Search is not available for this dataset
text
string | meta
dict |
---|---|
module Issue1280 where
open import Common.Prelude
open import Common.Reflection
infixr 5 _∷_
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
_∷_ : ∀ {n} → A → Vec A n → Vec A (suc n)
test : Vec _ _
test = 0 ∷ []
quoteTest : Term
quoteTest = quoteTerm test
unquoteTest = unquote (give quoteTest)
data Foo (A : Set) : Set where
foo : Foo A
ok : Foo Nat
ok = unquote (give (quoteTerm (foo {Nat})))
-- This shouldn't type-check. The term `bad` is type-checked because
-- the implicit argument of `foo` is missing when using quoteTerm.
bad : Foo Bool
bad = unquote (give (quoteTerm (foo {Nat})))
| {
"alphanum_fraction": 0.6661184211,
"avg_line_length": 20.2666666667,
"ext": "agda",
"hexsha": "fbe3d978b54d3fe508c888fc6d7d972b1cea4bc3",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1280.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1280.agda",
"max_line_length": 68,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1280.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 195,
"size": 608
} |
module Control.Monad.Zero where
open import Prelude
record MonadZero {a b} (M : Set a → Set b) : Set (lsuc a ⊔ b) where
instance constructor mkMonadZero
field overlap {{super-zero}} : FunctorZero M
overlap {{super-monad}} : Monad M
open MonadZero public
| {
"alphanum_fraction": 0.6974169742,
"avg_line_length": 22.5833333333,
"ext": "agda",
"hexsha": "e73dc3cd6e9e57c94221ab55381a6ade04210bd1",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "t-more/agda-prelude",
"max_forks_repo_path": "src/Control/Monad/Zero.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "t-more/agda-prelude",
"max_issues_repo_path": "src/Control/Monad/Zero.agda",
"max_line_length": 67,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "da4fca7744d317b8843f2bc80a923972f65548d3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "t-more/agda-prelude",
"max_stars_repo_path": "src/Control/Monad/Zero.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 75,
"size": 271
} |
{-# OPTIONS --cubical --no-import-sorts --no-exact-split --safe #-}
module Cubical.Data.NatPlusOne.Base where
open import Cubical.Core.Primitives
open import Cubical.Data.Nat
open import Cubical.Data.Empty
record ℕ₊₁ : Type₀ where
constructor 1+_
field
n : ℕ
pattern one = 1+ zero
pattern 2+_ n = 1+ (suc n)
-1+_ : ℕ₊₁ → ℕ
-1+ (1+ n) = n
ℕ₊₁→ℕ : ℕ₊₁ → ℕ
ℕ₊₁→ℕ (1+ n) = suc n
suc₊₁ : ℕ₊₁ → ℕ₊₁
suc₊₁ (1+ n) = 1+ (suc n)
-- Natural number literals for ℕ₊₁
open import Cubical.Data.Nat.Literals public
instance
fromNatℕ₊₁ : HasFromNat ℕ₊₁
fromNatℕ₊₁ = record { Constraint = λ { zero → ⊥ ; _ → Unit }
; fromNat = λ { (suc n) → 1+ n } }
| {
"alphanum_fraction": 0.6118518519,
"avg_line_length": 20.4545454545,
"ext": "agda",
"hexsha": "a7c959476bf809f5683bf03e62b09340be5ac26c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/NatPlusOne/Base.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/NatPlusOne/Base.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/NatPlusOne/Base.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 272,
"size": 675
} |
------------------------------------------------------------------------------
-- Arithmetic properties (using induction on the FOTC natural numbers type)
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
-- Usually our proofs use pattern matching instead of the induction
-- principle associated with the FOTC natural numbers. The following
-- examples show some proofs using it.
module FOTC.Data.Nat.PropertiesByInductionATP where
open import FOTC.Base
open import FOTC.Data.Nat
------------------------------------------------------------------------------
+-leftIdentity : ∀ n → zero + n ≡ n
+-leftIdentity n = +-0x n
-- See Issue https://github.com/asr/apia/issues/81 .
+-rightIdentityA : D → Set
+-rightIdentityA i = i + zero ≡ i
{-# ATP definition +-rightIdentityA #-}
+-rightIdentity : ∀ {n} → N n → n + zero ≡ n
+-rightIdentity Nn = N-ind +-rightIdentityA A0 is Nn
where
postulate A0 : +-rightIdentityA zero
{-# ATP prove A0 #-}
postulate is : ∀ {i} → +-rightIdentityA i → +-rightIdentityA (succ₁ i)
{-# ATP prove is #-}
-- See Issue https://github.com/asr/apia/issues/81 .
+-NA : D → D → Set
+-NA n i = N (i + n)
{-# ATP definition +-NA #-}
+-N : ∀ {m n} → N m → N n → N (m + n)
+-N {n = n} Nm Nn = N-ind (+-NA n) A0 is Nm
where
postulate A0 : +-NA n zero
{-# ATP prove A0 #-}
postulate is : ∀ {i} → +-NA n i → +-NA n (succ₁ i)
{-# ATP prove is #-}
-- See Issue https://github.com/asr/apia/issues/81 .
+-assocA : D → D → D → Set
+-assocA n o i = i + n + o ≡ i + (n + o)
{-# ATP definition +-assocA #-}
+-assoc : ∀ {m} → N m → ∀ n o → m + n + o ≡ m + (n + o)
+-assoc Nm n o = N-ind (+-assocA n o) A0 is Nm
where
postulate A0 : +-assocA n o zero
{-# ATP prove A0 #-}
postulate is : ∀ {i} → +-assocA n o i → +-assocA n o (succ₁ i)
{-# ATP prove is #-}
-- A proof without use ATPs definitions.
+-assoc' : ∀ {m} → N m → ∀ n o → m + n + o ≡ m + (n + o)
+-assoc' Nm n o = N-ind A A0 is Nm
where
A : D → Set
A i = i + n + o ≡ i + (n + o)
postulate A0 : zero + n + o ≡ zero + (n + o)
{-# ATP prove A0 #-}
postulate is : ∀ {i} →
i + n + o ≡ i + (n + o) →
succ₁ i + n + o ≡ succ₁ i + (n + o)
{-# ATP prove is #-}
-- See Issue https://github.com/asr/apia/issues/81 .
x+Sy≡S[x+y]A : D → D → Set
x+Sy≡S[x+y]A n i = i + succ₁ n ≡ succ₁ (i + n)
{-# ATP definition x+Sy≡S[x+y]A #-}
x+Sy≡S[x+y] : ∀ {m} → N m → ∀ n → m + succ₁ n ≡ succ₁ (m + n)
x+Sy≡S[x+y] Nm n = N-ind (x+Sy≡S[x+y]A n) A0 is Nm
where
postulate A0 : x+Sy≡S[x+y]A n zero
{-# ATP prove A0 #-}
postulate is : ∀ {i} → x+Sy≡S[x+y]A n i → x+Sy≡S[x+y]A n (succ₁ i)
{-# ATP prove is #-}
-- See Issue https://github.com/asr/apia/issues/81 .
+-commA : D → D → Set
+-commA n i = i + n ≡ n + i
{-# ATP definition +-commA #-}
+-comm : ∀ {m n} → N m → N n → m + n ≡ n + m
+-comm {n = n} Nm Nn = N-ind (+-commA n) A0 is Nm
where
postulate A0 : +-commA n zero
{-# ATP prove A0 +-rightIdentity #-}
postulate is : ∀ {i} → +-commA n i → +-commA n (succ₁ i)
{-# ATP prove is x+Sy≡S[x+y] #-}
| {
"alphanum_fraction": 0.5038426068,
"avg_line_length": 30.1203703704,
"ext": "agda",
"hexsha": "368ab9fadc87ddc0cf9b66d84a12ec37c81f680d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Data/Nat/PropertiesByInductionATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Data/Nat/PropertiesByInductionATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Data/Nat/PropertiesByInductionATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 1130,
"size": 3253
} |
module Bootstrap.SimpleInductive where
open import Data.List using (applyUpTo)
open import Prelude
data ConstrData' : Set where
Self : ConstrData'
Other : String → ConstrData'
ConstrData = String × List ConstrData'
InductiveData = String × List ConstrData
private
ℕ⊎Sshow : ℕ ⊎ String → String
ℕ⊎Sshow (inj₁ x) = show x
ℕ⊎Sshow (inj₂ y) = y
ℕ⊎Ssuc : ℕ ⊎ String → ℕ ⊎ String
ℕ⊎Ssuc (inj₁ x) = inj₁ (suc x)
ℕ⊎Ssuc (inj₂ y) = inj₂ y
constrDataToPrefix : (ℕ ⊎ String → String) → ℕ ⊎ String → Char → ConstrData → String
constrDataToPrefix term n _ (_ , []) = term n
constrDataToPrefix term n c (name , x ∷ constr) =
show c <+> "_ :" <+> (case x of λ { Self → ℕ⊎Sshow n ; (Other y) → y }) <+>
constrDataToPrefix term (ℕ⊎Ssuc n) c (name , constr)
constrDataToConstrPrefix : ℕ ⊎ String → Char → ConstrData → String
constrDataToConstrPrefix = constrDataToPrefix (λ _ → "")
constrDataToTypeAnn : ℕ ⊎ String → Char → ConstrData → String
constrDataToTypeAnn = constrDataToPrefix ℕ⊎Sshow
kthConstr : ℕ → InductiveData → String
kthConstr k (name , constrs) with lookupMaybe k constrs
... | Maybe.just c@(_ , constr) =
constrDataToConstrPrefix (inj₂ name) 'λ' c <+> -- constructor arguments
"Λ _ : *" <+>
unwords (flip mapWithIndex constrs -- abstract arguments
(λ k constr → "λ _ :" <+> constrDataToTypeAnn (inj₁ k) 'Π' constr)) <+>
-- apply all abstract arguments to self constructors and leave the others alone
-- then pass the results to the k-th abstract constructor
applyTo currentConstr
(zipWith
(λ where
i Self → applyTo
("<" + show i <+> show (length constrs) + ">")
abstractConstrs
i (Other x) → show i)
(applyUpTo ((length constrs + length constr) ∸_) $ length constr) constr)
where
currentConstr = show (length constrs ∸ k ∸ 1)
abstractConstrs : List String
abstractConstrs = reverse $ applyUpTo show $ length constrs
applyTo : String → List String → String
applyTo f fs = foldl (λ s l → "[" + s <+> l + "]") f fs
kthConstr k constrs | nothing = "Error: no such constructor"
kthConstrType : String → ℕ → List ConstrData → String
kthConstrType name k constrs with lookupMaybe k constrs
... | just x = constrDataToTypeAnn (inj₂ name) 'Π' x
... | nothing = "Error: no such constructor"
typeDecl : String → List ConstrData → String
typeDecl name constrs =
"∀ _ : *" <+>
unwords (flip mapWithIndex constrs (λ k constr →
"Π _ :" <+> constrDataToTypeAnn (inj₁ k) 'Π' constr)) <+>
show (length constrs)
--------------------------------------------------------------------------------
simpleInductive : InductiveData → String
simpleInductive d@(name , constrs) =
"let" <+> name <+> ":=" <+> typeDecl name constrs + "." +
unwords (flip mapWithIndex constrs
(λ k constr →
"let" <+> proj₁ constr <+> ":=" <+> kthConstr k d <+> ":" <+>
kthConstrType name k constrs + "."))
| {
"alphanum_fraction": 0.6162790698,
"avg_line_length": 36.265060241,
"ext": "agda",
"hexsha": "c8e60a210f13f7d10585d1298268f02dae8e7276",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-10-20T10:46:20.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-27T23:12:48.000Z",
"max_forks_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "WhatisRT/meta-cedille",
"max_forks_repo_path": "src/Bootstrap/SimpleInductive.agda",
"max_issues_count": 10,
"max_issues_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_issues_repo_issues_event_max_datetime": "2020-04-25T15:29:17.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-13T17:44:43.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "WhatisRT/meta-cedille",
"max_issues_repo_path": "src/Bootstrap/SimpleInductive.agda",
"max_line_length": 86,
"max_stars_count": 35,
"max_stars_repo_head_hexsha": "62fa6f36e4555360d94041113749bbb6d291691c",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "WhatisRT/meta-cedille",
"max_stars_repo_path": "src/Bootstrap/SimpleInductive.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-12T22:59:10.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-13T07:44:50.000Z",
"num_tokens": 944,
"size": 3010
} |
{-# OPTIONS --without-K #-}
module Examples.Traced where
open import Data.Empty using (⊥)
open import Data.Unit using (⊤; tt)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Data.Product
open import Relation.Binary.PropositionalEquality
using (_≡_; refl; sym; trans; cong; cong₂; subst; module ≡-Reasoning)
open import Singleton
open import PiFrac
open import Trace
open import Reasoning
open import Examples.BooleanCircuits
------------------------------------------------------------------
-- Example in Sec. 4.3 from Abramsky's paper
-- http://www.cs.ox.ac.uk/files/341/calco05.pdf
q : {A1 A2 A3 A4 B1 B2 B3 B4 : 𝕌} →
(f1 : A1 ⟷ B2) →
(f2 : A2 ⟷ B4) →
(f3 : A3 ⟷ B3) →
(f4 : A4 ⟷ B1) →
A1 ×ᵤ (A2 ×ᵤ (A3 ×ᵤ A4)) ⟷ B1 ×ᵤ (B2 ×ᵤ (B3 ×ᵤ B4))
q {A1} {A2} {A3} {A4} {B1} {B2} {B3} {B4} f1 f2 f3 f4 =
(A1 ×ᵤ A2 ×ᵤ A3 ×ᵤ A4) ⟷⟨ f1 ⊗ (f2 ⊗ (f3 ⊗ f4)) ⟩
(B2 ×ᵤ B4 ×ᵤ B3 ×ᵤ B1) ⟷⟨ assocl⋆ ⟩
(B2 ×ᵤ B4) ×ᵤ (B3 ×ᵤ B1) ⟷⟨ swap⋆ ⟩
(B3 ×ᵤ B1) ×ᵤ (B2 ×ᵤ B4) ⟷⟨ swap⋆ ⊗ id⟷ ⟩
(B1 ×ᵤ B3) ×ᵤ (B2 ×ᵤ B4) ⟷⟨ assocr⋆ ⊚ (id⟷ ⊗ assocl⋆) ⟩
B1 ×ᵤ ((B3 ×ᵤ B2) ×ᵤ B4) ⟷⟨ id⟷ ⊗ ((swap⋆ ⊗ id⟷) ⊚ assocr⋆) ⟩
B1 ×ᵤ (B2 ×ᵤ (B3 ×ᵤ B4)) □
q' : {A1 U2 U3 U4 B1 : 𝕌} →
(f1 : A1 ⟷ U2) →
(f2 : U2 ⟷ U4) →
(f3 : U3 ⟷ U3) →
(f4 : U4 ⟷ B1) → (v : ⟦ A1 ⟧) (u3 : ⟦ U3 ⟧) → (u3-fix : eval f3 u3 ≡ u3) →
let u2 = eval f1 v in
let u4 = eval f2 u2 in
● A1 [ v ] ⟷ ● B1 [ proj₁ (eval (q f1 f2 f3 f4) (v , u2 , u3 , u4)) ]
q' f1 f2 f3 f4 v u3 u3fix =
trace v (q f1 f2 f3 f4) (( u2 , ( u3 , u4 ) ), cong₂ _,_ refl (cong₂ _,_ u3fix refl))
where
u2 = eval f1 v
u3′ = eval f3 u3
u4 = eval f2 u2
-- The point is that q' acts in a very particular way:
q'-closed-form : {A1 U2 U3 U4 B1 : 𝕌} →
(f1 : A1 ⟷ U2) →
(f2 : U2 ⟷ U4) →
(f3 : U3 ⟷ U3) →
(f4 : U4 ⟷ B1) → (u3 : ⟦ U3 ⟧) (u3-fix : eval f3 u3 ≡ u3) → (v : ⟦ A1 ⟧) →
proj₁ (eval (q' f1 f2 f3 f4 v u3 u3-fix) (v , refl)) ≡ eval (f1 ⊚ f2 ⊚ f4) v
q'-closed-form f1 f2 f3 f4 u3 u3fix v = refl
---------------------------------------------------------------------------------
-- I think the examples below are 'obsolete', in the sense that the one above
-- is more faithful to the original, and more general too. Delete?
p : {A1 A2 A3 A4 : 𝕌} →
(A1 ×ᵤ A2) ×ᵤ (A3 ×ᵤ A4) ⟷ (A2 ×ᵤ A4) ×ᵤ (A3 ×ᵤ A1)
p = (swap⋆ ⊗ swap⋆) ⊚
assocr⋆ ⊚ (id⟷ ⊗ assocl⋆) ⊚ (id⟷ ⊗ (swap⋆ ⊗ id⟷)) ⊚
(id⟷ ⊗ assocr⋆) ⊚ assocl⋆ ⊚ (id⟷ ⊗ swap⋆)
p' : {A1 A2 A3 A4 : 𝕌} →
((A1 ×ᵤ A2) ×ᵤ A4) ×ᵤ A3 ⟷ ((A2 ×ᵤ A4) ×ᵤ A1) ×ᵤ A3
p' = assocr⋆ ⊚ (id⟷ ⊗ swap⋆) ⊚ p ⊚ (id⟷ ⊗ swap⋆) ⊚ assocl⋆
p2 : 𝔹 ×ᵤ (𝔹 ×ᵤ (𝔹 ×ᵤ 𝔹)) ⟷ 𝔹 ×ᵤ (𝔹 ×ᵤ (𝔹 ×ᵤ 𝔹))
p2 = assocl⋆ ⊚ (swap⋆ ⊗ swap⋆) ⊚
assocr⋆ ⊚ (id⟷ ⊗ assocl⋆) ⊚ (id⟷ ⊗ (swap⋆ ⊗ id⟷)) ⊚
(id⟷ ⊗ assocr⋆) ⊚ assocl⋆ ⊚ (id⟷ ⊗ swap⋆) ⊚ assocr⋆
p2' : (v : ⟦ 𝔹 ⟧) →
● 𝔹 [ v ] ⟷ ● 𝔹 [ proj₁ (proj₁ (eval p ((v , v) , (v , v)))) ]
p2' v = trace v p2 ((v , (v , v)) , refl)
---------------------------------------------------------------------------------
-- Examples inspired by compact closed categories and fractional numbers.
-- Intuition:
-- 1/A x B is a space transformer; takes A space and returns B space
-- denote space transformers as A ⊸ B
-- Best we can do:
-- we need Singletons, so |a ⊸ b| is 1 component of a function.
_⊸_ : {A : 𝕌} → (a : ⟦ A ⟧) → {B : 𝕌} → (b : ⟦ B ⟧) → 𝕌
_⊸_ {A} a {B} b = 𝟙/● A [ a ] ×ᵤ ● B [ b ]
id⊸ : {A : 𝕌} {a : ⟦ A ⟧} → (a ⊸ a) ⟷ 𝟙
id⊸ {A} {a} =
(𝟙/● A [ a ] ×ᵤ ● A [ a ]) ⟷⟨ swap⋆ ⟩
(● A [ a ] ×ᵤ 𝟙/● A [ a ]) ⟷⟨ ε a ⟩
𝟙 □
comp⊸ : {A B C : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} {c : ⟦ C ⟧} →
(a ⊸ b) ×ᵤ (b ⊸ c) ⟷ (a ⊸ c)
comp⊸ {A} {B} {C} {a} {b} {c} =
(𝟙/● A [ a ] ×ᵤ ● B [ b ]) ×ᵤ (𝟙/● B [ b ] ×ᵤ ● C [ c ]) ⟷⟨ assocr⋆ ⟩
𝟙/● A [ a ] ×ᵤ (● B [ b ] ×ᵤ (𝟙/● B [ b ] ×ᵤ ● C [ c ])) ⟷⟨ id⟷ ⊗ assocl⋆ ⟩
𝟙/● A [ a ] ×ᵤ (● B [ b ] ×ᵤ 𝟙/● B [ b ]) ×ᵤ ● C [ c ] ⟷⟨ id⟷ ⊗ (ε b ⊗ id⟷) ⟩
𝟙/● A [ a ] ×ᵤ (𝟙 ×ᵤ ● C [ c ]) ⟷⟨ id⟷ ⊗ unite⋆l ⟩
𝟙/● A [ a ] ×ᵤ ● C [ c ] □
app : {A B : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} → (a ⊸ b) ×ᵤ ● A [ a ] ⟷ ● B [ b ]
app {A} {B} {a} {b} =
(𝟙/● A [ a ] ×ᵤ ● B [ b ]) ×ᵤ ● A [ a ] ⟷⟨ swap⋆ ⊗ id⟷ ⟩
(● B [ b ] ×ᵤ 𝟙/● A [ a ]) ×ᵤ ● A [ a ] ⟷⟨ assocr⋆ ⊚ (id⟷ ⊗ (swap⋆ ⊚ ε a)) ⟩
● B [ b ] ×ᵤ 𝟙 ⟷⟨ unite⋆r ⟩
● B [ b ] □
-- B/A × D/C ⟷ B × D / A × C
dist×/ : {A B C D : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} {c : ⟦ C ⟧} {d : ⟦ D ⟧}
→ (a ⊸ b) ×ᵤ (c ⊸ d) ⟷ ((a , c) ⊸ (b , d))
dist×/ {A} {B} {C} {D} {a} {b} {c} {d} =
(𝟙/● A [ a ] ×ᵤ ● B [ b ]) ×ᵤ (𝟙/● C [ c ] ×ᵤ ● D [ d ]) ⟷⟨ assocr⋆ ⊚ (id⟷ ⊗ assocl⋆) ⟩
(𝟙/● A [ a ] ×ᵤ (● B [ b ] ×ᵤ 𝟙/● C [ c ]) ×ᵤ ● D [ d ]) ⟷⟨ id⟷ ⊗ (swap⋆ ⊗ id⟷) ⟩
(𝟙/● A [ a ] ×ᵤ (𝟙/● C [ c ] ×ᵤ ● B [ b ]) ×ᵤ ● D [ d ]) ⟷⟨ (id⟷ ⊗ assocr⋆) ⊚ assocl⋆ ⟩
(𝟙/● A [ a ] ×ᵤ 𝟙/● C [ c ]) ×ᵤ (● B [ b ] ×ᵤ ● D [ d ]) ⟷⟨ fracr ⊗ tensorr ⟩
(𝟙/● A ×ᵤ C [ a , c ]) ×ᵤ (● B ×ᵤ D [ b , d ]) □
-- 1/A x 1/B <-> 1 / (A x B)
rev× : {A B : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧}
→ (a ⊸ tt) ×ᵤ (b ⊸ tt) ⟷ ((a , b) ⊸ tt)
rev× {A} {B} {a} {b} =
(𝟙/● A [ a ] ×ᵤ ● 𝟙 [ tt ]) ×ᵤ (𝟙/● B [ b ] ×ᵤ ● 𝟙 [ tt ]) ⟷⟨ dist×/ ⟩
(𝟙/● A ×ᵤ B [ a , b ] ×ᵤ ● 𝟙 ×ᵤ 𝟙 [ tt , tt ]) ⟷⟨ id⟷ ⊗ lift unite⋆l ⟩
(𝟙/● A ×ᵤ B [ a , b ] ×ᵤ ● 𝟙 [ tt ]) □
{--
trivial : ● 𝟙 [ tt ] ⟷ 𝟙
trivial = {!!}
--}
-- (A <-> B) -> (1/A <-> 1/B)
--rev : {A B : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧}
-- → ● A [ a ] ⟷ ● B [ b ] → (b ⊸ tt) ⟷ (a ⊸ tt)
-- (𝟙/● A [ a ] ×ᵤ ● 𝟙 [ tt ]) ⟷⟨ {!!} ⟩
-- (𝟙/● B [ b ] ×ᵤ ● 𝟙 [ tt ]) □
rev : {A B : 𝕌} {a : ⟦ A ⟧}
→ (f : A ⟷ B) → (𝟙/● B [ eval f a ] ⟷ 𝟙/● A [ a ])
rev {A} {B} {a} f = dual f a
-- A <-> 1 / (1/A)
revrev : {A : 𝕌} {a : ⟦ A ⟧} {a⋆ : ⟦ 𝟙/● A [ a ] ⟧} →
● A [ a ] ⟷ 𝟙/● (𝟙/● A [ a ]) [ a⋆ ]
revrev {A} {a} {a⋆} =
● A [ a ] ⟷⟨ uniti⋆r ⟩
● A [ a ] ×ᵤ 𝟙 ⟷⟨ {!id⟷ ⊗ η a⋆!} ⟩
● A [ a ] ×ᵤ (𝟙/● A [ a ] ×ᵤ 𝟙/● (𝟙/● A [ a ]) [ a⋆ ]) ⟷⟨ {!!} ⟩
𝟙/● (𝟙/● A [ a ]) [ a⋆ ] □
-- this is strange
-- A/C + B/C <-> (A + B) / C
-- factor+/l : {A B C : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} {c : ⟦ C ⟧}
-- → (c ⊸ a) +ᵤ (c ⊸ b) ⟷ (_⊸_ {C} c {A +ᵤ B} (inj₁ a))
-- factor+/l {A} {B} {C} {a} {b} {c} =
-- (𝟙/● C [ c ] ×ᵤ ● A [ a ] +ᵤ 𝟙/● C [ c ] ×ᵤ ● B [ b ]) ⟷⟨ factorl ⟩
-- (𝟙/● C [ c ] ×ᵤ (● A [ a ] +ᵤ ● B [ b ])) ⟷⟨ id⟷ ⊗ {!!} ⟩
-- (𝟙/● C [ c ] ×ᵤ ● A +ᵤ B [ inj₁ a ]) □
-- same issue here with the +
-- A/B + C/D <-> (A x D + B x C) / (B x D)
-- SAT solver Sec. 5 from https://www.cs.indiana.edu/~sabry/papers/rational.pdf
-- can we do this?
-- curry⊸ : {A B C : 𝕌} {a : ⟦ A ⟧} {b : ⟦ B ⟧} {c : ⟦ C ⟧}
-- → (● A [ a ] ×ᵤ (b ⊸ c)) ⟷ (a ⊸ {!!}) -- what do we put here?
-- curry⊸ {A} {B} {C} {a} {b} {c} = {!!}
| {
"alphanum_fraction": 0.3789968177,
"avg_line_length": 36.6611111111,
"ext": "agda",
"hexsha": "98501606ed7af2742f5f9790fba8f6482ceb6166",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "fracGC/Examples/Traced.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "fracGC/Examples/Traced.agda",
"max_line_length": 89,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "fracGC/Examples/Traced.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 3989,
"size": 6599
} |
{-
This file proves the higher groupoid structure of types
for homogeneous and heterogeneous paths
-}
{-# OPTIONS --cubical --safe #-}
module Cubical.Foundations.GroupoidLaws where
open import Cubical.Foundations.Prelude
private
variable
ℓ : Level
A : Type ℓ
x y z w : A
_⁻¹ : (x ≡ y) → (y ≡ x)
x≡y ⁻¹ = sym x≡y
infix 40 _⁻¹
-- homogeneous groupoid laws
symInvo : (p : x ≡ y) → p ≡ p ⁻¹ ⁻¹
symInvo p = refl
rUnit : (p : x ≡ y) → p ≡ p ∙ refl
rUnit p j i = compPath-filler p refl j i
-- The filler of left unit: lUnit-filler p =
-- PathP (λ i → PathP (λ j → PathP (λ k → A) x (p (~ j ∨ i)))
-- (refl i) (λ j → compPath-filler refl p i j)) (λ k i → (p (~ k ∧ i ))) (lUnit p)
lUnit-filler : {x y : A} (p : x ≡ y) → I → I → I → A
lUnit-filler {x = x} p j k i =
hfill (λ j → λ { (i = i0) → x
; (i = i1) → p (~ k ∨ j )
; (k = i0) → p i
-- ; (k = i1) → compPath-filler refl p j i
}) (inS (p (~ k ∧ i ))) j
lUnit : (p : x ≡ y) → p ≡ refl ∙ p
lUnit p j i = lUnit-filler p i1 j i
symRefl : refl {x = x} ≡ refl ⁻¹
symRefl i = refl
compPathRefl : refl {x = x} ≡ refl ∙ refl
compPathRefl = rUnit refl
-- The filler of right cancellation: rCancel-filler p =
-- PathP (λ i → PathP (λ j → PathP (λ k → A) x (p (~ j ∧ ~ i)))
-- (λ j → compPath-filler p (p ⁻¹) i j) (refl i)) (λ j i → (p (i ∧ ~ j))) (rCancel p)
rCancel-filler : ∀ {x y : A} (p : x ≡ y) → (k j i : I) → A
rCancel-filler {x = x} p k j i =
hfill (λ k → λ { (i = i0) → x
; (i = i1) → p (~ k ∧ ~ j)
-- ; (j = i0) → compPath-filler p (p ⁻¹) k i
; (j = i1) → x
}) (inS (p (i ∧ ~ j))) k
rCancel : (p : x ≡ y) → p ∙ p ⁻¹ ≡ refl
rCancel {x = x} p j i = rCancel-filler p i1 j i
lCancel : (p : x ≡ y) → p ⁻¹ ∙ p ≡ refl
lCancel p = rCancel (p ⁻¹)
-- The filler of the three-out-of-four identification: 3outof4-filler α p β =
-- PathP (λ i → PathP (λ j → PathP (λ k → A) (α i i0) (α i i1))
-- (λ j → α i j) (λ j → β i j)) (λ j i → α i0 i) (3outof4 α p β)
3outof4-filler : (α : I → I → A) → (p : α i1 i0 ≡ α i1 i1) →
(β : PathP (λ j → Path A (α j i0) (α j i1)) (λ i → α i0 i) p) → I → I → I → A
3outof4-filler α p β k j i =
hfill (λ k → λ { (i = i0) → α k i0
; (i = i1) → α k i1
; (j = i0) → α k i
; (j = i1) → β k i
}) (inS (α i0 i)) k
3outof4 : (α : I → I → A) → (p : α i1 i0 ≡ α i1 i1) →
(β : PathP (λ j → Path A (α j i0) (α j i1)) (λ i → α i0 i) p) → (λ i → α i1 i) ≡ p
3outof4 α p β j i = 3outof4-filler α p β i1 j i
-- The filler of the pre-associative square: preassoc p q r =
-- PathP (λ i → PathP (λ j → PathP (λ k → A) x (compPath-filler q r i j))
-- (refl i) (λ j → compPath-filler (p ∙ q) r i j)) (λ j i → compPath-filler p q j i) (preassoc p q r)
preassoc-filler : {x y z w : A} (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) → I → I → I → A
preassoc-filler {x = x} p q r k j i =
hfill (λ k → λ { (i = i0) → x
; (i = i1) → compPath-filler q r k j
; (j = i0) → p i
-- ; (j = i1) → compPath-filler (p ∙ q) r k i
}) (inS (compPath-filler p q j i)) k
preassoc : (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) →
PathP (λ j → Path A x ((q ∙ r) j)) p ((p ∙ q) ∙ r)
preassoc {x = x} p q r j i = preassoc-filler p q r i1 j i
assoc : (p : x ≡ y) (q : y ≡ z) (r : z ≡ w) →
p ∙ q ∙ r ≡ (p ∙ q) ∙ r
assoc p q r = 3outof4 (compPath-filler p (q ∙ r)) ((p ∙ q) ∙ r) (preassoc p q r)
-- heterogeneous groupoid laws
symInvoP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) →
PathP (λ j → PathP (λ i → symInvo (λ i → A i) j i) x y) p (symP (symP p))
symInvoP p = refl
rUnitP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) →
PathP (λ j → PathP (λ i → rUnit (λ i → A i) j i) x y) p (compPathP p refl)
rUnitP p j i = compPathP-filler p refl i j
lUnitP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) →
PathP (λ j → PathP (λ i → lUnit (λ i → A i) j i) x y) p (compPathP refl p)
lUnitP {A = A} {x = x} p k i =
comp (λ j → lUnit-filler (λ i → A i) j k i)
(λ j → λ { (i = i0) → x
; (i = i1) → p (~ k ∨ j )
; (k = i0) → p i
}) (p (~ k ∧ i ))
rCancelP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) →
PathP (λ j → PathP (λ i → rCancel (λ i → A i) j i) x x) (compPathP p (symP p)) refl
rCancelP {A = A} {x = x} p j i =
comp (λ k → rCancel-filler (λ i → A i) k j i)
(λ k → λ { (i = i0) → x
; (i = i1) → p (~ k ∧ ~ j)
; (j = i1) → x
}) (p (i ∧ ~ j))
lCancelP : {A : I → Type ℓ} → {x : A i0} → {y : A i1} → (p : PathP A x y) →
PathP (λ j → PathP (λ i → lCancel (λ i → A i) j i) y y) (compPathP (symP p) p) refl
lCancelP p = rCancelP (symP p)
3outof4P : {A : I → I → Type ℓ} {P : (A i0 i1) ≡ (A i1 i1)}
{B : PathP (λ j → Path (Type ℓ) (A i0 j) (A i1 j)) (λ i → A i i0) P}
(α : ∀ (i j : I) → A j i)
(p : PathP (λ i → P i) (α i1 i0) (α i1 i1)) →
(β : PathP (λ j → PathP (λ i → B j i) (α j i0) (α j i1)) (λ i → α i0 i) p) →
PathP (λ j → PathP (λ i → 3outof4 (λ j i → A i j) P B j i) (α i1 i0) (α i1 i1)) (λ i → α i1 i) p
3outof4P {A = A} {P} {B} α p β j i =
comp (λ k → 3outof4-filler (λ j i → A i j) P B k j i)
(λ k → λ { (i = i0) → α k i0
; (i = i1) → α k i1
; (j = i0) → α k i
; (j = i1) → β k i
}) (α i0 i)
preassocP : {A : I → Type ℓ} {x : A i0} {y : A i1} {B_i1 : Type ℓ} {B : (A i1) ≡ B_i1} {z : B i1}
{C_i1 : Type ℓ} {C : (B i1) ≡ C_i1} {w : C i1} (p : PathP A x y) (q : PathP (λ i → B i) y z) (r : PathP (λ i → C i) z w) →
PathP (λ j → PathP (λ i → preassoc (λ i → A i) B C j i) x ((compPathP q r) j)) p (compPathP (compPathP p q) r)
preassocP {A = A} {x = x} {B = B} {C = C} p q r j i =
comp (λ k → preassoc-filler (λ i → A i) B C k j i)
(λ k → λ { (i = i0) → x
; (i = i1) → compPathP-filler q r j k
; (j = i0) → p i
-- ; (j = i1) → compPathP-filler (compPathP p q) r i k
}) (compPathP-filler p q i j)
assocP : {A : I → Type ℓ} {x : A i0} {y : A i1} {B_i1 : Type ℓ} {B : (A i1) ≡ B_i1} {z : B i1}
{C_i1 : Type ℓ} {C : (B i1) ≡ C_i1} {w : C i1} (p : PathP A x y) (q : PathP (λ i → B i) y z) (r : PathP (λ i → C i) z w) →
PathP (λ j → PathP (λ i → assoc (λ i → A i) B C j i) x w) (compPathP p (compPathP q r)) (compPathP (compPathP p q) r)
assocP p q r =
3outof4P (λ i j → compPathP-filler p (compPathP q r) j i) (compPathP (compPathP p q) r) (preassocP p q r)
-- Loic's code below
-- simultaneaous composition on both sides of a path
doubleCompPath-filler : {ℓ : Level} {A : Type ℓ} {w x y z : A} → w ≡ x → x ≡ y → y ≡ z →
I → I → A
doubleCompPath-filler p q r i =
hfill (λ t → λ { (i = i0) → p (~ t)
; (i = i1) → r t })
(inS (q i))
doubleCompPath : {ℓ : Level} {A : Type ℓ} {w x y z : A} → w ≡ x → x ≡ y → y ≡ z → w ≡ z
doubleCompPath p q r i = doubleCompPath-filler p q r i i1
_∙∙_∙∙_ : {ℓ : Level} {A : Type ℓ} {w x y z : A} → w ≡ x → x ≡ y → y ≡ z → w ≡ z
p ∙∙ q ∙∙ r = doubleCompPath p q r
-- some exchange law for doubleCompPath and refl
rhombus-filler : {ℓ : Level} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) → I → I → A
rhombus-filler p q i j =
hcomp (λ t → λ { (i = i0) → p (~ t ∨ j)
; (i = i1) → q (t ∧ j)
; (j = i0) → p (~ t ∨ i)
; (j = i1) → q (t ∧ i) })
(p i1)
leftright : {ℓ : Level} {A : Type ℓ} {x y z : A} (p : x ≡ y) (q : y ≡ z) →
(refl ∙∙ p ∙∙ q) ≡ (p ∙∙ q ∙∙ refl)
leftright p q i j =
hcomp (λ t → λ { (j = i0) → p (i ∧ (~ t))
; (j = i1) → q (t ∨ i) })
(rhombus-filler p q i j)
-- equating doubleCompPath and a succession of two compPath
split-leftright : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) →
(p ∙∙ q ∙∙ r) ≡ (refl ∙∙ (p ∙∙ q ∙∙ refl) ∙∙ r)
split-leftright p q r i j =
hcomp (λ t → λ { (j = i0) → p (~ i ∧ ~ t)
; (j = i1) → r t })
(doubleCompPath-filler p q refl j i)
split-leftright' : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) →
(p ∙∙ q ∙∙ r) ≡ (p ∙∙ (refl ∙∙ q ∙∙ r) ∙∙ refl)
split-leftright' p q r i j =
hcomp (λ t → λ { (j = i0) → p (~ t)
; (j = i1) → r (i ∨ t) })
(doubleCompPath-filler refl q r j i)
doubleCompPath-elim : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y)
(r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ (p ∙ q) ∙ r
doubleCompPath-elim p q r = (split-leftright p q r) ∙ (λ i → (leftright p q (~ i)) ∙ r)
doubleCompPath-elim' : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y)
(r : y ≡ z) → (p ∙∙ q ∙∙ r) ≡ p ∙ (q ∙ r)
doubleCompPath-elim' p q r = (split-leftright' p q r) ∙ (sym (leftright p (q ∙ r)))
-- deducing associativity for compPath
-- assoc : {ℓ : Level} {A : Type ℓ} {w x y z : A} (p : w ≡ x) (q : x ≡ y) (r : y ≡ z) →
-- (p ∙ q) ∙ r ≡ p ∙ (q ∙ r)
-- assoc p q r = (sym (doubleCompPath-elim p q r)) ∙ (doubleCompPath-elim' p q r)
hcomp-unique : ∀ {ℓ} {A : Set ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) →
(h2 : ∀ i → A [ (φ ∨ ~ i) ↦ (\ { (φ = i1) → u i 1=1; (i = i0) → outS u0}) ])
→ (hcomp u (outS u0) ≡ outS (h2 i1)) [ φ ↦ (\ { (φ = i1) → (\ i → u i1 1=1)}) ]
hcomp-unique {φ = φ} u u0 h2 = inS (\ i → hcomp (\ k → \ { (φ = i1) → u k 1=1
; (i = i1) → outS (h2 k) })
(outS u0))
lid-unique : ∀ {ℓ} {A : Set ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) →
(h1 h2 : ∀ i → A [ (φ ∨ ~ i) ↦ (\ { (φ = i1) → u i 1=1; (i = i0) → outS u0}) ])
→ (outS (h1 i1) ≡ outS (h2 i1)) [ φ ↦ (\ { (φ = i1) → (\ i → u i1 1=1)}) ]
lid-unique {φ = φ} u u0 h1 h2 = inS (\ i → hcomp (\ k → \ { (φ = i1) → u k 1=1
; (i = i0) → outS (h1 k)
; (i = i1) → outS (h2 k) })
(outS u0))
transp-hcomp : ∀ {ℓ} (φ : I) {A' : Set ℓ}
(A : (i : I) → Set ℓ [ φ ↦ (λ _ → A') ]) (let B = \ (i : I) → outS (A i))
→ ∀ {ψ} (u : I → Partial ψ (B i0)) → (u0 : B i0 [ ψ ↦ u i0 ]) →
(transp B φ (hcomp u (outS u0)) ≡ hcomp (\ i o → transp B φ (u i o)) (transp B φ (outS u0)))
[ ψ ↦ (\ { (ψ = i1) → (\ i → transp B φ (u i1 1=1))}) ]
transp-hcomp φ A u u0 = inS (sym (outS (hcomp-unique
((\ i o → transp B φ (u i o))) (inS (transp B φ (outS u0)))
\ i → inS (transp B φ (hfill u u0 i)))))
where
B = \ (i : I) → outS (A i)
hcomp-cong : ∀ {ℓ} {A : Set ℓ} {φ} → (u : I → Partial φ A) → (u0 : A [ φ ↦ u i0 ]) →
(u' : I → Partial φ A) → (u0' : A [ φ ↦ u' i0 ]) →
(ueq : ∀ i → PartialP φ (\ o → u i o ≡ u' i o)) → (outS u0 ≡ outS u0') [ φ ↦ (\ { (φ = i1) → ueq i0 1=1}) ]
→ (hcomp u (outS u0) ≡ hcomp u' (outS u0')) [ φ ↦ (\ { (φ = i1) → ueq i1 1=1 }) ]
hcomp-cong u u0 u' u0' ueq 0eq = inS (\ j → hcomp (\ i o → ueq i o j) (outS 0eq j))
squeezeSq≡
: ∀{w x y z : A}
→ (p : w ≡ y) (q : w ≡ x) (r : y ≡ z) (s : x ≡ z)
→ (q ≡ p ∙∙ r ∙∙ sym s) ≡ (Square p q r s)
squeezeSq≡ p q r s k
= Square
(λ j → p (j ∧ k))
q
(λ j → doubleCompPath-filler p r (sym s) j (~ k))
(λ j → s (j ∧ k))
| {
"alphanum_fraction": 0.4213435374,
"avg_line_length": 41.554770318,
"ext": "agda",
"hexsha": "fa30ebef834f7a7572e3238d04ade87e3ae3ca9b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cj-xu/cubical",
"max_forks_repo_path": "Cubical/Foundations/GroupoidLaws.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cj-xu/cubical",
"max_issues_repo_path": "Cubical/Foundations/GroupoidLaws.agda",
"max_line_length": 124,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7fd336c6d31a6e6d58a44114831aacd63f422545",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cj-xu/cubical",
"max_stars_repo_path": "Cubical/Foundations/GroupoidLaws.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 5320,
"size": 11760
} |
open import Agda.Builtin.Nat
open import Agda.Builtin.Bool
-- A function that requires call-by-need
f : Nat → Nat → Nat
f a 0 = a
f a (suc b) = f (a + a) b
even : Nat → Bool
even n = mod-helper 0 1 n 1 == 0
data ⊥ : Set where
record ⊤ : Set where
IsTrue : Bool → Set
IsTrue false = ⊥
IsTrue true = ⊤
-- Previously we reverted to slow reduce in when positivity checking.
f-even : IsTrue (even (f 1 64))
f-even = _
| {
"alphanum_fraction": 0.6455399061,
"avg_line_length": 18.5217391304,
"ext": "agda",
"hexsha": "89a32f8a5133a3c4d4cfbf9588e07e1f252d55b6",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3050.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3050.agda",
"max_line_length": 69,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3050.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 148,
"size": 426
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Homotopy.Group.Pi4S3.S3PushoutIso2 where
open import Cubical.Homotopy.Group.Base
open import Cubical.Homotopy.Group.Pi4S3.S3PushoutIso
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Pointed
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Univalence
open import Cubical.Data.Nat
open import Cubical.Algebra.Group
open import Cubical.Algebra.Group.Morphisms
open import Cubical.Algebra.Group.MorphismProperties
open import Cubical.Algebra.Group.GroupPath
open import Cubical.HITs.Sn
open import Cubical.HITs.Susp renaming (toSusp to σ)
open import Cubical.HITs.Pushout
open import Cubical.HITs.Truncation renaming
(rec to trRec ; elim to trElim ; elim2 to trElim2 ; map to trMap)
open import Cubical.HITs.S2
≡→Pushout⋁↪fold⋁≡ : ∀ {ℓ} {A B : Pointed ℓ}
→ (A ≡ B) → Pushout⋁↪fold⋁∙ A ≡ Pushout⋁↪fold⋁∙ B
≡→Pushout⋁↪fold⋁≡ = cong Pushout⋁↪fold⋁∙
private
∙≃→π≅ : ∀ {ℓ} {A B : Pointed ℓ} (n : ℕ)
→ (e : typ A ≃ typ B)
→ fst e (pt A) ≡ pt B
→ GroupEquiv (πGr n A) (πGr n B)
∙≃→π≅ {A = A} {B = B} n e =
EquivJ (λ A e → (a : A) → fst e a ≡ pt B
→ GroupEquiv (πGr n (A , a)) (πGr n B))
(λ b p → J (λ b p → GroupEquiv (πGr n (typ B , b)) (πGr n B))
idGroupEquiv (sym p))
e (pt A)
{- π₄(S³) ≅ π₃((S² × S²) ⊔ᴬ S²)
where A = S² ∨ S² -}
π₄S³≅π₃PushS² :
GroupIso (πGr 3 (S₊∙ 3))
(πGr 2 (Pushout⋁↪fold⋁∙ (S₊∙ 2)))
π₄S³≅π₃PushS² =
compGroupIso
(GroupEquiv→GroupIso
(∙≃→π≅ 3 (compEquiv (isoToEquiv (invIso IsoS³S3)) S³≃SuspS²) refl))
(compGroupIso
(invGroupIso (GrIso-πΩ-π 2))
(compGroupIso
(πTruncGroupIso 2)
(compGroupIso
(GroupEquiv→GroupIso
(∙≃→π≅ {B = _ , ∣ inl (base , base) ∣ₕ}
2 (isoToEquiv IsoΩ∥SuspS²∥₅∥Pushout⋁↪fold⋁S²∥₅) encode∙))
(compGroupIso
(invGroupIso (πTruncGroupIso 2))
(GroupEquiv→GroupIso (invEq (GroupPath _ _)
(cong (πGr 2)
(cong Pushout⋁↪fold⋁∙ (ua∙ S²≃SuspS¹ refl)))))))))
where
encode∙ : encode ∣ north ∣ refl ≡ ∣ inl (base , base) ∣
encode∙ = transportRefl _
| {
"alphanum_fraction": 0.6323268206,
"avg_line_length": 33.1176470588,
"ext": "agda",
"hexsha": "36f320262a1948d3ed37463ec44ce8ae371f2f3a",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Homotopy/Group/Pi4S3/S3PushoutIso2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Homotopy/Group/Pi4S3/S3PushoutIso2.agda",
"max_line_length": 72,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Homotopy/Group/Pi4S3/S3PushoutIso2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 938,
"size": 2252
} |
-- 2012-03-08 Andreas
module NoTerminationCheck where
postulate A : Set
-- Skipping a single definition: before type signature
{-# NO_TERMINATION_CHECK #-}
a : A
a = a
-- Skipping a single definition: before first clause
b : A
{-# NO_TERMINATION_CHECK #-}
b = b
-- Skipping an old-style mutual block (placed before)
{-# NO_TERMINATION_CHECK #-}
mutual
c : A
c = d
d : A
d = c
-- Skipping an old-style mutual block (placed within)
mutual
{-# NO_TERMINATION_CHECK #-}
c1 : A
c1 = d1
d1 : A
d1 = c1
mutual
c2 : A
{-# NO_TERMINATION_CHECK #-}
c2 = d2
d2 : A
d2 = c2
mutual
c3 : A
c3 = d3
{-# NO_TERMINATION_CHECK #-}
d3 : A
d3 = c3
-- Skipping a new-style mutual block
{-# NO_TERMINATION_CHECK #-}
e : A
f : A
e = f
f = e
-- Skipping a new-style mutual block, variant 2
g : A
{-# NO_TERMINATION_CHECK #-}
h : A
g = h
h = g
-- Skipping a new-style mutual block, variant 4
i : A
j : A
i = j
{-# NO_TERMINATION_CHECK #-}
j = i
private
{-# NO_TERMINATION_CHECK #-}
k : A
k = k
abstract
{-# NO_TERMINATION_CHECK #-}
l : A
l = l
| {
"alphanum_fraction": 0.614402917,
"avg_line_length": 11.9239130435,
"ext": "agda",
"hexsha": "40bf6730005c89eb43ff3f09ed9a44f1ef646a7d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/NoTerminationCheck.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/NoTerminationCheck.agda",
"max_line_length": 54,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/succeed/NoTerminationCheck.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 371,
"size": 1097
} |
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Cubical.HITs.Ints.HAEquivInt where
open import Cubical.HITs.Ints.HAEquivInt.Base public
| {
"alphanum_fraction": 0.7567567568,
"avg_line_length": 24.6666666667,
"ext": "agda",
"hexsha": "e03d703078674afed1223fcb47425846379e8d45",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-22T02:02:01.000Z",
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/HITs/Ints/HAEquivInt.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-01-27T02:07:48.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/HITs/Ints/HAEquivInt.agda",
"max_line_length": 52,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/HITs/Ints/HAEquivInt.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 44,
"size": 148
} |
module plfa-exercises.weird where
open import Data.Nat using (ℕ; zero; suc; _+_; _*_)
open import Data.Bool.Base using (Bool; true; false; _∧_; _∨_; not)
import Relation.Binary.PropositionalEquality as Eq
open Eq using (_≡_; refl; sym; trans; cong; subst)
data ℕ∨Bool : Set where
N B : ℕ∨Bool
-- Idea taken from paper: Fractional Types by Chao-Hong Chen et al.
⟦_⟧ : ℕ∨Bool → Set
⟦ N ⟧ = ℕ
⟦ B ⟧ = Bool
manyinputs : {a : ℕ∨Bool} → ⟦ a ⟧ → ⟦ a ⟧
manyinputs {N} n = suc n
manyinputs {B} b = not b
_ : manyinputs 6 ≡ 7
_ = refl
_ : manyinputs true ≡ false -- WOW!!
_ = refl
open import Relation.Nullary using (¬_)
open import Data.Unit using (⊤; tt)
open import Data.Empty using (⊥; ⊥-elim)
-- Actually this should use "isomorphisms" not mere 'iff' between propositions.
-- https://agda.github.io/agda-stdlib/v1.1/Function.Inverse.html#2229
open import plfa.part1.Isomorphism using (_⇔_)
lemma₁ : ¬ ⊤ → ⊥
lemma₁ ¬⊤ = ¬⊤ tt
lemma₂ : ⊥ → ¬ ⊤
lemma₂ ()
-- I can easily prove this!! Which is not the same as ¬ ⊤ same as ⊥,
-- but ¬ ⊤ iff ⊥, where ⊤ and ⊥ are predicates
prf₀ : (¬ ⊤) ⇔ ⊥
prf₀ = record {
to = lemma₁
; from = lemma₂
}
-- But how to prove the following?
--prf : ¬ ⊤ ≡ ⊥
--prf = ? -- seems to require extensionality and iso-is-≡, or cubical, see https://stackoverflow.com/a/58912530
open import Level using (0ℓ)
open import Agda.Primitive using (lsuc)
open import Relation.Binary.Definitions using (Substitutive; _Respects_; _⟶_Respects_)
prf₂ : ¬ (⊤ ≡ ⊥) -- same as: ⊤ ≢ ⊥
prf₂ ⊤≡⊥ = subst (λ x → x) ⊤≡⊥ tt
-- We don't need to give the implicit parameters but doing so lets us look
-- inside of the definitions and how they get reduced to other terms
--prf₂ ⊤≡⊥ = subst {A = Set} {ℓ = 0ℓ} (λ x → x) ⊤≡⊥ tt
-- `subst` has type: {a : Level} {A : Set a} {ℓ : Level} → Substitutive _≡_ ℓ
-- `subst {A = Set}` has type: {ℓ : Level} → Substitutive _≡_ ℓ
-- `subst {A = Set} {ℓ = 0ℓ}` has type: Substitutive _≡_ 0ℓ
-- actually it has type: Substitutive {A = Set} _≡_ 0ℓ
-- `Substitutive {A = Set} _≡_ 0ℓ` which reduces to (P : Set → Set) {x y : Set} → x ≡ y → P x → P y
-- which means that the type of
-- `subst {A = Set} {ℓ = 0ℓ}`
-- is
-- (P : Set → Set) {x y : Set} → x ≡ y → P x → P y
-- thus, the type of
-- `subst {A = Set} {ℓ = 0ℓ} (λ x → x)` (*)
-- is
-- {x y : Set} → x ≡ y → P x → P y
-- Note: careful, Agda tells us that the type of (*) is:
-- (λ x → x) Respects _≡_
-- but it is actually:
-- _Respects_ {A = Set} (λ x → x) _≡_
--
-- From reading the code:
-- _Respects_ {A = Set} (λ x → x) _≡_ (**)
-- reduces first to:
-- _⟶_Respects_ {A = Set} (λ x → x) (λ x → x) _≡_
--
-- There is even more. (**) actually has some implicit parameters, here they are
-- _Respects_ {A = Set} {ℓ₁ = 0ℓ} {ℓ₂ = lsuc 0ℓ} (λ x → x) _≡_
--
-- LESSON LEARNT: Implicit arguments are cool because you don't need to give
-- them, Agda can generally infer them from context which makes code to look
-- prettier but excesively harder to read
--
-- Other stuff:
-- `Substitutive {A = Set} _≡_ 0ℓ` reduces to (P : Set → Set) {x y : Set} → x ≡ y → P x → P y
-- `Substitutive {A = Set} _≡_ (lsuc 0ℓ)` reduces to (P : Set → Set₁) {x y : Set} → x ≡ y → P x → P y
| {
"alphanum_fraction": 0.6076899031,
"avg_line_length": 33.6736842105,
"ext": "agda",
"hexsha": "29e17f5ae4fe56e4186e23a0f37673465d99f18c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "helq/old_code",
"max_forks_repo_path": "proglangs-learning/Agda/plfa-exercises/weird.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_issues_repo_issues_event_max_datetime": "2021-06-07T15:39:48.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-03-10T19:20:21.000Z",
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "helq/old_code",
"max_issues_repo_path": "proglangs-learning/Agda/plfa-exercises/weird.agda",
"max_line_length": 112,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a432faf1b340cb379190a2f2b11b997b02d1cd8d",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "helq/old_code",
"max_stars_repo_path": "proglangs-learning/Agda/plfa-exercises/weird.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1267,
"size": 3199
} |
open import Relation.Binary
open import Level
module Experiments.Infer {c ℓ₁ ℓ₂}(PO : Preorder c ℓ₁ ℓ₂) where
open Preorder PO renaming (_∼_ to _⊑_)
record IsIncluded (W W' : Carrier) : Set ℓ₂ where
field
is-included : W ⊑ W'
record IsIncludedOnce (W W' : Carrier) : Set ℓ₂ where
field
is-included-once : W ⊑ W'
instance
is-included-refl : ∀ {W} → IsIncluded W W
is-included-refl = record { is-included = refl }
is-included-step : ∀ {W W' W''} ⦃ p : IsIncludedOnce W W' ⦄ ⦃ q : IsIncluded W' W'' ⦄ → IsIncluded W W''
is-included-step
{{p = record { is-included-once = p }}}
{{record { is-included = q }}} = record { is-included = trans p q }
-- typeclass for world-indexed things that support weakening
record Weakenable {i}(I : Carrier → Set i) : Set (i ⊔ ℓ₂ ⊔ c) where
field
weaken : ∀ {W W'} → W ⊑ W' → I W → I W'
wk : ∀ {W W'} → I W → ⦃ p : IsIncluded W W' ⦄ → I W'
wk x ⦃ record { is-included = p } ⦄ = weaken p x
ISet = Carrier → Set
module Monad
(M : ISet → ISet)
(ret : ∀ {P : ISet}{c} → P c → M P c)
(bind : ∀ {P Q : ISet}{c} → (∀ {c'} ⦃ sub : IsIncludedOnce c c' ⦄ → P c' → M Q c') → M P c → M Q c)
(V : ISet)
(wV : Weakenable V)
(get : ∀ {c} → M V c)
(App : ∀ {c} → V c → V c → V c)
where
instance
weakenable-val = wV
open Weakenable ⦃...⦄
{- uncomment to see the compiler error -}
-- test : ∀ {c} → M V c
-- test = bind (λ x → bind (λ y → ret (App (wk x) (wk y))) get) get
| {
"alphanum_fraction": 0.5590817016,
"avg_line_length": 27.9433962264,
"ext": "agda",
"hexsha": "6c7e13ddb37f327d7e2c793cc2c67cfb274414c7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/Experiments/Infer.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/Experiments/Infer.agda",
"max_line_length": 106,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/Experiments/Infer.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 583,
"size": 1481
} |
{-# OPTIONS --cubical --safe #-}
module Data.List.Indexing where
open import Data.List.Base
open import Data.Fin
open import Prelude
infixl 6 _!_
_!_ : (xs : List A) → Fin (length xs) → A
(x ∷ xs) ! f0 = x
(x ∷ xs) ! fs i = xs ! i
tabulate : ∀ n → (Fin n → A) → List A
tabulate zero f = []
tabulate (suc n) f = f f0 ∷ tabulate n (f ∘ fs)
| {
"alphanum_fraction": 0.6023391813,
"avg_line_length": 20.1176470588,
"ext": "agda",
"hexsha": "a2a73e8d007d63c893672d1cc2d396788f73dd9c",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-11T12:30:21.000Z",
"max_forks_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/agda-playground",
"max_forks_repo_path": "Data/List/Indexing.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/agda-playground",
"max_issues_repo_path": "Data/List/Indexing.agda",
"max_line_length": 47,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "97a3aab1282b2337c5f43e2cfa3fa969a94c11b7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/agda-playground",
"max_stars_repo_path": "Data/List/Indexing.agda",
"max_stars_repo_stars_event_max_datetime": "2021-11-16T08:11:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-09-11T17:45:41.000Z",
"num_tokens": 128,
"size": 342
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Properties of the extensional sublist relation over setoid equality.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary hiding (Decidable)
module Data.List.Relation.Binary.Subset.Setoid.Properties where
open import Data.Bool.Base using (Bool; true; false)
open import Data.List.Base
open import Data.List.Relation.Unary.Any using (here; there)
import Data.List.Membership.Setoid as Membership
open import Data.List.Membership.Setoid.Properties
import Data.List.Relation.Binary.Subset.Setoid as Sublist
import Data.List.Relation.Binary.Equality.Setoid as Equality
open import Relation.Nullary using (¬_; does)
open import Relation.Unary using (Pred; Decidable)
import Relation.Binary.Reasoning.Preorder as PreorderReasoning
open Setoid using (Carrier)
------------------------------------------------------------------------
-- Relational properties
module _ {a ℓ} (S : Setoid a ℓ) where
open Equality S
open Sublist S
open Membership S
⊆-reflexive : _≋_ ⇒ _⊆_
⊆-reflexive xs≋ys = ∈-resp-≋ S xs≋ys
⊆-refl : Reflexive _⊆_
⊆-refl x∈xs = x∈xs
⊆-trans : Transitive _⊆_
⊆-trans xs⊆ys ys⊆zs x∈xs = ys⊆zs (xs⊆ys x∈xs)
⊆-isPreorder : IsPreorder _≋_ _⊆_
⊆-isPreorder = record
{ isEquivalence = ≋-isEquivalence
; reflexive = ⊆-reflexive
; trans = ⊆-trans
}
⊆-preorder : Preorder _ _ _
⊆-preorder = record
{ isPreorder = ⊆-isPreorder
}
-- Reasoning over subsets
module ⊆-Reasoning where
private
module Base = PreorderReasoning ⊆-preorder
open Base public
hiding (step-∼; step-≈; step-≈˘)
renaming (_≈⟨⟩_ to _≋⟨⟩_)
infix 2 step-⊆ step-≋ step-≋˘
infix 1 step-∈
step-∈ : ∀ x {xs ys} → xs IsRelatedTo ys → x ∈ xs → x ∈ ys
step-∈ x xs⊆ys x∈xs = (begin xs⊆ys) x∈xs
step-⊆ = Base.step-∼
step-≋ = Base.step-≈
step-≋˘ = Base.step-≈˘
syntax step-∈ x xs⊆ys x∈xs = x ∈⟨ x∈xs ⟩ xs⊆ys
syntax step-⊆ xs ys⊆zs xs⊆ys = xs ⊆⟨ xs⊆ys ⟩ ys⊆zs
syntax step-≋ xs ys⊆zs xs≋ys = xs ≋⟨ xs≋ys ⟩ ys⊆zs
syntax step-≋˘ xs ys⊆zs xs≋ys = xs ≋˘⟨ xs≋ys ⟩ ys⊆zs
------------------------------------------------------------------------
-- filter
module _ {a p ℓ} (S : Setoid a ℓ)
{P : Pred (Carrier S) p} (P? : Decidable P) where
open Setoid S renaming (Carrier to A)
open Sublist S
filter⁺ : ∀ xs → filter P? xs ⊆ xs
filter⁺ (x ∷ xs) y∈f[x∷xs] with does (P? x)
... | false = there (filter⁺ xs y∈f[x∷xs])
... | true with y∈f[x∷xs]
... | here y≈x = here y≈x
... | there y∈f[xs] = there (filter⁺ xs y∈f[xs])
| {
"alphanum_fraction": 0.5638606676,
"avg_line_length": 29.0105263158,
"ext": "agda",
"hexsha": "c2da86a313a8d5cdb27924b0a69dd7cdc0e86125",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Subset/Setoid/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Subset/Setoid/Properties.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Relation/Binary/Subset/Setoid/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 983,
"size": 2756
} |
postulate Ty : Set
data Cxt : Set where
ε : Cxt
sg : (A : Ty) → Cxt
_∙_ : (Γ₁ Γ₂ : Cxt) → Cxt
variable Γ Γ₁ Γ₂ Δ : Cxt
postulate Ren : (Δ Γ : Cxt) → Set
<_,_> : (f₁ : Ren Δ Γ₁) (f₂ : Ren Δ Γ₂) → Ren Δ (Γ₁ ∙ Γ₂)
<_,_> = {!!}
<_,_>₁ : (f₁ : Ren Δ Γ₁) (f₂ : Ren Δ Γ₂) → Cxt → Ren Δ (Γ₁ ∙ Γ₂)
< f₁ , f₂ >₁ x = {!!}
| {
"alphanum_fraction": 0.4767801858,
"avg_line_length": 17.9444444444,
"ext": "agda",
"hexsha": "73023a80060635b7444b14ba13bb89a0d50101f5",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/interaction/Issue3166.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/interaction/Issue3166.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/interaction/Issue3166.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 168,
"size": 323
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lists with fast append
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.DifferenceList where
open import Level using (Level)
open import Data.List.Base as List using (List)
open import Function
open import Data.Nat.Base
private
variable
a b : Level
A : Set a
B : Set b
------------------------------------------------------------------------
-- Type definition and list function lifting
DiffList : Set a → Set a
DiffList A = List A → List A
lift : (List A → List A) → (DiffList A → DiffList A)
lift f xs = λ k → f (xs k)
------------------------------------------------------------------------
-- Building difference lists
infixr 5 _∷_ _++_
[] : DiffList A
[] = λ k → k
_∷_ : A → DiffList A → DiffList A
_∷_ x = lift (x List.∷_)
[_] : A → DiffList A
[ x ] = x ∷ []
_++_ : DiffList A → DiffList A → DiffList A
xs ++ ys = λ k → xs (ys k)
infixl 6 _∷ʳ_
_∷ʳ_ : DiffList A → A → DiffList A
xs ∷ʳ x = λ k → xs (x List.∷ k)
------------------------------------------------------------------------
-- Conversion back and forth with List
toList : DiffList A → List A
toList xs = xs List.[]
-- fromList xs is linear in the length of xs.
fromList : List A → DiffList A
fromList xs = λ k → xs ⟨ List._++_ ⟩ k
------------------------------------------------------------------------
-- Transforming difference lists
-- It is OK to use List._++_ here, since map is linear in the length of
-- the list anyway.
map : (A → B) → DiffList A → DiffList B
map f xs = λ k → List.map f (toList xs) ⟨ List._++_ ⟩ k
-- concat is linear in the length of the outer list.
concat : DiffList (DiffList A) → DiffList A
concat xs = concat' (toList xs)
where
concat' : List (DiffList A) → DiffList A
concat' = List.foldr _++_ []
take : ℕ → DiffList A → DiffList A
take n = lift (List.take n)
drop : ℕ → DiffList A → DiffList A
drop n = lift (List.drop n)
| {
"alphanum_fraction": 0.5014662757,
"avg_line_length": 24.0705882353,
"ext": "agda",
"hexsha": "65723b1cf2778f827d9763d22d3787c75b20770e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/DifferenceList.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/DifferenceList.agda",
"max_line_length": 72,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/DifferenceList.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 544,
"size": 2046
} |
----------------------------------------------------------------------------------
-- The contents of this file is based on the work in "Setoids in Type --
-- Theory" by Barthe et al. and Capretta's "Universal Algebra in Type Theory." --
-- --
-- See http://www.cs.ru.nl/~venanzio/publications/Setoids_JFP_2003.pdf and --
-- http://www.cs.ru.nl/~venanzio/publications/Universal_Algebra_TPHOLs_1999.pdf --
----------------------------------------------------------------------------------
module Setoid.Total where
open import Level renaming (suc to lsuc)
open import Data.Product
open import Relation.Relation
open import Basics public
open import Equality.Eq public
open ParRel public
open EqRel public
-- Total setoids.
record Setoid {l : Level} : Set (lsuc l) where
constructor Setoid_,_,_
field
el : Set l
eq : el → el → Set l
eqRpf : EqRel eq
open Setoid public
-- Notation for the underlying equivalence of a setoid.
⟨_⟩[_≡_] : {l : Level} → (A : Setoid {l}) → el A → el A → Set l
⟨ A ⟩[ x ≡ y ] = eq A x y
-- Total empty setoids.
EmptySetoid : {l : Level} → Setoid {l}
EmptySetoid = record { el = ⊥-poly; eq = λ x y → x ≅ y; eqRpf = isEqRel }
-- Total setoids maps. Barthe et al. calls "map."
record SetoidFun {l₁ l₂ : Level} (A : Setoid {l₁}) (B : Setoid {l₂}) : Set (l₁ ⊔ l₂) where
field
appT : el A → el B
extT : ∀ {x y} → ⟨ A ⟩[ x ≡ y ] → ⟨ B ⟩[ appT x ≡ appT y ]
open SetoidFun public
-- The setoid function space from A to B. Barthe et al. calls this
-- "Map."
SetoidFunSpace : {l₁ l₂ : Level} → Setoid {l₁} → Setoid {l₂} → Setoid {l₁ ⊔ l₂}
SetoidFunSpace A B with parEqPf (eqRpf B)
... | b = record { el = SetoidFun A B;
eq = λ f g → ∀ (x : el A) → ⟨ B ⟩[ appT f x ≡ appT g x ];
eqRpf = record { parEqPf = record { symPf = λ x₁ x₂ → symPf b (x₁ x₂);
transPf = λ x₁ x₂ x₃ → transPf b (x₁ x₃) (x₂ x₃) };
refPf = λ x₁ → refPf (eqRpf B) } }
-- Total binary setoid maps.
BinSetoidFun : {l₁ l₂ l₃ : Level} → Setoid {l₁} → Setoid {l₂} → Setoid {l₃} → Set (l₁ ⊔ l₂ ⊔ l₃)
BinSetoidFun A B C = SetoidFun A (SetoidFunSpace B C)
-- A nice notation for composition of BMap's.
_○[_]_ : {l : Level}{A B C : Setoid {l}} → el A → BinSetoidFun A B C → el B → el C
f ○[ comp ] g = appT (appT comp f) g
-- Setoid predicates.
record Pred {l : Level} (A : Setoid {l}) : Set (lsuc l) where
field
-- The predicate.
pf : el A → Set l
-- The proof that the predicate respects equality.
inv : ∀{x y} → ⟨ A ⟩[ x ≡ y ] → pf x → pf y
open Pred
-- Setoid Subcarriers.
record Subcarrier {l : Level} (A : Setoid {l}) (P : Pred A) : Set l where
field
subel : el A
insub : pf P subel
open Subcarrier
-- Subsetoids.
Subsetoid : {l : Level} → (A : Setoid {l}) → (P : Pred A) → Setoid {l}
Subsetoid A P with parEqPf (eqRpf A)
... | a = record { el = Subcarrier A P; eq = λ x y → ⟨ A ⟩[ subel x ≡ subel y ];
eqRpf = record { parEqPf = record { symPf = λ x₁ → symPf a x₁;
transPf = λ x₁ x₂ → transPf a x₁ x₂ };
refPf = λ {x} → refPf (eqRpf A) } }
-- The product of two setoids.
ProductSetoid : {l₁ l₂ : Level} → Setoid {l₁} → Setoid {l₂} → Setoid {l₁ ⊔ l₂}
ProductSetoid A B = record { el = (el A) × (el B);
eq = ProductRel (eq A) (eq B);
eqRpf = ProductRelIsEqRel (eq A) (eq B) (eqRpf A) (eqRpf B) }
_●ₛ_ : {l₁ l₂ : Level} → Setoid {l₁} → Setoid {l₂} → Setoid {l₁ ⊔ l₂}
A ●ₛ B = ProductSetoid A B
-- Product setoid functions.
ProdSetoidFun : {l₁ l₂ l₃ l₄ : Level}
{A₁ : Setoid {l₁}}
{B₁ : Setoid {l₂}}
{A₂ : Setoid {l₃}}
{B₂ : Setoid {l₄}}
→ (F₁ : SetoidFun A₁ A₂)
→ (F₂ : SetoidFun B₁ B₂)
→ SetoidFun (A₁ ●ₛ B₁) (A₂ ●ₛ B₂)
ProdSetoidFun F₁ F₂ = record { appT = λ x → appT F₁ (proj₁ x) , appT F₂ (proj₂ x);
extT = λ x₁ → extT F₁ (proj₁ x₁) , extT F₂ (proj₂ x₁) }
-- Binary product setoid functions.
BinProdSetoidFun : {l₁ l₂ l₃ l₄ : Level}
{A₁ : Setoid {l₁}}
{B₁ : Setoid {l₂}}
{C₁ : Setoid {l₃}}
{A₂ : Setoid {l₄}}
{B₂ : Setoid {l₄}}
{C₂ : Setoid {l₄}}
→ (F₁ : BinSetoidFun A₁ B₁ C₁)
→ (F₂ : BinSetoidFun A₂ B₂ C₂)
→ BinSetoidFun (A₁ ●ₛ A₂) (B₁ ●ₛ B₂) (C₁ ●ₛ C₂)
BinProdSetoidFun F₁ F₂ = record { appT = λ x → ProdSetoidFun (appT F₁ (proj₁ x)) (appT F₂ (proj₂ x));
extT = λ {a b} c d → (extT F₁ (proj₁ c) (proj₁ d)) , (extT F₂ (proj₂ c) (proj₂ d)) }
_●b_ : {l₁ l₂ l₃ l₄ : Level}
{A₁ : Setoid {l₁}}
{B₁ : Setoid {l₂}}
{C₁ : Setoid {l₃}}
{A₂ : Setoid {l₄}}
{B₂ : Setoid {l₄}}
{C₂ : Setoid {l₄}}
→ (F₁ : BinSetoidFun A₁ B₁ C₁)
→ (F₂ : BinSetoidFun A₂ B₂ C₂)
→ BinSetoidFun (A₁ ●ₛ A₂) (B₁ ●ₛ B₂) (C₁ ●ₛ C₂)
F₁ ●b F₂ = BinProdSetoidFun F₁ F₂
-- Next we define a relaxed notion of a subsetoid where the predicate
-- does not have to be invariant on the equality.
↓Setoid : {l : Level}
→ (S : Setoid {l})
→ (P : el S → Set l)
→ Setoid {l}
↓Setoid S P =
record { el = eq S ↓ P;
eq = λ f g → ⟨ S ⟩[ proj₁ f ≡ proj₁ g ];
eqRpf = ↓EqRel (eq S) P (eqRpf S)}
-- Restricted setoid functions.
↓SetoidFun :
{l : Level}
{S₁ S₂ : Setoid {l}}
{P₁ : el S₁ → Set l}
{P₂ : el S₂ → Set l}
→ (F : SetoidFun S₁ S₂)
→ ({f : el S₁} → (P₁ f) → P₂ (appT F f))
→ SetoidFun (↓Setoid S₁ P₁) (↓Setoid S₂ P₂)
↓SetoidFun {l}{S₁}{S₂}{P₁}{P₂} F pf =
record { appT = λ x₁ → appT F (proj₁ x₁) , pf {proj₁ x₁} (proj₂ x₁);
extT = λ {x}{y} x₂ → extT F x₂ }
-- Binary restricted setoid functions.
↓BinSetoidFun :
{l : Level}
{S₁ S₂ S₃ : Setoid {l}}
{P₁ : el S₁ → Set l}
{P₂ : el S₂ → Set l}
{P₃ : el S₃ → Set l}
→ (F : BinSetoidFun S₁ S₂ S₃)
→ ({f : el S₁}{g : el S₂} → (P₁ f) → (P₂ g) → P₃ (f ○[ F ] g))
→ BinSetoidFun (↓Setoid S₁ P₁) (↓Setoid S₂ P₂) (↓Setoid S₃ P₃)
↓BinSetoidFun {l}{S₁}{S₂}{S₃}{P₁}{P₂}{P₃} F pf =
record { appT = λ f → ↓SetoidFun (appT F (proj₁ f)) (pf (proj₂ f));
extT = λ x₁ x₂ → extT F x₁ (proj₁ x₂) }
| {
"alphanum_fraction": 0.4974459135,
"avg_line_length": 38.4739884393,
"ext": "agda",
"hexsha": "efa26a39d6a040b8dd4a97159fc0fcb0de1fdc56",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "heades/AUGL",
"max_forks_repo_path": "setoid-cats/Setoid/Total.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "heades/AUGL",
"max_issues_repo_path": "setoid-cats/Setoid/Total.agda",
"max_line_length": 118,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "b33c6a59d664aed46cac8ef77d34313e148fecc2",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "heades/AUGL",
"max_stars_repo_path": "setoid-cats/Setoid/Total.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2441,
"size": 6656
} |
{-# OPTIONS --safe --experimental-lossy-unification #-}
module Cubical.Algebra.Polynomials.Multivariate.EquivCarac.Poly0-A where
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.HLevels
open import Cubical.Data.Nat renaming (_+_ to _+n_; _·_ to _·n_)
open import Cubical.Data.Vec
open import Cubical.Algebra.DirectSum.DirectSumHIT.Base
open import Cubical.Algebra.Ring
open import Cubical.Algebra.CommRing
open import Cubical.Algebra.CommRing.Instances.Polynomials.MultivariatePoly
private variable
ℓ : Level
module Equiv-Poly0-A
(Acr@(A , Astr) : CommRing ℓ) where
private
PA = PolyCommRing Acr 0
open CommRingStr
-----------------------------------------------------------------------------
-- Equivalence
Poly0→A : Poly Acr 0 → A
Poly0→A = DS-Rec-Set.f _ _ _ _ (is-set Astr)
(0r Astr)
(λ v a → a)
(_+_ Astr)
(+Assoc Astr)
(+IdR Astr)
(+Comm Astr)
(λ _ → refl)
λ _ a b → refl
A→Poly0 : A → Poly Acr 0
A→Poly0 a = base [] a
e-sect : (a : A) → Poly0→A (A→Poly0 a) ≡ a
e-sect a = refl
e-retr : (P : Poly Acr 0) → A→Poly0 (Poly0→A P) ≡ P
e-retr = DS-Ind-Prop.f _ _ _ _ (λ _ → trunc _ _)
(base-neutral [])
(λ { [] a → refl })
λ {U V} ind-U ind-V → (sym (base-add _ _ _)) ∙ (cong₂ (snd PA ._+_ ) ind-U ind-V)
-----------------------------------------------------------------------------
-- Ring homomorphism
Poly0→A-pres1 : Poly0→A (snd PA .1r) ≡ 1r Astr
Poly0→A-pres1 = refl
Poly0→A-pres+ : (P Q : Poly Acr 0) → Poly0→A (snd PA ._+_ P Q) ≡ Astr ._+_ (Poly0→A P) (Poly0→A Q)
Poly0→A-pres+ P Q = refl
Poly0→A-pres· : (P Q : Poly Acr 0) → Poly0→A ( snd PA ._·_ P Q) ≡ Astr ._·_ (Poly0→A P) (Poly0→A Q)
Poly0→A-pres· = DS-Ind-Prop.f _ _ _ _ (λ _ → isPropΠ λ _ → is-set Astr _ _)
(λ Q → sym (RingTheory.0LeftAnnihilates (CommRing→Ring Acr) (Poly0→A Q)))
(λ v a → DS-Ind-Prop.f _ _ _ _ (λ _ → is-set Astr _ _)
(sym (RingTheory.0RightAnnihilates (CommRing→Ring Acr) (Poly0→A (base v a))))
(λ v' a' → refl)
λ {U V} ind-U ind-V → (cong₂ (Astr ._+_) ind-U ind-V) ∙ sym (·DistR+ Astr _ _ _))
λ {U V} ind-U ind-V Q → (cong₂ (Astr ._+_) (ind-U Q) (ind-V Q)) ∙ sym (·DistL+ Astr _ _ _)
-----------------------------------------------------------------------------
-- Ring Equivalence
module _ (A' : CommRing ℓ) where
open Equiv-Poly0-A A'
CRE-Poly0-A : CommRingEquiv (PolyCommRing A' 0) A'
fst CRE-Poly0-A = isoToEquiv is
where
is : Iso (Poly A' 0) (A' .fst)
Iso.fun is = Poly0→A
Iso.inv is = A→Poly0
Iso.rightInv is = e-sect
Iso.leftInv is = e-retr
snd CRE-Poly0-A = makeIsRingHom Poly0→A-pres1 Poly0→A-pres+ Poly0→A-pres·
| {
"alphanum_fraction": 0.5300878972,
"avg_line_length": 32.152173913,
"ext": "agda",
"hexsha": "2cc6f3c0b03a5e1578eab6a2ab3437494df8102e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/Poly0-A.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/Poly0-A.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Algebra/Polynomials/Multivariate/EquivCarac/Poly0-A.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 980,
"size": 2958
} |
-- Andreas, 2017-07-28, issue #1077
-- Agda's reconstruction of the top-level module can be confusing
-- in case the user puts some illegal declarations before the
-- top level module in error.
-- Thus, Agda now rejects the following if the anon. module is omitted.
-- If the user writes the anon. module, it should be accepted,
-- (even if it looks stupid in this case).
module _ where
foo = Set
module Issue1077 where
bar = Set
-- Should be accepted.
| {
"alphanum_fraction": 0.7251082251,
"avg_line_length": 23.1,
"ext": "agda",
"hexsha": "90435eba182009fcb69b6a55d04cc5052861388a",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue1077.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue1077.agda",
"max_line_length": 71,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue1077.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 116,
"size": 462
} |
module DefinitionalEquality where
postulate
_≡_ : {A B : Set} -> A -> B -> Set
refl-≡ : {A : Set}{x : A} -> x ≡ x
subst-≡ : {A : Set}{x y : A}(C : A -> Set) -> x ≡ y -> C y -> C x
subst-≡¹ : {A : Set}{x y : A}(C : A -> Set1) -> x ≡ y -> C y -> C x
subst-≡' : {A B : Set}{x : A}{y : B}(C : {X : Set} -> X -> Set) -> x ≡ y -> C y -> C x
app-≡₀ : {A₁ A₂ : Set}{B₁ : A₁ -> Set}{B₂ : A₂ -> Set}
{f : (x : A₁) -> B₁ x}{g : (x : A₂) -> B₂ x}{a₁ : A₁}{a₂ : A₂} ->
f ≡ g -> a₁ ≡ a₂ -> f a₁ ≡ g a₂
η-≡ : {A₁ A₂ : Set}{B₁ : A₁ -> Set}{B₂ : A₂ -> Set}
{f₁ : (x : A₁) -> B₁ x}{f₂ : (x : A₂) -> B₂ x} ->
((x : A₁)(y : A₂) -> x ≡ y -> f₁ x ≡ f₂ y) -> f₁ ≡ f₂
-- Substitution is a no-op
subst-≡-identity : {A : Set}{x y : A}(C : A -> Set)(p : x ≡ y)(cy : C y) ->
subst-≡ C p cy ≡ cy
cong-≡ : {A B : Set}{x y : A}(f : A -> B)(p : x ≡ y) -> f x ≡ f y
cong-≡ {_}{_}{_}{y} f p = subst-≡ (\z -> f z ≡ f y) p refl-≡
cong-≡' : {A : Set}{B : A -> Set}{x y : A}(f : (z : A) -> B z)(p : x ≡ y) -> f x ≡ f y
cong-≡' {_}{_}{_}{y} f p = subst-≡ (\z -> f z ≡ f y) p refl-≡
cong₂-≡' : {A : Set}{B : A -> Set}{C : (x : A) -> B x -> Set}
{x y : A}{z : B x}{w : B y}(f : (x : A)(z : B x) -> C x z) ->
x ≡ y -> z ≡ w -> f x z ≡ f y w
cong₂-≡' f xy zw = app-≡₀ (cong-≡' f xy) zw
trans-≡ : {A B C : Set}(x : A)(y : B)(z : C) -> x ≡ y -> y ≡ z -> x ≡ z
trans-≡ x y z xy yz = subst-≡' (\w -> w ≡ z) xy yz
postulate
_≡₁_ : {A B : Set1} -> A -> B -> Set1
refl-≡₁ : {A : Set1}{x : A} -> x ≡₁ x
subst-≡₁ : {A : Set1}{x y : A}(C : A -> Set1) -> x ≡₁ y -> C y -> C x
subst-≡₁' : {A B : Set1}{x : A}{y : B}(C : {X : Set1} -> X -> Set1) -> x ≡₁ y -> C y -> C x
-- Substitution is a no-op
subst-≡₁-identity : {A : Set1}{x y : A}(C : A -> Set1)(p : x ≡₁ y)(cy : C y) ->
subst-≡₁ C p cy ≡₁ cy
app-≡₁ : {A₁ A₂ : Set1}{B₁ : A₁ -> Set1}{B₂ : A₂ -> Set1}
{f : (x : A₁) -> B₁ x}{g : (x : A₂) -> B₂ x}{a₁ : A₁}{a₂ : A₂} ->
f ≡₁ g -> a₁ ≡₁ a₂ -> f a₁ ≡₁ g a₂
app-≡₁⁰ : {A₁ A₂ : Set}{B₁ : A₁ -> Set1}{B₂ : A₂ -> Set1}
{f : (x : A₁) -> B₁ x}{g : (x : A₂) -> B₂ x}{a₁ : A₁}{a₂ : A₂} ->
f ≡₁ g -> a₁ ≡ a₂ -> f a₁ ≡₁ g a₂
η-≡₁ : {A₁ A₂ : Set1}{B₁ : A₁ -> Set1}{B₂ : A₂ -> Set1}
{f₁ : (x : A₁) -> B₁ x}{f₂ : (x : A₂) -> B₂ x} ->
((x : A₁)(y : A₂) -> x ≡₁ y -> f₁ x ≡₁ f₂ y) -> f₁ ≡₁ f₂
η-≡₁⁰ : {A₁ A₂ : Set}{B₁ : A₁ -> Set1}{B₂ : A₂ -> Set1}
{f₁ : (x : A₁) -> B₁ x}{f₂ : (x : A₂) -> B₂ x} ->
((x : A₁)(y : A₂) -> x ≡ y -> f₁ x ≡₁ f₂ y) -> f₁ ≡₁ f₂
cong-≡₁ : {A B : Set1}{x y : A}(f : A -> B)(p : x ≡₁ y) -> f x ≡₁ f y
cong-≡₁ {_}{_}{_}{y} f p = subst-≡₁ (\z -> f z ≡₁ f y) p refl-≡₁
cong-≡₁⁰ : {A : Set}{B : A -> Set1}{x y : A}(f : (x : A) -> B x)(p : x ≡ y) -> f x ≡₁ f y
cong-≡₁⁰ {_}{_}{_}{y} f p = subst-≡¹ (\z -> f z ≡₁ f y) p refl-≡₁
trans-≡₁ : {A B C : Set1}(x : A)(y : B)(z : C) -> x ≡₁ y -> y ≡₁ z -> x ≡₁ z
trans-≡₁ x y z xy yz = subst-≡₁' (\w -> w ≡₁ z) xy yz
| {
"alphanum_fraction": 0.370904325,
"avg_line_length": 41.8082191781,
"ext": "agda",
"hexsha": "1fdb7f4d7a56f6179f656b738142ab2104dd364d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "examples/outdated-and-incorrect/iird/DefinitionalEquality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "examples/outdated-and-incorrect/iird/DefinitionalEquality.agda",
"max_line_length": 93,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "examples/outdated-and-incorrect/iird/DefinitionalEquality.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 1625,
"size": 3052
} |
-- Andreas, 2016-06-16 Issue #2045
-- Size solver should be called before checking extended lambda
-- {-# OPTIONS -v tc.term.exlam:100 #-}
open import Common.Size
postulate anything : ∀{a}{A : Set a} → A
data Exp : Size → Set where
abs : ∀ i (t : Exp i) → Exp (↑ i)
data Val : ∀ i (t : Exp i) → Set where
valAbs : ∀ i (t : Exp i) → Val (↑ i) (abs i t)
data Whnf i (t : Exp i) : Set where
immed : (v : Val i t) → Whnf i t
postulate
Evaluate : ∀ i (t : Exp i) (P : (w : Whnf i t) → Set) → Set
worksE : ∀ i (fa : Exp i) → Set
worksE i fa = Evaluate i fa λ{ (immed (valAbs _ _)) → anything }
works : ∀ i (fa : Exp i) → Set
works i fa = Evaluate i fa aux
where
aux : Whnf i fa → Set
aux (immed (valAbs _ _)) = anything
test : ∀ i (fa : Exp i) → Set
test i fa = Evaluate _ fa λ{ (immed (valAbs _ _)) → anything }
-- Should work.
-- WAS:
-- extended lambda's implementation ".extendedlambda1" has type:
-- (Whnf (_38 i fa) fa → Set)
-- Cannot instantiate the metavariable _38 to solution (↑ i₁) since it
-- contains the variable i₁ which is not in scope of the metavariable
-- or irrelevant in the metavariable but relevant in the solution
-- when checking that the pattern (valAbs _ _) has type
-- (Val (_38 i fa) fa)
| {
"alphanum_fraction": 0.6263115416,
"avg_line_length": 27.5333333333,
"ext": "agda",
"hexsha": "fd3dcc9151992bb2dac18da12c2a8f620266c8d1",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Succeed/Issue2045.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Succeed/Issue2045.agda",
"max_line_length": 70,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Succeed/Issue2045.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 408,
"size": 1239
} |
module Issue23 where
postulate
ℝ : Set
r₀ : ℝ
_+_ : ℝ → ℝ → ℝ
-_ : ℝ → ℝ
_-_ : ℝ → ℝ → ℝ
x - y = x + (- y)
infixl 4 _≡_
-- Equality.
data _≡_ : ℝ → ℝ → Set where
refl : (x : ℝ) → x ≡ x
postulate ─-neut : {x : ℝ} → r₀ - x ≡ - x
{-# ATP prove ─-neut #-}
| {
"alphanum_fraction": 0.4538745387,
"avg_line_length": 13.55,
"ext": "agda",
"hexsha": "b575845165d18016ce36f7abf5bf4076c5055279",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Fail/non-theorems/Issue23.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Fail/non-theorems/Issue23.agda",
"max_line_length": 41,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Fail/non-theorems/Issue23.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 128,
"size": 271
} |
{-# OPTIONS --safe --warning=error --without-K #-}
open import Functions.Definition
open import Functions.Lemmas
open import LogicalFormulae
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Order
open import Sets.Cardinality.Infinite.Definition
open import Sets.FinSet.Definition
open import Sets.FinSet.Lemmas
module Sets.Cardinality.Infinite.Lemmas where
finsetNotInfinite : {n : ℕ} → InfiniteSet (FinSet n) → False
finsetNotInfinite {n} isInfinite = isInfinite n id idIsBijective
noInjectionNToFinite : {n : ℕ} → {f : ℕ → FinSet n} → Injection f → False
noInjectionNToFinite {n} {f} inj = pigeonhole (le 0 refl) tInj
where
t : FinSet (succ n) → FinSet n
t m = f (toNat m)
tInj : Injection t
tInj {x} {y} fx=fy = toNatInjective x y (inj fx=fy)
dedekindInfiniteImpliesInfinite : {a : _} (A : Set a) → DedekindInfiniteSet A → InfiniteSet A
dedekindInfiniteImpliesInfinite A record { inj = inj ; isInjection = isInjection } zero f x with Invertible.inverse (bijectionImpliesInvertible x) (inj 0)
... | ()
dedekindInfiniteImpliesInfinite A record { inj = inj ; isInjection = isInj } (succ n) f isBij = noInjectionNToFinite {f = t} tInjective
where
t : ℕ → FinSet (succ n)
t n = Invertible.inverse (bijectionImpliesInvertible isBij) (inj n)
tInjective : Injection t
tInjective pr = isInj ((Bijection.inj (invertibleImpliesBijection (inverseIsInvertible (bijectionImpliesInvertible isBij)))) pr)
| {
"alphanum_fraction": 0.7419132829,
"avg_line_length": 42.7352941176,
"ext": "agda",
"hexsha": "1d649634be5cfc9aaf63d60df1e3defd00b18264",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Sets/Cardinality/Infinite/Lemmas.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Sets/Cardinality/Infinite/Lemmas.agda",
"max_line_length": 154,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Sets/Cardinality/Infinite/Lemmas.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 461,
"size": 1453
} |
module Issue642 where
module M₁ (X : Set) where
postulate F : X → Set
module M₂ (X : Set) where
open M₁ X public
postulate
A : Set
x : A
open M₂ A
foo : F x
foo = {!!}
-- The goal was displayed as M₁.F A x rather than F x. If "open M₂ A"
-- is replaced by "open M₁ A", then the goal is displayed correctly. | {
"alphanum_fraction": 0.6448598131,
"avg_line_length": 16.05,
"ext": "agda",
"hexsha": "72b4328ffd0b744c5fc6de93eb65a2c067ada08d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/interaction/Issue642.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/interaction/Issue642.agda",
"max_line_length": 69,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "np/agda-git-experiment",
"max_stars_repo_path": "test/interaction/Issue642.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 109,
"size": 321
} |
-- Andreas, 2021-04-19, fixed #5236, regression introduced by #2858.
-- In record declarations, `constructor` should not be a layout keyword,
-- in order to be compatible with Agda 2.6.1.
record Works : Set₁ where
eta-equality; field
W : Set
record Test : Set₁ where
constructor c; field
F : Set -- Should work
record Test2 : Set₁ where
constructor c; eta-equality -- Should work
field
foo : Set
| {
"alphanum_fraction": 0.6935866983,
"avg_line_length": 24.7647058824,
"ext": "agda",
"hexsha": "dbd4a7f6d76e124495b23c67e5497e24349aca82",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "cagix/agda",
"max_forks_repo_path": "test/Succeed/Issue5236.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "cagix/agda",
"max_issues_repo_path": "test/Succeed/Issue5236.agda",
"max_line_length": 72,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "cc026a6a97a3e517bb94bafa9d49233b067c7559",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "cagix/agda",
"max_stars_repo_path": "test/Succeed/Issue5236.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 122,
"size": 421
} |
{-# OPTIONS --without-K #-}
module F1a where
open import Data.Unit
open import Data.Sum hiding (map)
open import Data.Product hiding (map)
open import Data.List
open import Data.Nat
open import Data.Bool
{--
infixr 90 _⊗_
infixr 80 _⊕_
infixr 60 _∘_
infix 30 _⟷_
--}
---------------------------------------------------------------------------
-- Paths
-- Path relation should be an equivalence
data IPath (I A : Set) : Set where
_↝_ : {i : I} (a : A) → (b : A) → IPath I A
id↝ : {A : Set} → A → IPath ⊤ A
id↝ a = a ↝ a
ap : {A B I J : Set} → (I → J) → (A → B) → IPath I A → IPath J B
ap g f (_↝_ {i} a a') = _↝_ {i = g i} (f a) (f a')
ZIP : (K : Set → Set → Set) → (P : Set → Set → Set)
→ (I : Set) → (J : Set) → (A : Set) → (B : Set) → Set
ZIP K P I J A B = K I A → K J B → K (P I J) (P A B)
pathProd : {A B I J : Set} → ZIP IPath _×_ I J A B
pathProd (_↝_ {i = i} a a') (_↝_ {i = j} b b') = _↝_ {i = i , j} (a , b) (a' , b')
prod : {X Y Z : Set} → (X → Y → Z) → List X → List Y → List Z
prod f l₁ l₂ = concatMap (λ b → map (f b) l₂) l₁
_×↝_ : {A B I J : Set} → List (IPath I A) → List (IPath J B) → List (IPath (I × J) (A × B))
_×↝_ = prod pathProd
-- pi types with exactly one level of reciprocals
data B0 : Set where
ONE : B0
PLUS0 : B0 → B0 → B0
TIMES0 : B0 → B0 → B0
data B1 : Set where
LIFT0 : B0 → B1
PLUS1 : B1 → B1 → B1
TIMES1 : B1 → B1 → B1
RECIP1 : B0 → B1
-- interpretation of B0 as discrete groupoids
record 0-type : Set₁ where
constructor G₀
field
∣_∣₀ : Set
open 0-type public
plus : 0-type → 0-type → 0-type
plus t₁ t₂ = G₀ (∣ t₁ ∣₀ ⊎ ∣ t₂ ∣₀)
times : 0-type → 0-type → 0-type
times t₁ t₂ = G₀ (∣ t₁ ∣₀ × ∣ t₂ ∣₀)
⟦_⟧₀ : B0 → 0-type
⟦ ONE ⟧₀ = G₀ ⊤
⟦ PLUS0 b₁ b₂ ⟧₀ = plus ⟦ b₁ ⟧₀ ⟦ b₂ ⟧₀
⟦ TIMES0 b₁ b₂ ⟧₀ = times ⟦ b₁ ⟧₀ ⟦ b₂ ⟧₀
ı₀ : B0 → Set
ı₀ b = ∣ ⟦ b ⟧₀ ∣₀
elems0 : (b : B0) → List (ı₀ b)
elems0 ONE = [ tt ]
elems0 (PLUS0 b b') = map inj₁ (elems0 b) ++ map inj₂ (elems0 b')
elems0 (TIMES0 b b') =
-- concatMap (λ a → map (λ b → (a , b)) (elems0 b')) (elems0 b)
prod _,_ (elems0 b) (elems0 b')
point : (b : B0) → ı₀ b
point ONE = tt
point (PLUS0 b _) = inj₁ (point b)
point (TIMES0 b₀ b₁) = point b₀ , point b₁
expand : ∀ {I} (b : B0) → ( ı₀ b → IPath I (ı₀ b)) → List (IPath I (ı₀ b))
expand x f = map f (elems0 x)
-- interpretation of B1 types as 2-types
record 1-type : Set₁ where
constructor G₂
field
I : Set
∣_∣₁ : Set
1-paths : List (IPath I ∣_∣₁)
open 1-type public
_⊎↝_ : {I J A B : Set} → List (IPath I A) → List (IPath J B) → List (IPath (I ⊎ J) (A ⊎ B))
p₁ ⊎↝ p₂ = map (ap inj₁ inj₁) p₁ ++ map (ap inj₂ inj₂) p₂
⟦_⟧₁ : B1 → 1-type
⟦ LIFT0 b0 ⟧₁ = G₂ ⊤ (ı₀ b0) (expand b0 id↝)
⟦ PLUS1 b₁ b₂ ⟧₁ with ⟦ b₁ ⟧₁ | ⟦ b₂ ⟧₁
... | G₂ I₁ 0p₁ 1p₁ | G₂ I₂ 0p₂ 1p₂ = G₂ (I₁ ⊎ I₂) (0p₁ ⊎ 0p₂) (1p₁ ⊎↝ 1p₂)
⟦ TIMES1 b₁ b₂ ⟧₁ with ⟦ b₁ ⟧₁ | ⟦ b₂ ⟧₁
... | G₂ I₁ 0p₁ 1p₁ | G₂ I₂ 0p₂ 1p₂ = G₂ (I₁ × I₂) (0p₁ × 0p₂) (1p₁ ×↝ 1p₂)
⟦ RECIP1 b0 ⟧₁ = G₂ (ı₀ (TIMES0 b0 b0)) ⊤ (prod (λ a b → _↝_ {i = a , b} tt tt) (elems0 b0) (elems0 b0) )
ı₁ : B1 → Set
ı₁ b = ∣ ⟦ b ⟧₁ ∣₁
test10 = ⟦ LIFT0 ONE ⟧₁
test11 = ⟦ LIFT0 (PLUS0 ONE ONE) ⟧₁
test12 = ⟦ RECIP1 (PLUS0 ONE ONE) ⟧₁
-- isos
data _⟷_ : B1 → B1 → Set where
-- +
swap₊ : { b₁ b₂ : B1 } → PLUS1 b₁ b₂ ⟷ PLUS1 b₂ b₁
-- *
unite⋆ : { b : B1 } → TIMES1 (LIFT0 ONE) b ⟷ b
uniti⋆ : { b : B1 } → b ⟷ TIMES1 (LIFT0 ONE) b
{- assocl₊ : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃
assocr₊ : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃)
swap⋆ : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷ TIMES b₂ b₁
assocl⋆ : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃
assocr⋆ : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃)
-- * distributes over +
dist : { b₁ b₂ b₃ : B } →
TIMES (PLUS b₁ b₂) b₃ ⟷ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃)
factor : { b₁ b₂ b₃ : B } →
PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷ TIMES (PLUS b₁ b₂) b₃
-- congruence
id⟷ : { b : B } → b ⟷ b
sym : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁)
_∘_ : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃)
_⊕_ : { b₁ b₂ b₃ b₄ : B } →
(b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄)
_⊗_ : { b₁ b₂ b₃ b₄ : B } →
(b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄)
-}
η⋆ : (b : B0) → LIFT0 ONE ⟷ TIMES1 (LIFT0 b) (RECIP1 b)
ε⋆ : (b : B0) → TIMES1 (LIFT0 b) (RECIP1 b) ⟷ LIFT0 ONE
-- interpret isos as functors
record 1-functor (A B : 1-type) : Set where
constructor F₁
field
find : I A → I B
fobj : ∣ A ∣₁ → ∣ B ∣₁
fmor : List (IPath (I A) ∣ A ∣₁) → List (IPath (I B) ∣ B ∣₁)
open 1-functor public
ipath : B1 → Set
ipath b = IPath (I ⟦ b ⟧₁) (ı₁ b)
swap⊎ : {A B : Set} → A ⊎ B → B ⊎ A
swap⊎ (inj₁ a) = inj₂ a
swap⊎ (inj₂ b) = inj₁ b
elim1⋆ : {b : B1} → ipath (TIMES1 (LIFT0 ONE) b) → ipath b
elim1⋆ (_↝_ {tt , x} (tt , y) (tt , z)) = _↝_ {i = x} y z
intro1⋆ : {b : B1} → ipath b → ipath (TIMES1 (LIFT0 ONE) b)
intro1⋆ (_↝_ {x} y z) = _↝_ {i = tt , x} (tt , y) (tt , z)
Iη⋆ : (b : B0) → I ⟦ LIFT0 ONE ⟧₁ → I ⟦ TIMES1 (LIFT0 b) (RECIP1 b) ⟧₁
Iη⋆ b tt = tt , (point b , point b)
Iε⋆ : (b : B0) → I ⟦ TIMES1 (LIFT0 b) (RECIP1 b) ⟧₁ → I ⟦ LIFT0 ONE ⟧₁
Iε⋆ b (tt , x) = tt
objη⋆ : (b : B0) → ı₁ (LIFT0 ONE) → ı₁ (TIMES1 (LIFT0 b) (RECIP1 b))
objη⋆ b tt = point b , tt
objε⋆ : (b : B0) → ı₁ (TIMES1 (LIFT0 b) (RECIP1 b)) → ı₁ (LIFT0 ONE)
objε⋆ b (x , tt) = tt
sw : {b₁ b₂ : B1} → ipath (PLUS1 b₁ b₂) → ipath (PLUS1 b₂ b₁)
sw (_↝_ {i} (inj₁ x) (inj₁ y)) = _↝_ {i = swap⊎ i} (inj₂ x) (inj₂ y)
sw (_↝_ {i} (inj₁ x) (inj₂ y)) = _↝_ {i = swap⊎ i} (inj₂ x) (inj₁ y)
sw (_↝_ {i} (inj₂ x) (inj₁ y)) = _↝_ {i = swap⊎ i} (inj₁ x) (inj₂ y)
sw (_↝_ {i} (inj₂ x) (inj₂ y)) = _↝_ {i = swap⊎ i} (inj₁ x) (inj₁ y)
elim1I : (b : B1) → I ⟦ TIMES1 (LIFT0 ONE) b ⟧₁ → I ⟦ b ⟧₁
elim1I b (tt , x) = x
elim1∣₁ : (b : B1) → ı₁ (TIMES1 (LIFT0 ONE) b) → ı₁ b
elim1∣₁ b (tt , x) = x
introI : (b : B1) → I ⟦ b ⟧₁ → I ⟦ TIMES1 (LIFT0 ONE) b ⟧₁
introI b x = (tt , x)
intro1∣₁ : (b : B1) → ı₁ b → ı₁ (TIMES1 (LIFT0 ONE) b)
intro1∣₁ b x = (tt , x)
eta : (b : B0) → List (ipath (LIFT0 ONE)) → List (ipath (TIMES1 (LIFT0 b) (RECIP1 b)))
-- note how the input list is not used at all!
eta b _ = prod (λ a a' → _↝_ {i = tt , a , a'} (a , tt) (a' , tt)) (elems0 b) (elems0 b)
eps : (b : B0) → ipath (TIMES1 (LIFT0 b) (RECIP1 b)) → ipath (LIFT0 ONE)
eps b0 (_↝_ {i = i} a b) = _↝_ tt tt
mutual
eval : {b₁ b₂ : B1} → (b₁ ⟷ b₂) → 1-functor ⟦ b₁ ⟧₁ ⟦ b₂ ⟧₁
eval (swap₊ {b₁} {b₂}) = F₁ swap⊎ swap⊎ (map (sw {b₁} {b₂}))
eval (unite⋆ {b}) = F₁ (elim1I b) (elim1∣₁ b) (map (elim1⋆ {b}))
eval (uniti⋆ {b}) = F₁ (introI b) (intro1∣₁ b) (map (intro1⋆ {b}))
eval (η⋆ b) = F₁ (Iη⋆ b) (objη⋆ b) (eta b )
eval (ε⋆ b) = F₁ (Iε⋆ b) (objε⋆ b) (map (eps b))
evalB : {b₁ b₂ : B1} → (b₁ ⟷ b₂) → 1-functor ⟦ b₂ ⟧₁ ⟦ b₁ ⟧₁
evalB (swap₊ {b₁} {b₂}) = F₁ swap⊎ swap⊎ (map (sw {b₂} {b₁}))
evalB (unite⋆ {b}) = F₁ (introI b) (intro1∣₁ b) (map (intro1⋆ {b}))
evalB (uniti⋆ {b}) = F₁ (elim1I b) (elim1∣₁ b) (map (elim1⋆ {b}))
evalB (η⋆ b) = F₁ (Iε⋆ b) (objε⋆ b) (map (eps b))
evalB (ε⋆ b) = F₁ (Iη⋆ b) (objη⋆ b) (eta b)
{- eval assocl₊ = ? -- : { b₁ b₂ b₃ : B } → PLUS b₁ (PLUS b₂ b₃) ⟷ PLUS (PLUS b₁ b₂) b₃
eval assocr₊ = ? -- : { b₁ b₂ b₃ : B } → PLUS (PLUS b₁ b₂) b₃ ⟷ PLUS b₁ (PLUS b₂ b₃)
eval uniti⋆ = ? -- : { b : B } → b ⟷ TIMES ONE b
eval swap⋆ = ? -- : { b₁ b₂ : B } → TIMES b₁ b₂ ⟷ TIMES b₂ b₁
eval assocl⋆ = ? -- : { b₁ b₂ b₃ : B } → TIMES b₁ (TIMES b₂ b₃) ⟷ TIMES (TIMES b₁ b₂) b₃
eval assocr⋆ = ? -- : { b₁ b₂ b₃ : B } → TIMES (TIMES b₁ b₂) b₃ ⟷ TIMES b₁ (TIMES b₂ b₃)
eval dist = ? -- : { b₁ b₂ b₃ : B } → TIMES (PLUS b₁ b₂) b₃ ⟷ PLUS (TIMES b₁ b₃) (TIMES b₂ b₃)
eval factor = ? -- : { b₁ b₂ b₃ : B } → PLUS (TIMES b₁ b₃) (TIMES b₂ b₃) ⟷ TIMES (PLUS b₁ b₂) b₃
eval id⟷ = ? -- : { b : B } → b ⟷ b
eval (sym c) = ? -- : { b₁ b₂ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₁)
eval (c₁ ∘ c₂) = ? -- : { b₁ b₂ b₃ : B } → (b₁ ⟷ b₂) → (b₂ ⟷ b₃) → (b₁ ⟷ b₃)
eval (c₁ ⊕ c₂) = ? -- : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (PLUS b₁ b₂ ⟷ PLUS b₃ b₄)
eval (c₁ ⊗ c₂) = ? -- : { b₁ b₂ b₃ b₄ : B } → (b₁ ⟷ b₃) → (b₂ ⟷ b₄) → (TIMES b₁ b₂ ⟷ TIMES b₃ b₄)
---------------------------------------------------------------------------
--}
| {
"alphanum_fraction": 0.5006035732,
"avg_line_length": 33.4032258065,
"ext": "agda",
"hexsha": "2d807ef329adec3acae8cf2cde00af97be8fb82d",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2019-09-10T09:47:13.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-29T01:56:33.000Z",
"max_forks_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "JacquesCarette/pi-dual",
"max_forks_repo_path": "F1a.agda",
"max_issues_count": 4,
"max_issues_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_issues_repo_issues_event_max_datetime": "2021-10-29T20:41:23.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-06-07T16:27:41.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "JacquesCarette/pi-dual",
"max_issues_repo_path": "F1a.agda",
"max_line_length": 105,
"max_stars_count": 14,
"max_stars_repo_head_hexsha": "003835484facfde0b770bc2b3d781b42b76184c1",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "JacquesCarette/pi-dual",
"max_stars_repo_path": "F1a.agda",
"max_stars_repo_stars_event_max_datetime": "2021-05-05T01:07:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-18T21:40:15.000Z",
"num_tokens": 4405,
"size": 8284
} |
open import Agda.Primitive using (lzero; lsuc; _⊔_)
open import Relation.Binary.PropositionalEquality
open import Relation.Binary using (Setoid)
import SecondOrder.Arity
import SecondOrder.Signature
import SecondOrder.Metavariable
import SecondOrder.Renaming
import SecondOrder.Term
import SecondOrder.Substitution
import SecondOrder.Instantiation
import SecondOrder.Theory
module SecondOrder.Equality
{ℓ ℓa}
{𝔸 : SecondOrder.Arity.Arity}
{Σ : SecondOrder.Signature.Signature ℓ 𝔸}
(𝕋 : SecondOrder.Theory.Theory Σ ℓa)
where
open SecondOrder.Metavariable Σ
open SecondOrder.Renaming Σ
open SecondOrder.Term Σ
open SecondOrder.Substitution Σ
open SecondOrder.Signature.Signature Σ
open SecondOrder.Instantiation Σ
open SecondOrder.Theory.Theory 𝕋
record Equation : Set (lsuc ℓ) where
constructor make-eq
field
eq-mv-ctx : MContext -- metavariable context of an equation
eq-ctx : VContext -- variable context of an equation
eq-sort : sort -- sort of an equation
eq-lhs : Term eq-mv-ctx eq-ctx eq-sort -- left-hand side
eq-rhs : Term eq-mv-ctx eq-ctx eq-sort -- right-hand side
infix 5 make-eq
syntax make-eq Θ Γ A s t = Θ ⊕ Γ ∥ s ≋ t ⦂ A
-- Instantiate an axiom of 𝕋 to an equation
instantiate-axiom : ∀ (ε : ax) {Θ Γ} (I : ax-mv-ctx ε ⇒ⁱ Θ ⊕ Γ) → Equation
instantiate-axiom ε {Θ} {Γ} I =
Θ ⊕ Γ ∥ [ I ]ⁱ (ax-lhs ε) ≋ [ I ]ⁱ (ax-rhs ε) ⦂ ax-sort ε
-- The equality judgement
infix 4 ⊢_
data ⊢_ : Equation → Set (lsuc (ℓ ⊔ ℓa)) where
-- general rules
eq-refl : ∀ {Θ Γ A} {t : Term Θ Γ A} → ⊢ Θ ⊕ Γ ∥ t ≋ t ⦂ A
eq-symm : ∀ {Θ Γ A} {s t : Term Θ Γ A} → ⊢ Θ ⊕ Γ ∥ s ≋ t ⦂ A → ⊢ Θ ⊕ Γ ∥ t ≋ s ⦂ A
eq-trans : ∀ {Θ Γ A} {s t u : Term Θ Γ A} → ⊢ Θ ⊕ Γ ∥ s ≋ t ⦂ A → ⊢ Θ ⊕ Γ ∥ t ≋ u ⦂ A → ⊢ Θ ⊕ Γ ∥ s ≋ u ⦂ A
-- Congruence rule for operations
-- the premises are: an operation f, two sets of arguments xs, ys of f that give
-- for each argument of f a term in the extended context with the arguments that f binds
-- such that xᵢ ≋ yᵢ for each i ∈ oper-arity f
-- then f xs ≋ f ys (in the appropriate context)
eq-oper : ∀ {Γ Θ} {f : oper}
{xs ys : ∀ (i : oper-arg f) → Term Θ (Γ ,, arg-bind f i) (arg-sort f i)}
→ (∀ i → ⊢ Θ ⊕ (Γ ,, arg-bind f i) ∥ (xs i) ≋ (ys i) ⦂ (arg-sort f i))
→ ⊢ Θ ⊕ Γ ∥ (tm-oper f xs) ≋ (tm-oper f ys) ⦂ (oper-sort f)
-- Congruence rule for metavariables
-- the permises are: a meta-variable M, and two sets of arguments of the appropriate
-- sorts and arities to apply M, such that xᵢ ≋ yᵢ
-- then M xs ≋ M ys
eq-meta : ∀ {Γ Θ} {Γᴹ Aᴹ} {M : [ Γᴹ , Aᴹ ]∈ Θ} {xs ys : ∀ {B : sort} (i : B ∈ Γᴹ) → Term Θ Γ B}
→ (∀ {B : sort} (i : B ∈ Γᴹ)
→ ⊢ Θ ⊕ Γ ∥ (xs i) ≋ (ys i) ⦂ B)
→ ⊢ Θ ⊕ Γ ∥ (tm-meta M xs) ≋ (tm-meta M ys) ⦂ Aᴹ
-- equational axiom
eq-axiom : ∀ (ε : ax) {Θ Γ} (I : ax-mv-ctx ε ⇒ⁱ Θ ⊕ Γ) → ⊢ instantiate-axiom ε I
-- Syntactically equal terms are judgementally equal
≈-≋ : ∀ {Θ Γ A} {s t : Term Θ Γ A} → s ≈ t → ⊢ Θ ⊕ Γ ∥ s ≋ t ⦂ A
≈-≋ (≈-≡ refl) = eq-refl
≈-≋ (≈-meta ξ) = eq-meta (λ i → ≈-≋ (ξ i))
≈-≋ (≈-oper ξ) = eq-oper (λ i → ≈-≋ (ξ i))
-- terms and judgemental equality form a setoid
eq-setoid : ∀ (Γ : VContext) (Θ : MContext) (A : sort) → Setoid ℓ (lsuc (ℓ ⊔ ℓa))
eq-setoid Γ Θ A =
record
{ Carrier = Term Θ Γ A
; _≈_ = λ s t → ⊢ Θ ⊕ Γ ∥ s ≋ t ⦂ A
; isEquivalence =
record
{ refl = eq-refl
; sym = eq-symm
; trans = eq-trans
}
}
-- judgemental equality of substitutions
_≋ˢ_ : ∀ {Θ Γ Δ} (σ τ : Θ ⊕ Γ ⇒ˢ Δ) → Set (lsuc (ℓ ⊔ ℓa))
_≋ˢ_ {Θ} {Γ} {Δ} σ τ = ∀ {A} (x : A ∈ Γ) → ⊢ Θ ⊕ Δ ∥ σ x ≋ τ x ⦂ A
≈ˢ-≋ˢ : ∀ {Θ Γ Δ} {σ τ : Θ ⊕ Γ ⇒ˢ Δ} → σ ≈ˢ τ → σ ≋ˢ τ
≈ˢ-≋ˢ ξ = λ x → ≈-≋ (ξ x)
-- judgemental equality of metavariable instatiations
_≋ⁱ_ : ∀ {Θ Ξ Γ} (I J : Θ ⇒ⁱ Ξ ⊕ Γ) → Set (lsuc (ℓ ⊔ ℓa))
_≋ⁱ_ {Θ} {Ξ} {Γ} I J = ∀ {Γᴹ Aᴹ} (M : [ Γᴹ , Aᴹ ]∈ Θ) → ⊢ Ξ ⊕ (Γ ,, Γᴹ) ∥ I M ≋ J M ⦂ Aᴹ
| {
"alphanum_fraction": 0.5483634587,
"avg_line_length": 37.5596330275,
"ext": "agda",
"hexsha": "d644571959ee97fa24257cc912eecbf2e4fd9f06",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejbauer/formaltt",
"max_forks_repo_path": "src/SecondOrder/Equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejbauer/formaltt",
"max_issues_repo_path": "src/SecondOrder/Equality.agda",
"max_line_length": 111,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "2aaf850bb1a262681c5a232cdefae312f921b9d4",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejbauer/formal",
"max_stars_repo_path": "src/SecondOrder/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-04-18T18:21:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-04-18T18:21:00.000Z",
"num_tokens": 1756,
"size": 4094
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Lexicographic ordering of lists
------------------------------------------------------------------------
-- The definition of lexicographic ordering used here is suitable if
-- the argument order is a strict partial order. The lexicographic
-- ordering itself can be either strict or non-strict, depending on
-- the value of a parameter.
module Relation.Binary.List.StrictLex where
open import Data.Empty
open import Data.Unit using (⊤; tt)
open import Function
open import Data.Product
open import Data.Sum
open import Data.List
open import Level
open import Relation.Nullary
open import Relation.Binary
open import Relation.Binary.Consequences
open import Relation.Binary.List.Pointwise as Pointwise
using ([]; _∷_; head; tail)
module _ {A : Set} where
data Lex (P : Set) (_≈_ _<_ : Rel A zero) : Rel (List A) zero where
base : P → Lex P _≈_ _<_ [] []
halt : ∀ {y ys} → Lex P _≈_ _<_ [] (y ∷ ys)
this : ∀ {x xs y ys} (x<y : x < y) → Lex P _≈_ _<_ (x ∷ xs) (y ∷ ys)
next : ∀ {x xs y ys} (x≈y : x ≈ y)
(xs⊴ys : Lex P _≈_ _<_ xs ys) → Lex P _≈_ _<_ (x ∷ xs) (y ∷ ys)
-- Strict lexicographic ordering.
Lex-< : (_≈_ _<_ : Rel A zero) → Rel (List A) zero
Lex-< = Lex ⊥
¬[]<[] : ∀ {_≈_ _<_} → ¬ Lex-< _≈_ _<_ [] []
¬[]<[] (base ())
-- Non-strict lexicographic ordering.
Lex-≤ : (_≈_ _<_ : Rel A zero) → Rel (List A) zero
Lex-≤ = Lex ⊤
-- Utilities.
¬≤-this : ∀ {P _≈_ _<_ x y xs ys} → ¬ (x ≈ y) → ¬ (x < y) →
¬ Lex P _≈_ _<_ (x ∷ xs) (y ∷ ys)
¬≤-this ¬x≈y ¬x<y (this x<y) = ¬x<y x<y
¬≤-this ¬x≈y ¬x<y (next x≈y xs⊴ys) = ¬x≈y x≈y
¬≤-next : ∀ {P _≈_ _<_ x y xs ys} →
¬ (x < y) → ¬ Lex P _≈_ _<_ xs ys →
¬ Lex P _≈_ _<_ (x ∷ xs) (y ∷ ys)
¬≤-next ¬x<y ¬xs⊴ys (this x<y) = ¬x<y x<y
¬≤-next ¬x<y ¬xs⊴ys (next x≈y xs⊴ys) = ¬xs⊴ys xs⊴ys
----------------------------------------------------------------------
-- Properties
≤-reflexive : ∀ _≈_ _<_ → Pointwise.Rel _≈_ ⇒ Lex-≤ _≈_ _<_
≤-reflexive _≈_ _<_ [] = base tt
≤-reflexive _≈_ _<_ (x≈y ∷ xs≈ys) =
next x≈y (≤-reflexive _≈_ _<_ xs≈ys)
<-irreflexive : ∀ {_≈_ _<_} → Irreflexive _≈_ _<_ →
Irreflexive (Pointwise.Rel _≈_) (Lex-< _≈_ _<_)
<-irreflexive irr [] (base ())
<-irreflexive irr (x≈y ∷ xs≈ys) (this x<y) = irr x≈y x<y
<-irreflexive irr (x≈y ∷ xs≈ys) (next x≊y xs⊴ys) =
<-irreflexive irr xs≈ys xs⊴ys
transitive : ∀ {P _≈_ _<_} →
IsEquivalence _≈_ → _<_ Respects₂ _≈_ → Transitive _<_ →
Transitive (Lex P _≈_ _<_)
transitive {P} {_≈_} {_<_} eq resp tr = trans
where
trans : Transitive (Lex P _≈_ _<_)
trans (base p) (base _) = base p
trans (base y) halt = halt
trans halt (this y<z) = halt
trans halt (next y≈z ys⊴zs) = halt
trans (this x<y) (this y<z) = this (tr x<y y<z)
trans (this x<y) (next y≈z ys⊴zs) = this (proj₁ resp y≈z x<y)
trans (next x≈y xs⊴ys) (this y<z) =
this (proj₂ resp (IsEquivalence.sym eq x≈y) y<z)
trans (next x≈y xs⊴ys) (next y≈z ys⊴zs) =
next (IsEquivalence.trans eq x≈y y≈z) (trans xs⊴ys ys⊴zs)
antisymmetric :
∀ {P _≈_ _<_} →
Symmetric _≈_ → Irreflexive _≈_ _<_ → Asymmetric _<_ →
Antisymmetric (Pointwise.Rel _≈_) (Lex P _≈_ _<_)
antisymmetric {P} {_≈_} {_<_} sym ir asym = as
where
as : Antisymmetric (Pointwise.Rel _≈_) (Lex P _≈_ _<_)
as (base _) (base _) = []
as halt ()
as (this x<y) (this y<x) = ⊥-elim (asym x<y y<x)
as (this x<y) (next y≈x ys⊴xs) = ⊥-elim (ir (sym y≈x) x<y)
as (next x≈y xs⊴ys) (this y<x) = ⊥-elim (ir (sym x≈y) y<x)
as (next x≈y xs⊴ys) (next y≈x ys⊴xs) = x≈y ∷ as xs⊴ys ys⊴xs
<-asymmetric : ∀ {_≈_ _<_} →
Symmetric _≈_ → _<_ Respects₂ _≈_ → Asymmetric _<_ →
Asymmetric (Lex-< _≈_ _<_)
<-asymmetric {_≈_} {_<_} sym resp as = asym
where
irrefl : Irreflexive _≈_ _<_
irrefl = asym⟶irr resp sym as
asym : Asymmetric (Lex-< _≈_ _<_)
asym (base bot) _ = bot
asym halt ()
asym (this x<y) (this y<x) = as x<y y<x
asym (this x<y) (next y≈x ys⊴xs) = irrefl (sym y≈x) x<y
asym (next x≈y xs⊴ys) (this y<x) = irrefl (sym x≈y) y<x
asym (next x≈y xs⊴ys) (next y≈x ys⊴xs) = asym xs⊴ys ys⊴xs
respects₂ : ∀ {P _≈_ _<_} →
IsEquivalence _≈_ → _<_ Respects₂ _≈_ →
Lex P _≈_ _<_ Respects₂ Pointwise.Rel _≈_
respects₂ {P} {_≈_} {_<_} eq resp =
(λ {xs} {ys} {zs} → resp¹ {xs} {ys} {zs}) ,
(λ {xs} {ys} {zs} → resp² {xs} {ys} {zs})
where
resp¹ : ∀ {xs} → Lex P _≈_ _<_ xs Respects Pointwise.Rel _≈_
resp¹ [] xs⊴[] = xs⊴[]
resp¹ (x≈y ∷ xs≈ys) halt = halt
resp¹ (x≈y ∷ xs≈ys) (this z<x) = this (proj₁ resp x≈y z<x)
resp¹ (x≈y ∷ xs≈ys) (next z≈x zs⊴xs) =
next (Eq.trans z≈x x≈y) (resp¹ xs≈ys zs⊴xs)
where module Eq = IsEquivalence eq
resp² : ∀ {ys} → flip (Lex P _≈_ _<_) ys Respects Pointwise.Rel _≈_
resp² [] []⊴ys = []⊴ys
resp² (x≈z ∷ xs≈zs) (this x<y) = this (proj₂ resp x≈z x<y)
resp² (x≈z ∷ xs≈zs) (next x≈y xs⊴ys) =
next (Eq.trans (Eq.sym x≈z) x≈y) (resp² xs≈zs xs⊴ys)
where module Eq = IsEquivalence eq
decidable : ∀ {P _≈_ _<_} →
Dec P → Decidable _≈_ → Decidable _<_ →
Decidable (Lex P _≈_ _<_)
decidable (yes p) dec-≈ dec-< [] [] = yes (base p)
decidable (no ¬p) dec-≈ dec-< [] [] = no λ{(base p) → ¬p p}
decidable dec-P dec-≈ dec-< [] (y ∷ ys) = yes halt
decidable dec-P dec-≈ dec-< (x ∷ xs) [] = no (λ ())
decidable dec-P dec-≈ dec-< (x ∷ xs) (y ∷ ys) with dec-< x y
... | yes x<y = yes (this x<y)
... | no ¬x<y with dec-≈ x y
... | no ¬x≈y = no (¬≤-this ¬x≈y ¬x<y)
... | yes x≈y with decidable dec-P dec-≈ dec-< xs ys
... | yes xs⊴ys = yes (next x≈y xs⊴ys)
... | no ¬xs⊴ys = no (¬≤-next ¬x<y ¬xs⊴ys)
<-decidable :
∀ {_≈_ _<_} →
Decidable _≈_ → Decidable _<_ → Decidable (Lex-< _≈_ _<_)
<-decidable = decidable (no id)
≤-decidable :
∀ {_≈_ _<_} →
Decidable _≈_ → Decidable _<_ → Decidable (Lex-≤ _≈_ _<_)
≤-decidable = decidable (yes tt)
-- Note that trichotomy is an unnecessarily strong precondition for
-- the following lemma.
≤-total :
∀ {_≈_ _<_} →
Symmetric _≈_ → Trichotomous _≈_ _<_ → Total (Lex-≤ _≈_ _<_)
≤-total {_≈_} {_<_} sym tri = total
where
total : Total (Lex-≤ _≈_ _<_)
total [] [] = inj₁ (base tt)
total [] (x ∷ xs) = inj₁ halt
total (x ∷ xs) [] = inj₂ halt
total (x ∷ xs) (y ∷ ys) with tri x y
... | tri< x<y _ _ = inj₁ (this x<y)
... | tri> _ _ y<x = inj₂ (this y<x)
... | tri≈ _ x≈y _ with total xs ys
... | inj₁ xs≲ys = inj₁ (next x≈y xs≲ys)
... | inj₂ ys≲xs = inj₂ (next (sym x≈y) ys≲xs)
<-compare : ∀ {_≈_ _<_} →
Symmetric _≈_ → Trichotomous _≈_ _<_ →
Trichotomous (Pointwise.Rel _≈_) (Lex-< _≈_ _<_)
<-compare {_≈_} {_<_} sym tri = cmp
where
cmp : Trichotomous (Pointwise.Rel _≈_) (Lex-< _≈_ _<_)
cmp [] [] = tri≈ ¬[]<[] [] ¬[]<[]
cmp [] (y ∷ ys) = tri< halt (λ ()) (λ ())
cmp (x ∷ xs) [] = tri> (λ ()) (λ ()) halt
cmp (x ∷ xs) (y ∷ ys) with tri x y
... | tri< x<y ¬x≈y ¬y<x =
tri< (this x<y) (¬x≈y ∘ head) (¬≤-this (¬x≈y ∘ sym) ¬y<x)
... | tri> ¬x<y ¬x≈y y<x =
tri> (¬≤-this ¬x≈y ¬x<y) (¬x≈y ∘ head) (this y<x)
... | tri≈ ¬x<y x≈y ¬y<x with cmp xs ys
... | tri< xs<ys ¬xs≈ys ¬ys<xs =
tri< (next x≈y xs<ys) (¬xs≈ys ∘ tail) (¬≤-next ¬y<x ¬ys<xs)
... | tri≈ ¬xs<ys xs≈ys ¬ys<xs =
tri≈ (¬≤-next ¬x<y ¬xs<ys) (x≈y ∷ xs≈ys) (¬≤-next ¬y<x ¬ys<xs)
... | tri> ¬xs<ys ¬xs≈ys ys<xs =
tri> (¬≤-next ¬x<y ¬xs<ys) (¬xs≈ys ∘ tail) (next (sym x≈y) ys<xs)
-- Some collections of properties which are preserved by Lex-≤ or
-- Lex-<.
≤-isPreorder : ∀ {_≈_ _<_} →
IsEquivalence _≈_ → Transitive _<_ → _<_ Respects₂ _≈_ →
IsPreorder (Pointwise.Rel _≈_) (Lex-≤ _≈_ _<_)
≤-isPreorder {_≈_} {_<_} eq tr resp = record
{ isEquivalence = Pointwise.isEquivalence eq
; reflexive = ≤-reflexive _≈_ _<_
; trans = transitive eq resp tr
}
≤-isPartialOrder : ∀ {_≈_ _<_} →
IsStrictPartialOrder _≈_ _<_ →
IsPartialOrder (Pointwise.Rel _≈_) (Lex-≤ _≈_ _<_)
≤-isPartialOrder {_≈_} {_<_} spo = record
{ isPreorder = ≤-isPreorder isEquivalence trans <-resp-≈
; antisym = antisymmetric Eq.sym irrefl
(trans∧irr⟶asym {_≈_ = _≈_} {_<_ = _<_}
Eq.refl trans irrefl)
} where open IsStrictPartialOrder spo
≤-isTotalOrder : ∀ {_≈_ _<_} →
IsStrictTotalOrder _≈_ _<_ →
IsTotalOrder (Pointwise.Rel _≈_) (Lex-≤ _≈_ _<_)
≤-isTotalOrder sto = record
{ isPartialOrder =
≤-isPartialOrder (record
{ isEquivalence = isEquivalence
; irrefl = tri⟶irr <-resp-≈ Eq.sym compare
; trans = trans
; <-resp-≈ = <-resp-≈
})
; total = ≤-total Eq.sym compare
} where open IsStrictTotalOrder sto
≤-isDecTotalOrder : ∀ {_≈_ _<_} →
IsStrictTotalOrder _≈_ _<_ →
IsDecTotalOrder (Pointwise.Rel _≈_) (Lex-≤ _≈_ _<_)
≤-isDecTotalOrder sto = record
{ isTotalOrder = ≤-isTotalOrder sto
; _≟_ = Pointwise.decidable _≟_
; _≤?_ = ≤-decidable _≟_ (tri⟶dec< compare)
} where open IsStrictTotalOrder sto
<-isStrictPartialOrder
: ∀ {_≈_ _<_} → IsStrictPartialOrder _≈_ _<_ →
IsStrictPartialOrder (Pointwise.Rel _≈_) (Lex-< _≈_ _<_)
<-isStrictPartialOrder spo = record
{ isEquivalence = Pointwise.isEquivalence isEquivalence
; irrefl = <-irreflexive irrefl
; trans = transitive isEquivalence <-resp-≈ trans
; <-resp-≈ = respects₂ isEquivalence <-resp-≈
} where open IsStrictPartialOrder spo
<-isStrictTotalOrder
: ∀ {_≈_ _<_} → IsStrictTotalOrder _≈_ _<_ →
IsStrictTotalOrder (Pointwise.Rel _≈_) (Lex-< _≈_ _<_)
<-isStrictTotalOrder sto = record
{ isEquivalence = Pointwise.isEquivalence isEquivalence
; trans = transitive isEquivalence <-resp-≈ trans
; compare = <-compare Eq.sym compare
; <-resp-≈ = respects₂ isEquivalence <-resp-≈
} where open IsStrictTotalOrder sto
-- "Packages" (e.g. preorders) can also be handled.
≤-preorder : Preorder _ _ _ → Preorder _ _ _
≤-preorder pre = record
{ isPreorder = ≤-isPreorder isEquivalence trans ∼-resp-≈
} where open Preorder pre
≤-partialOrder : StrictPartialOrder _ _ _ → Poset _ _ _
≤-partialOrder spo = record
{ isPartialOrder = ≤-isPartialOrder isStrictPartialOrder
} where open StrictPartialOrder spo
≤-decTotalOrder : StrictTotalOrder _ _ _ → DecTotalOrder _ _ _
≤-decTotalOrder sto = record
{ isDecTotalOrder = ≤-isDecTotalOrder isStrictTotalOrder
} where open StrictTotalOrder sto
<-strictPartialOrder :
StrictPartialOrder _ _ _ → StrictPartialOrder _ _ _
<-strictPartialOrder spo = record
{ isStrictPartialOrder = <-isStrictPartialOrder isStrictPartialOrder
} where open StrictPartialOrder spo
<-strictTotalOrder : StrictTotalOrder _ _ _ → StrictTotalOrder _ _ _
<-strictTotalOrder sto = record
{ isStrictTotalOrder = <-isStrictTotalOrder isStrictTotalOrder
} where open StrictTotalOrder sto
| {
"alphanum_fraction": 0.5205547712,
"avg_line_length": 39.6085526316,
"ext": "agda",
"hexsha": "c2dc3cfce968dd0438c3f1c3df97335422b92158",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "qwe2/try-agda",
"max_forks_repo_path": "agda-stdlib-0.9/src/Relation/Binary/List/StrictLex.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "qwe2/try-agda",
"max_issues_repo_path": "agda-stdlib-0.9/src/Relation/Binary/List/StrictLex.agda",
"max_line_length": 77,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "9d4c43b1609d3f085636376fdca73093481ab882",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "qwe2/try-agda",
"max_stars_repo_path": "agda-stdlib-0.9/src/Relation/Binary/List/StrictLex.agda",
"max_stars_repo_stars_event_max_datetime": "2016-10-20T15:52:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2016-10-20T15:52:05.000Z",
"num_tokens": 4610,
"size": 12041
} |
open import Relation.Binary.PropositionalEquality
module Experiments.STLCRef
(funext : ∀ {a b} → Extensionality a b) where
open import Level
open import Data.Nat
open import Data.Unit as Unit
open import Data.List
open import Data.List.Most
open import Data.Product
open import Data.Maybe as Maybe hiding (All)
open import Function as Fun using (case_of_)
import Relation.Binary.PropositionalEquality as PEq
open PEq.≡-Reasoning
data Ty : Set where
unit : Ty
arrow : (a b : Ty) → Ty
ref : Ty → Ty
open import Experiments.Category (⊑-preorder {A = Ty})
Ctx = List Ty
StoreTy = List Ty
data Expr (Γ : List Ty) : Ty → Set where
var : ∀ {t} → t ∈ Γ → Expr Γ t
ƛ : ∀ {a b} → Expr (a ∷ Γ) b → Expr Γ (arrow a b)
app : ∀ {a b} → Expr Γ (arrow a b) → Expr Γ a → Expr Γ b
unit : Expr Γ unit
ref : ∀ {t} → Expr Γ t → Expr Γ (ref t)
!_ : ∀ {t} → Expr Γ (ref t) → Expr Γ t
_≔_ : ∀ {t} → Expr Γ (ref t) → Expr Γ t → Expr Γ unit
mutual
Env : (Γ : Ctx)(Σ : StoreTy) → Set
Env Γ Σ = All (λ t → Val t Σ) Γ
data Val : Ty → List Ty → Set where
unit : ∀ {Σ} → Val unit Σ
⟨_,_⟩ : ∀ {Σ Γ a b} → Expr (a ∷ Γ) b → Env Γ Σ → Val (arrow a b) Σ
loc : ∀ {Σ t} → t ∈ Σ → Val (ref t) Σ
weaken-all : ∀ {i}{A : Set i}{j}{B : Set j}{xs : List B}
{k}{C : B → List A → Set k}( wₐ : ∀ {x} {bs cs} → bs ⊑ cs → C x bs → C x cs) →
∀ {bs cs} → bs ⊑ cs → All (λ x → C x bs) xs → All (λ x → C x cs) xs
weaken-all wₐ ext x = map-all (λ y → wₐ ext y) x
mutual
weaken-val : ∀ {a : Ty}{Σ Σ' : StoreTy} → Σ ⊑ Σ' → Val a Σ → Val a Σ'
weaken-val ext unit = unit
weaken-val ext ⟨ e , E ⟩ = ⟨ e , weaken-env ext E ⟩
weaken-val ext (loc l) = loc (∈-⊒ l ext)
weaken-env : ∀ {Γ}{Σ Σ' : StoreTy} → Σ ⊑ Σ' → Env Γ Σ → Env Γ Σ'
weaken-env ext (v ∷ vs) = weaken-val ext v ∷ weaken-env ext vs
weaken-env ext [] = []
-- weaken-env : ∀ {Γ}{Σ Σ' : StoreTy} → Σ ⊑ Σ' → Env Γ Σ → Env Γ Σ'
-- weaken-env ext E = weaken-all weaken-val ext E
import Relation.Binary.HeterogeneousEquality as H
mutual
clo-cong : ∀ {Γ a t Σ}{e e' : Expr (a ∷ Γ) t}{E E' : Env Γ Σ} →
e ≡ e' → E ≡ E' → ⟨ e , E ⟩ ≡ ⟨ e' , E' ⟩
clo-cong refl refl = refl
mono-val-refl : ∀ {t c}{ext : c ⊑ c}(p : Val t c) →
weaken-val ext p ≡ p
mono-val-refl unit = refl
mono-val-refl ⟨ e , E ⟩ = clo-cong refl (mono-env-refl E)
mono-val-refl (loc l) = {!!}
mono-env-refl : ∀ {Γ c}{ext : c ⊑ c}(p : Env Γ c) →
weaken-env ext p ≡ p
mono-env-refl [] = refl
mono-env-refl (v ∷ vs) = {!!}
Val' : Ty → MP₀
Val' t = mp (Val t)
(record { monotone = weaken-val ;
monotone-refl = mono-val-refl ;
monotone-trans = {!!} })
Env' : List Ty → MP₀
Env' Γ = mp (Env Γ)
(record { monotone = weaken-env ;
monotone-refl = mono-env-refl ;
monotone-trans = {!!} })
open import Experiments.StrongMonad Ty Val' funext
meq' : ∀ {Σ' b}{B : World → Set b}{Γ}{f g : (Σ : World) → Σ' ⊑ Σ → Env' Γ · Σ → Store Σ → B Σ} →
(∀ Σ → (ext : Σ' ⊑ Σ) → (E : Env' Γ · Σ) → (μ : Store Σ) → f Σ ext E μ ≡ g Σ ext E μ) →
f ≡ g
meq' p = funext λ Σ → funext λ ext → funext λ E → funext λ μ → p Σ ext E μ
M' : ∀ {ℓ} → List Ty → MP ℓ → MP ℓ
M' Γ P = mp (λ Σ → ∀ Σ₁ → Σ ⊑ Σ₁ → Env' Γ · Σ₁ → Store Σ₁ →
Maybe (∃ λ Σ₂ → Σ₂ ⊒ Σ₁ × Store Σ₂ × P · Σ₂))
record {
monotone = λ w₀ f Σ w₁ E μ → f Σ (⊑-trans w₀ w₁) E μ ;
monotone-refl = λ f → meq' (λ Σ₁ _ E μ → cong (λ u → f Σ₁ u E μ) ⊑-trans-refl) ;
monotone-trans = λ f w₀ w₁ → meq' (λ Σ₁ w₂ E μ → cong (λ u → f Σ₁ u E μ) (sym ⊑-trans-assoc))
}
Const : ∀ (T : Set) → MP₀
Const T = mp (λ _ → T) ((record {
monotone = λ x x₁ → x₁ ;
monotone-refl = λ _ → refl ;
monotone-trans = λ _ _ _ → refl
}))
-- one : ∀ {Γ} → M' Γ One
-- one = ?
η' : ∀ {Γ}{p}(P : MP p) → P ⇒ M' Γ P
η' P =
mk⇒
(λ p Σ ext _ μ → just (Σ , ⊑-refl , μ , MP.monotone P ext p))
(λ c~c' {p} → begin
(λ z ext E μ → just (z , ⊑-refl , μ , MP.monotone P ext (MP.monotone P c~c' p)))
≡⟨ meq' (λ z ext E μ → cong (λ u → just (z , ⊑-refl , μ , u)) (sym (MP.monotone-trans P p c~c' ext))) ⟩
(λ z ext E μ → just (z , ⊑-refl , μ , MP.monotone P (⊑-trans c~c' ext) p))
≡⟨ refl ⟩
MP.monotone (M' _ P) c~c' (λ z ext E μ → just (z , ⊑-refl , μ , MP.monotone P ext p))
∎)
-- necessary because Agda's unification is shaky for pattern matching
-- lambdas
join : ∀ {l}{a : Set l} → Maybe (Maybe a) → Maybe a
join nothing = nothing
join (just nothing) = nothing
join (just (just x)) = just x
μ' : ∀ {Γ}{p}(P : MP p) → M' Γ (M' Γ P) ⇒ M' Γ P
μ' P = mk⇒
(λ pc Σ₁ ext E μ →
join (case pc Σ₁ ext E μ of (Maybe.map (λ{
(Σ₂ , ext₁ , μ₁ , f) →
case f Σ₂ ⊑-refl (weaken-env ext₁ E) μ₁ of (Maybe.map (λ{
(Σ₃ , ext₂ , μ₂ , v) →
Σ₃ , ⊑-trans ext₁ ext₂ , μ₂ , v
}))
}))))
(λ c~c' → refl)
fmap' : ∀ {Γ p q}{P : MP p}{Q : MP q} → (P ⇒ Q) → M' Γ P ⇒ M' Γ Q
fmap' F = mk⇒
(λ x Σ₁ ext E μ → case x Σ₁ ext E μ of Maybe.map (λ{
(Σ₂ , ext₁ , μ₁ , v) → Σ₂ , ext₁ , μ₁ , apply F v
}))
(λ c~c' → refl)
bind' : ∀ {p q}{P : MP p}{Q : MP q}{Γ} → (P ⇒ M' Γ Q) → M' Γ P ⇒ M' Γ Q
bind' {Q = Q} F = μ' Q ∘ fmap' F
-- mbind : ∀ {p q}{P : MP p}{Q : MP q}{Γ Σ} →
-- M' Γ P · Σ →
-- (∀ {Σ'} → P · Σ' → M' Γ Q · Σ') → M' Γ Q · Σ
-- mbind f g Σ ext E μ =
-- case (f Σ ext E μ) of (λ{
-- nothing → nothing
-- ; (just (Σ₁ , ext₁ , μ₁ , v)) →
-- bind'
-- case g v Σ₁ ⊑-refl (weaken-env ext₁ E) μ₁ of (λ{
-- nothing → nothing
-- ; (just (Σ₂ , ext₂ , μ₂ , v')) →
-- just (Σ₂ , ⊑-trans ext₁ ext₂ , μ₂ , v')
-- })
-- })
mbind : ∀ {p q}{P : MP p}{Q : MP q}{Γ Σ} →
M' Γ P · Σ → (P ⇒ M' Γ Q) → M' Γ Q · Σ
mbind {_} {_} {P} {Q} f g =
apply (bind' {_} {_} {P} {Q} g) f
return : ∀ {p}{P : MP p}{Γ Σ} → P · Σ → M' Γ P · Σ
return {_} {P} p = apply (η' P) p
timeout : ∀ {P Q : MP₀}{Γ} → P ⇒ M' Γ Q
timeout = mk⇒ (λ _ _ _ _ _ → nothing) (λ _ → refl)
getEnv : ∀ {Γ Σ} → M' Γ (Env' Γ) · Σ
getEnv {Γ} Σ ext E μ = (return {_} {Env' Γ} E) Σ ⊑-refl E μ
setEnv : ∀ {P : MP₀}{Γ Γ' Σ} → Env' Γ' · Σ → M' Γ' P · Σ → M' Γ P · Σ
setEnv E f Σ ext _ = f Σ ext (weaken-env ext E)
open Product
strength : ∀ {Γ}{Q P : MP₀} → Q ⊗ M' Γ P ⇒ M' Γ (Q ⊗ P)
strength {_} {Q} =
mk⇒ (λ p Σ ext E μ →
case p of λ{
(x , y) →
case y Σ ext E μ of Maybe.map (λ{
(Σ₁ , ext₁ , μ₁ , v) →
(Σ₁ , ext₁ , μ₁ , (MP.monotone Q (⊑-trans ext ext₁) x , v))
})})
(λ c~c' → {!!})
-- eval : ℕ → ∀ {Γ t} → Const (Expr Γ t) ⇒ M' Γ (Val' t)
-- eval zero = timeout {_} {Val' _}
-- eval (suc k) =
-- mk⇒ (λ{ unit →
-- return {_} {Val' unit} unit
-- ; (var x) →
-- (mbind {_} {_} {Env' _} {Val' _}
-- getEnv
-- (mk⇒
-- (λ E →
-- return {_} {Val' _} (lookup E x))
-- (λ c~c' → {- ugh -} {!!})))
-- ; (app {a} {b} e1 e2) →
-- (mbind {_} {_} {Val' (arrow a b)} {Val' b}
-- (apply (eval k) e1)
-- (mk⇒ (λ{ (⟨_,_⟩ {_} {Γ} e E) →
-- (mbind {_} {_} {Env' Γ ⊗ Val' a} {Val' b}
-- (apply (strength {_} {Env' Γ} {Val' a}) (E , apply (eval k) e2))
-- (mk⇒
-- (λ{ (E' , v) →
-- setEnv {Val' b} (v ∷ E')
-- (apply (eval k) e) })
-- (λ c~c' → {!!})))
-- })
-- λ c~c' → {!!} ))
-- ; _ → {!!} })
-- (λ c~c' → {!!})
eval : ℕ → ∀ {Γ t} → Const (Expr Γ t) ⇒ M' Γ (Val' t)
eval zero = timeout {_} {Val' _}
eval (suc k) =
mk⇒ (λ{ unit →
apply (η' (Val' unit)) unit
; (var x) →
apply (bind' {_} {_} {Env' _} {Val' _}
(mk⇒ (λ E →
apply (η' (Val' _)) (lookup E x))
(λ c~c' → {- ugh -} {!!})))
getEnv
; (app {a} {b} e1 e2) →
apply (bind' {_} {_} {Val' (arrow a b)} {Val' b}
(mk⇒ (λ{ (⟨_,_⟩ {_} {Γ} e E) →
apply (bind' {_} {_} {Env' Γ ⊗ Val' a} {Val' b}
(mk⇒
(λ{ (E' , v) →
setEnv {Val' b} (v ∷ E')
(apply (eval k) e) })
(λ c~c' → {!!})))
(apply (strength {_} {Env' Γ} {Val' a}) (E , apply (eval k) e2)) })
λ c~c' → {!!} ))
(apply (eval k) e1)
; _ → {!!} })
(λ c~c' → {!!})
| {
"alphanum_fraction": 0.4098735833,
"avg_line_length": 35.1570881226,
"ext": "agda",
"hexsha": "9123a00e11fa5b63abfb57ca4fefe4cda5b178c7",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/Experiments/STLCRef.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/Experiments/STLCRef.agda",
"max_line_length": 111,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/Experiments/STLCRef.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 3625,
"size": 9176
} |
module BTree.Heap {A : Set}(_≤_ : A → A → Set) where
open import BTree {A}
data Heap : BTree → Set where
leaf : Heap leaf
single : (x : A)
→ Heap (node x leaf leaf)
left : {l r : BTree}{x y : A}
→ x ≤ y
→ Heap (node y l r)
→ Heap (node x (node y l r) leaf)
right : {l r : BTree}{x y : A}
→ x ≤ y
→ Heap (node y l r)
→ Heap (node x leaf (node y l r))
both : {l r l' r' : BTree}{x y y' : A}
→ x ≤ y
→ x ≤ y'
→ Heap (node y l r)
→ Heap (node y' l' r')
→ Heap (node x (node y l r) (node y' l' r'))
| {
"alphanum_fraction": 0.3565683646,
"avg_line_length": 32.4347826087,
"ext": "agda",
"hexsha": "f836cd340135863f252190b92d4ceb6b986d1d98",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bgbianchi/sorting",
"max_forks_repo_path": "agda/BTree/Heap.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bgbianchi/sorting",
"max_issues_repo_path": "agda/BTree/Heap.agda",
"max_line_length": 63,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "b8d428bccbdd1b13613e8f6ead6c81a8f9298399",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bgbianchi/sorting",
"max_stars_repo_path": "agda/BTree/Heap.agda",
"max_stars_repo_stars_event_max_datetime": "2021-08-24T22:11:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-21T12:50:35.000Z",
"num_tokens": 231,
"size": 746
} |
{-
This second-order equational theory was created from the following second-order syntax description:
syntax PropLog | PR
type
* : 0-ary
term
false : * | ⊥
or : * * -> * | _∨_ l20
true : * | ⊤
and : * * -> * | _∧_ l30
not : * -> * | ¬_ r50
theory
(⊥U∨ᴸ) a |> or (false, a) = a
(⊥U∨ᴿ) a |> or (a, false) = a
(∨A) a b c |> or (or(a, b), c) = or (a, or(b, c))
(∨C) a b |> or(a, b) = or(b, a)
(⊤U∧ᴸ) a |> and (true, a) = a
(⊤U∧ᴿ) a |> and (a, true) = a
(∧A) a b c |> and (and(a, b), c) = and (a, and(b, c))
(∧D∨ᴸ) a b c |> and (a, or (b, c)) = or (and(a, b), and(a, c))
(∧D∨ᴿ) a b c |> and (or (a, b), c) = or (and(a, c), and(b, c))
(⊥X∧ᴸ) a |> and (false, a) = false
(⊥X∧ᴿ) a |> and (a, false) = false
(¬N∨ᴸ) a |> or (not (a), a) = false
(¬N∨ᴿ) a |> or (a, not (a)) = false
(∧C) a b |> and(a, b) = and(b, a)
(∨I) a |> or(a, a) = a
(∧I) a |> and(a, a) = a
(¬²) a |> not(not (a)) = a
(∨D∧ᴸ) a b c |> or (a, and (b, c)) = and (or(a, b), or(a, c))
(∨D∧ᴿ) a b c |> or (and (a, b), c) = and (or(a, c), or(b, c))
(∨B∧ᴸ) a b |> or (and (a, b), a) = a
(∨B∧ᴿ) a b |> or (a, and (a, b)) = a
(∧B∨ᴸ) a b |> and (or (a, b), a) = a
(∧B∨ᴿ) a b |> and (a, or (a, b)) = a
(⊤X∨ᴸ) a |> or (true, a) = true
(⊤X∨ᴿ) a |> or (a, true) = true
(¬N∧ᴸ) a |> and (not (a), a) = false
(¬N∧ᴿ) a |> and (a, not (a)) = false
(DM∧) a b |> not (and (a, b)) = or (not(a), not(b))
(DM∨) a b |> not (or (a, b)) = and (not(a), not(b))
-}
module PropLog.Equality where
open import SOAS.Common
open import SOAS.Context
open import SOAS.Variable
open import SOAS.Families.Core
open import SOAS.Families.Build
open import SOAS.ContextMaps.Inductive
open import PropLog.Signature
open import PropLog.Syntax
open import SOAS.Metatheory.SecondOrder.Metasubstitution PR:Syn
open import SOAS.Metatheory.SecondOrder.Equality PR:Syn
private
variable
α β γ τ : *T
Γ Δ Π : Ctx
infix 1 _▹_⊢_≋ₐ_
-- Axioms of equality
data _▹_⊢_≋ₐ_ : ∀ 𝔐 Γ {α} → (𝔐 ▷ PR) α Γ → (𝔐 ▷ PR) α Γ → Set where
⊥U∨ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ⊥ ∨ 𝔞 ≋ₐ 𝔞
∨A : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ∨ 𝔟) ∨ 𝔠 ≋ₐ 𝔞 ∨ (𝔟 ∨ 𝔠)
∨C : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ 𝔟 ≋ₐ 𝔟 ∨ 𝔞
⊤U∧ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ⊤ ∧ 𝔞 ≋ₐ 𝔞
∧A : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ∧ 𝔟) ∧ 𝔠 ≋ₐ 𝔞 ∧ (𝔟 ∧ 𝔠)
∧D∨ᴸ : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ (𝔟 ∨ 𝔠) ≋ₐ (𝔞 ∧ 𝔟) ∨ (𝔞 ∧ 𝔠)
⊥X∧ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ⊥ ∧ 𝔞 ≋ₐ ⊥
¬N∨ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ (¬ 𝔞) ∨ 𝔞 ≋ₐ ⊥
∧C : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ 𝔟 ≋ₐ 𝔟 ∧ 𝔞
∨I : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ 𝔞 ≋ₐ 𝔞
∧I : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ 𝔞 ≋ₐ 𝔞
¬² : ⁅ * ⁆̣ ▹ ∅ ⊢ ¬ (¬ 𝔞) ≋ₐ 𝔞
∨D∧ᴸ : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ (𝔟 ∧ 𝔠) ≋ₐ (𝔞 ∨ 𝔟) ∧ (𝔞 ∨ 𝔠)
∨B∧ᴸ : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ∧ 𝔟) ∨ 𝔞 ≋ₐ 𝔞
∧B∨ᴸ : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ∨ 𝔟) ∧ 𝔞 ≋ₐ 𝔞
⊤X∨ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ ⊤ ∨ 𝔞 ≋ₐ ⊤
¬N∧ᴸ : ⁅ * ⁆̣ ▹ ∅ ⊢ (¬ 𝔞) ∧ 𝔞 ≋ₐ ⊥
DM∧ : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ ¬ (𝔞 ∧ 𝔟) ≋ₐ (¬ 𝔞) ∨ (¬ 𝔟)
DM∨ : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ ¬ (𝔞 ∨ 𝔟) ≋ₐ (¬ 𝔞) ∧ (¬ 𝔟)
open EqLogic _▹_⊢_≋ₐ_
open ≋-Reasoning
-- Derived equations
⊥U∨ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ ⊥ ≋ 𝔞
⊥U∨ᴿ = tr (ax ∨C with《 𝔞 ◃ ⊥ 》) (ax ⊥U∨ᴸ with《 𝔞 》)
⊤U∧ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ ⊤ ≋ 𝔞
⊤U∧ᴿ = tr (ax ∧C with《 𝔞 ◃ ⊤ 》) (ax ⊤U∧ᴸ with《 𝔞 》)
∧D∨ᴿ : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ∨ 𝔟) ∧ 𝔠 ≋ (𝔞 ∧ 𝔠) ∨ (𝔟 ∧ 𝔠)
∧D∨ᴿ = begin
(𝔞 ∨ 𝔟) ∧ 𝔠 ≋⟨ ax ∧C with《 𝔞 ∨ 𝔟 ◃ 𝔠 》 ⟩
𝔠 ∧ (𝔞 ∨ 𝔟) ≋⟨ ax ∧D∨ᴸ with《 𝔠 ◃ 𝔞 ◃ 𝔟 》 ⟩
(𝔠 ∧ 𝔞) ∨ (𝔠 ∧ 𝔟) ≋⟨ cong₂[ ax ∧C with《 𝔠 ◃ 𝔞 》 ][ ax ∧C with《 𝔠 ◃ 𝔟 》 ]inside ◌ᵈ ∨ ◌ᵉ ⟩
(𝔞 ∧ 𝔠) ∨ (𝔟 ∧ 𝔠) ∎
⊥X∧ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ ⊥ ≋ ⊥
⊥X∧ᴿ = tr (ax ∧C with《 𝔞 ◃ ⊥ 》) (ax ⊥X∧ᴸ with《 𝔞 》)
¬N∨ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ (¬ 𝔞) ≋ ⊥
¬N∨ᴿ = tr (ax ∨C with《 𝔞 ◃ (¬ 𝔞) 》) (ax ¬N∨ᴸ with《 𝔞 》)
∨D∧ᴿ : ⁅ * ⁆ ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ (𝔞 ∧ 𝔟) ∨ 𝔠 ≋ (𝔞 ∨ 𝔠) ∧ (𝔟 ∨ 𝔠)
∨D∧ᴿ = begin
(𝔞 ∧ 𝔟) ∨ 𝔠 ≋⟨ ax ∨C with《 𝔞 ∧ 𝔟 ◃ 𝔠 》 ⟩
𝔠 ∨ (𝔞 ∧ 𝔟) ≋⟨ ax ∨D∧ᴸ with《 𝔠 ◃ 𝔞 ◃ 𝔟 》 ⟩
(𝔠 ∨ 𝔞) ∧ (𝔠 ∨ 𝔟) ≋⟨ cong₂[ ax ∨C with《 𝔠 ◃ 𝔞 》 ][ ax ∨C with《 𝔠 ◃ 𝔟 》 ]inside ◌ᵈ ∧ ◌ᵉ ⟩
(𝔞 ∨ 𝔠) ∧ (𝔟 ∨ 𝔠) ∎
∨B∧ᴿ : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ (𝔞 ∧ 𝔟) ≋ 𝔞
∨B∧ᴿ = tr (ax ∨C with《 𝔞 ◃ (𝔞 ∧ 𝔟) 》) (ax ∨B∧ᴸ with《 𝔞 ◃ 𝔟 》)
∧B∨ᴿ : ⁅ * ⁆ ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ (𝔞 ∨ 𝔟) ≋ 𝔞
∧B∨ᴿ = tr (ax ∧C with《 𝔞 ◃ (𝔞 ∨ 𝔟) 》) (ax ∧B∨ᴸ with《 𝔞 ◃ 𝔟 》)
⊤X∨ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∨ ⊤ ≋ ⊤
⊤X∨ᴿ = tr (ax ∨C with《 𝔞 ◃ ⊤ 》) (ax ⊤X∨ᴸ with《 𝔞 》)
¬N∧ᴿ : ⁅ * ⁆̣ ▹ ∅ ⊢ 𝔞 ∧ (¬ 𝔞) ≋ ⊥
¬N∧ᴿ = tr (ax ∧C with《 𝔞 ◃ (¬ 𝔞) 》) (ax ¬N∧ᴸ with《 𝔞 》)
| {
"alphanum_fraction": 0.348518851,
"avg_line_length": 35.935483871,
"ext": "agda",
"hexsha": "e573b88b454f0e56fb967d0c30aa0fd7f48e83a5",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2022-01-24T12:49:17.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-09T20:39:59.000Z",
"max_forks_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "JoeyEremondi/agda-soas",
"max_forks_repo_path": "out/PropLog/Equality.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_issues_repo_issues_event_max_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-11-21T12:19:32.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "JoeyEremondi/agda-soas",
"max_issues_repo_path": "out/PropLog/Equality.agda",
"max_line_length": 99,
"max_stars_count": 39,
"max_stars_repo_head_hexsha": "ff1a985a6be9b780d3ba2beff68e902394f0a9d8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "JoeyEremondi/agda-soas",
"max_stars_repo_path": "out/PropLog/Equality.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-19T17:33:12.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-11-09T20:39:55.000Z",
"num_tokens": 3205,
"size": 4456
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LedgerInfoWithSignatures
open import LibraBFT.ImplShared.Consensus.Types
open import Util.PKCS
module LibraBFT.Impl.Types.CryptoProxies where
addToLi : AccountAddress → Signature → LedgerInfoWithSignatures → LedgerInfoWithSignatures
addToLi = LedgerInfoWithSignatures.addSignature
| {
"alphanum_fraction": 0.8177172061,
"avg_line_length": 36.6875,
"ext": "agda",
"hexsha": "e04edcef8a5bf74e087d53bce88030649a64e25c",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Types/CryptoProxies.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Types/CryptoProxies.agda",
"max_line_length": 111,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Types/CryptoProxies.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 150,
"size": 587
} |
module cfg where
open import Level renaming ( suc to succ ; zero to Zero )
open import Data.Nat hiding ( _≟_ )
open import Data.Fin
open import Data.Product
open import Data.List
open import Data.Maybe
open import Data.Bool using ( Bool ; true ; false ; _∧_ ; _∨_ )
open import Relation.Binary.PropositionalEquality hiding ( [_] )
open import Relation.Nullary using (¬_; Dec; yes; no)
-- open import Data.String
data IsTerm (Token : Set) : Set (succ Zero) where
isTerm : Token → IsTerm Token
noTerm : IsTerm Token
record CFGGrammer (Token Node : Set) : Set (succ Zero) where
field
cfg : Node → List ( List ( Node ) )
cfgtop : Node
term? : Node → IsTerm Token
tokensz : ℕ
tokenid : Token → Fin tokensz
open CFGGrammer
-----------------
--
-- CGF language
--
-----------------
split : {Σ : Set} → (List Σ → Bool)
→ ( List Σ → Bool) → List Σ → Bool
split x y [] = x [] ∧ y []
split x y (h ∷ t) = (x [] ∧ y (h ∷ t)) ∨
split (λ t1 → x ( h ∷ t1 )) (λ t2 → y t2 ) t
cfg-language0 : {Node Token : Set} → CFGGrammer Token Node → List (List Node ) → List Token → Bool
{-# TERMINATING #-}
cfg-language2 : {Node Token : Set} → CFGGrammer Token Node → Node → List Token → Bool
cfg-language2 cg _ [] = false
cfg-language2 cg x (h1 ∷ [] ) with term? cg x
cfg-language2 cg x (h1 ∷ []) | isTerm t with tokenid cg h1 ≟ tokenid cg t
cfg-language2 cg x (h1 ∷ []) | isTerm t | yes p = true
cfg-language2 cg x (h1 ∷ []) | isTerm t | no ¬p = false
cfg-language2 cg x (h1 ∷ []) | noTerm = cfg-language0 cg (cfg cg x) ( h1 ∷ [] )
cfg-language2 cg x In with term? cg x
cfg-language2 cg x In | isTerm t = false
cfg-language2 cg x In | noTerm = cfg-language0 cg (cfg cg x ) In
cfg-language1 : {Node Token : Set} → CFGGrammer Token Node → List Node → List Token → Bool
cfg-language1 cg [] [] = true
cfg-language1 cg [] _ = false
cfg-language1 cg (node ∷ T) = split ( cfg-language2 cg node ) ( cfg-language1 cg T )
cfg-language0 cg [] [] = true
cfg-language0 cg [] _ = false
cfg-language0 cg (node ∷ T) In = cfg-language1 cg node In ∨ cfg-language0 cg T In
cfg-language : {Node Token : Set} → CFGGrammer Token Node → List Token → Bool
cfg-language cg = cfg-language0 cg (cfg cg (cfgtop cg))
-----------------
data IFToken : Set where
t:EA : IFToken
t:EB : IFToken
t:EC : IFToken
t:IF : IFToken
t:THEN : IFToken
t:ELSE : IFToken
t:SA : IFToken
t:SB : IFToken
t:SC : IFToken
IFtokenid : IFToken → Fin 9
IFtokenid t:EA = # 0
IFtokenid t:EB = # 1
IFtokenid t:EC = # 2
IFtokenid t:IF = # 3
IFtokenid t:THEN = # 4
IFtokenid t:ELSE = # 5
IFtokenid t:SA = # 6
IFtokenid t:SB = # 7
IFtokenid t:SC = # 8
data IFNode (T : Set) : Set where
Token : T → IFNode T
expr : IFNode T
statement : IFNode T
IFGrammer : CFGGrammer IFToken (IFNode IFToken)
IFGrammer = record {
cfg = cfg'
; cfgtop = statement
; term? = term?'
; tokensz = 9
; tokenid = IFtokenid
} where
term?' : IFNode IFToken → IsTerm IFToken
term?' (Token x) = isTerm x
term?' _ = noTerm
cfg' : IFNode IFToken → List ( List (IFNode IFToken) )
cfg' (Token t) = ( (Token t) ∷ [] ) ∷ []
cfg' expr = ( Token t:EA ∷ [] ) ∷
( Token t:EB ∷ [] ) ∷
( Token t:EC ∷ [] ) ∷ []
cfg' statement = ( Token t:SA ∷ [] ) ∷
( Token t:SB ∷ [] ) ∷
( Token t:SC ∷ [] ) ∷
( Token t:IF ∷ expr ∷ statement ∷ [] ) ∷
( Token t:IF ∷ expr ∷ statement ∷ Token t:ELSE ∷ statement ∷ [] ) ∷ []
cfgtest1 = cfg-language IFGrammer ( t:SA ∷ [] )
cfgtest2 = cfg-language2 IFGrammer (Token t:SA) ( t:SA ∷ [] )
cfgtest3 = cfg-language1 IFGrammer (Token t:SA ∷ [] ) ( t:SA ∷ [] )
cfgtest4 = cfg-language IFGrammer (t:IF ∷ t:EA ∷ t:SA ∷ [] )
cfgtest5 = cfg-language1 IFGrammer (Token t:IF ∷ expr ∷ statement ∷ []) (t:IF ∷ t:EA ∷ t:EA ∷ [] )
cfgtest6 = cfg-language2 IFGrammer statement (t:IF ∷ t:EA ∷ t:SA ∷ [] )
cfgtest7 = cfg-language1 IFGrammer (Token t:IF ∷ expr ∷ statement ∷ Token t:ELSE ∷ statement ∷ []) (t:IF ∷ t:EA ∷ t:SA ∷ t:ELSE ∷ t:SB ∷ [] )
cfgtest8 = cfg-language IFGrammer (t:IF ∷ t:EA ∷ t:IF ∷ t:EB ∷ t:SA ∷ t:ELSE ∷ t:SB ∷ [] )
| {
"alphanum_fraction": 0.5733240223,
"avg_line_length": 32.3007518797,
"ext": "agda",
"hexsha": "550b41a4627949f878814f0b9cac26608dc357e2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "shinji-kono/automaton-in-agda",
"max_forks_repo_path": "src/cfg.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "shinji-kono/automaton-in-agda",
"max_issues_repo_path": "src/cfg.agda",
"max_line_length": 147,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "eba0538f088f3d0c0fedb19c47c081954fbc69cb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "shinji-kono/automaton-in-agda",
"max_stars_repo_path": "src/cfg.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1540,
"size": 4296
} |
{-# OPTIONS --cubical --safe #-}
module Data.Sum where
open import Level
open import Cubical.Data.Sum using (_⊎_; inl; inr) public
open import Data.Bool using (Bool; true; false)
open import Function using (const)
either : ∀ {ℓ} {C : A ⊎ B → Type ℓ} → ((a : A) → C (inl a)) → ((b : B) → C (inr b))
→ (x : A ⊎ B) → C x
either f _ (inl x) = f x
either _ g (inr y) = g y
⟦l_,r_⟧ = either
either′ : (A → C) → (B → C) → (A ⊎ B) → C
either′ = either
is-l : A ⊎ B → Bool
is-l = either′ (const true) (const false)
map-⊎ : ∀ {a₁ a₂ b₁ b₂} {A₁ : Type a₁} {A₂ : Type a₂} {B₁ : Type b₁} {B₂ : Type b₂} →
(A₁ → A₂) →
(B₁ → B₂) →
(A₁ ⊎ B₁) →
(A₂ ⊎ B₂)
map-⊎ f g (inl x) = inl (f x)
map-⊎ f g (inr x) = inr (g x)
mapˡ : (A → B) → A ⊎ C → B ⊎ C
mapˡ f (inl x) = inl (f x)
mapˡ f (inr x) = inr x
mapʳ : (A → B) → C ⊎ A → C ⊎ B
mapʳ f (inl x) = inl x
mapʳ f (inr x) = inr (f x)
| {
"alphanum_fraction": 0.5022172949,
"avg_line_length": 23.7368421053,
"ext": "agda",
"hexsha": "a3aa1d0a28e2718266a4c7344e9a9a2892c1693e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-01-05T14:05:30.000Z",
"max_forks_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "oisdk/combinatorics-paper",
"max_forks_repo_path": "agda/Data/Sum.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "oisdk/combinatorics-paper",
"max_issues_repo_path": "agda/Data/Sum.agda",
"max_line_length": 85,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "3c176d4690566d81611080e9378f5a178b39b851",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "oisdk/combinatorics-paper",
"max_stars_repo_path": "agda/Data/Sum.agda",
"max_stars_repo_stars_event_max_datetime": "2021-01-05T15:32:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-01-05T14:07:44.000Z",
"num_tokens": 433,
"size": 902
} |
open import Agda.Builtin.Reflection renaming (bindTC to _>>=_)
open import Agda.Builtin.Sigma
open import Agda.Builtin.List
open import Agda.Builtin.Unit
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
infixr 0 _$_
_$_ : ∀ {a b}{A : Set a}{B : Set b} → (A → B) → (A → B)
f $ x = f x
map : {A B : Set} → (A → B) → List A → List B
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
reverseAcc : {A : Set} → List A → List A → List A
reverseAcc [] ys = ys
reverseAcc (x ∷ xs) ys = reverseAcc xs (x ∷ ys)
reverse : {A : Set} → List A → List A
reverse xs = reverseAcc xs []
data Vec (A : Set) : Nat → Set where
[] : Vec A 0
_∷_ : ∀ {n} (x : A) (xs : Vec A n) → Vec A (suc n)
macro
ntest : Name → Term → TC ⊤
ntest f a = do
(function te@(clause tel _ t ∷ [])) ← withReconstructed $ getDefinition f where
_ → typeError $ strErr "ERROR" ∷ []
t ← withReconstructed $ inContext (reverse tel) $ normalise t
quoteTC t >>= unify a
-- A record with parameters.
record X {n} (x : Vec Nat n) : Set where
constructor mk
field
c : Nat
-- A function that we will call at the unknown argument position
-- when defining the type of `f`.
[_] : ∀ {X} → X → Vec X 1
[ x ] = x ∷ []
-- The function that has two reconstructable arguments in the body.
f : X [ 1 ]
f = mk 1
-- Normalisation of the body of the function should also
-- normalise reconstructed arguments.
test : ntest f ≡ con (quote mk) (_ ∷ arg _ (con (quote Vec._∷_) _) ∷ _)
test = refl
| {
"alphanum_fraction": 0.6148148148,
"avg_line_length": 27,
"ext": "agda",
"hexsha": "b4180197df4ced117af4888ff59c846ca35ba298",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "Seanpm2001-Agda-lang/agda",
"max_forks_repo_path": "test/Succeed/normalise-bug.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "b5b3b1657556f720a7310cb7744edb1fac71eaf4",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "Seanpm2001-Agda-lang/agda",
"max_issues_repo_path": "test/Succeed/normalise-bug.agda",
"max_line_length": 84,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/normalise-bug.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-05T00:25:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2022-03-05T00:25:14.000Z",
"num_tokens": 506,
"size": 1485
} |
module Text.Greek.SBLGNT.1Tim where
open import Data.List
open import Text.Greek.Bible
open import Text.Greek.Script
open import Text.Greek.Script.Unicode
ΠΡΟΣ-ΤΙΜΟΘΕΟΝ-Α : List (Word)
ΠΡΟΣ-ΤΙΜΟΘΕΟΝ-Α =
word (Π ∷ α ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Tim.1.1"
∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Tim.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.1.1"
∷ word (κ ∷ α ∷ τ ∷ []) "1Tim.1.1"
∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ α ∷ γ ∷ ὴ ∷ ν ∷ []) "1Tim.1.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.1.1"
∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "1Tim.1.1"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.1.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.1"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.1.1"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.1.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.1.1"
∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ δ ∷ ο ∷ ς ∷ []) "1Tim.1.1"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.1.1"
∷ word (Τ ∷ ι ∷ μ ∷ ο ∷ θ ∷ έ ∷ ῳ ∷ []) "1Tim.1.2"
∷ word (γ ∷ ν ∷ η ∷ σ ∷ ί ∷ ῳ ∷ []) "1Tim.1.2"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ῳ ∷ []) "1Tim.1.2"
∷ word (ἐ ∷ ν ∷ []) "1Tim.1.2"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.1.2"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Tim.1.2"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ ο ∷ ς ∷ []) "1Tim.1.2"
∷ word (ε ∷ ἰ ∷ ρ ∷ ή ∷ ν ∷ η ∷ []) "1Tim.1.2"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Tim.1.2"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.1.2"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.1.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.2"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.1.2"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.1.2"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.1.2"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.1.2"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.1.2"
∷ word (Κ ∷ α ∷ θ ∷ ὼ ∷ ς ∷ []) "1Tim.1.3"
∷ word (π ∷ α ∷ ρ ∷ ε ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ σ ∷ ά ∷ []) "1Tim.1.3"
∷ word (σ ∷ ε ∷ []) "1Tim.1.3"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.1.3"
∷ word (ἐ ∷ ν ∷ []) "1Tim.1.3"
∷ word (Ἐ ∷ φ ∷ έ ∷ σ ∷ ῳ ∷ []) "1Tim.1.3"
∷ word (π ∷ ο ∷ ρ ∷ ε ∷ υ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.1.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.1.3"
∷ word (Μ ∷ α ∷ κ ∷ ε ∷ δ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.3"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.1.3"
∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ ε ∷ ί ∷ ∙λ ∷ ῃ ∷ ς ∷ []) "1Tim.1.3"
∷ word (τ ∷ ι ∷ σ ∷ ὶ ∷ ν ∷ []) "1Tim.1.3"
∷ word (μ ∷ ὴ ∷ []) "1Tim.1.3"
∷ word (ἑ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.1.3"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Tim.1.4"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Tim.1.4"
∷ word (μ ∷ ύ ∷ θ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.4"
∷ word (γ ∷ ε ∷ ν ∷ ε ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Tim.1.4"
∷ word (ἀ ∷ π ∷ ε ∷ ρ ∷ ά ∷ ν ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.4"
∷ word (α ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.1.4"
∷ word (ἐ ∷ κ ∷ ζ ∷ η ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.1.4"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ χ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "1Tim.1.4"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Tim.1.4"
∷ word (ἢ ∷ []) "1Tim.1.4"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ ν ∷ ο ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.4"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.1.4"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.1.4"
∷ word (ἐ ∷ ν ∷ []) "1Tim.1.4"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.1.4"
∷ word (τ ∷ ὸ ∷ []) "1Tim.1.5"
∷ word (δ ∷ ὲ ∷ []) "1Tim.1.5"
∷ word (τ ∷ έ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Tim.1.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.1.5"
∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.1.5"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Tim.1.5"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ []) "1Tim.1.5"
∷ word (ἐ ∷ κ ∷ []) "1Tim.1.5"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ᾶ ∷ ς ∷ []) "1Tim.1.5"
∷ word (κ ∷ α ∷ ρ ∷ δ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.5"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.1.5"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῆ ∷ ς ∷ []) "1Tim.1.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.5"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.1.5"
∷ word (ἀ ∷ ν ∷ υ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ τ ∷ ο ∷ υ ∷ []) "1Tim.1.5"
∷ word (ὧ ∷ ν ∷ []) "1Tim.1.6"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.1.6"
∷ word (ἀ ∷ σ ∷ τ ∷ ο ∷ χ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.1.6"
∷ word (ἐ ∷ ξ ∷ ε ∷ τ ∷ ρ ∷ ά ∷ π ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Tim.1.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.1.6"
∷ word (μ ∷ α ∷ τ ∷ α ∷ ι ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.6"
∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.1.7"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.1.7"
∷ word (ν ∷ ο ∷ μ ∷ ο ∷ δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Tim.1.7"
∷ word (μ ∷ ὴ ∷ []) "1Tim.1.7"
∷ word (ν ∷ ο ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.1.7"
∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "1Tim.1.7"
∷ word (ἃ ∷ []) "1Tim.1.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.1.7"
∷ word (μ ∷ ή ∷ τ ∷ ε ∷ []) "1Tim.1.7"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Tim.1.7"
∷ word (τ ∷ ί ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.1.7"
∷ word (δ ∷ ι ∷ α ∷ β ∷ ε ∷ β ∷ α ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Tim.1.7"
∷ word (Ο ∷ ἴ ∷ δ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Tim.1.8"
∷ word (δ ∷ ὲ ∷ []) "1Tim.1.8"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.1.8"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "1Tim.1.8"
∷ word (ὁ ∷ []) "1Tim.1.8"
∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "1Tim.1.8"
∷ word (ἐ ∷ ά ∷ ν ∷ []) "1Tim.1.8"
∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.1.8"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Tim.1.8"
∷ word (ν ∷ ο ∷ μ ∷ ί ∷ μ ∷ ω ∷ ς ∷ []) "1Tim.1.8"
∷ word (χ ∷ ρ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "1Tim.1.8"
∷ word (ε ∷ ἰ ∷ δ ∷ ὼ ∷ ς ∷ []) "1Tim.1.9"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Tim.1.9"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.1.9"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ί ∷ ῳ ∷ []) "1Tim.1.9"
∷ word (ν ∷ ό ∷ μ ∷ ο ∷ ς ∷ []) "1Tim.1.9"
∷ word (ο ∷ ὐ ∷ []) "1Tim.1.9"
∷ word (κ ∷ ε ∷ ῖ ∷ τ ∷ α ∷ ι ∷ []) "1Tim.1.9"
∷ word (ἀ ∷ ν ∷ ό ∷ μ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.9"
∷ word (δ ∷ ὲ ∷ []) "1Tim.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.9"
∷ word (ἀ ∷ ν ∷ υ ∷ π ∷ ο ∷ τ ∷ ά ∷ κ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.9"
∷ word (ἀ ∷ σ ∷ ε ∷ β ∷ έ ∷ σ ∷ ι ∷ []) "1Tim.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.9"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.1.9"
∷ word (ἀ ∷ ν ∷ ο ∷ σ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.9"
∷ word (β ∷ ε ∷ β ∷ ή ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.9"
∷ word (π ∷ α ∷ τ ∷ ρ ∷ ο ∷ ∙λ ∷ ῴ ∷ α ∷ ι ∷ ς ∷ []) "1Tim.1.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.9"
∷ word (μ ∷ η ∷ τ ∷ ρ ∷ ο ∷ ∙λ ∷ ῴ ∷ α ∷ ι ∷ ς ∷ []) "1Tim.1.9"
∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ο ∷ φ ∷ ό ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.9"
∷ word (π ∷ ό ∷ ρ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.10"
∷ word (ἀ ∷ ρ ∷ σ ∷ ε ∷ ν ∷ ο ∷ κ ∷ ο ∷ ί ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "1Tim.1.10"
∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ α ∷ π ∷ ο ∷ δ ∷ ι ∷ σ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.1.10"
∷ word (ψ ∷ ε ∷ ύ ∷ σ ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "1Tim.1.10"
∷ word (ἐ ∷ π ∷ ι ∷ ό ∷ ρ ∷ κ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.1.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.10"
∷ word (ε ∷ ἴ ∷ []) "1Tim.1.10"
∷ word (τ ∷ ι ∷ []) "1Tim.1.10"
∷ word (ἕ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Tim.1.10"
∷ word (τ ∷ ῇ ∷ []) "1Tim.1.10"
∷ word (ὑ ∷ γ ∷ ι ∷ α ∷ ι ∷ ν ∷ ο ∷ ύ ∷ σ ∷ ῃ ∷ []) "1Tim.1.10"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "1Tim.1.10"
∷ word (ἀ ∷ ν ∷ τ ∷ ί ∷ κ ∷ ε ∷ ι ∷ τ ∷ α ∷ ι ∷ []) "1Tim.1.10"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Tim.1.11"
∷ word (τ ∷ ὸ ∷ []) "1Tim.1.11"
∷ word (ε ∷ ὐ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.1.11"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.1.11"
∷ word (δ ∷ ό ∷ ξ ∷ η ∷ ς ∷ []) "1Tim.1.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.1.11"
∷ word (μ ∷ α ∷ κ ∷ α ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.1.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.1.11"
∷ word (ὃ ∷ []) "1Tim.1.11"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ θ ∷ η ∷ ν ∷ []) "1Tim.1.11"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "1Tim.1.11"
∷ word (Χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "1Tim.1.12"
∷ word (ἔ ∷ χ ∷ ω ∷ []) "1Tim.1.12"
∷ word (τ ∷ ῷ ∷ []) "1Tim.1.12"
∷ word (ἐ ∷ ν ∷ δ ∷ υ ∷ ν ∷ α ∷ μ ∷ ώ ∷ σ ∷ α ∷ ν ∷ τ ∷ ί ∷ []) "1Tim.1.12"
∷ word (μ ∷ ε ∷ []) "1Tim.1.12"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Tim.1.12"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.1.12"
∷ word (τ ∷ ῷ ∷ []) "1Tim.1.12"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ῳ ∷ []) "1Tim.1.12"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.1.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.1.12"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ό ∷ ν ∷ []) "1Tim.1.12"
∷ word (μ ∷ ε ∷ []) "1Tim.1.12"
∷ word (ἡ ∷ γ ∷ ή ∷ σ ∷ α ∷ τ ∷ ο ∷ []) "1Tim.1.12"
∷ word (θ ∷ έ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.1.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.1.12"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.12"
∷ word (τ ∷ ὸ ∷ []) "1Tim.1.13"
∷ word (π ∷ ρ ∷ ό ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ν ∷ []) "1Tim.1.13"
∷ word (ὄ ∷ ν ∷ τ ∷ α ∷ []) "1Tim.1.13"
∷ word (β ∷ ∙λ ∷ ά ∷ σ ∷ φ ∷ η ∷ μ ∷ ο ∷ ν ∷ []) "1Tim.1.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.13"
∷ word (δ ∷ ι ∷ ώ ∷ κ ∷ τ ∷ η ∷ ν ∷ []) "1Tim.1.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.13"
∷ word (ὑ ∷ β ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ή ∷ ν ∷ []) "1Tim.1.13"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.1.13"
∷ word (ἠ ∷ ∙λ ∷ ε ∷ ή ∷ θ ∷ η ∷ ν ∷ []) "1Tim.1.13"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.1.13"
∷ word (ἀ ∷ γ ∷ ν ∷ ο ∷ ῶ ∷ ν ∷ []) "1Tim.1.13"
∷ word (ἐ ∷ π ∷ ο ∷ ί ∷ η ∷ σ ∷ α ∷ []) "1Tim.1.13"
∷ word (ἐ ∷ ν ∷ []) "1Tim.1.13"
∷ word (ἀ ∷ π ∷ ι ∷ σ ∷ τ ∷ ί ∷ ᾳ ∷ []) "1Tim.1.13"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ε ∷ π ∷ ∙λ ∷ ε ∷ ό ∷ ν ∷ α ∷ σ ∷ ε ∷ ν ∷ []) "1Tim.1.14"
∷ word (δ ∷ ὲ ∷ []) "1Tim.1.14"
∷ word (ἡ ∷ []) "1Tim.1.14"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Tim.1.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.1.14"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.1.14"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.1.14"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.1.14"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.1.14"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.14"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ς ∷ []) "1Tim.1.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.1.14"
∷ word (ἐ ∷ ν ∷ []) "1Tim.1.14"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Tim.1.14"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.1.14"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.1.15"
∷ word (ὁ ∷ []) "1Tim.1.15"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Tim.1.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.15"
∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "1Tim.1.15"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ο ∷ χ ∷ ῆ ∷ ς ∷ []) "1Tim.1.15"
∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "1Tim.1.15"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.1.15"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.1.15"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Tim.1.15"
∷ word (ἦ ∷ ∙λ ∷ θ ∷ ε ∷ ν ∷ []) "1Tim.1.15"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.1.15"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.1.15"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "1Tim.1.15"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ω ∷ ∙λ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.1.15"
∷ word (σ ∷ ῶ ∷ σ ∷ α ∷ ι ∷ []) "1Tim.1.15"
∷ word (ὧ ∷ ν ∷ []) "1Tim.1.15"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ό ∷ ς ∷ []) "1Tim.1.15"
∷ word (ε ∷ ἰ ∷ μ ∷ ι ∷ []) "1Tim.1.15"
∷ word (ἐ ∷ γ ∷ ώ ∷ []) "1Tim.1.15"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.1.16"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Tim.1.16"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Tim.1.16"
∷ word (ἠ ∷ ∙λ ∷ ε ∷ ή ∷ θ ∷ η ∷ ν ∷ []) "1Tim.1.16"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.1.16"
∷ word (ἐ ∷ ν ∷ []) "1Tim.1.16"
∷ word (ἐ ∷ μ ∷ ο ∷ ὶ ∷ []) "1Tim.1.16"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ ῳ ∷ []) "1Tim.1.16"
∷ word (ἐ ∷ ν ∷ δ ∷ ε ∷ ί ∷ ξ ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Tim.1.16"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.1.16"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Tim.1.16"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.1.16"
∷ word (ἅ ∷ π ∷ α ∷ σ ∷ α ∷ ν ∷ []) "1Tim.1.16"
∷ word (μ ∷ α ∷ κ ∷ ρ ∷ ο ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.16"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.1.16"
∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ύ ∷ π ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.1.16"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.1.16"
∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.1.16"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ ε ∷ ι ∷ ν ∷ []) "1Tim.1.16"
∷ word (ἐ ∷ π ∷ []) "1Tim.1.16"
∷ word (α ∷ ὐ ∷ τ ∷ ῷ ∷ []) "1Tim.1.16"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.1.16"
∷ word (ζ ∷ ω ∷ ὴ ∷ ν ∷ []) "1Tim.1.16"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.1.16"
∷ word (τ ∷ ῷ ∷ []) "1Tim.1.17"
∷ word (δ ∷ ὲ ∷ []) "1Tim.1.17"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Tim.1.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.1.17"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.1.17"
∷ word (ἀ ∷ φ ∷ θ ∷ ά ∷ ρ ∷ τ ∷ ῳ ∷ []) "1Tim.1.17"
∷ word (ἀ ∷ ο ∷ ρ ∷ ά ∷ τ ∷ ῳ ∷ []) "1Tim.1.17"
∷ word (μ ∷ ό ∷ ν ∷ ῳ ∷ []) "1Tim.1.17"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Tim.1.17"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "1Tim.1.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.17"
∷ word (δ ∷ ό ∷ ξ ∷ α ∷ []) "1Tim.1.17"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.1.17"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.1.17"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ α ∷ ς ∷ []) "1Tim.1.17"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.1.17"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.1.17"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "1Tim.1.17"
∷ word (Τ ∷ α ∷ ύ ∷ τ ∷ η ∷ ν ∷ []) "1Tim.1.18"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.1.18"
∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.18"
∷ word (π ∷ α ∷ ρ ∷ α ∷ τ ∷ ί ∷ θ ∷ ε ∷ μ ∷ α ∷ ί ∷ []) "1Tim.1.18"
∷ word (σ ∷ ο ∷ ι ∷ []) "1Tim.1.18"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ο ∷ ν ∷ []) "1Tim.1.18"
∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ε ∷ []) "1Tim.1.18"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Tim.1.18"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Tim.1.18"
∷ word (π ∷ ρ ∷ ο ∷ α ∷ γ ∷ ο ∷ ύ ∷ σ ∷ α ∷ ς ∷ []) "1Tim.1.18"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.1.18"
∷ word (σ ∷ ὲ ∷ []) "1Tim.1.18"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.1.18"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.1.18"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ύ ∷ ῃ ∷ []) "1Tim.1.18"
∷ word (ἐ ∷ ν ∷ []) "1Tim.1.18"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.1.18"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.1.18"
∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Tim.1.18"
∷ word (σ ∷ τ ∷ ρ ∷ α ∷ τ ∷ ε ∷ ί ∷ α ∷ ν ∷ []) "1Tim.1.18"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "1Tim.1.19"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.1.19"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.19"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ὴ ∷ ν ∷ []) "1Tim.1.19"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.1.19"
∷ word (ἥ ∷ ν ∷ []) "1Tim.1.19"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.1.19"
∷ word (ἀ ∷ π ∷ ω ∷ σ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.1.19"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Tim.1.19"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.1.19"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.1.19"
∷ word (ἐ ∷ ν ∷ α ∷ υ ∷ ά ∷ γ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Tim.1.19"
∷ word (ὧ ∷ ν ∷ []) "1Tim.1.20"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.1.20"
∷ word (Ὑ ∷ μ ∷ έ ∷ ν ∷ α ∷ ι ∷ ο ∷ ς ∷ []) "1Tim.1.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.1.20"
∷ word (Ἀ ∷ ∙λ ∷ έ ∷ ξ ∷ α ∷ ν ∷ δ ∷ ρ ∷ ο ∷ ς ∷ []) "1Tim.1.20"
∷ word (ο ∷ ὓ ∷ ς ∷ []) "1Tim.1.20"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ δ ∷ ω ∷ κ ∷ α ∷ []) "1Tim.1.20"
∷ word (τ ∷ ῷ ∷ []) "1Tim.1.20"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾷ ∷ []) "1Tim.1.20"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.1.20"
∷ word (π ∷ α ∷ ι ∷ δ ∷ ε ∷ υ ∷ θ ∷ ῶ ∷ σ ∷ ι ∷ []) "1Tim.1.20"
∷ word (μ ∷ ὴ ∷ []) "1Tim.1.20"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.1.20"
∷ word (Π ∷ α ∷ ρ ∷ α ∷ κ ∷ α ∷ ∙λ ∷ ῶ ∷ []) "1Tim.2.1"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Tim.2.1"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.2.1"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.2.1"
∷ word (π ∷ ο ∷ ι ∷ ε ∷ ῖ ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Tim.2.1"
∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.2.1"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ ά ∷ ς ∷ []) "1Tim.2.1"
∷ word (ἐ ∷ ν ∷ τ ∷ ε ∷ ύ ∷ ξ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.2.1"
∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.2.1"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Tim.2.1"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.2.1"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Tim.2.1"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Tim.2.2"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ έ ∷ ω ∷ ν ∷ []) "1Tim.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.2"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.2.2"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.2.2"
∷ word (ἐ ∷ ν ∷ []) "1Tim.2.2"
∷ word (ὑ ∷ π ∷ ε ∷ ρ ∷ ο ∷ χ ∷ ῇ ∷ []) "1Tim.2.2"
∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.2.2"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.2.2"
∷ word (ἤ ∷ ρ ∷ ε ∷ μ ∷ ο ∷ ν ∷ []) "1Tim.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.2"
∷ word (ἡ ∷ σ ∷ ύ ∷ χ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.2.2"
∷ word (β ∷ ί ∷ ο ∷ ν ∷ []) "1Tim.2.2"
∷ word (δ ∷ ι ∷ ά ∷ γ ∷ ω ∷ μ ∷ ε ∷ ν ∷ []) "1Tim.2.2"
∷ word (ἐ ∷ ν ∷ []) "1Tim.2.2"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Tim.2.2"
∷ word (ε ∷ ὐ ∷ σ ∷ ε ∷ β ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Tim.2.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.2"
∷ word (σ ∷ ε ∷ μ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "1Tim.2.2"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Tim.2.3"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Tim.2.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.3"
∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.2.3"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.2.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.2.3"
∷ word (σ ∷ ω ∷ τ ∷ ῆ ∷ ρ ∷ ο ∷ ς ∷ []) "1Tim.2.3"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.2.3"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.2.3"
∷ word (ὃ ∷ ς ∷ []) "1Tim.2.4"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Tim.2.4"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.2.4"
∷ word (θ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Tim.2.4"
∷ word (σ ∷ ω ∷ θ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.2.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.4"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.2.4"
∷ word (ἐ ∷ π ∷ ί ∷ γ ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.2.4"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.2.4"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.2.4"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Tim.2.5"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.2.5"
∷ word (θ ∷ ε ∷ ό ∷ ς ∷ []) "1Tim.2.5"
∷ word (ε ∷ ἷ ∷ ς ∷ []) "1Tim.2.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.5"
∷ word (μ ∷ ε ∷ σ ∷ ί ∷ τ ∷ η ∷ ς ∷ []) "1Tim.2.5"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.2.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.5"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Tim.2.5"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ο ∷ ς ∷ []) "1Tim.2.5"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.2.5"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Tim.2.5"
∷ word (ὁ ∷ []) "1Tim.2.6"
∷ word (δ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.2.6"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Tim.2.6"
∷ word (ἀ ∷ ν ∷ τ ∷ ί ∷ ∙λ ∷ υ ∷ τ ∷ ρ ∷ ο ∷ ν ∷ []) "1Tim.2.6"
∷ word (ὑ ∷ π ∷ ὲ ∷ ρ ∷ []) "1Tim.2.6"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.2.6"
∷ word (τ ∷ ὸ ∷ []) "1Tim.2.6"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.2.6"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.2.6"
∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.2.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.2.7"
∷ word (ὃ ∷ []) "1Tim.2.7"
∷ word (ἐ ∷ τ ∷ έ ∷ θ ∷ η ∷ ν ∷ []) "1Tim.2.7"
∷ word (ἐ ∷ γ ∷ ὼ ∷ []) "1Tim.2.7"
∷ word (κ ∷ ῆ ∷ ρ ∷ υ ∷ ξ ∷ []) "1Tim.2.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.7"
∷ word (ἀ ∷ π ∷ ό ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Tim.2.7"
∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.2.7"
∷ word (∙λ ∷ έ ∷ γ ∷ ω ∷ []) "1Tim.2.7"
∷ word (ο ∷ ὐ ∷ []) "1Tim.2.7"
∷ word (ψ ∷ ε ∷ ύ ∷ δ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Tim.2.7"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Tim.2.7"
∷ word (ἐ ∷ θ ∷ ν ∷ ῶ ∷ ν ∷ []) "1Tim.2.7"
∷ word (ἐ ∷ ν ∷ []) "1Tim.2.7"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.2.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.7"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Tim.2.7"
∷ word (Β ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Tim.2.8"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Tim.2.8"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ ύ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Tim.2.8"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.2.8"
∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.2.8"
∷ word (ἐ ∷ ν ∷ []) "1Tim.2.8"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Tim.2.8"
∷ word (τ ∷ ό ∷ π ∷ ῳ ∷ []) "1Tim.2.8"
∷ word (ἐ ∷ π ∷ α ∷ ί ∷ ρ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Tim.2.8"
∷ word (ὁ ∷ σ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.2.8"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.2.8"
∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "1Tim.2.8"
∷ word (ὀ ∷ ρ ∷ γ ∷ ῆ ∷ ς ∷ []) "1Tim.2.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.8"
∷ word (δ ∷ ι ∷ α ∷ ∙λ ∷ ο ∷ γ ∷ ι ∷ σ ∷ μ ∷ ο ∷ ῦ ∷ []) "1Tim.2.8"
∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.9"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ ς ∷ []) "1Tim.2.9"
∷ word (ἐ ∷ ν ∷ []) "1Tim.2.9"
∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ ο ∷ ∙λ ∷ ῇ ∷ []) "1Tim.2.9"
∷ word (κ ∷ ο ∷ σ ∷ μ ∷ ί ∷ ῳ ∷ []) "1Tim.2.9"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.2.9"
∷ word (α ∷ ἰ ∷ δ ∷ ο ∷ ῦ ∷ ς ∷ []) "1Tim.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.9"
∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "1Tim.2.9"
∷ word (κ ∷ ο ∷ σ ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.2.9"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ά ∷ ς ∷ []) "1Tim.2.9"
∷ word (μ ∷ ὴ ∷ []) "1Tim.2.9"
∷ word (ἐ ∷ ν ∷ []) "1Tim.2.9"
∷ word (π ∷ ∙λ ∷ έ ∷ γ ∷ μ ∷ α ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.2.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.9"
∷ word (χ ∷ ρ ∷ υ ∷ σ ∷ ί ∷ ῳ ∷ []) "1Tim.2.9"
∷ word (ἢ ∷ []) "1Tim.2.9"
∷ word (μ ∷ α ∷ ρ ∷ γ ∷ α ∷ ρ ∷ ί ∷ τ ∷ α ∷ ι ∷ ς ∷ []) "1Tim.2.9"
∷ word (ἢ ∷ []) "1Tim.2.9"
∷ word (ἱ ∷ μ ∷ α ∷ τ ∷ ι ∷ σ ∷ μ ∷ ῷ ∷ []) "1Tim.2.9"
∷ word (π ∷ ο ∷ ∙λ ∷ υ ∷ τ ∷ ε ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Tim.2.9"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Tim.2.10"
∷ word (ὃ ∷ []) "1Tim.2.10"
∷ word (π ∷ ρ ∷ έ ∷ π ∷ ε ∷ ι ∷ []) "1Tim.2.10"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ ξ ∷ ὶ ∷ ν ∷ []) "1Tim.2.10"
∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ μ ∷ έ ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "1Tim.2.10"
∷ word (θ ∷ ε ∷ ο ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.2.10"
∷ word (δ ∷ ι ∷ []) "1Tim.2.10"
∷ word (ἔ ∷ ρ ∷ γ ∷ ω ∷ ν ∷ []) "1Tim.2.10"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῶ ∷ ν ∷ []) "1Tim.2.10"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Tim.2.11"
∷ word (ἐ ∷ ν ∷ []) "1Tim.2.11"
∷ word (ἡ ∷ σ ∷ υ ∷ χ ∷ ί ∷ ᾳ ∷ []) "1Tim.2.11"
∷ word (μ ∷ α ∷ ν ∷ θ ∷ α ∷ ν ∷ έ ∷ τ ∷ ω ∷ []) "1Tim.2.11"
∷ word (ἐ ∷ ν ∷ []) "1Tim.2.11"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Tim.2.11"
∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ γ ∷ ῇ ∷ []) "1Tim.2.11"
∷ word (δ ∷ ι ∷ δ ∷ ά ∷ σ ∷ κ ∷ ε ∷ ι ∷ ν ∷ []) "1Tim.2.12"
∷ word (δ ∷ ὲ ∷ []) "1Tim.2.12"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὶ ∷ []) "1Tim.2.12"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Tim.2.12"
∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ρ ∷ έ ∷ π ∷ ω ∷ []) "1Tim.2.12"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Tim.2.12"
∷ word (α ∷ ὐ ∷ θ ∷ ε ∷ ν ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.2.12"
∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ό ∷ ς ∷ []) "1Tim.2.12"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Tim.2.12"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.2.12"
∷ word (ἐ ∷ ν ∷ []) "1Tim.2.12"
∷ word (ἡ ∷ σ ∷ υ ∷ χ ∷ ί ∷ ᾳ ∷ []) "1Tim.2.12"
∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "1Tim.2.13"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.2.13"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.2.13"
∷ word (ἐ ∷ π ∷ ∙λ ∷ ά ∷ σ ∷ θ ∷ η ∷ []) "1Tim.2.13"
∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "1Tim.2.13"
∷ word (Ε ∷ ὕ ∷ α ∷ []) "1Tim.2.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.14"
∷ word (Ἀ ∷ δ ∷ ὰ ∷ μ ∷ []) "1Tim.2.14"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Tim.2.14"
∷ word (ἠ ∷ π ∷ α ∷ τ ∷ ή ∷ θ ∷ η ∷ []) "1Tim.2.14"
∷ word (ἡ ∷ []) "1Tim.2.14"
∷ word (δ ∷ ὲ ∷ []) "1Tim.2.14"
∷ word (γ ∷ υ ∷ ν ∷ ὴ ∷ []) "1Tim.2.14"
∷ word (ἐ ∷ ξ ∷ α ∷ π ∷ α ∷ τ ∷ η ∷ θ ∷ ε ∷ ῖ ∷ σ ∷ α ∷ []) "1Tim.2.14"
∷ word (ἐ ∷ ν ∷ []) "1Tim.2.14"
∷ word (π ∷ α ∷ ρ ∷ α ∷ β ∷ ά ∷ σ ∷ ε ∷ ι ∷ []) "1Tim.2.14"
∷ word (γ ∷ έ ∷ γ ∷ ο ∷ ν ∷ ε ∷ ν ∷ []) "1Tim.2.14"
∷ word (σ ∷ ω ∷ θ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Tim.2.15"
∷ word (δ ∷ ὲ ∷ []) "1Tim.2.15"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Tim.2.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.2.15"
∷ word (τ ∷ ε ∷ κ ∷ ν ∷ ο ∷ γ ∷ ο ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "1Tim.2.15"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Tim.2.15"
∷ word (μ ∷ ε ∷ ί ∷ ν ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.2.15"
∷ word (ἐ ∷ ν ∷ []) "1Tim.2.15"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.15"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "1Tim.2.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.2.15"
∷ word (ἁ ∷ γ ∷ ι ∷ α ∷ σ ∷ μ ∷ ῷ ∷ []) "1Tim.2.15"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.2.15"
∷ word (σ ∷ ω ∷ φ ∷ ρ ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ς ∷ []) "1Tim.2.15"
∷ word (Π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.3.1"
∷ word (ὁ ∷ []) "1Tim.3.1"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Tim.3.1"
∷ word (ε ∷ ἴ ∷ []) "1Tim.3.1"
∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.3.1"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ κ ∷ ο ∷ π ∷ ῆ ∷ ς ∷ []) "1Tim.3.1"
∷ word (ὀ ∷ ρ ∷ έ ∷ γ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Tim.3.1"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ []) "1Tim.3.1"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ υ ∷ []) "1Tim.3.1"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ε ∷ ῖ ∷ []) "1Tim.3.1"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Tim.3.2"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Tim.3.2"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.3.2"
∷ word (ἐ ∷ π ∷ ί ∷ σ ∷ κ ∷ ο ∷ π ∷ ο ∷ ν ∷ []) "1Tim.3.2"
∷ word (ἀ ∷ ν ∷ ε ∷ π ∷ ί ∷ ∙λ ∷ η ∷ μ ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.3.2"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.3.2"
∷ word (μ ∷ ι ∷ ᾶ ∷ ς ∷ []) "1Tim.3.2"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Tim.3.2"
∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ α ∷ []) "1Tim.3.2"
∷ word (ν ∷ η ∷ φ ∷ ά ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.3.2"
∷ word (σ ∷ ώ ∷ φ ∷ ρ ∷ ο ∷ ν ∷ α ∷ []) "1Tim.3.2"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.3.2"
∷ word (φ ∷ ι ∷ ∙λ ∷ ό ∷ ξ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Tim.3.2"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ κ ∷ τ ∷ ι ∷ κ ∷ ό ∷ ν ∷ []) "1Tim.3.2"
∷ word (μ ∷ ὴ ∷ []) "1Tim.3.3"
∷ word (π ∷ ά ∷ ρ ∷ ο ∷ ι ∷ ν ∷ ο ∷ ν ∷ []) "1Tim.3.3"
∷ word (μ ∷ ὴ ∷ []) "1Tim.3.3"
∷ word (π ∷ ∙λ ∷ ή ∷ κ ∷ τ ∷ η ∷ ν ∷ []) "1Tim.3.3"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.3.3"
∷ word (ἐ ∷ π ∷ ι ∷ ε ∷ ι ∷ κ ∷ ῆ ∷ []) "1Tim.3.3"
∷ word (ἄ ∷ μ ∷ α ∷ χ ∷ ο ∷ ν ∷ []) "1Tim.3.3"
∷ word (ἀ ∷ φ ∷ ι ∷ ∙λ ∷ ά ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ο ∷ ν ∷ []) "1Tim.3.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.3.4"
∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.3.4"
∷ word (ο ∷ ἴ ∷ κ ∷ ο ∷ υ ∷ []) "1Tim.3.4"
∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Tim.3.4"
∷ word (π ∷ ρ ∷ ο ∷ ϊ ∷ σ ∷ τ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Tim.3.4"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "1Tim.3.4"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Tim.3.4"
∷ word (ἐ ∷ ν ∷ []) "1Tim.3.4"
∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ α ∷ γ ∷ ῇ ∷ []) "1Tim.3.4"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.3.4"
∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "1Tim.3.4"
∷ word (σ ∷ ε ∷ μ ∷ ν ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.3.4"
∷ word (ε ∷ ἰ ∷ []) "1Tim.3.5"
∷ word (δ ∷ έ ∷ []) "1Tim.3.5"
∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.3.5"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.3.5"
∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.3.5"
∷ word (ο ∷ ἴ ∷ κ ∷ ο ∷ υ ∷ []) "1Tim.3.5"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ τ ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.3.5"
∷ word (ο ∷ ὐ ∷ κ ∷ []) "1Tim.3.5"
∷ word (ο ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "1Tim.3.5"
∷ word (π ∷ ῶ ∷ ς ∷ []) "1Tim.3.5"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.3.5"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.3.5"
∷ word (ἐ ∷ π ∷ ι ∷ μ ∷ ε ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Tim.3.5"
∷ word (μ ∷ ὴ ∷ []) "1Tim.3.6"
∷ word (ν ∷ ε ∷ ό ∷ φ ∷ υ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.3.6"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.3.6"
∷ word (μ ∷ ὴ ∷ []) "1Tim.3.6"
∷ word (τ ∷ υ ∷ φ ∷ ω ∷ θ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Tim.3.6"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.3.6"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "1Tim.3.6"
∷ word (ἐ ∷ μ ∷ π ∷ έ ∷ σ ∷ ῃ ∷ []) "1Tim.3.6"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.3.6"
∷ word (δ ∷ ι ∷ α ∷ β ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Tim.3.6"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Tim.3.7"
∷ word (δ ∷ ὲ ∷ []) "1Tim.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.7"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.3.7"
∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Tim.3.7"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ ν ∷ []) "1Tim.3.7"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Tim.3.7"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.3.7"
∷ word (ἔ ∷ ξ ∷ ω ∷ θ ∷ ε ∷ ν ∷ []) "1Tim.3.7"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.3.7"
∷ word (μ ∷ ὴ ∷ []) "1Tim.3.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.3.7"
∷ word (ὀ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Tim.3.7"
∷ word (ἐ ∷ μ ∷ π ∷ έ ∷ σ ∷ ῃ ∷ []) "1Tim.3.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.7"
∷ word (π ∷ α ∷ γ ∷ ί ∷ δ ∷ α ∷ []) "1Tim.3.7"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.3.7"
∷ word (δ ∷ ι ∷ α ∷ β ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ []) "1Tim.3.7"
∷ word (Δ ∷ ι ∷ α ∷ κ ∷ ό ∷ ν ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.3.8"
∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.3.8"
∷ word (σ ∷ ε ∷ μ ∷ ν ∷ ο ∷ ύ ∷ ς ∷ []) "1Tim.3.8"
∷ word (μ ∷ ὴ ∷ []) "1Tim.3.8"
∷ word (δ ∷ ι ∷ ∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.3.8"
∷ word (μ ∷ ὴ ∷ []) "1Tim.3.8"
∷ word (ο ∷ ἴ ∷ ν ∷ ῳ ∷ []) "1Tim.3.8"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῷ ∷ []) "1Tim.3.8"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Tim.3.8"
∷ word (μ ∷ ὴ ∷ []) "1Tim.3.8"
∷ word (α ∷ ἰ ∷ σ ∷ χ ∷ ρ ∷ ο ∷ κ ∷ ε ∷ ρ ∷ δ ∷ ε ∷ ῖ ∷ ς ∷ []) "1Tim.3.8"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Tim.3.9"
∷ word (τ ∷ ὸ ∷ []) "1Tim.3.9"
∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.3.9"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.3.9"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.3.9"
∷ word (ἐ ∷ ν ∷ []) "1Tim.3.9"
∷ word (κ ∷ α ∷ θ ∷ α ∷ ρ ∷ ᾷ ∷ []) "1Tim.3.9"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Tim.3.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.10"
∷ word (ο ∷ ὗ ∷ τ ∷ ο ∷ ι ∷ []) "1Tim.3.10"
∷ word (δ ∷ ὲ ∷ []) "1Tim.3.10"
∷ word (δ ∷ ο ∷ κ ∷ ι ∷ μ ∷ α ∷ ζ ∷ έ ∷ σ ∷ θ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.3.10"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.3.10"
∷ word (ε ∷ ἶ ∷ τ ∷ α ∷ []) "1Tim.3.10"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ε ∷ ί ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.3.10"
∷ word (ἀ ∷ ν ∷ έ ∷ γ ∷ κ ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ι ∷ []) "1Tim.3.10"
∷ word (ὄ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.3.10"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ῖ ∷ κ ∷ α ∷ ς ∷ []) "1Tim.3.11"
∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.3.11"
∷ word (σ ∷ ε ∷ μ ∷ ν ∷ ά ∷ ς ∷ []) "1Tim.3.11"
∷ word (μ ∷ ὴ ∷ []) "1Tim.3.11"
∷ word (δ ∷ ι ∷ α ∷ β ∷ ό ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.3.11"
∷ word (ν ∷ η ∷ φ ∷ α ∷ ∙λ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.3.11"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὰ ∷ ς ∷ []) "1Tim.3.11"
∷ word (ἐ ∷ ν ∷ []) "1Tim.3.11"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.3.11"
∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.3.12"
∷ word (ἔ ∷ σ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.3.12"
∷ word (μ ∷ ι ∷ ᾶ ∷ ς ∷ []) "1Tim.3.12"
∷ word (γ ∷ υ ∷ ν ∷ α ∷ ι ∷ κ ∷ ὸ ∷ ς ∷ []) "1Tim.3.12"
∷ word (ἄ ∷ ν ∷ δ ∷ ρ ∷ ε ∷ ς ∷ []) "1Tim.3.12"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.3.12"
∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Tim.3.12"
∷ word (π ∷ ρ ∷ ο ∷ ϊ ∷ σ ∷ τ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.3.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.3.12"
∷ word (ἰ ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "1Tim.3.12"
∷ word (ο ∷ ἴ ∷ κ ∷ ω ∷ ν ∷ []) "1Tim.3.12"
∷ word (ο ∷ ἱ ∷ []) "1Tim.3.13"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.3.13"
∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Tim.3.13"
∷ word (δ ∷ ι ∷ α ∷ κ ∷ ο ∷ ν ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.3.13"
∷ word (β ∷ α ∷ θ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Tim.3.13"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.3.13"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Tim.3.13"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ π ∷ ο ∷ ι ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Tim.3.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.13"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Tim.3.13"
∷ word (π ∷ α ∷ ρ ∷ ρ ∷ η ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.3.13"
∷ word (ἐ ∷ ν ∷ []) "1Tim.3.13"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.3.13"
∷ word (τ ∷ ῇ ∷ []) "1Tim.3.13"
∷ word (ἐ ∷ ν ∷ []) "1Tim.3.13"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ῷ ∷ []) "1Tim.3.13"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.3.13"
∷ word (Τ ∷ α ∷ ῦ ∷ τ ∷ ά ∷ []) "1Tim.3.14"
∷ word (σ ∷ ο ∷ ι ∷ []) "1Tim.3.14"
∷ word (γ ∷ ρ ∷ ά ∷ φ ∷ ω ∷ []) "1Tim.3.14"
∷ word (ἐ ∷ ∙λ ∷ π ∷ ί ∷ ζ ∷ ω ∷ ν ∷ []) "1Tim.3.14"
∷ word (ἐ ∷ ∙λ ∷ θ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.3.14"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.3.14"
∷ word (σ ∷ ὲ ∷ []) "1Tim.3.14"
∷ word (ἐ ∷ ν ∷ []) "1Tim.3.14"
∷ word (τ ∷ ά ∷ χ ∷ ε ∷ ι ∷ []) "1Tim.3.14"
∷ word (ἐ ∷ ὰ ∷ ν ∷ []) "1Tim.3.15"
∷ word (δ ∷ ὲ ∷ []) "1Tim.3.15"
∷ word (β ∷ ρ ∷ α ∷ δ ∷ ύ ∷ ν ∷ ω ∷ []) "1Tim.3.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.3.15"
∷ word (ε ∷ ἰ ∷ δ ∷ ῇ ∷ ς ∷ []) "1Tim.3.15"
∷ word (π ∷ ῶ ∷ ς ∷ []) "1Tim.3.15"
∷ word (δ ∷ ε ∷ ῖ ∷ []) "1Tim.3.15"
∷ word (ἐ ∷ ν ∷ []) "1Tim.3.15"
∷ word (ο ∷ ἴ ∷ κ ∷ ῳ ∷ []) "1Tim.3.15"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.3.15"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ έ ∷ φ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Tim.3.15"
∷ word (ἥ ∷ τ ∷ ι ∷ ς ∷ []) "1Tim.3.15"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Tim.3.15"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ []) "1Tim.3.15"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.3.15"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.3.15"
∷ word (σ ∷ τ ∷ ῦ ∷ ∙λ ∷ ο ∷ ς ∷ []) "1Tim.3.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.15"
∷ word (ἑ ∷ δ ∷ ρ ∷ α ∷ ί ∷ ω ∷ μ ∷ α ∷ []) "1Tim.3.15"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.3.15"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.3.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.3.16"
∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ς ∷ []) "1Tim.3.16"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ []) "1Tim.3.16"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Tim.3.16"
∷ word (τ ∷ ὸ ∷ []) "1Tim.3.16"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.3.16"
∷ word (ε ∷ ὐ ∷ σ ∷ ε ∷ β ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.3.16"
∷ word (μ ∷ υ ∷ σ ∷ τ ∷ ή ∷ ρ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.3.16"
∷ word (Ὃ ∷ ς ∷ []) "1Tim.3.16"
∷ word (ἐ ∷ φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ώ ∷ θ ∷ η ∷ []) "1Tim.3.16"
∷ word (ἐ ∷ ν ∷ []) "1Tim.3.16"
∷ word (σ ∷ α ∷ ρ ∷ κ ∷ ί ∷ []) "1Tim.3.16"
∷ word (ἐ ∷ δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ώ ∷ θ ∷ η ∷ []) "1Tim.3.16"
∷ word (ἐ ∷ ν ∷ []) "1Tim.3.16"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ τ ∷ ι ∷ []) "1Tim.3.16"
∷ word (ὤ ∷ φ ∷ θ ∷ η ∷ []) "1Tim.3.16"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.3.16"
∷ word (ἐ ∷ κ ∷ η ∷ ρ ∷ ύ ∷ χ ∷ θ ∷ η ∷ []) "1Tim.3.16"
∷ word (ἐ ∷ ν ∷ []) "1Tim.3.16"
∷ word (ἔ ∷ θ ∷ ν ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.3.16"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ε ∷ ύ ∷ θ ∷ η ∷ []) "1Tim.3.16"
∷ word (ἐ ∷ ν ∷ []) "1Tim.3.16"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ῳ ∷ []) "1Tim.3.16"
∷ word (ἀ ∷ ν ∷ ε ∷ ∙λ ∷ ή ∷ μ ∷ φ ∷ θ ∷ η ∷ []) "1Tim.3.16"
∷ word (ἐ ∷ ν ∷ []) "1Tim.3.16"
∷ word (δ ∷ ό ∷ ξ ∷ ῃ ∷ []) "1Tim.3.16"
∷ word (Τ ∷ ὸ ∷ []) "1Tim.4.1"
∷ word (δ ∷ ὲ ∷ []) "1Tim.4.1"
∷ word (π ∷ ν ∷ ε ∷ ῦ ∷ μ ∷ α ∷ []) "1Tim.4.1"
∷ word (ῥ ∷ η ∷ τ ∷ ῶ ∷ ς ∷ []) "1Tim.4.1"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Tim.4.1"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.4.1"
∷ word (ἐ ∷ ν ∷ []) "1Tim.4.1"
∷ word (ὑ ∷ σ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.4.1"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.1"
∷ word (ἀ ∷ π ∷ ο ∷ σ ∷ τ ∷ ή ∷ σ ∷ ο ∷ ν ∷ τ ∷ α ∷ ί ∷ []) "1Tim.4.1"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.4.1"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.4.1"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.4.1"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.4.1"
∷ word (π ∷ ν ∷ ε ∷ ύ ∷ μ ∷ α ∷ σ ∷ ι ∷ []) "1Tim.4.1"
∷ word (π ∷ ∙λ ∷ ά ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.4.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.1"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Tim.4.1"
∷ word (δ ∷ α ∷ ι ∷ μ ∷ ο ∷ ν ∷ ί ∷ ω ∷ ν ∷ []) "1Tim.4.1"
∷ word (ἐ ∷ ν ∷ []) "1Tim.4.2"
∷ word (ὑ ∷ π ∷ ο ∷ κ ∷ ρ ∷ ί ∷ σ ∷ ε ∷ ι ∷ []) "1Tim.4.2"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ο ∷ ∙λ ∷ ό ∷ γ ∷ ω ∷ ν ∷ []) "1Tim.4.2"
∷ word (κ ∷ ε ∷ κ ∷ α ∷ υ ∷ σ ∷ τ ∷ η ∷ ρ ∷ ι ∷ α ∷ σ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.4.2"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.4.2"
∷ word (ἰ ∷ δ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.4.2"
∷ word (σ ∷ υ ∷ ν ∷ ε ∷ ί ∷ δ ∷ η ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.4.2"
∷ word (κ ∷ ω ∷ ∙λ ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.4.3"
∷ word (γ ∷ α ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.4.3"
∷ word (ἀ ∷ π ∷ έ ∷ χ ∷ ε ∷ σ ∷ θ ∷ α ∷ ι ∷ []) "1Tim.4.3"
∷ word (β ∷ ρ ∷ ω ∷ μ ∷ ά ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.4.3"
∷ word (ἃ ∷ []) "1Tim.4.3"
∷ word (ὁ ∷ []) "1Tim.4.3"
∷ word (θ ∷ ε ∷ ὸ ∷ ς ∷ []) "1Tim.4.3"
∷ word (ἔ ∷ κ ∷ τ ∷ ι ∷ σ ∷ ε ∷ ν ∷ []) "1Tim.4.3"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.4.3"
∷ word (μ ∷ ε ∷ τ ∷ ά ∷ ∙λ ∷ η ∷ μ ∷ ψ ∷ ι ∷ ν ∷ []) "1Tim.4.3"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.4.3"
∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.4.3"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.3"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.3"
∷ word (ἐ ∷ π ∷ ε ∷ γ ∷ ν ∷ ω ∷ κ ∷ ό ∷ σ ∷ ι ∷ []) "1Tim.4.3"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.4.3"
∷ word (ἀ ∷ ∙λ ∷ ή ∷ θ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.4.3"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.4.4"
∷ word (π ∷ ᾶ ∷ ν ∷ []) "1Tim.4.4"
∷ word (κ ∷ τ ∷ ί ∷ σ ∷ μ ∷ α ∷ []) "1Tim.4.4"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.4.4"
∷ word (κ ∷ α ∷ ∙λ ∷ ό ∷ ν ∷ []) "1Tim.4.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.4"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "1Tim.4.4"
∷ word (ἀ ∷ π ∷ ό ∷ β ∷ ∙λ ∷ η ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.4.4"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.4.4"
∷ word (ε ∷ ὐ ∷ χ ∷ α ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.4.4"
∷ word (∙λ ∷ α ∷ μ ∷ β ∷ α ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ν ∷ []) "1Tim.4.4"
∷ word (ἁ ∷ γ ∷ ι ∷ ά ∷ ζ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Tim.4.5"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.4.5"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Tim.4.5"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ υ ∷ []) "1Tim.4.5"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.4.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.5"
∷ word (ἐ ∷ ν ∷ τ ∷ ε ∷ ύ ∷ ξ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.4.5"
∷ word (Τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.4.6"
∷ word (ὑ ∷ π ∷ ο ∷ τ ∷ ι ∷ θ ∷ έ ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.4.6"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.6"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.6"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ς ∷ []) "1Tim.4.6"
∷ word (ἔ ∷ σ ∷ ῃ ∷ []) "1Tim.4.6"
∷ word (δ ∷ ι ∷ ά ∷ κ ∷ ο ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.4.6"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.4.6"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.4.6"
∷ word (ἐ ∷ ν ∷ τ ∷ ρ ∷ ε ∷ φ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.4.6"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.6"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.4.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.4.6"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.4.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.6"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.4.6"
∷ word (κ ∷ α ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "1Tim.4.6"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.4.6"
∷ word (ᾗ ∷ []) "1Tim.4.6"
∷ word (π ∷ α ∷ ρ ∷ η ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ κ ∷ α ∷ ς ∷ []) "1Tim.4.6"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.4.7"
∷ word (δ ∷ ὲ ∷ []) "1Tim.4.7"
∷ word (β ∷ ε ∷ β ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.4.7"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.7"
∷ word (γ ∷ ρ ∷ α ∷ ώ ∷ δ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.4.7"
∷ word (μ ∷ ύ ∷ θ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.4.7"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ι ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.4.7"
∷ word (γ ∷ ύ ∷ μ ∷ ν ∷ α ∷ ζ ∷ ε ∷ []) "1Tim.4.7"
∷ word (δ ∷ ὲ ∷ []) "1Tim.4.7"
∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Tim.4.7"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.4.7"
∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.4.7"
∷ word (ἡ ∷ []) "1Tim.4.8"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.4.8"
∷ word (σ ∷ ω ∷ μ ∷ α ∷ τ ∷ ι ∷ κ ∷ ὴ ∷ []) "1Tim.4.8"
∷ word (γ ∷ υ ∷ μ ∷ ν ∷ α ∷ σ ∷ ί ∷ α ∷ []) "1Tim.4.8"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.4.8"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ο ∷ ν ∷ []) "1Tim.4.8"
∷ word (ἐ ∷ σ ∷ τ ∷ ὶ ∷ ν ∷ []) "1Tim.4.8"
∷ word (ὠ ∷ φ ∷ έ ∷ ∙λ ∷ ι ∷ μ ∷ ο ∷ ς ∷ []) "1Tim.4.8"
∷ word (ἡ ∷ []) "1Tim.4.8"
∷ word (δ ∷ ὲ ∷ []) "1Tim.4.8"
∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ []) "1Tim.4.8"
∷ word (π ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.4.8"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Tim.4.8"
∷ word (ὠ ∷ φ ∷ έ ∷ ∙λ ∷ ι ∷ μ ∷ ό ∷ ς ∷ []) "1Tim.4.8"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.4.8"
∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.4.8"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ []) "1Tim.4.8"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "1Tim.4.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.4.8"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Tim.4.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.8"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.4.8"
∷ word (μ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ο ∷ ύ ∷ σ ∷ η ∷ ς ∷ []) "1Tim.4.8"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.4.9"
∷ word (ὁ ∷ []) "1Tim.4.9"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ς ∷ []) "1Tim.4.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.9"
∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "1Tim.4.9"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ο ∷ χ ∷ ῆ ∷ ς ∷ []) "1Tim.4.9"
∷ word (ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "1Tim.4.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.4.10"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Tim.4.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.4.10"
∷ word (κ ∷ ο ∷ π ∷ ι ∷ ῶ ∷ μ ∷ ε ∷ ν ∷ []) "1Tim.4.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.10"
∷ word (ὀ ∷ ν ∷ ε ∷ ι ∷ δ ∷ ι ∷ ζ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Tim.4.10"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.4.10"
∷ word (ἠ ∷ ∙λ ∷ π ∷ ί ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Tim.4.10"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.4.10"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Tim.4.10"
∷ word (ζ ∷ ῶ ∷ ν ∷ τ ∷ ι ∷ []) "1Tim.4.10"
∷ word (ὅ ∷ ς ∷ []) "1Tim.4.10"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.4.10"
∷ word (σ ∷ ω ∷ τ ∷ ὴ ∷ ρ ∷ []) "1Tim.4.10"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.4.10"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Tim.4.10"
∷ word (μ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "1Tim.4.10"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Tim.4.10"
∷ word (Π ∷ α ∷ ρ ∷ ά ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ε ∷ []) "1Tim.4.11"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.4.11"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.11"
∷ word (δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ []) "1Tim.4.11"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ί ∷ ς ∷ []) "1Tim.4.12"
∷ word (σ ∷ ο ∷ υ ∷ []) "1Tim.4.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.4.12"
∷ word (ν ∷ ε ∷ ό ∷ τ ∷ η ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.4.12"
∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "1Tim.4.12"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.4.12"
∷ word (τ ∷ ύ ∷ π ∷ ο ∷ ς ∷ []) "1Tim.4.12"
∷ word (γ ∷ ί ∷ ν ∷ ο ∷ υ ∷ []) "1Tim.4.12"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.4.12"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Tim.4.12"
∷ word (ἐ ∷ ν ∷ []) "1Tim.4.12"
∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Tim.4.12"
∷ word (ἐ ∷ ν ∷ []) "1Tim.4.12"
∷ word (ἀ ∷ ν ∷ α ∷ σ ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ῇ ∷ []) "1Tim.4.12"
∷ word (ἐ ∷ ν ∷ []) "1Tim.4.12"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ ῃ ∷ []) "1Tim.4.12"
∷ word (ἐ ∷ ν ∷ []) "1Tim.4.12"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.4.12"
∷ word (ἐ ∷ ν ∷ []) "1Tim.4.12"
∷ word (ἁ ∷ γ ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Tim.4.12"
∷ word (ἕ ∷ ω ∷ ς ∷ []) "1Tim.4.13"
∷ word (ἔ ∷ ρ ∷ χ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Tim.4.13"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ ε ∷ χ ∷ ε ∷ []) "1Tim.4.13"
∷ word (τ ∷ ῇ ∷ []) "1Tim.4.13"
∷ word (ἀ ∷ ν ∷ α ∷ γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ι ∷ []) "1Tim.4.13"
∷ word (τ ∷ ῇ ∷ []) "1Tim.4.13"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ∙λ ∷ ή ∷ σ ∷ ε ∷ ι ∷ []) "1Tim.4.13"
∷ word (τ ∷ ῇ ∷ []) "1Tim.4.13"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "1Tim.4.13"
∷ word (μ ∷ ὴ ∷ []) "1Tim.4.14"
∷ word (ἀ ∷ μ ∷ έ ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Tim.4.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.4.14"
∷ word (ἐ ∷ ν ∷ []) "1Tim.4.14"
∷ word (σ ∷ ο ∷ ὶ ∷ []) "1Tim.4.14"
∷ word (χ ∷ α ∷ ρ ∷ ί ∷ σ ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.4.14"
∷ word (ὃ ∷ []) "1Tim.4.14"
∷ word (ἐ ∷ δ ∷ ό ∷ θ ∷ η ∷ []) "1Tim.4.14"
∷ word (σ ∷ ο ∷ ι ∷ []) "1Tim.4.14"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Tim.4.14"
∷ word (π ∷ ρ ∷ ο ∷ φ ∷ η ∷ τ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.4.14"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.4.14"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ έ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.4.14"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.4.14"
∷ word (χ ∷ ε ∷ ι ∷ ρ ∷ ῶ ∷ ν ∷ []) "1Tim.4.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.4.14"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ ε ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.4.14"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.4.15"
∷ word (μ ∷ ε ∷ ∙λ ∷ έ ∷ τ ∷ α ∷ []) "1Tim.4.15"
∷ word (ἐ ∷ ν ∷ []) "1Tim.4.15"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.4.15"
∷ word (ἴ ∷ σ ∷ θ ∷ ι ∷ []) "1Tim.4.15"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.4.15"
∷ word (σ ∷ ο ∷ υ ∷ []) "1Tim.4.15"
∷ word (ἡ ∷ []) "1Tim.4.15"
∷ word (π ∷ ρ ∷ ο ∷ κ ∷ ο ∷ π ∷ ὴ ∷ []) "1Tim.4.15"
∷ word (φ ∷ α ∷ ν ∷ ε ∷ ρ ∷ ὰ ∷ []) "1Tim.4.15"
∷ word (ᾖ ∷ []) "1Tim.4.15"
∷ word (π ∷ ᾶ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.4.15"
∷ word (ἔ ∷ π ∷ ε ∷ χ ∷ ε ∷ []) "1Tim.4.16"
∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ῷ ∷ []) "1Tim.4.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.16"
∷ word (τ ∷ ῇ ∷ []) "1Tim.4.16"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "1Tim.4.16"
∷ word (ἐ ∷ π ∷ ί ∷ μ ∷ ε ∷ ν ∷ ε ∷ []) "1Tim.4.16"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.4.16"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Tim.4.16"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.4.16"
∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "1Tim.4.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.16"
∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Tim.4.16"
∷ word (σ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.4.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.4.16"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.4.16"
∷ word (ἀ ∷ κ ∷ ο ∷ ύ ∷ ο ∷ ν ∷ τ ∷ ά ∷ ς ∷ []) "1Tim.4.16"
∷ word (σ ∷ ο ∷ υ ∷ []) "1Tim.4.16"
∷ word (Π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ῳ ∷ []) "1Tim.5.1"
∷ word (μ ∷ ὴ ∷ []) "1Tim.5.1"
∷ word (ἐ ∷ π ∷ ι ∷ π ∷ ∙λ ∷ ή ∷ ξ ∷ ῃ ∷ ς ∷ []) "1Tim.5.1"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.5.1"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Tim.5.1"
∷ word (ὡ ∷ ς ∷ []) "1Tim.5.1"
∷ word (π ∷ α ∷ τ ∷ έ ∷ ρ ∷ α ∷ []) "1Tim.5.1"
∷ word (ν ∷ ε ∷ ω ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.5.1"
∷ word (ὡ ∷ ς ∷ []) "1Tim.5.1"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ύ ∷ ς ∷ []) "1Tim.5.1"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.2"
∷ word (ὡ ∷ ς ∷ []) "1Tim.5.2"
∷ word (μ ∷ η ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.2"
∷ word (ν ∷ ε ∷ ω ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.2"
∷ word (ὡ ∷ ς ∷ []) "1Tim.5.2"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ὰ ∷ ς ∷ []) "1Tim.5.2"
∷ word (ἐ ∷ ν ∷ []) "1Tim.5.2"
∷ word (π ∷ ά ∷ σ ∷ ῃ ∷ []) "1Tim.5.2"
∷ word (ἁ ∷ γ ∷ ν ∷ ε ∷ ί ∷ ᾳ ∷ []) "1Tim.5.2"
∷ word (Χ ∷ ή ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.3"
∷ word (τ ∷ ί ∷ μ ∷ α ∷ []) "1Tim.5.3"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Tim.5.3"
∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.5.3"
∷ word (χ ∷ ή ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.3"
∷ word (ε ∷ ἰ ∷ []) "1Tim.5.4"
∷ word (δ ∷ έ ∷ []) "1Tim.5.4"
∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.5.4"
∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "1Tim.5.4"
∷ word (τ ∷ έ ∷ κ ∷ ν ∷ α ∷ []) "1Tim.5.4"
∷ word (ἢ ∷ []) "1Tim.5.4"
∷ word (ἔ ∷ κ ∷ γ ∷ ο ∷ ν ∷ α ∷ []) "1Tim.5.4"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Tim.5.4"
∷ word (μ ∷ α ∷ ν ∷ θ ∷ α ∷ ν ∷ έ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.5.4"
∷ word (π ∷ ρ ∷ ῶ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.5.4"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.5.4"
∷ word (ἴ ∷ δ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.5.4"
∷ word (ο ∷ ἶ ∷ κ ∷ ο ∷ ν ∷ []) "1Tim.5.4"
∷ word (ε ∷ ὐ ∷ σ ∷ ε ∷ β ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.5.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.4"
∷ word (ἀ ∷ μ ∷ ο ∷ ι ∷ β ∷ ὰ ∷ ς ∷ []) "1Tim.5.4"
∷ word (ἀ ∷ π ∷ ο ∷ δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ α ∷ ι ∷ []) "1Tim.5.4"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.5.4"
∷ word (π ∷ ρ ∷ ο ∷ γ ∷ ό ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.5.4"
∷ word (τ ∷ ο ∷ ῦ ∷ τ ∷ ο ∷ []) "1Tim.5.4"
∷ word (γ ∷ ά ∷ ρ ∷ []) "1Tim.5.4"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.5.4"
∷ word (ἀ ∷ π ∷ ό ∷ δ ∷ ε ∷ κ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.5.4"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.5.4"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.4"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.5.4"
∷ word (ἡ ∷ []) "1Tim.5.5"
∷ word (δ ∷ ὲ ∷ []) "1Tim.5.5"
∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.5.5"
∷ word (χ ∷ ή ∷ ρ ∷ α ∷ []) "1Tim.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.5"
∷ word (μ ∷ ε ∷ μ ∷ ο ∷ ν ∷ ω ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "1Tim.5.5"
∷ word (ἤ ∷ ∙λ ∷ π ∷ ι ∷ κ ∷ ε ∷ ν ∷ []) "1Tim.5.5"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.5.5"
∷ word (θ ∷ ε ∷ ὸ ∷ ν ∷ []) "1Tim.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.5"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ μ ∷ έ ∷ ν ∷ ε ∷ ι ∷ []) "1Tim.5.5"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.5.5"
∷ word (δ ∷ ε ∷ ή ∷ σ ∷ ε ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.5"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.5.5"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ ε ∷ υ ∷ χ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.5.5"
∷ word (ν ∷ υ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.5.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.5"
∷ word (ἡ ∷ μ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.5"
∷ word (ἡ ∷ []) "1Tim.5.6"
∷ word (δ ∷ ὲ ∷ []) "1Tim.5.6"
∷ word (σ ∷ π ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ῶ ∷ σ ∷ α ∷ []) "1Tim.5.6"
∷ word (ζ ∷ ῶ ∷ σ ∷ α ∷ []) "1Tim.5.6"
∷ word (τ ∷ έ ∷ θ ∷ ν ∷ η ∷ κ ∷ ε ∷ ν ∷ []) "1Tim.5.6"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.7"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.5.7"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ε ∷ []) "1Tim.5.7"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.5.7"
∷ word (ἀ ∷ ν ∷ ε ∷ π ∷ ί ∷ ∙λ ∷ η ∷ μ ∷ π ∷ τ ∷ ο ∷ ι ∷ []) "1Tim.5.7"
∷ word (ὦ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.7"
∷ word (ε ∷ ἰ ∷ []) "1Tim.5.8"
∷ word (δ ∷ έ ∷ []) "1Tim.5.8"
∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.5.8"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.5.8"
∷ word (ἰ ∷ δ ∷ ί ∷ ω ∷ ν ∷ []) "1Tim.5.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.8"
∷ word (μ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "1Tim.5.8"
∷ word (ο ∷ ἰ ∷ κ ∷ ε ∷ ί ∷ ω ∷ ν ∷ []) "1Tim.5.8"
∷ word (ο ∷ ὐ ∷ []) "1Tim.5.8"
∷ word (π ∷ ρ ∷ ο ∷ ν ∷ ο ∷ ε ∷ ῖ ∷ []) "1Tim.5.8"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.5.8"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.5.8"
∷ word (ἤ ∷ ρ ∷ ν ∷ η ∷ τ ∷ α ∷ ι ∷ []) "1Tim.5.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.8"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.5.8"
∷ word (ἀ ∷ π ∷ ί ∷ σ ∷ τ ∷ ο ∷ υ ∷ []) "1Tim.5.8"
∷ word (χ ∷ ε ∷ ί ∷ ρ ∷ ω ∷ ν ∷ []) "1Tim.5.8"
∷ word (Χ ∷ ή ∷ ρ ∷ α ∷ []) "1Tim.5.9"
∷ word (κ ∷ α ∷ τ ∷ α ∷ ∙λ ∷ ε ∷ γ ∷ έ ∷ σ ∷ θ ∷ ω ∷ []) "1Tim.5.9"
∷ word (μ ∷ ὴ ∷ []) "1Tim.5.9"
∷ word (ἔ ∷ ∙λ ∷ α ∷ τ ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.5.9"
∷ word (ἐ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Tim.5.9"
∷ word (ἑ ∷ ξ ∷ ή ∷ κ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Tim.5.9"
∷ word (γ ∷ ε ∷ γ ∷ ο ∷ ν ∷ υ ∷ ῖ ∷ α ∷ []) "1Tim.5.9"
∷ word (ἑ ∷ ν ∷ ὸ ∷ ς ∷ []) "1Tim.5.9"
∷ word (ἀ ∷ ν ∷ δ ∷ ρ ∷ ὸ ∷ ς ∷ []) "1Tim.5.9"
∷ word (γ ∷ υ ∷ ν ∷ ή ∷ []) "1Tim.5.9"
∷ word (ἐ ∷ ν ∷ []) "1Tim.5.10"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.5.10"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.5.10"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ο ∷ υ ∷ μ ∷ έ ∷ ν ∷ η ∷ []) "1Tim.5.10"
∷ word (ε ∷ ἰ ∷ []) "1Tim.5.10"
∷ word (ἐ ∷ τ ∷ ε ∷ κ ∷ ν ∷ ο ∷ τ ∷ ρ ∷ ό ∷ φ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Tim.5.10"
∷ word (ε ∷ ἰ ∷ []) "1Tim.5.10"
∷ word (ἐ ∷ ξ ∷ ε ∷ ν ∷ ο ∷ δ ∷ ό ∷ χ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Tim.5.10"
∷ word (ε ∷ ἰ ∷ []) "1Tim.5.10"
∷ word (ἁ ∷ γ ∷ ί ∷ ω ∷ ν ∷ []) "1Tim.5.10"
∷ word (π ∷ ό ∷ δ ∷ α ∷ ς ∷ []) "1Tim.5.10"
∷ word (ἔ ∷ ν ∷ ι ∷ ψ ∷ ε ∷ ν ∷ []) "1Tim.5.10"
∷ word (ε ∷ ἰ ∷ []) "1Tim.5.10"
∷ word (θ ∷ ∙λ ∷ ι ∷ β ∷ ο ∷ μ ∷ έ ∷ ν ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.5.10"
∷ word (ἐ ∷ π ∷ ή ∷ ρ ∷ κ ∷ ε ∷ σ ∷ ε ∷ ν ∷ []) "1Tim.5.10"
∷ word (ε ∷ ἰ ∷ []) "1Tim.5.10"
∷ word (π ∷ α ∷ ν ∷ τ ∷ ὶ ∷ []) "1Tim.5.10"
∷ word (ἔ ∷ ρ ∷ γ ∷ ῳ ∷ []) "1Tim.5.10"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ῷ ∷ []) "1Tim.5.10"
∷ word (ἐ ∷ π ∷ η ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ ύ ∷ θ ∷ η ∷ σ ∷ ε ∷ ν ∷ []) "1Tim.5.10"
∷ word (ν ∷ ε ∷ ω ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.11"
∷ word (δ ∷ ὲ ∷ []) "1Tim.5.11"
∷ word (χ ∷ ή ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.11"
∷ word (π ∷ α ∷ ρ ∷ α ∷ ι ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.11"
∷ word (ὅ ∷ τ ∷ α ∷ ν ∷ []) "1Tim.5.11"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.5.11"
∷ word (κ ∷ α ∷ τ ∷ α ∷ σ ∷ τ ∷ ρ ∷ η ∷ ν ∷ ι ∷ ά ∷ σ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.11"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.11"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.11"
∷ word (γ ∷ α ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.5.11"
∷ word (θ ∷ έ ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.11"
∷ word (ἔ ∷ χ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "1Tim.5.12"
∷ word (κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ []) "1Tim.5.12"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.5.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.5.12"
∷ word (π ∷ ρ ∷ ώ ∷ τ ∷ η ∷ ν ∷ []) "1Tim.5.12"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.5.12"
∷ word (ἠ ∷ θ ∷ έ ∷ τ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Tim.5.12"
∷ word (ἅ ∷ μ ∷ α ∷ []) "1Tim.5.13"
∷ word (δ ∷ ὲ ∷ []) "1Tim.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.13"
∷ word (ἀ ∷ ρ ∷ γ ∷ α ∷ ὶ ∷ []) "1Tim.5.13"
∷ word (μ ∷ α ∷ ν ∷ θ ∷ ά ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.13"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ ε ∷ ρ ∷ χ ∷ ό ∷ μ ∷ ε ∷ ν ∷ α ∷ ι ∷ []) "1Tim.5.13"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Tim.5.13"
∷ word (ο ∷ ἰ ∷ κ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.5.13"
∷ word (ο ∷ ὐ ∷ []) "1Tim.5.13"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ν ∷ []) "1Tim.5.13"
∷ word (δ ∷ ὲ ∷ []) "1Tim.5.13"
∷ word (ἀ ∷ ρ ∷ γ ∷ α ∷ ὶ ∷ []) "1Tim.5.13"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.13"
∷ word (φ ∷ ∙λ ∷ ύ ∷ α ∷ ρ ∷ ο ∷ ι ∷ []) "1Tim.5.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.13"
∷ word (π ∷ ε ∷ ρ ∷ ί ∷ ε ∷ ρ ∷ γ ∷ ο ∷ ι ∷ []) "1Tim.5.13"
∷ word (∙λ ∷ α ∷ ∙λ ∷ ο ∷ ῦ ∷ σ ∷ α ∷ ι ∷ []) "1Tim.5.13"
∷ word (τ ∷ ὰ ∷ []) "1Tim.5.13"
∷ word (μ ∷ ὴ ∷ []) "1Tim.5.13"
∷ word (δ ∷ έ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Tim.5.13"
∷ word (β ∷ ο ∷ ύ ∷ ∙λ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Tim.5.14"
∷ word (ο ∷ ὖ ∷ ν ∷ []) "1Tim.5.14"
∷ word (ν ∷ ε ∷ ω ∷ τ ∷ έ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.14"
∷ word (γ ∷ α ∷ μ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.5.14"
∷ word (τ ∷ ε ∷ κ ∷ ν ∷ ο ∷ γ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.5.14"
∷ word (ο ∷ ἰ ∷ κ ∷ ο ∷ δ ∷ ε ∷ σ ∷ π ∷ ο ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.5.14"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ μ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.5.14"
∷ word (ἀ ∷ φ ∷ ο ∷ ρ ∷ μ ∷ ὴ ∷ ν ∷ []) "1Tim.5.14"
∷ word (δ ∷ ι ∷ δ ∷ ό ∷ ν ∷ α ∷ ι ∷ []) "1Tim.5.14"
∷ word (τ ∷ ῷ ∷ []) "1Tim.5.14"
∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ κ ∷ ε ∷ ι ∷ μ ∷ έ ∷ ν ∷ ῳ ∷ []) "1Tim.5.14"
∷ word (∙λ ∷ ο ∷ ι ∷ δ ∷ ο ∷ ρ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.5.14"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ν ∷ []) "1Tim.5.14"
∷ word (ἤ ∷ δ ∷ η ∷ []) "1Tim.5.15"
∷ word (γ ∷ ά ∷ ρ ∷ []) "1Tim.5.15"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.5.15"
∷ word (ἐ ∷ ξ ∷ ε ∷ τ ∷ ρ ∷ ά ∷ π ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Tim.5.15"
∷ word (ὀ ∷ π ∷ ί ∷ σ ∷ ω ∷ []) "1Tim.5.15"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.15"
∷ word (Σ ∷ α ∷ τ ∷ α ∷ ν ∷ ᾶ ∷ []) "1Tim.5.15"
∷ word (ε ∷ ἴ ∷ []) "1Tim.5.16"
∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.5.16"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ὴ ∷ []) "1Tim.5.16"
∷ word (ἔ ∷ χ ∷ ε ∷ ι ∷ []) "1Tim.5.16"
∷ word (χ ∷ ή ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.16"
∷ word (ἐ ∷ π ∷ α ∷ ρ ∷ κ ∷ ε ∷ ί ∷ τ ∷ ω ∷ []) "1Tim.5.16"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.5.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.16"
∷ word (μ ∷ ὴ ∷ []) "1Tim.5.16"
∷ word (β ∷ α ∷ ρ ∷ ε ∷ ί ∷ σ ∷ θ ∷ ω ∷ []) "1Tim.5.16"
∷ word (ἡ ∷ []) "1Tim.5.16"
∷ word (ἐ ∷ κ ∷ κ ∷ ∙λ ∷ η ∷ σ ∷ ί ∷ α ∷ []) "1Tim.5.16"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.5.16"
∷ word (τ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.5.16"
∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.5.16"
∷ word (χ ∷ ή ∷ ρ ∷ α ∷ ι ∷ ς ∷ []) "1Tim.5.16"
∷ word (ἐ ∷ π ∷ α ∷ ρ ∷ κ ∷ έ ∷ σ ∷ ῃ ∷ []) "1Tim.5.16"
∷ word (Ο ∷ ἱ ∷ []) "1Tim.5.17"
∷ word (κ ∷ α ∷ ∙λ ∷ ῶ ∷ ς ∷ []) "1Tim.5.17"
∷ word (π ∷ ρ ∷ ο ∷ ε ∷ σ ∷ τ ∷ ῶ ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.5.17"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ ύ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ ι ∷ []) "1Tim.5.17"
∷ word (δ ∷ ι ∷ π ∷ ∙λ ∷ ῆ ∷ ς ∷ []) "1Tim.5.17"
∷ word (τ ∷ ι ∷ μ ∷ ῆ ∷ ς ∷ []) "1Tim.5.17"
∷ word (ἀ ∷ ξ ∷ ι ∷ ο ∷ ύ ∷ σ ∷ θ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.5.17"
∷ word (μ ∷ ά ∷ ∙λ ∷ ι ∷ σ ∷ τ ∷ α ∷ []) "1Tim.5.17"
∷ word (ο ∷ ἱ ∷ []) "1Tim.5.17"
∷ word (κ ∷ ο ∷ π ∷ ι ∷ ῶ ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.5.17"
∷ word (ἐ ∷ ν ∷ []) "1Tim.5.17"
∷ word (∙λ ∷ ό ∷ γ ∷ ῳ ∷ []) "1Tim.5.17"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.17"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "1Tim.5.17"
∷ word (∙λ ∷ έ ∷ γ ∷ ε ∷ ι ∷ []) "1Tim.5.18"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.5.18"
∷ word (ἡ ∷ []) "1Tim.5.18"
∷ word (γ ∷ ρ ∷ α ∷ φ ∷ ή ∷ []) "1Tim.5.18"
∷ word (Β ∷ ο ∷ ῦ ∷ ν ∷ []) "1Tim.5.18"
∷ word (ἀ ∷ ∙λ ∷ ο ∷ ῶ ∷ ν ∷ τ ∷ α ∷ []) "1Tim.5.18"
∷ word (ο ∷ ὐ ∷ []) "1Tim.5.18"
∷ word (φ ∷ ι ∷ μ ∷ ώ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.5.18"
∷ word (κ ∷ α ∷ ί ∷ []) "1Tim.5.18"
∷ word (Ἄ ∷ ξ ∷ ι ∷ ο ∷ ς ∷ []) "1Tim.5.18"
∷ word (ὁ ∷ []) "1Tim.5.18"
∷ word (ἐ ∷ ρ ∷ γ ∷ ά ∷ τ ∷ η ∷ ς ∷ []) "1Tim.5.18"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.18"
∷ word (μ ∷ ι ∷ σ ∷ θ ∷ ο ∷ ῦ ∷ []) "1Tim.5.18"
∷ word (α ∷ ὐ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.18"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Tim.5.19"
∷ word (π ∷ ρ ∷ ε ∷ σ ∷ β ∷ υ ∷ τ ∷ έ ∷ ρ ∷ ο ∷ υ ∷ []) "1Tim.5.19"
∷ word (κ ∷ α ∷ τ ∷ η ∷ γ ∷ ο ∷ ρ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.5.19"
∷ word (μ ∷ ὴ ∷ []) "1Tim.5.19"
∷ word (π ∷ α ∷ ρ ∷ α ∷ δ ∷ έ ∷ χ ∷ ο ∷ υ ∷ []) "1Tim.5.19"
∷ word (ἐ ∷ κ ∷ τ ∷ ὸ ∷ ς ∷ []) "1Tim.5.19"
∷ word (ε ∷ ἰ ∷ []) "1Tim.5.19"
∷ word (μ ∷ ὴ ∷ []) "1Tim.5.19"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.5.19"
∷ word (δ ∷ ύ ∷ ο ∷ []) "1Tim.5.19"
∷ word (ἢ ∷ []) "1Tim.5.19"
∷ word (τ ∷ ρ ∷ ι ∷ ῶ ∷ ν ∷ []) "1Tim.5.19"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "1Tim.5.19"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.5.20"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ά ∷ ν ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Tim.5.20"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.5.20"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.5.20"
∷ word (ἔ ∷ ∙λ ∷ ε ∷ γ ∷ χ ∷ ε ∷ []) "1Tim.5.20"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.5.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.20"
∷ word (ο ∷ ἱ ∷ []) "1Tim.5.20"
∷ word (∙λ ∷ ο ∷ ι ∷ π ∷ ο ∷ ὶ ∷ []) "1Tim.5.20"
∷ word (φ ∷ ό ∷ β ∷ ο ∷ ν ∷ []) "1Tim.5.20"
∷ word (ἔ ∷ χ ∷ ω ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.20"
∷ word (δ ∷ ι ∷ α ∷ μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ο ∷ μ ∷ α ∷ ι ∷ []) "1Tim.5.21"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.5.21"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.21"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.5.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.21"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.5.21"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.5.21"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.21"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.5.21"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ε ∷ κ ∷ τ ∷ ῶ ∷ ν ∷ []) "1Tim.5.21"
∷ word (ἀ ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ω ∷ ν ∷ []) "1Tim.5.21"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.5.21"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.5.21"
∷ word (φ ∷ υ ∷ ∙λ ∷ ά ∷ ξ ∷ ῃ ∷ ς ∷ []) "1Tim.5.21"
∷ word (χ ∷ ω ∷ ρ ∷ ὶ ∷ ς ∷ []) "1Tim.5.21"
∷ word (π ∷ ρ ∷ ο ∷ κ ∷ ρ ∷ ί ∷ μ ∷ α ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.5.21"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "1Tim.5.21"
∷ word (π ∷ ο ∷ ι ∷ ῶ ∷ ν ∷ []) "1Tim.5.21"
∷ word (κ ∷ α ∷ τ ∷ ὰ ∷ []) "1Tim.5.21"
∷ word (π ∷ ρ ∷ ό ∷ σ ∷ κ ∷ ∙λ ∷ ι ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.21"
∷ word (χ ∷ ε ∷ ῖ ∷ ρ ∷ α ∷ ς ∷ []) "1Tim.5.22"
∷ word (τ ∷ α ∷ χ ∷ έ ∷ ω ∷ ς ∷ []) "1Tim.5.22"
∷ word (μ ∷ η ∷ δ ∷ ε ∷ ν ∷ ὶ ∷ []) "1Tim.5.22"
∷ word (ἐ ∷ π ∷ ι ∷ τ ∷ ί ∷ θ ∷ ε ∷ ι ∷ []) "1Tim.5.22"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Tim.5.22"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ώ ∷ ν ∷ ε ∷ ι ∷ []) "1Tim.5.22"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Tim.5.22"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ο ∷ τ ∷ ρ ∷ ί ∷ α ∷ ι ∷ ς ∷ []) "1Tim.5.22"
∷ word (σ ∷ ε ∷ α ∷ υ ∷ τ ∷ ὸ ∷ ν ∷ []) "1Tim.5.22"
∷ word (ἁ ∷ γ ∷ ν ∷ ὸ ∷ ν ∷ []) "1Tim.5.22"
∷ word (τ ∷ ή ∷ ρ ∷ ε ∷ ι ∷ []) "1Tim.5.22"
∷ word (μ ∷ η ∷ κ ∷ έ ∷ τ ∷ ι ∷ []) "1Tim.5.23"
∷ word (ὑ ∷ δ ∷ ρ ∷ ο ∷ π ∷ ό ∷ τ ∷ ε ∷ ι ∷ []) "1Tim.5.23"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.5.23"
∷ word (ο ∷ ἴ ∷ ν ∷ ῳ ∷ []) "1Tim.5.23"
∷ word (ὀ ∷ ∙λ ∷ ί ∷ γ ∷ ῳ ∷ []) "1Tim.5.23"
∷ word (χ ∷ ρ ∷ ῶ ∷ []) "1Tim.5.23"
∷ word (δ ∷ ι ∷ ὰ ∷ []) "1Tim.5.23"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.5.23"
∷ word (σ ∷ τ ∷ ό ∷ μ ∷ α ∷ χ ∷ ο ∷ ν ∷ []) "1Tim.5.23"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.23"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Tim.5.23"
∷ word (π ∷ υ ∷ κ ∷ ν ∷ ά ∷ ς ∷ []) "1Tim.5.23"
∷ word (σ ∷ ο ∷ υ ∷ []) "1Tim.5.23"
∷ word (ἀ ∷ σ ∷ θ ∷ ε ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.5.23"
∷ word (Τ ∷ ι ∷ ν ∷ ῶ ∷ ν ∷ []) "1Tim.5.24"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Tim.5.24"
∷ word (α ∷ ἱ ∷ []) "1Tim.5.24"
∷ word (ἁ ∷ μ ∷ α ∷ ρ ∷ τ ∷ ί ∷ α ∷ ι ∷ []) "1Tim.5.24"
∷ word (π ∷ ρ ∷ ό ∷ δ ∷ η ∷ ∙λ ∷ ο ∷ ί ∷ []) "1Tim.5.24"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.24"
∷ word (π ∷ ρ ∷ ο ∷ ά ∷ γ ∷ ο ∷ υ ∷ σ ∷ α ∷ ι ∷ []) "1Tim.5.24"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.5.24"
∷ word (κ ∷ ρ ∷ ί ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.24"
∷ word (τ ∷ ι ∷ σ ∷ ὶ ∷ ν ∷ []) "1Tim.5.24"
∷ word (δ ∷ ὲ ∷ []) "1Tim.5.24"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.24"
∷ word (ἐ ∷ π ∷ α ∷ κ ∷ ο ∷ ∙λ ∷ ο ∷ υ ∷ θ ∷ ο ∷ ῦ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.5.24"
∷ word (ὡ ∷ σ ∷ α ∷ ύ ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.5.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.25"
∷ word (τ ∷ ὰ ∷ []) "1Tim.5.25"
∷ word (ἔ ∷ ρ ∷ γ ∷ α ∷ []) "1Tim.5.25"
∷ word (τ ∷ ὰ ∷ []) "1Tim.5.25"
∷ word (κ ∷ α ∷ ∙λ ∷ ὰ ∷ []) "1Tim.5.25"
∷ word (π ∷ ρ ∷ ό ∷ δ ∷ η ∷ ∙λ ∷ α ∷ []) "1Tim.5.25"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.5.25"
∷ word (τ ∷ ὰ ∷ []) "1Tim.5.25"
∷ word (ἄ ∷ ∙λ ∷ ∙λ ∷ ω ∷ ς ∷ []) "1Tim.5.25"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ α ∷ []) "1Tim.5.25"
∷ word (κ ∷ ρ ∷ υ ∷ β ∷ ῆ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.5.25"
∷ word (ο ∷ ὐ ∷ []) "1Tim.5.25"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Tim.5.25"
∷ word (Ὅ ∷ σ ∷ ο ∷ ι ∷ []) "1Tim.6.1"
∷ word (ε ∷ ἰ ∷ σ ∷ ὶ ∷ ν ∷ []) "1Tim.6.1"
∷ word (ὑ ∷ π ∷ ὸ ∷ []) "1Tim.6.1"
∷ word (ζ ∷ υ ∷ γ ∷ ὸ ∷ ν ∷ []) "1Tim.6.1"
∷ word (δ ∷ ο ∷ ῦ ∷ ∙λ ∷ ο ∷ ι ∷ []) "1Tim.6.1"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.6.1"
∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.6.1"
∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ α ∷ ς ∷ []) "1Tim.6.1"
∷ word (π ∷ ά ∷ σ ∷ η ∷ ς ∷ []) "1Tim.6.1"
∷ word (τ ∷ ι ∷ μ ∷ ῆ ∷ ς ∷ []) "1Tim.6.1"
∷ word (ἀ ∷ ξ ∷ ί ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.6.1"
∷ word (ἡ ∷ γ ∷ ε ∷ ί ∷ σ ∷ θ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.6.1"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.6.1"
∷ word (μ ∷ ὴ ∷ []) "1Tim.6.1"
∷ word (τ ∷ ὸ ∷ []) "1Tim.6.1"
∷ word (ὄ ∷ ν ∷ ο ∷ μ ∷ α ∷ []) "1Tim.6.1"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.1"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.6.1"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.1"
∷ word (ἡ ∷ []) "1Tim.6.1"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ α ∷ []) "1Tim.6.1"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ῆ ∷ τ ∷ α ∷ ι ∷ []) "1Tim.6.1"
∷ word (ο ∷ ἱ ∷ []) "1Tim.6.2"
∷ word (δ ∷ ὲ ∷ []) "1Tim.6.2"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.6.2"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.6.2"
∷ word (δ ∷ ε ∷ σ ∷ π ∷ ό ∷ τ ∷ α ∷ ς ∷ []) "1Tim.6.2"
∷ word (μ ∷ ὴ ∷ []) "1Tim.6.2"
∷ word (κ ∷ α ∷ τ ∷ α ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ί ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.6.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.6.2"
∷ word (ἀ ∷ δ ∷ ε ∷ ∙λ ∷ φ ∷ ο ∷ ί ∷ []) "1Tim.6.2"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.6.2"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.6.2"
∷ word (μ ∷ ᾶ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Tim.6.2"
∷ word (δ ∷ ο ∷ υ ∷ ∙λ ∷ ε ∷ υ ∷ έ ∷ τ ∷ ω ∷ σ ∷ α ∷ ν ∷ []) "1Tim.6.2"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.6.2"
∷ word (π ∷ ι ∷ σ ∷ τ ∷ ο ∷ ί ∷ []) "1Tim.6.2"
∷ word (ε ∷ ἰ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.2"
∷ word (ἀ ∷ γ ∷ α ∷ π ∷ η ∷ τ ∷ ο ∷ ὶ ∷ []) "1Tim.6.2"
∷ word (ο ∷ ἱ ∷ []) "1Tim.6.2"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.2"
∷ word (ε ∷ ὐ ∷ ε ∷ ρ ∷ γ ∷ ε ∷ σ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.2"
∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ ∙λ ∷ α ∷ μ ∷ β ∷ α ∷ ν ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.6.2"
∷ word (Τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.6.2"
∷ word (δ ∷ ί ∷ δ ∷ α ∷ σ ∷ κ ∷ ε ∷ []) "1Tim.6.2"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.2"
∷ word (π ∷ α ∷ ρ ∷ α ∷ κ ∷ ά ∷ ∙λ ∷ ε ∷ ι ∷ []) "1Tim.6.2"
∷ word (ε ∷ ἴ ∷ []) "1Tim.6.3"
∷ word (τ ∷ ι ∷ ς ∷ []) "1Tim.6.3"
∷ word (ἑ ∷ τ ∷ ε ∷ ρ ∷ ο ∷ δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ε ∷ ῖ ∷ []) "1Tim.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.3"
∷ word (μ ∷ ὴ ∷ []) "1Tim.6.3"
∷ word (π ∷ ρ ∷ ο ∷ σ ∷ έ ∷ ρ ∷ χ ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Tim.6.3"
∷ word (ὑ ∷ γ ∷ ι ∷ α ∷ ί ∷ ν ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "1Tim.6.3"
∷ word (∙λ ∷ ό ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.6.3"
∷ word (τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.6.3"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.3"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.6.3"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.6.3"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.6.3"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.3"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.3"
∷ word (τ ∷ ῇ ∷ []) "1Tim.6.3"
∷ word (κ ∷ α ∷ τ ∷ []) "1Tim.6.3"
∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.6.3"
∷ word (δ ∷ ι ∷ δ ∷ α ∷ σ ∷ κ ∷ α ∷ ∙λ ∷ ί ∷ ᾳ ∷ []) "1Tim.6.3"
∷ word (τ ∷ ε ∷ τ ∷ ύ ∷ φ ∷ ω ∷ τ ∷ α ∷ ι ∷ []) "1Tim.6.4"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ ν ∷ []) "1Tim.6.4"
∷ word (ἐ ∷ π ∷ ι ∷ σ ∷ τ ∷ ά ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.6.4"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ []) "1Tim.6.4"
∷ word (ν ∷ ο ∷ σ ∷ ῶ ∷ ν ∷ []) "1Tim.6.4"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Tim.6.4"
∷ word (ζ ∷ η ∷ τ ∷ ή ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.6.4"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.4"
∷ word (∙λ ∷ ο ∷ γ ∷ ο ∷ μ ∷ α ∷ χ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.4"
∷ word (ἐ ∷ ξ ∷ []) "1Tim.6.4"
∷ word (ὧ ∷ ν ∷ []) "1Tim.6.4"
∷ word (γ ∷ ί ∷ ν ∷ ε ∷ τ ∷ α ∷ ι ∷ []) "1Tim.6.4"
∷ word (φ ∷ θ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.6.4"
∷ word (ἔ ∷ ρ ∷ ι ∷ ς ∷ []) "1Tim.6.4"
∷ word (β ∷ ∙λ ∷ α ∷ σ ∷ φ ∷ η ∷ μ ∷ ί ∷ α ∷ ι ∷ []) "1Tim.6.4"
∷ word (ὑ ∷ π ∷ ό ∷ ν ∷ ο ∷ ι ∷ α ∷ ι ∷ []) "1Tim.6.4"
∷ word (π ∷ ο ∷ ν ∷ η ∷ ρ ∷ α ∷ ί ∷ []) "1Tim.6.4"
∷ word (δ ∷ ι ∷ α ∷ π ∷ α ∷ ρ ∷ α ∷ τ ∷ ρ ∷ ι ∷ β ∷ α ∷ ὶ ∷ []) "1Tim.6.5"
∷ word (δ ∷ ι ∷ ε ∷ φ ∷ θ ∷ α ∷ ρ ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.6.5"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Tim.6.5"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.6.5"
∷ word (ν ∷ ο ∷ ῦ ∷ ν ∷ []) "1Tim.6.5"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.5"
∷ word (ἀ ∷ π ∷ ε ∷ σ ∷ τ ∷ ε ∷ ρ ∷ η ∷ μ ∷ έ ∷ ν ∷ ω ∷ ν ∷ []) "1Tim.6.5"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.5"
∷ word (ἀ ∷ ∙λ ∷ η ∷ θ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.5"
∷ word (ν ∷ ο ∷ μ ∷ ι ∷ ζ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.6.5"
∷ word (π ∷ ο ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Tim.6.5"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.6.5"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.6.5"
∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.6.5"
∷ word (ἔ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.6.6"
∷ word (δ ∷ ὲ ∷ []) "1Tim.6.6"
∷ word (π ∷ ο ∷ ρ ∷ ι ∷ σ ∷ μ ∷ ὸ ∷ ς ∷ []) "1Tim.6.6"
∷ word (μ ∷ έ ∷ γ ∷ α ∷ ς ∷ []) "1Tim.6.6"
∷ word (ἡ ∷ []) "1Tim.6.6"
∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ []) "1Tim.6.6"
∷ word (μ ∷ ε ∷ τ ∷ ὰ ∷ []) "1Tim.6.6"
∷ word (α ∷ ὐ ∷ τ ∷ α ∷ ρ ∷ κ ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.6"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ ν ∷ []) "1Tim.6.7"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.6.7"
∷ word (ε ∷ ἰ ∷ σ ∷ η ∷ ν ∷ έ ∷ γ ∷ κ ∷ α ∷ μ ∷ ε ∷ ν ∷ []) "1Tim.6.7"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.6.7"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.6.7"
∷ word (κ ∷ ό ∷ σ ∷ μ ∷ ο ∷ ν ∷ []) "1Tim.6.7"
∷ word (ὅ ∷ τ ∷ ι ∷ []) "1Tim.6.7"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Tim.6.7"
∷ word (ἐ ∷ ξ ∷ ε ∷ ν ∷ ε ∷ γ ∷ κ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.6.7"
∷ word (τ ∷ ι ∷ []) "1Tim.6.7"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Tim.6.7"
∷ word (ἔ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ε ∷ ς ∷ []) "1Tim.6.8"
∷ word (δ ∷ ὲ ∷ []) "1Tim.6.8"
∷ word (δ ∷ ι ∷ α ∷ τ ∷ ρ ∷ ο ∷ φ ∷ ὰ ∷ ς ∷ []) "1Tim.6.8"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.8"
∷ word (σ ∷ κ ∷ ε ∷ π ∷ ά ∷ σ ∷ μ ∷ α ∷ τ ∷ α ∷ []) "1Tim.6.8"
∷ word (τ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.6.8"
∷ word (ἀ ∷ ρ ∷ κ ∷ ε ∷ σ ∷ θ ∷ η ∷ σ ∷ ό ∷ μ ∷ ε ∷ θ ∷ α ∷ []) "1Tim.6.8"
∷ word (ο ∷ ἱ ∷ []) "1Tim.6.9"
∷ word (δ ∷ ὲ ∷ []) "1Tim.6.9"
∷ word (β ∷ ο ∷ υ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.6.9"
∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.6.9"
∷ word (ἐ ∷ μ ∷ π ∷ ί ∷ π ∷ τ ∷ ο ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.6.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.6.9"
∷ word (π ∷ ε ∷ ι ∷ ρ ∷ α ∷ σ ∷ μ ∷ ὸ ∷ ν ∷ []) "1Tim.6.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.9"
∷ word (π ∷ α ∷ γ ∷ ί ∷ δ ∷ α ∷ []) "1Tim.6.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.9"
∷ word (ἐ ∷ π ∷ ι ∷ θ ∷ υ ∷ μ ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.9"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ὰ ∷ ς ∷ []) "1Tim.6.9"
∷ word (ἀ ∷ ν ∷ ο ∷ ή ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.6.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.9"
∷ word (β ∷ ∙λ ∷ α ∷ β ∷ ε ∷ ρ ∷ ά ∷ ς ∷ []) "1Tim.6.9"
∷ word (α ∷ ἵ ∷ τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.6.9"
∷ word (β ∷ υ ∷ θ ∷ ί ∷ ζ ∷ ο ∷ υ ∷ σ ∷ ι ∷ []) "1Tim.6.9"
∷ word (τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.6.9"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.6.9"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.6.9"
∷ word (ὄ ∷ ∙λ ∷ ε ∷ θ ∷ ρ ∷ ο ∷ ν ∷ []) "1Tim.6.9"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.9"
∷ word (ἀ ∷ π ∷ ώ ∷ ∙λ ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.6.9"
∷ word (ῥ ∷ ί ∷ ζ ∷ α ∷ []) "1Tim.6.10"
∷ word (γ ∷ ὰ ∷ ρ ∷ []) "1Tim.6.10"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.6.10"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.6.10"
∷ word (κ ∷ α ∷ κ ∷ ῶ ∷ ν ∷ []) "1Tim.6.10"
∷ word (ἐ ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.6.10"
∷ word (ἡ ∷ []) "1Tim.6.10"
∷ word (φ ∷ ι ∷ ∙λ ∷ α ∷ ρ ∷ γ ∷ υ ∷ ρ ∷ ί ∷ α ∷ []) "1Tim.6.10"
∷ word (ἧ ∷ ς ∷ []) "1Tim.6.10"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.6.10"
∷ word (ὀ ∷ ρ ∷ ε ∷ γ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.6.10"
∷ word (ἀ ∷ π ∷ ε ∷ π ∷ ∙λ ∷ α ∷ ν ∷ ή ∷ θ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Tim.6.10"
∷ word (ἀ ∷ π ∷ ὸ ∷ []) "1Tim.6.10"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.10"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.6.10"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.10"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ὺ ∷ ς ∷ []) "1Tim.6.10"
∷ word (π ∷ ε ∷ ρ ∷ ι ∷ έ ∷ π ∷ ε ∷ ι ∷ ρ ∷ α ∷ ν ∷ []) "1Tim.6.10"
∷ word (ὀ ∷ δ ∷ ύ ∷ ν ∷ α ∷ ι ∷ ς ∷ []) "1Tim.6.10"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ α ∷ ῖ ∷ ς ∷ []) "1Tim.6.10"
∷ word (Σ ∷ ὺ ∷ []) "1Tim.6.11"
∷ word (δ ∷ έ ∷ []) "1Tim.6.11"
∷ word (ὦ ∷ []) "1Tim.6.11"
∷ word (ἄ ∷ ν ∷ θ ∷ ρ ∷ ω ∷ π ∷ ε ∷ []) "1Tim.6.11"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.6.11"
∷ word (τ ∷ α ∷ ῦ ∷ τ ∷ α ∷ []) "1Tim.6.11"
∷ word (φ ∷ ε ∷ ῦ ∷ γ ∷ ε ∷ []) "1Tim.6.11"
∷ word (δ ∷ ί ∷ ω ∷ κ ∷ ε ∷ []) "1Tim.6.11"
∷ word (δ ∷ ὲ ∷ []) "1Tim.6.11"
∷ word (δ ∷ ι ∷ κ ∷ α ∷ ι ∷ ο ∷ σ ∷ ύ ∷ ν ∷ η ∷ ν ∷ []) "1Tim.6.11"
∷ word (ε ∷ ὐ ∷ σ ∷ έ ∷ β ∷ ε ∷ ι ∷ α ∷ ν ∷ []) "1Tim.6.11"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.6.11"
∷ word (ἀ ∷ γ ∷ ά ∷ π ∷ η ∷ ν ∷ []) "1Tim.6.11"
∷ word (ὑ ∷ π ∷ ο ∷ μ ∷ ο ∷ ν ∷ ή ∷ ν ∷ []) "1Tim.6.11"
∷ word (π ∷ ρ ∷ α ∷ ϋ ∷ π ∷ α ∷ θ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.6.11"
∷ word (ἀ ∷ γ ∷ ω ∷ ν ∷ ί ∷ ζ ∷ ο ∷ υ ∷ []) "1Tim.6.12"
∷ word (τ ∷ ὸ ∷ ν ∷ []) "1Tim.6.12"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Tim.6.12"
∷ word (ἀ ∷ γ ∷ ῶ ∷ ν ∷ α ∷ []) "1Tim.6.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.12"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.6.12"
∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ α ∷ β ∷ ο ∷ ῦ ∷ []) "1Tim.6.12"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.12"
∷ word (α ∷ ἰ ∷ ω ∷ ν ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.6.12"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "1Tim.6.12"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.6.12"
∷ word (ἣ ∷ ν ∷ []) "1Tim.6.12"
∷ word (ἐ ∷ κ ∷ ∙λ ∷ ή ∷ θ ∷ η ∷ ς ∷ []) "1Tim.6.12"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.12"
∷ word (ὡ ∷ μ ∷ ο ∷ ∙λ ∷ ό ∷ γ ∷ η ∷ σ ∷ α ∷ ς ∷ []) "1Tim.6.12"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.6.12"
∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Tim.6.12"
∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.6.12"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.6.12"
∷ word (π ∷ ο ∷ ∙λ ∷ ∙λ ∷ ῶ ∷ ν ∷ []) "1Tim.6.12"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ ύ ∷ ρ ∷ ω ∷ ν ∷ []) "1Tim.6.12"
∷ word (π ∷ α ∷ ρ ∷ α ∷ γ ∷ γ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ω ∷ []) "1Tim.6.13"
∷ word (σ ∷ ο ∷ ι ∷ []) "1Tim.6.13"
∷ word (ἐ ∷ ν ∷ ώ ∷ π ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.6.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.13"
∷ word (θ ∷ ε ∷ ο ∷ ῦ ∷ []) "1Tim.6.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.13"
∷ word (ζ ∷ ῳ ∷ ο ∷ γ ∷ ο ∷ ν ∷ ο ∷ ῦ ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.6.13"
∷ word (τ ∷ ὰ ∷ []) "1Tim.6.13"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Tim.6.13"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.13"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.13"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.6.13"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.13"
∷ word (μ ∷ α ∷ ρ ∷ τ ∷ υ ∷ ρ ∷ ή ∷ σ ∷ α ∷ ν ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.6.13"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.6.13"
∷ word (Π ∷ ο ∷ ν ∷ τ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.6.13"
∷ word (Π ∷ ι ∷ ∙λ ∷ ά ∷ τ ∷ ο ∷ υ ∷ []) "1Tim.6.13"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.6.13"
∷ word (κ ∷ α ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Tim.6.13"
∷ word (ὁ ∷ μ ∷ ο ∷ ∙λ ∷ ο ∷ γ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.6.13"
∷ word (τ ∷ η ∷ ρ ∷ ῆ ∷ σ ∷ α ∷ ί ∷ []) "1Tim.6.14"
∷ word (σ ∷ ε ∷ []) "1Tim.6.14"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.6.14"
∷ word (ἐ ∷ ν ∷ τ ∷ ο ∷ ∙λ ∷ ὴ ∷ ν ∷ []) "1Tim.6.14"
∷ word (ἄ ∷ σ ∷ π ∷ ι ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Tim.6.14"
∷ word (ἀ ∷ ν ∷ ε ∷ π ∷ ί ∷ ∙λ ∷ η ∷ μ ∷ π ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.6.14"
∷ word (μ ∷ έ ∷ χ ∷ ρ ∷ ι ∷ []) "1Tim.6.14"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.14"
∷ word (ἐ ∷ π ∷ ι ∷ φ ∷ α ∷ ν ∷ ε ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.14"
∷ word (τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.14"
∷ word (κ ∷ υ ∷ ρ ∷ ί ∷ ο ∷ υ ∷ []) "1Tim.6.14"
∷ word (ἡ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.6.14"
∷ word (Ἰ ∷ η ∷ σ ∷ ο ∷ ῦ ∷ []) "1Tim.6.14"
∷ word (Χ ∷ ρ ∷ ι ∷ σ ∷ τ ∷ ο ∷ ῦ ∷ []) "1Tim.6.14"
∷ word (ἣ ∷ ν ∷ []) "1Tim.6.15"
∷ word (κ ∷ α ∷ ι ∷ ρ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.6.15"
∷ word (ἰ ∷ δ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.6.15"
∷ word (δ ∷ ε ∷ ί ∷ ξ ∷ ε ∷ ι ∷ []) "1Tim.6.15"
∷ word (ὁ ∷ []) "1Tim.6.15"
∷ word (μ ∷ α ∷ κ ∷ ά ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Tim.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.15"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.6.15"
∷ word (δ ∷ υ ∷ ν ∷ ά ∷ σ ∷ τ ∷ η ∷ ς ∷ []) "1Tim.6.15"
∷ word (ὁ ∷ []) "1Tim.6.15"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ ὺ ∷ ς ∷ []) "1Tim.6.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.6.15"
∷ word (β ∷ α ∷ σ ∷ ι ∷ ∙λ ∷ ε ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.6.15"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.15"
∷ word (κ ∷ ύ ∷ ρ ∷ ι ∷ ο ∷ ς ∷ []) "1Tim.6.15"
∷ word (τ ∷ ῶ ∷ ν ∷ []) "1Tim.6.15"
∷ word (κ ∷ υ ∷ ρ ∷ ι ∷ ε ∷ υ ∷ ό ∷ ν ∷ τ ∷ ω ∷ ν ∷ []) "1Tim.6.15"
∷ word (ὁ ∷ []) "1Tim.6.16"
∷ word (μ ∷ ό ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.6.16"
∷ word (ἔ ∷ χ ∷ ω ∷ ν ∷ []) "1Tim.6.16"
∷ word (ἀ ∷ θ ∷ α ∷ ν ∷ α ∷ σ ∷ ί ∷ α ∷ ν ∷ []) "1Tim.6.16"
∷ word (φ ∷ ῶ ∷ ς ∷ []) "1Tim.6.16"
∷ word (ο ∷ ἰ ∷ κ ∷ ῶ ∷ ν ∷ []) "1Tim.6.16"
∷ word (ἀ ∷ π ∷ ρ ∷ ό ∷ σ ∷ ι ∷ τ ∷ ο ∷ ν ∷ []) "1Tim.6.16"
∷ word (ὃ ∷ ν ∷ []) "1Tim.6.16"
∷ word (ε ∷ ἶ ∷ δ ∷ ε ∷ ν ∷ []) "1Tim.6.16"
∷ word (ο ∷ ὐ ∷ δ ∷ ε ∷ ὶ ∷ ς ∷ []) "1Tim.6.16"
∷ word (ἀ ∷ ν ∷ θ ∷ ρ ∷ ώ ∷ π ∷ ω ∷ ν ∷ []) "1Tim.6.16"
∷ word (ο ∷ ὐ ∷ δ ∷ ὲ ∷ []) "1Tim.6.16"
∷ word (ἰ ∷ δ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.6.16"
∷ word (δ ∷ ύ ∷ ν ∷ α ∷ τ ∷ α ∷ ι ∷ []) "1Tim.6.16"
∷ word (ᾧ ∷ []) "1Tim.6.16"
∷ word (τ ∷ ι ∷ μ ∷ ὴ ∷ []) "1Tim.6.16"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.16"
∷ word (κ ∷ ρ ∷ ά ∷ τ ∷ ο ∷ ς ∷ []) "1Tim.6.16"
∷ word (α ∷ ἰ ∷ ώ ∷ ν ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.6.16"
∷ word (ἀ ∷ μ ∷ ή ∷ ν ∷ []) "1Tim.6.16"
∷ word (Τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.6.17"
∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.6.17"
∷ word (ἐ ∷ ν ∷ []) "1Tim.6.17"
∷ word (τ ∷ ῷ ∷ []) "1Tim.6.17"
∷ word (ν ∷ ῦ ∷ ν ∷ []) "1Tim.6.17"
∷ word (α ∷ ἰ ∷ ῶ ∷ ν ∷ ι ∷ []) "1Tim.6.17"
∷ word (π ∷ α ∷ ρ ∷ ά ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ε ∷ []) "1Tim.6.17"
∷ word (μ ∷ ὴ ∷ []) "1Tim.6.17"
∷ word (ὑ ∷ ψ ∷ η ∷ ∙λ ∷ ο ∷ φ ∷ ρ ∷ ο ∷ ν ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.6.17"
∷ word (μ ∷ η ∷ δ ∷ ὲ ∷ []) "1Tim.6.17"
∷ word (ἠ ∷ ∙λ ∷ π ∷ ι ∷ κ ∷ έ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.6.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.6.17"
∷ word (π ∷ ∙λ ∷ ο ∷ ύ ∷ τ ∷ ο ∷ υ ∷ []) "1Tim.6.17"
∷ word (ἀ ∷ δ ∷ η ∷ ∙λ ∷ ό ∷ τ ∷ η ∷ τ ∷ ι ∷ []) "1Tim.6.17"
∷ word (ἀ ∷ ∙λ ∷ ∙λ ∷ []) "1Tim.6.17"
∷ word (ἐ ∷ π ∷ ὶ ∷ []) "1Tim.6.17"
∷ word (θ ∷ ε ∷ ῷ ∷ []) "1Tim.6.17"
∷ word (τ ∷ ῷ ∷ []) "1Tim.6.17"
∷ word (π ∷ α ∷ ρ ∷ έ ∷ χ ∷ ο ∷ ν ∷ τ ∷ ι ∷ []) "1Tim.6.17"
∷ word (ἡ ∷ μ ∷ ῖ ∷ ν ∷ []) "1Tim.6.17"
∷ word (π ∷ ά ∷ ν ∷ τ ∷ α ∷ []) "1Tim.6.17"
∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ σ ∷ ί ∷ ω ∷ ς ∷ []) "1Tim.6.17"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.6.17"
∷ word (ἀ ∷ π ∷ ό ∷ ∙λ ∷ α ∷ υ ∷ σ ∷ ι ∷ ν ∷ []) "1Tim.6.17"
∷ word (ἀ ∷ γ ∷ α ∷ θ ∷ ο ∷ ε ∷ ρ ∷ γ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.6.18"
∷ word (π ∷ ∙λ ∷ ο ∷ υ ∷ τ ∷ ε ∷ ῖ ∷ ν ∷ []) "1Tim.6.18"
∷ word (ἐ ∷ ν ∷ []) "1Tim.6.18"
∷ word (ἔ ∷ ρ ∷ γ ∷ ο ∷ ι ∷ ς ∷ []) "1Tim.6.18"
∷ word (κ ∷ α ∷ ∙λ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.6.18"
∷ word (ε ∷ ὐ ∷ μ ∷ ε ∷ τ ∷ α ∷ δ ∷ ό ∷ τ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.6.18"
∷ word (ε ∷ ἶ ∷ ν ∷ α ∷ ι ∷ []) "1Tim.6.18"
∷ word (κ ∷ ο ∷ ι ∷ ν ∷ ω ∷ ν ∷ ι ∷ κ ∷ ο ∷ ύ ∷ ς ∷ []) "1Tim.6.18"
∷ word (ἀ ∷ π ∷ ο ∷ θ ∷ η ∷ σ ∷ α ∷ υ ∷ ρ ∷ ί ∷ ζ ∷ ο ∷ ν ∷ τ ∷ α ∷ ς ∷ []) "1Tim.6.19"
∷ word (ἑ ∷ α ∷ υ ∷ τ ∷ ο ∷ ῖ ∷ ς ∷ []) "1Tim.6.19"
∷ word (θ ∷ ε ∷ μ ∷ έ ∷ ∙λ ∷ ι ∷ ο ∷ ν ∷ []) "1Tim.6.19"
∷ word (κ ∷ α ∷ ∙λ ∷ ὸ ∷ ν ∷ []) "1Tim.6.19"
∷ word (ε ∷ ἰ ∷ ς ∷ []) "1Tim.6.19"
∷ word (τ ∷ ὸ ∷ []) "1Tim.6.19"
∷ word (μ ∷ έ ∷ ∙λ ∷ ∙λ ∷ ο ∷ ν ∷ []) "1Tim.6.19"
∷ word (ἵ ∷ ν ∷ α ∷ []) "1Tim.6.19"
∷ word (ἐ ∷ π ∷ ι ∷ ∙λ ∷ ά ∷ β ∷ ω ∷ ν ∷ τ ∷ α ∷ ι ∷ []) "1Tim.6.19"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.19"
∷ word (ὄ ∷ ν ∷ τ ∷ ω ∷ ς ∷ []) "1Tim.6.19"
∷ word (ζ ∷ ω ∷ ῆ ∷ ς ∷ []) "1Tim.6.19"
∷ word (Ὦ ∷ []) "1Tim.6.20"
∷ word (Τ ∷ ι ∷ μ ∷ ό ∷ θ ∷ ε ∷ ε ∷ []) "1Tim.6.20"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.6.20"
∷ word (π ∷ α ∷ ρ ∷ α ∷ θ ∷ ή ∷ κ ∷ η ∷ ν ∷ []) "1Tim.6.20"
∷ word (φ ∷ ύ ∷ ∙λ ∷ α ∷ ξ ∷ ο ∷ ν ∷ []) "1Tim.6.20"
∷ word (ἐ ∷ κ ∷ τ ∷ ρ ∷ ε ∷ π ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ς ∷ []) "1Tim.6.20"
∷ word (τ ∷ ὰ ∷ ς ∷ []) "1Tim.6.20"
∷ word (β ∷ ε ∷ β ∷ ή ∷ ∙λ ∷ ο ∷ υ ∷ ς ∷ []) "1Tim.6.20"
∷ word (κ ∷ ε ∷ ν ∷ ο ∷ φ ∷ ω ∷ ν ∷ ί ∷ α ∷ ς ∷ []) "1Tim.6.20"
∷ word (κ ∷ α ∷ ὶ ∷ []) "1Tim.6.20"
∷ word (ἀ ∷ ν ∷ τ ∷ ι ∷ θ ∷ έ ∷ σ ∷ ε ∷ ι ∷ ς ∷ []) "1Tim.6.20"
∷ word (τ ∷ ῆ ∷ ς ∷ []) "1Tim.6.20"
∷ word (ψ ∷ ε ∷ υ ∷ δ ∷ ω ∷ ν ∷ ύ ∷ μ ∷ ο ∷ υ ∷ []) "1Tim.6.20"
∷ word (γ ∷ ν ∷ ώ ∷ σ ∷ ε ∷ ω ∷ ς ∷ []) "1Tim.6.20"
∷ word (ἥ ∷ ν ∷ []) "1Tim.6.21"
∷ word (τ ∷ ι ∷ ν ∷ ε ∷ ς ∷ []) "1Tim.6.21"
∷ word (ἐ ∷ π ∷ α ∷ γ ∷ γ ∷ ε ∷ ∙λ ∷ ∙λ ∷ ό ∷ μ ∷ ε ∷ ν ∷ ο ∷ ι ∷ []) "1Tim.6.21"
∷ word (π ∷ ε ∷ ρ ∷ ὶ ∷ []) "1Tim.6.21"
∷ word (τ ∷ ὴ ∷ ν ∷ []) "1Tim.6.21"
∷ word (π ∷ ί ∷ σ ∷ τ ∷ ι ∷ ν ∷ []) "1Tim.6.21"
∷ word (ἠ ∷ σ ∷ τ ∷ ό ∷ χ ∷ η ∷ σ ∷ α ∷ ν ∷ []) "1Tim.6.21"
∷ word (Ἡ ∷ []) "1Tim.6.21"
∷ word (χ ∷ ά ∷ ρ ∷ ι ∷ ς ∷ []) "1Tim.6.21"
∷ word (μ ∷ ε ∷ θ ∷ []) "1Tim.6.21"
∷ word (ὑ ∷ μ ∷ ῶ ∷ ν ∷ []) "1Tim.6.21"
∷ []
| {
"alphanum_fraction": 0.3369717251,
"avg_line_length": 47.752184769,
"ext": "agda",
"hexsha": "736d2381ea87e48c15ede9e9e7172740684977ef",
"lang": "Agda",
"max_forks_count": 5,
"max_forks_repo_forks_event_max_datetime": "2017-06-11T11:25:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-27T22:34:13.000Z",
"max_forks_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "scott-fleischman/GreekGrammar",
"max_forks_repo_path": "agda/Text/Greek/SBLGNT/1Tim.agda",
"max_issues_count": 13,
"max_issues_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_issues_repo_issues_event_max_datetime": "2020-09-07T11:58:38.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-28T20:04:08.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "scott-fleischman/GreekGrammar",
"max_issues_repo_path": "agda/Text/Greek/SBLGNT/1Tim.agda",
"max_line_length": 92,
"max_stars_count": 44,
"max_stars_repo_head_hexsha": "915c46c27c7f8aad5907474d8484f2685a4cd6a7",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "scott-fleischman/GreekGrammar",
"max_stars_repo_path": "agda/Text/Greek/SBLGNT/1Tim.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-06T15:41:57.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-05-29T14:48:51.000Z",
"num_tokens": 55144,
"size": 76499
} |
{-
Copyright 2019 Lisandra Silva
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-}
open import Prelude
open import Data.Fin hiding (_≟_; _<?_; _≤?_ ;_+_; pred; lift)
renaming (_<_ to _<F_; _≤_ to _≤F_)
open import Data.List
open import Data.List.Properties
open import Data.Maybe.Base as Maybe using (Maybe; nothing; just)
open import Data.Vec.Base as Vec using (Vec)
open import Data.Bool hiding (_<_ ; _<?_; _≤_; _≤?_; _≟_)
open import Data.Vec.Any
open import Data.Vec.All hiding (lookup)
open import StateMachineModel
open import Stream
module DistributedSystem.Prototype
{ℓ₁ ℓ₂ ℓ₃ ℓ₄ ℓ₅ : Level}
(N : ℕ)
(f : ℕ)
(fta : N > 3 * f)
(ClientRequest : Set ℓ₂)
(Block : Set ℓ₃)
(Vote : Set ℓ₄)
(QC : Set ℓ₅)
where
-- Client can make a request at any moment
{-
0 - Set node role
LEADER || LEADER & FOLLOWER
1 - block = getPoolReq
2 - broadcast block
|| 3 - receive block
|| 4 - vote for block
5 - while (#votes < N-f-1)
6 - reveive vote
5 - broadcast QC
|| 7 - receive QC
|| 8 - check commit rule
|| 9 - movenextview
-}
-- QUESTION:
-- To prove the liveness not only the sequence of honest leaders per view must be
-- long enough but also the length of the requests must be greater than 3.
-- If the sequence is smaller we don't have enough requests to ensure the commit rule
-- A dishonest leader can deliberately left honest nodes behind, and these nodes
-- won't move to the next view, unless they timeout. However, t if these nodes have
-- moved for the next view for timeout, they will be missing a block and a qc
-- in the RecordStore, how to fix this?
-- 1 - Whisper of proposed blocks and Qc's
-- 2 - Whisper only of QC's (if they have attached the proposed block)
-- 3 - Mechanism of asking records missing in the record store
-----------------------------------------------------------------------------
-- SPECIFICATION
-----------------------------------------------------------------------------
NodeID = Fin N
HonestID = Fin (N ∸ f)
Instruction = Fin 10
Receiver = Fin N
DishonestID : NodeID → Set
DishonestID nId = N ∸ f ≤ toℕ nId
data Message : Set (ℓ₃ ⊔ ℓ₄ ⊔ ℓ₅) where
blockM : Block → Message
voteM : Vote → Message
qcM : QC → Message
data Role : Set where
leader : Role
follower : Role
record NodeState : Set (ℓ₁ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ ℓ₅) where
field
nodeRole : Role
currNodeView : ℕ
msgBuffer : List Message
readMessages : ℕ
currProposal : Block
votesforQC : List Vote
control : Instruction
-- id : Node
--recordTree : RecordTree
-- previousRound : ℕ
-- lockedRound : ℕ
-- clock : ℕ
-- timeout : ℕ
open NodeState
record State : Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ ℓ₅) where
field
-- I am not sure that we don't need the faulty Node States
-- because we may need to express that we have at least (N ∸ f)
-- nodes on the same view and it may be that the f nodes behave normally
nodeStates : Vec NodeState (N ∸ f)
leaderPerView : Stream (Fin N)
poolRequests : List ClientRequest
committedReq : ℕ
open State
Honest? : Decidable ((_< N ∸ f) ∘ toℕ {N})
Honest? x = toℕ x <? N ∸ f
Dishonest? : Decidable ((N ∸ f ≤_) ∘ toℕ {N})
Dishonest? x = N ∸ f ≤? toℕ x
mkBlock : ClientRequest → NodeState → Block
mkQC : NodeState → QC
mkVote : NodeState → Vote
validVote : State → HonestID → Vote → Set
validBlock : State → HonestID → Block → Set
validQC : State → HonestID → QC → Set
¬validMsg : State → HonestID → Message → Set
data HonestEvent (nId : HonestID) : Set (ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ ℓ₅) where
setNodeRole : HonestEvent nId
getPoolReq : ClientRequest → HonestEvent nId
broadcastB : Block → HonestEvent nId
broadcastQC : QC → HonestEvent nId
wait : HonestEvent nId
receive : Message → HonestEvent nId
dropMsg : Message → HonestEvent nId
sendVote : Vote → Receiver → HonestEvent nId
commit : HonestEvent nId
moveNextView : HonestEvent nId
data DSEvent : Set (ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ ℓ₅) where
newRequest : ClientRequest → DSEvent -- A client add a request to the request pool
honestEvent : ∀ {nId} → HonestEvent nId → DSEvent
dishonestEvent : Message → HonestID → DSEvent -- dishonest nodes can send any msg to honest nodes
nodeSt : HonestID → State → NodeState
nodeSt nId st = Vec.lookup (nodeStates st) nId
-- Other option is to have a flag in the NodeState saying if it's leader or follower
isLeader : State → HonestID → Set
isLeader st nId = nodeRole (nodeSt nId st) ≡ leader
getLeader : State → HonestID → Fin N
getLeader st nId = get (leaderPerView st) (currNodeView (nodeSt nId st))
{- Instruction is an abstraction for the number of intructions available for the node -}
nextInstruction : State → HonestID → Instruction
nextInstruction st nId = control (nodeSt nId st)
data HonestEnabled (nId : HonestID) (st : State) : HonestEvent nId
→ Set (ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ ℓ₅) where
setRoleEn : nextInstruction st nId ≡ 0F
→ HonestEnabled nId st setNodeRole
getReqEn : ∀ {req}
→ isLeader st nId
→ nextInstruction st nId ≡ 1F
→ (comm< : committedReq st < length (poolRequests st))
-- Maybe it's better to have a function:
-- fetchNextReq : List ClientRequests → Maybe (Index , Request)
→ req ≡ lookup (poolRequests st) (fromℕ≤ comm<)
→ HonestEnabled nId st (getPoolReq req)
broadcastBEn : isLeader st nId
→ nextInstruction st nId ≡ 2F
→ HonestEnabled nId st (broadcastB (currProposal (nodeSt nId st)))
receiveBlockEn : ∀ {b : Block}
→ nextInstruction st nId ≡ 3F
→ (i : readMessages (nodeSt nId st) < length (msgBuffer (nodeSt nId st)))
→ blockM b ≡ lookup (msgBuffer (nodeSt nId st)) (fromℕ≤ i)
→ validBlock st nId b
→ HonestEnabled nId st (receive (blockM b))
voteBlockEn : nextInstruction st nId ≡ 4F
→ HonestEnabled nId st (sendVote
(mkVote (nodeSt nId st))
(getLeader st nId))
waitVotesEn : isLeader st nId
→ nextInstruction st nId ≡ 5F
→ length (votesforQC (nodeSt nId st)) < N ∸ f ∸ 1
→ HonestEnabled nId st wait
receiveVoteEn : ∀ {v : Vote}
→ isLeader st nId
→ nextInstruction st nId ≡ 6F
→ (i : readMessages (nodeSt nId st) < length (msgBuffer (nodeSt nId st)))
→ voteM v ≡ lookup (msgBuffer (nodeSt nId st)) (fromℕ≤ i)
→ validVote st nId v
→ HonestEnabled nId st (receive (voteM v))
broadcastQCEn : isLeader st nId
→ nextInstruction st nId ≡ 5F
→ length (votesforQC (nodeSt nId st)) ≡ N ∸ f ∸ 1
→ HonestEnabled nId st (broadcastQC (mkQC (nodeSt nId st)))
receiveQCEn : ∀ {qc : QC}
→ nextInstruction st nId ≡ 7F
→ (i : readMessages (nodeSt nId st) < length (msgBuffer (nodeSt nId st)))
→ qcM qc ≡ lookup (msgBuffer (nodeSt nId st)) (fromℕ≤ i)
→ validQC st nId qc
→ HonestEnabled nId st (receive (qcM qc))
dropMsgEn : ∀ {msg}
→ (i : readMessages (nodeSt nId st) < length (msgBuffer (nodeSt nId st)))
→ msg ≡ lookup (msgBuffer (nodeSt nId st)) (fromℕ≤ i)
→ ¬validMsg st nId msg
→ HonestEnabled nId st (dropMsg msg)
commitEn : nextInstruction st nId ≡ 8F
-- TODO: check commit rule
→ HonestEnabled nId st commit
moveNextViewEn : nextInstruction st nId ≡ 8F ⊎ DishonestID (getLeader st nId)
→ HonestEnabled nId st moveNextView
data Enabled : DSEvent → State → Set (ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ ℓ₅) where
newReqEn : ∀ {st req}
→ Enabled (newRequest req) st
honestEvEn : ∀ {st hId hEv}
→ HonestEnabled hId st hEv
→ Enabled (honestEvent hEv) st
dishonestEvEn : ∀ {st dId msg hId}
→ DishonestID dId
→ Enabled (dishonestEvent msg hId) st
-- Maybe I need to postulate that dishonest nodes cannot
-- forge signatures (Node (N ∸ f))
sendMsgToNode : Message → NodeState → NodeState
sendMsgToNode msg nodeSt = record nodeSt { msgBuffer = msgBuffer nodeSt ++ [ msg ] }
broadcast : State → Message → Vec NodeState (N ∸ f)
broadcast st msg = Vec.map (λ n → sendMsgToNode msg n) (nodeStates st)
Action : ∀ {preState} {event} → Enabled event preState → State
Action {ps} {newRequest req} x =
record ps
{ poolRequests = poolRequests ps ++ [ req ] }
Action {ps} {honestEvent {nId} setNodeRole} x
with toℕ nId ≟ toℕ (getLeader ps nId)
... | yes p
= let updateNode = λ old → record old
{ nodeRole = leader
; control = 1F
}
in record ps
{ nodeStates = Vec.updateAt nId updateNode (nodeStates ps) }
... | no ¬p
= let updateNode = λ old → record old
{ nodeRole = follower
; control = 3F
}
in record ps
{ nodeStates = Vec.updateAt nId updateNode (nodeStates ps) }
Action {ps} {honestEvent {nId} (getPoolReq req)} x
= let updateNode = λ old → record old
{ control = 2F
; currProposal = mkBlock req old
}
in record ps
{ nodeStates = Vec.updateAt nId updateNode (nodeStates ps) }
-- QUESTION:
-- Not sure if it's a good approach to consider a broadcast atomically,
-- or have a different state transition to send to each node
Action {ps} {honestEvent {nId} (broadcastB b)} x
= let sendToAll = broadcast ps (blockM b)
updateLeader = λ old → record old { control = 3F }
in record ps
{ nodeStates = Vec.updateAt nId updateLeader sendToAll }
Action {ps} {honestEvent {nId} (receive (blockM b))} x
-- TODO : update RecordTree
= let updateNode = λ old → record old { readMessages = 1 + readMessages old
; currProposal = b
; control = 4F }
in record ps
{ nodeStates = Vec.updateAt nId updateNode (nodeStates ps) }
Action {ps} {honestEvent {nId} (sendVote v receiver)} x
with toℕ receiver <? N ∸ f | nodeRole (nodeSt nId ps)
-- If receiver is not honest → only updates the control variable of the sender
... | no ¬p | leader
= let updateNode = λ old → record old { control = 5F }
in record ps
{ nodeStates = Vec.updateAt nId updateNode (nodeStates ps) }
... | no ¬p | follower
= let updateNode = λ old → record old { control = 7F }
in record ps
{ nodeStates = Vec.updateAt nId updateNode (nodeStates ps) }
-- If receiver is honest → update the message buffer of the receiver as well
... | yes p | leader
= let updateReceiver = Vec.updateAt
(fromℕ≤ p)
(sendMsgToNode (voteM v))
(nodeStates ps)
updateNode = λ old → record old { control = 5F }
in record ps
{ nodeStates = Vec.updateAt nId updateNode updateReceiver }
... | yes p | follower
= let updateReceiver = Vec.updateAt
(fromℕ≤ p)
(sendMsgToNode (voteM v))
(nodeStates ps)
updateNode = λ old → record old { control = 7F }
in record ps
{ nodeStates = Vec.updateAt nId updateNode updateReceiver }
Action {ps} {honestEvent {nId} wait} x
= let updateInst = λ old → record old { control = 6F }
in record ps
{ nodeStates = Vec.updateAt nId updateInst (nodeStates ps) }
Action {ps} {honestEvent {nId} (receive (voteM v))} x
= let updateNode = λ old → record old { readMessages = 1 + readMessages old
; control = 5F
; votesforQC = v ∷ votesforQC old }
in record ps
{ nodeStates = Vec.updateAt nId updateNode (nodeStates ps) }
Action {ps} {honestEvent {nId} (broadcastQC q)} x
= let sendToAll = broadcast ps (qcM q)
updateLeader = λ old → record old { control = 7F }
in record ps
{ nodeStates = Vec.updateAt nId updateLeader sendToAll }
Action {ps} {honestEvent {nId} (receive (qcM qc))} x
= let updateNode = λ old → record old { readMessages = 1 + readMessages old
; control = 8F }
in record ps
{ nodeStates = Vec.updateAt nId updateNode (nodeStates ps) }
Action {ps} {honestEvent {nId} (dropMsg msg)} x
= let updateNode = λ old → record old { readMessages = 1 + readMessages old }
in record ps
{ nodeStates = Vec.updateAt nId updateNode (nodeStates ps) }
Action {ps} {honestEvent commit} x = {!!}
Action {ps} {honestEvent {nId} moveNextView} x
= let updateNode = λ old → record old { currNodeView = 1 + currNodeView old
; control = 0F }
in record ps
{ nodeStates = Vec.updateAt nId updateNode (nodeStates ps) }
Action {ps} {dishonestEvent msg hId} x
= record ps
{ nodeStates = Vec.updateAt hId (sendMsgToNode msg) (nodeStates ps) }
nodeᵢ : NodeState → Set (ℓ₃ ⊔ ℓ₄ ⊔ ℓ₅)
nodeᵢ nSt = nodeRole nSt ≡ follower
× currNodeView nSt ≡ 0
× msgBuffer nSt ≡ []
× readMessages nSt ≡ 0
× currProposal nSt ≡ {!!}
× votesforQC nSt ≡ []
× control nSt ≡ 0F
stateᵢ : State → Set (ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ ℓ₅)
stateᵢ st = poolRequests st ≡ [] × committedReq st ≡ 0 × All nodeᵢ (nodeStates st)
-- instantiate leaderPerView or maybe it's not necessary
MyStateMachine : StateMachine State DSEvent
MyStateMachine = record
{ initial = stateᵢ
; enabled = Enabled
; action = Action }
NodeEvSet : HonestID → EventSet {Event = DSEvent}
NodeEvSet nId (newRequest x) = ⊥
NodeEvSet nId₁ (honestEvent {nId₂} x) = nId₁ ≡ nId₂
NodeEvSet nId (dishonestEvent x x₁) = ⊥
data MyWeakFairness : EventSet → Set (ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄ ⊔ ℓ₅) where
wf : (nId : HonestID) → MyWeakFairness (NodeEvSet nId)
MySystem : System State DSEvent
MySystem = record
{ stateMachine = MyStateMachine
; weakFairness = MyWeakFairness
}
| {
"alphanum_fraction": 0.5542987824,
"avg_line_length": 35.6365638767,
"ext": "agda",
"hexsha": "65726282138d02715c71045c326f70bcb868b0fe",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "lisandrasilva/agda-liveness",
"max_forks_repo_path": "src/DistributedSystem/Prototype.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "lisandrasilva/agda-liveness",
"max_issues_repo_path": "src/DistributedSystem/Prototype.agda",
"max_line_length": 101,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "391e148f391dc2d246249193788a0d203285b38e",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "lisandrasilva/agda-liveness",
"max_stars_repo_path": "src/DistributedSystem/Prototype.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 4473,
"size": 16179
} |
module Oscar.Class.Transitivity where
open import Oscar.Level
open import Oscar.Relation
record Transitivity {a} {A : Set a} {ℓ} (_≤_ : A → A → Set ℓ) : Set (a ⊔ ℓ) where
field
transitivity : ∀ {x y} → x ≤ y → ∀ {z} → y ⟨ _≤ z ⟩→ x
open Transitivity ⦃ … ⦄ public
| {
"alphanum_fraction": 0.6117216117,
"avg_line_length": 22.75,
"ext": "agda",
"hexsha": "5c4e33663fdd1430eb02ea9c3d830bf81921a547",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_forks_repo_licenses": [
"RSA-MD"
],
"max_forks_repo_name": "m0davis/oscar",
"max_forks_repo_path": "archive/agda-2/Oscar/Class/Transitivity.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_issues_repo_issues_event_max_datetime": "2019-05-11T23:33:04.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-04-29T00:35:04.000Z",
"max_issues_repo_licenses": [
"RSA-MD"
],
"max_issues_repo_name": "m0davis/oscar",
"max_issues_repo_path": "archive/agda-2/Oscar/Class/Transitivity.agda",
"max_line_length": 81,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "52e1cdbdee54d9a8eaee04ee518a0d7f61d25afb",
"max_stars_repo_licenses": [
"RSA-MD"
],
"max_stars_repo_name": "m0davis/oscar",
"max_stars_repo_path": "archive/agda-2/Oscar/Class/Transitivity.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 104,
"size": 273
} |
open import Algebra using (CommutativeRing)
module Algebra.Module.Vec.Recursive {r ℓ} {CR : CommutativeRing r ℓ} where
open CommutativeRing CR
open import Algebra.Module using (Module)
open import Data.Vec.Recursive
open import Data.Product using (_×_; _,_)
open import Data.Product.Relation.Binary.Pointwise.NonDependent
open import Relation.Binary using (Rel)
open import Data.Nat using (zero; suc; ℕ)
open import Data.Unit.Polymorphic using (⊤)
open import Assume using (assume)
_^ᴹ_ : ∀ {m ℓm} → Module CR m ℓm → ℕ → Module CR m ℓm
M ^ᴹ n =
record
{ Carrierᴹ = Carrierᴹ ^ n
; _≈ᴹ_ = pointwise _≈ᴹ_
; _+ᴹ_ = zipWith _+ᴹ_ n
; _*ₗ_ = λ s → map (_*ₗ_ s) n
; _*ᵣ_ = λ v s → map (λ x → x *ᵣ s) n v
; 0ᴹ = replicate n 0ᴹ
; -ᴹ_ = map (-ᴹ_) n
; isModule = assume
}
where
open Module M
open import Data.Unit.Polymorphic
pointwise : ∀ {a ℓ n} {A : Set a} (~ : Rel A ℓ) → Rel (A ^ n) ℓ
pointwise {n = ℕ.zero} ~ .tt .tt = ⊤
pointwise {n = suc ℕ.zero} ~ x y = ~ x y
pointwise {n = 2+ n} ~ (x , xs) (y , ys) = ~ x y × pointwise ~ xs ys | {
"alphanum_fraction": 0.6319702602,
"avg_line_length": 29.8888888889,
"ext": "agda",
"hexsha": "eda478ef0947537d89959b3e05158913d11a22a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "cspollard/reals",
"max_forks_repo_path": "src/Algebra/Module/Vec/Recursive.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "cspollard/reals",
"max_issues_repo_path": "src/Algebra/Module/Vec/Recursive.agda",
"max_line_length": 74,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a193aeebf1326f960975b19d3e31b46fddbbfaa2",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "cspollard/reals",
"max_stars_repo_path": "src/Algebra/Module/Vec/Recursive.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 425,
"size": 1076
} |
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
open import Data.Unit using (⊤; tt)
open import Agda.Builtin.FromNat using (Number)
module AKS.Test where
open import AKS.Nat using ()
open import AKS.Rational using (show-ℚ)
open import AKS.Rational.Properties using (+-*-/-decField)
open import AKS.Polynomial.Base +-*-/-decField
open import AKS.Polynomial.Properties +-*-/-decField
ex : Polynomial
ex = 1ᵖ +ᵖ 𝑋^ 1 +ᵖ 𝑋^ 2
ex-unit₁ : show-Polynomial show-ℚ ex ≡ "1 + 1 * X^1 + 1 * X^2"
ex-unit₁ = refl
ex-unit₂ : show-Polynomial show-ℚ (ex *ᵖ ex) ≡ "1 + 2 * X^1 + 3 * X^2 + 2 * X^3 + 1 * X^4"
ex-unit₂ = refl
ex₂ : Polynomial
ex₂ = 𝑋^ 2 -ᵖ 1ᵖ
open Euclidean
open import AKS.Unsafe using (TODO)
test = show-Polynomial show-ℚ (q (divMod ex₂ (𝑋 -ᵖ 1ᵖ) {TODO}))
-- open import AKS.Modular.Quotient using (ℤ/[_]; _+_; _*_; _/_; _⁻¹)
-- open import AKS.Primality using (Prime; Prime✓)
-- open import AKS.Unsafe using (TODO)
-- 11-prime : Prime
-- 11-prime = Prime✓ 11 TODO
-- test : ℤ/[ 11-prime ]
-- test = 3 * (3 ⁻¹) {TODO}
| {
"alphanum_fraction": 0.6631779258,
"avg_line_length": 26.275,
"ext": "agda",
"hexsha": "68787379191202e3b3168e0191b60b9e11d9ff47",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mckeankylej/thesis",
"max_forks_repo_path": "proofs/AKS/Test.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mckeankylej/thesis",
"max_issues_repo_path": "proofs/AKS/Test.agda",
"max_line_length": 90,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "ddad4c0d5f384a0219b2177461a68dae06952dde",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mckeankylej/thesis",
"max_stars_repo_path": "proofs/AKS/Test.agda",
"max_stars_repo_stars_event_max_datetime": "2020-12-01T22:38:27.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-12-01T22:38:27.000Z",
"num_tokens": 409,
"size": 1051
} |
module Structure.Operator.Names where
open import Functional.Dependent
open import Function.Names
import Lvl
open import Logic
open import Logic.Propositional
open import Logic.Predicate
open import Structure.Function.Names
open import Structure.Setoid
open import Syntax.Function
open import Syntax.Transitivity
open import Type
private variable ℓ ℓₑ ℓ₁ ℓ₂ ℓ₃ ℓᵣ₂ ℓᵣ₃ ℓᵣ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₑᵣ : Lvl.Level
module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ where
-- Definition of commutativity of specific elements.
-- The binary operation swapped yields the same result.
-- Example: For any x, (x ▫ x) always commutes.
Commuting : (T₁ → T₁ → T₂) → T₁ → T₁ → Stmt
Commuting(_▫_) = pointwise₂,₂(_≡_) (_▫_) (swap(_▫_))
-- Definition of commutativity.
-- Order of application for the operation does not matter for equality.
-- Example: Addition of the natural numbers (_+_ : ℕ → ℕ → ℕ).
Commutativity : (T₁ → T₁ → T₂) → Stmt
Commutativity = ∀² ∘ Commuting
-- Definition of an left identity element.
-- Example: Top implies a proposition in boolean logic (⊤ →_).
Identityₗ : (T₁ → T₂ → T₂) → T₁ → Stmt
Identityₗ (_▫_) id = ∀{x : T₂} → (id ▫ x) ≡ x
-- Definition of a right absorber element
-- Also called "right neutral element" or "right annihilator"
-- Applying the operation on this element to the right always yields itself.
-- Example: A proposition implies top in boolean logic (_→ ⊤).
Absorberᵣ : (T₁ → T₂ → T₂) → T₂ → Stmt
Absorberᵣ (_▫_) null = ∀{x : T₁} → (x ▫ null) ≡ null
ConverseAbsorberᵣ : (T₁ → T₂ → T₂) → T₂ → Stmt
ConverseAbsorberᵣ (_▫_)(a) = ∀{x y} → (x ▫ y ≡ a) → (y ≡ a)
module _ {T₁ : Type{ℓ₁}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ {T₂ : Type{ℓ₂}} where
-- Definition of an right identity element
-- Example: Subtracting 0 for integers (_− 0).
Identityᵣ : (T₁ → T₂ → T₁) → T₂ → Stmt
Identityᵣ(_▫_) id = Identityₗ(swap(_▫_)) id
-- Definition of a left absorber element
-- Also called "left neutral element" or "left annihilator"
-- Example: Subtraction (monus) of 0 for natural numbers (0 − ).
Absorberₗ : (T₁ → T₂ → T₁) → T₁ → Stmt
Absorberₗ(_▫_) null = Absorberᵣ(swap(_▫_)) null
ConverseAbsorberₗ : (T₁ → T₂ → T₁) → T₁ → Stmt
ConverseAbsorberₗ (_▫_)(a) = ∀{x y} → (x ▫ y ≡ a) → (x ≡ a)
module _ {T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ where
-- Definition of an identity element
-- Example: 0 for addition of integers, 1 for multiplication of integers.
Identity : (T → T → T) → T → Stmt
Identity (_▫_) id = (Identityₗ (_▫_) id) ∧ (Identityᵣ (_▫_) id)
-- Definition of idempotence.
Idempotence : (T → T → T) → Stmt
Idempotence (_▫_) = ∀{x : T} → (x ▫ x ≡ x)
-- Example: 0 for addition of natural numbers, 1 for multiplication of natural numbers.
ConverseAbsorber : (T → T → T) → T → Stmt
ConverseAbsorber (_▫_)(a) = ∀{x y} → (x ▫ y ≡ a) → (x ≡ a)∧(y ≡ a)
-- Example: 0 for multiplication of natural numbers.
WeakConverseAbsorber : (T → T → T) → T → Stmt
WeakConverseAbsorber (_▫_)(a) = ∀{x y} → (x ▫ y ≡ a) → (x ≡ a)∨(y ≡ a)
module _ {T₊ : Type{ℓ₁}} {T₋ : Type{ℓ₂}} {Tᵣ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑᵣ}(Tᵣ) ⦄ where
-- Definition of a left inverse element.
InverseElementₗ : (T₋ → T₊ → Tᵣ) → Tᵣ → T₊ → T₋ → Stmt
InverseElementₗ (_▫_) id x x⁻¹ = ((x⁻¹ ▫ x) ≡ id)
-- Definition of a right inverse element
InverseElementᵣ : (T₊ → T₋ → Tᵣ) → Tᵣ → T₊ → T₋ → Stmt
InverseElementᵣ (_▫_) id x x⁻¹ = ((x ▫ x⁻¹) ≡ id)
-- Definition of a left inverse function
InverseFunctionₗ : (T₋ → T₊ → Tᵣ) → Tᵣ → (T₊ → T₋) → Stmt
InverseFunctionₗ (_▫_) id inv = ∀{x : T₊} → InverseElementₗ(_▫_) id x (inv x)
-- Definition of a right inverse function
InverseFunctionᵣ : (T₊ → T₋ → Tᵣ) → Tᵣ → (T₊ → T₋) → Stmt
InverseFunctionᵣ (_▫_) id inv = ∀{x : T₊} → InverseElementᵣ(_▫_) id x (inv x)
module _ {T : Type{ℓ₁}} {Tᵣ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑᵣ}(Tᵣ) ⦄ where
-- Definition of an invertible element
InverseElement : (T → T → Tᵣ) → Tᵣ → T → T → Stmt
InverseElement (_▫_) id x x⁻¹ = (InverseElementₗ(_▫_) id x x⁻¹) ∧ (InverseElementᵣ(_▫_) id x x⁻¹)
-- Definition of a function which returns the inverse element of the other side of the operation
InverseFunction : (T → T → Tᵣ) → Tᵣ → (T → T) → Stmt
InverseFunction (_▫_) id inv = (InverseFunctionₗ (_▫_) id inv) ∧ (InverseFunctionᵣ (_▫_) id inv)
module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₃}(T₃) ⦄ where
-- Definition of right cancellation of a specific object
-- ∀{a b : T₂} → ((x ▫ a) ≡ (x ▫ b)) → (a ≡ b)
CancellationOnₗ : (T₁ → T₂ → T₃) → T₁ → Stmt
CancellationOnₗ (_▫_) (x) = Injective(x ▫_)
-- Definition of left cancellation (Injectivity for the right param)
-- ∀{x : T₁}{a b : T₂} → ((x ▫ a) ≡ (x ▫ b)) → (a ≡ b)
Cancellationₗ : (T₁ → T₂ → T₃) → Stmt
Cancellationₗ (_▫_) = (∀{x : T₁} → CancellationOnₗ(_▫_)(x))
module _ {T₁ : Type{ℓ₁}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₃}(T₃) ⦄ where
-- Definition of right cancellation of a specific object
-- ∀{a b : T₁} → ((a ▫ x) ≡ (b ▫ x)) → (a ≡ b)
CancellationOnᵣ : (T₁ → T₂ → T₃) → T₂ → Stmt
CancellationOnᵣ (_▫_) (x) = Injective(_▫ x)
-- Definition of right cancellation (Injectivity for the left param)
-- ∀{x : T₂}{a b : T₁} → ((a ▫ x) ≡ (b ▫ x)) → (a ≡ b)
Cancellationᵣ : (T₁ → T₂ → T₃) → Stmt
Cancellationᵣ (_▫_) = (∀{x : T₂} → CancellationOnᵣ (_▫_)(x))
module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ where
-- Definition of the left inverse property
InverseOperatorOnₗ : (T₁ → T₂ → T₃) → (T₁ → T₃ → T₂) → T₁ → T₂ → Stmt
InverseOperatorOnₗ (_▫₁_) (_▫₂_) x y = (x ▫₂ (x ▫₁ y) ≡ y)
InverseOperatorₗ : (T₁ → T₂ → T₃) → (T₁ → T₃ → T₂) → Stmt
InverseOperatorₗ (_▫₁_)(_▫₂_) = ∀{x y} → InverseOperatorOnₗ(_▫₁_)(_▫₂_) x y
module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ where
-- Definition of the right inverse property
InverseOperatorOnᵣ : (T₁ → T₂ → T₃) → (T₃ → T₂ → T₁) → T₁ → T₂ → Stmt
InverseOperatorOnᵣ (_▫₁_) (_▫₂_) x y = ((x ▫₁ y) ▫₂ y ≡ x)
InverseOperatorᵣ : (T₁ → T₂ → T₃) → (T₃ → T₂ → T₁) → Stmt
InverseOperatorᵣ (_▫₁_)(_▫₂_) = ∀{x y} → InverseOperatorOnᵣ(_▫₁_)(_▫₂_) x y
module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ where
InversePropertyₗ : (T₁ → T₂ → T₂) → (T₁ → T₁) → Stmt
InversePropertyₗ (_▫_) inv = InverseOperatorₗ(_▫_)(a ↦ b ↦ inv(a) ▫ b)
InversePropertyᵣ : (T₂ → T₁ → T₂) → (T₁ → T₁) → Stmt
InversePropertyᵣ (_▫_) inv = InverseOperatorᵣ(_▫_)(a ↦ b ↦ a ▫ inv(b))
---------------------------------------------------------
-- Patterns
module _ {T₁ : Type{ℓ₁}}{T₂ : Type{ℓ₂}}{T₃ : Type{ℓ₃}}{Tᵣ₂ : Type{ℓᵣ₂}}{Tᵣ₃ : Type{ℓᵣ₃}}{Tᵣ : Type{ℓᵣ}} ⦃ _ : Equiv{ℓₑᵣ}(Tᵣ) ⦄ where
AssociativityPattern : (T₁ → T₂ → Tᵣ₃) → (Tᵣ₃ → T₃ → Tᵣ) → (T₁ → Tᵣ₂ → Tᵣ) → (T₂ → T₃ → Tᵣ₂)→ Stmt
AssociativityPattern (_▫₁_) (_▫₂_) (_▫₃_) (_▫₄_) =
∀{x : T₁}{y : T₂}{z : T₃} → ((x ▫₁ y) ▫₂ z) ≡ (x ▫₃ (y ▫₄ z))
module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₃}(T₃) ⦄ where
DistributivityPatternₗ : (T₁ → T₂ → T₃) → (T₂ → T₂ → T₂) → (T₃ → T₃ → T₃) → Stmt
DistributivityPatternₗ (_▫₁_) (_▫₂_) (_▫₃_) =
∀{x : T₁} {y z : T₂} → (x ▫₁ (y ▫₂ z)) ≡ ((x ▫₁ y) ▫₃ (x ▫₁ z))
DistributivityPatternᵣ : (T₁ → T₂ → T₃) → (T₁ → T₁ → T₁) → (T₃ → T₃ → T₃) → Stmt
DistributivityPatternᵣ (_▫₁_) (_▫₂_) (_▫₃_) =
∀{x y : T₁} {z : T₂} → ((x ▫₂ y) ▫₁ z) ≡ ((x ▫₁ z) ▫₃ (y ▫₁ z))
---------------------------------------------------------
-- Derived
module _ {T : Type{ℓ}} ⦃ _ : Equiv{ℓₑ}(T) ⦄ where
-- Definition of associativity for a binary operation
Associativity : (T → T → T) → Stmt
Associativity (_▫_) = AssociativityPattern (_▫_) (_▫_) (_▫_) (_▫_)
-- {x y z : T} → ((x ▫ y) ▫ z) ≡ (x ▫ (y ▫ z))
module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ where
-- Definition of compatibility for a binary operation
Compatibility : (T₁ → T₁ → T₁) → (T₁ → T₂ → T₂) → Stmt -- TODO: https://en.wikipedia.org/wiki/Semigroup_action
Compatibility (_▫₁_) (_▫₂_) = AssociativityPattern (_▫₁_) (_▫₂_) (_▫₂_) (_▫₂_)
-- {x₁ x₂ : T₁}{y : T₂} → ((x₁ ▫₁ x₂) ▫₂ y) ≡ (x₁ ▫₂ (x₂ ▫₂ y))
-- Definition of left distributivity for a binary operation
Distributivityₗ : (T₁ → T₂ → T₂) → (T₂ → T₂ → T₂) → Stmt
Distributivityₗ (_▫₁_) (_▫₂_) = DistributivityPatternₗ (_▫₁_) (_▫₂_) (_▫₂_)
-- ∀{x : T₁} {y z : T₂} → (x ▫₁ (y ▫₂ z)) ≡ (x ▫₁ y) ▫₂ (x ▫₁ z)
-- Definition of right distributivity for a binary operation
Distributivityᵣ : (T₂ → T₁ → T₂) → (T₂ → T₂ → T₂) → Stmt
Distributivityᵣ (_▫₁_) (_▫₂_) = DistributivityPatternᵣ (_▫₁_) (_▫₂_) (_▫₂_)
-- ∀{x y : T₂} {z : T₁} → ((x ▫₂ y) ▫₁ z) ≡ (x ▫₁ z) ▫₂ (y ▫₁ z)
module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₁}(T₁) ⦄ where
-- Definition of left absorption for two binary operators
Absorptionₗ : (T₁ → T₃ → T₁) → (T₁ → T₂ → T₃) → Stmt
Absorptionₗ (_▫₁_)(_▫₂_) = ∀{x : T₁}{y : T₂} → (x ▫₁ (x ▫₂ y) ≡ x)
module _ {T₁ : Type{ℓ₁}} {T₂ : Type{ℓ₂}} {T₃ : Type{ℓ₃}} ⦃ _ : Equiv{ℓₑ₂}(T₂) ⦄ where
-- Definition of right absorption for two binary operators
Absorptionᵣ : (T₃ → T₂ → T₂) → (T₁ → T₂ → T₃) → Stmt
Absorptionᵣ (_▫₁_)(_▫₂_) = ∀{x : T₁}{y : T₂} → ((x ▫₂ y) ▫₁ y ≡ y)
---------------------------------------------------------
-- Functions (TODO: Move to Structure.Operator.Proofs)
{-
open import Relator.Equals{ℓ₁}{ℓ₂}
open import Relator.Equals.Proofs{ℓ₁}{ℓ₂}
-- Returns a commuted LHS of an equality
commuteₗ : ∀{T}{_▫_}{x y z} → ⦃ _ : Commutativity {T} {T} (_▫_) ⦄ → ((x ▫ y) ≡ z) → ((y ▫ x) ≡ z)
commuteₗ ⦃ comm ⦄ stmt = comm 🝖 stmt
-- Returns a commuted RHS of an equality
commuteᵣ : ∀{T}{_▫_}{x y z} → ⦃ _ : Commutativity {T} {T} (_▫_) ⦄ → (z ≡ (x ▫ y)) → (z ≡ (y ▫ x))
commuteᵣ ⦃ comm ⦄ stmt = stmt 🝖 comm
commuteBoth : ∀{T₁ T₂}{_▫_}{a₁ a₂ b₁ b₂} → Commutativity{T₁}{T₂}(_▫_) → (a₁ ▫ a₂ ≡ b₁ ▫ b₂) → (a₂ ▫ a₁ ≡ b₂ ▫ b₁)
commuteBoth {_}{_} {a₁} {a₂} {b₁} {b₂} commutativity (a₁▫a₂≡b₁▫b₂) =
(symmetry ⦃ [≡]-symmetry ⦄ (commutativity {a₁} {a₂}))
🝖' (a₁▫a₂≡b₁▫b₂)
🝖' (commutativity {b₁} {b₂})
where
_🝖'_ = _🝖_ ⦃ [≡]-transitivity ⦄
infixl 1000 _🝖'_
-}
| {
"alphanum_fraction": 0.5766696174,
"avg_line_length": 45.3883928571,
"ext": "agda",
"hexsha": "1bd287c63f25bc032e51f34dae6ba4fe8dd8e406",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Operator/Names.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Operator/Names.agda",
"max_line_length": 132,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Operator/Names.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 4786,
"size": 10167
} |
postulate
F G : (Set → Set) → Set
!_ : Set → Set
infix 2 F
infix 1 !_
syntax F (λ X → Y) = X , Y
syntax G (λ X → Y) = Y , X
-- This parsed when default fixity was 'unrelated', but with
-- an actual default fixity (of any strength) in place it really
-- should not.
Foo : Set
Foo = ! X , X
| {
"alphanum_fraction": 0.6060606061,
"avg_line_length": 18.5625,
"ext": "agda",
"hexsha": "cff7b997da643d74cb9a8c3dc029e0c3bcd4ac45",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue1436-9.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue1436-9.agda",
"max_line_length": 64,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue1436-9.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 107,
"size": 297
} |
data D : Set where
record R : Set where
constructor d
field x : D
record R′ : Set where
coinductive
constructor d
field r : R′
f : R → D
f r = let d x = r in x
| {
"alphanum_fraction": 0.612716763,
"avg_line_length": 12.3571428571,
"ext": "agda",
"hexsha": "e9580003edd5ea43de44b6ce4f1850e6e69de04e",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-03-05T20:02:38.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/interaction/Issue1064.agda",
"max_issues_count": 3,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2019-04-01T19:39:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2018-11-14T15:31:44.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/interaction/Issue1064.agda",
"max_line_length": 22,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/interaction/Issue1064.agda",
"max_stars_repo_stars_event_max_datetime": "2015-12-07T20:14:00.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-28T14:51:03.000Z",
"num_tokens": 62,
"size": 173
} |
{-# OPTIONS --cubical-compatible #-}
module Common.Float where
open import Agda.Builtin.Float public
open import Common.String
floatToString : Float -> String
floatToString = primShowFloat
| {
"alphanum_fraction": 0.78125,
"avg_line_length": 21.3333333333,
"ext": "agda",
"hexsha": "b4fca8d43868ea2625abf43ab88164f0731d088d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Common/Float.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Common/Float.agda",
"max_line_length": 37,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Common/Float.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 42,
"size": 192
} |
{-# OPTIONS --no-universe-polymorphism #-}
open import Data.Product hiding (map)
open import Relation.Binary.Core hiding (Total)
open import Relation.Nullary
open import Data.Nat
import Level as L using (zero)
open import Data.List
open import Data.Unit using (⊤)
open import Data.Empty
open import DivideEtImpera
open import Equivalence
open import BagEquality
open import Lists
module Quicksort where
splitWith : {A : Set} {P Q : A → Set} → (∀ x → P x ⊕ Q x) → List A → List A × List A
splitWith _ [] = ([] , [])
splitWith decPQ (x ∷ xs) with (decPQ x)
splitWith decPQ (x ∷ xs) | (inj₁ _) = (x ∷ (proj₁ res), proj₂ res) where
res = splitWith decPQ xs
splitWith decPQ (x ∷ xs) | (inj₂ _) = (proj₁ res , x ∷ (proj₂ res)) where
res = splitWith decPQ xs
splitWithProp1 : {A : Set} {P Q : A → Set} → (decPQ : ∀ x → P x ⊕ Q x) → (xs : List A) → (z : A) → z ∈ proj₁ (splitWith decPQ xs) → P z
splitWithProp1 decPQ [] z zIn1 = ⊥-elim zIn1
splitWithProp1 decPQ (x ∷ xs) z zIn with (decPQ x)
splitWithProp1 decPQ (x ∷ xs) .x (inj₁ refl) | (inj₁ pfP) = pfP
splitWithProp1 decPQ (x ∷ xs) z (inj₂ zIn) | (inj₁ _ ) = splitWithProp1 decPQ xs z zIn
splitWithProp1 decPQ (x ∷ xs) z zIn | (inj₂ _ ) = splitWithProp1 decPQ xs z zIn
splitWithProp2 : {A : Set} {P Q : A → Set} → (decPQ : ∀ x → P x ⊕ Q x) → (xs : List A) → (z : A) → z ∈ proj₂ (splitWith decPQ xs) → Q z
splitWithProp2 decPQ [] z zIn1 = ⊥-elim zIn1
splitWithProp2 decPQ (x ∷ xs) z zIn with (decPQ x)
splitWithProp2 decPQ (x ∷ xs) .x (inj₁ refl) | (inj₂ pfQ) = pfQ
splitWithProp2 decPQ (x ∷ xs) z (inj₂ zIn) | (inj₂ _ ) = splitWithProp2 decPQ xs z zIn
splitWithProp2 decPQ (x ∷ xs) z zIn | (inj₁ _ ) = splitWithProp2 decPQ xs z zIn
×-join : {A B C : Set} → (pair : A × B) → (op : A → B → C) → C
×-join (a , b) op = op a b
splitWith-cong : {A : Set} {P Q : A → Set} → (decPQ : ∀ x → P x ⊕ Q x) → (xs : List A) → (proj₁ (splitWith decPQ xs)) ++ (proj₂ (splitWith decPQ xs)) ≈ xs
splitWith-cong _ [] z = ⊥ □↔
splitWith-cong decPQ (x ∷ xs) z with (decPQ x)
splitWith-cong decPQ (x ∷ xs) z | (inj₁ _) = let (res1 , res2) = splitWith decPQ xs
in (z ≡ x) ⊕ Any (z ≡_) (res1 ++ res2) ↔⟨ ⊕-cong ((z ≡ x) □↔) (splitWith-cong decPQ xs z) ⟩
(z ≡ x) ⊕ Any (z ≡_) xs □↔
splitWith-cong decPQ (x ∷ xs) z | (inj₂ _) = let (res1 , res2) = splitWith decPQ xs
in Any (z ≡_) (res1 ++ x ∷ res2) ↔⟨ ++-comm res1 (x ∷ res2) z ⟩
(z ≡ x) ⊕ Any (z ≡_) (res2 ++ res1) ↔⟨ ⊕-cong ((z ≡ x) □↔) (++-comm res2 res1 z) ⟩
(z ≡ x) ⊕ Any (z ≡_) (res1 ++ res2) ↔⟨ ⊕-cong ((z ≡ x) □↔) (splitWith-cong decPQ xs z) ⟩
(z ≡ x) ⊕ Any (z ≡_) xs □↔
≤′-suc : {n m : ℕ} → n ≤′ m → suc n ≤′ suc m
≤′-suc ≤′-refl = ≤′-refl
≤′-suc (≤′-step pf) = ≤′-step (≤′-suc pf)
splitWith-length1 : {A : Set} {P Q : A → Set} → (decPQ : ∀ x → P x ⊕ Q x) → (xs : List A) → length (proj₁ (splitWith decPQ xs)) ≤′ length xs
splitWith-length1 _ [] = ≤′-refl
splitWith-length1 decPQ (x ∷ xs) with (decPQ x)
splitWith-length1 decPQ (x ∷ xs) | (inj₁ _) = ≤′-suc (splitWith-length1 decPQ xs)
splitWith-length1 decPQ (x ∷ xs) | (inj₂ _) = ≤′-step (splitWith-length1 decPQ xs)
splitWith-length2 : {A : Set} {P Q : A → Set} → (decPQ : ∀ x → P x ⊕ Q x) → (xs : List A) → length (proj₂ (splitWith decPQ xs)) ≤′ length xs
splitWith-length2 _ [] = ≤′-refl
splitWith-length2 decPQ (x ∷ xs) with (decPQ x)
splitWith-length2 decPQ (x ∷ xs) | (inj₁ _) = ≤′-step (splitWith-length2 decPQ xs)
splitWith-length2 decPQ (x ∷ xs) | (inj₂ _) = ≤′-suc (splitWith-length2 decPQ xs)
qs-DecompCond : {A : Set} → Rel A L.zero → List A → (A × List A × List A) → Set
qs-DecompCond LEQ xs (piv , ys , zs) = (piv ∷ (ys ++ zs) ≈ xs) × (∀ y → y ∈ ys → LEQ y piv) × (∀ z → z ∈ zs → LEQ piv z)
qs-InputCond : {A : Set} → List A → Set
qs-InputCond x = ⊤
qs-OutputCond : {A : Set} → Rel A L.zero → List A → List A → Set
qs-OutputCond LEQ xs ys = ys ≈ xs × Ordered LEQ ys
qs-G-InputCond : {A : Set} → A → Set
qs-G-InputCond x = ⊤
qs-G-OutputCond : {A : Set} → A → A → Set
qs-G-OutputCond x y = x ≡ y
qs-CompCond : {A : Set} → (A × List A × List A) → List A → Set
qs-CompCond (piv , xs , ys) zs = xs ++ piv ∷ ys ≡ zs
qs-InductionLemma : {A : Set} → (LEQ : Rel A L.zero) → ∀{x₀ x₁ x₂ x₃ z₀ z₁ z₂ z₃} → qs-DecompCond LEQ x₀ (x₁ , x₂ , x₃ ) → qs-G-OutputCond x₁ z₁ →
qs-OutputCond LEQ x₂ z₂ → qs-OutputCond LEQ x₃ z₃ → qs-CompCond (z₁ , z₂ , z₃) z₀ → qs-OutputCond LEQ x₀ z₀
qs-InductionLemma LEQ {xs} {piv} {ys₁} {ys₂} {ws} {.piv} {zs₁} {zs₂} (piv∷ys₁++ys₂≈xs , ltPiv , gtPiv) refl (zs₁≈ys₁ , ord₁) (zs₂≈ys₂ , ord₂) refl
= (λ x → x ∈ (zs₁ ++ piv ∷ zs₂) ↔⟨ ++-comm zs₁ (piv ∷ zs₂) x ⟩
(x ∈ ((piv ∷ zs₂) ++ zs₁)) ↔⟨ Any-++ (λ z → x ≡ z) (piv ∷ zs₂) zs₁ ⟩
((x ≡ piv) ⊕ x ∈ zs₂) ⊕ x ∈ zs₁ ↔⟨ ↔sym ⊕-assoc ⟩
(x ≡ piv) ⊕ (x ∈ zs₂ ⊕ x ∈ zs₁) ↔⟨ ⊕-cong ((x ≡ piv) □↔) (⊕-cong (zs₂≈ys₂ x) (zs₁≈ys₁ x)) ⟩
(x ≡ piv) ⊕ (x ∈ ys₂ ⊕ x ∈ ys₁) ↔⟨ ⊕-cong ((x ≡ piv) □↔) ⊕-comm ⟩
(x ≡ piv) ⊕ (x ∈ ys₁ ⊕ x ∈ ys₂) ↔⟨ ⊕-cong ((x ≡ piv) □↔) (↔sym (Any-++ (λ z → x ≡ z) ys₁ ys₂)) ⟩
x ∈ (piv ∷ (ys₁ ++ ys₂)) ↔⟨ piv∷ys₁++ys₂≈xs x ⟩
x ∈ xs □↔) ,
++-Order-cong (λ x x∈zs₁ → ltPiv x (_↔_.to (zs₁≈ys₁ x) x∈zs₁)) ord₁
(cons-Order-cong (λ x x∈zs₂ → gtPiv x (_↔_.to (zs₂≈ys₂ x) x∈zs₂)) ord₂)
qs-Decomp : {A : Set} → {LEQ : Rel A L.zero} → Total LEQ → (xs : List A) → ⊤ → ¬ ListPrimitive xs → Σ (A × List A × List A)
λ y → qs-G-InputCond (proj₁ y) × (qs-InputCond (proj₁ (proj₂ y))) × (qs-InputCond (proj₂ (proj₂ y))) ×
((proj₁ (proj₂ y)) <l xs) × ((proj₂ (proj₂ y)) <l xs) × (qs-DecompCond LEQ xs y)
qs-Decomp total [] _ notPrim = ⊥-elim (notPrim (NilIsPrim))
qs-Decomp total (x ∷ xs) _ _ = ( x , splitWith (λ y → total y x) xs) , (⊤.tt , ⊤.tt , ⊤.tt , ≤′-suc (splitWith-length1 (λ y → total y x) xs) , ≤′-suc (splitWith-length2 (λ y → total y x) xs) ,
((λ z → (z ≡ x) ⊕ z ∈ (proj₁ (splitWith (λ y → total y x) xs) ++ proj₂ (splitWith (λ y → total y x) xs))
↔⟨ ⊕-cong ((z ≡ x) □↔) (splitWith-cong (λ y → total y x) xs z) ⟩
(z ≡ x) ⊕ z ∈ xs □↔) ,
splitWithProp1 (λ y → total y x) xs ,
splitWithProp2 (λ y → total y x) xs))
qs-G : {A : Set} → (x : A) → ⊤ → Σ A (qs-G-OutputCond x)
qs-G x _ = (x , refl)
qs-Comp : {A : Set} → (y : A × (List A × List A)) → Σ (List A) (qs-CompCond y)
qs-Comp (piv , xs , ys) = (xs ++ piv ∷ ys , refl)
qs-DirSolve : {A : Set} → (LEQ : Rel A L.zero) → (xs : List A) → ⊤ → ListPrimitive xs → Σ (List A) (qs-OutputCond LEQ xs)
qs-DirSolve _ [] _ _ = ([] , (λ z → z ∈ [] □↔) , NilIsOrd)
qs-DirSolve _ (_ ∷ _) _ prim = ⊥-elim (consIsNotPrim prim)
quicksort : {A : Set} → {LEQ : Rel A L.zero} → Total LEQ → (xs : List A) → Σ (List A) (λ ys → ys ≈ xs × Ordered LEQ ys)
quicksort {LEQ = LEQ} total xs = makeD&C2 <l-wellFounded
primDec
(qs-Decomp total)
qs-Comp
qs-G
(qs-DirSolve LEQ)
(qs-InductionLemma LEQ)
xs ⊤.tt
_≤_-total : Total _≤_
_≤_-total zero n = inj₁ z≤n
_≤_-total n zero = inj₂ z≤n
_≤_-total (suc n) (suc m) with (_≤_-total n m)
_≤_-total (suc n) (suc m) | (inj₁ n≤m) = inj₁ (s≤s n≤m)
_≤_-total (suc n) (suc m) | (inj₂ m≤n) = inj₂ (s≤s m≤n)
nat-quicksort = quicksort _≤_-total
| {
"alphanum_fraction": 0.4518762045,
"avg_line_length": 54.7888198758,
"ext": "agda",
"hexsha": "30f65f55003b8f656df0c4591c86619f191491a8",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda",
"max_forks_repo_path": "Quicksort.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda",
"max_issues_repo_path": "Quicksort.agda",
"max_line_length": 193,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "99bd3a5e772563153d78f61c1bbca48d7809ff48",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "NAMEhzj/Divide-and-Conquer-in-Agda",
"max_stars_repo_path": "Quicksort.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 3321,
"size": 8821
} |
------------------------------------------------------------------------
-- Normalization of raw terms in Fω with interval kinds
------------------------------------------------------------------------
{-# OPTIONS --safe --exact-split --without-K #-}
module FOmegaInt.Syntax.Normalization where
open import Data.Context.WellFormed using (module ⊤-WellFormed)
open import Data.Fin using (Fin; zero; suc; raise; lift)
open import Data.Fin.Substitution
open import Data.Fin.Substitution.Lemmas using (module VarLemmas)
open import Data.Fin.Substitution.ExtraLemmas
open import Data.Fin.Substitution.Typed
open import Data.Maybe using (just; nothing)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.List using ([]; _∷_; _∷ʳ_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.Vec as Vec using ([]; _∷_)
import Data.Vec.Properties as VecProps
open import Function using (_∘_; flip)
open import Relation.Binary.Construct.Closure.ReflexiveTransitive using (ε)
open import Relation.Binary.PropositionalEquality as P hiding ([_])
open import FOmegaInt.Reduction.Full
open import FOmegaInt.Syntax
open import FOmegaInt.Syntax.SingleVariableSubstitution
open import FOmegaInt.Syntax.HereditarySubstitution
open Syntax
----------------------------------------------------------------------
-- Kind simplification as a relation.
infix 4 ⌊_⌋≡_
-- Kind simplification (aka erasure to shapes) as a relation.
--
-- We introduce an inductively defined relation on kinds (and shapes)
-- that precisely relates a (dependent) kind to its shape. Proofs of
-- ⌊ j ⌋≡ k are equivalent to proofs that ⌊ j ⌋ ≡ k, as witnessed by
-- the ⌊⌋-⌊⌋≡ and ⌊⌋≡⇒⌊⌋-≡ lemmas below, but the former are easier to
-- work with in certain functions and lemmas that are defined by
-- recursion on shapes since the recursion structure then matches the
-- inductive structure of the relation. A prime example of this is
-- η-expansion as implemented below (see the definition of η-exp in
-- the TrackSimpleKindsEtaExp module). Most lemmas about η-expansion
-- also use the ⌊_⌋≡_ relation in a similar way.
data ⌊_⌋≡_ {T n} : Kind T n → SKind → Set where
is-★ : ∀ {a b} → ⌊ a ⋯ b ⌋≡ ★
is-⇒ : ∀ {j₁ j₂ k₁ k₂} → ⌊ j₁ ⌋≡ k₁ → ⌊ j₂ ⌋≡ k₂ → ⌊ Π j₁ j₂ ⌋≡ k₁ ⇒ k₂
-- Kind simplification as a relation agrees with kind simplification
-- as a function.
⌊⌋-⌊⌋≡ : ∀ {T n} (k : Kind T n) → ⌊ k ⌋≡ ⌊ k ⌋
⌊⌋-⌊⌋≡ (a ⋯ b) = is-★
⌊⌋-⌊⌋≡ (Π j k) = is-⇒ (⌊⌋-⌊⌋≡ j) (⌊⌋-⌊⌋≡ k)
⌊⌋≡⇒⌊⌋-≡ : ∀ {T n k} {j : Kind T n} → ⌊ j ⌋≡ k → ⌊ j ⌋ ≡ k
⌊⌋≡⇒⌊⌋-≡ is-★ = refl
⌊⌋≡⇒⌊⌋-≡ (is-⇒ ⌊j₁⌋=k₁ ⌊j₂⌋=k₂) =
cong₂ _⇒_ (⌊⌋≡⇒⌊⌋-≡ ⌊j₁⌋=k₁) (⌊⌋≡⇒⌊⌋-≡ ⌊j₂⌋=k₂)
⌊⌋≡-trans : ∀ {T n m k} {j : Kind T n} {l : Kind T m} →
⌊ j ⌋ ≡ ⌊ l ⌋ → ⌊ l ⌋≡ k → ⌊ j ⌋≡ k
⌊⌋≡-trans ⌊j⌋≡⌊l⌋ ⌊l⌋≡k rewrite (sym (⌊⌋≡⇒⌊⌋-≡ ⌊l⌋≡k)) =
subst (⌊ _ ⌋≡_) ⌊j⌋≡⌊l⌋ (⌊⌋-⌊⌋≡ _)
-- Kind simplification is proof-irrelevant.
⌊⌋≡-pirr : ∀ {T n k} {j : Kind T n} → (p₁ p₂ : ⌊ j ⌋≡ k) → p₁ ≡ p₂
⌊⌋≡-pirr is-★ is-★ = refl
⌊⌋≡-pirr (is-⇒ p₁₁ p₁₂) (is-⇒ p₂₁ p₂₂) =
cong₂ is-⇒ (⌊⌋≡-pirr p₁₁ p₂₁) (⌊⌋≡-pirr p₁₂ p₂₂)
-- A type of abstract lemma stating that kind simplification as a
-- relation commutes with substitution.
KindSimpAppLemma : ∀ {T T′} (app : Application (Kind T) T′) → Set
KindSimpAppLemma {_} {T′} app =
∀ {m n j k} {σ : Sub T′ m n} → ⌊ j ⌋≡ k → ⌊ j / σ ⌋≡ k
where open Application app
-- Lemmas relating kind simplification to operations on T-kinds.
record KindSimpLemmas (T : ℕ → Set) : Set₁ where
field lemmas : TermLikeLemmas (Kind T) Term
open TermLikeLemmas lemmas
using (termApplication; varApplication; weaken; weaken⋆)
field
⌊⌋≡-/ : KindSimpAppLemma termApplication
⌊⌋≡-/Var : KindSimpAppLemma varApplication
-- Kind simplification as a relation commutes with weakening.
⌊⌋≡-weaken : ∀ {n k} {j : Kind T n} → ⌊ j ⌋≡ k → ⌊ weaken j ⌋≡ k
⌊⌋≡-weaken ⌊j⌋≡k = ⌊⌋≡-/Var ⌊j⌋≡k
⌊⌋≡-weaken⋆ : ∀ m {n k} {j : Kind T n} → ⌊ j ⌋≡ k → ⌊ weaken⋆ m j ⌋≡ k
⌊⌋≡-weaken⋆ zero ⌊j⌋≡k = ⌊j⌋≡k
⌊⌋≡-weaken⋆ (suc m) ⌊j⌋≡k = ⌊⌋≡-weaken (⌊⌋≡-weaken⋆ m ⌊j⌋≡k)
module KindSimpSubstApp {T} {l : Lift T Term} where
open SubstApp l
-- Kind simplification as a relation commutes with substitution.
⌊⌋≡-Kind/ : ∀ {m n j k} {σ : Sub T m n} → ⌊ j ⌋≡ k → ⌊ j Kind/ σ ⌋≡ k
⌊⌋≡-Kind/ is-★ = is-★
⌊⌋≡-Kind/ (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) =
is-⇒ (⌊⌋≡-Kind/ ⌊j₁⌋≡k₁) (⌊⌋≡-Kind/ ⌊j₂⌋≡k₂)
⌊⌋≡-Kind′/ : ∀ {m n j k} {σ : Sub T m n} → ⌊ j ⌋≡ k → ⌊ j Kind′/ σ ⌋≡ k
⌊⌋≡-Kind′/ is-★ = is-★
⌊⌋≡-Kind′/ (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) =
is-⇒ (⌊⌋≡-Kind′/ ⌊j₁⌋≡k₁) (⌊⌋≡-Kind′/ ⌊j₂⌋≡k₂)
simpLemmasKind : KindSimpLemmas Term
simpLemmasKind = record
{ lemmas = termLikeLemmasKind
; ⌊⌋≡-/ = KindSimpSubstApp.⌊⌋≡-Kind/
; ⌊⌋≡-/Var = KindSimpSubstApp.⌊⌋≡-Kind/
}
where open Substitution
simpLemmasKind′ : KindSimpLemmas Elim
simpLemmasKind′ = record
{ lemmas = termLikeLemmasKind′
; ⌊⌋≡-/ = KindSimpSubstApp.⌊⌋≡-Kind′/
; ⌊⌋≡-/Var = KindSimpSubstApp.⌊⌋≡-Kind′/
}
where open Substitution
module SimpHSubstLemmas where
open KindSimpLemmas simpLemmasKind′ public
-- Kind simplification as a relation commutes with hereditary
-- substitution.
⌊⌋≡-/⟨⟩ : ∀ {m n j k l} {σ : SVSub m n} → ⌊ j ⌋≡ k → ⌊ j Kind/⟨ l ⟩ σ ⌋≡ k
⌊⌋≡-/⟨⟩ is-★ = is-★
⌊⌋≡-/⟨⟩ (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) = is-⇒ (⌊⌋≡-/⟨⟩ ⌊j₁⌋≡k₁) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂)
open SimpHSubstLemmas
----------------------------------------------------------------------
-- Untyped η-expansion of neutral terms.
module TrackSimpleKindsEtaExp where
open Substitution hiding (_↑; sub)
-- NOTE. The definition of the function η-exp in this module is
-- structurally recursive in the *shape* parameter k, but *not* in
-- the kind (j : Kind Elim n) because we need to weaken the domain
-- j₁ of the dependent kind (j = Π j₁ j₂) in the arrow case. The
-- additional hypothesis ⌊ j ⌋≡ k ensures that k is indeed the shape
-- of the kind j.
-- Kind-driven untyped η-expansion of eliminations.
--
-- NOTE. We only expand neutral types since these are the only
-- non-lambda forms of arrow kind, and thus the only ones that
-- require expansion to reach η-long β-normal forms.
η-exp : ∀ {n k} (j : Kind Elim n) → ⌊ j ⌋≡ k → Elim n → Elim n
η-exp (c ⋯ d) (is-★) a = a
η-exp (Π j₁ j₂) (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) a =
Λ∙ j₁ (η-exp j₂ ⌊j₂⌋≡k₂ a·ηz)
where
a·ηz = weakenElim a ⌜·⌝
η-exp (weakenKind′ j₁) (⌊⌋≡-weaken ⌊j₁⌋≡k₁) (var∙ zero)
-- A helper lemma.
η-exp-⌊⌋≡ : ∀ {n j₁ j₂ k₁ k₂} {a : Elim n}
(hyp₁ : ⌊ j₁ ⌋≡ k₁) (hyp₂ : ⌊ j₂ ⌋≡ k₂) → j₁ ≡ j₂ → k₁ ≡ k₂ →
η-exp j₁ hyp₁ a ≡ η-exp j₂ hyp₂ a
η-exp-⌊⌋≡ hyp₁ hyp₂ refl refl =
cong (λ hyp → η-exp _ hyp _) (⌊⌋≡-pirr hyp₁ hyp₂)
-- η-expansion commutes with renaming.
η-exp-/Var : ∀ {m n j k} (hyp : ⌊ j ⌋≡ k) a {ρ : Sub Fin m n} →
η-exp j hyp a Elim/Var ρ ≡
η-exp (j Kind′/Var ρ) (⌊⌋≡-/Var hyp) (a Elim/Var ρ)
η-exp-/Var is-★ a = refl
η-exp-/Var (is-⇒ {j₁} {j₂} ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) a {ρ} = begin
η-exp _ (is-⇒ ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) a Elim/Var ρ
≡⟨ cong (Λ∙ (j₁ Kind′/Var ρ)) (η-exp-/Var ⌊j₂⌋≡k₂ _) ⟩
Λ∙ (j₁ Kind′/Var ρ) (η-exp (j₂ Kind′/Var ρ V.↑) (⌊⌋≡-/Var ⌊j₂⌋≡k₂)
((weakenElim a ⌜·⌝
η-exp (weakenKind′ j₁) (⌊⌋≡-weaken ⌊j₁⌋≡k₁) (var∙ zero)) Elim/Var
ρ V.↑))
≡⟨ cong (λ c → Λ∙ (j₁ Kind′/Var ρ)
(η-exp (j₂ Kind′/Var ρ V.↑) (⌊⌋≡-/Var ⌊j₂⌋≡k₂) c))
(begin
weakenElim a ⌜·⌝
η-exp (weakenKind′ j₁) (⌊⌋≡-weaken ⌊j₁⌋≡k₁) (var∙ zero)
Elim/Var ρ V.↑
≡⟨ ⌜·⌝-/Var (weakenElim a) _ ⟩
(weakenElim a Elim/Var ρ V.↑) ⌜·⌝
(η-exp (weakenKind′ j₁) (⌊⌋≡-weaken ⌊j₁⌋≡k₁) (var∙ zero)
Elim/Var ρ V.↑)
≡⟨ cong₂ _⌜·⌝_ (sym (EVL.wk-commutes a))
(η-exp-/Var (⌊⌋≡-weaken ⌊j₁⌋≡k₁) (var∙ zero)) ⟩
(weakenElim (a Elim/Var ρ)) ⌜·⌝
(η-exp (weakenKind′ j₁ Kind′/Var ρ V.↑)
(⌊⌋≡-/Var (⌊⌋≡-weaken ⌊j₁⌋≡k₁))
((var∙ zero) Elim/Var ρ V.↑))
≡⟨ cong ((weakenElim (a Elim/Var ρ)) ⌜·⌝_)
(η-exp-⌊⌋≡ (⌊⌋≡-/Var (⌊⌋≡-weaken ⌊j₁⌋≡k₁))
(⌊⌋≡-weaken (⌊⌋≡-/Var ⌊j₁⌋≡k₁))
(sym (KVL.wk-commutes j₁)) refl) ⟩
(weakenElim (a Elim/Var ρ)) ⌜·⌝
(η-exp (weakenKind′ (j₁ Kind′/Var ρ))
(⌊⌋≡-weaken (⌊⌋≡-/Var ⌊j₁⌋≡k₁))
(var∙ zero))
∎) ⟩
η-exp _ (is-⇒ (⌊⌋≡-/Var ⌊j₁⌋≡k₁) (⌊⌋≡-/Var ⌊j₂⌋≡k₂)) (a Elim/Var ρ)
∎
where
open ≡-Reasoning
module V = VarSubst
module EL = TermLikeLemmas termLikeLemmasElim
module KL = TermLikeLemmas termLikeLemmasKind′
module EVL = LiftAppLemmas EL.varLiftAppLemmas
module KVL = LiftAppLemmas KL.varLiftAppLemmas
-- η-expansion of neutrals commutes with hereditary substitutions
-- that miss the head of the neutral.
η-exp-ne-Miss-/⟨⟩ : ∀ {l m n j k} x y {as} {σ : SVSub m n}
(hyp : ⌊ j ⌋≡ k) → Miss σ x y →
η-exp j hyp (var x ∙ as) /⟨ l ⟩ σ ≡
η-exp (j Kind/⟨ l ⟩ σ) (⌊⌋≡-/⟨⟩ hyp)
(var y ∙ (as //⟨ l ⟩ σ))
η-exp-ne-Miss-/⟨⟩ x y is-★ missP = cong (_?∙∙⟨ _ ⟩ _) (lookup-Miss missP)
η-exp-ne-Miss-/⟨⟩ {l} x y {as} {σ} (is-⇒ {j₁} {j₂} ⌊j₁⌋≡k₁ ⌊j₂⌋≡k₂) missP =
cong (Λ∙ (j₁ Kind/⟨ l ⟩ σ)) (begin
η-exp j₂ ⌊j₂⌋≡k₂ ((weakenElim (var x ∙ as)) ⌜·⌝ ηz) /⟨ l ⟩ σ ↑
≡⟨ cong (λ x → η-exp _ ⌊j₂⌋≡k₂ (var x ∙ weakenSpine as ⌜·⌝ _) /⟨ l ⟩ σ ↑)
(VarLemmas.lookup-wk x) ⟩
η-exp j₂ ⌊j₂⌋≡k₂ (var (suc x) ∙ (weakenSpine as) ⌜·⌝ ηz) /⟨ l ⟩ σ ↑
≡⟨ η-exp-ne-Miss-/⟨⟩ (suc x) (suc y) ⌊j₂⌋≡k₂ (missP ↑) ⟩
η-exp (j₂ Kind/⟨ l ⟩ σ ↑) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂) (var (suc y) ∙
(((weakenSpine as) ∷ʳ ηz) //⟨ l ⟩ σ ↑))
≡⟨ cong (λ bs → η-exp _ (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂) (var _ ∙ bs))
(++-//⟨⟩ (weakenSpine as) (_ ∷ [])) ⟩
η-exp (j₂ Kind/⟨ l ⟩ σ ↑) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂)
(var (suc y) ∙ ((weakenSpine as) //⟨ l ⟩ σ ↑) ⌜·⌝ (ηz /⟨ l ⟩ σ ↑))
≡⟨ cong₂ (λ a b → η-exp (j₂ Kind/⟨ l ⟩ σ ↑) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂) (a ⌜·⌝ b))
(cong₂ (λ x as → var x ∙ as)
(sym (VarLemmas.lookup-wk y)) (wk-//⟨⟩-↑⋆ 0 as))
(η-exp-ne-Miss-/⟨⟩ zero zero (⌊⌋≡-weaken ⌊j₁⌋≡k₁) under) ⟩
η-exp (j₂ Kind/⟨ l ⟩ σ ↑) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂)
(weakenElim (var y ∙ (as //⟨ l ⟩ σ)) ⌜·⌝
η-exp ((weakenKind′ j₁) Kind/⟨ l ⟩ σ ↑)
(⌊⌋≡-/⟨⟩ (⌊⌋≡-weaken ⌊j₁⌋≡k₁)) (var∙ zero))
≡⟨ cong (λ a → η-exp _ (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂)
(weakenElim (var y ∙ (as //⟨ l ⟩ σ)) ⌜·⌝ a))
(η-exp-⌊⌋≡ (⌊⌋≡-/⟨⟩ (⌊⌋≡-weaken ⌊j₁⌋≡k₁))
(⌊⌋≡-weaken (⌊⌋≡-/⟨⟩ ⌊j₁⌋≡k₁))
(wk-Kind/⟨⟩-↑⋆ 0 j₁) refl) ⟩
η-exp (j₂ Kind/⟨ l ⟩ σ ↑) (⌊⌋≡-/⟨⟩ ⌊j₂⌋≡k₂)
((weakenElim (var y ∙ (as //⟨ l ⟩ σ))) ⌜·⌝
η-exp (weakenKind′ (j₁ Kind/⟨ l ⟩ σ))
(⌊⌋≡-weaken (⌊⌋≡-/⟨⟩ ⌊j₁⌋≡k₁)) (var∙ zero))
∎)
where
open ≡-Reasoning
open RenamingCommutes
ηz = η-exp (weakenKind′ j₁) (⌊⌋≡-weaken ⌊j₁⌋≡k₁) (var∙ zero)
private module TK = TrackSimpleKindsEtaExp
-- Kind-driven untyped η-expansion.
η-exp : ∀ {n} → Kind Elim n → Elim n → Elim n
η-exp k a = TK.η-exp k (⌊⌋-⌊⌋≡ k) a
module _ where
open Substitution
open ≡-Reasoning
-- η-expansion commutes with renaming.
η-exp-/Var : ∀ {m n} k a {ρ : Sub Fin m n} →
η-exp k a Elim/Var ρ ≡ η-exp (k Kind′/Var ρ) (a Elim/Var ρ)
η-exp-/Var k a {ρ} = begin
η-exp k a Elim/Var ρ
≡⟨ TK.η-exp-/Var (⌊⌋-⌊⌋≡ k) a ⟩
TK.η-exp (k Kind′/Var ρ) (⌊⌋≡-/Var (⌊⌋-⌊⌋≡ k)) (a Elim/Var ρ)
≡⟨ TK.η-exp-⌊⌋≡ (⌊⌋≡-/Var (⌊⌋-⌊⌋≡ k)) (⌊⌋-⌊⌋≡ (k Kind′/Var ρ))
refl (sym (⌊⌋-Kind′/Var k)) ⟩
η-exp (k Kind′/Var ρ) (a Elim/Var ρ)
∎
-- A corollary: η-expansion commutes with weakening.
η-exp-weaken : ∀ {n} k (a : Elim n) →
weakenElim (η-exp k a) ≡ η-exp (weakenKind′ k) (weakenElim a)
η-exp-weaken k a = η-exp-/Var k a
-- η-expansion of neutrals commutes with hereditary substitutions
-- that miss the head of the neutral.
η-exp-ne-Miss-/⟨⟩ : ∀ {l m n} x y as k {σ : SVSub m n} → Miss σ x y →
η-exp k (var x ∙ as) /⟨ l ⟩ σ ≡
η-exp (k Kind/⟨ l ⟩ σ) (var y ∙ (as //⟨ l ⟩ σ))
η-exp-ne-Miss-/⟨⟩ {l} x y as k {σ} missP = begin
η-exp k (var x ∙ as) /⟨ l ⟩ σ
≡⟨ TK.η-exp-ne-Miss-/⟨⟩ x y (⌊⌋-⌊⌋≡ k) missP ⟩
TK.η-exp (k Kind/⟨ l ⟩ σ) (⌊⌋≡-/⟨⟩ (⌊⌋-⌊⌋≡ k)) (var y ∙ (as //⟨ l ⟩ σ))
≡⟨ TK.η-exp-⌊⌋≡ (⌊⌋≡-/⟨⟩ (⌊⌋-⌊⌋≡ k)) (⌊⌋-⌊⌋≡ (k Kind/⟨ l ⟩ σ)) refl
(sym (⌊⌋-Kind/⟨⟩ k)) ⟩
η-exp (k Kind/⟨ l ⟩ σ) (var y ∙ (as //⟨ l ⟩ σ))
∎
----------------------------------------------------------------------
-- Untyped normalization.
open ElimCtx
-- Normalize an raw type or kind into η-long β-normal form if
-- possible. Degenerate cases are marked "!".
mutual
nf : ∀ {n} → Ctx n → Term n → Elim n
nf Γ (var x) with lookup Γ x
nf Γ (var x) | kd k = η-exp k (var∙ x)
nf Γ (var x) | tp a = var∙ x -- ! a not a kind
nf Γ ⊥ = ⊥∙
nf Γ ⊤ = ⊤∙
nf Γ (Π k a) = let k′ = nfKind Γ k in ∀∙ k′ (nf (kd k′ ∷ Γ) a)
nf Γ (a ⇒ b) = (nf Γ a ⇒ nf Γ b) ∙ []
nf Γ (Λ k a) = let k′ = nfKind Γ k in Λ∙ k′ (nf (kd k′ ∷ Γ) a)
nf Γ (ƛ a b) = ƛ∙ ⌜ a ⌝ ⌜ b ⌝ -- ! ƛ a b not a type
nf Γ (a · b) = nf Γ a ↓⌜·⌝ nf Γ b
nf Γ (a ⊡ b) = ⌜ a ⌝ ⊡∙ ⌜ b ⌝ -- ! a ⊡ b not a type
nfKind : ∀ {n} → Ctx n → Kind Term n → Kind Elim n
nfKind Γ (a ⋯ b) = nf Γ a ⋯ nf Γ b
nfKind Γ (Π j k) = let j′ = nfKind Γ j in Π j′ (nfKind (kd j′ ∷ Γ) k)
-- Normalization extended to contexts.
nfAsc : ∀ {n} → Ctx n → TermAsc n → ElimAsc n
nfAsc Γ (kd k) = kd (nfKind Γ k)
nfAsc Γ (tp a) = tp (nf Γ a)
nfCtx : ∀ {n} → TermCtx.Ctx n → Ctx n
nfCtx [] = []
nfCtx (a ∷ Γ) = let Γ′ = nfCtx Γ in nfAsc Γ′ a ∷ Γ′
nfCtxExt : ∀ {m n} → Ctx m → TermCtx.CtxExt m n → CtxExt m n
nfCtxExt Γ [] = []
nfCtxExt Γ (a ∷ Δ) = let Δ′ = nfCtxExt Γ Δ in nfAsc (Δ′ ++ Γ) a ∷ Δ′
-- Shapes are stable w.r.t. normalization.
⌊⌋-nf : ∀ {n} {Γ : Ctx n} k → ⌊ nfKind Γ k ⌋ ≡ ⌊ k ⌋
⌊⌋-nf (a ⋯ b) = refl
⌊⌋-nf (Π j k) = cong₂ _⇒_ (⌊⌋-nf j) (⌊⌋-nf k)
open SimpleCtx using (⌊_⌋Asc; kd; tp)
open ContextConversions using (⌊_⌋Ctx)
-- Simple contexts are stable w.r.t. normalization.
⌊⌋Asc-nf : ∀ {n} {Γ : Ctx n} a → ⌊ nfAsc Γ a ⌋Asc ≡ ⌊ a ⌋Asc
⌊⌋Asc-nf (kd k) = cong kd (⌊⌋-nf k)
⌊⌋Asc-nf (tp a) = refl
⌊⌋Ctx-nf : ∀ {n} (Γ : TermCtx.Ctx n) → ⌊ nfCtx Γ ⌋Ctx ≡ ⌊ Γ ⌋Ctx
⌊⌋Ctx-nf [] = refl
⌊⌋Ctx-nf (a ∷ Γ) = cong₂ _∷_ (⌊⌋Asc-nf a) (⌊⌋Ctx-nf Γ)
-- Normalization commutes with context concatenation.
nf-++ : ∀ {m n} (Δ : TermCtx.CtxExt m n) Γ →
nfCtx (Δ ++ Γ) ≡ nfCtxExt (nfCtx Γ) Δ ++ nfCtx Γ
nf-++ [] Γ = refl
nf-++ (a ∷ Δ) Γ = cong₂ _∷_ (cong (λ Δ → nfAsc Δ a) (nf-++ Δ Γ)) (nf-++ Δ Γ)
-- A helper lemma about normalization of variables.
nf-var-kd : ∀ {n} (Γ : Ctx n) {k} x →
lookup Γ x ≡ kd k → nf Γ (var x) ≡ η-exp k (var∙ x)
nf-var-kd Γ x Γ[x]≡kd-k with lookup Γ x
nf-var-kd Γ x refl | kd k = refl
nf-var-kd Γ x () | tp _
module RenamingCommutesNorm where
open Substitution hiding (subst; varLiftAppLemmas)
open TermLikeLemmas termLikeLemmasElimAsc
using (varApplication; varLiftAppLemmas)
open RenamingCommutes
open ⊤-WellFormed weakenOps
open ≡-Reasoning
private
module V = VarSubst
module AL = LiftAppLemmas varLiftAppLemmas
-- Well-formed renamings.
--
-- A renaming `ρ' is well-formed `Δ ⊢/ ρ ∈ Γ' if it maps ascriptions
-- from the source contxt `Γ' to the target context `Δ' in a manner
-- that is consistent with the renaming, i.e. such that we have
-- `Δ(ρ(x)) = Γ(x)ρ'.
kindedVarSubst : TypedVarSubst ElimAsc _
kindedVarSubst = record
{ _⊢_wf = _⊢_wf
; typeExtension = weakenOps
; typeVarApplication = varApplication
; wf-wf = λ _ → ctx-wf _
; /-wk = refl
; id-vanishes = AL.id-vanishes
; /-⊙ = AL./-⊙
}
open TypedVarSubst kindedVarSubst renaming (lookup to /∈-lookup)
-- Extract a "consistency" proof from a well-formed renaming, i.e. a
-- proof that `Δ(ρ(x)) = Γ(x)ρ'.
lookup-≡ : ∀ {m n Δ Γ} {ρ : Sub Fin m n} → Δ ⊢/Var ρ ∈ Γ → ∀ x →
lookup Δ (Vec.lookup ρ x) ≡ lookup Γ x ElimAsc/Var ρ
lookup-≡ {_} {_} {Δ} {Γ} {ρ} ρ∈Γ x
with Vec.lookup ρ x | lookup Γ x ElimAsc/Var ρ | /∈-lookup ρ∈Γ x
lookup-≡ ρ∈Γ x | y | _ | VarTyping.∈-var .y _ = refl
mutual
-- A helper.
∈-↑′ : ∀ {m n Δ Γ} {ρ : Sub Fin m n} k → Δ ⊢/Var ρ ∈ Γ →
kd (nfKind Δ (k Kind/Var ρ)) ∷ Δ ⊢/Var ρ V.↑ ∈ (nfAsc Γ (kd k) ∷ Γ)
∈-↑′ k ρ∈Γ =
subst (λ k → kd k ∷ _ ⊢/Var _ ∈ _) (nfKind-/Var k ρ∈Γ) (∈-↑ _ ρ∈Γ)
-- Normalization commutes with renaming.
nf-/Var : ∀ {m n Δ Γ} {ρ : Sub Fin m n} a → Δ ⊢/Var ρ ∈ Γ →
nf Γ a Elim/Var ρ ≡ nf Δ (a /Var ρ)
nf-/Var {_} {_} {Δ} {Γ} {ρ} (var x) ρ∈Γ
with lookup Γ x | lookup Δ (Vec.lookup ρ x) | lookup-≡ ρ∈Γ x
nf-/Var (var x) ρ∈Γ | kd k | _ | refl = η-exp-/Var k (var∙ x)
nf-/Var (var x) ρ∈Γ | tp a | _ | refl = refl
nf-/Var ⊥ ρ∈Γ = refl
nf-/Var ⊤ ρ∈Γ = refl
nf-/Var (Π k a) ρ∈Γ = cong₂ ∀∙ (nfKind-/Var k ρ∈Γ) (nf-/Var a (∈-↑′ k ρ∈Γ))
nf-/Var (a ⇒ b) ρ∈Γ = cong₂ _⇒∙_ (nf-/Var a ρ∈Γ) (nf-/Var b ρ∈Γ)
nf-/Var (Λ j a) ρ∈Γ = cong₂ Λ∙ (nfKind-/Var j ρ∈Γ) (nf-/Var a (∈-↑′ j ρ∈Γ))
nf-/Var (ƛ a b) ρ∈Γ = cong₂ ƛ∙ (sym (⌜⌝-/Var a)) (sym (⌜⌝-/Var b))
nf-/Var {m} {_} {Δ} {Γ} {ρ} (a · b) ρ∈Γ = begin
(nf Γ a ↓⌜·⌝ nf Γ b) Elim/Var ρ
≡⟨ ↓⌜·⌝-/Var (nf Γ a) (nf Γ b) ⟩
(nf Γ a Elim/Var ρ) ↓⌜·⌝ (nf Γ b Elim/Var ρ)
≡⟨ cong₂ (_↓⌜·⌝_) (nf-/Var a ρ∈Γ) (nf-/Var b ρ∈Γ) ⟩
nf Δ (a · b /Var ρ)
∎
nf-/Var (a ⊡ b) ρ∈Γ = cong₂ _⊡∙_ (sym (⌜⌝-/Var a)) (sym (⌜⌝-/Var b))
nfKind-/Var : ∀ {m n Δ Γ} {ρ : Sub Fin m n} k → Δ ⊢/Var ρ ∈ Γ →
nfKind Γ k Kind′/Var ρ ≡ nfKind Δ (k Kind/Var ρ)
nfKind-/Var (a ⋯ b) ρ∈Γ = cong₂ _⋯_ (nf-/Var a ρ∈Γ) (nf-/Var b ρ∈Γ)
nfKind-/Var (Π j k) ρ∈Γ =
cong₂ Π (nfKind-/Var j ρ∈Γ) (nfKind-/Var k (∈-↑′ j ρ∈Γ))
-- Normalization of ascriptions commutes with renaming.
nfAsc-/Var : ∀ {m n Δ Γ} {ρ : Sub Fin m n} a → Δ ⊢/Var ρ ∈ Γ →
nfAsc Γ a ElimAsc/Var ρ ≡ nfAsc Δ (a TermAsc/Var ρ)
nfAsc-/Var (kd k) ρ∈Γ = cong kd (nfKind-/Var k ρ∈Γ)
nfAsc-/Var (tp a) ρ∈Γ = cong tp (nf-/Var a ρ∈Γ)
-- Corollaries: normalization commutes with weakening.
nf-weaken : ∀ {n} {Γ : Ctx n} a b →
weakenElim (nf Γ b) ≡ nf (a ∷ Γ) (weaken b)
nf-weaken a b = nf-/Var b (∈-wk _)
nfKind-weaken : ∀ {n} {Γ : Ctx n} a k →
weakenKind′ (nfKind Γ k) ≡ nfKind (a ∷ Γ) (weakenKind k)
nfKind-weaken a k = nfKind-/Var k (∈-wk _)
nfAsc-weaken : ∀ {n} {Γ : Ctx n} a b →
weakenElimAsc (nfAsc Γ b) ≡ nfAsc (a ∷ Γ) (weakenTermAsc b)
nfAsc-weaken a b = nfAsc-/Var b (∈-wk _)
open RenamingCommutesNorm
module _ where
open Substitution hiding (sub; _↑; subst)
open ≡-Reasoning
open VecProps using (map-cong; map-∘)
-- Normalization extended to single-variable substitutions
nfSVSub : ∀ {m n} → Ctx n → SVSub m n → SVSub m n
nfSVSub Γ (sub a) = sub (nf Γ (⌞ a ⌟))
nfSVSub (_ ∷ Γ) (σ ↑) = (nfSVSub Γ σ) ↑
nf-Hit : ∀ {m n} Γ {σ : SVSub m n} {x a} → Hit σ x a →
Hit (nfSVSub Γ σ) x (nf Γ ⌞ a ⌟)
nf-Hit Γ here = here
nf-Hit (a ∷ Γ) {σ ↑} (_↑ {x = x} {b} hitP) =
subst (Hit (nfSVSub Γ σ ↑) (suc x))
(trans (nf-weaken a ⌞ b ⌟) (cong (nf _) (sym (⌞⌟-/Var b))))
(nf-Hit Γ hitP ↑)
nf-Miss : ∀ {m n} Γ {σ : SVSub m n} {x y} → Miss σ x y → Miss (nfSVSub Γ σ) x y
nf-Miss Γ over = over
nf-Miss (a ∷ Γ) under = under
nf-Miss (a ∷ Γ) (missP ↑) = (nf-Miss Γ missP) ↑
-- Normalization commutes conversion from context to vector representation.
nfCtx-toVec : ∀ {n} (Γ : TermCtx.Ctx n) →
toVec (nfCtx Γ) ≡ Vec.map (nfAsc (nfCtx Γ)) (TermCtx.toVec Γ)
nfCtx-toVec [] = refl
nfCtx-toVec (a ∷ Γ) =
cong₂ _∷_ (nfAsc-weaken (nfAsc (nfCtx Γ) a) a) (begin
Vec.map weakenElimAsc (toVec (nfCtx Γ))
≡⟨ cong (Vec.map weakenElimAsc) (nfCtx-toVec Γ) ⟩
Vec.map weakenElimAsc (Vec.map (nfAsc (nfCtx Γ)) (TermCtx.toVec Γ))
≡⟨ sym (map-∘ weakenElimAsc (nfAsc (nfCtx Γ)) (TermCtx.toVec Γ)) ⟩
Vec.map (weakenElimAsc ∘ nfAsc (nfCtx Γ)) (TermCtx.toVec Γ)
≡⟨ map-cong (nfAsc-weaken (nfAsc (nfCtx Γ) a)) (TermCtx.toVec Γ) ⟩
Vec.map (nfAsc (nfCtx (a ∷ Γ)) ∘ weakenTermAsc) (TermCtx.toVec Γ)
≡⟨ map-∘ (nfAsc (nfCtx (a ∷ Γ))) weakenTermAsc (TermCtx.toVec Γ) ⟩
Vec.map (nfAsc (nfCtx (a ∷ Γ)))
(Vec.map weakenTermAsc (TermCtx.toVec Γ))
∎)
-- Normalization commutes with context lookup.
nfCtx-lookup : ∀ {n} (Γ : TermCtx.Ctx n) x →
lookup (nfCtx Γ) x ≡ nfAsc (nfCtx Γ) (TermCtx.lookup Γ x)
nfCtx-lookup Γ x = begin
lookup (nfCtx Γ) x
≡⟨ cong (flip Vec.lookup x) (nfCtx-toVec Γ) ⟩
Vec.lookup (Vec.map (nfAsc (nfCtx Γ)) (TermCtx.toVec Γ)) x
≡⟨ VecProps.lookup-map x _ (TermCtx.toVec Γ) ⟩
nfAsc (nfCtx Γ) (TermCtx.lookup Γ x)
∎
-- A corollary of the above (specialized for type variable lookup).
nfCtx-lookup-kd : ∀ {n k} x (Γ : TermCtx.Ctx n) → TermCtx.lookup Γ x ≡ kd k →
lookup (nfCtx Γ) x ≡ kd (nfKind (nfCtx Γ) k)
nfCtx-lookup-kd x Γ Γ[x]≡kd-k with TermCtx.lookup Γ x | nfCtx-lookup Γ x
nfCtx-lookup-kd x Γ refl | kd k | nf-Γ[x]≡kd-nf-k = nf-Γ[x]≡kd-nf-k
nfCtx-lookup-kd x Γ () | tp t | _
| {
"alphanum_fraction": 0.5059545291,
"avg_line_length": 39.304964539,
"ext": "agda",
"hexsha": "499586eca1aefffa9241b1b846b66b3f56d20399",
"lang": "Agda",
"max_forks_count": 2,
"max_forks_repo_forks_event_max_datetime": "2021-05-14T10:25:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-05-13T22:29:48.000Z",
"max_forks_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Blaisorblade/f-omega-int-agda",
"max_forks_repo_path": "src/FOmegaInt/Syntax/Normalization.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_issues_repo_issues_event_max_datetime": "2021-05-14T08:54:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-05-14T08:09:40.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Blaisorblade/f-omega-int-agda",
"max_issues_repo_path": "src/FOmegaInt/Syntax/Normalization.agda",
"max_line_length": 81,
"max_stars_count": 12,
"max_stars_repo_head_hexsha": "ae20dac2a5e0c18dff2afda4c19954e24d73a24f",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Blaisorblade/f-omega-int-agda",
"max_stars_repo_path": "src/FOmegaInt/Syntax/Normalization.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-27T05:53:06.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-06-13T16:05:35.000Z",
"num_tokens": 10715,
"size": 22168
} |
------------------------------------------------------------------------------
-- Inductive PA properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module PA.Inductive.PropertiesATP where
open import PA.Inductive.Base
------------------------------------------------------------------------------
+-rightIdentity : ∀ n → n + zero ≡ n
+-rightIdentity zero = refl
+-rightIdentity (succ n) = prf (+-rightIdentity n)
where postulate prf : n + zero ≡ n → succ n + zero ≡ succ n
-- TODO (21 November 2014). See Apia issue 16
-- {-# ATP prove prf #-}
x+Sy≡S[x+y] : ∀ m n → m + succ n ≡ succ (m + n)
x+Sy≡S[x+y] zero _ = refl
x+Sy≡S[x+y] (succ m) n = prf (x+Sy≡S[x+y] m n)
where postulate prf : m + succ n ≡ succ (m + n) →
succ m + succ n ≡ succ (succ m + n)
-- TODO (21 November 2014). See Apia issue 16
-- {-# ATP prove prf #-}
+-comm : ∀ m n → m + n ≡ n + m
+-comm zero n = sym (+-rightIdentity n)
+-comm (succ m) n = prf (+-comm m n)
where postulate prf : m + n ≡ n + m → succ m + n ≡ n + succ m
-- TODO (21 November 2014). See Apia issue 16
-- {-# ATP prove prf x+Sy≡S[x+y] #-}
| {
"alphanum_fraction": 0.4373642288,
"avg_line_length": 37.3243243243,
"ext": "agda",
"hexsha": "63b9fcc9f16b60880becd53fde1a70b0cf4473f7",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/PA/Inductive/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/PA/Inductive/PropertiesATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/PA/Inductive/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 389,
"size": 1381
} |
module WithApp where
f
: {A : Set}
→ A
→ A
f x
with x
... | y
= y
g
: {A : Set}
→ A
→ A
→ A
g x y
with x
... | _
with y
... | _
= x
| {
"alphanum_fraction": 0.3647798742,
"avg_line_length": 6.625,
"ext": "agda",
"hexsha": "775f088fe0e5bf92939449076469dc31c77ead66",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-01T16:38:14.000Z",
"max_forks_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "msuperdock/agda-unused",
"max_forks_repo_path": "data/expression/WithApp.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "msuperdock/agda-unused",
"max_issues_repo_path": "data/expression/WithApp.agda",
"max_line_length": 20,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "f327f9aab8dcb07022b857736d8201906bba02e9",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "msuperdock/agda-unused",
"max_stars_repo_path": "data/expression/WithApp.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-01T16:38:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-29T09:38:43.000Z",
"num_tokens": 80,
"size": 159
} |
open import Data.Product using ( ∃ ; _×_ )
open import FRP.LTL.RSet.Core using ( RSet ; _[_,_] ; ⟦_⟧ )
open import FRP.LTL.RSet.Stateless using ( _⇒_ )
open import FRP.LTL.RSet.Globally using ( □ ; [_] )
open import FRP.LTL.Time using ( _≤_ ; ≤-refl ; _≤-trans_ )
module FRP.LTL.RSet.Causal where
infixr 2 _⊵_
infixr 3 _⋙_
-- A ⊵ B is the causal function space from A to B
_⊵_ : RSet → RSet → RSet
(A ⊵ B) t = ∀ {u} → (t ≤ u) → (A [ t , u ]) → B u
-- Categorical structure
arr : ∀ {A B} → ⟦ □ (A ⇒ B) ⇒ (A ⊵ B) ⟧
arr f s≤t σ = f s≤t (σ s≤t ≤-refl)
identity : ∀ {A} → ⟦ A ⊵ A ⟧
identity {A} = arr [( λ {u} (a : A u) → a )]
_before_ : ∀ {A s u v} → (A [ s , v ]) → (u ≤ v) → (A [ s , u ])
(σ before u≤v) s≤t t≤u = σ s≤t (t≤u ≤-trans u≤v)
_after_ : ∀ {A s t v} → (A [ s , v ]) → (s ≤ t) → (A [ t , v ])
(σ after s≤t) t≤u u≤v = σ (s≤t ≤-trans t≤u) u≤v
_$_ : ∀ {A B s u} → (A ⊵ B) s → (A [ s , u ]) → (B [ s , u ])
(f $ σ) s≤t t≤u = f s≤t (σ before t≤u)
_⋙_ : ∀ {A B C} → ⟦ (A ⊵ B) ⇒ (B ⊵ C) ⇒ (A ⊵ C) ⟧
(f ⋙ g) s≤t σ = g s≤t (f $ σ)
| {
"alphanum_fraction": 0.474543708,
"avg_line_length": 28.9166666667,
"ext": "agda",
"hexsha": "a54a35f621b3d262ffe1f983319ac651764421d7",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:39:04.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-01T07:33:00.000Z",
"max_forks_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "agda/agda-frp-ltl",
"max_forks_repo_path": "src/FRP/LTL/RSet/Causal.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_issues_repo_issues_event_max_datetime": "2015-03-02T15:23:53.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-01T07:01:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "agda/agda-frp-ltl",
"max_issues_repo_path": "src/FRP/LTL/RSet/Causal.agda",
"max_line_length": 64,
"max_stars_count": 21,
"max_stars_repo_head_hexsha": "e88107d7d192cbfefd0a94505e6a5793afe1a7a5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "agda/agda-frp-ltl",
"max_stars_repo_path": "src/FRP/LTL/RSet/Causal.agda",
"max_stars_repo_stars_event_max_datetime": "2020-06-15T02:51:13.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-07-02T20:25:05.000Z",
"num_tokens": 539,
"size": 1041
} |
module STLC.Kovacs.Embedding where
open import STLC.Syntax public
open import Category
--------------------------------------------------------------------------------
-- Embeddings (OPE ; ∙ ; drop ; keep)
infix 4 _⊇_
data _⊇_ : 𝒞 → 𝒞 → Set
where
done : ∅ ⊇ ∅
wkₑ : ∀ {Γ Γ′ A} → (η : Γ′ ⊇ Γ)
→ Γ′ , A ⊇ Γ
liftₑ : ∀ {Γ Γ′ A} → (η : Γ′ ⊇ Γ)
→ Γ′ , A ⊇ Γ , A
idₑ : ∀ {Γ} → Γ ⊇ Γ
idₑ {∅} = done
idₑ {Γ , A} = liftₑ idₑ
-- (_∘ₑ_)
_○_ : ∀ {Γ Γ′ Γ″} → Γ′ ⊇ Γ → Γ″ ⊇ Γ′ → Γ″ ⊇ Γ
η₂ ○ done = η₂
η₂ ○ wkₑ η₁ = wkₑ (η₂ ○ η₁)
wkₑ η₂ ○ liftₑ η₁ = wkₑ (η₂ ○ η₁)
liftₑ η₂ ○ liftₑ η₁ = liftₑ (η₂ ○ η₁)
-- (idlₑ)
lid○ : ∀ {Γ Γ′} → (η : Γ′ ⊇ Γ)
→ idₑ ○ η ≡ η
lid○ done = refl
lid○ (wkₑ η) = wkₑ & lid○ η
lid○ (liftₑ η) = liftₑ & lid○ η
-- (idrₑ)
rid○ : ∀ {Γ Γ′} → (η : Γ′ ⊇ Γ)
→ η ○ idₑ ≡ η
rid○ done = refl
rid○ (wkₑ η) = wkₑ & rid○ η
rid○ (liftₑ η) = liftₑ & rid○ η
-- (assₑ)
assoc○ : ∀ {Γ Γ′ Γ″ Γ‴} → (η₁ : Γ‴ ⊇ Γ″) (η₂ : Γ″ ⊇ Γ′) (η₃ : Γ′ ⊇ Γ)
→ (η₃ ○ η₂) ○ η₁ ≡ η₃ ○ (η₂ ○ η₁)
assoc○ done η₂ η₃ = refl
assoc○ (wkₑ η₁) η₂ η₃ = wkₑ & assoc○ η₁ η₂ η₃
assoc○ (liftₑ η₁) (wkₑ η₂) η₃ = wkₑ & assoc○ η₁ η₂ η₃
assoc○ (liftₑ η₁) (liftₑ η₂) (wkₑ η₃) = wkₑ & assoc○ η₁ η₂ η₃
assoc○ (liftₑ η₁) (liftₑ η₂) (liftₑ η₃) = liftₑ & assoc○ η₁ η₂ η₃
--------------------------------------------------------------------------------
-- (∈ₑ)
getₑ : ∀ {Γ Γ′ A} → Γ′ ⊇ Γ → Γ ∋ A → Γ′ ∋ A
getₑ done i = i
getₑ (wkₑ η) i = suc (getₑ η i)
getₑ (liftₑ η) zero = zero
getₑ (liftₑ η) (suc i) = suc (getₑ η i)
-- (∈-idₑ)
idgetₑ : ∀ {Γ A} → (i : Γ ∋ A)
→ getₑ idₑ i ≡ i
idgetₑ zero = refl
idgetₑ (suc i) = suc & idgetₑ i
-- (∈-∘ₑ)
get○ : ∀ {Γ Γ′ Γ″ A} → (η₁ : Γ″ ⊇ Γ′) (η₂ : Γ′ ⊇ Γ) (i : Γ ∋ A)
→ getₑ (η₂ ○ η₁) i ≡ (getₑ η₁ ∘ getₑ η₂) i
get○ done done ()
get○ (wkₑ η₁) η₂ i = suc & get○ η₁ η₂ i
get○ (liftₑ η₁) (wkₑ η₂) i = suc & get○ η₁ η₂ i
get○ (liftₑ η₁) (liftₑ η₂) zero = refl
get○ (liftₑ η₁) (liftₑ η₂) (suc i) = suc & get○ η₁ η₂ i
--------------------------------------------------------------------------------
-- (Tmₑ)
ren : ∀ {Γ Γ′ A} → Γ′ ⊇ Γ → Γ ⊢ A → Γ′ ⊢ A
ren η (𝓋 i) = 𝓋 (getₑ η i)
ren η (ƛ M) = ƛ (ren (liftₑ η) M)
ren η (M ∙ N) = ren η M ∙ ren η N
wk : ∀ {B Γ A} → Γ ⊢ A → Γ , B ⊢ A
wk M = ren (wkₑ idₑ) M
-- (Tm-idₑ)
idren : ∀ {Γ A} → (M : Γ ⊢ A)
→ ren idₑ M ≡ M
idren (𝓋 i) = 𝓋 & idgetₑ i
idren (ƛ M) = ƛ & idren M
idren (M ∙ N) = _∙_ & idren M
⊗ idren N
-- (Tm-∘ₑ)
ren○ : ∀ {Γ Γ′ Γ″ A} → (η₁ : Γ″ ⊇ Γ′) (η₂ : Γ′ ⊇ Γ) (M : Γ ⊢ A)
→ ren (η₂ ○ η₁) M ≡ (ren η₁ ∘ ren η₂) M
ren○ η₁ η₂ (𝓋 i) = 𝓋 & get○ η₁ η₂ i
ren○ η₁ η₂ (ƛ M) = ƛ & ren○ (liftₑ η₁) (liftₑ η₂) M
ren○ η₁ η₂ (M ∙ N) = _∙_ & ren○ η₁ η₂ M
⊗ ren○ η₁ η₂ N
--------------------------------------------------------------------------------
𝗢𝗣𝗘 : Category 𝒞 _⊇_
𝗢𝗣𝗘 =
record
{ idₓ = idₑ
; _⋄_ = _○_
; lid⋄ = lid○
; rid⋄ = rid○
; assoc⋄ = assoc○
}
getₑPsh : 𝒯 → Presheaf₀ 𝗢𝗣𝗘
getₑPsh A =
record
{ Fₓ = _∋ A
; F = getₑ
; idF = fext! idgetₑ
; F⋄ = λ η₁ η₂ → fext! (get○ η₂ η₁)
}
renPsh : 𝒯 → Presheaf₀ 𝗢𝗣𝗘
renPsh A =
record
{ Fₓ = _⊢ A
; F = ren
; idF = fext! idren
; F⋄ = λ η₁ η₂ → fext! (ren○ η₂ η₁)
}
--------------------------------------------------------------------------------
| {
"alphanum_fraction": 0.3666849918,
"avg_line_length": 24.7482993197,
"ext": "agda",
"hexsha": "7691c4e604854d6a7cb3d0726c9c8b6d43e86915",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_forks_repo_licenses": [
"X11"
],
"max_forks_repo_name": "mietek/coquand-kovacs",
"max_forks_repo_path": "src/STLC/Kovacs/Embedding.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"X11"
],
"max_issues_repo_name": "mietek/coquand-kovacs",
"max_issues_repo_path": "src/STLC/Kovacs/Embedding.agda",
"max_line_length": 80,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bd626509948fbf8503ec2e31c1852e1ac6edcc79",
"max_stars_repo_licenses": [
"X11"
],
"max_stars_repo_name": "mietek/coquand-kovacs",
"max_stars_repo_path": "src/STLC/Kovacs/Embedding.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1926,
"size": 3638
} |
module Prelude.Functor where
open import Agda.Primitive
open import Prelude.Function
open import Prelude.Equality
record Functor {a b} (F : Set a → Set b) : Set (lsuc a ⊔ b) where
infixl 4 _<$>_ _<$_
field
fmap : ∀ {A B} → (A → B) → F A → F B
_<$>_ = fmap
_<$_ : ∀ {A B} → A → F B → F A
x <$ m = fmap (const x) m
open Functor {{...}} public
{-# DISPLAY Functor.fmap _ = fmap #-}
{-# DISPLAY Functor._<$>_ _ = _<$>_ #-}
{-# DISPLAY Functor._<$_ _ = _<$_ #-}
-- Level polymorphic functors
record Functor′ {a b} (F : ∀ {a} → Set a → Set a) : Set (lsuc (a ⊔ b)) where
infixl 4 _<$>′_ _<$′_
field
fmap′ : {A : Set a} {B : Set b} → (A → B) → F A → F B
_<$>′_ = fmap′
_<$′_ : {A : Set a} {B : Set b} → B → F A → F B
x <$′ m = fmap′ (const x) m
open Functor′ {{...}} public
infixr 0 flip-fmap
syntax flip-fmap a (λ x → y) = for x ← a return y
flip-fmap : ∀ {a b} {F : Set a → Set b} {{_ : Functor F}} {A B} → F A → (A → B) → F B
flip-fmap x f = fmap f x
infixr 0 caseF_of_
caseF_of_ : ∀ {a b} {F : Set a → Set b} {{_ : Functor F}} {A B} → F A → (A → B) → F B
caseF_of_ x f = fmap f x
for = caseF_of_
{-# INLINE for #-}
{-# INLINE caseF_of_ #-}
-- Congruence for _<$>_ --
infixl 4 _=$=_ _=$=′_
_=$=_ : ∀ {a b} {A B : Set a} {F : Set a → Set b} {{_ : Functor F}} {x y : F A}
(f : A → B) → x ≡ y → (f <$> x) ≡ (f <$> y)
f =$= refl = refl
_=$=′_ : ∀ {a b} {A : Set a} {B : Set b} {F : ∀ {a} → Set a → Set a} {{_ : Functor′ F}} {x y : F A}
(f : A → B) → x ≡ y → (f <$>′ x) ≡ (f <$>′ y)
f =$=′ refl = refl
| {
"alphanum_fraction": 0.4846153846,
"avg_line_length": 26.4406779661,
"ext": "agda",
"hexsha": "59b1243121a3dca7dfdc2768a67b7f3e31cf758b",
"lang": "Agda",
"max_forks_count": 24,
"max_forks_repo_forks_event_max_datetime": "2021-04-22T06:10:41.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-03-12T18:03:45.000Z",
"max_forks_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "L-TChen/agda-prelude",
"max_forks_repo_path": "src/Prelude/Functor.agda",
"max_issues_count": 59,
"max_issues_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_issues_repo_issues_event_max_datetime": "2022-01-14T07:32:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-02-09T05:36:44.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "L-TChen/agda-prelude",
"max_issues_repo_path": "src/Prelude/Functor.agda",
"max_line_length": 99,
"max_stars_count": 111,
"max_stars_repo_head_hexsha": "158d299b1b365e186f00d8ef5b8c6844235ee267",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "L-TChen/agda-prelude",
"max_stars_repo_path": "src/Prelude/Functor.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-12T23:29:26.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-05T11:28:15.000Z",
"num_tokens": 655,
"size": 1560
} |
module Cats.Util.Logic.Classical where
open import Cats.Util.Logic.Constructive public
-- (Strong) law of the excluded middle
postulate lem : ∀ {p} (P : Set p) → P ∨ ¬ P
-- Double negation elimination
¬¬-elim : ∀ {p} {P : Set p} → ¬ ¬ P → P
¬¬-elim {P = P} ¬¬p with lem P
... | ∨-introl p = p
... | ∨-intror ¬p = ⊥-elim (¬¬p ¬p)
-- Contrapositive
contrapositive : ∀ {p q} {P : Set p} {Q : Set q}
→ (¬ Q → ¬ P) → P → Q
contrapositive {P = P} {Q} contra p with lem Q
... | ∨-introl q = q
... | ∨-intror ¬q = ⊥-elim (contra ¬q p)
-- De Morgan's nonconstructive rule
¬∧→¬∨¬ : ∀ {p q} {P : Set p} {Q : Set q}
→ ¬ (P ∧ Q) → ¬ P ∨ ¬ Q
¬∧→¬∨¬ {P = P} {Q} ¬p∧q with lem P | lem Q
... | ∨-introl p | ∨-introl q = ⊥-elim (¬p∧q (p , q))
... | ∨-introl _ | ∨-intror ¬q = ∨-intror ¬q
... | ∨-intror ¬p | _ = ∨-introl ¬p
-- Negation and ∀
¬∀→∃¬ : ∀ {u p} {U : Set u} {P : U → Set p}
→ ¬ (∀ u → P u) → ∃[ u ] (¬ P u)
¬∀→∃¬ ¬∀ = ¬¬-elim (λ ¬∃¬ → ¬∀ (λ u → ¬¬-elim (λ pu → ¬∃¬ (u , pu))))
| {
"alphanum_fraction": 0.4630738523,
"avg_line_length": 26.3684210526,
"ext": "agda",
"hexsha": "ac5026d68c6cc0012161a31752ee692e4228d298",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "alessio-b-zak/cats",
"max_forks_repo_path": "Cats/Util/Logic/Classical.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "alessio-b-zak/cats",
"max_issues_repo_path": "Cats/Util/Logic/Classical.agda",
"max_line_length": 69,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a3b69911c4c6ec380ddf6a0f4510d3a755734b86",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "alessio-b-zak/cats",
"max_stars_repo_path": "Cats/Util/Logic/Classical.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 473,
"size": 1002
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Finding the maximum/minimum values in a list
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (TotalOrder; Setoid)
module Data.List.Extrema
{b ℓ₁ ℓ₂} (totalOrder : TotalOrder b ℓ₁ ℓ₂) where
import Algebra.Construct.NaturalChoice.Min as Min
import Algebra.Construct.NaturalChoice.Max as Max
open import Data.List.Base using (List; foldr)
open import Data.List.Relation.Unary.Any as Any using (Any; here; there)
open import Data.List.Relation.Unary.All using (All; []; _∷_; lookup; map; tabulate)
open import Data.List.Membership.Propositional using (_∈_; lose)
open import Data.List.Membership.Propositional.Properties
using (foldr-selective)
open import Data.List.Relation.Binary.Subset.Propositional using (_⊆_)
open import Data.List.Properties
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
open import Function using (id; flip; _on_)
open import Level using (Level)
open import Relation.Unary using (Pred)
import Relation.Binary.Construct.NonStrictToStrict as NonStrictToStrict
open import Relation.Binary.PropositionalEquality
using (_≡_; sym; subst) renaming (refl to ≡-refl)
import Relation.Binary.Construct.On as On
------------------------------------------------------------------------------
-- Setup
open TotalOrder totalOrder renaming (Carrier to B)
open NonStrictToStrict _≈_ _≤_ using (_<_)
open import Data.List.Extrema.Core totalOrder
renaming (⊓ᴸ to ⊓-lift; ⊔ᴸ to ⊔-lift)
private
variable
a p : Level
A : Set a
------------------------------------------------------------------------------
-- Functions
argmin : (A → B) → A → List A → A
argmin f = foldr (⊓-lift f)
argmax : (A → B) → A → List A → A
argmax f = foldr (⊔-lift f)
min : B → List B → B
min = argmin id
max : B → List B → B
max = argmax id
------------------------------------------------------------------------------
-- Properties of argmin
module _ {f : A → B} where
f[argmin]≤v⁺ : ∀ {v} ⊤ xs → (f ⊤ ≤ v) ⊎ (Any (λ x → f x ≤ v) xs) →
f (argmin f ⊤ xs) ≤ v
f[argmin]≤v⁺ = foldr-preservesᵒ (⊓ᴸ-presᵒ-≤v f)
f[argmin]<v⁺ : ∀ {v} ⊤ xs → (f ⊤ < v) ⊎ (Any (λ x → f x < v) xs) →
f (argmin f ⊤ xs) < v
f[argmin]<v⁺ = foldr-preservesᵒ (⊓ᴸ-presᵒ-<v f)
v≤f[argmin]⁺ : ∀ {v ⊤ xs} → v ≤ f ⊤ → All (λ x → v ≤ f x) xs →
v ≤ f (argmin f ⊤ xs)
v≤f[argmin]⁺ = foldr-preservesᵇ (⊓ᴸ-presᵇ-v≤ f)
v<f[argmin]⁺ : ∀ {v ⊤ xs} → v < f ⊤ → All (λ x → v < f x) xs →
v < f (argmin f ⊤ xs)
v<f[argmin]⁺ = foldr-preservesᵇ (⊓ᴸ-presᵇ-v< f)
f[argmin]≤f[⊤] : ∀ ⊤ xs → f (argmin f ⊤ xs) ≤ f ⊤
f[argmin]≤f[⊤] ⊤ xs = f[argmin]≤v⁺ ⊤ xs (inj₁ refl)
f[argmin]≤f[xs] : ∀ ⊤ xs → All (λ x → f (argmin f ⊤ xs) ≤ f x) xs
f[argmin]≤f[xs] ⊤ xs = foldr-forcesᵇ (⊓ᴸ-forcesᵇ-v≤ f) ⊤ xs refl
f[argmin]≈f[v]⁺ : ∀ {v ⊤ xs} → v ∈ xs → All (λ x → f v ≤ f x) xs → f v ≤ f ⊤ →
f (argmin f ⊤ xs) ≈ f v
f[argmin]≈f[v]⁺ v∈xs fv≤fxs fv≤f⊤ = antisym
(f[argmin]≤v⁺ _ _ (inj₂ (lose v∈xs refl)))
(v≤f[argmin]⁺ fv≤f⊤ fv≤fxs)
argmin[xs]≤argmin[ys]⁺ : ∀ {f g : A → B} ⊤₁ {⊤₂} xs {ys : List A} →
(f ⊤₁ ≤ g ⊤₂) ⊎ Any (λ x → f x ≤ g ⊤₂) xs →
All (λ y → (f ⊤₁ ≤ g y) ⊎ Any (λ x → f x ≤ g y) xs) ys →
f (argmin f ⊤₁ xs) ≤ g (argmin g ⊤₂ ys)
argmin[xs]≤argmin[ys]⁺ ⊤₁ xs xs≤⊤₂ xs≤ys =
v≤f[argmin]⁺ (f[argmin]≤v⁺ ⊤₁ _ xs≤⊤₂) (map (f[argmin]≤v⁺ ⊤₁ xs) xs≤ys)
argmin[xs]<argmin[ys]⁺ : ∀ {f g : A → B} ⊤₁ {⊤₂} xs {ys : List A} →
(f ⊤₁ < g ⊤₂) ⊎ Any (λ x → f x < g ⊤₂) xs →
All (λ y → (f ⊤₁ < g y) ⊎ Any (λ x → f x < g y) xs) ys →
f (argmin f ⊤₁ xs) < g (argmin g ⊤₂ ys)
argmin[xs]<argmin[ys]⁺ ⊤₁ xs xs<⊤₂ xs<ys =
v<f[argmin]⁺ (f[argmin]<v⁺ ⊤₁ _ xs<⊤₂) (map (f[argmin]<v⁺ ⊤₁ xs) xs<ys)
argmin-sel : ∀ (f : A → B) ⊤ xs → (argmin f ⊤ xs ≡ ⊤) ⊎ (argmin f ⊤ xs ∈ xs)
argmin-sel f = foldr-selective (⊓ᴸ-sel f)
argmin-all : ∀ (f : A → B) {⊤ xs} {P : Pred A p} →
P ⊤ → All P xs → P (argmin f ⊤ xs)
argmin-all f {⊤} {xs} {P = P} p⊤ pxs with argmin-sel f ⊤ xs
... | inj₁ argmin≡⊤ = subst P (sym argmin≡⊤) p⊤
... | inj₂ argmin∈xs = lookup pxs argmin∈xs
------------------------------------------------------------------------------
-- Properties of argmax
module _ {f : A → B} where
v≤f[argmax]⁺ : ∀ {v} ⊥ xs → (v ≤ f ⊥) ⊎ (Any (λ x → v ≤ f x) xs) →
v ≤ f (argmax f ⊥ xs)
v≤f[argmax]⁺ = foldr-preservesᵒ (⊔ᴸ-presᵒ-v≤ f)
v<f[argmax]⁺ : ∀ {v} ⊥ xs → (v < f ⊥) ⊎ (Any (λ x → v < f x) xs) →
v < f (argmax f ⊥ xs)
v<f[argmax]⁺ = foldr-preservesᵒ (⊔ᴸ-presᵒ-v< f)
f[argmax]≤v⁺ : ∀ {v ⊥ xs} → f ⊥ ≤ v → All (λ x → f x ≤ v) xs →
f (argmax f ⊥ xs) ≤ v
f[argmax]≤v⁺ = foldr-preservesᵇ (⊔ᴸ-presᵇ-≤v f)
f[argmax]<v⁺ : ∀ {v ⊥ xs} → f ⊥ < v → All (λ x → f x < v) xs →
f (argmax f ⊥ xs) < v
f[argmax]<v⁺ = foldr-preservesᵇ (⊔ᴸ-presᵇ-<v f)
f[⊥]≤f[argmax] : ∀ ⊥ xs → f ⊥ ≤ f (argmax f ⊥ xs)
f[⊥]≤f[argmax] ⊥ xs = v≤f[argmax]⁺ ⊥ xs (inj₁ refl)
f[xs]≤f[argmax] : ∀ ⊥ xs → All (λ x → f x ≤ f (argmax f ⊥ xs)) xs
f[xs]≤f[argmax] ⊥ xs = foldr-forcesᵇ (⊔ᴸ-forcesᵇ-≤v f) ⊥ xs refl
f[argmax]≈f[v]⁺ : ∀ {v ⊥ xs} → v ∈ xs → All (λ x → f x ≤ f v) xs → f ⊥ ≤ f v →
f (argmax f ⊥ xs) ≈ f v
f[argmax]≈f[v]⁺ v∈xs fxs≤fv f⊥≤fv = antisym
(f[argmax]≤v⁺ f⊥≤fv fxs≤fv)
(v≤f[argmax]⁺ _ _ (inj₂ (lose v∈xs refl)))
argmax[xs]≤argmax[ys]⁺ : ∀ {f g : A → B} {⊥₁} ⊥₂ {xs : List A} ys →
(f ⊥₁ ≤ g ⊥₂) ⊎ Any (λ y → f ⊥₁ ≤ g y) ys →
All (λ x → (f x ≤ g ⊥₂) ⊎ Any (λ y → f x ≤ g y) ys) xs →
f (argmax f ⊥₁ xs) ≤ g (argmax g ⊥₂ ys)
argmax[xs]≤argmax[ys]⁺ ⊥₂ ys ⊥₁≤ys xs≤ys =
f[argmax]≤v⁺ (v≤f[argmax]⁺ ⊥₂ _ ⊥₁≤ys) (map (v≤f[argmax]⁺ ⊥₂ ys) xs≤ys)
argmax[xs]<argmax[ys]⁺ : ∀ {f g : A → B} {⊥₁} ⊥₂ {xs : List A} ys →
(f ⊥₁ < g ⊥₂) ⊎ Any (λ y → f ⊥₁ < g y) ys →
All (λ x → (f x < g ⊥₂) ⊎ Any (λ y → f x < g y) ys) xs →
f (argmax f ⊥₁ xs) < g (argmax g ⊥₂ ys)
argmax[xs]<argmax[ys]⁺ ⊥₂ ys ⊥₁<ys xs<ys =
f[argmax]<v⁺ (v<f[argmax]⁺ ⊥₂ _ ⊥₁<ys) (map (v<f[argmax]⁺ ⊥₂ ys) xs<ys)
argmax-sel : ∀ (f : A → B) ⊥ xs → (argmax f ⊥ xs ≡ ⊥) ⊎ (argmax f ⊥ xs ∈ xs)
argmax-sel f = foldr-selective (⊔ᴸ-sel f)
argmax-all : ∀ (f : A → B) {P : Pred A p} {⊥ xs} →
P ⊥ → All P xs → P (argmax f ⊥ xs)
argmax-all f {P = P} {⊥} {xs} p⊥ pxs with argmax-sel f ⊥ xs
... | inj₁ argmax≡⊥ = subst P (sym argmax≡⊥) p⊥
... | inj₂ argmax∈xs = lookup pxs argmax∈xs
------------------------------------------------------------------------------
-- Properties of min
min≤v⁺ : ∀ {v} ⊤ xs → ⊤ ≤ v ⊎ Any (_≤ v) xs → min ⊤ xs ≤ v
min≤v⁺ = f[argmin]≤v⁺
min<v⁺ : ∀ {v} ⊤ xs → ⊤ < v ⊎ Any (_< v) xs → min ⊤ xs < v
min<v⁺ = f[argmin]<v⁺
v≤min⁺ : ∀ {v ⊤ xs} → v ≤ ⊤ → All (v ≤_) xs → v ≤ min ⊤ xs
v≤min⁺ = v≤f[argmin]⁺
v<min⁺ : ∀ {v ⊤ xs} → v < ⊤ → All (v <_) xs → v < min ⊤ xs
v<min⁺ = v<f[argmin]⁺
min≤⊤ : ∀ ⊤ xs → min ⊤ xs ≤ ⊤
min≤⊤ = f[argmin]≤f[⊤]
min≤xs : ∀ ⊥ xs → All (min ⊥ xs ≤_) xs
min≤xs = f[argmin]≤f[xs]
min≈v⁺ : ∀ {v ⊤ xs} → v ∈ xs → All (v ≤_) xs → v ≤ ⊤ → min ⊤ xs ≈ v
min≈v⁺ = f[argmin]≈f[v]⁺
min[xs]≤min[ys]⁺ : ∀ ⊤₁ {⊤₂} xs {ys} → (⊤₁ ≤ ⊤₂) ⊎ Any (_≤ ⊤₂) xs →
All (λ y → (⊤₁ ≤ y) ⊎ Any (λ x → x ≤ y) xs) ys →
min ⊤₁ xs ≤ min ⊤₂ ys
min[xs]≤min[ys]⁺ = argmin[xs]≤argmin[ys]⁺
min[xs]<min[ys]⁺ : ∀ ⊤₁ {⊤₂} xs {ys} → (⊤₁ < ⊤₂) ⊎ Any (_< ⊤₂) xs →
All (λ y → (⊤₁ < y) ⊎ Any (λ x → x < y) xs) ys →
min ⊤₁ xs < min ⊤₂ ys
min[xs]<min[ys]⁺ = argmin[xs]<argmin[ys]⁺
------------------------------------------------------------------------------
-- Properties of max
max≤v⁺ : ∀ {v ⊥ xs} → ⊥ ≤ v → All (_≤ v) xs → max ⊥ xs ≤ v
max≤v⁺ = f[argmax]≤v⁺
max<v⁺ : ∀ {v ⊥ xs} → ⊥ < v → All (_< v) xs → max ⊥ xs < v
max<v⁺ = f[argmax]<v⁺
v≤max⁺ : ∀ {v} ⊥ xs → v ≤ ⊥ ⊎ Any (v ≤_) xs → v ≤ max ⊥ xs
v≤max⁺ = v≤f[argmax]⁺
v<max⁺ : ∀ {v} ⊥ xs → v < ⊥ ⊎ Any (v <_) xs → v < max ⊥ xs
v<max⁺ = v<f[argmax]⁺
⊥≤max : ∀ ⊥ xs → ⊥ ≤ max ⊥ xs
⊥≤max = f[⊥]≤f[argmax]
xs≤max : ∀ ⊥ xs → All (_≤ max ⊥ xs) xs
xs≤max = f[xs]≤f[argmax]
max≈v⁺ : ∀ {v ⊤ xs} → v ∈ xs → All (_≤ v) xs → ⊤ ≤ v → max ⊤ xs ≈ v
max≈v⁺ = f[argmax]≈f[v]⁺
max[xs]≤max[ys]⁺ : ∀ {⊥₁} ⊥₂ {xs} ys → ⊥₁ ≤ ⊥₂ ⊎ Any (⊥₁ ≤_) ys →
All (λ x → x ≤ ⊥₂ ⊎ Any (x ≤_) ys) xs →
max ⊥₁ xs ≤ max ⊥₂ ys
max[xs]≤max[ys]⁺ = argmax[xs]≤argmax[ys]⁺
max[xs]<max[ys]⁺ : ∀ {⊥₁} ⊥₂ {xs} ys → ⊥₁ < ⊥₂ ⊎ Any (⊥₁ <_) ys →
All (λ x → x < ⊥₂ ⊎ Any (x <_) ys) xs →
max ⊥₁ xs < max ⊥₂ ys
max[xs]<max[ys]⁺ = argmax[xs]<argmax[ys]⁺
| {
"alphanum_fraction": 0.4530411449,
"avg_line_length": 37.112033195,
"ext": "agda",
"hexsha": "6b3685c7429e236be63adcf280a014d4c01b5e14",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Data/List/Extrema.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Data/List/Extrema.agda",
"max_line_length": 84,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Data/List/Extrema.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 4113,
"size": 8944
} |
------------------------------------------------------------------------------
-- Fair properties
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Program.ABP.Fair.PropertiesATP where
open import FOTC.Base
open import FOTC.Base.List
open import FOTC.Data.List
open import FOTC.Program.ABP.Fair.Type
open import FOTC.Program.ABP.Terms
------------------------------------------------------------------------------
-- Because a greatest post-fixed point is a fixed-point, then the Fair
-- predicate is also a pre-fixed point of the functional FairF, i.e.
--
-- FairF Fair ≤ Fair (see FOTC.Program.ABP.Fair).
-- See Issue https://github.com/asr/apia/issues/81 .
Fair-inA : D → Set
Fair-inA os = ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os'
{-# ATP definition Fair-inA #-}
Fair-in : ∀ {os} → ∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair os' →
Fair os
Fair-in h = Fair-coind Fair-inA h' h
where
postulate
h' : ∀ {os} → Fair-inA os →
∃[ ft ] ∃[ os' ] F*T ft ∧ os ≡ ft ++ os' ∧ Fair-inA os'
{-# ATP prove h' #-}
head-tail-Fair : ∀ {os} → Fair os → os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os
head-tail-Fair {os} Fos with Fair-out Fos
... | (.(T ∷ []) , os' , f*tnil , h , Fos') = prf
where
postulate prf : os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os
{-# ATP prove prf #-}
... | (.(F ∷ ft) , os' , f*tcons {ft} FTft , h , Fos') = prf
where
postulate prf : os ≡ T ∷ tail₁ os ∨ os ≡ F ∷ tail₁ os
{-# ATP prove prf #-}
tail-Fair : ∀ {os} → Fair os → Fair (tail₁ os)
tail-Fair {os} Fos with Fair-out Fos
... | .(T ∷ []) , os' , f*tnil , h , Fos' = prf
where
postulate prf : Fair (tail₁ os)
{-# ATP prove prf #-}
... | .(F ∷ ft) , os' , f*tcons {ft} FTft , h , Fos' = prf
where
postulate prf : Fair (tail₁ os)
{-# ATP prove prf Fair-in #-}
| {
"alphanum_fraction": 0.4972513743,
"avg_line_length": 33.35,
"ext": "agda",
"hexsha": "ed840e09574b9daa124f997fce42fb21af052da0",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Program/ABP/Fair/PropertiesATP.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Program/ABP/Fair/PropertiesATP.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Program/ABP/Fair/PropertiesATP.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 649,
"size": 2001
} |
open import Agda.Primitive
open import Data.Unit
open import Data.Nat hiding (_⊔_ ; _^_)
open import Data.Integer hiding (_⊔_)
open import Data.List
open import Data.List.Relation.Unary.Any
open import Data.List.Relation.Unary.All as All
open import Data.List.Membership.Propositional
open import Data.Product
open import Data.Maybe hiding (_>>=_)
open import Data.List.Prefix
open import Data.List.Properties.Extra
open import Data.List.All.Properties.Extra
open import Function
open import Relation.Binary.PropositionalEquality hiding ([_])
open ≡-Reasoning
open import Common.Weakening
-- This file contains the definitional interpreter for STLC using
-- scopes and frames, described in Section 4 of the paper.
-- The scopes-and-frames library assumes that we are given a
-- particular scope graph, with `k` scopes. The following module is
-- parameterized by a `k` representing the number of scopes that a
-- particular object language program has.
module STLCSF.Semantics (k : ℕ) where
-----------
-- TYPES --
-----------
data Ty : Set where
unit : Ty
_⇒_ : (a b : Ty) → Ty
int : Ty
-- The library is loaded and passed two arguments:
--
-- * `k` is the size of the scope graph for an object program
--
-- * `Ty` is the type of declarations in the scope graph
open import ScopesFrames.ScopesFrames k Ty
-- Our interpreter is parameterized by a scope graph, via the module
-- below.
module Syntax (g : Graph) where
-- We load all the scope graph definitions in the scope graph
-- library, by passing the object scope graph `g` as module
-- parameter:
open UsesGraph g
------------
-- SYNTAX --
------------
-- We can now define our well-typed syntax as described in the paper
-- Section 4.2:
data Expr (s : Scope) : Ty → Set where
unit : Expr s unit
var : ∀ {t} → (s ↦ t) → Expr s t
ƛ : ∀ {s' a b} → ⦃ shape : g s' ≡ ( [ a ] , [ s ] ) ⦄ → Expr s' b → Expr s (a ⇒ b)
_·_ : ∀ {a b} → Expr s (a ⇒ b) → Expr s a → Expr s b
num : ℤ → Expr s int
iop : (ℤ → ℤ → ℤ) → (l r : Expr s int) → Expr s int
------------
-- VALUES --
------------
-- We can also define well-typed values as described in the paper
-- Section 4.4:
data Val : Ty → (Σ : HeapTy) → Set where
unit : ∀ {Σ} → Val unit Σ
⟨_,_⟩ : ∀ {Σ s s' a b}⦃ shape : g s' ≡ ( [ a ] , [ s ] ) ⦄ →
Expr s' b → Frame s Σ → Val (a ⇒ b) Σ
num : ∀ {Σ} → ℤ → Val int Σ
val-weaken : ∀ {t Σ Σ'} → Σ ⊑ Σ' → Val t Σ → Val t Σ'
val-weaken ext ⟨ e , f ⟩ = ⟨ e , wk ext f ⟩
val-weaken ext unit = unit
val-weaken ext (num z) = num z
-- We can now load the frames definitions of the scopes-and-frames
-- library. As described in Section 4.3 of the paper, our notion of
-- frame assumes a notion of weakenable value, to be passed as
-- module arguments to `UsesVal`:
open UsesVal Val val-weaken renaming (getFrame to getFrame')
-- We rename `getFrame` from the scopes-and-frames library so that
-- we can use `getFrame` as the name of the monadic operation which
-- returns the "current frame pointer" below.
-----------
-- MONAD --
-----------
-- These definitions correspond to Section 4.4.
M : (s : Scope) → (HeapTy → Set) → HeapTy → Set
M s p Σ = Frame s Σ → Heap Σ → Maybe (∃ λ Σ' → (Heap Σ' × p Σ' × Σ ⊑ Σ'))
_>>=_ : ∀ {s Σ}{p q : List Scope → Set} →
M s p Σ → (∀ {Σ'} → p Σ' → M s q Σ') → M s q Σ
(a >>= b) f h
with (a f h)
... | nothing = nothing
... | just (Σ , h' , v , ext)
with (b v (wk ext f) h')
... | nothing = nothing
... | just (Σ' , h'' , v' , ext') = just (Σ' , h'' , v' , ext ⊚ ext')
return : ∀ {s Σ}{p : List Scope → Set} → p Σ → M s p Σ
return v f h = just (_ , h , v , ⊑-refl)
getFrame : ∀ {s Σ} → M s (Frame s) Σ
getFrame f = return f f
usingFrame : ∀ {s s' Σ}{p : List Scope → Set} → Frame s Σ → M s p Σ → M s' p Σ
usingFrame f a _ = a f
timeout : ∀ {s Σ}{p : List Scope → Set} → M s p Σ
timeout _ _ = nothing
init : ∀ {Σ s' ds es}(s : Scope)⦃ shape : g s ≡ (ds , es) ⦄ →
Slots ds Σ → Links es Σ → M s' (Frame s) Σ
init {Σ} s slots links _ h
with (initFrame s slots links h)
... | (f' , h') = just (_ , h' , f' , ∷ʳ-⊒ s Σ)
getv : ∀ {s t Σ} → (s ↦ t) → M s (Val t) Σ
getv p f h = return (getVal p f h) f h
_^_ : ∀ {Σ Γ}{p q : List Scope → Set} → ⦃ w : Weakenable q ⦄ →
M Γ p Σ → q Σ → M Γ (p ⊗ q) Σ
(a ^ x) f h
with (a f h)
... | nothing = nothing
... | just (Σ , h' , v , ext) = just (Σ , h' , (v , wk ext x) , ext)
sₑ : ∀ {s t} → Expr s t → Scope
sₑ {s} _ = s
eval : ℕ → ∀ {s t Σ} → Expr s t → M s (Val t) Σ
eval zero _ =
timeout
eval (suc k) unit =
return unit
eval (suc k) (var x) =
getv x
eval (suc k) (ƛ e) =
getFrame >>= λ f →
return ⟨ e , f ⟩
eval (suc k) (l · r) =
eval k l >>= λ{ ⟨ e , f ⟩ →
(eval k r ^ f) >>= λ{ (v , f) →
init (sₑ e) (v ∷ []) (f ∷ []) >>= λ f' →
usingFrame f' (eval k e) }}
eval (suc k) (num z) =
return (num z)
eval (suc k) (iop f l r) =
eval k l >>= λ{ (num z₁) →
eval k r >>= λ{ (num z₂) →
return (num (f z₁ z₂)) }}
| {
"alphanum_fraction": 0.5460601447,
"avg_line_length": 30.5465116279,
"ext": "agda",
"hexsha": "aa39d1363fee40ee6c4d3e0965b5a9ff24141c6a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-12-28T17:38:05.000Z",
"max_forks_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "metaborg/mj.agda",
"max_forks_repo_path": "src/STLCSF/Semantics.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_issues_repo_issues_event_max_datetime": "2020-10-14T13:41:58.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-13T13:03:47.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "metaborg/mj.agda",
"max_issues_repo_path": "src/STLCSF/Semantics.agda",
"max_line_length": 90,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "0c096fea1716d714db0ff204ef2a9450b7a816df",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "metaborg/mj.agda",
"max_stars_repo_path": "src/STLCSF/Semantics.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-24T08:02:33.000Z",
"max_stars_repo_stars_event_min_datetime": "2017-11-17T17:10:36.000Z",
"num_tokens": 1896,
"size": 5254
} |
open import MLib.Algebra.PropertyCode
open import MLib.Algebra.PropertyCode.Structures
module MLib.Matrix.SemiTensor.GeneralizesMul {c ℓ} (struct : Struct bimonoidCode c ℓ) where
open import MLib.Prelude
open import MLib.Matrix.Core
open import MLib.Matrix.Equality struct
open import MLib.Matrix.Mul struct
open import MLib.Matrix.Tensor struct
open import MLib.Matrix.SemiTensor.Core struct
open import MLib.Algebra.Operations struct
open Nat using () renaming (_+_ to _+ℕ_; _*_ to _*ℕ_)
open import MLib.Fin.Parts.Simple
open import Data.Nat.LCM
open import Data.Nat.Divisibility
-- Semi-tensor product generalizes the usual matrix product
module _ ⦃ props : Has (1# is rightIdentity for * ∷ []) ⦄ where
generalizes-⊗ : ∀ {m n o} (A : Matrix S m n) (B : Matrix S n o) → A ⋉ B ≃ A ⊗ B
open _≃_
module Zero {m o} (A : Matrix S m 0) (B : Matrix S 0 o) where
generalizes-⊗′ : A ⋉ B ≃ A ⊗ B
generalizes-⊗′ .m≡p = Nat.*-identityʳ m
generalizes-⊗′ .n≡q = Nat.*-identityʳ o
generalizes-⊗′ .equal _ _ = S.refl
module Nonzero {m n o} (A : Matrix S m (suc n)) (B : Matrix S (suc n) o) where
private
t = lcm (suc n) (suc n) .proj₁
t-lcm = lcm (suc n) (suc n) .proj₂
open Defn t-lcm renaming (n∣t to sn∣t; t/n to t/sn; p∣t to sn∣t′; t/p to t/sn′)
A′′-lem : A′′ A B ≃ A
B′′-lem : B′′ A B ≃ B
generalizes-⊗′ : A ⋉ B ≃ A ⊗ B
generalizes-⊗′ = ⊗-cong-≃ _ _ _ _ A′′-lem B′′-lem
private
abstract
lcm-n-n : ∀ {n t} → LCM n n t → t ≡ n
lcm-n-n {n} isLcm =
let t∣n = LCM.least isLcm (∣-refl , ∣-refl)
n∣t = LCM.commonMultiple isLcm .proj₁
in ∣-antisym t∣n n∣t
quotient-n-n : ∀ {n} (p : suc n ∣ suc n) → quotient p ≡ 1
quotient-n-n (divides q equality) = Nat.*-cancelʳ-≡ q 1 (≡.sym (≡.trans (≡.cong suc (Nat.+-identityʳ _)) equality))
quotient-subst : ∀ {n p q} (n∣p : n ∣ p) (p≡q : p ≡ q) → quotient n∣p ≡ quotient (≡.subst (λ h → n ∣ h) p≡q n∣p)
quotient-subst n∣p ≡.refl = ≡.refl
t≡sn : t ≡ suc n
t≡sn = lcm-n-n t-lcm
t/sn≡1 : t/sn ≡ 1
t/sn≡1 =
begin
t/sn ≡⟨ quotient-subst sn∣t t≡sn ⟩
quotient (≡.subst (λ h → suc n ∣ h) t≡sn sn∣t) ≡⟨ quotient-n-n (≡.subst (λ h → suc n ∣ h) t≡sn sn∣t) ⟩
1 ∎
where open ≡.Reasoning
t/sn′≡1 : t/sn′ ≡ 1
t/sn′≡1 =
begin
t/sn′ ≡⟨ quotient-subst sn∣t′ t≡sn ⟩
quotient (≡.subst (λ h → suc n ∣ h) t≡sn sn∣t′) ≡⟨ quotient-n-n (≡.subst (λ h → suc n ∣ h) t≡sn sn∣t′) ⟩
1 ∎
where open ≡.Reasoning
lhs≡m : m *ℕ t/sn ≡ m
lhs≡m =
begin
m *ℕ t/sn ≡⟨ ≡.cong₂ _*ℕ_ (≡.refl {x = m}) t/sn≡1 ⟩
m *ℕ 1 ≡⟨ Nat.*-identityʳ _ ⟩
m ∎
where open ≡.Reasoning
rhs≡o : o *ℕ t/sn′ ≡ o
rhs≡o =
begin
o *ℕ t/sn′ ≡⟨ ≡.cong₂ _*ℕ_ (≡.refl {x = o}) t/sn′≡1 ⟩
o *ℕ 1 ≡⟨ Nat.*-identityʳ _ ⟩
o ∎
where open ≡.Reasoning
A′′-lem = ≃-trans (≡-subst-≃₂ lem₁) (≃-trans (⊠-cong (≃-refl {A = A}) (1●-cong-≃ t/sn≡1)) (⊠-identityʳ ⦃ weaken props ⦄ A))
B′′-lem = ≃-trans (≡-subst-≃₁ lem₂) (≃-trans (⊠-cong (≃-refl {A = B}) (1●-cong-≃ t/sn′≡1)) (⊠-identityʳ ⦃ weaken props ⦄ B))
generalizes-⊗ {n = zero} = Zero.generalizes-⊗′
generalizes-⊗ {n = suc n} = Nonzero.generalizes-⊗′
| {
"alphanum_fraction": 0.5270034843,
"avg_line_length": 34.099009901,
"ext": "agda",
"hexsha": "8ce1e18818ea7bf1b15a8cb624e58e3da8d266a2",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bch29/agda-matrices",
"max_forks_repo_path": "src/MLib/Matrix/SemiTensor/GeneralizesMul.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bch29/agda-matrices",
"max_issues_repo_path": "src/MLib/Matrix/SemiTensor/GeneralizesMul.agda",
"max_line_length": 130,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e26ae2e0aa7721cb89865aae78625a2f3fd2b574",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bch29/agda-matrices",
"max_stars_repo_path": "src/MLib/Matrix/SemiTensor/GeneralizesMul.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1499,
"size": 3444
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Vectors with fast append
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Data.DifferenceVec where
open import Data.DifferenceNat
open import Data.Vec as V using (Vec)
open import Function
import Data.Nat.Base as N
infixr 5 _∷_ _++_
DiffVec : ∀ {ℓ} → Set ℓ → Diffℕ → Set ℓ
DiffVec A m = ∀ {n} → Vec A n → Vec A (m n)
[] : ∀ {a} {A : Set a} → DiffVec A 0#
[] = λ k → k
_∷_ : ∀ {a} {A : Set a} {n} → A → DiffVec A n → DiffVec A (suc n)
x ∷ xs = λ k → V._∷_ x (xs k)
[_] : ∀ {a} {A : Set a} → A → DiffVec A 1#
[ x ] = x ∷ []
_++_ : ∀ {a} {A : Set a} {m n} →
DiffVec A m → DiffVec A n → DiffVec A (m + n)
xs ++ ys = λ k → xs (ys k)
toVec : ∀ {a} {A : Set a} {n} → DiffVec A n → Vec A (toℕ n)
toVec xs = xs V.[]
-- fromVec xs is linear in the length of xs.
fromVec : ∀ {a} {A : Set a} {n} → Vec A n → DiffVec A (fromℕ n)
fromVec xs = λ k → xs ⟨ V._++_ ⟩ k
head : ∀ {a} {A : Set a} {n} → DiffVec A (suc n) → A
head xs = V.head (toVec xs)
tail : ∀ {a} {A : Set a} {n} → DiffVec A (suc n) → DiffVec A n
tail xs = λ k → V.tail (xs k)
take : ∀ {a} {A : Set a} m {n} →
DiffVec A (fromℕ m + n) → DiffVec A (fromℕ m)
take N.zero xs = []
take (N.suc m) xs = head xs ∷ take m (tail xs)
drop : ∀ {a} {A : Set a} m {n} →
DiffVec A (fromℕ m + n) → DiffVec A n
drop N.zero xs = xs
drop (N.suc m) xs = drop m (tail xs)
| {
"alphanum_fraction": 0.4795514512,
"avg_line_length": 26.5964912281,
"ext": "agda",
"hexsha": "03392cf130068e15745851b57037973f2395ad66",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Data/DifferenceVec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Data/DifferenceVec.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Data/DifferenceVec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 578,
"size": 1516
} |
{-# OPTIONS --safe #-}
module Cubical.HITs.S2 where
open import Cubical.HITs.S2.Base public
open import Cubical.HITs.S2.Properties public
| {
"alphanum_fraction": 0.7697841727,
"avg_line_length": 23.1666666667,
"ext": "agda",
"hexsha": "d08280c309cac23987fa05fca0620c10d1b07452",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/HITs/S2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/HITs/S2.agda",
"max_line_length": 45,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/HITs/S2.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-31T17:32:49.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-31T17:32:49.000Z",
"num_tokens": 39,
"size": 139
} |
module Nat where
data ℕ : Set where
zero : ℕ
suc : ℕ → ℕ
_+_ : ℕ → ℕ → ℕ
zero + a = a
suc a + b = suc (a + b)
data _≡_ {A : Set} : A → A → Set where
refl : {a : A} → a ≡ a
infix 4 _≡_
cong : {A B : Set} {a b : A} (f : A → B) → a ≡ b → f a ≡ f b
cong f refl = refl
+-assoc : (a b c : ℕ) → (a + b) + c ≡ a + (b + c)
+-assoc zero b c = refl
+-assoc (suc a) b c = cong suc (+-assoc a b c)
| {
"alphanum_fraction": 0.4623115578,
"avg_line_length": 18.0909090909,
"ext": "agda",
"hexsha": "cba1fa9dbd68d565381e97c46eed596ce5ac9d38",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a8902e36ed2037de9008e061d54517d4d7d99f0f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "divipp/agda-intro-prezi",
"max_forks_repo_path": "Nat.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a8902e36ed2037de9008e061d54517d4d7d99f0f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "divipp/agda-intro-prezi",
"max_issues_repo_path": "Nat.agda",
"max_line_length": 60,
"max_stars_count": 2,
"max_stars_repo_head_hexsha": "a8902e36ed2037de9008e061d54517d4d7d99f0f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "divipp/agda-intro-prezi",
"max_stars_repo_path": "Nat.agda",
"max_stars_repo_stars_event_max_datetime": "2020-01-21T14:53:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-11-27T02:50:48.000Z",
"num_tokens": 185,
"size": 398
} |
module ModuleReexport where
open import Common.Unit
open import Common.Nat
open import Common.IO
module A (B : Set) (b : B) where
data X : Set where
Con1 : B -> X
Con2 : X
f : X -> B
f (Con1 x) = x
f Con2 = b
module X = A Nat 10
main = printNat (A.f Nat 10 (X.Con1 20)) ,,
putStrLn "" ,,
printNat (A.f Nat 10 X.Con2) ,,
putStrLn "" ,,
return unit
| {
"alphanum_fraction": 0.5968169761,
"avg_line_length": 15.7083333333,
"ext": "agda",
"hexsha": "bda52e46721993989b7a9331f8f5e7eadcbc792e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Compiler/simple/ModuleReexport.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Compiler/simple/ModuleReexport.agda",
"max_line_length": 43,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Compiler/simple/ModuleReexport.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 137,
"size": 377
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Symmetric closures of binary relations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Construct.Closure.Symmetric where
open import Data.Sum as Sum using (_⊎_)
open import Function using (id)
open import Relation.Binary
open Sum public using () renaming (inj₁ to fwd; inj₂ to bwd)
-- The symmetric closure of a relation.
SymClosure : ∀ {a ℓ} {A : Set a} → Rel A ℓ → Rel A ℓ
SymClosure _∼_ a b = a ∼ b ⊎ b ∼ a
module _ {a ℓ} {A : Set a} where
-- Symmetric closures are symmetric.
symmetric : (_∼_ : Rel A ℓ) → Symmetric (SymClosure _∼_)
symmetric _ (fwd a∼b) = bwd a∼b
symmetric _ (bwd b∼a) = fwd b∼a
-- A generalised variant of map which allows the index type to change.
gmap : ∀ {b ℓ₂} {B : Set b} {P : Rel A ℓ} {Q : Rel B ℓ₂} →
(f : A → B) → P =[ f ]⇒ Q → SymClosure P =[ f ]⇒ SymClosure Q
gmap _ g = Sum.map g g
map : ∀ {ℓ₂} {P : Rel A ℓ} {Q : Rel A ℓ₂} →
P ⇒ Q → SymClosure P ⇒ SymClosure Q
map = gmap id
| {
"alphanum_fraction": 0.5409407666,
"avg_line_length": 29.4358974359,
"ext": "agda",
"hexsha": "4b3aa74abacf4f0f1343bff4d96077cd2c9426e3",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Symmetric.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Symmetric.agda",
"max_line_length": 72,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/Symmetric.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 361,
"size": 1148
} |
{-# OPTIONS --omega-in-omega --no-termination-check --overlapping-instances #-}
module Light.Library.Relation where
open import Light.Level using (Level ; Setω)
open import Light.Variable.Sets
record Kind : Setω where
field
iℓ : Level
Index : Set iℓ
ℓf : Index → Level
Proposition : ∀ i → Set (ℓf i)
record Style (kind : Kind) : Setω where
open Kind kind
field
true‐i false‐i : Index
true : Proposition true‐i
false : Proposition false‐i
¬‐index‐f : Index → Index
¬_ : ∀ {i} → Proposition i → Proposition (¬‐index‐f i)
∧‐index‐f ∨‐index‐f ⇢‐index‐f : Index → Index → Index
_∧_ : ∀ {ia ib} → Proposition ia → Proposition ib → Proposition (∧‐index‐f ia ib)
_∨_ : ∀ {ia ib} → Proposition ia → Proposition ib → Proposition (∨‐index‐f ia ib)
_⇢_ : ∀ {ia ib} → Proposition ia → Proposition ib → Proposition (⇢‐index‐f ia ib)
true‐set‐ℓf false‐set‐ℓf : Index → Level
True : ∀ {i} → Proposition i → Set (true‐set‐ℓf i)
False : ∀ {i} → Proposition i → Set (false‐set‐ℓf i)
true‐is‐true : True true
false‐is‐false : False false
record Base : Setω where
field ⦃ kind ⦄ : Kind
field ⦃ style ⦄ : Style kind
open Kind ⦃ ... ⦄ public
open Style ⦃ ... ⦄ public
| {
"alphanum_fraction": 0.5389972145,
"avg_line_length": 34.1904761905,
"ext": "agda",
"hexsha": "000712144e5afee093cf78d88f3f85a684bc2197",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_forks_repo_licenses": [
"0BSD"
],
"max_forks_repo_name": "Zambonifofex/lightlib",
"max_forks_repo_path": "Light/Library/Relation.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"0BSD"
],
"max_issues_repo_name": "Zambonifofex/lightlib",
"max_issues_repo_path": "Light/Library/Relation.agda",
"max_line_length": 93,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "44b1c724f2de95d3a9effe87ca36ef9eca8b4756",
"max_stars_repo_licenses": [
"0BSD"
],
"max_stars_repo_name": "zamfofex/lightlib",
"max_stars_repo_path": "Light/Library/Relation.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-20T21:33:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-12-20T21:33:05.000Z",
"num_tokens": 420,
"size": 1436
} |
{-# OPTIONS --warning=error --safe --without-K #-}
open import LogicalFormulae
open import Numbers.Naturals.Definition
open import Numbers.Naturals.Addition
open import Numbers.Naturals.Multiplication
open import Numbers.Naturals.Order
module Numbers.Naturals.Exponentiation where
_^N_ : ℕ → ℕ → ℕ
a ^N zero = 1
a ^N succ b = a *N (a ^N b)
exponentiationIncreases : (a b : ℕ) → (a ≡ 0) || (a ≤N a ^N (succ b))
exponentiationIncreases zero b = inl refl
exponentiationIncreases (succ a) zero = inr (inr (applyEquality succ (transitivity (additionNIsCommutative 0 a) (multiplicationNIsCommutative 1 a))))
exponentiationIncreases (succ a) (succ b) with exponentiationIncreases (succ a) b
exponentiationIncreases (succ a) (succ b) | inr (inl x) = inr (inl (canAddToOneSideOfInequality _ x))
exponentiationIncreases (succ a) (succ b) | inr (inr x) with productOne x
exponentiationIncreases (succ 0) (succ b) | inr (inr x) | inr pr rewrite pr = inr (inr refl)
exponentiationIncreases (succ (succ a)) (succ b) | inr (inr x) | inr pr rewrite pr | productWithOneRight a = inr (inl (le (succ (a +N a *N succ (succ a))) (additionNIsCommutative _ (succ (succ a)))))
| {
"alphanum_fraction": 0.7312013829,
"avg_line_length": 50.3043478261,
"ext": "agda",
"hexsha": "66f40430ad7d81ea2b9655caf66d6376a8e8e333",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-29T13:23:07.000Z",
"max_forks_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Smaug123/agdaproofs",
"max_forks_repo_path": "Numbers/Naturals/Exponentiation.agda",
"max_issues_count": 14,
"max_issues_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_issues_repo_issues_event_max_datetime": "2020-04-11T11:03:39.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-01-06T21:11:59.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Smaug123/agdaproofs",
"max_issues_repo_path": "Numbers/Naturals/Exponentiation.agda",
"max_line_length": 199,
"max_stars_count": 4,
"max_stars_repo_head_hexsha": "0f4230011039092f58f673abcad8fb0652e6b562",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Smaug123/agdaproofs",
"max_stars_repo_path": "Numbers/Naturals/Exponentiation.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-28T06:04:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-08-08T12:44:19.000Z",
"num_tokens": 375,
"size": 1157
} |
module Issue296 where
postulate
Unit : Set
IO : Set → Set
foo : ((A B : Set) → Unit) → IO Unit
bar : (A B : Set) → Unit
{-# BUILTIN IO IO #-}
{-# COMPILED_TYPE IO IO #-}
{-# COMPILED_TYPE Unit () #-}
{-# COMPILED bar undefined #-}
main : IO Unit
main = foo bar
| {
"alphanum_fraction": 0.5724637681,
"avg_line_length": 17.25,
"ext": "agda",
"hexsha": "d6a9d1b132c5a1ca29f9d90f907747a41149d964",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/succeed/Issue296.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/succeed/Issue296.agda",
"max_line_length": 39,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "c0ae7d20728b15d7da4efff6ffadae6fe4590016",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "redfish64/autonomic-agda",
"max_stars_repo_path": "test/Succeed/Issue296.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 90,
"size": 276
} |
------------------------------------------------------------------------------
-- Testing nested axioms
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module NestedAxioms.A where
------------------------------------------------------------------------------
postulate
D : Set
_≡_ : D → D → Set
postulate
a b : D
a≡b : a ≡ b
{-# ATP axiom a≡b #-}
| {
"alphanum_fraction": 0.2991150442,
"avg_line_length": 25.6818181818,
"ext": "agda",
"hexsha": "d38a6f4966054b0ebf7ef26357450a18930fbf50",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/NestedAxioms/A.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/NestedAxioms/A.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/NestedAxioms/A.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 101,
"size": 565
} |
-- Andreas, 2016-11-02, issue #2285 raised by effectfully, found by dnkndnts
-- {-# OPTIONS -v tc.data.fits:15 #-}
-- {-# OPTIONS -v tc.conv.sort:30 #-}
-- {-# OPTIONS -v tc.meta.assign:50 #-}
-- {-# OPTIONS -v tc.meta.new:50 #-}
-- {-# OPTIONS -v tc:10 #-}
-- {-# OPTIONS -v tc.data:100 #-}
mutual
Type = _
data Big : Type where
big : (∀ {α} → Set α) → Big
-- Problem WAS:
-- new sort meta _0 : .Agda.Primitive.Level
-- new meta (?0) _1 : Set _0
-- new sort meta _2 : .Agda.Primitive.Level
-- solving _0 := .Agda.Primitive.lsuc _2
-- solving _1 := Set _2
-- solving _2 := Setω
-- Big should be rejected
-- Even with Type = Setω : Setω, we do not get Hurkens through:
{-
⊥ : Type
⊥ = (A : Type) → A
¬_ : Type → Type
¬ A = A → ⊥
-- We have some form of Type : Type
P : Type → Type
P A = A → Type
U : Type
U = (X : Type) → (P (P X) → X) → P (P X)
test : Type
test = P (P U) → U
{-
-- This is not accepted:
τ : P (P U) → U
τ = λ (t : P (P U)) (X : Type) (f : P (P X) → X) (p : P X) → t λ x → p (f (x X f))
σ : U → (P (P U))
σ = λ (s : U) → s U λ t → τ t
Δ : P U
Δ = \y → ¬ ((p : P U) → σ y p → p (τ (σ y)))
Ω : U
Ω = τ \p → (x : U) → σ x p → p x
D : Type
D = (p : P U) → σ Ω p → p (τ (σ Ω))
lem₁ : (p : P U) → ((x : U) → σ x p → p x) → p Ω
lem₁ p H1 = H1 Ω \x → H1 (τ (σ x))
lem₂ : ¬ D
lem₂ = lem₁ Δ \x H2 H3 → H3 Δ H2 \p → H3 \y → p (τ (σ y))
lem₃ : D
lem₃ p = lem₁ \y → p (τ (σ y))
loop : ⊥
loop = lem₂ lem₃
-- -}
-- -}
| {
"alphanum_fraction": 0.4724618447,
"avg_line_length": 20.0933333333,
"ext": "agda",
"hexsha": "9eea6f7f6d704dfb6fb9b0373f877df0b97c71ea",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Issue2285.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Issue2285.agda",
"max_line_length": 84,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Issue2285.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 656,
"size": 1507
} |
-- Andreas, 2019-03-18, AIM XXIX, performance regression in 2.5.4
-- The following was quick in 2.5.3
postulate
Bool : Set
Foo : Bool → Bool → Bool → Bool → Bool → Bool → Bool → Bool → Bool → Set
data FooRel
: (x1 x1' : Bool)
(x2 x2' : Bool)
(x3 x3' : Bool)
(x4 x4' : Bool)
(x5 x5' : Bool)
(x6 x6' : Bool)
(x7 x7' : Bool)
(x8 x8' : Bool)
(x9 x9' : Bool)
→ Foo x1 x2 x3 x4 x5 x6 x7 x8 x9
→ Foo x1' x2' x3' x4' x5' x6' x7' x8' x9'
→ Set
where
tran
: (x1 x1' x1'' : Bool)
(x2 x2' x2'' : Bool)
(x3 x3' x3'' : Bool)
(x4 x4' x4'' : Bool)
(x5 x5' x5'' : Bool)
(x6 x6' x6'' : Bool)
(x7 x7' x7'' : Bool)
(x8 x8' x8'' : Bool)
(x9 x9' x9'' : Bool)
(t : Foo x1 x2 x3 x4 x5 x6 x7 x8 x9)
(t' : Foo x1' x2' x3' x4' x5' x6' x7' x8' x9')
(t'' : Foo x1'' x2'' x3'' x4'' x5'' x6'' x7'' x8'' x9'')
→ FooRel x1 x1' x2 x2' x3 x3' x4 x4' x5 x5' x6 x6' x7 x7' x8 x8' x9 x9' t t'
→ FooRel x1' x1'' x2' x2'' x3' x3'' x4' x4'' x5' x5'' x6' x6'' x7' x7'' x8' x8'' x9' x9'' t' t''
→ FooRel x1 x1'' x2 x2'' x3 x3'' x4 x4'' x5 x5'' x6 x6'' x7 x7'' x8 x8'' x9 x9'' t t''
foo
: (x1 x1' : Bool)
(x2 x2' : Bool)
(x3 x3' : Bool)
(x4 x4' : Bool)
(x5 x5' : Bool)
(x6 x6' : Bool)
(x7 x7' : Bool)
(x8 x8' : Bool)
(x9 x9' : Bool)
(t : Foo x1 x2 x3 x4 x5 x6 x7 x8 x9)
(t' : Foo x1' x2' x3' x4' x5' x6' x7' x8' x9')
→ FooRel x1 x1' x2 x2' x3 x3' x4 x4' x5 x5' x6 x6' x7 x7' x8 x8' x9 x9' t t'
→ Set
foo x1 x1' x2 x2' x3 x3' x4 x4' x5 x5' x6 x6' x7 x7' x8 x8' x9 x9' t t' (tran .x1 x1'' .x1' .x2 x2'' .x2' .x3 x3'' .x3' .x4 x4'' .x4' .x5 x5'' .x5' .x6 x6'' .x6' .x7 x7'' .x7' .x8 x8'' .x8' .x9 x9'' .x9' .t t'' .t' xy yz) = Bool
-- Should check quickly again in 2.6.0
| {
"alphanum_fraction": 0.4761640798,
"avg_line_length": 32.2142857143,
"ext": "agda",
"hexsha": "398d030c38156cf5e14e1a3516d3aed5f0a8e2a8",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue3621.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue3621.agda",
"max_line_length": 228,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue3621.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 976,
"size": 1804
} |
{-# OPTIONS --universe-polymorphism #-}
module Categories.Monoidal.Symmetric where
open import Level
open import Categories.Category
open import Categories.Monoidal
open import Categories.Monoidal.Braided
open import Categories.Monoidal.Helpers
open import Categories.Monoidal.Braided.Helpers
open import Categories.NaturalIsomorphism
open import Categories.NaturalTransformation using (_∘₁_; _≡_; id)
record Symmetric {o ℓ e} {C : Category o ℓ e} {M : Monoidal C} (B : Braided M) : Set (o ⊔ ℓ ⊔ e) where
private module C = Category C
private module M = Monoidal M
private module B = Braided B
-- open C hiding (id; identityˡ; identityʳ; assoc; _≡_)
-- open M hiding (id)
-- open MonoidalHelperFunctors C ⊗ M.id
-- open BraidedHelperFunctors C ⊗ M.id
private module NI = NaturalIsomorphism B.braid
field
symmetry : NI.F⇒G ∘₁ NI.F⇐G ≡ id
| {
"alphanum_fraction": 0.738177624,
"avg_line_length": 30.9642857143,
"ext": "agda",
"hexsha": "4cc69df9525191a96d2da95c6b380b6f48b13abd",
"lang": "Agda",
"max_forks_count": 23,
"max_forks_repo_forks_event_max_datetime": "2021-11-11T13:50:56.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-02-05T13:03:09.000Z",
"max_forks_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "copumpkin/categories",
"max_forks_repo_path": "Categories/Monoidal/Symmetric.agda",
"max_issues_count": 19,
"max_issues_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_issues_repo_issues_event_max_datetime": "2019-08-09T16:31:40.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-05-23T06:47:10.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "copumpkin/categories",
"max_issues_repo_path": "Categories/Monoidal/Symmetric.agda",
"max_line_length": 102,
"max_stars_count": 98,
"max_stars_repo_head_hexsha": "36f4181d751e2ecb54db219911d8c69afe8ba892",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "copumpkin/categories",
"max_stars_repo_path": "Categories/Monoidal/Symmetric.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-08T05:20:36.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-04-15T14:57:33.000Z",
"num_tokens": 253,
"size": 867
} |
open import Common.Prelude
open import Common.Reflect
id : {A : Set} → A → A
id x = x
idTerm : Term
idTerm = lam visible (def (quote id) (arg₁ ∷ arg₂ ∷ []))
where
arg₁ = arg (arginfo hidden relevant) (def (quote Nat) [])
arg₂ = arg (arginfo visible relevant) (var 0 [])
-- Should fail since idTerm "λ z → id {Nat} z"
id₂ : {A : Set} → A → A
id₂ = unquote idTerm
| {
"alphanum_fraction": 0.6196808511,
"avg_line_length": 22.1176470588,
"ext": "agda",
"hexsha": "d5e49cb57c3eb01588300b7e467d17c2f4fd85e9",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_forks_event_min_datetime": "2022-03-12T11:35:18.000Z",
"max_forks_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "masondesu/agda",
"max_forks_repo_path": "test/fail/Issue1012.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70c8a575c46f6a568c7518150a1a64fcd03aa437",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "masondesu/agda",
"max_issues_repo_path": "test/fail/Issue1012.agda",
"max_line_length": 61,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "477c8c37f948e6038b773409358fd8f38395f827",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "larrytheliquid/agda",
"max_stars_repo_path": "test/fail/Issue1012.agda",
"max_stars_repo_stars_event_max_datetime": "2018-10-10T17:08:44.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-10-10T17:08:44.000Z",
"num_tokens": 131,
"size": 376
} |
-- Andreas, 2022-03-07, issue #5809 reported by jamestmartin
-- Regression in Agda 2.6.1.
-- Not reducing irrelevant projections lead to non-inferable elim-terms
-- and consequently to internal errors.
--
-- The fix is to treat irrelevant projections as just functions,
-- retaining their parameters, so that they remain inferable
-- even if not in normal form.
{-# OPTIONS --irrelevant-projections #-}
{-# OPTIONS --allow-unsolved-metas #-}
-- {-# OPTIONS --no-double-check #-}
-- {-# OPTIONS -v impossible:100 #-}
-- {-# OPTIONS -v tc:40 #-}
open import Agda.Builtin.Equality
record Squash {ℓ} (A : Set ℓ) : Set ℓ where
constructor squash
field
.unsquash : A
open Squash
.test : ∀ {ℓ} {A : Set ℓ} (x : A) (y : Squash A) → {!!}
test x y = {!!}
where
help : unsquash (squash x) ≡ unsquash y
help = refl
-- WAS: internal error.
-- Should succeed with unsolved metas.
| {
"alphanum_fraction": 0.6651685393,
"avg_line_length": 26.9696969697,
"ext": "agda",
"hexsha": "128b3243bbddd1c3146c51db5a17e2168438c784",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue5809.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue5809.agda",
"max_line_length": 71,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue5809.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 260,
"size": 890
} |
module PatternSynonymParameterisedModule where
data ℕ : Set where
zero : ℕ
suc : ℕ -> ℕ
module M (A : Set) where
pattern sss x = suc (suc (suc x))
open M ℕ
na : ℕ
na = sss 3
| {
"alphanum_fraction": 0.6397849462,
"avg_line_length": 12.4,
"ext": "agda",
"hexsha": "f879ebd05c8f92dd81de1d33d982cdbbe73570aa",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "np/agda-git-experiment",
"max_forks_repo_path": "test/fail/PatternSynonymParameterisedModule.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "20596e9dd9867166a64470dd24ea68925ff380ce",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "np/agda-git-experiment",
"max_issues_repo_path": "test/fail/PatternSynonymParameterisedModule.agda",
"max_line_length": 46,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "aa10ae6a29dc79964fe9dec2de07b9df28b61ed5",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/agda-kanso",
"max_stars_repo_path": "test/fail/PatternSynonymParameterisedModule.agda",
"max_stars_repo_stars_event_max_datetime": "2019-11-27T04:41:05.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-11-27T04:41:05.000Z",
"num_tokens": 67,
"size": 186
} |
{- Byzantine Fault Tolerant Consensus Verification in Agda, version 0.9.
Copyright (c) 2021, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://opensource.oracle.com/licenses/upl
-}
open import LibraBFT.Base.Types
import LibraBFT.Impl.Types.LedgerInfoWithSignatures as LedgerInfoWithSignatures
open import LibraBFT.ImplShared.Base.Types
open import LibraBFT.ImplShared.Consensus.Types
open import Optics.All
open import Util.KVMap as Map
open import Util.Hash
open import Util.Prelude
module LibraBFT.Impl.Types.Properties.LedgerInfoWithSignatures (self : LedgerInfoWithSignatures) (vv : ValidatorVerifier) where
-- See comments in LibraBFT.Impl.Consensus.ConsensusTypes.Properties.QuorumCert
postulate -- TODO-2: define and prove
Contract : Set
contract : LedgerInfoWithSignatures.verifySignatures self vv ≡ Right unit → Contract
| {
"alphanum_fraction": 0.8019693654,
"avg_line_length": 36.56,
"ext": "agda",
"hexsha": "72c475b72d52f909d128ffeeb10ac5375d3a971f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_forks_repo_licenses": [
"UPL-1.0"
],
"max_forks_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_forks_repo_path": "src/LibraBFT/Impl/Types/Properties/LedgerInfoWithSignatures.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"UPL-1.0"
],
"max_issues_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_issues_repo_path": "src/LibraBFT/Impl/Types/Properties/LedgerInfoWithSignatures.agda",
"max_line_length": 127,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "a4674fc473f2457fd3fe5123af48253cfb2404ef",
"max_stars_repo_licenses": [
"UPL-1.0"
],
"max_stars_repo_name": "LaudateCorpus1/bft-consensus-agda",
"max_stars_repo_path": "src/LibraBFT/Impl/Types/Properties/LedgerInfoWithSignatures.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 236,
"size": 914
} |
{-# OPTIONS --cubical-compatible --safe #-}
open import Agda.Primitive as Prim public
using (Level; _⊔_; Setω)
renaming (lzero to zero; lsuc to suc)
open import Agda.Builtin.Sigma public
renaming (fst to proj₁; snd to proj₂)
hiding (module Σ)
infixr 2 _×_
variable
a b c p q r : Level
A B C : Set a
_×_ : ∀ (A : Set a) (B : Set b) → Set (a ⊔ b)
A × B = Σ A λ _ → B
<_,_> : ∀ {A : Set a} {B : A → Set b} {C : ∀ {x} → B x → Set c}
(f : (x : A) → B x) → ((x : A) → C (f x)) →
((x : A) → Σ (B x) C)
< f , g > x = (f x , g x)
map : ∀ {P : A → Set p} {Q : B → Set q} →
(f : A → B) → (∀ {x} → P x → Q (f x)) →
Σ A P → Σ B Q
map f g (x , y) = (f x , g y)
zip : ∀ {P : A → Set p} {Q : B → Set q} {R : C → Set r} →
(_∙_ : A → B → C) →
(∀ {x y} → P x → Q y → R (x ∙ y)) →
Σ A P → Σ B Q → Σ C R
zip _∙_ _∘_ (a , p) (b , q) = ((a ∙ b) , (p ∘ q))
curry′ : (A × B → C) → (A → B → C)
curry′ k a b = k (a , b)
swap : A × B → B × A
swap (x , y) = (y , x)
record Category (o ℓ e : Level) : Set (suc (o ⊔ ℓ ⊔ e)) where
eta-equality
infix 4 _≈_ _⇒_
infixr 9 _∘_
field
Obj : Set o
_⇒_ : Obj → Obj → Set ℓ
_≈_ : ∀ {A B} → (A ⇒ B) → (A ⇒ B) → Set e
_∘_ : ∀ {A B C} → (B ⇒ C) → (A ⇒ B) → (A ⇒ C)
CommutativeSquare : ∀ {A B C D} → (f : A ⇒ B) (g : A ⇒ C) (h : B ⇒ D) (i : C ⇒ D) → Set _
CommutativeSquare f g h i = h ∘ f ≈ i ∘ g
infix 10 _[_,_]
_[_,_] : ∀ {o ℓ e} → (C : Category o ℓ e) → (X : Category.Obj C) → (Y : Category.Obj C) → Set ℓ
_[_,_] = Category._⇒_
module Inner {x₁ x₂ x₃} (CC : Category x₁ x₂ x₃) where
private
variable
o ℓ e o′ ℓ′ e′ o″ ℓ″ e″ : Level
zipWith : ∀ {a b c p q r s} {A : Set a} {B : Set b} {C : Set c} {P : A → Set p} {Q : B → Set q} {R : C → Set r} {S : (x : C) → R x → Set s} (_∙_ : A → B → C) → (_∘_ : ∀ {x y} → P x → Q y → R (x ∙ y)) → (_*_ : (x : C) → (y : R x) → S x y) → (x : Σ A P) → (y : Σ B Q) → S (proj₁ x ∙ proj₁ y) (proj₂ x ∘ proj₂ y)
zipWith _∙_ _∘_ _*_ (a , p) (b , q) = (a ∙ b) * (p ∘ q)
syntax zipWith f g h = f -< h >- g
record Functor (C : Category o ℓ e) (D : Category o′ ℓ′ e′) : Set (o ⊔ ℓ ⊔ e ⊔ o′ ⊔ ℓ′ ⊔ e′) where
eta-equality
private module C = Category C
private module D = Category D
field
F₀ : C.Obj → D.Obj
F₁ : ∀ {A B} (f : C [ A , B ]) → D [ F₀ A , F₀ B ]
Product : (C : Category o ℓ e) (D : Category o′ ℓ′ e′) → Category (o ⊔ o′) (ℓ ⊔ ℓ′) (e ⊔ e′)
Product C D = record
{ Obj = C.Obj × D.Obj
; _⇒_ = C._⇒_ -< _×_ >- D._⇒_
; _≈_ = C._≈_ -< _×_ >- D._≈_
; _∘_ = zip C._∘_ D._∘_
}
where module C = Category C
module D = Category D
Bifunctor : Category o ℓ e → Category o′ ℓ′ e′ → Category o″ ℓ″ e″ → Set _
Bifunctor C D E = Functor (Product C D) E
private
module CC = Category CC
open CC
infix 4 _≅_
record _≅_ (A B : Obj) : Set (x₂) where
field
from : A ⇒ B
to : B ⇒ A
private
variable
X Y Z W : Obj
f g h : X ⇒ Y
record Monoidal : Set (x₁ ⊔ x₂ ⊔ x₃) where
infixr 10 _⊗₀_ _⊗₁_
field
⊗ : Bifunctor CC CC CC
module ⊗ = Functor ⊗
open Functor ⊗
_⊗₀_ : Obj → Obj → Obj
_⊗₀_ = curry′ F₀
-- this is also 'curry', but a very-dependent version
_⊗₁_ : X ⇒ Y → Z ⇒ W → X ⊗₀ Z ⇒ Y ⊗₀ W
f ⊗₁ g = F₁ (f , g)
field
associator : (X ⊗₀ Y) ⊗₀ Z ≅ X ⊗₀ (Y ⊗₀ Z)
module associator {X} {Y} {Z} = _≅_ (associator {X} {Y} {Z})
-- for exporting, it makes sense to use the above long names, but for
-- internal consumption, the traditional (short!) categorical names are more
-- convenient. However, they are not symmetric, even though the concepts are, so
-- we'll use ⇒ and ⇐ arrows to indicate that
private
α⇒ = associator.from
α⇐ = λ {X} {Y} {Z} → associator.to {X} {Y} {Z}
field
assoc-commute-from : CommutativeSquare ((f ⊗₁ g) ⊗₁ h) α⇒ α⇒ (f ⊗₁ (g ⊗₁ h))
assoc-commute-to : CommutativeSquare (f ⊗₁ (g ⊗₁ h)) α⇐ α⇐ ((f ⊗₁ g) ⊗₁ h)
| {
"alphanum_fraction": 0.4719683873,
"avg_line_length": 27.924137931,
"ext": "agda",
"hexsha": "6aa5a0b5bc51205251ca4be14a6e15e213474830",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue4312.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue4312.agda",
"max_line_length": 311,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue4312.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1824,
"size": 4049
} |
{-# OPTIONS --cubical #-}
module propositional-equality where
open import Cubical.Foundations.Prelude
open import Agda.Primitive
| {
"alphanum_fraction": 0.7938931298,
"avg_line_length": 18.7142857143,
"ext": "agda",
"hexsha": "0bb1c5b6a558342774c31c950dbb259ef587b759",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "guilhermehas/Equality",
"max_forks_repo_path": "propositional-equality.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "guilhermehas/Equality",
"max_issues_repo_path": "propositional-equality.agda",
"max_line_length": 39,
"max_stars_count": 1,
"max_stars_repo_head_hexsha": "e1104012d85d2072318656f6c6d31acff75c9460",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "guilhermehas/Equality",
"max_stars_repo_path": "propositional-equality.agda",
"max_stars_repo_stars_event_max_datetime": "2021-10-01T06:04:21.000Z",
"max_stars_repo_stars_event_min_datetime": "2021-10-01T06:04:21.000Z",
"num_tokens": 31,
"size": 131
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- Some properties of reflexive transitive closures.
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Construct.Closure.ReflexiveTransitive.Properties where
open import Function
open import Relation.Binary
open import Relation.Binary.Construct.Closure.ReflexiveTransitive
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl; sym; cong; cong₂)
import Relation.Binary.Reasoning.Preorder as PreR
------------------------------------------------------------------------
-- _◅◅_
module _ {i t} {I : Set i} {T : Rel I t} where
◅◅-assoc : ∀ {i j k l}
(xs : Star T i j) (ys : Star T j k) (zs : Star T k l) →
(xs ◅◅ ys) ◅◅ zs ≡ xs ◅◅ (ys ◅◅ zs)
◅◅-assoc ε ys zs = refl
◅◅-assoc (x ◅ xs) ys zs = cong (_◅_ x) (◅◅-assoc xs ys zs)
------------------------------------------------------------------------
-- gmap
gmap-id : ∀ {i t} {I : Set i} {T : Rel I t} {i j} (xs : Star T i j) →
gmap id id xs ≡ xs
gmap-id ε = refl
gmap-id (x ◅ xs) = cong (_◅_ x) (gmap-id xs)
gmap-∘ : ∀ {i t} {I : Set i} {T : Rel I t}
{j u} {J : Set j} {U : Rel J u}
{k v} {K : Set k} {V : Rel K v}
(f : J → K) (g : U =[ f ]⇒ V)
(f′ : I → J) (g′ : T =[ f′ ]⇒ U)
{i j} (xs : Star T i j) →
(gmap {U = V} f g ∘ gmap f′ g′) xs ≡ gmap (f ∘ f′) (g ∘ g′) xs
gmap-∘ f g f′ g′ ε = refl
gmap-∘ f g f′ g′ (x ◅ xs) = cong (_◅_ (g (g′ x))) (gmap-∘ f g f′ g′ xs)
gmap-◅◅ : ∀ {i t j u}
{I : Set i} {T : Rel I t} {J : Set j} {U : Rel J u}
(f : I → J) (g : T =[ f ]⇒ U)
{i j k} (xs : Star T i j) (ys : Star T j k) →
gmap {U = U} f g (xs ◅◅ ys) ≡ gmap f g xs ◅◅ gmap f g ys
gmap-◅◅ f g ε ys = refl
gmap-◅◅ f g (x ◅ xs) ys = cong (_◅_ (g x)) (gmap-◅◅ f g xs ys)
gmap-cong : ∀ {i t j u}
{I : Set i} {T : Rel I t} {J : Set j} {U : Rel J u}
(f : I → J) (g : T =[ f ]⇒ U) (g′ : T =[ f ]⇒ U) →
(∀ {i j} (x : T i j) → g x ≡ g′ x) →
∀ {i j} (xs : Star T i j) →
gmap {U = U} f g xs ≡ gmap f g′ xs
gmap-cong f g g′ eq ε = refl
gmap-cong f g g′ eq (x ◅ xs) = cong₂ _◅_ (eq x) (gmap-cong f g g′ eq xs)
------------------------------------------------------------------------
-- fold
fold-◅◅ : ∀ {i p} {I : Set i}
(P : Rel I p) (_⊕_ : Transitive P) (∅ : Reflexive P) →
(∀ {i j} (x : P i j) → (∅ ⊕ x) ≡ x) →
(∀ {i j k l} (x : P i j) (y : P j k) (z : P k l) →
((x ⊕ y) ⊕ z) ≡ (x ⊕ (y ⊕ z))) →
∀ {i j k} (xs : Star P i j) (ys : Star P j k) →
fold P _⊕_ ∅ (xs ◅◅ ys) ≡ (fold P _⊕_ ∅ xs ⊕ fold P _⊕_ ∅ ys)
fold-◅◅ P _⊕_ ∅ left-unit assoc ε ys = sym (left-unit _)
fold-◅◅ P _⊕_ ∅ left-unit assoc (x ◅ xs) ys = begin
(x ⊕ fold P _⊕_ ∅ (xs ◅◅ ys)) ≡⟨ cong (_⊕_ x) $
fold-◅◅ P _⊕_ ∅ left-unit assoc xs ys ⟩
(x ⊕ (fold P _⊕_ ∅ xs ⊕ fold P _⊕_ ∅ ys)) ≡⟨ sym (assoc x _ _) ⟩
((x ⊕ fold P _⊕_ ∅ xs) ⊕ fold P _⊕_ ∅ ys) ∎
where open PropEq.≡-Reasoning
------------------------------------------------------------------------
-- Relational properties
module _ {i t} {I : Set i} (T : Rel I t) where
reflexive : _≡_ ⇒ Star T
reflexive refl = ε
trans : Transitive (Star T)
trans = _◅◅_
isPreorder : IsPreorder _≡_ (Star T)
isPreorder = record
{ isEquivalence = PropEq.isEquivalence
; reflexive = reflexive
; trans = trans
}
preorder : Preorder _ _ _
preorder = record
{ _≈_ = _≡_
; _∼_ = Star T
; isPreorder = isPreorder
}
------------------------------------------------------------------------
-- Preorder reasoning for Star
module StarReasoning {i t} {I : Set i} (T : Rel I t) where
open PreR (preorder T) public
hiding (_≈⟨_⟩_) renaming (_∼⟨_⟩_ to _⟶⋆⟨_⟩_)
infixr 2 _⟶⟨_⟩_
_⟶⟨_⟩_ : ∀ x {y z} → T x y → y IsRelatedTo z → x IsRelatedTo z
x ⟶⟨ x⟶y ⟩ y⟶⋆z = x ⟶⋆⟨ x⟶y ◅ ε ⟩ y⟶⋆z
| {
"alphanum_fraction": 0.4097619048,
"avg_line_length": 35.593220339,
"ext": "agda",
"hexsha": "f122dcdce3062e5f6e1a9dbbd28b5fba95ebe04e",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "omega12345/agda-mode",
"max_forks_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/ReflexiveTransitive/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "omega12345/agda-mode",
"max_issues_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/ReflexiveTransitive/Properties.agda",
"max_line_length": 90,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "0debb886eb5dbcd38dbeebd04b34cf9d9c5e0e71",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "omega12345/agda-mode",
"max_stars_repo_path": "test/asset/agda-stdlib-1.0/Relation/Binary/Construct/Closure/ReflexiveTransitive/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1661,
"size": 4200
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
{-
Various lemmas that will be used in cohomology.DisjointlyPointedSet.
Many of them, for example the choice lemma about coproducts, should be
put into core/.
-}
module homotopy.DisjointlyPointedSet where
module _ {i} where
is-separable : (X : Ptd i) → Type i
is-separable X = has-dec-onesided-eq (pt X)
abstract
is-separable-is-prop : {X : Ptd i}
→ is-prop (is-separable X)
is-separable-is-prop = has-dec-onesided-eq-is-prop
MinusPoint : (X : Ptd i) → Type i
MinusPoint X = Σ (de⊙ X) (pt X ≠_)
unite-pt : (X : Ptd i) → (⊤ ⊔ MinusPoint X → de⊙ X)
unite-pt X (inl _) = pt X
unite-pt X (inr (x , _)) = x
has-disjoint-pt : (X : Ptd i) → Type i
has-disjoint-pt X = is-equiv (unite-pt X)
abstract
separable-has-disjoint-pt : {X : Ptd i}
→ is-separable X → has-disjoint-pt X
separable-has-disjoint-pt {X} dec =
is-eq _ sep unite-sep sep-unite where
sep : de⊙ X → ⊤ ⊔ (Σ (de⊙ X) (pt X ≠_))
sep x with dec x
sep x | inl _ = inl unit
sep x | inr ¬p = inr (x , ¬p)
abstract
sep-unite : ∀ x → sep (unite-pt X x) == x
sep-unite (inl _) with dec (pt X)
sep-unite (inl _) | inl _ = idp
sep-unite (inl _) | inr ¬p = ⊥-rec (¬p idp)
sep-unite (inr (x , ¬p)) with dec x
sep-unite (inr (x , ¬p)) | inl p = ⊥-rec (¬p p)
sep-unite (inr (x , ¬p)) | inr ¬p' = ap inr $ pair= idp (prop-has-all-paths ¬-is-prop ¬p' ¬p)
unite-sep : ∀ x → unite-pt X (sep x) == x
unite-sep x with dec x
unite-sep x | inl p = p
unite-sep x | inr ¬p = idp
disjoint-pt-is-separable : {X : Ptd i}
→ has-disjoint-pt X → is-separable X
disjoint-pt-is-separable unite-ise x with unite.g x | unite.f-g x
where module unite = is-equiv unite-ise
disjoint-pt-is-separable unite-ise x | inl unit | p = inl p
disjoint-pt-is-separable unite-ise x | inr (y , pt≠y) | y=x = inr λ pt=x → pt≠y (pt=x ∙ ! y=x)
separable-unite-equiv : ∀ {X}
→ is-separable X
→ (⊤ ⊔ MinusPoint X ≃ de⊙ X)
separable-unite-equiv dX = _ , separable-has-disjoint-pt dX
module _ {i j k} n (A : Type i) (B : Type j) where
abstract
⊔-has-choice-implies-inr-has-choice : has-choice n (A ⊔ B) k → has-choice n B k
⊔-has-choice-implies-inr-has-choice ⊔-ac W =
transport is-equiv (λ= lemma₃)
(snd lemma₂ ∘ise ⊔-ac W' ∘ise is-equiv-inverse (snd (Trunc-emap n lemma₁))) where
W' : A ⊔ B → Type k
W' (inl _) = Lift {j = k} ⊤
W' (inr b) = W b
lemma₁ : Π (A ⊔ B) W' ≃ Π B W
lemma₁ = equiv to from to-from from-to where
to : Π (A ⊔ B) W' → Π B W
to f b = f (inr b)
from : Π B W → Π (A ⊔ B) W'
from f (inl a) = lift tt
from f (inr b) = f b
abstract
to-from : ∀ f → to (from f) == f
to-from f = λ= λ b → idp
from-to : ∀ f → from (to f) == f
from-to f = λ= λ{(inl a) → idp; (inr b) → idp}
lemma₂ : Π (A ⊔ B) (Trunc n ∘ W') ≃ Π B (Trunc n ∘ W)
lemma₂ = equiv to from to-from from-to where
to : Π (A ⊔ B) (Trunc n ∘ W') → Π B (Trunc n ∘ W)
to f b = f (inr b)
from : Π B (Trunc n ∘ W) → Π (A ⊔ B) (Trunc n ∘ W')
from f (inl a) = [ lift tt ]
from f (inr b) = f b
abstract
to-from : ∀ f → to (from f) == f
to-from f = λ= λ b → idp
from-to : ∀ f → from (to f) == f
from-to f = λ= λ{
(inl a) → Trunc-elim
{P = λ t → [ lift tt ] == t}
(λ _ → =-preserves-level Trunc-level)
(λ _ → idp) (f (inl a));
(inr b) → idp}
lemma₃ : ∀ f → –> lemma₂ (unchoose (<– (Trunc-emap n lemma₁) f)) == unchoose f
lemma₃ = Trunc-elim
{P = λ f → –> lemma₂ (unchoose (<– (Trunc-emap n lemma₁) f)) == unchoose f}
(λ _ → =-preserves-level (Π-level λ _ → Trunc-level))
(λ f → λ= λ b → idp)
module _ {i j} n {X : Ptd i} (X-sep : has-disjoint-pt X) where
abstract
MinusPoint-has-choice : has-choice n (de⊙ X) j → has-choice n (MinusPoint X) j
MinusPoint-has-choice X-ac =
⊔-has-choice-implies-inr-has-choice n ⊤ (MinusPoint X) $
transport! (λ A → has-choice n A j) (ua (_ , X-sep)) X-ac
| {
"alphanum_fraction": 0.5013321492,
"avg_line_length": 35.1875,
"ext": "agda",
"hexsha": "284a2f9e5476ef6f73c06e1f0a30527dd6a3077d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-12-26T21:31:57.000Z",
"max_forks_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "mikeshulman/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/DisjointlyPointedSet.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "mikeshulman/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/DisjointlyPointedSet.agda",
"max_line_length": 103,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "e7d663b63d89f380ab772ecb8d51c38c26952dbb",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "mikeshulman/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/DisjointlyPointedSet.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1631,
"size": 4504
} |
module Haskell.Prim.List where
open import Agda.Builtin.List public
open import Agda.Builtin.Nat
open import Haskell.Prim
open import Haskell.Prim.Tuple
open import Haskell.Prim.Bool
open import Haskell.Prim.Int
--------------------------------------------------
-- List
map : (a → b) → List a → List b
map f [] = []
map f (x ∷ xs) = f x ∷ map f xs
infixr 5 _++_
_++_ : ∀ {ℓ} {a : Set ℓ} → List a → List a → List a
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ xs ++ ys
filter : (a → Bool) → List a → List a
filter p [] = []
filter p (x ∷ xs) = if p x then x ∷ filter p xs else filter p xs
scanl : (b → a → b) → b → List a → List b
scanl f z [] = z ∷ []
scanl f z (x ∷ xs) = z ∷ scanl f (f z x) xs
scanr : (a → b → b) → b → List a → List b
scanr f z [] = z ∷ []
scanr f z (x ∷ xs) =
case scanr f z xs of λ where
[] → [] -- impossible
qs@(q ∷ _) → f x q ∷ qs
scanl1 : (a → a → a) → List a → List a
scanl1 f [] = []
scanl1 f (x ∷ xs) = scanl f x xs
scanr1 : (a → a → a) → List a → List a
scanr1 f [] = []
scanr1 f (x ∷ []) = x ∷ []
scanr1 f (x ∷ xs) =
case scanr1 f xs of λ where
[] → [] -- impossible
qs@(q ∷ _) → f x q ∷ qs
takeWhile : (a → Bool) → List a → List a
takeWhile p [] = []
takeWhile p (x ∷ xs) = if p x then x ∷ takeWhile p xs else []
dropWhile : (a → Bool) → List a → List a
dropWhile p [] = []
dropWhile p (x ∷ xs) = if p x then dropWhile p xs else x ∷ xs
span : (a → Bool) → List a → List a × List a
span p [] = [] , []
span p (x ∷ xs) = if p x then first (x ∷_) (span p xs)
else ([] , x ∷ xs)
break : (a → Bool) → List a → List a × List a
break p = span (not ∘ p)
zipWith : (a → b → c) → List a → List b → List c
zipWith f [] _ = []
zipWith f _ [] = []
zipWith f (x ∷ xs) (y ∷ ys) = f x y ∷ zipWith f xs ys
zip : List a → List b → List (a × b)
zip = zipWith _,_
zipWith3 : (a → b → c → d) → List a → List b → List c → List d
zipWith3 f [] _ _ = []
zipWith3 f _ [] _ = []
zipWith3 f _ _ [] = []
zipWith3 f (x ∷ xs) (y ∷ ys) (z ∷ zs) = f x y z ∷ zipWith3 f xs ys zs
zip3 : List a → List b → List c → List (a × b × c)
zip3 = zipWith3 _,_,_
unzip : List (a × b) → List a × List b
unzip [] = [] , []
unzip ((x , y) ∷ xys) = (x ∷_) *** (y ∷_) $ unzip xys
unzip3 : List (a × b × c) → List a × List b × List c
unzip3 [] = [] , [] , []
unzip3 ((x , y , z) ∷ xyzs) =
case unzip3 xyzs of λ where
(xs , ys , zs) → x ∷ xs , y ∷ ys , z ∷ zs
takeNat : Nat → List a → List a
takeNat n [] = []
takeNat zero xs = []
takeNat (suc n) (x ∷ xs) = x ∷ takeNat n xs
take : (n : Int) → ⦃ IsNonNegativeInt n ⦄ → List a → List a
take n xs = takeNat (intToNat n) xs
dropNat : Nat → List a → List a
dropNat n [] = []
dropNat zero xs = xs
dropNat (suc n) (_ ∷ xs) = dropNat n xs
drop : (n : Int) → ⦃ IsNonNegativeInt n ⦄ → List a → List a
drop n xs = dropNat (intToNat n) xs
splitAtNat : (n : Nat) → List a → List a × List a
splitAtNat _ [] = [] , []
splitAtNat 0 xs = [] , xs
splitAtNat (suc n) (x ∷ xs) = first (x ∷_) (splitAtNat n xs)
splitAt : (n : Int) → ⦃ IsNonNegativeInt n ⦄ → List a → List a × List a
splitAt n xs = splitAtNat (intToNat n) xs
head : (xs : List a) → ⦃ NonEmpty xs ⦄ → a
head (x ∷ _) = x
tail : (xs : List a) → ⦃ NonEmpty xs ⦄ → List a
tail (_ ∷ xs) = xs
last : (xs : List a) → ⦃ NonEmpty xs ⦄ → a
last (x ∷ []) = x
last (_ ∷ xs@(_ ∷ _)) = last xs
init : (xs : List a) → ⦃ NonEmpty xs ⦄ → List a
init (x ∷ []) = []
init (x ∷ xs@(_ ∷ _)) = x ∷ init xs
| {
"alphanum_fraction": 0.4885245902,
"avg_line_length": 27.7272727273,
"ext": "agda",
"hexsha": "ebace1600de39d159021a4900969da475a95ce36",
"lang": "Agda",
"max_forks_count": 18,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:42:52.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-10-21T22:19:09.000Z",
"max_forks_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "seanpm2001/agda2hs",
"max_forks_repo_path": "lib/Haskell/Prim/List.agda",
"max_issues_count": 63,
"max_issues_repo_head_hexsha": "160478a51bc78b0fdab07b968464420439f9fed6",
"max_issues_repo_issues_event_max_datetime": "2022-02-25T15:47:30.000Z",
"max_issues_repo_issues_event_min_datetime": "2020-10-22T05:19:27.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "seanpm2001/agda2hs",
"max_issues_repo_path": "lib/Haskell/Prim/List.agda",
"max_line_length": 71,
"max_stars_count": 55,
"max_stars_repo_head_hexsha": "8c8f24a079ed9677dbe6893cf786e7ed52dfe8b6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dxts/agda2hs",
"max_stars_repo_path": "lib/Haskell/Prim/List.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-26T21:57:56.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-20T13:36:25.000Z",
"num_tokens": 1419,
"size": 3660
} |
module Type.Properties.Homotopy.Proofs where
import Data.Tuple as Tuple
open import Functional
open import Function.Axioms
open import Logic
open import Logic.Classical
open import Logic.Predicate
open import Logic.Propositional
import Lvl
open import Numeral.Natural
open import Type
open import Type.Dependent
open import Type.Properties.Homotopy
open import Type.Properties.MereProposition
open import Type.Properties.Singleton
open import Type.Properties.Singleton.Proofs
open import Structure.Function.Domain
open import Structure.Relator.Equivalence
open import Structure.Relator.Properties
open import Structure.Setoid
open import Structure.Type.Identity
open import Syntax.Function
open import Syntax.Transitivity
private variable ℓ ℓₑ ℓₑₑ ℓₚ ℓ₁ ℓ₂ : Lvl.Level
private variable n : ℕ
module _ {ℓ} ⦃ equiv : ∀{T : Type{ℓ}} → Equiv{ℓ}(T) ⦄ where
private variable T : Type{ℓ}
{-
private open module EquivEquiv{T} = Equiv(equiv{T}) using () renaming (_≡_ to _≡ₑ_)
module _ ⦃ identElim : ∀{ℓ}{T : Type{ℓ}} → IdentityEliminator(_≡ₑ_ {T = T}) ⦄ where
constant-endofunction-existence-on-equivalence-is-hset : ∀{x y : T} → ∃{Obj = (x ≡ y) → (x ≡ y)}(Constant) → HomotopyLevel(2)(T)
HomotopyLevel.proof (constant-endofunction-existence-on-equivalence-is-hset ([∃]-intro const)) {x = x} {y} {xy₁} {xy₂} = {!!} where
equivalence-endofunction-invertibleₗ : ∀{f : ∀{x y : T} → (x ≡ y) → (x ≡ y)} → (∀{x y : T} → Invertibleₗ(f{x}{y}))
∃.witness (equivalence-endofunction-invertibleₗ {T = T}{f = f} {x}{y}) xy =
xy 🝖 symmetry(_≡ₑ_) (f(reflexivity _))
Tuple.left (∃.proof equivalence-endofunction-invertibleₗ) = {!!}
Inverseₗ.proof (Tuple.right (∃.proof (equivalence-endofunction-invertibleₗ {T = T}{f = f} {x}{y}))) {xy} = idElim(_≡ₑ_) ⦃ inst = identElim{T = T} ⦄ (xy ↦ (f(xy) 🝖 symmetry(_≡ₑ_) (f(reflexivity(_≡ₑ_))) ≡ₑ xy)) {!!} xy
-}
HomotopyLevel-zero-step-is-one : (∀{x y : T} → HomotopyLevel(0)(x ≡ y)) → HomotopyLevel(1)(T)
HomotopyLevel.proof (HomotopyLevel-zero-step-is-one p) {x}{y} = Σ.left(HomotopyLevel.proof(p{x}{y}))
HomotopyLevel-step-is-successor : (∀{x y : T} → HomotopyLevel(n)(x ≡ y)) → HomotopyLevel(𝐒(n))(T)
HomotopyLevel-step-is-successor {n = 𝟎} = HomotopyLevel-zero-step-is-one
HomotopyLevel-step-is-successor {n = 𝐒(n)} p = intro(\{x}{y} → HomotopyLevel.proof(p{x}{y}))
module _
⦃ equiv : ∀{ℓ}{T : Type{ℓ}} → Equiv{ℓ}(T) ⦄
⦃ funcExt : ∀{ℓ₁ ℓ₂}{T : Type{ℓ₁}}{P : T → Stmt{ℓ₂}} → DependentImplicitFunctionExtensionality(T)(P) ⦄
⦃ prop-eq : ∀{ℓ}{T : Type{ℓ}}{x y : T} → MereProposition(x ≡ y) ⦄
where
private variable T : Type{ℓ}
HomotopyLevel-prop₊ : MereProposition(Names.HomotopyLevel(𝐒(n))(T))
HomotopyLevel-prop₊ {𝟎} = prop-universal ⦃ prop-p = prop-universal ⦃ prop-p = prop-eq ⦄ ⦄
HomotopyLevel-prop₊ {𝐒(n)} = prop-universal ⦃ prop-p = prop-universal ⦃ prop-p = HomotopyLevel-prop₊ {n} ⦄ ⦄
module _
(base₁ : ∀{ℓ}{A : Type{ℓ}} → HomotopyLevel(1)(A) → HomotopyLevel(2)(A))
where
HomotopyLevel-one-is-zero-step : HomotopyLevel(1)(T) → (∀{x y : T} → HomotopyLevel(0)(x ≡ y))
HomotopyLevel.proof(HomotopyLevel-one-is-zero-step h1 {x} {y}) = intro (HomotopyLevel.proof h1) (HomotopyLevel.proof(base₁ h1))
HomotopyLevel-successor-step : HomotopyLevel(𝐒(n))(T) → (∀{x y : T} → HomotopyLevel(n)(x ≡ y))
HomotopyLevel-successor-step {n = 𝟎} = HomotopyLevel-one-is-zero-step
HomotopyLevel-successor-step {n = 𝐒(n)} p = intro(HomotopyLevel.proof p)
HomotopyLevel-successor : HomotopyLevel(n)(T) → HomotopyLevel(𝐒(n))(T)
HomotopyLevel-successor {n = 0} h0 = MereProposition.uniqueness(unit-is-prop ⦃ proof = intro (Σ.left h0) (Σ.right h0) ⦄)
HomotopyLevel-successor {n = 1} = base₁
HomotopyLevel-successor {n = 𝐒(𝐒(n))} hssn = HomotopyLevel-successor {n = 𝐒(n)} hssn
{-
{- TODO: The zero case needs assumptions about the sigma type because it is not a mere proposition unless both A and equality are mere propositions. So first, prove if equality on the sigma type depends only on its components, and its types are mere propositions, then the sigma type is a mere proposition. Secondly, one can use that proof here
HomotopyLevel-prop : MereProposition(HomotopyLevel(n)(A))
HomotopyLevel-prop {𝟎} = intro {!!}
HomotopyLevel-prop {𝐒 n} = {!!}
-}
{-
module _ ⦃ equiv : Equiv{ℓₑ}(T) ⦄ ⦃ equiv-equiv : Equiv{ℓₑ}(Equiv._≡_ equiv) ⦄ where
-- TODO: ComputablyDecidable → UIP (https://homotopytypetheory.org/2012/03/30/a-direct-proof-of-hedbergs-theorem/)
-- TODO: http://www.cse.chalmers.se/~nad/listings/equality/Equality.Decidable-UIP.html
classical-to-uip : (∀{x y : T} → ((x ≡ y) ∨ (x ≢ y))) → UniqueIdentityProofs(T)
MereProposition.uniqueness (classical-to-uip {T = T} dec {x} {y}) {xy₁} {xy₂} = {!p xy₁!} where
{-
p : ∀{x y : T} → (x ≡ y) → Stmt
p {x}{y} eq with dec{x}{x} | dec{x}{y}
... | [∨]-introₗ xx | [∨]-introₗ xy = eq ≡ transitivity(_≡_) xx xy
... | [∨]-introₗ xx | [∨]-introᵣ nxy with () ← nxy eq
... | [∨]-introᵣ nxx | [∨]-introₗ _ with () ← nxx [≡]-intro
-}
dec-eq : ∀{x y} → (x ≡ y) → (x ≡ y)
dec-eq {x}{y} eq with dec{x}{y}
... | [∨]-introₗ xy = xy
... | [∨]-introᵣ nxy with () ← nxy eq
dec-eq-unique : ∀{x y}{xy₁ xy₂ : x ≡ y} → (dec-eq xy₁ ≡ dec-eq xy₂)
dec-eq-unique {x}{y} {xy₁} with dec{x}{y}
... | [∨]-introₗ _ = ?
... | [∨]-introᵣ nxy with () ← nxy xy₁
dec-eq-unit : ∀{x y}{eq : x ≡ y} → (eq ≡ dec-eq eq)
dec-eq-unit {x}{y}{eq} with dec{y}{y} | dec{x}{y}
... | [∨]-introₗ yy | [∨]-introₗ xy = {!!}
... | [∨]-introₗ yy | [∨]-introᵣ x₂ = {!!}
... | [∨]-introᵣ x₁ | [∨]-introₗ x₂ = {!!}
... | [∨]-introᵣ x₁ | [∨]-introᵣ x₂ = {!!}
{- p : ∀{x y : T} → (xy : x ≡ y) → (xy ≡ dec-eq(xy))
p {x}{y} [≡]-intro with dec{x}{x} | dec{x}{y}
... | [∨]-introₗ a | [∨]-introₗ x₁ = {![≡]-intro!}
... | [∨]-introₗ a | [∨]-introᵣ x₁ = {!!}
... | [∨]-introᵣ a | [∨]-introₗ x₁ = {!!}
... | [∨]-introᵣ a | [∨]-introᵣ x₁ = {!!}
-}
-}
-}
| {
"alphanum_fraction": 0.6160184575,
"avg_line_length": 48.544,
"ext": "agda",
"hexsha": "447eb4d7b6563f4bf25dca04a03244b8579cb39d",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Type/Properties/Homotopy/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Type/Properties/Homotopy/Proofs.agda",
"max_line_length": 348,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Type/Properties/Homotopy/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 2413,
"size": 6068
} |
--
-- Created by Dependently-Typed Lambda Calculus on 2019-05-15
-- records
-- Author: ice10
--
{-# OPTIONS --without-K --safe #-}
record List (A : Set) : Set where
coinductive
field
head : A
tail : List A
open List
-- | Bisimulation as equality
record _==_ (x : List A) (y : List A) : Set where
coinductive
field
refl-head : head x ≡ head y
refl-tail : tail x == tail y
open _==_
| {
"alphanum_fraction": 0.6225490196,
"avg_line_length": 17.7391304348,
"ext": "agda",
"hexsha": "2eb8cd6c2dcfb13a3500cbc7b85322003cfa1dc2",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2021-03-12T21:33:35.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-10-07T01:38:12.000Z",
"max_forks_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_forks_repo_licenses": [
"Apache-2.0"
],
"max_forks_repo_name": "dubinsky/intellij-dtlc",
"max_forks_repo_path": "testData/parse/agda/records.agda",
"max_issues_count": 16,
"max_issues_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_issues_repo_issues_event_max_datetime": "2021-03-15T17:04:36.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-03-30T04:29:32.000Z",
"max_issues_repo_licenses": [
"Apache-2.0"
],
"max_issues_repo_name": "dubinsky/intellij-dtlc",
"max_issues_repo_path": "testData/parse/agda/records.agda",
"max_line_length": 61,
"max_stars_count": 30,
"max_stars_repo_head_hexsha": "ee25a3a81dacebfe4449de7a9aaff029171456be",
"max_stars_repo_licenses": [
"Apache-2.0"
],
"max_stars_repo_name": "dubinsky/intellij-dtlc",
"max_stars_repo_path": "testData/parse/agda/records.agda",
"max_stars_repo_stars_event_max_datetime": "2022-01-29T13:18:34.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-05-11T16:26:38.000Z",
"num_tokens": 132,
"size": 408
} |
-- This module introduces implicit arguments.
module Implicit where
-- In Agda you can omit things that the type checker can figure out for itself.
-- This is a crucial feature in a monomorphic language, since you would
-- otherwise be overwhelmed by type arguments.
-- Let's revisit the identity function from 'Introduction.Basics'.
id' : (A : Set) -> A -> A
id' A x = x
-- Since Agda is monomorphic we have to take the type A as an argument. So when
-- using the identity function we have to provide the type explicitly.
data Nat : Set where
zero : Nat
suc : Nat -> Nat
one : Nat
one = id' Nat (suc zero)
-- Always having to provide the type argument to the identity function would of
-- course be very tedious, and seemingly unnecessary. We would expect the type
-- checker to be able to figure out what it should be by looking at the second
-- argument. And indeed the type checker can do this.
-- One way of indicating that the type checker will have figure something out
-- for itself is to write an underscore (_) instead of the term. So when
-- applying the identity function we can write
two : Nat
two = id' _ (suc one)
-- Now the type checker will try to figure out what the _ should be, and in
-- this case it will have no problems doing so. If it should fail to infer the
-- value of an _ it will issue an error message.
-- In the case of the identity function we expect the type argument to always
-- be inferrable so it would be nice if we could avoid having to write the _.
-- This can be achieved by declaring the first argument as an implicit
-- argument.
id : {A : Set} -> A -> A -- implicit arguments are enclosed in curly braces
id x = x -- now we don't have to mention A in the left-hand side
three : Nat
three = id (suc two)
-- If, for some reason, an implicit argument cannot be inferred it can be given
-- explicitly by enclosing it in curly braces :
four : Nat
four = id {Nat} (suc three)
-- To summarise we give a bunch of possible variants of the identity function
-- and its use.
-- Various definitions of the identity function. Definitions 0 through 3 are
-- all equivalent, as are definitions 4 through 6.
id0 : (A : Set) -> A -> A
id0 A x = x
id1 : (A : Set) -> A -> A
id1 _ x = x -- in left-hand sides _ means "don't care"
id2 : (A : Set) -> A -> A
id2 = \A x -> x
id3 = \(A : Set)(x : A) -> x -- the type signature can be omitted for definitions
-- of the form x = e if the type of e can be
-- inferred.
id4 : {A : Set} -> A -> A
id4 x = x
id5 : {A : Set} -> A -> A
id5 {A} x = x
id6 : {A : Set} -> A -> A
id6 = \x -> x
id7 = \{A : Set}(x : A) -> x
id8 : {A : Set} -> A -> A
id8 = \{A} x -> x -- this doesn't work since the type checker assumes
-- that the implicit A has been has been omitted in
-- the left-hand side (as in id6).
-- Various uses of the identity function.
zero0 = id0 Nat zero
zero1 = id0 _ zero -- in right-hand sides _ means "go figure"
zero2 = id4 zero
zero3 = id4 {Nat} zero
zero4 = id4 {_} zero -- This is equivalent to zero2, but it can be useful if
-- a function has two implicit arguments and you need
-- to provide the second one (when you provide an
-- implicit argument explicitly it is assumed to be the
-- left-most one).
-- In this module we have looked at implicit arguments as a substitute for
-- polymorphism. The implicit argument mechanism is more general than that and
-- not limited to inferring the values of type arguments. For more information
-- on implicit arguments see, for instance
-- 'Introduction.Data.ByRecursion'
| {
"alphanum_fraction": 0.6523468576,
"avg_line_length": 33.972972973,
"ext": "agda",
"hexsha": "ef2d4fa9ec5f29ceeb0fdb3953b13f44f173c44f",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "andrejtokarcik/agda-semantics",
"max_forks_repo_path": "tests/covered/Implicit.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "andrejtokarcik/agda-semantics",
"max_issues_repo_path": "tests/covered/Implicit.agda",
"max_line_length": 82,
"max_stars_count": 3,
"max_stars_repo_head_hexsha": "dc333ed142584cf52cc885644eed34b356967d8b",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "andrejtokarcik/agda-semantics",
"max_stars_repo_path": "tests/covered/Implicit.agda",
"max_stars_repo_stars_event_max_datetime": "2018-12-06T17:24:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-08-10T15:33:56.000Z",
"num_tokens": 961,
"size": 3771
} |
------------------------------------------------------------------------------
-- FOTC looping (error) combinator
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module FOTC.Base.Loop where
open import FOTC.Base
------------------------------------------------------------------------------
postulate error : D
-- Conversion rule
--
-- The equation error-eq adds anything to the logic (because
-- reflexivity is already an axiom of equality), therefore we won't
-- add this equation as a first-order logic axiom.
--
-- postulate error-eq : error ≡ error
| {
"alphanum_fraction": 0.4442988204,
"avg_line_length": 30.52,
"ext": "agda",
"hexsha": "6d47230b95b3fc3b21fc925545c35617c18947fe",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2018-03-14T08:50:00.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-09-19T14:18:30.000Z",
"max_forks_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/fotc",
"max_forks_repo_path": "src/fot/FOTC/Base/Loop.agda",
"max_issues_count": 2,
"max_issues_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_issues_repo_issues_event_max_datetime": "2017-01-01T14:34:26.000Z",
"max_issues_repo_issues_event_min_datetime": "2016-10-12T17:28:16.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/fotc",
"max_issues_repo_path": "src/fot/FOTC/Base/Loop.agda",
"max_line_length": 78,
"max_stars_count": 11,
"max_stars_repo_head_hexsha": "2fc9f2b81052a2e0822669f02036c5750371b72d",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/fotc",
"max_stars_repo_path": "src/fot/FOTC/Base/Loop.agda",
"max_stars_repo_stars_event_max_datetime": "2021-09-12T16:09:54.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:53:42.000Z",
"num_tokens": 128,
"size": 763
} |
{-# OPTIONS --without-K --safe #-}
open import Categories.Category
module Categories.Functor.Hom.Properties {o ℓ e} (C : Category o ℓ e) where
open import Categories.Functor.Hom.Properties.Covariant C public
open import Categories.Functor.Hom.Properties.Contra C public
| {
"alphanum_fraction": 0.7765567766,
"avg_line_length": 30.3333333333,
"ext": "agda",
"hexsha": "2a6b3be1c95bcac1746af5515e5207647b1b11e0",
"lang": "Agda",
"max_forks_count": 64,
"max_forks_repo_forks_event_max_datetime": "2022-03-14T02:00:59.000Z",
"max_forks_repo_forks_event_min_datetime": "2019-06-02T16:58:15.000Z",
"max_forks_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Code-distancing/agda-categories",
"max_forks_repo_path": "src/Categories/Functor/Hom/Properties.agda",
"max_issues_count": 236,
"max_issues_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_issues_repo_issues_event_max_datetime": "2022-03-28T14:31:43.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-01T14:53:54.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Code-distancing/agda-categories",
"max_issues_repo_path": "src/Categories/Functor/Hom/Properties.agda",
"max_line_length": 75,
"max_stars_count": 279,
"max_stars_repo_head_hexsha": "d9e4f578b126313058d105c61707d8c8ae987fa8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Trebor-Huang/agda-categories",
"max_stars_repo_path": "src/Categories/Functor/Hom/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T00:40:14.000Z",
"max_stars_repo_stars_event_min_datetime": "2019-06-01T14:36:40.000Z",
"num_tokens": 67,
"size": 273
} |
{-# OPTIONS --safe #-}
module Cubical.Data.FinData.DepFinVec where
open import Cubical.Foundations.Prelude
open import Cubical.Data.Nat using (ℕ; zero; suc; _+_; _·_; +-assoc)
open import Cubical.Data.FinData.Base
open import Cubical.Data.FinData.Properties
private
variable
ℓ ℓ' : Level
{-
WARNING : If someone use dependent vector in a general case.
One always think about the following definition.
Yet because of the definition one to add (toℕ k).
Which is going to introduce a lot of issues.
One may consider depVec rather than depFinVec to avoid this issue?
-}
depFinVec : ((n : ℕ) → Type ℓ) → (m : ℕ) → Type ℓ
depFinVec G m = (k : Fin m) → G (toℕ k)
| {
"alphanum_fraction": 0.6703755216,
"avg_line_length": 27.6538461538,
"ext": "agda",
"hexsha": "e5ce4c40d913be29617af8f24cc4e637883cdf75",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "thomas-lamiaux/cubical",
"max_forks_repo_path": "Cubical/Data/FinData/DepFinVec.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "thomas-lamiaux/cubical",
"max_issues_repo_path": "Cubical/Data/FinData/DepFinVec.agda",
"max_line_length": 78,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "58c0b83bb0fed0dc683f3d29b1709effe51c1689",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "thomas-lamiaux/cubical",
"max_stars_repo_path": "Cubical/Data/FinData/DepFinVec.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 199,
"size": 719
} |
{-# OPTIONS --without-K --rewriting #-}
open import HoTT
open import homotopy.HSpace renaming (HSpaceStructure to HSS)
open import homotopy.WedgeExtension
module homotopy.Pi2HSusp where
module Pi2HSusp {i} {X : Ptd i}
{{_ : has-level 1 (de⊙ X)}}
{{_ : is-connected 0 (de⊙ X)}}
(H-X : HSS X) where
{- TODO this belongs somewhere else, but where? -}
private
Type=-ext : ∀ {i} {A B : Type i} (p q : A == B)
→ (coe p ∼ coe q) → p == q
Type=-ext p q α =
! (ua-η p)
∙ ap ua (Subtype=-out is-equiv-prop (λ= α))
∙ ua-η q
module μ = ConnectedHSpace H-X
μ = μ.μ
private
A = de⊙ X
e = pt X
back : south == north
back = ! (merid e)
private
P : Susp A → Type i
P x = Trunc 1 (north == x)
module Codes = SuspRec A A (λ a → ua (μ.r-equiv a))
Codes : Susp A → Type i
Codes = Codes.f
Codes-level : (x : Susp A) → has-level 1 (Codes x)
Codes-level = Susp-elim ⟨⟩ ⟨⟩
(λ _ → prop-has-all-paths-↓)
encode'₀ : {x : Susp A} → (north == x) → Codes x
encode'₀ α = transport Codes α e
encode' : {x : Susp A} → P x → Codes x
encode' {x} = Trunc-rec {{Codes-level x}} encode'₀
import homotopy.SuspAdjointLoop as SAL
η : A → north == north
η = fst (SAL.η X)
decodeN' : A → P north
decodeN' = [_] ∘ η
abstract
transport-Codes-mer : (a a' : A)
→ transport Codes (merid a) a' == μ a a'
transport-Codes-mer a a' =
coe (ap Codes (merid a)) a'
=⟨ Codes.merid-β a |in-ctx (λ w → coe w a') ⟩
coe (ua (μ.r-equiv a)) a'
=⟨ coe-β (μ.r-equiv a) a' ⟩
μ a a' ∎
transport-Codes-mer-e-! : (a : A)
→ transport Codes back a == a
transport-Codes-mer-e-! a =
coe (ap Codes back) a
=⟨ ap-! Codes (merid e) |in-ctx (λ w → coe w a) ⟩
coe (! (ap Codes (merid e))) a
=⟨ Codes.merid-β e |in-ctx (λ w → coe (! w) a) ⟩
coe (! (ua (μ.r-equiv e))) a
=⟨ Type=-ext (ua (μ.r-equiv e)) idp (λ x → coe-β _ x ∙ μ.unit-l x)
|in-ctx (λ w → coe (! w) a) ⟩
coe (! idp) a ∎
abstract
encode'-decodeN' : (a : A) → encode' (decodeN' a) == a
encode'-decodeN' a =
transport Codes (merid a ∙ back) e
=⟨ transp-∙ {B = Codes} (merid a) back e ⟩
transport Codes back (transport Codes (merid a) e)
=⟨ transport-Codes-mer a e ∙ μ.unit-r a
|in-ctx (λ w → transport Codes back w) ⟩
transport Codes back a
=⟨ transport-Codes-mer-e-! a ⟩
a ∎
add-path-and-inverse-l : ∀ {k} {B : Type k} {x y z : B}
→ (p : y == x) (q : y == z)
→ q == (p ∙ ! p) ∙ q
add-path-and-inverse-l p q = ap (λ s → s ∙ q) (! (!-inv-r p))
add-path-and-inverse-r : ∀ {k} {B : Type k} {x y z : B}
→ (p : x == y) (q : z == y)
→ p == (p ∙ ! q) ∙ q
add-path-and-inverse-r p q =
! (∙-unit-r p) ∙ ap (λ s → p ∙ s) (! (!-inv-l q)) ∙ ! (∙-assoc p (! q) q)
homomorphism-l : (a' : A) → merid (μ e a') == (merid a' ∙ back) ∙ merid e
homomorphism-l a' = ap merid (μ.unit-l a') ∙ add-path-and-inverse-r (merid a') (merid e)
homomorphism-r : (a : A) → merid (μ a e) == (merid e ∙ back) ∙ merid a
homomorphism-r a = ap merid (μ.unit-r a) ∙ add-path-and-inverse-l (merid e) (merid a)
homomorphism-l₁ : (a' : A) → [ merid (μ e a') ]₁ == [ (merid a' ∙ back) ∙ merid e ]₁
homomorphism-l₁ = ap [_]₁ ∘ homomorphism-l
homomorphism-r₁ : (a : A) → [ merid (μ a e) ]₁ == [ (merid e ∙ back) ∙ merid a ]₁
homomorphism-r₁ = ap [_]₁ ∘ homomorphism-r
abstract
homomorphism-args : args {i} {i} {A} {e} {A} {e}
homomorphism-args =
record {
m = -1; n = -1;
P = λ a a' → (Q a a' , ⟨⟩);
f = homomorphism-r₁;
g = homomorphism-l₁;
p = ap (λ {(p₁ , p₂) → ap [_] (ap merid p₁ ∙ p₂)})
(pair×= (! μ.coh) (coh (merid e)))
}
where
Q : A → A → Type i
Q a a' = [ merid (μ a a' ) ]₁ == [ (merid a' ∙ back) ∙ merid a ]₁
coh : {B : Type i} {b b' : B} (p : b == b')
→ add-path-and-inverse-l p p == add-path-and-inverse-r p p
coh idp = idp
module HomomorphismExt =
WedgeExt {i} {i} {A} {e} {A} {e} homomorphism-args
homomorphism : (a a' : A)
→ [ merid (μ a a' ) ]₁ == [ (merid a' ∙ back) ∙ merid a ]₁
homomorphism = HomomorphismExt.ext
homomorphism-β-l : (a' : A) → homomorphism e a' == homomorphism-l₁ a'
homomorphism-β-l = HomomorphismExt.β-r
homomorphism-β-r : (a : A) → homomorphism a e == homomorphism-r₁ a
homomorphism-β-r = HomomorphismExt.β-l
decode' : {x : Susp A} → Codes x → P x
decode' {x} = Susp-elim {P = λ x → Codes x → P x}
decodeN'
(λ a → [ merid a ])
(λ a → ↓-→-from-transp (λ= $ STS a))
x
where
abstract
STS : (a a' : A) → transport P (merid a) (decodeN' a')
== [ merid (transport Codes (merid a) a') ]
STS a a' =
transport P (merid a) [ merid a' ∙ back ]
=⟨ transport-Trunc' (north ==_) (merid a) _ ⟩
[ transport (north ==_) (merid a) (merid a' ∙ back) ]
=⟨ ap [_] (transp-cst=idf {A = Susp A} (merid a) _) ⟩
[ (merid a' ∙ back) ∙ merid a ]
=⟨ ! (homomorphism a a') ⟩
[ merid (μ a a') ]
=⟨ ap ([_] ∘ merid) (! (transport-Codes-mer a a')) ⟩
[ merid (transport Codes (merid a) a') ] ∎
decode'-encode' : {x : Susp A} (tα : P x)
→ decode' {x} (encode' {x} tα) == tα
decode'-encode' {x} = Trunc-elim
{P = λ tα → decode' {x} (encode' {x} tα) == tα}
-- FIXME: Agda very slow (looping?) when omitting the next line
{{λ _ → =-preserves-level Trunc-level}}
(J (λ y p → decode' {y} (encode' {y} [ p ]) == [ p ])
(ap [_] (!-inv-r (merid e))))
eq' : Trunc 1 (Ω (⊙Susp (de⊙ X))) ≃ A
eq' = equiv encode' decodeN' encode'-decodeN' decode'-encode'
⊙decodeN : ⊙Trunc 1 X ⊙→ ⊙Trunc 1 (⊙Ω (⊙Susp (de⊙ X)))
⊙decodeN = ⊙Trunc-fmap (SAL.η X)
decodeN : Trunc 1 A → Trunc 1 (Ω (⊙Susp (de⊙ X)))
decodeN = fst ⊙decodeN
encodeN : Trunc 1 (Ω (⊙Susp (de⊙ X))) → Trunc 1 A
encodeN = [_] ∘ encode' {x = north}
⊙encodeN : ⊙Trunc 1 (⊙Ω (⊙Susp (de⊙ X))) ⊙→ ⊙Trunc 1 X
⊙encodeN = encodeN , idp
eq : Trunc 1 (Ω (⊙Susp (de⊙ X))) ≃ Trunc 1 A
eq = encodeN ,
replace-inverse (snd ((unTrunc-equiv A)⁻¹ ∘e eq'))
{decodeN}
(Trunc-elim (λ _ → idp))
⊙eq : ⊙Trunc 1 (⊙Ω (⊙Susp (de⊙ X))) ⊙≃ ⊙Trunc 1 X
⊙eq = ≃-to-⊙≃ eq idp
abstract
⊙decodeN-⊙encodeN : ⊙decodeN ⊙∘ ⊙encodeN == ⊙idf _
⊙decodeN-⊙encodeN =
⊙λ=' {X = ⊙Trunc 1 (⊙Ω (⊙Susp (de⊙ X)))} {Y = ⊙Trunc 1 (⊙Ω (⊙Susp (de⊙ X)))}
decode'-encode' $
↓-idf=cst-in $
! (∙-unit-r (ap [_] (!-inv-r (merid (pt X)))))
⊙<–-⊙eq : ⊙<– ⊙eq == ⊙decodeN
⊙<–-⊙eq =
–>-is-inj (pre⊙∘-equiv {Z = ⊙Trunc 1 (⊙Ω (⊙Susp (de⊙ X)))} ⊙eq) (⊙<– ⊙eq) ⊙decodeN $
(⊙<– ⊙eq) ⊙∘ ⊙encodeN
=⟨ ⊙<–-inv-l ⊙eq ⟩
⊙idf _
=⟨ ! ⊙decodeN-⊙encodeN ⟩
⊙decodeN ⊙∘ ⊙encodeN =∎
⊙encodeN-⊙decodeN : ⊙encodeN ⊙∘ ⊙decodeN == ⊙idf _
⊙encodeN-⊙decodeN =
⊙encodeN ⊙∘ ⊙decodeN
=⟨ ap (⊙encodeN ⊙∘_) (! ⊙<–-⊙eq) ⟩
⊙encodeN ⊙∘ ⊙<– ⊙eq
=⟨ ⊙<–-inv-r ⊙eq ⟩
⊙idf _ =∎
⊙eq⁻¹ : ⊙Trunc 1 X ⊙≃ ⊙Trunc 1 (⊙Ω (⊙Susp (de⊙ X)))
⊙eq⁻¹ = ⊙decodeN , snd (eq ⁻¹)
iso : Ω^S-group 0 (⊙Trunc 1 (⊙Ω (⊙Susp (de⊙ X))))
≃ᴳ Ω^S-group 0 (⊙Trunc 1 X)
iso = Ω^S-group-emap 0 ⊙eq
abstract
π₂-Susp : πS 1 (⊙Susp (de⊙ X)) ≃ᴳ πS 0 X
π₂-Susp =
πS 1 (⊙Susp (de⊙ X))
≃ᴳ⟨ πS-Ω-split-iso 0 (⊙Susp (de⊙ X)) ⟩
πS 0 (⊙Ω (⊙Susp (de⊙ X)))
≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso 0 (⊙Ω (⊙Susp (de⊙ X))) ⁻¹ᴳ ⟩
Ω^S-group 0 (⊙Trunc 1 (⊙Ω (⊙Susp (de⊙ X))))
≃ᴳ⟨ iso ⟩
Ω^S-group 0 (⊙Trunc 1 X)
≃ᴳ⟨ Ω^S-group-Trunc-fuse-diag-iso 0 X ⟩
πS 0 X ≃ᴳ∎
module Pi2HSuspNaturality {i} {X Y : Ptd i}
(f : X ⊙→ Y)
{{_ : has-level 1 (de⊙ X)}} {{_ : has-level 1 (de⊙ Y)}}
{{_ : is-connected 0 (de⊙ X)}} {{_ : is-connected 0 (de⊙ Y)}}
(H-X : HSS X) (H-Y : HSS Y) where
import homotopy.SuspAdjointLoop as SAL
private
module Π₂X = Pi2HSusp H-X
module Π₂Y = Pi2HSusp H-Y
⊙decodeN-natural :
Π₂Y.⊙decodeN ◃⊙∘
⊙Trunc-fmap f ◃⊙idf
=⊙∘
⊙Trunc-fmap (⊙Ω-fmap (⊙Susp-fmap (fst f))) ◃⊙∘
Π₂X.⊙decodeN ◃⊙idf
⊙decodeN-natural = =⊙∘-in $
Π₂Y.⊙decodeN ⊙∘ ⊙Trunc-fmap f
=⟨ ⊙λ= (⊙Trunc-fmap-⊙∘ (SAL.η Y) f) ⟩
⊙Trunc-fmap (SAL.η Y ⊙∘ f)
=⟨ ap ⊙Trunc-fmap (SAL.η-natural f) ⟩
⊙Trunc-fmap (⊙Ω-fmap (⊙Susp-fmap (fst f)) ⊙∘ SAL.η X)
=⟨ ! (⊙λ= (⊙Trunc-fmap-⊙∘ (⊙Ω-fmap (⊙Susp-fmap (fst f))) (SAL.η X))) ⟩
⊙Trunc-fmap (⊙Ω-fmap (⊙Susp-fmap (fst f))) ⊙∘ Π₂X.⊙decodeN =∎
⊙encodeN-natural :
Π₂Y.⊙encodeN ◃⊙∘
⊙Trunc-fmap (⊙Ω-fmap (⊙Susp-fmap (fst f))) ◃⊙idf
=⊙∘
⊙Trunc-fmap f ◃⊙∘
Π₂X.⊙encodeN ◃⊙idf
⊙encodeN-natural =
Π₂Y.⊙encodeN ◃⊙∘
⊙Trunc-fmap (⊙Ω-fmap (⊙Susp-fmap (fst f))) ◃⊙idf
=⊙∘⟨ 2 & 0 & =⊙∘-in {gs = Π₂X.⊙decodeN ◃⊙∘ Π₂X.⊙encodeN ◃⊙idf} $
! Π₂X.⊙decodeN-⊙encodeN ⟩
Π₂Y.⊙encodeN ◃⊙∘
⊙Trunc-fmap (⊙Ω-fmap (⊙Susp-fmap (fst f))) ◃⊙∘
Π₂X.⊙decodeN ◃⊙∘
Π₂X.⊙encodeN ◃⊙idf
=⊙∘⟨ 1 & 2 & !⊙∘ ⊙decodeN-natural ⟩
Π₂Y.⊙encodeN ◃⊙∘
Π₂Y.⊙decodeN ◃⊙∘
⊙Trunc-fmap f ◃⊙∘
Π₂X.⊙encodeN ◃⊙idf
=⊙∘⟨ 0 & 2 & =⊙∘-in {gs = ⊙idf-seq} Π₂Y.⊙encodeN-⊙decodeN ⟩
⊙Trunc-fmap f ◃⊙∘
Π₂X.⊙encodeN ◃⊙idf ∎⊙∘
| {
"alphanum_fraction": 0.4922323899,
"avg_line_length": 31.9659863946,
"ext": "agda",
"hexsha": "d86e4e7396f144839331da3f3f2dff69a829f69c",
"lang": "Agda",
"max_forks_count": 50,
"max_forks_repo_forks_event_max_datetime": "2022-02-14T03:03:25.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-10T01:48:08.000Z",
"max_forks_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "AntoineAllioux/HoTT-Agda",
"max_forks_repo_path": "theorems/homotopy/Pi2HSusp.agda",
"max_issues_count": 31,
"max_issues_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_issues_repo_issues_event_max_datetime": "2021-10-03T19:15:25.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-03-05T20:09:00.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "AntoineAllioux/HoTT-Agda",
"max_issues_repo_path": "theorems/homotopy/Pi2HSusp.agda",
"max_line_length": 90,
"max_stars_count": 294,
"max_stars_repo_head_hexsha": "1037d82edcf29b620677a311dcfd4fc2ade2faa6",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "AntoineAllioux/HoTT-Agda",
"max_stars_repo_path": "theorems/homotopy/Pi2HSusp.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-20T13:54:45.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T16:23:23.000Z",
"num_tokens": 4517,
"size": 9398
} |
module Ex2 where
----------------------------------------------------------------------------
-- EXERCISE 2 -- STRUCTURE WITH VECTORS
--
-- VALUE: 15%
-- DEADLINE: 5pm, Friday 23 October (week 5)
--
-- DON'T SUBMIT, COMMIT!
--
-- The purpose of this exercise is to introduce you to some useful
-- mathematical structures and build good tools for working with
-- vectors
----------------------------------------------------------------------------
open import CS410-Prelude
open import CS410-Monoid
open import CS410-Nat
open import CS410-Vec
open import CS410-Functor
-- HINT: your tasks are heralded with the eminently searchable tag, "???"
----------------------------------------------------------------------------
-- ??? 2.1 replicattion to make a constant vector (score: 1 / 1)
----------------------------------------------------------------------------
vec : forall {n X} -> X -> Vec X n
vec {zero} x = []
vec {suc n} x = x :: vec x
-- HINT: you may need to override default invisibility
-- SUSPICIOUS: no specification? why not?
----------------------------------------------------------------------------
-- ??? 2.2 vectorised application (score: 1 / 1)
----------------------------------------------------------------------------
-- implement the operator which takes the same number of functions
-- and arguments and computes the applications in corresponding
-- positions
vapp : forall {n X Y} -> Vec (X -> Y) n -> Vec X n -> Vec Y n
vapp [] xs = []
vapp (x :: fs) (y :: xs) = x y :: vapp fs xs
----------------------------------------------------------------------------
-- ??? 2.3 one-liners (score: 1 / 1)
----------------------------------------------------------------------------
-- implement map and zip for vectors using vec and vapp
-- no pattern matching or recursion permitted
vmap : forall {n X Y} -> (X -> Y) -> Vec X n -> Vec Y n
vmap f xs = vapp (vec f) xs
vzip : forall {n X Y} -> Vec X n -> Vec Y n -> Vec (X * Y) n
vzip xs ys = vapp (vmap _,_ xs) ys
----------------------------------------------------------------------------
-- ??? 2.4 unzipping (score: 2 / 2)
----------------------------------------------------------------------------
-- implement unzipping as a view, showing that every vector of pairs
-- is given by zipping two vectors
-- you'll need to complete the view type yourselfiew type yourself
data Unzippable {X Y n} : Vec (X * Y) n -> Set where
unzipped : (xs : Vec X n)(ys : Vec Y n) -> Unzippable (vzip xs ys)
unzip : forall {X Y n}(xys : Vec (X * Y) n) -> Unzippable xys
unzip [] = unzipped [] []
unzip (fst , snd :: []) = unzipped (fst :: []) (snd :: []) -- Conor: redundant line
unzip (fst , snd :: xys) with unzip xys
unzip (fst , snd :: .(vapp (vapp (vec _,_) xs) ys)) | unzipped xs ys =
unzipped (fst :: xs) (snd :: ys)
----------------------------------------------------------------------------
-- ??? 2.5 vectors are applicative (score: 2 / 2)
----------------------------------------------------------------------------
-- prove the Applicative laws for vectors
VecApp : forall n -> Applicative \X -> Vec X n
VecApp n = record
{ pure = vec
; _<*>_ = vapp
; identity = \ {X} v -> VecAppIdentity v
; composition = λ u v w → VecAppComposition w v u
; homomorphism = λ f x → VecAppHomomorphism n x f
; interchange = λ {X} {Y} u y → VecAppInterchange y u
} where
-- lemmas go here
-- Goal: vapp (vec (λ x → x)) v == v
VecAppIdentity : {X : Set} -> {n : Nat} -> (v : Vec X n) ->
vapp (vec (\ x -> x)) v == v
VecAppIdentity [] = refl
VecAppIdentity (x :: v) rewrite VecAppIdentity v = refl
-- Goal: vapp (vapp (vapp (vec (λ f g x → f (g x))) u) v) w == vapp u (vapp v w)
VecAppComposition : {Z : Set} -> {Y : Set} -> {X : Set} -> {n : Nat} ->
(w : Vec X n) -> (v : Vec (X → Z) n) -> (u : Vec (Z → Y) n)->
vapp (vapp (vapp (vec (λ f g x → f (g x))) u) v) w == vapp u (vapp v w)
VecAppComposition [] [] [] = refl
VecAppComposition (x :: w) (x₁ :: v) (x₂ :: u)rewrite VecAppComposition w v u = refl
-- Goal: vec (f x) == vapp (vec f) (vec x)
VecAppHomomorphism : {X : Set} -> {Y : Set} -> (q : Nat) -> (x : X) -> (f : X → Y) ->
vec {q} (f x) == vapp (vec f) (vec x)
VecAppHomomorphism zero x f = refl
VecAppHomomorphism (suc q) x f rewrite VecAppHomomorphism q x f = refl
-- Goal: vapp u (vec y) == vapp (vec (λ f → f y)) u
VecAppInterchange : {Y : Set} -> {X : Set} -> {n : Nat} -> (y : X) -> (u : Vec (X → Y) n) -> vapp u (vec y) == vapp (vec (λ f → f y)) u
VecAppInterchange u [] = refl
VecAppInterchange u (x :: y) rewrite VecAppInterchange u y = refl
----------------------------------------------------------------------------
-- ??? 2.6 vectors are traversable (score: ? / 1)
----------------------------------------------------------------------------
-- show that vectors are traversable; make sure your traverse function
-- acts on the elements of the input once each, left-to-right
VecTrav : forall n -> Traversable \X -> Vec X n
VecTrav zero = record { traverse = λ {F} z {A} {B} _ _ → Applicative.pure z [] }
VecTrav (suc n) = record { traverse = λ x x₁ x₂ → {!!} }
--VecTrav zero = record { traverse = λ {F} z {A} {B} _ _ → Applicative.pure z [] }
--VecTrav (suc n) = record { traverse = λ {F} x y z → {!!} }
----------------------------------------------------------------------------
-- ??? 2.7 monoids make constant applicatives (score: ? / 1)
----------------------------------------------------------------------------
-- Show that every monoid gives rise to a degenerate applicative functor
MonCon : forall {X} -> Monoid X -> Applicative \_ -> X
MonCon M = record
{ pure = λ x → Monoid.e M
; _<*>_ = op
; identity = λ v → Monoid.lunit M v
; composition = λ u v w → {!!}
; homomorphism = λ f x → {!!}
; interchange = λ u y → {!!}
} where open Monoid M
--MonConCoposition : (w : Set) -> (v : Set) -> (u : Set) -> op (op (op e u) v) w == op u (op v w)
--MonConCoposition x = ?
----------------------------------------------------------------------------
-- ??? 2.8 vector combine (score: ? / 1)
----------------------------------------------------------------------------
-- Using your answers to 2.6 and 2.7, rather than any new vector recursion,
-- show how to compute the result of combining all the elements of a vector
-- when they belong to some monoid.
vcombine : forall {X} -> Monoid X -> forall {n} -> Vec X n -> X
vcombine M = {!!}
----------------------------------------------------------------------------
-- ??? 2.9 scalar product (score: ? / 1)
----------------------------------------------------------------------------
-- Show how to compute the scalar ("dot") product of two vectors of numbers.
-- (Multiply elements in corresponding positions; compute total of products.)
-- HINT: think zippily, then combine
vdot : forall {n} -> Vec Nat n -> Vec Nat n -> Nat
vdot xs ys = ?
----------------------------------------------------------------------------
-- MATRICES
----------------------------------------------------------------------------
-- let's say that an h by w matrix is a column h high of rows w wide
Matrix : Set -> Nat * Nat -> Set
Matrix X (h , w) = Vec (Vec X w) h
----------------------------------------------------------------------------
-- ??? 2.11 identity matrix (score: ? / 1)
----------------------------------------------------------------------------
-- show how to construct the identity matrix of a given size, with
-- 1 on the main diagonal and 0 everywhere else, e.g,
-- (1 :: 0 :: 0 :: []) ::
-- (0 :: 1 :: 0 :: []) ::
-- (0 :: 0 :: 1 :: []) ::
-- []
idMat : forall {n} -> Matrix Nat (n , n)
idMat = {!!}
-- HINT: you may need to do recursion on the side, but then you
-- can make good use of vec and vapp
----------------------------------------------------------------------------
-- ??? 2.10 transposition (score: ? / 1)
----------------------------------------------------------------------------
-- show how to transpose matrices
-- HINT: use traverse, and it's a one-liner
transpose : forall {X m n} -> Matrix X (m , n) -> Matrix X (n , m)
transpose = {!!}
----------------------------------------------------------------------------
-- ??? 2.11 multiplication (score: ? / 2)
----------------------------------------------------------------------------
-- implement matrix multiplication
-- HINT: transpose and vdot can be useful
matMult : forall {m n p} ->
Matrix Nat (m , n) -> Matrix Nat (n , p) -> Matrix Nat (m , p)
matMult xmn xnp = {!!}
| {
"alphanum_fraction": 0.4154447703,
"avg_line_length": 38.5230125523,
"ext": "agda",
"hexsha": "6cc3063cd82d714978a76e6a7e21f55413abfa13",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_forks_repo_licenses": [
"CC0-1.0"
],
"max_forks_repo_name": "clarkdm/CS410",
"max_forks_repo_path": "Ex2.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"CC0-1.0"
],
"max_issues_repo_name": "clarkdm/CS410",
"max_issues_repo_path": "Ex2.agda",
"max_line_length": 137,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "523a8749f49c914bcd28402116dcbe79a78dbbf4",
"max_stars_repo_licenses": [
"CC0-1.0"
],
"max_stars_repo_name": "clarkdm/CS410",
"max_stars_repo_path": "Ex2.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 2273,
"size": 9207
} |
module Data.Vec.Membership where
open import Data.Vec as Vec
open import Data.Vec.Any
open import Data.Vec.Any.Membership.Propositional
open import Data.Product as Prod hiding (map)
open import Function using (_∘_; id)
find : ∀ {a p}{A : Set a}{P : A → Set p}{n}{xs : Vec A n} →
Any P xs → ∃ λ x → x ∈ xs × P x
-- find = Prod.map id (Prod.map ∈′→∈ id) ∘ find′
find (here px) = , here , px
find (there p) = Prod.map id (Prod.map there id) (find p)
lose : ∀ {a p}{A : Set a}{P : A → Set p}{n x}{xs : Vec A n} →
x ∈ xs → P x → Any P xs
lose = lose′ ∘ ∈→∈′
open import Function.Related as Related public using (Kind; Symmetric-kind)
renaming (implication to subset
; reverse-implication to superset
; equivalence to set
; injection to subbag
; reverse-injection to superbag
; bijection to bag)
_∼[_]_ : ∀ {a m n}{A : Set a} → Vec A m → Kind → Vec A n → Set _
xs ∼[ k ] ys = ∀ {x} → (x ∈ xs) Related.∼[ k ] (x ∈ ys)
| {
"alphanum_fraction": 0.5711462451,
"avg_line_length": 32.6451612903,
"ext": "agda",
"hexsha": "a60c19eb29d17aab068bbe4df4e307136f9fc22b",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "tizmd/agda-vector-any",
"max_forks_repo_path": "src/Data/Vec/Membership.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "tizmd/agda-vector-any",
"max_issues_repo_path": "src/Data/Vec/Membership.agda",
"max_line_length": 75,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "1a60f72b9ea1dd61845311ee97dc380aa542b874",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "tizmd/agda-vector-any",
"max_stars_repo_path": "src/Data/Vec/Membership.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 336,
"size": 1012
} |
-- Andreas, 2022-03-02, issue #5784, reported by Trebor-Huang
-- Test case by Ulf Norell
-- primEraseEquality needs to normalized the sides of the equation,
-- not just reduce them.
open import Agda.Builtin.Nat
open import Agda.Builtin.Equality
open import Agda.Builtin.Equality.Erase
data Wrap : Set where
wrap : Nat → Wrap
test : wrap (1 + 1) ≡ wrap 2
test = primEraseEquality refl
thm : test ≡ refl
thm = refl
-- Should succeed
-- WAS: primEraseEquality refl != refl
| {
"alphanum_fraction": 0.730125523,
"avg_line_length": 21.7272727273,
"ext": "agda",
"hexsha": "90b7e3749359e0352d88456721b2f0e6ef7636a9",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_forks_repo_licenses": [
"BSD-2-Clause"
],
"max_forks_repo_name": "KDr2/agda",
"max_forks_repo_path": "test/Succeed/Issue5784.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_issues_repo_issues_event_max_datetime": "2021-11-24T08:31:10.000Z",
"max_issues_repo_issues_event_min_datetime": "2021-10-18T08:12:24.000Z",
"max_issues_repo_licenses": [
"BSD-2-Clause"
],
"max_issues_repo_name": "KDr2/agda",
"max_issues_repo_path": "test/Succeed/Issue5784.agda",
"max_line_length": 67,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "98c9382a59f707c2c97d75919e389fc2a783ac75",
"max_stars_repo_licenses": [
"BSD-2-Clause"
],
"max_stars_repo_name": "KDr2/agda",
"max_stars_repo_path": "test/Succeed/Issue5784.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 146,
"size": 478
} |
{-# OPTIONS --without-K --exact-split #-}
module group-completion where
import 15-groups
open 15-groups public
| {
"alphanum_fraction": 0.7280701754,
"avg_line_length": 14.25,
"ext": "agda",
"hexsha": "28370225f138946cdbf8b7fd917e49efa00ba138",
"lang": "Agda",
"max_forks_count": 30,
"max_forks_repo_forks_event_max_datetime": "2022-03-16T00:33:50.000Z",
"max_forks_repo_forks_event_min_datetime": "2018-09-26T09:08:57.000Z",
"max_forks_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_forks_repo_licenses": [
"CC-BY-4.0"
],
"max_forks_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_forks_repo_path": "Agda/group-completion.agda",
"max_issues_count": 8,
"max_issues_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_issues_repo_issues_event_max_datetime": "2020-10-16T15:27:01.000Z",
"max_issues_repo_issues_event_min_datetime": "2019-06-18T04:16:04.000Z",
"max_issues_repo_licenses": [
"CC-BY-4.0"
],
"max_issues_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_issues_repo_path": "Agda/group-completion.agda",
"max_line_length": 41,
"max_stars_count": 333,
"max_stars_repo_head_hexsha": "1e1f8def50f9359928e52ebb2ee53ed1166487d9",
"max_stars_repo_licenses": [
"CC-BY-4.0"
],
"max_stars_repo_name": "UlrikBuchholtz/HoTT-Intro",
"max_stars_repo_path": "Agda/group-completion.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-22T23:50:15.000Z",
"max_stars_repo_stars_event_min_datetime": "2018-09-26T08:33:30.000Z",
"num_tokens": 26,
"size": 114
} |
{-# OPTIONS --without-K --safe #-}
module Categories.Category.WithFamilies where
-- Category With Families (as model of dependent type theory)
-- see https://ncatlab.org/nlab/show/categorical+model+of+dependent+types#categories_with_families
-- for more details.
open import Level
open import Relation.Binary.PropositionalEquality as ≡ using (_≡_)
open import Categories.Category
open import Categories.Functor
open import Categories.NaturalTransformation.NaturalIsomorphism
open import Categories.Object.Terminal
open import Categories.Category.Instance.FamilyOfSets
open import Categories.Functor.Presheaf
open import Categories.Category.Slice
open import Categories.Category.Instance.Sets
private
variable
o ℓ e a b : Level
-- We want to re-interpret the members of C as
-- the various parts of a type theory -- Context, types, terms, etc.
module UnpackFam {C : Category o ℓ e}
(T : Presheaf C (FamilyOfSets a b)) where
private
module C = Category C
module T = Functor T
Context : Set o
Context = C.Obj
Ty : C.Obj → Set a
Ty Γ = Fam.U (T.F₀ Γ)
-- remember that context morphisms are substitutions
-- which are here applied postfix
_[_] : ∀ {Γ Δ} → (T : Ty Γ) → (σ : Δ C.⇒ Γ) → Ty Δ
_[_] T σ = Hom.f (T.F₁ σ) T
Tm : ∀ Γ → Ty Γ → Set b
Tm Γ = Fam.T (T.F₀ Γ)
-- substitute into a term
_[_⁺] : {Γ Δ : Context} {tp : Ty Γ} → (term : Tm Γ tp) → (σ : Δ C.⇒ Γ) → Tm Δ (tp [ σ ])
_[_⁺] term σ = Hom.φ (T.F₁ σ) _ term
-- This is the original definition from Dybjer. The one from nLab is too tricky to do quite yet.
record CwF : Set (suc (o ⊔ ℓ ⊔ e ⊔ a ⊔ b)) where
field
C : Category o ℓ e
T : Presheaf C (FamilyOfSets a b)
Empty : Terminal C
infix 5 _>_
module C = Category C
module T = Functor T
open UnpackFam T
module Empty = Terminal Empty
field
-- context snoc
_>_ : ∀ Γ → Ty Γ → Context
-- projections
p : ∀ {Γ A} → (Γ > A) C.⇒ Γ
v : ∀ {Γ A} → Tm (Γ > A) (A [ p ])
-- constructor
<_,_> : ∀ {Γ A} → ∀ {Δ} (γ : Δ C.⇒ Γ) (a : Tm Δ (A [ γ ])) → Δ C.⇒ (Γ > A)
v[_] : ∀ {Γ A Δ} → (γ : Δ C.⇒ Γ) -> Tm (Δ > A [ γ ]) (A [ γ C.∘ p ])
v[_] {Γ} {A} {Δ} γ = ≡.subst (Tm (Δ > A [ γ ])) (Eq.g≡f (T.homomorphism {Γ})) v
-- Note that the original used Heterogenenous equality (yuck). So here we use
-- explicit transport. Explicit yuck.
field
p∘<γ,a>≡γ : ∀ {Γ A} → ∀ {Δ} {γ : Δ C.⇒ Γ} {a : Tm Δ (A [ γ ])} → p C.∘ < γ , a > C.≈ γ
patch : ∀ {Γ A} → ∀ {Δ} {γ : Δ C.⇒ Γ} {δ : Δ C.⇒ (Γ > A)} (a : Tm Δ (A [ γ ])) (pδ≈γ : p C.∘ δ C.≈ γ)
→ Fam.T (T.F₀ Δ) ((A [ p ]) [ δ ])
patch {Γ} {A} {Δ} {γ} a pδ≈γ = ≡.subst (Fam.T (T.F₀ Δ)) (≡.trans (Eq.g≡f (T.F-resp-≈ pδ≈γ)) (≡.sym (Eq.g≡f (T.homomorphism {Γ})))) a
field
v[<γ,a>]≡a : ∀ {Γ A} → ∀ {Δ} {γ : Δ C.⇒ Γ} {a : Tm Δ (A [ γ ])} → v [ < γ , a > ⁺] ≡ patch a p∘<γ,a>≡γ
<γ,a>-unique : ∀ {Γ A} → ∀ {Δ} {γ : Δ C.⇒ Γ} {a : Tm Δ (A [ γ ])} →
(δ : Δ C.⇒ (Γ > A)) → (pδ≈γ : p C.∘ δ C.≈ γ) → ( v [ δ ⁺] ≡ patch a pδ≈γ) → δ C.≈ < γ , a >
_[id] : ∀ {Γ A} -> Tm Γ A -> Tm Γ (A [ C.id ])
_[id] {Γ} {A} x = ≡.subst (Tm Γ) (Eq.g≡f (T.identity {Γ}) {A}) x
open UnpackFam T public
open Empty public using () renaming (⊤ to <>)
-- inside a CwF, we can sort-of 'define' a λ-calculus with Π, but the results are way too
-- heterogeneous to contemplate...
{-
record Pi {o ℓ e a b} (Cwf : CwF {o} {ℓ} {e} {a} {b}) : Set (o ⊔ ℓ ⊔ a ⊔ b) where
open CwF Cwf
field
Π : ∀ {Γ} -> (A : Ty Γ) (B : Ty (Γ > A)) -> Ty Γ
lam : ∀ {Γ} {A : Ty Γ} {B : Ty (Γ > A)} -> (b : Tm (Γ > A) B) -> Tm Γ (Π A B)
_$_ : ∀ {Γ} {A : Ty Γ} {B : Ty (Γ > A)} ->
(f : Tm Γ (Π A B)) (x : Tm Γ A) -> Tm Γ (B [ < C.id , x [id] > ])
-- naturality laws
Π-nat : ∀ {Γ} -> (A : Ty Γ) (B : Ty (Γ > A)) -> ∀ {Δ} (γ : Δ C.⇒ Γ)
-> Π A B [ γ ] ≡ Π (A [ γ ]) (B [ < (γ C.∘ p) , v[ γ ] > ])
lam-nat : ∀ {Γ} {A : Ty Γ} {B : Ty (Γ > A)} -> (b : Tm (Γ > A) B) -> ∀ {Δ} (γ : Δ C.⇒ Γ)
-> lam b [ γ ⁺] ≡ {! lam {A = A [ γ ]} (b [ < γ C.∘ p , v[ γ ] > ⁺]) !}
app-nat : ∀ {Γ} {A : Ty Γ} {B : Ty (Γ > A)} -> (f : Tm Γ (Π A B)) (x : Tm Γ A) -> ∀ {Δ} (γ : Δ C.⇒ Γ)
-> (f $ x) [ γ ⁺] ≡ {! ≡.subst (Tm Δ) (Π-nat A B γ) (f [ γ ⁺]) $ (x [ γ ⁺]) !}
-- proofs of the lam/_$_ isomorphism
β : ∀ {Γ} {A : Ty Γ} {B : Ty (Γ > A)} -> (b : Tm (Γ > A) B) (x : Tm Γ A)
-> (lam b $ x) ≡ b [ < C.id , x [id] > ⁺]
η : ∀ {Γ} {A : Ty Γ} {B : Ty (Γ > A)} -> (f : Tm Γ (Π A B))
-> lam (≡.subst (Tm (Γ > A)) (Π-nat A B p) (f [ p ⁺]) $ v) ≡ {! f !}
-}
| {
"alphanum_fraction": 0.4855416487,
"avg_line_length": 37.674796748,
"ext": "agda",
"hexsha": "f05cfc99700f8ac553ef11462a1cbca082a7639a",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "bblfish/agda-categories",
"max_forks_repo_path": "src/Categories/Category/WithFamilies.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "bblfish/agda-categories",
"max_issues_repo_path": "src/Categories/Category/WithFamilies.agda",
"max_line_length": 134,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "7672b7a3185ae77467cc30e05dbe50b36ff2af8a",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "bblfish/agda-categories",
"max_stars_repo_path": "src/Categories/Category/WithFamilies.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 2045,
"size": 4634
} |
------------------------------------------------------------------------
-- Some properties about integers
------------------------------------------------------------------------
module Data.Integer.Properties where
open import Algebra
import Algebra.Morphism as Morphism
open import Data.Empty
open import Data.Function
open import Data.Integer hiding (suc)
open import Data.Nat as ℕ renaming (_*_ to _ℕ*_)
import Data.Nat.Properties as ℕ
open import Data.Sign as Sign using () renaming (_*_ to _S*_)
import Data.Sign.Properties as SignProp
open import Relation.Binary.PropositionalEquality
open ≡-Reasoning
open Morphism.Definitions ℤ ℕ _≡_
-- Some properties relating sign and ∣_∣ to _◃_.
sign-◃ : ∀ s n → sign (s ◃ suc n) ≡ s
sign-◃ Sign.- _ = refl
sign-◃ Sign.+ _ = refl
sign-cong : ∀ {s₁ s₂ n₁ n₂} →
s₁ ◃ suc n₁ ≡ s₂ ◃ suc n₂ → s₁ ≡ s₂
sign-cong {s₁} {s₂} {n₁} {n₂} eq = begin
s₁ ≡⟨ sym $ sign-◃ s₁ n₁ ⟩
sign (s₁ ◃ suc n₁) ≡⟨ cong sign eq ⟩
sign (s₂ ◃ suc n₂) ≡⟨ sign-◃ s₂ n₂ ⟩
s₂ ∎
abs-◃ : ∀ s n → ∣ s ◃ n ∣ ≡ n
abs-◃ _ zero = refl
abs-◃ Sign.- (suc n) = refl
abs-◃ Sign.+ (suc n) = refl
abs-cong : ∀ {s₁ s₂ n₁ n₂} →
s₁ ◃ n₁ ≡ s₂ ◃ n₂ → n₁ ≡ n₂
abs-cong {s₁} {s₂} {n₁} {n₂} eq = begin
n₁ ≡⟨ sym $ abs-◃ s₁ n₁ ⟩
∣ s₁ ◃ n₁ ∣ ≡⟨ cong ∣_∣ eq ⟩
∣ s₂ ◃ n₂ ∣ ≡⟨ abs-◃ s₂ n₂ ⟩
n₂ ∎
-- ∣_∣ commutes with multiplication.
abs-*-commute : Homomorphic₂ ∣_∣ _*_ _ℕ*_
abs-*-commute i j = abs-◃ _ _
-- Multiplication is right cancellative for non-zero integers.
cancel-*-right : ∀ i j k →
k ≢ + 0 → i * k ≡ j * k → i ≡ j
cancel-*-right i j k ≢0 eq with signAbs k
cancel-*-right i j .(+ 0) ≢0 eq | s ◂ zero = ⊥-elim (≢0 refl)
cancel-*-right i j .(s ◃ suc n) ≢0 eq | s ◂ suc n
with ∣ s ◃ suc n ∣ | abs-◃ s (suc n) | sign (s ◃ suc n) | sign-◃ s n
... | .(suc n) | refl | .s | refl =
◃-cong (sign-i≡sign-j i j eq) $
ℕ.cancel-*-right ∣ i ∣ ∣ j ∣ $ abs-cong eq
where
sign-i≡sign-j : ∀ i j →
sign i S* s ◃ ∣ i ∣ ℕ* suc n ≡
sign j S* s ◃ ∣ j ∣ ℕ* suc n →
sign i ≡ sign j
sign-i≡sign-j i j eq with signAbs i | signAbs j
sign-i≡sign-j .(+ 0) .(+ 0) eq | s₁ ◂ zero | s₂ ◂ zero = refl
sign-i≡sign-j .(+ 0) .(s₂ ◃ suc n₂) eq | s₁ ◂ zero | s₂ ◂ suc n₂
with ∣ s₂ ◃ suc n₂ ∣ | abs-◃ s₂ (suc n₂)
... | .(suc n₂) | refl
with abs-cong {s₁} {sign (s₂ ◃ suc n₂) S* s} {0} {suc n₂ ℕ* suc n} eq
... | ()
sign-i≡sign-j .(s₁ ◃ suc n₁) .(+ 0) eq | s₁ ◂ suc n₁ | s₂ ◂ zero
with ∣ s₁ ◃ suc n₁ ∣ | abs-◃ s₁ (suc n₁)
... | .(suc n₁) | refl
with abs-cong {sign (s₁ ◃ suc n₁) S* s} {s₁} {suc n₁ ℕ* suc n} {0} eq
... | ()
sign-i≡sign-j .(s₁ ◃ suc n₁) .(s₂ ◃ suc n₂) eq | s₁ ◂ suc n₁ | s₂ ◂ suc n₂
with ∣ s₁ ◃ suc n₁ ∣ | abs-◃ s₁ (suc n₁)
| sign (s₁ ◃ suc n₁) | sign-◃ s₁ n₁
| ∣ s₂ ◃ suc n₂ ∣ | abs-◃ s₂ (suc n₂)
| sign (s₂ ◃ suc n₂) | sign-◃ s₂ n₂
... | .(suc n₁) | refl | .s₁ | refl | .(suc n₂) | refl | .s₂ | refl =
SignProp.cancel-*-right s₁ s₂ (sign-cong eq)
| {
"alphanum_fraction": 0.4805235276,
"avg_line_length": 36.4659090909,
"ext": "agda",
"hexsha": "adc0e86cf51f73b4fcec57fd0ff1f8fb5ee22bc8",
"lang": "Agda",
"max_forks_count": 3,
"max_forks_repo_forks_event_max_datetime": "2022-03-12T11:54:10.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-07-21T16:37:58.000Z",
"max_forks_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "isabella232/Lemmachine",
"max_forks_repo_path": "vendor/stdlib/src/Data/Integer/Properties.agda",
"max_issues_count": 1,
"max_issues_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_issues_repo_issues_event_max_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_issues_event_min_datetime": "2022-03-12T12:17:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "larrytheliquid/Lemmachine",
"max_issues_repo_path": "vendor/stdlib/src/Data/Integer/Properties.agda",
"max_line_length": 83,
"max_stars_count": 56,
"max_stars_repo_head_hexsha": "8ef786b40e4a9ab274c6103dc697dcb658cf3db3",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "isabella232/Lemmachine",
"max_stars_repo_path": "vendor/stdlib/src/Data/Integer/Properties.agda",
"max_stars_repo_stars_event_max_datetime": "2021-12-21T17:02:19.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-20T02:11:42.000Z",
"num_tokens": 1344,
"size": 3209
} |
{-# OPTIONS --cubical --no-import-sorts --safe --postfix-projections #-}
module Cubical.Data.FinSet.Binary.Large where
open import Cubical.Functions.Embedding
open import Cubical.Functions.Involution
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Univalence
open import Cubical.Data.Bool
open import Cubical.Data.Sigma
open import Cubical.HITs.PropositionalTruncation
private
variable
ℓ : Level
isBinary : Type ℓ → Type ℓ
isBinary B = ∥ Bool ≃ B ∥
Binary : ∀ ℓ → Type _
Binary ℓ = Σ (Type ℓ) isBinary
isBinary→isSet : ∀{B : Type ℓ} → isBinary B → isSet B
isBinary→isSet {B} = rec isPropIsSet λ eqv → isOfHLevelRespectEquiv 2 eqv isSetBool
private
Σ≡Prop²
: ∀{ℓ ℓ'} {A : Type ℓ} {B : A → Type ℓ'}
→ {w x : Σ A B}
→ isOfHLevelDep 1 B
→ (p q : w ≡ x)
→ cong fst p ≡ cong fst q
→ p ≡ q
Σ≡Prop² _ _ _ r i j .fst = r i j
Σ≡Prop² {B = B} {w} {x} Bprp p q r i j .snd
= isPropDep→isSetDep Bprp (w .snd) (x .snd) (cong snd p) (cong snd q) r i j
BinaryEmbedding : isEmbedding (λ(B : Binary ℓ) → map-snd isBinary→isSet B)
BinaryEmbedding w x = isoToIsEquiv theIso
where
open Iso
f = map-snd isBinary→isSet
theIso : Iso (w ≡ x) (f w ≡ f x)
theIso .fun = cong f
theIso .inv p i .fst = p i .fst
theIso .inv p i .snd
= ∥∥-isPropDep (Bool ≃_) (w .snd) (x .snd) (λ i → p i .fst) i
theIso .rightInv p
= Σ≡Prop² (isOfHLevel→isOfHLevelDep 1 (λ _ → isPropIsSet)) _ p refl
theIso .leftInv p
= Σ≡Prop² (∥∥-isPropDep (Bool ≃_)) _ p refl
Base : Binary _
Base .fst = Bool
Base .snd = ∣ idEquiv Bool ∣
Loop : Base ≡ Base
Loop i .fst = notEq i
Loop i .snd = ∥∥-isPropDep (Bool ≃_) (Base .snd) (Base .snd) notEq i
private
notEq² : Square notEq refl refl notEq
notEq² = involPath² {f = not} notnot
Loop² : Square Loop refl refl Loop
Loop² i j .fst = notEq² i j
Loop² i j .snd
= isPropDep→isSetDep' (∥∥-isPropDep (Bool ≃_))
notEq² (cong snd Loop) refl refl (cong snd Loop) i j
isGroupoidBinary : isGroupoid (Binary ℓ)
isGroupoidBinary
= Embedding-into-hLevel→hLevel 2
(map-snd isBinary→isSet , BinaryEmbedding)
(isOfHLevelTypeOfHLevel 2)
record BinStructure (B : Type ℓ) : Type ℓ where
field
base : B
loop : base ≡ base
loop² : Square loop refl refl loop
trunc : isGroupoid B
structure₀ : BinStructure (Binary ℓ-zero)
structure₀ .BinStructure.base = Base
structure₀ .BinStructure.loop = Loop
structure₀ .BinStructure.loop² = Loop²
structure₀ .BinStructure.trunc = isGroupoidBinary
module Parameterized (B : Type ℓ) where
Baseᴾ : Bool ≃ B → Binary ℓ
Baseᴾ P = B , ∣ P ∣
Loopᴾ : (P Q : Bool ≃ B) → Baseᴾ P ≡ Baseᴾ Q
Loopᴾ P Q i = λ where
.fst → ua first i
.snd → ∥∥-isPropDep (Bool ≃_) ∣ P ∣ ∣ Q ∣ (ua first) i
where
first : B ≃ B
first = compEquiv (invEquiv P) Q
Loopᴾ² : (P Q R : Bool ≃ B) → Square (Loopᴾ P Q) (Loopᴾ P R) refl (Loopᴾ Q R)
Loopᴾ² P Q R i = Σ≡Prop (λ _ → squash) (S i)
where
PQ : B ≃ B
PQ = compEquiv (invEquiv P) Q
PR : B ≃ B
PR = compEquiv (invEquiv P) R
QR : B ≃ B
QR = compEquiv (invEquiv Q) R
Q-Q : Bool ≃ Bool
Q-Q = compEquiv Q (invEquiv Q)
PQRE : compEquiv PQ QR ≡ PR
PQRE = compEquiv PQ QR
≡[ i ]⟨ compEquiv-assoc (invEquiv P) Q QR (~ i) ⟩
compEquiv (invEquiv P) (compEquiv Q QR)
≡[ i ]⟨ compEquiv (invEquiv P) (compEquiv-assoc Q (invEquiv Q) R i) ⟩
compEquiv (invEquiv P) (compEquiv Q-Q R)
≡[ i ]⟨ compEquiv (invEquiv P) (compEquiv (invEquiv-is-rinv Q i) R) ⟩
compEquiv (invEquiv P) (compEquiv (idEquiv _) R)
≡[ i ]⟨ compEquiv (invEquiv P) (compEquivIdEquiv R i) ⟩
PR ∎
PQR : ua PQ ∙ ua QR ≡ ua PR
PQR = ua PQ ∙ ua QR
≡[ i ]⟨ uaCompEquiv PQ QR (~ i) ⟩
ua (compEquiv PQ QR)
≡⟨ cong ua PQRE ⟩
ua PR ∎
S : Square (ua PQ) (ua PR) refl (ua QR)
S i j
= hcomp (λ k → λ where
(j = i0) → B
(i = i0) → compPath-filler (ua PQ) (ua QR) (~ k) j
(i = i1) → ua PR j
(j = i1) → ua QR (i ∨ ~ k))
(PQR i j)
| {
"alphanum_fraction": 0.607167955,
"avg_line_length": 28.8445945946,
"ext": "agda",
"hexsha": "9fc721f2efbcd6d561223af6606b6662a90e2bc1",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "dan-iel-lee/cubical",
"max_forks_repo_path": "Cubical/Data/FinSet/Binary/Large.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "dan-iel-lee/cubical",
"max_issues_repo_path": "Cubical/Data/FinSet/Binary/Large.agda",
"max_line_length": 83,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "fd8059ec3eed03f8280b4233753d00ad123ffce8",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "dan-iel-lee/cubical",
"max_stars_repo_path": "Cubical/Data/FinSet/Binary/Large.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 1679,
"size": 4269
} |
module Avionics.SafetyEnvelopes.Properties where
open import Data.Bool using (Bool; true; false; _∧_; T)
open import Data.Empty using (⊥; ⊥-elim)
open import Data.List as List using (List; []; _∷_; any)
open import Data.List.Relation.Unary.Any as Any using (Any; here; there; satisfied)
open import Data.Maybe using (Maybe; just; nothing; is-just; _>>=_)
open import Data.Product as Prod using (∃-syntax; _×_; proj₁; proj₂) renaming (_,_ to ⟨_,_⟩)
open import Data.Sum using (_⊎_; inj₁; inj₂)
open import Function using (_∘_)
open import Relation.Binary.PropositionalEquality as Eq using (_≡_; refl; cong; cong₂; inspect; [_]; sym; trans)
open Eq.≡-Reasoning using (begin_; _≡⟨⟩_; _≡˘⟨_⟩_; _≡⟨_⟩_; _∎)
open import Relation.Nullary using (Dec; yes; no; ¬_)
open import Relation.Nullary.Decidable using (toWitness; fromWitness)
open import Relation.Unary using (_∈_)
open import Avionics.Bool using (≡→T; T∧→×; ×→T∧; lem∧)
open import Avionics.List using (≡→any; any-map; any-map-rev; any→≡)
open import Avionics.Real
using (ℝ; _+_; _-_; -_; _*_; _÷_; _^_; _<ᵇ_; _≤_; _<_; _<?_; _≤?_; _≢0;
0ℝ; 1ℝ; 2ℝ; 1/2; abs; 1/_; _^2; √_; fromℕ;
double-neg;
⟨0,∞⟩; [0,∞⟩;
<-transˡ; 2>0; ⟨0,∞⟩→0<; 0<→⟨0,∞⟩; >0→≢0; >0→≥0;
0≟0≡yes0≡0;
abs<x→<x∧-x<; neg-involutive; neg-distrib-+; neg-mono-<->; neg-def; m-m≡0;
+-comm; +-assoc; *-comm; *-assoc; +-monoˡ-<; m÷n<o≡m<o*n; m<o÷n≡m*n<o; neg-distribˡ-*; √x^2≡absx;
x*x≡x^2; x^2*y^2≡⟨xy⟩^2; 1/x^2≡⟨1/x⟩^2)
open import Avionics.Probability using (NormalDist; Dist)
open import Avionics.SafetyEnvelopes
using (inside; inside'; mahalanobis1; z-predictable'; P[_|X=_]_; classify''; classify; M→pbs;
StallClasses; Stall; NoStall; Uncertain;
no-uncertain;
safety-envelope; z-predictable; Model; τ-confident;
Stall≡1-NoStall; NoStall≡1-Stall; ≤p→¬≤1-p; ≤1-p→¬≤p
)
open NormalDist using (σ; μ)
--<ᵇ→< : ∀ {x y} → T (x <ᵇ y) → x < y
--<ᵇ→< = toWitness
-- Preliminary defitinions
-- `pi` is the prediction interval for the z score, i.e.,
-- pi(N (μ, σ), z) = [μ − zσ, μ + zσ]
pi : NormalDist → ℝ → ℝ → Set
pi nd z x = (μ nd) - z * (σ nd) < x
× x < (μ nd) + z * (σ nd)
extractDists : Model → List NormalDist
extractDists M = List.map (proj₁ ∘ proj₂) (Model.fM M)
------------------------------ Starting point - Theorem 2 ------------------------------
-- Theorem 1 says:
-- In the case of univariate normal distributions, the z-predictability condition
-- > mahalanobis(μ, x, σ²-¹) < z
-- reduces to
-- > μ - zσ < x <ᵇ (μ + zσ)
-- the prediction interval with a z-score of z
z-pred-interval≡mahalanobis<z : ∀ (nd z x)
→ inside nd z x ≡ inside' nd z x
z-pred-interval≡mahalanobis<z nd z x =
begin
inside nd z x
≡⟨⟩
(u - z * s <ᵇ x) ∧ (x <ᵇ (u + z * s))
≡⟨ cong (λ e → ((u - z * s) <ᵇ x) ∧ (x <ᵇ e)) (
begin
u + z * s
≡˘⟨ cong₂ (_+_) (neg-involutive _) (neg-involutive _) ⟩
-(- u) + -(-(z * s))
≡˘⟨ neg-distrib-+ _ _ ⟩
-((- u) + (- (z * s)))
≡⟨⟩
-(- u - z * s)
∎
) ⟩
(u - z * s <ᵇ x) ∧ (x <ᵇ -(- u - z * s))
≡⟨ cong (λ e → (e <ᵇ x) ∧ (x <ᵇ -(- u - z * s))) (
begin
u - z * s
≡˘⟨ cong (_+ (- (z * s))) (neg-involutive _) ⟩
-(- u) + (- (z * s))
≡˘⟨ neg-distrib-+ _ _ ⟩
-(- u + z * s)
∎
) ⟩
(-(- u + z * s) <ᵇ x) ∧ (x <ᵇ -(- u - z * s))
≡˘⟨ cong (λ e → (-(- u + z * s) <ᵇ e) ∧ (e <ᵇ -(- u - z * s))) (neg-involutive _) ⟩
(-(- u + z * s) <ᵇ -(- x)) ∧ (-(- x) <ᵇ -(- u - z * s))
≡˘⟨ cong ((-(- u + z * s) <ᵇ -(- x)) ∧_) (neg-mono-<-> _ _) ⟩
(-(- u + z * s) <ᵇ -(- x)) ∧ (- u - z * s <ᵇ - x)
≡˘⟨ cong (_∧ (- u - z * s <ᵇ - x)) (neg-mono-<-> _ _) ⟩
(- x <ᵇ - u + z * s) ∧ (- u - z * s <ᵇ - x)
≡⟨ cong (_∧ (- u - z * s <ᵇ - x)) (
begin
- x <ᵇ - u + z * s
≡˘⟨ cong (_<ᵇ - u + z * s) (neg-def _) ⟩
0ℝ - x <ᵇ - u + z * s
≡˘⟨ cong (λ e → e - x <ᵇ - u + z * s) (trans (+-comm _ _) (m-m≡0 _)) ⟩
(- u + u) - x <ᵇ - u + z * s
≡˘⟨ cong (_<ᵇ - u + z * s) (+-assoc _ _ _) ⟩
(- u) + (u - x) <ᵇ - u + z * s
≡˘⟨ +-monoˡ-< _ _ _ ⟩
u - x <ᵇ z * s
∎
) ⟩
(u - x <ᵇ z * s) ∧ (- u - z * s <ᵇ - x)
≡⟨ cong ((u - x <ᵇ z * s) ∧_) (
begin
- u - z * s <ᵇ - x
≡˘⟨ cong (- u - z * s <ᵇ_) (neg-def _) ⟩
- u - z * s <ᵇ 0ℝ - x
≡˘⟨ cong (λ e → - u - z * s <ᵇ e - x) (trans (+-comm _ _) (m-m≡0 _)) ⟩
- u - z * s <ᵇ (- u + u) - x
≡˘⟨ cong (- u - z * s <ᵇ_) (+-assoc _ _ _) ⟩
- u - z * s <ᵇ - u + (u - x)
≡˘⟨ +-monoˡ-< _ _ _ ⟩
- (z * s) <ᵇ u - x
∎
) ⟩
(u - x <ᵇ z * s) ∧ (- (z * s) <ᵇ u - x)
≡˘⟨ cong ((u - x <ᵇ z * s) ∧_) (
begin
- z <ᵇ (u - x) ÷ s
≡⟨ m<o÷n≡m*n<o _ _ _ ⟩
(- z) * s <ᵇ (u - x)
≡˘⟨ cong (_<ᵇ (u - x)) (neg-distribˡ-* _ _) ⟩
- (z * s) <ᵇ u - x
∎
) ⟩
(u - x <ᵇ z * s) ∧ (- z <ᵇ (u - x) ÷ s)
≡˘⟨ cong (_∧ (- z <ᵇ (u - x) ÷ s)) (m÷n<o≡m<o*n _ _ _) ⟩
((u - x) ÷ s <ᵇ z) ∧ (- z <ᵇ (u - x) ÷ s)
≡˘⟨ abs<x→<x∧-x< ⟩
abs ((u - x) ÷ s) <ᵇ z
≡˘⟨ cong (_<ᵇ z) (√x^2≡absx _) ⟩
√(((u - x) ÷ s)^2) <ᵇ z
≡⟨⟩
√(((u - x) * (1/ s))^2) <ᵇ z
≡˘⟨ cong (λ e → √ e <ᵇ z) (
begin
(u - x) * (1/ (s * s)) * (u - x)
≡⟨ *-comm _ _ ⟩
(u - x) * ((u - x) * (1/ (s * s)))
≡⟨ *-assoc _ _ _ ⟩
(u - x) * (u - x) * (1/ (s * s))
≡⟨ cong (λ e → (u - x) * (u - x) * (1/ e)) (x*x≡x^2 _) ⟩
(u - x) * (u - x) * (1/ (s ^2))
≡⟨ cong ((u - x) * (u - x) *_) (1/x^2≡⟨1/x⟩^2 _) ⟩
(u - x) * (u - x) * (1/ s) ^2
≡⟨ cong (_* (1/ s) ^2) (x*x≡x^2 _) ⟩
(u - x)^2 * (1/ s) ^2
≡⟨ x^2*y^2≡⟨xy⟩^2 _ _ ⟩
((u - x) * (1/ s))^2
∎
)⟩
√((u - x) * (1/ (s * s)) * (u - x)) <ᵇ z
≡⟨⟩
mahalanobis1 u x (1/ (s * s)) <ᵇ z
≡⟨⟩
inside' nd z x
∎
where u = μ nd
s = σ nd
---- ############ Theorem 1 END ############
------------------------------ Starting point - Theorem 2 ------------------------------
-- Proof of Theorem 2 (paper)
--
-- In words, the Property 1 says that:
-- The energy signal x is z-predictable iff there exist ⟨α, v⟩ s.t.
-- M(⟨α, v⟩)1 = di and x ∈ pi(di , z).
--
-- Notice that `Any (λ nd → x ∈ pi nd z) nds` translates to:
-- there exists nd such that `nd ∈ nds` and `x ∈ pi(nd, z)`
follows-def←' : ∀ (nds z x)
→ z-predictable' nds z x ≡ ⟨ x , true ⟩
→ Any (λ nd → x ∈ pi nd z) nds
follows-def←' nds z x res≡x,true = Any-x∈pi
where
res≡true = cong proj₂ res≡x,true
-- the first `toWitness` takes a result `(μ nd - z * σ nd) <ᵇ x` (a
-- boolean) and produces a proof of the type `(μ nd) - z * (σ nd) < x`
-- assuming we have provided an operator `<?`
toWitness' = λ nd → Prod.map (toWitness {Q = (μ nd - z * σ nd) <? x})
(toWitness {Q = x <? (μ nd + z * σ nd)})
-- We find the value for which `inside z x` becomes true in the list `nds`
Any-bool = ≡→any (λ nd → inside nd z x) nds res≡true
-- Converting the boolean proof into a proof at the type level
Any-x∈pi = Any.map (λ {nd} → toWitness' nd ∘ T∧→×) Any-bool
-- forward proof
follows-def→' : ∀ (nds z x)
→ Any (λ nd → x ∈ pi nd z) nds
→ z-predictable' nds z x ≡ ⟨ x , true ⟩
follows-def→' nds z x any[x∈pi-z]nds = let
-- converts a tuple of `(μ nd) - z * (σ nd) < x , x < (μ nd + z * σ nd)`
-- (a proof) into a boolean
fromWitness' nd = λ{⟨ μ-zσ<x , x<μ+zσ ⟩ →
×→T∧ ⟨ (fromWitness {Q = (μ nd - z * σ nd) <? x} μ-zσ<x)
, (fromWitness {Q = x <? (μ nd + z * σ nd)} x<μ+zσ)
⟩}
-- Converting from a proof on `_<_` to a proof on `_<ᵇ_`
any[inside]nds = (Any.map (λ {nd} → fromWitness' nd) any[x∈pi-z]nds)
-- Transforming the prove from Any into equality (_≡_)
z-pred-x≡⟨x,true⟩ = any→≡ (λ nd → inside nd z x) nds any[inside]nds
-- Extending the result from a single Bool value to a pair `ℝ × Bool`
in cong (⟨ x ,_⟩) z-pred-x≡⟨x,true⟩
-- From the prove above we can obtain the value `nd` and its prove `x ∈ pi nd z`
-- Note: An element of ∃[ nd ] (x ∈ pi nd z) is a tuple of the form ⟨ nd , proof ⟩
--prop1← : ∀ (nds z x)
-- → z-predictable' nds z x ≡ ⟨ x , true ⟩
-- → ∃[ nd ] (x ∈ pi nd z)
--prop1← nds z x res≡x,true = satisfied (follows-def←' nds z x res≡x,true)
-- This proofs is telling us that `z-predictable` follows from the definition
follows-def← : ∀ (M z x)
→ z-predictable M z x ≡ ⟨ x , true ⟩
→ Any (λ nd → x ∈ pi nd z) (extractDists M)
follows-def← M z x res≡x,true = follows-def←' (extractDists M) z x res≡x,true
follows-def→ : ∀ (M z x)
→ Any (λ nd → x ∈ pi nd z) (extractDists M)
→ z-predictable M z x ≡ ⟨ x , true ⟩
follows-def→ M z x Any[x∈pi-nd-z]M = follows-def→' (extractDists M) z x Any[x∈pi-nd-z]M
-- ############ FINAL RESULT - Theorem 1 ############
-- In words: Given a Model `M` and parameter `z`, if `x` is z-predictable, then
-- there exists θ (a flight state) such that they are associated to a `nd`
-- (Normal Distribution) and `x` falls withing the Predictable Interval
theorem1← : ∀ (M z x)
→ z-predictable M z x ≡ ⟨ x , true ⟩
→ Any (λ{⟨ θ , ⟨ nd , p ⟩ ⟩ → x ∈ pi nd z}) (Model.fM M)
theorem1← M z x res≡x,true = any-map (proj₁ ∘ proj₂) (follows-def← M z x res≡x,true)
-- The reverse of theorem1←
theorem1→ : ∀ (M z x)
→ Any (λ{⟨ θ , ⟨ nd , p ⟩ ⟩ → x ∈ pi nd z}) (Model.fM M)
→ z-predictable M z x ≡ ⟨ x , true ⟩
theorem1→ M z x Any[θ→x∈pi-nd-z]M = follows-def→ M z x (any-map-rev (proj₁ ∘ proj₂) Any[θ→x∈pi-nd-z]M)
-- ################# Theorem 2 END ##################
------------------------------ Starting point - Theorem 2 ------------------------------
lem← : ∀ (pbs τ x k)
→ classify'' pbs τ x ≡ k
→ k ≡ Uncertain ⊎ ∃[ p ] ((P[ k |X= x ] pbs ≡ just p) × (τ ≤ p))
lem← pbs τ x k _ with P[ Stall |X= x ] pbs | inspect (P[ Stall |X=_] pbs) x
lem← _ _ _ Uncertain _ | nothing | [ P[k|X=x]≡nothing ] = inj₁ refl
lem← _ τ _ _ _ | just p | [ _ ] with τ ≤? p | τ ≤? (1ℝ - p)
lem← _ _ _ Stall _ | just p | [ P[k|X=x]≡justp ] | yes τ≤p | no ¬τ≤1-p = inj₂ ⟨ p , ⟨ P[k|X=x]≡justp , τ≤p ⟩ ⟩
lem← _ _ _ NoStall _ | just p | [ P[k|X=x]≡justp ] | no ¬τ≤p | yes τ≤1-p =
let P[NoStall|X=x]≡just1-p = Stall≡1-NoStall P[k|X=x]≡justp
in inj₂ ⟨ 1ℝ - p , ⟨ P[NoStall|X=x]≡just1-p , τ≤1-p ⟩ ⟩
lem← _ _ _ Uncertain _ | _ | _ | _ | _ = inj₁ refl
lem→' : ∀ (pbs τ x p)
-- This line is asking for the main assumptions for the code to work properly:
-- * 0.5 < τ ≤ 1
-- * 0 ≤ p ≤ 1
→ (1/2 < τ × τ ≤ 1ℝ) × (0ℝ ≤ p × p ≤ 1ℝ)
→ (P[ Stall |X= x ] pbs) ≡ just p
→ τ ≤ (1ℝ - p)
→ classify'' pbs τ x ≡ NoStall
lem→' pbs _ x _ _ _ _ with P[ Stall |X= x ] pbs
lem→' _ τ _ _ _ _ _ | just p with τ ≤? p | τ ≤? (1ℝ - p)
lem→' _ _ _ _ _ _ _ | just p | no _ | yes _ = refl
lem→' _ _ _ _ _ refl τ≤1-p | just p | _ | no ¬τ≤1-p = ⊥-elim (¬τ≤1-p τ≤1-p)
lem→' _ _ _ _ assumpts refl τ≤1-p | just p | yes τ≤p | yes _ = ⊥-elim (¬τ≤p τ≤p)
where
1/2<τ = proj₁ (proj₁ assumpts)
τ≤1 = proj₂ (proj₁ assumpts)
0≤p = proj₁ (proj₂ assumpts)
p≤1 = proj₂ (proj₂ assumpts)
¬τ≤p = ≤1-p→¬≤p 1/2<τ τ≤1 0≤p p≤1 τ≤1-p
τ≤p→τ≤1-⟨1-p⟩ : ∀ τ p → τ ≤ p → τ ≤ 1ℝ - (1ℝ - p)
τ≤p→τ≤1-⟨1-p⟩ τ p τ≤p rewrite double-neg p 1ℝ = τ≤p
lem→ : ∀ (pbs τ x k)
→ (1/2 < τ × τ ≤ 1ℝ)
→ ∃[ p ] (((P[ k |X= x ] pbs) ≡ just p) × (τ ≤ p))
→ classify'' pbs τ x ≡ k
lem→ pbs _ x Stall _ _ with P[ Stall |X= x ] pbs
lem→ _ τ _ _ _ _ | just p with τ ≤? p | τ ≤? (1ℝ - p)
lem→ _ _ _ _ _ _ | just p | yes _ | no _ = refl
lem→ _ _ _ _ _ ⟨ _ , ⟨ refl , τ≤p ⟩ ⟩ | just p | no ¬τ≤p | _ = ⊥-elim (¬τ≤p τ≤p)
lem→ _ _ _ _ 1/2<τ≤1 ⟨ _ , ⟨ refl , τ≤p ⟩ ⟩ | just p | yes _ | yes τ≤1-p = ⊥-elim (¬τ≤1-p τ≤1-p)
where 1/2<τ = proj₁ 1/2<τ≤1
τ≤1 = proj₂ 1/2<τ≤1
postulate 0≤p : 0ℝ ≤ p
p≤1 : p ≤ 1ℝ
¬τ≤1-p = ≤p→¬≤1-p 1/2<τ τ≤1 0≤p p≤1 τ≤p
lem→ pbs τ x NoStall 1/2<τ≤1 ⟨ p , ⟨ P[k|X=x]≡justp , τ≤p ⟩ ⟩ = let
P[S|X=x]≡just1-p = NoStall≡1-Stall P[k|X=x]≡justp
τ≤1-⟨1-p⟩ = τ≤p→τ≤1-⟨1-p⟩ τ p τ≤p
assumptions = ⟨ 1/2<τ≤1 , 0≤p≤1 ⟩
in lem→' pbs τ x (1ℝ - p) assumptions P[S|X=x]≡just1-p τ≤1-⟨1-p⟩
where postulate 0≤p≤1 : (0ℝ ≤ 1ℝ - p × 1ℝ - p ≤ 1ℝ)
prop2M-prior← : ∀ (M τ x k)
→ classify M τ x ≡ k
→ k ≡ Uncertain ⊎ ∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (τ ≤ p))
prop2M-prior← M = lem← (M→pbs M)
prop2M-prior←' : ∀ (M τ x k)
→ k ≡ Stall ⊎ k ≡ NoStall
→ classify M τ x ≡ k
→ ∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (τ ≤ p))
prop2M-prior←' M τ x k _ cMτx≡k with prop2M-prior← M τ x k cMτx≡k
prop2M-prior←' _ _ _ Stall (inj₁ _) _ | inj₂ P[k|X=x]≥τ = P[k|X=x]≥τ
prop2M-prior←' _ _ _ NoStall _ _ | inj₂ P[k|X=x]≥τ = P[k|X=x]≥τ
prop2M-prior→ : ∀ (M τ x k)
→ (1/2 < τ × τ ≤ 1ℝ)
→ ∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (τ ≤ p))
→ classify M τ x ≡ k
prop2M-prior→ M τ x k 1/2<τ≤1 = lem→ (M→pbs M) τ x k 1/2<τ≤1
prop2M← : ∀ (M τ x)
→ τ-confident M τ x ≡ true
→ ∃[ k ] ((classify M τ x ≡ k) × (k ≡ Stall ⊎ k ≡ NoStall))
prop2M← M τ x τconf≡true with classify M τ x
... | Stall = ⟨ Stall , ⟨ refl , inj₁ refl ⟩ ⟩
... | NoStall = ⟨ NoStall , ⟨ refl , inj₂ refl ⟩ ⟩
prop2M→ : ∀ (M τ x k)
→ k ≡ Stall ⊎ k ≡ NoStall
→ classify M τ x ≡ k
→ τ-confident M τ x ≡ true
prop2M→ M τ x Stall (inj₁ k≡Stall) cMτx≡k = cong no-uncertain cMτx≡k
prop2M→ M τ x NoStall (inj₂ k≡NoStall) cMτx≡k = cong no-uncertain cMτx≡k
---- ############ FINAL RESULT - Theorem 3 ############
-- Theorem 3 says:
-- a classification k is τ-confident iff τ ≤ P[ k | X = x ]
theorem2← : ∀ (M τ x)
→ τ-confident M τ x ≡ true
→ ∃[ k ] (∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (τ ≤ p))) -- which means: τ ≤ P[ k | X = x ]
theorem2← M τ x τconf≡true = let -- prop2M-prior← M τ x k (prop2M← M τ x k τconf≡true)
⟨ k , ⟨ cMτx≡k , k≢Uncertain ⟩ ⟩ = prop2M← M τ x τconf≡true
in ⟨ k , prop2M-prior←' M τ x k k≢Uncertain cMτx≡k ⟩
theorem2→ : ∀ (M τ x k)
→ (1/2 < τ × τ ≤ 1ℝ)
→ k ≡ Stall ⊎ k ≡ NoStall
→ ∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (τ ≤ p)) -- which means: τ ≤ P[ k | X = x ]
→ τ-confident M τ x ≡ true
theorem2→ M τ x k 1/2<τ≤1 k≢Uncertain ⟨p,⟩ =
prop2M→ M τ x k k≢Uncertain (prop2M-prior→ M τ x k 1/2<τ≤1 ⟨p,⟩)
---- ############ Theorem 3 END ############
------------------------------ Starting point - Theorem 3 ------------------------------
---- ############ FINAL RESULT - Theorem 4 ############
-- The final theorem is more a corolary. It follows from Theorem 1 and 2
prop3M← : ∀ (M z τ x)
→ safety-envelope M z τ x ≡ true
→ (Any (λ{⟨ θ , ⟨ nd , p ⟩ ⟩ → x ∈ pi nd z}) (Model.fM M))
× ∃[ k ] (∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (τ ≤ p)))
prop3M← M z τ x seM≡true = let
-- Taking from the safety-envelope definition its components
⟨ left , τ-conf ⟩ =
lem∧ {a = proj₂ (z-predictable M z x)}
{b = τ-confident M τ x}
seM≡true
z-pred-x≡⟨x,true⟩ = cong (⟨ x ,_⟩) left
in ⟨ theorem1← M z x z-pred-x≡⟨x,true⟩ , theorem2← M τ x τ-conf ⟩
prop3M→ : ∀ (M z τ x k)
→ (1/2 < τ × τ ≤ 1ℝ)
→ k ≡ Stall ⊎ k ≡ NoStall
→ (Any (λ{⟨ θ , ⟨ nd , p ⟩ ⟩ → x ∈ pi nd z}) (Model.fM M))
× ∃[ p ] (((P[ k |X= x ] (M→pbs M)) ≡ just p) × (τ ≤ p))
→ safety-envelope M z τ x ≡ true
prop3M→ M z τ x k 1/2<τ≤1 k≢Uncertain ⟨ Any[θ→x∈pi-nd-z]M , ⟨p,⟩ ⟩ = let
z-pred≡⟨x,true⟩ = theorem1→ M z x Any[θ→x∈pi-nd-z]M
τ-conf = theorem2→ M τ x k 1/2<τ≤1 k≢Uncertain ⟨p,⟩
in cong₂ (_∧_) (cong proj₂ z-pred≡⟨x,true⟩) τ-conf
---- ############ Theorem 4 END ############
| {
"alphanum_fraction": 0.4600795921,
"avg_line_length": 41.3419023136,
"ext": "agda",
"hexsha": "e1bf054c3ad6c1b5f64a06370f441e0db763b661",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2020-09-20T00:36:09.000Z",
"max_forks_repo_forks_event_min_datetime": "2020-09-20T00:36:09.000Z",
"max_forks_repo_head_hexsha": "bf518286f9d06dc6ea91e111be6ddedb3e2b728f",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "helq/safety-envelopes-sentinels",
"max_forks_repo_path": "agda/Avionics/SafetyEnvelopes/Properties.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "bf518286f9d06dc6ea91e111be6ddedb3e2b728f",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "helq/safety-envelopes-sentinels",
"max_issues_repo_path": "agda/Avionics/SafetyEnvelopes/Properties.agda",
"max_line_length": 115,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "bf518286f9d06dc6ea91e111be6ddedb3e2b728f",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "helq/safety-envelopes-sentinels",
"max_stars_repo_path": "agda/Avionics/SafetyEnvelopes/Properties.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 7299,
"size": 16082
} |
postulate
_+_ : Set₁ → Set₁ → Set₁
_+ : Set₁ → Set₁ → Set₁
Foo : Set₁ → Set₁
Foo = _+ Set
| {
"alphanum_fraction": 0.5625,
"avg_line_length": 13.7142857143,
"ext": "agda",
"hexsha": "cde3d4afe9425b163567df805c9a3bbc3a2d447e",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "231d6ad8e77b67ff8c4b1cb35a6c31ccd988c3e9",
"max_forks_repo_licenses": [
"BSD-3-Clause"
],
"max_forks_repo_name": "Agda-zh/agda",
"max_forks_repo_path": "test/Fail/Sections-7.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"BSD-3-Clause"
],
"max_issues_repo_name": "shlevy/agda",
"max_issues_repo_path": "test/Fail/Sections-7.agda",
"max_line_length": 26,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "ed8ac6f4062ea8a20fa0f62d5db82d4e68278338",
"max_stars_repo_licenses": [
"BSD-3-Clause"
],
"max_stars_repo_name": "shlevy/agda",
"max_stars_repo_path": "test/Fail/Sections-7.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 44,
"size": 96
} |
{-# OPTIONS --safe --erased-cubical #-}
module Erased-cubical.Erased where
open import Agda.Builtin.Cubical.Glue
open import Agda.Builtin.Cubical.Path
open import Agda.Primitive
open import Agda.Primitive.Cubical
-- Glue can be used in erased contexts.
@0 _ : SSet (lsuc lzero)
_ =
(φ : I) (A : Set) (B : Partial φ Set)
(f : PartialP φ (λ x → B x ≃ A)) →
primGlue A B f
-- Erased higher constructors are allowed.
data ∥_∥ (A : Set) : Set where
∣_∣ : A → ∥ A ∥
@0 trivial : (x y : ∥ A ∥) → x ≡ y
-- Modules that use --cubical can be imported.
import Erased-cubical.Cubical as C
-- Definitions from such modules can be used in erased contexts.
@0 _ : {A : Set} → A → C.∥ A ∥
_ = C.∣_∣
-- One can re-export Cubical Agda code using open public.
open import Erased-cubical.Cubical public
renaming (∥_∥ to ∥_∥ᶜ; ∣_∣ to ∣_∣ᶜ; trivial to trivialᶜ)
-- And also code that uses --without-K.
open import Erased-cubical.Without-K public
| {
"alphanum_fraction": 0.6624737945,
"avg_line_length": 23.2682926829,
"ext": "agda",
"hexsha": "b346f39ee5a48dc3f9c68982b0f123ebceaac63d",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-04-18T13:34:07.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Erased-cubical/Erased.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Erased-cubical/Erased.agda",
"max_line_length": 64,
"max_stars_count": null,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Erased-cubical/Erased.agda",
"max_stars_repo_stars_event_max_datetime": null,
"max_stars_repo_stars_event_min_datetime": null,
"num_tokens": 345,
"size": 954
} |
module Structure.Setoid.Size.Proofs where
open import Data
open import Data.Proofs
import Data.Either as Either
import Data.Either.Proofs as Either
import Lvl
open import Functional
open import Function.Proofs
open import Function.Inverseₗ
open import Function.Inverse
open import Function.Iteration
open import Lang.Instance
open import Logic
open import Logic.Classical
open import Logic.Propositional
open import Logic.Predicate
open import Structure.Setoid
open import Structure.Setoid.Size
open import Structure.Function.Domain
open import Structure.Function.Domain.Proofs
open import Structure.Function
open import Structure.Relator.Equivalence
open import Structure.Relator.Ordering
open import Structure.Relator.Properties
open import Syntax.Transitivity
open import Type.Properties.Empty
open import Type.Properties.Inhabited
open import Type
private variable ℓ ℓ₁ ℓ₂ ℓₑ ℓₑ₁ ℓₑ₂ ℓₑ₃ ℓₗ : Lvl.Level
private variable A B C : Setoid{ℓₑ}{ℓ}
private variable X Y Z : Type{ℓ}
module _ where
instance
[≍]-to-[≼] : (_≍_ {ℓₑ₁}{ℓ₁}{ℓₑ₂}{ℓ₂}) ⊆₂ (_≼_)
_⊆₂_.proof [≍]-to-[≼] ([∃]-intro(f) ⦃ [∧]-intro f-function f-bijective ⦄) =
([∃]-intro(f) ⦃ [∧]-intro f-function (bijective-to-injective(f) ⦃ f-bijective ⦄) ⦄)
instance
[≍]-to-[≽] : (_≍_ {ℓₑ₁}{ℓ₁}{ℓₑ₂}{ℓ₂}) ⊆₂ (_≽_)
_⊆₂_.proof [≍]-to-[≽] ([∃]-intro(f) ⦃ [∧]-intro f-function f-bijective ⦄) =
([∃]-intro(f) ⦃ [∧]-intro f-function (bijective-to-surjective(f) ⦃ f-bijective ⦄) ⦄)
[≼]-empty-is-minimal : (([∃]-intro(Empty{ℓ})) ≼ A)
[≼]-empty-is-minimal = [∃]-intro empty ⦃ [∧]-intro empty-function empty-injective ⦄
[≽]-empty-is-not-minimal : ¬(∀{A : Setoid{ℓ}} → (A ≽ ([∃]-intro(Empty{ℓ}))))
[≽]-empty-is-not-minimal proof with () ← [∃]-witness(proof {[∃]-intro Unit}) <>
[≼]-to-[≽]-not-all : ¬((_≼_ {ℓ}) ⊆₂ swap(_≽_))
[≼]-to-[≽]-not-all (intro proof) = [≽]-empty-is-not-minimal(proof [≼]-empty-is-minimal)
[≼]-to-[≽]-for-inhabited : ⦃ _ : ∀{ℓ}{P : Stmt{ℓ}} → Classical(P) ⦄ ⦃ inh-A : (◊([∃]-witness A)) ⦄ → ((A ≼ B) → (B ≽ A))
[≼]-to-[≽]-for-inhabited {A = [∃]-intro a} {B = [∃]-intro b} ([∃]-intro f ⦃ [∧]-intro f-func f-inj ⦄) = [∃]-intro (invₗ-construction(const [◊]-existence) f) ⦃ [∧]-intro (invₗ-construction-function ⦃ inj = f-inj ⦄) (inverseₗ-surjective ⦃ inverₗ = invₗ-construction-inverseₗ ⦃ inj = f-inj ⦄ ⦄) ⦄
{- TODO: Maybe this proof could be made to a proof about invertibility instead
[≼][≍]-almost-antisymmetry : ⦃ _ : ∀{ℓ}{P : Stmt{ℓ}} → Classical(P) ⦄ → (A ≼ B) → (B ≼ A) → (A ≽ B)
[≼][≍]-almost-antisymmetry {A = A}{B = B} ([∃]-intro f ⦃ [∧]-intro func-f inj-f ⦄) ([∃]-intro g ⦃ [∧]-intro func-g inj-g ⦄) = [∃]-intro h ⦃ [∧]-intro func-h surj-h ⦄ where
h : [∃]-witness A → [∃]-witness B
h(a) = Either.map1 [∃]-witness (const(f(a))) (excluded-middle(∃(b ↦ g(b) ≡ a)))
func-h : Function(h)
Function.congruence func-h {a₁} {a₂} a₁a₂ with excluded-middle(∃(b ↦ g(b) ≡ a₁)) | excluded-middle(∃(b ↦ g(b) ≡ a₂)) | a₁a₂ -- TODO: Not sure why the last a₁a₂ is neccessary for the result to normalize from the cases, if this is a bug in Agda or if it is intended. An alternative is to just use two-layered Either.map1-values
... | [∨]-introₗ ([∃]-intro b₁ ⦃ gba1 ⦄) | [∨]-introₗ ([∃]-intro b₂ ⦃ gba2 ⦄) | _ = injective(g) ⦃ inj-g ⦄ (gba1 🝖 a₁a₂ 🝖 symmetry(_≡_) gba2)
... | [∨]-introₗ ([∃]-intro b₁ ⦃ gba1 ⦄) | [∨]-introᵣ ngba2 | _ = [⊥]-elim(ngba2([∃]-intro b₁ ⦃ gba1 🝖 a₁a₂ ⦄))
... | [∨]-introᵣ ngba1 | [∨]-introₗ ([∃]-intro b₂ ⦃ gba2 ⦄) | _ = [⊥]-elim(ngba1([∃]-intro b₂ ⦃ gba2 🝖 symmetry(_≡_) a₁a₂ ⦄))
... | [∨]-introᵣ _ | [∨]-introᵣ _ | _ = congruence₁(f) ⦃ func-f ⦄ a₁a₂
{- TODO: This choice of h probably does not work for proving antisymmetry because nothing states that f and g are inverses, which is neccessary for this kind of proof
inj-h : Injective(h)
Injective.proof inj-h {a₁} {a₂} ha₁ha₂ with excluded-middle(∃(b ↦ g(b) ≡ a₁)) | excluded-middle(∃(b ↦ g(b) ≡ a₂)) | ha₁ha₂
... | [∨]-introₗ ([∃]-intro b₁ ⦃ gba1 ⦄) | [∨]-introₗ ([∃]-intro b₂ ⦃ gba2 ⦄) | b₁b₂ =
a₁ 🝖-[ gba1 ]-sym
g(b₁) 🝖-[ congruence₁(g) ⦃ func-g ⦄ b₁b₂ ]
g(b₂) 🝖-[ gba2 ]
a₂ 🝖-end
... | [∨]-introₗ ([∃]-intro b₁ ⦃ gba1 ⦄) | [∨]-introᵣ nega₂ | b₁fa₂ = [⊥]-elim(nega₂ ([∃]-intro (f(a₂)) ⦃ p ⦄)) where
p =
g(f(a₂)) 🝖-[ congruence₁(g) ⦃ func-g ⦄ b₁fa₂ ]-sym
g(b₁) 🝖-[ gba1 ]
a₁ 🝖-[ {!gba1!} ]
a₂ 🝖-end
q =
f(a₁) 🝖-[ congruence₁(f) ⦃ func-f ⦄ gba1 ]-sym
f(g(b₁)) 🝖-[ {!!} ]
b₁ 🝖-[ b₁fa₂ ]
f(a₂) 🝖-end
... | [∨]-introᵣ nega₁ | [∨]-introₗ ([∃]-intro b₂ ⦃ gba2 ⦄) | fa₁b₂ = {!!}
... | [∨]-introᵣ nega₁ | [∨]-introᵣ nega₂ | fa₁fa₂ = injective(f) ⦃ inj-f ⦄ fa₁fa₂
-}
-- TODO: Is it possible to use [≼]-to-[≽]-for-inhabited instead or maybe this should be moved out?
surj-h : Surjective(h)
Surjective.proof surj-h {b} with Either.map1-values{f = [∃]-witness}{g = const(f(g(b)))}{e = excluded-middle(∃(x ↦ g(x) ≡ g(b)))}
... | [∨]-introₗ ([∃]-intro ([∃]-intro b₂ ⦃ gb₂gb ⦄) ⦃ fgbb₂ ⦄) = [∃]-intro (g(b)) ⦃ fgbb₂ 🝖 injective(g) ⦃ inj-g ⦄ gb₂gb ⦄
... | [∨]-introᵣ([∃]-intro neggb ⦃ p ⦄) = [⊥]-elim(neggb ([∃]-intro b ⦃ reflexivity(_≡_) ⦄))
-}
open import Structure.Operator
open import Structure.Setoid.Uniqueness
module _ ⦃ equiv-X : Equiv{ℓₑ₁}(X) ⦄ ⦃ equiv-Y : Equiv{ℓₑ₂}(Y) ⦄ (P : X → Type{ℓₗ}) ⦃ classical-P : Classical(∃ P) ⦄ (c : ¬(∃ P) → Y) (f : X → Y) ⦃ func-f : Function(f) ⦄ where -- TODO: Maybe f should also be able to depend on P, so that (f : (x : X) → P(x) → Y)?
-- TODO: This is a generalization of both h in [≼][≍]-antisymmetry-raw and invₗ-construction from Function.Inverseₗ
existence-decider : Y
existence-decider = Either.map1 (f ∘ [∃]-witness) c (excluded-middle(∃ P))
existence-decider-satisfaction-value : Unique(P) → ∀{x} → P(x) → (f(x) ≡ existence-decider)
existence-decider-satisfaction-value unique-P {x} px with Classical.excluded-middle classical-P
... | Either.Left ([∃]-intro y ⦃ py ⦄) = congruence₁(f) (unique-P px py)
... | Either.Right nep with () ← nep ([∃]-intro x ⦃ px ⦄)
existence-decider-unsatisfaction-value : ⦃ Constant(c) ⦄ → (p : ¬(∃ P)) → (c(p) ≡ existence-decider)
existence-decider-unsatisfaction-value nep with Classical.excluded-middle classical-P
... | Either.Left ep with () ← nep ep
... | Either.Right _ = constant(c)
module _ ⦃ equiv-X : Equiv{ℓₑ₁}(X) ⦄ ⦃ equiv-Y : Equiv{ℓₑ₂}(Y) ⦄ ⦃ equiv-Z : Equiv{ℓₑ₃}(Z) ⦄ (P : X → Y → Type{ℓₗ}) ⦃ classical-P : ∀{x} → Classical(∃(P(x))) ⦄ (c : (x : X) → ¬(∃(P(x))) → Z) (f : X → Y → Z) ⦃ func-f : BinaryOperator(f) ⦄ where
existence-decider-fn : X → Z
existence-decider-fn(x) = existence-decider (P(x)) (c(x)) (f(x)) ⦃ BinaryOperator.right func-f ⦄
open import Structure.Relator
existence-decider-fn-function : (∀{x} → Unique(P(x))) → (∀{x₁ x₂}{p₁ p₂} → (x₁ ≡ x₂) → (c x₁ p₁ ≡ c x₂ p₂)) → ⦃ ∀{y} → UnaryRelator(swap P y) ⦄ → Function(existence-decider-fn)
Function.congruence (existence-decider-fn-function unique constant) {x₁} {x₂} x₁x₂ with excluded-middle(∃(P(x₁))) | excluded-middle(∃(P(x₂))) | x₁x₂
... | [∨]-introₗ ([∃]-intro y₁ ⦃ p₁ ⦄) | [∨]-introₗ ([∃]-intro y₂ ⦃ p₂ ⦄) | _
= congruence₂(f) x₁x₂ (unique (substitute₁(swap P y₁) x₁x₂ p₁) p₂)
... | [∨]-introₗ ([∃]-intro y₁ ⦃ p₁ ⦄) | [∨]-introᵣ ngba2 | _
with () ← ngba2 ([∃]-intro y₁ ⦃ substitute₁(swap P y₁) x₁x₂ p₁ ⦄)
... | [∨]-introᵣ ngba1 | [∨]-introₗ ([∃]-intro y₂ ⦃ p₂ ⦄) | _
with () ← ngba1 ([∃]-intro y₂ ⦃ substitute₁(swap P y₂) (symmetry(_≡_) x₁x₂) p₂ ⦄)
... | [∨]-introᵣ _ | [∨]-introᵣ _ | _ = constant x₁x₂
existence-decider-fn-surjective : (∀{x} → Unique(P(x))) → ⦃ ∀{x} → Constant(c(x)) ⦄ → (∀{z} → ∃(x ↦ (∀{y} → P(x)(y) → (f x y ≡ z)) ∧ ((nepx : ¬ ∃(P(x))) → (c x nepx ≡ z)))) → Surjective(existence-decider-fn)
Surjective.proof (existence-decider-fn-surjective unique-p property) {z} with [∃]-intro x ⦃ px ⦄ ← property{z} with excluded-middle(∃(P(x)))
... | [∨]-introₗ ([∃]-intro y ⦃ pxy ⦄)
= [∃]-intro x ⦃ symmetry(_≡_) (existence-decider-satisfaction-value(P(x)) (c(x)) (f(x)) ⦃ BinaryOperator.right func-f ⦄ unique-p pxy) 🝖 [∧]-elimₗ px pxy ⦄
... | [∨]-introᵣ nepx
= [∃]-intro x ⦃ symmetry(_≡_) (existence-decider-unsatisfaction-value(P(x)) (c(x)) (f(x)) ⦃ BinaryOperator.right func-f ⦄ nepx) 🝖 [∧]-elimᵣ px nepx ⦄
existence-decider-fn-surjective2 : (∀{x} → Unique(P(x))) → ⦃ ∀{x} → Constant(c(x)) ⦄ → (∃{Obj = Z → X}(x ↦ (∀{z}{y} → P(x(z))(y) → (f (x(z)) y ≡ z)) ∧ (∀{z} → (nepx : ¬ ∃(P(x(z)))) → (c (x(z)) nepx ≡ z)))) → Surjective(existence-decider-fn)
Surjective.proof (existence-decider-fn-surjective2 unique-p property) {z} with [∃]-intro x ⦃ px ⦄ ← property with excluded-middle(∃(P(x(z))))
... | [∨]-introₗ ([∃]-intro y ⦃ pxy ⦄)
= [∃]-intro (x(z)) ⦃ symmetry(_≡_) (existence-decider-satisfaction-value(P(x(z))) (c(x(z))) (f(x(z))) ⦃ BinaryOperator.right func-f ⦄ unique-p pxy) 🝖 [∧]-elimₗ px pxy ⦄
... | [∨]-introᵣ nepx
= [∃]-intro (x(z)) ⦃ symmetry(_≡_) (existence-decider-unsatisfaction-value(P(x(z))) (c(x(z))) (f(x(z))) ⦃ BinaryOperator.right func-f ⦄ nepx) 🝖 [∧]-elimᵣ px nepx ⦄
module _
(inj-f : ∀{x₁ x₂}{y₁ y₂} → P(x₁)(y₁) → P(x₂)(y₂) → (f x₁ y₁ ≡ f x₂ y₂) → (x₁ ≡ x₂))
(inj-c : ∀{x₁ x₂} → (nep₁ : ¬ ∃(P(x₁))) → (nep₂ : ¬ ∃(P(x₂))) → (c x₁ nep₁ ≡ c x₂ nep₂) → (x₁ ≡ x₂))
(inj-mix : ∀{x₁ x₂}{y₁} → P(x₁)(y₁) → (nep₂ : ¬ ∃(P(x₂))) → (f x₁ y₁ ≡ c x₂ nep₂) → (x₁ ≡ x₂))
where
existence-decider-fn-injective : Injective(existence-decider-fn)
Injective.proof existence-decider-fn-injective {x₁}{x₂} dx₁dx₂ with excluded-middle(∃(P(x₁))) | excluded-middle(∃(P(x₂))) | dx₁dx₂
... | Either.Left ([∃]-intro y₁ ⦃ p₁ ⦄) | Either.Left ([∃]-intro y₂ ⦃ p₂ ⦄) | fx₁y₁fx₂y₂ = inj-f p₁ p₂ fx₁y₁fx₂y₂
... | Either.Left ([∃]-intro y₁ ⦃ p₁ ⦄) | Either.Right nep₂ | fxy₁cxp₂ = inj-mix p₁ nep₂ fxy₁cxp₂
... | Either.Right nep₁ | Either.Left ([∃]-intro y₂ ⦃ p₂ ⦄) | cxp₁fxy₂ = symmetry(_≡_) (inj-mix p₂ nep₁ (symmetry(_≡_) cxp₁fxy₂))
... | Either.Right nep₁ | Either.Right nep₂ | cxp₁cxp₂ = inj-c nep₁ nep₂ cxp₁cxp₂
-- The property of antisymmetry for injection existence.
-- Also called: Cantor-Schröder-Bernstein Theorem, Schröder-Bernstein Theorem, Cantor–Bernstein theorem
-- Source: https://artofproblemsolving.com/wiki/index.php/Schroeder-Bernstein_Theorem
[≼][≍]-antisymmetry-raw : ⦃ _ : ∀{ℓ}{P : Stmt{ℓ}} → Classical(P) ⦄ → (A ≼ B) → (B ≼ A) → (A ≍ B) -- TODO: Not everything needs to be classical, only forall, exists, and equality
[≼][≍]-antisymmetry-raw {A = [∃]-intro A}{B = [∃]-intro B} ⦃ classical ⦄ ([∃]-intro f ⦃ [∧]-intro func-f inj-f ⦄) ([∃]-intro g ⦃ [∧]-intro func-g inj-g ⦄) = [∃]-intro h ⦃ [∧]-intro func-h (injective-surjective-to-bijective(h)) ⦄ where
open import Logic.Predicate.Theorems
open import Function.Inverseₗ
open import Numeral.Natural
open import Structure.Relator
-- A lone point `b` of `B` is a point not in the image of `f`.
Lone : B → Stmt
Lone(b) = ∀{a} → (f(a) ≢ b)
-- A point `b₁` is a descendent from a point `b₀` in `B` when a number of compositions of `(f ∘ g)` on `b₀` yields `b₁`.
Desc : B → B → Stmt
Desc(b₁)(b₀) = ∃(n ↦ (b₁ ≡ ((f ∘ g) ^ n)(b₀)))
instance
lone-desc-rel : ∀{y} → UnaryRelator(x ↦ Lone(y) ∧ Desc(f(x)) y)
UnaryRelator.substitution lone-desc-rel xy = [∧]-map id (ep ↦ [∃]-map-proof-dependent ep (symmetry(_≡_) (congruence₁(f) ⦃ func-f ⦄ xy) 🝖_))
f⁻¹ : B → A
f⁻¹ = invₗ-construction g f
g⁻¹ : A → B
g⁻¹ = invₗ-construction f g
instance
func-f⁻¹ : Function(f⁻¹)
func-f⁻¹ = invₗ-construction-function ⦃ inj = inj-f ⦄ ⦃ func-g ⦄
instance
func-g⁻¹ : Function(g⁻¹)
func-g⁻¹ = invₗ-construction-function ⦃ inj = inj-g ⦄ ⦃ func-f ⦄
instance
inverₗ-f⁻¹ : Inverseₗ(f)(f⁻¹)
inverₗ-f⁻¹ = invₗ-construction-inverseₗ ⦃ inj = inj-f ⦄ ⦃ func-g ⦄
instance
inverₗ-g⁻¹ : Inverseₗ(g)(g⁻¹)
inverₗ-g⁻¹ = invₗ-construction-inverseₗ ⦃ inj = inj-g ⦄ ⦃ func-f ⦄
instance
func-const-invₗ-construction : BinaryOperator(const ∘ g⁻¹)
func-const-invₗ-construction = functions-to-binaryOperator _ ⦃ r = const-function ⦄
-- The to-be-proven bijection.
-- `h` is a mapping such that:
-- • If `f(a)` is a descendent of a lonely point, then `h(a) = g⁻¹(a)`.
-- • If `f(a)` is not a descendent of a lonely point, then `h(a) = f(a)`.
-- Note: The construction of this function requires excluded middle.
h : A → B
h = existence-decider-fn (a ↦ b ↦ Lone(b) ∧ Desc(f(a))(b)) (\a _ → f(a)) (\a _ → g⁻¹(a))
-- The left inverse of `g` is a right inverse on a point `a` when `f(a)` is a descendent of a lonely point.
inverᵣ-g⁻¹-specific : ∀{a}{b} → Lone(b) → Desc(f(a))(b) → (g(g⁻¹(a)) ≡ a)
inverᵣ-g⁻¹-specific lone-b ([∃]-intro 𝟎 ⦃ desc-b ⦄) with () ← lone-b desc-b
inverᵣ-g⁻¹-specific {a}{b} lone-b ([∃]-intro (𝐒(n)) ⦃ desc-b ⦄) =
g(g⁻¹(a)) 🝖[ _≡_ ]-[ congruence₁(g) ⦃ func-g ⦄ (congruence₁(g⁻¹) (injective(f) ⦃ inj-f ⦄ desc-b)) ]
g(g⁻¹(g(((f ∘ g) ^ n)(b)))) 🝖[ _≡_ ]-[ congruence₁(g) ⦃ func-g ⦄ (inverseₗ(g)(g⁻¹)) ]
g(((f ∘ g) ^ n)(b)) 🝖[ _≡_ ]-[ inverseₗ(f)(f⁻¹) ]-sym
f⁻¹(f(g(((f ∘ g) ^ n)(b)))) 🝖[ _≡_ ]-[]
f⁻¹(((f ∘ g) ^ 𝐒(n))(b)) 🝖[ _≡_ ]-[ congruence₁(f⁻¹) desc-b ]-sym
f⁻¹(f(a)) 🝖[ _≡_ ]-[ inverseₗ(f)(f⁻¹) ]
a 🝖-end
inj-different-fgn : ∀{n₁ n₂}{b₁ b₂} → (((f ∘ g) ^ n₁)(b₁) ≡ ((f ∘ g) ^ n₂)(b₂)) → ∃(n ↦ (b₁ ≡ ((f ∘ g) ^ 𝐒(n))(b₂)) ∨ (((f ∘ g) ^ 𝐒(n))(b₁) ≡ b₂) ∨ (b₁ ≡ b₂))
inj-different-fgn {𝟎} {𝟎} p = [∃]-intro 𝟎 ⦃ [∨]-introᵣ p ⦄
inj-different-fgn {𝟎} {𝐒 n₂} p = [∃]-intro n₂ ⦃ [∨]-introₗ([∨]-introₗ p) ⦄
inj-different-fgn {𝐒 n₁} {𝟎} p = [∃]-intro n₁ ⦃ [∨]-introₗ([∨]-introᵣ p) ⦄
inj-different-fgn {𝐒 n₁} {𝐒 n₂} p = inj-different-fgn {n₁} {n₂} (Injective.proof inj-g(Injective.proof inj-f p))
-- The lonely points are unique for all descendents from the image of `f`.
unique-lone-descendant : ∀{a} → Unique(b ↦ Lone(b) ∧ Desc(f(a))(b))
unique-lone-descendant {a} {b₁} {b₂} ([∧]-intro lone-b₁ ([∃]-intro n₁ ⦃ desc-b₁ ⦄)) ([∧]-intro lone-b₂ ([∃]-intro n₂ ⦃ desc-b₂ ⦄)) with inj-different-fgn{n₁}{n₂}{b₁}{b₂} (symmetry(_≡_) desc-b₁ 🝖 desc-b₂)
... | [∃]-intro n ⦃ Either.Left(Either.Left p) ⦄ with () ← lone-b₁ (symmetry(_≡_) p)
... | [∃]-intro n ⦃ Either.Left(Either.Right p) ⦄ with () ← lone-b₂ p
... | [∃]-intro n ⦃ Either.Right b₁b₂ ⦄ = b₁b₂
instance
func-h : Function(h)
func-h = existence-decider-fn-function (a ↦ b ↦ Lone(b) ∧ Desc(f(a))(b)) (\x _ → f(x)) (const ∘ g⁻¹) unique-lone-descendant (congruence₁(f) ⦃ func-f ⦄)
-- What it means to not have a lonely descendent.
not-lone-desc : ∀{a} → ¬ ∃(b ↦ Lone(b) ∧ Desc(f(a)) b) → (∀{b} → (∃(x ↦ f(x) ≡ b) ∨ (∀{n} → (f(a) ≢ ((f ∘ g) ^ n)(b)))))
not-lone-desc {z} = (\nepx {x} → (Either.map ([∃]-map-proof [¬¬]-elim ∘ [¬∀]-to-[∃¬] ⦃ classical ⦄ ⦃ classical ⦄) [¬∃]-to-[∀¬] ∘ [¬]-preserves-[∧][∨]ᵣ) (nepx{x})) ∘ [¬∃]-to-[∀¬]
instance
surj-h : Surjective(h)
Surjective.proof surj-h {z} with excluded-middle(∃(y ↦ Lone(y) ∧ Desc(f(g(z))) y))
... | [∨]-introₗ ([∃]-intro y ⦃ pxy ⦄)
= [∃]-intro (g(z)) ⦃ symmetry(_≡_) (existence-decider-satisfaction-value(y ↦ Lone(y) ∧ Desc(f(g(z))) y) (\_ → f(g(z))) (\_ → g⁻¹(g(z))) unique-lone-descendant pxy) 🝖 inverseₗ(g)(g⁻¹) ⦄
... | [∨]-introᵣ nepx
= [∨]-elim
(\([∃]-intro x ⦃ p ⦄) → [∃]-intro x ⦃ symmetry(_≡_) (existence-decider-unsatisfaction-value(y ↦ Lone(y) ∧ Desc(f(x)) y) (\_ → f(x)) (\_ → g⁻¹(x)) ⦃ const-function ⦄ ⦃ intro(reflexivity(_≡_)) ⦄ \([∃]-intro xx ⦃ [∧]-intro pp₁ ([∃]-intro n ⦃ pp₂ ⦄) ⦄) → nepx ([∃]-intro xx ⦃ [∧]-intro (\{xxx} ppp → pp₁ ppp) ([∃]-intro (𝐒(n)) ⦃ congruence₁(f) ⦃ func-f ⦄ (congruence₁(g) ⦃ func-g ⦄ (symmetry(_≡_) p 🝖 pp₂)) ⦄) ⦄)) 🝖 p ⦄)
(\p → [∃]-intro (g(z)) ⦃ symmetry(_≡_) (existence-decider-unsatisfaction-value(y ↦ Lone(y) ∧ Desc(f(g(z))) y) (\_ → f(g(z))) (\_ → g⁻¹(g(z))) ⦃ const-function ⦄ ⦃ intro(reflexivity(_≡_)) ⦄ nepx) 🝖 [⊥]-elim(p{1} (reflexivity(_≡_))) ⦄)
(not-lone-desc nepx {z})
{-TODO: How to define surj-h using existence-decider-fn-surjective? Should existence-decider-fn-surjective be more general?
surj-h = existence-decider-fn-surjective
(a ↦ b ↦ Lone(b) ∧ Desc(f(a))(b))
(\x _ → f(x))
(const ∘ invₗ-construction f g)
unique-lone-descendant
⦃ intro (reflexivity(_≡_)) ⦄
(\{z} → [∃]-intro (g(z)) ⦃ [∧]-intro
(\{y} ([∧]-intro lone-y desc-y) → inverseₗ(g)(g⁻¹))
-- ((\nepx → [⊥]-elim(nepx{z} ([∧]-intro (\{x} fxz → nepx{f(x)} ([∧]-intro (\{x'} p → {!!}) {!!})) ([∃]-intro 1 ⦃ reflexivity(_≡_) ⦄)))) ∘ [¬∃]-to-[∀¬])
((\nepx → Either.map1
((\([∃]-intro x ⦃ p ⦄) → {!!}) ∘ [∃]-map-proof [¬¬]-elim)
(\p → [⊥]-elim(p{1} (reflexivity(_≡_))))
(Either.map ([¬∀]-to-[∃¬] ⦃ classical ⦄ ⦃ classical ⦄) [¬∃]-to-[∀¬] ([¬]-preserves-[∧][∨]ᵣ (nepx{z})))
) ∘ [¬∃]-to-[∀¬])
⦄)
-}
instance
inj-h : Injective(h)
inj-h = existence-decider-fn-injective
(a ↦ b ↦ Lone(b) ∧ Desc(f(a))(b))
(\x _ → f(x))
(const ∘ invₗ-construction f g)
(\{x₁ x₂}{y₁ y₂} ([∧]-intro lone₁ desc₁) ([∧]-intro lone₂ desc₂) g⁻¹x₁g⁻¹x₂ →
x₁ 🝖[ _≡_ ]-[ inverᵣ-g⁻¹-specific lone₁ desc₁ ]-sym
(g ∘ g⁻¹)(x₁) 🝖[ _≡_ ]-[ congruence₁(g) ⦃ func-g ⦄ g⁻¹x₁g⁻¹x₂ ]
(g ∘ g⁻¹)(x₂) 🝖[ _≡_ ]-[ inverᵣ-g⁻¹-specific lone₂ desc₂ ]
x₂ 🝖-end
)
(\_ _ → Injective.proof inj-f)
(\{
{_} {_} {_} ([∧]-intro lone₁ ([∃]-intro 𝟎 ⦃ desc₁ ⦄)) no g⁻¹x₁fx₂ → [⊥]-elim(lone₁ desc₁) ;
{x₁}{x₂}{y₁} ([∧]-intro lone₁ ([∃]-intro (𝐒(n₁)) ⦃ desc₁ ⦄)) no g⁻¹x₁fx₂ → [⊥]-elim(no([∃]-intro y₁ ⦃ [∧]-intro lone₁ ([∃]-intro n₁ ⦃
f(x₂) 🝖[ _≡_ ]-[ g⁻¹x₁fx₂ ]-sym
g⁻¹(x₁) 🝖[ _≡_ ]-[ congruence₁(g⁻¹) (injective(f) ⦃ inj-f ⦄ desc₁) ]
g⁻¹(g(((f ∘ g) ^ n₁)(y₁))) 🝖[ _≡_ ]-[ inverseₗ(g)(g⁻¹) ]
((f ∘ g) ^ n₁)(y₁) 🝖-end
⦄) ⦄))
})
instance
[≼][≍]-antisymmetry : ⦃ _ : ∀{ℓ}{P : Stmt{ℓ}} → Classical(P) ⦄ → Antisymmetry(_≼_ {ℓₑ}{ℓ})(_≍_)
[≼][≍]-antisymmetry = intro [≼][≍]-antisymmetry-raw
instance
[≍]-reflexivity : Reflexivity(_≍_ {ℓₑ}{ℓ})
Reflexivity.proof([≍]-reflexivity) = [∃]-intro(id) ⦃ [∧]-intro id-function id-bijective ⦄
instance
[≍]-symmetry : Symmetry(_≍_ {ℓₑ}{ℓ})
Symmetry.proof [≍]-symmetry ([∃]-intro(f) ⦃ [∧]-intro f-function f-bijective ⦄) = ([∃]-intro(inv f) ⦃ [∧]-intro inv-function (inv-bijective ⦃ func = f-function ⦄) ⦄) where
instance
f-invertible : Invertible(f)
f-invertible = bijective-to-invertible ⦃ bij = f-bijective ⦄
instance
invf-invertible : Invertible(inv f)
∃.witness invf-invertible = f
∃.proof invf-invertible = [∧]-intro f-function (Inverse-symmetry ([∧]-elimᵣ([∃]-proof f-invertible)))
instance
[≍]-transitivity : Transitivity(_≍_ {ℓₑ}{ℓ})
Transitivity.proof([≍]-transitivity) ([∃]-intro(f) ⦃ [∧]-intro f-function f-bijective ⦄) ([∃]-intro(g) ⦃ [∧]-intro g-function g-bijective ⦄)
= [∃]-intro(g ∘ f) ⦃ [∧]-intro
([∘]-function {f = g}{g = f} ⦃ g-function ⦄ ⦃ f-function ⦄)
([∘]-bijective {f = g} ⦃ g-function ⦄ {g = f} ⦃ g-bijective ⦄ ⦃ f-bijective ⦄)
⦄
instance
[≍]-equivalence : Equivalence(_≍_ {ℓₑ}{ℓ})
[≍]-equivalence = intro
instance
[≼]-reflexivity : Reflexivity(_≼_ {ℓₑ}{ℓ})
Reflexivity.proof([≼]-reflexivity) = [∃]-intro(id) ⦃ [∧]-intro id-function id-injective ⦄
instance
[≼]-transitivity : Transitivity(_≼_ {ℓₑ}{ℓ})
Transitivity.proof([≼]-transitivity) ([∃]-intro(f) ⦃ [∧]-intro f-function f-injective ⦄) ([∃]-intro(g) ⦃ [∧]-intro g-function g-injective ⦄)
= [∃]-intro(g ∘ f) ⦃ [∧]-intro
([∘]-function {f = g}{g = f} ⦃ g-function ⦄ ⦃ f-function ⦄)
([∘]-injective {f = g}{g = f} ⦃ g-injective ⦄ ⦃ f-injective ⦄)
⦄
instance
[≽]-reflexivity : Reflexivity(_≽_ {ℓₑ}{ℓ})
Reflexivity.proof([≽]-reflexivity) = [∃]-intro(id) ⦃ [∧]-intro id-function id-surjective ⦄
instance
[≽]-transitivity : Transitivity(_≽_ {ℓₑ}{ℓ})
Transitivity.proof([≽]-transitivity) ([∃]-intro(f) ⦃ [∧]-intro f-function f-surjective ⦄) ([∃]-intro(g) ⦃ [∧]-intro g-function g-surjective ⦄)
= [∃]-intro(g ∘ f) ⦃ [∧]-intro
([∘]-function {f = g}{g = f} ⦃ g-function ⦄ ⦃ f-function ⦄)
([∘]-surjective {f = g} ⦃ g-function ⦄ {g = f} ⦃ g-surjective ⦄ ⦃ f-surjective ⦄)
⦄
module _ where
-- This is variant of the "extensional axiom of choice" and is unprovable in Agda, though it is a possible axiom.
-- A proof of `(A ≽ B)` means that a right inverse exist, but if the surjection is non-injective (it could be in general), then the right inverse is not a function (two equal values in the codomain of the surjection may point to two inequal objects in the domain).
-- Example:
-- For X: Set, Y: Set, f: X → Y, a: X, b: X, c₁: Y, c₂: Y
-- Assume:
-- X = {a,b}
-- Y = {c₁,c₂}
-- a ≢ b
-- c₁ ≡ c₂
-- f(a) = c₁
-- f(b) = c₂
-- This means that f is surjective (maps to both c₁ and c₂) but not injective ((c₁ ≡ c₂) implies (f(a) ≡ f(b)) implies (a ≡ b) which is false).
-- Then an inverse f⁻¹ to f can be constructed from the witnesses in surjectivity:
-- f⁻¹: Y → X
-- f⁻¹(c₁) = a
-- f⁻¹(c₂) = b
-- f⁻¹ is obviously injective, but it is also not a function: ((c₁ ≡ c₂) would imply (a ≡ b) if it were a function, but that is false).
-- This example shows that not all surjections are injective.
-- But looking at the example, there are functions that are injective:
-- g₁: Y → X
-- g₁(c₁) = a
-- g₁(c₂) = a
--
-- g₂: Y → X
-- g₂(c₁) = b
-- g₂(c₂) = b
-- They are, because: ((a ≡ a) implies (g₁(c₁) ≡ g₁(c₂)) implies (c₁ ≡ c₂) which is true).
-- and : ((b ≡ b) implies (g₂(c₁) ≡ g₂(c₂)) implies (c₁ ≡ c₂) which is true).
-- This is a simplified example for finite sets, and a restriction of this proposition for finite sets is actually provable because it is possible to enumerate all functions up to function extensionality.
-- The real problem comes when the sets are non-finite because then, there is no general way to enumerate the elements. How would an injection be chosen in this case?
-- Note that if the surjection is injective, then it is a bijection, and therefore also an injection.
record SurjectionInjectionChoice (A : Setoid{ℓₑ₁}{ℓ₁}) (B : Setoid{ℓₑ₂}{ℓ₂}) : Stmt{ℓₑ₁ Lvl.⊔ ℓ₁ Lvl.⊔ ℓₑ₂ Lvl.⊔ ℓ₂} where
constructor intro
field proof : (A ≽ B) → (B ≼ A)
open SurjectionInjectionChoice ⦃ … ⦄ using () renaming (proof to [≽]-to-[≼]) public
record SurjectionInvertibleFunctionChoice (A : Setoid{ℓₑ₁}{ℓ₁}) (B : Setoid{ℓₑ₂}{ℓ₂}) : Stmt{ℓₑ₁ Lvl.⊔ ℓ₁ Lvl.⊔ ℓₑ₂ Lvl.⊔ ℓ₂} where
constructor intro
field
invertibleᵣ : ∀{f : ∃.witness A → ∃.witness B} → Surjective(f) → Invertibleᵣ(f)
function : ∀{f : ∃.witness A → ∃.witness B}{surj : Surjective(f)} → Function(∃.witness(invertibleᵣ surj))
module _ ⦃ classical : ∀{ℓ}{P : Stmt{ℓ}} → Classical(P) ⦄ ⦃ surjChoice-ab : SurjectionInjectionChoice A B ⦄ ⦃ surjChoice-ba : SurjectionInjectionChoice B A ⦄ where
[≽][≍]-antisymmetry-raw : (A ≽ B) → (B ≽ A) → (A ≍ B)
[≽][≍]-antisymmetry-raw ab ba = [≼][≍]-antisymmetry-raw ([≽]-to-[≼] ba) ([≽]-to-[≼] ab)
module _ ⦃ classical : ∀{ℓ}{P : Stmt{ℓ}} → Classical(P) ⦄ ⦃ surjChoice-ab : SurjectionInjectionChoice A B ⦄ where
[≼][≽][≍]-antisymmetry-raw : (A ≼ B) → (A ≽ B) → (A ≍ B)
[≼][≽][≍]-antisymmetry-raw lesser greater = [≼][≍]-antisymmetry-raw lesser ([≽]-to-[≼] greater)
module _ ⦃ classical : ∀{ℓ}{P : Stmt{ℓ}} → Classical(P) ⦄ ⦃ surjChoice : ∀{ℓ₁ ℓ₂ ℓₑ₁ ℓₑ₂}{A : Setoid{ℓₑ₁}{ℓ₁}}{B : Setoid{ℓₑ₂}{ℓ₂}} → SurjectionInjectionChoice A B ⦄ where
instance
[≽][≍]-antisymmetry : Antisymmetry(_≽_ {ℓₑ}{ℓ})(_≍_)
[≽][≍]-antisymmetry = intro [≽][≍]-antisymmetry-raw
-- TODO: Totality of (_≼_). Is this difficult to prove?
-- [≼]-total : ((A ≼ B) ∨ (B ≼ A))
-- TODO: Move
global-equiv : ∀{ℓ}{T : Type{ℓ}} → Equiv{ℓₑ}(T)
Equiv._≡_ global-equiv = const(const Unit)
Equivalence.reflexivity (Equiv.equivalence global-equiv) = intro <>
Equivalence.symmetry (Equiv.equivalence global-equiv) = intro(const <>)
Equivalence.transitivity (Equiv.equivalence global-equiv) = intro(const(const <>))
[≼]-to-[≽]-for-inhabited-to-excluded-middle : (∀{ℓ₁ ℓ₂ ℓₑ₁ ℓₑ₂}{A : Setoid{ℓₑ₁}{ℓ₁}}{B : Setoid{ℓₑ₂}{ℓ₂}} → ⦃ ◊([∃]-witness A) ⦄ → (A ≼ B) → (B ≽ A)) → (∀{P : Type{ℓ}} → Classical(P))
Classical.excluded-middle ([≼]-to-[≽]-for-inhabited-to-excluded-middle p {P = P}) = proof where
open import Data.Boolean
open import Data.Option
open import Data.Option.Setoid
open import Relator.Equals.Proofs.Equivalence
f : Option(◊ P) → Bool
f (Option.Some _) = 𝑇
f Option.None = 𝐹
instance
equiv-bool : Equiv(Bool)
equiv-bool = [≡]-equiv
instance
equiv-pos-P : Equiv{Lvl.𝟎}(◊ P)
equiv-pos-P = global-equiv
func-f : Function(f)
Function.congruence func-f {None} {None} _ = reflexivity(_≡_ ⦃ [≡]-equiv ⦄)
Function.congruence func-f {Some _} {Some _} _ = reflexivity(_≡_ ⦃ [≡]-equiv ⦄)
inj-f : Injective(f)
Injective.proof inj-f {None} {None} _ = <>
Injective.proof inj-f {Some _} {Some _} _ = <>
surjection : ([∃]-intro Bool ⦃ [≡]-equiv ⦄) ≽ ([∃]-intro (Option(◊ P)))
surjection = p ⦃ intro ⦃ None ⦄ ⦄ ([∃]-intro f ⦃ [∧]-intro func-f inj-f ⦄)
g : Bool → Option(◊ P)
g = [∃]-witness surjection
g-value-elim : ∀{y} → (g(𝑇) ≡ y) → (g(𝐹) ≡ y) → (∀{b} → (g(b) ≡ y))
g-value-elim l r {𝑇} = l
g-value-elim l r {𝐹} = r
open Equiv(Option-equiv ⦃ equiv-pos-P ⦄) using () renaming (transitivity to Option-trans ; symmetry to Option-sym)
proof : (P ∨ ¬ P)
proof with g(𝐹) | g(𝑇) | (\p → Surjective.proof ([∧]-elimᵣ([∃]-proof surjection)) {Some(intro ⦃ p ⦄)}) | g-value-elim{Option.None}
... | Some l | Some r | _ | _ = [∨]-introₗ (◊.existence l)
... | Some l | None | _ | _ = [∨]-introₗ (◊.existence l)
... | None | Some r | _ | _ = [∨]-introₗ (◊.existence r)
... | None | None | surj | tttest = [∨]-introᵣ
(\p →
empty(transitivity _ ⦃ Option-trans ⦄ {Some(intro ⦃ p ⦄)}{g([∃]-witness(surj p))}{None} (symmetry _ ⦃ Option-sym ⦄ {g([∃]-witness(surj p))}{Some(intro ⦃ p ⦄)} ([∃]-proof(surj p))) (tttest <> <>))
)
{-
Some(intro ⦃ p ⦄) 🝖[ Equiv._≡_ Option-equiv ]-[ [∃]-proof(surj p) ]-sym
g([∃]-witness(surj p)) 🝖[ Equiv._≡_ Option-equiv ]-[ tttest <> <> ]
None 🝖[ Equiv._≡_ Option-equiv ]-end
-}
{-module _ ⦃ surjChoice : ∀{A B : Setoid{ℓ}} → SurjectionInjectionChoice A B ⦄ where
surjection-injection-choice-to-excluded-middle : ∀{P : Type{ℓ}} → Classical(P)
Classical.excluded-middle (surjection-injection-choice-to-excluded-middle {P = P}) = {!!}
-}
| {
"alphanum_fraction": 0.5470036515,
"avg_line_length": 58.4393305439,
"ext": "agda",
"hexsha": "0eaaed507aec516519878778ee0e89a99aefeaf7",
"lang": "Agda",
"max_forks_count": null,
"max_forks_repo_forks_event_max_datetime": null,
"max_forks_repo_forks_event_min_datetime": null,
"max_forks_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "Lolirofle/stuff-in-agda",
"max_forks_repo_path": "Structure/Setoid/Size/Proofs.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "Lolirofle/stuff-in-agda",
"max_issues_repo_path": "Structure/Setoid/Size/Proofs.agda",
"max_line_length": 426,
"max_stars_count": 6,
"max_stars_repo_head_hexsha": "70f4fba849f2fd779c5aaa5af122ccb6a5b271ba",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "Lolirofle/stuff-in-agda",
"max_stars_repo_path": "Structure/Setoid/Size/Proofs.agda",
"max_stars_repo_stars_event_max_datetime": "2022-02-05T06:53:22.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-04-07T17:58:13.000Z",
"num_tokens": 11928,
"size": 27934
} |
------------------------------------------------------------------------------
-- Testing the conjectures inside a @where@ clause
------------------------------------------------------------------------------
{-# OPTIONS --exact-split #-}
{-# OPTIONS --no-sized-types #-}
{-# OPTIONS --no-universe-polymorphism #-}
{-# OPTIONS --without-K #-}
module Where2 where
infixl 6 _+_
infix 4 _≡_
postulate
D : Set
zero : D
succ : D → D
_≡_ : D → D → Set
data N : D → Set where
nzero : N zero
nsucc : ∀ {n} → N n → N (succ n)
N-ind : (A : D → Set) →
A zero →
(∀ {n} → A n → A (succ n)) →
∀ {n} → N n → A n
N-ind A A0 h nzero = A0
N-ind A A0 h (nsucc Nn) = h (N-ind A A0 h Nn)
postulate
_+_ : D → D → D
+-0x : ∀ n → zero + n ≡ n
+-Sx : ∀ m n → succ m + n ≡ succ (m + n)
{-# ATP axioms +-0x +-Sx #-}
+-assoc : ∀ {m n o} → N m → N n → N o → m + n + o ≡ m + (n + o)
+-assoc {n = n} {o} Nm Nn No = N-ind A A0 is Nm
where
A : D → Set
A i = i + n + o ≡ i + (n + o)
postulate A0 : zero + n + o ≡ zero + (n + o)
{-# ATP prove A0 #-}
postulate is : ∀ {i} → i + n + o ≡ i + (n + o) →
succ i + n + o ≡ succ i + (n + o)
{-# ATP prove is #-}
| {
"alphanum_fraction": 0.3808392716,
"avg_line_length": 25.26,
"ext": "agda",
"hexsha": "bf3d02b123ae33a4f870c66dabaa4b21b27df779",
"lang": "Agda",
"max_forks_count": 4,
"max_forks_repo_forks_event_max_datetime": "2016-08-03T03:54:55.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-05-10T23:06:19.000Z",
"max_forks_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "asr/apia",
"max_forks_repo_path": "test/Succeed/fol-theorems/Where2.agda",
"max_issues_count": 121,
"max_issues_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_issues_repo_issues_event_max_datetime": "2018-04-22T06:01:44.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-25T13:22:12.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "asr/apia",
"max_issues_repo_path": "test/Succeed/fol-theorems/Where2.agda",
"max_line_length": 78,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "a66c5ddca2ab470539fd68c42c4fbd45f720d682",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "asr/apia",
"max_stars_repo_path": "test/Succeed/fol-theorems/Where2.agda",
"max_stars_repo_stars_event_max_datetime": "2019-12-03T13:44:25.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-09-03T20:54:16.000Z",
"num_tokens": 447,
"size": 1263
} |
-- Andreas, 2017-07-28, issue #883
-- Was fixed by making rewrite not go through abstract syntax.
open import Agda.Builtin.Equality
test : (A : Set) → (a : A) → A
test A a rewrite refl {x = a} = a
-- WAS:
-- Setω !=< Level of type Setω
-- when checking that the type
-- (A : Set) (a w : A) →
-- _≡_ {_6 A w} {_A_9 A w} (_x_10 A w) (_x_10 A w) → A
-- of the generated with function is well-formed
-- Should succeed.
| {
"alphanum_fraction": 0.6252983294,
"avg_line_length": 24.6470588235,
"ext": "agda",
"hexsha": "6212a4a1faf1afe5588d37d5524063e02ed24d55",
"lang": "Agda",
"max_forks_count": 371,
"max_forks_repo_forks_event_max_datetime": "2022-03-30T19:00:30.000Z",
"max_forks_repo_forks_event_min_datetime": "2015-01-03T14:04:08.000Z",
"max_forks_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "cruhland/agda",
"max_forks_repo_path": "test/Succeed/Issue883.agda",
"max_issues_count": 4066,
"max_issues_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_issues_repo_issues_event_max_datetime": "2022-03-31T21:14:49.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-01-10T11:24:51.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "cruhland/agda",
"max_issues_repo_path": "test/Succeed/Issue883.agda",
"max_line_length": 62,
"max_stars_count": 1989,
"max_stars_repo_head_hexsha": "7f58030124fa99dfbf8db376659416f3ad8384de",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "cruhland/agda",
"max_stars_repo_path": "test/Succeed/Issue883.agda",
"max_stars_repo_stars_event_max_datetime": "2022-03-30T18:20:48.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-01-09T23:51:16.000Z",
"num_tokens": 148,
"size": 419
} |
------------------------------------------------------------------------
-- The Agda standard library
--
-- The Colist type and some operations
------------------------------------------------------------------------
{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Colist where
open import Level using (Level)
open import Size
open import Data.Unit
open import Data.Nat.Base
open import Data.Product using (_×_ ; _,_)
open import Data.These.Base using (These; this; that; these)
open import Data.Maybe.Base using (Maybe; nothing; just)
open import Data.List.Base using (List; []; _∷_)
open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_)
open import Data.Vec.Base as Vec using (Vec; []; _∷_)
open import Data.Vec.Bounded as Vec≤ using (Vec≤)
open import Function
open import Codata.Thunk using (Thunk; force)
open import Codata.Conat as Conat using (Conat ; zero ; suc)
open import Codata.Cowriter as CW using (Cowriter; _∷_)
open import Codata.Delay as Delay using (Delay ; now ; later)
open import Codata.Stream using (Stream ; _∷_)
open import Relation.Binary.PropositionalEquality using (_≡_; refl)
private
variable
a b c w : Level
i : Size
A : Set a
B : Set b
C : Set c
W : Set w
data Colist (A : Set a) (i : Size) : Set a where
[] : Colist A i
_∷_ : A → Thunk (Colist A) i → Colist A i
------------------------------------------------------------------------
-- Relationship to Cowriter.
fromCowriter : Cowriter W A i → Colist W i
fromCowriter CW.[ _ ] = []
fromCowriter (w ∷ ca) = w ∷ λ where .force → fromCowriter (ca .force)
toCowriter : Colist A i → Cowriter A ⊤ i
toCowriter [] = CW.[ _ ]
toCowriter (a ∷ as) = a ∷ λ where .force → toCowriter (as .force)
------------------------------------------------------------------------
-- Basic functions.
[_] : A → Colist A ∞
[ a ] = a ∷ λ where .force → []
length : Colist A i → Conat i
length [] = zero
length (x ∷ xs) = suc λ where .force → length (xs .force)
replicate : Conat i → A → Colist A i
replicate zero a = []
replicate (suc n) a = a ∷ λ where .force → replicate (n .force) a
infixr 5 _++_ _⁺++_
_++_ : Colist A i → Colist A i → Colist A i
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ λ where .force → xs .force ++ ys
lookup : ℕ → Colist A ∞ → Maybe A
lookup n [] = nothing
lookup zero (a ∷ as) = just a
lookup (suc n) (a ∷ as) = lookup n (as .force)
colookup : Conat i → Colist A i → Delay (Maybe A) i
colookup n [] = now nothing
colookup zero (a ∷ as) = now (just a)
colookup (suc n) (a ∷ as) =
later λ where .force → colookup (n .force) (as .force)
take : (n : ℕ) → Colist A ∞ → Vec≤ A n
take zero xs = Vec≤.[]
take n [] = Vec≤.[]
take (suc n) (x ∷ xs) = x Vec≤.∷ take n (xs .force)
cotake : Conat i → Stream A i → Colist A i
cotake zero xs = []
cotake (suc n) (x ∷ xs) = x ∷ λ where .force → cotake (n .force) (xs .force)
drop : ℕ → Colist A ∞ → Colist A ∞
drop zero xs = xs
drop (suc n) [] = []
drop (suc n) (x ∷ xs) = drop n (xs .force)
fromList : List A → Colist A ∞
fromList [] = []
fromList (x ∷ xs) = x ∷ λ where .force → fromList xs
fromList⁺ : List⁺ A → Colist A ∞
fromList⁺ = fromList ∘′ List⁺.toList
_⁺++_ : List⁺ A → Thunk (Colist A) i → Colist A i
(x ∷ xs) ⁺++ ys = x ∷ λ where .force → fromList xs ++ ys .force
concat : Colist (List⁺ A) i → Colist A i
concat [] = []
concat (as ∷ ass) = as ⁺++ λ where .force → concat (ass .force)
fromStream : Stream A i → Colist A i
fromStream = cotake Conat.infinity
module ChunksOf (n : ℕ) where
chunksOf : Colist A ∞ → Cowriter (Vec A n) (Vec≤ A n) i
chunksOfAcc : ∀ m →
-- We have two continuations but we are only ever going to use one.
-- If we had linear types, we'd write the type using the & conjunction here.
(k≤ : Vec≤ A m → Vec≤ A n) →
(k≡ : Vec A m → Vec A n) →
-- Finally we chop up the input stream.
Colist A ∞ → Cowriter (Vec A n) (Vec≤ A n) i
chunksOf = chunksOfAcc n id id
chunksOfAcc zero k≤ k≡ as = k≡ [] ∷ λ where .force → chunksOf as
chunksOfAcc (suc k) k≤ k≡ [] = CW.[ k≤ Vec≤.[] ]
chunksOfAcc (suc k) k≤ k≡ (a ∷ as) =
chunksOfAcc k (k≤ ∘ (a Vec≤.∷_)) (k≡ ∘ (a ∷_)) (as .force)
open ChunksOf using (chunksOf) public
-- Test to make sure that the values are kept in the same order
_ : chunksOf 3 (fromList (1 ∷ 2 ∷ 3 ∷ 4 ∷ []))
≡ (1 ∷ 2 ∷ 3 ∷ []) ∷ _
_ = refl
map : (A → B) → Colist A i → Colist B i
map f [] = []
map f (a ∷ as) = f a ∷ λ where .force → map f (as .force)
unfold : (A → Maybe (A × B)) → A → Colist B i
unfold next seed with next seed
... | nothing = []
... | just (seed′ , b) = b ∷ λ where .force → unfold next seed′
scanl : (B → A → B) → B → Colist A i → Colist B i
scanl c n [] = n ∷ λ where .force → []
scanl c n (a ∷ as) = n ∷ λ where .force → scanl c (c n a) (as .force)
alignWith : (These A B → C) → Colist A i → Colist B i → Colist C i
alignWith f [] bs = map (f ∘′ that) bs
alignWith f as@(_ ∷ _) [] = map (f ∘′ this) as
alignWith f (a ∷ as) (b ∷ bs) =
f (these a b) ∷ λ where .force → alignWith f (as .force) (bs .force)
zipWith : (A → B → C) → Colist A i → Colist B i → Colist C i
zipWith f [] bs = []
zipWith f as [] = []
zipWith f (a ∷ as) (b ∷ bs) =
f a b ∷ λ where .force → zipWith f (as .force) (bs .force)
align : Colist A i → Colist B i → Colist (These A B) i
align = alignWith id
zip : Colist A i → Colist B i → Colist (A × B) i
zip = zipWith _,_
ap : Colist (A → B) i → Colist A i → Colist B i
ap = zipWith _$′_
| {
"alphanum_fraction": 0.5534950071,
"avg_line_length": 32.0457142857,
"ext": "agda",
"hexsha": "da95058fc6f072eeafc7e0706608a08a33dd9926",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_forks_event_min_datetime": "2021-11-04T06:54:45.000Z",
"max_forks_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "DreamLinuxer/popl21-artifact",
"max_forks_repo_path": "agda-stdlib/src/Codata/Colist.agda",
"max_issues_count": null,
"max_issues_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_issues_repo_issues_event_max_datetime": null,
"max_issues_repo_issues_event_min_datetime": null,
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "DreamLinuxer/popl21-artifact",
"max_issues_repo_path": "agda-stdlib/src/Codata/Colist.agda",
"max_line_length": 80,
"max_stars_count": 5,
"max_stars_repo_head_hexsha": "fb380f2e67dcb4a94f353dbaec91624fcb5b8933",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "DreamLinuxer/popl21-artifact",
"max_stars_repo_path": "agda-stdlib/src/Codata/Colist.agda",
"max_stars_repo_stars_event_max_datetime": "2020-10-10T21:41:32.000Z",
"max_stars_repo_stars_event_min_datetime": "2020-10-07T12:07:53.000Z",
"num_tokens": 1957,
"size": 5608
} |
------------------------------------------------------------------------
-- INCREMENTAL λ-CALCULUS
--
-- The syntax of function types (Fig. 1a).
------------------------------------------------------------------------
module Parametric.Syntax.Type where
open import Base.Data.DependentList
-- This is a module in the Parametric.* hierarchy, so it defines
-- an extension point for plugins. In this case, the plugin can
-- choose the syntax for data types. We always provide a binding
-- called "Structure" that defines the type of the value that has
-- to be provided by the plugin. In this case, the plugin has to
-- provide a type, so we say "Structure = Set".
Structure : Set₁
Structure = Set
-- Here is the parametric module that defines the syntax of
-- simply types in terms of the syntax of base types. In the
-- Parametric.* hierarchy, we always call these parametric
-- modules "Structure". Note that in Agda, there is a separate
-- namespace for module names and for other bindings, so this
-- doesn't clash with the "Structure" above.
--
-- The idea behind all these structures is that the parametric
-- module lifts some structure of the plugin to the corresponding
-- structure in the full language. In this case, we lift the
-- structure of base types to the structure of simple types.
-- Maybe not the best choice of names, but it seemed clever at
-- the time.
module Structure (Base : Structure) where
infixr 5 _⇒_
-- A simple type is either a base type or a function types.
-- Note that we can use our module parameter "Base" here just
-- like any other type.
data Type : Set where
base : (ι : Base) → Type
_⇒_ : (σ : Type) → (τ : Type) → Type
-- We also provide the definitions of contexts of the newly
-- defined simple types, variables as de Bruijn indices
-- pointing into such a context, and sets of bound variables.
open import Base.Syntax.Context Type public
open import Base.Syntax.Vars Type public
-- Internalize a context to a type.
--
-- Is there a better name for this function?
internalizeContext : (Σ : Context) (τ′ : Type) → Type
internalizeContext ∅ τ′ = τ′
internalizeContext (τ • Σ) τ′ = τ ⇒ internalizeContext Σ τ′
| {
"alphanum_fraction": 0.6731818182,
"avg_line_length": 38.5964912281,
"ext": "agda",
"hexsha": "1f617666cf5fc0d7a05ae55ccabac118f8a6072f",
"lang": "Agda",
"max_forks_count": 1,
"max_forks_repo_forks_event_max_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_forks_event_min_datetime": "2016-02-18T12:26:44.000Z",
"max_forks_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_forks_repo_licenses": [
"MIT"
],
"max_forks_repo_name": "inc-lc/ilc-agda",
"max_forks_repo_path": "Parametric/Syntax/Type.agda",
"max_issues_count": 6,
"max_issues_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_issues_repo_issues_event_max_datetime": "2017-05-04T13:53:59.000Z",
"max_issues_repo_issues_event_min_datetime": "2015-07-01T18:09:31.000Z",
"max_issues_repo_licenses": [
"MIT"
],
"max_issues_repo_name": "inc-lc/ilc-agda",
"max_issues_repo_path": "Parametric/Syntax/Type.agda",
"max_line_length": 72,
"max_stars_count": 10,
"max_stars_repo_head_hexsha": "39bb081c6f192bdb87bd58b4a89291686d2d7d03",
"max_stars_repo_licenses": [
"MIT"
],
"max_stars_repo_name": "inc-lc/ilc-agda",
"max_stars_repo_path": "Parametric/Syntax/Type.agda",
"max_stars_repo_stars_event_max_datetime": "2019-07-19T07:06:59.000Z",
"max_stars_repo_stars_event_min_datetime": "2015-03-04T06:09:20.000Z",
"num_tokens": 531,
"size": 2200
} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.