Search is not available for this dataset
text
string
meta
dict
{-# OPTIONS --safe #-} {- Builds bismulation for the cumulative hierarchy and shows that it is equivalent to equality though it lives in a lower universe. -} module Cubical.HITs.CumulativeHierarchy.Properties where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Univalence open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Function open import Cubical.Foundations.Transport open import Cubical.Foundations.HLevels open import Cubical.Foundations.Structure open import Cubical.Functions.Embedding open import Cubical.Functions.Logic as L open import Cubical.Data.Sigma open import Cubical.HITs.PropositionalTruncation as P hiding (elim; elim2) open import Cubical.HITs.SetQuotients as Q using (_/_; setQuotUniversal; eq/; squash/) open import Cubical.HITs.CumulativeHierarchy.Base renaming (elim to elimInternal) import Cubical.HITs.PropositionalTruncation.Monad as PropMonad private variable ℓ ℓ' : Level X Y : Type ℓ a b : V ℓ infix 4 _≊_ infix 7 _∈ₛ_ _⊆_ _⊆ₛ_ ------------ -- "bisimulation" ----------- -- bisimulation is needed to define a quotient in the correct universe when -- implementing the map : V ℓ → Σ[ X : Type ℓ ] (X → V ℓ) -- Quotienting by Path (V ℓ) or via eqImage would lead to X : Type (ℓ-suc ℓ) _∼_ : (s t : V ℓ) → hProp ℓ _∼_ = elim2 eliminator where goalProp : (X : Type ℓ) (ix : X → V ℓ) → (Y : Type ℓ) (iy : Y → V ℓ) → (rec : X → Y → hProp ℓ) → hProp ℓ goalProp X ix Y iy rec = (∀[ a ∶ X ] ∃[ b ∶ Y ] rec a b) ⊓ (∀[ b ∶ Y ] ∃[ a ∶ X ] rec a b) ⇔-swap : X ⊓′ Y → Y ⊓′ X ⇔-swap (p , q) = (q , p) open PropMonad lemma : {X₁ X₂ Y : Type ℓ} {ix₁ : X₁ → V ℓ} {ix₂ : X₂ → V ℓ} (iy : Y → V ℓ) → {rec₁ : X₁ → Y → hProp ℓ} {rec₂ : X₂ → Y → hProp ℓ} → (rec₁→₂ : (x₁ : X₁) → ∃[ (x₂ , p) ∈ fiber ix₂ (ix₁ x₁) ] rec₂ x₂ ≡ rec₁ x₁) → (rec₂→₁ : (x₂ : X₂) → ∃[ (x₁ , p) ∈ fiber ix₁ (ix₂ x₂) ] rec₁ x₁ ≡ rec₂ x₂) → ⟨ goalProp X₁ ix₁ Y iy rec₁ ⇒ goalProp X₂ ix₂ Y iy rec₂ ⟩ lemma _ rec₁→₂ rec₂→₁ (X₁→Y , Y→X₁) = (λ x₂ → do ((x₁ , c_) , xr₁) ← rec₂→₁ x₂ (y , yr) ← X₁→Y x₁ ∣ y , subst fst (λ i → xr₁ i y) yr ∣₁ ) , (λ y → do (x₁ , xr₁) ← Y→X₁ y ((x₂ , _) , xr₂) ← rec₁→₂ x₁ ∣ x₂ , subst fst (λ i → xr₂ (~ i) y) xr₁ ∣₁ ) open Elim2Set eliminator : Elim2Set (λ _ _ → isSetHProp) ElimSett2 eliminator = goalProp ElimEqSnd eliminator X ix Y₁ Y₂ iy₁ iy₂ eq rec₁ rec₂ rec₁→₂ rec₂→₁ = ⇔toPath (⇔-swap ∘ lemma ix rec₁→₂ rec₂→₁ ∘ ⇔-swap) (⇔-swap ∘ lemma ix rec₂→₁ rec₁→₂ ∘ ⇔-swap) ElimEqFst eliminator X₁ X₂ ix₁ ix₂ eq Y iy rec₁ rec₂ rec₁→₂ rec₂→₁ = ⇔toPath (lemma iy rec₁→₂ rec₂→₁) (lemma iy rec₂→₁ rec₁→₂) _≊_ : (s t : V ℓ) → Type ℓ s ≊ t = ⟨ s ∼ t ⟩ ∼refl : (a : V ℓ) → a ≊ a ∼refl = elimProp (λ a → isProp⟨⟩ (a ∼ a)) (λ X ix rec → (λ x → ∣ x , rec x ∣₁) , (λ x → ∣ x , rec x ∣₁)) -- keep in mind that the left and right side here live in different universes identityPrinciple : (a ≊ b) ≃ (a ≡ b) identityPrinciple {a = a} {b = b} = isoToEquiv (iso from into (λ _ → setIsSet _ _ _ _) (λ _ → isProp⟨⟩ (a ∼ b) _ _)) where open PropMonad eqImageXY : {X Y : Type ℓ} {ix : X → V ℓ} {iy : Y → V ℓ} → (∀ x y → ⟨ ix x ∼ iy y ⟩ → ix x ≡ iy y) → ⟨ sett X ix ∼ sett Y iy ⟩ → eqImage ix iy eqImageXY rec rel = (λ x → do (y , y∼x) ← fst rel x ; ∣ y , sym (rec _ _ y∼x) ∣₁) , (λ y → do (x , x∼y) ← snd rel y ; ∣ x , rec _ _ x∼y ∣₁) from : a ≊ b → a ≡ b from = elimProp propB eliminator a b where prop∼ : {a : V ℓ} → ∀ b → isProp (a ≊ b → a ≡ b) prop∼ {a = a} b = isPropΠ λ _ → setIsSet a b propB : (a : V ℓ) → isProp (∀ b → a ≊ b → a ≡ b) propB a = isPropΠ prop∼ eliminator : ∀ (X : Type _) (ix : X → V _) → ((x : X) (b₁ : V _) → ix x ≊ b₁ → ix x ≡ b₁) → (b₁ : V _) → sett X ix ≊ b₁ → sett X ix ≡ b₁ eliminator X ix rec = elimProp prop∼ λ Y iy _ → seteq X Y ix iy ∘ eqImageXY (λ x y → rec x (iy y)) into : a ≡ b → a ≊ b into = J (λ b _ → a ≊ b) (∼refl a) ------------ -- Monic presentation of sets ----------- -- like fiber, but in a lower universe repFiber : (f : X → V ℓ) (b : V ℓ) → Type _ repFiber f b = Σ[ a ∈ _ ] f a ≊ b repFiber≃fiber : (f : X → V ℓ) (b : V ℓ) → repFiber f b ≃ fiber f b repFiber≃fiber f b = Σ-cong-equiv (idEquiv _) (λ _ → identityPrinciple) -- projecting out a representing type together with the embedding MonicPresentation : (a : V ℓ) → Type (ℓ-suc ℓ) MonicPresentation {ℓ} a = Σ[ (X , ix , _) ∈ Embedding (V ℓ) ℓ ] (a ≡ sett X ix) isPropMonicPresentation : (a : V ℓ) → isProp (MonicPresentation a) isPropMonicPresentation a ((X₁ , ix₁ , isEmb₁) , p) ((X₂ , ix₂ , isEmb₂) , q) = ΣPathP ( equivFun (EmbeddingIP _ _) (fiberwise1 , fiberwise2) , isProp→PathP (λ i → setIsSet a _) p q) where open PropMonad fiberwise1 : ∀ b → fiber ix₁ b → fiber ix₂ b fiberwise1 b fbx₁ = proof (_ , isEmbedding→hasPropFibers isEmb₂ b) by subst (λ A → ⟨ b ∈ A ⟩) (sym p ∙ q) ∣ fbx₁ ∣₁ fiberwise2 : ∀ b → fiber ix₂ b → fiber ix₁ b fiberwise2 b fbx₂ = proof (_ , isEmbedding→hasPropFibers isEmb₁ b) by subst (λ A → ⟨ b ∈ A ⟩) (sym q ∙ p) ∣ fbx₂ ∣₁ sett-repr : (X : Type ℓ) (ix : X → V ℓ) → MonicPresentation (sett X ix) sett-repr {ℓ} X ix = (Rep , ixRep , isEmbIxRep) , seteq X Rep ix ixRep eqImIxRep where Kernel : X → X → Type ℓ Kernel x y = ix x ≊ ix y Rep : Type ℓ Rep = X / Kernel ixRep : Rep → V ℓ ixRep = invEq (setQuotUniversal setIsSet) (ix , λ _ _ → equivFun identityPrinciple) isEmbIxRep : isEmbedding ixRep isEmbIxRep = hasPropFibers→isEmbedding propFibers where propFibers : ∀ y → (a b : Σ[ p ∈ Rep ] (ixRep p ≡ y)) → a ≡ b propFibers y (p₁ , m) (p₂ , n) = ΣPathP {B = λ _ p → ixRep p ≡ y} (goal , isProp→PathP (λ _ → setIsSet _ _) _ _) where lemma : ∀ {p₁ p₂} → (p : ixRep Q.[ p₁ ] ≡ y) (q : ixRep Q.[ p₂ ] ≡ y) → Kernel p₁ p₂ lemma m n = invEquiv identityPrinciple .fst (m ∙ sym n) prop₁ : ∀ p₁ → isProp ((ixRep p₁ ≡ y) → p₁ ≡ p₂) prop₁ p₁ = isPropΠ λ eq → squash/ p₁ p₂ prop₂ : ∀ {p₁} p₂ → isProp ((ixRep p₂ ≡ y) → Q.[ p₁ ] ≡ p₂) prop₂ {p₁} p₂ = isPropΠ λ eq → squash/ Q.[ p₁ ] p₂ goal : p₁ ≡ p₂ goal = Q.elimProp prop₁ (λ p₁ m → Q.elimProp prop₂ (λ p₂ n → eq/ p₁ p₂ (lemma m n)) p₂ n) p₁ m eqImIxRep : eqImage ix ixRep eqImIxRep = (λ x → ∣ Q.[ x ] , refl ∣₁) , Q.elimProp (λ _ → P.squash₁) (λ b → ∣ b , refl ∣₁) data DeepMonicPresentation (a : V ℓ) : Type (ℓ-suc ℓ) where dmp : (mp@((_ , ix , _) , _) : MonicPresentation a) → (rec : ∀ x → DeepMonicPresentation (ix x)) → DeepMonicPresentation a isPropDeepMonicPresentation : (a : V ℓ) → isProp (DeepMonicPresentation a) isPropDeepMonicPresentation a (dmp mx rx) (dmp my ry) i = dmp (mx≡my i) (recprop i) where mx≡my : mx ≡ my mx≡my = isPropMonicPresentation a mx my recprop : PathP (λ i → (x : mx≡my i .fst .fst) → DeepMonicPresentation (mx≡my i .fst .snd .fst x)) rx ry recprop = toPathP (funExt λ x → isPropDeepMonicPresentation _ _ _) V-deeprepr : (a : V ℓ) → DeepMonicPresentation a V-deeprepr = elimProp isPropDeepMonicPresentation λ X ix rec → dmp (sett-repr X ix) (Q.elimProp (λ _ → isPropDeepMonicPresentation _) rec) V-repr : (a : V ℓ) → MonicPresentation a -- "Cannot eliminate fibrant type DeepMonicPresentation a -- unless target type is also fibrant" -- V-repr = let (dmp mp _) = (V-deeprepr a) in mp V-repr a = case (V-deeprepr a) return (λ _ → MonicPresentation a) of λ { (dmp mp _) → mp } private MonicDataF : Type (ℓ-suc ℓ) → Type (ℓ-suc ℓ) MonicDataF {ℓ} T = Embedding T ℓ V-fixpoint : V ℓ ≃ MonicDataF (V ℓ) V-fixpoint {ℓ} = V ℓ ≃⟨ invEquiv (Σ-contractSnd λ a → inhProp→isContr (V-repr a) (isPropMonicPresentation a)) ⟩ (Σ[ a ∈ V ℓ ] MonicPresentation a) ≃⟨ boringswap ⟩ (Σ[ (X , ix , _) ∈ MonicDataF (V ℓ) ] singl (sett X ix)) ≃⟨ Σ-contractSnd (λ _ → isContrSingl _) ⟩ MonicDataF (V ℓ) ■ where boringswap : (Σ[ a ∈ V ℓ ] MonicPresentation a) ≃ (Σ[ (X , ix , _) ∈ MonicDataF (V ℓ) ] singl (sett X ix)) boringswap = isoToEquiv (iso (λ (a , (X , ix , emb) , p) → (X , ix , emb) , a , sym p) (λ ((X , ix , emb) , a , p) → a , (X , ix , emb) , sym p) (λ _ → refl) λ _ → refl) -- note the problem of making this a datatype directly: MonicDataF is *not* strictly positive! -- an elimination principle based on the monic presentation elim : (B : V ℓ → Type ℓ') → ((X : Type ℓ) (ix : X → V ℓ) (emb : isEmbedding ix) (rec : ∀ x → B (ix x)) → B (sett X ix)) → (a : V ℓ) → B a elim B alg = elimDMP ∘ V-deeprepr where elimDMP : ∀ {a} → DeepMonicPresentation a → B a elimDMP (dmp ((X , ix , emb) , p) rec) = subst B (sym p) (alg X ix emb (λ x → elimDMP (rec x))) ⟪_⟫ : (s : V ℓ) → Type ℓ ⟪ X ⟫ = V-repr X .fst .fst ⟪_⟫↪ : (s : V ℓ) → ⟪ s ⟫ → V ℓ ⟪ X ⟫↪ = V-repr X .fst .snd .fst isEmb⟪_⟫↪ : (s : V ℓ) → isEmbedding ⟪ s ⟫↪ isEmb⟪ X ⟫↪ = V-repr X .fst .snd .snd ⟪_⟫-represents : (s : V ℓ) → s ≡ sett ⟪ s ⟫ ⟪ s ⟫↪ ⟪ X ⟫-represents = V-repr X .snd isPropRepFiber : (a b : V ℓ) → isProp (repFiber ⟪ a ⟫↪ b) isPropRepFiber a b = Embedding-into-isProp→isProp (Equiv→Embedding (repFiber≃fiber ⟪ a ⟫↪ b)) (isEmbedding→hasPropFibers isEmb⟪ a ⟫↪ b) -- while ∈ is hProp (ℓ-suc ℓ), ∈ₛ is in ℓ _∈ₛ_ : (a b : V ℓ) → hProp ℓ a ∈ₛ b = repFiber ⟪ b ⟫↪ a , isPropRepFiber b a ∈-asFiber : {a b : V ℓ} → ⟨ a ∈ b ⟩ → fiber ⟪ b ⟫↪ a ∈-asFiber {a = a} {b = b} = subst (λ br → ⟨ a ∈ br ⟩ → fiber ⟪ b ⟫↪ a) (sym ⟪ b ⟫-represents) asRep where asRep : ⟨ a ∈ sett ⟪ b ⟫ ⟪ b ⟫↪ ⟩ → fiber ⟪ b ⟫↪ a asRep = P.propTruncIdempotent≃ (isEmbedding→hasPropFibers isEmb⟪ b ⟫↪ a) .fst ∈-fromFiber : {a b : V ℓ} → fiber ⟪ b ⟫↪ a → ⟨ a ∈ b ⟩ ∈-fromFiber {a = a} {b = b} = subst (λ br → ⟨ a ∈ br ⟩) (sym ⟪ b ⟫-represents) ∘ ∣_∣₁ ∈∈ₛ : {a b : V ℓ} → ⟨ a ∈ b ⇔ a ∈ₛ b ⟩ ∈∈ₛ {a = a} {b = b} = leftToRight , rightToLeft where repEquiv : repFiber ⟪ b ⟫↪ a ≃ fiber ⟪ b ⟫↪ a repEquiv = repFiber≃fiber ⟪ b ⟫↪ a leftToRight : ⟨ (a ∈ b) ⇒ a ∈ₛ b ⟩ leftToRight a∈b = invEq repEquiv (∈-asFiber {b = b} a∈b) rightToLeft : ⟨ a ∈ₛ b ⇒ (a ∈ b) ⟩ rightToLeft a∈ₛb = ∈-fromFiber {b = b} (equivFun repEquiv a∈ₛb) ix∈ₛ : {X : Type ℓ} {ix : X → V ℓ} → (x : X) → ⟨ ix x ∈ₛ sett X ix ⟩ ix∈ₛ {X = X} {ix = ix} x = ∈∈ₛ {a = ix x} {b = sett X ix} .fst ∣ x , refl ∣₁ ∈ₛ⟪_⟫↪_ : (a : V ℓ) (ix : ⟪ a ⟫) → ⟨ ⟪ a ⟫↪ ix ∈ₛ a ⟩ ∈ₛ⟪ a ⟫↪ ix = ix , ∼refl (⟪ a ⟫↪ ix) -- also here, the left side is in level (ℓ-suc ℓ) while the right is in ℓ presentation : (a : V ℓ) → (Σ[ v ∈ V ℓ ] ⟨ v ∈ₛ a ⟩) ≃ ⟪ a ⟫ presentation a = isoToEquiv (iso into from (λ _ → refl) retr) where into : Σ[ v ∈ V _ ] ⟨ v ∈ₛ a ⟩ → ⟪ a ⟫ into = fst ∘ snd from : ⟪ a ⟫ → Σ[ v ∈ V _ ] ⟨ v ∈ₛ a ⟩ from ⟪a⟫ = ⟪ a ⟫↪ ⟪a⟫ , ∈ₛ⟪ a ⟫↪ ⟪a⟫ retr : retract into from retr s = Σ≡Prop (λ v → (v ∈ₛ a) .snd) (equivFun identityPrinciple (s .snd .snd)) -- subset relation, once in level (ℓ-suc ℓ) and once in ℓ _⊆_ : (a b : V ℓ) → hProp (ℓ-suc ℓ) a ⊆ b = ∀[ x ] x ∈ₛ a ⇒ x ∈ₛ b ⊆-refl : (a : V ℓ) → ⟨ a ⊆ a ⟩ ⊆-refl a = λ _ xa → xa _⊆ₛ_ : (a b : V ℓ) → hProp ℓ a ⊆ₛ b = ∀[ x ] ⟪ a ⟫↪ x ∈ₛ b ⊆⇔⊆ₛ : (a b : V ℓ) → ⟨ a ⊆ b ⇔ a ⊆ₛ b ⟩ ⊆⇔⊆ₛ a b = (λ s → invEq curryEquiv s ∘ invEq (presentation a)) , (λ s x xa → subst (λ x → ⟨ x ∈ₛ b ⟩) (equivFun identityPrinciple (xa .snd)) (s (xa .fst))) -- the homotopy definition of equality as an hProp, we know this is equivalent to bisimulation infix 4 _≡ₕ_ _≡ₕ_ : (a b : V ℓ) → hProp (ℓ-suc ℓ) _≡ₕ_ a b = (a ≡ b) , setIsSet a b -- extensionality extensionality : ⟨ ∀[ a ∶ V ℓ ] ∀[ b ] (a ⊆ b) ⊓ (b ⊆ a) ⇒ (a ≡ₕ b) ⟩ extensionality {ℓ = ℓ} a b imeq = ⟪ a ⟫-represents ∙∙ settab ∙∙ sym ⟪ b ⟫-represents where abpth : Path (Embedding _ _) (⟪ a ⟫ , ⟪ a ⟫↪ , isEmb⟪ a ⟫↪) (⟪ b ⟫ , ⟪ b ⟫↪ , isEmb⟪ b ⟫↪) abpth = equivFun (EmbeddingIP _ _) ( (λ p → equivFun (repFiber≃fiber ⟪ b ⟫↪ p) ∘ imeq .fst p ∘ invEq (repFiber≃fiber ⟪ a ⟫↪ p)) , (λ p → equivFun (repFiber≃fiber ⟪ a ⟫↪ p) ∘ imeq .snd p ∘ invEq (repFiber≃fiber ⟪ b ⟫↪ p)) ) settab : sett ⟪ a ⟫ ⟪ a ⟫↪ ≡ sett ⟪ b ⟫ ⟪ b ⟫↪ settab i = sett (abpth i .fst) (abpth i .snd .fst) extInverse : ⟨ ∀[ a ∶ V ℓ ] ∀[ b ] (a ≡ₕ b) ⇒ (a ⊆ b) ⊓ (b ⊆ a) ⟩ extInverse a b a≡b = subst (λ b → ⟨ (a ⊆ b) ⊓ (b ⊆ a) ⟩) a≡b (⊆-refl a , ⊆-refl a) set≡-characterization : {a b : V ℓ} → (a ≡ₕ b) ≡ (a ⊆ b) ⊓ (b ⊆ a) set≡-characterization = ⇔toPath (extInverse _ _) (extensionality _ _)
{ "alphanum_fraction": 0.5608318062, "avg_line_length": 39.9713375796, "ext": "agda", "hexsha": "65e3585c36767889a9acbb33114c166212fc67bd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/HITs/CumulativeHierarchy/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/HITs/CumulativeHierarchy/Properties.agda", "max_line_length": 138, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/HITs/CumulativeHierarchy/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 5606, "size": 12551 }
module PiFrac.Properties where open import Data.Empty open import Data.Unit hiding (_≟_) open import Data.Sum open import Data.Product open import Relation.Binary.Core open import Relation.Binary open import Relation.Nullary open import Relation.Binary.PropositionalEquality open import Data.Maybe open import PiFrac.Syntax open import PiFrac.Opsem open import PiFrac.AuxLemmas open import PiFrac.NoRepeat open import PiFrac.Eval open import PiFrac.Interp open import PiFrac.Invariants -- Forward evaluator is reversible evalIsRev : ∀ {A B} → (c : A ↔ B) (v₁ : ⟦ A ⟧) (v₂ : ⟦ B ⟧) → eval c v₁ ≡ (just v₂) → evalᵣₑᵥ c v₂ ≡ (just v₁) evalIsRev c v₁ v₂ eq with ev {κ = ☐} c v₁ evalIsRev c v₁ v₂ refl | inj₁ (v₂ , rs) with evᵣₑᵥ {κ = ☐} c v₂ ... | inj₁ (v₁' , rs') with deterministicᵣₑᵥ* rs' (Rev↦ rs) (λ ()) (λ ()) (λ ()) ... | refl = refl evalIsRev c v₁ v₂ refl | inj₁ (v₂ , rs) | inj₂ (_ , v , _ , _ , neq , rs') with deterministicᵣₑᵥ* rs' (Rev↦ rs) (λ ()) (Lemma₆ neq) (λ ()) ... | () -- Backward evaluator is reversible evalᵣₑᵥIsRev : ∀ {A B} → (c : A ↔ B) (v₁ : ⟦ B ⟧) (v₂ : ⟦ A ⟧) → evalᵣₑᵥ c v₁ ≡ (just v₂) → eval c v₂ ≡ (just v₁) evalᵣₑᵥIsRev c v₁ v₂ eq with evᵣₑᵥ {κ = ☐} c v₁ evalᵣₑᵥIsRev c v₁ v₂ refl | inj₁ (v₂ , rs) with ev {κ = ☐} c v₂ ... | inj₁ (_ , rs') with deterministic* rs' (Rev↦ᵣₑᵥ rs) (λ ()) (λ ()) ... | refl = refl evalᵣₑᵥIsRev c v₁ v₂ refl | inj₁ (v₂ , rs) | inj₂ rs' with deterministic* rs' (Rev↦ᵣₑᵥ rs) (λ ()) (λ ()) ... | () -- The abstract machine semantics is equivalent to the big-step semantics eval≡interp : ∀ {A B} → (c : A ↔ B) → (v : ⟦ A ⟧) → eval c v ≡ interp c v eval≡interp uniti₊l v = refl eval≡interp unite₊l (inj₂ v) = refl eval≡interp swap₊ (inj₁ x) = refl eval≡interp swap₊ (inj₂ y) = refl eval≡interp assocl₊ (inj₁ x) = refl eval≡interp assocl₊ (inj₂ (inj₁ y)) = refl eval≡interp assocl₊ (inj₂ (inj₂ z)) = refl eval≡interp assocr₊ (inj₁ (inj₁ x)) = refl eval≡interp assocr₊ (inj₁ (inj₂ y)) = refl eval≡interp assocr₊ (inj₂ z) = refl eval≡interp unite⋆l (tt , v) = refl eval≡interp uniti⋆l v = refl eval≡interp swap⋆ (x , y) = refl eval≡interp assocl⋆ (x , (y , z)) = refl eval≡interp assocr⋆ ((x , y) , z) = refl eval≡interp dist (inj₁ x , z) = refl eval≡interp dist (inj₂ y , z) = refl eval≡interp factor (inj₁ (x , z)) = refl eval≡interp factor (inj₂ (y , z)) = refl eval≡interp id↔ v = refl eval≡interp (c₁ ⨾ c₂) v with ev {κ = ☐} c₁ v | inspect (ev {κ = ☐} c₁) v eval≡interp (c₁ ⨾ c₂) v | inj₁ (v' , rs) | [ eq ] with ev {κ = ☐} c₂ v' | inspect (ev {κ = ☐} c₂) v' eval≡interp (c₁ ⨾ c₂) v | inj₁ (v' , rs) | [ eq ] | inj₁ (v'' , rs') | [ eq' ] with ev {κ = ☐} (c₁ ⨾ c₂) v | inspect (ev {κ = ☐} (c₁ ⨾ c₂)) v eval≡interp (c₁ ⨾ c₂) v | inj₁ (v' , rs) | [ eq ] | inj₁ (v'' , rs') | [ eq' ] | inj₁ (u , rs'') | [ eq'' ] rewrite (sym (eval≡interp c₁ v)) | eq | (sym (eval≡interp c₂ v')) | eq' with deterministic* ((↦₃ ∷ ◾) ++↦ appendκ↦* rs (λ ()) (λ ()) refl (☐⨾ c₂ • ☐) ++↦ (↦₇ ∷ ◾) ++↦ appendκ↦* rs' (λ ()) (λ ()) refl (c₁ ⨾☐• ☐) ++↦ (↦₁₀ ∷ ◾)) rs'' (λ ()) (λ ()) ... | refl = refl eval≡interp (c₁ ⨾ c₂) v | inj₁ (v' , rs) | [ eq ] | inj₁ (v'' , rs') | [ eq' ] | inj₂ rs'' | [ eq'' ] rewrite (sym (eval≡interp c₁ v)) | eq | (sym (eval≡interp c₂ v')) | eq' with deterministic* ((↦₃ ∷ ◾) ++↦ appendκ↦* rs (λ ()) (λ ()) refl (☐⨾ c₂ • ☐) ++↦ (↦₇ ∷ ◾) ++↦ appendκ↦* rs' (λ ()) (λ ()) refl (c₁ ⨾☐• ☐) ++↦ (↦₁₀ ∷ ◾)) rs'' (λ ()) (λ ()) ... | () eval≡interp (c₁ ⨾ c₂) v | inj₁ (v' , rs) | [ eq ] | inj₂ rs' | [ eq' ] with ev {κ = ☐} (c₁ ⨾ c₂) v | inspect (ev {κ = ☐} (c₁ ⨾ c₂)) v eval≡interp (c₁ ⨾ c₂) v | inj₁ (v' , rs) | [ eq ] | inj₂ rs' | [ eq' ] | inj₁ (u , rs'') | [ eq'' ] rewrite (sym (eval≡interp c₁ v)) | eq | (sym (eval≡interp c₂ v')) | eq' with deterministic* ((↦₃ ∷ ◾) ++↦ appendκ↦* rs (λ ()) (λ ()) refl (☐⨾ c₂ • ☐) ++↦ (↦₇ ∷ ◾) ++↦ appendκ↦*⊠ rs' (λ ()) (c₁ ⨾☐• ☐)) rs'' (λ ()) (λ ()) ... | () eval≡interp (c₁ ⨾ c₂) v | inj₁ (v' , rs) | [ eq ] | inj₂ rs' | [ eq' ] | inj₂ rs'' | [ eq'' ] rewrite (sym (eval≡interp c₁ v)) | eq | (sym (eval≡interp c₂ v')) | eq' = refl eval≡interp (c₁ ⨾ c₂) v | inj₂ rs | [ eq ] with ev {κ = ☐} (c₁ ⨾ c₂) v | inspect (ev {κ = ☐} (c₁ ⨾ c₂)) v eval≡interp (c₁ ⨾ c₂) v | inj₂ rs | [ eq ] | inj₁ (v'' , rs') | [ eq' ] with deterministic* ((↦₃ ∷ ◾) ++↦ appendκ↦*⊠ rs (λ ()) (☐⨾ c₂ • ☐)) rs' (λ ()) (λ ()) ... | () eval≡interp (c₁ ⨾ c₂) v | inj₂ rs | [ eq ] | inj₂ rs' | [ eq' ] rewrite (sym (eval≡interp c₁ v)) | eq = refl eval≡interp (c₁ ⊕ c₂) (inj₁ x) with ev {κ = ☐} c₁ x | inspect (ev {κ = ☐} c₁) x eval≡interp (c₁ ⊕ c₂) (inj₁ x) | inj₁ (x' , rs) | [ eq ] with ev {κ = ☐} (c₁ ⊕ c₂) (inj₁ x) | inspect (ev {κ = ☐} (c₁ ⊕ c₂)) (inj₁ x) eval≡interp (c₁ ⊕ c₂) (inj₁ x) | inj₁ (x' , rs) | [ eq ] | inj₁ (x'' , rs') | [ eq' ] rewrite (sym (eval≡interp c₁ x)) | eq with deterministic* ((↦₄ ∷ ◾) ++↦ appendκ↦* rs (λ ()) (λ ()) refl (☐⊕ c₂ • ☐) ++↦ (↦₁₁ ∷ ◾)) rs' (λ ()) (λ ()) ... | refl = refl eval≡interp (c₁ ⊕ c₂) (inj₁ x) | inj₁ (x' , rs) | [ eq ] | inj₂ rs' | [ eq' ] rewrite (sym (eval≡interp c₁ x)) | eq with deterministic* ((↦₄ ∷ ◾) ++↦ appendκ↦* rs (λ ()) (λ ()) refl (☐⊕ c₂ • ☐) ++↦ (↦₁₁ ∷ ◾)) rs' (λ ()) (λ ()) ... | () eval≡interp (c₁ ⊕ c₂) (inj₁ x) | inj₂ rs | [ eq ] with ev {κ = ☐} (c₁ ⊕ c₂) (inj₁ x) | inspect (ev {κ = ☐} (c₁ ⊕ c₂)) (inj₁ x) eval≡interp (c₁ ⊕ c₂) (inj₁ x) | inj₂ rs | [ eq ] | inj₁ (x'' , rs') | [ eq' ] rewrite (sym (eval≡interp c₁ x)) | eq with deterministic* ((↦₄ ∷ ◾) ++↦ appendκ↦*⊠ rs (λ ()) (☐⊕ c₂ • ☐)) rs' (λ ()) (λ ()) ... | () eval≡interp (c₁ ⊕ c₂) (inj₁ x) | inj₂ rs | [ eq ] | inj₂ rs' | [ eq' ] rewrite (sym (eval≡interp c₁ x)) | eq = refl eval≡interp (c₁ ⊕ c₂) (inj₂ y) with ev {κ = ☐} c₂ y | inspect (ev {κ = ☐} c₂) y eval≡interp (c₁ ⊕ c₂) (inj₂ y) | inj₁ (y' , rs) | [ eq ] with ev {κ = ☐} (c₁ ⊕ c₂) (inj₂ y) | inspect (ev {κ = ☐} (c₁ ⊕ c₂)) (inj₂ y) eval≡interp (c₁ ⊕ c₂) (inj₂ y) | inj₁ (y' , rs) | [ eq ] | inj₁ (y'' , rs') | [ eq' ] rewrite (sym (eval≡interp c₂ y)) | eq with deterministic* ((↦₅ ∷ ◾) ++↦ appendκ↦* rs (λ ()) (λ ()) refl (c₁ ⊕☐• ☐) ++↦ (↦₁₂ ∷ ◾)) rs' (λ ()) (λ ()) ... | refl = refl eval≡interp (c₁ ⊕ c₂) (inj₂ y) | inj₁ (y' , rs) | [ eq ] | inj₂ rs' | [ eq' ] rewrite (sym (eval≡interp c₂ y)) | eq with deterministic* ((↦₅ ∷ ◾) ++↦ appendκ↦* rs (λ ()) (λ ()) refl (c₁ ⊕☐• ☐) ++↦ (↦₁₂ ∷ ◾)) rs' (λ ()) (λ ()) ... | () eval≡interp (c₁ ⊕ c₂) (inj₂ y) | inj₂ rs | [ eq ] with ev {κ = ☐} (c₁ ⊕ c₂) (inj₂ y) | inspect (ev {κ = ☐} (c₁ ⊕ c₂)) (inj₂ y) eval≡interp (c₁ ⊕ c₂) (inj₂ y) | inj₂ rs | [ eq ] | inj₁ (y'' , rs') | [ eq' ] rewrite (sym (eval≡interp c₂ y)) | eq with deterministic* ((↦₅ ∷ ◾) ++↦ appendκ↦*⊠ rs (λ ()) (c₁ ⊕☐• ☐)) rs' (λ ()) (λ ()) ... | () eval≡interp (c₁ ⊕ c₂) (inj₂ y) | inj₂ rs | [ eq ] | inj₂ rs' | [ eq' ] rewrite (sym (eval≡interp c₂ y)) | eq = refl eval≡interp (c₁ ⊗ c₂) (x , y) with ev {κ = ☐} c₁ x | inspect (ev {κ = ☐} c₁) x eval≡interp (c₁ ⊗ c₂) (x , y) | inj₁ (x' , rs) | [ eq ] with ev {κ = ☐} c₂ y | inspect (ev {κ = ☐} c₂) y eval≡interp (c₁ ⊗ c₂) (x , y) | inj₁ (x' , rs) | [ eq ] | inj₁ (y' , rs') | [ eq' ] with ev {κ = ☐} (c₁ ⊗ c₂) (x , y) | inspect (ev {κ = ☐} (c₁ ⊗ c₂)) (x , y) eval≡interp (c₁ ⊗ c₂) (x , y) | inj₁ (x' , rs) | [ eq ] | inj₁ (y' , rs') | [ eq' ] | inj₁ (_ , rs'') | [ eq'' ] rewrite (sym (eval≡interp c₁ x)) | eq | (sym (eval≡interp c₂ y)) | eq' with deterministic* (((↦₆ ∷ ◾) ++↦ appendκ↦* rs (λ ()) (λ ()) refl (☐⊗[ c₂ , y ]• ☐)) ++↦ (↦₈ ∷ ◾) ++↦ appendκ↦* rs' (λ ()) (λ ()) refl ([ c₁ , x' ]⊗☐• ☐) ++↦ (↦₉ ∷ ◾)) rs'' (λ ()) (λ ()) ... | refl = refl eval≡interp (c₁ ⊗ c₂) (x , y) | inj₁ (x' , rs) | [ eq ] | inj₁ (y' , rs') | [ eq' ] | inj₂ rs'' | [ eq'' ] rewrite (sym (eval≡interp c₁ x)) | eq | (sym (eval≡interp c₂ y)) | eq' with deterministic* (((↦₆ ∷ ◾) ++↦ appendκ↦* rs (λ ()) (λ ()) refl (☐⊗[ c₂ , y ]• ☐)) ++↦ (↦₈ ∷ ◾) ++↦ appendκ↦* rs' (λ ()) (λ ()) refl ([ c₁ , x' ]⊗☐• ☐) ++↦ (↦₉ ∷ ◾)) rs'' (λ ()) (λ ()) ... | () eval≡interp (c₁ ⊗ c₂) (x , y) | inj₁ (x' , rs) | [ eq ] | inj₂ rs' | [ eq' ] with ev {κ = ☐} (c₁ ⊗ c₂) (x , y) | inspect (ev {κ = ☐} (c₁ ⊗ c₂)) (x , y) eval≡interp (c₁ ⊗ c₂) (x , y) | inj₁ (x' , rs) | [ eq ] | inj₂ rs' | [ eq' ] | inj₁ (y' , rs'') | [ eq'' ] rewrite (sym (eval≡interp c₁ x)) | eq | (sym (eval≡interp c₂ y)) | eq' with deterministic* (((↦₆ ∷ ◾) ++↦ appendκ↦* rs (λ ()) (λ ()) refl (☐⊗[ c₂ , y ]• ☐)) ++↦ (↦₈ ∷ ◾) ++↦ appendκ↦*⊠ rs' (λ ()) ([ c₁ , x' ]⊗☐• ☐)) rs'' (λ ()) (λ ()) ... | () eval≡interp (c₁ ⊗ c₂) (x , y) | inj₁ (x' , rs) | [ eq ] | inj₂ rs' | [ eq' ] | inj₂ rs'' | [ eq'' ] rewrite (sym (eval≡interp c₁ x)) | eq | (sym (eval≡interp c₂ y)) | eq' = refl eval≡interp (c₁ ⊗ c₂) (x , y) | inj₂ rs | [ eq ] with ev {κ = ☐} (c₁ ⊗ c₂) (x , y) | inspect (ev {κ = ☐} (c₁ ⊗ c₂)) (x , y) eval≡interp (c₁ ⊗ c₂) (x , y) | inj₂ rs | [ eq ] | inj₁ (_ , rs') | [ eq' ] rewrite (sym (eval≡interp c₁ x)) | eq with deterministic* ((↦₆ ∷ ◾) ++↦ appendκ↦*⊠ rs (λ ()) (☐⊗[ c₂ , y ]• ☐)) rs' (λ ()) (λ ()) ... | () eval≡interp (c₁ ⊗ c₂) (x , y) | inj₂ rs | [ eq ] | inj₂ rs'' | [ eq' ] rewrite (sym (eval≡interp c₁ x)) | eq = refl eval≡interp (ηₓ v) tt = refl eval≡interp (εₓ v) (v' , ↻) with v ≟ v' ... | yes refl = refl ... | no _ = refl -- !c is the inverse computation of c interp! : ∀ {A B} (c : A ↔ B) (a : ⟦ A ⟧) (b : ⟦ B ⟧) → interp c a ≡ just b → interp (! c) b ≡ just a interp! unite₊l (inj₂ y) .y refl = refl interp! uniti₊l y .(inj₂ y) refl = refl interp! swap₊ (inj₁ x) .(inj₂ x) refl = refl interp! swap₊ (inj₂ y) .(inj₁ y) refl = refl interp! assocl₊ (inj₁ x) .(inj₁ (inj₁ x)) refl = refl interp! assocl₊ (inj₂ (inj₁ y)) .(inj₁ (inj₂ y)) refl = refl interp! assocl₊ (inj₂ (inj₂ z)) .(inj₂ z) refl = refl interp! assocr₊ (inj₁ (inj₁ x)) .(inj₁ x) refl = refl interp! assocr₊ (inj₁ (inj₂ y)) .(inj₂ (inj₁ y)) refl = refl interp! assocr₊ (inj₂ z) .(inj₂ (inj₂ z)) refl = refl interp! unite⋆l (tt , v) .v refl = refl interp! uniti⋆l v .(tt , v) refl = refl interp! swap⋆ (x , y) .(y , x) refl = refl interp! assocl⋆ (x , y , z) .((x , y) , z) refl = refl interp! assocr⋆ ((x , y) , z) .(x , y , z) refl = refl interp! dist (inj₁ x , z) .(inj₁ (x , z)) refl = refl interp! dist (inj₂ y , z) .(inj₂ (y , z)) refl = refl interp! factor (inj₁ (x , z)) .(inj₁ x , z) refl = refl interp! factor (inj₂ (y , z)) .(inj₂ y , z) refl = refl interp! id↔ v .v refl = refl interp! (c₁ ⨾ c₂) a c eq with interp c₁ a | inspect (interp c₁) a ... | just b | [ eq₁ ] with interp c₂ b | inspect (interp c₂) b ... | just c' | [ eq₂ ] with eq ... | refl rewrite interp! c₂ b c eq₂ | interp! c₁ a b eq₁ = refl interp! (c₁ ⊕ c₂) (inj₁ x) b eq with interp c₁ x | inspect (interp c₁) x ... | just x' | [ eqx ] with b ... | inj₁ _ with eq ... | refl rewrite interp! c₁ x x' eqx = refl interp! (c₁ ⊕ c₂) (inj₂ y) b eq with interp c₂ y | inspect (interp c₂) y ... | just y' | [ eqy ] with b ... | inj₂ _ with eq ... | refl rewrite interp! c₂ y y' eqy = refl interp! (c₁ ⊗ c₂) (x , y) (x' , y') eq with interp c₁ x | inspect (interp c₁) x | interp c₂ y | inspect (interp c₂) y ... | just x'' | [ eqx ] | just y'' | [ eqy ] with eq ... | refl rewrite interp! c₁ x x' eqx | interp! c₂ y y' eqy = refl interp! (ηₓ v) tt .(v , ↻) refl with v ≟ v ... | yes refl = refl ... | no neq = ⊥-elim (neq refl) interp! (εₓ v) (v' , ↻) b eq with v ≟ v' ... | yes refl = refl interp! (εₓ _) (v' , ↻) b () | no neq
{ "alphanum_fraction": 0.5031762837, "avg_line_length": 71.2830188679, "ext": "agda", "hexsha": "28fb6be8fd981e9e8f86b6a2af3eb1c46edb64f6", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "PiFrac/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "PiFrac/Properties.agda", "max_line_length": 371, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "PiFrac/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 5488, "size": 11334 }
{-# OPTIONS --no-irrelevant-projections #-} module ScopeIrrelevantRecordField where record Bla : Set1 where constructor mkBla field .bla0 bla1 .{bla2 bla3} {bla4 .bla5} : Set bla0' : Bla -> Set bla0' = Bla.bla0 -- should fail with bla0 not in scope
{ "alphanum_fraction": 0.7, "avg_line_length": 23.6363636364, "ext": "agda", "hexsha": "38b632d0a9230175bc9df6b176f685800d8ff9df", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/fail/ScopeIrrelevantRecordField.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/fail/ScopeIrrelevantRecordField.agda", "max_line_length": 55, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/ScopeIrrelevantRecordField.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 87, "size": 260 }
open import FRP.JS.Behaviour using ( Beh ; [_] ; map ) open import FRP.JS.Event using ( Evt ; tag ) open import FRP.JS.DOM using ( DOM ; click ; element ; text ; _++_ ; element+ ; text+ ; listen+ ; _+++_ ) open import FRP.JS.RSet using ( RSet ; ⟦_⟧ ; ⟨_⟩ ; _⇒_ ) open import FRP.JS.Product using ( _∧_ ; _,_ ) open import FRP.JS.Demo.Calculator.Model using ( Button ; State ; digit ; op ; clear ; eq ; plus ; minus ; times ; button$ ; state$ ; model ) module FRP.JS.Demo.Calculator.View where button : ∀ {w} → Button → ⟦ Beh (DOM w) ∧ Evt ⟨ Button ⟩ ⟧ button b = listen+ click (λ _ → b) (element+ "button" (text+ [ button$ b ])) keypad : ∀ {w} → ⟦ Beh (DOM w) ∧ Evt ⟨ Button ⟩ ⟧ keypad = element+ "div" (button (digit 7) +++ button (digit 8) +++ button (digit 9) ) +++ element+ "div" (button (digit 4) +++ button (digit 5) +++ button (digit 6) ) +++ element+ "div" (button (digit 1) +++ button (digit 2) +++ button (digit 3) ) +++ element+ "div" (button (op eq) +++ button (digit 0) +++ button clear ) +++ element+ "div" (button (op plus) +++ button (op minus) +++ button (op times)) display : ∀ {w} → ⟦ Beh ⟨ State ⟩ ⇒ Beh (DOM w) ⟧ display σ = element "div" (text (map state$ σ)) view : ∀ {w} → ⟦ Beh (DOM w) ⟧ view with keypad ... | (dom , evt) = display (model evt) ++ dom
{ "alphanum_fraction": 0.5796324655, "avg_line_length": 46.6428571429, "ext": "agda", "hexsha": "2e3bba34d44f53febf0871225ea9fdc81d83dcf3", "lang": "Agda", "max_forks_count": 7, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:38.000Z", "max_forks_repo_forks_event_min_datetime": "2016-11-07T21:50:58.000Z", "max_forks_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_forks_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_forks_repo_name": "agda/agda-frp-js", "max_forks_repo_path": "demo/agda/FRP/JS/Demo/Calculator/View.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_issues_repo_name": "agda/agda-frp-js", "max_issues_repo_path": "demo/agda/FRP/JS/Demo/Calculator/View.agda", "max_line_length": 96, "max_stars_count": 63, "max_stars_repo_head_hexsha": "c7ccaca624cb1fa1c982d8a8310c313fb9a7fa72", "max_stars_repo_licenses": [ "MIT", "BSD-3-Clause" ], "max_stars_repo_name": "agda/agda-frp-js", "max_stars_repo_path": "demo/agda/FRP/JS/Demo/Calculator/View.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-28T09:46:14.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-20T21:47:00.000Z", "num_tokens": 469, "size": 1306 }
{-# OPTIONS --without-K --safe #-} ---------------------------------------------------------------------- -- Gaps ---------------------------------------------------------------------- -- Polynomials can be represented as lists of their coefficients, -- stored in increasing powers of x: -- -- 3 + 2x² + 4x⁵ + 2x⁷ -- ≡⟨ making the missing xs explicit ⟩ -- 3x⁰ + 0x¹ + 2x² + 0x³ + 0x⁴ + 4x⁵ + 0x⁶ + 2x⁷ -- ≡⟨ in list notation ⟩ -- [3,0,2,0,0,4,0,2] -- -- This approach is wasteful with space. Instead, we will pair each -- coefficient with the size of the preceding gap, meaning that the -- above expression is instead written as: -- -- [(3,0),(2,1),(4,2),(2,1)] -- -- Which can be thought of as a representation of the expression: -- -- x⁰ * (3 + x * x¹ * (2 + x * x² * (4 + x * x¹ * (2 + x * 0)))) -- -- To add multiple variables to a polynomial, you can *nest* them, -- making the coefficients of the outer polynomial polynomials -- themselves. However, this is *also* wasteful, in a similar way to -- above: the constant polynomial, for instance, will be represented -- as many nestings of constant polynomials around a final variable. -- However, this approach presents a difficulty: the polynomial will -- have the kind ℕ → Set (...). In other words, it's indexed by the -- number of variables it contains. The gap we store, then, has to -- be accomanied with some information about how it relates to that -- index. -- -- The first approach I tried was to forget about storing the gaps, -- and instead store the number of variables in the nested coefficient, -- along with a proof that the number was smaller than the outer. The -- proof was _≤_ from Data.Nat: -- -- data _≤_ : Rel ℕ 0ℓ where -- z≤n : ∀ {n} → zero ≤ n -- s≤s : ∀ {m n} (m≤n : m ≤ n) → suc m ≤ suc n -- -- While this worked, this will actually give you a worse complexity -- than the naive encoding without gaps. -- -- For any of the binary operations, you need to be able to "line up" -- the two arguments in terms of the gaps. For addition, for instance, -- the argument with fewer variables should be added to the constant -- term of the argument with more. To do this, you need to compare the -- gaps. -- -- To see why that's a problem, consider the following sequence of -- nestings: -- -- (5 ≤ 6), (4 ≤ 5), (3 ≤ 4), (1 ≤ 3), (0 ≤ 1) -- -- The outer polynomial has 6 variables, but it has a gap to its inner -- polynomial of 5, and so on. What we compare in this case is the -- number of variables in the tail: like repeatedly taking the length of -- the tail of a list, it's quadratic. -- -- The second approach was to try and mimic the powers structure -- (which only compared the gaps, which is linear), and store the gaps -- in a proof like the following: -- -- record _≤″_ (m n : ℕ) : Set where -- constructor less-than-or-equal -- field -- {k} : ℕ -- proof : m + k ≡ n -- -- Here, k is the size of the gap. The problem of this approach was -- twofold: it was difficult to show that comparisons on the k -- corresponded to comparisons on the m, and working with ≡ instead of -- some inductive structure was messy. However, it had the advantage -- of being erasable: both proofs of the correspondence and the -- equality proof itself. That said, I'm not very familiar with the -- soundness of erasure, and in particular how it interacts with axiom -- K (which I'd managed to avoid up until this point, but started to -- creep in). -- -- I may have had more luck if I swapped the arguments too +: -- -- record _≤″_ (m n : ℕ) : Set where -- constructor less-than-or-equal -- field -- {k} : ℕ -- proof : k + m ≡ n -- -- But I did not try it. The solution I ended up with was superior, -- regardless: -- -- infix 4 _≤_ -- data _≤_ (m : ℕ) : ℕ → Set where -- m≤m : m ≤ m -- ≤-s : ∀ {n} → (m≤n : m ≤ n) → m ≤ suc n -- -- (This is a rewritten version of _≤′_ from Data.Nat.Base). -- -- While this structure stores the same information as ≤, it does so -- by induction on the *gap*. This became apparent when I realised you -- could use it to write a comparison function which was linear in the -- size of the gap (even though it was comparing the length of the -- tail): -- data Ordering : ℕ → ℕ → Set where -- less : ∀ {n m} → n ≤ m → Ordering n (suc m) -- greater : ∀ {n m} → m ≤ n → Ordering (suc n) m -- equal : ∀ {n} → Ordering n n -- ≤-compare : ∀ {i j n} -- → (i≤n : i ≤ n) -- → (j≤n : j ≤ n) -- → Ordering i j -- ≤-compare m≤m m≤m = equal -- ≤-compare m≤m (≤-s m≤n) = greater m≤n -- ≤-compare (≤-s m≤n) m≤m = less m≤n -- ≤-compare (≤-s i≤n) (≤-s j≤n) = ≤-compare i≤n j≤n -- -- A few things to note here: -- -- 1. The ≤-compare function is one of those reassuring ones for which -- Agda can completely fill in the type for me. -- 2. This function looks somewhat similar to the one for comparing ℕ -- in Data.Nat, and as a result, the "matching" logic for degree -- and number of variables began too look similar. -- -- While this approach allowed me too write all the functions I -- needed, I hit another roadblock when it came time to prove the -- ring homomorphism. The first thing I realised I needed to prove was -- basically the following: -- -- ∀ {i j n} -- → (i≤n : i ≤ n) -- → (j≤n : j ≤ n) -- → ∀ xs Ρ -- → Σ⟦ xs ⟧ (drop-1 i≤n Ρ) ≈ Σ⟦ xs ⟧ (drop-1 j≤n Ρ) -- -- In effect, if the inequalities are over the same numbers, then -- they'll behave the same way when used in evaluation. -- -- The above is really just a consequence of ≤ being irrelevant: -- -- ∀ {i n} -- → (x : i ≤ n) -- → (y : i ≤ n) -- → x ≡ y -- -- Trying to prove this convinced me that it might not even be possible -- without K. On top of that, I also noticed that I would need to -- prove things like: -- -- ∀ {i j n} -- → (i≤j : i ≤ j) -- → (j≤n : j ≤ n) -- → (x : FlatPoly i) -- → (Ρ : Vec Carrier n) -- → ⟦ x Π (i≤j ⟨ ≤′-trans ⟩ j≤n) ⟧ Ρ ≈ ⟦ x Π i≤j ⟧ (drop j≤n Ρ) -- -- Effectively, I needed to prove that transitivity was a -- homomorphism. -- -- I realised that I had not run into these difficulties with the -- comparison function I was using for the exponent gaps: why? Well -- that function provides a proof about its *arguments* whereas the -- one I wrote above only provides a proof about the i and j. -- -- data Ordering : Rel ℕ 0ℓ where -- less : ∀ m k → Ordering m (suc (m + k)) -- equal : ∀ m → Ordering m m -- greater : ∀ m k → Ordering (suc (m + k)) m -- -- If I tried to mimick the above as closely as possible, I would also -- need an analogue to +: of course this was ≤′-trans, so I was going -- to get my transitivity proof as well as everything else. The result -- is as follows. module Polynomial.NormalForm.InjectionIndex where open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Nat using (_≤′_; ≤′-refl; ≤′-step; _<′_) public open import Data.Nat.Properties using (≤′-trans) public open import Function data InjectionOrdering {n : ℕ} : ∀ {i j} → (i≤n : i ≤′ n) → (j≤n : j ≤′ n) → Set where inj-lt : ∀ {i j-1} → (i≤j-1 : i ≤′ j-1) → (j≤n : suc j-1 ≤′ n) → InjectionOrdering (≤′-step i≤j-1 ⟨ ≤′-trans ⟩ j≤n) j≤n inj-gt : ∀ {i-1 j} → (i≤n : suc i-1 ≤′ n) → (j≤i-1 : j ≤′ i-1) → InjectionOrdering i≤n (≤′-step j≤i-1 ⟨ ≤′-trans ⟩ i≤n) inj-eq : ∀ {i} → (i≤n : i ≤′ n) → InjectionOrdering i≤n i≤n inj-compare : ∀ {i j n} → (x : i ≤′ n) → (y : j ≤′ n) → InjectionOrdering x y inj-compare ≤′-refl ≤′-refl = inj-eq ≤′-refl inj-compare ≤′-refl (≤′-step y) = inj-gt ≤′-refl y inj-compare (≤′-step x) ≤′-refl = inj-lt x ≤′-refl inj-compare (≤′-step x) (≤′-step y) = case inj-compare x y of λ { (inj-lt i≤j-1 .y) → inj-lt i≤j-1 (≤′-step y) ; (inj-gt .x j≤i-1) → inj-gt (≤′-step x) j≤i-1 ; (inj-eq .x) → inj-eq (≤′-step x) } open import Data.Fin as Fin using (Fin) space : ∀ {n} → Fin n → ℕ space f = suc (go f) where go : ∀ {n} → Fin n → ℕ go {suc n} Fin.zero = n go (Fin.suc x) = go x Fin⇒≤ : ∀ {n} (x : Fin n) → space x ≤′ n Fin⇒≤ Fin.zero = ≤′-refl Fin⇒≤ (Fin.suc x) = ≤′-step (Fin⇒≤ x)
{ "alphanum_fraction": 0.5974437005, "avg_line_length": 36.1894273128, "ext": "agda", "hexsha": "f02f0c23dc9b55143fc6015fb3c2e5f7757e61c5", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-20T07:07:11.000Z", "max_forks_repo_forks_event_min_datetime": "2019-04-16T02:23:16.000Z", "max_forks_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/agda-ring-solver", "max_forks_repo_path": "src/Polynomial/NormalForm/InjectionIndex.agda", "max_issues_count": 5, "max_issues_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_issues_repo_issues_event_max_datetime": "2022-03-12T01:55:42.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-17T20:48:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/agda-ring-solver", "max_issues_repo_path": "src/Polynomial/NormalForm/InjectionIndex.agda", "max_line_length": 72, "max_stars_count": 36, "max_stars_repo_head_hexsha": "f18d9c6bdfae5b4c3ead9a83e06f16a0b7204500", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/agda-ring-solver", "max_stars_repo_path": "src/Polynomial/NormalForm/InjectionIndex.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-15T00:57:55.000Z", "max_stars_repo_stars_event_min_datetime": "2019-01-25T16:40:52.000Z", "num_tokens": 2751, "size": 8215 }
open import cedille-types import spans open import ctxt import cedille-options open import general-util module type-inf (options : cedille-options.options) {mF : Set → Set} ⦃ _ : monad mF ⦄ (check-term : ctxt → ex-tm → (T? : maybe type) → spans.spanM options {mF} (spans.check-ret options {mF} T? term)) (check-type : ctxt → ex-tp → (k? : maybe kind) → spans.spanM options {mF} (spans.check-ret options {mF} k? type)) where open import spans options {mF} open import rename open import syntax-util open import type-util open import meta-vars options {mF} open import resugar open import subst open import conversion open import free-vars open import constants record spine-data : Set where constructor mk-spine-data field spine-mvars : meta-vars spine-type : decortype spine-locale : ℕ spine-elab : meta-vars → term check-term-spine-elim : ctxt → spine-data → term × type check-term-spine-elim Γ (mk-spine-data Xs dt locl f~) = f~ Xs , meta-vars-subst-type' ff Γ Xs (decortype-to-type dt) -- elim-pair (maybe-else' (meta-vars-to-args Xs) ([] , Hole pi-gen) f~) recompose-apps , -- meta-vars-subst-type' ff Γ Xs (decortype-to-type dt) check-term-spine : ctxt → ex-tm → (m : prototype) → 𝔹 → spanM (maybe spine-data) check-term-spine-return : meta-vars → decortype → ℕ → (meta-vars → term) → spanM (maybe spine-data) check-term-spine-return Xs dt locl f~ = return (just (mk-spine-data Xs dt locl f~)) -- a flag indicating how aggresively we should be unfolding during matching. -- "both" is the backtracking flag. We will attempt "both" matches, which means -- first matching without unfolding, then if that fails unfolding the type once -- and continue matching the subexpresions with "both" data match-unfolding-state : Set where match-unfolding-both match-unfolding-approx match-unfolding-hnf : match-unfolding-state -- main matching definitions -- -------------------------------------------------- -- NOTE: these functions don't actually ever emit spans match-types : ctxt → meta-vars → local-vars → match-unfolding-state → (tpₓ tp : type) → spanM $ match-error-t meta-vars match-kinds : ctxt → meta-vars → local-vars → match-unfolding-state → (kₓ k : kind) → spanM $ match-error-t meta-vars match-tpkds : ctxt → meta-vars → local-vars → match-unfolding-state → (tkₓ tk : tpkd) → spanM $ match-error-t meta-vars record match-prototype-data : Set where constructor mk-match-prototype-data field match-proto-mvars : meta-vars match-proto-dectp : decortype match-proto-error : 𝔹 open match-prototype-data match-prototype : ctxt → (Xs : meta-vars) (is-hnf : 𝔹) (tp : type) (pt : prototype) → spanM match-prototype-data -- substitutions used during matching -- -------------------------------------------------- -- These have to be in the spanM monad because substitution can unlock a `stuck` -- decoration, causing another round of prototype matching (which invokes type matching) substh-decortype : ctxt → renamectxt → trie (Σi exprd ⟦_⟧) → decortype → spanM decortype substh-decortype Γ ρ σ (decor-type tp) = return $ decor-type (substh Γ ρ σ tp) substh-decortype Γ ρ σ (decor-arrow e? dom cod) = substh-decortype Γ ρ σ cod >>= λ cod → return $ decor-arrow e? (substh Γ ρ σ dom) cod substh-decortype Γ ρ σ (decor-decor e? x tk sol dt) = let x' = subst-rename-var-if Γ ρ x σ (decortype-to-type dt) Γ' = ctxt-var-decl x' Γ ρ' = renamectxt-insert ρ x x' in substh-decortype Γ' ρ' σ dt >>= λ dt' → return $ decor-decor e? x' (substh Γ ρ σ -tk tk) (substh-meta-var-sort Γ ρ σ sol) dt' substh-decortype Γ ρ σ (decor-stuck tp pt) = match-prototype Γ meta-vars-empty ff (substh Γ ρ σ tp) pt -- NOTE: its an invariant that if you start with no meta-variables, -- prototype matching produces no meta-variables as output >>= λ ret → return (match-proto-dectp ret) substh-decortype Γ ρ σ (decor-error tp pt) = return $ decor-error (substh Γ ρ σ tp) pt subst-decortype : {ed : exprd} → ctxt → ⟦ ed ⟧ → var → decortype → spanM decortype subst-decortype Γ s x dt = substh-decortype Γ empty-renamectxt (trie-single x (, s)) dt meta-vars-subst-decortype' : (unfold : 𝔹) → ctxt → meta-vars → decortype → spanM decortype meta-vars-subst-decortype' uf Γ Xs dt = substh-decortype Γ empty-renamectxt (meta-vars-get-sub Xs) dt >>= λ dt' → return $ if uf then hnf-decortype Γ unfold-head-elab dt' tt else dt' meta-vars-subst-decortype : ctxt → meta-vars → decortype → spanM decortype meta-vars-subst-decortype = meta-vars-subst-decortype' tt -- unfolding a decorated type to reveal a term / type abstraction -- -------------------------------------------------- {-# TERMINATING #-} meta-vars-peel' : ctxt → span-location → meta-vars → decortype → spanM (𝕃 meta-var × decortype) meta-vars-peel' Γ sl Xs (decor-decor e? x _ (meta-var-tp k mtp) dt) = let Y = meta-var-fresh-tp Xs x sl (k , mtp) Xs' = meta-vars-add Xs Y in subst-decortype Γ (meta-var-to-type-unsafe Y) x dt >>= λ dt' → meta-vars-peel' Γ sl Xs' dt' >>= λ ret → let Ys = fst ret ; rdt = snd ret in return $ Y :: Ys , rdt meta-vars-peel' Γ sl Xs dt@(decor-decor e? x _ (meta-var-tm _ _) _) = return $ [] , dt meta-vars-peel' Γ sl Xs dt@(decor-arrow _ _ _) = return $ [] , dt -- NOTE: vv The clause below will later generate a type error vv meta-vars-peel' Γ sl Xs dt@(decor-stuck _ _) = return $ [] , dt -- NOTE: vv The clause below is an internal error, if reached vv meta-vars-peel' Γ sl Xs dt@(decor-type _) = return $ [] , dt meta-vars-peel' Γ sl Xs dt@(decor-error _ _) = return $ [] , dt meta-vars-unfold-tmapp' : ctxt → span-location → meta-vars → decortype → spanM (𝕃 meta-var × is-tmabsd?) meta-vars-unfold-tmapp' Γ sl Xs dt = meta-vars-subst-decortype Γ Xs dt >>= λ dt' → meta-vars-peel' Γ sl Xs dt' >>= λ where (Ys , dt'@(decor-arrow e? dom cod)) → return $ Ys , yes-tmabsd dt' e? ignored-var dom ff cod (Ys , dt'@(decor-decor e? x _ (meta-var-tm dom _) cod)) → return $ Ys , yes-tmabsd dt' e? x dom (is-free-in x (decortype-to-type cod)) cod (Ys , dt@(decor-decor _ _ _ (meta-var-tp _ _) _)) → return $ Ys , not-tmabsd dt -- NOTE: vv this is a type error vv (Ys , dt@(decor-stuck _ _)) → return $ Ys , not-tmabsd dt -- NOTE: vv this is an internal error, if reached vv (Ys , dt@(decor-type _)) → return $ Ys , not-tmabsd dt (Ys , dt@(decor-error _ _)) → return $ Ys , not-tmabsd dt meta-vars-unfold-tpapp' : ctxt → meta-vars → decortype → spanM is-tpabsd? meta-vars-unfold-tpapp' Γ Xs dt = meta-vars-subst-decortype Γ Xs dt >>= λ where (dt″@(decor-decor e? x _ (meta-var-tp k mtp) dt')) → return $ yes-tpabsd dt″ e? x k (flip maybe-map mtp meta-var-sol.sol) dt' (dt″@(decor-decor _ _ _ (meta-var-tm _ _) _)) → return $ not-tpabsd dt″ (dt″@(decor-arrow _ _ _)) → return $ not-tpabsd dt″ (dt″@(decor-stuck _ _)) → return $ not-tpabsd dt″ (dt″@(decor-type _)) → return $ not-tpabsd dt″ (dt″@(decor-error _ _)) → return $ not-tpabsd dt″ -- errors -- -------------------------------------------------- -- general type errors for applications module check-term-app-tm-errors {A : Set} (t₁ t₂ : ex-tm) (htp : type) (Xs : meta-vars) (is-locale : 𝔹) (m : checking-mode) (Γ : ctxt) where inapplicable : erased? → decortype → prototype → spanM (maybe A) inapplicable e? dt pt = spanM-add (App-span is-locale (term-start-pos t₁) (term-end-pos t₂) m (head-type Γ (meta-vars-subst-type Γ Xs htp) -- :: decortype-data Γ dt -- :: prototype-data Γ pt :: meta-vars-data-all Γ Xs) (just $ "The type of the head does not allow the head to be applied to " ^ h e? ^ " argument")) >> return nothing where h : erased? → string h Erased = "an erased term" h NotErased = "a term" bad-erasure : erased? → spanM (maybe A) bad-erasure e? = spanM-add (App-span is-locale (term-start-pos t₁) (term-end-pos t₂) m (head-type Γ (meta-vars-subst-type Γ Xs htp) :: meta-vars-data-all Γ Xs) (just (msg e?))) >> return nothing where msg : erased? → string msg Erased = "The type computed for the head requires an explicit (non-erased) argument," ^ " but the application is marked as erased" msg NotErased = "The type computed for the head requires an implicit (erased) argument," ^ " but the application is marked as not erased" unmatchable : (tpₓ tp : type) (msg : string) → 𝕃 tagged-val → spanM (maybe A) unmatchable tpₓ tp msg tvs = spanM-add (App-span is-locale (term-start-pos t₁) (term-end-pos t₂) m (arg-exp-type Γ tpₓ :: arg-type Γ tp :: tvs ++ meta-vars-data-all Γ Xs) (just msg)) >> return nothing unsolved-meta-vars : type → 𝕃 tagged-val → spanM (maybe A) unsolved-meta-vars tp tvs = spanM-add (App-span tt (term-start-pos t₁) (term-end-pos t₂) m (type-data Γ tp :: meta-vars-data-all Γ Xs ++ tvs) (just "There are unsolved meta-variables in this maximal application")) >> return nothing module check-term-app-tp-errors {A : Set} (t : ex-tm) (tp : ex-tp) (htp : type) (Xs : meta-vars) (m : checking-mode) (Γ : ctxt) where inapplicable : decortype → spanM (maybe A) inapplicable dt = spanM-add (AppTp-span tt (term-start-pos t) (type-end-pos tp) synthesizing (head-type Γ (meta-vars-subst-type Γ Xs htp) -- :: decortype-data Γ dt :: meta-vars-data-all Γ Xs) (just "The type of the head does not allow the head to be applied to a type argument")) >> return nothing ctai-disagree : (ctai-sol : type) → spanM (maybe A) ctai-disagree ctai-sol = spanM-add (AppTp-span tt (term-start-pos t) (type-end-pos tp) m (head-type Γ (meta-vars-subst-type Γ Xs htp) :: contextual-type-argument Γ ctai-sol :: meta-vars-data-all Γ Xs) (just "The given and contextually inferred type argument differ")) >> return nothing -- meta-variable locality -- -------------------------------------------------- -- for debugging -- prepend to the tvs returned by check-spine-locality if you're having trouble private locale-tag : ℕ → tagged-val locale-tag n = "locale n" , [[ ℕ-to-string n ]] , [] private is-locale : (max : 𝔹) → (locl : maybe ℕ) → 𝔹 is-locale max locl = max || maybe-else' locl ff iszero check-spine-locality : ctxt → meta-vars → type → (max : 𝔹) → (locl : ℕ) → spanM (maybe (meta-vars × ℕ × 𝔹)) check-spine-locality Γ Xs tp max locl = let new-locl = if iszero locl then num-arrows-in-type Γ tp else locl new-Xs = if iszero locl then meta-vars-empty else Xs left-locl = is-locale max (just locl) in if left-locl && (~ meta-vars-solved? Xs) then return nothing else return (just (new-Xs , new-locl , left-locl)) -- main definition -------------------------------------------------- data check-term-app-ret : Set where check-term-app-return : (t~ : term) (Xs : meta-vars) (cod : decortype) (arg-mode : checking-mode) → (tvs : 𝕃 tagged-val) → check-term-app-ret check-term-app : ctxt → (Xs : meta-vars) (Ys : 𝕃 meta-var) → (t₁ t₂ : ex-tm) → is-tmabsd → 𝔹 → spanM (maybe check-term-app-ret) check-term-spine Γ t'@(ExApp t₁ e? t₂) pt max = -- 1) type the applicand, extending the prototype let pt' = proto-arrow e? pt in check-term-spine Γ t₁ pt' ff on-fail handleApplicandTypeError -- 2) make sure the applicand type reveals an arrow (term abstraction) >>=m λ ret → let mk-spine-data Xs dt locl fₕ~ = ret in -- the meta-vars need to know the span they were introduced in let sloc = span-loc $ ctxt.fn Γ in -- see if the decorated type of the head `dt` reveals an arrow meta-vars-unfold-tmapp' Γ sloc Xs dt >>=c λ Ys tm-arrow? → return tm-arrow? on-fail (λ _ → genInapplicableError Xs dt pt' locl) -- if so, get the (plain, undecorated) type of the head `htp` >>=s λ arr → let htp = decortype-to-type ∘ is-tmabsd-dt $ arr in -- 3) make sure erasures of the applicand type + syntax of application match checkErasuresMatch e? (is-tmabsd-e? arr) htp Xs locl -- 4) type the application, filling in missing type arguments with meta-variables >>=m λ _ → check-term-app Γ Xs Ys t₁ t₂ arr (islocl locl) -- 5) check no unsolved mvars, if the application is maximal (or a locality) >>=m λ {(check-term-app-return t₂~ Xs' rtp' arg-mode tvs) → let rtp = decortype-to-type rtp' in checkLocality Γ Xs' htp rtp max (pred locl) tvs >>=m uncurry₂ λ Xs'' locl' is-loc → -- 6) generate span genAppSpan Γ Xs Xs' Ys pt rtp is-loc tvs >> check-term-spine-return Xs'' rtp' locl' -- 7) fill in solutions to meta-vars introduced here and return the rest λ sols → let sols = if max then Xs' else sols -- num-sols-here = length Ys -- sols-here = take num-sols-here sols -- sols-rest = drop num-sols-here sols -- as = maybe-else' (meta-vars-to-args (meta-vars-from-list sols-here)) [] id -- tₕ~ = recompose-apps as tₕₓ~ tₕ~ = foldl (λ X t → maybe-else' (meta-vars-lookup sols (meta-var.name X)) t λ {(meta-var-mk X' (meta-var-tp k T?) _) → maybe-else' T? t (AppTp t ∘ meta-var-sol.sol); (meta-var-mk X' (meta-var-tm T t?) _) → maybe-else' t? t (AppEr t ∘ meta-var-sol.sol)}) (fₕ~ sols) Ys app = if e? then AppEr else App in app tₕ~ t₂~ } where mode = prototype-to-checking pt expected-type-if-pt : ctxt → prototype → 𝕃 tagged-val expected-type-if-pt Γ pt = case pt of λ where (proto-maybe mt) → maybe-else [] (λ tp → [ expected-type Γ tp ]) mt (proto-arrow _ _) → [] span-loc : (fn : string) → span-location span-loc fn = fn , term-start-pos t₁ , term-end-pos t₂ islocl : ℕ → 𝔹 islocl locl = is-locale max (just $ pred locl) handleApplicandTypeError : spanM (maybe _) handleApplicandTypeError = spanM-add (App-span max (term-start-pos t₁) (term-end-pos t₂) mode (expected-type-if-pt Γ pt) nothing) >> check-term Γ t₂ nothing >>= (const $ return nothing) genInapplicableError : meta-vars → decortype → prototype → (locl : ℕ) → spanM (maybe _) genInapplicableError Xs dt pt locl = check-term-app-tm-errors.inapplicable t₁ t₂ (decortype-to-type dt) Xs (islocl locl) mode Γ e? dt (proto-arrow e? pt) checkErasuresMatch : (e?₁ e?₂ : erased?) → type → meta-vars → (locl : ℕ) → spanM (maybe ⊤) checkErasuresMatch e?₁ e?₂ htp Xs locl = if e?₁ xor e?₂ then check-term-app-tm-errors.bad-erasure t₁ t₂ htp Xs (islocl locl) mode Γ e?₁ else (return ∘ just $ triv) checkLocality : ctxt → meta-vars → (htp rtp : type) → (max : 𝔹) (locl : ℕ) → 𝕃 tagged-val → spanM ∘ maybe $ _ checkLocality Γ Xs htp rtp max locl tvs = check-spine-locality Γ Xs rtp max locl on-fail check-term-app-tm-errors.unsolved-meta-vars t₁ t₂ htp Xs (islocl locl) mode Γ rtp tvs >>=m (return ∘ just) genAppSpan : ctxt → (Xs Xs' : meta-vars) → (Ys : 𝕃 meta-var) → prototype → type → (is-locl : 𝔹) → 𝕃 tagged-val → spanM ⊤ genAppSpan Γ Xs Xs' Ys pt rtp is-loc tvs = spanM-add $ elim-pair (meta-vars-check-type-mismatch-if (prototype-to-maybe pt) Γ "synthesized" meta-vars-empty rtp) λ tvs' → App-span is-loc (term-start-pos t₁) (term-end-pos t₂) mode (tvs' ++ meta-vars-intro-data Γ (meta-vars-from-list Ys) ++ meta-vars-sol-data Γ Xs Xs' ++ tvs) check-term-spine Γ t'@(ExAppTp t tp) pt max = -- 1) type the applicand `t` check-term-spine Γ t pt max on-fail handleApplicandTypeError -- 1a) Xs: spine meta-variables; dt: decorated type of t ; htp: plain type of `t` >>=m λ ret → let mk-spine-data Xs dt locl fₕ~ = ret ; htp = decortype-to-type dt in -- 2) make sure it reveals a type abstraction meta-vars-unfold-tpapp' Γ Xs dt on-fail (λ _ → genInapplicableError Xs htp dt) -- 3) ensure the type argument has the expected kind, -- but don't compare with the contextually infered type argument (for now) >>=s λ ret → let mk-tpabsd dt' e? x k sol rdt = ret in check-type Γ tp (just (meta-vars-subst-kind Γ Xs k)) -- 4) produce the result type of the application >>= λ tp~ → subst-decortype-if Γ tp~ Xs x k sol rdt >>= λ ret → let Xs = fst ret ; rdt = snd ret ; rtp = decortype-to-type rdt in -- 5) generate span data genAppTpSpan Γ Xs pt rtp htp >> check-term-spine-return Xs rdt locl -- 7) fill in solutions to meta-vars introduced here and return the rest λ sols → AppTp (fₕ~ sols) tp~ --(map-snd (λ tₕ~ → AppE tₕ~ (Ttp tp~)) ∘ fₕ~) where mode = prototype-to-checking pt span-loc : ctxt → span-location span-loc Γ = (ctxt.fn Γ) , term-start-pos t , type-end-pos tp handleApplicandTypeError : spanM ∘ maybe $ spine-data handleApplicandTypeError = [- AppTp-span tt (term-start-pos t) (type-end-pos tp) synthesizing [] nothing -] check-type Γ tp nothing >>= λ _ → return nothing genInapplicableError : meta-vars → type → decortype → spanM ∘ maybe $ spine-data genInapplicableError Xs htp dt = check-term-app-tp-errors.inapplicable t tp htp Xs mode Γ dt subst-decortype-if : ctxt → type → meta-vars → var → kind → maybe type → decortype → spanM (meta-vars × decortype) subst-decortype-if Γ tp Xs x k sol rdt = if ~ is-hole tp then subst-decortype Γ tp x rdt >>= (λ res → return (Xs , res)) else let sol = maybe-map (λ t → mk-meta-var-sol t checking) sol Y = meta-var-fresh-tp Xs x (span-loc Γ) (k , sol) Xs' = meta-vars-add Xs Y in subst-decortype Γ (meta-var-to-type-unsafe Y) x rdt >>= λ rdt' → return (Xs' , rdt') genAppTpSpan : ctxt → meta-vars → prototype → (ret-tp head-tp : type) → spanM ⊤ genAppTpSpan Γ Xs pt ret-tp head-tp = spanM-add ∘ elim-pair -- check for a type mismatch, if there even is an expected type (meta-vars-check-type-mismatch-if (prototype-to-maybe pt) Γ "synthesizing" Xs ret-tp) $ -- then take the generated 𝕃 tagged-val and add to the span λ tvs → AppTp-span ff (term-start-pos t) (type-end-pos tp) mode $ tvs {- ++ [ head-type Γ head-tp ] -} ++ meta-vars-data-all Γ Xs {- ++ (prototype-data Γ tp :: [ decortype-data Γ dt ]) -} check-term-spine Γ (ExParens _ t _) pt max = check-term-spine Γ t pt max check-term-spine Γ t pt max = check-term Γ t nothing >>=c λ t~ htp → let locl = num-arrows-in-type Γ htp in match-prototype Γ meta-vars-empty ff htp pt -- NOTE: it is an invariant that the variables solved in the -- solution set of the fst of this are a subset of the variables given -- to match-* -- that is, for (σ , W) = match-prototype ... -- we have dom(σ) = ∅ >>= λ ret → let dt = match-proto-dectp ret in check-term-spine-return meta-vars-empty dt locl λ _ → t~ -- check-term-app -- -------------------------------------------------- -- -- If `dom` has unsolved meta-vars in it, synthesize argument t₂ and try to solve for them. -- Otherwise, check t₂ against a fully known expected type check-term-app Γ Xs Zs t₁ t₂ (mk-tmabsd dt e? x dom occurs cod) is-locl = let Xs' = meta-vars-add* Xs Zs ; tp = decortype-to-type dt in -- 1) either synth or check arg type, depending on available info -- checking "exits early", as well as failure checkArgWithMetas Xs' tp (genAppRetType Γ) on-fail return -- 2) match *synthesized* type with expected (partial) type >>=s uncurry₂ λ rdt t₂~ atp → match-types Γ Xs' empty-trie match-unfolding-both dom atp >>= (handleMatchResult Xs' t₂~ atp tp rdt) where mode = synthesizing genAppRetType : ctxt → term → spanM decortype genAppRetType Γ t₂~ = if occurs then subst-decortype Γ t₂~ x cod else return cod genAppRetTypeHole : ctxt → spanM decortype genAppRetTypeHole Γ = if occurs then subst-decortype Γ (Hole posinfo-gen) x cod else return cod checkArgWithMetas : meta-vars → type → (term → spanM decortype) → spanM (maybe check-term-app-ret ∨ (decortype × term × type)) checkArgWithMetas Xs' tp rdt-f = -- check arg against fully known type if ~ meta-vars-are-free-in-type Xs' dom then (check-term Γ t₂ (just dom) >>= λ t₂~ → rdt-f t₂~ >>= λ rdt → return (inj₁ (just $ check-term-app-return t₂~ Xs' rdt mode []))) -- synthesize type for the argument else (check-term Γ t₂ nothing >>=c λ t tp → rdt-f t >>= λ rdt → return (inj₂ $ rdt , t , tp)) handleMatchResult : meta-vars → (t₂~ : term) → (atp tp : type) → decortype → match-error-t meta-vars → spanM ∘ maybe $ check-term-app-ret handleMatchResult Xs' t₂~ atp tp rdt (match-error (msg , tvs)) = check-term-app-tm-errors.unmatchable t₁ t₂ tp Xs' is-locl mode Γ dom atp msg tvs handleMatchResult Xs' t₂~ atp tp rdt (match-ok Xs) = meta-vars-subst-decortype' ff Γ Xs rdt >>= λ rdt → return ∘ just $ check-term-app-return t₂~ Xs rdt mode [] match-unfolding-next : match-unfolding-state → match-unfolding-state match-unfolding-next match-unfolding-both = match-unfolding-both match-unfolding-next match-unfolding-approx = match-unfolding-approx match-unfolding-next match-unfolding-hnf = match-unfolding-both module m-err = meta-vars-match-errors check-type-for-match : ctxt → type → spanM $ match-error-t kind check-type-for-match Γ tp = (with-clear-error $ check-type (qualified-ctxt Γ) (resugar tp) nothing >>=c λ _ k → return (match-ok $ k)) >>=spand return -- match-types -- -------------------------------------------------- match-types-ok : meta-vars → spanM $ match-error-t meta-vars match-types-ok = return ∘ match-ok match-types-error : match-error-data → spanM $ match-error-t meta-vars match-types-error = return ∘ match-error match-types Γ Xs Ls match-unfolding-both tpₓ tp = match-types Γ Xs Ls match-unfolding-approx tpₓ tp >>= λ where (match-ok Xs) → match-types-ok Xs (match-error msg) → match-types Γ Xs Ls match-unfolding-hnf (hnf Γ unfold-head-elab tpₓ) (hnf Γ unfold-head-elab tp) match-types Γ Xs Ls unf tpₓ@(TpVar x) tp = -- check that x is a meta-var maybe-else' (meta-vars-lookup-with-kind Xs x) -- if not, make sure the two variables are the same -- TODO: above assumes no term meta-variables (return (err⊎-guard (~ conv-type Γ tpₓ tp) m-err.e-match-failure >> match-ok Xs)) -- scope check the solution λ ret → let X = fst ret ; kₓ = snd ret in if are-free-in Ls tp then match-types-error $ m-err.e-meta-scope Γ tpₓ tp else (check-type-for-match Γ tp >>=s λ k → match-kinds Γ Xs empty-trie match-unfolding-both kₓ k on-fail (λ _ → return ∘ match-error $ m-err.e-bad-sol-kind Γ x tp) >>=s λ Xs → return (meta-vars-solve-tp Γ Xs x tp synthesizing) >>=s λ Xs → match-types-ok $ meta-vars-update-kinds Γ Xs Xs) match-types Γ Xs Ls unf (TpApp tpₓ₁ (Ttp tpₓ₂)) (TpApp tp₁ (Ttp tp₂)) = match-types Γ Xs Ls unf tpₓ₁ tp₁ >>=s λ Xs' → match-types Γ Xs' Ls (match-unfolding-next unf) tpₓ₂ tp₂ match-types Γ Xs Ls unf (TpApp tpₓ (Ttm tmₓ)) (TpApp tp (Ttm tm)) = match-types Γ Xs Ls unf tpₓ tp >>=s λ Xs' → return $ if ~ conv-term Γ tmₓ tm then (match-error m-err.e-match-failure) else match-ok Xs' match-types Γ Xs Ls unf tpₓ'@(TpAbs bₓ xₓ tkₓ tpₓ) tp'@(TpAbs b x tk tp) = if bₓ xor b then (match-types-error m-err.e-match-failure) else (match-tpkds Γ Xs Ls (match-unfolding-next unf) tkₓ tk >>=s λ Xs' → match-types (Γ→Γ' Γ) Xs' Ls' (match-unfolding-next unf) tpₓ tp) where Γ→Γ' : ctxt → ctxt Γ→Γ' Γ = ctxt-rename xₓ x (ctxt-var-decl-if x Γ) Ls' = stringset-insert Ls x match-types Γ Xs Ls unf (TpIota xₓ mₓ tpₓ) (TpIota x m tp) = match-types Γ Xs Ls (match-unfolding-next unf) mₓ m >>=s λ Xs → match-types (Γ→Γ' Γ) Xs Ls' (match-unfolding-next unf) tpₓ tp where Γ→Γ' : ctxt → ctxt Γ→Γ' Γ = ctxt-rename xₓ x (ctxt-var-decl-if x Γ) Ls' = stringset-insert Ls x match-types Γ Xs Ls unf (TpEq t₁ₓ t₂ₓ) (TpEq t₁ t₂) = if ~ conv-term Γ t₁ₓ t₁ then match-types-error $ m-err.e-match-failure else if ~ conv-term Γ t₂ₓ t₂ then match-types-error $ m-err.e-match-failure else match-types-ok Xs match-types Γ Xs Ls unf (TpLam xₓ atkₓ tpₓ) (TpLam x atk tp) = match-tpkds Γ Xs Ls (match-unfolding-next unf) atkₓ atk >>=s λ Xs → match-types (Γ→Γ' Γ) Xs Ls' (match-unfolding-next unf) tpₓ tp where Γ→Γ' : ctxt → ctxt Γ→Γ' Γ = ctxt-rename xₓ x (ctxt-var-decl-if x Γ) Ls' = stringset-insert Ls x match-types Γ Xs Ls unf tpₓ tp = match-types-error m-err.e-match-failure -- match-kinds -- -------------------------------------------------- -- match-kinds-norm: match already normalized kinds match-kinds-norm : ctxt → meta-vars → local-vars → match-unfolding-state → (kₓ k : kind) → spanM $ match-error-t meta-vars -- kind pi match-kinds-norm Γ Xs Ls uf (KdAbs xₓ tkₓ kₓ) (KdAbs x tk k) = match-tpkds Γ Xs Ls uf tkₓ tk >>=s λ Xs → match-kinds (Γ→Γ' Γ) Xs Ls' uf kₓ k where Γ→Γ' = ctxt-rename xₓ x ∘ ctxt-var-decl-if x Ls' = stringset-insert Ls x match-kinds-norm Γ Xs Ls uf KdStar KdStar = match-types-ok $ Xs match-kinds-norm Γ Xs Ls uf kₓ k = match-types-error $ m-err.e-matchk-failure -- m-err.e-kind-ineq Γ kₓ k match-kinds Γ Xs Ls uf kₓ k = match-kinds-norm Γ Xs Ls uf (hnf Γ unfold-head-elab kₓ) (hnf Γ unfold-head-elab k) -- match-tk -- -------------------------------------------------- match-tpkds Γ Xs Ls uf (Tkk kₓ) (Tkk k) = match-kinds Γ Xs Ls uf kₓ k match-tpkds Γ Xs Ls uf (Tkt tpₓ) (Tkt tp) = match-types Γ Xs Ls uf tpₓ tp match-tpkds Γ Xs Ls uf tkₓ tk = match-types-error m-err.e-matchk-failure -- m-err.e-tk-ineq Γ tkₓ tk -- match-prototype -- -------------------------------------------------- match-prototype-err : type → prototype → spanM match-prototype-data match-prototype-err tp pt = return $ mk-match-prototype-data meta-vars-empty (decor-error tp pt) tt {- -------------------- Xs ⊢? T ≔ ⁇ ⇒ (∅ , T) -} match-prototype Γ Xs uf tp (proto-maybe nothing) = return $ mk-match-prototype-data Xs (decor-type tp) ff {- Xs ⊢= T ≔ S ⇒ σ -------------------- Xs ⊢? T ≔ S ⇒ (σ , T) -} match-prototype Γ Xs uf tp pt@(proto-maybe (just tp')) = match-types Γ Xs empty-trie match-unfolding-both tp tp' on-fail (λ _ → return $ mk-match-prototype-data Xs (decor-error tp pt) tt) >>=s λ Xs' → return $ mk-match-prototype-data Xs' (decor-type tp) ff {- Xs,X ⊢? T ≔ ⁇ → P ⇒ (σ , W) ----------------------------------------------- Xs ⊢? ∀ X . T ≔ ⁇ → P ⇒ (σ - X , ∀ X = σ(X) . W) -} match-prototype Γ Xs uf (TpAbs bₓ x (Tkk k) tp) pt'@(proto-arrow e? pt) = -- 1) generate a fresh meta-var Y, add it to the meta-vars, and rename -- occurences of x in tp to Y let ret = meta-vars-add-from-tpabs Γ missing-span-location Xs Erased x k tp Y = fst ret ; Xs' = snd ret ; tp' = subst Γ (meta-var-to-type-unsafe Y) x tp -- 2) match the body against the original prototype to generate a decorated type -- and find some solutions in match-prototype Γ Xs' ff tp' pt' >>= λ ret → let mk-match-prototype-data Xs' dt err = ret Y' = maybe-else' (meta-vars-lookup Xs' (meta-var-name Y)) Y λ Y → Y x' = subst-rename-var-if{TYPE} Γ empty-renamectxt x empty-trie tp' -- 3) replace the meta-vars with the bound type variable in subst-decortype (ctxt-var-decl x' Γ) (TpVar x') (meta-var-name Y) dt -- 4) leave behind the solution for Y as a decoration and drop Y from Xs >>= λ dt' → let sort' = meta-var.sort (meta-var-set-src Y' checking) dt″ = decor-decor Erased x (Tkk k) sort' dt' in return $ mk-match-prototype-data (meta-vars-remove Xs' Y) dt″ err {- Xs ⊢? T ≔ P ⇒ (σ , P) ----------------------------- Xs ⊢? S → T ≔ ⁇ → P ⇒ (σ , P) -} match-prototype Γ Xs uf (TpAbs b x (Tkt dom) cod) (proto-arrow e? pt) = match-prototype Γ Xs ff cod pt >>= λ ret → let mk-match-prototype-data Xs dt err = ret dt' = decor-decor b x (Tkt dom) (meta-var-tm dom nothing) dt in return $ if b xor e? then mk-match-prototype-data meta-vars-empty dt' tt else mk-match-prototype-data Xs dt' err {- X ∈ Xs ----------------------------------- Xs ⊢? X ≔ ⁇ → P ⇒ (σ , (X , ⁇ → P)) -} match-prototype Γ Xs tt tp@(TpVar x) pt@(proto-arrow _ _) = return $ mk-match-prototype-data Xs (decor-stuck tp pt) ff -- everything else... -- Types for which we should keep digging match-prototype Γ Xs ff tp@(TpVar x) pt@(proto-arrow _ _) = match-prototype Γ Xs tt (hnf Γ unfold-head-elab tp) pt match-prototype Γ Xs ff tp@(TpApp _ _) pt@(proto-arrow _ _) = match-prototype Γ Xs tt (hnf Γ unfold-head-elab tp) pt -- types for which we should suspend disbelief match-prototype Γ Xs tt tp@(TpApp _ _) pt@(proto-arrow _ _) = return $ mk-match-prototype-data Xs (decor-stuck tp pt) ff -- types which clearly do not match the prototype match-prototype Γ Xs uf tp@(TpEq _ _) pt@(proto-arrow _ _) = match-prototype-err tp pt match-prototype Γ Xs uf tp@(TpHole _) pt@(proto-arrow _ _) = match-prototype-err tp pt match-prototype Γ Xs uf tp@(TpLam _ _ _) pt@(proto-arrow _ _) = match-prototype-err tp pt match-prototype Γ Xs uf tp@(TpIota _ _ _) pt@(proto-arrow _ _) = match-prototype-err tp pt
{ "alphanum_fraction": 0.6303430438, "avg_line_length": 42.2791366906, "ext": "agda", "hexsha": "67117f87cb0bc3917d5606c9b0c448ed58673c58", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "ice1k/cedille", "max_forks_repo_path": "src/type-inf.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "ice1k/cedille", "max_issues_repo_path": "src/type-inf.agda", "max_line_length": 143, "max_stars_count": null, "max_stars_repo_head_hexsha": "bf62d3d338809a30bc21a1affed07936b1ac60ac", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "ice1k/cedille", "max_stars_repo_path": "src/type-inf.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 9683, "size": 29384 }
module LocalChoice where open import IO using (run; putStrLn; mapM′; _>>_) open import Coinduction using (♯_) open import Data.Nat as ℕ using (ℕ; suc; zero) open import Data.Pos as ℕ⁺ using (ℕ⁺; suc) open import Data.String using (String) open import Data.List using (List; []; _∷_; map) open import Data.Colist using (fromList) open import Function using (_$_; _∘_) open import Data.Environment open import nodcap.Base open import nodcap.Typing open import nodcap.LocalChoice open import nodcap.Norm open import nodcap.Show renaming (showTerm to show) open import nodcap.NF.Show renaming (showTerm to showNF) Bit : Type Bit = 𝟏 ⊕ 𝟏 bit₁ bit₂ : ⊢ Bit ∷ [] bit₁ = sel₁ halt bit₂ = sel₂ halt randomBit : ⊢ Bit ∷ [] randomBit = bit₁ or bit₂ main = run (mapM′ putStrLn (fromList strs)) where strs = "Process:" ∷ show randomBit ∷ "Result:" ∷ map showNF (nfND randomBit) -- -} -- -} -- -} -- -} -- -}
{ "alphanum_fraction": 0.6802139037, "avg_line_length": 22.2619047619, "ext": "agda", "hexsha": "bb832466507c9d6cc468d790ec3de6d4996270f3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-05T08:58:13.000Z", "max_forks_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "pepijnkokke/nodcap", "max_forks_repo_path": "src/cpnd1/LocalChoice.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "pepijnkokke/nodcap", "max_issues_repo_path": "src/cpnd1/LocalChoice.agda", "max_line_length": 56, "max_stars_count": 4, "max_stars_repo_head_hexsha": "fb5e78d6182276e4d93c4c0e0d563b6b027bc5c2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "wenkokke/nodcap", "max_stars_repo_path": "src/cpnd1/LocalChoice.agda", "max_stars_repo_stars_event_max_datetime": "2019-09-24T20:16:35.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-05T08:58:11.000Z", "num_tokens": 291, "size": 935 }
module SN where open import Library open import Syntax open import RenamingAndSubstitution -- Reduction data _↦_ {Γ} : ∀{a} (t t' : Tm Γ a) → Set where β : ∀{a b} {t : Tm (Γ , a) b} {u} → app (abs t) u ↦ sub0 t u abs : ∀{a b} {t t' : Tm (Γ , a) b} (r : t ↦ t') → abs t ↦ abs t' appl : ∀{a b} {t t' : Tm Γ (a ⇒ b)} {u} (r : t ↦ t') → app t u ↦ app t' u appr : ∀{a b} {t : Tm Γ (a ⇒ b)} {u u'} (r : u ↦ u') → app t u ↦ app t u' ren↦ : ∀{Γ Δ a} (ρ : Ren Γ Δ) {t t' : Tm Δ a} (r : t ↦ t') → ren ρ t ↦ ren ρ t' -- ren↦ {Γ} {Δ} {a} ρ {t} {t'} r = {!r!} ren↦ {Γ} {Δ} ρ β = {!!} ren↦ {Γ} {Δ} ρ (abs r) = abs (ren↦ (liftr ρ) r) ren↦ {Γ} {Δ} ρ (appl r) = {!!} ren↦ {Γ} {Δ} ρ (appr r) = {!!} ren↦inv : ∀{Γ Δ a} (ρ : Ren Γ Δ) (t : Tm Δ a) {t' : Tm Γ a} (r : ren ρ t ↦ t') → ∃ λ (u : Tm Δ a) → (t ↦ u) × (t' ≡ ren ρ u) ren↦inv ρ (var x) () ren↦inv ρ (app (abs t) t₁) β = sub0 t t₁ , β , {!refl!} ren↦inv ρ (abs t) (abs r) with ren↦inv (liftr ρ) t r ren↦inv ρ (abs t) (abs r) | u , r' , e = abs u , abs r' , cong abs e ren↦inv ρ (app t t₁) (appl r) with ren↦inv ρ t r ren↦inv ρ (app t t₁) (appl r) | u , r' , refl = app u t₁ , appl r' , refl ren↦inv ρ (app t t₁) (appr r) with ren↦inv ρ t₁ r ... | u , r' , refl = app t u , appr r' , refl -- Strongly normalizing terms data SN {Γ : Cxt} {a : Ty} (t : Tm Γ a) : Set where sn : (∀ t' (r : t ↦ t') → SN t') → SN t -- SN is closed under renaming renSN : ∀{Γ Δ a} (ρ : Ren Γ Δ) {t : Tm Δ a} (s : SN t) → SN (ren ρ t) renSN ρ (sn f) = sn λ _ r → case ren↦inv ρ _ r of λ{ (t'' , r' , refl) → renSN ρ (f t'' r') } -- Strong head reduction (weak head reduction that preserves SN under expansion) data _s↦_ {Γ} : ∀{a} (t t' : Tm Γ a) → Set where β : ∀{a b} {t : Tm (Γ , a) b} {u} (s : SN u) → app (abs t) u s↦ sub0 t u appl : ∀{a b} {t t' : Tm Γ (a ⇒ b)} {u} (r : t s↦ t') → app t u s↦ app t' u -- Strong head reduction is closed under renaming rens↦ : ∀{Γ Δ a} (ρ : Ren Γ Δ) {t t' : Tm Δ a} (r : t s↦ t') → ren ρ t s↦ ren ρ t' rens↦ ρ (β s) = {!β!} -- Need lemma: -- app (abs (ren (liftr ρ) .t)) (ren ρ .u) s↦ -- ren ρ (sub (subId , .u) .t)rens↦ ρ (appl r) = appl (rens↦ ρ r) -- SN is closed under strong head expansion s↦SN : ∀{Γ a}{t t' : Tm Γ a} (r : t s↦ t') (s : SN t') → SN t -- s↦SN r s = sn λ t' → λ{ β → {!!} ; (abs r') → {!!} ; (appl r') → {!!} ; (appr r') → {!!}} s↦SN (β s') s = sn (λ t' → λ{ β → s ; (appl (abs r)) → {!!} ; (appr r) → {!!}}) s↦SN (appl r) s = {!!} -- Reducibility: Kripke logical predicate Red : (a : Ty) {Γ : Cxt} (t : Tm Γ a) → Set Red ★ {Γ} t = SN t Red (a ⇒ b) {Γ} t = ∀{Γ'}(ρ : Ren Γ' Γ) u (s : Red a u) → Red b (app (ren ρ t) u) -- Reducibility is closed under renaming renRed : ∀{Γ Δ a} (ρ : Ren Γ Δ) {t : Tm Δ a} (p : Red a t) → Red a (ren ρ t) renRed {Γ} {Δ} {★} ρ {t} p = renSN ρ p renRed {Γ} {Δ} {a ⇒ b} ρ {t} p = λ ρ₁ u s → subst (λ z → Red b (app z u)) (rencomp ρ₁ ρ t) (p (renComp ρ₁ ρ) u s) -- Reducibility is closed under strong head expansion expRed : ∀{Γ a} {t t' : Tm Γ a} (r : t s↦ t') (p : Red a t') → Red a t expRed {Γ} {★} {t} {t'} r p = s↦SN r p expRed {Γ} {a ⇒ b} {t} {t'} r p ρ u s = expRed (appl {!!}) (p ρ u s)
{ "alphanum_fraction": 0.4732872407, "avg_line_length": 37.880952381, "ext": "agda", "hexsha": "346bdc0ed962f3f6f891116411ec811d770ffff1", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2018-02-23T18:22:17.000Z", "max_forks_repo_forks_event_min_datetime": "2017-11-10T16:44:52.000Z", "max_forks_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "ryanakca/strong-normalization", "max_forks_repo_path": "agda/SN.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_issues_repo_issues_event_max_datetime": "2018-02-20T14:54:18.000Z", "max_issues_repo_issues_event_min_datetime": "2018-02-14T16:42:36.000Z", "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "ryanakca/strong-normalization", "max_issues_repo_path": "agda/SN.agda", "max_line_length": 92, "max_stars_count": 32, "max_stars_repo_head_hexsha": "79d97481f3312c2d30a823c3b1bcb8ae871c2fe2", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "ryanakca/strong-normalization", "max_stars_repo_path": "agda/SN.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-05T12:12:03.000Z", "max_stars_repo_stars_event_min_datetime": "2017-05-22T14:33:27.000Z", "num_tokens": 1601, "size": 3182 }
{-# OPTIONS --two-level --cubical-compatible #-} open import Agda.Primitive data D₁ : SSet → SSet (lsuc lzero) where c : (@0 A : SSet) → A → D₁ A data D₂ : Set → SSet (lsuc lzero) where c : (@0 A : Set) → A → D₂ A
{ "alphanum_fraction": 0.592760181, "avg_line_length": 22.1, "ext": "agda", "hexsha": "ad73ec5a8958ff1c660d07a10b03842f62cbd08d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "KDr2/agda", "max_forks_repo_path": "test/Succeed/Issue5434.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z", "max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "KDr2/agda", "max_issues_repo_path": "test/Succeed/Issue5434.agda", "max_line_length": 48, "max_stars_count": null, "max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "KDr2/agda", "max_stars_repo_path": "test/Succeed/Issue5434.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 84, "size": 221 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2021, Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import Haskell.Modules.RWS.RustAnyHow open import LibraBFT.Base.Types open import LibraBFT.Impl.Consensus.EpochManagerTypes import LibraBFT.Impl.OBM.ECP-LBFT-OBM-Diff.ECP-LBFT-OBM-Diff-0 as ECP-LBFT-OBM-Diff-0 open import LibraBFT.Impl.OBM.Logging.Logging import LibraBFT.Impl.Storage.DiemDB.DiemDB as DiemDB import LibraBFT.Impl.Types.EpochChangeProof as EpochChangeProof open import LibraBFT.ImplShared.Consensus.Types open import LibraBFT.ImplShared.Interface.Output open import LibraBFT.ImplShared.Util.Dijkstra.All open import Optics.All open import Util.Prelude ------------------------------------------------------------------------------ open import Data.String using (String) module LibraBFT.Impl.OBM.ECP-LBFT-OBM-Diff.ECP-LBFT-OBM-Diff-1 where ------------------------------------------------------------------------------ postulate -- TODO-1 : nub (remove duplicates) nub : ∀ {A : Set} → List A → List A ------------------------------------------------------------------------------ amIMemberOfCurrentEpoch : Author → List Author → Bool amIMemberOfCurrentEpochM : LBFT Bool ------------------------------------------------------------------------------ e_SyncManager_insertQuorumCertM_commit : LedgerInfoWithSignatures → LBFT (Either ErrLog Unit) e_SyncManager_insertQuorumCertM_commit liws = ifD (not ECP-LBFT-OBM-Diff-0.enabled) then (do rcvrs ← use (lRoundManager ∙ rmObmAllAuthors) --act (BroadcastEpochChangeProof (EpochChangeProof∙new (liws ∷ []) false) rcvrs) -- TODO-1 ok unit) else do {- LBFT-OBM-DIFF A SyncInfo is sent BEFORE an EpochChangeProof. Only sent to members of current epoch (not the one the EpochChangeProof will transition to). This is needed since the highest committed QC from the initial committer/leader of the EPOCHCHANGE transaction needs to be given to followers so they will also commit the EPOCHCHANGE transaction. Note: This is similar to how the QC is carried in a ProposalMsg. -} rcvrs ← use (lRoundManager ∙ rmObmAllAuthors) syncInfo ← SyncInfo∙new <$> use (lBlockStore ∙ bsHighestQuorumCert) <*> use (lBlockStore ∙ bsHighestCommitCert) <*> use (lBlockStore ∙ bsHighestTimeoutCert) act (BroadcastSyncInfo syncInfo rcvrs) -- LBFT-OBM-DIFF : PUSH: when sending an ECP when committing an epoch change, -- send all epoch ending ledger info (not just the current one) -- so the receiver will be up-to-date. -- TODO : optimize: let receiver PULL its gaps. db ← use (lBlockStore ∙ bsStorage ∙ msObmDiemDB) maybeSD (liws ^∙ liwsLedgerInfo ∙ liNextEpochState) (bail fakeErr {-"liNextEpochState" ∷ "Nothing" ∷ []-}) $ λ es → do let newRcvrs = es ^∙ esVerifier ∙ vvObmAuthors allRcvrs = nub (rcvrs ++ newRcvrs) eitherS (DiemDB.getEpochEndingLedgerInfos db ({-Epoch-} 1) (liws ^∙ liwsEpoch + 1)) bail (λ (liwss , b) -> do -- act (BroadcastEpochChangeProof lEC (EpochChangeProof.new liwss b) allRcvrs) -- TODO-1 ok unit) where here' : List String → List String here' t = "e_SyncManager_InsertQuorumCertM_commit" ∷ t ------------------------------------------------------------------------------ e_RoundState_processLocalTimeoutM : Epoch → Round → LBFT Bool e_RoundState_processLocalTimeoutM e r = ifD not ECP-LBFT-OBM-Diff-0.enabled then yes' else -- LBFT-OBM-DIFF : do not broadcast timeouts if not member of epoch ifMD amIMemberOfCurrentEpochM yes' (do logInfo fakeInfo -- ["not a member of Epoch", "ignoring timeout", lsE e, lsR r] pure false) where yes' : LBFT Bool yes' = do logInfo fakeInfo -- InfoRoundTimeout e r pure true ------------------------------------------------------------------------------ -- TODO-1 : use EitherD e_EpochManager_doECP_waitForRlec : EpochManager → EpochChangeProof → Either ErrLog Bool e_EpochManager_doECP_waitForRlec self ecp = if not ECP-LBFT-OBM-Diff-0.enabled then pure true else do rm ← self ^∙ emObmRoundManager e ← self ^∙ emEpoch maybeS (rm ^∙ rmObmMe) (Left fakeErr {-["e_EpochManager_doECP_waitForRlec", "rmObmMe", "Nothing"]-}) $ λ me → let m = amIMemberOfCurrentEpoch me (rm ^∙ rmObmAllAuthors) in pure (m ∧ (EpochChangeProof.obmLastEpoch ecp == e)) ------------------------------------------------------------------------------ module e_EpochManager_startNewEpoch where VariantFor : ∀ {ℓ} EL → EL-func {ℓ} EL VariantFor EL = EpochManager → EpochChangeProof → EL ErrLog EpochManager step₀ : VariantFor EitherD step₀ self ecp = ifD not ECP-LBFT-OBM-Diff-0.enabled then pure self else do -- LBFT-OBM-DIFF: store all the epoch ending LedgerInfos sent in ECP -- (to avoid gaps -- from when a node is not a member). db ← (foldM) (\db l → DiemDB.saveTransactions db (just l)) (self ^∙ emStorage ∙ msObmDiemDB) (ecp ^∙ ecpLedgerInfoWithSigs) pure (self & emStorage ∙ msObmDiemDB ∙~ db) e_EpochManager_startNewEpoch : e_EpochManager_startNewEpoch.VariantFor Either e_EpochManager_startNewEpoch em = toEither ∘ e_EpochManager_startNewEpoch.step₀ em e_EpochManager_startNewEpoch-D : e_EpochManager_startNewEpoch.VariantFor EitherD e_EpochManager_startNewEpoch-D em = fromEither ∘ e_EpochManager_startNewEpoch em ------------------------------------------------------------------------------ -- TODO-1 : use EitherD e_EpochManager_checkEpc : EpochManager → EpochChangeProof → Either ErrLog Unit e_EpochManager_checkEpc self ecp = if (not ECP-LBFT-OBM-Diff-0.enabled) then checkEpcNot else checkEpcEnable where here' : List String → List String checkEpcNot : Either ErrLog Unit checkEpcNot = case EpochChangeProof.epoch ecp of λ where (Left e) → Left (withErrCtx (here' []) e) (Right msgEpoch) → do e ← self ^∙ emEpoch if msgEpoch == e then pure unit else Left fakeErr --(ErrInfo (lEC, InfoL (here ["unexpected epoch proof", lsE msgEpoch, lsE e]))) -- LBFT-OBM-DIFF : ignore it if it doesn't help checkEpcEnable : Either ErrLog Unit checkEpcEnable = do epoch ← self ^∙ emEpoch if-dec (EpochChangeProof.obmLastEpoch ecp <? epoch) then Left fakeErr --(ErrInfo (lEC, InfoL (here [ "ecp last", lsE (EpochChangeProof.obmLastEpoch ecp) -- , "< ours" , lsE epoch ]))) else pure unit here' t = "e_EpochManager_checkEpc" ∷ t ------------------------------------------------------------------------------ -- TODO-1 : use EitherD e_EpochManager_processMessage_ISyncInfo : EpochManager → SyncInfo → Either ErrLog Unit e_EpochManager_processMessage_ISyncInfo self si = do e ← self ^∙ emEpoch grd‖ not ECP-LBFT-OBM-Diff-0.enabled ≔ pure unit ‖ si ^∙ siEpoch == e ≔ pure unit ‖ otherwise≔ Left fakeErr -- ["si epoch", lsE (si^.siEpoch), "/=", "ours", lsE e] ------------------------------------------------------------------------------ amIMemberOfCurrentEpochM = use (lRoundManager ∙ rmObmMe) >>= λ where nothing → do logErr fakeErr -- no identity pure false (just me) → amIMemberOfCurrentEpoch <$> pure me <*> use (lRoundManager ∙ rmObmAllAuthors) amIMemberOfCurrentEpoch = elem
{ "alphanum_fraction": 0.6114674192, "avg_line_length": 40.6041666667, "ext": "agda", "hexsha": "cfea9cfd0b66a5dbcf4ebb1ae9a9ca7b32891348", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_forks_repo_path": "src/LibraBFT/Impl/OBM/ECP-LBFT-OBM-Diff/ECP-LBFT-OBM-Diff-1.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_issues_repo_path": "src/LibraBFT/Impl/OBM/ECP-LBFT-OBM-Diff/ECP-LBFT-OBM-Diff-1.agda", "max_line_length": 122, "max_stars_count": null, "max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda", "max_stars_repo_path": "src/LibraBFT/Impl/OBM/ECP-LBFT-OBM-Diff/ECP-LBFT-OBM-Diff-1.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2163, "size": 7796 }
{-# OPTIONS --cubical --no-import-sorts --safe #-} module Cubical.Data.Sum.Base where open import Cubical.Relation.Nullary open import Cubical.Core.Everything private variable ℓ ℓ' : Level A B C D : Type ℓ data _⊎_ (A : Type ℓ)(B : Type ℓ') : Type (ℓ-max ℓ ℓ') where inl : A → A ⊎ B inr : B → A ⊎ B rec : {C : Type ℓ} → (A → C) → (B → C) → A ⊎ B → C rec f _ (inl x) = f x rec _ g (inr y) = g y elim : {C : A ⊎ B → Type ℓ} → ((a : A) → C (inl a)) → ((b : B) → C (inr b)) → (x : A ⊎ B) → C x elim f _ (inl x) = f x elim _ g (inr y) = g y map : (A → C) → (B → D) → A ⊎ B → C ⊎ D map f _ (inl x) = inl (f x) map _ g (inr y) = inr (g y) _⊎?_ : {P Q : Type ℓ} → Dec P → Dec Q → Dec (P ⊎ Q) P? ⊎? Q? with P? | Q? ... | yes p | _ = yes (inl p) ... | no _ | yes q = yes (inr q) ... | no ¬p | no ¬q = no λ { (inl p) → ¬p p ; (inr q) → ¬q q }
{ "alphanum_fraction": 0.4689655172, "avg_line_length": 22.8947368421, "ext": "agda", "hexsha": "33b5fb021693171e147b35fbf486f42d4d35c2f6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dan-iel-lee/cubical", "max_forks_repo_path": "Cubical/Data/Sum/Base.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dan-iel-lee/cubical", "max_issues_repo_path": "Cubical/Data/Sum/Base.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dan-iel-lee/cubical", "max_stars_repo_path": "Cubical/Data/Sum/Base.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 414, "size": 870 }
-- Generated by src/templates/TemplatesCompiler module templates where open import cedille-types {-# FOREIGN GHC import qualified Templates #-} -- src/templates/Mendler.ced postulate templateMendler : start {-# COMPILE GHC templateMendler = Templates.templateMendler #-} -- src/templates/MendlerSimple.ced postulate templateMendlerSimple : start {-# COMPILE GHC templateMendlerSimple = Templates.templateMendlerSimple #-}
{ "alphanum_fraction": 0.7906976744, "avg_line_length": 25.2941176471, "ext": "agda", "hexsha": "c27474c4b1f4c782ae5c42931e7628132ea337f4", "lang": "Agda", "max_forks_count": 34, "max_forks_repo_forks_event_max_datetime": "2022-02-20T18:33:16.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-17T11:51:36.000Z", "max_forks_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mudathirmahgoub/cedille", "max_forks_repo_path": "src/templates.agda", "max_issues_count": 123, "max_issues_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947", "max_issues_repo_issues_event_max_datetime": "2022-01-12T03:51:28.000Z", "max_issues_repo_issues_event_min_datetime": "2018-09-17T10:53:20.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mudathirmahgoub/cedille", "max_issues_repo_path": "src/templates.agda", "max_line_length": 75, "max_stars_count": 328, "max_stars_repo_head_hexsha": "75f72bf2e41ac4042efc3128fa9958d4cd69b947", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mudathirmahgoub/cedille", "max_stars_repo_path": "src/templates.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-26T10:33:07.000Z", "max_stars_repo_stars_event_min_datetime": "2018-09-14T20:06:09.000Z", "num_tokens": 103, "size": 430 }
module Relation.Ternary.Separation.Monad.Reader where open import Level open import Function using (_∘_; case_of_) open import Relation.Binary.PropositionalEquality using (refl) open import Relation.Unary open import Relation.Unary.PredicateTransformer using (PT) open import Relation.Ternary.Separation open import Relation.Ternary.Separation.Morphisms open import Relation.Ternary.Separation.Monad open import Relation.Ternary.Separation.Allstar open import Data.Product open import Data.List hiding (concat; lookup) open import Data.Unit private variable ℓv : Level A : Set ℓv Γ Γ₁ Γ₂ Γ₃ : List A {- Something not unlike a indexed relative monad transformer in a bicartesian closed category -} module ReaderTransformer {ℓ} -- types {T : Set ℓ} -- runtime resource {C : Set ℓ} {{rc : RawSep C}} {u} {{sc : IsUnitalSep rc u}} {{cc : IsConcattative rc}} -- {B : Set ℓ} {{rb : RawSep B}} (j : Morphism C B) {{sb : IsUnitalSep rb (Morphism.j j u)}} (V : T → Pred C ℓ) -- values (M : PT C B ℓ ℓ) {{monad : Monads.Monad {{jm = j}} ⊤ ℓ (λ _ _ → M) }} where open Morphism j hiding (j) public open Monads {{jm = j}} using (Monad; str; typed-str) open import Relation.Ternary.Separation.Construct.List T module _ where open Monad monad variable P Q R : Pred C ℓ Reader : ∀ (Γ₁ Γ₂ : List T) (P : Pred C ℓ) → Pred B ℓ Reader Γ₁ Γ₂ P = J (Allstar V Γ₁) ─✴ M (P ✴ Allstar V Γ₂) instance reader-monad : Monad (List T) _ Reader app (Monad.return reader-monad px) (inj e) s = return px &⟨ s ⟩ e app (app (Monad.bind reader-monad f) mp σ₁) env σ₂ = let _ , σ₃ , σ₄ = ⊎-assoc σ₁ σ₂ in app (bind (wand λ where (px ×⟨ σ₅ ⟩ env') σ₆ → let _ , τ₁ , τ₂ = ⊎-unassoc σ₆ (j-⊎ σ₅) in app (app f px τ₁) (inj env') τ₂)) (app mp env σ₄) σ₃ frame : Γ₁ ⊎ Γ₃ ≣ Γ₂ → ∀[ Reader Γ₁ ε P ⇒ Reader Γ₂ Γ₃ P ] app (frame sep c) (inj env) σ = do let E₁ ×⟨ σ₁ ⟩ E₂ = repartition sep env let Φ , σ₂ , σ₃ = ⊎-unassoc σ (j-⊎ σ₁) (v ×⟨ σ₄ ⟩ nil) ×⟨ σ₅ ⟩ E₃ ← app c (inj E₁) σ₂ &⟨ Allstar _ _ ∥ σ₃ ⟩ E₂ case ⊎-id⁻ʳ σ₄ of λ where refl → return (v ×⟨ σ₅ ⟩ E₃) ask : ε[ Reader Γ ε (Allstar V Γ) ] app ask (inj env) σ with ⊎-id⁻ˡ σ ... | refl = return (env ×⟨ ⊎-idʳ ⟩ nil) prepend : ∀[ Allstar V Γ₁ ⇒ⱼ Reader Γ₂ (Γ₁ ∙ Γ₂) Emp ] app (prepend env₁) (inj env₂) s with j-⊎⁻ s ... | _ , refl , s' = return (empty ×⟨ ⊎-idˡ ⟩ (concat (env₁ ×⟨ s' ⟩ env₂))) append : ∀[ Allstar V Γ₁ ⇒ⱼ Reader Γ₂ (Γ₂ ∙ Γ₁) Emp ] app (append env₁) (inj env₂) s with j-⊎⁻ s ... | _ , refl , s' = return (empty ×⟨ ⊎-idˡ ⟩ (concat (✴-swap (env₁ ×⟨ s' ⟩ env₂)))) liftM : ∀[ M P ⇒ Reader Γ Γ P ] app (liftM mp) (inj env) σ = do mp &⟨ σ ⟩ env runReader : ∀[ Allstar V Γ ⇒ⱼ Reader Γ ε P ─✴ M P ] app (runReader env) mp σ = do px ×⟨ σ ⟩ nil ← app mp (inj env) (⊎-comm σ) case ⊎-id⁻ʳ σ of λ where refl → return px module _ where open Monad reader-monad lookup : ∀ {a} → ε[ Reader [ a ] [] (V a) ] lookup = do v :⟨ σ ⟩: nil ← ask case ⊎-id⁻ʳ σ of λ where refl → return v module ReaderMonad {ℓ} -- types {T : Set ℓ} -- runtime resource {C : Set ℓ} {{rc : RawSep C}} {u} {{sc : IsUnitalSep rc u}} {{cc : IsConcattative rc}} -- values (V : T → Pred C ℓ) where open import Relation.Ternary.Separation.Monad.Identity open ReaderTransformer id-morph V Identity.Id {{ monad = Identity.id-monad }} public
{ "alphanum_fraction": 0.5862263618, "avg_line_length": 32.2090909091, "ext": "agda", "hexsha": "b68f49e29e1984caebf792ee1b8c476e4fac4a38", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2020-05-23T00:34:36.000Z", "max_forks_repo_forks_event_min_datetime": "2020-01-30T14:15:14.000Z", "max_forks_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "laMudri/linear.agda", "max_forks_repo_path": "src/Relation/Ternary/Separation/Monad/Reader.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "laMudri/linear.agda", "max_issues_repo_path": "src/Relation/Ternary/Separation/Monad/Reader.agda", "max_line_length": 96, "max_stars_count": 34, "max_stars_repo_head_hexsha": "461077552d88141ac1bba044aa55b65069c3c6c0", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "laMudri/linear.agda", "max_stars_repo_path": "src/Relation/Ternary/Separation/Monad/Reader.agda", "max_stars_repo_stars_event_max_datetime": "2021-02-03T15:22:33.000Z", "max_stars_repo_stars_event_min_datetime": "2019-12-20T13:57:50.000Z", "num_tokens": 1367, "size": 3543 }
{-# OPTIONS --safe --without-K #-} open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; trans; sym; cong) open import Relation.Nullary using (_because_; ofʸ; ofⁿ) open import Data.Unit using (⊤; tt) open import Data.Empty using (⊥; ⊥-elim) open import Data.Nat.Base open import Data.Bool.Base using (false; true) open import Data.Product using (_×_; _,_; ∃-syntax) import Data.Fin as Fin import Data.Nat.Properties as ℕₚ import Data.Fin.Properties as Finₚ open Fin using (Fin ; zero ; suc; #_) open import PiCalculus.Syntax open Scoped module PiCalculus.Semantics where private variable name namex namey : Name n : ℕ P P' Q R : Scoped n x y : Fin n Unused : ∀ {n} → Fin n → Scoped n → Set Unused i 𝟘 = ⊤ Unused i (ν P) = Unused (suc i) P Unused i (P ∥ Q) = Unused i P × Unused i Q Unused i (x ⦅⦆ P) = i ≢ x × Unused (suc i) P Unused i (x ⟨ y ⟩ P) = i ≢ x × i ≢ y × Unused i P lift : (i : Fin (suc n)) → Scoped n → Scoped (suc n) lift i 𝟘 = 𝟘 lift i (ν P) = ν (lift (suc i) P) lift i (P ∥ Q) = lift i P ∥ lift i Q lift i (x ⦅⦆ P) = Fin.punchIn i x ⦅⦆ lift (suc i) P lift i (x ⟨ y ⟩ P) = Fin.punchIn i x ⟨ Fin.punchIn i y ⟩ lift i P lower : (i : Fin (suc n)) (P : Scoped (suc n)) → Unused i P → Scoped n lower i 𝟘 uP = 𝟘 lower i (ν P) uP = ν (lower (suc i) P uP) lower i (P ∥ Q) (uP , uQ) = lower i P uP ∥ lower i Q uQ lower i (x ⦅⦆ P) (i≢x , uP) = Fin.punchOut i≢x ⦅⦆ lower (suc i) P uP lower i (x ⟨ y ⟩ P) (i≢x , (i≢y , uP)) = Fin.punchOut i≢x ⟨ Fin.punchOut i≢y ⟩ lower i P uP notMax : (i : Fin n) (x : Fin (suc n)) → Fin.inject₁ i ≡ x → n ≢ Fin.toℕ x notMax i x p n≡x = Finₚ.toℕ-inject₁-≢ i (trans n≡x (sym (cong Fin.toℕ p))) exchangeFin : Fin n → Fin (suc n) → Fin (suc n) exchangeFin i x with Fin.inject₁ i Fin.≟ x exchangeFin i x | true because ofʸ p = suc (Fin.lower₁ x (notMax i x p)) exchangeFin i x | false because _ with (suc i) Fin.≟ x exchangeFin i x | false because _ | true because _ = Fin.inject₁ i exchangeFin i x | false because _ | false because _ = x exchange : Fin n → Scoped (suc n) → Scoped (suc n) exchange i 𝟘 = 𝟘 exchange i (ν P) = ν (exchange (suc i) P) exchange i (P ∥ Q) = exchange i P ∥ exchange i Q exchange i (x ⦅⦆ P) = exchangeFin i x ⦅⦆ exchange (suc i) P exchange i (x ⟨ y ⟩ P) = exchangeFin i x ⟨ exchangeFin i y ⟩ exchange i P infixl 10 _≈_ data _≈_ : Scoped n → Scoped n → Set where comp-assoc : P ∥ (Q ∥ R) ≈ (P ∥ Q) ∥ R comp-symm : P ∥ Q ≈ Q ∥ P comp-end : P ∥ 𝟘 ≈ P scope-end : _≈_ {n} (ν 𝟘 ⦃ name ⦄) 𝟘 scope-ext : (u : Unused zero P) → ν (P ∥ Q) ⦃ name ⦄ ≈ lower zero P u ∥ (ν Q) ⦃ name ⦄ scope-scope-comm : ν (ν P ⦃ namey ⦄) ⦃ namex ⦄ ≈ ν (ν (exchange zero P) ⦃ namex ⦄) ⦃ namey ⦄ data RecTree : Set where zero : RecTree one : RecTree → RecTree two : RecTree → RecTree → RecTree private variable r p : RecTree -- TODO: change names as per paper infixl 5 _≅⟨_⟩_ data _≅⟨_⟩_ : Scoped n → RecTree → Scoped n → Set where stop_ : P ≈ Q → P ≅⟨ zero ⟩ Q -- Equivalence relation cong-refl : P ≅⟨ zero ⟩ P cong-symm_ : P ≅⟨ r ⟩ Q → Q ≅⟨ one r ⟩ P cong-trans : P ≅⟨ r ⟩ Q → Q ≅⟨ p ⟩ R → P ≅⟨ two r p ⟩ R -- Congruent relation ν-cong_ : P ≅⟨ r ⟩ P' → ν P ⦃ name ⦄ ≅⟨ one r ⟩ ν P' ⦃ name ⦄ comp-cong_ : P ≅⟨ r ⟩ P' → P ∥ Q ≅⟨ one r ⟩ P' ∥ Q input-cong_ : P ≅⟨ r ⟩ P' → (x ⦅⦆ P) ⦃ name ⦄ ≅⟨ one r ⟩ (x ⦅⦆ P') ⦃ name ⦄ output-cong_ : P ≅⟨ r ⟩ P' → x ⟨ y ⟩ P ≅⟨ one r ⟩ x ⟨ y ⟩ P' _≅_ : Scoped n → Scoped n → Set P ≅ Q = ∃[ r ] (P ≅⟨ r ⟩ Q) _[_↦_]' : Fin n → Fin n → Fin n → Fin n x [ i ↦ j ]' with i Finₚ.≟ x x [ i ↦ j ]' | true because _ = j x [ i ↦ j ]' | false because _ = x _[_↦_] : Scoped n → (i j : Fin n) → Scoped n 𝟘 [ i ↦ j ] = 𝟘 (ν P) [ i ↦ j ] = ν (P [ suc i ↦ suc j ]) (P ∥ Q) [ i ↦ j ] = (P [ i ↦ j ]) ∥ (Q [ i ↦ j ]) (x ⦅⦆ P) [ i ↦ j ] = (x [ i ↦ j ]') ⦅⦆ (P [ suc i ↦ suc j ]) (x ⟨ y ⟩ P) [ i ↦ j ] = (x [ i ↦ j ]') ⟨ y [ i ↦ j ]' ⟩ (P [ i ↦ j ]) substFin-unused : ∀ {i j} (x : Fin (suc n)) → i ≢ j → i ≢ x [ i ↦ j ]' substFin-unused {i = i} x i≢j with i Finₚ.≟ x substFin-unused {i = i} x i≢j | true because _ = i≢j substFin-unused {i = i} x i≢j | false because ofⁿ ¬p = ¬p subst-unused : {i j : Fin (suc n)} → i ≢ j → (P : Scoped (suc n)) → Unused i (P [ i ↦ j ]) subst-unused i≢j 𝟘 = tt subst-unused i≢j (ν P) = subst-unused (λ i≡j → i≢j (Finₚ.suc-injective i≡j)) P subst-unused i≢j (P ∥ Q) = subst-unused i≢j P , subst-unused i≢j Q subst-unused i≢j (x ⦅⦆ P) = substFin-unused x i≢j , subst-unused (λ i≡j → i≢j (Finₚ.suc-injective i≡j)) P subst-unused i≢j (x ⟨ y ⟩ P) = substFin-unused x i≢j , substFin-unused y i≢j , subst-unused i≢j P data Channel : ℕ → Set where internal : ∀ {n} → Channel n external : ∀ {n} → Fin n → Channel n dec : Channel (suc n) → Channel n dec internal = internal dec (external zero) = internal dec (external (suc i)) = external i maybe : ∀ {a} {A : Set a} → A → (Fin n → A) → Channel n → A maybe b f internal = b maybe b f (external x) = f x infixl 5 _=[_]⇒_ data _=[_]⇒_ : Scoped n → Channel n → Scoped n → Set where comm : {P : Scoped (1 + n)} {Q : Scoped n} {i j : Fin n} → let uP' = subst-unused (λ ()) P in ((i ⦅⦆ P) ⦃ name ⦄) ∥ (i ⟨ j ⟩ Q) =[ external i ]⇒ lower zero (P [ zero ↦ suc j ]) uP' ∥ Q par_ : ∀ {c} {P P' Q : Scoped n} → P =[ c ]⇒ P' → P ∥ Q =[ c ]⇒ P' ∥ Q res_ : ∀ {c} {P Q : Scoped (1 + n)} → P =[ c ]⇒ Q → ν P ⦃ name ⦄ =[ dec c ]⇒ ν Q ⦃ name ⦄ struct : ∀ {c} {P P' Q' Q : Scoped n} → P ≅⟨ r ⟩ P' → P' =[ c ]⇒ Q' → Q' ≅⟨ r ⟩ Q → P =[ c ]⇒ Q _⇒_ : Scoped n → Scoped n → Set P ⇒ Q = ∃[ c ] (P =[ c ]⇒ Q)
{ "alphanum_fraction": 0.5093073956, "avg_line_length": 34.2701149425, "ext": "agda", "hexsha": "da22d67718e8ed9e50a7adf8db2d3e0f7411b8f7", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-14T16:24:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-01-25T13:57:13.000Z", "max_forks_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "guilhermehas/typing-linear-pi", "max_forks_repo_path": "src/PiCalculus/Semantics.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_issues_repo_issues_event_max_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_issues_event_min_datetime": "2022-03-15T09:16:14.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "guilhermehas/typing-linear-pi", "max_issues_repo_path": "src/PiCalculus/Semantics.agda", "max_line_length": 107, "max_stars_count": 26, "max_stars_repo_head_hexsha": "0fc3cf6bcc0cd07d4511dbe98149ac44e6a38b1a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "guilhermehas/typing-linear-pi", "max_stars_repo_path": "src/PiCalculus/Semantics.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-14T15:18:23.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-02T23:32:11.000Z", "num_tokens": 2664, "size": 5963 }
module datatypes where open import bool public open import bool-to-string public open import char public open import integer public open import list public open import list-to-string public open import level public open import maybe public open import nat public open import nat-division public open import nat-to-string public open import nat-log public open import product public open import string public open import sum public open import tree public open import trie public open import unit public open import vector public
{ "alphanum_fraction": 0.8339622642, "avg_line_length": 24.0909090909, "ext": "agda", "hexsha": "84aff94261b400faa3d34e45b16cf4b45ac879ec", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "heades/AUGL", "max_forks_repo_path": "datatypes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "heades/AUGL", "max_issues_repo_path": "datatypes.agda", "max_line_length": 33, "max_stars_count": null, "max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "heades/AUGL", "max_stars_repo_path": "datatypes.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 109, "size": 530 }
-- Andreas, 2014-05-03 Test case by Andrea Vezzosi data Two : Set where a b : Two -- This example of varying arity crashed Epic before. f : Two → {eq : Two} → Two f a {x} = a f b = b postulate IO : Set → Set {-# COMPILED_TYPE IO IO #-} postulate return : ∀ {A} → A → IO A {-# COMPILED_EPIC return (u1 : Unit, a : Any) -> Any = ioreturn(a) #-} main : IO Two main = return a
{ "alphanum_fraction": 0.5924050633, "avg_line_length": 17.1739130435, "ext": "agda", "hexsha": "34a822317240261b1dfed11552c813c3d214b5b4", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/EpicVaryingArity.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/EpicVaryingArity.agda", "max_line_length": 70, "max_stars_count": 1, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/EpicVaryingArity.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 139, "size": 395 }
{-# OPTIONS --type-in-type #-} module poly0 where open import prelude open import functors open import poly.core public variable A B C X Y : ∫ I A⁺ B⁺ C⁺ X⁺ Y⁺ : Set A⁻ : A⁺ → Set B⁻ : B⁺ → Set C⁻ : C⁺ → Set X⁻ : X⁺ → Set Y⁻ : Y⁺ → Set ∃⊤ ∃⊥ ⊤∫ ∫∫ : Set → ∫ ∃⊤ a = a , λ _ → ⊤ ∃⊥ a = a , λ _ → ⊥ ⊤∫ a = ⊤ , λ _ → a ∫∫ a = a , λ _ → a 𝒴 𝟘 : ∫ 𝒴 = ⊤ , λ _ → ⊤ 𝟘 = ⊥ , λ _ → ⊥ module _ {A@(A⁺ , A⁻) B@(B⁺ , B⁻) : ∫} where infixl 5 _★_ -- infix notatjon for get _★_ : A⁺ → (l : ∫[ A , B ]) → B⁺ σa ★ l = get l σa infixr 4 _#_←_ -- Infix notatjon for set _#_←_ : (a⁺ : A⁺) → (A↝B : ∫[ A , B ]) → B⁻ (a⁺ ★ A↝B) → A⁻ a⁺ a⁺ # l ← b⁻ = π₂ (l a⁺) b⁻ _↕_ : (get : A⁺ → B⁺) → (set : (a⁺ : A⁺) → B⁻ (get a⁺) → A⁻ a⁺) → ∫[ A , B ] g ↕ s = λ a⁺ → (g a⁺) , (s a⁺) module _ {A@(A⁺ , A⁻) C@(C⁺ , C⁻) : ∫} (l : ∫[ A , C ]) where -- vertical and cartesian factorization Factor : Σ[ B ∈ ∫ ] (∫[ A , B ]) × (∫[ B , C ]) Factor = (A⁺ , C⁻ ∘ get l) , id ↕ set l , get l ↕ λ _ → id module lenses (f : A⁺ → B⁺) where constant : ∫[ ∃⊥ A⁺ , ∃⊥ B⁺ ] emitter : ∫[ ∃⊤ A⁺ , ∃⊤ B⁺ ] sensor : ∫[ ⊤∫ B⁺ , ⊤∫ A⁺ ] constant a⁺ = f a⁺ , id emitter a⁺ = f a⁺ , λ _ → tt sensor _ = tt , f open lenses public enclose : ((a⁺ : A⁺) → B⁻ a⁺) → ∫[ (A⁺ , B⁻) , 𝒴 ] enclose f a⁺ = tt , λ _ → f a⁺ auto : ∫[ ∃⊤ A⁺ , 𝒴 ] auto = enclose λ _ → tt {- lift∫ : (f : Set → Set) → ∫ → ∫ lift∫ f (A⁺ , A⁻) = A⁺ , f ∘ A⁻ liftLens : ∀ {A B} (f : Set → Set) → ∫[ A , B ] → ∫[ lift∫ f A , lift∫ f B ] liftLens f l a⁺ with l a⁺ ... | b⁺ , setb = b⁺ , φ setb -} {- module lift_comonad (f : Set → Set) {A : ∫} ⦃ f_monad : Monad f ⦄ where extract : lift∫ f A ↝ A extract a⁺ = a⁺ , η f_monad -- id ↕ λ _ → η duplicate : lift∫ f A ↝ lift∫ f (lift∫ f A) duplicate a⁺ = a⁺ , μ -} module poly-ops where infixl 6 _⊗_ infixl 5 _⊕_ _⊕_ _⊗_ _⊠_ _⊚_ : ∫ → ∫ → ∫ (A⁺ , A⁻) ⊕ (B⁺ , B⁻) = (A⁺ ⊎ B⁺) , (A⁻ ⨄ B⁻) -- coproduct (A⁺ , A⁻) ⊗ (B⁺ , B⁻) = (A⁺ × B⁺) , (A⁻ ⨃ B⁻) -- product (A⁺ , A⁻) ⊠ (B⁺ , B⁻) = (A⁺ × B⁺) , (A⁻ ⨉ B⁻) -- juxtapose (A⁺ , A⁻) ⊚ (B⁺ , B⁻) = (Σ[ a⁺ ∈ A⁺ ](A⁻ a⁺ → B⁺)) -- compose , λ (_ , bs) → ∃ (B⁻ ∘ bs) -- N-ary Σ⊕ : (I → ∫) → ∫ Σ⊕ {I = I} A = Σ I (π₁ ∘ A) , λ (i , a⁺) → π₂ (A i) a⁺ Π⊗ : (I → ∫) → ∫ Π⊗ {I = I} a = ((i : I) → π₁ (a i)) , λ a⁺ → Σ[ i ∈ I ](π₂ (a i) (a⁺ i)) Π⊠ : (I → ∫) → ∫ Π⊠ {I = I} a = ((i : I) → π₁ (a i)) , (λ a⁺ → (i : I) -> π₂ (a i) (a⁺ i)) _ᵒ_ : ∫ → ℕ → ∫ _ ᵒ ℕz = 𝒴 a ᵒ ℕs n = a ⊚ (a ᵒ n) open poly-ops public module lens-ops where _⟦+⟧_ : ∀ {a b x y} → ∫[ a , b ] → ∫[ x , y ] → ∫[ a ⊕ x , b ⊕ y ] -- coproduct _⟦|⟧_ : ∀ {a b x } → ∫[ a , x ] → ∫[ b , x ] → ∫[ a ⊕ b , x ] -- copair _⟦⊗⟧_ : ∀ {a b x y} → ∫[ a , b ] → ∫[ x , y ] → ∫[ a ⊗ x , b ⊗ y ] -- product _⟦×⟧_ : ∀ {x a b } → ∫[ x , a ] → ∫[ x , b ] → ∫[ x , a ⊗ b ] -- pair _⟦⊠⟧_ : ∀ {a b x y} → ∫[ a , b ] → ∫[ x , y ] → ∫[ a ⊠ x , b ⊠ y ] -- juxtaposition _⟦⊚⟧_ : ∀ {a b x y} → ∫[ a , b ] → ∫[ x , y ] → ∫[ a ⊚ x , b ⊚ y ] -- composition (a↝b ⟦+⟧ x↝y) = λ{(Σ₁ a⁺) → let b⁺ , setb = a↝b a⁺ in Σ₁ b⁺ , setb ;(Σ₂ x⁺) → let y⁺ , sety = x↝y x⁺ in Σ₂ y⁺ , sety} (a↝x ⟦|⟧ b↝x) = λ{(Σ₁ a⁺) → a↝x a⁺ ;(Σ₂ b⁺) → b↝x b⁺} (a↝b ⟦⊗⟧ x↝y) (a⁺ , x⁺) with a↝b a⁺ | x↝y x⁺ ... | b⁺ , setb | y⁺ , sety = (b⁺ , y⁺) , λ{(Σ₁ b⁻) → Σ₁ (setb b⁻) ;(Σ₂ y⁻) → Σ₂ (sety y⁻)} _⟦×⟧_ x↝a x↝b x⁺ with x↝a x⁺ | x↝b x⁺ ... | a⁺ , seta | b⁺ , setb = (a⁺ , b⁺) , λ{(Σ₁ a⁻) → seta a⁻ ;(Σ₂ b⁻) → setb b⁻} _⟦⊠⟧_ a↝b x↝y (a⁺ , x⁺) = ((a⁺ ★ a↝b) , (x⁺ ★ x↝y)) , λ (b⁻ , y⁻) → (a⁺ # a↝b ← b⁻) , (x⁺ # x↝y ← y⁻) (a↝b ⟦⊚⟧ x↝y) (a⁺ , a⁻→x⁺) with a↝b a⁺ ... | b⁺ , setb = (b⁺ , get x↝y ∘ a⁻→x⁺ ∘ setb) , λ (b⁻ , y⁻) → let a⁻ = setb b⁻ in a⁻ , (a⁻→x⁺ a⁻ # x↝y ← y⁻) -- N-ary Π⟦⊠⟧ : {as bs : I → ∫} → ((i : I) → (∫[ as i , bs i ])) → ∫[ Π⊠ as , Π⊠ bs ] Π⟦⊠⟧ ls as⁺ = (λ i → as⁺ i ★ ls i) , (λ dbs i → as⁺ i # ls i ← dbs i) _⟦ᵒ⟧_ : ∫[ A , B ] → (n : ℕ) → ∫[ A ᵒ n , B ᵒ n ] _⟦ᵒ⟧_ {a} {b} l = go where go : (n : ℕ) → ∫[ a ᵒ n , b ᵒ n ] go ℕz = 𝒾 {x = 𝒴} go (ℕs n) = l ⟦⊚⟧ (go n) open lens-ops public
{ "alphanum_fraction": 0.3360599864, "avg_line_length": 30.5625, "ext": "agda", "hexsha": "1016ec3d6ec0ecd030fa6650055c9e276ce319bc", "lang": "Agda", "max_forks_count": 4, "max_forks_repo_forks_event_max_datetime": "2022-01-30T11:45:57.000Z", "max_forks_repo_forks_event_min_datetime": "2021-07-10T17:19:37.000Z", "max_forks_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dspivak/poly", "max_forks_repo_path": "code-examples/agda/poly0.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_issues_repo_issues_event_max_datetime": "2022-01-12T10:06:32.000Z", "max_issues_repo_issues_event_min_datetime": "2021-09-02T02:29:39.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dspivak/poly", "max_issues_repo_path": "code-examples/agda/poly0.agda", "max_line_length": 85, "max_stars_count": 53, "max_stars_repo_head_hexsha": "425de958985aacbd3284d3057fe21fd682e315ea", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mstone/poly", "max_stars_repo_path": "code-examples/agda/poly0.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-22T23:08:27.000Z", "max_stars_repo_stars_event_min_datetime": "2021-02-18T16:31:04.000Z", "num_tokens": 2674, "size": 4401 }
module Prelude.Monad where open import Agda.Primitive open import Prelude.Function open import Prelude.Functor open import Prelude.Unit open import Prelude.Applicative open import Prelude.Monad.Indexed {I = ⊤} as Indexed Monad : ∀ {a b} (M : Set a → Set b) → Set (lsuc a ⊔ b) Monad M = Indexed.IMonad (λ _ _ → M) Monad′ : ∀ {a b} (M : ∀ {a} → Set a → Set a) → Set (lsuc (a ⊔ b)) Monad′ {a} {b} M = Indexed.IMonad′ {a = a} {b = b} (λ _ _ → M) open Indexed public hiding (IMonad; IMonad′) monadAp : ∀ {a b} {A B : Set a} {M : Set a → Set b} {{_ : Functor M}} → (M (A → B) → ((A → B) → M B) → M B) → M (A → B) → M A → M B monadAp _>>=_ mf mx = mf >>= λ f → fmap f mx monadAp′ : ∀ {a b} {A : Set a} {B : Set b} {M : ∀ {a} → Set a → Set a} {{_ : Functor′ {a} {b} M}} → (M (A → B) → ((A → B) → M B) → M B) → M (A → B) → M A → M B monadAp′ _>>=_ mf mx = mf >>= λ f → fmap′ f mx infixr 0 caseM_of_ caseM_of_ = _>>=_
{ "alphanum_fraction": 0.5060606061, "avg_line_length": 29.1176470588, "ext": "agda", "hexsha": "54aaaf16a645ccd4adf71d44014bed7e37d07af0", "lang": "Agda", "max_forks_count": 24, "max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z", "max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "L-TChen/agda-prelude", "max_forks_repo_path": "src/Prelude/Monad.agda", "max_issues_count": 59, "max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z", "max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "L-TChen/agda-prelude", "max_issues_repo_path": "src/Prelude/Monad.agda", "max_line_length": 70, "max_stars_count": 111, "max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "L-TChen/agda-prelude", "max_stars_repo_path": "src/Prelude/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z", "num_tokens": 388, "size": 990 }
{-# OPTIONS --without-K #-} open import Type open import Type.Identities open import Level.NP open import Explore.Core open import Explore.Properties open import Explore.Explorable open import Data.Zero open import Function.NP open import Function.Extensionality open import Data.Product open import Relation.Binary.PropositionalEquality.NP using (_≡_; refl; _∙_; !_) open import HoTT open Equivalences import Explore.Monad open import Explore.Isomorphism module Explore.Zero where module _ {ℓ} where 𝟘ᵉ : Explore ℓ 𝟘 𝟘ᵉ = empty-explore {- or 𝟘ᵉ ε _ _ = ε -} 𝟘ⁱ : ∀ {p} → ExploreInd p 𝟘ᵉ 𝟘ⁱ = empty-explore-ind {- or 𝟘ⁱ _ Pε _ _ = Pε -} module _ {ℓ₁ ℓ₂ ℓᵣ} {R : 𝟘 → 𝟘 → ★₀} where ⟦𝟘ᵉ⟧ : ⟦Explore⟧ {ℓ₁} {ℓ₂} ℓᵣ R 𝟘ᵉ 𝟘ᵉ ⟦𝟘ᵉ⟧ _ εᵣ _ _ = εᵣ module 𝟘ⁱ = FromExploreInd 𝟘ⁱ open 𝟘ⁱ public using () renaming (sum to 𝟘ˢ ;product to 𝟘ᵖ ;reify to 𝟘ʳ ;unfocus to 𝟘ᵘ ) module _ {ℓ} where 𝟘ˡ : Lookup {ℓ} 𝟘ᵉ 𝟘ˡ _ () 𝟘ᶠ : Focus {ℓ} 𝟘ᵉ 𝟘ᶠ ((), _) module _ {{_ : UA}} where Σᵉ𝟘-ok : Adequate-Σ {ℓ} (Σᵉ 𝟘ᵉ) Σᵉ𝟘-ok _ = ! Σ𝟘-lift∘fst module _ {{_ : UA}}{{_ : FunExt}} where Πᵉ𝟘-ok : Adequate-Π {ℓ} (Πᵉ 𝟘ᵉ) Πᵉ𝟘-ok _ = ! Π𝟘-uniq _ open Adequacy _≡_ module _ {{_ : UA}} where 𝟘ˢ-ok : Adequate-sum 𝟘ˢ 𝟘ˢ-ok _ = Fin0≡𝟘 ∙ ! Σ𝟘-fst adequate-sum𝟘 = 𝟘ˢ-ok module _ {{_ : UA}}{{_ : FunExt}} where 𝟘ᵖ-ok : Adequate-product 𝟘ᵖ 𝟘ᵖ-ok _ = Fin1≡𝟙 ∙ ! (Π𝟘-uniq₀ _) adequate-product𝟘 = 𝟘ᵖ-ok explore𝟘 = 𝟘ᵉ explore𝟘-ind = 𝟘ⁱ lookup𝟘 = 𝟘ˡ reify𝟘 = 𝟘ʳ focus𝟘 = 𝟘ᶠ unfocus𝟘 = 𝟘ᵘ sum𝟘 = 𝟘ˢ product𝟘 = 𝟘ᵖ Lift𝟘ᵉ : ∀ {m} → Explore m (Lift 𝟘) Lift𝟘ᵉ = explore-iso (≃-sym Lift≃id) 𝟘ᵉ ΣᵉLift𝟘-ok : ∀ {{_ : UA}}{{_ : FunExt}}{m} → Adequate-Σ {m} (Σᵉ Lift𝟘ᵉ) ΣᵉLift𝟘-ok = Σ-iso-ok (≃-sym Lift≃id) {Aᵉ = 𝟘ᵉ} Σᵉ𝟘-ok -- -}
{ "alphanum_fraction": 0.5731895223, "avg_line_length": 20.935483871, "ext": "agda", "hexsha": "1fb9eba379e7e401139a13fa2492001344590bc3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "crypto-agda/explore", "max_forks_repo_path": "lib/Explore/Zero.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_issues_repo_issues_event_max_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-03-16T14:24:04.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "crypto-agda/explore", "max_issues_repo_path": "lib/Explore/Zero.agda", "max_line_length": 79, "max_stars_count": 2, "max_stars_repo_head_hexsha": "16bc8333503ff9c00d47d56f4ec6113b9269a43e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "crypto-agda/explore", "max_stars_repo_path": "lib/Explore/Zero.agda", "max_stars_repo_stars_event_max_datetime": "2017-06-28T19:19:29.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-05T09:25:32.000Z", "num_tokens": 1056, "size": 1947 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Conat Literals ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe --sized-types #-} module Codata.Cofin.Literals where open import Data.Nat open import Agda.Builtin.FromNat open import Codata.Conat open import Codata.Conat.Properties open import Codata.Cofin open import Relation.Nullary.Decidable number : ∀ n → Number (Cofin n) number n = record { Constraint = λ k → True (suc k ℕ≤? n) ; fromNat = λ n {{p}} → fromℕ< (toWitness p) }
{ "alphanum_fraction": 0.5327868852, "avg_line_length": 25.4166666667, "ext": "agda", "hexsha": "ea145c0559ab435f71bd93038ae968e81ec7c52a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Codata/Cofin/Literals.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Codata/Cofin/Literals.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Codata/Cofin/Literals.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 144, "size": 610 }
open import Data.Product open import Relation.Binary.PropositionalEquality hiding ([_] ; Extensionality) open import Relation.Nullary open import Relation.Nullary.Negation open import EffectAnnotations module Types where -- BASE AND GROUND TYPES postulate BType : Set -- set of base types postulate dec-bty : (B B' : BType) → Dec (B ≡ B') GType = BType -- VALUE AND COMPUTATION TYPES mutual data VType : Set where `` : GType → VType _⇒_ : VType → CType → VType ⟨_⟩ : VType → VType data CType : Set where _!_ : VType → O × I → CType infix 30 _⇒_ infix 30 _!_ -- PROCESS TYPES data PTypeShape : Set where _!_ : VType → I → PTypeShape _∥_ : PTypeShape → PTypeShape → PTypeShape data PType : O → Set where _‼_,_ : (X : VType) → (o : O) → (i : I) → --------------- PType o _∥_ : {o o' : O} → (PP : PType o) → (QQ : PType o') → --------------------------- PType (o ∪ₒ o') -- ACTION OF INTERRUPTS ON PROCESS TYPES _↓ₚₚ_ : (op : Σₛ) → {o : O} → PType o → Σ[ o' ∈ O ] PType o' op ↓ₚₚ (X ‼ o , i) with op ↓ₑ (o , i) ... | (o' , i') = o' , (X ‼ o' , i') op ↓ₚₚ (PP ∥ QQ) with op ↓ₚₚ PP | op ↓ₚₚ QQ ... | (o'' , PP') | (o''' , QQ') = (o'' ∪ₒ o''') , (PP' ∥ QQ') _↓ₚ_ : (op : Σₛ) → {o : O} → (PP : PType o) → PType (proj₁ (op ↓ₚₚ PP)) op ↓ₚ PP = proj₂ (op ↓ₚₚ PP) -- ACTION OF INTERRUPTS ON PROCESS TYPES PRESERVES SIGNAL ANNOTATIONS {- LEMMA 4.1 -} ↓ₚₚ-⊑ₒ : {op : Σₛ} {o : O} → (PP : PType o) → ---------------------- o ⊑ₒ proj₁ (op ↓ₚₚ PP) ↓ₚₚ-⊑ₒ (X ‼ o , i) = ↓ₑ-⊑ₒ ↓ₚₚ-⊑ₒ (PP ∥ QQ) = ∪ₒ-fun (↓ₚₚ-⊑ₒ PP) (↓ₚₚ-⊑ₒ QQ)
{ "alphanum_fraction": 0.4970657277, "avg_line_length": 19.1460674157, "ext": "agda", "hexsha": "d5a572f03b40ab6b451351a905c2fd2ecba60fcb", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "danelahman/aeff-agda", "max_forks_repo_path": "Types.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "danelahman/aeff-agda", "max_issues_repo_path": "Types.agda", "max_line_length": 79, "max_stars_count": 4, "max_stars_repo_head_hexsha": "71ebed9f90a3eb37ae6cd209457bae23a4d122d1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "danelahman/aeff-agda", "max_stars_repo_path": "Types.agda", "max_stars_repo_stars_event_max_datetime": "2021-03-22T22:48:48.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-17T00:15:00.000Z", "num_tokens": 715, "size": 1704 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category module Categories.Diagram.Coequalizer {o ℓ e} (C : Category o ℓ e) where open Category C open HomReasoning open import Level private variable A B : Obj h i : A ⇒ B record Coequalizer (f g : A ⇒ B) : Set (o ⊔ ℓ ⊔ e) where field {obj} : Obj arr : B ⇒ obj equality : arr ∘ f ≈ arr ∘ g coequalize : h ∘ f ≈ h ∘ g → obj ⇒ cod h universal : ∀ {eq : h ∘ f ≈ h ∘ g} → h ≈ coequalize eq ∘ arr unique : ∀ {eq : h ∘ f ≈ h ∘ g} → h ≈ i ∘ arr → i ≈ coequalize eq
{ "alphanum_fraction": 0.5571177504, "avg_line_length": 21.8846153846, "ext": "agda", "hexsha": "c8ed381a9b4e155bdbfc11ae4b10a61bb7eea946", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Diagram/Coequalizer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Diagram/Coequalizer.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Diagram/Coequalizer.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 217, "size": 569 }
-- {-# OPTIONS --without-K #-} module F2a where open import Agda.Prim open import Data.Unit open import Data.Nat hiding (_⊔_) open import Data.Sum open import Data.Product open import Function open import Relation.Binary.PropositionalEquality open import Paths open import Evaluator ------------------------------------------------------------------------------ -- -- General structure and idea -- -- We have pointed types (Paths.agda) -- We have paths between pointed types (Paths.agda) -- We have functions between pointed types (that use ≡ to make sure the -- basepoint is respected) (F2a.agda) -- Then we use univalence to connect these two independently developed -- notions (F2a.agda) -- Because our paths are richer than just refl and our functions are -- more restricted than arbitrary functions, and in fact because our -- path constructors are sound and complete for the class of functions -- we consider, we hope to _prove_ univalence -- ------------------------------------------------------------------------------ ------------------------------------------------------------------------------ -- Equivalences between raw functions and types -- This is generalized below to pointed types -- Two functions are ∼ is they map each argument to related results _∼_ : ∀ {ℓ ℓ'} → {A : Set ℓ} {P : A → Set ℓ'} → (f g : (x : A) → P x) → Set (ℓ ⊔ ℓ') _∼_ {ℓ} {ℓ'} {A} {P} f g = (x : A) → f x ≡ g x -- quasi-inverses record qinv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (ℓ ⊔ ℓ') where constructor mkqinv field g : B → A α : (f ∘ g) ∼ id β : (g ∘ f) ∼ id idqinv : ∀ {ℓ} → {A : Set ℓ} → qinv {ℓ} {ℓ} {A} {A} id idqinv = record { g = id ; α = λ b → refl ; β = λ a → refl } -- equivalences record isequiv {ℓ ℓ'} {A : Set ℓ} {B : Set ℓ'} (f : A → B) : Set (ℓ ⊔ ℓ') where constructor mkisequiv field g : B → A α : (f ∘ g) ∼ id h : B → A β : (h ∘ f) ∼ id equiv₁ : ∀ {ℓ ℓ'} → {A : Set ℓ} {B : Set ℓ'} {f : A → B} → qinv f → isequiv f equiv₁ (mkqinv qg qα qβ) = mkisequiv qg qα qg qβ _≃_ : ∀ {ℓ ℓ'} (A : Set ℓ) (B : Set ℓ') → Set (ℓ ⊔ ℓ') A ≃ B = Σ (A → B) isequiv idequiv : ∀ {ℓ} {A : Set ℓ} → A ≃ A idequiv = (id , equiv₁ idqinv) -- Function extensionality {-- happly : ∀ {ℓ} {A B : Set ℓ} {f g : A → B} → (Path f g) → (f ∼ g) happly {ℓ} {A} {B} {f} {g} p = (pathInd (λ _ → f ∼ g) -- f ∼ g (λ {AA} a x → {!!}) {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} (λ a b x → {!cong (evalB p) (eval-resp-• (p))!}) {!!} {!!} {!!} {!!} {!!} {!!} (λ a x → {!!}) (λ p₁ q x x₁ x₂ → x x₂) (λ p₁ q x x₁ x₂ → x x₂) (λ p₁ q x x₁ x₂ → x x₂) (λ p₁ q x x₁ x₂ → x₁ x₂)) {A → B} {A → B} {f} {g} p postulate funextP : {A B : Set} {f g : A → B} → isequiv {A = Path f g} {B = f ∼ g} happly funext : {A B : Set} {f g : A → B} → (f ∼ g) → (Path f g) funext = isequiv.g funextP -- Universes; univalence idtoeqv : {A B : Set} → (Path A B) → (A ≃ B) idtoeqv {A} {B} p = {!!} {-- (pathInd (λ {S₁} {S₂} {A} {B} p → {!!}) {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!} {!!}) {Set} {Set} {A} {B} p --} postulate univalence : {ℓ : Level} {A B : Set ℓ} → (Path A B) ≃ (A ≃ B) --} path2fun : {ℓ : Level} {A B : Set ℓ} → (Path A B) → (A ≃ B) path2fun p = ( {!!} , {!!}) ------------------------------------------------------------------------------ -- Functions and equivalences between pointed types -- Univalence as a postulate for now but hopefully we can actually prove it -- since the pi-combinators are sound and complete for isomorphisms between -- finite types --postulate -- univalence• : {ℓ : Level} {A• B• : Set• {ℓ}} → (Path A• B•) ≃• (A• ≃• B•) {-- record isequiv• {ℓ} {A B : Set} {A• B• : Set• {ℓ}} (f• : A• →• B•) : Set (lsuc ℓ) where constructor mkisequiv• field equi : isequiv (fun f•) path' : Path (• A•) (• B•) _≈•_ : ∀ {ℓ} {A B : Set} (A• B• : Set• {ℓ}) → Set (lsuc ℓ) _≈•_ {_} {A} {B} A• B• = Σ (A• →• B•) (isequiv• {_} {A} {B}) --} ------------------------------------------------------------------------------ -- Univalence for pointed types eval• : {ℓ : Level} {A• B• : Set• {ℓ}} → A• ⇛ B• → (A• →• B•) eval• c = record { fun = eval c ; resp• = eval-resp-• c } evalB• : {ℓ : Level} {A• B• : Set• {ℓ}} → A• ⇛ B• → (B• →• A•) evalB• c = record { fun = evalB c ; resp• = evalB-resp-• c } -- This is at the wrong level... We need to define equivalences ≃ between -- pointed sets too... {-- path2iso : {ℓ : Level} {A• B• : Set• {ℓ}} → A• ⇛ B• → ∣ A• ∣ ≃ ∣ B• ∣ path2iso {ℓ} {a} {b} p = (eval p , mkisequiv (evalB p) (λ x → {!!}) (evalB p) (λ x → {!eval∘evalB p!})) --} ------------------------------------------------------------------------------ --}
{ "alphanum_fraction": 0.4552162328, "avg_line_length": 28.8698224852, "ext": "agda", "hexsha": "343f4442654fe18a6fced8c3ee6d39e91c812aba", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z", "max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z", "max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_forks_repo_licenses": [ "BSD-2-Clause" ], "max_forks_repo_name": "JacquesCarette/pi-dual", "max_forks_repo_path": "F2a.agda", "max_issues_count": 4, "max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z", "max_issues_repo_licenses": [ "BSD-2-Clause" ], "max_issues_repo_name": "JacquesCarette/pi-dual", "max_issues_repo_path": "F2a.agda", "max_line_length": 78, "max_stars_count": 14, "max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1", "max_stars_repo_licenses": [ "BSD-2-Clause" ], "max_stars_repo_name": "JacquesCarette/pi-dual", "max_stars_repo_path": "F2a.agda", "max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z", "max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z", "num_tokens": 1837, "size": 4879 }
postulate A : Set P : A → Set a : A T : Set → Set proj : (X : Set) → T X → X t : T (∀ {x} → P x) -- Checking target types first would prematurely solve the underscore -- with `P a` instead of the correct `∀ {x} → P x` fail : P a fail = proj _ t
{ "alphanum_fraction": 0.545112782, "avg_line_length": 17.7333333333, "ext": "agda", "hexsha": "7b67601c4dbd5fd827fc6c413100fd6f3f149d84", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue1431.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue1431.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue1431.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 99, "size": 266 }
------------------------------------------------------------------------ -- The Agda standard library -- -- First generalizes the idea that an element is the first in a list to -- satisfy a predicate. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Relation.Unary.First {a} {A : Set a} where open import Level using (_⊔_) open import Data.Empty open import Data.Fin as Fin using (Fin; zero; suc) open import Data.List.Base as List using (List; []; _∷_) open import Data.List.Relation.Unary.All as All using (All; []; _∷_) open import Data.List.Relation.Unary.Any as Any using (Any; here; there) open import Data.Product as Prod using (∃; -,_; _,_) open import Data.Sum as Sum using (_⊎_; inj₁; inj₂) open import Function open import Relation.Unary open import Relation.Nullary ----------------------------------------------------------------------- -- Basic type. module _ {p q} (P : Pred A p) (Q : Pred A q) where data First : Pred (List A) (a ⊔ p ⊔ q) where [_] : ∀ {x xs} → Q x → First (x ∷ xs) _∷_ : ∀ {x xs} → P x → First xs → First (x ∷ xs) data FirstView : Pred (List A) (a ⊔ p ⊔ q) where _++_∷_ : ∀ {xs y} → All P xs → Q y → ∀ ys → FirstView (xs List.++ y ∷ ys) ------------------------------------------------------------------------ -- map module _ {p q r s} {P : Pred A p} {Q : Pred A q} {R : Pred A r} {S : Pred A s} where map : P ⊆ R → Q ⊆ S → First P Q ⊆ First R S map p⇒r q⇒r [ qx ] = [ q⇒r qx ] map p⇒r q⇒r (px ∷ pqxs) = p⇒r px ∷ map p⇒r q⇒r pqxs module _ {p q r} {P : Pred A p} {Q : Pred A q} {R : Pred A r} where map₁ : P ⊆ R → First P Q ⊆ First R Q map₁ p⇒r = map p⇒r id map₂ : Q ⊆ R → First P Q ⊆ First P R map₂ = map id refine : P ⊆ Q ∪ R → First P Q ⊆ First R Q refine f [ qx ] = [ qx ] refine f (px ∷ pqxs) with f px ... | inj₁ qx = [ qx ] ... | inj₂ rx = rx ∷ refine f pqxs module _ {p q} {P : Pred A p} {Q : Pred A q} where ------------------------------------------------------------------------ -- Operations empty : ¬ First P Q [] empty () tail : ∀ {x xs} → ¬ Q x → First P Q (x ∷ xs) → First P Q xs tail ¬qx [ qx ] = ⊥-elim (¬qx qx) tail ¬qx (px ∷ pqxs) = pqxs index : First P Q ⊆ (Fin ∘′ List.length) index [ qx ] = zero index (_ ∷ pqxs) = suc (index pqxs) index-satisfied : ∀ {xs} (pqxs : First P Q xs) → Q (List.lookup xs (index pqxs)) index-satisfied [ qx ] = qx index-satisfied (_ ∷ pqxs) = index-satisfied pqxs satisfied : ∀ {xs} → First P Q xs → ∃ Q satisfied pqxs = -, index-satisfied pqxs satisfiable : Satisfiable Q → Satisfiable (First P Q) satisfiable (x , qx) = List.[ x ] , [ qx ] ------------------------------------------------------------------------ -- Decidability results first : Π[ P ∪ Q ] → Π[ First P Q ∪ All P ] first p⊎q [] = inj₂ [] first p⊎q (x ∷ xs) with p⊎q x ... | inj₁ px = Sum.map (px ∷_) (px ∷_) (first p⊎q xs) ... | inj₂ qx = inj₁ [ qx ] ------------------------------------------------------------------------ -- Relationship with Any module _ {q} {Q : Pred A q} where fromAny : Any Q ⊆ First U Q fromAny (here qx) = [ qx ] fromAny (there any) = _ ∷ fromAny any toAny : ∀ {p} {P : Pred A p} → First P Q ⊆ Any Q toAny [ qx ] = here qx toAny (_ ∷ pqxs) = there (toAny pqxs)
{ "alphanum_fraction": 0.4809115123, "avg_line_length": 31.8773584906, "ext": "agda", "hexsha": "e680bcc48708f3cf1f30493f8046a71829b225b7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "omega12345/agda-mode", "max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/First.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "omega12345/agda-mode", "max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/First.agda", "max_line_length": 84, "max_stars_count": null, "max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "omega12345/agda-mode", "max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/List/Relation/Unary/First.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1113, "size": 3379 }
-- {-# OPTIONS -v tc.meta.assign:15 #-} -- Ulf, 2011-10-04 -- I still don't quite believe in irrelevant levels. In part because I just proved ⊥: module IrrelevantLevelHurkens where open import Imports.Level data _≡_ {a}{A : Set a}(x : A) : A → Set where refl : x ≡ x data Irr .(i : Level)(A : Set i) : Set where irr : Irr i A data Unit : Set where unit : Unit unirr : ∀ .i (A : Set i) → Irr i A → Unit unirr i A irr = unit ↓_ : ∀ .{i} → Set i → Set foo : ∀ .{i}{A : Set i}(x : Irr i A) → unirr i A x ≡ unirr zero (↓ A) _ ↓ A = _ foo xs = refl {- Andreas, 2011-10-04 Irrelevant Levels do not harmonize with solving type of meta = .{.i : Level} (A : Set .i) → Set solving _39 := λ {.i} A → A term _38 xs := xs passed occursCheck type of meta = ..{i : Level} {A : Set i} (x : Irr .(i) A) → Irr .(zero) (↓ A) solving _38 := λ {i} {A} x → x The solutions x and A for the two holes do not type check, if entered manually. The solver would need to re-type-check to make sure solutions are correct. For now, just do not supply --experimental-irrelevance flag. -} ⊥′ : Set ⊥′ = ↓ ((A : Set) → A) ¬_ : Set → Set ¬ A = A → ⊥′ P : Set → Set P A = ↓ (A → Set) U : Set U = ↓ ((X : Set) → (P (P X) → X) → P (P X)) τ : P (P U) → U τ t = λ X f p → t λ x → p (f (x X f)) σ : U → P (P U) σ s pu = s U (λ t → τ t) pu Δ : P U Δ = λ y → ¬ ((p : P U) → σ y p → p (τ (σ y))) Ω : U Ω X t px = τ (λ p → (x : U) → σ x p → p x) X t px D : Set D = (p : P U) → σ Ω p → p (τ (σ Ω)) lem₁ : (p : P U) → ((x : U) → σ x p → p x) → p Ω lem₁ p H1 = H1 Ω λ x → H1 (τ (σ x)) lem₂ : ¬ D lem₂ d A = lem₁ Δ (λ x H2 H3 → H3 Δ H2 λ p → H3 λ y → p (τ (σ y))) d A lem₃ : D lem₃ p = lem₁ λ y → p (τ (σ y)) loop : ⊥′ loop = λ A → lem₂ lem₃ A data ⊥ : Set where false : ⊥ false = loop ⊥
{ "alphanum_fraction": 0.5257270694, "avg_line_length": 21.2857142857, "ext": "agda", "hexsha": "f4e24f492522ee8c73c0a736699b99e10df39ff0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "np/agda-git-experiment", "max_forks_repo_path": "test/fail/IrrelevantLevelHurkens.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "np/agda-git-experiment", "max_issues_repo_path": "test/fail/IrrelevantLevelHurkens.agda", "max_line_length": 85, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/agda-kanso", "max_stars_repo_path": "test/fail/IrrelevantLevelHurkens.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 760, "size": 1788 }
------------------------------------------------------------------------------ -- Streams properties ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOTC.Data.Stream.PropertiesATP where open import FOTC.Base open import FOTC.Base.List open import FOTC.Data.Conat open import FOTC.Data.Conat.Equality.Type open import FOTC.Data.List open import FOTC.Data.Stream ------------------------------------------------------------------------------ -- Because a greatest post-fixed point is a fixed-point, then the -- Stream predicate is also a pre-fixed point of the functional -- StreamF, i.e. -- -- StreamF Stream ≤ Stream (see FOTC.Data.Stream.Type). -- See Issue https://github.com/asr/apia/issues/81 . Stream-inA : D → Set Stream-inA xs = ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs' {-# ATP definition Stream-inA #-} Stream-in : ∀ {xs} → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream xs' → Stream xs Stream-in h = Stream-coind Stream-inA h' h where postulate h' : ∀ {xs} → Stream-inA xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ Stream-inA xs' {-# ATP prove h' #-} -- See Issue https://github.com/asr/apia/issues/81 . zeros-StreamA : D → Set zeros-StreamA xs = xs ≡ zeros {-# ATP definition zeros-StreamA #-} zeros-Stream : Stream zeros zeros-Stream = Stream-coind zeros-StreamA h refl where postulate h : ∀ {xs} → zeros-StreamA xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ zeros-StreamA xs' {-# ATP prove h #-} -- See Issue https://github.com/asr/apia/issues/81 . ones-StreamA : D → Set ones-StreamA xs = xs ≡ ones {-# ATP definition ones-StreamA #-} ones-Stream : Stream ones ones-Stream = Stream-coind ones-StreamA h refl where postulate h : ∀ {xs} → ones-StreamA xs → ∃[ x' ] ∃[ xs' ] xs ≡ x' ∷ xs' ∧ ones-StreamA xs' {-# ATP prove h #-} postulate ∷-Stream : ∀ {x xs} → Stream (x ∷ xs) → Stream xs {-# ATP prove ∷-Stream #-} -- Adapted from (Sander 1992, p. 59). -- See Issue https://github.com/asr/apia/issues/81 . streamLengthR : D → D → Set streamLengthR m n = ∃[ xs ] Stream xs ∧ m ≡ length xs ∧ n ≡ ∞ {-# ATP definition streamLengthR #-} streamLength : ∀ {xs} → Stream xs → length xs ≈ ∞ streamLength {xs} Sxs = ≈-coind streamLengthR h₁ h₂ where postulate h₁ : ∀ {m n} → streamLengthR m n → m ≡ zero ∧ n ≡ zero ∨ (∃[ m' ] ∃[ n' ] m ≡ succ₁ m' ∧ n ≡ succ₁ n' ∧ streamLengthR m' n') {-# ATP prove h₁ #-} postulate h₂ : streamLengthR (length xs) ∞ {-# ATP prove h₂ #-} ------------------------------------------------------------------------------ -- References -- -- Sander, Herbert P. (1992). A Logic of Functional Programs with an -- Application to Concurrency. PhD thesis. Department of Computer -- Sciences: Chalmers University of Technology and University of -- Gothenburg.
{ "alphanum_fraction": 0.5447909754, "avg_line_length": 32.4086021505, "ext": "agda", "hexsha": "4631183a85938487769fe36747458b61dc951c0c", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOTC/Data/Stream/PropertiesATP.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOTC/Data/Stream/PropertiesATP.agda", "max_line_length": 80, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOTC/Data/Stream/PropertiesATP.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 873, "size": 3014 }
open import Agda.Primitive public using (lzero) {-# BUILTIN LEVELZERO lzero #-}
{ "alphanum_fraction": 0.7317073171, "avg_line_length": 16.4, "ext": "agda", "hexsha": "5cbd0ec9d8f88bf2e79a4683889c1ccb09c54e8a", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue3483.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue3483.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue3483.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 20, "size": 82 }
{-# OPTIONS --without-K --safe #-} open import Relation.Binary module Algorithms.List.Sort.Common {c l₁ l₂} (DTO : DecTotalOrder c l₁ l₂) where -- agda-stdlib open import Data.List import Data.List.Relation.Binary.Equality.Setoid as ListSetoidEquality open import Data.List.Relation.Unary.AllPairs open import Data.List.Relation.Unary.Linked import Data.List.Relation.Unary.Linked.Properties as Linkedₚ -- agda-misc open import Experiment.ListRelationProperties using (Linked-resp-≋) open DecTotalOrder DTO open ListSetoidEquality Eq.setoid Sorted : List Carrier → Set _ Sorted = Linked _≤_ toAllPairs : ∀ {xs} → Sorted xs → AllPairs _≤_ xs toAllPairs = Linkedₚ.Linked⇒AllPairs trans Sorted-resp-≋ : ∀ {xs ys} → xs ≋ ys → Sorted xs → Sorted ys Sorted-resp-≋ = Linked-resp-≋ Eq.setoid ≤-resp-≈
{ "alphanum_fraction": 0.7527950311, "avg_line_length": 26.8333333333, "ext": "agda", "hexsha": "d84a596ffc5356d84ab13f6059d13dc91c3622b6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Algorithms/List/Sort/Common.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Algorithms/List/Sort/Common.agda", "max_line_length": 70, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Algorithms/List/Sort/Common.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 236, "size": 805 }
------------------------------------------------------------------------------ -- First-order logic base ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOL.Base where infix 2 ⋀ infixr 1 _⇒_ infixr 0 _⇔_ ------------------------------------------------------------------------------ -- First-order logic (without equality). open import Common.FOL.FOL public ------------------------------------------------------------------------------ -- We added extra symbols for the implication, the biconditional and -- the universal quantification (see module Common.FOL.FOL). -- The implication data type. data _⇒_ (A B : Set) : Set where fun : (A → B) → A ⇒ B app : {A B : Set} → A ⇒ B → A → B app (fun f) a = f a -- Biconditional. _⇔_ : Set → Set → Set A ⇔ B = (A ⇒ B) ∧ (B ⇒ A) -- The universal quantifier type on D. data ⋀ (A : D → Set) : Set where dfun : ((t : D) → A t) → ⋀ A -- Sugar syntax for the universal quantifier. syntax ⋀ (λ x → e) = ⋀[ x ] e dapp : {A : D → Set}(t : D) → ⋀ A → A t dapp t (dfun f) = f t ------------------------------------------------------------------------------ -- In first-order logic it is assumed that the universe of discourse -- is non-empty. postulate D≢∅ : D ------------------------------------------------------------------------------ -- The ATPs work in classical logic, therefore we add the principle of -- the exclude middle for prove some non-intuitionistic theorems. Note -- that we do not need to add the postulate as an ATP axiom. -- The principle of the excluded middle. postulate pem : ∀ {A} → A ∨ ¬ A
{ "alphanum_fraction": 0.4530635188, "avg_line_length": 31.2105263158, "ext": "agda", "hexsha": "a60291d58ebf8ad0156e12de7733ed77d3f4f0cc", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/FOL/Base.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/FOL/Base.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/FOL/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 436, "size": 1779 }
module Thesis.RelateToValidity where open import Relation.Binary.PropositionalEquality public hiding ([_]) open import Thesis.Changes open import Thesis.Lang module _ {A : Set} {{CA : ChangeStructure A}} where fromto→valid fromto→valid-2 : ∀ da (a1 a2 : A) (daa : ch da from a1 to a2) → valid a1 da fromto→valid da a1 a2 daa rewrite fromto→⊕ da a1 _ daa = daa fromto→valid-2 da a1 a2 daa = subst (ch da from a1 to_) (sym (fromto→⊕ da a1 a2 daa)) daa -- The "inverse" is so trivial to not be worth calling, hence commented out: -- valid→fromto : ∀ da (a : A) → (valid a da) → ch da from a to (a ⊕ da) -- valid→fromto _ _ daa = daa module _ {A : Set} {B : Set} {{CA : ChangeStructure A}} {{CB : ChangeStructure B}} where WellDefinedFunChangePoint : ∀ (f : A → B) → (df : Ch (A → B)) → ∀ a da → Set WellDefinedFunChangePoint f df a da = (f ⊕ df) (a ⊕ da) ≡ f a ⊕ df a da WellDefinedFunChangeFromTo′ : ∀ (f1 : A → B) → (df : Ch (A → B)) → Set WellDefinedFunChangeFromTo′ f1 df = ∀ da a → valid a da → WellDefinedFunChangePoint f1 df a da open ≡-Reasoning open import Function fromto-incrementalization : ∀ {f1 f2 : A → B} {df} → ch df from f1 to f2 → ∀ {da a} → valid a da → f1 a ⊕ df a da ≡ f2 (a ⊕ da) fromto-incrementalization {f1 = f1} {f2} {df} dff {da} {a} daa = fromto→⊕ _ _ _ (dff da a _ daa) fromto→valid-fun : ∀ {f1 f2 : A → B} {df : Ch (A → B)} → ch df from f1 to f2 → ∀ {a da} (daa : valid a da) → valid (f1 a) (df a da) fromto→valid-fun {f1} {f2} {df} dff {a} {da} daa = fromto→valid (df a da) (f1 a) _ (dff da a _ daa) fromto→WellDefined′ : ∀ {f1 f2 df} → ch df from f1 to f2 → WellDefinedFunChangeFromTo′ f1 df fromto→WellDefined′ {f1 = f1} {f2} {df} dff da a daa = begin (f1 ⊕ df) (a ⊕ da) ≡⟨ cong (_$ (a ⊕ da)) (fromto→⊕ df f1 f2 dff)⟩ f2 (a ⊕ da) ≡⟨ sym (fromto-incrementalization dff daa) ⟩ f1 a ⊕ df a da ∎ -- Δ f is similar to function changes in PLDI'14, but PLDI'14 function changes -- need not be defined on invalid changes; instead, if (df, dff) : Δ f, then -- df is a function change that is also defined on invalid changes. -- -- Next we define fΔ. It is closer to the PLDI'14 definition of function -- changes; but it is not defined recursively, so it still produces new-style -- function changes. -- -- Hence this is sort of bigger than Δ f, though not really. fΔ : (A → B) → Set fΔ f = (a : A) → Δ₁ a → Δ₁ (f a) -- We can indeed map Δ f into fΔ f, via valid-functions-map-Δ. If this mapping -- were an injection, we could say that fΔ f is bigger than Δ f. But we'd need -- first to quotient Δ f to turn valid-functions-map-Δ into an injection: -- -- 1. We need to quotient Δ f by extensional equivalence of functions. -- Luckily, we can just postulate it. -- -- 2. We need to quotient Δ f by identifying functions that only differ by -- behavior on invalid changes; such functions can't be distinguished after -- being injected into fΔ f. valid-functions-map-Δ : ∀ (f : A → B) (df : Δ₁ f) → fΔ f valid-functions-map-Δ f (df , dff) a (da , daa) = df a da , valid-res where valid-res : ch df a da from f a to (f a ⊕ df a da) valid-res rewrite sym (fromto→WellDefined′ dff da a daa) = dff da a (a ⊕ da) daa -- Two alternative proofs fromto-functions-map-Δ-1 fromto-functions-map-Δ-2 : ∀ (f1 f2 : A → B) (df : Ch (A → B)) → ch df from f1 to f2 → fΔ f1 fromto-functions-map-Δ-1 f1 f2 df dff a (da , daa) = valid-functions-map-Δ f1 (df , fromto→valid df f1 f2 dff) a (da , daa) fromto-functions-map-Δ-2 f1 f2 df dff a (da , daa) = df a da , fromto→valid-fun dff daa open import Thesis.LangChanges fromto→WellDefined′Lang : ∀ {σ τ f1 f2 df} → [ σ ⇒ τ ]τ df from f1 to f2 → WellDefinedFunChangeFromTo′ f1 df fromto→WellDefined′Lang {f1 = f1} {f2} {df} dff da a daa = fromto→WellDefined′ dff da a daa
{ "alphanum_fraction": 0.6324961558, "avg_line_length": 44.3409090909, "ext": "agda", "hexsha": "cdbf54ff6b05b3fef316bf7adfadb5d06ceb6ad3", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Thesis/RelateToValidity.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Thesis/RelateToValidity.agda", "max_line_length": 133, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Thesis/RelateToValidity.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 1462, "size": 3902 }
module Issue553a where data D : Set where d₁ d₂ : D data E : Set where module M (A : Set) where data B : Set where b : D → B T : B → Set T (b d₁) = E T (b d₂) = E open M E g : (d : D) → T (b d) → D g d t with d₁ g d t | d′ = d′ -- Unsolved meta-variable, no constraints.
{ "alphanum_fraction": 0.5392491468, "avg_line_length": 13.3181818182, "ext": "agda", "hexsha": "5d1d1184631adafe86be937b42b929e1a8d83d6f", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue553a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue553a.agda", "max_line_length": 59, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue553a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 122, "size": 293 }
module Data.Tuple.Raise where open import Data.Tuple.Raiseᵣ public
{ "alphanum_fraction": 0.8235294118, "avg_line_length": 17, "ext": "agda", "hexsha": "efdee1d997ce32edb0c850ed0f733ceb1ed298c4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Data/Tuple/Raise.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Data/Tuple/Raise.agda", "max_line_length": 36, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Data/Tuple/Raise.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 18, "size": 68 }
------------------------------------------------------------------------ -- Some counterexamples ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} module Bisimilarity.Up-to.Counterexamples where open import Equality.Propositional open import Logical-equivalence using (_⇔_) open import Prelude open import Prelude.Size open import Bijection equality-with-J using (_↔_) open import Equality.Decision-procedures equality-with-J open import Fin equality-with-J open import Function-universe equality-with-J hiding (id; _∘_) open import Surjection equality-with-J using (_↠_) open import Indexed-container using (Container; ν; ⟦_⟧; force) open import Labelled-transition-system import Up-to import Bisimilarity import Bisimilarity.Classical open import Bisimilarity.Comparison import Bisimilarity.Equational-reasoning-instances import Bisimilarity.Step import Bisimilarity.Up-to open import Equational-reasoning open import Relation private -- A combination of some parametrised modules. module Combination {ℓ} (lts : LTS ℓ) where open Bisimilarity lts public open Bisimilarity.Classical lts public using (Progression) open Bisimilarity.Up-to lts public open LTS lts public hiding (_[_]⟶_) private module S = Bisimilarity.Step lts (LTS._[_]⟶_ lts) (LTS._[_]⟶_ lts) open S public using (Step; Step↔StepC) hiding (module Step) module Step where open S public using (⟨_,_⟩) open S.Step public -- There is a size-preserving relation transformer that is neither -- monotone nor extensive. ∃size-preserving׬[monotone⊎extensive] : ∃ λ (lts : LTS lzero) → let open Combination lts in ∃ λ (F : Trans₂ (# 0) Proc) → Size-preserving F × ¬ (Monotone F ⊎ Extensive F) ∃size-preserving׬[monotone⊎extensive] = one-loop , F , F-pres , [ ¬-F-mono , ¬-F-extensive ] where open Combination one-loop F : Trans₂ (# 0) Proc F R = ¬_ ∘ R ¬-F-mono : ¬ Monotone F ¬-F-mono = Monotone F ↝⟨ (λ mono → mono {_}) ⟩ ((λ _ → ⊥) ⊆ (λ _ → ↑ _ ⊤) → F (λ _ → ⊥) ⊆ F (λ _ → ↑ _ ⊤)) ↔⟨⟩ ((λ _ → ⊥) ⊆ (λ _ → ↑ _ ⊤) → (λ _ → ¬ ⊥) ⊆ (λ _ → ¬ ↑ _ ⊤)) ↝⟨ _$ _ ⟩ (λ _ → ¬ ⊥) ⊆ (λ _ → ¬ ↑ _ ⊤) ↝⟨ (λ hyp → hyp {tt}) ⟩ (¬ ⊥ → ¬ ↑ _ ⊤) ↝⟨ _$ ⊥-elim ⟩ ¬ ↑ _ ⊤ ↝⟨ _$ _ ⟩□ ⊥ □ ¬-F-extensive : ¬ Extensive F ¬-F-extensive = Extensive F ↝⟨ (λ hyp → hyp _) ⟩ (↑ _ ⊤ → ¬ ↑ _ ⊤) ↝⟨ (_$ _) ∘ (_$ _) ⟩□ ⊥ □ total : ∀ {i x y} → [ i ] x ∼ y total = reflexive F-pres : Size-preserving F F-pres _ _ = total -- A slight strengthening of the previous result, with a somewhat more -- complicated proof: There are (at least two) size-preserving -- relation transformers that are neither monotone nor extensive. ∃-2-size-preserving׬[monotone⊎extensive] : ∃ λ (lts : LTS lzero) → let open Combination lts in ∃ λ (F : Trans₂ (# 0) Proc) → ∃ λ (G : Trans₂ (# 0) Proc) → Size-preserving F × ¬ (Monotone F ⊎ Extensive F) × Size-preserving G × ¬ (Monotone G ⊎ Extensive G) × F ≢ G ∃-2-size-preserving׬[monotone⊎extensive] = lts , F ⊤ , F ⊥ , F-pres , [ ¬-F-mono , ¬-F-extensive ] , F-pres , [ ¬-F-mono , ¬-F-extensive ] , F⊤≢F⊥ where lts : LTS lzero lts = record { Proc = Bool ; Label = ⊥ ; _[_]⟶_ = λ _ () ; is-silent = λ () } open Combination lts F : Type → Trans₂ (# 0) Bool F A R p@(true , false) = R p × A F A R p@(false , true) = R p F A R p = ¬ R p ¬-F-mono : ∀ {A} → ¬ Monotone (F A) ¬-F-mono {A} = Monotone (F A) ↝⟨ (λ mono → mono {_}) ⟩ ((λ _ → ⊥) ⊆ (λ _ → ↑ _ ⊤) → F A (λ _ → ⊥) ⊆ F A (λ _ → ↑ _ ⊤)) ↝⟨ (λ hyp {p} → hyp _ {p}) ⟩ F A (λ _ → ⊥) ⊆ F A (λ _ → ↑ _ ⊤) ↝⟨ (λ hyp → hyp {true , true}) ⟩ (¬ ⊥ → ¬ ↑ _ ⊤) ↝⟨ _$ ⊥-elim ⟩ ¬ ↑ _ ⊤ ↝⟨ _$ _ ⟩□ ⊥ □ ¬-F-extensive : ∀ {A} → ¬ Extensive (F A) ¬-F-extensive {A} = Extensive (F A) ↝⟨ (λ hyp → hyp (λ _ → ↑ _ ⊤) {true , true}) ⟩ (↑ _ ⊤ → ¬ ↑ _ ⊤) ↝⟨ (_$ _) ∘ (_$ _) ⟩□ ⊥ □ F-pres : ∀ {A} → Size-preserving (F A) F-pres R⊆∼i {true , false} = R⊆∼i ∘ proj₁ F-pres R⊆∼i {false , true} = R⊆∼i F-pres _ {true , true} = λ _ → true ■ F-pres _ {false , false} = λ _ → false ■ F⊤≢F⊥ : F ⊤ ≢ F ⊥ F⊤≢F⊥ = F ⊤ ≡ F ⊥ ↝⟨ subst (λ F → F (λ _ → ⊤) (true , false)) ⟩ (F ⊤ (λ _ → ⊤) (true , false) → F ⊥ (λ _ → ⊤) (true , false)) ↔⟨⟩ (⊤ × ⊤ → ⊤ × ⊥) ↝⟨ proj₂ ∘ (_$ _) ⟩□ ⊥ □ -- There is a container C such that there are (at least two) relation -- transformers satisfying λ F → ∀ {i} → F (ν C i) ⊆ ν C i that are -- not up-to techniques with respect to C. ∃special-case-of-size-preserving׬up-to : ∃ λ (I : Type) → ∃ λ (C : Container I I) → ∃ λ (F : Trans (# 0) I) → ∃ λ (G : Trans (# 0) I) → (∀ {i} → F (ν C i) ⊆ ν C i) × ¬ Up-to.Up-to-technique C F × (∀ {i} → G (ν C i) ⊆ ν C i) × ¬ Up-to.Up-to-technique C G × F ≢ G ∃special-case-of-size-preserving׬up-to = (Proc × Proc) , StepC , G ⊤ , G ⊥ , bisimilarity-pre-fixpoint , ¬-up-to , bisimilarity-pre-fixpoint , ¬-up-to , G⊤≢G⊥ where data Proc : Type where p q r : Proc data _⟶_ : Proc → Proc → Type where p : p ⟶ p q : q ⟶ r lts = record { Proc = Proc ; Label = ⊤ ; _[_]⟶_ = λ p _ q → p ⟶ q ; is-silent = λ _ → false } open Combination lts hiding (Proc) G : Type → Trans₂ (# 0) Proc G A R x = R (r , r) → ¬ R (p , r) → R x × A p≁r : ∀ {i} → ¬ Bisimilarity i (p , r) p≁r hyp with left-to-right hyp p ... | _ , () , _ bisimilarity-pre-fixpoint : ∀ {A i} → G A (Bisimilarity i) ⊆ Bisimilarity i bisimilarity-pre-fixpoint hyp = proj₁ (hyp reflexive p≁r) data S : Rel₂ (# 0) Proc where pq : S (p , q) S⊆StepGS : ∀ {A} → S ⊆ Step (G A S) Step.left-to-right (S⊆StepGS pq) p = r , q , λ () Step.right-to-left (S⊆StepGS pq) q = p , p , λ () p≁q : ¬ Bisimilarity ∞ (p , q) p≁q hyp with left-to-right hyp p ... | r , q , p∼r = p≁r (force p∼r) ¬-up-to : ∀ {A} → ¬ Up-to-technique (G A) ¬-up-to {A} = Up-to-technique (G A) ↝⟨ (λ up-to → up-to) ⟩ (S ⊆ ⟦ StepC ⟧ (G A S) → S ⊆ Bisimilarity ∞) ↝⟨ (λ hyp below → hyp (Step↔StepC _ ∘ below)) ⟩ (S ⊆ Step (G A S) → S ⊆ Bisimilarity ∞) ↝⟨ _$ S⊆StepGS ⟩ S ⊆ Bisimilarity ∞ ↝⟨ _$ pq ⟩ Bisimilarity ∞ (p , q) ↝⟨ p≁q ⟩□ ⊥ □ G⊤≢G⊥ : G ⊤ ≢ G ⊥ G⊤≢G⊥ = G ⊤ ≡ G ⊥ ↝⟨ subst (λ G → G (uncurry _≡_) (q , q)) ⟩ (G ⊤ (uncurry _≡_) (q , q) → G ⊥ (uncurry _≡_) (q , q)) ↔⟨⟩ ((r ≡ r → p ≢ r → q ≡ q × ⊤) → (r ≡ r → p ≢ r → q ≡ q × ⊥)) ↝⟨ _$ (λ _ _ → refl , _) ⟩ (r ≡ r → p ≢ r → q ≡ q × ⊥) ↝⟨ proj₂ ∘ (_$ λ ()) ∘ (_$ refl) ⟩□ ⊥ □ -- There is a container C such that there are (at least two) relation -- transformers satisfying λ F → ∀ {i} → F (ν C i) ⊆ ν C i that are -- not size-preserving with respect to C. ∃special-case-of-size-preserving׬size-preserving : ∃ λ (I : Type) → ∃ λ (C : Container I I) → ∃ λ (F : Trans (# 0) I) → ∃ λ (G : Trans (# 0) I) → (∀ {i} → F (ν C i) ⊆ ν C i) × ¬ Up-to.Size-preserving C F × (∀ {i} → G (ν C i) ⊆ ν C i) × ¬ Up-to.Size-preserving C G × F ≢ G ∃special-case-of-size-preserving׬size-preserving = Σ-map id (Σ-map id (Σ-map id (Σ-map id (Σ-map id (Σ-map (_∘ Up-to.size-preserving→up-to _) (Σ-map id (Σ-map (_∘ Up-to.size-preserving→up-to _) id))))))) ∃special-case-of-size-preserving׬up-to -- There is a monotone, extensive and size-preserving relation -- transformer that is not compatible. ∃monotone×extensive×size-preserving׬compatible : ∃ λ (lts : LTS lzero) → let open Combination lts in ∃ λ (F : Trans₂ (# 0) Proc) → Monotone F × Extensive F × Size-preserving F × ¬ Compatible F ∃monotone×extensive×size-preserving׬compatible = one-transition , F , mono , extensive , pres , ¬comp where -- An LTS with two distinct processes and one transition from one to -- the other. one-transition : LTS lzero one-transition = record { Proc = Bool ; Label = ⊤ ; _[_]⟶_ = λ x _ y → T (x ∧ not y) ; is-silent = λ _ → false } open Combination one-transition -- A relation transformer. F : Trans₂ (# 0) Proc F R (true , true) = R (false , false) ⊎ R (true , true) F R = R -- F is monotone. mono : Monotone F mono R⊆S {true , true} = ⊎-map R⊆S R⊆S mono R⊆S {true , false} = R⊆S mono R⊆S {false , true} = R⊆S mono R⊆S {false , false} = R⊆S -- F is extensive. extensive : Extensive F extensive R {true , true} = inj₂ extensive R {true , false} = id extensive R {false , true} = id extensive R {false , false} = id -- Bisimilarity of size i is a pre-fixpoint of F. pre : ∀ {i} → F (Bisimilarity i) ⊆ Bisimilarity i pre {x = true , true} = λ _ → true ■ pre {x = true , false} = id pre {x = false , true} = id pre {x = false , false} = id -- F is size-preserving. pres : Size-preserving F pres = _⇔_.from (monotone→⇔ mono) (λ {_ x} → pre {x = x}) -- A relation. R : Rel₂ (# 0) Proc R _ = ⊥ -- A lemma. StepRff : Step R (false , false) Step.left-to-right StepRff () Step.right-to-left StepRff () -- F is not compatible. ¬comp : ¬ Compatible F ¬comp = Compatible F ↝⟨ (λ comp {x} → comp {x = x}) ⟩ F (⟦ StepC ⟧ R) ⊆ ⟦ StepC ⟧ (F R) ↝⟨ (λ le → le {true , true}) ⟩ (F (⟦ StepC ⟧ R) (true , true) → ⟦ StepC ⟧ (F R) (true , true)) ↔⟨⟩ (⟦ StepC ⟧ R (false , false) ⊎ ⟦ StepC ⟧ R (true , true) → ⟦ StepC ⟧ (F R) (true , true)) ↝⟨ _$ inj₁ (_⇔_.to (Step↔StepC _) StepRff) ⟩ ⟦ StepC ⟧ (F R) (true , true) ↝⟨ (λ step → StepC.left-to-right {p = true} {q = true} step {p′ = false} _ ) ⟩ (∃ λ y → T (not y) × F R (false , y)) ↔⟨⟩ (∃ λ y → T (not y) × ⊥) ↝⟨ proj₂ ∘ proj₂ ⟩□ ⊥ □ -- An LTS used in a couple of lemmas below, along with some -- properties. module PQR where -- An LTS with two sets of processes, three "to the left", and three -- "to the right". Side : Type Side = Bool pattern left = true pattern right = false data Process : Type where p q r : Side → Process data Label : Type where pq pr : Label qq rr : Side → Label infix 4 _[_]⟶_ data _[_]⟶_ : Process → Label → Process → Type where pq : ∀ {s} → p s [ pq ]⟶ q s pr : ∀ {s} → p s [ pr ]⟶ r s qq : ∀ {s} → q s [ qq s ]⟶ q s rr : ∀ {s} → r s [ rr s ]⟶ r s lts : LTS lzero lts = record { Proc = Process ; Label = Label ; _[_]⟶_ = _[_]⟶_ ; is-silent = λ _ → false } open Combination lts public hiding (Label) -- Two relation transformers: F and G both add (at most) one pair to -- the underlying relation. data F (R : Rel₂ (# 0) Proc) : Rel₂ (# 0) Proc where qq : F R (q left , q right) [_] : ∀ {x} → R x → F R x data G (R : Rel₂ (# 0) Proc) : Rel₂ (# 0) Proc where rr : G R (r left , r right) [_] : ∀ {x} → R x → G R x -- A relation that adds one pair to reflexivity. data S : Rel₂ (# 0) Proc where pp : S (p left , p right) refl : ∀ {x} → S (x , x) -- S progresses to F (G S). S-prog : Progression S (F (G S)) S-prog pp = Step.⟨ (λ where pq → _ , pq , qq pr → _ , pr , [ rr ]) , (λ where pq → _ , pq , qq pr → _ , pr , [ rr ]) ⟩ S-prog refl = Step.⟨ (λ where pq → _ , pq , [ [ refl ] ] pr → _ , pr , [ [ refl ] ] qq → _ , qq , [ [ refl ] ] rr → _ , rr , [ [ refl ] ]) , (λ where pq → _ , pq , [ [ refl ] ] pr → _ , pr , [ [ refl ] ] qq → _ , qq , [ [ refl ] ] rr → _ , rr , [ [ refl ] ]) ⟩ S-prog′ : S ⊆ ⟦ StepC ⟧ (F (G S)) S-prog′ Sx = _⇔_.to (Step↔StepC _) (S-prog Sx) -- The two processes q left and q right are not bisimilar. q≁q : ¬ q left ∼ q right q≁q = q left ∼ q right ↝⟨ (λ rel → StepC.left-to-right rel qq) ⟩ (∃ λ y → q right [ qq left ]⟶ y × q left ∼′ y) ↝⟨ (λ { (_ , () , _) }) ⟩□ ⊥ □ -- The two processes r left and r right are not bisimilar. r≁r : ¬ r left ∼ r right r≁r = r left ∼ r right ↝⟨ (λ rel → StepC.left-to-right rel rr) ⟩ (∃ λ y → r right [ rr left ]⟶ y × r left ∼′ y) ↝⟨ (λ { (_ , () , _) }) ⟩□ ⊥ □ -- F ∘ G is not an up-to technique. ¬-F∘G-up-to : ¬ Up-to-technique (F ∘ G) ¬-F∘G-up-to = Up-to-technique (F ∘ G) ↝⟨ (λ up-to → up-to S-prog′) ⟩ S ⊆ Bisimilarity ∞ ↝⟨ (λ le → le pp) ⟩ p left ∼ p right ↝⟨ (λ rel → StepC.left-to-right rel pq) ⟩ (∃ λ y → p right [ pq ]⟶ y × q left ∼′ y) ↝⟨ (λ { (.(q right) , pq , rel) → rel }) ⟩ q left ∼′ q right ↝⟨ (λ rel → q≁q (force rel)) ⟩ ⊥ □ -- F is not equal to G. F≢G : F ≢ G F≢G = F ≡ G ↝⟨ subst (λ F → F (λ _ → ⊥) (q left , q right)) ⟩ (F (λ _ → ⊥) (q left , q right) → G (λ _ → ⊥) (q left , q right)) ↝⟨ _$ qq ⟩ G (λ _ → ⊥) (q left , q right) ↝⟨ (λ { [ () ] }) ⟩□ ⊥ □ module F-lemmas where -- F is monotone. mono : Monotone F mono R⊆S qq = qq mono R⊆S [ Rxy ] = [ R⊆S Rxy ] -- F is extensive. ext : Extensive F ext = λ _ → [_] -- F is not size-preserving. ¬-pres : ¬ Size-preserving F ¬-pres = Size-preserving F ↝⟨ (λ pres → _⇔_.to (monotone→⇔ mono) pres) ⟩ F (Bisimilarity ∞) ⊆ Bisimilarity ∞ ↝⟨ _$ qq ⟩ q left ∼ q right ↝⟨ q≁q ⟩□ ⊥ □ -- F is an up-to technique. module _ {R} (R-prog′ : R ⊆ ⟦ StepC ⟧ (F R)) where R-prog : Progression R (F R) R-prog Rx = _⇔_.from (Step↔StepC _) (R-prog′ Rx) ¬rr : ∀ {s} → ¬ R (r s , r (not s)) ¬rr rel with Progression.left-to-right R-prog rel rr ¬rr {true} _ | _ , () , _ ¬rr {false} _ | _ , () , _ ¬qq : ∀ {s} → ¬ R (q s , q (not s)) ¬qq rel with Progression.left-to-right R-prog rel qq ¬qq {true} _ | _ , () , _ ¬qq {false} _ | _ , () , _ ¬pp : ∀ {s} → ¬ R (p s , p (not s)) ¬pp rel with Progression.left-to-right R-prog rel pr ... | .(r _) , pr , [ rel′ ] = ¬rr rel′ ¬pq : ∀ {s₁ s₂} → ¬ R (p s₁ , q s₂) ¬pq rel with Progression.left-to-right R-prog rel pq ... | _ , () , _ ¬qp : ∀ {s₁ s₂} → ¬ R (q s₁ , p s₂) ¬qp rel with Progression.right-to-left R-prog rel pq ... | _ , () , _ ¬pr : ∀ {s₁ s₂} → ¬ R (p s₁ , r s₂) ¬pr rel with Progression.left-to-right R-prog rel pq ... | _ , () , _ ¬rp : ∀ {s₁ s₂} → ¬ R (r s₁ , p s₂) ¬rp rel with Progression.right-to-left R-prog rel pq ... | _ , () , _ ¬qr : ∀ {s₁ s₂} → ¬ R (q s₁ , r s₂) ¬qr rel with Progression.right-to-left R-prog rel rr ... | _ , () , _ ¬rq : ∀ {s₁ s₂} → ¬ R (r s₁ , q s₂) ¬rq rel with Progression.left-to-right R-prog rel rr ... | _ , () , _ up-to : R ⊆ Bisimilarity ∞ up-to {p left , p left} rel = reflexive up-to {p left , p right} rel = ⊥-elim (¬pp rel) up-to {p right , p left} rel = ⊥-elim (¬pp rel) up-to {p right , p right} rel = reflexive up-to {p _ , q _} rel = ⊥-elim (¬pq rel) up-to {p _ , r _} rel = ⊥-elim (¬pr rel) up-to {q _ , p _} rel = ⊥-elim (¬qp rel) up-to {q left , q left} rel = reflexive up-to {q left , q right} rel = ⊥-elim (¬qq rel) up-to {q right , q left} rel = ⊥-elim (¬qq rel) up-to {q right , q right} rel = reflexive up-to {q _ , r _} rel = ⊥-elim (¬qr rel) up-to {r _ , p _} rel = ⊥-elim (¬rp rel) up-to {r _ , q _} rel = ⊥-elim (¬rq rel) up-to {r left , r left} rel = reflexive up-to {r left , r right} rel = ⊥-elim (¬rr rel) up-to {r right , r left} rel = ⊥-elim (¬rr rel) up-to {r right , r right} rel = reflexive module G-lemmas where -- G is monotone. mono : Monotone G mono R⊆S rr = rr mono R⊆S [ Rxy ] = [ R⊆S Rxy ] -- G is extensive. ext : Extensive G ext = λ _ → [_] -- G is not size-preserving. ¬-pres : ¬ Size-preserving G ¬-pres = Size-preserving G ↝⟨ (λ pres → _⇔_.to (monotone→⇔ mono) pres) ⟩ G (Bisimilarity ∞) ⊆ Bisimilarity ∞ ↝⟨ _$ rr ⟩ r left ∼ r right ↝⟨ r≁r ⟩□ ⊥ □ -- G is an up-to technique. module _ {R} (R-prog′ : R ⊆ ⟦ StepC ⟧ (G R)) where R-prog : Progression R (G R) R-prog Rx = _⇔_.from (Step↔StepC _) (R-prog′ Rx) ¬rr : ∀ {s} → ¬ R (r s , r (not s)) ¬rr rel with Progression.left-to-right R-prog rel rr ¬rr {true} _ | _ , () , _ ¬rr {false} _ | _ , () , _ ¬qq : ∀ {s} → ¬ R (q s , q (not s)) ¬qq rel with Progression.left-to-right R-prog rel qq ¬qq {true} _ | _ , () , _ ¬qq {false} _ | _ , () , _ ¬pp : ∀ {s} → ¬ R (p s , p (not s)) ¬pp rel with Progression.left-to-right R-prog rel pq ... | .(q _) , pq , [ rel′ ] = ¬qq rel′ ¬pq : ∀ {s₁ s₂} → ¬ R (p s₁ , q s₂) ¬pq rel with Progression.left-to-right R-prog rel pq ... | _ , () , _ ¬qp : ∀ {s₁ s₂} → ¬ R (q s₁ , p s₂) ¬qp rel with Progression.right-to-left R-prog rel pq ... | _ , () , _ ¬pr : ∀ {s₁ s₂} → ¬ R (p s₁ , r s₂) ¬pr rel with Progression.left-to-right R-prog rel pq ... | _ , () , _ ¬rp : ∀ {s₁ s₂} → ¬ R (r s₁ , p s₂) ¬rp rel with Progression.right-to-left R-prog rel pq ... | _ , () , _ ¬qr : ∀ {s₁ s₂} → ¬ R (q s₁ , r s₂) ¬qr rel with Progression.right-to-left R-prog rel rr ... | _ , () , _ ¬rq : ∀ {s₁ s₂} → ¬ R (r s₁ , q s₂) ¬rq rel with Progression.left-to-right R-prog rel rr ... | _ , () , _ up-to : R ⊆ Bisimilarity ∞ up-to {p left , p left} rel = reflexive up-to {p left , p right} rel = ⊥-elim (¬pp rel) up-to {p right , p left} rel = ⊥-elim (¬pp rel) up-to {p right , p right} rel = reflexive up-to {p _ , q _} rel = ⊥-elim (¬pq rel) up-to {p _ , r _} rel = ⊥-elim (¬pr rel) up-to {q _ , p _} rel = ⊥-elim (¬qp rel) up-to {q left , q left} rel = reflexive up-to {q left , q right} rel = ⊥-elim (¬qq rel) up-to {q right , q left} rel = ⊥-elim (¬qq rel) up-to {q right , q right} rel = reflexive up-to {q _ , r _} rel = ⊥-elim (¬qr rel) up-to {r _ , p _} rel = ⊥-elim (¬rp rel) up-to {r _ , q _} rel = ⊥-elim (¬rq rel) up-to {r left , r left} rel = reflexive up-to {r left , r right} rel = ⊥-elim (¬rr rel) up-to {r right , r left} rel = ⊥-elim (¬rr rel) up-to {r right , r right} rel = reflexive -- There are monotone and extensive up-to techniques F and G such -- that F ∘ G is not an up-to-technique. -- -- Pous and Sangiorgi discuss another instance of this property in -- Section 6.5.4 of "Enhancements of the bisimulation proof method". ∃[monotone×extensive×up-to]²×¬∘-up-to : ∃ λ (lts : LTS lzero) → let open Combination lts in ∃ λ (F : Trans₂ (# 0) Proc) → ∃ λ (G : Trans₂ (# 0) Proc) → Monotone F × Extensive F × Up-to-technique F × Monotone G × Extensive G × Up-to-technique G × ¬ Up-to-technique (F ∘ G) ∃[monotone×extensive×up-to]²×¬∘-up-to = lts , F , G , F-lemmas.mono , F-lemmas.ext , F-lemmas.up-to , G-lemmas.mono , G-lemmas.ext , G-lemmas.up-to , ¬-F∘G-up-to where open PQR -- It is not the case that every monotone and extensive up-to -- technique is size-preserving. ¬monotone×extensive×up-to→size-preserving : ∃ λ (lts : LTS lzero) → let open Combination lts in ¬ (∀ {F} → Monotone F → Extensive F → Up-to-technique F → Size-preserving F) ¬monotone×extensive×up-to→size-preserving = lts , λ up-to→pres → ¬-F∘G-up-to $ size-preserving→up-to $ ∘-closure (up-to→pres F-lemmas.mono F-lemmas.ext F-lemmas.up-to) (up-to→pres G-lemmas.mono G-lemmas.ext G-lemmas.up-to) where open PQR -- Up-to-technique is not closed under composition, not even for -- monotone and extensive relation transformers. ¬-∘-closure : ∃ λ (lts : LTS lzero) → let open Combination lts in ¬ ({F G : Trans₂ (# 0) Proc} → Monotone F → Extensive F → Monotone G → Extensive G → Up-to-technique F → Up-to-technique G → Up-to-technique (F ∘ G)) ¬-∘-closure = lts , λ ∘-closure → ¬-F∘G-up-to (∘-closure F-lemmas.mono F-lemmas.ext G-lemmas.mono G-lemmas.ext F-lemmas.up-to G-lemmas.up-to) where open PQR -- There are (at least two) monotone and extensive up-to techniques -- that are not size-preserving. ∃monotone×extensive×up-to׬size-preserving : ∃ λ (lts : LTS lzero) → let open Combination lts in ∃ λ (F : Trans₂ (# 0) Proc) → ∃ λ (G : Trans₂ (# 0) Proc) → Monotone F × Extensive F × Up-to-technique F × ¬ Size-preserving F × Monotone G × Extensive G × Up-to-technique G × ¬ Size-preserving G × F ≢ G ∃monotone×extensive×up-to׬size-preserving = lts , F , G , F-lemmas.mono , F-lemmas.ext , F-lemmas.up-to , F-lemmas.¬-pres , G-lemmas.mono , G-lemmas.ext , G-lemmas.up-to , G-lemmas.¬-pres , F≢G where open PQR
{ "alphanum_fraction": 0.4632103432, "avg_line_length": 31.8481532148, "ext": "agda", "hexsha": "11783e699013502c0400723d13d50aa92f4910a6", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Bisimilarity/Up-to/Counterexamples.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Bisimilarity/Up-to/Counterexamples.agda", "max_line_length": 147, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Bisimilarity/Up-to/Counterexamples.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 8591, "size": 23281 }
-- Copyright: (c) 2016 Ertugrul Söylemez -- License: BSD3 -- Maintainer: Ertugrul Söylemez <[email protected]> module Classes where record Plus {a} (A : Set a) : Set a where field _+_ : A → A → A infixl 6 _+_ open Plus {{...}} public record Times {a} (A : Set a) : Set a where field {{plus}} : Plus A _*_ : A → A → A infixl 7 _*_ open Times {{...}} public
{ "alphanum_fraction": 0.5792207792, "avg_line_length": 15.4, "ext": "agda", "hexsha": "eb8eac7c901a4a32c6e009c5614ec17934bab6dd", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "esoeylemez/agda-simple", "max_forks_repo_path": "Classes.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "esoeylemez/agda-simple", "max_issues_repo_path": "Classes.agda", "max_line_length": 48, "max_stars_count": 1, "max_stars_repo_head_hexsha": "d9245e5a8b2e902781736de09bd17e81022f6f13", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "esoeylemez/agda-simple", "max_stars_repo_path": "Classes.agda", "max_stars_repo_stars_event_max_datetime": "2019-10-07T17:36:42.000Z", "max_stars_repo_stars_event_min_datetime": "2019-10-07T17:36:42.000Z", "num_tokens": 147, "size": 385 }
{-# OPTIONS --safe --warning=error --without-K #-} open import LogicalFormulae open import Groups.Lemmas open import Groups.Definition open import Setoids.Setoids open import Rings.Definition open import Sets.EquivalenceRelations open import Rings.IntegralDomains.Definition module Rings.IntegralDomains.Lemmas {m n : _} {A : Set n} {S : Setoid {n} {m} A} {_+_ _*_ : A → A → A} {R : Ring S _+_ _*_} (I : IntegralDomain R) where open Setoid S open Equivalence eq open Ring R cancelIntDom : {a b c : A} → (a * b) ∼ (a * c) → ((a ∼ (Ring.0R R)) → False) → (b ∼ c) cancelIntDom {a} {b} {c} ab=ac a!=0 = transferToRight (Ring.additiveGroup R) t3 where t1 : (a * b) + Group.inverse (Ring.additiveGroup R) (a * c) ∼ Ring.0R R t1 = transferToRight'' (Ring.additiveGroup R) ab=ac t2 : a * (b + Group.inverse (Ring.additiveGroup R) c) ∼ Ring.0R R t2 = transitive (transitive (Ring.*DistributesOver+ R) (Group.+WellDefined (Ring.additiveGroup R) reflexive (transferToRight' (Ring.additiveGroup R) (transitive (symmetric (Ring.*DistributesOver+ R)) (transitive (Ring.*WellDefined R reflexive (Group.invLeft (Ring.additiveGroup R))) (Ring.timesZero R)))))) t1 t3 : (b + Group.inverse (Ring.additiveGroup R) c) ∼ Ring.0R R t3 = IntegralDomain.intDom I t2 a!=0 cancelIntDom' : {a b c : A} → (a * c) ∼ (b * c) → (c ∼ Ring.0R R → False) → a ∼ b cancelIntDom' pr n = cancelIntDom (transitive *Commutative (transitive pr *Commutative)) n
{ "alphanum_fraction": 0.6793103448, "avg_line_length": 50, "ext": "agda", "hexsha": "e7f9d142bbca0054788d800ec582598319216613", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z", "max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Smaug123/agdaproofs", "max_forks_repo_path": "Rings/IntegralDomains/Lemmas.agda", "max_issues_count": 14, "max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Smaug123/agdaproofs", "max_issues_repo_path": "Rings/IntegralDomains/Lemmas.agda", "max_line_length": 313, "max_stars_count": 4, "max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Smaug123/agdaproofs", "max_stars_repo_path": "Rings/IntegralDomains/Lemmas.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z", "max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z", "num_tokens": 504, "size": 1450 }
------------------------------------------------------------------------ -- INCREMENTAL λ-CALCULUS -- -- Reexport Data.List.All from the standard library. -- -- At one point, we reinvented Data.List.All from the Agda -- standard library, under the name dependent list. We later -- replaced our reinvention by this adapter module that just -- exports the standard library's version with partly different -- names. ------------------------------------------------------------------------ module Base.Data.DependentList where open import Data.List.All public using ( head ; tail ; map ; tabulate ) renaming ( All to DependentList ; _∷_ to _•_ ; [] to ∅ ) -- Maps a binary function over two dependent lists. -- Should this be in the Agda standard library? zipWith : ∀ {a p q r} {A : Set a} {P : A → Set p} {Q : A → Set q} {R : A → Set r} → (f : {a : A} → P a → Q a → R a) → ∀ {xs} → DependentList P xs → DependentList Q xs → DependentList R xs zipWith f ∅ ∅ = ∅ zipWith f (p • ps) (q • qs) = f p q • zipWith f ps qs
{ "alphanum_fraction": 0.5486307838, "avg_line_length": 30.2571428571, "ext": "agda", "hexsha": "1eee78bff8ec411aee192e49b1aaca2df5beaaac", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z", "max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "inc-lc/ilc-agda", "max_forks_repo_path": "Base/Data/DependentList.agda", "max_issues_count": 6, "max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z", "max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "inc-lc/ilc-agda", "max_issues_repo_path": "Base/Data/DependentList.agda", "max_line_length": 83, "max_stars_count": 10, "max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "inc-lc/ilc-agda", "max_stars_repo_path": "Base/Data/DependentList.agda", "max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z", "num_tokens": 294, "size": 1059 }
{-# OPTIONS --without-K --exact-split --safe #-} open import Fragment.Algebra.Signature module Fragment.Algebra.Free.Properties (Σ : Signature) where open import Level using (Level) open import Function using (_∘_) open import Fragment.Algebra.Algebra Σ open import Fragment.Algebra.Free.Base Σ open import Fragment.Algebra.Free.Evaluation Σ open import Fragment.Algebra.Free.Monad Σ open import Fragment.Algebra.Homomorphism Σ open import Fragment.Algebra.Quotient Σ open import Fragment.Setoid.Morphism as M hiding (∣_∣; ∣_∣-cong; id; _≗_) open import Data.Fin using (Fin) open import Data.Vec using (Vec; []; _∷_; map) open import Data.Vec.Properties using (map-∘) open import Data.Vec.Relation.Binary.Pointwise.Inductive as PW using (Pointwise; Pointwise-≡⇒≡; []; _∷_) import Relation.Binary.Reasoning.Setoid as Reasoning open import Relation.Binary using (Setoid; Rel; IsEquivalence) open import Relation.Binary.PropositionalEquality as PE using (_≡_) private variable a b c ℓ₁ ℓ₂ ℓ₃ : Level module _ {A : Algebra {a} {ℓ₁}} (h : Free ∥ A ∥/≈ ⟿ A) (inj : ∣ h ∣⃗ · unit M.≗ M.id) where open Setoid ∥ A ∥/≈ open Reasoning ∥ A ∥/≈ mutual map-∣eval∣-universal : ∀ {n} {xs : Vec (Term ∥ A ∥) n} → Pointwise (≈[ A ]) (map ∣ h ∣ xs) (map ∣ eval A ∣ xs) map-∣eval∣-universal {_} {[]} = [] map-∣eval∣-universal {_} {x ∷ xs} = eval-universal {x} ∷ map-∣eval∣-universal {_} {xs} eval-universal : h ≗ eval A eval-universal {atom x} = inj eval-universal {term f xs} = begin ∣ h ∣ (term f xs) ≈⟨ sym (∣ h ∣-hom f xs) ⟩ A ⟦ f ⟧ (map ∣ h ∣ xs) ≈⟨ (A ⟦ f ⟧-cong) map-∣eval∣-universal ⟩ A ⟦ f ⟧ (map ∣ eval A ∣ xs) ≈⟨ ∣ eval A ∣-hom f xs ⟩ ∣ eval A ∣ (term f xs) ∎ module _ {A : Setoid a ℓ₁} {B : Setoid b ℓ₂} (f : A ↝ Herbrand B) where bind-unitₗ : ∣ bind f ∣⃗ · unit M.≗ f bind-unitₗ = Setoid.refl (Herbrand B) module _ {A : Setoid a ℓ₁} where open Setoid ∥ Free A ∥/≈ open Reasoning ∥ Free A ∥/≈ mutual map-∣bind∣-unitʳ : ∀ {n} → {xs : Vec ∥ Free A ∥ n} → Pointwise ≈[ Free A ] (map ∣ bind {B = A} unit ∣ xs) xs map-∣bind∣-unitʳ {xs = []} = [] map-∣bind∣-unitʳ {xs = x ∷ xs} = bind-unitʳ ∷ map-∣bind∣-unitʳ bind-unitʳ : bind {B = A} unit ≗ id bind-unitʳ {atom _} = Setoid.refl (Herbrand A) bind-unitʳ {term f xs} = begin ∣ bind {B = A} unit ∣ (term f xs) ≈⟨ sym (∣ bind unit ∣-hom f xs) ⟩ term f (map ∣ bind {B = A} unit ∣ xs) ≈⟨ term map-∣bind∣-unitʳ ⟩ term f xs ∎ module _ {A : Setoid a ℓ₁} {B : Setoid b ℓ₂} {C : Setoid c ℓ₃} (g : B ↝ Herbrand C) (f : A ↝ Herbrand B) where open Setoid ∥ Free C ∥/≈ open Reasoning ∥ Free C ∥/≈ mutual map-∣bind∣-assoc : ∀ {n} → {xs : Vec ∥ Free A ∥ n} → Pointwise (≈[ Free C ]) (map (∣ bind g ∣ ∘ ∣ bind f ∣) xs) (map ∣ bind (∣ bind g ∣⃗ · f) ∣ xs) map-∣bind∣-assoc {xs = []} = [] map-∣bind∣-assoc {xs = x ∷ xs} = bind-assoc {x} ∷ map-∣bind∣-assoc bind-assoc : bind g ⊙ bind f ≗ bind (∣ bind g ∣⃗ · f) bind-assoc {atom _} = refl bind-assoc {term op xs} = begin ∣ bind g ∣ (∣ bind f ∣ (term op xs)) ≈⟨ sym (∣ bind g ∣-cong (∣ bind f ∣-hom op xs)) ⟩ ∣ bind g ∣ (term op (map ∣ bind f ∣ xs)) ≈⟨ sym (∣ bind g ∣-hom op (map ∣ bind f ∣ xs)) ⟩ term op (map ∣ bind g ∣ (map ∣ bind f ∣ xs)) ≈⟨ sym (term (PW.map reflexive (PW.≡⇒Pointwise-≡ (map-∘ ∣ bind g ∣ ∣ bind f ∣ xs)))) ⟩ term op (map (∣ bind g ∣ ∘ ∣ bind f ∣) xs) ≈⟨ term map-∣bind∣-assoc ⟩ term op (map ∣ bind (∣ bind g ∣⃗ · f) ∣ xs) ≈⟨ ∣ bind (∣ bind g ∣⃗ · f) ∣-hom op xs ⟩ ∣ bind (∣ bind g ∣⃗ · f) ∣ (term op xs) ∎ fmap-id : ∀ {A : Setoid a ℓ₁} → fmap M.id ≗ id fmap-id {A = A} = bind-unitʳ {A = A} module _ {n} (A : Algebra {a} {ℓ₁}) (θ : Env A n) where IsInstantiation : F n ⟿ A → Set _ IsInstantiation f = ∀ x → ∣ f ∣ (atom (dyn x)) ≡ θ x inst-isInstantiation : IsInstantiation (inst A θ) inst-isInstantiation x = PE.refl mutual map-∣inst∣-universal : ∀ {h m} → IsInstantiation h → {xs : Vec ∥ F n ∥ m} → Pointwise ≈[ A ] (map ∣ h ∣ xs) (map ∣ inst A θ ∣ xs) map-∣inst∣-universal p {xs = []} = [] map-∣inst∣-universal {h = h} p {xs = x ∷ xs} = inst-universal {h = h} p ∷ map-∣inst∣-universal {h = h} p inst-universal : ∀ {h} → IsInstantiation h → h ≗ (inst A θ) inst-universal {h} p {x = atom (dyn x)} = Setoid.reflexive ∥ A ∥/≈ (p x) inst-universal {h} p {x = term f xs} = begin ∣ h ∣ (term f xs) ≈⟨ Setoid.sym ∥ A ∥/≈ (∣ h ∣-hom f xs) ⟩ A ⟦ f ⟧ (map ∣ h ∣ xs) ≈⟨ (A ⟦ f ⟧-cong) (map-∣inst∣-universal {h = h} p {xs = xs}) ⟩ A ⟦ f ⟧ (map ∣ inst A θ ∣ xs) ≈⟨ ∣ inst A θ ∣-hom f xs ⟩ ∣ inst A θ ∣ (term f xs) ∎ where open Reasoning ∥ A ∥/≈ module _ {B : Algebra {b} {ℓ₂}} (h : A ⟿ B) where mutual map-∣inst∣-assoc : ∀ {m} {xs : Vec ∥ F n ∥ m} → Pointwise ≈[ B ] (map ∣ h ⊙ inst A θ ∣ xs) (map ∣ inst B (∣ h ∣ ∘ θ) ∣ xs) map-∣inst∣-assoc {xs = []} = [] map-∣inst∣-assoc {xs = x ∷ xs} = inst-assoc {x = x} ∷ map-∣inst∣-assoc inst-assoc : h ⊙ inst A θ ≗ inst B (∣ h ∣ ∘ θ) inst-assoc {atom (dyn _)} = Setoid.refl ∥ B ∥/≈ inst-assoc {term f xs} = begin ∣ h ⊙ inst A θ ∣ (term f xs) ≈⟨ sym (∣ h ⊙ inst A θ ∣-hom f xs) ⟩ B ⟦ f ⟧ (map ∣ h ⊙ inst A θ ∣ xs) ≈⟨ (B ⟦ f ⟧-cong) map-∣inst∣-assoc ⟩ B ⟦ f ⟧ (map ∣ inst B (∣ h ∣ ∘ θ) ∣ xs) ≈⟨ ∣ inst B (∣ h ∣ ∘ θ) ∣-hom f xs ⟩ ∣ inst B (∣ h ∣ ∘ θ) ∣ (term f xs) ∎ where open Setoid ∥ B ∥/≈ open Reasoning ∥ B ∥/≈
{ "alphanum_fraction": 0.4853203569, "avg_line_length": 32.4473684211, "ext": "agda", "hexsha": "d85d716c43f6f4e0d81761353c4b9b77282f218b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2021-06-16T08:04:31.000Z", "max_forks_repo_forks_event_min_datetime": "2021-06-15T15:34:50.000Z", "max_forks_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "yallop/agda-fragment", "max_forks_repo_path": "src/Fragment/Algebra/Free/Properties.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_issues_repo_issues_event_max_datetime": "2021-06-16T10:24:15.000Z", "max_issues_repo_issues_event_min_datetime": "2021-06-16T09:44:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "yallop/agda-fragment", "max_issues_repo_path": "src/Fragment/Algebra/Free/Properties.agda", "max_line_length": 92, "max_stars_count": 18, "max_stars_repo_head_hexsha": "f2a6b1cf4bc95214bd075a155012f84c593b9496", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "yallop/agda-fragment", "max_stars_repo_path": "src/Fragment/Algebra/Free/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-17T17:26:09.000Z", "max_stars_repo_stars_event_min_datetime": "2021-06-15T15:45:39.000Z", "num_tokens": 2531, "size": 6165 }
{-# OPTIONS --copatterns #-} module Issue906 where {- Globular types as a coinductive record -} record Glob : Set1 where coinductive field Ob : Set Hom : (a b : Ob) → Glob open Glob public record Unit : Set where data _==_ {A : Set} (a : A) : A → Set where refl : a == a {- The terminal globular type -} Unit-glob : Glob Ob Unit-glob = Unit Hom Unit-glob _ _ = Unit-glob {- The tower of identity types -} Id-glob : (A : Set) → Glob Ob (Id-glob A) = A Hom (Id-glob A) a b = Id-glob (a == b) -- should termination check
{ "alphanum_fraction": 0.6270871985, "avg_line_length": 18.5862068966, "ext": "agda", "hexsha": "8d7d7b0a1fd62cd57bac1c779c4479cf8b7a3e29", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "alhassy/agda", "max_forks_repo_path": "test/Succeed/Issue906.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "alhassy/agda", "max_issues_repo_path": "test/Succeed/Issue906.agda", "max_line_length": 44, "max_stars_count": 3, "max_stars_repo_head_hexsha": "6043e77e4a72518711f5f808fb4eb593cbf0bb7c", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "alhassy/agda", "max_stars_repo_path": "test/Succeed/Issue906.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 178, "size": 539 }
open import Agda.Builtin.Nat data Vec (A : Set) : Nat → Set where variable A : Set x : A n : Nat xs : Vec A n postulate IsHead : A → Vec A (suc n) → Set -- The `n` should be generalized over since the generalizable n in the type of xs -- is solved with suc n. foo : IsHead {n = _} x xs → Nat foo h = 0 check-foo : {A : Set} {x : A} {n : Nat} {xs : Vec A (suc n)} → IsHead x xs → Nat check-foo = foo -- Should work also if the meta is created in an extended context bar : (X : Set) → IsHead x xs → Nat bar X h = 0 check-bar : {A : Set} {x : A} {n : Nat} {xs : Vec A (suc n)} → (X : Set) → IsHead x xs → Nat check-bar = bar
{ "alphanum_fraction": 0.5909797823, "avg_line_length": 22.1724137931, "ext": "agda", "hexsha": "57290a35e33bc5bdf9039e2b23495893884b3cb3", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3274.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3274.agda", "max_line_length": 92, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3274.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 242, "size": 643 }
module Pi-.Interp where open import Data.Empty open import Data.Unit open import Data.Sum open import Data.Product open import Pi-.Syntax open import Pi-.Opsem open import Pi-.Eval {-# TERMINATING #-} mutual interp : {A B : 𝕌} → (A ↔ B) → Val A B → Val B A -- Forward interp unite₊l (inj₂ y ⃗) = y ⃗ interp uniti₊l (v ⃗) = inj₂ v ⃗ interp swap₊ (inj₁ x ⃗) = inj₂ x ⃗ interp swap₊ (inj₂ y ⃗) = inj₁ y ⃗ interp assocl₊ (inj₁ x ⃗) = inj₁ (inj₁ x) ⃗ interp assocl₊ (inj₂ (inj₁ y) ⃗) = inj₁ (inj₂ y) ⃗ interp assocl₊ (inj₂ (inj₂ z) ⃗) = inj₂ z ⃗ interp assocr₊ (inj₁ (inj₁ x) ⃗) = inj₁ x ⃗ interp assocr₊ (inj₁ (inj₂ y) ⃗) = inj₂ (inj₁ y) ⃗ interp assocr₊ (inj₂ z ⃗) = inj₂ (inj₂ z) ⃗ interp unite⋆l ((tt , v) ⃗) = v ⃗ interp uniti⋆l (v ⃗) = (tt , v) ⃗ interp swap⋆ ((x , y) ⃗) = (y , x) ⃗ interp assocl⋆ ((x , (y , z)) ⃗) = ((x , y) , z) ⃗ interp assocr⋆ (((x , y) , z) ⃗) = (x , y , z) ⃗ interp dist ((inj₁ x , z) ⃗) = inj₁ (x , z) ⃗ interp dist ((inj₂ y , z) ⃗) = inj₂ (y , z) ⃗ interp factor (inj₁ (x , z) ⃗) = (inj₁ x , z) ⃗ interp factor (inj₂ (y , z) ⃗) = (inj₂ y , z) ⃗ interp id↔ (v ⃗) = v ⃗ interp (c₁ ⨾ c₂) (v ⃗) with interp c₁ (v ⃗) interp (c₁ ⨾ c₂) (v ⃗) | (v' ⃖) = v' ⃖ interp (c₁ ⨾ c₂) (v ⃗) | (v' ⃗) = c₁ ⨾[ v' ⃗]⨾ c₂ interp (c₁ ⊕ c₂) (inj₁ x ⃗) with interp c₁ (x ⃗) interp (c₁ ⊕ c₂) (inj₁ x ⃗) | (x' ⃗) = inj₁ x' ⃗ interp (c₁ ⊕ c₂) (inj₁ x ⃗) | (x' ⃖) = inj₁ x' ⃖ interp (c₁ ⊕ c₂) (inj₂ y ⃗) with interp c₂ (y ⃗) interp (c₁ ⊕ c₂) (inj₂ y ⃗) | (y' ⃗) = inj₂ y' ⃗ interp (c₁ ⊕ c₂) (inj₂ y ⃗) | (y' ⃖) = inj₂ y' ⃖ interp (c₁ ⊗ c₂) ((x , y) ⃗) with interp c₁ (x ⃗) interp (c₁ ⊗ c₂) ((x , y) ⃗) | (x' ⃖) = (x' , y) ⃖ interp (c₁ ⊗ c₂) ((x , y) ⃗) | (x' ⃗) with interp c₂ (y ⃗) interp (c₁ ⊗ c₂) ((x , y) ⃗) | (x' ⃗) | (y' ⃗) = (x' , y') ⃗ interp (c₁ ⊗ c₂) ((x , y) ⃗) | (x' ⃗) | (y' ⃖) = (x , y') ⃖ interp ε₊ (inj₁ v ⃗) = inj₂ (- v) ⃖ interp ε₊ (inj₂ (- v) ⃗) = inj₁ v ⃖ -- Backward interp unite₊l (v ⃖) = inj₂ v ⃖ interp uniti₊l (inj₂ v ⃖) = v ⃖ interp swap₊ (inj₁ x ⃖) = inj₂ x ⃖ interp swap₊ (inj₂ y ⃖) = inj₁ y ⃖ interp assocl₊ (inj₁ (inj₁ x) ⃖) = inj₁ x ⃖ interp assocl₊ (inj₁ (inj₂ y) ⃖) = inj₂ (inj₁ y) ⃖ interp assocl₊ (inj₂ z ⃖) = inj₂ (inj₂ z) ⃖ interp assocr₊ (inj₁ x ⃖) = inj₁ (inj₁ x) ⃖ interp assocr₊ (inj₂ (inj₁ y) ⃖) = inj₁ (inj₂ y) ⃖ interp assocr₊ (inj₂ (inj₂ z) ⃖) = inj₂ z ⃖ interp unite⋆l (v ⃖) = (tt , v) ⃖ interp uniti⋆l ((tt , v) ⃖) = v ⃖ interp swap⋆ ((x , y) ⃖) = (y , x) ⃖ interp assocl⋆ (((x , y) , z) ⃖) = (x , (y , z)) ⃖ interp assocr⋆ ((x , (y , z)) ⃖) = ((x , y) , z) ⃖ interp dist (inj₁ (x , z) ⃖) = (inj₁ x , z) ⃖ interp dist (inj₂ (y , z) ⃖) = (inj₂ y , z) ⃖ interp factor ((inj₁ x , z) ⃖) = inj₁ (x , z) ⃖ interp factor ((inj₂ y , z) ⃖) = inj₂ (y , z) ⃖ interp id↔ (v ⃖) = v ⃖ interp (c₁ ⨾ c₂) (v ⃖) with interp c₂ (v ⃖) interp (c₁ ⨾ c₂) (v ⃖) | v' ⃗ = v' ⃗ interp (c₁ ⨾ c₂) (v ⃖) | v' ⃖ = c₁ ⨾[ v' ⃖]⨾ c₂ interp (c₁ ⊕ c₂) (inj₁ x ⃖) with interp c₁ (x ⃖) interp (c₁ ⊕ c₂) (inj₁ x ⃖) | (x' ⃖) = inj₁ x' ⃖ interp (c₁ ⊕ c₂) (inj₁ x ⃖) | (x' ⃗) = inj₁ x' ⃗ interp (c₁ ⊕ c₂) (inj₂ y ⃖) with interp c₂ (y ⃖) interp (c₁ ⊕ c₂) (inj₂ y ⃖) | (y' ⃖) = inj₂ y' ⃖ interp (c₁ ⊕ c₂) (inj₂ y ⃖) | (y' ⃗) = inj₂ y' ⃗ interp (c₁ ⊗ c₂) ((x , y) ⃖) with interp c₂ (y ⃖) interp (c₁ ⊗ c₂) ((x , y) ⃖) | (y' ⃗) = (x , y') ⃗ interp (c₁ ⊗ c₂) ((x , y) ⃖) | (y' ⃖) with interp c₁ (x ⃖) interp (c₁ ⊗ c₂) ((x , y) ⃖) | (y' ⃖) | (x' ⃖) = (x' , y') ⃖ interp (c₁ ⊗ c₂) ((x , y) ⃖) | (y' ⃖) | (x' ⃗) = (x' , y) ⃗ interp η₊ (inj₁ v ⃖) = inj₂ (- v) ⃗ interp η₊ (inj₂ (- v) ⃖) = inj₁ v ⃗ _⨾[_⃗]⨾_ : ∀ {A B C} → (A ↔ B) → ⟦ B ⟧ → (B ↔ C) → Val C A c₁ ⨾[ b ⃗]⨾ c₂ with interp c₂ (b ⃗) c₁ ⨾[ b ⃗]⨾ c₂ | c ⃗ = c ⃗ c₁ ⨾[ b ⃗]⨾ c₂ | b' ⃖ = c₁ ⨾[ b' ⃖]⨾ c₂ _⨾[_⃖]⨾_ : ∀ {A B C} → (A ↔ B) → ⟦ B ⟧ → (B ↔ C) → Val C A c₁ ⨾[ b ⃖]⨾ c₂ with interp c₁ (b ⃖) c₁ ⨾[ b ⃖]⨾ c₂ | a ⃖ = a ⃖ c₁ ⨾[ b ⃖]⨾ c₂ | b' ⃗ = c₁ ⨾[ b' ⃗]⨾ c₂
{ "alphanum_fraction": 0.4303797468, "avg_line_length": 43.1649484536, "ext": "agda", "hexsha": "ef9dd58b5d007921464f4231b041f7ccdd577662", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "Pi-/Interp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "Pi-/Interp.agda", "max_line_length": 62, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "Pi-/Interp.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 2562, "size": 4187 }
{-# OPTIONS --without-K --safe #-} module Dodo.Unary where open import Dodo.Unary.Dec public open import Dodo.Unary.Disjoint public open import Dodo.Unary.Empty public open import Dodo.Unary.Equality public open import Dodo.Unary.Intersection public open import Dodo.Unary.Union public open import Dodo.Unary.Unique public open import Dodo.Unary.XOpt public open ⊆₁-Reasoning public open ⇔₁-Reasoning public
{ "alphanum_fraction": 0.802919708, "avg_line_length": 25.6875, "ext": "agda", "hexsha": "629063170ede07b226403c9b7073dda4c7777614", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "sourcedennis/agda-dodo", "max_forks_repo_path": "src/Dodo/Unary.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "sourcedennis/agda-dodo", "max_issues_repo_path": "src/Dodo/Unary.agda", "max_line_length": 42, "max_stars_count": null, "max_stars_repo_head_hexsha": "376f0ccee1e1aa31470890e494bcb534324f598a", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "sourcedennis/agda-dodo", "max_stars_repo_path": "src/Dodo/Unary.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 110, "size": 411 }
module Properties.Dec where open import Properties.Contradiction using (¬) data Dec(A : Set) : Set where yes : A → Dec A no : ¬ A → Dec A
{ "alphanum_fraction": 0.6666666667, "avg_line_length": 18, "ext": "agda", "hexsha": "c61f23659cda676b70907361b7e7f71a0e7aae64", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "XanderYZZ/luau", "max_forks_repo_path": "prototyping/Properties/Dec.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "362428f8b4b6f5c9d43f4daf55bcf7873f536c3f", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "XanderYZZ/luau", "max_issues_repo_path": "prototyping/Properties/Dec.agda", "max_line_length": 46, "max_stars_count": 1, "max_stars_repo_head_hexsha": "72d8d443431875607fd457a13fe36ea62804d327", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "TheGreatSageEqualToHeaven/luau", "max_stars_repo_path": "prototyping/Properties/Dec.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-05T21:53:03.000Z", "max_stars_repo_stars_event_min_datetime": "2021-12-05T21:53:03.000Z", "num_tokens": 42, "size": 144 }
{-# OPTIONS --rewriting #-} -- 2014-05-27 Jesper and Andreas postulate A B : Set R : A → B → Set {-# BUILTIN REWRITE R #-} -- Expected error: -- R does not have the right type for a rewriting relation -- because the types of the last two arguments are different -- when checking the pragma BUILTIN REWRITE R
{ "alphanum_fraction": 0.6802507837, "avg_line_length": 21.2666666667, "ext": "agda", "hexsha": "5cfcaae1cbcde294b273ed52a25373c1f62034d4", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Fail/RewriteRelationNotHomogeneous.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Fail/RewriteRelationNotHomogeneous.agda", "max_line_length": 60, "max_stars_count": null, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Fail/RewriteRelationNotHomogeneous.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 86, "size": 319 }
{-# OPTIONS --without-K --rewriting #-} open import HoTT open import homotopy.JoinComm open import homotopy.JoinAssocCubical module homotopy.JoinSusp where module _ {i} (A : Type i) where private module Into = JoinRec {A = Bool} {B = A} {C = Susp A} (Bool-rec north south) (λ _ → south) (λ {true a → merid a; false a → idp}) into = Into.f module Out = SuspRec {C = Bool * A} (left true) (left false) (λ a → jglue true a ∙ ! (jglue false a)) out = Out.f into-out : ∀ σ → into (out σ) == σ into-out = Susp-elim idp idp (λ a → ↓-∘=idf-from-square into out $ vert-degen-square $ ap (ap into) (Out.merid-β a) ∙ ap-∙ into (jglue true a) (! (jglue false a)) ∙ (Into.glue-β true a ∙2 (ap-! into (jglue false a) ∙ ap ! (Into.glue-β false a))) ∙ ∙-unit-r _) out-into : ∀ j → out (into j) == j out-into = Join-elim (Bool-elim idp idp) (λ a → jglue false a) (λ{true a → ↓-∘=idf-from-square out into $ (ap (ap out) (Into.glue-β true a) ∙ Out.merid-β a) ∙v⊡ (vid-square {p = jglue true a} ⊡h rt-square (jglue false a)) ⊡v∙ ∙-unit-r _; false a → ↓-∘=idf-from-square out into $ ap (ap out) (Into.glue-β false a) ∙v⊡ connection}) *-Bool-l : Bool * A ≃ Susp A *-Bool-l = equiv into out into-out out-into module _ {i} (X : Ptd i) where ⊙*-Bool-l : ⊙Bool ⊙* X ⊙≃ ⊙Susp X ⊙*-Bool-l = ≃-to-⊙≃ (*-Bool-l (de⊙ X)) idp module _ {i j} (A : Type i) (B : Type j) where *-Susp-l : Susp A * B ≃ Susp (A * B) *-Susp-l = *-Bool-l (A * B) ∘e *-assoc Bool A B ∘e *-emap (*-Bool-l A) (ide B) ⁻¹ module _ {i j} (X : Ptd i) (Y : Ptd j) where ⊙*-Susp-l : ⊙Susp X ⊙* Y ⊙≃ ⊙Susp (X ⊙* Y) ⊙*-Susp-l = ≃-to-⊙≃ (*-Susp-l (de⊙ X) (de⊙ Y)) idp module _ {i} where ⊙*-Sphere-l : (m : ℕ) (X : Ptd i) → ⊙Sphere m ⊙* X ⊙≃ ⊙Susp^ (S m) X ⊙*-Sphere-l O X = ⊙*-Bool-l X ⊙*-Sphere-l (S m) X = ⊙Susp-emap (⊙*-Sphere-l m X) ⊙∘e ⊙*-Susp-l (⊙Sphere m) X
{ "alphanum_fraction": 0.4812933025, "avg_line_length": 28.4868421053, "ext": "agda", "hexsha": "8c6d8393d04c98ad8e66abc3338d451d0fc26391", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "timjb/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/JoinSusp.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "timjb/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/JoinSusp.agda", "max_line_length": 83, "max_stars_count": null, "max_stars_repo_head_hexsha": "66f800adef943afdf08c17b8ecfba67340fead5e", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "timjb/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/JoinSusp.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 861, "size": 2165 }
{-# OPTIONS --without-K --safe #-} open import Categories.Category open import Categories.Category.Monoidal open import Categories.Category.Monoidal.Closed module Categories.Category.Monoidal.Closed.IsClosed.Diagonal {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (Cl : Closed M) where open import Data.Product using (Σ; _,_) open import Function using (_$_) renaming (_∘_ to _∙_) open import Function.Equality as Π using (Π) open import Categories.Category.Product open import Categories.Category.Monoidal.Properties M open import Categories.Morphism C open import Categories.Morphism.Properties C open import Categories.Morphism.Reasoning C open import Categories.Functor renaming (id to idF) open import Categories.Functor.Bifunctor open import Categories.Functor.Bifunctor.Properties open import Categories.NaturalTransformation hiding (id) open import Categories.NaturalTransformation.Dinatural hiding (_∘ʳ_) open import Categories.NaturalTransformation.NaturalIsomorphism as NI hiding (refl) import Categories.Category.Closed as Cls open Closed Cl private open Category C module ℱ = Functor module ⊗ = Functor ⊗ α⇒ = associator.from α⇐ = associator.to λ⇒ = unitorˡ.from λ⇐ = unitorˡ.to ρ⇒ = unitorʳ.from ρ⇐ = unitorʳ.to open HomReasoning open Π.Π open adjoint renaming (unit to η; counit to ε; Ladjunct to 𝕃; Ladjunct-comm′ to 𝕃-comm′; Ladjunct-resp-≈ to 𝕃-resp-≈) open import Categories.Category.Monoidal.Closed.IsClosed.Identity Cl -- defines diagonal open import Categories.Category.Monoidal.Closed.IsClosed.L Cl Lj≈j : ∀ {X Y} → L X Y Y ∘ diagonal.α Y ≈ diagonal.α [ X , Y ]₀ Lj≈j {X} {Y} = begin L X Y Y ∘ 𝕃 λ⇒ ≈˘⟨ 𝕃-comm′ ⟩ 𝕃 (𝕃 (ε.η Y ∘ id ⊗₁ ε.η Y ∘ α⇒) ∘ 𝕃 λ⇒ ⊗₁ id) ≈˘⟨ 𝕃-resp-≈ 𝕃-comm′ ⟩ 𝕃 (𝕃 $ (ε.η Y ∘ id ⊗₁ ε.η Y ∘ α⇒) ∘ (𝕃 λ⇒ ⊗₁ id) ⊗₁ id) ≈⟨ 𝕃-resp-≈ $ 𝕃-resp-≈ $ absorb-λ⇒ ⟩ 𝕃 (𝕃 (Radjunct λ⇒)) ≈⟨ 𝕃-resp-≈ LRadjunct≈id ⟩ diagonal.α [ X , Y ]₀ ∎ where absorb-λ⇒ : (ε.η Y ∘ id ⊗₁ ε.η {X} Y ∘ α⇒) ∘ (𝕃 λ⇒ ⊗₁ id) ⊗₁ id ≈ Radjunct λ⇒ absorb-λ⇒ = begin (ε.η Y ∘ id ⊗₁ ε.η Y ∘ α⇒) ∘ (𝕃 λ⇒ ⊗₁ id) ⊗₁ id ≈⟨ pull-last assoc-commute-from ⟩ ε.η Y ∘ id ⊗₁ ε.η Y ∘ 𝕃 λ⇒ ⊗₁ id ⊗₁ id ∘ α⇒ ≈˘⟨ assoc ⟩ (ε.η Y ∘ id ⊗₁ ε.η Y) ∘ 𝕃 λ⇒ ⊗₁ id ⊗₁ id ∘ α⇒ ≈⟨ refl⟩∘⟨ ⊗.F-resp-≈ (refl , ⊗.identity) ⟩∘⟨refl ⟩ (ε.η Y ∘ id ⊗₁ ε.η Y) ∘ 𝕃 λ⇒ ⊗₁ id ∘ α⇒ ≈⟨ center [ ⊗ ]-commute ⟩ ε.η Y ∘ (𝕃 λ⇒ ⊗₁ id ∘ id ⊗₁ ε.η Y) ∘ α⇒ ≈⟨ pull-first RLadjunct≈id ⟩ λ⇒ ∘ id ⊗₁ ε.η Y ∘ α⇒ ≈⟨ pullˡ unitorˡ-commute-from ⟩ (ε.η Y ∘ λ⇒) ∘ α⇒ ≈⟨ pullʳ coherence₁ ⟩ Radjunct λ⇒ ∎ jL≈i : {X Y : Obj} → [ diagonal.α X , id ]₁ ∘ L X X Y ≈ identity.⇒.η [ X , Y ]₀ jL≈i {X} {Y} = begin [ Δ X , id ]₁ ∘ L X X Y ≈˘⟨ pushˡ [ [-,-] ]-commute ⟩ ([ id , 𝕃 inner ]₁ ∘ [ Δ X , id ]₁) ∘ η.η XY ≈˘⟨ pushʳ (mate.commute₁ (diagonal.α X)) ⟩ [ id , 𝕃 inner ]₁ ∘ [ id , id ⊗₁ Δ X ]₁ ∘ η.η XY ≈˘⟨ pushˡ (ℱ.homomorphism [ unit ,-]) ⟩ 𝕃 (𝕃 inner ∘ id ⊗₁ Δ X) ≈˘⟨ 𝕃-resp-≈ $ 𝕃-comm′ ⟩ 𝕃 (𝕃 $ inner ∘ (id ⊗₁ Δ X) ⊗₁ id) ≈⟨ 𝕃-resp-≈ $ 𝕃-resp-≈ inner∘diag⇒ℝρ ⟩ 𝕃 (𝕃 $ Radjunct ρ⇒) ≈⟨ 𝕃-resp-≈ $ LRadjunct≈id ⟩ 𝕃 ρ⇒ ≈˘⟨ identityˡ ⟩ id ∘ 𝕃 ρ⇒ ∎ where XY = [ X , Y ]₀ inner = ε.η Y ∘ id ⊗₁ ε.η X ∘ α⇒ Δ = diagonal.α inner∘diag⇒ℝρ : inner ∘ (id ⊗₁ Δ X) ⊗₁ id ≈ Radjunct ρ⇒ inner∘diag⇒ℝρ = begin inner ∘ (id ⊗₁ Δ X) ⊗₁ id ≈⟨ pull-last assoc-commute-from ○ ⟺ assoc ⟩ (ε.η Y ∘ id ⊗₁ ε.η X) ∘ id ⊗₁ Δ X ⊗₁ id ∘ α⇒ ≈⟨ center (⟺ (ℱ.homomorphism (XY ⊗-))) ⟩ ε.η Y ∘ id ⊗₁ (ε.η X ∘ 𝕃 λ⇒ ⊗₁ id) ∘ α⇒ ≈⟨ refl⟩∘⟨ ℱ.F-resp-≈ (XY ⊗-) RLadjunct≈id ⟩∘⟨refl ⟩ ε.η Y ∘ id ⊗₁ λ⇒ ∘ α⇒ ≈⟨ refl⟩∘⟨ triangle ⟩ Radjunct ρ⇒ ∎ private i-η = identity.⇒.η -- Not about diagonal, but it feels like a waste to start another file just for this iL≈i : {Y Z : Obj} → [ i-η Y , id ]₁ ∘ L unit Y Z ≈ [ id , i-η Z ]₁ iL≈i {Y} {Z} = begin [ i-η Y , id ]₁ ∘ L unit Y Z ≈˘⟨ pushˡ [ [-,-] ]-commute ⟩ ([ id , 𝕃 inner ]₁ ∘ [ i-η Y , id ]₁) ∘ η.η YZ ≈⟨ ( refl⟩∘⟨ (ℱ.F-resp-≈ [-, YZ ⊗₀ [ unit , Y ]₀ ] identityˡ)) ⟩∘⟨refl ⟩ ([ id , 𝕃 inner ]₁ ∘ [ 𝕃 ρ⇒ , id ]₁) ∘ η.η YZ ≈˘⟨ pushʳ (mate.commute₁ (𝕃 ρ⇒)) ⟩ [ id , 𝕃 inner ]₁ ∘ [ id , id ⊗₁ 𝕃 ρ⇒ ]₁ ∘ η.η YZ ≈˘⟨ pushˡ (ℱ.homomorphism [ Y ,-]) ⟩ 𝕃 (𝕃 inner ∘ id ⊗₁ 𝕃 ρ⇒) ≈˘⟨ 𝕃-resp-≈ 𝕃-comm′ ⟩ 𝕃 (𝕃 $ inner ∘ (id ⊗₁ 𝕃 ρ⇒) ⊗₁ id) ≈⟨ 𝕃-resp-≈ $ 𝕃-resp-≈ absorb ⟩ 𝕃 (𝕃 $ ε.η Z ∘ ρ⇒) ≈⟨ 𝕃-resp-≈ $ ∘-resp-≈ˡ (ℱ.homomorphism [ unit ,-]) ○ (assoc ○ ∘-resp-≈ʳ (⟺ identityˡ)) ⟩ 𝕃 ([ id , ε.η Z ]₁ ∘ i-η (YZ ⊗₀ Y)) ≈˘⟨ 𝕃-resp-≈ $ identity.⇒.commute (ε.η Z) ⟩ 𝕃 (i-η Z ∘ ε.η Z) ≈˘⟨ 𝕃-resp-≈ $ ε.commute (i-η Z) ⟩ 𝕃 (Radjunct [ id , i-η Z ]₁) ≈⟨ LRadjunct≈id ⟩ [ id , i-η Z ]₁ ∎ where YZ = [ Y , Z ]₀ inner = ε.η Z ∘ id ⊗₁ ε.η Y ∘ α⇒ absorb : inner ∘ (id ⊗₁ 𝕃 ρ⇒) ⊗₁ id ≈ ε.η Z ∘ ρ⇒ absorb = begin inner ∘ (id ⊗₁ 𝕃 ρ⇒) ⊗₁ id ≈⟨ pull-last assoc-commute-from ○ ⟺ assoc ⟩ (ε.η Z ∘ id ⊗₁ ε.η Y) ∘ id ⊗₁ 𝕃 ρ⇒ ⊗₁ id ∘ α⇒ ≈⟨ center (⟺ (ℱ.homomorphism (YZ ⊗-))) ⟩ ε.η Z ∘ id ⊗₁ (ε.η Y ∘ 𝕃 ρ⇒ ⊗₁ id) ∘ α⇒ ≈⟨ refl⟩∘⟨ ℱ.F-resp-≈ (YZ ⊗-) RLadjunct≈id ⟩∘⟨refl ⟩ ε.η Z ∘ id ⊗₁ ρ⇒ ∘ α⇒ ≈⟨ refl⟩∘⟨ coherence₂ ⟩ ε.η Z ∘ ρ⇒ ∎
{ "alphanum_fraction": 0.4906940337, "avg_line_length": 49.1367521368, "ext": "agda", "hexsha": "f62a9b6ff4923880654f8c8f23dc707e2fc3dbc0", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/Category/Monoidal/Closed/IsClosed/Diagonal.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/Category/Monoidal/Closed/IsClosed/Diagonal.agda", "max_line_length": 125, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/Category/Monoidal/Closed/IsClosed/Diagonal.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 2825, "size": 5749 }
{- Type class for monads. -} module CategoryTheory.Monad where open import CategoryTheory.Categories open import CategoryTheory.Functor open import CategoryTheory.NatTrans -- A monad on a category record Monad {n} (ℂ : Category n) : Set (lsuc n) where open Category ℂ field -- Underlying endofunctor T : Endofunctor ℂ open Functor T field -- || Definitions -- Unit / return η : I ⟹ T -- Multiplication / join μ : (T ²) ⟹ T module η = _⟹_ η module μ = _⟹_ μ field -- || Laws -- Unit on both sides is cancelled by multiplication (unit) η-unit1 : ∀ {A : obj} -> (μ.at A) ∘ (η.at (omap A)) ≈ id η-unit2 : ∀ {A : obj} -> (μ.at A) ∘ (fmap (η.at A)) ≈ id -- Multiplication can be performed on both sides (associativity) μ-assoc : ∀ {A : obj} -> (μ.at A) ∘ (μ.at (omap A)) ≈ (μ.at A) ∘ (fmap (μ.at A))
{ "alphanum_fraction": 0.5410176532, "avg_line_length": 27.5142857143, "ext": "agda", "hexsha": "889ea43334a1d5a7cdf1eefcb19eae3f56186937", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DimaSamoz/temporal-type-systems", "max_forks_repo_path": "src/CategoryTheory/Monad.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DimaSamoz/temporal-type-systems", "max_issues_repo_path": "src/CategoryTheory/Monad.agda", "max_line_length": 72, "max_stars_count": 4, "max_stars_repo_head_hexsha": "7d993ba55e502d5ef8707ca216519012121a08dd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DimaSamoz/temporal-type-systems", "max_stars_repo_path": "src/CategoryTheory/Monad.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-04T09:33:48.000Z", "max_stars_repo_stars_event_min_datetime": "2018-05-31T20:37:04.000Z", "num_tokens": 306, "size": 963 }
-- Andreas, 2015-03-16 -- Andreas, 2020-10-26 removed loop during injectivity check open import Agda.Builtin.Size -- Note: the assumption of pred is absurd, -- but still should not make Agda loop. module _ (pred : ∀ i → Size< i) where data ⊥ : Set where data SizeLt (i : Size) : Set where wrap : (j : Size< i) → SizeLt i loop : (d : ∀ i → SizeLt i) → ∀ i → SizeLt i → ⊥ loop d i (wrap j) = loop d j (d j) -- -- Loops during injectivity check: -- loop : ∀ i → SizeLt i → ⊥ -- loop i (wrap j) = loop j (wrap (pred j)) d : ∀ i → SizeLt i d i = wrap (pred i) absurd : ⊥ absurd = loop d ∞ (d ∞) _ = FIXME -- Testcase temporarily mutilated, original error: -- -- -Issue1428a.agda:.. -- -Functions may not return sizes, thus, function type -- -(i : Size) → Size< i is illegal -- -when checking that the expression ∀ i → Size< i is a type -- -- +Issue1428a.agda:... -- +Not in scope: -- + FIXME at Issue1428a.agda:... -- +when scope checking FIXME
{ "alphanum_fraction": 0.6226415094, "avg_line_length": 22.7142857143, "ext": "agda", "hexsha": "53e83c384eea708540d310c3b58e1c4c1919936b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "shlevy/agda", "max_forks_repo_path": "test/Fail/Issue1428a.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Fail/Issue1428a.agda", "max_line_length": 61, "max_stars_count": null, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Fail/Issue1428a.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 320, "size": 954 }
-- -- open import Relation.Binary using (Rel; Setoid; IsEquivalence) -- open import Level as Lvl using () module Structures {G F : Set} (_≈G_ : G → G → Set) (_≈F_ : F → F → Set) where -- import M as M’ open import Algebra.Structures _≈G_ using (IsAbelianGroup) open import Algebra.Structures _≈F_ using (IsCommutativeRing) open import Relation.Nullary open import Algebra.FunctionProperties _≈F_ using (Inverse) record IsField (+ * : F → F → F) (𝟘 𝟙 : F) (- : F → F) (⁻¹ : (a : F) → ¬ (a ≈F 𝟘) → F) : Set where field isCommutativeRing : IsCommutativeRing + * - 𝟘 𝟙 *-inverse : Inverse {! !} {! ⁻¹ !} {! !} record IsVectorSpace (+ᵍ : G → G → G) (𝟘ᵍ : G) (-ᵍ : G → G) : Set where -- module G = field G-isAbelianGroup : IsAbelianGroup +ᵍ 𝟘ᵍ -ᵍ F-isField : {! Rel !} -- IsAbelianGroup {! +G !} {! !} {! !} {! !}
{ "alphanum_fraction": 0.570781427, "avg_line_length": 20.5348837209, "ext": "agda", "hexsha": "5c9cbc43a1afb17387f9210cd460f4ac46ae0a38", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "217c63f308e6142e3fa4abd93b12bf0f3ccdc6df", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/linear-algebra", "max_forks_repo_path": "Structures.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "217c63f308e6142e3fa4abd93b12bf0f3ccdc6df", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/linear-algebra", "max_issues_repo_path": "Structures.agda", "max_line_length": 98, "max_stars_count": 1, "max_stars_repo_head_hexsha": "217c63f308e6142e3fa4abd93b12bf0f3ccdc6df", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/linear-algebra", "max_stars_repo_path": "Structures.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-05T13:17:44.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-05T13:17:44.000Z", "num_tokens": 349, "size": 883 }
module OlderBasicILP.Direct.Gentzen where open import Common.Context public -- Propositions of intuitionistic logic of proofs, without ∨, ⊥, or +. mutual infixr 10 _⦂_ infixl 9 _∧_ infixr 7 _▻_ data Ty : Set where α_ : Atom → Ty _▻_ : Ty → Ty → Ty _⦂_ : Box → Ty → Ty _∧_ : Ty → Ty → Ty ⊤ : Ty record Box : Set where inductive constructor [_] field {/A} : Ty t : ∅ ⊢ /A _⦂⋆_ : ∀ {n} → VCx Box n → VCx Ty n → Cx Ty ∅ ⦂⋆ ∅ = ∅ (ts , t) ⦂⋆ (Ξ , A) = (ts ⦂⋆ Ξ) , (t ⦂ A) -- Derivations, as Gentzen-style natural deduction trees. infix 3 _⊢_ data _⊢_ (Γ : Cx Ty) : Ty → Set where var : ∀ {A} → A ∈ Γ → Γ ⊢ A lam : ∀ {A B} → Γ , A ⊢ B → Γ ⊢ A ▻ B app : ∀ {A B} → Γ ⊢ A ▻ B → Γ ⊢ A → Γ ⊢ B -- multibox : ∀ {n A} {[ss] : VCx Box n} {Ξ : VCx Ty n} -- → Γ ⊢⋆ [ss] ⦂⋆ Ξ → (u : [ss] ⦂⋆ Ξ ⊢ A) -- → Γ ⊢ [ u ] ⦂ A down : ∀ {A} {t : ∅ ⊢ A} → Γ ⊢ [ t ] ⦂ A → Γ ⊢ A pair : ∀ {A B} → Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B fst : ∀ {A B} → Γ ⊢ A ∧ B → Γ ⊢ A snd : ∀ {A B} → Γ ⊢ A ∧ B → Γ ⊢ B unit : Γ ⊢ ⊤ infix 3 _⊢⋆_ _⊢⋆_ : Cx Ty → Cx Ty → Set Γ ⊢⋆ ∅ = 𝟙 Γ ⊢⋆ Ξ , A = Γ ⊢⋆ Ξ × Γ ⊢ A infix 7 _▻◅_ _▻◅_ : Ty → Ty → Ty A ▻◅ B = (A ▻ B) ∧ (B ▻ A) -- Monotonicity with respect to context inclusion. mutual mono⊢ : ∀ {A Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢ A → Γ′ ⊢ A mono⊢ η (var i) = var (mono∈ η i) mono⊢ η (lam t) = lam (mono⊢ (keep η) t) mono⊢ η (app t u) = app (mono⊢ η t) (mono⊢ η u) -- mono⊢ η (multibox ts u) = multibox (mono⊢⋆ η ts) u mono⊢ η (down t) = down (mono⊢ η t) mono⊢ η (pair t u) = pair (mono⊢ η t) (mono⊢ η u) mono⊢ η (fst t) = fst (mono⊢ η t) mono⊢ η (snd t) = snd (mono⊢ η t) mono⊢ η unit = unit mono⊢⋆ : ∀ {Ξ Γ Γ′} → Γ ⊆ Γ′ → Γ ⊢⋆ Ξ → Γ′ ⊢⋆ Ξ mono⊢⋆ {∅} η ∙ = ∙ mono⊢⋆ {Ξ , A} η (ts , t) = mono⊢⋆ η ts , mono⊢ η t -- Shorthand for variables. v₀ : ∀ {A Γ} → Γ , A ⊢ A v₀ = var i₀ v₁ : ∀ {A B Γ} → (Γ , A) , B ⊢ A v₁ = var i₁ v₂ : ∀ {A B C Γ} → ((Γ , A) , B) , C ⊢ A v₂ = var i₂ -- Reflexivity. refl⊢⋆ : ∀ {Γ} → Γ ⊢⋆ Γ refl⊢⋆ {∅} = ∙ refl⊢⋆ {Γ , A} = mono⊢⋆ weak⊆ refl⊢⋆ , v₀ -- Deduction theorem is built-in. -- Detachment theorem. det : ∀ {A B Γ} → Γ ⊢ A ▻ B → Γ , A ⊢ B det t = app (mono⊢ weak⊆ t) v₀ -- Cut and multicut. cut : ∀ {A B Γ} → Γ ⊢ A → Γ , A ⊢ B → Γ ⊢ B cut t u = app (lam u) t multicut : ∀ {Ξ A Γ} → Γ ⊢⋆ Ξ → Ξ ⊢ A → Γ ⊢ A multicut {∅} ∙ u = mono⊢ bot⊆ u multicut {Ξ , B} (ts , t) u = app (multicut ts (lam u)) t -- Transitivity. trans⊢⋆ : ∀ {Γ″ Γ′ Γ} → Γ ⊢⋆ Γ′ → Γ′ ⊢⋆ Γ″ → Γ ⊢⋆ Γ″ trans⊢⋆ {∅} ts ∙ = ∙ trans⊢⋆ {Γ″ , A} ts (us , u) = trans⊢⋆ ts us , multicut ts u -- Contraction. ccont : ∀ {A B Γ} → Γ ⊢ (A ▻ A ▻ B) ▻ A ▻ B ccont = lam (lam (app (app v₁ v₀) v₀)) cont : ∀ {A B Γ} → Γ , A , A ⊢ B → Γ , A ⊢ B cont t = det (app ccont (lam (lam t))) -- Exchange, or Schönfinkel’s C combinator. cexch : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ B ▻ A ▻ C cexch = lam (lam (lam (app (app v₂ v₀) v₁))) exch : ∀ {A B C Γ} → Γ , A , B ⊢ C → Γ , B , A ⊢ C exch t = det (det (app cexch (lam (lam t)))) -- Composition, or Schönfinkel’s B combinator. ccomp : ∀ {A B C Γ} → Γ ⊢ (B ▻ C) ▻ (A ▻ B) ▻ A ▻ C ccomp = lam (lam (lam (app v₂ (app v₁ v₀)))) comp : ∀ {A B C Γ} → Γ , B ⊢ C → Γ , A ⊢ B → Γ , A ⊢ C comp t u = det (app (app ccomp (lam t)) (lam u)) -- Useful theorems in functional form. -- dist : ∀ {A B Ψ Γ} {t : Ψ ⊢ A ▻ B} {u : Ψ ⊢ A} -- → Γ ⊢ [ t ] ⦂ (A ▻ B) → Γ ⊢ [ u ] ⦂ A -- → Γ ⊢ [ app (down v₁) (down v₀) ] ⦂ B -- dist t u = multibox ((∙ , t) , u) (app (down v₁) (down v₀)) -- -- up : ∀ {A Ψ Γ} {t : Ψ ⊢ A} -- → Γ ⊢ [ t ] ⦂ A -- → Γ ⊢ [ v₀ ] ⦂ [ t ] ⦂ A -- up t = multibox (∙ , t) v₀ -- -- distup : ∀ {A B Ψ Γ} {u : Ψ ⊢ A} {t : ∅ , [ u ] ⦂ A ⊢ [ u ] ⦂ A ▻ B} -- → Γ ⊢ [ t ] ⦂ ([ u ] ⦂ A ▻ B) → Γ ⊢ [ u ] ⦂ A -- → Γ ⊢ [ app (down v₁) (down v₀) ] ⦂ B -- distup t u = dist t (up u) -- -- box : ∀ {A Γ} -- → (t : ∅ ⊢ A) -- → Γ ⊢ [ t ] ⦂ A -- box t = multibox ∙ t unbox : ∀ {A C Γ} {t : ∅ ⊢ A} {u : ∅ ⊢ C} → Γ ⊢ [ t ] ⦂ A → Γ , [ t ] ⦂ A ⊢ [ u ] ⦂ C → Γ ⊢ [ u ] ⦂ C unbox t u = app (lam u) t -- Useful theorems in combinatory form. ci : ∀ {A Γ} → Γ ⊢ A ▻ A ci = lam v₀ ck : ∀ {A B Γ} → Γ ⊢ A ▻ B ▻ A ck = lam (lam v₁) cs : ∀ {A B C Γ} → Γ ⊢ (A ▻ B ▻ C) ▻ (A ▻ B) ▻ A ▻ C cs = lam (lam (lam (app (app v₂ v₀) (app v₁ v₀)))) -- cdist : ∀ {A B Ψ Γ} {t : Ψ ⊢ A ▻ B} {u : Ψ ⊢ A} -- → Γ ⊢ [ t ] ⦂ (A ▻ B) ▻ [ u ] ⦂ A ▻ [ app (down v₁) (down v₀) ] ⦂ B -- cdist = lam (lam (dist v₁ v₀)) -- -- cup : ∀ {A Ψ Γ} {t : Ψ ⊢ A} → Γ ⊢ [ t ] ⦂ A ▻ [ v₀ ] ⦂ [ t ] ⦂ A -- cup = lam (up v₀) cdown : ∀ {A Γ} {t : ∅ ⊢ A} → Γ ⊢ [ t ] ⦂ A ▻ A cdown = lam (down v₀) -- cdistup : ∀ {A B Ψ Γ} {u : Ψ ⊢ A} {t : ∅ , [ u ] ⦂ A ⊢ [ u ] ⦂ A ▻ B} -- → Γ ⊢ [ t ] ⦂ ([ u ] ⦂ A ▻ B) ▻ [ u ] ⦂ A ▻ [ app (down v₁) (down v₀) ] ⦂ B -- cdistup = lam (lam (dist v₁ (up v₀))) cunbox : ∀ {A C Γ} {t : ∅ ⊢ A} {u : ∅ ⊢ C} → Γ ⊢ [ t ] ⦂ A ▻ ([ t ] ⦂ A ▻ C) ▻ C cunbox = lam (lam (app v₀ v₁)) cpair : ∀ {A B Γ} → Γ ⊢ A ▻ B ▻ A ∧ B cpair = lam (lam (pair v₁ v₀)) cfst : ∀ {A B Γ} → Γ ⊢ A ∧ B ▻ A cfst = lam (fst v₀) csnd : ∀ {A B Γ} → Γ ⊢ A ∧ B ▻ B csnd = lam (snd v₀) -- Closure under context concatenation. concat : ∀ {A B Γ} Γ′ → Γ , A ⊢ B → Γ′ ⊢ A → Γ ⧺ Γ′ ⊢ B concat Γ′ t u = app (mono⊢ (weak⊆⧺₁ Γ′) (lam t)) (mono⊢ weak⊆⧺₂ u) -- Substitution. mutual [_≔_]_ : ∀ {A B Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ A → Γ ⊢ B → Γ ∖ i ⊢ B [ i ≔ s ] var j with i ≟∈ j [ i ≔ s ] var .i | same = s [ i ≔ s ] var ._ | diff j = var j [ i ≔ s ] lam t = lam ([ pop i ≔ mono⊢ weak⊆ s ] t) [ i ≔ s ] app t u = app ([ i ≔ s ] t) ([ i ≔ s ] u) -- [ i ≔ s ] multibox ts u = multibox ([ i ≔ s ]⋆ ts) u [ i ≔ s ] down t = down ([ i ≔ s ] t) [ i ≔ s ] pair t u = pair ([ i ≔ s ] t) ([ i ≔ s ] u) [ i ≔ s ] fst t = fst ([ i ≔ s ] t) [ i ≔ s ] snd t = snd ([ i ≔ s ] t) [ i ≔ s ] unit = unit [_≔_]⋆_ : ∀ {Ξ A Γ} → (i : A ∈ Γ) → Γ ∖ i ⊢ A → Γ ⊢⋆ Ξ → Γ ∖ i ⊢⋆ Ξ [_≔_]⋆_ {∅} i s ∙ = ∙ [_≔_]⋆_ {Ξ , B} i s (ts , t) = [ i ≔ s ]⋆ ts , [ i ≔ s ] t
{ "alphanum_fraction": 0.3869001094, "avg_line_length": 26.7656903766, "ext": "agda", "hexsha": "c5f5a8314747cd2b18659d97b1c596daa117d90d", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_forks_repo_licenses": [ "X11" ], "max_forks_repo_name": "mietek/hilbert-gentzen", "max_forks_repo_path": "OlderBasicILP/Direct/Gentzen.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_issues_repo_issues_event_max_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_issues_event_min_datetime": "2018-06-10T09:11:22.000Z", "max_issues_repo_licenses": [ "X11" ], "max_issues_repo_name": "mietek/hilbert-gentzen", "max_issues_repo_path": "OlderBasicILP/Direct/Gentzen.agda", "max_line_length": 88, "max_stars_count": 29, "max_stars_repo_head_hexsha": "fcd187db70f0a39b894fe44fad0107f61849405c", "max_stars_repo_licenses": [ "X11" ], "max_stars_repo_name": "mietek/hilbert-gentzen", "max_stars_repo_path": "OlderBasicILP/Direct/Gentzen.agda", "max_stars_repo_stars_event_max_datetime": "2022-01-01T10:29:18.000Z", "max_stars_repo_stars_event_min_datetime": "2016-07-03T18:51:56.000Z", "num_tokens": 3322, "size": 6397 }
------------------------------------------------------------------------ -- "Equational" reasoning combinator setup ------------------------------------------------------------------------ {-# OPTIONS --sized-types #-} open import Labelled-transition-system module Expansion.Equational-reasoning-instances {ℓ} {lts : LTS ℓ} where open import Prelude open import Bisimilarity lts import Bisimilarity.Equational-reasoning-instances open import Equational-reasoning open import Expansion lts instance reflexive≳ : ∀ {i} → Reflexive [ i ]_≳_ reflexive≳ = is-reflexive reflexive-≳ reflexive≳′ : ∀ {i} → Reflexive [ i ]_≳′_ reflexive≳′ = is-reflexive reflexive-≳′ convert≳≳ : ∀ {i} → Convertible [ i ]_≳_ [ i ]_≳_ convert≳≳ = is-convertible id convert≳′≳ : ∀ {i} → Convertible _≳′_ [ i ]_≳_ convert≳′≳ = is-convertible λ p≳′q → force p≳′q convert≳≳′ : ∀ {i} → Convertible [ i ]_≳_ [ i ]_≳′_ convert≳≳′ = is-convertible lemma where lemma : ∀ {i p q} → [ i ] p ≳ q → [ i ] p ≳′ q force (lemma p≳q) = p≳q convert≳′≳′ : ∀ {i} → Convertible [ i ]_≳′_ [ i ]_≳′_ convert≳′≳′ = is-convertible id convert∼≳ : ∀ {i} → Convertible [ i ]_∼_ [ i ]_≳_ convert∼≳ = is-convertible ∼⇒≳ convert∼′≳ : ∀ {i} → Convertible _∼′_ [ i ]_≳_ convert∼′≳ = is-convertible (convert ∘ ∼⇒≳′) convert∼≳′ : ∀ {i} → Convertible [ i ]_∼_ [ i ]_≳′_ convert∼≳′ {i} = is-convertible lemma where lemma : ∀ {p q} → [ i ] p ∼ q → [ i ] p ≳′ q force (lemma p∼q) = ∼⇒≳ p∼q convert∼′≳′ : ∀ {i} → Convertible [ i ]_∼′_ [ i ]_≳′_ convert∼′≳′ = is-convertible ∼⇒≳′ trans≳≳ : ∀ {i} → Transitive _≳_ [ i ]_≳_ trans≳≳ = is-transitive transitive-≳ trans≳′≳ : ∀ {i} → Transitive _≳′_ [ i ]_≳_ trans≳′≳ = is-transitive λ p≳′q → transitive (force p≳′q) trans≳′≳′ : ∀ {i} → Transitive _≳′_ [ i ]_≳′_ trans≳′≳′ = is-transitive transitive-≳′ trans≳≳′ : ∀ {i} → Transitive _≳_ [ i ]_≳′_ trans≳≳′ = is-transitive lemma where lemma : ∀ {i p q r} → p ≳ q → [ i ] q ≳′ r → [ i ] p ≳′ r force (lemma p≳q q≳′r) = transitive-≳ p≳q (force q≳′r) trans∼≳ : ∀ {i} → Transitive _∼_ [ i ]_≳_ trans∼≳ = is-transitive transitive-∼≳ -- The occurrences of {a = ℓ} below can perhaps be removed if -- Issue #2780 on the Agda bug tracker is fixed. trans∼′≳ : ∀ {i} → Transitive _∼′_ [ i ]_≳_ trans∼′≳ = is-transitive (transitive-∼≳ ∘ convert {a = ℓ}) trans∼′≳′ : ∀ {i} → Transitive _∼′_ [ i ]_≳′_ trans∼′≳′ {i} = is-transitive lemma where lemma : ∀ {p q r} → p ∼′ q → [ i ] q ≳′ r → [ i ] p ≳′ r force (lemma p∼′q q≳′r) = transitive-∼≳ (convert {a = ℓ} p∼′q) (force q≳′r) trans∼≳′ : ∀ {i} → Transitive _∼_ [ i ]_≳′_ trans∼≳′ {i} = is-transitive lemma where lemma : ∀ {p q r} → p ∼ q → [ i ] q ≳′ r → [ i ] p ≳′ r force (lemma p∼q q≳′r) = transitive-∼≳ p∼q (force q≳′r) trans≳∼ : ∀ {i} → Transitive′ [ i ]_≳_ _∼_ trans≳∼ = is-transitive transitive-≳∼ trans≳∼′ : ∀ {i} → Transitive′ [ i ]_≳_ _∼′_ trans≳∼′ = is-transitive (λ p≳q q∼′r → transitive-≳∼ p≳q (convert {a = ℓ} q∼′r)) trans≳′∼′ : ∀ {i} → Transitive′ [ i ]_≳′_ _∼′_ trans≳′∼′ = is-transitive transitive-≳∼′ trans≳′∼ : ∀ {i} → Transitive′ [ i ]_≳′_ _∼_ trans≳′∼ = is-transitive λ p≳′q q∼r → transitive-≳∼′ p≳′q (convert {a = ℓ} q∼r)
{ "alphanum_fraction": 0.5193939394, "avg_line_length": 31.1320754717, "ext": "agda", "hexsha": "c9cfdf852a6b97e5d933ec3eaffb76b619891eaa", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/up-to", "max_forks_repo_path": "src/Expansion/Equational-reasoning-instances.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/up-to", "max_issues_repo_path": "src/Expansion/Equational-reasoning-instances.agda", "max_line_length": 72, "max_stars_count": null, "max_stars_repo_head_hexsha": "b936ff85411baf3401ad85ce85d5ff2e9aa0ca14", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/up-to", "max_stars_repo_path": "src/Expansion/Equational-reasoning-instances.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1530, "size": 3300 }
module Structure.Numeral.Integer where import Lvl open import Structure.Setoid open import Structure.Operator.Properties open import Structure.Operator.Ring open import Structure.OrderedField open import Structure.Relator open import Type private variable ℓₒ ℓₗ ℓₑ ℓₗ₁ ℓₗ₂ : Lvl.Level private variable Z : Type{ℓₒ} record Integer ⦃ equiv : Equiv{ℓₑ}(Z) ⦄ (_+_ : Z → Z → Z) (_⋅_ : Z → Z → Z) (_≤_ : Z → Z → Type{ℓₗ}) : Typeω where constructor intro field ⦃ ring ⦄ : Ring(_+_)(_⋅_) ⦃ ordered ⦄ : Ordered(_+_)(_⋅_)(_≤_) open Ring(ring) public open Ordered(ordered) public 𝐒 : Z → Z 𝐒 = _+ 𝟏 𝐏 : Z → Z 𝐏 = _− 𝟏 field ⦃ distinct-identities ⦄ : DistinctIdentities positive-induction : ∀{ℓ}{P : Z → Type{ℓ}} ⦃ rel-p : UnaryRelator(P) ⦄ → P(𝟎) → (∀{n} → (𝟎 ≤ n) → P(n) → P(𝐒(n))) → (∀{n} → (𝟎 ≤ n) → P(n))
{ "alphanum_fraction": 0.6062355658, "avg_line_length": 27.935483871, "ext": "agda", "hexsha": "a42b6ca3026323ec059dbb5befc72776bf0a6708", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Structure/Numeral/Integer.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Structure/Numeral/Integer.agda", "max_line_length": 143, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Structure/Numeral/Integer.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 359, "size": 866 }
-- Datatype modules weren't added as sections properly. module Issue263b where module M (A : Set) where data D : Set where postulate A : Set open M.D A -- The module M.D is not parameterized, but is being applied to -- arguments -- when checking the module application module _ = M.D A
{ "alphanum_fraction": 0.7260273973, "avg_line_length": 20.8571428571, "ext": "agda", "hexsha": "1be353f53c465574a7319ddb00b2b6a70ce4b4b2", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue263b.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue263b.agda", "max_line_length": 63, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue263b.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 76, "size": 292 }
{-# OPTIONS --cubical --safe #-} module Control.Monad.Weighted.Functor.TypeDef where open import Level data 𝔚-F {r w a p} (R : Type r) (W : Type w) (A : Type a) (P : W → Type p) : Type (r ℓ⊔ a ℓ⊔ p ℓ⊔ w) where [] : 𝔚-F R W A P _◃_∷_⟨_⟩ : ∀ (w : R) (x : A) (xs : W) (P⟨xs⟩ : P xs) → 𝔚-F R W A P
{ "alphanum_fraction": 0.5249169435, "avg_line_length": 30.1, "ext": "agda", "hexsha": "dd4cef990f96d02047efa8795d408a29ba23e054", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z", "max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/agda-playground", "max_forks_repo_path": "Control/Monad/Weighted/Functor/TypeDef.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/agda-playground", "max_issues_repo_path": "Control/Monad/Weighted/Functor/TypeDef.agda", "max_line_length": 106, "max_stars_count": 6, "max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/agda-playground", "max_stars_repo_path": "Control/Monad/Weighted/Functor/TypeDef.agda", "max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z", "max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z", "num_tokens": 148, "size": 301 }
module examplesPaperJFP.Equality where infix 4 _≡_ data _≡_ {a} {A : Set a} (x : A) : A → Set a where refl : x ≡ x -- obsolete, now in Agda.Builtin.Equality: {-# BUILTIN EQUALITY _≡_ #-} -- No longer exists in Agda: {-# BUILTIN REFL refl #-}
{ "alphanum_fraction": 0.6330645161, "avg_line_length": 24.8, "ext": "agda", "hexsha": "13a911209d16576207eb474cebfd04eaa25e5c02", "lang": "Agda", "max_forks_count": 2, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:41:00.000Z", "max_forks_repo_forks_event_min_datetime": "2018-09-01T15:02:37.000Z", "max_forks_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/ooAgda", "max_forks_repo_path": "examples/examplesPaperJFP/Equality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/ooAgda", "max_issues_repo_path": "examples/examplesPaperJFP/Equality.agda", "max_line_length": 71, "max_stars_count": 23, "max_stars_repo_head_hexsha": "7cc45e0148a4a508d20ed67e791544c30fecd795", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/ooAgda", "max_stars_repo_path": "examples/examplesPaperJFP/Equality.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-12T23:15:25.000Z", "max_stars_repo_stars_event_min_datetime": "2016-06-19T12:57:55.000Z", "num_tokens": 91, "size": 248 }
-- {-# OPTIONS -v tc.inj:100 -v tc.reduce:100 #-} module Issue801 where data ℕ : Set where zero : ℕ suc : ℕ → ℕ data _≡_ {A : Set}(x : A) : A → Set where refl : x ≡ x cong : ∀ {A : Set} {B : Set} (f : A → B) {x y} → x ≡ y → f x ≡ f y cong f refl = refl lem : (n : ℕ) → n ≡ n lem zero = refl lem (suc n) = cong (λ x → x) (lem (suc n)) -- Andreas: this made the injectivity checker loop. -- Now it should just report a termination error.
{ "alphanum_fraction": 0.5470459519, "avg_line_length": 22.85, "ext": "agda", "hexsha": "8941343d0f0aee3c4c0efd0df57ae2f36fcfcfe7", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue801.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue801.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue801.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 177, "size": 457 }
------------------------------------------------------------------------ -- Partial functions, computability ------------------------------------------------------------------------ open import Atom module Computability (atoms : χ-atoms) where open import Equality.Propositional.Cubical open import Logical-equivalence using (_⇔_) open import Prelude as P hiding (_∘_; Decidable) open import Tactic.By.Propositional open import Bool equality-with-J open import Bijection equality-with-J using (_↔_) open import Double-negation equality-with-J open import Equality.Decision-procedures equality-with-J import Equivalence equality-with-J as Eq open import Function-universe equality-with-J hiding (id; _∘_) open import H-level equality-with-J as H-level open import H-level.Closure equality-with-J open import H-level.Truncation.Propositional equality-with-paths as Trunc open import Injection equality-with-J using (Injective) open import Monad equality-with-J open import Chi atoms open import Coding atoms import Coding.Instances atoms as Dummy open import Deterministic atoms open import Free-variables atoms open import Propositional atoms open import Reasoning atoms open import Values atoms -- Partial functions for which the relation defining the partial -- function must be propositional. record _⇀_ {a b} (A : Type a) (B : Type b) : Type (lsuc (a ⊔ b)) where infix 4 _[_]=_ field -- The relation defining the partial function. _[_]=_ : A → B → Type (a ⊔ b) -- The relation must be deterministic and propositional. deterministic : ∀ {a b₁ b₂} → _[_]=_ a b₁ → _[_]=_ a b₂ → b₁ ≡ b₂ propositional : ∀ {a b} → Is-proposition (_[_]=_ a b) -- A simple lemma. ∃[]=-propositional : ∀ {a} → Is-proposition (∃ (_[_]=_ a)) ∃[]=-propositional (b₁ , [a]=b₁) (b₂ , [a]=b₂) = Σ-≡,≡→≡ (deterministic [a]=b₁ [a]=b₂) (propositional _ _) open _⇀_ public using (_[_]=_) -- Totality. The definition is parametrised by something which could -- be a modality. Total : ∀ {a b} {A : Type a} {B : Type b} → (Type (a ⊔ b) → Type (a ⊔ b)) → A ⇀ B → Type (a ⊔ b) Total P f = ∀ a → P (∃ λ b → f [ a ]= b) -- Totality with ∥_∥ as the modality implies totality with the -- identity function as the modality. total-with-∥∥→total : ∀ {a b} {A : Type a} {B : Type b} (f : A ⇀ B) → Total ∥_∥ f → Total id f total-with-∥∥→total f total a = Trunc.rec (_⇀_.∃[]=-propositional f) id (total a) -- If the codomain of a function is a set, then the function can be -- turned into a partial function. as-partial : ∀ {a b} {A : Type a} {B : Type b} → Is-set B → (A → B) → A ⇀ B as-partial {ℓa} B-set f = record { _[_]=_ = λ a b → ↑ ℓa (f a ≡ b) ; deterministic = λ {a b₁ b₂} fa≡b₁ fa≡b₂ → b₁ ≡⟨ sym (lower fa≡b₁) ⟩ f a ≡⟨ lower fa≡b₂ ⟩∎ b₂ ∎ ; propositional = ↑-closure 1 (+⇒≡ {n = 1} B-set) } -- Composition of partial functions. infixr 9 _∘_ _∘_ : ∀ {ℓ c} {A B : Type ℓ} {C : Type c} → B ⇀ C → A ⇀ B → A ⇀ C f ∘ g = record { _[_]=_ = λ a c → ∃ λ b → g [ a ]= b × f [ b ]= c ; deterministic = λ where (b₁ , g[a]=b₁ , f[b₁]=c₁) (b₂ , g[a]=b₂ , f[b₂]=c₂) → _⇀_.deterministic f (subst (f [_]= _) (_⇀_.deterministic g g[a]=b₁ g[a]=b₂) f[b₁]=c₁) f[b₂]=c₂ ; propositional = λ {a c} → $⟨ Σ-closure 1 (_⇀_.∃[]=-propositional g) (λ _ → _⇀_.propositional f) ⟩ Is-proposition (∃ λ (p : ∃ λ b → g [ a ]= b) → f [ proj₁ p ]= c) ↝⟨ H-level.respects-surjection (_↔_.surjection $ inverse Σ-assoc) 1 ⟩□ Is-proposition (∃ λ b → g [ a ]= b × f [ b ]= c) □ } -- If f is a partial function, g a function whose domain is a set, and -- f (g a) = c, then (f ∘ g) a = c. pre-apply : ∀ {ℓ c} {A B : Type ℓ} {C : Type c} (f : B ⇀ C) {g : A → B} {a c} (B-set : Is-set B) → f [ g a ]= c → f ∘ as-partial B-set g [ a ]= c pre-apply _ _ f[ga]=b = _ , lift refl , f[ga]=b -- If f is a function whose domain is a set, g a partial function, and -- g a = b, then (f ∘ g) a = f b. post-apply : ∀ {ℓ c} {A B : Type ℓ} {C : Type c} {f : B → C} (g : A ⇀ B) {a b} (C-set : Is-set C) → g [ a ]= b → as-partial C-set f ∘ g [ a ]= f b post-apply _ _ g[a]=b = _ , g[a]=b , lift refl -- Implements P p f means that p is an implementation of f. The -- definition is parametrised by P, which could be a modality. Implements : ∀ {a b} {A : Type a} {B : Type b} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ → (Type (a ⊔ b) → Type (a ⊔ b)) → Exp → A ⇀ B → Type (a ⊔ b) Implements P p f = Closed p × (∀ x y → f [ x ]= y → apply p ⌜ x ⌝ ⇓ ⌜ y ⌝) × (∀ x y → apply p ⌜ x ⌝ ⇓ y → P (∃ λ y′ → f [ x ]= y′ × y ≡ ⌜ y′ ⌝)) -- If P maps propositions to propositions, then Implements P p f is a -- proposition. Implements-propositional : ∀ {a b} {A : Type a} {B : Type b} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ → {P : Type (a ⊔ b) → Type (a ⊔ b)} {p : Exp} (f : A ⇀ B) → (∀ {A} → Is-proposition A → Is-proposition (P A)) → Is-proposition (Implements P p f) Implements-propositional f pres = ×-closure 1 Closed-propositional $ ×-closure 1 (Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → Π-closure ext 1 λ _ → ⇓-propositional) (Π-closure ext 1 λ x → Π-closure ext 1 λ y → Π-closure ext 1 λ _ → pres $ H-level.respects-surjection (_↔_.surjection $ inverse Σ-assoc) 1 (Σ-closure 1 (_⇀_.∃[]=-propositional f) λ _ → Exp-set)) -- Computability. The definition is parametrised by something which -- could be a modality. Computable′ : ∀ {a b} {A : Type a} {B : Type b} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ → (Type (a ⊔ b) → Type (a ⊔ b)) → A ⇀ B → Type (a ⊔ b) Computable′ P f = ∃ λ p → Implements P p f -- Computability. Computable : ∀ {a b} {A : Type a} {B : Type b} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ → A ⇀ B → Type (a ⊔ b) Computable = Computable′ id -- If the partial function is total, then one part of the proof of -- computability can be omitted. total→almost-computable→computable : ∀ {a b} {A : Type a} {B : Type b} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ (P : Type (a ⊔ b) → Type (a ⊔ b)) → (∀ {X Y} → (X → Y) → P X → P Y) → (f : A ⇀ B) → Total P f → (∃ λ p → Closed p × (∀ x y → f [ x ]= y → apply p ⌜ x ⌝ ⇓ ⌜ y ⌝)) → Computable′ P f total→almost-computable→computable P map f total (p , cl-p , hyp) = p , cl-p , hyp , λ x y px⇓y → flip map (total x) λ where (y′ , f[x]=y′) → y′ , f[x]=y′ , ⇓-deterministic px⇓y (hyp x y′ f[x]=y′) -- The semantics of χ as a partial function. semantics : Closed-exp ⇀ Closed-exp semantics = record { _[_]=_ = _⇓_ on proj₁ ; deterministic = λ e⇓v₁ e⇓v₂ → closed-equal-if-expressions-equal (⇓-deterministic e⇓v₁ e⇓v₂) ; propositional = ⇓-propositional } -- Another definition of computability. Computable″ : ∀ {ℓ} {A B : Type ℓ} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ → A ⇀ B → Type ℓ Computable″ f = ∃ λ (p : Closed-exp) → ∀ a → ∀ q → semantics [ apply-cl p ⌜ a ⌝ ]= q ⇔ as-partial Closed-exp-set ⌜_⌝ ∘ f [ a ]= q -- The two definitions of computability are logically equivalent. Computable⇔Computable″ : ∀ {ℓ} {A B : Type ℓ} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ → (f : A ⇀ B) → Computable f ⇔ Computable″ f Computable⇔Computable″ f = record { to = to; from = from } where to : Computable f → Computable″ f to (p , cl , hyp₁ , hyp₂) = (p , cl) , λ { a (q , cl-q) → record { to = Σ-map id (Σ-map id (lift P.∘ closed-equal-if-expressions-equal P.∘ sym)) P.∘ hyp₂ a q ; from = λ { (b , f[a]=b , ⌜b⌝≡q) → apply p ⌜ a ⌝ ⇓⟨ hyp₁ a b f[a]=b ⟩ ⌜ b ⌝ ≡⟨ cong proj₁ (lower ⌜b⌝≡q) ⟩⟶ q ■⟨ subst Value (cong proj₁ (lower ⌜b⌝≡q)) (rep-value b) ⟩ } } } from : Computable″ f → Computable f from ((p , cl) , hyp) = p , cl , (λ a b f[a]=b → apply p ⌜ a ⌝ ⇓⟨ _⇔_.from (hyp a ⌜ b ⌝) (post-apply f Closed-exp-set f[a]=b) ⟩■ ⌜ b ⌝) , λ a q p⌜a⌝⇓q → let cl-q : Closed q cl-q = closed⇓closed p⌜a⌝⇓q (Closed′-closed-under-apply (Closed→Closed′ cl) (Closed→Closed′ (rep-closed a))) in Σ-map id (Σ-map id (cong proj₁ P.∘ sym P.∘ lower)) (_⇔_.to (hyp a (q , cl-q)) p⌜a⌝⇓q) -- Yet another definition of computability. Computable‴ : ∀ {a b} {A : Type a} {B : Type b} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ → A ⇀ B → Type (a ⊔ b) Computable‴ f = ∃ λ (p : Closed-exp) → ∀ a → ∃ λ b → apply (proj₁ p) ⌜ a ⌝ ⇓ ⌜ b ⌝ × f [ a ]= b -- If a partial function is computable by the last definition of -- computability above, then it is also computable by the first one. Computable‴→Computable : ∀ {a b} {A : Type a} {B : Type b} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ → (f : A ⇀ B) → Computable‴ f → Computable f Computable‴→Computable f ((p , cl-p) , hyp) = p , cl-p , (λ a b f[a]=b → case hyp a of λ where (b′ , p⌜a⌝⇓⌜b′⌝ , f[a]=b′) → apply p ⌜ a ⌝ ⇓⟨ p⌜a⌝⇓⌜b′⌝ ⟩ ⌜ b′ ⌝ ≡⟨ by (_⇀_.deterministic f f[a]=b f[a]=b′) ⟩⟶ ⌜ b ⌝ ■⟨ rep-value b ⟩) , (λ a v p⌜a⌝⇓v → case hyp a of λ where (b , p⌜a⌝⇓⌜b⌝ , f[a]=b) → b , f[a]=b , ⇓-deterministic p⌜a⌝⇓v p⌜a⌝⇓⌜b⌝) module _ {a b c d} {A : Type a} {B : Type b} {C : Type c} {D : Type d} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ ⦃ rC : Rep C Consts ⦄ ⦃ rD : Rep D Consts ⦄ where -- Reductions. Reduction : A ⇀ B → C ⇀ D → Type (a ⊔ b ⊔ c ⊔ d) Reduction f g = Computable g → Computable f -- If f can be reduced to g, and f is not computable, then g is not -- computable. Reduction→¬Computable→¬Computable : (f : A ⇀ B) (g : C ⇀ D) → Reduction f g → ¬ Computable f → ¬ Computable g Reduction→¬Computable→¬Computable _ _ red ¬f g = ¬f (red g) -- Total partial functions to the booleans. Note that totality is -- defined using the double-negation modality. _→Bool : ∀ {ℓ} → Type ℓ → Type (lsuc ℓ) A →Bool = ∃ λ (f : A ⇀ Bool) → Total (λ A → ¬¬ A) f -- One way to view a predicate as a total partial function to the -- booleans. as-function-to-Bool₁ : ∀ {a} {A : Type a} → (A → Type a) → A →Bool as-function-to-Bool₁ P = (record { _[_]=_ = λ a b → (P a → b ≡ true) × (¬ P a → b ≡ false) ; deterministic = λ where {b₁ = true} {b₂ = true} _ _ → refl {b₁ = false} {b₂ = false} _ _ → refl {b₁ = true} {b₂ = false} f₁ f₂ → proj₂ f₁ (Bool.true≢false P.∘ sym P.∘ proj₁ f₂) {b₁ = false} {b₂ = true} f₁ f₂ → sym (proj₂ f₂ (Bool.true≢false P.∘ sym P.∘ proj₁ f₁)) ; propositional = ×-closure 1 (Π-closure ext 1 λ _ → Bool-set) (Π-closure ext 1 λ _ → Bool-set) }) , λ a → [ (λ p → true , (λ _ → refl) , ⊥-elim P.∘ (_$ p)) , (λ ¬p → false , ⊥-elim P.∘ ¬p , (λ _ → refl)) ] ⟨$⟩ excluded-middle -- Another way to view a predicate as a total partial function to the -- booleans. as-function-to-Bool₂ : ∀ {a} {A : Type a} → (P : A → Type a) → (∀ {a} → Is-proposition (P a)) → A →Bool as-function-to-Bool₂ P P-prop = (record { _[_]=_ = λ a b → P a × b ≡ true ⊎ ¬ P a × b ≡ false ; deterministic = λ where (inj₁ (_ , refl)) (inj₁ (_ , refl)) → refl (inj₁ (p , _)) (inj₂ (¬p , _)) → ⊥-elim (¬p p) (inj₂ (¬p , _)) (inj₁ (p , _)) → ⊥-elim (¬p p) (inj₂ (_ , refl)) (inj₂ (_ , refl)) → refl ; propositional = λ {_ b} → ⊎-closure-propositional (λ { (_ , b≡true) (_ , b≡false) → Bool.true≢false ( true ≡⟨ sym b≡true ⟩ b ≡⟨ b≡false ⟩∎ false ∎) }) (×-closure 1 P-prop Bool-set) (×-closure 1 (¬-propositional ext) Bool-set) }) , λ a → [ (λ p → true , inj₁ (p , refl)) , (λ ¬p → false , inj₂ (¬p , refl)) ] ⟨$⟩ excluded-middle -- If a is mapped to b by as-function-to-Bool₂ P P-prop, then a is -- also mapped to b by as-function-to-Bool₁ P. to-Bool₂→to-Bool₁ : ∀ {a} {A : Type a} ⦃ rA : Rep A Consts ⦄ (P : A → Type a) (P-prop : ∀ {a} → Is-proposition (P a)) {a b} → proj₁ (as-function-to-Bool₂ P P-prop) [ a ]= b → proj₁ (as-function-to-Bool₁ P) [ a ]= b to-Bool₂→to-Bool₁ _ _ = λ where (inj₁ (Pa , refl)) → (λ _ → refl) , ⊥-elim P.∘ (_$ Pa) (inj₂ (¬Pa , refl)) → ⊥-elim P.∘ ¬Pa , λ _ → refl -- If a is mapped to b by as-function-to-Bool₁ P, then a is not not -- mapped to b by as-function-to-Bool₂ P P-prop. to-Bool₁→to-Bool₂ : ∀ {a} {A : Type a} ⦃ rA : Rep A Consts ⦄ (P : A → Type a) (P-prop : ∀ {a} → Is-proposition (P a)) {a b} → proj₁ (as-function-to-Bool₁ P) [ a ]= b → ¬¬ proj₁ (as-function-to-Bool₂ P P-prop) [ a ]= b to-Bool₁→to-Bool₂ _ _ (Pa→b≡true , ¬Pa→b≡false) = ⊎-map (λ Pa → Pa , Pa→b≡true Pa) (λ ¬Pa → ¬Pa , ¬Pa→b≡false ¬Pa) ⟨$⟩ excluded-middle -- If as-function-to-Bool₁ P is ¬¬-computable, then -- as-function-to-Bool₂ P P-prop is also ¬¬-computable. to-Bool₁-computable→to-Bool₂-computable : ∀ {a} {A : Type a} ⦃ rA : Rep A Consts ⦄ (P : A → Type a) (P-prop : ∀ {a} → Is-proposition (P a)) → Computable′ (λ A → ¬¬ A) (proj₁ (as-function-to-Bool₁ P)) → Computable′ (λ A → ¬¬ A) (proj₁ (as-function-to-Bool₂ P P-prop)) to-Bool₁-computable→to-Bool₂-computable P P-prop (p , cl-p , hyp₁ , hyp₂) = p , cl-p , (λ a b → proj₁ (as-function-to-Bool₂ P P-prop) [ a ]= b ↝⟨ to-Bool₂→to-Bool₁ P P-prop ⟩ proj₁ (as-function-to-Bool₁ P) [ a ]= b ↝⟨ hyp₁ a b ⟩□ apply p ⌜ a ⌝ ⇓ ⌜ b ⌝ □) , λ a e → apply p ⌜ a ⌝ ⇓ e ↝⟨ hyp₂ a e ⟩ ¬¬ (∃ λ b → proj₁ (as-function-to-Bool₁ P) [ a ]= b × e ≡ ⌜ b ⌝) ↝⟨ _>>= (λ { (b , =b , ≡⌜b⌝) → to-Bool₁→to-Bool₂ P P-prop =b >>= λ =b → return (b , =b , ≡⌜b⌝) }) ⟩□ ¬¬ (∃ λ b → proj₁ (as-function-to-Bool₂ P P-prop) [ a ]= b × e ≡ ⌜ b ⌝) □ -- A lemma related to as-function-to-Bool₂. ×≡true⊎¬×≡false⇔⇔T : ∀ {a} {A : Type a} (P : A → Type a) → ∀ {a b} → P a × b ≡ true ⊎ ¬ P a × b ≡ false ⇔ (P a ⇔ T b) ×≡true⊎¬×≡false⇔⇔T P {a} {b} = record { to = λ where (inj₁ (p , refl)) → record { from = λ _ → p } (inj₂ (¬p , refl)) → record { to = ¬p; from = ⊥-elim } ; from = helper b } where helper : ∀ b → P a ⇔ T b → P a × b ≡ true ⊎ ¬ P a × b ≡ false helper true hyp = inj₁ (_⇔_.from hyp _ , refl) helper false hyp = inj₂ (_⇔_.to hyp , refl) -- One way to view a predicate as a partial function to the booleans. as-partial-function-to-Bool₁ : ∀ {a} {A : Type a} → (A → Type a) → A ⇀ Bool as-partial-function-to-Bool₁ P = record { _[_]=_ = λ a b → (P a → b ≡ true) × ¬ ¬ P a ; deterministic = λ where {b₁ = true} {b₂ = true} _ _ → refl {b₁ = false} {b₂ = false} _ _ → refl {b₁ = true} {b₂ = false} _ f → ⊥-elim $ proj₂ f (Bool.true≢false P.∘ sym P.∘ proj₁ f) {b₁ = false} {b₂ = true} f _ → ⊥-elim $ proj₂ f (Bool.true≢false P.∘ sym P.∘ proj₁ f) ; propositional = ×-closure 1 (Π-closure ext 1 λ _ → Bool-set) (¬-propositional ext) } -- Another way to view a predicate as a partial function to the -- booleans. as-partial-function-to-Bool₂ : ∀ {a} {A : Type a} → (P : A → Type a) → (∀ {a} → Is-proposition (P a)) → A ⇀ Bool as-partial-function-to-Bool₂ P P-prop = record { _[_]=_ = λ a b → P a × b ≡ true ; deterministic = λ { (_ , refl) (_ , refl) → refl } ; propositional = ×-closure 1 P-prop Bool-set } -- One definition of what it means for a total partial function to the -- booleans to be decidable. Decidable : ∀ {a} {A : Type a} ⦃ rA : Rep A Consts ⦄ → A →Bool → Type a Decidable = Computable P.∘ proj₁ -- Another definition of what it means for a total partial function to -- the booleans to be decidable. Decidable′ : ∀ {a} {A : Type a} ⦃ rA : Rep A Consts ⦄ → A →Bool → Type a Decidable′ = Computable‴ P.∘ proj₁ -- Computable functions from a type to a set. record Computable-function {a b} (A : Type a) (B : Type b) (B-set : Is-set B) ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ : Type (a ⊔ b) where field function : A → B computable : Computable (as-partial B-set function) open Computable-function -- An unfolding lemma for Computable-function. Computable-function↔ : ∀ {a b} {A : Type a} {B : Type b} {B-set : Is-set B} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ → Computable-function A B B-set ↔ ∃ λ (f : A → B) → Computable (as-partial B-set f) Computable-function↔ = record { surjection = record { logical-equivalence = record { to = λ f → function f , computable f } ; right-inverse-of = λ _ → refl } ; left-inverse-of = λ _ → refl } -- If two computable functions have equal implementations, then they -- are equal. equal-implementations→equal : ∀ {a b} {A : Type a} {B : Type b} {B-set : Is-set B} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ (f g : Computable-function A B B-set) → proj₁ (computable f) ≡ proj₁ (computable g) → function f ≡ function g equal-implementations→equal f g hyp = ⟨ext⟩ λ x → $⟨ proj₁ (proj₂ (proj₂ (computable f))) x (function f x) (lift refl) , proj₁ (proj₂ (proj₂ (computable g))) x (function g x) (lift refl) ⟩ apply (proj₁ (computable f)) ⌜ x ⌝ ⇓ ⌜ function f x ⌝ × apply (proj₁ (computable g)) ⌜ x ⌝ ⇓ ⌜ function g x ⌝ ↝⟨ Σ-map id (subst (λ e → apply e _ ⇓ _) (sym hyp)) ⟩ apply (proj₁ (computable f)) ⌜ x ⌝ ⇓ ⌜ function f x ⌝ × apply (proj₁ (computable f)) ⌜ x ⌝ ⇓ ⌜ function g x ⌝ ↝⟨ uncurry ⇓-deterministic ⟩ ⌜ function f x ⌝ ≡ ⌜ function g x ⌝ ↝⟨ rep-injective ⟩□ function f x ≡ function g x □ instance -- Representation functions for computable functions. rep-Computable-function : ∀ {a b} {A : Type a} {B : Type b} {B-set : Is-set B} ⦃ rA : Rep A Consts ⦄ ⦃ rB : Rep B Consts ⦄ → Rep (Computable-function A B B-set) Consts rep-Computable-function {A = A} {B = B} {B-set = B-set} = record { ⌜_⌝ = ⌜_⌝ P.∘ proj₁ P.∘ computable ; rep-injective = injective } where abstract injective : Injective {A = Computable-function A B B-set} {B = Consts} (⌜_⌝ P.∘ proj₁ P.∘ computable) injective {f} {g} = ⌜ proj₁ (computable f) ⌝ ≡ ⌜ proj₁ (computable g) ⌝ ↝⟨ rep-injective ⟩ proj₁ (computable f) ≡ proj₁ (computable g) ↝⟨ (λ hyp → cong₂ _,_ (equal-implementations→equal f g hyp) hyp) ⟩ (function f , proj₁ (computable f)) ≡ (function g , proj₁ (computable g)) ↔⟨ ignore-propositional-component $ Implements-propositional (as-partial B-set (function g)) id ⟩ ((function f , proj₁ (computable f)) , proj₂ (computable f)) ≡ ((function g , proj₁ (computable g)) , proj₂ (computable g)) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ Σ-assoc) ⟩ (function f , computable f) ≡ (function g , computable g) ↔⟨ Eq.≃-≡ (Eq.↔⇒≃ Computable-function↔) ⟩□ f ≡ g □
{ "alphanum_fraction": 0.4980221901, "avg_line_length": 34.898989899, "ext": "agda", "hexsha": "294d3ce4371c56df7e4c233e254fd710f08deb16", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/chi", "max_forks_repo_path": "src/Computability.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_issues_repo_issues_event_max_datetime": "2020-06-08T11:08:25.000Z", "max_issues_repo_issues_event_min_datetime": "2020-05-21T23:29:54.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/chi", "max_issues_repo_path": "src/Computability.agda", "max_line_length": 143, "max_stars_count": 2, "max_stars_repo_head_hexsha": "30966769b8cbd46aa490b6964a4aa0e67a7f9ab1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/chi", "max_stars_repo_path": "src/Computability.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-20T16:27:00.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:07.000Z", "num_tokens": 7846, "size": 20730 }
open import Oscar.Prelude open import Oscar.Class open import Oscar.Class.Symmetry module Oscar.Class.Symmetry.ToSym where private test-class : ⦃ _ : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class _∼_ ⦄ → ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class _∼_ test-class = ! test-class' : ∀ {𝔬} {𝔒 : Ø 𝔬} {x : 𝔒} {𝔯} {F : (𝔒 → 𝔒 → Ø 𝔯) → 𝔒 → 𝔒 → Ø 𝔯} ⦃ _ : ∀ {S : 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class (F (S x)) ⦄ → ∀ {S : 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class (F (S x)) test-class' ⦃ ⌶ ⦄ {S} = ⌶ {S} -- FIXME _S _x ≟ _S' _x test-class'' : ∀ {𝔬} {𝔒 : Ø 𝔬} {x : 𝔒} {𝔯} {F : (𝔒 → 𝔒 → 𝔒 → Ø 𝔯) → 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} ⦃ _ : ∀ {S : 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class (F S x) ⦄ → ∀ {S : 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class (F S x) test-class'' = ! test-class''' : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {F : (𝔒 → 𝔒 → 𝔒 → Ø 𝔯) → 𝔒 → 𝔒 → Ø 𝔯} ⦃ _ : ∀ {S : 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class (F S) ⦄ → ∀ {S : 𝔒 → 𝔒 → 𝔒 → Ø 𝔯} → Symmetry.class (F S) test-class''' = ! test-method-sym : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} ⦃ _ : Symmetry.class _∼_ ⦄ → _ test-method-sym {_∼_ = _∼_} = λ {x} {y} → Symmetry.method _∼_ {x} {y} test-method-symmetry : ∀ {𝔬} {𝔒 : Ø 𝔬} {𝔯} {_∼_ : 𝔒 → 𝔒 → Ø 𝔯} ⦃ _ : Symmetry.class _∼_ ⦄ → _ test-method-symmetry {_∼_ = _∼_} = λ {x} {y} → symmetry[ _∼_ ] {x} {y}
{ "alphanum_fraction": 0.4336734694, "avg_line_length": 29.8260869565, "ext": "agda", "hexsha": "573c8b7125689eb0891f09d6a658c17f7e1aad2e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/Oscar/Class/Symmetry/ToSym.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/Oscar/Class/Symmetry/ToSym.agda", "max_line_length": 73, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/Oscar/Class/Symmetry/ToSym.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 824, "size": 1372 }
{-# OPTIONS --universe-polymorphism #-} module RawFunctor where open import Common.Level postulate RawFunctor : ∀ {ℓ} (F : Set ℓ → Set ℓ) → Set (lsuc ℓ) -- Broken occurs check for levels made this not infer properly postulate sequence⁻¹ : ∀ {F}{A} {P : A → Set} → RawFunctor F → F (∀ i → P i) → ∀ i → F (P i)
{ "alphanum_fraction": 0.6024096386, "avg_line_length": 25.5384615385, "ext": "agda", "hexsha": "ec38948013de86cbdff9429882bbb5455af3ef57", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/RawFunctor.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/RawFunctor.agda", "max_line_length": 63, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Succeed/RawFunctor.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 109, "size": 332 }
module ImportWarningsB where -- all of the following files have warnings, which should be displayed -- when loading this file import Issue1988 import Issue2243 import Issue708quote import OldCompilerPragmas import RewritingEmptyPragma import Unreachable -- this warning will be ignored {-# REWRITE #-}
{ "alphanum_fraction": 0.8131147541, "avg_line_length": 20.3333333333, "ext": "agda", "hexsha": "a046c360236665c65ed61735e1d71121e7750e08", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "bennn/agda", "max_forks_repo_path": "test/Succeed/ImportWarningsB.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "bennn/agda", "max_issues_repo_path": "test/Succeed/ImportWarningsB.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "f77b563d328513138d6c88bf0a3e350a9b91f8ed", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "bennn/agda", "max_stars_repo_path": "test/Succeed/ImportWarningsB.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 69, "size": 305 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Properties of fresh lists and functions acting on them ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} module Data.List.Fresh.Properties where open import Level using (Level; _⊔_; Lift) open import Data.Product using (_,_) open import Relation.Nullary open import Relation.Unary as U using (Pred) open import Relation.Binary as B using (Rel) open import Data.List.Fresh private variable a b e p r : Level A : Set a B : Set b ------------------------------------------------------------------------ -- Fresh congruence module _ {R : Rel A r} {_≈_ : Rel A e} (R≈ : R B.Respectsˡ _≈_) where fresh-respectsˡ : ∀ {x y} {xs : List# A R} → x ≈ y → x # xs → y # xs fresh-respectsˡ {xs = []} x≈y x#xs = _ fresh-respectsˡ {xs = x ∷# xs} x≈y (r , x#xs) = R≈ x≈y r , fresh-respectsˡ x≈y x#xs ------------------------------------------------------------------------ -- Empty and NotEmpty Empty⇒¬NonEmpty : {R : Rel A r} {xs : List# A R} → Empty xs → ¬ (NonEmpty xs) Empty⇒¬NonEmpty [] () NonEmpty⇒¬Empty : {R : Rel A r} {xs : List# A R} → NonEmpty xs → ¬ (Empty xs) NonEmpty⇒¬Empty () [] empty? : {R : Rel A r} (xs : List# A R) → Dec (Empty xs) empty? [] = yes [] empty? (_ ∷# _) = no (λ ()) nonEmpty? : {R : Rel A r} (xs : List# A R) → Dec (NonEmpty xs) nonEmpty? [] = no (λ ()) nonEmpty? (cons x xs pr) = yes (cons x xs pr)
{ "alphanum_fraction": 0.4789915966, "avg_line_length": 30.3333333333, "ext": "agda", "hexsha": "a4908e90bd96893fb820582b3bf9516cb78fdffe", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Fresh/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Fresh/Properties.agda", "max_line_length": 77, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Fresh/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 459, "size": 1547 }
{- Definition of a homogeneous pointed type, and proofs that pi, product, path, and discrete types are homogeneous Portions of this file adapted from Nicolai Kraus' code here: https://bitbucket.org/nicolaikraus/agda/src/e30d70c72c6af8e62b72eefabcc57623dd921f04/trunc-inverse.lagda -} {-# OPTIONS --cubical --safe #-} module Cubical.Foundations.Pointed.Homogeneous where open import Cubical.Foundations.Prelude open import Cubical.Foundations.Equiv open import Cubical.Foundations.Isomorphism open import Cubical.Foundations.Univalence open import Cubical.Foundations.Path open import Cubical.Data.Prod open import Cubical.Data.Empty open import Cubical.Relation.Nullary open import Cubical.Foundations.Pointed.Base open import Cubical.Foundations.Pointed.Properties isHomogeneous : ∀ {ℓ} → Pointed ℓ → Type (ℓ-suc ℓ) isHomogeneous {ℓ} (A , x) = ∀ y → Path (Pointed ℓ) (A , x) (A , y) isHomogeneousPi : ∀ {ℓ ℓ'} {A : Type ℓ} {B∙ : A → Pointed ℓ'} → (∀ a → isHomogeneous (B∙ a)) → isHomogeneous (Π∙ A B∙) isHomogeneousPi h f i = (∀ a → typ (h a (f a) i)) , (λ a → pt (h a (f a) i)) isHomogeneousProd : ∀ {ℓ ℓ'} {A∙ : Pointed ℓ} {B∙ : Pointed ℓ'} → isHomogeneous A∙ → isHomogeneous B∙ → isHomogeneous (A∙ ×∙ B∙) isHomogeneousProd hA hB (a , b) i = (typ (hA a i)) × (typ (hB b i)) , (pt (hA a i) , pt (hB b i)) isHomogeneousPath : ∀ {ℓ} (A : Type ℓ) {x y : A} (p : x ≡ y) → isHomogeneous ((x ≡ y) , p) isHomogeneousPath A {x} {y} p q i = ua eqv i , ua-gluePath eqv (compPathr-cancel p q) i where eqv : (x ≡ y) ≃ (x ≡ y) eqv = ((q ∙ sym p) ∙_) , compPathl-isEquiv (q ∙ sym p) module HomogeneousDiscrete {ℓ} {A∙ : Pointed ℓ} (dA : Discrete (typ A∙)) (y : typ A∙) where -- switches pt A∙ with y switch : typ A∙ → typ A∙ switch x with dA x (pt A∙) ... | yes _ = y ... | no _ with dA x y ... | yes _ = pt A∙ ... | no _ = x switch-ptA∙ : switch (pt A∙) ≡ y switch-ptA∙ with dA (pt A∙) (pt A∙) ... | yes _ = refl ... | no ¬p = ⊥-elim (¬p refl) switch-idp : ∀ x → switch (switch x) ≡ x switch-idp x with dA x (pt A∙) switch-idp x | yes p with dA y (pt A∙) switch-idp x | yes p | yes q = q ∙ sym p switch-idp x | yes p | no _ with dA y y switch-idp x | yes p | no _ | yes _ = sym p switch-idp x | yes p | no _ | no ¬p = ⊥-elim (¬p refl) switch-idp x | no ¬p with dA x y switch-idp x | no ¬p | yes p with dA y (pt A∙) switch-idp x | no ¬p | yes p | yes q = ⊥-elim (¬p (p ∙ q)) switch-idp x | no ¬p | yes p | no _ with dA (pt A∙) (pt A∙) switch-idp x | no ¬p | yes p | no _ | yes _ = sym p switch-idp x | no ¬p | yes p | no _ | no ¬q = ⊥-elim (¬q refl) switch-idp x | no ¬p | no ¬q with dA x (pt A∙) switch-idp x | no ¬p | no ¬q | yes p = ⊥-elim (¬p p) switch-idp x | no ¬p | no ¬q | no _ with dA x y switch-idp x | no ¬p | no ¬q | no _ | yes q = ⊥-elim (¬q q) switch-idp x | no ¬p | no ¬q | no _ | no _ = refl switch-eqv : typ A∙ ≃ typ A∙ switch-eqv = isoToEquiv (iso switch switch switch-idp switch-idp) isHomogeneousDiscrete : ∀ {ℓ} {A∙ : Pointed ℓ} (dA : Discrete (typ A∙)) → isHomogeneous A∙ isHomogeneousDiscrete {ℓ} {A∙} dA y i = ua switch-eqv i , ua-gluePath switch-eqv switch-ptA∙ i where open HomogeneousDiscrete {ℓ} {A∙} dA y
{ "alphanum_fraction": 0.5944728147, "avg_line_length": 40.1084337349, "ext": "agda", "hexsha": "71507124dca797d91f3d4f010818102a81665eb7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "oisdk/cubical", "max_forks_repo_path": "Cubical/Foundations/Pointed/Homogeneous.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "oisdk/cubical", "max_issues_repo_path": "Cubical/Foundations/Pointed/Homogeneous.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "a01973ef7264f9454a40697313a2073c51a6b77a", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "oisdk/cubical", "max_stars_repo_path": "Cubical/Foundations/Pointed/Homogeneous.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1331, "size": 3329 }
module Data.Bin.Bijection where open import Relation.Binary.PropositionalEquality as PropEq hiding (inspect) open import Function.Inverse renaming (_∘_ to _∙_) import Function.Surjection open Function.Surjection using (module Surjection; module Surjective) open import Function.Equality using (_⟶_) open import Data.Nat using (ℕ; _*_; _+_) open import Data.Bin using (toℕ; Bin; fromBits; 2+_; 0b; 1b) open import Data.Product open import Data.Digit using (Bit; toDigits; fromDigits) ℕ-setoid = PropEq.setoid ℕ Bin-setoid = PropEq.setoid Bin import Data.Fin pattern 1+ x = Data.Nat.suc x fromℕ : ℕ → Bin fromℕ x = fromBits (proj₁ (toDigits 2 x)) -- hard to prove now -- fromℕeq' : {n : ℕ} → fromℕ n ≡ fromℕ' n -- fromℕeq' {x} with toDigits 2 x -- fromℕeq' .{fromDigits d} | d , refl = {!!} fromℕ⟶ : ℕ-setoid ⟶ Bin-setoid fromℕ⟶ = record { _⟨$⟩_ = fromℕ ; cong = PropEq.cong fromℕ } toℕ⟶ : Bin-setoid ⟶ ℕ-setoid toℕ⟶ = record { _⟨$⟩_ = toℕ ; cong = PropEq.cong toℕ } open import Data.Digit using(Bit) open import Data.Bin using (fromBits; toBits; _1#; 0#; 0b; 1b) open import Data.List using (_∷_; []; _++_) open import Data.Fin using (suc; zero) renaming (toℕ to bitToℕ) open import Data.Bin.BitListBijection using (_≈_; All-zero; module All-zero; All-zero-respects-equivalence) renaming (setoid to bits-setoid; bijection-to-ℕ to Bits-bijection-ℕ) open _≈_ open All-zero open import Relation.Binary using (module Setoid) module Bits = Setoid bits-setoid open import Data.Product using (_,_; proj₂; proj₁) open import Function using (_∘_) open Data.List using(List) fromBits-zero : ∀ {l} → All-zero l → fromBits l ≡ 0# fromBits-zero [] = PropEq.refl fromBits-zero (All-zero.cons {t} z) with fromBits t | fromBits-zero z fromBits-zero (All-zero.cons z) | .0# | refl = PropEq.refl fromBitsCong : ∀ {i j} → i ≈ j → fromBits i ≡ fromBits j fromBitsCong (both-zero a-zero b-zero) = PropEq.trans (fromBits-zero a-zero) (PropEq.sym (fromBits-zero b-zero)) fromBitsCong (heads-match h at bt eq) with fromBits at | fromBits bt | fromBitsCong eq fromBitsCong (heads-match Data.Bin.0b at bt eq) | 0# | .0# | refl = PropEq.refl fromBitsCong (heads-match Data.Bin.1b at bt eq) | 0# | .0# | refl = PropEq.refl fromBitsCong (heads-match (Data.Bin.2+ ()) at bt eq) | 0# | .0# | refl fromBitsCong (heads-match h at bt eq) | bs 1# | .(bs 1#) | refl = PropEq.refl fromBits⟶ : bits-setoid ⟶ Bin-setoid fromBits⟶ = record { _⟨$⟩_ = fromBits ; cong = fromBitsCong } toBits⟶ : Bin-setoid ⟶ bits-setoid toBits⟶ = record { _⟨$⟩_ = toBits ; cong = λ { {i} .{_} PropEq.refl → Bits.refl } } open import Data.Product using (_×_) #1-inj : ∀ {a b} → a 1# ≡ b 1# → a ≡ b #1-inj refl = refl fromToBits-inverse : ∀ a → fromBits (toBits a) ≡ a fromToBits-inverse 0# = refl fromToBits-inverse ([] 1#) = refl fromToBits-inverse ((h ∷ t) 1#) with fromBits (toBits (t 1#)) | fromToBits-inverse (t 1#) ... | 0# | () ... | l 1# | eq = PropEq.cong (λ x → (h ∷ x) 1#) (#1-inj eq) qqq : ∀ {xs} → (0b ∷ []) ≈ xs → [] ≈ xs qqq (both-zero a-zero b-zero) = both-zero [] b-zero qqq (heads-match .0b .[] bt x) = both-zero [] (cons (All-zero-respects-equivalence x [])) toFromBits-inverse : ∀ a → (toBits (fromBits a)) ≈ a toFromBits-inverse [] = both-zero (cons []) [] toFromBits-inverse (x ∷ xs) with fromBits xs | toFromBits-inverse xs toFromBits-inverse (0b ∷ xs) | 0# | w = heads-match 0b [] xs (qqq w) toFromBits-inverse (1b ∷ xs) | 0# | w = heads-match 1b [] xs (qqq w) toFromBits-inverse ((2+ ()) ∷ xs) | 0# | w toFromBits-inverse (x ∷ xs) | bs 1# | w = heads-match x (bs ++ suc 0b ∷ []) xs w fromBits-inj : ∀ {x y} → fromBits x ≡ fromBits y → x ≈ y fromBits-inj eq = Bits.trans (Bits.sym (toFromBits-inverse _)) (Bits.trans (Setoid.reflexive bits-setoid (cong toBits eq)) (toFromBits-inverse _)) open import Function.Inverse using (Inverse; _InverseOf_) inverseFB : toBits⟶ InverseOf fromBits⟶ inverseFB = record { left-inverse-of = toFromBits-inverse; right-inverse-of = fromToBits-inverse } Bits-inverse-Bin : Inverse bits-setoid Bin-setoid Bits-inverse-Bin = record { inverse-of = inverseFB } fromℕ-inverse : Inverse ℕ-setoid Bin-setoid fromℕ-inverse = Bits-inverse-Bin ∙ Function.Inverse.sym (Function.Inverse.fromBijection Bits-bijection-ℕ) bijection-is-reasonable1 : Function.Equality._⟨$⟩_ (Inverse.to fromℕ-inverse) ≡ fromℕ bijection-is-reasonable1 = PropEq.refl bijection-is-reasonable2 : Function.Equality._⟨$⟩_ (Inverse.from fromℕ-inverse) ≡ toℕ bijection-is-reasonable2 = PropEq.refl toℕ-inverse = Function.Inverse.sym fromℕ-inverse toℕ-bijection = Inverse.bijection toℕ-inverse fromℕ-bijection = Inverse.bijection fromℕ-inverse toℕ-inj = Inverse.injective toℕ-inverse fromℕ-inj = Inverse.injective fromℕ-inverse fromToℕ-inverse = Inverse.left-inverse-of toℕ-inverse toFromℕ-inverse = Inverse.right-inverse-of toℕ-inverse
{ "alphanum_fraction": 0.6541236108, "avg_line_length": 33.522875817, "ext": "agda", "hexsha": "98043f12fbc8085f3c2338888920cfdd94706699", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_forks_repo_licenses": [ "Unlicense" ], "max_forks_repo_name": "Rotsor/BinDivMod", "max_forks_repo_path": "Data/Bin/Bijection.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "Unlicense" ], "max_issues_repo_name": "Rotsor/BinDivMod", "max_issues_repo_path": "Data/Bin/Bijection.agda", "max_line_length": 91, "max_stars_count": 1, "max_stars_repo_head_hexsha": "09cc5104421e88da82f9fead5a43f0028f77810d", "max_stars_repo_licenses": [ "Unlicense" ], "max_stars_repo_name": "Rotsor/BinDivMod", "max_stars_repo_path": "Data/Bin/Bijection.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-18T13:58:14.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-18T13:58:14.000Z", "num_tokens": 1829, "size": 5129 }
module Issue690a where data ℕ : Set where zero : ℕ succ : ℕ → ℕ -- A negative type. data T : Set → Set where c : T (T ℕ) -- From Andreas (2012-09-07) message on Agda mailing list "Forget -- Hurken's paradox ..." -- -- Trying to make sense of T in terms of inductive types, explaining -- indices via equalities, one arrives at -- -- data T (X : Set) : Set where -- c : (X ≡ T ℕ) → T X -- -- which has a non-positive occurrence of T in (X ≡ T ℕ). -- -- An argument for the existence of T would have to argue for the -- existence this least fixed point: -- -- lfp \lambda T X → (X ≡ T ℕ) -- ASR (14 August 2014): In Coq'Art, § 14.1.2.1, the type T is -- rejected due to the head type constrains.
{ "alphanum_fraction": 0.634696756, "avg_line_length": 23.6333333333, "ext": "agda", "hexsha": "3176c89c379feab32995354a595adab0d08108b9", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Fail/Issue690a.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Fail/Issue690a.agda", "max_line_length": 68, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Fail/Issue690a.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 226, "size": 709 }
open import Common.IO header = putStrLn "foo" main : IO _ main = putStrLn "42"
{ "alphanum_fraction": 0.6913580247, "avg_line_length": 11.5714285714, "ext": "agda", "hexsha": "ff60a6fa6705c1b1800621426b5173f0287deef0", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Compiler/simple/Issue2222.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Compiler/simple/Issue2222.agda", "max_line_length": 23, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Compiler/simple/Issue2222.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 21, "size": 81 }
{-# OPTIONS --cubical --no-import-sorts #-} module Hit where -- open import Cubical.Core.Everything open import Cubical.Foundations.Everything renaming (_⁻¹ to _⁻¹ᵖ) -- open import Cubical.Foundations.Equiv.HalfAdjoint -- open import Cubical.Data.Sigma.Properties -- https://en.wikipedia.org/wiki/Inductive_type#Higher_inductive_types -- private -- ℓ : Level _ : (A B : Type₀) → Type₁ _ = λ a b → a ≡ b -- https://www.youtube.com/watch?v=AZ8wMIar-_c -- List becomes a normal form of this data FreeMonoid' (A : Type₀) : Type₀ where [_]' : A → FreeMonoid' A ε' : FreeMonoid' A _*'_ : FreeMonoid' A → FreeMonoid' A → FreeMonoid' A assoc' : ∀ x y z → x *' (y *' z) ≡ (x *' y) *' z data List (A : Type) : Type where [] : List A _∷_ : A → List A → List A -- debug fonts -- see which fonts are "in effect" with -- fc-match --verbose -- https://wiki.archlinux.org/index.php/X_Logical_Font_Description -- Two different font systems are used by X11: -- - the older or core X Logical Font Description, XLFD, -- - and the newer X FreeType, Xft, systems (see An Xft Tutorial for font names format). -- https://keithp.com/~keithp/render/Xft.tutorial -- λ-calculus -- Cockx 2019 - Hack your type theory with rewrite rules -- https://jesper.sikanda.be/posts/hack-your-type-theory.html -- email thread from Georgi Lyubenov (24.03.20, 23:28 ff) about sized lambdas "How can I implement naive sized lambdas?" -- email thread from Joey Eremondi (22.04.20, 06:07 ff) about variable binding "What do you use for variable binding in 2020?" -- literate agda markdown -> latex -- https://lists.chalmers.se/pipermail/agda/2019/011286.html -- https://stackoverflow.com/questions/58339725/literate-agda-in-markdown-format-to-latex-via-pandoc -- https://jesper.sikanda.be/posts/literate-agda.html -- Jesper Cockx' mail from 09.07.19, 18:35 -- an example file/paper that shows how to use cubical: -- /home/christianl/agda/cubical/Cubical/Papers/Synthetic.agda -- Cubical synthetic homotopy theory -- Mörtberg and Pujet, „Cubical synthetic homotopy theory“. -- https://dl.acm.org/doi/abs/10.1145/3372885.3373825 -- the github repository recommends -- Vezzosi 2019 - Cubical Agda: A Dependently Typed ProgrammingLanguage with Univalence and Higher Inductive Types -- https://dl.acm.org/doi/pdf/10.1145/3341691 -- there is also the very comprehensive -- https://arxiv.org/pdf/1911.00580.pdf -- Martín Hötzel Escardó 2020 - Introduction to Univalent Foundations of Mathematics with Agda -- clickable html version: https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html -- https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#sns -- A structure identity principle for a standard notion of structure -- some useful, recent stuff from the mailing list: -- https://ncatlab.org/nlab/show/archimedean+field -- An archimedean field is an ordered field in which every element is bounded above by a natural number. -- Q: why refl {x} and refl {_} {_} {x} behave differently according to context -- A: (U. Norell 01.05.20, 23:08) -- pattern reflpv x = refl {x = x} -- you are not allowed to pattern match on datatype parameters, since they are not stored in the constructor. In a right-hand side you can give the parameters to guide the type checker, but they are thrown out during elaboration. -- Andreas Nuyts 26.04.20, 22:34 -- a case in a pattern matching definition gets a light grey background when it doesn't hold as a definitional equation, typically because it is a fallthrough case and further matching of the arguments is necessary to establish that none of the prior cases apply -- Q: what do I assume/not assume when using --cubical? -- A: (Andreas Abel 24.04.20, 15:04) That is a long story. One thing is that in --cubical, the identity type is a primitive (not a data), and you cannot match on refl. -- https://agda.readthedocs.io/en/v2.6.1/tools/command-line-options.html?highlight=infective#consistency-checking-of-options-used -- An infective option is an option that if used in one module, must be used in all modules that depend on this module. -- A coinfective option is an option that if used in one module, must be used in all modules that this module depends on. -- (Orestis Melkonian 22.12.19, 21:11) inspect MAlonzo haskell code's variable names with https://github.com/agda/agda-ghc-names -- (James Wood 22.12.19, 21:28) -- Note that record field names can also overlap if they are applied directly to a record value. -- The theory behind this is in bidirectional type checking, and how a term having its type checked (rather than inferred) may be ambiguous without the information from the type. -- The same mechanism allows λ to be reused for dimension abstraction in cubical Agda (because it is a constructor). -- In short, overloading is fine in the following cases: -- - Everything being overloaded is a constructor, and there is an obvious type to check the resulting construction against. -- - Everything being overloaded is a field, and there is an obvious record type that the field is destructing. -- Outside of these cases, overloading fails. -- You might notice also that the agda2-infer-type command will usually fail to infer the type of a construction of which the head is an overloaded constructor. -- This is because Agda really wants to check the construction, rather than inferring a type for it. -- It just happens that when the constructor is not overloaded, it's easier to make progress, because that gives just enough to check the construction against. -- Q: Copattern match in emacs -- A: (James Wood 05.11.19, 22:41) If I understand the question correctly, it's the usual C-c C-c for case-splitting, but on an empty hole and followed immediately by RET, rather than entering a variable name. The intermediate prompt is “pattern variables to case (empty for split on result)”. It's splitting on the result that you want. -- Constructor names can overlap; the right one will be chosen on usage depending on the expected type. -- Note that other kind of names cannot overlap (e.g. definition names, etc..). -- the cubical std-lib is described in a blog post from Andreas Mörtberg -- https://homotopytypetheory.org/2018/12/06/cubical-agda/ -- isomorphisms are equivalences (i.e. have contractible fibers) -- Hedberg’s theorem (types with decidable equality are sets) -- The main things that the CCHM cubical type theory extends dependent type theory with are: -- 1. An interval pretype -- 2. Kan operations -- 3. Glue types -- 4. Cubical identity types open import Cubical.Structures.CommRing open import Cubical.Relation.Nullary.Base -- ¬_ open import Cubical.Relation.Binary.Base -- open import Cubical.Data.Prod.Base renaming (_×_ to _×'_) -- NOTE: Cubical.Core.Sigma uses Agda.Builtin.Sigma -- open import Agda.Builtin.Sigma renaming (_×_ to _×ᵇ_) open import Cubical.Data.Sum.Base open import Cubical.Data.Sigma.Base -- Σ-types are defined in Core/Primitives as they are needed for Glue types. -- PathP : ∀ {ℓ} (A : I → Set ℓ) → A i0 → A i1 → Set ℓ -- -- We have a variable name in `(λ i → A)` as a hint for case splitting. -- -- Path : ∀ {ℓ} (A : Set ℓ) → A → A → Set ℓ -- Path A a b = PathP (λ _ → A) a b -- -- _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ -- _≡_ {A = A} = PathP (λ i → A) -- Cubical.Foundations.Id -- -- transport : ∀ (B : A → Type ℓ') {x y : A} → x ≡ y → B x → B y -- transport B {x} p b = J (λ y p → B y) b p -- -- _⁻¹ : {x y : A} → x ≡ y → y ≡ x -- _⁻¹ {x = x} p = J (λ z _ → z ≡ x) refl p -- -- ap : ∀ {B : Type ℓ'} (f : A → B) → ∀ {x y : A} → x ≡ y → f x ≡ f y -- ap f {x} = J (λ z _ → f x ≡ f z) refl -- -- _∙_ : ∀ {x y z : A} → x ≡ y → y ≡ z → x ≡ z -- _∙_ {x = x} p = J (λ y _ → x ≡ y) p refl1 : ∀ {ℓ} {A : Type ℓ} {x : A} → Path A x x refl1 {x = x} = λ i → x refl2 : ∀ {ℓ} {A : Type ℓ} {x : A} → PathP (λ _ → A) x x refl2 {x = x} = λ i → x refl3 : ∀{ℓ} {A : Type ℓ} {x : A} → PathP (λ _ → A) x x refl3 {x = x} = λ _ → x sym1 : ∀ {ℓ} {A : Type ℓ} {x y : A} → x ≡ y → y ≡ x sym1 p = λ i → p (~ i) cong1 : ∀ {ℓ} {A : Type ℓ} {x y : A} {B : A → Type ℓ} (f : (a : A) → B a) (p : x ≡ y) -------------------------------------------- → PathP (λ i → B (p i)) (f x) (f y) cong1 f p i = f (p i) cong2 : ∀ {ℓ} {A : Type ℓ} {x y : A} {B : A → Type ℓ} (f : (a : A) → B a) (p : PathP (λ i → A ) x y ) ---------------------------------------------- → ( PathP (λ i → B (p i)) (f x) (f y)) cong2 f p i = f (p i) -- see "Propositional truncation" https://homotopytypetheory.org/2018/12/06/cubical-agda for -- data ∥_∥ {ℓ} (A : Set ℓ) : Set ℓ where -- ∣_∣ : A → ∥ A ∥ -- squash : ∀ (x y : ∥ A ∥) → x ≡ y -- see https://planetmath.org/37propositionaltruncation open import Cubical.HITs.PropositionalTruncation -- for `|_|` and `squash` test1 : {Carrier : Type} -> ∃[ x ∈ Carrier ] x ≡ x → Carrier test1 ∣ x , x≡x ∣ = x -- Goal: Carrier -- ———— Boundary —————————————————————————————————————————————— -- i = i0 ⊢ test1 x -- i = i1 ⊢ test1 y -- ———— Constraints ——————————————————————————————————————————— -- test1 x = ?0 (i = i0) : Carrier -- test1 y = ?0 (i = i1) : Carrier test1 (squash x y i) = {! test1 x!} test2 : {A : Type} → (x y : A) → x ≡ y → A -- test2 x y x≡y = {! x≡y!} test2 x y p = p i0 -- test4 : I → Type -- test4 i = {!!} test5a : {A : Type} {P : A → Type} → (x y : A) → x ≡ y → P x → P y test5a {A} {P} x y p px = transport (λ i → P (p i)) px test5b : {A : Type} → {P : A → Type} → (x y : A) → PathP (λ _ → A) x y -- x ≡ y → P x -------------------------- → P y test5b {A} {P} x y x≡y Px = transport {A = P x} Px≡Py Px where -- transport gives us `P x → P y`, but we need to feed it `P x ≡ P y` Px≡Py : P x ≡ P y Px≡Py = cong P x≡y -- this is almost what `isProp P` would give us -- isProp : ∀ {ℓ} → Type ℓ → Type ℓ -- isProp A = (x y : A) → x ≡ y -- but we need something like `∀(x y : A) → P x ≡ P y` -- well, no. `cong P x≡y` gives us `P x ≡ P y` -- it is different from non-cubical agda, where `x ≡ y` was sufficient, no matter what P is -- there, we could just pattern match on refl and "change" the goal to `P x` instead of `P y` -- well, in some sense we are already changing the goal as this approach could be "at the end" of a sequence of equational reasoning -- ... just without pattern matching test5c : {A : Type} → {P : A → Type} → (x y : A) → PathP (λ _ → A) x y -- x ≡ y → P x -------------------------- → P y test5c {A} {P} x y x≡y Px = transport {A = P x} Px≡Py Px where -- once again, without `cong` Px≡Py : P x ≡ P y -- we need to build a path that is `P x` at i0 and `P y` at i1 -- with `x≡y` we have given a path that is `x` at i0 and `y` at i1 -- therefore `x≡y(i)` behaves in the correct way and we just plug this into `P` Px≡Py i = P (x≡y i) -- the short version, collapsing all intermediates test5f : ∀{ℓ ℓ'} {A : Type ℓ} {P : A → Type ℓ'} {x y : A} → (x ≡ y) → (P x) → P y test5f {P = P} p px = transport (λ i → P (p i)) px --primitive -- transp : ∀ {ℓ} (A : (i : I) → Set (ℓ i)) (φ : I) (a : A i0) → A i1 transport1 : ∀{ℓ} {A B : Type ℓ} → A ≡ B → A → B transport1 p a = transp (λ i → p i) i0 a test5d : {A : Type} {P : A → Type} → (x y : A) → x ≡ y → P x → P y test5d {A} {P} x y x≡y Px = transport (cong P x≡y) Px module Utils where private variable ℓ ℓ' : Level A : Type ℓ B : A → Type ℓ C : (a : A) → B a → Type ℓ D : (a : A) → (b : B a) → C a b → Type ℓ cong₁ : ∀ (f : (a : A) → B a) → {x : A} {y : A} (p : PathP (λ i → A) x y) -- (p : x ≡ y) ---------------------------------- → PathP (λ i → B (p i)) (f x) (f y) cong₁ f p i = f (p i) {-# INLINE cong₁ #-} cong₂' : ∀ {F : (a : A) → (b : B a) → Type ℓ} → (f : (a : A) → (b : B a) → F a b) → {x : A } {y : A } (p : PathP (λ i → A ) x y) -- (p : x ≡ y) → {u : B x } {v : B y } (q : PathP (λ i → B (p i) ) u v) -- ? u ≡ v given x ≡ y ? --------------------------------------------- → PathP (λ i → F (p i) (q i)) (f x u) (f y v) cong₂' f p q i = f (p i) (q i) {-# INLINE cong₂' #-} cong₃ : ∀{F : (a : A) → (b : B a) → (c : C a b) → Type ℓ} → (f : (a : A) → (b : B a) → (c : C a b) → F a b c) → {x : A } {y : A } (p : PathP (λ i → A ) x y) -- (p : x ≡ y) → {u : B x } {v : B y } (q : PathP (λ i → B (p i) ) u v) -- ? u ≡ v given x ≡ y ? → {m : C x u} {n : C y v} (r : PathP (λ i → C (p i) (q i)) m n) -- ? m ≡ n given x ≡ y and u ≡ v ? -------------------------------------------- → PathP (λ i → F (p i) (q i) (r i)) (f x u m) (f y v n) cong₃ f p q r i = f (p i) (q i) (r i) {-# INLINE cong₃ #-} cong₄ : ∀{F : (a : A) → (b : B a) → (c : C a b) → (d : D a b c) → Type ℓ} → (f : (a : A) → (b : B a) → (c : C a b) → (d : D a b c) → F a b c d) → {x : A } {y : A } (p : PathP (λ i → A ) x y) -- (p : x ≡ y) → {u : B x } {v : B y } (q : PathP (λ i → B (p i) ) u v) -- ? u ≡ v given x ≡ y ? → {m : C x u } {n : C y v } (r : PathP (λ i → C (p i) (q i) ) m n) -- ? m ≡ n given x ≡ y and u ≡ v ? → {k : D x u m} {l : D y v n} (s : PathP (λ i → D (p i) (q i) (r i)) k l) -- ? k ≡ l given x ≡ y and u ≡ v and m ≡ n? -------------------------------------------- → PathP (λ i → F (p i) (q i) (r i) (s i)) (f x u m k) (f y v n l) cong₄ f p q r s i = f (p i) (q i) (r i) (s i) {-# INLINE cong₄ #-} open Utils using (cong₃; cong₄) -- slide 18 of http://www.cse.chalmers.se/~abela/esslli2016/talkESSLLI3.pdf fullelim : (A : Type) → (C : (x y : A) → (p : x ≡ y) → Type) → (M N : A) → (P : M ≡ N) → (O : (z : A) → C z z refl) ------------------------ → C M N P fullelim A C M N P O = transport along (O M) where along : C M M refl ≡ C M N P -- the "obvious" idea would be to show equality on every argument -- and then use a brute force `cong₃` to apply these equalities along = cong₃ C (refl {x = M}) P refl≡P where -- the first two arguments are easy, and the hole of the third argument rewards us with a signature to implement: refl≡P : PathP (λ i → M ≡ (P i)) refl P -- here, we need to build a path that is refl on i0 and P on i1 just with the things we have given -- refl : ∀{ℓ} {A : Type ℓ} {x : A} x ≡ x -- refl {x = x} = λ _ → x -- _≡_ : ∀ {ℓ} {A : Set ℓ} → A → A → Set ℓ -- _≡_ {A = A} = PathP (λ i → A) -- therefore, we have -- refl : ∀{ℓ} {A : Type ℓ} {x : A} → PathP (λ i → A) M M -- refl {x = x} = λ _ → x -- P : PathP (λ i → A) M N -- Goal: M ≡ P i -- Goal: PathP (λ j → A) M (P i) refl≡P i = λ j → P (i ∧ j) -- I could not come up with the solution myself, but I was able to pick it off ... -- ... of `J` under "Kan operations" at https://homotopytypetheory.org/2018/12/06/cubical-agda/ -- so, how does this work? These are the cases: -- i | j | i∧j | P(i∧j) | λ j → P(i∧j) | λ i → λ j → P(i∧j) -- i0 | i0 | i0 | M : A | M≡M : M ≡ M | p : (M≡M) ≡ (M≡N) -- i0 | i1 | i0 | M : A | | which is "like" -- i1 | i0 | i0 | M : A | M≡N : M ≡ N | p : refl ≡ P -- i1 | i1 | i1 | N : A | | -- and indeed, they work out -- we could not write `refl ≡ P` but instead have `PathP _ refl P` fullelim2 : (A : Type) → (C : (x y : A) → (p : x ≡ y) → Type) → (M N : A) → (P : M ≡ N) → (O : (z : A) → C z z refl) ------------------------ → C M N P -- we can unfold `transport` as in the blog post -- transport : {A B : Type ℓ} → A ≡ B → A → B -- transport p a = transp (λ i → p i) i0 a fullelim2 A C M N P O = transp (λ i → along i) i0 (O M) where -- and we can directly "set up" the path without using `cong₃` along : C M M refl ≡ C M N P along i = C (refl {x = M} i) (P i) (λ j → P (i ∧ j) ) -- -- see favonia: [Agda] Equational Reasoning -- https://favonia.org/courses/hdtt2020/agda/agda-0305-eqreasoning.agda -- Kraus 2013 - Generalizations of Hedberg’s Theorem -- https://www.cs.bham.ac.uk/~mhe/papers/hedberg.pdf -- Although the identity types in Martin-Löf type theory (MLTT) are defined byone constructor refl and by one eliminator J that matches the constructor, the statement that every identity type has at most one inhabitant is not provable [9]. -- Thus,uniqueness of identity proofs(UIP), or, equivalently, Streicher’s axiom K are principles that have to be assumed, and have often been assumed, as additional rules of MLTT. -- ... -- we do not assume the principle of unique identity proofs. -- However, certain types do satisfy it naturally, and such types are often called h-sets. -- A sufficient condition for a type to be an h-set, given by Hedberg [8], isthat it has decidable propositional equality. -- In Section 3, we analyze Hedberg’s original argument, which consists of two steps: -- 1. A type X is an h-set iff for all x, y : X there is a constant map x = y → x = y. -- 2. If X has decidable equality then such constant endomaps exist -- Decidable equality means that, for all x and y, we have (x = y) + (x ≠ y). -- Thus, a natural weakening is ¬¬-separated equality, ¬¬(x = y) → x = y, which occurs often in constructive mathematics. -- In this case we say that the type X is separated. -- For example, going beyond MLTT, the reals and the Cantorspace in Bishop mathematics and topos theory are separated. -- In MLTT, the Cantortype of functions from natural numbers to booleans is separated under the assumption of functional extensionality, -- ∀ f g : X → Y, (∀ x : X, f x = g x) → f = g. -- We observe that under functional extensionality, a separated type X is an h-set, because there is always a constant map x = y → x = y. -- In order to obtain a further characterization of the notion of h-set, we consider truncations -- (also known as bracket or squash types), written ‖X‖in accordance with recent HoTT notation. -- The idea is to collapse all inhabitants of X so that ‖X‖ has at most one inhabitant. -- We refer the reader to the technical development for a precise definition. -- cites -- Altenkirch 2012 - On h-Propositional Reflection and Hedberg’s Theorem -- https://homotopytypetheory.org/2012/11/27/on-h-propositional-reflection-and-hedbergs-theorem/ -- Bracket-Type https://ncatlab.org/nlab/show/bracket+type -- By contrast, in the paradigm that may be called propositions as some types, every proposition is a type, but not every type is a proposition. -- The types which are propositions are generally those which “have at most one inhabitant” — in homotopy type theory this is called being of h-level 1 or being a (-1)-type. -- ... -- For A a type, the support of A denoted supp(A) or isInhab(A) or τ₋₁ A or ‖A‖₋₁ or ‖A‖ or, lastly, [A], -- is the higher inductive type defined by the two constructors -- a : A ⊢ isinhab(a) : supp(A) -- x : supp(A), y : supp(A) ⊢ inpath(x,y) : (x = y), -- where in the last sequent on the right we have the identity type. -- https://github.com/agda/cubical/issues/286 -- It could also be a good idea to axiomatize the notion of a Caucy-complete Archimedean ordered field, as in Auke Booij's thesis, and show that Dedekind reals are an instance. The HoTT reals are then another instance. (Can cubical Agda handle the HoTT reals as a HIIT yet?) -- https://www.cs.bham.ac.uk/~abb538/thesis-first_submission.pdf -- Booij 2020 - Analysis in Univalent Type Theory -- 4.1 Algebraic structure of numbers -- -- Fields have the property that nonzero numbers have a multiplicative inverse, or more precisely, that -- (∀ x : F) x ≠ 0 ⇒ (∃ y : F) x · y = 1. -- -- Remark 4.1.1. -- If we require the collection of numbers to form a set in the sense of Definition 2.5.4, and satisfy the ring axioms, then multiplicative inverses are unique, so that the above is equivalent to the proposition -- (Π x : F) x ≠ 0 ⇒ (Σ y : F) x · y = 1. -- -- Definition 4.1.2. -- A classical field is a set F with points 0, 1 : F, operations +, · : F → F → F, which is a commutative ring with unit, such that -- (∀ x : F) x ≠ 0 ⇒ (∃ y : F) x · y = 1. private variable ℓ ℓ' ℓ'' : Level module ClassicalFieldModule where -- NOTE: one might want to put this into another file to omit the name-clashing record IsClassicalField {F : Type ℓ} (0f : F) (1f : F) (_+_ : F → F → F) (_·_ : F → F → F) (-_ : F → F) (_⁻¹ᶠ : (x : F) → {{¬(x ≡ 0f)}} → F) : Type ℓ where constructor isclassicalfield field isCommRing : IsCommRing 0f 1f _+_ _·_ -_ ·-rinv : (x : F) → (p : ¬(x ≡ 0f)) → x · (_⁻¹ᶠ x {{p}}) ≡ 1f ·-linv : (x : F) → (p : ¬(x ≡ 0f)) → (_⁻¹ᶠ x {{p}}) · x ≡ 1f open IsCommRing {0r = 0f} {1r = 1f} isCommRing public record ClassicalField : Type (ℓ-suc ℓ) where field Carrier : Type ℓ 0f : Carrier 1f : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _⁻¹ᶠ : (x : Carrier) → {{¬(x ≡ 0f)}} → Carrier isClassicalField : IsClassicalField 0f 1f _+_ _·_ -_ _⁻¹ᶠ infix 9 _⁻¹ᶠ infix 8 -_ infixl 7 _·_ infixl 6 _+_ open IsClassicalField isClassicalField public -- Remark 4.1.3. -- As in the classical case, by proving that additive and multiplicative inverses are unique, we also obtain the negation and division operations. -- -- For the reals, the assumption x ≠ 0 does not give us any information allowing us to bound x away from 0, which we would like in order to compute multiplicative inverses. -- Hence, we give a variation on the denition of fields in which the underlying set comes equipped with an apartness relation #, which satises x # y ⇒ x ≠ y, although the converse implication may not hold. -- This apartness relation allows us to make appropriate error bounds and compute multiplicative inverses based on the assumption x # 0. -- -- Definition 4.1.4. -- - An apartness relation, denoted by #, is an irreflexive symmetric cotransitive relation. -- - A strict partial order, denoted by <, is an irreflexive transitive cotransitive relation. IsIrrefl : {ℓ ℓ' : Level} {A : Type ℓ} → (R : Rel A A ℓ') → Type (ℓ-max ℓ ℓ') IsIrrefl {A = A} R = (a b : A) → R a b → ¬(R b a) IsCotrans : {ℓ ℓ' : Level} {A : Type ℓ} → (R : Rel A A ℓ') → Type (ℓ-max ℓ ℓ') IsCotrans {A = A} R = (a b : A) → R a b → (∀(x : A) → (R a x) ⊎ (R x b)) -- NOTE: these `IsX` definitions are in the style of the standard library and do not make `a` and `b` to be implicit arguments -- when using them, we can just use `_` as in `isIrrefl _ _ a#b` -- NOTE: module parameters "add" to the contained function's arguments -- see https://agda.readthedocs.io/en/v2.6.0.1/language/module-system.html#parameterised-modules -- IsApartnessRel : {ℓ ℓ' : Level} {A : Type ℓ} → (R : Rel A A ℓ') → Type (ℓ-max ℓ ℓ') -- IsApartnessRel R = IsIrrefl R × BinaryRelation.isSym R × IsCotrans R record IsApartnessRel {ℓ ℓ' : Level} {A : Type ℓ} (R : Rel A A ℓ') : Type (ℓ-max ℓ ℓ') where field isIrrefl : IsIrrefl R isSym : BinaryRelation.isSym R isCotrans : IsCotrans R -- IsStrictPartialOrder : {ℓ ℓ' : Level} {A : Type ℓ} → (R : Rel A A ℓ') → Type (ℓ-max ℓ ℓ') -- IsStrictPartialOrder R = IsIrrefl R × BinaryRelation.isTrans R × IsCotrans R record IsStrictPartialOrder {ℓ ℓ' : Level} {A : Type ℓ} (R : Rel A A ℓ') : Type (ℓ-max ℓ ℓ') where field isIrrefl : IsIrrefl R isTrans : BinaryRelation.isTrans R isCotrans : IsCotrans R -- Definition 4.1.5. -- A constructive field is a set F with points 0, 1 : F, binary operations +, · : F → F → F, and a binary relation # such that -- 1. (F, 0, 1, +, ·) is a commutative ring with unit; -- 2. x : F has a multiplicative inverse iff x # 0; -- 3. + is #-extensional, that is, for all w, x, y, z : F -- w + x # y + z ⇒ w # y ∨ x # z. {- NOTE: about naming in the standard library with `isCommRing : IsCommRing 0f 1f _+_ _·_ -_` we import is-set : (x y : Carrier) (x₁ y₁ : x ≡ y) → x₁ ≡ y₁ -- NOTE: this is imported from +-isAbGroup and explicitly hidden from ·-isMonoid isCommRing : IsCommRing 0f 1f _+_ _·_ -_ isRing : IsRing 0f 1f _+_ _·_ -_ +-isAbGroup : IsAbGroup 0f _+_ -_ +-assoc : (x y z : Carrier) → x + (y + z) ≡ x + y + z +-identity : (x : Carrier) → (x + 0f ≡ x) × (0f + x ≡ x) +-rid : (x : Carrier) → x + 0f ≡ x +-lid : (x : Carrier) → 0f + x ≡ x +-inv : (x : Carrier) → (x + - x ≡ 0f) × (- x + x ≡ 0f) +-linv : (x : Carrier) → - x + x ≡ 0f +-rinv : (x : Carrier) → x + - x ≡ 0f +-comm : (x y : Carrier) → x + y ≡ y + x +-isSemigroup : IsSemigroup _+_ +-isMonoid : IsMonoid 0f _+_ +-isGroup : IsGroup 0f _+_ -_ ·-isSemigroup : IsSemigroup _·_ ·-isMonoid : IsMonoid 1f _·_ ·-comm : (x y : Carrier) → x · y ≡ y · x ·-assoc : (x y z : Carrier) → x + (y + z) ≡ x + y + z ·-identity : (x : Carrier) → (x · 1f ≡ x) × (1f · x ≡ x) ·-lid : (x : Carrier) → 1f · x ≡ x ·-rid : (x : Carrier) → x · 1f ≡ x dist : (x y z : Carrier) → (x · (y + z) ≡ x · y + x · z) × ((x + y) · z ≡ x · z + y · z) ·-rdist-+ : (x y z : Carrier) → x · (y + z) ≡ x · y + x · z ·-ldist-+ : (x y z : Carrier) → (x + y) · z ≡ x · z + y · z there is module GroupLemmas (G : Group {ℓ}) where record MonoidEquiv (M N : Monoid {ℓ}) : Type ℓ where module SemigroupΣTheory {ℓ} where module CommRingΣTheory {ℓ} where module MonoidΣTheory {ℓ} where module MonoidTheory {ℓ} (M' : Monoid {ℓ}) where module GroupΣTheory {ℓ} where module AbGroupΣTheory {ℓ} where module RingΣTheory {ℓ} where module Theory (R' : Ring {ℓ}) where module PosetReasoning (P : Poset ℓ₀ ℓ₁) where there is a syntax for https://agda.readthedocs.io/en/latest/language/module-system.html?highlight=module#parameterised-modules module SortNat = Sort Nat leqNat the non-cubical standard library has a lot of machinery that is missing in the cubical-stdlib module Function.Base where -- Binary application _⟨_⟩_ : A → (A → B → C) → B → C x ⟨ f ⟩ y = f x y -- Composition of a binary function with a unary function _on_ : (B → B → C) → (A → B) → (A → A → C) _*_ on f = λ x y → f x * f y -- Flipped application (aka pipe-forward) _|>_ : ∀ {A : Set a} {B : A → Set b} → (a : A) → (∀ a → B a) → B a -- Construct an element of the given type by instance search. it : {A : Set a} → {{A}} → A it {{x}} = x module Relation.Binary.Core where infix 4 _⇒_ _⇔_ _=[_]⇒_ -- Implication/containment - could also be written _⊆_. -- and corresponding notion of equivalence _⇒_ : REL A B ℓ₁ → REL A B ℓ₂ → Set _ P ⇒ Q = ∀ {x y} → P x y → Q x y _⇔_ : REL A B ℓ₁ → REL A B ℓ₂ → Set _ P ⇔ Q = P ⇒ Q × Q ⇒ P -- Generalised implication - if P ≡ Q it can be read as "f preserves P". _=[_]⇒_ : Rel A ℓ₁ → (A → B) → Rel B ℓ₂ → Set _ P =[ f ]⇒ Q = P ⇒ (Q on f) -- A synonym for _=[_]⇒_. _Preserves_⟶_ : (A → B) → Rel A ℓ₁ → Rel B ℓ₂ → Set _ f Preserves P ⟶ Q = P =[ f ]⇒ Q -- A binary variant of _Preserves_⟶_. _Preserves₂_⟶_⟶_ : (A → B → C) → Rel A ℓ₁ → Rel B ℓ₂ → Rel C ℓ₃ → Set _ _∙_ Preserves₂ P ⟶ Q ⟶ R = ∀ {x y u v} → P x y → Q u v → R (x ∙ u) (y ∙ v) module Algebra.Definitions Congruent₁ : Op₁ A → Set _ Congruent₁ f = f Preserves _≈_ ⟶ _≈_ Congruent₂ : Op₂ A → Set _ Congruent₂ ∙ = ∙ Preserves₂ _≈_ ⟶ _≈_ ⟶ _≈_ LeftCongruent : Op₂ A → Set _ LeftCongruent _∙_ = ∀ {x} → (x ∙_) Preserves _≈_ ⟶ _≈_ RightCongruent : Op₂ A → Set _ RightCongruent _∙_ = ∀ {x} → (_∙ x) Preserves _≈_ ⟶ _≈_ the non-cubical standard library makes more use of unicode, e.g. in invˡ and invʳ for the inverse, we have in the non-cubical standard library inverseˡ : LeftInverse ε _⁻¹ _∙_ inverseˡ = proj₁ inverse inverseʳ : RightInverse ε _⁻¹ _∙_ inverseʳ = proj₂ inverse uniqueˡ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → x ≈ (y ⁻¹) uniqueˡ-⁻¹ = Consequences.assoc+id+invʳ⇒invˡ-unique setoid ∙-cong assoc identity inverseʳ uniqueʳ-⁻¹ : ∀ x y → (x ∙ y) ≈ ε → y ≈ (x ⁻¹) uniqueʳ-⁻¹ = Consequences.assoc+id+invˡ⇒invʳ-unique setoid ∙-cong assoc identity inverseˡ interestingly, this follows from just one field `inverse : Inverse ε _⁻¹ _∙_` there is `module Algebra.Consequences.Setoid` for such results ("consequences") there are open pull requests which might have some more information about the "intended" style https://github.com/agda/cubical/pull/331 Algebras and modules #331 https://github.com/agda/cubical/pull/365 Mayer-Vietoris and some cohomology groups #365 https://github.com/agda/cubical/pull/325 Denial field #325 A denial field is a commutative ring where every non-zero element has an inverse. See #301 for a discussion of other notions of 'field' in constructive algebra. https://github.com/felixwellen/cubical/tree/denial-field https://github.com/agda/cubical/issues/301 Add Field to Cubical.Structures #301 In the style of Ring, etc. from #284. I think it would be good to have this so we could show ℚ is a field. https://github.com/agda/cubical/pull/284 Newstructures #284 Adding some new structures (semigroups, groups, abelian groups and rngs) and a new folder of Algebra, in order to produce results about these new Algebraic structures. https://github.com/agda/cubical/commit/8cf91aeb49ebf26d4cf4e6795e8b56041e28c7a1 Rewrite Group, AbGroup, Ring and CommRing to be records instead of nested Sigma types https://github.com/agda/cubical/pull/324 Ideals and quotient rings #324 - define (left-, right- and two-sided) ideals - define quotient by a two-sided ideal - construct the ring structure on the quotient -} record IsConstructiveField {F : Type ℓ} (0f : F) (1f : F) (_+_ : F → F → F) (_·_ : F → F → F) (-_ : F → F) (_#_ : Rel F F ℓ') (_⁻¹ᶠ : (x : F) → {{x # 0f}} → F) : Type (ℓ-max ℓ ℓ') where constructor isconstructivefield field isCommRing : IsCommRing 0f 1f _+_ _·_ -_ ·-rinv : (x : F) → (p : x # 0f) → x · (_⁻¹ᶠ x {{p}}) ≡ 1f ·-linv : (x : F) → (p : x # 0f) → (_⁻¹ᶠ x {{p}}) · x ≡ 1f -- ·-inv : (x : F) → (p : x # 0f) → x · (let instance p = p in (x ⁻¹ᶠ)) ≡ 1f -- this does also work -- ·-inv : (x : F) → ({{p}} : x # 0f) → x · (x ⁻¹ᶠ) ≡ 1f -- this does not do the right thing -- ·-inv-back : (x : F) → ∃[ y ∈ F ] (x · y ≡ 1f) → x # 0f ·-inv-back : (x y : F) → (x · y ≡ 1f) → x # 0f × y # 0f +-#-extensional : (w x y z : F) → (w + x) # (y + z) → (w # y) ⊎ (x # z) isApartnessRel : IsApartnessRel _#_ open IsCommRing {0r = 0f} {1r = 1f} isCommRing public open IsApartnessRel isApartnessRel public renaming ( isIrrefl to #-irrefl ; isSym to #-sym ; isCotrans to #-cotrans ) _ = {!!} record ConstructiveField : Type (ℓ-suc (ℓ-max ℓ ℓ')) where field Carrier : Type ℓ 0f : Carrier 1f : Carrier _+_ : Carrier → Carrier → Carrier _·_ : Carrier → Carrier → Carrier -_ : Carrier → Carrier _#_ : Rel Carrier Carrier ℓ' _⁻¹ᶠ : (x : Carrier) → {{x # 0f}} → Carrier isConstructiveField : IsConstructiveField 0f 1f _+_ _·_ -_ _#_ _⁻¹ᶠ infix 9 _⁻¹ᶠ infixl 7 _·_ infix 6 -_ infixl 5 _+_ infixl 4 _#_ open IsConstructiveField isConstructiveField public open import Cubical.Data.Empty renaming (elim to ⊥-elim) -- `⊥` and `elim` -- Lemma 4.1.6. -- For a constructive field (F, 0, 1, +, ·, #), the following hold. -- 1. 1 # 0. -- 2. Addition + is #-compatible in the sense that for all x, y, z : F -- x # y ⇔ x + z # y + z. -- 3. Multiplication · is #-extensional in the sense that for all w, x, y, z : F -- w · x # y · z ⇒ w # y ∨ x # z. module Lemmas-4-6-1 {{F : ConstructiveField {ℓ} {ℓ'}}} where --open ConstructiveField {{...}} public -- creates additional `ConstructiveField.foo F` in the "Goal/Have-previews" open ConstructiveField F -- works open import Cubical.Structures.Ring -- NOTE: this also creates additional `Ring.Carrier (makeRing ...)` in the "Goal/Have-previews", except when using C-u C-u C-... then these get normalized fine -- can we do something with pragmas here? https://agda.readthedocs.io/en/latest/language/pragmas.html?highlight=INLINE#the-inline-and-noinline-pragmas -- or maybe with macros? https://github.com/alhassy/gentle-intro-to-reflection -- using this `R` makes it a little better R = (makeRing 0f 1f _+_ _·_ -_ is-set +-assoc +-rid +-rinv +-comm ·-assoc ·-rid ·-lid ·-rdist-+ ·-ldist-+) open Cubical.Structures.Ring.Theory R -- 0-rightNullifies -- open Ring {{...}} public {- module ReflectionTest where open import Data.Nat as Nat hiding (_⊓_) open import Data.List as List open import Data.Char as Char open import Data.String as String open import Reflection hiding (name; Type) open import Reflection.Term as Term public hiding (Type) test06 = (quoteTC 0-rightNullifies) test07 : _ unquoteDef test07 = defineFun test07 [ clause ( [] ) -- hidden arguments `{x}` ( [] ) -- visible arguments `{y}` (quoteTerm 0f) -- the "Term" at the right hand side of the `=` ] -- {-# INLINE test07 #-} -- {-# NOINLINE test07 #-} proof07 : test07 ≡ 0f proof07 = {!!} -} {- -- NOTE: it might be possible with --overlapping-instances to resolve this "Goal/Have-preview" issue -- but it is mentioned that this "might lead to an exponential slowdown in instance resolution and possibly (apparent) looping behaviour" -- also the OPTION pragma to apply --overlapping-instances can only be set per file (and not per module) -- so it might be a good idea to have a separate "Theory.agda" or "Properties.agda" (as it is called in the standard library) -- well, in a test with --overlapping instances, I got the issue that -_ is defined multiple times -- to be fair, the result we have implemented might fit better in a more general Ring context -- so one might think about this and until then, I guess, the best solution is to just omit multiple instances module InstanceTest where -- taken from https://agda.readthedocs.io/en/latest/language/instance-arguments.html#defining-type-classes -- open import Algebra open import Agda.Builtin.Nat open import Data.List renaming (List to BList) record Monoid {a} (A : Type a) : Type a where field mempty : A _<>_ : A → A → A open Monoid {{...}} public instance ListMonoid : ∀ {a} {A : Type a} → Monoid (BList A) -- normal: provide "implementation" in a single term -- ListMonoid = record { mempty = []; _<>_ = _++_ } -- with copatterns: provide "implementation" with patterns mempty {{ListMonoid}} = [] _<>_ {{ListMonoid}} xs ys = xs ++ ys mconcat : ∀ {a} {A : Type a} → {{Monoid A}} → BList A → A mconcat [] = mempty mconcat (x ∷ xs) = x <> mconcat xs sum1 : BList Nat → Nat sum1 xs = let instance -- NOTE: IMPORTANT: the instance-block needs to be more indented (!) than the `instance` keyword NatMonoid : Monoid Nat NatMonoid = record { mempty = 0; _<>_ = Agda.Builtin.Nat._+_ } in mconcat xs itest2 = let instance rr = R in {! 0-rightNullifies!} -- To restrict an instance to the current module, you can mark it as private. For instance, -- https://agda.readthedocs.io/en/latest/language/instance-arguments.html#restricting-instance-search -} {- https://agda.readthedocs.io/en/latest/language/abstract-definitions.html Abstract definitions Definitions can be marked as abstract, for the purpose of hiding implementation details, or to speed up type-checking of other parts. In essence, abstract definitions behave like postulates, thus, do not reduce/compute. For instance, proofs whose content does not matter could be marked abstract, to prevent Agda from unfolding them (which might slow down type-checking). -} -- anonymous modules `module _ params where` automatically open themselves -- they are not well documented but there is this usage example -- Anonymous modules or sections #735 -- https://github.com/agda/agda/issues/735 -- I often want to use something like sections in Coq. I usually use parametrized modules but this has at least two issues that Coq does not have: -- 1) I need to give a name to the module, and there is often no meaningful name to be given -- 2) It exports the module, so I cannot define a module in another file with the same name -- the following code -- module _ params where -- declarations -- would be translated to: -- private -- module Fresh params where -- declarations -- open Fresh public -- where Fresh is a new name. -- NOTE: this gives a hint on the use of "sections" in mathematical writing -- it suggests, that these introduce variable-but-fixed parameter dependencies to all definitions (in the way the `variable` keyword does) -- the difference between an anonymous module and a variable seems to be that the module adds all parameters, where `variable` only adds parameters when used -- also, in the module we have more flexibility with opening other modules and hiding names with the `private` keyword, etc. -- and there is -- https://github.com/agda/agda/issues/1145 -- Allow multiple layout keywords on the same line #1145 -- NOTE: IMPORTANT: when in a hole, with C-c C-o one can list "module contents" -- if given `F` here, we can see the contents of F -- I guess, since every inherited member is included with `open ... public`, -- we can continue with just `isConstructiveField` -- and even `isCommRing` -- and even `isRing` -- this greatly helps to investigate available {- test3 : ∃[ x ∈ Carrier ] x · x ≡ x → Carrier test3 ∥_∥.∣ Σx-x·x≡x ∣ = {!!} --test ∥_∥.∣ x , x·x≡x ∣ = x test3 (∥_∥.squash Σx-x·x≡x₁ Σx-x·x≡x₂ i) = {!!} test3b : {A : Type} → ∃[ x ∈ A ] ∃[ y ∈ A ] x ≡ y → A test3b ∥_∥.∣ fst₁ , ∥_∥.∣ fst₂ , snd₁ ∣ ∣ = {!!} test3b ∥_∥.∣ fst₁ , ∥_∥.squash snd₁ ∥_∥.∣ x ∣ i ∣ = {!!} test3b ∥_∥.∣ fst₁ , ∥_∥.squash snd₁ (∥_∥.squash snd₂ ∥_∥.∣ x ∣ i₁) i ∣ = {!!} test3b ∥_∥.∣ fst₁ , ∥_∥.squash snd₁ (∥_∥.squash snd₂ (∥_∥.squash snd₃ snd₄ i₂) i₁) i ∣ = {!!} test3b (∥_∥.squash ∥_∥.∣ x ∣ ∥_∥.∣ x₁ ∣ i) = {!!} test3b (∥_∥.squash ∥_∥.∣ x ∣ (∥_∥.squash x₁ x₂ i₁) i) = {!!} test3b (∥_∥.squash (∥_∥.squash x x₂ i₁) x₁ i) = {!!} -} -- ∃ : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') -- ∃ A B = ∥ Σ A B ∥ -- infix 2 ∃-syntax -- ∃-syntax : ∀ {ℓ ℓ'} (A : Type ℓ) (B : A → Type ℓ') → Type (ℓ-max ℓ ℓ') -- ∃-syntax = ∃ -- syntax ∃-syntax A (λ x → B) = ∃[ x ∈ A ] B -- Lemma 4.1.6.1 1f#0f : 1f # 0f 1f#0f with ·-identity 1f -- 1f#0f | 1·1≡1 , _ = ·-inv-back 1f ∣ (1f , 1·1≡1) ∣ -- need additional ∣_∣ resp. \|_\| around the tuple 1f#0f | 1·1≡1 , _ = fst (·-inv-back _ _ 1·1≡1) _ = Cubical.Data.Sigma.Base._×_ -- fst and snd a+b-b≡a : ∀ a b → a ≡ (a + b) - b -- NOTE: about workflow -- one can investigate some single term in the hole (C-c C-.), but not a second one -- therefore, we can move a term temporarily into a let-clause and work on another term in the hole -- ... is there equational reasoning in --cubical ? -- NOTE: Yes! it is in Cubical.Foundations.Id a+b-b≡a a b = let P = sym (fst (+-inv b)) Q = sym (fst (+-identity a)) R = transport (λ i → a ≡ a + P i) Q S = transport (λ i → a ≡ (+-assoc a b (- b)) i ) R in S +-preserves-≡ : ∀{a b} → ∀ c → a ≡ b → a + c ≡ b + c +-preserves-≡ c a≡b i = a≡b i + c +-preserves-≡-l : ∀{a b} → ∀ c → a ≡ b → c + a ≡ c + b +-preserves-≡-l c a≡b i = c + a≡b i a+b≡0→a≡-b : ∀{a b} → a + b ≡ 0f → a ≡ - b a+b≡0→a≡-b {a} {b} a+b≡0 = transport (λ i → let RHS = snd (+-identity (- b)) LHS₁ : a + (b + - b) ≡ a + 0f LHS₁ = +-preserves-≡-l a (fst (+-inv b)) LHS₂ : (a + b) - b ≡ a LHS₂ = transport (λ j → (+-assoc a b (- b)) j ≡ fst (+-identity a) j) LHS₁ in LHS₂ i ≡ RHS i ) (+-preserves-≡ (- b) a+b≡0) a·-b≡-a·b : ∀ a b → a · (- b) ≡ - a · b a·-b≡-a·b a b = let P : a · 0f ≡ 0f P = 0-rightNullifies a Q : a · (- b + b) ≡ 0f Q = transport (λ i → a · snd (+-inv b) (~ i) ≡ 0f) P R : a · (- b) + a · b ≡ 0f R = transport (λ i → ·-rdist-+ a (- b) b i ≡ 0f) Q in a+b≡0→a≡-b R a·b-a·c≡a·[b-c] : ∀ a b c → a · b - a · c ≡ a · (b - c) a·b-a·c≡a·[b-c] a b c = let P : a · b + a · (- c) ≡ a · (b + - c) P = sym (·-rdist-+ a b (- c)) Q : a · b - a · c ≡ a · (b + - c) Q = transport (λ i → a · b + a·-b≡-a·b a c i ≡ a · (b + - c) ) P in Q -- Lemma 4.1.6.2 -- For #-compatibility of +, suppose x # y, that is, (x +z) −z # (y +z) −z. -- Then #-extensionality gives (x + z # y + z) ∨ (−z # −z), where the latter case is excluded by irreflexivity of #. +-#-compatible : ∀(x y z : Carrier) → x # y → x + z # y + z +-#-compatible x y z x#y with let P = transport (λ i → a+b-b≡a x z i # a+b-b≡a y z i ) x#y in +-#-extensional _ _ _ _ P ... | inl x+z#y+z = x+z#y+z ... | inr -z#-z = ⊥-elim (#-irrefl _ _ -z#-z -z#-z) -- The other direction is similar. +-#-compatible-inv : ∀(x y z : Carrier) → x + z # y + z → x # y +-#-compatible-inv _ _ _ x+z#y+z with +-#-extensional _ _ _ _ x+z#y+z ... | inl x#y = x#y ... | inr z#z = ⊥-elim (#-irrefl _ _ z#z z#z) -- _ = {!!} ≃⟨ {!!} ⟩ {!!} ■ -- open import -- _ = {!!} ≡[ i ]⟨ {!!} ⟩ {!!} ∎ --_≡⟨_⟩_ : (x : A) → x ≡ y → y ≡ z → x ≡ z --_ ≡⟨ x≡y ⟩ y≡z = x≡y ∙ y≡z -- for a list of unicode symbols in agda, see https://people.inf.elte.hu/divip/AgdaTutorial/Symbols.html infix 3 _◼ infixr 2 _⇒⟨_⟩_ _⇒⟨_⟩_ : ∀{ℓ ℓ' ℓ''} {Q : Type ℓ'} {R : Type ℓ''} → (P : Type ℓ) → (P → Q) → (Q → R) → (P → R) _ ⇒⟨ pq ⟩ qr = qr ∘ pq _◼ : ∀{ℓ} (A : Type ℓ) → A → A _ ◼ = λ x → x f : Carrier → Carrier f x with +-inv x ... | fst₁ , snd₁ = {!!} -- see https://agda.readthedocs.io/en/latest/language/instance-arguments.html it : ∀ {a} {A : Type a} → {{A}} → A it {{x}} = x -- instance search -- Lemma 4.1.6.3 -- TODO: there is equational resoning in Cubical.Foundations.Id, use this -- P = _ ≡⟨ _ ⟩ _ ∎ -- P = _ ≡[ i ] _ ∎ -- syntax ≡⟨⟩-syntax x (λ i → B) y = x ≡[ i ]⟨ B ⟩ y -- in general this module offers a lot of useful equational machinery -- it already makes use of path concatenation with ∙ and ∙∙ -- there is also Cubical.Foundations.Equiv -- P = _ ≃⟨ _ ⟩ _ ■ ·-#-extensional-case1 : ∀(w x y z : Carrier) → w · x # y · z → w · x # w · z → x # z ·-#-extensional-case1 w x y z w·x#y·z w·x#w·z = let P : w · x + - w · x # w · z + - w · x P = +-#-compatible _ _ (- (w · x)) w·x#w·z Q : 0f # w · (z + - x) Q = transport (λ i → (fst (+-inv (w · x)) i) # a·b-a·c≡a·[b-c] w z x i) P instance -- NOTE: this allows to use ⁻¹ᶠ without an instance argument q = #-sym _ _ Q -- see https://agda.readthedocs.io/en/latest/language/instance-arguments.html it : ∀ {a} {A : Type a} → {{A}} → A it {{x}} = x -- instance search R : w · (z - x) · (w · (z - x)) ⁻¹ᶠ ≡ 1f R = ·-rinv (w · (z - x)) it -- (#-sym _ _ Q) S : (z + - x) · w · (w · (z + - x)) ⁻¹ᶠ ≡ 1f S = transport (λ i → ·-comm w (z - x) i · (w · (z - x)) ⁻¹ᶠ ≡ 1f) R T : (z + - x) · (w · (w · (z + - x)) ⁻¹ᶠ) ≡ 1f T = transport (λ i → ·-assoc (z + - x) w ((w · (z + - x)) ⁻¹ᶠ) (~ i) ≡ 1f) S U : z - x # 0f U = fst (·-inv-back _ _ T) V : z - x + x # 0f + x V = (+-#-compatible _ _ x) (fst (·-inv-back _ _ T)) -- (+-#-compatible _ _ x U) -- workflow: -- start with `transport (λ i → z - x + x # 0f + x) V` in the hole (i.e. a constant transport) -- and then fiddle with the path and look what comes out W : z + (- x + x) # x W = transport (λ i → +-assoc z (- x) x (~ i) # snd (+-identity x) i) V X : z + 0f # x X = transport (λ i → z + snd (+-inv x) i # x) W in (#-sym _ _ (transport (λ i → fst (+-identity z) i # x) X)) ·-#-extensional : ∀(w x y z : Carrier) → w · x # y · z → (w # y) ⊎ (x # z) ·-#-extensional w x y z w·x#y·z with #-cotrans _ _ w·x#y·z (w · z) ... | inl w·x#w·z = inr (·-#-extensional-case1 w x y z w·x#y·z w·x#w·z) -- first case ... | inr w·z#y·z = let z·w≡z·y = (transport (λ i → ·-comm w z i # ·-comm y z i) w·z#y·z) in inl (·-#-extensional-case1 _ _ _ _ z·w≡z·y z·w≡z·y) -- second case reduced to first case -- for an example to use equational reasoning in this topic, see https://github.com/felixwellen/cubical/blob/field/Cubical/Structures/Field.agda -- we do not do equational reasoning here but "implicational" reasoning instead -- the special syntax should make it more readable and omit giving names to every intermediate step -- but giving names to intermediates in a `let` or `where` clause might just be the way it's done -- c.f. with more elaborate proofs e.g. in https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#combining-structures -- also see the elaborate proof in https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#381519 -- which uses equational reasoning, but still names the single steps i, ii, iii, iv, v, vi, ... and resolves them in a `where` clause -- also see https://www.cs.bham.ac.uk/~mhe/HoTT-UF-in-Agda-Lecture-Notes/HoTT-UF-Agda.html#391417 -- "We consider rings without unit, called rngs, and with unit, called rings." -- this work of Martín Escardó was prepared for the -- Midlands Graduate School in the Foundations of Computing Science (University of Birmingham, UK, 14 - 18 April, 2019) -- http://events.cs.bham.ac.uk/mgs2019/ -- Introductory Courses: -- - Lambda Calculus (course notes) by Venanzio Capretta (University of Nottingham) -- - Category Theory (course notes) by Thorsten Altenkirch (University of Nottingham) -- - Univalent Type Theory in Agda (course notes) by Martín Escardó (University of Birmingham) ·-#-extensional-case1' : ∀(w x y z : Carrier) → w · x # y · z → w · x # w · z → x # z ·-#-extensional-case1' w x y z w·x#y·z w·x#w·z = let instance -- this allows to use ⁻¹ᶠ without an instance argument w·[z-x]#0f = ( w · x # w · z ⇒⟨ +-#-compatible _ _ (- (w · x)) ⟩ w · x - w · x # w · z - w · x ⇒⟨ transport (λ i → (fst (+-inv (w · x)) i) # a·b-a·c≡a·[b-c] w z x i) ⟩ 0f # w · (z - x) ⇒⟨ #-sym _ _ ⟩ w · (z - x) # 0f ◼) w·x#w·z in ( w · (z - x) # 0f ⇒⟨ (λ _ → ·-rinv (w · (z - x)) it ) ⟩ -- NOTE: "plugging in" the instance did not work, ∴ `it` w · (z - x) · (w · (z - x)) ⁻¹ᶠ ≡ 1f ⇒⟨ transport (λ i → ·-comm w (z - x) i · (w · (z - x)) ⁻¹ᶠ ≡ 1f) ⟩ (z - x) · w · (w · (z - x)) ⁻¹ᶠ ≡ 1f ⇒⟨ transport (λ i → ·-assoc (z - x) w ((w · (z - x)) ⁻¹ᶠ) (~ i) ≡ 1f) ⟩ (z - x) · (w · (w · (z - x)) ⁻¹ᶠ) ≡ 1f ⇒⟨ fst ∘ (·-inv-back _ _) ⟩ z - x # 0f ⇒⟨ +-#-compatible _ _ x ⟩ (z - x) + x # 0f + x ⇒⟨ transport (λ i → +-assoc z (- x) x (~ i) # snd (+-identity x) i) ⟩ z + (- x + x) # x ⇒⟨ transport (λ i → z + snd (+-inv x) i # x) ⟩ z + 0f # x ⇒⟨ transport (λ i → fst (+-identity z) i # x) ⟩ z # x ⇒⟨ #-sym _ _ ⟩ x # z ◼) it -- conceptually we would plug `w·[z-x]#0f` in, but this breaks the very first step -- -- Lemma 4.1.7. -- Given a strict partial order < on a set X: -- 1. we have an apartness relation defined by -- x # y := (x < y) ∨ (y < x), and -- 2. we have a preorder defined by -- x ≤ y := ¬(y < x). -- -- Definition 4.1.8. -- Let (A, ≤) be a partial order, and let min, max : A → A → A be binary operators on A. We say that (A, ≤, min, max) is a lattice if min computes greatest lower bounds in the sense that for every x, y, z : A, we have -- z ≤ min(x,y) ⇔ z ≤ x ∧ z ≤ y, -- and max computes least upper bounds in the sense that for every x, y, z : A, we have -- max(x,y) ≤ z ⇔ x ≤ z ∧ y ≤ z. -- -- Remark 4.1.9. -- 1. From the fact that (A, ≤, min, max) is a lattice, it does not follow that for every x and y, min(x,y) = x ∨ min(x,y) = y. However, we can characterize min as -- z < min(x,y) ⇔ z < x ∨ z < y -- and similarly for max, see Lemma 6.7.1. -- 2. In a partial order, for two fixed elements a and b, all joins and meets of a, b are equal, so that Lemma 2.6.20 the type of joins and the type of meets are propositions. Hence, providing the maps min and max as in the above definition is equivalent to the showing the existenceof all binary joins and meets. -- -- The following definition is modified from on The Univalent Foundations Program [89, Definition 11.2.7]. -- -- Definition 4.1.10. -- An ordered field is a set F together with constants 0, 1, operations +, ·, min, max, and a binary relation < such that: -- 1. (F, 0, 1, +, ·) is a commutative ring with unit; -- 2. < is a strict order; -- 3. x : F has a multiplicative inverse iff x # 0, recalling that # is defined as in Lemma 4.1.7; -- 4. ≤, as in Lemma 4.1.7, is antisymmetric, so that (F, ≤) is a partial order; -- 5. (F, ≤, min, max) is a lattice. -- 6. for all x, y, z, w : F: -- x + y < z + w ⇒ x < z ∨ y < w, (†) -- 0 < z ∧ x < y ⇒ x z < y z. (∗) -- Our notion of ordered fields coincides with The Univalent Foundations Program [89, Definition 11.2.7]. -- -- Lemma 4.1.11. -- In the presence of the first five axioms of Definition 4.1.10, conditions (†) and (∗) are together equivalent to the condition that for all x, y, z : F, -- 1. x ≤ y ⇔ ¬(y < x), -- 2. x # y ⇔ (x < y) ∨ (y < x) -- 3. x ≤ y ⇔ x + z ≤ y + z, -- 4. x < y ⇔ x + z < y + z, -- 5. 0 < x + y ⇒ 0 < x ∨ 0 < y, -- 6. x < y ≤ z ⇒ x < z, -- 7. x ≤ y < z ⇒ x < z, -- 8. x ≤ y ∧ 0 ≤ z ⇒ x z ≤ y z, -- 9. 0 < z ⇒ (x < y ⇔ x z < y z), -- 10. 0 < 1. -- we have in cubical -- import Cubical.HITs.Rationals.HITQ -- ℚ as a higher inductive type -- import Cubical.HITs.Rationals.QuoQ -- ℚ as a set quotient of ℤ × ℕ₊₁ (as in the HoTT book) -- import Cubical.HITs.Rationals.SigmaQ -- ℚ as the set of coprime pairs in ℤ × ℕ₊₁
{ "alphanum_fraction": 0.5742266439, "avg_line_length": 49.24784689, "ext": "agda", "hexsha": "2293081f33f40677c4540163cac255dfc828037e", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mchristianl/synthetic-reals", "max_forks_repo_path": "test/Hit.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mchristianl/synthetic-reals", "max_issues_repo_path": "test/Hit.agda", "max_line_length": 375, "max_stars_count": 3, "max_stars_repo_head_hexsha": "10206b5c3eaef99ece5d18bf703c9e8b2371bde4", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mchristianl/synthetic-reals", "max_stars_repo_path": "test/Hit.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-19T12:15:21.000Z", "max_stars_repo_stars_event_min_datetime": "2020-07-31T18:15:26.000Z", "num_tokens": 18705, "size": 51464 }
open import Relation.Nullary using (yes; no; ¬_) open import Relation.Nullary.Decidable using (True; False) open import Relation.Nullary.Negation using (contradiction) open import Relation.Binary using (Antisymmetric; Irrelevant; Decidable) open import Relation.Binary.PropositionalEquality using (_≡_; _≢_; refl; sym; cong; cong₂; module ≡-Reasoning) open import Relation.Binary.PropositionalEquality.WithK using (≡-irrelevant) open ≡-Reasoning open import Function using (_$_) module AKS.Nat.GCD where open import AKS.Nat.Base using (ℕ; _+_; _*_; zero; suc; _<_; _≤_; lte; _≟_; _∸_) open import AKS.Nat.Properties using (≢⇒¬≟; ≤-antisym; <⇒≱) open import Data.Nat.Properties using (*-distribʳ-∸; m+n∸n≡m) open import AKS.Nat.Divisibility using (modₕ; _/_; _%_; n%m<m; m≡m%n+[m/n]*n; m%n≡m∸m/n*n; /-cancelʳ; Euclidean✓) renaming (_div_ to _ediv_) open import Data.Nat.Properties using (*-+-commutativeSemiring; *-zeroʳ; +-comm; *-comm; *-assoc) open import AKS.Algebra.Structures ℕ _≡_ using (module Modulus) open import AKS.Algebra.Divisibility *-+-commutativeSemiring public open import AKS.Unsafe using (≢-irrelevant) auto-∣ : ∀ {d a} {{ d≢0 : False (d ≟ 0) }} {{ pf : True (a ≟ (a / d) {d≢0} * d)}} → d ∣ a auto-∣ {d} {a} {{ d≢0 }} with a ≟ (a / d) {d≢0} * d ... | yes pf = divides (a / d) pf ∣-antisym : Antisymmetric _≡_ _∣_ ∣-antisym {x} {y} (divides zero refl) (divides q₂ refl) = *-zeroʳ q₂ ∣-antisym {x} {y} (divides (suc q₁) refl) (divides zero refl) = sym (*-zeroʳ (suc q₁)) ∣-antisym {x} {y} (divides (suc q₁) refl) (divides (suc q₂) pf₂) = ≤-antisym (lte (q₁ * x) refl) (lte (q₂ * y) (sym pf₂)) -- The euclidean norm is just the identity function on ℕ ∣_∣ : ∀ n {n≉0 : n ≢ 0} → ℕ ∣ n ∣ = n _div_ : ∀ (n m : ℕ) {m≢0 : m ≢ 0} → ℕ (n div m) {m≢0} = (n / m) {≢⇒¬≟ m≢0} _mod_ : ∀ (n m : ℕ) {m≢0 : m ≢ 0} → ℕ (n mod m) {m≢0} = (n % m) {≢⇒¬≟ m≢0} division : ∀ n m {m≢0 : m ≢ 0} → n ≡ m * (n div m) {m≢0} + (n mod m) {m≢0} division n m {m≢0} = begin n ≡⟨ m≡m%n+[m/n]*n n m {≢⇒¬≟ m≢0} ⟩ (n % m) + (n / m) * m ≡⟨ +-comm (n % m) (n / m * m) ⟩ (n / m) * m + (n % m) ≡⟨ cong (λ t → t + (n % m) {≢⇒¬≟ m≢0}) (*-comm (n / m) m) ⟩ m * (n div m) {m≢0} + (n mod m) {m≢0} ∎ open Modulus 0 ∣_∣ _mod_ modulus : ∀ n m {m≢0} → Remainder n m {m≢0} modulus n m {m≢0} with (n mod m) {m≢0} ≟ 0 ... | yes r≡0 = 0≈ r≡0 ... | no r≢0 = 0≉ r≢0 (n%m<m n m) mod-cong : ∀ {x₁ x₂} {y₁ y₂} → x₁ ≡ x₂ → y₁ ≡ y₂ → ∀ {y₁≉0 y₂≉0} → (x₁ mod y₁) {y₁≉0} ≡ (x₂ mod y₂) {y₂≉0} mod-cong refl refl {y₁≢0} {y₂≢0} rewrite ≢-irrelevant y₁≢0 y₂≢0 = refl mod-distribʳ-* : ∀ c a b {b≢0} {b*c≢0} → ((a * c) mod (b * c)) {b*c≢0} ≡ (a mod b) {b≢0} * c mod-distribʳ-* c a b {b≢0} {b*c≢0} = begin (a * c) mod (b * c) ≡⟨ m%n≡m∸m/n*n (a * c) (b * c) ⟩ (a * c) ∸ ((a * c) / (b * c)) * (b * c) ≡⟨ cong (λ x → a * c ∸ x) (sym (*-assoc ((a * c) / (b * c)) b c)) ⟩ (a * c) ∸ (((a * c) / (b * c)) * b) * c ≡⟨ sym (*-distribʳ-∸ c a (((a * c) / (b * c)) * b)) ⟩ (a ∸ ((a * c) / (b * c)) * b) * c ≡⟨ cong (λ x → (a ∸ x * b) * c) (/-cancelʳ c a b) ⟩ (a ∸ (a / b) * b) * c ≡⟨ cong (λ x → x * c) (sym (m%n≡m∸m/n*n a b)) ⟩ a mod b * c ∎ open Euclidean (λ n → n) _div_ _mod_ _≟_ ≡-irrelevant ≢-irrelevant division modulus mod-cong mod-distribʳ-* using (gcdₕ; gcd; gcd-isGCD; Identity; +ʳ; +ˡ; Bézout; lemma; bézout) public open IsGCD gcd-isGCD public open GCD gcd-isGCD ∣-antisym using ( _⊥_; ⊥-sym; ⊥-respˡ; ⊥-respʳ ) public renaming ( gcd[a,1]≈1 to gcd[a,1]≡1 ; gcd[1,a]≈1 to gcd[1,a]≡1 ; a≉0⇒gcd[a,b]≉0 to a≢0⇒gcd[a,b]≢0 ; b≉0⇒gcd[a,b]≉0 to b≢0⇒gcd[a,b]≢0 ; gcd[0,a]≈a to gcd[0,a]≡a ; gcd[a,0]≈a to gcd[a,0]≡a ; gcd[0,a]≈1⇒a≈1 to gcd[0,a]≡1⇒a≡1 ; gcd[a,0]≈1⇒a≈1 to gcd[a,0]≡1⇒a≡1 ) public ∣n+m∣m⇒∣n : ∀ {i n m} → i ∣ n + m → i ∣ m → i ∣ n ∣n+m∣m⇒∣n {i} {n} {m} (divides q₁ n+m≡q₁*i) (divides q₂ m≡q₂*i) = divides (q₁ ∸ q₂) $ begin n ≡⟨ sym (m+n∸n≡m n m) ⟩ (n + m) ∸ m ≡⟨ cong₂ (λ x y → x ∸ y) n+m≡q₁*i m≡q₂*i ⟩ q₁ * i ∸ q₂ * i ≡⟨ sym (*-distribʳ-∸ i q₁ q₂) ⟩ (q₁ ∸ q₂) * i ∎ ∣⇒≤ : ∀ {m n} {n≢0 : False (n ≟ 0)} → m ∣ n → m ≤ n ∣⇒≤ {m} {suc n} (divides (suc q) 1+n≡m+q*m) = lte (q * m) (sym 1+n≡m+q*m) _∣?_ : Decidable _∣_ d ∣? a with d ≟ 0 d ∣? a | yes refl with a ≟ 0 d ∣? a | yes refl | yes refl = yes ∣-refl d ∣? a | yes refl | no a≢0 = no λ 0∣a → contradiction (0∣n⇒n≈0 0∣a) a≢0 d ∣? a | no d≢0 with (a ediv d) {≢⇒¬≟ d≢0} d ∣? a | no d≢0 | Euclidean✓ q r pf r<d with r ≟ 0 d ∣? a | no d≢0 | Euclidean✓ q r pf r<d | yes refl = yes $ divides q $ begin a ≡⟨ pf ⟩ 0 + d * q ≡⟨⟩ d * q ≡⟨ *-comm d q ⟩ q * d ∎ d ∣? a | no d≢0 | Euclidean✓ q r pf r<d | no r≢0 = no ¬d∣a where ¬d∣a : ¬ (d ∣ a) ¬d∣a d∣a = contradiction d≤r (<⇒≱ r<d) where d∣r+d*q : d ∣ r + d * q d∣r+d*q = ∣-respʳ pf d∣a d∣r : d ∣ r d∣r = ∣n+m∣m⇒∣n d∣r+d*q (∣n⇒∣n*m _ _ _ ∣-refl) d≤r : d ≤ r d≤r = ∣⇒≤ {n≢0 = ≢⇒¬≟ r≢0} d∣r
{ "alphanum_fraction": 0.4984170954, "avg_line_length": 40.1111111111, "ext": "agda", "hexsha": "0518b96eb3961bc958666a8bc100fd5125c10a6a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "mckeankylej/thesis", "max_forks_repo_path": "proofs/AKS/Nat/GCD.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "mckeankylej/thesis", "max_issues_repo_path": "proofs/AKS/Nat/GCD.agda", "max_line_length": 121, "max_stars_count": 1, "max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "mckeankylej/thesis", "max_stars_repo_path": "proofs/AKS/Nat/GCD.agda", "max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z", "max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z", "num_tokens": 2698, "size": 5054 }
-- Andreas, 2016-09-12 issue #2172 -- -- Instance search should succeed also when instance meta is supplied by the user. -- -- This test case is not minimal, but illustrates the point. -- {-# OPTIONS -v tc.term.args:30 -v tc.term.args.ifs:15 -v tc.meta.new:50 -v tc.meta.name:100 -v tc.term.args.named:75 #-} module Issue2172 where postulate id : {t : Set} → t → t _≡_ : {t : Set} → t → t → Set ⊤ : Set record FunctorOp (F : Set → Set) : Set₁ where field map : ∀{A B} → (A → B) → F A → F B record FunctorLaws (F : Set → Set) {{O : FunctorOp F}} : Set₁ where field map-id : ∀{A : Set} → FunctorOp.map O (id {A}) ≡ (id {F A}) record ApplyOp (A : Set → Set) {{O : FunctorOp A}} {{L : FunctorLaws A}} : Set₁ where field iapply : ∀ {t₁ t₂} → A (t₁ → t₂) → A t₁ → A t₂ record ApplyLaws (A : Set → Set) {{O : FunctorOp A}} {{L : FunctorLaws A}} {{i : ApplyOp A}} : Set₁ where open ApplyOp {{...}} field works : ∀ (f : A (⊤ → ⊤)) → (x : A ⊤) → (iapply f x) ≡ x test2 : ∀ (f : A (⊤ → ⊤)) → (x : A ⊤) → (iapply {_} {{_}} f x) ≡ x test1 : ∀ (f : A (⊤ → ⊤)) → (x : A ⊤) → (iapply {A₁ = _} {{_}} {{L₁ = _}} f x) ≡ x test0 : ∀ (f : A (⊤ → ⊤)) → (x : A ⊤) → (iapply {{L₁ = _}} f x) ≡ x test : ∀ (f : A (⊤ → ⊤)) → (x : A ⊤) → (iapply {{L₁ = {!L!}}} f x) ≡ x
{ "alphanum_fraction": 0.5042340262, "avg_line_length": 35.1081081081, "ext": "agda", "hexsha": "71b3120353d94fe2855a7d8744328c527a049211", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "pthariensflame/agda", "max_forks_repo_path": "test/interaction/Issue2172.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "pthariensflame/agda", "max_issues_repo_path": "test/interaction/Issue2172.agda", "max_line_length": 123, "max_stars_count": null, "max_stars_repo_head_hexsha": "222c4c64b2ccf8e0fc2498492731c15e8fef32d4", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "pthariensflame/agda", "max_stars_repo_path": "test/interaction/Issue2172.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 550, "size": 1299 }
id : {A : Set} → A → A id x = x syntax id {A} x = x ∈ A data Nat : Set where zero : Nat suc : Nat → Nat data Fin : Nat → Set where zero : Fin zero suc : ∀ {n} → Fin n → Fin (suc n) z = zero ∈ Fin zero postulate hiddenFun : ∀ {f : Nat → Nat} {n} → Fin (f n) syntax hiddenFun {λ x → y} = hide[ x ] y z′ : Fin (suc zero) z′ = hide[ x ] suc x
{ "alphanum_fraction": 0.5208913649, "avg_line_length": 14.9583333333, "ext": "agda", "hexsha": "78b705926e90709c985ba304e483b21d08e2ffba", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue400.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue400.agda", "max_line_length": 47, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue400.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 146, "size": 359 }
-- New NO_POSITIVITY_CHECK pragma for data definitions and mutual -- blocks -- Skipping a new-style mutual block: Anywhere before the declaration -- or the definition of a data type in the block (case: before first -- declaration). {-# NO_POSITIVITY_CHECK #-} data Cheat₁ : Set data Oops₁ : Set data Cheat₁ where cheat₁ : Oops₁ → Cheat₁ data Oops₁ where oops₁ : (Cheat₁ → Cheat₁) → Oops₁ -- Skipping a new-style mutual block: Anywhere before the declaration -- or the definition of a data type in the block (case: before some -- definition). data Cheat₂ : Set data Oops₂ : Set data Cheat₂ where cheat₂ : Oops₂ → Cheat₂ {-# NO_POSITIVITY_CHECK #-} data Oops₂ where oops₂ : (Cheat₂ → Cheat₂) → Oops₂
{ "alphanum_fraction": 0.7248603352, "avg_line_length": 23.0967741935, "ext": "agda", "hexsha": "963babbe1220279bbc3097f2882c145b70da15cb", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue1614d.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue1614d.agda", "max_line_length": 69, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue1614d.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 199, "size": 716 }
module DuplicateFields where postulate X : Set record D : Set where field x : X d : X -> X -> D d x y = record {x = x; x = y}
{ "alphanum_fraction": 0.5864661654, "avg_line_length": 11.0833333333, "ext": "agda", "hexsha": "d8e8e5906f9a47c939fc09f9d5e02e8e4f4157cf", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Fail/DuplicateFields.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "hborum/agda", "max_issues_repo_path": "test/Fail/DuplicateFields.agda", "max_line_length": 29, "max_stars_count": 3, "max_stars_repo_head_hexsha": "aac88412199dd4cbcb041aab499d8a6b7e3f4a2e", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "hborum/agda", "max_stars_repo_path": "test/Fail/DuplicateFields.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 46, "size": 133 }
-- Andreas, 2018-10-23, issue #3309 reported by G. Brunerie -- -- Check that we can use irrelevant record fields in copattern matching. -- -- (A refactoring broke the correct relevances of pattern variables -- after matching on an irrelevant projection pattern.) record Σ (A : Set) (B : A → Set) : Set where constructor _,_ field fst : A .snd : B fst open Σ pair : {A : Set} {B : A → Set} (a : A) .(b : B a) → Σ A B pair a b .fst = a pair a b .snd = b f : {A : Set} {B : A → Set} (a : A) .(b : B a) → Σ A B fst (f a b) = a snd (f a b) = b -- Should work.
{ "alphanum_fraction": 0.5971978984, "avg_line_length": 23.7916666667, "ext": "agda", "hexsha": "4a3d747c0b5042bb5b4d2044473d1c144eb0f055", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Succeed/Issue3309.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Succeed/Issue3309.agda", "max_line_length": 72, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Succeed/Issue3309.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 205, "size": 571 }
------------------------------------------------------------------------------ -- Axiomatic Peano arithmetic using Agsy ------------------------------------------------------------------------------ {-# OPTIONS --allow-unsolved-metas #-} {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} module FOT.Agsy.AxiomaticPA where open import Common.FOL.FOL public renaming ( D to ℕ ) infixl 10 _*_ infix 7 _≐_ infixl 9 _+_ ------------------------------------------------------------------------------ -- Non-logical constants postulate zero : ℕ succ : ℕ → ℕ _+_ : ℕ → ℕ → ℕ _*_ : ℕ → ℕ → ℕ _≐_ : ℕ → ℕ → Set -- Proper axioms -- (From Elliott Mendelson. Introduction to mathematical -- logic. Chapman & Hall, 4th edition, 1997, p. 155) -- N.B. We make the recursion in the first argument for _+_ and _*_. -- S₁. m = n → m = o → n = o -- S₂. m = n → succ m = succ n -- S₃. 0 ≠ succ n -- S₄. succ m = succ n → m = n -- S₅. 0 + n = n -- S₆. succ m + n = succ (m + n) -- S₇. 0 * n = 0 -- S₈. succ m * n = (m * n) + m -- S₉. P(0) → (∀n.P(n) → P(succ n)) → ∀n.P(n), for any wf P(n) of PA. postulate S₁ : {m n o : ℕ} → m ≐ n → m ≐ o → n ≐ o S₂ : ∀ {m n} → m ≐ n → succ m ≐ succ n S₃ : ∀ {n} → ¬ (zero ≐ succ n) S₄ : ∀ {m n} → succ m ≐ succ n → m ≐ n S₅ : ∀ n → zero + n ≐ n S₆ : ∀ m n → succ m + n ≐ succ (m + n) S₇ : ∀ n → zero * n ≐ zero S₈ : ∀ m n → succ m * n ≐ n + m * n S₉ : (A : ℕ → Set) → A zero → (∀ n → A n → A (succ n)) → ∀ n → A n -- Properties refl : ∀ {n} → n ≐ n refl {n} = S₁ (S₅ n) (S₅ n) -- Via Agsy {-m} sym : ∀ {m n} → m ≐ n → n ≐ m sym h = S₁ h refl -- Via Agsy {-m} trans : ∀ {m n o} → m ≐ n → n ≐ o → m ≐ o trans h₁ h₂ = S₁ (sym h₁) h₂ -- Via Agsy {-m} +-rightIdentity : ∀ n → n + zero ≐ n +-rightIdentity n = {!-t 20 -m!} -- Agsy fails
{ "alphanum_fraction": 0.4303469705, "avg_line_length": 27.9855072464, "ext": "agda", "hexsha": "956fd17f16c6c5c558ae5887efed46d9af8e917b", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "notes/FOT/Agsy/AxiomaticPA.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "notes/FOT/Agsy/AxiomaticPA.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "notes/FOT/Agsy/AxiomaticPA.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 738, "size": 1931 }
module LinkedList where open import Data.Unit using (⊤; tt) open import Data.Empty using (⊥) open import Data.Nat import Data.Fin as Fin open import Data.Fin using (Fin) renaming (zero to Fzero; suc to Fsuc) open import Relation.Binary.PropositionalEquality as PropEq using (_≡_; refl; cong) open import Relation.Nullary using (¬_) open import Relation.Nullary using (Dec; yes; no; ¬_) open import Relation.Nullary.Decidable using (False) data LinkedList (A : Set) : Set where [] : LinkedList A _∷_ : A → LinkedList A → LinkedList A -------------------------------------------------------------------------------- -- to ℕ ⟦_⟧ : ∀ {A} → LinkedList A → ℕ ⟦ [] ⟧ = zero ⟦ x ∷ xs ⟧ = suc ⟦ xs ⟧ -------------------------------------------------------------------------------- -- predicates null : ∀ {A} → LinkedList A → Set null [] = ⊤ null (_ ∷ _) = ⊥ null? : ∀ {A} → (xs : LinkedList A) → Dec (null xs) null? [] = yes tt null? (x ∷ xs) = no (λ z → z) -------------------------------------------------------------------------------- -- operations incr : ∀ {A} → A → LinkedList A → LinkedList A incr = _∷_ decr : ∀ {A} → (xs : LinkedList A) → False (null? xs) → LinkedList A decr [] () decr (x ∷ xs) p = xs _++_ : ∀ {A} → LinkedList A → LinkedList A → LinkedList A [] ++ ys = ys (x ∷ xs) ++ ys = x ∷ (xs ++ ys) elemAt : ∀ {A} → (xs : LinkedList A) → Fin ⟦ xs ⟧ → A elemAt [] () elemAt (x ∷ xs) Fzero = x elemAt (x ∷ xs) (Fsuc i) = elemAt xs i
{ "alphanum_fraction": 0.4903397735, "avg_line_length": 26.3333333333, "ext": "agda", "hexsha": "cc65a4438b8f93ef3392d01f5d356ff5ff42d22c", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_forks_event_min_datetime": "2015-05-30T05:50:50.000Z", "max_forks_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "banacorn/numeral", "max_forks_repo_path": "legacy/LinkedList.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "banacorn/numeral", "max_issues_repo_path": "legacy/LinkedList.agda", "max_line_length": 80, "max_stars_count": 1, "max_stars_repo_head_hexsha": "aae093cc9bf21f11064e7f7b12049448cd6449f1", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "banacorn/numeral", "max_stars_repo_path": "legacy/LinkedList.agda", "max_stars_repo_stars_event_max_datetime": "2015-04-23T15:58:28.000Z", "max_stars_repo_stars_event_min_datetime": "2015-04-23T15:58:28.000Z", "num_tokens": 446, "size": 1501 }
{-# OPTIONS --without-K #-} open import HoTT.Base open import HoTT.Identity open import HoTT.Equivalence open import HoTT.Identity.Sigma module HoTT.Equivalence.Sigma where open variables Σ-equiv₁ : ((f , _) : A ≃ B) → Σ A (P ∘ f) ≃ Σ B P Σ-equiv₁ {A = A} {B} {P = P} (f , e) = iso→eqv iso where open ishae (qinv→ishae (isequiv→qinv e)) iso : Iso _ _ Iso.f iso (a , b) = f a , b Iso.g iso (a' , b) = g a' , transport P (ε a' ⁻¹) b Iso.η iso (a , b) = pair⁼ (η a , ( transport (P ∘ f) (η a) (transport P (ε (f a) ⁻¹) b) =⟨ transport-ap P f (η a) _ ⁻¹ ⟩ transport P (ap f (η a)) (transport P (ε (f a) ⁻¹) b) =⟨ transport-∙ P (ε (f a) ⁻¹) (ap f (η a)) b ⁻¹ ⟩ transport P (ε (f a) ⁻¹ ∙ ap f (η a)) b =⟨ ap (λ p → transport P p b) (ε (f a) ⁻¹ ∙ₗ τ a) ⟩ transport P (ε (f a) ⁻¹ ∙ ε (f a)) b =⟨ ap (λ p → transport P p b) (invₗ {p = ε (f a)}) ⟩ b ∎)) where open =-Reasoning Iso.ε iso (a' , b) rewrite ε a' = refl Σ-equiv₂ : ((x : A) → P x ≃ Q x) → Σ A P ≃ Σ A Q Σ-equiv₂ {A = A} {P = P} {Q = Q} e = iso→eqv iso where iso : Iso (Σ A P) (Σ A Q) Iso.f iso x = let (a , b) = x in a , pr₁ (e a) b Iso.g iso (a , b') = a , g b' where open qinv (isequiv→qinv (pr₂ (e a))) Iso.η iso (a , b) = pair⁼ (refl , η b) where open qinv (isequiv→qinv (pr₂ (e a))) Iso.ε iso (a , b') = pair⁼ (refl , ε b') where open qinv (isequiv→qinv (pr₂ (e a))) Σ-equiv : ((f , _) : A ≃ B) → ((x : A) → P x ≃ Q (f x)) → Σ A P ≃ Σ B Q Σ-equiv e₁ e₂ = Σ-equiv₂ e₂ ∙ₑ Σ-equiv₁ e₁ Σ-assoc : {C : Σ A P → 𝒰 i} → Σ[ x ∶ A ] Σ[ y ∶ P x ] C (x , y) ≃ Σ[ p ∶ Σ A P ] C p Σ-assoc = let open Iso in iso→eqv λ where .f ( x , y , z) → (x , y) , z .g ((x , y) , z) → x , y , z .η ( _ , _ , _) → refl .ε ((_ , _) , _) → refl Σ-comm : {P : A → B → 𝒰 i} → Σ[ x ∶ A ] Σ[ y ∶ B ] (P x y) ≃ Σ[ y ∶ B ] Σ[ x ∶ A ] (P x y) Σ-comm = let open Iso in iso→eqv λ where .f (a , b , p) → (b , a , p) .g (b , a , p) → (a , b , p) .η (a , b , p) → refl .ε (b , a , p) → refl
{ "alphanum_fraction": 0.4672531769, "avg_line_length": 35.8947368421, "ext": "agda", "hexsha": "83976f60e843fb65060abc70955ae82b942b0e02", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_forks_repo_licenses": [ "0BSD" ], "max_forks_repo_name": "michaelforney/hott", "max_forks_repo_path": "HoTT/Equivalence/Sigma.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "0BSD" ], "max_issues_repo_name": "michaelforney/hott", "max_issues_repo_path": "HoTT/Equivalence/Sigma.agda", "max_line_length": 110, "max_stars_count": null, "max_stars_repo_head_hexsha": "ef4d9fbb9cc0352657f1a6d0d3534d4c8a6fd508", "max_stars_repo_licenses": [ "0BSD" ], "max_stars_repo_name": "michaelforney/hott", "max_stars_repo_path": "HoTT/Equivalence/Sigma.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 994, "size": 2046 }
module MGU where --open import Agda.Builtin.Nat using () renaming (Nat to ℕ) open import Agda.Primitive open import Agda.Builtin.Equality open import Prelude.Product using (Σ; _,_; fst; snd; _×_; curry; uncurry) open import Prelude.Equality using (_≡_; eqReasoningStep; _∎; sym; trans; cong) open import Prelude.Function using (_∘_) open import Prelude.Empty using (⊥) open import Prelude.Sum using () renaming (Either to _⊎_) open import Prelude.Maybe using (Maybe; just; nothing) ∃ : ∀ {a b} {A : Set a} (B : A → Set b) → Set (a ⊔ b) ∃ = Σ _ open import Prelude using (_$_) open import Relation.Binary open import Algebra open import Category.Applicative.Predicate open import Prolegomenon --record IsTermSubstitution {ℓᵗ} {ℓ⁼ᵗ} {ℓˢ} {ℓ⁼ˢ} record IsSetoid {c} {ℓ} {Carrier : Set c} (_≈_ : Rel Carrier ℓ) : Set (c ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ setoid : Setoid c ℓ setoid = record { Carrier = Carrier ; _≈_ = _≈_ ; isEquivalence = isEquivalence } open Setoid setoid public open IsSetoid ⦃ … ⦄ open import Algebra.Structures --open IsMonoid ⦃ … ⦄ record IsTermSubstitution {ℓᵗ} {ℓ⁼ᵗ} {ℓˢ} {ℓ⁼ˢ} (Term : Setoid ℓᵗ ℓ⁼ᵗ) (Substitution : Monoid ℓˢ ℓ⁼ˢ) : Set (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ) where open Setoid Term public using () renaming (Carrier to T ;_≈_ to _=ᵗ_) open Monoid Substitution public using () renaming (Carrier to S ;_≈_ to _=ˢ_ ;_∙_ to _∙_ ;ε to ∅) infixl 6 _▹_ field _▹_ : T → S → T ▹-=ˢ-to-ᵗ : ∀ {s s′} → s =ˢ s′ → (t : T) → (t ▹ s) =ᵗ (t ▹ s′) ▹-=ᵗ-to-=ˢ : ∀ {s s′} → ((t : T) → t ▹ s =ᵗ t ▹ s′) → s =ˢ s′ ▹-extracts-∙ : (t : T) (s₁ s₂ : S) → t ▹ s₁ ∙ s₂ =ᵗ t ▹ s₁ ▹ s₂ open IsTermSubstitution ⦃ … ⦄ record TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where field Term : Setoid ℓᵗ ℓ⁼ᵗ Substitution : Monoid ℓˢ ℓ⁼ˢ isTermSubstitution : IsTermSubstitution Term Substitution open IsTermSubstitution isTermSubstitution public open import Relation.Unary import Relation.Binary.Indexed as I open import Relation.Nullary record 𝓩ero (A : Set) : Set where field 𝓩 : A open 𝓩ero ⦃ … ⦄ instance 𝓩eroLevel : 𝓩ero Level 𝓩ero.𝓩 𝓩eroLevel = lzero open import Agda.Builtin.Nat instance 𝓩eroNat : 𝓩ero Nat 𝓩ero.𝓩 𝓩eroNat = zero record IsSeparableInto {sx s x} (SX : Set sx) (S : Set s) (X : Set x) : Set (s ⊔ x ⊔ sx) where field break : SX → S × X combine : S → X → SX iso : ∀ sx → uncurry combine (break sx) ≡ sx record Separableoid sx s x : Set (lsuc (sx ⊔ s ⊔ x)) where field SX : Set sx S : Set s X : Set x separable : IsSeparableInto SX S X _AND_ = _×_ NOT_ = ¬_ _NAND_ : ∀ {a b} (A : Set a) (B : Set b) → Set ((a ⊔ b)) _NAND_ A B = (NOT A) × (NOT B) _OR_ : ∀ {a b} (A : Set a) (B : Set b) → Set ((a ⊔ b)) _OR_ A B = NOT (A NAND B) _XOR_ : ∀ {a b} (A : Set a) (B : Set b) → Set ((a ⊔ b)) _XOR_ A B = (A OR B) AND (NOT (A AND B)) asdf : (A B : Set) → Dec A → A XOR B → Prelude.Either A (¬ ¬ B) asdf A B x (¬[¬A׬B] , ¬[A×B]) with x asdf A B x (¬[¬A׬B] , ¬[A×B]) | yes p = _⊎_.left p asdf A B x (¬[¬A׬B] , ¬[A×B]) | no ¬p = _⊎_.right (λ {x₁ → ¬[¬A׬B] (¬p , x₁)}) import Data.Empty frf : Dec Data.Empty.⊥ frf = no (λ x → x) {- record LAW (A : Set) (B : Set) (E : EITHER A B) : Set where open import Data.Empty open EITHER E ¬A→B : ¬ A → ¬ ¬ B ¬A→B ¬a ¬b with e ... | ei = ei (λ {(a , ¬b) → ¬a a}) -} record FiniteMembership : Set where open import Data.List module _ {ℓ} {A : Set ℓ} where listMembers : List A → Pred A ℓ listMembers [] x₁ = Prelude.⊥′ listMembers (x ∷ xs) y = (y ≡ x) OR (listMembers xs y) _∈L_ : A → List A → Set ℓ x ∈L xs = x ∈ listMembers xs data _inL_ (y : A) : List A → Set where [] : ∀ {xs} → y inL (y ∷ xs) _∷_ : ∀ {x xs} → (ys : y inL xs) → y inL (x ∷ xs) ListMembers : List A → Pred A lzero ListMembers xs = _inL xs _∈LL_ : A → List A → Set x ∈LL xs = x ∈ ListMembers xs toLL : (y : A) (xs : List A) → y ∈L xs → y ∈LL xs toLL y [] x = Prelude.⊥′-elim x toLL y (x ∷ xs) y∈Lxxs = {!!} -- toLL y xs x₁ record Boolean (True : Set) (False : Set) : Set where field bool : True XOR False {- record L {ℓ} (A : Set ℓ) : Set ℓ where inductive field EMPTY : Set empty : L A head : A XOR ⊥ tail : {!!} -} {- head : A XOR Prelude.⊥ tail : empty : Prelude.⊥′ list : EITHER Prelude.⊥′ (L A) -} record FreeVariableoid ℓᵛ∈ᵗ ℓᵛ∈ˢ⁺ ℓᵛ∈ˢ⁻ ℓᵛ ℓ⁼ᵛ ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦃ termSubstitution : TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦄ : Set (lsuc (ℓᵛ∈ᵗ ⊔ ℓᵛ∈ˢ⁺ ⊔ ℓᵛ∈ˢ⁻ ⊔ ℓᵛ ⊔ ℓ⁼ᵛ ⊔ ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- open TermSubstitution termSubstitution field Variable : Setoid ℓᵛ ℓ⁼ᵛ TermStructure : Set open Setoid Variable public using () renaming (Carrier to V ;_≈_ to _=ᵛ_) field termVariables : T → Pred V ℓᵛ∈ᵗ termStructure : T → Set substitutionSourceVariables : S → Pred V ℓᵛ∈ˢ⁺ substitutionTargetVariables : S → Pred V ℓᵛ∈ˢ⁻ _ᵛ∈ᵗ_ : V → T → Set ℓᵛ∈ᵗ _ᵛ∈ᵗ_ v t = v ∈ termVariables t field termNumberOfVariables : (t : T) → ∃ λ (vs : List V) → (∀ v → (v ∈L vs → v ᵛ∈ᵗ t) × (v ᵛ∈ᵗ t → v ∈L vs)) elementsDefineVariables : (t : T) → V _ᵛ∈ˢ⁺_ : V → S → Set ℓᵛ∈ˢ⁺ _ᵛ∈ˢ⁺_ v s = v ∈ substitutionSourceVariables s _ᵛ∈ˢ⁻_ : V → S → Set ℓᵛ∈ˢ⁻ _ᵛ∈ˢ⁻_ v s = v ∈ substitutionTargetVariables s field foo : ∀ {v t s} → v ᵛ∈ᵗ t → ¬ v ᵛ∈ˢ⁺ s → v ᵛ∈ᵗ (t ▹ s) isSep : IsSeparableInto T TermStructure V record CorrectTermSubstitution ℓᵛ∈ᵗ ℓᵛ∈ˢ⁺ ℓᵛ∈ˢ⁻ ℓᵛ ℓ⁼ᵛ ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦃ termSubstitution : TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦄ : Set (lsuc (ℓᵛ∈ᵗ ⊔ ℓᵛ∈ˢ⁺ ⊔ ℓᵛ∈ˢ⁻ ⊔ ℓᵛ ⊔ ℓ⁼ᵛ ⊔ ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- open TermSubstitution termSubstitution field Variable : Setoid ℓᵛ ℓ⁼ᵛ open Setoid Variable public using () renaming (Carrier to V ;_≈_ to _=ᵛ_) field termVariables : T → Pred V ℓᵛ∈ᵗ substitutionSourceVariables : S → Pred V ℓᵛ∈ˢ⁺ substitutionTargetVariables : S → Pred V ℓᵛ∈ˢ⁻ _ᵛ∈ᵗ_ : V → T → Set ℓᵛ∈ᵗ _ᵛ∈ᵗ_ v t = v ∈ termVariables t _ᵛ∈ˢ⁺_ : V → S → Set ℓᵛ∈ˢ⁺ _ᵛ∈ˢ⁺_ v s = v ∈ substitutionSourceVariables s _ᵛ∈ˢ⁻_ : V → S → Set ℓᵛ∈ˢ⁻ _ᵛ∈ˢ⁻_ v s = v ∈ substitutionTargetVariables s field foo : ∀ {v t s} → v ᵛ∈ᵗ t → ¬ v ᵛ∈ˢ⁺ s → v ᵛ∈ᵗ (t ▹ s) data D : Set where data IsRight {a b} {A : Set a} {B : Set b} (e : _⊎_ A B) : Set (a ⊔ b) where right : B → IsRight e module MostGeneralMGU where record Unificationoid {ℓᵗ} {ℓ⁼ᵗ} {ℓˢ} {ℓ⁼ˢ} ⦃ termSubstitution : TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦄ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- open TermSubstitution termSubstitution Property : ∀ {ℓ} → Set (ℓˢ ⊔ lsuc ℓ) Property {ℓ} = S → Set ℓ Nothing : ∀ {ℓ} → (P : Property {ℓ}) → Set (ℓ ⊔ ℓˢ) Nothing P = ∀ s → P s → ⊥ IsUnifier : (t₁ t₂ : T) → Property IsUnifier t₁ t₂ s = t₁ ▹ s =ᵗ t₂ ▹ s field unify : (t₁ t₂ : T) → Nothing (IsUnifier t₁ t₂) ⊎ ∃ (IsUnifier t₁ t₂) unifier : (t₁ t₂ : T) → Maybe S unifier t₁ t₂ with unify t₁ t₂ unifier t₁ t₂ | _⊎_.left x = nothing unifier t₁ t₂ | _⊎_.right (x , _) = just x unifier-is-correct : (t₁ t₂ : T) → Nothing (IsUnifier t₁ t₂) → unifier t₁ t₂ ≡ nothing unifier-is-correct = {!!} record IsMostGeneralUnification ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦃ termSubstitution : TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦄ (unificationoid : Unificationoid ⦃ termSubstitution ⦄) : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where --open TermSubstitution termSubstitution open Unificationoid unificationoid _≤_ : (s₋ : S) (s₊ : S) → Set (ℓˢ ⊔ ℓ⁼ˢ) _≤_ s₋ s₊ = ∃ λ s → s ∙ s₊ =ˢ s₋ MostGenerally : ∀ {ℓ} (P : Property {ℓ}) → Property MostGenerally P s₊ = ∀ s₋ → P s₋ → s₋ ≤ s₊ field isMguIfUnifier : (t₁ t₂ : T) → (ru : IsRight (unify t₁ t₂)) → Prelude.case ru of λ {((right (u , _))) → MostGenerally (IsUnifier t₁ t₂) u} --mgu : (t₁ t₂ : T) → Nothing (IsUnifier t₁ t₂) ⊎ ∃ (MostGenerally $ IsUnifier t₁ t₂) mgu : (t₁ t₂ : T) → Maybe S mgu = unifier record MostGeneralUnificationoid ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦃ termSubstitution : TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦄ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- open TermSubstitution termSubstitution Property : ∀ {ℓ} → Set (ℓˢ ⊔ lsuc ℓ) Property {ℓ} = S → Set ℓ Nothing : ∀ {ℓ} → (P : Property {ℓ}) → Set (ℓ ⊔ ℓˢ) Nothing P = ∀ s → P s → ⊥ IsUnifier : (t₁ t₂ : T) → Property IsUnifier t₁ t₂ s = t₁ ▹ s =ᵗ t₂ ▹ s _≤_ : (s₋ : S) (s₊ : S) → Set (ℓˢ ⊔ ℓ⁼ˢ) _≤_ s₋ s₊ = ∃ λ s → s ∙ s₊ =ˢ s₋ MostGenerally : ∀ {ℓ} (P : Property {ℓ}) → Property MostGenerally P s₊ = P s₊ × ∀ s₋ → P s₋ → s₋ ≤ s₊ field mgu : (t₁ t₂ : T) → Nothing (IsUnifier t₁ t₂) ⊎ ∃ (MostGenerally $ IsUnifier t₁ t₂) -- record PairUnification ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ -- ⦃ termSubstitution : TermSubstitution ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ ⦄ -- : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- --open TermSubstitution termSubstitution -- Property : ∀ {ℓ} → Set (ℓˢ ⊔ lsuc ℓ) -- Property {ℓ} = S × S → Set ℓ -- Nothing : ∀ {ℓ} → (P : Property {ℓ}) → Set (ℓ ⊔ ℓˢ) -- Nothing P = ∀ u → P u → ⊥ -- IsUnifier : (t₁ t₂ : T) → Property -- IsUnifier t₁ t₂ u = let (s₁ , s₂) = u in t₁ ▹ s₁ =ᵗ t₂ ▹ s₂ -- infix 4 _≤_ -- _≤_ : (s₋ : S × S) (s₊ : S × S) → Set (ℓˢ ⊔ ℓ⁼ˢ) -- _≤_ u₋ u₊ = -- let s₋₁ , s₋₂ = u₋ -- s₊₁ , s₊₂ = u₊ in -- ∃ λ s → s ∙ s₊₁ =ˢ s₋₁ × s ∙ s₊₂ =ˢ s₋₂ -- MostGenerally : ∀ {ℓ} (P : Property {ℓ}) → Property -- MostGenerally P u₊ = P u₊ × ∀ u₋ → P u₋ → u₋ ≤ u₊ -- {- -- mgu f(x,y) f(y,x) -- x → w , y → z || x → z , y → w -- mgu f(x,y) f(g(y),x) -- x → g(z) || y → z , x → y -- mgu f(x,y) f(y,z) -- x → y , y → z || ∅ ≥₂ -- x → w , y → z || y → w ≥₂ -- x → w , y → v || y → w , z → v ≥₂ -- y → v || y → x , z → v ≥₂ -- ∅ || y → x , z → y -- x → w , y → v , z → v || y → w , z → v -- x → y , y → f(z) || z → f(z) -- f(x , g(x,y) ,w) -- x → g(z) -- w →? v -- f(g(z), g(g(z),y) ,v) -- v →? w -- possible unifers: -- x → g(z) , w → v || -- x → g(h(a)) , w → v || z → h(a) -- x → g(z) || z → h(y) , v → w -- -} -- field -- mgu : (t₁ t₂ : T) -- → Nothing (IsUnifier t₁ t₂) ⊎ ∃ (MostGenerally (IsUnifier t₁ t₂)) -- -- record Something ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- -- field -- -- Terminus : Setoid ℓᵗ ℓ⁼ᵗ -- -- Simplex : Monoid ℓˢ ℓ⁼ˢ -- -- open Setoid Terminus public using () renaming -- -- (Carrier to T -- -- ;_≈_ to _=T=_) -- -- open Monoid Simplex public using () renaming -- -- (Carrier to S -- -- ;_≈_ to _=S=_ -- -- ;_∙_ to _∙_ -- -- ;ε to ∅) -- -- infixl 6 _▹_ -- -- field -- -- _▹_ : T → S → T -- -- -- equivalence of S implies substitutivity in (T,▹) -- -- ▹-=S=-to-=T= : ∀ {s s′} → s =S= s′ → (t : T) → t ▹ s =T= t ▹ s′ -- -- -- applications of simplexi are equivalent across all termini only when the simplexi are equivalent -- -- -- that is, equivalence of S is as compact is it can be while still respecting equivalence in (T,▹) -- -- ▹-=T=-to-=S= : ∀ {s s′} → ((t : T) → t ▹ s =T= t ▹ s′) → s =S= s′ -- -- -- S extracts to ▹ in (T,∙) -- -- ▹-∙-compositional : (t : T) (s₁ s₂ : S) → t ▹ s₁ ∙ s₂ =T= t ▹ s₁ ▹ s₂ -- -- -- module NotIndexed where -- -- -- record MGU ℓᵗ ℓ⁼ᵗ ℓˢ ℓ⁼ˢ : Set (lsuc (ℓᵗ ⊔ ℓ⁼ᵗ ⊔ ℓˢ ⊔ ℓ⁼ˢ)) where -- -- -- infixr 8 _◃_ -- -- -- --infixr 9 _◇_ -- -- -- field -- -- -- 𝓣erm : Setoid ℓᵗ ℓ⁼ᵗ -- -- -- open Setoid 𝓣erm public using () renaming (Carrier to 𝓣; _≈_ to _=ᵗ_) -- -- -- field -- -- -- 𝓢ubstition : Semigroup ℓˢ ℓ⁼ˢ -- TODO Monoid? -- -- -- open Semigroup 𝓢ubstition public using () renaming -- -- -- (Carrier to 𝓢 -- -- -- ;_≈_ to _=ˢ_ -- -- -- ; _∙_ to _◇_) -- -- -- --field -- -- -- -- 𝓼ubstitute : RawPApplicative (λ x x₁ → {!!}) -- -- -- _◃'_ : 𝓢 → 𝓣 → 𝓣 -- -- -- _◃'_ = {!!} -- -- -- field -- -- -- _◃_ : 𝓢 → 𝓣 → 𝓣 -- -- -- ◃-=ˢ-to-=ᵗ : ∀ {𝒮 𝒮′} → 𝒮 =ˢ 𝒮′ → (𝒯 : 𝓣) → 𝒮 ◃ 𝒯 =ᵗ 𝒮′ ◃ 𝒯 -- -- -- ◃-=ᵗ-to-=ˢ : ∀ {𝒮 𝒮′} → ((𝒯 : 𝓣) → 𝒮 ◃ 𝒯 =ᵗ 𝒮′ ◃ 𝒯) → 𝒮 =ˢ 𝒮′ -- -- -- field -- -- -- --_◇_ : 𝓢 → 𝓢 → 𝓢 -- -- -- ◇-compositional : (𝒯 : 𝓣) (𝒮₁ 𝒮₂ : 𝓢) → (𝒮₂ ◇ 𝒮₁) ◃ 𝒯 =ᵗ 𝒮₂ ◃ 𝒮₁ ◃ 𝒯 -- -- -- ◇-associative : (𝒮₁ 𝒮₂ 𝒮₃ : 𝓢) → 𝒮₃ ◇ (𝒮₂ ◇ 𝒮₁) =ˢ (𝒮₃ ◇ 𝒮₂) ◇ 𝒮₁ -- -- -- ◇-associative 𝒮₁ 𝒮₂ 𝒮₃ = {!!} -- -- -- Property : ∀ {ℓ} → Set (ℓˢ ⊔ lsuc ℓ) -- -- -- Property {ℓ} = 𝓢 → Set ℓ -- -- -- Nothing : ∀ {ℓ} → (P : Property {ℓ}) → Set (ℓ ⊔ ℓˢ) -- -- -- Nothing P = ∀ 𝒮 → P 𝒮 → ⊥ -- -- -- Unifies : (𝒯₁ 𝒯₂ : 𝓣) → Property -- -- -- Unifies 𝒯₁ 𝒯₂ 𝒮 = 𝒮 ◃ 𝒯₁ ≡ 𝒮 ◃ 𝒯₂ -- -- -- _≤_ : (σ₋ : 𝓢) (σ₊ : 𝓢) → Set (ℓˢ ⊔ ℓ⁼ˢ) -- -- -- _≤_ σ₋ σ₊ = ∃ λ σ → σ ◇ σ₊ =ˢ σ₋ -- -- -- Max : ∀ {ℓ} (P : Property {ℓ}) → Property -- -- -- Max P σ₊ = P σ₊ × ∀ σ₋ → P σ₋ → σ₋ ≤ σ₊ -- -- -- field -- -- -- mgu : (𝒯₁ 𝒯₂ : 𝓣) → Nothing (Unifies 𝒯₁ 𝒯₂) ⊎ ∃ λ (σ : 𝓢) → Max (Unifies 𝒯₁ 𝒯₂) σ -- -- -- -- module Indexed where -- -- -- -- record MGU ℓⁱ ℓᵛ ℓᵗ ℓˢ : Set (lsuc (ℓⁱ ⊔ ℓᵛ ⊔ ℓᵗ ⊔ ℓˢ)) where -- -- -- -- field -- -- -- -- 𝓲 : Set ℓⁱ -- -- -- -- 𝓥 : 𝓲 → Set ℓᵛ -- -- -- -- 𝓣 : 𝓲 → Set ℓᵗ -- -- -- -- _↦_ : (s t : 𝓲) → Set (ℓᵛ ⊔ ℓᵗ) -- -- -- -- _↦_ s t = 𝓥 s → 𝓣 t -- -- -- -- infix 14 _≐_ -- -- -- -- _≐_ : {s t : 𝓲} → s ↦ t → s ↦ t → Set (ℓᵛ ⊔ ℓᵗ) -- -- -- -- _≐_ σ σ′ = ∀ x → σ x ≡ σ′ x -- -- -- -- field -- -- -- -- _◃_ : ∀ {s t} → s ↦ t → 𝓣 s → 𝓣 t -- -- -- -- ≐-◃-identity : {!!} -- -- -- -- _◇_ : ∀ {r s t : 𝓲} → (σ₂ : s ↦ t) (σ₁ : r ↦ s) → r ↦ t -- -- -- -- _◇_ σ₂ σ₁ = (σ₂ ◃_) ∘ σ₁ -- -- -- -- field -- -- -- -- 𝓢 : 𝓲 → 𝓲 → Set ℓˢ -- -- -- -- sub : ∀ {s t} → 𝓢 s t → s ↦ t -- -- -- -- -- Property : ∀ {ℓ} → 𝓲 → Set (lsuc ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- Property {ℓ} s = ∀ {t} → s ↦ t → Set ℓ -- -- -- -- -- Nothing : ∀ {ℓ m} → (P : Property {ℓ} m) → Set (ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- Nothing P = ∀ {n} f → P {n} f → ⊥ -- -- -- -- -- Unifies : ∀ {i} (t₁ t₂ : 𝓣 i) → Property i -- -- -- -- -- Unifies t₁ t₂ f = f ◃ t₁ ≡ f ◃ t₂ -- -- -- -- -- _≤_ : ∀ {m n n'} (f : m ↦ n) (g : m ↦ n') → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- _≤_ f g = ∃ λ f' → f ≐ (f' ◇ g) -- -- -- -- -- Max : ∀ {ℓ m} (P : Property {ℓ} m) → Property m -- -- -- -- -- Max P = (λ f → P f × (∀ {n} f' → P {n} f' → f' ≤ f)) -- -- -- -- -- field -- -- -- -- -- mgu : ∀ {m} (t₁ t₂ : 𝓣 m) → -- -- -- -- -- Nothing (Unifies t₁ t₂) ⊎ (∃ λ n → ∃ λ (σ : 𝓢 m n) → (Max (Unifies t₁ t₂)) (sub σ)) -- -- -- -- -- -- -- -- open import Prelude.Function -- -- -- -- -- -- -- -- open import Relation.Binary.HeterogeneousEquality.Core as H using (_≅_ ; ≅-to-≡) -- -- -- -- -- -- -- -- open import Prelude.Equality -- -- -- -- -- -- -- -- record MGU-addIndex-to-noIndex* {ℓⁱ ℓⱽ ℓᵀ ℓˢ} -- -- -- -- -- -- -- -- (m : MGU-addIndex ℓⁱ ℓⱽ ℓᵀ ℓˢ) : Set (lsuc (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ)) where -- -- -- -- -- -- -- -- open MGU-addIndex m -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- 𝓥ᵢ : Set (ℓⁱ ⊔ ℓⱽ) -- -- -- -- -- -- -- -- 𝓣ᵢ : Set (ℓⁱ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- 𝓼ᵢ : Set (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- to∃𝓥 : 𝓥ᵢ → ∃ 𝓥 -- -- -- -- -- -- -- -- to∃𝓣 : 𝓣ᵢ → ∃ 𝓣 -- -- -- -- -- -- -- -- to𝓥ᵢ : ∃ 𝓥 → 𝓥ᵢ -- -- -- -- -- -- -- -- to𝓣ᵢ : ∃ 𝓣 → 𝓣ᵢ -- -- -- -- -- -- -- -- iso∃𝓥 : (∃𝒱 : ∃ 𝓥) → to∃𝓥 (to𝓥ᵢ ∃𝒱) ≡ ∃𝒱 -- -- -- -- -- -- -- -- iso𝓥ᵢ : (𝒱ᵢ : 𝓥ᵢ) → to𝓥ᵢ (to∃𝓥 𝒱ᵢ) ≡ 𝒱ᵢ -- -- -- -- -- -- -- -- iso∃𝓣 : (∃𝒯 : ∃ 𝓣) → to∃𝓣 (to𝓣ᵢ ∃𝒯) ≡ ∃𝒯 -- -- -- -- -- -- -- -- iso𝓣ᵢ : (𝒯ᵢ : 𝓣ᵢ) → to𝓣ᵢ (to∃𝓣 𝒯ᵢ) ≡ 𝒯ᵢ -- -- -- -- -- -- -- -- inj𝓥 : ∀ {a b} → 𝓥 a ≡ 𝓥 b → a ≡ b -- -- -- -- -- -- -- -- inj𝓣 : ∀ {a b} → 𝓣 a ≡ 𝓣 b → a ≡ b -- -- -- -- -- -- -- -- mag : (𝓥ᵢ → 𝓣ᵢ) → ∀ {s} t → 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- to∃𝓣𝓣 : 𝓣ᵢ → 𝓣ᵢ → ∃ λ i → 𝓣 i × 𝓣 i -- -- -- -- -- -- -- -- max𝓣ᵢ : ∀ {m} n → (tm : 𝓣 m) → (((𝓣 n → 𝓣 m) × (𝓥 n → 𝓥 m)) ⊎ 𝓣 n) -- -- -- -- -- -- -- -- max𝓲 : ∀ m n → ((𝓣 n → 𝓣 m) × (𝓥 n → 𝓥 m)) ⊎ ((𝓣 m → 𝓣 n) × (𝓥 m → 𝓥 n)) -- -- -- -- -- -- -- -- apply𝓼 : 𝓣ᵢ → (𝓥ᵢ → 𝓣ᵢ) → ∃ λ s → ∃ λ t → (𝓥 s → 𝓣 t) × 𝓣 s -- -- -- -- -- -- -- -- to𝓼 : 𝓼ᵢ → ∃ λ s → ∃ λ t → 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- to𝓼' : 𝓼ᵢ → 𝓣ᵢ → ∃ λ s → ∃ λ t → (𝓥 s → 𝓣 t) × 𝓣 s -- -- -- -- -- -- -- -- to◇ : 𝓼ᵢ → 𝓼ᵢ → ∃ λ r → ∃ λ s → ∃ λ t → (𝓥 s → 𝓣 t) × (𝓥 r → 𝓣 s) -- -- -- -- -- -- -- -- to= : 𝓼ᵢ → 𝓼ᵢ → ∃ λ s → ∃ λ t → (𝓥 s → 𝓣 t) × (𝓥 s → 𝓣 t) -- -- -- -- -- -- -- -- to𝓼ᵢ : ∀ {r t} → (𝓥 r → 𝓣 t) → 𝓼ᵢ -- -- -- -- -- -- -- -- {{ eqi }} : Eq 𝓲 -- -- -- -- -- -- -- -- to-noIndex : MGU-noIndex* (ℓⁱ ⊔ ℓⱽ) (ℓⁱ ⊔ ℓᵀ) (ℓⁱ ⊔ ℓˢ) -- -- -- -- -- -- -- -- to-noIndex = go where -- -- -- -- -- -- -- -- go : MGU-noIndex* _ _ _ -- -- -- -- -- -- -- -- MGU-noIndex*.𝓥 go = 𝓥ᵢ -- -- -- -- -- -- -- -- MGU-noIndex*.𝓣 go = 𝓣ᵢ -- -- -- -- -- -- -- -- MGU-noIndex*.𝓼 go = 𝓼ᵢ -- ∃ λ s → ∃ λ t → s ↦ t -- -- -- -- -- -- -- -- MGU-noIndex*._≐_ go s1 s2 with to= s1 s2 -- -- -- -- -- -- -- -- ... | (s , t , vstt1 , vstt2) = {!_≐_ vstt1 vstt2!} -- -- -- -- -- -- -- -- MGU-noIndex*._◃_ go f x with to𝓼' f x -- -- -- -- -- -- -- -- MGU-noIndex*._◃_ go _ _ | (s , t , f , term) = to𝓣ᵢ $ _ , f ◃ term -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go s1 s2 with to◇ s1 s2 -- -- -- -- -- -- -- -- ... | (r , s , t , vstt , vrts) = to𝓼ᵢ $ vstt ◇ vrts -- -- -- -- -- -- -- -- MGU-noIndex*.mgu go = {!!} -- -- -- -- -- -- -- -- -- MGU-noIndex*.𝓥 go = {!𝓥ᵢ!} -- -- -- -- -- -- -- -- -- MGU-noIndex*.𝓣 go = 𝓣ᵢ -- -- -- -- -- -- -- -- -- MGU-noIndex*.𝓼 go = {!!} -- ∃ λ s → ∃ λ t → s ↦ t -- ∃ λ s → ∃ λ t → 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- -- MGU-noIndex*._≐_ go (s₁ , t₁ , f₁) (s₂ , t₂ , f₂) = {!!} -- ∃ λ (s-refl : s₁ ≡ s₂) → ∃ λ (t-refl : t₁ ≡ t₂) → (∀ x → f₁ x ≡ (Prelude.transport (λ i → 𝓥 s₂ → 𝓣 i) (sym t-refl) f₂) (Prelude.transport _ s-refl x)) -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- MGU-noIndex*._◃_ go (s , t , f) 𝒯 = {!_◃_ f!} -- -- -- -- -- -- -- -- -- ∀ s t → 𝓣ᵢ → (𝓣 s → 𝓣 t) → 𝓣 s -- -- -- -- -- -- -- -- -- ∀ s t → 𝓣ᵢ → (𝓣 s → 𝓣 t) → 𝓣ᵢ -- -- -- -- -- -- -- -- -- 𝓣 s -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- MGU-noIndex*._◃_ go (s , t , f) 𝒯 with to∃𝓣 𝒯 -- -- -- -- -- -- -- -- -- MGU-noIndex*._◃_ go (s , t , f) 𝒯 | (s2 , ttt) with s == s2 -- -- -- -- -- -- -- -- -- (go MGU-noIndex*.◃ (.s , t , f)) 𝒯 | s , 𝒯s | (Prelude.yes refl) = to𝓣ᵢ (_ , _◃_ {s} {t} f 𝒯s) -- -- -- -- -- -- -- -- -- (go MGU-noIndex*.◃ (s , t , f)) 𝒯 | s2 , ttt | (Prelude.no x) = 𝒯 -- -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go (s , t , f) (p , r , g) with max𝓲 r s -- -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go (s , t , f) (p , r , g) | _⊎_.left (T , V) = {!!} -- -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go (s , t , f) (p , r , g) | _⊎_.right (T , V) = _ , _ , f ◇ (T ∘ g) -- f ◃_ ∘ (T ∘ g) -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- = _ , _ , f ◃_ ∘ (λ x → {!max𝓣ᵢ s₁ (g x)!}) -- _ , _ , f ◃_ ∘ (λ x → {!g x!}) -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go (s₁ , t₁ , f) (s₂ , t₂ , g) with t₂ == s₁ -- -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go (s₁ , t₁ , f) (s₂ , t₂ , g) | (Prelude.yes refl) = s₂ , t₁ , f ◃_ ∘ g -- -- -- -- -- -- -- -- -- MGU-noIndex*._◇_ go (s₁ , t₁ , f) (s₂ , t₂ , g) | (Prelude.no x) = s₂ , t₂ , g -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- = s₂ , t₁ , {!(f ◃_)!} -- -- -- -- -- -- -- -- -- MGU-noIndex*.mgu go t₁ t₂ with to∃𝓣𝓣 t₁ t₂ -- -- -- -- -- -- -- -- -- … | i , tt₁ , tt₂ with mgu tt₁ tt₂ -- -- -- -- -- -- -- -- -- MGU-noIndex*.mgu go t₁ t₂ | i , tt₁ , tt₂ | (_⊎_.left x) = {!!} -- -- -- -- -- -- -- -- -- MGU-noIndex*.mgu go t₁ t₂ | i , tt₁ , tt₂ | (_⊎_.right (i₂ , σ , subσ-refl , ff)) with to∃𝓣 t₁ | to∃𝓣 t₂ -- -- -- -- -- -- -- -- -- MGU-noIndex*.mgu go t₁ t₂ | i , tt₁ , tt₂ | (_⊎_.right (i₂ , σ , subσ-refl , ff)) | (fst₁ , snd₁) | (fst₂ , snd₂) = _⊎_.right ((_ , _ , sub σ) , {!!} , {!!}) -- _⊎_.right ((i , i₂ , sub σ) , {!subσ-refl!} , {!!}) -- -- -- -- -- -- -- -- -- record MGU-noIndex-to-addIndex {ℓⁱ ℓⱽ ℓᵀ ℓˢ} -- -- -- -- -- -- -- -- -- (m : MGU-noIndex ℓⱽ ℓᵀ ℓˢ) : Set (lsuc (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ)) where -- -- -- -- -- -- -- -- -- open MGU-noIndex m -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- 𝓲 : Set ℓⁱ -- -- -- -- -- -- -- -- -- 𝓥ᵢ : 𝓲 → Set ℓⱽ -- -- -- -- -- -- -- -- -- 𝓣ᵢ : 𝓲 → Set ℓᵀ -- -- -- -- -- -- -- -- -- to𝓥 : ∃ 𝓥ᵢ → 𝓥 -- -- -- -- -- -- -- -- -- to𝓣 : ∃ 𝓣ᵢ → 𝓣 -- -- -- -- -- -- -- -- -- to∃𝓥ᵢ : 𝓥 → ∃ 𝓥ᵢ -- -- -- -- -- -- -- -- -- to∃𝓣ᵢ : 𝓣 → ∃ 𝓣ᵢ -- -- -- -- -- -- -- -- -- inj𝓥 : ∀ {a b} → 𝓥ᵢ a ≡ 𝓥ᵢ b → a ≡ b -- -- -- -- -- -- -- -- -- inj𝓣 : ∀ {a b} → 𝓣ᵢ a ≡ 𝓣ᵢ b → a ≡ b -- -- -- -- -- -- -- -- -- mag : ∀ {s t} → (𝓥ᵢ s → 𝓣ᵢ t) → 𝓥 → 𝓣 -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- iso∃𝓥 : (∃𝒱 : ∃ 𝓥) → to∃𝓥 (to𝓥ᵢ ∃𝒱) ≡ ∃𝒱 -- -- -- -- -- -- -- -- -- iso𝓥ᵢ : (𝒱ᵢ : 𝓥ᵢ) → to𝓥ᵢ (to∃𝓥 𝒱ᵢ) ≡ 𝒱ᵢ -- -- -- -- -- -- -- -- -- iso∃𝓣 : (∃𝒯 : ∃ 𝓣) → to∃𝓣 (to𝓣ᵢ ∃𝒯) ≡ ∃𝒯 -- -- -- -- -- -- -- -- -- iso𝓣ᵢ : (𝒯ᵢ : 𝓣ᵢ) → to𝓣ᵢ (to∃𝓣 𝒯ᵢ) ≡ 𝒯ᵢ -- -- -- -- -- -- -- -- -- mag : (𝓥ᵢ → 𝓣ᵢ) → ∀ {s} t → 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- to-addIndex : MGU-addIndex ℓⁱ ℓⱽ ℓᵀ ℓˢ -- -- -- -- -- -- -- -- -- to-addIndex = go where -- -- -- -- -- -- -- -- -- go : MGU-addIndex ℓⁱ ℓⱽ ℓᵀ ℓˢ -- -- -- -- -- -- -- -- -- MGU-addIndex.𝓲 go = 𝓲 -- -- -- -- -- -- -- -- -- MGU-addIndex.𝓥 go = 𝓥ᵢ -- -- -- -- -- -- -- -- -- MGU-addIndex.𝓣 go = 𝓣ᵢ -- -- -- -- -- -- -- -- -- MGU-addIndex._◃_ go {s} {t} f x = Prelude.transport 𝓣ᵢ {!!} $ snd ∘ to∃𝓣ᵢ $ _◃_ (λ v → to𝓣 (t , f (Prelude.transport 𝓥ᵢ (inj𝓥 {_} {_} {!!}) (snd $ to∃𝓥ᵢ v)))) (to𝓣 (s , x)) -- let Ti , Tit = to∃𝓣ᵢ $ _◃_ (λ v → to𝓣 (t , f {!!})) (to𝓣 (s , x)) in {!!} -- -- -- -- -- -- -- -- -- MGU-addIndex.𝓢 go = {!!} -- -- -- -- -- -- -- -- -- MGU-addIndex.sub go = {!!} -- -- -- -- -- -- -- -- -- MGU-addIndex.mgu go = {!!} -- -- -- -- -- -- -- -- -- record MGU-addIndex-to-noIndex {ℓⁱ ℓⱽ ℓᵀ ℓˢ} -- -- -- -- -- -- -- -- -- (m : MGU-addIndex ℓⁱ ℓⱽ ℓᵀ ℓˢ) : Set (lsuc (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ)) where -- -- -- -- -- -- -- -- -- open MGU-addIndex m -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- 𝓥ᵢ : Set (ℓⁱ ⊔ ℓⱽ) -- -- -- -- -- -- -- -- -- 𝓣ᵢ : Set (ℓⁱ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- to∃𝓥 : 𝓥ᵢ → ∃ 𝓥 -- -- -- -- -- -- -- -- -- to∃𝓣 : 𝓣ᵢ → ∃ 𝓣 -- -- -- -- -- -- -- -- -- to𝓥ᵢ : ∃ 𝓥 → 𝓥ᵢ -- -- -- -- -- -- -- -- -- to𝓣ᵢ : ∃ 𝓣 → 𝓣ᵢ -- -- -- -- -- -- -- -- -- iso∃𝓥 : (∃𝒱 : ∃ 𝓥) → to∃𝓥 (to𝓥ᵢ ∃𝒱) ≡ ∃𝒱 -- -- -- -- -- -- -- -- -- iso𝓥ᵢ : (𝒱ᵢ : 𝓥ᵢ) → to𝓥ᵢ (to∃𝓥 𝒱ᵢ) ≡ 𝒱ᵢ -- -- -- -- -- -- -- -- -- iso∃𝓣 : (∃𝒯 : ∃ 𝓣) → to∃𝓣 (to𝓣ᵢ ∃𝒯) ≡ ∃𝒯 -- -- -- -- -- -- -- -- -- iso𝓣ᵢ : (𝒯ᵢ : 𝓣ᵢ) → to𝓣ᵢ (to∃𝓣 𝒯ᵢ) ≡ 𝒯ᵢ -- -- -- -- -- -- -- -- -- inj𝓥 : ∀ {a b} → 𝓥 a ≡ 𝓥 b → a ≡ b -- -- -- -- -- -- -- -- -- inj𝓣 : ∀ {a b} → 𝓣 a ≡ 𝓣 b → a ≡ b -- -- -- -- -- -- -- -- -- mag : (𝓥ᵢ → 𝓣ᵢ) → ∀ {s} t → 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- -- to-noIndex : MGU-noIndex (ℓⁱ ⊔ ℓⱽ) (ℓⁱ ⊔ ℓᵀ) ℓˢ -- -- -- -- -- -- -- -- -- to-noIndex = go where -- -- -- -- -- -- -- -- -- go : MGU-noIndex _ _ _ -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓥 go = 𝓥ᵢ -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓣 go = 𝓣ᵢ -- -- -- -- -- -- -- -- -- MGU-noIndex._◃_ go 𝓈 𝒯ᵢ with to∃𝓣 𝒯ᵢ | Prelude.graphAt to∃𝓣 𝒯ᵢ | (Prelude.curry $ snd ∘ to∃𝓣 ∘ 𝓈 ∘ to𝓥ᵢ) (fst $ to∃𝓣 𝒯ᵢ) | Prelude.graphAt (Prelude.curry $ snd ∘ to∃𝓣 ∘ 𝓈 ∘ to𝓥ᵢ) (fst $ to∃𝓣 𝒯ᵢ) -- -- -- -- -- -- -- -- -- … | s , 𝒯s | Prelude.ingraph eq | 𝓈' | Prelude.ingraph refl with cong fst eq -- -- -- -- -- -- -- -- -- (go MGU-noIndex.◃ 𝓈) 𝒯ᵢ | .(fst (to∃𝓣 𝒯ᵢ)) , 𝒯s | (Prelude.ingraph eq) | _ | (Prelude.ingraph refl) | refl with cong fst eq -- -- -- -- -- -- -- -- -- (go MGU-noIndex.◃ 𝓈) 𝒯ᵢ | .(fst (to∃𝓣 _ 𝒯ᵢ)) , 𝒯s | (Prelude.ingraph eq) | 𝓈' | (Prelude.ingraph refl) | refl | refl rewrite Prelude.sym eq with _◃_ {_} {{!!}} (λ v → 𝓈' (Prelude.transport 𝓥 (cong fst (sym eq)) {!!})) (snd ∘ to∃𝓣 $ 𝒯ᵢ) -- -- -- -- -- -- -- -- -- … | dfsf = to𝓣ᵢ (_ , dfsf) -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- … | s , 𝒯s | Prelude.ingraph eq | 𝓈' | Prelude.ingraph refl with _◃_ {fst (to∃𝓣 𝒯ᵢ)} {s} (λ v → Prelude.transport 𝓣 {!!} (𝓈' (Prelude.transport 𝓥 (cong fst eq) v))) (snd ∘ to∃𝓣 $ 𝒯ᵢ) -- -- -- -- -- -- -- -- -- … | dd = to𝓣ᵢ (_ , dd) -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓢 go = {!!} -- -- -- -- -- -- -- -- -- MGU-noIndex.sub go = {!!} -- -- -- -- -- -- -- -- -- MGU-noIndex.mgu go = {!!} -- -- -- -- -- -- -- -- -- -- MGU-addIndex-to-noIndex : ∀ {ℓⁱ ℓⱽ ℓᵀ ℓˢ} → -- -- -- -- -- -- -- -- -- -- (m : MGU-addIndex ℓⁱ ℓⱽ ℓᵀ ℓˢ) -- -- -- -- -- -- -- -- -- -- (open MGU-addIndex m) -- -- -- -- -- -- -- -- -- -- (𝓥ᵢ : Set (ℓⁱ ⊔ ℓⱽ)) -- -- -- -- -- -- -- -- -- -- (𝓣ᵢ : Set (ℓⁱ ⊔ ℓᵀ)) -- -- -- -- -- -- -- -- -- -- (to∃𝓥 : 𝓥ᵢ → ∃ 𝓥) -- -- -- -- -- -- -- -- -- -- (to∃𝓣 : 𝓣ᵢ → ∃ 𝓣) -- -- -- -- -- -- -- -- -- -- (to𝓥ᵢ : ∃ 𝓥 → 𝓥ᵢ) -- -- -- -- -- -- -- -- -- -- (to𝓣ᵢ : ∃ 𝓣 → 𝓣ᵢ) -- -- -- -- -- -- -- -- -- -- (iso∃𝓥 : (∃𝒱 : ∃ 𝓥) → to∃𝓥 (to𝓥ᵢ ∃𝒱) ≡ ∃𝒱) -- -- -- -- -- -- -- -- -- -- (iso𝓥ᵢ : (𝒱ᵢ : 𝓥ᵢ) → to𝓥ᵢ (to∃𝓥 𝒱ᵢ) ≡ 𝒱ᵢ) -- -- -- -- -- -- -- -- -- -- (iso∃𝓣 : (∃𝒯 : ∃ 𝓣) → to∃𝓣 (to𝓣ᵢ ∃𝒯) ≡ ∃𝒯) -- -- -- -- -- -- -- -- -- -- (iso𝓣ᵢ : (𝒯ᵢ : 𝓣ᵢ) → to𝓣ᵢ (to∃𝓣 𝒯ᵢ) ≡ 𝒯ᵢ) -- -- -- -- -- -- -- -- -- -- → MGU-noIndex (ℓⁱ ⊔ ℓⱽ) (ℓⁱ ⊔ ℓᵀ) ℓˢ -- -- -- -- -- -- -- -- -- -- MGU-addIndex-to-noIndex {ℓⁱ} {ℓⱽ} {ℓᵀ} {ℓˢ} m = go where -- -- -- -- -- -- -- -- -- -- open MGU-addIndex m -- -- -- -- -- -- -- -- -- -- go : MGU-noIndex _ _ _ -- -- -- -- -- -- -- -- -- -- go = {!!} -- -- -- -- -- -- -- -- -- -- -- open import Relation.Binary.HeterogeneousEquality.Core as H using (_≅_ ; ≅-to-≡) -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- 𝓼 = ∃ 𝓥 → ∃ 𝓣 -- -- -- -- -- -- -- -- -- -- _∶_↦_ : 𝓼 → 𝓲 → 𝓲 → Set (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- _∶_↦_ 𝓈 s t = ((𝒱ₛ : 𝓥 s) → ∃ λ (𝒯ₜ : 𝓣 t) → 𝓈 (s , 𝒱ₛ) ≡ (t , 𝒯ₜ)) -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- go : MGU-noIndex _ _ _ -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓥 go = ∃ 𝓥 -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓣 go = ∃ 𝓣 -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex._≐_ go f g = (𝒾 : 𝓲) (𝒱 : 𝓥 𝒾) → f (𝒾 , 𝒱) ≡ g (𝒾 , 𝒱) -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex._◃_ go 𝓈 (𝒾 , 𝒯) = 𝒾 , _◃_ {𝒾} {𝒾} (λ v → (Prelude.transport _ (≅-to-≡ $ snd (mag (fst (𝓈 (𝒾 , v))) (( (𝒾 ))) (snd (𝓈 (𝒾 , v))))) $ -- -- -- -- -- -- -- -- -- -- -- snd (𝓈 (𝒾 , v))) -- -- -- -- -- -- -- -- -- -- -- {!!}) {!!} -- -- -- -- -- -- -- -- -- -- -- -- (snd ∘ (λ (𝒱 : 𝓥 𝒾) → 𝓈 (𝒾 , 𝒱))) -- -- -- -- -- -- -- -- -- -- -- -- fst (𝓈 (s , {!!})) , _◃_ {s} {fst (𝓈 (s , _))} (λ v → {!𝓈 (s , v)!}) {!𝒯ₛ!} -- -- -- -- -- -- -- -- -- -- -- -- Have: {s t : 𝓲} → (𝓥 s → 𝓣 t) → 𝓣 s → 𝓣 t -- -- -- -- -- -- -- -- -- -- -- -- λ (𝒱 : 𝓥 𝒾) → 𝓈 (𝒾 , 𝒱) -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓢 go = {!!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.sub go = {!sub {s} {t}!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.mgu go = {!!} -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓥 (MGU-addIndex-to-noIndex m) = let open MGU-addIndex m in ∃ 𝓥 -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓣 (MGU-addIndex-to-noIndex m) = let open MGU-addIndex m in ∃ 𝓣 -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex._≐_ (MGU-addIndex-to-noIndex m) f g = {!let open MGU-addIndex m in ∀ (s t : 𝓲) → (𝒯ₜ : 𝓣 fst (f (s , 𝓥 s)) ≡ t → ≡ g → Set !} -- ∀ {s t} → (f g : s ↦ t) → f ≐ g -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex._◃_ (MGU-addIndex-to-noIndex m) = {!let open MGU-addIndex m in _◃_!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓢 (MGU-addIndex-to-noIndex m) = {!!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.sub (MGU-addIndex-to-noIndex m) = {!!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.mgu (MGU-addIndex-to-noIndex m) = {!!} -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓥 (MGU-addIndex-to-noIndex record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu }) = ∃ 𝓥 -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓣 (MGU-addIndex-to-noIndex record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu }) = ∃ 𝓣 -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex._≐_ (MGU-addIndex-to-noIndex m@(record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu })) f g = {!!} -- (i : 𝓲) → MGU-addIndex._≐_ m (λ v → {!snd $ f (i , v)!}) (λ v → {!!}) -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex._◃_ (MGU-addIndex-to-noIndex record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu }) = {!!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.𝓢 (MGU-addIndex-to-noIndex record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu }) = {!!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.sub (MGU-addIndex-to-noIndex record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu }) = {!!} -- -- -- -- -- -- -- -- -- -- -- MGU-noIndex.mgu (MGU-addIndex-to-noIndex record { 𝓲 = 𝓲 ; 𝓥 = 𝓥 ; 𝓣 = 𝓣 ; _◃_ = _◃_ ; ◃ext = ◃ext ; 𝓢 = 𝓢 ; sub = sub ; mgu = mgu }) = {!!} -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- record MGU⋆ ℓⁱ ℓⱽ ℓᵀ ℓˢ : Set (lsuc (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ ⊔ ℓˢ)) where -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- 𝓲 -- -- -- -- -- -- -- -- -- -- -- : Set ℓⁱ -- -- -- -- -- -- -- -- -- -- -- 𝓥 -- variables -- -- -- -- -- -- -- -- -- -- -- : 𝓲 → Set ℓⱽ -- -- -- -- -- -- -- -- -- -- -- 𝓣 -- terms -- -- -- -- -- -- -- -- -- -- -- : 𝓲 → Set ℓᵀ -- -- -- -- -- -- -- -- -- -- -- -- substitution -- -- -- -- -- -- -- -- -- -- -- _↦_ : (s t : 𝓲) → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- _↦_ s t = 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- -- -- -- infix 14 _≐_ -- -- -- -- -- -- -- -- -- -- -- _≐_ : {s t : 𝓲} → s ↦ t → s ↦ t → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- _≐_ f g = ∀ x → f x ≡ g x -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- substitution applied to a term -- -- -- -- -- -- -- -- -- -- -- _◃_ : ∀ {s t} → s ↦ t → 𝓣 s → 𝓣 t -- -- -- -- -- -- -- -- -- -- -- -- applying extentionally-equal subsitutions preserves equality of terms -- -- -- -- -- -- -- -- -- -- -- ◃ext : ∀ {s t} {f g : s ↦ t} → f ≐ g → ∀ t → f ◃ t ≡ g ◃ t -- -- -- -- -- -- -- -- -- -- -- _◇_ : ∀ {r s t : 𝓲} → (f : s ↦ t) (g : r ↦ s) → r ↦ t -- -- -- -- -- -- -- -- -- -- -- _◇_ f g = (f ◃_) ∘ g -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- 𝓢 : 𝓲 → 𝓲 → Set ℓˢ -- -- -- -- -- -- -- -- -- -- -- sub : ∀ {s t} → 𝓢 s t → s ↦ t -- -- -- -- -- -- -- -- -- -- -- Property : ∀ {ℓ} → 𝓲 → Set (lsuc ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- Property {ℓ} s = ∀ {t} → s ↦ t → Set ℓ -- -- -- -- -- -- -- -- -- -- -- Nothing : ∀ {ℓ m} → (P : Property {ℓ} m) → Set (ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- Nothing P = ∀ {n} f → P {n} f → ⊥ -- -- -- -- -- -- -- -- -- -- -- Unifies : ∀ {i} (t₁ t₂ : 𝓣 i) → Property i -- -- -- -- -- -- -- -- -- -- -- Unifies t₁ t₂ f = f ◃ t₁ ≡ f ◃ t₂ -- -- -- -- -- -- -- -- -- -- -- _≤_ : ∀ {m n n'} (f : m ↦ n) (g : m ↦ n') → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- _≤_ f g = ∃ λ f' → f ≐ (f' ◇ g) -- -- -- -- -- -- -- -- -- -- -- Max : ∀ {ℓ m} (P : Property {ℓ} m) → Property m -- -- -- -- -- -- -- -- -- -- -- Max P = (λ f → P f × (∀ {n} f' → P {n} f' → f' ≤ f)) -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- mgu : ∀ {m} (t₁ t₂ : 𝓣 m) → -- -- -- -- -- -- -- -- -- -- -- Nothing (Unifies t₁ t₂) ⊎ (∃ λ n → ∃ λ (σ : 𝓢 m n) → (Max (Unifies t₁ t₂)) (sub σ)) -- -- -- -- -- -- -- -- -- -- -- record MGU ℓⁱ ℓⱽ ℓᵀ ℓˢ : Set (lsuc (ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ ⊔ ℓˢ)) where -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- 𝓲 -- -- -- -- -- -- -- -- -- -- -- : Set ℓⁱ -- -- -- -- -- -- -- -- -- -- -- 𝓥 -- variables -- -- -- -- -- -- -- -- -- -- -- : 𝓲 → Set ℓⱽ -- -- -- -- -- -- -- -- -- -- -- 𝓣 -- terms -- -- -- -- -- -- -- -- -- -- -- : 𝓲 → Set ℓᵀ -- -- -- -- -- -- -- -- -- -- -- -- substitution -- -- -- -- -- -- -- -- -- -- -- _↦_ : (s t : 𝓲) → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- _↦_ s t = 𝓥 s → 𝓣 t -- -- -- -- -- -- -- -- -- -- -- infix 14 _≐_ -- -- -- -- -- -- -- -- -- -- -- _≐_ : {s t : 𝓲} → s ↦ t → s ↦ t → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- _≐_ f g = ∀ x → f x ≡ g x -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- -- substitution applied to a term -- -- -- -- -- -- -- -- -- -- -- _◃_ : ∀ {s t} → s ↦ t → 𝓣 s → 𝓣 t -- -- -- -- -- -- -- -- -- -- -- -- applying extentionally-equal subsitutions preserves equality of terms -- -- -- -- -- -- -- -- -- -- -- ◃ext : ∀ {s t} {f g : s ↦ t} → f ≐ g → ∀ t → f ◃ t ≡ g ◃ t -- -- -- -- -- -- -- -- -- -- -- _◇_ : ∀ {r s t : 𝓲} → (f : s ↦ t) (g : r ↦ s) → r ↦ t -- -- -- -- -- -- -- -- -- -- -- _◇_ f g = (f ◃_) ∘ g -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- 𝓢 : 𝓲 → 𝓲 → Set ℓˢ -- -- -- -- -- -- -- -- -- -- -- sub : ∀ {s t} → 𝓢 s t → s ↦ t -- -- -- -- -- -- -- -- -- -- -- mgu : ∀ {m} → (s t : 𝓣 m) → Maybe (∃ (𝓢 m)) -- -- -- -- -- -- -- -- -- -- -- Property⋆ : ∀ {ℓ} → 𝓲 → Set (lsuc ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- Property⋆ {ℓ} s = ∀ {t} → s ↦ t → Set ℓ -- -- -- -- -- -- -- -- -- -- -- Property : ∀ {ℓ} → 𝓲 → Set (lsuc ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- Property {ℓ} s = Σ (Property⋆ {ℓ} s) λ P → ∀ {s f g} → f ≐ g → P {s} f → P g -- -- -- -- -- -- -- -- -- -- -- Nothing : ∀ {ℓ m} → (P : Property {ℓ} m) → Set (ℓ ⊔ ℓⁱ ⊔ ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- Nothing P = ∀ {n} f → fst P {n} f → ⊥ -- -- -- -- -- -- -- -- -- -- -- Unifies : ∀ {i} (t₁ t₂ : 𝓣 i) → Property i -- -- -- -- -- -- -- -- -- -- -- Unifies t₁ t₂ = (λ {_} f → f ◃ t₁ ≡ f ◃ t₂) , λ {_} {f} {g} f≐g f◃t₁=f◃t₂ → -- -- -- -- -- -- -- -- -- -- -- g ◃ t₁ -- -- -- -- -- -- -- -- -- -- -- ≡⟨ sym (◃ext f≐g t₁) ⟩ -- -- -- -- -- -- -- -- -- -- -- f ◃ t₁ -- -- -- -- -- -- -- -- -- -- -- ≡⟨ f◃t₁=f◃t₂ ⟩ -- -- -- -- -- -- -- -- -- -- -- f ◃ t₂ -- -- -- -- -- -- -- -- -- -- -- ≡⟨ ◃ext f≐g t₂ ⟩ -- -- -- -- -- -- -- -- -- -- -- g ◃ t₂ -- -- -- -- -- -- -- -- -- -- -- ∎ -- -- -- -- -- -- -- -- -- -- -- _≤_ : ∀ {m n n'} (f : m ↦ n) (g : m ↦ n') → Set (ℓⱽ ⊔ ℓᵀ) -- -- -- -- -- -- -- -- -- -- -- _≤_ f g = ∃ λ f' → f ≐ (f' ◇ g) -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- Max : ∀ {ℓ m} (P : Property {ℓ} m) → Property m -- -- -- -- -- -- -- -- -- -- -- Max P' = -- -- -- -- -- -- -- -- -- -- -- let open Σ P' using () renaming (fst to P; snd to Peq) in -- -- -- -- -- -- -- -- -- -- -- let lemma1 : {m : 𝓲} {f : _ ↦ m} {g : _ ↦ m} → -- -- -- -- -- -- -- -- -- -- -- f ≐ g → -- -- -- -- -- -- -- -- -- -- -- P f × ({n : 𝓲} (f' : _ ↦ n) → P f' → f' ≤ f) → -- -- -- -- -- -- -- -- -- -- -- P g × ({n : 𝓲} (f' : _ ↦ n) → P f' → f' ≤ g) -- -- -- -- -- -- -- -- -- -- -- lemma1 {_} {_} {g} f≐g = λ { (Pf , MaxPf) → -- -- -- -- -- -- -- -- -- -- -- Peq f≐g Pf , λ {_} → -- -- -- -- -- -- -- -- -- -- -- let lemma2 : ∀ {n} f' → P {n} f' → ∃ λ f0 → f' ≐ (f0 ◇ g) -- -- -- -- -- -- -- -- -- -- -- lemma2 f' Pf' = -- -- -- -- -- -- -- -- -- -- -- let f0 = fst (MaxPf f' Pf') -- -- -- -- -- -- -- -- -- -- -- f'≐f0◇f = snd (MaxPf f' Pf') in -- -- -- -- -- -- -- -- -- -- -- f0 , λ x → trans (f'≐f0◇f x) (cong (f0 ◃_) (f≐g x)) in -- -- -- -- -- -- -- -- -- -- -- lemma2 } in -- -- -- -- -- -- -- -- -- -- -- --(λ {_} f → P f × (∀ {n} f' → P {n} f' → f' ≤ f)) , λ {_} {_} {_} → lemma1 -- -- -- -- -- -- -- -- -- -- -- (λ f → P f × (∀ {n} f' → P {n} f' → f' ≤ f)) , lemma1 -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- Max : ∀ {ℓ m} (P : Property {ℓ} m) → Property⋆ m -- -- -- -- -- -- -- -- -- -- -- Max P' = -- -- -- -- -- -- -- -- -- -- -- let open Σ P' using () renaming (fst to P) in -- -- -- -- -- -- -- -- -- -- -- (λ f → P f × (∀ {n} f' → P {n} f' → f' ≤ f)) -- -- -- -- -- -- -- -- -- -- -- field -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- mgu-c : ∀ {m} (t₁ t₂ : 𝓣 m) → -- -- -- -- -- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → fst (Max (Unifies t₁ t₂)) (sub σ) × mgu t₁ t₂ ≡ just (n , σ)) -- -- -- -- -- -- -- -- -- -- -- ⊎ (Nothing (Unifies t₁ t₂) × mgu t₁ t₂ ≡ nothing) -- -- -- -- -- -- -- -- -- -- -- -} -- -- -- -- -- -- -- -- -- -- -- mgu-c : ∀ {m} (t₁ t₂ : 𝓣 m) → -- -- -- -- -- -- -- -- -- -- -- (∃ λ n → ∃ λ σ → (Max (Unifies t₁ t₂)) (sub σ) × mgu t₁ t₂ ≡ just (n , σ)) -- -- -- -- -- -- -- -- -- -- -- ⊎ (Nothing (Unifies t₁ t₂) × mgu t₁ t₂ ≡ nothing) -- -- -- -- -- -- -- -- -- -- -- {- -- -- -- -- -- -- -- -- -- -- -- -- trivial substitution -- -- -- -- -- -- -- -- -- -- -- -- ▹ : ∀ {s t} → (𝓥 s → 𝓥 t) → s ↦ t -- -- -- -- -- -- -- -- -- -- -- ≐-cong : ∀ {m n o} {f : m ↦ n} {g} (h : _ ↦ o) → f ≐ g → (h ◇ f) ≐ (h ◇ g) -- -- -- -- -- -- -- -- -- -- -- ≐-cong h f≐g t = cong (h ◃_) (f≐g t) -- -- -- -- -- -- -- -- -- -- -- ≐-sym : ∀ {m n} {f : m ↦ n} {g} → f ≐ g → g ≐ f -- -- -- -- -- -- -- -- -- -- -- ≐-sym f≐g = sym ∘ f≐g -- -- -- -- -- -- -- -- -- -- -- -}
{ "alphanum_fraction": 0.3473290323, "avg_line_length": 44.1343963554, "ext": "agda", "hexsha": "cbc568e0dc48a1a4c67220165c6e4b77e5d5ceab", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-1/MGU.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-1/MGU.agda", "max_line_length": 280, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-1/MGU.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 19490, "size": 38750 }
{-# OPTIONS --without-K --safe #-} module Experiment.ListConstruction where open import Level renaming (zero to lzero; suc to lsuc) data ⊥ : Set where record ⊤ : Set where constructor tt data ℕ : Set where zero : ℕ suc : ℕ → ℕ module Inductive where data List (A : Set) : Set where [] : List A _∷_ : A → List A → List A data Bool : Set where true false : Bool record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where constructor _,_ field fst : A snd : B fst ∃ : ∀ {a b} {A : Set a} (B : A → Set b) → Set (a ⊔ b) ∃ {a} {b} {A} B = Σ A B if : ∀ {p} {P : Bool → Set p} → ∀ b → P true → P false → P b if true t e = t if false t e = e _⊎_ : (A B : Set) → Set A ⊎ B = ∃ λ b → if b A B inj₁ : {A B : Set} → A → A ⊎ B inj₁ x = true , x inj₂ : {A B : Set} → B → A ⊎ B inj₂ x = false , x ⊎-elim : ∀ {p} {A B : Set} {P : A ⊎ B → Set p} → (∀ x → P (inj₁ x)) → (∀ y → P (inj₂ y)) → ∀ s → P s ⊎-elim x y (true , snd) = x snd ⊎-elim x y (false , snd) = y snd _×_ : (A B : Set) → Set A × B = ∀ b → if b A B proj₁ : {A B : Set} → A × B → A proj₁ x = x true proj₂ : {A B : Set} → A × B → B proj₂ x = x false Fin : ℕ → Set Fin zero = ⊥ Fin (suc n) = ⊤ ⊎ Fin n Vec : Set → ℕ → Set Vec A n = Fin n → A module VecList where List : Set → Set List A = ∃ λ n → Vec A n
{ "alphanum_fraction": 0.5041888804, "avg_line_length": 18.7571428571, "ext": "agda", "hexsha": "193575727fdad34b4b2885adb10305a1a8334162", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "rei1024/agda-misc", "max_forks_repo_path": "Experiment/ListConstruction.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "rei1024/agda-misc", "max_issues_repo_path": "Experiment/ListConstruction.agda", "max_line_length": 62, "max_stars_count": 3, "max_stars_repo_head_hexsha": "37200ea91d34a6603d395d8ac81294068303f577", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "rei1024/agda-misc", "max_stars_repo_path": "Experiment/ListConstruction.agda", "max_stars_repo_stars_event_max_datetime": "2020-04-21T00:03:43.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:49:42.000Z", "num_tokens": 571, "size": 1313 }
module Cats.Ditrans where open import Level using (Level ; _⊔_) open import Cats.Category open import Cats.Category.Setoids using (Setoids) open import Cats.Profunctor module _ {lo la l≈ lo′ la′ l≈′} {C : Category lo la l≈} {D : Category lo′ la′ l≈′} where private module C = Category C open Category D record Ditrans (F G : Profunctor C C D) : Set (lo ⊔ la ⊔ la′ ⊔ l≈′) where field dicomponent : ∀ c → pobj F c c ⇒ pobj G c c dinatural : ∀ {a b} (f : a C.⇒ b) → pmap₂ G f ∘ dicomponent a ∘ pmap₁ F f ≈ pmap₁ G f ∘ dicomponent b ∘ pmap₂ F f
{ "alphanum_fraction": 0.605, "avg_line_length": 23.0769230769, "ext": "agda", "hexsha": "c9e7cb4c12dfda89a22849a94c214857f5952a5b", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "alessio-b-zak/cats", "max_forks_repo_path": "Cats/Ditrans.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "alessio-b-zak/cats", "max_issues_repo_path": "Cats/Ditrans.agda", "max_line_length": 69, "max_stars_count": null, "max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "alessio-b-zak/cats", "max_stars_repo_path": "Cats/Ditrans.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 225, "size": 600 }
-- {-# OPTIONS --sized-types #-} -- no longer necessary -- {-# OPTIONS --termination-depth=2 #-} -- not necessary! -- {-# OPTIONS -v tc.size.solve:60 --show-implicit #-} -- {-# OPTIONS -v term:5 #-} module Issue709 where open import Common.Size data Bool : Set where true false : Bool postulate A : Set _<=_ : A → A → Bool data List {i : Size} : Set where [] : List cons : (j : Size< i) → A → List {j} → List {i} module If where if_then_else_ : {A : Set} → Bool → A → A → A if true then t else e = t if false then t else e = e merge : ∀ {i j} → List {i} → List {j} → List -- {∞} merge {i} {j} [] ys = ys merge {i} {j} (cons i' x xs) [] = cons _ x xs merge {i} {j} (cons i' x xs) (cons j' y ys) = if x <= y then cons _ x (merge xs (cons _ y ys)) else cons _ y (merge (cons _ x xs) ys) module Succeeds where merge : ∀ {i j} → List {i} → List {j} → List merge [] ys = ys merge (cons i' x xs) [] = cons _ x xs merge {i} {j} (cons i' x xs) (cons j' y ys) with x <= y ... | true = cons _ x (merge {i'} {j} -- removing this implicit application makes it not termination check xs (cons _ y ys)) ... | false = cons _ y (merge (cons _ x xs) ys) module NeedsTerminationDepthTwo where merge : ∀ {i j} → List {i} → List {j} → List merge [] ys = ys merge (cons j x xs) [] = cons _ x xs merge {i} {i'} (cons j x xs) (cons j' y ys) with x <= y ... | true = cons _ x (merge xs (cons _ y ys)) ... | false = cons _ y (merge (cons _ x xs) ys)
{ "alphanum_fraction": 0.5171339564, "avg_line_length": 30.8653846154, "ext": "agda", "hexsha": "4c7897b7a31eb39f8a126d81e44be51f9e83a518", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "Agda-zh/agda", "max_forks_repo_path": "test/Succeed/Issue709.agda", "max_issues_count": 3, "max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z", "max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z", "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "shlevy/agda", "max_issues_repo_path": "test/Succeed/Issue709.agda", "max_line_length": 109, "max_stars_count": 3, "max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "shlevy/agda", "max_stars_repo_path": "test/Succeed/Issue709.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 554, "size": 1605 }
-- Andreas and James, Nov 2011 and Oct 2012 -- {-# OPTIONS --no-coverage-check #-} -- {-# OPTIONS -v tc.lhs:20 -v tc.cover.top:20 #-} module FlexInterpreter where open import Common.MAlonzo data Ty : Set where nat : Ty arr : Ty -> Ty -> Ty data Exp : Ty -> Set where zero : Exp nat suc : Exp (arr nat nat) pred : Exp (arr nat nat) app : {a b : Ty} -> Exp (arr a b) -> Exp a -> Exp b data Nat : Set where zero : Nat suc : Nat -> Nat Sem : Ty -> Set Sem nat = Nat Sem (arr a b) = Sem a -> Sem b eval' : (a : Ty) -> Exp a -> Sem a eval' ._ zero = zero eval' ._ suc = suc eval' b (app f e) = eval' _ f (eval' _ e) eval' .(arr nat nat) pred zero = zero eval' ._ pred (suc n) = n eval : {a : Ty} -> Exp a -> Sem a eval zero = zero eval suc = suc eval pred zero = zero eval pred (suc n) = n eval (app f e) = eval f (eval e) main = mainDefault
{ "alphanum_fraction": 0.5682074408, "avg_line_length": 21.6341463415, "ext": "agda", "hexsha": "ebc7131ef1467f6280aa0ed5c92a45a12cc57f96", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/features/FlexInterpreter.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/features/FlexInterpreter.agda", "max_line_length": 54, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/features/FlexInterpreter.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z", "num_tokens": 313, "size": 887 }
{-# OPTIONS --allow-unsolved-metas #-} -- The option is supplied to force a real error to pass the regression test. module MetaOccursInItself where data List (A : Set) : Set where nil : List A _::_ : A -> List A -> List A data One : Set where one : One postulate f : (A : Set) -> (A -> List A) -> One err : One err = f _ (\x -> x)
{ "alphanum_fraction": 0.6151603499, "avg_line_length": 20.1764705882, "ext": "agda", "hexsha": "95da253f5599f8e4af613877f0b6835db381a341", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "dagit/agda", "max_forks_repo_path": "test/fail/MetaOccursInItself.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "dagit/agda", "max_issues_repo_path": "test/fail/MetaOccursInItself.agda", "max_line_length": 76, "max_stars_count": 1, "max_stars_repo_head_hexsha": "4383a3d20328a6c43689161496cee8eb479aca08", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "dagit/agda", "max_stars_repo_path": "test/fail/MetaOccursInItself.agda", "max_stars_repo_stars_event_max_datetime": "2019-11-27T07:26:06.000Z", "max_stars_repo_stars_event_min_datetime": "2019-11-27T07:26:06.000Z", "num_tokens": 107, "size": 343 }
module HelloWorldPrim where open import IO.Primitive open import Data.String main = putStrLn (toCostring "Hello World!")
{ "alphanum_fraction": 0.7967479675, "avg_line_length": 17.5714285714, "ext": "agda", "hexsha": "c4257d6dc1c0777a3755927737fa1df31eb14919", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z", "max_forks_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_forks_repo_licenses": [ "BSD-3-Clause" ], "max_forks_repo_name": "redfish64/autonomic-agda", "max_forks_repo_path": "test/Compiler/with-stdlib/HelloWorldPrim.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "BSD-3-Clause" ], "max_issues_repo_name": "redfish64/autonomic-agda", "max_issues_repo_path": "test/Compiler/with-stdlib/HelloWorldPrim.agda", "max_line_length": 43, "max_stars_count": 3, "max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016", "max_stars_repo_licenses": [ "BSD-3-Clause" ], "max_stars_repo_name": "redfish64/autonomic-agda", "max_stars_repo_path": "test/Compiler/with-stdlib/HelloWorldPrim.agda", "max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z", "max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z", "num_tokens": 27, "size": 123 }
module Category.Monad.Either {i}(Exc : Set i)(I : Set i) where open import Level hiding (lift) open import Data.Sum open import Category.Monad open import Category.Monad.Predicate open import Relation.Unary open import Relation.Unary.PredicateTransformer pattern left x = inj₁ x pattern right x = inj₂ x EitherT : Pt I i → Pt I i EitherT M P = M (λ i → Exc ⊎ P i) module EitherT {M : Pt I i}(Mon : RawPMonad {ℓ = i} M) where private module Mon = RawPMonad Mon -- right-biased sum open RawPMonad monad : RawPMonad {ℓ = i} (EitherT M) return? monad px = Mon.return? (right px) _=<?_ monad {P}{Q} f px = g Mon.=<? px where g : (λ i → Exc ⊎ P i) ⊆ EitherT M Q g (left x) = Mon.return? (left x) g (right y) = f y _recoverWith_ : ∀ {P i} → EitherT M P i → (∀ {i} → Exc → EitherT M P i) → EitherT M P i _recoverWith_ {P} c f = g Mon.=<? c where g : (λ i → Exc ⊎ P i) ⊆ EitherT M P g (left x) = f x g (right y) = Mon.return? (right y) lift : ∀ {P} → M P ⊆ EitherT M P lift x = (λ z → Mon.return? (right z)) Mon.=<? x
{ "alphanum_fraction": 0.6020313943, "avg_line_length": 26.4146341463, "ext": "agda", "hexsha": "53de0083cdd5203819b9c885bddd5d1d9603b3a2", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z", "max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_forks_repo_licenses": [ "Apache-2.0" ], "max_forks_repo_name": "metaborg/mj.agda", "max_forks_repo_path": "src/Category/Monad/Either.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z", "max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z", "max_issues_repo_licenses": [ "Apache-2.0" ], "max_issues_repo_name": "metaborg/mj.agda", "max_issues_repo_path": "src/Category/Monad/Either.agda", "max_line_length": 89, "max_stars_count": 10, "max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df", "max_stars_repo_licenses": [ "Apache-2.0" ], "max_stars_repo_name": "metaborg/mj.agda", "max_stars_repo_path": "src/Category/Monad/Either.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z", "max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z", "num_tokens": 392, "size": 1083 }
{-# OPTIONS --without-K --safe #-} module Categories.Kan.Duality where open import Level open import Categories.Category open import Categories.Functor open import Categories.NaturalTransformation open import Categories.Kan private variable o ℓ e : Level C D E : Category o ℓ e F G : Functor C D module _ {F : Functor C D} {G : Functor C E} where private module F = Functor F module G = Functor G coLan⇒Ran : Lan F.op G.op → Ran F G coLan⇒Ran lan = record { R = L.op ; ε = η.op ; δ = λ M α → NaturalTransformation.op (σ (Functor.op M) (NaturalTransformation.op α)) ; δ-unique = λ δ′ eq → σ-unique (NaturalTransformation.op δ′) eq ; commutes = λ M α → commutes (Functor.op M) (NaturalTransformation.op α) } where open Lan lan coRan⇒Lan : Ran F.op G.op → Lan F G coRan⇒Lan ran = record { L = R.op ; η = ε.op ; σ = λ M α → NaturalTransformation.op (δ (Functor.op M) (NaturalTransformation.op α)) ; σ-unique = λ σ′ eq → δ-unique (NaturalTransformation.op σ′) eq ; commutes = λ M α → commutes (Functor.op M) (NaturalTransformation.op α) } where open Ran ran
{ "alphanum_fraction": 0.6243697479, "avg_line_length": 28.3333333333, "ext": "agda", "hexsha": "9a113827d60576986f2e44e117cd9fb8bc33cbd7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Kan/Duality.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Kan/Duality.agda", "max_line_length": 97, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Kan/Duality.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 372, "size": 1190 }
open import Type module Relator.ReflexiveTransitiveClosure {ℓ₁ ℓ₂} {T : Type{ℓ₁}} (_▫_ : T → T → Type{ℓ₂}) where open import Graph.Walk open import Graph.Walk.Proofs import Lvl open import Logic open import Logic.Propositional import Structure.Relator.Names as Names open import Structure.Relator.Properties open import Syntax.Function -- Reflexive closure of a relation. -- Constructs a reflexive relation from an existing relation. -- Sometimes also notated ((_▫_) ∪ (_▫⁰_)) for a relation (_▫_). data ReflexiveClosure : T → T → Type{ℓ₁ Lvl.⊔ ℓ₂} where super : Names.Subrelation(_▫_)(ReflexiveClosure) refl : Names.Reflexivity(ReflexiveClosure) -- Symmetric closure of a relation. -- Constructs a symmetric relation from an existing relation. -- Sometimes also notated (_▫⁻¹_) or (Converse(_▫_) ∪ (_▫_)) for a relation (_▫_). SymmetricClosure : T → T → Type{ℓ₂} SymmetricClosure a b = (b ▫ a) ∨ (a ▫ b) -- Reflexive-transitive closure of a relation. -- Constructs a reflexive and transitive relation from an existing relation. -- Sometimes also notated (_▫*_) for a relation (_▫_). data ReflexiveTransitiveClosure : T → T → Type{ℓ₁ Lvl.⊔ ℓ₂} where super : Names.Subrelation(_▫_)(ReflexiveTransitiveClosure) refl : Names.Reflexivity(ReflexiveTransitiveClosure) trans : Names.Transitivity(ReflexiveTransitiveClosure) infixl 1000 trans -- Transitive closure of a relation. -- Constructs a transitive relation from an existing relation. -- Sometimes also notated (_▫⁺_) for a relation (_▫_). data TransitiveClosure : T → T → Type{ℓ₁ Lvl.⊔ ℓ₂} where super : Names.Subrelation(_▫_)(TransitiveClosure) trans : Names.Transitivity(TransitiveClosure) module _ where open import Numeral.Natural -- Sometimes also notated (_▫ⁿ_) for a relation (_▫_). data FiniteTransitiveClosure : ℕ → T → T → Type{ℓ₁ Lvl.⊔ ℓ₂} where base : ∀{a} → (a ▫ a) → (FiniteTransitiveClosure 𝟎 a a) step : ∀{a b c} → (a ▫ b) → ∀{n} → (FiniteTransitiveClosure n b c) → (FiniteTransitiveClosure (𝐒(n)) a c) instance ReflexiveTransitiveClosure-reflexivity : Reflexivity(ReflexiveTransitiveClosure) ReflexiveTransitiveClosure-reflexivity = intro refl instance ReflexiveTransitiveClosure-transitivity : Transitivity(ReflexiveTransitiveClosure) ReflexiveTransitiveClosure-transitivity = intro trans -- The "prepend"-property of reflexive-transitive closure ReflexiveTransitiveClosure-prepend : ∀{a b c} → (a ▫ b) → ReflexiveTransitiveClosure b c → ReflexiveTransitiveClosure a c ReflexiveTransitiveClosure-prepend ab bc = trans (super ab) bc -- A reflexive-transitive closure is the same as a path. ReflexiveTransitiveClosure-Path-equivalence : ∀{a b} → (ReflexiveTransitiveClosure a b) ↔ (Walk(_▫_) a b) ReflexiveTransitiveClosure-Path-equivalence = [↔]-intro l r where r : ∀{a b} → ReflexiveTransitiveClosure a b → Walk(_▫_) a b r ReflexiveTransitiveClosure.refl = reflexivity(Walk(_▫_)) r (ReflexiveTransitiveClosure.super ab) = sub₂(_▫_)(Walk(_▫_)) ab r (ReflexiveTransitiveClosure.trans rab1 rb1b) = transitivity(Walk(_▫_)) (r rab1) (r rb1b) l : ∀{a b} → Walk(_▫_) a b → ReflexiveTransitiveClosure a b l Walk.at = ReflexiveTransitiveClosure.refl l (Walk.prepend ab1 sb1b) = ReflexiveTransitiveClosure-prepend ab1 (l sb1b)
{ "alphanum_fraction": 0.7381386861, "avg_line_length": 44.4324324324, "ext": "agda", "hexsha": "6939d31b0c1d41cd0094013c1c942b7f22758744", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Lolirofle/stuff-in-agda", "max_forks_repo_path": "Relator/ReflexiveTransitiveClosure.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Lolirofle/stuff-in-agda", "max_issues_repo_path": "Relator/ReflexiveTransitiveClosure.agda", "max_line_length": 121, "max_stars_count": 6, "max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Lolirofle/stuff-in-agda", "max_stars_repo_path": "Relator/ReflexiveTransitiveClosure.agda", "max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z", "num_tokens": 1019, "size": 3288 }
{-# OPTIONS --without-K #-} open import HoTT module homotopy.AnyUniversalCoverIsPathSet {i} (A : Type i) -- (A-conn : is-connected 0 A) where open Cover module _ (a₁ : A) -- A universal covering (defined as being simply connected). {j} (univ-cov : Cover A j) (univ-cov-univ : is-universal univ-cov) (a⇑₁ : Fiber univ-cov a₁) where private -- One-to-one mapping between the universal cover -- and the truncated path spaces from one point. [path] : ∀ (a⇑₁ a⇑₂ : TotalSpace univ-cov) → a⇑₁ =₀ a⇑₂ [path] a⇑₁ a⇑₂ = –> (Trunc=-equiv [ a⇑₁ ] [ a⇑₂ ]) (contr-has-all-paths univ-cov-univ [ a⇑₁ ] [ a⇑₂ ]) [path]-has-all-paths : ∀ {a⇑₁ a⇑₂ : TotalSpace univ-cov} → has-all-paths (a⇑₁ =₀ a⇑₂) [path]-has-all-paths {a⇑₁} {a⇑₂} = coe (ap has-all-paths $ ua (Trunc=-equiv [ a⇑₁ ] [ a⇑₂ ])) $ contr-has-all-paths (raise-level -2 univ-cov-univ [ a⇑₁ ] [ a⇑₂ ]) to : ∀ {a₂} → Fiber univ-cov a₂ → a₁ =₀ a₂ to {a₂} a⇑₂ = ap₀ fst ([path] (a₁ , a⇑₁) (a₂ , a⇑₂)) from : ∀ {a₂} → a₁ =₀ a₂ → Fiber univ-cov a₂ from p = cover-trace univ-cov a⇑₁ p to-from : ∀ {a₂} (p : a₁ =₀ a₂) → to (from p) == p to-from = Trunc-elim (λ _ → =-preserves-set Trunc-level) (λ p → lemma p) where lemma : ∀ {a₂} (p : a₁ == a₂) → to (from [ p ]) == [ p ] lemma idp = ap₀ fst ([path] (a₁ , a⇑₁) (a₁ , a⇑₁)) =⟨ ap (ap₀ fst) $ [path]-has-all-paths ([path] (a₁ , a⇑₁) (a₁ , a⇑₁)) (idp₀ :> ((a₁ , a⇑₁) =₀ (a₁ , a⇑₁))) ⟩ (idp₀ :> (a₁ =₀ a₁)) ∎ from-to : ∀ {a₂} (a⇑₂ : Fiber univ-cov a₂) → from (to a⇑₂) == a⇑₂ from-to {a₂} a⇑₂ = Trunc-elim (λ p → =-preserves-set {x = from (ap₀ fst p)} {y = a⇑₂} (Fiber-level univ-cov a₂)) (λ p → to-transp $ snd= p) ([path] (a₁ , a⇑₁) (a₂ , a⇑₂)) theorem : ∀ a₂ → Fiber univ-cov a₂ ≃ (a₁ =₀ a₂) theorem a₂ = to , is-eq _ from to-from from-to
{ "alphanum_fraction": 0.4688816097, "avg_line_length": 32.3787878788, "ext": "agda", "hexsha": "179dd850c42e5b8458411f4467a35d22e41b6de1", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cmknapp/HoTT-Agda", "max_forks_repo_path": "theorems/homotopy/AnyUniversalCoverIsPathSet.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cmknapp/HoTT-Agda", "max_issues_repo_path": "theorems/homotopy/AnyUniversalCoverIsPathSet.agda", "max_line_length": 76, "max_stars_count": null, "max_stars_repo_head_hexsha": "bc849346a17b33e2679a5b3f2b8efbe7835dc4b6", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cmknapp/HoTT-Agda", "max_stars_repo_path": "theorems/homotopy/AnyUniversalCoverIsPathSet.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 887, "size": 2137 }
open import Nat open import Prelude open import core open import contexts open import synth-unicity open import lemmas-matching module elaboration-unicity where mutual elaboration-unicity-synth : {Γ : tctx} {e : hexp} {τ1 τ2 : htyp} {d1 d2 : ihexp} {Δ1 Δ2 : hctx} → Γ ⊢ e ⇒ τ1 ~> d1 ⊣ Δ1 → Γ ⊢ e ⇒ τ2 ~> d2 ⊣ Δ2 → τ1 == τ2 × d1 == d2 × Δ1 == Δ2 elaboration-unicity-synth ESConst ESConst = refl , refl , refl elaboration-unicity-synth (ESVar {Γ = Γ} x₁) (ESVar x₂) = ctxunicity {Γ = Γ} x₁ x₂ , refl , refl elaboration-unicity-synth (ESLam apt1 d1) (ESLam apt2 d2) with elaboration-unicity-synth d1 d2 ... | ih1 , ih2 , ih3 = ap1 _ ih1 , ap1 _ ih2 , ih3 elaboration-unicity-synth (ESAp _ _ x x₁ x₂ x₃) (ESAp _ _ x₄ x₅ x₆ x₇) with synthunicity x x₄ ... | refl with match-unicity x₁ x₅ ... | refl with elaboration-unicity-ana x₂ x₆ ... | refl , refl , refl with elaboration-unicity-ana x₃ x₇ ... | refl , refl , refl = refl , refl , refl elaboration-unicity-synth ESEHole ESEHole = refl , refl , refl elaboration-unicity-synth (ESNEHole _ d1) (ESNEHole _ d2) with elaboration-unicity-synth d1 d2 ... | ih1 , ih2 , ih3 = refl , ap1 _ ih2 , ap1 _ ih3 elaboration-unicity-synth (ESAsc x) (ESAsc x₁) with elaboration-unicity-ana x x₁ ... | refl , refl , refl = refl , refl , refl elaboration-unicity-ana : {Γ : tctx} {e : hexp} {τ τ1 τ2 : htyp} {d1 d2 : ihexp} {Δ1 Δ2 : hctx} → Γ ⊢ e ⇐ τ ~> d1 :: τ1 ⊣ Δ1 → Γ ⊢ e ⇐ τ ~> d2 :: τ2 ⊣ Δ2 → d1 == d2 × τ1 == τ2 × Δ1 == Δ2 elaboration-unicity-ana (EALam x₁ m D1) (EALam x₂ m2 D2) with match-unicity m m2 ... | refl with elaboration-unicity-ana D1 D2 ... | refl , refl , refl = refl , refl , refl elaboration-unicity-ana (EALam x₁ m D1) (EASubsume x₂ x₃ () x₅) elaboration-unicity-ana (EASubsume x₁ x₂ () x₄) (EALam x₅ m D2) elaboration-unicity-ana (EASubsume x x₁ x₂ x₃) (EASubsume x₄ x₅ x₆ x₇) with elaboration-unicity-synth x₂ x₆ ... | refl , refl , refl = refl , refl , refl elaboration-unicity-ana (EASubsume x x₁ x₂ x₃) EAEHole = abort (x _ refl) elaboration-unicity-ana (EASubsume x x₁ x₂ x₃) (EANEHole _ x₄) = abort (x₁ _ _ refl) elaboration-unicity-ana EAEHole (EASubsume x x₁ x₂ x₃) = abort (x _ refl) elaboration-unicity-ana EAEHole EAEHole = refl , refl , refl elaboration-unicity-ana (EANEHole _ x) (EASubsume x₁ x₂ x₃ x₄) = abort (x₂ _ _ refl) elaboration-unicity-ana (EANEHole _ x) (EANEHole _ x₁) with elaboration-unicity-synth x x₁ ... | refl , refl , refl = refl , refl , refl
{ "alphanum_fraction": 0.5996376812, "avg_line_length": 51.1111111111, "ext": "agda", "hexsha": "be64eee865a33af4e90c09a9b07c6cd4a4c9f505", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_forks_event_min_datetime": "2019-09-13T18:20:02.000Z", "max_forks_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_forks_repo_path": "elaboration-unicity.agda", "max_issues_count": 54, "max_issues_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_issues_repo_issues_event_max_datetime": "2018-11-29T16:32:40.000Z", "max_issues_repo_issues_event_min_datetime": "2017-06-29T20:53:34.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_issues_repo_path": "elaboration-unicity.agda", "max_line_length": 101, "max_stars_count": 16, "max_stars_repo_head_hexsha": "229dfb06ea51ebe91cb3b1c973c2f2792e66797c", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "hazelgrove/hazelnut-dynamics-agda", "max_stars_repo_path": "elaboration-unicity.agda", "max_stars_repo_stars_event_max_datetime": "2021-12-19T02:50:23.000Z", "max_stars_repo_stars_event_min_datetime": "2018-03-12T14:32:03.000Z", "num_tokens": 1079, "size": 2760 }
module Esterel.Lang where open import Esterel.Environment as Env using (Env) open import Esterel.Variable.Signal as Signal using (Signal) open import Esterel.Variable.Shared as SharedVar using (SharedVar) open import Esterel.Variable.Sequential as SeqVar using (SeqVar) open import Data.List using (List) open import Data.Nat as Nat using (ℕ) data s/l : Set where num : ℕ → s/l seq-ref : (x : SeqVar) → s/l shr-ref : (s : SharedVar) → s/l data Expr : Set where plus : List s/l → Expr data Ctrl : Set where GO : Ctrl WAIT : Ctrl data Term : Set where nothin : Term pause : Term signl : (S : Signal) → (p : Term) → Term present_∣⇒_∣⇒_ : (S : Signal) → (p : Term) → (q : Term) → Term emit : (S : Signal) → Term _∥_ : (p : Term) → (q : Term) → Term loop : (p : Term) → Term loopˢ : (p : Term) → (q : Term) → Term _>>_ : (p : Term) → (q : Term) → Term suspend : (p : Term) → (S : Signal) → Term trap : (p : Term) → Term exit : (n : ℕ) → Term shared_≔_in:_ : (s : SharedVar) → (e : Expr) → (p : Term) → Term _⇐_ : (s : SharedVar) → (e : Expr) → Term var_≔_in:_ : (x : SeqVar) → (e : Expr) → (p : Term) → Term _≔_ : (x : SeqVar) → (e : Expr) → Term if_∣⇒_∣⇒_ : (x : SeqVar) → (p : Term) → (q : Term) → Term ρ⟨_,_⟩·_ : (θ : Env) → (A : Ctrl) → (p : Term) → Term infix 20 _⇐_ infix 20 _≔_ infix 17 if_∣⇒_∣⇒_ infixr 15 _>>_ infixr 13 _∥_ infix 11 present_∣⇒_∣⇒_ infix 10 shared_≔_in:_ infix 10 var_≔_in:_ infix 6 ρ⟨_,_⟩·_
{ "alphanum_fraction": 0.5303867403, "avg_line_length": 28.0862068966, "ext": "agda", "hexsha": "936163ba05c7aaa7049d888e418eadf7abc594ee", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_forks_event_min_datetime": "2020-04-15T20:02:49.000Z", "max_forks_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "florence/esterel-calculus", "max_forks_repo_path": "agda/Esterel/Lang.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "florence/esterel-calculus", "max_issues_repo_path": "agda/Esterel/Lang.agda", "max_line_length": 67, "max_stars_count": 3, "max_stars_repo_head_hexsha": "4340bef3f8df42ab8167735d35a4cf56243a45cd", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "florence/esterel-calculus", "max_stars_repo_path": "agda/Esterel/Lang.agda", "max_stars_repo_stars_event_max_datetime": "2020-07-01T03:59:31.000Z", "max_stars_repo_stars_event_min_datetime": "2020-04-16T10:58:53.000Z", "num_tokens": 660, "size": 1629 }
------------------------------------------------------------------------ -- The Agda standard library -- -- Lists where every pair of elements are related (symmetrically) ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary using (Rel) module Data.List.Relation.Unary.AllPairs {a ℓ} {A : Set a} {R : Rel A ℓ} where open import Data.List.Base using (List; []; _∷_) open import Data.List.Relation.Unary.All as All using (All; []; _∷_) open import Data.Product as Prod using (_,_; _×_; uncurry; <_,_>) open import Function using (id; _∘_) open import Level using (_⊔_) open import Relation.Binary as B using (Rel; _⇒_) open import Relation.Binary.Construct.Intersection renaming (_∩_ to _∩ᵇ_) open import Relation.Binary.PropositionalEquality open import Relation.Unary as U renaming (_∩_ to _∩ᵘ_) hiding (_⇒_) open import Relation.Nullary using (yes; no) import Relation.Nullary.Decidable as Dec open import Relation.Nullary.Product using (_×-dec_) ------------------------------------------------------------------------ -- Definition open import Data.List.Relation.Unary.AllPairs.Core public ------------------------------------------------------------------------ -- Operations head : ∀ {x xs} → AllPairs R (x ∷ xs) → All (R x) xs head (px ∷ pxs) = px tail : ∀ {x xs} → AllPairs R (x ∷ xs) → AllPairs R xs tail (px ∷ pxs) = pxs uncons : ∀ {x xs} → AllPairs R (x ∷ xs) → All (R x) xs × AllPairs R xs uncons = < head , tail > module _ {q} {S : Rel A q} where map : R ⇒ S → AllPairs R ⊆ AllPairs S map ~₁⇒~₂ [] = [] map ~₁⇒~₂ (x~xs ∷ pxs) = All.map ~₁⇒~₂ x~xs ∷ (map ~₁⇒~₂ pxs) module _ {s t} {S : Rel A s} {T : Rel A t} where zipWith : R ∩ᵇ S ⇒ T → AllPairs R ∩ᵘ AllPairs S ⊆ AllPairs T zipWith f ([] , []) = [] zipWith f (px ∷ pxs , qx ∷ qxs) = All.zipWith f (px , qx) ∷ zipWith f (pxs , qxs) unzipWith : T ⇒ R ∩ᵇ S → AllPairs T ⊆ AllPairs R ∩ᵘ AllPairs S unzipWith f [] = [] , [] unzipWith f (rx ∷ rxs) = Prod.zip _∷_ _∷_ (All.unzipWith f rx) (unzipWith f rxs) module _ {s} {S : Rel A s} where zip : AllPairs R ∩ᵘ AllPairs S ⊆ AllPairs (R ∩ᵇ S) zip = zipWith id unzip : AllPairs (R ∩ᵇ S) ⊆ AllPairs R ∩ᵘ AllPairs S unzip = unzipWith id ------------------------------------------------------------------------ -- Properties of predicates preserved by AllPairs allPairs? : B.Decidable R → U.Decidable (AllPairs R) allPairs? R? [] = yes [] allPairs? R? (x ∷ xs) = Dec.map′ (uncurry _∷_) uncons (All.all (R? x) xs ×-dec allPairs? R? xs) irrelevant : B.Irrelevant R → U.Irrelevant (AllPairs R) irrelevant irr [] [] = refl irrelevant irr (px₁ ∷ pxs₁) (px₂ ∷ pxs₂) = cong₂ _∷_ (All.irrelevant irr px₁ px₂) (irrelevant irr pxs₁ pxs₂) satisfiable : U.Satisfiable (AllPairs R) satisfiable = [] , []
{ "alphanum_fraction": 0.5566365532, "avg_line_length": 34.6746987952, "ext": "agda", "hexsha": "31d0b7fb9d7a9680187d82108ac74af9cbca9a60", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z", "max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "DreamLinuxer/popl21-artifact", "max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/AllPairs.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "DreamLinuxer/popl21-artifact", "max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/AllPairs.agda", "max_line_length": 83, "max_stars_count": 5, "max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "DreamLinuxer/popl21-artifact", "max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Unary/AllPairs.agda", "max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z", "max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z", "num_tokens": 917, "size": 2878 }
------------------------------------------------------------------------------ -- From inductive PA to standard axiomatic PA ------------------------------------------------------------------------------ {-# OPTIONS --exact-split #-} {-# OPTIONS --no-sized-types #-} {-# OPTIONS --no-universe-polymorphism #-} {-# OPTIONS --without-K #-} -- From the definition of PA using Agda data types and primitive -- recursive functions for addition and multiplication, we can prove -- the following axioms (see (Machover 1996, p. 263) and (Hájek and -- Pudlák 1998, p. 28)): -- PA₁. 0 ≠ n' -- PA₂. m' = n' → m = n -- PA₃. 0 + n = n -- PA₄. m' + n = (m + n)' -- PA₅. 0 * n = 0 -- PA₆. m' * n = n + (m * n) -- Axiom of induction: -- φ(0) → (∀n.φ(n) → φ(succ n)) → ∀n.φ(n), for any formulae φ module PA.Inductive2Standard where open import PA.Inductive.Base ------------------------------------------------------------------------------ PA₁ : ∀ {n} → zero ≢ succ n PA₁ () PA₂ : ∀ {m n} → succ m ≡ succ n → m ≡ n PA₂ refl = refl PA₃ : ∀ n → zero + n ≡ n PA₃ n = refl PA₄ : ∀ m n → succ m + n ≡ succ (m + n) PA₄ m n = refl PA₅ : ∀ n → zero * n ≡ zero PA₅ n = refl PA₆ : ∀ m n → succ m * n ≡ n + m * n PA₆ m n = refl ------------------------------------------------------------------------------ -- References -- -- Machover, Moshé (1996). Set theory, Logic and their -- Limitations. Cambridge University Press. -- Hájek, Petr and Pudlák, Pavel (1998). Metamathematics of -- First-Order Arithmetic. 2nd printing. Springer.
{ "alphanum_fraction": 0.4637588198, "avg_line_length": 27.8392857143, "ext": "agda", "hexsha": "0e4db7bc658d94b562b4637c43e8c90711b2cefe", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z", "max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z", "max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "asr/fotc", "max_forks_repo_path": "src/fot/PA/Inductive2Standard.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z", "max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "asr/fotc", "max_issues_repo_path": "src/fot/PA/Inductive2Standard.agda", "max_line_length": 78, "max_stars_count": 11, "max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "asr/fotc", "max_stars_repo_path": "src/fot/PA/Inductive2Standard.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z", "max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z", "num_tokens": 466, "size": 1559 }
{-# OPTIONS --without-K --safe #-} open import Level open import Categories.Category using (Category) module Categories.NaturalTransformation.Hom {o ℓ e : Level} (C : Category o ℓ e) where -- open import Function using (_$_; Inverse) -- else there's a conflict with the import below -- open import Function.Equality using (Π; _⟨$⟩_; cong) -- open import Relation.Binary using (module Setoid) -- import Relation.Binary.Reasoning.Setoid as SetoidR -- open import Data.Product using (_,_; Σ) -- open import Categories.Category.Product -- open import Categories.Category.Construction.Presheaves -- open import Categories.Category.Construction.Functors open import Categories.Category.Instance.Setoids -- open import Categories.Functor renaming (id to idF) open import Categories.Functor.Hom using (module Hom; Hom[_][-,_]; Hom[_][-,-]) -- open import Categories.Functor.Bifunctor -- open import Categories.Functor.Presheaf -- open import Categories.Functor.Construction.LiftSetoids open import Categories.NaturalTransformation using (NaturalTransformation; ntHelper) renaming (id to idN) -- open import Categories.NaturalTransformation.NaturalIsomorphism using (NaturalIsomorphism) -- import Categories.Morphism as Mor import Categories.Morphism.Reasoning as MR open Category C open HomReasoning open MR C open NaturalTransformation private module CE = Category.Equiv C module C = Category C Hom[A,C]⇒Hom[B,C] : {A B : Obj} → (A ⇒ B) → NaturalTransformation Hom[ C ][-, A ] Hom[ C ][-, B ] Hom[A,C]⇒Hom[B,C] {A} A⇒B = ntHelper record { η = λ X → record { _⟨$⟩_ = λ X⇒A → A⇒B ∘ X⇒A ; cong = ∘-resp-≈ʳ } ; commute = λ f {g} {h} g≈h → begin A⇒B ∘ id ∘ g ∘ f ≈˘⟨ assoc ⟩ (A⇒B ∘ id) ∘ g ∘ f ≈⟨ id-comm ⟩∘⟨ g≈h ⟩∘⟨refl ⟩ (id ∘ A⇒B) ∘ h ∘ f ≈⟨ assoc ○ ⟺ (∘-resp-≈ʳ assoc) ⟩ -- TODO: MR.Reassociate id ∘ (A⇒B ∘ h) ∘ f ∎ }
{ "alphanum_fraction": 0.6942949408, "avg_line_length": 41.2888888889, "ext": "agda", "hexsha": "c664f5fe73f7ad53cbcf741495ab446a8d6ee5d3", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "Taneb/agda-categories", "max_forks_repo_path": "Categories/NaturalTransformation/Hom.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "Taneb/agda-categories", "max_issues_repo_path": "Categories/NaturalTransformation/Hom.agda", "max_line_length": 105, "max_stars_count": null, "max_stars_repo_head_hexsha": "6ebc1349ee79669c5c496dcadd551d5bbefd1972", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "Taneb/agda-categories", "max_stars_repo_path": "Categories/NaturalTransformation/Hom.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 603, "size": 1858 }
open import Relation.Binary.Core module BBHeap.Push.Properties {A : Set} (_≤_ : A → A → Set) (tot≤ : Total _≤_) (trans≤ : Transitive _≤_) where open import BBHeap _≤_ open import BBHeap.Equality.Properties _≤_ open import BBHeap.Push _≤_ tot≤ trans≤ open import Bound.Lower A open import Bound.Lower.Order _≤_ open import Data.Nat open import Data.List open import Data.Sum open import List.Permutation.Base A open import List.Permutation.Base.Concatenation A open import List.Permutation.Base.Equivalence A open import Order.Total _≤_ tot≤ mutual lemma-push⋘# : {b : Bound}{x y : A}{l r : BBHeap (val y)}(b≤x : LeB b (val x))(b≤y : LeB b (val y))(l⋘r : l ⋘ r) → # (push⋘ b≤x b≤y l⋘r) ≡ suc (# l + # r) lemma-push⋘# b≤x _ lf⋘ = refl lemma-push⋘# {x = x} b≤x b≤y (ll⋘ {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = refl ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = refl ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ with # (push⋘ (lexy y₁≤x) (lexy refl≤) l₁⋘r₁) | lemma-push⋘# (lexy y₁≤x) (lexy refl≤) l₁⋘r₁ ... | ._ | refl = refl lemma-push⋘# b≤x b≤y (ll⋘ y≤y₁ y≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂) | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x with # (push⋘ (lexy y₂≤x) (lexy refl≤) l₂⋘r₂) | lemma-push⋘# (lexy y₂≤x) (lexy refl≤) l₂⋘r₂ ... | ._ | refl = refl lemma-push⋘# {x = x} b≤x b≤y (lr⋘ {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = refl ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = refl ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ with # (push⋙ (lexy y₁≤x) (lexy refl≤) l₁⋙r₁) | lemma-push⋙# (lexy y₁≤x) (lexy refl≤) l₁⋙r₁ ... | ._ | refl = refl lemma-push⋘# b≤x b≤y (lr⋘ y≤y₁ y≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂) | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x with # (push⋘ (lexy y₂≤x) (lexy refl≤) l₂⋘r₂) | lemma-push⋘# (lexy y₂≤x) (lexy refl≤) l₂⋘r₂ ... | ._ | refl = refl lemma-push⋙# : {b : Bound}{x y : A}{l r : BBHeap (val y)}(b≤x : LeB b (val x))(b≤y : LeB b (val y))(l⋙r : l ⋙ r) → # (push⋙ b≤x b≤y l⋙r) ≡ suc (# l + # r) lemma-push⋙# {x = x} b≤x b≤y (⋙lf {x = z} y≤z) with tot≤ x z ... | inj₁ x≤z = refl ... | inj₂ z≤x = refl lemma-push⋙# {x = x} b≤x b≤y (⋙rl {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = refl ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = refl ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ with # (push⋘ (lexy y₁≤x) (lexy refl≤) l₁⋘r₁) | lemma-push⋘# (lexy y₁≤x) (lexy refl≤) l₁⋘r₁ ... | ._ | refl = refl lemma-push⋙# b≤x b≤y (⋙rl y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x with # (push⋘ (lexy y₂≤x) (lexy refl≤) l₂⋘r₂) | lemma-push⋘# (lexy y₂≤x) (lexy refl≤) l₂⋘r₂ ... | ._ | refl = refl lemma-push⋙# {x = x} b≤x b≤y (⋙rr {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = refl ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = refl ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ with # (push⋘ (lexy y₁≤x) (lexy refl≤) l₁⋘r₁) | lemma-push⋘# (lexy y₁≤x) (lexy refl≤) l₁⋘r₁ ... | ._ | refl = refl lemma-push⋙# b≤x b≤y (⋙rr y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂) | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x with # (push⋙ (lexy y₂≤x) (lexy refl≤) l₂⋙r₂) | lemma-push⋙# (lexy y₂≤x) (lexy refl≤) l₂⋙r₂ ... | ._ | refl = refl lemma-push# : {b : Bound}{x : A}(b≤x : LeB b (val x))(h : BBHeap b) → # (push b≤x h) ≡ # h lemma-push# b≤x leaf = refl lemma-push# b≤x (left b≤y l⋘r) = lemma-push⋘# b≤x b≤y l⋘r lemma-push# b≤x (right b≤y l⋙r) = lemma-push⋙# b≤x b≤y l⋙r mutual lemma-push⋘∼ : {b : Bound}{x y : A}{l r : BBHeap (val y)}(b≤x : LeB b (val x))(b≤y : LeB b (val y))(l⋘r : l ⋘ r) → flatten (push⋘ b≤x b≤y l⋘r) ∼ (x ∷ (flatten l ++ flatten r)) lemma-push⋘∼ b≤x _ lf⋘ = ∼x /head /head ∼[] lemma-push⋘∼ {x = x} b≤x b≤y (ll⋘ {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋘r₁ l₂⋘r₂ l₂≃r₂ r₁≃l₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = refl∼ ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ = let pl'∼xfl₁fr₁ = lemma-push⋘∼ (lexy y₁≤x) (lexy refl≤) l₁⋘r₁ ; fpl'fr'∼xfl₁fr₁fr' = lemma++∼r pl'∼xfl₁fr₁ in ∼x /head (/tail /head) fpl'fr'∼xfl₁fr₁fr' ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = refl∼ ... | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x = let pr'∼xfl₂fr₂ = lemma-push⋘∼ (lexy y₂≤x) (lexy refl≤) l₂⋘r₂ ; fl' = flatten (left (lexy y₂≤y₁) l₁⋘r₁) ; fl'fpr'∼fl'xfl₂fr₂ = lemma++∼l {xs = fl'} pr'∼xfl₂fr₂ ; xfl'fr'/y₂⟶xfl'fl₂fr₂ = lemma++/l {xs = x ∷ fl'} /head ; fl'xfl₂fr₂/x⟶fl'fl₂fr₂ = lemma++/ {xs = fl'}; fl'xfl₂fr₂∼xfl'fl₂fr₂ = ∼x fl'xfl₂fr₂/x⟶fl'fl₂fr₂ /head refl∼ ; fl'fpr'∼xfl'fl₂fr₂ = trans∼ fl'fpr'∼fl'xfl₂fr₂ fl'xfl₂fr₂∼xfl'fl₂fr₂ in ∼x /head xfl'fr'/y₂⟶xfl'fl₂fr₂ fl'fpr'∼xfl'fl₂fr₂ lemma-push⋘∼ {x = x} b≤x b≤y (lr⋘ {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋙r₁ l₂⋘r₂ l₂≃r₂ l₁⋗l₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = refl∼ ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ = let pl'∼xfl₁fr₁ = lemma-push⋙∼ (lexy y₁≤x) (lexy refl≤) l₁⋙r₁ ; fpl'fr'∼xfl₁fr₁fr' = lemma++∼r pl'∼xfl₁fr₁ in ∼x /head (/tail /head) fpl'fr'∼xfl₁fr₁fr' ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = refl∼ ... | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x = let pr'∼xfl₂fr₂ = lemma-push⋘∼ (lexy y₂≤x) (lexy refl≤) l₂⋘r₂ ; fl' = flatten (right (lexy y₂≤y₁) l₁⋙r₁) ; fl'fpr'∼fl'xfl₂fr₂ = lemma++∼l {xs = fl'} pr'∼xfl₂fr₂ ; xfl'fr'/y₂⟶xfl'fl₂fr₂ = lemma++/l {xs = x ∷ fl'} /head ; fl'xfl₂fr₂/x⟶fl'fl₂fr₂ = lemma++/ {xs = fl'}; fl'xfl₂fr₂∼xfl'fl₂fr₂ = ∼x fl'xfl₂fr₂/x⟶fl'fl₂fr₂ /head refl∼ ; fl'fpr'∼xfl'fl₂fr₂ = trans∼ fl'fpr'∼fl'xfl₂fr₂ fl'xfl₂fr₂∼xfl'fl₂fr₂ in ∼x /head xfl'fr'/y₂⟶xfl'fl₂fr₂ fl'fpr'∼xfl'fl₂fr₂ lemma-push⋙∼ : {b : Bound}{x y : A}{l r : BBHeap (val y)}(b≤x : LeB b (val x))(b≤y : LeB b (val y))(l⋙r : l ⋙ r) → flatten (push⋙ b≤x b≤y l⋙r) ∼ (x ∷ (flatten l ++ flatten r)) lemma-push⋙∼ {x = x} b≤x b≤y (⋙lf {x = z} y≤z) with tot≤ x z ... | inj₁ x≤z = ∼x /head /head (∼x /head /head ∼[]) ... | inj₂ z≤x = ∼x (/tail /head) /head (∼x /head /head ∼[]) lemma-push⋙∼ {x = x} b≤x b≤y (⋙rl {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋘r₂ l₁⋗r₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = refl∼ ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ = let pl'∼xfl₁fr₁ = lemma-push⋘∼ (lexy y₁≤x) (lexy refl≤) l₁⋘r₁ ; fpl'fr'∼xfl₁fr₁fr' = lemma++∼r pl'∼xfl₁fr₁ in ∼x /head (/tail /head) fpl'fr'∼xfl₁fr₁fr' ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = refl∼ ... | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x = let pr'∼xfl₂fr₂ = lemma-push⋘∼ (lexy y₂≤x) (lexy refl≤) l₂⋘r₂ ; fl' = flatten (left (lexy y₂≤y₁) l₁⋘r₁) ; fl'fpr'∼fl'xfl₂fr₂ = lemma++∼l {xs = fl'} pr'∼xfl₂fr₂ ; xfl'fr'/y₂⟶xfl'fl₂fr₂ = lemma++/l {xs = x ∷ fl'} /head ; fl'xfl₂fr₂/x⟶fl'fl₂fr₂ = lemma++/ {xs = fl'}; fl'xfl₂fr₂∼xfl'fl₂fr₂ = ∼x fl'xfl₂fr₂/x⟶fl'fl₂fr₂ /head refl∼ ; fl'fpr'∼xfl'fl₂fr₂ = trans∼ fl'fpr'∼fl'xfl₂fr₂ fl'xfl₂fr₂∼xfl'fl₂fr₂ in ∼x /head xfl'fr'/y₂⟶xfl'fl₂fr₂ fl'fpr'∼xfl'fl₂fr₂ lemma-push⋙∼ {x = x} b≤x b≤y (⋙rr {x = y₁} {x' = y₂} y≤y₁ y≤y₂ l₁⋘r₁ l₁≃r₁ l₂⋙r₂ l₁≃l₂) with tot≤ y₁ y₂ | tot≤ x y₁ | tot≤ x y₂ ... | inj₁ y₁≤y₂ | inj₁ x≤y₁ | _ = refl∼ ... | inj₁ y₁≤y₂ | inj₂ y₁≤x | _ = let pl'∼xfl₁fr₁ = lemma-push⋘∼ (lexy y₁≤x) (lexy refl≤) l₁⋘r₁ ; fpl'fr'∼xfl₁fr₁fr' = lemma++∼r pl'∼xfl₁fr₁ in ∼x /head (/tail /head) fpl'fr'∼xfl₁fr₁fr' ... | inj₂ y₂≤y₁ | _ | inj₁ x≤y₂ = refl∼ ... | inj₂ y₂≤y₁ | _ | inj₂ y₂≤x = let pr'∼xfl₂fr₂ = lemma-push⋙∼ (lexy y₂≤x) (lexy refl≤) l₂⋙r₂ ; fl' = flatten (left (lexy y₂≤y₁) l₁⋘r₁) ; fl'fpr'∼fl'xfl₂fr₂ = lemma++∼l {xs = fl'} pr'∼xfl₂fr₂ ; xfl'fr'/y₂⟶xfl'fl₂fr₂ = lemma++/l {xs = x ∷ fl'} /head ; fl'xfl₂fr₂/x⟶fl'fl₂fr₂ = lemma++/ {xs = fl'}; fl'xfl₂fr₂∼xfl'fl₂fr₂ = ∼x fl'xfl₂fr₂/x⟶fl'fl₂fr₂ /head refl∼ ; fl'fpr'∼xfl'fl₂fr₂ = trans∼ fl'fpr'∼fl'xfl₂fr₂ fl'xfl₂fr₂∼xfl'fl₂fr₂ in ∼x /head xfl'fr'/y₂⟶xfl'fl₂fr₂ fl'fpr'∼xfl'fl₂fr₂
{ "alphanum_fraction": 0.4932417211, "avg_line_length": 58.0261437908, "ext": "agda", "hexsha": "8dbbde121c2314fec1e5e7b176c2737c6294b7a9", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "bgbianchi/sorting", "max_forks_repo_path": "agda/BBHeap/Push/Properties.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "bgbianchi/sorting", "max_issues_repo_path": "agda/BBHeap/Push/Properties.agda", "max_line_length": 177, "max_stars_count": 6, "max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "bgbianchi/sorting", "max_stars_repo_path": "agda/BBHeap/Push/Properties.agda", "max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z", "max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z", "num_tokens": 4855, "size": 8878 }
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9. Copyright (c) 2020, 2021 Oracle and/or its affiliates. Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl -} open import LibraBFT.Prelude open import LibraBFT.Lemmas open import LibraBFT.Abstract.Types.EpochConfig open WithAbsVote -- Here we establish the properties necessary to achieve consensus -- just like we see them on paper: stating facts about the state of -- the system and reasoning about which QC's exist in the system. -- This module is a stepping stone to the properties we want; -- you should probably not be importing it directly, see 'LibraBFT.Abstract.Properties' -- instead. -- -- The module 'LibraBFT.Abstract.Properties' proves that the invariants -- presented here can be obtained from reasoning about sent votes, -- which provides a much easier-to-prove interface to an implementation. module LibraBFT.Abstract.RecordChain.Assumptions (UID : Set) (_≟UID_ : (u₀ u₁ : UID) → Dec (u₀ ≡ u₁)) (NodeId : Set) (𝓔 : EpochConfig UID NodeId) (𝓥 : VoteEvidence UID NodeId 𝓔) where open import LibraBFT.Abstract.Types UID NodeId 𝓔 open import LibraBFT.Abstract.System UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.Records UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.Records.Extends UID _≟UID_ NodeId 𝓔 𝓥 open import LibraBFT.Abstract.RecordChain UID _≟UID_ NodeId 𝓔 𝓥 open EpochConfig 𝓔 module _ {ℓ}(InSys : Record → Set ℓ) where -- Another important predicate of a "valid" RecordStoreState is the fact -- that α's n-th vote is always the same. VotesOnlyOnceRule : Set ℓ VotesOnlyOnceRule -- Given an honest α = (α : Member) → Meta-Honest-Member α -- For all system states where q and q' exist, → ∀{q q'} → (q∈𝓢 : InSys (Q q)) → (q'∈𝓢 : InSys (Q q')) -- such that α voted for q and q'; if α says it's the same vote, then it's the same vote. → (v : α ∈QC q)(v' : α ∈QC q') → abs-vRound (∈QC-Vote q v) ≡ abs-vRound (∈QC-Vote q' v') ----------------- → ∈QC-Vote q v ≡ ∈QC-Vote q' v' module _ {ℓ}(InSys : Record → Set ℓ) where -- The preferred-round rule (aka locked-round-rule) is a critical -- aspect of LibraBFT's correctness. It states that an honest node α will cast -- votes for blocks b only if prevRound(b) ≥ preferred_round(α), where preferred_round(α) -- is defined as $max { round b | b is the head of a 2-chain }$. -- -- Operationally, α can ensure it obeys this rule as follows: it keeps a counter -- preferred_round, initialized at 0 and, whenever α receives a QC q that forms a -- 2-chain: -- -- Fig1 -- -- I ← ⋯ ← b₁ ← q₁ ← b ← q -- ⌞₋₋₋₋₋₋₋₋₋₋₋₋₋₋₋₋₋⌟ -- 2-chain -- -- it checks whether round(b₁) , which is the head of the 2-chain above, -- is greater than its previously known preferred_round; if so, α updates -- it. Note that α doesn't need to cast a vote in q, above, to have its -- preferred_round updated. All that matters is that α has seen q. -- -- We are encoding the rules governing Libra nodes as invariants in the -- state of other nodes. Hence, the PreferredRoundRule below states an invariant -- on the state of β, if α respects the preferred-round-rule. -- -- Let the state of β be as below, such that α did cast votes for q -- and q' in that order (α is honest here!): -- -- -- Fig2 -- 3-chain -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ -- | 2-chain | α knows of the 2-chain because -- ⌜⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⌝ | it voted at the 3-chain. -- I ← ⋯ ← b₂ ← q₂ ← b₁ ← q₁ ← b ← q -- ↖ -- ⋯ ← b₁' ← q₁' ← b' ← q' -- -- Then, since α is honest and follows the preferred-round rule, we know that -- round(b₂) ≤ round(b₁') because, by seeing that α voted on q, we know that α -- has seen the 2-chain above, hence, α's preferred_round was at least round(b₂) at -- the time α cast its vote for b. -- -- After casting a vote for b, α cast a vote for b', which means that α must have -- checked that round(b₂) ≤ prevRound(b'), as stated by the preferred round rule. -- -- The invariant below states that, since α is honest, we can trust that these -- checks have been performed and we can infer this information solely -- by seeing α has knowledge of the 2-chain in Fig2 above. -- PreferredRoundRule : Set ℓ PreferredRoundRule = ∀(α : Member) → Meta-Honest-Member α → ∀{q q'}(q∈𝓢 : InSys (Q q))(q'∈𝓢 : InSys (Q q')) → {rc : RecordChain (Q q)}{n : ℕ}(c3 : 𝕂-chain Contig (3 + n) rc) → (v : α ∈QC q) -- α knows of the 2-chain because it voted on the tail of the 3-chain! → (rc' : RecordChain (Q q')) → (v' : α ∈QC q') → abs-vRound (∈QC-Vote q v) < abs-vRound (∈QC-Vote q' v') → NonInjective-≡ bId ⊎ (getRound (kchainBlock (suc (suc zero)) c3) ≤ prevRound rc')
{ "alphanum_fraction": 0.6190383492, "avg_line_length": 44.6695652174, "ext": "agda", "hexsha": "915cbc5da34fa76a16962e2dec4420037060b3ad", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_forks_repo_licenses": [ "UPL-1.0" ], "max_forks_repo_name": "cwjnkins/bft-consensus-agda", "max_forks_repo_path": "LibraBFT/Abstract/RecordChain/Assumptions.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "UPL-1.0" ], "max_issues_repo_name": "cwjnkins/bft-consensus-agda", "max_issues_repo_path": "LibraBFT/Abstract/RecordChain/Assumptions.agda", "max_line_length": 111, "max_stars_count": null, "max_stars_repo_head_hexsha": "71aa2168e4875ffdeece9ba7472ee3cee5fa9084", "max_stars_repo_licenses": [ "UPL-1.0" ], "max_stars_repo_name": "cwjnkins/bft-consensus-agda", "max_stars_repo_path": "LibraBFT/Abstract/RecordChain/Assumptions.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1673, "size": 5137 }
{-# OPTIONS --allow-unsolved-metas #-} open import Agda.Primitive infixr 5 _,_ record Pair {a} (A : Set a) {b} (B : Set b) : Set (a ⊔ b) where constructor _,_ field fst : A snd : B data Constraint {a} {A : Set a} (x : A) : Set where instance _ : Constraint x record Outer l {a} {A : Set a} (x : A) : Set (lsuc l) where constructor # field type : Set l record Inner {l} {a} {A : Set a} (x : A) {{_ : Constraint x}} (outer : Outer l x) : Set l where field value : Outer.type outer module Class {l} {a} {A : Set a} (x : A) (C : Set l) where class = Inner x (# C) method : {{_ : class}} → C method {{INSTANCE}} = Inner.value INSTANCE module Beekeeper {i} {I : Set i} (A : I -> Set) (B : I -> Set) (x : I) = Class (x , A , B) (A x -> B x) module Indexed {a b b?} {I : Set} {A : I -> Set a} (mkA : ∀ {x} -> A x) (B : I -> Set b) (toB : ∀ {x} -> A x -> B x) (B? : ∀ {x} -> B x -> Set b?) = Class ((λ {x} -> toB {x}) , (λ {x} -> B? {x})) (∀ {x} -> B? (toB (mkA {x}))) module Unindexed {a b} {A : Set a} (mkA : A) {B : Set b} (toB : A -> B) (B? : B -> Set) = Class (mkA , toB , B?) (B? (toB mkA)) module _ {a b} {I : Set} {A : I -> Set a} {mkA : ∀ {x} -> A x} {B : I -> Set b} {toB : ∀ {x} -> A x -> B x} {B? : ∀ {x} -> B x -> Set} {{_ : Indexed.class mkA B toB B?}} where postulate instance iToUnindexed : ∀ {x} -> Unindexed.class (mkA {x}) toB B? postulate I : Set data A a (x : I) : Set a where mkA : A a x record B b (x : I) : Set (lsuc b) where field ?? : Set b open B public postulate toB : ∀ {a b x} -> A a x -> B b x instance iIndexedAB : ∀ {a b} -> Indexed.class (mkA {a}) (B b) toB (B.??) b : Level x : I myB : B b x error : myB .?? error = {!Beekeeper.method _ _ _ _ _!} -- Location of the error: src/full/Agda/TypeChecking/Substitute.hs:98
{ "alphanum_fraction": 0.4875130073, "avg_line_length": 18.8431372549, "ext": "agda", "hexsha": "ed2b1706cd0ecb75c7b215074ea92406a0469312", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_forks_repo_licenses": [ "RSA-MD" ], "max_forks_repo_name": "m0davis/oscar", "max_forks_repo_path": "archive/agda-3/src/AgdaSubstitute98Bug.agda", "max_issues_count": 1, "max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z", "max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z", "max_issues_repo_licenses": [ "RSA-MD" ], "max_issues_repo_name": "m0davis/oscar", "max_issues_repo_path": "archive/agda-3/src/AgdaSubstitute98Bug.agda", "max_line_length": 70, "max_stars_count": null, "max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb", "max_stars_repo_licenses": [ "RSA-MD" ], "max_stars_repo_name": "m0davis/oscar", "max_stars_repo_path": "archive/agda-3/src/AgdaSubstitute98Bug.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 794, "size": 1922 }
module FRP.LTL.ISet where open import FRP.LTL.ISet.Core public using ( ISet ; ⟨_⟩ ; ⟦_⟧ ) -- Propositional logic open import FRP.LTL.ISet.Unit public using ( T ) open import FRP.LTL.ISet.Empty public using ( F ) open import FRP.LTL.ISet.Product public using ( _∧_ ; fst ; snd ; _&&&_ ) open import FRP.LTL.ISet.Sum public using ( _∨_ ) open import FRP.LTL.ISet.Stateless public using ( _⇒_ ) -- LTL open import FRP.LTL.ISet.Next public using ( ○ ) open import FRP.LTL.ISet.Future public using ( ◇ ) open import FRP.LTL.ISet.Globally public using ( □ ; [_] ) open import FRP.LTL.ISet.Until public using ( _U_ ) open import FRP.LTL.ISet.Causal public using ( _⊵_ ; arr ; identity ; _⋙_ ) open import FRP.LTL.ISet.Decoupled public using ( _▹_ )
{ "alphanum_fraction": 0.7054886212, "avg_line_length": 35.5714285714, "ext": "agda", "hexsha": "e68f9638222c5f1094287808d999c8d5a2e18b53", "lang": "Agda", "max_forks_count": 3, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z", "max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z", "max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "agda/agda-frp-ltl", "max_forks_repo_path": "src/FRP/LTL/ISet.agda", "max_issues_count": 2, "max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z", "max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "agda/agda-frp-ltl", "max_issues_repo_path": "src/FRP/LTL/ISet.agda", "max_line_length": 75, "max_stars_count": 21, "max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "agda/agda-frp-ltl", "max_stars_repo_path": "src/FRP/LTL/ISet.agda", "max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z", "max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z", "num_tokens": 248, "size": 747 }
------------------------------------------------------------------------ -- Propositional equality, with some extra bells and whistles -- definable in Cubical Agda ------------------------------------------------------------------------ {-# OPTIONS --erased-cubical --safe #-} module Equality.Propositional.Cubical where import Equality.Path as P open import Equality.Propositional open Equality.Propositional public using (refl; equivalence-relation⁺) -- A family of implementations of P.Equality-with-paths. private equality-with-paths′ : ∀ {a p} → P.Equality-with-paths a p equivalence-relation⁺ equality-with-paths′ = P.Equality-with-J⇒Equality-with-paths equality-with-J -- A family of implementations of P.Equality-with-paths. -- -- The definition has been expanded in order to ensure that it does -- not reduce (unless a projection is applied to it). equality-with-paths : ∀ {a p} → P.Equality-with-paths a p equivalence-relation⁺ equality-with-paths .P.Equality-with-paths.equality-with-J = equality-with-paths′ .P.Equality-with-paths.equality-with-J equality-with-paths {p = p} .P.Equality-with-paths.to-path = equality-with-paths′ {p = p} .P.Equality-with-paths.to-path equality-with-paths {p = p} .P.Equality-with-paths.from-path = equality-with-paths′ {p = p} .P.Equality-with-paths.from-path equality-with-paths {p = p} .P.Equality-with-paths.to-path∘from-path = equality-with-paths′ {p = p} .P.Equality-with-paths.to-path∘from-path equality-with-paths {p = p} .P.Equality-with-paths.from-path∘to-path = equality-with-paths′ {p = p} .P.Equality-with-paths.from-path∘to-path equality-with-paths {p = p} .P.Equality-with-paths.to-path-refl = equality-with-paths′ {p = p} .P.Equality-with-paths.to-path-refl equality-with-paths {p = p} .P.Equality-with-paths.from-path-refl = equality-with-paths′ {p = p} .P.Equality-with-paths.from-path-refl open P.Derived-definitions-and-properties equality-with-paths public hiding (refl) open import Equality.Path.Isomorphisms equality-with-paths public
{ "alphanum_fraction": 0.6769527483, "avg_line_length": 47.1363636364, "ext": "agda", "hexsha": "72e98e4604a81a0a63d4adb1f7045526f2d1dab7", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "nad/equality", "max_forks_repo_path": "src/Equality/Propositional/Cubical.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "nad/equality", "max_issues_repo_path": "src/Equality/Propositional/Cubical.agda", "max_line_length": 140, "max_stars_count": 3, "max_stars_repo_head_hexsha": "402b20615cfe9ca944662380d7b2d69b0f175200", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "nad/equality", "max_stars_repo_path": "src/Equality/Propositional/Cubical.agda", "max_stars_repo_stars_event_max_datetime": "2021-09-02T17:18:15.000Z", "max_stars_repo_stars_event_min_datetime": "2020-05-21T22:58:50.000Z", "num_tokens": 543, "size": 2074 }
{-# OPTIONS --without-K --safe #-} module Categories.Category.Finite.Fin where open import Level open import Data.Nat using (ℕ) open import Data.Vec as Vec using (Vec) open import Data.List open import Data.Fin open import Data.Fin.Properties open import Axiom.UniquenessOfIdentityProofs open import Relation.Binary using (Rel ; Decidable) open import Relation.Binary.PropositionalEquality as ≡ open import Categories.Category record Arrow (n : ℕ) (∣_⇒_∣ : Fin n → Fin n → ℕ) : Set where field dom : Fin n cod : Fin n arr : Fin ∣ dom ⇒ cod ∣ -- a hasShape of a finite catgegory -- -- Classically, a finite category has a finite number of objects and a finite number -- of morphisms. However, in this library, we cannot conveniently count the number of -- objects and morphisms, because morphisms are identified up to the underlying -- equivalence and objects have no general notion of identity. As a result, the -- classical definition fails. -- -- Nevetheless, if we know precisely what the objects and morphisms are, then we might -- be able to count them. As a result, finite categories are just adjoint equivalent -- to some category with a finite hasShape. Motivated by this idea, we can consider a -- category with both objects and morphisms represented by Fin. We know Fin has -- decidable equality and consequently also UIP. This allows us to operate -- classically. We additionally require categorical axioms and thus ensure all shapes -- form categories. record HasFinCatShape (n : ℕ) (∣_⇒_∣ : Fin n → Fin n → ℕ) : Set where infix 4 _⇒_ infixr 9 _∘_ _⇒_ : Rel (Fin n) 0ℓ a ⇒ b = Fin ∣ a ⇒ b ∣ field id : ∀ {a} → a ⇒ a _∘_ : ∀ {a b c} → b ⇒ c → a ⇒ b → a ⇒ c field assoc : ∀ {a b c d} {f : a ⇒ b} {g : b ⇒ c} {h : c ⇒ d} → (h ∘ g) ∘ f ≡ h ∘ (g ∘ f) identityˡ : ∀ {a b} {f : a ⇒ b} → id ∘ f ≡ f identityʳ : ∀ {a b} {f : a ⇒ b} → f ∘ id ≡ f objects : List (Fin n) objects = allFin n wrap-arr : ∀ {d c} (f : Fin ∣ d ⇒ c ∣) → Arrow n ∣_⇒_∣ wrap-arr f = record { arr = f } morphisms : List (Arrow n ∣_⇒_∣) morphisms = concatMap (λ d → concatMap (λ c → tabulate (wrap-arr {d} {c})) objects) objects Obj-≟ : Decidable {A = Fin n} _≡_ Obj-≟ = _≟_ objects-vec : Vec (Fin n) n objects-vec = Vec.allFin n ⇒-≟ : ∀ {a b} → Decidable {A = a ⇒ b} _≡_ ⇒-≟ = _≟_ Obj-UIP : UIP (Fin n) Obj-UIP = Decidable⇒UIP.≡-irrelevant Obj-≟ ⇒-UIP : ∀ {a b} → UIP (a ⇒ b) ⇒-UIP = Decidable⇒UIP.≡-irrelevant ⇒-≟ record FinCatShape : Set where infix 9 ∣_⇒_∣ field size : ℕ ∣_⇒_∣ : Fin size → Fin size → ℕ hasShape : HasFinCatShape size ∣_⇒_∣ open HasFinCatShape hasShape public FinCategory : FinCatShape → Category 0ℓ 0ℓ 0ℓ FinCategory s = record { Obj = Fin size ; _⇒_ = _⇒_ ; _≈_ = _≡_ ; id = id ; _∘_ = _∘_ ; assoc = assoc ; sym-assoc = sym assoc ; identityˡ = identityˡ ; identityʳ = identityʳ ; identity² = identityˡ ; equiv = ≡.isEquivalence ; ∘-resp-≈ = cong₂ _∘_ } where open FinCatShape s
{ "alphanum_fraction": 0.6287854119, "avg_line_length": 29.5288461538, "ext": "agda", "hexsha": "db600598233bac3c5be37f6c919dc1339800c07a", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "MirceaS/agda-categories", "max_forks_repo_path": "src/Categories/Category/Finite/Fin.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "MirceaS/agda-categories", "max_issues_repo_path": "src/Categories/Category/Finite/Fin.agda", "max_line_length": 93, "max_stars_count": null, "max_stars_repo_head_hexsha": "58e5ec015781be5413bdf968f7ec4fdae0ab4b21", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "MirceaS/agda-categories", "max_stars_repo_path": "src/Categories/Category/Finite/Fin.agda", "max_stars_repo_stars_event_max_datetime": null, "max_stars_repo_stars_event_min_datetime": null, "num_tokens": 1109, "size": 3071 }
postulate T : Set → Set X : Set Class : Set → Set member : ∀ {A} {{C : Class A}} → A → A iX : Class X iT : ∀ {A} {{CA : Class A}} → Class (T A) -- Should get type Class (T X), -- not {{_ : Class X}} → Class (T X) iTX = iT {A = X} -- Fails if not expanding instance argument in iTX f : T X → T X f = member
{ "alphanum_fraction": 0.5232198142, "avg_line_length": 17, "ext": "agda", "hexsha": "8543128a42fcefd57f15594af3720cf886245b84", "lang": "Agda", "max_forks_count": 1, "max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z", "max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "masondesu/agda", "max_forks_repo_path": "test/succeed/Issue1184.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "masondesu/agda", "max_issues_repo_path": "test/succeed/Issue1184.agda", "max_line_length": 50, "max_stars_count": 1, "max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "larrytheliquid/agda", "max_stars_repo_path": "test/succeed/Issue1184.agda", "max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z", "max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z", "num_tokens": 123, "size": 323 }
{-# OPTIONS --safe #-} module Cubical.Data.NatPlusOne.MoreNats.AssocNat.Base where open import Cubical.Foundations.Prelude open import Cubical.Foundations.HLevels open import Cubical.Data.Empty open import Cubical.Data.Unit open import Cubical.Data.Nat hiding (_+_) infixl 6 _+₁_ data ℕ₊₁ : Type where one : ℕ₊₁ _+₁_ : ℕ₊₁ → ℕ₊₁ → ℕ₊₁ assoc : (a b c : ℕ₊₁) → a +₁ (b +₁ c) ≡ a +₁ b +₁ c trunc : isSet ℕ₊₁ module Elim {ℓ'} {B : ℕ₊₁ → Type ℓ'} (one* : B one) (_+₁*_ : {m n : ℕ₊₁} → B m → B n → B (m +₁ n)) (assoc* : {x y z : ℕ₊₁} (x' : B x) (y' : B y) (z' : B z) → PathP (λ i → B (assoc x y z i)) (x' +₁* (y' +₁* z')) ((x' +₁* y') +₁* z')) (trunc* : (n : ℕ₊₁) → isSet (B n)) where f : (n : ℕ₊₁) → B n f one = one* f (m +₁ n) = f m +₁* f n f (assoc x y z i) = assoc* (f x) (f y) (f z) i f (trunc m n p q i j) = isOfHLevel→isOfHLevelDep 2 trunc* (f m) (f n) (cong f p) (cong f q) (trunc m n p q) i j module ElimProp {ℓ'} {B : ℕ₊₁ → Type ℓ'} (BProp : {n : ℕ₊₁} → isProp (B n)) (one* : B one) (_+₁*_ : {m n : ℕ₊₁} → B m → B n → B (m +₁ n)) where f : (n : ℕ₊₁) → B n f = Elim.f {B = B} one* _+₁*_ (λ {x} {y} {z} x' y' z' → toPathP (BProp (transport (λ i → B (assoc x y z i)) (x' +₁* (y' +₁* z'))) ((x' +₁* y') +₁* z'))) λ n → isProp→isSet BProp module Rec {ℓ'} {B : Type ℓ'} (BType : isSet B) (one* : B) (_+₁*_ : B → B → B) (assoc* : (a b c : B) → a +₁* (b +₁* c) ≡ (a +₁* b) +₁* c) where f : ℕ₊₁ → B f = Elim.f one* (λ m n → m +₁* n) assoc* λ _ → BType private constraintNumber : ℕ → Type constraintNumber zero = ⊥ constraintNumber (suc _) = Unit fromNat' : (n : ℕ) ⦃ _ : constraintNumber n ⦄ → ℕ₊₁ fromNat' zero ⦃ () ⦄ fromNat' (suc zero) = one fromNat' (suc (suc n)) = fromNat' (suc n) +₁ one instance NumN : HasFromNat ℕ₊₁ NumN = record { Constraint = constraintNumber ; fromNat = fromNat' }
{ "alphanum_fraction": 0.5106382979, "avg_line_length": 30.109375, "ext": "agda", "hexsha": "1790953d309132aedc61155008e4c8705b3a9249", "lang": "Agda", "max_forks_count": null, "max_forks_repo_forks_event_max_datetime": null, "max_forks_repo_forks_event_min_datetime": null, "max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "thomas-lamiaux/cubical", "max_forks_repo_path": "Cubical/Data/NatPlusOne/MoreNats/AssocNat/Base.agda", "max_issues_count": null, "max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_issues_repo_issues_event_max_datetime": null, "max_issues_repo_issues_event_min_datetime": null, "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "thomas-lamiaux/cubical", "max_issues_repo_path": "Cubical/Data/NatPlusOne/MoreNats/AssocNat/Base.agda", "max_line_length": 75, "max_stars_count": 1, "max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "thomas-lamiaux/cubical", "max_stars_repo_path": "Cubical/Data/NatPlusOne/MoreNats/AssocNat/Base.agda", "max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z", "max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z", "num_tokens": 880, "size": 1927 }
open import Common.Prelude data Wrap (A : Set) : Set where wrap : A → Wrap A appWrap : ∀ {A B : Set} → (A → B) → Wrap A → B appWrap f (wrap a) = f a app : ∀ {A B : Set} → (A → B) → A → B app f a = appWrap f (wrap a) works : Nat works = (λ _ → 42) ((λ _ → tt) 13) -- (λ _ → tt) is erased but `app` tries to apply it buggy : Nat buggy = app (λ _ → 42) (app (λ _ → tt) 13) main : IO ⊤ main = printNat buggy
{ "alphanum_fraction": 0.5474452555, "avg_line_length": 19.5714285714, "ext": "agda", "hexsha": "3a74139eb8188293b0c5228408359e04cdfb2ba1", "lang": "Agda", "max_forks_count": 371, "max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z", "max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z", "max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_forks_repo_licenses": [ "MIT" ], "max_forks_repo_name": "cruhland/agda", "max_forks_repo_path": "test/Compiler/simple/Issue3380.agda", "max_issues_count": 4066, "max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z", "max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z", "max_issues_repo_licenses": [ "MIT" ], "max_issues_repo_name": "cruhland/agda", "max_issues_repo_path": "test/Compiler/simple/Issue3380.agda", "max_line_length": 51, "max_stars_count": 1989, "max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de", "max_stars_repo_licenses": [ "MIT" ], "max_stars_repo_name": "cruhland/agda", "max_stars_repo_path": "test/Compiler/simple/Issue3380.agda", "max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z", "max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z", "num_tokens": 167, "size": 411 }