x^ n + _) = n
degᶜ[coefficients] : ∀ p {p≉0} → degᶜ (coefficients p) {coefficients≢0ᶜ p {p≉0}} ≡ deg p {p≉0}
degᶜ[coefficients] 0ᵖ {p≉0} = contradiction ≈ᵖ-refl p≉0
degᶜ[coefficients] (x^ o ∙ p) = loop o p 0ᶜ
where
loop : ∀ o p coeffs → degᶜ (coefficientsˢ o p coeffs) {coefficientsˢ≢0ᶜ o p coeffs} ≡ o +ℕ degreeˢ p
loop o (K c) coeffs = ≡-sym (Nat.+-identityʳ o)
loop o (c +x^ n ∙ p) coeffs = begin⟨ ≡-setoid ℕ ⟩
degᶜ (coefficientsˢ (o +ℕ ⟅ n ⇓⟆) p (c ∙x^ o + coeffs)) ≡⟨ loop (o +ℕ ⟅ n ⇓⟆) p (c ∙x^ o + coeffs) ⟩
(o +ℕ ⟅ n ⇓⟆) +ℕ degreeˢ p ≡⟨ Nat.+-assoc o ⟅ n ⇓⟆ (degreeˢ p) ⟩
o +ℕ (⟅ n ⇓⟆ +ℕ degreeˢ p) ∎
-- leading : ∀ p {p≉0 : p ≉ᵖ 0ᵖ} → Leading p {p≉0}
-- leading p {p≉0} = helper (coefficients p) {coefficients≢0ᶜ p {p≉0}} (polynomial∘coefficients≡id p) (degᶜ[coefficients] p)
-- where
-- helper : ∀ coeffs {coeffs≢0} → polynomial coeffs ≈ᵖ p → degᶜ coeffs {coeffs≢0} ≡ deg p {p≉0} → Leading p {p≉0}
-- helper 0ᶜ {coeffs≢0} = contradiction ≡-refl coeffs≢0
-- helper (leading-coefficient ∙x^ leading-degree + next-term) roundtrip leading-degree≡degree =
-- Leading✓ leading-coefficient leading-degree leading-degree≡degree (polynomial next-term) {!!} roundtrip
data Remainder (r : Polynomial) (m : Polynomial) {m≉0 : m ≉ᵖ 0ᵖ} : Set (c ⊔ˡ ℓ) where
0ᵖ≈ : (r≈0 : r ≈ᵖ 0ᵖ) → Remainder r m
0ᵖ≉ : (r≉0 : r ≉ᵖ 0ᵖ) → deg r {r≉0} < deg m {m≉0} → Remainder r m
record Leading (p : Polynomial) {p≉0 : p ≉ᵖ 0ᵖ} : Set (c ⊔ˡ ℓ) where
constructor Leading✓
field
leading-coefficent : C/0
leading-degree : ℕ
leading-degree≡degree : leading-degree ≡ deg p {p≉0}
next-term : Polynomial
next-term<p : Remainder next-term p {p≉0}
proof : leading-coefficent ∙𝑋^ leading-degree +ᵖ next-term ≈ᵖ p
leading : ∀ p {p≉0 : p ≉ᵖ 0ᵖ} → Leading p {p≉0}
leading 0ᵖ {p≉0} = contradiction ≈ᵖ-refl p≉0
leading (x^ o ∙ p) {p≉0} = loop o p {p≉0}
where
open ≤-Reasoning using (begin-strict_; _<⟨_⟩_; _≤⟨_⟩_) renaming (_≡⟨_⟩_ to _≡≤⟨_⟩_; _∎ to _≤∎)
degree-step : ∀ o n c p → deg (x^ o +ℕ ⟅ n ⇓⟆ ∙ p) {λ ()} ≡ deg (x^ o ∙ (c +x^ n ∙ p)) {λ ()}
degree-step o n c p = Nat.+-assoc o ⟅ n ⇓⟆ (degreeˢ p)
remainder-smaller : ∀ o n c p {r≉0} {r'≉0} → deg (x^ o ∙ K c) {r≉0} < deg (x^ o ∙ (c +x^ n ∙ p)) {r'≉0}
remainder-smaller o (ℕ+ n) c p = lte (n +ℕ degreeˢ p) (lemma o n (degreeˢ p))
where
lemma : ∀ x y z → suc (x +ℕ 0 +ℕ (y +ℕ z)) ≡ x +ℕ suc (y +ℕ z)
lemma = solve Nat.ring
remainder-base : ∀ next o n c p {r≉0} → next ≈ᵖ 0ᵖ → Remainder ((x^ o ∙ K c) +ᵖ next) (x^ o ∙ (c +x^ n ∙ p)) {r≉0}
remainder-base next o n c p {r≉0} next≈0 = 0ᵖ≉ c∙𝑋^o+next≉0 smaller
where
c∙𝑋^o≈c∙𝑋^o+next : c ∙𝑋^ o ≈ᵖ c ∙𝑋^ o +ᵖ next
c∙𝑋^o≈c∙𝑋^o+next = begin⟨ ≈ᵖ-setoid ⟩
c ∙𝑋^ o ≈⟨ ≈ᵖ-sym (+ᵖ-identityʳ _) ⟩
c ∙𝑋^ o +ᵖ 0ᵖ ≈⟨ +ᵖ-congˡ {c ∙𝑋^ o} (≈ᵖ-sym next≈0) ⟩
c ∙𝑋^ o +ᵖ next ∎
c∙𝑋^o+next≉0 : c ∙𝑋^ o +ᵖ next ≉ᵖ 0ᵖ
c∙𝑋^o+next≉0 c∙𝑋^o+next≈0 = contradiction (begin⟨ ≈ᵖ-setoid ⟩ c ∙𝑋^ o ≈⟨ c∙𝑋^o≈c∙𝑋^o+next ⟩ c ∙𝑋^ o +ᵖ next ≈⟨ c∙𝑋^o+next≈0 ⟩ 0ᵖ ∎) (λ ())
smaller : deg ((x^ o ∙ K c) +ᵖ next) {c∙𝑋^o+next≉0} < deg (x^ o ∙ (c +x^ n ∙ p)) {r≉0}
smaller = begin-strict
deg (x^ o ∙ K c +ᵖ next) ≡≤⟨ deg-cong {p≉0 = c∙𝑋^o+next≉0} {q≉0 = λ ()} (≈ᵖ-sym (c∙𝑋^o≈c∙𝑋^o+next)) ⟩
deg (x^ o ∙ K c) {λ ()} <⟨ remainder-smaller o n c p {λ ()} {r≉0} ⟩
deg (x^ o ∙ (c +x^ n ∙ p)) {r≉0} ≤∎
remainder-step : ∀ next o n c p {r≉0} → Remainder next (x^ o +ℕ ⟅ n ⇓⟆ ∙ p) {λ ()} → Remainder ((x^ o ∙ K c) +ᵖ next) (x^ o ∙ (c +x^ n ∙ p)) {r≉0}
remainder-step next o n c p {r≉0} (0ᵖ≈ next≈0) = remainder-base next o n c p next≈0
remainder-step next o n c p {r≉0} (0ᵖ≉ next≉0 next<r) with x^ o ∙ K c +ᵖ next ≈ᵖ? 0ᵖ
... | yes r'≈0 = 0ᵖ≈ r'≈0
... | no r'≉0 = 0ᵖ≉ r'≉0 smaller
where
smaller : deg ((x^ o ∙ K c) +ᵖ next) {r'≉0} < deg (x^ o ∙ (c +x^ n ∙ p)) {r≉0}
smaller rewrite degree-step o n c p = begin-strict
deg ((x^ o ∙ K c) +ᵖ next) {r'≉0} ≤⟨ deg-+ᵖ (x^ o ∙ K c) next {p≉0 = λ ()} ⟩
deg (x^ o ∙ K c) {λ ()} ⊔ deg next {next≉0} <⟨ ⊔-least-< (deg (x^ o ∙ K c) {λ ()}) (deg next) (deg (x^ o ∙ (c +x^ n ∙ p)) {r≉0}) (remainder-smaller o n c p {λ ()} {r≉0}) next<r ⟩
deg (x^ o ∙ (c +x^ n ∙ p)) {r≉0} ≤∎
lemma : ∀ o c n p → x^ o ∙ K c +ᵖ x^ (o +ℕ ⟅ n ⇓⟆) ∙ p ≈ᵖ x^ o ∙ (c +x^ n ∙ p)
lemma o c n p = expand-injective $ begin⟨ ≈ⁱ-setoid ⟩
expand (x^ o ∙ K c +ᵖ x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) ≈⟨ expand-+ᵖ-homo (x^ o ∙ K c) (x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) ⟩
expandˢ o (K c) +ⁱ expandˢ (o +ℕ ⟅ n ⇓⟆) p ≈⟨ ≈ⁱ-sym (expandˢ-+x^-lemma o n c p) ⟩
expandˢ o (c +x^ n ∙ p) ∎
proof-step
: ∀ lc o n c p next
→ lc ∙𝑋^ deg (x^ o +ℕ ⟅ n ⇓⟆ ∙ p) {λ ()} +ᵖ next ≈ᵖ x^ o +ℕ ⟅ n ⇓⟆ ∙ p
→ lc ∙𝑋^ deg (x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) {λ ()} +ᵖ ((x^ o ∙ K c) +ᵖ next) ≈ᵖ x^ o ∙ (c +x^ n ∙ p)
proof-step lc o n c p next pf = begin⟨ ≈ᵖ-setoid ⟩
lc ∙𝑋^ deg (x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) {λ ()} +ᵖ (x^ o ∙ K c +ᵖ next) ≈⟨ +ᵖ-congˡ {lc ∙𝑋^ deg (x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) {λ ()}} (+ᵖ-comm (x^ o ∙ K c) next) ⟩
lc ∙𝑋^ deg (x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) {λ ()} +ᵖ (next +ᵖ x^ o ∙ K c) ≈⟨ ≈ᵖ-sym (+ᵖ-assoc (lc ∙𝑋^ deg (x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) {λ ()}) next (x^ o ∙ K c)) ⟩
(lc ∙𝑋^ deg (x^ (o +ℕ ⟅ n ⇓⟆) ∙ p) {λ ()} +ᵖ next) +ᵖ x^ o ∙ K c ≈⟨ +ᵖ-congʳ {x^ o ∙ K c} pf ⟩
x^ o +ℕ ⟅ n ⇓⟆ ∙ p +ᵖ x^ o ∙ K c ≈⟨ +ᵖ-comm (x^ o +ℕ ⟅ n ⇓⟆ ∙ p) (x^ o ∙ K c) ⟩
x^ o ∙ K c +ᵖ x^ o +ℕ ⟅ n ⇓⟆ ∙ p ≈⟨ lemma o c n p ⟩
x^ o ∙ (c +x^ n ∙ p) ∎
loop : ∀ o p {p≉0 : x^ o ∙ p ≉ᵖ 0ᵖ} → Leading (x^ o ∙ p) {p≉0}
loop o (K c) = Leading✓ c o (≡-sym (Nat.+-identityʳ o)) 0ᵖ (0ᵖ≈ ≈ᵖ-refl) (+ᵖ-identityʳ (c ∙𝑋^ o))
loop o (c +x^ n ∙ p) with loop (o +ℕ ⟅ n ⇓⟆) p {λ ()}
... | Leading✓ lc d ≡-refl next next<p pf = Leading✓ lc d (degree-step o n c p) (c ∙𝑋^ o +ᵖ next) (remainder-step next o n c p next<p) (proof-step lc o n c p next pf)
record Euclidean (n : Polynomial) (m : Polynomial) {m≉0 : m ≉ᵖ 0ᵖ} : Set (c ⊔ˡ ℓ) where
constructor Euclidean✓
field
q : Polynomial
r : Polynomial
division : n ≈ᵖ m *ᵖ q +ᵖ r
remainder : Remainder r m {m≉0}
divMod-base₁ : ∀ n m → n ≈ᵖ 0ᵖ → n ≈ᵖ m *ᵖ 0ᵖ +ᵖ 0ᵖ
divMod-base₁ n m n≈0 = begin⟨ ≈ᵖ-setoid ⟩
n ≈⟨ n≈0 ⟩ 0ᵖ ≈⟨ ≈ᵖ-sym (*ᵖ-zeroʳ m) ⟩
m *ᵖ 0ᵖ ≈⟨ ≈ᵖ-sym (+ᵖ-identityʳ _) ⟩
m *ᵖ 0ᵖ +ᵖ 0ᵖ ∎
-- open import Strict using (force)
open import Agda.Builtin.Strict using (primForce; primForceLemma)
force : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) → (∀ y → x ≡ y → B y) → B x
force {B = B} x f = primForce ≡-refl (primForce {B = λ y → x ≡ y → B y} x f)
force-≡ : ∀ {a b} {A : Set a} {B : A → Set b} (x : A) (f : ∀ y → x ≡ y → B y) → force x f ≡ f x ≡-refl
force-≡ {B = B} x f rewrite primForceLemma {B = λ y → x ≡ y → B y} x f = ≡-refl
divMod : ∀ n m {m≉0} → Euclidean n m {m≉0}
divMod n m {m≉0} with n ≈ᵖ? 0ᵖ
... | yes n≈0 = Euclidean✓ 0ᵖ 0ᵖ (divMod-base₁ n m n≈0) (0ᵖ≈ ≈ᵖ-refl)
... | no n≉0 = loop 0ᵖ n {n≉0} (solveOver (n ∷ m ∷ []) +ᵖ-*ᵖ-almostCommutativeRing) <-well-founded
where
open ≤-Reasoning using (begin-strict_; _<⟨_⟩_; _≤⟨_⟩_) renaming (_≡⟨_⟩_ to _≡≤⟨_⟩_; _∎ to _≤∎)
term : ∀ r {r≉0} → Polynomial
term r {r≉0} with leading r {r≉0} | leading m {m≉0}
... | Leading✓ lcʳ degʳ _ _ _ _ | Leading✓ lcᵐ degᵐ _ _ _ _ = (lcʳ /-nonzero lcᵐ) ∙𝑋^ (degʳ ∸ degᵐ)
term-smaller : ∀ r {r≉0 : r ≉ᵖ 0ᵖ} {r'≉0 : r -ᵖ term r {r≉0} *ᵖ m ≉ᵖ 0ᵖ} → deg m {m≉0} ≤ deg r {r≉0} → deg (r -ᵖ term r {r≉0} *ᵖ m) {r'≉0} < deg r {r≉0}
term-smaller r {r≉0} {r'≉0} m≤r with leading r {r≉0} | leading m {m≉0}
... | Leading✓ lcʳ degʳ degʳ-pf restʳ restʳ<r pfʳ | Leading✓ lcᵐ degᵐ ≡-refl degᵐ-pf restᵐ<m pfᵐ = begin-strict
deg (r -ᵖ ((lcʳ /-nonzero lcᵐ) ∙𝑋^ (degʳ ∸ degᵐ)) *ᵖ m) {r'≉0} <⟨ {!!} ⟩
deg r {r≉0} ≤∎
-- restʳ -ᵖ (lcʳ /-nonzero lcᵐ) ∙𝑋^ (degʳ ∸ degᵐ) *ᵖ restᵐ)
-- deg[r] ∸ deg[m] + deg[restᵐ] < deg[r]
divMod-base₂ : ∀ q r {r≉0} → n ≈ᵖ m *ᵖ q +ᵖ r → r -ᵖ term r {r≉0} *ᵖ m ≈ᵖ 0ᵖ → n ≈ᵖ m *ᵖ (q +ᵖ term r {r≉0}) +ᵖ 0ᵖ
divMod-base₂ q r {r≉0} n≈mq+r r-t*m≈0 = begin⟨ ≈ᵖ-setoid ⟩
n ≈⟨ n≈mq+r ⟩
m *ᵖ q +ᵖ r ≈⟨ ≈ᵖ-sym (+ᵖ-identityʳ _) ⟩
m *ᵖ q +ᵖ r +ᵖ 0ᵖ ≈⟨ +ᵖ-congˡ {m *ᵖ q +ᵖ r} (≈ᵖ-sym (-ᵖ‿inverseˡ (term r {r≉0} *ᵖ m))) ⟩
m *ᵖ q +ᵖ r +ᵖ ((-ᵖ (term r {r≉0} *ᵖ m)) +ᵖ term r {r≉0} *ᵖ m) ≈⟨ ≈ᵖ-sym (+ᵖ-assoc (m *ᵖ q +ᵖ r) (-ᵖ (term r *ᵖ m)) (term r *ᵖ m)) ⟩
((m *ᵖ q +ᵖ r) -ᵖ term r {r≉0} *ᵖ m) +ᵖ term r {r≉0} *ᵖ m ≈⟨ +ᵖ-cong (+ᵖ-assoc (m *ᵖ q) r (-ᵖ (term r *ᵖ m))) (*ᵖ-comm (term r) m) ⟩
(m *ᵖ q +ᵖ (r -ᵖ term r {r≉0} *ᵖ m)) +ᵖ m *ᵖ term r {r≉0} ≈⟨ +ᵖ-congʳ {m *ᵖ term r} (+ᵖ-congˡ {m *ᵖ q} r-t*m≈0) ⟩
(m *ᵖ q +ᵖ 0ᵖ) +ᵖ m *ᵖ term r {r≉0} ≈⟨ +ᵖ-congʳ {m *ᵖ term r} (+ᵖ-identityʳ (m *ᵖ q)) ⟩
m *ᵖ q +ᵖ m *ᵖ term r {r≉0} ≈⟨ ≈ᵖ-sym (*ᵖ-distribˡ-+ᵖ m q (term r)) ⟩
m *ᵖ (q +ᵖ term r {r≉0}) ≈⟨ ≈ᵖ-sym (+ᵖ-identityʳ (m *ᵖ (q +ᵖ term r))) ⟩
m *ᵖ (q +ᵖ term r {r≉0}) +ᵖ 0ᵖ ∎
divMod-step : ∀ q r {r≉0} → n ≈ᵖ m *ᵖ q +ᵖ r → n ≈ᵖ m *ᵖ (q +ᵖ term r {r≉0}) +ᵖ (r -ᵖ term r {r≉0} *ᵖ m)
divMod-step q r {r≉0} n≈mq+r = begin⟨ ≈ᵖ-setoid ⟩
n ≈⟨ n≈mq+r ⟩
m *ᵖ q +ᵖ r ≈⟨ ≈ᵖ-sym (+ᵖ-identityʳ _) ⟩
m *ᵖ q +ᵖ r +ᵖ 0ᵖ ≈⟨ +ᵖ-congˡ {m *ᵖ q +ᵖ r} (≈ᵖ-sym (-ᵖ‿inverseʳ (term r {r≉0} *ᵖ m))) ⟩
m *ᵖ q +ᵖ r +ᵖ (term r {r≉0} *ᵖ m -ᵖ term r {r≉0} *ᵖ m) ≈⟨ final m q r (term r) (-ᵖ (term r *ᵖ m)) ⟩
m *ᵖ (q +ᵖ term r {r≉0}) +ᵖ (r -ᵖ term r {r≉0} *ᵖ m) ∎
where
final : ∀ m q r x y → m *ᵖ q +ᵖ r +ᵖ (x *ᵖ m +ᵖ y) ≈ᵖ m *ᵖ (q +ᵖ x) +ᵖ (r +ᵖ y)
final = solve +ᵖ-*ᵖ-almostCommutativeRing
loop : ∀ q r {r≉0} → n ≈ᵖ m *ᵖ q +ᵖ r → Acc _<_ (deg r {r≉0}) → Euclidean n m {m≉0}
loop q r {r≉0} n≈mq+r (acc downward) with <-≤-connex (deg r {r≉0}) (deg m {m≉0})
... | inj₁ r<m = Euclidean✓ q r n≈mq+r (0ᵖ≉ r≉0 r<m)
... | inj₂ r≥m with (r -ᵖ term r {r≉0} *ᵖ m) ≈ᵖ? 0ᵖ
... | yes r'≈0 = Euclidean✓ (q +ᵖ term r {r≉0}) 0ᵖ (divMod-base₂ q r {r≉0} n≈mq+r r'≈0) (0ᵖ≈ ≈ᵖ-refl)
... | no r'≉0 = force (q +ᵖ term r {r≉0}) λ { q' ≡-refl → loop q' (r -ᵖ term r {r≉0} *ᵖ m) {r'≉0} (divMod-step q r {r≉0} n≈mq+r) (downward _ (term-smaller r r≥m)) }
-- factor : ∀ p a → ⟦ p ⟧ a ≈ 0# → (𝑋 -ᵖ 𝐾 a) ∣ p
-- factor = TODO
| {
"alphanum_fraction": 0.5009914078,
"avg_line_length": 56.5396113602,
"ext": "agda",
"hexsha": "7687d89a403729595919cf835211a1092a227ec3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Polynomial/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Polynomial/Properties.agda",
"max_line_length": 212,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Polynomial/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 46156,
"size": 75650
} |
open import Relation.Binary.PropositionalEquality using (sym)
open import Data.Fin using (zero; suc)
open import Data.Nat using (suc)
open import Substitution using (rename-subst-commute; subst-commute)
open import DeBruijn
open import Beta
infix 3 _—↠ˢ_
_—↠ˢ_ : ∀ {n m} → Subst n m → Subst n m → Set
σ —↠ˢ σ′ = ∀ {x} → σ x —↠ σ′ x
beta-rename : ∀ {n m} {ρ : Rename n m} {M M′ : Term n}
→ M —→ M′
-------------------------
→ rename ρ M —→ rename ρ M′
beta-rename (—→-ƛ M—→M′) = —→-ƛ (beta-rename M—→M′)
beta-rename (—→-ξₗ M—→M′) = —→-ξₗ (beta-rename M—→M′)
beta-rename (—→-ξᵣ N—→N′) = —→-ξᵣ (beta-rename N—→N′)
beta-rename {ρ = ρ} (—→-β {M = M}{N = N})
rewrite sym (rename-subst-commute {N = M}{M = N}{ρ = ρ}) = —→-β
betas-rename : ∀ {n m} {ρ : Rename n m} {M M′ : Term n}
→ M —↠ M′
-------------------------
→ rename ρ M —↠ rename ρ M′
betas-rename {ρ = ρ} (M ∎) = rename ρ M ∎
betas-rename {ρ = ρ} (M —→⟨ M—→L ⟩ L—↠M′) = rename ρ M —→⟨ beta-rename M—→L ⟩ betas-rename L—↠M′
betas-subst-exts : ∀ {n m} {σ σ′ : Subst n m}
→ σ —↠ˢ σ′
------------------
→ exts σ —↠ˢ exts σ′
betas-subst-exts σ—↠σ′ {zero} = # zero ∎
betas-subst-exts σ—↠σ′ {suc x} = betas-rename σ—↠σ′
subst-betas-sub : ∀ {n m} {M : Term n} {σ σ′ : Subst n m}
→ σ —↠ˢ σ′
-----------------------
→ subst σ M —↠ subst σ′ M
subst-betas-sub {M = # x} σ—↠σ′ = σ—↠σ′
subst-betas-sub {M = M · N} σ—↠σ′ = —↠-cong (subst-betas-sub {M = M} σ—↠σ′)
(subst-betas-sub {M = N} σ—↠σ′)
subst-betas-sub {M = ƛ M} σ—↠σ′ =
—↠-cong-ƛ (subst-betas-sub {M = M} (λ {x} → betas-subst-exts σ—↠σ′ {x = x}))
subst-beta-term : ∀ {n m} {M M′ : Term n} {σ : Subst n m}
→ M —→ M′
-----------------------
→ subst σ M —→ subst σ M′
subst-beta-term (—→-ƛ M—→M′) = —→-ƛ (subst-beta-term M—→M′)
subst-beta-term (—→-ξₗ M—→M′) = —→-ξₗ (subst-beta-term M—→M′)
subst-beta-term (—→-ξᵣ N—→N′) = —→-ξᵣ (subst-beta-term N—→N′)
subst-beta-term {σ = σ} (—→-β {M = M}{N = N})
rewrite sym (subst-commute {N = M}{M = N}{σ = σ}) = —→-β
subst-betas : ∀ {n m} {σ σ′ : Subst n m} {M M′ : Term n}
→ σ —↠ˢ σ′
→ M —↠ M′
------------------------
→ subst σ M —↠ subst σ′ M′
subst-betas σ—↠σ′ (M ∎) = subst-betas-sub {M = M} σ—↠σ′
subst-betas {σ = σ} σ—↠σ′ (M —→⟨ M—→L ⟩ L—↠M′) =
subst σ M —→⟨ subst-beta-term M—→L ⟩ subst-betas σ—↠σ′ L—↠M′
betas-subst-zero : ∀ {n} {M M′ : Term n}
→ M —↠ M′
------------------------------
→ subst-zero M —↠ˢ subst-zero M′
betas-subst-zero M—↠M′ {zero} = M—↠M′
betas-subst-zero M—↠M′ {suc x} = # x ∎
sub-betas : ∀ {n} {M M′ : Term (suc n)} {N N′ : Term n}
→ M —↠ M′
→ N —↠ N′
--------------------
→ M [ N ] —↠ M′ [ N′ ]
sub-betas M—↠M′ N—↠N′ = subst-betas (betas-subst-zero N—↠N′) M—↠M′
| {
"alphanum_fraction": 0.4518595759,
"avg_line_length": 32.3258426966,
"ext": "agda",
"hexsha": "d556ca363efa75ee4d8d3fd3ea2bbb72267c9cc2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "iwilare/church-rosser",
"max_forks_repo_path": "BetaSubstitutivity.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "iwilare/church-rosser",
"max_issues_repo_path": "BetaSubstitutivity.agda",
"max_line_length": 97,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "2fa17f7738cc7da967375be928137adc4be38696",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "iwilare/church-rosser",
"max_stars_repo_path": "BetaSubstitutivity.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-22T01:43:09.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-06-02T07:27:54.000Z",
"num_tokens": 1324,
"size": 2877
} |
open import Formalization.PredicateLogic.Signature
module Formalization.PredicateLogic.Constructive.NaturalDeduction (𝔏 : Signature) where
open Signature(𝔏)
open import Data.ListSized
import Lvl
open import Formalization.PredicateLogic.Syntax(𝔏)
open import Formalization.PredicateLogic.Syntax.Substitution(𝔏)
open import Functional using (_∘_ ; _∘₂_ ; swap)
open import Numeral.Finite
open import Numeral.Natural
open import Relator.Equals.Proofs.Equiv
open import Sets.PredicateSet using (PredSet ; _∈_ ; _∉_ ; _∪_ ; _∪•_ ; _∖_ ; _⊆_ ; _⊇_ ; ∅ ; [≡]-to-[⊆] ; [≡]-to-[⊇]) renaming (•_ to · ; _≡_ to _≡ₛ_)
open import Type
private variable ℓ : Lvl.Level
private variable args vars : ℕ
private variable Γ : PredSet{ℓ}(Formula(vars))
data _⊢_ {ℓ} : PredSet{ℓ}(Formula(vars)) → Formula(vars) → Type{Lvl.𝐒(ℓₚ Lvl.⊔ ℓₒ Lvl.⊔ ℓ)} where
direct : (Γ ⊆ (Γ ⊢_))
[⊤]-intro : (Γ ⊢ ⊤)
[⊥]-elim : ∀{φ} → (Γ ⊢ ⊥) → (Γ ⊢ φ)
[∧]-intro : ∀{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ ψ) → (Γ ⊢ (φ ∧ ψ))
[∧]-elimₗ : ∀{φ ψ} → (Γ ⊢ (φ ∧ ψ)) → (Γ ⊢ φ)
[∧]-elimᵣ : ∀{φ ψ} → (Γ ⊢ (φ ∧ ψ)) → (Γ ⊢ ψ)
[∨]-introₗ : ∀{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ∨ ψ))
[∨]-introᵣ : ∀{φ ψ} → (Γ ⊢ ψ) → (Γ ⊢ (φ ∨ ψ))
[∨]-elim : ∀{φ ψ χ} → ((Γ ∪ · φ) ⊢ χ) → ((Γ ∪ · ψ) ⊢ χ) → (Γ ⊢ (φ ∨ ψ)) → (Γ ⊢ χ)
[⟶]-intro : ∀{φ ψ} → ((Γ ∪ · φ) ⊢ ψ) → (Γ ⊢ (φ ⟶ ψ))
[⟶]-elim : ∀{φ ψ} → (Γ ⊢ φ) → (Γ ⊢ (φ ⟶ ψ)) → (Γ ⊢ ψ)
[Ɐ]-intro : ∀{φ} → (∀{t} → (Γ ⊢ (substitute0 t φ))) → (Γ ⊢ (Ɐ φ))
[Ɐ]-elim : ∀{φ} → (Γ ⊢ (Ɐ φ)) → ∀{t} → (Γ ⊢ (substitute0 t φ))
[∃]-intro : ∀{φ}{t} → (Γ ⊢ (substitute0 t φ)) → (Γ ⊢ (∃ φ))
[∃]-elim : ∀{φ ψ} → (∀{t} → (Γ ∪ ·(substitute0 t φ)) ⊢ ψ) → (Γ ⊢ (∃ φ)) → (Γ ⊢ ψ)
| {
"alphanum_fraction": 0.5093542547,
"avg_line_length": 37.6590909091,
"ext": "agda",
"hexsha": "942b8b3ec915d8d5c65676aed5c420ddad66b8de",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Formalization/PredicateLogic/Constructive/NaturalDeduction.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Formalization/PredicateLogic/Constructive/NaturalDeduction.agda",
"max_line_length": 151,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Formalization/PredicateLogic/Constructive/NaturalDeduction.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 879,
"size": 1657
} |
open import Function
open import Relation.Binary
open import Relation.Binary.PropositionalEquality as P
open ≡-Reasoning
open import Data.Empty
open import Data.Unit
open import Data.Sum as Sum
open import Data.Product as Prod
record ℕ∞ : Set where
coinductive
field pred : ⊤ ⊎ ℕ∞
open ℕ∞ public
data-~ℕ∞~ : ⊤ ⊎ ℕ∞ → ⊤ ⊎ ℕ∞ → Set
record _~ℕ∞~_ (n m : ℕ∞) : Set where
coinductive
field
pred~ : data-~ℕ∞~ (pred n) (pred m)
open _~ℕ∞~_ public
data-~ℕ∞~ (inj₁ tt) (inj₁ tt) = ⊤
data-~ℕ∞~ (inj₁ tt) (inj₂ m') = ⊥
data-~ℕ∞~ (inj₂ n') (inj₁ tt) = ⊥
data-~ℕ∞~ (inj₂ n') (inj₂ m') = n' ~ℕ∞~ m'
refl-ℕ∞ : {n : ℕ∞} → n ~ℕ∞~ n
pred~ (refl-ℕ∞ {n}) with pred n
pred~ refl-ℕ∞ | inj₁ tt = tt
pred~ refl-ℕ∞ | inj₂ n' = refl-ℕ∞
∞ : ℕ∞
pred ∞ = inj₂ ∞
succ : ℕ∞ → ℕ∞
pred (succ n) = inj₂ n
_+∞_ : ℕ∞ → ℕ∞ → ℕ∞
pred (n +∞ m) with pred n | pred m
pred (n +∞ m) | inj₁ tt | inj₁ tt = inj₁ tt
pred (n +∞ m) | inj₁ tt | inj₂ m' = inj₂ m'
pred (n +∞ m) | inj₂ n' | inj₁ tt = inj₂ n'
pred (n +∞ m) | inj₂ n' | inj₂ m' = inj₂ (record { pred = inj₂ (n' +∞ m') })
+∞-comm : (n m : ℕ∞) → (n +∞ m) ~ℕ∞~ (m +∞ n)
pred~ (+∞-comm n m) with pred n | pred m
pred~ (+∞-comm n m) | inj₁ tt | inj₁ tt = tt
pred~ (+∞-comm n m) | inj₁ tt | inj₂ m' = refl-ℕ∞
pred~ (+∞-comm n m) | inj₂ n' | inj₁ tt = refl-ℕ∞
pred~ (+∞-comm n m) | inj₂ n' | inj₂ m'
= record { pred~ = +∞-comm n' m' }
2×_ : ℕ∞ → ℕ∞
pred (2× n) with pred n
pred (2× n) | inj₁ tt = inj₁ tt
pred (2× n) | inj₂ n' = inj₂ (record { pred = inj₂ (2× n') })
StrData : Set → (ℕ∞ → Set) → ⊤ ⊎ ℕ∞ → Set
StrData A F (inj₁ tt) = ⊤
StrData A F (inj₂ d') = A × F d'
record Str (A : Set) (d : ℕ∞) : Set where
coinductive
field
str-out : StrData A (Str A) (pred d)
open Str public
reidx-Str : ∀{n m A} → n ~ℕ∞~ m → Str A n → Str A m
str-out (reidx-Str {n} {m} p s) with pred n | pred m | pred~ p | str-out s
str-out (reidx-Str p s) | inj₁ tt | inj₁ tt | _ | _ = tt
str-out (reidx-Str p s) | inj₁ tt | inj₂ m' | () | _
str-out (reidx-Str p s) | inj₂ n' | inj₁ tt | () | _
str-out (reidx-Str p s) | inj₂ n' | inj₂ m' | q | (a , s')
= (a , reidx-Str q s')
tl : ∀{d A} → Str A (succ d) → Str A d
tl {d} s = proj₂ (str-out s)
tl₂ : ∀{d A} → Str A (succ (succ d)) → Str A d
tl₂ {d} s = proj₂ (str-out (proj₂ (str-out s)))
even : ∀{d A} → Str A (2× d) → Str A d
str-out (even {d} s) with pred d | str-out s
str-out (even s) | inj₁ tt | tt = tt
str-out (even s) | inj₂ d' | (a , s') with str-out s'
str-out (even s) | inj₂ d' | (a , s') | (_ , s'') = (a , even s'')
zip₂ : ∀{m n A} → Str A m → Str A n → Str A (m +∞ n)
str-out (zip₂ {m} {n} s t) with pred m | pred n | str-out s | str-out t
str-out (zip₂ s t) | inj₁ tt | inj₁ tt | tt | _ = tt
str-out (zip₂ s t) | inj₁ tt | inj₂ n' | tt | u = u
str-out (zip₂ s t) | inj₂ m' | inj₁ tt | (a , s') | tt = (a , s')
str-out (zip₂ s t) | inj₂ m' | inj₂ n' | (a , s') | (b , t')
= (a , record { str-out = (b , zip₂ s' t') })
𝔹 : Set
𝔹 = ⊤ ⊎ ⊤
l r : 𝔹
l = inj₁ tt
r = inj₂ tt
L R : Str 𝔹 ∞
str-out L = (l , L)
str-out R = (r , R)
restr : ∀{A} → Str A ∞ → (d : ℕ∞) → Str A d
str-out (restr s d) with pred d | str-out s
str-out (restr s d) | inj₁ tt | _ = tt
str-out (restr s d) | inj₂ d' | (a , s') = (a , restr s' d')
foo : ∀{d} → Str 𝔹 d
str-out (foo {d}) with pred d
str-out foo | inj₁ tt = tt
str-out foo | inj₂ d' = (l , even {!!})
| {
"alphanum_fraction": 0.5234959593,
"avg_line_length": 28.313559322,
"ext": "agda",
"hexsha": "4ab11587a268587da464b724ee5662fce3dc05ec",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "hbasold/Sandbox",
"max_forks_repo_path": "Streams/SizedStreams.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "hbasold/Sandbox",
"max_issues_repo_path": "Streams/SizedStreams.agda",
"max_line_length": 76,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "8fc7a6cd878f37f9595124ee8dea62258da28aa4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "hbasold/Sandbox",
"max_stars_repo_path": "Streams/SizedStreams.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1585,
"size": 3341
} |
module Structure.Operator.Vector.LinearMap.Category where
import Data.Tuple as Tuple
open import Functional
open import Function.Proofs
open import Function.Equals
open import Function.Equals.Proofs
open import Logic.Predicate
open import Logic.Predicate.Equiv
open import Logic.Propositional
import Lvl
open import Structure.Category
open import Structure.Categorical.Properties
open import Structure.Function
open import Structure.Operator
open import Structure.Function.Domain
open import Structure.Function.Multi
open import Structure.Operator.Properties
open import Structure.Operator.Vector.LinearMap
open import Structure.Operator.Vector.LinearMaps as LinearMaps using (_∘ˡⁱⁿᵉᵃʳᵐᵃᵖ_ ; idˡⁱⁿᵉᵃʳᵐᵃᵖ)
open import Structure.Operator.Vector.Proofs
open import Structure.Operator.Vector
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Structure.Setoid
open import Syntax.Transitivity
open import Type
private variable ℓ ℓᵥ ℓᵥₗ ℓᵥᵣ ℓᵥ₁ ℓᵥ₂ ℓᵥ₃ ℓₛ ℓᵥₑ ℓᵥₑₗ ℓᵥₑᵣ ℓᵥₑ₁ ℓᵥₑ₂ ℓᵥₑ₃ ℓₛₑ : Lvl.Level
private variable V Vₗ Vᵣ V₁ V₂ V₃ S : Type{ℓ}
private variable _+ᵥ_ _+ᵥₗ_ _+ᵥᵣ_ _+ᵥ₁_ _+ᵥ₂_ _+ᵥ₃_ : V → V → V
private variable _⋅ₛᵥ_ _⋅ₛᵥₗ_ _⋅ₛᵥᵣ_ _⋅ₛᵥ₁_ _⋅ₛᵥ₂_ _⋅ₛᵥ₃_ : S → V → V
private variable _+ₛ_ _⋅ₛ_ : S → S → S
private variable f g : Vₗ → Vᵣ
open VectorSpace ⦃ … ⦄
open VectorSpaceVObject
module _ ⦃ equiv-S : Equiv{ℓₛₑ}(S) ⦄ {_+ₛ_ _⋅ₛ_ : S → S → S} where
private variable A B : VectorSpaceVObject {ℓᵥ}{_}{ℓᵥₑ}{ℓₛₑ} ⦃ equiv-S ⦄ (_+ₛ_)(_⋅ₛ_)
instance
[_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-reflexivity : Reflexivity(_↔ˡⁱⁿᵉᵃʳᵐᵃᵖ_ {ℓᵥₗ = ℓᵥₗ}{ℓᵥₑₗ = ℓᵥₑₗ}{_+ₛ_ = _+ₛ_}{_⋅ₛ_ = _⋅ₛ_})
∃.witness (Reflexivity.proof [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-reflexivity) = id
Tuple.left (∃.proof (Reflexivity.proof [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-reflexivity)) = {!!}
Tuple.right (∃.proof (Reflexivity.proof [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-reflexivity {V})) = LinearMaps.identity (VectorSpaceVObject.vectorSpace V)
instance
[_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-symmetry : Symmetry(_↔ˡⁱⁿᵉᵃʳᵐᵃᵖ_ {ℓᵥₗ = ℓᵥₗ}{ℓᵥₑₗ = ℓᵥₑₗ}{_+ₛ_ = _+ₛ_}{_⋅ₛ_ = _⋅ₛ_})
∃.witness (Symmetry.proof [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-symmetry ([∃]-intro f ⦃ [∧]-intro p q ⦄)) = {!!}
Tuple.left (∃.proof (Symmetry.proof [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-symmetry x)) = {!!}
Tuple.right (∃.proof (Symmetry.proof [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-symmetry x)) = {!!}
instance
[_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-transitivity : Transitivity(_↔ˡⁱⁿᵉᵃʳᵐᵃᵖ_ {ℓᵥₗ = ℓᵥₗ}{ℓᵥₑₗ = ℓᵥₑₗ}{_+ₛ_ = _+ₛ_}{_⋅ₛ_ = _⋅ₛ_})
∃.witness (Transitivity.proof [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-transitivity ([∃]-intro f) ([∃]-intro g)) = g ∘ f
Tuple.left (∃.proof (Transitivity.proof [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-transitivity p q)) = {!!}
Tuple.right (∃.proof (Transitivity.proof [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-transitivity {V₁}{V₂}{V₃} ([∃]-intro _ ⦃ p ⦄) ([∃]-intro _ ⦃ q ⦄))) = LinearMaps.compose (VectorSpaceVObject.vectorSpace V₁)(VectorSpaceVObject.vectorSpace V₂)(VectorSpaceVObject.vectorSpace V₃) (Tuple.right q) (Tuple.right p)
instance
[_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-equivalence : Equivalence(_↔ˡⁱⁿᵉᵃʳᵐᵃᵖ_ {ℓᵥₗ = ℓᵥₗ}{ℓᵥₑₗ = ℓᵥₑₗ}{_+ₛ_ = _+ₛ_}{_⋅ₛ_ = _⋅ₛ_})
[_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-equivalence = intro
instance
VectorSpaceVObject-equiv : Equiv(VectorSpaceVObject{ℓᵥ = ℓᵥ}{ℓᵥₑ = ℓᵥₑ}(_+ₛ_)(_⋅ₛ_))
Equiv._≡_ VectorSpaceVObject-equiv = _↔ˡⁱⁿᵉᵃʳᵐᵃᵖ_
Equiv.equivalence VectorSpaceVObject-equiv = [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-equivalence
instance
[_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-equiv : Equiv(A →ˡⁱⁿᵉᵃʳᵐᵃᵖ B)
[_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-equiv {A = A} {B = B} = [≡∃]-equiv ⦃ [⊜]-equiv ⦃ Vector-equiv B ⦄ ⦄
-- Equiv._≡_ [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-equiv ([∃]-intro f) ([∃]-intro g) = {!!}
-- Equiv.equivalence [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-equiv = {!!}
linearMapCategory : Category(_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_ {ℓᵥₗ = ℓᵥₗ}{ℓᵥₑₗ = ℓᵥₑₗ}{_+ₛ_ = _+ₛ_}{_⋅ₛ_ = _⋅ₛ_}) ⦃ [_→ˡⁱⁿᵉᵃʳᵐᵃᵖ_]-equiv ⦄
Category._∘_ linearMapCategory = _∘ˡⁱⁿᵉᵃʳᵐᵃᵖ_
Category.id linearMapCategory = idˡⁱⁿᵉᵃʳᵐᵃᵖ
BinaryOperator.congruence (Category.binaryOperator linearMapCategory) p q = [⊜][∘]-binaryOperator-raw p q
Morphism.Associativity.proof (Category.associativity linearMapCategory) {X}{Y}{Z}{W} = intro(reflexivity(Equiv._≡_ (Vector-equiv(W))))
Morphism.Identityₗ.proof (Tuple.left (Category.identity linearMapCategory)) {X}{Y} = intro(reflexivity(Equiv._≡_ (Vector-equiv(Y))))
Morphism.Identityᵣ.proof (Tuple.right (Category.identity linearMapCategory)) {X}{Y} = intro(reflexivity(Equiv._≡_ (Vector-equiv(Y))))
-- _≡∃_ {Obj = {!!}} ⦃ {![⊜]-equiv ⦃ Vector-equiv Y ⦄!} ⦄ {Pred = {!f ↦ LinearMap(vectorSpace(X))(vectorSpace(Y)) (f)!}}
| {
"alphanum_fraction": 0.7107664234,
"avg_line_length": 51.5764705882,
"ext": "agda",
"hexsha": "9d12ccd6200aebc656395d0c905e6361ab77d495",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Vector/LinearMap/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Vector/LinearMap/Category.agda",
"max_line_length": 286,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Vector/LinearMap/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2495,
"size": 4384
} |
{-# OPTIONS --without-K #-}
{-
Now it only has specialized constructs and lemmas for π₀ (x ≡ y)
Should be rewritten with something like Algebra.Groupoids
-}
open import Base
module Homotopy.PathTruncation where
open import HLevel
open import HLevelBis
open import Homotopy.Truncation
_≡₀_ : ∀ {i} {A : Set i} → A → A → Set i
_≡₀_ x y = π₀ (x ≡ y)
infix 8 _∘₀_ -- \o\0
_∘₀_ : ∀ {i} {A : Set i} {x y z : A} → x ≡₀ y → y ≡₀ z → x ≡₀ z
_∘₀_ =
π₀-extend-nondep ⦃ →-is-set $ π₀-is-set _ ⦄ (λ p →
π₀-extend-nondep ⦃ π₀-is-set _ ⦄ (λ q →
proj $ p ∘ q))
!₀ : ∀ {i} {A : Set i} {x y : A} → x ≡₀ y → y ≡₀ x
!₀ = π₀-extend-nondep ⦃ π₀-is-set _ ⦄ (proj ◯ !)
refl₀ : ∀ {i} {A : Set i} {a : A} → a ≡₀ a
refl₀ = proj refl
ap₀ : ∀ {i j} {A : Set i} {B : Set j} {x y : A} (f : A → B)
→ x ≡₀ y → f x ≡₀ f y
ap₀ f = π₀-extend-nondep ⦃ π₀-is-set _ ⦄ (proj ◯ ap f)
module _ {i} {A : Set i} where
refl₀-right-unit : ∀ {x y : A} (q : x ≡₀ y) → (q ∘₀ refl₀) ≡ q
refl₀-right-unit {x = x} {y} = π₀-extend
⦃ λ _ → ≡-is-set $ π₀-is-set (x ≡ y) ⦄
(λ x → ap proj $ refl-right-unit x)
refl₀-left-unit : ∀ {x y : A} (q : x ≡₀ y) → (refl₀ ∘₀ q) ≡ q
refl₀-left-unit {x = x} {y} = π₀-extend
⦃ λ _ → ≡-is-set $ π₀-is-set (x ≡ y) ⦄
(λ _ → refl)
concat₀-assoc : {x y z t : A} (p : x ≡₀ y) (q : y ≡₀ z) (r : z ≡₀ t)
→ (p ∘₀ q) ∘₀ r ≡ p ∘₀ (q ∘₀ r)
concat₀-assoc =
π₀-extend ⦃ λ _ → Π-is-set λ _ → Π-is-set λ _ → ≡-is-set $ π₀-is-set _ ⦄ (λ p →
π₀-extend ⦃ λ _ → Π-is-set λ _ → ≡-is-set $ π₀-is-set _ ⦄ (λ q →
π₀-extend ⦃ λ _ → ≡-is-set $ π₀-is-set _ ⦄ (λ r →
ap proj $ concat-assoc p q r)))
concat₀-ap₀ : ∀ {j} {B : Set j} (f : A → B) {x y z : A} (p : x ≡₀ y) (q : y ≡₀ z)
→ ap₀ f p ∘₀ ap₀ f q ≡ ap₀ f (p ∘₀ q)
concat₀-ap₀ f =
π₀-extend ⦃ λ _ → Π-is-set λ _ → ≡-is-set $ π₀-is-set _ ⦄ (λ p →
π₀-extend ⦃ λ _ → ≡-is-set $ π₀-is-set _ ⦄ (λ q →
ap proj $ concat-ap f p q))
ap₀-compose : ∀ {j k} {B : Set j} {C : Set k} (g : B → C) (f : A → B)
{x y : A} (p : x ≡₀ y) → ap₀ (g ◯ f) p ≡ ap₀ g (ap₀ f p)
ap₀-compose f g =
π₀-extend ⦃ λ _ → ≡-is-set $ π₀-is-set _ ⦄ (λ p →
ap proj $ ap-compose f g p)
module _ {i} {A : Set i} where
trans-id≡₀cst : {a b c : A} (p : b ≡ c) (q : b ≡₀ a)
→ transport (λ x → x ≡₀ a) p q ≡ proj (! p) ∘₀ q
trans-id≡₀cst refl q = ! $ refl₀-left-unit q
trans-cst≡₀id : {a b c : A} (p : b ≡ c) (q : a ≡₀ b)
→ transport (λ x → a ≡₀ x) p q ≡ q ∘₀ proj p
trans-cst≡₀id refl q = ! $ refl₀-right-unit q
module _ {i} {A : Set i} where
homotopy₀-naturality : ∀ {j} {B : Set j} (f g : A → B)
(p : (x : A) → f x ≡₀ g x) {x y : A} (q : x ≡₀ y)
→ ap₀ f q ∘₀ p y ≡ p x ∘₀ ap₀ g q
homotopy₀-naturality f g p {x} {y} q = π₀-extend
⦃ λ q → ≡-is-set {x = ap₀ f q ∘₀ p y} {y = p x ∘₀ ap₀ g q}
$ π₀-is-set (f x ≡ g y) ⦄
(lemma {x} {y}) q
where
lemma : ∀ {x y : A} (q : x ≡ y) → ap₀ f (proj q) ∘₀ p y ≡ p x ∘₀ ap₀ g (proj q)
lemma refl =
refl₀ ∘₀ p _
≡⟨ refl₀-left-unit (p _) ⟩
p _
≡⟨ ! $ refl₀-right-unit _ ⟩∎
p _ ∘₀ refl₀
∎
-- Loop space commutes with truncation in the sense that
-- τ n (Ω X) = Ω (τ (S n) X)
-- (actually, this is true more generally for paths spaces and we need this
-- level of generality to prove it)
module _ {i} {n : ℕ₋₂} {A : Set i} where
private
to : (x y : A) → (τ n (x ≡ y)) → ((proj {n = S n} x) ≡ (proj y))
to x y = τ-extend-nondep ⦃ τ-is-truncated (S n) A _ _ ⦄ (ap proj)
-- [truncated-path-space (proj x) (proj y)] is [τ n (x ≡ y)]
truncated-path-space : (u v : τ (S n) A) → Type≤ n i
truncated-path-space = τ-extend-nondep
⦃ →-is-truncated (S n) (Type≤-is-truncated n _) ⦄
(λ x → τ-extend-nondep ⦃ Type≤-is-truncated n _ ⦄
(λ y → τ n (x ≡ y) , τ-is-truncated n _))
-- We now extend [to] to the truncation of [A], and this is why we needed to
-- first extend the return type of [to]
to' : (u v : τ (S n) A) → (π₁ (truncated-path-space u v) → u ≡ v)
to' = τ-extend ⦃ λ x → Π-is-truncated (S n) (λ a →
Π-is-truncated (S n) (λ b →
≡-is-truncated (S n)
(τ-is-truncated (S n) A)))⦄
(λ x → τ-extend ⦃ λ t → Π-is-truncated (S n) (λ a →
≡-is-truncated (S n)
(τ-is-truncated (S n) A))⦄
(λ y → to x y))
from'-refl : (u : τ (S n) A) → (π₁ (truncated-path-space u u))
from'-refl = τ-extend ⦃ λ x → truncated-is-truncated-S n
(π₂ (truncated-path-space x x))⦄
(λ x → proj refl)
from' : (u v : τ (S n) A) → (u ≡ v → π₁ (truncated-path-space u v))
from' u .u refl = from'-refl u
from : (x y : A) → (proj {n = S n} x ≡ proj y → τ n (x ≡ y))
from x y p = from' (proj x) (proj y) p
from-to : (x y : A) (p : τ n (x ≡ y)) → from x y (to x y p) ≡ p
from-to x y = τ-extend ⦃ λ _ → ≡-is-truncated n (τ-is-truncated n _)⦄
(from-to' x y) where
from-to' : (x y : A) (p : x ≡ y) → from x y (to x y (proj p)) ≡ proj p
from-to' x .x refl = refl
to'-from' : (u v : τ (S n) A) (p : u ≡ v) → to' u v (from' u v p) ≡ p
to'-from' x .x refl = to'-from'-refl x where
to'-from'-refl : (u : τ (S n) A) → to' u u (from' u u refl) ≡ refl
to'-from'-refl = τ-extend ⦃ λ _ → ≡-is-truncated (S n)
(≡-is-truncated (S n)
(τ-is-truncated (S n) A))⦄
(λ _ → refl)
to-from : (x y : A) (p : proj {n = S n} x ≡ proj y) → to x y (from x y p) ≡ p
to-from x y p = to'-from' (proj x) (proj y) p
τ-path-equiv-path-τ-S : {x y : A} → τ n (x ≡ y) ≃ (proj {n = S n} x ≡ proj y)
τ-path-equiv-path-τ-S {x} {y} =
(to x y , iso-is-eq _ (from x y) (to-from x y) (from-to x y))
module _ where
open import Homotopy.Connected
abstract
connected-has-connected-paths : is-connected (S n) A → (p q : A) → is-connected n (p ≡ q)
connected-has-connected-paths conn p q =
equiv-types-truncated ⟨-2⟩ (τ-path-equiv-path-τ-S ⁻¹) (contr-is-prop conn (proj p) (proj q))
connected-has-all-τ-paths : is-connected (S n) A → (p q : A) → τ n (p ≡ q)
connected-has-all-τ-paths conn p q = π₁ $ connected-has-connected-paths conn p q
| {
"alphanum_fraction": 0.4709568939,
"avg_line_length": 38.4823529412,
"ext": "agda",
"hexsha": "bd17cf8dec8506f5756c508c077d7e1f5ae8355c",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "old/Homotopy/PathTruncation.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "old/Homotopy/PathTruncation.agda",
"max_line_length": 100,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "timjb/HoTT-Agda",
"max_stars_repo_path": "old/Homotopy/PathTruncation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 2764,
"size": 6542
} |
{-
A morphism of UARels is a function between the structures with an action on the relations that
commutes with the equivalence to PathP.
We can reindex a DUARel or SubstRel along one of these.
-}
{-# OPTIONS --safe #-}
module Cubical.Displayed.Morphism where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Transport
open import Cubical.Displayed.Base
open import Cubical.Displayed.Subst
private
variable
ℓ ℓA ℓA' ℓ≅A ℓB ℓB' ℓ≅B ℓC ℓ≅C : Level
record UARelHom {A : Type ℓA} {B : Type ℓB} (𝒮-A : UARel A ℓ≅A) (𝒮-B : UARel B ℓ≅B)
: Type (ℓ-max (ℓ-max ℓA ℓ≅A) (ℓ-max ℓB ℓ≅B)) where
no-eta-equality
constructor uarelhom
field
fun : A → B
rel : ∀ {a a'} → UARel._≅_ 𝒮-A a a' → UARel._≅_ 𝒮-B (fun a) (fun a')
ua : ∀ {a a'} (p : UARel._≅_ 𝒮-A a a')
→ cong fun (UARel.≅→≡ 𝒮-A p) ≡ UARel.≅→≡ 𝒮-B (rel p)
open UARelHom
𝒮-id : {A : Type ℓA} (𝒮-A : UARel A ℓ≅A) → UARelHom 𝒮-A 𝒮-A
𝒮-id 𝒮-A .fun = idfun _
𝒮-id 𝒮-A .rel = idfun _
𝒮-id 𝒮-A .ua _ = refl
𝒮-∘ : {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : Type ℓB} {𝒮-B : UARel B ℓ≅B}
{C : Type ℓC} {𝒮-C : UARel C ℓ≅C}
→ UARelHom 𝒮-B 𝒮-C
→ UARelHom 𝒮-A 𝒮-B
→ UARelHom 𝒮-A 𝒮-C
𝒮-∘ g f .fun = g .fun ∘ f .fun
𝒮-∘ g f .rel = g .rel ∘ f .rel
𝒮-∘ {𝒮-A = 𝒮-A} {𝒮-B = 𝒮-B} {𝒮-C = 𝒮-C} g f .ua p =
cong (cong (g .fun)) (f .ua p) ∙ g .ua (f .rel p)
𝒮ᴰ-reindex : {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : Type ℓB} {𝒮-B : UARel B ℓ≅B} {C : B → Type ℓC}
(f : UARelHom 𝒮-A 𝒮-B)
→ DUARel 𝒮-B C ℓ≅C
→ DUARel 𝒮-A (C ∘ fun f) ℓ≅C
𝒮ᴰ-reindex f 𝒮ᴰ-C .DUARel._≅ᴰ⟨_⟩_ c p c' = 𝒮ᴰ-C .DUARel._≅ᴰ⟨_⟩_ c (f .rel p) c'
𝒮ᴰ-reindex {C = C} f 𝒮ᴰ-C .DUARel.uaᴰ c p c' =
compEquiv
(𝒮ᴰ-C .DUARel.uaᴰ c (f .rel p) c')
(substEquiv (λ q → PathP (λ i → C (q i)) c c') (sym (f .ua p)))
𝒮ˢ-reindex : {A : Type ℓA} {𝒮-A : UARel A ℓ≅A} {B : Type ℓB} {𝒮-B : UARel B ℓ≅B} {C : B → Type ℓC}
(f : UARelHom 𝒮-A 𝒮-B)
→ SubstRel 𝒮-B C
→ SubstRel 𝒮-A (C ∘ fun f)
𝒮ˢ-reindex f 𝒮ˢ-C .SubstRel.act p = 𝒮ˢ-C .SubstRel.act (f .rel p)
𝒮ˢ-reindex {C = C} f 𝒮ˢ-C .SubstRel.uaˢ p c =
cong (λ q → subst C q c) (f .ua p)
∙ 𝒮ˢ-C .SubstRel.uaˢ (f .rel p) c
| {
"alphanum_fraction": 0.5934309809,
"avg_line_length": 33.1323529412,
"ext": "agda",
"hexsha": "94b463a36a56f6a3aa432078c6c86546a90f56f4",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Displayed/Morphism.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Displayed/Morphism.agda",
"max_line_length": 98,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Displayed/Morphism.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 1226,
"size": 2253
} |
{-# OPTIONS --copatterns #-}
-- One-place functors (decorations) on Set
module Control.Auto-Bug-in-Goal-2 where
open import Function using (id)
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open import Control.Functor
record IsDecoration (D : Set → Set) : Set₁ where
field
traverse : ∀ {F} {{ functor : IsFunctor F }} {A B} → (A → F B) → D A → F (D B)
traverse-id : ∀ {A} → traverse {F = λ A → A} {A = A} id ≡ id
isFunctor : IsFunctor D
isFunctor = record
{ ops = record { map = traverse }
; laws = record { map-id = traverse-id ; map-∘ = {!!} } }
open IsDecoration
idIsDecoration : IsDecoration (λ A → A)
traverse idIsDecoration f = f
traverse-id idIsDecoration = {!!}
compIsDecoration : ∀ {D E} → IsDecoration D → IsDecoration E → IsDecoration (λ A → D (E A))
traverse (compIsDecoration d e) f = traverse d (traverse e f)
traverse-id (compIsDecoration d e) = {!!}
| {
"alphanum_fraction": 0.6543478261,
"avg_line_length": 27.8787878788,
"ext": "agda",
"hexsha": "bb8472baef35b512156b26575ea09ad48b64d563",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/cubical",
"max_forks_repo_path": "src/Control/Auto-Bug-in-Goal-2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/cubical",
"max_issues_repo_path": "src/Control/Auto-Bug-in-Goal-2.agda",
"max_line_length": 91,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "914f655c7c0417754c2ffe494d3f6ea7a357b1c3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/cubical",
"max_stars_repo_path": "src/Control/Auto-Bug-in-Goal-2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 286,
"size": 920
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import cohomology.Theory
open import cw.CW
module cw.cohomology.CohomologyGroupsTooHigh {i} (OT : OrdinaryTheory i)
m {n} (n<m : n < m) (G : Group i) (⊙skel : ⊙Skeleton {i} n)
(ac : ⊙has-cells-with-choice 0 ⊙skel i) where
open OrdinaryTheory OT
open import cw.cohomology.Descending OT
open import groups.KernelImage {G = G}
{H = Lift-group {j = i} Unit-group}
{K = Lift-group {j = i} Unit-group}
cst-hom cst-hom
(snd (Lift-abgroup Unit-abgroup))
open import groups.KernelCstImageCst G
(Lift-group {j = i} Unit-group)
(Lift-group {j = i} Unit-group)
(snd (Lift-abgroup Unit-abgroup))
C-cw-iso-ker/im : C (ℕ-to-ℤ m) ⊙⟦ ⊙skel ⟧ ≃ᴳ Ker/Im
C-cw-iso-ker/im = Ker-cst-quot-Im-cst ⁻¹ᴳ ∘eᴳ lift-iso
∘eᴳ trivial-iso-0ᴳ (C-cw-at-higher ⊙skel n<m ac)
| {
"alphanum_fraction": 0.6686819831,
"avg_line_length": 29.5357142857,
"ext": "agda",
"hexsha": "241056171c52ffae0ab9ddd4fa9ccff5b96b6e3f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/cw/cohomology/CohomologyGroupsTooHigh.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/cw/cohomology/CohomologyGroupsTooHigh.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/cw/cohomology/CohomologyGroupsTooHigh.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 333,
"size": 827
} |
{-# OPTIONS --without-K #-}
module Lecture5 where
open import Lecture4 public
-- Section 5.1 Homotopies
_~_ : {i j : Level} {A : UU i} {B : A → UU j} (f g : (x : A) → B x) → UU (i ⊔ j)
f ~ g = (x : _) → Id (f x) (g x)
htpy-refl : {i j : Level} {A : UU i} {B : A → UU j} (f : (x : A) → B x) → f ~ f
htpy-refl f x = refl
htpy-inv : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} → (f ~ g) → (g ~ f)
htpy-inv H x = inv (H x)
htpy-concat : {i j : Level} {A : UU i} {B : A → UU j} {f : (x : A) → B x} (g : (x : A) → B x) {h : (x : A) → B x} → (f ~ g) → (g ~ h) → (f ~ h)
htpy-concat g H K x = concat _ (H x) (K x)
htpy-assoc : {i j : Level} {A : UU i} {B : A → UU j} {f g h k : (x : A) → B x} → (H : f ~ g) → (K : g ~ h) → (L : h ~ k) → htpy-concat _ H (htpy-concat _ K L) ~ htpy-concat _ (htpy-concat _ H K) L
htpy-assoc H K L x = assoc (H x) (K x) (L x)
htpy-left-unit : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} (H : f ~ g) → (htpy-concat _ (htpy-refl f) H) ~ H
htpy-left-unit H x = left-unit (H x)
htpy-right-unit : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} (H : f ~ g) → (htpy-concat _ H (htpy-refl g)) ~ H
htpy-right-unit H x = right-unit (H x)
htpy-left-inv : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} (H : f ~ g) → htpy-concat _ (htpy-inv H) H ~ htpy-refl g
htpy-left-inv H x = left-inv (H x)
htpy-right-inv : {i j : Level} {A : UU i} {B : A → UU j} {f g : (x : A) → B x} (H : f ~ g) → htpy-concat _ H (htpy-inv H) ~ htpy-refl f
htpy-right-inv H x = right-inv (H x)
htpy-left-whisk : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} (h : B → C) {f g : A → B} → (f ~ g) → ((h ∘ f) ~ (h ∘ g))
htpy-left-whisk h H x = ap h (H x)
htpy-right-whisk : {i j k : Level} {A : UU i} {B : UU j} {C : UU k} {g h : B → C} (H : g ~ h) (f : A → B) → ((g ∘ f) ~ (h ∘ f))
htpy-right-whisk H f x = H (f x)
-- Section 5.2 Bi-invertible maps
sec : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j)
sec {_} {_} {A} {B} f = Σ (B → A) (λ g → (f ∘ g) ~ id)
retr : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j)
retr {_} {_} {A} {B} f = Σ (B → A) (λ g → (g ∘ f) ~ id)
_retract-of_ : {i j : Level} → UU i → UU j → UU (i ⊔ j)
A retract-of B = Σ (A → B) retr
is-equiv : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j)
is-equiv f = sec f × retr f
-- this equivalence symbol is \simeq
_≃_ : {i j : Level} (A : UU i) (B : UU j) → UU (i ⊔ j)
A ≃ B = Σ (A → B) (λ f → is-equiv f)
eqv-sec : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → sec f
eqv-sec e = pr1 e
eqv-secf : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → B → A
eqv-secf e = pr1 (eqv-sec e)
eqv-sech : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (e : is-equiv f) → ((f ∘ eqv-secf e) ~ id)
eqv-sech e = pr2 (eqv-sec e)
eqv-retr : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → retr f
eqv-retr e = pr2 e
eqv-retrf : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → B → A
eqv-retrf e = pr1 (eqv-retr e)
eqv-retrh : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (e : is-equiv f) → (((eqv-retrf e) ∘ f) ~ id)
eqv-retrh e = pr2 (eqv-retr e)
is-invertible : {i j : Level} {A : UU i} {B : UU j} (f : A → B) → UU (i ⊔ j)
is-invertible {_} {_} {A} {B} f = Σ (B → A) (λ g → ((f ∘ g) ~ id) × ((g ∘ f) ~ id))
is-equiv-is-invertible : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-invertible f → is-equiv f
is-equiv-is-invertible (dpair g (dpair H K)) = pair (dpair g H) (dpair g K)
htpy-secf-retrf : {i j : Level} {A : UU i} {B : UU j} {f : A → B} (e : is-equiv f) → (eqv-secf e ~ eqv-retrf e)
htpy-secf-retrf {_} {_} {_} {_} {f} (dpair (dpair g issec) (dpair h isretr)) =
htpy-concat (h ∘ (f ∘ g)) (htpy-inv (htpy-right-whisk isretr g)) (htpy-left-whisk h issec)
is-invertible-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → is-invertible f
is-invertible-is-equiv {_} {_} {_} {_} {f} (dpair (dpair g issec) (dpair h isretr)) = dpair g (pair issec (htpy-concat (h ∘ f) (htpy-right-whisk (htpy-secf-retrf (dpair (dpair g issec) (dpair h isretr))) f) isretr))
inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → is-equiv f → B → A
inv-is-equiv E = pr1 (is-invertible-is-equiv E)
issec-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (E : is-equiv f) → (f ∘ (inv-is-equiv E)) ~ id
issec-inv-is-equiv E = pr1 (pr2 (is-invertible-is-equiv E))
isretr-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (E : is-equiv f) → ((inv-is-equiv E) ∘ f) ~ id
isretr-inv-is-equiv E = pr2 (pr2 (is-invertible-is-equiv E))
is-equiv-inv-is-equiv : {i j : Level} {A : UU i} {B : UU j} {f : A → B} → (E : is-equiv f) → is-equiv (inv-is-equiv E)
is-equiv-inv-is-equiv {_} {_} {_} {_} {f} E =
pair (dpair f (isretr-inv-is-equiv E)) (dpair f (issec-inv-is-equiv E))
is-equiv-id : {i : Level} (A : UU i) → is-equiv (id {_} {A})
is-equiv-id A = pair (dpair id (htpy-refl id)) (dpair id (htpy-refl id))
inv-Pi-swap : {i j k : Level} {A : UU i} {B : UU j} (C : A → B → UU k) →
((y : B) (x : A) → C x y) → ((x : A) (y : B) → C x y)
inv-Pi-swap C g x y = g y x
is-equiv-swap : {i j k : Level} {A : UU i} {B : UU j} (C : A → B → UU k) → is-equiv (Pi-swap {_} {_} {_} {A} {B} {C})
is-equiv-swap C = pair (dpair (inv-Pi-swap C) (htpy-refl id)) (dpair (inv-Pi-swap C) (htpy-refl id))
-- Section 5.3 The identity type of a Σ-type
eq-pair' : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → (Σ (Id (pr1 s) (pr1 t)) (λ α → Id (tr B α (pr2 s)) (pr2 t))) → Id s t
eq-pair' (dpair x y) (dpair x' y') (dpair refl refl) = refl
eq-pair : {i j : Level} {A : UU i} {B : A → UU j} {s t : Σ A B} → (Σ (Id (pr1 s) (pr1 t)) (λ α → Id (tr B α (pr2 s)) (pr2 t))) → Id s t
eq-pair {i} {j} {A} {B} {s} {t} = eq-pair' s t
pair-eq' : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → (Id s t) → Σ (Id (pr1 s) (pr1 t)) (λ α → Id (tr B α (pr2 s)) (pr2 t))
pair-eq' s t refl = dpair refl refl
pair-eq : {i j : Level} {A : UU i} {B : A → UU j} {s t : Σ A B} → (Id s t) → Σ (Id (pr1 s) (pr1 t)) (λ α → Id (tr B α (pr2 s)) (pr2 t))
pair-eq {i} {j} {A} {B} {s} {t} = pair-eq' s t
isretr-pair-eq : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → (((pair-eq' s t) ∘ (eq-pair' s t)) ~ id)
isretr-pair-eq (dpair x y) (dpair x' y') (dpair refl refl) = refl
issec-pair-eq : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → (((eq-pair' s t) ∘ (pair-eq' s t)) ~ id)
issec-pair-eq (dpair x y) .(dpair x y) refl = refl
is-equiv-eq-pair' : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → is-equiv (eq-pair' s t)
is-equiv-eq-pair' s t = pair (dpair (pair-eq' s t) (issec-pair-eq s t)) (dpair (pair-eq' s t) (isretr-pair-eq s t))
is-equiv-eq-pair : {i j : Level} {A : UU i} {B : A → UU j} (s t : Σ A B) → is-equiv (eq-pair {i} {j} {A} {B} {s} {t})
is-equiv-eq-pair = is-equiv-eq-pair'
-- Exercises below
-- Exercise 5.1
singleton-ind-const-htpy : {i : Level} {A : UU i} (a : A) → (const 𝟙 A a) ~ (ind-unit a)
singleton-ind-const-htpy a star = refl
-- Exercise 5.2
ap-const-is-const-refl : {i j : Level} {A : UU i} {B : UU j} (b : B) {x y : A} → (ap (const A B b)) ~ (const (Id x y) (Id b b) refl)
ap-const-is-const-refl b refl = refl
-- Exercise 5.3
inv-inv-htpy : {i : Level} {A : UU i} {x y : A} (p : Id x y) → Id (inv (inv p)) p
inv-inv-htpy refl = refl
is-equiv-inv : {i : Level} {A : UU i} (x y : A) →
is-equiv (λ (p : Id x y) → inv p)
is-equiv-inv x y = pair (dpair inv inv-inv-htpy) (dpair inv inv-inv-htpy)
concat-inv-left-htpy : {i : Level} {A : UU i} {x y z : A} (p : Id x y) → (q : Id y z) → Id ((inv p) · (p · q)) q
concat-inv-left-htpy refl q = refl
concat-inv-right-htpy : {i : Level} {A : UU i} {x y z : A} (p : Id x y) → (r : Id x z) → Id (p · ((inv p) · r)) r
concat-inv-right-htpy refl r = refl
is-equiv-concat : {i : Level} {A : UU i} (x y z : A) (p : Id x y) → (is-equiv λ (q : Id y z) → p · q)
is-equiv-concat x y z p = pair (dpair (λ (r : Id x z) → ((inv p) · r)) (λ (r : Id x z) → concat-inv-right-htpy p r)) (dpair (λ (r : Id x z) → (inv p) · r) (λ (q : Id y z) → concat-inv-left-htpy p q))
tr-inv-htpy : {i j : Level} {A : UU i} {B : A → UU j} {x y : A} (p : Id x y) (b : B x) → Id (tr B (inv p) (tr B p b)) b
tr-inv-htpy refl b = refl
tr-inv-htpy' : {i j : Level} {A : UU i} {B : A → UU j} {x y : A} (p : Id x y) (b : B y) → Id (tr B p (tr B (inv p) b)) b
tr-inv-htpy' refl b = refl
is-equiv-tr : {i j : Level} {A : UU i} (B : A → UU j) {x y : A} (p : Id x y) → is-equiv (λ b → (tr B p b))
is-equiv-tr B p = pair (dpair (tr B (inv p)) (tr-inv-htpy' p)) (dpair (tr B (inv p)) (tr-inv-htpy p))
-- Exercise 5.4
is-equiv-htpy : {i j : Level} {A : UU i} {B : UU j} {f g : A → B} →
f ~ g → is-equiv g → is-equiv f
is-equiv-htpy H (dpair (dpair gs issec) (dpair gr isretr)) =
pair
(dpair gs (htpy-concat _ (htpy-right-whisk H gs) issec))
(dpair gr (htpy-concat (gr ∘ _) (htpy-left-whisk gr H) isretr))
-- Exercise 5.5
is-equiv-comp : {i j k : Level} {A : UU i} {B : UU j} {X : UU k} {f : A → X} {g : B → X} {h : A → B} (H : f ~ (g ∘ h)) → is-equiv h → is-equiv g → is-equiv f
is-equiv-comp {i} {j} {k} {A} {B} {X} {f} {g} {h} H (dpair (dpair hs hs-issec) (dpair hr hr-isretr))
(dpair (dpair gs gs-issec) (dpair gr gr-isretr)) =
is-equiv-htpy H
(pair
(dpair (hs ∘ gs)
(htpy-concat (g ∘ gs)
(htpy-left-whisk g (htpy-right-whisk hs-issec gs)) gs-issec))
(dpair (hr ∘ gr)
(htpy-concat (hr ∘ h)
(htpy-left-whisk hr (htpy-right-whisk gr-isretr h)) hr-isretr)))
-- Exercise 5.6
not-not-x-is-x : (x : bool) → Id (not (not x)) x
not-not-x-is-x true = refl
not-not-x-is-x false = refl
is-equiv-not : is-equiv not
is-equiv-not = pair (dpair not not-not-x-is-x) (dpair not not-not-x-is-x)
path-true-to-false-is-contra : (Id true false) → 𝟘
path-true-to-false-is-contra p = tr (ind-bool 𝟙 𝟘) p star
same-image-not-equiv : (f : bool → bool) → (p : Id (f true) (f false)) → (is-equiv f) → 𝟘
same-image-not-equiv f p (dpair f-is-sec (dpair g htpy)) = path-true-to-false-is-contra (true ==⟨ inv (htpy true) ⟩ g(f(true)) ==⟨ (ap g p) ⟩ g(f(false)) ==⟨ htpy false ⟩ false ==∎)
-- NOTE: ap g p is a path from g(f(true)) to g(f(false))
-- Exercise 5.7
zpred-zsucc-x-is-x : (x : ℤ) → Id (Zpred (Zsucc x)) x
zpred-zsucc-x-is-x (inl Nzero) = refl
zpred-zsucc-x-is-x (inl (Nsucc x)) = refl
zpred-zsucc-x-is-x (inr (inl star)) = refl
zpred-zsucc-x-is-x (inr (inr x)) = refl
zsucc-zpred-x-is-x : (x : ℤ) → Id (Zsucc (Zpred x)) x
zsucc-zpred-x-is-x (inl x) = refl
zsucc-zpred-x-is-x (inr (inl star)) = refl
zsucc-zpred-x-is-x (inr (inr Nzero)) = refl
zsucc-zpred-x-is-x (inr (inr (Nsucc x))) = refl
is-equiv-zsucc : is-equiv Zsucc
is-equiv-zsucc = dpair (dpair Zpred zsucc-zpred-x-is-x) (dpair Zpred zpred-zsucc-x-is-x)
-- Exercise 5.8
-- construct equivalences A + B <-> B + A and A x B <-> B x A
coprod-rev : {i j : Level} (A : UU i) (B : UU j) → (coprod A B) → (coprod B A)
coprod-rev A B (inl a) = inr a
coprod-rev A B (inr b) = inl b
coprod-rev-squared-is-id : {i j : Level} (A : UU i) (B : UU j) → (coprod-rev B A ∘ coprod-rev A B) ~ id
coprod-rev-squared-is-id A B (inl a) = refl
coprod-rev-squared-is-id A B (inr b) = refl
is-equiv-coprod-rev : {i j : Level} (A : UU i) (B : UU j) → is-equiv (coprod-rev A B)
is-equiv-coprod-rev A B = dpair (dpair (coprod-rev B A) (coprod-rev-squared-is-id B A)) (dpair (coprod-rev B A) (coprod-rev-squared-is-id A B))
prod-rev : {i j : Level} (A : UU i) (B : UU j) → (prod A B) → (prod B A)
prod-rev A B x = pair (pr2 x) (pr1 x)
prod-rev-squared-is-id : {i j : Level} (A : UU i) (B : UU j) → (prod-rev B A ∘ prod-rev A B) ~ id
prod-rev-squared-is-id A B (dpair a b) = refl
is-equiv-prod-rev : {i j : Level} (A : UU i) (B : UU j) → is-equiv (prod-rev A B)
is-equiv-prod-rev A B = dpair (dpair (prod-rev B A) (prod-rev-squared-is-id B A)) (dpair (prod-rev B A) (prod-rev-squared-is-id A B))
-- Exercise 5.9
-- i r
-- Consider a sec/retr pair A ---> B ---> A with H : r ∘ i ~ id. Show that x = y is a retr of i(x) = i(y)
-- path-is-retr-of-apsec : {j k : Level} {A : UU j} {B : UU k} (x : A) (y : A) → (i : A → B) → (r : B → A) → ((r ∘ i) ~ id) → ((Id x y) retract-of (Id (i x) (i y)))
-- path-is-retr-of-apsec x y i r H = dpair (ap i) ((dpair (( λ p → x ==⟨ inv (H x) ⟩ r (i x) ==⟨ (ap r p) ⟩ r (i y) ==⟨ (H y) ⟩ y ==∎ )) λ p → {! !})
-- Exercise 5.10
-- Exercise 5.11
-- Exercise 5.12
-- Exercise 5.13
| {
"alphanum_fraction": 0.5210016801,
"avg_line_length": 42.0841750842,
"ext": "agda",
"hexsha": "a009141f1fdee63453fe067d4d1394dd86a5b39f",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2018-06-25T15:05:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-02-22T19:58:46.000Z",
"max_forks_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_forks_repo_licenses": [
"Unlicense"
],
"max_forks_repo_name": "glangmead/hott_cmu80818",
"max_forks_repo_path": "Lecture5.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_issues_repo_issues_event_max_datetime": "2018-03-25T14:44:31.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-02-22T21:01:16.000Z",
"max_issues_repo_licenses": [
"Unlicense"
],
"max_issues_repo_name": "glangmead/hott_cmu80818",
"max_issues_repo_path": "Lecture5.agda",
"max_line_length": 215,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "af64d808630f4f1498a75201b6ca4d74d662516b",
"max_stars_repo_licenses": [
"Unlicense"
],
"max_stars_repo_name": "glangmead/hott_cmu80818",
"max_stars_repo_path": "Lecture5.agda",
"max_stars_repo_stars_event_max_datetime": "2018-09-04T02:52:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-05-03T20:32:19.000Z",
"num_tokens": 5761,
"size": 12499
} |
module Inductive.Examples.Sum where
open import Inductive
open import Tuple
open import Data.Fin
open import Data.Product
open import Data.List
open import Data.Vec
_⊎_ : Set → Set → Set
A ⊎ B = Inductive (((A ∷ []) , []) ∷ (((B ∷ []) , []) ∷ []))
inl : {A B : Set} → A → A ⊎ B
inl a = construct zero (a ∷ []) []
inr : {A B : Set} → B → A ⊎ B
inr b = construct (suc zero) (b ∷ []) []
case : {A B C : Set} → A ⊎ B → (A → C) → (B → C) → C
case x f g = rec (f ∷ (g ∷ [])) x
| {
"alphanum_fraction": 0.5303983229,
"avg_line_length": 21.6818181818,
"ext": "agda",
"hexsha": "165d97e342bc4939b3f6abec53350627e9281252",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mr-ohman/general-induction",
"max_forks_repo_path": "Inductive/Examples/Sum.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mr-ohman/general-induction",
"max_issues_repo_path": "Inductive/Examples/Sum.agda",
"max_line_length": 60,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "dc157acda597a2c758e82b5637e4fd6717ccec3f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mr-ohman/general-induction",
"max_stars_repo_path": "Inductive/Examples/Sum.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 187,
"size": 477
} |
module Basic.BigStep where
import Data.Bool as Bool using (not)
open import Data.Bool hiding (not; if_then_else_)
open import Data.Empty
open import Data.Fin using (Fin; suc; zero; #_)
open import Data.Nat
open import Data.Nat.Properties.Simple
open import Data.Vec
open import Function
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality
open import Data.Product
import Level as L
open import Utils.Decidable
open import Utils.NatOrdLemmas
open import Basic.AST
{-
The big-step semantics of the while language. It's chapter 2.1 in the book.
Note that we use a {n : ℕ} parameter to fix the size of the program state over
our derivations. This is fine since we don't have any derivation rule that
changes the size of the state.
The definitions themselves should come as no surprise to readers of the book.
I employ some syntactic shenanigans to make the definitions visually similar to the familiar
sequent/natural calculus notation (I borrow the formatting style from Conor McBride).
-}
infixr 4 _,_
data ⟨_,_⟩⟱_ {n : ℕ} : St n → State n → State n → Set where
{- "[ x ]≔ value" is just the standard library definition of vector update -}
ass :
∀ {s x a}
→ ------------------------------------
⟨ x := a , s ⟩⟱ (s [ x ]≔ ⟦ a ⟧ᵉ s)
skip :
∀ {s}
→ -----------------
⟨ skip , s ⟩⟱ s
_,_ :
∀ {s₁ s₂ s₃ S₁ S₂} →
⟨ S₁ , s₁ ⟩⟱ s₂ → ⟨ S₂ , s₂ ⟩⟱ s₃
→ -------------------------------------
⟨ (S₁ , S₂ ) , s₁ ⟩⟱ s₃
{- The "T" in "T (⟦ b ⟧ᵉ s)" can be found in Data.Bool.Base. It's ⊤ on a true argument
and ⊥ on a false argument, so it just lifts boolean values to proofs.
"F" works the same way, except it's provable on a false argument -}
if-true :
∀ {s s' S₁ S₂ b} →
T (⟦ b ⟧ᵉ s) → ⟨ S₁ , s ⟩⟱ s'
→ -----------------------------------
⟨ if b then S₁ else S₂ , s ⟩⟱ s'
if-false :
∀ {s s' S₁ S₂ b} →
F (⟦ b ⟧ᵉ s) → ⟨ S₂ , s ⟩⟱ s'
→ -----------------------------------
⟨ if b then S₁ else S₂ , s ⟩⟱ s'
while-true :
∀ {s s' s'' S b} →
T (⟦ b ⟧ᵉ s) → ⟨ S , s ⟩⟱ s' → ⟨ while b do S , s' ⟩⟱ s''
→ ----------------------------------------------------------------
⟨ while b do S , s ⟩⟱ s''
while-false :
∀ {s S b} →
F (⟦ b ⟧ᵉ s)
→ ------------------------
⟨ while b do S , s ⟩⟱ s
{-
Example program and program derivation below.
Note the magnificient de Bruijn variables.
Program derivations are really slow to typecheck.
Brave souls may want to uncomment it and give it a try.
But other than that, we may should that the derivations look pretty clean and concise.
There's lots of details that Agda's inference can fill in for us.
-}
private
prog : St 3
prog =
# 2 := lit 0 ,
while lte (var (# 1)) (var (# 0)) do
( # 2 := add (var (# 2)) (lit 1) ,
# 0 := sub (var (# 0)) (var (# 1)) )
-- -- uncomment if you dare
-- prog-deriv :
-- ∀ {z} → ⟨ prog , 17 ∷ 5 ∷ z ∷ [] ⟩⟱ (2 ∷ 5 ∷ 3 ∷ [])
-- prog-deriv =
-- ass ,
-- while-true tt (ass , ass)
-- (while-true tt (ass , ass)
-- (while-true tt (ass , ass)
-- (while-false tt)))
{- A program diverges on a state if there is no derivation starting from it
Since this is big-step semantics, we can't distinguish this from being stuck -}
_divergesOnₙ_ : ∀ {n} → St n → State n → Set
prog divergesOnₙ s = ∀ {s'} → ¬ ⟨ prog , s ⟩⟱ s'
{- A program is divergent if it diverges on all states -}
Divergentₙ : ∀ {n} → St n → Set
Divergentₙ prog = ∀ {s} → prog divergesOnₙ s
{-
The fun thing about the following proof of divergence is that we implicitly
rely on the finiteness of Agda data. Since we have apparent infinite recursion
in the proof, but all inductive Agda data are finite, this implies that no such
derivation may exist in the first place.
-}
private
inf-loopₙ : ∀ {n} → Divergentₙ {n} (while tt do skip)
inf-loopₙ (while-true x skip p₁) = inf-loopₙ p₁
inf-loopₙ (while-false x) = x
-- Semantic equivalence
_⇔_ : ∀ {a b} → Set a → Set b → Set (a L.⊔ b)
A ⇔ B = (A → B) × (B → A)
SemanticEq : ∀ {n} → St n → St n → Set
SemanticEq pa pb = ∀ {s s'} → ⟨ pa , s ⟩⟱ s' ⇔ ⟨ pb , s ⟩⟱ s'
Semantic⇒ : ∀ {n} → St n → St n → Set
Semantic⇒ pa pb = ∀ {s s'} → ⟨ pa , s ⟩⟱ s' → ⟨ pb , s ⟩⟱ s'
private
-- "while b do S" is equivalent to "if b then (S , while b do S) else skip"
prog1 : ∀ {n} _ _ → St n
prog1 b S = while b do S
prog2 : ∀ {n} _ _ → St n
prog2 b S = if b then (S , while b do S) else skip
progeq : ∀ {n b S} → SemanticEq {n} (prog1 b S) (prog2 b S)
progeq {n}{b}{S} = to , from
where
to : Semantic⇒ (prog1 b S) (prog2 b S)
to (while-true x p1 p2) = if-true x (p1 , p2)
to (while-false x) = if-false x skip
from : Semantic⇒ (prog2 b S) (prog1 b S)
from (if-true x (p1 , p2)) = while-true x p1 p2
from (if-false x skip) = while-false x
-- The semantics is deterministic. Not much to comment on.
deterministic :
∀ {n}{p : St n}{s s' s''} → ⟨ p , s ⟩⟱ s' → ⟨ p , s ⟩⟱ s'' → s' ≡ s''
deterministic = go where
go : ∀ {p s s' s''} → ⟨ p , s ⟩⟱ s' → ⟨ p , s ⟩⟱ s'' → s' ≡ s''
go ass ass = refl
go skip skip = refl
go (p1 , p2) (p3 , p4) rewrite go p1 p3 | go p2 p4 = refl
go (if-true x p1) (if-true x₁ p2) rewrite go p1 p2 = refl
go (if-true x p1) (if-false x₁ p2) rewrite T→≡true x = ⊥-elim x₁
go (if-false x p1) (if-true x₁ p2) rewrite T→≡true x₁ = ⊥-elim x
go (if-false x p1) (if-false x₁ p2) rewrite go p1 p2 = refl
go (while-true x p1 p2) (while-true x₁ p3 p4) rewrite go p1 p3 | go p2 p4 = refl
go (while-true x p1 p2) (while-false x₁) rewrite T→≡true x = ⊥-elim x₁
go (while-false x) (while-true x₁ p2 p3) rewrite T→≡true x₁ = ⊥-elim x
go (while-false x) (while-false x₁) = refl
{-
Below is a proof that is not contained in the book. I did it to familiarize myself
with the style of proving in this semantics.
It proves that if we have a derivation for a loop, then we can construct a
derivation for a loop that goes on for one more iteration, because it has
a higher bound in the condition.
However, if we start out with a loop index that is already greater then the
loop bound, we get divergence. But just having a derivation as hypothesis
rules out divergence! We can show this to Agda by proving the divergence in that
case and getting a contradiction.
-}
private
loop : St 2
loop =
while not (eq (var (# 0)) (var (# 1))) do
(# 0 := add (lit 1) (var (# 0)))
once-more :
∀ { i₀ lim₀ i₁} →
⟨ loop , i₀ ∷ lim₀ ∷ [] ⟩⟱ (i₁ ∷ lim₀ ∷ [])
→ ⟨ loop , i₀ ∷ suc lim₀ ∷ [] ⟩⟱ (1 + i₁ ∷ suc lim₀ ∷ [])
once-more {i₀}{lim₀} p with cmp i₀ lim₀
once-more (while-true x₁ ass p₁) | LT x =
while-true (¬A→FalseA $ a<b⟶a≢sb _ _ x) ass (once-more p₁)
once-more (while-false x₁) | LT x
rewrite TrueA→A $ F-not-elim x₁
= ⊥-elim (a≮a _ x)
once-more (while-true x p p₁) | EQ refl =
⊥-elim (FalseA→¬A x refl)
once-more (while-false x) | EQ refl =
while-true (¬A→FalseA $ a≢sa _) ass (while-false (F-not-add $ A→TrueA refl))
once-more p | GT x =
⊥-elim (diverges x p)
where
diverges : ∀ {i₀ lim₀} → lim₀ < i₀ → loop divergesOnₙ (i₀ ∷ lim₀ ∷ [])
diverges p1 (while-true x ass p3) = diverges (<-weakenr1 _ _ p1) p3
diverges p1 (while-false x) rewrite TrueA→A $ F-not-elim x = a≮a _ p1
{-
Correctness of a factorial program.
This task made me ponder the nature of meta- and object languages a bit.
Our job here is to prove that the factorial program computes a factorial. But in order to
be able to state this property, we had to define the notion of factorial in Agda. But this
Agda ⟦fac⟧ function is already executable! Luckily for us, Agda and Coq and co. already
have computational meaning. So if our goal is to simply have a correct factorial program,
then we should just write it in Agda or Coq (although neither supports software development
in an acceptable manner, unfortunately).
Some languages are just better as metalanguages, but if those metalanguages are also
satisfactory as object languages then we might make do with just a single
language, instead of multiple languages and multiple semantics.
Turning back to the actual proof, note that unlike the manual factorial proof in
Chapter 6.1 of the book, this one looks pretty neat and it's also concise.
It's also structurally similar to the program itself.
-}
module Fac where
⟦fac⟧ : ℕ → ℕ
⟦fac⟧ zero = 1
⟦fac⟧ (suc n) = suc n * ⟦fac⟧ n
fac-loop : St 3
fac-loop =
while lt (var (# 1)) (var (# 0)) do
(# 1 := add (lit 1) (var (# 1)) ,
# 2 := mul (var (# 1)) (var (# 2)) )
fac : St 3
fac =
# 1 := lit 0 ,
# 2 := lit 1 ,
fac-loop
fac-loop-ok :
∀ d i
→ ⟨ fac-loop , d + i ∷ i ∷ ⟦fac⟧ i ∷ [] ⟩⟱ (d + i ∷ d + i ∷ ⟦fac⟧ (d + i) ∷ [])
fac-loop-ok zero i = while-false (¬A→FalseA $ a≮a i )
fac-loop-ok (suc d) i with fac-loop-ok d (suc i)
... | next rewrite +-suc d i = while-true (A→TrueA $ a<sb+a i d) (ass , ass) next
fac-ok :
∀ n {i acc} → ⟨ fac , n ∷ i ∷ acc ∷ [] ⟩⟱ (n ∷ n ∷ ⟦fac⟧ n ∷ [])
fac-ok n with fac-loop-ok n 0
... | loop-ok rewrite +-comm n 0 = ass , ass , loop-ok
| {
"alphanum_fraction": 0.5792158113,
"avg_line_length": 33.3723404255,
"ext": "agda",
"hexsha": "8ea7a6a70e52fb895104e438c6240ed10d8b4540",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_forks_repo_path": "Basic/BigStep.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_issues_repo_path": "Basic/BigStep.agda",
"max_line_length": 92,
"max_stars_count": 8,
"max_stars_repo_head_hexsha": "05200d60b4a4b2c6fa37806ced9247055d24db94",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AndrasKovacs/SemanticsWithApplications",
"max_stars_repo_path": "Basic/BigStep.agda",
"max_stars_repo_stars_event_max_datetime": "2020-02-02T10:01:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-09-12T04:25:39.000Z",
"num_tokens": 3275,
"size": 9411
} |
postulate
A : Set
open import Agda.Builtin.Equality
-- here the solution g := (\ (@0 x) (@0 y) → f y x) is not well-typed
-- in a non-erased context, which is how `g` is declared.
bar : (f : A → A → A) (g : @0 A → @0 A → A)
→ @0 _≡_ {A = @0 A → @0 A → A} g (\ (@0 x) (@0 y) → f y x)
→ @0 A → @0 A → A
bar f g refl = g
| {
"alphanum_fraction": 0.4954682779,
"avg_line_length": 25.4615384615,
"ext": "agda",
"hexsha": "634b77a086e51a240abc5d651c8d6e1c01b9bafd",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue4986b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue4986b.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue4986b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 140,
"size": 331
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
open import Categories.Category.Monoidal
module Categories.Category.Monoidal.Traced {o ℓ e} {C : Category o ℓ e} (M : Monoidal C) where
open Category C
open import Level
open import Data.Product using (_,_)
open import Categories.Category.Monoidal.Symmetric M
private
variable
A B X Y : Obj
f g : A ⇒ B
------------------------------------------------------------------------------
-- Def from http://ncatlab.org/nlab/show/traced+monoidal+category
--
-- A symmetric monoidal category (C,⊗,1,b) (where b is the symmetry) is
-- said to be traced if it is equipped with a natural family of functions
--
-- TrXA,B:C(A⊗X,B⊗X)→C(A,B)
-- satisfying three axioms:
--
-- Vanishing: Tr1A,B(f)=f (for all f:A→B) and
-- TrX⊗YA,B=TrXA,B(TrYA⊗X,B⊗X(f)) (for all f:A⊗X⊗Y→B⊗X⊗Y)
--
-- Superposing: TrXC⊗A,C⊗B(idC⊗f)=idC⊗TrXA,B(f) (for all f:A⊗X→B⊗X)
--
-- Yanking: TrXX,X(bX,X)=idX
-- Traced monoidal category
-- is a symmetric monoidal category with a trace operation
--
-- note that the definition in this library is significantly easier than the previous one because
-- we adopt a simpler definition of monoidal category to begin with.
record Traced : Set (levelOfTerm M) where
field
symmetric : Symmetric
open Symmetric symmetric public
field
trace : ∀ {X A B} → A ⊗₀ X ⇒ B ⊗₀ X → A ⇒ B
vanishing₁ : trace {X = unit} (f ⊗₁ id) ≈ f
vanishing₂ : trace {X = X} (trace {X = Y} (associator.to ∘ f ∘ associator.from))
≈ trace {X = X ⊗₀ Y} f
superposing : trace {X = X} (associator.to ∘ id {Y} ⊗₁ f ∘ associator.from) ≈ id {Y} ⊗₁ trace {X = X} f
yanking : trace (braiding.⇒.η (X , X)) ≈ id
| {
"alphanum_fraction": 0.6224549156,
"avg_line_length": 30.6964285714,
"ext": "agda",
"hexsha": "4d953052f9e68997876641a0b65923b0f10e2f91",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Category/Monoidal/Traced.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Category/Monoidal/Traced.agda",
"max_line_length": 107,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Category/Monoidal/Traced.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 583,
"size": 1719
} |
open import Structure.Category
open import Type
module Structure.Category.Monad.Category
{ℓₒ ℓₘ ℓₑ}
{cat : CategoryObject{ℓₒ}{ℓₘ}{ℓₑ}}
where
import Data.Tuple as Tuple
import Function.Equals
open Function.Equals.Dependent
import Lvl
open import Structure.Category.Functor
open import Structure.Category.Monad{cat = cat}
open import Structure.Category.Monad.ExtensionSystem{cat = cat}
open import Structure.Categorical.Properties
open import Structure.Function
open import Structure.Operator
open import Structure.Relator.Equivalence
open import Structure.Setoid
open import Syntax.Transitivity
open CategoryObject(cat)
open Category.ArrowNotation(category)
open Category(category)
private open module MorphismEquiv {x}{y} = Equivalence (Equiv-equivalence ⦃ morphism-equiv{x}{y} ⦄) using ()
module _ (T : Object → Object) ⦃ extSys : ExtensionSystem(T) ⦄ where
open ExtensionSystem(extSys)
open Functor(functor)
open Monad ⦃ functor ⦄ (monad) using (μ-functor-[∘]-identityₗ)
-- Also called: Kleisli category
categoryₑₓₜ : Category(\x y → (x ⟶ T(y)))
Category._∘_ categoryₑₓₜ = _∘ₑₓₜ_
Category.id categoryₑₓₜ = idₑₓₜ
BinaryOperator.congruence (Category.binaryOperator categoryₑₓₜ {x}{y}{z}) {f₁}{f₂} {g₁}{g₂} f₁f₂ g₁g₂ =
f₁ ∘ₑₓₜ g₁ 🝖[ _≡_ ]-[]
ext f₁ ∘ g₁ 🝖[ _≡_ ]-[ congruence₂(_∘_) (congruence₁(ext) f₁f₂) g₁g₂ ]
ext f₂ ∘ g₂ 🝖[ _≡_ ]-[]
f₂ ∘ₑₓₜ g₂ 🝖-end
Morphism.Associativity.proof (Category.associativity categoryₑₓₜ) {x} {y} {z} {w} {f} {g} {h} =
(f ∘ₑₓₜ g) ∘ₑₓₜ h 🝖[ _≡_ ]-[]
ext(ext(f) ∘ g) ∘ h 🝖[ _≡_ ]-[ congruence₂ₗ(_∘_)(_) ext-distribute ]
(ext(f) ∘ ext(g)) ∘ h 🝖[ _≡_ ]-[ Morphism.associativity(_∘_) ]
ext(f) ∘ (ext(g) ∘ h) 🝖[ _≡_ ]-[]
f ∘ₑₓₜ (g ∘ₑₓₜ h) 🝖-end
Morphism.Identityₗ.proof (Tuple.left (Category.identity categoryₑₓₜ)) {x} {y} {f} =
idₑₓₜ ∘ₑₓₜ f 🝖[ _≡_ ]-[]
ext(η(y)) ∘ f 🝖[ _≡_ ]-[ congruence₂ₗ(_∘_)(f) ext-inverse ]
id ∘ f 🝖[ _≡_ ]-[ Morphism.identityₗ(_∘_)(id) ]
f 🝖-end
Morphism.Identityᵣ.proof (Tuple.right (Category.identity categoryₑₓₜ)) {x} {y} {f} =
f ∘ₑₓₜ idₑₓₜ 🝖[ _≡_ ]-[]
ext(f) ∘ η(x) 🝖[ _≡_ ]-[ ext-identity ]
f 🝖-end
module _ (T : Object → Object) ⦃ functor : Functor(category)(category)(T) ⦄ ⦃ monad : Monad(T) ⦄ where
open Functor(functor)
open Monad(monad) hiding (ext)
open ExtensionSystem(monad-to-extensionSystem) hiding (η ; μ)
-- Note: This is the supposed to be the same as categoryₑₓₜ but proven from a monad directly.
monad-category : Category(\x y → (x ⟶ T(y)))
Category._∘_ monad-category f g = ext(f) ∘ g
Category.id monad-category {x} = η(x)
BinaryOperator.congruence (Category.binaryOperator monad-category {x}{y}{z}) {f₁}{f₂} {g₁}{g₂} f₁f₂ g₁g₂ =
ext(f₁) ∘ g₁ 🝖[ _≡_ ]-[]
(μ(z) ∘ map f₁) ∘ g₁ 🝖-[ Morphism.associativity(_∘_) ]
μ(z) ∘ (map f₁ ∘ g₁) 🝖-[ congruence₂ᵣ(_∘_)(μ(z)) (congruence₂(_∘_) (congruence₁(map) f₁f₂) g₁g₂) ]
μ(z) ∘ (map f₂ ∘ g₂) 🝖-[ Morphism.associativity(_∘_) ]-sym
(μ(z) ∘ map f₂) ∘ g₂ 🝖[ _≡_ ]-[]
ext(f₂) ∘ g₂ 🝖-end
Morphism.Associativity.proof (Category.associativity monad-category) {x} {y} {z} {w} {f} {g} {h} =
ext(ext(f) ∘ g) ∘ h 🝖-[ congruence₂ₗ(_∘_)(_) (ext-distribute) ]
(ext(f) ∘ ext(g)) ∘ h 🝖-[ Morphism.associativity(_∘_) ]
ext(f) ∘ (ext(g) ∘ h) 🝖-end
Morphism.Identityₗ.proof (Tuple.left (Category.identity monad-category)) {x} {y} {f} =
ext(η(y)) ∘ f 🝖[ _≡_ ]-[]
(μ(y) ∘ map(η(y))) ∘ f 🝖-[ congruence₂ₗ(_∘_)(f) (_⊜_.proof μ-functor-[∘]-identityₗ) ]
id ∘ f 🝖-[ Morphism.identityₗ(_∘_)(id) ]
f 🝖-end
Morphism.Identityᵣ.proof (Tuple.right (Category.identity monad-category)) {x} {y} {f} = ext-identity
| {
"alphanum_fraction": 0.608751942,
"avg_line_length": 45.9761904762,
"ext": "agda",
"hexsha": "41f95bfc3af1b5cbac34979aa5f1089da0c47191",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Category/Monad/Category.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Category/Monad/Category.agda",
"max_line_length": 108,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Category/Monad/Category.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 1598,
"size": 3862
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lexicographic ordering of lists
------------------------------------------------------------------------
-- The definitions of lexicographic orderings used here is suitable if
-- the argument order is a (non-strict) partial order.
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Lex.NonStrict where
open import Data.Empty using (⊥)
open import Function
open import Data.Unit.Base using (⊤; tt)
open import Data.Product
open import Data.List.Base
open import Data.List.Relation.Binary.Pointwise using (Pointwise; [])
import Data.List.Relation.Binary.Lex.Strict as Strict
open import Level
open import Relation.Nullary
open import Relation.Binary
import Relation.Binary.Construct.NonStrictToStrict as Conv
------------------------------------------------------------------------
-- Publically re-export definitions from Core
open import Data.List.Relation.Binary.Lex.Core as Core public
using (base; halt; this; next; ²-this; ²-next)
------------------------------------------------------------------------
-- Strict lexicographic ordering.
module _ {a ℓ₁ ℓ₂} {A : Set a} where
Lex-< : (_≈_ : Rel A ℓ₁) (_≼_ : Rel A ℓ₂) → Rel (List A) (a ⊔ ℓ₁ ⊔ ℓ₂)
Lex-< _≈_ _≼_ = Core.Lex ⊥ _≈_ (Conv._<_ _≈_ _≼_)
-- Properties
module _ {_≈_ : Rel A ℓ₁} {_≼_ : Rel A ℓ₂} where
private
_≋_ = Pointwise _≈_
_<_ = Lex-< _≈_ _≼_
<-irreflexive : Irreflexive _≋_ _<_
<-irreflexive = Strict.<-irreflexive (Conv.<-irrefl _≈_ _≼_)
<-asymmetric : IsEquivalence _≈_ → _≼_ Respects₂ _≈_ →
Antisymmetric _≈_ _≼_ → Asymmetric _<_
<-asymmetric eq resp antisym =
Strict.<-asymmetric sym (Conv.<-resp-≈ _ _ eq resp)
(Conv.<-asym _≈_ _ antisym)
where open IsEquivalence eq
<-antisymmetric : Symmetric _≈_ → Antisymmetric _≈_ _≼_ →
Antisymmetric _≋_ _<_
<-antisymmetric sym antisym =
Core.antisymmetric sym
(Conv.<-irrefl _≈_ _≼_)
(Conv.<-asym _ _≼_ antisym)
<-transitive : IsPartialOrder _≈_ _≼_ → Transitive _<_
<-transitive po =
Core.transitive isEquivalence
(Conv.<-resp-≈ _ _ isEquivalence ≤-resp-≈)
(Conv.<-trans _ _≼_ po)
where open IsPartialOrder po
<-resp₂ : IsEquivalence _≈_ → _≼_ Respects₂ _≈_ → _<_ Respects₂ _≋_
<-resp₂ eq resp = Core.respects₂ eq (Conv.<-resp-≈ _ _ eq resp)
<-compare : Symmetric _≈_ → Decidable _≈_ → Antisymmetric _≈_ _≼_ →
Total _≼_ → Trichotomous _≋_ _<_
<-compare sym _≟_ antisym tot =
Strict.<-compare sym (Conv.<-trichotomous _ _ sym _≟_ antisym tot)
<-decidable : Decidable _≈_ → Decidable _≼_ → Decidable _<_
<-decidable _≟_ _≼?_ =
Core.decidable (no id) _≟_ (Conv.<-decidable _ _ _≟_ _≼?_)
<-isStrictPartialOrder : IsPartialOrder _≈_ _≼_ →
IsStrictPartialOrder _≋_ _<_
<-isStrictPartialOrder po =
Strict.<-isStrictPartialOrder
(Conv.<-isStrictPartialOrder _ _ po)
<-isStrictTotalOrder : Decidable _≈_ → IsTotalOrder _≈_ _≼_ →
IsStrictTotalOrder _≋_ _<_
<-isStrictTotalOrder dec tot =
Strict.<-isStrictTotalOrder
(Conv.<-isStrictTotalOrder₁ _ _ dec tot)
<-strictPartialOrder : ∀ {a ℓ₁ ℓ₂} → Poset a ℓ₁ ℓ₂ →
StrictPartialOrder _ _ _
<-strictPartialOrder po = record
{ isStrictPartialOrder = <-isStrictPartialOrder isPartialOrder
} where open Poset po
<-strictTotalOrder : ∀ {a ℓ₁ ℓ₂} → DecTotalOrder a ℓ₁ ℓ₂ →
StrictTotalOrder _ _ _
<-strictTotalOrder dtot = record
{ isStrictTotalOrder = <-isStrictTotalOrder _≟_ isTotalOrder
} where open DecTotalOrder dtot
------------------------------------------------------------------------
-- Non-strict lexicographic ordering.
module _ {a ℓ₁ ℓ₂} {A : Set a} where
Lex-≤ : (_≈_ : Rel A ℓ₁) (_≼_ : Rel A ℓ₂) → Rel (List A) (a ⊔ ℓ₁ ⊔ ℓ₂)
Lex-≤ _≈_ _≼_ = Core.Lex ⊤ _≈_ (Conv._<_ _≈_ _≼_)
≤-reflexive : ∀ _≈_ _≼_ → Pointwise _≈_ ⇒ Lex-≤ _≈_ _≼_
≤-reflexive _≈_ _≼_ = Strict.≤-reflexive _≈_ (Conv._<_ _≈_ _≼_)
-- Properties
module _ {_≈_ : Rel A ℓ₁} {_≼_ : Rel A ℓ₂} where
private
_≋_ = Pointwise _≈_
_≤_ = Lex-≤ _≈_ _≼_
≤-antisymmetric : Symmetric _≈_ → Antisymmetric _≈_ _≼_ →
Antisymmetric _≋_ _≤_
≤-antisymmetric sym antisym =
Core.antisymmetric sym
(Conv.<-irrefl _≈_ _≼_)
(Conv.<-asym _ _≼_ antisym)
≤-transitive : IsPartialOrder _≈_ _≼_ → Transitive _≤_
≤-transitive po =
Core.transitive isEquivalence
(Conv.<-resp-≈ _ _ isEquivalence ≤-resp-≈)
(Conv.<-trans _ _≼_ po)
where open IsPartialOrder po
≤-resp₂ : IsEquivalence _≈_ → _≼_ Respects₂ _≈_ → _≤_ Respects₂ _≋_
≤-resp₂ eq resp = Core.respects₂ eq (Conv.<-resp-≈ _ _ eq resp)
≤-decidable : Decidable _≈_ → Decidable _≼_ → Decidable _≤_
≤-decidable _≟_ _≼?_ =
Core.decidable (yes tt) _≟_ (Conv.<-decidable _ _ _≟_ _≼?_)
≤-total : Symmetric _≈_ → Decidable _≈_ → Antisymmetric _≈_ _≼_ →
Total _≼_ → Total _≤_
≤-total sym dec-≈ antisym tot =
Strict.≤-total sym (Conv.<-trichotomous _ _ sym dec-≈ antisym tot)
≤-isPreorder : IsPartialOrder _≈_ _≼_ → IsPreorder _≋_ _≤_
≤-isPreorder po =
Strict.≤-isPreorder
isEquivalence (Conv.<-trans _ _ po)
(Conv.<-resp-≈ _ _ isEquivalence ≤-resp-≈)
where open IsPartialOrder po
≤-isPartialOrder : IsPartialOrder _≈_ _≼_ → IsPartialOrder _≋_ _≤_
≤-isPartialOrder po =
Strict.≤-isPartialOrder
(Conv.<-isStrictPartialOrder _ _ po)
≤-isTotalOrder : Decidable _≈_ → IsTotalOrder _≈_ _≼_ →
IsTotalOrder _≋_ _≤_
≤-isTotalOrder dec tot =
Strict.≤-isTotalOrder
(Conv.<-isStrictTotalOrder₁ _ _ dec tot)
≤-isDecTotalOrder : IsDecTotalOrder _≈_ _≼_ →
IsDecTotalOrder _≋_ _≤_
≤-isDecTotalOrder dtot =
Strict.≤-isDecTotalOrder
(Conv.<-isStrictTotalOrder₂ _ _ dtot)
≤-preorder : ∀ {a ℓ₁ ℓ₂} → Poset a ℓ₁ ℓ₂ → Preorder _ _ _
≤-preorder po = record
{ isPreorder = ≤-isPreorder isPartialOrder
} where open Poset po
≤-partialOrder : ∀ {a ℓ₁ ℓ₂} → Poset a ℓ₁ ℓ₂ → Poset _ _ _
≤-partialOrder po = record
{ isPartialOrder = ≤-isPartialOrder isPartialOrder
} where open Poset po
≤-decTotalOrder : ∀ {a ℓ₁ ℓ₂} → DecTotalOrder a ℓ₁ ℓ₂ →
DecTotalOrder _ _ _
≤-decTotalOrder dtot = record
{ isDecTotalOrder = ≤-isDecTotalOrder isDecTotalOrder
} where open DecTotalOrder dtot
| {
"alphanum_fraction": 0.5906650761,
"avg_line_length": 35.109947644,
"ext": "agda",
"hexsha": "8f75bbd7977666ad1a5f224ffd59f607ef3d2e94",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Lex/NonStrict.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Lex/NonStrict.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Lex/NonStrict.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 2312,
"size": 6706
} |
{-# OPTIONS --exact-split #-}
module ExactSplitMin where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
min : ℕ → ℕ → ℕ
min zero y = zero
min x zero = zero
min (suc x) (suc y) = suc (min x y)
| {
"alphanum_fraction": 0.5355450237,
"avg_line_length": 16.2307692308,
"ext": "agda",
"hexsha": "ee546fcc53dc90fbd147b5c057f5701751b6afce",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "alhassy/agda",
"max_forks_repo_path": "test/Fail/ExactSplitMin.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "alhassy/agda",
"max_issues_repo_path": "test/Fail/ExactSplitMin.agda",
"max_line_length": 35,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "alhassy/agda",
"max_stars_repo_path": "test/Fail/ExactSplitMin.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 73,
"size": 211
} |
------------------------------------------------------------------------------
-- Division program
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- This module define a division program using repeated subtraction
-- (Dybjer 1985).
-- Peter Dybjer. Program verification in a logical theory of
-- constructions. In Jean-Pierre Jouannaud, editor. Functional
-- Programming Languages and Computer Architecture, volume 201 of
-- LNCS, 1985, pages 334-349. Appears in revised form as Programming
-- Methodology Group Report 26, June 1986.
module LTC-PCF.Program.Division.Division where
open import LTC-PCF.Base
open import LTC-PCF.Data.Nat
open import LTC-PCF.Data.Nat.Inequalities
------------------------------------------------------------------------------
divh : D → D
divh g = lam (λ i → lam (λ j →
if (lt i j) then zero else (succ₁ (g · (i ∸ j) · j))))
div : D → D → D
div i j = fix divh · i · j
| {
"alphanum_fraction": 0.5191451469,
"avg_line_length": 34.0303030303,
"ext": "agda",
"hexsha": "bfc9eab7ead6a047f2b52af78052003bfc2b1287",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/LTC-PCF/Program/Division/Division.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/LTC-PCF/Program/Division/Division.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/LTC-PCF/Program/Division/Division.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 247,
"size": 1123
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- This module is DEPRECATED. Please use
-- Data.Vec.Relation.Binary.Equality.DecPropositional directly.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
module Data.Vec.Relation.Equality.DecPropositional
{a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) where
open import Data.Vec.Relation.Binary.Equality.DecPropositional _≟_ public
| {
"alphanum_fraction": 0.5664939551,
"avg_line_length": 34.0588235294,
"ext": "agda",
"hexsha": "45486f3964565fa80d84d7dfb49447b028100c3f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Equality/DecPropositional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Equality/DecPropositional.agda",
"max_line_length": 73,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/Vec/Relation/Equality/DecPropositional.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 120,
"size": 579
} |
-- Andreas, 2016-05-19, issue 1986, after report from Nisse
-- Andreas, 2016-06-02 fixed
-- This has been reported before as issue 842
-- {-# OPTIONS -v tc.cover:20 #-}
-- {-# OPTIONS -v tc.cc:20 -v reduce.compiled:100 #-}
open import Common.Equality
data Bool : Set where
true false : Bool
not : Bool → Bool
not true = false
not = λ _ → true
not-true : not true ≡ false
not-true = refl
not-false : not false ≡ true
not-false = refl
| {
"alphanum_fraction": 0.6614349776,
"avg_line_length": 20.2727272727,
"ext": "agda",
"hexsha": "81a8aac1692f1bdbced029c1ba5beaa0c9f49d67",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue1986.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue1986.agda",
"max_line_length": 59,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue1986.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 143,
"size": 446
} |
module Cats.Category.Constructions.Unique where
open import Data.Unit using (⊤)
open import Level
open import Cats.Category.Base
open import Cats.Util.Conv
module Build {lo la l≈} (Cat : Category lo la l≈) where
open Category Cat
IsUniqueSuchThat : ∀ {lp A B} → (A ⇒ B → Set lp) → A ⇒ B → Set (la ⊔ l≈ ⊔ lp)
IsUniqueSuchThat P f = ∀ {g} → P g → f ≈ g
IsUnique : ∀ {A B} → A ⇒ B → Set (la ⊔ l≈)
IsUnique {A} {B} = IsUniqueSuchThat {A = A} {B} (λ _ → ⊤)
IsUniqueSuchThat→≈ : ∀ {lp A B} {P : A ⇒ B → Set lp} {f}
→ IsUniqueSuchThat P f
→ ∀ {g h}
→ P g
→ P h
→ g ≈ h
IsUniqueSuchThat→≈ unique Pg Ph = ≈.trans (≈.sym (unique Pg)) (unique Ph)
record ∃!′ {lp A B} (P : A ⇒ B → Set lp) : Set (la ⊔ l≈ ⊔ lp) where
constructor ∃!-intro
field
arr : A ⇒ B
prop : P arr
unique : IsUniqueSuchThat P arr
instance
HasArrow-∃! : ∀ {lp A B} {P : A ⇒ B → Set lp}
→ HasArrow (∃!′ P) lo la l≈
HasArrow-∃! = record { Cat = Cat ; _⃗ = ∃!′.arr }
syntax ∃!′ (λ f → P) = ∃![ f ] P
∃!″ : ∀ {lp A B} (P : A ⇒ B → Set lp) → Set (la ⊔ l≈ ⊔ lp)
∃!″ = ∃!′
syntax ∃!″ {A = A} {B} (λ f → P) = ∃![ f ∈ A ⇒ B ] P
∃! : (A B : Obj) → Set (la ⊔ l≈)
∃! A B = ∃![ f ∈ A ⇒ B ] ⊤
∃!→≈ : ∀ {lp A B} {P : A ⇒ B → Set lp}
→ ∃!′ P
→ ∀ {g h}
→ P g
→ P h
→ g ≈ h
∃!→≈ (∃!-intro _ _ unique) = IsUniqueSuchThat→≈ unique
| {
"alphanum_fraction": 0.4765291607,
"avg_line_length": 21.303030303,
"ext": "agda",
"hexsha": "9f2d645257c7a64a4bdff21cce87df4da9557cf0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Category/Constructions/Unique.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Category/Constructions/Unique.agda",
"max_line_length": 79,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Category/Constructions/Unique.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 620,
"size": 1406
} |
module Oscar.Category.Functor where
open import Oscar.Category.Setoid
open import Oscar.Category.Category
open import Oscar.Category.Semifunctor
open import Oscar.Level
record Categories 𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂ : Set (lsuc (𝔬₁ ⊔ 𝔪₁ ⊔ 𝔮₁ ⊔ 𝔬₂ ⊔ 𝔪₂ ⊔ 𝔮₂)) where
constructor _,_
field
category₁ : Category 𝔬₁ 𝔪₁ 𝔮₁
category₂ : Category 𝔬₂ 𝔪₂ 𝔮₂
module 𝔊₁ = Category category₁
module 𝔊₂ = Category category₂
semigroupoids : Semigroupoids _ _ _ _ _ _
Semigroupoids.semigroupoid₁ semigroupoids = 𝔊₁.semigroupoid
Semigroupoids.semigroupoid₂ semigroupoids = 𝔊₂.semigroupoid
module _
{𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂} (categories : Categories 𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂)
where
open Categories categories
record IsFunctor
{μ : 𝔊₁.⋆ → 𝔊₂.⋆}
(𝔣 : ∀ {x y} → x 𝔊₁.↦ y → μ x 𝔊₂.↦ μ y)
: Set (𝔬₁ ⊔ 𝔪₁ ⊔ 𝔮₁ ⊔ 𝔬₂ ⊔ 𝔪₂ ⊔ 𝔮₂) where
instance _ = 𝔊₁.IsSetoid↦
instance _ = 𝔊₂.IsSetoid↦
field
⦃ isSemifunctor ⦄ : IsSemifunctor semigroupoids 𝔣
field
identity : (x : 𝔊₁.⋆) → 𝔣 (𝔊₁.ε {x = x}) ≋ 𝔊₂.ε
open IsSemifunctor isSemifunctor public
open IsFunctor ⦃ … ⦄ public
open import Oscar.Category.Morphism
record Functor 𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂ : Set (lsuc (𝔬₁ ⊔ 𝔪₁ ⊔ 𝔮₁ ⊔ 𝔬₂ ⊔ 𝔪₂ ⊔ 𝔮₂)) where
constructor _,_
field
categories : Categories 𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂
open Categories categories public
field
{μ} : 𝔊₁.⋆ → 𝔊₂.⋆
𝔣 : ∀ {x y} → x 𝔊₁.↦ y → μ x 𝔊₂.↦ μ y
⦃ isFunctor ⦄ : IsFunctor categories 𝔣
open IsFunctor isFunctor public
-- module _
-- {𝔬₁ 𝔪₁ 𝔮₁} (category₁ : Category 𝔬₁ 𝔪₁ 𝔮₁)
-- {𝔬₂ 𝔪₂ 𝔮₂} (category₂ : Category 𝔬₂ 𝔪₂ 𝔮₂)
-- where
-- private module 𝔊₁ = Category category₁
-- private module 𝔊₂ = Category category₂
-- record IsFunctor
-- (μ : 𝔊₁.⋆ → 𝔊₂.⋆)
-- (𝔣 : ∀ {x y} → x 𝔊₁.↦ y → μ x 𝔊₂.↦ μ y)
-- : Set (𝔬₁ ⊔ 𝔪₁ ⊔ 𝔮₁ ⊔ 𝔬₂ ⊔ 𝔪₂ ⊔ 𝔮₂) where
-- field
-- ⦃ isSemifunctor ⦄ : IsSemifunctor 𝔊₁.semigroupoid 𝔊₂.semigroupoid μ 𝔣
-- field
-- identity : (x : 𝔊₁.⋆) → 𝔣 (𝔊₁.ε {x = x}) ≋ 𝔊₂.ε
-- open IsFunctor ⦃ … ⦄ public
-- record Functor 𝔬₁ 𝔪₁ 𝔮₁ 𝔬₂ 𝔪₂ 𝔮₂ : Set (lsuc (𝔬₁ ⊔ 𝔪₁ ⊔ 𝔮₁ ⊔ 𝔬₂ ⊔ 𝔪₂ ⊔ 𝔮₂)) where
-- field
-- category₁ : Category 𝔬₁ 𝔪₁ 𝔮₁
-- category₂ : Category 𝔬₂ 𝔪₂ 𝔮₂
-- module 𝔊₁ = Category category₁
-- module 𝔊₂ = Category category₂
-- field
-- μ : 𝔊₁.⋆ → 𝔊₂.⋆
-- 𝔣 : ∀ {x y} → x 𝔊₁.↦ y → μ x 𝔊₂.↦ μ y
-- ⦃ isFunctor ⦄ : IsFunctor category₁ category₂ μ 𝔣
| {
"alphanum_fraction": 0.6197417743,
"avg_line_length": 27.9186046512,
"ext": "agda",
"hexsha": "a3523c1561da286b2b5527342fcaabbfc804118a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Category/Functor.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Category/Functor.agda",
"max_line_length": 84,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Category/Functor.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1255,
"size": 2401
} |
module Impossible where
{-# IMPOSSIBLE #-}
| {
"alphanum_fraction": 0.7045454545,
"avg_line_length": 11,
"ext": "agda",
"hexsha": "6c84f20c7f0775bde53a91fca6104a0f429bdb69",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Impossible.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Impossible.agda",
"max_line_length": 23,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Impossible.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 10,
"size": 44
} |
module _ where
open import Agda.Builtin.Equality
open import Agda.Builtin.Bool
open import Agda.Builtin.Unit
open import Agda.Builtin.List
open import Agda.Builtin.Nat
open import Agda.Builtin.Reflection renaming (returnTC to return; bindTC to _>>=_)
_>>_ : {A B : Set} → TC A → TC B → TC B
m >> m' = m >>= λ _ → m'
macro
solve : Nat → Term → TC ⊤
solve blocker hole = do
unify hole (lam visible (abs "x" (var 0 [])))
meta x _ ← withNormalisation true (quoteTC blocker)
where _ → return _
blockOnMeta x
mutual
blocker : Nat
blocker = _
bug : Bool
bug = (solve blocker) true
unblock : blocker ≡ 0
unblock = refl
| {
"alphanum_fraction": 0.6641104294,
"avg_line_length": 21.0322580645,
"ext": "agda",
"hexsha": "faab34cd7ff66f8a3ab95934fe276b9571a72e01",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue3639.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue3639.agda",
"max_line_length": 82,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue3639.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 205,
"size": 652
} |
open import Agda.Builtin.Nat
data Sing : Nat → Set where
i : (k : Nat) → Sing k
toSing : (n : Nat) → Sing n
toSing n = i n
fun : (n : Nat) → Nat
fun n with toSing n
fun .n | i n with toSing n
fun .(n + n) | i .n | i n = {!!}
| {
"alphanum_fraction": 0.5400843882,
"avg_line_length": 16.9285714286,
"ext": "agda",
"hexsha": "527a8dba4a5959d36dd305257d63926252050d77",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Fail/Issue142.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Fail/Issue142.agda",
"max_line_length": 32,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Fail/Issue142.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 95,
"size": 237
} |
module PrintNat where
import PreludeShow
open PreludeShow
mainS = showNat 42
| {
"alphanum_fraction": 0.7738095238,
"avg_line_length": 12,
"ext": "agda",
"hexsha": "f7dc747f327677389072e5fa651428cc48f9a0a3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/Alonzo/PrintNat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/Alonzo/PrintNat.agda",
"max_line_length": 21,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/Alonzo/PrintNat.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 21,
"size": 84
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The sublist relation over propositional equality.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Binary.Subset.Propositional
{a} {A : Set a} where
import Data.List.Relation.Binary.Subset.Setoid as SetoidSubset
open import Relation.Binary.PropositionalEquality using (setoid)
------------------------------------------------------------------------
-- Re-export parameterised definitions from setoid sublists
open SetoidSubset (setoid A) public
| {
"alphanum_fraction": 0.5123839009,
"avg_line_length": 34,
"ext": "agda",
"hexsha": "dd3608a22d6a051febbf37d0840f172518edf135",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Subset/Propositional.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Subset/Propositional.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Binary/Subset/Propositional.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 106,
"size": 646
} |
open import Common.Prelude renaming (Nat to ℕ; _+_ to _+ℕ_)
open import Common.Product
open import Common.Equality
postulate
_≤ℕ_ : (n m : ℕ) → Set
maxℕ : (n m : ℕ) → ℕ
When : (b : Bool) (P : Set) → Set
When true P = P
When false P = ⊤
infix 30 _⊕_
infix 20 _+_
infix 10 _≤_
infix 10 _<_
infixr 4 _,_
mutual
data Cxt : Set where
∘ : Cxt
_,_ : (Δ : Cxt) (b : Size Δ) → Cxt
data Var : (Δ : Cxt) → Set where
vz : ∀{Δ b} → Var (Δ , b)
vs : ∀{Δ b} (i : Var Δ) → Var (Δ , b)
data Base (Δ : Cxt) : Set where
zero : Base Δ
∞ : Base Δ
var : Var Δ → Base Δ
record Size (Δ : Cxt) : Set where
inductive
constructor _⊕_
field h : Base Δ
n : ℕ
↑ : ∀{Δ} (a : Size Δ) → Size Δ
↑ (h ⊕ n) = h ⊕ suc n
_+_ : ∀{Δ} (a : Size Δ) (m : ℕ) → Size Δ
(h ⊕ n) + m = h ⊕ (n +ℕ m)
_-_ : ∀{Δ} (a : Size Δ) (m : ℕ) → Size Δ
(h ⊕ n) - m = h ⊕ (n ∸ m)
ClosedSize = Size ∘
data _≤_ : (a b : ClosedSize) → Set where
leZZ : ∀{n m} (p : n ≤ℕ m) → zero ⊕ n ≤ zero ⊕ m
leZ∞ : ∀{n m} → zero ⊕ n ≤ ∞ ⊕ m
le∞∞ : ∀{n m} (p : n ≤ℕ m) → ∞ ⊕ n ≤ ∞ ⊕ m
_<_ : (a b : ClosedSize) → Set
a < b = ↑ a ≤ b
max : (a b : ClosedSize) → ClosedSize
max (zero ⊕ n) (zero ⊕ n') = zero ⊕ maxℕ n n'
max (zero ⊕ n) (∞ ⊕ n') = ∞ ⊕ n'
max (zero ⊕ n) (var () ⊕ n')
max (∞ ⊕ n) (zero ⊕ n') = ∞ ⊕ n
max (∞ ⊕ n) (∞ ⊕ n') = ∞ ⊕ maxℕ n n'
max (∞ ⊕ n) (var () ⊕ n')
max (var () ⊕ n)
-- Closed size valuation
mutual
data Val (chk : Bool) : (Δ : Cxt) → Set where
∘ : Val chk ∘
_,_<_∣_ : ∀{Δ} (ξ : Val chk Δ) (a : ClosedSize) b (p : When chk (a < eval ξ b)) → Val chk (Δ , b)
lookup : ∀{Δ chk} (ξ : Val chk Δ) (x : Var Δ) → ClosedSize
lookup (ξ , a < b ∣ p) vz = a
lookup (ξ , a < b ∣ p) (vs x) = lookup ξ x
evalBase : ∀{Δ chk} (ξ : Val chk Δ) (a : Base Δ) → ClosedSize
evalBase ξ zero = zero ⊕ 0
evalBase ξ ∞ = ∞ ⊕ 0
evalBase ξ (var x) = lookup ξ x
eval : ∀{Δ chk} (ξ : Val chk Δ) (a : Size Δ) → ClosedSize
eval ξ (h ⊕ n) = evalBase ξ h + n
UVal = Val false -- unsound valuation
SVal = Val true -- sound valuation
update : ∀{Δ} (ρ : UVal Δ) (x : Var Δ) (f : ClosedSize → ClosedSize) → UVal Δ
update (ρ , a < b ∣ _) vz f = ρ , f a < b ∣ _
update (ρ , a < b ∣ _) (vs x) f = update ρ x f , a < b ∣ _
data _≤V_ {chk chk'} : ∀ {Δ} (ρ : Val chk Δ) (ξ : Val chk' Δ) → Set where
∘ : ∘ ≤V ∘
_,_ : ∀{Δ} {ρ : Val chk Δ} {ξ : Val chk' Δ} {a a' b p q}
(r : ρ ≤V ξ) (s : a ≤ a') → (ρ , a < b ∣ p) ≤V (ξ , a' < b ∣ q)
lemma-str : ∀ {Δ} (x : Var Δ) {n} {a} {ρ : UVal Δ} {ξ : SVal Δ}
→ (p : ρ ≤V ξ)
→ (q : a < lookup ξ x + n)
→ update ρ x (max (↑ a - n)) ≤V ξ
lemma-str vz (p , s) q = {!q!}
lemma-str (vs x) (p , s) q = {!q!}
| {
"alphanum_fraction": 0.4634502924,
"avg_line_length": 25.8113207547,
"ext": "agda",
"hexsha": "c8a7bb9e87aad3368e90ceef45b2c94871d7c2b1",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue635b.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue635b.agda",
"max_line_length": 101,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue635b.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 1301,
"size": 2736
} |
open import Categories
open import Functors
open import RMonads
module RMonads.RKleisli.Functors {a b c d}{C : Cat {a}{b}}{D : Cat {c}{d}}
{J : Fun C D}(M : RMonad J) where
open import Library
open import RMonads.RKleisli M
open import RAdjunctions
open Cat
open Fun
open RMonad M
RKlL : Fun C Kl
RKlL = record{
OMap = id;
HMap = λ f → comp D η (HMap J f);
fid =
proof
comp D η (HMap J (iden C))
≅⟨ cong (comp D η) (fid J) ⟩
comp D η (iden D)
≅⟨ idr D ⟩
η ∎;
fcomp = λ{_ _ _ f g} →
proof
comp D η (HMap J (comp C f g))
≅⟨ cong (comp D η) (fcomp J) ⟩
comp D η (comp D (HMap J f) (HMap J g))
≅⟨ sym (ass D) ⟩
comp D (comp D η (HMap J f)) (HMap J g)
≅⟨ cong (λ f → comp D f (HMap J g)) (sym law2) ⟩
comp D (comp D (bind (comp D η (HMap J f))) η) (HMap J g)
≅⟨ ass D ⟩
comp D (bind (comp D η (HMap J f))) (comp D η (HMap J g))
∎}
RKlR : Fun Kl D
RKlR = record{
OMap = T;
HMap = bind;
fid = law1;
fcomp = law3}
| {
"alphanum_fraction": 0.530651341,
"avg_line_length": 22.6956521739,
"ext": "agda",
"hexsha": "e6fc7795dde21016518318e6bcf426d40caef5f5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-11-04T21:33:13.000Z",
"max_forks_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "jmchapman/Relative-Monads",
"max_forks_repo_path": "RMonads/RKleisli/Functors.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_issues_repo_issues_event_max_datetime": "2019-05-29T09:50:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:12:33.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "jmchapman/Relative-Monads",
"max_issues_repo_path": "RMonads/RKleisli/Functors.agda",
"max_line_length": 74,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "74707d3538bf494f4bd30263d2f5515a84733865",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "jmchapman/Relative-Monads",
"max_stars_repo_path": "RMonads/RKleisli/Functors.agda",
"max_stars_repo_stars_event_max_datetime": "2021-02-13T18:02:18.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-30T01:25:12.000Z",
"num_tokens": 451,
"size": 1044
} |
postulate B : Set
module M where
record ⊤ : Set where
module P (A : Set) where
open M public
module PB = P B
| {
"alphanum_fraction": 0.6495726496,
"avg_line_length": 10.6363636364,
"ext": "agda",
"hexsha": "cd8596949c7da9c7dd37b23a15f40fbc41ac5d74",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1679.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1679.agda",
"max_line_length": 24,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1679.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 39,
"size": 117
} |
{-# OPTIONS --experimental-irrelevance #-}
{-# OPTIONS --sized-types #-}
open import Agda.Primitive
public using (lzero; lsuc)
open import Agda.Builtin.Size
public using (Size; ↑_) renaming (∞ to oo)
open import Agda.Builtin.Nat
public using (suc) renaming (Nat to ℕ)
_+_ : Size → ℕ → Size
s + 0 = s
s + suc n = ↑ (s + n)
data Nat : ..(i : Size) → Set where
zero : ∀ .i → Nat (↑ i)
suc : ∀ .i → Nat i → Nat (↑ i)
caseof : ∀{a b} {A : Set a} (B : A → Set b) → (x : A) → ((x : A) → B x) → B x
caseof B x f = f x
syntax caseof B x f = case x return B of f
fix : ∀{ℓ}
(T : ..(i : Size) → Nat i → Set ℓ)
(f : ∀ .j → ((x : Nat j) → T j x) → (x : Nat (↑ j)) → T (↑ j) x)
.{i}
(x : Nat i)
→ T i x
fix T f (zero j) = f j (fix T f) (zero j)
fix T f (suc j n) = f j (fix T f) (suc j n)
| {
"alphanum_fraction": 0.5142857143,
"avg_line_length": 23.6764705882,
"ext": "agda",
"hexsha": "b7b3633e72c4dba6c46d06546b2372c744ef4624",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "262b8a87db8ab58aa77f60a749eacb8c49c7471f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andreasabel/Sit",
"max_forks_repo_path": "test/Base.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "262b8a87db8ab58aa77f60a749eacb8c49c7471f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andreasabel/Sit",
"max_issues_repo_path": "test/Base.agda",
"max_line_length": 77,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "262b8a87db8ab58aa77f60a749eacb8c49c7471f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andreasabel/S",
"max_stars_repo_path": "test/Base.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-07T19:52:52.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-05-16T02:28:36.000Z",
"num_tokens": 332,
"size": 805
} |
import Oscar.Class.Reflexivity.Function
import Oscar.Class.Transextensionality.Proposequality -- FIXME why not use the instance here?
open import Oscar.Class
open import Oscar.Class.Category
open import Oscar.Class.HasEquivalence
open import Oscar.Class.IsCategory
open import Oscar.Class.IsPrecategory
open import Oscar.Class.Precategory
open import Oscar.Class.Reflexivity
open import Oscar.Class.Transassociativity
open import Oscar.Class.Transextensionality
open import Oscar.Class.Transitivity
open import Oscar.Class.Transleftidentity
open import Oscar.Class.Transrightidentity
open import Oscar.Class.[IsExtensionB]
open import Oscar.Data.Proposequality
open import Oscar.Prelude
open import Oscar.Property.Category.Function
open import Oscar.Property.Setoid.Proposextensequality
open import Oscar.Property.Setoid.Proposequality
module Oscar.Property.Category.Proposequality where
module _
{a} {A : Ø a}
where
instance
𝓣ransassociativityProposequality : Transassociativity.class Proposequality⟦ A ⟧ Proposequality transitivity
𝓣ransassociativityProposequality .⋆ ∅ _ _ = !
{-
module _
{a} {A : Ø a}
where
instance
𝓣ransextensionalityProposequality : Transextensionality.class Proposequality⟦ A ⟧ Proposequality transitivity
𝓣ransextensionalityProposequality .⋆ ∅ ∅ = !
-}
module _
{a} {A : Ø a}
where
instance
𝓣ransleftidentityProposequality : Transleftidentity.class Proposequality⟦ A ⟧ Proposequality ε transitivity
𝓣ransleftidentityProposequality .⋆ {f = ∅} = ∅
module _
{a} {A : Ø a}
where
instance
𝓣ransrightidentityProposequality : Transrightidentity.class Proposequality⟦ A ⟧ Proposequality ε transitivity
𝓣ransrightidentityProposequality .⋆ = ∅
{-
module _
{a} (A : Ø a)
where
instance
HasEquivalenceExtension : ∀ {x y : A} ⦃ _ : [IsExtensionB] B ⦄ → HasEquivalence (Extension B x y) _
HasEquivalenceExtension = ∁ Proposextensequality
-}
module _
{a} {A : Ø a}
where
instance
IsPrecategoryProposequality : IsPrecategory Proposequality⟦ A ⟧ Proposequality transitivity
IsPrecategoryProposequality = ∁
IsCategoryProposequality : IsCategory Proposequality⟦ A ⟧ Proposequality ε transitivity
IsCategoryProposequality = ∁
module _
{a} (A : Ø a)
where
PrecategoryProposequality : Precategory _ _ _
PrecategoryProposequality = ∁ Proposequality⟦ A ⟧ Proposequality transitivity
CategoryProposequality : Category _ _ _
CategoryProposequality = ∁ Proposequality⟦ A ⟧ Proposequality ε transitivity
| {
"alphanum_fraction": 0.7779097387,
"avg_line_length": 27.7582417582,
"ext": "agda",
"hexsha": "028eff0eadaeafe93adc5dd8b3e1a552a6ce355d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Property/Category/Proposequality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Property/Category/Proposequality.agda",
"max_line_length": 113,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Property/Category/Proposequality.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 710,
"size": 2526
} |
open import MLib.Algebra.PropertyCode
open import MLib.Algebra.PropertyCode.Structures
module MLib.Matrix.SemiTensor.Core {c ℓ} (struct : Struct bimonoidCode c ℓ) where
open import MLib.Prelude
open import MLib.Matrix.Core
open import MLib.Matrix.Equality struct
open import MLib.Matrix.Mul struct
open import MLib.Matrix.Tensor struct
open import MLib.Algebra.Operations struct
open Nat using () renaming (_+_ to _+ℕ_; _*_ to _*ℕ_)
open import MLib.Fin.Parts.Simple
open import Data.Nat.LCM
open import Data.Nat.Divisibility
chunkVec : ∀ {m n} → Table S (m *ℕ n) → Table (Table S n) m
chunkVec {m} {n} t .lookup i .lookup j = lookup t (fromParts (i , j))
-- Case 1 of semi-tensor inner product of vectors
_⋉ᵥ₁_ : ∀ {n t} → Table S (t *ℕ n) → Table S t → Table S n
(_⋉ᵥ₁_ {n} {t} X Y) .lookup i = ∑[ k < t ] (X′ .lookup k .lookup i *′ Y .lookup k)
where X′ = chunkVec {t} X
-- Case 2 of semi-tensor inner product of vector
_⋉ᵥ₂_ : ∀ {n s} → Table S s → Table S (s *ℕ n) → Table S n
(_⋉ᵥ₂_ {n} {s} X Y) .lookup i = ∑[ k < s ] (X .lookup k *′ Y′ .lookup k .lookup i)
where Y′ = chunkVec {s} Y
module Defn {n p t : ℕ} (lcm : LCM n p t) where
-- Left semi-Tensor product
n∣t = LCM.commonMultiple lcm .proj₁
p∣t = LCM.commonMultiple lcm .proj₂
t/n = quotient n∣t
t/p = quotient p∣t
Iₜₙ = 1● {t/n}
Iₜₚ = 1● {t/p}
module _ where
open ≡.Reasoning
abstract
lem₁ : n *ℕ t/n ≡ t
lem₁ = begin
n *ℕ t/n ≡⟨ Nat.*-comm n _ ⟩
t/n *ℕ n ≡⟨ ≡.sym (_∣_.equality n∣t) ⟩
t ∎
lem₂ : p *ℕ t/p ≡ t
lem₂ = begin
p *ℕ t/p ≡⟨ Nat.*-comm p _ ⟩
t/p *ℕ p ≡⟨ ≡.sym (_∣_.equality p∣t) ⟩
t ∎
module _ {m q} (A : Matrix S m n) (B : Matrix S p q) where
A′ = A ⊠ Iₜₙ
B′ = B ⊠ Iₜₚ
A′′ = ≡.subst (Matrix S (m *ℕ t/n)) {y = t} lem₁ A′
B′′ = ≡.subst (λ h → Matrix S h (q *ℕ t/p)) {y = t} lem₂ B′
stp : Matrix S (m *ℕ t/n) (q *ℕ t/p)
stp = A′′ ⊗ B′′
infixl 7 _⋉_
_⋉_ : ∀ {m n p q} → Matrix S m n → Matrix S p q → Matrix S _ _
_⋉_ {m} {n} {p} {q} = Defn.stp {n} {p} (lcm n p .proj₂)
| {
"alphanum_fraction": 0.5775862069,
"avg_line_length": 27.1168831169,
"ext": "agda",
"hexsha": "199066435e481109ae3c061a1ec8325251fe7956",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/Matrix/SemiTensor/Core.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/Matrix/SemiTensor/Core.agda",
"max_line_length": 82,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/Matrix/SemiTensor/Core.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 902,
"size": 2088
} |
{-# OPTIONS --safe #-}
module Cubical.Data.Int.MoreInts.BiInvInt where
open import Cubical.Data.Int.MoreInts.BiInvInt.Base public
open import Cubical.Data.Int.MoreInts.BiInvInt.Properties public
| {
"alphanum_fraction": 0.8020304569,
"avg_line_length": 28.1428571429,
"ext": "agda",
"hexsha": "60adfd54dc78063c72957cfe176ccab9b084310f",
"lang": "Agda",
"max_forks_count": 134,
"max_forks_repo_forks_event_max_datetime": "2022-03-23T16:22:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-11-16T06:11:03.000Z",
"max_forks_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "marcinjangrzybowski/cubical",
"max_forks_repo_path": "Cubical/Data/Int/MoreInts/BiInvInt.agda",
"max_issues_count": 584,
"max_issues_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_issues_repo_issues_event_max_datetime": "2022-03-30T12:09:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-10-15T09:49:02.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "marcinjangrzybowski/cubical",
"max_issues_repo_path": "Cubical/Data/Int/MoreInts/BiInvInt.agda",
"max_line_length": 64,
"max_stars_count": 301,
"max_stars_repo_head_hexsha": "53e159ec2e43d981b8fcb199e9db788e006af237",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "marcinjangrzybowski/cubical",
"max_stars_repo_path": "Cubical/Data/Int/MoreInts/BiInvInt.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-24T02:10:47.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-17T18:00:24.000Z",
"num_tokens": 51,
"size": 197
} |
{-# OPTIONS --sized-types --show-implicit #-}
module WrongSizeAssignment2 where
open import Common.Size renaming (↑_ to _^)
data Empty : Set where
data N : {_ : Size} -> Set where
zero : N {∞}
suc : forall {i} -> N {i ^} -> N {i}
lift : forall {i} -> N {i} -> N {i ^}
lift zero = zero
lift (suc x) = suc (lift x)
f : forall {i} -> N {i} -> Empty
f x = f (suc (lift x))
| {
"alphanum_fraction": 0.5613577023,
"avg_line_length": 20.1578947368,
"ext": "agda",
"hexsha": "f46b1a45d12f12312b3367d55490781cf39f3cf8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/WrongSizeAssignment2.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/WrongSizeAssignment2.agda",
"max_line_length": 45,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/WrongSizeAssignment2.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 134,
"size": 383
} |
postulate
U V : Set
T : V → Set
H : ∀ v → T v → Set
f : U → V
data D : Set where d : D
foo : (u : U) (t : T (f u)) (h : H (f u) t) → H (f u) t
foo u t h with f u | d
... | fu | x = h
| {
"alphanum_fraction": 0.395,
"avg_line_length": 15.3846153846,
"ext": "agda",
"hexsha": "bd7ee9fa9d8c721ae3cf94a2bf02ee9c99fe109d",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue745c.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue745c.agda",
"max_line_length": 55,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue745c.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 98,
"size": 200
} |
module RandomAccessList.Standard.Properties where
open import BuildingBlock
open import BuildingBlock.BinaryLeafTree using (BinaryLeafTree; Node; Leaf)
import BuildingBlock.BinaryLeafTree as BLT
open import RandomAccessList.Standard
open import RandomAccessList.Standard.Core
open import RandomAccessList.Standard.Core.Properties
open import Data.Nat
open import Data.Nat.Etc
open import Data.Nat.Properties.Simple
open import Data.Product as Prod
open import Data.Product hiding (map)
open import Data.Empty using (⊥-elim)
open import Function
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Nullary.Decidable using (False; True; fromWitnessFalse)
open import Relation.Nullary.Negation using (contraposition)
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; _≢_; refl; cong; cong₂; trans; sym; inspect)
open PropEq.≡-Reasoning
tailₙ-suc : ∀ {n A} → (xs : 0-1-RAL A n) → (p : ⟦ xs ⟧ ≢ 0)
→ suc ⟦ tailₙ xs p ⟧ₙ ≡ ⟦ xs ⟧ₙ
tailₙ-suc {n} {A} [] p = ⊥-elim (p (⟦[]⟧≡0 ([] {A} {n}) refl))
tailₙ-suc ( 0∷ xs) p =
begin
2 + (2 * ⟦ tailₙ xs (⟦0∷xs⟧≢0⇒⟦xs⟧≢0 xs p) ⟧ₙ)
≡⟨ sym (+-*-suc 2 ⟦ tailₙ xs (⟦0∷xs⟧≢0⇒⟦xs⟧≢0 xs p) ⟧ₙ) ⟩
2 * suc ⟦ tailₙ xs (⟦0∷xs⟧≢0⇒⟦xs⟧≢0 xs p) ⟧ₙ
≡⟨ cong (_*_ 2) (tailₙ-suc xs (⟦0∷xs⟧≢0⇒⟦xs⟧≢0 xs p)) ⟩
2 * ⟦ xs ⟧ₙ
∎
tailₙ-suc (x 1∷ xs) p = refl
tail-suc : ∀ {A} → (xs : 0-1-RAL A 0) → (p : ⟦ xs ⟧ ≢ 0)
→ suc ⟦ tail xs p ⟧ ≡ ⟦ xs ⟧
tail-suc {A} [] p = ⊥-elim (p (⟦[]⟧≡0 ([] {A} {0}) refl))
tail-suc (0∷ xs) p =
begin
2 + (2 * ⟦ tailₙ xs (⟦0∷xs⟧≢0⇒⟦xs⟧≢0 xs p) ⟧ₙ + 0)
≡⟨ sym (+-assoc 2 (2 * ⟦ tailₙ xs (⟦0∷xs⟧≢0⇒⟦xs⟧≢0 xs p) ⟧ₙ) 0) ⟩
2 + 2 * ⟦ tailₙ xs (⟦0∷xs⟧≢0⇒⟦xs⟧≢0 xs p) ⟧ₙ + 0
≡⟨ cong (λ x → x + 0) (sym (+-*-suc 2 ⟦ tailₙ xs (⟦0∷xs⟧≢0⇒⟦xs⟧≢0 xs p) ⟧ₙ)) ⟩
2 * suc ⟦ tailₙ xs (⟦0∷xs⟧≢0⇒⟦xs⟧≢0 xs p) ⟧ₙ + 0
≡⟨ cong (λ x → 2 * x + 0) (tailₙ-suc xs (⟦0∷xs⟧≢0⇒⟦xs⟧≢0 xs p)) ⟩
2 * ⟦ xs ⟧ₙ + 0
∎
tail-suc (x 1∷ xs) p = refl
headₙ-tailₙ-consₙ : ∀ {n A} → (xs : 0-1-RAL A n) → (p : ⟦ xs ⟧ ≢ 0)
→ consₙ (headₙ xs p) (tailₙ xs p) ≡ xs
headₙ-tailₙ-consₙ {n} {A} [] p = ⊥-elim (p (⟦[]⟧≡0 ([] {A} {n}) refl))
headₙ-tailₙ-consₙ (0∷ xs) p = let p' = contraposition (trans (⟦0∷xs⟧≡⟦xs⟧ xs)) p in
begin
consₙ (headₙ (0∷ xs) p) (tailₙ (0∷ xs) p)
≡⟨ refl ⟩
consₙ (proj₁ (BLT.split (headₙ xs p'))) ((proj₂ (BLT.split (headₙ xs p'))) 1∷ tailₙ xs p')
≡⟨ refl ⟩
0∷ (consₙ (Node ((proj₁ (BLT.split (headₙ xs p')))) ((proj₂ (BLT.split (headₙ xs p'))))) (tailₙ xs p'))
≡⟨ cong (λ x → 0∷ consₙ x (tailₙ xs p')) (BLT.split-merge (headₙ xs p')) ⟩
0∷ consₙ (headₙ xs (p')) (tailₙ xs p')
≡⟨ cong 0∷_ (headₙ-tailₙ-consₙ xs p') ⟩
0∷ xs
∎
headₙ-tailₙ-consₙ (x 1∷ xs) p = refl
head-tail-cons : ∀ {A} → (xs : 0-1-RAL A 0) → (p : ⟦ xs ⟧ ≢ 0)
→ cons (head xs p) (tail xs p) ≡ xs
head-tail-cons {A} [] p = ⊥-elim (p (⟦[]⟧≡0 ([] {A} {0}) refl))
head-tail-cons (0∷ xs) p = let p' = contraposition (trans (⟦0∷xs⟧≡⟦xs⟧ xs)) p in
begin
cons (head (0∷ xs) p) (tail (0∷ xs) p)
≡⟨ cong (λ x → consₙ x (proj₂ (BLT.split (headₙ xs p')) 1∷ tailₙ xs p')) (lemma (proj₁ (BLT.split (headₙ xs p')))) ⟩
0∷ consₙ (Node (proj₁ (BLT.split (headₙ xs p'))) (proj₂ (BLT.split (headₙ xs p')))) (tailₙ xs p')
≡⟨ cong (λ x → 0∷ consₙ x (tailₙ xs p')) (BLT.split-merge (headₙ xs p')) ⟩
0∷ consₙ (headₙ xs p') (tailₙ xs p')
≡⟨ cong 0∷_ (headₙ-tailₙ-consₙ xs p') ⟩
0∷ xs
∎
where
lemma : ∀ {A} → (xs : BinaryLeafTree A 0) → Leaf (BLT.head xs) ≡ xs
lemma (Leaf x) = refl
head-tail-cons (Leaf x 1∷ xs) p = refl
{-
begin
{! !}
≡⟨ {! !} ⟩
{! !}
≡⟨ {! !} ⟩
{! !}
≡⟨ {! !} ⟩
{! !}
≡⟨ {! !} ⟩
{! !}
∎
-}
| {
"alphanum_fraction": 0.5207313933,
"avg_line_length": 37.6990291262,
"ext": "agda",
"hexsha": "823a5c1edfcc8123193023bd0d02022f8613bbb5",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z",
"max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "banacorn/numeral",
"max_forks_repo_path": "legacy/RandomAccessList/Standard/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "banacorn/numeral",
"max_issues_repo_path": "legacy/RandomAccessList/Standard/Properties.agda",
"max_line_length": 120,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "banacorn/numeral",
"max_stars_repo_path": "legacy/RandomAccessList/Standard/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z",
"num_tokens": 1919,
"size": 3883
} |
{-# OPTIONS --without-K #-}
open import lib.Base
module lib.types.List where
data List {i} (A : Type i) : Type i where
nil : List A
_::_ : A → List A → List A
data HList {i} : List (Type i) → Type (lsucc i) where
nil : HList nil
_::_ : {A : Type i} {L : List (Type i)} → A → HList L → HList (A :: L)
hlist-curry-type : ∀ {i j} (L : List (Type i))
(B : HList L → Type (lmax i j)) → Type (lmax i j)
hlist-curry-type nil B = B nil
hlist-curry-type {j = j} (A :: L) B =
(x : A) → hlist-curry-type {j = j} L (λ xs → B (x :: xs))
hlist-curry : ∀ {i j} {L : List (Type i)} {B : HList L → Type (lmax i j)}
(f : Π (HList L) B) → hlist-curry-type {j = j} L B
hlist-curry {L = nil} f = f nil
hlist-curry {L = A :: _} f = λ x → hlist-curry (λ xs → f (x :: xs))
| {
"alphanum_fraction": 0.5409622887,
"avg_line_length": 30.76,
"ext": "agda",
"hexsha": "3e4a1fe2e79df26d813cbe3236fc5163566af763",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "nicolaikraus/HoTT-Agda",
"max_forks_repo_path": "lib/types/List.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "939a2d83e090fcc924f69f7dfa5b65b3b79fe633",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "nicolaikraus/HoTT-Agda",
"max_issues_repo_path": "lib/types/List.agda",
"max_line_length": 73,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "f8fa68bf753d64d7f45556ca09d0da7976709afa",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Agda",
"max_stars_repo_path": "lib/types/List.agda",
"max_stars_repo_stars_event_max_datetime": "2021-06-30T00:17:55.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-06-30T00:17:55.000Z",
"num_tokens": 312,
"size": 769
} |
open import Oscar.Prelude
open import Oscar.Class
open import Oscar.Class.Leftunit
open import Oscar.Class.Reflexivity
open import Oscar.Class.Transitivity
module Oscar.Class.Transleftidentity where
module Transleftidentity
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯)
{ℓ} (_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ)
(ε : Reflexivity.type _∼_)
(transitivity : Transitivity.type _∼_)
= ℭLASS (_∼_ ,, (λ {x y} → _∼̇_ {x} {y}) ,, (λ {x} → ε {x}) ,, (λ {x y z} → transitivity {x} {y} {z}))
(∀ {x y} {f : x ∼ y} → Leftunit.type _∼̇_ ε (flip transitivity) f)
module _
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯}
{ℓ} {_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ}
{ε : Reflexivity.type _∼_}
{transitivity : Transitivity.type _∼_}
where
transleftidentity = Transleftidentity.method _∼_ _∼̇_ ε transitivity
module Transleftidentity!
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} (_∼_ : 𝔒 → 𝔒 → Ø 𝔯)
{ℓ} (_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ)
⦃ _ : Reflexivity.class _∼_ ⦄
⦃ _ : Transitivity.class _∼_ ⦄
= Transleftidentity (_∼_) (_∼̇_) reflexivity transitivity
module _
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯}
{ℓ} {_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ}
⦃ _ : Reflexivity.class _∼_ ⦄
⦃ _ : Transitivity.class _∼_ ⦄
where
transleftidentity! = Transleftidentity!.method _∼_ _∼̇_
module _ where
transleftidentity[_] : ∀
{𝔬} {𝔒 : Ø 𝔬}
{𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯}
{ℓ} (_∼̇_ : ∀ {x y} → x ∼ y → x ∼ y → Ø ℓ)
⦃ _ : Reflexivity.class _∼_ ⦄
⦃ _ : Transitivity.class _∼_ ⦄
⦃ _ : Transleftidentity!.class _∼_ _∼̇_ ⦄
→ Transleftidentity!.type _∼_ _∼̇_
transleftidentity[ _ ] = transleftidentity
module _ where
open import Oscar.Data.Proposequality
module ≡̇-Transleftidentity!
{𝔬} {𝔒 : Ø 𝔬}
{𝔣} (F : 𝔒 → Ø 𝔣)
{𝔱} (T : {x : 𝔒} → F x → 𝔒 → Ø 𝔱)
(let _∼_ : ∀ x y → Ø 𝔣 ∙̂ 𝔱
_∼_ = λ x y → (f : F x) → T f y)
⦃ _ : Reflexivity.class _∼_ ⦄
⦃ _ : Transitivity.class _∼_ ⦄
= Transleftidentity (_∼_) _≡̇_
| {
"alphanum_fraction": 0.5443877551,
"avg_line_length": 28,
"ext": "agda",
"hexsha": "0ff3d1921fa7d2a5509720c2e917e951f50d0e76",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Transleftidentity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Transleftidentity.agda",
"max_line_length": 104,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Transleftidentity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 977,
"size": 1960
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Bicategory.Construction.Spans.Properties where
open import Level
open import Data.Product using (_,_; _×_)
open import Relation.Binary.Bundles using (Setoid)
import Relation.Binary.Reasoning.Setoid as SR
open import Function.Equality as SΠ renaming (id to ⟶-id)
open import Categories.Category
open import Categories.Category.Helper
open import Categories.Category.Instance.Setoids
open import Categories.Category.Instance.Properties.Setoids.Limits.Canonical
open import Categories.Diagram.Pullback
open import Categories.Bicategory
open import Categories.Bicategory.Monad
import Categories.Category.Diagram.Span as Span
import Categories.Bicategory.Construction.Spans as Spans
--------------------------------------------------------------------------------
-- Monads in the Bicategory of Spans are Categories
module _ {o ℓ : Level} (T : Monad (Spans.Spans (pullback o ℓ))) where
private
module T = Monad T
open Span (Setoids (o ⊔ ℓ) ℓ)
open Spans (pullback o ℓ)
open Span⇒
open Bicategory Spans
open Setoid renaming (_≈_ to [_][_≈_])
-- We can view the roof of the span as a hom set! However, we need to partition
-- this big set up into small chunks with known domains/codomains.
record Hom (X Y : Carrier T.C) : Set (o ⊔ ℓ) where
field
hom : Carrier (Span.M T.T)
dom-eq : [ T.C ][ Span.dom T.T ⟨$⟩ hom ≈ X ]
cod-eq : [ T.C ][ Span.cod T.T ⟨$⟩ hom ≈ Y ]
open Hom
private
ObjSetoid : Setoid (o ⊔ ℓ) ℓ
ObjSetoid = T.C
HomSetoid : Setoid (o ⊔ ℓ) ℓ
HomSetoid = Span.M T.T
module ObjSetoid = Setoid ObjSetoid
module HomSetoid = Setoid HomSetoid
id⇒ : (X : Carrier T.C) → Hom X X
id⇒ X = record
{ hom = arr T.η ⟨$⟩ X
; dom-eq = commute-dom T.η (refl T.C)
; cod-eq = commute-cod T.η (refl T.C)
}
_×ₚ_ : ∀ {A B C} → (f : Hom B C) → (g : Hom A B) → FiberProduct (Span.cod T.T) (Span.dom T.T)
_×ₚ_ {B = B} f g = record
{ elem₁ = hom g
; elem₂ = hom f
; commute = begin
Span.cod T.T ⟨$⟩ hom g ≈⟨ cod-eq g ⟩
B ≈⟨ ObjSetoid.sym (dom-eq f) ⟩
Span.dom T.T ⟨$⟩ hom f ∎
}
where
open SR ObjSetoid
_∘⇒_ : ∀ {A B C} (f : Hom B C) → (g : Hom A B) → Hom A C
_∘⇒_ {A = A} {C = C} f g = record
{ hom = arr T.μ ⟨$⟩ (f ×ₚ g)
; dom-eq = begin
Span.dom T.T ⟨$⟩ (arr T.μ ⟨$⟩ (f ×ₚ g)) ≈⟨ (commute-dom T.μ {f ×ₚ g} {f ×ₚ g} (HomSetoid.refl , HomSetoid.refl)) ⟩
Span.dom T.T ⟨$⟩ hom g ≈⟨ dom-eq g ⟩
A ∎
; cod-eq = begin
Span.cod T.T ⟨$⟩ (arr T.μ ⟨$⟩ (f ×ₚ g)) ≈⟨ commute-cod T.μ {f ×ₚ g} {f ×ₚ g} (HomSetoid.refl , HomSetoid.refl) ⟩
Span.cod T.T ⟨$⟩ hom f ≈⟨ cod-eq f ⟩
C ∎
}
where
open SR ObjSetoid
SpanMonad⇒Category : Category (o ⊔ ℓ) (o ⊔ ℓ) ℓ
SpanMonad⇒Category = categoryHelper record
{ Obj = Setoid.Carrier T.C
; _⇒_ = Hom
; _≈_ = λ f g → [ HomSetoid ][ hom f ≈ hom g ]
; id = λ {X} → id⇒ X
; _∘_ = _∘⇒_
; assoc = λ {A} {B} {C} {D} {f} {g} {h} →
let f×ₚ⟨g×ₚh⟩ = record
{ elem₁ = record
{ elem₁ = hom f
; elem₂ = hom g
; commute = FiberProduct.commute (g ×ₚ f)
}
; elem₂ = hom h
; commute = FiberProduct.commute (h ×ₚ g)
}
in begin
arr T.μ ⟨$⟩ ((h ∘⇒ g) ×ₚ f) ≈⟨ cong (arr T.μ) (HomSetoid.refl , cong (arr T.μ) (HomSetoid.refl , HomSetoid.refl)) ⟩
arr T.μ ⟨$⟩ _ ≈⟨ T.sym-assoc {f×ₚ⟨g×ₚh⟩} {f×ₚ⟨g×ₚh⟩} ((HomSetoid.refl , HomSetoid.refl) , HomSetoid.refl) ⟩
arr T.μ ⟨$⟩ _ ≈⟨ (cong (arr T.μ) (cong (arr T.μ) (HomSetoid.refl , HomSetoid.refl) , HomSetoid.refl)) ⟩
arr T.μ ⟨$⟩ (h ×ₚ (g ∘⇒ f)) ∎
; identityˡ = λ {A} {B} {f} → begin
arr T.μ ⟨$⟩ (id⇒ B ×ₚ f) ≈⟨ cong (arr T.μ) (HomSetoid.refl , cong (arr T.η) (ObjSetoid.sym (cod-eq f))) ⟩
arr T.μ ⟨$⟩ _ ≈⟨ T.identityʳ HomSetoid.refl ⟩
hom f ∎
; identityʳ = λ {A} {B} {f} → begin
arr T.μ ⟨$⟩ (f ×ₚ id⇒ A) ≈⟨ cong (arr T.μ) (cong (arr T.η) (ObjSetoid.sym (dom-eq f)) , HomSetoid.refl) ⟩
arr T.μ ⟨$⟩ _ ≈⟨ T.identityˡ HomSetoid.refl ⟩
hom f ∎
; equiv = record
{ refl = HomSetoid.refl
; sym = HomSetoid.sym
; trans = HomSetoid.trans
}
; ∘-resp-≈ = λ f≈h g≈i → cong (arr T.μ) (g≈i , f≈h)
}
where
open SR HomSetoid
| {
"alphanum_fraction": 0.5165704511,
"avg_line_length": 34.9029850746,
"ext": "agda",
"hexsha": "bd73d1d92ac863f32b738a2e979cc83f56456d3a",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Bicategory/Construction/Spans/Properties.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Bicategory/Construction/Spans/Properties.agda",
"max_line_length": 130,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Bicategory/Construction/Spans/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 1718,
"size": 4677
} |
{-# OPTIONS --rewriting --without-K #-}
open import Agda.Primitive
open import Prelude
{- Syntax for the Type theory for globular sets -}
module GSeTT.Syntax where
data Pre-Ty : Set
data Pre-Tm : Set
data Pre-Ty where
∗ : Pre-Ty
⇒ : Pre-Ty → Pre-Tm → Pre-Tm → Pre-Ty
data Pre-Tm where
Var : ℕ → Pre-Tm
Pre-Ctx : Set₁
Pre-Ctx = list (ℕ × Pre-Ty)
Pre-Sub : Set₁
Pre-Sub = list (ℕ × Pre-Tm)
⇒= : ∀ {A B t t' u u'} → A == B → t == t' → u == u' → ⇒ A t u == ⇒ B t' u'
⇒= idp idp idp = idp
=⇒ : ∀ {A B t t' u u'} → ⇒ A t u == ⇒ B t' u' → (A == B × t == t') × u == u'
=⇒ idp = (idp , idp) , idp
tgt= : ∀ {A B t t' u u'} → ⇒ A t u == ⇒ B t' u' → u == u'
tgt= idp = idp
Var= : ∀ {v w} → v == w → Var v == Var w
Var= idp = idp
=Var : ∀ {v w} → Var v == Var w → v == w
=Var idp = idp
{- Dimension of a type and aof a context -}
-- Careful: dimension of ∗ should be -1
dim : Pre-Ty → ℕ
dim ∗ = O
dim (⇒ A t u) = S (dim A)
-- Careful: dimension of the empty context should be -1
dimC : Pre-Ctx → ℕ
dimC nil = O
dimC (Γ :: (x , A)) = max (dimC Γ) (dim A)
{- Action of substitutions on types and terms on a syntactical level -}
_[_]Pre-Ty : Pre-Ty → Pre-Sub → Pre-Ty
_[_]Pre-Tm : Pre-Tm → Pre-Sub → Pre-Tm
∗ [ γ ]Pre-Ty = ∗
⇒ A t u [ γ ]Pre-Ty = ⇒ (A [ γ ]Pre-Ty) (t [ γ ]Pre-Tm) (u [ γ ]Pre-Tm)
Var x [ nil ]Pre-Tm = Var x
Var x [ γ :: (v , t) ]Pre-Tm = if x ≡ v then t else ((Var x) [ γ ]Pre-Tm)
_∘_ : Pre-Sub → Pre-Sub → Pre-Sub
nil ∘ γ = nil
(γ :: (x , t)) ∘ δ = (γ ∘ δ) :: (x , (t [ δ ]Pre-Tm))
{- Identity and canonical projection -}
Pre-id : ∀ (Γ : Pre-Ctx) → Pre-Sub
Pre-id nil = nil
Pre-id (Γ :: (x , A)) = (Pre-id Γ) :: (x , Var x)
Pre-π : ∀ (Γ : Pre-Ctx) (x : ℕ) (A : Pre-Ty) → Pre-Sub
Pre-π Γ x A = Pre-id Γ
{- The pairing (x#A) ∈ Γ -}
_#_∈_ : ℕ → Pre-Ty → Pre-Ctx → Set
_ # _ ∈ nil = ⊥
x # A ∈ (Γ :: (y , B)) = (x # A ∈ Γ) + ((x == y) × (A == B))
_∈_ : ℕ → Pre-Ctx → Set
_ ∈ nil = ⊥
x ∈ (Γ :: (y , _)) = (x ∈ Γ) + (x == y)
eqdec-PreCtx : eqdec Pre-Ctx
eqdec-PreTy : eqdec Pre-Ty
eqdec-PreTm : eqdec Pre-Tm
eqdec-PreCtx nil nil = inl idp
eqdec-PreCtx nil (_ :: _) = inr λ()
eqdec-PreCtx (_ :: _) nil = inr λ()
eqdec-PreCtx (Γ :: (n , A)) (Δ :: (m , B)) with eqdec-PreCtx Γ Δ | eqdecℕ n m | eqdec-PreTy A B
... | inl idp | inl idp | inl idp = inl idp
... | inl idp | inl idp | inr A≠B = inr λ Γ,A=Γ,B → A≠B (snd (=, (snd (=:: Γ,A=Γ,B))))
... | inl idp | inr n≠m | _ = inr λ Γ,A=Γ,B → n≠m (fst (=, (snd (=:: Γ,A=Γ,B))))
... | inr Γ≠Δ | _ | _ = inr λ{idp → Γ≠Δ idp}
eqdec-PreTy ∗ ∗ = inl idp
eqdec-PreTy ∗ (⇒ _ _ _) = inr λ()
eqdec-PreTy (⇒ _ _ _) ∗ = inr λ()
eqdec-PreTy (⇒ A t u) (⇒ B v w) with eqdec-PreTy A B | eqdec-PreTm t v | eqdec-PreTm u w
... | inl idp | inl idp | inl idp = inl idp
... | inl idp | inl idp | inr u≠w = inr λ A=B → u≠w (snd (=⇒ A=B))
... | inl idp | inr t≠v | _ = inr λ A=B → t≠v (snd (fst (=⇒ A=B)))
... | inr A≠B | _ | _ = inr λ{idp → A≠B idp}
eqdec-PreTm (Var a) (Var b) with eqdecℕ a b
... | inl idp = inl idp
... | inr a≠b = inr λ{idp → a≠b idp}
| {
"alphanum_fraction": 0.4849445325,
"avg_line_length": 29.4859813084,
"ext": "agda",
"hexsha": "443ca79e9dfa9c4d3b3c8c005552a9526b025fd0",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thibautbenjamin/catt-formalization",
"max_forks_repo_path": "GSeTT/Syntax.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thibautbenjamin/catt-formalization",
"max_issues_repo_path": "GSeTT/Syntax.agda",
"max_line_length": 97,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "3a02010a869697f4833c9bc6047d66ca27b87cf2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thibautbenjamin/catt-formalization",
"max_stars_repo_path": "GSeTT/Syntax.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1487,
"size": 3155
} |
open import Data.Product using ( _×_ ; _,_ )
open import Data.Sum using ( inj₁ ; inj₂ )
open import Relation.Binary.PropositionalEquality using ( refl )
open import Relation.Unary using ( _∈_ ; _∉_ ; _⊆_ )
open import Web.Semantic.DL.Concept.Model using
( _⟦_⟧₁ ; ⟦⟧₁-resp-≈ ; ⟦⟧₁-resp-≃; ⟦⟧₁-refl-≃ )
open import Web.Semantic.DL.Role.Model using
( _⟦_⟧₂ ; ⟦⟧₂-resp-≈ ; ⟦⟧₂-resp-≃ ; ⟦⟧₂-refl-≃ )
open import Web.Semantic.DL.Signature using ( Signature )
open import Web.Semantic.DL.TBox using
( TBox ; Axioms ; ε ; _,_ ;_⊑₁_ ; _⊑₂_ ; Dis ; Ref ; Irr ; Tra )
open import Web.Semantic.DL.TBox.Interp using ( Interp )
open import Web.Semantic.DL.TBox.Interp.Morphism using ( _≃_ ; ≃-sym )
open import Web.Semantic.Util using ( True ; tt ; _∘_ )
module Web.Semantic.DL.TBox.Model {Σ : Signature} where
infixr 2 _⊨t_
_⊨t_ : Interp Σ → TBox Σ → Set
I ⊨t ε = True
I ⊨t (T , U) = (I ⊨t T) × (I ⊨t U)
I ⊨t (C ⊑₁ D) = I ⟦ C ⟧₁ ⊆ I ⟦ D ⟧₁
I ⊨t (Q ⊑₂ R) = I ⟦ Q ⟧₂ ⊆ I ⟦ R ⟧₂
I ⊨t (Dis Q R) = ∀ {xy} → (xy ∈ I ⟦ Q ⟧₂) → (xy ∉ I ⟦ R ⟧₂)
I ⊨t (Ref R) = ∀ x → ((x , x) ∈ I ⟦ R ⟧₂)
I ⊨t (Irr R) = ∀ x → ((x , x) ∉ I ⟦ R ⟧₂)
I ⊨t (Tra R) = ∀ {x y z} →
((x , y) ∈ I ⟦ R ⟧₂) → ((y , z) ∈ I ⟦ R ⟧₂) → ((x , z) ∈ I ⟦ R ⟧₂)
Axioms✓ : ∀ I T {t} → (t ∈ Axioms T) → (I ⊨t T) → (I ⊨t t)
Axioms✓ I ε () I⊨T
Axioms✓ I (T , U) (inj₁ t∈T) (I⊨T , I⊨U) = Axioms✓ I T t∈T I⊨T
Axioms✓ I (T , U) (inj₂ t∈U) (I⊨T , I⊨U) = Axioms✓ I U t∈U I⊨U
Axioms✓ I (C ⊑₁ D) refl I⊨T = I⊨T
Axioms✓ I (Q ⊑₂ R) refl I⊨T = I⊨T
Axioms✓ I (Dis Q R) refl I⊨T = I⊨T
Axioms✓ I (Ref R) refl I⊨T = I⊨T
Axioms✓ I (Irr R) refl I⊨T = I⊨T
Axioms✓ I (Tra R) refl I⊨T = I⊨T
⊨t-resp-≃ : ∀ {I J : Interp Σ} → (I ≃ J) → ∀ T → (I ⊨t T) → (J ⊨t T)
⊨t-resp-≃ {I} {J} I≃J ε _ =
tt
⊨t-resp-≃ {I} {J} I≃J (T , U) (I⊨T , I⊨U) =
(⊨t-resp-≃ I≃J T I⊨T , ⊨t-resp-≃ I≃J U I⊨U)
⊨t-resp-≃ {I} {J} I≃J (C ⊑₁ D) I⊨C⊑D =
⟦⟧₁-refl-≃ I≃J D ∘ I⊨C⊑D ∘ ⟦⟧₁-resp-≃ (≃-sym I≃J) C
⊨t-resp-≃ {I} {J} I≃J (Q ⊑₂ R) I⊨Q⊑R = ⟦⟧₂-refl-≃ I≃J R ∘ I⊨Q⊑R ∘
⟦⟧₂-resp-≃ (≃-sym I≃J) Q
⊨t-resp-≃ {I} {J} I≃J (Dis Q R) I⊨DisQR = λ xy∈⟦Q⟧ xy∈⟦R⟧ →
I⊨DisQR (⟦⟧₂-resp-≃ (≃-sym I≃J) Q xy∈⟦Q⟧) (⟦⟧₂-resp-≃ (≃-sym I≃J) R xy∈⟦R⟧)
⊨t-resp-≃ {I} {J} I≃J (Ref R) I⊨RefR = λ x → ⟦⟧₂-refl-≃ I≃J R (I⊨RefR _)
⊨t-resp-≃ {I} {J} I≃J (Irr R) I⊨IrrR = λ x xx∈⟦R⟧ →
I⊨IrrR _ (⟦⟧₂-resp-≃ (≃-sym I≃J) R xx∈⟦R⟧)
⊨t-resp-≃ {I} {J} I≃J (Tra R) I⊨TraR = λ xy∈⟦R⟧ yz∈⟦R⟧ →
⟦⟧₂-refl-≃ I≃J R (I⊨TraR
(⟦⟧₂-resp-≃ (≃-sym I≃J) R xy∈⟦R⟧)
(⟦⟧₂-resp-≃ (≃-sym I≃J) R yz∈⟦R⟧))
| {
"alphanum_fraction": 0.4741280184,
"avg_line_length": 43.4833333333,
"ext": "agda",
"hexsha": "a1c09b122b71b3dda7a04be6ded3b367e6ccb894",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:40:03.000Z",
"max_forks_repo_forks_event_min_datetime": "2017-12-03T14:52:09.000Z",
"max_forks_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-web-semantic",
"max_forks_repo_path": "src/Web/Semantic/DL/TBox/Model.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "38fbc3af7062ba5c3d7d289b2b4bcfb995d99057",
"max_issues_repo_issues_event_max_datetime": "2021-01-04T20:57:19.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T02:32:28.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-web-semantic",
"max_issues_repo_path": "src/Web/Semantic/DL/TBox/Model.agda",
"max_line_length": 77,
"max_stars_count": 9,
"max_stars_repo_head_hexsha": "8ddbe83965a616bff6fc7a237191fa261fa78bab",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-web-semantic",
"max_stars_repo_path": "src/Web/Semantic/DL/TBox/Model.agda",
"max_stars_repo_stars_event_max_datetime": "2020-03-14T14:21:08.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-13T17:46:41.000Z",
"num_tokens": 1645,
"size": 2609
} |
-- Andreas, 2017-01-13, regression introduced by the fix of #1899
-- test case and report by Nisse
-- {-# OPTIONS -v term:40 #-}
open import Agda.Builtin.Size
mutual
D : Size → Set
D i = D′ i
record D′ (i : Size) : Set where
coinductive
field
force : {j : Size< i} → D j
test : D′ ω
D′.force test = test
-- Same without sizes (they are not used)
mutual
E = E'
record E' : Set where
coinductive
field force : E
testE : E'
E'.force testE = testE
-- Both should succeed, no termination errors.
| {
"alphanum_fraction": 0.6228893058,
"avg_line_length": 16.1515151515,
"ext": "agda",
"hexsha": "69905a7bc6672a45052a87438a148537e3c749c5",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Blaisorblade/Agda",
"max_forks_repo_path": "test/Succeed/Issue1899-coind.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "Blaisorblade/Agda",
"max_issues_repo_path": "test/Succeed/Issue1899-coind.agda",
"max_line_length": 65,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "802a28aa8374f15fe9d011ceb80317fdb1ec0949",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "Blaisorblade/Agda",
"max_stars_repo_path": "test/Succeed/Issue1899-coind.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 176,
"size": 533
} |
{-# OPTIONS --without-K #-}
module PInj where
open import Codata.Delay renaming (length to dlength ; map to dmap )
open import Codata.Thunk
open import Relation.Binary.PropositionalEquality
open import Size
open import Level
open import Data.Product
-- A pair of partial functions that are supposed to form a partial bijection.
record _⊢_⇔_ (i : Size) {ℓ : Level} (A : Set ℓ) (B : Set ℓ) : Set ℓ where
constructor pre-pinj-i
field
forward : A -> Delay B i
backward : B -> Delay A i
open _⊢_⇔_
| {
"alphanum_fraction": 0.6969111969,
"avg_line_length": 22.5217391304,
"ext": "agda",
"hexsha": "4b66e6a146f0b3e77526345221a2f243f0175425",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "kztk-m/sparcl-agda",
"max_forks_repo_path": "PInj.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "kztk-m/sparcl-agda",
"max_issues_repo_path": "PInj.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e2fb3a669e733a9020a51b24244d89abd8fcf725",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "kztk-m/sparcl-agda",
"max_stars_repo_path": "PInj.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 156,
"size": 518
} |
{-# OPTIONS --without-K --exact-split --allow-unsolved-metas #-}
module 10-number-theory where
import 09-truncation-levels
open 09-truncation-levels public
two-ℕ : ℕ
two-ℕ = succ-ℕ one-ℕ
three-ℕ : ℕ
three-ℕ = succ-ℕ two-ℕ
four-ℕ : ℕ
four-ℕ = succ-ℕ three-ℕ
five-ℕ : ℕ
five-ℕ = succ-ℕ four-ℕ
six-ℕ : ℕ
six-ℕ = succ-ℕ five-ℕ
seven-ℕ : ℕ
seven-ℕ = succ-ℕ six-ℕ
eight-ℕ : ℕ
eight-ℕ = succ-ℕ seven-ℕ
nine-ℕ : ℕ
nine-ℕ = succ-ℕ eight-ℕ
ten-ℕ : ℕ
ten-ℕ = succ-ℕ nine-ℕ
-- Section 10.1 Decidability.
{- Recall that a proposition P is decidable if P + (¬ P) holds. -}
classical-Prop :
(l : Level) → UU (lsuc l)
classical-Prop l = Σ (UU-Prop l) (λ P → is-decidable (pr1 P))
is-decidable-Eq-ℕ :
(m n : ℕ) → is-decidable (Eq-ℕ m n)
is-decidable-Eq-ℕ zero-ℕ zero-ℕ = inl star
is-decidable-Eq-ℕ zero-ℕ (succ-ℕ n) = inr id
is-decidable-Eq-ℕ (succ-ℕ m) zero-ℕ = inr id
is-decidable-Eq-ℕ (succ-ℕ m) (succ-ℕ n) = is-decidable-Eq-ℕ m n
is-decidable-leq-ℕ :
(m n : ℕ) → is-decidable (leq-ℕ m n)
is-decidable-leq-ℕ zero-ℕ zero-ℕ = inl star
is-decidable-leq-ℕ zero-ℕ (succ-ℕ n) = inl star
is-decidable-leq-ℕ (succ-ℕ m) zero-ℕ = inr id
is-decidable-leq-ℕ (succ-ℕ m) (succ-ℕ n) = is-decidable-leq-ℕ m n
is-decidable-le-ℕ :
(m n : ℕ) → is-decidable (le-ℕ m n)
is-decidable-le-ℕ zero-ℕ zero-ℕ = inr id
is-decidable-le-ℕ zero-ℕ (succ-ℕ n) = inl star
is-decidable-le-ℕ (succ-ℕ m) zero-ℕ = inr id
is-decidable-le-ℕ (succ-ℕ m) (succ-ℕ n) = is-decidable-le-ℕ m n
{- We say that a type has decidable equality if we can decide whether
x = y holds for any x,y:A. -}
has-decidable-equality : {l : Level} (A : UU l) → UU l
has-decidable-equality A = (x y : A) → is-decidable (Id x y)
{- The type ℕ is an example of a type with decidable equality. -}
Eq-ℕ-eq : (x y : ℕ) → Id x y → Eq-ℕ x y
Eq-ℕ-eq x .x refl = refl-Eq-ℕ x
is-injective-succ-ℕ : (x y : ℕ) → Id (succ-ℕ x) (succ-ℕ y) → Id x y
is-injective-succ-ℕ zero-ℕ zero-ℕ p = refl
is-injective-succ-ℕ zero-ℕ (succ-ℕ y) p =
ind-empty
{ P = λ t → Id zero-ℕ (succ-ℕ y)}
( Eq-ℕ-eq one-ℕ (succ-ℕ (succ-ℕ y)) p)
is-injective-succ-ℕ (succ-ℕ x) zero-ℕ p =
ind-empty
{ P = λ t → Id (succ-ℕ x) zero-ℕ}
( Eq-ℕ-eq (succ-ℕ (succ-ℕ x)) one-ℕ p)
is-injective-succ-ℕ (succ-ℕ x) (succ-ℕ y) p =
ap succ-ℕ (eq-Eq-ℕ x y (Eq-ℕ-eq (succ-ℕ (succ-ℕ x)) (succ-ℕ (succ-ℕ y)) p))
has-decidable-equality-ℕ : has-decidable-equality ℕ
has-decidable-equality-ℕ zero-ℕ zero-ℕ = inl refl
has-decidable-equality-ℕ zero-ℕ (succ-ℕ y) = inr (Eq-ℕ-eq zero-ℕ (succ-ℕ y))
has-decidable-equality-ℕ (succ-ℕ x) zero-ℕ = inr (Eq-ℕ-eq (succ-ℕ x) zero-ℕ)
has-decidable-equality-ℕ (succ-ℕ x) (succ-ℕ y) =
functor-coprod
( ap succ-ℕ)
( λ (f : ¬ (Id x y)) p → f (is-injective-succ-ℕ x y p))
( has-decidable-equality-ℕ x y)
{- Types with decidable equality are closed under coproducts. -}
has-decidable-equality-coprod : {l1 l2 : Level} {A : UU l1} {B : UU l2} →
has-decidable-equality A → has-decidable-equality B →
has-decidable-equality (coprod A B)
has-decidable-equality-coprod dec-A dec-B (inl x) (inl y) =
functor-coprod
( ap inl)
( λ f p → f (inv-is-equiv (is-emb-inl _ _ x y) p))
( dec-A x y)
has-decidable-equality-coprod {A = A} {B = B} dec-A dec-B (inl x) (inr y) =
inr
( λ p →
inv-is-equiv
( is-equiv-map-raise _ empty)
( Eq-coprod-eq A B (inl x) (inr y) p))
has-decidable-equality-coprod {A = A} {B = B} dec-A dec-B (inr x) (inl y) =
inr
( λ p →
inv-is-equiv
( is-equiv-map-raise _ empty)
( Eq-coprod-eq A B (inr x) (inl y) p))
has-decidable-equality-coprod dec-A dec-B (inr x) (inr y) =
functor-coprod
( ap inr)
( λ f p → f (inv-is-equiv (is-emb-inr _ _ x y) p))
( dec-B x y)
{- Decidable equality of Fin n. -}
has-decidable-equality-empty : has-decidable-equality empty
has-decidable-equality-empty ()
has-decidable-equality-unit :
has-decidable-equality unit
has-decidable-equality-unit star star = inl refl
has-decidable-equality-Fin :
(n : ℕ) → has-decidable-equality (Fin n)
has-decidable-equality-Fin zero-ℕ = has-decidable-equality-empty
has-decidable-equality-Fin (succ-ℕ n) =
has-decidable-equality-coprod
( has-decidable-equality-Fin n)
( has-decidable-equality-unit)
{- Decidable equality of ℤ. -}
has-decidable-equality-ℤ : has-decidable-equality ℤ
has-decidable-equality-ℤ =
has-decidable-equality-coprod
has-decidable-equality-ℕ
( has-decidable-equality-coprod
has-decidable-equality-unit
has-decidable-equality-ℕ)
{- Next, we show that types with decidable equality are sets. To see this, we
will construct a fiberwise equivalence with the binary relation R that is
defined by R x y := unit if (x = y), and empty otherwise. In order to define
this relation, we first define a type family over ((x = y) + ¬(x = y)) that
returns unit on the left and empty on the right. -}
splitting-decidable-equality : {l : Level} (A : UU l) (x y : A) →
is-decidable (Id x y) → UU lzero
splitting-decidable-equality A x y (inl p) = unit
splitting-decidable-equality A x y (inr f) = empty
is-prop-splitting-decidable-equality : {l : Level} (A : UU l) (x y : A) →
(t : is-decidable (Id x y)) →
is-prop (splitting-decidable-equality A x y t)
is-prop-splitting-decidable-equality A x y (inl p) = is-prop-unit
is-prop-splitting-decidable-equality A x y (inr f) = is-prop-empty
reflexive-splitting-decidable-equality : {l : Level} (A : UU l) (x : A) →
(t : is-decidable (Id x x)) → splitting-decidable-equality A x x t
reflexive-splitting-decidable-equality A x (inl p) = star
reflexive-splitting-decidable-equality A x (inr f) =
ind-empty {P = λ t → splitting-decidable-equality A x x (inr f)} (f refl)
eq-splitting-decidable-equality : {l : Level} (A : UU l) (x y : A) →
(t : is-decidable (Id x y)) →
splitting-decidable-equality A x y t → Id x y
eq-splitting-decidable-equality A x y (inl p) t = p
eq-splitting-decidable-equality A x y (inr f) t =
ind-empty {P = λ s → Id x y} t
is-set-has-decidable-equality : {l : Level} (A : UU l) →
has-decidable-equality A → is-set A
is-set-has-decidable-equality A d =
is-set-prop-in-id
( λ x y → splitting-decidable-equality A x y (d x y))
( λ x y → is-prop-splitting-decidable-equality A x y (d x y))
( λ x → reflexive-splitting-decidable-equality A x (d x x))
( λ x y → eq-splitting-decidable-equality A x y (d x y))
{- Closure of decidable types under retracts and equivalences. -}
is-decidable-retract-of :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
A retract-of B → is-decidable B → is-decidable A
is-decidable-retract-of (pair i (pair r H)) (inl b) = inl (r b)
is-decidable-retract-of (pair i (pair r H)) (inr f) = inr (f ∘ i)
is-decidable-is-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} {f : A → B}
(is-equiv-f : is-equiv f) → is-decidable B → is-decidable A
is-decidable-is-equiv {f = f} (pair (pair g G) (pair h H)) =
is-decidable-retract-of (pair f (pair h H))
is-decidable-equiv :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) →
is-decidable B → is-decidable A
is-decidable-equiv e = is-decidable-is-equiv (is-equiv-map-equiv e)
is-decidable-equiv' :
{l1 l2 : Level} {A : UU l1} {B : UU l2} (e : A ≃ B) →
is-decidable A → is-decidable B
is-decidable-equiv' e = is-decidable-equiv (inv-equiv e)
has-decidable-equality-retract-of :
{l1 l2 : Level} {A : UU l1} {B : UU l2} →
A retract-of B → has-decidable-equality B → has-decidable-equality A
has-decidable-equality-retract-of (pair i (pair r H)) d x y =
is-decidable-retract-of
( Id-retract-of-Id (pair i (pair r H)) x y)
( d (i x) (i y))
{- The well-ordering principle. -}
is-minimal-element-ℕ :
{l : Level} (P : ℕ → UU l) (n : ℕ) (p : P n) → UU l
is-minimal-element-ℕ P n p =
(m : ℕ) → P m → (leq-ℕ n m)
minimal-element-ℕ :
{l : Level} (P : ℕ → UU l) → UU l
minimal-element-ℕ P = Σ ℕ (λ n → Σ (P n) (is-minimal-element-ℕ P n))
is-minimal-element-succ-ℕ :
{l : Level} (P : ℕ → UU l) (d : (n : ℕ) → is-decidable (P n))
(m : ℕ) (pm : P (succ-ℕ m))
(is-min-m : is-minimal-element-ℕ (λ x → P (succ-ℕ x)) m pm) →
¬ (P zero-ℕ) → is-minimal-element-ℕ P (succ-ℕ m) pm
is-minimal-element-succ-ℕ P d m pm is-min-m neg-p0 zero-ℕ p0 =
ind-empty (neg-p0 p0)
is-minimal-element-succ-ℕ P d zero-ℕ pm is-min-m neg-p0 (succ-ℕ n) psuccn =
leq-zero-ℕ n
is-minimal-element-succ-ℕ P d (succ-ℕ m) pm is-min-m neg-p0 (succ-ℕ n) psuccn =
is-minimal-element-succ-ℕ (λ x → P (succ-ℕ x)) (λ x → d (succ-ℕ x)) m pm
( λ m → is-min-m (succ-ℕ m))
( is-min-m zero-ℕ)
( n)
( psuccn)
well-ordering-principle-succ-ℕ :
{l : Level} (P : ℕ → UU l) (d : (n : ℕ) → is-decidable (P n))
(n : ℕ) (p : P (succ-ℕ n)) →
is-decidable (P zero-ℕ) →
minimal-element-ℕ (λ m → P (succ-ℕ m)) → minimal-element-ℕ P
well-ordering-principle-succ-ℕ P d n p (inl p0) _ =
pair zero-ℕ (pair p0 (λ m q → leq-zero-ℕ m))
well-ordering-principle-succ-ℕ P d n p
(inr neg-p0) (pair m (pair pm is-min-m)) =
pair
( succ-ℕ m)
( pair pm
( is-minimal-element-succ-ℕ P d m pm is-min-m neg-p0))
well-ordering-principle-ℕ :
{l : Level} (P : ℕ → UU l) (d : (n : ℕ) → is-decidable (P n)) →
Σ ℕ P → minimal-element-ℕ P
well-ordering-principle-ℕ P d (pair zero-ℕ p) =
pair zero-ℕ (pair p (λ m q → leq-zero-ℕ m))
well-ordering-principle-ℕ P d (pair (succ-ℕ n) p) =
well-ordering-principle-succ-ℕ P d n p (d zero-ℕ)
( well-ordering-principle-ℕ
( λ m → P (succ-ℕ m))
( λ m → d (succ-ℕ m))
( pair n p))
{- The Pigeon hole principle. -}
{- First we write a function that counts the number of elements in a decidable
subset of a finite set. -}
count-Fin-succ-ℕ :
{l : Level} (n : ℕ) (P : Fin (succ-ℕ n) → classical-Prop l) →
ℕ → is-decidable (pr1 (pr1 (P (inr star)))) → ℕ
count-Fin-succ-ℕ n P m (inl x) = succ-ℕ m
count-Fin-succ-ℕ n P m (inr x) = m
count-Fin :
(l : Level) (n : ℕ) (P : Fin n → classical-Prop l) → ℕ
count-Fin l zero-ℕ P = zero-ℕ
count-Fin l (succ-ℕ n) P =
count-Fin-succ-ℕ n P
( count-Fin l n (P ∘ inl))
( pr2 (P (inr star)))
{- Next we prove the pigeonhole principle. -}
decidable-Eq-Fin :
(n : ℕ) (i j : Fin n) → classical-Prop lzero
decidable-Eq-Fin n i j =
pair
( pair (Id i j) (is-set-Fin n i j))
( has-decidable-equality-Fin n i j)
skip :
(n : ℕ) → Fin (succ-ℕ n) → Fin n → Fin (succ-ℕ n)
skip (succ-ℕ n) (inl i) (inl j) = inl (skip n i j)
skip (succ-ℕ n) (inl i) (inr star) = inr star
skip (succ-ℕ n) (inr star) j = inl j
double :
(n : ℕ) → Fin n → Fin (succ-ℕ n) → Fin n
double (succ-ℕ n) (inl i) (inl j) = inl (double n i j)
double (succ-ℕ n) (inl j) (inr star) = inr star
double (succ-ℕ n) (inr star) (inl j) = j
double (succ-ℕ n) (inr star) (inr star) = inr star
{-
skip-skip :
(n : ℕ) (i : Fin (succ-ℕ (succ-ℕ n))) (j : Fin (succ-ℕ n)) →
( ( skip (succ-ℕ n) i) ∘ (skip n j)) ~
( ( skip (succ-ℕ n) (skip (succ-ℕ n) i j)) ∘
( skip n (double (succ-ℕ n) j i)))
skip-skip zero-ℕ (inl x) (inl x₁) ()
skip-skip zero-ℕ (inl x) (inr x₁) ()
skip-skip zero-ℕ (inr x) (inl x₁) ()
skip-skip zero-ℕ (inr x) (inr x₁) ()
skip-skip (succ-ℕ n) (inl i) (inl j) (inl k) = {!!}
skip-skip (succ-ℕ n) (inl x) (inl x₁) (inr x₂) = {!!}
skip-skip (succ-ℕ n) (inl x) (inr x₁) (inl x₂) = {!!}
skip-skip (succ-ℕ n) (inl x) (inr x₁) (inr x₂) = {!!}
skip-skip (succ-ℕ n) (inr x) (inl x₁) (inl x₂) = {!!}
skip-skip (succ-ℕ n) (inr x) (inl x₁) (inr x₂) = {!!}
skip-skip (succ-ℕ n) (inr x) (inr x₁) (inl x₂) = {!!}
skip-skip (succ-ℕ n) (inr x) (inr x₁) (inr x₂) = {!!}
-}
{-
pigeonhole-principle :
(m n : ℕ) (f : Fin n → Fin m) (H : le-ℕ m n) →
Σ ( Fin m) (λ i →
le-ℕ one-ℕ
( count-Fin lzero n
( λ j → decidable-Eq-Fin m (f j) i)))
pigeonhole-principle zero-ℕ (succ-ℕ n) f H = {!!}
pigeonhole-principle (succ-ℕ m) n f H = {!!}
-}
-- The greatest common divisor
{- First we show that mul-ℕ n is an embedding whenever n > 0. In order to do
this, we have to show that add-ℕ n is injective. -}
is-injective-add-ℕ :
(n : ℕ) → is-injective is-set-ℕ is-set-ℕ (add-ℕ n)
is-injective-add-ℕ zero-ℕ k l p = p
is-injective-add-ℕ (succ-ℕ n) k l p =
is-injective-add-ℕ n k l (is-injective-succ-ℕ (add-ℕ n k) (add-ℕ n l) p)
is-emb-add-ℕ :
(n : ℕ) → is-emb (add-ℕ n)
is-emb-add-ℕ n =
is-emb-is-injective is-set-ℕ is-set-ℕ (add-ℕ n) (is-injective-add-ℕ n)
leq-fib-add-ℕ :
(m n : ℕ) → fib (add-ℕ m) n → (leq-ℕ m n)
leq-fib-add-ℕ zero-ℕ n (pair k p) = leq-zero-ℕ n
leq-fib-add-ℕ (succ-ℕ m) (succ-ℕ n) (pair k p) =
leq-fib-add-ℕ m n (pair k (is-injective-succ-ℕ (add-ℕ m k) n p))
fib-add-leq-ℕ :
(m n : ℕ) → (leq-ℕ m n) → fib (add-ℕ m) n
fib-add-leq-ℕ zero-ℕ zero-ℕ H = pair zero-ℕ refl
fib-add-leq-ℕ zero-ℕ (succ-ℕ n) H = pair (succ-ℕ n) refl
fib-add-leq-ℕ (succ-ℕ m) (succ-ℕ n) H =
pair
( pr1 (fib-add-leq-ℕ m n H))
( ap succ-ℕ (pr2 (fib-add-leq-ℕ m n H)))
is-prop-leq-ℕ :
(m n : ℕ) → is-prop (leq-ℕ m n)
is-prop-leq-ℕ zero-ℕ zero-ℕ = is-prop-unit
is-prop-leq-ℕ zero-ℕ (succ-ℕ n) = is-prop-unit
is-prop-leq-ℕ (succ-ℕ m) zero-ℕ = is-prop-empty
is-prop-leq-ℕ (succ-ℕ m) (succ-ℕ n) = is-prop-leq-ℕ m n
is-equiv-leq-fib-add-ℕ :
(m n : ℕ) → is-equiv (leq-fib-add-ℕ m n)
is-equiv-leq-fib-add-ℕ m n =
is-equiv-is-prop
( is-prop-map-is-emb _ (is-emb-add-ℕ m) n)
( is-prop-leq-ℕ m n)
( fib-add-leq-ℕ m n)
is-equiv-fib-add-leq-ℕ :
(m n : ℕ) → is-equiv (fib-add-leq-ℕ m n)
is-equiv-fib-add-leq-ℕ m n =
is-equiv-is-prop
( is-prop-leq-ℕ m n)
( is-prop-map-is-emb _ (is-emb-add-ℕ m) n)
( leq-fib-add-ℕ m n)
is-injective-add-ℕ' :
(n : ℕ) → is-injective is-set-ℕ is-set-ℕ (λ m → add-ℕ m n)
is-injective-add-ℕ' n k l p =
is-injective-add-ℕ n k l
(((commutative-add-ℕ n k) ∙ p) ∙ (commutative-add-ℕ l n))
is-injective-mul-ℕ :
(n : ℕ) → (le-ℕ zero-ℕ n) → is-injective is-set-ℕ is-set-ℕ (mul-ℕ n)
is-injective-mul-ℕ (succ-ℕ n) star zero-ℕ zero-ℕ p = refl
is-injective-mul-ℕ (succ-ℕ n) star zero-ℕ (succ-ℕ l) p =
ind-empty
( Eq-ℕ-eq
( zero-ℕ)
( succ-ℕ (add-ℕ (mul-ℕ n (succ-ℕ l)) l))
( ( inv (right-zero-law-mul-ℕ n)) ∙
( ( inv (right-unit-law-add-ℕ (mul-ℕ n zero-ℕ))) ∙
( p ∙ (right-successor-law-add-ℕ (mul-ℕ n (succ-ℕ l)) l)))))
is-injective-mul-ℕ (succ-ℕ n) star (succ-ℕ k) zero-ℕ p =
ind-empty
( Eq-ℕ-eq
( succ-ℕ (add-ℕ (mul-ℕ n (succ-ℕ k)) k))
( zero-ℕ)
( ( inv (right-successor-law-add-ℕ (mul-ℕ n (succ-ℕ k)) k)) ∙
( p ∙ ( right-zero-law-mul-ℕ (succ-ℕ n)))))
is-injective-mul-ℕ (succ-ℕ n) star (succ-ℕ k) (succ-ℕ l) p =
ap succ-ℕ
( is-injective-mul-ℕ (succ-ℕ n) star k l
( is-injective-add-ℕ (succ-ℕ n)
( mul-ℕ (succ-ℕ n) k)
( mul-ℕ (succ-ℕ n) l)
( ( inv (right-successor-law-mul-ℕ (succ-ℕ n) k) ∙ p) ∙
( right-successor-law-mul-ℕ (succ-ℕ n) l))))
is-emb-mul-ℕ :
(n : ℕ) → (le-ℕ zero-ℕ n) → is-emb (mul-ℕ n)
is-emb-mul-ℕ n le =
is-emb-is-injective is-set-ℕ is-set-ℕ
( mul-ℕ n)
( is-injective-mul-ℕ n le)
is-emb-mul-ℕ' :
(n : ℕ) → (le-ℕ zero-ℕ n) → is-emb (λ m → mul-ℕ m n)
is-emb-mul-ℕ' n t =
is-emb-htpy'
( mul-ℕ n)
( λ m → mul-ℕ m n)
( commutative-mul-ℕ n)
( is-emb-mul-ℕ n t)
{- We conclude that the division relation is a property. -}
div-ℕ : ℕ → ℕ → UU lzero
div-ℕ m n = Σ ℕ (λ k → Id (mul-ℕ k m) n)
is-prop-div-ℕ :
(m n : ℕ) → (le-ℕ zero-ℕ m) → is-prop (div-ℕ m n)
is-prop-div-ℕ (succ-ℕ m) n star =
is-prop-map-is-emb
( λ z → mul-ℕ z (succ-ℕ m))
( is-emb-mul-ℕ' (succ-ℕ m) star)
n
{- We now construct the division with remainder. -}
le-mul-ℕ :
(d n k : ℕ) → UU lzero
le-mul-ℕ d n k = le-ℕ n (mul-ℕ k d)
is-decidable-le-mul-ℕ :
(d n k : ℕ) → is-decidable (le-mul-ℕ d n k)
is-decidable-le-mul-ℕ d n k =
is-decidable-le-ℕ n (mul-ℕ k d)
order-preserving-succ-ℕ :
(n n' : ℕ) → (leq-ℕ n n') → (leq-ℕ (succ-ℕ n) (succ-ℕ n'))
order-preserving-succ-ℕ n n' H = H
leq-eq-left-ℕ :
{m m' : ℕ} → Id m m' → (n : ℕ) → leq-ℕ m n → leq-ℕ m' n
leq-eq-left-ℕ refl n = id
leq-eq-right-ℕ :
(m : ℕ) {n n' : ℕ} → Id n n' → leq-ℕ m n → leq-ℕ m n'
leq-eq-right-ℕ m refl = id
order-preserving-add-ℕ :
(m n m' n' : ℕ) →
(leq-ℕ m m') → (leq-ℕ n n') → (leq-ℕ (add-ℕ m n) (add-ℕ m' n'))
order-preserving-add-ℕ zero-ℕ zero-ℕ m' n' Hm Hn = star
order-preserving-add-ℕ zero-ℕ (succ-ℕ n) zero-ℕ (succ-ℕ n') Hm Hn = Hn
order-preserving-add-ℕ zero-ℕ (succ-ℕ n) (succ-ℕ m') (succ-ℕ n') Hm Hn =
leq-eq-right-ℕ n
( inv (right-successor-law-add-ℕ m' n'))
( order-preserving-add-ℕ zero-ℕ n (succ-ℕ m') n' Hm Hn)
order-preserving-add-ℕ (succ-ℕ m) n (succ-ℕ m') n' Hm Hn =
order-preserving-add-ℕ m n m' n' Hm Hn
le-eq-right-ℕ :
(m : ℕ) {n n' : ℕ} → Id n n' → le-ℕ m n' → le-ℕ m n
le-eq-right-ℕ m refl = id
le-add-ℕ :
(m n : ℕ) → (leq-ℕ one-ℕ n) → le-ℕ m (add-ℕ m n)
le-add-ℕ zero-ℕ (succ-ℕ n) star = star
le-add-ℕ (succ-ℕ m) (succ-ℕ n) star = le-add-ℕ m (succ-ℕ n) star
le-mul-self-ℕ :
(d n : ℕ) → (leq-ℕ one-ℕ d) → (leq-ℕ one-ℕ n) → le-mul-ℕ d n n
le-mul-self-ℕ (succ-ℕ d) (succ-ℕ n) star star =
le-eq-right-ℕ
( succ-ℕ n)
( right-successor-law-mul-ℕ (succ-ℕ n) d)
( le-add-ℕ (succ-ℕ n) (mul-ℕ (succ-ℕ n) d) {!leq-eq-right-ℕ !})
leq-multiple-ℕ :
(n m : ℕ) → (leq-ℕ one-ℕ m) → leq-ℕ n (mul-ℕ n m)
leq-multiple-ℕ n (succ-ℕ m) H =
leq-eq-right-ℕ n
( inv (right-successor-law-mul-ℕ n m))
( leq-fib-add-ℕ n (add-ℕ n (mul-ℕ n m)) (pair (mul-ℕ n m) refl))
least-factor-least-larger-multiple-ℕ :
(d n : ℕ) → (leq-ℕ one-ℕ d) →
minimal-element-ℕ (λ k → leq-ℕ n (mul-ℕ k d))
least-factor-least-larger-multiple-ℕ d n H =
well-ordering-principle-ℕ
( λ k → leq-ℕ n (mul-ℕ k d))
( λ k → is-decidable-leq-ℕ n (mul-ℕ k d))
( pair n (leq-multiple-ℕ n d H))
factor-least-larger-multiple-ℕ :
(d n : ℕ) → (leq-ℕ one-ℕ d) → ℕ
factor-least-larger-multiple-ℕ d n H =
pr1 (least-factor-least-larger-multiple-ℕ d n H)
least-larger-multiple-ℕ :
(d n : ℕ) → (leq-ℕ one-ℕ d) → ℕ
least-larger-multiple-ℕ d n H =
mul-ℕ (factor-least-larger-multiple-ℕ d n H) d
leq-least-larger-multiple-ℕ :
(d n : ℕ) (H : leq-ℕ one-ℕ d) →
leq-ℕ n (least-larger-multiple-ℕ d n H)
leq-least-larger-multiple-ℕ d n H =
pr1 (pr2 (least-factor-least-larger-multiple-ℕ d n H))
is-minimal-least-larger-multiple-ℕ :
(d n : ℕ) (H : leq-ℕ one-ℕ d) (k : ℕ) (K : leq-ℕ n (mul-ℕ k d)) →
leq-ℕ (factor-least-larger-multiple-ℕ d n H) k
is-minimal-least-larger-multiple-ℕ d n H =
pr2 (pr2 (least-factor-least-larger-multiple-ℕ d n H))
is-decidable-div-is-decidable-eq-least-larger-multiple-ℕ :
(d n : ℕ) (H : leq-ℕ one-ℕ d) →
is-decidable (Id (least-larger-multiple-ℕ d n H) n) → is-decidable (div-ℕ d n)
is-decidable-div-is-decidable-eq-least-larger-multiple-ℕ d n H (inl p) =
inl (pair (factor-least-larger-multiple-ℕ d n H) p)
is-decidable-div-is-decidable-eq-least-larger-multiple-ℕ d n H (inr f) =
inr (λ x → {!!})
is-decidable-div-ℕ' :
(d n : ℕ) → (leq-ℕ one-ℕ d) → is-decidable (div-ℕ d n)
is-decidable-div-ℕ' d n H = {!!}
is-decidable-div-ℕ :
(d n : ℕ) → is-decidable (div-ℕ d n)
is-decidable-div-ℕ zero-ℕ zero-ℕ = inl (pair zero-ℕ refl)
is-decidable-div-ℕ zero-ℕ (succ-ℕ n) =
inr ( λ p →
Eq-ℕ-eq zero-ℕ (succ-ℕ n) ((inv (right-zero-law-mul-ℕ (pr1 p))) ∙ (pr2 p)))
is-decidable-div-ℕ (succ-ℕ d) n =
is-decidable-div-ℕ' (succ-ℕ d) n (leq-zero-ℕ d)
-- Operations on decidable bounded subsets of ℕ
iterated-operation-ℕ :
(strict-upper-bound : ℕ) (operation : ℕ → ℕ → ℕ) (base-value : ℕ) → ℕ
iterated-operation-ℕ zero-ℕ μ e = e
iterated-operation-ℕ (succ-ℕ b) μ e = μ (iterated-operation-ℕ b μ e) b
iterated-sum-ℕ :
(summand : ℕ → ℕ) (b : ℕ) → ℕ
iterated-sum-ℕ f zero-ℕ = zero-ℕ
iterated-sum-ℕ f (succ-ℕ b) = add-ℕ (iterated-sum-ℕ f b) (f (succ-ℕ b))
ranged-sum-ℕ :
(summand : ℕ → ℕ) (l u : ℕ) → ℕ
ranged-sum-ℕ f zero-ℕ u = iterated-sum-ℕ f u
ranged-sum-ℕ f (succ-ℕ l) zero-ℕ = zero-ℕ
ranged-sum-ℕ f (succ-ℕ l) (succ-ℕ u) =
ranged-sum-ℕ (f ∘ succ-ℕ) l u
succ-iterated-operation-fam-ℕ :
{ l : Level}
( P : ℕ → UU l) (is-decidable-P : (n : ℕ) → is-decidable (P n)) →
( predecessor-strict-upper-bound : ℕ) (operation : ℕ → ℕ → ℕ) →
is-decidable (P predecessor-strict-upper-bound) → ℕ → ℕ
succ-iterated-operation-fam-ℕ
P is-decidable-P b μ (inl p) m = μ m b
succ-iterated-operation-fam-ℕ
P is-decidable-P b μ (inr f) m = m
iterated-operation-fam-ℕ :
{ l : Level} (P : ℕ → UU l) (is-decidable-P : (n : ℕ) → is-decidable (P n)) →
( strict-upper-bound : ℕ) (operation : ℕ → ℕ → ℕ) (base-value : ℕ) → ℕ
iterated-operation-fam-ℕ P d zero-ℕ μ e = e
iterated-operation-fam-ℕ P d (succ-ℕ b) μ e =
succ-iterated-operation-fam-ℕ P d b μ (d b)
( iterated-operation-fam-ℕ P d b μ e)
Sum-fam-ℕ :
{ l : Level} (P : ℕ → UU l) (is-decidable-P : (n : ℕ) → is-decidable (P n)) →
( upper-bound : ℕ) ( summand : ℕ → ℕ) → ℕ
Sum-fam-ℕ P d b f = iterated-operation-fam-ℕ P d (succ-ℕ b) (λ x y → add-ℕ x (f y)) zero-ℕ
{-
iterated-operation-fam-ℕ
P is-decidable-P zero-ℕ is-bounded-P μ base-value =
base-value
iterated-operation-fam-ℕ
P is-decidable-P (succ-ℕ b) is-bounded-P μ base-value =
succ-iterated-operation-ℕ P is-decidable-P b is-bounded-P μ
( is-decidable-P b)
( iterated-operation-ℕ
( introduce-bound-on-fam-ℕ b P)
( is-decidable-introduce-bound-on-fam-ℕ b P is-decidable-P)
( b)
( is-bounded-introduce-bound-on-fam-ℕ b P)
( μ)
( base-value))
product-decidable-bounded-fam-ℕ :
{ l : Level} (P : ℕ → UU l) →
( is-decidable-P : (n : ℕ) → is-decidable (P n))
( b : ℕ) ( is-bounded-P : is-bounded-fam-ℕ b P) → ℕ
product-decidable-bounded-fam-ℕ P is-decidable-P b is-bounded-P =
iterated-operation-ℕ P is-decidable-P b is-bounded-P mul-ℕ one-ℕ
twenty-four-ℕ : ℕ
twenty-four-ℕ =
product-decidable-bounded-fam-ℕ
( λ x → le-ℕ x five-ℕ)
( λ x → is-decidable-le-ℕ x five-ℕ)
( five-ℕ)
( λ x → id)
-}
{-
test-zero-twenty-four-ℕ : Id twenty-four-ℕ zero-ℕ
test-zero-twenty-four-ℕ = refl
test-twenty-four-ℕ : Id twenty-four-ℕ (factorial four-ℕ)
test-twenty-four-ℕ = refl
-}
-- Exercises
-- Exercise 10.?
Eq-𝟚-eq : (x y : bool) → Id x y → Eq-𝟚 x y
Eq-𝟚-eq x .x refl = reflexive-Eq-𝟚 x
abstract
has-decidable-equality-𝟚 : has-decidable-equality bool
has-decidable-equality-𝟚 true true = inl refl
has-decidable-equality-𝟚 true false = inr (Eq-𝟚-eq true false)
has-decidable-equality-𝟚 false true = inr (Eq-𝟚-eq false true)
has-decidable-equality-𝟚 false false = inl refl
-- Exercise 10.?
abstract
has-decidable-equality-prod' : {l1 l2 : Level} {A : UU l1} {B : UU l2} →
(x x' : A) (y y' : B) → is-decidable (Id x x') → is-decidable (Id y y') →
is-decidable (Id (pair x y) (pair x' y'))
has-decidable-equality-prod' x x' y y' (inl p) (inl q) =
inl (eq-pair-triv (pair p q))
has-decidable-equality-prod' x x' y y' (inl p) (inr g) =
inr (λ h → g (ap pr2 h))
has-decidable-equality-prod' x x' y y' (inr f) (inl q) =
inr (λ h → f (ap pr1 h))
has-decidable-equality-prod' x x' y y' (inr f) (inr g) =
inr (λ h → f (ap pr1 h))
abstract
has-decidable-equality-prod : {l1 l2 : Level} {A : UU l1} {B : UU l2} →
has-decidable-equality A → has-decidable-equality B →
has-decidable-equality (A × B)
has-decidable-equality-prod dec-A dec-B (pair x y) (pair x' y') =
has-decidable-equality-prod' x x' y y' (dec-A x x') (dec-B y y')
{-
bounds-fam-ℕ :
{l : Level} (P : ℕ → UU l) → UU l
bounds-fam-ℕ P = Σ ℕ (λ n → is-bounded-fam-ℕ n P)
is-minimal-ℕ :
{l : Level} (P : ℕ → UU l) → Σ ℕ P → UU l
is-minimal-ℕ P (pair n p) = (t : Σ ℕ P) → leq-ℕ n (pr1 t)
eq-zero-leq-zero-ℕ :
(n : ℕ) → leq-ℕ n zero-ℕ → Id n zero-ℕ
eq-zero-leq-zero-ℕ zero-ℕ star = refl
eq-zero-leq-zero-ℕ (succ-ℕ n) ()
fam-succ-ℕ :
{l : Level} → (ℕ → UU l) → (ℕ → UU l)
fam-succ-ℕ P n = P (succ-ℕ n)
is-decidable-fam-succ-ℕ :
{l : Level} (P : ℕ → UU l) →
((n : ℕ) → is-decidable (P n)) → ((n : ℕ) → is-decidable (P (succ-ℕ n)))
is-decidable-fam-succ-ℕ P d n = d (succ-ℕ n)
min-is-bounded-not-zero-ℕ :
{l : Level} (P : ℕ → UU l) → ((n : ℕ) → is-decidable (P n)) →
Σ ℕ (λ n → is-bounded-fam-ℕ n P) →
¬ (P zero-ℕ) →
Σ (Σ ℕ (fam-succ-ℕ P)) (is-minimal-ℕ (fam-succ-ℕ P)) →
Σ (Σ ℕ P) (is-minimal-ℕ P)
min-is-bounded-not-zero-ℕ P d b np0 t = {!!}
min-is-bounded-ℕ :
{l : Level} (P : ℕ → UU l) → ((n : ℕ) → is-decidable (P n)) →
Σ ℕ (λ n → is-bounded-fam-ℕ n P) →
Σ ℕ P → Σ (Σ ℕ P) (is-minimal-ℕ P)
min-is-bounded-ℕ P d (pair zero-ℕ b) t =
pair
( pair
( zero-ℕ)
( tr P (eq-zero-leq-zero-ℕ (pr1 t) (b (pr1 t) (pr2 t))) (pr2 t)))
( λ p → leq-zero-ℕ (pr1 p))
min-is-bounded-ℕ P d (pair (succ-ℕ n) b) t =
ind-coprod
( λ (t : is-decidable (P zero-ℕ)) → Σ (Σ ℕ P) (is-minimal-ℕ P))
( λ p0 → pair (pair zero-ℕ p0) (λ p → leq-zero-ℕ (pr1 p)))
( λ y → min-is-bounded-not-zero-ℕ P d (pair (succ-ℕ n) b) y
( min-is-bounded-ℕ
( fam-succ-ℕ P)
( is-decidable-fam-succ-ℕ P d)
{!!}
{!!}))
( d zero-ℕ)
{- We show that every non-empty decidable subset of ℕ has a least element. -}
least-ℕ :
{l : Level} (P : ℕ → UU l) → Σ ℕ P → UU l
least-ℕ P (pair n p) = (m : ℕ) → P m → leq-ℕ n m
least-element-non-empty-decidable-subset-ℕ :
{l : Level} (P : ℕ → UU l) (d : (n : ℕ) → is-decidable (P n)) →
Σ ℕ P → Σ (Σ ℕ P) (least-ℕ P)
least-element-non-empty-decidable-subset-ℕ P d (pair zero-ℕ p) =
pair (pair zero-ℕ p) {!!}
least-element-non-empty-decidable-subset-ℕ P d (pair (succ-ℕ n) p) = {!!}
-}
zero-Fin :
(n : ℕ) → Fin (succ-ℕ n)
zero-Fin zero-ℕ = inr star
zero-Fin (succ-ℕ n) = inl (zero-Fin n)
succ-Fin :
(n : ℕ) → Fin n → Fin n
succ-Fin (succ-ℕ n) (inr star) = zero-Fin n
succ-Fin (succ-ℕ (succ-ℕ n)) (inl (inl x)) = inl (succ-Fin (succ-ℕ n) (inl x))
succ-Fin (succ-ℕ (succ-ℕ n)) (inl (inr star)) = inr star
iterated-succ-Fin :
(k : ℕ) → (n : ℕ) → Fin n → Fin n
iterated-succ-Fin zero-ℕ n = id
iterated-succ-Fin (succ-ℕ k) n = (succ-Fin n) ∘ (iterated-succ-Fin k n)
quotient-ℕ-Fin :
(n : ℕ) → Fin (succ-ℕ n)
quotient-ℕ-Fin n = iterated-succ-Fin n (succ-ℕ n) (zero-Fin n)
pred-Fin :
(n : ℕ) → Fin n → Fin n
pred-Fin (succ-ℕ zero-ℕ) (inr star) = inr star
pred-Fin (succ-ℕ (succ-ℕ n)) (inl x) = {!!}
pred-Fin (succ-ℕ (succ-ℕ n)) (inr star) = inl (inr star)
add-Fin :
(n : ℕ) → Fin n → Fin n → Fin n
add-Fin (succ-ℕ n) (inl x) j = {!!}
add-Fin (succ-ℕ n) (inr x) j = {!!}
idempotent-succ-Fin :
(n : ℕ) (i : Fin n) → Id (iterated-succ-Fin n n i) i
idempotent-succ-Fin (succ-ℕ zero-ℕ) (inr star) = refl
idempotent-succ-Fin (succ-ℕ (succ-ℕ n)) (inl x) = {!!}
idempotent-succ-Fin (succ-ℕ (succ-ℕ n)) (inr x) = {!!}
in-nat-ℤ : ℕ → ℤ
in-nat-ℤ zero-ℕ = zero-ℤ
in-nat-ℤ (succ-ℕ n) = in-pos n
div-ℤ :
(k l : ℤ) → UU lzero
div-ℤ k l = Σ ℤ (λ x → Id (mul-ℤ x k) l)
_≡_mod_ :
(k l : ℤ) (n : ℕ) → UU lzero
k ≡ l mod n = div-ℤ (in-nat-ℤ n) (add-ℤ k (neg-ℤ l))
-- From before
is-even-ℕ : ℕ → UU lzero
is-even-ℕ n = div-ℕ two-ℕ n
is-prime : ℕ → UU lzero
is-prime n = (one-ℕ < n) × ((m : ℕ) → (one-ℕ < m) → (div-ℕ m n) → Id m n)
{- The Goldbach conjecture asserts that every even number above 2 is the sum
of two primes. -}
Goldbach-conjecture : UU lzero
Goldbach-conjecture =
( n : ℕ) → (two-ℕ < n) → (is-even-ℕ n) →
Σ ℕ (λ p → (is-prime p) × (Σ ℕ (λ q → (is-prime q) × Id (add-ℕ p q) n)))
is-twin-prime : ℕ → UU lzero
is-twin-prime n = (is-prime n) × (is-prime (succ-ℕ (succ-ℕ n)))
{- The twin prime conjecture asserts that there are infinitely many twin
primes. We assert that there are infinitely twin primes by asserting that
for every n : ℕ there is a twin prime that is larger than n. -}
Twin-prime-conjecture : UU lzero
Twin-prime-conjecture = (n : ℕ) → Σ ℕ (λ p → (is-twin-prime p) × (leq-ℕ n p))
| {
"alphanum_fraction": 0.5954642303,
"avg_line_length": 33.0047675805,
"ext": "agda",
"hexsha": "05232d9fa4161694e328570eb8228b0cff497529",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "tadejpetric/HoTT-Intro",
"max_forks_repo_path": "Agda/10-number-theory.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "tadejpetric/HoTT-Intro",
"max_issues_repo_path": "Agda/10-number-theory.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "f4228d6ecfc6cdb119c6e8b0e711fea05b98b2d5",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "tadejpetric/HoTT-Intro",
"max_stars_repo_path": "Agda/10-number-theory.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 12395,
"size": 27691
} |
-- We apply the theory of quasi equivalence relations (QERs) to finite multisets and association lists.
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.Relation.ZigZag.Applications.MultiSet where
open import Cubical.Core.Everything
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Function
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.RelationalStructure
open import Cubical.Foundations.Structure
open import Cubical.Foundations.SIP
open import Cubical.Foundations.Univalence
open import Cubical.Data.Unit
open import Cubical.Data.Empty as ⊥
open import Cubical.Data.Nat
open import Cubical.Data.List hiding ([_])
open import Cubical.Data.Sigma
open import Cubical.HITs.SetQuotients
open import Cubical.HITs.FiniteMultiset as FMS hiding ([_] ; _++_)
open import Cubical.HITs.FiniteMultiset.CountExtensionality
open import Cubical.HITs.PropositionalTruncation
open import Cubical.Relation.Nullary
open import Cubical.Relation.ZigZag.Base
open import Cubical.Structures.MultiSet
open import Cubical.Structures.Relational.Auto
open import Cubical.Structures.Relational.Macro
-- we define simple association lists without any higher constructors
data AList {ℓ} (A : Type ℓ) : Type ℓ where
⟨⟩ : AList A
⟨_,_⟩∷_ : A → ℕ → AList A → AList A
infixr 5 ⟨_,_⟩∷_
private
variable
ℓ : Level
-- We have a CountStructure on List and AList and use these to get a QER between the two
module Lists&ALists {A : Type ℓ} (discA : Discrete A) where
multisetShape : Type ℓ → Type ℓ
multisetShape X = X × (A → X → X) × (X → X → X) × (A → X → Const[ ℕ , isSetℕ ])
module S = RelMacro ℓ (autoRelDesc multisetShape)
addIfEq : (a x : A) → ℕ → ℕ → ℕ
addIfEq a x m n with discA a x
... | yes _ = m + n
... | no _ = n
module _ {a x : A} {n : ℕ} where
addIfEq≡ : {m : ℕ} → a ≡ x → addIfEq a x m n ≡ m + n
addIfEq≡ a≡x with discA a x
... | yes _ = refl
... | no a≢x = ⊥.rec (a≢x a≡x)
addIfEq≢ : {m : ℕ} → ¬ (a ≡ x) → addIfEq a x m n ≡ n
addIfEq≢ a≢x with discA a x
... | yes a≡x = ⊥.rec (a≢x a≡x)
... | no _ = refl
addIfEq0 : addIfEq a x 0 n ≡ n
addIfEq0 with discA a x
... | yes _ = refl
... | no _ = refl
addIfEq+ : {m : ℕ} (n' : ℕ) → addIfEq a x m (n + n') ≡ addIfEq a x m n + n'
addIfEq+ n' with discA a x
... | yes _ = +-assoc _ n n'
... | no _ = refl
module L where
emp : List A
emp = []
insert : A → List A → List A
insert x xs = x ∷ xs
union : List A → List A → List A
union xs ys = xs ++ ys
count : A → List A → ℕ
count a [] = zero
count a (x ∷ xs) = addIfEq a x 1 (count a xs)
structure : S.structure (List A)
structure = emp , insert , union , count
countUnion : ∀ a xs ys → count a (union xs ys) ≡ count a xs + count a ys
countUnion a [] ys = refl
countUnion a (x ∷ xs) ys =
cong (addIfEq a x 1) (countUnion a xs ys)
∙ addIfEq+ (count a ys)
module AL where
emp : AList A
emp = ⟨⟩
insert* : ℕ → A → AList A → AList A
insert* m a ⟨⟩ = ⟨ a , m ⟩∷ ⟨⟩
insert* m a (⟨ y , n ⟩∷ ys) with (discA a y)
... | yes _ = ⟨ y , m + n ⟩∷ ys
... | no _ = ⟨ y , n ⟩∷ insert* m a ys
insert : A → AList A → AList A
insert = insert* 1
union : AList A → AList A → AList A
union ⟨⟩ ys = ys
union (⟨ x , n ⟩∷ xs) ys = insert* n x (union xs ys)
count : A → AList A → ℕ
count a ⟨⟩ = zero
count a (⟨ y , n ⟩∷ ys) = addIfEq a y n (count a ys)
structure : S.structure (AList A)
structure = emp , insert , union , count
countInsert* : ∀ m a x ys → count a (insert* m x ys) ≡ addIfEq a x m (count a ys)
countInsert* m a x ⟨⟩ = refl
countInsert* m a x (⟨ y , n ⟩∷ ys) with discA a x | discA a y | discA x y
... | yes a≡x | yes a≡y | yes x≡y = addIfEq≡ a≡y ∙ sym (+-assoc m n _)
... | yes a≡x | yes a≡y | no x≢y = ⊥.rec (x≢y (sym a≡x ∙ a≡y))
... | yes a≡x | no a≢y | yes x≡y = ⊥.rec (a≢y (a≡x ∙ x≡y))
... | yes a≡x | no a≢y | no x≢y = addIfEq≢ a≢y ∙ countInsert* m a x ys ∙ addIfEq≡ a≡x
... | no a≢x | yes a≡y | yes x≡y = ⊥.rec (a≢x (a≡y ∙ sym x≡y))
... | no a≢x | yes a≡y | no x≢y = addIfEq≡ a≡y ∙ cong (n +_) (countInsert* m a x ys ∙ addIfEq≢ a≢x)
... | no a≢x | no a≢y | yes x≡y = addIfEq≢ a≢y
... | no a≢x | no a≢y | no x≢y = addIfEq≢ a≢y ∙ countInsert* m a x ys ∙ addIfEq≢ a≢x
countInsert = countInsert* 1
countUnion : ∀ a xs ys → count a (union xs ys) ≡ count a xs + count a ys
countUnion a ⟨⟩ ys = refl
countUnion a (⟨ x , n ⟩∷ xs) ys =
countInsert* n a x (union xs ys)
∙ cong (addIfEq a x n) (countUnion a xs ys)
∙ addIfEq+ (count a ys)
-- now for the QER between List and Alist
R : List A → AList A → Type ℓ
R xs ys = ∀ a → L.count a xs ≡ AL.count a ys
φ : List A → AList A
φ [] = ⟨⟩
φ (x ∷ xs) = AL.insert x (φ xs)
ψ : AList A → List A
ψ ⟨⟩ = []
ψ (⟨ x , zero ⟩∷ xs) = ψ xs
ψ (⟨ x , suc n ⟩∷ xs) = x ∷ ψ (⟨ x , n ⟩∷ xs)
η : ∀ xs → R xs (φ xs)
η [] a = refl
η (x ∷ xs) a = cong (addIfEq a x 1) (η xs a) ∙ sym (AL.countInsert a x (φ xs))
-- for the other direction we need a little helper function
ε : ∀ y → R (ψ y) y
ε' : (x : A) (n : ℕ) (xs : AList A) (a : A)
→ L.count a (ψ (⟨ x , n ⟩∷ xs)) ≡ AL.count a (⟨ x , n ⟩∷ xs)
ε ⟨⟩ a = refl
ε (⟨ x , n ⟩∷ xs) a = ε' x n xs a
ε' x zero xs a = ε xs a ∙ sym addIfEq0
ε' x (suc n) xs a with discA a x
... | yes a≡x = cong suc (ε' x n xs a ∙ addIfEq≡ a≡x)
... | no a≢x = ε' x n xs a ∙ addIfEq≢ a≢x
-- Induced quotients and equivalence
open isQuasiEquivRel
-- R is a QER
QuasiR : QuasiEquivRel _ _ ℓ
QuasiR .fst .fst = R
QuasiR .fst .snd _ _ = isPropΠ λ _ → isSetℕ _ _
QuasiR .snd .zigzag r r' r'' a = (r a) ∙∙ sym (r' a) ∙∙ (r'' a)
QuasiR .snd .fwd a = ∣ φ a , η a ∣
QuasiR .snd .bwd b = ∣ ψ b , ε b ∣
isStructuredInsert : (x : A) {xs : List A} {ys : AList A}
→ R xs ys → R (L.insert x xs) (AL.insert x ys)
isStructuredInsert x {xs} {ys} r a =
cong (addIfEq a x 1) (r a) ∙ sym (AL.countInsert a x ys)
isStructuredUnion :
{xs : List A} {ys : AList A} (r : R xs ys)
{xs' : List A} {ys' : AList A} (r' : R xs' ys')
→ R (L.union xs xs') (AL.union ys ys')
isStructuredUnion {xs} {ys} r {xs'} {ys'} r' a =
L.countUnion a xs xs' ∙ cong₂ _+_ (r a) (r' a) ∙ sym (AL.countUnion a ys ys')
-- R is structured
isStructuredR : S.relation R L.structure AL.structure
isStructuredR .fst a = refl
isStructuredR .snd .fst = isStructuredInsert
isStructuredR .snd .snd .fst {xs} {ys} = isStructuredUnion {xs} {ys}
isStructuredR .snd .snd .snd a r = r a
module E = QER→Equiv QuasiR
open E renaming (Rᴸ to Rᴸ; Rᴿ to Rᴬᴸ)
List/Rᴸ = (List A) / Rᴸ
AList/Rᴬᴸ = (AList A) / Rᴬᴸ
List/Rᴸ≃AList/Rᴬᴸ : List/Rᴸ ≃ AList/Rᴬᴸ
List/Rᴸ≃AList/Rᴬᴸ = E.Thm
main : QERDescends _ S.relation (List A , L.structure) (AList A , AL.structure) QuasiR
main = structuredQER→structuredEquiv S.suitable _ _ QuasiR isStructuredR
open QERDescends
LQstructure : S.structure List/Rᴸ
LQstructure = main .quoᴸ .fst
ALQstructure : S.structure AList/Rᴬᴸ
ALQstructure = main .quoᴿ .fst
-- We get a path between structure over the equivalence from the fact that the QER is structured
List/Rᴸ≡AList/Rᴬᴸ :
Path (TypeWithStr ℓ S.structure) (List/Rᴸ , LQstructure) (AList/Rᴬᴸ , ALQstructure)
List/Rᴸ≡AList/Rᴬᴸ =
sip S.univalent _ _
(E.Thm , S.matches (List/Rᴸ , LQstructure) (AList/Rᴬᴸ , ALQstructure) E.Thm .fst (main .rel))
-- Deriving associativity of union for association list multisets
LQunion = LQstructure .snd .snd .fst
ALQunion = ALQstructure .snd .snd .fst
hasAssociativeUnion : TypeWithStr ℓ S.structure → Type ℓ
hasAssociativeUnion (_ , _ , _ , _⊔_ , _) =
∀ xs ys zs → (xs ⊔ ys) ⊔ zs ≡ xs ⊔ (ys ⊔ zs)
LQassoc : hasAssociativeUnion (List/Rᴸ , LQstructure)
LQassoc = elimProp3 (λ _ _ _ → squash/ _ _) (λ xs ys zs i → [ ++-assoc xs ys zs i ])
ALQassoc : hasAssociativeUnion (AList/Rᴬᴸ , ALQstructure)
ALQassoc = subst hasAssociativeUnion List/Rᴸ≡AList/Rᴬᴸ LQassoc
-- We now show that List/Rᴸ≃FMSet
_∷/_ : A → List/Rᴸ → List/Rᴸ
_∷/_ = LQstructure .snd .fst
multisetShape' : Type ℓ → Type ℓ
multisetShape' X = X × (A → X → X) × (A → X → Const[ ℕ , isSetℕ ])
FMSstructure : S.structure (FMSet A)
FMSstructure = [] , _∷_ , FMS._++_ , FMScount discA
infixr 5 _∷/_
FMSet→List/Rᴸ : FMSet A → List/Rᴸ
FMSet→List/Rᴸ = FMS.Rec.f squash/ [ [] ] _∷/_ β
where
δ : ∀ c a b xs → L.count c (a ∷ b ∷ xs) ≡ L.count c (b ∷ a ∷ xs)
δ c a b xs with discA c a | discA c b
δ c a b xs | yes _ | yes _ = refl
δ c a b xs | yes _ | no _ = refl
δ c a b xs | no _ | yes _ = refl
δ c a b xs | no _ | no _ = refl
γ : ∀ a b xs → Rᴸ (a ∷ b ∷ xs) (b ∷ a ∷ xs)
γ a b xs =
∣ φ (a ∷ b ∷ xs) , η (a ∷ b ∷ xs) , (λ c → δ c b a xs ∙ η (a ∷ b ∷ xs) c) ∣
β : ∀ a b [xs] → a ∷/ b ∷/ [xs] ≡ b ∷/ a ∷/ [xs]
β a b = elimProp (λ _ → squash/ _ _) (λ xs → eq/ _ _ (γ a b xs))
-- The inverse is induced by the standard projection of lists into finite multisets,
-- which is a morphism of CountStructures
-- Moreover, we need 'count-extensionality' for finite multisets
List→FMSet : List A → FMSet A
List→FMSet [] = []
List→FMSet (x ∷ xs) = x ∷ List→FMSet xs
List→FMSet-count : ∀ a xs → L.count a xs ≡ FMScount discA a (List→FMSet xs)
List→FMSet-count a [] = refl
List→FMSet-count a (x ∷ xs) with discA a x
... | yes _ = cong suc (List→FMSet-count a xs)
... | no _ = List→FMSet-count a xs
List/Rᴸ→FMSet : List/Rᴸ → FMSet A
List/Rᴸ→FMSet [ xs ] = List→FMSet xs
List/Rᴸ→FMSet (eq/ xs ys r i) = path i
where
countsAgree : ∀ a → L.count a xs ≡ L.count a ys
countsAgree a = cong (LQstructure .snd .snd .snd a) (eq/ xs ys r)
θ : ∀ a → FMScount discA a (List→FMSet xs) ≡ FMScount discA a (List→FMSet ys)
θ a = sym (List→FMSet-count a xs) ∙∙ countsAgree a ∙∙ List→FMSet-count a ys
path : List→FMSet xs ≡ List→FMSet ys
path = FMScountExt.Thm discA _ _ θ
List/Rᴸ→FMSet (squash/ xs/ xs/' p q i j) =
trunc (List/Rᴸ→FMSet xs/) (List/Rᴸ→FMSet xs/') (cong List/Rᴸ→FMSet p) (cong List/Rᴸ→FMSet q) i j
List/Rᴸ→FMSet-insert : (x : A) (ys : List/Rᴸ) → List/Rᴸ→FMSet (x ∷/ ys) ≡ x ∷ List/Rᴸ→FMSet ys
List/Rᴸ→FMSet-insert x = elimProp (λ _ → FMS.trunc _ _) λ xs → refl
List→FMSet-union : (xs ys : List A)
→ List→FMSet (xs ++ ys) ≡ FMS._++_ (List→FMSet xs) (List→FMSet ys)
List→FMSet-union [] ys = refl
List→FMSet-union (x ∷ xs) ys = cong (x ∷_) (List→FMSet-union xs ys)
List/Rᴸ≃FMSet : List/Rᴸ ≃ FMSet A
List/Rᴸ≃FMSet = isoToEquiv (iso List/Rᴸ→FMSet FMSet→List/Rᴸ τ σ)
where
σ' : (xs : List A) → FMSet→List/Rᴸ (List/Rᴸ→FMSet [ xs ]) ≡ [ xs ]
σ' [] = refl
σ' (x ∷ xs) = cong (x ∷/_) (σ' xs)
σ : section FMSet→List/Rᴸ List/Rᴸ→FMSet
σ = elimProp (λ _ → squash/ _ _) σ'
τ' : ∀ x {xs} → List/Rᴸ→FMSet (FMSet→List/Rᴸ xs) ≡ xs → List/Rᴸ→FMSet (FMSet→List/Rᴸ (x ∷ xs)) ≡ x ∷ xs
τ' x {xs} p = List/Rᴸ→FMSet-insert x (FMSet→List/Rᴸ xs) ∙ cong (x ∷_) p
τ : retract FMSet→List/Rᴸ List/Rᴸ→FMSet
τ = FMS.ElimProp.f (FMS.trunc _ _) refl τ'
List/Rᴸ≃FMSet-EquivStr : S.equiv (List/Rᴸ , LQstructure) (FMSet A , FMSstructure) List/Rᴸ≃FMSet
List/Rᴸ≃FMSet-EquivStr .fst = refl
List/Rᴸ≃FMSet-EquivStr .snd .fst a xs = List/Rᴸ→FMSet-insert a xs
List/Rᴸ≃FMSet-EquivStr .snd .snd .fst = elimProp2 (λ _ _ → trunc _ _) List→FMSet-union
List/Rᴸ≃FMSet-EquivStr .snd .snd .snd a =
elimProp (λ _ → isSetℕ _ _) (List→FMSet-count a)
{-
Putting everything together we get:
≃
List/Rᴸ ------------> AList/Rᴬᴸ
|
|≃
|
∨
≃
FMSet A ------------> AssocList A
We thus get that AList/Rᴬᴸ≃AssocList.
Constructing such an equivalence directly requires count extensionality for association lists,
which should be even harder to prove than for finite multisets.
This strategy should work for all implementations of multisets with HITs.
We just have to show that:
∙ The HIT is equivalent to FMSet (like AssocList)
∙ There is a QER between lists and the basic data type of the HIT
with the higher constructors removed (like AList)
Then we get that this HIT is equivalent to the corresponding set quotient that identifies elements
that give the same count on each a : A.
TODO: Show that all the equivalences are indeed isomorphisms of multisets not only of CountStructures!
-}
| {
"alphanum_fraction": 0.595806962,
"avg_line_length": 35.208913649,
"ext": "agda",
"hexsha": "f283d7f9d5aeb22baddf3861cd1289ee48c404db",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Relation/ZigZag/Applications/MultiSet.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Relation/ZigZag/Applications/MultiSet.agda",
"max_line_length": 107,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Relation/ZigZag/Applications/MultiSet.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5131,
"size": 12640
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.